MULTICS PROGRAMMERS’ MANUAL —
Honeywell SUBSYSTEM WRITERS’ GUIDE

SERIES 60 (LEVEL 68)

SUBJECT:

Reference Guide for Advanced Multics Users, Writing Their Own Subsystems.

SPECIAL INSTRUCTIONS:

This manual is one of four manuals that constitute the Multics Programmers'
Manual (MPM).

Reference Guide Order No. AG91
Commands and Active Functions Order No. AG92
Subroutines Order No. AG93
Subsystem Writers' Guide Order No. AK92

This manual supersedes AK92, Rev. 0, and its Addendum A. The manual has

been extensively revised; therefore, marginal change indicators have not
been included in this edition.

SOFTWARE SUPPORTED:

Multics Software Release 5.0

INCLUDES UPDATE PAGES ISSUED AS ADDENDUM A IN JULY 1976,
AND ADDENDUM B IN FEBRUARY 1977.

DATE:

September 1975

ORDER NUMBER:
AK92, Rev. 1

PREFACE

_Primary reference material for user and subsystem programming on the
Multics system is contained in five manuals. The manuals are collectively
referred to as the Multics Programmers' Manual (MPM). Throughout this manual),

rgferences are frequently made to the MPM. For convenience, these references
will be as follows:

Document Referred To In Text As
Reference Guide MPM Reference Guide

(Order No. AG91)

Commands and Active Functions MPM Commands
(Order No. AG92)

Subroutines MPM Subroutines
(Order No. AG93)

Subsystem Writers' Guide MPM Subsystem Writers' Guide
(Order No. AK92)

Peripheral Input/Qutput MPM I/0
(Order No. AX49)

The MPM Reference Guide contains general information about the Multics
command and programming environments. It also defines items used throughout the
rest of the MPM. And, in addition, describes such subjects as the command
language, the storage system, and the input/output system.

The MPM Commands is organized into four sections. Section I contains a
list of the Multiecs command repertoire, arranged functionally. It also contains
a discussion on constructing and interpreting names. Section II describes the
active functions. Section III contains descriptions of standard Multics
commands, including the calling sequence and usage of each command. Section IV
describes the requests used to gain access to the system.

The MPM Subroutines is organized into three sections. Section I contains a

list of the subroutine repertoire, arranged functionally. Section II contains
descriptions of the standard Multics subroutines, including the declare
statement, the calling sequence, and usage of each. Section III contains the

descriptions of the I/0 modules.

The MPM Subsystem Writers' Guide is a reference of interest to compiler
writers and writers of sophisticated subsystems. It documents user-accessible
modules that allow the user to bypass standard Multics facilities. The
interfaces thus documented are a level deeper into the system than those
required by the majority of users.

2/77 File No.: 1L13

(:) 1975, 1976, 1977, Honeywell Information Systems Inc. AK92B

The MPM 1I/0 manual contains descriptions of commands and subroutines used
to perform peripheral I/0. Included in this manual are commands and subroutines
that manipulate tapes and disks as I/0 devices. Special purpose communications
1/0, such as binary synchronous communication, is also included.

Examples of specialized subsystems for which construction would require
reference to the MPM Subsystem Writers' Guide are:

° A subsystem that precisely imitates the command environment of some
system other than Multics.

° A subsystem intended to enforce restrictions on the services available
to a set of users (e.g., an APL-only subsystem for use in an academic
class).

° A subsystem that protects some kind of information in a way not easily
expressible with ordinary access control lists (e.g., a proprietary
linear programming system, or an administrative data base system that
permits access only to program-defined, aggregated information such as
averages and correlations).

The MPM Subsystem Writers' Guide provides the advanced Multics user with a
selection of some of the internal interfaces used to construct the standard
Multics user interface. It also describes some specialized tools helpful to the
advanced subsystem writer.

The facilities described here are subject to changes and improvements in
their interface specifications. Further, at the level of the system presented
by many of these interfaces, it is difficult to avoid far-reaching sybsystem
changes when these interfaces change. Thus, the sybsystem writer is cautioned
against the unnecessary use of the interfaces described in this manual.

Most interfaces described here should be used only if there is a need to
bypass normal Multics procedures; i.e., in using one of these interfaces, the
user risks giving up some of the desirable characteristics of Multics. For
example, the standard Multics interface presents a consistency of style and
interpretation to the user that the subsystem writer may find difficult to
duplicate and maintain. Therefore, the subsystem writer should be cautious
about unintentionally introducing different, and possibly confusing, styles and
interpretations when bypassing a standard function.

However, one of the objectives of Multies is to allow the knowledgable user
to construct subsystems of almost any specification. The content of the MPM
Subsystem Writers' Guide, applied with care, is intended to help fulfill this
objective.

Several cross-reference facilities in the MPM help locate information:

° Each manual has a table of contents that identifies the material
(either the name of the section and subsection or an alphabetically
ordered list of command and subroutine names) by page number.

) ‘Fach manual contains an index that lists items by name and page number.

2/77 iii ARYZD

CONTENTS

Section I Multies Standard Object Segment . .
Format of an Object Segment . .
Structure of the Text Section .

Entry Sequence
Gate Segment Entry P01nt Transfer v
Structure of the Definition Section
Definition Section Header . .
Expression Word
Type Pair
Trap Pair
Initialization Structure for Ty
and Type 6 Links
Structure of the Static Sectlon .
Structure of the Linkage Section .
Linkage Section Header
Internal Storage Area
Links . . ¢« ¢ ¢ ¢« v o o 0 . .
First-Reference Trap
Structure of the Symbol Section .
Symbol Block Header
Source Map
Relocation Information . .
Structure of the Object Map .
Generated Code Conventions . .
Text Section : .
Entry Sequence
Text Relocation Codes .
Definition Section
Definition Relocation Codes

® o o o o MDe o o o
o

e o o o o cte o o o

< (o]
e o o o

W e o o o o

[

5 #

pe

® o o o o ° 2 * o o s s * o o o o

(e}

Implicit Definitions .

Linkage Section
Internal Storage . . .

Links« =
Linkage Relocatlon Code

Static Section
Symbol Section
Structure of Bound Segments
Internal Link Resolution
Definition Section . . .
Binder Symbol Block . .
Bind Map

® % o % o ° s e s e e ° s e * s o * s o o o s 6 o e ® e o @
® ® ° e o s 2 s s s e e * e s s * o e o s o o s e o s e e @
® * ° & s % s s s e e e s e s e o * o s 0 o s 0 e e e e e

® o o o o s o [De s & .
e o & o o o o * o ¢ o e o

® ® o o o o o o o o s o

Section II Standard Execution Environment
Standard Stack and Linkage Area Formats
Multies Stack
Stack Header e e e e e e e
Multiecs Stack Frame . . .
Linkage Offset Table
Internal Static Offset Table
Subroutine Calling Sequences . .
Call Operator
Entry Operator
Push Operator
Return Operator

® e s ° o o o & o & e @
® o o o o o o o o o o o

® o o o e o o o o

2/77 iv

MD*® ®* © o o o o o o o

8

® ® ° o 2 0+ 2 s e e e 6 o e s o o s+ s * o o 6 6 s e e e e

® o o o o o s * o o o »

© ® e & e s s s P s e e o o s 0+ s o o o 0 8 o 8 % e e e e e

® ® ° e o o s 0 e o s e e * e o -® & o o ® & 6 o e ®

® ® o o ° & o o o o s o

Page

S LS S JUIEWN = -

E O N G W G I G
MO o

] []
- = WO XCOOUITN) =

- - 00

DN N
1

NNNNI'\)!\)I\)I\)

AK92B

(!

Section III

Section IV

Section V

Section VI

2/77

CONTENTS (cont)

Short Return Operator
Pseudo-op Code Sequences . . .
Register Usage Conventions . .
Argument List Format

Subsystem Programming Environment
Writing a Process Overseer . .
Process Initialization . .
Process Overseer Functions
Handling of Quit Signals .

Implementation of Input/Output Modules
I/0 Control Blocks . « « « . . .
I/0 Control Block Structure
Attach Pointers
Open Pointers . .
Entry Variables .
Synonyms
Writing an I/0 Module
Design Considerations
Implementation Rules
Attach Operation . .
Open Operation . .
Close Operation .
Detach Operation .
Modes and Control Operations
Other Operations

.

e © o o o o o s o o o o
e o o © o o o o ® o ° o o
o o ® o e o o ©° o * o o o o

e © o & o o o o © o o o o o o o

Reference to Commands and Subroutines by

Command Repertoire
Subroutine Repertoire

Command Descriptions
alm .. .« ¢« « o .
alm_abs, aa . .
archive_sort, as
area_status. . .
copy_names . . .
create_area . . .
delete_external_ varlables
dlsplay_component name, dcn
error_table_compiler, etc .
list_external_variables
list_temp_segments
mbx_add_name, mban . .
mbx_create, mber
mbx_delete, mbdl
mbx_delete_acl, mbda . .
mbx_delete_name, mbdn .
mbx_list_acl, mbla
mbx_rename, mbrn
mbx_set_acl, mbsa
mbx_set_max_length, mbsml
MOVE_NAaMES « « o« « o« o o
print_bind_map, pbm . . .
print_link_info, pli . . .
print_linkage_usage, plu .
reorder_archive
reset_external_variables . .

e e o o o o
e o o o o o

e o o o o o

e o o o o o

o o © o o o o
e o o e o © o o o
e o o * o o o

e o o o o o o o
e o o o o o
e o ©® o o o o © o o o ° o o

o o o o o o
e o © o o o o o o o o o
e o o o ©° o o o

e o o o © & s o ® o 8 ° ° o ° o o *

e o o o

e o o o

e o o o
.

e o o o

e o o o o
e o o o o
e o o o o
e o o o o

e o o o © © o o o o o o o o o o
e o o o o o o © o o o o o s o o
e o © o o o o o ® e o e o o o o
e © o o o © o © o ° o o o o o o

Function

e o o o ° o o
e« o o o o o 8 ° o o
e © ©® o o o o o ° o o o

e o o ® o o ° o o o o
e o 8 © o ® ® s 8 ® e o o & s 8 o s e o o 2 o o
e ® ©® o o o o o o o

e o o o ® 8 o ® © o o ° o o o ° o

o o o o o

o o © o © o o o o o o o o o o o

e ® o o o o © © o » © 8 o o o o e ° o o s ° o o o o o

Page

N'l\)l\)l\)
-
wWw N -

WN ==

s ErEFEESEEEEEEESE
Vwoce~ToUNEEWWND N =

vTo,;m
1
N = =

[o)Xe)Xo N oY No)NopNopNe Yo
1
PPN E-

[exXe X XerXe Yo XoaNe) NerNorNe Ne Yo Ne NeoNepRe)]
[}
MEESEEESFFTLLLLLWLWLW

B0 ONEW 20OV EW-=0 00N FEFWN O

AK92B

Section VII

2/717

set_max_length,
set_ring_brackets, srb

set_system_storage . . .
set_user_storage

Subroutine Descriptions .
active_fnc_err_ . . .
aim_ check e e e . .

area_info_
ascii_to ebcdlc e o e

assign_. . . ¢« ¢ ¢ ¢ 4 . .
check_star_name_

condition 1nterpreter .« .
continue_to_signal_
convert_aim_attributes_
convert_dial_message_
convert_status_code_ .
cu

cv__

cv_

cv
cv

cv

decode descrlptor_
define_area_ . . .
dial_manager_. .« .
dprint_
ebedic_to_ascii_ .

find condltlon info_
get_default_wdir_ .
get_definition_ . .

CONTENTS (cont)

sml . .

aim_check $equal .
aim_check_$greater
aim_check_$greater_

e o o o o

e O* o o o o
"3
[¢]

ascii_to_ebedic $table

check_star_name_$path.
check_star_name_$entry

cu_$ready_proc
cu_$get_ready_procedure
cu_$set_ready_procedure
cu_$get_ready_mode . .
cu_$set_ready_mode
cu_$arg_list_ptr .
cu_$arg ptr_rel. .
cu_$af_arg _count .
cu_$af_arg ptr . .
cu_$af_return_arg. .
cu_$stack_frame_ptr.
cu_$stack_frame_size .
cu $generate call . .
cu_$set command_processor
cu_$get_command_processor
cu_$set_cl_intermediary
cu_$el
cu_$get_cl 1ntermed1ary
cu_$level_set.
cu $level_get « e e
cu_$decode_entry_value
bin_ . . e e e o
cv_bin $dec. .
cv_bin_$oct. .
entry_
hex_

® e- 90 o o o o s o o o o s o De s e s @

S * % s e s 0 s s s e e e o s e e o s e 0 MNe e s s e

e o o o o

oect. . . .
cv_oct check
ptr « o

ebedic_to_ascii_$ta

"'U‘""""""
...m...........-

-.-(‘f.ooo.n-n

* o o o

vi

-anoo.ooaooooa-o.o-oooot-o.ooo.-u-o-oo-oo-.oo.o.o e o o o

e o o o

non-o-o....-..o--oocoaoo.o-'.a.-to-oo.o.a.0..0.000-0-.-

o o o o

00000..00....0.000...'.0.0.0-.lD.oooioouloonl...00000000.

© ® * ° o e e s s s s e e 0+ o o s 6 5 o 85 ° o 6 s e e e e e @

e o o o

Page

6-52
6-54
6-55
6-57

[|
~ o
-

.
-

| I R B O B |
e o e
g ey

NN NN NN N N~ g
| 1

EEEFSFLLWLWWWWW

EENOONO OV &=

—_

AK92B

2/717

CONTENTS (cont)

get_entry_name_ . .
get_equal_name_ . .
get_privideges._ . .
get_ring_ . . . « .
get_system_free_area_ .
hes_$add_dir_inacl_entries
hes_$add_inacl_entries . .
hes_$del_dir_tree
hes_$delete_dir_inacl_entries
hes_$delete_inacl_entries
hes_$get_author
hes_$get_be_author
hes_$get_dir_ring_brackets
hes_$get_max_length . . .
hes_$get_max_length_seg .
hes_$get_ring_brackets . .
hes_$get_safety_sw

e
hes_$get_safety_sw_seg . .
hes_$get_search_rules . .
hcs_$get_system_search_rules
hes_$initiate_search_rules .
hes_$1ist_dir_inaecl
hes_$list_inaecl
hes_$quota_move
hes_$quota_read
hes_$replace_dir_inacl . .
hes_$replace_inacl
hes_$set_dir_ring_brackets .
hes_$set_entry_bound . . .
hes_$set_entry_bound_seg .
hes_$set_max_length . . .
hes_$set_max_length_seg .
hes_$set_ring_brackets . .
hes_$set_safety_sw
hes_$set_safety_sw_seg . .
hes_$star_ . . « « « .+ . .

hes_$star_dir_list_ .
hes_¢$star_list_ . . .
hes_$wakeup . . « o .+ . .
iod_info_ . « ¢ ¢ ¢ o & .
iod_info_$generic_type .
iod_info_$driver_access_nam
10X 4 o 6 e 6 e e e e e e
iox_$destroy_iocb

e o o o o o o o * o o o [N e o o o o
e ® ® 8 e ® ® ® © 8 ® e ® e ® o & ° 5 s e o o o o o o * o v o o

e (Do o o o o o o o ® o o o o o ® s o & o o o o o o o o o ¢ o o o o ¢ o o o o o

iox_$err_no_operation, iox_$err_n
iox_$err_not_closed, iox_$err_no

iox_$find_iocb_n
iox_$look_iocbhb . . .
iox_$propagate . . .
ipC_ ¢ ¢ ¢ o o e e e e e

ipe_$create_ev_chn
ipc_$delete_ev_chn
ipc_$dcl_event_call_c
ipe_$decl_ev_wait_chn
ipe_$drain_chn . . .
ipe_$cutoff.
ipc_$reconnect . . .
ipe_$set_wait_prior.
ipe_$set_call_prior.
ipe_$mask_ev_calls .
ipe_$unmask_ev_calls
ipe_¢$block
ipc_$read_ev_chn . . .

a

e o o o o o o o Te o e o o
e o o o o o © o o o T e e o s o

.
.
nel

vii

e ® © ® o © @ © 8 ® ® o © e o © o e o ° o o ° o s ° o o o

e © ® o o ® © o ©® o © © 8 8 6 6 e © o © o o o ° s o 0 o o s o+ o

® o o o o & ® o o o o o 0 o o

e o o © o o s o o 8 o o o o o o s Tt O " e o ® o o e o o o e o o s s ° e e s e o s s O e s e e s s e e e s s s o 0 00

e ® o o ® ® o o o ® © o & 8 e e ® & s o e ° ° e e e e e o e o * s o o o o o e 0o o 0o o o

-..oo--Cr’U-.oc..co-..o-oo-oo-oo.-o--.-o-.-.o-o.oo.-.

e o o o o ® o o (DI e o o o o o o e o o 0+ o o o o o o o s e ° o s s o e ° s e s s s s s o o o 0

e ®© ®© o © o © ® ©® o © © 8 o e © © © ® 6 8 o e © e ° o e e ©° o o e o o o o s o s s * s o

o © o ® ® o ® © ® ® ® ® e © o © 6 © e © © o o © © o o e o o © o 6 o e o o s o o * o o o

e o o ° o o o o o o o o s o

e © © © © © ® o ® © ® © o o ® ®© © 6 o © o o © o e 6 e © o ° o * e o o o o e o o o 0o o o

2/77

CONTENTS (cont)

match_star_name_
msf_manager_
msf_manager_$open. . .
msf_manager_$get_ptr .
msf_manager_$adjust. .
msf_manager_$close . .-
msf_manager_$acl_list.
msf_manager_$acl_replace
msf_manager_$acl_add . .
msf_manager_$acl_delete.
object_info_
object_info_$brief . .
object_info_$display .
object_info_$long. . .
prepare_mc_restart_ . . .
prepare_mc_restart $retry.
prepare_mc_restart_$replace
prepare_mc_restart_$tra. .
read_allowed_
read_write_allowed_

stu_$get_runtime_ block
stu_$find_runtime symbol
stu_¢$decode_runtime_value.
stu_$get_implicit_qualifier
stu_$get_runtime_address .
stu_$get_line_no
stu_¢$get_runtime_line_no
stu_$get_location. . . .
stu_$get_line.
stu_¢$get_runtime_location
stu_¢$get_statement_map .
stu_$offset_to_pointer
stu_$pointer_to_offset
stu_g$remote_format . .
sub_err_ . . ¢« ¢ ¢ ¢ . .

release_area_ . « « « o « o &
signal_ . . . ¢ ¢ ¢ 4 e 0 e
stu_ . . 0 0 0 0 s e e e e e
stu_$find_header
stu_$find_block. . AN

sys_info . . . e e e e e
system_info_ .

system_info $1nstallatlo i

d

system_1nfo_$sy31d
system_info_$titles. .
system_info_$users . .
system_info_$timeup. . .
system_info_$next_shutdown
system_info_$prices. . . .
system_info_¢$device_prices
system_info_$shift_table .
system_info_$abs_prices. .
system_info_$io_prices . .
system_info_$last_shutdown
system_info_$access_ceiling
system_info_$level_names .
system_info_$category_names
timer_manager_ . . .+ « ¢« ¢ ¢ o o
timer_manager_$sleep
timer_manager_$alarm_call. .

timer_manager_$alarm_call 1nh1b1t

timer_manager_$alarm_wakeup.
timer_manager_$cpu_call. . .

viii

® & o o s o s e s e o e e e s * s ° s o o s 6 6 o s ° & o ° o & 6 6 6 e e s e e »

® o o ® o o e e © ° o o o * o e ° o o

® o o e o © o o o e o o © o e e & o & ® e © e e e e o

..I..‘00'.‘..."Ol.‘..o'o.ol".t.....I.O.o‘.’....o...‘..a"o...

© % % s s s e s s s e e s 0 e s s s e P s s s e e s P s e s s e e s o o o e e ° o s s s o s o o 6 8 e s e e e s e s e e »

-.ooo.-ooa..ooa;o.-nooa-o..oo-.o-ooo.on-ootaoo..o...o-oooo.oc..

% * s e s s 0 s e s s 0 s s s s s e e e s s e s s s o s e e o s o s o s 0 0 s s s e e ® 0 s ® 5 s s s e s e e e e =

S * % s e s s e s s s s s e 0 s s s e s s e e s s s s e e e s s e s s e s e s s e s s ® o e e s o s & ® s s o s e e e s e e

Page

7-107
7-108

~
[} !

— -—I
o

3 "o’s

LI I I I I B |
N U\ S G T Y
[\ e YN U N WU W WY T QT Y
oCoViUTLMMEWN =00

~Lq-q~rq—q~a~r<-q~v<—4~vq
]

—_

N NN

- - O

7-123
7-124
7-124.1
7-125
7-126
7-126
7-127
7-127
7-128
7-129

— d b
wwuww
w0

wWLwwwwww
O oo~N~NonuTu,

41.1

[QU NS N PURE QY (U (U U |

=
—_
&=

-—) ek e)
B = g i — g =4
wwmPdhh N

144
144
145

RS ESESENER PR PR PXPRERXEX PP R P PR PP PR P P g p

]
_ -
E—g = =4
~NOoO 0

T-147
T-148
T-148
T-148
7-150
7-151
7-151
7-152
7-152
7-152

AK92B

(y

PO

)

C

-/

CONTENTS (cont)

timer_manager_$cpu_call_inhibit.
timer_manager_$cpu_wakeup. . . .
timer_manager_$reset_cpu_call. .
timer_manager_$reset_cpu_wakeup.
timer_manager_$reset_alarm_call.
timer_manager_$reset_alarm_wakeup
£SSi_ v 4 i h e e e e e e e e e
tssi_¢$get_segment. .
tssi_$get_file . . .
tssi_$finish_segment
tssi_$finish_file. .
tssi_$clean_up_segmen
tssi_$clean_up_file.
tty_ « o o o .
unwinder_ . . .

. . . .

vfile_ o e e
write_allowed_

o o o o o cte o o o
e o e 8 ® e ® o & s o o o e o o oo

.
.
.
.
.
.
.
.
.
.

. . . .
. . . .
. . . .

Appendix A Approved Control Arguments

Index e 4 e e o s & 8 e & e e e s e e e e o 4 e e e e

ILLUSTRATIONS
Figure 1-1 Sample Definition List
Figure 1-2 Structure of a Link « « o o . .
Figure 1-3 Structure of a Bound Segment
Figure 2-1 Stack Header Format . . ¢« « « ¢ o« « « « &
Figure 2-2 Stack Frame Format e & s o s e o e s s s
Figure 2-3 Standard Argument List « « ¢ + o
Figure 2-4 Argument Descriptor Format « ¢« ¢

2/77 ix

e o o © o o

e o © o o o o o o o o o o o o o o

e o ® © © o ©® o o o o o o o o o o

o o © o ©® © o ® © o o o o o o o o

e o o o o o o

1
= =a2UIThhN-=0

o =

@ O

NDPOPNON == -
]

AK92B

SECTION I

MULTICS STANDARD OBJECT SEGMENT

A Multics object segment contains object code generated by a translator and
linkage information that is used by the dynamic 1linking mechanism to resolve
intersegment references. (See "Dynamic Linking" in the MPM Reference Guide.)
The most common examples of object segments are procedure segments and data
segments.

Format requirements for an object segment are primarily associated with
external interfaces; thus, translator designers are permitted a great amount of
freedom in the area of code and data generation. The format contains certain
redundancies and unusual data structures; these are a byproduct of maintaining
upward compatibility with earlier object segment formats. The dynamic 1linking
mechanism and the standard object segment manipulation tools assume that all
object segments are standard object segments.

FORMAT OF AN OBJECT SEGMENT

An object segment is divided into six sections that usually appear in the
following order:

text

definition

linkage

static (if present)
symbol

break map (if present)

The type of information contained in each of the six sections is summarized
below:

1. text contains only pure parts of the object segment
(instructions and read-only data). It can also contain
relative pointers to the definition, linkage and symbol
sections.

2. definition contains only nonexecutable, read-only symbolic
information used for dynamic 1linking and symbolic
debugging. Since it is assumed that the definition
section is infrequently referenced (as opposed to the
constantly referenced text section), it should not be
used as a repository for read-only constants referenced
during the execution of the text section. The
definition section can sometimes (as in the case of an
object segment generated by the binder) be structured
into definition blocks that are threaded together.

1-1 AK92

3. linkage contains the impure (i.e., modified during the
program's execution) nonexecutable parts of the object
segment and may consist of two types of data:

a. links modified at run time by the Multics linker
: to contain the machine address of external
references, and possibly

b. data items to be allocated on a per-process basis
such as the internal static storage of PL/I
procedures.

4, static contains the data items to be allocated on a

per-process basis. The static storage may be included
in the linkage section in which case there is no
explicit separate static section.

5. break map contains information used by the debuggers to locate
breakpoints in the object segment. This section is
generated by the debuggers rather than the translator
and only when the segment currently contains
breakpoints. 1Its internal format is of interest only
to the debuggers.

6. symbol contains all generated items of information that do not
belong in the first five sections such as the language
processor's symbol tree and historical and relocation
information. The symbol section may be further
structured into variable length symbol blocks threaded
to form a list. The symbol section contains only pure
information.

The text, definition, and symbol sections are shared by all processes that
reference an object segment. Usually, a copy of the linkage section is made
when an object segment is first referenced in a process. That is, the linkage
section is a per-process data base. The original linkage section serves only as
a copying template. An exception is made for some system programs whose link
addresses are filled in at system initialization time. Their linkage sections
are shared by everyone who wants to use the supplied addresses. When these
programs have data items in internal storage, they have a separate static
section template that is copied once per process. See "Dynamic Linking" in the
MPM Reference Guide and "Standard Stack and Linkage Area Formats" in Section 1II
of this document. Normally, a segment containing break map information is in
the state of being debugged and is not used by more than one process.

The object segment also contains an object map that contains the offsets
and lengths of each of the sections. The object map can be located immediately
before or immediately after any of the six sections. Translators normally place
it immediately after the symbol section. The last word of every object segment
must contain a left-justified 18-bit relative pointer to the object map.

ST TURE _OF THE TE SECTION

The text section is basically unstructured, containing the machine-language
representation of a symbolic algorithm and/or pure data. Its length is usually
an even number of words.

Two of the items that can appear within the text section have standard'

formats: the entry sequence and the gate segment entry point transfer vector.

2/77 1-2 AK92B

v/

E Se nce
A standard entry sequence is usually provided for every externally
accessible procedure entry point in an object segment. A standard entry
sequence has the following format (the two structures are independent but are
normally contiguous): ‘
decl 1 parm_desc_ptrs aligned,
2 n_args bit(18) unaligned,
2 descriptor_relp(n_args) bit(18) unaligned;
del 1 entry_sequence aligned,
2 descr_relp_offset bit(18) unaligned,
2 reserved bit(18) unaligned,
2 def_relp bit(18) unaligned,
2 flags unaligned,
3 basic_indicator bit(1) unaligned,
3 revision_1 bit(1) unaligned,
3 has_descriptors bit(1) unaligned,
3 variable "bit(1) unaligned,
3 function "bit(1) unaligned,
3 pad . bit(13) unaligned,
2 code_sequence(n) bit(36) aligned;
where:
1. n_args is the number of arguments expected by this external
entry point. This item is optional and is valid only

2/717

descriptor_relp

descr_relp_offset

reserved

‘def_relp

flags

if the flag has_descriptors equals "1"b.

is an array of pointers (relative to the base of the
text section) to the descriptors of the corresponding
entry point parameters. This item is optional and is
valid only if the flag has_descriptors equals "1"b.

is the offset (relative to the base of the text
section) of the n_args item. This item is optional and
is wvalid only if the flag has_descriptors equals "1"b.

is reserved for future use and must be "O"b.

is an offset (relative to the base of the definition
section) to the definition of this entry point. Thus,
given a pointer to an entry point, it is possible to
reconstruct its symbolic name for purposes such as
diagnostics or debugging.

contains 18 binary indicators that provide information
about this entry point.

basic_indicator

"1"p this is the entry point of a BASIC program

"O"b this is not the entry point of a BASIC
program

revision_1

"1"p all of the entry's parameter descriptor
information is with the entry sequence,
i.e., none is in the definition .

"O0"b parameter descriptor information, if any,
is with the definition

1-3 AK92B

|

has_descriptors
"1"p the entry has parameter descriptors; i.e.,
items n_args, descriptor_relp and
descr_relp_offset contain valid information
"0"b the entry does not have parameter
descriptors

variable
"1"p the entry expects arguments whose number
and types are variable
"0"b the number and type of arguments, if any,
are not variable

function
"inp the last parameter is to be returned by
this entry
"O"b the last parameter is not to be returned by
this entry
pad is reserved for future use and must be "0"b
7. code_sequence is any sequence of machine instructions satisfying

Multics standard calling conventions. See "Subroutine
Calling Sequences" in Section II.

The value (i.e., offset within the text section) of the -entry point
corresponds to the address of the code_sequence item. (The value is stored in
the formal definition of the entry point. See "Structure of the Definition"
below.) Thus, if entry_offset is the value of the entry point ent1, then the
def_relp item pointing to the definition 'for entl is 1located at word
(entry_offset minus 1). '

G e n Poj ran v

For protection purposes, control must not be passed to a gate procedure at
other than its defined entry points. To enforce this restriction, the first n
words of a gate segment with n entry points must be an entry point transfer
vector. That is, the kth word (0 < k < n-1) must be a transfer instruction to
the kth entry point (i.e., a transfer to the code_sequence item of a standard
entry sequence as described above). In this case, the value of the kth entry
point is the offset of the kth transfer instruction (i.e., word k of the
segment) rather than the offset of the code_sequence item of the kth entry
point.

To ensure that only these entries can be used, the hardware enforced entry

bound of the gate segment must be set so that the segment can be entered only at
the first n locations.

1-4 AK92

~/

STRUCTURE OF THE DEFINITION SECTION

The definition section of an object segment contains pure information that
is used by the dynamic linking mechanism.

The definition section consists of a header pointing to a linked list of
items describing the externally accessible named items of the object segment,
followed by an unstructured area containing information describing the
externally accessible named items of other object segments referenced by this
object segment. The linked list is known as the definition list. The items on
the 1list are known as definitions. The unstructured area contains expression
words, type pairs, trap pairs, trap procedure information, and the symbolic
names associated with external references.

A definition specifies the name of an externally accessible named item and
its location in the object segment. The definition list consists of one or more
definition blocks each of which consists of one or more class-3 definitions
followed by zero or more definitions that are not «class-3 (see "Definition
Section Header" below for format). Normally, unbound object segments contain
one definition block, while bound segments contain one definition block for
every component object segment.

The information in the unstructured area of the definition section is used
at runtime in conjunction with information in the linkage section to resolve the
external references made by the object segment. This information is
conceptually part of the 1linkage section, but is stored in the definition
section so it can be shared among all the users of the segment.

Figure 1-1 shows the structure of the definition section. For more
information concerning the interpretation of the information in the definition
section see "Dynamic Linking" in the MPM Reference Guide.

Character strings in the definition section are stored in ALM "acc" format.
This format is defined by the following PL/I declaration:

del 1 ace aligned,
2 length_of_string fixed bin(8) unaligned,
2 string char(0 refer(length_of_string)) unaligned;

The first nine bits of the string contain the length of the string. Such a
structure is referred to as an acc string.

The following paragraphs describe the formats of the various items in the
definition section.

2/717 . . 1-5 AK92B

def_list_relp

Header

Block 1

Block 2

S

oforward backward
segname _thread class = 3
string_ptr defblock _ptr

o forward backward

pesegname__thread L._Glass -3
string_ ptr detl;ochk _ptr
forward | backward

* segname_thread class = 3

I

string_ ptr

defblock _ptre

backward o

21. forward

value

class # 3

string__ptr

segname_ptre

forward

@
<]
[v]
x
w

backward o

segname_thread

class=3

string_ ptr defblock _ptr
o forward ~ backward
value class # 3
string_ptr segname_ ptre
forward backward o]
value class # 3
string__ptr segname_ptre

{ all zero word

Figure 1-1.

1-6

Sample Definition List

AK92

Definition Section Header

The definition section header resides at the base of the definition section
Y and contains an offset (relative to the base of the definition section) to the
- beginning of the definition list.

del 1 def_header aligned,
2 def_list_relp bit(18) unaligned,

2 unused bit(36) unaligned,
2 flags unaligned, .
3 new_format bit(1) unaligned initial ("1"b),
3 ignore bit(1) unaligned initial ("1"b),
3 unused bit(16) unaligned;
where:
1. def_list_relp is a relative pointer to the first definition in the
definition list. ’
2. unused is reserved for future use and must be "0"b.
3. flags 4 contains 18 binary indicators that prdvide information
about this definition section:
new_format
"i"p definition section has new format
"O"b definition section has old format
ignore
"1"p if new_format equals "1"b, the Multies linker
ignores this definition.
~~ "0"b is an old format definition

unused is reserved for future use and must be "0"b

The format of a definition that is not class-3 is given below.

del 1 definition aligned,
2 forward_thread bit(18) unaligned,
2 backward_thread bit(18) unaligned,
2 value bit(18) unaligned,
2 flags unaligned,
3 new_format bit(1) unaligned,
3 ignore bit(1) unaligned,
3 entry_point bit(1) unaligned,
3 retain bit(1) unaligned,
3 argcount bit(1) unaligned,
3 has_descriptors bit(1) unaligned,
3 unused bit(9) unaligned,
2 class bit(3) unaligned,
2 symbol_relp bit(18) unaligned,
2 segname_relp bit(18) unaligned,
2 n_args bit(18) unaligned,
2 descriptor_relp (0 refer(n_args) bit(18) unaligned;

2/717 1=-7 AK92B

where:

1. forward_thread

2. backwaﬁd_thread
3. value

y, flags

5. class

6. symbol_relp

2/717

is a thread (relative to the base of the definition
section) to the next definition. The thread terminates
when it points to a word that is 0. This thread provides
a single sequential list of all the definitions within the
definition section.

is a thread (relative to the base of the definition
section) to the preceding definition.

is the offset, within the section designated by the class
variable (described below), of this symbolic definition.

contains 15 binary indicators that provide additional
information about this definition:

new_format
"inp definition section has new format
"0"b definition section has old format

ignore
"1"p definition does not represent an external
symbol and 1is, therefore, ignored by the
Multies linker
"0"b definition represents an external symbol

entry_point
"1"p definition of an entry point (a variable
reference through a transfer of control
instruction) '
"o"b definition of an external symbol that does not
represent a standard entry point

retain
"1"b definition must be retained in the object
segment (by the binder)
"0"b definition can be deleted from the object
segment (by the binder)

argcount
ninp (obsolete) definition includes a count of the
argument descriptors (i.e., item n_args below
contains valid information)
"O"b no argument descriptor information is
associated with the definition

has_descriptors
"inp (obsolete) definition includes an array of
argument descriptor (i.e., items n_args and
descriptor_relp below contain valid
information)
"0"b no valid descriptors exist in the definition

unused is reserved for future use and must be "0"b

this field contains a code indicating the section of the

object segment to which value is relative. Codes are:
text section

1 linkage section

2 symbol section

3 this symbol is a segment name

y static section

is an offset (relative to the base of the definition

section) to an aligned acc string representing the
definition's symbolic name.

1-8 AK92B

7. segname_relp is an offset (relative to the base of the definition
section) to the first class-3 definition of this
definition block.

8. n_args (obsolete) is the number of arguments expected by this
external entry point. This item is present only if
argcount or has_descriptors equals "1"b.

9. descriptor_relp (obsolete) is an array of pointers (relative to the Dbase
of the text section) that point to the descriptors of the
corresponding entry point arguments. This item is present
only if has_descriptors equals "1"b.

The obsolete items are described here to illustrate earlier versions;
translators should put these items in the entry sequence of the text section.
See "Entry Sequence" above.

In the case of a class-3.definition, the above structure is interpreted as
follows:

decl 1 segname aligned,
2 forward_thread bit(18) unaligned,
2 backward_thread bit(18) unaligned,
2 segname_thread bit(18) unaligned,
2 flags bit(15) unaligned,
2 class bit(3) unaligned,
2 symbol_relp bit(18) unaligned,
2 first_relp bit(18) unaligned;
where:

1. forward_thread is the same as above.
2. backward_thread is the same as above.

3. segname_thread is a thread (relative to the base of the definition
section) to the next class-3 definition. The thread
terminates when it points to a word that contains all 0's.
This thread provides a single sequential 1list of all
class=-3 definitions in the object segment.

y, flags is the same as above.

5. class is the same as above (and has a value of 3).

6. symbol_relp is the same as above.

7. first_relp is an offset (relative to the base of the definition

section) to the first nonclass-3 definition of the
definition bloeck. If the block contains no nonclass-3
definitions, it points to the first class-3 definition of
the next block. If there is no next block, it points to a
word that is all O's.

1-9 AK92

The end of a definition block is determined by one of the following
conditions (whichever comes first):

1. forward_thread points to an all zero word; J

2. the current entry's class is not 3, and forward_thread points to a
class-3 definition;

3. the current definition is «class 3, and both forward_thread and
first_relp point to the same class-3 definition.

The threading of definition entries 1is shown in Figure 1-1 above. The
following paragraphs describe items in the unstructured portion of the
definition section.

Expression Word

The expression word is the item pointed to by the expression pointer of an
unsnapped link (see "Structure of the Linkage Section" below) and has the

following structure:

del 1 exp_word aligned,
2 type_pair_relp bit(18) unaligned,
2 expression fixed bin(17) unaligned;
where:

1. type_pair_relp is an offset (relative to the base of the definition
section) to the link's type pair. J

2. expression is a signed value to be added to the offset (i.e., offset
within a segment) of the resolved link.

Type Pair

The type pair is a structure that defines the external symbol pointed to by
a link.

del 1 type_pair aligned,
2 type bit(18) unaligned,
2 trap_relp bit(18) unaligned,
2 segname_relp bit(18) unaligned,
2 offsetname_relp bit(18) unaligned;
where:
1. type assumes a value from 1 to 6:

1 1is a self-referencing link (i.e., the segment in which
the external symbol is located is the object segment
containing this link or a dynamic related section of
the link) of the form:

myself|O+expression,modifier
2 unused; it was earlier used to define a now obsolete

ITP-type link.

2/717 1-10 AK92B

2.

3.

4,

2/717

trap_relp

segname_relp

offsetname_relp

3 1is a link referencing a specified reference name but no
symbolic offset name, of the form:

refname | O+expression,modifier

4 is a link referencing both a symbolic reference name
and a symbolic offset name, of the form:

refname|of fsetname+expression,modifier

5 1is a self-referencing link having a symbolic offset
name, of the form:

myself|offsetname+expression,modifier

6 same as type 4 except that the external item is created
if it is not found. (See "Dynamic Linking"™ in the MPM
Reference Guide.) (Now Obsolete.)

is an offset (relative to the base of the definition
section) to either an initialization structure (if type
equals 5 and segname_relp equals 5 or if type equals 6) or
to a trap pair.

is a code or a pointer depending on the value of type.
For types 1 and 5, this item is a code that can assume one
of the following values, designating the sections of the
self-referencing object segment:

is a self-reference to the object's text section; such a
reference is represented'symbolically as "*text".

is a self-reference to the object's linkage section; such
a reference is represented symbolically as "*link".

is a self-reference to the object's symbol section; such a
reference is represented symbolically as "#symbol".

is a self-reference to the object's static section; such a
reference is represented symbolically as "#static".

is a reference to an external variable managed by the
linker; such a reference is represented symbolically as
"#system".

For types 3, 4, and 6, this item is an offset (relative to
the base of the definition section) to an aligned ace
string containing the reference name portion of an
external reference. (See "Constructing and Interpreting
Names" in Section III of the MPM Reference Guide.)

has a meaning depending on the value of type. For types 1
and 3, this value is ignored and must be zero. For types
4, 5, and 6, this item is an offset (relative to the base
of the definition section) to an aligned acc string of an
external reference. (See "Constructing and Interpreting
Names" in Section III of the MPM Reference Guide for a
discussion of offset names.)

1-11 AK92B

Trap Pair

The trap pair is a structure that specifies a trap procedure to be called
before the link associated with the trap pair is resolved by the dynamic linking
mechanism. It consists of relative pointers to two links. (Links are defined
under "Structure of the Linkage Section" below.) The first 1link defines the
entry point in the trap procedure to be called. The second link defines a block
of information that is passed as one of the arguments of the trap procedure.
For more detailed information on trap procedures see "Dynamic Linking"™ in the
MPM Reference Guide. The trap pair is structured as follows:

del 1 trap_pair aligned,
2 entry_relp bit (18) unaligned,
2 info_relp bit(18) unaligned;
where:
1. entry_relp is an offset (relative to the base of the linkage section) to a

link defining the entry point of the trap procedure.

2. info_relp is an offset (relative to the base of the linkage section) to a
link defining information of interest to the trap procedure.

Initi i tr T * d T 6 Link

This structure specifies how a link target first referenced because of a
type 5 *system or a type 6 link should be initialized. It has the following
format: .

del 1 initialization_info aligned,

2 n_words fixed bin,
2 code fixed bin,
2 info (n_words) bit(36) aligned;
where:
1. n_words is the number of words required by the new variable.
2. code indicates what type of initialization is to be performed. It
can have one of the following values:
0 no initialization is to be performed
3 copy the info array into the newly defined variable
y initialize the variable as an area
3. info is the image to be copied into the new variable. It exists
only if code is 3.
STRUCTURE OF THE STATIC SECTION

The static section is unstructured.

2/77 1-12 AK92B

o

STRUCTURE OF THE LINKAGE SECTION
The linkage section is subdivided into four distinect components:

1. A fixed-length header that always resides at the base of the linkage
section

2. A variable length area used for internal (static) storage (optional)
3. A variable length structure of links (optional)

4, First-reference trap (optional)

These four components are located within the linkage section in the following
sequence:

header

internal storage (if present)
links (if present)

trap (if present)

The length of the linkage section must be an even number of words and must
start on an even -word boundary; in addition, the link substructure must also
begin at an even location (offset) within the linkage section.

'

When an object segment is first referenced in a process, its linkage
section 1s copied into a per-process data base. At this time certain items in
the copy of the header are initialized. Items not explicitly described as being
initialized by the linker are set by the program that generates the object
segment. In addition, the first two words of the header (containing the items
pad, def_section_relp, and first_reference_relp) are overwritten with a pointer
to the beginning of the object segment's definition section. For more
information see "Dynamic Linking" in the MPM Reference Guide and "Standard Stack
and Linkage Area Formats" in Section II of this manual.

unxgég_seg_tLQn_ﬂgggs_n

The header of the linkage section has the following format:

dcl 1 linkage_header aligned,

2 pad bit(36),

2 def_section_relp bit(18) unaligned,

2 first_reference_relp bit(18) unaligned,

2 symbol_ptr ptr unal,

2 original_linkage_ptr ptr unal,

2 unused bit(72),

2 links_relp bit(18) unaligned,

2 linkage_section_length bit(18) unaligned,

2 object_segno bit(18) unaligned,

2 static_length bit(18) unaligned;
where:
1. pad is reserved for future use and must be 0.
2. def_section_relp is an offset (relative to the base of the object

segment) to the base of the definition section.

1-13 AK92

riaer

3. first_reference_relp is an offset (relative to the base of the 1linkage
section) to the first-reference trap. This trap is
activated by the linker when the first reference to
this object segment is made within a given process.
If the value of this item is "0"b, there is no
first-reference trap.

y, symbol_ptr is a pointer to the object segment's symbol
section. It is wused by the linker to snap links
relative to the symbol section. It is initialized
by the linker when the header is copied.

5. original_linkage_ptr is a pointer to the original linkage section within
the object segment. It is wused by the 1link
unsnapping mechanism and is initialized by the
linker when the header is copied.

6. links_relp . is an offset (relative to the base of the linkage
section) to the first link (the base of the link
array).

7. linkage_section_length is the entire length in words of the entire linkage
section.

8. object_segno' is the segment number of the object segment. It is
initialized by the 1linker when the header is
copied.

9. static_length is the length in words of the static section and is

valid even when static is part of the linkage
section. It is initialized by the linker if not
filled in by the translator.

Internal e

The internal storage area 1is an array of words used by translators to
allocate internal static variables and has no predetermined structure.

Linké

A linkage section may contain an array of link pairs, each of which defines
an external name, referenced by this object segment, whose effective address is
unknown at compile time. Figure 1-2 illustrates the structure of a link.

A link must reside on an even location in memory, and must therefore be
located at an even offset from the base of the linkage section. The format of a
link is:

del 1 1link aligned,
2 header_relp bit(18) unaligned,
2 ignorel bit(12) unaligned,
2 tag bit(6) unaligned,
2 expression_relp bit(18) unaligned,
2 ignore2 bit(12) unaligned,
2 modifier bit(6) unaligned;

2/77 1-14 AK92B

where:

1. header_relp is an offset (relative to the link itself) to the head of
the 1linkage section. It is, in other words, the negative
value of the 1link pair's offset within the 1linkage

section.
2. ignorel is reserved for future use and must be "0"b.
3. tag is a constant (46)8 that represents - the hardware

fault tag 2 and distinctly identifies an unsnapped link.
The snapped link (ITS pair) has a distinet (43)8 tag. See
"Simulated Fault" in Section VII of the MPM Reference
Guide.

y, expression_relp 1is an offset (relative to the base of the definition
section) to the expression word for this link.

5. ignore2 is reserved for future use and must be "O"b.
6. modifier is a hardware address modifier.
irst-Referen ra

It is sometimes necessary to perform certain types of initialization of an
object segment when it is first referenced for execution (i.e., linked to) in a
given process--for example, to store some per-process information in the segment
before it is used. The first-reference trap me€chanism provides this facility
for use by various mechanisms, the status code assignment mechanism being an
example. See "Handling of Unusual Occurrences" in Section VII of the MPM
Reference Guide.

A first-reference trap consists of two relative pointers. The first points
to a link defining the first reference procedure entry point to be invoked. The
second points to a 1link defining a block of information to be passed as an
argument to the first-reference procedure. For more details on first-reference
traps, see "Dynamic Linking" in the MPM Reference Guide.

del 1 fr_traps aligned,
’ 2 decl_vers fixed bin initial(1),
2 n_traps fixed bin,
2 call_relp bit(18) unaligned,
2 info_relp bit(18) unaligned;
where:
1. decl_vers is the version number of the structure.
2. n_traps specifies the number of traps; it must equal 1.
3. call_relp is an offset (relative to the base of the linkage section)

to a link defining a procedure to be invoked by the linker
upon first reference to this object within a given
process.

y, info_relp is an offset (relative to the base of the linkage section)
to a link specifying a block of information to be passed
as an argument to the first reference procedure; if
info_relp is 0, there is no such block.

1=-15 AK92

-
-

————————

to info link

to call link

Link

expression relp

Expression Word

'rype-pair..felp

+ expression

Type Pair

type

Linkage
Section

Defintion
Section

Type=5Code=5 and Type=6

trap_relp

segname_relp

offsetname—relp

seghame acc string

Trap Pair

Type # 6

entryname acc string

callrelp

_ info_relp

2/77

Figure 1-2.

Init Sfructuy

nwords

action code

image

Structure of a Link

AK92B

STRUCTURE QF THE SYMBOL SECTION

The symbol section consists of one or mord symbol blocks threaded together
to form a single list. A symbol block has two main functions: to document the
circumstances under which the object segment was created, and to serve as a
repository ‘for information (relocation information, compiler's symbol tree,
etc.) that does not belong in any of the other sections.

The symbol section must contain at least one symbol block, describing the
circumstances under which the object segment was created. A symbol section can
contain more than one symbol block. An example of multiple symbol blocks is the
case of a bound segment where in addition to the symbol block describing the
segment's creation by the binder, there is also a symbol block for each of the
component object segments.

A symbol block consists of a fixed length header and a variable length area
pointed to by the header. The contents of this area depend on the symbol block.
For example, a compiler's symbol block can contain a symbol tree, and the
binder's symbol block contains the bind map.

mbol Block Header

All symbol blocks have a standard fixed-format header, although not all
items in the header have meaning for all symbol blocks. The description of a
particular symbol block 1lists items that have meaning for that symbol block.
The header has the following format:

decl 1 symbol_block_header aligned,
2 decl_vers fixed bin initial(1),
2 identifier char(8) aligned,
2 gen_version_number fixed bin,
2 gen_creation_time fixed bin(71),
2 object_creation_time fixed bin(71),
2 generator char(8) aligned,
2 gen_version_name_relp bit(18) unaligned,
2 gen_version_name_length bit(18) unaligned,
2 access_name_relp bit(18) unaligned,
2 access_name_length bit(18) unaligned,
2 comment_relp bit(18) unaligned,
2 comment_length bit(18) unaligned,
2 text_boundary bit(18) unaligned,
2 stat_boundary bit(18) unaligned,
2 source_map_relp bit(18) unaligned,
2 area_relp bit(18) unaligned,
2 section_relp bit(18) unaligned,
2 block_size bit(18) unaligned,
2 next_block_thread bit(18) unaligned,
2 text_relocation_relp bit(18) unaligned,
2 def_relocation_relp bit(18) unaligned,
2 link_relocation_relp bit(18) unaligned,
2 symbol_relocation_relp bit(18) unaligned,
2 default_truncate bit(18) unaligned,
2 optional_truncate bit(18) unaligned;

where:
1. decl_vers is the version number of the structure.
2. 1identifier is a symbolic name identifying the type of symbol

block.

1-17 AK92

10.

1.

12.

13.

14,

15.

16.

gen_version_number

gen_creation_time
object_creation_time
generator

gen_version_relp

gen_version_name_length

access_name_relp

access_name_length

comment_relp

comment_length

text_boundary

stat_boundary

source_map_relp

area_relp

is a code designating the version of the generator
that created this object segment. A generator's
version number is normally changed when the
generator or its output is significantly modified.

is a calendar clock reading specifying the date and
time when this generator was created.

is a calendar clock reading specifying the date and
time when this symbol block was generated.

is the name of the processor that generated this
symbol block.

is an offset (relative to the base of the symbol
block) to an aligned string describing the version
of the generator. For example:

"PL/I Compiler Version 7.3
of Wednesday, July 28, 1971"

The integer part of the version number embedded in
the string must be identical to the number stored
in gen_version_number.

is the length of the aligned string describing the
version of the generator.

is an offset (relative to the base of the symbol
block) to an aligned string containing the access
identification (i.e., the value returned by the
get_group_id_ subroutine described in the MPM
Subroutines) of the user for whom this symbol block
was created.

is the length of the aligned string containing the
access identification of the user for whom the
symbol block was created.

is an offset (relative to the base of the symbol
block) to an aligned string containing
generator-dependent symbolic information. For
example, a compiler might store diagnostic messages
concerning nonfatal errors encountered while
generating the object segment. A value of "0"b
indicates no comment.

is the length of the aligned string containing
generator-dependent symbolic information.

is a number indicating the boundary on which the
text section must begin. For example, a value of
32 would indicate that the text section must begin
on a 0 mod 32 word boundary. This value must be a
multiple of 2. It is wused by the binder to
determine where to locate the text section of this
object segment.

is the same as text_boundary except that it applies
to the internal static area of the linkage section
of this object segment.

is an offset (relative to the base of the symbol
block) to the source map (see "Source Map" below).

is an offset (relative to the base of the symbol
block) to the variable-length area of the symbol
block. The contents of this area depend on the
symbol block.

1-18 AK92

17.

section_relp

18. Dblock_size

19. next_block_thread

20. text_relocation_relp
21. def_relocation_relp
22. 1link_relocation_relp
23. symbol_relocation_relp
24, default_truncate

25. optional_truncate

Source Map

is an offset (relative to base of the symbol block)
to the base of the symbol section; that is, the
negative of the offset of the symbol block in the
symbol section.

is the size of the symbol block (including the
header) in words.

is a thread (relative to the base of the symbol
section) to the next symbol block. This item is
"0"b for the last block.

is an offset (relative to the base of the symbol
block) to text section relocation information (see
"Relocation Information" below).

is an offset (relative to the base of the symbol

block) to definition section relocation

information.

is an offset (relative to the base of the symbol
block) to 1linkage section relocation information.

is an offset (relative to the base of the symbol
block) to symbol section relocation information.

is an offset (relative to the base of the symbol
block) starting from which the binder
systematically truncates control information (such
as relocation bits) from the symbol section, while
still maintaining such information as the symbol
tree.

is an offset (relative to this base of the symbol
block) starting from which the binder can
optionally truncate nonessential parts of the
symbol tree 1in order to achieve maximum reduction
in the size of a bound object segment.

The source map is a structure that uniquely identifies the source segments
used to generate the object segment. It has the following format:

del 1 source_map

2 decl_vers
2 size
2 map (size)
3 pathname_relp
3 pathname_length
3 uid
3 dtm

where:

1.
2.

decl_vers

size

aligned,

fixed bin initial(1),
fixed bin,

aligned,

bit(18) unaligned,
bit(18) unaligned,
bit(36) aligned,
fixed bin(71);

is the version number of the structure.

is the number of entries in the map array; that is,
the number of source segments used to generate this
object segment.

1-19 AK92

3. pathname_relp is an offset (relative to the base of the symbol
block) to an aligned string containing the absolute
pathname of this source segment.

y, pathname_length is the length of the above string.

5. uid ' is the unique identifier of this source segment at
the time the object segment was generated.

6. dtm is the date-time-modified value of this source
segment at the time the object segment was created.

Relocation Information

Relocation information, designating all instances of relative addressing
within a given section of the object segment, enables the relocation of the
section (as in the case of binding). A variable-length prefix coding scheme is
used, where there is a logical relocation item for each halfword of a given
section. If the halfword is an absolute value (nonrelocatable), that item is a
single bit whose value is 0. Otherwise, the item is a string of either 5 or 15
bits whose first bit is set to "1"b. The relocation information is concatenated
to form a single string that can only be accessed sequentially. If the next bit
is a zero, it is a single-bit absolute relocation item; otherwise, it is either
a 5- or a 15-bit item depending upon the relocation codes defined below.

There are four distinct blocks of relocation information, one for each of
the four object segment sections: text, definition, linkage and symbol; these
relocation blocks are known as rel_text, rel_def, rel_link and rel_symbol,
respectively.

The relocation blocks reside within the symbol block of the generator that
produced the object segment. The correspondence between the packed relocation
items and the halfwords in a given section 1is determined by matching the
sequence of items with a sequence of halfwords, from left-to-right and from
word-to-word by increasing value of address.

.The relocation block pointed to from the symbol block header (e.g.,
rel_text) is structured as follows:

del 1 relinfo aligned,

2 decl_vers fixed bin initial(2),

2 n_bits fixed bin,

2 relbits bit(0 refer(n_bits)) aligned;
where:
1. decl_vers is the version number of the structure.
2. n_bits is the length (in bits) of the string of relocation

bits.

3. reibits is the string of relocation bits.

1-20. ' AK92

Following is a tabulation of the possible codes and their corresponding

relocation types,

followed by a description of each relocation type.

"0"b - absolute
"10000"b - text
"10001"b - negative text
"10010"b - link 18
"10011"b - negative link 18 .
"10100"b - link 15 . ’
"10101"b - definition
"10110"p - symbol
"10111"b - negative symbol
"11000"b - internal storage 18
"11001"b - internal storage 15
"11010"b - self relative
"11011"b = unused
"11100"b - unused
"11101"b - unused
"11110"b - expanded absolute
"11111"b - escape
where:
1. absolute does not relocate.
2. text uses text section relocation counter.
3. negative text us3s text section relocation counter. The reason

1.

12.

link 18

negative link 18

link 15

definition

symbol’
negative symbol

internal storage 18
internal storage 15

self relative

for having distinct relocation codes for negative
quantities is that special coding might be
necessary to convert the 18-bit field in question
into its correct fixed binary form.

uses linkage section relocation counter on the
entire 18-bit halfword.. This, as well as the
negative link 18 and the link 15 relocation codes
apply only to the array of links in the linkage
section (i.e., by definition, wusage of these
reloca?ion codes implies external reference through
a link).

is the same as link 18 above.
uses linkage section relocation counter on the
low-order 15 bits of the halfword. This relocation

code can only be wused in conjunction with an
instruction featuring a base/offset address field.

indicates that the halfword contains an address
that is relative to the base of the definition
section.

uses symbol section relocation counter.

is the same as symbol above.

uses internal storage relocation counter on the
entire 18-bit halfword.

uses internal storage relocation counter on- the
low-order 15 bits of the halfword.

indicates that the halfword contains a relocatable

address that is referenc=d using a location counter
modifier; the instruction is self-relocating.

1-21 AK92

13. expanded absolute allows the definition of a block of absolute
relocated halfwords, for efficiency reasons. It
has been established that a major part of an object
program has the absolute relocation code. The five
bits of relocation code are immediately followed by
a fixed length 10-bit field that is a count of the
number of contiguous halfwords all having an
absolute relocation. Use of the expanded absolute
code can be economically Jjustified only if the
number of contiguous absolute halfwords exceeds 15.

14. escape reserved for possible future use.

STRUCTURE OF THE OBJECT MAP

The object map contains information used to locate the various sections of
an object segment. The map itself can be 1located immediately before or
immediately after any one of the five sections. Translators normally place it
immediately after the symbol section. The last word of the object segment (as
defined by the bit count of the object segment) must contain a left-justified
18-bit offset (relative to the base of the object segment) to the object map.
The object map has the following format:

del 1 object_map aligned,
2 decl_vers fixed bin init(2),
2 identifier char(8) aligned,
2 text_relp bit(18) unaligned,
2 text_length bit(18) unaligned,
2 def_relp bit(18) unaligned,
2 def_length - bit(18) unaligned,
2 link_relp bit(18) unaligned,
2 link_length bit(18) unaligned,
2 static_relp bit(18) unaligned,
2 static_length bit(18) unaligned,
2 symb_relp bit(18) unaligned,
2 symb_length bit(18) unaligned,
2 bmap_relp bit(18) unaligned,
2 bmap_length bit(18) unaligned,
2 entry_bound bit(18) unaligned,
2 text_link_relp bit(18) unaligned,
2 format aligned,
3 bound bit(1) unaligned,
3 relocatable bit(1) unaligned,
3 procedure bit(1) unaligned,
3 standard bit(1) unaligned,
3 separate_static bit(1) unaligned,
3 links_in_text bit(1) unaligned,
3 unused bit(30) unaligned;
where:
1. decl_vers is the version number of the structure.
2. identifier is the constant "obj_map".
3. text_relp is an offset (relative to the base of the object segment)
to the base of the text section.
4, text_length is the length (in words) of the text section.
5. def_relp is an offset (relative to the base of the object segment)

to the base of the definition section.

2/717 1-22 AK92B

~/

10.
1.

12.
13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

def_length

link_relp

link_length

static_relp

static_length

symb_relp

symb_1length
bmap_relp

bmap_length

entry_bound
text_link_relp

bound

relocatable

procedure
standard

separate_static

links_in_text

unused

is the length (in words) of the definition section.

is an offset (relative to the base of the
to the base of the linkage section.

object segment)

is the length (in words) of the linkage section.

is an offset (relative to the base of the
to the base of the static section.

object segment)

is the length (in words) of the static section.

is
to

an offset (relative to the base of the
the base of the symbol section.

object segment)

is the length (in words) of the symbol section.

is an offset (relative to the base of the
to the base of the break map section.

object segment)

is the length (in words) of the break map section.
is the offset of the end

of the entry transfer
the object segment is to

be a gate.

vector if

is the offset of the
links_in_text equals "1"b.

first text-embedded link if

indicates if the object segment is a bound segment
"1"p the object segment is a bound segment
"O"b the object segment is not a bound segment

indicates if the object segment is relocatable; that 1is,
if it contains relocation information. This information
(if present) must be stored in the segment's first symbol
block. See "Structure of the Symbol Section" above.

"1"p the object segment is relocatable

"0"b the object segment is not relocatable

indicates whether this is an executable object segment.
"1"p this is an executable object segment
"O"b this is not an executable object segment

indicates whether the object segment is in standard format.

"1"b the object segment is in standard format

"0"b the object segment is not in standard format

indicates whether the static section is separate from the

linkage section. ‘

"1"b the static section 1is separate from the linkage
section

"0"b the static section is not separate from the 1linkage
section

indicates whether the object segment contains text-embedded

links.

"1"b the object segment contains text-embedded links

"0"b the object segment does not contain text-embedded
links

is reserved for future use and must be "0"b.

AK92

GENERATED CODE CONVENTIONS

The

following discussion specifies those portions of generated code that

must copform to a system-wide standard. For a description of the various
relocation qodes see "Structure of the Symbol Section" above.

Text Section

Those parts of the text section that must conform to a system-wide standard

are:

entry sequence
text relocation codes.

ENTRY SEQUENCE

The entry sequence must fulfill two requirements:

The location preceding the entry point (i.e., entry point minus 1)
must contain a left adjusted 18-bit relative pointer to the definition
of that entry point within the definition section

The entry sequence executed within that entry point must store an ITS
pointer to that entry point in the entry_ptr field in the stack frame
header (as described in the stack frame include file). The
procedure's current stack frame can then be used to determine the
address of the entry point at which it was invoked. That entry's
symbolic name can be reconstructed through wuse of its definition
pointer. (See "Entry Sequence" earlier in this section.)

TEXT RELOCATION CODES

The following list defines those relocation codes that can be generated in
conjunction with the text section. These can be generated only within the scope
of the restrictions specified.

absolute no restriction

text no restriction

negative text no restriction

link 18 can only be a direct (i.e., unindexed) reference to
a link.

link 15 can only appear within the address field of a
pointer-register/offset type instruction
(bit 29 = "1"b). The first two bits of the modifier

field of the instruction cannot be "10"b. If the
instruction uses indexing, the first two bits of the
modifier must be "11"b. Also the following
instruction codes cannot have this relocation code:

STBA (551)8
STBQ (552)8
STCA (751)8
STCQ (752)8

1-24 AK92

~

definition

symbol
internal storage 18

internal storage 15

self relative

expanded absolute

the offset to be relocated must be that of the
beginning of a definition (relative to the beginning
of the definition section).

no restriction

no restriction

can only apply to the left half of a word. If the
word is an instruction, the first two bits of the
modifier must not be "10"b.

no restriction

no restriction

The restrictions imposed upon the 1link 15 and internal storage 15
relocation codes stem from the fact that these relocation codes apply to
pointer-register/offset type address fields encountered in the address portion
of machine instructions. Since the effective value of such an address is
computed by the hardware at execution time, certain hardware restrictions are
imposed on instructions containing them. When the Multics binder processes
these instructions, it often resolves them into simple-address format and has to
further modify information in the opcode (right-hand) portion of the instruction
word. Therefore, these relocation codes must only be specified in a context
that is comprehensible to the Multics processor.

Definition Secti

Those parts
standard are:

of the definition section that must conform to a system-wide

general structure
definition relocation codes
implicit definitions

DEFINiTION RELOCATION CODES

absolute no restriction
text no restriction
link 18 no restriction
definition no restriction
symbol no restriction
internal storage 18 no restriction
self relative no restriction
expanded absolute no restriction

2/77 1-25 AK92B

IMPLICIT DEFINITIONS

All generated object segments must feature the following implicit
definition:

symbol_table defines the base of the symbol block generated by the
current language processor, relative to the base of the
symbol section.

Linkage Section

Those parts of the linkage section that must conform to a system-wide
standard are:

internal storage
links
linkage relocation codes

INTERNAL STORAGE

The internal storage is a repository for items of the internal static
storage class. It may contain data items only; it cannot contain any executable
code.

LINKS

The link area can only contain a set of links. The 1links must be
considered as distinct unrelated items, and no structure (e.g., array) of links
can be assumed. They must be accessed explicitly and individually through an
unindexed internal reference featuring the link 18 or the link 15 relocation
codes. The order of links will not necessarily be preserved by the binder.

LINKAGE RELOCATION CODES

Only the linkage section header and the links can have relocation codes
associated with them (the internal storage area has associated with it a single
expanded absolute relocation item). They are:

absolute no restriction; mandatory for the internal storage
area
text no restriction
link 18 no restriction
negative link 18 no restriction
definition no restriction
internal storage 18 no restriction
expanded absolute no restriction

2/717 1-26 AK92B

-’

tatic Section

The static section does not have relocation codes associated with it.
Absolute relocation is assumed. See "Internal Storage Area" above.

Svmbol Section
The symbol section can contain information related to some other section

(such as a symbol tree defining addresses of symbolic items), and therefore can
have relocation codes associated with it. They are:

absolute no restriction
text no restriction
link 18 : no restriction
definition no restriction
symbol ' no restriction
negative symbol no restriction
internal storage 18 no restriction
self relative no restriction
expanded absolute no restriction

T TURE O OUND GMENT

A bound segment consists of several object segments that have been combined
so that all internal intersegment references are automatically prelinked and to
reduce the combined size by minimizing page breakage. The component segments
are not simply concatenated; the binder breaks them apart and creates an object
segment with single text, definition, static, linkage, and symbol sections as
illustrated in Figure 1-3 below. (When the static section is separate, it is
located before the linkage header rather than between the linkage header and the
links.) As explained below, the definition section and 1link array are
completely reconstructed while the text, internal static, and symbol sections
are the corresponding concatenations of the component segments' text, internal
static, and symbol sections with relocation adjustments. (See "Structure of
the Symbol Section"™ above.) If all of the components' static sections are
separate (i.e., not in 1linkage), the bound segment has a separate static
section; otherwise, all component static sections are placed in the bound
segment's linkage section.

2/71 1-27 AK92B

text for component 1
text for component 2

text section .

text for component n

f

definition sectionJ

\

(linkage header

int. static for component 1
int. static for component 2

.

linkage section 4 .

int. static for component n
links

\

ffirst reference trap

symbol block for binder
symbol section J symbol block for component 1

symbol block for component n
¢ :

object map J

\
Figure 1-3. Structure of a Bound Segment

1-28 AK92

Internal Link Re i

The primary distinction between bound and unbound groups of segments occurs
in the manner in which they reference external items and are themselves
referenced. Most references by one component to another component in the same
bound segment are prelinked; i.e., the link references are converted to direct
text-to-text references and the associated 1links are not regenerated. The
remaining external links are combined so that for the whole bound segment there
is only one link for each different target. Prelinking enables some component
segments to lose their identity in cases where the bound segment itself is the
main logical entity, having been coded as separate segments for ease of coding
and debugging. Definitions for external entries that are no longer necessary,
i.e., have become completely internal, can be omitted from the bound segment
(see the bind command described in MPM Commands).

Definition Section

The definition section of a bound segment is generally more elaborate than
that of an unbound object segment because it reflects both the combination and
deletion of definitions. There is a definition block for each component. It
contains the retained definitions and the segment names associated with the
component. This organization allows definitions for multiple entries with the
same name to be distinguished. The first definition block is for the binder and
contains a definition for bind_map, discussed below.

Binder Symbol Block

The symbol block of the binder has a standard header if all of the
components are standard object segments. The symbol block can be located using
the bind_map definition. Most of the items in the header are adequately
explained under "Structure of the Symbol Section" above; however, some have
special meaning for bound segments. The format of a standard symbol block
header is repeated below for reference, followed by the explanations specific to
the binder's symbol block.

decl 1 symbol_block_header aligned,

' 2 decl_vers fixed bin initial(1),
2 identifier char(8) aligned,
2 gen_version_number fixed bin,
2 gen_creation_time fixed bin(71),
2 object_creation_time fixed bin(71),
2 generator char(8) aligned,
2 gen_version_name_relp bit(18) unaligned,
2 gen_version_name_length bit(18) unaligned,
2 access_name_relp bit(18) unaligned,
2 access_name_length bit(18) unaligned,
2 comment_relp bit(18) unaligned,
2 comment_length bit(18) unaligned,
2 text_boundary bit(18) unaligned,
2 stat_boundary bit(18) unaligned,
2 source_map_relp bit(18) unaligned,
2 area_relp bit(18) unaligned,
2 section_relp bit(18) unaligned,
2 block_size bit(18) unaligned,

2/77 1-29 AK92B

2 next_block_thread bit(18) unaligned,
2 text_relocation_relp bit(18) unaligned,
2 def_relocation_relp bit(18) unaligned,
2 link_relocation_relp bit(18) unaligned,
2 symbol_relocation_relp bit(18) unaligned,
2 default_truncate bit(18) unaligned,
2 optional_truncate bit(18) unaligned;

where:

2. identifier is the string "bind_map".

6. generator is the string "binder".

11. comment_relp is always "0"b.

16. area_relp is an offset (relative to the base of the symbol block) to
the beginning of the bind map. (See "Bind Map" below.)

Bound segments currently - are not relocatable, so none of the relocation
relative pointers or truncation offsets have any meaning.

Bind Map

The bind map is part of the symbol block produced by the binder and
describes the relocation values assigned to'the various sections of the bound
component object segments. It consists of a variable length structure followed
by an area 1in which variable length symbolic information is stored. The bind
map structure has the following format:

del 1 bindmap based aligned,

2 decl_vers fixed bin initial(1),

2 n_components fixed bin,

2 component(0 refer(n_components)) aligned,
3 name_relp bit(18)unaligned,
3 name_length bit(18) unaligned,
3 generator_name char(8) aligned,
3 text_relp bit(18) unaligned,
3 text_length bit(18) unaligned,
3 static_relp bit(18) unaligned,
3 static_length bit(18) unaligned,
3 symbol_relp bit (18) unaligned,
3 symbol_length bit(18) unaligned,
3 defblock_relp bit(18) unaligned,
3 number_of_blocks bit(18) unaligned,

2 bindfile_name aligned,
3 bindfile_name_relp bit(18)unaligned,
3 bindfile_name_length bit(18)unaligned,

2 bindfile_date_updated char(24),

2 bindfile_date_modified char(24);

where:

1. decl_vers is a constant designating the format of this
structure; this constant is modified whenever the
structure is, allowing system tools to easily
differentiate between several incompatible
versions of a single structure.

2. n_components is the number of component object segments bound

within this bound segment.

1-30 AK92

~/

10.
11.

12.
13.

14.

15.

16.

17.

18.

2/717

component

name_relp

name_length

generator_name

text_relp

text_length

static_relp

static_length

symbol_relp

symbol_length

defblock_relp

number_of_blocks

bindfile_name_relp

"bindfile_name_length

bindfile_date_updated

bindfile_date_modified

is a variable-length array featuring one entry per
bound component object segment.

is the offset (relative to the base of the bind
map structure) of the symbolic name of the bound
component. This is the name wunder which the

component object was identified within the archive
file used as the binder's input (i.e., the name
corresponding to the object's objectname entry in
the bindfile).

is the length (in characters) of the component's

name.

is the name of the translator that created this
component object segment.

is the offset (relative to the base of the bound
segment) of the component's text section.

is the length (in words) of the component's text
section.

is the offset (relative to the base of the static
section) of the component's internal static.

is the length of the component's internal static.
is an offset (relative to the base of the symbol
section) to the component's symbol section.

is the length of the component's symbol section.
if nonzero, this is a pointer (relative to the

base of the definition section) to the component's
definition block (first class-3 segname definition
of that component's definition block).
is the number of symbol blocks in the component's
symbol section.

is the offset (relative to the base of the symbol
section) of the symbolic name of the bindfile.

is the length (in characters) of the bindfile
name.
is the date, in symbolic form, that the bindfile

was updated in the archive (of object segments)
used as input by the binder.

is the date, in symbolic form, that the bindfile
was last modified before being put into the
binder's object archive.

1-31 AK92B

SECTION II

STANDARD EXECUTION ENVIRONMENT

DAR K _AND T

Because of the linkage mechanism, stack manipulations, and the complexity
of the Multiecs hardware, a series of Multics execution environment standards
have been adopted. All standard translators (including assemblers) adhere to
these standards as do all supervisor and standard storage system procedures.
Furthermore, they assume that other procedures do so as well.

Multics Stack

The normal mode of execution in a standard Multics process uses a stack
segment. There is one stack segment for each 'ring. The stack for a given ring
has the entryname stack_R, where R is the ring number, and is located in the
process directory. Each stack contains a "header" followed by as many "stack
frames" as are required by the executing procedures. A stack header contains
pointers to special code and data that are initialized when the stack is
created. Some of these pointers are variable and change during process
execution. They are included in the stack header so that they can always be
retrieved without supervisor intervention (for efficiency). The actual format
of the stack header is described under "Stack Header" below.

Stack frames begin at a location specified in the stack header, are
variable in length, and contain both control information and data for
dynamically active procedures. In general, a stack frame is allocated by the
procedure to which it belongs when that procedure is invoked. The stack frames
are threaded to each other with forward and backward pointers, making it an easy
task to trace the stack in either direction. The stack usage described below is
eritical to normal Multics operation; any deviations from the stated discipline
can result in unexpected behavior.

2-1 AK92

Stack Header

The stack header contains pointers (on a per-ring basis) to information
about the process, to operator segments, and to code sequences that can be used
to invoke the standard call, push, pop, and return functions (described below).
Figure 2-1 gives the format of the stack header. The following descriptions are ‘\d’
based on that figure and on the follqg&ng PL/I declaration.

system Link

*
1Info Pointer |

+0 | i i i

i ' iCombined !

| Reserved 01d Lot Static i

+8 E : Pointer Pointer %

]

1 [} 1 I

iCombined |Max iCurrent{System Storage |User Storage |

iLinkage iLot Lot {Pointer |Pointer i

{Pointer Size {Size |

+16] i

iNull iStack Begin iStack End iLot !

EPointer iPointer |Pointer iPointer |

]

1 1

+2U4} i

{Signal 1BAR Mode {PL/I Operators Call Operator |

EPointer Stack Pointer {Pointer Pointer E

1 . 1

+32| i

iPush Operator |Return Operator |Short Return 1Entry Operator |

iPointer iPointer {Operator Ptr {Pointer |

] ' 1

A 1

+40} |

iTranslator iInternal Static |System Condition|Unwinding |

{Operator i0ffset Table iTable Pointer |Procedure i
{Pointer Pointer H iPointer 1 N
+48} |)

|

[}

1

]

I

1

1

|

]

1

1

+56£ Reserved

!

H
+64

Figure 2-1. Stack Header Format
del 1 stack_header based aligned,

2 padi1(4) fixed bin,
2 old_lot_ptr ptr,
2 combined_stat_ptr ptr,
2 clr_ptr ptr,
2 max_lot_size fixed bin(17) unaligned,
2 pad?2 bit(18) unaligned,
2 cur_lot_size fixed bin(17) unaligned,
2 pad3 bit(18) unaligned,
2 system_storage_ptr ptr,
2 user_storage_ptr ptr,
2 null_ptr ptr,
2 stack_begin_ptr ptr,
2 stack_end_ptr ptr,
2 lot_ptr ptr,
2 signal_ptr ptr,
2 bar_mode_sp_ptr ptr, ""
2 pli1_operators_ptr ptr,
2 call_op_ptr ptr,

2/77 2-2 AK92B

push_op_ptr
return_op_ptr
short_return_op_ptr
entry_op_ptr
trans_op_tv_ptr
isot_ptr

sct_ptr
unwinder_ptr
sys_link_info_ptr
pad4(14)

LVIONVENVENVE VISV \ VR V)

where:

1.
2.

10.

1.

12.

13.

2/77

padi
old_lot_ptr

combined_stat_ptr

clr_ptr

max_lot_size

pad2
cur_lot_size
pad3

system_storage_ptr

user_storage_ptr

‘null_ptr

stack_begin_ptr

stack_end_ptr

ptr,
ptr,
ptr,
ptr,
ptr,
ptr,
ptr,

fixed bin;

is unused.

is a pointer to the linkage offset table (LOT) for
the current ring. This field is obsolete.

. is a pointer to the area in which separate static

sections are allocated.

is a pointer to the area in which linkage sections
are allocated.

is the maximum number of words (entries) that the
LOT and internal static offset table (ISOT) can
have.

is unused.

1
\

is the current number of words (entries) in the
LOT and ISOT.

is unused.

is a pointer to the area used for system storage,
which includes command storage and the ¥*system
link name table.

is a pointer to the area used for user storage,
which includes FORTRAN common and PL/I external
static variables whose names do not include "$".

contains a null pointer value. In some
circumstances, the stack header can be treated as
a stack frame. When this is done, the null

pointer field occupies the same location as the
previous stack frame pointer of the stack frame.
(See "Multics Stack Frame"™ below.) A null pointer
indicates that there is no stack frame prior to
the current one.

is a pointer to the first stack frame on the
stack. The first stack frame does not necessarily
begin at the end of the stack header. Other
information, such as the linkage offset table, can
be located between the stack header and the first
stack frame.

is a pointer to the first unused word after the
last stack frame. It points to the location where
the next stack frame is placed on this stack (if
one is needed). A stack frame must be a multiple
of 16 words; thus, both of the above pointers
point to 0 (mod 16) word boundaries.

2-3 AK92B

14,

15.

16.

17.

18.

19-

20.

21.

22.

23.

24,

25.

26.

2/717

lot_ptr

signal_ptr

bar_mode_sp_ptr

pl1_operators_ptr

call_op_ptr

push_op_ptr

return_op_ptr

short_return_op_ptr

_entry_op_ptr

trans_op_tv_ptr

isot_ptr

sct_ptr

unwinder_ptr

is a pointer to the linkage offset table (LOT) for
the current ring. The LOT contains packed
pointers to the dynamic linkage sections known in
the ring in which the LOT exists. The 1linkage
offset table 1is described below under "Linkage
Offset Table."

is a pointer to the signalling procedure to be
invoked when a condition is raised in the current
ring.

is a pointer to the stack frame in effect when BAR
mode was entered. (This is needed because typical
BAR mode programs can change the word offset of
the stack frame pointer register.)

is a pointer to the standard operator segment used
by PL/I. It 1is used by PL/I and FORTRAN object
code to locate the appropriate operator segment.

is a pointer to the Multics standard call operator
used by ALM procedures. It 1is used to invoke
another procedure in the standard way.

is a pointer to the Multics standard push operator
that is used by ALM programs when allocating a new
stack frame. All push operations performed on a
Multiecs stack should use either this or an
equivalent operator; otherwise results are
unpredictable. (The push operation was formerly
called save.)

is a pointer to the Multics standard return
operator used by ALM procedures. It assumes that
a push has been performed by the invoking ALM
procedure and pops the stack prior to returning
control to the caller of the ALM procedure.

is a pointer to the Multics standard short return
operator used by ALM procedures. It is invoked by
a procedure that has not performed a push to
return control to its caller.

is a pointer to the Multics standard entry
operator. The entry operator does little more
than find a pointer to the invoker's linkage
section.

points to a vector of pointers to special language
operators; this table can be expanded to
accommodate new languages without causing a change
in the stack header.

is a pointer to the internal static offset table
(IsoT). The ISOT contains packed pointers to the
dynamic internal static sections known in the ring
in which the ISOT exists.

is a pointer to the system condition table (SCT)
used by system code in handling certain events.

is a pointer to the wunwinding procedure to be

invoked when a nonlocal goto is executed in the
current ring.

2-4 AK92B

27. sys_link_info_ptr is a pointer to the *system link name table.

28. padd is unused.

The call, push, return, short return, and entry operators are invoked by
the object code generated by the ALM assembler. Other translators that intend
to use the standard call/push/return strategy should either use these operators
or an operator segment with a set of operators consistent with these. For a
detailed description of what the operators do and how to invoke them, see
"Subroutine Calling Sequences" later in this section.

The PL/I and FORTRAN compilers use slightly different operators that
perform equivalent and compatible functions. All supported translators,
however, depend on the effects generated by these operators.

The format given below for a standard Multics stack frame must be strictly
followed because .several critical procedures of the Multics system depend on it.
A bad stack segment or stack frame can easily lead to process termination,
looping, and other undesirable effects.

In the discussion that follows, the "owner" of a stack frame is the
procedure that created it (with a push operation). Some programs (generally ALM
programs) never perform a push and hence do hot own a stack frame. If a
procedure that does not own a stack frame is executing, it can neither call
another procedure nor use stack temporaries; all stack information refers to the
program that called such a program.

Figure 2-2 illustrates the detailed structure of a stack frame. The
following descriptions are based on that diagram and on the following PL/I
declaration.

2/77 2-5 AK92B

stack_frame +0|

wher

2/717

Pointer Register Storage

+16 | | i
iPrevious Stack|Next Stack i Return | Entry g
{Frame Pointer |Frame Pointer| Pointer | Pointer |
i | 1
1 i |
+24 ! i | i |
{Operator | Argument iInternal| *#* iOn Unit |Operator |
iLinkage | Pointer iStatic | |Relative| Return
{Pointer | \Pointer | iPointer | Offset |
H H i ! !
+32
: |
' Register Storage i
|]
; 1
+40i
]
H Temporaries
] 1
: |
] |
i !
Reserved
Figure 2-2. Stack Frame Format
del 1 stack_frame based (sp) aligned,
2 prs(16) fixed bin,
2 prev_stack_frame_ptr ptr,
2 next_stack_frame_ptr ptr,
2 return_ptr ptr,
2 entry_ptr ptr,
2 operator_link_ptr ptr,
2 argument_ptr ptr,
2 static_ptr ptr unaligned,
2 reserved fixed bin,
2 on_unit_rel_ptrs(2) bit(18) unaligned,
2 translator_id bit(18) unaligned,
2 operator_return_offset bit(18) unaligned,
2 regs(8) fixed bin;
e:
prs is used to save pointer registers of the calling
program when the ALM call operator is invoked.
prev_stack_frame_ptr is a pointer to the base of the stack frame of the

procedure that called the procedure owning the
current stack frame. This pointer may or may not
point to a stack frame in the same stack segment.

2-6 AK92B

3. next_stack_frame_ptr

4, return_ptr

5. entry_ptr

6. operator_link_ptr

7. argument_ptr
8. static_ptr

9. reserved

10. on_unit_rel_ptrs

11. translator_id

12. operator_return_offset

13. régs

2/717

is a pointer to the base of the next stack frame.
For the last stack frame on a stack, the pointer
points to the next available area in the stack
where a procedure can 1lay down a stack frame;
i.e., it has the same value as the stack_end_ptr
in the stack header. The previous stack frame
pointers and the next stack frame pointers form
threads through all active frames on the stack.
These two threads are used by debugging tools to
search and trace the stack as well as by the
call/push/return mechanism.

is a pointer to the location to which a return can
be made in the procedure that owns the given
frame. This pointer is undefined if the procedure
has never made an external call, and points to the
return 1location associated with the last external
call if the given procedure has been returned to

. and is currently executing.

is a pointer to the procedure entry point that_was
called and that owns the stack frame. The pointer
points to a standard entry point. See "Structure
of the Text Section" in Section I.

is usually the operator pointer being used by the
procedure that owns the given stack frame. For
ALM programs, this points to the 1linkage section
of the procedure.

is a pointer to the argument 1list passed to the
procedure that owns the given stack frame.

is a pointer to the internal static storage for
the procedure owning the stack frame.

is reserved for future use.

is a pair of relative pointers to on unit
information contained within the stack frame.
This on unit information is valid only if bit 29
of the second word of prev_stack_frame_ptr is a 1.
(This bit is automatically set to O when a push is
performed by the procedure that owns the stack
frame.) The first of the on_unit_rel_ptrs is a
pointer (relative to the stack frame base) to a
list of enabled conditions. The second of the
on_unit_rel_ptrs is obsolete.

is a coded number indicating the translator used
to generate the object code of the owner of the
stack frame.

contains a return location for certain
pl1_operators_ functions. If it is nonzero, it is
a relative pointer to the return location in the
compiled program (return from pli_operators_). If
it 1is zero, a dedicated register (known by
pli_operators_) contains the return location.

is used to save arithmetic registers of the

calling program when the ALM call operator is
invoked.

2-7 AK92B

Two major areas of a stack frame not explicitly defined above are the first
16 words and words 32 through 39. The contents of these areas is not always
defined or meaningful, although they have a well-defined purpose for ALM
programs and are used internally by the PL/I and FORTRAN programs. The
procedure owning the stack frame can use these areas as it sees fit.

Linkage Offset Table

As described above, each stack header contains a pointer to the linkage
offset table (LOT) for the current ring. The LOT is an array, indexed by text
segment number, of packed pointers to the linkage sections for the procedure
segments known in the current ring.

The structure of the LOT is defined by the following PL/I declaration:

del 1 lot based (lot_ptr) aligned,
2 linkage_ptr (0: stack_header.cur_lot_size-1) ptr unaligned;

where linkage_ptr is the array of linkage section pointers.

If one of the slots in the linkage_ptr array contains all 0's, the segment
number associated with the slot either does not correspond to a known segment or
corresponds to a segment that does not have a linkage section allocated.

Internal Statjc Offset Table

The stack header in each ring contains a pointer to the internal static
offset table (ISOT) for the current ring. The ISOT is an array, indexed by text
segment number, of packed pointers to the internal static sections for the
corresponding procedure segments known in the current ring. Since the ISOT
always immediately follows the LOT, the isot_ptr is redundant but 1is retained
for efficiency.

"The 1internal static pointers are identical to the linkage section pointers
unless the corresponding object segment was generated with separate static. Ir
the static is separate, i.e., not allocated in the linkage section, the internal
static pointer either points to the allocated static or contains a value that
causes an "isot fault" if referenced.

The structure of the ISOT is defined by the following PL/I declaration:

del 1 isot based (isot_ptr) aligned,
2 static_ptr (0: stack_header.cur_lot_gize-1) ptr unaligned;

where static_ptr is the array of static/linkage section pointers.

2/77 2-8 AK92B

SUBROUTINE CALLING SEQUENCES

The Multies standard call and return conventions are described in the
following paragraphs. For information about the format of stack segments and
stack frames, see "Standard Stack and Linkage Area Formats" above.

The call and return from one procedure to another can be broken down into
seven separate steps. Operators to perform these steps have been provided in
the standard operator segment named pl1_operators_ (for PL/I, FORTRAN, and ALM
procedures). These operators are invoked when appropriate by the object code
generated by these translators.

The steps involved in a call and return and the associated operators are
listed below.

1. A procedure call, i.e., a transfer of control and passing of an
argument list pointer to the called procedure (call).

2. Generation of a linkage (and internal static) pointer for the called
procedure (entry).

3. Creation of a stack frame for the called procedure (push).

4, Storage of standard items to be saved in the stack frame of the called
procedure (entry and push).

5. Release of the stack frame of the <¢alled procedure just prior to
returning (return).

6. Reestablishment of the execution environment of the calling procedure
(return and short_return).

7. Return of control to the calling procedure (return and short_return).

Preparation of the argument list, although necessary, was not listed above
because the operators need know nothing about the format of an argument 1list.
See "Argument List Format" later in this section.

‘The following description is based on the operators used by ALM procedures.
The operators used by PL/I and FORTRAN procedures are basically the same but
differ at a detailed level due to: (1) slight changes in the execution
environment when PL/I and FORTRAN programs are running; and (2) simplification
and combination of operators made possible by the execution environment of PL/I.
The PL/I and FORTRAN operators are not described here other than to define a
minimum execution environment that must be established when returning to a PL/I
or FORTRAN program.

(The following description is given in terms of Honeywell hardware.)

2/77 2-9 AK92B

Call Operator

The call operator transfers control to the called procedure. This operator
is invoked in two ways from ALM procedures. The first is a result of the call
pseudo-op, which invokes the call operator after saving the machine registers in
the calling program's stack frame and loading pointer register 0 with a pointer
to the argument list to be passed to the called procedure. Upon return to the
calling program, these saved values are restored into the hardware registers by
the calling procedure. The second way that ALM procedures can invoke the call
operator is through the short_call pseudo-op. This is used when the calling
procedure does not need all of the machine registers saved and restored across
the call. The ALM procedure can selectively save whatever registers are needed.

Neither the call nor the short_call pseudo-ops (nor the PL/I and FORTRAN
equivalents) require or expect the machine registers to be restored by the
called procedure. In fact, only the pointer registers 0 (operator segment
pointer) and 6 (stack frame pointer) are ever guaranteed to be restored across a
call. It is up to the calling procedure to save and restore any other machine
registers that are needed.

Entry Oper r

The entry operator used by ALM programs performs two functions. It
generates a pointer to the linkage section of the called procedure (which it
leaves in pointer register 4) and it stores a pointer to the entry in what will
be the stack frame of the called procedure (if' the procedure ever creates a
stack frame for itself). At the time the entry operator is invoked, a new stack
frame has not yet been established. Indeed, the called procedure may never
create one. However, it is certainly possible to know where the stack frame
will go if and when it is created and this knowledge is used to store the entry
pointer.

The entry operator is invoked by an ALM procedure that transfers to a label
in another procedure that has been declared as an entry through the entry
pseudo-o0p. The transfer 1is made to a standard entry structure the first
executable word of which is (PR7 is assumed to point to the base of the current
stack segment):

tsp2 Tientry_op,*

The operator returns to the instruction after the tsp2 instruction, which
may or may not be another transfer instruction. (A 1link to the entry, when
snapped, points to the tsp2 instruction.) See "Structure of the Text Section"
in Section I.

Some ALM programs may not require a linkage pointer. Such programs can
declare the 1label to which control should be transferred with a segdef
pseudo-op. This causes the appropriate definition and linkage information to be
generated so that other procedures can find the entry point. When called, the
transfer is straight to the code at the label and the normal entry structure is
not generated or used. No linkage pointer is found and no entry pointer is
saved. This technique is recommended only where speed of execution is of utmost
importance since it avoids calculation of useful diagnostic information.

2-10 AK92

Push Operator

The push operator used by ALM procedures is invoked as a result of the push
pseudo-op that is used to create a stack frame for the called procedure. In
addition to creating a stack frame, several pointers are saved in the new stack
frame. They are:

1. Argument pointer

2. Linkage pointer (and internal static pointer)
3. Previous stack frame pointer

4

. Next stack frame pointer

If the called procedure is defined as an entry (rather than segdef), the entry
pointer has already been saved in the new stack frame.

The push pseudo-op must be invoked if the called procedure makes further
calls itself or .uses temporary storage. Due to their manner of execution, PL/I
and FORTRAN procedures combine the entry and push operators into a single
operator.

The push operator and the return operators are managers of the stack frames
and the stack segment in general. The push operator establishes the forward and
backward stack frame threads and updates the stack end pointer in the stack
header appropriately. The return operators use these threads and also update
the stack end pointer as needed. Any program that wishes to duplicate these
functions must do so in a way that is compatible with the procedures outlined in
this discussion and those described above under the heading "Standard Stack and
Linkage Area Formats".

Return Operator

‘The return operator 1is invoked by ALM procedures that have specified the
return pseudo-op. The return operator pops the stack, reestablishes the minimum
execution environment, and returns control to the calling procedure. The only
registers restored are pointer registers 0 and 6, as mentioned above.

sShort Return Operator

The short_return operator is invoked by ALM procedures that have specified
the short_return pseudo-op. The short_return operator differs from the return
operator in that the stack frame is not popped. This return is used by ALM
procedures that did not perform a push.

2-11) AK92

Pseudo-op Code Seguences

The following code sequences are generated by the assembler for
specified pseudo-op. : ;

OBJECT CODE OPERATORS
call:
spri 610
sreg |32
epp0 arglist
epp2 entrypoint
tsph Ticall_op,*
spril 6ireturn_ptr
sti 6ireturn_ptr+1
eppl 6ilp_ptr,*
calléb 210
lpri 610
lreg 6132
short_call:
epp2 entrypoint
tspl Tlcall_op,*
(as above)
eppl spilp_ptr,*
return:
tra Tireturn_op,*
sprib Tistack_end_ptr
eppb 6iprev_sp,*
epbp7 610
epp0 6iop_ptr,*
1di 6ireturn_ptr+1
rted 6)return_ptr
short_return:
tra 7ishort_return_op,#*
epbp7 610
epp0 6lop_ptr,*
1di 6ireturn_ptr+1
rted 6ireturn_ptr
entry:
tsp2 Tlentry_op,*
epp2 21-1
eppl Tistack_end_ptr,*
spri2 4lentry_ptr
epaq 210
lprp5 Tiisot_ptr, *au
sprp5 4istatic_ptr
lprpl Tilot_ptr,*au
tra 211
tra executable_code
2-12

the

AK92

push:

eaxT stack_frame_size

tsp2 Tipush_op,*
spri2 Tistack_end_ptr,*
epp2 Tistack_end_ptr,*
sprib 2iprev_sp
sprio 2larg_ptr
spril 2i1lp_ptr
eppb 210
epp2 610,7
spri2 Tistack_end_ptr
spri?2 6inext_sp
eax7 1
stx7 6itranslator_id
tra 6/0,%*

Regi r U on ti

The following conventions, used in the standard environment, should be
followed by any user-written translator.

1. The only registers that are restored across a call are the pointer
registers:

0 (ap) operator segment pointer
6 (sp) stack frame pointer

The operator segment pointer is restored correctly only if it is saved
at some time prior to the call (e.g., at entry time).

2. The code generated by the ALM assembler assumes that pointer register
4 (1p) always points to the linkage section for the executing
procedure and that pointer register 7(sb) always points to the stack
header.

3. Pointer register 7 is assumed to be pointing to the base of the stack
when control is passed to a called procedure.

When a standard call is performed, the argument pointer (pointer
register 0) is set to point at the argument 1list to be wused by the called
procedure. The argument list is a sequence of pointers and control information
about the arguments. The argument list header contains a count of the number of
arguments, a count of the number of descriptors, and a code specifying whether
the ‘argument 1ist contains an extra stack frame pointer. The format of the
argument list is shown in Figure 2-3.

The argument list must begin on an even word boundary. The pointers in the
argument list need not be ITS pointers; however, they must be pointers through
which the hardware can perform indirect addressing. Packed (unaligned) pointers
cannot be used.

2/77 2-13 AK92B

0 | arg_count E code E
1 L
1 desc_count | 0 |
: L
|
2 | Pointer to argument 1 i
]
= i
! |
4 | Pointer to argument 2 i
]
- i
| |
2%n | Pointer to argument n 5
P E
) H
| Optional pointer to stack frame |
| of containing block !
4 H
i i
i Pointer to descriptor 1 |
]
; ;
] :
| Poinster to descriptor 2 !
| 1
| |
L A
i |
| Pointer to descriptor n |
] |
1 1
Figure 2-3. Standard Argument List
where:
n is the number of arguments passed to the called procedure.
arg_count is in the left half of word 0; it is two times the number of
arguments passed.
code is in the right half of word O0; it is 4 for normal

desc_count

intersegment calls and 10 (octal) for calling sequences that
contain an extra stack frame pointer. This pointer occupies
the two words following the 1last argument pointer. It is
present for calls to PL/I internal procedures and for calls
made through PL/I entry variables.

is in the left half of word 1; it is two times the number of

descriptors passed. If this number is nonzero, it must be the
same as arg_count.

2-14 AK92

An argument pointer points directly to an ar i i
) [gument. A descriptor pointer
points to the descriptor associated with the argument. ° P

The format of an argument descriptor is described by the following PL/I
declaration:

del 1 descriptor aligned,
(2 flag bit(1),
type bit(6),
packed bit (1),
number_dims bit(d),
size bit(24)) unaligned;

AVIV N VN \V)

where:

1. flag always has the value "1"b and is used to tell this descriptor
format) from an earlier format. (Shown as 1 in the descriptor I
below.

2. type is the data type according to the following encoding:

real fixed binary short

real fixed binary long

real floating binary short
real floating binary long
complex fixed binary short
complex fixed binary long
complex floating binary 'short
complex floating binary long
real fixed decimal

10 real floating decimal

11 complex fixed decimal

12 complex floating decimal

13 pointer

OWOoONOUTEWN =

14 offset

15 label

16 entry

17 structure
18 area

19 bit string

20 varying bit string

21 character string

22 varying character string

23 file
3. packed has the value "1"b if the data item is packed. (Shown as "p"
in the typical descriptor below.) l

2/71 2-15 AK92B

4.

5.

2/77

number_dims is the number of dimensions in an array. (Shown as "m" in the

size

descriptor below.) The array bounds and multipliers follow the
basic descriptors in the following manner:

o
8

multiplier (leftmost) dimension

]]
1
i type size ! basic descriptor
| |
[}
i lower bound ! descriptive information
! H
| |
| upper bound i for the mth
]
e e
! multiplier i (rightmost) dimension
H P
| |
i lower bound E descriptive information
'
| upper bound | for the first
]
0
!
|
H

- ——

If the data is packed, the multipliers give the element
separation in bits; otherwise, they give the element separation
in words.

is the size (in bits, characters, or words) of string or area
data, the number of structure elements for structure data, or
the scale and precision (as two 12-bit fields) for arithmetic
data. For arithmetic data, the scale 1is recorded in the
leftmost 12 bits and the precision is recorded in the rightmost
12 bits. The scale is a 2's complement, signed value.

2-16 AK92B

The Qescriptor of a structure is immediately followed by descriptors of
each of its members. The example below shows a declaration (assuming that each
element of C or D occupies one word) and its related descriptor.

del y
’

1
2
2

wworwn

(5),
¢,
D;

basic descriptor of S
basic descriptor of A
basic descriptor of B

1 lower bound of B

5 upper bound of B

2 element separation of B
basic descriptor of C

1 lower bound of C

5 upper bound of C

2 element separation of C

. basic descriptor of D

1 lower bound of D

5 upper bound of D

2 element separation of D

Members of dimensioned structurcs are arrays, and their descriptor contains
copies of the bounds of the containing structure.

2/77 2-17 AK92B

SECTION III

SUBSYSTEM PROGRAMMING ENVIRONMENT

WRITING A PROCESS QVERSEER

Almost every feature of. the standard Multics system interface can be
replaced by providing a specially tailored process overseer procedure in place
of the standard version. The standard Multics process overseer procedure,

process_overseer_, 1is the initial procedure assigned to a user unless the
project administrator specifies otherwise by an initproc or Initproc statement
in the project. master file (PMF). (See the Multics Administrators' Manual

y, Order No. AK51.) If a user has the v_process_overseer
attribute, he may specify a different initial procedure when he logs in by using
the -process_overseer (-po) control argument as in the following example:

login Smith -po >udd>AEC>special_overseer_

If Smith does not have the v_process_overseer attribute, the system refuses the
login.

P e itial ion

When a process is created for a user when he logs in or in response to
either a new_proc command (described in the MPM Commands) or process termination
signal, the new process initializes itself, sets the default search rules, and
then calls one of the following three procedures in the user's initial ring:

user_real_init_admin_ for an interactive process
absentee_real_init_admin_ for an absentee process
daemon_real_init_admin_ for a system daemon process

These procedures first perform several initialization tasks and then call
the wuser's process overseer procedure, expecting that the process overseer will
not return. A return is treated as an error, and a report is made to the system
that the process cannot be initialized.

In order to initialize the process, several items of information must be
passed to the process by the system control process. The system places this
information in a special per-process segment, called the process initialization
table (PIT), that resides in the process directory. The user process may read
the contents of the PIT, but may not modify it. The user_info_ subroutine
(described in the MPM Subroutines) is used to extract information from the PIT.

2417 ‘ e 31 -+ .- AK92B

Before calling the process overseer, user_real_init_admin_ attaches the I/0
switch named user_i/o (through an I/0 system module named in the PIT) to the
target (also specified in the PIT). It then attaches the I/0 switches named
user_output, user_input, and error_output as synonyms of user_i/o. The I/0
module used for an interactive process is tty_, the Multics terminal device I/0
module. (This module is described in the MPM Subroutines.)

For an absentee process, the Multics absentee I/0 module, abs_io_, is used.
When an absentee process is being created, absentee_real_init_admin_ obtains the
arguments to the absentee process; it then makes them available to the abs_io_
I/0 module and informs this module of the locations of the input and output
segments. If a CPU time limit has been specified for the absentee process,
absentee_real_init_admin_ also starts a timer with this limit value; the process
is logged out when this value is reached.

The final action taken by the appropriate init_admin_ procedure is to
locate the process overseer procedure named in the PIT and to call it. If the
process overseer cannot be located or accessed, the appropriate init_admin_
procedure signals an error to the system control process, and the user is logged
out with the message "Process cannot be initialized".

Proce verseer Functi

If an unclaimed signal reaches the appropriate init_admin_ procedure, the
user process 1is terminated on the assumption that the process could not be
initialized. Therefore, one of the first things that the process overseer
procedure does is establish an appropriate handler for all conditions that could
be specified. The standard system process overseer does this by executing:

call condition_ ("any_other", standard_default_handler_);

The standard_default_handler_ procedure is invoked on all signals not
intercepted by any subsequently established condition handler. In general, the
standard_default_handler_ procedure either performs some default action (such as
inserting a pagemark into the stream when an endpage condition is signalled) and
restarts execution, or else it prints a standard error message and calls the
current listener.

A process overseer procedure may perform many other actions besides those
executed by the system version. For example, initialization of special
per-project accounting procedures may be accomplished at this point or requests
issued for an additional password or any other administrative information
required by a project.

2/717 3-2 AK92B

The system process overseer terminates processing by calling the standard
listener in the following manner:

call listen_ (initial_command_line);
The initial command line used by the system process overseer is:

exec_com home_dir>start_up start_type proc_type

where:

1. start_type is either login or new_proc, depending on which of these was
invoked to create the process.

2. proc_type is either interactive or absentee.

These arguments can be used by the start_up.ec segment as described in
connection with the exec_com command in the MPM Commands.

The command 1line given above assumes that the no_start_up flag is off and
that the segment named start_up.ec can be found in the user's home directory.
The no_start_up flag is off unless the project administrator has given the user
the no_start_up attribute and the user has included the proper control- argument
(-no_start_up or -ns) in his login line.

If no start_up.ec segment is provided, or if one is provided but the
no_start_up flag is on, the standard Multics process overseer checks the brief
- switch in the PIT. 1If this switch is off, and if the process was not created in
response to a new_proc command or process termination signal, the process
overseer prints the contents of the message_of_the_day segment located in the
directory named >system_control_1.

The standard process overseer does not expect the listener to return. If
it does, the appropriate init_admin_ procedure is recalled and the process is
logged out with the message Process cannot be initialized.

andlin f Qui ignals

A quit signal is indicated by pressing the appropriate key, such as ATTN or
BRK, on the terminal in use. When a terminal is first attacned for interactive
processing, quit signals from the terminal are disabled. A user quit signal
issued at this time causes the flushing of terminal output buffers, but the quit
condition 1is not raised in the user ring. The recognition of quit signals is
enabled when the following call is made:

call iox_$control (iox_$user_io, "quit_enable", null(), status);

If a project administrator wishes to replace the standard user environment
with his own »programs, he must find an appropriate place for the quit_enable
order, after the mechanism for handling quit signals has been established.

3-3 AK92

SECTION IV

IMPLEMENTATION TO INPUT/OUTPUT MODULES

This section contains information applicable to writing I/0 modules. It
describes the format and function of I/0 control blocks, provides a list of
implementation rules, and describes the use of certain iox_ subroutine entry
points necessary in I/0 module construction. These entry points are described
in more detail in Section(VII. For descriptions of the other iox_ entry points,
refer to the MPM Subroutines.

Some instances in which a user might wish to create a new I/0 module are
given below.

1. Pseudo Device or File. An I/0 module could be used to simulate I/0
to/from a device or file. For example, it might provide a sequence of
random numbers in response to an input request. The discard_ system
I/0 module (described in the MPM Subroutines) is an example of this
sort of module.

2. New File Type. An I/0 module could be used to support a new type of
file in the storage system, such as a file in which records have
multiple keys.

3. Reinterpreting a File. An I/0 module could be designed to overlay a
new structure (relative to the standard file types) on a standard type
of file. For example, an unstructured file might be interpreted as a
Sequential file by considering 80 characters as a record.

Y, Monitoring a Switch. An I/0 module could be designed to pass
operations along to another module while monitoring them in some way
(e.g., by copying input data to a file).

5. Unusual Devices. Working through the tty_ I/0 module (described in
the MPM Subroutines) in the raw mode, another 1I/0 module might
transmit data to/from a device that is not a standard Multics device
type (as regards character codes, etc.).

The 1last three items 1listed illustrate a common arrangement. The user
attaches an I/0 switch, x, using an I/0 module, A. To implement the attachment,
module A attaches another switch, y, using another I/0 module, B. When the user
calls module A through the switch x, module A in turn calls module B through the
switch y. Any nonsystem I/0 module that performs true I/0 works in this way,
because, it (or some module that it calls) must call a system I/0 module. There
are system I/0 routines at a more primitive level than the 1I/0 modules, but
user-written I/0 modules must not call these routines.

y-1 AK92

1/0 CONTROL BLOCKS

Each I/0 switch has an associated I/0 control block that is created the
first time a call to iox_$find_iocb requests a pointer to the control block.
The control block remains in existence for the life of the process unless
explicitly destroyed by a call to iox_$destroy_iocb.

The principal components of an I/0 control block are pointer variables and
entry variables whose values describe the attachment and opening of the I/0
switch. There is one entry variable for each I/0 operation with the exception
of the attach operation. To perform an I/0 operation through the switch, the
corresponding entry value in the control block is called. For example, if
iocb_ptr is a pointer to an I/0 control block, the call:

call iox_$put_chars (ioéb_ptr, buff_ptr, buff_len, code);
results in the call:
call iocb_ptr->iocb.put_chars (iocb_ptr, buff_ptr, buff_len, code);

Certain system routines are allowed to make the latter call directly, without
going through the iox_ subroutine; all other routines must call the iox_
subroutine. '

I r loc cture

The declaration given below describes the first part of an I/0 control
block. Only those few I/0 system programs that use the remainder of the 1I/0
control block declare the entire block., Thus, all references to I/0 control
blocks here refer only to the first part of the control block. For example, the
statement "no other changes are made to the control block" means that no other
changes are made to the first part of the control block, and so on. The I/0
system might make changes to the remainder of the block, but these are of
interest only to the I/0 system. For full details on the entry variables, see
the descriptions of the corresponding entries in the iox_ subroutine in the MPM
Subroutines.

del 1 iocb aligned,

2 iocb_version fixed bin init(1),

2 name char(32),

2 actual_iocb_ptr ptr,

2 attach_descrip_ptr ptr,

2 attach_data_ptr ptr,

2 open_descrip_ptr ptr,

2 open_data_ptr ptr,

2 reserved bit(72),

2 detach_iocb entry (ptr, fixed bin(35)),

2 open entry (ptr, fixed bin, bit(1) aligned,
fixed bin(35)),

2 close entry (ptr, fixed bin(35)),

2 get_line entry (ptr, ptr, fixed bin(21), fixed bin(21),
fixed bin(35)),

2 get_chars entry (ptr, ptr, fixed bin(21), fixed bin(35)),

2 put_chars entry (ptr, ptr, fixed bin(21), fixed bin(35)),

2 modes entry (ptr, char(¥*), char(*), fixed bin(35)),

2 position entry (ptr, fixed bin, fixed bin(21),

fixed bin(35)),

4-2 AK92

2 control entry (ptr, char(*), ptr, fixed bin(35)),

2 read_record entry (ptr, ptr, fixed bin(21), fixed bin(21),
fixed bin(35)),

2 write_record entry (ptr, ptr, fixed bin(21), fixed bin(35)),

2 rewrite_record entry (ptr, ptr, fixed bin(21), fixed bin(35)),

2 delete_record entry (ptr, fixed bin(35)),

2 seek_key entry (ptr, char(256) varying, fixed bin(21),
fixed bin(35)),

2 read_key entry (ptr, char(256) varying, fixed bin(21),
fixed bin(35)),

2 read_length entry (ptr, fixed bin(21), fixed bin(35));

Attach Pointers

If the 1I/0 switch is' detached, the value of iocb.attach_descrip_ptr is
null. If the I/0 switch is attached, the value is a pointer to the following
structure:

del 1 attach_descrip based aligned,
2 length fixed bin(17),
2 string char (0 refer (length));

The value of attach_descrip.string is the attach description. See "Multics
Input/Output System" in Section IV of the MPM Reference Guide for details on the
attach description. A

If the 1I/0 switch is detached, the value of iocb.attach_data_ptr is null.
If the I/0 switch is attached, the value may be null, or it may be a pointer to
- data used by the I/0 module that attached the switch. To determine whether the
I/0 switch is attached or not, the value of iocb.attach_descrip_ptr should be
examined, it if it null, the switch is attached.

en r

If the I/0 switch is closed (whether attached or detached), the value of
iocb.open_descrip_ptr is null. If the switch is open, the value is a pointer to
the following structure:

del 1 open_descrip based aligned,
2 length fixed bin(17),
2 string char (0 refer (length));

4y-3 AK92

The value of open_descrip.string is the open description. It has the
following form:

mode -info-

where:

1. mode is one of the opening modes (e.g., stream_input) listed below. The
modes and their corresponding numbers are:

stream_input
stream_output
stream_input_output
sequential_input
sequential_output
sequential_input_output
sequential_update
keyed_sequential_input
keyed_sequential_output
10 keyed_sequential_update
11 direct_input

12 direct_output

13 direct_update

O OoO~NO0OUVI&EWN =

2. info is other information about the opening. If info occurs in the
string, it is preceded by one blank character.

If the 1I/0 switch is closed, the value of iocb.open_data_ptr is null. 1If
the I/0 switch is open, the value may be null, or it may be a pointer to data
- used by the I/0 module that opened the switch.

Entry Variables

The value of each entry variable in an I/0 control block is an entry point
in an external procedure. When the I/0 switch is in a state that supports a
particular operation, the value of the corresponding entry variable is an entry
point that performs the operation. When the I/0 switch is in a state that does
not support the operation, the value of the entry variable is an entry point
that returns an appropriate error code.

When an I/0 switch named x is attached as a synonym for an I/0 switch named
y, the values of all entry variables in the I/0O control block for x are
identical to those in the I/0 control block for y with the exception of
iocb.detach. Thus a call:

call iocbx_ptr->iocb.op(iocbx_ptr,...);

immediately goes to the correct routine.

4y AK92

The values of iocb.open_descrip_ptr and iocb.open_data_ptr for x are also

the same as those for y. Thus, the I/0 routine has access to its open data (if
any) through the I/0 control block pointed to by iocbx_ptr.

The value of iocb.actual_iocb_ptr for x is a pointer to the control block
for the switch that is the ultimate target of a chain of synonyms. (When the
switch x is not attached as Synonym, this pointer points to the control block
for x itself.) I/0 modules use this pointer to access the ultimate I/0 control
block whose contents are to be changed, for example, when a switch is opened.
The I/0 system then propagates the changes to other control blocks as required
by synonym attachments.

WRITING AN I/0 MODULE

The information presented in the following paragraphs pertains to the
design and programming of an I/0 module. 1In particular, conventions are given
that must be followed if the I/0 module is to interface properly with the 1I/0
system. The reader should be familiar with the material presented under the
headings "Multics' Input/Output System" and "File Input/OQutput" in Section IV of
the MPM Reference Guide, the iox_ subroutine in the MPM Subroutines, and under
"I/0 Control Blocks" above.

Design Considerations o

Before programming begins on an I/0 module, the functions it is to perform
should be clearly specified. In particular, the designer should list the
opening modes to be supported and consider the meaning of each I/0 operation
supported for those modes. (See "Open Pointers" above for a 1list of opening
" modes.) The specifications in the description of the iox_ subroutine must be

related to the particular I/0 module (e.g., what seek_key means for the discard_
I/0 module).

An I/0 module contains routines to perform attach, open, close, and detach
operations and the operations Supported by the opening modes. Typically, though
not necessarily, all routines are in one object segment. If the module is a
bound segment, only the attach entry need be retained as an external entry.
Other routines are accessed through entry variables in I/0 control blocks.

An I/0 module may have several routines that perform the same function but
in different situations (e.g., one get_line routine for stream_input openings,
another for stream_input_output openings). Whenever the situation changes
(e.g., at opening), the module stores the appropriate entry values in the I/0
control block.

45 AK92

Implementation Rules

The following rules apply to the implementation of all I/0 operations.

Additional

rules that are specific to a particular operation are given later.

In the rules, iocb is a based variable declared as described under "I/O Control
Blocks" above, and iocb_ptr is an argument of the operation in question.

Except for attach, the usage (entry declaration and parameters) of a
routine that implements an I/0 operation is the same as the usage of
the corresponding entry in the iox_ subroutine. See the MPM
Subroutines for details on the iox_ subroutine.

Except for attach and detach, the actual I/0 control block to which an
operation applies (i.e., the control block attached by the called I/O
module) must be referenced using the value of
iocb_ptr->iocb.actual_iocb_ptr. It is incorrect to use Jjust iocb_ptr,
and it is incorrect to remember the location of the control block from
a previous call (e.g., by storing it in a data structure pointed to by
iocb.open_data_ptr).

On entry to an I/0 module, the value of 1iocb_ptr->iocb.open_data_ptr
always equals the value of:

iocb_ptr->iocb.actual_iocb_ptr-)iocb.open_data_ptr
The value of ptr->iocb.open_descrip_ptr always equals the value of:
iocb_iocb_ptr->iocb.actual_iocb_ptr-)iocb.open_descrip_ptr

Thus, the data structures related to an opening may be accessed
without going through iocb.actual_iocb_ptr.

If an I/0 operation changes any values in an I/0 control block, it
must be the actual I/0 control block (Rule 1 above); and, before
returning, the operation must execute the call:

call iox_$propagate (p);
where p points to the changed control block. The routine
iox_$propagate reflects changes to other control blocks attached as
Synonyms. It also makes certain adjustments to the entry variables in
the control block when the I/0 switch is attached, opened, closed, or
detached.

All I/0 operations must be external procedures.

4-6 AK92

t

ac

The

name of the routine that performs the attach operation is derived by

concatenating the word "attach" to the name of the °‘I/0 module (e.g.,
discard_attach is the name of the attach routine for the discard_ I/0 module).
Each attach routine has the following usage:

declare module_nameattach entry (ptr, (¥)char(*) varying, bit(1) aligned,

where:

1.

2.

fixed bin(35));

call module_nameattach (iocb_ptr, option_array, com_err_switch, code);

iocb_ptr points to the control block of the I/0 switch to be
attached. (Input)

option_array contains the options in the attach description. If there
are no options, its bounds are (0:0). Otherwise, its bounds
are (1:n) where n is the number of options. (Input)

com_err_switch indicates whether the attach routine should call the

code

com_err_ subroutine (described in the MPM Subroutines) when
an error is detected. (Input)

"“ﬂb yes |

"O"b no

is a standard system status code. (Output)

The following rules apply to coding an attach routine:

1.

If the I/0 switch is already attached (i.e., if
ioeb_ptr->iocb.attach_descrip_ptr is not null), return the code
error_table_$not_detached; do not make the attachment.

If, for any reason, the switch cannot be attached, return an
appropriate nonzero code and do not modify the control block. Call
the com_err_ subroutine if, and only if, com_err_switch is "1"b, If
the attachment can be made, follow the remaining rules and return with
code set to 0.

Set iocb_ptr->iocb.open and ioeb_ptr->iocb.detach_iochb to the
appropriate open and detach routines. In addition, set
ioeb_ptr->attach_descrip_ptr to point to a structure as described in
"I/0 Control Blocks" above. The attach description in this structure
must be fabricated from the options in the argument option array, and
there may be some modification of options, e.g., expanding a pathname.

If desired, set iocb_ptr->iocb.attach_data_ptr, iocb_ptr->iocb.modes,

and iocb_ptr->iocb.control. Make no other modifications to the
control block.

47 AK92

Open Qperation

An open operation is performed only when the actual I/0 switch is attached
(through the I/0 module containing the routine) but not open. The following
rules applylto coding an open routine:

1.

lose

If, for any reason, the opening cannot be performed, return an
appropriate code and do not modify the I/0 control block. If the
opening can be performed, follow the remaining rules and return with
code set to 0.

Set iocb_ptr-)iocb.actual_iocb_ptr->iocb.op (where op is any operation
listed under "Open Pointers" above) to an appropriate routine. This
applies for each operation allowed for the specified opening mode.

If either the modes operation or the control operation is enabled with
the I/0 switch attached but not open, set
iocb_ptr->iocb.actual_iocb_ptr->iocb.op (where op is modes or control)
to iox_s$err_no_operation.

Set open_descrip_ptr to point to a structure as described in "I/0Q
Control Blocks" above.

If desired, set iocb_ptr->iocb.actual_iocb_ptr->iocb.open_data_ptr.
Do not make any other modifications to the control block.

eration

A close operation is performed only when the actual I/0 switch is open, the
~ opening having been made by the I/0 module containing the close routine. The
following rules apply to coding a close routine:

1.

Set the following to the appropriate open and detach routines:

iocb_ptr->ioeb.actual_iocb_ptr-)iocb.open
iocb_ptr->iocb.actual_iocb_ptr-)iocb.detach_iocb

Set iocb_ptr->iocb.actual_iocb_ptr—>iocb.open_descrip_ptr to null.

If either the modes operation or the control operation is enabled with
the switch open, set iocb_ptr->iocb.actual_iocb_ptr->iocb.op, where op

is modes or control. Unless the operation is enabled with the switch
closed, set the entry variable to iox_$err_no_operation.

Do not make any other modifications to the control block.

The close routine should set the bit counts on modified segments of a
file, free any storage allocated for buffers, etc., and in general,
clean things up.

The close routine must not return without closing the switch.

4.8 . AK92

A detach operation is performed only when the actual I/0 switch i§ attached
but not open, the attachment having been made by the I/0 module .contalning the
detach routine. The following rules apply to coding detach routines:

1. Set iocb_ptr->iocb.attach_descrip_ptr to null.

2. Do not make any other modifications to the control block.
3. The detach routine must not return without detaching the switch.
1 ration

These operations can be accepted with the I/0 switch attached but closed;
however, it is generally better practice to accept them only when the switch is
open. .

If the control operation is supported, it must return the code
error_table_$no_operation when given an invalid order. 1In this situation, the
state of the I/0 switch must not be changed.

If the modes operation is supported, it must return the code
error_table_$bad_mode when given an invalid mode.

Other Operations

Routines for the other operations are called only when the actual 1I/0
switch 1is attached and open in a mode for which the operation is allowed, the
opening and attachment having been made by the I/0 module containing the
routine. In coding these routines, make only the following modifications to the
I/0 control block of the actual I/0 switch.

1. Reset iocb_ptr->iocb.actual_iocb_ptr->iocb.open_data_ptr.

2. Reset an entry variable set by the open routine, e.g., to switch from
one put_chars routine to another.

3. Close the switch in an error situation. 1In this case, the rules above
for the close operation must be followed.

4-9 AK92

('\

SECTION V

REFERENCE TO COMMANDS AND SUBROUTINES BY FUNCTION

0 REPERT E

The Multics commands described in this manual are organized by function
into the following categories:

Debugging and Performance Monitoring Facilities

Language Translators, Compilers, Assemblers, and Interpreters
Object Segment Manipulation

Storage System, Access Control

Storage System, Directory Manipulation

Storage System, Mailbox Manipulation

Storage System, Segment Manipulation

t

Detailed descriptions of these commands, arranged alphabetically rather
than functionally, are given in Section VI of this document. In addition, many
of the commands have online descriptions, which the user may obtain by invoking
the help command (described in the MPM Commands).

See "Reference to Commands By Function" in Section I of the MPM Commands
for the functional grouping of the commands described in that manual.

D Per

area_status displays information about an area

create_area creates an area and initializes it

delete_external_variables deletes specified variables managed by the
system

display_component_name converts bound segment offset into referenced
component object segment offset

list_external_variables prints information about variables managed by
the system

list_temp_segments lists segments in temporary segment pool

print_linkage_usage prints block storage usage for combined
linkage regions

reset_external_variables reinitializes system managed variables

set_system_storage establishes an area as the storage region for

. normal system allocations
set_user_storage establishes an area as the storage region for

normal user allocations

2/77 5-1 » AK92B

Language Translators, Compilers. Assemblers, and Interpreters

alm
alm_abs
error_table_compiler

Object Segment Manipulation

print_bind_map
print_link_info

tor [¢] ro

set_ring_brackets

Storage Dir r

copy_names
move_names
set_max_length

i Mani

mbx_add_name
mbx_create
mbx_delete
mbx_delete_acl
mbx._delete_name
mbx_list_acl
mbx_rename
mbx_set_acl
mbx_set_max_length

St n ani

archive_sort
reorder_archive

SUBROUTINE REPERTOIRE

invokes ALM assembler
invokes ALM assembler in absentee job
compiles table of status codes and

messages
from ASCII source segments

prints bind map of object segment
prints information about object segments

changes ring brackets of segment

copies names from one segment to another

moves names from one segment to another

specifies maximum 1length of nondirectory
segment

adds alternate names to mailbox

creates mailbox

deletes mailbox

deletes entries from mailbox ACL

deletes name from mailbox

lists ACL of mailbox

replaces one name with another on mailbox
adds and changes entries on mailbox ACL
sets maximum length of a mailbox segment

sorts components of archive segment
orders components of archive segment

The Multics subroutines described in this manual are organized by function

intg the following categories:

Clock and Timer Procedures

Command Environment Utility Procedures

Condition Mechanism

Data Type Conversion Procedures

2/77

5-2 AK92B

Error Handling Procedures

Input/Output System Procedures

Miscellaneous Procedures

Object Segment Manipulation

Process Synchronization .

Storage System, Access Control and Rings of Protection
Storage System, Address Space

Storage System, Directory and Segment Manipulation
Storage System, Utility Procedures

Since many subroutines can perform more than one function, they are listed
in more than one group.

Detailed descriptions of these subroutines, arranged alphabetically rather
than functionally, are given in Section VII of this document.

Many of the functions provided by these subroutines are also available as
part of the runtime facilities of Multies-supported programming languages; users
are encouraged to use the language-related facilities wherever possible.

See "Introduction to Standard Subroutines"™ in Section I of the MPM

Subroutines for the functional grouping of the subroutines described in that
manual.

Timer Pro '

timer_manager_ allows user process interruption after
specified amount of CPU or real-time
passes

c Envir tili P
check_star_name_ verifies formation of entrynames according to
_ star name rules

cu_ command utility programs provide functions
needed by command and subsystem writers

get_default_wdir_ returns pathname of wuser's current default
working directory

get_definition_ returns pointer to specified definition
within an object segment

get_entry_name_ returns associated name of externally defined
location or entry point in segment

get_equal_name_ constructs target name by substituting from
entryname into equal name

get_system_free_area_ returns pointer to system free area for
calling ring

Conditi Mec] .

condition_interpreter_ prints formatted error message for most
conditions

continue_to_signal_ enables on unit that cannot completely handle

condition to tell signalling program to
search stack for other on wunits for
condition

2/77 5-3 AK92B

find_condition_info_

prepare_mc_restart_

signal_
unwinder_

T o rsi Proc re
ascii_to_ebedic_
assign_
cv_bin_

cv_entry_
cv_hex_

cv_oct_

cv_ptr_
ebedic_to_asecii_

Error Hapndling Procedures

active_fnc_err_
convert_status_code_

sub_err_

0 Proc r

convert_dial_message_
dial_manager_

dprint_
iod_info_
iox_
vfile_
Miscellaneous Procedures

decode_descriptor_

get_privileges_
sys_info
system_info_

2/717

returns information about condition when
signal occurs

checks machine conditions for restartability,
and permits modifications to them for
user changes to process execution, before
condition handler returns

signals occurrence of given condition

performs nonlocal goto on Multics stack

performs conversion from ASCII to EBCDIC

assigns specified source value to specified
target performing required conversion

converts binary representation of integer to
12-character ASCII string

converts a virtual entry to an entry value

returns the fixed binary representation of an
ASCII hexadecimal integer

converts ASCII representation of octal
integer to fixed binary representation of
that number

converts a virtual pointer to a pointer value

performs conversion from EBCDIC to ASCII

prints formatted error message and signals
active_function_error condition

returns short and long status messages for
given status code

reports errors detected by other subroutines

controls dialed terminals

interfaces the answering
facility

adds segment print or punch
specified queue

extracts information from I/0 daemon tables
for commands and subroutines submitting
I/0 daemon requests

provides interfaces for controlling the data
structures of the I/0 system

supports I/0 from/to segments and
multisegment files in the storage system

service dial

request to

extracts information from argument
descriptors

returns process' access privileges

is a wired-down, per-system data base

provides user with information on system

parameters

5-1 AK92B

Object Segment Manipulation

object_info_

stu_

tssi_

Process Synchronization
hes_$wakeup

ipe

aim_check_

convert_aim_attributes_

get_privileges_

get_ring_
hes_$add_dir_inacl_entries
hes_$add_inacl_entries
hes_$delete_dir_inacl_entries
hes_$delete_inacl_entries
hes_$get_dir_ring_brackets
hes_$get_ring_brackets
hes_$1list_dir_inacl
hes_$list_inacl
hes_$replace_dir_inacl
hes_¢$replace_inacl
hes_$set_dir_ring brackets
hes_$set_ring_brackets
read_allowed_
read_write_allowed_
write_allowed_

S dr

hes_$get_search_rules
hes_$get_system_search_rules
hes_$initiate_search_rules

2/717

prints structural and identifying information
extracted from object segment

retrieves information from object segment's
(PL/I or FORTRAN) runtime symbol table
section

simplifies use of storage system by language
translators

sends interprocess communication wakeup to
blocked process over specified event
channel

user interface to Multics interprocess
communication facility

determines relationship between two access
attributes

converts representation of process'/segment's
access authorization/class into character
string of defined form

returns process' access privileges

returns number of current protection ring

adds specified access modes to initial ACL
for segments or directories

deletes specified entries from initial ACL
for segments or directories

returns ring brackets for specified segment
or subdirectory

returns all or part of initial ACL for
segments or directories

replaces initial ACL with wuser-provided one
for segments or directories

sets ring brackets for specified segment or
directory

determines if AIM allows specified operations
on object given process' authorization
and object's access class

returns user's current search rules
prints site-defined search rule keywords
allows user to specify search rules

5-5 AK92B

St

S Dir ry and Segment Manipulation

hes_$del_dir_tree
hes_$get_author
hes_$get_be_author

hes_$get_max_length
hes_$get_max_length_se
hcs_$get_safety_sw
hes_$get_safety_sw_seg
hes_$quota_move

hes_$quota_read

hes_$set_entry_bound

hes_$set_entry_bound_seg

hes_$set_max_length
hes_$set_max_length_se
hes_$set_safety_sw
hes_$set_safety_sw_seg
hes_$star_

area_info_
define_area_
get_default_wdir_
get_definition_
get_entry_name_
get_equal_name_
match_star_name_

msf_manager_

release_area_
tssi_

2/77

o}

g

}

}

deletes subdirectory's contents

returns author of segment, directory, or link

returns bit-count author of a segment or
directory

returns maximum length of segment,

returns safety switch value of directory or

segment

moves all or part of quota between two
directories

returns record quota and accounting

information for directory
sets entry point bound of segment

sets maximum length of segment
sets safety switch of segment

returns storage system type and all names
that match entryname according to star
name rules

returns infdormation about an area

initializes a region of storage as an area

returns pathname of wuser's current default
working directory

returns pointer to specified definition
within an object segment

returns associated name of externally defined
location or entry point in segment

constructs target name by substituting from
entryname into equal name

compares entryname with star name

provides the means for multisegment files to
.create, access, and delete components,
truncate the file and control access

cleans up an area

simplifies use of storage system by language
translators

5-6 AK92B

SECTION VI

COMMANDS

DD OR

This section contains descriptions of the Multies commands, presented in
alphabetical order. Each description contains the name of the command
(including the abbreviated form, if any), discusses the purpose of the command,
and shows the correct usage. Notes and examples are included when deemed
necessary for clarity. The discussion below briefly describes the content of
the various divisions of the command descriptions.

Name

The "Name" heading 1lists the full command name and its abbreviated form.
The name is usually followed by a discussion of the purpose and function of the
command and the expected results from the invocation. ’

Usage

This part of the command description first shows a single line that
demonssrates the proper format to wuse when invoking - the command and then
explains each element in the line. The following conventions apply in the usage
line.

1. Optional arguments are enclosed in braces (e.g., {path}, {User_ids}).
All other arguments are required.

2. Control arguments are identified in the wusage 1line with a leading

hyphen (e.g., {-control_args}) simply as a reminder that all control
arguments must be preceded by a hyphen in the actual invocation of the
command.

3. To indicate that a command accepts more than one of a specific
argument, an "s" is added to the argument name (e.g., paths, {paths},
{-control_args}).

NOTE: Keep in mind the difference between a plural argument name that is
enclosed in braces. (i.e., optional) and one that is not (i.e.,
required). If the plural argument is enclosed in braces, clearly no
argument of that type need be given. However, if there are no

braces, at least one argument of that type must be given. - Thus’

"paths" in a usage line could also be written as:

pathl {path2 ... pathn}
The convention of using "paths" rather than the above is merely a
method of saving space.

2/717 6-1 AK92B

y, Different arguments that must be given in pairs are numbered (e.g.,
xxx1 yyyl {... xxxn yyyn}).

5. To indicate that the same generic argument must be given in pairs, the
arguments are given 1letters and numbers (e.g., pathAl pathBl {...
pathAn pathBpn}).

6. To indicate one of a group of the same arguments, an "i" is added to
the argument name (e.g., pathi, User_idi).

To illustrate these conventions, consider the following usage 1line:
command {paths} {-control_args}
The lines below are just a few examples of valid invocations of this command:

command

command path path

command path -control_arg

command -control_arg -control_arg

command path path path -control_arg -control_arg -control_arg

In many cases, the control arguments take values. For simplicity, common
values are indicated as follows:

STR any character string; individual command descriptions indicate
any restrictions (e.g., must be chosen from specified list; must
not exceed 136 characters).

N number; individual command descriptions indicate whether it is
octal or decimal and any other restrictions (e.g., cannot be
greater than U4).

DT date-time character string in a form acceptable to the
convert_date_to_binary_ subroutine described in the MPM
Subroutines.

path pathname of an entry; unléss otherwise indicated, it may be

either a relative or an absolute pathname.

The lines below are samples of control arguments that take values:

-access_name STR, -an STR
-ring N, -rg N

-date DT, -dt DT
-home_dir path, -hd path

Notes

Comments or clarifications that relate to the command as a whole are given
under the "Notes" heading. Also, where applicable, the required access modes,
the default condition (invoking the command without any arguments), and any
special case information are included.

2/717 6-2 AK928B

()

Examples

The examples show different valid invocations of the command. An
exclamation mark (!) is printed at the beginning of each user-typed line. This
is done only to distinguish wuser-typed 1lines from system-typed 1lines. The
results of each example command line are either shown or explained.

Other Headings

Additional headings are used in some descriptions, particularly the more
lengthy ones, to introduce specific subject matter. These additional headings
may appear in place of, or in addition to, the notes.

2/77 6-3 AK92B

alm alm

Name: alm

ALM is the standard Multics assembly language. It is commonly used fo-
privileged supervisor code, higher level support operators and utility packages,
and data bases. It is occasionally used for efficiency or for hardware features
not accessible in higher 1level languages; however, its routine wuse is
discouraged.

The alm command invokes the ALM assembler to translate a segment containing
the text of an assembly language program into a Multics standard object segment.
A listing segment can also be produced. These segments are placed in the user's
current working directory.

The ALM language is described briefly in this command description. The
Multics Processor Manual, Order No. AL39, fully describes the instruction set.

Usage
alm path {-control_args}

where:

1. path
is the pathname of an ALM source segment that is to be translated by
the ALM assembler. If path does not have a suffix of alm, one is
assumed. However, the suffix must be the last component of the name
of the source segment.

2. control_args
are optional arguments that can only appear after the path argument.
The control arguments are:

-list, -1s
produces an assembly listing segment.

-no_symbols
suppresses the 1listing of a cross-reference table in the listing
segment. This cross-reference table is included by default in the
listing segment when the -list control argument is given.

-brief, -bf
prevents errors from being printed on the terminal. Any errors are
flagged in the listing (if one has been requested).

Notes .

The only result of invoking the alm command without control arguments is to
generate an object segment.

2/77 6-4 AK92B

ok

alm alm

A successful assembly produces an object segment and leaves it in the
user's working directory. If an entry with that name existed previously in the
directory, its access control 1list (ACL) is saved and given to the new copy.
Otherwise, the user is given re access to the segment with ring brackets v,v,v
where v 1is the validation level of the process that is active when the object
segment is created.

If the user specifies the -list control argument, the alm command creates a
listing segment in the working directory and gives it a name consisting of the
entryname portion of the source segment with the suffix list rather than alm
(e.g., a source segment named prt_conv_.alm would have a listing segment named
prt_conv_.list). The ACL is as described for the object segment except that the
user is given rw access to the newly created segment. Previous copies of the
object segment and the listing segment are replaced by the new segments created
by the compilation.

The assembler is serially reusable and sharable, but cannot be reentered
once translation has begun; that is, it cannot be interrupted during execution,
invoked again, then restarted in its previous invocation.

rror Condition

Errors arising in the command interface, such as inability to locate the
source segment, are reported in the normal Multics manner. Some conditions can
arise within the assembler that are considered malfunctions in the assembler;
these are reported by a line printed on the terminal and also in the 1listing.
Any of the above cases is immediately fatal to the translation.

Errors detected in the source program, such as undefined symbols, are
reported by placing one-letter error flags at the left margin of the erroneous
line in the listing segment. Any line so flagged is also printed on the user's
terminal, unless the -brief control argument is in effect. Flag letters and
their meanings are given below.

B mnemonic used belongs to obsolete (Honeywell Model 645) processor
instruction set

malformed expression in arithmetic field

error in formation of pseudo-operation operand field

reference to a multiply defined symbol

unimplemented or obsolete pseudo-operation

O =2 X mm m

unrecognized opcode

P phase error; location counter at this statement has changed between
passes, possibly due to misuse of org pseudo-operation :

R expression produces an invalid relocation type
S error in the definition of a symbol

T undefined modifier (tag field)

2/77 6-5 AK92B

alm alm

U reference to an undefined symbol

7 digit 8 or 9 appears in an octal field

The errors B, E, M, 0, P, and U are considered fatal. If any of them
occurs, the standard Multics "Translation failed" error message is reported
after completion of the translation.

ALM Lapnguage

An ALM source program is a sequence of statements separated by newline
characters or semicolons. The last statement must be the end pseudo-operation.

Fields must be separated by white space, which is defined to include space,
tab, new page, and percent characters.

A name 1is a sequence of uppercase and 1lowercase letters, digits,
underscores, and periods. A name must begin with a 1letter, period, or
underscore and cannot be longer than 31 characters.

Labels

Each statement can begin with any number of names, each followed
immediately by a colon. Any such names are defined as labels, with the current
value of the 1location counter. A label on a pseudo-operation that changes
location counters or forces even alignment (such as org or its) might not refer
to the expected 1location. White space 1is optional. It can appear before,
after, or between labels, but not before the colon.

Opcode

The first field after any labels is the opcode. It can be any instruction
mnemonic or any one of the pseudo-operations listed later in this description
under "Pseudo-operations."™ The opcode can be omitted, and any labels are still
defined. White space can appear before the opcode, but is not required.

Operand

Following the opcode, and separated from it by mandatory white space, is
the operand field. For instructions, the operand defines the address, pointer
register,, and tag (modifier) of the instruction. For each pseudo-operation,
the operand field is described under "Pseudo-operations." The operand field can
be omitted in an instruction. Those pseudo-operations that use their operands
generally do not permit the operand field to be omitted.

2/71 6-6 AK92B

alm alm

Since the assembler ignores any text following the end of the operand
field, this space is commonly used for comments. In those pseudo-operations
that do not use the operand field, all text following the opcode is ignored and
can be used for comments. Also, a quote character (") in any field introduces a
comment that extends to the end of the statement. (The only exceptions are the
ace, aci, and beci pseudo-operations, for which the quote character can be used
to delimit literal character strings.) The semicolon ends a statement and
therefore ends a comment as well.

Instruction Operands

The operand field of an instruction can be of several distinct formats.
Most common is the direct specification of pointer register, address, and tag
(modifier). This consists of three subfields, any of which can be omitted. The
first subfield specifies a pointer register by number, user-defined name, or
predefined name (pr0, prl, pr2, pr3, pr4, pr5, pré, pr7). The subfield ends
with a vertical bar. If the pointer register and vertical bar are omitted, no
pointer register is used in the instruction. The second subfield is any
arithmetic expression, relocatable or absolute. This is the address part of the
instruction, and its default is zero. Arithmetic expressions are defined below
under "Arithmetic Expressions." The last subfield is the modifier or tag. It
is separated from the preceding subfields by a comma. If the tag subfield and
comma are omitted, no instruction modification is used. (This is an all zero
modifier.) Valid modifiers are defined below under "Modifiers."

Other formats of instruction operands are used to imply pointer registers.
If a symbolic name defined by temp, tempd, or temp8 is used in the address
subfield (it can be used in an arithmetic expression), then pointer register 6
is used if no pointer register is specified expliecitly. This form can have a
tag subfield.

Similarly, if an external expression is used in the address subfield, then
pointer register 4 is implied; this causes a reference through a 1link. The
pointer register subfield may not be specified explicitly. If a modifier
subfield is specified, it is taken as part of the external expression; the
instruction has an implicit n* modifier to go through the link pair. External
expressions are defined below under "External Expressions."

A literal operand begins with an equal sign followed by a literal
expression. The 1literal expression can be enclosed in parentheses. It has no
pointer register but can have a tag subfield. A literal reference normally
causes the instruction to refer to a word in a literal pool that contains the
value of the literal expression. However, if the modifier du or dl is used, the
value of the literal is placed directly in the instruction address field.
Literal expressions are defined below under "Literal Expressions."

2/717 6-7 AK92B

alm alm

Certain instructions assembled by the ALM assembler do not follow the
standard opcode-operand format as described above. These instructions fall into
three basic classes: the repeat instructions, special treatment of the index
and pointer register instructions, and EIS instructions. Each of these special
cases is described below.

REPEAT INSTRUCTIONS

The repeat instructions are used to repeat either one or a pair of
instructions until specified termination conditions are met. There are two
basic forms:

rpt tally,delta,terml,term2,...,termn

generates the machine rpt instruction as described in the Multjcs

apual, Both tally and delta are absolute arithmetic expressions. The termi
specify the termination conditions as the names of corresponding conditional
transfer ‘instructions. This same format can be used with the rpt, rpd, rpda,
and rpdb pseudo-operations.

rptx ,delta

generates the machine rpt instruction with a bit set to indicate that the tally
and termination conditions are to be taken from index register 0. This format
can be used with rplx and rpdx.

INDEX REGISTER INSTRUCTIONS

The opcodes for manipulation of the index registers have the general form
opxn, where p specifies the index register to be used in the operation. ALM
allows the more general form:

opx index,operand

which assembles opxn, where index is an absolute arithmetic expression whose
value is n. This format can be used for all index register instructions.

2/71 6-8 AK92B

alm alm

POINTER REGISTER INSTRUCTIONS

As with the index register instructions, the opcodes for the manipulation
of the pointer registers have the general form oprp, where n specifies the
pointer register to be used. ALM extends this form to allow:

opr pointer,operand

which assembles as oprp, where p is found as follows: If pointer is a built-in
pointer name (pr0O, pril, etc.), that register 1is selected; otherwise, pointer
must be an absolute arithmetic expression whose value is n. This format can be
used with all pointer register instructions except spri.

EIS MULTIWORD INSTRUCTIONS

o

An EIS multiword instruction consists of an operation code word, followed

by one or more descriptor words. The descriptor words can be assembled by using
the "desc" pseudo-operations 1listed wunder "Pseudo-Operations" below. The

operation code word has the following general form:

eisop (MF1),(MF2),keywordl(octexpression),keyword?2

where:

1. MF1,MF2 are EIS modification fields as described in "EIS Modifiers"
below.

2. keywordl can be either fill, bool, or mask.

3. 'octexpression is a logical expression that specifies the bits to be placed
' in the appropriate parts of the instruction.

y, keyword?2 can be round, enablefault, or ascii; these cause single
option bits in the instruction to be set.

Keywords can appear in any order, before or after an MF field. This format
can be used for all Multics EIS multiword instructions.

2/77 ' 6-9 AK92B

alm alm

EIS SINGLEWORD INSTRUCTIONS

The Multiecs processor contains a set of 10 instructions that may be used to
alter the contents of an address register. These instructions have the
following general form:

opcode prioffset,modifier

where:

1. pr selects the address register that is to be modified by the
instruction.

2. of fset is a value whose interpretation is dependent upon the opcode
used.

3. modifier must be one of the register modifiers (au, ql, x0, etec.).

These instructions have two modes of operation depending on the setting of
bit 29 in the instruction. If bit 29 is 1, the current contents of the selected
address register are used in determining its new contents; if bit 29 is 0, the
contents of the word and bit offset portions of the selected address register
are assumed to be zero at the start of the instruction (this results in a 1load
operation into the selected address register). ALM normally sets bit 29 to 1,
unless the opcode ends in "x" (e.g., awdx is an awd instruction with bit 29 set
to 0). This format can be used with a4bd, abbd, a9bd, abd, awd, s4bd, sbbd,
s9bd, sbd, and swd.

Six examples of instruction statements are shown below. A brief
description of each example follows the sample statements.

xlab: lda pr0j2,% " Example 1.
eaxT7 xlab-1
rcecl <sys_info>i{[clock_1],* " Example 2.
segref sys_info,time_delta " Example 3.
adl time_delta+1
temp nexti " Example 4.
1x10 nexti,*
link goto,<unwinder_>|[unwinder_] " Example 5.
tra pridigoto,#*
ana =o777777,du " Example 6.
ada =v36/1list_end-1

2/77 6-10 AK92B

alm alm

Example 1 shows direct specification of address, pointer register, and tag
fields. In.the second instruction, no pointer register is specified, .and the
symbol xlab is not external, so no pointer register is used.

Example 2 shows an explicit link reference. Indirection is specified for
the link as the item at clock_ (in sys_info) is merely a pointer to the final
operand.

Example 3 uses an external expression as the operand of the adl
instruction. In this particular case, the operand itself is in sys_info.

Example 4 uses a stack temporary. Since the word is directly addressable
using pr6, the modifier specified is used in the instruction.

Example 5 shows a directly specified operand that refers to an external
entity. It is necessary in this case to specify the pointer register and
modifier fields, unlike segref.

Example 6 wuses two literal operands.- Only the second instruction causes
the literal value to be stored in the literal pool.

Arithmetic Expressions

An arithmetic expression consists of names (other than external names) and
decimal numbers joined by the ordinary operators + - * /. Parentheses can be
used with their normal meaning.

An asterisk in an expression, when not used as an operator, has the value
of the current location counter.

All intermediate and final results of the expression must be absolute or
relocatable with respect to a single location counter. A relocatable expression
cannot be multiplied or divided.

Logical Expressjons

A logical expression is composed of octal constants and absolute Asymbols
combined with the Boolean operators + (OR), - (XOR), * (AND), and (NOT).
Parentheses can be used with their normal meaning.

2/11 6-11 AK92B

alm alm

External Expressions

An external expression refers symbolically to some other segment. It
consists of an external name or explicit link reference, an optional arithmetic
expression added or subtracted, and an optional modifier subfield. An external
name 1is one defined by the segref pseudo-operation. An explicit link reference
must begin with a segment name enclosed in "angle brackets" (the 1less-than and
greater-than characters) and followed by a vertical bar. This can optionally be
followed by an entryname in square brackets. For example:

<segname>|[entryname]
<{segname>|0,5%

A segment name of *text, ¥*link, or *static indicates a reference to this
procedure's text, linkage, or static sections.

A link pair is constructed for each combination of segment name, entryname,
arithmetic expression, and tag that is referenced.

Literal Expressions

A literal reference causes the instruction to refer to a word in a 1literal
pool that contains the value specified. However, the du and dl modifiers cause
the value to be stored directly in the address field of the instruction. The
various formats of literals are described in the following paragraphs.

A decimal literal can be signed. If it contains a decimal point or
exponent, it is floating point. If the exponent begins with "d" instead of "e",
it is double precision. A binary scale factor beginning with "b" indicates
fixed point and forces conversion from floating point.

An octal literal begins with an "o" followed by up to 12 octal digits.

ASCII 1literals can occur in two forms. One form begins with a decimal
number between 1 and 32 followed by "a" followed by the number of data
characters specified by the integer preceding the "a", which can cross statement
delimiters. The other form begins with "a" followed by up to four data
characters, which can be delimited by the newline character.

A GBCD literal begins wifh "h" followed by up to six data characters, which
can be delimited by the newline character. Translation is performed to the
6-bit character code.

An ITS (ITP) literal begins with "its" ("itp") followed by a parenthesized
list containing the same operands accepted by the its (itp) pseudo-operation.
The value is the same as that created by the pseudo-operation.

A variable-field literal begins with "v" followed by any number of decimal,
octal, and ASCII subfields as in the vfd pseudo-operation. It must be enclosed
in parentheses if a modifier subfield is to be used.

2/77 6-12 AK92B

alm alm

Modifiers

These specify indirection, index register address modification, immediate
operands, and miscellaneous tally word operations. They can be specified as
2-digit octal numbers (particularly useful for instructions 1like stba) or
symbolically using the mnemonics described here.

Simple register modification is specified by using any of the register
designators listed below. It causes the contents of the selected register to be
added to the effective address.

Designators Register
x0 0 index register 0

x1 1 index register 1

x2 2 index register 2

x3 3 index register 3

x4 y index register U

x5 5 index register 5

x6 6 index register 6

x7 T index register 7

n none (no modification) '
au A bits 0-17

al A bits 18-35 or 0-35
qu Q bits 0-17

ql Q bits 18-35 or 0-35
ic instruction counter

In addition to the above, any symbol that is not otherwise a valid modifier
(e.g., au, ql, x7) may be used as a modifier to designate an index
register. Thus,

equ rege,3
lda spi|0,%*rege

"is equivalent to:

lda spi0,#*3

Register-then-indirect modification is specified by wusing any of the
register designators followed by an asterisk. If the asterisk is used alone, it
is equivalent to the n* modifier. The register is added to the effective
address, then the address and modifier fields of the word addressed are used in
determining the final effective address. Indirect cycles continue as long as
the indirect words contain an indirect modifier.

v

Indirect-then-register modification is specified by placing an asterisk
before any one of the register designators listed above.

Direct modifiers are du and dl. They cause an immediate operand word to be
fabricated from the address field of the instruction. For dl, the 18 address
bits are right-justified in the effective operand word; for du they are
left-justified. In either case, the remaining 18 bits of the effective operand
are filled with 0's.

2/77 6-13 AK92B

alm alm

Segment addressing modifiers are its and itp; they can only occur in an
indirect word pair on a double-word boundary. The addressing modifier its
causes the address field of the even word to replace the segment number of the
effective address, then continues the indirect cycle with the odd word of the
pair. Nearly all indirection in Multics wuses ITS pairs. For itp, see the

Multics Processor Manual.

Tally modifiers i, ci, sec, scr, ad, sd, id, di, ide, and diec control
incrementing and decrementing of the address and tally fields in the indirect
word. They are difficult to use in Multics because the indirect word and the
data must be in the same segment.

Fault tag modifiers f1, f2, and f3 cause distinct hardware faults whenever
they are encountered. The modifier f2 is reserved for use in the Multics
dynamic 1linking mechanism; the other modifiers result in the signalling of the
conditions "fault_tag_1" and "fault_tag_3".

EIS Modifiers

An EIS modifier appears in the first word of an EIS multiword instruction.
It affects the interpretation of operand descriptors in subsequent words of the
instruction. No check is made by ALM to determine whether the modifier
specified is consistent with the operand descriptor specified elsewhere.

An EIS modifier consists of one or more subfields separated by commas.
Each subfield contains either a keyword as listed below, a register designator,
or a logical expression. The values of the subfields are OR'ed together to
produce the result.

-Keyword Meaning

“pr Descriptor contains a pointer register reference.

id Descriptor is an 1indirect word pointing to the true
descriptor.

rl Descriptor length field names a register containing data
length.

. Separate Static Object Segments

If a separate static object segment is desired, a join pseudo-operation
specifying static should exist in the program.

2/717 6-114 AK92B

2/77

alm

The pseudo-operations are listed below in alphabetical order.

acc /string/,expression

assembles the ASCII string <string> into as many contiguous words as
are required (up to 42). The delimiting character (/ above) can be
any non-white-space character. The quoted string can contain newline
and semicolon characters. The length of the string is placed in the
first character position in ace format. If present, expression
defines the length of the string; otherwise, the length is the actual
length of the quoted string. If the given string is shorter than the
defined length, it is padded on the right with blanks.

aci /string/,expression
is similar to acc, but no length is stored. The first character
position contains the first character in aci format.

arg operand
assembles exactly like an instruction with a zero opcode. Any form of
instruction operand can be used.
beci /string/,expression ’

is similar to aci, but uses GBCD 6-bit character codes and GBCD blanks
for padding.

bfs name,expression
reserves a block of expression words with name defined as the address
of the first word after the block reserved.

bool name,expression
defines the symbol name with the logical value expression. See the
definition of 1logical expressions above under "Logical Expressions."

.bss name,expression

defines the symbol name as the address of a block of expression words

at the current location. The name can be omitted, in which case the
storage is still reserved.

call routine(arglist)
calls out to the procedure routine using the argument list at arglist.
Both routine and arglist can be any valid instruction operand,
including tags. If arglist and the parentheses are omitted, an empty
argument list is created. All registers are saved and restored by
call.

dec numberl,number2,...,numberp ’
assembles the decimal integers number1, number2, through numberp into
consecutive words.

6-15 AK92B

alm

alm

desclda address(offset),length

descba, address(offset),length
desc9a address(offset),length

generates one of the operand descriptors of an EIS multiword
instruction. The address is any arithmetic expression, possibly
preceded by a pointer register subfield as in an instruction operand.
The offset is an absolute arithmetic expression giving the offset (in
characters) to the first bit of data. It can be omitted if the
parentheses are also omitted. The length is either a built-in index
register name (al, au, ql, x0, etc.) or an absolute arithmetic
expression for the data length field of the descriptor. The character
size (in bits) is specified as part of the pseudo-operation name.

descldfl address(offset),length,scale
desclls address(offset),length,scale
descins address(offset),length,scale
desclits address(offset),length,scale

generates an operand descriptor for a decimal string. The scale is an
absolute arithmetic expression for a decimal scaling factor to be
applied to the operand. It can be omitted, and is ignored in a
floating-point operand. Data format is specified in the
pseudo-operation name: descldfl indicates floating point, descldls
indicates leading sign fixed point, desclns indicates unsigned fixed
point, and desclts indicates trailing sign fixed point. Nine-bit
digits can be specified by wusing desc9fl, desc9ls, desc9ns, and
desc9ts. '

descb address(offset),length

eight

end

generates an operand descriptor for a bit string. Both offset and
length are in bits.

(see the even pseudo-operation)

terminates the source segment.

entry namel,name2,...,namep

generates entry sequences for labels namel, name2, through namep and
makes the externally-defined symbols namel1, name2, through namep refer
to the entry sequence code rather than directly to the labels. The
entry sequence performs such functions as initializing base register
pr4 to point to the 1linkage section, which is necessary to make
external symbolic references (link, segref, explicit links). The
entry sequence can use (alter) base register pr2, index registers 0
and 7, and the A and Q registers. It requires pr6 and pr7 to be
properly set (as they normally are).

equ name,expression

even

2/77

defines the symbol name with the arithmetic value expression.

inserts padding (nop) to a specified word boundary.

firstref extexpressioni(extexpression?2)

calls the procedure extexpressionl with the argument pointer
extexpression2 the first time (in a process) that this object segment
is linked to by an external symbol. If extexpression2 and the
parentheses are omitted, an empty argument list is supplied. The
expressions are any external expressions, including tags.

6-16 o : AK92B

alm

2/717

alm

getlp
sets the pointer register pr4 to point to the linkage section. This
can be used with segdef to simulate the effect of entry. This
operator can use pointer register pr2, index registers 0 and 7, and
the A and Q registers, and requires pr6 and pr7 to be set properly.
include segmentname
inserts the text of the segment segmentname.incl.alm immediately after
this statement. A standard include library search is done to find the
include file. See "System Libraries and Search Rules" in Section III
of the MPM Reference Guide.

inhibit off
instruct assembler to turn off the interrupt inhibit bit in subsequent
instructions. This mode continues until the inhibit on
pseudo-operation is used.

inhibit on
instructs assembler to turn on the interrupt inhibit bit (bit 28) in
subsequent instructions. This mode continues until the inhibit off
pseudo-operation is used.

itp prno,offset,tag
generates an ITP pointer referencing the pointer register prno.

its segno,offset,tag
generates an ITS pointer to the segment segno, word offset <offset>,
with optional modifier tag. If the current location is not even, a
word of padding (nop) is inserted. Such padding causes any labels on
the statement to be incorrectly defined. '

join /text/namel,name2,.../link/name3,namel,.../static/name5,nameb,....

appends the location counters namel, name2, etc., to the text section,
appends the location counters name3, named4, etc., to the 1linkage
section and appends the location counters name5, nameb, etc., to the
static section. Any number of names can appear. Each name must have
been previously referred to in a use statement. Any location counters
not Jjoined are appended to the text section. If both link and static
are specified in join pseudo-operations, then a warning is printed on
the terminal. :

link name,extexpression
defines the symbol name with the value equal to the offset from 1lp to
the link pair generated for the external expression extexpression. An
external expression can include a tag subfield. The name is not an
external symbol, so an instruction should refer to this link by:
priiname,*

mod <expression>
inserts padding (nop) to an <expression> word boundary.

name objectname

specifies again the object segment name as it appears in the object
segment. By default, the storage system name is used.

null
is ignored. This pseudo-operation is used for comments.

oct number?1,number2,...,numberp
is like dec, with octal integer constants.

odd
(see the even pseudo-operation)

6-17 AK92B

alm

2/717

alm

org expression
sets the location counter to the value of the absolute arithmetic
expression <expression>. The expression can only use symbols
previously defined.

push expression
creates a new stack frame for this procedure, containing expression
words. If expression is omitted (the usual case), the frame is just
large enough to contain all cells reserved by temp, tempd, and temp8.

rem
" (see the null pseudo-operation)

return
is used to return from a procedure that has performed a push.

segdef namel,name2,...,namepn
makes .the labels namel, name2, through namep available to the linker
for referencing from outside programs, using the symbolic names namel,
name2, through namen. Such incoming references go directly to the
labels namel, name2 through namep so the segdef pseudo-operation is
usually used for defining external static data. For program entry
points, the entry pseudo-operation is usually used.

segref segname,namel,name2,...,namen '

defines the symbols namel, name2, through namep as external symbols

referencing the entry points namel1, name2, through namep in segment

segname. This defines a symbol with an implicit base register

reference.

set name,expression
assigns the arithmetic value expression to the symbol name. Its value
can be reset in other set statements.

shortcall routine
calls out to routine using the argument list pointed to by proO. Only
pr4 and pr6 are preserved by shortcall.

" shortreturn

is used to return from a procedure that has not performed a push.

sixtyfour
(see the even pseudo-operation)

temp namel1(n1),name2(n2),...,namepn(npn)
defines the symbols namel, name2, through namen to reference unique
stack temporaries of nl, n2, through nn words each. Each ni 1is an
absolute arithmetic expression and can be omitted (the parentheses
should also be omitted). The default is one word per namej.

temp8 namel(n1),name2(n2),...,namen(nn)
is similar to temp, except that 8-word units are allocated, each on an
8-word boundary.

tempd name1(n1),name2(n2),...,namen(nn)
is similar to temp, except that n1 (n2 through np) double words are
allocated, each on a double-word boundary.

use name
assembles subsequent code into the location counter name. The default

location counter is ".text.".

6-18 AK92B

alm

2/77

alm

vfd T1L1/expressionl,T2L2/expression2,...,TnLp/expressionn

zero

is variable format data. Each expressioni is of type Ti and is stored
in the next Li bits of storage. As many words are used as required.
Individual items can cross word boundaries and exceed 36 bits in
length. Type is indicated by the letters "a" (ASCII constant) or "o"
(logical expression) or none (arithmetic expression). Regardless of
type, the low-order Li bits of data are used, padded if needed on the
left. The Ti can appear either before or after Li.

Restrictions: The total length of the variable format data cannot
exceed 128 words. A relocatable expression cannot be stored in a
field less than 18 bits long, and it must end on either bit 17 or bit
35 of a word.

expressionil,expression2

assembles expressionl into the left 18 bits of a word and expression2
into the right 18 bits. Both subfields default to zero.

6-19 AK92B

alm_abs alm_abs

Name: alm_abs, aa

The alm_abs command submits an absentee request to perform ALM assemblies.
The absentee process for which alm_abs submits a request assembles the segments
named and dprints and deletes each 1listing segment if it exists. If the
-output_file control argument is not specified, an output segment, path.absout,
is created in the wuser's working directory. (If more than one path is
specified, the first is used.) If the segment to be assembled cannot be found,
no absentee request is submitted.

Usage
alm_abs paths {alm_arg} {-dp_args} {-control_args}

where:

1. paths
are pathnames of segments to be assembled.

2. alm_arg
can be the -list control argument accepted by the alm command
(described earlier in this document).

3. dp_args
can be one or more control arguments (except -delete) accepted by
the dprint command. (See the MPM Commands for a description of the
dprint command.)

y, control_args :
can be one or more of the following control arguments:

-queue N, -q N
specifies in which priority queue the request is to be placed
(N £ 3). The default queue is 3. The 1listing segment is also
dprinted in queue N. '

-hold
specifies that alm_abs should not dprint or delete the listing
segment.

-output_file path, -of path)
specifies that absentee output is to go to segment path where path
is a pathname.

Notes

Control arguments and segment pathnames can be mixed freely and can appear
anywhere on the command line after the command. All control arguments apply to
all segment pathnames. If an unrecognizable control argument is given, the
absentee request is not submitted.

Unpredictable results can occur if two absentee requests are submitted that
could simultaneously attempt to assemble the same segment or write into the same
absout segment.

2/77 6-20 AK92B

alm_abs alm_abs

When performing several assemblies, it is more efficient to give several
segment pathnames in one command rather than several commands. With one
command, only one process is set up. The links that need to be snapped when
setting up a process and when invoking the assembler need be snapped only once.

2/717 6-21 AK92B

archive_sort archive_sort

Name: archive_sort, as

The archive_sort command is used to sort the components of an archive
segment. The components are sorted into ascending order by name using the
standard ASCII collating sequence. The original archive segment is replaced by
the sorted archive. For more information on archives and reordering them, see
the archive command in the MPM Commands and the reorder_archive command in this
document.

Usage

archive_sort paths

where paths are the pathnames of the archive segments to be sorted. The user
need not supply the archive suffix.

Notes

There may be no more than 1000 components in an archive segment that is to
be sorted.

Storage system errors encountered while attempting to move the temporary
sorted copy of the archive segment back into the user's original segment result
in diagnostic messages and preservation of the sorted copy in the user's process
directory. If the original archive segment is protected, the user is
interrogated to determine whether it should be overwritten.

2/77 6-22 AK92B

area_status area_status

Name: area_status

The area_status command is used to display certain information about an
area.

Usage
area_status area_name {-control_args}

where:

1. area_name

is a pathname specifying the segment containing the area to be
looked at.

2. control_args
can be chosen from the following:

-trace
displays a trace of all free and used blocks in the area.

-offset N, -ofs N

specifies that the area begins at offset N (octal) in the given
segment.

-long, -1lg
dumps the contents of each block in both octal and ASCII format.

Note

"If the area has internal format errors, these are reported. The command
does not report anything about (old) buddy system areas except that the area is
in an obsolete format.

2/77 6-23 AK92B

copy_names copy_names

Name: copy_names

The copy_names command copies all names of one entry (directory, segment,
multisegment file, or link) to another. All names are left on the original
entry. The two entries cannot reside in the same directory because name
duplication is not allowed in the same directory. To move the alternate names
see the move_names command in this document.

Usage
copy_names from_pathl {to_pathl ... from_pathp to_pathn}

where:

1. from_pathi
is the pathname of the entry whose names are to be copied.

2. to_pathji
is the pathname of the entry to which all names on from_pathi are to

be copied. If this argument is omitted, the working directory is
assumed.

Note
The equal convention may be used.

2/77 6-24 AK92B

)

———————————————

create_area create_area

————————————————

Name: create_area

The create_area command creates an area and initializes it with
user-specified area management control information.

Usage

create_area virtual_ptr {-control_args}
where:

1. virtual_ptr
is a virtual pointer to the area to be created. The syntax of
virtual pointers is described in the cv_ptr_ subroutine description.

If the segment already exists, the specified portion is still
initialized as an area.

2. control_args
can be chosen from the following:

-no_freeing

allows the area management mechanism to use a faster allocation
strategy that never frees.

-dont_free

is used during debugging to disable the free mechanism. This does
not affect the allocation strategy.

-zero_on_alloc

instructs the area management mechanism to clear bloéks at
allocation time.

-zero_on_free

instructs the area management mechanism to clear blocks at free
time.

-extend

causes the area to be extensible, i.e., span more than one segment.
This feature should be used only for perprocess, temporary areas.

-size N
specifies the octal size, in words, of the area being created or of
the first component, if extensible. If this control argument is

omitted, the default size of the area is the maximum size allowable
for a segment.

-id STR

specifies a string to be wused in constructing the names of the
components of extensible areas.

2/77 6-25 AK92B

delete_external_variables delete_external_variables

Nape: delete_external_variables

The delete_external_variables command deletes from the wuser's name space
specified variables managed by the system for the user. All links to those
variables are unsnapped and their storage is freed.

Usage

delete_external_variables names {-control_arg}

where:

1. names .
are the names of the external variables, separated by spaces, to be

deleted.

2. control_arg
is -unlabeled_common (or -uc) to indicate unlabeled (or blank)

common.,

2/77 6-26 AK92B

display_component_name display_component_name

Name: display_component_name, dcn

The display_component_name command converts an offset within a bound
segment (e.g., bound_zileh_i23017) into an offset within the referenced
component object (e.g., compi1527). This command is especially useful when it
is necessary to convert an offset within a bound segment (as displayed by a
stack trace) into an offset corresponding to a compilation listing.

Usage
display_component_name path offsets

where:

1. path
is the pathname of a bound object segment.

2. of fsets

are octal offsets within the text of the bound object segment
specified by the path argument.

Example

The command line:

display_component_name bound_zilch_ 17523 64251
might respond with the following lines:

17523 component5} 1057
64251 component7}63

2/77 6-27 AK92B

error_table_compiler error_table_compiler

Name: error_table_compiler, etc

The error_table_compiler command compiles a table of status codes and
associated.messages from symbolic ASCII source segments. The output is in a
format suitable for the ALM assembler to produce a standard status code table.

Usage
error_table_compiler error_table

where error_table specifies a source segment in the format described below. An
et suffix is added to the source segment name. The output segment is named
error_table.alm. . This segment must then be assembled by the ALM assembler prior
to using it.

Notes

Each status code is defined by a statement in the source segment that
specifies the name, short message, and long message associated with a status
code. Any number of names may be given to a status code; each name must be 30
characters or less. Blanks and newline characters in the name are ignored.
Each name is delimited by a colon (:).

The short message is eight characters or 1less in length. Blanks and
newline characters in the short message are ignored. The short message is
terminated by a comma (,). The short message (but not the terminating comma)
may be omitted; in this case, the short message is set to the first eight

characters of the name.

The long message is 100 characters or 1less in length. Leading blanks,
newline characters, and blanks following a newline character are ignored in the
long message. The long message is terminated by a semicolon (;). Comments that
begin with the characters /* and end with the characters */ are ignored.

The syntax of a statement is:
namel: ... namep: short_message, long_message;

An error table source segment is composed of a series of statements of the above
format, terminated by an end statement. The format of the end statement is:

end;

2/77 6-28 AK92B

error_table_compiler error_table_compiler

There is a special statement that should not be used except when compiling
the hardcore system error table. This statement causes a special nondynamic
jnitialization of status codes in that segment, optimizing the system error
table slightly. This statement can appear anywhere in the source before the end
statement. The format of this statement is:

system;

See the "List of System Status Codes and Meanings" in Section VII of the
MPM Reference Guide for a list of system error table status codes.

Example
The comment'syntax is similar to PL/I in the following example:
/% This is a sample error table compiler source segment. */
too_few_arguments: toofew,There were too few arguments.;

could_not_access_data: noprivlg,The user is not sufficiently
privileged to access required data;

fatal: disaster: disaster,There was a disastrous error in the data
base;

end;

"Each status code 1in the table produced by error_table_compiler should be
referenced as a fixed binary(35) quantity, known externally:

declare user_errors$disaster fixed bin(35) external,
code fixed bin(35);

call data_base_manager (info, code);
if code = user_errors$disaster /* this is bad ¥/
then call kill_subsystem;

2/77 6-29 AK92B

list_external_variables list_external_variables

Name: list_external_variables

The list_external_variables command prints information about variables
managed by the system for the user, including FORTRAN common and PL/I external
static variables whose names do not contain dollar signs. The default
information is the location and size of each specified variable.

Usage

list_external_variables names {-control_args}

where:

1. names
are names of external variables, separated by spaces.

2. control_args
can be chosen from the following:

-unlabeled_common, -uc
is the name for unlabeled (or blank) common.

-long, -lg
prints how and when the variables were allocated.

-all, -a
,prints information for each variable the system is managing.

-no_header, -nhe
suppresses the header.

2/77 6-30 AK92B

list_temp_segments list_temp_segments

Name: 1list_temp_segments

The list_temp_segments command lists the segments currently in the
temporary segment pool associated with the user's process. This pool is managgd
by the get_temp_segments_ and release_temp_segments_ subroutines (described in
the MPM Subroutines). :

Usage
list_temp_segments {names} {-control_arg}

where:

1. names
is a list of names identifying the programs whose temp segments are
to be listed.

2. control_arg
is -all (or -a) to list all temporary segments. If the command 1is

issued with no control argument, it 1lists only those temporary
segments currently assigned to some program.

Examples
To 1list all the segments currently in the pool, type:

! list_temp_segments -all
5 Segments, 2 Free
IBBBCdfghgffkkkl.temp.0246 work
IBBBCAf fddfdffkl.temp.0247 work
IBBBCddf fdf ffhhh.temp.0253 (free)

IBBBCdgdgfhfgfsf.temp.0254 (free)
!BBBCvdvfgvdgvvv.temp.0321 editor

To list the segments currently in use, type:

! list_temp_segments
3 Segments
IBBBCdfghgffkkkl.temp.0246 work

IBBBCdffddfdffkl.temp.0247 work
!BBBCvdvfgvdgvvv.temp.0321 editor

2/717 6-31 AK92B

list_temp_segments list_temp_segments

To list segments used by the program named editor, type:
! list_témp_segments editor
1 segment

!BBBCvdvfgvdgvvv.temp.0321 editor

2/77 6-32 AK92B

mbx_add_name mbx_add_name

Name: mbx_add_name, mban

The mbx_add_name command adds an alternate name to the existing name(s) of
a mailbox.

Usage
mbx_add_name path names

where:

1. path
is the pathname of a mailbox. The atar convention is allowed.

2. names

are .names -to be added to a mailbox. The equal convention is
allowed.

Notes
If path does not have the mbx suffix, one is assuméd.

The user must have modify permission on the directory that contains the
entry receiving the additional name(s).

Two entries in a directory cannot have the same entryname; therefore,
special action is taken by this command if the added name already exists in the
specified directory. If the added name is an alternate name of another entry,
the name is removed from that entry, added to the entry specified by path, and
the user is informed of this action by a message printed on his terminal. If
the added name is the only name of another entry, the user is asked if he wishes
to delete that entry. If he answers "no", no action is taken with respect to
that name.

Example

‘'The command line:
mban >udd>m>Gillis>*#* private ==.pv

adds to every mailbox in >udd>m>Gillis whose name ends in ".private.mbx" a
similar name ending in ".pv.mbx".

2/77 6-33 AK92B

————————eee.

mbx
_Create : mbx_create
e ———————————

Name: mbx_create, mber

The mbx_create command creates a mailbox with a specified name in a
specified directory.

Usage
mbx_create paths

where paths are the pathnames of mailboxes to be created.

Notes

If pathj does not have the mbx suffix, one is assumed.

The wuser must have modify and append permission on the directory in which
he is creating a mailbox.

If the creation of a mailbox would introduce a duplication of names within
the directory, and if the o0ld mailbox has only one name, the wuser is
interrogated as to whether he wishes the old mailbox to be deleted. If the user
answers "no", no action is taken. If the old mailbox has multiple names, the
conflicting name is removed and a message to that effect is issued to the user.

The extended access placed on a new mailbox is:

~adros user who created the mailbox
ao ® SysDaemon.¥
ao LA

For more information on extended access, see the mail command in the MPM
Commands and mbx_set_acl in this document.

Example

The command line:
mber Green Jones.home >udd>Multies>Gillis>Gillis

creates the mailboxes Green.mbx and Jones.home.mbx in the working directory and
creates the mailbox Gillis.mbx in the directory >udd>Multics>Gillis.

2/77 634 AK92B

O

\

mbx_delete : mbx_delete

Name: mbx_delete, mbdl

The mbx_delete command deletes the specified mailboxes.

Usage
mbx_delete paths

where paths are the pathnames of mailboxes to be deleted. The star convention
is allowed.

Notes
If pathi does not have the mbx 'suffix, one is assumed.

The user must have modify permission on the containing directory and delete
extended access on the mailbox. If delete access is lacking, the user is asked
whether he wants the mailbox deleted. If the user answers "yes", delete access
is forced. If he answers. "no", no action is taken.

For more information on extended access, see the mail command in the MPM
Commands and mbx_set_acl in this document.

" The command line:
mbdl *#*

deletes all mailboxes in the working directory.

The command line:
mbdl Green >udd>Multics>Gillis>Jones

deletes the mailbox Green.mbx from the working directory and the mailbox
Jones.mbx from the directory >udd>Multics>Gillis.

2/71 6-35 \ . AK92B

mbx_delete_acl mbx_delete_acl

Name: mbx_delete_acl, mbda

The mbx_delete_acl command deletes entries from the access control list
(ACL) of a given mailbox.

Usage
mbx_delete_acl path {access_names}

where:

1. path
is the pathname of a mailbox. The star convention is allowed.

2. access_names
are access control names of the form Person_id.Project_id.tag. If
all three components are present, the ACL entry with that name is
deleted. If one or more components is missing, all ACL entries with
matching names are deleted. (The matching strategy is described
below under "Notes.") If no access control name is specified, the
user's Person_id and current Project_id are assumed. '

Notes

If path does not have the mbx suffix, one is assumed.
The user must have modify permission on the containing directory.

" ACL entries for *.SysDaemon.* and *.%*_.% cannot be deleted. To deny them
access to a mailbox, set the access to null giving "*.SysDaemon" and "¥*. % #" g
the access_names arguments.

The matching strategy for access control names is as follows:

1. A literal component name, including "*", matches only a component of
the same name.

2. A missing component name not delimited by a period is taken to be a
literal "#*" (e.g., "*.Multics" is treated as "*.Multics.*")., Missing

components on the left must be delimited by periods.

3. A missing component name delimited by a period matches any component
name.

2/77 6-36 AK92B

()

mbx_delete_acl mbx_delete_acl

Some examples of access_names and which ACL entries they match are:

L matches only the ACL entry "% % ¥,

Multics matches only the ACL entry "Multics.*.*". (The absence of a
leading period makes Multics the first component.)

.Multiecs. matches every ACL entry with middle component of Multies.

. matches every ACL entry.

. matches every ACL entry with a last component of nen,

no (null string) matches every entry ending in ".%*. %",

Example

The command line:

mbda Green .Multics Jones
deletes from the ACL of the mailbox Green.mbx all entries whose name ends in
" Multics.*" and the specific entry "Jones.¥*.¥", If no ACL entries exist for
one of the specified access names (e.g., ending in " Multics.*" from above
example), an error message is printed.

2/71 | 6-37 AK92B

mbx_delete_name mbx_delete_name

Name: mbx_delete_name, mbdn

_lehe mbx_delete_name command removes a specified name from a specified
mailbox.

Usage
mbx_delete_name paths

where paths are the pathnames of mailboxes. The star convention is allowed.

Notes
If pathi does not have the mbx suffix, one is assumed.
The user must have modify permission on the containing directory.

The entryname portion of pathi is the name to be removed. If removing the
name would leave no names on the mailbox, the user is asked if he wants the
mailbox to be deleted. If he answers "no", no action is taken with respect to
that entryname.

Example

~The command line:
mbdn **.private >udd>Multies>Gillis>Jones
removes from the mailboxes in the working directory all names ending in

".private.mbx", and removes the name Jones.mbx from the mailbox Jones.mbx in the
directory >udd>Multics>Gillis.

2/77 6-38 AK92B

mbx_list_acl mbx_list_acl

Name: mbx_list_acl, mbla

The mbx_list_acl command lists all or part of the access control 1ist (ACL)
of a given mailbox.

Usage
mbx_list_acl path {access_names}

where:

1. path
is the pathname of a mailbox. The star convention is allowed.

t

2. access_names

are access control names of the form Person_id.Project_id.tag. If
all three components are present, the ACL entry with that name is
listed. If one or more components is missing, all ACL entries with
matching names are listed. The matching strategy is described under
"Notes" in the description of the ' mbx_delete_acl command in this
document. If no access control name is specified, or if the access
control name is -all or =-a, the entire ACL is listed.

Note

If path does not have the mbx suffix, one is assumed.
Example

The command line:

mbla Green *.%* % Jones Gillis.. .

lists, from the ACL of Green.mbx, the specific entries "¥*.%*.%" and "Jones. ¥ ¥"
and all entries with a first component of Gillis. If no ACL entry with a first
component of Gillis exists, an error message is printed.

2/77 6-39 AK92B

—————————

mbx_rename mbx_rename

——————————

Name: mbx_rename, mbrn

Thg mbx_rename command replaces a given name on a mailbox with a different
name, without affecting any other names the mailbox has.

Usage

mbx_rename pathl namel {... pathp namen}

where:

1. pathi
is the pathname of a mailbox. The entryname portion is the name to
be replaced. The star convention is allowed.

2. namej
is the new name to be placed on the mailbox. The equal convention
is allowed.

Notes

If pathi does not have the mbx suffix, one is assumed.
The wuser must have modify permission on the directory specified by pathi.

Since two entries in a directory cannot have the same entryname, special
action 1is taken by this command if nameji already exists in the directory
specified by pathi. If the mailbox having the entryname namei has an additional
name, entryname namei is removed and the user is informed of this action by a
message printed on his terminal. If the mailbox having the entryname namei has
only one name, the user is asked if that mailbox is to be deleted. If the user
answers "no", the renaming operation does not take place.

Example

The command line:
mbrn *¥* private ==.public dudd>m>Joed>Normal Urgent

replaces all mailbox names ending in private.mbx in the working directory with
similar names ending in public.mbx and renames the mailbox Normal.mbx in the
directory >udd>m>Joe to Urgent.mbx.

2/71 6-40 | AK92B

——————————————

mbx_set_acl mbx_set_acl

Name: mbx_set_acl, mbsa

The mbx_set_acl command changes and adds entries to the access control list
(ACL) of a given mailbox.

Usage

mbx_set_acl path model {access_namel ... moden} access_namen

where:

1. path
is the pathname of a mailbox. The star convention is allowed.

2. modei
is a valid access mode. It can consist of any or all of the letters
adros (see "Notes" below) or it can be "n", "null" or "" to specify
null access.

3. access_namei ' .
is an access control name of the form Person_id.Project_id.tag. If
all three components are present, the ACL entry with that name is
changed; if no entry with that name exists, one is added. If one or
more components is missing, all ACL entries with names that match
the access control name are changed. The matching strategy 1is
described under "Notes" in the description of the mbx_delete_acl
command in this document. If no access control name is specified,
the user's Person_id and current Project_id are assumed.

Notes

If path does not have the mbx suffix, one is assumed.
The user must have modify permission on the containing directory.

Access on a newly created mailbox is automatically set to adros for the
user who created it, ao for *.SysDaemon.*, and ao for *.%. %, The extended
access modes for mailboxes are:

add

f\)

add a message
delete d delete any message

read

"3

read any message

own o] read or delete only your own messages; that is, those sent by
you

status s find out how many messages are in the mailbox

2/T7 -6-41 AK92B

——————

mbx_set_acl mbx_set_acl

Example

The command line:

mbsa Green adros Klein.. null Jones.Multics a LIS I
manipulates the ACL of Green.mbx so that all previously existing entries with a
first component of Klein have adros access, Jones.Multics.* has null access and

¥ % % has "a" access. If no ACL entry exists with a first component of Klein,
an error message is printed.

2/77 6-42 ‘ AK92B

mbx_set_max_length mbx_set_max_length

Name: mbx_set_max_length, mbsml

The mbx_set_max_length command sets the maximum length of a mailbox. The
mailbox must be empty for this command to work.

Usage

mbx_set_max_length path length {-control_args}

where:

1. path

is the pathname of a mailbox. If the suffix mbx is missing, it is
assumed. The star convention is allowed.

2. length

is the maximum length in words. This number must be greater than
zero. If it is not a multiple of 1024 words, it is rounded to the
next higher multiple of 1024 with a warning.

3. control_args ' .
can be chosen from the following list of control arguments:

-decimal, -dc
length is a decimal number. (This is the default.)

-octal, =-oc
length