HEWLETT
PACKARD

A

RTE FORTRAN IV

Reference Manual

RTE FORTRAN 1V

Reference Manual

(D Pyt

HEWLETT-PACKARD COMPANY

Data Systems Division
11000 Wolfe Road MANUAL PART NO. 92060-90023
Cupertino, California 95014 Printed in U.S.A. July 1980

PRINTING HISTORY

The Printing History below identifies the Edition of this Manual and any Updates that are included. Periodically, Update
packages are distributed which contain the latest replacement pages and write-in instructions to be merged into the
manual, including an updated copy of this Printing History page.

To replenish stock, this manual will be reprinted as necessary. Each such reprinting will incorporate all past Updates,
however, no new information will be added. Thus, the reprinted copy will be identical in content to prior printings of the
same edition with its user-inserted update information.

To determine the specific manual edition and update which is compatible with your current software revision code, refer to
the appropriate Software Numbering Catalog.

Seventh Edition Mar 1980
Update 1vinttiiiiiiiii i Jul 1980
Reprint ...t Jul 1980 (Update 1 incorporated)
NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be
liable for errors contained herein or for incidental or consequential damages in connection with the
furnishing, performance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied, reproduced or translated to another program language
without the prior written consent of Hewlett-Packard Company.

Copyright © 1980 by HEWLETT-PACKARD COMPANY

1i

PREFACE

The front matter includes a Table of Contents and an Introduction to the manual. Sections I
through III describe the form of source programs and the types, identification, and format of
data and expressions used in RTE FORTRAN IV. Sections IV through IX describe the
language elements used to code a source program, including the formats and uses of RTE
FORTRAN IV statements. The Appendixes describe the format of data in memory, the form of
RTE FORTRAN IV jobs, departures from and extensions of ANSI FORTRAN IV specifications,
features included in RTE FORTRAN IV for compatibility with HP FORTRAN, RTE
FORTRAN IV Compiler error diagnostics, the HP character set for computer systems, and the
RTE FORTRAN IV invocation command for RTE-II, RTE-III, RTE-IV, and RTE-M Operating
Systems.

NOTE: Throughout the manual are special boxed notes that
explain departures from ANSI FORTRAN IV specifi-

cations or features for compatibility with HP
FORTRAN.

This manual is a reference text for programmers who have had FORTRAN programming
experience, either with HP FORTRAN or with other FORTRAN compilers.

The documentation maps on the following pages are a guide to HP documentation pertinent to
the use of RTE FORTRAN IV.

iii

RTE-M OPERATING SYSTEM

DOCUMENTATION MAP

HP FORTRAN
Reference
Manual
02116-9015

RTE FORTRAN |V
Reference Manual
92060-90023

RTE Assembler
Reference
Manual
92060-90005

BASIC/1000M
Language
Reference
Manual
92065-90001

START
A
RTE-M
Programmer’s
Reference
Manual
92064-90002
21MX Computer Operator's Manual
(M-Series)
RTE-M 02108-90004
System and
Generation 21MX Computer Reference Manual
Manual (M-Series)
92064-90003 02108-90002
or
21MX E-Series Computer
Operating and Reference Manual
. 02109-90001
RTE-M
Editor
Reference
Manual
92064-90004
Yy
RTE O i
RTE-M Pocket Guide System Drivers and
92064-90007 Device Subroutines
Manual
92200-93005
y
RTE/DOS RTE-M RTE-M BASIC
Relocatable Software Software
Library Numbering Numbering
24998-90001 Catalog Catalog
92064-90001 92065-90002
7700-24

iv

YOouU
ARE
HERE

RTE-11/111/IV OPERATING SYSTEMS

START

DOCUMENTATION MAP

YOU

T

DOS/RTE
RTE-11l General Relocatable
Information Manual Library —>
92060-90009 Reference Manual
24998-90001
RTE Software
Numbering Catalog
RTE-1V . .92067-90004 . > RTE
RTE-111 . .92060-90019 f\‘lZE Csfr:'de for %W'Xt « Manual FORTRAN IV
RTE-II ..92001-93003 by perators Wanua Reference Manual
92060-90012 < 02108-90004 92060-90023
A
\ 4
RTE On-Line > RTE Programming
Generator and Operating Manual languages HP FORTRAN
Reference Manual RTE-IV92067-90001 o Reference Manual 9
RTE-IV....92067-90002 RTE-III. .. .92060-90004 02116-9015
RTE-I1/111..92060-90020 RTE-Il92001-93001
ALGOL
Reference Manual |
A A y h 4 02116-9072
RTE Interactive Batch-Spool Monitor RTE Utility Programs RTE Operating System
Editor Reference Reference Manual 92060-90017 Drivers and Subroutines
Manual 92060-90013 Manual
92060-90014 92200-93005
RTE Assembler
Reference Manual
A 92060-90005
RTE-IV Assembler
Reference Manual
92067-90003
Basic/1000D
. RTE and BSM Mul ti-User
quick reference Pocket Guide < error messages Real-Time BASIC |—
92060-90010 Reference Manual
92060-90016
Depimal $tring
érlthmetlc [
outines
02100-90140
7700-23

v/ vi

ARE
HERE

f

CONTENTS

xiii

2-1
2-1
2-1
2-2
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
2-11
2-12
2-12
2-12
2-13

2-13

2-14

PREFACE

DOCUMENTATION MAP — RTE-M
DOCUMENTATION MAP — RTE-II/III
DOCUMENTATION MAP — RTE-IVB
INTRODUCTION

SECTION I
THE FORM OF A FORTRAN IV PROGRAM
FORTRAN IV SOURCE PROGRAMS
FORTRAN IV CHARACTER SET
SOURCE PROGRAM LINES
SOURCE PROGRAM STATEMENTS AND LABELS
ORDER OF STATEMENTS IN A SOURCE PROGRAM

SECTION II
DATA, CONSTANTS, VARIABLES AND ARRAYS
IDENTIFYING DATA TYPES
Data Type Association
Establishing Data Names
Using Data Names
WRITING CONSTANTS, VARIABLES AND ARRAYS
INTEGER CONSTANT
REAL CONSTANT
DOUBLE PRECISION CONSTANT
COMPLEX CONSTANT
LOGICAL CONSTANT
HOLLERITH CONSTANT
OCTAL CONSTANT
SIMPLE VARIABLE
ARRAY
Array Element
Subscript Expressions
Subscript
Defining Variables and Array Elements

SUBSCRIPTED VARIABLE

vii

3-1
3-1
3-1
3-1
3-2
3-3
3-3
3-4
3-4
3-5
3-5
3-6

5-1
5-1
5-3
5-4

SECTION III
EXPRESSIONS

ARITHMETIC EXPRESSIONS
Arithmetic Operators
Arithmetic Elements
Combining Arithmetic Elements
Exponentiation of Arithmetic Elements
Evaluating Expressions
LOGICAL EXPRESSIONS
Logical Operators
Logical Elements
RELATIONAL EXPRESSIONS

Relational Operators

SECTION IV

SPECIFICATION STATEMENTS
ARRAY DECLARATOR
EXTERNAL

TYPE-SPECIFICATION
DIMENSION
COMMON
EXTENDED MEMORY AREA (EMA) DIRECTIVE
EXTENDED MEMORY AREA (EMA) STATEMENT
EQUIVALENCE
DATA
IMPLICIT STATEMENT

SECTION V

ASSIGNMENT STATEMENTS
ARITHMETIC ASSIGNMENT STATEMENT
LOGICAL ASSIGNMENT STATEMENT

ASSIGN TO STATEMENT

SECTION VI
CONTROL STATEMENTS
GO TO (UNCONDITIONAL)
GO TO (ASSIGNED)
GO TO (COMPUTED)
IF (ARITHMETIC)

IF (LOGICAL)

viii

6-7
6-8
6-9
6-10
6-11
6-12
6-16

7-1

7-1
7-2
7-2
7-2

7-4
7-5
7-6
7-7

7-9

7-9

7-10
7-11
7-11
7-11
7-12

8-1

8-3

8-5
8-6

SECTION VI (cont.)
CONTROL STATEMENTS

CALL

RETURN

CONTINUE

STOP

PAUSE

DO

END

SECTION VII
INPUT/OUTPUT STATEMENTS
IDENTIFYING INPUT/OUTPUT UNITS
IDENTIFYING ARRAY NAMES OR FORMAT STATEMENTS
INPUT/OUTPUT LISTS
Simple Lists
DO-Implied Lists
FORMATTED AND UNFORMATTED RECORDS
READ (FORMATTED)
WRITE (FORMATTED)
READ (UNFORMATTED)
WRITE (UNFORMATTED)
REWIND, BACKSPACE, ENDFILE
FREE FIELD INPUT
Data Item Delimiters
Record Terminator
Sign of Data Item
Floating Point Number Data Item
Octal Data Item

Comment Delimiters

SECTION VIII

THE FORMAT STATEMENT
FORMAT
FIELD DESCRIPTOR
REPEAT SPECIFICATION

I-TYPE CONVERSION (INTEGER NUMBERS)

ix

SECTION VIII (cont.)
THE FORMAT STATEMENT

8-8 SCALE FACTOR
8-10 E-TYPE CONVERSION (REAL NUMBERS)
8-12 F-TYPE CONVERSION (REAL NUMBERS)
8-14 G-TYPE CONVERSION (REAL NUMBERS)
8-16 D-TYPE CONVERSION (DOUBLE PRECISION NUMBERS)
8-17 COMPLEX CONVERSION (COMPLEX NUMBERS)
8-18 L-TYPE CONVERSION (LOGICAL NUMBERS)
8-19 @-TYPE, K-TYPE AND O-TYPE CONVERSIONS
(OCTAL NUMBERS)
8-21 A-TYPE CONVERSION (HOLLERITH INFORMATION)
8-23 R-TYPE CONVERSION (HOLLERITH INFORMATION)
8-25 wH EDITING (HOLLERITH INFORMATION)
8-26 "..." EDITING (HOLLERITH INFORMATION)
8-27 X-TYPE CONVERSION (SKIP OR BLANKS)
8-28 FIELD SEPARATOR
8-29 CARRIAGE CONTROL
SECTION IX
9-1 PROGRAMS, FUNCTIONS, SUBROUTINES, AND
BLOCK DATA SUBPROGRAMS
9-1 PROGRAM STATEMENT
9-3 FUNCTIONS
9-4 SUBROUTINES
9-4 Data Types for Functions and Subroutines
9-5 DUMMY ARGUMENTS
9-5 ' BLOCK DATA SUBPROGRAMS
9-6 STATEMENT FUNCTION
9-7 Defining Statement Functions
9-7 Referencing Statement Functions
9-8 FORTRAN IV LIBRARY FUNCTION
9-12 FUNCTION SUBPROGRAM
9-13 Defining Function Subprograms

9-15 Referencing Function Subprograms

SECTION IX (cont.)

PROGRAMS, FUNCTIONS, SUBROUTINES, AND
BLOCK DATA SUBPROGRAMS

9-17 SUBROUTINE

9-18 Defining Subroutines

9-18 Referencing Subroutines

9-20 BLOCK DATA SUBPROGRAMS
APPENDIX A

A-1 DATA FORMAT IN MEMORY
APPENDIX B

B-1 COMPOSING AN RTE FORTRAN IV JOB DECK
APPENDIX C

C-1 SUMMARY OF COMPATIBILITY WITH ANSI FORTRAN IV
APPENDIX D

D-1 COMPATIBILITY BETWEEN HP FORTRAN AND
RTE FORTRAN 1V
APPENDIX E

E-1 CROSS REFERENCE SYMBOL TABLE
APPENDIX F

F-1 SAMPLE LISTING OF RTE FORTRAN IV PROGRAM
APPENDIX G

G-1 RTE FORTRAN IV COMPILER ERROR DIAGNOSTICS
APPENDIX H

H-1 OBJECT PROGRAM DIAGNOSTIC MESSAGES
APPENDIX 1

I-1 HP CHARACTER SET FOR COMPUTER SYSTEMS
APPENDIX J

J-1 RTE FORTRAN IV OPERATIONS

Index-1 INDEX

xi

TABLES

Table

(in
Table
Table

Table
Table

Table

2-1.

The Value of an Array Subscript

an Array)

3-1.
3-2.

5-1.
9-1.
G-1.

Results: Combining Arithmetic Elements

Results: Exponentiation of
Arithmetic Elements

Rules for Assigning e to v
FORTRAN IV LIBRARY FUNCTIONS

RTE FORTRAN IV Compiler Error Diagnostics

xXii

INTRODUCTION

COMPILER PURPOSE

The RTE FORTRAN IV Compiler is used to construct object language programs from
source language programs written according to the rules of the RTE FORTRAN IV

language described in this manual.

FILE DEFINITION

In the following discussion, a file is defined to be a sequential access device
which may be either on a mass storage device such as a disc, or an external

device such as a card reader.

COMPILER SYNOPSIS

The RTE FORTRAN IV Compiler reads source input from a source file. The

compiler writes the resultant object program on a standard binary output file
in a format acceptable to the Relocating Loader. Exact detail for specifying
these files is found in the Reference Manuals for the Operating System being

used (see the Documentation Maps on pages iv and v).

RTE FORTRAN IV is a multi-pass compiler. A pass is defined as a processing
cycle of the source program. In the initial pass, the source program is
processed, a symbol table is constructed, and a set of intermediate machine
code is generated. During subsequent passes, the compiler searches the symbol
table for object code references, completes translation of the intermediate
object code on the disc and produces a relocatable binary object program. It
produces the object program as directed at invocation. Source and object
listings may be produced, if specified in the FORTRAN IV control statement
(see Appendix B), or the Operating System program invocation command (see

Appendix J) .

xiii

COMPILER ENVIRONMENT

The RTE FORTRAN IV Compiler is available in the HP 92001 RTE-II, HP 92060
RTE-III, HP 92067 RTE-IV, and HP 92064 RTE-M Operating Systems. The hardware
configurations required for compiling and executing RTE FORTRAN IV programs
under control of these systems are described in the appropriate system

documentation.
The libraries of relocatable subroutines available to RTE FORTRAN IV are

described in the HP DOS/RTE Relocatable Library Reference Manual. See the

documentation maps on p. IV or V for the part number of this manual.

xiv

SECTION |

THE FORM OF A FORTRAN IV PROGRAM

The RTE FORTRAN IV Compiler accepts as input a source program written accord-

ing to the specifications contained in this manual. Each source program is

constructed from characters grouped into lines and statements. Appendix F

shows a sample program listing. The elements used to construct a source

language program are defined in the following text.

FORTRAN IV SOURCE PROGRAMS

The following terms define FORTRAN IV source programs:

Executable Program:

Main Program:

Subprogram:

A program that can be used as a self-contained computing
procedure. An executable program consists of precisely
one main program and its subprograms and segments*, if

any.

A set of statements and comments not containing a
FUNCTION, SUBROUTINE, or BLOCK DATA statement, beginning

with a program statement and ending with an END statement.

A set of statements and comments containing a FUNCTION,
SUBROUTINE, or a BLOCK DATA statement. When defined by
FORTRAN statements and headed by a FUNCTION statement, it
is called a function subprogram. When defined by FORTRAN
statements and headed by a SUBROUTINE statement, it is
called a subroutine subprogram. When defined by FORTRAN
statements and headed by a BLOCK DATA statement, it is
called a block data subprogram. Subprograms also can be
written in HP FORTRAN, HP ALGOL, or HP Assembler

languages.

*Segmented programs may not be supported in some operating systems.

1-1

Program Unit:

Segments *:

A main program or a subprogram.

An overlayable set of statements beginning with a
PROGRAM statement which specifies Type 5, and ending

with an END statement.

FORTRAN IV CHARACTER SET

A source language program is written using the following character set.

Letters:

Digits:

Alphanumeric
Character:

Blank Character:

The twenty-six letters A through Z.

The ten digits O, 1, 2, 3, 4, 5, 6, 7,.8, 9. Unless
specified otherwise, a string of digits is interpreted
in the decimal base number system when a number system

base interpretation is appropriate.

A letter or a digit.

Has no meaning and may be used to improve the appearance

of a program with the following exceptions:

a. A continuation line cannot contain a blank in
column 6.
b. A blank character is valid and significant in

Hollerith data strings.

c. In numeric input conversions, leading blanks are
not significant, but embedded blanks are converted
to zeros. A field of all blanks is converted to

all zeros.

*Segmented programs may not be supported in some operating systems.

1-2

Special Characters: Used for special program functions. They are:

SYMBOL REPRESENTING

blank

= equals

+ plus

- minus

* asterisk

/ slash

(left parenthesis

) right parenthesis

’ comma

. decimal point

$ currency symbol

" quote - string delimiter

SOURCE_PROGRAM LINES

Source program lines are written according to the following rules.

Lines: A line is a string of 72 characters. All charac-
ters must be from the HP ASCII character set (see
Appendix I). The character positions in a line are
called columns, and are consecutively numbered
1, 2, 3, ..., 72. The number indicates the
sequential position of a character in the line,

starting at the left and proceeding to the right.

Comment Line: A comment line is denoted by a "C" or by an "*" in column 1.
A comment line is not a statement and does not effect the
program in any way. A comment line beginning with "*" will

be listed in mixed listings.

EXTENSIONS TO THE STANDARD

Comment lines may appear at any point in a program, including between lines
of a continued statement. Comment lines beginning with a "C" will not be
included in mixed listings.

Initial Line:

Debug Line:

Continuation Line:

An initial line is a line that is neither a comment line
nor an end line, and that contains the digit O or the
character blank in column 6. Columns 1 through 5 may

contain a statement label or the character blank.

The letter D in column 1 of a line designates that line
as a debug line. Compilation of debug lines is optional.
Unless specifically directed to compile debug lines, the
RTE FORTRAN IV compiler will treat debug lines the same

as comment lines.

To cause compilation of debug lines, specify the charac-
ter D as a parameter either in the FTN4 control statement
(see Appendix B) or as an FTN4 invocation command option
(see Appendix J). In either case, when the character D is

specified, the debug lines are compiled.

A continuation line is a line that contains any characters
other than the digit O or the character blank in column 6,
and does not contain the character C or $ in column 1.

Any other character may be placed in column 1. Any
characters may be placed in columns 2 through 5. Except
for comment lines, a continuation line may follow only an

initial line or another continuation line.

In all cases, a statement may be continued

indefinitely (extension of the standard).

SOURCE PROGRAM STATEMENTS AND LABELS

Source program statements and statement labels are written according to the

following rules.

Statements: A statement consists of an initial line optionally
followed by continuation lines. The statement is
written in columns 7 through 72 of the lines. The order
of the characters in the statement is columns 7 through
72 of the first continuation line, columns 7 through 72

of the next continuation line, etc.

Symbolic Names: A symbolic name consists of from one to six alpha-
numeric characters, the first of which must be

alphabetic.

External names (i.e., SUBROUTINE, FUNCTION, COMMON labels, and Main pro-
gram names are shortened automatically to five characters by deletion of

the fifth character. For example, the name PROGO1l becomes PROGI.

ORDER OF STATEMENTS IN A SOURCE PROGRAM

The following diagram shows the source program statement ordering requirements
for RTE FORTRAN IV main programs and subprograms. Statement types that must
appear in a specific sequence are separated by the horizontal lines. For
example, the PROGRAM statement must precede FORMAT statements, while Specifi-
cation statements must precede DATA statements, and so forth. Statement types
that may be interspersed with higher level statements are separated by the
Vertical lines. For example, Arithmetic statement function definitions and

Executable statements may be interspersed with DATA statements, and so forth.

EMA Statement

PROGRAM, FUNCTION, SUBROUTINE, or BLOCK DATA Statement

Implicit Statements
Specification Statements
Comment
Lines
FORMAT Arithmetic Statement
Statements DATA Function Definitions
Statements (See Note 3)
(See Notes 1
and 2) Executable Statements
(See Note 3)
END Statement
NOTES : 1. Items in the DATA statement list are initialized at loading

and not at every entrance to a program or subprogram.

2. Compile time is shortened if all DATA statements immediately
follow the last specification statement (with no intervening
arithmetic statement function definitions).

3. Arithmetic statement function definitions and executable
statements are not allowed in block data subprograms.

SECTION i |
DATA, CONSTANTS, VARIABLES AND ARRAYS

There are six types of data in FORTRAN 1IV:

INTEGER

REAL

DOUBLE PRECISION
COMPLEX

LOGICAL
HOLLERITH

Each data type has a specific format in main memory and a unique mathema-

tical significance and representation.

IDENTIFYING DATA TYPES

A symbolic name, called a data name, is used to reference or otherwise
identify data of any type. The following rules are used when identifying

data:

a. Data is named when it is identified, but not necessarily made

available.
b. Data is defined when it has a value assigned to it.

c. Data is referenced when the current defined value of the data
is made available during the execution of the statement that

contains the data reference.

Data Type Association

The data name used to identify data carries the data type association,
subject to the following restrictions:
a. A data item keeps the same data type throughout the program

unit.

b. An explicit type specification overrides both the IMPLICIT specificatior.

(see section 4) and the default specification.

Establishing Data Names

There are different ways of establishing a data name for a data type, depend-

ing upon the type of data and how the data is used.

The form of a string representing a constant defines both the wvalue and the
type of the data. This definition is a function of how data is stored in

main memory. The type of a constant is implicit in its name.

A data name that identifies a variable or an array may have its data type
specified in a Type-specification. (See Section IV, "Specification Statements.")
In the absence of an explicit declaration in a Type-specification, the data type
is implied by the first character of the data name. The default type specifica-
tions are as follows:

I, J, X, L, M, or N = integer type data
any other letter = real type data

This implied type specification may be changed using the IMPLICIT statement

(see section 1IV).

Using Data Names

Data names are used to identify

VARIABLES
ARRAYS, or ARRAY ELEMENTS
FUNCTIONS (See Section IX.)

WRITING CONSTANTS, VARIABLES AND ARRAYS

The following pages describe how to write constants, variables and arrays
in FORTRAN IV. See Appendix A "Formats of Data in Core Memory," for

a description of how each data type is stored in main memory.

INTEGER CONSTANT

PURPOSE: An integer constant is written as a string of digits interpreted

as a decimal number.

FORMAT:

n = a decimal number with a range of -32,768 to 32,767

COMMENTS: An integer constant is signed when it is written immediately
following a + or - sign. If it is unsigned, an integer constant

is assumed to be positive.

EXAMPLES:

-32768
32767

-12
329
+5557

REAL CONSTANT

PURPOSE: A real constant is written as a string of decimal digits con-
taining an integer part, a decimal point, a decimal fraction
and an exponent, in that order.

FORMAT :
+m . n EX
m = an integer constant
. = a decimal point
n = a decimal constant representing a fraction
Ex = the character E followed by the exponent, a signed
or unsigned integer

COMMENTS: The decimal exponent is a multiplier (applied to the constant
written immediately before it) that is equal to the number
10, raised to the power indicated by the integer following the
E.

Either m or n (but not both) may be omitted; and either the
decimal point or the exponent (but not both) may be omitted
from a real constant.

EXAMPLES:

1.29 0.18E+2
.00123 2E-3
-901. 1.E+15
256.177E2 -256.177E-2

DOUBLE PRECISION CONSTANT

PURPOSE: A double precision constant is written as a string of decimal
digits containing an integer part, a decimal point, a decimal

fraction and an exponent, in that order.

FORMAT:

+m . n Dx

E]
1]

an integer constant

. a decimal point
n = a decimal constant representing a fraction

Dx

the character D followed by the exponent, a signed or

unsigned integer

COMMENTS: The decimal exponent is a multiplier (applied to the constant
written immediately before it) that is equal to the number 10,

raised to the power indicated by the integer following the D.

Either m or n (but not both) can be omitted. A decimal point
must separate m and n when both are specified. When m is

present, both the decimal point and n can be omitted.

EXAMPLES:
1.29D0
.0123D-1
256.17702D02
-256.17702D-2
2D-3

2-6

COMPLEX CONSTANT

PURPOSE: A complex constant is composed of a real part and an imaginary
part, and is written as an ordered pair of real constants, sep-

arated by a comma and enclosed in parentheses.

FORMAT:

; M)

(my 2

m. and m_ are real constants, signed or unsigned

COMMENTS: The first real constant is the real part; the second, the

imaginary part.

EXAMPLES:
(1.29, 256.177E-2)
(-901., 0.)
(-.123E+01, -12.3E-4)
(0., 0.)

LOGICAL CONSTANT

PURPOSE : A logical constant is a truth value, either true or false.

FORMAT:

.TRUE.
.FALSE.

COMMENTS: The periods must be used as shown.

EXAMPLES:
ITRUE = .TRUE.
When the above instruction is executed in an RTE Fortran IV

program, the internal representation of logical true will be

assigned to the variable ITRUE.

2-8

HOLLERITH CONSTANT

PURPOSE : A Hollerith constant is written as an integer constant followed
by the letter H, followed by any ASCII character except
carriage return.

FORMAT:
nHx
= an integer constant
H = the Hollerith descriptor, which is the character H
X = one to n alphanumeric characters

COMMENTS: The character immediately following the H is placed in the
left half of the computer word used to store the constant.
The right half of the word contains the next character and
so on. If n is odd, the last word will have a blank in its
right half.

Hollerith constants are typed as follows:
n =1 or 2 integer
3 or 4 real
5 or 6 double precision
7 or 8 complex
n > 8 legal only as a simple parameter in a CALL
statement or a function reference, or in
FORMAT statements.

EXAMPLES:
1H@ 2HBB
1HA 2HS$S
2H A 2H12
8HABCDEFGH 10HCALL STMT.

OCTAL CONSTANT

PURPOSE: An octal constant is written as a string of from one to six
octal digits terminating with a B octal descriptor. An octal

constant is an implied integer constant.

FORMAT:

inln2n3n4n5n68

nl to n6 = octal digits

B = the octal descriptor, the character B

COMMENTS: 1If an octal constant has more than six digits or if the
leading digit in a six-digit constant is greater than one,
an error diagnostic occurs.

Integers n

up to n_ may be omitted if they equal 0. The

1 5
octal constant may carry a sign.

EXAMPLES:
21B
+00B
OB
1777778
-1705B

NOTE: The B suffix to indicate octal is an extension of the standard.

SIMPLE VARIABLE

PURPOSE: 1s the symbolic name of a single value.

FORMAT:
One to six alphanumeric characters, the first of

which must be a letter.-

COMMENTS: 1If the variable has a first character of I, J, K, L, M or N,
it is implicitly typed as an integer wvariable. All other

first letters imply that the variable is real.

Implicit typing may be overridden for individual symbolic

names by declaring them in a Type-specification. (See Section IV.)

EXAMPLES:
Integer Real
1125 Al25
JMAX HMAX
MREAL REAL
K X

ARRAY

An array is an ordered set of data of one, two or three dimensions. An array
is identified by a symbolic name called the array name. The size and number
of dimensions of an array must be defined in a DIMENSION, COMMON or TYPE-

statement.

ARRAY ELEMENT

An array element is a member of the array data set. The array element is

identified by a subscript immediately following the array name.

An array element may be defined and referenced.

SUBSCRIPT EXPRESSIONS

A subscript expression may be any arithmetic expression allowed in FORTRAN IV.
If the expression is of a data type other than integer, it is converted to in-
teger before being used as a subscript. It must evaluate to an integer between

1 and 32767 inclusive.

In a program unit any appearance of a symbolic name that identifies an array
must be immediately followed by a subscript, except in the following cases:

a. In the list of an input/output statement
b. In a list of dummy arguments

c. In the list of actual arguments in a function or subroutine

reference
d. In a COMMON statement
e. In a TYPE- statement

f. In a DATA statement

SUBSCRIPT

A subscript is written as a parenthesized list of subscript expressions.
Each subscript expression is separated by a comma from its successor, if

there is a successor.

The number of subscript expressions must be less than or equal to the num-
ber of dimensions declared for the array name in a DIMENSION, COMMON or
TYPE- statement. The value of a subscript is defined in Table 2-1, below.
The value refers to the number of array elements (stored in column order)

inclusively between the base entry and the one represented by the subscript.

TABLE 2-1
THE VALUE OF AN ARRAY SUBSCRIPT
(IN AN ARRAY)

*MINIMUM *MAXIMUM
ARRAY SUBSCRIPT SUBSCRIPT SUBSCRIPT SUBSCRIPT
DIMENSION (S) DECLARATOR SUBSCRIPT VALUE VALUE VALUE
1 (a) (a) a 1 A
2 (A,B) (a,b) a+A* (b-1) 1 A*B
3 (A,B,C) (a,b,c) a+A* (b-1)
+A*B* (c-1) 1 A*B*C

*Refer to warning on page 2-14.

Usage of an unsubscripted array name always denotes the first element of
that array, except in an I/O statement or a DATA statement, where the

entire array is referenced.

DEFINING VARIABLES AND ARRAY ELEMENTS

Variables and array elements become initially defined (before execution
begins) if, and only if, their names are associated in a DATA statement
with a constant of.the same data type as the variable or array in question.
Any entity not so defined is said to be "undefined" at the time the first

executable statement in a main program is executed.

2-13

SUBSCRIPTED VARIABLE

PURPOSE: Refers to a particular element of an array of the same symbolic

name as that of the subscripted variable.

FORMAT:

s (ayr 8,0 cees @)

[}
I

the symbolic name of the array
a = expression(s) which determine the values of the
subscript(s) of the subscripted variable

n=1, 2, or 3

COMMENTS: sSubscripted variables must have their subscript bounds specified
in a COMMON, DIMENSION, or TYPE- statement prior to their first

appearance in an executable statement or in a DATA statement.

A subscript may be any arithmetic expression. If non-integer, the
subscript is evaluated and converted to integer (by truncating)

before being used as a subscript.

A subscripted variable is named and typed according to the same

rules as a simple variable.

WARNING: No check is made by the compiler to verify that
array subscript values fall within declared DI-
MENSION bounds. Unpredictable results occur if
references are made to dimensioned variables
outside of the declared bounds of the array.
Thus, array subscripts may not be less than
one or greater than the declared array size.

EXAMPLES:
A(3,5,2) MAX (I,J)
I(10) MIN (I-J, (I-J)*K/A,4)
ARRAY (2,5)

SECTION Il
EXPRESSIONS

An expression is a constant, variable or function reference (see Section IX),

or combination of these, separated by operators, commas or parentheses.

There are three types of expressions: arithmetic, logical and relational.

ARITHMETIC EXPRESSIONS

An arithmetic expression, formed with operators and elements, defines a
numerical value. Both the expression and its elements identify integer,

real, double precision or complex values.

Arithmetic Operators

The arithmetic operators are:

Symbol Mathematic Function Example
*% exponentiation A**B
/ division A/B
* multiplication A*B
- subtraction (or negative value) A-B or -A
+ addition (or positive wvalue) A+B or +A

Arithmetic Elements

The arithmetic elements are defined as:

PRIMARY: An arithmetic expression enclosed in paren-
theses, a constant, a variable reference, an

array element reference or a function reference.

FACTOR: A primary, or a construct of the form:

PRIMARY**PRIMARY
TERM: A factor, or a construct of one of the
forms:
TERM/FACTOR
TERM*TERM

SIGNED TERM: A term, immediately preceded by + or -

SIMPLE ARITHMETIC EXPRESSION: A term, or two simple arithmetic express-
ions separated by + or -.

ARITHMETIC EXPRESSION: A simple arithmetic expression or a signed

term or either of the preceding forms

immediately followed by + or -, followed by

a simple arithmetic expression.

Combining Arithmetic Elements

When adding, subtracting, dividing or multiplying, the compiler combines

arithmetic elements according to the rules shown in Table 3-1.

TABLE 3-1

RESULTS: COMBINING ARITHMETIC ELEMENTS (+,-,%*,/)
FIRST
ELEMENT SECOND ELEMENT TYPE
TYPE INTEGER REAL DOUBLE PRECISION COMPLEX
INTEGER INTEGER REAL DOUBLE PRECISION COMPLEX
REAL REAL REAL DOUBLE PRECISION COMPLEX
DOUBLE DOUBLE DOUBLE DOUBLE PRECISION COMPLEX
PRECISION PRECISION PRECISION
COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX

CAUTION: Real or Integer Division by zero produces the following results:

:INTEGER/O = ABS|INTEGER

e.g.

K = -123/0 = 123

:REAL/O = LARGEST REAL NUMBER
e.g.

A = 18.4/0, = .17014E+39

The overflow bit is set but does not affect the use of the result in succeeding
FORTRAN statements.

NO DIAGNOSTIC WARNING OR ERROR MESSAGE IS DISPLAYED.

3-2a

Exponentiation of Arithmetic Elements

Arithmetic elements can be exponentiated according to the rules shown in

Table 3-2.

TABLE 3-2

RESULTS: EXPONENTIATION OF ARITHMETIC ELEMENTS (**%)

EXPONENT TYPE

BASE TYPE INTEGER REAL DOUBLE PRECISION COMPLEX
INTEGER INTEGER NOT ALLOWED NOT ALLOWED NOT ALLOWED
REAL REAL REAL DOUBLE PRECISION NOT ALLOWED
DOUBLE DOUBLE DOUBLE

PRECISION PRECISION PRECISION DOUBLE PRECISION NOT ALLOWED
COMPLEX COMPLEX NOT ALLOWED NOT ALLOWED NOT ALLOWED

Evaluating Expressions

The compiler evaluates expressions from left to right, according to the

following rules:

PRECEDENCE FROM HIGHEST TO LOWEST:

() parentheses, for grouping expressions

*% exponentiation
*,/ multiplication and division (whichever occurs
arithmetic .
) first)

- unary minus

[to- addition and subtraction (whichever occurs first).
relational .Lr.,.LE.,.EQ.,.NE.,.GT.,.GE. (whichever occurs first).
logical .NOT.

.AND,
.OR.
SEQUENCE : Evaluation begins with the subexpression most deeply

nested within parentheses.
Within parentheses, subexpressions are evaluated from

left to right in the order of precedence above.

Function references are evaluated from left to right as

they occur.

No factor is evaluated that requires a negative valued primary to be raised
to a real or double precision exponent. No factor is evaluated that requires
raising a zero valued primary to a zero valued exponent. No element is
evaluated if its value has not been mathematically defined. Integer overflow

resulting from arithmetic operations is not detected at execution time.

LOGICAL EXPRESSIONS

A logical expression is a rule for computing a logical value. It is formed

with logical operators and logical elements and has the value true or false.

Logical Operators

The logical operators and the logical result of their use in an expression

are:
Symbol Mathematic Function Example
.OR. LOGICAL DISJUNCTION A .OR. B
.AND. LOGICAL CONJUNCTION A .AND. B
.NOT. LOGICAL NEGATION .NOT.A
Logical Expression LOGICAL RESULT IS
(logical elements A and B) TRUE FALSE
A .OR. B If either A or If both A and B
B is true are false
A .AND. B If both A and B If either A or B
are true is false
.NOT. A If A is false If A is true

Logical Elements

The logical elements are defined as:

LOGICAL PRIMARY: A logical expression enclosed in parentheses, a
relational expression, a logical constant, a
logical variable reference, a logical array element

reference, or a logical function reference.

LOGICAL FACTOR: A logical primary, or .NOT. followed by a logical
primary.
LOGICAL TERM: A logical factor or a construct of the form:

LOGICAL TERM .AND. LOGICAL TERM

LOGICAL EXPRESSION: A logical term or a construct of the form:

LOGICAL EXPRESSION .OR. LOGICAL EXPRESSION

RELATIONAL EXPRESSIONS

A relational expression is a rule for computing a conditional logical ex-
pression. It consists of two arithmetic expressions separated by a re-
lational operator. The relation has the value true or false as the relation
is true or false. The operands of a relational operator must be of type
integer, real, or double precision, except that the operators .EQ. and .NE.

may have operands of type complex.

Relational Operators

The relational operators are:

Symbol Mathematic Function Example
.LT. less than A .LT. B
.LE. less than or equal to A .LE. B
.EQ. equal to A .EQ. B
.NE. not equal to A .NE. B
.GT. greater than A .GT. B
.GE. greater than or equal to A .GE. B

EXAMPLE: If A = 5 and B = 3, then

(A .LT. B) is false
((A .LE. B) .OR. (B .LE. A)) is true

CAUTION: The relational operators .LT., .LE., .GT., and

.GE. may cause an integer overflow when executed. This will
not be detected at execution time. If overflow is anticipated
(i.e., the variables to be compared may be more than 32767
apart), they may still be correctly tested by FLOATing them
prior to the test. For example, (I .LT. J) would become
(FLOAT(I) .LT. FLOAT(J)).

The object code generated by this compiler for relational
operators on integers is as follows:

-I1.LT.d I.LE.J LEQ.J I.NE.J I.GT.Jd I1.GE.J

LDAJ LDAI LDAI LDAI LDAI LDAJ

CMA,INA CMA,INA CPAJ CPAJ CMA,INA CMA,INA

ADAI ADAJ CCA,RSS CLA,RSS ADAJ ADAI
CMA CLA CCA CMA

3-6

SECTION 1V
SPECIFICATION STATEMENTS

Specification statements are non-executable statements that specify variables,
arrays and other storage information to the compiler. There are six specifi-
cation statements in FORTRAN IV. It is recommended, but not required, that
specification statements be used in the following order:

IMPLICIT
TYPE-
DIMENSION
COMMON
EQUIVALENCE
EXTERNAL
DATA

Refer to section I on Order of Statements in a Source Program for a complete

explanation of the ordering requirements.

ARRAY DECLARATOR

DIMENSION, COMMON and TYPE- statements use array declarators to specify the
arrays used in a program unit. An array declarator indicates the symbolic
name of the array, the number of dimensions (one, two or three), and the

size of each array dimension. An array declarator has the following format:

v (1)
v = the symbolic name of the array
i = one, two or three declarator subscripts (for one, two or
three dimensional arrays). Each subscript must be an
integer constant or a dummy integer variable name. (See

Section IX.)

If a two or a three dimensional array is being specified, each declarator

subscript is separated from its successor by a comma.

The values given for the declarator subscripts indicate the maximum value
that the subscripts can attain in any array element name. The minimum

value is always one; the maximum value is 32767.

EXTERNAL

PURPOSE: To declare external function or subroutine names that will be

referenced in the program unit.

FORMAT :
EXTERNAL V), Vor -.ep V_

v = any external function or subroutine name

COMMENTS: 1If an external function or subroutine name is used as an argu-
ment to another external function or subroutine, it must appear
in an EXTERNAL statement in the program unit in which it is so

used.

NOTE: EXTERNAL names are limited to five characters in
length. Names of six characters are shortened auto-
matically to five by deletion of the fifth character.

EXAMPLES:
EXTERNAL SIN, IS, FUN

4-2

TYPE-SPECIFICATION

PURPOSE: To declare the data type of variable names, array names, function

names or array declarators used in a program unit.
FORMAT:

INTEGER

REAL

DOUBLE PRECISION Vl, V2, ceey Vn

COMPLEX

LOGICAL

v = a variable, array, function, or array declarator.

COMMENTS: sSubroutine names cannot appear in a Type-specification statement.
The same symbolic name may not appear in a second Type-specifica-
tion statement with a different type.
A Type-specification statement can be used to override or confirm
the implicit typing of integer or real data and must be used to
declare the data type for double precision, complex or logical data.
A symbolic name in a Type-specification statement informs the
compiler that it is of the specified data type for all
appearances in the program unit.

EXAMPLES:

INTEGER I,A,ARRAY(3,5,2)

REAL MAX, UNREAL, R(5)

DOUBLE PRECISION D, DOUBLE(2), DARRAY (3, 3)
COMPLEX C, CPLEX, CARRAY(2,3,4), CAREA
LOGICAL T, FALSE, L(4), J

4-3

DIMENSION

PURPOSE: To specify the symbolic names and dimension(s) of arrays used

in a program unit.

FORMAT :
DIMENSION vl(il), vz(iz), cees vn(in)

v(i) = an array declarator

COMMENTS: Every array in a program unit must be specified in a DIMENSION,
TYPE or COMMON statement.

WARNING: No check is made by the compiler to verify that
array subscript values fall within declared DI-
MENSION bounds. Unpredictable results occur if
references are made to dimensioned variable
outside of the declared bounds of the array.
Thus, array subscripts may not be less than
one or greater than the declared array size.

EXAMPLES: _oNsToN MATRIX(3,3,3)

DIMENSION I(4), A(3,2)

COMMON

PURPOSE : To provide a means for sharing a common block of memory between
a main program and its subprograms, or between subprograms. A
block of common memory labeled by a name refers to block common.

A block without a label refers to blank common.

FORMAT :

COMMON/blockname /a ,...,a ... /blockname /a ,...,a
1 1 n n 1 n

COMMON// a ,...,a
1 n

COMMON a ,...,a
1 n

blockname = a symbolic common block name delimited with slash

characters.
/7 = a blank common block.
a = a variable or array name, or an array declarator.

COMMENTS: A symbolic name in a COMMON statement must be a variable or
array name, or an array declarator. Once declared in a COMMON
statement, a name cannot be declared in another COMMON statement

within the same program unit.

The size of a common block is the sum of the storage required
for the elements introduced through COMMON and EQUIVALENCE state-
ments in a program unit. Common entities are strung together in

the order in which they are declared.

A blank common block is declared by specifying a null block name
(//). If a blank common block is declared as the first block in a

COMMON statement, the slashes can be omitted.

COMMENTS: Blank common is available to every module of a program. Each
(Cont') module must completely describe all entries in any common block
that it references. In multiprogramming systems, blank common

and/or block common may be available to more than one program.

By using named common blocks, the program may group together
similar data constructs and set up the programs common area so
that only the data of interest to a given module need be

declared.

Named common blocks, except EMA common, must be described in
a BLOCK DATA subprogram. Furthermore, the required BLOCK DATA
subprogram may initialize named common blocks while blank

common blocks cannot be initialized.

EXAMPLES:
COMMON I,CAREA(2,3),J(3)/HELLO/W,X(2,5),Z/BYE/A
COMMON/HELLO/KK (10) //Q, P '
I, CAREA, and J are in blank common. W, X, and Z are
in a common block named HELLO. A is in a common block
named BYE. KK follows Z in a common block named HELLO.

Q and P follow J in blank common.

For an example of HP implementation of named common,

see Appendix F.

EXTENDED MEMORY AREA (EMA) DIRECTIVE

PURPOSE: To provide a means for the storage and manipulation of large
amounts of data, up to the total amount of available physical
memory. Available in RTE-IV only.

FORMAT:

SEMA (blockname,mseq)

where:

$ The dollar sign ($) must appear in column 1.

blockname is the symbolic name of a block common area to
be further defined in one or more COMMON statements.

mseg is the size in pages of the RTE MSEG. If O or not
specified, MSEG is the default size determined at
load time (default MSEG = maximum logical address
space - program size-1l). For more information on
MSEG refer to the RTE-IV Programmer's Reference
Manual. The EMA directive is an extension to the
ANSI standard.

COMMENTS: The EMA common is a memory access method that allows very quick

referencing and manipulation of large amounts of data. The size
of the EMA may be as large as all of available physical memory.

Refer to the RTE-IV Programmer's Reference Manual.

The EMA directive must be the first non-comment statement in the
module. The common blockname must not be initialized and the
EMA directive is not allowed in a BLOCK DATA subprogram. Only
one EMA directive per module is allowed, and must appear in

each module that references in EMA variable. All variables

specified in the common block will go into the EMA.

COMMENTS :
(cont.)

An EMA variable is referenced within a main program like any

other variable except when being passed to other subroutines or
functions. When calling subroutines which do not expect EMA
parameters, e.g. EXEC, the user must take care to pass EMA
variables "by value". Call by value is indicated by enclosing the
variable in an extra layer of parentheses, e.g. F((x)) or by
passing the variable as part of an arithmetic expression, e.g.
F(x+0.). The arguments of functions listed in Table G-2, Appendix G,
and the arguments of statement functions are always passed by value

regardless of parentheses.

The implication of "call by value" is that only the value of the
variable is available to the subroutine. Therefore, the variable
may not be modified by the subroutine. Also, an EMA array may not

be passed as an argument to a subroutine or function.

For subroutines expecting EMA variables, arguments may be passed
by reference. "Call by reference" implies that the variable
itself with its value is available and can be altered by the
subroutine. To modify EMA variables and/or pass EMA arrays, EMA
variables may be referenced within a subroutine or function in

one or both ways:

1. By declaring the EMA common inside the subroutine or

function.

2. By declaring formal parameters to be type EMA (see EMA

statement) and passing the actual arguments "by reference".

An additional restriction on EMA variables is that they may not
be used as format specifiers in READ or WRITE statements. For
example, if J is an EMA variable, the following code is illegal:
10 FORMAT (eeveeos)

ASSIGN 10 TO J

WRITE (1,J)
An EMA variable may be equivalenced the same as any other variable
in a common block. The same restrictions apply. Refer to the

EQUIVALENCE statement elsewhere in this section.

NOTES ON USAGE OF EMA

While any variable may be declared to be in EMA, it is recommended that the
user restrict EMA usage to those arrays which require a large area. Since
references to EMA variables take longer than references to local variables,

this policy will speed the execution of programs.

EXAMPLE PROGRAM ILLUSTRATING THE USE OF EMA

FTN4,L

SEMA (XYZ, 3)
PROGRAM TEST
COMMON /XYZ/A(100,200) ,C(3000,80) ,E(200,300)
EQUIVALENCE (A(99,1000),B)

B=SIN(A(J,K))
C CALL BY VALUE TO UFUN
D=UFUN((A(J,K)))

C PASS SUBSCRIPTS FOR EMA ARRAYS TO SUBROUTINE ADDI1
c SUBR ADD1 HAS EMA ARRAYS DEFINED IN NAMED COMMON
CALL ADD1l (J,K)
C PASS EMA ARRAY E BY REFERENCE WITH ITS
C DIMENSIONS TO SUBROUTINE ADD2
CALL ADD2 (E,200,300,SUM)

END
FUNCTION UFUN (X)
C SQUARE THE NUMBER
UFUN = X * X
RETURN
END
SEMA (XYZ, 3)
SUBROUTINE ADD1 (M,N)
C M AND N ARE SUBSCRIPT PARAMETERS
COMMON /XYZ/A(100,200) ,C(3000,80) ,E(200,300)
C INCREMENT AN ELEMENT IN THE EMA ARRAY A
A(M,N) = A(M,N) + 1
RETURN
END

SUBROUTINE ADD2(EPRIME,ME,NE,SUM)

EPRIME IS AN EMA ARRAY PASSED BY REFERENCE AND SUM IS NON-EMA
NOTE THAT SUBROUTINE ADD2 DOES NOT REQUIRE A

SEMA DIRECTIVE OR ANY EMA NAMED COMMON BLOCKS

EMA EPRIME (ME,NE)

Q0

J=1

DO 100 I=1,NE

EPRIME (J,I) = EPRIME(J,I) + 2
100 CONTINUE

RETURN

END

Arrays A, C, and E are in EMA common because they are in the block common
named XYZ, which is declared in the EMA directive. B is in EMA it is
equivalenced to A. EPRIME is a formal parameter declared to be in EMA by
the EMA statement.

The call to SIN may use standard notation because SIN is in Table G-2. The
call to UFUN must use "call by value" because its parameter is not declared
in an EMA statement. This is indicated by enclosing its argument in an extra
layer of parentheses as shown. An element in array A is incremented in
Subroutine ADD1l, which has declared the EMA common block. The array E is
passed by reference to Subroutine ADD2, which has declared the formal

parameter, EPRIME, to be in EMA.

EXTENDED MEMORY AREA (EMA) STATEMENT

PURPOSE :

To declare that formal parameters are located in EMA and have

been passed by reference. Available in RTE-IV only.

FORMAT :

EMA vl1,v2,...,vVn
v = a variable, array or array declarator which is a

formal parameter.

The EMA statement is an extension to the ANSI standard.

COMMENTS:

WARNING:

EXAMPLE:

Since variables in EMA are accessed by a different mechanism
than those not in EMA, it is necessary to specify which formal
parameters are EMA parameters to the compiler. The default type
for formal parameters is non-EMA., See the EMA directive for a

discussion of call by value and call by reference.

The addressing mode (EMA or non-EMA) of actual and formal
parameters must match. If they do not, an incorrect address
will be used. The effect will be similar to accessing an array
with a subscript of unknown value. Therefore, do not pass a
non-EMA variable to a subroutine expecting an EMA argument or

vice versa.

EMA EARRAY (100,1000) ,EVAR,IARR(5000)

EQUIVALENCE

PURPOSE: Allows the sharing of memory locations by two or more
entities.
FORMAT:
EQUIVALENCE (kl) ' (k2) ;e ey (kn)
k = a list of two or more variable names, array names Or
array element names with integer constant subscripts.
COMMENTS: A symbolic name which appears in an EQUIVALENCE statement must be

a variable, array, or array element name.
Equivalence can be established between different data types, but
the EQUIVALENCE statement cannot be used to equate two or more
entities mathematically.
CAUTION: RTE FORTRAN IV does not use the same amount of

storage for INTEGER and REAL variables (see

Appendix A). Therefore, mixed variable types

should be equivalenced with caution.
The EQUIVALENCE statement can associate a variable in COMMON with
one or more variables not in COMMON, or may associate two or more
variables none of which are in COMMON.
No equivalence grouping is allowed between two entities in COMMON.
Dummy parameters may not appear in EQUIVALENCE statements. A variable
not in COMMON, when equivalenced to a variable in COMMON, becomes a
part of the COMMON area. A COMMON area, however, only can be lengthened
by equivalence groupings. If an equivalence grouping causes an entity
to be relocated before the first entity in COMMON, an error diagnostic
occurs.

EXAMPLES:

See the following page for examples of correct equivalence

grouping.

4-12

The following statements will result in the allocation of space for variables

in COMMON and non-COMMON areas as shown. Double precision is assumed to be 4-word.

INTEGER I, A, ARRAY
REAL R(4) CAREA
COMPLEX CAREA (1,1)]
LOGICAL L h
DOUBLE PRECISION DOUBLE(2), DARRAY
DIMENSION DARRAY (2) carea | R
DIMENSION I(4),A(3,2), L(4) (2,1)
COMMON CAREA(2,2), I, DOUBLE T R@
EQUIVALENCE (CAREA(2,1),R), (DOUBLE (2) ,DARRAY)
EQUIVALENCE (A (3,2), L(4)) carea | RO
(1,2)
T R(4)
Results in this COMMON and
equivalenced area of 32 words - CAREA B
(28 words in original COMMON, (2,2) 1
4 added by EQUIVALENCE) . |
I(1)
I(2)
Results in this non-COMMON
equivalenced area of six words. izz;
1 1
DOUBLE —-
(1) 4
A(l,1)
A2, 1) DOUBLE —{+ DARRAY
A(3,1) L(1) (2) —+ (1)
A(1,2) L(2)
A(2,2) L(3) :: DARRAY
A(3,2)' L(4) 1 (2)

DATA

PURPOSE: To define the initial values of variables, single array elements,

portions of arrays or entire arrays.

FORMAT :
DATA kl/dl/' k2/d2/' - kn/dh/

k = lists of names of variables, array elements or arrays

d = lists of constants (optionally signed) which can be
immediately preceded by an integer constant (followed
by an asterisk) identifying the number of times the
constant is to be repeated.

/ = separators, used to bound each constant list

COMMENTS: Mixed mode assignments are not permitted. The DATA statement may
only assign values that agree in mode to their identifiers.
Hollerith data can be assigned to any variable provided that the
data fits into that variables allocated storage space. Hollerith
data is padded with blanks on the right to fill the allocated

storage space.

If you use a DATA statement within a serially reusable program,
the data may not be the same each time the program is reused
because the DATA statement elements are not initialized upon

re—-entry into the program.

4-14

COMMENTS: If a list contains more than one entry, the entries must be
(Cont') separated by commas. An initially-defined variable, array element

or array may not be in a common area, nor can it be a dummy

argument, except that in a block data subprogram, all entries

must be in a named common block.

DATA statements must come after all specification statements in

the program.

NOTE: VUnsubscripted array names are allowed in DATA statements.
If the array has n elements, the next n constants from
the list are used to initialize the array (in column
order). If the remainder of the constant list has m<n
elements in it, then only the first m elements of the
array are initialized.

EXAMPLES:
1) DIMENSION IA(2,3),IB(3)

DATA IA/1,2,3,4,5,6/,X/1.9E-1/,IB/3*2/

The above data statement will assign values to the variables

as follows:

IA(1,1)=1 IA(2,1)=2 IA(1,2)=3 IA(2,2)=4 IA(1,3)=5 IA(2,3)=6
X=.19
IB(1l)=2 IB(2)=2 IB(3)=2

2) DATA FALSE,ICHAR/.FALSE.,2HXY/,DBLE/-2.39D-01/

The above data statement will assign values to the variables

as follows:

FALSE = <internal representation of boolean false>
ICHAR = <hollerith character string XY>
DBLE = -.239 represented as a double precision number.

PURPOSE:

IMPLICIT Statement

To change or confirm the default implicit integer and real

typing of variables.

FORMAT :

COMMENTS:

IMPLICIT type(al,al....)[,typelal,al....)]....

one of INTEGER, REAL, DOUBLE PRECISION, COMPLEX,
LOGICAL

is either a single letter or a range of single letters
in alphabeticl order. A range is denoted by the first

and last letters of the range separated by a minus sign;

e.g., aj—as. A range will specify the default type of

all identifiers beginning with letters in the interval

ai; to aj, inclusive.

An IMPLICIT statement specifies a type for all variables, arrays,
and functions (except intrinsic functions) that begin with any
letter that appears in the specification, either as a single
letter or included in a range of letters. IMPLICIT statements

do not change the type of any intrinsic functions. An IMPLICIT

statement applies only to the program unit that contains it.

Type specification by an IMPLICIT statement may be overridden
or confirmed for any particular variable, array, or function
name by the appearance of that name in a type-statement. An
explicit type specification in a FUNCTION statement overrides an

IMPLICIT statement for the name of that function subprogram.

Within the specification statements of a program unit, IMPLICIT
statements must precede all other specification statements. A

program unit may contain any number of IMPLICIT statements.

The same letter must not appear as a single letter, or be
included in a range of letters, more than once in all of the

IMPLICIT statements in a program unit.

4-16

SECTION V
ASSIGNMENT STATEMENTS

Assignment statements are executable statements that assign values to vari-

ables and array elements. There are three types of assignment statements:

Arithmetic assignment statements
Logical assignment statements

ASSIGN TO statement

ARITHMETIC ASSIGNMENT STATEMENT

PURPOSE: causes the value represented by an arithmetic expression to be

assigned to a variable.

FORMAT:
v =e
v = a variable name or an array element name of any data
type except logical
e = any arithmetic expression

COMMENTS: v is altered according to the rules expressed in Table 5-1,
A variable must have a value assigned to it before it can be

referenced.

EXAMPLES:
K = 2HAB
A(I,J,K)=SIN(X)*2.5-A(2,1,3)
I=1

Table 5-1.

RULES FOR ASSIGNING e to v

If v Type Is

Integer
Integer
Integer

Integer

Real
Real
Real
Real

Double
Double
Double
Double

Complex
Complex
Complex

Complex

NOTES :

Precision
Precision
Precision

Precision

And e Type Is

Integer
Real
Double Precision

Complex

Integer
Real
Double Precision

Complex

Integer
Real
Double Precision

Complex

Integer
Real
Double Precision

Complex

The Assignment Rule Is

Assign
Fix & Assign
Fix & Assign

Fix Real Part & Assign

Float & Assign
Assign
DP Evaluate & Real Assign

Assign Real Part

DP Float & Assign
DP Evaluate & Assign
Assign

DP Evaluate Real Part & Assign

Convert & Assign
as Real Part With
Imaginary Part = O

Assign

1. Assign means transmit the resulting value, without change, to

the entity.

2. Real Assign means transmit to the entity as much precision of the

most significant part of the resulting value as a real datum can

contain.

3. DP Evaluate means evaluate the expression then DP Float.

4. Fix means truncate any fractional part of the result and transform

that value to the form of an integer datum.

5. Float means transform the value to the form of a real datum.

6. DP Float means transform the value to the form of a double pre-

cision datum, retaining in the process as much of the precision

of the value as a double precision datum can contain.

5-2

LOGICAL ASSIGNMENT STATEMENT

PURPOSE: Causes the value represented by the logical expression to be as-

signed to a simplé or subscripted variable.

FORMAT:
v=e

v = a logical variable name or a logical array element
name

a logical expression

[0}
I

COMMENTS: A variable must have a value assigned to it before it can be

referenced.

EXAMPLES:

T = .TRUE.
FALSE = .FALSE.
T = A.LT.B

ASSIGN TO STATEMENT

PURPOSE: Initializes an INTEGER Variable to a statement label.
FORMAT:
ASSIGN k TO i
k = a statement label
i = an integer variable name
COMMENTS: After the ASSIGN TO statement is executed, any subsequent exe-

cution of an assigned GO TO statement using the integer variable
causes the statement identified by the assigned statement label
to be executed next. The integer variable may also be used in a

READ or WRITE statement as the format identifier.

STANDARD extension. The INTEGER variable may be used in a CALL

statement or function reference and the dummy assigned its wvalue

may be used in an assigned GO TO, READ, or WRITE statement.

EXAMPLES:

1234

Once mentioned in an ASSIGN TO statement, an integer variable may
not be referenced in any statement other than an assigned GO TO
statement or as a format reference in a READ or WRITE statement

until it has been redefined.

ASSIGN 1234 TO ILABEL

DRI

GO TO ILABEL, (100,1234,200) (or, GO TO ILABEL)

SECTION Vi
CONTROL STATEMENTS

Normally, a program begins with the execution of the first executable state-
ment in the program. When the execution of that statement is completed, the
next sequential executable statement is executed. This process continues

until the program ends.

A subprogram, if referenced, starts with its first executable statement,
then executes the next sequential executable statement, and so on, until it

returns control to the program statement which referenced it.

Control statements are executable statements that alter the normal flow of
a program or subprogram. There are twelve control statements in FORTRAN

Iv.

GO TO (Unconditional)
GO TO (Assigned)
GO TO (Computed)
IF (Arithmetic)
IF (Logical)
CALL

RETURN

CONTINUE

PAUSE

STOP

DO

END

GO TO

UNCONDITIONAL

PURPOSE: Causes the statement identified by the statement label to be

executed next.

FORMAT :
GO TO k
k = a statement label

COMMENTS: The program continues to execute from the statement identified

by k.

EXAMPLE:
GO TO 1234

GO TO

ASSIGNED

PURPOSE: causes the statement identified by the current value of an in-

teger variable reference to be executed next.

FORMAT:
GO T0 i, (kl, k2, ooy kn)
GO TO i
= an integer variable reference
k = a statement label

COMMENTS: The current value of i must have been assigned by a previous

execution of an ASSIGN TO statement.

The compiler does not check if i contains one of the statement
labels in the list. The list is for programmer's documentation

purposes only. The values kl' k kn are checked to ensure

2/ ey
that they are valid statement numbers.

EXAMPLE:
ASSIGN 1234 TO ILABEL

GO TO ILABEL, (1234,200,100) (or, GO TO ILABEL)

GO TO

COMPUTED

PURPOSE: Causes the statement identified by an indexed label from a

list of labels to be executed next.

FORMAT:
GO TO (kl, k2, cer kn), e
k = a statement label
e = an arithmetic expression

COMMENTS: The expression is evaluated, and converted to integer, if
necessary.

is

If the expression value is less than one, statement kl

executed. If the expression value is greater than n,
statement kn is executed. If 1 < e < n, statement ke is

executed.

EXAMPLE:
GO TO (100,200,300), k

100 CONTINUE (if k < 1)
2)

]

200 CONTINUE (if k
300 CONTINUE (if k > 3)

IF

ARITHMETIC

PURPOSE: Causes one of two or three statements to be executed next, depend-

ing upon the value of an arithmetic expression.

FORMAT:

IF (e) kl’ k k

2’ 73

IF (e) kl, k2

e = an arithmetic expression of type integer, real or
double precision.
k = a statement label

COMMENTS: wWhen the statement contains three statement labels, the state-

57 or k3 is executed next if

the value of e is less than zero, equal to zero, or greater than

ment identified by the label kl, k
zero, respectively.

When the statement contains two statement labels, the statement
identified by kl is executed next when the value of e is less

than zero; k2 is executed next when the value of e is equal to

or greater than zero.

EXAMPLES:
IF (A - B) 100, 200, 300
IF (SIN(X) - A*B) 100,200

6-5

IF

LOGICAL

PURPOSE: cCauses a statement to be executed next if a logical expression is
true, or causes one of two statements to be executed, depending

upon the value of the logical expression.

FORMAT:
IF (e) s
IF (e) kl' k2
s = an executable statement (except a DO or a logical IF)
= a logical expression
k = a statement label

COMMENTS: 1If the logical expression is true (first format), statement s
is executed. If s does not transfer control elsewhere, execu-
tion then continues with the statement following the IF. 1If
e is false, the statement s is not executed, but the next

sequential statement after the IF is executed.

If the logical expression is true (second format), statement
kl is executed. If the logical expression is false, state-
ment k2 is executed.

Refer to the sections on logical expressions and relational
expressions for a further explanation. Note particularly the
caution on the use of the relational operators .LT., .LE.,

.GT., and ,.GE..

EXAMPLES: 1IF (A .EQ. B) A = 1.0
IF (SIN(X) .LE. (A-B)) 100,200

CALL

PURPOSE: Causes a subroutine to be executed.

FORMAT:
CALL s

CALL s (al, a ey an)

2'
s = the name of a subroutine

a = an actual argument

COMMENTS: When the subroutine returns control to the main program, exe-

cution resumes at the statement following the CALL.

An actual argument is a constant, a variable name, an array
name, an array element name, expression or subprogram name.
Actual arguments in a CALL statement must agree in order,

type and number with the corresponding dummy parameters in

a subroutine. (See Section IX.)

EMA variables appearing as an actual argument must be passed
using "call by value". Refer to the section on the EMA

statement for more information.

EXAMPLES:
CALL MATRX SUBROUTINE MATRX
CALL SUBR (I, J) RETURN
END

SUBROUTINE SUBR (I,J)

RETURN
END

PURPOSE

RETURN

Causes control to return to the current calling program unit, if
it occurs in a function subprogram or a subroutine. Causes the

program to stop if it occurs in a main program.

FORMAT:

RETURN

COMMENTS:

EXAMPLES:

When the RETURN statement occurs in a subroutine, control returns
to the first executable statement following the CALL statement

that referenced the subroutine.

When the RETURN statement appears in a function subprogram, con-
trol returns to the referencing statement. The value of the
function is made available in the expression which referenced

the function subprogram.

The END statement of a function subprogram or a subroutine is
also interpreted as a RETURN statement, provided there is a path

to the END statement.

CALL MATRX SUBROUTINE MATRX
I = MIX(L,M)/A*B RETURN
. END

INTEGER FUNCTION MIX(I,J)

.
.
.

MIX =I+ J
RETURN
END

CONTINUE

PURPOSE: Causes continuation of the program's normal execution sequence.

FORMAT:

CONTINUE

COMMENTS: The CONTINUE statement can be used as the terminal statement in a
DO loop.

If used elsewhere, the CONTINUE statement acts as a dummy state-

ment which causes no action on the execution of a program.

EXAMPLE:

5 CONTINUE

STOP

PURPOSE: causes the program to stop executing.

FORMAT:
STOP n
STOP

n = an octal digit string of one to four characters

COMMENTS: When this statement is executed, STOP is printed on the teleprinter
output unit. If n is given, its value is also printed, after the

word STOP.

EXAMPLES:
STOP 1234
STOP

6-10

PAUSE

PURPOSE: Causes the program to stop executing. Execution is resumable in
sequence.
FORMAT:
PAUSE
PAUSE n

n = an octal digit string of one to four characters

COMMENTS: When this statement is executed, PAUSE is printed on the tele-
printer output unit. If n is given, its value is also printed,

after the word PAUSE.

The decision to resume processing is not under program control.
To restart, a system directive must be issued by the system

operator.

EXAMPLES:
PAUSE 1234
PAUSE

o
I

11

DO

PURPOSE: To initiate and control the sequence of instructions in a pro-

grammed loop.

FORMAT:

DOn [,] 1= my, m,, M,

DOn [,] i=m, m

1 2

n = the statement label of an executable statement (called
the terminal statement)

[,] = an optional comma
i = a simple integer variable name (called the control variable)
m, = an arithmetic expression (called the initial parameter)
m, = an arithmetic expression (called the terminal parameter)
m, = an arithmetic expression (called the step-size parameter)

COMMENTS: The terminal statement must physically follow and be in the
same program unit as the DO statement. The terminal statement
may not be any form of a GO TO, an arithmetic IF, a two-branch
logical IF, a RETURN, STOP, PAUSE, DO or a logical IF statement

containing any of these statements.

The initial, terminal and step-size parameters can be any arith-

metic expressions. However, if these expressions are not of

type integer, they are converted to integer (by truncation)

after they are evaluated.

CAUTION: The maximum allowable difference between the initial
parameter and the terminal parameter is 32,767
(215—1). If more iterations are desired, two or more

DO loops can be nested to achieve this (see Example d
following) .

If the step-size parameter is omitted (format 2), a value of +1
is implied for the step size.
NOTE: The step-size may be positive or negative, allowing

either incrementing or decrementing to the terminal
parameter value.

6-12

COMMENTS:
(cont.)

The range of a DO statement is from (and including) the first
executable statement following the DO to (and including) the

terminal statement of the DO.

When the range of one DO statement contains another DO statement,
the range of the contained DO must be a subset of the range of the

containing DO.

Succeeding executions of the DO loop do not cause re-evaluation of
the initial, terminal or step~-size parameters if they are expressions.
Therefore, any changes made within the DO loop to the values of
variables occurring in these expressions do not affect the control

of the loop's execution. Only changes to the control variable

itself or to step-size parameters (if they are unsigned simple

integer variables) affect the loop's execution.

NOTE: A DO statement is executed at least once regardless
of the relationship of the initial parameter to the
terminal parameter.

If a subprogram reference occurs in the range of a DO, the actions
of that subprogram are considered to be temporarily within that

range.

When a statement terminates more than one DO loop, the label

of that statement may be used only in a GO TO or arithmetic

IF statement that occurs in the range of the most deeply nested
DO that ends with that terminal statement. Other control flows
can be achieved by having separate terminal statements for DO

loops.

EXAMPLES:

a) DO 51=1,5 b) DO 20 I1=1,10,2 c) DO 20 I=1,10,2
5 CONTINUE DO 20 J=1,5 DO 15 J=2,5
20 CONTINUE 15 CONTINUE
d) DO 100 I=1,200 20 CONTINUE
DO 50 J=1,250
A(I,J)=A(I,J)+1 Array A declared to be in EMA.

50 CONTINUE
100 CONTINUE

The following occurs when a DO statement is executed:

a.

The control variable is assigned the value represented by the
initial parameter. The DO loop is executed at least once regard-
less of the relationship of the initial parameter to the terminal

parameter value.
The range of the DO is executed.

If control reaches the terminal statement, then after execution
of the terminal statement, the control variable of the most re-
cently executed DO statement associated with the terminal state-
ment is modified by the value represented by the associated step-

size parameter.

If the value of the control variable (after modification by the
step-size parameter) has not gone past the value represented by
the associated terminal parameter, then the action described

starting as step b. is repeated, with the understanding that the
range is that of the DO whose control variable has been most re-
cently modified. If the value of the control variable has gone
past the value represented by its associated terminal parameter,

then the DO is said to have been satisfied.

At this point, if there were one or more other DO statements
referring to the terminal statement in question, the control
variable of the next most recently executed DO statement is
modified by the value represented by its associated step-size
parameter and the action in step d. is repeated until all DO
statements referring to the particular terminal statement are
satisfied, at which time the first executable statement follow-

ing the terminal statement is executed.

Upon exiting from the range of a DO by the execution of a GO TO
or an arithmetic IF statement (that is, by exiting other than by
satisfying the DO), the control variable of the DO is defined
and is equal to the most recent value attained as defined in

steps a. through e.

6-15

PURPOSE:

END

Indicates to the compiler that this is the last statement in a

program unit.

FORMAT:

END

COMMENTS:

EXAMPLES:

Every program unit must terminate with an END statement.

The characters E, N and D (once each and in that order in
columns 7 through 72) can be preceded by, interspersed with,
or followed by blank characters; column 6 must contain a
blank character. Columns 1 through 5 may contain either a
statement label or blank characters. Undefined source program
statement numbers are printed when the END statement is
encountered. External names shortened from six characters

to five characters are reported as well as any user supplied
names that conflict with implicit library names.

~~nannEND
aannnEANLD
~~100.END

6-16

SECTION VIi
INPUT/OUTPUT STATEMENTS

Input/output statements are executable statements which allow the transfer
of data records to and from external files and memory, and the positioning
and demarcation of external files. The FORTRAN IV input/output state-

ments are:

READ (Formatted Records)
WRITE (Formatted Records)
READ (Unformatted Records)
WRITE (Unformatted Records)
REWIND

BACKSPACE

ENDFILE

NOTE: All external files must be sequential files.

IDENTIFYING INPUT/QUTPUT UNITS

An input or output unit is identified by a logical unit number assigned to
it by the operating system. (see the RTE Operating System Reference Manuals
for a description of logical units.) The logical unit reference may be an
integer constant or an integer variable whose value identifies the unit. Any
variable used to identify an input/output unit must be defined at the time

of its use.

IDENTIFYING ARRAY NAMES OR FORMAT STATEMENTS

The format specifier for a record or records may be an array name or the
statement label of a FORMAT statement (see Section VIII). If the format
specifier is an array name, the first part of the information contained in
the array must constitute a valid FORMAT specification: a normal FORMAT

statement less the statement number and the word "FORMAT."

If the format specifier is a FORMAT statement label, the identified state-

ment must appear in the same unit as the input or output statement.

7-1

INPUT/OUTPUT LISTS

An input list specifies the names of the variables, arrays and array elements
to which values are assigned on input. An output list specifies the refer-
ences to variables, arrays, array elements and constants whose values are
transmitted on output. Input and output lists have the same form, except
that a constant is a permissable output list element. List elements consist
of variable names, array names, array element names and constants (output
only), separated by commas. The order in which the elements appear in the
list is the sequence of transmission.

There are two types of input/output lists in FORTRAN IV: simple lists and

DO-implied lists.

Simple Lists

A simple list, n, is a variable name, an array name, an array element name,
a constant (output only) or two simple lists separated by a comma. It has

the form:

DO-Implied Lists

A DO-implied list contains a simple list followed by a comma and a DO-implied
specification, all enclosed by parentheses. It has the form:

(n, 1= ml, mz, m3)

where

n a simple list

I

i a control variable (a simple integer variable)

3
Il

the initial parameter (an integer arithmetic expression)

1
m2 = the terminal parameter (an integer arithmetic expression)
my = the step-size parameter (an integer arithmetic expression)

The parameters mp, my, and m3 may be any arithmetic expression. However,
if these expressions are not Type-INTEGER, they are converted to Type-
INTEGER by truncation following evaluation. Functions may be referenced
only if they do not execute, or cause to be executed, any other READ or
WRITE statements, or other I/O operations.

Data defined by the list elements is transmitted starting at the value of

m in increments of m_, until m_, is exceeded. If m3 is omitted, the step-

1’ 3 2
size is assumed to be +1.

The step-size parameter may be positive or negative, allowing incrementing

or decrementing to the terminal parameter value.

The elements of a DO-implied list are specified for each cycle of the

implied DO loop.

EXAMPLES:
Simple List DO-Implied List
A,B,C ((ARRAY (I,J),J=1,5),1I=1,5)
READ (5,10)A,B,C READ (5,10) ((ARRAY (I,J),J=1,5),1=1,5)

Note: For output lists, signed or unsigned
constants are permitted as list
elements.

FORMATTED AND UNFORMATTED RECORDS

A formatted record consists of a string of the characters that are permissi-
ble in Hollerith constants. The transfer of such a record requires that a
format specification be referenced to supply the necessary positioning and
conversion specifications. The number of records transferred by the exe-
cution of a formatted READ or WRITE statement is dependent upon the list

and referenced format specification.

An unformatted record consists of binary values.

READ

FORMATTED

PURPOSE: To read formatted records from an external device into main memory
or to provide data conversion from ASCII data to numeric data.

FORMAT:

READ (u,f) k
READ (u,*) k
READ (u,f)
u = an input unit
f = an array name or a FORMAT statement label or an integer
variable defined in an ASSIGN statement (must not be in EMA)
k = an input list
* = specification for free-field input (no format statement)

COMMENTS: The format statement or specification (in an array) can be any-
where in the program unit.

If free-field input is specified, the formatting is directed by
special characters in the input records; a FORMAT statement or
specification is not required.

If data conversion is to be made, a call to the relocatable
subroutine CODE must precede the READ instruction.

The Fortran IV Formatter supports the transfer of data records
containing a maximum of 132 characters within a formatted READ
operation. In some systems the user may extend this size by
supplying an alternate buffer. Refer to the explanation of the
LGBUF subroutine in the DOS/RTE Relocatable Library Reference
Manual.

EXAMPLES:

READ (5,100) (A(I), I = 1, 20)

READ (5,200) A,L,X

READ (5,*) (A(J), J=1, 10)

READ (5,ARRAY)

READ (5,100) ((a(1,J),I=1,5),J=1,20)
ASSIGN 100 to X

READ (5,K) ((a(I,J),I=1,5), J=1,20)

The following performs a data conversion of the ASCII buffer
IN and stores the numeric equivalents in variables A,L,X:

CALL CODE
READ (IN,200) A,L,X

In this case any required statement labels must be on the
CALL CODE statement and it must not be the terminal state-
ment of a DO loop. Caution: IN should not be subscripted.

7-4

PURPOSE:

WRITE

FORMATTED

To write formatted records from main memory to an external device
or to provide data conversion from numeric data to ASCII data.

FORMAT:

COMMENTS:

EXAMPLES:

WRITE (u,f) k
WRITE (u,f)

= an output unit

= an array name or a FORMAT statement label or an integer
variable defined in an ASSIGN statement (must not be in EMA)
an output list

The FORMAT statement or specification (in an array) can be
anywhere in the program unit.

If data conversion is to be performed, a call to the reloca-
table subroutine CODE must precede the WRITE instruction.

The Fortran IV Formatter supports the transfer of data records
containing a maximum of 132 characters within a formatted WRITE
operation. In some systems the user may extend this size by
supplying an alternate buffer. Refer to the explanation of the
LGBUF subroutine in the DOS/RTE Relocatable Library Reference
Manual.

WRITE (2,200) A, L, X
WRITE (2, ARRAY)

The following performs a data conversion of variables A,L,X

and stores the ASCII equivalents in buffer TU:

CALL CODE
WRITE (TU,200) A,L,X

In this case any required statement labels must be on the
CALL CODE statement and it must not be the terminal state-

ment of a DO loop. Caution: TU should not be subscripted.

7-5

READ

UNFORMATTED

PURPOSE: To read one unformatted record from an external file.

FORMAT:
READ (u) k
READ (u)

an input unit

an input list

COMMENTS: The sequence of values required by the list may not exceed the

sequence of values from the unformatted record.
READ (u) causes a record to be skipped.

The Fortran IV Formatter supports the transfer of data records
containing a maximum of 60 words within an unformatted (binary)
READ operation. In some systems the user may employ the LGBUF
subroutine to extend this limit. Refer to the explanation of

LGBUF in the DOS/RTE Relocatable Library Reference Manual.

EXAMPLES: rREaD (5) A, L, X
READ (5)

PURPOSE:

WRITE

UNFORMATTED

To write one unformatted record from main memory to an external

file.

FORMAT:

WRITE (u) k

an output unit

an output list

COMMENTS:

EXAMPLES:

This statement transfers the next binary record from main memory

to unit u from the sequence of values represented by the list k.

The Fortran IV Formatter supports the transfer of data records
containing a maximum of 60 words within an unformatted (binary)
WRITE operation. In some systems the user may employ the LGBUF
subroutine to extend this limit. Refer to the explanation of

LGBUF in the DOS/RTE Relocatable Library Reference Manual.

WRITE (2) A, L, X

REWIND, BACKSPACE, ENDFILE

PURPOSE: These statements are used for magnetic tape files. REWIND is
used to rewind a tape to the beginning of tape. BACKSPACE is
used to backspace a tape file one record. ENDFILE is used to

write an end-of-file record on a tape file.

FORMAT:
REWIND u
BACKSPACE u
ENDFILE u

u = an input/output unit

COMMENTS: If the magnetic tape unit is at beginning of tape when a REWIND

or a BACKSPACE statement is executed, the statement has no effect.

EXAMPLES:
BACKSPACE 2
ENDFILE I
REWIND 5

7-8

FREE FIELD INPUT

By following certain conventions in the preparation of his input data, a
FORTRAN IV programmer can write programs without using an input FORMAT state-
ment. The programmer uses special characters included within input data

items to direct the formatting of records.

Data records composed this way are called free field input records, and can
be used for numeric input data only. Free field input is indicated in a
formatted READ statement by using an asterisk (*) instead of an array name

or a FORMAT statement label.

The special characters used to direct the formatting of free field input

records are:

space or , data item delimiters
/ record terminator

+ or - sign of item

. E+ - floating point number
@ octal integer

"ol comments

Data Item Delimiters

A space or a comma is used to delimit a contiguous string of numeric and

special formatting characters (called a data item), whose value corresponds
to a list element. A data item must occur between two commas, a comma and
a space or between two spaces. (A string of consecutive spaces is equiva-
lent to one space.) Two consecutive commas indicate that no data item is

supplied for the corresponding list element, i.e., the current value of the
list element is unchanged. An initial comma causes the first list element

to be skipped.

EXAMPLES:

100 READ (5,*) I, J, K, L 200 READ (5,*) 1, J, K, L
Input data items: Input data items:
1720,1966,1980,1492 ,+1794,2000

Result: Result:

I =1720 I =1720

J = 1966 J = 1966

K = 1980 K = 1794

L = 1492 L = 2000

Record Terminator

A slash within a record causes the next record to be read immediately; the

remainder of the current record is skipped.

EXAMPLE:

READ (5,*) I, J, XK, L, M

Input data items:

987,654,321,123/DESCENDING

456

Result:
I = 987
J = 654
K = 321
L =123
M = 456

NOTE: If the input list requires more than one
external input record, a slash (/) is
required to terminate each of the input
records except the last one.

Sign of Data Item

Data items may be signed. If they are not signed, they are assumed to be

positive.

Floating Point Number Data Item

A floating point data item is represented in the same form as E-TYPE con-
version of an external real number on input. (See Section VIII.) If the
decimal point is not present, it is assumed to follow the last digit of

the number.

Octal Data Item

The symbol @ is used to indicate an octal data item. List elements

corresponding to the octal items must be type integer.
EXAMPLE:
' READ (5,*) I, J, K

Input Data Items:
@177777, @0, @5555

Result:

I =177777B
J=0

K = 5555B

Comment Delimiters

Quotation marks ("...") are used to bound comments; characters appearing

between quotation marks are ignored.

EXAMPLE:
READ (5,%) I, J, K, L

Input Data Items:
123, 456, "ASCENDING"123, 456

Result:
I =123
J = 456
K = 123
L = 456

SECTION Vil
THE FORMAT STATEMENT

There are three ways a user can transfer data records to and from

memory using READ and WRITE statements (described in Section VII).

a. As "free field input" when the input data itself contains
special characters that direct the formatting of the records

in memory. (See "Free Field Input.")

b. As unformatted input or output records containing strings of
binary values. (See "READ (Unformatted)" and "WRITE
(Unformatted).")

c. As formatted input or output records. (See "READ (Formatted)"

and "WRITE (Formatted).")

When a formatted READ or WRITE statement is executed, the actual number of

records transferred depends upon:

a. The elements of an input/output list (if present), which

specify the data items involved in the transfer, and

b. A format specification for the list element(s), which
defines the positioning and conversion codes used for the

string of characters in a record.

A format specification for a formatted READ or a formatted WRITE list

element can be defined in either:

a. A FORMAT statement, or

b. An array, the first elements of which contain a valid format
specification constructed according to the rules of a FORMAT

statement (minus the FORMAT statement label and the "FORMAT").

The FORMAT statement and its components are described in the following

pages.

FORMAT

PURPOSE: The FORMAT statement is a non-executable statement that provides
format control for data records being transferred to and from

core memory by defining a format specification for each record.

FORMAT:

t

label FORMAT (qltlzl t222 cee nZn tn+lq2)

label a statement label.

q = a series of slashes (optional)
t = a field descriptor, or a group of field descriptors

z = a field separator

COMMENTS: A FORMAT statement must be labeled.

When a formatted READ statement is executed, one record is read
when format control is initiated; thereafter, additional records
are read only as the format specification(s) demand. When a for-
matted WRITE statement is executed, one record is written each

time a format specification demands that a new record be started.

EXAMPLES:
READ (5,100)A,B,C WRITE (2,200)A,L,X

100 FORMAT (2F5.1, F6.2) 200 FORMAT (F5.1, Il10, F6.4)

The components of a format specification (field separators, field descriptors,

scale factor, repeat specification and conversion codes) are described in

the following pages.

FIELD DESCRIPTOR

PURPOSE: To provide the elements that define the type, magnitude and
method of conversion and editing between input and output.

FORMAT: oOne of the following conversion and editing codes:

Integer data: riw Octal data: r@w
Real data: srEw.d rKw
rOow
srFw.d
srGw.d Hollerith
d :
Double pre- ata i::
cision data: srbw.d
. wHh. h_ ... h
Logical data: rLw 12 4
Column
positioning: wX,Tw,TLw, TRw r("hlh2 e hw")
Complex data: sEw.d,Ew.d r(‘h.h ... h")
1l a w

w = a positive integer constant, representing the length of
the field in the external character string.

s = a scale factor designator (optional for real and double
precision type conversions).

r = a repeat specification, an optional positive integer
constant indicating the number of times to repeat the
succeeding field descriptor or group of field descriptors.

h = any character in the FORTRAN character set.

d = an non-negative integer constant representing the number
of digits in the fractional part of the external charac-
ter string (except for G-type conversion codes).

. = a decimal point.

The characters F, E, G, I, @, X, 0, L, A, R, H, ", ', T, TL, TR

and X indicate the manner of conversion and editing between the

internal and external character representations, and are called

the conversion codes.

COMMENTS: For all field descriptors, except "hlh2 ... h " and 'hlha cen hw',
w
the field length (w) must be specified, and must be greater than

or equal to d.

For field descriptors of the form w.d, the d must be specified,

even if it is zero.

A basic field descriptor is a field descriptor unmodified by the

scale factor (s) or the repeat specification (r).

The internal representation of external fields corresponds to the

internal representation of the corresponding data type constants.
A numeric input field of all blanks is treated as the number zero.

The use of a decimal point in the input data field overrides the

d portion of a floating point conversion format.
Negative numbers are output with a minus sign.

If the output field is larger than that required by the datum
being written, the datum is right-justified in the output field.

The number of characters produced by an output conversion must
not exceed the field width (w). If the characters produced do
exceed the field width, the field is filled with the currency

symbol $.

EXAMPLES:
2110 2@2
E20.10 2K2
F5.1 202
G20.10 2A2
D10.2 2R2
E10.4, E10.4 2HAB
2X "ABCD"

REPEAT SPECIFICATION

PURPOSE: Allows repetition of field descriptors through the use of a
repeat count preceding the descriptor. The specified con-
version is interpreted repetitively, up to the specified

number of times.

FORMAT:

r (basic field descriptor)

r = an integer constant, called the group repeat count.

COMMENTS: A1l basic field descriptors may have group repeat counts,

except these codes: wH or wX.

A further grouping may be formed by enclosing field descriptors,
field separators, or basic groups within parentheses, and by
specifying a group repeat count for the group. The depth of
this grouping is limited to the fourth level.

The parentheses enclosing the format specification are not

group delineating parentheses.

EXAMPLES:
2110
6E14.6
4(E10.4, E10.4)
3/

I-TYPE CONVERSION

INTEGER NUMBERS

PURPOSE : Provides conversion between an internal integer number and an

external integer number.

FORMAT:

r I w

r = a repeat specification (optional)

length of external field

s
I

COMMENTS:
Input: The external input field contains a character string
in the form of an integer constant or a signed integer

constant. Blank characters are treated as zeros.

Output: The external output field consists of blanks, if
necessary, a minus (if the value of the internal
datum is negative), and the magnitude of the internal
value converted to an integer constant, right-

justified in the field.

If the output field is too short, the field is
filled with the currency symbol $.

EXAMPLES:
See the next page.

EXAMPLES: (Cont.)

INPUT:
External Field Format Internal Number
-.123 I5 -123
12003 15 12003
~102 I4 102
3 Il 3

OUTPUT:

Internal Number Format External Field
-1234 15 -1234
+12345 I5 12345
+12345 I4 $888
+12345 16 12345

PURPOSE :

SCALE FACTOR

Provides a means of normalizing the number and exponent parts of

real or double precision numbers specified in a FORMAT statement.

B
Il

]
1

FORMAT:

nP

an integer constant or a minus sign followed by
an integer constant.

the scale factor indicator, the character P

COMMENTS:

Input:

Output :

EXAMPLES:

When format control is initialized, a scale factor of zero is
established. Once a scale factor has been established, it applies
to all subsequent real and double precision conversions until

another scale factor is encountered.

When there is no exponent in the external field, the relationship
between the externally represented number (E) and the internally
represented number (I) is this:

I =g * 10"

When there is an exponent in the external field, the scale factor

has no effect.

For E- and D- type output, the basic real constant part (I) of the
output quantity is multiplied by 10" and the exponent is reduced
by n. For G-type output, the effect of the scale factor is
suspended unless the magnitude of the datum to be converted is

outside the range that permits effective F-type conversion.

See the next page.

EXAMPLES:

(Cont.)
INPUT:

External Field

528.6
.5286E+03
528.6

OUTPUT :

Internal Number

528.6
.5286
5.286
52.86
-5286.

Format

1PF10.3
1pG10.3
-2PD10. 3

Format
1PF8.2
2PE10.4
-1PD10.4
1PG10.3
1PG10.3

Internal Number
52.86

528.6
52860.

External Field
~.5286.00
52.860E-02
~-0529D+02
~n52.9,nn4
-5.286E+03

E-TYPE CONVERSION

REAL NUMBERS

PURPOSE: Provides conversion between an internal real number and an

external floating-point number.

FORMAT :

s r Ew. d

s = a scale factor (optional)

r = a repeat specification (optional)

w = the length of the external field

= the decimal point

d = the total number of digits to the right of the

decimal point in the external field.

COMMENTS:

Input:

Output:

EXAMPLES:

The external input field may contain an optional sign,
followed by a string of digits optionally containing
a decimal point, followed by an exponent, in one of
the following forms: a signed integer constant; or

E followed by an integer constant or a signed integer

constant.

The external output field may contain a minus sign (or

a blank, if the number is positive), a zero, a decimal
point, the most significant rounded digits of the internal
value, the letter E and a decimal exponent (which is

signed if it is negative).

See the next page.

8-10

EXAMPLES: (Cont.)

INPUT:

External Field Format Internal Number
123.456E6 E9.3 123456000
.456E6 E6.5 456000
.456 E4.3 .456
123E6 E5.0 123000000
123 E3.1 12.3
E6 E9.3 0
N E9.3 0

OUTPUT:

Internal Number Format External Field
+12.34 E10.3 ~~-123E+02
-12.34 E10.3 ~—.123E+02
+12.34 El2.4 ~an~s1234E+02
-12.34 El2.4 ~~—+1234E+02
+12.34 E7.3 .12E+02
+12.34 E5.1 $S888

8-11

F-TYPE CONVERSION

REAL NUMBERS

PURPOSE : Provides conversion between an internal real number and an

external fixed-point number.

FORMAT:

0]
1]

R
[}

£
Il

1]

srFw.d

a scale factor (optional)
a repeat specification (optional)

the length of the external field

. the decimal point

d = the total number of digits to the right of the

decimal point in the external field

COMMENTS:
Input:

Output:

EXAMPLES:

The external input field is the same as for E-TYPE

conversion.

The external output field may contain blanks, a minus
(if the internal value is negative), a string of digits
containing a decimal point (as modified by the scale

factor) rounded to d fractional digits.

See the next page.

8-12

EXAMPLES: (Cont.)

INPUT: Same as in E-TYPE conversion, except "F" replaces "E"
in the format specification.

OUTPUT:

Internal Number Format External Field
+12.34 F10.3 ~rnal2.340
-12.34 F10.3 ~aa—12.340
+12.34 F12.3 aan~nnl2.340
-12.34 Fl12.3 annrn—l2.340
+12.34 F4.3 12.3
+12345.12 F4.3 $SSS

8-13

PURPOSE:

G-TYPE CONVERSION

REAL NUMBERS

Provides conversion between an internal real number and an

external floating-point or fixed-point number.

FORMAT:

SsrGw.

a scale factor (optional)

d

a repeat specification (optional)

= the length of the external field

. = the decimal point

= the total number of digits to the right of the

decimal point in the external field.

COMMENTS:
Input:

Output:

EXAMPLES:

The

The

Magnitude Of Data

0.1 < N <1
1 <N <10

d-2 N < 1Od-l

[
o
1A

1097 < w < 10°

otherwise

See the next page.

8-14

external input field is the same as for E-TYPE conversion.

external output field depends upon the magnitude of the

real data being converted, and follows these rules:

Equivalent Conversion

F(w-4).d,4X
F(w-4). (d-1),4X

.

F(w-4).1,4X

F(w-4).0,4X
SEw.d

EXAMPLES: (Cont.)

INPUT: Same as for E-TYPE conversion, except

that "G" replaces "E" in the format specification.

OUTPUT :
Format Internal Number External Field
.05234 ~~+523E-01
.5234 Ane523.0 0
G10.3 52.34 ~n52.3nnnn
523.4 ~n523.annn
5234. ~~e523E+04

8-15

D-TYPE CONVERSION

DOUBLE PRECISION NUMBERS

PURPOSE: Provides conversion between an internal double precision number

and an external floating-point number.

FORMAT:
srDw.d
s = a scale factor (optional)
r = a repeat specification (optional)
w = the length of the external field
= the decimal point
d = the total number of digits to the right of the
decimal point in the external field.
COMMENTS:
Input: The external input field is the same as for E-TYPE

conversion.
Output: The external output field is the same as for E-TYPE

conversion, except that the character D replaces the

character E in the exponent.

EXAMPLES:

INPUT: Same as in E-TYPE conversion except "D" replaces "E."

OUTPUT: Same as in E-TYPE conversion except "D" replaces "E."

8-16

COMPLEX CONVERSION

COMPLEX NUMBERS

PURPOSE: Provides conversion between an internal ordered pair of real

numbers and an external complex number.

FORMAT :
A complex datum consists of a pair of separate real data.
The total conversion is specified by two real field de-
scriptors, interpreted successively. The first descriptor

supplies the real part; the second, the imaginary part.

COMMENTS:

Input: Same as for any pair of real data.

Output: Same as for any pair of real data.

EXAMPLES:

See E-, F- and G-TYPE conversions.

8-17

L-TYPE CONVERSION

LOGICAL NUMBERS

PURPOSE: Provides conversion between an external field representing a

logical value and an internal logical datum.

FORMAT:
Lw

w = the length of the external field.

COMMENTS:

Input: The external input field consists of optional blanks
followed by a T or an F followed by optional characters,
representing the values true or false, respectively.

Output: The external output field consists of w - 1 blanks
followed by a T or an F as the value of the internal
logical datum is true or false, respectively.

EXAMPLES:

INPUT:

External Field Format Internal Number
~TRUE L5 100000B
PPN L6 0

OUTPUT :

Internal Number Format External Field
0 (or positive) L3 ~~F
(negative) Ll T

8-18

@ -TYPE, K-TYPE AND O-TYPE CONVERSIONS

OCTAL NUMBERS

PURPOSE : Provides conversion between an external octal number and an

internal octal datum.

FORMAT:
r @w
r Kw
row
r = a repeat specification (optional)

w = the width of the external field in octal digits.

COMMENTS: List elements must be of type integer.

Input: If w > 6, up to six octal digits are stored; non-octal digits
are ignored. If the value of the octal digits within the field
is greater than 177777, results are unpredictable. If w < 6 or
if less than six octal digits are encountered in the field, the

number is right-justified with zeros to the left.
Output: If w > 6, six octal digits are written right-justified in the

field with blanks to the left. If w < 6, the w least significant

octal digits are written.

EXAMPLES:
See the next page.

8-19

EXAMPLES:

(Cont.)
INPUT:

External Field

123456
-123456
2342342342
, 396E-05

OUTPUT :

Internal Number

99

99

-1
32767

Format
@6
07
2K5
2@4

Format
K6
02
@8
@6

8-20

Internal Number
123456

123456

023423 and 042342
000036 and 000005

External Field
~an143
43
~A177777
177717

A-TYPE CONVERSION

HOLLERITH INFORMATION

PURPOSE: Allows a specified number of Hollerith characters to be read

into, or written from, a specified list element.

FORMAT:
rAw
r = a repeat specification, (optional)
w = the length of the Hollerith character string.

COMMENTS: 1Input: Assume "n" to be the size of the list element in
characters. If w > n, the rightmost n characters
are taken from the external input field. If w <n,
the characters appear left-justified in the list

element, with w-n trailing blanks.

Output: If w > n, the external output field consists of
w - n blanks, followed by n characters from the
internal representation. If w = <n, the characters

in the left part of the list element is written.

EXAMPLES:

See the next page.

8-21

EXAMPLES:

(Cont.)
INPUT:

External Field

XYZ
VWXYZ

OUTPUT :

Internal Value

XY
WXYZ
XY

Format

A2
A5
Al

Format
A2
A6
Al

8-22

Internal Value

XY
WXYZ (Real variable)
xA

External Field

XY
~AWXYZ (Real variable)

X

R-TYPE CONVERSION

HOLLERITH INFORMATION

PURPOSE: Allows a specified number of Hollerith characters to be read

into, or written from, a specified list element.

FORMAT:

r Rw

a repeat specification (optional)

o]
I

w = the length of the Hollerith character string.

COMMENTS: Assume "n" to be the size of the list element in characters. The
Rw descriptor is equivalent to the Aw descriptor, except that
characters are right-justified in the word with leading binary
zeros (on input); and on output, if w = 1, the characters in the

right part of the list element is written.

NOTE: The HP FORTRAN conversion Aw is replaced by the
FORTRAN IV conversion Rw.

EXAMPLES: See the next page.

NOTE: The FORTRAN IV program can be modified at run-time
to interpret A as in HP FORTRAN if the user calls
the OLDIO entry point:

CALL OLDIO

To change back to a FORTRAN IV A conversion,
the user calls the NEWIO entry point:

CALL NEWIO

8-23

EXAMPLES:

(Cont.)
INPUT:

External Field

XYZ
VWXYZ

OUTPUT:

Internal Value

Xy
WXYZ

Format

R5

Format

R6
Rl

8-24

Internal Value

XY
WXYZ (Real variable)

(0)4

External Field

XY
. WXYZ (Real variable)

Y

wH EDITING

HOLLERITH INFORMATION

PURPOSE: Allows Hollerith information to be read into, or written from,

the characters following the wH descriptor in a format specifi-

cation.
FORMAT:
w ..
H hl h2 . h,
w = a nonzero positive integer constant equal to the total

number of h's

h = any character in the HP ASCII character set.
COMMENTS:
Input: The characters in the external field (hl to Q”) replace
the characters in the field specification.
Output: The characters in the field specification are written
to an output file.
EXAMPLES:
INPUT:
Resulting Internal Value
External Field Format of Formatted Item
PACKARD JHHEWLETT 7THPACKARD
GUTPUT :
Format External Field
THPACKARD PACKARD

8-25

“..." AND “...” EDITING

HOLLERITH INFORMATION

PURPOSE: Allows Hollerith information to be written from the characters

enclosed by the quotation marks in a format specification.

FORMAT:
" n 1]
r h1h2 .e hw or r hlh2 e hw
h = any character in the FORTRAN character set,
except the gquote mark being used.
r = a repeat count.

COMMENTS: 1Input: The number of characters within the gquotation

marks is skipped (equivalent to wX).

Output: Is equivalent to wH, with a repeat specification

capability added.

EXAMPLES:
OUTPUT:
Format External Field
"ABZ" ABZ
2 th%k% 1t %* % %k %k %k Kk

8-26

X, T, TL,TR-TYPE CONVERSION

SKIP OR BLANKS

PURPOSE: Sets the next column at which conversion will start.

FORMAT:
w X, Tw, TLw or TRw

w = a positive integer constant

COMMENTS:
T: Move to column w.
TL: Move left w columns.
X,TR: Move right w columns.
On output, if the new position is to the right of the
previous rightmost position, the intervening positions
are blank-filled.
EXAMPLES:
14x
2X
T5
TL3
TR72

8-27

FIELD SEPARATOR

PURPOSE: To separate each field descriptor, or group of field descriptors

in a FORMAT statement.

FORMAT:

/ or ,

COMMENTS: A repeat count can be specified immediately preceding the slash

(/) field separator.

Each slash terminates a record. A series

of slashes causes records to be skipped on input, or lines to

be skipped on an output listing.

EXAMPLES:

READ (5,100)A,B }

100 FORMAT (F5.1,F7.3)

READ (5,101)A,B }

101 FORMAT (F5.1/F7.3)
READ (5,102)A,B

102 FORMAT(//F5.1///F7.3/)

WRITE (6,100)A,B }
WRITE (6,101)A,B }

WRITE (6,102)A,B

Causes A and B to be read from one record.

Causes A and B to be read from two

consecutive records.

Causes two records to be skipped, A to be
read from the third record, two more
records to be skipped, B to be read from
the sixth record and one additional record

to be skipped.

Causes A and B to be printed on the same

line.

Causes A and B to be printed on two con-

secutive lines.

Causes two lines to be skipped, A to be
printed on the third line, two more lines
to be skipped, B to be printed on the
sixth line and one more additional line
to be skipped.

8-28

CARRIAGE CONTROL

PURPOSE: To indicate the line spacing used when printing an output
record on a line printer or a teleprinter.
FORMAT:
0
1 as the first character in the record
*
any other character -
~ = single space (print on every line).
0 = double space (print on every other line).
1l = eject page
* = guppress spacing (overprint current line).
any other character = single space (print on every line).
EXAMPLES:
When these records are printed... they look like this:
100 FORMAT (" .PRINT ON EVERY LINE") PRINT ON EVERY LINE
120 FORMAT ("OPRINT ON EVERY OTHER LINE") PRINT ON EVERY OTHER LINE
140 FORMAT ("1") (a page is ejected, then a
line is skipped)
160 FORMAT ("*PRINT ON CURRENT LINE") (an overprint of current line)
180 FORMAT ("PRINT ON EVERY LINE") RINT ON EVERY LINE
999 FORMAT (1H1, El16.8, Ib5) (a page is ejected, and a

floating point number and an

integer are then printed.)

8-29

SECTION IX

PROGRAMS, FUNCTIONS, SUBROUTINES, AND
BLOCK DATA SUBPROGRAMS

PROGRAM STATEMENT

PURPOSE: The PROGRAM statement names the main program and assigns parameters
to it which are passed to the binary record and hence to the loader
loading the relocatable object code. Similarly, a comment line can

be passed to the loader.

Refer to the FORTRAN IV Operations Section of this manual for

additional information.

FORMAT :
PROGRAM name (pl,pz,...,ps), comment
or,
PROGRAM name ,pl,pz,...,p8, comment
name = the name assigned to the program.

pl—p8 = up to eight integer parameters to be passed to the
loader. See the appropriate operating system documenta-
tion for the meaning attached to these parameters. If

not specified, the defaults are:

p, = 3 disc-based, background
(ignored by RTE-M)

p, = 99 priority

P3~Pg = 0 time values

comment = a comment line to be passed to the loader. All charac-
ters after the comma (,) including blanks are passed.

The comment is limited to 84 characters in length.

COMMENTS: 1In the first format shown above, one or more of the parameters may
be omitted while still retaining the comment. In the second format,
all parameters must be accounted for at least by the presence of a
comma. Data after the program name is optional. The PROGRAM state-
ment, if present, must be the first non-comment statement in the

module.

EXAMPLES:
PROGRAM XY () ,THIS PROGRAM HAS NO PARAMETERS
PROGRAM XY, ,,,,,,,,COMMAS MUST BE PRESENT TO FIND THIS COMMENT
PROGRAM XY

PROGRAM XY (1,10) ,HELP! 770105

NOTE: All information following the program name
within the PROGRAM statement 1is an extension
of the standard.

An executable FORTRAN IV program consists of one main program with or with-
out subprograms. Subprograms, which are either functions, subroutines, or
block data subprograms, are sets of statements that may be written and

compiled separately from the main program.

A main program calls or references subprograms; subprograms can call or
reference other subprograms as long as the calls are non-recursive. That is,
if subprogram A calls subprogram B, subprogram B may not call subprogram A.
Furthermore, a program or subprogram may not call itself. A calling program

is a main program or subprogram that refers to another subprogram.

Main programs and subprograms communicate by means of arguments (parameters).
The arguments appearing in a call or a reference are called actual argu-
ments. The corresponding parameters appearing within the called or refer-

enced definition are called dummy arguments.

FUNCTIONS

If the value of one quantity depends on the value of another quantity,
then it is a function of that quantity. Quantities that determine the

value of the function are called the actual arguments of the function.

In FORTRAN IV, there are three types of functions (collectively called
function procedures); they supply a value to be used at the point of refer-

ence.

a. A statement function is defined and referenced internally in
a program unit.
b. A FORTRAN IV library function is processor-defined external

to the program unit that references it. The FORTRAN IV functions

are stored on an external disc or tape file.

c. A function subprogram is user-defined external to the program
unit that references it. The user compiles function subprograms,
loads them with his calling program unit and references them the

same way he references FORTRAN IV library functions.

SUBROUTINES

The RTE FORTRAN IV user can compile a program unit and store the resultant
object program in an external file. If the program unit begins with a
SUBROUTINE statement and contains a RETURN statement, it can be called as a

subroutine by another program unit.

Data Types For Functions and Subroutines

All functions are identified by symbolic names.

A symbolic name that identifies a statement function may have its data type
declared in a Type-specification statement. In the absence of an explicit
declaration in a Type-specification statement, the type is implied by the

first character of the name, as follows:

I, Jd, X, L, M, or N = integer type data

|

any other character = real type data

A symbolic name that identifies a FORTRAN IV function has a predefined data

type associated with it, as explained in Table 9-1.

A symbolic name that identifies a function subprogram may have its data type
declared in the FUNCTION statement that begins the subprogram or in a sub-
sequent Type-specification statement. In the absence of an explicit declara-
tion in the FUNCTION statement or a Type-specification statement, the data
type is implied by the first character of the name, as for statement functions.
A function subprogram which has been explicitly typed must also have its name
identically typed (in a Type-specification statement) in each program unit

which calls it. Otherwise, unpredictable results may occur.

The symbolic names which identify subroutines are not associated with any

data type.

DUMMY ARGUMENTS

Dummy arguments are identified by symbolic name. They are used in functions
and subroutines to identify variables, arrays, other subroutines or other
function subprograms. The dummy arguments indicate the type, order and

number of the actual arguments upon which the value of the function depends.

When a variable or an array reference is specified by symbolic name, a dummy
argument can be used, providing a value of the same type is made available

through argument association.

When a subroutine reference is specified by the symbolic name, a dummy argu-

ment can be used if a subroutine name is associated with that dummy argument.
When a function subprogram reference is specified by symbolic name, a dummy

argument can be used if a function subprogram name is associated with that

dummy argument.

BLOCK DATA SUBPROGRAMS

Block data subprograms are used to define and, optionally, to initialize
named common blocks. A block data subprogram begins with a BLOCK DATA state-
ment followed by specification statements describing variables in various
named common blocks, optional DATA statements to initialize these variables,

and an END statement.

PURPOSE:

STATEMENT FUNCTION

To define a user-specified function in a program unit for later

reference in that program unit.

FORMAT:

£ (a;s a2, ey an) = e

the user-specified function name, a symbolic name

Hh
Il

a distinct variable name (the dummy arguments of the

V]
]

function)

an arithmetic or logical expression

o
I

COMMENTS:

EXAMPLES:

The statement function is referenced by using its symbolic name,
with an actual argument list, in an arithmetic or logical ex-

pression.

In a given program unit, all statement function definitions must
precede the first executable statement of the program unit and
must follow any specification statements used in the program

unit.

The name of a statement function must not be a variable name or

an array name in the same program unit.

ISUM(I,J,K) = I+J+K

) |

ROOT1 (A,B,C) = (-B+SQRT(B**2-4.0*A*C))/(2.0*A)
L = ISUM(M**2,1,M-1)

I

R = ROOT1 (X,Y,2Z)

Defining Statement Functions

The names of dummy arguments may be identical to variable names of the same
type that appear elsewhere in the program unit, since they bear no relation

to the variable names.

The dummy arguments must be simple variables; they represent the values
passed to the statement function. These values are used in an expression
to evaluate the user-specified function. Dummy arguments cannot be used to

represent array elements or function subprograms.

Aside from the dummy arguments, the expression may contain only these values:

Constants

Variable references (both simple and subscripted)

FORTRAN IV library function references

External function references

References to previously-defined statement functions in the

same program

Referencing Statement Functions

When referenced, the symbolic name of the statement function must be immedi-

ately followed by an actual argument list.

The actual arguments constituting the argument list must agree in order,
number and type with the corresponding dummy arguments. An actual argument
in a statement function reference may be an expression of the same type as

the corresponding dummy argument.

When a statement function reference is executed, the actual argument values
are associated with the corresponding dummy arguments in the statement
function definition and the expression is evaluated. Following this, the
resultant value is made available to the expression that contained the state-

ment function reference.

FORTRAN IV LIBRARY FUNCTION

PURPOSE: To reference a processor-defined function by specifying its sym-
bolic name in an arithmetic or logical expression. The value is

made available at the point of reference.

FORMAT :
An arithmetic or logical expression that
contains the symbolic name of the FORTRAN
IV function (together with an actual argument list)

as a primary.

COMMENTS: Table 9-1 contains the FORTRAN IV library functions available
with the FORTRAN IV Compiler. The trigonometric functions

listed in this table use radians measure.

If the symbolic name for the function appears in a TYPE-specification
statement which defines the name as a data type different from that
specified for the function in Table 9-1, the function becomes
"external". The user must then supply his own version of the

FORTRAN IV library function.

NOTE: Some "intrinsic" functions are accessed by FORTRAN IV
using different names and/or calling sequences than
for "external" functions. Care should be taken when
using names of intrinsic functions for user-specified
subroutines.

EXAMPLES:

>
Il

SIN(Y)

IFIX(X)

TABLE 9-1

FORTRAN IV LIBRARY FUNCTIONS

Number of Symbolic Type of:
FORTRAN IV Function Definition Arguments Name Argument Function

Absolute Value Real+

Integer+

Double

Truncation Sign of a times Real+
largest integer Integer+

< EY Integer

Remaindering¥* a; (mod a2) Real*

Integer*

Choosing Largest Value Max (al, ays ..l) Real
Real

Integer
Integer

Double

Choosing Smallest Value Real
Real
Integer
Integer

Double

Conversion from Real+

integer to real

Conversion from Integer+

real to integer

Transfer of Sign Sign of a, times Real Real+

lall Integer Integer+

Double Double

Positive Difference a; - Min (al, az) Real Real

Integer Integer

Obtain Most Significant Double Real
Part of Double Precision

Argument

Obtain Real Part of Complex

Argument

Obtain Imaginary Part of

Complex Argument

Express Single Precision
Argument in Double

Precision Form

TABLE 9-1 (cont.)
FORTRAN IV LIBRARY FUNCTIONS

Number of Symbolic Type of:
FORTRAN IV Function Definition Arguements Name Argument Function

Express Two Real Arguments - Complex

in Complex Form

Obtain Conjugate of a Complex Complex

Complex Argument

Exponential ‘ Real Real+
Double Double+

Complex Complex+

Natural Logarithm Real Real+
Double Double+

Complex Complex+

Common Logarithm Real Real+

Double Double+

Trigonometric Sine Real Real+
Double Double

Complex Complex+

Trigonometric Cosine Real Real+
Double Double
Complex Complex+

Trigonometric Tangent tan(a) Real Real+
Double Double+

Hyperbolic Tangent tanh (a) Real Real+
12 Double Double+

Square Root (a) Real Real+
Double Double+

Complex Complex

Arctangent arctan (a) Real Real+

Double Double

arctan(al/az) Real Real

Double Double
Remaindering* Double Double*
Modulus Complex Real
Logical Product i.3j Integer Integer+

Logical Sum i+ Integer Integer+
Exclusive OR Integer Integer
Complement i Integer Integer+

Sense Switch Register Integer Integer+

Switch (n)

* The functions MOD, AMOD and DMOD are defined as al-[al/azla2
where [X] is the largest integer whose magnitude does not exceed

the magnitude of X and whose sign is the same as the sign of X.

+ These FORTRAN IV functions have different entry points when
called by value and called by name. See the DOS/RTE Relocatable
Library Reference Manual for a complete description of each

entry point.

Double precision functions have different entry points for
3-word and 4-word double precision. The names used to call
these functions within a FORTRAN program are the same for

both sizes of double precision.

FUNCTION SUBPROGRAM

PURPOSE: To define a user-specified subprogram that supplies a function

value when its symbolic name is used as a reference.

FORMAT:
t FUNCTION f (al, a2, ey an), comment

t = omitted, or one of the following data type identifiers
REAL
INTEGER
DOUBLE PRECISION
COMPLEX
LOGICAL

f = the symbolic name of the function

a = a dummy argument.

comment = up to 50 character comment

COMMENTS: The FUNCTION statement must be the first statement of a function
subprogram. A function subprogram is referenced by using its
symbolic name (together with an actual argument list) as a prim-
ary in an arithmetic or logical expression in another program unit.
The comment and its preceeding comma are optional. If present it
is passed to the loader via the relocatable object code.

EXAMPLES:
VAR = USERl (X,Y,Z)**USER2(X,Y) REAL FUNCTION USER1(A,B,C)

.

USER1 = A+B/C

RETURN

END

REAL FUNCTION USER2 (VARR1, VARR2)

USER2 = VARR1-VARR2
RETURN
END

NOTE: The " ,comment” in the FUNCTION statement 1S an
extension of the standard.

9-12

Defining Function Subprograms

The symbolic name of the function subprogram must also appear as a variable
name in the defining subprogram. During every execution of the subprogram,
this variable must be defined, and, once defined, may be referenced or re-
defined. The value of the variable at the time of execution of any RETURN

statement in this subprogram is called the value of the function.

The symbolic name of the function subprogram must not appear in any non-
executable statement in this program unit, except as a symbolic name of the
function subprogram in the FUNCTION statement or in a Type-specification

statement.

The symbolic names of the dummy arguments may not appear in an EQUIVALENCE,
COMMON or DATA statement in the function subprogram.

A dummy parameter can be used to dimension in array name, which also appears
as a dummy parameter of the function. An array which is declared with dummy
dimensions in a function must correspond to an array which is declared with
constant dimensions (through some sequence of argument association) in a
calling program unit. An array declared with dummy dimensions may not be

in common.

The symbolic name of a dummy argument may represent a variable, array, a

subroutine or another function subprogram.

The function subprogram may contain any statements except PROGRAM, SUBROUTINE,
BLOCK DATA, another FUNCTION statement, or any statement that directly or

indirectly references the function being defined.

The function subprogram may define or redefine one or more of its arguments
to return results as well as the value of the function. Therefore, the user
must be aware of this when writing his programs. For example, a function
subprogram that defines the value of GAMMA as well as finding the value of

ZETA could be coded:

FUNCTION ZETA (BETA, DELTA, GAMMA)
A = BETA**2 - DELTA**3

GAMMA = A*5.2

ZETA = GAMMA**2

RETURN

END

Then, a program referencing the function could be:

GAMMB = 5.0
RSLT = GAMMB+7.5 + ZETA (.2,.3,GAMMB)

which results in the following calculation:

RSLT = 5.0 + 7.5 + ZETA, where ZETA is determined as:

A= ,2%%¥2 - _3%*3 = 04 - ,027 = .013
GAMMA = .013*5.2 = .0676 (GAMMB is not altered)
ZETA = .0676**2 = .00456976
RSLT = 5.0 + 7.5 + .0046976 = 12.50456976

However, the program:

GAMMB = 5.0
RSLT = ZETA (.2,.3,GAMMB) + 7.5 + GAMMB

would result in the following calculations for ZETA and GAMMB:

A = ,2%%2 - . 3*%*3 = .04 - ,027 = .013
GAMMA = .013*5.2 = .0676 = GAMMB
ZETA = .0676**2 = ,00456976
RSLT = .00456976 + 7.5 + .0676 = 7.57216976

Referencing Function Subprograms

The actual arguments of a function subprogram reference argument list must
agree in order, number and type with the corresponding dummy arguments in

the function subprogram.

When referenced, the symbolic name of the function subprogram must be
immediately followed by an actual argument list, except when used in a Type-
specification or EXTERNAL statement, or as an actual argument to another

subprogram.

An actual argument in a function subprogram reference may be one of the

following:

A constant

A variable name

An array element name

An array name

Any other expression

The name of a FORTRAN IV library function

The name of a user-defined FUNCTION or SUBROUTINE subprogram.

If an actual argument is a function subprogram name or a subroutine name,
the corresponding dummy argument must be used as a function subprogram

name or a subroutine name, respectively.

If an actual argument corresponds to a dummy argument defined or redefined
in the referenced function subprogram, the actual argument must be a

variable name, an array element name, or an array hame.

Execution of a function subprogram reference results in an association of
actual arguments with all appearances of dummy arguments in executable
statements and adjustable dimensions in the defining subprogram. If the
actual argument is an expression, this association is by value rather than
by name. Following these associations, the first executable statement of

the defining subprogram is executed.

An actual argument which is an array name containing variables in the sub-
script could, in every case, be replaced by the same argument with a con-
stant subscript containing the same values as would be derived by computing
the variable subscript just before the association of arguments takes

place.

If a dummy argument of a function subprogram is an array name, the corres-

ponding actual argument must be an array name or an array element name.

SUBROUTINE

PURPOSE : To define a user-specified subroutine, which may be compiled

independently from a program unit which references it.

FORMAT:
SUBROUTINE s, comment
SUBROUTINE s (al, a2, ceay an), comment
s = the symbolic name of the subroutine
a = dummy argument

comment = up to 84 character comment

COMMENTS: To reference a subroutine, a program unit uses a CALL statement.

The SUBROUTINE statement must be the first statement in a

subroutine subprogram.

The SUBROUTINE statement cannot be used in a function subprogram.
The comment and its preceeding comma is optional. If present it 1is

passed to the loader via the relocatable object code.

EXAMPLES:
CALL MATRX SUBROUTINE MATRX, INVERSE- DATE 19 OCT
Ir IS
CALL SUBR(I,J) RETURN
END

SUBROUTINE SUBR (K,L), DATE 30 OCT 76
Ir

RETURN

END

NOTE: The " ,comment" in the SUBROUTINE statement 1is an
extension of the standard.

Defining Subroutines

The symbolic name of the subroutine must not appear in any statement except

as the symbolic name of the subroutine in the SUBROUTINE statement itself.

The symbolic names of the dummy arguments may not appear in an EQUIVALENCE,
COMMON, or a DATA statement in the subroutine.

A dummy parameter can be used to dimension an array name, which also appears
as a dummy parameter of the subroutine. An array which is declared with
dummy dimensions in a subroutine must correspond to an array which is de-
clared with constant dimensions (through some sequence of argument associ-
ation) in a calling program unit. If a parameter array is declared with
values (instead of dummy dimensions) in a subroutine, the actual values must
be specified for the first (N-1) dimensions. An array declared with dummy

dimensions may not be in common.

The symbolic name of a dummy argument may be used to represent a variable,

array, another subroutine or a function subprogram.

The subroutine defines or redefines one or more of its arguments to return

results.
The subroutine may contain any statements except a FUNCTION statement, BLOCK

DATA statement, PROGRAM statement, another SUBROUTINE statement, or any

statement that directly or indirectly references the subroutine being defined.

Referencing Subroutines

The actual arguments which constitute the argument list must agree in order,
number and type with the corresponding dummy arguments in the defining

subroutine.

An actual argument in a subroutine reference may be one of the following:

A constant

A variable name

An array element name

An array name

Any other expression

A FORTRAN IV library function name

A user-defined function or subroutine subprogram name

If an actual argument is a function subprogram name or a subroutine name,
the corresponding dummy argument must be used as a function subprogram

name or a subroutine name, respectively.

If an actual argument corresponds to a dummy argument defined or redefined
in the referenced subroutine, the actual argument must be a variable name,

an array element name, or an array name.

Execution of a subroutine reference results in an association of actual
arguments with all appearances of dummy arguments in executable statements
and adjustable dimensions in the defining subroutine. If the actual argu-
ment is an expression, this association is by value rather than by name.
Following these associations, the first executable statement of the de-

fining subroutine is executed.

An actual argument which is an array name containing variables in the sub-
script could, in every case, be replaced by the same argument with a con-

stant subscript just before the association of arguments takes place.

If a dummy argument of a subroutine is an array name, the corresponding

actual argument must be an array name or an array element name.

BLOCK DATA SUBPROGRAMS

PURPOSE: To define a block data subprogram, which may be compiled in-
dependently from a program unit which references it.
FORMAT:
BLOCK DATA name, comment
name = an optional name
comment = up to 84-character comment
COMMENTS: The block data subprogram is used to:

1. Define the size of and generate subprograms which reserve

space for each named common block, except EMA common.

2. Optionally to initialize the variables in one (or more)

named common block.

The BLOCK DATA statement must be the first non-comment statement

in a block data subprogram.

The name specified in the BLOCK DATA statement is used only in the
heading produced for the listing. Each different named common block
within a block data subprogram will produce a separate subprogram
module which will have the common block name. The comment string
will be passed to the loader with each named common subprogram

produced.

Each named common block, except EMA common, referenced in an
executable FORTRAN program must be defined in a block data
subprogram. This is necessary to reserve room for the named

common block.

EXAMPLES:

BLOCK DATA XYZ,DATE=770707
COMMON/XYZ/A (10) ,B(200) ,KKK

COMMON/BITS/IB(16)
DATA IB/1,2,4,8,16,32,64,128,256,512,1024,2048,4096,8192,16384,100000B

NOTE: The " ,comment" parameter in the BLOCK DATA
statement 1s an extension of the standard.

9-21

APPENDIX A
DATA FORMAT IN MEMORY

The six types of data used in FORTRAN IV (integer, real, double precision,
complex, logical, and Hollerith) have the following format when stored in

memory.

INTEGER FORMAT

PURPOSE: an integer datum is always an exact representation of a positive,

negative or zero valued integer, occupies one 16-bit word and
15 15

has a range of -2 to 2 1.
FORMAT:
|15 14 0|
I!_l number bits I
sign bit

REAL FORMAT

PURPOSE: A real datum is a processor approximation to the positive, neg-
ative or zero valued real number, occupies two consecutive

l6-bit words in memory and has an approximate range of 10.-38
38
to 107 .

FORMAT:

o«———1mplied binary point

IlS 14 0]
IQ_ fraction bits

sign of fraction

word 1

Il§ 8| 7 ll OI word 2

fraction bits l exponent bits I ’I
sign of exponent

COMMENTS: A real number has a 23-bit fraction and a 7-bit exponent.

Significance (to the user) is to six or seven decimal digits,

depending upon the magnitude of the leading digit in the

faction.

3 WORD DOUBLE PRECISION FORMAT

PURPOSE: A double precision datum is a processor approximation to a
positive, negative or zero valued double precision number,

occupies three consecutive 16-bit words in memory and

has an approximate range of 10“38 to 1038.
FORMAT:
«———1implied binary point
IlS 14 QJ word 1
I fraction bits
Q_sign of fraction
l}S OI word 2
fraction bits
lis 8| 7 1] o] word 3

fraction bits I exponent bits | ,I
sign of exponent

COMMENTS: A double precision number has a 39-bit fraction and a 7-bit

exponent.

Significance (to the user) is from 11.44 to 1l.74 decimal
digits, depending upon the magnitude of the leading bit in

the fraction.

4-WORD DOUBLE PRECISION FORMAT

PURPOSE: A double precision datum is a processor approximation to a

positive, negative or zero valued double precision number,

occupies four consecutive 16-bit words in memo

has an approximate range of 10_38 to 1038.

ry and

FORMAT:

«———implied binary point

|15 14 0 I word 1
I fraction bits

Q_sign of fraction

15 OI word 2
fraction bits

15 OJ word 3
fraction bits

|1s s| 7 1] o] vord 4

fraction bits l exponent bits
sign of exponent

Tyl

COMMENTS: a double precision number has a 55-bit fraction and a 7-bit

exponent.

Significance (to the user) is from 16.26 to 16.56 decimal

digits, depending upon the magnitude of the leading digit in

the fraction.

COMPLEX FORMAT

PURPOSE: A complex datum is a processor approximation to the value of a
complex number and occupies four consecutive 16-bit words in
memory. Both the real and imaginary parts have an approximate

range of 10-38 to 1038.

FORMAT:
- «——— implied binary point
15]14 AQJ word 1
fraction bits
t_sign of fraction
real
part
15 8|7 |0 word 2
fraction bits exponent bits I
Isign of exponent -————}
- +e———implied binary point
15] 14 0 word 3
fraction bits
t_sign of fraction
imaginary
part
R S 8 |7 1 |0 | word 4

fraction bits exponent bits I ’I
sign of exponent

COMMENTS: Both the real part and the imaginary part have 23-bit fractions

and 7-bit exponents; both have the same significance as a real

number.

LOGICAL FORMAT

PURPOSE: A logical datum occupies one 16-bit word in memory. The

sign bit determines the truth value: 1 = true, 0 = false.

FORMAT:

15|14 = .TRUE.
i o o0 000000000000

5] 14 o] = .FALSE.

lofo 000000000000 0 o0

HOLLERITH FORMAT

PURPOSE: A Hollerith datum is a one or two character string taken from

the HP ASCII character set; it occupies one 16-bit word in

memory.
FORMAT:
|15 8 ' 7 0|
| HOLLERITH 1 | HOLLERITH 2 |

APPENDIX B
COMPOSING AN RTE FORTRAN IV JOB DECK

After a source program has been written, it is submitted as a FORTRAN IV
job deck. A job deck is input in the form of a disc file, punched cards,
a source paper tape or through a teleprinter. The job deck has the

following form:

FORTRAN CONTROL STATEMENT
MAIN PROGRAM

Ir
END STATEMENT
SUBPROGRAM (1)

Ir
END STATEMENT

SUBPROGRAM (n)
I
END STATEMENT
FORTRAN END JOB STATEMENT

FORTRAN CONTROL STATEMENT

The FORTRAN CONTROL STATEMENT specifies the type of output to be produced by
the compiler. The CONTROL STATEMENT parameters within a job deck may be
overridden using the options parameter when the FORTRAN IV Compiler is in-
voked. Refer to the FORTRAN IV Operations Section in this manual for more

information.

FORTRAN END JOB STATEMENT

A FORTRAN end job statement is a source statement that contains the currency

symbol ($) in column one or END$ in columns 7-72.

APPENDIX C

SUMMARY OF COMPATIBILITY WITH ANSI
FORTRAN |V

The RTE FORTRAN IV compiler conforms to the American National Standards
Institute FORTRAN IV specifications as described in the ASA publication

X3.9-1966, with the following exceptions and extensions.

EXCEPTIONS TO STANDARD

Program, subprogram, and external names are limited to five characters. Six
character symbols are accepted but are shortened to five characters by
deletion of the fifth character. For example, the program name JOHNO1l is

changed to JOHN1l by the RTE FORTRAN IV compiler.
Intrinsic functions are treated as external functions.
Integer values occupy one word less than real values.

RTE FORTRAN IV requires that each named common block be described in a block

data subprogram even if no variables are to be initialized.

The FORTRAN IV Formatter supports the transfer of data records containing a
maximum of 132 characters within a formatted READ or WRITE operation, or a

maximum of 60 words within an unformatted (binary) READ or WRITE operation.

The Formatter processes READ or WRITE requests for the transfer of records
larger than these limits by dividing the original record into records sized

to match the limits. This process affects the file positioning operations.

For example, assume that a READ request is issued for a 1000-word binary
record. The Formatter divides this record into 16 records of 60 words each
and 1 record of 20 words. In order to backspace and re-read from the
beginning of the original record, 17 backspace operations must be performed

prior to the request to re-read the data.

EXTENSIONS OF STANDARD

A subscript expression may be any arithmetic expression allowed in RTE
FORTRAN IV. However, if an expression is of a type other than INTEGER, it is

converted to Type-INTEGER after it has been evaluated.

The initial, terminal, and step-size parameters of a DO statement or an
implied DO list may be any arithmetic expression. If the expressions are not
of Type-INTEGER, they are converted to Type-INTEGER after they have been
evaluated. The step-size parameter may be either positive or negative, thereby
allowing either incrementing or decrementing the terminal parameter value.
(Implied DO lists may use only integer arithmetic expressions which do not
reference functions that perform I/O operations or execute READ/WRITE

statements.)

Comment lines may appear anywhere including within statements continued on

additional lines.

Strings may appear in PROGRAM, FUNCTION, SUBROUTINE, and BLOCK DATA

statements.

Specification of a comma as a statement separator is allowed in a DO

statement.

For all statements, there is no limit to the number of continuation lines.

The integer variable reference in a computed GO TO can be replaced by any
arithmetic expression. Non-integer expressions are converted to type in-
teger before the GO TO statement is executed. If the value of the express-
ion is less than one, the first statement in the computed GO TO list is
executed. If the value is greater than the number of statements listed in

the GO TO, the last statement in the computed GO TO list is executed.

The Hollerith constant anlc2...cn (for n<9) may be used in any arithmetic
expression where a constant or an expression of type implied by n (see page
2-9) is permitted. Note, however, the n=0 is not permitted and that if n is
odd the <, is stored in the left half of the computer word, with a blank

character in the right half.

Any two arithmetic types may be mixed in any relational or arithmetic oper-

ation except exponentiation.
Additional types of exponentiation are permitted. (See Table 3-2.)

An unsubscripted array name is an admissible list element in a DATA state-
ment. In this case, the correspondence with constant values is as follows:
If the array has n elements, then the next m constants from the list are
used to initialize the array in the order in which it is stored (column
order). If the remainder of the constant list (at the time the array name
is encountered) has m < n elements in it, then only the first m elements

of the array are initialized.

ASSIGN statements may be used with FORMAT statement numbers and the integer

variable then can be used in READ and WRITE statements.

Integer variables defined by the ASSIGN statement may be passed to functions

and subfunctions.

APPENDIX D

COMPATIBILITY BETWEEN HP FORTRAN AND
RTE FORTRAN IV

RTE FORTRAN IV contains some language extensions to provide compatibility

with HP FORTRAN. These features are:

Special characters included with ASCII input data can direct its formatting
(free field input); a FORMAT statement need not be specified in the source

program.

Alphanumeric data can be written without giving the character count by speci-
fying heading and editing information in the FORMAT statement through "..."

entries.

The Aw conversion code of HP FORTRAN is equivalent to the Rw conversion code
in RTE FORTRAN IV. A single character stored in a word under R format control
is placed in the right half of the word with zeros in the left half. On out-
put, using the Rw format, the right half of the word is written. A HP FORTRAN
program using an Al FORMAT specification may have to be changed to use the

Rl specification. The user may also use calls to OLDIO. (See the Relocatable

Subroutines manual.)

The END statement is interpreted as a RETURN statement (in a subprogram) or
as a STOP statement (in a main program). A RETURN statement in a main pro-

gram is interpreted as a STOP statement.
The HP FORTRAN External Functions which perform masking (Boolean) operations
(IAND, IOR, NOT) and test the sense switches (ISSW) are retained as RTE

FORTRAN IV library functions.

The two-branch arithmetic IF statement (IF (e) nl, n2) is retained in RTE

FORTRAN IV.

Octal constants are valid in RTE FORTRAN 1IV.

Using an unsubscripted array name always denotes the first element of that
array, except in an I/C statement or a DATA statement, where the entire array
is referenced. A single subscript, i, with a multiply-dimensioned array,

denotes the ith element of the array as it is stored (in column order).

The PROGRAM statement syntax for HP FORTRAN differs between the RTE-II/III
and the RTE-M Operating Systems. The difference is in the handling of the
optional parameter string and the inclusion of a comment in the PROGRAM
statement. Refer to the RTE-II, RTE-III, and RTE-M Programming and Operating

Manuals for specific details.

In the previous HP FORTRAN IV compiler, FORMAT statement code was generated
in line within the program code produced by the compiler. This required use of
a jump operation to avoid execution of the FORMAT statement. The FORMAT state-
ment number was associated with the jump operation which allowed the FORMAT
statement number to be used to control the flow of the program (that is, in

GO TO, IF, or DO statements).

Because the ANSI standard for FORTRAN IV dictates that statement labels used
in program control statements must be associated only with executable state-
ments within the same program unit, RTE FORTRAN IV does not allow the FORMAT
statement number to be used in this manner. The RTE FORTRAN IV compiler
generates FORMAT statement code in the data area following the program code.
The jump operation is not generated and the statement number is associated
directly with the FORMAT statement. This allows usage of the ASSIGN state-
ment with FORMAT statements but precludes the use of a FORMAT statement

number in program control statements such as GO TO, IF, or DO statements.

An additional difference between the previous HP FORTRAN IV compiler and the
RTE FORTRAN IV compiler exists in the handling of array addresses. The HP
FORTRAN IV compiler generated the address of each array mentioned in the
specification statements prior to generation of any executable code. Usually,

the array addresses immediately preceded the actual array.

The RTE FORTRAN IV compiler generates array addresses only if they are needed.
If generated, the addresses usually appear in the data area following the

program code while the actual array precedes the program code.

APPENDIX E
CROSS REFERENCE SYMBOL TABLE

The RTE FORTRAN IV Compiler provides the option of producing a cross
reference listing of symbols and labels used in the source program. The
sample program listing shown in Appendix F contains a cross reference
symbol table as the last item listed. If requested, the cross reference
symbol table is always the last listing produced for each compiled program

unit.

REQUESTING A CROSS REFERENCE SYMBOL TABLE LISTING

The optional parameter C is used in the FORTRAN Control Statement to request
a cross reference symbol table. Appendix J describes the format and

parameters of the FORTRAN Control Statement.

CHARACTERISTICS OF TABLE

Each symbol is printed followed by the line numbers in which the symbol
appears. Multiple references in one line to the same symbol are noted.

Statement labels are preceded by the @ character.

Up to eight line numbers are printed per line of the cross reference symbol
table. The line numbers are listed in ascending order except when they occur

in an EQUIVALENCE statement. For example,

0099 COMMON N

0100 EQUIVALENCE (N(1), M(1))
0101 DIMENSION N(50), M(50)
0102 N(1)=1

E-1

produces, for the symbol N, the following cross reference information:

N 0099 0101 0100 0102

ERROR CONDITIONS

The cross reference symbol table is not complete for lines which contain com-
pilation errors, since compilation is terminated at the point in the line
where the error is detected. Also for programs with a large number of
EQUIVALENCE statements some references in the EQUIVALENCE statements may be

absent from the cross reference.

Ee2

APPENDIX F

SAMPLE LISTING OF RTE
FORTRAN IV PROGRAM

PAGE 9001 FTN. 3:54 PM FRI., 17 JUHE, 1977

90H1 FTN4.,L.H

WOD2 BLOGCK DATA X.TEST BLOCK DATR 770107
WOO3 COMMON /NAMELI/BITS

B004 DIMENSION BITS(186)

DODS INTEGER BITS

DODE COMMON /NAMEZ2/ B.A.C

D0HY DIMEMSION A(S5),B(5,55,€¢(5,5.,%5)

02008 €

o0y €

0019 DRATA BITS5/1,2.4,8,16,32,64.,128.256.512,1024,2048,4959
votl € 8192.,16384.1000008B/,A/5%5./

012 END

FTNd COMPILER:! HFP92zHo0-10092 REY. (726

#% NO WARNINGS #% NO ERRORS #%

F-2

4

L

PAGE 0002 NAME! 3:54 PM FRI.., 17 JUKE, 1977

D092 BLOCK DATA XK.,TEST BLOCK DATA 7701907

HON3 CUMMON /NAMELI/BITS

D004 DIMENSION BITS(16)

DR] INTEGER BITS

309806 COUNMON /NAMEZ/ B.A,C

D0H7? DIMEMSION ACS),B(5.,5),C0(5,5,5)

0010 bATe BITS5/1,2.,4,8,16,32,64.128,256,512,1024,2048.,40%06.
VOONO 000001 GCT 0090001
DOVHL DHONH2 gcT 009092
VDOOHZ 0HHHO4 OCT 009094
D0HHI 0HD001 0 GCT 0900190
DOODV4 0DOH2ZH CT 0909020
VOOVT 0000490 GCT 0000490
DO0He VIULI00 0CT 009109
DOHD7 0DH200 €T 0909290
D000 VNO4090 Q€T 009490
0011 001009 GCT 001090
VoD 0H20090 acT 0092000
DOVLZ 004900 GCT 094000
VO0E4 DL1HDOD GCT 010090

RE B € 8192,16384.100000B/,A/5%5./
DOVLES H20009 GCT 029000
D016 V40000 GCT 040000
DOVET 109000 aCT 100000

D012 END

BLOCK COMMON MAME! SIZE = 990916

PRAGE 9003 NR

NHYPZ
DHN3I
D004
SONG
VARG
DOYHT
2910
W41

w02

¢

DPHB2
HPHH3I
DNGE
BRIV
DHVBb
PDODBHT
PODTY
PODT
WHDTZ
DHOT3

MEz 3:54 FPM FRI.. 7 JUNE. 15377

BLOCK DATA K.TEST BLOCK DATA 770107

COMMON /NAMEL/BITS

DIMEMSTION BITS(16)

INTEGER BITS

COMMON /NEMEZ/ B.n.C

DIMEMSION AT).B{(5.,5)3.8{5.,5.,5)

DRTH BITS/1.2,4,8.16,32,64.,128,256.512,1024,2048.40%0,
B192,16384. 1000008/, R/5+5./

e Y
OOEF 0904 2R

DTVHVH GCT 959999
PHONI 6 OCT 990098
PHTODHH GCT 050090
SRNHHE GIT 000006
S RTR RO R] OCT 059090
DOHDHHE OCT 00908
NEVVND QLT 0599090
DPNDN & GCT 000094
D5HNNH GCT 050000
DVHDD B GCT 4900986
END

B35 00372k

BLOCK COMMON NAMEZ SIZE = 00319

PAGE 0004

NRMEZ

S5YMBOL TRELE

NAME

H
B
B1TS
¢
NAME!
NAHEZ

RDDRESS

DHNHBI +
ROVODY +
DPNODO +
DHNOTY +
GONHIGH
GON4EEH

~

3:54 PM FRI..,

USAGE

ARRAY(*)
ARRAYI % ,%)
ARRAYC*)
ARRAY %, %,%)
COMMON LABEL
CapMON LoBEL

JUNE, (377

TYPE

REAL
REAL
IMTEGER
REAL
INTEGER
INTEGER

LUCARTIGH

L CONMOH
L COMMNON
L COmMpoH
L CONMON
LGt
LGCAL

amMEz

HAaNEZ
HANEI
NANEZ

PRGE 0095 FTN. 3:54 PM FRI., 17 JUNE, 1977

0013 PROGRAML DL MAIN NAMED COMMON

00414 COMMON /NAMELI/BITS{16)/NAMEZ/BC(G,50,A¢(5),C{(3,5.,5)
D015 INTEGER BITS

URVE R YRITE(S,1000BITS, (ACII D, Jd=1,080.{{B{KK,KKK),KK=1,8)3,KKK=1.351,C
2017 109 FORMATIR.LI6KT, /L, 31{GIBFLD . 2,2K370)

D018 DOBI=1.3

D015 ACT)=1%1

20290 DOo74=1.5

9021 BCIl,d3o=1#1+¢d%J

we2e DOBK=1.5

B023 COT. 0. Ko=T#] ¢dkdeK#K

N624 g CONTINUE

WH25 v CONTINUE

W02H b CONTINUE

Wo27 WRITE(6,100>BITS.n.B.C

D028 CONTINUE

029 END

FTN4 COMPILER: HP32O80-1609%2 REY. 1726

% NO WRRNINGS #*#% NO ERRORT *% PROGRAM = 001914 COMMON = D090

PRGE 09906 FTN. 3:54 PM FRI.., 17 JUNE, 1977

D913 PROGRAM{ D, MARIN NAMED COMMON
2914 CONMON /NAMELI/BITS{18)/NANE2/B(5,5),R(5),C(5,5,95)
DL INTEGER BITS
DY) WRITECA,1OMBITS,{ACJId I, dd=1,00. CABCKK,KKK),KK=1,58),KKK=1.5).¢C
VOVPO VNHIDO NOP
V0OV DNHDHLEX J5B CLRIO
DOHBEZ VHDHDHNHIR DEF *-2+009038B
DOHNHI 00D 242R LDA 00242E
VDOHVE DDE400 CLE
DOHHT VHHHOZX 5B .DIO.
P0VNE 0VNH261R DEF €100
VOOH7 0NDHT 2R DEF 00072R
D0HLEO DHHHH3IX 3438 . IaY.
D00LL 0DDHV4K DEF HNANE!
VDOV +
DODLIZ DOHD2Y gCT 009629
8B5S 00002K
VOOES 00O0243R LDA JJ
DODLE 00190990 ALS
D007 000244R ADAR 00 244K
DOH20 DOH24 LR STA A. 001
DOH21 VNHHOTK J3R .RICO.
DoHae 10H245R GEF A . 001,11
aR6 H0013E
DOOLII 0002486 R LDR ©0246E
DoNL4d 0H024 3R 5Ta Jd
BESS 09008EK
0023 DHHD243IR Ltbha Jd
PO024 DVD246RH AbA 002406F
B0025 H0H243R STA Jd
Dou2e D03V04d CMAR,IHNA
BA027 NVHHD24 1R AbA 00H241R
PHOIH HD202 S5ALR5S5
20031 OHONDIER PP 0001 5K
B85 00004K
DOOIe DNHDITLER LDB 00252R
DOO3I7 002499 €LA
DHV4H DUINVEX SR . MAP
00431 00P2F3R DEF 002538
N4 0DN2TOHR DEF &K
0043 0DH2TLIR DEF KKK
DHO44 DHDH24LR DEF #0241R
DoN45 DHDZ240TR SThH A. 00l
P04 O0DOHTX JSB .RIC.
0047 19024 5R DEF A.001.1
GRG 0D034R
D0H34 0DHD244F Lop 9024068
VOHIT VHHZTHR ST KK

B55 090128

PHHTH HDH2ELR Lba KK
BHHTL VDH246R ADP 0% 2468
DOHT2 DONZTHR 3TA KK
DUNEI 0N3IV04 EMALINRA
0054 000241R AbA 0024 1R
WEHES NH2o2t S5A.R55

F-7

PAGE 0097 FT

L7

DY 1E

DR

V290

0021

PO0TH

V32
D033

RN X R
PHDBY
DHHBY
DHDBZ
GON63
P0064
RLEE 3]
10H

DRNBH
HOVB7

DROTO
DGOT

Vo261l
D22
Bo2e3
DOZo4
DOZHE
0266
D027
DO2TYH
D271
DG272
WH273
0274
DO273
nO276

D072
DONHT3

20074
BONT?S
BRN76

VONT?Y
DHLID0
0191
DL R
D013
D014
V010G
DO106
DOL107

VIVR R R
WHild
90112

H. 3:54

VHDHIGR

DON246R
VPH2TLR

QOHN2SIR
VOV 248k
DOHD2SLR
003904
VNN 24 1R
Pzl
DNDHI4H
FOoRMAT X,
LRV 4
URARVEVE RIS
VDPNT 4+
WADLTI
REILER IR B
bloi=t.5

V24139
HDEZEDV6L
Y3313
033454
V27454
V31461
24065
024130
V4IHH L
D3HNEe
V31054
V31130
D24457
024451

DNH246R
VO02%4R
AC T)=1#1
DON254R
D0190H
0D0244R
bOvd=1.5
DVV245R
VON254R
DO0HT 2K
D0H254R
090901 3X
0HH0N14X
100245R
DHH246R
0O02535R

FH

@iHh

BCI.Jdo=T1%1+Jd%*d

DOH252R
V02409
VHDDYEXR

{7 JUME., 1977

JMF
aRG
LDbA
5ThA
B5S
Lhe

0HH36K
VHH3I2E
D0246R
KKK
DHH2 3k
KKK
bR 00246k
5TA KKK
CHa, INA
ADA HO241E
55A.R55

JHP 00D34R

16K7, /7, 31{G{KF L0 .2,2K04))

J58
DEF

CRAY.
HAMEZ+90074ER

acT
J¢ 5K

000175
.DTA.

B55
#5e
AscC
RSC
nse
RsC

OO0167HR
14K
1,.1
1.8K
1.7,
1./,
s 1,31
R5C 1.45
ASC 1.4k
AsC 1.F1
ASC 1.9,
R5C 1.2,
AsC 1.2%
AsC 1./
ASC 1.0
GRG 00072R
LDA 002406E
37a 1

Lba 1
ALS
ADR 00244K
STA A 901
LDa 1

J5B . MPY
DEF 1

J5B FLOAT
J5BR . DST
DEF A.9001.,1
LDba 09246E
5Ta J

LDB
Cin
45k

092528

. MAF

F-8

PHGE 0008

<
Ll
[18]
[X]

V023

VO25

3154 PN

FTN.

BO013i3 0NV ZEIR
D014 OHD2G4R
WIS 00H2ETR
P0Llie W0D241R
DOLEF DVO245R
BOL20 O0D254R
DO12F 000H12K
wotzz 00025 4R

bhgk=1.5
H0123 VOH24TR
0124 0OO2ELTER
DOLES 000HIZX
0126 00H255R
90127 000247 R
BOLE3IO 0HOO1TH
VOL3L H00D14K
DO132 190245R
DOL33 0N0Z46R
0134 0H02%6R

C{l1.,d.K2=
0133 00H2LER
0136 002404
DOL3IT A00N0EX
00140 DOV25TR
Vo141 00D254R
0142 OHO2HSR
0143 0H0256R
0144 0DD241R
V0145 000241LR
V0146 DOD245R
0147 000254R
VOISO 000012 X
H0131 O0H2L4R
0152 ON0247R
V0183 0HH2LTR
U154 00dO12K
D015 0902LER
018 000247R
8 CONTINUE
PO157 DHHP2G60R
V0160 OVP2T6R
D918l DI00LZK
poleg 0002%6R
D183 000200R
V0164 00001 3X
00163 000014%
0166 1H0245R
7 CONTINUE
Vote? 0DH0256R
DO0179 DD0246R
VOETY 00925 6R
DOETe 003004
D073 90024 1R
Vo174 D022
00175 000135R

@3

FRI .,

DEF
DEF
DEF
DEF
STh
Lba
J5R
DEF

5ThA
Lba
JSH
DEF
DA
J5B
J58&
DEF
LDa
3TA

Tl +ded+K*K

LDB
Cip
J5R
DEF
DEF
DEF
DEF
DEF
DEF
5Ta
LDa
4 5R
DEF
5Tha
LDa
d5B
DEF
ADA

574
LDA
J 5B
DEF
ADA
4 5B
1]
DEF

LDA
ADR
5Th
CHA
RDA
584
JHP

17 JUHNE.

<
< P
L

[i R S S B o 3
—

WPy
I

1.001

J

CMPY

N]

1.001
FLONT
.b53T
A.o01, 1
00246k
K

OV2L2E
»IHA

.. MAP
V2GTER

D24 1R
D24 1K
A.001
1

.MPY

1
1.0014
J

.MPY

9
1
d
K
0
0

J
1,901

1.4902

K

.MPY

K

1.9062
FLOAT
.D3T
AR.O0L.T

K
002468
K

s1HA
0024 1R
»RS8

00 135K

F-9

1377

PAGE 90009 FTN. 3:54 PM FRI.., 17 JUNE, 1977
V926 o CONTINUE
V0176 DOO253R @7 LDhA
0177 000246R nbAa 002468
HO290 OVVO255R 5TA
M02ZH1 HHIHO4 CHA,INA
D292 HDHO24 iR ADbA 00241E
DOZHI 0H2H2Y 55A.R55
90204 HDONDLILIOHR JHP 00110R
Bo27 WRITECG6.100)DBITS,A.B.C
P02HT LHD2T4R @e Lba 1
PH2P6 VVH248R ADA 002468
DO207 NDOO2S54R 5Ta 1
0210 HH3IN04 CHA.INRA
0211 DNDO241R ADA 0H24 1K
poztz HH2ZH2i 55A.RSS5
POZI3 DODNT 4R JMP 0007 4R
DOZ14 HDHNDZ242R LDA 00242E
DE2LE NDH6400 CLE
POZie DNHHHZX J5B .DbIC.
DOZLIT7 DHHD261LR DEF @199
V6229 HHHND236R DEF 00236FK
D221 HOHHHTIX JS5R . IAY.
De22z HHHHH4XK DEF NAME!
DDHOHDO+
DEZa3 H00H2ZD QCT 09090290
Nez24 HDOHOHTX JSB .RAY.
DOZ2% NDHNDHLIOX DEF NAMEZ2+99062K
000062+
NGz26 NDHHHOS QCT 000095
DO2Z27 HHDHHTHK JSR .RAY.
0230 DHONIHX DEF HWnaNMEZ
DDDHHH+
D23 HHNHIL aCT 99031
D28 COUNTINUE
D232 NDNPITX M5B . RAY.
V0233 HV0DIOX DEF NAMEZ+0VU974ER
VDT 4+
00234 HHHLITT GCT 099175
D623I5 HHOHILE d5B .DTH.
V29 END
D236 DHDOHNDITX J5B EXEC
BO2IT O HNH24 1R DEF 00O072R+991478
DHZ4D HDHH24ZR DEF 90242E
DO241 HHHHOT GCT 000005
DGz4z2 00NN E aCT 2909008
Jd B35 09901R
DO244 ODHNNIHX DEF HAMEZ+DH0060B
DOHHED +
ALO0Y BSE 00DOH01LR
D246 WHNNH L QCT 009091
1.991 EBS5 0H0H03ER
PpO2TZ VVOHOHE GCT 099092
DO2TI HONHLIHXR DEF NAMEZ
DOHOODH +
1 B5S5 090H3E

PRGE 09190 FTN. 3:54 PM FRI.., 17 JUNE, 1977

90257 000010X DEF NAME2+000748B
900974+
1.002 BSS 000178

PRGE V011

FTN.

SYMBOL TARLE

NAME

@100
@d

@7

@a

A

B
B1TS
€
CLRIG
EREC
FLORT
I

¢

Jd
K
KK
KKK
NRME!
NAMEZ

RDDRESE

LR R B E]
ROVZHER
OOPLITER
GODLETR
QOPHOZ+
POB000+
DOVOPH+
DORGTE+
QOHUNL K
OODYITR
DONOLIIX
DOD2T4R
POP2IER
YOH2ZH3R
PHHZERR
DHH2TOR
GODEDIR
DHHYNY K
DOVHLOK

FRI., 17

USAGE

STATEMENT HUMBER
STATEMENT NUMBER
STATEMENT NUMBER
STAHATEMENT NUMBER
ARBAYL %)
ARRAY #, %)
ARRAYL *)
ARRAYL %, %, %)
SUBPROGRAN
SUBPROGRAN
SUBPROGRAM
YARIABLE
YARIARLE
YARIABLE
YARIABLE
YRARIABLE
YARIARLE

COMMON LABEL
COMMON LAREL

Fr1l2

JUHE . 157

et

TYPE

REAL
REAL
INTEGER
REAL
RENL
REAL
RENL
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER

LOCATION

L COMMON
L COMMNOH
L COMMON
L CGMMON
EXTERNAL
EXTERNAL
EXTERNAL
Lacat
LOCAL
Lotnat
Lacnt
Lacnt
LOCAL
EXTERNAL
EXTERNAL

BAaMEZ
NAREZ
HAMEL
NAMEZ

FRI1 .., 17 JUNE. 1977

ol
w
o
o
=

PAGE 9912 FTN.

D030 ¥

APPENDIX G

RTE FORTRAN IV COMPILER
ERROR DIAGNOSTICS

TYPES OF COMPILER DIAGNOSTICS

There are three types of RTE FORTRAN IV compiler diagnostics:

WARNING: The compiler continues to process the statement, but the
object code may be erroneous. The program should be

recompiled.

ERROR: The compiler ignores the remainder of the erroneous source
statement, including any continuation lines. The object code

is incomplete, and the program must be recompiled.

DISASTR: The compiler ignored the remainder of the FORTRAN IV job.

The error must be corrected before compilation can proceed.

NOTE: If an error occurs in a program, the object code
will contain a reference to the non-system ex-
ternal name .BAD. This prevents loading of the
object tape, unless forced by the user. It is
strongly recommended that a program with
compilation errors not be executed. This
reference is not produced for warnings.

FORMAT OF COMPILER DIAGNOSTICS

When an error is detected in a source statement, the source statement number
is printed, followed by the statement text. A question mark (?) is printed
after the erroneous column. Then, a message is printed in the format:

WARNING
** program name ** { ERROR nn DETECTED AT COLUMN cc
DISASTR

program name the name of the program being compiled
nn = the diagnostic error number

cc = the column number of the source line being
scanned when the error was detected

NOTE: If cc=01, the error is in the source line preceding
the last line printed. If cc=00, there is an error
in an EQUIVALENCE group, and the group (or a
portion of the group) is printed before the error
message.

When the END statement is encountered by the compiler and undefined source
program statement numbers still exist, an error message is printed of the
form:

@ nnnnn UNDEFINED

nnnnn is the statement number that did not appear in columns
1 through 5 of any of the initial lines of the program
just compiled.

At this point, a report is printed of any six-character names that will be
shortened to five characters.

Following the listing of the source program, a summary line is listed of the
form:

** nn ERRORS ** ** mm WARNINGS PROGRAM = xxxxx COMMON = yyyyy
nn is the number of errors detected (nn-NO, if no errors were detected).
mm is the number of warnings detected (mm=NO if no warnings were detected).

xxxxx is the decimal number of main memory locations required for the
program object code.

yyyyy is the decimal number of main memory locations required for the
blank common block. (The size of named common blocks is printed
immediately following the listing of the block data subprogram
which defines each block.)

When compilation is completed, a summary message is displayed at the system
console. This message reports the number of disaster, error, or warning

conditions encountered during compilation. The RTE FORTRAN IV compiler
returns this information via the parameter return subroutine PRTN (see the

appropriate Operating System Programming and Operating Manual for a
description of this subroutine). The message appears in the form:

SEND FTN4: nn DISASTRS nn ERRORS nn WARNINGS
nn is the total number of DISASTR, ERROR, or WARNING conditions encountered
during compilation of all programs in the job deck (nn = NO, if none

were encountered).

The parameters returned via PRTN are:

parameter 1 - the total value of parameters 2 thru 4.
parameter 2 - the number of disasters encountered.
parameter 3 - the number of errors encountered.
parameter 4 - the number of warnings encountered.
parameter 5 - the revision level of the compiler.

TABLE G-1

RTE FORTRAN IV COMPILER ERROR DIAGNOSTICS

ERROR
CODE EXPLANATION EFFECT ACTION

01 COMPILER CONTROL STATEMENT MISSING Compilation
There is no FTN or FTN4 directive terminated
preceding the FORTRAN IV job.

02 ERROR IN COMPILER CONTROL STATE- Compilation
MENT terminated
Incorrect syntax or illegal para-
meter in FTN or FTN4 directive.

03 SYMBOL TABLE OVERFLOW Compilation Reduce number of
Insufficient memory exists for terminated sym?ols (constants,
continuing compilation variable names and

’ statement numbers)
in program and short-
en lengths of vari-
able names and state-
ment numbers.

04 LABELED COMMON Statement

oo s terminated
Name too long or "/" missing or
name already used for variable.

05 IMPLICIT statement used to define Warning
default type for some character
more than once. The last defined
type is used.

06 END OF FILE OCCURRED BEFORE "$" Compilation Example: no "$" or
Source input file ended before the terminated EN§$:tatementféf
"$" or END$ statement ending the end ot source file
FORTRAN IV job was encountered.

07 RETURN IN MAIN PROGRAM Comment

A RETURN statement occurs in a
main program. It is interpreted
as a STOP statement.

TABLE G-1 (Cont.)

RTE FORTRAN IV COMPILER ERROR DIAGNOSTICS

ERROR
CODE EXPLANATION EFFECT ACTION
08 ILLEGAL COMPLEX NUMBER Warning Example: non-real
A complex number does not con- constant as part
of complex number:
form to the syntax: (1.0,2)
(+ real constant, + real constant) s
09 MISMATCHED OR MISSING PARENTHESIS Statement
An unbalanced parenthesis exists terminated
in a statement or an expected
parenthesis is missing.
10 ILLEGAL STATEMENT Statement Examples: The first
The statement in question cannot terminated 72 columns of a
be identified. statement do not
contain one of the
following: (a) the
'=" gign if it is a
statement function
or an assignment
statement, (b) the
',' following the
initial parameter
if it is a DO state-
ment, (c¢) 'IF(' for
an IF statement or
(d) the first four
characters of the
statement keyword
for all other state-
ments (e.g. DIME,
WRIT). A statement
keyword may also be
misspelled in the
first four charac-
ters (e.g. RAED).
11 ILLEGAL DECIMAL EXPONENT Statement
Non-integer constant exponent terminated
in floating point constant.
12 INTEGER CONSTANT EXCEEDS MAXIMUM Statement
INTEGER SIZE terminated

An integer constant is not in the
range of -32768 to 32767.

TABLE G-1 (Cont.) RTE FORTRAN IV COMPILER ERROR DIAGNOSTICS

ERROR
CODE

EXPLANATION

EFFECT

ACTION

13

14

15

16

17

18

HOLLERITH STRING NOT TERMINATED

In the use of 'nH', less than n
characters follow the H before
the end of the statement occurs.
In a FORMAT statement, an odd
number of quotation marks sur-
round literals.

CONSTANT OVERFLOW OR UNDERFLOW

The binary exponent of a floating
point constant exceeds the maximum,
i.e., Iexponentl > 38. If under-
flow, the value is set to O.

ILLEGAL SIGN IN LOGICAL EXPRESSION

An arithmetic operator precedes
a logical constant.

ILLEGAL OCTAL NUMBER

An octal number has more than six
digits, is greater than 177777B or
is non-integer.

MISSING OPERAND - UNEXPECTED DE-
LIMITER

Missing subscript in an array
declarator in a DIMENSION
statement or missing name in
an EQUIVALENCE group.

ILLEGAL CONSTANT USAGE

A constant is used where a symbolic
name is expected. Some illegal us-
ages are when a constant is used as
a subprogram or statement function
name, as a parameter or a subprogram
or statement function, as an element
of an EQUIVALENCE group, or as the
blockname in a $EMA directive.

Statement
terminated

Warning

Warning

Statement
terminated

Statement
terminated

Warning

Examples: -.FALSE.,
+.TRUE.

Examples: 0000012B,
277777B, .1234B

Examples:
DIMENSION A(2,4,)
EQUIVALENCE (B(2))

Examples:

SUBROUTINE 1234
FUNCTION NAME(X,12,A)
EQUIVALENCE (I,5)
SEMA (1234,0)

TABLE G-1 (Cont.) RTE FORTRAN IV COMPILER ERROR DIAGNOSTICS
ERROR
CODE EXPLANATION EFFECT ACTION
19 INTEGER CONSTANT REQUIRED Statement Examples: A non-
\ . . t i i-
An integer variable is used erminated dummy integer.varl
. . able is used in an
where an integer constant 1is
required. array declarator or
an integer variable
is used as a sub-
script in an
EQUIVALENCE group.
20 EMPTY HOLLERITH STRING Statement
In an 'nH' specification, n=0. terminated
21 NON-OCTAL DIGIT IN OCTAL CONSTANT Warning Example: 1289B
A digit > 7 occurs in an octal
constant.
22 ILLEGAL USAGE OF NAME Statement
A variable is used as a sub- terminated
program name Or an array hame
is used as a DO statement
index variable.
23 DO TERMINATOR DEFINED PREVIOUS TO Statement Example:
DO STATEMENT terminated 10 DO 10 I=1,5
The terminating statement of a DO
loop comes before the DO statement
or is the DO statement itself.
24 ILLEGAL CONSTANT Statement
A variable name is expected terminated
but a constant appears.
25 ILLEGAL SUBPROGRAM NAME USAGE Statement Examples: A subpro-
terminated gram name OCCuUrs on

A subprogram name is used where
a variable name or constant is
expected.

the left-hand side

of an assignment
statement. A FUNCTION
or statement function
name OcCcurs as an op-
erand in an expression
but no argument list
is given.

ssenml

TABLE G-1 (Cont.) RTE FORTRAN

IV COMPILER ERROR DIAGNOSTICS

A statement number must be a
1-5 digit integer.

ERROR
CODE EXPLANATION EFFECT ACTION
26 INTEGER VARIABLE OR CONSTANT Statement Examples: A sub-
REQUIRED terminated script in an
. I ENCE
Non-integer value is used where EQUIVAL . group
an integer quantity is required element is a non-
ger q Y ! : integer constant.
A READ or WRITE
statement has a
non-integer logical
unit reference.
27 STATEMENT NUMBER PREVIOUSLY Statement
DEFINED terminated
The same statement number appears
on two statements.
28 UNEXPECTED CHARACTER Statement
. t i d
Syntax of statement is erminate
incorrect.
29 ONLY STATEMENT NUMBER ON SOURCE Warning
LINE
Some source code must appear
within the first 72 columns of
a numbered statement.
30 IMPROPER DO NESTING OR ILLEGAL Statement
DO TERMINATING STATEMENT terminated
The ranges of nested DO loops
overlap or a statement such as
a GO TO, IF, RETURN or END ter-
minated a DO loop.
31 STATEMENT NUMBER STARTS WITH Statement Example: Statement
NON-DIGIT terminated source code appears

in columns 1-5 of
first line of a
statement.

TABLE G-1 (Cont.) RTE FORTRAN IV COMPILER ERROR DIAGNOSTICS

ERROR
CODE EXPLANATION EFFECT ACTION
32 INVALID STATEMENT NUMBER OR Statement Examples: GOTO 100
ILLEGAL USAGE OF A STATEMENT terminated 100 FORMAT (-)
NUMBER WRITE (6,10)
10 J=1
A statement number has more than
five digits, or it contains a non-
digit character, or it is
undefined. A statement number is
of a wrong statement type.
33 VARIABLE NAME USED AS SUBROUTINE Statement Example: A=SIN
NAME B=SIN(X)
A name which has been previously
used as a variable is now used
in a subprogram reference.
34 STATEMENT OUT OF ORDER Statement Examples: A sub-
Source statements must be in terminated prog?am naWe ec”
e . curring, with an
the order 1. Specification, argument list, on
2. DATA, 3. Statement Functions, the left—hand'side
and 4. Executable statements. .
of an assignment
statement may also
generate this
error message.
35 NO PATH TO THIS STATEMENT OR UN- Comment
NUMBERED FORMAT STATEMENT
The statement can never be executed
since it is not numbered and it
follows a transfer of control state-
ment. A FORMAT statement is not
numbered and therefore it cannot
be used by the program.
36 DOUBLY DEFINED COMMON NAME Statement
. terminated
A name occurs more than once in
a COMMON block.
37 ILLEGAL USE OF DUMMY VARIABLE Statement
terminated
A subprogram parameter occurs
in a COMMON statement or dummy
variables are equivalenced.

TABLE G-1 (Cont.) RTE FORTRAN IV COMPILER ERROR DIAGNOSTICS

39

40

41

42

43

An array name is referenced using
more subscripts than dimensions
declared for it.

ADJUSTABLE DIMENSION IS NOT A Statement
DUMMY PARAMETER terminated

The variable dimension used with
a dummy array name must also be
a dummy parameter.

IMPOSSIBLE EQUIVALENCE GROUP Statement

Two entries in COMMON appear in terminated

an EQUIVALENCE group or two
EQUIVALENCE groups conflict.
Further EQUIVALENCE groups are
ignored.

ILLEGAL COMMON BLOCK EXTENSION Statement

An EQUIVALENCE group requires terminated

the COMMON block base to be
altered. Further EQUIVALENCE
groups are ignored.

FUNCTION HAS NO PARAMETERS OR Statement
ARRAY HAS EMPTY DECLARATOR terminated
LIST

A function must have at least
one parameter. There is in-
sufficient information to
dimension an array name.

PROGRAM, FUNCTION OR SUBROUTINE Statement
OR BLOCK DATA NOT FIRST STATEMENT terminated

A PROGRAM statement, if present,
must come first. A FUNCTION or
BLOCK DATA or SUBROUTINE statement
is required for subprograms.

ERROR
CODE EXPLANATION EFFECT ACTION
38 MORE SUBSCRIPTS THAN DIMENSIONS Statement
terminated

TABLE G-1 (Cont.) RTE FORTRAN IV COMPILER ERROR DIAGNOSTICS

ERROR
CODE

EXPLANATION

EFFECT

ACTION

44

45

46

47

48

49

50

NAME IN CONSTANT LIST IN
DATA STATEMENT

A constant list in a DATA state-
ment contains a non-constant.

ILLEGAL EXPONENTIATION

Exponentiation is not permitted
with data types used.

FUNCTION NAME UNUSED OR SUB-
ROUTINE NAME USED

In a FUNCTION subprogram, the
name of the FUNCTION is not de-
fined or a SUBROUTINE name is
used within the subroutine.

FORMAT SPECIFICATION NOT A
LOCAL ARRAY NAME, STATEMENT
NUMBER OR * OR IT IS AN EMA
REFERENCE

The FORMAT reference in an
I/0 statement is invalid.

ILLEGAL USE OF EMA

A variably dimensioned EMA
array has its dimension (s)
in EMA or was mentioned
without subscripts in an
I/0 list.

IMPROPER USE OF NAME

A variable is used as a sub-
program name.

DO STATEMENT IN LOGICAL IF

A DO statement is illegal as
the "true" branch of a logical
IF.

Statement
terminated

Statement
terminated

Warning

Statement
terminated

Statement
terminated

Statement
terminated

Warning

Example:
EMA X(I),I

TABLE G-1 (Cont.)

RTE FORTRAN IV COMPILER ERROR DIAGNOSTICS

ERROR
CODE EXPLANATION EFFECT ACTION
51 CONTROL VARIABLE REPEATED IN Statement
DO NEST terminated
A variable occurs as the index
of two DO loops or implied DO's
or a combination of these which
are nested.
52 LOGICAL IF WITHIN LOGICAL IF Statement
A logical IF statement is terminated
illegal as the "true" branch of
another logical IF.
53 ILLEGAL EXPRESSION OR Statement Examples:
ILLEGAL DELIMITER terminated The expression con-
Arithmetic or logical express- tains an 1llega} op=
. , . erator or delimiter,
ion has invalid syntax or a . .
. .. AR has a missing opera-
delimiter is invalid in state- .
tor (adjacent oper-
ment syntax. .
ands) or a missing
operand (adjacent
operators). A READ
or WRITE statement
list has a delimiter
syntax error.
54 DOUBLY DEFINED ARRAY NAME Statement
. . terminated
An array name has dimensions
defined for it twice.
55 LOGICAL CONVERSION ILLEGAL Statement
Conversion of logical data to terminated
arithmetic or arithmetic to
logical is not defined.
56 OPERATOR REQUIRES LOGICAL Statement
OPERANDS terminated

An operand of type INTEGER, REAL,

DOUBLE PRECISION or COMPLEX has

been used with .AND., .OR., .NOT.

TABLE G-1 (Cont.) RTE FORTRAN IV COMPILER ERROR DIAGNOSTICS

EXPLANATION

EFFECT

ACTION

OPERATOR REQUIRES ARITHMETIC

A logical operand has been used

in an arithmetic operation, i.e. +,
-, *, /, **, or a relational opera-

One of the relational operators
.LT., .LE., .GT. or .GE. has a
COMPLEX operand or an IF statement
has a COMPLEX expression.

INCORRECT NUMBER OF ARGUMENTS

One of the library routines SIGN,
ISIGN, IAND or IOR is called with
the number of arguments less or
greater than two or a library

routine which is called by value is
called with more than one argument.

ARGUMENT MODE ERROR

A library routine which is called
by value is called with an argu-
ment that is DOUBLE PRECISION,
COMPLEX or LOGICAL.

LOGICAL IF WITH THREE BRANCHES

The expression in an IF statement
is of type logical and there are

three statement numbers specified
in the IF statement.

ERROR
CODE
57
OPERANDS
tor.
58 COMPLEX ILLEGAL
59
FOR SUBPROGRAM
60
61
62

ARITHMETIC IF WITH NO BRANCHES

No statement numbers in an arith-
metic IF statement.

Statement
terminated

Statement
terminated

Statement
terminated

Statement
terminated

Warning

Warning

TABLE G-1 (Cont.)

RTE FORTRAN IV COMPILER ERROR DIAGNOSTICS

ERROR
CODE

EXPLANATION

EFFECT ACTION

63

64

65

66

67

68

69

REQUIRED I/O LIST MISSING

The I/0O list required for a free
field input or unformatted out-
put statement has not been
specified.

FREE FIELD OUTPUT ILLEGAL

An '*' in place of a format
designation is illegal in a
WRITE statement.

HOLLERITH constant with count
greater than 8 used in other than
FORMAT or subprogram reference.

PROGRAM UNIT HAS NO BODY or BLOCK
DATA SUBPROGRAM HAS A BODY

A main program, SUBROUTINE or
FUNCTION requires an object program,
or a BLOCK DATA subprogram has a
function statement or executable
statements.

SOURCE FILE OPEN OR ACCESS
PROBLEM OR

EOF or END$ or $ occurs before
END statement or open or read
error occurs while attempting
to access the source file.

EXTERNAL NAME HAS MORE THAN FIVE
CHARACTERS

The name of a PROGRAM, SUBROUTINE
or FUNCTION has more than five
characters. The fifth character
is deleted.

OCTAL STRING IN STOP OR PAUSE
STATEMENT IS TOO LONG

In the statement STOP n or PAUSE n,
n has more than four digits.

Statement
terminated

Statement
terminated

ERROR

Warning

Compilation
terminated

Example: END state-
ment contains syn-

tax error or it is

missing.

Warning

Warning

TABLE G-1 (Cont.)

RTE FORTRAN IV COMPILER ERROR DIAGNOSTICS

ERROR
CODE

EXPLANATION

EFFECT

ACTION

70

71

72

73

74

75

76

EQUIVALENCE GROUP SYNTAX

An EQUIVALENCE group does not
start with a left parenthesis.
All further groups are ignored.

DUMMY VARIABLE IN DATA LIST

Dummy parameters of a subprogram
cannot be initialized in a DATA
statement.

COMMON VARIABLE IN DATA LIST or in
BLOCK DATA SUBPROGRAM

VARIABLE IN DATA LIST NOT IN BLOCK
COMMON.
Entities of a COMMON block cannot

be initialized with a DATA statement.
Similarly, in block data subprograms,
only entities in a named common block

may be initialized.
MIXED MODE IN DATA STATEMENT

A name and its corresponding
constant in a DATA statement do
not agree in type.

ILLEGAL USE OF STATEMENT FUNCTION
NAME

The name of a statement function
also occurs in its dummy parameter
list.

RECURSION ILLEGAL

The current program unit name
has been used in a CALL state-
ment.

DOUBLY DEFINED DUMMY VARIABLE

The same dummy variable name
occurs twice in a subprogram
or statement function para-
meter list.

Statement
terminated

Statement
terminated

Statement
terminated

Statement
terminated

Warning

Statement
terminated

Warning

TABLE G-1 (Cont.) RTE FORTRAN IV COMPILER ERROR DIAGNOSTICS

ERROR
CODE EXPLANATION EFFECT ACTION

77 STATEMENT NUMBER IGNORED Warning

A statement number on a specifi-
cation, DATA statement, continua-
tion line, or on a statement
function is ignored.

78 PROGRAM UNIT HAS NO EXECUTABLE Warning
STATEMENTS

A program unit has only specifi-
cation or DATA statements or
statement functions.

79 FORMAT DOES NOT START WITH Warning
LEFT PARENTHESIS

80 FORMAT DOES NOT END WITH Warning
RIGHT PARENTHESIS

81 ILLEGAL EQUIVALENCE GROUP Statement
SEPARATOR terminated

EQUIVALENCE groups are not
separated by a comma or a non-
array name has subscripts in an
EQUIVALENCE group. All further
EQUIVALENCE groups are ignored.

82 ILLEGAL USE OF ARRAY NAME IN AN Statement
EQUIVALENCE GROUP terminated

An array name in an EQUIVALENCE
group is not followed by '(', ','
or ')'. All further EQUIVALENCE
groups are ignored.

83 SUBPROGRAM NAME RETYPED Warning

The type declared for a sub-
program name within its body
does not agree with the type
established in the SUBROUTINE
or FUNCTION statement.

TABLE G-1 (Cont.)

RTE FORTRAN

IV COMPILER ERROR DIAGNOSTICS

ERROR
CODE

EXPLANATION

EFFECT

ACTION

84

85

86

87

88

89

90

OBJECT CODE MEMORY OVERFLOW

Object program size is greater

than 32K.

POSSIBLE RECURSION MAY RESULT

The use of one of the library
names, enumerated in Table G-2
as the name of a program,
program, or common block may
produce recursion if the body
of the subprogram so named

required an implicit call to

one of these names.

DUMMY VARIABLE IN STATEMENT
FUNCTION CANNOT BE SUBSCRIPTED

A dummy variable in a statement
function cannot represent an
array or a subprogram name.

NOT CURRENTLY USED.

END OR FORMAT STATEMENT IN

LOGICAL IF

An END or FORMAT statement is
illegal as the "true" branch of

a logical IF.

CONTINUE STATEMENT OR NO BRANCH

IN LOGICAL IF

Specifying no branch or a

CONTINUE statement as a branch

in a logical IF is logically
equivalent to a NOP (No Operation).
The statement is assembled as

stated.

FIRST RECORD OF SUBPROGRAM IS A

CONTINUATION LINE

The first statement is incomplete
if it contains a continuation code.

Compiler
terminated

Warning

Warning

Statement
terminated

Warning

Statement
texrmination

The user is advised
to change the name
of the subprogram
or to make certain
that no mixed mode
exists in the pro-
gram and that no
library subprogram
used requires a
call to ERR{Z.

Example:
ASF(A)=A(1,1)+A(2,2)

Specify a branch
that is not an END
or FORMAT statement.

Specify a valid
branch or delete
statement.

Statements are
missing or out of
order in source
program.

TABLE G-1 (Cont.) RTE FORTRAN IV COMPILER ERROR DIAGNOSTICS

ERROR
CODE

EXPLANATION

EFFECT

ACTION

91

92

93

94

96

97

98

99

RESULT OF RENAME DUPLICATES
EXISTING EXTERNAL NAME

RESULT OF RENAME DUPLICATES
REQUIRED INTRINSIC

DATA STATEMENT attempts to
initialize EMA variable

NAME IN EMA STATEMENT IS NOT

FORMAL PARAMETER OR APPEARS
TWICE IN THE STATEMENT

A BREAK WAS DETECTED

Operator break causes the
compiler to be terminated.

OPEN OR WRITE ERROR ON
BINARY FILE

File does not exist or
improper security code
given or there is no room.

READ ACCESS ERROR ON
SCRATCH FILE

Scratch file access failed.

WRITE ACCESS ERROR ON
SCRATCH FILE

Scratch file access failed
(OPEN, WRITE, REWIND).

ERROR

ERROR

ERROR

ERROR

DISASTR

DISASTR

DISASTR

DISASTR

Use a name that
does not duplicate
an existing ex-
ternal name.

Use a name that
does not duplicate
the intrinsic name.

Delete DATA STATE-
MENT or remove
variable from EMA.

G-18

TABLE G-2. LIBRARY ROUTINE INTRINSIC LIST

The use of these names as program, subprogram, or common block names may
result in a recursive operation if the program, subprogram, or common
block contains an implicit call to a name that duplicates its own name
(see Table G-1, Error number 85).

ABS CSGRT DMAX1 IAND TANH
AINT CSIN DMIN1 IFIX
ALOG DABS DMOD INT
ALOG1lO0* DATAN DSIGN IOR
ALOGT DATANZ2* DSIN ISIGN
ATAN DATN2 DSQRT ISsw
CCOoSs DBLE DTAN NOT
CEXP DCOS DTANH REAL
CLOG DDINT ERRO SIGN
CLRIO DEXP EXEC SIN
CMPLX DLOG EXP SNGL
CONJG DLOG10* FLOAT SQRT
Cos DLOGT IABS TAN

* The five-character equivalent for these names: ALOGO
DATAZ2
DLOGO

Arguments to these functions (except EXEC) are always passed by value
even without extra parentheses.

APPENDIX H
OBJECT PROGRAM DIAGNOSTIC MESSAGES

During execution of programs referencing Relocatable Library Subroutines,

error messages may be generated. Error messages are listed together with the
subroutine involved.

Mathematical Subroutines

Error messages are printed in the form:

program name nn xx

program name is the name of the user program where the error
was encountered.

nn is a number in the range 02 through 14 which
identifies the subroutine involved in the error
condition.

p'9’e is the error type, as follows:

OF = Integer or Floating Point Overflow
OR = Out of Range

UN Floating Point Undefined

These error messages can occur when system intrinsics are called or during
an exponentiation operation. Suppose X and Y are real values and I and J

are integers. Then, the following relocatable subroutines are called for

these computations:

X**y .RTOR (real to real)
X**T .RTOI (real to integer)
I**J .ITOI (integer to integer)

The following is a summary of possible error messages:

Error Issuing Where Error
Message Subroutine Used Condition
02-UN ALOG ALOG X<0

ALOGT X <0
CLOG X =0

03-UN SQRT SQRT
© Q X <0

DSQRT

Error Issuing Where Exrror

Message Subroutine Used Condition
04-UN . RTOR .RTOR X=0,Y<0
X <0, Y#O
SIN
-OR
05-0 SIN CSNCS f; ji_+:£ S 214
CEXP 2 m 2
Cos
06-UN .RTOI .RTOI X=0,Y<0
07-OF EXP EXP X * log2e > 124
XP X, * > 124
CE 1 log2e > 12
-RTOR | X * ALOG(X) | > 124
CSNCS X2 * log2e > 124
08-UN . ITOI .ITOI I=0,J3<0
08-0OF .ITOI . ITOI IJ > 215 or 17 < -2
09-0OR TAN TAN X > 214
10-OF DEXP DEXP X s (1—2'39) 2127
.DTOD
.DTOR x > (1-2739) 127
.RTOD
11-UN DLOG DLOG X <0
DLOGT X <0
12-UN .DTOI .DTOI X=0,1I<0
13-UN .DTOD .DTOD X=0,Y<0
.DTOR X <0, Y#O0
. RTOD
14-UN .CTOI .CTOI X=0,I<0
15-UN DATN2 DATN2 X=Y=0

Utility Subroutines

Subroutine Error
MAGTP Returns on an illegal call.
. SWCH Returns if element is out
of range.

H-2

During execution of the object program error messages may be printed on the
output unit by the input/output system supplied for FORTRAN programs. The
error message is printed in the form:

FMT ERR nn program name

nn is the error code.

program name is the name of the user program.

The following is a summary of the FMT error codes:

Error
Code Explanation Action
01 FORMAT ERROR: Irrecoverable error;
a) w or d field does not contain program must be
proper digits. recompiled.
b) No decimal point after w
field.
c) w=-d <= 4 for E-
specification.

02 a) FORMAT specifications are Irrecoverable error;
nested more than one level program must be
deep. recompiled.

b) A FORMAT statement contains
more right parentheses than
left parentheses.

03 a) Illegal character in FORMAT Irrecoverable error;
statement. program must be

o mpi .

b) Format repetition factor of recompiled

Zero.
c) FORMAT statement defines

more character positions

than possible for device.
d) List items remain and no con-

version items are accessible

in FORMAT statement.

04 Illegal character in fixed field Verify data.

input item or number not right-
justified in field.
05 A number has an illegal form Verify data.

(e.g., two Es, two decimal
points, two signs, etc.).
H-3

APPENDIX |
HP CHARACTER SET FOR COMPUTER SYSTEMS

Effect of Control key *
TN

|«— 000-0378 —» 040-0778 —#-|— 100-1378 —-|4—140-1778 —|
0 0

by [5) 0 1 1 1 1
P6pg———— | o 0 Yo " % o To '
BITS COLUMN
- 0 1 2 3 4 5 6 7
bg b3 by by[ROW ¢
olojo|o 0 NUL | DLE sP 0 @ P ' p
0|0|0|1 1 SOH DC1 ! 1 A Q a q
o|o|1|0 2 STX DC2 v 2 B R b r
olo|1]1 3 ETX DC3 # 3 c S c s
o(1/0]|0 4 EOT DC4 $ a4 D T d t
oj1]{0(1 5 ENQ NAK % 5 E U e u
oj1]/1]0 6 ACK SYN & 6 F \% f v
of1]1]1 7 BEL ETB ' 7 G W g w
1/0{0(0 8 BS CAN (8 H X h X
110/0/1 9 HT EM) 9 | Y i y
110(1]0 10 LF suB * J ¥4 j z
1of1]1 1 VT ESC + ; K [K {
1/1/0]0 12 FF FS , < L \ I !
111]0]1 13 CR GS - = M] m }
1(1(1]0 14 SO RS . > N A n ~
1111 15 s us / ? o} - o DEL
N——
32 CONTROL Unshifted
pshifte
CODEs Lower Case
-<+—— 64 CHARACTER SET —-—>|
<«+—— 96 CHARACTER SET >
- 128 CHARACTER SET >
EXAMPLE: The representation for the character “K’’ (column 4, row 11) is.
by bg bg bg b3 by by
BINARY 1001 011
N — — c—
OCTAL 1 1 3
* Depressing the Control key while typing an upper case letter produces
the corresponding control code on most terminals. For example,
Control-H is a backspace.
9206- 1A

¢-1

a1l -90Z6

HEWLETT-PACKARD CHARACTER SET FOR COMPUTER SYSTEMS

This table shows HP's implementation of ANS X3 4-1968 (USASCII) and ANS X3 32-1973 Some devices may substitute
alternate characters from those shown in this chart (for example Line Drawing Set or Scandanavian font) Consuit the manual

for your device

The left and nght byte columns show the octal patterns in a 16 brt word when the character occupies bits 8 to 14 (left byte) or O
10 6 (nght byte) and the rest of the bits are zero To find the paltern of two characters in the same word, add the two values For
example. AB produces the octal pattern 040502 (The party bits are zero in this chan)

The octal values O through 37 and 177 are control codes The octal values 40 through 176 are character codes

Octal Values Octal Values
Decimal Mnemonic | Graphicl Meaning Decimal Character Meaning
Value Left Byte | Right Byte Value Left Byte | Right Byte
0 000000 000000 NUL Ny Null 32 020000 000040 Space. Blank
1 000400 000001 SOH ER Start of Heading 33 020400 000041 ! Exclamation Point
2 001000 000002 STX 5 Stan of Text 34 021000 000042 ” Quotation Mark
3 001400 000003 ETX B¢ End of Text 35 021400 000043 # Number Sign, Pound Sign
4 002000 000004 EOT £ End of Transmission 36 022000 000044 3 Dollar Sign
5 002400 000005 ENQ & Enquiry 37 022400 000045 % Percent
6 003000 000006 ACK A¢ Acknowledge 38 023000 000046 & Ampersand. And Sign
7 003400 000007 BEL ja\ Bell. Attention Signal 39 023400 000047 4 Apostrophe, Acute Accent
8 004000 000010 BS 3 Backspace 40 024000 000050 (Left (opening) Parenthesis
9 004400 000011 HT Hr Horizontal Tabulation 41 024400 000051) Right (closing) Parenthesis
10 005000 000012 LF Le Line Feed 42 025000 000052 * Asterisk, Star
" 005400 000013 VT b Vertical Tabulation 43 025400 000053 + Plus
12 006000 000014 FF Fe Form Feed 44 026000 000054 N Comma, Cedilla
13 006400 000015 CR % Carniage Return 45 026400 000055 - Hyphen, Minus, Dash
14 007000 000016 SO % Shit Out | Anernate 46 027000 000056 . Period, Decimal Point
15 007400 000017 SI S, Shift In Character Set 47 027400 000057 / Slash, Slant
16 010000 000020 DLE Q Data Link Escape 48 030000 000060 0
17 010400 000021 DC1 01 Device Control 1 (X-ON) 49 030400 000061 1
18 011000 000022 DC2 02 Device Control 2 (TAPE) 50 031000 000062 2
19 011400 000023 DC3 Dy Device Control 3 (X-OFF) 51 031400 000063 3
20 012000 000024 DC4 o, Device Control 4 (TAPE) 52 032000 000064 4
21 012400 000025 NAK Ne Negative Acknowledge 53 032400 000065 5 Digits, Numbers
22 013000 000026 SYN S Synchronous ldle 54 033000 000066 6
23 013400 000027 ETB EB End of Transmission Biock 55 033400 000067 7
24 014000 000030 CAN S Cance! 56 034000 000070 8
25 014400 000031 EM B4 End of Megium 57 034400 000071 9
26 015000 000032 SuB sg Substitute 58 035000 000072 Colon
27 015400 000033 ESC EC Escape? 59 035400 000073 Semicolon
28 016000 000034 FS Fg File Separator 60 036000 000074 Less Than
29 016400 000035 GS & Group Separator 61 036400 000075 = Equals
30 017000 000036 RS Ry Record Separator 62 037000 000076 > Greater Than
31 017400 000037 us Y Unit Separator 63 037400 000077 ? Question Mark
127 077400 000177 DEL 5 Delete Rubout®

Ol -90Z6

Octal Values

Octal Values

Decimal Character Meaning
Value Left Byte | Right Byte
64 040000 000100 @ Commercial At
65 040400 000101 A
66 041000 000102 B
67 041400 000103 C
€8 042000 000104 o]
69 042400 000105 E
70 043000 000106 F
Al 043400 000107 G
72 044000 000110 H
73 044400 000111 |
74 045000 000112 J
75 045400 000113 K
76 046000 000114 L
77 046400 000115 M
78 047000 000116 N Upper Case Alphabet
79 047400 000117 0 Captal Letiers
80 050000 000120 P
81 050400 000121 Q
82 051000 000122 R
83 051400 000123 S
84 052000 000124 T
85 052400 000125 U
86 053000 000126 v
87 053400 000127 W
88 054000 000130 X
89 054400 000131 Y
90 055000 000132 b4
91 055400 000133 [Left (opening) Bracket
92 056000 000134 AN Backslash. Reverse Slant
93 056400 000135] Right (closing) Bracket
94 057000 000136 At Caret, Circumflex. Up Arrow*
95 057400 000137 _* Underline. Back Arrow*
Notes

Decimal Character Meaning
Value Left Byte | Right Byte
96 060000 000140 } Grave Accent®
97 069400 000141 a
98 061000 000142 b
99 061400 000143 c
100 062000 000144 d
101 062400 000145 e
102 063000 000146 f
103 063400 000147 g
104 064000 000150 h
105 064400 000151 |
106 065000 000152)
107 065400 000153 k
108 066000 000154 |
109 066400 000155 m
110 067000 000156 n Lower Case Letters®
1 067400 000157 o
112 070000 000160
13 070400 000161
114 071000 000162 r
115 071400 000163 s
116 072000 000164 t
117 072400 000165 u
118 073000 000166 v
119 073400 000167 w
120 074000 000170 X
121 074400 000171 y
122 075000 000172 z
123 075400 000173 { Left (opening) Brace®
124 076000 000174 i Vertical Line®
125 076400 000175 } Right (closing) Brace®
126 077000 000176 ~ Tide. Overline®

'This is the standard display representation The software and hardware in your

displayed. executed. or ignored Some devices display all control codes as

system determine if the control code 1S

'@ . or space

2Escape 1s the first character of a special control sequence For example. ESC followed by J clears the display on a 2640

terminal

3Delete may be displayed as _ . '@ . or space

“Normally. the caret and underiine are displayed Some devices suhstitute the up arrow and back arrow

>Some devices upshift lower case letters and symbols (N through ~) to the corresponding upper case character (@ through

A) For exampie. the left brace would be converted to a left bracket

RTE SPECIAL CHARACTERS

Mnemonic

SOH (Control A)
EM (Control Y)
BS (Control H)

EOT (Control D)

9206-1D

Octal Value

1
31
10

Use

Backspace (TTY)
Backspace (2600)

Backspace (TTY, 2615, 2640, 2644,
2645)

End-of-file (TTY 2615, 2640, 2644,
2645)

APPENDIX J
RTE FORTRAN IV OPERATIONS

INTRODUCTION

This Appendix contains information pertinent to RTE FORTRAN IV operations in
an RTE operating system. This information explains the on-line loading of the
compiler; the capabilities and invocation procedures of the compiler; and
possible error messages to the operator that may arise during compiler
operations.

RTE FORTRAN IV is a problem-oriented programming language that is translated
by a compiler into relocatable object code. Source programs are accepted
from either an input device or an FMGR file. Error messages, list output,
and relocatable object code are stored in FMGR files nr output to devices.
The object code produced by the compiler can be loaded by the RTE Relocating
Loader and then executed using the RU command. When an RTE FORTRAN IV
program has been completely debugged, the RTE Relocating Loader can make it
a permanent part of the RTE system if desired.

The RTE FORTRAN IV compiler is a segmented program that executes in the back-
ground under control of RTE-IV. It consists of a main program and overlay
segments, and normally resides in the protected area of the disc which has
been reserved for such programs during the generation process.

LOADING THE RTE FORTRAN-IV COMPILER ON-LINE

The compiler can be loaded on-line using the RTE-IV Relocating Loader. The
page size of the program should be increased to give the compiler room for
its symbol table. The minimum recommended size is thirteen pages, with
fourteen or more preferred. The following example presents a typical RTE-IV
on-line load of the RTE FORTRAN-IV compiler. %CLIB need be searched only if
it is not in the system library or if it contains modules that should be used
instead of system library modules.

:RU, LOADR
/LOADR: S7,14
/LOADR: RE, $FTN4 *main
/LOADR: RE, 3FFTN4 *helper module
/LOADR: SE, %CLIB *search compiler library
/LOADR: RE, $0FTN4 *first segment
/LOADR: SE, %CLIB
/LOADR: RE, $1FTN4 *second segment
/LOADR: SE, $CLIB
/LOADR: RE, $2FTN4 *third segment

continue similarly for all segments

/LOADR: SE,%CLIB *last search of library
/LOADR: EN *end LOADR operations

The following example presents a typical on-line load of the FORTRAN-IV
compiler for an RTE-II or RTE-III system.

:LG, 10

: MR, $FTN4
:MR, $FFTN4
: MR, $0FTN4
:MR, $1FTN4
:MR, $2FTN4

continue similarly for all segments

:RU,LOADR, 99,6,,1

FORMAT OF AN RTE FORTRAN IV PROGRAM

Several statements pertinent to the RTE implementation of FORTRAN are
described in the following pages. These statements define compiler options
and give other information necessary for the compiler's operation.

Fortran Control Statement

PURPOSE: To describe the output to be produced by the RTE FORTRAN IV
compiler.

FORMAT: FTN4,p,,p,/p /P, +PcsD /P, iPgr D,

pl—p9 are optional parameters, in any order, chosen from the
parameters in Table J-1.
TABLE J-1 RTE FORTRAN IV OPERATIONS

Parameter Meaning

L List output. A listing of the source language program is
output to the list namr as the source program is read.

A Assembly listing. A listing of the object program in assembly
language is output to the list namr.

T Symbol table listing. A listing of the symbol table for each
main or subprogram is output to the list device. If a U follows
the address of a variable, that variable is undefined. An A or
M specification also produces a symbol table listing.

M Mixed listing. A listing of both the source and object program
is produced. Each source line is included with the object code
it generated in the compilation process. This listing is pro-
duced during both the source code and the intermediate code in
order for this parameter to be used. If both M and A are speci-
fied, M is used. Source code lines are passed to the inter-
pass file as they are encountered. This means that in the mixed
listing, object code will not necessarily immediately follow
the source code that produced it (see the sample listing in
Appendix F).

c Cross reference symbol table listing. A cross reference listing
of symbols and labels used in the source program is produced.

TABLE J-1 (cont.) RTE FORTRAN IV OPERATIONS

qﬁ Parameter

Meaning

F

Perform page eject. Usually, terminal driver software
will replace a page eject function code with two line
space function codes to keep text displayed on a CRT
terminal screen. If you are using another type of
terminal (such as a teleprinter), you may specify F to
perform a normal page eject. If the output namr is a
line printer, this parameter is ignored and normal page
ejects are done.

Compile debug lines. The character D specified in column
position 1 of a source program line will cause such a
line to be treated as a comment by the compiler. To cause
compilation of these lines, specify D as a control state-
ment parameter.

Error routine n supplied. n is a decimal digit (1-9) which
specifies an error routine,, ERRn. The error routine is
called when an error occurs in the ALOG,SQRT,.RTOT,SIN,
COS,.RTOI,EXP,.ITOI, or TAN. "The ERRn routine must be
written in Assembler. The calling sequence for ERRn must
be the same as ERRO, as listed in the DOS/RTE Relocatable
Library Reference Manual (24998-90001)." If this option
does not appear, the standard library error routine, ERRO
is used.

This option is ignored. See the FORTRAN invocation command
sequence for information about producing binary output
files.

Double precision is three words (default).

Double precision is four words. The default setting may be
changed to four words at generation time.

Includes the approximate relocatable address of each state-
ment on a listing. Each line of the listing becomes 6
characters longer. If the Q option is specified, the L
option is implied.

RTE FORTRAN IV PROGRAM STATEMENT

The program statement is a source code statement defining the name and
optionally the type, priority, and time values of the module in which it

appears.

The program statement must be the first non-comment statement in a module
without the extended memory area (EMA). In a module with EMA, the EMA

directive must be the first non-comment statement, and the program statement

must be the second non-comment statement.

In the absence of a PROGRAM statement, the program name defaults to FTN., and

the type, priority, and time parameters default as specified below.

J-3

FORMAT:

COMMENTS:

PROGRAM name, (type,pri,res,mult,hr,min, sec,msec)

where:

name 1is the name of the program (and its entry point).

type 1is the program type (set to 3 for main program, or 7

for

No s Wi O
i

@
Il

subroutines, if not given).

system program

memory-resident

real-time disc-resident

background disc-resident

background disc-resident without Table Area II access
segment

illegal

library, utility subroutines (appended to calling
program)

if program is a main, it is deleted from the system

-0or-—

if program is a subroutine, then it is used to satisfy
any external references during generation. However, it
is not loaded in the relocatable library area of the
disc.

NOTE: In some cases the primary type code (i.e. types 1 through
8) may be expanded by adding 8,16, or 24 to the number.
These expanded types allow features such as access to
real-time COMMON by background programs, and access to
SSGA.

pri is the priority (1-32767, set to 99 if not given)

res is
mult is
hr is
min is
sec is
msec is

the resolution code
the execution multiple
hours

minutes

seconds

tens of milliseconds

The parameters type through msec must appear in the order shown.
Even though the parameters are optional, if any one parameter is
given, those preceding it must appear also. For example:

PROGRAM name (,90)

COMMENTS:
(cont.)

is illegal and will be rejected by the system. The only method of
legally defaulting the parameters is shown below:

PROGRAM name
PROGRAM name (3,90)

All parameters are set to 0 if not specified with the following
two exceptions:

a. The priority parameter pri is set to 99, the lowest priority
recognized by FORTRAN.

b. The program type parameter type is set to 3 for a main pro-
gram, or 7 for a subroutine.

RTE FORTRAN IV can also pass a comment line to the loader, via
binary record. The following format should be used:

PROGRAM name (pl,... ,p8),comment
or:
PROGRAM name,p ,P ,... ,pP ,comment
1 2 8
where:

name and p;~Pg are as defined above

comment = a comment line to be passed to the loader. All
characters after the comma (,) including blanks
are passed. The comment is limited to 84
characters in length.

In the first format shown above, one or more of the parameters
may be omitted while still retaining the comment. In the second
format, all parameters must be accounted for at least by the
presence of a comma. Data after the program name is optional.

COMPILER INVOCATION

PURPOSE: To schedule the RTE FORTRAN IV compiler.
FORMAT:
*ON , . .
*RU ,FIN4,source input(,list output(,binary output
.RU [,1ine count|[,options]]]]

source input Name of an FMGR file or a logical unit number
of the device containing the FORTRAN source code;
this entry must conform to the format required
by the FMGR namr parameter.

J-5

source input
(cont.)

list output

binary output

If an interactive device is specified, FTN4 will
print a right bracket (]) on the device as a
prompt. It will then accept input a line at a
time and issue another prompt until an END
statement is entered.

Choose one of the following:

- (minus symbol)
FMGR file name
logical unit number
null (omitted)

If the minus symbol is specified, and the source
file name begins with an ampersand, the ampersand
is replaced with an apostrophe and the remaining
source file name characters are used for the list
file name. The list file is forced to reside on
the same cartridge (cartridge reference code) as
the source file. For example:

&FILL1 source file name
'FIL1 list file name

If an FMGR file name is specified, it must con-
form to the format required by the FMGR namr
parameter. The list file is created if it does
not exist. If the file does exist, the firnst
character in the file name must be an apostrophe;
otherwise, an error results.

If a logical unit number is specified, the listed
output is directed to that logical device.

If this parameter is omitted, the user's terminal
is assumed. Further, if subsequent parameters
are specified, the comma must be used as a
parameter placeholder.

Choose one of the following:

- (minus symbol)
FMGR file name
logical unit number
null (omitted)

If the minus symbol is specified, and the source
file name begins with an ampersand, the ampersand
is replaced with a percent symbol and the remain-
ing source file name characters are used for the
binary file name. This binary file is forced to
reside on the same cartridge (cartridge reference
code) as the source file. For example:

&FILL source file name
SFIL1 binary file name

binary output
(cont.)

line count

options

EXAMPLES:

*RU,FTN4, &PROGA, -, -

If an FMGR file name is specified, it must con-
form to the format required by the FMGR namr
parameter. The binary file is created if it does
not exist. If the file exists, it is necessary
that:

a. the first character of the file's name be
a percent sign (%).

b. the existing file be of the type specified
in the namr parameter (if the file type is
not declared in namr, the file's type must
be Type 5, relocatable binary).

If the above conditions are not met, a compiler
error will result.

If a logical unit number is specified, the binary
output is directed to that logical device.

If this parameter is omitted, no binary relocat-
able code is generated. Further, if the subse-
quent parameter is specified, the comma must be
used as a parameter placeholder.

A decimal number which defines the number of
lines per page for the list device.

Specification of this parameter is optional. If
it is omitted, 56 lines per page are assumed. If
a number less than 10 is specified, the compiler
treats it as effectively infinite. The line count
must be in the range 10 < line count < 999.

Up to seven characters that select control
function options. No commas are allowed within
the option string. These characters are: A, C,

D, F, L, M, T and Q. If specified, these options
replace (override) the character options declared
in the FTN4 control statement (see Appendix B).
These options do not override the FTN4 control
statement numeric options.

Characters other than the above are ignored, except

that any option specified in this parameter position

negates all character options declared in the FTN4

control statement.

NOTE: The X and Y options are intentionally omitted,
as they have no meaning in this option list.

Schedules RTE FTN4 to compile source file &PROGA. Listed output is
directed to list file “PROGA and binary relocatable code is directed
to binary file %PROGA. The number of lines per list file page defaults

to 56.

:RU,FTN4,&FILl, “LIST

Schedules RTE FTN4 to compile source file &FIL1. Listed output is
directed to list file “LIST. No binary relocatable code is generated.
The number of lines per list file page defaults to 56.

:RU,FTN4, &ABCD

Schedules RTE FTN4 to compile source file &ABCD. Listed output defaults
to the user's terminal. No binary relocatable code is generated. The
number of lines per list file page defaults to 56.

:RU,FTN4, &AAAA,-,-, 28

Schedules RTE FTN4 to compile source file &AAAA. Listed output is
directed to list file “AAAA. Binary relocatable code is directed to
binary file %AAAA. The number of lines per list file page is 28.

:RU,FTN4,&SFIL,~-,-, ,MTD

Schedules RTE FTN4 to compile source file &SFIL. Listed output is
directed to list file “SFIL. Binary relocatable code is directed to
binary file %SFIL. The number of lines per list file page defaults
to 56. A mixed listing and a symbol table will be produced, and
debug lines will be compiled.

:RU,FTN4,&SFIL,-,-,,X

This command string results in the same action as the previous example,
except that only errors will be listed and debug lines will not be
compiled. The character X in the options parameter position is ignored,
but it does negate any character options that may have been declared
in program's FTN4 control statement.

RTE-M OPERATING SYSTEM

RTE FORTRAN IV invocation command syntax for RTE-M:

*ON
,FTN4 [,fi,le,nm] [,line count]
*RU
or,
*ON
,FTN4 [,lu number] [,,,line count]
*RU

fi,le,nm The name of a file containing the input, output, and list
file responses for the compiler. This file name is specified
as parameters 1, 2, and 3 with two file name characters per
parameter. If these parameters are omitted, the file
responses are assumed to be from the session console.

line count A decimal number which defines the number of lines per page
for the list file. This entry is specified as parameter 4. In
the alternate syntax shown above, the three leading commas
are required as parameter position placeholders. If this
parameter is omitted, 56 lines per page are assumed. The line
count must be in the range 10 < line count < 999.

lu number The logical unit number of a device from which the input,
output, and list file responses to the compiler will be
entered. This value is specified as parameter 1. If this
parameter is omitted, the file responses are assumed to be
from the session console.

When the RTE FORTRAN IV compiler is executed, it expects to obtain the input,
output, and list file information from a named file, a logical device, or

(by default) from the session console depending on the parameters passed

in the invocation command. If these file responses are expected from the
session console (or other keyboard/display device), the compiler will display
separate requests in the form:

INPUT
OUTPUT
LIST

LVIAV]

Enter a FMGR namr in response to each request. Parameters beyond the cartridge
reference number are ignored.

EXAMPLES:

*RU,FTN4

Schedules RTE FTN4 to compile a program for which the input, output,
and list file names will be entered from the session console. The list
file will be formatted to 56 lines per page.

*ON,FTN4,7,,,28

Schedules RTE FTN4 to compile a program for which the input, output,
and list file names will be entered from the device associated with
logical unit number 7. List file output will be formatted with 28
lines per page. The commas appearing between the logical unit number
and the list file line count are placeholders for null parameters.

EXAMPLES: (Cont.)
*RU,FTN4,RE,SP,NS
Schedules RTE FTN4 to compile a program for which the input, output,

and list file names will be obtained from a file named RESPNS. The
list file will be formatted with 56 lines per page.

MESSAGES TO OPERATOR

More than one source tape can be compiled into one FORTRAN program by leaving
off the SEND statement on all but the last source tape. When the end of each
source tape is encountered (end of tape or EOT condition), RTE driver DVROO
can interpret it in two ways. An EOT can set the tape reader down (make it
inactive), or not set it down. The action depends on how DVROO subchannels
were configured during generation. In any case, an EOT does not suspend the
FORTRAN compiler. Therefore, it is recommended that when compiling multiple
tapes, DVROO be configured to set the tape reader down on EOT (see the LU
command) . For more information, refer to the DVROO manual (29029-95001).

If an end of tape causes the tape reader to be set down, the RTE system will
output a message to the operator:

I/O ET L lu E egqt S sub

The operator must place the next source tape into the tape reader and set
the tape reader up with the UP command.

UP,eqt
where eqt is the number reported in the above message.

If an EQT does not cause the tape reader to be set down, the RTE system does
not output ant message and the compiler is not suspended.

RTE FORTRAN IV MESSAGES

At the end of the compilation (when the compiler detects the $END statement),
the following message is printed:

SEND FTN4: nn DISASTRS nn ERRORS nn WARNINGS

where "nn" will be the number of occurrences of each problem type or "NO" if
there are no occurrences of a particular type.

All error messages are output to the list output file or device unless
there is an error in the list output specification itself. There are two
possibilities:

If the operator incorrectly specified the list destination. The following
message will appear on the log list device:

/FTN4: ACCESS FAILED ON LIST

If the operator incorrectly specified both the source input and list output
parameters, the following message will appear on the log list device:

/FTN4: ACCESS FAILED ON LIST AND SOURCE

EXAMPLE RTE FORTRAN IV PROGRAM

FTN4,L,T
PROGRAM PROGA, 3,90
WRITE (1,100)

100 FORMAT (1X, "HELLO")
END
ENDS$

If the above source code were stored into a FMGR file name &PROGA, it could
be compiled with the following command (among others):

*RU,FTN4, &PROGA, 6, 2PROGA
This command would compile the source code in file &PROGA. Error messages, a
program listing, and a symbol table listing would be output to logical unit

6 since L and T were specified in the control statement of the source
program. The relocatable object code would be stored in the FMGR file %PROGA.

SPECIAL USAGE NOTE

In the event that a FORTRAN source file is compiled under a RTE Operating
System (e.g. RTE-IVB) that supports the four-word (Y) compiler option for
double precision data, transportation of the relocatable file to a HP 2100
with FFP for execution is not allowed unless the software versions of .DFER
and .XFER are loaded.

INDEX

A

Actual argument.......ceeeee. 6-7,9-
AdditiON..eeeeeeeeeeeseoseacnoanas 3-
Alphanumeric character...........1-
ANSI FORTRAN IV..:eeeeceeceanncens D-
Argument, actual......ee0....6-7,9-
Argument, dUMMY.....eeeeeeeeeenan 9-
Arithmetic assignment
statement..... . e
Arithmetic element..........co..n 3-
Arithmetic expression............ 3-
Arithmetic IF...... checeeee e ..6
Arithmetic operator.......c.ve...3
AYYaAY.eeasesssaasasscnsessaa=1l2,8-
Array declaratOf....veeveeeeeaesas.d
Array element.....ecceeeeneec...2-1
Assignment statement,
arithmetic....iceeieensneeannanad
Assignment statement, logical....5-
ASSIGN TO.eeeesseesosoccsenass cee.b
Assigned GO TO..uvvevens. s e eaeeeen 6-
A-Type CONVEYrSiON...eoeeeeeeeess8=2

B

BACKSPACE. 2 s easaacacanaansaanannsasl=8
Blank character.....eceesecaanaaal=2
Blank COMMON. 4ot caanaeeeaaaanna ..4-5
Block data subprogram.......9-20,9-5
BLOCK DATA statement............9-20

C

CALL ceeececesaccasacnsosnsaceseeab=7
CARRIAGE CONTROL:4secacscassssssd=29
Character, alphanumeric..........1=-2
Character, blank....:eeeeeecaessesoal=2
Character, special...ececececscssl=3
Character set...cececececeess.1-2,I-1
Comment lin€....ceceeeseceseacesssl=3
COMMON, blanK...eceeecoceoscseeesosd—
ICOMMON,EMA. . eeeetasesccssncnsessd—
COMMON, labeled...i.ceeecececees.d-
COMMON, named...eceecesecosncoscesad—
Compiler diagnosticsS.....ceeee...G-
Compiler environment.......ese...xXiv
Compiler pPUrPOSE.seececocaseses Xiid
Compiler SYNOPSiS.eeeeecsseoesseXiid
Complex constant..eeeecececesaessl=7

R oou oo,

Complex CONVErSioN...eeeeeeseess 8-17
Complex data format........ ceeenn A-5
Computed GO TO..eeereerecacnesesab0-4
Constant, complex........... ceees2-7
Constant, double precision....... 2-6
Constant, Hollerith.......... eeee2-9
Constant, integer............ 2-4,2-9
Constant, logical..seeeeeeseeenns 2-8
Constant, octal.....cveveeenn. ..2-10
Constant, real.....cceeeeennnn 2-5,2-7
CONTINUE..... A
Continuation line.....ceeeveee...1-4
Control statement, FORTRAN....... J-2
Control variable.....ccs....6-12,7-2
Conversion, A-Type..... ceeeeeae.8-21
Conversion, compleX..seeeeeeenns 8-17
Conversion, D-Typ€..¢eeeseeses..8=-16
Conversion, E-Typ€...cceeeeensss .8-10
Conversion, F=-TypP€..eeeeon. ee...8-12
Conversion, G-TyPE.:cececeaoccss 8-14
Conversion, I=-TyPEC.c.cscacessesess 8-6
Conversion, K-Type€...eeeeon. e...8-19

Conversion, L-Typ€..ceeceeeee...8-18
Conversion, O-TypP€.seeescasssec..8-19
Conversion, R-TYPE.:ceeeeecesses .8-23
Conversion, X-TyP€..eeeeeenn. «..8=27
Conversion, @-TypPe..eceeescsecesss83-19
Cross Reference Symbol Table.....E-1

D

Dat8.eeeeeesceseseeeneeess4=-14,2-13
Data item..ceeeeeeeesceesennaneeal=9
Data item delimiter.........ee.... 7-9
Debug line...eceeececeeanns ..1-4,3-
Declarator, array...ceseecececess 4-
Delimiter, data item............. 7-
Descriptor, field.......cevveu.v...8-
Diagnostic error messages....G-1,H-
DigitSeieesseescensnseonsasessaeaslm
DIMENSION..... O
DISASTR, EYYOY. .eeeeoeesoncosoans G-
DivisSioNn.eeeeeseseeeeaaeenns .
DO.veveesnonnsonnenns P S
DO-implied list....ceeeeenenennn 7-2
Double precision constant........2-6
Double precision data format
3-WOrd.eseeeeeeans cereseceesesA-3
4—-WOYd.eeeeeoeeeossensaansnees A4
Dummy argument......c.ceeeeeese..9-5
D-Type CONversiON..seeeeeeesss..8-16

HFHBBNHFWORKNN

INDEX=1

E

Editing, WH. ..ottt veeoeesaeesa.8=25
Editing, "..." tieeieietececess.8-26
Element, arithmetic....eecec....3-1
Element, @rray..ceeceecececeesss2-12
Element, logical......eeeeeese..3=5
EMA directive...veeesecececesossd=7
EMA statement.......eoceeee0..4-11
END.vveveeoossoseassansenes.0-8,6-16
ENDFILE. :eeeeeessocosscsssaaseasl=8
End job statement, FORTRAN......B-1
ENd lin€...eceeseceescesessesessl=d
EQUIVALENCE. .. etveeeeeensosessad-12
ERROR, COMPILER DIAGNOSTICS.....G-1
ERROR, OBJECT PROGRAM MESSAGES..H-1
E-Type conversion..............8=10
Evaluating expressionS..........3-3

Executable program........eeeeea.1-1
Executing FTN4...eeeeeeaaaaoosessd=D
Exponentiation.......eceeeeeee0..3"1
Exponentiation of

arithmetic elementS.....coeeee03-
EXPreSSiON..cceeeeassccscossesesesd
Expression, arithmetic...........3-
Expression, logical...e.ceeeesese3=
Expression, relational...........3-
Expression, subscript...........2-1
Extended MemOYy AY€Q..eeeceecoesess
EXTERNAL .. ceoeeceococsocccscnccscocs
External fileS...eeeeececececnnns

F'

FaCtOr..viveeeeeeeeoeoesoaoacansead—2
Factor, scale....iceeecescacesss.8-8
Field descriptor.....cceeeeeese..8"3
Field separatoOr....eeeeeesseaaasa8-28
File definition...eeeeeeeeacasaaxiii
Files, external.....ceceeecececanaa/—1
FORMAT. « e ceceasaceansacaasB=2,1-5,7-1
Format specification.........8-1],7-3
Format, complex data.....ccee....hA-5
Format, double precision data....A-3
Format, Hollerith data...........A-6
Format, integer data.............A-1
Format, logical data.............A-6
Format, real data..cceceeeeeceos A=2
Formatted READ....veeeeeees../—4,8-1
Formatted records............7-3,8-1
Formatted WRITE....ece00ees..7-5,8-1
FORTRAN control statement........J-2
FORTRAN end job statement........B-1
FORTRAN IV library function......9-7
FORTRAN IV job decK....eeeeeeveo.B=1
Free field input.........7-9,7-4,8-1

HFMNMNMDOBREFEPFW

\l.l|>.b

F-Type conversioN....eeceee.e...8-12
FUNnCction....veeeeeeneeseceeeeaesrad=3
Function, statement..............9-6
Function subprogram.....9-12,9-3,1-1

G

GO TO, assigned......ceeeeeeseeessb—
GO TO, computed....cceeeccecceessb6—
GO TO, unconditional......ccee...6-
G-Type conversion.......eseeee..8-1

BN W

H

Hollerith constant.......ceeeee..2-9
Hollerith data format............A-6

IF, arithmetic...veeieerreeeess..6=5
IF, 1ogical..iceeeeeceencaeseeseab—6
IMPLICIT statement.e..ceeeee...4-16
Initial lin€...eeeeeeeeecenneesal=4
Initial parameter..........6-12,7-2
Input/output list...........7-2,8-1
Input/output Unit....ceeeeveecese7-1
Input, free field.......7-9,7-4,8-1
Integer constant............2-4,2-9
Integer data format..eeeeeeee.. A1
Invocation of compiler..........J-5
Item, dat@ceeeesceesceccceccsessl=9
I-Type CONVersSiON..seeeseseseses 8-6

J

Job deck, FORTRAN IV.:ceceeee...B-1

K

K-Type conversion......e.......8=19

L

Label, statement....c.cceeeeeecasl=b
Labeled COMMON. . caceeaocacesaseed=h
Letter..ieeiieeiiieeeeecsncenaaal=2
Library Function, FORTRAN IV....9-7
LiNeS .ceeeeecocseococananacnsoesal=3
Line, comment......eeeeeeeeeeeeal=3
Line, continuation......eeeeee..l-4
Line, debUg..cceececasececsal=4,3-2
Line, end....vceeeeeecceceeesenal=d
Line, initial......ceveeeeecen..l=4
Line, pProgram........ceceeeeees-1-3

INDEX-2

List, DO-implied..ecceceeceseessl=2
List, input/output.c.cecee...7-2,8-1
List, SiMpPle.ceecececccccoaceosesl=2
Loading FORTRAN=IV..ieeeeoeeseoesod-1
Logical assignment statement....5-
Logical constant.eeeesececseseeesee2-
Logical data format...eeeeeeoees A=
Logical element.ceeeesceeaseassesld—
Logical eXpreSSiON.ieeseessoeeees3—
Logical IF.eeeescascsccasanaasnesbdbm
Logical operatoreieeesecessecssss3—4
Logical Unitesesecesesccsasneass -1
L-Type conversSiONiceseseesesse.8-18

M

Magnetic tape unit.....eceeeeeee7-8
Main program...seeeesseceesel=l,1-6
MESSAgESeeeassescescessscssssesd—10
Mixed MOAE€eeeeseescescesoseseesd=14
MultiplicatioN.iseeeeeseeseeaesse3—1

N

Named COMMON.......... F T
Name, symboliC....ceeeeeeees 1-5,2-1

o

Octal constant..... e 1
Operator, arithmetic..... ceesessa3—-1
Operator, logical.....cececeee...3-4
Operator, relational.............3-6
O-Type CONVErsion.....eceeeee...8-19

P

Parameter, initial.......... 6-12,7-2
Parameter, step-size........ 6-12,7-2
Parameter, terminal......... 6-12,7-2
Parentheses......errieeeeeennnnn 3-3
PAUSE. i i it i it it it e . 6-11
PrimMary.oe e eeeeeeeecnneanaeanans 3-1
Program, executable.............. 1-1
Program line.........coeuvennnnnn 1-3
Program, main................1-1,1-6
PROGRAM statement............ 9-1,J-3
Program uUnit.........ceeueeeenennn.. 1-2
R
READ, formatted......... cee..7-4,8-1
READ, unformatted............7-6,8-1
Real constant...... ceeseseesa=5,2-7
Real data format.......cee000... A2
Record, formatted............7-3,8-1

Record terminator........eee....7-10
Record, unformatted..........7-3,8-1
Relational expressSioN...c.eece...3=5
Relational operatOr.....ceeecee..3-6
RELOCATABLE SUBROUTINES.....Xxiv,9-11
Repeat specification.............8-5
RETURN. .. teeoeceasecccacsosacaassesd6=8

7-8

REWIND....ooeveenas Y
RTE special characters...........I-4
R-Type coOnversioN...... cecacasas 8-23

S

Scale factor.........vie00000....8-8
Separator, field..... ceeessess..B8-28
Simple list...ceiicnenennccnceeae =2
Simple variable.....ceceveeeee..2-11
Special character.......eeecee...1-3
Specification, format....... .8-1,7-3
Specification, repeat............8-5
Statement.........cci0eeeneena 15
Statement function.........c00...9-6
Statement label............. S £

Statement, terminal........ 6-12,6-9

Step-size parameter........6-12,7-2

S) P - g 1

SUbPYOgYam. s eaeecesss cceacana 1-1,1-5
Subprogram, block data......9-20,9-5

Subprogram, function........1-1,9-12
Subprogram, subroutine........ ..1-1
Subroutine........... ceee.s974,9-17
Subroutine subprogram......... ..1-1
Subscript.....ccceeeennn. ceees..2-13
Subscript expression...... cee.a2-12
Subscripted variable.,.......... 2-14
Subtraction....... Ceceeceeanaaa 3-1

Symbolic names..............1-5,2-1

T

Tape unit, magnetic...... ceeeeen 7-8
TEM. e e eeeeeoacccecacasas ceeenen 3-2
Terminal parameter......... 6-12,7-2
Terminal statement...... ...6-12,6-9
Terminator, record.......e.v...7-10
Type-specification...... 4-3,2-2,2~-11
U
Unconditional GO TO....... cee...0-2
Unformatted READ......eeeevenee .7-6
Unformatted records....cesseeeee’—3
Unformatted WRITE.. .. eeeeeeoeaesl=7

INDEX-3

Unit, input/output.............. 7-1
Unit, logical......c.ccevevvnneas /-1
Unit, program.......eceeeeeeesssl=2
Unlabeled COMMON. .. vceeeeeeeeeoad"5

Vv

Variable, control..........6-12,7-2
Variable, simple...... ceececeen 2-11
Variable, subscripted.......... 2-14

WARNING, €rYOY..seeeaaas ceacanaas G-1
wH editing......ciiecennencens .8-2

WRITE, formatted............
Write, unformatted..........

X

X-Type CONVersioNn......ceeee...8-27

..." editing.....ii0000een....8-26
@-Type conversion.......c...... .8-19

INDEX~-4

READER COMMENT SHEET

RTE FORTRAN IV
Reference Manual

92060-90023 July 1980

Update No.
(If Applicable)

We welcome your evaluation of this manual. Your comments and suggestions help us improve our publications.
Please use additional pages if necessary.

FROM:

Name

Company

Address

| || || | NO POSTAGE

NECESSARY
IF MAILED
IN THE

UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 141 CUPERTINO, CA.

— POSTAGE WILL BE PAID BY —

Hewlett-Packard Company

Data Systems Division

11000 Wolfe Road

Cupertino, California 95014

ATTN: Technical Marketing Dept.

Product Line Sales/Support Key

Key Product Line

A Analytical

Components

Computer Systems Sales only

Computer Systems Hardware Sales and Services
Computer Systems Software Sales and Services
Electronic Instruments & Measurement Systems

Medical Products

Medical Products Primary SRO
Medical Products Secondary SRO
Personal Computation Products
Sales only for specific product line
Support only for specific product line

: ~v5§gmggog

IMPORTANT: These symbois designate general product line capability. They do not
insure sales or support availability for all products within a line, at all locations.
Contact your local sales office for information regarding locations where HP

support is available for specific products.
HP distributors are printed in itakics.

ANGOLA

Telectra

Empresa Técnica de Equipamentos
R. Barbosa Rodrigues, 41-1 DT.
Caixa Postal 6487

LUANDA

Tel: 35515,35516

EMP

ARGENTINA
Hewlett-Packard Argentina S.A.
Avenida Santa Fe 2035
Martinez 1640 BUENOS AIRES
Tel: 798-5735, 792-1293
Telex: 17595 BIONAR
Cable: HEWPACKARG
AE,CHCS,P

Biotron S.A.C.IM. e I.

Av Paseo Colon 221, Piso 9
1399 BUENOS ARES

Tel: 30-4846, 30-1851
Telex: 17595 BIONAR

M

AUSTRALIA

Adelaide, South Australia
Office

Hewlett-Packard Australia Ltd.
153 Greenhill Road

PARKSIDE, S.A. 5063

Tel: 272-5911

Telex: 82536

Cable: HEWPARD Adelaide
A*,CH,CM, EMSP

Brisbane, Queensiand
Office

Hewilett-Packard Australia Ltd.
10 Payne Road

THE GAP, Queensland 4061
Tel: 30-4133

Telex: 42133

Cable: HEWPARD Brisbane
ACH,CMEMP

Canberra, Australia
Capital Territory
Office

Hewlett-Packard Australia Ltd.
121 Wollongong Street
FYSHWICK, A.C.T. 2609

Tel: 80 4244

Telex: 62650

Cable: HEWPARD Canberra
CH,CM,EP

Melbourne, Victoria Office
Hewlett-Packard Australia Ltd.

31-41 Joseph Street
BLACKBURN, Victoria 3130
Tel: 890 6351

Telex: 31-024

Cable: HEWPARD Melbourne

A,CH.CM,CS.EMS,P

Perth, Western Australia

Office

Hewiett-Packard Australia Ltd.

261 Stirling Highway
CLAREMONT, W.A. 6010
Tel: 383-2188

Telex: 93859

Cable: HEWPARD Perth
A,CH,CM, ,EMS,P

Sydney, New South Wales

Office

Hewlett-Packard Australia Ltd.

17-23 Talavera Road
P.0. Box 308

NORTH RYDE, N.S.W. 2113
Tel: 887-1611

Telex: 21561

Cable: HEWPARD Sydney
A,CH,CM,CS,E,MS,P

AUSTRIA
Hewilett-Packard Ges.m.b.h.
Grottenhofstrasse 94
Verkaufsburo Graz

A-8052 GRAZ

Tel: 291-5-66

Telex: 32375

CHE*

Hewlett-Packard Ges.m.b.h.
Lieblgasse 1

P.0. Box 72

A-1222 VIENNA

Tel: (0222) 23-65-11-0
Telex: 134425 HEPA A
A,CH,CM,CS,E,MS,P

BAHRAIN

Green Salon

P.0. Box 557
BAHRAIN

Tel: 255503-255950
Telex: 84419

P

Wael Pharmacy

P.0. Box 648
BAHRAIN

Tel: 256123

Telex: 8550 WAEL BN
EM

SALES & SUPPORT OFFICES

Arranged alphabetically by country

BELGIUM

Hewilett-Packard Belgium S.A/N.V.
Bivd de la Woluwe, 100
Woluwedal

B-1200 BRUSSELS

Tel: (02) 762-32-00

Telex: 23-494 paloben bru
A,CH,CM,CS E,MP,P

BRAZIL

Hewlett-Packard do Brasil l.e.C.
Lida.

Alameda Rio Negro, 750
Alphaville

06400 BARUER! SP

Tel: (011) 421.1311

Telex: (011) 33872 HPBR-BR
Cable: HEWPACK Sao Paulo
A,CH,CM,CSEM,P
Hewlett-Packard do Brasil l.e.C.
Lida.

Avenida Epitacio Pessoa, 4664
22471 RIO DE JANEIRO-RJ

Tel: (021) 286.0237

Telex: 021-21905 HPBR-BR
Cable: HEWPACK Rio de Janeiro
A,CH,CM,E,MS,P*

CANADA

Alberta

Hewilett-Packard (Canada) Ltd.
210, 7220 Fisher Street S.E.
CALGARY, Alberta T2H 2H8
Tel: (403) 253-2713
A,CH,CME* MS,P*
Hewilett-Packard (Canada) Ltd.
11620A-168th Street
EDMONTON, Alberta T5M 3T9
Tel: (403) 452-3670
A,CH,CM,CS,EMS,P*

British Columbia
Hewlett-Packard (Canada) Ltd.
10691 Shellbridge Way
RICHMOND,

British Columbia V6X 2W7
Tel: (604) 270-2277

Telex: 610-922-5059
A,CH,CM,CS,E* MS,P*

Manitoba

Hewlett-Packard (Canada) Ltd.
380-550 Century Street
WINNIPEG, Manitoba R3H 0Y 1
Tel: (204) 786-6701
A,CH,CMEMS,P*

New Brunswick
Hewlett-Packard (Canada) Ltd.

37 Sheadiac Road

MONCTON, New Brunswick E2B 2VQ
Tel: (506) 855-2841

CH**

Nova Scotia

Hewlett-Packard (Canada) Ltd.
P.0. Box 931

900 Windmill Road

DARTMOUTH, Nova Scotia B2Y 326
Tel: (902) 469-7820

CH,CM,CS,E* MS,P*

Ontario

Hewlett-Packard (Canada) Ltd.
552 Newbold Street

LONDON, Ontario N6E 2S5

Tel: (519) 686-9181
ACH,CME* MSP*
Hewilett-Packard (Canada) Ltd.
6877 Goreway Drive
MISSISSAUGA, Ontario L4V 1M8
Tel: (416) 678-9430
A,CH,CM,CS,EMP,P

Hewlett-Packard (Canada) Ltd.
2670 Queensview Dr.
OTTAWA, Ontario K2B 8K 1
Tel: (613) 820-6483
A,CH,CM,CS,E* MS,P*
Hewilett-Packard (Canada) Ltd.
220 Yorkland Blvd., Unit #11
WILLOWDALE, Ontario M2J 1RS
Tel: (416) 499-9333

CH

Quebec

Hewilett-Packard (Canada) Ltd.
17500 South Service Road
Trans-Canada Highway
KIRKLAND, Quebec H9J 2M5
Tel: (514) 697-4232
A,CH,CM,CS,E,MP,P*
Hewlett-Packard (Canada) Ltd.
Les Galeries du Vallon

2323 Du Versont Nord

STE. FOY, Quebec G1N 4C2
Tel: (418) 687-4570

CH

CHILE

Jorge Calcagni y Cia. Ltda.
Arturo Buhrle 065

Casilla 16475

SANTIAGO 9

Tel: 222-0222

Telex: Public Booth 440001
ACMEM

Olympia (Chile) Ltda.

Av. Rodrigo de Araya 1045
Casilla 256-V

SANTIAGO 21

Tel: (02) 22 55 044

Telex: 240-565 OLYMP CL
Cable: Olympiachile Santiagochile
CHCS,P

CHINA, People’s Republic
of

China Hewlett-Packard Rep. Office
P.O. Box 418

1A Lane 2, Luchang St.

Beiwei Rd., Xuanwu District
BENING

Tel: 33-1947, 33-7426

Telex: 22601 CTSHP CN

Cable: 1920

A,CH,CM,CS,EP

COLOMBIA
Instrumentacién

H. A. Langebaek & Kier S.A.
Carrera 4A No. 52A-26
Apartado Aereo 6287
BOGOTA 1, D.E.

Tel: 212-1466

Telex: 44400 INST CO
Cable: AARIS Bogota
CMEM

COSTA RICA

Cientifica Costarricense S.A.
Avenida 2, Calle 5

San Pedro de Montes de Oca
Apartado 10159

SAN JOSE

Tel: 24-38-20, 24-08-19
Telex: 2367 GALGUR CR
CMEM

]

O

CYPRUS

Telerexa Lid.

P.0. Box 4809

14C Stassinos Avenue
NICOSIA

Tel: 62698

Telex: 2894 LEVIDO CY
EMP

DENMARK
Hewlett-Packard A/S
Datavej 52

DK-3460 BIRKEROD
Tel: (02) 81-66-40
Telex: 37409 hpas dk
A,CH,CM,CS,E,MS,P
Hewlett-Packard A/S
Rolighedsvej 32
DK-8240 RISSKOV

Tel: (06) 17-60-00
Telex: 37409 hpas dk
CH,E

DOMINICAN REPUBLIC
Microprog S.A.

Juan Tomés Mejié y Cotes No. 60
Arroyo Hondo

SANTO DOMINGO

Tel: 565-6268

Telex: 4510 ARENTA DR (RCA)

P

ECUADOR

CYEDE Cia. Ltda.

Avenida Eloy Alfaro 1749
Casilla 6423 CCI

aurro

Tel: 450-975, 243-052
Telex: 2548 CYEDE ED
CMEP

Hospitalar S.A.

Robles 625

Casilla 3590

auiro

Tel: 545-250, 545-122
Telex: 2485 HOSPTL ED
Cable: HOSPITALAR-Quito
M

EGYPT

International Engineering Associales
24 Hussein Hegazi Street
Kasr-el-Aini

CAIRO

Tel: 23829, 21641
Telex: IEA UN 93830
CHCSEM

Informatic For Systems
22 Talaat Harb Street
CAIRO

Tel: 759006

Telex: 93938 FRANK UN
CHCS,P

Egyptian International Office
for Foreign Trade
P.0.Box 2558

CAIRO

Tel: 650021

Telex: 93337 EGPOR

P

EL SALVADOR
IPESA de El Salvador S.A.
29 Avenida Norte 1216
SAN SALVADOR

Tel: 26-6858, 26-6868
Telex: 20539 EPISA
ACHCM,CSEP

[2]

(D

SALES & SUPPORT OFFICES

Arranged alphabetically by country

FINLAND
Hewlett-Packard Oy
Revontulentie 7
SF-02100 ESPOO 10
Tel: 00358-0-4550211
Telex: 9100
A,CH,CM,CS.EMS,P
Hewlett-Packard Oy
Aatoksenkatv 10-C
SF-40720-72 JYVASKYLA
Tel: (941) 216318

CH

Hewlett-Packard Oy
Kainvuntie 1-C
SF-90140-14 OULY
Tel: (981) 338785
CH

FRANCE
Hewlett-Packard France
Z.\. Mercure B

Rue Berthelot

F-13763 Les Milles Cedex
AIX-EN-PROVENCE

Tel: 16 (42) 59-41-02
Telex: 410770F
ACHEMSP*
Hewlett-Packard France
64, rue Marchand Saillant
F-6 1000ALENCON

Tel: 16 (33) 29 04 42

Hewlett-Packard France
Boite Postale 503
F-25026 BESANCON

28 rue de la Republique
F-25000 BESANCON
Tel: 16 (81) 83-16-22
CHM

Hewlett-Packard France
13, Place Napoleon
F-29000 BREST

Tel: 16 (98) 03-38-35
Hewlett-Packard France
Chemin des Mouilles
Boite Postale 162
F-69130 ECULLY Cedex
Tel: 16 (78) 833-81-25
Telex: 310617F
A,CH,CS,E.MP
Hewlett-Packard France
Tour Lorraine
Boulevard de France
F-91035 EVRY Cedex
Tel: 16 6 077-96-60
Telex: 692315F

E

Hewlett-Packard France

5, avenue Raymond Chanas
F-38320 EYBENS

Tel: 16 (76) 25-81-41

Telex: 980124 HP GRENOB EYBE
CH

Hewilett-Packard France
Centre d'Affaire Paris-Nord
Bétiment Ampére 5 élage
Rue de la Commune de Paris
Boite Postale 300

F-93153 LE BLANC MESNIL
Tel: 16 (1) 865-44-52
Telex: 211032F

CH,CS,EMS

Hewlett-Packard France

Parc d'Activités Cadera
Quartier Jean Mermoz
Avenue du Président JF Kennedy
F-33700 MERIGNAC

Tel: 16 (56) 34-00-84

Telex: 550105F

CH,E.MS

Hewlett-Packard France
Immueble “Les 3 B”
Nouveau Chemin de la Garde
ZAC de Bois Briand
F-44085 NANTES Cedex

Tel: 16 (40) 50-32-22

CH**

Hewlett-Packard France

125, rue du Faubourg Bannier
F-45000 ORLEANS

Tel: 16 (38) 68 01 63
Hewlett-Packard France
Zone Industrielle de Courtaboeuf
Avenue des Tropiques
F-91947 Les Ulis Cedex ORSAY
Tel: (6) 907-78-25

Telex: 600048F
A,CH,CM,CS,EMPP
Hewilett-Packard France
Paris Porte-Maillot

15, Avenue de L’Amiral Bruix
F-75782 PARIS CEDEX 16
Tel: 16 (1) 502-12-20
Telex: 613663F

CH,MS,P

Hewilett-Packard France

124, Boulevard Tourasse
F-64000 PAU

Tel: 16 (59) 80 38 02
Hewilett-Packard France

2 Aliée de la Bourgonnette
F-35100 RENNES

Tel: 16 (99) 51-42-44

Telex: 740912F
CH,CM,E,MS,P*
Hewlett-Packard France

98 Avenue de Bretagne
F-76100 ROUEN

Tel: 16 (35) 63-57-66
CH**,CS

Hewilett-Packard France
Boite Postale 56

F-67033 STRASBOURG Cedex
4 Rue Thomas Mann
F-67200 STRASBOURGCedex
Tel: 16 (88) 28-56-46
Telex: 890141F

CH,E,MS,P*

Hewlett-Packard France

Le Péripole

3, Chemin du Pigeonnier de la
Cépiére

F-31083 TOULOUSE Cedex
Tel: 16 (61) 40-11-12

Telex: 531639F
ACH,CSEP*
Hewlett-Packard France

9, rue Baudin

F-26000 VALENCE

Tel: 16 (75) 42 76 16
Hewilett-Packard France
Garolor

ZAC de Bois Briand

F-57640 VIGY

Tel: 16 (8) 771 20 22

CH

Hewilett-Packard France

Immeuble Péricentre

F-59658 VILLENEUVE D'ASCQ Cedex
Tel: 16 (20) 91-41-25

Telex: 160124F

CH,E,MS,P*

GERMAN FEDERAL
REPUBLIC
Hewilett-Packard GmbH
Geschiiftsstelle
Keithstrasse 2-4

D-1000 BERLIN 30

Tel: (030) 24-90-86

Telex: 018 3405 hpbin d
ACHEMP

Hewlett-Packard GmbH
Geschftsstelle
Herrenberger Strasse 110
D-7030 BOBLINGEN

Tel: (7031) 667-750
Telex: bbn or
A,CH,CM,CS E,MP,P
Hewlett-Packard GmbH
Geschftsstelle
Emanuel-Leutze-Strasse 1
D-4000 DUSSELDORF

Tel: (0211) 5971-1
Telex: 085/86 533 hpdd d
ACH,CS,EMS,P
Hewlett-Packard GmbH
Vertriebszentrale Frankfurt
Berner Strasse 117
Postfach 560 140
D-6000 FRANKFURT 56
Tel: (0611) 50-04-1
Telex: 04 13249 hpftm d
A,CH,CM,CS,E,MP,P
Hewilett-Packard GmbH
Geschiiftsstelle
Kapstadtring 5

D-2000 HAMBURG 60

Tel: (040) 63804-1
Telex: 021 63 032 hphh d
A,CH,CS,EMS,P
Hewlett-Packard GmbH
Geschidftsstelle

Heidering 37-39

D-3000 HANNOVER 91
Tel: (0511) 5706-0
Telex: 092 3259
ACH,CM,EMS,P
Hewlett-Packard GmbH
Geschiftsstelle
Rosslauer Weg 2-4
D-6800 MANNHEIM

Tel: (0621) 70050

Telex: 0462105

ACE

Hewlett-Packard GmbH
Geschéftsstelle
Messerschmitistrasse 7
D-7910 NEU ULM

Tel: 0731-70241

Telex: 0712816 HP ULM-D
ACE*

Hewlett-Packard GmbH
Geschiftsstelle
Neumeyerstrasse 90
D-8500 NURNBERG

Tel: (0911) 52 20 83-87
Telex: 0623 860
CH,CM,E,MS,P
Hewlett-Packard GmbH
Geschiftsstelle
Eschenstrasse 5

D-8028 TAUFKIRCHEN
Tel: (089) 6117-1

Telex: 0524985
A,CH,CM,EMS,P

GREAT BRITAIN
See United Kingdom

GREECE

Koslas Karaynnis S.A.

8 Omirou Street

ATHENS 133

Tel: 32 30 303, 32 37 371
Telex: 215962 RKAR GR
ACHCMCSEMP
PLAISIO S.A.

G. Gerardos

24 Stournara Street
ATHENS

Tel: 36-11-160

Telex: 221871

P

GUATEMALA

IPESA

Avenida Reforma 3-48, Zona 9
GUATEMALA CITY

Tel: 316627, 314786

Telex: 4192 TELTRO GU
ACH,CM,CS,EMP

HONG KONG
Hewilett-Packard Hong Kong, Lid.
G.P.0. Box 795

5th Floor, Sun Hung Kai Centre
30 Harbour Road

HONG KONG

Tel: 5-8323211

Telex: 66678 HEWPA HX
Cable: HEWPACK HONG KONG
E,CH,CS,P

CET Ltd.

1402 Tung Way Mansion
199-203 Hennessy Rd.
Wanchia, HONG KONG

Tel: 5-729376

Telex: 85148 CET HX

cM

Schmidt & Co. (Hong Kong) Lid.
Wing On Centre, 28th Floor
Connaught Road, C.

HONG KONG

Tel: 5-455644

Telex: 74766 SCHMX HX

AM

ICELAND

Elding Trading Company Inc.
Hafnarnvoli- Tryggvagotu
P.0. Box 895

IS-REYKJAVIK

Tel: 1-58-20, 1-63-03

M

INDIA

Computer products are sold through
Blue Star Ltd. All computer repairs
and maintenance service is done
through Computer Maintenance
Corp.

Blue Star Ltd.

Sabri Complex Il Floor

24 Residency Rd.
BANGALORE 560 025

Tel: 55660

Telex: 0845-430

Cable: BLUESTAR
ACH*,CM,CS*,E

Blue Star Ltd.

Band Box House
Prabhadevi

BOMBAY 400 025

Tel: 422-3101

Telex: 011-3751

Cable: BLUESTAR

AM

Blue Star Ltd.

Sahas

414/2 Vir Savarkar Marg
Prabhadevi

BOMBAY 400 025

Tel: 422-6155

Telex: 011-4093

Cable: FROSTBLUE
ACH*,CM,CS*.EM

Blue Star Lid.

Kalyan, 19 Vishwas Colony
Alkapuri, BORODA, 390 005
Tel: 65235

Cable: BLUE STAR

A

Blue Star Ltd.

7 Hare Street

CALCUTTA 700 001

Tel: 12-01-31

Telex: 021-7655

Cable: BLUESTAR

AM

Blue Star Lid.

133 Kodambakkam High Road
MADRAS 600 034

Tel: 82057

Telex: 041-379

Cable: BLUESTAR

AM

Blue Star Ltd.

Bhandari House, 7th/8th Floors
91 Nehru Place

NEW DELHI 110 024

Tel: 682547

Telex: 031-2463

Cable: BLUESTAR
A,CH*,CM,CS",EM

Blue Star Ltd.

15/16:C Wellesley Rd.
PUNE 411011

Tel: 22775

Cable: BLUE STAR

A

Blue Star Ltd.
2-2-47/1108 Bolarum Rd.
SECUNDERABAD 500 003
Tel: 72057

Telex: 0155-459

Cable: BLUEFROST

AE

Blue Star Ltd.

T.C. 7/603 Poornima
Maruthankuzhi
TRIVANDRUM 695 013
Tel: 65799

Telex: 0884-259

Cable: BLUESTAR

E

Computer Maintenance Corporation
Ltd

115, Sarojini Devi Road
SECUNDERABAD 500 003
Tel: 310-184, 345-774
Telex: 031-2960

CH**

INDONESIA

BERCA Indonesia P.T.
P.0.Box 496/JKT.

J. Abaul Muis 62
JAKARTA

Tel: 373009

Telex: 46748 BERSAL IA
Cable: BERSAL JAKARTA
P

BERCA Indonesia P.T.

P.0.Box 2497/Jkt Antara Blag.,
17th Floor

J.. Medan Merdeka Selatan 17
JAKARTA-PUSAT

Tel: 21-344-181

Telex: BERSAL IA

ACSEM

BERCA Indonesia P.T.

P.0. Box 174/SBY.

J. Kutei No. 11

SURABAYA

Tel: 68172

Telex: 31146 BERSAL SB
Cable: BERSAL-SURABAYA

A" EMP

IRAQ

Hewlett-Packard Trading S.A.
Service Operation

Al Mansoor City 98/3/7
BAGHDAD

Tel: 551-49-73

Telex: 212-455 HEPAIRAQ K
CH,CS

IRELAND
Hewlett-Packard Ireland Ltd.
82/83 Lower Leeson Street
DUBLIN 2

Tel: (1) 60 88 00

Telex: 30439
A,CH,CM,CS,EMP

Cardiac Services Lid.
Kiimorg Road

Artane

DUBLIN 5

Tel: (01) 351820

Telex: 30439

M

ISRAEL

Eldan Electronic Instrument Lid.
P.0.Box 1270

JERUSALEM 91000

16, Ohaliav St.

JERUSALEM 94467

Tel: 533 221, 553 242

Telex: 25231 AB/PAKRD IL

A

Electronics Engineering Division
Motorola Israel Ltd.

16 Kremenetski Street

P.0. Box 25016

TEL-AVIV 67699

Tel: 3-338973

Telex: 33569 Motil IL

Cable: BASTEL Tel-Aviv
CHCM,CSEMP

ITALY

Hewlett-Packard Htaliana S.p.A
Traversa 99C

Via Giulio Petroni, 19

1-70124 BARI

Tel: (080) 41-07-44

M

Hewilett-Packard Haliana S.p.A.
Via Martin Luther King, 38/111
1-40132 BOLOGNA

Tel: (051) 402394

Telex: 511630

CH,E,MS

Hewlett-Packard ltaliana S.p.A.
Via Principe Nicola 43G/C
1-95126 CATANIA

Tel: (095) 37-10-87

Telex: 970291

cP

Hewilett-Packard ltaliana S.p.A.
Via G. Di Vittorio 9

1-20063 CERNUSCO SUL NAVIGLIO
Tel: (2) 903691

Telex: 334632
A,CH,CM,CS.EMP,P
Hewilett-Packard Haliana S.p.A.
Via Nuova San Rocco a
Capodimonte, 62/A

1-80131 NAPLES

Tel: (081) 7413544

Telex: 710698

ACHE

Hewlett-Packard ltaliana S.p.A.
Viale G. Modugno 33

|-16156 GENOVA PEGL!

Tel: (010) 68-37-07

Telex: 215238

EC

Hewlett-Packard Haliana S.p.A.
Via Turazza 14

1-35100 PADOVA

Tel: (049) 664888

Telex: 430315

ACHEMS

Hewlett-Packard ltaliana S.p.A.
Viale C. Pavese 340

1-00144 ROMA

Tel: (06) 54831

Telex: 610514
A,CH,CM,CS.EMS,P*

Hewlett-Packard Htaliana S.p.A.
Corso Svizzera, 184

|-10149 TORINO

Tel: (011) 74 4044

Telex: 221079

CH,E

JAPAN
Yokogawa-Hewlett-Packard Ltd.
152-1, Onna

000 ATSUGI, Kanagawa, 243
Tel: (0462) 28-0451

CM,C*E
Yokogawa-Hewlett-Packard Ltd.
Towa Building

2-3, Kaigan-dori, 2 Chome Chuo-ku
KOBE, 650

Tel: (078) 392-4791

CE

Yokogawa-Hewlett-Packard Ltd.
Kumagaya Asahi 82 Bldg

3-4 Tsukuba

KUMAGAYA, Saitama 360

Tel: (0485) 24-6563

CH,CM,E
Yokogawa-Hewlett-Packard Ltd.
Asahi Shinbun Daiichi Seimei Bldg.
4-7, Hanabata-cho
KUMAMOTO,860

Tel: (0963) 54-7311

CHE
Yokogawa-Hewlett-Packard Lid.
Shin-Kyoto Center Bidg.

614, Higashi-Shiokoji-cho
Karasuma-Nishiiru

Shiokoji-dori, Shimogyo-ku
KYOTO, 600

Tel: 075-343-0921

CH,E
Yokogawa-Hewlett-Packard Ltd.
Mito Mitsui Bldg

4-73, Sannomaru, 1 Chome
MITO, Ibaragi 310

Tel: (0292) 25-7470

CH,CM,E
Yokogawa-Hewlett-Packard Ltd.
Sumitomo Seimei 14-9 Bidg.
Meieki-Minami, 2 Chome
Nakamura-ku

NAGOYA, 450

Tel: (052) 571-5171
CH,CM,CSE,MS
Yokogawa-Hewlett-Packard Ltd.
Chuo Bldg.,

4-20 Nishinakajima, 5 Chome
Yodogawa-ku

OSAKA, 532

Tel: (06) 304-6021

Telex: YHPOSA 523-3624
A,CH,CM,CS,E,MPP*
Yokogawa-Hewlett-Packard Ltd.
27-15, Yabe, 1 Chome
SAGAMIHARA Kanagawa, 229
Tel: 0427 59-1311

Yokogawa-Hewlett-Packard Ltd.
Daiichi Seimei Bldg.

7-1, Nishi Shinjuku, 2 Chome
Shinjuku-ku,TOKYO 160

Tel: 03-348-4611-5

CHE
Yokogawa-Hewlett-Packard Ltd.
29-21 Takaido-Higashi, 3 Chome
Suginami-ku TOKYO 168

Tel: (03) 331-6111

Telex: 232-2024 YHPTOK
A,CH,CM,CS,E.MPP*
Yokogawa-Hewlett-Packard Lid.
Daiichi Asano Building

2-8, Odori, 5 Chome
UTSUNOMIYA, Tochigi 320

Tel: (0286) 25-7155

CH,CS,E

SALES & SUPPORT OFFICES

Arranged alphabetically by country

Yokogawa-Hewlett-Packard Ltd.
Yasuda Seimei Nishiguchi Bldg.
30-4 Tsuruya-cho, 3 Chome
YOKOHAMA22 1

Tel: (045) 312-1252

CH,CME

JORDAN

Mouasher Cousins Company
P.O. Box 1387

AMMAN

Tel: 24907, 39907

Telex: 21456 SABCO JO
CHEMP

KENYA

ADCOM Ltd., Inc., Kenya
P.0.Box 30070

NAIROBI

Tel: 331955

Telex: 22639

EM

KOREA

Samsung Electronics Computer
Division

76-561 Yeoksam-Dong
Kwangnam-Ku

C.P.0. Box 2775

SEOUL

Tel: 555-7555, 555-5447
Telex: K27364 SAMSAN
ACHCM,CSEMP

KUWAIT

Al-Khaldiya Trading & Conltracting
P.0. Box 830 Safat
KUWAIT

Tel: 42-4910, 41-1726
Telex: 22481 Areeg kt
CHEM

Photo & Cine Equipment
P.0. Box 270 Safat
KUWAIT

Tel: 42-2846, 42-3801
Telex: 22247 Matin kt
P

LEBANON
G.M. Dolmadjian
Achrafieh

P.0. Box 165.167
BEIRUT

Tel: 290293
MP**

LUXEMBOURG
Hewilett-Packard Beigium S.A./N.V.
Bivd de la Woluwe, 100
Woluwedal

B-1200 BRUSSELS

Tel: (02) 762-32-00

Telex: 23-494 paloben bru
A,CH,CM,CS,E MP,P

MALAYSIA

Hewlett-Packard Sales (Malaysia)
Sdn. Bhd.

1st Floor, Bangunan British
American

Jalan Semantan, Damansara Heights
KUALA LUMPUR 23-03

Tel: 943022

Telex: MA31011

ACHEM,P*

Protel Engineering

P.0.Box 1917

Lot 6624, Section 64

23/4 Pending Road

Kuching, SARAWAK

Tel: 36299

Telex: MA 70904 PROTEL

Cable: PROTELENG

AEM

MALTA

Philip Toledo Ltd.
Notabile Rd.

MRIENEL

Tel: 447 47, 455 66
Telex: Media MW 649
P

MEXICO

Hewilett-Packard Mexicana, S.A.
de C.V.

Av. Periferico Sur No. 6501
Tepepan, Xochimilco

MEXICO D.F. 16020

Tel: 676-4600

Telex: 17-74-507 HEWPACK MEX
A,CH,CS,EMS,P
Hewlett-Packard Mexicana, S.A.
de C.V.

Ave. Colonia del Valle #409
Col. del Valle

Municipio de Garza Garcia
MONTERREY, N.L.

Tel: 78 42 41

Telex: 038 410

CH

ECISA

José Vasconcelos No. 218

Col. Condesa Deleg. Cuauhtémoc
MEXICO D.F. 06140

Tel: 553-1206

Telex: 17-72755 ECE ME

M

MOROCCO
Dolbeau

81 rue Karatchi
CASABLANCA

Tel: 3041-82, 3068-38
Telex: 23051, 22822
E

Gerep

2 rue d’Agadir

Boite Poslale 156
CASABLANCA

Tel: 272093, 272095
Telex: 23 739

P

NETHERLANDS
Hewlett-Packard Nederland B.V.
Van Heuven Goedhartlaan 121
NL 1181KK AMSTELVEEN

P.0. Box 667

NL1180 AR AMSTELVEEN

Tel: (020) 47-20-21

Telex: 13 216 HEPA NL
A,CH,CM,CS,E.MP,P
Hewlett-Packard Nederland B.V.
Bongerd 2

NL 2906VK CAPELLE, A/D IJSSEL
P.0. Box 41

NL 2900AA CAPELLE, A/D WSSEL
Tel: (10) 51-64-44

Telex: 21261 HEPAC NL
A,CH,CS,E

NEW ZEALAND
Hewilett-Packard (N.Z.) Ltd.
169 Manukau Road

P.0. Box 26-189

Epsom, AUCKLAND

Tel: 687-159

Cable: HEWPACK Auckland
CH,CM,E,P*
Hewlett-Packard (N.Z.) Ltd.
4-12 Cruickshank Street
Kilbirnie, WELLINGTON 3

P.0. Box 9443

Courtenay Place, WELLINGTON 3
Tel: 877-199

Cable: HEWPACK Wellington
CH,CM,E,P

(2]
&

Northrop Instruments & Systems
Ltd.

369 Khyber Pass Road

P.0. Box 8602

AUCKLAND

Tel: 794-091

Telex: 60605

AM

Northrop Instruments & Systems
Ltd

110 Mandeville St.

P.0. Box 8388

CHRISTCHURCH

Tel: 486-928

Telex: 4203

AM

Northrop Instruments & Systems
Lid.

Sturdee House

85-87 Ghuznee Street

P.0. Box 2406

WELLINGTON

Tel: 850-091

Telex: NZ 3380

AM

NORTHERN IRELAND
See United Kingdom

NORWAY
Hewlett-Packard Norge A/S
Folke Bernadottes vei 50
P.0. Box 3558

N-5033 FYLLINGSDALEN (Bergen)
Tel: (05) 16-55-40

Telex: 16621 hpnas n
CH,CS,E,MS
Hewlett-Packard Norge A/S
Osterndalen 18

P.0. Box 34

N-1345 OSTERAS

Tel: (02) 17-11-80

Telex: 16621 hpnas n
A,CH,CM,CS.EMP

OMAN

Khimjil Ramdas

P.0. Box 19

MUSCAT

Tel: 722225, 745601

Telex: 3289 BROKER MB MUSCAT
P

Suhail & Saud Bahwan
P.0.Box 169

MUSCAT

Tel: 734 201-3

Telex: 3274 BAHWAN MB

PAKISTAN

Mushko & Company Ltd.
1-B, Street 43

Sector F-8/1

ISLAMABAD

Tel: 26875

Cable: FEMUS Rawalpindi
AEM

Mushko & Company Ltd.
Oosman Chambers
Abadullah Haroon Road
KARACHI 0302

Tel: 524131, 524132
Telex: 2894 MUSKO PK
Cable: COOPERATOR Karachi
AEMP*

PANAMA

Electrénico Balboa, S.A.
Calle Samuel Lewis, Ed. Alfa
Apartado 4929

PANAMA 5

Tel: 64-2700

Telex: 3483 ELECTRON PG
ACMEM,P

[+]
&

SALES & SUPPORT OFFICES

Arranged alphabetically by country

PERU

Cfa Electro Médica S.A.

Los Flamencos 145, San Isidro
Casilla 1030

LIMA 1

Tel: 41-4325, 41-3703

Telex: Pub. Booth 25306
CMEMP

PHILIPPINES
The Online Advanced Syslems

Legaspi Village, Makati

P.0. Box 1510

Melro MANILA

Tel: 85-35-81, 85-34-91, 85-32-21
Telex: 3274 ONLINE

ACHCSEM

Electronic Specialists and
Proponents Inc.

690-B Epifanio de los Santos
Avenve

Cubao, QUEZON CITY

P.0. Box 2649 Maniia

Tel: 98-96-81, 98-96-82, 98-96-83
Telex: 40018, 42000 ITT GLOBE
MACKAY BOOTH

P

PORTUGAL

Mundinter

Intercambio Mundial de Comércio
SARL.

P.0. Box 2761

Avenida Antonio Augusto de Aguiar
138

P-LISBON

Tel: (19) 53-21-31, 53-21-37
Telex: 16691 munter p

M

Soquimi
Av. Oa Liberdade, 220-2

1298 LISBOA Codex

Tel: 56 21 81/2/3

Telex: 13316 SABASA

P

Telectra-Empresa Técnica de
Equipmentos Eléctricos S.A.R.L.
Rua Rodrigo da Fonseca 103
P.0. Box 2531

P-LISBON 1

Tel: (19) 68-60-72

Telex: 12598

CH,CS,EP

PUERTO RICO
Hewlett-Packard Puerto Rico
P.0. Box 4407

CAROLINA, Puerto Rico 00628
Calle 272 Edificio 203

Urb. Country Club

RIO PIEDRAS, Puerto Rico

Tel: (809) 762-7255
A,CH,CS

QATAR
Computearbia

P.0. Box 2750

DOHA

Tel: 883555

Telex: 4806 CHPARB
P

Eastern Technical Services
P.0.Box 4747

DOHA

Tel: 329 993

Telex: 4156 EASTEC DH

Nasser Trading & Contracting
P.0.Box 1563

DOHA

Tel: 22170, 23539

Telex: 4439 NASSER DH

M

SAUDI ARABIA

Modern Electronic Establishment
Hewiett-Packard Division

P.0. Box 281

Thuobah

AL-KHOBAR

Tel- 864-46 78

Telex: 671 106 HPMEEK SJ
Cable: ELECTA AL-KHOBAR
CHCSEMP

Modern Electronic Establishment
Hewilett-Packard Division

P.0. Box 1228

Redec Plaza, 6th Floor

JEDDAH

Tel: 644 38 48

Telex: 4027 12 FARNAS SJ
Cable: ELECTA JEDDAH
CH,CS,EMP

Modern Electronic Establishment
Hewiletl-Packard Division
P.0.Box 2728

RIYADH

Tel: 491-97 15, 491-63 87
Telex: 202049 MEERYD SJ
CH,CS,EMP

SCOTLAND
See United Kingdom

SINGAPORE

Hewlett-Packard Singapore (Sales)
Pte. Ltd.

P.0. Box 58 Alexandra Post Office
SINGAPORE, 9115

6th Floor, Inchcape House
450-452 Alexandra Road
SINGAPORE 0511

Tel: 631788

Telex: HPSGSO RS 34209

Cable: HEWPACK, Singapore
A,CH,CS,E,MS,P

Dynamar International Ltd.

Unit 05-11 Block 6

Kolam Ayer Industrial Estate
SINGAPORE 1334

Tel: 747-6188

Telex: RS 26283

cM

SOUTH AFRICA
Hewlett-Packard So Africa (Pty.)
Ltd.

P.0. Box 120

Howard Place CAPE PROVINCE 7450
Pine Park Center, Forest Drive,
Pinelands

CAPE PROVINCE 7405

Tel: 53-7954

Telex: 57-20006
A,CH,CM,E,MS,P

Hewlett-Packard So Africa (Pty.)
Ltd.

P.0. Box 37099

92 Overport Drive

DURBAN 4067

Tel: 28-4178, 28-4179, 28-4110
Telex: 6-22954

CH.CM

Hewlett-Packard So Africa (Pty.)
Lid.

6 Linton Arcade

511 Cape Road

Linton Grange

PORT ELIZABETH 6001

Tel: 041-302148

CH

Hewlett-Packard So Africa (Pty.)
Ltd. P.0.Box 33345

Glenstantia 0010 TRANSVAAL
1st Floor East

Constantia Park Ridge Shopping
Centre

Constantia Park

PRETORIA

Tel: 982043

Telex: 32163

CHE

Hewlett-Packard So Africa (Pty.)
L.

Private Bag Wendywood
SANDTON 2144

Tel: 802-5111, 802-5125
Telex: 4-20877

Cable: HEWPACK Johannesburg
A,CH,CM,CS.E MS,P

SPAIN

Hewlett-Packard Espafiola S.A.
Calle Entenza, 321
E-BARCELONA 29

Tel: 322.24.51, 321.73.54
Telex: 52603 hpbee
A,CH,CS,EMS,P
Hewlett-Packard Espafiola S.A.
Calle San Vicente S/No
Edificio Albia i

E-BILBAO 1

Tel: 423.83.06

A,CH,E.MS

Hewlett-Packard Espafiola S.A.
Crta. de la Corufia, Km. 16, 400
Las Rozas

E-MADRID

Tel: (1) 637.00.11

CH,CSM

Hewilett-Packard Espafiola S.A.
Avda. S. Francisco Javier, S/no
Planta 10. Edificio Sevilla 2,
E-SEVILLA §

Tel: 64.44.54

Telex: 72933

A,CS,MS,P

Hewilett-Packard Espafiola S.A.
Calle Ramon Gordillo, 1 (Entlo.3)
E-VALENCIA 10

Tel: 361-1354

CHP

SWEDEN

Hewlett-Packard Sverige AB
Sunnanvagen 14K

§-22226 LUND

Tel: (046) 13-69-79

Telex: (854) 17886 (via Spanga
office)

CH

Hewlett-Packard Sverige AB
Vastra Vintergatan 9

$-70344 OREBRO

Tel: (19) 10-48-80

Telex: (854) 17886 (via Spanga
office)

CH

Hewlett-Packard Sverige AB
Skalholtsgatan 9, Kista

Box 19

S-16393 SPANGA

Tel: (08) 750-2000

Telex: (854) 17886
A,CH,CM,CS,E,MS,P
Hewlett-Packard Sverige AB
Frotallisgatan 30
S-42132 VASTRA-FROLUNDA
Tel: (031) 49-09-50

Telex: (854) 17886 (via Spanga
office)

CH,E,P

SWITZERLAND
Hewlett-Packard (Schweiz) AG
Clarastrasse 12

CH-4058 BASLE

Tel: (61) 33-59-20

A

Hewlett-Packard (Schweiz) AG
7, rue du Bois-du-Lan

Case Postale 365

CH-1217 MEYRIN 1

Tel: (0041) 22-83-11-11
Telex:27333 HPAG CH
CH,CM,CS

Hewlett-Packard (Schweiz) AG
Alimend 2

CH-8967 WIDEN

Tel: (0041) 57 31 21 11
Telex: 53933 hpag ch

Cable: HPAG CH

A,CH,CM,CS E,MS,P

SYRIA

General Electronic Inc.
Nuri Basha P.0. Box 5781
DAMASCUS

Tel: 33-24-87

Telex: 11216 ITIKAL SY
Cable: ELECTROBOR DAMASCUS
E

Middle East Electronics
Place Azmé

P.0.Box 2308

DAMASCUS

Tel: 334592

Telex: 11304 SATACO SY
MP

TAIWAN

Hewilett-Packard Far East Ltd.
Kaohsiung Office

2/F 68-2, Chung Cheng 3rd Road
KAOHSIUNG

Tel: 241-2318, 261-3253
CH,CS,E

Hewlett-Packard Far East Ltd.
Taiwan Branch

Sth Floor

205 Tun Hwa North Road
TAIPEI

Tel: (02) 712-0404
Cable:HEWPACK Taipei
A,CH,CM,CS,EM,P

Ing Lih Trading Co.

3rd Floor, 7 Jen-Ai Road, Sec. 2
TAIPEI 100

Tel: (02) 3948191

Cable: INGLIH TAIPEI

A

THAILAND

Unimesa

30 Patpong Ave., Suriwong
BANGKOK 5

Tel: 235-5727

Telex: 84439 Simonco TH
Cable: UNIMESA Bangkok
ACHCSEM

Bangkok Business Equipment Lid.
5/5-6 Dejo Road

BANGKOK

Tel: 234-8670, 234-8671
Telex: 87669-BEQUIPT TH
Cable: BUSIQUIPT Bangkok
P

TRINIDAD & TOBAGO
Caribbean Telecoms Ltd.
50/A Jerningham Avenue

P.0. Box 732

PORT-OF-SPAIN

Tel: 62-44213, 62-44214
Telex: 235,272 HUGCO WG
CMEMP

TUNISIA

Tunisie Electronique

31 Avenue de la Liberte
TUNIS

Tel: 280-144

EP

Corema

1 ter. Av. de Carthage
TUNIS

Tel: 253-821

Telex: 12319 CABAM TN
M

TURKEY

Teknim Company Lld.
Iran Caddesi No. 7
Kavaklidere, ANKARA
Tel: 275800

Telex: 42155 TKNM TR
E

EMA.

Medina Eldem Sokak No.41/6
Yuksel Caddesi

ANKARA

Tel: 175 622

M

UNITED ARAB EMIRATES
Emitac Ltd.

P.0. Box 1641

SHARJAH

Tel: 354121, 354123

Telex: 68136 Emilac Sh
CHCSEMP

UNITED KINGDOM

GREAT BRITAIN
Hewlett-Packard Ltd.
Trafalgar House
Navigation Road
ALTRINCHAM

Chesire WA14 1NU

Tel: (061) 928-6422
Telex: 668068
ACH,CSEM
Hewilett-Packard Ltd.
Oakfield House, Oakfield Grove
Clifton

BRISTOL BS8 2BN, Avon
Tel: (027) 38606

Telex: 444302

CHM,P

GREAT BRITAIN (Cont’d)
Hewlett-Packard Lid.
Fourier House
257-263 High Street
LONDON COLNEY
Herts., AL2 1HA, St. Albans
Tel: (0727) 24400
Telex: 1-8952716
CH,CS,E
Hewlett-Packard Lid.
Quadrangle

106-118 Station Road
REDHILL, Surrey

Tel: (0737) 68655
Telex: 947234
CH,CS,E
Hewlett-Packard Lid.
Avon House

435 Stratford Road
SHIRLEY, Solihull

West Midlands B90 4BL
Tel: (021) 745 8800
Telex: 339105

CH

Hewlett-Packard Lid.
West End House 41
High Street, West End
SOUTHAMPTON
Hampshire S03 3DQ
Tel: (703) 886767
Telex: 477138

CH

Hewlett-Packard Lid.
King Street Lane
WINNERSH, Wokingham
Berkshire RG11 5AR
Tel: (0734) 784774
Telex: 847178
ACHEM
Hewiett-Packard Ltd.
Nine Mile Ride
WOKINGHAM
Berkshire, 3RG11 3LL
Tel: 3446 3100
Telex: 84-88-05
CH,CS,E

NORTHERN IRELAND
Cardiac Services Company
95A Finaghy Road South
BELFAST BT 10 0BY

Tel: (0232) 625-566

Telex: 747626

M

SCOTLAND
Hewlett-Packard Ltd.
SOUTH QUEENSFERRY
West Lothian, EH30 9GT
Tel: (031) 3311188
Telex: 72682
ACHCM,CSEM

UNITED STATES

Alabama
Hewiett-Packard Co.

P.0. Box 7000

8290 Whitesburg Drive, S.E.
HUNTSVILLE, AL 35802

Tel: (205) 830-2000
CH,CM,CS,EM*

Arizona
Hewiett-Packard Co.
8080 Point Parkway West
PHOENIX, AZ 85044

Tel: (602) 273-8000
A,CH,CM,CS,EMS
Hewlett-Packard Co.
2424 East Aragon Road
TUCSON, AZ 85706

Tel: (602) 889-4631
CHEMS**

California
Hewlett-Packard Co.

99 South Hill Dr.
4BRISBANE, CA 94005
Tel: (415) 330-2500
CH,CS

Hewlett-Packard Co.
7621 Canoga Avenue
CANOGA PARK, CA 91304
Tel: (213) 702-8363
ACH,CSEP
Hewlett-Packard Co.
P.0. Box 7830 (93747)
5060 E. Clinton Avenue, Suite 102
FRESNO, CA 93727

Tel: (209) 252-9652
CH,CS,MS

Hewlett-Packard Co.
P.0. Box 4230

1430 East Orangethorpe
FULLERTON, CA 92631
Tel: (714) 870-1000
CH,CM,CS,E.MP
Hewlett-Packard Co.
320 S. Kellogg, Suite B
GOLETA, CA 93117

Tel: (805) 967-3405

CH

Hewlett-Packard Co.
5400 W. Rosecrans Boulevard
LAWNDALE, CA 90260
P.0. Box 92105

LOS ANGELES, CA 90009
Tel: (213) 970-7500
Telex: 910-325-6608
CH,CM,CS,MP
Hewlett-Packard Co.
3200 Hillview Avenue
PALO ALTO, CA 94304
Tel: (415) 857-8000
CH,CS,E

Hewilett-Packard Co.

P.0. Box 15976 (95813)
4244 So. Market Court, Suite A
SACRAMENTO, CA 95834
Tel: (916) 929-7222
A*,CH,CS,EMS
Hewlett-Packard Co.
9606 Aero Drive

P.0. Box 23333 SAN DIEGO, CA
92123

Tel: (619) 279-3200
CH,CM,CS,E,MP
Hewlett-Packard Co.
2305 Camino Ramon “C”
SAN RAMON, CA 94583
Tel: (415) 838-5900
CH,CS

Hewilett-Packard Co.
P.0. Box 4230

Fullerton, CA 92631

363 Brookhollow Drive
SANTA ANA, CA 92705
Tel: (714) 641-0977
A,CH,CM,CS,MP
Hewiett-Packard Co.
3003 Scott Boulevard
SANTA CLARA, CA 95050
Tel: (408) 988-7000
Telex: 910-338-0586
A,CH,CM,CS,E,MP
Hewlett-Packard Co.
5703 Corsa Avenue
WESTLAKE VILLAGE, CA 91362
Tel: (213) 706-6800
E*,CH*,CS*

SALES & SUPPORT OFFICES

Arranged alphabetically by country

Colorado
Hewilett-Packard Co.

24 Inverness Place, East
ENGLEWOOD, CO 80112
Tel: (303) 771-3455
Telex: 910-935-0785
A,CH,CM,CS E,MS

Connecticut
Hewilett-Packard Co.

47 Barnes Industrial Road South
P.0. Box 5007

WALLINGFORD, CT 06492

Tel: (203) 265-7801
A,CH,CM,CS,E,MS

Florida

Hewilett-Packard Co.

P.0. Box 24210 (33307)
2901 N.W. 62nd Street
FORT LAUDERDALE, FL 33309
Tel: (305) 973-2600
CH,CS,E,MP
Hewilett-Packard Co.

P.0. Box 13910

6177 Lake Ellenor Drive
ORLANDO, FL 32809

Tel: (305) 859-2900
A,CH,CM,CS E.MS
Hewlett-Packard Co.

57508 N. Hoover Bivd., Suite 123
TAMPA, FL 33614

Tel: (813) 884-3282
A*,CH,CM,CS.E* M*

Georgia
Hewlett-Packard Co.
P.0. Box 105005
30348 ATLANTA,GA
2000 South Park Place
ATLANTA, GA 30339
Tel: (404) 955-1500
Telex: 810-766-4890
A,CH,CM,CS E.MP

Hawali

Hewlett-Packard Co.
Kawaiahao Plaza, Suite 190
567 South King Street
HONOLULU, HI 96813

Tel: (808) 526-1555
A,CH,E.MS

fllinois

Hewlett-Packard Co.

P.0. Box 1607

304 Eidorado Road
BLOOMINGTON, IL 61701
Tel: (309) 662-9411
CHMS**

Hewlett-Packard Co.

1100 31st Street, Suite 100
DOWNERS GROVE, IL 60515
Tel: (312) 960-5760

CH,CS

Hewlett-Packard Co.

5201 Tollview Drive
ROLLING MEADOWS, IL 60008
Tel: (312) 255-9800

Telex: 910-687-1066
A,CH,CM,CS E,MP

Indiana

Hewlett-Packard Co.

P.0. Box 50807

7301 No. Shadeland Avenue
INDIANAPOLIS, IN 46250

Tel: (317) 842-1000
A,CH,CM,CS EMS

lowa

Hewilett-Packard Co.
1776 22nd Street, Suite 1
WEST DES MOINES, IA 50262
Tel: (515) 224-1435
CHMS**

Hewlett-Packard Co.
2415 Heinz Road

IOWA CITY, IA 52240

Tel: (319) 351-1020
CHE* MS

Kansas
Hewlett-Packard Co.
7804 East Funston Road
Suite 203

WICHITA, KA 67207

Tel: (316) 684-8491

CH

Kentucky
Hewilett-Packard Co.
10300 Linn Station Road
Suite 100

LOUISVILLE, KY 40223
Tel: (502) 426-0100
A,CH,CS,MS

Louisiana
Hewlett-Packard Co.
P.0. Box 1449
KENNER, LA 70063
160 James Drive East
ST. ROSE, LA 70087
Tel: (504) 467-4100
A,CH,CS,EMS

Maryland
Hewlett-Packard Co.
3701 Koppers Street
BALTIMORE, Md. 21227
Tel: (301) 644-5800
Telex: 710-862-1943
A,CH,CM,CS E,MS

Hewlett-Packard Co.
2 Choke Cherry Road
ROCKVILLE, MD 20850
Tel: (301) 948-6370
A,CH,CM,CS E.MP

Massachusetts
Hewilett-Packard Co.
32 Hartwell Avenue
LEXINGTON, MA 02173
Tel: (617) 861-8960
A,CH,CM,CS,E.MP

Michigan
Hewlett-Packard Co.
23855 Research Drive
FARMINGTON HILLS, MI 48024
Tel: (313) 476-6400
A,CH,CM,CS E,MP
Hewlett-Packard Co.
4326 Cascade Road S.E.
GRAND RAPIDS, MI 49506
Tel: (616) 957-1970
CH,CS,MS
Hewilett-Packard Co.

1771 W. Big Beaver Road
TROY, Ml 48084

Tel: (313) 643-6474
CH,CS

Minnesota
Hewilett-Packard Co.
2025 W. Larpenteur Ave.
ST. PAUL, MN 55113

Tel: (612) 644-1100
A,CH,CM,CS E,MP

L]
B

Missouri
Hewlett-Packard Co.
11131 Colorado Avenue
KANSAS CITY, MO 64137
Tel: (816) 763-8000
A,CH,CM,CS,EMS
Hewlett-Packard Co.
13001 Hollenberg Drive
BRIDGETON, MO 63044
Tel: (314) 344-5100
A,CH,CS,E.MP

Nebraska
Hewlett-Packard

10824 Oid Mill Rd., Suite 3
OMAHA, NE 68154

Tel: (402) 334-1813
CM,MS

New Jersey
Hewlett-Packard Co.
W120 Century Road
PARAMUS, NJ 07652
Tel: (201) 265-5000
A,CH,CM,CS,E.MP
Hewlett-Packard Co.
60 New England Av. West
PISCATAWAY, NJ 08854
Tel: (201) 981-1199
A,CH,CM,CS,E

New Mexico
Hewlett-Packard Co.

P.0. Box 11634 (87192)
11300 Lomas Bivd. N.E.
ALBUQUERQUE, NM 87112
Tel: (505) 292-1330
CH,CS,E,MS

New York
Hewiett-Packard Co.
Computer Drive South
ALBANY, NY 12205

Tel: (518) 458-1550
Telex: 710-444-4691
A,CH,EMS
Hewlett-Packard Co.
P.0. Box AC

9600 Main Street
CLARENCE, NY 14031
Tel: (716) 759-8621

CH

Hewilett-Packard Co.
200 Cross Keys Office Park
FAIRPORT, NY 14450
Tel: (716) 223-9950
CH,CM,CS,E.MS
Hewlett-Packard Co.
7641 Henry Clay Bivd.
LIVERPOOL, NY 13088
Tel: (315) 451-1820
A,CH,CM,E.MS
Hewilett-Packard Co.
No. 1 Pennsylivania Plaza
55th Floor

34th Street & 8th Avenue
MANHATTAN NY 10001
Tel: (212) 971-0800
CH,CS,E* M*
Hewlett-Packard Co.
250 Westchester Avenue
WHITE PLAINS, NY 10604
Tel: (914) 328-0884
CM,CH,CS.E
Hewlett-Packard Co.

3 Crossways Park West
WOODBURY, NY 11797
Tel: (516) 921-0300
Telex: 510-221-2183
A,CH,CM,CS,E,MS

O]

SALES & SUPPORT OFFICES

Arranged alphabetically by country

UNITED STATES (Cont'd) Texas

North Carolina
Hewlett-Packard Co.
P.0. Box 26500 (27420)
5605 Roanne Way
GREENSBORO, NC 27409
Tel: (919) 852-1800
A,CH,CM,CS,E,MS

Ohio
Hewlett-Packard Co.
9920 Carver Road
CINCINNATI, OH 45242
Tel: (513) 891-9870
CH,CS,MS
Hewlett-Packard Co.
16500 Sprague Road
CLEVELAND, OH 44130
Tel: (216) 243-7300
A,CH,CM,CS,E,MS

Hewilett-Packard Co.
962 Crupper Ave.
COLUMBUS, OH 43229
Tel: (614) 436-1041
CH.CM,CSE*
Hewilett-Packard Co.
P.0. Box 280

330 Progress Rd.
DAYTON, OH 45449
Tel: (513) 859-8202
A,CHCME* MS

Oklahoma
Hewlett-Packard Co.

P.0. Box 75609 (73147)
304 N. Meridian, Suite A
3

OKLAHOMA CITY, OK 73107
Tel: (405) 946-9499
A*,CHE* MS
Hewlett-Packard Co.
3840 S. 103rd E. Avenue
Logan Building, Suite 100
TULSA, OK 74145

Tel: (918) 665-3300
A**,CHCSM*

Oregon
Hewlett-Packard Co.
9255 S. W. Pioneer Court
WILSONVILLE, OR 97070
Tel: (503) 682-8000
ACH,CSE* MS

Pennsylvania
Hewilett-Packard Co.
1021 8th Avenue

KING OF PRUSSIA, PA 19046
Tel: (215) 265-7000
A,CH,CM,CSE,MP
Hewlett-Packard Co.
111 Zeta Drive
PITTSBURGH, PA 15238
Tel: (412) 782-0400
A,CH,CS EMP

South Carolina
Hewlett-Packard Co.

P.0. Box 21708 (29221)
Brookside Park, Suite 122
1 Harbison Way
COLUMBIA, SC 29210

Tel: (803) 732-0400
CH,E.MS

Tennessee
Hewlett-Packard Co.
3070 Directors Row
MEMPHIS, TN 38131
Tel: (901) 346-8370
A,CHMS

Hewilett-Packard Co.
Suite C-110

4171 North Mesa

EL PASO, TX 79902
Tel: (915) 533-3555
CHE* MS**
Hewlett-Packard Co.
P.0. Box 42816 (77042)
10535 Harwin Street
HOUSTON, TX 77036
Tel: (713) 776-6400
A,CH,CM,CS,E,MP
Hewilett-Packard Co.
P.0. Box 1270

930 E. Campbell Rd.
RICHARDSON, TX 75080
Tel: (214) 231-6101
A,CH,CM,CS.E,MP

Hewlett-Packard Co.

P.0. Box 32993 (78216)
1020 Central Parkway South
SAN ANTONIO, TX 78232

Tel: (512) 494-9336
CH,CS,E,MS

Utah

Hewlett-Packard Co.

P.0. Box 26626 (84126)
3530 W. 2100 South
SALT LAKE CITY, UT 84119
Tel: (801) 974-1700
A,CH,CS.EMS

Virginia
Hewilett-Packard Co.
P.0. Box 9669 (23228)
RICHMOND, Va. 23228
4305 Cox Road

GLEN ALLEN, Va. 23060
Tel: (804) 747-7750
A,CH,CSEMS

Washington
Hewlett-Packard Co.
15815 S.E. 37th Street
BELLEVUE, WA 98006
Tel: (206) 643-4000
A,CH,CM,CS E,MP
Hewlett-Packard Co.
Suite A

708 North Argonne Road
SPOKANE, WA 99206
Tel: (509) 922-7000
CH,CS

Waest Virginia
Hewlett-Packard Co.

P.0. Box 4297

4604 MacCorkle Ave., S.E.
CHARLESTON, WV 25304
Tel: (304) 925-0492

AMS

Wisconsin
Hewlett-Packard Co.

150 S. Sunny Slope Road
BROOKFIELD, Wi 53005
Tel: (414) 784-8800
A,CH,CSE* MP

URUGUAY

Pablo Ferrando S.A.C. e .
Avenida Nalia 2877
Casilla de Correo 370
MONTEVIDEO

Tel: 80-2586

Telex: Public Booth 901
ACMEM

VENEZUELA

Hewlett-Packard de Venezuela C.A.
3A Transversal Los Ruices Norte
Edificio Segre

Apartado 50933

CARACAS 1071

Tel: 239-4133

Telex: 25146 HEWPACK
A,CH,CS,EMS,P

Hewlett-Packard de Venezuela C.A.
Calle-72-Entre 3H Y 3Y, No.3H-40
Edificio Ada-Evelyn, Local B
Apartado 2646

MARACAIBO, Estado Zulia

Tel: (061) 80.304

CE*

Hewlett-Packard de Venezuela C.A.
Calle Vargas Rondon

Edificio Seguros Carabobo, Piso 10

VALENCIA

Tel:(041) 51 385
CH,CS,P

Colimodio S.A.

Este 2 - Sur 21 No. 148
Apartado 1053

CARACAS 1010

Tel: 571-3511

Telex: 21529 COLMODIO
M

ZIMBABWE

Field Technical Sales
45 Kelvin Road, North
P.B. 3458

SALISBURY

Tel: 705 231

Telex: 4-122 RH
CEMP

HEADQUARTERS
OFFICES

If there is no sales office listed for
your area, contact one of these
headquarters offices.

NORTH/CENTRAL
AFRICA

Hewlett-Packard S.A.

7 Rue du Bois-du-Lan
CH-1217 MEYRIN 1, Switzerland
Tel: (022) 83 12 12

Telex: 27835 hpse

Cable: HEWPACKSA Geneve

ASIA

Hewlett-Packard Asia Ltd.

6th Floor, Sun Hung Kai Centre
30 Harbour Rd.

G.P.0. Box 795

HONG KONG

Tel: 5-832 3211

Telex: 66678 HEWPA HX
Cable: HEWPACK HONG KONG

CANADA

Hewlett-Packard (Canada) Lid.
6877 Goreway Drive
MISSISSAUGA, Ontario L4V 1M8
Tel: (416) 678-9430

Telex: 610-492-4246

EASTERN EUROPE
Hewlett-Packard Ges.m.b.h.
Lieblgasse 1

P.0.Box 72

A-1222 VIENNA, Austria

Tel: (222) 2365110

Telex: 13 4425 HEPA A

NORTHERN EUROPE
Hewlett-Packard S.A.
Uilenstede 475

NL-1183 AG AMSTELVEEN
The Netherlands

P.0.Box 999

NL-1180 AZ AMSTELVEEN
The Netherlands

Tel: 20 437771

OTHER EUROPE
Hewlett-Packard S.A.

7 rue du Bois-du-Lan
CH-1217 MEYRIN 1, Switzerland
Tel: (022) 83 1212

Telex: 27835 hpse

Cable: HEWPACKSA Geneve

MEDITERRANEAN AND
MIDDLE EAST
Hewilett-Packard S.A.
Mediterranean and Middle East
Operations

Atrina Centre

32 Kifissias Ave.

Maroussi, ATHENS, Greece

Tel: 682 88 11

Telex: 21-6588 HPAT GR
Cable: HEWPACKSA Athens

EASTERN USA
Hewlett-Packard Co.
4 Choke Cherry Road
Rockville, MD 20850
Tel: (301) 258-2000

MIDWESTERN USA
Hewilett-Packard Co.

5201 Tollview Drive
ROLLING MEADOWS, IL 60008
Tel: (312) 255-9800

SOUTHERN USA
Hewlett-Packard Co.

P.0. Box 105005

450 Interstate N. Parkway
ATLANTA, GA 30339

Tel: (404) 955-1500

WESTERN USA
Hewlett-Packard Co.
3939 Lankershim Bivd.
LOS ANGELES, CA 91604
Tel: (213) 877-1282

OTHER INTERNATIONAL
AREAS

Hewlett-Packard Co.
Intercontinental Headquarters
3495 Deer Creek Road

PALO ALTO, CA 94304

Tel: (415) 857-1501

Telex: 034-8300

Cable: HEWPACK

March 1983 5952-6900
HP distributors are printed in italics.

(6'0 HEWLETT

PACKARD

HEWLETT-PACKARD COMPANY

Data Systems Division
MANUAL PART NO. 92060-90023 11000 Wolfe Road

Printed in U.S.A. July 1980 Cupertino, California 95014

	Front
	cover/inside

	Contents
	title
	ii
	iii
	iv
	v/vi
	vii
	viii
	ix
	x
	xi
	xii
	xiii
	xiv

	Section 1
	1-1
	1-2
	1-3
	1-4
	1-5
	1-6

	Section 2
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	2-8
	2-9
	2-10
	2-11
	2-12
	2-13
	2-14

	Section 3
	3-1
	3-2
	3-2a/3-2b
	3-3
	3-4
	3-5
	3-6

	Section 4
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	4-7
	4-8
	4-9
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16

	Section 5
	5-1
	5-2
	5-3
	5-4

	Section 6
	6-1
	6-2
	6-3
	6-4
	6-5
	6-6
	6-7
	6-8
	6-9
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16

	Section 7
	7-1
	7-2
	7-3
	7-4
	7-5
	7-6
	7-7
	7-8
	7-9
	7-10
	7-11
	7-12

	Section 8
	8-1
	8-2
	8-3
	8-4
	8-5
	8-6
	8-7
	8-8
	8-9
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	8-23
	8-24
	8-25
	8-26
	8-27
	8-28
	8-29/8-30

	Section 9
	9-1
	9-2
	9-3
	9-4
	9-5
	9-6
	9-7
	9-8
	9-9
	9-10
	9-11
	9-12
	9-13
	9-14
	9-15
	9-16
	9-17
	9-18
	9-19
	9-20
	9-21/9-22

	Appendix A
	A-1
	A-2
	A-3
	A-4
	A-5
	A-6

	Appendix B
	B-1/B-2

	Appendix C
	C-1
	C-2
	C-3/C-4

	Appendix D
	D-1
	D-2

	Appendix E
	E-1
	E-2

	Appendix F
	F-1
	F-2
	F-3
	F-4
	F-5
	F-6
	F-7
	F-8
	F-9
	F-10
	F-11
	F-12
	F-13/F-14

	Appendix G
	G-1
	G-2
	G-3
	G-4
	G-5
	G-6
	G-7
	G-8
	G-9
	G-10
	G-11
	G-12
	G-13
	G-14
	G-15
	G-16
	G-17
	G-18
	G-19/G-20

	Appendix H
	H-1
	H-2
	H-3/H-4

	Appendix I
	I-1
	I-2
	I-3
	I-4

	Appendix J
	J-1
	J-2
	J-3
	J-4
	J-5
	J-6
	J-7
	J-8
	J-9
	J-10
	J-11/J-12

	Index
	index-1
	index-2
	index-3
	index-4

	Comment Sheet
	comment-1
	comment-2

	Sales Offices
	sales-1
	sales-2
	sales-3
	sales-4
	sales-5
	sales-6

	Back
	cover

