HEWLETT
PACKARD

A

Multi-User Real-Time BASIC

BASIC/1000D
Reference Manual

BASIC/1000D
Multi-User Real-Time BASIC

Reference Manual

KA Faciaro

HEWLETT-PACKARD COMPANY

Data Systems Division Update 3 April 1981
11000 Wolfe Road MANUAL PART NO. 92060-90016
Cupertino, California 95014 Printed in U.S.A. April 1980

PRINTING HISTORY

The Printing History below identifies the Edition of this Manual and any Updates that are included. Periodically, Update
packages are distributed which contain replacement pages to be merged into the manual, including an updated copy of this
Printing History page. Also, the update may contain write-in instructions.

Each reprinting of this manual will incorporate all past Updates, however, no new information will be added. Thus, the
reprinted copy will be identical in content to prior printings of the same edition with its user-inserted update information.
New editions of this manual will contain new information, as well as all Updates.

To determine what manual edition and update is compatible with your current software revision code, refer to the
appropriate Software Numbering Catalog, Software Product Catalog, or Diagnostic Configurator Manual.

Sixth Edition Feb 1980
Update 1 Apr 1980
Reprintedccoiiiiiiiiiennnnnnn. Apr 1980 (Update 1 incorporated)
Update 2. Oct 1980
Update 3 ... Apr 1981 Manual enhancement
NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for
errors contained herein or for incidental or consequential damages in connection with the furnishing,
performance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied, reproduced or translated to another program language
without the prior written consent of Hewlett-Packard Company.

Copyright © 1981 by HEWLETT-PACKARD COMPANY

ii

PREFACE

Multi-User Real-Time BASIC provides an augmented real-time version of the BASIC language with
which as many as four users may code and execute programs simultaneously from different terminals.
The Multi-User Real-Time BASIC subsystem provides functions, subroutines, and statements which
allow you to schedule tasks, control instrument subsystems, the plotter and magnetic tape devices, and
provides many additional capabilities. It may be run under control of the RTE Operating System.

This manual is a reference guide to the BASIC language, the BASIC system commands, and the
subroutines available with the system. You should be familiar with the RTE Operating System. If a
BASIC system has been generated and is available for your use, you will find all the information you
need to create and run BASIC programs in this manual. These manuals are shown in the documenta-
tion maps which follow this preface.

Section I introduces Multi-User Real-Time BASIC and describes some of its general features. Sections
II through VII describe the BASIC programming language. Expressions are defined in Section II and
statements in Section III. Section IV describes statements in relation to strings and special charac-
teristics of string variables and constants. Section V describes functions, lists the functions provided
with BASIC, and tells you how to define your own functions. Both BASIC subroutines embedded in a
BASIC program and external subroutines written in BASIC or other languages are described in
Section VI. Section VII describes disc files and the statements and functions which manipulate files.

Section VIII tells you how to execute the Real-Time BASIC Interpreter. Section IX describes the
commands used to communicate with the Interpreter once it is running. Debugging commands are
described separately in Section X.

Sections XI through XVII deal with the subroutines and statements which schedule tasks and control
specific hardware. Section XI describes real-time task scheduling and the subroutine calls BASIC
provides for this purpose. Bit manipulation functions are described in Section XII. Both commands and
subroutine calls used to read, write, and control magnetic tape devices are described in Section XIII.
Section XIV provides instructions on generating the Branch and Mnemonic Tables which are required
if external subroutines are used with BASIC. Section XV describes the HP 2313/91000 Subsystem
subroutine calls and configuration. Section XVI describes the HP 6940 Subsystem configuration and
routines. The HP 7210 Plotter subroutine calls are described in Section XVII.

Section XVIII provides instructions on generating the Instrument Table tape which is required if the
instrumentation subroutines are to be used.

Appendix A contains alphabetical summaries of all statements, commands, and library subroutines.
Appendix B describes error messages, Appendix C contains the ASCII character set, and Appendix D
provides instructions for loading the Multi-User Real-Time BASIC software. Appendix E contains
information about HP-IB/BASIC data conversion and subroutine table requirements for calling HP-IB
utility subroutines.

iii/iv

CONTENTS

Section Page
INTRODUCTION
Featuresccciiiiiiiiiiiiiiiiiii. 1-1
Conversational Programming 1-1
Multiple Peripheral Device /O 1-1
Real-Time Task Scheduling 1-1
Program Debugging Aids 1-2
File Capabilitiescoiiian. 1-2
Environment i 1-2
Hardwarec i, 1-2
Softwarec.iiii e 1-3
Commands and Statements 1-5
Commandsooviiiniii e 1-5
Statements i 1-5
BASIC Programsoiiiriiiineeennn... 1-6
Character Editing 1-7
Character Editing in Multipoint 1-8
Correction of Typing Errors 1-9
Logical Unit Numbers 1-9
Syntax Conventions..............ccoviiiiineeen... 1-10
Section II Page
EXPRESSIONS
Constantsc..uuiiieiieiiiiiiiiaiane 2-1
Numeric Constants ..., 2-1
Floating-Point Numbers 2-2
Literal Strings i 2-2
Variablest 2-2
Functions i 2-3
OPEratorsvvivereeneeenne i 2-4
Evaluating Expressions 2-5
Section III Page
STATEMENTS
LET . e 3-1
REM ..o e 3-4
GOTO ..o 3-4
END/STOP ..o e 3-5
FOR...NEXT ... it 3-6
IF .. . THENo 3-8
PRINT ... e 3-9
PRINT USINGo 3-11
Numeric Output Formats3-13
Integers ... 3-13
Fixed-Point Numbers 3-14
Floating-Point Numbers 3-14
TAB Functioncooiiiie ... 3-15
READ/DATA/RESTORE 3-15
INPUT ... e e 3-16
DIM . e 3-18
COM ... 3-18
PAUSE ... 3-19
WAIT . 3-20

Section IV Page
STRINGS
String ... 4-1
String Variable 4-2
Substring ... 4-2
Strings and Substrings 4-3
String DIM i 4-4
String Assignment i, 4-5
String INPUT, 4-6
Printing Strings i 4-6
Reading Strings ..., 4-7
String IF ... 4-8
LEN Functioncciiiiiiiiiiiiinnn.... 4-8
Strings in DATA Statements 4-9
Printing Stringson Files......................... 4-10
Reading Strings from Files 4-10
Decimal String Arithmetic Routines 4-11
Section V Page
FUNCTIONS
System-Defined Functions 5-1
User-Defined Functions 5-2
Section VI Page
SUBROUTINES
GOSUB/RETURNo 6-1
CHAIN .. e e 6-4
CALL ... e 6-6
FAIL Error Option ..., 6-9
The IERR Function 6-10
SERR ...ttt 6-10
Parameter Conversionoouuuunn 6-10
INVOKE ... e 6-15
Section VII Page
FILES
File Characteristicsccoiiiini... 7-1
CREATE and PURGE 7-2
FILES Statement 7-2
ASSIGN Statementc.cciiiiiiin, 7-3
IF END #. .. THEN Statement 7-4
Restoring the Data Pointer 7-5
Serial File READ Statement 7-5
Readinga Recordcooiiiiiiiiinnn. 7-6
Serial File PRINT Statement 7-7
Printinga Recordl 7-8
TYP Functioncoiiiiiiiiiiiiininnenn, 7-9
Modifying Recordscooviiiinn, 7-9
Section VIII Page
STARTING UP
Scheduling BASICo o i 8-1
Using BASIC 8-3
Start Up Optionscooiviiiiiiiiinnn. 8-3

CONTENTS (continued)

Section IX Page
OPERATOR COMMANDS

LOAD ... e 9-1
SAVE/CSAVE e 9-3
MERGE ... 9-4
REPLACE.o et 9-5
DELETE ... 9-5
CREATE i 9-6
PURGE e 9-7
RENAME e 9-8
RESEQ ...t 9-8
RUN . 9-9
LOCK/UNLOCK ... 9-10
BYE .. 9-10
LIST . 9-11
*BRBASIC 9-11
CALLS ... 9-12
TABLES 9-14
Section X Page
DEBUGGING COMMANDS

TRACE/UNTRACE ... 10-2
BREAK/UNBREAKciiiiiiinn... 10-2
RESUME i 10-3
ABORT ... e 10-4
SIM/UNSIM . ..o i 10-5
SHOW .. e e 10-5
SE T 10-6
Section XI Page
REAL-TIME TASK SCHEDULING

Introduction i 11-1
Methods of Initiating Tasks 11-1
Prioritieso 11-2
Response Timeccnin, 11-3
The BASIC Scheduler 11-3
DSABL ... e 11-5
ENABL ... 11-5
SETP ..o e 11-6
START . .. 11-7
TIME ... 11-8
TRAP Statementot 11-9
TRNON ... e 11-11
LY S 11-12
Program Example 11-12
Table Preparation 11-17
Error Messages ..o, 11-17
Section XII Page
BIT MANIPULATION OPERATIONS

Bit Manipulation Word Format 12-1
AND .. 12-1
IBCLR ..o 12-2
IBSET (Bit Set)ccoviiiiiiiii.a.. 12-3
IBTST (Bit Test)covviiiie i 12-3

TEOR ..ot e 12-4
NOT . 12-5
OR 12-5
ISETC (Set to Octal)c.cciiiiiinn. 12-6
ISHFT (Register Shift) 12-6
Branch and Mnemonic Table Preparation 12-7
Section XIII Page
MAGNETIC TAPE I/O
Magnetic Tape Operator Commands 13-1
Magnetic Tape Calls 13-2
MTTRT ... e 13-2
MTTRD ... e 13-2
MTTPT ... 13-3
MTTFES .. e 13-4
Tape Manipulation Errors 13-4
Branch and Mnemonic Table Entries 13-5
Sample Program Using Magnetic Tape............ 13-5
Section XIV Page
SUBROUTINE TABLE GENERATION
RTETG ... e 14-2
Scheduling RTETGc. ..t 14-2
The First RTETG Command 14-3
Other RTETG Commands 14-3
RTETG Output Files..................oooiiiia. 14-5
RTETG Commands Required for
Library Subroutines 14-5
Running the Transfer File 14-7
Error Messagescoovviiiiiiiinn... 14-7
Replacing a Subroutine 14-7
Section XV Page
HP 2313/91000 DATA ACQUISITION
SUBSYSTEM
Measurement of Analog Input 15-1
Analog Output 15-1
HP 2313/91000 Subsystem Subroutines 15-1
AIRDV (Random Scan) 15-2
AISQV (Sequential Scan) 15-3
AOV (Digital to Analog Conversion) 15-4
NORM ... 15-5
PACER 15-6
RGAIN ... 15-7
SGAIN ... 15-8
Subsystem Errors 15-8
Table Preparation 15-9
Subsystem Concept 15-9
Card Configuration 15-10
Channel Numbering 15-11
Setting Gain 15-11

vi Update 2

CONTENTS (continued)

Section XVI Page
HP 6940 MULTIPROGRAMMER
SUBSYSTEM
HP 6940 Subsystem Subroutines 16-1
DAC 16-1
MPNRM 16-2
RDBIT ... 16-2
RDWRD (Read Channel) 16-3
SENSE . ..o 16-4
WRBIT ... s 16-5
WRWRD (Write Channel) 16-6
Subsystem Errorscoiiiiiiiiii. 16-6
Table Preparationcocvuvn.. 16-7
Card Configurationccovvviiiiinnn.. 16-7
Expansionoiiiiiiiiii i 16-8
Channel Numbering 16-8
Section XVII Page
HP 7210 PLOTTER
AXIS e 17-1
FACT .. 17-2
LINES .. e 17-2
LLEFT . 17-3
NUMB .. 17-4
PLOT .. 17-4
PLTLU ... e e 17-5
SCALE 17-5
SEACT .. e 17-6
SYMB .. e e 17-7
URITE e 17-8
WHERE 17-8
Table Preparation 17-8
Section XVIII Page
INSTRUMENT TABLE GENERATION
Operating Instructions 18-1
HP 2313/91000 Configuration Phase 18-1
HP 6940 Configuration Phase 18-2
Loading the Tapeciiiiiinnao.... 18-4
Error Messagescooviiiiinenneennnnnn. 18-4

Section XIX Page
FORMATTED OUTPUT
Specifying Formatted OQutput 19-1
Using List ..., 19-1
Format String 19-1
Using Formatted Output 19-2
Number Representation 19-2
Carriage Control 19-4
Literal String 19-4
Delimiterscooooiiiii ... 19-4
Tab Function 19-5
String Representation 19-5
Report Generation 19-8
PRINT USING Format Errors 19-9
Appendix Page
SUMMARY OF STATEMENTS,
COMMANDS, AND SUBROUTINES A-1
Statement Summary A-1
Command Summary A-3
Subroutine Summary A-5
ERROR MESSAGES B-1
HP CHARACTER SET FOR
COMPUTER SYSTEMS C-1
RTE Special Characters........................... C-4
LOADING BASIC SOFTWARE D-1
System Generation D-1
Loading the Interpreter D-2
Set Up Files for Loading Overlays D-2B
System Considerations D-2B
Multiple Copies of BASICcc.o.... D-3
Summary of Steps Required to
Generate a BASIC System D4
HP-IB/BASIC DATA CONVERSION E-1
Data Conversion Requests — DCODE E-1
Binary-to-ASCIIo . E-2
ASCII-to-Binaryooiiiiinin.. E-3
BLEKS ..o E-4
DEBS ... E-5
NUMand CHRS ...t E-6

Update 2 vii

ILLUSTRATIONS

Title Page Title Page
Typical Systemcooiiiiiiii 1-3 Tape Control Sample Program 13-5
RTE Memory Layout with BASIC 1-4 BASIC and an Overlay in Memory 14-1
Preparing a FORTRAN Function for Use RTETG Commands for Library Subroutines 14-5

by BASIC Programoooiiininn. 6-7 HP 2313 Subsystem Configuration................ 15-9
Preparing a FORTRAN Subroutine for Use HP 6940 Subsystem Configuration 16-8

by BASIC Programcoovviiunnnnn... 6-8 Channel Numbers for Additional 6940 16-9
FORTRAN Subroutine to Convert Channel Numbers for Addition of a

String Parameter 6-11 6941 Extenderciiiiiiiiiii 16-9
Task State Definitions 11-4 Plotter Control Sample Program #1 17-9
Task Scheduling Program Example (Part 1)...... 11-13 Plotter Control Sample Program #2 17-10
Structure of Program Example in Figure 11-4....11-14 Plotter Control Sample Program #2 (Plot) 17-11
Task Scheduling Program Example (Part 2)...... 11-15 Print Using Statement Structure 19-1
16-Bit Word 12-1 Dummy TRAP Module............................ D-1
Record Positioning Example Using MTTPT 13-3

TABLES
Title Page Title Page
Statements 3-1 RTETG Error Messagescoovvve.... 14-8
Operator Commands 9-2 Error Messagesccoiiiiiiiiinnin... 184
Debugging Commands 10-1

viii

SECTION

INTRODUCTION

1-1. FEATURES

Multi-User Real-Time BASIC is a subsystem designed for use on RTE disc systems and provides a
simple, easy-to-use augmented real-time version of the BASIC language. As many as four users may
efficiently employ Real-Time BASIC concurrently, each with a uniquely named copy of the Real-Time
BASIC software. Interaction with Multi-User BASIC can be via local or remote terminal devices,
keypunched cards, paper tape, magnetic tape, or disc.

Real-Time BASIC provides you with these capabilities:

Conversational programming.

Multiple peripheral device I/O including graphics display.
Real-time and event task scheduling.

Dynamic program debugging aids.

Fast access disc file storage for programs and data.

Bit manipulation.

Scheduling of BASIC, FORTRAN, ALGOL, and Assembly language programs.
Instrumentation I/0O and device subroutine simulation.

User defined subroutines and functions.

Character string manipulation.

Program statement character editing and line resequencing.

1-2. CONVERSATIONAL PROGRAMMING

BASIC is an English-like programming language that is easy to learn and use. You enter programs
directly into the Real-Time BASIC subsystem from a keyboard device. The BASIC Interpreter checks
each statement as it is entered. If the statement contains an error, a message is printed which defines
the error and you can correct it immediately. This type of interaction between you and the Interpreter
is called conversational programming.

Conversational interaction allows you to test your programs step-by-step as they are being prepared.
You are in constant touch with the system, its functioning, and its results. Programming and
debugging are completed quickly, easily, and efficiently.

1-3. MULTIPLE PERIPHERAL DEVICE 1/O

Multi-User Real-Time BASIC can provide a wide selection of input-output capabilities. It can be used
with either hardcopy or display screen terminals, line printers, tape punches, and magnetic tape units.
Data can be displayed on a hardcopy graphic plotter or TV monitor. The Interpreter also makes use of
the fast-access disc storage capabilities of the RTE-II, RTE-III, RTE-IV, or RTE-IVB Operating System
under which it operates.

1-4. REAL-TIME AND EVENT TASK SCHEDULING

Multi-User Real-Time BASIC is called real-time because the order of processing may be governed by
time or by the occurrence of external events rather than by a strict sequence defined in the program
itself. Because these events can occur in random order and require different amounts of processing,
conflicts may arise between tasks. BASIC is capable of resolving these conflicts.

11

Introduction

BASIC includes statements that assign execution priority to tasks, and statements to schedule
execution of tasks as a function of time. The user can also connect task subroutines to event interrupts
such as contact closures. Each task subroutine that is to be repeated during the course of system
operations specifies the interval between successive executions of the task.

1-5. PROGRAM DEBUGGING AIDS

Multi-User Real-Time BASIC provides commands that enable you to debug a program while it is
running. The path of flow through a program can be displayed, the values of variables can be displayed
and modified, and subroutine calls can be simulated.

1-6. FILE CAPABILITIES

If you need or want a data base external to particular programs, Multi-User Real-Time BASIC
provides a file capability allowing flexible yet straightforward manipulation of large volumes of data
stored on disc files. Extensions to the READ, PRINT, and IF statements provide you with facilities for
reading from or writing onto mass storage files and/or peripheral units.

Internally, files are organized as a collection of records each of 128 16-bit words. Thus, each record of a
file may contain up to 64 numeric quantities. A string data item will occupy 1 + INT [(n + 1)/2] words,
where n is its length in characters and INT truncates the quotient of the expression in brackets to an
integer value.

When manipulated on a record-by-record basis, a file appears as a collection of subfiles which are the
records. The ability to reference any record of the file directly allows you to partition your data and
alter any group without disturbing the rest of the file.

BASIC, FORTRAN, ALGOL, and Assembly language programs can use the same files but BASIC
requires a special format to which programs in the other languages must conform if BASIC programs
are to use the files. The file must be type 1 with 128 word fixed length records. Each word in the record
must be initialized with all bits equal to 1.

1-7. ENVIRONMENT

1-8. HARDWARE

The BASIC Interpreter operates within the RTE-II, RTE-III or RTE-IV hardware environment consist-
ing of an HP 1000 Series Computer System with Floating Point Hardware. (Refer to the appropriate
system Programming and Operating Manual for equipment configurations.)

For RTE-II, the BASIC Interpreter can operate within the minimum system on a 2100 or 21MX
computer with 24K memory.

For RTE-III, the BASIC Interpreter can operate within the minimum system on a 21MX computer
with 32K memory.

Peripheral devices required for BASIC are a system console and a disc drive. Optional devices include
a line printer, card reader, photoreader, plotter, TV monitor, HP 2313 and HP 6940 Subsystems, and
additional discs and terminals.

A typical system configuration is depicted in Figure 1-1.
1-2

Introduction

SYSTEM BACKUP

MAGNETIC HP 2313 HP 6940

TAPE DISC
® L

y

MAIN PROCESSOR » LINE PRINTER

SYSTEM
CONSOLE
l’/v
\ REMOTE TERMINALS /

Figure 1-1. Typical System

1-9. SOFTWARE

The BASIC Interpreter is an option which runs under control of either of the following operating
systems:

® Real-Time Executive II (RTE-II)
® Real-Time Executive III (RTE-III)

The BASIC Interpreter requires an RTE-II system with a background memory area of at least 8K
words and the File Management Package. It requires an RTE-III system with a main memory

partition of at least 8K words. At least 450 words of base page must be available.

Multi-User Real-Time BASIC is a self-contained segmented program operating in RTE-II background
or an RTE-III partition. The subsystem consists of the following modules and components:

e BASIC, the main program and all disc resident segments used for control and 1/0.

e Branch and Mnemonic Tables, used to link BASIC to subroutines and functions. These tables are
binary disc files, not relocatable modules and are created by a separate table generator program,
RTETG.

® Disc Resident User-Written subroutines.

® Trap Table Module, used for keeping track of all real-time tasks and traps.
1-3

Introduction

The BASIC program consists of a main program and 8 disc resident segments. The purpose of each

segment is:

Segment 1 - Statement syntax checking.
Segment 2 - Program and error listing.

Segment 3 - Pre-execution processing, building symbol tables and intermediate code.

Segment 4 - Execution of Programs.
Segment 5 - Command execution.
Segment 6 - Command execution.

Segment 7 - Tracing, debugging and subroutine simulation.

Segment 8 - Execution of PAUSE, STOP, END, ASSIGN, and CHAIN statement.

Each segment is loaded from the disc as required by the BASIC main program.

Figure 1-2 illustrates the layout of BASIC components in the RTE-II system memory. The layout is the

same for RTE-III except two partitions are used instead of background and foreground.

Background <

Foreground ¢

N
Resident
Library

Binary Bootstrap Loader

Users’ Program

Branch and Mnemonic Tables

Disc Resident Segments 1 to 8

BASIC Software
(Main Program)

Subroutine n

Subroutine 1

Overlay Directory

Trap Table and
Task Subroutines

RTE System and Drivers

High Memory

N

> BASIC Interpreter

> Disc Resident BASIC User
Subroutines

Low Memory

Figure 1-2. RTE Memory Layout with BASIC.

1-4

Introduction

1-10. COMMANDS AND STATEMENTS

1-11. COMMANDS

BASIC commands instruct the BASIC Interpreter to perform certain control functions. Commands
differ from the statements used to write a program in the BASIC language.

A command instructs the Interpreter to perform some action immediately, while a statement is an
instruction to perform an action only when the program is run. A statement is always preceded by a
statement number; a command never is.

Any BASIC command can be entered following the BASIC prompt character >. Each command is a
single word that must be typed in its entirety with no embedded blanks. (DELETE and RESUME are
exceptions, you may type DEL and RES.) If misspelled, the computer will return an error message.
Some commands have parameters to further define command operation.

For instance, BYE is a command that you use to terminate the BASIC Interpreter and return to the
operating system. It has no parameters. Another command, LIST, prints the program currently being
entered. It may have parameters to specify that only part of the program is to be listed, or to indicate a
particular list destination.

1-12. STATEMENTS

Statements are used'to write a BASIC program that will subsequently be executed. Each statement
performs a particular function. Every statement you enter becomes part of the current program and is
kept until explicitly deleted or you exit from BASIC with BYE.

A statement is always preceded by a statement number. This number is an integer between 1 and
9999. The statement number indicates the order in which the statements will be executed. Statements
are ordered by BASIC from the lowest to the highest statement number. Since this order is maintained
by the Interpreter, it.is not necessary for you to enter statements in execution order so long as the
numbers are in that order.

Following each statement, you must press the RETURN key to inform the Interpreter that the
statement is complete. The Interpreter generates a linefeed and prints the prompt character > on the
next line to signal that the statement is accepted. If an error is made entering the statement, the
computer prints an error message.

BASIC statements have a free format. This means that blanks are ignored. For instance, all these
statements are equivalent.

>30 PRINT S
>30 PRINTS
>3APRINTS

> 32 PRINTS

>3 aAPRINTIS

>

Introduction

1-13. BASIC PROGRAMS

Any statement or group of statements that can be executed constitutes a program.
A program may consist of only two statements.

This is an example of such a program.

>1 7A@ PRINT 35+5
>119 END

100 is the statement number. PRINT is the key word or instruction that tells the Interpreter the kind
of action to perform. In this case, it prints the result of the expression that follows. 35+5 is an
arithmetic expression. It is evaluated by the Interpreter, and when the program is run, the result is
printed. The END statement indicates the program is complete.

Usually a program contains more than one statement.

These four statements are a program:

>10 INPUT A»R,C,DsE

>20 LET S = (A+RB+C+D+E)/S
>3 PRINT S

>40 END

This program, which calculates the average of five numbers is shown in the order of its execution. It
could be entered in any order if the statement numbers assigned to each statement were not changed.

This program runs exactly like the program above.

>2M LET S = (A+B+C+D+E)/5
>10 INPUT A,R8,C,DHE

>3 PRINT S

>47 END

It is generally a good idea to number statements in increments of 10. This allows room to intersperse
additional statements as needed. If you have too many statements to insert, you may renumber the
statements with the RESEQ command.

1-6

Introduction

1-14. CHARACTER EDITING

If you make an error while entering a statement, an error message is printed which indicates the
nature of the error, and you can correct the error immediately. If you want to character edit the error,
you must redisplay the incorrect statement by typing a P and then make the desired corrections using
the control characters required.

Similarly if you find an inappropriate statement in an existing program, you can easily correct the
statement. You can position to the line you want to edit by typing a slash (/) for each line, stepping line
by line through the program until you find a line which requires editing. You can also use the LIST
command to position to the line if you know the statement number. In this case, you do not have to
redisplay the line with the P command.

If a syntax error is encountered when loading a program from a disc file, BASIC prints an error
message and the offending line. The line is ready for character editing. After it is corrected, you can
use the MERGE command to load the remainder of the program.

In each case, after the line you want to edit is displayed, you type a P and the appropriate control
characters to change the line. Five special control characters are available for character editing and
line correction. Four of the control characters are entered by first pressing the control key (CNTL) and
holding it down while pressing the letter key I, R, C, or T. The fifth control character is a slash which is
entered without using the control key.

Control Character Use

Ic Inserts new characters into a line prior to the current position.

R¢ Replaces characters in a line at the current position.

Ce Deletes specific characters from a line beginning at the current
position.

T Truncates all remaining characters in a line including the current
character.

/ Leaves a character unchanged or if typed instead of the P command,

lists the next line in the program.

n Positions to program statement n and lists it.

The following is an example of character editing used to correct an entry error. (User entries are
underlined for clarity.)

>10 Ax10 Incorrectly entered line.

MISSING ASSIGNMENT OPEnALOR I[N LINE 19 Error message.

>§1 o Akl Request line be reprinted.

MISSING A5SIGNMENT OPERAIDx IN LINZ 1o Line is reprinted.

>P///XK = Request edit. Insert X = after first three charac-
12 X =a*10 ters which are unchanged. (Space is counted as a

character.) Line is reprinted showing corrections.

You can change the / control character to some other character by typing X/ in response to the BASIC
prompt, >. [will be the new character replacing the slash. / can be any non-numeric character except:
P, I¢, R, C¢, Te.

1-7

Introduction

Here is an example of editing an incorrect line loaded from a disc file:

8aS1C READY Command to load a program PROGA from a disc

>LOAD PHIGA file.
UNDECIPHERASLE DPEKAND IN LINE 20@ Error message and line number printed.

220 LET A= - Line displayed.
>P/// /777776 .,y
0003 LET A= -6 Type P and control characters to edit line.
SMEKRGE Pr)GA BASIC redisplays corrected line.

Command to merge the remainder of the pro-
gram with the new line and previous ones.

1-15. CHARACTER EDIT IN MULTIPOINT ENVIRONMENT

The Q command is used for character edits when using BASIC in a multipoint environment. The
command is used to edit the pending line. When the Q command is entered, the pending line is
displayed, along with a delimiter (GS) to the left of the line. The delimiter is not part of the text string
and must be preserved to assure proper operation. The delimiter is represented as a pound sign (#)
throughout the rest of this section. The EDITR will position the cursor underneath the first character
of the line. You may now edit the line using any of the following procedures.

To retain the pending line as it is, immediately hit the ENTER key. For example:

/Q <__’_—’___—__’___,_,.-———-- Cursor displayed under first character in line.
#ABCDEFGHIJKL Press the ENTER key and line is retained as is.

/ PABCDEFGHIJKL /——— Line displayed remains the same

/

To truncate characters from the end of a line, position the cursor immediately after the last character to be
retained. Strike the ENTER key to enter all the characters between the left margin and the current cursor
position. The intrinsic terminal key CLEAR DISPLAY can also be used to delete characters at the end of
a line. After using the CLEAR DISPLAY key, the ENTER key is used to enter the edited line. For
example:

/iABCDEFGHIJKL - Position cursor under I, press ENTER key
ABCDEFGH_ Edited line is displayed
/Q
#ABCDEFGH - Position cursor under F, press CLEAR DISPLAY, then ENTER
ABCDE—* Edited line is displayed
/

To add characters in the middle of a line, the INSERT CHAR key may be used. Press the INSERT CHAR
key. The red light above the key should come on. Move the cursor to the position where the characters
are to be added, and type in the new characters. Finally, position the cursor at the end of the line and hit

1-8

Introduction

the ENTER key. The insert light will go off and the edited line will remain as the pending line.
For example:

/Q
#ABCDEFGHIJKL = Position cursor underneath F, depress the INSERT CHAR
- key, and type in the new characters 123", Position
cursor at end of line and press ENTER.
ABCDEF123GHIJKL Edited line is displayed
/

To delete one or more characters, position the cursor under each character to be deleted and press the
DELETE CHAR key. The character will be deleted from the display and the rest of the line will be shifted
left to fill in the gap. After all of the desired deletions have been made, move the cursor to the end of the
line and press the ENTER key. Do not delete the delimiter at the beginning of the line. For example:

/9
#ABCDEFGHIJKL < Position cursor under the G, press the
- DELETE CHAR key three times, move the cursor
to the end of the line and press ENTER.
ABCDEFJKL Edited line is displayed
/

1-16. CORRECTION OF TYPING ERRORS

You may use the following keys to correct typing errors:

RUBOUT deletes the current line you are typing; on some terminals a DEL key is used instead.

BACKSPACE deletes a character.

If the terminal does not have a key labeled BACKSPACE, you may use Control H (H¢). Press the
control key (CTRL), hold it down and press the H key. The backspace is printed as an underline __or a
back arrow <. More than one character may be deleted by repeating BACKSPACE or H¢ for each
character you want to delete.

Terminals which have both upper and lower case characters should be locked into upper case mode if
possible.

1-17. LOGICAL UNIT NUMBERS

Logical unit numbers, abbreviated LU in this manual, are decimal integers between 0 and 63 used to
address I/0O devices. Numbers 1 through 6 must always refer to the following devices:

1 - system console

2 - system disc

3 - auxiliary disc (optional)
4 - standard output unit

5 - standard input unit

6 - standard list unit

19

EDITR In Multipoint Environment

The standard devices may be:
output - paper tape punch or magnetic tape
input - paper tape reader, card reader, or terminal
list - line printer or terminal.
The remaining logical unit numbers (7 - 63) may be assigned to any type device. Logical unit number 0

is not associated with a particular device but it used to essentially turn off an input or output
statement.

1-18. SYNTAX CONVENTIONS

The following syntax conventions are used in this manual to specify command and statement formats.

UPPER-CASE BLOCK LETTERS Literals that must be specified exactly as shown.

lower-case italics Type of information to be supplied by you; most
parameters are in this form.

[,parameter] Optional parameters are enclosed in brackets.
parameter 1 One and only one of the stacked parameters may be
parameter 2 specified

parameter 3

parameter 1 All bracketed parameters are optional, only one may
parameter 2 be specified.
parameter 3
[,paraml [,param2]] Series of optional parameters; the last parameter may
be omitted with no indication; embedded parameters
must be supplied.

Ellipsis indicates that the previous parameter or
series of bracketed parameters can be repeated.

1-10

EXPRESSIONS

An expression combines constants, variables, or functions with operators in an ordered sequence.
When evaluated, an expression must result in a value. An expression that, when evaluated, is
converted to an integer, is called an integer expression. Constants, variables, and functions represent
values; operators tell the computer the type of operation to perform on these values.

Some examples of expressions are:
P + 5)/27 P is a variable that must have been previously
assigned a value. 5 and 27 are constants. The
slash is the divided operator. Parentheses group

those portions of the expression evaluated first.

If P = 49, it is an integer expression with the
value 2.

N-R+5)-T N, R, and T must all have been assigned values.
+ and — are the add and subtract operators. The
innermost parentheses enclose the part evaluated
first.

IfN=20,R =10, and T =5, the value of the integer
expression is zero.

2-1. CONSTANTS

A constant is either numeric or it is a literal string.

2-2. NUMERIC CONSTANTS

A numeric constant is a positive or negative decimal number including zero. It may be written in any
of the following three forms:

® As an integer - a series of digits with no decimal point.

® Asafixed point number - series of digits with one decimal point preceding, following, or embedded
within the series.

® As a floating point number - an integer or fixed point number followed by the letter E and an
optionally signed integer.

Examples of Integers:
1234
-70
0

2-1

Expressions

Examples of Fixed Point Numbers:

1234.
1234.56
-.0123

2-3. FLOATING-POINT NUMBERS

In the floating point notation, the number preceding E is a magnitude that is multiplied by some
power of 10. The integer after E is the exponent, that is, it is the power of 10 by which the magnitude is
multiplied.

The exponent of a floating point number is used to position the decimal point. Without this notation,
describing a very large or very small number would be cumbersome:

1E+35
1E-35

100000000000000000000000000000000000
.0000000000000000000000000000000000001

Examples of Floating-Point Numbers:

1E+23 =1 x 10% = 100000000000000000000000
1.0E23 (same as above)

.001E26' (same as above)

1.02E+4 =1.02 x 10* = 10200.

1.02E—-4 =.000102

Within the computer, all these constants are represented as floating-point real numbers whose
precision is 6 or 7 digits and whose size is between 10738 and 10%,

2-4. LITERAL STRINGS

A literal string consists of a sequence of characters in the ASCII character set enclosed within quotes.
The quote is the only character excluded from the character string.

Examples of Literal Strings:

“ABC” “” (a null, empty, or zero length string)
“NWHAT A DAY!"” " ” (a string with two blanks)
e X Y Z »

Blank spaces are significant within a string.

2-5. VARIABLES

A variable is a name to which a value is assigned. This value may be changed during program
execution. A reference to the variable acts as a reference to its current value. Variables are either
string or numeric. Further, numeric variables are either simple or subscripted.

2-2

Expressions

Simple numeric variables are a single letter (from A to Z) or a letter immediately followed by a digit
(from 0 to 9):

A A0
P P5
X X9

A variable of this type always contains a numeric value that is represented in the computer by a real
floating-point number.

If a variable names an array, it must be subscripted. Only the alphabetic characters A through Z may
be used to name an array. When a variable is subscripted, the variable name is followed by one or two
subscript values enclosed in parentheses. If there are two subscripts, they are separated by a comma. A
subscript may be an integer constant or variable, or any expression that is evaluated to an integer
value:

A1) A (NM)

P(1,1) P (Q5,N/2)

X(N+1) X (10,10

A simple variable and a subscripted variable may have the same name with no implied relation
between the two. For example, a simple variable named A is totally distinct from a subscripted
variable named A (1,1).

Simple numeric variables can be used without being declared. Subscripted variables must be declared
with a DIM statement (see Section ITI) if the array dimensions are greater than 10 rows, or 10 rows and
10 columns. The first subscript is always the row number, the second the column number. The
subscript expressions must result in a value between 1 and the maximum number of rows and
columns.

A variable may also contain a string of characters. This type of variable, a string array, is identified by
a variable name consisting of a letter and $:

A$ P$

The value of a string variable is always a string of characters, possibly null or zero length. If the string
array contains a single character, it need not be declared with a DIM statement (see Section III).
String arrays differ from numeric arrays in that they have only one dimension. You may optionally
use two subscripts which refer to the first and last characters in the substring you want to reference
(See Section IV, String Arrays). You may also use one subscript to refer to the first character of the
substring. In this case, the last character of the substring will be the last character of the string.
Examples of subscripted string array names (substrings) are:

A$(1,3) Z$(N,N+M) A$(10)

2-6. FUNCTIONS

A function names an operation that is performed using one or more parameter values to produce a
single value result. A numeric function is identified by a three-letter name followed by one or more
formal parameters enclosed in parentheses. If there is more than one, the parameters are separated by
commas. The number and type of the parameters depends on the particular function. The formal
parameters in the function definition are replaced by actual parameters when the function is used.

Since a function results in a single value, a system-defined function (see Section V) can be used
anywhere in an expression where a constant or variable can be used. To use a function, the function
name followed by actual parameters in parentheses (known as a function call) is placed in an
expression. The resulting value is used in the evaluation of the expression.

Update 2 2-3

Expressions

Examples of common functions:

SQR(x) where x is a numeric expression that results in a value = 0. When called,
it returns the square root of x. For instance, if N=2, SQR(N +2) = 2.

ABS(x) where x is any numeric expression. When called, it returns the absolute
value of x. For instance, ABS(-33) = 33.

BASIC provides many built-in functions that perform common operations such as finding the sine,tak-
ing the square root, or finding the absolute value of a number. The available functions are listed in
Section V. In addition, you may define and name your own functions should you need to repeat a
particular operation. How to write functions is described in Section V, Functions.

2-7. OPERATORS

An operator performs a mathematical or logical operation on one or two values resulting in a single
value. Generally, an operator is between two values, but there are unary operators that precede a
single value. For instance, the minus sign in A - B is a binary operator that results in subtraction of B
from A; the minus sign in -A is a unary operator indicating that A is to be negated.

The combination of one or two operands with an operator forms an expression. The operands that
appear in an expression can be constants, variables, functions, or other expressions.

Operators may be divided into types depending on the kind of operation performed. The main types are
arithmetic, relational, and logical (or Boolean) operators.

The arithmetic operators are:

+ Add (or if unary, positive) A +Bor +A
- Subract (or if unary, negative) A -Bor -A
* Multiply A xB

/ Divide A+B

1 or A Exponentiate AB

In an expression, the arithmetic operators cause an arithmetic operation resulting in a single numeric
value.

The relational operators are:

= Equal A=B
< Less than A Greater than A>B
<= Less than or equal to A= Greater than or equal to A=B
<>or # Not equal A#B

When relational operators are evaluated in an expression they return the value 1 if the relation is
found to be true, or the value 0 if the relation is false. For instance, A = B is evaluated as 1 if A and B
are equal in value, as 0 if they are unequal.

2-4

Expressions

Logical or Boolean operators are:

AND Logical “and” A AND B
OR Logical “or” A ORB
NOT Logical complement NOT A

Like the relational operators, the evaluation of an expression using logical operators results in the
value 1 if the expression is true, the value 0 if the expression is false.

Logical operators are evaluated as follows:

A AND B =1 (true) if A and B are both # 0; = 0 (false)if A =0orB =0
A ORB =1 (true)if A # 0or B # 0; = 0 (false) ifboth Aand B =0
NOT A =1 (true) if A = 0; = 0 (false) if A # 0

2-8. EVALUATING EXPRESSIONS

An expression is evaluated by replacing each variable with its value, evaluating any function calls and
performing the operations indicated by the operators. The order in which operations are performed is
determined by the hierarchy of operators:

1 or A (highest)

NOT

*/

+ —_

Relational (=, <, >, <=, >=, <>)
AND

OR (lowest)

The operator at the highest level is performed first followed by any other operators in the hierarchy
shown above. If operators are at the same level, the order is from left to right. Parentheses can be used
to override this order. Operations enclosed in parentheses are performed before any operations outside
the parentheses. When parentheses are nested, operations within the innermost pair are performed
first.

For instance: 5 + 6*7 is evaluated as 5 + (6 x 7) = 47
7/14*2/5 is evaluated as ((7/14)x2)/5 = .2

If A=1, B=2, C=3, D=3.14, E=0

then: A+B*C is evaluated as A + (B*C) = 7
A*B+C is evaluated as (A*B) + C = 5
A+B-C is evaluated as (A+B)-C =0
(A+B)*C is evaluated as (A+B)*C = 9

When a unary operator immediately follows another operator of higher precedence, the unary operator
assumes the same precedence as the preceding operator. For instance,

B 1 —-B 1 C is evaluated as (B7B)C = 1/64 or .015625
In a relation, the relational operator determines whether the relation is equal to 1 (true) or O (false):

(A*B) < (A—C/3) is evaluated as 0 (false) since A*B=2 which is not less than A—C/3=0
2-5

Expressions

In a logical expression, other operators are evaluated first for values of zero (false) or non-zero (true).
The logical operators determine whether the entire expression is equal to 0 (false) or 1 (true):

E AND A-C/3 is evaluated as O (false) since both terms in the expression are
equal to zero (false).

A+B AND A*B is evaluated as 1 (true) since both terms in the expression are
different from zero (true).

A=B OR C=SIN(D) is evaluated as 0 (false) since both expressions are false (0).

A ORE is evaluated as 1 (true) since one term of the expression (A) is
not equal to zero.

NOT E is evaluated as 1 (true) since E=0.

STATEMENTS

This section describes statements used in writing a Real-Time BASIC program. Statements must be
preceded by a line number and are terminated by pressing the RETURN key when entered. State-
ments are executed in numeric sequence, but may be entered in any sequence.

Unlike COBOL, FORTRAN, and other programming languages, BASIC statements are interpreted at
the time they are entered; thus a compile stage is not required. Invalid statements are immediately
rejected. Statements are not executed, however, until the program is executed with the RUN command
(see Section IX).

Table 3-1. lists some statements used in writing a program and briefly describes each. Detailed
explanations of each statement are provided in the remainder of the section. Additional statements
related to specific programming objectives are introduced and explained in subsequent sections of this

part of the manual. A complete list of Real-Time BASIC statements and their uses is provided in
Appendix A.

3-1. LET

This statement assigns a value to one or more variables. The value may be in the form of an
expression, a constant, a string, or another variable of the same type.

Format

When the value of the expression is assigned to a single variable, the formats are:
[LET] variable = expression
When the same value is to be assigned to more than one variable, the formats are:

[LET] variable = variable = . .. = variable = expression

In this statement, the equal sign is an assignment operator. It does not indicate equality, but is a
signal that the value on the right of the assignment operator be assigned to the variable on the left. If
any ambiguity exists between the relational operator “=" and the assignment operator, the equal sign
is treated as a relational operator.

3-1

Statements

Table 3-1. Statements

STATEMENTS

LET

REM

GOTO

GOTO ... OF

END/STOP

FOR . . . NEXT

IF ... THEN

PRINT

READ/DATA/RESTORE

INPUT

DIM

COM

PAUSE

WAIT

FUNCTION

Assigns the value of an expression to a variable. The word LET may be
omitted.

Introduces remarks and comments in the program listing.
Transfers control to a specified statement.

Multibranch GOTO transfers control to one of a list of statements,
depending on the value of an integer expression.

END indicates the last program statement and terminates execution of
the current program. STOP terminates execution of the current prog-
ram.

Allows repetition of a group of statements between FOR and NEXT.
The number of repetitions is determined by the initial and final values of
a FOR variable, and an optional STEP specification.

Evaluates a conditional expression and specifies action to be taken if
condition is true.

Prints the contents of a list of numeric or string expressions on the list
device, or to a specified file.

Assigns constants and string literals from one or more DATA state-
ments to the variables specified in the READ statement. Treats con-
tents of all DATA statements as a single data list.

Requests user input to one or more variables by printing a prompt and
accepts string or numeric data from the terminal.

Defines the size of arrays.

Allows a program to store data in memory for retrieval by a subsequent
BASIC program.

Stops program execution without terminating the program.

Causes an executing program to stop for a specified number of mil-
liseconds before continuing.

Statements
When a variable to be assigned a value contains subscripts, these are evaluated first from left to right,
then the expression is evaluated and the resulting value moved to the variable.

If a value is assigned to more than one variable, the assignment is made from right to left. For
instance, in the statement A=B=C=2, first C is assigned the value 2, then B is assigned the current
value of C, and finally A is assigned the value of B.

Examples

12 LET A = 5.02
20 A=5.02

The variable A is assigned the value 5.02. Statements 10 and 20 have the same result.

32 X = Y7T =2 = Z1 = @

Each variable X, Y7, Z, and Z1 is set to zero. This is a simple method for initializing variables at the
start of a program.

35 LET M=2
49 LET A(M) = N = 9

First M is assigned the value 2 in line 35. In line 40 N is assigned the value 9, then the array element
A(2) is assigned the value 9.

S N =0
62 LET N = N+1
78 LET A(NY = N

Statements 50 through 70 set the array element A(1) to 1. By repeating statements 60 and 70, each
array can be set to the value of its subscript.

3-3

Statements

3-2. REM

This statement allows the insertion of a line of remarks in the listing of the program. The remarks do
not affect program execution.

Format

REM any characters

Like other statements, REM must be preceded by a statement number.

The remarks introduced by REM are saved as part of theReal-TimeBASIC program, and printed when
the program is listed or punched. They are, however, ignored when the program is executed.

Remarks are easier to read if REM is followed by spaces, or a punctuation mark as in the examples.

Examples

>LIST
19 REM: THIS IS AN EXAMPLE
20 'REM: OF REM STATEMENTS.
37 REM =-=- ANY CHARACITERS MAY FOLLOW REM: "//*x%!11&%R%&,ETC.
40 REM...REM STATEMENTS ARE NOT EXECUTED

3-3. GOTO

GOTO overrides the normal sequential order of statement execution by transferring control to a
specified statement. The statement to which control transfers must be an existing statement in the
current program.

Format

GOTO statement number label
GOTO integer expression OF statement number label [, statement number label, . . .]

GOTO may have a single statement number label, or may be multi-branched with more than
one label. If the multi-branch GOTO is used, the value of the integer expression determines
the label in the list to which control transfers. It is rounded to the nearest integer. GOTO
may be entered as GO TO.

If the GOTO transfers to a statement that cannot be executed (such as REM or DIM), control passes to
the next sequential statement after that statement. GOTO cannot transfer into or out of a function
definition (see Section V). If it should transfer to the DEF statement, control passes to the line
following the function definition.

3-4

Statements

The statement number labels in a multi-branch GOTO are selected by numbering them sequentially
starting with 1, such that the first label is selected if the value of the expression is 1, the second label if
the expression equals 2, and so forth. If the value of the expression is less than 1 or greater than the
number of labels in the list, then the GOTO is ignored and control transfers to the statement
immediately following GOTO.

Examples

52 50TO 122
6¢ GOTO A OF 122, 202, 2372

The first statement sends the sequence of execution to line number 100. The second statement directs
control to either line number 100, 200, or 300 depending on the current value of A

The example below shows a simple GOTO in line 200 and a multi-branch GOTO in line 600.

>LIST
100 LET I=0
200 GOTO 6092
300 PRINT 1
400 REM THE VALUE OF I IS5 ZERO
506 LET I=1+1
60 GOTO I+1 OF 300,520,300
7960 REM THE FINAL VALUE OF I IS 2
326G PRINT I
9M® END

>RUN

2

2

When run, the program prints the initial value of I and the final value of I.

3-4. END/STOP

The END and STOP statements are used to terminate execution of a program.

Format

END

STOP

The END statement consists of the word END; the STOP statement of the word STOP.

END and STOP have identical functions; the only difference is that the highest numbered statement
in a program must be an END statement. STOP may be used simply to halt program execution at a
given point.

3-5

Statements

Examples
opg IF A # 27.5 THEN 350
g2 STOP

35@ LET A = 27.5

5¢¢ IF B # A THEN 9999

9999 ENLC

3-5. FOR ... NEXT

The looping statements FOR and NEXT allow repetition of a group of statements. The FOR statement
precedes the statements to be repeated, and the NEXT statement directly follows them. The number of
times the statements are repeated is determined by the value of a simple numeric variable specified in
the FOR statement.

Format

FOR variable = initial expression TO final expression [STEP step expression]

The variable is set to the value resulting from the initial expression. When the value of the
variable passes the value of the final expression, the looping stops. If STEP is specified, the
variable is incremented by the value resulting from the step expression each time the group
of statements is repeated. This value can be positive or negative, but should not be zero. If a
step expression is not specified, the variable is incremented by 1.

The NEXT statement terminates the loop:

NEXT variable

The variable following NEXT must be the same as the variable after the corresponding FOR.

Statements

When FOR is executed, the variable is assigned an initial value resulting from the expression after the
equal sign,and the final value and any step value are evaluated. Then the following steps occur:

1. The value of the FOR variable is compared to the final value; if it exceeds the final value (or is less
when the STEP value is negative), control skips to the statement following NEXT.

2. All statements between the FOR statement and the NEXT statement are executed.
3. The FOR variable is incremented by 1, or if specified, by the STEP value.
4. Return to step 1.

Your program should not execute the statements in a FOR loop except through a FOR statement.
Transferring control into the middle of a loop can produce undesirable results.

FOR loops can be nested if one FOR loop is completely contained within another. They must not
overlap.

Examples

Each time the FOR statement executes, a value for R is entered and the area of a circle with that
radius is computed and printed.

SLIST
1 REM ¢ RADIUS EXAMPLE
20 FOR A=1 TO 5
30 INPUT R
49 PRINT "AREA OF CIRCLE WITH KADIUS "3R3" IS '"$3.14159%12
50 NEXT A
6@ END
>RUN
?1
AREA OF CIRCLE WITH RrRADIUS 1 IS 314159
22
AREA OF CIRCLE WITH RADIUS 2 IS 12.5664
24
AREA OF CInCLE WITH RADIUS 4 IS 50.2654
?8
AREA OF CIRCLE WITH rADIUS 8 IS 201.062
?216
AREA OF CIRCLE WITH RADIUS 16 IS B804.247

BASIC READY

3-7

Statements

The FOR loop executes six times, decreasing the value of X by 1 each time:

>LIST
10 FOR X=0 TO0 -5 STEP -1
20 PRINT X-5
37 NEX[X
40 END

>RUN

=5

-6

-7

-8

-9

-10

BASIC READY

>

3-6. IF ... THEN

IF . . . THEN statements are used to test for specified conditions and to specify program action
depending on the test results. When a condition is found by the program to be true, then program
action indicated by the statement is performed. When a condition is found by the program to be untrue,
program action simply continues to the next statement.

Format

IF expression THEN

statement
statement number label

The IF .

. . THEN statement relationship is often described as a conditional transfer. Possible

statement transfers that may be used with the IF . . . THEN condition are:

IF. .

. CALL
CHAIN
GOSUB
GOTO
INPUT
LET
PAUSE
PRINT
PRINT #
‘READ
READ #
RESTORE
RETURN
STOP
WAIT

The word THEN is omitted from the statement in the above operations.

3-8

Statements

Because numbers are not always represented exactly in the computer, the = operator should be used
carefully in IF . . . THEN statements. Whenever possible, < = or > = should be used instead of =.

Examples

12 IF A=RE THEN 24

12 IF A=3 PRINT C

In the following example, if X > 10, the message in statement 40 is executed. Otherwise, the message
in statement 60 is executed. Note that the relational operator is optional in logical evaluations.

>LIST
10 LET N=10
20 READ #1;3X
30 IF X <= N THEN 60
40 PRINT "X IS MORE THAN'";N
5@ GOTO 8@
60 PRINT "X IS LESS THAN On EQUAL TO";N
70 GOTO 20
84 END

3-7. PRINT

PRINT causes data to be output at the terminal. The data to be output is specified in a print list
following PRINT.

Format

PRINT [print list]

The print list consists of items separated by commas or semicolons. The list may be followed
by a comma or a semicolon. If the list is omitted, PRINT causes a skip to the next line. Items
in the list may be numeric expressions, numeric or string variables, string literals, or
tabbing functions.

The contents of the print list is printed. If there is more than one item in the print list, commas or
semicolons must separate the items. The choice of a comma or semicolon affects the output format.

The output line is divided into six consecutive fields: five of 15 characters and one of 5 characters, for a
total of 80 characters. The fields begin in columns 1, 16, 31, 46, 61 and 76. When a comma separates
items, each item is printed starting at the beginning of a field. When a semicolon separates items, each
item is printed immediately following the preceding item. In either case, if there is not enough room
left in the line to print the entire item, printing of the item begins on the next line.

3-9

Statements

The separator between items can be omitted if one or both of the items is a quoted string. In this case, a
semicolon is inserted automatically.

A carriage return and linefeed are output after PRINT has executed, unless the output list is
terminated by a comma or semicolon. In this case, the next PRINT statement begins on the same line.

If an expression appears in the print list, it is evaluated and the result is printed. Any variable must
have been assigned a value before it is printed. Each character between quotes in a string constant is
printed.

See Section VII, Files, for information about other forms of the PRINT statement.

Examples

When items are separated by commas, they are printed in up to five fields per line; separated by
semicolons, they directly follow one another. In the example below, the items are numeric, so each
item is assigned a minimum of six characters.

>LIST
1» LET A=B=C=D=E=15
20 LET Al1=R1=Cl=D1=E1=20
3% PRINT A,RB,C1,C
40 PRINT A3B3C13C3D3EAL3DILISEL
5@ PRINT A,B3C»D

63 END
>RUN
15 15 20 15
15 15 20 15 15 15 20 20 20
15 15 15 15

In the example below, the first PRINT statement evaluates and then prints three expressions. The
second PRINT skips a line. The third and fourth PRINT statements combine a string constant with a
numeric expression. No fields are used in the print line for string constants unless a comma appears as
separator. The fourth PRINT statement prints output on the same line as the third because the third
statement is terminated by a comma.

>LIST
1@ LET A=8B=C=D=E=15
27 LET Al=Bl1=Cl=D1=E1=20
33 PRINT A*B,B/C/D1+30,A+B
40 PRINT
5B PRINT '"AxB ='"; AxB,
67 pPRINT "THE SUM OF A AND B IS '";A+B

7% END
>RUN
225 30.05 30
A¥B =225 THE SUM OF A AND B IS 39

3-10

Statements

3-7a. PRINT USING

PRINT USING statements are used to direct output to specific devices and to format that output. The
LU# of the output device is specified in the statement. The format of the data to be output is specified
in the format part of the string following PRINT USING, and the data is specified in a print list
following the format part.

Format

PRINT [#{u] USING format part [;using list]

Parameter

lu an optional numeric constant or variable which may be the LU# of the
device, or the type O file in the sixth position in the FILES statement. “lu”
may not be a standard file.

format part either a format string (represented as a literal string or a string variable)
or a statement number referencing an IMAGE statement.

using list an optional parameter list which may include; numeric expressions, string

variables, or print function (TAB), separated by commas. These commas
are delimiters only and have no formatting function. Note that string
variables, not string expressions, are allowed.

NOTE

Use of the carriage control operators #, + and — on non-terminal
devices such as line printers may produce results that are different
from those on a terminal. This is caused by mechanical or programatic
differences in the hardware or software.

GROUPS. A group of one or more format specifications may be enclosed in parentheses which must
be preceded by a repetition factor between 1 and 72 inclusive (e.g., 2(/AX,D/) is equivalent to /AX,D/
//AX,D/). Within the parentheses, the specifications must be separated by commas or slashes and the
group must be set off from other specifications by a comma or slashes, just as if it were a single
specification. Groups can be nested two levels deep.

EXECUTION OF THE PRINT USING STATEMENT. Execution of the PRINT USING statement
commences by examining the format string. The carriage control character, if present, is noted for
termination processing, then each format specification is examined.

If the specification is either a string or a numeric specification, the next item from the using list is
printed according to the specification. If the using list has already been exhausted or is not present, the
statement terminates. If the item does not agree with the specification (i.e., string vs. numeric), an
error message is printed and the program execution terminates.

If the specification is literal, the specified number of blanks (or the contents of the literal string) is
simply printed; the using list is not examined.

3-11

Statements

If the the end of the format string is reached before the end of the using list, processing continues from
the beginning of the format string but after the optional carriage control character (if the format string
contains no string or numeric specifications, the statement terminates).

When all items from the using list have been printed the statement terminates (any remaining literal
specifications are processed if the end of the format string has not been reached for the first time).
Termination consists of printing, carriage return, and linefeed, modified by the carriage control
character.

If the format string is empty or contains only blanks, output consists of only a carriage return, and
linefeed.

Examples

10 PRINT #6 USING 100AS$, (2+X), B$

100 IMAGE 3DX,DD.D//SD.DDE
50 PRINT #17 USING “#,3(DD.D2X)";Z1,22,Z3

See Chapter 19 for additional information on formatted output.

3-12

Statements

3-8. NUMERIC OUTPUT FORMATS

Numeric quantities are left justified in a field whose width is determined by the magnitude of the item.
The width includes a position at the left of the number for a possible sign and at least one position to
the right containing blanks. The width is always a multiple of three; the minimum width is six
characters.

Integers

An integer with a magnitude less than 1000 requires a field width of six characters:

SIGN NUMBER TRAILING BLANKS

3 DIGITS

L 1 Il

An integer with a magnitude between 1000 and 32767 inclusive requires a field width of nine
characters: 4

SIGN NUMBER TRAILING BLANKS
5 DIGITS
]]]] .

Examples of integers:

The integers below are less than 1000 and greater than —1000:

>LIST
10 PRINT 139993303-30205+295
20 END

>RUN

1 999 30 -300 295

These integers are between 1000 and 32767 or between —1000 and —32767:

>LIST
13 PRINT 1000;5+3275135-32767332767
2@ END

>RUN

1200 32751 -32767 32767

These integers are mixed in magnitude, but none are greater than 32767 or less than —32767:

>LIST
10 PRINT 1510003999;+327515205-32767;5~-300525687;+28635000
20 END
>RUN
1 1009 999 32751 20 -32767 -300 25687 286
5009

If an integer has a negative sign it is printed; a positive sign is not printed.

3-13

Statements

Fixed-Point Numbers

A fixed point number requires a field width of 12 positions. If the magnitude of the number is greater
than or equal to .09999995 and less than 999999.5, or is less than .1 but can be printed with six
significant digits, the number is printed as a fixed-point number with a sign. Trailing zeros are not
printed, but a trailing decimal point is printed to show the number is not exact. The number is
left-justified in the field with trailing blanks. The sign is printed only if it is negative.

SIGN NUMBER TRAILING BLANKS

\ £/

6 DIGITS & DECIMAL PT.

L A 1 B —l 1 1 L

Examples of fixed-point numbers:

>LIST
10 PRINT 999999+ .15 .000044
20 END

>RUN

999999. ol « 000044

Floating-Point Numbers

Any number, integer or fixed-point, with a magnitude greater than the magnitude of the numbers
presented above, is printed as a floating-point number using a total field width of 15 positions:

SICiN NUMBER E = EXPONENT TRAILING BLANKS
6 DIGITS & DECIMAL PT. E

1 1 1 d 1 1 i 1 1 1 1

Examples of floating-point numbers:

BASIC READY

>1@ PRINT 2345678 .0000044
>20 END

>RUN

2+ 34568E+06 4.40000E-06

BASIC READY

>10 PRINT 234567893 .00000044
>2(END

>RUN

2.34568E+07 4.40000E-07

BASIC READY

>1@ PRINT .00003943; .0000257895
>20 END

>RUN

3.94300QE~-05 2457895E-05

3-14

Statements

3-9. TAB FUNCTION
The TAB function moves the print position to a specified column.

Format

TAB (integer expression)

The print position is moved to the column specified by the integer expression. Print positions are
numbered from 0 to 71. If the print position must be moved to the left because the integer expression is
less than the current position, nothing is done. If the expression is greater than 71, the print position is
moved to the beginning of the next line.

3-10. READ/DATA/RESTORE

Together, the READ, DATA, and RESTORE statements provide a means to input data to a BASIC
program. The READ statement reads data specified in DATA statements into variables specified in
the READ statement. RESTORE allows the same data to be read again.

Format

READ variable list
DATA constant [, constant,]
RESTORE [statement number label]

Parameters

variable list list of variables separated by commas.
constant numeric or string constant.

statement number label identifies a DATA statement.

Constants in the DATA statement are assigned to variables in the READ statement
according to their order; the first constant to the first variable, and so forth.

When a READ statement is executed, each variable is assigned a new value from the constant listin a
DATA statement. RESTORE allows the first constant to be assigned again when READ is next
executed or, if a label is specified, the first constant in the specified DATA statement.

More than one DATA statement can be specified. All the constants in the combined DATA statements
comprise a data list. The list starts with the DATA statement having the lowest statement label and
continues to the statement with the highest label. DATA statements can be anywhere in the program;
they need not precede the READ statement, nor need they be consecutive. DATA statements do not
execute, but merely specify data.

If a variable is numeric, the next item in the data list must be numeric; if a variable is a string, the
next item in the data list must be a string constant. It is possible to determine the type of the next item
with the TYP function (see Section V).

3-15

Statements

A pointer is kept in the data list showing which constant is the next to be assigned to a variable. The
RUN command sets the pointer at the first DATA statement. It is advanced consecutively through the
data list as constants are assigned. The RESTORE statement can be used to access data constants in a
non-serial manner by specifying a particular DATA statement to which the pointer is to be moved.

When the RESTORE statement specifies a label, the pointer is moved to the first constant in the
specified statement. If the statement is not a DATA statement, the pointer is moved to the first
following DATA statement. When no label is specified, the pointer is restored to the first constant of
the first DATA statement in the program.

Examples
The data in statement 10 is read in statement 20 and printed in statement 30:

>LIST
13 DATA 3,5,7
2@ READ A,B,C
3@ PRINT A,B,C
4@ END
>RUN
3 5 7

Note the use of RESTORE in this example. It permits the second READ to read the same data into a
second set of variables:

>LIST
12 DIM A$[(31,RB$(3]
290 DATA 3,5,7
38 READ A,B,C
49 READ A%,B$
5¢ DATA 'ABC'',"DEF"
60 RESTORE
73 READ D,E,F
80 PRINT A$:3B%,A3B;C3D3ESF
90 END
>RUN
ARCDEF 3 5 7 3 5 7

3-11. INPUT

The INPUT statement allows you to input data to your program from the terminal.

Format

INPUT variable list

Parameters

variable list list of variables separated by commas.

3-16

Statements

The INPUT statement requests data to be input from your terminal for subsequent assignment to a
variable. When the INPUT statement is encountered, the program comes to a halt and a question
mark is printed on the terminal. The program does not continue execution until the input require-
ments are satisfied.

Only one question mark is printed for each INPUT statement. The statements:

¥ INPJT A B2, C5S5» DLy =» Fs G
and

29 IN2PUJT X
each cause a single question mark to be printed. Note that the question mark generated by statement
10 requires seven input items, separated by commas, while that generated by statement 20 requires

only a single input item. Failure to include commas between input items will result in corrupt input
data.

When you run the program, if you enter data of the wrong type or other invalid input, two question

marks (??) are printed. You may then type the correct input data.

If you want to terminate the program and return control to the BASIC Interpreter, type Control Q (Q°).
If you are running from a multi point terminal, type QQ.

Example
>LIST
10 FOR M=1 TO 2
20 INPUT A
30 INPUT A1,B2,C3,20,Z9,E5
40 PRINT "WHAT VALUE SHOULD BE ASSIGNED TO nr ';
50 INPUT R
60 PRINT A3A13B25C33ZA3Z93E53"nr= "R
70 NEXT M
8 END
>RUN
71

22-3,45556,57
WHAT VALUE SHOULD BE ASSIGNED IO R ?27

1 2 3 4 5 6 1 r= 27

7145

?205)3'5)4.5’6.)7.2

781

WHAT VALUE SHOULD BE ASSIGNED TO R ?-99

1e5 25 3¢5 445 6 7.2
8.1 R= =99

3-17

Statements

3-12. DIM

The DIM (dimension) statement defines the size of an array. DIM statements may also be used with
strings (see Section IV).

Format
DIM X(integer)[, 1]
DIM X(integer,integer)[, . . .]
Parameters
X array name (A through 7)
integer dimension of array. (The first integer refers to rows and the second to columns).

The DIM statement defines the size of an array. 255 is the maximum dimension allowed. If a variable
is subscripted and has not been defined in a DIM or COM statement, the size of the array is assumed to
be 10. If the reference is to a two dimensional array, the array is assumed to be 10 by 10. An array may
be dimensioned only once. More than one array can be named in a DIM statement; they are separated
by commas.

There is no requirement to use all of the space reserved when you define the array. The maximum
array size depends only upon the maximum available memory in the computer. The DIM statement
can appear anywhere in a program and is not executed.

There is no way to initialize an array before execution. Values must be loaded by FOR loops or by
reading from peripheral devices.

Examples

>LIST
12 DIM F(2,3)
20 FOR I=1 TO 2
30 FOr J=1 TO 3
40 LET FlI,Jl=1
50 NEXT J
60 NEXT 1
7@ END

>RUN

The size of the F array is defined and the array is initialized to contain all ones.

3-13. COM

The COM statement is used to pass data values between programs. Variables specified in a COM
statement are placed in a common area so that values assigned to these variables in one program will
be retained when transferring to another program with CHAIN. COM areas must be equal in size for
CHAINed or INVOKE’d programs so that common will remain properly aligned.

Format

COM variable list

Parameter variable list list of string or array variables

3-18

Statements

COM is an array which is placed in a known fixed location in memory. Upon completion of the first
program and the loading of the second program, the first location in the COM area is aligned with the
first location of the second load.

Numeric bounds for arrays and strings are specified as in a DIM statement. Because a variable cannot
be defined in two places at once, if the variable appears in a COM statement, it cannot also be defined
in a DIM statement. An example of how the COM statement might appear in two successive programs

follows.

First Program Second Program
10 COM A(7) 10 COM D(1),C(2),B(4)
Position in Memory First Program Second Program
xxx1 A1) D)
Xxx2 A2) C()
xxx3 A@3) C(2)
xxx4 A4) B(D)
xxx5 A(5) B(2)
xxx6 A(6) B@3)
xxx7 A B@4)

Remember, it is your responsibility to ensure proper access of common areas.

Common areas are not initialized to UNDEFINED as arrays declared in DIM statements are. You
must not use Common area arrays before initialization or your results will be erroneous.

3-14. PAUSE

The PAUSE statement is used to stop the execution of a program without terminating the program.

Format

PAUSE [n]
Parameter

n optional parameter. If used, the number n will be printed after PAUSE when the
statement is executed.

The PAUSE statement stops a running program without terminating it, that is, without sending it to
end of program. When a PAUSE statement is encountered and executed, the program is halted and the
PAUSE is printed on the terminal. If you wish the program to continue, type GO, otherwise type
Control Q (Q°) thereby instructing the program to terminate and returning control to the BASIC
Interpreter. BASIC is unable to execute real-time tasks during the time that a program is halted by a
PAUSE statement.

Update 2 3-19

Statements

3-15. WAIT

The WALIT statement is used to introduce a program delay. When a WAIT statement is encountered,
program execution is stopped for the number of milliseconds specified, then continued automatically.

Format

WAIT (number of milliseconds)

The WAIT statement introduces a program delay which allows instruments to achieve a steady state.
The number following the word WAIT is the desired delay in milliseconds. Hence the statement:

WAIT (1000)

will delay the program one full second. The range of the number of milliseconds that the program can
wait is from 0 to 32767: the maximum delay is therefore 32.767 seconds.

The time delay produced by WAIT is not precise.

Example

>LIST
19 LET Y=5000
2¢ LET Z=1
3@ PRINT #Z3;"STATEMENT 20"
40 WAIT (YY)
50 PKRINT #Z3"STATEMENT 40"
62 GOTO 20
70 END
>RUN

3-20

STRINGS

A string is a set of characters delimited with quotation marks, such as “DDDDDE” or 45T ,#”. Real
Time Multi-User BASIC contains special variables and language elements for manipulating string
quantities. This section explains how to use the string features of BASIC. There is little difference in
the form of statements referencing numeric quantities and those referencing strings. One important
difference, however, is the use of subscripts which is explained later.

Lower-case alphabetic characters can be input from or output to user terminals having this capability.
When lower-case characters are output to a terminal not capable of printing them, most terminals will
print such characters as the upper-case equivalent. Lower-case characters are automatically converted
to upper-case by the system, except when they occur in strings or REM statements. Lower-case
characters in strings used as file names in ASSIGN statements or program names in CHAIN state-
ments are also converted to upper-case when used.

The examples and comments in this section emphasize modifications in statement form or other
special considerations in handling strings.

9y ee

If you are familiar with the concepts “string”, “string variable”, and “substring”, skip directly to
paragraph 4-5.

4-1. STRING

A string is a set of characters enclosed by quotation marks or the null string (no characters). See
paragraph 4-5 for detailed information about string dimensions.

Typical Strings: “ABCDEFGHIJKLMNOP”
“12345”

“BOB AND TOM”
“MARCH 13, 1970”

Null String: “«r

Quotation marks cannot be used within a string because quotation marks are used as string
delimiters.

Apostrophes and control characters are legal as string characters.

A null string has no value, as distinguished from a blank space which has a value.

4-1

Strings

Strings are manipulated in string variables. For example:

100 A$ = “THIS IS A STRING”
T i
string string
variable
200 B$ = A$(1,10)
1 1
string substring
variable (defined later)
300 C$ — (3]
7 7
string null string
variable

4-2. STRING VARIABLE

A string variable consists of a single letter (A to Z) followed by a $, and is used to store strings.
A$,2$,M$ are typical string variables.

String variables must be declared before being used if they contain strings longer than one character.
See the String DIM statement, paragraph 4-5.When a string variable is declared, its “physical” length

is set. The “physical” length is the maximum size string that the variable can accommodate. For
example:

7172 DIM AS(C72),B3(22>,C3(3%2)

During execution of a program, the “logical” length of a string variable varies. The “logical” length of
the variable is the actual number of characters that the string variable contains at any point. For
example:

1060 DIM A$(72] Sets physical length of A$
200 LET A$="SAMPLE STRING" Logical length of A$ is 13
308 LET A$="LONGER SAMPLE STKRING" Logical length of A$ is now 20

4-3. SUBSTRING

A substring is a single character or a set of contiguous characters from within a string variable. The
substring is defined by a subscript string variable.

A substring is defined by subscripts placed after the string variable. Characters within a string are
numbered from the left starting with one. Subscripts must be positive, non-zero, and less than 256.
Non-integer subscripts are rounded to the nearest integer.

4-2

Strings

Two subscripts, separated by a comma, specify the first and last characters of the substring. For
example:

100 DIM Z$L072]
20¢ LET Z$='"ABCDEFGH"
300 PRINT Z2%(2,6]

prints the substring

BCDEF

A single subscript specifies the first character of the substring and implies that all characters
following are part of the substring. This convention also holds true if there is a zero specified for the
second subscript. For example:

300 PRINT Zs$(3]

prints the substring

CDEFGH

Two equal subscripts specify a single character substring. For example:

>30@ PRINT Z%c2,2)

Prints the substring

B

If subscripts specify a substring larger than the physical length of the original string, blanks are
appended.

4-4. STRINGS AND SUBSTRINGS

A string can be made into a null string. This is done by assigning it the value of a substring whose
second subscript is one less than its first. For example:

120 AS = BS$(6,5) A$ now contains a null string.

This is the only case in which a smaller second subscript is acceptable in a substring.

Substrings can become strings. For example:

102 AS = "ABCDEFGH"
223 3% = A%$(3,5)
322 PRINT B$

Strings

prints the string

CDE

because the substring of A$ is now a string in B$.

Substrings can be used as string variables to change characters within a larger string. For example:

126 A% = '"ABCDEFGH"
208 A$(3,5) = 'l123"
302 PRINT AS$

prints the string

AB123FGH

Strings,substrings, and string variables can be used with relational operators. They are compared and
ordered as entries are in a dictionary. See Appendix C for the ranking of non-alphabetic characters.
For example:

1@ IF A% = B$ THEN 2200

2p@ IF A$ <= "TEST" THEN 3020
380 IF A$(5,6) >= B3%(7,8) THEN 40¢¢

See the STRING IF statement description in this section.

4-5. STRING DIM

Format

DIM string variable (number of characters in string)

The string DIM statement reserves storage space for strings longer than 1 character; also for arrays.

The number of characters specified for a string in its DIM statement must be expressed as an integer
from 1 to 255.

Each string having more than 1 character must be mentioned in a DIM statement before it is used in
the program.

Strings not mentioned in a DIM statement are assumed to have a length of 1 character.

The length mentioned in the DIM statement specifies the maximum number of characters which may
be assigned; the actual number of characters assigned may be smaller than this number. See the LEN
Function, paragraph 4-11, for further details.

4-4

Strings

Array dimension specifications may be used in the same DIM statement as string dimensions
(example statement 45 below).

Example

35 DIM A%(255), B$(632)
42 DIM Z23%(18)
45 DIM N$(2), R(5,5), P$(8)

4-6. STRING ASSIGNMENT

Format

“string literal”
string variable _ . .
[LET] substring variable string variable

substring variable

The string assignment statement establishes a value for a string; the value may be a literal value in
quotation marks, or a string or substring value.

An input line may contain a total of 80 characters. One string assignment statement is allowed per
input line. Thus, a string may contain 80 characters minus assignment statement elements such as
the statement number, string variable name, equal sign, quotation marks, and any blanks inserted
between these elements. String variables having more than 1 character must be mentioned in a DIM
statement (see Paragraph 4-5).

Special purpose characters, such as A¢, H¢, D¢, Y¢ or quotation marks may not be string characters.

If the source string is longer than the destination string, the source string is truncated at the
appropriate point.

Example

2@ LET A$ = "TEXT OF STRING"
212 BS = "'kxkx TEXT tt11v

222 LET Cs = ASCl,4)

232 D$ = BS(4)

240 F$(3,%)=N$

Strings must be concatenated if they are to include more characters than the limit imposed by the
80-character line. For example:

5 DIM As$(255)

100 A$(C1,50) = *50 characters™
110 A$(51,100) = "“50 characters"
120 A$C101,150) = “50 characters®
130 A$(C151,200) = *50 characters"
140 A$(201,255) = "55 characters™

4-5

Strings

4-7. STRING INPUT

Format

string variable
INPUT substring variable * "’

The string INPUT statement allows string values to be entered from the user terminal.

Placing a single string variable in an INPUT statement allows the string value to be entered without
enclosing it in quotation marks.

If multiple string variables are used in an INPUT statement, each string value must be enclosed in
quotation marks, and the values separated by commas. The same convention is true for substring
values. Mixed string and numeric values must also be separated by commas. Failure to include the
quotation marks and/or commas will result in corrupt input data.

If a substring subscript extends beyond the boundaries of the input string, the appropriate number of
blanks are appended.

Numeric variables may be used in the same INPUT statement as string variables (example statement
55 below).
Example

5¢ INPUT RS$

55 INPUT AS$,B$, C9, L8
60 INPUT A%(C1,5)

65 INPBT B$(3)

4-8. PRINTING STRINGS

Format

string variable string variable
PRINT substring variable [’ substring variable °

A string PRINT statement causes the current value of the specified string or substring variable to be
output to the user’s terminal device. The terminal device may be any ASCII output device.

String and numeric values may be mixed in a PRINT statement (example statements 115 and 125
below).

Specifying only one substring parameter causes the entire substring to be printed. For instance, in the
example below, if the value of B3 = 642 and C$ = “WHAT IS YOUR NAME?”, example statement 120
prints:

WHAT IS
while statement 115 prints
YOUR NAME?END OF STRING 642

Numeric and string values may be “packed” in PRINT statements without using a “semicolon”, as in
example statement 115.

4-6

Strings

Example

125 PRINT AS

112 PRINT A%, BS, 2%

118 PRINT C$(8) "END OF STRING'" B3
128 PRINT C3(1,7)

125 PRINT "THE TOTAL 1S: '";3X&

Each string PRINT statement will accept a maximum of 80 characters. If the strings and string
variables in a PRINT statement total more than 80 characters, the line printer will truncate after 80
characters, with no error message returned.

4-9. READING STRINGS

Format

READ string variable string variable
substring variable |’ substring variable °’

A string READ statement causes the value of a specified string or substring variable to be read from a
DATA statement.

A string variable (to be assigned more than 1 character) must be mentioned in a DIM statement before
attempting to READ its value.

String or substring values read from a DATA statement must be enclosed in quotation marks, and
separated by commas. See paragraph 4-12 in this section.

Only the number of characters specified in the DIM statement may be assigned to a string. Blanks are
appended to substrings extending beyond the string dimensions.

Mixed string and numeric values may be read (example statement 310 below); see TYP (X), paragraph
5-1, for a description of a data type check which may be used with DATA statements.

Example

302 READ CS3

325 READ X%, Y3, 7%

3120 READ Y$(5), A,B,CS5,N$
315 READ Y$(l1,4)

4-7

Strings

4-10. STRING IF

Format

statement number label

IF string var. relational oper. string var. THEN statement

A string IF statement compares two strings. If the specified condition is true, control is transferred to
the statement number specified or the statement is executed. Statements allowed with IF are listed in
paragraph 3-6.

Strings are compared one character at a time, from left to right; the first difference determines the
relation. If one string ends before a difference is found, the shorter string is considered the smaller one.

Characters are compared by their ASCII representation.

If substring subscripts extend beyond the length of the string, null characters (rather than blanks) are
appended.

String compares may appear only in IF. . .THEN statements and not in conjunction with logical
operators.
Strings may not use Boolean expressions.

Example

342 1F C$<D3$ THEN 822

352 IF C$>D$ THEN 922

362 IF C$=D%$ THEN 1222

3792 IF N8(3,5)<R$(9) THEN 522
382 IF ASC1@)="END'" THEN 4029
392 IF A$#3% PRINT A%

4-11. LEN FUNCTION

Format

statement type LEN (string variable). . .

The LEN function supplies the current (logical) length of the specified string, in number of characters.

DIM merely specifies a maximum string length. The LEN function allows you to check the actual
number of characters currently assigned to a string variable.

4-8

Example

469
479
489
499

PRINT LENC(AS)

PRINT LEN(XS$)

PRINT "TEXT'; LEN(AS$); Bs, C
IF LEN(PS$) #5 THEN 600

5¢9 LET X$C(LEN(X$)+1) = "ADDITIONAL SUBSTRING"
622 STOP
609 PRINT "STRING LENGTH = '3 LENC(PS)

4-12. STRINGS IN DATA STATEMENTS

Format

Strings

DATA “string literal” [, string literal”. . .]

The DATA statement specifies data in a program (numeric values may also be used as data).

String values must be enclosed by quotation marks and separated by commas.

String and numeric values may be mixed in a single DATA statement. They must be separated by
commas (example 520 below).

A DATA statement input line may contain a total of 80 characters. Thus, a string literal may contain
80 characters minus the statement number, the word DATA, quotation marks, any blanks or commas
and other string literals included within the input line.

Example

522 DATA "NOW IS THE TIME."
518 DATA "HOW', "ARE'", "YQU,"
52¢ DATA 5.172, '"NAME?', 6.47,50871

Strings

4-13. PRINTING STRINGS ON FILES

Format

string variable

PRINT # filenumber , record number ; substring variable [, . . .]
“string literal”

The PRINT # statement prints string or substring variables or string literals on a file.

String and numeric variables may be mixed in a single file or record within a file (example statement
360 below).

The formula for determining the number of words required for storage of a string on a file is:

number of characters in string

5 if the number of characters is even;

1+

number of characters in string + 1

5 if the number of characters is odd.

1+

If the file number is not equal to a file position as defined in a FILES statement, the output will go to
the logical unit of the same number. When printing to the line printer using PRINT #6, BASIC inserts
a leading space in column 1. The PRINT USING (Section 3-7a) or PRINT to a type O file should be used
to control the lineprinter.

Example

35@¢ PRINT #55 *“THIS 1S A STRING."

355 PRINT #8; C$, B%, X%, YS$, L%

368 PRINT #7,3; X$, PSS, "TEXT'", 27.5,R7
365 PRINT #N,ER; P$, N, A(5,5), "TEXT"

4-14. READING STRINGS FROM FILES

Format

string variable string variable []

READ # file number [, record number] ; substring variable ’substring variable

4-10 Update 2

Strings

The READ # statement reads string and substring values from a file.

String and numeric values may be mixed in a file and in a READ number statement; they must be
separated by commas.

Example

450 READ #57 C$,B$,XrY'D$
460 READ $#8; X$'P$:X:P

470 READ #N; PS$,N,A(5,7)

If the file number is not equal to a file position number as defined in a FILES statement, input will be
read from the logical unit of that number.

4-15. DECIMAL STRING ARITHMETIC ROUTINES

You may perform arithmetic operations on decimal strings and substrings through BASIC program
calls to the Decimal String Arithmetic package. Five of the Decimal String Arithmetic routines are
callable from BASIC. These routines are SADD, SSUB, SMPY, SDIV, and SEDIT. Detailed informa-
tion about these routines is contained in the Decimal String Arithmetic Routines manual. The part
number for this manual is listed in the Documentation Map at the front of this manual.

4-11/4-12

FUNCTIONS

A function is the mathematical relationship between two variables, X and Y, for example, that returns
a single value of Y for each value of X. The independent variable is called an argument; the dependent
variable is the function value. To illustrate, in the statement:

100 LET Y = SQR(X)

X is the argument; the function value is the square root of X; and Y takes the value of the positive root.

Two types of functions are used in Multi-User Real-Time BASIC: system defined functions and
user-defined functions.

5-1. SYSTEM-DEFINED FUNCTIONS

Real-Time BASIC provides a variety of functions that perform common operations such as finding the
sine, taking the square root, or finding the absolute value of a number. The resulting value of a
function is always numeric and can be used in the evaluation of an expression. Available system-
defined functions are listed below:

ABS(x) The ABS function gives the absolute value of the expression (x).

ATN(®) ATN is the arctangent function. ATN returns the angular argument of x in radians
adjusted to the appropriate quadrant.

COS(x) The COS function returns the cosine of x expressed in radians.

EXP(x) EXP gives the value of the constant e raised to the power of the expression (x).

IERR(x) This function returns the error code value which may have been set by a user-defined

subroutine or function. See Section VI. x is a dummy argument.
INT(x) The integer function, INT, provides the truncated value of x; x < 32767.

LEN(x$) Determines length (no. of characters) in character string identified by string variable
x$. See Section IV.

LOG(x) Gives base 10 logarithm of variable or expression.
LN(x) LN provides the logarithm of a positive expression to the base e.
OCT(x) This function prints the octal equivalent of an integer value. The maximum possible

range of the returned variable is 0-177777,. If x is outside the range of —32768 to
32767, 777775 is returned.

RND(x) RND generates a random number greater than or equal to zero and less than 1. The
argument x may have any value. A sequence of random numbers is repeatable upon
each run if the argument is positive. A random sequence can be achieved upon each
run by two RND calls. The first call is issued in the negative value for x, called a seed,
followed by another call with a positive x. If the same seed is used for each run, the

same random sequence is repeated.
5-1
Update 3

Functions

SERR(x)
SGN(x)
SIN(x)
SQR(x)

SWR(x)

TAB(x)

TAN(x)

TIM(x)

TYP(x)

Sets the error code which may be queried with IERR(x). See Section VI.
SGN returns 1 for x >0, 0 for x =0, and —1 for x <O0.

The SIN function gives the sine of x expressed in radians.

SQR provides the square root of x. x must be greater than zero.

The SWR function returns the logical value, one or zero, of the Switch Register bit
position specified by x (range = 0 through 15).

The TAB function is used to advance the print position the number of positions
specified by x. x may be equal to 0 through 71. See Section III.

The TAN function returns the tangent of x expressed in radians.

The TIM function returns the current minute, hour, day or year.

0, TIM(x) = current minutes (0 to 59)

1, TIM(x) = current hour (0 to 23)

2, TIM(x) = current day (1 to 366)

= 3, TIM(x) = current year (four digits).

—1, TIM(x) = current seconds (0 to 59)

= —2, TIM(x) = current tens of milliseconds.

It
I

oM oM M MM
|

The TYP function determines the type of the next data item in the specified file. The
three possible reponses are: 1 = next item is a number, 2 = next item is a character
string, 3 = next item is “end of file”, 4 = next item is “end of record”. If x is zero, the
TYP function references the DATA statements and returns the following response:
1 = number, 2 = string, 3 = “out of data” condition.

5-2. USER-DEFINED FUNCTIONS

A user-defined function is one that you define for use in your program. It is called and used the same
way that a system-defined function is. The DEF statement is used to define a new function, that is to
equate the function to a mathematic expression.

Format

X

DEF FNx(y) = expression

Parameters

expression provides a formula such as X*X or X 1TAN(X). Whenever the function is called

stands for a letter (A-Z) that completes the name of the function. Only 26
user-defined functions may be specified: FNA through FNZ.

stands for the variable to which the function is to be applied. Any number,
string, or variable may be used in this position.

in the program, this formula will be evaluated.

5-2

Functions

Example

>1@¢ DEF FNA(Y)=Y/10
>20 PRINT FNA(C100)
>30 END

>RUN

10

When FNA (100) is called for in statement 20, the formula defined for FNA is evaluated to determine
the value printed. Note that the results of the function may be used in computation:

35 LET X = FNA(ML)Y + 14 =-FNA(12)

An operand in the program may be used in the defining expression, however, such circular definitions
as the one below cause infinite looping.

FNB(Y)+1
FNA(X) -1

19 DEF FNACY)
20 DEF FNB(X)

5-3/5-4

SUBROUTINES

It is often preferable to make use of the same procedure several times within a program. Rather than
re-writing the procedure each time it is to be used, you can simply refer to a given segment of code (a
subroutine) whenever that segment is needed. The GOSUB/RETURN statement sequence is used
when a subroutine is located within your own program. The CHAIN statement is used when you want
to execute another program.

There are also times when the inclusion of subroutines outside of your program is desirable. In this
case, the CALL statement is required. External subroutines are completely separate from your
program and from the BASIC Interpreter. They are disc resident programs or parts of programs,
accessed via a memory directory, and must have been specified by a special subroutine configuration
process as described in Section XIV.

6-1. GOSUB/RETURN

GOSUB transfers control to the beginning of a simple subroutine. A subroutine consists of a collection
of statements that may be executed from more than one location in the program. In a simple
subroutine, there is no explicit indication in the program as to which statements constitute the
subroutine. A RETURN statement in the subroutine returns control to the statement following the
GOSUB statement.

Format

GOSUB statement number label
GOSUB integer expression OF statement number label [, statement number label, . . .]
RETURN

GOSUB may have a single statement number label, or may be multi-branched with more
than one label separated by commas. In a multi-branch GOSUB, the particular label to
which control transfers is determined by the value of the integer expression which is rounded
to the nearest integer. The RETURN statement consists simply of the word RETURN.

A single-branch GOSUB transfers control to the statement indicated by the label. A multi-branch
GOSUB transfers to the statement label determined by the value of the integer expression. As in a
multi-branch GOTO, if the value of the expression is less than 1 or greater than the length of the list,
no transfer takes place.

When the sequence of control within the subroutine reaches a RETURN statement, control returns to
the statement following the GOSUB statement. RETURN statements may be used at any desired exit
point in a subroutine. There may be more than one RETURN statement per GOSUB.

Within a subroutine, another subroutine can be called. This is known as nesting. When a RETURN is
executed, control transfers back to the statement following the last GOSUB executed. Up to 20
GOSUB statements can occur without an intervening RETURN; more than this causes a terminating
error.

6-1

Subroutines

Examples

In the first example, line 20 contains a simple GOSUB statement; the subroutine is in lines 50 through
70, with RETURN in line 70.

>LIST
12 LET 3=97
23 GOSUB 52
32 P©PRINT "SINE OF B 1S ";A
43 GOTO 872
5@ REM: THIS IS THE START OF THE SUBROUTINE
63 LET A=SIN(B)
73 RETURN
8% REM: PROGRAM CONTINUES WITH NEXT STATEMENT
9@ END
>RUN
SINE OF B IS .893993

The GOSUB statement can follow the subroutine to which it transfers as in the example below.

>LIST
10 LET B=90@
2¢ GOSUB 110
30 REM: THIS IS THE START OF SUBROUTINE
49 LET A=SIN(B)
5@ RETURN
603 REM: OTHER STATEMENTS CAN APPEAR HERE
70 REM: THEY WILL NOT BE EXECUTED
80 LET A=24
9@ LET B=50
186 PRINT A3B
11 GOSUB 30
120 PRINT A
13 REM: A SHOULD EQUAL +893993
140 PRINT B
159 REM: B SHOULD EQUAL 90
160 END
>RUN
«393993
90

6-2

Subroutines

It is also possible for any one subroutine to be called from several places in the coding of any one
program. The logical flow of this situation looks like this:

19 .
29 .
39 .
49 GOSUB 10892
50 .
60 .
70 .

3¢ GOSU3 1002

1200 .
1212 .
192¢ .

1232 RETURN)

Taking the same situation one step further, it is permissable for a subroutine to, in turn, call another
subroutine:

1612 GOSUB 2029
1820 .
1830 RETURN)

CZGGG .

2010 .
2020 RETURN)

Subroutines

Subroutines should be entered only with GOSUB statements rather than GO TO’s to avoid unexpected
RETURN errors (which cause the program to stop execution).

This sequence shows logically nested GOSUB’s:

19 INPUT
28 GOSUB 100

1860 IF C>0 THEN 122
112 LET C=-C

126 GOSUB 220

139 RETURN

200 LET A=SQR(C)
219 LET C=SGR(A)
22¢ RETURN

300 END

The order in which this program is executed is:

when C>0:

10

20

100

120

200

210

220

130

statements after 20

when C<=0:
10

20

100

110

120

200

210

220

130
statements after 20

6-2. CHAIN

The CHAIN statement terminates the current program and begins execution of another program,
optionally starting at a specified statement number.

6-4

Subroutine:

Format

string variable
string literal

CHAIN

[, statement number label]

The string variable or literal is the name of a Real-Time BASIC program that is in your
library. This may be a fully qualified file name (see Section VII, Files). If the optional
statement number label is present, execution begins at the first executable statement at or
after the label; the exact label need not be present in the called program. If omitted,
execution begins at the first executable statement in the called program.

CHAIN calls the program identified by the string expression, and it replaces the current program.
When the program called by CHAIN finishes execution, it terminates and does not automatically
return to the calling program. The called program may call another program, including the original
calling program, with the CHAIN statement.

Chained programs will leave common data files open, thus reducing the overhead needed to close and
re-open the file during the next chain operation.

Only variables declared in a COM statement are saved during a CHAIN operation. All variables and
arrays of the current program that were not declared in COM are lost when the new program begins
execution. All programs must contain the same size COM area and the same number of file positions in
the FILES statements so that common will be properly aligned. Files declared in CHAINed programs
correspond to files declared in the main program. Logical unit cannot be defined in a CHAINed
program unless it is already declared in the main program’s FILES statement. Refer to the FILES
statement, Section 7-3, for examples.

If the programs are CSAVEd, the time required to execute the CHAIN statement is reduced.

SLIST
10 REM..PROGRAM MAIN
20 LET X=200
30 LET A=X'3
40 PRINT A= "3A
5@ PRINT '"LEAVE MAIN AND ENTER SUBA AT LINE 30"
60 CHAIN '"SUBA'", 30
70 END

>LIST
1?2 REM..PROGRAM SUBA
20 PRINT 'THIS STATEMENT IS NOT EXECUTED*
3% PRINT "ENTER SUBA - LINE 30"
409 LET B=125
50 LET C=Bt2
6@ PRINT "C= *;C
70 PRINT "END OF SUB A - TERMINATE HERE"

80 END
>SAVE SUBA
>RUN MAIN

A= S.00000E+06

LEAVE MAIN AND ENTER SUBA AT LINE 3¢
ENTER SUBA - LINE 30

C= 15625

END OF SUB A - TERMINATE HE&E

6-5

Subroutines

The main program, MAIN, calls program SUBA with a CHAIN command in line 50. Execution of
SUBA begins in line 30, and execution terminates with the last line of SUBA. None of the variable
values from MAIN are saved following execution of CHAIN.

6-3. CALL

The CALL statement is used to identify and execute an external subroutine at a given point within a
program. CALL is optional, you may simply use the subroutine name and parameter list. After the
subroutine executes, control returns to the statement following the CALL unless there is a FAIL
return.

Format

[CALL]lsubroutine name(parameter list) [FAIL: statement]

Parameters

subroutine name name of the routine as entered into the system during system genera-
tion or when loaded on-line.

parameter list list of variables or constants to be passed to the subroutine or varia-
bles into which the subroutine places information for the calling
program. Spaces are not allowed between the subroutine name and
the left parenthesis.

FAIL: statement optional subroutine failure return. See paragraph 6-4.

To execute the subroutine calling sequence, you need to determine the following:

® the name of the subroutine

® the number of parameters in the call

® the meaning of the contents of each parameter
e the values acceptable in each parameter.

Usually this information is provided in the documentation supplied with the subroutine.

A CALL statement is rejected by the interpreter unless the TABLES command has been given to
specify the legal set of subroutine names.

Examples

Figures 6-1 and 6-2 contain examples of routines written in FORTRAN which may be called from
BASIC.

Constant numbers, string literals, and expressions cannot be used as parameter values when calling a
subroutine if the parameter is defined as a return variable (type V, see Section XIV).

6-6

Subroutines

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043

FTN, L ,M
INTEGER FUNCTION NUM(I)

THIS FUNCTION RETURNS THE NUMERIC VALUE OF THE FIRST CHARACTER
OF THE STRING EXPRESSION ACCORDING TO THE STANDARD CHARACTER CODE.

FOR EXAMPLE:

10 PRINT NUM("A")
20 END

> RUN

65

THE FUNCTION’'S DESCRIPTION THAT MUST BE INPUT TO THE TABLE
GENERATOR TO CREATE THE PROPER ENTRY IN THE BRANCH AND MNEMONIC
TABLE IS AS FOLLOWS:

NUM (RA), OV=NN, INTG, ENT=NUM, FIL=FILxX
WHERE: RA INDICATES REAL PARAMETER (STRINGS ARE ALWAYS REAL)
NN INDICATES THE OVERLAY NUMBER

FILX INDICATES THE FILE NAME OF THE RELOCATABLE FOR
THIS FUNCTION.

DIMENSION I(2)
RIGHT JUSTIFY CHARACTER BY DIVIDING

RIGHT HALF OF THE FIRST WORD OF A STRING IS THE CHARACTER COUNT
AND MUST NOT BE DISTURBED.

OO0 OO0 0N00000n

NUM =I(2) /256
RE TURN
END

Figure 6-1. Preparing a FORTRAN Function for Use by BASIC Program

Update 2 6-7

Subroutines

0001 FTN,L,M

0002 SUBROUTINE CHRS(I,J)

0003 C

0004 C

0005 cC

0006 C

0007 C THIS SUBROUTINE CAUSES THE NUMERIC VALUE OF THE FIRST PARAMETER

0008 C TO REPLACE THE FIRST CHARACTER OF THE SECCOND PARAMETER WHICH

0009 C IS A STRING VARIABLE.

0010 cC

0011 cC

0012 ¢C FOR EXAMPLE:

0013 C

0014 cC 10 DIM AS (10)

0015 C 20 AS="YBCDE"

0016 C 30 CHRS(65,A8)

0017 C 40 PRINT AS$

0018 cC 50 END

0019 cC

0020 cC >RUN

0021 C

0022 C ABCDE

0023 ¢

0024 cC

0025 C

0026 C THE FUNCTION DESCRIPTION THAT MUST BE INPUT TO THE TABLE

0027 C GENERATOR TO CREATE THE PROPER ENTRY IN THE BRANCH AND MNEMONIC

0028 C TABLE IS AS FOLLOW:

0029 C

0030 cC CHRS(I,RVA), END=CHRS

0031 ¢ L

0032 C WHERE: I INDICATES AN ITEGER VARIABLE PASSED TO CHRS

0033 cC RVA INDICATES A REAL VARIABLE (STRINGS ARE ALWAYS

0034 C SPECIFIED AS REAL) RETURNED FROM ‘CHRS’

0035

0036 C

0037 C

0038 C

0039 ¢C

0040 C

0041 cC

0042 DIMENSION J(2)

0043 cC 3

0044 C PLACE CHARACTER IN FIRST CHARACTER POSITION OF STRING 'J

0045 C

0046 C THE RIGHT HALF OF THE FIRST WORD OF A STRING IS THE CHARACTER

0047 C COUNT AND MUST NOT BE DISTURBED.

0048 C

0049 J(2)=IAND(J(2) ,377B)

0050 J(2)=I0R(I*256,3(2))

0051 RETURN

0052 END

Figure 6-2. Preparing a FORTRAN Subroutine for Use by BASIC Program

6-8 Update 2

Subroutines

6-4. THE FAIL ERROR OPTION

Some of the externally defined subroutines supplied with the Real-Time BASIC Interpreter make
error checks at execution time. For example, the TRNON routine checks both the time schedule table
and the trap table for overflow before adding a new entry. If an execution time error is detected, an
appropriate error message is printed, the ERRCD flag is set, the program is aborted, and the BASIC
Interpreter returns to command input mode.

You may avoid aborting your program by using the FAIL option as part of the subroutine call
statement. Any statement which can appear in an IF statement can be added to the end of a subroutine
CALL statement following the word FAIL.:.

For example:

100 CALL TRNON(2000,122536)FAIL: GO TO 9000

If the called subroutine detects an error during execution, the error message is printed but the
Interpreter executes the statement following FAIL: instead of aborting the program. The error
message format is:

ERROR n IN LINE xxx where n is the ERRCD value.

If ERRCD equals zero, the FAIL statement is not executed.

The FAIL: option may be used with the following routines:

SETP)
TRNON Task
START ¢ Control
ENABL Statements
DSABL
RDBIT)
RDWRD
WRBIT
WRWRD b HP 6940
D AC Calls
MPNRM

SENSE J
AISQV
SGAIN
RGAIN HP 2313
AOV [Calls
NORM J

PACER

You can use the FAIL ERROR option in subroutines you write for yourself, as well as in the HP
subroutines listed above. In your own subroutines you also have the option of processing errors
without printing out the error messages. There is no way of avoiding the error message when you are
using the HP subroutines, because these routines call an internal error message routine.

6-9

Subroutines

After execution of a CALL statement, in either an HP subroutine or your own, the interpreter checks
the value of ERRCD. If this value is non-zero, and you have not included the FAIL ERROR option,
subroutine CALSB prints the error message:

SUB. OR FUNCT. TERMINATED ABNORMALLY IN LINE xxx

and the program aborts. Subroutine CALSB is the parameter-passing linkage between BASIC over-
lays and the subroutine you write in BASIC language. The loader attaches CALSB to your BASIC
routine.

If you do not, in your subroutine, set a non-zero value in ERRCD, there will be no error message and no
abort. If, on the other hand, you do set ERRCD non-zero, you will get the above error message, and the
program will abort. If you set ERRCD rnon-zero, and also include the FAIL ERROR option in your
CALL statement, the program will not abort and you can additionally interrogate ERRCD in your
program:

10 CALL subroutine FAIL: GO TO 100

100 I = IERRCO)
110 PRINT I

In statement 100, IERR is the function that interrogates ERRCD. The PRINT statement allows you to
check what may have caused the error in the execution of your routine.

The following is a sample subroutine you might use to set a value in ERRCD:

ASMB,R,L
NAM PASS,7 Subroutine to set ERRCD
ENT PASS
EXT .ENTR,ERRCD

ICODE BSS

PASS NOP
JSB .ENTR
DEF ICODE
LDA ICODE,I
STA ERRCD
JMP PASS, I
END

-

6-10 Update 2

Subroutines

Alternatively, you can use subroutine ERROR to print a BASIC-type error message:

ASMB,R,L
NAM PASS,7 Subroutine to set ERRCD
ENT PASS
EXT .ENTR,ERRCD,ERROR
1CODE BSS 1
PASS NOP
JSB .ENTR
DEF ICODE
LDA ICODE,I
STA ERRCD
JSB ERROR
DEF #+3
DEF ERRCD
DEF MESS
JMP PASS, I
MESS DEC 4
ASC 2,TEST
END

Using the ERROR subroutine prints an error message of the form:

ERROR TEST-number IN LINE xxx

where number is the value of ERRCD. The following is a FORTRAN subroutine that uses PASS, and a
sample BASIC program to call it:

FTN4,L
SUBROUTINE TRYIT CIFLAG,ICODE)
C IF IFLAG #0, THEN SET ERRCD TO ICODE
IF CIFLAG.EQ.0) GO TO 900
CALL PASS (ICODE)
900 RETURN
END

10 PRINT "INPUT A,N C(A#0: TAKE ERR EXIT/N=ERRCD)>";
20 INPUT A,N

30 CALL TRYIT ¢A,N) FAIL: GO TO 50

40 STOP

SO0 PRINT "ERRCD IS NOW *;IERRCO0)
60 END

Notice that ERRCD is examined in BASIC with the function IERR, which has a single dummy
parameter, not used but necessary. Also notice that ERRCD may be set in the BASIC program by the
function SERR, which also has a single dummy parameter.

Update 2 6-11

Subroutines

6-5. THE IERR FUNCTION

Since the action desired may depend on which error occurred, the function IERR is supplied to
interrogate the ERRCD flag. It is a BASIC function and must be used as an operand in an expression.
It returns the value of ERRCD. IERR requires one dummy parameter which is ignored. Any call to
another external subroutine or execution of a PRINT statement resets the value of IERR(x).

Example

190 CALL TRNON(22092,124S15)FAIL:GOTO 90888 Specify task 2000 to be executed
at 12:45 and 15 sec. If error, go to

. 9000.
9092 IF IERR(X) = 1 GOTO 9108 If error is 1, go to 9100.
9219 IF IERR(X) = 2 GOTO 9222 If error is 2, go to 9200.

6-6. THE SERR FUNCTION

You may use the SERR function to set the ERRCD flag to a particular value in a subroutine. For
example, the statement:

110 I= SERR(N) (I is a dummy variable)

sets the ERRCD flag to the value of N. After execution of your subroutine you can examine the error
code by using the IERR function. The value of I is unchanged.

The CALL statement initializes ERRCD to 0, however, you should initialize it at the beginning of your
program and reset it to zero after you have detected an error in a routine and taken appropriate action
to avoid leaving it set in case there are no more CALLs. You initialize the error code as follows:

10 I= SERR (0)

6-7. PARAMETER CONVERSION

BASIC has two data types: number (real) and string. The format of real data is:

S MANTISSA
MANTISSA EXPONENT | S
and for string is: 15 87 0
7
/ Character
Count
/)

1st char. 2nd char.

15 8 7 0

6-12

Subroutines

The leftmost half of the 1st word may contain information used internally by BASIC.

If you want to pass parameters to or from external subroutines, you must be aware of the internal
representation of these two data types. BASIC converts real data variables and arrays to integer and
vice versa, and thus provides you with the ability to transfer data between BASIC and subroutines
that use integer type data. For example, if the subroutine passes an integer array to BASIC, you must
specify that parameter as an integer returned array when generating the Branch and Mnemonic
Tables. (See Section XIV.)

Some intrinsic RTE and File Manager subroutines use string parameters but do not follow the BASIC
string format convention. If you want to call one of these subroutines, you must first write an interface
routine to convert the BASIC string to the necessary format. Figure 6-3 contains a FORTRAN routine
which converts the program name to the FORTRAN string format before calling the File Manager
EXEC subroutine.

voe1 FIN,L,M

geaz SUBROUTINE EXFCO(I)
0003
Va4
QUod
0086
aoez
2008
voe9
Q14
2211
Q012
2013
0014
2015
Jdio
advi7
0018
0019
2020
0021
2422
2023
0024
0025
ge20
0027
Qu2¢e
2029
0030
0031
2032
2033
034
2035
3036
0037
2038 CaLl EXEL(Y,I(2)) FORTRAN Subroutine
2039 KETURN

0040 eNU

THIS SUBROUTINE CALLS YHE RTE 'EXEC' 70 SCHEDULL A PROGRAM WITH WAITY
FOR EXAMPLE:

10 DIM AS(6)

20 PRINT "INPUT PROGRAM NAML";

30 INPUT AS

49 LALL EXEC9(AS) BASIC program
50 END

>RUN

INPUT PROGRAM NAMEZ?PROGA

THE SUBROUTINE'S DESCRIPTION THAT MUST BE INPUT TO THE TABLE
GLNERATOR TO CREATE THE PROPER ENTRY IN THE BRANCH AND MNEMONIC
TABLE 1S AS FOLLOWS:

EXECO9(RA), OV=aNN , INTG, LNT=EXECY9, FIL=EXECYR

WRERES KA INDICATES RKEAL ARRAY PARAMETER(STKINGS
AkE ALwWAYS SPECIFIED AS KEAL)
NN INDILATES THE GVERLAY NUMBER
EXECYK INDILATES THE FILE NAME CF TrIS SUBROUTINE'S
KELULATABLE,

LIrehSIUN 1(4)

(9] OO0 NOO0OO0000O

Figure 6-3. FORTRAN Subroutine to Convert String Parameter
6-13/6-14

Subroutines

6-3a. INVOKE

The INVOKE statement is used to schedule a second BASIC program from a calling program. The
called program may also call another program and so on. When the currently executing, called
program terminates, control is returned to its calling program.

Format

string variable

INVOKE . .
string literal

[,statement number label]

The string variable or literal is the name of a Real-Time BASIC program or the type 6 RTE
program that has been saved with the File Manager ‘SP’ command. This may be a fully
qualified file name (see Section VII, Files). If the optional statement number label is present,
execution begins at the first executable statement at or after the label; the exact label need
not be present in the called program. If omitted, execution begins at the first executable
statement in the called program.

INVOKE calls the program identified by the string expression, and it stores the current program on
disc. When the program called by INVOKE finishes execution, it terminates and automatically
returns to the calling program. The called program may call another program, including the original
calling program, with the INVOKE statement.

Basic data files remain open when one program INVOKES another.

Only variables declared in a COM statement are saved during a INVOKE operation. All variables and
arrays of the current program that were not declared in COM are lost when the new program begins
execution. All programs must contain the same size COM area and the same number of file positions in
the FILES statements so that common will be properly aligned. Files declared in INVOKE’d programs
correspond to files declared in the main program. Logical units cannot be defined in a INVOKE’d
program unless it is already declared in the main program’s FILES statement. Refer to the FILES
statement, Section 7-3, for examples.

If the programs are CSAVEd, the time required to execute the INVOKE statement is reduced.
Any TRAPS previously enabled will remain enabled.

The calling program is saved on the disc on program tracks in the system area of the disc. The levels
deep of INVOKE is determined by the size of the calling program and the number of available system
tracks. When the available system tracks are used up, the message “BASIC WAITING TRACKS” is
printed. The copy of Multi-User BASIC being used by the operator is disc track suspended until system
tracks become available, or the copy of Multi-User BASIC being used by the operator is terminated
with an OF command (this is not recommended).

When BASIC invokes a program, the LU’s of your terminal and list device are passed. If the devices
are interactive, the echo bit (K-bit) is set.

6-15

Subroutines

The non-BASIC program that is INVOKE’d must exist as a type six file for BASIC to schedule it. This
means that after the program to be INVOKE'd is loaded, it must be SP’d with the File Manager SP
command. For example, if EXMPL is the non-BASIC program to be INVOKE’d first load the program
then type,

:SP, EXMPL
EXMPL is now stored as a type six file. BASIC first ‘opens’ the INVOKE’d program to determine its
type. This type could be ASCII (type three or four) and BASIC assumes a BASIC program is to be
INVOKE’d. If it is type six, then BASIC schedules the non-BASIC program.

When the user breaks the INVOKE’d program with the system break command (*BR,BASIC), BASIC
returns control to the origianl program.

6-16

SECTION

VAL

FILES

For situations that require permanent data storage external to a particular program, Real-Time
BASIC provides a data file capability. This capability allows flexible direct manipulation of large
volumes of data stored in files.

The simplest approach to files is to treat them as serial storage devices. Visualize a file as a list of data
items, ordered serially. You can read the data in a file and write data to a file with your programs quite
easily without worrying about the internal structure of the file. Several programs may access the same
file along with yours. Each program uses its own data pointer to mark its position in the file, and
functions independently of the other programs.

You may also envision files as structured data bases, internally organized as a collection of records —
each record consisting of 128 16-bit words. Thus each record of a file may hold up to 64 numerical
quantities. A string data item occupies 1 + (n+1)/2 words where n is its length in characters.

To use a file you should be familiar with the CREATE and PURGE commands and with the statements
listed below:

e FILES

e READ#
e PRINT#
e ASSIGN
e IF END

These commands and statements as applicable to files are defined in the remainder of this section.

7-1. FILE CHARACTERISTICS

In order to create and use files, you must understand the following characteristics of Real-Time BASIC
files. The conventions for file creation are the same as RTE File Manager conventions.

e A file name may contain from 1 to 6 characters. The first character may not be a number. Leading
and trailing blanks are ignored. Embedded blanks are not allowed. Any printable ASCII character
except the plus (+), hyphen or minus (—), comma (,), and colon (:) may be used.

® A file may be assigned a security code to control read/write access. The security code may be a
number between —32767 and +32767. A positive code write protects the file. When accessing the
file, you may supply a positive or negative version of the positive security code in order to write on
the file. A negative security code both read and write protects the file. You must provide the
negative code to read or write on a file protected by a negative code. If you do not want to protect the
file, assign a zero security code.

Two ASCII characters may be used in lieu of a positive security code. The first character may not be
a number.

7-1

Files

® Each file is assigned a type number. For a complete description of all file types, see the Batch-Spool
Monitor Reference Manual. The types you will be using with BASIC are: type 0, type 1, type 4, and
type 10.

A type O file defines an I/O device. You must create type O files with the File Manager CR command.
After you create a type O file, you can use the file name to reference the device it defines.

A type 1 file contains data. You must create this type of file with the Real-Time BASIC CREATE
command if you are using it with BASIC programs.

A type 4 file is created when you SAVE a program. You may also create a type 4 file with the File
Manager or Interactive Editor and store source programs or commands in it.

A type 10 file is created when you CSAVE a program.

® When you create or access a file, you can specify the cartridge reference. The cartridge reference can
be a positive integer corresponding to the label of a currently mounted cartridge or a negative
logical unit number referencing a disc. The file will be created on or accessed from the specified

cartridge. If you specify a zero, the cartridges are accessed in the order in which they appear in the
File Manager Cartridge Directory.

7-2. CREATE AND PURGE

The CREATE command is used to create a file for use by a program and the PURGE command is used
to remove a file. These commands are described in Section IX, paragraphs 9-6 and 9-7.

7-3. FILES STATEMENT

Every file that is to be accessed by a program must be identified in the program’s FILE statement.

Format

FILES filename, [, filename,, . . . filename, [:security[:cartridge]]]

Parameters

filename, name of file to be referred to by number corresponding to position in FILES
statement, or an asterisk indicating file will be assigned later or zero
indicating position refers to a logical unit.

security optional security code which may be supplied with each filename.

cartridge optional cartridge reference which may be supplied with each filename
(either positive cartridge reference number or negative LU number).

The FILES statement declares which files will be used in a program. Up to four FILES statements can
appear in a program, but only 16 files total can be declared. The files are assigned numbers (from 1 to
16) in the order in which they are declared in the program. In the examples below MATH is file #1 and
#9, FILE27 is #7, and DATA is #10. File position #3 will be assigned to a filename with the ASSIGN
statement. File position #4 is specified as zero to indicate LU4.

7-2

Files

Example

10 FILES MATH, SCORE, *, 0, NAMES
20 FILES GRP, FILE27, SAMPLE:JS:10

30 FILES MATH, DATA

These numbers are used in the program to reference the files. For instance, the statement:
100 PRINT #2;A

would print the value of A onto the file named SCORE. This feature allows most programming to be

done independently of files to be used. The FILES statement may be added any time before running
the program.

All programs which are INVOKE’d or CHAINed must contain the same size COM area and the same
number of file positions in the FILES statements so that common will be properly aligned. An asterisk
in the FILES statement can only be assigned within the program containing that FILES statement.
Therefore, an asterisk in the main program cannot be assigned to a file by a CHAINed or INVOKE’d
program. Also an asterisk in a CHAINed/INVOKE’d program is the only way to open a new file.

Example

Main program creates the files and declares 3 files:

CREATE A,l

CREATE B,l

CREATE C,1

CREATE G,l

10 FILES A,B8,C

20 PRINT "MAIN PROGRAM"
30 INVOKE "SUB1"

90 END

SUBL1 program is invoked and defines file G:

5 REM** FILES A&B ARE THE SAME FILES AS IN THE MAIN
6 REM** FILE 3 WILL BE ASSIGNED TO FILE G

10 FILES A,B,*

20 PRINT "SUB1"

30 ASSIGN "G" ,3,J

50 PRINT #3; "GGGG", END file G has “GGGG” written into the first record.

90 END

7-2a

Files

Main program has 3 files:

CREATE A,l
CREATE B,1

CREATE C,1
10 FILES A,*,C

20 ASSIGN "B",2,J
30 INVOKE "suB2"

90 END

SUB2 program is invoked. Although it uses file names A1, A2, A3, they correspond to files A, B, C in
the main program:

10 FILES Al,A2,A3
20 PRINT "SUB2"

90 END

A CHAINed/INVOKE’d program uses the zero as a file position holder only. Whatever files or LU’s the
main program has defined correspond in the CHAINed/INVOKE’d program’s FILES statement.

Example

Main program has 3 files and LU 4 declared:

10 FILES A,B,C,0
20 PRINT "MAIN"
30 INVOKE "SUB3"

.

90 END

SUB3 program is invoked:

10 FILES 0,0,0,0 The zeroes define files A, B, C and LU 4 from the
20 PRINT "SuB3" main program to be in SUB3.

40 REM** WRITE INTO FILE 1 WHICH IS FILE A

41 REM** FROM THE MAIN PROGRAM WHEN SUB3 IS INVOKED,
42 REM** OTHERWISE FILE 1 IS LUl

45 PRINT #1, "THIS IS SUB3"

90 END
7-2b

Files

7-4. ASSIGN STATEMENT

The ASSIGN statement is used to change the file referred to by a specified file number during the
execution of a program.

Format

ASSIGN filename [:security[:cartridgel) , file number, return variable

Parameters

filename the name of a file, (i.e., a literal string of up to six characters) enclosed
in quotes, or a string variable containing a literal string.

security optional security code. Must be supplied if file was created with a
security code.

cartridge optional positive cartridge reference number or negative LU number.

file number a number, variable, or expression whose value is between 1 and 16,
indicating a file’s position. The file number should not exceed the
number of files declared in the FILES statement.

return variable the value returned to this variable when the statement is executed.
Values are summarized in Table 7-1.

When the ASSIGN statement is executed, the named file replaces the file previously referenced by the
file number in the statement. Subsequent file references using this number will apply to the new file.
Data written to the old file will be intact.

Example

10 ASSIGN "NEW:AJ:-44",1,J
20 ASSIGN AS, 3, Bl

30 ASSIGN "NEWFL", S2, J
40 ASSIGN "S$F2", 6, C

7-3

Files

After each file is assigned you should test the value of B1, J, and C for error conditions as summarized
in Table 7-1.

Each file that is assigned (opened) requires 144 words of user memory space.

Table 7-1. ASSIGN Return Variable Values

RETURN VARIABLE MEANING
-1 Disc is inoperable.
-5 File number is out of range. It does not correspond to any of the positions in the
FILES statement.
-6 File not found.
-7 Invalid security code.
-8 File currently open to a program that demands exclusive use of the file or to 7
programs (the maximum allowed).
-13 Cartridge is locked.
-32 Specified disc not found.
-33 No more room on disc.

7-5. IF END # THEN STATEMENT

The IF END statement sets a flag for a specified file so that if and when an end-of-file condition occurs
in reading and writing the file, control is transferred to a specified statement. If the flag is not set, an
end-of-file condition causes the program to terminate.

Format

IF END # file number THEN statement number label

Parameters

file number a number, variable, or expression whose value is between 1
and 16, indicating a file’s position. '

statement number label the number of the statement to which control will transfer.

When an end-of-file condition occurs during execution of a READ # statement, the IF END statement
transfers control to the statement specified. The IF END statement remains in effect until another IF
END for the same file changes it, or until an ASSIGN statement containing the same file number is
executed.

An end-of-file condition occurs when a file read operation encounters an end-of-file mark or the
physical end of file, or when a file write operation encounters the physical end of the file.

Example

18 IF END #3 THEN 125

7-4

Files

7-6. RESTORING THE DATA POINTER

A READ # statement may be used to reposition the data pointer to the start of a file. The statement
can be used for any file accessed by the program.

Format

READ # file number, 1
Parameter

file number a number, variable, or expression whose value is between 1 and 16,
indicating the file’<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>