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PREFACE

The Multics project was begun in 1964 by the Computer
Systems Research group of M.I1.T. Project MAC. The goal was
to create a prototype of a computer utility. In 1965, the
project became a cooperative venture of M.1.T. Project MAC,
the General Electric Company Computer Department (now
Honeywell Information Systems Inc.) and the Bell Telephone
Laboratories. In 1969, at the end of the research phase of
the project, Bell Telephone Laboratories ended its active

involvement. Also in 1969, the M.1LT. Information
Processing Center began to offer Multics as a computing
service within the M.1.T. community. Iln 1973, after

developing a new hardware base for Multics, Honeywell
announced that it would market Multics as a commercial
product.

The Multics system owes its genesis to a small team of
computer scientists who had the vision to lay out a plan
which for 1965 was startlingly ambitious. This team
consisted of the authors of a .set of landmark papers
published in the 1965 Fall Joint Computer Conference. Since
that time literally hundreds of individuals have contributed
to the Multics project, but no individual stands out so
clearly in contribution as does Professor Fernando J.
Corbato, who took responsibility for guiding the design and
implementation of Multics from its initial proposal through
to the time when Honeywell began to market the system.

The project would not have been possible without the
considerable commitments of resources and talent made by the
several organizations. These commitments were made on the
recommendations of Professor Robert K. Fano, then director
of Project MAC, Cr. John W. Weil, then of General Electric,
and Dr. Edward E. David, Jr., then of the Bell Telephone
Laboratories. The Information Processing Techniques office
of the Advanced Research Projects Agency provided the
primary financial support to Project MAC, and the Office of
Naval Research provided contract supervision.

This manual is currently available in two forms: in

three updateable volumes from the M.I.T. Information
Processing Center, or in a five-volume package from



ijoneywell. The construction of the users' manual was also a
;eam effort, with dozens of contributors. This manual has
had the good fortune to have been maintained by a succession
2f three excellent editors, Michael A. Padlipsky, Laurie J.
riaron, and Karolyn J. Martin, each of whom put in endless
nours developing a general consistency of style, format, and
presentation, so as to make the usefulness of the manual
evenly predictable.

This preface can acknowledge only a few particular
contributions. More detailed acknowledgements for specific
contributions will be found among the 29 technical papers
that have been published about Multics, some of which are
reproduced in chapter two of this report. Unfortunately, in
a team effort, complete and accurate acknowledgement s
impossible, excepi by thanking all the members of the team
for their intense devotion to the business of getting
Multics designed and implemented.

Jerome H. Saltzer, Head

Computer Systems Research Division
M.l1.T. Project MAC

September 21, 1973
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FOREWORD

PLAN OF THE MULTICS PROGRAMMERS' MANUAL
September 30, 1973
The Multics Programmers' Manual (MPM) is the primary

reference manual for user and subsystem programming on the
Multics system. It is divided into three major parts:

Part l: Introduction to Multics
Part 1l: Reference Guide to Multics
Part 1ll: Subsystem Writers' Guide to Multics

Part | is an introduction to the properties, concepts, and
usage of the Multics system. Its four chapters are designed for
reading continuity rather than for reference or completeness.
Chapter 1 provides a broad overview. Chapter 2 goes into the
concepts underlying Multics. Chapter 3 is a tutorial guide to
the mechanics of using the system, with illustrative examples of
terminal sessions. Chapter b provides a series of examples of
programming in the Multics environment.

Part Il is a self-contained comprehensive reference guide to
the use of the Multics system for most users. In contrast to
Part |, the Reference Guide is intended to document every detail
and to permit rapid location of desired information, rather than
to facilitate cover-to-cover reading.

Part Il is organized into ten sections, of which the first
eight systematically document the overall mechanics, conventions,
and usage of the system. The last two sections of the Reference
Guide are alphabetically organized 1lists of standard Multics
commands and subroutines, respectively, giving details of the
calling sequence and the usage of each.
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Several cross-reference facilities help locate information
in the Reference Guide:

. The table of contents, at the front of the manual,
provides the name of each section and subsection and an
alphabetically ordered 1list of command and subroutine
names.

. A comprehensive index (of Part Il only) 1lists items by
subject.

. Reference Guide sections 1.1 and 2.1 provide 1lists of
commands and subroutines, respectively, by functional
category.

Part Il is a reference guide for subsystem writers. It is
of interest to compiler writers and writers of sophisticated
subsystems. |t documents user-accessible modules which allow a
user to bypass standard Multics facilities. The interfaces thus
documented are a level deeper into the system than those required
by the casual user.

Examples of specialized subsystems for which construction
would require reference to Part 11l are:

1) a subsystem which precisely imitates the command environment
of some system other than Multics (e.g., an imitation of the
Dartmouth Time-Sharing System);

2) a subsystem which is intended to enforce restrictions on the
services available to a set of users (e.g., an APL-only
subsystem for use in an academic class);

3) a subsystem which is protecting some kind of information in
a way not easily expressible with ordinary access control
lists (e.g., a proprietary linear programming system, or an
administrative data base system which permits access only to
program-defined aggregated information such as averages and
correlations).

Each of the three parts of the MPM has its own table of contents
and is updated separately, by adding and replacing individual
sections. Each section is separately dated, both on the section
itself, and in the appropriate table of contents. The title page
and table of contents are replaced as part of each update, so one
can quickly determine if his manual is properly up-to-date. The
Multics on-1ine "message of the day” or iocal instaliation
bulletins should provide notice of availability of new updates.
In addition, the Multics command "help mpm" provides on-line
information about known errors and the latest MPM update level.

In addition to this manual, users who will write programs
for Multics will need a manual giving specific details of the
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language they will use; such manuals are currently available for
PL/1, FORTRAN, and BASIC. A separate, specialized supplement to
the MPM is also provided for users of graphic displays. The
bibliography at the end of Part |, Chapter 1, describes these and
other references in more detail.

Multics provides the ability for a 1local installation to
develop an installation-maintained or author-maintained library
of commands and subroutines which are tailored to 1local needs.
The installation may also document these facilities in the same
format as used in the MPM; the user can then interfile these
locally provided write-ups in the command and subroutine sections
of his MPM.

Finally, access to Multics requires authorization. The
prospective user must negotiate with the administration of his
local installation for permission to use the system. The
installation may find it useful to provide the new user with a
documentation kit describing available documents, telephone
numbers, operational schedules, consulting services, and other
local conventions.



PREFACE

FOREWORD:

PART I:

Chapter

Chapter

1

2
&

CONTENTS

September 30, 1973

Plan of the Multics Programmers' Manual

INTRODUCTION TO MULTICS

Highlights of the Multics System

Introduction

The Goals

System Requirements

The Multics System

Overview of Multics Capabilities
Languages

A Multics Bibliography

Introduction to the Concepts of Multics

Multics -- The First Seven Years

The Multics Virtual Memory: Concepts and
Design

Virtual Memory, Processes, and Sharing in
Multics

Protection and Control of Information Sharing
in Multics

A Hardware Architecture for Implementing
Protection Rings

The Multics PL/I Compiler

Remote Terminal Character Stream Processing
in Multics

The Multics Input/Output System

Page ix

2-17
2-31
2-39

2-56
2-71

2-86
2-94



Contents

Page x

Chapter 3

Chapter &4

MULTICS PROGRAMMERS' MANUAL

Beginner's Guide to the Use of Multics

The Mechanics of Terminal Usage
A Multics Terminal Session
Typing and Editing Information
Using the Multics Storage System
Access Control in Multics

Where to Go from Here

Programming in The Multics Environment

Basic Addressing Techniques

A Program Which Tests for Prime Numbers
Checking on The Performance of a Program
Debugging Programs on Multics

Absentee Use of Multics

Dynamic Linking and Binding

A Simple Text Editor

Handling Large Files on Multics

3- 1

3-11
3-19
3-29
3-32



CHAPTER 1

HIGHLIGHTS OF THE MULTICS SYSTEM
September 20, 1973

Introduction

Myultics (from Multiplexed Information and Computing Service)
is the name of a new, general-purpose computer system developed
by the Computer Systems Research Division of M.1.T. Project MAC,
in cooperation with Honeywell Information Systems (formerly the
General Electric Company computer department) and the Bell
Telephone Laboratories. This system 1is designed to be a
“computer utility'", extending the basic concepts and philosophy
of earlier time-sharing systems in many directions. Multics was
implemented initially on the Honeywell 645 computer system, an

enhanced relative of the Honeywell 635 computer. It currently
uses a Honeywell 6180 computer system.
Ihe Goals

The goals of the Multics system were set out in 1965 in a
paper by Corbaté and Vyssotsky. While those goals have been met
only partially 1in some cases, most -of the original plans have
been realized. The 1965 paper described those goals as follows:*

“"One of the overall design goals of Multics is to create a
computing system which 1is capable of meeting almost all of the
present and near future requirements of a large computer utility.
Such systems must run continuously and reliably 7 days a week, 24
hours a day, in a way similar to telephone or power systems, and
must be capable of meeting wide service demands: from multiple
man-machine interaction to the sequential processing of absentee
user jobs; from the use of the system with dedicated languages
and subsystems to the programming of the system itself; and from

* From a modified version of: Corbaté, F.J., and Vyssotsky,
V.A., "iIntroduction and Overview of the Multics System", AFIPS
Conf. Proc. 27 (1965 FJCC), Spartan Books, Washington, D.C.,
1965, pp. 185-196. Copyright 1965 by AFIPS Press, reprinted by
permission.
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centralized bulk card, tape, and printer facilities to remotely
located terminals. Such information processing and communication
systems are believed to be essential for the future growth of
computer use in business, in industry, in government and in
scientific laboratories, as well as stimulating applications
which would otherwise be untried.

"Because the system must ultimately be comprehensive and
able to adapt to unknown future requirements, its framework must
be general, and capable of evolving with time. As brought out in
the sequel, this need for an evolutionary framework Iinfluences
and contributes to much of the system design and is a major
reason why most of the programming of the system has been done in
a subset of the PL/Il language. Because the PL/l language is
largely machine-independent <(e.g., data descriptions refer to
logical items, not physical words), the system should also be.
Specifically, it is hoped that future hardware improvements will
not make system and user programs obsolete and that
implementation of the entire system on other suitable computers
will require only a moderate amount of additional programming....

“"As computers have matured during the last two decades from
curiosities to calculating machines to information processors,
access to them by users has not improved, and, in the case of
most large machines, has retrogressed. Principally for economic
reasons, batch processing of computer jobs has been developed and
is currently practiced by most large computer installations, and
the concomi tant isolation of the user from elementary
cause~and-effect vrelationships has been either reluctantly
endured or rationalized. For several years a solution has been
proposed to the access problem. This solution, wusually called
time-sharing, 1{is basically the rapid time-division multiplexing
of a central processor unit among the jobs of several users, each
on-line at a typewriter-like terminal. The rapid switching of
the processor unit among user programs is, of course, nothing but
a particular form of multiprogramming....

"The impetus for time-sharing first arose from professional
programmers because of their constant frustration in debugging
programs at batch processing installations. Thus, the original
goal was to time-share computers to allow simultaneous access by
several persons while giving to each of them the illusion of
having the whole machine at his disposal. This goal led to the
development of the Compatible Time-Sharing System (CTSS) at
M.l.T. Project MAC. However, at Project MAC it has turned out
that simultaneous access to the machine, while obviously
necessary to the objective, has not been the major ensuing
benefit. Rather, it is the availability at one's fingertips of
facilities for editing, compiling, debugging, and running
programs In one continuous interactive session that has had the
greatest effect on programming. Professional programmers are
encouraged to be more 1imaginative in their work and to
investigate new programming techniques and new problem approaches
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because of the much smaller penalty for failure. But, the most
significant effect that CTSS has had on the M.1.T. community is
seen in the achievements of persons for whom computers are tools
for other objectives. The availability of CTSS not only has
changed the way problems are attacked, but has caused Important
research to be undertaken that otherwise would not have been
done. As a consequence, the .objective of the current and future
development of time-sharing extends beyond the improvement of
computational facilities with respect to traditional computer
applications. Rather, it is the on-line use of computers for new
purposes and in new fields which provides the challenge and the
motivation to the system designer. In other words, the major
goal is to provide suitable tools for what is currently being
called machine-aided cognition.

"More specifically, the importance of a multiple-access
system operated as a computer utility is that it allows a vast
enlargement of the scope of computer-based activities, which can,
in turn, stimulate a corresponding enrichment of many areas of
our society. Over ten vyears of experience indicates that
continuous operation in a wutility-like manner, with flexible
remote access, encourages users to view the system as a thinking
tool in their daily intellectual work. Mechanistically, the
qualitative change from the past results from the drastic
improvement in access time and convenience. Objectively, the
change lies in the wuser's ability to control and affect
interactively the course of a process whether it involves
numerical computation or manipulation of symbols. Thus,
parameter studies are more intelligently gulded; new
problem-oriented languages and subsystems are developed to
exploit the interactive capability; many complex analytical
problems, as in magnetohydrodynamics, which have been too
cumbersome to be tackled in the past, are now being successfully
pursued; even more, new, imaginative approaches to basic research
have been developed as in the decoding of protein structures.
These are examples taken from an academic environment; the
effect of multiple-access systems on business and industrial
organizations can be equally dramatic. It is with such new
applications in mind that the Multics system has been developed.
Not that the traditional uses of computers are being disregarded:
rather, these traditional needs are viewed as a subset of the
broader, more demanding, new requirements.

"To meet the above objectives, issues such as response time,
convenience of manipulating data and programs, ease of
controlling processes during execution, and, above alt,
protection of private information and isolation of independent
processes, become of critical importance. These issues demand
departures from traditional computer systems. While these
departures are deemed to be desirable with respect to traditional
computer applications, they are essential for rapid man-machine
interaction.
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Svystem Reguirements

"In the early days of computer design, there was the concept
of a single program on which a single processor computed for long
periods of ¢time with almost no interaction with the outside
world. Today such a view is considered incomplete. The effective
boundaries of an information processing system extend beyond the
processor, beyond the card reader and printer, and even beyond
the typing of input and the printing of output. In fact, they
encompass the goals of many people. To better understand the
effect of this broadened design scope, it is helpful to examine
several phenomena characteristic of 1large, service-oriented
computer installations.

“"First, there are incentives for any organization to have
the biggest possible computer system that it can afford. It is
usually only on the biggest computers that there are elaborate
programming systems, compilers, and features which make a
computer "powerful'". This results partly because it is more
difficult to prepare system programs for smaller computers when
l1imited by speed or memory size, and partly because large systems
involve more persons and, hence, permit more attention to be
given to system programs. Moreover, by combining resources in a
single computer system rather than in several, bulk economies and
therefore lower computing costs can be achieved. Finally, as a
practical matter, considerations of floor space, management
efficiency, and operating personnel provide a strong Incentive
for centralizing computer facilities in a single large
installation. :

"Second, the capacity of a contemporary computer
installation, regardless of the sector of applications it serves,
must be capable of growing to meet continuously increasing
demand. A doubling of demand every two years is not uncommon.
Multiple-access computers promise to accelerate this growth
further since they allow a man-machine interaction rate which s
faster by at least two orders of magnitude than other types of
computing systems. Present indications are that multiple-access
systems for only a few hundred users can generate a demand for
computation exceeding the capacity of the fastest existing single
processor system. Since the speed of light, the physical sizes
of computer components, and the speeds of memories are intrinsic
limitations on the speed of any single processor, it is clear
that systems with multiple processors and multiple memory units
are needed to provide greater capacity. This is not to say that
fast processor units are undesirable, but that extreme system
complexity to enhance this single parameter among many appears
neither wise nor economic.

"Third, computers are no longer a luxury used when and if
available, but are primary working tools in business, government,
and research laboratories. The more reliable computers become,
the more their availability is depended upon. A system structure
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including pools of ~functionally identical wunits (processors,
memory modules, input/output controllers, etc.) can provide
continuous service without significant interruption for equipment
maintenance, as well as provide growth capability through the
addition of appropriate units.

"Fourth, user programs, especially in a time-sharing system,
interact frequently with secondary storage devices and terminals.
This communication traffic produces a need for multiprogramming
to avoid wasting main processor time while an input/output
request is being completed. It is important to note that an
individual user is ordinarily not in a position to do an adequate
job of multiprogramming since his program lacks proper balance,
and he probably ‘lacks the necessary dynamic information,
ingenuity, or patience.

“"Finally, as noted earlier, the value of a time-sharing
system lies not only in providing, in effect, a private computer
to a number of people simultaneously, but, above all, in the
services that the system places at the fingertips of the users.
Moreover, the effectiveness of a system increases as
user-developed facilities are shared by other users. This
increased effectiveness because of sharing is due not only to the
reduced demands for core and secondary memory, but also to the
cross-fertilization of user ideas. Thus, a major goal of the
present effort is to provide multiple access to a growing and
potentially vast structure of shared data and shared program
procedures. In fact, the achievement of multiple access to the
computer processors should be viewed as but a necessary subgoal
of this broader objective. Thus, the primary and secondary
memories where programs reside play a central role in the
hardware organization, and the presence of independent
communication paths between memories, processors, and terminals
is of critical importance.

"From the above it can be seen that the system requirements
of a computer installation are not for a single program on a
single computer, but, rather, for a large system of many
components serving a community of users. Moreover, each user of
the system asynchronously initiates jobs of arbitrary and
indeterminate duration which subdivide into sequences of
processor and input/output tasks. It is out of this seemingly
chaotic, random environment that one arrives at a wutility-like
view of a computing system. For instead of chaos, one can
average over the different user requests to achieve high
utilization of all resources. The task of multiprogramming
required to do this need only be organized once in a central
supervisor program. Each user thus enjoys the benefit of
efficiency without having to average the demands of his own
particular program.

"With the above view of computer use, where tasks start and
stop every few milliseconds, and where the memory requirements of
tasks grow and shrink, it is apparent that one of the major jobs
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of the supervisor program (i.e., monitor, executive, etc.) is the
allocation and scheduling of computer resources. The general
strategy is clear. Each user's job is subdivided into tasks,
usually as the job proceeds, each of which is placed in an
appropriate queue (i.e., for a processor or an input/output
controller). Processors or input/output controllers are, in
turn, assigned new tasks as they either complete or are removed
from old tasks. All processors are treated equivalently in an
anonymous pool and are assigned to tasks as needed. In
particular, the supervisor does not have a special processor.
Further, processors can be added or deleted without significant
change in either the user or system programs. Similarly,
input/output controllers are directed from queues independently
of any particular processor. Again, as with the processors, one
can add or delete input/output capacity according to system load
without significant reprogramming required.

Jhe Multics System

"The overall design goal of the Multics system is to create
a computing system which is capable of comprehensively meeting
almost all of the present and near future requirements of a large
computer service installation. It is not expected that the
initial system, although wuseful, will reach the objective;
rather, the system will evolve with time in a general framework
which permits continual growth to meet unknown future
requirements. The use of the PL/I language will 2llow major
system software changes to be developed on a schedule separate
from that of hardware changes. Since most organizations can no
longer afford to overlap old and new equipment during changes,
and since software development is at best difficult to schedule,
this relative machine-independence should be a major asset."

Overview of Multics Capabilities

An ability to share data contained within the framework of a
general purpose time-sharing system 1is a unique feature of
Multics, and 1Is directly applicable to administrative problems,
research requiring a multi-user accessible data base, and general
application of the computer to very complicated research
problems. The attention paid to mechanisms to provide and
control privacy is of direct interest for several of the same
applications as well as, for example, medical data. Multics can
thus be a valuable tool which provides opportunities for
important new research in these areas.

Multics offers a number of additional capabilities which go
well beyond those provided by many other systems. Those which
are most significant from the user's point of view are described
here. Perhaps the most interesting aspect of all |is that a
single system encompasses all of these capabilities
simul taneously.
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1. The ability to be a small user of Multics.

An underlying consideration throughout the Multics design
has been that the simple user should not pay a noticeable
extra price for a system which also accomodates the
sophisticated user. For example, a student can be handed a
limited set of tools, can do limited work (perhaps debugging
and running small BASIC programs), and expect to receive a
bill for resource usage which is proportional to the limited
work done. |If all users are small, of course, the number of
users can be increased in proportion to their smallness. As
an administrative aid, facilities are provided so that one
can restrict any particular user to a specific set of tools
and thereby limit his ability to use up resources.

2. The ability to control sharing of information.

There are a variety of applications for a computer system
which involve building up a base of information which is to
be shared among several individuals. Multics provides
facilities in two directions.

Sharing:
. Links to other users' programs and data.

. Ability to move one's base of operation into another
user's directory (with his permission).

. Direct access with uniform conventions to any
information stored in the system.

. Ability for two or more users to share a single copy
of a program or data in core memory.

Control:

. Ability to specify precisely to whom, and with what
access mode (e.g., read, write, and execute
permissions are separate and per-user) a plece of
data or the entire contents of a subdirectory are
available.

. Ability to revoke access at any time. -

. Ability, using the Multics protection ring
structure, to force access to a data base to be only
via a prcgram supplied by the data base owner. This
facility may be wused to allow access to aggregate
information, such as averages or counts, or
specified data entries, without simultaneously
giving access to the entire file of raw data, which
may be confidential. There are a large number of
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potential administrative applications of this
feature, and as far as is known, Multics is the only
general-purpose system which provides it.

3. The virtual memory approach.

In the opposite direction of the little user is the person
with a difficult research problem requiring a very Jlarge
addressable memory. The Multics storage system, with the
aid of a high-performance paging system, provides this
facility in what 1is often called a virtual memory of an
extent limited only by the total of secondary storage
devices (drums, disks, etc.) attached to the system. An
interesting property of the Multics implementation is that a
procedure may be written to operate in a very large virtual
memory, but primary memory resources are used only for those
parts of the virtual memory actually touched by the program
on that execution, and disk and drum resources are used only
for those parts of the memory which actually contain data.
Another very useful property from a programmer's point of
view is that information stored in the storage system |is
directly accessible to his program by a virtual memory
address. This property eliminates the need for explicitly
programmed overlays, chain links, or memory loads, and also
reduces the number of explicitly programmed input and output
operations. The Multics storage system takes on the
responsibility for safekeeping of all information placed
there by the user. It therefore automatically maintains
tape copies of all information which has remained in the
system for more than an hour. These tapes can be used to
reload any user information lost or damaged as a result of
hardware or software fallures, and may also be used to
retrieve individual items damaged by a user's own blunder.

Each user has an administratively set quota of space which
limits the amount of storage he can use, “although he may
purchase as 1large an amount of space as he would like.
Additional disk storage can be added to the system in large
quantities if necessary.

k. The option of dynamic linking.

In constructing a program or system of programs, it |is
frequently convenient to begin testing certain features of
one program before having written another program which is
needed for some cases. Dynamic linking allows the execution
of the first program to begin, and a search for the second
program is undertaken only if and when it is actually
called by the first one. This feature also allows a user to
freely include in his program a conditional call out to a
large and sophisticated error diagnostic program, secure in
the knowledge that 1in all those executions of his program
which do not encounter the error, he will not pay the cost
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of 1locating, 1linking, and mapping into his virtual memory
the error diagnosis package. It also allows a user
borrowing a program to provide a substitute for any
subroutine called by that program when he uses it, since he
has control over where the system looks to find missing
_subroutines. In those cases where subroutine A calls
subroutine B every time, there is, of course, no need to use
dynamic linking (and the implied 1library search), so
facilities are provided to bind A and B together prior to
execution.

5. Configuration flexibility.

An important aspect of the Multics design is that it i
actually difficult for a user to write a program which wil
stop working correctly if the hardware configuration is
changed. In response to <changing system-wide needs, the
amount of primary memory, the number of central processors,
the amount and nature of secondary storage (disks, drums,
etc.), and the type of interactive typewriter terminals may
change with time over a range of 2 or 3 to 1, but users do
not normally need to change their programs to keep up with
the hardware. The system itself adapts to changes in the
number of processor or memory boxes dynamically, that is,
while users are logged in. Most other configuration changes
(e.g., the addition of disk storage units) require that the
system be reinitialized, an operation -which takes a few
minutes.

s
1

6. The human interface.

Experience has proven that ease of use of a time-sharing
system is considerably more sensitive to human engineering
than 1is a batch processing system. The Multics command
language has been designed with this in mind. Features such
as universal use of a character set with both upper and
lower case letters in it, and allowing names of objects to
be 32 characters long, are examples of the 1ittle things
which allow the nonspecialist to feel that he does not have .
to discover a secret code in order to be an effective user
of the system. In a similar vein, a hierarchial storage
system provides a very useful organization and bookkeeping
aid, so that a user need keep immediately at hand only those
things he is working with at the moment. Such a facility is
of great assistance when attacking complicated or
intricately structured problems.

Languages

Multics provides two primary user languages: PL/I and
FORTRAN 1V, The FORTRAN compiler is fairly standard. It is
supported by the usual library of math routines and formatted
input/output facilities. Its primary use is for translation of



1-10 HIGHLIGHTS OF THE MULTICS SYSTEM

already written programs which have been (imported from other
computer systems.

The Multics PL/l compiler 1is quite interesting because it
offers a very full selection of .language facilities, over 300
helpful error diagnostics, and the ability to get at the advanced
features of Multics, all at reasonable cost. For these reasons,
as well as the availability of PL/l on other computer systems, it
is the recommended 1language for subsystem Implementers and
general research users needing an expressive language. |If is
worth noting that the system itself is written mostly in the PL/I
language. '

Other languages available on Multics are:

BASIC - A translator and editor subsystem for the BASIC
language, developed at Dartmouth College. A
limited Multics service s available which
restricts the user to just this subsystem, if
desired. The BASIC subsystem is also available to
regular Multics users.

APL - A powerful and popular interpretive language
developed by Kenneth lverson. The Multics
implementation very closely Imitates Iverson's,
with the exception that an effectively unlimited
workspace size is available.

LISP - Both an interpreter and a compiler are available
for this 1ist processing language often used in
artificial intelligence applications. The Multics
implementation of the MACLISP dialect of LISP
contains wuseful and sophisticated features not
available in most other dialects of LISP. Among
these are debugging tools and the ability to
modi fy or program parts of the interpreter. The
latter makes it an easily extensible language.
Another interesting feature of the Multics
implementation 1is the very large structure space
provided by the virtual memory.

ALM - A machine language assembler for the Honeywell
6180 computer. (It is not recommended for general
use; it is slow and the machine language is very
difficult.)

QEDX - A programmable editor which qualifies as a minor
interpretive language.

A1l of the above languages translate a source program which
has been previously placed in the storage system. Input and
editing of source text is done with one of the available text
editors, edm or gedx. Although interactive, line-by-line syntax
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checking languages are easily implemented in the Multics
environment, none are currently available.

A source language debugging system, named debug, provides
the ability to inspect variables and set break points in terms of
the PL/! or FORTRAN program being debugged. It also has a
variety of features to allow inspection of all aspects of the
Multics execution environment.

A Myltics Bibliography
A. Manuals which are available through Honeywell,.

1. Multics Programmers' Manual (Order Numbers AG90, AG91,
AG92, AG93 and AK92). An updateable reference manual In
five volumes. Volume | is an introduction to the
Multics programming environment and includes sample
terminal sessions and annotated Multics programs.

Volume 1l contains reference material on the overall
mechanics, conventions® and usage of the system.
Volumes 11! and IV are alphabetically organized 1lists

of standard Multics commands and subroutines,
respectively, giving details of the <calling sequence
and usage of each. Volume V provides reference
material and descriptions of commands and subroutines
which are of interest primarily to compiler writers and
subsystem writers.

2. Ihe Multics PL/iI Language (Order ‘Number AG9L). A
reference manual which specifies precisely the PL/I
language used on Multics.

3. The Multics Virtual Memory (Order Number AG95). A
- collection of three technical papers on the hardware

and software used to implement the virtual memory and
program protection features of Multics.

L. Multics Proiject Administrators' Manual, preliminary .
edition (Order Number AKS51). A reference manual for
project administators describing commands and
subroutines which may be used to specify certain
features of Multics to the members of a project.

5. Multics System Administrators' Manual - (Order Number
AK50). A reference manual for system administrators of

a Multics installation describing commands and
subroutines which may be used to control various system
parameters.

6. The APL User's Guide (Order Number AK95). A manual for
beginning and advanced APL users describing the use of
Multics APL.
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Manuals which may be examined in the M.!.T. Project MAC or
Information Processing Center Document Rooms. These manuals
are not otherwise available. A

1.

Myltics System Programmers' Manual. In principle, a
complete reference manual describing how the system
works inside. In fact, this document contalns many
sections which are inconsistent, (inaccurate, or
obsolete; it is In need of much wupgrading. However,
its overview sections are generally accurate and
valuable if insight into the internal organization is
desired.

System Programmers' Supplement to the Multics

Programmers' Manual. This updateable reference manual,

in the same format as the Multics Programmers' Manual,
provides calling sequences of every system module.

Graphic Users' Supplement to the Multics Programmers .
. In the same format as the Multics Programmers
Manual, this supplement gathers in one place

descriptions of the Multics Graphics System, and the
commands and subroutines needed to use it.

A User's Guide to Multics FORTRAN. A document which
provides the prospective Multics FORTRAN user with

sufficient information to enable him to create and
execute FORTRAN programs on Multics. It contains a
complete definition of the Multics FORTRAN language as
well as a description of the FORTRAN command and error
messages. It also describes how to communicate with
non-FORTRAN programs, and discusses some of the
fundamental characteristics of Multics which affect the
FORTRAN user.

EPLBSA Programmer's Reference Handbook, by
D. J. Riesenberg. A manual describing the assembly
(machine) language for the Honeywell 645 computer. The
language has been renamed ALM since the publication of
this manual. (Needed only by programmers with some
special reason to use 645 machine language.)

Honevwell 6ui5 Processor Manyal. A hardware description

including opcodes, addressing modifiers, etc. of
interest only to dedicated machine language
programmers.

Books about Muitics.

1.

Jhe Multics : An Examination of its Structure, by
E. I. Organick. A hard cover book describing in some
detail how Multics works. The description is from the
point of view of a programmer developing a large
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program or subsystem, who wishes to gain the extra
insight to help him intelligently choose among
available alternatives of his implementation. M.1.T.
Press, Cambridge, Mass., 1972. 392 pages.

Time-Sharing Svstem Concepts, by R. Watson. A book
comparing many aspects of the planned implementation of

Multics (as originally described in the Multics System
Programmers' Manual) with the SDS-940 time-sharing
system developed at the University of California at
Berkeley. Although the actually Iimplemented Multics
differs greatly from the one described in this book,
much can be learned from it about the problems of
large-scale system organization. McGraw Hill, New
York, 1970. 270 pages.

Technical Papers About Multics.

1.

Corbaté, F. J., and Vyssotsky, V. A., "Introduction and
Overview of the Multics System', AFIPS Conf. Proc. 27
(1965 FJCC), pp. 185-196.

Glaser, E. L., et al., "System Design of a Computer for

Time-Sharing Application", AFIPS Conf. Proc. 27 (1965
FJCC); ppo 197'202.

Vyssotsky, V. A., et al., "Structure of the Multics

Sgpervisor", AFIPS Conf. Proc. 27 (1965 FJCC), pp.
203-212.

Daley, R. C., and HNeumann, P. G., "A General=-Purpose

File System for Secondary Storage', AFIPS Conf. Proc.
27 (1965 FJCC), pp. 213-229.

Ossanna, J. F., et al., "Communication and Input/Output

Switching in a Multiplex Computing System', AF|PS Conf.
Proc. 27 (1965 FJCC), pp. 231-241.

David, E. E., Jr., and Fano, R. M., "Some Thoughts
About the Social Implications of Accessible Computing",
AFIPS Conf. Proc. 27 (1965 FJCC), pp. 243-247.

Glaser, E. L., "A Brief Description of the Privacy
Measures in the Multics Operating System , AFIPS Conf.

Proc. 31 (1967 FJCC), pp. 303-304.

Bensoussan, A., Clingen, C.T., and Daley, R.C., "The
Multics Virtual Memory: Concepts and Design', Comm.
ACM 15, 5 (May, 1972), pp. 308-318.

Clingen, C. T., "Program Naming Problems in a Shared
Tree-Structured Hierarchy'", NATQ Science Committee
Conference on Techniques in Software Engipeering, 1
(October 27-31, 1969), Rome, ltaly.
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of Multics", Comm. ACM 13, 8 (August, 1970), pp.
495-600.

Spier, M. J., and Organick, E. |., "The Multics
Iinter-Process Communication Facility", ACM Second
Symposium on Operating System Principles (October

20-22, 1969), Princeton University, pp. 83-91.

Freiburghouse, R. A., "The Multics PL/1I Compiler",

AFIPS Conf. Proc. 35 (1969), AFIPS Press, 1969, pp.
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Grochow, J. M., "Real-Time Graphic Display of

Time-Sharing System Operating Characteristics", AFIPS
Conf. Proc. 35 (1969 FJCC), AFIPS Press, 1969, pp.
379-385.

Saltzer, J. H., and Ossanna J. F., '"Remote Terminal
Character Stream Processing in Multics", AFIPS Conf.
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Ossanna, J. F., and Saltzer, J. H., "Technical and
Human Engineering Problems in Connecting Terminals to a
Time-Sharing System", AFIPS Conf. Proc. 37 (1970 FJCC),
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Schroeder, M. D., '"Classroom Information and Computing
Service'", M.l1.T. Project MAC Technical Report TR-80,
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CHAPTER 2

INTRODUCTION TO THE CONCEPTS OF MULTICS
September 20, 1973

The following pages contain reprints of seven technical
papers about Multics. Although these papers were written
individually for conferences and technical journals, as a group
they provide an in-depth Iintroduction to most of the major
concepts of the Multics system. The reader should be warned that
the earliest of these papers was written six years before the
latest. As a result, he will notice minor differences in
terminology and emphasis, reflecting the gradually increasing
experience both in using and explaining ideas which were first
introduced by Multics. 1In addition, these papers should be taken
as background explanations of why Multics is designed the way it
is, rather than as a reference to the way It currently works.
Some ideas suggested in these papers have not .yet been
implemented in the actual system, or having been implemented and
found wanting, have been discarded. Parts Il and 1Ill of the
Multics Programmers' Manual provide current descriptions of the
user interfaces which are actually implemented in Multics, and
should be used as reference for all programming. On the other
hand, much of that reference guide merely tells how, without
explaining why, which is the purpose of this chapter.

The reader who is interested in a greater depth of detail

about Multics may wish to consult the book The Multics System:
An Examingtion of its Structure, by Elliott |. Organick (MIT

Press, 1972). That book provides a deep and authoritative 1look
at the implementation of many of the parts of the Multics system.
In addition, the bibliography at the end of MPM Introduction
Chapter One provides a list of other specialized technical papers
and academic theses related to Multics.

Finally, the reader who wishes only to use the Multics
system will probably want to only skim this chapter to see what
kinds of ideas are discussed here. It is not necessary to
comprehend Chapter Two in order to begin using Multics. The
concepts provided here are background in nature, and are probably
most useful to a reader contemplating an unusual application of
the system. For an introduction on how to use and program for
Multics, one should move on to Chapters Three and Four of the
manual.
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Multics -- The First Seven Years

by F.J. Corbatd, J.H. Saltzer, and C.T. Clingen.
Reprinted from AFIPS Conference Proceedings 40,
AFIPS press, 1972, pp. 571-583, with permission.
Copyright 1972 by AFIPS Press.

This overview chapter 1is one of the most recent, and is
therefore quite up-to-date in terminology and method” of
description. Although it does not explore any single technical
topic in depth, it includes a wide range of facts about the
‘Multics system, and provides a perspective as to what aspects of
the system are especially significant. The appendix to this
paper provides a snapshot of the stage of development which
Multics had attained as of Spring, 1972.



Multics—The first seven years*

by F. J. CORBATO and J. H. SALTZER

Massachusetts Instituie of Technology
Cambridge, Massachusetts

and

C. T. CLINGEN

Honeywell Information Systems Inc.
Cambridge, Massachusetts

INTRODUCTION

In 1964, following implementation of the Compatible
Time-Sharing System (CTSS)!2 serious planning began
on the development of a new computer system specifi-
cally organized as a prototype of a computer utility. The
plans and aspirations for this system, called Multics
(for Multiplexed Information and Computing Service),
were described in a set of six papers presented at the
1965 Fall Joint Computer Conference.>~2 The develop-
mént of the system was undertaken as a cooperative ef-
fort involving the Bell Telephone Laboratories (from
1965 to 1969), the computer department of the General
Electric Company,* and Project MAC of M.I.T.
Implicit in the 1965 papers was the expectation that

there should be a later examination of the development

effort. From the present vantage point, however, it is
clear that a definitive examination cannot be presented
in a single paper. As a result, the present paper discusses
only some of the many possible topics. First we review
the goals, history and current status of the Multics proj-
ect. This review is followed by a brief description of the
appearance of the Multics system to its various classes
of users. Finally several topics are given which represent
some of the research insights which have come out of
the development activities. This organization has been
chosen in order to emphasize those aspects of software
systems having the goals of a computer utility which we

* Work reported herein was sponsored (in part) by Project MAC,
an M.L.T. research program sponsored by the Advanced Research
Projects Agency, Department of Defense, under office of Naval
Research Contract Number N00014-70-A-0362-0001. Re-
production is permitted for any purpose of the United States
Government.

* Subsequently acquired by Honeywell Information Systems Inc.
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feel to be of special interest. We do not attempt detailed
discussion of the organization of Multics; that is the
purpose of specialized technical books and papers.*

GOALS

The goals of the computer utility, although stated at
length in the 1965 papers, deserve a brief review. By a
computer utility it was meant that one had a com-
munity computer facility with:

(1) Convenient remote terminal access as the normal
mode of system usage;

(2) A view of continuous operation analogous to that
of the electric power and telephone companies;

(3) A wide range of capacity to allow growth or
contraction without either system or user re-
organization;

(4) An internal file system so reliable that users trust
their only copy of programs and data to be stored
in it;

() Sufficient control of access to allow selective
sharing of information;

(6) The ability to structure hierarchically both the
logical storage of information as well as the ad-
ministration of the system;

(7) The capability of serving large and small users
without inefficiency to either;

(8) The ability to support different programming
environments and human interfaces within a
single system;

* For example, the essential mechanisms for much of the Multies
system are given in books by Organick® and Watson.1®
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(9) The flexibility and generality of system organiza-
tion required for evolution through suceessive
waves of technological improvements and the
inevitable growth of user expectations.

In an absolute sense the above goals are extremely
difficult to achieve. Nevertheless, it is our belief that
Multies, as it now exists, has made substantial progress
toward achieving each of the nine goals.* Most im-
portantly, none of these goals had to be compromised
in any important way.

HISTORY OF THE DEVELOPMENT

As previously mentioned, the Mlulties project got
under way in the Fall of 1964. The computer equipment
to be used was a modified General Eleectric 635 which
was later named the 645. The most significant changes
made were in the processor addressing and access control
logic where paging and segmentation were introduced.
A completely new Generalized Input/Output Controller
was designed and implemented to accommodate the
varied needs of devices such as disks, tapes and tele-
typewriters without presenting an excessive interrupt
burden to the processors. To handle the expected paging
traffic, a 4-million word (36-bit) high-performance drum
system with hardware queueing was developed. The
design specifications for these items were completed by
Fall 1965, and the equipment became available for soft-
ware development in early 1967.

Software preparation underwent several phases. The
first phase was the development and blocking out of
major ideas, followed by the writing of detailed program
module specifications. The resulting 3,000 typewritten
pages formed the Multies System Programmers’ Man-
ual and served as the starting point for all program-
ming. Furthermore, the software designers were ex-
pected to implement their own designs. As a general
policy PL/I was used as the system programming
language wherever possible to maximize lucidity and
maintainability of the system.!5 This policy also in-
creased the effectiveness of system programmers by al-
lowing each one to keep more of the system within his
grasp.

The second major phase of software development,
well under way by early 1967, was that of module im-
plementation and unit checkout followed by merging
into larger aggregates for integrated testing. Up to then
most software and hardware difficulties had been antici-
pated on the basis of previous experience. But what

*To the best of our knowledge, the only other attempt to
comprehensively attack all of these goals simultaneously is the
TSS/360 project at IBM. 111213

graduaily became apparent as the module integration
continued was that there were gross diserepancies be-
tween actual and expected performance of the various
logical execution paths throughout the software. The
result was that an unanticipated phase of design itera-
tions was necessary. These design iterations did not
mean that major portions of the system were scrapped
without being used. On the contrary, until their re-
placements could be implemented, often months later,
they were crucially necessary to allow the testing and
evaluation of the other portions of the system. The
cause of the required redesigns was rarely ‘‘bad coding”
since most of the system programmers were well above
average ability. \Moreover the redesigns did not mean
that the goals of the project were compromised. Rather
three recurrent phenomena were observed: (1) typically,
specifications representing less-important features were
found to be introducing much of the complexity, (2)
the initial choice of modularity and interfacing between
modules was sometimes awkward and (3) it was re-
discovered that the most important property of al-
gorithms is simplicity rather than special mechanisms
for unusual cases.*

The reason for bringing out in detail the above design
iteration experience is that frequently the planning of
large software projects still does not properly t.se the
need for continuing iteration into account. And yet we
believe that design iterations are a required activity on
any large scale system which attempts to break new con-
ceptual ground such that individual programmers can-
not comprehend the entire system in detail. For when
new ground is broken, it is usually impossible to de-
duce the consequent system behavior except by experi-
mental operation. Simulation is not particularly ef-
fective when the system concepts and user behavior are
new. Unfortunately, one does not understand the system
well enough to simplify it correctly and thereby obtain
a manageable model which requires less effort to imple-
ment than the system itself. Instead one must develop
a different view:

(1) The initial program version of a module should
be viewed only as the first complete specification
of the module and should be subject to design
review before being debugged or checked out.

(2) Module design and implementation should be
based upon an assumption of periodic evaluation,

N

redesign, and evolution.
In retrospect, the design iteration effect was apparent

* “In anything at all, perfection is finally attained not when there
is no longer anything to add, but when there is no longer anything
to take away ..."

—Antoine de Saint-Exupéry, Wind, Sand and Stars Quoted
with permission of Harcourt Brace Jovanovich, Inc.
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even in the development of the earlier Compatible Time-
Sharing System (CTSS) when a second file system with
many functional improvements turned out to have poor
performance when initially installed. A hasty design
iteration succeeded in rectifying the matter but the
episode at the time was viewed as an anomaly perhaps
due to inadequate technical review of individual pro-
gramming efforts.

CURRENT STATUS

In spite of the unexpected design iteration phase, the
Multies system became sufficiently effective by late 1968
to allow system programmers to use the system while
still developing it. By October 1969, the system was
made available for general use on a ‘“‘cost-recovery”
charging basis similar to that used for other major
computation facilities at M.I.'T. Multies is now the
most widely used time-sharing system at M.I.T., sup-
porting a user community of some 500 registered sub-
seribers. The system is currently operated for users 22
hours per day, 7 days per week. For at least eight hours
each day the system operates with two processors and
three memory modules containing a total of 384k (k =
1024) 36-bit words. This configuration currently is rated
at a capacity of about 55 fairly demanding users such
that most trivial requests obtain response in one to five
seconds. (Future design iterations are expected to in-
crease the capacity rating.) Several times a day during
the off-peak usage hours the system is dynamically re-
configured into two systems: a reduced capacity service
system and an independent development system. The
development system is used for testing those hardware
and software changes which cannot be done under nor-
mal service operation.

The reliability of the round-the-clock system opera-
tion described above has been a matter of great con-
cern, for in any on-line real-time system the impact of
mishaps is usually far more severe than in batch pro-
cessing systems. In an on-line system especially im-
portant considerations are:

(1) the time required before the system is usable
again following a mishap,

(2) the extra precautions required for restoring pos-
sibly lost files, and

(3) the psychological stress of breaking the inter-
active dialogue with users who were counting on
system availability.

Because of the importance of these considerations, care-
ful logs are kept of all Multics “crashes” (i.e., system
service disruption for all active users) at M.LT. in
order that analysis can reveal their causes. These analy-
ses indicate currently an average of between one and

TABLE I—A comparison of the system development and use
periods of CTSS and Multics. The Multics develop-
ment period is not significantly longer than that for
CTSS despite the development of about 10 times as
much code for Multies as for CTSS and a geographi-
cally distributed staff. Although reasons for this
similarity in time span include the use of a higher-
level programming language and a somewhat larger
staff, the use of CTSS as a development tool for
Multies was of pivitol importance.

Development Development
System Only + Use Use Only
CTSS 1960-1963 1963-1965 1965-present
Multics 1964-1969 1969-present

two crashes per 24 hour day. These crashes have no
single cause. Some are due to hardware failures, others
to operator error and still others to software bugs intro-
duced during the course of development. At the two
other sites where Multics is operated, but where active
system development does not take place, there have
been almost no system failures traced to software.

Currently the Multics system, including compilers,
commands, and subroutine libraries, consists of about
1500 modules, averaging roughly 200 lines of PL/I
apiece. These compile to produce some 1,000,000 words
of procedure code. Another measure of the system is the
size of the resident supervisor which is about 30k words
of procedure and, for a 55 user load, about 36k words of
data and buffer areas.

Because the system is so large, the most powerful
maintenance tool available was chosen—the system it-
self. With all of the system modules stored on-line, it is
easy to manipulate the many components of different
versions of the system. Thus it has been possible to
maintain steadily for the last year or so a pace of install-
ing 5 or 10 new or modified system modules a day.
Some three-quarters of these changes can be installed
while the system is in operation. The remainder, per-
taining to the central supervisor, are installed in batches
once or twice a week. This on-line maintenance capa-
bility has proven indispensable to the rapid develop-
ment and maintenance of Multics since it permits con-
stant upgrading of the user interface without interrupt-
ing the service. We are just beginning to see instances of
user-written applications which require this same capa-
bility so that the application users need not be inter-
rupted while the software they are using is being
modified.

The software effort which has been spent on Multics
is difficult to est:mate. Approximately 150 man-years
were applied directly to design and system programming
during the “development-only” period of Table 1.
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Since then we estimate that another 50 man-years have
been devoted to improving and extending the system.
But the actual cost of a single successful system is mis-
leading, for if one starts afresh to build a similar system,
one must compensate for the non-zero probability of
failure.

THE APPEARANCE OF MULTICS TO
ITS USERS

Having reviewed the background of the project, we
may now ask who are the users of the Multics system
and what do the facilities that Multics provides mean
to these users. Before answering, it is worth deseribing
the generic user as ‘“viewed” by Multics. Although
from the system’s point of view all users have the same
general characteristics and interface with it uniformly,
no single human interface represents the Multics ma-
chine. That machine is determined by each user’s
initial procedure coupled with those functions accessible
to him. Thus there exists the potential to present each
Multics user with a unique external interface.

However, Multics does provide a native internal
program environment consisting of a stack-oriented,
pure-procedure, collection of PL/I procedures imbedded
in a segmented virtual memory containing all pro-
cedures and data stored on-line. The extent to which
some, all, or none of this internal environment is visible
to the various users is an administrative choice.

The implications of these two views—both the ex-
ternal interface and the internal programming environ-
ment—are discussed in terms of the following categories
of users:

e System programmers and user application pro-
grammers responsible for writing system and user
software.

e Administrative personnel responsible for the man-
agement of system resources and privileges.

e The ultimate users of applications systems.

o Operations and hardware maintenance personnel
responsible, respectively, for running the machine
room and maintaining the hardware.

Multics as viewed by system and subsystem programmers

The machine presented to both the Multics system
programmer and the application system programmer is
the one with which we have the most experience; it is
the raw material from which one constructs other en-
vironments. It is worth reemphasizing that the only
differentiation between Multics system programmers
and user programmers is embodied in the access control

mechanism which determines what on-line information
can be referenced; therefore, what are apparently two
groups of users can be discussed as one.

Major interfaces presented to programmers on the
Multics system can be classified as the program prepara-
tion and documentation facilities and the program exe-
cution and debugging environment. They will be
touched upon briefly, in the order used for program
preparation.

Program preparation and documentation

The facilities for program preparation on Multics are
typical of those found on other time-sharing systems,
with some shifts in emphasis. (see the Appendix). For
example, programmers consider the file system suffi-
ciently invulnerable to physical loss that it is used
casually and routinely to save all information. Thus,
the punched card has vanished from the work routine
of Multics programmers and access to one’s programs
and the ability to work on them are provided by the
closest terminal.

As another example, the full ASCII character set is
employed in preparing programs, data, and documenta-
tion, thereby eliminating the need for multiple text

. editors, several varieties of text formatting and com-

parison programs, and multiple faciiities for printing
information both on-line and off-line. This generaliza-
tion of user interfaces facilitates the learning and sub-
sequent use of the system by reducing the number of
conventions which must be mastered.

Finally, because the PL/I compiler is a large set of
programs, considerable attention was given to shielding
the user from the size of the compiler and to aiding
him in mastering the complexities of the language. As
in many other time-sharing systems, the compiler is
invoked by issuing a simple command line from a
terminal exactly as for the less ambitious commands.
No knowledge is required of the user regarding the
various phases of compilation, temporary files required,
and optional capabilities for the specialist; explanatory
“sermons’’ diagnosing syntactic errors are delivered to
the terminal to effect a self-teaching session during each
compilation. To the programmer, the PL/I compiler is -
just another command. :

Program execution environment

Another set of interfaces is embodied in the imple-
mentation environment seen by PL/I programmers.
This environment consists of a directly addressable
virtual memory containing the entire hierarchy of on-
line information, a dynamic linking facility which
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searches this hierarchy to bind procedure references, a
device-independent input/output!® system,* and pro-
gram debugging and metering facilities. These facilities
enjoy a symbiotic relationship with the PL/I procedure
environment used both to implement them and to im-
plement user facilities co-existing with them. Of major
significance is that the natural internal environment
provided and required by the system is exactly that
environment expected by PL/I procedures. For example,
PL/I pointer variables, call and return statements,
conditions, and static and automatic storage all corre-
spond directly to mechanisms provided in the internal
environment. Consequently, the system supports PL/I
code as a matter of course.

The main effect of the combination of these features
is to permit the implementer to spend his time concen-
trating on the logic of his problem; for the most part
he is freed from the usual mechanical problems of
storage management and overlays, input/output device
quirks, and machine-dependent features.

Some implementation experience

The Multics team began to be much more productive
once the Multics system became useful for software
development. A few cases are worth citing to illustrate
the effectiveness of the implementation environment.
A good example is the current PL/I compiler, which is
the third one to be implemented for the project, and
which consists of some 250 procedures and about 125k
words of object code. Four people implemented this
compiler in two years, from start to first general use.
The first version of the Multics program debugging
system, composed of over 3,000 lines of source code,
was usable after one person spent some six months of
nights and weekends “bootlegging”’ its implementation.
As a last example, a facility consisting of 50 procedures
with a total of nearly 4,000 PL/I statements permitting
execution of Honeywell 635 programs under Multics
became operational after one person spent eight months
learning about the GCOS operating system for the 635,
PL/I, and Multics, and then implemented the environ-
ment. In each of these examples the implementation
was accomplished from remote terminals using PL/I.

Multics users have discovered that it is possible to
get their programs running very quickly in this environ-
ment. They frequently prepare “rough drafts” of pro-
grams, execute them, and then improve their overall
design and operating strategy using the results of ex-
perience obtained during actual operation. As an ex-
ample, again drawn from the implementation of Mul-

* The Michigan Terminal System” has a similar device-inde-
pendent input/output system.

tics, the early designs and implementations of the pro-
grams supporting the virtual memory'®* made over-
optimistic use of variable-sized storage allocation
techniques. The result was a functionally correct but
inadequately performing set of programs. Nevertheless,
these modules were used as the foundation for subse-
quent work for many months. When they were finally
replaced with modules using simplified fixed-size storage
techniques, performance improvements of over an order
of magnitude were realized. This technique emphasizes
two points: first, it is frequently possible to provide a
practical, usable facility containing temporary versions
of programs; second, often the insight required to sig-
nificantly improve the behavior of a program comes
only after it is studied in operation. As implied in the
earlier discussion of design iteration, our experience has
been that structural and strategic changes rather than
“polishing” (or recoding in assembly language) produce
the most significant performance improvements.

In general, we have noticed a significant, “‘amplifier’”’
or “leverage” effect with the use of an efféctive on-line
environment as a system programming facility. Major
implementation projects on the Multics system seldom
involve more than a few programmers, thereby easing
the management and communications problems usually
entailed by complex system implementations. As would
be expected, the amplification effect is most apparent
with the best project personnel.

Administration of Multics facilities and resources

The problem of managing the capabilities of a com-
puter utility with geographically dispersed subscribers
leads to a requirement of decentralized administration.
At the apex of an administrative pyramid resides a sys-
tem administrator with the ability to register new users,
confer resource quotas, and generate periodic bills for
services rendered. The system administrator deals with
user groups called projects. Each group can in turn
designate a project administrator who is delegated the
authority to manage a budget of system resources on
behalf of the project. The project administrator is then
free to deal directly with project members without fur-
ther intervention from the system administrator,
thereby greatly reducing the bottlenecks inherent in a-
completely centralized administrative structure.

Environment shaping

In addition to having immediate contro! of such re-
sources as secondary storage, port access, and rate of
processor usage, the project administrator is also able
to define or shape the environment seen by the members
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of his project when they log into the system. He does
this by defining those procedures that can be accessed
by members of his project and by specifying the initial
procedure executed by each member of his project when
he logs in. This environment shaping facility has led to
the notion of a private project subsystem on Multics.
It combines the administrative and programming facili-
ties of Multics so that a project administrator and a
few project implementers can build, maintain, and
evolve environments entirely on their own. Thus, some
subsystems bear no internal resemblance to the stand-
ard Multics procedure environment.

‘For example, the Dartmouth BASIC® compiler exe-
cutes in a closed subsystem implemented by an M.I.T.
student group for use by undergraduate students. The
compiler, its object code, and all support routines exe-
cute in a simulation of the native environment provided
at Dartmouth. The users of this subsystem need little,
if any, knowledge of Multics and are able to behave as
if logged into the Dartmouth system proper. Other
examples of controlled environment subsystems include
one to permit many programs which normally run
under the GCOS operating system to also run unmodi-
fied in Multics. Finally, an APL® subsystem allows the
user to behave for the most part as if he were logged
into an APL machine. The significance of these sub-
svstems is that their implementers did not need to
interact with the system administrator or to modify
already existing Multics capabilities. The administra-
tive facilities permit each such subsystem to be offered
by its supporters as a private service with its own group
of users, each effectively having its own private com-
puter system.

Other Multics users

Finally, we observe that the roles of the application
user, the system operators and the hardware main-
tainers as seen by the system are simply those of or-
dinary Multics users with specialized access to the
on-line procedures and data. The effect of this uni-
formity of treatment is to reduce greatly the mainte-
nance burden of the system control software. One
example, of great practical importance, has been the
ease with which system performance measurement
tools have been prepared for use by the operating

staff.

INSIGHTS

So far, we have discussed the status and appearance
of the Multics system. A further question is what has
been learned in the construction of Multics which is of

use to the designers of other systems. Having a bright
idea which clearly solves a problem is not sufficient
cause to claim a contribution if the idea is to be part of
a complex system. In order to establish the real feasi-
bility of an idea, all of its implications and consequences
must be followed out. Much of the work on Multics
since 1965 has involved following out implications and
consequences of the many ideas then proposed for the
prototype computer utility. That following out is an
essential part of proof of ideas is attested by the diffi-
culties which have been encountered in other engineer-
ing efforts such as the development of nuclear fusion
power plants and the electric automobile. Not all pro-
posals work out; for example, extended attempts to
engineer an atomic powered airplane suggest in-
feasibility.

Perhaps Multics’ most significant single contribution
to the state of the art of computer system construction
is the demonstration of a large set of fully implemented
ideas in a working system. Further, most of these ideas
have been integrated without straining the overall de-
sign; most additional proposals would not topple the
structure. Ideas such as virtual memory access to on-
line storage, parallel process organization, routine but
controlled information sharing, dynamic linking of
procedures, and high-level language implementa-
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tion have proven remarkably
complementary.

To illustrate some of the areas of progress in under-
standing of system organization and construction which
have been achieved in Multics, we consider here the

following five topics:

compatible and

1. Modular division of responsibility

2. Dynamic reconfiguration

. Automatically managed multilevel memory
. Protection of programs and data

. System programming language

U b W

Modular division of responsibility

Early in the design of Multics a decision had to be
made whether or not to treat the segmented virtual
memory as a separately usable “feature,” independent
of a traditionally organized read/write type file system.
The alternative, to use the segmented virtual memory
as the file system itself, providing the illusion of direct
“in-core’’ access to all on-line storage, was certainly the
less conservative approach (see Figure 1). The second
approach, which was the one chosen, led to a sirong
test of the ability of a computing system to support an
apparent one-level memory for an arbitrarily large in-
formation base. It is interesting that the resulting al-
most total decoupling between physical storage alloca-
tion and data movement on the one hand and directory
structure, naming, and file organization on the other led
to a remarkably simple and functionally modular strue-
ture for that part of the system!® (see Figure 2).

Another area of Multics in which a high degree of
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Figure 2—Major lines of modular division in Muitics. Solid lines
indicate calls for services. Dotted lines indicate implicit use of
the virtual memory

functional modularity was achieved was in the area of
scheduling, multiprogramming, and processor manage-
ment. Because harnessing of multiple processors was an
objective from the beginning, a careful and methodical
approach to multiplexing processors, handling inter-
rupts, and providing interprocess synchronizing primi-
tives was developed. The resulting design, known as the
Multics traffic controller, absorbed into a single, simple
module a set of responsibilities often diffused among a
scheduling algorithm, the input/output controlling sys-
tem, the on-line file management system, and special
purpose inter-user communication mechanisms.?

Finally, with processor management and on-line
storage management uncoupled into well-isolated
modules, the Multics input/output system was left
with the similarly isolatable function of managing
streams of data flowing from and to source and sink
type devices.!® Thus, this section of the system concen-
trates only on switching of the streams, allocation of
data buffering areas, and device control strategies.

Each of the divisions of labor described above repre-
sents an interesting result primarily because it is so
difficult to discover appropriate divisions of complex
systems.* Establishing that a certain proposed division
results in simplicity, creates an uncluttered interface,
and does not interfere with performance, is generally
cause for a minor celebration.

Dynamic reconfiguration

If the computer utility is ever to become as much a
reality as the electric. power utility or the telephone
communication service, its continued operation must
not be dependent upon any single physical component,
since individual components will eventually require
maintenance. This observation leads an electric power
utility to provide procedures whereby an idle generator
may be dynamically added to the utility’s generating
capacity, while another is removed for maintenance, all
without any disruption of service to customers. A simi-
lar scenario has long been proposed for multiprocessor,
multimemory computer systems, in which one would
dynamically switch processsors and memory boxes in
and out of the operating configuration as needed. Un-
fortunately, though there have been demonstrated a
few “special purpose” designs,* it has not been apparent
how to provide for such operations in a general purpose
system. A recent thesis* proposed a general model for
the dynamic binding and unbinding of computation
and memory structures to and from ongoing computa-

* See Dijkstra® for a further discussion of this point.
* An outstanding example is the American Airlines SABRE
system.2?
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the three typical operating configurations shown here, without
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tions. Using this model as a basis, the thesis also pro-
posed a specific implementation for a typical multi-
processor, multimemory computing system. One of the
results of this work was the addition to the operating
Multics system of the capability of dynamically adding
and removing central processors and memory modules
as in Figure 3. The usefulness of the idea may be gauged
by observing that at M.I.T. five to ten such reconfigura-
tions are performed in a typical 24-hour operating day.
Most of the reconfigurations are used to provide a
secondary system for Multics development.

Automatically managed mullilevel memory

By now it has become accepted lore in the computer
system field that the use of automatic management
algorithms for memory systems constructed of several
levels with different access times can provide a signifi-
cant reduction of user programming effort. Examples of
such automatic management strategies include the
buffer memories of the IBX system 370 models 155,
163, and 195* and the demand paging virtual memories
of Multics, IBA!'s CP-672¢ and the Michigan Terminal
System.!” Unfortunately, behind the mask of accep-
tance hides a worrisome lack of knowledge about how to
engineer a multilevel memory system with appropriate
strategy algorithms which are matched to the load and
hardware characteristics. One of the goals of the Multies
project has been to instrument and experiment with the
multilevel memory system of Multics, in order to learn
better how to predict in advance the performance of
proposed new automatically managed multilevel mem-
ory systems. Several specific aspects of this goal have
been explored:

o A strategy to treat core memory, drum, and disk as
a three-level system has been proposed, including
a ‘‘least-recently-used” algorithm for moving in-
formation from drum to disk. Such an algorithm
has been used for some time to determine which
pages should be removed from core memory.?” The
dynamics of interaction among two such algorithms
operating at different levels are weakly understood,
and some experimental work should provide much
insight. The proposed strategy will be imple-
mented, and then compared with the simpler pres-
ent strategy which never moves things from drum
to disk, but instead makes educated ‘‘guesses” as
to which device is most appropriate for the perma-
nent residence of a given page. If the automatic
algorithm is at least as good as the older, static one,
it would represent an improvement in overall de-
sign by itself, since it would automatically track
changes in user behavior, while the static algorithm
requires attention to the validity of its guesses.

e A scheme to permit experimentation with predic-
tive paging algorithms was devised. The scheme
provides for each process a list of pages to be pre-.
loaded whenever the process is run, and a second
list to be immediately purged whenever the process
stops. The updating of these lists is controlled by a
decision table exercised every time the process
stops running. Since every page of the Multics
virtual memory is potentially shared, the decision
table represents a set of heuristics designed to
separate out those which are probably not being
shared at the moment.
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e A series of measurements was made to establish
the effectiveness of a small hardware associative
memory used to hold recently accessed page de-
seriptors. These measurements established a profile
of hit ratio (probability of finding a page descriptor
in the associative memory) versus associative
memory size which should be useful to the designers
of virtual memory systems.2?

o A set of models, both analytic and simulation, was
constructed to try to understand program behavior
in a virtual memory. So far, two results have been
obtained. One is the finding that a single program
characteristic (the mean execution time before en-
countering a ‘“‘missing” page in the virtual memory
as a function of memory size) suffices to provide a
quite accurate prediction of paging and idle over-
heads. The second is direct calculation of the dis-

tribution of response times under multiprogram-

ming. Having available the entire response time
distribution, rather than just averages, permits
estimation of the variance and 90-percentile points
of the distribution, which may be more meaningful
than just the average. A doctoral thesis is in prog-
ress on this topic.

Although the immediate effect of each of these in-
vestigations is to improve the understanding or per-
formance of the current version of Multics, the long-
range payoff in methodical engineering using better-
understood memory structures is also evident.

Protection of programs and data

A long-standing object've of the public computer
utility has been to provide facilities for the protection
of executing programs from one another, so that users
may with confidence place appropriate control on the
release of their private information. In 1967, a mecha-
nism was proposed® and implemented in software
which generalized the usual supervisor-user protection
relationship. This mechanism, named *rings of protec-
tion,” provides user-written subsystems with the same
protection from other users that the supervisor has, yet
does not require that the user-written subsystem be in-
corporated into the supervisor. Recently, this approach
was brought under intense review, with two results:

e A hardware architecture which implements the
mechanism was proposed.® One of the chief fea-
tures of the proposed architecture is that subrou-
tine calls from one protection ring to another use
exactly the same mechanisms as do subroutine
calls among procedures within a protection area.
The proposal appears sufficiently promising that it

is included in the specifications for the next genera
tion of hardware to be used for Multics.

* As an experiment in the feasibility of a multi-
layered supervisor, several supervisor procedures
which required protection, but not all supervisor
privileges, were moved into a ring of protection
intermediate between the users and the main
supervisor. The success of this experiment estab-
lished that such layering is a practical way to re-
duce the quantity of supervisor code which must
be given all privileges.

Both of these results are viewed as steps toward first, a
more complete exploitation and understanding of rings
of protection, and later, a less constrained organization
of the type suggested by Evans and LeClerc® and by
Lampson.®® But more importantly, rings of protection
appear applicable to any computer system using a seg-
mented virtual memory. Two doctoral theses are under
way in this area.

System programming language

Another technique of system engineering method-
ology being explored within the Multics project is that
of higher level programming language for system imple-
mentation. The initial step in this direction (which
proved to be a very big step) was the choice of the PL/I
language for the implementation of Multics. By now,
Multics offers an extensive case study in the viability
of this strategy. Not only has the cost of using a higher
level language been acceptable, but increased main-
tainability of the software has permitted more rapid
evolution of the system in response to development
ideas as well as user needs. Three specific aspects of this
experience have now been completed:

o The transition from an early PL/I subset com-
piler'* to a newer compiler which handles almost the
entire language was completed. This transition
was carried out with performance improvement in
practically every module converted in spite of the
larger language involved. The significance of the
transition is the demonstration that it is not neces-
sary to narrow one’s sights to a ‘“‘simple’”’ subset
language for system programming. If the language
is thoroughly understood, even a language as com-
plex as the full PL/I can be effectively used. As a
result, the same language and compiler provided
for users can also be used for system implementa-
tion, thereby minimizing maintenance, confusion,
and specialization.

¢ Notwithstanding the observation just made the
time required to implement a full PL‘I compiler
is still too great for many situations in which the
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compiler implementation cannot be started far
enough in advance of system coding. For this
reason, there is considerable interest in defining a
smaller language which is easily compilable, yet
retains the features most important for system im-
plementation. On the basis of the experience of
programming Muiltics in a subset of PL/I, such a
language was defined but not implemented, since
it was not needed.%

s A census of Multics system modules reveals how
much of the system was actually coded in PL/I,
and reasons for use of other languages. Roughly,
of the 1500 system modules, about 250 were written
in machine language. Most of the machine language
modules represent data bases or small subroutines
which execute a single privileged instruction. (No
attempt was made to provide either a data base
compiler or PL/I built-in functions for specialized
hardware needs.) Significantly, only a half dozen
areas (primarily in the traffic controller, the cen-
tral page fault path, and interrupt handlers) which
were originally written in PL/I have been recoded
in machine language for reasons of squeezing out
the utmost in performance. Several programs,
originally in machine language, have been recoded
in PL/I to increase their maintainability.

As with the earlier topics, the implications of this
work with PL/I should be felt far beyond the Multies
system. Most implementers, when faced with the eco-
nomic uncertainties of a higher-level language, have
chosen machine language for their central operating
systems. The experience of PL/I in Multics when added
to the expanding collection of experience elsewhere®
should help reduce the uncertainty.

In a research project as large, long, and complex as
Multies, any paper such as this must necessarily omit
many equally significant ideas, and touch only a few
which may happen to have wide current interest. It is
the purpose of individual and detailed technical papers
to explain these and other ideas more fully. The bibli-
ography found in Reference 35 contains over twenty
such technical papers.

Immediate future plans

The Multics software is continuing to evolve in re-
sponse to user needs and improved understanding of its

organization. In 1972 a new hardware base for Multics.

will be installed by the Information Processing Center
at MLI.T. for use by the M.I.T. computing community.
This program compatible hardware base contains small

but significant architectural extensions to the current
hardware. The circuit technology used will be that of
the Honeywell 6080 computer. The substantial changes
include:

(1) replacement of the high-performance paging
drum initially with bulk core and, when avaii-
able, LSI memory, and

(2) implementation of rings of protection as part of
the paging and segmentation hardware.

Wherever possible the strategy of using off-the-shelf
standard equipment rather than specially engineered
units for Multics has been followed. This strategy is
intended to simplify maintenance.

CONCLUSIONS

There are many conclusions which could possibly be
drawn from the experience of the Multies project. Of
these, we consider four to be major and worthy of note.
First, we feel it is clear that it is possible to achieve the
goals of a prototype computer utility. The ecurrent im-
plementation of Multics provides a measure of the
mechanisms required. Moreover, the specific imple-
mentation of the system. because it has been written
in PL/I, forms a model fo~ other system designers to
draw upon when constructing similar systems.

Second, the question of whether or not the specific
software features and mechanisms which were postu-
lated for effective computer utility operation are desir-
able has now been tested with specific user experience.
Although the specific mechanisms implemented subse-
quently may be superseded by better ones, it is certainly
clear that the improvement of the user environment
which was wanted has been achieved.

Third, systems of the computer utility class must
evolve indefinitely since the cost of starting over is
usually prohibitive and the many-year lead time re-
quired may be equally unacceptable. The requirement
of evolvability places stringent demands on design,
maintainability, and implementation techniques.

Fourth and finally, the very act of .creating a system
which solves many of the problems posed in 1965 has
opened up many new directions of research and develop-
ment. It would appear almost a certainty that increased
user aspirations will continue to require intensive work
in the areas of computer system principles and
techniques.

In closing, perhaps we should take note that in the
seven years since \Multics was proposed, a great many
other systems have also been proposed and constructed;
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many of these have developed similar ideas.* In most
cases, their designers have developed effective imple-
mentations which are directed to a different interpreta-
tion of the goals, or to a smaller set of goals than those
required for the complete computer utility. This di-
versity is valuable, and probably necessary, to accom-
plish a thorough exploration of many individually com-
plex ideas, and thereby to meet a future which holds
increasing demand for systems which embrace the
totality of computer utility requirements.
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APPENDIX: A CHECKLIST OF MULTICS
FEATURES

Following is a checklist of currently available features
and facilities of Multics. Although many of the features
are described in cryptic and untranslated local jargon,
one can at least obtain a feel for the range of facilities
now provided. IFurther information on most of these
features may be found in the Multics Programmers’
Manual.®

Interactive Time-Sharing Facilities
file editors
file manipulation (rename/move/delete)
personal command abbreviations
recursive command language
source language debugging with breakpoints
subroutine call tracer
can stop any running command or program

Programming Languages
PL/I
FORTRAN
BASIC*
APL
LISP
BCPL
ALM (assembly language/Multics)

Information Storage System
configuration independent
accessed through virtual memory (segments)
access control lists by user and project
links to segments of other users
hierarchical directory (catalog) arrangement
public library facilities
sharing at all levels
multiple segment names (synonyms)
separate control of read, write, and execute

Programming Environment
segmented virtual memory
dynamic linking of procedures and data, or prelinking
interprocess communication
independent of configuration
uniform error handling mechanism
user definable protection rings .
microsecond calendar clock with interrupt
program interrupt signal from console

Input and Output
standard typewriter interface for device independence
ASCII character set used throughout
input characters converted to canonical form
erase and kill editing on typed input
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I/0 streams switchable during execution
magnetic tape, printer, card punch, card reader
typewriter terminals: IBM 2741, 1050
Teletype 37, 33, 35
Dura, Datel, Execuport,

Terminet-300
.graphic support library (devices: ARDS, IMLAC,
DEC 338)
ARPA network

interfaces at three levels:
formatted data conversion
bit stream control
full device control

Management Facilities
passwords required for login
project may interpose authentication procedure
decentralized projects
accounting, billing, and quotas
on-line probing and account adjustment
operator or system initiated logout of users
_unlisted and anonymous users
limited service system
dynamic reconfiguration of memories and processors
system performance metering ifor parameter
adjustment
project-imposed starting procedure

Communication Facilities
interuser mail
help command; help files
message of the day
on-line error reporting and consultation service
on-line user graffiti board
operations message broadcast to logged-in users

Absentee Facilities
priority/defer queues for printer, card punch
queued translator facility
general absentee job facility

Reliability Measures
weekly file copies onto tape
daily disk/drum copy onto tape
incremental file copies onto tape, 14 hour behind use
salvager to clean up files after system crash
emergency shutdown entry to system

Maintenance Features

on-line library change, no disruption of current users
entire system source on-line, maintenance toois
system checkout on small hardware configuration
on-line performance monitoring of

multiprogramming

paging traffic

drum/disk usage

typewriter traffic
user performance feedback:

cpu time and paging load on each command

page trace always operating

subroutine call counters

Private Project Subsystems
project providable command interface
Dartmouth environment*
student environment

Miscellaneous Facilities

desk calculators

sort command

memorandum formatting and typing subsystem

user-provided list of programs to be automatically
executed when user logs in

GCOS environment

* The BASIC system and the Dartmouth environment were
developed at Dartmouth College. They are used at M.LT. by
permission of Dartmouth College.
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The Multics Virtual Memory: Concepts and Design

by A. Bensoussan, C.T. Clingen, and R.C. Daley.
Reprinted from Communications of the ACM 15, 5,
May, 1972, pp. 308-318, with permission. Copyright
1972 by the Association for Computing Machinery.

After four sections of relatively elementary introduction,
this paper delves deeply into the mechanisms required to support
a virtual memory system in which all on-line storage is addressed
directly by the processor. This wvirtual memory system is
probably the most important conceptual departure introduced by
Multics. It is of special interest to writers of complex
application subsystems which manipulate data bases shared by
several users. The power of the Multics virtual memory as a tool
to reduce programming effort is illustrated in MPM Introduction
Chapter Four.

Since this paper is a recent one, the terminology Is quite
up-to-date, although the description given here is abstracted
somewhat from the actual Iimplementation to avoid cluttering
details. Large copies of figures four and five, which did not
reproduce well in the original publication, will be found after
the last page of the paper. '
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independent attributes of size and access privilege.
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" 1. Introduction

In the past few years several well-known systems
have implemented large virtual memories which permit
the execution of programs exceeding the size of available
core memory. These implementations have been
achieved by demand paging in the Atlas computer [11],
allowing a program to be divided physically into pages
only some of which need reside in core storage at any
one time, by segmentation in the BS000 computer [15],
allowing a program to be divided logically into seg:
ments, only some of which need be in core, and by a
combination of both segmentation and paging in the
Honeywell 645 [3, 12] and the 1BM 360/67 [2] for which
only a few pages of a few segments need be available in
core while a program is running.

As experience has been gained with remote-access,
multiprogrammed systems, however, it has become
apparent that, in addition to being able to take ad-
vantage of the direct addressibility of large amounts of
information made possible by large virtual memories,
many applications also require the rapid but controlled
sharing of information stored on-line at the central
facility. In Multics (Multiplexed Information and
Computing Service) segmentation provides a gener-
alized basis for the direct accessing and sharing of on-
line information by satisfying two design goals: (1) it
must be possible for all on-line information stored in

Minor revision of a paper presented at an ACM Symposium
on Operating System Principles, Princeton University, October
20-22, 1969. Work reported herein was supported (in part) by
Project MAC, an MIT research program sponsored by the Ad-
vanced Research Projecis Agency, Department of Defense, under
Office of Naval Research Contract Number Nonr-4102(1). *Honey-
well Information Systems, Inc., Cambridge, MA 02142. {Cam-

bridge, MA 02142.
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the system to be addressed directly by a processor and
hence referenced directly by any computation; (2) it
must be possible to control access, at each reference, to
all on-line information in the system.

The fundamental advantage of direct addressibility
is that information copying is"no longer mandatory.
Since all instructions and data items in the system are
processor-addressible, duplication of procedures and
data is unnecessary. This means, for example, that core
. images of programs need not be prepared by loading
and binding together copies of procedures ~before
execution; instead, the original procedures may be used
directly in a computation. Also, partial copies of data
files need not be read, via requests to an I/O system,
into core buffers for subsequent use and then returned,
by means of another 1/0 request, to their original
locations; instead the central processor executing a
computation can directly address just those required
data items in the original version of the file. This kind
of access to information promises a very attractive
reduction in program complexity for the programmer.

If ail on-line information in the system may be
addressed directly by any computation, it becomes
imperative to be able to limit or control access to this
information both for the self-protection of a computa-
tion from its own mishaps, and for the mutual protec-
tion of computations using the same system hardware
facilities. Thus it becomes desirable to compartmentalize
or package all information in a directly-addressible
memory and to attach access attributes to these in-
formation packages describing the fashion in which
each user may reference the contained data and pro-
cedures. Since all such information is processor-
addressible, the access attributes of the referencing
user must be enforced upon each processor reference
to any information package.

Given the ability to directly address all on-line
information in the system, thereby eliminating the
need for copying data and procedures, and given the
ability to control access to this information, controlled
sharing among several computations then follows as a
natural consequence.

In Multics, segments are packages of information
which are directly addressed and which are accessed in
a controlled fashion. Associated with each segment is
a set of access attributes for each user who may access
the segment. These attributes are checked by hardware
upon each segment reference by any user. Furthermore,
all on-line information in a Multics installation can be
directly referenced as segments while in other systems
most on-line information is referenced as files.

This paper discusses the properties of an “idealized”
Multics memory comprised entirely of segments
refereniced by symbolic name, and describes the simula-
tion of this idealized memory through the use of both
specialized hardware and system software. The result of
this simulation is referred to as the Multics virtual
memory. Although the Multics virtual memory has
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been discussed elsewhere (3, 6, 7] at the conceptual
level or in its earlier forms, the implementation pre-
sentcd here represents a mechanism resulting from
several consecutive implementations leading to an
effective realization of the design goals.

2. Segmentation

A ‘basic motivation behind segmentation is the
desire to permit information sharing in.a more auto-
matic and general manner than provided by non-
segmented systems. Sharing must be accomplished
without duplication of information and access to the
shared information must be controlied not oniy in
secondary memory but also in main memory.

In most existing systems that provide for informa-
tion sharing, the two requirements mentioned above are
not met. For example, in the cTss system [5], informa-
tion to be shared is contained in files. In order for
several users to access the information recorded in a
file, a copy of the desired information is placed in a
buffer in each user’s core image. This requires an
explicit, programmer-controlled 1/0 request to the file
system, at which time the file system checks whether
the user has appropriate access to the file. During
execution, the user program manipulates this copy and
not the file. Any modification or updating is done on
the copy and can be reflected in the original fil= only by
an explicit 1/0 request to the file system, at which time
the file system determines whether the user has the
right to change the file.

In nonsegmented systems, the use of core images
makes it nearly impossible to control access to shared
information in core. Each program in execution is
assigned a logically contiguous, bounded portion of
core memory or paged virtual memory. Even if the
nontrivial problem of addressing the shared information
in core were solved, access to this information could
not be controlled without additional hardware as-
sistance. Each core image consists of a succession of
anonymous words that cannot be decomposed into the
original elementary parts from which the core image.
was synthetized. These different parts are indistinguish-
able in the core image; they have lost their identity and
thereby have lost all their attributes, such as length,
access rights, and name. As a consequence, nonseg-
mented hardware is inadequate for controlled sharing
in core memory. Although attempts to share informa-
tion in core memory have been made with nonseg-
mented hardware, they have resulted in each instance
being a special case which must be preplanned at the
supervisory level. For example, if all users are to share
a compiler in main memory, it is imperative that none
of them be able to alter the part of main memory where
the compiler resides. The hardware *‘privileged’ mode
used by the supervisor is often the only means of pro-
tecting shared information in main memory. In order
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to protect the shared compiler, it is made accessible
only in this privileged mode. The compiler can no
longer be regarded as a user procedure; it has to be
accessed through a supervisor call like any other part
of the supervisor, and must be coded to respect any
conventions which may have been established for the
SUpervisor.

In segmented systems, hardware segmentation can
be used to divide a core image into several parts, or
segments [10]. Each segment is accessed by the hardware
through a segment descriptor containing the segment’s
attributes. Among these attributes are access rights that
the hardware interprets on each program reference to
the segment for a specific user. The absolute core loca-
tion of the beginning of a segment and its length are
also attributes interpreted by the hardware at each
reference, allowing the segment to be relocated any-
where in core and to grow and shrink independently of
other segments. As a result of hardware checking of
access rights, protection of a shared compiler, for
example, becomes trivial since the compiler can reside
in a segment with only the ‘“execute” attribute, thus
permitting users to execute the compiler but not to
change it.

In most segmented systems, a user program must
first call the supervisor to associate a segment descriptor
with a specific file before the program can directly
access the information in the file. If the number of files
the user program must reference exceeds the number
of segment descriptors available to the user, the user
program is forced to call the supervisor again to free
segment descriptors currently in use <o that they can
be reused to access other information. Furthermore,
if the number of segment descriptors is insufficient to
provide simultaneous direct access to each distinct file
required by this program, the user must then provide
for some means of buffering this information. Buffering,
of course, requires that information from more than one
file be copied and coalesced with other distinctly differ-
ent information having potentially different attributes.
Once the information is copied and merged, the
identity of the original information is lost, thus making
it impossible for the information to be shared with
other user programs. In addition, this form of user-
controlled segment descriptor allocation and buffering
of information requires a significant amount of pre-
planning by the user.

In Multics, the number of segment descriptors
available to each computation is sufficiently large to
provide a segment descriptor for each file that the user
program needs to reference in most applications. The
availability of a large number of segment descriptors to
each computation makes it practical for the Multics
supervisor to associate segment descriptors with files
upon first reference to the information by a user pro-
gram, relieving the user from the responsibility of
allocating and deallocating segment descriptors. In
addition, the relatively large number of segment
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descriptors eliminates the need for buffering, allowing
the user program to operate directly on the original
information rather than on a copy of the information.
In this way, all information retains its identity and
independent attributes of length and access privilege
regardless of its physical location in main memory or on
secondary storage. As a result, the Multics user no
longer uses files; instead he references all information
as segments, which are directly accessible to his pro-
grams.

To Multics users, all memory appears to be com-
posed of a large number of independent linear core
memories, each associated with a descriptor. A user
program can create a segment by issuing a call to the
supervisor, giving, as arguments, the appropriate
attributes such as symbolic segment name, name of each
user allowed to access the segment with his respective
access rights, etc. The supervisor then finds an unused
descriptor where it stores the segment attributes. The
segment having been created, the user program can
now address any word of the corresponding linear
memory by the pair (name, i) where “name” is the
symbolic name of the segment and “i” is the word
number in the linear memory. Furthermore, any
other user can reference word number / of this segment
also by the pair (name, i) but he can access it only
according to the access rights he was given by the
creator and which are recorded in the descriptor.
Combinations of the ‘“read,” ‘“write,” ‘“‘execute” and
“append” access rights [6] are available in Multics.

A simple representation of this memory, referred to
as the Multics idealized memory, is shown in Figure 1.

3. Paging

In a system in which the maximum size of any seg-
ment was very small compared to the size of the entire
core memory, the “swapping” of complete segments
into and out of core would be feasible. Even in such a
system, if all segments did not have the same maximum
size, or had the same maximum size but were allowed to
grow from initially smaller sizes, there remains the
difficult core management problem of providing space
for segments of different sizes. Multics, however,
provides for segments of sufficient maximum size so
that only a few can be entirely core-resident at any one
time. Also, these segments can grow from any initial
size smaller than the maximum permissible size.

By breaking segments into equal-size parts called
pages and providing for the transportation of in-
dividual pages to and from core as demand dictates,
the disadvantages of fragmentation are incurred, as
explained by Denning [9]. However, several practical
problems encountered in the implementation of a
segmented virtual memory are solved.

First, since pages are all of equal size, space alloca-
tion is immensely simplified. The problems of ‘“‘com-
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Fig. 1. Multics idealized memory.

Name 1 l Nome 2 Nome 3 Nome 4 NomeS |_______ | Not used
i i ibute: Attributes| {Attributes

pacting” information in core and on secondary storage,
characteristic of systems dealing with variable-sized
segments or pages, are thereby eliminated.

Second, since only the referenced page of a segment
need be in core at any one instant, segments need not be
small compared to core memory.

Third, “demand paging” permits advantage to be
taken of any locality of reference peculiar to a program
by transporting to core only those pages of segments
which are currently needed. Any additional overhead
associated with demand paging should®of course be
weighed against the alternative inefficiencies associated
with dedicating core to entire segments which must be
swapped into core but which may be only partly ref-
erenced.

Finally, demand paging allows the user a greater
degree of machine independence in that a large pro-
gram designed to run well in a large core memory con-
figuration will continue to run at reduced performance
on smaller configurations.

4. The Multics Virtual Memory

Multics simulates the idealized memory, represented
in Figure 1, using the segmentation and paging features
of the 645 assisted by the appropriate software features.
The result of the simulation is referred to as the ‘“Multics
Virtual Memory.” The user can keep a large number of
segments in this memory and reference them by symbolic
name; upon first reference to a segment, the supervisor
automatically transforms the symbolic name into the
appropriate hardware address which is directly used
by the processor for subsequent references.

The remainder of this paper explains the addressing
mechanism in the 645 and describes how the Multics su-
pervisor simulates the Multics idealized memory.

mn
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The features of the 645 processor which are of in-
terest for the implementation of the Multics virtual
memory are segmentation and paging.

5.1 Segmentation

Any address in the 645 processor consists of a
pair of integers [s, i]. “‘s” is called the segment number;
“7” the index within the segment. The range of “s” and
“i” is 0 to 2'* — 1. Word [s, i] is accessed through a
hardware register which is the sth word in a table called
a descriptor segment (DS). The descriptor segment is in
core memory and its absolute address is recorded in a
processor register called a descriptor basc register
(DBR). Each word of the Ds is called a segment descriptor
word (spw); the sth sDw will be referred to as sDw(s).
See Figure 2.

The DBR contains the values:

DBR - core which is the absolute core address of the Ds.

DBR-L which is the length of the ps.

Segment descriptor word number ““s” contains the
values:

SDW(s) -core which is the absolute core address of
the segment s.

sDW(s)-L which is the length of the segment s.

SDW(s)-acc which describes the access rights for
the segment.

SDW(s) -F which is the “‘missing segmeni” swiici.

A simplified version of the algorithm used by the
processor to access the word whose address is [s, 7]
follows (see Figure 2):

If DBR-L < s, generate a trap, or “fault” to the
supervisor.

Access sDW(s) at absolute location DBR-core + s.

If sow(s)-F = ON, generate a missing segment fault.

If sow(s)-L < i, generate a fault.

If sbw(s)-acc is incompatible with the requested
operation, generate a fault.

Access the word whose absolute address is SDW(s)-
core + I.

5.2 Paging - .

The above description assumes that segments are
not paged; in fact, paging is implemented in the
645 hardware. In the Multics implementation, all
segments are paged and the page size is always 1,024
words.

Element “i” of a segment is the wt" word of the
ptt page of the segment, “w” and “p” being defined by

{W
P

Each segment is referenced by a processor through a
page table (pT). The PT of a segment is an array of

i mod 1,024
(i —w)/1,024

I
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Fig. 2. Hardware segmentation in the Honeywell 645.
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physically contiguous words in core memory. Each
element of this array is called a page table word (PTW).
Page table word number p contains:

PTW(p) -core which is the absolute core address of
page number p.

PTW(p)-F which is the “missing page” switch.

The meaning of DBR-core and SDW(s)-core is now:

DBR-core = Absolute core address of the Pt of the
descriptor segment.

sDW(s)-core = Absolute core address of the pT of
segment number s.

A simplified versicn of the algorithm used by the
processor to access the word whose address is [s, {] is
as follows (see Figure 3):

If DBR-L < s, generate a fault.

Split s into the page number s, and word number s,, .

Access PTW(s,) at absolute location

DBR-cOre + s, .
If PTW(s,)-F = ON, generate a missing page fault.
Access sSDW(s) at absolute location
PTW(s,)-core + Sy .

If spw(s)-F = ON, generate a missing segment fault.

If spw(s)-L < i, generate a fault.

If spw(s)-acc is incompatible with the requested

operation, generate a fault.

Split i into the page number i, and word number i, .

Access PTW(i,) at absolute location

SDW(s) -core + ip.
If PTW(i,)-F = ON, generate a missing page fault.
Access the word whose absolute location is
PTW(i,)-core + i, .

In order to reduce the number of processor refer-
ences to core storage while performing this algorithm,
each processor has a small, high-speed associative
memory [12] automatically maintained so as to always
contain the PTW’s and SDW’s most recently used by the
processor. The associative memory significantly reduces
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Fig. 3. Hardware segmentation and paging in the Honeywell 645.
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the number of additional memory requests required
during address preparations.

6. Multics Processes and the Multics Supervisor

A process is generally understood as being a program
in execution. A process is characterized by its state-
word defining, at any given instant, the history resulting
from the execution of the program. It is also charac-
terized by its address space. The address space of a
process is the set of processor addresses that the process
can use to reference information in memory. In Multics,
any information that a process can reference by an
address of the form (segment number, word number) is
said to be in the address space of the process. There is a
one-to-one correspondence between Multics processes
and address spaces. Each process is provided with a
private descriptor segment which maps segment num-
bers into core memory addresses and with a private
table which maps symbolic segment names into seg-
ment numbers. This table is called the Known Segment
Table (KsT).

The Multics supervisor could have been written so
as not to use segment addressing of course; but organiz-
ing the supervisor into procedures and data segments
permits one to use, in the supervisor, the same conven-
tions that are used in user programs. For instance, the
call-save-return conventions [7] made for user pro-
grams can be used by the supervisor; the standard way
to manufacture pure procedures in a user program is
also used extensively in the supervisor. A less visible
advantage of segmentation of the supervisor is that
some supervisory facilities provided for the management
of user segments can also be applied to supervisor
segments; for example, the demand paging facility
designed to automatically load pages of user segments
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can also be used to load pages of supervisor segments.
As a result, a large portion of the supervisor need not
reside permanently in core.

Unlike most supervisors, the Multics supervisor does
not operate in a dedicated process or address space.
Instead, the supervisor procedure and data segments
are shared among all Multics processes. Whenever a
new process is created, its descriptor segment is ini-
tialized with descriptors for all supervisor segments
allowing the process to perform all of the basic super-
visory functions for itself. The execution of the super-
visor in the address space of each process facilitates
communication between user procedures and supervisor
procedures. For example, the user can call a supervisor
procedure as if he were calling a normal user procedure.
Also, the sharing of the Multics supervisor facilitates
simultaneous execution, by several processes, of super-
visory functions, just as the sharing of user procedures
facilitates the simultaneous execution of functions
written by users.

Since supervisor segments are in the address space
of each process, they must be protected against un-
authorized references by user programs. Multics pro-
vides the user with a ring protection mechanism [13]
which segregates the segments in his address space into
several sets with different access privileges. The Multics
supervisor takes advantage of the existence of this
mechanism and uses it, rather than some other special
mechanism to protect itself.

7. Segment Attributes

7.1 Directory Hierarchy

The name of a segment and its attributes are asso-
ciated in a catalogue. Conceptually this catalogue con-
sists of a table with one entry for each segment in the
system. An entry contains the name of the segment and
all its attributes: length, memory address, list of users
allowed to use the segment with their respective access
rights, date and time the segment was created, etc.

In Multics, this catalogue is implemented as several
segments, called directories, organized into a tree
structure. A segment name is a list of subnames reflect-
ing the position of the entry in the tree structure, with
respect to the beginning, or root directory (ROOT) of
the tree. By convention, subnames are separated by the
character “>”. Each subname is called an entryname
and the list of entrynames is called a pathname. An
entryname is unique in a given directory and a path-
name is unique in the entire directory hierarchy. Be-
cause of its property of uniquely identifying a segment
in the directory hierarchy, the pathname has been
chosen as the symbolic name by which the Multics user
must reference a segment. There are two types of direc-
tory entries, branches and links. A branch is a directory
entry which contains all attributes of a segment while a
link is a directory entry which contains the pathname of
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another directory entry. A more detailed description of
the directory hierarchy and of the use of links is given
by Daley and Neumann [6].

7.2 Operations on Segment Attributes

Supervisor primitives perform all operations on
segment attributes. There is a set of primitives available
to the user which allow him, for example, to create a
segment, delete a segment, change the entryname of a
directory entry, change the access rights of a segment,
list the segment attributes contained in a directory, etc.

Creating a segment whose pathname is ROOT
> A > B > C (see Figure 4) consists basically of the fol-
lowing steps: :

Check that entryname ¢ does not already exist in
the directory ROOT > A > B.

Allocate space for a new branch in directory ROOT
> A > B

Store in the branch the following items:

The entry name c.

The segment length, initialized to zero.

The access list, given by the creator.

The segment map, consisting of an array of second-
ary memory addresses, one for each page of the segment.
The maximum length of a segment in Multics being 64
pages, the segment map for any segment contains 64
entries. Since the segment length is still zero, each
entry of the segment map is initialized with a “null”
address, showing that no secondary memory has been
assigned to any potential page of the segment.

The segment status “inactive,” meaning that there
is no page table for this segment. The segment status,
which may be either “active” or “inactive” is indicated
by the active switch.

Fig. 4. Directory hierarchy.
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8. Segment Accessing

Although the creation of a segment initializes its
attributes, additional supervisor support is required to
make the segment accessible to the processor when a
user program references the segment by symbolic name.

8.1 Symbolic Addressing Conventions

The pathname is the only symbolic name by which
a segment can be uniquely identified in the directory
hierarchy. However, for user convenience, the system
provides a facility whereby a user can reference a seg-
ment from his program using only the last entryname of
the segment’s pathname and supplying the rest of the
pathname according to system conventions. This last
entry name is called the reference name.
~ When a process executes an instruction which
attempts to access a segment by means of its reference
name, the Multics dynamic linking facility [7] is auto-
matically invoked. The dynamic linker determines the
missing part of the pathname according to the above-
mentioned system conventions. These conventions are
called search rules and may be regarded as a list of
directories to be searched for an entryname matching
the specified reference name. When this entryname is
found in a directory, the directory pathname is prefixed
to the reference name yielding the required pathname.
The dynamic linker, using the “Make Known” module
(Section 8.2), then obtains a segment number by which
the referenced segment will be accessed. Finally it trans-
forms the reference name into this segment number so
that all subsequent executions of the instruction in this
process access the segment directly by segment number.
Further details are given by Daley and Dennis [7].

8.2 Making a Segment Known to a Process

Each time a segment is referenced in a process by its
pathname, either explicitly or as the result of the evalua-
tion of a reference name by the dynamic linking facility,
the pathname must be translated into a segment number
in order to permit the processor to address the segment
for this process. This translation is done by the super-
visor using the KsT associated with the process. The
KST is an array organized such that entry number “s”,
KSTE(s), contains the pathname associated with segment
number ““s”’. See Figure 5.

If the association (pathname, segment number) is
found in the KsT of the process, the segment is said to be
known to the process and the segment number can be
used to reference the segment.

If the association (pathname, segment number) is
niot found in the KsT, this is the first rcference to the
segment in the process and the segment must be made
known. A segment is made known by assigning an
unused segment number “s” in the process and by
recording the pathname in KSTE(s) to establish the pair
(pathname, segment number) in the KsT of the process.
The directory hierarchy is also searched for this path-
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name and a pointer to the corresponding branch is
entered in KSTE(s) for later use (Section 8.3.).

The per-process association of pathname and seg-
ment number is used in the Multics system because it
is impossible to assign a unique segment number to
each segment. The reason is that the number of seg-
ments in the system will nearly always be larger than
the number of segment numbers available in the
processor.

When a segment is made known to a process by
segment number *'s,” 1its attributes are not placed in
sbw(s) of the descriptor segment of that process.
sDW(s) having been initialized with the missing segment
switch ON, the first reference in this process to that
segment by segment number “‘s”’ will cause the processor
to generate a trap. In Multics this trap is called a
“missing segment fault” and transfers control to a
supervisor module called the segment fault handler.

8.3 The Segment Fault Handler

When a missing segment fault occurs, control is
passed to the segment fault handler to store the proper
segment attributes in the appropriate sbw and set the
missing segment switch OFF in the SDW.

These attributes, as shown in Figure 3, consist of
the page table address, the length of the segment, and
the access rights of the user with respect to the segment.
The information initially available to the supervisor
upon occurrence of a missing segment fault is the seg-
ment number “s.”

Th
The only place where the

found is in the branch of the segment. Using the segment
number “s”, the supervisor can locate the KST entry
associated with the faulting segment; it can then find the
required branch since a pointer to the branch has been
stored in the KST entry when the segment was made
known to this process (Section 8.2).

he needed attributes can be
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Using the active switch (Figure 5) in the branch, the
supervisor determines whether there is a page table
for this segment. Recall that this switch was initialized
in the branch at segment creation time. If there is no
page table, one must be constructed. A portion of core
memory is permanently reserved for page tables. All
page tables are of the same length and the number of
page tables is determined at system initialization.

The supervisor divides page tables into two lists:
the used list and the free list. Manufacturing a page
table (PT) for a segment could consist only of selecting
a PT from the free list, putting its absolute address in
the branch and moving it from the free to the used list.
If this were actually done, however, the servicing of each
missing page fault would require access to a branch
since the segment map containing secondary storage
addresses is kept there (Figure 5). Since it is impractical
for all directories to permanently reside. in core, page
fault handling could thereby require a secondary
storage access in addition to the read request required
to transport the page itself into core. Although this
mechanism works, efficiency considerations have led
to the ‘“‘activation’” convention between the segment
fault handler and the page fault handler.

Activation. A portion of core memory is permanently

reserved for recording attributes needed by the page
fault handler, i.e. the segment map and the segment
length. This portion of core is referred to as the active
segment table (AsT). There is only one AST in the system
and it is shared by all processes. The AST contains one
entry (ASTE) for each PT. A PT is always associated with
an ASTE, the address of one implying the address of the
other. They may be regarded as a single entity and will
be referred to as the (PT, ASTE) of a segment. The used
list and free list mentioned above are referred to as the
(PT, ASTE) free list and the (PT, ASTE) used list.

A segment which has a (PT, ASTE) is said to be
active. Being active or not active is an attribute of the
segment and is recorded in the branch using the active
switch.

When the active switch is ON, both the segment map
and the segment length are no longer in the branch but
are to be found in the segment’s (PT, ASTE) whose
address was recorded in the branch during “activation”
of the segment.

To activate a segment, the supervisor must:

Find a free (T, ASTE). (Assume temporarily that at
least one is available).

Move the segment map and the segment length from
the branch into the ASTE.

Set the active switch ON in the branch.

Record the pointer to (PT, ASTE) in the branch.

By pairing an ASTE with a PT in core, the segment
fault handler has guaranteed that all segment attributes
needed by the page fault handler are core-resident,
permitting more efficient page fault servicing.

Connection. Once the segment is active, the corre-
sponding sDW must be “connected” to the segment. To
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connect the SDW to the segment the supervisor must:

Get the absolute address of the PT, using the (pT,
ASTE) pointer kept in the branch, and store it in sDw.

Get the segment length from the ASTE and store it
in the sbw.

Get the access rights for the user from the branch
and store them in the sDw.

Turn off the missing segment switch in the spw.

Having defined activation and connection, segment
fault handling can now be summarized as:

Use the segment number s to access the KST entry.

Use the KST entry to locate the branch.

If the active switch in the branch is OFF, activate the
segment.

Connect the SDW.

Note that the active switch and the (PT, ASTE)
pointer in the segment branch ‘“‘automatically” guar-
antee segment sharing in core since all spw’s describ-
ing a given segment will point to the same PT.

Once the segment and its SDW have been connected,
the hardware can access the appropriate page table
word. If the page is not in core, a missing page fault
occurs, transferring control to the supervisor module
called the page fault handler.

8.4 The Page Fault Handler

When a page fault occurs the page fault handler is
given control with the PT address and the page number
of the faulting page. The information needed tc bring
the page into core memory is the address of a free block
of core memory into which the page can be moved and
the address of the page in- secondary memory. The
term page frame is also used to denote a block of core
memory which holds a page of information [9].

A free block of core must be found. This is done by
using a data base called the core map. The core map is
an array of elements called core map entries (CME).
The nth entry contains information about the nt® block
of core (the size of all blocks is 1,024 words). The
supervisor divides this core map into two lists; the core
map used list and the core map free lisi.

The job of the page fault handler consists of the
following steps:

Find a free block of core and remove its core map
entry from the free list. (Assume temporarily that the
free list is not empty.)

Access the ASTE associated with the pT and find the
address in secondary memory of the missing page.

If this address is a “null” address, initialize the
block of core with zeros and update the segment length
in the ASTE; this action is only taken the first time the
page is referenced since the segment was created and
provides for the automatic growing of segments. Other-
wise issue an 1/0 request to move the page from second-
ary memory into the free block of core and wait for
completion of the request via a call to the “traffic
controller” {14] which is responsible for processor
multiplexing.
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Store the core address in the PTW, remove the fault
fromthe PTW, and place the core map entryin the used list.

8.5 Page Multiplexing

There are many more pages in virtual memory than
there are blocks of core in the real memory; therefore,
these blocks must be multiplexed among all pages. In
the description of page fault handling it was assumed
that a free block of core was always available. In order
to insure that this is nearly always true, the page fault
handler, upon removing a free block from the core map
free list, examines the number of remaining free list
entries; if this number is less than a preset minimum
value, a page removal mechanism is invoked a sufficient
number of times to ensure a nonempty core map free
list in all but the most unusual cases. A nonempty core
map free list eliminates waiting for page removal during
the handling of a missing page fault.

To get a free block of core, the page removal mech-
anism may have to move a page from core to secondary
memory. This requires: (a) an algorithm to select a
page to be removed; (b) the address of the pTw which
holds the address of the selected page, in order to set a
fault in it; and (c) a place to put the page in secondary
memory.

The selection algorithm is based upon page usage.
It is a particularly easy-to-implement version [4] of the
‘‘least-recently-used” algorithm [1, 8]. The hardware
provides. valuable assistance by, each time a page is
referenced, setting oN a bit, called the used bit, in the
corresponding PTw. The selection algorithm will not be
described in detail here. However, it should be noted
that candidates for removal are those pages described
in the core map used list; therefore, each core map
entry which appears in the, used list must contain a
pointer to the associated PTW (Figure 5) in order to
permit examination of the used bit. The action of storing
the PTW pointer in the core map entry must be added
to the list of actions taken by the page fault handler
when a page is moved into core (Section 8.4.).

Once the supervisor has selected the page to be
removed, it takes the following steps:

Set the missing page switch ON in the PTW.

If no secondary memory has been assigned yet for
this page, i.e. the segment map entry for this page holds
a “null” address, assign a block of secondary memory
and store its address in the segment map entry.

Issue an 1/0 request to move the page to secondary
storage.

Upon completion of the 1/0 request, move the core
map entry describing the freed block of core from the
core map used list to the core map free list. This may be
done in another process upon noticing the completion
of the 1/0 request.

8.6 (PT, ASTE) Multiplexing
Core blocks can be multiplexed only among pages
of active segments. The number of concurrently active

316

Fig. 6. Supervisor functional modules and data bases.

N
/ . .
Directory Segment Page Q
Control Control Control wap
\\@/’ .@

segments is limited to the number of (PT, ASTE) pairs,
which is, by far, smaller than the total number of
segments in the virtual memory. Therefore (PT, ASTE)
pairs must be multiplexed among all segments in the
virtual memory.

When segment activation was described, a (pT,
ASTE) pair was assumed available for assignment. In
fact, this is not always the case. Making one segment
active may imply making another segment inactive,
thereby disassociating this other segment from its
(pT, ASTE). Since all processes sharing the same segment
will have the address of the PT in an sDW, it is essential to
invalidate this address in all SDw’s containing it before
removing the page table.

This operation requires: (a) an algorithm to select
a segment to be deactivated; (b) knowing all sDw’s that
contain the address of the page table of the selected
segment, in order to invalidate this address; (c) moving
the attributes contained in the ASTE back to the branch;
and (d) changing the status of the segment from active
to inactive in the branch.

The selection algorithm for deactivation, like the
selection algorithm for page removal, is based on
usage. When the last page of a segment is removed from
core, the segment becomes a candidate for deactivation.
The algorithm selects for deactivation the segment
which has had no pages in core for the longest period of
time, i.e. the segment which has been least recently used.
Since the number of (PT, ASTE) pairs substantially
exceeds the number of pageable blocks of core, it is
always possible to find an active segment with no pages
in core.

The ASTE must provide all the information needed
for deactivating a segment. This means that during
activation and connection, this information must be
made available. During activation, a pointer to the
branch must be placed in the ASTE; during connection,
a pointer to the spw must be placed in the ASTE. Since
more than one sDW is connected to the same PT when
the segment is shared by several processes, the super-
visor must maintain a list of pointers to all connected
spw’s. This list is called a connection list. See Figure 5.

After the selection algorithm chooses a (PT, ASTE)
to be freed, the disassociation of the segment from its
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(PT, ASTE) is done in two steps: disconnection and
deactivation.

Disconnection consists of storing a segment fault
in each spw whose address appears in the connection
list in the ASTE. Deactivation consists of moving the
segment map and the segment length from the ASTE
back to the branch, resetting the active switch in the
branch, and putting the (PT, ASTE) in the free list.

9. Structure of the Supervisor

Up to now supervisor functions have been described,
but not the supervisor structure. In this section, the
different components of the supervisor are presented
and the ability of portions of the supervisor to utilize
the virtual memory is discussed.

9.1 Functional Modules

Three functional modules can be identified in the
supervisor described in Section 8; they are called
directory control (DC), segment control (sc), and
page control (pC).

Dc performs all operations on segment attributes;
it also maps pathnames into segment numbers in the
KST of the executing process. Data bases used by a
process executing DC procedures are the directories and
the kst of the process (Figure 6).

sc performs segment fault handling. Data bases used
by a process executing sc procedures are directories,
the KsT of the process, descriptor segments and (PT,
ASTE) pairs.

pc performs page fault handling. Data bases used by
a process executing PC procedures are (PT, ASTE) pairs
and the core map.

9.2 Use of PC in the Supervisor

One can observe that the page fault handler need not
know if a missing page belorigs to a user segment or to
a supervisor segment; it only expects to find the in-
formation it requﬁ'es in the (PT, ASTE) of the segment
to which the missing page belongs. Therefore, if all
segments used in sC and Dc are always active, then their
pages need not be in core since PC can load them when
they are referenced.

In order to make use of pC in the rest of the super-
visor the following (temporary) assumption must be
made.

Assumption 1

(a) All segments used in Pc are always in core and are
connected to the descriptor segment of each process.
(b) All segments used in sc and DC are always active
and are connected to the descriptor segment of each
process.

9.3 Use of SC in the Supervisor
Assumption 1 is satisfactory in the Multics imple-
mentation except for directories.
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The number of directory segments in the system may
be very large and keeping them always active is not a
realistic approach, since a large number of (PT, ASTE)
pairs would have to be permanently assigned to them.
It would be desirable to use SC to activate and connect
directory segments only as needed.

A necessary condition for handling a segment fault
for segment x in a process is that segment x be known
to that process. Assuming that all directories are known
to all processes, but not necessarily active, reference to
a directory x may cause a segment fault. When handling
this fault, the segment fault handler must reference the
parent directory of segment x, where the branch for x
is located. This reference to the parent of x could, in
turn, cause a recursive invocation of the segment fault
handler. These recursive invocations can propagate
from directory to parent directory up to the root. If the
root directory is always active and connected to each
process, then the recursion is guaranteed to be finite and
a segment fault for any directory can be handled.

The first assumption can be replaced by the follow-
ing more satisfactory assumption (again temporary).

Assumption 2

(a) All segments used in PC are always in core and are
connected to the descriptor segment of each process.
(b) All nondirectory segments used in sC and DC are
always active and are connected to the descriptor seg-
ment of each process.

(c) The root directory is always active and connected
to each process.

(d) All directories are always known to each process.

9.4 Use of the Make Known Facility in the Supervisor

However, it is unsatisfactory to keep all directories
known to all processes because of the space that would
be required in each KsT. It would be more attractive if
a directory could be made known to a process only
when needed by the process.

Making a segment x known implies searching for its
pathname in the xsT. If not found, the parent of x must
first be made known and so on up to the root. If the
root directory is always known to all processes, then
any directory can be made known to a process by calling
recursively the Make Known facility of the supervisor.

Assumption 2 will now be replaced by the final
assumption:

Final Assumption

(a) All segments used in pC are always in core and are
connected to the descriptor segment of each process.
(b) All nondirectory segments used in sC and DC are
always active and are connected to the descriptor seg-
ment of each process.

(c) The root directory is always active and connected
to each process.

(d) The root directory is always known to each process.

Given the above assumption, supervisor segments, as
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well as user segments, can be stored in the virtual
memory that the supervisor provides.

10. Summary

The most important points discussed in this paper
are summarized below. They are grouped into two
classes: the point of view of the user of the virtual
memory, and the point of view of the supervisor itself.

User Point of View

The Multics virtual memory can contain a very
large number of segments that are referenced by
symbolic names.

Segment attributes are stored in special segments
called directories, which are organized into a tree
structure; by a naming convention known to the user,
the symbolic name of a segment must be the pathname
of the segment in the directory tree structure.

Any operation on directory segments must be done
by calling the supervisor.

Any operation on a nondirectory segment can be
done directly in accordance with the access rights that
the user has for the segment; any word of any segment
which resides in the virtual memory can be referenced
with a pair (pathname, i) by the user.

Supervisor Point of View

The supervisor must simulate a large segmented
memory which is directly addressable by symbolic
name and such that any access to the memory is sub-
mitted to access rights checking.

The supervisor maintains a directory tree where it

stores all segment attributes. It can retrieve the attri-
butes of a segment, given the pathname of that segment.

The supervisor itself is organized into segments
and runs in the address space of each user process.

Any segment, be it a directory or a nondirectory
segment, is identified by its pathname but can be ac-
cessed only using a segment number. For each segment
name the supervisor must assign a segment number by
which the processor will address the segment in the
process.

The processor accesses a word of a segment through
the appropriate sbw and PTW, subject to the access
rights recorded in the sDw.

A segment fault is generated by the processor when-
ever the page table address or access rights are missing
in the sbw. The supervisor then, using the KST entry as
a stepping stone, accesses the branch where it finds the
needed information. If a pT is to be assigned, the super-
visor may have to deactivate another segment.

A page fault is generated by the processor whenever
a PTW does not contain a core address. The supervisor
then, using the ASTE associated with the PT, moves the
missing page from secondary storage to core. This may

require the removal of another page.
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Virtual Memory, Processes, and Sharing in Multics

by R.C. Daley and J.B. Dennis. Reprinted “from
Communications of the ACM 11, 5, May, 1968, pp.
306-312, with permission. Copyright 1968 by the
Association for Computing Machinery.

This early paper introduced the concept of a virtual memory
which contains all on-line storage, and explains the hardware
addressing structure which is used to support it. The remainder
of -~ the paper then explores the properties and mechanisms
necessary to permit dynamic linking of procedures and data. The
paper does not emphasize the value to the user of this feature.
Briefly, dynamic linking eliminates the need to collect together
all the parts of a program before execution; it is especially
helpful during debugging of a new program. A more extensive
discussion of the usefulness of this feature is found in MPM
introduction Chapter Four.

It may help, when reading the discussion of dynamic linking,
to realize that stored as part of every pure procedure is a
prototype linkage section for that procedure. When the procedure
is first 1linked to, the dynamic linker copies this prototype
linkage section into the linkage area fcor the process, and this
copy 1is the linkage section referred to in the paper. Note that
the word "linking" is a 1local piece of jargon, which has a
meaning approximately the same as 'binding" in most recent
literature on languages and linguistics.

The call-save-return mechanism described in the paper was
the first one used.in Multics, and.is quite different from the
one implemented with special hardware in the current Honeywell
6180 system. However, the mechanism described is functionally
equivalent to the current one, and it 1is quite Instructive to
compare the description here with that provided in the Subsystem
Writers' Guide, to.gain insight into the intrinsic operations
being performed. Probably the most important difference between
the two mechanisms is that the older one described in this paper
required that the 1linkage section contain instructions to be
executed as part of the subroutine entry sequence. 1In the newer
technique the 1linkage section contains only indirect addresses.
As a result, the segment containing the linkage section no longer
requires "execute" permission, and wild transfers to that segment
are thus trapped immediately as errors.
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Introduction

In mourtics [1] (Mulfiplexed Information and Com-
puting Service), fundamental design decisions were made
so the system would effectively serve the computing needs
of a large community of users with diverse interests,
operating principally from remote terminals. Among the
objectives were these three:

(1) To provide the user with a large machine-inde-
pendent virtual memory, thus placing the responsibility
for the management of physical storage with the system
software. By this means the user is provided with an
address space large enough to eliminate the need for com-
plicated buffering and overlay techpiques. Users, therefore,
are relieved of the burden of preplanning the transfer
of information between storage levels, and user programs
become independent of the nature of the various storage
devices in the system.

(2) To permit a degree of programming generality not
previously practical. This includes the ability of one pro-
cedure to use another procedure knowing only its name,
and without knowledge of its requirements for storage, or
the additional procedures upon which it may in turn call.
For example, a user should be able to initiate a computa-
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tion merely by specifying the symbolic name of a proce-
dure at which the computation is to start and by allowing
additional procedures and data to be provided auto-
matically when and if they are needed.

(3) To permit sharing of procedures and data among
users subject only to proper authorization. Sharing of
procedures in core memory is extremely valuable in a
multiplexed system so that the cluttering of auxiliary
storage with myriad copies of routines is avoided, and so
unnecessary information transfers are eliminated. The
sharing of data objects in core memory is necessary to
permit efficient and close interaction between processes.

These objectives led to the design of a computer system
[6] (the General Electric Model 645) embodying the con-
cepts of paging [8] and segmentation [3] on which the
initial implementation of MyLTICS Will run.

In this paper we explain some of the more fundamental
aspects of the MuLTICS design. The concepts of ‘““process”
and “address space” are defined, some details of the ad-
dressing mechanism are given, and the mechanism by
which “dynamic linking” is accomplished is explained.

Concepts of Process and Address Space

Several interpretations of the term “process” have come
into recent use. The most common usage applies the term
to the activity of a processor in carrying out the compu-
tation specified by a program [4, 5]. In murTics, the
concept of process is intimately connected with the con-
cept of address space. Processes stand in one-to-one corre-
spondence with virtual memories. Each process runs in
its own address space, which is established independently
of other address spaces. Processes are run on a processor
at the discretion of the traffic coniroller module of the
supervisor.

The virtual memory (or address space) of a MuULTICS
process is an ordered set of as many as 2 segmenis each
consisting of as many as 2'® 36-bit words. The arguments
for providing a generous address space having this struc-
ture have been given by Dennis [3]. Briefly, the motiva-
tion is to avoid the necessity of procedure overlays or the
movement of data within the address space, which gen-
erally lead to naming conflicts and severe difficulties in
sharing information among many processes.

Each segment is a logically distinct unit of information
having attributes of length and access privilege and may
grow or shrink independently of other segments in the
system. For present purposes, we consider two segment
types: (1) data, and (2) procedure. A segment is treated
as procedure if it is intended to be accessed for instruction
fetch by a processor. Other segments (including, e.g., a
source program file) are considered to be data. Instruction
fetch references to procedure segments are allowed, as are
internal data reads. Writing into a procedure segment is
normally considered invalid and is prohibited by the
system. (In certain cases, reading of a procedure segment
by another procedure may also be prohibited while execu-
tion is allowed.) Thus procedure segments are nonself-
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modifying or pure procedures. Instruction fetches from
data segments are invalid, and any data segment may be
write protected. The overall design of MuLTICs protec-
tion mechanisms is discussed by Graham [7].

directory
structure

segments

virtual
memory

Fie. 1. Virtual memory in a MULTICS process

The size of address space provided to processes makes it
feasible to dispense with files as a separate mechanism for
addressing information held in the computer system. No
distinction need be drawn between files and segments!

The directory structure [2] is a hierarchical arrangement
of directories that associates at least one symbolic name
(but perhaps many) with each segment. These names
have meaning that is invariant over all processes in exist-
ence. Figure 1 portrays the concept of a process as a
virtual memory made up of segments selected from the
directory structure.

Addressing

The Generalized Address. Each word in the address
space of a process is identified by a generaltzed address. As
shown in Figure 2, a generalized address consists of two
parts—a segment number and a word number. The address-
ing mechanisms of the processor are designed so that a
process may make effective reference to a word by means
of its generalized address when the word has an assigned
location in main memory. Together with supervisor soft-
ware, these mechanisms make reference by generalized

Fegmeni number l word number ]

Fia. 2. The generalized address

address, effective regardless of where the word might
reside in the storage hierarchy by placing it in main
memory when needed. Thus the generalized address is a
location-independent means of identifying information. In
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the following paragraphs we explain how generalized
addresses are formed in the processor and give a brief
discussion of how they are made effective.

E— @
o] BT 3
[xi ] [P ] ]
F—— G

e

Fi1g. 3. Processor registers-for address formation

Address Formation. Each processor of the computer
system (Figure 3) has an accumulator A, a multiplier/
quotient Q, eight index registers X0, X1, ---, X7, and a
program counter PC, which serve conventional functions.
For the implementation of generalized addressing and
intersegment linking, a descriplor base register, a procedure
base register, and four base pair regislers- are included in
each processor. The function of the descriptor base register

will be discussed in a later paragraph since it does not

participate in generalized address formation. The proce-
dure base register always contains the segment number of
the procedure being executed. Each of the four base pair
registers (called simply base registers in the sequel) holds
~a complete generalized address (segment number/word
number pair) and is named according to its specific func-
tion in MyLTICS:

base pasr  designatlion Junction
0 ap argument pointer
1 bp base pointer
2 Ip linkage pointer
3 sp stack pointer

The functions of these pointers will become clear when
the linkage mechanism is explained.

The instruction format of the processor is given in
Figure 4. Instructions are executed sequentially except
where . a transfer of control occurs. Hence, the program
counter is normally advanced by one during the execution
of each instruction.

oddress
segment tog

|
L [ IT 1]

Fic. 4.

external flag
operotion code la“rasinq mode

Instruction format

When the processor requires an instruction word from
memory, the corresponding generalized address is the
segment number in the procedure base register coupled
with the word number in the program counter (Figure 5).
For data references, a field in the instruction format
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called the segment tag selects one of the base registers if
the external flag is on. The effective address computed
from the address field of the instruction by the usual
indexing procedure is added to the word number portion
of the selected base to obtain the desired generalized
address. This operation is illustrated by Figure 6 and is
used to reference all information outside the eurrent pro-
cedure segment. If the external flag is off, then the gener-
alized address is the segment number taken from the pro-
cedure base register coupled with an effective word num-
ber computed as before. This mechanism is used for internal
reference by a procedure to fetch constants or for trans-
fer of control.

generalized oddress

| seament number | word number |

_
fec J

S~
[Per 1

F1G. 5. Address formation for instruction fetch

generalized oddress

[ segment number | word number ]

=

[ segment number | word number |

base register

+

’ | | oddress | opR 2] |

segment
tog

F1a. 6. Address formation for data access

Indirect Addressing. As will be seen when the linkage
mechanism is discussed, a method of indirect addressing
in terms of generalized addresses is very valuable. In the
processor the addressing mode field of instructions may
indicate that indirect addressing is to be used. In this
case, the generalized address, formed as explained above
for data references, is used to fetch a pair of 36-bit words
which is interpreted as shown in Figure 7. If the address
mode field of the first word contains the code its (indirect

generolized address

| segment ber | word ber |
segment number /’ ....... its
word number e —— mode

Fic. 7. Interpretation of word pair as indirect address
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to segment), the segment number and word number
fields are combined to produce a new generalized address.
This address is augmented by indexing according to the
mode field of the second word of the pair. Further indirect
addressing may also be specified.

The Descriptor Segment. Implementation of a memory
access specified by a generalized address calls for an
associative mechanism that will yield the main memory
location of any word within main memory when a seg-
ment number/word number combination is supplied. A
direct use of associative hardware was impossible to
justify in view of the other possibilities available.

The means chosen to implement the generalized address
for a process is essentially a two-step hardware table
look-up procedure as illustrated by Figure 8. The segment
number portion of the generalized address is used as an
index to perform a table look-up in an array called the
descriptor segment of the associated process. This descriptor
segment contains a descriptor for each segment that the
process may reference by generalized address. Each
descriptor contains information that enables the address-
ing mechanism to locate the segment and information
that establishes the appropriate mode ot protection of the
segment for this process.

ruqment number I word nnmuﬂ
x y

information
segment

descriptor
segment

=T )]
A+

k4

Fie. 8. Addressing by generalized address

The descriptor base register is used by the processor to
locate the descriptor segment of the process in execution.
Note that since segment numbers and word numbers are
nonlocation dependent data, the only location dependent
information contained in the processor registers shown in
Figure 3 is in the descriptor base register. This fact greatly
simplifies the bookkeeping required by the system in carry-
ing out reallocation activity. In fact, switching a processor
from one process to another involves little more than
swapping processor register status and substituting a
new descriptor base.

In practice this implementation requires that segment
numbers be assigned starting from zero and continuing
successively for the segments of procedure and data re-
quired by each process. An immediate consequence is that
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the same segment will, in general, be identified by different
segment numbers in different processes.

Paging. Both information segments and descriptor
segments may become sufficiently large enough to make
paging desirable in order to simplify storage allocation
problems in main memory. Paging allows noncontiguous
blocks of main memory to be referenced as a logically
contiguous set of generalized addresses. The mapping of
generalized addresses into absolute memory locations is
done by the system and is transparent to the user.

Paging is implemented by means of page tables in main
memory which provide for trapping in case a page is not
present in main memory. The page tables also contain
control bits that record access and modification of pages
for use by storage allocation procedures. A small associa-
tive memory is built into each processor so that most
references to page tables or descriptor segments may be
bypassed.

Intersegment Linking and Addressing

The ability of many users to share access to procedure
and data information and the power of being able to
construct complex procedures by building on the work of
others are two prime desiderata of multiprocess computer
systems. The potential value of these features to the
advancement of computer applications should not be
underestimated. The design of a system around the notion
of a generalized, location-independent address is an essen-
tial ingredient in meeting these objectives. It remains to
show how the sharing of data and procedure segments
and the building of programs out of component procedure
segments can be implemented within the framework of
the MuLTIcs addressing mechanisms just described. In
particular we must show how references to external data
(and procedure) segments occurring within a shared pro-
cedure segment can be correctly interpreted for each of
possibly many processes running concurrently.

Requirements. Necessary properties of a satisfactory
intersegment addressing arrangement include the following :

(1) Procedure segments must be pure; that is, their
execution must not eause a single word of their con-
tent to be modified.

Pure procedure is a recognized requirement for general
sharing of procedure information.

(2) It must be possible for a process to call a routine by
its symbolic name without having made prior arrange-
ments for its use.

This means that the subroutine (which could invoke in
turn an arbitrarily large collection of other procedures)
must be able to provide space for its data, must be able
to reference any needed data object, and must be able to
call on further routines that may be unknown to its caller.

(3) Segments of procedure must be invariant to the
recompilation of other segments.

Communications of the ACM 309



2-36

This requirement has the following implication: The
values of identifiers that denote addresses within a seg-
ment which may change with recompilation must not
appear in the content of any other segment.

Making a Segment Known. Meeting condition (1)
requires that a segment be callable by a process even if
no position in the deseriptor segment of the process has
been reserved for the segment. Hence a mechanism is
provided in the system for assigning a position in the
descriptor segment (a segment number) when the process
first makes reference to the segment by means of its sym-
bolic name. We call this operation making the segment
known to the process. Once a segment is known, the
process may reference it by its segment number.

The pattern of descriptor segment assignment will be
different for each process. Therefore it is not possible, in
géneral, for the system to assign a unique segment number
to a shared routine or data object. This fact is a major
consideration in the design of the linking mechanism. In
the following paragraphs we describe a scheme for imple-
menting the linkage of segments that meets the require-
ments stated above. :

It is worth emphasizing that this discussion has nothing
to do with the memory management problem that the
supervisor faces in deciding where in the storage hierarchy
information should reside. All information involved in the
linkage mechanism is, as will be seen, referenced by gen-
eralized addresses which are made effective by the mecha-
nisms described earlier. The fact that pages of the seg-
ments referred to in the following discussion may be in or
out of main memory at the time a process requires access
to them is irrelevant.

' Linkage Data. Before a segment becomes known to a
process the segment may only be referenced by means of
a symbolic path name [2] which permanently identifies
the segment within the directory structure. Since the
segment number used to reference a particular segment is
process dependent, segment numbers may not appear
internally in pure procedure code. For this reason, a seg-

F16.9. An intersegment reference by procedure P
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ment is identified within a procedure segment by a sym-
bolic segment reference name. Before a procedure can com-
plete an external segment reference, the reference name
must be translated into a path name by means of a direc-
tory searching algorithm and the desired segment made
known to the process. Once the segment has become
known to the process, we wish to substitute the efficient
addressing mechanism based on the generalized address
for the time-consuming operation of searching the direc-
tory structure.

Consider a procedure segment P that makes reference
to a word at location x within data segment D, as illus-
trated in Figure 9. In assembly language this would be
written as:

OPR <D> |[x]

The angle brackets indicate that the enclosed character
string is the reference name of some segment. This name
will be used to search the directory structure the first
time segment P is referenced by a process. The square
brackets indicate that the enclosed character string is a
symbolic address within an external segment. Since by
requirement (3) we wish segment P to be invariant to
recompilation of D, only the symbolic address [x] may
appear in P. Furthermore, we wish to delay the evaluation
of [x] until a reference to it is actually made in the running
of a process.

The following problem arises: Initially process a in
executing procedure P may reference: (D) | [x] only by
symbolic segment name and symbolic external address.
After segment D has been made known to process «, and
a first reference has been effected, we wish to make further
references by the generalized address d # .|x. The question
is: How can we make the transition from symbolic refer-
ence to generalized addressing without altering the con-
tent of segment P?

It should be clear that a change must be made some
place that can effect the change in addressing mechanism.
Further, the data that is changed must participate in
every reference to the information. We call the informa-
tion that is altered in value to make this transition
the link data for linking segment P to symbolic address

[ 4 Le 4]
; 1
/ x
3* indicates
indirect oddressing

F16. 10. Linkage of P to D | x for process «

Volume 11 / Number 5 / May, 1968



(D)i [x] in process a. The colleetion of link data for all
external references originating in segment P is called the
linkage section of procedure P.

Link data is private data of its process because whether
P is linked to D|x for process « is entirely independent of
whether the same is true for any other process. Therefore,
whenever a procedure segment is made known to a process,
a copy of the procedure’s linkage section is made as a
segment within that process. In certain cases the linkage
sections of several procedures are combined into a single
linkage segment private to the process.

Linking. Figure 10 shows segments P, D and the
linkage section L, for P in process a. To implement refer-
ence to D|x from within segment P will require two refer-
ences by generalized address—one to access the pertinent
link data in L., and one to fetch the word addressed in
segment D. Realization of this minimum number of
references implies use of the indirect addressing feature of
the processor. Thus the link data for an established link
will be an indirect word pair containing the generalized

—_—y it
(a) sy mode
/pointer to <D>|x]

(b) D¥q is
x mode

Fig. 11. States of the link data

address D #,.|x (Figure 1la). Before the link is estab-
lished, an attempt by a process of computation « to
reference D|x through the link must lead to a trap of the
process and transfer of control to the system routines
that will establish the link and continue operation of the
process. For this purpose a special form of indirect word
pair is used which causes the desired trap. In Figure 11b
this is indicated by the code ft in the addressing mode
field of the pair. The segment number and word number
fields of the indirect word can then be used to inform
supervisory routines of the place to look to find the sym-
bolic address (D) | [x] associated with the link. This
address must be translated into a generalized address to
establish the link. The operation of changing the link
data to establish a link is called kinking.

It is desirable to keep the procedure segment P self-
contained if at all possible. Consequently the symbolic
address (D) | [x] pointed to by the unestablished link
should be part of the procedure segment P. Two look-up
operations are required on the part of supervisory routines
to establish the link. The symbolic reference name D
must be associated with a specific segment through a
search in the directory structure, and this segment must

Volume 11 / Number 5 / May, 1968

2-37

be made known to the process if a segment number has
not already been assigned.

The word number corresponding to the symbolic word
name x must also be determined. The set of associations
between symbolic word names and word numbers for a
segment is its symbol table and is part of the segment. Thus,
in our example, a list of word numbers corresponding to
symbolic word names that may appear in references to
segment D from other segments is included as part of

_segment D at a standard position known to the system.

This list is searched by a system routine to find the word
number required to establish a link.

The Link Pointer. A remaining question is: How does
a process produce the generalized address L # .|w required
to access the link data? One might suppose that word
address w could be fixed permanently at the time proce-
dure segment P was created. This is not possible because
the set of segments required by each process that might
share use of procedure P will in general be unrelated: If
the linkage sections of several procedures were placed in
a single segment, assigning a fixed position to a link for
all processes would produce intolerable conflicts. On the
other hand, the code by which an intersegment reference is
represented in segment P must be fixed and identical for
all computations to meet the pure procedure constraint.
Any data that allow different addresses to be formed from
fixed code must reside in processor registers. By this
argument we see the necessity of associating a lLinkage
pointer with each process. The linkage pointer is a gener-
alized address that resides in a dedicated base register
(designated lp). As shown in Figure 12, it is the origin
L # /s of the portion of a linkage segment that contains
the links for intersegment references made from the seg-
ment being executed.

References to external segments are coded relative to
the link pointer and have the form shown in Figure 12.
The displacement k is determined by the coding of P and
is invariant with respect to the process using P.

Procedure Call and Return. The coding used to trans-
fer control to a subprocedure and the subsequent return
of control must meet the requirements of programming
generality. In particular, no assumptions may be made
regarding the detailed coding of either the calling or
called procedure other than those aspects uniformly es-
tablished by convention. Conventions for four aspects of
subroutine calling are relatively familiar:

(1) Transmission of arguments.

(2) Arranging for return of control.

(3) Saving and restoring processor state.

(4) Allocating private storage for the called procedure.
Item (4) is necessary in MuLTics because of the pure
procedure requirement, and the generality requirement
which forbids prior arrangement of a called procedure’s
storage needs. This private storage is supplied by asso-
ciating the stack segment with each process in which a
frame of private storage is reserved at each procedure call.
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The frame is released upon return of control. This mecha-
nism is implemented by the stack pointer (designated
sp) which is the generalized address of the stack frame
origin for the procedure in operation. The use of the
stack segment makes every procedure in MULTICS
automatically recursive by associating separate stack
frames with successive entries into the same procedure.
Due to the pure procedure requirement, only fixed argu-
ments that do not depend on segment numbers may ap-
pear in procedure segments. Pointers and variable argu-
ments must be placed in the stack segment, the linkage
segment, or elsewhere. So that the language designer
may have his choice of implementation, the argument
pointer (designated ap) is at procedure entry the general-
ized address of the list of arguments for the called proce-
dure. .

In addition to these conventional requirements, the
method of dynamic linking just described introduces one
new problem: When process «, in executing procedure P,
transfers control to procedure Q, the value of linkage

P L.
A2
\ .f‘
- 11 L+
L~
<02k /,uc‘kion for P

\{izl k

F1e. 12. Addressing the link data

| opr Jaf * |

pointer must be changed to the generalized address of
the linkage section for procedure Q. Since the new value
of the linkage pointer contains a segment number, it is
private data of process « and cannot be placed in segment
PorQ.

This problem requires a somewhat modified form of
intersegment linkage from that used for data references.
Since it is desirable that the machine code necessary to
load the linkage pointer for a procedure segment be as-
sociated with that segment, the following solution was
adopted. For each external entry point within a procedure
segment, two additional instructions are placed in the
procedure’s linkage section at compilation time. The first
instruction loads the linkage pointer with the appro-
priate value at procedure entry, and the second instruc-
tion transfers control to the entry point in the called
procedure segment. Thus in establishing the link for an
external procedure call, the generalized indirect address
placed in the calling procedure’s link data points to the
corresponding instruction pair in the linkage section of
the procedure being called. When control passes to the

312 Communications of the ACM

linkage segment during an external procedure call, the
segment number portion of the desired linkage pointer is
easily obtained from the procedure base register, since
the process is now executing in the desired linkage seg-
ment.

P linkage section . linkage section Q
for P for Q
lop Iy _— .
I,———- // P /
JiI}
coll / // ,r/
|m -y
<a>|fe] -

L
iR ————— " | 1,1
TRAY, %

FiG. 13. Linkage mechanism for procedure entry

Figure 13 depicts the linkage mechanism required for
an external procedure call from procedure P to segment
Q at entry point e. The solid lines indicate the individual
steps taken through indirect addresses, while the dashed
lines indicate resulting flow of control.

In executing a call to an external procedure, the caller’s
machine conditions, including the procedure base register
and program counter, are saved in the stack segment by
the caller. Return from the called procedure can thus be
effected by simply restoring the caller’s machine condi-
tions from the stack segment.
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Protection and the Control of Information Sharing in Multics

by J.H. Saltzer. Reprinted from ACM Fourth
Symposium on Qperating System Principles, Yorktown

Heights, New York, October, 1873, with permission.

This paper provides a survey of all the different
techniques, mechanisms, and design principles that underlie the
control of access to information in Multics. Since it describes
an area that is a subject of continuing research at M.I.T., its
details (especially its list of weaknesses) ara going out of date
quite rapidly. Nevertheless, the general concern of the Multics
design that it support the need for privacy of individuals and
organizations is best exhibited by a comprehensive snapshot of

the mechanisms used.
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PROTECTION AND CONTROL

INFORMATION SHARING IN MULTICS

Jerome H. Saltzer

Massachusetts Institute of Technology
Department of Electrical Engineering and Project MAC

ABSTRACT

This paper describes the design of mechanisms to control sharing of information in the Multics system.
Seven design principles help provide insight into the tradeoffs among different possible designs. The key
mechanisms described include access control lists, hierarchical control of access specifications, identifi-
cation and authentication of users, and primary memory protection. The paper ends with a discussion of
several known weaknesses in the current protection mechanism design.

An essential part of a general-purpose computer
utility system is a set of protection mechanisms
which control the transfer of information among the
users of the utility. The Multics system*, a proto-
type computer utility, serves as a useful case
study of the protection mechanisms needed to permit
" controlled sharing of information in an on-line,
general-purpose, information-storing system. This
paper provides a survey of the various techmiques
currently used in Multics to provide controlled
sharing, user authentication, inter-user isolation,
supervisor-user protection, user-written proprie-
tary programs, and control of special privileges.

Controlled sharing of information was a goal
in the initial specifications of Multics[8, 11},
and thus has influenced every stage of the system
design, starting with the hardware modifications to
the General Electric 635 computer which produced
the original GE 645 base for Multics. As a result,
information protection is more thoroughly inte-
grated into the basic design of Multics than is the
cage for those commercial systems whose original
specifications did not include comprehensive con-
sideration of information protection.

Multics is an evolving system, so any case
study must be a snapshot taken at some specific
time. The time chosen for this snapshot is
summer, 1973, at which time Multics is operating
at M.I.T. using the Honeywell 6180 computer system.
Rather than trying to document every detail of a
changing environment, this paper concentrates on
the protection strategy of Multics, with the goal
of communicating those ideas which can be applied
or adapted to other operating systems.

This research was supported by the Advanced Research
Projects Agency of the Department of Defense under
ARPA Order No. 2095 which was monitored by ONR
Contract No. N0OO14-70-A-0362-0006.

* A brief description of Multics, and a more com-
plete bibliography, are given in the paper by
Corbatd, Saltzer, and Clingen[6].

What is new?

In trying to identify the ideas related to
protection which were first introduced by Multics,
a certain amount of confusion occurs. The design
was initially laid out in 1964-1967, and ideas
were borrowed from many sources and embellished,
and new ideas were added. Since then, the system
has been available for study to many other system
designers, who have in turn borrowed and embellished
upon the ideas they found in Multics while construc-
ting their own systems. Thus some of the ideas
reported here have already appeared in the litera-
ture. Of the ideas reported here, the following
seem to be both novel and previously unreported:

- The notion of designing a comprehensive com-
puter utility with information protection as
a fundamental objective.

- Operation of the supervisor under the same
hardware constraints as user programs, under
descriptor control and in the same address
space as the user.

- Facilities for user-constructed protected
subsystems.

- An access control system applicable to batch
as well as on-line jobs.

- Extensive human engineering of the user authen-
tication (password) interface.

- Decentralization of administrative control of
the protection mechanisms.

- Ability to allow or revoke access with
immediate effect.

Multics is unique in the extent to which infor-
mation protection has been permitted to influence
the entire system design. By describing the range
of protection ideas embedded in Multics, the ex-
tent of this influence should become apparent.

Before proceeding, it is useful to review
several design principles which were used in the

development of facilities for information protec-
tion in Multics. These design principles provided



guidance in many decisions, although admittedly
some of the principles were articulated only
during the design, rather than in advance.

1. Every designer should know and understand 'the
protection objectives of the system. At the
present rather shaky stage of understanding of
operating system engineering, there are many
points at which an apparently '"'don't care'
decision actually has a bearing on protection.
Although these decisions will eventually come
to light as the system design is integrated, a
system design cannot withstand very many rever-
sals of early design decisions if it is to be
completed on a reasonable schedule and within
a budget. By keeping all designers aware of
the protection objectives, the early decisions
are more likely to be made correctly.

2. Keep the design as simple and small as possible.
This principle is stated so often that it be-
comes tiresome to hear. However, it bears
repeating with respect to protection mechanisms,
since there is a special problem: design and
implementation errors which result in unwanted
access paths will not be immediately noticed
during routine use, since routine use usually
does not include attempts to utilize improper
access paths. Therefore, techniques such as
complete, line-by-line auditing of the protec-
tion mechanisms are necessary; for such
techniques to be successful, a small and simple
design is essential.

3. Protection mechanisms should be based on per-
mission rather than exclusion. This principle
means that the default situation is lack of
access, and the protection scheme provides
selective permission for specific purposes.
The alternative, in which mechanisms attempt
to screen off sections of an otherwise open
system, seems to present the wrong psychologi-
cal base for secure system design. A conser-
vative design must be based on arguments on
why objects should be accessible, rather than
on why they should not; in a large system some
objects will be inadequately considered and a
default of lack of access is more fail-safe.
Along the same line of reasoning, a design or
implementation mistake in a mechanism which
gives explicit permission tends to fail by re-
fusing permission, a safe situation, since it
will be quickly detected. On the other hand
a design or implementation mistake in a
mechanism which explicitly excludes access
tends to fail by not excluding access, a fail-
ure which may go unnoticed.

4, Every access to every object must be checked
for authority. This principle, when applied
methodically, is the primary underpinning of
the protection system. It forces a system-
wide view of access control which includes
initialization, recovery, shutdown, and main-
tenance. It also implies that a foolproof
method of identifying the source of every re-
quest must be devised. In a system designed
to operate continuously, this principle re-
quires that when access decisions are remem-
bered for future use, careful consideration
be given to how changes in authority are pro-
pagated into such local memories.

5. The design is not secret. The mechanisms do
not depend on the ignorance of potential
attackers, but rather on possession of speci-
fic, more easily protected, protection keys or
passwords. This strong decoupling between pro-
tection mechanisms and protection keys permits
the mechanisms to be reviewed and examined by
as many competent authorities as possible,
without concern that such review may itself
compromise the safeguards. Peters[19] and
Baran{2] discuss this point further.

6. The principle of least privilege. Every pro-
gram and every privileged user of the system
should operate using the least amount of privi-
lege necessary to complete the job. If this
principle is followed, the effect of accidents
is reduced. Also, if a question related to
misuse of a privilege occurs, the number of
programs which must be audited is minimized.
Put another way, if one has a mechanism avail-
able which can provide "firewalls'", the prin-
ciple of least privilege provides a rationale
for where to install the firewalls.

7. Make sure that the design encourages correct
behavior in the users, operators, and admin-
istrators of the system. Experience with
systems which did not follow this principle
revealed numerous examples in which users ig-
nored or bypassed protection mechanisms for
the sake of convenience. It is essential that
the human interface be designed for natural-
ness, ease of use, and simplicity, so that
users will routinely and automatically apply
the protection mechanisms.

The application of these seven design principles
will be evident in many of the specific mechanisms
described in this paper.

Finally, in the design of Multics there were
two additional functional objectives worth dwelling
upon. The first of these was to provide the option
of complete decentralization of the administration
of protection specifications. If the system design
forces all administrative decisions (e.g., protec-
tion specifications) to be set by a single adminis~
trator, that administrator quickly becomes a bottle-
neck and an impediment to effective use of the
system, with the result that users begin adopting
habits which bypass the administrator, often com-
promising protection in the bargain. Even if re-
sponsibility can be distributed among several ad-
ministrators, the same effects may occur. Only by
permitting the individual user some control of his
own administrative environment can one insist that
he take responsibility for his work. Of course,
centralization of authority should be available as
an option. It is easy to limit decentralization;
it seems harder to adapt a centralized design to
an environment in which decentralization is needed.

The second additional functional objective
was to assume that some users will require protec-
tion schemes not anticipated in the original design.
Thie ohisctive requires that the system provide a
complete set of handholds so that the user, without
exercising special privileges, may construct a pro-
tection environment which can interpret access re-
quests however he desires. The method used is to
permit any user to construct a protected subsystem,
which is a collection of programs and data with
the property that the data may be accessed




only by programs in the subsystem, and the programs
may be entered only at designated entry points. A
protected subsystem can thus be used to program
any desired access control scheme.

The Storage System and Access Control Lists

The central fixture of Multics is an organized
information storage system.{8] Since the ‘storage
system provides both reliability and protection
from unauthorized information release, the user is
thereby encouraged to make it the repository of all
of his programs and data files. All use of infor-
mation in the storage system is implemented by
mapping the information into the virtual memory of
some Multics process. Physical storage location is
automatically determined by activity. As a result,
the storage system is also used for all system data
bases and tables, including those related to protec-
tion. The consequence of these observations is that
one access control mechanism, that of the storage
system, handles almost all of the protection
responsibility in Multics.

Storage is logically organized in separately
named data storage segments, each of which contains
up to 262,144 36-bit words. A segment is the cata-
loguing unit of the storage system, and it is also
the unit of separate protection. Associated with
each segment is an access control list, an open-
ended list of names of users who are permitted to
reference the segment®. To understand the struc-
ture of the access control list, first consider
that every access to a stored segment is actually
made by a Multics process. Associated with each
process is an unforgeable character string identi-
fier, assigned to the process when it was created.
In its simplest form, this identifier might consist
of the personal name of the individual responsible
for the actions of the process. (This responsible
person is commonly called the principal, and the
identifier the principal identifier.) Whenever
the process attempts to access a segment or other
object catalogued by the storage system, the prin-
cipal identifier of the process is compared with
those appearing on the access control list of the
object; if any match is found access is granted.

Actually, Multics uses a more flexible scheme
which facilitates granting access to groups of
users, not all of whose members are known, and
which may have dynamically varying membership. A
principal identifier in Multics consists of several
parts; each part of the identifier corresponds to
an independent, exhaustive partition of all users
into named groups. At present, the standard
Multics principal identifier contains three parts,
corresponding to three partitions:

1. The first partition places every individual
user of the installation in a separate access
control group by himself, and names the group
with his personal name. (This partition is
identical to the simple mechanism of the
previous paragraph.)

2. The second partition places users in groups
called projects, which are basically sets of
users who cooperate in some activity such as
constructing a compiler or updating an

* The Multics access control list corresponds
roughly to a column of Lampson's protection
matrix. [16]
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inventory file. One person may be a member of
several projects, although at the beginning of
any instance of his use of Multics he must de-
cide under which project he is operating.

3. The third partition allows an individual user
to create his own, named protection compart-
ments. Private compartments are chiefly use-
ful for the user who has borrowed a program
which he has not audited, and wishes to insure
that the borrowed program does not access cer-
tain of his own files. The user may designate
which of his own partitions he wishes to use
at the time he authenticates his identity*.

Although the precise description in terms of
exhaustive partitions sounds formidable, in practice
a relatively easy-to-use mechanism results. For
example, the user named "Jones" working on the pro-
ject named "Inventory" and designating the personal
compartment named 'a" would be assigned the princi-
pal identifier:

Jones. Inventory.a

Whenever his process attempts to access ‘an object
catalogued by the storage system, this three part
principal identifier is first compared with succes-
sive entries of the access control list for the
object. An access control list entry similarly has
three parts, but with the additional convention
that any or all of the parts may carry a special
flag to indicate "don't care'" for that particular
partition. (We represent the special flag with an
asterisk in the following examples.) Thus, the
access control list entry

Jones. Inventory.a

would permit access to exactly the principal of our
earlier example. The access control list entry

Jones.* *

would permit access to Jones no matter what project
he is operating under, and independent of his per-
sonally designated compartment. Finally, the access
control list entry

*,Inventory.*

would permit access to all users of the "Inventory"
project. Matching is on a part by part basis, so
there is no confusion if there happens to be a
project named "Jones".

Using multi-component principal identifiers it
is straightforward to implement a variety of stan-
dard security mechanisms. For example, the military
"need-to-know" list corresponds to a series of
access control list entries with explicit user names
but (possibly) asterisks in the remaining fields.
The standard government security compartments are
examples of additional partitions, and would be
implemented by extending the principal identifier
to four or more parts, each additional part corres-
ponding to one compartment in use at a particular
installation. (Every person would be either in or
out of each such compartment.) A restriction of
access to users who are simultaneously in two or
more compartments is then easily expressed.

* The third partition has not yet been completely
implemented. The current system uses the third
partition only to distinguish between interactive
and absentee use of the system.



We have used the term "object™ to describe the
entities catalogued by the storage system with the
intent of implying that segments are not the only
kinds of objects. Currently, four kinds of objects
are implemented or envisioned:

1. Segments

2 Message queues (experimental implementation)

3. Directories (called catalogues in some systems)
4

Removable media descriptors (not yet imple-
mented)

For each object, there are several separately
controllable modes of access to the object. For
example, a segment may be read, written, or exe-
cuted as a procedure. If we use the letters r, w,
and e for these three modes of access, an access
control list entry for a segment may specify any of
the combinations of access in table I. Certain
access mode combinations are prohibited either be-
cause they make no sense (e.g., write only) or cor-
rect implementation requires more sophisticated
machinery than implied by the simple mode settings.
(For example, an execute-only mode, while appealing
as a method for obtaining proprietary procedures,
leaves unsolved certain problems of general pro-
prietary procedures, such as protection of return
points of calls to other procedures. The protec-
tion ring mechanism described later is used in
Multics to implement proprietary procedures. The
execute-only mode, while probably useful for less
general cases, has not been pursued.)

Mode Typical use
(none) access denied

r read-only data
re pure procedure
™ writeable data
Tew impure procedure

Table I: Acceptable combinations of access
modes for a segment.

In a similar way, message queues permit sepa-
rate control of enqueueing and dequeueing of
messages, tape reel media descriptors permit
separate control of reading, writing, and appending
to the end of a tape reel, and directories permit
separate control of listing of contents, modifying
existing entries, and adding new entries. Control
of these various forms of access to objects is pro-
vided by extending each access control list entry
to include access mode indicators. Thus, the access
control list entry

Smith.*.* rw

permits Smith to read and write the data segment
associated with the entry.

It would have been simpler to associate an
access mode with the object itself, rather than
with each individual access control list entry, but
the flexibility of allowing different users to have
different access modes seems useful. It also makes
possible exceptions to the granting of access to
all members of a group. In the case where more
than one access control list entry applies, with
different access modes, the convention is made that
the first access control list entry which matches

the principal identifier of the requesting process
is the one which applies. Thus, the pair of access
control list entries:

Smith.Inventory.*  (none)

*,Inventory.* rw

would deny access to Smith, while permitting all
other members of the "Inventory" project to read
and write the segment*. To insure that such con-
trol is effective, when an entry is added to an
access control list, it is sorted into the ,list
according to how specific the entry is by the fol-
lowing rule: all entries containing specific names
in the first part are placed before those with
"don't cares" in the first part. Each ‘of those:
subgroups is then similarly ordered according to
the second part, and so on. The purpose of this
sorting is to allow very specific additions to an
access control list to tend to take precedence over
previously existing (perhaps by default) less
specific entries, without requiring that the user
master a language which permits him arbitrary
ordering of entries. The result is that most com-
mon access control intentions are handled correctly
automatically, and only unusually sophisticated
intentions require careful analysis by the user to
get them to come out right.

To minimize the explicit attention which a
user must give to setting access control lists,
every directory contains an "initial access control
list". Whenever a new object is created in that
directory, the contents of the initial access con-
trol list are copied into the access control list
of the newly created object** oOnly if the user
wishes access to be handled differently than this
does he have to take explicit action. Permission
to modify a directory's contents implies also
permisgion to modify its initial access control
list.

The access control list mechanism illustrates
an interesting subtlety. One might consgider pro-
viding, as a convenience, checking of new access
control list entries at the time they are made, for
example to warn a user that he has just created an
access control list entry for a non-existent person.
Such checks were initially implemented in Multics,

* This feature violates design principle three,
which proscribes selective exclusion from an other-
wise open environment because of the risk of un-
detected errors. The feature has been provided
nevertheless, because the alternative of listing
every user except the few excluded seems clumsy.

** An earlier version of Multics did not copy the
initial access control list, but instead considered
it to be a common appendix to every access control
list in that directory. That strategy made auto-
matic sorting of access control list entries in-
effective, so sorting was left to the user. As a
result, the net effect of a single change to the
common appendix could be different for every object
in the directory, leading to frequent mistakes and
confusion, in violation of the seventh design prin-
ciple. Since in the protection area, it is essen-
tial that a user be able to easily understand the
consequences of an action, this apparently more
flexible design was abandoned in favor of the less
flexible but more understandable one.



but it was quickly noticed that they represented a
kind of compromise of privacy: by creating an
access control list entry naming an individual, the
presence or absence of an error message would tell
whether or not that individual was a registered
user of the system, thereby possibly compromising
his privacy. ' For this reason, a name-encoding
scheme which required checking of access control
entry names at the time they were created was
abandoned.

It is also interesting to compare the Multics
access control scheme with that of the earlier CTSS
system[6]. 1In CTSS, each file had a set of access
restriction bits, applying to all users. Sharing
of files was accomplished by permitting other users
to place in their directories special entries
called links, which named the original file, and
typically contained further restrictions on allow-
able access modes. The CTSS scheme had several de-
fects not present in the Multics arrangement:

1. Once a link was in place there was no way to
remove it without modifying the borrower's
directory. Thus, revocation of access was
awkward.

2. A single user, using the same file via differ-
ent links, could have different access privi-
leges, depending on which link he used.
Allowing access rights to depend on the name
which happens to be used for an object cer-
tainly introduced an extra degree of flexi-
bility, but this flexibility more often re-
sulted in mistakes than in usefulness,

3. As part of a protection audit, one would like
to be able to obtain a list of all users who
can access a file. To construct that list,
on CTSS, one had to search every directory in
the system to make a list of links. Thus such
an audit was expensive and also compromised
other users' privacy.

Multics retains the concept of a link as a naming
convenience, but the Multics link confers no access
privileges -- it is only an indirect address.

Early in the design of Multics[8] an additional
extension was proposed for an access control list
entry: the "trap" extension, consisting of a one-
bit flag and the name of a procedure. The idea
was that for all users whose principal identifier
matched with that entry, if the trap flag were on
the procedure named in the trap extension should
be called before access be granted. The procedure,
supplied by the setter of the access control list
entry, could supply arbitrary access constraints,
such as permitting access only during certain hours
or only after asking another logged in user for an
OK. This idea, like that of the execute-only pro-
cedure, is appealing but requires an astonishing
amount of supporting mechanism. The trap proce-
dure cannot be run in the requesting user's address-
ing and protection environment, since he is in con-
trol of the environment and could easily subvert
the trap procedure. Since the trap procedure is
supplied by another user, it cannot be run in the
supervisor's protection environment, either, so a
separate, protected subsystem environment is called
for. Since the current Multics protected subsystem
scheme allows a subsystem to have access to all of
its user's files, implementation of the trap exten-
sion could expose a user to unexpected threats from
trap procedures on any data segment he touches.
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Therefore, at the least, a user should be able to
request that he be denied access to objects pro-
tected by trap extensions, rather than be subject
to unexpected threats from trap procedures. Finally,
if such a trap occurs on every read or write refer-
ence to the segment, the cost would seem to be high.
On the other hand, if the trap occurs only at the
time the segment is mapped into a user's address
space®, then design principle four, that every
reference be validated, is violated; revocation of
access becomes difficult especially if the system
is operated continuously for long periods. The sum
total of these considerations led to temporarily
abandoning the idea of the trap extension, perhaps
until such time as a more general domain scheme,
such as that suggested by Schroeder[21] is
available.

Both backup copying of segments (for reliabil-
ity) and bulk input and output to printers, etc.
are carried out by operator-controlled processes
which are subject to access control just as are
ordinary users. Thus a user can insure that print-
ed copies of a segment are not accidentally made,
by failing to provide an access control list entry
which permits the printer process to read the
segment** Access control list entries permitting
backup and bulk I/0 are usually part of the default
initial access control list. Bulk input of cards
is accomplished by an operator process which reads
them into a system directory, and leaves a note for
the user in question to move them to his own
directory. This strategy guarantees that there is
no way in which one user can overwrite another
user's segment by submitting a spurious card inmput
request. These mechanisms are examples of the
fourth design principle: every access to every
object is checked for authority.

An administrative consequence of the access
control list organization is that personal and pro-
ject names, once assigned, cannot easily be reused,
since the names may appear in access control lists.
In principle, a system administrator could, when a
user departs, unregister him and then examine every
access control list of the storage system for in-
stances of that name, and delete them. The system
has been deliberately designed to discourage such
a strategy, on the basis that a system administrator
should not routinely paw through all the directories
of all system users. Thus, the alternative scheme
was adopted, requiring all user names, once regis-
tered, to be permanent.

Finally, the one most apparent limitation of
the scheme as presently implemented is its '"one-
way" control of access. With the described access
control list organization, the owner of a segment
has complete control over who may access it. There
are some cases in which users other than the owner
may wish to see access restricted to an object
which the owner has declared public. For example,
an instructor of a class may for pedagogical pur-
poses wish to require his students to write a

*# Or, in traditional file systems, at the time the
file is "opened".

*% Of course, another user who has permission to
read the segment could make a copy and then have
the copy printed. Methods of constraining even
users who have permission are the subject of con-
tinuing research(20].
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particular program rather than make use of an equiva-
lent one already publicly available in the system.
Alternatively, a project administrator concerned
about security may wish to insure that his project
members cannot copy sensitive information into stor-
age areas belonging to other users and which are
not under his control. He may also want to prevent
his project members from setting access control
lists to permit access by users outside the project.
This kind of control can be expressed in Multics
currently only by going to the trouble of construc-
ting a protected subsystem which examines all super-
visor calls, thereby permitting complete control
‘over which objects are mapped into the address space
and what terms are added to access control lists.
Fortunately, there have so far appeared only a few
examples in which such control is required, and the
escape suggested has proven adequate for those cases.
A more general, yet quite simple, solution would be
to associate with the user's process two constrain-
ing lists: a list of pathnames of directories
whose contents he may access, and a list of access
control list terms which he is permitted to place on
access control lists. These two constraining lists
would be set only by the project administrator or
security officer. The constraining lists would be
especially useful in the military security environ-
ment, since they would help in the construction of
a list of items a defector might have had access to.

As is evident, the Multics access control list
mechanism represents an engineering tradeoff among
three conflicting goals: flexibility of expression,
ease of understanding and use, and economy of
implementation. Additional flexibility of expres-
sion was tried (e.g., the common access control
list mechanism previously footnoted) with the con-
clusion that the additional confusion which results
from accidental misuse of the generality can out-
weigh the benefits; apparently the correct direction
is the opposite, toward simpler, less general, and
more easily understandable protection structures.

Hierarchical Control of Access Specifications

Since in Multics every object, including a
directory, must be catalogued in some directory, all
objects are arranged into a single hierarchical tree
of directories. This naming hierarchy also provides
a hierarchy of control of access, through the
ability to modify the contents of a directory.

Since a directory entry consists of the name of some
object and its access control list, having access to
modify directory entries is interpreted to include
the ability to modify the access control lists of
all the objects catalogued in that directory. No
further hierarchical control is provided; for
example, there is no ability to say "Allow read ac-
cess to Jones for all segments below this node in
the naming tree”. Such specifications are similar
in nature to the '"common access control list'' men-
tioned before; they make it difficult for a user to
be sure of all the consequences of a change to the
access specification. For example, removing a
specification such as that quoted above, which per-
mits only reading, might render effective a forgotten
access control term lower in the naming hierarchy
which permits both reading and writing*.

* Early versions of Multics provided a limited
form of higher-level specification in the form of
ability to deny all use of a directory, and

Although it would appear that the hierarchical
scheme provides an inordinate amount of power to a
project administrator and, above him, to a system
administrator, in practice it forces a careful
consideration of the lines of authority over pro-
tected information, and explicit recognition of an
authority hierarchy which already existed. In some
environments, it would probably be appropriate to
publicly log all modifications of directory access
above some level, so as to provide a measure of
control of the use of hierarchical authority. More
elaborate controls might include requiring coopera-
tive consent of some quasi-judicial committee of
users for modification of high-level directory
access., Such controls are relatively easy for an
installation or a project to implement, using pro-
tected subsystems.

It is possible, by choosing access modes
correctly, to use the hierarchical access control
scheme in combination with the initial access con-
trol list to accomplish a totally centralized con-
trol of all access decisions. If, for example, a
project administrator creates a directory for a
user, places an initial access control list in that
directory, and then grants to the new user per-
mission only to add new entries to the directory,
all such new entries would automatically receive a
copy of the initial access control list determined
by the administrator =-- the user would have no con-
trol over who may use the objects he creates. By
policy, a system administrator could run an entire
installation under this tight control, and retain
for himself complete authority to determine what
access control list is placed on every object, as
in IBM's Resource Security System[l4]. Alterna-
tively, any smaller portion of the naming hier-
archy can be kept under absolute control by the
person having authority to modify access control
lists at the top node of the portion.

The other obvious alternative to a hierarchi-
cal control of modification of access control lists
would be some form of self-control. That is, the
ability to modify an access control list would be
one of the modes of access controlled by the list
itself. A very general version of this alternative
has been explored by Rotenberg[20]. This alterna-
tive has not been tried out in the Multics context,
partly because the implications of the hierarchical
method were easier to understand in the first imple-
mentation. Probably the chief advantage of self-
control of access modification would be that one
could provide an individual a fully private work
area in which no one -- manager, security officer,
or system administrator -- could intrude. On the
other hand, the implementation of a "locksmith"
while easy to do may require introducing hidden
access paths which are then subject to misuse*,

therefore of the objects contained within it. For
the reasons suggested, this feature has been
disabled.

* A locksmith would be an administrator who can
provide accountable intervention when migtakes are
made. For example, if an organization's key data
base is under the exclusive control of a manager
who has been disabled in an automobile accident,
the locksmith could then provide another manager
with access to the file. It seems appropriate to
formalize the concept of a locksmith so that appro-
priate audit trails and authority to be a locksmith



Also, one wonders how a self-control scheme would
fit smoothly into an organization which does not
usually give an individual the privilege of choos-
ing his own office door lock. Clearly, the social
and orgadizational consequences of the choice be-
tween these two design alternatives deserve fur-
ther study.

Authentication of users

All of the machinery of access control lists,
access modes, protected subsystems, and hierarchi-
cal control depend on an accurate principal iden-
tifier being associated with every process.
Accuracy of identification depends on authentica-
tion of the user's claimed identity. A variety of
mechanisms are used to help insure the security of
this authenticaticn. The general strategy chosen
by Multics is to maintain individual accountability

"on a personal basis. Every user of a given instal-
lation (with one class of exception, noted later)
is registered at the installation, which means that
a unique name, usually his last name plus one or
two initials, is permanently entered in a system
registry. Associated with his name at the time he
is registered is a password of up to eight ASCII
characters. Whenever any person proposes to use
the system, he supplies his unique name, at which
point the system demands also that he provide his
password.

Thus far, the authentication mechanism of
Multics is essentially the same as for most other
remote-accessed systems. However, Multics uses
-several extra measures related to user authentica-
tion, which are not often found in other systems.
For one, all use of the system, whether interactive
or absentee (batch) is authenticated interactively.
That is, initiation of a batch job is not done on
the basis of information found in a card reader.
Arriving card decks are read in and held in on-line
storage by a system process, for which an operator
is responsible. All absentee jobs, whether they
are to be controlled by files created from cards
or files constructed interactively or files con-
structed by another program, must be initiated by
some job already on the system, and whose legiti-
macy has been previously authenticated. Although
a chain of absentee job requests can be developed,
the chain must have begun with an interactive job,
which requires interactive authentication. 1In
the simplest case, the individual responsible goes
to an interactive console, identifies and authen-
ticates himself, and requests execution of the job
represented by the incoming card deck. If neces-
sary, the request will automatically wait until
the card deck arrives, so that the user need not
wait for the operator or for a card reader queue’ .
Thus, no job is every run without prior positive
identification of the responsible party. Note
that for installations in which responsibility for
card controlled jobs is considered unimportant, it
is rather trivial to construct a Multics program,
run under the responsibility of the card reader

can be well-defined. The alternative of sending

a system programmer into the computer room with
instructions to directly patch the system or its
data may leave no audit trail and almost certainly
encourages sloppy practice.

* The automatic wait is not yet implemented.
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operator, which accepts and runs as a job anything
found in the card reader. All such jobs would be
run in processes bearing the principal identifier of
the card reader operator, and are thus constrained
in the range of on-line information which they can
access. The inviolate principle of access control
remains that on-line authentication of identity, by
presenting a password, is required in order to start
a process labeled with a particular desired principal
identifier. Note also that the fact that a job
happens to be operated without an interactive ter-
minal has no bearing on its privileges, except as
explicitly controlled by its principal identifier.
Finally, to handle the situation where a busy
researcher asks a friend to submit the batch job,

a proxy login scheme permits the friend to identify
himself, under his own password, and then request
that the job be run under the principal identifier
of the original researcher. The system will permit
proxy logins only if the person responsible for the
principal identifier to be used has previously
authorized such logins by giving a list of proxies*

As to protection of passwords, several facili-
ties are provided. The user may, after authenti-
cating himself, change his password at any time he
feels that the old one may have been compromised.

A program is available which will generate a new
random eight-character password with English digraph
statistics, thereby making it pronounceable and easy
to memorize, and minimizing the need for written
copies of the password. Users are encouraged to
obtain their passwords from this program, rather
than choosing passwords themselves, since human-
chosen passwords are often surprisingly easy to
guess. Passwords are stored in the file system in
mildly encrypted form, using a one-way encryption
scheme along the lines suggested by Wilkes[29].

As a result, passwords are not routinely known by
any system administrator or project administrators,
and there is never any occasion for which it is even
appropriate to print out lists of passwords. If,
through some accident, a stored password is exposed,
its usefulness is reduced by its encrypted form.

When the user is requested to give his password,
at login time, the printer on his terminal is turned
off, if possible, or else a background of garbling
characters is first printed in the area where he is
to type his password. Although the user could be
indoctrinated to tear off and destroy the piece of
paper containing his password, by routinely protec-
ting it for him the system encourages a concern for
security on the part of the user. In addition, if
the user's boss (or gomeone from four levels of
management higher) happens to be looking over his
shoulder as he logs in, the user is not faced with
the awkward social problem of scrambling to conceal
his password from a superior who could potentially
take offense at an implication that he is not to be
trusted with the information.

A time-out is provided to help protect the
user who leaves his terminal, is distracted, and
forgets to log out. If no activity occurs for a
period, a logout is automatically generated. The
length of the time-out period can be adjusted to
suit the needs of a particular installation.
Similarly, whenever service is interrupted by a
system failure for more than a moment, a new login

% The proxy login is not yet implemented.
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is required of all interactive users, since some
users may have given up and left their terminals.

Finally, several logging and penetration
detection techniques help prevent attacks via the
password routine. If a user provides an incorrect
password, the event of an incorrect login attempt
is noted in a threat-monitoring log, and the user is
permitted to try again, up to a limit of ten times
at which point the telephone (or network) connec-
tion is forcibly broken by the system, introducing
delay to frustrate systematic penetration attempts.
Whenever a user logs in, the time and physical lo-
cation (terminal identification) of his previous
login are printed out in his greeting message,
thus giving him an opportunity to notice if his
password has been used by someone else in his
Similarly, monthly accounting reports
break down usage by shift and services used, and
may be reviewed on-line at any time, thereby pro-
viding an opportunity for the individual to compare
his pattern of use with that observed by the
system, and perhaps to thereby detect unauthorized
use. If either of these mechanisms suggests un-
authorized use, the individual involved may ask
the system administrator to check the system log,
which contains an entry for every login and logout
giving date and time, terminal type used, and ter-
minal identification, if any.

For a project which maintains especially sen-
sitive information, the project administrator may
designate the initial procedure to be executed by
some or all processes created using the name of
that project as part of its principal identifier.
This initial procedure, supplied by the project
administrator, has complete control of the process,
and can demand further authentication (e.g., a
one-time password or a challenge-response scheme,)
perform project logging of the result, constrain
the user to a subset of the available facilities,
or initiate a logout sequence, thereby refusing
access to the user. In the other direction, some
projects may wish to allow unlimited public access
to their files. If so, the project administrator
may indicate that his project will accept login of
unauthenticated users. In such a case, the system

* With ASCII passwords chosen to match English
digraph frequency, a little less than four bits of
information are represented by each character
(despite the eight or nine bits required to store
the characters.) An eight character password thus
carries about 30 bits of information, which would
require about 109 guesses using an information
theoretic optimum guessing strategy. If one mount-
ed a simultaneous attack from 100 computer-driven
terminals, and the system-imposed delays average
only 10 milliseconds per attempt, about 105 seconds,
or one full day of systematic attack would be re-
quired to guess a password. Although use of a
uniformly random password generator would increase
this work factor by several orders of magnitude,

resistance to use of hard-to-remember passwords and
the need to make written copies might act to wipe
out the gain. Of course, this work factor calcula-
tion presumes that the attacker has no further
basis on which to narrow the range of password
possibilities, for example, by knowing that the
user in question may have chosen his own password,
or by wiretapping a previous login.

does not demand a password, instead assigning the
personal name '"anonymous' to the principal identi-
fier of the process involved, using the name of the
responsible project for the second part of the
principal identifier. The principal identifier
"anonymous" is the one exception to the registration
scheme mentioned earlier. Allowing anonymous users
does not compromise the security of the storage
system, since the principal identifier is constrain-
ed, and all storage system access is based on the
principal identifier. The primary use of anonymous
users has been for educational purposes, in which
all students in a class are to perform some assign-
ment. Sometimes, this feature is coupled with the
project-designated initial procedure, so that the
project may implement its own password scheme, or
control what facilities are made available, so as

to limit its financial liability. Some statistical
analysis and data-base development projects also
permit anonymous use of data-retrieval programs.

The objective of many of these mechanisms, such
as simple registration of every user, the proxy
login, the anonymous user, concealment of printed
passwords, and user changeable passwords, together
with a storage system which permits all authorized
sharing of information, is to provide an environ-
ment in which there is never any need for anyone
to know a password other than his own. Experience
with the earlier CTSS system demonstrated that by
omitting any of these features, the system itself
may encourage borrowing of passwords, with an
attendent reduction in overall security.

Primary Memory Protection

We may consider the access control list to be
the first level of mechanism providing protection
for stored information., Most of the burden of
keeping users' programs from interfering with one
another, with protected subsystems, and with the
supervisor is actually carried by a second level of
mechanism, which is descriptor-based. This second
level is introduced essentially for speed, so that
arbitration of access may occur on every reference
to memory. As a result, the second level is imple-
mented mostly in hardware in the central processing
unit of the Honeywell 6180. Of course, this
strategy requires that the second level of mechanism
be operated in such a way as to carry out the intent
expressed in the first level access control lists.

As described by Bensoussan et al.[4] the
Multics virtual memory is segmented to permit shar-
ing of objects in the virtual memory, and to simpli-
fy address space management for the programmer.

The implementation of segmentation uses addressing
descriptors, a technique used, for example, in the
Burroughs B5000 computer systems[9]. The Burroughs
implementation of a descriptor is exclusively as an
addressing and type-labeling mechanism, with protec~
tion provided on the basis that a process may access
only those objects for which it has names. 1In
Multics, the function of the descriptor* is extended
to include modes of access (read, write, and exe-
cute) and to provide for protected subsystems which
share object names with their users. Evans and
LeClerc[10] were among the first to describe the
usefulness of such an extension.

* With the exception of type identification,
which is not provided in Multics.



As shown in figure one, there are three
classes of descriptor extensions for protection
purposes: mode control, protected subsystem entry
control, and control on which protected subsystems
may use the descriptor at all. Every reference of
the processor to the segment described by this
descriptor is thus checked for validity.

The virtual address space of a Multics pro-
cess is implemented with an array of descriptors,
called a descriptor segment, as in figure two.
Every reference to the virtual memory specifies
both a segment number (which is interpreted as an
index into the descriptor segment) and a word num-
ber within the segment.

Figure two also helps illustrate why the pro-
tection information is associated with the address-
ing descriptor rather than with the data itself¥.
Each computation is carried out in its own address
space, so each computation has its own private
descriptor segment. Using this mechanism, a single
physical segment may appear in different address
spaces with different access privileges for differ-
ent users, even though they are referring to the
same physical data. Since in a multiprocessor
system such as Multics two such processes may be
executing simultaneously, a single protection
specification associated with the data is not

* The alternate option is chosen, for example, in
the IBM 360/67 and the IBM 370 “Advanced Function"
. virtual memory systems[24].
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basic descriptor extension for protection
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based on this descriptor.

(@ Bits separately controlling permission to
read, write, and execute the contents of
the segment based on this descriptor.

@ Control of permission to enter a protected
subsystem which has entry points in the
segment based on this descriptor.

() Controls on which (hierarchically arranged)
protected subsystems may use this descriptor.

Figure 1 -- A Multics descriptor.

sufficient, Having the protection specification
associated with the descriptor allows for such
controlled sharing to be handled easily.

An unusual feature of the descriptors used in
Multics. is embodied in the second and third exten-
sions of figure one. Together, they allow hard-
ware enforcement of protected subsystems. A pro-
tected subsystem is a collection of procedures and
data bases which are intended to be used only by

- calls to designated entry points, known in Multics
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VM access by access control list checker to read principal identifier and access control list.

VM access to write new addressing and protection descriptor into descriptor segment.

Figure 2 -- Descriptor management in Multics. The Multics supervisor is treated as a protected subsystem.
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as gates. If this intention is hardware enforced,
it is possible to construct proprietary programs
which cannot be read, data base managers which
return only statistics rather than raw data to some
callers, and debugging tools which cannot be acci-
dentally disabled. The descriptor extensions are
used to authenticate subroutine calls to protected
subsystems. Two important advantages flow from
using a hardware checked call:

1. Calls to protected subsystems use the same
structural mechanisms as do calls to unpro-
tected subroutines, with the same cost in
execution time. Thus a programmer does not
need to take the fact that he is calling a
protected subsystem into account when he tries
to estimate the performance of a new program
design.

2. It is quite easy to extend to the user the
ability to write protected subsystems of his
own. Without any special privileges, any user
may develop his own proprietary program, data-
screening system, or extra authentication
system, and be assured that even though he per-
mits others to use his protected subsystem,
the information he is protecting receives the
same kind of security as does the supervisor
itself.

In support of call protection, hardware is also
provided to automatically check the addresses of
all arguments as they are used, to be sure that
the caller has access to them. Checking the range
of the argument values is left to the protected
subsystem.

Protected subsystems are formed by using the
third field of the descriptor extension of figure
one. To simplify protected subsystem implementa-
tion, Multics imposes a hierarchical constraint
on all subsystems which operate within a single
process: each subsystem is assigned a number, be-
tween 0 and 7, and it is permitted to use all of

- thoge descriptors containing protected subsystem

numbers greater than or equal to its own. Among
the descriptors available to a subsystem may be
some permitting it to call to the entry points of
other protected subsystems. This scheme goes by
the name rings of protection, and is more com-
pletely described by Graham[12] and by Schroeder
and Saltzer([22].* As far as is known, the only
previously existing systems to permit general,
user-constructed protected subsystems are the
M.I.T. PDP-1 time-sharing system[l] and the CAL
operating system[15].

The descriptor-based strategy permits two fur-

ther simplifying steps to be taken:

1. All information in the storage system is read
and written by mapping it into the virtual
memory, and then using load and store instruc-
tions whose validity is checked by the
descriptor mechanism.

2. The supervisor itself is treated as an example
of a protected subsystem, which operates in a
virtual memory arbitrated by descriptors,

* A more general approach, not yet implemented,

but which removes the restriction that the protected
subsystem be hierarchical, is described by Schroeder
in his doctoral thesis[21].

exactly the same as do the user programs
which it supports.

The reascns why the first step provides simplifica-
tion for the user have been discussed extensively
in the literature{4,13]. The second step deserves
some more comment. By placing the supervisor it-
self under the control of the descriptors, as in
figure two, a rather substantial benefit is
achieved: the supervisor then operates with the
same addressing and machine language code genera-
tion environment as the user, which means that
supervisor programs may be constructed using the
same compilers and debugging tools available to a
user. The effect on protection is non-trivial:
programs constructed and checked out with more
powerful tools tend to have fewer errors, and
errors in the supervisor which compromise protec-
tion often escape notice.

Perhaps equally important is that the deter-
mination of whether one is in or out of the super-
visor is not based on some processor mode bit which
can be accidentally left in the wrong state when
control is passed to a user program. Instead, the
addressing privileges of the current protected sub-
system are governed by the subsystem identification,
located in the descriptor of the segment which
supplied the most recent instruction. Every trans-
fer of control to a different program is thus
guaranteed to automatically produce addressing
privileges appropriate to the new program. If a
supervisor procedure should accidentally transfer
to a location in a user procedure, that procedure
will find that the protection environment has auto-
matically returned to the state appropriate for
running user procedures.

Finally, the descriptors are adjusted to pro-
vide only the amount of access required by the
supervisor, in consonance with design principle six.
For example, procedures are not writeable, and data
bagses are not executable. As a result, programming
errors related to using incorrect addresses tend
to be immediately detected as protection violations,
and do not persist into delivered systems. If one
reviews the operation of Multics starting with the
initial loading of the system on an empty machine,
he will find that only the first hundred or so
instructions do not use descriptors. Once a
descriptor segment has been fashioned, all memory
references by the processor from that point on are
arbitrated by descriptors.

These mechanisms do not prohibit the super-
visor from making full use of the hardware when
appropriate. Rather, they protect against- acciden-
tal overuse of supervisor privileges. Clearly, the
supervisor must be able to write into the descrip-
tor segment, in order to initially set it up, and
also to honor requests to map additional objects
of the storage system into segments of the virtual
memory. This adjustment of descriptors is done
with great care, using a single procedure whose
only function is to construct descriptors which
correspond to access control list entries. A call

which results in adjustment
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of a descriptor is illustrated in figure two. In
this figure, it is worth noting that even the
writing of the descriptor is done with use of a
descriptor for the descriptor itself. Thus there
is little danger of accidentally modifying a des-
criptor segment belonging to some other user,
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since the only descriptor segment routinely
appearing in the virtual memory of this process
is its own.

Entries to the supervisor which implement
"special privileges" (e.g., the operator may have
the privilege of shutting the system down) are
generally controlled by ordinary access control
lists, either on the gates of supervisor entries,
or in some cases by having the supervisor proce-
dure access some data segment before proceeding
with the privileged operation. If the user
attempting to invoke the privilege does not appear
on the access control list of the data segment, an
access violation fault will occur, rather than an
unauthorized use of the privilege.

The final step of "locking up'" the supervisor
lies in management of source-sink input-output.
Recall first that all access to on-line catalogued
information of the storage system is handled by
direct mapping into the virtual memory. Thus, in-
put and output operations in Multics consist only
of true source-sink operations, that is of streams
of information which enter or leave the system.
Such operations are performed by hardware 1/0 chan-
nels, following channel programs constructed by the
1/0 system in response to I/0 requests of the call-
ing program. These I/O channel programs are placed
in a part of the virtual memory accessible only to
the supervisor*. Similarly, all input data is read
into a protected buffer area, accessible only to
the supervisor. Only after the input has arrived
.and the supervisor has had a chance to check it is
it turned over to the user, either by copying it,
or by modifying a descriptor to make it accessible
to the user. A similar, inverse pattern is used
on output. Since during I/0 neither the data nor
the channel program is accessible to the user,
there is no hesitation about permitting him to con-
tinue his computation in parallel with the I/0
operation. Thus, fully asynchronous operations are
possible.

The system is initialized from a magnetic tape
which contains copies of every program residing in
the most protected area. In this way, the integrity
of the protection mechanisms depends on protecting
only one magnetic tape, and is independent of the
contents of the secondary storage system (disk and
drums) which are more exposed to compromise by
maintenance staff. On the other hand, since the
system is designed for continuous operation, there

* And to the I/O channels, which use absolute
addresses. If separate I/0O channels were available
to each physical device and the I/O channels used
the addressing descriptors, protected supervisor
procedures would not be required for I/0 operations
after device assignment (which requires a descrip-
tor to be constructed.)

Here is an example of a place where building a new
system, rather than modifying an old one, has sim-
plified matters. On some computer systems, the
user constructs his own channel programs, and may
even expect to modify them dynamically during
channel operation. It is quite hard to invent a
satisfactory scheme for protecting other users
against such I/0 operations without placing re-
strictions on their scope, or inhibiting parallel
operation of the user with his I/O channel programs.
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appears to be no need for a separate package con-
sisting of passwords and clearance information as
suggested by Weissman[28].

To round out the discussion of primary and
virtual memory protection, we should consider stor-
age residues. A storage residue is the data copy
left in a physical storage device after the previous
user has finighed with it. Storage residues must
be carefully controlled to avoid accidental release
of information. 1In a virtual memory system, the
only way a storage residue could be examined would
be to read from a previously unused part of the
virtual memory. By convention, in Multics, the
supervisor provides pages of zeros in response to
such attempts. Since all access to on-line storage
is via the virtual memory, no additional mechanism
is required to insure that a user never sees a
residue from the storage system.

Weaknesses of the Multics Protection Mechanisms

One is always hesitant to list the weaknesses
in his system, for a variety of reasons. Often,
they represent mistakes or errors of judgement,
which are embarrassing to admit. Such a list pro-
vides an easy target for detractors of a design,
and in the protection area provides an invitation
for potential attackers at production installations
which happen to be using the system. In the case
of a system still evolving, such as Multics, known
weaknesses are being corrected as rapidly as
feasible, so any list of weaknesses is rapidly
obsolete. And finally, any list of weaknesses is
almost certainly incomplete, being subject to all
of the built-in blindnesses of its authors. Never-
theless, such a list is quite useful, both to look
for specific interesting unsolved problems, and
also to establish what level of considerations are
still considered relevant by the designers of the
system. The weaknesses described here begin with
two major areas, followed by several smaller
problems.

Probably the most important weakness in the
current Multics design lies in the large number of
different program modules which have the ability,
in principle, to compromise the protection system.
Of the 2000 program modules which comprise Multics,
some 400, or 20%, are in the "most protected area",
consisting of system initialization, the storage
system, miscellaneous supervisor functions, and
system shutdown. Although all of these 400 modules
operate using the descriptor-based virtual memory
described earlier, the descriptors serve for them
only as protection against accidentally generated
illegal address references; these modules are not
constrained by the inability to construct suitable
descriptors in the same way as the remaining 1600
modules and user programs. Thus any of these 400
modules (averaging perhaps 200 lines of source
code each) might contain an error which compromises
the security mechanisms, or even a security viola-
tion intentionally inserted by a system programmer.
The large number of programs and the very high
internal intricacy level frustrates line by line
auditing for errors, misimplementation, or inten-
tially planted trapdoors. This weakness is not
surprising for the first implementation of a sophis-
ticated system, and upon review it is now apparent
that with mild software restructuring plus help from
specialized hardware the number of lines of code in
the most protected area can be greatly reduced --
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perhaps by as much as an order of magnitude. 1In
examining many specific examples, there seem to have
been three common, interrelated reasons for the
extra bulk currently found in the protected area:

economics: at the time of design, a function
could be implemented more cheaply in the most
protected region. Since the protection ring
mechanism was originally simulated by software,
there were design decisions based on the
assumption that calls across ring boundaries
were expensive.

. rush to get on the air: in the hurry to get
an initial version of the system going, a
shortcut was found, which required unnecessar-
ily placing a module in the most protected
region.

lack of understanding: a complex subsystem
was not carefully enough analyzed to separate
the parts requiring protection; the entire
subsystem was therefore protected.

With hardware-supported protection rings,
hindsight, and the experience of a complete working
implementation, it is apparent that a smaller "most
protected area" can be constructed. It now appears
possible to make complete auditing a feasible task.
A project is now underway to test this hypothesis
by attempting to develop an auditable version of
the most protected region of Multics.

The second serious weakness in the current
Multics design is in the complexity of the user
* interface. In creating a new segment, a user should
specify permitted lists of users and projects,
specify allowed modes of access for each, decide
whether or not backup copies should be allowed and
whether or not bulk I/0 should be permitted for the
segment, and whether or not the segment should be
part of a protected subsystem. He should check
that permissions he has given to modify higher-
level directories interact in the desired way with
his current intent. A variety of defaults have
been devised to reduce the number of explicit
choices which need be made in common cases: as
already mentioned, a per-directory "initial access
control list" is by default assigned to any new
segment created in that directory. The defaults
merely hide the complex underlying structure, how-
ever, and do not help the user with an unusual
protection requirement, who must figure out for
himself how to accomplish his intentions amid a
myriad of possiblities, not all of which he under-
stands. The situation for a project administrator,
who can control the initial program his users get,
and may perhaps force all of his users to interact
via a limited, protected subsystem is similar, but
with fewer defaults and more possibilities
available.

The solution to this problem lies in better '
understanding the nature of the typical user's
mental description of protection intent, and then
devising interfaces which permit more direct speci-
fication of that protection intent. As an example,
a graduate student devised a gsimple Multics program
which prints a list of all users who may force
access to a segment (by virtue of having modify
access to some higher level directory.) This list
does not correspond to any single access control
list found anywhere in the system, yet it is clearly
relevant to one's image of how the segment is
protected. Setting up the mechanisms of access

control lists, accessibility meodes, and rings of
protection perhaps should be viewed as a problem of
programming in which, as usual, the structures
available in initial designs do not correspond
directly with the user's way of thinking, even’
though there may be some way of programming the
structure to accomplish any intent. In the area of
protection, the problem has a special edge, since
if a user, through confusion, devises an overly per-
missive protection specification, he may not dis-
cover his mistake until too late.

At a level of significance well below the two
major points of system size and-user interface com-
plexity are several other kinds of problems. These
problems are felt to be less significant not because
they cannot be exploited as easily, but rather be-
cause the changes required to strengthen these areas
are straightforward and relatively easy to implement.
These problems include:

1. Communication links are weak. Of course, any
use of switched telephone lines leads to vul-
nerability, but provision for integration of
a Lucifer-like system{23] for end-to-end
encryption of messages sent over public lines
or through a communication network would pro-
bably be a desirable (and simple) addition.

As an example of a typical problem in this
area, the Bell System 202C6 DATAPHONE dataset,
which is used for 1200 bps terminals, does not
include provision for reporting telephone line
disconnection to the computer system during
data output transmission. If a user acciden-
tally hangs up his telephone line during out-
put, another user dialing to the same port on
the computer may receive the output, and cap-
ture control of the process. Although remedial
measures such as requiring reauthentication
every few minutes could be used, automatic
detection of the line disconnection would be
far more reassuring. (Note that for the more
commonly used 103A DATAPHONE dataset, which
does report telephone line disconnections,
this problem does not exist; upon observing
the dropping of the carrier detect line from
the dataset, Multics immediately logs the user
out.)

2. The operator interface is weak. The primary
interface of the operator is as a logged-in
user, where his interactions can be logged,
verified, and suitably restricted. However,
he has a secondary interface: the switches
and lights of the hardware itself. It would
appear that the potential for error or sabo-
tage via this route is far higher than
necessary. If every hardware switch in the
system were both readable and settable by
(protected supervisor) programs, then all such
switches could be declared off limits to the
operator, and perhaps placed behind locked
panels. Since all operator interaction would
then be forced to take place via his terminal,
his requests can be checked for plausibility
by a program. What has really gone wrong here
is a faiiure to completely recomnsider the role
of the operator in a computer system operating
as a utility. Functions such as operation of
card readers and printers do not require access
to switches on the side of the processor -- or
even physical presence in the same room as the
computer, for that matter. The decision that
a system failure has occurred and the
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appropriate level of recovery action to take
are probably the operator functions which are
hardest to automate or decouple from the phy-
sical machine room, but certainly much move-
ment in this direction would be easy to
accomplish.

Users are permitted to specify their own
passwords, leading to easy-to-guess passwords.
The resulting loss of security has already
been well documented in the literature[25],
and this method has been used at least once to
improperly obtain access to Multics at M.I.T.,
when a programmer chose as his Multics pass-
word the same password he used on another, un-
secured time-sharing system. A better strategy
here would be to force the use of system-gen-
erated randomly chosen passwords, and also to
place an expiration date on them, to force
periodic password changes. For sensitive
applications, or situations where the password
must be exposed to unknown observers (as in
using a system via the ARPA network), the
system should provide lists of one-time
passwords.

The supervisor interface is vulnerable to mis-
implementation. Although this difficulty
could be described as a specific example of a
supervisor too large and complex to audit, it
is worth identifying in its own right. The
problem has to do with checking the range of
arguments passed to the supervisor. The hard-
ware automatically checks that argument
addresses are legitimately accessible to the
caller, and completely checks all use of
pointer variables as indirect addresses.
ever, it provides no help in determining
whether the ultimate argument values are
""reasonable" for the supervisor entry in
question. Each entry must be prepared to
operate correctly (or at least safely) no mat~-
ter what combination of argument values is
supplied by the caller. Certain kinds of
interfaces make for difficulty in auditing a
program to see if it properly checks range of
arguments., For example, if the allowed range
of one argument depends on the result of com-
putation which is based in part on another
argument, then it may be hard to enforce a
programming standard which requires that all
supervisor entries check the range of all their
arguments before performing any other computa-
tion. The current Multics interface has
examples of situations in which, to verify that
a supervisor entry is correctly programmed so
that it does not blow up when presented with

an illegal argument, one must trace hundreds

of lines of code and many subroutine calls.
Such interfaces discourage routine auditing

of the supervisor interface, and probably re-
sult in some undetected implementation errors.
It would be interesting to explore the design
of argument range-checking hardware, which
would force the system programmer to declare
the allowed range of arguments for his entries,
and thereby force out into the open the exist-
ence of arguments whose range is not trivially
testable, for interface design revision.

How-
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storage area are destroyed, and the area is
marked as reusable. No further descriptors
for the storage area will ever be constructed
without first clearing the storage area, but
meanwhile the residue remains intact. In
principle, there is no way to exploit these
residues using the system itself, but auto-
matic overwriting of the residues at the time
of deletion would provide an additional safe-
guard against accidents, and guarantee that a
segment, once deleted, is not accessible even
to a hardware maintenance engineer. A similar
problem exists for the magnetic tapes contain-
ing backup copies of segments. In at least
one case on another time-sharing system, the
persistence of backup copies has proved
embarrassing: a government agency requested
that a file containing a list of special tele-
phone access codes be completely deleted; the
installation administrator found himself with
no convenient way to purge the residues on the
backup tapes. These tapes should probably be
encrypted, using per-segment keys known only
by the operating system. It is an interesting
problem to construct a strategy for safely en-
crypting backup copy tapes, while ensuring
that encrypting keys do not get destroyed upon
system failure, making the backup copies
worthless.

Over-privileged system administrator. Some
system functions have been organized in such a
way that the administrators of the system re-
quire more privilege than really necessary.
For example, measures of secondary storage
usage are stored in the using directory rather
than in an account file. As a result, the
administrative accounting programs which pre-
pare bills for secondary storage use must have
access to read every directory in the storage
system. For another example, the "'locksmith"
function, mentioned earlier, is currently
implemented by giving the locksmith permission
to modify the root directory of the storage
system directory hierarchy. Thus the lock-
smith has the unaudited ability to grant him-
self access to every file in the storage
system. Such a design means that one of the
easiest ways to attack is to attempt to in-
fluence the system administrator, possibly by
surreptitiously inserting traps in some pro~-
gram he is likely to use* while running a
process whose principal identifier needlessly
permits extensive privileges. The counter
measure, currently partially implemented, is
to provide administrators with protected sub-
systems from which they cannot escape, which
are certified to exercise a minimum of privi-
lege, and which maintain audit trails.

Ponderous backup copy and retrieval scheme.
It has been noticed that the general method
currently used for indexing the contents of
storage system backup copy tapes is weak, so
that the only effective way to identify a de-
sired copy of a damaged segment is to permit
the user to manually scan printed journals of
the names of the segments copied onto each
tape. These journals contain the names of

Secondary storage residues are not cleared un-
til they are reassigned. When a segment is
deleted, all descriptors for the physical

* This technique has been described as the ﬁTrojan
Horse" attack[5].
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other users' segments and directories, and
were intended for use only for emergency sit-
uations and with proper clearance. Unfortu-
nately, the number of retrieval requests which
can be handled on other than an emergency basis
is a sensitive function of the quality of the
tools available for searching the journals
automatically while maintaining privacy. A
simple scheme based on a protected subsystem
for searching journals has recently been pro-
posed, but is not yet implemented.

8. Counter-intelligence techniques have not been
exploited. Although logs of suspicious events
(such as incorrectly supplied passwords) are
maintained no true counter-intelligence strate-
gies are employed. For example, Turn, et al.
[26] have suggested inserting carefully moni-
tored apparent flaws in the system. These
flaws would be intended to attract a would-be
attacker; any attempt to exploit them would
result in an early warning of attack and an
opportunity to apprehend the attacker.

9. Some areas of potentially vulnerability have
not been examined. These include vulnerability
to undetected failures of the hardware protec-
tion apparatus[l7],* electromagnetic radiation
from the physical hardware machine[3], and
traffic analysis possibilities, using perfor-
mance measurement tools available to any user.

It is interesting to note that none of these
nine specific weaknesses represent intrinsic diffi-
culties of full-scale computer utility systems --
relatively straightforward modification can easily
strengthen any of these areas. In fact, neither
the two major weaknesses nor the nine specific ones
represent "holes" in the sense of being immediately
exploitable by an attacker. Rather, they are areas
in which an attacker is more likely to discover a
method of entry caused by misimplementation, mis-
understanding, or mismanagement of an otherwise
securable system. Thus we might describe the pro-
tection system as usable, though with known areas
of weakness,

Conclusions

This paper has surveyed the complete range of
information protection techniques which have been
applied to a specific example of a system designed
for production use as a computer utility. Over
three years of experience in a production environ-
ment at M.I.T. has demonstrated that the mechanisms
are generally useful. A commonly asked question
(especially in the light of recent experiences
with attempts to add security to other commercially
available computer systems) is '"how much perfor-
mance is lost?" This question is difficult to
answer since, as is evident, the protection struc-
ture is deeply integrated into the system and

* Although the 6180 hardware is less vulnerable
than some. An asynchronous processor-memory inter-
face tends to stop when an error occurs rather than
proceeding with wrong data; complete instruction
decoding explicitly traps all but legal operation
codes and addressing modifiers; and the multipro-
cessor organization helps obviate the need for
pipelines and other accident-prone highly-tuned
logic tricks.

cannot be simply *turned off" for an experiment.¥
However, one significant observation may be made.

In general, the protection mechanisms are closely
related to naming mechanisms, and can be implemented
with a minimum of extra fuss in a system which pro-
vides a highly structured naming environment. Thus,
the users of Multics apparently have found that the
overall package of a structured virtual memory with
protection comes at an acceptable price.

The Multics protection mechanisms were designed
to be basic and extendable, rather than a complete
implementation of some specialized security model.
Thus there are mechanisms which may be used to pro-
vide the multilevel security classification (top
secret, secret, confidential, unclassified) and the
access compartments of the U.S. governmental secur-
ity system{27]. If one wished to precisely imitate
the government security system, he could do so with-
out altering the operating system. In this sense,
Multics differs with, say, SDC's ADEPT[28] and
IBM's Resource Security System[14], both of which
specifically implement models of the government
security system, but which do not permit, for
example, user-written program-protected data bases.

We should also note that the Multics system
was designed to be securable, which is different
than stating that any particular site is actually
operated in a completely secured fashion. Such
matters as machine room security, certification of
of hardware maintenance engineers and system opera-
tors, and telephone wire tapping are largely out-
side of the scope of operating system design. In
addition, correct administration can be encouraged
by the design of an operating system, but not
enforced. Further we have reported the design of
the system, realizing that its implementation has
not yet been completely audited and therefore may
contain trivial programming errors which affect
protection.
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A Hardware Architecture for lmplementing Protection Rings
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Commupnications of the ACM, 15, 3, March, 1972, pp.
157-170, with permission. Copyright 1972 by the
Assoclation for Computing Machinery.

The casual reader may wish to explore only the first half
dozen pages of this paper, which describes in full detail .the
rather unusual hardware protection mechanism iIn use 1in the
current Multics system. As far as is known, Multics and the CAL
operating system (developed at the University of California at
Berkeley) are the only two systems thus far developed which
permit construction of general, user-constructed, protected
subsystems. This paper describes the mechanisms which make this
feature possible in Multics. Since the paper is recent, the
terminology and description are generally up-to-date. The
mechanisms described here are exactly the ones implemented on the
Honeywell 6180 computer system.
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A Hardware
Architecture for
Implementing
Protection Rings
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Massachusetts Institute of Technology*

Protection of computations and information is an
important aspect of a compater utility. In a system
which uses segmentation as a memory addressing
scheme, protection can be achieved in part by
associating concentric rings of decreasing access
privilege with a computation. This paper describes
hardware processor mechanisms for implementing
these rings of protection. The mechanisms allow
cross-ring calls and subsequent returns to occur
without trapping to the supervisor. Automatic
hardware validation of references across ring
boundaries is also performed. Thus, a call by a user
procedure to a protected subsystem (including the
the supervisor) is identical to a call to a companion
user procedure. The mechanisms of passing and
referencing arguments are the same in both cases as
well. v
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information, segmentation, virtual memory, Multics

CR Categories: 4.32, 6.21

Introduction

The topic of this paper is the control of access to
stored information in a computer utility. The paper
describes a set of processor access control mechanisms
that were devised as part of the second iteration of the
hardware base for the Multics system. These mecha-
nisms provide a hardware implementation of protection
rings which limit the access privileges of an executing
program.

Multics is a general purpose, multiple user, inter-
active computer system developed at Project MAC of
MIT in a joint effort with the Cambridge Information
Systems Laboratory of Honeywell Information Systems
Inc. and, until 1969, the Bell Telephone Laboratories. It
was built and is being run as an experiment in designing,
implementing, operating, and evaluating a prototype
computer utility. (Reference [14] contains a bibliog-
raphy of publications on Multics.)

Multics is currently implemented on a Honeywell
645 computer system. The 645 represents a first attempt
to define a suitable hardware base for a computer utility.-
While containing special logic to support a segmented
virtual memory, the 645 processor [10] provides only a
limited set of access control mechanisms, forcing soft-
ware intervention to implement protection rings. In the
course of Multics development a second iteration of the
design of the hardware base has been undertaken. The
resulting new hardware system is being built as a re-
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placement for the 645 using the technology of the
Honeywell 6000 series computer systems. The new proc-
essor includes an improved set of access control mecha-
nisms, described here, which implement rings almost
completely in hardware. These mechanisms were devel-
oped from a scheme described in [16]. Although specifi-
cally designed for Multics, the mechanisms are appli-
cable to any computer system which uses segmentation
as a memory addressing scheme.

This paper begins by establishing the general need
to control access to stored information in a computer
utility and by presenting several criteria for comparing
different sets of access control mechanisms. Relevant
aspects of the organization of segmented memories are
then sketched, and the processor mechanisms for imple-
menting protection rings are described. The paper con-
cludes by illustrating how rings can be used and by
evaluating the impact of a hardware system design.

Access Control in a Computer Utility

Protection of computations and information is an
important aspect of a computer utility. The multiple
users of a computer utility have different goals and are
responsible to different authorities. Such a diverse group
will use the same system only if it is possible for them to
achieve independence from one another. On the other
hand, a great potential benefit of a computer utility is
its ability to allow users to easily communicate, coop-
erate, and build upon one another’s work. The role of
protection in a computer utility is to control user inter-
action—guaranteeing total user separation when de-
sired, allowing unrestricted user cooperation when
desired, and providing as many intermediate degrees of
control as will be useful.

While there are many manifestations of protection
in a computer utility, most may be related to controlling
access to stored information. Because stored informa-
tion represents both data and executable procedure,
control of access to stored information serves to regulate
information processing as well.

Four criteria can be applied to a set of access control
mechanisms to judge its usefulness in a computer utility:
functional capability, economy, simplicity, and pro-
gramming generality. The first means that a set of access
control mechanisms should be able to meet an inter-
esting set of user protection needsin a natural way. The
ability to meet interesting protection needs must be a
quality of the basic mechanisms, while the ability to do
so in a natural way is a quality of their user interface.
An obvious goal in designing new protection mecha-
nisms is to maximize functional capability.

The second criterion, economy, means that the cost
of specifying and enforcing a particular kind of access
constraint with a set of mechanisms should be so low
that it is not an important consideration in determining
the type of access control to be used in a particular appli-
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cation. In addition, cost should be proportional to the
functional capability actually used. The existence of
access control mechanisms with sophisticated capabil-
ities should cost no extra to those with unsophisticated
needs. Cost includes the subsystem complexity and user
inconvenience that result from use of the access control
mechanisms, as well as any associated extra storage
space and execution time.

Simplicity is the third criterion. While it is true that
simplicity often leads to economy, something more is at
stake. For a set of access control mechanisms to be ac-
cepted there must be confidence that no way exists to
circumvent it. The best way to achieve confidence is to
keep the mechanisms so simple that they may be com-
pletely understood. With respect to access control
mechanisms, lack of simplicity often implies lack of
security.

The fourth criterion, programming generality, is
often neglected. It means that individual procedures
may be combined easily into larger units without under-
standing or altering their internal organizations. Pro-
gramming generality allows sharing to be effective in
encouraging users to build upon one another’s work.
An implication of programming generality of relevance
to access control mechanisms is that it should be pos-
sible to change the protection environment of proce-
dures and collections of procedures without altering
their internal structure.

1t clearly is difficult to design access control mecha-
nisms which satisfy all four of these criteria simultane-
ously. Increases in functional capability come at the
expense of economy, simplicity, and programming gen-
erality. The challenge in designing a set of access control
mechanisms is to maximize functional capability within
the constraints of the other three criteria. In the fol-
lowing sections a set of hardware access control mecha-
nisms that was devised in the course of Multics develop-
ment is described. These mechanisms appear to provide
a significant improvement in the simultaneous satisfac-
tion of the four criteria as compared with the mecha-
nisms in the initial Multics implementation.

Segmented Virtual Memory Environment

The processor access control mechanisms described
here regulate the ability of an executing program to
reference information in a segmented virtual memory.
As a basis for understanding these access control mecha-
nisms this section briefly reviews the structure of a typ-
ical segmented virtual memory. (See [1-3] for detailed
descriptions of several segmented virtual memories.)

A machine language program for a segmented envi-
ronment does not reference memory by absolute ad-
dress. Rather, its memory consists of independent seg-
ments identified by number. Each segment is a separate
array of words. A two-part address (s, w) identifies
word w of the segment numbered s.
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The collection of segments in the virtual memory is
defined by a descriptor segment containing an array of
segment descriptor words (spw’s). Each spw can de-
scribe a single segment in the virtual memory. The num-
ber of a segment is just the index of the corresponding
spw in the descriptor segment. Among other things, an
SDW contains the absolute address of the beginning of
the corresponding segment in memory. The absolute
address of the beginning of the descriptor segment is
contained in the descriptor base register (DBR) of a proc-
essor. Each processor contains logic for automatically
translating two-part addresses into the corresponding
absolute addresses. Address translation, done with an
indexed retrieval of the appropriate SDw from the de-
scriptor segment, occurs each time a word in the virtual
memory is referenced, i.e. each time an instruction, in-
direct word, or instruction operand reference is made by
an executing program.

Storage for segments is usually allocated with a
paging scheme in scattered fixed-length blocks. If used,
paging is also taken into account by the address transla-
tion logic, but is totally transparent to an executing
machine language program. Paging, if appropriately
implemented, need not affect access control; it will be
ignored in the remainder of this paper.

Changing the absolute address in the DBR of a proc-
essor will cause the address translation logic to interpret
two-part addresses relative to a different descriptor seg-
ment. This facility can be used to provide each user of
the system with a separate virtual memory. A single
segment may be part of several virtual memories at the
same time, allowing straightforward sharing of segments
among users.

Controlling Access in a Segmented Virtual Memory

To provide a framework for discussion, three specific
assumptions true of Multics are introduced. First, a
process with a new virtual memory is created for each
user when he logs in to the system, and the name of the
user is associated with the process. The process is the
active agent of the user, and is his only means of refer-
encing and manipulating information stored on-line.
Second, on-line storage is organized as a collection of
segments of information. A process can reference a seg-
ment of on-line storage only if the segment is first added
to the virtual memory of the process. Third, the users
that are permitted to access each segment are named by
an access control list associated with each segment. As
will be seen, any system providing access control of the
type under discussion will probably have analogous as-
sumptions. The application of the rest of the discussion
to other systems with segmented virtual memories is
straightforward.

Adding a segment to a virtual memory, an operation
performed by supervisor programs, provides the initial
opportunity for controlling access to information stored
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on-line. The name of the user associated with a process
must match some entry onthe access control list of a seg-
ment before the supervisor will add that segment to the
the virtual memory of the process.

Once a segment is included in the virtual memory,
however, finer control on access is required. (If a process
could, say, write in any segment to which it had access,
little sharing of information among users would occur.)
If this finer control is to be effective against arbitrary
machine language programs constructed by users, it
must be implemented as hardware access validation on
each reference. The structure of the virtual memory
makes it natural to record these finer constraints in the
spw associated with each segment. Since the processor
must examine the SDW for a segment each time that seg-
ment is referenced by two-part address anyway, there is
little effort added to validate the intended access against
constraints recorded there. With this structure it is also
possible to change the allowed access to a segment by
changing the finer constraints recorded in the spw, and
to expect the change to be immediately effective, al-
though the need for such dynamic changes is rare.

Flags which enable a segment to be read, written,
and executed are natural constraints to record in each
spw. The value for each flag comes from the access con-
trol list entry which matched the name of the user asso-
ciated with the process. An attempt by a process to
change the contents of a word of a segment, for example,
would be allowed by the processor only if the write flag
were on in the sDw for the segment. This mechanism
provides individual contrel on the ability of each user’s
process to read, write, and execute the words in each
segment stored on-line. It also makes a segment the
smallest unit of information that can be separately pro-
tected.

With the access control mechanisms described so far,
all programs executed as part of some process have the
same information accessing capabilities. However, there
seems to be an intrinsic need in many computations for
the access capabilities of a process to vary as the exe-
cution point passes through the various programs that
direct the computation. The most obvious examples of
this need are explicit invocations of supervisor programs
during the course of a computation. The execution point
may pass from a user program to a supervisor program
to initiate an input/output operation or change the ac-
cess control list of a segment, and then pass back to the
user program. Presumably the executing supervisor pro-
gram can access information in some way that the user
program cannot. In a system that allows and encourages
sharing of information among users, other examples
appear. For instance, user A may wish to allow user B
to access a sensitive data segment, but only through
a special program, provided by A, that audits references
to the segment. During the course of a computation in
a process of user B, access to the sensitive data segment
should be allowed only when the execution point is in
the special program provided by A.
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1ne word ‘““domain” is frequently associated with a
set of access capabilities. The examples above point to
an intrinsic need for multiple domains to be associated
with a process and for the domain in which the process
is executing to occasionally change as the execution
point passes from one program to another. A descriptor
segment with read, write, and execute flags in the sSDW’s
defines a single domain. Additional mechanisms are
required to allow multiple domains to be associated
with a single process.

A very general set of access control mechanisms
would place no restriction on the number of domains
which could be associated with a process, and would
force no restrictive relationships to exist among the sets
of access capabilities included in the domains. Unfortu-
nately, devising such a set of access control mechanisms
that also meets the criteria of economy, simplicity, and
programming generality is a difficult research problem.
(See [5, 7, 8, 12, 13, 17] for several approaches that have
been explored.) In Multics the strategy was adopted of
limiting the number of domains which may be associated
with a process, and of forcing certain relationships to
exist among the sets of access capabilities included in
the domains. The result is protection rings.

The characterization of rings as a restricted imple-
mentation of domains is the result of hindsight. When
developed, rings were viewed as a natural generalization
of the supervisor/user modes that provided protection
in many computers. This path of development was
chosen because it solved the most pressing problems of
access control involved in the prototype computer
utility and, due to the inherent simplicity of the idea, it
was a path that the Multics designers felt confident they
could successfully complete. Even today rings appear to
provide an effective trade-off among the criteria men-
tioned above.

Protection Rings

Associated with each process are a fixed number of
domains called protection rings. These r rings are named
by the integers O through » — 1. The access capabilities
included in ring m are constrained to be a subset of those
in ring n whenever m > n. Put another way, the sets of
access capabilities represented by the various rings of a
process form a collection of nested subsets, with ring 0
the largest set and ring » — 1 the smallest setin the collec-
tion. Thus, a process has the greatest access privilege
when executing in ring 0, and the least access privilege
when executing in ring » — 1. The total ordering of the
sets of access capabilities defined by the consecutively
numbered rings of a process is the property which allows
a straightforward implementation of rings in hardware.

As described earlier, the permission flags for each
segment in the virtual memory of a process simply indi-
cate that the segment can or cannot be read, written, or
executed by the process. With the addition of rings, the
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flags must be extended to indicate which rings include
each access capability. Because of the nested subset
property of rings, the capability, say, to write a particu-
lar segment, if available to a process at all, is included in
all rings numbered less than or equal to some value w.
The range of rings over which this write permission
applies is called the write bracket of the segment for the
process. Read and execute brackets for each segment
can be established in the same way. A process is per-
mitted to read, write, or execute a segment in its virtual
memory only if the ring of execution of the process is
within the proper bracket.

A partial hardware implementation of rings places
numbers indicating the top of each bracket of a segment
in the spw of the segment, aiong with the read, write,
and execute flags. If a flag is on, then the number spec-
ifies the extent of the corresponding bracket. Turning a
flag off indicates that the corresponding access capability
is not included in any ring of the process. For example,
a data segment might have its execute flag turned off or
a pure procedure segment might have its write flag
turned off. A register is added to the processor to record
the current ring of execution of the process. The proc-
essor can then validate each reference to a segment by
making the obvious comparisons when the spw for the
segment is examined for address translation.

Figure 1 illustrates the flags and brackets that might
be associated with a writable data segment for some
process. (In Multics, eight was chosen as the appropriate
number of rings. Eight rings are shown in the examples,
although more or fewer rings might be appropriate in
another system.)

Fig. 1. Example access indicators for a writable data segment.

| 2 3, 4 5 6 7 ring
t + + + + + + + {
—

write bracket
—

read flag s on
write tlog : om
execute flag * off

reod bracket

The association of multiple domains of protection
with a process generates the need for a new kind of ac-
cess capability—the capability to change the domain of
execution of a process. Since changing the domain of
execution has the potential to make additional access
capabilities available to a process, it is an operation that
must be carefully controlled. An understanding of the
sort of control required can be gained by reviewing the
purpose of domains. A domain provides the means to
protect procedure and data segments from other proce-
dures that are part of the same computation. Using
domains, it should be possible to make certain access
capabilities available to a process only when particular
programs are being executed. Restricting the start of
execution in a particular domain to certain program
locations, called gates, provides this ability, for it gives
the program sections that begin at those locations com-
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plete control over the use made of the access capabilities
included in the domain. Thus, changing the domain of
execution must be restricted to occur only as the result
of a transfer of control to one of these gate locations of
another domain.

With a completely general implementation of do-
mains, each domain could provide protection against
the procedures executing in all other domains of a pro-
cess. The corresponding property of rings is that the
protection provided by a given ring of a process is ef-
fective against procedures executing in higher numbered
rings. Switching the ring of execution to a lower number
makes additional access capabilities available to a pro-
cess, while switching the ring to a higher number reduces
the available access capabilities. Thus, the downward
ring switching capability must be coupled to a transfer
of control to a gate into the lower numbered ring. Gates
are specified by associating a (possibly empty) list of
gate locations with each segment in the virtual memory
of a process. If the execution point of the process is
transferred to a segment while the ring of execution is
above the top of the execute bracket for the segment,
then the transfer must be directed to one of the gate
locations in the segment. If the transfer is to a gate, then
the ring of execution of the process will switch down to
the top of the execute bracket of the segment as the
transfer occurs. If the transfer is not directed to one of
the gate locations, then the transfer is not allowed.

To provide control of this downward ring switching
capability which is consistent with the subset property
of rings, a gate extension to the execute bracket of a
segment is defined. The gate extension specifies the con-
secutively numbered rings above the execute bracket of
the segment that include the “transfer to a gate and
change ring” capability for the segment. The gate list
and the gate extension to the execute bracket can both
be specified with additional fields in each spw.

In contrast to downward ring changes, switching the
ring of execution to a higher-numbered ring can only
decrease the available access capabilities of a process.
Thus, an upward ring switch is an unrestricted operation
that can be performed by any executing procedure. (The
instruction to be executed immediately following an
upward ring switch must come from a segment that is
executable in the new, higher-numbered ring.) For
programming convenience, the upward ring switch may
be coupled to a special transfer instruction.

The abstract description of rings is now one step
from completion. The last step comes from the observa-
tion that for each procedure segment in the virtual mem-
ory of each process there is a lowest-numbered ring in
which that procedure is intended to execute. In order
to provide the means for preventing the accidental
transfer to and execution of a procedure in a ring lower
than intended, the requirement that execute brackets
have a lower limit at ring 0 is relaxed and instead an
arbitrary lower limit is allowed. For many procedure
segments the execute bracket will include exactly one
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ring—the ring in which the procedure is intended to exe-
cute. Procedure segments with wider execute brackets
normally will contain commonly used library subrou-
tines that are certified as acceptable for execution in any
of several rings.

The arbitrary lower limit on the execute bracket of a
segment can be implemented by using the field of an
spW which specifies the top of the write bracket to spec-
ify the bottom of the execute bracket as well. The double
use of this field does not appear to remove any inter-
esting functional capability. In fact, it eliminates an
unwanted degree of freedom in access specification,
thereby removing the potential to make certain types of
errors, such as allowing both writing and execution of a
segment in more than one ring of a process.

Figure 2 shows example access indicators for a pure
procedure segment containing gates, and illustrates how

Fig. 2. Example access indicators for a pure procedure segment
which contains gates.

o ! 2 3 4 5 6 7 ring
i . s L | ! ! 3
L t T t + t 1 1
read
eod bracket
execute Qate
bracket extension
e e =’ read flag : on
write bracket if write flag - off
write flag on execute flag : on
gote list » 0,1,2

the execute and write brackets specified in an SDW must
be related. _

The gate list and the numbers specifying the read,
write, and execute brackets and gate extension in each
sbw all come from the access control list entry which
permitted the process to include the corresponding seg-
ment in its virtual memory, as did the values for the
read, write, and execute flags.

Call and Return

As argued above, a change in the domain of execu-
tion of a process can occur only when the executing
procedure transfers control to a gate of another domain..
In the context of most programming languages, an inter-
procedure transfer represents a subroutine call, a return
following a call, or a nonlocal goto. Linguistically, all
three operations produce a change in the environment
of the execution point; this change affects the binding of
variable names to virtual storage locations. The call
operation has the additional function of transmitting
arguments and recording a return point. Performing
these functions generally requires the cooperation of
both the procedure initiating the operation and the
procedure receiving control. If a call, return, or goto
changes the domain of execution because it happens to
be directed to a gate location of another domain, then
the situation becomes more complicated, for neither
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procedure can depend upon the other to cooperate. An
important simplification introduced by restricting do-
141NS 1o a ring structure is that a procedure may assume
the cooperation of procedures in lower-numbered rings.

When procedures are shared among different pro-
cesses and different domains, the addressing environ-
ment is usuaily defined via processor registers, for the
procedures must be pure and it is not convenient to
embed addresses within them. Part of the function of the
call, return, and goto operations is to properly update
this environment pointer. In Multics, pure procedures
are used with a per process stack, and a stack pointer
register provides the required .environment definition.
The stack of a process is implemented with a separate
segment for each ring being used. The stack segment for
procedures executing in ring » has read and write brack-
ets that end at ring n. Thus, stack areas for these proce-

- dures are not accessible to procedures executing in any
ring m > n. In the following discussion the stack pointer
register is used as a typical example of the required
environment pointer.

The most common ways of changing the ring of exe-
cution of a process are a call to a gate of a lower-num-
bered ring and the subsequent upward return. A down-
ward call represents the invocation of a user-provided
protected subsystem or a supervisor procedure. Because
the Honeywell 645 was designed around the usual super-
visor/user protection method, the version of Multics for
this machine implements rings by trapping to a super-
visor procedure when downward calls and upward re-
turns are performed. The hardware mechanisms detailed
in the next section eliminate the need to trap in these
cases. Using these improved hardware access control
mechanisms, downward calls and upward returns occur
without the intervention of a supervisor procedure and
are performed by the same object code sequences that
perform all calls and returns.

It is the nested subset property of rings that makes a
straightforward hardware implementation of downward
calls and upward returns possible. Because of this prop-
erty, the called procedure automatically has all access
capabilities required to reference any arguments that
the calling procedure can legitimately specify and to
return to the calling procedure in the ring from which it
called. However, three problems remain. First, the called
procedure must have a way of finding a new stack area
without depending upon information provided by the
calling procedure. Second, the called procedure must
have a way of validating references to arguments, so that
it cannot be tricked into reading or writing an argument
that the caller could not also read or write. Finally, the
called procedure must have a way of knowing for certain
the ring in which ihe calling procedure was executing,
so that the called procedure cannot be tricked into re-
turning control to a ring not as high as that of the calling
procedure.

The key to solving the first problem, finding a new
stack area, is a rule relating the segment number of the
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stack segment for a ring to the ring number. Using this
rule, the processor automatically calculates the segment
number of the proper stack segment for the called proce-
dure’s ring of execution. By convention, a fixed word of
each stack segment can point to the beginning of the
next available stack area. Thus, the stack segment num-
ber alone can provide the called procedure with encugh
information from which to construct its own stack
pointer. Because the processor provides the stack seg-
ment number, no procedure executing in a higher-num-
bered ring, e.g. the calling procedure, can affect the value
of the stack pointer for the called procedure.

The second problem, validating argument references,
is solved by providing processor mechanisms which al-
low a procedure to assume the more restricted access
capabilities of any higher-numbered ring for particular
operand references. Using these mechanisms, the called
procedure can validate access when referencing argu-
ments as though execution were occurring in the (higher-
numbered) ring of the calling procedure. Thus, the
called procedure, even though it is executing in a ring
with more access capabilities than the ring of the calling
procedure, can prevent itself from reading or writing
any argument that the calling procedure could not also
read or write. '

The final problem, knowing the ring of the caller, is
solved by having the processor leave in a program acces-
sible register the number of the ring in which execution
was occurring before the downward call was made. The
subsequent return is made to that ring. Thus the calling
procedure has no opportunity to lower the number of
the ring to which the return is made.

The next two sections describe in more detail how
downward calls, argument referencing and validation,
and upward returns are implemented. Before proceeding
to that description, however, there are two other possi-
bilities to consider: a call and return that do not change
the ring of execution, and an upward call and the subse-
quent downward return. The first presents no protection
problem, as both the calling and the called procedures
have available the same set of access capabilities. The
hardware mechanisms for downward calls and upward
returns also work when no change of ring is needed.

The last possibility is more difficult to handle. An
upward call occurs when a procedure executing in ring
n calls an entry point in another procedure segment
whose execute bracket bottom is m > n. When the call
occurs, the ring of execution will change to m. The sub-
sequent return is downward, resetting the ring of execu-
tion to n. These cases exhibit two unpleasant character-
istics of a general cross-domain call and return that were
not present in the other cases.

The first is that the calling procedire may specify
arguments that cannot be referenced from the ring of the
called procedure. (For a downward call, the nested sub-
set property of rings guaranteed that this could not
happen.) There are at least three possible solutions to
this problem. One is to require that the calling procedure
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Fig. 3. Schematic description of relevant storage formats and
processor registers.
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specify only arguments that are accessible in the higher-
numbered ring of the called procedure. This solution
compromises programming generality by forcing the
calling procedure to take special precautions in the case
of an upward call. Another possible solution is to dy-
namically include in the ring of the called procedure the
capabilities to reference the arguments. Because a seg-
ment is the smallest unit of information for which access
can be individually controlled, this forces segments
which contain arguments to contain no other informa-
tion that should be protected differently, again compro-
mising programming generality, unless segments are in-
expensive enough that, as a matter of course, every data
item is placed in its own segment. It may also be expen-
sive to dynamically include and remove the argument
referencing capabilities from the called ring. The third
possible solution is copying arguments into segments
that are accessible in the called ring, and then copying
them back to their original locations on return. This so-
lution restricts the possibility of sharing arguments with
parallel processes. None of the three solutions lends
itself to a straightforward hardware implementation.
The second unpleasant characteristic is that a gate
must be provided for the downward return. (For an
upward return the nested subset property of rings made
a return gate unnecessary.) The return gate must be
created at the time of the upward call and be destroyed
when the subsequent return occurs. If recursive calls
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into a ring are allowed, then this gate must behave as
though it were stored in a push-down stack, so that only
the gate at the top of the stack can be used. The gates
specified in SDW’s seem poorly suited to this sort of dy-
namic behavior. Processor mechanisms to provide dy-
namic, stacked return gates are not obvious at this time.

Because of these two problems, the hardware de-
scribed in the next section does not implement upward
calls and downward returns without software interven-
tion. Although the same object code sequences that
perform all calls and returns are used in these cases as
well, the hardware responds to each attempted upward
call or downward return by generating a trap to a super-
visor procedure which performs the necessary environ-
ment adjustments.

The manner in which the stack pointer register value
of the calling procedure is saved when a call occurs and
restored when the subsequent return occurs has not yet
been discussed. For a same-ring or downward call, it is
reasonable to trust the called procedure to save the value
left in the stack pointer register by the calling procedure
and then restore it before the subsequent return, since in
these cases the called procedure has access capabilities
which allow it to cause the calling procedure to malfunc-
tion in other ways anyway. For an upward call and the
subsequent downward return, the same convention can
be used without violating the protection provided by the
lower ring if the intervening software verifies the re-
stored stack pointer register value when performing the
downward return.

Hardware Implementation of Rings

In this section the ideas presented in the previous sec-
tions are gathered into a description of a design for
processor hardware to implement rings. The description
touches upon only those aspects of the processor orga-
nization that are relevant to access control. The seg-
mented addressing hardware described earlier serves as
the foundation of the ring implementation mechanisms.

Figure 3 presents a schematic description of storage
formats and processor registers that are relevant to the
discussion which follows. The pDBR and SDW’s have al-
ready been mentioned. The three 3-bit ring numbers in
an spw (SDW.R1, sDw.R2, and sSDw.R3) delimit the read,
write, and execute brackets and the gate extension. The
write bracket is rings O through spbw.rl, the execute
bracket sbw.Rr1 through sbw.rR2, and the gate extension
sbw.R2+1 through spbw.r3. Rather than providing a
fourth number to specify the top of the read bracket,
spWw.R2 is reused for this purpose. Thus the read bracket
is rings 0 through spw.r2. Forcing the top of the read
and execute brackets to coincide in this manner does not
seem to preclude any important cases, and saves one
ring number in the sbw. Supervisor code for con-
structing sSbw’s must guarantee that Sow.R1 < SDW.R2
< spw.Rr3 is true. The single-bit read, write, and execute
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flags (sDW.R, sDw.w, and SDW.E) also appear. Finally,
the list of gate locations of a segment is compressed to
a single fixed-length field (SDW.GATE) by requiring all
gate locations to be gathered together, beginning at
location 0 of a segment. SDW.GATE contains the number
of gate locations present.

The instruction pointer register (IPR) specifies the
current ring of execution and the two-part address of
the next instruction to be executed. The general format
of an instruction word in memory (INST) is also shown
for later reference.

The program accessible pointer registers (PrRO, PR1,
...) each contain a two-part address and a ring number.
Because segment numbers are not generally known at
the time a procedure segment is compiled, machine
instructions specify two-part operand addresses by

giving an offset (in INST.OFFSET) relative to one of the
 PR’s (specified by INST.PRNUM) or IPR. The ring number
in a pointer register (PR7.RING) is used to specify a vali-
dation level for the address, and is part of the mecha-
nism that allows an executing procedure to assume the
access capabilities of a higher-numbered ring for refer-
encing arguments. One of the PR’s is intended to serve
as the stack pointer register mentioned earlier.

Indirect addressing may be specified in an instruction
by setting the indirect flag (INST.1). Indirect words (IND)
contain the same information as PR’s, and may also
indicate further indirection with an indirect flag (IND.1).

The final item in Figure 3 is the temporary pointer
register (TPR). The TPR is an internal processor register
that is not program accessible. It is used to form the
two-part address of each virtual memory reference
made. The ring number (TPR.RING) provides the value
with respect to which permission to reference the virtual
memory location is validated.

There are t wo aspects to the implementation of rings
in hardware. The first is access checking logic, integrated
with the segmented addressing hardware, that validates
each virtual memory reference. The second is special
instructions for changing the ring of execution. The best
way to describe the first aspect is to trace the processor
instruction cycle, paying particular attention to the
places where operations related to access validation oc-
cur. The second aspect will be discussed when the de-
scription of the instruction cycle reaches the point where
the instruction is actually performed.

The first phase of the instruction cycle, retrieving the
next instruction to be executed, is described in Figure 4.
At the point during address translation that the spw for
the segment containing the instruction becomes avail-
able, the ring of execution (now TPR.RING) is matched
against the execute bracket defined in the sbw and the
execute flag is checked. If the segment may be executed
from the current ring of execution the instruction fetch
is completed. The access violations and other conditions
requiring software intervention shown in this and fol-
lowing figures generate traps, derailing the instruction
cycle. A traps action is described later in this section.
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Fig. 4. Retrieval of next instruction to be executed.
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The next phase of the instruction cycle, calculating
in TPR the effective address of the instruction’s operand,
is described in Figure 5. This phase occurs only if the
instruction has an operand in memory. The effective
address is the final two-part address of the operand
(after all address modifications and indirections have
taken place) together with an effective ring number
which is used to validate the actual reference to the
operand.

The formation of a two-part address in TPR.SEGNO
and TPR.WORDNO is very straightforward and is de-
scribed by Figure 5. The calculation of the ring number
portion of the effective address in TPR.RING and the ac-
cess validation performed before retrieving indirect
words, also shown in Figure 5, need further comment.

The effective ring portion of the effective address
provides a procedure with the means of voluntarily as-
suming the access capabilities of a higher-numbered
ring when making an instruction operand reference. The
effective ring number also records the highest-numbered
ring from which a procedure (in the same process) pos-
sibly could have influenced the effective address calcula-
tion. The first opportunity for the value of TPR.RING to
change during effective address calculation occurs if the
instruction contains an address that is an offset relative
to some PRn. In this case TPR.RING is updated with the
larger of its current values (still the current ring of execu-
tion) and the ring number in the specified pointer regis-
ter (PRA.RING). Thus, if PRA.RING contains a value that is
greater than the current ring of execution, validation of
the operand reference will be as though execution were
occurring in this higher-numbered ring.
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Fig. 5. Formation in TPR of effective address of instruction
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The remaining opportunities to change the vaiue of
TPR.RING occur in conjunction with the processing of
indirect words involved in the effective address calcula-
tion. Each time an indirect word is retrieved, TPR.RING
is updated with the larger of its current values, the ring
number in the indirect word (IND.RING), and the top of
the write bracket for the segment containing the indirect
word (sbw.R1l). The ring number in the indirect word
has the same purpose as the ring number in a pointer
register—forcing validation of the operand reference
relative to some higher-numbered ring. Including in the
calculation the top of the write bracket of the segment
containing the indirect word, however, has another pur-
pose. The top of the write bracket represents the highest-
numbered ring from which a procedure in the same
process could have altered the indirect word and thereby
influenced the result of the effective address calculation.
Taking into account spw.R1 when updating TPR.RING

- guarantees that the operand reference will be validated
with respect to the highest-numbered ring which could
have influenced the effective address.

The capability to read an indirect word during effec-
tive address formation must be validated before the
indirect word is retrieved. Validation is with respect to
the value in TPR.RING at the time the indirect word is
encountered. At the conclusion of the effective address
calculation described in Figure 5, TPR contains the effec-
tive address of the instruction operand, including the
effective ring number with respect to which the reference
to the operand will be validated.

The next phase of the instruction cycle is to perform
the instruction. For the purpose of access validation,
the possible instructions may be broken into three
groups, according to the type of reference made to the
operand. Figure 6 shows the access validation for the
straightforward cases of instructions which read their

Access violation

effective ring

Access violgtion

mo—<lwrite f1ag not
on
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operands and instructions which write their operands.
The third group, instructions which do not reference
their operands, is illustrated in Figure 7. One set in this
group is the ‘‘Effective Address to Pointer Register’’-
type (EAP-type) instructions which load the RING, SEGNO,
and WORDNO fields of Prr with the corresponding fields
of TPR. The operand is not referenced, so no access val-
idation is required. Instructions of this type are impor-
tant, as will be seen later, for they are the only way to
load pr’s.

The remaining instructions illustrated in Figure 7 are
transfer instructions. To provide some. protection
against changing the ring of execution by accident, all
transfer instructions except two, CALL and RETURN, are
constrained from doing so. Since a transfer instruction
does not reference its operand, but just loads the address
of its operand into the instruction counter, no access

-validation is really required. However, an advance check

on whether reloading PR from TPR will result in an ac-
cess violation when the next instruction is retrieved is
very useful from the standpoint of debugging, for it
catches the access violation while it is still possible to
identify the instruction which made the illegal transfer.
Figure 7 describes the advance check for transfer in-
structions other than CALL and RETURN.

The two instructions that remain to be considered
are the instructions which can change the ring of execu-
tion: CALL and RETURN. They are intended to be used to
implement the same-named linguistic operations.! CALL
will automatically switch the ring of execution to a
lower number and RETURN to a higher number if the oc-
casion requires it. These instructions also function
properly for calls and returns within the same ring.
When used to perform an upward call or a downward
return, the instructions cause traps which allow software
intervention. '

Figure 8 describes the access validation and perform-
ance of the CALL instruction. Several points require
further explanation. The first concerns gates. From Fig-
ure 8 it is apparent that a CALL must be directed at a
gate location even when the called procedure will exe-
cute in the same ring as the calling procedure. The ra-
tionale for this use of the gate list of a segment is that
it can provide protection against accidental calls to
locations that are not entry points, even when the call
comes from within the same ring. Thus, SDW.GATE for a
procedure segment usually specifies the number of ex-
ternally defined entry points in the procedure segment.
These become gates for higher-numbered rings in the
sense described in the previous sections only if the top
of the gate extension of the segment is above the top of
the execute bracket, i.e. only if SDW.R3 > spw.rR2 for
the segment. The price paid
ity is that if any externally defined entry point in a pro-
cedure segment is a gate for a higher-numbered ring,

for this error detection abil-

AU LAAS O Sl 20

'RETURN may also be used to implement the nonlocal goto
operation.
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Fig. 9. Access validation and performance of the RETURN
instruction.
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then all are. On intersegment transfers of control within
the same ring, the gate restriction can be bypassed by
using a normal transfer instruction rather than a CALL.
The only exception to having the CALL instruction re-
spect the gate list of the operand segment occurs if the
operand is in the same segment as the instruction. Al-
lowing a CALL instruction to ignore the gate list of the
segment containing the instruction permits it to be used
to implement calls to internal procedures.

The access validation for the CALL instruction is
made relative to the ring number computed as part of
the effective address. Since, as a result of PRr-relative
addressing and indirection, the effective ring value
(TPR.RING) can be higher than the current ring of
execution (IPR.RING), what would appear to be a call
within the same ring or to a lower ring with respect to
TPR.RING can in fact be an upward call with respect
to IPR.RING. Because in normal circumstances this
situation represents an error, the decision is made to
generate an access violation when it occurs, even if the
current ring of execution is within the execute bracket
of the called procedure segment.

CALL generates in PRO a pointer to word O of the
stack segment for the new ring of execution. (The PR to
use as this stack base pointer is chosen arbitrarily.) The
stack segment selection rule illustrated in Figure 8 is
that the segment number of the appropriate stack seg-
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ment is the same as the new ring number.? The final
transfer of control is achieved by reloading IPR.RING,
IPR.SEGNO, and IPR.WORDNO from the corresponding
fields of TPR.

The RETURN instruction is described by Figure 9.
The access validation is the same as for other transfer
instructions. The ring to which the return is made is
specified by the effective ring portion of the effective
address generated by the RETURN instruction. In the case
that the return is upward, the ring number fields in all
pointer registers are replaced with the larger of their
current values and the new ring of execution. This re-
placement, together with the fact that PR’s can only be
loaded with EAP-type instructions, guarantees that PRxz.-
RING can never contain a value that is less than IPR.RING,
a fact which proves very useful when passing arguments
on a downward call and which makes it easy to perform
an upward return to the proper ring. (See the next sec-
tion for details.)

Two items remain to be considered to complete the
description of the processor hardware for implementing
rings. One is the action of a trap. Traps are generated by
a variety of conditions in Figures 4-9, as well as by
missing segments and pages, I/O completions, etc. When
the processor detects such a condition, it changes the
ring of execution to zero and transfers control to a fixed
location in the supervisor. A special instruction allows
the state of the processor at the time of the trap to be
restored later if appropriate, resuming the disrupted
instruction.

The other item concerns privileged instructions.
Certain instructions, if executable by all procedure seg-
ments, could invalidate the protection provided by the
ring mechanisms. Among these are the instructions to
load the DBR, start I/O, and restore the processor state
after a trap. Such instructions are designated as privi-
leged and will be executed by the processor only in ring
0. This convention restricts their use to supervisor pro-
cedures.

Call and Return Revisited

The intended use of the hardware mechanisms just’
described is illustrated by considering again two key
aspects of the linguistic meaning of the operations call
and return.

2 Two subtle features may be included at this point by using a
more sophisticated stack segment selection rule. If the CALL in-
struction does not change the ring of execution, then the segment
number for the stack base pointer is taken directly from the stack
pointer register, allowing the continued use of a nonstandard stack
segment for procedures executing in the same ring. If the CALL in-
struction does change the ring of execution then the new stack seg-
ment number is calculated by adding the new ring number to an
additional DBR field that specifies the eight consecutively numbered
segments that are the standard stack segments of the process. The
use of the additional DBR field allows more flexibility in stack seg-
ment assignment, facilitating the preservation of stack history fol-
lowing an error and the implementation of forked stacks.
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The first aspect to be reconsidered is the way argu-
ments are passed and referenced. A procedure making a
call constructs an array of indirect words containing the
addresses of the various arguments to be passed with
the call. To inform the called procedure of the location
of this argument list, the calling procedure loads a spe-
cific PR designated by software convention (call it Pra)
with the address of the beginning of the argument list.
An instruction of the called procedure can reference the
nth argument as its operand by using an indirect ad-
dress. The location of the indirect word is specified in
the instruction as PRa offset by n. If this operand refer-
ence constitutes an upward cross-ring argument refer-
ence then the proper validation is automatic, for PRa.-
RING, as set by the calling procedure, must contain a
number that is greater than or equal to the number of
the ring in which the calling procedure was executing

“when the call was made. Thus, validation of all argu-
ment references by the called procedure will be with
respect to an effective ring that is at least as high as the
ring of the caller.

The ring number in PRa, then, allows the called pro-
cedure to automatically assume the fewer access capabil-
ities of the calling procedure in the case of an upward
cross-ring argument reference via PRa and the argument
list. Not all argument references, however, will be made
in this way. For example, if an argument is an array,
then the corresponding argument list indirect word will
address the first element. The called procedure may find
it convenient to load some free PR, say PRI, with the

actual two-part address of the beginning of that array -

argument so that array indexing can be more easily ac-
complished. If Pr1 is loaded with an EAP-type instruction
whose operand address is specified via Pra and the argu-
ment list, then the proper effective ring number will
automatically be put in PR1.RING, and subsequent refer-
ences to the argument via PR1 will also be validated
with respect to an effective ring that is at least as high as
the ring of the caller. If PR1 is then stored as an indirect
word, this effective ring is put into the RING field of the
indirect word. In fact, as long as the called procedure
does not make an explicit effort to lower the effective
ring associated with an argument address, e.g. by
zeroing the RING field of an indirect word, then all ma-
nipulations of the argument address are safe, and all
argument references will be validated with respect to an
effective ring that is at least as high as the ring of the
caller.?

The second aspect to be reconsidered with respect to

3 This property allows the correct argument validation to occur
naturally when an argument is passed along a chain of downward
calls. The RING field of an argument list indirect word will specify
the ring which originaily provided the argument. If this value is
higher than the value of PRa.RING, then the indirect word ring
number will become the effective ring for validation of references to
the corresponding argument.
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call and return is the way in which a return to the proper
ring is accomplished. As described earlier, the hardware
guarantees that the RING fields in all PR’s always contain
values greater than or equal to the current ring of exe-
cution. Thus, after a call all PR’s except PRO, which is
altered by the CALL instruction, initially contain the ring
of the caller (or some higher number) in their RING
fields. It follows that any scheme for returning which
depends upon one of these valuesis secure. For example,
the convention described earlier for restoring the stack
pointer register value of the caller before a return makes
it natural to address the operand of the RETURN instruc-
tion via this restored PR. (For this scheme to work, the
return point must have been saved by the caller at a
standard position in its stack area before the call oc-
curred.) The RETURN instruction is thus guaranteed to
generate an effective ring number no lower than the ring
of the calling procedure and therefore will return control
to the ring of the caller or some higher-numbered ring.

Use of Rings

Some insight into the functional capabilities of rings
can be gained by considering briefly the way the basic
mechanisms described in the previous sections are used
in Multics.

The ring protection scheme allows a layered super-
visor to be included in the virtual memory of each
process. In Multics, the lowest-level supervisor pro-
cedures, such as those implementing the primitive
operations of access control, 1/0, memory multiplexing,
and processor multiplexing, execute in ring 0. The
remaining supervisor procedures execute in ring 1. Ex-
amples of ring 1 supervisor procedures are those
performing accounting, input/output stream manage-
ment, and file system search direction. (Deciding how
many layers to use and which procedures should execute
in each layer is an interesting engineering design
problem.) Supervisor data segments have read and write
brackets that end at ring O or ring 1, depending on which
layer of the supervisor needs to access each.

Implicit invocation of certain ring O supervisor
procedures occurs as a result of a trap. Explicit invoca-
tion of selected ring 0 and ring 1 supervisor procedures
by procedures executing in rings 2-5 of a process is by
standard subroutine calls to gates. Procedures executing
in rings 6 and 7 are not given access to supervisor gates.

Because separate access control lists for each seg-
ment and separate descriptor segments for each process
provide the means to control separately the use of each
segment by each user’s process, not all gates into super-
visor rings need be avaiiabie to the processes of aii users,
and not all gates need have the same gate extension
associated with them. For example, some gates into
ring 0 are accessible to the processes of all users, but only
to procedures executing in ring 1. Such gates provide the
internal interfaces between the two layers of the super-
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visor. Some gates into ring 1 are accessible to procedures
executing in rings 2-5 in the processes of selected users,
but are not accessible at all from the processes of other
users. An example of the latter kind is a gate for regis-
tering new users that is available only from the processes
of system administrators.

As pointed out by Dijkstra [6], a layered supervisor
has several advantages. Constructing the supervisor in
layers enforced by ring protection reinforces these ad-
vantages. It limits the propagation of errors, thereby
making the supervisor easier to modify correctly and
increasing the level of confidence that the supervisor
functions correctly. For example, changes can be made
in ring 1 without having to recertify the correct oper-
ation of the procedures in ring 0.

By arranging for standard user procedures to execute
in ring 4, rings 2 and 3 become available for the protec-
tion of user-constructed subsystems. Subsystems
executing in rings 2 and 3 of a process can be protected
from procedures executing in rings 4-7 in the same way
that the supervisor is protected from procedures exe-
cuting in rings 2-7. All comments made about a super-
visor implemented in rings 0 and 1 of each process apply
to protected subsystems implemented in rings 2 and 3.
Different protected subsystems may be operated simul-
taneously in rings 2 and 3 of different processes and
several processes may share the use of the same
protected subsystem simultaneously. The ring protection
scheme allows the operation of user-constructed pro-
tected subsystems without auditing them for inclusion
in the supervisor. {The software facility that forces
standard user procedures to execute in ring 4, and yet
allows all users to freely provide ring 3 protected sub-
systems for one another, is not discussed here.)
Examples of protected subsystems that might be
provided by various users are a proprietary compiler or
a subsystem to provide interpretive access to some sen-
sitive data base and safely log each request for infor-
mation.

With most user procedures executing in ring 4, rings
5, 6, and 7 are available for user self-protection. For
example, a user may debug a program by executing it
in ring 5, where only procedure and data segments in-
tended to be referenced by the program would be made
accessible. The ring protection mechanisms would detect
many of the addressing errors that could be made by
the program and would prevent the untested program
from accidently damaging other segments accessible
from ring 4. In the same way ring 5 can be used for the
execution of an untrusted program borrowed from an-
other user. '

Because supervisor gates are not accessible from
rings 6 and 7 of any process in Multics, procedures exe-
cuted in these rings have no explicit access to supervisor
functions; they may, however, be given permission to
call user-provided gates into rings 4 or 5. Ring 6 of a
process might be used, for example, to provide a suit-
ably isolated environment for student programs being
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evaluted by a grading program executing in ring 4.

The complete description of a software access
control facility based on rings that allows them to be
used in the manner just outlined would require another
paper. A fundamental constraint enforced by this soft-
ware facility is that a program executing in ring » cannot
specify R1, R2, or R3 values of less than » in an access
control list entry of any segment. Although a given ring
may simultaneously protect different subsystems in dif-

-ferent processes, each ring of each process can protect

only one subsystem at a time. A usable software access
control facility must constrain each user’s ability to
dynamically set and modify access control specifications
so that this sole occupant property can be verified and
enforced when necessary.

Conclusions

The hardware mechanisms derived and described in
this paper implement a methodical generalization of the
traditional supervisor/user protection scheme that is
compatible with a shared virtual memory based on seg-
mentation. This generalization solves three significant
kinds of problems of a general purpose system to be
used as a computer utility:

s users can create arbitrary, but protected, subsystems
for use by others;

o the supervisor can be implemented in layers which
are enforced;

o the user can protect himself while debugging his own
(or borrowed) programs.

The subset access property of rings of protection does
not provide for what may be called “mutually suspicious
programs’’ operating under the control of a single proc-
ess. On the other hand, it is just that subset property
which imposes an organization which is easy to under-
stand and thus allows a system or subsystem designer
to convince himself that his implementation is complete.
Also, it is just the subset property which is the basis for
a hardware implementation that is integrated with seg-
mentation mechanisms, requiring very small additional
costs in hardware logic and processor speed. _
The long-range effect of hardware protection mech-
anisms which permit calls to protected subsystems that
use the same mechanisms as calls to other procedures
is bound to be significant. In the interface to the super-
visor of most systems there are many examples of
facilities whose interface design is biased by the assump-
tion that a call to the supervisor is relatively expensive;
the usual result is to place several closely related
functions together in the supervisor, even though only
one of the group really needs protection. For example,
in the Multics typewriter 1,0 package, only the func-
tions of copying data in and out of shared buffer areas
and of executing the privileged instruction to initiate
I/0 channel operation need to be protected. But, since
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these two functions are deeply tangled with typewriter
operation strategy and code conversion, the typewriter
I. O control package is currently implemented as a set
of procedures all located in the lowest-numbered ring of
the system, thus increasing the quantity of code which
has maximum privilege.

A similar example is found in many file system
designs, where complex file search operations are carried
out entirely by protected supervisor routines rather than
by unprotected library packages, primarily because a
complex file search requires many individual file access
operations, each of which would require transfer to a
protected service routine, which transfer is presumed
costly.

The initial version of Multics used software imple-
mented rings of protection. The result was a very
conservative use of the rings: originally just two super-
visor rings and one user ring were employed, and the
two supervisor rings were temporarily collapsed into
one (thus exploiting the programming generality objec-
tive referred to before) while the software ring crossing
mechanisms were tuned up. Today, although there are
many obvious applications waiting, the ability to use
more than two rings in a computation is just beginning
to be exploited. The availability with the new Multics
processor of hardware implemented rings which make
downward calls and upward returns no more complex
than calls and returns in the same ring should signifi-
cantly increase such exploitation.

Acknowledgments. The concepts embodied in the
mechanisms described here were the result of seven years
of maturing of ideas suggested by many workers. The
original idea of generalizing the supervisor/user
relationship to a multiple ring structure was suggested
by R.M. Graham, E.L. Glaser and F.J. Corbat6. An
initial software implementation of rings using multiple
descriptor segments [14] was worked out by Graham
and R.C. Daley, and constructed by members of the
Multics system programming team. That implementa-
tion makes use of hardware access mode indicators
stored in the segment descriptor word of the Honeywell
645 computer. Graham [9], in 1967, proposed a partial
hardware implementation of rings of protection which
included three ring numbers embedded in segment de-
scriptor words, and a processor ring register, but which
still required software intervention on all ring crossings.
Though a related scheme was implemented in the Hitac
5020 time-sharing system [15], this hardware scheme was
never implemented in Multics, which today (1971) still
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uses a version of the software implementation of rings.
The complete automation of downward calls and up-
ward returns was proposed in a thesis in 1969 [16]; the
description in this paper extends that thesis slightly with
the addition of ring numbers to indirect words and the
processor pointer registers, as suggested by Daley. The
CALL and RETURN instructions proposed there have also
been simplified.

The hardware implemented call and return, and
automatically managed stacks, were at least partly in-
spired by similar mechanisms which have long been used
on computer systems of the Burroughs Corporation
[4, 11].

In addition to those named above, D.D. Clark, C.T.
Clingen, R.J. Feiertag, J.M. Grochow, N.I. Morris,
M.A. Padlipsky, M.R. Thompson, V.L. Voydock, and
V.A. Vyssotsky contributed significant help in under-
standing and implementing rings of protection.
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The Multics PL/I Compiler

by R.A. Freiburghouse. Reprinted from AFIPS Conference

Proceedings 35, AFIPS Press, 1969, pp. 187-199, with
permission. Copyright 1969 by AFIPS Press.

This paper describes .the second PL/I compiler successfully
constructed for Multics, and used for the compilation of the
operating system itself. Although today a third and better PL/|
compiler is now in use, the basic organization of the second
compiler was preserved. Probably the most significant
observation about these two compilers is that even though they
implement the full language, they generate object code of high
enough quality (often better than an average machine language
programmer) to be used in the operating system itself. Since the
concept of writing the system in PL/l, to make 1Its description
smaller, more maintainable, and easier to learn, was considered
pivotal in the goals of Multics, this paper 1is especially
significant. v






The multics PL /1 compiler

by R. A. FREIBURGHOUSE

General Electric Company
Cambridge, Massachusetts

INTRODUCTION

The Multies PL/1 compiler is in many respects a
“seeond generation” PL/1 compiler. It was built at a
time when the language was considerably more stable
and well defined than it had been when the first
compilers were built.!? It has benefited from the
experience of the first compilers and avoids some of the
difficulties which they encountered. The Multics com-
piler is the only PL/1 compiler written in PL/1 and. is
believed to be the first PL/1 compiler to produce high
speed object code. ‘

The language

The Multics PL/1 language is the language defined
by the IBM “PL/1 Language Specifications” dated
March, 1968.> At the time this paper was written most
language features were implemented by the compiler
but the run time library did not include support for
input and output, as well as several lesser features.
Since the multi-tasking primitives provided by the
Multics operating system were not well suited to PL/1
tasking, PL/1 tasking was not implemented. Inter-
process communication (Multics tasking) may be
performed through ealls to operating system facilities.

The system environment

The compiler and its object programs operate within
the Multics operating system.3*-5 The environment
provided by this system includes a virtual two dimen-
sional ‘address space consisting of a large number of
segments. Each segment is a linear address space whose
addresses range from 0 to 64K. The entire virtual store
is supported by a paging mechanism, which is invisible
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to the program. Each program operating in this
environment consists of two segments: a text segment
containing a pure re-entrant procedure, and a linkage
segment containing out-references (links), definitions
(entry names), and static storage local to the program.
The text segment of each program is sharable by all
other users on the system. Linking to a called program is
normally done dynamieally during program execution.

Implementation techniques

The entire compiler and the Multics operating system
were written in EPL, a large subset of PL/1 containing
most of the complex features of the language. The EFL
compiler was built by a team headed by M. D. Mecllroy
and R. Morris of Bell Telephone Laboratories. Several
members of the Multics PL/1 project modified the
original EPL compiler to improve 'its object code
performance, and utilized the knowledge acquired from
this experience in the design of the Multies PL,1
compiler. EPL and Multies PL/1 are sufficiently
compatible to allow the Multics PL/1 compiler to |
compile itself and the operating system. ‘

The Multics PL/1 compiler was built and de-bugged
by four experienced system programmers in 18 months.
All program preparation was done on-line using the
CTSS time-sharing system at MIT. Most de-bugging
was done in a batch mode on the GE645, but final
de-bugging was done on-line using Multics.

The extremely short development time of 18 months
was made possible by these powerfu! tools. The same
design programmed in a macro-assembly language using
card input and batched runs would have required twice
as much time, and the result would have been extremely
unmanageable.
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Design objectives

The project’s design decisions and choice of techniques
were influenced by the following objectives:

1. A correct implementation of a reasonably
complete PL/1 language.

2. A compiler which produced relatively fast object
code for all language construects. For similar
language constructs, the object code was ex-
pected to equal or exceed that produced by most
Fortran or COBOL compilers.

3. Object program compatibility with EPL object
programs and other Multics languages.

4. An extensive compile time diagnostic facility.

5. A machine independent compiler capable of
bootstrapping itself onto other hardware.

The compiler’s size and speed were considered less
important than the above mentioned objectives. Each
phase of the original compiler occupies approximately
32K, but after the compiler has compiled itself that
figure will be about 24K. The original compiler was
about twice as slow as the Multics Fortran compiler.
The bootstrapped version of the PL/1 compiler is
expected to be considerably faster than the original
version but it will probably not equal the speed of
Fortran.

An overview of the compiler

The Multics PL/1 compiler is designed along
traditional lines. It is not an interactive compiler nor
does it perform partial compilations. The compiler
translates PL/1 external procedures into relocatable
binary machine code which may be executed directly or
which may be bound together with other procedures
compiled by any Multics language processor.

The notion of a phase is particularly useful when
discussing the organization of the Multies PL/1
compiler. A phase is a set of procedures which performs
a major logical function of compilation, such as syntac-
tic analysis. A phase is not necessarily a memory load or
a pass over some data base although it may, in some
cases, be either or both of these things.

The dynamic linking and paging facilities of the
Multies environment have the effect of making avail-
able in virtual storage only those specific pages of those
particular procedures which are referenced during an
execution of the compiler. A phase of the Multiecs PL/1
compiler is therefore only a logical grouping of pro-
cedures which may call each other. The PL/1 compiler
is organized into five phases: Syntactic Translation,
Declaration Processing, Semantic Translation, Optimi-
zation, and Code Generation.

The internal representation

The internal representation of the program being
compiled serves as the interface between phases of the
compiler. The internal representation is organized into
a modified tree structure (the program tree) consisting
of nodes which represent the component parts of the
program, such as blocks. groups, statements, operators,
operands, and declarations. Each node may be logically
connected to any number of other nodes by the use of
pointers.

Each source program block is represented in the
program tree by a block node which has two lists
connected to it: a statement list and a declaration list.
The elements of the declaration list are symbol table
nodes representing declarations of identifiers within that
block. The elements of the statement list are nodes
representing the source statements of that block. Each
statement node contains the root of a computation tree
which represents the operations to be performed by that
statement. This computation tree consists of operator
nodes and operand nodes.

The operators of the internal representation are
n-operand operators whose meaning closely parallels
that of the PL/1 source operators. The form of an
operand is changed by certain phases, but operands
generally refer to a declaration of some variable or
constant. Each operand also serves as the root of a
computation tree which describes the computations
necessary to locate the item at run time.

This internal representation is machine independent
in that it does not reflect the instruction set, the
addressing properties, or the register arrangement of
the GE645. The first four phases of the compiler are also
machine independent since they deal only with this
machine independent internal representation. Figure 1
shows the internal representation of a simple program.

Syntactic translation

Syntactic analysis of PL/1 programs is slightly more
difficult than syntactic analysis of other languages such
as Fortran. P1./1 is a larger language containing more
syntactic constructs, but it does not present any
significantly new problems. The syntactic translator
consists of two modules called the lexical analyzer and
the parse.

Lexical analysis

The lexical analvzer organizes the input text into
groups of tokens which represent a statement. It also
creates the source listing file and builds a token table
which contains the source representation of all tokens in
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FacT: S&°°;‘ FIXED, PRINT ENTRY, F ENTRY RETURNS (FIXED) INT;

DO =1 TO 10;
CALL PRINT(" Factorial is" F(IMs

END
F: PROC(N) FIXED;
DCL N FIXED; symbol table
IF N = O THEN RETURN(); for 1
RETURN (N*F(N-1)); —
END F} symboi fabis
END FACT; for PRINT
symbol table
\ /for F symbol tabis
block node for N
FaCT block node
F
:;:nauﬂ node statement node
for IF clouu\jumpmo.
statement node § N )

statement node

for CALL for THEN clause —__

statement node

statement node
for 0O end Ctor RETURN N
N call
statement node
stqtement node
for FACT end for Fond . F

VAN

Figure 1—The internal represertation of & program.
The example is greatly simplified. Only the state-
ments of procedure F are shown in detail.

the source program. A token is an identifier, a constant,
an operator or a delimiter. The lexical analyzer is called
by the parse each time the parse wants a new statement.

The lexical analyzer is an approximation to a finite
state machine. Since the lexical analyzer must produce
output as well as recognize tokens, action codes are
attached to the state transitions of the finite state
machine. These action codes result in the concatenation
of individual characters from the output until a
recognized token is formed. Constants are not converted
to their internal format by the lexical analyzer. They are
converted by the semantic translator to a format which
depends on the context in which the constant appears.

The token table produced by the lexical analyzer
contains a single entry for each unique token in the
source program. Searching of the token table is done
utilizing a hash coded scheme which provides quick
access to the table. Each token table entry contains a
pointer which may eventually point to a declaration of
the token. For each statement, the lexical analyzer
builds a vector of pointers to the tokens which were
found in the statement. This vector serves as the input
to the parse. Figure 2 shows a simple example of lexical
analysis.

PROC (MESSAGE, VALUE);

DCL MESSAGE CHAR(*), VALUE FIXED;
CALL DISPLAY(MESSAGE |I VALUE);
END;

PRINT:

The token tabie produced by
the lexical analyzer for
this program is:

PRINT
This vector of pointers is the
representation of the coll
statement. it is created by
PROC the lexical anoiyzer agnd serves

as mput to the parse.

VALUE \
) \\
oCcL

FIXED
CALL
DISPLAY
1

END

\

Figure 2—The output of the lexical analyzer.

The parse

The parse consists of a set of possibly recursive
procedures, each of which corresponds to a syntactic
unit of the language. These procedures are organized to
perform a top down analysis of the source program. As
each component of the program is recognized, it is
transformed into an appropriate internal representation.
The completed internal representation is a program tree
which reflects the relationships between all of the
eomponents of the original source program. Figure 3°
shows the results of the parse of a simple program.

Syntactic contexts which yield declarative informa-
tion are recognized by the parse, and this information is
passed to a module ealled the context recorder which
constructs a data base containing this information.
Declare statements are parsed into partial symbol table
nodes which represent declarations.

The problem of backup

The top down method of syntactic analysis is used
because of its simplicity and flexibility. The use of a
simple statement recognition algorithm made it possible
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SUM: PROC(X,N) FL
DCL (S INITIAL(O) X{(10Q0)) FLOAT;

DCI.. (I N XED, symbol tabié

Do | TO N; for N
S = s«»x(l). Pt
END; symbol table
RETURN(S): for |
END SUM; -

symbo! table

for X

symbol table
s
block node
SUM
The token tabie

statement node
for DO top

® ‘statement node
for assignment

statement NOde i ®
for DO increment

statement node

Figure 3—The output of the parse

to eliminate all backup. The statement recognizer
identifies the type of each statement before the parse of
that statement is attempted. The algorithm used by
this procedure first attempts to recognize assignment
statements using a left to right scan which looks for
token patterns which are roughly analogous to X = or
X ( ) =. If a statement is not recognized as an
assignment, its leading token is matched against a
keyword list to determine the statement type. This
algorithm is very efficient and is able to positively
identify all legal statements without requiring keywords
to be reserved. ‘

Declaration processing

PL/1 declaration processing is complicated by the
great variety of data attributes and by the context
sensitive manner in which they are derived. Two
modules, the context processor and the declaration
processor, process declarative information gathered by
the parse.

The conie pruCéSSGn

The context processor scans the data base containing
contextually derived attributes produced during the
parse by the context recorder. It either augments the
partial symbol table created from declare statements or

creates new declarations having the same format as
those derived from declare statements. This activity
creates contextual and implicit declarations.

The declaration processor

The declaration processor develops sufficient informa-
tion about the variatlss of the program so that they
may be allocated storage, initialized and accessed by the
program’s operators. It is organized to perform three
major functions: the preparation of accessing code, the
computation of each variable’s storage requirements,
and the creation of initialization code.

The declaration processor is relatively machine
independent. All machine dependent characteristics,
such as the number of bits per word and the alignment
requirements of data types, are contained in a table.
All computations or statements produced by the
declaration processor have the same internal representa-
tion as source language expressions or statements. Later
phases of the compiler do not distinguish between them.

The use of based references by the declaration
pro -essor

The concept of a based reference is useful to the
understanding of PL/1 data accessing and the imple-
mentation of a number of language features. A based
declaration of the form DCL A BASED is referenced
by a based reference of the form P — A, where P is a
pointer to the storage occupied by a value whose
description is given by the declaration of 4. Multiple
instances of data having the characteristics of A can be
referenced through the use of unique pointers, i.e.,
Q— A R— A, etc.

The declaration processor implements a number of
language features by transforming them into suitable
based declarations. Automatic data whose size is
variable is transformed into a based declaration.

For example the declaration:

DCL A(N) AUTO;
becomes
DCL A(N) BASED(P);

where: P is a compiler produced pointer which is set
' 4+~ tha danlamne hlnrl’

VU ULV UlCUicer s ~aOU K

upon vnu

Based declarations are also used to implement
parameters. For example.

X: PROC (C); DCL C;
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becomes
X: PROC (P); DCL C BASED(P);

where: P is a pointer which points to the argument
corresponding to the parameter C.

Data accessing

The address of an item of PL/1 data consists of three
basic parts: a pointer to some storage location, a word
offset from that location and a bit offset from the word
offset. Either or both offsets may be zero. The term
“word” is understood to refer to the addressable unit
of a computer’s storage.

Example 1
DCL A AUTO;

The address of A consists of a pointer to the declaring
block’s automatic storage, a word offset within that
automatic storage and a zero bit offset

Example 2

DCL 1 § BASED(P),
2 A BIT(5),
2 B BIT(N)

When referenced by P — B, the address of B is a
pointer P, a zero word offset and a bit offset of 5. The
word offset may include the distance from the origin of
the item’s storage class, as was the case with the first
example, or it may be only the distance from the
level-one containing structure, as it was in the last
example. The term “level-one” refers to all variables
which are not contained within structures. Subseripted
array element references, A(K, J), or sub-string
references, SUBSTR(X, K, J), may also be expressed
as offsets.

Offset expressions

The declaration processor constructs offset expres-
sions which represent the distance between an element
of a structure and the data origin of its level-one
containing structure. If an offset expression contains
only constant terms, it is evaluated by the declaration
processor and results in a constant addressing offset. If
the offset expression contains variable terms, the
expression results in the generation of accessing
instructions in the object program. The discussion which
follows describes the efficient ereation of these offset
expressions.

Given a declaration of the form:

DCL 1 S
2 A BITNM,,
2 B BIT(5).
2 C FLOAT;

The offset of A is zero, the offset of B is M bits, and the
offset of C is M + 5 bits rounded upward to the
nearest word boundary.

In general. the offset of the nth item in a structure is:

ba(Ca1(Sa—1) + bas(Ca—a(Ss—2) + bn
(- - -balea(se)) + balesls)))---)1)

- where: b; is a rounding function which expresses the

boundary requirement of the kth item.

s; is the size of the kth item.
cx is the conversion factor necessary to convert
s; to some common units such as bits.

The declaration processor suppresses the creation of
unnecessary conversion functions (c¢x) and boundary
functions (b:) by keeping track of the current units and
boundary as it builds the expression. As a result the
offset expressions of the previous example do not contgi
conversion functions and boundary functions foxt'?
and B. '

During the construction of the offset expression, the
declaration processor separates the constant and varia-
ble terms so that the addition of constant terms is done
by the compiler rather than by accessing code in the
object program. The following example demonstrates
the improvement gained by this technique,

DCL 1S,
2 A BIT(5).
2 B BIT(X).
2 C BIT(®),
2 D BIT(10):

The offset of D is K411 instead of 54K +6.

The word offset and the bit offset are developed
separately. Within each offset, the constant and varia-
ble parts are separated. These separations result in the
minimization of additions and unit conversions. If the
declaration contains only constant sizes, the resulting
offsets are constant. If the declaration contains expres-
sions, then the offsets are expressions contalning the
minimum number of terms and conversion factors.

The development of size and offset expressions at
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compile time enables the object program to access data
without the use of data descriptors or “dope vectors.”
Most existing PL 1 implementations make extensive
use of such descriptors to access data whose size or
offsets are variable. Unless these descriptors are
implemented by hardware, their use results in rather
ineficient object code. The Multies PL, 1 strategy of
developing offset expressions from the declarations
results in accessing code similar to that produced for
subs ri ted array references. This code is generally
more « fliciant than code which uses descriptors.

In general, the offset expressions constructed by the
declaratioa processor remain unchanged until code
generation. Two cases are exceptions to this rule:
subscripted arrayv references, A(K,J), and sub-string
references, SUBSTR(X,K,J). Each subscripted
reference or sub-string reference is a reference to a
unique sub-datum within the declared datum and,
therefore, requires a unique offset. The semantic
translator constructs these unique offsets using the
subseripts from the reference and the offset prepared by
the declaration processor.

Allocation

The declaration processor does not allocate storage
for most classes of data, but it does determine the
amount of storage needed by each variable. Variables
are allocated within some segment of storage by the code
generator. Storage allocation is delayed because, during
semantic translation and optimization, additional dec-

I rations of constants and compiler created variables
are made.

Initialization

The declaration processor creates statements in the
prologue of the declaring block which will initialize
automatic data. It generates DO statements, IF
statements and assignment statements to accomplish
the required initialization.

The expansion of the initial attribute for based and
controlled data is identical to that for automatic data
except that the required statements are inserted into
the program at the point of allocation rather than in the
prologue.

Since array bounds and string sizes of static data are

required by the language to be constant, and since all
values of the initial attribute of static data must be
constant, the compiler is able to initialize the static data
at compile time. The initialization is done by the code

generator at the time it allocates the static data.

Semantic translation

The semantic transiator transforms the internal
representation so that it reflects the attributes (seman-
tics) of the declared variables without reflecting the
properties of the object machine. It makes a single scan
over the internal representation of the program. A com-
piler, which had no equivalent of the optimizer phase
and which did not separate the machine dependencies
into a separate phase, could conceivably produce object
code during this scan.

Organization of the semantic t{ranslator

The semantic translator consists of a set of recursive
procedures which walk through the program tree. The
actions taken by these procedures are described by the
general terms: operator transformation and operand
processing. Operator transformation includes the crea-
tion of an explicit representation of each operator’s
result and the generation of conversion operators for
those operands which require conversion. Operand
processing determines the attributes, size and offsets of
each operator’s operands.

Operator transformation

The meaning of an operator is determined by the
attributes of its operands. This meaning specifies which
conversions must be performed on the operands, and it
decides the attributes of the operator’s result.

An operator’s result is represented in the program
tree by a temporary node. Temporary nodes are a
further qualification of the original operator. For
example, an add operator whose result is fixed-point is a
distinct operation from an add operator whose result is
floating-noint. There is no storage associated with
temporaries—they are allocated either core or register
storage by the code generator. A temporary’s size is a
function of the operator’s meaning and the sizes of the
operator’s operands. A temporary, representing the
intermediate result of a string operation, requires an
expression to represent its length if any of the string
operator’s operands have variable lengths.

Operand processing

Operands consist of sub-expressions, references to
variables, constants, and references to procedure names
or built-in functions. Sub-expression operands are
processed by recursive use of operator transformation
and operand processing. Operand processing converts
constants to a binary format which depends on the
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context in which the constant was used. Refefences to
variables or procedure names are associated with their
appropriate declaration by the search function. After
the search function has found the appropriate declara-
tion, the reference may be further processed by the
subscriptor or function processor.

The Search function

During the parse, it is not possible for references to
source program variables to know the declared attributes
of the variable because the PL/1 language allows
declarations to follow their use. Therefore, references to
source program variables are parsed into a form which
contains a pointer to a token table entry rather than to
a declaration of the variable. Figure 3 shows the output
of the parse. The search function finds the proper
declaration for each reference to a source program
variable. The effectiveness of the search depends heavily
on the structure of the token table and the symbol table.
After declaration processing, the token table entry
representing an identifier contains a list of all the
declarations of that identifier. See Figure 4.

The search function first tries to find a declaration
belonging to the block in which the reference occurred.
If it fails to find one, it looks for a declaration in the next
containing block. This process is repeated until a

TOP: PROC;
DCL B POINTER;
BEGIN;
DCL B FLOAT;
BEGIN;
DCL B FIXED;
END;

END;
END;

Token Table

symbol table for

/B as a pointer

block node for
TOP

symbol table for
B os fioaoting-point
block node for/
first BEGIN

symbol table for

B as fixed-point
block node for —
second BEGIN

Figure 4—The relationship between the token table and
the symbol table

DEMy PROC:
DCL t S,
2 A(N) FLOAT,
2 B(M) FIXED:
S.B(1) = O3
END;
/ -°
N symbo! table
block node — for® \
for DEM reference

the word offset
expression duiif
by the declaration

.

node for B
\ v

. processor.
statement node
for assignment \
\ .
.
' /. )
reference *
node for B
+
\ the word offset

expression built
by the semantic
translator.

+/ -
N/ \l

Figure 5—A simplified diagram showing the effects of
subseripting

"declaration is found. Sinee the number of declarations

on the list is usually one, the search is quite fast. In its
atterpt to find the appropriate declaration, the search
function obeys the language rules regarding structure
qualification. It also collects any subseripts used in the
reference and places them into a subseript list. Depend-
ing on the attributes of the referenced item, the
subseript list serves as input to the function processor or
subscriptor.

The declaration processor creates offset expressions
and size expressions for all variables. These expressions,
known as accessing expressicns, are rooted in a reference
node which is attached to a symbol table node. The
reference node contains all information necessary to
access the data at run time. The search function
translates a source reference into a pointer to this
reference node. See Figure 5.

Subscripting

Since each subscripted reference is unique, its offset
expression is unique. To reflect this in the internal
representation. the subseriptor creates a unique refer-
ence node for each subseripted reference. See Figure 6.
The following discussion shows the relationship between
the declared array bounds, the element size, the array
offset and subseripts.
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Let us consider the case of an array declared:
a(liruy, Lo, - - -+, 1Limu,)

Its element size is s and its offset is b.

‘I he multipliers for the array are defined as:

m, = S
May = (Us —1a 4+ s

Ma_y = (Ua—1 — s + 1)m,
m = (uz =+ )m
The offset of a reference a(iy, is.- - -, i) is computed as:
v+ Z i;m;
i=1

where: v is the virtual origin. The virtual origin is the
offset obtained by setting the subscripts equal to zero.
It serves as a convenient base from which to compute
the offset of any array element.

During the construction of all expressions, the
constant terms are separated from the variable terms
and all constant operations are performed by the

FIGs PROCS
OCL (X, Y, 2) FLOAT;
X=Y+ZY
END:

/'—'
symbol table
for 2 \

symbol tabie reference
ti'.'? Y \ node for Z
| table " reference
71?‘)? \ node for ¥
k node reference
P node for X

Token Table

[ (oen spmai®rentd)

\/\&
- Y

~———— - — »

)

]
statement node ) =
for assigament ‘-

4
|
\

Figure 6—The internal representation of a statement
before and after the execution of the search function.
The broken lines show the ~tatement’s
operands hefore the search

compiler. Since the virtual origin and the multipliers are
common to all references, they are constructed by the
declaration processor and are repeatedly used by the
subscriptor.

Arrays of PL/1 structures which contain arrays may
result in a set of multipliers whose units differ. The
declaration:

DCL 1 $(10),
2 A PTR,
2 B(10) BIT(2);

vields two multipliers of different units. The first
multiplier is the size of an element of S in words, while
the second multiplier is the size of an element of B
in bits.

Array parameters which may correspond to an array
cross section argument must receive their multipliers
from an argument deseriptor. Since the arrangement
of the cross section elements in storage is not known to
the called program, it cannot construct its own multi-
pliers and must use multipliers prepared by the calling
program. Note that the current definition of PL/1
allows any array parameter to receive a cross section
argument. :

The function processor

An operand which is a reference to a procedure is
expanded hy the function proeessor into a call operator
and possible conversion operators. Built-in function
references result in new operators or are translated into
expressions consisting of operators and operands.

Generic procedure references

A generic entry name represents a family of pro-
cedures whose members require different types of
arguments.

DCL ALPHA GENERIC (BETA
ENTRY (FIXED)),
GAMMA

ENTRY(FLOAT));

A reference to ALPHA (X) will result in a call to
BETA or CAMMA depending on the attributes of X.
The declaration processor chains together all members
of a generic family and the function processor selects the
appropriate member of the family by matching the
arguments used in the reference with the declared
argument requircments of each member. When the
appropriate member is found, the original reference is
replaced by 2 reference to the selected member.
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Argument processing

The funetion processor matches arguments to user-
declared procedures against the argument types required
for the procedure. It inserts conversion operators into
the program tree where appropriate, and it issues
diagnosties when it detects illegal cases.

The return value of a function is processed as if it
were the n+ 1th argument to the procedure, eliminating
the distinction between subroutines and funetions.

The function processor determines which arguments
may possibly correspond to a parameter whose size or
array bounds are not specified in the called procedure.
In this case, the argument list is augmented to include
the missing size information. A more detailed description
of this issue is given later in the discussion of object
code strategies.

The built-in function processor

The built-in funetion processor is basically a table
driven device. The driving table describes the number
and kind of arguments required by each funection and is
used to force the necessary conversions and diagnostics
for each argument. Most functions require processing
which is unique to that funection, but the table driven
device minimizes the amount of this processing.

The SUBSTR built-in function is of particular
importance since it is a basic PL/1 string operator. It is
a three argument function which allows a reference to
be made to a portion of a string variable, i.e.,
SUBSTR (X, I, J) is a reference to the ith through
i+ j — 1th character (or bit) in the string X.

This funetion is similar to an array element reference
in the sense that they both determine the offsets of the
reference. The processing of the SUBSTR function
involves adjusting the offset and length expressions
contained in the reference node of X. As is the case in
all compiler operations on the offset expressions, the
constant and variable terms are separated to minimize
the object code necessary to access the data.

The optimizer

The compiler is designed to produce relatively fast
object code without the aid of an optimizing phase.
Normal execution of the compiler will by-pass the
optimizer, but if extensively optimized object code is
desired, the user may set a compiler command option
which will execute the optimizer. The optimizer consists
of a set of procedures which perform two major optimi-
zations: common sub-expression removal and remova’
of computations from loops. The data bases necessary

for these optimizations are constructed by the parse
and the semantic translator. These data bases consist of
a cross-reference structure of statement labels and a
tree structure representing the DO groups of each
block. Both optimizations are done on a block basis
using these two data bases.

Aithough the optimizer phase was not implemented
at the time this paper was written, all data bases
required by the optimizer are constructed by previous
phases of the compiler and the abnormality of all
variables is properly determined.

Optimization of PL/I programs

The on-condition mechanism of the PL/1 language
makes the optimization of PL/1 programs considerably
more difficult than the optimization of Fortran pro-
grams. Assuming that an optimized version of a
program should yield results identical to those produced
by the un-optimized version, then if any on-conditions
are enabled in a given region of the program, the
compiler cannot remove or reorder the computations
performed in that region. (Consider the case of a divide
by zero on unit which counts the number of times that
the condition occurs.)

Since some on-conditions are enabled by default,
most PL/1 programs cannot be optimized. Because of
the difficulty of determining the abnormality of a
program’s variables, the optimization of those programs
which may be optimized requires a rather intelligent
compiler. A variable is abnormal in some block if its
value can be altered without an explicit indication of
that fact present in that block. An optimizing PL/1
compiler must consider all based variables, all arguments
to the ADDR function, all defined variables, and all
base items of defined variables to be abnormal. If the
compiler expects values of variables to be retained
throughout the execution of a call, it must also consider
all parameters, all external variables, and all arguments
of irreducible functions to be abnormal. )

Because of the difficulty of optimizing programs
written in the current PL/1 language' compilers should
probably not attempt to perform general optimizations
but should concentrate on- special case optimizations
which are unique to each implementation. Future
revisions to the language definition may help solve the
optimization problem.

The code generator

The code generator is the machine dependent portion
of the compiler. It performs two major functions: it
allocates data into Multics segments and it generates
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645 machine instructions from the internal repre-
sentation.

Storage allocation

A module of the code generator called the storage
alloeator seans the syvmbol table alloeating stack
storage for constant size automatic data, and linkage
segment storage for internal static data. For each
external name the storage allocator creates a link (an
out-reference) or.a definition (an entry point) in the
linkage segment. All internal static data is initialized as
its storage is allocated.

"Due to the dynamic linking and loadirg characteris-
ties of the Mlultics environment, the allocation and
initialization of external static storage is rather unusual.
The compiler creates a special type of link which causes
the linker module of the operating system to create and
initialize the external data upon first reference. There-
fore, if two programs contain references to the same
item of external data, the first one to reference that data
will allocate and initialize it.

Code generation

The code generator scans the internal representation
transforming it into 645 machine instructions which it
outputs into the text segment. During this scan the
code generator allocates storage for temporaries, and
maintains a historv of the contents of index registers to
prevent excessive loading and storing of index values.

Code generation consists of three distinct activities:
address computation, operator selection and macro
expansion. Address computation is the process of
transforming the offset expressions of a reference node
into a machine address or an instruction sequence which
leads to a machine address. Operator selection is the
translation of operators into n-operand macros which
reflect the properties of the 645 machine.

A one-to-one relationship often exists between the
macros and 645 instructions but many operations (load
long string, etc.) have no machine counterpart. All
macros are expanded in actual 645 code by the macro
expander which uses a code pattern table (macro
skeletons) to select the specific instruction sequences
for each macro.

Object code siraiegies
The object code design

The design of the object code is a compromise between
the speed obtainable by straight in-line code and the

necessity to minimize the number of page faults caused
by large object progcrams.

The length of the object program is minimized by the
extensive use of out-of-line code sequences. These
out-of-line code sequences represent invariant code
which is common to all Multies PL/1 object programs.
Although the compiled code makes heavy use of out-of-
line ecode sequences, the compiled code is rot in any
respect interpretive. The object code produce for each
operator is very highly tailored to the specifie attributes
of that operator.

All out-of-line sequences are contained in a single
‘“‘operator’’ segment which is shared by all users. The
in-line code reaches on out-of-line sequence through
transfer instructions, rather than through the standard
subroutine mechanism. We believe that the time
overhead associated with the transfers is more than
1edeemed by the reduction in the number of page faults
caused by shorter object programs. fystem performance
is improved by insuring that the pages of the operstor
segment are alwayvs retained in storage.

The stack

Multics PL - 1 object programs utilize a stack segment
for the allocation of all automatic data, temporaries,
and data associated with on-conditions. Each task
(Multics process) has its own stack which is extended
(pushed) upon entry to block and is reverted (popped)
upon return from a block. Prior to the execution of each
statement it is extended to create sufficient space for
any variable length string temporaries used in that
statement. Constant size temporaries are allocated at
compile time and do not cause the stack to be extended
for each statement.

Prologue and epilogue

The term prologue describes the computations which
are performed after block entry and prior to the
execution of the first source statement. These actions
include the establishment of the condition prefix, the
computation of the size of variable size automatic data,
extension of the stack to allocate automatic data, and
the initialization of automatic data. Epilogues are not
needed because all actions which must be undone upon
exit from the block are accomplished by popping the
stack. The stack is popped for each return or non-local
go to statement.

Accessing of data
Multies PL/1 object code addresses all data, includ-
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ing members of variable sized structures and arrays
directly through the use of in-line code. If the address
of the data is constant, it is computed at compile time.
If it is a mixture of constant and variable terms, the
constant terms are combined at compile time. Deserip-
tors are never used to address or allocate data.

String operations

All string operations are done by in-line code or by
“transfer” type subroutinized code. No descriptors or
calls are produced for string operations. The SUBSTR
built-in funetion is implemented as a part of the normal
addressing code and is therefore as efficient as a
subscripted array reference.

String temporaries

A string temporary or dummy is desigred in such a
way that it appears to be both a varying and non-vary-
ing string. This means that the programmer does not
need to be concerned with whether a string expression. is
varying or non-varying when he uses such an expression
as an argument.

Varying strings

The Multies PL/1 implementation of varying strings
uses a data format which corsists of an integer followed
by a non-varying string whose length is the declare
maximum of the varying string. The i iteger is used to
hold the current size of the string in bits or charascters.
Using this data format, operations on varving strings
are just as efficient as operations on non-varving strings.

On-conditions

The design of the condition machinery minimizes the
overhead associated with enabling and reverting on-
units and transfers most of the cost to the signal
statement. All data associated with on-conditions,
including the condition prefix, is allocated in the stack.
The normal popping of the stack reverts all enabled
on-units and restores the proper condition prefix. Stack
storage associated with each block is threaded backward
to the previous block. The signal statement uses this
thread to search back through the stack locking for the
first enabled unit for the condition being signalled.
Figure 7 shows the organization of enabled on-units in
the stack.

Argument passing

The PL/1 language permits parameters to be

Procedure A enabled an
on-unit for condition X
and called procedure B.

on-unit control
data for X.

stack storage
for A

stack storage Procedure B encbled a
for 8 new on-unit for condition
X ond an on-unit for
condition Y. It then
called procedure C.

on-ur;n control
data for X and
Y <

stock storage Procedure C did not
for C. - . enable any on-units.

Figure 7—Stack storage and the signal mechanism

A ignal for condition X czuses the signel mechanism to search
tack through the steck until it finds the first enabled-on-unit
for condition X.

An on-unit is compiled 25 an internz] procedure. The execution
of an ON-stetement creates 2 block of on-unit control data. This
control date concists of the name of the condition for which the
unit was engbled end a procedure varieble. The signal mechanism
uses the procedure varizble to invoke the on-unit. All data
associated with the enebled on-unit is stored in the stack storage
of the procedure which enabled it. Normsl popping of the stack
reverts the on-units ensbled during the execution of the
procedure.

declared with unknown array bounds or string lengths.
In these cases, the missing size information is assumed
to be supplied by the argument which corresponds to the
parameter. This missing size information is not explicitly
supplied by the programmer as is the case in Fortran,
rather it must be supplied by the compiler as indicated
in the following example:

SUB: PROC(A); AMAIN: PROC;

DCL A CHAR(*); DCL SUB ENTRY;
DCL B CHAR(10);

CALL SUB(B):

Since parameter A assumes the length of the argu-
ment B, the compiler must include the length of Bin the
argument list of the call to SUB.
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The declaration of an entrv name may or may not
include a deseription of the arguments required by that
entry. If such a deseription is not supplied, then the
calling program must assume that argument descriptors
are needed, and must include them in all calls to the
entry. If a complete argument description is contained
in the calling program, the compiler can determine if
descriptors are needed for calls to the entry.

In the previous example the entry SUB was not fully
declared and the compiler was forced to assume that an
argument descriptor for B was required. If the entry
had been declared SUB ENTRY (CHAR(*)) the
compiler could have known that the descriptor of B was
actually required by the procedure SUB. Since descrip-
tors are often created by the ealling procedure but not
used by the called procedure, it is desirable to separate
them from the argument information which is always
used by the called procedure.

Communication between procedures written in PL/1
and other languages is facilitated if the other languages
do not need to concern themselves with PL/1 argument
descriptors. The Multies PL/1 implementation of the
argument list is shown in Figure 8. Note that the
argument pointers point directly to the data (facilitating
communication between languages) and that the
descriptors are optional, also note that PL/1 pointers

TAG: PROC;

DCL A(10) BIT(N), B CHAR(T), C AREA(1024);
CALL X(A,8,C)s
END;

The argumest |ist
prepared for the

call to X.
—\
pointers to the actual

| —— values of A, B and C.
H [
' size N
1 fow bound 1
' T high bound 10 descriptor of A
|

multipiler N
r————
|
| I |
\rm

Figure 8—An argument list showing the relationship
between arguments and their de-criptors. The
broken lines indicate that descriptors
are optional.

descriptor of B

descriptor of C

must be capable of bit addressing in order to implement
unaligned strings. Since descriptors contain ro address-
ing information, they are quite often constant and can
be prepared at compile time.

SUMAMJARY

Our experiences both as users and implementors of
PL/1 have led us to form a number of opinions and
insights which may be of general interest.

1. It is feasible, but difficult, to produce efficient
object code for the PL/1 language as it is cur-
rently defined. Unless a considerable amount of
work is invested in a PL/1 compiler, the object
code it generates will generally be much worse
than that produced by most Fortran or COBOL
compilers.

2. The difficulty of building a compiler for the
current language has been seriously under-
estimated by most implementors. Unless the
language is markedly improved and simplified
this problem will continue to restrict the avail-
ability and acceptance of the language and will
lead to the implementation of incompatible
dialects and subsets.?

3. Simplification of the existing language will make
it more suitable to users and implementors. We
believe that the language can be simplified and
still retain its ‘‘universal”’ character and
capabilities.

4. The experience of writing the compiler in PL/1
convinced us that a subset of the language is well
suited to system programming. This conviction

" is supported by Professor Corbato in his report on
the use of PL/1 as an implementation language
for the Multics svstem.? Many PL/1 concepts
and constructs are valuable, but PL/1 structures
and list processing seem to be the principal
improvement over alternative languages.?
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Remote Terminal Character Stream Processing in Multics

by J.H. Saltzer and J.F. Ossanna. Reprinted from
AFIPS Conference Proceedings 36, AFIPS Press,

1970, pp. 621-627, with permission. Copyright 1970
by AFIPS Press.

This paper describes one of the numerous areas of an
operating system.which must be carefully thought out to provide a
uniform, well-engineered human interface. The topic is the
processing of terminal input and output so that programs see a
standard implementation=-independent terminal, while typists see a
simple, easy-to-learn method of communicating with the system, no
matter which terminal device they happen to be faced with. Since
the system has been used with perhaps 25 different kinds of
terminal equipment the considerations described here cannot be
ignored. (Note, however, that we are here dealing with a set of
concepts which are a notch below the importance of, say, the
Multics virtual memory strategy.) The paper 1is ‘generally
up-to-date in terminology, but for exact details of the typing
conventions one should refer to section 1 of the Reference Guide.
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INTRODUCTION

There are a variety of considerations which are per-
tinent to the design of the interface between programs
and typewriter-class remote terminal devices in a
general-purpose time-sharing system. The conventions
used for editing, converting, and reduction to canonical
form of the stream of characters passing to and from
remote terminals is the subject of this paper. The
particular techniques used in the Multics* system
are presented as an example of a single unified design
of the entire character stream processing interface.
The sections which follow contain discussion of char-
acter set considerations, character stream processing
objectives, character stream reduction to canonical
form, line and print position deletion, and other
interface problems. An appendix gives a formal de-
scription of the canonical form for stored character
strings used in Multics.

CHARACTER SET CONSIDERATIONS

Although for many years computer specialists have
been willing to accept whatever miscellaneous collec-
tion of characters and codes their systems were delivered
with, and to invent ingenious compromises when
designing the syntax of programming languages, the

* Multics is a comprehensive general purpose time-sharing
system implemented on the General Electric 645 computer
system. A general description of Multics can be found in Ref-
erence 1 or 2.

621

impact of today’s computer system is felt far beyond the
specialist, and computer printout is (or should be)
received by many who have neither time nor patience
to decode information printed with inadequate graphic
versatility. Report generation has, for some time, been
a routine function. Recently, on-line documentation
aids, such as RUNOFF;* Datatext (IBM Corp.) or
RAES (General Electric Co.) have attracted many
users. Especially for the latter examples it is essential
to have a character set encompassing both upper and
lower case letters. Modern programming languages can
certainly benefit from availability of a variety of special
characters as syntactic delimiters, the ingenuity of
PL/1 in using a small set notwithstanding.

> Probably .the minimum character set acceptable
today is one like the USASCII 128-character set* or
IBM’s EBCDIC set with the provision that they be
fully supported by upper/lower case printer and
terminal hardware. The definition of support of a
character set is almost as important as the fact of
support. To be fully useful, one should be able to use the
same full character set in composing program or data
files, in literal character strings of a programming
language, in arguments of calls to the supervisor and to
library routines requiring symbolic names, as embedded
character strings in program linkage information, and in
input and output to typewriters, displays, printers, and
cards. However, it may be necessary to place conversion
packages in the path to and from some devices since it is
rare to find that all the different hardware devices
attached to a system use the same character set and
character codes.
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TABLE I—Escape conventions for input and output
of USASCII from an EBCDIC typewriter

Normal Alternate

ASCII Character ASCII EBCDIC “edited”

Name Graphic  Escape Escape
Right Square Bracket ] ¢> 3
Left Square Bracket [ ¢< =
Right Brace ! ¢) >
Left Brace { ¢( —
Tilde ~ £t —-£
Grave Accent ¢

CHARACTER STREAM PROCESSING
CONSIDERATIONS

The treatment of character stream input and output
may be degraded, from a human engineering point of
view, unless it is tempered by the following two
considerations:

1. If a computer system supports a variety of terminal
devices (Multics, for example, supports both the
IBM Model 2741% and the Teletype Model 37¢)
then it should be possible to work with any program
from any terminal.

2. It should be possible to determine from the printed
page, without ambiguity, both what went into the
computer program and what the program tried to

print out.

To be fully effective, these two considerations must
apply to all input and output to the system itself (e.g.,
when logging in; choosing subsystems, ete.) as well as
input and output from user programs, editors, etc.

As an example of the ‘‘device independence” con-
vention, Multics uses the USASCII character set in
all internal interfaces and provides standard techniques
for dealing with devices which are non-USASCII.
When using the GE-645 USASCII line printer or the
Teletype Model 37, there is no difficulty in accepting
any USASCII graphic for input or output from any
user or system program. In order to use non-USASCII
hardware devices, one USASCII graphic (the left slant)
is set aside as a “‘software excape” character. When a
non-USASCII device (say the IBM 2741 typewriter
with an EBCDIC print element) is to be used, one
first makes a correspondence, so far as possible,
between graphics available on the device and graphics
of USASCII, being sure that some character of the
device corresponds to the software escape character.
Thus, for the IBM 2741, there are 85 obviously cor-
responding graphics; the EBCDIC overbar, cent sign,
and apostrophe can correspond to the USASCII

éircumflex, left slant, and acute accent respectively,
leaving the IBM 2741 unable to represent six USASCII
graphic characters. For each of the six missing char-
acters a two character sequence beginning with the
software escape character is defined, as shown in Table
I. The escape character itself, as well as any illegal
character code value, is represented by a four character
sequence, namely the escape character followed by a
3-digit octal representation of the character code. Thus,
it is possible from an IBM 2741 to easily communicate
all the characters in the full USASCII set.

A similar, though much more painful, set of escape
conventions has been devised for use of the Model 33
and 35 Teletypes. The absence of upper and lower case
distinction on these machines is the principal obstacle;
two printed 2-character escape sequences are used to
indicate that succeeding letters are to be interpreted
in a specific case shift.

Note that consideration number two above, that the
printed record be unambiguous, militates against char-
acter set extension conventions based on non-printing
and otherwise unused control characters. Such con-
ventions inevitably lead to difficulty in debugging,
since the printed record cannot be used as a guide to the
way in which the input was interpreted.

The objective of typewriter device independence
also has some implications for control characters. The
Multics strategy here is to choose a small subset of the
possible control characters, give them precise meanings,
and attempt to honor those meanings on every device,
by interpretation if necessary. Thus, a ‘“new page”
character appears in the subset; on a Model 37 teletype
it is interpreted by issuing a form feed and a carriage
return; on an IB)M 2741 it is interpreted by giving an
appropriate number of new line characters.*

Of the 33 possible USASCII control characters, 11 are
defined in Multies as shown in Table I1.

Red and black shift characters appear in the set
because of their convenience in providing emphasis in
comments, both by system and by user routines. The
half-line forward and half-line reverse feed characters
were included to facilitate experimentation with the
Model 37 Teletype; these characters are not currently
interpretable on other devices.

One interesting point is the choice of a “null” or
“padding” character used to fill out strings after the
last meaningful character. By convention, padding
characters appearing in an output stream are to be dis-
carded, either by hardware or software. The USASCII
choice of code value zero for the null character has the

*This interpretation of the form feed function is consistent with
the International Standard: Organization option of interpreting
the “line feed”” code as ‘“new line” including carriage return.
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interesting side effect that if an uninitialized string (or
random storage area) is unintentionally added to the
output stream, all of the zeros found there will be as-
sumed nulls, and discarded, possibly leaving no effect
at all on the output stream. Debugging a program
in such a situation can be extraordinarily awkward,
since there is no visible evidence that the code manipu-
lating the offending string was ever encountered.

In Multics, this problem was considered serious
enough that the USASCII character ‘“‘delete” (all
bits one) was chosen as the padding character code. The
zero code is considered illegal, along with all other
unassigned code values, and is printed in octal whenever
encountered.

" As an example of a control function not appearing in

the character set, the printer-on/printer-off function

(to allow typing of passwords) is controlled by a special -

call which must be inserted before the next call to read
information. This choice is dictated by the need to get
back a status report which indicates that for the cur-
rently attached device, the printer cannot be turned
on and off. Such a status report can be returned as an
error code on a special call; there would be no con-
venient way to return such status if the function were
controlled by a character in the output stream.**

CANONICAL FORM FOR STORED
CHARACTER STRINGS

Probably the most significant impact of the constraint
that the printed record be unambiguous is the inter-
action of that constraint with the carriage motion
control characters of the USASCII and EBCDIC sets.
Although most characters imply “type a character in
the current position and move to the next one,”
three commonly provided characters, namely back-
space, horizontal tab, and carriage return (no line
feed) do calse ambiguity.

For example, suppose that one chooses to implement
an ALGOL language in which keywords are underlined.
The keyword for may now be typed in at least a dozen
different ways, all with the same printed result but all
with different orders for the individual letters and back-
spaces. It is unreasonable to expeet a translator to
accept a dozen different, but equivalent, ways of typing
every control word; it is equally unreasonable to require

** The initial Multics implementation temporarily uses the
character codes for USASCII ACK and NAK for this purpose,
as an implementation expedient. In addition, a number of
additional codes are accepted to permit experimentation with
special features of the Model 37 Teletype; these codes may
become standard if the features they trigger appear useful enough
to simulate on all devices.

TABLE II—USASCII Control Characters as Used in Multics

USASCII MULTICS

NAME NAME MULTICS MEANING

BEL BEL  Sound an audible alarm.

BS BS Backspace. Move carriage back one
column. The backspace implies over-
striking rather than erasure.

HT HT Horizontal Tabulate. Move carriage to
next horizontal tab stop. Default tab
stops are assumed to be at cclumns
11, 21, 31, 41, ete.

LF NL New Line. Move carriage to left edge
of next line. ‘

SO RRS  Red Ribbon Shift.

SI BRS  Black Ribbon Shift.

vT vT Vertical Tabulate. Move carriage to

next vertical tab stop. Default tab
- stops are assumed to be at lines 11,
21, 31, ete.

FF NP New Page. Move carriage to the left
edge of the top of the next page.

DC2 HLF  Half-Line Forward Feed.

DC4 HLR  Half-Line Reverse Feed.

DEL PAD  Padding Character. This character is

discarded when encountered in an
output line.

that the typist do his underlining in a standard way
since if he slips, there is no way he can tell from his
printed record (or later protestations of the compiler)
what he has done wrong. A similar dilemma occurs in a
manuscript editing system if the user types in under-
lined words, and later tries to edit them.

An answer to this dilemma is to proeess all character
text entering the system to convert it into a canonical
form. For example, on a “read” call Multics would
return’the string:

i - _(BS)Y__(BSYo__(BS)r

(where (BS) is the backspace character) as the
canonical - character string representation of the
printed image of for independently of the way
in which it had been typed. Canonical reduction is
accomplished by seanning aecross a completed input
line, associating a carriage position with each printed
graphic encountered, then sorting the graphies into
order by carriage or print position. When two or more
graphies are found in the same print position, they are
placed in order by numerical collating sequence with
backspace characters between. Thus, if two different
streams of characters produce the same printed image,
after canonical reduction they will be represented by
the same stored string. Any program can thus easily
compare two canonical strings to discover if they
produce the same printed image. No restriction is
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placed on the human being at his console; he is free to
type a non-canonical character stream. This stream will
automatically be converted to the canonical form before
it reaches his program. (There is also an escape hatch for
the user who wants his program to receive the raw input
from his typewriter, unprocessed in any way.)

Similarly, a typewriter control module is free to
rework a canonical stream for output into a different
form if, for example, the different form happens to
print more rapidly or reliably.

In order to accomplish canonical reduction, it is
necessary that the typewriter control module be able
to determine unambiguously what precise physical
motion of the device corresponds to the character stream
coming from or going to it. In particular, it must know
the location of physical tab settings. This requirement
places a constraint on devices with movable tab stops;
when the tab stops are moved, the system must be
informed of the new settings.

The apparent complexity of the Multies eanonical
form, which is formally deseribed in Appendix I, is a
result of its generality in dealing with all possible
combinations of typewriter carriage motions. Viewed
in the perspective of present day language input to
computer systems, one may observe that many of the
alternatives are rarely, if ever, encountered. In fact for
most input, the following three statements, describing a
simplified eanonical form, are completely adequate:

1. A message consists of strings of character positions
separated by carriage motion.

2. Carriage motions consist of New Line or Space
characters.

3. Character positions consist of a single graphic or an
overstruck graphic. A character position representing
overstrikes contains a graphic, a backspace char-
acter, a graphie, etec., with the graphics in ascending
collating sequence.

Thus we may conclude that for the most part, the
canonieal stream will differ little with the raw input
stream from which it was derived.

A strict application of the canonical form as given in
Appendix I has a side effect which has affected its use in
Multies. Correct application leads to replacement of all
horizontal tab characters with space characters in
appropriate numbers. If one is creating a file of tabular
information, it is possible that the ambiguity introduced
by the horizontal tab character is in fact desirable; if a
short entry at the left of a line is later expanded, words
in that entry move over, but items in columns to the
right of that entry should stay in their original carriage
position; the horizontal tab facilitates expressing this
concept. A similar comment applies to the form feed
character.

The initial Multics implementation allows the hori-
zontal tab character, if typed, to sneak through the
canonical reduction process and appear in a stored
string. A more elegant approach to this problem is
to devise a set of conventions for a text editor which
allows one to type in and edit tabular columns con-
veniently, even though the information is stored in
strictly canonical form. Since the most common way of
storing a symbolic program is in tabular columns, the
need for simple conventions to handle this situation
cannot be ignored.

It is interesting to note that most format statement
interpreters, such as those commonly implemented
for FORTRAN and PL/I, fail to maintain proper
column sdlignment when handed character strings
containing embedded backspaces, such as names
containing overstruck accents. For complete integration
of such character strings into a system, one should
expand the notion of character counts to include
print position counts as well as storage position counts.
For example, the value returned by a built-in string
length function should be a print position count if the
result is used in formatting output; it should be a
storage location count if the result is used to allocate
space in memory.

LINE AND PRINT POSITION DELETION
CONVENTIONS

Experience has shown that even with sophisticated
editor programs available, two minimal editing con-
ventions are very useful for human input to a computer
system. These two conventions give the typist these
editing capabilities at the instant he is typing:

1. Ability to delete the last character or characters
typed.

2. Ability to delete all of the current line typed up to
the point.

(More complex editing capabilities must also be avail-
able, but they fall in the domain of editing programs
which can work with lines previously typed as well
as the current input stream.) By framing these two
editing conventions in the language of the canonical
form, it is possible to preserve the ability to interpret
unambiguously a typed line image despite the fact
that editing was required.

The first editing convention is to reserve one graphic,
(in Multics, the “number’’ sign), as the erase character.
When this character appears in a print position, it
crases itself and the contents of the previous print
position. If the erase follows simple ecarriage motion,
the entire carriage motion is erased. Several successive
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erase characters will erase an equal number of preceding
print positions or simple carriage motions. Since
erase processing occurs after the transformation to
canonical form, there is no ambiguity as to which print
position is erased; the printed line image is always the
guide. Whenever a print position is erased, the earriage
motions (if any) on the two sides of the erased print
position are combined into a single carriage motion.

The second editing convention reserves another
graphic (in Multics, the “‘commercial at” sign) as the
kill character. When this character appears in a print
position, the contents of that line up to and including
the kill character are discarded. Again, since the kill
processing occurs after the conversion to canonical
form, there can be no ambiguity about which characters
have been discarded. By convention, kill is done before
erase, so that it is not possible to erase a kill character.

OTHER INTERFACE CONVENTIONS

Two other conventions which can smooth the human
interface on character stream input and output are
worth noting. The first is that many devices contain
special control features such as line feed without
carriage movement, which can be used to speed up
printing in special cases. If the system-supplied terminal
contro] software automatically does whatever speedups
it can identify, the user is not motivated to try to do
them himself and risk dependence on the particular
control feature of the terminal he happens to be working
with. For example, the system can automatically insert
tabs (followed by backspaces if necessary) in place of
long strings of spaces, and it also can type centered
short tabular information with line feed and backspace
sequences between lines.

The second convention has been alluded to already.
If character string input is highly processed for routine
use, there must be available an escape by which a
program can obtain the raw, unconverted, unreduced
and unedited keystrokes of the typist, if it wants to.
Only through such an escape can certain special situa-
tions (including experimenting with a different set of
proposed processing conventions) be handled. In
Multies, there are three modes of character handling—
normal, raw, and edited.* The raw mode means no
processing whatsoever on input or output streams,
while the normal mode provides character escapes,
canonical reduction, and erase and kill editing. The
edited mode (effective only on output if requested) is
designed to produce high qua.lityx clean copy; every
effort is made to avoid using escape conventions. For
example, illegal characters are discarded and graphics
not, available on the output device used are typed with

the “overstrike” escapes of Table I, or else left as a
blank space so that they may be drawn in by hand.

CONCLUSIONS

The preceding sections have discussed both the back-
ground considerations and the design of the Multics
remote terminal character stream interface. Several
years of experience in using this interface, first in a
special editor on the 7094 Compatible Time-Sharing
System and more recently as the standard system
interface for Multies, have indicated that the design is
implementable, usable and effective. Probably the most
important aspect of the design is that the casual user,
who has not yet encountéred a problem for which
canonical reduction, or character set escapes, or special
character definitions are needed, does not need to

. concern himself with these ideas; yet as he expands his

programming objectives to the point where he en-
counters one of these needs, he finds that a method has
been latently available all along in the standard system
interface.

There should be no assumption that the particular
set of conventions described here is the only useful set.
At the very least, there are issues of taste and opinion
which have influenced the design. More importantly,
systems with only slightly different objectives may be
able to utilize substantially different approaches to
handling character streams. ‘
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APPENDIX 1
The Multics canonical form

To deseribe the Multics canonic¢al form, we give a set
of definitions of a canonical message. Each definition is
followed by a discussion of its implications. PL/I-style
formal definitions are included for the benefit of readers
who find them useful.” Other readers may safely ignore
them at a small cost in precision. In the formal defini-
tions, capitalized abbreviations stand for the control
characters in Table I1.

1. The canonical form deals with messages. A
message consists of a sequence of print positions,
possibly separated by, beginning, or ending with carriage
motion.

asanma - = [aapr ;
message [ : = [carriage motion]

[[print position]- - -[carriage motion]]-- -

Typewriter input is usually delimited by action char-
acters, that is, some character which, upon receipt by
the system, indicates that the typist is satisfied with the
previous string of typing. Most commonly, the new line
character, or some variant, is used for this function.

Receipt of the action character initiates canonical
reduction.

The most important property on the canonical form is
that graphics are in the order that they appear on the
printed page reading from left to right and top to
bottom. Between the graphic characters appear only
the carriage motion characters which are necessary to
move the carriage from one graphic to the next. Over-
struck graphics are stored in a standard form including
a backspace character (see below).

2. There are two mutually exclusive types of carriage
motion, gross motion and simple motion.

gross motion
simple motion
gross motion simple motion

carriage motion : : =

Carriage motion generally appears between two graphies;
the amount of motion represented depends only on the
relative position of the two graphics on the page. Simple
motion separates characters within a printed line; it
includes positioning, for example, for superseripts and
subscripts. Gross motion separates lines.

3. Gross motion consists of any number of successive
New Line (NL) characters.

= {NL}---

The system must translate vertical tabs and form feeds
into new line characters on input.

4. Simple motion consists of any number of Space
characters (SP) followed by some number (possibly
zero) of vertical half-line forward (HLF) or reverse
(HLR) characters. The number of vertical half line feed
characters is exactly the number needed to move the
carriage from the lowest character of the preceding print
position to the highest character of the next print
position.

gross motion : :

[HLFJ- - -
= {SP}---
[HLR]-- -

simple motion : :

The basis for the amount of simple carriage motion
represented is always the horizontal and vertical
distance between successive graphics that appears on
the actual device. In the translation to and from the
canonical form, the system must of course take into
account the actual (possibly variable) horizontal
tab stops on the physical device. '

In some systems, a “relative horizontal tab’’ char-
acter is defined. Some character code (for example,
USASCII DC1) is reserved for this meaning, and by
convention the immediately following character storage
position contains a count which is interpreted as the
size of the horizontal white space to be left. Such a
character fits smoothly into the canonical form de-
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scribed here in place of the successive spaces implied
by the definition above. It also minimizes the space
requirement of a canonical string. It does require some
language features, or subroutines, to extract the count
as an integer, to determine its size. It also means that
character comparison is harder to implement; equality
of a character with one found in a string may mean
either that the hoped for character has been found or
it may mean that a relative tab count happens to have
the same bit pattern as the desired character; reference
to the previous character in the string is required to
distinguish the two cases.

5. A print position consists of some non-zero number
of character positions, occupying different half line
vertical positions in the same horizontal carriage
position. All but the last character position of a print
position are followed by a backspace character and some
number of HLF characters.

print position : : = character position

[BS [HLF]- - - character position]: - -

6. A character position consists of a sequence of
graphic formers separated by backspace characters.
The graphic formers are ordered according to the
USASCII coded numeric value of the graphics they
contain. (The first graphic former contains the graphic
with the smallest code, etc.) Two graphic formers

containing the same graphic will never appear in the

same character position.
character position : : = graphic former

[BS graphic former}- -

Note that all possible uses of a backspace character in a
raw input stream have been covered by statements
about horizontal carriage movements and overstruck
graphics.

7. A graphic former is a possibly zero-length setup
sequence of graphic controls followed by one of the 94
USASCII non-blank graphic characters.

one of the
94 UASCII
graphic
characters

graphic former : : = [setup sequence]

8. A graphic setup sequence is a color shift or a bell
(BEL) or a color shift followed by a bell. The color shift
only appears when the following graphic is to be a
different color from the preceding one in the message.

RRS
(BEL]

setup sequence : : =< | BRS

BEL

in the absence of a color shift, the first graphic in a
message is printed in black shift. Other control char-
acters are treated similarly to bell. They appear
immediately before the next graphic typed, in the
order typed.

By virtue of the above definitions, the control
characters HT, VT, and CR will never appear in a
canonical stream.
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The Multics Input/Qutput System

by R.J. Feiertag and E.|l. Organick. Reprinted from
ACM Third Symposium on Operating System Principles,
Palo Alto, California, October, 1971, pp. 35-41,
with permission.

This generally up-to-date paper describes the
device-independent 1/0 interface of the Multics system. Its
significance 1lies mainly in the wide range of problems which can

be eqsily solved using a simple elegantly designed mechanism.

By reading between the lines, one may also deduce that in
Multics, the function of the 1/0 system is drastically different
from that 1in most operating systems. Interrupt handling,
scheduling, and file formatting do not appear here, since they
are considered to be general responsibilities required apart from
I1/0 operations. The 1/0 system is thus 1left with only the
problem of buffer management and device strategy, in a general
framework which encourages device independence.

As an example of the flexibility of the Multics 1/0 system,
since this paper was written the M.lI.T. Multics site has been
attached to the ARPA computer network, with the relatively minor
addition of a special network demultiplexing module at the base
of the 1/0 system.
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ABSTRACT

An 1/0 system has been implemented in the Multics system that facilitates dynamic switching of I/0 devices.
This switching is accomplished by providing a general interface for all I/0 devices that allows all equivalent

operations on different devices to be expressed in the same way.
bolic names and the binding of names to devices can be dynamically modified.

Also particular devices are referenced by sym-
Available I/0 operations range

from a set of basic I/0 calls that require almost no knowledge of the I/0 System or the 1/0 device being used to
fully general calls that permit one to take full advantage of all features of an I/O device but require consi-

derable knowledge of the I/0O System and the device.
of it, illustrating these features, are presented.

Introduction

In many early operating system designs the soft-
ware known as the input/output control system (IOCS)
played a central conceptual and functional role. 1In
the pre-multiprogramming, batch operating systems,
many supervisory functions had to do with input/output
control -- e.g., control over queued jobs, control for
management and operation of secondary storage, control
for operation of display devices and other peripheral
equipment, etc. A system programmer (or subsystem
designer) for such operating systems could hardly
prove his professional competence without acquiring «
a reasonable familiarity with the intricacies of the
I0CS for his "installation". By contrast the role
played by the input/output control system in a Multics
system is decidedly secondary, at least from a concep-
tual point of view. In fact, many or even most sub-
system designers are able to achieve their respective
objectives while remaining entirely oblivious to the
I0CS details of Multics. -

This is possible partly because two operations
sometimes associated with the IOCS have been separated
into separate functional units which are made use of
by other parts of the system as well as the IOCS.
First, the file system [l] makes known and dynamically
links files that are stored within the system to pro-
cesses that legitimately request this service. It
does not matter on what storage device these files
reside at the time of the request. The users (or for
that matter other supervisory modules) are unaware
of any explicit data movement in accessing these
segments even though physical transfer from actual
secondary devices to central memory may occur.
Secondly, the traffic controller [2] handles all multi-
plexing of processors including the relinquishing of
a processor by a process and the awakening of pro-
cesses which have been waiting for I/0 transactions to
be completed. What remains for the IOCS is strategic
control of I/0 devices and the binding of these devices
with symbolic names used to represent them. Figure 1
illustrates the interrelationships of these modules.

*Work reported herein was supported in part by Project
MAC, an M.I.T. research program sponsored by the
Advanced Research Projects Agency, Department of
Defense, under Office of Naval Research Contract NOOl4-
70-A-0362-0001. Reproduction is permitted for any pur-
pose of the United States Government.

The 1/0 System is described and some popular applications

“~

The secondary role of the I/0 System does not mean
that Multics attempts to erect a barrier that prevents
the (system or user) programmer from acquiring and
exercising full control over 1/0 devices. On the con-
trary, user processes are able to "negotiate' with the
system administrator, who controls distribution of
1/0 resources, to acquire particular I/0 devices. Then,
with user code, the user process may program the con-
trol of these I/O devices and operate them with the
full freedom that is normally accorded a system pro-
grammer .

In brief, the Multics I/0 System has been designed
using two important guidelines:

a) the simplest, most commonplace use of it
requires only a minimum of knowledge and
skill -- and the overhead for such simple
(common mode) use is also minimized.

b) to extract more tailored (special purpose)
services there is added cost -- both in the
time that must be committed to understand
how the tool works and in the actual over-
head that will be incurred in execution.

The system to be described here stresses symbolic,
hardware independent references to input/output devi-
ces. This scheme permits programs to be written
largely independently of the devices they use and
allows the devices to be assigned at the time the com-
putation is performed and changed dynamically during
the run. Although other systems [3,4,5] have made use
of symbolic referencing, the Multics system attempts
to provide extreme ease of modification and almost
total device independence, to the limits possible.

The I/0 System does not in itself provide for-
matted I/0 such as that typically found in many lang-
uages and library subroutines. Also, the details of
operating specific devices are relegated to a minor
role. What remains is an intermediate level of I1/0
software that forms the conceptual heart of the 10
System in Multics and will now be described.

Overview of the 1/0 System

A primary objective of Multics is to make the
input/output operations stated in the programs or ser-
vice procedures that a user writes specifv onlv those
device functions that are required for the applicaticn
at hand, leaving to the system the responsibility for
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fauging the degree of device independence implied by
the user's request. 1In this way a user who invokes
such service procedures is free to designate substi-
tute devices as mav be appropriate, while adhering to
the device dependencies that are implied by the stated
170 function requests. For example, a program may
output a long string of characters. 1f the device
currently associated with this output is a typewriter
the I/0 System should insert carriage returns when the
end of the carriage is reached. However, if the output
device is a tape then no carriage returns are neces-
sarv. For this reason user-coded 1/0 operations should
ordinarily be independent (or as independent as feasi-
ble) of the particular device and model, or even of

the type of device, e.g., typewriter, as opposed to
teletype or paper tape.

There are two clear motivations for this crucially
important objective. First, we must presume that at
any given time a system will generally accommodate
several types of I/0 devices and models. Each is
likely to require different programmed control. Each
may have different character sets, and may be intrin-
sically different in various respects (e.g., line
printers are not backspaceable, magnetic tapes are;
some tapes cannot be read backwards as well as for-
wards, while card readers are never designed to read
cards backwards, etc.). It is, however, desirable to
be able to run programs using devices other than those
for which they were originally written. Second, we
Presume that 1/0 devices become obsolete and, over
time, are replaced by new models of the same or
different types, e.g., video keyboards may replace
typewriters. Clearly, if programs are to be usable
over long periods of time, if programs are to be
repeated with minor or no variation in the nature or
effect of their I/0 operations, then recognition of
device independence must be a planned part of the pro-
gramming system for I/O operations.

One approach to design for the needed device
independence is to regard the I/0 resource needed to
complete any given 1/0 operation not as a real or
physical resource, as for instance a particular card
reader, but as a virtual (pseudo) I/0 resource that is
described in terms of the functions it must be capable
of performing, which is mapped by the system to a
particular real resource at run-time. Such an approach
implies that all available input devices, regardless
of type (or location) are in some sense acceptable
equivalents and all output devices are correspondingly
equivalent. - .

The user must, when he so chooses, be able to
decide what I/0 devices of the ones available to him
he wants used. In other words the user must be able
to specify which physical resources the pseudo
resources correspond to. It may also be necessary
for the user to provide detailed I/0 coding for the
control of a device if such a device is not already
known to the system.

The particular design approach taken in Multics
is based on two practical requirements, one having to
do with the system's responsibility for dispensing
and recovery of all real 1/0 devices, and the other
having to do with the run-time mapping of valid
user-coded I/0 operations, regardless of their degree
of specificity, onto specific devices and in the
manner and with controls appropriate to those specific
devices.

First, it is recognized that at any given time,
as a consequence of the I/0 device needs of a process,
certain specific I/0 devices (or device capabilities)
“must be exclusively allocated to specific processes

or sets of processes. The question of how the I/0
System decides how to allocate devices, how to reclaim
devices, and how to insure exclusive use of a device
by the intended processes is largely independent of
the central theme of this discussion, the structure of
the 1/0 System, and, although important, will not be
discussed here.

Second, any programmed 1/0 operation should at
source level, at least, be expressed (coded) in a
general way that specifies the I/O source or sink,
not by its device designation but only by a place-
holder name for that source or sink. (Moreover, as an
added convenience to users, it may be possible to code
certain standard 1/0 operations so that even this name
may be inferred from context.)

For example, [and here we illustrate only sche-
matically], rather than use a specific device designa-
tion such as in the following form:

read from '

or
read ("device 35", area_23);

'¢card_reader_2" into area_23; (1)

we might instead say:

read from the stream named "Billy" into area 23; (2)
or
read ("my_console", area_23);

depending on the syntax of the coding language being
used.

Here in example (2), "Billy" and "my_console' are
simply identifiers for sources of data. For such a
read statement to have any meaningful effect, the
specific device represented by that identifier must
be bound to or "attached" to (i.e., associated in some
way with ) "Billy" or "my_console" at some time after
the device is allocated to the process and before the
read statement is executed. The Multics I/0 System
is responsible for maintenance and supervision of these
device-source name associations. Similarly for output,
names for sinks are used in write statements rather
than actual output device designations. Thus by anal-
ogy to the read examples in (2) above we could con-
ceivably picture something like

write ("his_console", "format 12", area_22); (3)

in which "his_console" is here intended to suggest the
name of some sink (output device). The attachment at
any given time may be to one of a set of several
(different) devices. Thus, if a single process had
several consoles allocated, the process could simulate
a "party_line" conversation on the several consoles
where the name "his_console" could be attached and
reattached, possibly cyclically, among the several
different allocated devices.

The name chosen for elements of the set {source,
sink} is stream. Conceptually, the attaching of a
stream name to a particular device is a form of para-
meter binding. The device designation plays the role
of the actual argument and the stream name that of
the formal parameter. In order to apply more than one
"argument" to the same 'parameter" Multics provides
for the detaching of a device (designation) from a
stream name so that subsequently another device can be
attached to the same stream name. :

To carry out a read or write operation (call) of
the type suggested in (2) and (3) above, the following
steps can now be visualized. The system module that
received and is responsible for "interpreting' this
call must first perform a table look-up to determine
the device designation (and type of device, constraint
rules, if any, for use, etc.) that is currently



associated with the named I/0 stream parameter. In
principle, assuming the I/0 call parameters are con-
sistent with the data kept in this so-called Attach
Table, this same 1/0 control module can then convert
this request into an I/0 action -- i.e., by initiating
the desired 1/0 operations after generating the re-
‘quired channel commands, etc. Because the system
must be capable of supporting an open-ended number of
devices, device types, and controllers, considerably
more modularity is called for. So, in actual fact,
the I/0 control module (called the I/0 switch) merely
transmits the now more specific I/0 request as a call
to an appropriate ''specialist'" module, a Device Inter-
face Module (DIM), for each type of device. A list

of DIMs currently in genmeral use in Multics is given
in Appendix B. This DIM in turn takes charge of
getting the I/0 request accomplished as suggested in
Figure 2.

It is, therefore, the function of the DIM to con-
vert the I/0 request into a set of specific channel
commands for the particular device associated with this
DIM. The DIM knows both the conventions of the I/0
System and the conventions of a particular 1/0 device
and functions as a translator from one set of conven-
tions to the other. In order that all devices may be
fully exploited it is necessary that the I/0 System
"language' be carefully chosen. The I/0 System calls
of Multics are described more fully later and in
Appendix A.

Description of the I/0 System

The Device Interface Module converts a generalized
1/0 request into specific instructions understandable
by a particular device. In doing this, it must compile
a program for the hardware General Input Output
Controller (GIOC) [67] which it can in turn supply to
the target channel. The compiled program reflects
the idiosyncracies of the particular device to which
the stream is attached. It (the program) may include
line controls in the case of remote terminals,
select instructions in the case of tapes, and so forth.
In addition, the DIM may need to convert the internal
character code used by the system into an appro-
priate character code for the device. Typewriter
terminals for example, come in many different vari-
eties. Virtually every different variety has different
character codes.

The Device Interface Module after compiling a
program for the GIOC, calls a module that serves as an
interface for the GIOC to start the I/O using this
GIOC program. It is the DIM's responsibility to inter-
act with the GIOC Interface Module (abbreviated as GIM)
until this I/0 request has been completed.

The GIOC Interface Module is responsible for the
overall management of the GIOC. Thus, the GIM is
also responsible for overall monitoring of the opera-
tion of the GIOC. This requires answering interrupts
(i.e., that its code acts as an interrupt handler for),
recognizing completion of tasks, and transmitting
to its caller status information deposited by the
GIOC.

It may be necessary for the DIM to wait for a
particular I/0 operation to complete and/or be awak-
ened when it does occur. For this purpose an entry
is provided in the traffic controller that causes the
process to be suspended until it is reawakened. When
the awaited operation completes, the GIM (which is
invoked by a hardware interrupt from the GIOC) calls
the traffic controller to awaken the suspended process.
This is the interface between the traffic controller
and the 1/0 System. All multiplexing of processors
is, therefore, accomplished by the traffic controller.
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The I/0 System is implemented by a set of sub-
routine calls, twenty at present. The stream-DIM
association is established by the attach call:

call attack (stream_name, NIM_name, device_name);

This call creates an entry in the Attach Table for the
stream identified by stream name, if one does not
already exist, and associates the DIM identified by
DIM_name with it. The DIM itself is then invoked to
initialize (establish communication with the device
and prepare it for further transactions) the device
identified by device_name.

Once the device has been attached it may be
utilized by issuing a read or write call:

call read {stream_name, buffer);
call write (stream_name, buffer);

Where stream_name identifies the stream with which
the desired DIM and device are associated, and
buffer indicates the area from which data is to be
written or into which data is to be read. The I/0
switch, upon receiving a read or write call, finds
the entry in the Attach Table associated with this
stream and invokes the associated DIM at the read

or write entry. The read and write calls represent
the primary means by which all data enters or leaves
the system.

In order to dissolve an attachment the detach call
is used.

call detach (stream_name);

This call causes the association of the specified
stream with any DIMs and devices to be dissolved.

The I/0 switch invokes the associated DIM which in
turn terminates (releases the device and ends commu-
nication with it) the associated device or devices.
When the DIM returns control to the I/0 switch the
stream-DIM association in the Attach Table is deleted.

There are many other I/0 System calls which
concern aspects of the I/0 System that are not of
immediate concern to this discussion. These include
calls to set device modes (readable only, writeable
only, forward spaceable only, etc.), calls to operate
devices synchronously or asynchronously (e.g.,
readahead and writebehind), calls to establish input
delimiters, calls to determine the current device
status, and calls to reposition the current read or
write position of a device (e.g., tape spacing).

A short description of these calls is given in Appen-
dix A.

A final I/0 System call that is of interest here
is the order call. This call provides the escape
mechanism when an operation not implementable by any
of the other generalized I/0 System calls must be
performed.

call order (stream_name, request_name,
other_information) ;

This call is transmitted by the I/0 switch to the
appropriate DIM which performs the operation indicated
by request_name making use of data supplied in
other_information if necessary. Examples of order
requests might be to repunch a card on a card punch

or lock the keyboard of a console.

Up to this point discussion of input-output has
been in terms of communication with physical devices.
It has been shown that the only software that deals
specifically with any single device is the DIM asso-
ciated with that type of device. The 1/0 Svstem,
other than the DIMs, knows nothing of devices. 1t.
therefore, follows that the I/0 System does not
necessarily have to communicate with a physical device,
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but that DIMs may be written to operate on the data to
be input or output in any manner whatsoever. Such

DIMs are said to be associated with a virtual or pseudo-
device and are termed pseudo-DIMS.

The most important pseudo-DIM is the File System
Interface Module (FSIM) which treats a segment in the
Multics File System as an I/0 device. When a segment
in the file system is attached to a stream via the
FSIM, read and write calls on that stream will cause
data to be read from or written into the segment. The
FSIM provides the interface between the 1/0 System
and the File System in Multics. However, unlike many
systems this interface is not heavily used because the
File System is usually called directly.

Another class of DIM is one that translates one
I/0 call to another 1/0 call, i.e., its pseudo-device
is a stream. A stream that is used as a pseudo-device
is termed an object stream. The most important of
this class of DIMs is the "synonym' module. When an
attachment is made via the synonym module the speci-
fied device is another stream. Any subsequent calls
to the first stream is transformed by the synonym
module to the same call on the latter stream. The
stream names are, therefore, synonymous.

Applications

In the Multics system certain stream names are
established, by convention, for normal use. The
first of these is 'user_i/o". This stream is normally
associated with the user's primary 1/0 device, e.g.,
in a normal console session "user_i/o" will be attached
to the user's comsole. Two other stream names are
also established: ‘'user_input" and "user_output''.
These streams are normally attached to "user_i/o"
via the '"synonym'" module as illustrated in Figure 3a,
i.e., they are made equivalent to "user_i/o". Since
at present most programs that perform I/0 intended
to do so with the user's console, the stream names
"user_output' and "user_input" are the ones used in
calls to the I/O System in these programs. This
illustrates one of the important purposes of the
"'synonym' DIM, to permit the manipulation of stream
attachments without having to attach and detach physi-
cal devices. The streams 'user_input'" and "user_output"
could normally be attached directly to the user's
console as shown in Figure 3b. However, this would
force the console to be detached whenever these streams
were attached to some other device. Detachment and

subsequent reattachment implies that certain physicale.-.

hardware action has been taken with regard -to the
device. In the use of a console this might include
termination of communication with the console and
subsequently having to reestablish this communication.
It would not be difficult to indicate to the DIM to
keep the device active, however, the use of synonyms
is more straightforward and makes more visible the
states of various devices, i.e., if they are attached
they are active. In other words, synonyms are an
easy, efficient method of changing the binding of
streams to devices. Because of this use of synonyms
the "synonym'" DIM has been highly optimized for the
simple switching described above.

Some important and heavily used features of
Multics serve to illustrate some of the advantages
of this organization of the I/0 System. A user of
Multics may sometimes desire to redirect the output
that could normally appear on his console to some
other device. This situation usually arises because
the output is lengthy and would require excessive
amounts of time to print on a console. The Multics
system provides a service by which the contents of
segments in the file system may be printed on a high
speed printer. Therefore, it is a fairly common

occurrence for a user to redirect his output to a seg-
ment in the file system using the FSIM mentioned above
so that it may be printed by the high speed printer or
examined using a text editor. To do this the following
1/0 System calls must be made:

call attach ("file_output_stream', "fsim",
"segment_name') ;

call detach ('"user_output™);

call attach ("user_output", "syncnym'",
"file_output_stream");

The first call causes the segment, '"segment_name", to
become the receiver of all subsequent data directed to
the stream "file_output_stream" by a write call. The
second and third calls cause the stream "user_output”,
the stream on which all standard write calls are made,
to be disassociated from "user_i/o", the stream asso-
ciated with the user's console, and instead be
attached to the new stream "file output_stream’.

Again the use of synonyms is not mandatory but is
included for the reason mentioned earlier. All sub-
sequent output that would normally have appeared on
the user's console would now be placed in the segment
"segment_name'. This new situation is depicted by the
graph in Figure 3c.

There are many instances in which a user wishes
to issue the same set of commands (a cowmand is a
line typed at a user's console requesting some action
to be performed by the computer) many times. Rather
than doing so manually he may instead put the set of
commands in a segment and then cause this segment to
be read as input one command at a time. This may be
done by the following I/O calls:

call attach ("file_input_stream", "fsim",
"input_segment_name'") ;

call detach ('"user_ input");

call attach ("user_input", "synonym",
"file_input_stream");

The segment whose name is "input_segment_name" contains
the commands to be executed. The action performed by
these calls is analogous to those performed by the
above calls concerning output. All subsequent standard
read calls will cause input to be taken from the seg-
ment "input_segment_name".

Consider now the situation that results when
both the standard input and output streams are attached
to segments simultaneously. In this case direct com-
munication with the user has been eliminated. The user
controls his process only indirectly through the input
segment. A process that is in this state, i.e., whose
standard input and output streams are attached to seg-
ments rather than to an interactive console, for its
entire lifetime is called an absentee process (see
Figure 3d)§) Absentee processes are the means by which
background or batch jobs are implemented in Multics.
The advantage of an absentee process from the system
view is a better allocation of resources since absentee
jobs may be scheduled at periods of low interactive
demand. The point of interest here is that an absentee
process, as opposed to an interactive process, is
obtained- by a few slightly different calls to the 1/0
System during process initialization and that no other
special user or system programming is necessary.

In order to restore the situation to the interac-
tive state just two 1/0 calls are necessary for each
of the standard input and output streams. Thus for
the input stream there would be:

call detach ("user_input");
call attach ("user_irput", "synonym", "user_i/o");

Upon completion of these two calls the standard input
stream is again attached to the user's console. The




stream "file_input_stream" remains attached to the
input segment.

The "synonym" DIM, as mentioned earlier, is one
example of a DIM that uses another stream as the device
upon which it acts. Such modules are effectively
spliced into the flow of control in that each such
module gains control and in turn passes control onto
another DIM invoked as a consequence of its call to
the 1/0 System on its object stream. The '"synonym"
simply results in an identical call to the object
stream. However, such a DIM could easily perform
some useful operation before passing the call on. A
good exampie of such an operation is code conversion
on the data to be read or written. A simple example
could be to reformat a string of characters meant to
‘be written on a console with a wide carriage for
writing on a narrow carriage by properly placing
carriage returns in the data.

Similarly such an intermediary could be used to
make one device appear as another device. For
exawple, if a light pen were to be added to the system
as a new input device, a DIM could be written to make
data read from a segment via the FSIM simulate the
input from the light pen in order that all the asso-
ciated software may be checked out before the actual
installation of the device.

A final example of such intermediate modules is
the broadcaster. This DIM allows fan out of 1/0 System
calls. Rather than having one stream as its object,
the broadcaster may have several. A call on a
stream attached via the broadcaster is transmitted to
all streams attached to this stream via the broad-
caster. This is simply an extension of the synonym
module. For example, a user may wish to record all
the output typed on his console in a segment of the
file system. To do this he simply attaches the stream
"user_output” to both "user_i/o" and "file_output_
stream” as indicated in Figure 3e.

Conclusion

It is the purpose of the Multics I/0 System to
permit I/0 operations to be specified in a device
independent manner, thereby permitting easy inter-
change of devices while programs are in execution.

The designers of the I/0 System have been able to
achieve this goal largely because certain functions
associated with I/0 (file system, processor multi-
plexing) have been provided as independent facilities
in Multics which are invoked by the I/0 System as well
as other programs. The method used to attain device
independence is to define a set of I/0 calls which are
used to specify all I/0 operations in a general manner.
All devices are addressed symbolically by stream name
and the binding of streams to devices can be modified
dynamically.

The modular structure of the I/0 System facili-
tates introduction of new devices. 1In order to logi-
cally add a device to the system, a user or system
programmer need only provide the detailed I/0 coding
for that device in the form of a Device Interface
Module. This ability to add new devices is necessary
to assure the system's longevity.

Users of the I/0 System, may if they desire,
bypass the general mechanism. Instead of making a
zeneral I/0 call, programs can invoke Device Interface
Aodules or even the GIOC Interface Module directly.
The user who takes this approach loses the switching
capabilities, device independence, and other advan-
tages that the general mechanism provides. So far,
no Multics user has needed or chosen to bypass the
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general mechanism. Some users, however, write their
own DIMs making use of the order call to specify
special requests.

The applications described earlier indicate some
of the most common uses of the I/0 System. The faci-
lities of file input and output and absentee are
achieved easily both conceptually and in practice and
could not have been provided, in such a general manner,
without device independence and stream switching. The
I/0 System has also proved very useful for system
development, e.g., when testing a program that normally
uses the high-speed printer it is advantageous to use
a less critical more accessible device than one of the
two printers available. The capabilities present in
the Multics I/0 System, as described here, have, there-
fore, proved well worth the careful design effort
necessary for its deveélopment.

Acknowledgement

During the many years since the Multics project
began a great number of people have contributed in
the formulating of ideas for the I/0 System. People
who have contributed significantly to this effort are
F. J. Corbatd, R. C. Daley, S. I. Feldman, E. L.
Glaser, D. Levenson, J. Ossanna, D. Ritchie, J. H.
Saltzer, and V. L. Vyssotsky. The authors would also
like to acknowledge the work of S. Dunten, N. I. Morris,
T. Skinner and D. Widrig for their work in designing
the GIOC Interface Module.

Appendix A

The following is a list of general I/O System
calls and a brief description of their functions.
This list serves only as an indication of the type
of operations that are thought to be necessary in
Multics, not as a complete description of their
operations. Complete descriptions are given in [7].

attach establishes an association between a stream
name, a device's control software (DIM), and a device.
All subsequent operations on this stream will invoke
the associated control software and will be performed
on the associated device.

detach destroys an association created by an attach
call.

read causes input to be taken from the device asso-
ciated with the given stream and placed in the indicated
buffer area.

write causes output to be taken from the indicated
buffer area and written to the device associated with
the given stream.

seek modifies the current position of the read and-
write pointers for the device associated with the
given stream.

tell returns the current position of the read and
write pointers for the device associated with the
given stream.

changemode changes the current mode of the device
associated with the given stream and returns the old
mode. Modes determine attributes of a device such as
whether reading or writing is permitted.

readsync determines whether or not the DIM asso-
ciated with the given stream will perform read-ahead
on the associated device. Performing read-ahead is
to read input from a device before the read call is
issued.

writesync determines whether or not the DIM asso-

ciated with the given stream will perform write-behind
on the associated device. Performing write-behind is
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to write output on a device after the write call has
returned.

resetread erases all currently accumulated read-

ahead from the device associated with the given stream.

resetwrite erases all currently accumulated write-
behind intended for the device associated with the
given stream.

worksync determines whether the device associated
with the given stream is in workspace synchronous or
asynchronous mode. Being in workspace synchronous
mode means that when a read or write call returns,
the 1/0 System is finished using the provided buffer
.area associated with this call. If the call was a
read call the desired input has been placed in the
buffer area. If the call was a write call the data
has been taken from the buffer area. Being in work-
space asynchronous mode means that buffers may still
be in use by the I/0 System after the call has re-
turned. If a read call then the buffer area way not
yet contain the desired input, but it will be filled ,
in- at some later time. If a write call then the data
may not yet have been taken from the buffer, but the
I/0 System will do so at some later time. Workspace
asynchronous mode allows programmers to perform asyn-
chronous I/0 transactions and multiplex their I/0
calls.

upstate returns the current status of a specific
asynchronous transaction on the device associated with
the given stream.

iowait returns the current status of a specific
asynchronous transaction on the device associated

with the given stream. The iowait call will not return

until the indicated transaction is complete, i.e., the
I1/0 System is finished with the buffer area.

abort causes the indicated tramnsaction or transac-
tions on the device associated with the given stream
to be aborted.

getdelim returns the current break characters and
read delimiters for the device associated with the
given stream. Break.characters define the extent of
canonicalization and erase and kill processing of
input [7]. Read delimiters determine on which input
characters a single read call is to cease reading.

setdelim modifies the current break characters and
read delimiters for the device associated with the
given stream.

getsize returns the length, in number of bits, of
the size of a basic element to be read or written on
the device associated with the given stream. For

example, Multics uses seven bit ascii right adjusted
in a nine bit field as its standard character set so
the element size for character oriented devices is 9.

setsize modifies the element size for the device
associated with the given stream.

When a specific function on a specific device cannot
be logically specified by any of the above general
calls the order call is used:

order is used to specify device dependent requests
to be executed by the DIM associated with the given
stream. FExamples include locking the keyboard of a
console and unloading a magnetic tape.

Appendix B
The following list briefly describes the Device
Interface Modules (DIMs) generally available and
widely used in Multics. Detailed descriptions are
given in [7].

Typewriter DIM - currently operates all devices used

as user consoles in Multics. These include Teletype
Models 33, 35, and 37, IBM 1050 and 2741, Datel 30,
ARDS, and Terminet 300.

Synonym DIM - causes two streams to become synonymous,
i.e., all 1/0 calls (except attach and detach) on
either stream result in the same 1/0 operations being
performed.

File System Interface Module - causes segments of the
file system to be treated as input and output devices.

Multics Standard Tape DIM - is used for reading and
writing tapes in Multics standard tape format.

Nonstandard Tape DIM - is used for reading and writing
tapes in any format.

Card DIM - is used for reading and punching punched
cards.

Printer DIM - is used for writing to the high speed
printers.

ARPA Network DIM - is used to input and output from
the ARPA Network of which the M.I.T. Multics installa-
tion is a part.

Communications Line DIM - is used to read from and
write to a dedicated PDP-8 over a high speed communi-
cations line that is connected to the M.I.T. Multics
installation. This PDP-8 is used for monitoring of
Multics and for graphics.
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CHAPTER 3

BEGINNER'S GUIDE TO THE USE OF MULTICS
September 20, 1973

There are a large number of ways to use Multics. You may,
at different times, find that you are using a program preparation
facility, or a program debugging facility, or a memorandum typing
facility, or a management information facility. One of the
interesting properties of Multics is the ability for a
knowledgeable programmer to construct a single program which
makes use of several of these facilities at once. For the
beginner, however, the problem is simply to figure out which one
of several ways of doing something 1is appropriate for his
project. In this chapter will be found a guide to typical ways
of using Multics and its most commonly used facilities, and a
number of examples of sessions at the terminal, to give a feel
for the way one fits things together to achieve useful results.
Wle must begin by exploring a number of issues having to do with
the simple mechanics of using the system.

The Mechanics of Terminal Usaze

Although there are several different varieties of typewriter
or graphic terminals which can be used with Multics, they all are
used in similar ways; the way in which Multics normally expects
these terminals to be used is our subject here. HNote that
Multics permits a subsystem designer flexibility to change
conventions which are not exactly suited to his needs.
Therefore, we will describe here the standard conventions which
apply to ordinary use of Multics, and which are also used by most
programs. Indeed, an important property of Multics is the extent
to which the mechanics described here are universally used by so
many different parts of the system.

Most computer terminals are designed with flexibility to
allow use with different kinds of systems. This flexibility is
expressed in the form of switches whose setting must be correct
if proper operation is expected. For example, the IBM model 2741
terminal may have one or two switches on the left side, one
labeled "com-1c1" (which must be set to gom), and the other
labeled "inhibit auto-eot" (which, if there, should be set to
on). For switch settings on other terminal types, see the MPM
Reference Guide section, Protocol for Logging In.
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The connection of the terminal to the computer is
accomplished by ordinary telephone 1lines, and by dialing the
telephone number of the computer. This number is usually
equipped to automatically connect you to the first free line into
the computer system. Multics is designed to inform potential
users that it is fully 1loaded by printing a message on the
terminal rather than by refusing to answer the telephone or
returning a telephone busy signal. Either of these latter two
responses to dialing Multics is a symptom of trouble and should
be reported.

Communication of keyboard characters with the computer is
~accomplished by conversion of these characters into sequences of
tones which can be sent over the telephone line. The piece of
hardware which does this conversion is called a datgset or modem
(for modulator-demodulator); there must be one modem at the
terminal and another at the computer. Two types of modems are
frequently found associated with computer terminals: those
directly attached to the telephone 1line, and those which are
acoustically coupled Dby inserting the telephone handset
physically into the modem. The directly attached devices
normally come with a special telephone set which has a row of
buttons; one of these buttons must be depressed in order to get a
dial tone to start the call. In contrast, the acoustic coupler
is designed to work with any ordinary telephone anywhere.

After dialing the Multics telephone number, you should hear
one or two rings, and then the computer will answer. The next
step is to complete an electronic handshake sequence, first
between your modem and the one at the computer, and then between
your computer terminal and the Multics terminal controller. The
computer starts the sequence immediately after it answers by
placing a tone which vyou can hear on the telephone line. You
should then press the data button on the modem, if the modem is
directly attached, or else insert the telephone handset into the
acoustic coupler. The handshake sequence should then proceed to

completion all by itself, with a characteristic pattern of clicks
and gurgles that you will soon learn to recognize as normal
operation, ending with a printed message from the computer.

There are several possible ways in which the handshake
sequence may fail. Before giving up, check the following list of
possibilities: )

1. Are you sure the computer answered and provided the initial
tone? |If not, check to see if Multics is in operation.

2. Is the terminal plugged in and is its power switch on?

3. Is the cable connecting the terminal to the modem properly
in place?

L, Is the modem plugged in? (If it is an acoustic coupler, it

may have to be turned on also.)
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5. Are all the switches on the terminal and modem in correct
position?

6. Did you dial the correct telephone number? Generally there
are different numbers for different terminal types and
speeds. Check your telephone number list. :

7. Has the terminal in question ever been used with Multics
before? If not, possibly it is missing some feature
required for use with Multics.

8. Has this telephone line ever been used with this acoustic
coupler before? Possibly the line is too noisy or weak for
the brand of coupler used, or maybe there is too much
amplification in the telephone line and one of the modems is
being overloaded.

9. Try hanging up and dialing again once or twice. With the
array of equipment between you and the computer, flukes are
common.

If all of these checks fail to turn up anything, it is time to
turn to expert help.

Assuming that the handshake was successful, it was completed
with the printing of some message from the computer, e.g.,
"Multics version 15.11". You are now in communication with the
computer, and anything you type on the keyboard will be both
printed and heard by the computer. Whenever Multics or any
program prints anything to you, the keyboard will be temporarily
locked, thus preventing you from typing anything. At all other
times, the keyboard is unlocked, and you are free to type.

Generally, you will type messages with the intent that they
be read and understood by some program; you should always keep in
mind just exactly which program will be interpreting each message
you type.* To start with, the system has arranged that your
input lines will be directed to a login program which will insist
that you type information properly identifying yourself. The
‘login program will, at one peoint, exercise a special feature of

your terminal by disconnecting your keyboard from your printer,
so that you may type a password without producing a printed copy.
(If your terminal doesn't have this feature, the 1login program

* It is important to realize that you are allowed to type even
if some previously initiated operation has not finished yet and
technically the system or subsystem 1is not ready for another
typed 1line from vyou. If vyou can anticipate your next input
lines, vou may type them at any time; they will be stacked wup
and used, in order, to satisfy future requests for input from
you. This feature permits you to work ahead of the computer, and
overlap your thinking and typing with waits for response from it.
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will instead print some random letters on the paper in the place
you are to type your password.) When the login program is
satisfied that it knows your identity, it will start a program
known as the listener which is usually used to supervise your
entire terminal session. The listener interprets lines that you
type as names of programs you wish to run. Whenever the listener
is listening for input, the terminal is said to be at ¢command
level. The programs which you ask the listener to call are known
as c¢ommands. Command level is an important reference point, and
we will use this term frequently. Several of these ideas may
come into better focus in the example terminal sessions which
appear later in this chapter.

It is common, as well as human, to make typing mistakes, so
two correction conventions are normally in operation at all
times. One of them allows you to erase, so to speak, and then
retype small typing mistakes, and the other allows you to simply
discard more extensive typing disasters. The erase convention
uses the number sign (#) character. Whenever you realize that
you have typed a character in error, type as the next character
after it the number sign. When the line is read, it will be
scanned for number signs; if one is found, it, and the character
before it will be discarded; the resulting line is then assumed
to be the line vyou intended to type. Two consecutive number
signs will erase the two immediately preceding characters, and so
on. Note that you do not correct errors by backing up and
overtyping, as in some systems. If you do backspace and
overtype, the system will presume that you want that particular
combination of overstruck characters to be in your input line.
In this connection, note that the system is more concerned with
the appearance of the final printed line on your terminal than it
is with the order you typed things in. Thus, for example, the
order in which you produce overstruck characters is unimportant,
and extra up and down case shifts are ignored.

If you notice a serious error farther back in the 1line vyou
are typing, you could correct it by typing enough number signs to
erase everything back to and including the error, and then
retyping everything that was erased, this time correctly.
However, it may be simpler to just type a kill character (the
commercial at sign, @). When this character is encountered in an
input line, it, and all of the 1line to the .left of it are
discarded. The corrected 1line is then retyped directly to the
right of the kill character. Several examples of the use of
erase and kill characters appear in the annotated terminal
scripts later in this chapter.

Unless one is using a special program which has arranged
things differentiy, the unit of communication with the computer
for the typist is the completed line, ending with the function
key which returns the carriage to a new line. Thus, typing 'new
line" is the signal that the typist is satisfied with the line as
it stands; the line is scanned for erase and kill characters,

and then passed along to satisfy the next request for input.
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Some terminals do not have all of the 96 different
characters which can be typed iIin to Multics programs. For
example, the [IBM 2741 terminal does not have square brackets.
There is a set of conventions which allows one to type something
else which means the same thing. A1l of these conventions use
one special character as an gscape character to indicate that the
next character is to be interpreted differently than usual. On
a 2741, the escape character is the cent sign (¢). |If one types
a cent sign followed by a "less than" sign, these two characters
together will be taken to mean a left square bracket. A complete
set of escape conventions which apply to your terminal may be
found in the MPM Reference Guide section, Typing Conventions.

Finally, two emergency measures should be mentioned. Every
terminal has somewhere on it a special button which is always
pressable, even if something is being printed and the rest of
the keyboard 1is locked. This button is called the quit button,
and, when pressed, will cause the system to stop whatever program
was running and return to command level. In this way, even if
you have started a runaway or incorrect program, you may always
keep positive control of the situation. Note that when the quit
button is wused, the work in progress, whiie halted, will not
necessarily be saved if you begin doing something else.
Generally, unless you take special measures, you will find that
pressing the quit button discards all work which was done since
the previous time you were at command level.

The second emergency measure is the terminal disconnect. If
you should happen to turn off the terminal power, or hang up the
telephone while logged in, the system will first perform the
equivalent of a quit, then it will automatically perform a logout
command. Of course, it can not print the usual logout message on
your disconnected terminal. In general, you need not worry about
disrupting the system by such an abrupt disconnection, but your
own work may be lost back to the last time you were at command
level. ’

A Multics Terminal Session

Having accumulated some familiarity with the basic mechanics
of wusing Multics, the easiest way to proceed to familiarity with
the system itself is to look over the shoulder of an experienced
but cooperative user, and pester him with questions about what
seems to be happening. The closest alternative we can achieve
here is to walk through some sample terminal sessions, explaining
in some detail the various pieces of an emerging picture. To
start with, we will consider one of the simplest possible
sessions, in which a user logs in to the system, checks on the
latest news and notices, uses the system as a desk calculator to
balance his checkbook, and then logs out. Later examples will
illustrate typing and editing information and use of the Multics
storage system. To begin with, however, the simple terminal
session illustrated in Figure 3-1 will allow us to decouple from
those considerations the purely mechanical issues underlying al!l
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#

Multics 15.8; MIT, Cambridge Mass.
Load = 55.0 out of 60.0 units; Users = 58
login Williams '

Password:

Williams Apollo logged in: 09/29/70 2139.4 edt Tue

Last login 9/28/70 1633.2 edt from terminal "209"

New or updated help segments: pl/l_status, tty_bug, news
r 2139 3.914 12.070 231

help nes#ws

(10 1ines follow)

09/29/70

The following changes were made in the on-line system today:

1) The editor command, edm, was replaced with a new version
which eliminates a bug encountered when input lines
overflow its input buffer.

2) A new command named change_default_wdir (abbreviated cdwd)
was installed. This command changes the user's default
working directory for the duration of the current

; d;):rocess or until the command is issued again.

en

more help? vyes

(68 lines follow)

Following is a summary of all system changes made 9/1 to 9/28:
9/28 Replaced PL/1 compiler, removing varying string bug.
9/26 Added 12 million words of disk stora

QUIT

r 2142 1.667 4.760 110

decam
Go

=0
+14791
+38525
-2741
-3482
-49768

P
-2675

q
r 2148 .515 4.040 135

logout

Williams Apollo logged out 9/29/70 2149.1 edt Tue

CPU usage 5 sec
hangup

Figure 3-1: A Sample Terminal Session.



A MULTICS TERMINAL SESSION 3-7

use of the system. In each of our examples, we will take
replicas of actual terminal sessions, and add line numbers down
the left side so that we may refer to them. We have placed an
asterisk (*) beside those lines typed by the user; the remaining
lines are those printed by whatever program he 1is communicating
with. The session . starts at an IBM 2741 terminal, immediately
following the dialing of the Multics telephone number.

The login sequence, all by itself, raises a fairly large
collection of issues. Let us examine this script, line by line.
Line 1 was printed as a consequence of the electronic handshake
sequence between the typewriter control program and the 2741. In
order to establish what kind of terminal has called, the control
program tries several experiments, attempting to elicit a
response from the terminal. One of the experiments caused the
terminal to print a number 'sign. That experiment being
successful, the terminal type was identified, and the system
printed a greeting message on lines 3 and 4, after putting 1In a
blank 1line (line 2) to insure that the carriage is at the left
edge and that anything accidentally printed by the experiment is
separated from the message. Note that a line from the computer
usually ends with a "new line'", so that the next message, whether
typed by the user or the computer, starts at the left edge of a
new line. The second line of the greeting message (line 4) tells
the number of users currently logged in, and the load they are
placing on the system. The average user places a 1load of 1.0
load wunits on the system, and in this example the hardware
configuration in use will support 60 units, or 60 average users.
Some users with restricted command repertoires may be rated at
less than 1.0 load units; others may be rated higher. Since the
load, 55.0, is well below the 1limit, 60.0, we will have no
trouble logging in. |[If the load were equal to the 1limit, we
might still attempt to log in; it may be that some part of the
load can be deferred or some low priority user could be asked to
stop working. After printing 1line L4, the system unlocked the
typewriter keyboard, and the user had two minutes in which to log
in to the system. Thus, on line 5 he typed a login line, giving
the personal name by which he is identified throughout the
system. Note that the distinction between upper and lower case
letters is significant in Multics input and output. If he had
typed his name without the initial capital letter, it would not
have been recognized.

Some users may type other things after their name. Such
extra input items are necessary only if the user works on more
than one project or charges his usage to more than one account,
and then only if he does not want to use his standard billing or
project identification for this terminal session.

On 1line 6, the 1login program responded by requesting the
private password which is associated with the wuser's name. At
this point, the program turned the terminal printing mechanism
off and although our typist typed in his password on line 7,
there 1is no printed record of it. Note that, as usual, he
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signaled that he had completed typing by typing a "new line", so
the next message from the computer was printed on line 8.

Lines 8 through 12 are the response of the login program to
the successful identification of the user. Line 8 records the
date, time, name, and project affiliation of the user. The
project affiliation refers to a grouping of users who are working
together on a single project and therefore require frequent
access to each other's information. As we shall see in the
example terminal session exhibiting storage system usage, since
the privacy system recognizes the existence of such groups, one
can grant access to all members of a group by stating just the
~project name of the group. Line 9 tells the user of the

conditions of his previous terminal session, so that he may
discover if someone else is using his password.

Line 10 is called the message of the gax.' This message is
updated frequently to reflect any important news for users.

Rather than printing the details of the news here, though, the
message usually refers the user to information files which may be
printed with the help command. We will see examples of how to
use this very handy facility in a moment.

Lines 11 and 12, the 1last 1lines printed as a result of
logging in, are known as a ready message, since its appearance
indicates that the terminal is now at command level, and that the
command language interpreter is ready to start interpreting
commands. The four numbers printed in the ready message have the
following meanings:

2139 Time of day, in 24 hour form, to the nearest minute
(e.g., 9:39 p.m.).

3.914 Number of seconds of central processor time used since
the last visit to command level.

12.070 A measure of the memory used since the 1last visit to
command 1level. It is intended to measure memory usage
in a manner that is independent of system load.

231 Number of pages (1024 word blocks) of information
brought in to primary memory since the last visit to
command level.

A blank line, in this case on line 12, is printed as part of
the ready message, to provide separation between successively
typed commands. As we shall see, a ready message is printed
every time that the terminal returns to command level. The
information printed in the ready message, in addition to
providing an occasional time stamp on one's terminal output, is
frequently handy in estimating the relative cost of a
just-completed operation, or in comparing the cost with another
way of doing the same thing. (Note: for the uninterested, there
is a special feature which can be used to suppress the ready
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message. For details, see the write-up of the ready_off command
in the MPM Reference Guide Command section.)

At this point, the system has now created a process for the
user. A process may be thought of as a private computer, working
in its own memory, or address space, under control of the user at
his terminal. The process has begun running in the listener
program, so any line typed by the user will be interpreted as a
command, that 1is, an instruction to call some program either
belonging to the user or else in the Multics library. Our sample
session continues as the user types his first command line.

The command line typed on line 13 illustrates three things:
invoking a library program by name, passing that program an
argument, and correction of a typing error. The user chose to
follow up the suggestion given by the message of the day back on
line 10, so he typed the name of the help command. That command
is capable of giving help on a variety of topics; one selects the
topic by giving the help command an argument, which names the
desired topic.* The help command takes that argument as the name
of a file of information which it then uses as a source of text.
In this case, our user wanted to see the latest system news, so
he tried to type the argument "news" following the command name
"help". Unfortunately, he slipped up, and typed '"nes'". He then
noticed his error, and typed the erase character (#) followed by
the correct letters. Thus the line actually interpreted by the
listener reads "help news'.

The help command then replied by printing, on 1line 14, a
notice of how much output was coming, and then on lines 15-24 the
latest message from the on-line news file. After completing that
message, it inserted a blank 1line (line 25) to improve
readability, and then asked the user if he wished to see more.
This question, on line 26, illustrates that some lines printed by
the computer need not end with a "new line'". After printing the
question mark, the program printed two spaces, then stopped to
await the reply of the typist. The parenthetical asterisk tc the
left of 1line 26 is intended to call attention to the fact that
the typist only typed the last part of this 1line, namely the
letters "yes", and the "new line".

Then, on line 27, the help program again printed a notice of
how much output was coming, and proceeded with the next older set
of news. Our user, not wishing to wait while 68 lines of
information were printed, allowed the printing to proceed only
until he saw news he had seen before, on line 30. In the middle
of that line he pressed the quit button. The system responded
immediately by printing a "new line", the word QUIT on line 31,

* If one does not even know enough to name a topic on whicb he
needs help, typing "help" with no arguments will provide a
tutorial on the on-line information currently available.
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and a standard ready message on lines 32 and 33, The terminal
was thus forcibly returned to command level, the help command
having been suspended in mid-operation. The user was then ready
to type his next command, on line 3L,

There our user typed in the name of a desk calculator
command program found in the Multics library. This command turns
his terminal typewriter into a kind of simple adding machine, so
that he can balance his checkbook. The desk <calculator
acknowledges that it is listening for input by printing the word
"Go" on 1line 35. Our user, being experienced in the use of the
calculator, proceeded to type in a whole series of requests to it
on lines 36-41, first to clear its memory, then to add and
subtract several numbers found in his checkbook. Note that he
did not wait for a response to one request before typing the next
one; he knew that the calculator does not reply to requests for
memory clearing, addition, and subtraction. In fact, it is
likely that he typed at least some of his input lines before the
calculator was ready for them; he and the desk calculator were
making effective use of the Multics type-ahead ability mentioned
before. Finally, on 1line 42, he typed a request to print the
result of all that addition and subtraction. This time, he
waited for the response, which the desk calculator printed on
line 43, followed by a blank line for readability on line ub,

Our user was then finished with the desk calculator, and
wanted to type more commands; in order to return to command
level, he typed the request q (short for "I quit") to the desk
calculator on line 45, The calculator program responded by
returning to its caller, and the terminal was returned to command
level as the ready message on lines 46 and 47 attests.

Our user, having solved his immediate problem (there seems
to be 1little Multics can do about the negative balance in his
checkbook), then typed the logout command on line 48. The logout
command, in addition to printing the messages on lines 49-53,
took care of various housekeeping chores, such as updating
accounting records and removing the user's name from the list of
those currently logged in. It also triggered a telephone line
disconnect sequence, which caused the minus sign to print on line
54, Note that although our user was logged in for almost ten
minutes, he used only five seconds of the central processor's
time. Such ratios are the basis for developing a time-sharing
system which 1is to be used by a 1large number of people
simultaneously.

With this example, we have now walked through an entire
terminal session. If you wish, you might want to try to imitate
this session the first time you log in, substituting your own
name for that of our sample user. One thing that you would
surely notice if you tried that experiment 1is that the ready
messages would not be exactly the same as in our sample script.
It is normal to observe a variation in the amount of processor
time or number of page movements required to accomplish the same
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job several times. The variation arises because the system
attempts, as often as it possibly can, to run your program on the
coattails of other wusers, utilizing pages in common. To the
extent that such sharing is successful, the charges to individual
users may be reduced, but the size of this effect will vary with
circumstances. Also, when the system is heavily loaded, it is
harder to locate the resources required to run a program; the
extra effort required shows up as a charge to the user who asked
for them.

In addition to the commands illustrated here, you might try
typing the help command with no arguments, and you might also try
the who command. The Reference Guide gives complete information
on many options and variations on these as well as on the
commands illustrated in our sample scripts.

Ivping and Editing lnfé[magigg

Probably the single most common activity of a user of a
time-sharing system is typing in and editing information, with
the intent that the information be stored for later use. One
important property of a system which is normally approached by
means of a remote terminal must be that it can store information
from one usage session to the next. If this property were
lacking, it would be unreasonable to use it to tackle any
information processing job which could not be completed in a
single sitting. Since that kind of restriction is unwanted,
Multics provides an extensive system for storing and organizing
information, the Multics storage system.

The wunit of information which is stored, named, protected,
and shared in the Multics storage system is known technically as
a segment. One or more segments containing related information
is usually called a file. Typically, a segment might contain a
complete program written in the PL/Il language, or a memorandum,
or a collection of closely related data. We will return later to
a variety of examples of how segments are named, protected,
classified, and shared; for the moment we are merely interested
in the mechanism by which one creates a brand new segment or
modifies the contents of an old one. This mechanism is important
because most subsystems which require substantial quantities of
input expect to find their input in segments. For example, one
uses the Multics PL/! compiler by first constructing a segment
which contains the desired PL/! source program. Then he
instructs the compiler to translate the source program found in
that segment.

Segments which contain only strings of charac;ers, and tbus
can be printed by a standard printing procedure without decoding

their format, are known as printable segments; a PL/1 source
program is an example of a printable segment. All other segments
may be categorized as binary segments, which is just a way of
saying that they consist of a collection of bits which somehow

represent information in a way different from the standard
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printable form. Usually, binary segments are created and read
only by programs. Because they can be easily printed, printable
segments are creatable, modifiable, and readable by human beings
as well as by programs.

For the purposes of creating and editing printable segments,
several general-purpose editor commands are available. The two
standard editors are named edm and qedx. The first, edm, is easy
to learn and use, but limited in its repertoire of facilities
when complex but methodical changes to a segment are needed. The
second, gqedx, is more powerful and is controlled by a concise
input language, but is somewhat more difficult to master at
first. Some subsystems (for example, BASIC and APL) provide
their own built-in editor program in order to minimize the
distinction between program creation and execution. We will here
concentrate on the simpler of the two general-purpose editors.

As before, it is weasiest to explain the operation of an
editor by looking at a sample terminal session. In the example
in Figure 3-2, edm is used to type in a new segment containing a
short poem. We begin our reference 1line numbers from 1,
realizing, of course, that the user who typed in this segment
must have first logged in as in our earlier example. As before,
we have marked with an asterisk lines typed by the user.

On 1ine 1, our user typed the command to invoke the editor.
Since the editor is willing to edit any text segment in the
system, it is necessary to indicate which segment is to be
edited. This indication is made by typing the name of the
segment as an argument following the name of the editor command
itself. |In this case, our user has chosen the name, poem, as the
name he would like to use for the segment he is about to create.
On line 2 the editor replies with the observation that it did not
find a segment named poem already in existence, so it assumed
that it was supposed to create a new segment with that name.

To understand the message printed by the editor on 1line 3,
we must realize that this editor operates in one of two modes:
input mode, and edit mode. In the input mode, everything typed
by the typist is presumed to be information to be stored in the
segment. In edit mode, the typist's lines are instead taken to
be requests to make changes to the already stored segment. Since
the segment had not yet been typed in, the editor assumed we
should start in input mode, which it signified by printing
"Input." on 1line 3. As we shall see, when the editor detects
that the typist is working on an old segment, it starts him off
in edit mode instead.

Lines 4-8, then, are the intended information content of the
segment, supplied by the typist. Note the use of an erase
character near the beginning of Tine 5, to change the i to an o,
and the kill character used on line 7 after noticing a blunder
earlier in the line. Even though only one character was in error
(the r should have been an e), it was necessary to type the
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edm poem

Segment not found.

input.

There was a young lady from Niger

Who rifode with a smile of a tiger.
They returned from the ride

With thr lady@With the lady inside

And the smile on the face of the tiger.

Edit.

t

1 smile

Who rode with a smile of a tiger.
c /of/on/

Who rode with a smile on a tiger.
t

p 1000

No line.

There was a young lady from Niger
Who rode with a smile on a tiger.
They returned from the ride

With the lady inside

And the smile on the face of the tiger.
EOF

w

q
r 2024 1.280 5.284 225

edm poem

Edit'

1 tiger

Who rode with a smile on a tiger.

1

And the smile on the face of the tiger.
i -=- anonymous

t

input.
A poem:

Edit.

t

p 1000
No line.
A poem:

There was a young lady from Niger
Who rode with a smile on a tiger.
They returned from the ride

An Example of Typing and Editing Information.

3-13
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51 With the lady inside

52 And the smile on the face of the tiger.
53 -=- anonymous

S EOF

55% t

56* c 1000 /tiger/giraffe/

57 Who rode with a smile on a giraffe.

58 And the smile on the face of the giraffe.
59 EOF

60=* t

61* 1 anon

62 -= anonymous
63 d

‘6br -w

65* q :

g? r 2026 .875 2.132 150

68+ print poem

69

70 poem 10/31/70 2026.7 est Sat
71 .

72

73 A poem:

74

75 There was a young lady from Niger
76 Who rode with a smile on a giraffe.
77 They returned from the ride

78 With the lady inside '
79 And the smile on the face of the giraffe.

82 r 2025 .377 1.298 37

Figure 3-2 (continued)
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entire 1line over again because, you may recall, the kill
character deletes everything to its left on the same line.

Having completed the initial typing of the poem, our typist
now wished to switch to edit mode. Now he was up against a
slight problem: everything he typed was supposed to be stored in
the segment. How was he to communicate to the editor program his
intent to stop using the input mode? As we might expect, a trick
is used. The editor checks each line typed in input mode. When
it sees a line containing nothing but a period, it takes that
line to mean that the mode should be changed, and it does not
store that 1line in the segment being created. (Note that this
means that one cannot store a 1line containing only a period
while in the input mode. However, one can create such a line in
edit mode.)

Thus, on line 9, we see only a typed period, and on line 10
we see the response of the editor, saying that "Edit." mode is
now in operation. At this point, our typist, having looked over
the printed copy of his input, noticed that he made an error on
line 5--the word "of'" should have been typed as ‘"on'. To make
such changes easy to manage, the editor maintains a pointer,
which is always pointing to some place in the stored segment.
The typist may move this pointer from line to line, by issuing
various requests. Thus, when our typist issued the request to
switch to edit mode, the pointer was pointing to the iast line he
had typed. The t (for top--most edm requests are one letter
mnemonics) request on line 11 moved the pointer to the top of the
segment, ahead of the first line. The 1 (for locate) request, on
line 12, started a search for the next line containing the string
of letters "smile". When it found such a 1line, the editor
printed it on 1line 13, and left the pointer pointing to that
line. This operation of moving the pointer by searching for a
string of letters is known as editing by context.

Having got the pointer set to the line which contained the
error, our typist then issued a ¢ (for change) request on line
14, The change request is designed to avoid the need for typing
the whole line over, by mentioning first a string of characters
which appears in the line, and then giving another string which
is to replace the first one. What the typist wanted to express
is the notion '"change the string of letters 'of' to the string
'on'". Since, in general, one or both of the strings may contain
blank spaces, we must invent some convention for communicating to
the change request exactly what string is to be wused for
matching, and what string 1is to be used in the first string's
place. The convention used is for the typist to choose any
character he wishes that is not in either string -- his choice is
called the delimiter character. (The slash mark is often used
since it is convenient to type.) Then he types that character
three times, with the two strings in between. Thus, the
substitution was expressed to edm by typing the request name ¢,
followed by a space, then the first delimiter (/), the string of
characters to be matched (of), then a second delimiter, then the
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new string to be substituted in place of the matching string
(on), and finally a third delimiting character. In return for
this input sequence, the editor performed the requested
substitution, then printed the changed line to verify that the
correct change occurred.

(Note that while editing by context is very convenient,
context is often ambiguous, and one must constantly check to
insure that the correct context was used. Thus, the word "of"
might have appeared twice in the line; in that case, the change
request would have changed both occurrences. |If one wanted only
the second occurrence changed, he would have to type a larger
identification string, one which uniquely matched the single
‘usage of "of" that was to be changed.)

Next, to verify that the whole segment is correct, our
typist moved the pointer back to above the top of the segment
with the t request on line 16, and then he asked the editor to
print (with the p request) the next 1000 lines of his segment.
Although he knew that his segment did not contain 1000 lines, he
did not want to count them; when the user asks for a larger
number than necessary, the editor merely prints to the end of the
segment, then stops. Thus, we have the final segment contents
printed on lines 19-23, The comment "No line." on line 18 is
inserted whenever the pointer is not pointing at a 1line; for
example, when it is pointing to the top of the segment.
Similarly, the comment EOF on line 24 is printed whenever any
request causes the pointer to run past the end of the segment.
Our typist then typed the request w (write) on 1line 25, which
means ''put the segment away in the storage system". Being
finished with the editor he then typed q, for quit. The editor
responded by returning to command level, as shown by the ready
message on line 27.

To illustrate the ability of the editor to modify a segment,
lines 29 through 83 are a typical editing session. In this
session, the typist made some changes to the segment containing
the poem that had been typed in before.

The typist started from command 1level, just as before,
typing the name of the editor and the name of the segment to be
edited. This time, since the segment already existed, the editor
began in edit mode rather than input mode. The typist wanted to
add a line following the last line, so he had to move the pointer
to the last line. Noticing that the last line contained the word
"tiger", on 1line 31 he typed a request to locate that string of
characters. Now it becomes apparent why the editor always prints
the line it has moved the pointer to, as on line 32 -- there were
two iines containing the word “tiger®, and the editor had iocated
the first one. The typist should have used the request:

1 the tiger
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on line 31, since only the 1last 1line contains the string of
characters "the tiger'". Seeing his mistake, the typist took
advantage of a special convention: if he types a locate request
with no character string, the previous locate request will be
repeated, with the effect in this case that the next instance of
the string "tiger" will be located. This he did on line 33, and
the editor responded on 1line 34 with the 1last 1line of the
segment. Then, wusing the i (insert) request, which inserts a
line after the pointer, our typist on line 35 added a single line
to the end of the segment.

Next, he decided that his poem needed a heading, so he moved
the pointer back to the top of the segment with the t (top)
request on 1line 36. Since the heading is to be more than one
line, he decided to switch temporarily to input mode by typing
the mode-switch character, a 1line containing only a single
period, on line 37. He followed this with two lines to be stored
in the segment following the current pointer position (which in
this case was at the top of the segment). Note that line LO is
completely blank--presumably the typist wanted a blank 1line in
his segment at that point. Having now finished typing the new
material, the typist switched back to editing mode, went back to
the top of the segment, and on line 44 requested that it be
printed. As we see on lines u45-54, the segment appeared as
before, except for the three added lines, two at the start and
one at the end.

Next, our typist exhibited one of the most powerful features
of this editor, its multiline change request. On 1line 56, he
requested that the string '"tiger" be replaced by the string
"giraffe'" everywhere it appeared on the next 1000 lines following
the pointer. Thus, every occurrence of "tiger" in the entire
segment was sought out and changed by the editor. For
verification, the editor printed each changed line (lines 57 and
58), and then reported that it encountered the end of the segment
(line 59). Finally, the typist decided that the 1line saying
"anonymous" was superfluous, so he first moved the pointer to it
(lines 60 and 61), and then deleted it (line 63). Finally, he
wrote out the resulting edited segment, and then asked the editor
to return toc command level.

As an independent check on the contents of the resulting
edited segment, he then typed the print command, as shown on line
68. This library program will print any text segment; first it
prints a header giving the segment's name and the date and time
(line 70), then it prints the contents of the segment.

With this brief introduction, the next steps to familiarity
with the editor are to read the edm command write-up in the
Reference Guide, and then to type in and edit a small segment of
your own.

Some pointers:
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It is useful to remember that the editor makes all changes
on a c¢opy of the segment, not on the original. Only when
you issue a w (write) request does the editor overwrite your
original segment with the edited version. |If the user types
g (quit) without a preceding w (write), the editor warns him
that editing will be lost and the original segment will be
unchanged, and gives him the option of aborting the request.

Don't ever press the quit button while in the editor, unless
you are prepared to lose all of the work you have done since
the 1last w (write) request. If you press quit while a w
request is in progress, you may even damage the original
version of the segment.

If one has a lot of typing or editing to do, it is wisest to
occasionally (say every 10-15 minutes) issue a w request, to
insure that all the work up to that time is permanently
recorded. Then, if some accident should occur (e.g., a
system failure, or the telephone line disconnects), you will
lose work only back to the last w request.

Some requests are more expensive in computer resources than
others. In particular, frequent movement of the pointer
back to the top of the segment should be avoided. I f
possible, it is best to plan ahead, and try to do as much
editing as possible with a single pass of the pointer
through the segment. The 1larger the segment, the more
important this consideration becomes.

The request to move the pointer backward, while very handy,
is very expensive to use, since the editor actually has to
move the pointer to the bottom, then back to the top, then
to the correct location.

Be sure that you have switched from input mode to edit mode
before typing editing requests, including the requests to
write and quit. |If you forget, the editing requests will
be stored in your segment, instead of being acted upon. You
will then have to locate and delete them.

The only frequently-used requests which have not been
illustrated are the next (n) and backup (-) requests. The
remaining requests are less important and you can safely
ignore them to start with.

As one becomes more and more familiar with the use of edm,
he may conclude that it provides verification responses more
often than necessary, thus slowing him down. The requests v
and k are used to controi the editor's verbosity. At about
the point where one feels confident enough to use these two
requests constructively, it is probably time to begin
studying the more sophisticated editor, gedx. The gedx
editor provides the user with a repertoire of more concise
and powerful requests, which permit more rapid work.
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Using the Multics Storage System

In the previous section we saw how a text segment may be
created and edited. In this section, we will explore some of the
features of the system which allow such segments to be organized
and stored for later use.

The user in our last example chose the name poem for his
segment. Multics tries to allow the user as much flexibility as
possible in choosing names for segments. Since the system has
many users, who may be strangers to one another, this need for
flexibility suggests that the segments belonging to any one user
be grouped in such a way that he can choose names without worry
that some other user has already used that name. This grouping
is accomplished by an entity known as a directory. A directory
may be conveniently thought of as a segment containing a list of
names of other segments.*

Typically, each wuser has a directory for his own segments.
Within a single directory, each segment must have a different
name, but two different directories may contain segments with the
same name. By a simple extension of this convention, directories
are also given names, so a user's directory may contain the names
not only of his segments, but also of additional directories he
has created. These additional directories may contain the names
of more segments. When a directory name is found in a directory,
it is said to be an inferior directory; the naming directory is
said to be superior to it. A user's motives for putting some of
his segments in inferior directories may be several:

. He may have two segments to which he wants to give the
same name; they must not be in the same directory.

. He may have many segments, and would like to keep them
grouped by category. As we shall see, he can ask for a
list of all the names in any one directory, and thus in
one of his categories. ‘

. He may wish to protect a certain group of segments all in
the same way; when he creates a new such segment, he can
protect it the same way as the others by putting it in
the appropriate directory; he need not think through the
protection specification again.

* Although a segment is technically only named by a directory,
it is common terminology to refer to a segment as being stored in
a directory. Of course, the segment is actually stored on some
disk or drum storage device; only its location on that device s
stored in the directory. This distinction is important in the
case of links, which name segments stored in other directories,
rather than providing for their storage directly.
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. Whenever a program asks for a segment by name, a search
is undertaken for the segment. This search is controlled
by specifying a 1list of directory names. Thus, he may
create several directories in order to arrange that the
search proceed in a fashion he prefers.

It should be clear, then, that the concept of a directory is
a key to several different features of the Multics storage
system. The idea of superior and inferior directories s
extended by the requirement that all the directories in the
system together form a hierarchy, or tree. The directory at the
base of the tree, which is superior to every directory of the
system, is called the root directory.

Figure 3-3 is a typical directory arrangement. The root
directory in that example contains two entries, both of which are
names of other directories. One of these two directories
contains the library of system programs, while the other, named
udd (for user_directory_directory) contains one entry for every
user of the system, namely Smith and Jones. These two users each
have a directory with their names on it, and in addition, Smith
has chosen to add another directory inferior to his own, named
olg_dir; he has placed three segments named x, vy, and z in
old_dir.

Whenever a Multics program wishes to read or change the
contents of a segment, it is required to specify the name of the
segment it wants. Every segment has a path name which is formed
as follows: trace the directory structure down from the root to
the desired segment, writing in order the name of every directory
on the path, and finally the name of the segment itself. Now,
concatenate all these names into a single long name, placing the
"greater than" character between the individual names. Thus, the
path name of the edm command, found in the library, would be

root>library>edm

By convention, since every path name would begin with the letters
"root", these 1letters are .left off, so one would use the path
name

>library>edm

to refer to the edm command. Similarly, Jones' segment named
1p.p1l1 has the path name

>udd>Jones>1p.pll
and Smith's segment named x has the path name

>udd>Smith>old_dir>x



library:

USING THE MULTICS STORAGE SYSTEM

root:

udd

‘library

edm

—
who -
print

decam -—
sqrt_ —

Figure 3-3:

Smith:

%&C@

-udd:

Jones

Smith )

Jones:

poem — O
a.p 11 [ - ____»( ;
old dir Yy
old_dir: %
y

3

21

ip.pll

P

—+O
=0

5O

Typical Multics Directory Hierarchy.
Directories are rectangles;

segments are circles.
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which is <clearly distinct from Jones’ segment x, which has the
path name

>udd>Jones>x

To avoid the need for typing full path names, which may not
be easily remembered (or even known, in some cases), the system
remembers for each logged in user the path name of one directory
in which his activity is centered: his working directory. All
names which do not begin with a '"greater than" sign are
considered to be relative to his working directory. Thus, for
example, Smith might choose as his working directory the path
name

>udd>Smi th

in which case when he uses the name
poem

he will be referring to the segment with path name
>udd>Smi th>poem

and when he uses the name
old_dir>x

he is referring to the segment with path name
>udd>Smith>old_dir>k’

The system automatically chooses an initial working
directory for a user when he logs in, but he is free to change
the path name of his working directory to any other directory in
the system. He makes this change by invoking one of several
commands used for interaction with the storage system. As
before, it is easiest to understand these commands by following a
series of sample scripts, which are based on the directory
organization 1illustrated in Figure 3-3. Suppose that Jones has
logged in, and the system has assigned him the directory

>udd>Jones

as his working directory to start with. (The script may be found
in Figure 3-4.,)

On line 1, he typed the command print_wdir, which merely
prints the path name of his current working directory on line 2,
(This command is quite handy if one forgets where he is, or needs
confirmation that he typed his last command to change directories
correctly.) Next, on line 5, he typed the 1list command, which
prints the contents of the working directory. On line 7 the list
command printed a summary of the directory contents. Jones'
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print_wdir

>udd>Jones

r 1210 .137 .812 27
list

Segments = 2, Records = 4.

rw 1 1p.pll
re 3 x

r 1212 .216 1.762 33

create foo
r 1213 .320 3.728 77

list

Segments = 3, Records = &4,
rw 0 foo

rw 1 1p.pll

re 3 x

r 1215 .202 1.856 49

createdir mypoems

r 1216 .151 1.482 O

change_wdir mypoems
r 1218 .089 .306 17

print_wdif
>udd>Jones>mypoems
r 1219 .119 .056 1%

st

1i
.directory empty
r

1219 .147 1.406 42

copy >udd>Smith>poem limerick
r 1220 .311 1.732 53

list
Segments = 1, Records = 1.

rw 1 limerick
r 1220 .219 2.162 41

change_wdir >udd
r 1221 .067 .6ub 30

Figure 3-4: Example of Use of the Multics Storage System.
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list -a

segments = 0

links = 0

Directories = 2, Records = 2,

S 1 Smith
sma 1 Jones

r 1222 .077 .30 9

cwd Smith>old_dir
r 1222 .136 1.406 42

status x

names: X

type: segment

date used: 11/29/70 1657.6 est Sun
date modified: 11/23/70 2104.5 est Mon
branch modified: 11/2/70 2104.5 est Mon
bit count 1596

records used 1

mode rw

r 1223 .439 3.402 62

change_wdir
r 1224 .111 1.110 41

link >udd>Smith>old_dir>x Smithx
r 1225 .178 1.788 &4l

listnames -a

Segments = 3, Records = 4,
foo

1p.pll

X

Directories = 1, Records = 1.
mypoems

Links = 1.

Smi thx

r 1227 .626 2.154 43

Figure 3-4 (continued)
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directory (refer to Figure 3-3) contained only two entries, and
these segments occupied a total of four records, the unit of
storage space. One record has room for up to 4096 printed
characters, or 1024 computer words.

Starting on line 9 is the three-column list of names of
segments in this directory. Working back from the right, the
third column 1is the segment name (32 characters or fewer in
length), the second column is the number of storage records
occupied by this segment, and the first column tells the mode of
access this user is permitted to this segment. Up to three
letters may appear in this column, each letter indicating an
additional privilege:

r (read) The user may read the contents of this
segment.

e (execute) The user may run this segment as a program.

w (write) The user may rewrite the contents of the
segment.

We - will return later to the subject of setting these access mode
indicators. For the moment, we will merely observe that they
exist, that different users may have different access mode.
indicators for the same segment, and that the system enforces the
access mode restrictions.

On line 9 is listed a segmen