
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

The Multiplexed Information and

Computing Service:

Programmers' Manual

PART

INTRODUCTION TO MULTICS

Revision: 14

Date: 9/30/73

All rights reserved

This material may not be dupl icated

@ Cop y rig h t 1 9 7 3 , tv~a 5 s ac h us e t t sin 5 tit ute 0 f Tee h nolo g y
and Honeywell Information Systems Inc.

Page i i

PRE F ACE

The Multics project was begun in 1964 by the Computer
Systems Research group of M.I.T. Project MAC. The goal was
to create a prototype of a computer utility. In 1965, the
proj.ect became a cooperat ive venture of tvi. I. T. Project r·1AC,
the General Electric Company Computer Department (now
Honeywell Information Systems Inc.) and the Bell Telephone
Laboratories. In 1969, at the end of the research phase of
the project, Bell Telephone Laboratories ended its active
involvement. Also in 1969, the M.I.T. Information
Processing Center began to offer Multics as a computing
service within the t;1.I.T. community. In 1973, after
developing a new hardware base for Multics, Honeywell
announced that it would market Multics as a commercial
product.

The Multics system owes its genesis to a small team of
computer scientists who had the vision to layout a plan
which for 1965 was startlingly ambitious. This team
consisted of the authors of a -set of landmark papers
published in the 1965 Fall Joint Computer Conference. Since
that time literally hundreds of individuals have contributed
to the Multics project, but no individual stands out so
clearly in contribution as does Professor Fernando J.
Corbato, who took responsibility for guiding the design and
implementation of Multics from its initial proposal through
to the time when Honeywell began to market the system.

The project would not have been posslble without the
considerable commitments of resources and talent made by the
several organizations. These commitments were made on the
reconmendat ions of Professor Robert t1. Fano, then director
of Project MAC, Dr. John W. Weil, then of General Electric,
and Dr. Edward E. David, Jr., then of the Bell Telephone
Laboratories. The Information Processing Techniques office
of the Advanced Research Projects Agency provided the
primary financial support to Project MAC, and th~ Office of
Naval Research provided contract supervision.

This manual is currently
three updateable volumes from
Processing Center, or in a

iii

available in two forms: in
the M.I.T. Information
five-volume package from

doneywe". The construction of the users' manual was also a
:eam effort, with dozens of contributors. This manual has
had the good fortune to have been maintained by a succession
~f three excellent editors, Michael A. Padl ipsky, Laurie J.
daron, and Karolyn J. ~·1artin, each of whom put in endless
hours developing a general consistency of style, format, and
presentation, so as to make the usefulness of the manual
evenlY predictable.

This preface can acknowledge only a few particular
cont r i but ions. t':ore deta i 1 ed acknowl edgements for spec i fi c
contributions will be found among the 29 technical papers
that have been published about r·1ultics, some of which are
reproduced in chapter two of this report. Unfortunately, in
a team effort, complete and accurate acknowledgement is
impossible, except by thanking all the members of the team
for their intense devotion to the business of getting
Multics designed and implemented.

iv

Jerome H. Saltzer, Head
Computer Systems Research Division

M.I.T. Project MAC
September 21, 1973

FOR E W 0 R 0

PLAN OF THE MULTICS PROGRAMMERS' MANUAL

September 30, 1973

The Multics Programmers' Manual (MPM) is the primary
reference manual for user and subsystem programming on the
t1ultics system. It is divided into three major parts:

Part I: Introduction to Multics

Part II: Reference Guide to Multics

Part III: Subsystem Writers' Guide to Multics

Part I is an introduction to the properties, concepts, and
usage of the Multics system. Its four chapters are designed for
reading continuity rather than for reference or completeness.
Chapter 1 provides a broad overview. Chapter 2 goes into the
concepts underlying Multics. Chapter 3 is a tutorial guide to
the mechanics of using the system, with illustrative examples of
terminal sessions. Chapter 4 provides a series of examples of
programming in the Multics environment.

Part I I is a self-contained comprehensive reference guide to
the use of the Multics system for most users. In contrast to
Part I, the Reference Guide is intended to document every detail
and to permit rapid location of desired information, rather than
to facilitate cover-to-cover reading.

Part II is organized into ten sections, of which the first
eight systematically document the overall mechanics, conventions,
and usage of the system. The last two sections of the Reference
Guide are alphabetically organized lists of standard Multics
commands and subroutines, respectively, giving details of the
calling sequence and the usage of each.

Page v

Page vi

Several cross-reference facilities help locate information
in the Reference Guide:

• The table of contents, at the front of the manual,
provides the name of each section and subsection and an
alphabetically ordered list of command and subroutine
names.

• A comprehensive index (of Part II only) lists items by
subject.

• Reference Guide sections 1.1
commands and subroutines,
category.

and 2.1 provide
respect i ve 1 y, by

lists of
functional

Part III is a reference guide for subsystem writers. It is
of interest to compiler writers and writers of sophisticated
subsystems. It documents user-accessible modules which allow a
user to bypass standard Multics facilities. The interfaces thus
documented are a level deeper into the system than those required
by the casual user.

Examples of specialized subsystems for which construction
would require reference to Part III are:

1} a subsystem which precisely imitates the command environment
of some system other than Multics (e.g., an imitation of the
Dartmouth Time-Sharing System);

2) a subsystem which is intended to enforce restrictions on the
services available to a set of users (e.g., an APL-only
subsystem for use in an academic class);

3) a subsystem which Is protecting some kind of Information in
a way not easily expressible with ordinary access control
lists (e.g., a proprietary linear programming system, or an
administrative data base system which permits access only to
program-defined aggregated information such as averages and
correlations).

Each of the three parts of the MPM has its own table of contents
and is updated separately, by adding and replacing individual
sections. Each section is separately dated, both on the section
itself, and in the appropriate table of contents. The title page
and table of contents are replaced as part of each update, so one
can quickly determine if his manual is properly up-to-date. The
Hultics on-line Umessage of the day" or iocai instaiiation
bulletins should provide notice of availability of new updates.
In addition, the Multlcs command "help mpm" provides on-line
information about known errors and the latest MPM update level.

In addition to this manual, users who will write programs
for Multics will need a manual giving specific details of the

Page vii

language they will use; such manuals are currently available for
PL/I, FORTRAN, and BASIC. A separate, specialized supplement to
the MPM is also provIded for users of graphic displays. The
bibliography at the end of Part I, Chapter 1, describes these and

. other references in more detail.

Multics provIdes the ability for a local installation to
develop an installation-maintained or author-maintained library
of commands and subroutines which are tailored to local needs.
The installation may also document these facilities in the same
format as used in the MPM; the user can then interfile these
locally provided write-ups in the command and subroutine sections
of his MPM.

Finally, access to Multics requires authorization. The
prospective user must negotiate with the administration of his
local installation for permission to use the system. The
installation may find it useful to provide the new user with a
documentation kit describing available documents, telephone
numbers, operational schedules, consulting services, and other
local conventions.

CON TEN T S

September 30, 1973

PREFACE i i j

FOREWORD: Plan of the Multics Programmers' Manual v

PART I: INTRODUCTION TO MUlTICS

Chapter "1 Highlights of the Multics System

Introduction
The Goals
System Requirements
The Multics System
Overview of Multics Capabilities
languages
A Multics Bibliography

Chapter 2 Introduction to the Concepts of Multics

1- 1
1- 1
1- 4
1- 6
1- 6
1- 9
1-11

Multics -- The First Seven Years 2- 2
The Multics Virtual Memory: Concepts and

Design 2-17
Virtual Memory, Processes, and Sharing In

Multics 2-31
Protection and Control of Information Sharing

in Multics 2-39
A Hardware Architecture for Implementing

Protection Rings 2-56
The Multics Pl/I Compiler 2-71
Remote Terminal Character Stream Processing

in Multics 2-86
The Multics Input/Output System 2-94

Page ix

I
Contents I MULTICS PROGRAMMERS' MANUAL

Page x

Chapter 3 Beginner's Guide to the Use of Multics

The Mechanics of Terminal Usage
A Multics Terminal Session
Typing and Editing Information
Using the Multics Storage System
Access Control in Multics
Where to Go from Here

Chapter 4 Programming in The Multics Environment

Basic Addressing Techniques
A Program Which Tests for Prime Numbers
Checking on The Performance of a Program
Debugging Programs on Multics
Absentee Use of Multics
Dynamic Linking and Binding
A Simple Text Editor
Handling Large Files on Multics

3- 1
3- 5
3-11
3-19
3-29
3-32

4- 2
4- 7
4- 9
4-11
4-19
4-21
4-24
4-55

CHAPTER 1

HIGHLIGHTS OF THE MULTICS SYSTEM

SePtember 20, 1973

Introduction

Multics (from MYltiplexed information and Computing ~ervtce)
is the name of a new, general-purpose computer system developed
by the Computer Systems Research Division of M.I.T. Project MAC,
in cooperation with Honeywell Information Systems (formerly the
General Electric Company computer department) and the Bell
Telephone Laboratories. This system is designed to be a
"computer utility", extending the basic concepts and philosophy
of earlier time-sharing systems in many directions. Multics was
implemented initially on the Honeywell 645 computer system, an
enhanced relative of the Honeywell 635 computer. It currently
tises a Honeywell 6180 computer system.

~ Goals

The goals of the Multics system were set out In 1965 In a
paper by Corbat6 and Vyssotsky. While those goals have been met
only partially in some cases, most ocf the original plans have
been realized. The 1965 paper described those goals as follows:*

"One of the overall design goals of Multics is to create a
computing system which is capable of meeting almost all of the
present and near future requirements of a large computer util tty.
Such systems must run continuously and reliably 7 days a week, 24
hours a day, in a way similar to telephone or power systems, and
must be capable of meeting wide service demands: from multiple
man-machine interaction to the sequential processing of absentee
user jobs; from the use of the system with dedicated languages
and subsystems to the programming of the system itself; and from

* From a modified version of: Corbat&, F.J., and Vyssotsky,
V.A., IIlntroduction and Overview of the Multics System ll

, AFIPS
~. Proc. 11 (1965 FJCC), Spartan Books, Washington, D.C.,
1965, pp. 185-196. Copyright 1965 by AFIPS Press, reprinted by
permission.

1-2 HIGHLIGHTS OF THE MULTICS SYSTEM

central ized bulk card, tape, and printer facilities to remotely
located terminals. Such information processing and communication
systems are believed to be essential for the future growth of
computer use In business, in industry, in government and in
scientific laboratories, as well as stimulating appl ications
which would otherwise be untried.

"Because the system must ultimately be comprehensive and
able to adapt to unknown future requirements, its' framework must
be general, and capable of evolving with time. As brought out in
the sequel, this need for an evolutionary framework Influences
and contributes to much of the system design and is a major
reason why most of the programming of the system has been done in
a subset of the PL/I language. Because the PL/I language is
largely machine-independent (e.g., data descriptions refer to
logical items, not physical words), the system should also be.
Specifically, it is hoped that future hardware Improvements will
not make system and user programs obsolete and that
implementation of the entire system on other suitable computers
will require only a moderate amount of additional programming ••••

liAs computers have matured during the last two decades from
curiosities to calculating machines to information processors,
access to them by users has not improved, and, in the case of
most large machines, has retrogressed. Principally for economic
reasons, batch processing of computer jobs has been developed and
is currently Dractlced by most large computer installations, and
the concomitant isolation of the user from elementary
cause-and-effect relationships has been either reluctantly
endured or rational ized. For several years a solution has been
proposed to the access problem. This solution, usually called
time-sharing, is basically the rapid time-division multiplexing
of a central processor unit among the jobs of several users, each
on-line at a typewriter-like terminal. The rapid switching of
the processor unit among user programs is, of course, nothing but
a particular form of multiprogramming ••••

liThe impetus for time-sharing first arose from professional
programmers because of their constant frustration in debugging
programs at batch processing installations. Thus, the original
goal was to time-share computers to allow simultaneous access by
several persons while giving to each of them the illusion of
having the whole machine at his disposal. This goal led to the
development of the Compatible Time-Sharing System (CTSS) at
M.I.T. Project MAC. However, at Project MAC it has turned out
that simultaneous access to the machine, while obviously
necessary to the objective, has not been the major ensuing
benefit. Rather, it is the availability at one's fingertips of
facilities for editing, compil ing, debugging, and running
programs In one continuous interactive session that has had the
greatest effect on programming. Professional programmers are
encouraged to be more imaginative in their work and to
investigate new programming techniques and new problem approaches

HIGHLIGHTS OF THE MULTICS SYSTEM 1-3

because of the much smaller penalty for failure. But, the most
significant effect that CTSS has had on the M.I .T. community is
seen in the achievements of persons for whom computers are tools
for other objectives. The availabil ity of CTSS not only has
changed the way problems are attacked, but has caused Important
research to be undertaken that otherwise would not have been
done. As a consequence, the.objective of the current and future
development of time-sharing extends beyond the improvement of
computational facil ities with respect to traditional computer
applications. Rather, it is the on-l ine use of computers for new
purposes and in new fields which provides the challenge and the
motivation to the system designer. In other words, the major
goal is to provide suitable tools for what is currently being
called machine-aided cognition.

IIMore specifically, the importance of a multiple-access
system operated as a computer utility is that it allows a vast
enlargement of the scope of computer-based activities, which can,
in turn, stimulate a corresponding enrichment of many areas of
our society. Over ten years of experience indicates that
continuous operation in a utility-l ike manner, with flexible
remote access, encourages users to view the system as a-thinking
tool in their daily intellectual work. Mechanistically, the
qual itative change from the past results from the drastic
improvement in access time and convenience. Objectively, the
change 1 ies in the user's ability to control and affect
interactively the course of a process whether it involves
numerical computation or manipulation of symbols. Thus,
parameter studies are more intelligently guided; new
problem-oriented languages and subsystems are developed to
exploit the interactive capabil ity; many complex analytical
problems, as in magnetohydrodynamics, which have been too
cumbersome to be tackled in the past, are now being successfully
pursued; even more, new, imaginative approaches to basic research
have been developed as in the decoding of protein structures.
These are examples taken from an academic environment; the
effect of multiple-access systems on business and industrial
organizations can be equally dramatic~ It is with such new
applications in mind that the Multics system has been developed.
Not that the traditional uses of computers are being disregarded:
rather, these traditional needs are viewed as a subset of the
broader, more demanding, new requirements.

liTo meet the above objectives, issues such as response time,
convenience of manipulating data and programs, ease of
controlling processes during execution, and, above all,
protection of private information and isolation of independent
processes, become of critical importance. These issues demand
departures from traditional computer systems. While these
departures are deemed to be desirable with respect to traditional
computer appl ications, they are essential for rapid man-machine
interaction.

1-4 HIGHLIGHTS OF THE MULTICS SYSTEM

System Reauirements

tlln the early days of computer design, there was the concept
of a single program on which a single processor computed for long
periods of time with almost no interaction with the outside
world. Today such a view is considered incomplete. The effective
boundaries of an information processing system extend beyond the
processor, beyond the card reader and printer, and even beyond
the typing of input and the printing of output. In fact, they
encompass the goals of many people. To better understand the
effect of this broadened design scope, it is helpful to examine
several phenomena characteristic of large, service-oriented
computer installations.

"First, there are incentives for any organization to have
the biggest possible computer system that it can afford. It is
usually only on the biggest computers that there are elaborate
programming systems, compilers, and features which make a
computer "powerful". This results partly because it is more
difficult to prepare system programs for smaller computers when
1 imited by speed or memory size, and partly because large systems
involve more persons and, hence, permit more attention to be
given to system programs. Moreover, by combining resources in a
single computer system rather than in several, bulk economies and
therefore lower computing costs can be achieved. Finally, as a
practical matter, considerations of floor space, management
efficiency, and operating personnel provide a strong incentive
for centralizing computer facilities in a single large
installation.

"Second, the capacity of a contemporary computer
installation, regardless of the sector of applications it serves,
must be capable of growing to meet continuously increasing
demand. A doubl ing of demand every two years is not uncommon.
Multiple-access computers promise to accelerate this growth
further since they allow a man-machine interaction rate which is
faster by at least two orders of magnitude than other types of
computing systems. Present Indications are that multiple-access
systems for only a few hundred users can generate a demand for
computation exceeding the capacity of the fastest existing single
processor system. Since the speed of 1 ight, the physical sizes
of computer components, and the speeds of memories are intrinsic
1 imitations on the speed of any single processor, it is clear
that systems with multiple processors and multiple memory units
are needed to provide greater capacity. This is not to say that
fast processor units are undesirable, but that extreme system
complexity to enhance this single parameter among many appears
neither wise nor economic.

"Third, computers are no longer a luxury used when and if
available, but are primary working tools in business, government,
and research laboratories. The more reliable computers become,
the more their availabil ity is depended upon. A system structure

SYSTEM REQU I REr1ENTS 1-5

including pools of -functionally identical units (processors,
memory modules, input/output controllers, etc.) can provide
continuous service without significant interruption for equipment
maintenance, as well as provide growth capability through the
addition of appropriate units.

"Fourth, user programs, especially in a time-sharing system,
interact frequently with secondary storage devices and terminals.
This communication traffic produces a need for multiprogramming
to avoid wasting main processor time while an input/output
request is being completed. It is important to note that an
individual user is ordinarily not in a position to do an adequate
job of multiprogramming since his program lacks proper balance,
and he probably lacks the necessary dynamic information,
ingenuity, or patience •

.. Fin all y , a s not e d ear 1 i e r , the val u e 0 fat i me - s h a r i n g
system 1 ies not only in providing, in effect, a private computer
to a number of people simultaneously, but, above all, in the
services that the system places at the fingertips of the users.
Moreover, the effectiveness of a system increases as
user-developed facilities are shared by other users. This
increased effectiveness because of sharing is due not only to the
reduced demands for core and secondary memory, but also to the
cross-fertilization of user ideas. Thus, a major goal of the
present effort is to provide multiple access to a growing and
potentially vast structure of shared data and shared program
procedures. In fact, the achievement of multiple access to the
computer processors should be viewed as but a necessary subgoal
of this broader objective. Thus, the primary and secondary
memories where programs reside play a central role in the
hardware organization, and the presence of independent
communication paths between memories, processors, and terminals
i s of c r i t i ca 1 i mpor tance.

"From the above it can be seen that the system requirements
of a computer installation are not for a single program on a
single computer, but, rather, for a large system of many
components serving a community of users. Moreover, each user of
the system asynchronously initiates jobs of arbitrary and
indeterminate duration which subdivide into sequences of
processor and input/output tasks. It is out of this seemingly
chaotic, random environment that one arrives at a utility-like
view of a computing system. For instead of chaos, one can
average over the different user requests to achieve high
utilization of all resources. The task of multiprogramming
required to do this need only be organized once in a central
supervisor program. Each user thus enjoys the benefit of
efficiency without having to average the demands of his own
particular program.

"With the above view of computer use, where tasks start and
stop every few mi11-iseconds, and where the memory requirements of
tasks grow and shrink, it is apparent that one of the major jobs

1-6 HIGHLIGHTS OF THE MULTICS SYSTEM

of the supervisor program (i.e., monitor, executive, etc.) is the
allocation and scheduling of computer resources. The general
strategy is clear. Each user's job is subdivided into tasks,
usually as the job proceeds, each of which is placed in an
appropriate queue (i .e., for a processor or an input/output
cont ro 11 e r) • Processors or input/output cont ro 11 e rs are, in
turn, assigned new tasks as they either complete or are removed
from old tasks. All processors are treated equivalently in an
anonymous pool and are assigned to tasks as needed. In
particular, the supervisor does not have a special processor.
Further, processors can be added or deleted without significant
change in either the user or system programs. Similarly,
input/output controllers are directed from queues independently
of any particular processor. Again, as with the processors, one
can add or delete input/output capacity according to system load
without significant reprogramming required.

Ih& Myltics System

liThe overall design goal of the Multics system is to create
a computing system which is capable of comprehensively meeting
almost all of the present and near future requirements of a large
computer service Installation. It is not expected that the
initial system, although useful, will reach the objective;
rather, the system will evolve with time in a general framework
which permits continual growth to meet unknown future
requirements. The use of the PL/I language will 3110w major
system software changes to be developed on a schedule separate
from that of hardware changes. Since most organizations can no
longer afford to overlap old and new equipment during changes,
and since software development is at best difficult to schedule,
this relative machine-independence should be a major asset."

Qyerview 2f Multics Capabilities

An ability to share data contained within the framework of a
general purpose time-sharing system is a unique feature of
Mul tics, and Is d i reetl y appl.i cab 1 e to adm i n i st rat i ve probl ems,
research requiring a multi-user accessible data base, and general
application of the computer to very compl icated research
problems. The attention paid to mechanisms to provide and
control privacy is of direct interest for several of the same
appl ications as well as, for example, medical data. Multics can
thus be a valuable tool which provides opportunities for
important new research in these areas.

Multics offers a number of additional capabil ities which go
well beyond those provided by many other systems. Those which
are most significant from the user's point of view are described
here. Perhaps the most interesting aspect of all is that a
single system encompasses all of these capabil ities
simultaneously.

SYSTEM REQUIREMENTS 1-7

1. The ability to be a small user of Multics.

An underlying consideration throughout the Multics design
has been that the simple user should not pay a noticeable
extra price for a system which also accomodates the
sophisticated user. For example, a student can be handed a
limited set of tools, can do limited work (perhaps debugging
and running small BASIC programs), and expect to receive a
bill for resource usage which is proportional to the limited
work done. If all users are small, of course, the number of
users can be increased in proportion to their smallness. As
an administrative aid, facilities are provided so that one
can restrict any particular user to a specific set of tools
and thereby limit his ability to use up resources.

2. The ability to control sharing of information.

There are a variety of applications for a computer system
which involve building up a base of information which is to
be s hare damon g seve r ali n d i v i du a 1 s • Mu 1 tic s p rov I de s
facilities in two directions.

Shar i ng:

Control:

..

Links to other users i programs and data.

Ability to move one's base of operation into"another
user's directory (with his permission).

Direct access with uniform conventions to any
information stored In the system.

Ability for two or more users to share a single copy
of a program or data in core memory.

Ability to specify precisely to whom, and with what
access mode (e.g., read, wri te, and execute
permissions are separate and per-user) a piece of
data or the entire contents of a subdirectory are
avai lable.

Ability to revoke access at any time.'

Ability, using the Multics protection ring
structure, to force access to a data base to be only
via a program supplied by the data base owner. This
facility may be used to allow access to aggregate
informat ion" such as averages or counts, or
specified data entries, without simultaneously
giving access to the entire file of raw data, whicil
may be confidential. There are a large number of

1-8 HIGHLIGHTS OF THE MULTICS SYSTEM

potential administrative appl ications of this
feature, and as far as is known, Multics is the only
general-purpose system which provides it.

3. The virtual memory approach.

In the opposite direction of the little user Is the person
with a difficult research problem requiring a very large
addressable memory. The Multics storage system, with the
aid of a high-performance paging system, provides this
facility In what is often called a virtual memory of an
extent limited only by the total of secondary storage
devices <drums, disks, etc.) attached to the system. An
interesting property of the Multics implementation is that a
procedure may be written to operate in a very large virtual
memory, but primary memory resources are used only for those
parts of the virtual memory actually touched by the program
on that execution, and disk and drum resources are used only
for those parts of the memory which actually contain data.
Another very useful property from a programmer's point of
view is that information stored in the storage system Is
directly accessible to his program by a virtual memory
address. This property el iminates the need for explicitly
programmed overlays, chain links, or memory loads, and also
reduces the number of explicitly programmed input and output
operations. The Multics storage system takes on the
responsibility for safekeeping of all information Dlaced
there by the user. It therefore automatically maintains
tape copies of all information which has remained in the
system for more than an hour. These tapes can be used to
reload any user Information lost or damaged as a result of
hardware or software failures, and may also be used to
retrieve individual items damaged by a user's own blunder.

Each user has an administratively set quota of space which
limits the amount of storage he can use, "although he may
purchase as large an amount of space as he would like.
Additional disk storage can be added to the system in large
quantities if necessary.

4. The OPtion of dynamic linking.

In constructing a program or system of programs, it is
frequently convenient to begin testing certain features of
one program before.having written another program which is
needed for some cases. Dynamic linking allows the execution
of the first program to begin, and a search for the second
program is undertaken only if and when it is actually
called by the first one. This feature also allows a user to
freely include in his program a conditional callout to a
large and sophisticated error diagnostic program, secure in
the knowledge that in all those executions of his program
which do not encounter the error, he will not pay the cost

OVERVIEW OF MULTICS CAPABILITIES 1-9

of locating, linking, and mapping into his virtual memory
the error diagnosis package. It also allows a user
borrowing a program to provide a substitute for any
subroutine called by that program when he uses It, since he
has control over where the system looks to find missing

.subroutines. In those cases where subroutine A calls
subroutine B every time, there is, of course, no need to use
dynamic linking (and the implied library search), so
facilities are provided to bind A and B together prior to
executione

5. Configuration flexibility~

An important aspect of the Multics design is that it is
actually difficult for a user to write a program which will
stop working correctly if the hardware configuration is
changed. In response to changing system-wide needs, the
amount of primary memory, the number of central processors,
the amount and nature of secondary storage (disks, drums,
etc.), and the type of interactive typewriter terminals may
change with time over a range of 2 or 3 to 1, but users do
not normally need to change their programs to keep up with
the hardware. The system itself adapts to changes In the
number of processor or memory boxes dynamically, that is,
while users are logged in. Most other configuration changes
(e.g., the addition of disk storage units) require that the
system be relnitial ized, an operation -which takes a few
minutes.

6. The human interface.

Experience has proven that ease of use of a time-sharing
system is considerably more sensitive to human engineering
than is a batch processing system. The Multics command
language has been designed with this in mind. Features such
as universal use of a character set with both upper and
lower case letters in it, and allowing names of objects to
be 32 characters long, are examples of the little things
which allow the nonspecia1 ist to feel that he does not have.
to discover a secret code in order to be an effective user
of the system. In a similar vein, a hierarchial storage
system provides a very useful organization and bookkeeping
aid, so that a user need keep immediately at hand only those
things he is working with at the moment. Such a facil ity is
of great assistance when attacking ·complicated or
intricately structured problems.

Languages

Multics provides two primary user languages: PL/I and
FORTRAN IV. The FORTRAN compiler is fairly standard. It is
supported by the usual 1 ibrary of math routines and formatted
input/output facilities. Its primary use is for translatian of

1-10 HIGHLIGHTS OF THE MULTICS SYSTEM

already written programs which have been imported from other
computer systems.

The Multics PL/I compiler is quite interesting because it
offers a very full selection of . language facll ities, over 300
helpful error diagnostics, and the ability to get at the advanced
features of Multics, all at reasonable cost. For these reasons,
as well as the availability of PL/I on other computer systems, It
is the recommended language for subsystem Implementers and
general research users needing an expressive language. If is
worth noting that the system itself is written mostly in the PL/I
language.

Other languages available on Multics are:

BASIC - A translator and editor subsystem for the BASIC
language, developed at Dartmouth College. A
limited Multlcs service is available which
restricts the user to just this subsystem, if
desired. The BASIC subsystem is also available to
regular Multics users.

APL - A powerful and popular interpretive language
developed by Kenneth Iverson. The Multics
implementation very closely Imitates Iverson's,
with the exception that an effectively unlimited
workspace size is available.

LISP - Both an interpreter and a compiler are available
for this list processing language often used in
artificial Intell igence applications. The Multics
implementation of the ~~CLISP dialect of LISP
contains useful and sophisticated features not
available in most other dialects of LISP. Among
these are debugging tools and the ability to
modify or program parts of the interpreter. The
latter makes It an easily extensible language.
Another interesting feature of the Multlcs
Implementation is the very large structure space
provided by the virtual memory.

ALM - A machine language assembler for the Honeywell
6180 computer. (It is not recommended for general
use; it is slow and the machine language is very
difficult.)

QEDX - A programmable editor which qualifies as a minor
interpretive language.

All of the above languages translate a source program which
has been previously placed in the storage system. Input and
editing of source text is done with one of the available text
editors, edm or qedx. Although interactive, line-by-l ine syntax

A MULTICS BIBLIOGRAPHY 1-11

checking languages are easily implemented in the Multics
environment, none are currently available.

A source language debugging system, named debug, provides
the ability to inspect variables and set break points in terms of
the Pl/t or FORTRAN program being debugged. It also has a
variety of features to allow inspection of all aspects of the
Multics execution environment.

A Multics Bibliography

A. Manuals which are available through Honeywell.

1. Multics programmers' Manual (Order Numbers AG90, AG91,
AG92, AG93 and AK92). An updateable reference manual in
five volumes. Volume I is an introduction to the
Multics programming environment and includes sample
terminal sessions and annotated Multics programs.
Volume II contains reference material on the overall
mechanics, conventions' and usage of the system.
Volumes II I and IV are alphabetically organized lists
of standard Multics commands and subroutines,
respectively, giving details of the call ing sequence
and usage of each. Volume V provides reference
material and descriptions of commands and subroutines
which are of interest primarily to compiler writers and
subsystem writers.

2. ~ Myltics LlLl Language (Order Number AG94). A
reference manual which specifies precisely the PL/t
language used on Multics.

3. ~ Myltics Virtual Memory (Order Number AG9S). A
collection of three technical papers on the hardware
and software used to implement the virtual memory and
program protection features of Multics.

4. Myltics Project Administrators' Manual, preliminary
edition (Order Number AKS1). A reference manual for
project administators describing commands and
subroutines which may be used to specify certain
features of Multics to the members of a project.

s. Multics System Administrators' Manual· (Order Number
AKSO). A reference manual for system administrators of
a Multics installation describing commands and
subroutines which may be used to control various system
parameters.

6. ~ All User's Gyide (Order Number AK9S). A manual for
beginning and advanced APL users describing the use of
Multics APL.

1-12 HIGHLIGHTS OF THE MULTICS SYSTEM

B. Manuals which may be examined in the M.I.T. Project MAC or
Information Processing Center Document Rooms. These manuals
are DQ1 otherwise available.

1. Myltics SYstem Programmers' Manual. In principle, a
complete reference manual describing how the system
works inside. In fact, this document contains many
sections which are inconsistent, inaccurate, or
obsolete; it is In need of much upgrading. However,
its overview sections are generally accurate and
valuable if insight into the internal organization is
desired.

2. System Programmers' Supplement 12 ~ Multics
Programmers'Manyal. This updateable reference manual,
in the same format as the Multics Programmers' Manual,
provides calling sequences of every system module.

3. Graphic Users' Sypplement !Q ~ Multics Programmers'
Manyal. I n the same format as the Mul tics Programmers I
Manual, this supplement gathers in one place
descriptions of the Multics Graphics System, and the
commands and subroutines needed to use it.

4. A User's Guide ~ Multics FORTRAN. A document which
provides the prospective Multics FORTRAN user with
sufficient information to enable him to create and
execute FORTRAN programs on Multics. It contains a
complete definition of the Multics FORTRAN language as
well as a description of the FORTRAN command and error
messages. It also describes how to communicate with
non-FORTRAN programs, and discusses some of the
fundamental characteristics of Multics which affect the
FORTRAN use r.

5. EPlBSA Programmer's Reference Handbook, by
D. J. Riesenberg. A manual describing the assembly
(machine) language for the Honeywell 645 computer. The
lanauage has been renamed ALM since the publication of
this manual. (Needed only by programmers with some
special reason to use 645 machine language.)

6. Honeywell ~ Processor Manual. A hardware description
including opcodes, addressing modifiers, etc. Of
interest only to dedicated machine language
prolranmers.

c. Books about Muitics.

1. ~ Multics System: An Examination of ~ Structure, by
E. I. Organick. A hard cover book describing in some
detail how Multics works. The description is from the
point of view of a programmer developing a large

A MULTICS BIBLIOGRAPHY 1-13

program or subsystem, who wishes to gain the extra
insight to help him intell igently choose among
available alternatives of his implementation. M.I.T.
Press, Cambridge, Mass., 1972. 392 pages •

. 2. Time-Sharing System Concepts, by R. Watson. A book
comparing many aspects of the planned implementation of
Multics (as originally described in the Multics System
Programmers' Manual) with the SOS-940 time-sharing
system developed at the University of California at
Berkeley. Although the actually implemented Multics
differs greatly from the one described in this book,
much can be learned from it about the problems of
large-scale system organization. McGraw Hill, New
York, 1970. 270 pages.

D. Technical Papers About Multics.

1. Corbat6, F. J., and Vyssotsky, V. A., "Introduction and
Ove rv i ew of the tvlu 1 tics Sys tern", AF I PS Conf.~. II
(1965 FJCC), pp. 185-196.

2. Glaser, E. L., et al., "System Design of a Computer for
Time-Sharing Appl ication", AFIPS.kQnf.. Proc. II (1965
FJCC), pp. 197-202.

3. Vyssotsky, V. A., et al.,
Supervisor", AFIPS ~.
203-212.

"Structure
proc. II

of the Multics
(1965 FJCC), pp.

4. Daley, R. C., and Neumann, P. G., "A General-Purpose
File System for Secondary Storage", AFIPS .kQnf. • .f.r.2&...
11 (1965 FJCC), pp. 213-229.

5. Ossanna, J. F., et al., "Communication and Input/Output
Switching in a Multiplex Computing System", AFIPS Conf •
.f.r.2&... 11 (1965 FJCC), pp. 231-241.

6. David, E. E., Jr., and Fano, R. M., "Some Thoughts
About the Social Impl ications of Accessible Computing",
AFIPS Conf. Proc. 12 (1965 FJCC), pp. 243-247.

7. Glaser, E.l., IIA Brief Description of the Privacy
Measures in the Multics Operating System", AFIPS ~.
~. 11 (1967 FJCC), pp. 303-304.

8. Bensoussan, A., Clingen, C.T., and Daley, R.C., "The
Multics Virtual Memory: Concepts and Design", Comm.
AkM 12, 5 (May, 1972), pp. 308-318.

9. Clingen, C. T., "Program Naming Problems in a Shared
Tree-Structured Hierarchy", .NAIQ. Science Committee
Conference Qll. Techniques ill Software Engineering, 1
(October 27-31,1969), Rome, Italy.

1-14 HIGHLIGHTS OF THE MULTICS SYSTEM

10. Graham, R.M., "Protection in an Information Processing
Util ity", ~. AkM il, 5 (May, 1968), pp. 365-369.

11. Daley, R. e., and Dennis, J. B., "Virtual t4emory,
Processes, and Sharing in Multics", Comm. A.C.M 11, 5
(May, 1968), pp. 306-312.

12. Corbat6, -F. J., and Saltzer, J. H., "Some
Considerations of Supervisor Program Design for
Multiplexed Computer Systems", Proc. l£J...e. Conf • .illl
InVited papers, pp. 66-72.

13 • Co r ba t 6, F. J., II PL / I a s a Too 1 for Sy stem

14.

Progran11ling", Datamation ll, 6 (May, 1969), pp. 68-76.

Corbat6, F. J., IIA Paging Experiment with the
System", in Honor of L.M..... Morse, M.I.T.
Cambridge, Massachusetts, 1969, pp. 217-228.

Multics
Press,

15. Saltzer, J.H., and Gintell, J.W., liThe Instrumentation
of Multics", ~ • .AkM ll, 8 (August, 1970), pp.
495-600.

16. Spier, M. J., and Organick, E. I., liThe ttlultics
Inter-Process Comnunication Facility", AC.M. Second
Symposium 2.n Operating System Principles (October
20-22, 1969), Princeton University, pp. 83-91.

17. Freiburghouse, R. A., liThe Multics PL/I Compiler",
AFIPS ~. ~. 1i (1969), AFIPS Press, 1969, pp.
187-199.

18. Grochow, J. M., "Real-Time Graphic Display of
Time-Sharing System Operating Characteristics", AFIPS
~. £L2k. ~ (1969 FJCC), AFIPS Press, 1969, pp.
379-385.

19. Saltzer, J. H., and Os sanna J. F., IIRemote Terminal
Character Stream Processing in Multics", AFIPS Conf.
£LQk. ~ (1970 SJCC), AFIPS Press, 1970, pp. 621-627.

20. Ossanna, J. F., and Saltzer, J. H., "Technical and
Human Engineering Problems in Connecting Terminals to a
Time-Sharing System", AFIPS Conf. Proc. II (1970 FJCC),
AFIPS Press, 1970, pp. 355-362.

21. Clark, D. D., Graham, R. M., Saltzer, J. H., and
Schroeder, M. D., "Classroom Information and Computing
Service", M.I.T. Project MAC Technical Report TR-80,
(January 11, 1971).

A MUlTICS BIBLIOGRAPHY 1-15

22. Schroeder, M. D., "Performance of the GE-645
Assoc i at i ve Memory ~Jh i Ie ""lul tics is in Ope rat i on II , AkM
Workshop Qll System performance Eyaluation (April,
1971), pp. 227-245.

23. Schroeder, M.D., and Saltzer, J.H., "A .Hardware
Architecture for Implementing Protection Ringstt~ Comm.
A&M Ii, 3 (March, 1972), pp. 157-170.

24. Feiertag, R. J., and Organick, E. I., liThe Multtcs
Input/Output System", AC11 Third Symposium .Q!l Operating
Systems Principles (October 18-20, 1971), Palo Alto,
California.

25. Sekino, A., IIResponse Time Distribution of
Multiprogrammed Time-Shared Computer Systems", Sixth
Annual Princeton Conference on Information Sciences /and
Systems, March 23-24, 1972, Princeton, N.J.

2 6 • Co r bat 6 , F. J., S a I t z e r, J. H., and C lin g en, C • T • ,
tlMultics--The First Seven Years", AFIPS Conf. Proc. II
(1972 SJCC) AFIPS Press, 1972. pp. 571-583.

27. Wolman, B.l., "Debugging PL/I Programs in the Multics
Environment,1I AFIPS Conf • .QL.Q&.. il, .f.Qr.t. 1., (1972
FJCC), AFIPS Press, 1972, pp. 507-514.

28. Saltzer, J.H., "Protection and Control of Information
Sharing in Multics", AktL Fourth Symposiym .QD. Operating
SYstem Principles (October, 1973), Yorktown Heights,
New York.

29. Scheffler, l., "OPtimal Foldtngof a Paging Drum in a
Three-level Memory", AkM Foyrth Symposiym Ql1 Operating
System Principles (October, 1973), Yorktown Heights,
New York.

E. M.I.T. Theses Related to Multics. Those followed by MAC-TR
numbers are also printed as M.I .T. Project MAC technical
reports, and are available from the National Technical
Information Service in Springfield, Virginia.

1.

2.

Sal tzer, J. H., "Traffic Control in a
Computer System", Sc.D., 1966. (MAC-TR-30)

Multiplexed

Rappaport, R., "Implementing Multi-Process Primitives
in a Multiplexed Computer System", S.M., 1968.
(MAC-TR-SS)

3. Deitel, H., IIAbsentee Computations in a Multiple-Access
Com put e r S y stem II, S. t~ ., 19 6 8 . (MA C - T R - 5 2)

1-16

4.

5.

HIGHLIGHTS OF THE.MULTICS SYSTEM

Greenbaum, J., itA Simulator of Multiple Interactive
Users to Drive a Time-Shared Computer System", S.M.,
1968. (MAC-TR-58)

Grochow, J. M., "The Graphic Display as an Aid in the
Ivlonitoring of a Time-Shared Computer System", S.M.,
1968. (MAC-TR-54)

6. Schroeder, M. D., "Classroom Model of an Information
and Computing Service", S.M., 1969.

7. Frankston, R., itA Limited Service System on Multics",
S.8., June, 1970.

8 • Sehe 11, R. R., "Dynam i c Recon f i gu ra t ion ina Modu 1 a r
Computer System", Ph.D., dune, 1971. (MAC-TR-86)

9. Sekino, A., "Performance Evaluation of Multiprogralll1led
Time-Shared Computer Systems", Ph.D., August, 1972.
(MAC-TR-103)

10. Schroeder, M.D., "Cooperation of ~1utual1y Suspicious
Subsystems in a Computer Utility", Ph.D., September,
1972. (MAC-TR-104)

11. Reed, D., "Estimation of Primary Memory Requirements of
Processes on Mu1tics", S.8., June, 1973.

-12. Stern, J., "Automa tie F i 1 e Sac kup ina Computer
Utility", S.M., September, 1973. (MAC-TR-116)

13. Rotenberg, L., "Making Computers Keep Secrets", PH.D.,
September, 1973. (MAC-TR-115)

14. Clark, D., "Input/Output in a Virtual Memory Computer
System", Ph.D., September, 1973. (MAC-TR-117)

15. Gumpertz, R., "The Design and Fabrication of an ARPA
Network Interface", S.8., September, 1973.

C HAP T E R 2

INTRODUCTION TO-THE CONCEPTS OF MULTICS

September 20, 1973

The following pages contain reprints of seven technical
papers about Multics. Although these papers were written
individually for conferences and technical journals, as a group
they provide an in-depth introduction to most of the major
concepts of the Multics system. The reader should be warned that
the earlIest of these papers was written six years before the
latest. As a result, he will notice minor differences in
terminology and emphasis, reflecting the gradually increasing
experience both in using and explaining ideas which were first
introduced by Multics. In addition, these papers should be taken
as background explanations of why Multics is designed the way it
is, rather than as a reference to the way It currently works.
Some ideas suggested in these papers have not -yet been
implemented in the actual system, or having been implemented and
found wanting, have been discarded. Parts I I and II I of the
Multics Programmers' Manual provide current descriptions of the
user interfaces which are actually implemented in Multics, and
should be used as reference for all programming. On the other
hand, much of that reference guide merely tells how, without
explaining why, which is the purpose of this chapter.

The reader who is interested in a greater depth of detail
about Multics may wish to consult the book ~ Multics System:
An Examination of ~ Structure, by Elliott I. Organick (MIT
Press, 1972). That book provides a deep and authoritative look
at the implementation of many of the parts of the Multics system.
In addition, the bibl iography at the end of MPM Introduction
Chapter One provides a 1 ist of other special ized technical papers
and academic theses related to Multics.

Finally, the reader who wishes only to use the Multics
system will probably want to only skim this chapter to see what
kinds of ideas are discussed here. It is nQ1 necessary to
comprehend Chapter Two in order to begin using Multics. The
concepts provided here are background in nature, and are probably
most useful to a reader contemplating an unusual appl ication of
the system. For an introduction on how to use and program for
Multics, one should move on to Chapters Three and Four of the
manual.

2-2

Multics

INTRODUCTION TO THE CONCEPTS OF MULTICS

~ First Seven Years

by F.J. Corbat6, J.H. Saltzer, and C.T. Clingen.
Reprinted from AFIPS Conference proceedings ~,
AFIPS press, 1972, pp. 571-583, with permission.
Copyright 1972 by AFIPS Press.

This overview chapter is one of the most recent, and is
therefore Quite up-to-date in terminology and method~ of
description. Although it does not explore any single technical
topic in depth, it includes a wide range of facts about the
Multics system, and provides a perspective as to what aspects of
the system are especially significant. The appendix to this
paper provides a snapshot of the stage of development which
Multics had attained as of Spring, 1972.

2-3

Multics-The first seven years* Reprinted from -

by F.J. CORBATO and J. H. SALTZER

Massachusetts InsWute of Technology
Cambridge, Massachusetts

and

C. T. CLINGEN

Honeywell Informati.on Systems Inc.
Cambridge, Massachusetts

INTRODUCTION

In 1964, following impleme~tation of the Compatible
Time-Sharing System (CTSS)1,2 serious planning began
on the development of a new computer system specifi­
cally organized as a prototype of a computer utility. The
plans and aspirations for this system, called lVlultics
(for Multiplexed Information and Computing Service),
were described in a set of six papers presented at the
1965 Fall Joint Computer Conference.3- s The develop­
ment of the system was undertaken as a cooperative ef­
fort involving the Bell Telephone Laboratories (from
196;) to 1969), the computer department of the General
Electric Company, * and Project ~IAC of l\I.I. T.

Implicit in the 1965 papers was the expectation that
there should be a later examination of the development
effort. From the present vantage point, howe\Ter, it is
clear that a definitive examination cannot be presented
in a single paper. As a result, the present paper discusses
only some of the many possible topics. First \ve review
the goals, history and current status of the ~Iultics proj­
ect. This review is followed by a brief description of the
appearance of the ~Iultics system to its various classes
of users. Finally several topics are given which represent
some of the research insights which have come out of
the development activities. This organization has been
chosen in order to emphasize those aspects of soft \vare
systems having the goals of a computer utility which we

* Work reported herein was sponsored (in part) by Project ::\IAC,
an ~I.I.T. research program sponsored by the Advanced Research
Projects A!Z:ency, Department of Defense, under office of Naval
Hesearch Contract Number N00014-iO-A-0362-0001. Re­
production is permitted for any purpose of the United States
Governmen t.
* Subsequently acquired by Honeywell Information Systems Inc.

571

AFIPS - Conference Proceedings
Volume 40

© AFIPS PRESS
MGidVala. N. J. 01645

feel to be of special interest. We do not attempt detailed
discussion of the organization of IVlultics; that is the
purpose of specialized technical books and papers. *

GOALS

The goals of the computer utility, although stated at
length in the 1965 papers, deserve a brief review. By a
computer utility it was meant that one had a com­
munity computer facility with:

(1) Convenient remote terminal access as the normal
mode of system usage;

(2) A view of continuous operation analogous to that
of the electric power and telephone companies;

(3) A wide range of capacity to allow growth or
contraction without either system or user re­
organization;

(4) An internal file system so reliable that users trust
their only copy of programs and data to be stored
in it;

(5) Sufficient control of access to allow selective
sharing of information;

(6) The ability to structure hierarchically both the
logical storage of information as well as the ad­
ministration of the system;

(7) The capability of serving large and small users
without inefficiency to either;

(8) The ability to support different programming
environments and human interfaces within a
single system;

* For example, the essential mechanisms for much of the ::\Iultics
system 3re given in books by Organick9 and Wat:3<.m.10

2 - 4 Spring Joint Computer Conference, 1972

(9) Thp flexibility and generality of system organiza­
tion required for evolution through successive
",ayes of technological improvements and the
incyitablc growth of user expectations.

In an absolute sense the above goals are extremely
difficult to achie\"e. Xe\'erthel~ss, it is our belief that
:\Iultics~ as it now exist.s~ has made substantial progress
toward achieying each of the nine goals.* :\lost im­
portantly, none of these goals hadto be compromised
in any important way.

HISTORY OF THE DEVELOP:\[EXT

As previously mentioned, the :\1 ultics project got
under way in the Fall of 1964. The computer equipment
to be used was a modified General Electric 63;"') whieh
was lat.er named the 645. The most significant changes
made were in the processor addressing and access control
logic where paging and segmentation were introduced.
A completely new Generalized Input/Output Cont.roller
was designed and implemented to accommooate the
varied needs of devices such as disks, tapes and tele­
typewriters without presenting an excessive internlpt
burden to the processors. To handle the expected paging
traffic, a 4-million word (36-bit) high-performance drum
system with hardware queueing was developed. The
design specifications for these items were completed by
Fall 196.>, and the equipment became available for soft­
ware development in early 1967.

Software preparation underwent several phases. The
first phase was the development and blocking out of
major ideas, followed by the writing of detailed program
module specifications. The resulting 3,000 typewritten
pages formed the :\Iultics System Programmers' :\Ian­
ual and served as the starting point for all program­
ming. Furthermore, the software designers were ex­
pected to implement their own designs. As a general
policy PL/I was used as the system programming
language wherever possibie to maximize lucidity and
maintainability of the system.14,15 This policy also in­
creased the effectiveness of system programmers by al­
lowing each one to keep more of the system within his
grasp.

The second major phase of software development,
well under way by early 1967, was that of module im­
plementation and unit checkout followed by merging
into larger aggregates for integrated testing. Up to then
most software and hardware difficulties had been antici­
pated on the basis of previous experience. But what

* To the best of our knowledge, the only other attempt to
comprehellsively attack all of these goals simultaneou::ily is the
TSSj360 project at IB:Y1.11 ,12,13

gradually berame apparent as the module integration
continued was that there were gross discrepancies be­
tween actual and expected performance of the various
logical execution paths throughout the software. The
result was that an unanticipated phase of design itera­
tions was necessary. These design iterations did not
mean that major portions of the system were scrapped
without being used. On the contrary, until their re­
placements could be implemented, often months later,
they were crucially necessary to allow the testing and
evaluation of the other portions of the system. The
cause of t.he required redesigns was rarely "bad coding"
since most of the system programmers were well above
average ability. :\[oreover the redesigns did not mean
that the goals of the project were compromised. Rather
three recurrent phenomena were observed: (1) typically,
specifications representing less-important features were
found to be introducing much of the complexity, (2)
the initial choice of modularity and interfacing between
modules was sometimes awkward and (3) it was re­
discovered that the most important property of al­
gorithms is simplicity rather than special mechanisms
for unusual cases.*

The reason for bringing out in detail the above design
iteration experience is that frequently the planning of
large software projects still does not properly t il:.e the
need for continuing iteration into account. And yet we
believe that design iterations are a required activity on
any large scale system which attempts to break new con­
ceptual ground such that individual programmers can­
not comprehend the entire system in detail. For when
new ground is broken~ it is usually impossible to de­
duce the consequent system behavior except by experi­
mental operation. Simulation is not particularly ef­
fective when the system concepts and user behavior are
new. Unfortunately, one does not understand the system
well enough to simplify it correctly and thereby obtain
a manageable model which requires less effort to imple­
ment than the system itself. Instead one must develop
a different view:

(1) The init.ial program version of a module should
be viewed only as the first complete specification
of the module and should be subject to design
review before being debugged or checked out.

(2) :\Iodule design and implementation should be
based upon an assumption of periodic evaluation,
redesign, and evolution.

In retrospect, the design iteration effect was apparent

* "In anything at all, perfection is finally attained not when there
is no longer anything to add, but when there is no longer anything
to take away ... "

-Antoine de Saint-Exupery, Winrl, Sand and Stars Quoted
with permission of Harcourt Brace Jovanovich, Inc.

e .. 'en in the development of the earlier Compatible Time­
Sharing System (CTSS) when a second file system with
many functional improvements turned out to have poor
performance when initially installed. A hasty design
iteration succeeded in rectifying the matter but the
episode at the time was viewed as an anomaly perhaps
clue to inadequate technical revie\v of individual pro­
gramming efforts.

CURRENT STATUS

In spite of the unexpected design iteration phase, the
1\lultics system became sufficiently effective by late 1968
to allow system programmers to use the system while
still developing it. By October 1969, the system was
made available for general use on a "cost-recovery"
charging basis similar to that used for other major
computation facilities at 1\1.1.T. ~1ultics is now the
most widely used time-sharing system at 1\1.1.T., sup­
porting a user community of some 500 registered sub­
scribers. The system is currently operated for ,users 22
hours per day, 7 days per week. For at least eight hours
each day the system operates with two processors and
three memory modules containing a total of 384k (k =
1024) 36-bit words. This configuration currently is rated
at a capacity of about 55 fairly demanding users such
that most trivial requests obtain response in one to five
seconds. (Future design iterations are expected to in­
crease the capacity rating.) Several times a day during
the off-peak usage hours the system is dynamically re­
configured into two systems: a reduced capacity service
system and an independent development system. The
development system is used for testing those hardware
and software changes which cannot be done under nor­
mal service operation.

The reliability of the round-the-clock system opera­
tion described above has been a matter of great con­
cern, for in anyon-line real-time system the impact of
mishaps is usually far more severe than in batch pro­
cessing systems. In an on-line system especially j m­
portant considerations are:

(1) the time required before the system is usable
again following a mishap,

(2) the extra precautions required for restoring pos­
sibly lost files, and

(3) the psychological stress of breaking the inter­
active dialogue with users who were counting on
system availability.

Because of the importance of these considerations, care­
ful logs are kept of all ::\Iultics "crashes" (i.e., system
service disruption for all active users) at :\'1. LT. in
order that analysis can reveal their causes. These analy­
ses indicate currently an average of between one and

lVIultics 2 - 5

TABLE I-A comparison of the system development and use
periods of CTSS and l\lultics. The l'.Iultics develop­
ment period is not significantly longer than that for
CTSS despite the development of about 10 times as
much code for ::\lultics as for CTSS and a geographi­
cally distributed staff. Although rea.<;ans for this
similarity in time span include the use of a higher­
level programming language and a somewhat larger
staff, the use of CTSS as a develooment tool for
Multics was of pivitol importanee.

System

CTSS
Multics

Development
Only

1960-1963
1964-1969

Development
+ Use

1963-1965
1969-present

Use Only

1965-present

two crashes per 24 hour day. These crashes have no
single cause. Some are due to hardware failures, others
to operator error and still others to software bugs intro­
duced during the course of development. At the two
other sites where ~Iultics is operated, but where active
system develop men t does not take place, there have
been almost no system failures traced to software.

Currently the l\Iultics system, including compiler,~,
commands, and subroutine libraries, consists of about
1500 modules, averaging roughly 200 lines of PL/I
apiece. These compile to produce some 1,000,000 words
of procedure code. Another measure of the system is the
size of the resident supervisor which is about 30k \vords
of procedure and, for a 55 user load, about 36k words of
data and buffer areas.

Because the system is so large, the most powerful
maintenance tool available was chosen-the system it­
self. With all of the system modules stored on-line, it is
easy to manipulate the many components of different
versions of the system. Thus it has been possible to
maintain steadily for the last year or so a pace of install­
ing 5 or 10 new or modified system modules a day.
Some three-quarters of these changes can be installed
while the system is in operation. The remainder, per­
taining to the central supervisor, are installed in batches
once or twice a week. This on-line maintenance capa­
bility has proven indispensable to the rapid develop­
ment and maintenance of :\Iultics since it permits con­
stant upgrading of the user interface without interrupt­
ing the service. We are just beginning to see instances of
user-written applications \vhich require this same capa­
bility so that the application users need not be inter­
rupted while the software they are using is being
modified.

The software effort which has been spent on ::\Iultics
is difficult to est:mate. Approximately 1.50 man-years
were applied directly to design and system programming
during the "development-only" period of Table L

2 - 6 Spring Joint ('omputC'r ConfC'l'('nc(', 1972

Since then ,,"e estimate that another ;,)0 man-years have
heen devoted to improving and extending the system.
But the actual cost of a single successful system is mis­
leading, for if one starts afresh to build a similar system,
one must compensate for the non-zero probability of
failure.

THE APPEARANCE OF ~IULTICS TO
ITS USERS

Having reviewed the background of the project, we
may now ask who are the users of the :\lultics system
and what do the facilities that :\Iultics provides mean
to these users. Before answering, it is worth describing
the generic user as "viewed" by :Multics. Although
from the system's point of view all users have the same
general characteristics and interface with it uniformly,
no single human interface represents the Multics ma­
chine. That machine is determined by each user's
initial procedure coupled with those functions accessible
to him. Thus there exists the potential to present each
l\1 ultics user with a unique external interface.

However, Multics does provide a native internal
program environment consisting of a stack-oriented,
pure-procedure, collection of PL/I procedures imbedded
in a segmented virtual memory containing all pro­
cedures and data stored on-line. The ext~nt to which
some, all, or none of this internal environment is visible
to the various users is an administrative choice.

The implications of these two views-both the ex­
ternal interface and the internal programming environ­
ment--are discussed in terms of the following categories
of users:

• System programmers and user application pro­
grammers responsible for writing system and user
software.

• Administrative personnel responsible for the man­
agement of system resources and privileges.

• The ultimate users of applications systems.
• Operations and hardware maintenance personnel

responsible, respectively, for running the machine
room and maintaining the hardware.

M ultics as viewed by system and subsystem programmers

The machine presented to both the Multics system
programmer and the application system programmer is
the one with which we have the most experience; it is
the raw material from which one constructs other en­
vironments. It is worth reemphasizing that the only
differentiation between l\Jiultics system programmers
and user programmers is embodied in the access control

mrchanism ,,"hich detrrmines what on-line information
('an he rcfrrenced; therefore, what are apparently two
groups of users ('an he discussed as one.

::\Iajor interfaces presented to programmers on the
::\Iulties system can be classified as the pr~ram prepara­
tion and documentation faeilities and the program exe­
cution and debugging environment. They will be
touched upon briefly, in the order used for program
preparation.

Program preparation and documentation

The facilities for program preparation on ::\Iultics arc
typical of those found on other time-sharing systems,
with some shifts in emphasis. (see the Appendix). For
example, programmers consider the file system suffi­
ciently invulnerable to physical loss that it is used
casually and routinely to save all information. Thus,
the punched card has vanished from the work routine
of ::\Iultics programmers and access to one's programs
and the ability to work on them are provided by the
closest terminal.

As another example, the full ASCII character set is
employed in preparing programs, data, and documenta­
tion, thereby eliminating the need for multiple text
editors, several varieties of text formatting and com­
parison programs, and multipie iaciiities ior printing
information both on-line and off-line. This generaliza­
tion of user interfaces facilitates the learning and sub­
sequent use of the system by reducing the number of
conventions which must be mastered.

Finally, because the PL/I compiler is a large set of
programs, considerable attention was given to shielding
the user from the size of the compiler and to aiding
him in mastering the complexities of the language. As
in many other time-sharing systems, the compiler is
invoked by issuing a simple command line from a
terminal exactly as for the less ambitious commands.
No knowledge is required of the user regarding the
various phases of compilation, temporary files required,
and optional capabilities for the specialist; explanatory
"sermons" diagnosing syntactic errors are delivered to
the terminal to effect a self-teaching session during each
compilation. To the programmer, the PL/I compiler is =

just another command.

Program execution environment

Another set of interfaces is embodied in the imple­
mentation environment seen by PL/I programmers.
This environment consists of a directly addressable
virtual memory containing the entire hierarchy of on­
line information, a dynamic linking facility which

searches this hierarchy to bind procedure references, a
device-independent input/output16 system,* and pro­
gram debugging and metering facilities. These facilities
enjoy a symbiotic relationship with the PL/I procedure
environment used both to implement them and to im­
plement user facilities co-existing ""ith them. Of major
significance is that the natural internal environment
provided and required by the system is exactly that
environment expected by PL/I procedures. For example,
PL/I pointer variables, can and return statements,
conditions, and static and automatic storage all corre­
spond directly to mechanisms provided in the internal
environment. Consequently, the system supports PL/I
code as a matter of course.

The main effect of the combination of these features
is to permit the implementer to spend his time concen­
trating on the logic of his problem; for the most part
he is freed from the usual mechanical problems of
storage management and overlays, input/output device
quirks, and machine~ependent features.

Some implementation experience

The l\1:ultics team began to be much more productive
once the l\1:ultics ~ystem became useful for software
development. A few cases are worth citing to illustrate
the effectiveness of the implementation environment.
A good example is the current PL/I compiler, which is
the third one to be implemented for the project, and
which consists of some 250 procedures and about 125k
words of object code. Four people implemented this
compiler in two years, from start to first general use.
The first version of the l\rlultics program debugging
system, composed of over 3,000 lines of source code,
was usable after one person spent some six months of
nights and weekends "bootlegging" its implementation.
As a last example, a facility consisting of 50 procedures
with a total of nearly 4,000 PL/I statements permitting
execution of Honeywell 635 programs under 11ultics
became operational after one person spent eight months
learning about the GCOS operating system for the 635,
PL/I, and Multics, and then implemented the environ­
ment. In each of these examples the implementation
was accomplished from remote terminals using PL/I.

l\lultics users have discovered that it is possible to
get their programs running very quickly in this environ­
ment. They frequently prepare "rough drafts" of pro­
grams, execute them, and then improve their overall
design and operating strategy using the results of ex­
perience obtained during actual operation. As an ex­
ample, again dra\\'n from the implementation of Mul-

* The Michigan Terminal System17 has a similar device-inde­
pendent input/output system.

Multics 2-7

tics, the early designs and implementations of the pro­
grams supporting the virtual memory18 made over­
optimistic use of variable-sized storage allocation
techniques. The result was a functionally correct but
inadequately performing set of programs. Nevertheless,
these modules were used as the foundation for subse­
quent work for many months. When they were finally
replaced with modules using simplified fixed-size storage
techniques, performance improvements of over an order
of magnitude were realized. This technique emphasizes
two points: first, it is frequently possible to provide a
practical, usable facility containing temporary versions
of programs; second, often the insight required to sig­
nificantly improve the behavior of a program comes
only after it is studied in operation. As implied in the
earlier discussion of design iteration, our experience has
been that structural and strategiC? changes rather than
"polishing" (or recoding in assembly language) produce
the most significant performance improvements.

In general, we have noticed a significant. "amplifier"
or "leverage" effect with the use of an effe'ctive on-line
environment as a system programmiftg facility. Major
implementation projects on the l\Iultics system seldom
involve more than a few programmers, thereby easing
the management and communications problems usually
entailed by complex system implementations. As would
be expected, the amplification effect is most apparent
with the best project personnel.

Administration of M ultics facilities and reS()1J,rces

The problem of managing the capabilities of a com­
puter utility with geographically dispersed subscribers
leads to a requirement of decentralized administration.
At the apex of an administrative pyramid resides a sys­
tem administrator with the ability to register new users,
confer resource quotas, and generate periodic bills for
services rendered. The system administrator deals ,,\/ith
user groups called projects. Each group can in turn
designate a project administrator who is delegated the
authority to manage a budget of system resources on
behalf of the project. The project administrator is then
free to deal directly with project members without fur­
ther intervention from the system administrator.
thereby greatly reducing the bottlenecks inherent in a­
completely centralized administrative structure.

Environment shaping

In addition to having immediate control of such re­
sources as secondary storage, port access, and rate of
processor usage, the project administrator is also able
to define or shape the environment seen by the members

2 - S Spring Joint Computer Conference, 1972

of his project when they log into the system. He does
this by defining those procedures that can be accessed
by members of his project and by specifying the initial
procedure executed by each member of his project when
he logs in. This environment shaping facility has led to
the notion of a private project subsystem on l\1ultics.
It combines the administrative and programming facili­
ties of ~lultics so that a project administrator and a
few project implementers can build, maintain, and
evolve environments entirely on their own. Thus, some
subsystems bear no internal resemblance to the staQd­
ard :\Iultics procedure environment.

'For example, the Dartmouth BASIC19 compiler exe­
cutes in a closed subsystem implemented by an l\l.I.T.
student group for use by undergraduate students. The
compiler, its object code, and all support routines exe­
cute in a simulation of the native environment provided
at Dartmouth. The users of this subsystem need little,
if any, knowledge of Multics and are able to behave as
if logged into the Dartmouth system proper. Other
examples of controlled environment subsystems include
one to permit many programs which normally run
under the GCOS operating system to also run unmodi­
fied in ~lultics. Finally, an APL20 subsystem allows the
user to behave for the most part as if he were logged
into an APL machine. The significance of these sub­
systems is that their implementers did not need to
interact with the system administrator or to modify
already existing Multics capabilities. The administra­
tive facilities permit each such subsystem to be offered
by its supporters as a private service with its own group
of users, each effectively having its own private com­
puter system.

Other M ultic8 UleTa

Finally, we observe that the roles of the application
user, the system operators and the hardware main­
tainers as seen by the system are simply those of or­
dinary Multics users with specialized access to the
on-line procedures and data. The effect of this uni­
formity of treatment is to reduce greatly the mainte­
nance burden of the system control software. One
example, of great practical importance, has been the
ease with which system performance measurement
tools have been prepared for use by the operating
........ #
O~.I..

I~SIGHTS

So far, we have discussed the status and appearance
of the :\Iultics system. A further question is what has
been learned in the construction of :\lultics which is of

use to the designers of other systems. Having a bright
idea which clearly solves a problem is not sufficient
cause to claim a contribution if the idea is to be part of
a complex system. In order to establish the real feasi­
bility of an idea, all of its implications and consequences
must be followed out. :Much of the work on :Multics
since 1965 has involved following out implications and
consequences of the many ideas then proposed for the
prototype computer utility. That following out is an
essential part of proof of ideas is attested by the diffi­
culties which have been encountered in other engineer­
ing efforts such as the development of nuclear fusion
power plants and the electric automobile. Not all pro­
posals work out; for example, extended attempts to
engineer an atomic powered airplane suggest in­
feasibility.

Perhaps :Multics' most significant single contribution
to the state of the art of computer system construction
is the demonstration of a large set of fully implemented
ideas in a working system. Further, most of these ideas
have been integrated without straining the overall de­
sign; most additional proposals would not topple the
structure. Ideas such as virtual memory access to on­
line storage, parallel pro~ess organization, routine but
controlled information sharing, dynamic link;ng of
procedures, and high-level language implementa-

- Virtual memory storoQe system

Figure I-The entire storage hierarchy may be mapped into
individual user process address spaces (see arrows) as if contained
in primary memory. Illustrated are the sharing of a supervisor
segment by user I and user 2 and private access to segment a
and segment b. The necessary primary storage is simulated by a
demand paging techniqne which moves information hetween

the real primary memory and secondary storage

tion have proven remarkably compatible and
complemen tary.

To illustrate some of the areas of progress in under­
standing of system organization and construction which
have been achieved in :\1 ultics, we consider here the
f~llo\Ving five topics:

L ~Iodular division of responsibility
2. Dynamic reconfiguration
3. Automatically managed multilevel memory
4. Protection of programs and data
5. System programming language

illodular division of responsibility

Early in the design of :\Iultics a decision had to be
made whether or not to treat the segmented virtual
memory as a separately usable "feature," independent
of a traditionally organized read/write type file system.
The alternative, to use the segmented virtual memory
as the file system itself, providing the illusion of direct
"in-core" access to all on-line storage, was certainly the
less conservative approach (see Figure 1). The second
approach, which was the one chosen, led io a sirong
test of the ability of a computing system to support an
apparent _ one-level memory for an arbitrarily large in­
formation base. It is interesting that the resulting al­
most total decoupling between physical storage alloca­
tion and data movement on the one hand and directory
structure, naming, and file organization on the other led
to a remarkably simple and functionally modular struc­
ture for that part of the system1S (see Figure 2).

Another area of l\lultics in which a high degree of

User programs and command Isubroutine library

I
I

---------...!--- --- -- ---------- ------ --
I
I

General user
interface

I I Directory User 1/0 device
I address space control and
I management buffering
I I //
I I /
I I /

----------~ _____ I_;..-..:._..:..--/~----- ______ --
Virtual memory! I : - /
mutti- process I I /

interface l 1 ,,/
Orom, disk, core
demand paging

controller

Processor multi­
_ plexing and process

synchronization

Figure 2-Major lines of modular division in Multics. Solid lines
indicate calls for services. Dotted lines indicate implicit use of

the virtual memory

:\fultics 2 - 9

functional modularity was achieved was in the area of
scheduling, multiprogramming, and processor manage­
ment. Because harnessing of multiple processors was an
objective from the beginning, a careful and methodical
approach to multiplexing processors, handling inter­
rupts, and providing interprocess synchronizing primi­
tives \vas developed. The resulting design, known as the
l\Iultics traffic controller, absorbed into a sing1e, simple
module a set of responsibilities often diffused among a
scheduling algorithm, the input/output controlling sys­
tem, the on-line file management system, and special
purpose inter-user communication mechanisms.21

Finally, with processor management and on-line
storage management uncoupled into well-isolated
modu1es, the l\:{ultics input/output system was left
with the similarly isolatable function of managing
streams of data flowing from and to source and sink
type devices. I6 Thus, this section of the system concen­
trates only on switching of the streams, allocation of
data buffering areas, and device control strategies.

Each of the divisions of labor described above repre­
sents an interesting result primarily because it is so
difficult to discover appropriate divisions of complex
systemB. * Establishing that a certain proposed division.
results in simplicity, creates an uncluttered interface,
and does not interfere with performance, is generally
cause for a minor celebration.

Dynamic reconfiguration

If the computer utility is ever to become as much a
reality as the electric. power utility or the telephone
communication service, its continued operation must
not be dependent upon any single physical component,
since individual components will eventually require
maintenance. This observation leads an electric power
utility to provide procedures whereby an idle generator
may be dynamically added to the utility's generating
capacity, while another is removed for maintenance, all
without any disruption of service to customers. A simi­
lar scenario has long been proposed for multiprocessor,
multi memory computer systems, in which one would
dynamically switch processsors and memory boxes in
and out of the operating configuration as needed. Un­
fortunately, though there have been demonstrated a
few "special purpose" designs, * it has not been apparent
how to provide for such operations in a general purpose
system. A recent thesis24 proposed a general model for
the dynamic binding and unbinding of computation
and memory structures to and from ongoing computa-

* See Dijkstra22 for a further discussion of this point.
* An outstanding example is the American Airline:; SABRE
system. 23

2 -1 0 5pring Joint Computer Confercnc(', 1972

o.
r-------------,
I I
I I
I Central Central I
I processor processor I
I I r---...J L.. ___ -,

I I

Memory Memory Memory

t
I
I
I
I
I Service system I .L ______________________ ~

b.

.------,
I I
I Centrol I
I I

r-----'
I I
I Central I
: processor :

I L ___ ,
; processor I

,- ___ ...J

I
I
I
I Memory

I I
I Development I
~!.S!!~ ___ ...I

Memory

Memory Memory

I
I
I
I
I

L ______ ~e~~-=-s!s.!.e~ J
r-----l
I t
!

Centrol i
I
I
I
L __ -,

Memory Memory

I
I
I
I

I I
r Service system J
~----------------------

Figure 3-Dynamic reconfiguration permits switching among
the three typical operating configurations shown here, without
currently logged-in users being aware that a change has taken

place

tions. Using this model as a basis, the thesis also pro­
posed a specific implementation for a typical multi­
processor, multimemory computing system. One of the
results of this work was the addition to the operating
:\lultics system of the capability of dynamically adding
and removing central processors and memory modules
as in Figure 3. The usefulness of the idea may be gauged
by observing that at :\1.I.T. five to ten such reconfigura­
tions are performed in a typical 24-hour operating day.
:\Iost of the reconfigurations are used to provide a
secondary system for Multics development.

A ulomalically managed multilevel memory

By now it has become accepted lore in the computer
system field that the w;e of automatic management
algorithms for memory systems constructed of several
levels with different access times can provide a signifi­
cant reduction of user programming effort. Examples of
such automatic management strategies include the
buffer memories of the IB:\l system :370 models I;");),
16;>, and 19;)2:» and the demand paging virtual memories
of }Iultics, IB:\1'8 CP-6726 and the :\Iichigan Terminal
SystemP Unfortunately, behind the mask ofaccep­
tance hides a worrisome lack of knowledge about how to
engineer a multilevel memory system with appropriate
strategy algorithms which are matched to the load and
hardware characteristics. One of the goals of the :\Iultics
project has been to instrument and experiment with the
multilevel memory system of :\iultics, in order to learn
better how to predict in advance the performance of
proposed new automatically managed multilevel mem­
ory systems. Several specific aspects of this goal have
been explored:

• A strategy to treat core memory t drum, and disk as
a three-level system has been proposed, including
a "least-recently-used" algorithm for moving in":
formation from drum to disk. Such an algorithm
has been used for some time to determine which
pages should be removed from core memory.27 The
dynamics of interaction among two such algorithms
operating at different levels are weakly understood,
and some experimental work should provide much
insight. The proposed strategy will be imple­
mented, and then compared with the simpler pres­
ent strategy which never moves things from drum
to disk, but inst.ead makes educated "guesses" as
to which device is most appropriate for the perma­
nent residence of a given page. If the automatic
algorithm is at least as good as the older, static one,
it would represent an improvement in overall de­
sign by itself, since it would automatically track
changes in user behavior, while the static algorithm
requires attention to the validity of its guesses.

• A scheme to permit experimentation with predic­
tive paging algorithms was devised. The scheme
provides for each process a list of pages to be pre-.
loaded whenever the process is run, arid a second
list to be immediately purged whenever the process
stops. The updating of these lists is controlled by a
decision table exercised every time the process
stops running. Since every page of the :\Iultics
virtual memory is potentially shared, the decision
table represents a set of heuristics designed to
separate out those which are probably not being
shared at the moment.

• A series of measurements was made to establish
the effectiveness of a small hardware associative
memory used to hold recently accessed page de­
scriptors. These measurements established a profile
of hit ratio (probability of finding a page descriptor
in the associative memory) versus associative
memory size which should be useful to the designers
of virtual memory systems.28

• A set of models, both analytic and simulation, was
constructed to try to understand program behavior
in a virtual memory. So far, two results have been
obtained. One is the finding that a single program
characteristic (the mean execution time before en­
countering a "missing" page in the virtual memory
as a function of memory size) suffices to provide a
quite accurate prediction of paging and idle over­
heads. The second is direct calculation of the dis­
tribution of response times under multiprogram- .
mingo Having available the entire response time
distribution, rather than just averages, permits
estimation of the variance and 90-percentile points
of the distribution, which may be more meaningful
than just the average. A doctoral thesis is in prog­
ress on this topic.

Although the immediate effect of each of these in­
vestigations is to improve the understanding or per­
formance of the current version of l\iultics, the long­
range payoff in methodical engineering using better­
understood memory structures is also evident.

Protection of programs and data

A long-standing objecfve of the public computer
utility has been to provide facilities for the protection
of executing programs from one another, so that users
may with confidence place appropriate control on the
release of their private information. In 1967, a mecha­
nism was proposed29 and implemented in software
which generalized the usual supervisor-user protection
relationship. This mechanism, named "rings of protec­
tion," provides user-written subsystems with the same
protection from other users that the supervisor has, yet
does not require that the user-written subsystem be in­
corporated into the supervisor. Recently, this approach
was brought under intense review, with two results:

• A hardware architecture which implements the
mechanism was proposed.30 One of the chief fea­
tures of the proposed architecture is that subrou­
tine calls from one protection ring to another use
exactly the same mechanisms as do subroutine
calls among procedures within a protection area.
The proposal appears sufficiently promising that it

lVlultics 2 -11

is included in the specifications for the next genera
tion of hardware to be used for Multics.

• As an experiment in the feasibility of a multi­
layered supervisor, several supervisor procedures
which required protection, but not all supervisor
privileges,. were moved into a ring of protection
intermediate between the users and the main
supervisor. The success of this experiment estab­
lished that such layering is a practical way to re­
duce the quantity of supervisor code which must
be given all privileges.

Both of these results are viewed as steps toward first, a
more complete exploitation and understanding of rings
of protection, and later, a less constrained organization
of the type suggested by Evans and LeClerc31 and by
Lampson.32 But more importantly, rings of protection
appear applicable to any computer system using a seg­
mented virtual memory. Two doctoral theses are under
way in this area.

System programming language

Another technique of system engineering method­
ology being explored within the l\{ultics project is th3.~
of higher level programming language for system imple­
mentation. The initial step in this direction (which
proved to be a very big step) was the choice of the PL/I
language for the implementation of Multics. By now,
1VIultics offers an extensive case study in the viability
of this strategy. Not only has the cost of using a higher
level language been acceptable, but increased main­
tainability of the software has permitted more rapid
evolution of the system in response to development
ideas as well as user needs. Three specific aspects of this
experience have now been completed:

• The transition from an early PLjI subset com­
piler14 to a newer compiler which handles almost the
entire language was completed. This transition
was carried out with performance improvement in
practically every module converted in spite of the
larger language involved. The significance of the
transition is the demonstration that it is not neces­
sary to narrow one's sights to a "simple" subset
language for system programming. If the language
is thoroughly understood, even a language as com­
plex as the full PL/I can be effectively used. As a
result, the same language and compiler provided
for users can also be used for system implementa­
tion, thereby minimizing maintenance, confusion,
and specialization.

• Notwithstanding the observation just madE' the
time required to implement a full PLiT compiler
is still too great for many situations in \\-hich the

~ -12 Spring Joint Computer Conference, 1972

compiler implementation cannot be started far
enough in advance of system coding. For this
reason, there is considerable interest in defining a
smaller language which is easily compilable, yet
retains the features most important for system im­
plementation. On the basis of the exp~rience of
programming :Multics in a subset of PLjI, such a
language was defined but not implemented, since
it was not needed.33

• _\. census of :\Iultics system modules reveals how
much of the system was actually coded in PLiI / ,
and reasons for use of other languages. Roughly,
of the 1500 system modules, about 2.=)0 were written
in machine language. 1'1ost of the machine language
modules represent data bases or small subroutines
which execute a single privileged instruction. (X 0

attempt was made to provide either a data base
compiler or PLjI built-in functions for specialized
hardware needs.) Significantly, only a half dozen
areas (primarily in the traffic controller, the cen­
tral page fault path, and interrupt handlers) which
were originally written in PLjI have been recoded
in machine language for reasons of squeezing out
the utmost in performance. Several proarams 1::1 ,

originally in machine language, have been recoded
in PLjI to increase their maintainability.

As with the earlier topics, the implications of this
work with PLjI should be felt far beyond the ~iultics
system. :\Iost implementers, when faced with the eco­
nomic uncertainties of a higher-level language, have
chosen machine language for their central operating
systems. The experience of PLjI in :\Iultics when added
to the expanding collection of experience elsewhere34

should help reduce the uncertainty.
In a research project as large, long, and complex as

::\Iuitics, any paper such as this must necessarily omit
many equally significant ideas, and touch only a few
which may happen to have wide current interest. It is
the purpose of individual and detailed technical papers
to explain these and other ideas more fully. The bibli­
ography found in Reference 35 contains over twenty
such technical papers.

Immediate future plans

The :\Iultics software is continuing to evolve in re­
sponse to user needs and improved understanding of its
organization. In 1972 a new hardware base for :\Iultics.
will be installed by the Information Processing Center
at :\I.I.T. for use by the :\I.I.T. computing community.
This program compatible hardware base contains small

but significant architectural extensions to the current
hardware. The circuit technology used will be that of
the Honeywell 6080 computer. The substantia.l changes
include:

(1) replacement of the high-performance paging
drum initially with bulk core and, when avail­
able, LSI memory, and

(2) implementation of rings of protection as part of
the paging and segmentation hardware.

Wherever possible the strategy of using off-the-shelf
standard equipment rather than specially engineered
units for :Multics has been followed. This strategy is
intended to simplify maintenance.

CONCLUSIONS

There are many conclusions which could possibly be
drawn from the experience of the :\[ultics project. Of
these, we consider four to be major and worthy of note.
First, we feel it is clear that it is possible to achieve the
goals of a prototype computer utility. The current im­
plementation of :\Iultics provides a measure of the
mechanisms required. :\Ioreover, the specific imple­
mentation of the system. because it has been written
in PL/I, forms a model fo- other system designers to
draw upon when constructing similar systems.

Second, the question of whether or not the specific
software features and mechanisms which were postu­
lated for effective computer utility operation are desir­
able has now been tested with specific user experience.
Although the specific mechanisms implemented subse­
quent.ly may be superseded by better ones, it is certainly
clear that the improvement of the user environment
,vhich was wanted has been achieved.

Third, systems of the computer utility class must
evolve indefinitely since the cost of starting over is
usually prohibitive and the many-year lead time re­
quired may be equally unacceptable. The requirement
of evolvability places stringent demands on design,
maintainability, and implementation techniques.

Fourth and finally, the very act of.creating a system
which solves many of the problems posed in 1965 has
opened up many new directions of research and develop­
ment. It would appear almost a certainty that increased
user aspirations will continue to require intensive work
in the areas of computer system principles and
techniques.

In closing, perhaps we should take note that in the
seven years since :\Iultics was proposed, a great many
other systems have also been proposed and constructed;

many of these have developed similar ideas. * In most
cases, their designers have developed effective imple­
mentations whieh are directed to a different interpreta­
tion of the goals, or to a smaller set of goals than those
required for the complete computer utility. This di­
v:ersity is valuable, and probably neressary, to accom­
plish a thorough exploration of many individually com­
plex ideas, and thereby to meet a fu ture which holds
increasing demand for systems which embrace the
totality of computer utility requirements.

ACKNOWLEDG:\lENT

It is impossible to acknowledge accurately the contri­
butions of all the individuals or even the several organi­
zations which have given various fOl'ms of support to
the development of l'lultics over the past seven years.
As would be expected of any multi-organization project
spanning several years there has been a turnover in the
personnel involved. As the individual contributors now
number in the hundreds, proper recognition cannot be
given here. Instead, since the development of signifi­
cant features and designs of l\lultics has occurred in
specific areas and disciplines such as input/ output,
virtual memory design, languages, and resource multi­
plexing, a more accurate delineation of achievements
should be made in specialized papers. So in the end we
must defer to the authors of individual papers, past and
future; to acknowledge the efforts of some of the many
contributors who have made the evolution of l\1ultics
possible.

REFERENCES

1 F J CORBAT6 M M DAGGETT R C DALEY
An experimental time-sharing system
AFIPS Conf Proc 21 Spartan Books 1962 pp 335-344

2 P A CRISMAN Ed
The rompatible time-sharing system: A programmer's guide
2nd ed MIT Press Cambridge Massachusetts 1965

3 F J CORBAT6 V A VYSSOTSKY
Introduction and overview of the Mullics system
AFIPS Conf Proc 27 1965 F JCC Spartan Books Washington
D C 1965 pp 185-196

* Some examples which have not already been mentioned include:
the TENEX system of Bolt., Beranek and Newman, the VENUS
system of Mitre Corp., the MU5 at Manchester University,
RC-4000 of R.egnecentralen, 5020 TSS of Hit.achi Corp., DIPS-l
of Nippon Telephone, the Japanese National Computer Project,
the PDP-1O/50 TSS of Digital Equipment Corp., the BCC-500
of Berkeley Computer Corp., LT.S. of the l\LLT. Artificial
Intelligence Laboratory, Exec-8 of Univac, System 3 and 7 and
the SPECTHA 70/46 of RCA, Star-l00 of CDC, UTS of Xerox
Data Systems, the 6700 system of Burroughs, and the Dartmouth
Time-Sharing System.

lV[ultics 2 -13

4 E L GLASER et al
System d('sign of a computer for time-sharing application
AFIPH Conf Proc 271H65 FJCC Spartan Books Wa.-;hington
]) C IH65 pp IH7-202

5 V A VYHSOTSKY et al
Structure of the M ullic..~ supervisor
AFIPS Conf Pmc 27 1 H65 F JCC Spartan Books Washington
D C 1965 pp 203-212

6 R C DALEY P G NEUMANN
A general-pllrpose filf~ syskm for secondary storage
AFIPS Conf Proc 27 1965 F JCC Spartan Books Washington
D C 1965 pp 213-229

7 J F OSSANNA et al
Communication and input/output switching in a multiplex
computing system
AFIPS Conf Proc 271965 FJCC Spartan Books 'Washington
D C 1965 pp 231-241

8 E E DAVID JR R 1\1 FANO
Some thoughts aboul the social implications of accessible
computing
AFIPS Conf Proc 271965 FJCC Spartan Books Washington
D C 1965 pp 243-247

9 E I ORGANICK
The Mutlics system: An examination of its structure
MIT Press (in press) Cambridge Massachusetts and London
England

10 R W WATSON
Timesharing system design concepts
IVlcGraw-Hill Book Company New York 1970

11 ,\V T COMFORT
A computing system de.sign for user service
AFIPS Conf Proc 271965 FJCC Spartan Books Washington
D C 1965 pp 619-626

12 A S LETT W L KONIGSFORD
TSS/860: A. iime-shared operating system
AFIPS Conf Proc 331968 FJCC Thompson Books pp 15-28

13 It E SCHWEMM
Experience gained in the development and me of TSS/360
AFIPS Conf Proc 40 1972 SJCC AFIPS Press (This
volume)

14 F J CORBAT6
P L / I as a tool for system programming
Datamation 156 May 1969 pp 68-76

15 R A FREIBURGHOUSE
The Multics PL/I compiler
AFIPS Conf Proc 35 1969 FJCC AFIPS Press 1969 .
pp 187-199

16 It J FEIERTAG E I ORGANICK
The M ultics input-output system
ACM Third Symposium on Operating Systems Principles
October 18-20 1971 pp 35-41

17 M T ALEXANDER
Organization and feature.s of the Michigan terminal systC'm
AFIPS Conf Proc 40 1972 SJCC AFIPS Press (This
volume)

18 A BENSOUSSAN C T CLINGEN R C DALEY
The .Multics virtual memory
ACM Second Symposium on Operating System Principles
October 20-22 1969 Princeton University pp 30-42

19 BASIC
Fifth Edition Kiewit Computation Center Dartmouth
College September 1970

2 -14 Spring Joint Computer Conference, 1972

20 A P L /360 user's manual
IB:\l form number GH20-0683-1 March 1970

21 J H SAL TZEH.
Traffic rontrol 'in a multiplexed computer system
ScD Thesis ~nT Department of . Electrical Engineering
1966 Also available as Project MAC technical report
TR-30

22 E W DIJKSTRA
The structure of the 'THE'-Multiprogramming system
Comm ACM 11 5 May 1968 pp 341-346

23 R W PARKER
The Sabre 81J3lem
Datamation ~1 9 September 1965 pp 49-52

24 R R SCHELL
Dynamic reconfoJttration in a modular computer system
PhD Thesis MIT Department of Electrical Engineering
1971 Also available as Project MAC technical report
TR-86

25 C J CONTI
CO'IICe1JU for buffer storage
IEEE Computer Group News March 1969 pp 9-13

26 R A MEYER L H SEAWRIGHT
A virtual macAine time-s1w.ring system
IB1.{ Systems Journal 9 3 1970 pp 199-218

?:l F J CORBAT()
A pagiAg experiment with the M ullics syatem
In Honor of P M Morse MIT Press Cambridge
Massachusetts 1969 pp 217-228

28 M D SCHROEDER
PerJOT71IIJ,1IUof the GE-61,6 as8«iative memory while Multics
ia in operation
ACM Worksbop on System Performance EvaluatIon Apnl
1971 pp 227-245

29 R M GRAHA.I.'\{
Protection in an information processing utility
Comm ACM 11 5 May 1968 pp 365-369

30 M D SCHROEDER J H SALTZER
A 1&ardware architecture for implementing protection rings
ACM Third Symposium on Operating Systems Principles
October 18-20 1971 pp 42-54

31 D C EVANS J Y LeCLERC
AddTC88 mapping and the control of access in an interactive
computer
AFIPS Conf Proc 30 1967 SJCC Thompson Books 1967
pp23-30

32 B W LAMPSON
An OfJerview of the CAL time-sharing system
Computer Center University of California. Berkeley
September 5 1'969

33 D D CLARK R 1\1 GRAHAM J II SALTZER
M D SCHROEDER
Classroom information and computing service
:MIT Project MAC Technical Report TR-80 January 11
1971

34 J E SA~IMET
Brief survey of languages used for systems implementation
SIGPLAN Notices 6 9 October 1971 pp 1-19

35 The multiplexed information and computing service:
Programmers' manual
~IIT Project MAC Rev 10 1972 (Available from the MIT
Information Processing Center)

APPENDIX: A CHECKLIST OF ~IULTICS
FEATURES

Following is a checklist of currently available features
and facilities of ~Iultics. Although many of the features
are described in cryptic and untranslated local jargon,
one ('an at least obtain a feel for the range of fa('ilities
now provided. Further information on most of these
features may be found in the ~Iultics Programmers'
!\fanua1.35

Interactive Time-Sharing Facilities
file edi tors
file manipulation (rename/move/delete)
personal command abbreviations
recursive command language
source language debugging with breakpoints
subroutine call tracer
can st?P any running command or program

Programming Languages
PL/I
FORTRAN
BASIC·
APL
LISP
BCPL
AL~1 (assembly language/~lu1tics)

Information Storage System
configuration independent
accessed through virtual memory· (segments)
access control lists by user and project
links to segments of other users
hierarchical directory (catalog) arrangement
public library facilities
sharing at all levels
multiple segment names (synonyms)
separate control of read, write, and execute

Programming Environment
segmented virtual memory
dynamic linking of procedures and data, or prelinking
interprocess communication
independent of configuration
uniform error handling mechanism
user definable protection rings
microsecond calendar clock with interrupt
program interrupt signal from console

Input and Output
standard typewriter interface for device independence
ASCII character set used throughout
input characters converted to canonical form
erase and kill editing on typed input

I/O streams switch able during execution
magnetic tape, printer, card punch, card reader
typewriter terminals: IBlVl 2741, 1050

Teletype 37, 33, 35
Dura, Datel, Execuport,

Terminet-300
.graphic support library (devices: ARDS, IMLAC,

DEC 338)
ARPA network
interfaces at three levels:

formatted data conversion
bit stream control
full device control

:Management Facilities
passwords required for login
project may interpose authentication procedure
decentralized projects
accounting, billing, and quotas
on-line probing and account adjustment
operator or system initiated logout of users
unlisted and anonymous users
limited service system
dynamic reconfiguration of memories and processors
system performance metering ior- parameter

adjustment
project-imposed starting procedure

Communication Facilities
interuser mail
help command; help files
message of the day
on-line error reporting and consultation service
on-line user graffiti board
operations message broadcast to logged-in users

Absentee Facilities
priority / defer queues for printer, card punch
queued translator facility
general absentee job facility

Reliability Measures
weekly file copies onto tape
daily disk/drum copy onto tape

Multics 2 -15

incremental file copies onto tape, Y2 hour behind use
salvager to clean up files after system crash
emergency shutdown entry to system

Maintenance Features
on-line library change, no disruption of current users
entire system source on-line, maintenance toois
system checkout on small hardware configuration
on-line performance monitoring of

multiprogramming
paging traffic
drum/disk usage
typewriter traffic

user performance feedback:
cpu time and paging load on each command
page trace always operating
subroutine call counters

Private Project Subsystems
project providable command interface
Dartmouth environment*
student environment

Miscellaneous Facilities
desk calculators
sort command
memorandum formatting and typing subsystem
user-provided list of programs to be automatically

executed when user logs in
GCOS environment

• The BASIC system and the Dartmouth environment were
developed at Da.rtmouth College. They are used at M.I.T. by
permission of Dartmouth College.

INTRODUCTION TO THE CONCEPTS OF MULTICS

~ Multics Virtual Memory: Concepts and Design

by A. Bensoussan, C.T. Clingen, and R.C. Daley.
Reprinted from Communications of ~ ACM Ii, 5,
May, 1972, pp. 308-318, with permission. Copyright
1972 by the Association for Computing MachInery.

2-17

After four sections of relatively elementary introduction,
this paper delves deeply into the mechanisms required to support
a virtual memory system in which all on-line storage Is addressed
directly by the processor. This virtual memory system is
probably the most important conceptual departure introduced by
Multics. It is of special interest to writers of complex
application subsystems which manipulate data bases shared by
several users. The power of the Multics virtual memory as a tool
to reduce progral11l'ling effort is illustrated in MPM Introduction
Chapter Four.

Since this paper is a recent one, the terminology Is quite
up-to-date, although the description given here is abstracted
somewhat from the actual Implementation to avoid cluttering
details~ Large copies of figures four and five, which did not
reproduce well in the original publication, will be found after
the last page of the paper.

2-18

Operating B. Randell
Systems Editor

The Multics
Virtual Memory:
Concepts and
Design

As experience with use'of on-line operating
systems has grown, the need to share information
among system users has become increasingly apparent.
Many contemporary systems permit some degree of
sharing. Usually, sharing is accomplished by allowing
several users to share data via input and output of
information stored in files kept in secondary storage.
Through the use of segmentation, however, Multics
provides direct hardware addressing by user and system
programs of all information, independent of its physical
storage location. Information is stored in segments each
of which is potentially sharable and carries its own
5::dependent attributes of size and access privilege.

J-kre, the design and implementation considerations
of segmentation and sharing in Multics are first
discussed under the assumption that all information
resides in a large, segmented main memory. Since the
size of main memory on contemporary systems is rather
limited, it is then shown how the Multics software
achieves the effect of a large segmented main memory
through the use of the Honeywell 645 segmentation and
pagin g hardware.

Key Words and Phrases: operating system, Multics,
virtual memory, segmentation, information sharing,
paging, memory management, memory hierarchy

CR Categories: 4.30, 4.31, 4.32

Copyright © 1972, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part

of this material is granted, provided that reference is made to this
publication, to its date of issue, and to the fact that reprinting
privileges \vere granted by permission of the Association for Como.
puting Machinery.

308

A. Bensoussan, C.T. Clingen
Honeywell Information Systems, Inc. *
and
R.C. Daley
Massachusetts Institute of Technologyt

I. Introduction

In the past few years several well-known systems
have implemented large virtual memories which permit
the execution of programs exceeding the size of available
core memory. These implementations have been
achieved by demand paging in the Atlas computer [11],
allowing a program to be divided physically into pages
only some of which need reside in core storage at any
one time, by segmentation in the 85000 computer [15],
allowing a program to be divided logically into seg­
ments, only some of which need be in core, and by a
~ombination of both segmentation and paging in the
Honeywell 645 [3, 12] and the IBM 360/67 [2] for which
only a few pages of a few segments need be available in
core while a program is running.

As experience has been gained with remote-access,
multiprogrammed systems, however, it has become
apparent that, in addition to being able to take ad­
vantage of the direct addressibility of large amounts of
information made possible by large virtual memories,
many applications also require the rapid but controlled
sharing of information stored on-line at the central
facility. In Multics (Multiplexed Information and
Computing Service) segmentation provides a gener­
alized basis for the direct accessing and sharing of on­
line information by satisfying two design goals: (1) it
must be possible for all on-line information stored in

Minor revision of a paper presented at an ACM Symposium
on Operating System Principles, Princeton University, October
20-22, 1969. Work reported herein was supported (in part) by
Project MAC, an MIT research program sponsored by the Ad-

____ -11 ..,. _..., ____ 1_ ~ __ : __ .l._ JIr. ____ •• I"""'!I. __ _ _ .. _r' J""'\. £' _ _.,.1
vanl.:t:U 1'\.~t:all.:l1 rl UJa.;L:) /"\!:;t:lI'-y, U(;lJ'11 Llllt:l1L VI LJ't:II;;.I..-:K.., Ul1U\..'

Office of Naval Research Contract Number Nonr-4102(l). *Honey­
well Information Systems, Inc., Cambridge, MA 02142. tCam­
bridge, MA 02142.

Communications
of
the ACM

May 1972
Volwne 15
Number 5

the system to be addressed directly by a processor and
hence referenced directly by any computation; (2) it
must be possible to control access, at each reference, to
all on-line information in the system.

The fundamental advantage of direct addressibility
is that information copying is· no longer mandatory.
Since all instructions and data items in the system are
processor-addressible, duplication of procedures and
data is unnecessary. This means, for example, that core
images of programs need not be prepared by loading
and binding together copies of procedures" before
execution; instead, the original procedures may be used
directly in a computation. Also, partial copies of data
files need not be read, via requests to an I/O system,
into core buffers for subsequent use and then returned,
by means of another I/O request, to their original
locations; instead the central processor executing a
computation can directly address just those required
data items in the original version of the file. This kind
of access to information promises a very attractive
reduction in program complexity for the programmer.

If all on-line information in the system may be
addressed directly by any computation, it becomes
imperative to be able to limit or control access to this
information both for the self-protection of a computa­
tion from its own mishaps, and for the mutual protec­
tion of computations using the same system hardware
facilities. Thus it becomes desirable to compartmentalize
or package all information in a directly-addressibk
memory and to attach access attributes to these in­
formation packages describing the fashion in which
each user may reference the contained data and pro­
cedures. Since all such information is processor­
addressib1e, the access attributes of the referencing
user must be enforced upon each processor reference
to any information package.

Given the ability to directly address all on-line
information in the system, thereby eliminating the
need for copying data and procedures, and given the
ability to control access to this information, controlled
sharing among several computations then follows as a
natural consequence.

In l\1ultics, segments are packages of information
which are directly addressed and which are accessed in
a controlled fashion. Associated with each segment is
a set of access attributes for each user who may access
the segment. These attributes are checked by hardware
upon each segment reference by any user. Furthermore,
all on-line information in a Multics installation can be
directly referenced as segments while in other systems
most on-line information is referenced as files.

This paper discusses the properties of an "idealized"
M ultics memory comprised entirely of segments
referenced by symbolic name, and describes the simula­
tion of this idealized memory through the use of both
specialized hardware and system software. The result of
this simulation is referred to as the Multics virtual
memory. Although the Multics virtual memory has

309

2-19
been discussed elsewhere [3, 6, 7] at the conceptual
level or in its earlier forms, the implementation pre­
sented here represents a mechanism resulting from
several consecutive implementations leading to an
effective realization of the design goals.

2. Segmentation

A 'basic motivation behind segmentation is the
desire to permit information sharing in . a more auto­
matic and general manner than provided by non­
segmented systems. Sharing must be accomplished
without duplication of information and access to the
shared information must be controlled not oniy in
secondary memory but also in main memory.

In most existing systems that provide for. informa­
tion sharing, the two requirements mentioned above are
not met. For example, in the CTSS system [5], informa­
tion to be shared is contained in files. In order for
several users to access the information recorded in a
file, a copy of the desired information is placed in a
buffer in each user's core image. This requires an
explicit, programmer-controlled I/O request to the file
system, at which time the file system checks whether
the user has appropriate access to the file. During
execution, the user program manipulates this copy and
not the file. Any modification or updating is done on
the copy and can be reflected in the original fi!e only by
an explicit I/O request to the file system, at which time
the file system determines whether the user has the
right to change the file.

In nonsegmented systems, the use of core images
makes it nearly impossible to control access to shared
information in core. Each program in execution is
assigned a logically contiguous, bounded portion of
core memory or paged virtual memory. Even if the
nontrivial problem of addressing the shared information
in core were solved, access to this information could
not be controlled without additional hardware as­
sistance. Each core image consists of a succession of
anonymous words that cannot be decomposed into the
original elementary parts from which the core image.
was synthetized. These different parts are indistinguish­
able in the core image; they have lost their identity and
thereby have lost all their attributes, such as length,
access rights, and name. As a consequence, nonseg­
men ted hardware is inadequate for controlled sharing
in core memory. Although attempts to share informa­
tion in core memory have been made with nonseg­
mented hardware, they have resulted in each instance
being a special case which must be preplan ned at the
supervisory level. For example, if all users are to share
a compiler in main memory, it is imperative that none
of them be able to alter the part of main memory where
the compiler resides. The hardv"are "privileged" mode
used by the supervisor is often the only means of rrcl­
tecting shared information in main memory. In order

Communications
of
the ACM

May 1972
Volume 15
Number 5

2-20
t() protect the shared compiler, it is made accessible
only in this privileged mode. The compiler can no
longer be regarded as a user procedure; it has to be
accessed through a supervisor call like any other part
of the supervisor, and must be coded to respect any
conventions which may have been established for the
su pervisor.

In segmented systems, hardware segmentation can
be used to divide a core image into several parts, or
segments [10]. Each segment is accessed by the hardware
through a segment descriptor containing the segment's
attributes. Among these attributes are access rights that
the hardware interprets on each program reference to
the segment for a specific user. The absolute core loca­
tion of the beginning of a segment and its length are
also attributes interpreted by the hardware at each
reference, allowing the segment to be relocated any­
where in core and to grow and shrink independently of
other segments. As a result of hardware checking of
access rights, protection of a shared compiler, for
example, becomes trivial since the compiler can reside
in a segment with only the "execute" attribute, thus
permitting users to execute the compiler but not to
change it.

In most segmented systems, a user program must
first call the supervisor to associate a segment descriptor
with a specific file before the program can directly
access the information in the file. If the number of files
the user program must reference exceeds the number
of segment descriptors available to the user, the user
program is forced to call the supervisor agait;l to free
~egment descriptors currently in use so that they can
be reused to access other information. Furthermore,
if the number of segment descriptors is insufficient to
provide simultaneous direct access to each distinct file
required by this program, the user must then provide
for some means of buffering this information. Buffering,
of course, requires that information from more than one
file be copied and coalesced with other distinctly differ­
ent information having potentially different attributes.
Once the information is copied and merged, the
identity of the original information is lost, thus making
it impossible for the information to be shared with
other user programs. In addition, this form of user­
controlled segment descriptor allocation and buffering
of information requires a significant amount of pre­
planning by the user.

In Multics, the number of segment descriptors
available to each computation is sufficiently large to
provide a segment descriptor for each file that the user
program needs to reference in most applications. The
availability of a large number of segment descriptors to
each computation makes it practical for the Multics
supervisor to associate segment descriptors with files
upon first reference to the information by a user pro­
gram, relieving the user from the responsibility of
allocating and deallocating segment descriptors. In
addition, the relatively large number of segment

310

descriptors eliminates the need for buffering, allowing
the user program to operate directly on the original
information rather than on a copy of the information.
In this way, all information retains its identity and
independent attributes of length and access privilege
regardless of its physical location in main memory or on
secondary storage. As a result, the M ultics user no
longer uses files; instead he references all information
as segments, which are directly accessible to his pro­
grams.

To Multics users, all memory appears to be com­
posed of a large number of independent linear core
memories, each associated with a descriptor. A user
program can create a segment by issuing a call to the
supervisor, giving, as arguments, the appropriate
attributes such as symbolic segment name, name of each
user allowed to access the segment with his respective
access rig~ts, etc. The supervisor then finds an unused
descriptor where it stores the segment attributes. The
segment having been created, the user program can
now address any word of the corresponding linear
memory by the pair (name, i) where "name" is the
symbolic name of the segment and "i" is the word
number in the linear memory. Furthermore, any
other user can reference word number i of this segment
also by the pair (name, i) but he can access it only
according to the access rights he was given by the
creator and which are recorded in the descriptor.
Combinations of the "read," "write," "execute" and
"append" access rights [6] are available in Multics.

A simple representation of this memory, referred to
as the Multics idealized memory, is shown in Figure 1.

3. Paging

In a system in which the maximum size of any seg­
ment was very small compared to the size of the entire
core memory, the "swapping" of complete segments
into and out of core would be feasible. Even in such a
system, if all segments did not have the same maximum
size, or had the same maximum size but were allowed to
grow from initially smaller sizes, there remains the
difficult core management problem of providing space
for segments of different sizes. Multics, however,
provides for segments of sufficient maximum size so
that only a few can be entirely core-resident at anyone
time. Also, these segments can grow from any initial
size smaller than the maximum permissible size.

By breaking segments into equal-size parts called
pages and providing for the transportation of in­
dividual pages to and from core as demand dictates,
the disadvantages of fragmentation are incurred, as
explained by Denning [9]. However, several practical
problems encountered in the implementation of a
segmented virtual memory are solved.

First, since pages are all of equal size, space alloca­
tion is immensely simplified. The problems of "com-

Communications
of
the ACM

May 1972
Volume 15
Number 5

Fig. 1. Multics idealized memory.

UUuu u
pacting" information in core and on secondary storage,
chara~teristic of systems dealing with variable-sized
segments or pages, are thereby eliminated.

Second, since only the referenced page of a segment
need be in core at anyone instant, segments need not be
small compared to core memory.

Third, "demand paging" permits advantage to be
taken of any locality of reference peculiar to a program
by transporting to core only those pages of segments
which are currently needed. Any additional overhead
associated with demand paging should- of course be
weighed against the alternative inefficiencies associated
with dedicating core to entire segments which must be
swapped into core but which may be only partly ref­
erenced.

Finally, demand paging allows the user a greater
degree of machine independence in that a large pro­
gram designed to run well in a large core memory con­
figuration will continue to run at reduced performance
on smaller configurations.

4. The Multics Virtual Memory

M ultics simulates the idealized memory, represented
in Figure 1, using the segmentation and paging features
of the 645 assisted by the appropriate software features.
The result of the simulation is referred to as the "Multics
Virtual Memory." The user can keep a large number of
segments in this memory and reference them by symbolic
name; upon first reference to a segment, the supervisor
automatically transforms the symbolic name into the
appropriate hardware address which is directly used
by the processor for subsequent references.

The remainder of this paper explains the addressing
mechanism in the 645 and describes how the Multics su­
pervisor simulates the MuItics idealized memory.

311

5. The Honeywell 645 Processor 2-21

The features of the 645 processor which are of in­
terest for the implementation of the Multics virtual
memory are segmentation and paging.

5.1 Segmentation
Any address in the 645 processor consists of a

pair of integers [s, f]. "s" is called the segment number;
"i" the index within the segment. The range of "s" and
"i" is ° to 218

- 1. Word [s, i] is accessed through a
hardware register which is the sth word in a table called
a descriptor segment (os). The descriptor segment is in
core memory and its absolute address is recorded in a
processor register called a descriptor ba:;e register
(OBR). Each word of the os is called a segment descriptor
word (sow); the sth sow will be referred to as sow(s).
See Figure 2.

The OBR contains the values:
OBR· core which is the absolute core address of the os.
OBR . L which is the length of the os.
Segment descriptor word number 'lS" contains the

values:
sow(s) ·core which is the absolute core address of

the segment s.
sow(s) . L which is the length of the segment s.
sow(s) . acc which describes the access rights for

the segment.
sow(S) . F which is the ·;missing segment" switch.

A simplified version of the algorithm used by the
processor to access the word whose address is [s, i]
follows (see Figure 2):

If OBR· L < S, generate a trap, or "fault" to the
supervisor.

Access sow(s) at absolute location OBR·core + s.
If sow(s)· F = ON, generate a missing segment fault.
If sow(s) . L < i, generate a fault.
If sow(s)· acc is incompatible with the requested

operation, generate a fault.
Access the word whose absolute address is sow(s)·

core + i.

5.2 Paging
The above description assumes that segments are

not paged; in fact, paging is implemented in the
645 hardware. In the Multics implementation, all
segments are paged and the page size is always 1,024
words.

Element "i" of a segment is the wth word of the
pth page of the segment, "w" and "p" being defined by

{
w = i mod 1,024
p = (i - w)/1,024

Each segment is referenced by a processor through a
page table (PT). The PT of a segment is an array of

Communications
of
the ACM

May 1972
Volume 15
Number 5

2-22

Fig. 2. Hardware segmentation in the Honeywell 645.
DaR

os , I Cor. I L I
I
I
I S
I
I
I

SEGMENT ·S·
SOW(S)

t

t Cor. I L loee I F

I
I

:i
t
I

WORD [t.i] t

~

physically contiguous words in core memory. Each
element of this array is called a page table word (PTW).
Page table word number p contains:

PTw(P) . core which is the absolute core address of
page number p.

PTW(p)·F which is the "missing page" switch.
The meaning of DBR·core and SDW(S) . core is now:
DBR· core = Absolute core address of the PT of the

descriptor segment.
SDW(S) . core = Absolute core address of the PT of

segment number s.
A simplified ',ersion of the algorithm used by the

processor to access the word whose address is [s, i] is
as follows (see Figure 3):

If DBR· L < s, generate a fault.
Split s into the page number sp and word number s'" .
Access PTw(sp) at absolute location

DBR·core + sp.
If PTW(Sp)· F = ON, generate a missing page fault.
Access SDW(S) at absolute location

PTW(Sp) . core + Sw •

If SDW(S)· F = ON, generate a missing segment fault.
If SDW(S)· L < i, generate a fault.
If SDW(S) ·acc is incompatible with the requested

operation, generate a fault.
Split i into the page number i!l and word number i", .
Access PTW(ip) at absolute location

SDW(S) . core + i p •

If PTw(ip) . F = ON, generate a missing page fault.
Access the word whose absolute location is

PTw(ip) • core + i", .
In order to reduce the number of processor refer­

ences to core storage while performing this algorithm,
each processor has a smaH, high-speed associative
memory [12] automaticaHy maintained so as to always
contain the PTW'S and SDW'S most recently used by the
processor. The associative memory significantly reduces

312

Fig. 3. Hardware segmentation and paging in the Honeywell 645.

PAGE "ip"Of
SEGMENT ·s"

WORD [S.i]

DBR

the number of additional memory requests required
during address preparations.

6. Multics Processes and the Multics Supervisor

A process is generally understood as being a program
in execution. A process is characterized by its state­
word defining, at any given instant, the history resulting
from the execution of the program. It is also charac­
terized by its address space. The address space of a
process is the set of processor addresses that the process
can use to reference information in memory. In Multics,
any information that a process can reference by an
address of the form (segment number, word number) is
said to be in the address space of the process. There is a
one-to-one correspondence between Multics processes
and address spaces. Each process is provided with a
private descriptor segment which maps segment num­
bers into core memory addresses and with a private
table which maps symbolic segment names into seg­
ment numbers. This table is called the Known Segment
Table (KST).

The Multics supervisor could have been written so
as not to use segment addressing of course; but organiz­
ing the supervisor into procedures and data segments
permits one to use, in the supervisor, the same conven­
tions that are used in user programs. For instance, the
call-save-return conventions [7] made for user pro­
grams can be used by the supervisor; the standard way
to manufacture pure procedures in a user program is
also used extensively in the supervisor. A less visible
advantage of segmentation of the supervisor is that
some supervisory facilities provided for the management
of user segments can also be applied to supervisor
segments; for example, the demand paging facility
designed to automatically load pages of user segments

Communications
of
the ACM

May 1972
Volume 15
Number 5

can also be used to load pages of supervisor segments.
As a result, a large portion of the supervisor need not
reside permanently in core.

Unlike most supervisors, the Multics,supervisor does
not operate in a dedicated process or address space.
Instead, the supervisor procedure and data segments
are shared among all M ultics processes. Whenever a
new process is created, its descriptor segment is ini­
tialized with descriptors for all supervisor segments
allowing the process to perform all of the basic super­
visory functions for itself. The execution of the super­
visor in the address space of each process facilitates
communication between user procedures and supervisor
procedures. For example, the user can call a supervisor
procedure as if he were calling a normal user procedure.
Also, the sharing of the Multics supervisor facilitates
simultaneous execution, by several processes, of super­
visory functions, just as the sharing of user procedures
facilitates the simultaneous execution of functions
written by users.

Since supervisor segments are in the address space
of each process, they must be protected against un­
authorized references by user programs. MuItics pro­
vides the user with a ring protection mechanism [13]
which segregates the segments in his address space into
several sets with different access privileges. The Multics
supervisor takes advantage of the existence of this
mechanism and uses it, rather than some other special
mechanism to protect itself.

7. Segment Attributes

7.1 Directory Hierarcby
The name of a segment and its attributes are asso­

ciated in a catalogue. Conceptually this catalogue con­
sists of a table with one entry for each segment in the
system. An entry contains the name of the segment and
all its attributes: length, memory address, list of users
allowed to use the segment with their respective access
rights, date and time the segment was created,' etc.

In Multics, this catalogue is implemented as several
segments, called directories, organized into a tree
structure. A segment name is a list of subnames reflect­
ing the position of the entry in the tree structure, with
respect to the beginning, or root directory (ROOT) of
the tree. By convention, su bnames are separated by the
character ">". Each subname is called an entryname
and the list of entry names is called a pathname. An
entryname is unique in a given directory and a path­
name is unique in the entire directory hierarchy. Be­
cause of its property of uniquely identifying a segment
in the directory hierarchy, the pathname has been
chosen as the symbolic name by which the Multics user
must reference a segment. There are two types of direc­
tory entries, branches and links. A branch is a directory
entry which contains all attributes of a segment while a
link is a directory entry which contains the pathname of

313

2-23

another directory entry. A more detailed description of
the directory hierarchy and of the use of links is given
by Daley and Neumann [6].

7.2 Operations on Segment Attributes
Supervisor primitives perform all operations on

segment attributes. There is a set of pri mitives available
to the user which allow him, for example, to create a
segment, delete a segment, change the entryname of a
directory entry, change the access rights of a segment,
list the segment attributes contained in a directory, etc.

Creating a segment whose path name is ROOT

> A > B > C (see Figure 4) consists basically of the fol­
lowing steps:

Check that entryname c does not already exist in
the directory ROOT > A > B.

Allocate space for a new branch in directory ROOT

> A> B.
Store in the branch the following items:
The entry name c.
The segment length, initialized to zero.
The access list, given by the creator.
The segment map, consisting of an array of second­

ary memory addresses, one for each page of the segment.
The maximum length of a segment in Multics being 64
pages, the segment map for any segment contains 64
entries. Since the segment length is still zero, each
entry of the segment map is initialized with a "null"
address, showing that no secondary memory has been
assigned to any potential page of the segment.

The segment status "inactive," meaning that there
is no page table for this segment. The segment status,
which may be either "active" or. "inactive" is indicated
by the active switch.

Fig. 4. Directory hierarchy.

Communications
of
theACM

• SquOrl!1i OrE' d,rector., seQ me r !'5

• C,rCle'S Ore non . ",r~c'o'", SE';1me"""s.

May 1972
Volume 15
Number 5

2-24

8. Segment Accessing

Although the creation of a segment initializes its
attributes, additional supervisor support is required to
make the segment accessible to the processor when a
user program references the segment by symbolic name.

8.1 Symbolic Addressing Conventions
The pathname is the only symbolic name by which

a segment can be uniquely identified in the directory
hierarchy. However, for user convenience, the system
provides a facility whereby a user can reference a seg­
ment from his program using only the last entryname of
the segment's pathname and supplying the rest of the
path name according to system conventions. This last
entry name is called the reference name.
. When a process executes an instruction which
attempts to access a segment by means of its reference
name, the MuItics dynamic linking facility [7] is auto­
matically invoked. The dynamic linker determines the
missing part of the pathname according to the above­
mentioned system conventions. These conventions are
called search rules and may be regarded as a list of
directories to be searched for an entryname matching

.: the specified reference name. When this entry name is
found in a directory, the directory pathname is prefixed
to the reference name yielding the required pathname.
The dynamic linker, using the "Make Known" module
(Section 8.2), then obtains a segment number by which
the referenced segment will be accessed. Finally it trans­
forms the reference name into this segment number so
that all subsequent executions of the instructIOn in this
process access the segment directly by segment number.
Further details are given by Daley and Dennis [7].

8.2 Making a Segment Known to a Process
Each time a segment is referenced in a process by its

pathname, either explicitly or as the result of the evalua­
tion of a reference name by the dynamic linking facility,
the pathname must be translated into a segment number
in order to permit the processor to address the segment
for this process. This translation is done by the super­
visor using the KST associated with the process. The
KST is an array organized such that entry number "s",
KSTE(S), contains the pathname associated with segment
number "s". See Figure 5.

If the association (pathname, segment number) is
found in the KST of the process, the segment is said to be
known to the process and the segment number can be
used to reference the segment.

If the association (pathname, segment number) is
not found in the KST, this is the first rcfcrence to the
segment in the process and the segment must be made
known. A segment is made known by assigning an
unused segment number "s" in the process and by
recording the pathname in KSTE(S) to establish the pair
(pathname, segment number) in the KST of the process.
The directory hierarchy is also searched for this path-

314

Fig. 5. Basic tables used to implement the Multics virtual memory.

~T_.~.
•• _ ••••• --......-... ... __ Ol~~.

--IJllllliCit ""

-'OT(-Tae __ • ., -..... __ _ _ot_ ... c;oy

UM' .. c:c." ~
.,...~kcf't;S.~

uwo,~ .. -" .• "'t

name and a pointer to the corresponding branch is
entered in KSTE(S) for later use (Section 8.3.).

The per-process association of pathname and seg­
ment number is used in the MuItics system because it
is impossible to assign a unique segment number to
each segment. The reason is that the number of seg­
ments in the system will nearly always be larger than
the number of segment numbers available in the
processor.

When a segment is made known to a process by
segment number "S," Its attnbutes are not placed in
sow(s) of the descriptor segment of that process.
sow(s) having been initialized with the missing segment
switch ON, the first reference in this process to that
segment by segment number "s" will cause the processor
to generate a trap. In Multics this trap is called a
"missing segment fault" and transfers control to a
supervisor module called the segment fault handler.

8.3 The Segment Fault Handler
When a missing segment fault occurs, control is

passed to the segment fault handler to store the proper
segment attributes in the appropriate sow and set the
missing segment switch OFF in the sow.

These attributes, as shown in Figure 3, consist of
the page table address, the length of the segment, and
the access rights of the user with respect to the segment.
The information initially available to the supervisor
upon occurrence of a missing segment fault is the seg­
ment number "s."

found is in the branch of the segment. Using the segment
number "s", the supervisor can locate the KST entry
associated with the faulting segment; it can then find the
required branch since a pointer to the branch has been
stored in the KST entry when the segment was made
known to this process (Section 8.2).

Communications
of
the ACM

May 1972
Volume 15
Number 5

Using the active switch (Figure 5) in the branch, the
supervisor determines whether there is a page table
for this segment. Recall that this switch was initialized
in the branch at segment creation time. If there is no
page table, one must be constructed. A portion of core
memory is permanently reserved for page ta bles. All
page tables are of the same length and the number of
page tables is determined at system initialization.

The supervisor divides page tables into two lists:
the used list and the free list. Manufacturing a page
table (PT) for a segment could consist only of selecting
a PT from the free list, putting its absolute address in
the branch and moving it from the free to the used list.
If this were actually done, however, the servicing of each
missing page fault would require access to a branch
since the segment map containing secondary storage
addresses is kept there (Figure 5). Since it is impractical
for all directories to permanently reside in core, page
fault handling could thereby require a secondary
storage access in addition to the read request required
to transport the page itself into core. Although this
mechanism works, efficiency considerations have led
to the "activation" convention between the segment
fault handler and the page fault handler.

Activation. A portion of core memory is permanently'
reserved for recording attributes needed by the page
fault handler, i.e. the segment map and the segment
length. This portion of core is referred to as the active
segment table (AST). There is only one AST in the system
and it is shared by all processes. The AST contains one
entry (ASTE) for each PT. A PT is always associated with
an ASTE, the address of one implying the address of the
other. They may be regarded as a single entity and will
be referred to as the (PT, ASTE) of a segment. The used,
list and free list mentioned above are referred to as the
(PT, ASTE) free list and the (PT, ASTE) used list.

A segment which has a (PT, ASTE) is said to be
active. Being active or not active is an attribute of the
segment and is recorded in the branch using the active
switch.

When the active switch is ON, both the segment map
and the segment length are no longer in the branch but
are to be found in the segment's CPT, ASTE) whose
address was recorded in the branch during "activation"
of the segment.

To activate a segment, the supervisor must:
Find a free (PT, ASTE). (Assume temporarily that at

least one is available).
Move the segment map and the segment length from

the branch into the ASTE.

Set the active switch ON in the branch.
Record the pointer to (PT, ASTE) in the branch.
By pairing an ASTE with a PT in core, the segment

fault handIer has guaranteed that all segment attributes
needed by the page fault handler are core-resident,
permitting more efficient page fault servicing.

Connection. Once the segment is active, the corre­
sponding sow must be "connected" to the segment. To

315

2-25
connect the SDW to the segment the supervisor must:

Get the absolute address of the PT, using the CPT,

ASTE) pointer kept in the branch, and store it in SDW.

Get the segment length from the ASTE and store it
in the sow.

Get the access rights for the user from the branch
and store them in the sow.

Turn off the missing segment switch in the sow.
Having defined activation and connection, segment

fault handling can now be summarized as:
Use the segment number s to access the KST entry_
Use the KST entry to locate the branch.
If the active switch in the branch is OFF, activate the

segment.
Connect the sow.
Note that the active switch and the (PT, ASTE)

pointer in the segment branch "automatically" guar­
antee segment sharing in core since all sow's describ­
ing a given segment will point to the same PT.

Once the segment and its sow have been connected,
the hardware can access the appropriate page table
word. If the page is not in core, a missing page fault
occurs, transferring control to the supervisor module
called the page fault handler.

8.4 The Page Fault Handler
When a page fault occurs the page fault handler is

given control with the PT address and the page number
of the faulting page. The information needed to brin~
the page into core memory is the address of a free block
of core memory into which the page can be moved and
the address of the page in·- secondary memory. The
term page frame is also used to denote a block of core
memory which holds a page of information [9].

A free block of core must be found. This is done by
using a data base called the core map. The core map is
an array of elements called core map entries (CME).
The nth entry contains information about the nth block
of core (the size of all blocks is 1,024 words). The
supervisor divides this core map into two lists; the core
map used list and the core map free list.

The job of the page fault handler consists of the
following steps:

Find a free block of core and remove its core map
entry from the free list. (Assume temporarily that ~he
free list is not empty.)

Access the ASTE associated with the PT and find the
address in secondary memory of the missing page.

If this address is a "null" address, initialize the
block of core with zeros and update the segment length
in the ASTE; this action is only taken the first time the
page is referenced since the segment was created and
provides for the automatic growing of segments. Other­
wise issue an I/O request to move the page from second­
ary memory into the free block of core and wait for
completion of the request via a call to the "traffic
controller" [14] which is responsible for processor
mUltiplexing.

Communications
of
tbeACM

May 1972
Volume 15
Number 5

2-26
Store the core address in the PTW, remove the fault

fromthePTW, and place the core map entry in the used list.

8.5 Page Multiplexing
There are many more pages in virtual memory than

there are blocks of core in the real memory; therefore,
these blocks must be mUltiplexed among all pages. In
the description of page fault handling it was assumed
that a free block of core was always available. In order
to insure that this is nearly always true, the page fault
handler, upon removing a free block from the core map
free list, examines the number of remaining free list
entries; if this number is less than a preset minimum
value, a page removal mechanism is invoked a sufficient
number of times to ensure a nonempty core map free
list, in all but the most unusual cases. A nonempty core
map free list eliminates waiting for page removal during
the handling of a missing page fault.

To get a free block of core, the page removal mech­
anism may have to move a page from core to secondary
memory. This requires: (a) an algorithm to select a
page to be removed; (b) the address of the PTW which
holds the address of the selected page, in order to set a
fault in it; and (c) a place to put the page in secondary
memory.

The selection algorithm is based upon page usage.
It is a particularly easy-to-implement version [41 of the
"least -recen tly -used" algorithm [I , 8]. The ~ard ware
provides. valuable assistance by, each time a page is
referenced., setting ON a bit, called the used bit, in the
":vrresponding PTW. The selection algorithm will not be
described in detail here. However, it should be noted
that candidates for removal are those pages described
in the core map used list; therefore, each core map
entry which appears in the, used list must contain a
pointer to the associated PTW (Figure 5) in order to
permit examination of t~e used bit. The action of storing
the PTW pointer in the core map entry must be added
to the list of actions taken by the page fault handler
when a page is moved into core (Section 8.4.).

Once the supervisor has selected the page to be
removed, it takes the following steps:

Set the missing page switch ON in the PTW.
If no secondary memory has been assigned yet for

this page, i.e. the segment map entry for this page holds
a "null" address, assign a block of secondary memory
and store its address in the segment map entry.

Issue an I/O request to move the page to secondary
storage.

Upon completion of the I/O request, move the core
map entry describing the freed block of core from the
core map used list to the core map free list. This may be
done in another process upon noticing the completion
of the I/O request.

8.6 (PT, ASTE) Multiplexing
Core blocks can be multiplexed only among pages

of active segments. The number of concurrently active

316

Fig. 6. Supervisor functional modules and data bases.

6lOMlS ..
,,'

o,,"'o<y fr:-' ~
Con"ol "'eST ,/;;

v
segments is limited to the number of (PT, ASTE) pairs,
which is, by far, sma]]er than the total number of
segments in the virtual memory. Therefore (PT, ASTE)
pairs must be mUltiplexed among all segments in the
virtual memory.

When segment activation was described, a (PT,
ASTE) pair was assumed available for assignment. In
fact, this is not always the case. Making one segment
active may imply making another segment inactive,
thereby disassociating this other segment from its
(PT, ASTE). Since all processes sharing the same segment
will have the address of the PT in an sow, it is essential to
invalidate this address in all sow's containing it before
removing the page table.

This operation requires: (a) an algorithm to select
a segment to be deactivated ; (b) knowing all sow's that
:::Gr!tain the address of the page table of the selected
segment, in order to invalidate this address; (c) moving
the attributes contained in the ASTE back to the branch j
and (d) changing the status of the segment from active
to inactive in the branch.

The selection algorithm for deactivation, like the
selection algorithm for page removal, is based on
usage. When the last page of a segment is removed from
core, the segment becomes a candidate for deactivation.
The algorithm selects for deactivation the segment
which has had no pages in core for the longest period of
time, i.e. the segment which has been least recently used.
Since the number of (PT, ASTE) pairs substantially
exceeds the number of pageable blocks of core, it is
always possible to find an active segment with no pages
in core.

The ASTE must provide all the information needed
for deactivating a segment. This means that during
activation and connection, this information must be
made available. During activation, a pointer to the
branch must be placed in the ASTEj during connection,
a pointer to the sow must be placed in the ASTE. Since
more than one sow is connected to the same PT when
the segment is shared by several processes, the super­
visor must maintain a list of pointers to all connected
sow's. This list is called a connection list. See Figure 5.

After the selection algorithm chooses a (PT, ASTE)
to be freed, the disassociation of the segment from its

Communications
of
the ACM

May 1972
Volume 15
Number 5

(PT, ASTE) is done in two steps: disconnection and
deac tiva tion.

Disconnection consists of storing a segment fault
in each sow whose address appears in the connection
list in the ASTE. Deactivation consists of moving the
segment map and the segment length from the ASTE

back to the branch, resetting the active switch in the
branch, and putting the (PT, ASTE) in the free list.

9. Strncture of the Supervisor

Up to now supervisor functions have been described,
but not the supervisor structure. J n this section, the
different components of the supervisor are presented
and the ability of portions of the supervisor to utilize
the virtual memory is discussed.

9.1 Functional Modules
Three functional modules can be identified in the

supervisor described in Section 8; they are called
directory control (DC), segment control (sc), and
page control (pc).

DC performs all operations on segment attributes;
it also maps pathnames into segment numbers in the
KST of the executing process. Data bases used by a
process executing DC procedures are the directories and
the KST of the process (Figure 6).

sc performs segment fault handling. Data bases used
by a process executing sc procedures are directories,
the KST of the process, descriptor segments and (PT,

ASTE) pairs.
PC performs page fault handling. Data bases used by

a process executing PC procedures are (PT, ASTE) pairs
and the core map.

9.2 Use of PC in the Supervisor
One can observe that the page fault handler need not

know if a missing page belongs to a user segment or to
a supervisor segment; it only expects to find the in­
formation it requires in the (PT, ASTE) of the segment
to which the missing page belongs. Therefore, if all
segments used in sc and DC are always active, then their
pages need not be in core since PC can load them when
they are referenced.

In order to make use of PC in the rest of the super­
visor the following (temporary) assumption must be
made.

Assumption 1
(a) All segments used in PC are always in core and are
connected to the descriptor segment of each process.
(b) All segments used in sc and DC are always active
and are connected to the descriptor segment of each
process.

9.3 Use of SC in the Supervisor
Assumption I is satisfactory in the Multics imple­

mentation except for directories.

317

2-27

The number of directory segments in the system may
be very large and keeping them always active is not a
realistic approach, since a large number of (PT, ASTE)

pairs would have to be permanently assigned to them.
It would be desirable to use SC to activate and connect
directory segments only as needed.

A necessary condition for handling a segment fault
for segment x in a process is that segment x be known
to that process. Assuming that all directories are known
to all processes, but not necessarily active, reference to
a directory x may cause a segment fault. When handling
this fault, the segment fault handler must reference the
parent directory of segment x, where the branch for x
is located. This reference to the parent of x could, in
turn, cause a recursive invocation of the segment fault
handler. These recursive invocations can propagate
from directory to parent directory up to the root. If the
root directory is always active and connected to each
process, then the recursion is guaranteed to be finite and
a segment fault for any directory can be handled.

The first assumption can be replaced by the follow­
ing more satisfactory assumption (again temporary).

Assumption 2
(a) All segments used in PC are always in core and are
connected to the descriptor segment of each process.
(b) All nondirectory segments used in sc and DC are
always active and are connected to the descriptor seg­
ment of each process.
(c) The root directory is always active and connected
to each process.
(d) All directories are always known to each process.

9.4 Use of the Make Known Facility in the Supervisor
However, it is unsatisfactory to keep all directories

known to all processes because of the space that would
be required in each KST. It would be more attractive if
a directory could be made known to a process only
when needed by the process.

Making a segment x known implies searching for its
pathname in the KST. If not found, the parent of x must
first be made known and so on up to the root. If the
root directory is always known to all processes, then
any directory can be made known to a process by caning
recursively the Make Known facility of the supervisor.

Assumption 2 will now be replaced by the final
assumption:

Final Assumption
(a) All segments used in PC are always in core and are
connected to the descriptor segment of each process.
(b) All nondirectory segments used in sc and DC are
always active and are connected to the descriptor seg­
ment of each process.
(c) The root directory is always active and connected
to each process.
(d) The root directory is always known to each pro,;:ess.

Given the above assumption, supervisor segments, as

Communications
of
theACM

May 1972
Volume 15
Number 5

2-28
well as user segments; -can be stored in the vTrTt"ual
memory that the supervisor provides.

10. Summary

The most important points discussed in this paper
are summarized below. They are grouped into two
classes: the point of view of the user of the virtual
memory, and the point of view of the supervisor itself.

User Point of View
The M ultics virtual memory can contain a very

large number of segments that are referenced by
symbolic names.

Segment attributes are stored in special segments
called directories, which are organized into a tree
structure; by a naming convention known to the user,
the symbolic name of a segment must be the pathname
of the segment in the directory tree structure.

Any operation on directory segments must be done
by calling the supervisor.

Any operation on a nondirectory segment can be
done directly in accordance with the access rights that
the user has for the segment; any word of any segment
which resides in the virtual memory can be referenced
with a pair (pathname, i) by the user.

Supervisor Point of View
The supervisor must simulate a large segmented

:nemory which is directly addressable by symbolic
name and such that any access to the memory is sub­
mitted to access rights checking.

The supervisor maintains a directory tree where it
stores all segment attributes. It can retrieve the attri­
butes of a segment, given the pathname of that segment.

The supervisor itself is organized into segments
and runs in the address space of each user process.

Any segment, be it a directory or a nondirectory
segment, is identified by its pathname but can be ac­
cessed only using a segment number. For each segment
name the supervisor must assign a segment number by
which the processor will address the segment in the
process.

The processor accesses a word of a segment through
the appropriate sow and PTW, subject to the access
rights recorded in the sow.

A segment fault is generated by the processor when­
ever the page table address or access rights are missing
in the sow. The supervisor then, using the KST entry as
a stepping stone, accesses the branch where it finds the
needed information. If a PT is to be assigned, the super­
visor may have to deactivate another segment.

A page fault is generated by the processor whenever
a PTW does not contain a core address. The supervisor
then, using the ASTE associated with the PT, moves the
missing page from secondary storage to core. This may
require the removal of another page.

318

Acknowledgments. This p~lper would be incomplete
without acknowledgment of the people who worked
so hard to build the virtual memory supervisor portion
of Multics. Special mention goes to G.F. Ciancy, M.R.
Thompson, and S.H. Webber who, under the design
leadership of R.C. Daley, have been involved in a major
portion of the design and implementation effort. They
were aided in earlier designs and implementations by
C.A. Cushing, S.M. Jones, G.B. Kreke1er, N.I. Morris,
P.G. Neumann, R.K. Rathbun, J.D. Van Hausan, M.R.
Wagner, and L.D. Whitehead. Recent implementations
have also benefited from the contributions of S.D.
Dunten and M.C. Turnquist. Contributions in the form
of analyses and discussions have been made by F.J.
Corbat6, E.L. Glaser, J.H. Saltzer, and V.A. Vys­
sotsky.

Finally, our thanks go to P.A. Belmont, M.A. Meer,
and D.L. Stone, who participated in studies leading to
this formalized description of the Multics virtual
memory.

Received Apri11970; revised July 1971

Refereoces

1. Belady, L.A. A study of replacement algorithms for a virtual­
storage computer. IBM Systems 1.5, 2 (1966),78-101.
2. Comfort, W.T. A computing system design for user service.

·Proc. AFIPS 1965 FJCC, Vol. 27, Pt. 1, Spartan Books, New York,
pp.619-628.
J. Cvrbato,F.J., and Vyssotsky, V.A. Introduction and
overview ofthe Multi~ system. Proc. AFIPS 1965 FJCC, Vol.
27, Pt. 1. Spartan Books, New York, pp. 185-196.
4. Corbato, F.J. A paging experiment with the Multics system.
Included in a Festschrift published in honor of Prof. P.M.
Morse. MIT Press, Cambridge, Mass., 1969.
5. Crisman, P.A. Ed. The Compatible Time-Sharing System: A
Programmer's Guide, 2nd Ed., MIT Press, Cambridge, Mass.,
1965.
6. Daley, R.C., and Neumann, P.G. A general-purpose file
system for secondary storage. Proc. AFIPS 1965 FJCC, Vol. 27,
Pt. 1. Spartan Books, New York, pp. 213-229.
7. Daley, R.C., and Dennis, J.B. Virtual memory, processes,
and sharing in Multics. Comm. ACM 11,5 (May 1968), 306-312.
8. Denning, PJ. The working set model for program behavior.
Comm. ACM 11,5 (May 1968), 323-333.
9. Denning, P. J. Virtual memory. Computing Surveys 2, 3
(Sept. 1970), 153-189.
10. Dennis, J.B. Segmentation and the design of
multi programmed computer systems. I.ACM 12, 4 (Oct. 1965),
589-602.
11. Fotheringham, J. Dynamic storage allocation in the Atlas
computer, including an automatic use of a backing store. Comm.
ACM 4, 10 (Oct. 1961),435-436.
12. Glaser, E.L., Couleur, J.F., and Oliver, G.A. System design
of a computer for time sharing applications. Proc. AFIPS 1965,
FJCC, Vol. 27, Pt. 1. Spartan Books, New York, pp. 197-202.
13. Graham, R.M. Protection in an information processing
"tilih .. rnWlWl ArM 11 ~ (Ml'Iv 1QI\~) 16'\-J69
14· .. ··JSalt;;:·j .. ii.·Tr~ffi~ C~~t;oii~-~' ri~ltiple~ed Computer
System. Tech. Rep. No. MAC-TR-30 (Ph.D. Thesis), Project
MAC, MIT, Cambridge, Mass., 1964.
15. The Descriptor-A definition of the B5000 Information
Processing System. Burroughs Corp., Detroit, Mich., 1961.

Communications
of
the ACM

May 1972
Volume 15
Number 5

ROOT>A>B>C

Figure 4. Directory Hierarchy

2-29

A ttrlbutea
D ttributes

empty
empty

Squares are directory segments.
Circles are non-directory segments.

..
, I • I ILl

1 ___ 1_, --,l~ l_b_--,l

• ---

.IW(.) DU(S) .,
I

coni I. ~oe Ir .,
. 11 -- .athn .. I per

.
:'

I

:
I

eo&'. I r PAGI - . I · · CICI r •
I

• \ O
~~I.D (1.1) •

'l'~ff///A ,.:

, ,,' L.. _____

.
• ~ •• # . .. ' . . -

t .' . .
" . ,.

't .,' '
" t • .,ol'at"Y upplna

•••. 'plna n •• d.d to lnvalidat. a, t • .,oral')'
.. ,plna

•• ======:1' illlpUclt upplna

AlTI
Lenlth
S ... nt up
CoMect. Litt

=- lranch pCI'

. ..-
I -" I ,--

I .' . .'

~:
• I.' ••••••

• I

MOtE • The pa •• table of the d •• crlptor nt i. not .hown fo&' the .ak. of ,1.,1101&1

'1lUre 51 ... ie Tabl •• U .. d to IllPl •• nt the ~ltic. Virt.1 Mlall)ry

DlUC1'Ol1'

N
I

\J.J
o

r-------------------------

'."Dt up

• JAqth

AGU ••• witch

AlD-pt Ptr

USER I • Ace ••• riaht.
OSER 2 • Ace... I'laht•

USER , • Acc... riaht.

INTRODUCTION TO THE CONCEPTS OF MUlTICS

Virtual Memory, processes, Aa4 Sharing In Multics

by R.C. Daley and J.B. Dennis. Reprinted~from
Communications of ~ A&M 11, 5, May, 1968, pp.
306-312, with permission. Copyright 1968 by the
Association for Computing Machinery.

2-31

This early paper introduced the concept of a virtual memory
which contains all on-line storage, and explains the hardware
addressing structure which is used to support it. The remainder
of the paper then explores the properties and mechanisms
necessary to permit dynamic 1 Inking of procedures and data. The
paper does not emphasize the value to the user of this feature.
Briefly, dynamic linking eliminates the need to collect together
all the parts of a program before execution; it is especially
helpful during debugging of a new program. A more extensive
discussion of the usefulness of this feature is found in MPM
Introduction Chapter Four.

It may help, when reading the discussion of dynamic linking,
to real ize that stored as part of every pure procedure is a
prototype linkage section for that procedure. When the procedure
is first linked to, the dynamic linker copies this prototype
1 inkage section into the 1 inkage area for the process, and this
copy is the linkage section referred to in the paper. Note that
the word "l inking" is a local piece of jargon, which has a
meaning approximately the same as "binding" in most recent
1 iterature on languages and linguistics.

The call-save-return mechanism described in the paper was
the first one usedvln Multics,and~ts quite different from the
one implemented with special hardware in the current Honeywell
6180 system. However, the mechanism described is functionally
equivalent to the current one, and it is quite instructive to
compare the description here with that provided In the Subsystem
Writers' Guide, tOvgain insight into the intrinsic operations
being performed. Probably the most important difference between
the two mechanisms is that the older one described In this paper
required that the linkage section contain instructions to be
executed as part of the subroutine entry sequence. In the newer
technique the linkage section contains only indirect addresses.
As a result, the segment containing the linkage section no longer
requires "execute" permission, and wild transfers to that segment
are thus trapped immediately as errors.

2-32 Copyright © 1968, Association for Computing Machinery, Inc.

Virtual Memory, Processes, and Sharing in MUL 11<:.5
Robert C. Daley and Jock B. Demis

MauachuHHs Institute of Technology, Cambridge, Massachusetts

Some basic concepts inwlved in the design of the MUL ncs
operating system are introduced. MULTICS concepts of
processes, address space, and virtual memory are defined and
the use of paging and segmentation is explained. The
means by which usen may share procedures and data is
discussed and the mechanism by which symbolic references are
dynamically transformed into virtual machine addresses is de­
scribed in detail.

KEY WORDS AND PHRASES; virtual memory, information sharing, shared
procedures, data sharing, dynamic linking, segmentation, paging, multi­
programming, storage Management, storage hierarchies, Ale maintenance

Cit CATEGORIES; 3.73,4.32

Presented at an ACM Symposium on Operating System Principles,
Gatlinburg, Tennessee, October 1-4,1967; revised December, 1967.

This pa.per is based on notes prepared by J. Dennis for the Uni­
versity of Michigan Summer Conference on Computer and Pro­
gram Organization. June 1966.

The work reported herein was supported in part by Project
MAC, an M.LT. research project sponsored by the Advanced Re­
search Projects Agency, Department of Defense, under Office of
Naval Research Contract Nonr-4102(OI). Reproduction of this re­
port, in whole or in part, is permitted for any purpose of the United
States Government.

306 Communications of the ACM

Introduction

In MULTICS [1] (Multiplexed Information and Com­
puting Service), fundamental design decisions were made
so the system would effectively serve the computing needs
of a large community of users with diverse interests,
operating principally from remote tenninals. Among the
objectives were these three:

(1) To provide the user with a large machine-inde­
pendent virtual memory, thus placing the responsibility
for the management of physical storage with the system
software. By this means the user is provided with an
address space large enough to eliminate the need for com­
plicated buffering and overlay techpiques. Users, therefore,
are relieved of the burden of preplanning the transfer
of information between storage levels, and user programs
become independent of the nature of the various storage
devices in the system.

(2) To permit a degree of programming generality not
previously practical. This includes the ability of one pro­
cedure to use another procedure knowing only its name,
and without knowledge of its requirements for storage, or
the additional procedures upon which it may in tum calL
For example, a user should be able to initiate a computa-

Volume 11 / Number 5 / May, 196&

tion merely by specifying the symbolic name of a proce­
dure at which the computation is to start and by allowing
additional procedures and data to be provided auto­
matically when and if they are needed.

(3) To permit sharing of procedures and data among
users subject only to proper authorization. Sharing of
procedures in core memory is extremely valuable in a
multiplexed system so that the cluttering of auxiliary
storage with ~yriad copies of routines is avoided, and so
unn~a.ry information transfers are eliminated. The
sharing of data objects in core memory is necessary to
permit efficient and close interaction between processes.

These objectives led to the design of a computer system
[6] (the General Electric Model 645) embodying the con­
cepts of . paging [8] and segmentation [3] on which the
initial implementation of MULTICS will run.

In this paper we· explain some of the more fundamental
aspects of the MULTICS design. The concepUJ of "process"
and "address space" are defined, some details of the ad­
dressing mechanism are given, and the mechanism by
which "dynamic linking" is accomplished is explained.

Concepts of Process and Address Space

Several interpretations of the term "process" have come
into recent use. The most common usage applies the term
to the activity of a processor in carrying out the compu­
tation specified by a program [4, 5]. In MULTlCS, the
concept of process is intimately connected with the con­
cept of address space. Processes stand in one-to-one corre­
spondence with virtual memories. Each process runs in
its own address space, which is established independently
of other address spaces. Processes are run on a processor
at the discretion of the traffic controUer module of the
supervisor.

The virtual memory (or address space) of a MULTiCS

process is an ordered set of as many as 214 segments each
consisting of as many as 218 36-bit words. The arguments
for providing a generous address space having this struc­
ture . have been given by Dennis [3]. Briefly, the motiva­
tion is to avoid the necessity of procedure overlays or the
movement of data within the address space, which gen­
erally lead to naming conflicts and severe difficulties in
Sharing information among many processes .

. Each segment is a logically distinct unit of information
having attributes of l~ngth and access privilege and may
grow or shrink independently of other segments in the
system. For present purposes, we consider two segment
types: (1) data, and (2) procedure. A segment is treated
as procedure if it is intended to be accessed for instruction
fetch by a processor. Other segments (including, e.g., a
source program file) are considered to be data. Instruction
fetch references to procedure segments are allowed, as are
internal data reads. Writing into a procedure segment is
normally considered invalid and is prohibited by the
system. (In certain cases, reading of a proCedure segment
by another procedure may also be prohibited while execu­
tion is allowed.) Thus procedure segments are nonself-

Volume 11 / Number 5 / May, 1968

2-33
modifying or pure procedures. Instruction fetches from
data segments are invalid, and any data segment may be
write protected. The overa.1l design of MULTICS protec­
tion mechanisms is discussed by Graham [7].

Ie,ments

yirtuol
meMOrJ

FIG. 1. Virtual memory in a MULTICS process

The size of address space provided to processes makes it­
feasible to dispense with files as a separate mechanism for
addressing information held in the computer system. No
distinction need be drawn between files and segments!

The directory structure [2] is a hierarchical arrangement
of directories that associates at least one symbolic name
(but perhaps many) with each segment. These names
have meaning that is invariant over all processes in exist­
ence. Figure 1 portrays the concept of a process as a
virtual memory made up of segments selected from the
directory structure.

Addressing

The Generalized Address. Each word in the address
space of a process is identified by a generalized address. AB
shown in Figure 2, a generalized address consists of two
parts-a segmenJ, number and a word number. The ad~­
ing mechanisms of the processor are designed so that a
p~ may make effective reference to a word by meaDs
of its generalized address when the word has an assigned
location in main memory. Together with supervisor soft­
ware, these mechanisms make reference by generalized

I stgment number word number

FIG. 2. The genera.lized address

address, effective regardless of where the word might
reside in the storage hierarchy by placing it in main
memory when needed. Thus the generalized address is a
location-independent means of identifying information. In

Communications of the ACM 307

2-34
the following paragraphs we explain how generalized
addresses are formed in the processor and give a brief
discussion of how they are made effective.

Ipc IPSR

Ixo lAP

IXI lap
ILP

Ixt ISP
IA
10

FIG. 3. Processor registers for address formatioll

"Address Formation. Each processor of the computer
system (Figure 3) has an accumulator A, a multiplier /
quotient Q, eight index registers XO, Xl, ... , X7, and a
program counter PC, which serve conventional functions.
For the implementation of generalized addressing and
intersegment linking, a descriptor base register, a procedure
base register, and four base pair registers" are included in
each processor. The function of the descriptor base register
will be discussed in a later paragraph since it does not
participate in generalized address formation. The proce­
dure base register always contains the segment number of
the procedure being executed. Each of the four base pair
registers (called simply base registers in the sequel) holds

"" a complete generalized address (segment number/word
number pair) and is named according to its specific func­
tion in MULTICS:

baBe pair designalimt. jumtiora

0 ap argument pointer
1 !!P bue pointer
2 !B linkage pointer
3 sp stack pointer

The functions of these pointers will become clear when
the linkage mechanism is explained.

The instruction format of the processor is given in
ll'igure 4. Instructions are executed sequentially except
where _ a transfer of control occurs. Hence, the program
counter is normally advanced by one during the execution
of each instruction.

oddress ellternal flot

FIG. 4. Instruction format

When the proces..';or requires an instruction word from
memory, the corre~ponding generalized address is the
segment number in the procedure base register coupled
with the word number in the program counter (Figure 5).
For data references, a field in the instruction format

308 Communications of the ACM

called the segment tag selects one of the base registers if
the external flag is on. The effective address computed
from the address field of the instruction by the usual
indexing procedure is added to the word number portion
of the selected base to obtain the desired generalized
address. This operation is illustrated by Figure 6 and is
used to reference all information outside the current pro­
cedure segment. If the external flag is off, then the gener­
alized address is the segment number taken from the pro­
cedure base register coupled with an effective word num­
ber computed as before. This mechanism is used for internal
reference by a procedure to fetch constants or for trans­
fer of control.

,e".roliz.d oddr ...

FIG. 5. Address formation for instruction fetch

,.".raIiZid addr ...

~--------------------~+

~ ____ mode ___ [, ; " ••

~----~~--~--~

FIG. 6. Address formation for data access

Indired Addre8sing. Ail will be seen when the linkage
mechanism is discussed, a method of indirect addressing
in terms of generalized addresses is very valuable. In the
processor the addressing mode field of instructions may
indicate that indirect addressing is to be used. In this
case, the generalized address, formed as explained above
for data references, is used to fetch a pair of 36-bit words
which is interpreted as shown in Figure. 7. If the address
mode field of the first word contains the code its (indirect

ge".rolized address

FIG. 7. Interpretation of word pair as indirect address

Volume II / Number 5 / May, 1968

to ~egment), the segment number and word number
fields are combined to produce a new generalized address.
This address is augmented by indexing according to the
mode field of the second word of the pair. Further indirect
addressing may also be specified.

The Descriptor Segment. Implementation of a memory
access specified by a generalized address calls for an
associative mechanism that will yield the main memory
location of any word within main memory when a seg­
inent number/word number combination is supplied. A
direct use of associative hardware was impossible to
justify in view of the other possibilities available.

The means chosen to implement the generalized address
for a process is essentially a two-step hardware table
look-up procedure as illustrated by Figure 8. The segment
number portion of the generalized address is used as an
index to perform a table look-up in an array called the
tkscriptor segment of the associated proceSs. This descriptor
segment contains a descriptor for each segment that the
process may reference by generalized address. Each
descriptor contains information that enables the address­
ing mechanism to locate the segment and information
that establishes the appropriate mode ot protection of the
segment for this process.

I segment number I word number

11 'I

descriptor information
segment segment

~
11

I
FIG. 8. Addressing by generalized address

The descriptor base register is used by the processor to
locate the descriptor segment of the process in execution.
Note that since segment numbers and word numbers are
nonlocation dependent data, the only location dependent
information contained in the processor registers shown in
Figure 3 is in the descriptor base regist~r. This fact greatly
simplifies the bookkeeping required by the system in carry­
ing out reallocation activity. In fact, switching a processor
from one process to another involves little more than
swapping processor register status and substituting a
new descriptor base.

In practice this implementation requires that segment
numbers be assigned starting from zero and continuing
successively for the segments of procedure and data re­
quired by each process. An immediate consequence is that

Volume II / Number 5 / May, 1968

2-35

the same segment will, in general, be identified by different
segment numbers in different processes.

Paging. Both information segments and descriptor
segments may become sufficiently large enough to make
paging desirable in order to simplify storage allocation
problems in main memory. Paging allows noncontiguous
blocks of main memory to be referenced as a logically
contiguous set of generalized addresses. The mapping of
generalized addresses into absolute memory locations is
done by the system and is transparent "to the user.

Paging is implemented by means of page tables in main
memory which provide for trapping in case a page is not
present in main memory. The page tables also contain
control bits that record access and modification of pages
for use by storage allocation procedures. A small associa­
tive memory is built into each processor so that most
references to page tables or descriptor segments may be
bypassed.

Intersegment Linking and Addressing

The ability of many users to share access to procedure
and data information and the power of being able to
construct complex procedures by building on the work of
others are two prime desiderata of multiprocess computer
systems. The potential value of these features to the
advancement of computer applications should not be
underestimated. The design of a system around the notion
of a generalized, location-independent address is an essen­
tial ingredient in meeting these objectives. It remains to
show how the sharing of data and procedure segments
and the building of programs out of component procedure
segments can be implemented within the framework of
the MULTICS addressing mechanisms just described. In
particular we must show how references to external data
(and procedure) segments occurring within a shared pro­
cedure segment can be correctly interpreted for each of
possibly many processes running concurrently.

Requirements. Necessary properties of a satisfactory
intersegment addressing arrangement include the following:

(1) Procedure segments must be pure; that is, their
execution must not cause a single word of their con-
tent to be modified. .

Pure procedure is a recognized requirement for general
sharing of procedure information.

(2) It must be possible for a process to call a routine by
its symbolic name without having made prior arrange­
ments for its use.

This means that the subroutine (which could invoke in
turn an arbitrarily large collection of other procedures)
must be" able to provide space for its data, must be able
to reference any needed data object, and must be able to
calion further routines that may be unknown to its caller.

(3) Segments of procedure must be invariant to the
recompilation of other segments.

Communications of the ACM 309

2-36

This requirement has the following implication: The
values of identifiers that denote addresses within a seg­
ment which may ch3.l1ge with reoompilation must not
appear in the content of any other segment.

Making a Segment Known. Meeting condition (1)
requires that a segment be callable by a pr~ even if
no position in the descriptor segment of the process has
been reserved for the segment. Hence a mechanism is
provided in the system for assigning a position in the
descriptor segment (a segment number)' when the process
first makes reference to the segment by means of its sym­
bolic name. We call this operation making the segment
known to the process. Once a segment is known, the
process may reference it by its segment number.

The pattern of descriptor segment assignment will be
di1Jerent for each process. Therefore it is not possible, in
general, for the system to assign a unique segment number
to a shared routine or data object. This fact is a major
consideration in the design of the linking mechanism. In
the following paragraphs we describe a scheme for imple­
menting the linkage of segments that meets the require­
ments stated above.

It is worth emphasizing that this discussion has nothing
to do with the memory ma.nagement problem that the
supervisor faces in deciding where in the storage hierarchy
infonnation should reside. All information involved in the
linkage mechanism is, as will be seen, referenced by gen­
era.Iized addresses which are made effective by the mecha­
nisms described earlier. The fact that pages of the seg­
ments referred to in the following discussion may be in or
out of main memory at the time a process requires access
to them is irrelevant~
. Lin1cage Data. Before a segment becomes known to a

process the segment may only be referenced by means of
a symbolic path name (2) which permanently identifies
the segment within the directory structure. Since the
segment number used to reference a particular segment is
process dependent, segment numbers may not appear
internally in pure procedure code. For this reason, a seg-

p D

T
•

u u
FIG. 9. An intersegment reference by procedure P

310 Communication. of the ACM

ment is identified within a procedure segment by a sym­
bolic segment reference name. Before a procedure can com­
plete an external segment reference, the reference na..l!le
must be translated into a path name by means of a direc­
tory searching algorithm and the desired segment made
known to the process. Once the segment has become
known to the process, we wish to substitute the efficient
addressing mechanism based on the generalized address
for the time-consuming operation of searching the direc­
tory structure.

Consider a procedure segment P that makes reference
to a word at location x within data segment D, as illus­
trated in Figure 9. In assembly language this would be
written as:

OPR <D> I [x]

The angle brackets indicate that the enclosed character
string is the reference name of some segment. This name
will be used to search the directory structure the first
time segment P is referenced by a process. The square
brackets indicate that the enclosed character string is a
symbolic address within an external segment. Since by
requirement (3) .we wish segment P to be invariant to
recompilation of D, only the symbolic address [xl may
appear in P. Furthermore, we wish to delay the evaluation
of [x] until a reference to it is actually made in the running
of a process.

The following problem arises: Initially process a in
executing procedure P may reference" (D) I [xJ only by
symbolic segment name and symbolic external address.
After segment D has been made known to process a, and
a first reference has been effected, we wish to make further
references by the generalized 8ddress d 1ft alx. The question
is: How can we make the transition from symbolic refer­
ence to generalized addressing without altering the con­
tent of segment P?

It should be clear that a change must be made Bome

place that can effect the change in addressing mechanism.
Further, the data that is changed must participate in
every reference to the information. We call the informa­
tion that is altered in value to make this transition
the link data for linking segment P to symbolic address

~··hT
0-*;.-, .. ~ ; .. ; ... ,_ U

FIG. 10. Linkage of P to D I x for process a

Volume 11 / Number 5 / May, 1968

(D) i [xl in process a. The collection of link data for all
external references originating in segment P is called the
linkage section of procedure P.

Link data is private data of its process because whether
P is linked to Dlx for process a is entirely independent of
whether the same is true for any other process. Therefore,
whenever a procedure segment is made known to a process,
a copy of the procedure's linkage section is made as a
segment within that process. In certain cases the linkage
sections of several procedures are combined into a single
linkage segment private to the process.

Linking. Figure 10 shows segments P, D and the
linkage section La for P in process a. To implement refer­
ence to Dlx from within segment P will require two refer­
ences by generalized address-one to access the pertinent
link data in La, and one to fetch the word addressed in
segment D. Realization of this minimum number of
references implies use of the indirect addressing feature of
the processor. Thus the link data for an established link
will be an indirect word pair containing the generalized

(b)

FIG. 11. States of the link data

address D '/I: alx (Figure lla). Before the link is estab­
lished, an attempt by a process of computation a to
reference Dlx through the link must lead to a trap of the
process and transfer of control to the system routines
that will establish the link and continue operation of the
process. For this purpose a special form of indirect word
pair is used which causes the desired trap. In Figure lIb
this is indicated by the code ft in the addressing mode
field of the pair. The segment number and word number
fields of the indirect word can then be used to inform
supervisory routines of the place to look to find the sym­
bolic address (D) I [xl associated with the link. This
address must be translated into a generalized address to
establish the link. The operation of changing the link
data to establish a link is called linking.

It is desirable to keep the procedure segment P self­
contained if at all possible. Consequently the symbolic
address (D) I [xl pointed to by the unestablished link
should be part of the procedure segment P. Two look-up
operations are required on the part of supervisory routines
to establish the link. The symbolic reference name D
must be associated with a specific segment through a
search in the directory structure, and this segment must

Volume II / Number 5 / May. 1968

2-37
be made kno'wn to the process if a segment number has
not already been assigned.

The word number corresponding to the symbolic word
name x must also be determined. The set of associations
between symbolic word names and word numbers for a
segment is its symbol table and is part of the segment. Thus,
in our example, a list of word numbers corresponding to
symbolic word names that may appear in references to
segment D from other segments is included as part of

. segment D at a standard position known to the system.
This list is searched by a system routine to find the word
number required to establish a link.

The Link Pointer. A remaining question is: How does
a process produce the generalized address L ~ alw required
to access the link data? One might suppose that word
address w could be fixed permanently at the time proce­
dure segment P was created. This is not possible because
the set of segments required by each process that might
share use of procedure P will in general be unrelated: If
the linkage sections of several procedures were placed in
a single segment, assigning a fixed position to a link for
all processes would produce intolerable conflicts. On the
other hand, the code by which an intersegment reference is
represented in segment P must be fixed and identical for
all computations to meet the pure procedure constraint.
Any data that allow different addresses to be formed from
fixed code must reside in processor registers. By this
argument we see the necessity of associating a linkage
pointer with each process. The linkage pointer is a gener­
alized address that resides in a dedicated base register
(designated lp). As shown in Figure 12, it is the origin
L ~ als of th;-portion of a linkage segment that contains
the links for intersegment references made from the seg­
ment being executed.

References to external segments are coded relative to
the link pointer and have the form shown in Figure 12.
The displacement k is determined by the coding of P and
is invariant with respect to the process using P.

Procedure Call and Return. The coding used to trans­
fer control to a subprocedure and the subsequent return
of control must meet the requirements of programpring
generality. In particular, no assumptions may be ma<;le
regarding the detailed coding of either the calling or
called procedure other than those aspects uniformly es­
tablished by convention. Conventions for four aspects of
subroutine calling are relatively familiar:

(1) Transmission of arguments.
(2) Arranging for return of control.
(3) Saving and restoring processor state,
(4) Allocating private storage for the called procedur~

Item (4) is necessary in MULTICS because of the pure
procedure requirement, and the generality requirement
which forbids prior arrangement of a called procedure'S
storage needs. This private storage is supplied by asso­
ciating the stack segment with each process in 'which a
frame of private storage is reserved at each procedure call.

Com.munications o-r the AC'\I. 311

2-38

The frame i5 released upon return of control. This mecha­
nism is implemented by the stack pointer (designated
sp) which is the generalized address of the stack frame
origin for the procedure in operation. The use of the
stack segment makes every procedure in MULTICS

automatically recursive by associating separate stack
frames with successive entries into the same procedure.
Due to the pure procedure requirement, only fixed argu­
ments that do not depend on segment numbers may ap­
pear in procedure segments. Pointers and variable argu­
ments must be placed in the stack segment, the linkage
segment, or elEewhere. So that the language designer
may have his choice of implementation, the argument
pointer (designated ap) is at procedure entry the general-
ized address of the list of arguments for the called proce­
dure-.

In addition to these conventional requirements, the
method of dynamic linking just described introduces one
new problem: W hen process a, in executing procedure P,
transfers control to procedure Q, the value of linkage

p

FIG. 12. Addressing the link data

pointer must be changed to the generalized address of
the linkage section for procedure Q. Since the new value
of the linkage pointer contains a segment number, it is
private data of process a and cannot be placed in segment
PorQ.

This problem requires a somewhat modified form of
intersegment linkage from that used for data references.
Since it is desirable that the machine code necessary to
load the linkage pointer for a procedure segment be as­
sociated with that segment, the following solution was
adopted. For each external entry point within a procedure
segment, two additional instructions are placed in the
procedure's linkage section at compilation time. The first
instruction loads the linkage pointer with the appro­
priate value at procedure entry,_ and the second instruc­
tion transfers control to the entry point in the called
procedure segment. Thus in establishing the link for an
external procedure call, the generalized indirect address
placed in the calling procedure's link data points to the
corresponding instruction pair in the linkage section of
the procedure being called. "hen control passes to the

312 Communications of the ACM

linkage segment during an external procedure call, the
segment number portion of the desired linkage pointer is
easily obtained from the procedure base register j since
the process is now executing in the desired linkage seg­
ment.

call

<0>1[']

linhOlJe section
'or P

- linkage section
'or 0

FIG. 13. Linkage mechanism for procedure entry

o

Figure 13 depicts the linkage mechanism required for
an external procedure call from procedure P to segment
Q at entry point e. The solid lines indicate the individual
steps taken through indirect addresses, while the dashed_
lines indicate resulting flow of control.

In executing a call to an external procedure, the caller's
machine conditions, including the procedure base register
and program counter, are saved in the stack segment by
the caller. Return from the called procedure can thus be
effected by simply restoring the caller's machine condi­
tions from the stack segment.

Acknowledgments. The evolution of the concepts pre­
sented in this paper represents the efforts of many mem­
bers of the MULTICS programming staff. However, the
authors wish to express particular appreciation of the
work of F. J. Corbato and R. M. Graham in developing
the basic design of the MULTICS linkage mechanism.

REFERENCES

1. CORBATO, F. J., AND VYSSOTSKY, V. A. Introduction and over­
view of the MULTICS system. Proc. AFIPS 1965 Fall
Joint Comput. Conf., Vol. 'Zl, Part 1. Spartan Books, New
York, pp.I85-197.

2. DALEY, R. C., AND NEUMANN, P. G. A general purpose file
'system for secondary storage. Proc. AFIPS 1965 Fall [oint
Comput. Conf., Vol. 'Zl,Part 1. Spartan Books, New York, pp.
213-229.

3. DENNIS, J. B. Segmentation and the design of multipro­
grammed computer systems. J. ACM 11, 4 (O~t. 1965),
589-002.

4. -, AND VAN HORN, E. C. Programming semantics for multi­
programmed computations. Comm. ACM 9, 3 (Oct. 1966),
143-155.

5. DIJKSTR 0\ , E. W. Cooperating sequential processes. Techno­
logical U., Eindhoven, The Netherlands.

6. GT.ASER, E. L., COULEUR, J. F., AND OLIVER, G. A. System
design of a computer for time sharing applications. Proc.·
AFIPS 1965 Fall Joint Comput. Conf., Vol. Zl, Part. 1.
Spartan Books, New York, pp. 197-202.

7. GRAHAM, R. M. Protection in an information processing
utility. Comm. ACM 11, 5 (May 1968),365-369.

8. KILBURN, T., EDWARDS, D., L.-\NIGAN, M., AND SUMNER, F.
One level storage system. IEEE Trans. EC-ll , 2 (April 1962),
223-235.

9. SALTZ~R, J. H. Traffic control in a multiplexed computer sys­
tem. Tech. Rep. No. MAC-TR-30 (Ph.D. thesis), Project
MAC, MIT, Cambridge, Mass., 1964.

Volume 11 I Number 5 / May, 1968

INTRODUCTION TO THE CONCEPTS OF MULTICS

Protection £nQ ~ Control Qf Information Sharing in Multics

by J.H. Saltzer. Reprinted from A&M Fourth
Symposium 2n Operating System Principles, Yorktown
Heights, New York, October, 1973, with permission.

2-39

This paper provides a survey of all the different
techniques, mechanisms, and design principles that underlie the
control of access to information in Multics. Since it describes
an area that is a subject of continuing research at M.I.T., its
details (especially its 1 ist of weaknesses) ara going out of date
quite rapidly. Nevertheless, the general concern of the Multics
design that it support the need for privacy of individuals and
organIzations is best exhibited by a comprehensive snapshot of
the mechanisms used.

2-41

PROTECTION AND CONTROL
OF

INFORMATION SHARING IN MULTICS

by

Jerome H. Saltzer

Massachusetts Institute of Technology
Department of Electrical Engineering and Project MAC

ABSTRACT

This paper describes the design of mechanisms to control sharing of information in the Hultics system.
Seven design principles help provide insight into the tradeoffs among different possible designs. The key
mechanisms described include access control lists, hierarchical control of access specifications, identifi­
cation and authentication of users, and primary memory protection. The paper ends with a discussion of
several known weaknesses in the current protection mechanism design.

An essential part of a general-purpose computer
utility system is a set of protection mechanisms
which control the transfer of information among the
users of the utility. The Hultics system*, a proto­
type computer utility, serves as a useful case
study of the protection mechanisms needed to permit
controlled sharing of information in an on-line,
general-purpose, information-storing system. This
paper provides a survey of the various techniques
currently used in Hultics to provide controlled
sharing, user authentication, inter-user isolation,
supervisor-user protection, user-written proprie­
tary programs, and control of special privileges.

Controlled sharing of information was a goal
in the initial specifications of Multics [8, 11] ,
and thus has influenced every stage of the system
design, starting with the hardware modifications to
the General Electric 635 computer which produced
the original GE 645 base for Hultics. As a result,
information protection is more thoroughly inte­
grated into the basic design of Hultics than is the
case for those commercial systems whose original
specifications did not include comprehensive con­
sideration of information protection.

Hultics is an evolving system, so any case
study must be a snapshot taken at some specific
time. The time chosen for this snapshot is
summer, 1973, at which time Hultics is operating
at M.I.T. using the Honeywell 6180 computer system.
Rather than trying to document every detail of a
changing environment, this paper concentrates on
the protection strategy of Hultics, with the goal
of communicating those ideas which can be applied
or adapted to other operating systems.

This research was supported by the Advanced Research
Projects Agency of the Department of Defense under
ARPA Order No. 2095 which was monitored by ONR
Contract No. NOO014-70-A-0362-0006.

* A brief description of Hultics, and a more com­
plete bibliography, are given in the paper by
Corbato, Saltzer, and Clingen{6].

1

~is~?

In trying to identify the ideas related to
protection which were first introduced by Hultics,
a certain amount of confusion occurs. The design
was initially laid out in 1964-1967, and ideas
were borrowed from many sources and embellished,
and new ideas were added. Since then, the system
has been available for study to many other system
deSigners, who have in turn borrowed and embellished
upon the ideas they found in Multics while construc­
ting their own sys tems. Thus some of the ideas
reported here have already appeared in the litera­
ture. Of the ideas reported here, the follOWing
seem to be both novel and previously unreported:

The notion of designing a comprehensive com­
puter utility with information protection as
a fundamental objective.

Operation of the supervisor under the same
hardware constraints as user programs, under
descriptor control and in the same address
space as the user.

Facilities for user-constructed protected
subsystems.
An access control system applicable to batch
as well as on-line jobs.

Extensive human engineering of the user authen­
tication (password) interface.

Decentralization of administrative control of
the protection mechanisms.

Ability to allow or revoke access with
immediate effect.

Multics is unique in the extent to which infor­
mation protection has been permitted to influence
the entire system design. By describing the range
of protection ideas embedded in Hultics, the ex­
tent of this influence should become apparent.

Design Principles

Before proceeding, it is useful to review
several design principles which were used in the
development of facilities for information protec­
tion in Hultics. These design principles provided

2-42

guidance in many decisions, although admittedly
some of the principles were articulated only
during the design, rather than in advance.

1. Every designer should know and understand 'the
protection objectives of the system. At the
present rather shaky stage of understanding of
operating system engineering, there are many
points at which an apparently "don't care"
decision actually has a bearing on protection.
Although these decisions will eventually come
to light as the system design is integrated, a
system design cannot withstand very many rever­
sals of early design decisions if it is to be
completed on a reasonable ~chedule and within
a budget. By keeping all designers aware of
the protection objectives, the early decisions
are more likely to be made correctly.

2. Keep the design as simple and small as possible.
This principle is stated so often that it be­
comes tiresome to hear. However, it bears
repeating with respect to protection mechanisms,
since there is a special problem: design and
implementation errors which result in unwanted
access paths will not be Ummediately noticed
during routine use, since routine use usually
does not include attempts to utilize improper
access paths. Therefore, techniques such as
complete, line-by-line auditing of the protec­
tion mechanisms are necessary; for such
techniques to be successful, a small and simple
design is essential.

3. Protection mechanisms should be based on per­
mission rather than exclusion. This principle
means that the default situation is lack of
access, and the protection scheme provides
selective permission for specific purposes.
The alternative, in which mechanisms attempt
to screen off sections of an otherwise open
system, seems to present the wrong psychologi­
cal base for secure system design. A conser­
vative design must be based on arguments on
why objects should be accessible, rather than
on why they should not; in a large system some
objects will be inadequately considered and a
default of lack of access is more fail-safe.
Along the same line of reasoning, a design or
implementation mistake in a mechanism which
gives explicit permission tends to fail by re­
fusing permission, a safe situation, since it
will be quickly detected. On the other hand
a design or implementation mistake in a
mechanism which explicitly excludes access
tends to fail by not excluding access, a fail­
ure which may go unnoticed.

4. Every access to every object must be checked
for authority. This principle, when applied
methodically, is the primary underpinning of
the protection system. It forces a system­
wide view of access control which includes
initialization, recovery, shutdown, and main­
tenance. It also implies that a foolproof
method of identifying the source of every re­
quest must be devised. In a system designed
to operate continuously, this principle re­
quires that when access decisions are remem­
bered for future use, careful consideration
be given to how changes in authority are pro­
pagated into such local memories.

5. The design is not secret. The mechanisms do
not depend on the ignorance of potential
attackers, but rather on possession of speci­
fic, more easily protected, protection keys or
passwords. This strong decoupling between pro­
tection mechanisms and protection keys permits
the mechanisms to be reviewed and examined by
as many competent authorities as possible,
without concern that such review may itself
compromise the safeguards. Peters[l9] and
Baran[2] discuss this point further.

6. The principle of least privilege. Every pro­
gram and every privileged user of the system
should operate using the least amount of privi­
lege necessary to complete the job. If this
principle is followed, the effect of accidents
is reduced. Also, if a question related to
misuse of a privilege occurs, the number of
programs which must be audited is minimized.
Put another way, if one has a mechanism avail­
able which can provide "firewalls", the prin­
ciple of least privilege provides a rationale
for where to install the firewalls.

7. Make sure that the design encourages correct
behavior in the users, operators, and admin­
istrators of the system. Experience with
systems which did not follow this principle
revealed numerous examples in which users ig­
nored or bypassed protection mechanisms for
the sake of convenience. It is essential that
the human interface be designed for natural­
ness, ease of use, and simplici.ty, so that
users will routinely and automatically apply
the protection mechanisms.

The application of these seven design prinCiples
will be evident in many of the specific mechanisms
described in this paper.

Finally, in the design of Hultics there were
two additional functional objectives worth dwelling
upon. The first of these was to provide the option
of complete decentralization of the administration
of protection specifications. If the system design
forces all administrative decisions (e.g., protec­
tion specifications) to be set by a single adminis­
trator, that administrator quickly becomes a bottle­
neck and an impediment to effective use of the
system, with the result that users begin adopting
habits which bypass the administrator, often com­
promiSing protection in the bargain. Even if re­
sponsibility can be distributed among several ad­
ministrators, the same effects may occur. Only by
permitting the individual user some control of his
own administrative environment can one insist that
he take responsibility for his work. Of course,
centralization of authority should be available as
an option. It is easy to limit decentralization;
it seems harder to adapt a centralized design to
an environment in which decentralization is needed.

The second additional functional objective
was to assume that some users will require protec­
tion schemes not anticipated in the original design.
'"dco nhial'r;va ranl1;,-aco rhAr rha ~VQram nl"nuid .. A _ _- --..J---- ... - --""1----- _ _- ---- -j'---- r--¥--- -
complete set of handholds so that the user, without
exercising special privileges, may construct a pro­
tection environment which can interpret access re­
quests however he desires. The method used is to
permit any user to construct a protected subsystem,
which is a collection of programs and data with
the property that the data may be accessed

only by programs in the subsystem~ and the programs
may be entered only at designated entry points. A
protected subsystem can thus be used to program
any desired access control scheme.

The Storage System and ~ Control Lists

The central fixture of Multics is an prganized
information storage system. [8] Since the :storage
system provides both reliability and protection
from unauthorized information release~ the user is
thereby encouraged to make it the repository of all
of his programs and data files. All use of infor­
mation in the storage system is implemented by
mapping the information into the virtual memory of
some Multics process. Physical storage location is
automatically determined by activity. As a result~
the storage system is also used for all system data
bases and tables~ including those related to protec­
tion. The consequence of these observations is that
one access control mechanism~ that of the storage
system~ handles almost all of the protection
responsibility in Multics.

Storage is logically organized in separately
named data storage segments~ each of which contains
up to 262,144 36-bit words. A segment is the cata­
loguing unit of the storage system~ and it is also
the unit of separate protection. Associated with
each segment is an access control list~ an open­
ended list of names of users who are permitted to
reference the segment*. To understand the struc­
ture of the access control list~ first consider
that every access to a stored segment is actually
made by a Multics process. Associated with each
process is an unforgeable character string identi­
fier~ assigned to the process when it was created.
In its stmplest form, this identifier might consist
of the personal name of the individual responsible
for the actions of the process. (This responsible
person is commonly called the principal~ and the
identifier the principal identifier.) Whenever
the process attempts to access a segment or other
object catalogued by the storage system~ the prin­
cipal identifier of the process is compared with
those appearing on the access control list of the
object; if any match is found access is granted.

Actually~ Multics uses a more flexible scheme
which facilitates granting access to groups of
users~ not all of whose members are known~ and
which may have dynamically varying membership. A
principal identifier in Multics consists of several
parts; each part of the identifier corresponds to
an independent~ exhaustive partition of all users
into named groups. At present, the standard
Multics principal identifier contains three parts,
corresponding to three partitions:

1. The first partition places every individual
user of the installation in a separate access
control group by himself~ and names the group
with his personal name. (This partition is
identical to the simple mechanism of the
previous paragraph.)

2. The second partition places users in groups
called projects, which are basically sets of
users who cooperate in some activity such as
constructing a compiler or updating an

* The Multics access control list corresponds
roughly to a column of Lampson's protection
matrix. [16]

2-43

inventory file. One person may be a member of
several projects~ although at the beginning of
any instance of his use of Multics he must de­
cide under which project he is operating.

3. The third partition allows an individual user
to create his own, named protection compart­
ments. Private compartments are chiefly use­
ful for the user who has borrowed a progr~m
which he has not audited~ and wishes to insure
that the borrowed program does not access cer­
tain of his own files. The user may designate
which of his own partitions he wishes to use
at the time he authenticates his identity*.

Although the precise description in terms of
exhaustive partitions sounds formidable~ in practice
a relatively easy-to-use mechanism results. For
example, the user named "Jones" working' on the pro­
ject named "Inventory" and designating the personal
compartment named "a" would be assigned the princi­
pal identifier:

Jones. Inventory. a

Whenever his process attempts to access~an object
catalogued by the storage system~ this three part
principal identifier is first compared with succes­
sive entries of the access control list for the
object. An access control list entry similarly has
three parts, but with the additional conveqtion
that any or all of the parts may carry a special
flag to indicate "don't care" for that particular
partition. (We represent the special flag with an
asterisk in the following examples.) Thus~ the
access control list entry

Jones. Inventory. a

would permit access to exactly the principal of our
earlier example. The access control list entry

Jones.*.*

would permit access to Jones no matter what project
he is operating under, and independent of his per­
sonally designated compartment. Finally~ the access
control list entry

*. Inventory. *

would permit access to all users of the "Inventory"
project. Matching is on a part by part basis~ so
there is no confusion if there happens to be a
project named "Jones".

Using multi-component principal identifiers it
is straightforward to implement a variety of stan- .
dard security mechanisms. For example, the military
"need-to-know" list corresponds to a series of
access control list entries with explicit user names
but (possibly) asterisks in the remaining fields.
The standard government security compartments are
examples of additional partitions, and would be
implemented by extending the principal identifier
to four or more parts~ each additional part corres­
ponding to one compartment in use at a particular
installation. (Every person would be either in or
out of each such compartment.) A restriction~f
~ess to users who are simultaneously in two or
more compartments is then easily expressed.

* The third partition has not yet been completely
implemented. The current system uses the third
partition only to distinguish between interactive
and absentee use of the system.

2-44

We have used ~he tera "Objec~n ~o describe ~he
entities catalogued by the storage system with the
intent of implying that segments are not the only
kinds of objects. Currently, four kinds of objects
are implemented or envisioned:

1. Segments

2. Message queues (experimental implementation)

3. Directories (called catalogues in some systems)

4. Removable media descriptors (not yet imple­
mented)

For each object, there are several separately
controllable modes of access to the object. For
example, a segment may be read, written, or exe­
cuted as a procedure. If we use the letters r, w,
and e for these three modes of access, an access
control list entry for a segment may specify any of
the combinations of access in table I. Certain
access mode combinations are prohibited either be­
cause they make no sense (e.g., write only) or cor­
rect implementation requires more sophisticated
machinery than implied by the simple mode settings.
(For example, an execute-only mode, while appealing
as a method for obtaining proprietary procedures,
leaves unsolved certain problems of general pro­
prietary procedures, such as protection of return
points of calls to other procedures. The protec­
tion ring mechanism described later is used in
Multics to implement proprietary procedures. The
execute-only mode, while probably useful for less
general cases, has not been pursued.)

Mode Typical use

(none) access denied

r read-only data

re pure procedure

rw writeable data

rew impure procedure

Table I: Acceptable combinations of access
modes for a segment.

In a similar way, message queues permit sepa­
rate control of enqueueing and dequeueing of
messages, tape reel media descriptors permit
separate control of reading, writing, and appending
to the end of a tape reel, and directories permit
separate control of listing of contents, modifying
existing entries, and adding new entries. Control
of these various forma of access to objects is pro­
vided by extending each access control list entry
to include access mode indicators. Thus, the access
control list entry

Smith.*.* rw

permits Smith to read and write the data segment
associated with the entry.

It would have been simpler to associate an
access mode with the obiect itself, rather than
with each individual ac~ess controi list entry, but
the flexibility of allowing different users to have
different access modes seems useful. It also makes
possible exceptions to the granting of access to
all members of a group. In the case where more
than one access control list entry applies, with
different access modes, the convention is made that
the first access control list entry which matches

the principal identifier of the requesting process
is the one which applies. Thus, the pair of access
control list entries:

Smith. Inventory.*

.Inventory.

(none)

rw

would deny access to Smith, while permitting all
other members of the "Inventory" project to read
and write the segment*. To insure that such con­
trol is effective, when an entry is added to an
access control list, it is sorted into the ,list
according to how specific the entry is by the fol­
lowing rule: all entries containing speci~ic names
in the first part are placed before those with
"don't cares" in the first part. Eachlof those;
subgroups is then similarly ordered according to
the second part, and so on. The purpose of this
sorting is to allow very specific additions to an
access control list to tend to take precedence over
previously existing (perhaps by default) less
specific entries, without requiring that the user
master a language which permits him arbitrary
ordering of entries. The result is that most com­
mon access control intentions are handled correctly
automatically, and only unusually sophisticated
intentions require careful analysis by the user to
get them to come out right.

To minimize the explicit attention which a
user must give to setting access control lists,
every directory contains an "initial access control
listn. Whenever a new object is created in that
directory, the contents of the initial access con­
trol list are copied into the access control list
of the newly created object~ Only if the user
wishes access to be handled differently than this
does he have to take explicit action. Permission
to modify a directory's contents implies also
permission to modify its initial access control
list.

The access control list mechanism illustrates
an interesting subtlety. One might consider pro­
viding, as a convenience, checking of new access
control list entries at the time they are made, for
example to warn a user that he has just created an
access control list entry for a non-existent person.
Such checks were initially implemented in Moltics,

* This feature violates design principle three,
which proscribes selective exclusion from an other­
wise open environment because of the risk of un­
detected errors. The feature has been provided
nevertheless, because the alternative of listing
every user except the few excluded seems clumsy.

** An earlier version of Multics did not copy the
initial access control list, but instead considered
it to be a common appendix to every access control
list in that directory. That strategy made auto­
matic sorting of access control list entries in­
effective, so sorting was left to the user. As a
result, the net effect of a single change to the
common appendix could be different for every object
in the directory, leading to frequent mistakes and
confusion, in violation of the seventh design prin­
ciple. Since in the protection area, it is essen­
tial that a user be able to eaSily understand the
consequences of an action, this apparently more
flexible design was abandoned in favor of the less
flexible but more understandable one.

but it was quickly noticed that they represented a
kind of compromise of privacy: by creating an
access control list entry naming an individual, the
presence or absence of an error message would tell
whether or not that individual was a registered
user of the system, thereby possibly compromising
his priva.cy.· For this reason, a name.;encoding
scheme which required checking of access control
entry names at the time they were created was
abandoned.

It is also interesting to compare the Multics
access control scheme with that of the earlier CTSS
system[6]. In CTSS, each file had a set of access
restriction bits, applying to all users. Sharing
of files was accomplished by permitting other users
to place in their directories special entries
called links, which named the original file, and
typically contained further restrictions on allow­
able access modes. The CTSS scheme had several de­
fects not present in the Multics arrangement:

1. Once a link was in place there was no way to
remove it without modifying the borrower's
directory. Thus, revocation of access was
awkward.

2. A single user, using the same file via differ­
ent links, could have different access pr~v~­
leges, depending on which link he used.
Allowing access rights to depend on the name
which happens to be used for an object cer­
tainly introduced an extra degree of flexi­
bility, but this flexibility more often re­
sulted in mistakes than in usefulness.

3. As part of a protection audit, one would like
to be able to obtain a list of all users who
can access a file. To construct that list,
on CTSS, one had to search every directory in
the system to make a list of links. Thus such
an audit was expensive and also compromised
other users' privacy.

Multics retains the concept of a link as a naming
convenience, but the Multics link confers no access
privileges -- it is only an indirect address.

Early in the design of Multics[8] an additional
extension was proposed for an access control list
entry: the "trap" extension, consisting of a one­
bit flag and the name of a procedure. The idea
was that for all users whose principal identifier
matched with that entry, if the trap flag were on
the procedure named in the trap extension should!
be called before access be granted. The procedure,
supplied by the setter of the access control list
entry, could supply arbitrary access constraints,
such as permitting access only during certain hours
or only after asking another logged in user for an
OK. This idea, like that of the execute-only pro­
cedure, is appealing but requires an astonishing
amount of supporting mechanism. The trap proce­
dure cannot be run in the requesting user's address­
ing and protection environment, since he is in con­
trol of the environmep_t and could easily subvert
the trap procedure. Since the trap procedure is
supplied by another user, it cannot be run in the
supervisor's protection environment, either, so a
separate, protected subsystem environment is called
for. Since the current Multics protected subsystem
scheme allows a subsystem to have access to all of
its user's files, implementation of the trap exten­
sion could expose a user to unexpected threats from
trap procedures on any data segment he touches.

2-45

Therefore, at the least, a user should be able to
request that he be denied access t~ ~hjects pro­
tected by trap extensions, rather than be subject
to unexpected threats from trap procedures. Finally,
if such a trap occurs on every read or write refer­
ence to the segment, the cost would seem to be high.
On the other hand, if the trap occurs only at the
time the segment is mapped into a user's address
space*, then design principle four, that every
reference be validated, is violated; revocation of
access becomes difficult especially if the system
is operated continuously for long periods. The sum
total of these considerations led to temporarily
abandoning the idea of the trap extension, perhaps
until such time as a more general domain scheme,
such as that suggested by Schroeder[2l] is
available.

Both backup copying of segments (for reliabil­
ity). and bulk input and output to printers, etc.
are carried out by operator-controlled processes
which are subject to access control just as are
ordinary users. Thus a user can insure that print­
ed copies of a segment are not accidentally made,
by failing to provide an access control list entry
which permits the printer process to read the
segment*~ Access control list entries permitting
backup and bulk I/O are usually part of the default
initial access control list. Bulk input of cards
is accomplished by an operator process which reads
them into a system directory, and leaves a note for
the user in question to move them to his own
directory. This strategy guarantees that there is
no way in which one user can overwrite another
user's segment by submitting a spurious card input
request. These mechanisms are examples of the
fourth design principle: every access to every
object is checked for authority.

An administrative consequence of the access
control list organization is that personal and pro­
ject names, once assigned, cannot easily be reused,
since the names may appear in access control lists.
In principle, a system administrator could, when a
user departs, unregister him and then examine every
access control list of the storage system for in­
stances of that name, and delete them. The system
has been deliberately designed to discourage such
a strategy, on the basis that a system administrator
should not routinely paw through all the directories
of all system users. Thus, the alternative scheme
was adopted, requiring all user names, once regis­
tered, to be permanent.

Finally, the one most apparent limitation of
the scheme as presently implemented is its "one­
way" control of access. With the described access
control list organization, the owner of a segment
has complete control over who may access it. There
are some cases in which users other than the owner
may wish to see access restricted to an object
which the owner has declared public. For example,
an instructor of a class may for pedagogical pur­
poses wish to require his students to write a

* Or, in traditional file systems, at the time the
file is "opened".

** Of course, another user who has permission to
read the segment could make a copy and then have
the copy printed. Methods of constraining even
users who have permission are the subject of con­
tinuing research[20].

2-46

particular program rather than make use of an equiva­
lent one already publicly available in the system.
Alternatively, a project administrator concerned
about security may wish to insure that his project
members cannot copy sensitive information into stor­
age areas belonging to other users and which are
not under his control. He may also want to prevent
his project members from setting access control
lists to permit access by users outside the project.
This kind of control can be expressed in Multics
currently only by going to the trouble of construc­
ting a protected subsystem which examines all super­
visor calls, thereby permitting complete control
over which objects are mapped into the address space
and what terms are added to access control lists.
Fortunately, there have so far appeared only a few
examples in which such control is required, and the
escape suggested has proven adequate for those cases.
A more general, yet quite simple, solution would be
to associate with the user's process two constrain­
ing lists: a list of pathnames of directories
whose contents he may access, and a list of access
control list terms which he is permitted to place on
access control lists. These two constraining lists
would be set only by the project administrator or
security officer. The constraining lists would be
especially useful in the military security environ­
ment, since they would help in the construction of
a list of items a defector might have had access to.

As is evident, the Hultics access control list
mechanism represents an engineering tradeoff among
three conflicting goals: flexibility of expression,
ease of understanding and use, and economy of
tMplementation. Additional flexibility of expres­
sion was tried (e.g., the common access control
list mechanism previously footnoted) with the con­
clusion that the additional confusion which results
from accidental misuse of the generality can out­
weigh the benefits; apparently the correct direction
is the opposite, toward simpler, less general, and
more easily understandable protection structures.

Hierarchical Control of Access Specifications

Since in Moltics every object, including a
directory, must be catalogued in some directory, all
objects are arranged into a single hierarchical tree
of directories. This naming hierarchy also provides
a hierarchy of control of access, through the
ability to modify the contents of a directory.
Since a directory entry consists of the name of some
object and its access control list, having access to
modify directory entries is interpreted to include
the ability to modify the access control lists of
all the objects catalogued in that directory. No
further hierarchical control is provided; for
example, there is no ability to say "Allow read ac­
cess to Jones for all segments below this node in
the naming tree". Such specifications are similar
in nature to the "common access control list" men­
tioned before; they make it difficult for a user to
be sure of all the consequences of a change to the
access specification. For example, removing a
specification such as that quoted above, which per­
mits only reading, might render effective a forgotten
access control term lower in the naming hierarchy
which permits both reading and writing*.

* Early versions of Multics provided a limited
form of higher-level specification in the form of
ability to deny all use of a directory, and

Although it would appear that the hierarchical
scheme provides an inordinate amount of 'power to a
project administrator and, above him, to a system
administrator, in practice it forces a careful
consideration of the lines of authority over pro­
tected information, and explicit recognition of an
authority hierarchy which already existed. In some
environments, it would probably be appropriate to
publicly log all modifications of directory access
above some level, so as to provide a measure of
control of the use of hierarchical authority. More
elaborate controls might include requiring coopera­
tive consent of some quasi-judicial committee of
users for modification of high-level directory
access. Such controls are relatively easy for an
installation or a project to implement, using pro­
tected subsystems.

It is possible, by choosing access modes
correctly, to use the hierarchical access control
scheme in combination with the initial access con­
trol list to accomplish a totally centralized con­
trol of all access decisions. If, for example, a
project administrator creates a directory for a
user, places an initial access control list in that
directory, and then grants to the new user per­
mission only to add new entries to the directory,
all such new entries would automatically receive a
copy of the initial access control list determined
by the administrator -- the user would have no con­
trol over who may use the objects he creates. By
policy, a system administrator could run an entire
installation under this tight control, and retain
for himself complete authority to determine what
access control list is placed on every object, as
in IBH's Resource Security System[14]. Alterna­
tively, any smaller portion of the naming hier­
archy can be kept under absolute control by the
person having authority to modify access control
lists at the top node of the portion.

The other obvious alternative to a hierarchi­
cal control of modification of access control lists
would be some form of self-control. That is, the
ability to modify an access control list would be
one of the modes of access controlled by the list
itself. A very general version of this alternative
has been explored by Rotenberg[20]. This alterna­
tive has not been tried out in the Hultics context,
partly because the implications of the hierarchical
method were easier to understand in the first imple­
mentation. Probably the chief advantage of self­
control of access modification would be that one
could provide an individual a fully private work
area in which no one -- manager, security officer,
or system administrator -- could intrude. On the
other hand, the implementation of a "locksmith"
while easy to do may require introducing hidden
access paths which are then subject to misuse*.

therefore of the objects contained within it. For
the reasons suggested, this feature has been
disabled.

* A locksmith would be an administrator who can
provide accountable inte~lention when mistakes are
made. For example, if an organization's key data
base is under the exclusive control of a manager
who has been disabled in an automobile aCCident,
the locksmith could then provide another manager
with access to the file. It seems appropriate to
formalize the concept of a locksmith so that appro­
priate audit trails and authority to be a locksmith

Also, one wonders how a self-control scheme would
fit smoothly into an organization which does not
usually give an individual the privilege of choos­
ing his qwn office door lock. Clearly, the social
and organizational co~sequences of the choice be­
tween these two design alternatives deserve fur­
ther study.

Authent,ication of ~

All of the machinery of access control lists,
access modes, protected subsystems, and hierarchi­
cal control depend on an accurate principal iden­
tifier being associated with every process.
Accuracy of identification depends on authentica­
tion of the user's claimed identity. A variety of
mechanisms are used to help insure the security of
this authentication. The general strategy chosen
by Multics is to maintain individual accountability

. on a personal basis. Every user of a given instal­
lation (with one class of exception, noted later)
is registered at the installation, which means that
a unique name, usually his last name plus one or
two initials, is permanently entered in a system
registry. Associated with his name at the time he
is registered is a password of up to eight ASCII
characters. Whenever any person proposes to use
the system, he supplies his unique name, at which
point the system demands also that he provide his
password.

Thus far, the authentication mechanism of
Multics is essentially the same as for most other
remote-accessed systems. However, Multics uses
several extra measures related to user authentica­
tion, which are not often found in other systems.
For one, all use of the system, whether interactive
or absentee (batch) is authenticated interactively.
That is, initiation of a batch job is not done on
the basis of information found in a card reader.
Arriving card decks are read in and held in on-line
storage by a system process, for which an operator
is responsible. All absentee jobs, whether they
are to be controlled by files created from cards
or files constructed interactively or files con­
structed by another program, must be initiated by
some job already on the system, and whose legiti­
macy has been previously authenticated. Although
a chain of absentee job requests can be developed,
the chain must have begun with an interactive job,
which requires interactive authentication. In
the simplest case, the individual responsible goes
to an interactive console, identifies and authen­
ticates himself, and requests execution of the job
represented by the incoming card deck. If neces­
sary, the request will automatically wait until
the card deck arrives, so that the user need not
wait for the operator or for a card reader queue*.
Thus, no job is every run without prior positive
identification of the responsible party. Note
that for installations in which responsibility for
card controlled jobs is considered unimportant, it
is rather trivial to construct a Multics program,
run under the responsibility of the card reader

can be well-defined. The alternative of sending
a system programmer into the computer room with
instructions to directly patch the system or its
data may leave no audit trail and almost certainly
encourages sloppy practice.

* The automatic wait is not yet implemented.

2-47

operator, which accepts and runs as a job anything
found in the card reader. All such jobs would be
run in processes bearing the principal identifier of
the card reader operator, and are thus constrained
in the range of on-line information which they can
access. The inviolate principle of access control
remains that on-line authentication of identity, by
presenting a password, is required in order to start
a process labeled with a particular desired principal
identifier. Note also that the' fact that a job
happens to be operated without an interactive ter­
minal has no bearing on its privileges, except as
explicitly controlled by its principal identifier.
Finally, to handle the situation where a busy
researcher asks a friend to submit the batch job,
a proxy login scheme permits the friend to identify
himself, under his own password, and then request
that the job be run under the principal identifier
of the original researcher. The system will permit
proxy log ins only if the person responsible for the
principal identifier to be used has previously
authorized such logins by giving a list of proxies*

As to protection of passwords, several facili­
ties are provided. The user may, after authenti­
cating himself, change his password at any time he
feels that the old one may have been compromised.
A program is available which will generate a new
random eight-character password with English digraph
statistics, thereby making it pronounceable and easy
to memorize, and minimizing the need for written
copies of the password. Users are encouraged to
obtain their passwords from this program, rather
than choosing passwords themselves, since human­
chosen passwords are often surprisingly easy to
guess. Passwords are stored in the file system in
mildly encrypted form, using a one-way encryption
scheme along the lines suggested by Wilkes[29].
As a result, passwords are not routinely known by
any system administrator or project administrators,
and there is never any occasion for which it is even
appropriate to print out lists of passwords. If,
through some accident, a stored password is exposed,
its usefulness is reduced bY.its encrypted form.

When the user is requested to give his password,
at login time, the printer on his terminal is turned
off, if possible, or else a background of garbling
characters is first printed in the area where he is
to type his password. Although the user could be
indoctrinated to tear off and destroy the piece of
paper containing his password, by routinely protec­
ting it for him the system encourages a concern for
security on the part of the user. In addition, if
the user's boss (or 8omeone from four levels of
management higher) happens to be looking over his
shoulder as he logs in, the user is not faced with
the awkward social problem of scrambling to conceal
his password from a superior who could potentially
take offense at an implication that he is not to be
trusted with the information.

A time-out is provided to help protect the
user who leaves his terminal, is distracted, and
forgets to log out. If no activity occurs for a
period, a logout is automatically generated. The
length of the time-out period can be adjusted to
suit the needs of a particular installation.
Similarly, whenever service is interrupted by a
system failure for more than a moment, a new login

* The proxy login is not yet implemented.

2-48

is required of all interactive users, since some
users may have given up and left their terminals.

Finally, several logging and penetration
detection techniques help prevent attacks via the
password routine. If a user provides an incorrect
password, the event of an incorrect login attempt
is noted in a threat-monitoring log, and the user is
permitted to try again, up to a limit of ten times
at which point the telephone (or network) connec­
tion is forcibly broken by the system, introducing
delay to frustrate systematic penetration attempt~.
Whenever a user logs in, the time and physical lo­
cation (terminal identification) of his previous
login are printed out in his greeting message,
thus giving him an opportunity to notice if his
password has been used by someone else in his
absence. Similarly, monthly accounting reports
break down usage by shift and services used, and
may be reviewed on-line at any time, thereby pro­
viding an opportunity for the individual to compare
his pattern of use with that observed by the
system, and perhaps to thereby detect unauthorized
use. If either of these mechanisms suggests un­
authorized use, the individual involved may ask
the system administrator to check the system log,
which contains an entry for every login and logout
giving date and time, terminal type used, and ter­
minal identification, if any.

For a project which maintains especially sen­
sitive information, the project administrator may
designate the initial procedure to be executed by
some or all processes created using the name of
that project as part of its principal identifier.
This initial procedure, supplied by the project
administrator, has complete control of the process,
and can demand further authentication (e.g., a
one-time password or a challenge-response scheme,)
perform project logging of the result, constrain
the user to a subset of the available facilities,
or initiate a logout sequence, thereby refUSing
access to the user. In the other direction, some
projects may wish to allow unlimited public access
to their files. If so, the project administrator
may indicate that his project will accept login of
unauthenticated users. In such a case, the system

* With ASCII passwords chosen to match English
digraph frequency, a little less than four bits of
information are represented by each character
(despite the eight or nine bits required to store
the characters.) An eight character password thus
carries about 30 bits of information, which would
require about 109 guesses using an information
theoretic optimum guessing strategy. If one mount­
ed a simultaneous attack from 100 computer-driven
terminals, and the system-imposed delays average
only 10 milliseconds per attempt, about 105 seconds,
or one full day of systematic attack would be re­
quired to guess a password. Although use of a
uniformly random password generator would increase
this work factor by several orders of magnitude,
resistance to use or hard-to-remember passwords and
the need to make written copies might act to wipe
out the gain. Of course, this work factor calcula­
tion presumes that the attacker has no further
basis on which to narrow the range of password
possibilities, for example, by knowing that the
user in question may have chosen his own password,
or by wiretapping a previous login.

does not demand a password, instead assigning the
personal name "anonymous" to the principal identi­
fier of the process involved, using the name of the
responsible project for the second part of the
principal identifier. The principal identifier
"anonymous" is the one exception to the registration
scheme mentioned earlier. Allowing anonymous users
does not compromise the security of the storage
system, since the principal identifier is constrain­
ed, and all storage system access is based on the
principal identifier. The primary use of anonymous
users has been for educational purposes, in which
all" students in a class are to perform some assign­
ment. Sometimes, this feature is coupled with the
project-designated initial procedure, so that the
project may implement its own password scheme, or
control what. facilities are made available, so as
to limit its financial liability. Some statistical
analysis and data-base development projects also
permit anonymous use of data-retrieval programs.

The objective of many of these mechanisms, such
as simple registration of every user, the proxy
login, the anonymous user,concealment of printed
passwords, and user changeable passwords, together
with a storage system which permits all authorized
sharing of information, is to provide an environ­
ment in which there is never any need for anyone
to know a password other than his own. Experience
with the earlier CTSS system demonstrated that by
omitting any of these features, the system itself
may encourage borrowing of passwords, with an
attendent reduction in overall security.

Primary MemOry Protection

We may consider the access control list to be
the first level of mechanism providing protection
for stored ihformation. Most of the burden of
keeping users' programs from interfering with one
another, with protected subsystems, and with the
supervisor is actually carried by a second level of
mechanism, which is descriptor-based. This second
level is introduced essentially for speed, so that
arbitration of access may occur on every reference
to memory. As a result, the second level is imple­
mented mostly in hardware in the central processing
unit of the Honeywell 6180. Of course, this
strategy requires that the second level of mechanism
be operated in such a way as to carry out the intent
expressed in the first level access control lists.

As described by Bensoussan et al.[4] the
HUltics virtual memory is segmented to permit shar­
ing of objects in the virtual memory, and to simpli­
fy address space management for the programmer.
The implementation of segmentation uses addressing
descriptors, a technique used, for example, in the
Burroughs B5OO0 computer systems[9]. The Burroughs
implementation of a descriptor is exclusively as an
addreSSing and type-labeling mechanism, with protec­
tion provided on the basis that a process may access
only those objects for which it has names. In
Multics, the function of the descriptor* is extended
to include modes of access (read, write, and exe­
cute) and to provide for protected subsystems which
share object names with their users. Evans and
LeClerc[lO] were among the first to describe the
usefulness of such an extension.

* With the exception of type identification,
which is not provided in Multics.

As shown in figure one, there are three
classes of descriptor extensions for protection
purposes: mode control, protected subsystem entry
control, and control on which protected subsystems
may use the descriptor at all. Every reference of
the processor to the segment described by this
descriptor is thus checked for validity.

The virtual address space of a Multics pro­
cess is implemented with an array of descriptors,
called a 'descriptor segment, as in figure two.
Every reference to the virtual memory specifies
both a segment number (which is interpreted as an
index into the descriptor segment) and a word num­
ber within the segment.

Figure two also helps illustrate why the pro­
tection information is associated with the address­
ing descriptor rather than with the data itself*.
Each computation is carried out in its own address
space, so each computation has its own private
descriptor segment. Using this mechanism, a single
physical segment may appear in different address
spaces with different access privileges for differ­
ent users, even though they are referring to the
same physical data. Since in a multiprocessor
system such as Multics two such processes may be
executing simultaneously, a single protection
specification associated with the data i~ not

* The alternate option is chosen, for example, in
the IBM 360/67 and the IBM 370 "Advanced Functionlt

virtual memory systems[24].

2-49

basic descriptor extension for protection

r ----..A...

------..'T" ,. 'T ~ Y'

<D @ ®
@

@

Physical address and size of the segment
based on this descriptor.

Bits separately controlling permission to
read, write, and execute the contents of
the segment based on this descriptor.

Control of permission to enter a protected
subsystem which has entry points in the
segment based on this descriptor.

Controls on which (hierarchically arranged)
protected subsystems may use this descriptor.

Figure I -- A Multics descriptor.

sufficient. Having the protection specification
associated with the descriptor allows for such
controlled sharing to be handled easily.

An unusual feature of the descriptors used in
Multics., is embodied in the second and third exten­
sions of figure one. Together, they allow hard­
ware enforcement of protected subsystems. A pro­
tected subsystem is a collection of procedures and
data bases which are intended to be used only by
calls to designated entry points, known in Multics

1--
dd i I t i ~e.. ng pro ect on

I
d i escr ptors -I

I
I
I
I
I
I

user load and
store instruct
and instructio
fetches

user calls to
supervisor

ions,
n

<D

I G)
I .,," '''' ,,,
I ~"",-,,-'\c" Primary

~ Memory r I

I
-----,.---

I
I
I
I
I
I Storage

I
-----.----

I System I
I
I
I , r-- ~----tD ®

t
1 ______ -

OJ Call to storage system to add object to virtual memory.

Drums,
Disks, - etc.

- Access Control Descriptor
List Checker Writer

~ @

Security Envelope~ I
--- --- --- ----- '--

~ VM access by storage system to locate object in directory structure. (Includes recursive invocation of
storage system to add directories to VM).

CD VM access by access control list checker to read principal identifier and access control list.

~ VM access to write new addressing and protection descriptor into descriptor segment.

~ Caller accesses new object.

Figure 2 -- Descriptor management in Multics. The Multics supervisor is treated as a protected subsystem.

o

2-50

as gates. If this intention is hardware enforced,
it is possible to construct proprietary programs
which cannot be read, data base managers which
return only statistics rather than raw data to some
callers, and debugging tools which cannot be acci­
dentally disabled. The descriptor extensions are
used to authenticate subroutine calls to protected
subsystems. Two important advantages flow from
using a hardware checked call:

1. Calls to protected subsystems use the same
structural mechanisms as do calls to unpro­
tected subroutines, with the same cost in
execution time. Thus a programmer does not
need to take the fact that he is calling a
protected subsystem into account when he tries
to estimate the performance of a new program
design.

2. It is quite easy to extend to the user the
ability to write protected subsystems of his
own. Without any special privileges, any user
may develop his own proprietary program, data­
scre_ening system, or extra authentication
system, and be assured that even though he per­
mits others to use his protected subsystem,
the information he is protecting receives the
same kind of security as does the supervisor
itself .

In support of call protection, hardware is also
provided to automatically check the addresses of
all arguments as they are used, to be sure that
the caller has access to them. Checking the range
of the argument values is left to the protected
subsystem.

Protected subsystems are formed by using the
third field of the descriptor extension of figure
one. To simplify protected subsystem implementa­
tion, Multics imposes a hierarchical constraint
on all subsystems which operate within a single
process: each subsystem is assigned a number, be­
tween 0 and 7, and it is permitted to use all of

-- those descriptors containing protected subsystem
numbers greater than or equal to its own. Among
the descriptors available to a subsystem may be
some permitting it to call to the entry points of
other protected subsystems. This scheme goes by
the name rings of protection, and is more com­
pletely described by Graham[12] and by Schroeder
and Saltzer[22].* As far as is known, the only
previously existing systems to permit general,
user-constructed protected subsystems are the
M.I.T. PDP-l time-sharing system[l] and the CAL
operating system[lS].

The descriptor-based strategy permits two fur­
ther simplifying steps to be taken:

1. All information in the storage system is read
and written by mapping it into the virtual
memory, and then using load and store instruc­
tions whose validity is checked by the
descriptor mechanism.

2. The supervisor itself is treated as an example
of a protected subsystem, which operates in a
virtrual memory arbitrated by descriptors,

* A more general approach, not yet implemented,
but which removes the restriction that the protected
subsystem be hierarchical, is described by Schroeder
in his doctoral thesis[2l].

exactly the same as do the user programs
which it supports.

The reasons why the first step provides simplifica­
tion for the user have been discussed extensively
in the literature[4,13]. The second step deserves
some more comment. By placing the supervisor it­
self under the control of the descriptors, as in
figure two, a rather substantial benefit is
achieved: the supervisor then operates with the
same addressing and machine language code genera­
tion environment as the user, which means that
supervisor programs may be constructed using the
same compilers and debugging tools available- to a
user. The effect on protection is non-trivial:
programs constructed and checked out with more
powerful tools tend to have fewer errors, and
errors in the supervisor which compromise protec­
tion often escape notice.

Perhaps equally important is that the deter­
mination of whether one is in or out of the super­
visor is not based on some proces~ mode bit which
can be accidentally left in the wrong state when
control is passed to a user program. Instead, the
addressing privileges of the current protected sub­
system are governed by the subsystem identification,
located in the descriptor of the segment which
supplied the most recent instruction. Every trans­
fer of control to a different program is thus
guaranteed to automatically produce addressing
privileges appropriate to the new program. If a
supervisor procedure should accidentally transfer
to a location in a user procedure, that procedure
will find that the protection environment has auto­
matically returned to the state appropriate for
running user procedures.

Finally, the descriptors are adjusted to pro­
vide only the amount of access required by the
supervisor, in consonance with design principle six.
For example, procedures are not writeable, and data
bases are not executable. As a result, programming
errors related to using incorrect addresses tend
to be immediately detected as protection violations,
and do not persist into delivered systems. If one
reviews the operation of Multics starting with the
initial loading of the system on an empty machine,
he will find that only the first hundred or so
instructions do not use descriptors. Once a
descriptor segment has been fashioned, all memory
references by the processor from that point on are
arbitrated by descriptors.

These mechanisms do not prohibit the super­
visor from making full use of the hardware when
appropriate. Rather, they protect against-acciden­
tal overuse of supervisor privileges. Clearly, the
supervisor must be able to write into the descrip­
tor segment, in order to initially set it up, and
also to honor requests to map additional objects
of the storage system into segments of the virtual
memory. This adjustment of descriptors is done
with great care, using a single procedure whose
only function is to construct descriptors which
correspond to access control list entries. A call
to the storage syst~m which results in adjusoment
of a descriptor is illustrated in figure two. In
this figure, it is worth noting that even the ,
writing of the descriptor is done with use of a
descriptor for the descriptor itself. Thus there
is little danger of accidentally modifying a des­
criptor segment belonging to some other user,

since the only descriptor segment routinely
appearing in the virtual memory of this process
is its own.

Entries to the supervisor which implement
"special privileges" (e.g., the operator may have
the privilege of shutting the syst~m down) are
generally'controlled by ordinary access control
lists, either on the gates of supervisor entries,
or in some cases by having the supervisor proce­
dure access some data segment before proceeding
with the privileged operation. If the user
attempting to invoke the privilege does not appear
on the access control list of the data segment, an
access violation fault will occur, rather than an
unauthorized use of the privilege.

The final step of "locking up" the supervisor
lies in management of source-sink input-output.
Recall first that all access to on-line catalogued
information of the storage system is handled by
direct mapping into the virtual memory. Thus, in­
put and output operations in Multics consist only
of true source-sink operations, that is of streams
of information which enter or leave the system.
Such operations are performed by hardware I/O chan­
nels, following channel programs constructed by the
I/O system in response to I/O requests of the call­
ing program. These I/O channel programs are placed
in a part of the virtual memory accessible only to
the supervisor*. Similarly, all input data is read
into a protected buffer area, accessible only to
the supervisor. Only after the input has arrived

.and the supervisor has had a chance to check it is
it turned over to the user, either by copying it,
or by modifying a descriptor to make it accessible
to the user. A similar, inverse pattern is used
on output. Since during I/O neither the data nor
the channel program is accessible to the user,
there is no hesitation about permitting him to con­
tinue his computation in parallel with the I/O
operation. Thus, fully asynchronous operations are
possible.

The system is initialized from a magnetic tape
which contains copies of every program residing in
the most protected area. In this way, the integrity
of the protection mechanisms depends on protecting
only one magnetic tape, and is independent of the
contents of the secondary storage system (disk and
drums) which are more exposed to compromise by
maintenance staff. On the other hand, since the
system is designed for continuous operation, there

* And to the I/O channels, which use absolute
addresses. If separate I/O channels were available
to each physical device and the I/O channels used
the addressing descriptors, protected supervisor
procedures would not be required for I/O operations
after device assignment (which requires a descrip­
tor to be constructed.)

Here is an example of a place where building a new
system, rather than modifying an old one, has sim­
plified matters. On some computer systems, the
user constructs his own channel programs, and may
even expect to modify them dynamically during
channel operation. It is quite hard to invent a
satisfactory scheme for protecting other users
against such I/O operations without placing re­
strictions on their scope, or inhibiting parallel
operation of the user with his I/O channel programs.

appears to be no need for a separate package con­
sisting of passwords and clearance information as
suggested by Weissman[28].

2-51

To round out the discussion of prima~y and
virtual memory protection, we should consider stor­
age residues. A storage residue is the data copy
left in a physical storage device after the previous
user has finished with it. Storage residues must
be carefully controlled to avoid accidental release
of information. In a virtual memory system, the
only way a storage residue could be examined would
be to read from a previously unused part of the
virtual memory. By convention, in Multics, the
supervisor provides pages of zeros in response to
such attempts. Since all access to on-line storage
is via the virtual memory, no additional mechanism
is required to insure that a user never sees a
residue from the storage system.

Weaknesses of the Multics Protection Mechanisms

One is always hesitant to list the weaknesses
in his system, for a variety of reasons. Often,
they represent mistakes or errors of judgement,
which are embarrassing to admit. Such a list pro­
vides an easy target for detractors of a design,
and in the protection area provides an invitation
for potential attackers at production installations
which happen to be using the system. In the case
of a system still evolving, such as Multics, known
weaknesses are being corrected as rapidly as
feasible, so any list of weaknesses is rapidly
obsolete. And finally, any list of weaknesses is
almost certainly incomplete, being subject to all
of the built-in blindnesses of its authors. Never­
theless, such a list is quite useful, both to look
for specific interesting unsolved problems, and
also to establish what level of considerations are
still considered relevant by the designers of the
system. The weaknesses described here begin with
cwo major areas, followed by several smaller
problems.

Probably the most important weakness in the
current Multics design lies in the large number of
different program modules which have the ability,
in principle, to compromise the protection system.
Of the 2000 program modules which comprise Multics,
some 400, or 20%, are in the "most protected area",
consisting of system initialization, the storage
system, miscellaneous supervisor functions, and
system shutdown. Although all of these 400 modules
operate using the descriptor-based virtual memory
described earlier, the descriptors serve for them
only as protection against accidentally generated
illegal address references; these modules are not
constrained by the inability to construct suitable
descriptors in the same way as the remaining 1600
modules and user programs. Thus any of these 400
modules (averaging perhaps 200 lines of source
code each) might contain an error which compromises
the security mechanisms, or even a security viola­
tion intentionally inserted by a system programmer.
The large number of programs and the very high
internal intricacy level frustrates line by line
auditing for errors, misimplementation, or in ten­
tially planted trapdoors. This weakness is not
surprising for the first implementation of a sophis­
ticated system, and upon review it is now apparent
that with mild software restructuring plus help from
specialized hardware the number of lines of code in
the most protected area can be greatly reduced --

2-52

perhaps by as much as an order of magnitude. In
examining many specific examples, there seem to have
been three common, interrelated reasons for the
extra bulk currently found in the protected area:

economics: at the time of design, a function
could be implemented more cheaply in the most
protected region. Since the protection ring
mechanism was originally simulated by software,
there were design decisions based on the
assumption that calls across ring boundaries
were expensive.

rush to get on the air: in the hurry to get
an in~tial version of the system gOing, a
shortcut was found, which required unnecessar­
ily placing a module in the most protected
region.

lack of understanding: a complex subsystem
was not carefully enough analyzed to separate
the parts requiring protection; the entire
subsystem was therefore protected.

With hardware-supported protection rings,
hindsight, and the experience of a complete working
implementation, it is apparent that a smaller "most
protected area" can be constructed. It now appears
possible to make complete auditing a feasible task.
A project is now underway to test this hypothesis
by attempting to develop an auditable version of
the most protected region of Multics.

The second serious weakness in the current
Multics design is in the complexity of the user
interface. In creating a new segment, a user should
specify permitted lists of users and projects,
specify allowed modes of access for each, decide
whether or not backup copies should be allowed and
whether or not bulk I/O should be permitted for the
segment, and whether or not the segment should be
part of a protected subsystem. He should check
that permissions he has given to modify higher­
level directories interact in the desired way with
his current intent. A variety of defaults have
been devised to reduce the number of explicit
choices which need be made in common cases: as
already mentioned, a per-directory "initial access
control list" is by default assigned to any new
segment created in that directory. The defaults
merely hide the complex underlying structure, how­
ever, and do not help the user with an unusual
protection requirement, who must figure out for
hUnself how to accomplish his intentions amid a
myriad of possiblities, not all of which he under­
stands. The situation for a project administrator,
who can control the initial program his users get,
and may perhaps force all of his users to interact
via a lUnited, protected subsystem is sUnilar, but
with fewer defaults and more possibilities
available.

The solution to this problem lies in better
understanding the nature of the typical user's
mental description of protection intent, and then
devising interfaces which permit more direct speci­
fication of that protection intent. As an example,
a gradt,ate student devised a 8imple Multics program
which prints a list of all users who may force
access to a segment (by virtue of having modify
access to some higher level directory.) This list
does not correspond to any single access control
list found anywhere in the system, yet it is clearly
relevant to one's image of how the segment is
protected. Setting up the mechanisms of access

control lists, accessibility modes, and rings of
protection perhaps should be viewed as a problem of
programming in which, as usual, the structures
available in initial designs do not correspond
directly with the user's way of thinking, even
though there may be some way of prograuming the
structure to accomplish any intent. In the area of
protection, the problem has a special edge, since
if a user, through confusion, devi~es an overly per­
missive protection specification, he may not dis­
cover his mistake until too late.

At a level of Significance well below the two
major points of system size and-user interface com­
plexity are several other kinds of problems. These
problems are felt to be less significant not because
they cannot be exploited as easily, but rather be­
cause the changes required to strengthen these areas
are straightforWard and relatively easy to implement.
These problems include:

l~ Coumunication links are weak. Of course, any
use of switched telephone lines leads to vul­
nerability, but provision for integration of
a Lucifer-like system[23] for end-to-end
encryption of messages sent over public lines
or through a communication network would pro­
bably be a desirable (and simple) addition.
As an example of a typical problem in this
area, the Bell System 202C6 DA~PHONE dataset,
which is used for 1200 bps terminals, does not
include provision for reporting telephone line
disconnection to the computer system during
data output transmission. If a user acciden­
tally hangs up his telephone line during out­
put, another user dialing to the same port on
the computer may receive the output, and cap­
ture control of the process. Although remedial
measures such as requiring reauthentication
every few minutes could be used, automatic
detection of the line disconnection would be
far more reassuring. (Note that for the more
commonly used 103A DA~PHONE dataset, which"
does report telephone line disconnections,
this problem does not exist; upon observing
the dropping of the carrier detect line from
the dataset, Multics immediately logs the user
out.)

2. The operator interface is weak. The primary
interface of the operator is as a logged-in
user, where his interactions can be logged,
verified, and suitably restricted. However,
he has a secondary interface: the switches
and lights of the hardware itself. It would
appear that the potential for error or sabo­
tage via this route is far higher than
necessary. If every hardware switch in the
system were both readable and settable by
(protected supervisor) programs, then all such
switches could be declared off limits to the
operator, and perhaps placed behind locked
panels. Since all operator interaction would
then be forced to take place via his "terminal,
his requests can be checked for plausibility
by a program. What has really gone wrong here
is a failure to completely reconsider t~~ role
of the operator in a computer system operating
as a utility. Functions such as operation of
card readers and printers do not require access
to switches on the side of the processor -- or
even physical presence in the same room as the
computer, for that matter. The decision that
a system failure has occurred and the

appropriate level of recovery action to take
are probably the operator functions which are
hardest to automate or decouple from the phy­
sical machine room, but certainly much move­
ment in this direction would be easy to
accomp 1 ish.

3. Users are permitted to specify their own
passwords, leading to easy-to-guess passwords.
The resulting loss of security has already
been well documented in the literature[2S],
and this method has been used at least once to
improperly obtain access to Multics at M.I.T.,
when a programmer chose as his Multics pass­
word the same password he used on another, un­
secured time-sharing system. A better strategy

, here would be to force the use of system-gen­
erated randomly chosen passwords, and also to
place an expiration date on them, to force
periodic password changes. For sensitive
applications, or situations where the password
must be exposed to unknown observers (as in
using a system via the ARPA network), the
system should provide lists of one-time
passwords.

4. The supervisor interface is vulnerable to mis­
implementation. Although this difficulty
could be described as a specific example of a
supervisor too large and complex to audit, it
is worth identifying in its own right. The
problem has to do with checking the range of
arguments passed to the supervisor. The hard­
ware automatically checks that argument
addresses are legitimately accessible to the
caller, and completely checks all use of
pointer variables as indirect addresses. How­
ever, it provides no help in determining
whether the ultimate argument values are
"reasonable" for the supervisor entry in
question. Each entry must be prepared to
operate correctly (or at least safely) no mat­
ter what combination of argument values is
supplied by the caller. Certain kinds of
interfaces make for difficulty in auditing a
program to see if it properly checks range of
arguments. For example, if the allowed range
of one argument depends on the result of com­
putation which is based in part on another
argument, then it may be hard to enforce a
programming standard which requires that all
supervisor entries check the range of all their
arguments before performing any other computa­
tion. The current Multics interface has
examples of situations in which, to verify that
a supervisor entry is correctly programmed so
that it does not blow up when presented with
an illegal argument, one must trace hundreds
of lines of code and many subroutine calls.
Such interfaces discourage routine auditing
of the supervisor interface, and probably re­
sult in some undetected implementation errors.
It would be interesting to explore the design
of argument range-checking hardware, which
would force the system programmer to declare
the allowed range of arguments for his entries,
and thereby force out into the open the exist­
ence of arguments whose range is not trivially
testable, for interface design revision.

5. Secondary storage residues are not cleared un­
til they are reassigned. When a segment is
deleted, all descriptors for the physical

2-53

storage area are destroyed, and the area is
marked as reusable. No further descriptors
for the storage area will ever be constructed
without first clearing the storage area but
meanwhile the residue remains intact. In
principle, there is no way to exploit these
residues using the system itself, but auto­
matic overwriting of the residues at the time
of deletion would provide an additional safe­
guard against accidents, and guarantee that a
segment, once deleted, is not accessible even
to a hardware maintenance engineer. 'A similar
problem exists for the magnetic tapes contain­
ing backup copies of se~nts. In at least
one ~ase on another time-sharing system, the
pers1stence of backup copies has proved
embarrassing: a government agency requested
that a file containing a list of special tele­
phone access codes be completely deleted; the
installation administrator found himself with
no convenient way to purge the residues on the
backup tapes. T&ese tapes should probably be
encrypted, using per-segment keys known only
by the operating system. It is an interesting
problem to co~struct a strategy for safely en­
crypting backup copy tapes, while ensuring
that encrypting keys do not get destroyed upon
system failure, making the backup copies
worthless.

6. Over-privileged system administrator. Some
system functions have been organized in such a
way that the administrators of the system re­
quire more privilege than really necessary.
For example, measures of secondary storage
usage are stored in the using directory rather
than in an account fil~. As a result, the
administrative accounting programs which pre­
pare bills for secondary storage use must have
access to read every directory in the storage
system. For another example, the "locksmith"
function, mentioned earlier, is currently
implemented by giving the locksmith permission
to modify the root directory of the storage
system directory hierarchy. Thus the lock­
smith has the unaudited ability to grant him­
self access to every file in the storage
system. Such a design means that one of the
easiest ways to attack is to attempt to in­
fluence the system administrator, possibly by
surreptitiously inserting traps in some pro­
gram he is likely to use* while running a
process whose principal identifier needlessly
permits extensive privileges. The counter
measure, currently partially implemented, is
to provide administrators with protected sub­
systems from which they cannot escape, which
are certified to exercise a minimum of privi­
lege, and which maintain audit trails.

7. Ponderous backup copy and retrieval scheme.
It has been noticed that the general method
currently used for indexing the contents of
storage system backup copy tapes is weak, so
that the only effective way to identify a de­
sired copy of a damaged segment is to permit
the user to manually scan printed journals of
the names of the segments copied onto each
tape. These journals contain the names of

* This technique has been described as the "Trojan
Horse" attack[Sl.

2-54

other users' segments and directories, and
were intended for use only for emergency sit­
uations and with proper clearance. Unfortu­
nately, the number of retrieval requests which
can be handled on other than an emergency basis
is a sensitive function of the quality of the
tools available for searching the journals
automatically while maintaining privacy. A
simple scheme based on a protected subsystem
for searching journals has recently been pro­
posed, but is not yet implemented.

S. Counter-intelligence techniques have not been
exploited. Although logs of suspicious events
(such as incorrectly supplied passwords) are
maintained no true counter-intelligence strate­
gies are employed. For example, Turn, et ale
[26] have suggested inserting carefully moni­
tored apparent flaws in the system. These
flaws would be intended to attract a would-be
attacker; any attempt to exploit them would
result in an early warning of attack and an
opportunity to apprehend the attacker.

9. Some areas of potentially vulnerability have
not been examined. These include vulnerability
to undetected failures of the hardware protec­
tion apparatus[17],* electromagnetic radiation
from the physical hardware machine[3], and
traffic analysis possibilities, using perfor­
mance measurement tools available to any user.

It is interesting to note that none of these
nine specific weaknesses represent intrinsic diffi­
culties of full-scale computer utility systems -­
relatively straightforward modification can easily
strengthen any of these areas. In fact, neither
the two major weaknesses nor the nine specific ones
represent "holes" in the sense of being immediately
exploitable by an attacker. Rather, they are areas
in which an attacker is more likely to discover a
method of entry caused by misimplementation, mis­
understanding, or mismanagement of an otherwise
securable system. Thus we might describe the pro­
tection system as usable, though with known areas
of weakness.

Conclusions

This paper has surveyed the complete range of
information protection techniques which have been
applied to a specific example of a system designed
for production use as a computer utility. Over
three years of experience in a production environ­
ment at H.I.T. has demonstrated that the mechanisms
are generally us~ful. A commonly asked question
(especially in the light of recent experiences
with attempts to add security to other commercially
available computer systems) is "how much perfor­
mance is lost?" This question is difficult to
answer since, as is evident, the protection struc­
ture is deeply integrated into the system and

* Although the 6180 hardware is less vulnerable
than some. An asynchronous processor-memory inter­
face tends to stop when au erroL occurs rather than
proceeding with wrong data; complete instruction
decoding explicitly traps all but legal operation
codes and addressing modifiers; and the multipro­
cessor organization helps obviate the need for
pipelines and other accident-prone highly-tuned
logic tricks.

cannot be simply ~rturned off" for an experiment. *
However, one significant observation may be made.
In general, the protection mechanisms are closely
related to naming mechanisms, and can be implemented
with a minimum of extra fuss in a system which pro­
vides a highly structured naming environment. Thus,
the users of Hultics apparently have found that the
overall package of a structured virtual memory with
protection comes at an acceptable price.

The Hultics protection mechanisms were designed
to be basic and extendable, rather than a complete
implementation of some specialized security model.
Thus there are mechanisms which may be used to pro­
vide the multilevel security classification (top
secret, secret, confidential, unclassified) and the
access compartments of the U.S. governmental secur­
ity system[27]. If one wished to precisely imitate
the government security system, he could do So with­
out altering the operating system. In this sense,
Hultics differs with, say, SDC's ADEPT[28] and
IBH's Resource Security System[14], both of which
specifically implement models of the government
security system, but which do not permit, for
example, user-written program-protected data bases.

We should also note that the Hultics system
was designed to be securable, which is different
than stating that any particular site is actually
operated in a completely secured fashion. Such
matters as machine room security, certification of
of hardware maintenance engineers and system opera­
tors, and telephone wire tapping are largely out­
side of the scope of operating system design. In
addition, correct administration can be encouraged
by the design of an operating system, but not
enforced. Further we have reported the design of
the system, realizing that its implementation has
not yet been completely audited and therefore may
contain trivial programming errors which affect
protection.

Acknowledgements

As is usual in any large system design, many
individuals have contributed ideas and suggestions,
and a complete acknowledgement is very hard to
compose. Professor E.L. Glaser provided the firm
conviction that information protection was a reason­
able goal during the critical initial design period
of the Multics system. He also suggested several
of the design principles and many of the specific
protection mechanisms which were ultimately in­
cluded. Professor R.H. Graham worked out the
initial design of the protection ring mechanism,
and Professor H.D. Schroeder expanded that design
to include automatic argument validation and com­
plete hardware support. Integration of protection
into the storage system was accomplished by R.C.
Daley. More recent upgradings of the user inter­
face have been designed by V.L. Voydock, R.J.
Feiertag, and T.H. VanVleck. P.A. Belmont,

* In analogy, we may consider a mouse. The mouse
has an elaborate system which maintains a constant
body temperatu~ej where; for example, a lizard
does not. There is a sense in which the mouse is
thereby less efficient, but one may also credibly
argue that the question of efficiency is incorrect­
ly posed. In a similar way, comparison of systems
with and without protection may also be incorrect.
(Analogy thanks to Carla H. Vogt.)

D.A. Stone, and M.A. Meer developed an early inter­
nal memorandum which helped articulate the design
issues. Others offering significant help include
Professor F.J. Corbato, C.T. Clingen, D.O. Clark,
M.A. Padlipsky, and P.G. Neumann. Of course, every
system programmer who worked in the most protected
region of Multics has also contributed by his extra
care and understanding of the protection objective.

References

1. Ackerman, W.B., and W.W. Plummer, "An Implemen­
tation of a Multiprocessing Computer System,"
ACM Symposium ~ Operating Systems Principles,
October, 1967, Gatlinburg, Tennessee.

2. Baran, P., "Secur ity, Secrecy, and Tamper-Free
Considerations," On Distributed Communications
2, Rand Corp. Technical Report RM-3765-PR.

3. Beardsley, C.W., "Is your computer insecure?1t
~ Spectrum 2, 1 (January, 1972), pp. 67-78.

4. Bensoussan, A., C.T. Clingen, and R.C. Daley,
"The Multics Virtual Memory: Concepts and
Design," .£2!!!!:!. ACM 15, 5 (May, 1972),
pp. 308-318.

5. Brans tad, D.K., "Privacy and Protection in
Operating Systems," Computer §., 1, 1973,
pp. 43-47.

6. The Compatible 1!!!-Sharing System: !
Programmer's Guide, M.I.T. Press, 1966.

7. Corbato, F.J., J.H. Saltzer, and C.T. Clingen,
IlMultics: The First Seven Years," ~
~. E!2£. 40, (1972 SJCC}, pp. 571-583.

8. Daley, R.C., and P.G. Neumann, "A General­
Purpose File System for Secondary Storage,"
AFIPS Conf. Proc. ll.., (1965 FJCC), pp. 213-229.

9. The Descriptor -- ! Definition ~ !h!. B5000
Information Processing System, Burroughs
Corporation, Business Machines Group, Sales
Technical Services, Systems Documentation,
Detroit, Michigan, 1961.

10. Evans, D.C., and J.Y. LeClerc, IIAddress Mapping
and the Control of Access in an Interactive
Computer,1I ~ ConI. E!2£. 30, (1967 SJCC),
pp. 23-30.

11. Glaser, E.L., "A Brief Description of Privacy
Measures in the Multics Operating System,"
~~. !!:2.£. 30, (1967 SJCC), pp. 303-304.

12. Graham, R.M., "Protection in an Information
Processing Utility," Comm. ACM 11, 5 (May,
1968), pp. 365-369. -- ---

13. Holland, S.A., and C.J. Purcell, "'lbe CDC Star-
100 -- A Large Scale Network Oriented Computer
System," ~ International Computer Society
~., (September, 1971), pp. 55-56.

14. IBM Application Program Manual "OS/'WlT with
Resource Security, General Information and
Planning Manual, If File no. GH20-l058-0, IBM
Corporation, December, 1971.

15. Lampson, B.W., "An Overview of the CAL Time­
Sharing System," Computer Center, University
of California, Berkeley, (September 5, 1969).

16. Lampson, B.W., "Protection," ..!:E2.£. 5th
Princeton Conf. on Information Sciences and
Systems, (~h,-r97l), pp. 437-443.

, c

17. Molho, L.M., "Hardware aspects of secure
computing," AFIPS ~. Proc. 36, (1970 SJCC)
pp. 135-141.

2-55

18. Needham, R.M., "Protection Systems and Pro­
tection Implementations," ~ Con£. Proc. 41,
Vol 1, (1972 FJCC), pp. 572-578.

19. Peters, B., "Security considerations in a multi­
programmed computer system," AFIPS Conf. Proc.
30, (1967 SJCC), pp. 283-286.-- -- --

20. Rotenberg, 'L;, "Making Computers Keep Secrets,"
Ph.D. TheSis, Department of Electrical
Engineering, Massachusetts Institute of Tech­
nology, September, 1973. (Also available as
M.I.T. Project MAC Technical Report TR-116.)

21. Schroeder, M.D., "Cooperation of Mutually
Suspicious Subsystems in a Computer Utility,"
Ph.D. Thesis, Department of Electrical
Engineering, Massachusetts Institute of Tech­
nology, September, 1972. (Also available as
M.I.T. Project MAC Technical Report TR-l04.)

22. Schroeder, M.D., and J.H. Saltzer, "A Hardware
Architecture for Implementing Protection Rings,"
~. ~ 15, 3 (March, 1972), pp. 157-170.

23. Smith, J.L., W.A. Notz, and P.R. Osseck, "An
Exper~ntal-Application of CryPtography to a .
Remotely Accessed Data System," !!:2£. ~
~ f22!., pp. 282-297.

24. System 370 Principles of Operation, IBM Systems
Reference Library File no. GA22-7000.

25. "Third Party 1D Aided Progran Theft,"
ComputerWorld y, 14, April 7, 1971.

26. Turn, R., R. Fredrickson, and D. Hollingworth,
~ Security !! the ~ Corporation, Rand
Corp. Techni~al Report P-49l4, October, 1972.

27. Ware, W., et a1., "Security Controls .!2!:
Computer Systems, Rand Corp. Technical Report
R-609, 1970. (Classified Confidential).

28. Weissman, C., "Security Controls in the
ADEPT-50 Time-Sharing System," ~ Conf.
E!2£ . .ll, (1969 FJCC), pp. 119-133.

29. Wilkes, M.V., 1!!!-Sharing Computer Systems,
American Elsevier Publishing Co., 1968.

2-56 INTRODUCTION TO THE CONCEPTS OF MULTICS

A Hardware Architecture f2r Implementing Protection Rings

by M.D. Schroeder and J.H. Saltzer. Reprinted from
Communications 2f ~ A&H, 11, 3, March, 1972, Pp.
157-170, with permission. Copyright 1972 by the
Association for Computing Machinery.

The casual reader~may wish to explore only the first half
dozen pages of this paper, which describes in full detail ~the
rather unusual hardware protection mechanism in use in the
current Multics system. As far as is known, Multics and the CAL
operating system (developed at the University of California at
Berkeley) are the only two systems thus far developed which
permit construction of general, user-constructed, protected
subsystems. This paper describes the mechanisms which make this
feature possible in Multics. Since the paper is recent, the
terminology and description are generally up-to-date. The
mechanisms described here are exactly the ones implemented on the
Honeywell 6180 computer system.

Protection of computations and information is an
important aspect of a computer utility. In a system
which uses segmentation as a memory addressing
scheme, protection can be achieved in part by
associating concentric rings of decreasing access
privilege with a computation. This paper describes
hardware processor mechanisms for implementing
these rings of protection. The mechanisms allow
cross-ring calls and subsequent returns to occur
without trapping to the supervisor. Automatic
hardware validation of references across ring
boundaries is also performed. Thus, a call by a user
procedure to a protected subsystem (including the
the supervisor) is identical to a call to a companion
user procedure. The mechanisms of passing and
referencing arguments are the same in both cases as
well.

Key Words and Phrases: protection, protection
rings, protection hardware, access control, hardware
access control, computer utility, time-sharing, shared
information, segmentation, virtual memory, Multics

CR Categories: 4.32, 6.21

Copyright © 1972, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part

of this material is granted, provided that reference is made to this
publication, to its date of issue, and to the faGt that reprinting
privileges were granted by permission of the Association for Com­
puting Machinery.

157

2-57

A Hardware
Architecture for
Implementing
Protection Rings
Michael D. Schroeder and Jerome H. Saltzer
Massachusetts Institute of Technology*

Introduction

The topic of this paper is the control of access to
stored information in a computer utility. The paper
describes a set of processor access control mechanisms
that were devised as part of the second iteration of the
hardware base for the Multics system. These mecha­
nisms provide a hardware implementation of protection
rings which limit the access privileges of an executing
program.

Multics is a general purpose, mUltiple user, inter­
active computer system developed at Project MAC of
MIT in a joint effort with the Cambridge Information
Systems Laboratory of Honeywell Information Systems
Inc. and, until 1969, the Bell Telephone Laboratories. It
was built and is being run as an experiment in designing,
implementing, operating, and evaluating a prototype
computer utility. (Reference [14] contains a bibliog­
raphy of publications on Multics.)

Multics is currently implemented on a Honeywell
645 computer system. The 645 represents a first attempt
to define a suitable hardware base for a computer utility.'
While containing special logic to support a segmented
virtual memory, the 645 processor [10] provides only a
limited set of access control mechanisms, forcing soft­
ware intervention to implement protection rings. In the
course of Multics development a second iteration of the
design of the hardware base has been undertaken. The
resulting new hardware system is being built as a re-

* Project MAC and Department of Electrical Engineering, 545
Technology Square, Cambridge, MA 02139. Work reported herein
was supported in part by Project MAC, an MIT research program
sponscred by the Advanced Research Projects Agency, Department
of Defense, under Office of Naval Research Contract NOOOI4-70-
A-0362-OOOI.

Presented at the Third ACM Symposium on Operating Systems
Principles, Palo Alto, California, October 18-20, 1971.

Communications
of
theACM

March 1972
Volume 15
Number 3

2-58
placement for the 645 using the technology of the
Honeywell 6000 series computer systems. The new proc­
essor includes an improved set of access control mecha­
nisms, described here, which implement rings almost
completely in hardware. These mechanisms were devel­
oped from a scheme described in [16]. Although specifi­
cally designed for Multics, the mechanisms are appli­
cable to any computer system which uses segmentation
as a memory addressing scheme.

This paper begins by establishing the general need
to control access to stored information in a computer
utility and by presenting several criteria for comparing
different sets of access control mechanisms. Relevant
aspects of the organization of segmented memories are
then sketched, and the processor mechanisms for imple­
menting protection rings are described. The paper con­
cludes by illustrating how rings can be used and by
evaluating the impact of a hardware system design.

Access Control in a Computer Utility

Protection of computations and information is an
important aspect of a computer utility. The mUltiple
users of a computer utility have different goals and are
responsible to different authorities. Such a diverse group
will use the same system only if it is possible for them to
achieve independence from one another. On the other
hand, a great potential benefit of a computer utility is
its ability to allow users to easily communicate, coop­
erate, and build upon one another's work. The role of
protection in a computer utility is to control user inter­
action-guaranteeing total user separation when de­
sired, allowing unrestricted user cooperation when
desired, and providing as many intermediate degrees of
control as will be useful.

While there are many manifestations of protection
in a computer utility, most may be related to controlling
access to stored information. Because stored informa­
tion represents both data and executable procedure,
control of access to stored information serves to regulate
information processing as well.

Four criteria can be applied to a set of access control
mechanisms to judge its usefulness in a computer utility:
functional capability, economy, simplicity, and pro­
gramming generality. The first means that a set of access
control mechanisms should be able to meet an inter­
esting set of user protection needs in a natural way. The
ability to meet interesting protection needs must be a
quality of the basic mechanisms, while the ability to do
so in a natural way is a quality of their user interface.
An obvious goal in designing new protection mecha­
nisms is to maximize functional capability.

The second criterion, economy, means that the cost
of specifying and enforcing a particular kind of access
constraint with a set of mechanisms should be so low
that it is not an important consideration in determining
the type of access control to be used in a particular appli-

158

cation. In addition, cost should be proportional to the
functional capability actually used. The existence of
access control mechanisms with sophisticated capabil­
ities should cost no extra to those with unsophisticated
needs. Cost includes the subsystem complexity and user
inconvenience that result from use of the access control
mechanisms, as well as any associated extra storage
space and execution time.

Simplicity is the third criterion. While it is true that
simplicity often leads to economy, something more is at
stake. For a set of access control mechanisms to be ac­
cepted there must be confidence that no way exists to
circumvent it. The best way to achieve confidence is to
keep the mechanisms so simple that they may be com­
pletely understood. With respect to access control
mechanisms, lack of simplicity often implies lack of
security.

The fourth criterion, programming generality, is
often neglected. It means that individual procedures
may be combined easily into larger units without under­
standing or altering their internal organizations. Pro­
gramming generality allows sharing to be effective in
encouraging users to build upon one another's work.
An implication of programming generality of relevance
to access control mechanisms is that it should be pos­
sible to change the protection environment of proce­
dures and collections of procedures without altering
their internal structure.

It clearly is difficult to design access control mecha­
nisms which satisfy all four of these criteria simultane­
ously. Increases in functional capability come at the
expense of economy, simplicity, and programming gen­
erality. The challenge in designing a set of access control
mechanisms is to maximize functional capability within
the constraints of the other three criteria. In the fol­
lowing sections a set of hardware access control mecha­
nisms that was devised in the course of Multics develop­
ment is described. These mechanisms appear to provide
a significant improvement in the simultaneous satisfac­
tion of the four criteria as compared with the mecha­
nisms in the initial Multics implementation.

Segmented Virtual Memory Environment

The processor access control mechanisms described
here regulate the ability of an executing program to
reference information in a segmented virtual memory.
As a basis for understanding these access control mecha­
nisms this section briefly reviews the structure of a typ­
ical segmented virtual memory. (See [1-3] for detailed
descriptions of several segmented virtual memories.)

A machine language program for a segmented envi­
ronment does not reference memory by absolute ad­
dress. Rather, its memory consists of independent seg­
ments identified by number. Each segment is a separate
array of words. A two-part address (s, w) identifies
word w of the segment numbered s.

Communications
of
theACM

March 1972
Volume 15
Number 3

The collection of segments in the virtual memory is
defined by a descriptor segment containing an array of
segment descriptor words (sow's). Each SDW can de­
scribe a single segment in the virtual memory. The num­
ber of a segment is just the index of the corresponding
sow in the descriptor segment. Among other things, an
sow contains the absolute address of the beginning of
the corresponding segment in memory. The absolute
address of the beginning of the descriptor segment is
contained in the descriptor base register (OBR) of a proc­
essor. Each processor contains logic for automatically
translating two-part addresses into the corresponding
absolute addresses. Address translation, done with an
indexed retrieval of the appropriate sow from the de­
scriptor segment, occurs each time a word in the virtual
memory is referenced, i.e. each time an instruction, in­
direct word, or instruction operand reference is made by
an executing program.

Storage for segments is usually allocated with a
paging scheme in scattered fixed-length blocks. If used,
paging is also taken into account by the address transla­
tion logic, but is totally transparent to an executing
machine language program. Paging, if appropriately
implemented, need not affect access control; it will be
ignored in the remainder of this paper.

Changing the absolute address in the OBR of a proc­
essor will cause the address translation logic to interpret
two-part addresses relative to a different descriptor seg­
ment. This facility can be used to provide each user of
the system with a separate virtual memory. A single
segment may be part of several virtual memories at the
same time, allowing straightforward sharing of segments
among users.

Controlling Access in a Segmented Virtual Memory

To provide a framework for discussion, three specific
assumptions true of Multics are introduced. First, a
process with a new virtual memory is created for each
user when he logs in to the system, and the name of the
user is associated with the process. The process is the
active agent of the user, and is his only means of refer­
encing and manipulating information stored on-line.
Second, on-line storage is organized as a collection of
segments of information. A process can reference a seg­
ment of on-line storage only if the segment is first added
to the virtual memory of the process. Third, the users
that are permitted to access each segment are named by
an access control list associated with each segment. As
will be seen, any system providing access control of the
type under discussion will probably have analogous as­
sumptions. The application of the rest of the discussion
to other systems with segmented virtual memories is
straightforward.

Adding a segment to a virtual memory, an operation
performed by supervisor programs, provides the initial
opportunity for controlling access to information stored

159

2-59
on-line. The name of the user associated with a process
must match some entry on the access control list of a seg­
ment before the supervisor will add that segment to the
the virtual memory of the process.

Once a segment is included in the virtual memory,
however, finer control on access is required. (If a process
could, say, write in any segment to which it had access,
little sharing of information among users would occur.)
If this finer control is to be effective against arbitrary
machine language programs constructed by users, it
must be implemented as hardware access validation on
each reference. The structure of the virtual memory
makes it natural to record these finer constraints in the
sow associated with each segment. Since the processor
must examine the sow for a segment each time that seg­
ment is referenced by two-part address anyway, there is
little effort added to validate the intended access against
constraints recorded there. With this structure it is also
possible to change the allowed access to a segment by
changing the finer constraints recorded in the sow, and
to expect the change to be immediately effective, al­
though the need for such dynamic changes is rare.

Flags which enable a segment to be read, written,
and executed are natural constraints to record in each
sow. The value for each flag comes from the access con­
trollist entry which matched the name of the user asso­
ciated with the process. An attempt by a process to
change the contents of a word of a segment, for example,
would be allowed by the processor only if the write flag
were on in the SDW. for the segment. This mechanism
provides individual control on the ability of each user's
process to read, write, and execute the words in each
segment stored on-line. It also makes a segment the
smallest unit of information that can be separately pro­
tected.

With the access control mechanisms described so far,
all programs executed as part of some process have the
same information accessing capabilities. However, there
seems to be an intrinsic need in many computations for
the access capabilities of a process to vary as the exe­
cution point passes through the various programs that
direct the computation. The most obvious examples of
this need are explicit invocations of supervisor programs
during the course of a computation. The execution point
may pass from a user program to a supervisor program
to initiate an input/output operation or change the ac­
cess control list of a segment, and then pass back to the
user program. Presumably the executing supervisor pro­
gram can access information in some way that the user
program cannot. In a system that allows and encourages
sharing of information among users, other examples
appear. For instance, user A may wish to allow user B
to access a sensitive data segment, but only through
a special program, provided by A, that audits references
to the segment. During the course of a computation in
a process of user B, access to the sensitive data segment
should be allowed only when the execution point is in
the special program provided by A.

Communications
of
theACM

March 1972
Volume 15
Number 3

2-60
I ne word "domain" is frequently associated with a

set of access capabilities. The examples above point to
an intrinsic need for multiple domains to be associated
with a process and for the domain in which the process
is executing to occasionally change as the execution
point passes from one program to another. A descriptor
segment with read, write, and execute flags in the SDW'S

defines a single domain. Additional mechanisms are
required to allow multiple domains to be associated
with a single process.

A very general set of access control mechanisms
would place no restriction on the number of domains
which could be associated with a process, and would
force no restrictive relationships to exist among the sets
of access capabilities included in the domains. Unfortu­
nately, devising such a set of access control mechanisms
that also meets the criteria of economy, simplicity, and
programming generality is a difficult research problem.
(See [5, 7, 8, 12, 13, 171 for several approaches that have
been explored.) In Multics the strategy was adopted of
limiting the number of domains which may be associated
with a process, and of forcing certain relationships to
exist among the sets of access capabilities included in
the domains. The result is protection rings.

The characterization of rings as a restricted imple­
mentation of domains is the result of hindsight. When
developed, rings were viewed as a natural generalization
of the supervisor/user modes that provided protection
in many computers. This path of development was
chosen because it solved the most pressing problems of
access control involved in the prototype computer
utility and, due to the inherent simplicity of the idea, it
was a path that the M ultics designers felt confident they
could successfully complete. Even today rings appear to
provide an effective trade-off among the criteria men­
tioned above.

Protedioll Riags

Associated with each process are a fixed number of
domains called protection rings. These r rings are named
by the integers 0 through r - 1. The access capabilities
included in ring m are constrained to be a subset of those
in ring n whenever m > n. Put another way, the sets of
access capabilities represented by the various rings of a
process form a collection of nested subsets, with ring 0
the largest set and ring r - I the smallest set in the collec­
tion. Thus, a process has the greatest access privilege
when executing in ring 0, and the least access privilege
when executing in ring r - 1. The total ordering of the
sets of access capabilities defined by the consecutively
numbered rings of a process is the property which allows
a straightforward implementation of rings in hardware.

As described earlier, the permission flags for each
segment in the virtual memory of a process simply indi­
cate that the segment can or cannot be read, written, or
executed by the process. With the addition of rings, the

160

flags must be extended to indicate which rings include
each access capability. Because of the nested subset
property of rings, the capability, say, to write a particu­
lar segment, if available to a process at all, is included in
all rings numbered less than or equal to some value w.
The range of rings over which this write permission
applies is called the write bracket of the segment for the
process. Read and execute brackets for each segment
can be established in the same way. A process is per­
mitted to read, write, or execute a segment in its virtual
memory only if the ring of execution of the process is
within the proper bracket.

A partial hardware implementation of rings places
numbers indicating the top of each bracket of a segment
in the SDW of the segment, aiong with the read, write,
and execute flags. If a flag is on, then the number spec­
ifies the extent of the corresponding bracket. Turning a
flag off indicates that the corresponding access capability
is not included in any ring of the process. For example,
a data segment might have its execute flag turned off or
a pure procedure segment might have its write flag
turned off. A register is added to the processor to record
the current ring of execution of the process. The proc­
essor can then validate each reference to a segment by
making the obvious comparisons when the SDW for the
segment is examined for address translation.

Figure 1 illustrates the flags and brackets that might
be associated with a writable data segment for some
process. (In Multics, eight was chosen as the appropriate
number of rings. Eight rings are shown in the examples,
although more or fewer rings might be appropriate in
another system.)

Fig. 1. Example access indicators for a writable data segment.

o
I I ----....-...
.r ite bracket

. ''----~----'

nad bracket

r inll

read flail • Oil

.r ite flot I OR

exKute flail • off

The association of mUltiple domains of protection
with a process generates the need for a new kind of ac­
cess capability-the capability to change the domain of
execution of a process. Since changing the domain of
execution has the potential to make additional access
capabilities available to a process, it is an operation that
must be carefully controlled. An understanding of the
sort of control required can be gained by reviewing the
purpose of domains. A domain provides the means to
protect procedure and data segments from other proce­
dures that are part of the same computation. Using
domains, it should be possible to make certain access
capabilities available to a process only when particular
programs are being executed. Restricting the start of
execution in a particular domain to certain program
locations, called gates, provides this ability, for it gives
the program sections that begin at those locations com-

Communications
of
the ACM

March 1972
Volume 15
Number 3

plete control over the use made of the access capabilities
included in the domain. Thus, changing the domain of
execution must be restricted to occur only as the result
of a transfer of control to one of these gate locations of
another domain.

With a completely general implementation of do­
mains, each domain could provide protection against
the procedures executing in all other domains of a pro­
cess. The corresponding property of rings is that the
protection provided by a given ring of a process is ef­
fective against procedures executing in higher numbered
rings. Switching the ring of execution to a lower number
makes additional access capabilities available to a pro­
cess, while switching the ring to a higher number reduces
the available access capabilities. Thus, the downward
ring switching capability must be coupled to a transfer
of control to a gate into the lower numbered ring. Gates
are specified by associating a (possibly empty) list of
gate locations with each segment in the virtual memory
of a process. If the execution point of the process is
transferred to a segment while the ring of execution is
above the top of the execute bracket for the segment,
then the transfer must be directed to one of the gate
locations in the segment. If the transfer is to a gate, then
the ring of execution of the process will switch down to
the top of the execute bracket of the segment as the
transfer occurs. If the transfer is not directed to one of
the gate locations, then the transfer is not allowed.

To provide control of this downward ring switching
capability which is consistent with the subset property
of rings, a gate extension to the execute bracket of a
segment is defined. The gate extension specifies the con­
secutively numbered rings above the execute bracket of
the segment that include the "transfer to a gate and
change ~ing" capability for the segment. The gate list
and the gate extension to the execute bracket can both
be specified with additional fields in each sow.

In contrast to downward ring changes, switching the
ring of execution to a higher-numbered ring can only
decrease the available access capabilities of a process.
Thus, an upward ring switch is an unrestricted operation
that can be performed by any executing procedure. (The
instruction to be executed immediately following an
upward ring switch must come from a segment that is
executable in the new, higher-numbered ring.) For
programming convenience, the upward ring switch may
be coupled to a special transfer instruction.

The abstract description of rings is now one step
from completion. The last step comes from the observa­
tion that for each procedure segment in the virtual mem­
ory of each process there is a lowest-numbered ring in
which that procedure is intended to execute. In order
to provide the means for preventing the accidental
transfer to and execution of a procedure in a ring lower
than intended, the requirement that execute brackets
have a lower limit at ring 0 is relaxed and instead an
arbitrary lower limit is allowed. For many procedure
segments the execute bracket will include exactly one

161

2-61
ring-the ring in which the procedure is intended to exe­
cute. Procedure segments with wider execute brackets
normally will contain commonly used library subrou­
tines that are certified as acceptable for execution in any
of several rings.

The arbitrary lower limit on the execute bracket of a
segment can be implemented by using the field of an
sow which specifies the top of the write bracket to spec­
ify the bottom of the execute bracket as well. The double
use of this field does not appear to remove any inter­
esting functional capability. In fact, it eliminates an
unwanted degree of freedom in access specification,
thereby removing the potential to make certain types of
errors, such as allowing both writing and execution of a
segment in more than one ring of a process.

Figure 2 shows example access indicators for a pure
procedure segment containing gates, and illustrates how

Fig. 2. Example access indicators for a pure procedure segment
which contains gates.

o 4 6 7 rino
1

read bracket
L.........---' '------,...----

execute gate
bracket extension

'-- ----- ---------' read f1ao 'on
write bracket if
write flao on

write flao 'off
execute flao ' on
gate list '0,1,2

the execute and write brackets specified in an sow must
be related.

The gate list and the numbers specifying the read,
write, and execute brackets and gate extension in each
sow all come from the access control list entry which
permitted the process to include the corresponding seg­
ment in its virtual memory, as did the values for the
read, write, and execute flags.

Call and Return

As argued above, a change in the domain of execu­
tion of a process can occur only when the executing
procedure transfers control to a gate of another domain ..
In the context of most programming languages, an inter­
procedure transfer represents a subroutine call, a return
following a call, or a nonlocal goto. Linguistically, all
three operations produce a change in the environment
of the execution point; this change affects the binding of
variable names to virtual storage locations. The call
operation has the additional function of transmitting
arguments and recording a return point. Performing
these functions generally requires the cooperation of
both the procedure initiating the operation and the
procedure receiving control. If a call, return, or goto
changes the domain of execution because it happens to
be directed to a gate location of another domain, then
the situation becomes more complicated, for neither

Communications
of
theACM

March 1972
Volume 15
Number 3

2-62
~"r0c~dure can depend upon the other to cooperate. An
l:llrortant simplifkation introduced by restricting do­
ll1J.ins to a ring structure is that a procedure may assume
the ..:ooperation of procedures in lower-numbered rings.

When procedures are shared among different pro­
cesses and different domains, the addressing environ­
ment is usuaily defined via processor registers, for the
procedures must be pure and it is not convenient to
embed addresses within them. Part of the function of the
call, return, and go to operations is to properly update
this environment pointer. In Multics, pure procedures
are used with a per process stack, and a stack pointer
register provides the required environment definition.
The stack of a process is implemented with a separate
segment for each ring being used. The stack segment for
procedures executing in ring n has read and write brack­
ets that end at ring n. Thus, stack areas for these proce-

. dures are not accessible to procedures executing in any
ring m > n. In the following discussion the stack pointer
register is used as a typical example of the required
environment pointer.

The most common ways of changing the ring of exe­
cution of a process are a call to a gate of a lower-num­
bered ring and the subsequent upward return. A down­
ward call represents the invocation of a user-provided
protected subsystem or a supervisor procedure. Because
the Honeywell 645 was designed around the usual super­
visor/user protection method, the version of Multics for
this machine implements rings by trapping to a super­
visor procedure when downward calls and upward re­
turns are performed. The hardware mechanisms detailed
in the next section eliminate the need to trap in these
cases. Using these improved hardware access control
mechanisms, downward calls and upward returns occur
without the intervention of a supervisor procedure and
are performed by the same object code sequences that
perform all calls and returns.

It is the nested subset property of rings that makes a
straightforward hardware implementation of downward
calls and upward returns possible. Because of this prop­
erty, the called procedure automatically has all access
capabilities required to reference any arguments that
the calling procedure can legitimately specify and to
return to the calling procedure in the ring from which it
called. However, three problems remain. First, the called
procedure must have a way of finding a new stack area
without depending upon information provided by the
calling procedure. Second, the called procedure must
have a way of validating references to arguments, so that
it cannot be tricked into reading or writing an argument
that the caBer could not also read or write. Finally, the
called procedure must have a way of knowing for certain
the ring in which the calling procedure was executing,
so that the called procedure cannot be tricked into re­
turning control to a ring not as high as that of the calling
procedure.

The key to solving the first problem, finding a new
stack area, is a rule relating the segment number of the

162

stack segment for a ring to the ring number. Using this
rule, the processor automatically calculates the segment
number of the proper stack segment for the called proce­
dure's ring of execution. By convention, a fixed word of
each stack segment can point to the beginning of the
next available stack area. Thus, the stack segment num­
ber alone can provide the called procedure with enough
information from which to construct its own stack
pointer. Because the processor provides the stack seg­
ment number, no procedure executing in a higher-num­
bered ring, e.g. the calling procedure, can affect the value
of the stack pointer for the called procedure.

The second problem, validating argument references,
is solved by providing processor mechanisms which al­
low a procedure to assume the more restricted access
capabilities of any higher-numbered ring for particular
operand references. Using these mechanisms, the called
procedure can validate access when referencing argu­
ments as though execution were occurring in the (higher­
numbered) ring of the calling procedure. Thus, the
called procedure, even though it is executing in a ring
with more access capabilities than the ring of the calling
procedure, can prevent itself from reading or writing
any argument that the calling procedure could not also
read or write.

The final problem, knowing the ring of the caller, is
solved by having the processor leave in a program acces­
sible register the number of the ring in which execution
was occurring before the downward call was made. The
subsequent return is made to that ring. Thus the calling
procedure has no opportunity to lower the number of
the ring to which the return is made.

The next two sections describe in more detail how
downward calls, argument referencing and validation,
and upward returns are implemented. Before proceeding
to that description, however, there are two other possi­
bilities to consider: a call and return that do not change
the ring of execution, and an upward call and the subse­
quent downward return. The first presents no protection
problem, as both the calling and the called procedures
have available the same set of access capabilities. The
hardware mechanisms for downward calls and upward
returns also work when no change of ring is needed.

The last possibility is more difficult to handle. An
upward call occurs when a procedure executing in ring
n calls an entry point in another procedure segment
whose execute bracket bottom is m > n. When the call
occurs, the ring of execution will change to m. The sub­
sequent return is dow~ward, resetting the ring of execu­
tion to n. These cases exhibit two unpleasant character­
istics of a general cross-domain call and return that were
not present in the other cases.

The first is that the calling procedure may specify
arguments that cannot be referenced from the ring of the
called procedure. (For a downward call, the nested sub­
set property of rings guaranteed that this could not
happen.) There are at least three possible solutions to
this problem. One is to require that the calling procedure

Communications
of
the ACM

March 1972
Volume 15
Number 3

Fig. 3. Schematic description of relevant storage formats and
processor registers.

Descriptor base register

DBR I ADDRESS I LENGTH I
Segment descr i ptor word (stored in memory)

SOW L ADDRESS i LENGTH I Rt j R2j R3 1 R I w I E I GATE j

access Indica tor

Instruction pOinter regIster

IPR I RING I SEGNO I WORDNO

Instruct Ion word (stored in memory)

INST [PRI'UI\ OFFSET \ OPCODE I I I

::~ [T""'''j "'""'J'"
RING SEGNO WORDNO

Indirect word (stored in memory)

IND I RING I SEGNO I WORD NO I ·-l
Temporary pOinter register

TPR I RING I SEGNO I WORDNO

specify only arguments that are accessible in the higher­
numbered ring of the called procedure. This solution
compromises programming generality by forcing the
calling procedure to take special precautions in the case
of an upward call. Another possible solution is to dy­
namically include in the ring of the called procedure the
capabilities to reference the arguments. Because a seg­
ment is the smallest unit of information for which access
can be individually controlled, this forces segments
which contain arguments to contain no other informa­
tion that should be protected differently, again compro­
mising programming generality, unless segments are in­
expensive enough that, as a matter of course, every data
item is placed in its own segment. It may also be expen­
sive to dynamical1y include and remove the argument
referencing capabilities from the called ring. The third
possible solution is copying arguments into segments
that are accessible in the called ring, and then copying
them back to their original locations on return. This so­
lution restricts the possibility of sharing arguments with
parallel processes. None of the three solutions lends
itself to a straightforward hardware implementation.

The second unpleasant characteristic is that a gate
must be provided for the downward return. (For an
upward return the nested subset property of rings made
a return gate unnecessary.) The return gate must be
created at the time of the upward calJ and be destroyed
when the subsequent return occurs. If recursive calls

163

2-63
into a ring are allowed, then this gate must behave as
though it were stored in a push-down stack, so that only
the gate at the top of the stack can be used. The gates
specified in SDW'S seem poorly suited to this sort of dy­
namic behavior. Processor mechanisms to provide dy­
namic, stacked return gates are not obvious at this time.

Because of these two problems, the hardware de­
scribed in the next section does not implement upward
calls and downward returns without software interven­
tion. Although the same object code sequences that
perform all calls and returns are used in these cases as
well, the hardware responds to each attempted upward
call or downward return by generating a trap to a super­
visor procedure which performs the necessary environ­
ment adjustments.

The manner in which the stack pointer register value
of the calling procedure is saved when a call occurs and
restored when the subsequent return occurs has not yet
been discussed. For a same-ring or downward call, it is
reasonable to trust the called procedure to save the value
left in the stack pointer register by the calling procedure
and then restore it before the subsequent return, since in
these cases the called procedure has access capabilities
which allow it to cause the calling procedure to malfunc­
tion in other ways anyway. For an upward call and the
subsequent downward return, the same convention can
be used without violating the protection provided by the
lower ring if the intervening software verifies the re­
stored stack pointer register value when performing the
downward return.

Hardware Implementation of Rings

In this section the ideas presented in the previous sec­
tions are gathered into a description of a design for
processor hardware to implement rings. The description
touches upon only those aspects of the processor orga­
nization that are relevant to access control. The seg­
mented addressing hardware described earlier serves as
the foundation of the ring implementation mechanisms.

Figure 3 presents a schematic description of storage
formats and processor registers that are relevant to the
discussion which follows. The OBR and sow's have ~I­
ready been mentioned. The three 3-bit ring numbers in
an sow (sow.RI, sow.R2, and sow.R3) delimit the read,
write, and execute brackets and the gate extension. The
write bracket is rings 0 through sow.RI, the execute
bracket sDw.RI through sow.R2, and the gate extension
sow.R2+ I through sow.R3. Rather than providing a
fourth number to specify the top of the read bracket,
sow.R2 is reused for this purpose. Thus the read bracket
is rings 0 through sow.R2. Forcing the top of the read
and execute brackets to coincide in this manner does not
seem to preclude any important cases, and saves one
ring number in the sow. Supervisor code for con­
structing sow's must guarantee that sow.Rl :::; sow.R2
:::; sow.R3 is true. The single-bit read, write, and execute

Communications
of
theACM

March 1972
Volume 15
Number 3

2-64
flags (SOW.R, SOW.W, and SOW.E) also appear. Finally,
the list of gate locations of a segment is compressed to
a single fixed-length field (SOW.GATE) by requiring all
gate locations to be gathered together, beginning at
location 0 of a segment. SOW.GATE contains the number
of gate locations present.

The instruction pointer register (IPR) specifies the
current ring of execution and the two-part address of
the next instruction to be executed. The general format
of an instruction word in memory (INST) is also shown
for later reference.

The program accessible pointer registers (PRO, PRI,
...) each contain a two-part address and a ring number.
Because segment numbers are not generally known at
the time a procedure segment is compiled, machine
instructions specify two-part operand addresses by
giving an offset (in INST.OFFSET) relative to one of the
PR's (specified by INST.PRNUM) or IPR.. The ring number
in a pointer register (PRn.RING) is used to specify a vali­
dation level for the address, and is part of the mecha­
nism that allows an executing procedure to assume the
access capabilities of a higher-numbered ring for refer­
encing arguments. One of the PR'S is intended to serve
as the stack pointer register mentioned earlier.

Indirect addressing may be specified in an instruction
by setting the indirect flag (INSf.I). Indirect words (INO)
contain the same information as PR.'S, and may also
indicate further indirection with an indirect flag (INO.I).

The final item in Figure 3 is the temporary pointer
register (TPR). The TPR is an internal processor register
that is not program accessible. It is used to form the
two-part address of each virtual memory reference
made. The ring number (TPR.RING) provides the value
with respect to which permission to reference the virtual
memory location is validated.

There are two aspects to the implementation of rings
in hardware. The first is access checking logic, integrated
with the segmented addressing hardware, that validates
each virtual memory reference. The second is special
instructions for changing the ring of execution. The best
way to describe the first aspect is to trace the processor
instruction cycle, paying particular attention to the
places where operations related to access validation oc­
cur. The second aspect will be discussed when the de­
scription of the instruction cycle reaches the point where
the instruction is actually performed.

The first phase of the instruction cycle, retrieving the
next instruction to be executed, is described in Figure 4.
At the point during address translation that the SDW for
the segment containing the instruction becomes avail­
able, the ring of execution (now TPR.RING) is matched
against the execute bracket defined in the sow and the
execute flag is checked. If the segment may be executed
from the current ring of execution the instruction fetch
is completed. The access violations and other conditions
requiring software intervention shown in this and fol­
lowing figures generate traps, derailing the instruction
cycle. A traps action is described later in this section.

164

Fig. 4. Retrieval of next instruction to be executed.

The next phase of the instruction cycle, calculating
in TPR the effective address of the instruction's operand,
is described in Figure 5. This phase occurs only if the
instruction has an operand in memory. The effective
address is the final two-part address of the operand
(after all address modifications and indirections have
taken place) together with an effective ring number
which is used to validate the actual reference to the
operand.

The formation of a two-part address in TPR.SEGNO
and TPR.WORDNO is very straightforward and is de­
scribed by Figure 5. The calculation of the ring number
portion of the effective address in TPR.RING and the ac­
cess validation performed before retrieving indirect
words, also shown in Figure 5, need further comment.

The effective ring portion of the effective address
provides a procedure with the means of voluntarily as­
suming the access capabilities of a higher-numbered
ring when making an instruction operand reference. The
effective ring number also records the highest-numbered
ring from which a procedure (in the same process) pos­
sibly could have influenced the effective address calcula­
tion. The first opportunity for the value of TPR.RING to
change during effective address calculation occurs if the
instruction contains an address that is an offset relative
to some PRn. In this case TPR.RING is updated with the
larger of its current values (still the current ring of execu­
tion) and the ring number in the specified pointer regis­
ter (PRn.RING). Thus, if PRn.RING contains a value that is
greater than the current ring of execution, validation of
the operand reference will be as though execution were
occurring in this higher-numbered ring.

Communications
of
the ACM

March 1972
Volume 15
Number 3

Fig. 5. Formation in TPR of effective address of instruction
operand ..

Access viololion ----------

in same s~nt as
instruction

(At Ihis poinl TI'R
contains effective
address 0·' inslruc- ./
t.on operond.l ~

Fig. 6. Access·validation for instructions which read or write their
operands.

~c=-e~ ..!i.~I!!,!C!!'_
read flo<;l not t1II

and operand not in
same se<;lmenl as
instruction

165

w~.tes

2-65
The remaining opportunities to change the valUe of

TPR.RING occur in conjunction with the processing of
indirect words involved in the effective address calcula­
tion. Each time an indirect word is retrieved, TPR.RING

is updated with the larger of its current values, the ring
number in the indirect word (INO.RING), and the top of
the write bracket for the segment containing the indirect
word (SOW.RI). The ring number in the indirect word
has the same purpose as the ring number in a pointer
register-forcing validation of the operand reference
relative to some higher-numbered ring. Including in the
calculation the top of the write bracket of the segment
containing the indirect word, however, has another pur­
pose. The top of the write bracket represents the highest­
numbered ring from which a procedure in the same
process could have altered the indirect word and thereby
influenced the result of the effective address calculation.
Taking into account sow.RI when updating TPR.RING

. guarantees that the operand reference will be validated
with respect to the highest-numbered ring which could
have influenced the effective address.

The capability to read an indirect word during effec­
tive address formation must be validated before the
indirect word is retrieved. Validation is with respect to
the value iri TPR.RING at the time the indirect word is
encountered. At the conclusion of the effective address
calculation described in Figure 5, TPR contains the effec­
tive address of the instruction operand, including the
effective ring number with respect to which the reference
to the operand will be validated.

The next phase of the instruction cycle is to perform
the instruction. For the purpose of access validation,
the possible instructions may be broken into three
groups, according to the type of reference made to the
operand. Figure 6 shows the access validation for the
straightforward cases of· instructions which read their

Communications
of
theACM

March 1972
Volume 15
Number 3

:.!-bb

operands and instructions which write their operands.
The third group, instructions which do not reference
their operands, is illustrated in Figure 7. One set in this
group is the "Effective Address to Pointer Register"­
type (EAP-type) instructions which load the RING, SEGNO,
and WORDNO fields of PRn with the corresponding fields
of TPR. The operand is not referenced, so no access val­
id~tion is required. Instructions of this type are impor­
tant, as will be seen later, for they are the only way to
load PR'S.

The remaining instructions illustrated in Figure 7 are
transfer instructions. To provide some protection
against changing the ring of execution by accident, all
transfer instructions except two, CALL and RETURN, are
constrained from doing so. Since a transfer instruction
does not reference its operand, but just loads the address
of its operand into the instruction counter, no access

"validation is really required. However, an advance check
on whether reloading IPR from TPR will result in an ac­
cess violation when the next instruction is retrieved is
very useful from the standpoint of debugging, for it
catches the access violation while it is still possible to
identify the instruction which made the illegal transfer.
Figure 7 describes the advance check for transfer in­
structions other than CALL and RETURN.

The two instructions that remain to be considered
are the instructions which can change the ring of execu­
tion: CALL and RETURN. They are intended to be used to
implement the same-named linguistic operations. l CALL
will automatically switch the ring of execution to a
lower number and RETURN to a higher number if the oc­
casion requires it. These instructions also function
properly for calls and returns within the same ring.
When used to perform an upward call or a downward
return, the instructions cause traps which allow software
intervention. "

Figure 8 describes the access validation and perform­
ance of the CALL instruction. Several 'points require
further explanation. The first concerns gates. From Fig­
ure 8 it is apparent that a CALL must be directed at a
gate location even when the called procedure will exe­
cute in the same ring as the calling procedure. The ra­
tionale for this use of the gate list of a segment is that
it can provide protection against accidental calls to
locations that are not entry points, even when the call
comes from within the same ring. Thus; SDW.GATE for a
procedure segment usually specifies the number of ex­
ternally defined entry points in the procedure segment.
These become gates for higher-numbered rings in the
sense described in the previous sections only if the top
of the gate extension of the segment is above the top of
the execute bracket, i.e. only if SDW.R3 > SDW.R2 for
the segment. The price paid for this error detection abil-
ity is that if any externally defined entry point in a pro­
cedure segment is a gate for a higher-numbered ring,

I RETURN may also be used to implement the nonlocal goto
operation.

166

Fig. 7. Access validation for instructions which do not reference
their operands.

CALL EAP-type
instruction instruction instruct ion instruction

~0

Fig. 8. Access validation and performance of the CALL
instruction.

~i5=vl.!l~lJ.oJ! __
"lot tempt to call a
•. lIOn-90te locot I on I

Communications
of
the ACM

March 1972
Volume 15
Number 3

Fig. 9. Access validation and performance of the RETURN
instruction.

-fACCeSS v.olo'i-onl
no effect. ve ronll not

• n execute bracket
_____ 0 ___ --

then all are. On intersegment transfers of control within
the same ring, the gate restriction can be bypassed by
using a normal transfer instruction rather than a CALL.
The only exception to having the CALL instruction re­
spect the gate list of the operand segment occurs if the
operand is in the same segment as the instruction. Al­
lowing a CALL instruction to ignore the gate list of the
segment containing the instruction permits it to be used
to implement calls to internal procedures.

The access validation for the CALL instruction is
made relative to the ring number computed as part of
the effective address. Since, as a result of PR-relative
addressing and indirection, the effective ring value
(TPR.RING) can be higher than the current ring of
execution (IPR.RING), what would appear to be a call
within the same ring or to a lower ring with respect to
TPR.RING can in fact be an upward call with respect
to IPR.RING. Because in normal circumstances this
situation represents an error, the decision is made to
generate an access violation when it occurs, even if the
current ring of execution is within the execute bracket
of the called procedure segment.

CALL generates in PRO a pointer to word 0 of the
stack segment for the new ring of execution. (The PR to
use as this stack base pointer is chosen arbitrarily.) The
stack segment selection rule illustrated in Figure 8 is
that the segment number of the appropriate stack seg-

167

2-67

ment is the same as the new' ring number. 2 The fina1
transfer of control is achieved by reloading IPR.RING,
IPR.SEGNO, and IPR.WORDNO from the corresponding
fields of TPR.

The RETURN instruction is described by Figure 9.
The access validation is the same as for other transfer
instructions. The ring to which the return is made is
specified by the effective ring portion of the effective
address generated by the RETURN instruction. In the case
that the return is upward, the ring number fields in all
pointer registers are replaced with the larger of their
current values and the new ring of execution. This re­
placement, together with the fact that PR'S can only be
loaded with EAP-type instructions, guarantees that PRn.­
RING can never contain a value that is less than IPR.RING,
a fact which proves very useful when passing arguments
on a downward call and which makes it easy to perform
an upward return to the proper ring. (See the next sec­
tion for details.)

Two items remain to be considered to complete the
description of the processor hardware for implementing
rings. One is the action of a trap. Traps are generated by
a variety of conditions in Figures 4-9, as well as by
missing segments and pages, I/O completions, etc. When
the processor detects such a condition, it changes the
ring of execution to zero and transfers control to a fixed
location in the supervisor. A special instruction allows
the state of the processor at the time of the trap to be
restored later if appropriate, resuming the disrupted
instruction.

The other item concerns privileged instructions.
Certain instructions, if executable by all procedure seg­
ments, could invalidate the. protection provided by the
ring mechanisms. Among these are the instructions to
load the DBR, start I/O, and restore the processor state
after a trap. Such instructions are designated as privi­
leged and will be executed by the processor only in ring
O. This convention restricts their use to supervisor pro­
cedures.

Call and Return Revisited

The intended use of the hardware mechanisms jus~·
described is illustrated by considering again two key
aspects of the linguistic meaning of the operations call
and return.

2 Two subtle features may be included at this point by using a
more sophisticated stack segment selection rule. If the CALL in­
struction does not change the ring of execution, then the segment
number for the stack base pointer is taken directly from the stack
pointer register, allowing the continued use of a nonstandard stack
segment for procedures executing in the same ring. If the CALL in­
struction does change the ring of execution then the new stack seg­
ment number is calculated by adding the new ring number to an
additional DBR field that specifies the eight consecutively numbered
segments that are the standard stack segments of the process. The
use of the additional DBR field allows more flexibility in stack seg­
ment assignment, facilitating the preservation of stack history fol­
lowing an error and the implementation of forked stacks.

Communications
of
theACM

March 1972
Volume 15
Number 3

£-o~

The first aspect to be reconsidered is the way argu­
ments are passed and referenced. A procedure making a
call constructs an array of indirect words containing the
addresses of the various arguments to be passed with
the call. To inform the caned procedure of the location
of this argument list, the calling procedure loads a spe­
cific PR designated by software convention (call it PRa)
with the address of the beginning of the argument list.
An instruction of the calIed procedure can reference the
nth argument as its operand by using an indirect ad­
dress. The location of the indirect word is specified in
the instruction as PRa offset by n. If this operand refer­
ence constitutes an upward cross-ring argument refer­
ence then the proper validation is automatic, for PRa.­
RING, as set by the calling procedure, must contain a
number that is greater than or equal to the number of
the ring in which the calling procedure was executing

. when the call was made. Thus, validation of all argu­
ment references by the called procedure will be with
respect to an effective ring that is at least as high as the
ring of the caller.

The ring number in PRa, then, allows the called pro­
cedure to automatically assume the fewer access capabil­
ities of the calling procedure in the case of an upward
cross-ring argument reference via PRa and the argument
list. Not all argument references, however, will be made
in this way. For example, if an argument is an array,
then the corresponding argument list indirect word will
address the first element. The calIed procedure may find
it convenient to load some free PR, say PR 1, with the
actual two-part address of the beginning of that array
argument so that array indexing can be more easily ac­
complished. IfPRl is loaded with an EAP-type instruction
whose operand address is specified via PRa and the argu­
ment list, then the proper effective ring number will
automatically be put in PRl.RING, and subsequent refer­
ences to the argument via PR 1 will also be validated
with respect to an effective ring that is at least as high as
the ring of the caller. If PR I is then stored as an indirect
word, this effective ring is put into the RING field of the
indirect word. In fact, as long as the calIed procedure
does not make an explicit effort to lower the effective
ring associated with an argument address, e.g. by
zeroing the RING field of an indirect word, then all ma­
nipulations of the argument address are safe, and all
argument references will be validated with respect to an
effective ring that is at least as high as the ring of the
caller.3

The second aspect to be reconsidered with respect to

3 This property allows the correct argument validation to occur
naturally when an argument is passed along a chain of downward
calls. The RING field of an argument list indirect word will specify
the ring which originaiiy provided the argument. If this value is
higher than the value of PRa.RING, then the indirect word ring
number will become the effective ring for validation of references to
the corresponding argument.

168

call and return is the way in which a return to the proper
ring is accomplished. As described earlier, the hardware
guarantees that the RING fields in all PR'S always contain
values greater than or equal to the current ring of exe­
cution. Thus, after a call all PR'S except PRO, which is
altered by the CALL instruction, initially contain the ring
of the caller (or some higher number) in their RING
fields. It follows that any scheme for returning which
depends upon one ofthese values is secure. For example,
the convention described earlier for restoring the stack
pointer register value of the caller before a return makes
it natural to address the operand of the RETURN instruc­
tion via this restored PRo (For this scheme to work, the
return point must have been saved by the caller at a
standard position in its stack area before the call oc­
curred.) The RETURN instruction is thus guaranteed to
generate an effective ring number no lower than the ring
of the calling procedure and therefore will return control
to the ring of the caller or some higher-numbered ring.

Use of Rings

Some insight into the functional capabilities of rings
can be gained by considering briefly the way the basic
mechanisms described in the previous sections are used
in MuItics.

The ring protection scheme allows a layered super­
visor to be included in the virtual memory of each
process. In Multics, the lowest-level supervisor pro­
cedures, such as those implementing the primitive
operations of access control, I/O, memory mUltiplexing,
and processor multiplexing, execute in ring O. The
remaining supervisor procedures execute in ring 1. Ex­
amples of ring I supervisor procedures are those
performing accounting, input/output stream manage­
ment, and file system search direction. (Deciding how
many layers to use and which procedures should execute
in each layer is an interesting engineering design
problem.) Supervisor data segments have read and write
brackets that end at ring 0 or ring I, depending on which
layer of the supervisor needs to access each.

Implicit invocation of certain ring 0 supervisor
procedures occurs as a result of a trap. Explicit invoca­
tion of selected ring 0 and ring 1 supervisor procedures
by procedures executing in rings 2-5 of a process is by
standard subroutine calIs to gates. Procedures executing
in rings 6 and 7 are not given access to supervisor gates.

Because separate access control lists for each seg­
ment and separate descriptor segments for each process
provide the means to control separately the use of each
segment by each user's process, not alI gates into super­
visor rings need be available to the processes of an users,
and not all gates need have the same gate extension
associated with them. For example, some gates into
ring 0 are accessible to the processes of all users, but only
to procedures executing in ring 1. Such gates provide the
internal interfaces between the two layers of the super-

Communications
of
theACM

March 1972
Volume 15
Number 3

visor. Some gates into ring I are accessible to procedures
executing in rings 2-5 in the processes of selected users,
but are not accessible at all from the processes of other
users. An example of the latter kind is a gate for regis­
tering new users that is available only from the processes
of system administrators.

As pointed out by Dijkstra [6], a layered supervisor
has several advantages. Constructing the supervisor in
layers enforced by ring protection reinforces these ad­
vantages. It limits the propagation of errors, thereby
making the supervisor easier to modify correctly and
increasing the level of confidence that the supervisor
functions correctly. For example, changes can be made
in ring 1 without having to recertify the correct oper­
ation of the procedures in ring O.

By arranging for standard user procedures to execute
in ring 4, rings 2 and 3 become available for the protec­
tion of user-constructed subsystems. Subsystems
executing in rings 2 and 3 of a process can be protected
from procedures executing in rings 4-7 in the same way
that the supervisor is protected from procedures exe­
cuting in rings 2-7. All comments made about a super­
visor implemented in rings 0 and I of each process apply
to protected subsystems implemented in rings 2 and 3.
Different protected subsystems may be operated simul­
taneously in- rings 2 and 3 of different processes and
several processes may share the use of the same
protected subsystem simultaneously. The ring protection
scheme allows the operation of user-constructed pro­
tected subsystems without auditing them for inclusion
in the supervisor. (The software facility that forces
standard user procedures to execute in ring 4, and yet
allows all users to freely provide ring 3 protected sub­
systems for one another, is not discussed here.)
Examples of protected subsystems that might be
provided by various users are a proprietary compiler or
a subsystem to provide interpretive access to some sen­
sitive data base and safely log each request for infor­
mation.

With most user procedures executing in ring 4, rings
5, 6, and 7 are available for user self-protection. For
example, a user may debug a program by executing it
in ring 5, where only procedure and data segments in­
tended to be referenced by the program would be made
accessible. The ring protection mechanisms would detect
many of the addressing errors that could be made by
the program and would prevent the untested program
from accidently damaging other segments accessible
from ring 4. In the same way ring 5 can be used for the
execution of an untrusted program borrowed from an-
other user. .

Because supervisor gates are not accessible from
rings 6 and 7 of any process in Multics, procedures exe­
cuted in these rings have no explicit access to supervisor
functions; they may, however, be given permission to
call user-provided gates into rings 4 or 5. Ring 6 of a
process might be used, for example, to provide a suit­
ably isolated environment for student programs being

169

2-69
evaluted by a grading program executing in ring 4.

The complete description of a software access
control facility based on rings that allows them to be
used in the manner just outlined would require another
paper. A fundamental constraint enforced by this soft­
ware facility is that a program executing in ring n cannot
specify RI, R2, or R3 values of less than n in an access
control list entry of any segment. Although a given ring
may simultaneously protect different subsystems in dif-

. ferent processes, each ring of each process can protect
only one subsystem at a time. A usable software access
control facility must constrain each user's ability to
dynamically set and modify access control specifications
so that this sole occupant property can be verified and
enforced when necessary.

Conclusions

The hardware mechanisms derived" and described in
this paper implement a methodical generalization of the
traditional supervisor/user protection scheme that is
compatible with a shared virtual memory based on seg­
mentation. This generalization solves three significant
kinds of problems of a general purpose system to be
used as a computer utility:

• users can create arbitrary, but protected, subsystems
for use by others;
• the supervisor can be implemented in layers which
are enforced;
• the user can protect himself while debugging his own
(or borrowed) programs.

The subset access property of rings of protection does
not provide for what may be called "mutually suspicious
programs" operating under the control of a single proc­
ess. On the other hand, it is just that subset property
which imposes an organization which is easy to under­
stand and thus allows a system or subsystem designer
to convince himself that his implementation is complete.
Also, it is just the subset property which is the basis for
a hardware implementation that is integrated with seg­
mentation mechanisms, requiring very small additional
costs in hardware logic and processor speed. "

The long-range effect of hardware protection mech­
anisms which permit calls to protected subsystems that
use the same mechanisms as calls to other procedures
is bound to be significant. In the interface to the super­
visor of most systems there are many examples of
facilities whose interface design is biased by the assump­
tion that a call to the supervisor is relatively expensive;
the usual result is to place several closely related
functions together in the supervisor, even though only
one of the group really needs protection. For example,
in the Multics typewriter I/O package, only the func­
tions of copying data in and out of shared buffer areas
and of executing the privileged instruction to initiate
I/O channel operation need to be protected. But, since

Communications
of
theACM

March 1972
Volume 15
Number 3

2-70
these two functions are deeply tangled with typewriter
operation strategy and code conversion, the typewriter
I. 0 control package is currently implemented as a set
of procedures all located in the lowest-numbered ring of
the system, thus increasing the quantity of code which
has maximum privilege.

A similar example is found in many file system
designs, where complex file search operations are carried
out entirely by protected supervisor routines rather than
by unprotected library packages, primarily because a
complex file search requires many individual file access
operations, each of which· would require transfer to a
protected service routine, which transfer is presumed
costly.

The initial version of Multics used software imple­
mented rings of protection. The result was a very
conservative use of the rings: originally just two super­
visnr rings and one user ring were employed, and the
two supervisor rings were temporarily collapsed into
one· (thus exploiting the programming generality objec­
tive referred to before) while the software ring crossing
mechanisms were tuned up. Today, although there are
many obvious applications waiting, the ability to use
more than two rings in a computation is just beginning
to be exploited. The availability with the new Multics
processor of hardware implemented rings which make
downward calls and upward returns no more complex
than calls and returns in the same ring should signifi­
cantly increase such exploitation.

Acknowledgments. The concepts embodied in the
mechanisms described here were the result of seven years
of maturing of ideas suggested by many workers. The
original idea of generalizing the supervisor/user
relationship to a multiple ring structure was suggested
by R.M. Graham, E.L. Glaser and F.J. Corbato. An
initial software implementation of rings using multiple
descriptor segments [14] was worked out by Graham
and R.C. Daley, and constructed by members of the
Multics system programming team. That implementa­
tion makes use of hardware access mode indicators
stored in the segment descriptor word of the Honeywell
645 computer. Graham [9], in 1967, proposed a partial
hardware implementation of rings of protection which
included three ring numbers embedded in segment de­
scriptor words. and a processor ring register, but which
still required software intervention on all ring cros~ngs.
Though a related scheme was implemented in the Hitac
5020 time-sharing system [15], this hardware scheme was
never implemented in Multics, which today (1971) still

170

uses a version of the software implementation of rings.
The complete automation of downward calls and up­
ward returns was proposed in a thesis in 1969 [16]; the
description in this paper extends that thesis slightly with
the addition of ring numbers to indirect words and the
processor pointer registers, as suggested by Daley. The
CALL and RETURN instructions proposed there have also
been simplified.

The hardware implemented call and return, and
automaticaIly managed stacks, were at least partly in­
spired by similar mechanisms which have long been used
on computer systems of the Burroughs Corporation
[4, 11].

In addition to those named above, D.O. Clark, C.T.
Clingen, R.J. Feiertag, J.M. Grochow, N.!. Morris,
M.A. Padlipsky, M.R. Thompson, V.L. Voydock, and
V.A. Vyssotsky contributed significant help in under­
standing and implementing rings of protection.

References

1. Apfelbaum, H., and Oppenheimer, G. Design of virtual
memory systems. Proc. 1971 IEEE Internat. Comput. Soc. Conf.,
Boston, pp. 115-116.
2. Arden, B.W., et al. Program and addressing structure in a
time-sharing environment. J. ACM 13, 1 (Jan. 1966), 1-16.
3. Bensoussan, A., Clingen, C.T., and Daley, R.C. The Multics
virtual memory. Proc. Second ACM Symposium on Operating
Systems Principles. Princeton, N.J., 1969, ACM New York,
1971, pp. 30-42 Also Comma ACM (to appear).
4. Burroughs Corporation. A Narrative Description of the
Burroughs B5500 Master Control Program. Detroit, Mich.
Oct. 1969. .
5. Dennis, J.B., and VanHorn, E.C. Programming semantics
for multi programmed computations. Comma ACM 9, 3 (Mar.
1966), 143-155.
6. Dijkstra, E. W. The structure of the "THE" - multiprogramming
system. Comma ACM 11,5 (May 1968), 341-346.
7. Evans, D.C., and LeClerc, J.Y. Address mapping and the
control of access in an interactive computer. Proc. AFIPS 1967
SJCC, Vol. 30, AFIPS Press, Montvale, N.J. pp. 23-30.
8. Fabry, R.S. Preliminary description of a supervisor for a
computer organized around capabilities. Quarterly Progress Rep.
No. 18, Institute of Computer Research, U. of Chicago, (-B
1-97.
9. Graham, R.M. Protection in an information processing
utility. Comma ACM 11,5 (May 1968), 365-369.
10. Honeywell Information Systems Inc., Model 645 Processor
Reference Manual. Cambridge Information Systems Laboratory,
Apr. 1971.
11. Hauck, E.A., and Dent, B.A. Burrough's B6500/B7500
stack mechanisms. Proc. AFIPS 1968 SJCC, Vol. 32, AFlPS
Press, Montvale, N.J. pp. 245-251.
12. Lampson, B.W. An Overview of the CAL Time-Sharing
System. Computation Center, U. of California, .Berkeley, Sept.
1969.
13. Lampson, B. W. Dynamic protection structures. Proc.
AFIPS 1969 FJCC, Vol. 35, AFIPS Press, Montvale, N.J.,
27-38.
14. MIT Project MAC. Multics Programmer's Manual. 1969.
15. Motobayashi, S., Masuda, T., and Takahashi, N. The Hitac
5020 time-sharing system. Proc ACM 24th Nat. Conf. 1969,
ACM New York, pp. 419-429.
16. Schroeder, M.D. Classroom model of an information and
computing service. S.M. Th. MIT, Dep. Elec. Eng., Feb. 1969.
[Expanded version available as Proj. MAC Tech. Rep.
MAC-TR-80.]
17. Vanderbilt, D.H. Controlled information sharing in a
computer utility. MIT Project MAC, MAC-TR-67, 1969.

Communications
of
theACM

March 1972
Volume 15
Number 3

INTRODUCTION TO THE CONCEPTS OF MULTICS 2-71

The Multics ElL! Compiler

by R.A. Freiburghouse. Reprinted from AFIPS Conference
Proceedings 22, AFIPS Pr~ss, 1969, pp. 187-199, with
permission. Copyright 1969 by AFIPS Press.

This paper describes Jthe second PL/I compiler successfully
constructed for Multics, and used for the compilation of the
operating system itself. Although today a third and better PL/I
compiler is now in use, the basic organization of the second
compiler was preserved. Probably the most significant
observation about these two compilers is that even though they
implement the full language, they generate object code of high
enough quality (often better than an average machine language
programmer) to be used in the operating system itself. Since the
concept of writing the system in PL/I, to make Its descriPtion
smaller, more maintainable, and easier to learn, was considered
pivotal in the goals of Multics, this paper is especially
significant.

The multics PL jI compiler

by R. A. FREIBURGHOUSE

General Electric Company
Cambridge, Massachusetts

INTRODUCTION

The IVlultics PL/l compiler is in many respects a
"second generation" PL/l compiler. It was built at a
time when the language was considerablv more stable
and well defined than it had been when the first
compilers were built. 1 .2 I t has benefited from the
experience of the first .compilers and avoids some of the
difficulties which they encountered. The M ultics com­
piler is the only PL/l compiler written in PL/l and. is
believed to be the first PL/l compiler to produce high
speed object code.

The language

The Multics PL/l language is the language defined
by the IBM "PL/l Language Specifications" dated
March, 1968.1 At the time this paper was written most
language features were implemented by the compiler
but the run time library did not include support for
input and output, as well as several lesser features.
Since the multi-tasking primitives provided bv the
Multics operating system were not well suited to~PL/l
tasking, PL/l tasking was not implemented. Inter­
process communication (lVlultics tasking) may be
performed through calls to operating system facilities.

The system environment

The compiler and its object programs operate within
the Multics operating system.3 •4 •5 The environment
provided by this system includes a virtual two dimen­
sionaladdress space consisting of a large number of
segments. Each segment is a linear address space whose
addresses range from 0 to 64K. The entire virtual store
is supported by a paging mechanism. which is invisible

2-73

to the program. Each program operating in this
environment consists of two segments: a text segment
containing a pure re-entrant procedure, and a linkage
segment containing out-references (links), definition~

(entry names), and st.atic storage local to the program.
The text segment of each program is sharable by all
other users on the system. Linking to a called program is
normally done dynamically during program execution.

Implementation techniques

The entire compiler and the ~Jultics operating system
were written in EPL, a large subset of PL/1 containing
most of the complex features of the language. The EFL
compiler was built by a team headed by ~tJ. D.l\IcIlroy
and R. lVlorris of Bell Telephone I.aboratories. Several
members of the l\1ultics PL/l projett modified the
original EPL compiler to improve· its object code
performance, and utilized the knowledge acquired from
this experience in the design of the l\Jultics PL/l
compiler. EPL and IHultics PL/l are sufficiently
compatible to allow tq.e l\Jultics PL/l compiler t~
compile itself and the operating system.

The l\fultics PL/l compiler 'was built and de-bugged
by four experienced system programmers in 18 months.
All program preparation was done on-line using the
CTSS time-sharing system at l\fIT. l\fost de-bugging
'vas done in a batch mode on the GE645. but final
de-bugging was done on-line using l\lultics.

The extremely short development time of 18 months
was made possib!e by these powerfu1 tools. The same
design programmed in a macro-assembly langua.ge using
card input and batched runs would have required twice
as much time, and the result would have been extremely
unmanageable.

187

2-74 Fall Joint Computer Conference, 1969

Design objectives

The project's design decisions and choice of techniques
were influenced by the following objectives:

1. A correct implementation of a reasonably
complete PLjl language.

2. A compiler which produced relatively fast object
code for all language constructs. For similar
language constructs, the object code '''ias ex­
pected to equal or exceed that produced by most
Fortran or COBOL compilers.

3. Object program compatibility with EPL object
programs and other ~IulticR languages.

4. An extensive compile time diagnostic facility.
5. A machine independent compiler capable of

bootstrapping itself onto other hardware.

The compiler's size and speed were considered less
important than the above mentioned objectives. Each
phase of the original compiler occupies approximately
32K, but after the compiler has compiled itself that
figure will be about 24K. The original compiler was
about twice as slow as the 1\'1ultics Fortran compiler.
The bootstrapped version of the PL/1 compiler is
expected to be considerably faster than the original
version but it will . probably not equal the speed of
Fortran.

A n overview of the compiler

The Multics PLj1 compiler is designed along
traditional lines. It is not an interactive compiler nor
does it perform partial compilations. The compiler
translates PLj1 external procedures into relocatable
binary machine code which may be executed directly or
which may be bound together with other procedureR
compiled by any 1\1 ultics language processor.

The notion of a phase is particularly useful when
discussing the organization of the 1\1 ultics PL/1
compiler. A phase is a set of procedures which performs
a major logical function of compilation, such as syntac­
tic analysis. A phase is not necessarily a memory load or
a pass over some data base although it may, in some
cases, be either or both of these things.

The dynamic linking and paging facilities of the
~Iultics environment have the effect of making avail­
able in virtual storage only those specific pages of those
particular procedures which are referenced during an
execution of the compiler. A phase of the 1\Jultics PLj1
compiler is therefore only a logical grouping of pro­
cedures which may call each other. The PLj1 compiler
is organized into five phases: Syntactic Transh1tion,
Declaration Processing, Semantic Translation, Optimi­
zation, and Code Generation.

The internal representation

The internal representation of the program being
compiled serves as the interface between phases of the
compiler. The internal representation is organized into
a modified tree structure (the program tree) consisting
of nodes which represent the component parts of the
program, fiuch aR blocks~ groups, statements, operators,
operands, and declarations. Each node may be logically
connected to any number of other nodes by the use of
pointers.

Each source program block is represented in the
program tree by a block node which has two lists
connected to it: a statement list and a declaration list.
The elements of the declaration list are symbol table
nodes representing declarations of identifiers within that
block. The elements of the statement list are nodes
representing the source statements of that block. Each
statement node contains the root of a computation tree
which represents the operations to be performed by that
statement. This computation tree consists of operator
nodes and operand nodes.

The operators of the internal representation are
n-operand operators whose meaning closely parallels
that of the PLj1 source operators. The form of an
operand is changed by certain phases, but operands
generally refer to a declaration of some variable or
constant. Each operand also serves as the root of a
computation tree which describes the computations
necessary to locate the item at run time.

This internal representation is machine independent
in that it does not reflect the instruction set, the
addressing properties, or the register arrangement of
the GE645. The first four phases of the compiler are also
machine independent since they deal only with this
machine independent internal representation. Figure 1
sho' s the internal representation of a simple program.

Syntactic iranslatio71.

Syntactic analysis of PLjl programs is slightly more
difficult than syntactic analysis of other languages such
as Fortran. PLj1 is a larger language containing more
syntactic constructs, but it does not present any
significantly new problems. The syntactic translator
consists of two modules called the lexical analyzer and
the parse.

Lexical analysis

The lexical analyzer organizes the input text into
groups of tokens which represent a statement. It also
creates the source liRting file and builds a token table
which contains the source representation of all tokens in

FACT:

F:

~~Ci FIXED,PRINT ENTRY, F ENTRY RETURNS (FIXED) INT;
DO I = , TO '0;
CALL PRINT("Factorial is~ F(I)h
END;
PROC (N) FIXED~
OCL N FIXED;
IF N" 0 THEN RETURN(1):

symbol table
~for 1

RETURN (N*F(N-1)h
END F;
END FACT.;

Iymboi jabie
............. 1or PRINT

I ymbol toble

'" ~wr F symbol ta b1e
~farN black no~

FACT --~

/
.tat.m t nod.

fo. i
stat.ment node , •• CjL
statem.nt node
for DO end ,
.tatement node
for FACT d

-:»Iock node IF
statem.nt node
for IF claus.-

I
Itatement node
for THEN clause ,

I
tstatement DOde ____ •

~ far RETURN /" "-I N call

.tatement node F/ ,_
for Fend / "

N 1

Figure I-The internal repre:erte.tion of 2. program.
The example is greatly simplified. Only the state­

ments of procedure F are shown in detail.

the source program. A token is an identifier, a constant,
an operator or a delimiter. The lexical analyzer is called
by the parse each time the parse wants a new statement.

The lexical analyzer is an approximation to a finite
state machine. Since the lexical analyzer must produce
output as well as recognize tokens, action codes are
attached to the state transitions of the finite state
machine. These action codes result in the concat.enation
of individual characters from the output until a
recognized token is formed. Constants are not converted
to their internal format by the lexical analyzer. They are
converted by the semantic translator to a format which
depends on the context in which the constant appears.

The token table produced by the lexical analyzer
contains a single entry for each unique token in the
source program. Searching of the token table is done
utilizing a hash coded scheme which provides quick
access to the table. Each token table entry contains a
pointer which may eventually point to a declaration of
the token. For each statement, the lexical analyzer
builds 3 vector of pointers to the tokens which were
found in the statement. This vector serves as the input
to the parse. Figure 2 shows a simple example of lexical
analysis.

The Multics PL/l Compiler 2-75

PRINT: PRQC(MESSAGE. VALUE};
DCL MESSAGECHAR(*}, VALUE FIXED;
CALL DISPLAY(MESSAGE II VALUE);
END~

The token table produced by
the lexical analyzer for
this program ii:

PRINT

PROC

MESSAGE

VALUE

DeL

CHAR ..
FIXED

CALL

DISPLAY

II

END

This vector of pOinters is the
representation of the coil
statement. it is created by
the lexical analyzer and serves
as input to the parse.

Figure 2-The output of the lexical analyzer.

The parse

The parse consists of a set of possibly recursi~e
procedures, each of which corresponds to a syntactIc
unit of the language. These procedures are organized to
perform a top down analysis of the source pr?gran~. ~s
each component of the progra.m is recognIzed, I~ 18

transformed into an appropriate internal representatIOn.
The completed internal representation is a program tree
which reflects the relationships between all of the
c Jmponents of the original source pro~ram. Figure 3 .
shows the results of the parse of fl, SImple program.

Syntactic contexts which yield decl3.rative inforrna­
tiOl; are recognized b~· the par~e~ and this informatiOl: is
passed to a module cfilled the .c~ntext .rec.order w~lch
construct~ a data base contmnmv. thIS mforrnatlOll.
Declare statements are parsed into partial symbol table
nodes which represent declarations.

The problem of backup

The top down method of ~~·ntactic analysis is used
because of its ::;implleity and flexibility. The llse of a
simple statement recognitioll a.lr.;orithm madp it possible

2- 76 Fall Joint Computer Conference, 1969

SUM: PROC(X,Nl FLOAT;
OCL (S INITlAUO),X(1000» FLOAT;
DCL (I,N) FIXED;
DO I • t TO Ni
S • S+X(I);
END;
RETURN.<Sh
END SUM;

symbol table
for N

/'
tabl.

The token table

Figure 3-The output of the parse

to eliminate all backup. The statement recognizer
identifies the type of each statement before the parse of
that statement is attempted. The algorithm used by
this procedure first attempts to recognize assignment
statements \ISing a left to right scan which looks for
token patterns which are roughly analogous to X = or
X () =. If a statement is not recognized as an
assignment, its leading token is matched agai~t a
keyword list to determine the statement type. This
algorithm is very efficient and is able to positively
identify all legal statements without requiring keywords
to be reserved. .

Declarat{on proCl1ssing

PL/l declaration processing is complicated by the
great variety of data attributes and by the context
sensitive manner in which they are derived. Two
modules, the context processor and the declaration
processor, process declarative information gathered by
the parse.

T"ne context processor

The context processor scans the data base containing
contextually derived attributes produced during the
parse by the context recorder. It either augments the
partial symbol table created from declare statements or

creates new declaration:::; h~wing the same format as
those derived from declp,re statements. Thi~ activity
ereates contextual and implicit declarations.

The declaration processor

The declaration processor develops sufficient informa­
tion about the varial] 38 of the program so that they
may be allocated storage, initialized and accessed by the
program's operators. It is organized to perform three
major functions: the preparation of accessing code, the
computation of each variable's storage requirements,
and the creation of initif'.lization code.

The declaration processor is relatively machine
independent. All mac'1ine dependent characteristics,
such as the number of bits per word and the alignment
requirements of data typeR, are contained in a table.
All computations or statements produced by the
declaration processor have the same internal representa­
tion as source language expressions or statements. Later
phases of the compiler do not distinguish between them.

The use of based references by the declaration
pro~r

The concept of a based reference is useful to the
understand.ing of PL/I data acces..~ing and the imple­
mentation of a number of language features. A based
declaration of the form DeL A BASED is referenced
by a based reference of the form P --:-+ A, where P is a
pointer to the storage occupied by a value whose
description is given by the declaration of A. Multiple
instances of data having the characteristics of A can be
refereilced through the use of unique pointers, i.e.,
Q --:-+ A, R --:-+ A, etc.

The declaration processor implements a number of
language features by transforming them into suitable
based declarations. Automatic data whose size is
variable is transformed into a based declaration.

For example the declaration:

DeL A(N) AUTO;

becomes

DeL A(N) BASED (P) ;

where: P is a compiler produced pointer which is set
upon entry to the declaring block.

Based declarations are also used to implement
parameters. For example.

X: PROC (C); DCL C;

be<~omes

X: PROC (P); DCL C BASED (P) ;

where: P is a pointer which points to the argument
corresponding to the parameter C.

Data accessing

The address of an item of PL/1 data consists of three
basic parts: a pointer to some storage location, a word
offset from that location and a bit offset from the word
offset. Either or both offsets may be zero. The term
"word" is understood to refer to the addressable unit
of a computer's storage.

Example 1

DCL A AUTO;

The address of A consists of a pointer to the declaring
block's automatic storage, a word offset within that
automatic storage and a zero bit offset

Example 2

DCL 1 S BASED(P),
2 A BIT(5),
2 B BIT(N)

When referenced by P ---+ B, the address of B is a
pointer P, a zero word offset and a bit offset of 5. The
word offset may include the distance from the origin of
the item's storage class, as was the case with the first
example, or it may be only the distance from the
level-one containing structure, as it was in the last
example. The term "level-one" refers to all variables
which are not contained 'within structures. Subscripted
array element references, A(K, J), or sub-string
references, SUBSTR(X, K, J), may also be expressed
as offsets.

Offset expressions

The declaration processor constructs offset expres­
sions which represent the distance between an element
of a structure and the data origin of its level-one
containing structure. If an offset expression contains
only constant terms, it is evaluated by the declaration
processor and results in a constant addressing offset. If
the offset expression contains variable terms, the
expression results in the generation of accessing
instructions in the object program. The discussion which
follows describes the efficient creation of these offset
expressions.

The Multics PL/l Compiler 2-77

Given a declaration of the form:

DeL 1 S.
2 A BITOI/.
2 B BIT(5).
2 C FLOAT;

The offset of A is zero, the offset of B is Jf bits, and the
offset of C is Jf + ·5 bits rounded upward to the
nearest ,yord boundary.

In general. the offset of the nth item in a structure is:

b,,(C,,-l(Sn-l) + bn-l(c,,-2(Sn-2} + hn-2
(- .. b3(c2(s2}') + ~(Cl(Sl)))' •.) ,I)

. where: b Ic is a rounding function which expresses the
boundary requirement of the kth item.

Sic is the size of the kth item.
Ck is the conversioll factor necessary to convert
Sk to some common unIts such as bits.

The declaration processor suppresses the creation of
unnecessary conversion functions (Ck) and boundary
functions (b lc) by keeping track of the current units and
boundary as it builds the expression. As a result the
offset expressions of the previous example do not con~
conversion functions and boundary functions for r
andB. -

During the construction of the offset expression, the
declaration processor separates the constant and varia­
ble terms so that the addition of constant terms is done
by the compiler rather than by accessing code in the
object program. The following example demonstrates
the improvement gained by this techniqUE!!

DeL 1 S,
2 A BIT(5),
2 B BIT(K),
2 C BIT(6),
2 D BIT(10):

The offset of D is K+l1 instead of-j+K+6.

The word offset and the bit offset are den'loped
separately. 'Yithin each offset. the constant and yaria­
ble parts are separn,ted. These separations re:::ult in the
minimization of additions and unit conYer:::ion::'. If the
declaration contains only constant sizes. the resulting
offsets are constant. If the dech"l.ration contaiEs expres­
sions, then the offset.s are expressions containing the
minimum number of terms and conn:'rsion f~'l,('tors.

The deyelopment of size and offset expressions a,t

2-78 Fall Joint Computer Conference, 1969

compile time enables the object program to access data
without the use of data descriptor~ or "dope vectorso''6
~Iost exi5ting PL 1 implementations make extensive
use of such descriptorR to access data whose size or
offsets are variable. Unless these descriptors llre
implemented by ha.rjware, their use results in rather
ine:ncient object code. The ~IulticH PL, 1 strategy of
developing offset expressions from the declarations
results in accessing, code similar to that produced for
subs 'ri)ted array references. This code is generally
more l flici3nt than code which uses descriptors.

In gUlerJ.l, the offset expressions constructed by the
declarat io 1 proce3sor remain uIlchanJ!:ed until code
generation. Two cases are exceptions to this rule:
subscripted array references~ A (K ,J), and sub-string
references, S lJ B S T R (X, K, J). Each subscripted
reference or sub-5tring reference is a reference to a
unique sub-datum within the declared datum and,
therefore, requires a unique offset. The semantic
translator constructs these unique offsets using the
subscripts from the reference and the offset prepared by
the declaration processor.

AIloeation

The declaration, processor does not allocate storage
for most classes of data, but it does determine the
amount of storage needed by each variable. Variables
are allocated within sO,me segment of storage by the code
generator. Storage allocation is delayed because, during
semantic translation and optimization, additional dec­
I. rations of constants and compiler created variables
are made.

Initialization

The declaration processor creates statements in the
prologue of the declaring block which will initialize
automatic data. I t generates DO statements, IF
statements and assignment statements to accomplish
the required initialization.

The expansion of the initial attribute for based and
controlled data is identical to that for automatic data
except that the required statements are inserted into
the program at the point of allocation rather than in the
prologue.

Since array bounds and string sizes of static data are
required by the language to be constant, and since all
values of the iflitial attribute of static data must be
constant, the compiler is able to initialize the static data
at compile time. The initialization is done by the code
generator at the time it allocates the static data.

Semantic translation

The semantic transiator transforms the internal
representation so that it reflects the attributes (seman­
tics) of the declared variables without reflecting the
properties of the object machine. It makes a single scan
over the internal representation of the program. A com­
piler, which had no equivalent of the optimizer phase
and which did not separate the machine dependencies
into a separate phase, could conceivably produce object
code durinJ!: thiR scan.

Organization of the semantic translator

The semantic translator consists of a set of recursive
procedures which walk through the program tree. The
actions taken by these procedures are described by the
general terms: operator transformation and operand
processing. Operator transformat.ion includes the crea­
tion of an explicit representation of each operator's
result and the generation of conversion operators for
those operands which require conversion. Operand
processing determines the attributes, size and offsets of
each operator's operands.

Operator transformation

The meaning of an operator is determined by the
attributes of its operands. This meaning specifies which
conversions must be performed on the operands, and it
decides the attributes of the operator's result.

An operator's result is represented in the program
tree by a temporary node. Temporary nodes are a
further qualification of tbe original operator. For
example, an add operator whose result is fixed-point is a
distinct operation from an add operator whose result is
floatinlJ;-noint. There is no storage associated with
temporaries-they are allocated either core or register
stora~e by the code generator. A temporary's size is a
function of the operator's meaning and the sizes of the
operator's operands. A temporary, representing the
intermediate result of a string operation, requires an
expression to represent its length if any of the string
operator's operands have variable lengths.

Operand processing

Operands consist of sub-expressions, references to
variables, constants, and references to procedure names
or built-in funct.ions. Sub-expression operands are
processed by recursive use of operator transformation
and operand processing. Operand processing converts
constants to a binary format which depends on the

context in -which the constant was used. References to
variables or procedure names are associated with their
appropriate declaration by the search function. After
the search function has found the appropriate declara­
tion, the reference may be further processed by the
subscriptor or function processor.

The Search function

During the parse, it is not possible for references to
source program variables to know the declared attributes
of the variable because the PL/l language allows
declarations to follow their use. Therefore, references to
source program variables are parsed into a form which
contains a pointer to a token table entry rather than to
a declaration of the variable. Figure 3 shows the output
of the parse. The search function finds the proper
declaration for each reference to a source program
variable. The effectiveness of the search depends heavily
on the structure of the token ~able and the symbol table.
After declaration processing, the token table entry
representing an identifier contains a list of all the
declarations of that identifier. See Fig-ure 4.

The search function first tries to find a declaration
belonging to the block in which the reference occurred.
If it fails to find one, it looks for a declaration in the next
containing block. This process is repeated until a

TOP: PROt;

OCL B POINTER;

BEGIN;

DCL B FLOAT;

BEGIN;

END;
END;

END;

OCL B FIXED.~

\
symbol tabl e for

............... B as a pointe-r
b lock node for ~

TOP ~

, symbol table for
" ,..........,B 01 flootin;-point
block node for ~

Token Table

f Int BEGIN "
, • ymbo I table for

" ...,.,.B 0$ fixed-point
b lock node for ~
.econd BEGIN

Figure 4-The relationship between the token t.able and
the symbol table

The Multics PL/l Compiler 2-79

DEMj PRoe;

DCL IS,
2 A(N) FLOAT,
2 B(M) FIXEO~

S.B(I) • 0;

END;

\ - .ymbol
block node .---- for B
for OEM

table

\reference
node for B \ \ } t he word offset

flxprflu ion bui It
by the declaration
proce •• or.

.totement node
for o •• i;nment ~

\ Ie

" ._/ '" , - - 0
reference -.
node for 8

/
/+,

/+\ -I

N I
} the word offset

expression bui It
by the .emantic
tronslotor.

Figure 5-A .;:implified diagram showing the effects of
subscripting

-declaration is found. Since the number of declarations
on the list is usually one, the search is quite fast. In its
attempt to find the appropriate declaration, the search
function obeys the language rules regarding structure
qualification. It also collects any subscripts used in the
reference and places them into a subscript list. Depend­
ing on the attributes of the referenced item, the
subscript list serves as input to the function processor' or
subscriptor.

The declaration processor creates offset expressions
and size expressions for all variables. These expressions.
known as accessing expressicns, are rooted in a reference
node which is attached to a symbol table node. The
reference node contains all information necessary to
access the data at run time. The search fUllction
translates a source reference into a pointer to this
reference node. See Fi~ure 5 .

Subscripting

Since each subscripted reference is unique. its offset
expression is unique. To reflect this in the internal
representation. the subscriptor creates a unique refer­
ence node for each ~ubscripted reference. See Fi~tlre 6.
The following di~ctl~sion 8hO\\"8 the relationship between
the declared arnty bound8. the eienH'nt :-;ize. the a.rray
offset and subscripts.

2 - 8 0 Fall Joint Computer Conference, 1969

Let us consider the case of an array declared:

a(h :Ul, 12 :U2.· .. " In :Un)

I t8 element size is s and its offset is b.

'1 he multipliers for the array are defined as:

m" = s
~-l = (u .. -1" + l)s
ffin-2 = (U .. -l -1,,-1 + 1)~-l

ml = (U2 -12 + 1) m2

The offset of a reference a(h, i2 •• • " in) is computed as:

..
v + L ijm]

i=1

\\" here: l,! is the virtual origin. The virtual origin is the
offset obtained by setting the subscripts equal to zero.
I t serves as a convenient base from which to compute
the offset of any array element.

During the construction of all expressions, the
constant terms are separated from the variable terms
and all constant operations are performed by the

FIGs PROt;
OCL (X. 't: Z) FLOAT;

x • y+ Z ~

EH~

""",.
• ,...01 tabl •

.,......,for Z \

.,.bol tab I. nf.r.nc.
for Y \ flO'. for Z

\
.,......, .

• ,.01 tobl. r.fer.ftc.
for X \ nod. for Y ,......,

b lock no'. r.f.r.ftc.

" .(0" fo. X ToO. To.'.

" (Eaclt rJ ,o1,,'s1
.tatsment nod. tto a .,-01 tabl.)

f •• 0"".- v·_-+ -8
\ ~,_ Y--:':H

------L.:..-J
Figure 6-The internal repref'entation of a statement
before and after the execution of the se8,rch function.

The hroken line~ :-how the ~tatementJ~
operand!' hefore the :-=e8,rch

compiler. Sinte the virtual origin and the multipliers are
common to all references, they are constructed by the
declaration processor and are repeatedly used by the
subscriptor.

Arrays of PL/l structures which contain arrays may
result in a set of multipliers whose units differ. The
declaration:

DCL 1 8(10);
2 A PTR,
2 B(lO) BIT(2);

yields two multipliers of different u~its. The first
multiplier is the size of an element of S in words, while
the second multiplier is the size of an element of B
in bits.

Array parameters which may correspond to an array
('ross section argument must receive their multipliers
from an argument descriptor. Since the arrangement
of the cross section elements in storage is not known to
the called program, it cannot construct its own multi­
pliers and must use multipliers prepared by the calling
program. Note that the current definition of PL/l
allows any array parn,meter to receive a cross section
argument.

The function processor

An operand which is a reference to a procedure is
expaJlded by the (unction processor into a call operator
and possible conversion operators. Built-i!l function
references re~mlt in new operators or are translated into
expressions consisting of operators and operands.

Generic procedure references

A generic entry name represents a family of pro­
cedures \vhose members require different types of
a.rguments.

DCI~ ALPHA GENERIC (BETA
ENTRY (FIXED)),
GAI\Il\lA
ENTR Y (FLOAT» ;

A reference to ALPHA (X) will result in a call to
BETA or CAMJ\tfA depending on the attributes of X.

The declaration processor chains together all members
of a generic family and the function processor selects the
appropriate member of the family by matching the
arguments w;ed in the reference with the declared
u.rgument requirements of ench member. When the
appropriate member i~ foun<l~ the original reference is
replaced by a reference to the selected member.

Argument processing

The function processor matches arguments to user­
declared procedures against the argument types required
for the procedure. It inserts conversion operators into
the program tree where appropriate, and it issues
diagnostics when it detects illegal cases.

The return value of a function is processed a.'S if it
were the n + 1 th argument to the procedure, eliminating
the distinction between subroutines and functions.

The function processor determines which arguments
may possibly correspond to a parameter whose size or
array bounds are not specified in the called procedure.
In this case, the argument list is augmented to include
the missing size information. A more detailed description
of this issue is given later in the discussion of object
code strategies.

The built-in function processor

The ouiIt-in function processor is basically a table
driven device. The driving table describes the number
and kind of arguments required by each function and is
used. to force the necessary conversions and diagnostics
for each . argument. l\,f ost functions require processing
which is unique to that function, but the table driven
device minimizes the amount of this processing.

The SU BSTR built-in function is of particular
importance since it is a basic PL/l string operator. It is
a three argument function which allows a reference to
be made to a portion of a string variable, i.e.,
SUBSTR (X, I, J) is a reference to the ith through
i + j - lth character (or bit) in the string X.

This function is similar to an array element reference
in the sense that they both determine the offsets of the
reference. The processing of the SUBSTR function
involves adjusting the offset and length expressions
contained in the reference node of X. As is the case in
all compiler operations on the offset expressions, the
constant and variable terms are separated to minimize
the object code necessary to access the data.

The optimizer

The compiler is designed to produce relatively fast
object code without the aid of an optimizing phase.
Normal execution of the compiler will by-pass the
optimizer, but if extensively optimized object code is
desired, the user may set a compiler command option
which will execute the optimizer. The optimizer consists
of a set of procedures which perform two major optimi­
zations: common sub-expression removal and removal
of computations from loops. The data bases necessary

The Multics PL/l Compiler 2 - 81

for these optimizations are constructed by the pa~e
and the semantic translator. These data bases consist of
a cross-reference structure of statement labels and a
tree structure representing the DO groups of each
block. Both optimizations are done on a block basis
using these two data bases.

Although the optimizer phase was not implemented
at the time this paper was written, all data bases
required by the optimizer are constructed by previous
phases of the compiler and the abnormality of all
variables is properly determined.

Optimiza.tion of PL/I programs

The on-condition mechanism of the PLjl language
makes the optimization of PLjl programs considerably
more difficult than the optimization of Fortran pro­
grams. Assuming that an optimized version of a
program should yield results identical to those produced
by the un-optimized version, then if anyon-conditions
are enabled in a given region of the program, the
compiler cannot -remove or reorder the computations
performed in that region. (Consider the case of a divide
by zero on unit which counts the number of times that
the condition occurs.)

Since some on~conditions are enabled by default,
most PLjl programs cannot be optimized. Because of
the difficulty of determining the abnormality of a
program's variables, the optimization of those programs
which may be optimized requires a rather intelligent
compiler. A variable is abnormal in some block if its
value can be altered without an explicit indication of
that fact present in that block. An optimizing PLjl
compiler must consider all based variables, all arguments
to the ADDR function, all defined variables, and all
base items of defined variables to be abnormal. If the
compiler expects values of variables to be retained
throughout the execution of a call, it must also consider
all parameters, all external variables, and all argument.s
of irreducible functions to be abnormal. .

Because of the difficulty of optimizing programs
written in the current PLjllanguage1 compilers should
probably not attempt to perform general optimizations
but should concentrate on· special case optimizations
which are unique to each implementation. Future
revisions to the language definition may help solve the
optimization problem.

The code generator

The code generator is the machine dependent portion
of the compiler. It performs two major functions: it
allocates data into ::\[ultics segments and it generates

2-82 Fall Joint Computer Conference, 1969

6-15 machine instructions from the internal repre­
~entation.

Storage allocation

A module of the code genera.tor called the ~tortt~e
a.lloca.tor sca.n .. ';; the ~ymbol table allocating staek
::'torage for COllstant size automatic data. Pond linkage
segment storage for internal static data.. For each
"external name the stora~e ~),lloc:l.tor cr(':\,te~ :l link (:m
out-reference) or a definitioll (an entr~· point) in the
lilikage segment. All internal static data i~ initia.lized as
its storage is allocated.

. Due to the dynamic linking and loadipv; characteris­
tics of the ~Iultics environment, the allocation :111d
initialization of external static stor[!.ge i~ rather unm~ua.l.
The compiler creates a special type of link which cam;;es
the linker module of the operatinp; system to create and
initialize the external data upon first reference. There­
fore, if two programs contain references to the same
item of extenlal data, the first one to reference that da.ta
will allocate and initialize it.

Code generation

The code generator scans the internal representation
transforming it into 645 machine instructions which it
outputs into the text segment. During thi~ ~can the
code generator allocates storage for temporaries. and
maintains a history of the content~ of index regi~ters to
prevent excessive loading and ~toring of index values.

Code generation consists of three distinct activities:
address computation, operator selection and macro
expansion. Address computation is the process of
transforming the offset expressions of a reference node
into a machine address or an instruction sequence which
leads to a machine address. Operator selection is the
translation of operators into n-operand mBcros which
reflect the properties of the 645 machine.

A one-to-one relationship often exists between the
macros and 645 instructions but man~' operations (load
long string, etc.) have no machine counterpart. All
macros are expanded in actual 64.5 code by the macro
expander which uses a code pattern table (macro
skeletons) to select the specific instruction sequences
for each macro.

Objeci code straieqies

The object code design

The design of the object code is a compromise between
the speed obtainable by straight in-line code and the

neces8ity to minimize tt~e number of page faults caused
by largE.' object prorr:lInlS.

The length of the object prov.r~m i~ minimized by t·he
extensive Uf;;e of out-of-line code sequences. These
out-of-line code sequences represent invariant code
which i:-; eommon to all .l\lultics PL/1 object programs.
Although the compiled code make~ heavy Uf;;e of out-of­
line code sequences, the compiled code is 110t in any
respect interpretive. The object code produce for each
operator is velY highl~' tailored to the specifie attributes
of that operator.

An out-of-line sequences are contained in a single
"operator" segment which is shared by all users. The
in-line ('ode reaches on out-of-line sequence through
transfer instructiolls, rather than through the standard
suhroutine mechanism. ·We believe that the time
on'rhead associated with the transfers is more than
ledeemed b~' the reduction in the number of page faults
caused by shorter object programs. ~ystem performance
is improved by insuring that the pages of the oper9tor
segment are always retained in storage.

The staek

~[ultics PL'1 object programs utilize a stack segment
for the allocation of all automatic data. temporaries,
and data associated with on-conditions. Each task
or uIttcs process) has its own stack "'hich is extended
(pushed) upon entry to block and is reverted (popped)
upon return from a block. Prior to the execution of each
statement it is extended to create sufficient space for
an~' variable length string temporaries used in that
statement. Constant size temporaries are allocated at
compile time and do not cause the stack to be extended
for each statement.

Prologue and epilogue

The term prologue describes the computations which
are performed after block entry and prior to the
execution of the first source statement. These actions
include the establishment of the condition prefix, the
computation of the size of variable size automatic data.
extension of the stack to allocate automatic data, and
the initialization of automatic data. Epilogues are not
needed because all actions which must be undone upon
exit from the block are accomplished by popping the
stack. The stack is popped for each return or non-local
go to statement.

Accessing of data

~Iultics PL/l object code addresses all data, includ-

ing members of variable sized structures and arrays
directly through the use of in-line code. If the address
of the data is constant, it is computed at compile time.
If it is a mixture of constant and variable terms, the
constant terms are combined at compile time. Descrip­
tors are never used to address or allocate data.

String operations

All string operations are done by in-line code or by
"transfer" type subroutinized code. No descriptors or
calls are produced for string operations. The SUBSTR
built-in function is implemented as a part of the normal
addressing code and is therefore as efficient as a
subscripted array reference.

String temporaries

A string temporary or dummy is desigped in such a
way that it appears to be both a varying and non-vary­
ing string. This means that the programmer does not
need to be concerned with whether a string expression is
varying or non-varying when he uses such an expression
as an argument.

Varying strings

The l\Iultics Pl./l implementp.tion of vp.rying strings
uses a data format which cor.sists of tl.1l. integer followed
by a non-varying string whose lenp;th is the dec1f.re
maximum of the varying string. 1'l'.e i ltep;er is used. to
hold the current size of the strin~; in bits or chr.rr.cters.
Using this d.ata format, operp.tions on vp.ryinv. strinf;s
are just as efficient as opert'.tions on non-vp.rying strings.

On-conditions

The design of the condition machinery minimizes the
overhead associated with enabling and reverting on­
units and transfers most of the cost to the sign~l
statement. All data associated with on-conditions,
in~luding the condition prefix, is allocated in the stack.
The normal popping of the stack reverts all enabled
on-units and restores the proper condition prefix. Stack
storage associated with each block is threaded backward
to the previous block. The signal statement uses this
thread to search back through the stack looking for the
first enabled unit for the condition being signalled.
Figure 7 shows the organization of enabled on-unit.s in
the stack.

Argument passing

The PL/l language permits parameters to be

The Multics PL/l Compiler .:. - :;_

]

st ock s toroQe
for A.

]
on-unit control
data for X.

}

stock storage
for C. .

Procedure A enabled an
on-unlf for condition X
and called procedure B.

Procedure B enabled a
new on-unit for condition
X and an on-unit fOI"
condition Y. It then
called proeedlne C.

Procedure C did not
- enable an, on-units.

Figure 7-Stack storage and the signal mechanism
A tignal for condition X cau~es the signal mechanism to search
~ 2.ek through the st2.('k until it find~ the first enabled' on-unit
for condition X.
An on-unit i~ eompiled 2,'-; an interneJ pro('edure. The execution
of 2.n ()~-~t2,tement create" e, block of on-unit control data. Thi::;
control d2.tr, ('on<i-::ts of the name of the ('ondition for which the
unit W2.S ene,bled 2,nd a proeedure varieble. The t'ignal mechanism
uses the proeedure vari2.ble to invoke the on-unit. All data
aswci2.ted with the ene,bled on-unit is stored in the stack storage
of the procedure which enp,bled it. Xormal popping of the stack
reverts the on-units enabled during the execution of the
procedure.

declared with unknown array bounds or string lengths.
In these cases, the missinll: size information is assumed
to be supplied by the ar~ument which corresponds to the
parameter. This missing size information is not explicitly
supplied by the programmer as is the case in Fortran,
rather it must be supplied by the compiler as indicated
in the following example:

SUB: PROCCA); ~IAIN: PROC;

DCL A CHAR(*); DeL SUB ENTRY;

DeL B CHAR(lO);

CALL Sl'B(B):

Since parameter A assumes the length of the argu­
ment B, the compiler must include the length of B in the
argument list of the call to SUB.

2-84 Fall Joint Computer Conference, 1969

The declaration of an entry name mayor may not
include a description of the arguments required by that
entry. If such a description is not supplied, then the
calling program must assume that argument descriptors
are needed, and must include them in al1 calls to the
entry. If a complete argument description is contained
in the calling program, the compiler can determine if
descriptors are needed for calls to the entry.

In the previous example the entry SUB was not fully
declared and the compiler was forced to assume that an
argument descriptor for B was required. If the entry
had been declared SUB ENTRY (CHAR(*)) the
compiler could have known that the descriptor of B was
actually required by the procedure SUB. Since descrip­
tors are often created by the calling procedure but not
used by the called procedure, it is desirable to separate
them from the argument information which is always
used by the called procedure.

Communication between procedures written in PL 11
a.nd other languages is facilitated if the other languages
do not need to concern themselves with PL/1 argument
descriptors. The l\1ultics PL/1 implementation of the
a.rgument list is shown in Figure 8. Note that the
argument pointers point directly to the data (facilitating
communication between languages) and that the
descriptors are optional, also note that PL/I pointers

TMI PROC;

DeL. ACtO) .ITCN),. aWU7), C AREACtOM1;
CALL XCA,.,C)~

ENO;

The artu_t lilt
prepared for tile
coil to X.

polUe,. to tM actual
value. of A, • and C.

d .. erlptor 01 A

dMer Iptor of B

deKrlptor of C

Figure 8-An argument list showing the relationship
between arguments and their de::criptors. The

broken lines indicate that descriptors
are optiona1.

must be capable of bit addressing in order to implement
unaligned strings. Since descriptors contain no address­
ing information, they are quite often constant and can
be prepared at compile time.

SUl\E\fARY

Our experiences both as users and implementors of
PL/I have led us to form a number of opinions and
insights which may be of general interest.

I. It is feasible, but difficult, to produce efficient
object code for the PL/1 language as it is cur­
rently defined. Unless a considerable amount of
work is invested in a PL/1 compiler, the object
code it generates will generally be much worse
than that produced by most Fortran or COBOL
compilers.

2. The difficulty of building a compiler for the
current language has been seriously under­
estimated by most implementors. Unless the
language is markedly improved and simplified
this problem will continue to restrict the avail­
ability and acceptance of the language and will
lead to the implementation of incompatible
dialects and subsets.7

3. Simplification of the existing language will make
it more suitable to users and implementors. We
believe that the language can be simplified and
still retain its "univE"rsal" character and
capabilities.

4. The experience of writing the compiler in PL/I
convinced us that a subset of the]anguage is well
suited to syst-em programming. This conviction
is supported by Professor Corbato in his report on
the use of PL/1 as an implementation language
for the Multics system.8 Many PL/1 concepts
and constructs are valuable, but PL/1structures
and list processing seem to be the principal
improvement over alternative languages.-

ACKNOWLEDG~lENTS

The author wishes to express recognition to members
of the General Electric l\1ultics PL/I Project for their
contributions to the design and implementation of the
compiler. J. D. Mills was responsible for the design and
implementation of the syntactic analyzer and the
Nlultics system interface, B. L. Wolman designed and
built the code generator and operator segment, and
G. D. Chang implemented the semantic translator.
Valuable advice and ideas were provided by A. H.
K vilekval. The earlier work of ~L D. McIlroy and
R. ~Iorris of Bell Telephone Laboratories and numerous

persons at l\,HT's Project]vIAC provided a useful guide
and foundation for our efforts.

REFERENCES

1 P L / 1 language specifications
Form Y33-6003-0 IBM Corp March 1968

2 The formal definition of PL/l foS specified bv technical
reports TR25.081, TR25.082, TR25.083, TR25.084,
TR25.085, TR25.086 and TR25.087, IBM Corp
Vienna Austria June 1968

3 F J CORBATO V A VYSSOTSKY
Introduction and overview of the multics system
Proc FJCC 1965

4 V A VYSSOTSKY F J CORBATO R M GRAHAM

The Multics PL/l Compiler 2-85

Structure of the multics supen'isoT
Proc FJCC 1965

5 R C DALEY J B DENNIS
Virtual memory, processes, awl sharing in multics
CACM Vol 11 No 5 lViay 1968

6 PL/l (F) programmer's guide
Form C28-6594-3 IBM Corp Oct 1967

7 R F ROSIX
PL/l Implementation survey
ACM SIGPLAK ~otices Feb 1969

8 F J .CORBATO
PL/l as a tool for system programming
DataIIU!.tion May 1969

9 H W LAWSON J'R
PL/l list procusing
CACM Vol 10 No 6 June 1967

2-86 INTRODUCTION TO THE CONCEPTS OF MULTICS

Remote Terminal Character Stream Processing in Multics

by J.H. Saltzer and J.F. Ossanna. Reprinted from
AEIPS Conference Proceedings 1Q, AFIPS Press,
1970, pp. 621-627, with permission. Copyright 1970
by AFIPS Press.

This paper describes one of the numerous areas of an
operating system-which must be carefully thought out to provide a
uniform, well-engineered human interface. The topic is the
processing of terminal input and output so that programs see a
standard implementation-independent terminal, while typists see a
simple, easy-to-learn method of communicating with the system, no
matter which terminal device they happen to be faced with. Since
the system has been used with perhaps 25 different kinds of
terminal equipment the considerations described here cannot be
ignored. (Note, however, that we are here dealing with a set of
concepts which are a notch below the importance of, say, the
Multics virtual memory strategy~) The paper is 'generally
up-to-date in terminology, but for exact details of the typing
conventions one should refer to section 1 of the Reference Guide.

2-87

Reprinted from -
AFIPS - Conference Proceedings, Volume 36
Copyright © by AFIPS Press

Montvale, New Jersey
07645

Remote terminal character stream
processing in Multics

by J. H. SALTZER

M~ Iutitvte of TecAfIIJIogy
Cambridge, Massachusetts

and

J. F. OSSANNA

Bell Te1epIume 1AbI1r6lDrie8, IftC.
Murray Hill, New Jersey

INTRODUCTION

There are a variety of considerations which are per­
tinent to the design of the interface between programs
and typewriter-cIass remote terminal devices in a
general-purpose time-sharing system. The conventions
used for editing, converting, and reduction to canonical
form of the stream of characters passing to and from
remote terminals is the subject of this paper. The
particular techniques used in the Multics· system
are presented as an example of a single unified design
of the entire character stream processing interface.
The sections which follow contain discussion of char­
acter set· considerations, character stream processing
objectives, character stream reduction to canonical
form, line and print position deletion, and other
interface problems. An appendix gives a formal de­
scription of the canonical form for stored character
strings used in Multics.

CHARACTER SET CONSIDERATIONS

Although for many years computer specialists have
been willing to accept whatever miscellaneous collec­
tion of characters and codes their systems were delivered
with, and to invent . ingenious compromises when
designing the syntax of programming languages, the

• Multi~ is a comprehensive general purpose time-sharing
system implemented on the General Electric 645 computer
system. A general description of Multi~ can be found in Ref­
erence 1 or 2.

621

impact of today's computer system is felt far beyond the
specialist, and computer printout is (or should be)
received by many who have neither time nor patience
to decode information printed with inadequate graphic
versatility. Report generation has, for some time, been
a routine function. Recently, on-line documentation
aids, such as RUNOFF,3 Datatext (IBM Corp.) or
RAES (General Electric Co.) have attracted many
users. Especially for the latter examples it is essential
to have a character set encompassing both upper and
lower case letters. Modem programming languages can
certainly benefit from availability of a variety of special
characters as syntactic delimiters, the ingenuity of
PL/I in usiIig a small set notwithstanding.
'Probably . the minimum character set acceptable

today is one like the USASCII 128-character set· or
IBM's EBCDIC set with the provision that they be
fully supported by upper/lower case printer and
terminal hardware. The definition of support of a
character set is almost as important as the fact 'Of
support. To be fully useful, one should be able to use the
same full character set in composing program or data
files, in literal character strings of a programming
language, in arguments of calls to the supervisor and to
library routines requiring symbolic names, as embedded
character strings in program linkage information, and in
input and output to typewriters, displays, printers, and
cards. However, it may be necessary to place conversion
packages in the path to and from some devices since it is
rare to find that all the different hardware devices
attached to a system use the same character set and
character codes.

2 - S S Spring Joint Computer Conference, 1970

TABLE I-Escape conventions for input and output
of USASCII from an EBCDIC typewriter

Normal
ASCII Character ASCII EBCDIC

Name Gr~hic Escape

Right Square Bracket ¢>
Left Square Bracket ¢<
Right Brace ¢)
Left Brace ¢(
Tilde ¢t
Grave Accent ¢'

CHARACTER STREAM PROCESSING
CONSIDERATIONS

Alternate
"edited"
Escape

•
±
±
-+-
-+-
+

The treatment of character stream input and output
may be degraded, from a human engineering point of
view, unless it is tempered by the following two
considerations :

1. If a computer system supports a variety of terminal
devices (Multics, for example, supports both the
IBM Model 274l'i and the Teletype ~fodel 3711)

then it should be possible to work with any program
from any terminal.

2. It should be possible to determine from the printed
page, without ambiguity, both what went into the
computer program and what the program tried to
printout.

To be fully effective, these two considerations must
apply to all input and output to the system itself (e.g.,
when logging int choosing subsystems, etc.) as well as
input and output from user programs, editors, etc.

AB an example of the "device independence" con­
vention, Multics uses the USASCII character set in
all in~ interfaces and provides standard techniques
for dealing with devices which are non-USASCII.
When using the GE-645 USASCII line printer or the
Teletype Model 37, there is no difficulty in accepting
any USASCII graphic for input or output from any
user or system program. In order to use non-USASCII
hardware devices, one USASCII graphic (the left slant)
is set aside 88 a "software excape" character. When a
non-USASCII device (say the IB:U 2741 typewriter
with an EBCDIC print element) is to be used, one
first makes a correspondence, so far as possible,
between graphics availa~le on the device and graphics
of USASCII, being sure that some character of the
device corresponds to the software escape character.
Thus, for the IBM 2741, there are 85 obviously cor­
responding graphics; the EBCDIC overbar, cent sign,
and apostrophe can correspond to the USASCII

circumflex, left slant, and acute accent respectively,
leaving the IBl\,I 2741 unable to represent six USASCII
graphic characters. For each of the six missing char­
acters a two character sequence beginning with the
software escape character is defined, as shown in Table
I. The escape character itself, as well as any illegal
character code value, is represented by a four character
sequence, namely the escape character followed by a
3-digit octal representation of the character code. Thus,
it is possible from an IB:\1 2741 to easily communicate
all the characters in the full USASCII set.

A similar, though much more painful, set of escape
conventions has been devised for use of the l\1odel 33
and 35 Teletypes. The absence of upper and lower case
distinction on these machines is the principal obstacle;
two printed 2-character escape sequences are used to
indicat~ that succeeding letters are to be interpreted
in a specific case shift.

Note that consideration number two above, that the
printed record be unambiguous, militates against char­
acter set extension conventions based on non-printing
and otherwise unused control characters. Such con­
ventions inevitably lead to difficulty .in debugging,
since the printed record cannot be used as a guide to the
way in which the input was interpreted.

The objective of typewriter device independence
also has some implications for control characters. The
~Iultics strategy here is to choose a small subset of the
possible control characters, give them precise meanings,
and attempt to honor those meanings on every device,
by interpretation if necessary. Thus, a "new page"
character appears in the subset; on a :\Iode137 teletype
it is interpreted by issuing a form feed and a carriage
return; on an IB:\I 2741 it is interpreted by giving an
appropriate number of new line characters. *

Of the 33 possible USASCII control characters, 11 are
defined in :\Iultics as shown in Table II.

Red and black shift characters appear in the set
because of their convenience in providing emphasis in
comments, both by system and by user routines. The
half-line forward and half-line reverse feed characters
were inciuded to facilitate experimentation with the
:\Iodel 37 Teletype; these characters are not currently
interpretable on other devices.

One interesting point is the choice of a "null" or
"padding" character used to fill out strings after the
last meaningful character. By convention, padding
characters appearing in an output stream are to be dis­
carded, either by hardware or software. The USASCII
choice of code value zero for the null character has the

*This interpretation of the form feed function is consistent with
the International Standard~ Organization option of interpreting
the "line feed" code as "new line" including carriage return.

Remote Terminal Character Stream Processing in M ultics 2 - 89

interesting side effect that if an uninitialized string (or
random storage area) is unintentionally added to the
output stream, all of the zeros found there will be as­
sumed nulls, and discarded, possibly leaving no effect
at all on the output stream. Debugging a program
in such a situation can be extraordinarily awkward,
since there is no visible evidence that the code manipu­
lating the offending string was ever encountered.

In Multics, this problem was considered serious
enough that the USASCII character "delete" (al1
bits one) was chosen as the padding character code. The
zero code is considered illegal, along with all other
UIl88Signed code values, and is printed in octal whenever
encountered.

" As an example of a control function not appearing in
the character set, the printer-on/ printer-off function
(to allow typing of passwords) is controlled by a special .
call which must be inserted before the next call to read
information. This choice is dictated by the need to get
back a status report which indicates that for the cur­
rently attached device, the printer cannot be turned
on and off. Such a status report can be returned as an
error code on a special call; there would be no con­
venient way to return such status if the function were
controlled by a character in the output stream. **

CANONICAL FORlVI FOR STORED
CHARACTER STRINGS

Probably the most significant impact of the constraint
that the printed record be unambiguous is the inter­

>action of that constraint with the carriage motion
control characters of the USASCII and EBCDIC sets.
-Although most characters imply "type a character in
the current position and move to the next one,"
three commmtIy provided characters, namely back­
space, horizontal tab, and carriage return (no line
feed) do caUse ambiguity.

For example, suppose that one chooses to implement
an ALGOL language in which keywords are underlined.
The keyword for may now be typed in at least a dozen
different ways, all with the same printed result but all
with different orders for the individual letters and back­
spaces. It is unreasonable to expect a translator to
accept a dozen different, but equivalent, ways of typing
every control word; it is equally unreasonable to require

** The initial Multics implementation temporarily uses the
character codes for USASCII ACK and N AK for this purpose,
as an implementation expedient. In addition, a number of
additional codes are accepted to permit experimentation with
special features of the Model 37 Teletype; these codes may
become standard if the features they trigger appear useful enough
to simulate on all devices.

TABLE II-USASCII Control Characters as Used in Multics

USASCII MULTICS
NAME NAME MULTICS MEANING

BEL BEL Sound an audible alarm.
BS BS Backspace. Move carriage back one

column. The backspace inlplies over-
striking rather than erasure.

HT HT Horizontal"Tabulate. Move carriage to
next horizontal tab stop. Default tab
stops are assumed to be at columns
11, 21, 31, 41, etc.

LF NL New Line. Move carriage to left edge
of next line.

SO RRS Red Ribbon Shift.
SI BRS Black Ribbon Shift.
VT VT Vertical Tabulate. Move carriage to

'"
next vertical tab stop. Default tab

~ stops are assumed to be at lines 11,
21, 31, etc.

FF NP New Page. Move carriage to the left
edge of the top of the next page.

DC2 HLF Half-Line Forward Feed.
DC4 HLR Half-Line Reverse Feed.
DEL PAD Padding Character. This character is

discarded when encountered in an
output line.

that the typist do his underlining in a standard way
since if he slips, there is no way he can tell from his
printed record (or later protestations of the compiler)
what he has done wrong. A similar dilemma occurs in a
manuscript editing system if the user types in under­
lined words, and later tries to edit them.

An answer to this dilemma is to process all character
text entering the system to convert it into a canonical
form. For example, on a "read" call Multics would
return the string:

r

_ (BS >f_ (BS)0_ (BS)r

(where (BS) is the backspace character) as the
canonical· character string representation of the
printed image of for independently of the way
in which it had been typed. Canonical reduction is
accomplished by scanning across a completed input
line, associating a carriage position with each printed
graphic encountered, then sorting the graphics into
order by carriage or print position. When two or more
graphics are found in the same print position, they are
placed in order by numerical collating sequence with
backspace characters between. Thus, if two different
streams of characters produce the same printed image,
after canonical reduction they will be represented by
the same stored string. Any program can thus easily
compare two canonical strings to discover if they
produce the same printed image. Xo restriction is

2- 90 Spring Joint Computer Conference, 1970

placed on the human being at his console; he is free to
type a non-canonical character stream. This stream will
automatically be converted to the canonical form before
it reaches his program. (There is also an escape hatch for
the user who wants his program to receive the raw input
from his typewriter, unprocessed in any way.)

Similarly, a typewriter control module is free to
rework a' canonical stream for output into a different
form if, for example, the different form happens to
print more rapidly or reliably.

In order to accomplish canonical reduction, it is
necessary that the typewriter control module be able
to determine unambiguously what precise physical
motion of the device corresponds to the character stream
coming from or going to it. In particular, it must know
the location of physical tab settings. This requirement
places a constraint on devices with movable tab stops;
when the tab stops are moved, the system must be
informed of the new settings.

The apparent complexity of the l\1ultics canonical
form, which is formally described in Appendix I, is a
result of its generality in dealing with all possible
combinations of typewriter carriage motions. Viewed
in the perspective of present day language input to
computer systems, one may observe that many of the
alternatives are rarely, if ever, encountered. In fact for
most input, the following three statements, describing a
simplified canonical form, are completely adequate :

1. A message consists of strings of character positions
separated by carriage motion.

2. Carriage motions consist of New Line or Space
characters.

3. Character positions consist of a single graphic or an
overstruck graphic. A character position representing
overstrikes contains a graphic, a backspace char­
acter, a graphic, etc., with the graphics in ascending
collating sequence.

Thus we may conclude that for the ~ost part, the
canonical stream win differ little with the raw input
stream from which it was derived.

A strict application of the canonical form as given in
Appendix I has a side effect which has affected its use in
~Uultics. Correct application leads to replacement of al1
horiwntal tab characters with space characters in
appropriate numbers. If one is creating a file of tabular
information; it is possible that the ambiguity introduced
by the horiwntal tab character is in fact desirable; if a
short entry at the left of a line is later expanded, words
in that entry move over, but items in columns to the
right of that entry should stay in their original carriage
position; the horiwntal tab facilitates expressing this
concept. A similar comment applies to the form feed
character.

The initial)Iultics implementation allows the hori­
zontal tab character, if typed, to sneak through the
canonical reduction process and appear in a stored
string. A more elegant approach to this problem is
to devise a set of conventions for a text editor which
allows one to type in and edit tabular columns con­
veniently, even though the information is stored in
strictly canonical form. Since the most common way of
storing a symbolic program is in tabular columns, the
need for simple conventions to handle this situation
cannot be ignored.

I t is interesting to note that most format statement
interpreters, such as those commonly implemented
for FORTRAN and PLjI, fail to maintain proper
column aJignment when handed character strings
containing embedded backspaces, such as names
containing overstruck accents. For complete integration
of such character strings into a system, one should
expand the notion of character counts to include
print position counts as well as storage position counts.
For example, the value returned by a built-in string
length function should be a print position count if the
result is used in formatting output; it should be a
storage location count if the result is used to allocate
space in memory.

LINE AND PRINT POSITION DELETION
CONVENTIONS

Experience has shown that even with sophisticated
editor programs available, two minimal editing con­
ventions are very useful for human input to a computer
system. These two conventions give the typist these
editing capabilities at the instant he is typing:

1. Ability to delete the last character or characters
typed.

2. Ability to delete all. of the current line typed up to
the point.

()10re complex editing capabilities must also be avail­
able, but they fall in the domain of editing programs
which can work with lines previously typed as well
as the current input stream.) By framing these two
editing conventions in the language of the canonical
form, it is possible to preserve the ability to interpret
unambiguolL'gly a. typed line image despite the fact
that editing was required.

The first editing convention is to reserve one graphic,
(in)lultics, the "number" sign), a."I the erase character.
When this characte'r appears in a print position, it
cra.o;.;es itself and the contents of the previouli print
position. If the erase follows simple carriage motion,
the entire carriage motion is era.'5ed. Several successive

Remote Terminal Character Stream Processing in Multics 2 - 91

erase characters will erase an equal number of preceding
print positions or simple carriage motions. Since
erase processing occurs after the transformation to
canonical form, there is no ambiguity as to which print
position is erased; the printed line image is always the
guide. Whenever a PrLllt position is" erased, the carriage
motions (if any) on the two sides of the erased print
position are combined into a single carriage motion.

The second editing convention reserves another
graphic (in Multics, the "commercial at" sign) as the
kill character. When this character appears in a print
position, the contents of that line up to and including
the kill character are disca.!"ded. Again, since the kill
processing occurs after the conversion to canonical
form, there can be no ambiguity about which characters
have been discarded. By convention, kill is done before
erase, 80 that it is not possible to erase a kill character.

OTHER INTERFACE CONVENTIONS

Two other conventions which can smooth the human
interface on character stream input and output are
worth noting. The first is that many devices contain
special control features such as line feed without
carriage movement, which can be used to speed up
printing in special cases. If the system-supplied terminal
control software automatically does whatever speedups
it can identify, the user is not motivated to try to do
them himself and risk dependence on the particular
control feature of the terminal he happens to be working
with. For example, the system can automatically insert
tabs (followed by backspaces if necessary) in place of
long strings of spaces, and it also can type centered
short tabular information \\;th line feed and backspace
sequences between lines.

The second convention has been alluded to already.
If character string input is highly processed for routine
use, there must be available an escape by which a
program can obtain the raw, unconverted, unreduced
and unedited keystrokes of the typist, if it wants to.
Only through such an escape can certain special situa­
tions (including experimenting with a different set of
proposed processing conventions) be handled. In
~Iultics, there are three modes of character handling­
normal, raw, and edited.* The raw mode means no
processing whatsoever on input or output streams,
while the normal mode provides character escapes,
canonical reduction, and erase and kill editing. The
edited mode (effective only on output if requested) is
designed to produce high quality\ clean copy; every
effort is made to avoid using escape conventions. For
example, illega] characters are discarded and graphics
not available on the output device used are typed with

the "overstrike" escapes of Table I, or else left &8 a
blank space so that they may be drawn in by hand.

CONCLUSIONS

The preceding sections have discussed both the back­
ground considerations and the design of the Multics
remote terminal character stream interface. Several
years of experience in using this interface, first in a
special editor on the 7094 Compatible Time-Sharing
System and more recently &8 the sta.ndard system
interface for Multi~, have indicated that the deeign is
implementable, usable and effective. Probably the ~oet
important aspect of the design is that the ea.suaJ wier,
who has not yet encounteted a problem for which
canonical reduction, " __ o~cha.racter set escapes, or special
character definitions· are needed, does not need to
concern himself with these ideas; yet as he expands his
programming objectives to the point where he en­
counters one of these needs, he finds that a method has
been latently available all along in the standard system
interface.

There should be no assumption that the particuJar
set of conventions described here is the only useful set.
At the very least, there are issues of taste and opinion
which have influenced the design. More importantly,
systems with only slightly different objectives may be
able to utilize substantially different approaches to
handling character streams. "

ACKNOWLEDGMENTS

~1any of the techniques described here were developed
over a several year time span by the builders of the
7094 Compatible Time-Sharing System (CTSS) at MIT
Project MAC, and by the implementers of Multiel, a
cooperative research project of the General Electrie
Company, the Bell Telephone Laboratories, Inc., and '
the Massachusetts Institute of Technology.

The usefulness of a canonical form for stored char­
acter strings was independently brought to our attention
by E. Van Home and C. Str&chey; they had each
implemented simple canonical forms on CTBS and in
the TITAN operating system for the ATLAS computer,
respectively. F. J. Corbat6 and R. Morris developed
the pattern of escape sequence usage described here.
Others contributing to the understanding of the issues
involved in the character stream interface were R. C.
Daley, S. D. Dunten, and M. D. McIlroy.

Work reported here was supported in part by the
advanced Research Projects Agency, Department of

·The "raw" mode is not yet implemented.

2 - 92 Spring Joint Computer Conference, 1970

Defense, under Office of Naval Research Contract
Nonr-4102(OI). Reproduction is pennitted for any
purpose of the United States Government.

REFERENCES

1 F J CORBAro et a1
A new remote-acce88ed man-machine system
AFIPS Conference Proceedings 27 196.5 FJCC Spartan Books
Washington n C 196.1) pp 1S.~247

2 The multiplexed informo.lion and computing service:
Programmer' a manual
oM I T Project MAC Cambridge Ma.ssachUBSetts 1969 To
be published

3 J H SALTZER
M anusCTipt typing and editing
In The Compatible Time-Sharing Sytem: A Programmer's
Guide 2nd Edition MIT Press Cambridge Massachusetts
1965

4 USA atandard code for information interchange
X3 4-1968 USA Standards Institute October 1968

f) IBM 1741 communicationa terminal
IBM Systems Reference Library Form A24-341f) IBM
Corporation New York

6 Model 37 teletype1DTiler atationa for DATA-PHONE aervice
Bell System Data Communications Technical Reference
American Telephone and Telegraph Company New York
September 1968

7 PL/I language apecijicaliona
IBM System Reference Library Form C28-6.571 IBM
Corporation New York

APPENDIX I

The Multic8 canonical form

To describe the Multics canonical form, we give a set
of definitions of a canonical message. Each definition is
followed by a discussion of its implications. PL/I-style
formal definitions are included for the benefit of readers
who find them useful.? Other readers may safely ignore
them at a small cost in precision. In the formal defini­
tions, capitalized abbreviations stand for the control
characters in Table II.

1. The canonical form deals with messages. A
message consists of a sequence of print positions,
possibly separated by, beginning, or ending with carriage
motion.
......."noon ... Q •• - r"..o;o,..o n+;nn 1
1I1':;OOGof!t - l"' I.CIof!I ... I&&"'''&V«&J

[[print position] 0 0 • [carriage motion]} ..

Typewriter input is usually delimited by action char­
acters, that is, some character which, upon receipt by
the system, indicates that the typist is satisfied with the
previous string of typing. ~Iost commonly, the new line
character, or some variant, is used for this function.

Receipt of the action character initiates canonical
reduction.

The most important property on the canonical form is
that graphics are in the order that they appear on the
printed page reading from left to right and top to
bottom. Between the graphic characters appear only
the carriage motion characters which are necessary to
move the c8.rnage from one graphic to the next. Over­
struck graphics are stored in a standard form including
a backspace character (see below).

2. There are two mutually exclusive types of carriage
motion, gross motion and simple motion.

carriage motion : : = {=lem~~:~n }
gross motion simple motion

Carriage motion generally appears between two graphics;
the amount of motion represented depends only on the
relative position of the two graphics on the page. Simple
motion separates characters within a printed line; it
includes positioning, for example, for superscripts and
subscripts. Gross motion separates lines.

3. Gross motion consists of any number of successive
New Line (NL) characters.

gross motion : : = t NL} 0 ••

The system must translate vertical tabs and form feeds
into new line characters on input.

4. Simple motion consists of any number of Space
characters (SP) followed by some number (possibly
zero) of vertical half-line forward (HLF) or reverse
(HLR) characters. The number of vertical half iine feed
characters is exactly the number needed to move the
carriage from the lowest character of the preceding print
position to the highest character of the next print

JlO8it~:~Ple motion: : = (SPI ••. [[HLF]
0

0 oJ
[HLR]·· •

The basis for the amount of simple carriage motion
represented is always the horizontal and vertical
distance between successive graphics that appears on
the actual device. In the translation to and from the
canonical form, the system must of course take into
account the actual (possibly variable) horizontal
tab stops on the physical device .

In some systems, a 'irelative horizonisi isb" char­
acter is defined. Some character code (for example,
USASCII DCI) is reserved for this meaning, and by
convention the immediately following character storage
position contains a count which is interpreted as the
size of the horizontal white space to be left. Such a
character fits smoothly into the canonical form de-

Remote Terminal Character Stream Processing in M ultics 2 - 93

scribed here in place of the successive spaces implied
by the definition above. It also minimizes the space
requirement of a canonical string. It does require some
language features, or subroutines, to extract the count
88 an integer, to determine its size. It also means that
character comparison is harder to implement; equa.lity
of a character with one found in a string may mean
either that the hoped for character has been found or
it may mean that a relative tab count happens to have
the same bit pattern as the desired character; reference
to the previous character in the string· is required to
distinguish the two cases.

5. A print position consists of some non-zero number
of character positions, occupying different half line
vertical positions in the same horizontal carriage
position. All but the 188t character position of a print
position are followed by a backspace character and some
number of HLF characters.

print position : : = character position

[BS [HLF]· • • character position]· • -

6. A character position consists .of a sequence of
giaphic formers separated by backspace characters.
The graphic formers are ordered according to the
USASCII coded numeric value of the graphics they
contain. (The first graphic former contains the graphic
with the smallest code, ete.) Two graphic formers
containing the same graphic will never appear in. the
same character position.

character position : : = graphic former

[BS graphic former1- ••

Note that all possible uses of a backspace character in a
raw input stream have been covered by statements
about horizontal carriage movements and overstruck
graphics.

7. A graphic former is a possibly zero-length setup
sequence of gra.pl-tic controls follOWed by one of the 94
USASCII non-blank graphic characters.

. 94 UASCII

(

one of the l
graphlC former : : = [setup sequence] h.

grap IC

- chara.eters

8. A graphic setup sequence is a color shift or a bell
(BEL) or a color shift followed by a bell. The color shift
only appears when the following graphic is to be a
different color from the preceding one in the message.

l[RRS]1 [BEL]
setup sequence: : = BRS

BEL

in the absence of a color shift, the first graphic in a
message is printed in black shift. Other control char­
acters are treated similarly to bell. They appear
immediately before the next graphic typed, in the
order typed.

By virtue of the above definitions, the control
characters HT, VT, and CR will never appear in a
canonical stream.

2-94 INTRODUCTION TO THE CONCEPTS OF MUlTICS

The Multics Input/Output System

by R.J. Feiertag and E.I. Organick. Reprinted from
~ Third Symposium Qn Operating System Principles,
Palo Alto, California, October, 1971, pp. 35-41,
with permission.

This generally up-to-date paper describes the
device-independent I/O interface of the Multics system. Its
significance lies mainly in the wide range of problems which can
be easily solved using a simple elegantly designed mechanism.

By reading between the lines, one may also deduce that in
Multics, the function of the I/O system is drastically different
from that in most operating systems. Interrupt handl lng,
scheduling, and file formatting do not appear here, since they
are considered to be general responsibilities required apart from
I/O operations. The I/O system is thus left with only the
problem of buffer management and device strategy, in a general
framework which encourages device independence.

As an example of the flexib1lity of the Multics I/O system,
sJnce this paper was written the M.I.T. Multics site has been
attached to the ARPA computer network, with the relatively minor
addition of a special network demultiplexing module at the base
of the I/O system.

THE MULTICS INPUT/OUTPUT SYSTEM*
2-95

R. J. Feiertag
Massachusetts Institute of Technology

Cambridge, Massachusetts

and

E. 1. Organick
University of Utah

Salt Lake City, Utah

ABSTRACT

An I/O system has been implemented in the Multics system that facilitates dynamic switching of I/O devices.
This switching is accomplished by providing a general interface for all I/O devices that allows all equivalent
operations on different devices to be expressed in the same way. Also particular devices a~ referenced by sym­
bolic names and the binding of names to devices can be dynamically modified. Available I/O operations range
from a set of basic I/O calls that require almost no knowledge of the I/O System or the I/O device being used to
fully general calls that permit one to take full advantage of all features of an I/O device but require consi­
derable knowledge of the I/O System and the device. The I/O System is described and some popular applications
of it, illustrating these features, are presented. ~

Introduction

In many early operating system designs the soft­
ware kn9wn as the input/output control system (IOCS)
played a central conceptual and functional role. In
the pre-multiprogramming, batch operating systems,
many supervisory functions had to do with input/output
control -- e.g., control over queued jobs, control for
management and operation of secondary storage, control
for operation of display devices and other peripheral
equipment, etc. A system programmer (or subsystem
designer) for such operating systems could hardly
prove his professional competence without acquiring
a reasonable familiarity with the intricacies of the
IOCS for his "installation". By contrast the role
played by the input/output control system in a Multics
system is decidedly secondary. at least from a concep­
tual point of view. In fact, many or even most sub­
system designers are able to achieve their respective
objectives while remaining entirely oblivious to the
IOCS details of Multics.

This is possible partly because two operations
sometimes associated with the IOCS have been separated
into separate functional units which are made use of
by other parts of the system as well as the IOCS.
First, the file system [lJ makes known and dynamically
links files that are stored within the system to pro­
cesses that legitimately request this service. It
does not matter on what storage device these files
reside at the time of the request. The users (or for
that matter other supervisory modules) are unaware
of any explicit data movement in accessing these
segments even though physical transfer from actual
secondary devices to central memory may occur.
Secondly, the traffic controller [2] handles all multi­
plexing of processors including the relinquishing of
a processor by a process and the awakening of pro­
cesses which have been waiting for I/O transactions to
be completed. What remains for the IOCS is strategic
control of I/O devices and the binding of these devices
with symbolic names used to represent them. Figure I
illustrates the interrelationships of these modules.

*Work reported herein was supported in part by Project
MAC, an M.I.T. research program sponsored by the
Advanced Research Projects Agency, Department of
Defense, under Office of Naval Research Contract NOOl4-
70-A-0362-000l. Reproduction is permitted for any pur­
pose of the United States Government.

The secondary role of the I/O System does not mean
that Multics attempts to erect a barrier that prevents
the (system or user) programmer from acquiring and
exercising full control Over I/O devices. On the con­
trary, user processes are able to '~egotiate" with the
system administrator, who controls distribution of
I/O resources, to acquire particular I/O devices. Then,
with user code, the user process may program the con­
trol of these I/O devices and operate them with the
full freedom that is normally accorded a system pro­
grammer.

In brief, the Multics I/O System has been designed
using two important guidelines:

a) the simplest, most commonplace use of it
reqUires only a minimum of knowledge and
skill -- and the overhead for such simple
(common mode) use is also minimized.

b) to extract more tailored (special purpose)
services there is added cost -- both in the
time that must be committed to understand
how the tool works and in the actual over­
head that will be incurred in execution.

The system to be described here stresses symbolic,
hardware independent references to input/output devi­
ces. This scheme permits programs to be written
largely independently of the devices they use and
allows the devices to be assigned at the time the com.­
putation is performed and changed dynamically during
the run. Although other systems [3,4,5] have made use
of symbolic referencing, the Multics system attempts
to provide extreme ease of modification and almost
total device independence, to the limits possible.

The I/O System does not in itself provide for­
matted I/O such as that typically found in many lang­
uages and library subroutines. Also, the details of
operating specific devices are relegated to a minor
role. l.Jhat remains is an intermed iate level of I/O
softw~re that forms the conceptual heart of the 1'0
System in Multics and will now be described.

Overview of the r/o System

A primary objective of Multics is to make the
input/output operations stated in the programs or ser­
vice procedures that a user wri tes spec i f~' onl~' th,'St'
device functions that are required for the applic3ti~~
at hand, leaving to the system the respons ibi li t\" :-,':'-

2-96
~;lLl:.:in~ the degree of device independence implied by
:h~' ll!'t'r' s l"t'quest. In th is way a user who invokes
such :::ervice procedures is free to designate substi­
tut.: jevices as may be appropriate, while adhering to
the device dependencies that are implied by th€ stated
1,0 function requests. For example, a program may
output a long string of characters. If the device
currently associated with this output is a typewriter
the 1;0 System should insert carriage returns when the
end of the carriage is reached. However, if the output
device is a tape then no carriage returns are neces­
sary. For this reason user-coded I/O operations should
ordinarily be independent (or as independent as feasi­
ble) of the particular device and model, or even of
the type of device, e.g., typewriter, as opposed to
teletype or paper tape.

There are two clear motivations for this crucially
important objective. First, we must presume that at
any given time a system will generally accommodate
several types of I/O devices and models. Each is
likely to require different programmed control. Each
may have different character sets. and may be intrin­
sically different in various respects (e.g., line
printers are not backspaceable, magnetic tapes are;
some tapes cannot be read backwards as well as for­
wards, while card readers are never designed to read
cards backwards, etc.). It is~ however, desirable to
be able to run programs using devices other than those
for which they were originally written. Second, we
presume that I/O devices become obsolete and, over
time, are replaced by new models of the same or
different types, e.g., video keyboards may replace
typewriters. Clearly, if programs are to be usable
over long periods of time, if programs are to be
repeated with minor or no variation in the nature or
effect of their I/O operations, then recognition of
device independence must be a planned part of the pro­
gramming system for I/O operations.

One approach to design for the needed device
independence is to regard the I/O resource needed to
complete any given I/O operation not as a real or
physical resource, as for instance a particular card
reader, but as a virtual (pseudo) I/O resource that is
described in terms of the functions it must be capable
of performing, which is mapped by the system to a
particular real resource at run-time. Such an approach
implies that all available input devices, regardless
of type (or location) are in some sense acceptable
equivalents and all output devices are correspondingly
equivalent.

The user must, when he so chooses, be able to
decide what I/O devices of the ones available to him
he wants used. In other words the user must be able
to specify which physical resources the pseudo
resources correspond to. It may also be necessary
for the user to provide detailed I/O coding for the
control of a device if such a device is not already
known to the system.

The particular design approach taken in Multics
is based on two practical requirements, one having to
do with the system's responsibility for dispensing
and recovery of all real I/O devices, and the other
having to do with the run-time mapping of valid
user-~oded I/O operations, regardi~ss-of their degree
of specificity, onto specific devices and in the
~anner and with controls appropriate to those specific
de"/ices.

First, it is recognized that at any given time,
as a consequence of the I/O device needs of a process,
certain specific I/O devices (or device capabilities)
~ust be exclusively allocated to specific processes

or sets of processes. The question of how the I/O
System decides how to allocate devices, how to reclaim
devices, and how to insure exclusive use of a device
by the intended processes is largely independent of
the central theme of this discussion, the structure of
the I/O System, and, although important, will not be
discussed here.

Second, any programmed I/O operation should at
source level, at least, be expressed (coded) in a
general way that specifies the I/O source or sink,
not by its device designation but only by a place­
holder name for that source or sink. (Moreover, as an
added convenience to users, it may be possible to code
certain standard I/O operations so that even this name
may be inferred from context.)

For example, [and here we illustrate only sche­
matically], rather than use a specific device designa­
tion such as in the following form:

read from "card_reader_2" into area_23;
or

read ("device 35", area_23);

we might instead say:

(1)

read from the stream named "Billy" into area 23; (2)
or

read ("my_console", area_2J);

depending on the syntax of the coding language being
used.

Here in example (2), "Billy" and "my_console" are
simply identifiers for sources of data. For such a
read statement to have any meaningful effect, the
specific device represented by that identifier must
be bound to or "attached" to (i.e., associated in some
way with) "Billy" or "my console" at some time after
the device is allocated to the process and before the
read statement is executed. The Hultics I/O System "
is responsible for maintenance and supervision of these
device-source name associations. Similarly for output,
names for sinks are used in write statements rather
than actual output device designations. Thus by anal­
ogy to the read examples in (2) above we could con­
ceivably picture something like

write ("his_console", "f~rmat 12", area_22); (3)

in which "his_console" is here intended to suggest the
name of some sink (output device). The attachment at
any given time may be to one of a set of several
(different) devices. Thus, if a single process had
several consoles allocated, the process could simulate
a "party_line" convers"ation on the several consoles
where the name uhis_console" could be attached and
reattached, possibly cyclically, among the several
different allocated devices.

The name chosen for elements of the set {source,
sink) is stream. Conceptually, the attaching of a
stream name to a particular device is a form of para­
meter binding. The device designation plays the role
of the actual argument and the stream name that of
the formal parameter. In order to apply more than one
"argument" to the same "parameter" Hultics provides
for the detaching of a device (designation) from a
stream name so that subsequently another device can be
attached to the same stream name.

To carry out a read or write operation (call) of
the type suggested in (2) and (3) above, the following
steps can now be visualized. The system module that
received and is responsible for "interpreting" this
call must first perform a table look-up to determine
the device designation (and type of device, constraint
rules, if any, for use. etc.) that is currently

associated with the named I/O stream parameter. In
principle, assuming the I/O call parameters are con­
sistent with the data kept in this so-called Attach
Table, this same I/O control module can then convert
this request into an I/O action -- i.e., by initiating
the desired I/O operations after generating the re­
"quired channel commands, etc. Because the system
must be capable of supporting an open-ended number of
devices, device types, and controllers, considerably
more modularity is called for. So, in actual fact,
the I/O control module (called the I/O switch) merely
transmits the now more specific I/O request as a call
to an appropriate "specialist" module, a Device Inter­
face Module (DLlv!) , for each type 0 f device. A I is t
of DIMs currently in general use in Multics is given
in Appendix B. This DIM in turn takes charge of
getting the I/O request accomplished as suggested in
Figure 2.

It is, therefore, the function of the DIM to con­
vert the I/O request into a set of specific channel
commands for the particular device associated with this
DIM. The DIM knows both the conventions of the I/O
System and the conventions of a particular I/O device
and functions as a translator from one set of conven­
tions to the other. In order that all devices may be
fully exploited it is necessary that the I/O System
"language" be carefully chosen. The I/O System calls
of Multics are described more fully later and in
Appendix A.

Description of the I/O System

The Device Interface Module converts a generalized
I/O request into specific instructions understandable
by a particular device. In doing this, it must compile
a program for the hardware General Input Output
Controller (GIOC) [6"] which it can in turn supply to
the target channel. The compiled program reflects
the idiosyncracies of the particular device to which
the stream is attached. It (the program) may include
line controls in the case of remote terminals,
select instructions in the case of tapes, and so forth.
In addition, the DIM may need to convert the internal
character code used by the system into an appro-
priate character code for the device. Typewriter
terminals for example, come in many different vari­
eties. Virtually every different variety has different
character codes.

The Device Interface Module after compiling a
program for the GIOC, calls a module that serves as an
interface for the GIOC to start the I/O using this
GIOC program. It is the DIM's responsibility to inter­
act with the GIOC Interface Module (abbreviated as GIM)
until this I/O request has been completed.

The GIOC Interface Module is responsible for the
overall management of the GIOC. Thus, the GIM is
also responsible for overall monitoring of the opera­
tion of the GIOC. This requires answering interrupts
(i.e., that its code acts as an interrupt handler for),
recognizing completion of tasks, and transmitting
to its caller status information deposited by the
GIOC.

It may be necessary for the DIM to wait for a
particular I/O operation to complete and/or be awak­
ened when it does occur. For this purpose an entry
is provided in the traffic controller that causes the
process to be suspended until it is reawakened. When
the awaited operation completes, the GIM (which is
invoked by a hardware interrupt from the GIOC) calls
the traffic controller to awaken the suspended process.
This is the interface between the traffic controller
and the I/O System. All multiplexing of processors
is, therefore, accomplished by the traffic controller.

2-97
The I/O System is implemented by a set of sub­

routine calls, twenty at present. The stream-DIM
association is established by the attach call:

call attach (stream_name, DIM_name, device_name);

This call creates an entry in the Attach Table for the
stream identified by stream name, if one does not
already exist, and associat;s the DIM identified by
DIM_name with it. The DIM itself is then invoked to
initialize (establish communication with the device
and prepare it for further transactions) the device
identified by device_name.

Once the device has been attached it may be
utilized by issuing a read or write call:

call read {stream name, buffer);
call write (strea;_name, buffer);

Where stream_name identifies the stream with which
the desired DIM and device are associated, and
buffer indicates the area from which data is to be
written or into which data is to be read. The I/O
switch, upon receiving a read or write call, finds
the entry in the Attach Table associated with this
stream and invokes the associated DIM at the read
or write entry. The read and write calls represent
the primary means by which all data enters or leaves
the system.

In order to dissolve an attachment the detach call
is used.

call detach (stream_name);

This call causes the association of the specified
stream with any DIMs and devices to be dissolved.
The I/O switch invokes the associated DIM which in
turn terminates (releases the device and ends commu­
nication with it) the associated device or devices.
When the DIM returns control to the I/O switch the
stream-DIM association in the Attach Table is deleted.

There are many other I/O System calls which
concern aspects of the I/O System that are not of
immediate concern to this discussion. These include
calls to set device modes (readable only, writeable
only, forward spaceable only, etc.), calls to operate
devices synchronously or asynchronously (e.g.,
readahead and writebehind), calls to establish input
delimiters, calls to determine the current device
status, and calls to reposition the current read or
write position of a device (e.g., tape spacing).
A short description of these calls is given in Appen­
dix A.

A final I/O System call that is of interest here
is the order call. This call provides the escape
mechanism when an operation not implementable by any
of the other generalized I/O System calls must be
performed.

call order (stream_name, request_name,
other_information) ;

This call is transmitted by the I/O switch to the
appropriate DIM which performs the operation indicated
by request_name making use of data supplied in
other_information if necessary. Examples of order
requests might be to repunch a card on a card punch
or lock the keyboard of a console.

Up to this point discussion of input-output has
been in terms of communication with physical devices.
It has been shown that the only software th:lt deals
specifically with any single device is the DIM asso­
ciated with that type of device. The I/O System,
other than the DIMs, knows nothing of devices. 1t.
therefore, follows that the I/O System does not
necessarily have to communicate wi th a phys ical dev ice,

2-98

hut that DIMs may be written to operate on the data to
be input or output in any manner whatsoever. Such
DIMs are said to he dssociated with a virtual or pseudo­
device and are termed pseudo-DIMS.

The most important pseudo-DIM is the File System
Interface Module (FSIM) which treats a segment in the
Multics File System as an I/O device. When a segment
in the file system is attached to a stream via the
FSIM. read and write calls on that stream will cause
da~a to be read from or written into the segment. The
FSIM provides the interface between the I/O System
and the File System in Mul tics. However, unl ike many
systems this interface is not heavily used because the
File System is usually called directly.

Another class of DIM is one that translates one
I/O call to another I/O call, i.e., its pseudo-device
is a stream. A stream that is used as a pseudo-device
is termed an object stream. The most important of
this class of DIMs is the "synonym" module. When an
attachment is made via the synonym module the speci­
fied device is another stream. Any subsequent calls
to the first stream is transformed by the synonym
module to the same calIon the latter stream. The
stream names are, therefore, synonymous.

Appl ications
In the Multics system certain stream names are

established, by convention, for normal use. The
first of these is "user i/O". This stream is normally
associated with the use~'s primary I/O device, e.g.,
in a normal console session "user_i/o" will be attached
to the user's console. Two other stream names are
also established: "user input" and "user output".
These streams are normally attached to "u;er_i/o"
via the "synonym" module as illustrated in Figure 3a,
i.e., they are made equivalent to "user_i/o". Since
at present most programs that perform I/O intended
to do so with the user's console, the stream names
"user output" and "user input" are the ones used in
calls-to the I/O System-in these programs. This
illustrates one of the important purposes of the
"synonym" DIM, to permit the manipulation of stream
attachments without having to attach and detach physi­
cal devices. The streams "user input" and "user output·"
could normally be attached dire~tly to the user'~
console as shown in Figure 3b. However, this would
force the console to be detached whenever these streams
were attached to some other device. Decachment and
subsequent reattachment implies that c~rtain physical~_
hardware action has been taken with regard -to the
device. In the use of a console this might include
termination of communication with the console and
subsequently having to reestablish this communication.
It would not be difficult to indicate to the DIM to
keep the device active, however, the use of synonyms
is more straightforward and makes more visible the
states of various devices, i.e., if they are attached
they are active. In other words, synonyms are an
easy, efficient method of changing the binding of
streams to devices. Because of this use of synonyms
th~ "synonym" DIM has been highly optimized for the
simple switching described above.

Some important and heavily used features of
Multics serve to illustrate some of the advantages
of this organization of the I/O System. A user of
Xultics may sometimes desire to redirect the output
that could normally appear on his console to some
other device. This situation usually arises because
the output is lengthy and would require excessive
a~ounts of time to print on a console. The Multics
syste~ provides a service by which the contents of
seg~ents in the file system may be printed on a high
speed printer. Therefore, it is a fairly common

occurrence for a user to redirect his output to a seg­
ment in the file system using the FSIM mentioned above
so that it may be printed by the high speed printer or
examined using a text editor. To do this the following
I/O System calls must be made:

call attach ("file output stream", "fsim",
"segm;nt_nam;") ;

call detach ("user output");
call attach ("user-output", "synonym",

"file:=output_stream") ;

The first call causes the segment, "segment_name", to
become the receiver of all subsequent data directed to
the stream "file output stream" by a write call. The
second and third-calls ~ause the stream "user_output",
the stream on which all standard write calls are made,
to be disassociated from "user i/o", the stream asso­
ciated with the user's console~ and instead be
attached to the new stream "file_output_stream".
Again the use of synonyms is not mandatory but is
included for the reason mentioned earlier. All sub­
sequent output that would normally have appeared on
the user's console would now be placed in the segment
"segment_name". This new situation is depicted by the
graph in Figure 3c.

There are many instances in which a user wishes
to issue the same set of commands (a command is a
line typed at a user's console requesting some action
to be performed by the computer) many times. Rather
than doing so manually he may instead put the set of
commands in a segment and then cause this segment to
be read as input one command at a time. This may be
done by the following I/O calls:

call attach ("file_input_stream", "fsim",
"input segment name");

call detach (''user input");-
call attach ("user::=input", "synonym",

"file_input_stream");

The segment whose name is "input_segment_name" contains
the commands to be executed. The action performed by
these calls is analogous to those performed by the
above calls concerning output. All subsequent standard
read calls will cause input to be taken from the seg­
ment "input_segment_name".

Consider now the situation that results when
both the standard input and output streams are attached
to segments simultaneously. In this case direct com­
munication with the user has been eliminated. The user
controls his process only indirectly through the input
segment. A process that is in this state, i.e., whose
standard input and output streams are attached to seg­
ments rather than to an interactive console, for its
entire lifetime is called an absentee process (see
Figure 3d)~ Absentee processes are the means by which
background or batch jobs are implemented in Multics.
The advantage of an absentee process from the system
view is a better allocation of resources since absentee
jobs may be scheduled at periods of low interactive
demand. The point of interest here is that an absentee
process, as opposed to an interactive process, is
obtaine~by a few slightly different calls to the I/O
System during process initialization and that no other
special user or system programming is necessary.

In order to restore the situation to the interac­
tive state just two I/O calls are necessary for each
of the standard input and output streams. Thus for
the input stream there would be:

call detach ("user_input");
call attach ("user_input", "synonym", "user i/O");

Upon completion of these two calls the standard input
stream is again attached to the user's console. The

stream "file_input_stream" remains attached to the
input segment.

The "synonym" DIM, as mentioned earlier, is one
example of a DIM that uses another stream as the device
upon which it acts. Such modules are effectively
spliced into the flow of control in that each such
module gains control and in turn passes control onto
another DIM invoked as a consequence of its call to
the I/O System on its object stream. The "synonym"
simply results in an identical call to the object
stream. However, such a DIM could easily perform
some useful operation before passing the calIon. A
good example of such an operation is code conversion
on the data to be read or written. A simple example
could be to reformat a string of characters meant to

-be written on a console with a wide carriage for
writing on a narrow carriage by properly placing
carriage returns in the data.

Similarly such an intermediary could be used to
make one device appear as another device. For
example, if a light pen were to be added to the system
as a new input device, a DIM could be written to make
data read from a segment via the FSIM simulate the
input from the light pen in order that all the asso­
ciated software may be checked out before the actual
installation of the device.

A final example of such in-termedia-t-e modules is -
the broadcaster. This DIM allows fan out of I/O System
calls. Rather than having one stream as its object,
the broadcaster may have several. A calIon a
stream attached via the broadcaster is transmitted to
all streams attached to this stream via the broad­
caster. This is simply an extension of the synonym
module. For example, a user may wish to record all
the output typed on his console in a segment of the
file system. To do this he simply attaches the stream
"user output" to both "user i/o" and "file output
strea;" as indicated in Fig~re 3e. - -

Conclusion

It is the purpose of the Multics I/O System to
permit I/O operations to be specified in a device
independent manner, thereby permitting easy inter­
change of devices while programs are in execution.
The designers of the I/O System have been able to
achieve this goal largely because certain functions
associa.ted with I/O (file system, processor multi­
plexing) have been provided as independent facilities
in Multics which are invoked by the I/O System as well
as other programs. The method used to attain device
independence is to defjne a set of I/O calls which are
used to specify all I/O operations in a general manner.
All devices are addressed symbolically by stream name
and the binding of streams to devices can be modified
dynamically.

The modular structure of the I/O System facili­
tates introduction of new devices. In order to logi­
cally add a device to the system, a user or system
programmer need only provide the detailed I/O coding
for that device in the form of a Device Interface
Module. This ability to add new devices is necessary
to assure the system's longevity.

Users of the I/O System, may if they desire,
bypass the general mechanism. Instead of making a
~eneral I/O call, programs can invoke Device Interface
Aodules or even the GIOC Interface Module directly.
The user who takes this approach loses the switching
capabilities, device independence, and other advan­
tages that the general mechanism provides. So far,
no Multics user has needed or chosen to bypass the

2-99
general mechanism. Some users, however, write their
own DIMs making use of the order call to specify
special requests.

The applications described earlier indicate some
of the most common uses of the I/O System. The faci­
lities of file input and output and absentee are
achieved easily both conceptually and in practice and
could not have been provided, in such a general manner,
without device independence and stream switching. The
I/O System has also proved very useful for system
development, e.g., when testing a program that normally
uses the high-speed printer it is advantageous to use
a less critical more accessible device than one of the
two printers available. The capabilities present in
the Multics I/O System, as described here, have, there­
fore, proved well worth the careful design effort
necessary for its deveLopment.

Acknowledgement

During the many years since the Multics project
began a great number of people have contributed in
the formulating of ideas for the I/O System. People
who have contributed significantly to this effort are
F. J. Corbato, R. C. Daley, S. I. Feldman, E. L.
Glaser, D. Levenson, J. Ossanna, D. Ritchie, J. H.
Sa1tzer, and V. L. Vyssotsky. The authors would also
lik.e to acknowledge the work of S. Dunten, N. I. Morris,
T. Skinner and D. Widrig for their work in designing
the GIOC Interface Module.

Appendix A

The follOWing is a list of general I/O System
calls and a brief description of their functions.
This list serves only as an indication of the type
of operations that are thought to be necessary in
Multics, not as a complete description of their
operations. Complete descriptions are given in [7J.

attach establishes an association between a stream
name, a device's control software (DIM), and a device.
All subsequent operations on this stream will invoke
the associated control software and will be performed
on the associated device.

detach
call.

destroys an association created by an attach

read causes input to be taken from the device asso­
ciated with the given stream and placed in the indicated
buffer area.

write causes output to be taken from the indicated
buffer area and written to the device associated with
the given stream.

seek modifies the current position of the read and­
write pointers for the device associated with the
given stream.

tell returns the current position of the read and
write pointers for the device associated with the
given stream.

changemode changes the current mode of the device
associated with the given stream and returns the old
mode. Modes determine attributes of a device such as
whether reading or writing is permitted.

readsync determines whether or not the DIM asso­
ciated with the given stream will perform read-ahead
on the associated device. Performing read-ahead is
to read input from a device before the read call is
issued.

writesync determines whether or not the DIM asso­
ciated with the given stream will perform write-behind
on the associated device. Performing write-behind is

2-100

to write output on a device after the write call has
returned.

resetread erases all currently accumulated read­
ahead from the device a~sociated with the given stream.

resetwrite erases all currently accumulated write­
behind intended for the device associated with the
given stream.

worksync determines whether the device associated
with the given stream is in workspace synchronous or
asynchronous mode. Being in workspace synchronous
mode means that when a read or write call returns,
the I/O System is finished using the provided buffer
area associated with this call. If the call was a
read call the desired input has been placed in the
buffer area. If the call was a write call the data
has been taken from the buffer area. Being in work­
space asynchronous mode means that buffers may still
be in use by the I/O System after the call has re­
turned. If a read call then the buffer area may not
yet contain the desired input, but it will be filled
in· at some later time. If a write call then the data
may not yet have been taken from the buffer, but the
I/O System will do so at some later time. ~orkspace
asynchronous mode allows programmers to perform asyn­
chronous I/O transactions and multiplex their I/O
calls.

upstate returns the current status of a specific
asynchronous transaction on the device associated with
the given stream.

iowait returns the current status of a specific
asynchronous transaction on the device associated
with the given stream. The iowait call will not. return
until the indicated transaction is complete, i.e., the
I/O System is finished with the buffer area.

abort causes the indicated transaction or transac­
tions on the device associated with the given stream
to be aborted.

getdelim returns the current break characters and
read delimiters for the device associated with the
given stream. Break characters define the extent of
canonicalization and erase and kill processing of
input [7). Read delimiters determine on which input
characters a single read call is to cease reading.

setdelim modifies the current break characters and
read delimiters for the device associated with the
given stream.

getsize returns the length, in number of bits, of
the size of a basic element to be read or written on
the device associated with the given stream. For
example, Multics uses seven bit ascii right adjusted
in a nine bit field as its standard'character set so
the element size for character oriented devices is 9.

setsize modifies the element size for the device
associated with the given stream.

When a specific function on a specific device cannot
be logically specified by any of the above general
calls the order call is used:

order is used to specify device dependent requests
to be executed by the DIM associated with the given
stream. ~xamples include locking the keyboard of a
console and unloading a magnetic tape.

Appendix B

The following list briefly describes the Device
Interface Modules (DIMs) generally available and
widely used in Multics. Detailed descriptions are
given in [7J.

Typewriter DIM - currently operates all devices used

as user consoles in Mu1tics. These include Teletype
Models 33, 35, and 37, IBM 1050 and 2741, Datel 30,
ARDS, and Terminet 300.

Synonym DIM - causes two streams to become synonymous,
i.e., all I/O calls (except attach and detach) on
either stream result in the same 1/0 operations being
performed.

File System Interface Module - causes segments of the
file system to be treated as input and output devices.

Hultics Standard Tape DIM - is used for reading and
writing tapes in Multics standard tape format.

Nonstandard Tape DIM - is used for reading and writing
tapes in any format.

Card DIM - is used for reading and punching punched
cards.

Printer DIM - is used for writing to the high speed
printers.

ARPA Network DIM - is used to input and output from
the ARPA Network of which the M.I.T. Multics installa­
tion is a part.

Communications Line DIM - is used to read from and
write to a dedicated PDP-B over a high speed communi­
cations line that is connected to the M.I.T. Multics
installation. This PDP-8 is used for monitoring of
Multics and for graphics.

References

[1] Daley, R.C. and Neumann, P.G., "A General-Purpose
File System for Secondary Storage", AFIPS, 1965
Fall Joint Computer Conference, Vol. 27, Part 1,
Spartan Books, Washington, D.C., pp. 213-229.

[2] Saltzer, J.H., "Traffic Control in a Multiplexed
Computer System", Sc.D. Thesis, Department of
Electrical Engineering, M.I.T., June (Available
as M.I.T., Project MAC Technical Report No. 30).

[3] Lett, A. and Konigsford, W., "TSS/360: A Time­
Shared Operating System", AFIPS, 1968 Fall Joint
Computer Conference, Vol. 33, Part I, MDI Publi­
cations, Wayne, Pennsylvania, pp. l5-2B.

[4J CP-67/CMS User's Guide, IBM, October, 1970.

[5J System/360 Operating System Concepts and Facili­
ties, IBM, Form l2B-6535-l, June, 1967.

[6] Ossanna, J.F., Mikus, L., and Dunten, S., "Commu­
nications and Input-Dutput Switching in a Multi­
plex Computing System", AFIPS, 1965 Fall Joint
Computer Conference, Vol. 27, Part 1, Spartan
Books, Washington, D.C., pp. 231-242.

[7] Multics Programmers' Manual, Preliminary Edition,
M.I.T., April, 1971.

I/O I DIMs
System I ~--------Ir-~~~-I

Traffic
r - Contro 1 GIM

GlOC J
FiglJre 1 - The I/O System's relatillllship

'; lml,)ther important M·.dties facilities.

called
"I/O switch"

-.-
User

etc.

segments in
file system

2-101

called
"At tach Tab le"

Figure 2 - Simplified view of I/O System organization.

user_input
typewriter

user_ i/o _-..;D;.,;IM;;;;.;;. __ conso le

Figure 3a - The standard attachment graph.

console

user_output

Figure 3b - A standard attachment graph
without the use of the
synonym DIM.

- synonym typewriter user input~

DIM DIM
user_i/o ----:~~-- console

synonym t
DIM FSIM ~egm:n

user_output-~:::';;"- file output_stream --- 1n fLle
system

Figure 3c - Output attached to a segment in
the fi le system.

user_input

synonym
DIM FS IM ~egDu~nt

file_input_stream Ln fLle
system

! - - --typewriter - ---,
I DIM I
Lu~e.:._~o ______ c~n~~~:. j

synonym
DIM FSrM segment

user_output ~...;;;.;=- f ile_output_stream--- in fi le
system

Figure 3d - Absentee attachment graph. For
a true absentee process that has
never been attached to a console
the attachment in the da;hed box
is unnecessary.

broadcast
DIM

user_output--~~~-<

typewriter
DIM user_i/o --..;~~-- conso le

FSIM segment
file_output-stream----in file

system

Figure 3e - Attachment graph with standard output
written to both the user's console
and a segment in the file system.

I CHAPTER

BEGINNER'S GUIDE TO THE USE OF MULTICS

September 20, 1973

There are a large number of ways to -use- Multlcs. You may,
at different times, find that you are using a program preparation
facility, or a program debugging facility, or a memorandum typing
facility, or a management information facility. One of the
interesting properties of Multics is the ability for a
knowledgeable programmer to construct a single program which
makes use of several of these facilities at once. For the
beginner, however, the problem is simply to figure out which one
of several ways of doing something is appropriate for his
project. In this chapter will be found a guide to typical ways
of using Multics and its most commonly used facilities, and a
number of examples of sessions at the terminal, to give a feel
for the way one fits things together to achieve useful results.
We must begin by exploring a number of issues having to do with
the simple mechanics of using the system.

~ Mechanics 2i Terminal Usage

Although there are several different varieties of typewriter
or graphic terminals which can be used with Multics, they all are
used in similar ways; the way in which Multics normally expects
these terminals to be used is our subject here. Note that
t1ultics permits a subsystem designer flexibility to change
conventions which are not exactly suited to his needs.
Therefore, we will describe here the standard conventions which
apply to ordinary use of Multics, and which are also used by most
programs. Indeed, an important property of Multics is the extent
to which the mechanics described here are universally used by so
many different parts of the system.

Most computer terminals are designed with flexibility to
allow use with different kinds of systems. This flexibility is
expressed in the form of switches whose setting must be correct
if proper operation is expected. For example, the IBM model 2741
terminal may have one or two switches on the left side, one
labeled "com-lcl" (which must be set to ~), and the other
labeled "inhibit auto-eot" (which, if there, should be set to
Q!l) • For sw itch set t i ngs on othe r term ina 1 types, see the MPf'.'
Heference Guide section, Protocol for Logging In.

3-2 BEGINNER'S GUIDE TO THE USE OF MULTICS

The connection of the terminal to the computer is
accomplished by ordinary telephone 1 ines, and by dialing the
telephone number of the computer. This number is usually
equipped to automatically connect you to the first free line into
the computer system. Multics is designed to inform potential
users that it is fully loaded by printing a message on the
terminal rather than by refusing to answer the telephone or
returning a telephone busy signal. Either of these latter two
responses to dialing Multics is a symptom of trouble and should
be reported.

Communication of keyboard characters with the computer is
accomplished by conversion of these characters into sequences of

. tones which can be sent over the telephone line. The piece of
hardware which does this conversion is called a dataset or modem
(for DlS2.dulator-~odulator); there must .be one modem at the
terminal and another at the computer. Two types of modems are
frequently found associated with computer terminals: those
directly attached to the telephone line, and those which are
acousticallY coupled by inserting the telephone handset
physically into the modem. The directly attached devices
normally come with a special telephone set which has a row of
buttons; one of these buttons must be depressed in order to get a
dial tone to start the call. In contrast, the acoustic coupler
is designed to work with any ordinary telephone anywhere.

After dialing the Multics telephone number, you should hear
one or two rings, and then the computer will answer. The next
step is to complete an electronic handshake sequence, first
between your modem and the one at the computer, and then between
your computer terminal and the Multics terminal controller. The
computer starts the sequence immediately after it answers by
placing a tone which you can hear on the telephone line. You
should then press the ~ button on the modem, if the modem is
directly attached, or else insert the telephone handset into the
acoustic coupler. The h~nd~hake sequence should then proceed to
completion all by itself, with a characteristic pattern of clicks
and gurgles that you will - soon learn to recognize as normal
operation, ending with a printed message from the computer.

There are several possible ways in which the handshake
sequence may fail. Before giving. up, check the following list of
possibilities:

1.

'l

Are you sure the computer answered and provided the initial
tone? If not, check to see if Multics is in operation.

Is the terminal plugged in and is its power switch .on?

3. Is the cable connecting the terminal to the modem properly
in place?

4. Is the modem plugged in? (If it is an acoustic coupler, it
may have to be turned 2n also.)

THE MECHANICS OF TERMINAL USAGE 3- 3

5. Are all the switches on the terminal and modem in correct
position?

6. Did you dial the correct telephone number? Generally there
are different numbers for different terminal types and
speeds. Check your telephone number list.

7 , . Has the terminal in question ever
before? If not, possibly it
required for use with Multics.

been used
is missing

wi th
some

Multics
feature

8. Has this telephone line ever been used with this acoustic
coupler before? Possibly the line is too noisy or weak for
the brand of coupler used, or maybe there is too much
amplification in the telephone line and one of the modems is
being overloaded.

9. Try hanging up and dialing again once or twice. With the
array of equipment between you and the computer, flukes are
common.

If all of these checks fail to turn up anything, it is time to
turn to expert help.

Assuming that the handshake was successful, it was completed
with the printing of some message from the computer, e.g.,
"Multics version 1S.11". You are now in communication with the
computer, and anything you type on the keyboard will be both
printed and heard by the computer. Whenever Multics or any
program prints anything to you, the keyboard will be temporarily
locked, thus preventing you from typing anything. At all other
times, the keyboard is unlocked, and you are free to type.

Generally, you will type messages with the intent that they
be read and understood by some program; you should always keep in
mind just exactly which program will be interpreting each message
you type.* To start with, the system has arranged that your
input lines will be directed to a login program which will insist
that you type information properly identifying yourself. The
login program will, at one point, exercise a special feature of
your terminal by disconnecting your keyboard from your printer,
so that you may type a password without producing a printed copy.
(If your terminal doesn't have this feature, the login program

* It is important to realize that you are allowed to type even
if some previously initiated operation has not finished yet and
technically the system or subsystem is not ready for another
typed line from you. If you can anticipate your next input
lines, you may type them at any time; they will be stacked up
and used, in order, to satisfy future requests for input from
you. This feature permits you to work. ahead of the computer, and
overlap your thinking and typing with waits for response from it.

3-4 BEGINNER'S GUIDE TO THE USE OF MULTICS

wi 11 instead print some random letters on the paper in the place
you are to type your password.) When the login program is
satisfied that it knows your identity, it will start a program
known as the listener which is usually used to supervise your
entire terminal session. The listener interprets lines that you
type as names of programs you wish to run. Whenever the listener
is listening for input, the terminal is said to be at comnand
level. The programs which you ask the listener to call are known
as commands. COn1T1and level is an important reference point, and
we will use this term frequently. Several of these ideas may
come into better focus in the example terminal sessions which
appear later in this chaPter.

I tis corrmon, as we 11 as human, 'to make typ i ng mi stakes, so
two correction conventions are normally in operation at all
times. One of them allows you to erase, so to speak, and then
retype small typing mistakes, and the other allows you to simply
discard more extensive typing disasters. The erase convention
uses the number sign (I) character. Whenever you realize that
you have typed a character in error, type as the next character
after it the number sign. When the line is read, it will be
scanned for number signs; if one is found, it, and the character
before it will be discarded; the resulting line is then assumed
to be the line you intended to type. Two consecutive number
signs will erase the two immediately preceding characters, and so
on. Note that you do not correct errors by backing up and
ove r t yp i ng, as in some s ys terns. I f you do backs pace and
overtype, the system will presume that you want that particular
combination of overstruck characters to be in your input line.
In this connection, note that the system is more concerned with
the appearance of the final printed line on your terminal than it
is with the order you typed things in. Thus, for example, the
order in which you produce overstruck characters is unimportant,
and extra up and down case shifts are ignored.

If you notice a serious error farther back in the line you
are typing, you could correct it by typing enough number signs to
erase everything back to and including the error, and then
retyping everything that was erased, this time correctly.
However, it may be simpler to just type a kill character (the
commercial at sign, @). When this character is encountered in an
input line, it, and all of the line to the .left of it are
discarded. The corrected line is then retyped directly to the
right of the kill character. Several examples of the use of
erase and kill characters appear in the annotated terminal
scripts later in this chapter.

Unless one is using a special program which has arranged
things differentiy, the unit of communication with the computer
for the typist is the completed line, ending with the function
key which returns the carriage to a new line. Thus, 'typing "new
line" is the signal that the typist is satisfied with the line as
it stands; the line is scanned for erase and kill characters,
and then passed along to satisfy the next request for input.

A MULTICS TERMINAL SESSION 3- 5

Some terminals do not have all of the 96 different
characters which can be typed in to Multics programs. For
example, the IBM 2741 terminal does not have square brackets.
There is a set of conventions which allows one to type something
else which means the same thing. All of these conventions use
one special character as an escape character to indicate that the
next character is to be interpreted differently than usual. On
a 2741, the escape character is the cent sign (¢). If one types
a cent sign followed by a "less than" sign, these two characters
together will be taken to mean a left square bracket. A complete
set of escape conventions which apply to your terminal may be
found in the MPM Reference Guide section, Typing Conventions.

Finally, two emergency measures should be mentioned. Every
terminal has somewhere on it a special button which is always
pressable, even if something is being printed and the rest of
the keyboard is locked. This button is called the ~ button,
and, when pressed, will cause the system to stop whatever program
was running and return to command level. In this way, even if
you have started a runaway or incorrect program, you may always
keep positive control of the situation. Note that when the quit
button is used, the work in progress, while halted, will not
necessarily be saved if you begin doing something else.
Generally, unless you take special measures, you will find that
pressing the quit button discards all work which was done since
the previous time you were at command level~

The second emergency measure is the terminal disconnect. If
you should happen to turn off the terminal power, or hang up the
telephone while logged in, the system will first perform the
equivalent of a quit, then it will automatically perform a logout
command. Of course, it can not print the usual logout message on
your disconnected terminal. In general, you need not worry about
disrupting the system by such an abrupt disconnection, but your
own work may be lost back to the last time you were at command
1 eve 1 •

A Multics Terminal Session

Having accumulated some familiarity with the basic mechanics
of using Multics, the easiest way to proceed to familiarity with
the system itself is to look over the shoulder of an experienced
but cooperative user, and pester him with questions about what
seems to be happening. The closest alternative we can achieve
here is to walk through some sample terminal sessions, explaining
in some detail the various pieces of an emerging picture. To
start with, we will consider one of the simplest possible
sessions, in which a user logs in to the system, checks on the
latest news and notices, uses the system as a desk calculator to
balance his checkbook, and then logs out. later examples will
illustrate typing and editing information and use of the Multics
storage system. To begin with, however, the simple terminal
session illustrated in Figure 3-1 will allow us to decouple from
those considerations the purely mechanical issues underlying all

3-6

1
2
3
4
5*
6
7*
8
9
10
11
12
13*
14"
15
16
17
18
19
20
21
22
23
24
25
26(*)
27
28
29
30
31
32
33
34*
35
36*
37*
38*
39*
40*
41*
42*
43
44
45*
46
47
48*
49
50
51
52
53
54

BEGINNER'S GUIDE TO THE USE OF MULTICS

I

Multics 15.8; MIT, Cambridge Mass.
Load = 55.0 out of 60.0 units; Users • 58
log i n ~~ ill i ams
Password:

Williams Apollo logged in: 09/29/70 2139.4 edt Tue
Last login 9/28/70 1633.2 edt from terminal "2'09"
New or updated help segments: pl/1_status, tty_bug, news
r 2139 3.914 12.070 231

help nes1ws
(10 lines follow)
09/29/70
The following changes were made in the on-line system today:
1) The editor command, edm, was replaced with a new version

which eliminates a bug encountered when input lines
overflow its input buffer.

2) A new conwnand named change_default_wdir (abbreviated cdwd)
was installed. This command changes the user's default
working directory for the duration of the current
process or until the command is issued again.

(end)

more help? yes
(68 lines follow>
Following is a summary of all system changes made 9/1 to 9/28:
9/28 Replaced PL/I compiler, removing varying string bug.
9/26 Added 12 million words of disk stora
QUIT
r 2142 1.667 4.760 110

decam
Go
-0
+14791
+38525
~2741

-3482
-49768
p
-2675

q
r 2148 .515 4.040 135

logout

Williams Apollo logged out 9/29/70 2149.1 edt Tue
CPU usage 5 sec
hangup

Figure 3-1: A Sample Terminal Session.

A MULTICS TERMINAL SESSION

use of the system. In each of our examples, we will take
replicas of actual terminal sessions, and add line numbers down
the left side so that we may refer to them. We have placed an
asterisk (*) beside those lines typed by the user; the remaining
lines are those printed by whatever program he is communicating
with. The session starts at an IBM 2741 terminal, immediately
following the dialing of the Multics telephone number.

The login sequence, all by itself, raises a fairly large
collection of issues. Let us examine this script, line by line.
Line 1 was printed as a consequence of the electronic handshake
sequence between the typewriter control program and the 2741. In
order to establish what kind of terminal has called, the control
program tries several experiments, attemPting to elicit a
response from the terminal. One of the experiments caused the
terminal to print a number sign. That experiment being
successful, the terminal type was identified, and the system
printed a greeting message on lines 3 and 4, after putting in a
blank line (line 2) t6 in~~~e that the carriage is at the left
edge and that anything accidentally prlnted_ by the experiment is
separated from the message. Note that a line from the computer
usually ends with a "new line", so that the next message, whether
typed by the user or the computer, starts at the left edge of a
new line. The second line of the greeting message (line 4) tells
the number of users currently logged in, and the load they are
placing on the system. The average user places a load of 1.0
load units on the system, and in this example the hardware
configuration in use will support 60 units, or 60 average users.
Some users with restricted command repertoires may be rated at
less than 1.0 load units; others may be rated higher. Since the
load, 55.0, is well below the limit, 60.0, we will have no
trouble logging in. If the load were equal to the limit, we
might still attempt to log in; it may be that some part of the
load can be deferred or some low priority user could be asked to
stop working. After printing line 4, the system unlocked the
typewriter keyboard, and the user had two minutes in which to log
in to the system. Thus, on line 5 he typed a login line, giving
the personal name by which he is identified throughout the
system. Note that the distinction between upper and lower case
letters is significant in Multics input and output. If he had
typed his name without the initial capital letter, it would not
have been recognized.

Some users may type other things after their name. Such
extra input items are necessary only if the user works on more
than one project or charges his usage to more than one account,
and then only if he does not want to use his standard billing or
project identification for this terminal session.

On line 6, the login program responded by requesting the
private password which is associated with the user's name. At
this point, the program turned the terminal printing mechanism
off and although our typist typed in his password on line 7,
there is no printed record of it. Note that, as usual, r.e

3-8 BEGINNER'S GUIDE TO THE USE OF MUlTICS

signaled that he had completed typing by typing a "new line", so
the next message from the computer was printed on line 8.

Lines 8 through 12 are the response of the login program to
the successful identification of the user. Line 8 records the
date, time, name, and project affiliation of the user. The
project affiliation refers to a grouping of users who are working
together on a single project and therefore require frequent
access to each other's information. As we shall see in the
example terminal session exhibiting storage system usage, since
the privacy system recognizes the existence of such groups, one
can grant access to all members of a group by stating just the
project name of the group. Line 9 tells the user of the
conditions of his previous terminal session, so that he may
discover if someone else is using his password.

Line 10 is called the message Qf ~~. This message is
updated frequently to reflect any impo~tant news for users.
Rather than printing the details of .the news here, though, the
message usually refers the user to information files which may .be
printed with the help command. We will see examples of how to
use this very handy facility in a moment.

lines 11 and 12, the last lines printed as a result of
logging in, are known as a ready message, since its appearance
indicates that the terminal is now at command level, and that the
command language interpreter is ready to start interpreting
commands. The four numbers printed in the ready message have the
following meanings:

2139 Time of day, in 24 hour form, to the nearest minute
(e.g., 9:39 p.m.).

3.914 Number of seconds of central processor time used since
the last visit to command level.

12.070 A measure of the memory used since the last visit to
command level. It is Intended to measure memory usage
in a manner that is in~ependent of system load.

231 Number of pages
brought in to
command level.

(1024 word blocks> of information
primary memory since the last visit to

A blank 1 ine, in this case on line 12, is printed as part of
the ready message, to provide separation between successively
typed corrmands. As we shall see, a ready message is printed
every time that the terminal returns to command levei. The
information printed in the ready message, in addition to
providing an occasional time stamp on one's terminal output, is
frequently handy in estimating the relative cost of a
just-completed operation, or in comparing the cost with another
way of doing the same thing. (Note: for the uninterested, there
is a special feature which can be used to suppress the ready

A MULTICS TERMINAL SESSION 3-9

message. For details, see the write-up of the ready_off command
in the MPM Reference Guide Command section.)

At this point, the system has now created a process for the
user. A process may be thought of as a private computer, working
in its own memory, or address space, under control of the user at
his te rm ina 1 • The process has begun r-unn i ng in the 1 is tene r
program, so any line typed by the user will be interpreted as a
command, that is, an instruction to call some program either
belonging to the user or else in the Mu1tics library. Our sample
session continues as the user types his first command line.

The command line typed on line 13 illustrates three things:
invoking a library program by name, passing that program an
argument, and correction of a typing error. The user chose to
follow up the suggestion given by the message of the day back on
line 10, so he typed the name of the help command. That command
is capable of giving help on a var{ety of topics; one selects the
topic by giving the help command an argument, which names the
desired topic.* The help command takes that argument as the name
of a file of information which it then uses as a source of text.
In this case, our user wanted to see the latest system news, so
he tried to type the argument "news" following the command name
"help". Unfortunately, he slipped up, and typed "nes". He then
noticed his error, and typed the erase character (I) followed by
the correct letters. Thus the line actually interpreted by the
listener reads "help news".

The help command then replied by printing, on line 14, a
notice of how much output was coming, and then on lines 15-24 the
latest message from the on-line news file. After completing that
message, it inserted a blank line (line 25) to improve
readability, and then asked the user if he wished to see more.
This question, on line 26, illustrates that some lines printed by
the computer need not end with a "new line". After printing the
question mark, the program printed two spaces, then stopped to
await the reply of the typist. The parenthetical asterisk to the
left of line 26 is intended to call attention to the fact that
the typist only typed the last part of this line, namely the
1etters "yes", and the "new line".

Then, on line 27, the help program again printed a notice of
how much output was coming, and proceeded with the next older set
of news. Our user, not wishing to wait while 68 lines of
information were printed, allowed the printing to proceed only
until he saw news he had seen before, on line 30. In the middle
of that line he pressed the quit button. The system responded
immediately by printing a "new line", the word QUIT on line 31,

* If one does not even know enough to name a topic on which he
needs help, typing "help" with no arguments will provide a
tutorial on the on-line information currently available.

3-10 BEGINNER'S GUIDE TO THE USE OF MULTICS

and a standard ready message on lines 32 and 33. The terminal
was thus forcibly returned to command level, the help command
having been suspended in mid-operation. The user was then ready
to type his next command, on line 34.

There our user typed in the name of a desk calculator
command program found in the Multics library. This command turns
his terminal typewriter into a kind of simple adding machine, so
that he can balance his checkbook. The desk calculator
acknowledges that it is listening for input by printing the word
"Go" on line 35. Our user, being experienced in the use of the
calculator, proceeded to type in a whole series of requests to it
on lines 36-41, first to clear its memory, then to add and
subtract several numbers found in his checkbook. Note that he
did not wait for a response to one request before typing the next
one; he knew that the calculator does not reply to requests for
memory clearing, addition, and subtraction. In fact, it is
likely that he typed at least some of his input lines before the
calculator was ready for them; he and the desk calculator were
making effective use of the Multics type-ahead ability mentioned
before. Finally, on line 42, he typed a request to print the
result of all that addition and subtraction. This time, he
waited for the response, which the desk calculator printed on
line 43, followed by a blank line for readability on line 44.

Our user was then finished with the desk calculator, and
wanted to type more commands; in order to return to command
level, he typed the request q (short for "I quit") to the desk
calculator on line 45. The calculator program responded by
returning to its caller, and the terminal was returned to command
level as the ready message on lines 46 and 47 attests.

Our user, having solved his immediate problem (there seems
to be little Multics can do about the negative balance in his
checkbook), then typed the logout command on line 48. The logout
command, in addition to printing the messages on lines 49-53,
took care of various housekeeping chores, such as updatin-g
accounting records and removing the user's name from the list of
those currently logged in. It also triggered a telephone line
disconnect sequence, which caused the minus sign to print on line
54. Note that although our user was logged in for almost ten
minutes, he used only five seconds of the central processor's
time. Such ratios are the basis for developing a time-sharing
system which is to be used by a large number of people
simultaneously.

With this example, we have now walked through an entire
terminal session. If you wish, you might want to try to imitate
this session the first time you log in, substituting your own
name for that of our sample user. One thing that you would
surely notice if you tried that experiment is that the ready
messages would not be exactly the same as in our sample scriPt.
It is normal to observe a variation in the amount of processor
time or number of page movements required to accomplish the same

TYPING AND EDITING INFORMATION 3-11

job several times. The variation arises because the system
attempts, as often as it possibly can, to run your program on the
coattails of other users, utilizing pages in common. To the
extent that such sharing is successful, the charges to individual
users may be reduced, but the size of this effect will vary with
circumstances. Also, when the system is heavily loaded, it is
harder to locate the resources required to run a program; the
extra effort required shows up as a charge to the user who asked
for them.

In addition to the commands illustrated here, you might try
typing the help command with no arguments, and you might also try
the who command. The Reference Guide gives complete information
on many options and variations on these as well as on the
commands illustrated in our sample scripts.

Ivping ~ Editing Information

Probably the single most common activity of a user of a
time-sharing system is typing in and editing information, with
the intent that the information be stored for later use. One
important property of a system which is normally approached by
means of a remote terminal must be that it can store information
from one usage session to the next. If this property were
lacking, it would be unreasonable to use it to tackle any
information processing job which could not be. completed in a
single sitting. Since that kind of restriction is unwanted,
Multics provides an extensive system for storing and organizing
information, the Multics storage system.

The unit of information which is. stored, named, protected,
and shared in the Multics storage system is known technically as
a segment. One or more segments containing related information
is usually called a~. Typically, a segment might contain a
complete program written in the PLfl language, or a memorandum,
or a collection of closely related data. We will return later to
a variety of examples of how segments are named, protected,
classified, and shared; for the moment we are merely interested
in the mechanism by which one creates a brand new segment or
modifies the contents of an old one. This mechanism is important
because most subsystems which require substantial quantities of
input expect to find their input in segments. For example, one
uses the Multics PLfl compiler by first constructing a segment
which contains the desired PLfl source program. Then he
instructs the compiler to translate the source program found in
that segment.

Segments which contain only strings of characters, and thus
can be printed by a standard printing procedure without decoding
their format, are known as printable segments; a PLfl source
program is an example of a printable segment. All other segments
may be categorized as binary segments, which is just a way of
saying that they consist of a collection of bits which somehow
represent information in a way different from the standard

3-12 BEGINNER'S GUIDE TO THE USE OF MULTICS

printable form. Usually, binary segments are created and read
only by programs. Because they can be easily printed, printable
segments are creatable, modifiable, and readable by human beings
as well as by programs.

For the purposes of creating and editing printable segments,
several general-purpose editor conmands are available. The two
standard editors are named edm and qedx. The first, edm, is easy
to learn and use, but limited in its repertoire of facilities
when complex but methodical changes to a segment are needed. The
second, qedx, is more powerful and is controlled by a concise
input language, but is somewhat more difficult to master at
first. Some subsystems (for example, BASIC and APL) provide
their own built-in editor program in order to minimize the
distinction between program creation and execution. We will here
concentrate on the simpler of the two general-purpose editors.

As before, it is easiest to explain the operation of an
editor by looking at a sample termi'nal session. In the example
in Figure 3-2, edm is used to type in a ne~ segment containing a
short poem. We begin our reference line numbers from 1,
real izing, of course, that the user who typed in this segment
must have first logged in as in our earlier example. As before,
we have marked with an asterisk lines typed by the user.

On line 1, our user typed the command to invoke the editor.
Since the editor is willing to edit any text segment in the
system, it is necessary to indicate which segment is to be
edited. This indication is made by typing the name of the
segment as an argument following the name of the editor command
itself. In this case, our user has chosen the name, poem, as the
name he would like to use for the segment he is about to create.
On line 2 the editor replies with the observation that it did not
find a segment named poem already in existence, so it assumed
that it was supposed to create a new segment with that name.

To understand the message printed by the editor on line 3,
we must realize that this editor operates in one of two modes:
input mode, and edit mode. In the input mode, everything typed
by the typist is presumed to be information to be stored in the
segment. In edit mode, the typist's 1 ines are instead taken to
be requests to make changes to the already stored segment. Since
the segment had not yet been typed in, the editor assumed we
should start in input mode, which it signified by printing
"Input." on line 3. As we shall see, when the editor detects
that the typist is working on an old segment, it starts him off
in edit mode instead.

Lines 4-8, then, are the Intendea InTormation content of the
segment, supplied by the typist. Note the use of an erase
character near the beginning of line 5, to change the i to an 0,
and the kill character used on line 7 after noticing a blunder
earl ier in the line. Even though only one character was in error
(the r should have been an e), it was necessary to type the

1*
2
3
4*
5*
6*
7*
8*
9*
10
11*
12*
13
14*
15
16*
17*
18
19
20
21
22
23
24
25*
26*
27
28
29*
30
31*
32
33*
34
35*
36*
37-*
38
39*
40*
41*
42
43*
44*
45
46
47
48
49
50

TYPING AND EDITltJG INFORMATION

edm poem
Segment not found.
Input.
There was a young lady from Niger
Who rilode with a smile of a tiger.
They returned from the ride
With thr lady@With the lady inside
And the smile on the face of the tiger.
•
Edit.
t
1 sm i 1 e
Who rode with a smile of a tiger.
c loflonl
Who rode with a smile on a tiger.
t
p 1000
No line.
There was a young lady from Niger
Who rode with a smile on a tiger.
They returned from the ride
With the lady inside
And the smile on the face of the tiger.
EOF
w
q
r 2024 1.280

edm poem
Edit.
1 tiger

5.284 225

Who rode with a smile on a tiger.
1
And the smile on the face of the tiger.
i -- anonymous
t
•
Input.
A poem:

Edi t.
t
P 1000
No line.
A poem:

There was a young lady from Niger
Who rode with a smile on a tiger.
They returned from the ride

Figure 3-2: An Example of Typing and Editing Information.

3-13

3-14

51
52
53
54
55*
56*
57
58
59
60*
61*
62
63*

""64*
65*
66
67
68*
69
70
71
72
73
74
75
76
17
78
79
80
81
82
83

BEGINNER'S GUIDE TO THE USE OF MULTICS

With the lady inside
And the smile on the face of the tiger.

EOF
t

-- anonymous

c 1000 /tiger/giraffe/
Who rode with a smile on a giraffe.
And the smile on the face of the giraffe.
EOF
t
1 anon

d
"W

q

-- anonymous

r 2026 .875 2.132 150

print poem

poem 10/31/70 2026.7 est Sat

A poem:

There was a young lady from Niger
Who rode with a smile on a giraffe.
They returned from the ride
With the lady inside
And the smile on the face of the giraffe.

r 2025 .377 1.298 37

Figure 3-2 (continued)

TYPING AND EDITING INFORMATION 3-15

entire line over again because, you may recall, the kill
character deletes everything to its left on the same line.

Having completed the initial typing of the poem, our typist
now wished to switch to edit mode. Now he was up against a
slight problem: everything he typed was supposed to be stored in
the segment. How was he to communicate to the editor program his
intent to stop using the input mode? As we might expect, a trick
is used. The editor checks each line typed in input mode. When
it sees a line containing nothing but a period, it takes that
line to mean that the mode should be changed, and it does not
store that line in the segment being created. (Note that this
means that one cannot store a line containing only a period
while in the input mode. However, one can create such a line in
edit mode.)

Thus, on line 9, we see only a typed period, and on line 10
we see the response of the editor, saying that "Edit." mode is
now in operation. At this point, our typist, having looked over
the printed copy of his input, noticed that he made an error on
line 5--the word "of" should have been typed as "on". To make
such changes easy to manage, the editor maintains a pointer,
which is always pointing to some place in the stored segment.
The typist may move this pointer from line to line, by issuing
various requests. Thus, when our typist issued the request to
switch to edit mode, the pointer was pointing to the last line he
had typed. The t (for top--most edm requests are one letter
mnemonics) request on line 11 moved the pointer to the top of the
segment, ahead of the first line. The 1 (for locate> request, on
line 12, started a search for the next line containing the string
of letters "smile". When it found such a line, the editor
printed it on line 13, and left the pointer pointing to that
line. This operation of moving the pointer by searching for a
string of letters is known as editing by context.

Having got the pointer set to the line which contained the
error, our typist then issued a c (for change) request on line
14. The change request is designed to avoid the need for typing
the whole line over, by mentioning first a string of characters
which appears in the line, and then giving another string which
is to replace the first one. What the typist wanted to express
is the notion "change the string of letters 'of' to the string
'on I". Since, in general, one or both of the strings may contain
blank spaces, we must invent some convention for communicating to
the change request exactly what string is to be used for
matching, and what string is to be used in the first string's
place. The convention used is for the typist to choose any
character he wishes that is not in either string -- his choice is
called the delimiter character. (The slash mark is often used
since it is convenient to type.) Then he types that character
three times, with the two strings in between. Thus, the
substitution was expressed to edm by typing the request name c,
followed by a space, then the first delimiter "(I), the string of
characters to be matched (of), then a second delimiter, then the

3-16 BEGINNER'S GUIDE TO THE USE OF MUlTICS

new string to be substituted in place of the matching string
(on), and finally a third delimiting character. In return for
this input sequence, the editor performed the requested
substitution, then printed the changed line to verify that the
correct change occurred.

(Note that while editing by context is very convenient,
context is often ambiguous, and one must constantly check to
insure that the correct context was used. Thus, the word "of"
might have appeared twice in the line; in that case, the change
request would have changed both occurrences. If one wanted only
the second occurrence changed, he would have to type a larger
identification string, one which uniquely matched the single

.usage of "of" that was to be changed.)

Next, to verify that the whole segment is correct, our
typist moved the pointer back to above the top of the segment
with the t request on line 16, and then he asked the editor to
print (with the p request) the next 1000 lines of his segment.
Although he knew that his segment did not contain 1000 lines, he
did not want to count them; when the user asks for a larger
number than necessary, the editor merely prints to the end of the
segment, then stops. Thus, we have the final segment contents
printed on lines 19-23. The comment "No line." on line 18 is
inserted whenever the pointer is not polnting at a line; for
example, when it is pointing to the top of the segment.
Similarly, the comment EOF on line 24 is printed whenever any
request causes the pointer to run past the end of the segment.
Our typist then typed the request w (write) on line 25, which
means "put the segment away in the storage system". Being
finished with the editor he then typed q, for quit. The editor
responded by returning to command level, as shown by the ready
message on line 27.

To illustrate the ability of the editor to modify a segment,
lines 29 through 83 are a typical editing session. In this
session, the typist made some changes to the segment containing
the poem that had been typed in before.

The typist started from command level, just as before,
typing the name of the editor and the name of the segment to be
edited. This time, since the segment already existed, the editor
began in edit mode rather than input mode. The typist wanted to
add a line following the last line, so he had to move the pointer
to the last line. Noticing that the last line contained the word
"tiger", on line 31 he typed a request to locate that string of
characters. Now it becomes apparent why the editor always prints
the line it has moved the pointer to, as on line 32 -- there were
two iines containing the word ntiger:l, and the editor had iocated
the first one. The typist should have used the request:

1 the tiger

TYPING AND EDITING INFORMATION 3-17

on line 31, since only the last line contains the string of
characters lithe tiger". Seeing his mistake, the typist took
advantage of a special convention: if he types a locate request
with no character string, the previous locate request will be
repeated, with the effect in this case that the next instance of
the string "tiger" will be located. This he did on line 33, and
the editor responded on line 34 with the last line of the
segment. Then, using the i (insert) request, which inserts a
line after the pointer, our typist on line 35 added a single line
to the end of the segment.

Next, he decided that his poem needed a heading, so he moved
the pointer back to the top of the segment with the t (top)
request on line 36. Since the heading is to be more than one
line, he decided to switch temporarily to input mode by typing
the mode-switch character, a line containing only a single
period, on line 37. He followed this with two lines to be stored
in the segment following the current pointer position (which in
this case was at the top of the segment). Note that line 40 is
completely blank--presumably the typist wanted a blank line in
his segment at that point. Having now finished typing the new
material, the typist switched back to editing mode, went back to
the top of the segment, and on line 44 requested that it be
printed. As we see on lines 45-54, the segment appeared as
before, except for the three added lines, two at the start and
one at the end.

Next, our typist exhibited one of the most powerful features
of this editor, its multiline change request. On line 56, he
requested that the string "tiger" be replaced by the string
"giraffe" everywhere it appeared on the next 1000 lines following
the pointer. Thus, every occurrence of "tiger" in the entire
segment was sought out and changed by the editor. For
verification, the editor printed each changed line (lines 57 and
58), and then reported that it encountered the end of the segment
(line 59). Finally, the typist decided that the line saying
"anonymous" was superfluous, so he first moved the pointer to it
(lines 60 and 61), and then deleted it (line 63). Finally, he
wrote out the resulting edited segment, and then asked the editor
to return to command level.

As an independent check on the contents of the resulting
edited segment, he then typed the print command, as shown on line
68. This library program will print any text segment; first it
prints a header giving the segment's name and the date and time
(line 70), then it prints the contents of the segment.

With this brief introduction, the next steps to familiarity
with the editor are to read the edm command write-up in the
Reference Guide, and then to type in and edit a small segment of
your own.

Some pointers:

3-18 BEGINNER'S GUIDE TO THE USE OF MULTICS

1. It is useful to remember that the editor makes all changes
on a ~ of the segment, not on the original. Only when
you issue a w (write) request does the editor overwrite your
original segment with the edited version. If the user types
q (quit) without a preceding w (write), the editor warns him
that editing will be lost and the original segment will be
unchanged, and gives him the option of aborting the request.

2. Don't ever press the quit button while in the editor, unless
you are prepared to lose all of the work you have done since
the last w (write) request. If you press quit while a w
request is in progress, you may even damage the original
version of the segment.

"30 If one has a lot of typing or editing to do, it is wisest to
occasionally (say every 10-15 minutes) issue a w request, to
insure that all the work up to that time is permanently
recorded. Then, if some accident should occur (e.g., a
system failure, or the telephone line disconnects), you will
lose work only back to the last w request.

4. Some requests are more expensive in computer resources than
others. In particular, frequent movement of the pointer
back to the top of the segmen t shou 1 d be avo i ded. If
possible, it is best to plan ahead, and try to do as much
editing as possible with a single pass of the pointer
through the segment. The larger the segment, the more
important this consideration becomes.

5. The request to move the pointer backward, while very handy,
is very expensive to use, since the editor actually has to
move the pointer to the bottom, then back to the top, then
to the correct location.

6. Be sure that you have switched from input mode to edit mode
before typing editing requests, including the requests to
write and quit. If you forget, the editing requests will
be stored in your segment, instead of being acted upon. You
will then have to locate and de 1 e te them:-

7. The only frequently-used requests which have not been
illustrated are the next (n) and backup (-) requests. The
remaining requests are less important and you can safely
ignore them to start with.

8. As one becomes more and more familiar with the use of edm,
he may conclude that it provides verification responses more
often than necessary, thus slowing him down. The requests v
and k are used to controi the editor's verbosity. At about
the point where one feels confident enough to use these two
requests constructively, it is probably time to begin
studying the more sophisticated editor, qedx. The qedx
editor provides the user with a repertoire of more concise
and powerful requests, which permit more rapid work.

USING THE MULTICS STORAGE SYSTEM 3-19

Using ~ Multics Storage System

In the previous section we saw how a text segment may be
created and edited. In this section, we will explore some of the
features of the system which allow such segments to be organized
and stored for later use.

The user in our last example chose the name poem for his
segment. Multics tries to allow the user as much flexibility as
possible in choosing names for segments. Since the system has
many users, who may be strangers to one another, this need for
flexibility suggests that the segments belonging to anyone user
be grouped in such a way that he can choose names without worry
that some other user has already used that name. This grouping
is accomplished by an entity known as a dir€ctory. A directory
may be conveniently thought of as a segment containing a list of
names of other segments.*

Typically, each user has a directory for his own segments.
Within a single directory, each segment must have a diff~rent
name, but two different directories may contain segments with the
same name. By a simple extension of this convention, directories
are also given names, so a user's directory may contain the names
not only of his segments, but also of additional directories he
has created. These additional directories may contain the names
of more segments. ~lhen a directory name is found in a directory,
it is said to be an inferior directory; the naming directory is
said to be superior to it. A user's motives for putting some of
his segments in inferior directories may be several:

•

He may have two segments to which he wants to give the
same name; they must not be in the same directory.

He may have many segments, and would like to keep them
grouped by category. As we shall see, he can ask for a
list of all the names in anyone directory, and thus in
one of his categories.

He may wish to protect a certain group of segments all in
the same way; when he creates a new such segment, he can
protect it the same way as the others by putting it in
the appropriate directory; he need not think through the
protection specification again.

* Although a segment is technically only named by a directory,
it is common terminology to refer to a segment as being stored in
a directory. Of course, the segment is actually stored on some
disk or drum storage device; only its location on that device is
stored in the directory. This distinction is important in the
case of links, which name segments stored in other directories,
rather than providing for their storaee directly~

3-20 BEGINNER'S GUIDE TO THE USE OF MULTICS

Whenever a program asks for a segment by name, a search
is undertaken for the segment. This search is controlled
by specifying a list of directory names. Thus, he may
create several directories in order to arrange that the
search proceed in a fashion he prefers.

It should be clear, then, that the concept of a directory is
a key to several different features of the Multics storage
system. The idea of superior and inferior directories is
extended by the requirement that all the directories in the
system together form a hierarchy, or~. The' directory at the
base of the tree, which is superior to every directory of the
system, is called the LQQ.t directory.

Figure 3-3 is a typical directory arrangement. The root
directory in that example contains two entries, both of which are
names of other directories. One of these two directories
contains the library of system programs, while the other, named
udd (for user_directory_directory) contains one entry for every
user of the system, namely Smith and Jones. These two users each
have a directory with their names on it, and in addition, Smith
has chosen to add another directory inferior to his own, named
old_dir; he has placed three segments named x, y, and z in
old_dire

Whenever a Multics program wishes to read or change the
contents of a segment, it is required to specify the name of the
segment it wants. Every segment has a ~ ~ which is formed
as follows: trace the directory structure down from the root to
the desired segment, writing in order the name of every directory
on the path, and finally the name of the segment itself. Now,
concatenate all these names into a single long name, placing the
"greater than" character between the individual names. Thus, the
path name of the edm command, found in the library, would be

root>library>edm

By convention, since every path name would begin with the letters
"root", these letters are . left off, so one would use the path
name

>library>edm

to refer to the edm command.
lp.pll has the path name

>udd>Jones>lp.pll

Similarly, Jones' segment named

and Smith's segment named x has the path name

>udd>Smith>old_dir>x

library:

USING THE MULTICS STORAGE SYSTEM

root: udd

library

·udd:
Jones

edm
Smith

who

print

decam Jones:
Ip.pll

x

Smith: poem

a.pIl

old dir

x

y

z

Figure 3-3: Typical Multics Directory Hierarchy.
Directories are rectangles;
segments are circles.

3-21

3-22 BEGINNER'S GUIDE TO THE USE OF MULTICS

which is clearly distinct from Jones; segment x, which has the
path name

>udd>Jones>x

To avoid the need for typing full path names, which may not
be easily remembered (or even known, in some cases), the system
remembers for each logged in user the path name of one directory
in which his activity is centered: his working directory. All
names which do not begin with a "greater than" sign are
considered to be relative to his working directory. Thus, for
example, Smith might choose as his working directory the path
name

>udd>Smith

in which case when he uses the name

poem

he will be referring to the segment with path name

>udd>Smith>poem

and when he uses the name

he is referring to the segment with path name

>udd>Smith>old_dir>x

The system automatically .chooses an initial working
directory for a user when he logs in, but he is free to change
the path name of his working directory to any other directory in
the system. He makes this change by invoking one of several
commands used for interaction with the storage system. As
before, it ·is easiest to understand these cOlTlTlands by following a
series of sample scripts, which are based on the directory
organization illustrated in Figure 3-3. Suppose that Jones has
logged in, and the system has assigned him the directory

>udd>Jones

as his working directory to start with. (The scriPt may be found
in Figure 3-4.)

On line 1, he typed the command print_wdir, which merely
prints the path name of his current working directory on line 2.
(This command is Quite handy if one forgets where he is, or needs
confirmation that he typed his last command to change directories
correctly.) Next, on line 5, he typed the list command, which
prints the contents of the working directory. On line 7 the list
command printed a summary of the directory contents. Jones'

1*
2
3
4
5*
6
7
8
9
10
11
12
13
14*
15
16
17*
18
19
20
21
22
23
24
25
26
21*
28
29
30*
31
32
33*
34
35
36
37*
38
39
40
41*
42
43
44*
45
46
47
48
49
50
51*
52
53

USING THE MULTICS STORAGE SYSTEM

print_wdir
)udd>Jones
r 1210 .137 .812 27

1 i st

Segments = 2, Records = 4.

r w 1 lp.p11
re 3 x

r 1212 .216 1.762 33

create foo
r 1213 .320 3.728 77

Ii st

Segments = 3, Records a 4.

r w 0 foo
r w 1 1p.p11
re 3 X

r 1215 .202 1.856 49

createdir my poems
r 1216 .151 1.482 0

change_wdir mypoems
r 1218 .089 .306 17

print_wdir
)udd>Jones)mypoems
r 1219 .119 .056 1 ..

list
,directory empty
r 1219 .147 1.406 42

copy)udd>Smith)poem limerick
r 1220 .311 1.732 53

list
Segments = 1, Records = 1.

r w 1 limerick

r 1220 .219 2.162 41

change_wdir >udd
r 1221 .067 .646 30

Figure 3-4: Example of Use of the Multics Storage System.

3-23

3-24 BEGINNER'S GUIDE TO THE USE OF MUlTICS

54*
55
56
57
58
59
60
61
62
63
64
65
66
"S7*

list -a

segments :8 0

1 inks :8 0

Directories = 2, Records :8 2.

s 1 Smith
sma 1 Jones

r 1222 .077 .304 9

cwd Smith>old_dlr
r 1222 .136 1.406 42

status x

names: x
type:
date used:
date modified:
branch modified:
bit count
records used
mode

segment
11/29/70
11/23/70
11/2/70
1596
1
rw

r 1223 .439 3.402 62

change_wdlr
r 1224 .111 1.110 41

1657.6 est Sun
2104.5 est Mon

2104.5 est Mon

68
69
70*
11
72
73
74
75
76
77
78
79
80
81
82
83*
84
85
86*
87
88

link >udd>Smith>old_dir>x Smithx
r 1225 .178 1.788 41

listnames -a 89*
90
91
92
93
94
95
96
97
98
99
100

Segments • 3, Records • 4.

foo
lp.p11
x

Directories • 1, Records • 1.

mypoems

101 links iii i.
102
103 Smithx
104
105 r 1227 .626 2.154 43
106

Figure 3-4 (continued>

USING THE MUlTICS STORAGE SYSTEM 3-25

directory (refer to Figure 3-3) contained only two entries, and
these segments occupied a total of four records, the unit of
storage space. One record has room for up to 4096 printed
characters, or 1024 computer words.

Starting on line 9 is the three-column list of names of
segments in this directory. Working back from the right, the
third column is the segment name (32 characters or fewer in
length), the second column i~ the number of storage records
occupied by this segment, and the first column tells the mode of
access this user is permitted to this segment. Up to three
letters may appear in this column, each letter indicating an
additional privilege:

r (Lead)

e (~xecute)

w (t!rite)

The user may read the contents of this
segment.

The user may run this segment as a program.

The user may rewrite the contents of the
segment.

We- will return later to the subject of setting these access mode
i.ndicators. For the moment, we wi 11 merely observe that they
exist, that different users may have different access mode
indicators for the same segment, and that the system enforces the
access mode restrictions.

On line 9 is listed a segment which has a "period" as part
of its name. In general, the storage system is happy to allow
any character except the "greater than" sign in a segment name.
The user of the storage system may wish to attach some special
meaning to some character, and one such system-wide convention is
illustrated on line 9: a segment name may consist of components,
separated by periods. As far as the storage system is concerned,
the name is one long string of letters with interspersed periods;
the user by convention attaches meaning to the components. It is
customary, for example, for source language programs to be given
a two-component name. The first component is chosen by the user,
and the second component is the name of the source language.
Thus, the name lp.pll is evidently attached to a program written
in the PL/I language.

On line 14, the user typed a command which creates a new
segment, and upon reissuing the list command on line 17, we see
the newly created segment included in the listing. Note that the
create command attached an access mode indicator of "r W". Note
also that since no information has been written in the segment
yet, its space occupied is O.

On line 27, the user created a directory inferior to his
own, named mypoems, and on line 30 he typed the command which
changes his working directory to the new inferior directory. As
a check, on line 33 he asked to print the name of his working

3- 26 BEGINNER'S GUIDE TO THE USE OF MUlTICS

directory, which is now

)udd)Jones)mypoems

When he tried to list the contents of his new directory, on line
37, he received an appropriate error comment.

To illustrate a typical use of segment names, on line 41 he
typed a copy cOrTllland. The copy command works as follows:

copy a b

The segment named a i"s located in the hierarchy.

A segment named b is created.

The contents of a are copied into b.

Both the names a and b are subjected to the conventions about
working directories. Thus, on line 41, the name a is

)udd)Smith)poem

which, since it begins with the "greater than" character, is
taken to be a full path name and requires no interpretation. The
name b is

1 imerick

which, not starting with the "greater than" character, must be
interpreted relative- to the current working directory. Thus,
name b for this case is taken to be

)udd)Jones)mypoems)limerick

A segment of that path name was thus created, and the contents of
Smith's poem were copied into it. To prove this, the user next
typed "list", and found one segment, named limerick, in his new
directory. Its size was nonzero, so something must have been
written into it by the copy command.

~'Ie s hou 1 d pause at t his momen t to ob se rve tha t copy i ng of
segments is the exception, rather than the rule, in Multics.
Normally several different users will share the same copy of a
segment, either by giving the full path name when they wish to
access it, or by placing in their working directory a link to the
segment. Copying is performed only if one wishes to make a
modification to a segment, but keep the original version also.

Continuing our example, on llne 51, the user began exploring
the rest of the di rectory structure by typing, commands to change
his working directory to one higher in the directory hierarchy.
He then on line 54 listed the contents of this directory.

The list command presumes that most often one wants only a
list of segments, not of inferior directories, so it normally

USING THE MULTICS STORAGE SYSTEM 3-27

does not print directory names. If the argument -a (for all) is
given to the list command, it will list everything in the
directory, not just segments. Thus, on lines 56-63, we see the
summary of contents, and the names of the two directories
inferior to udd. Note that Jones has more access to his own
directory than he does to Smith's. If Smith were to try this
same experiment, he would probably find that he has more access
to his own directory than he has to Jones'. Access modes for
directories are described below under Access Control in Multics.

Next, on line 67, Jones switched his working directory into
Smith's own inferior directory, and used the status command to
find out all he could about segment x.

Finally, he returned his working directory to the place
where he started, by typing the command change_wdir with no
arguments. The change_wdir command has tucked away the name of
his original working directory to allow such a move to be
specified easily, since it is very common.

Next, the user placed in his directory a link to Smith's
segment x, as referred to above. Note that one can make a link
to another directory, if desired, also. This feature allows one
to talk about any entry in that directory with a name briefer
than the path name from the root.

Finally, he listed just the names of
directory. Figure 3-5 illustrates the
structure.

everything in his
modified directory

While the sample scripts described here are useful for
getting a flavor of how the system is typically used, much
additional insight can be gained by experimenting with the system
itself. For example, the following series of experiments is
suggested:

1. log in

2. Print the name of your working directory with the print_wdir
command.

3. List the contents of your working directory with the command
"list -an.

4. Switch to the directory immediately superior to yours with
the change_wdir command. Give as the name of the directory
to switch to, the name printed in step 2, with the last
component stripped off.

5. Repeat steps 2-4 until you have reached the root directory.
(To enter the root directory, use a "greater than" sign for
its name.)

6. Explore downward from the root to see how far you can bO
into other parts of the directory hierarchy.

3-28 BEGINNER'S GUIDE TO THE USE OF MUlTICS

root:
udd

library

udd:
Jones

I ibrary: edm
1--------1

who
Smith

print

decam
Jones: Ip.pII

x

poem Smith:
faa

a.pII
mypoems

Smithx
old dir

mypoems:

y

z

Figure 3-5: Directory Hierarchy of Figure 3-3 (After Manipulation
by Example Script). Directories are rectangles;
segments are circles.

USING THE MULTICS STORAGE SYSTEM 3-29

Finally, we have not yet me.ntioned three commonly used
convenience features of the Mu1tics storage system:

1. Any time a segment name must be typed, one may specify
either the path name from the root, or a relative path name
starting from the current working directory. We have
already seen two examples of this feature above, in typing
names of segments located below the working directory. One
can also give relative path names for segments not below the
working directory by typing an initial "less than" sign for
each level up in the hierarchy needed to get to the segment
in question. Thus, if the working directory is

)udd)Smith

Then the relative path name

<Jones)lp.pl1

is taken to mean

)udd)Jones)lp.pll

2. Any segment, link, or directory may have several names, if
desired. The addname command is used in this connection.
Multiple names are handy in cases where a new name is
wanted, but some programs (or users) still use the old one.
Also, a segment with a long name may be given a second,
shorter name for typing convenience.

3. There are conventions for talking about groups of segments
with similar names, using an asterisk to specify the parts
of the name that vary within the group_ Thus, the command

list *.pll

would list all segments in the current working directory
\'Jh i ch have two-componen t names end i ng wi th • p 11.

More details on these three features, as well as many other
storage system features and options which are less commonly
exercised, may be found in the MPM Reference Guide sections on
Using the Mu1tics Storage System, and the MPM Reference Guide
section, Constructing and Interpreting Names. . .
Access Contro 1 l.n r~u 1 tics

In the examples given above, each segment had an access mode
which indicated the user's ability to read or write in a given
segment. The access modes are not universal; 1·1ultics permits
different users to have different access modes for the same
segment. Further, careful control is maintained over who may set
or change the access mode of a segment. These faci1 ities permit
control of privacy of information in a large variety of w?ys.
t1u1tics contains some very powerful features for controll ing
access which allow construction of restricted access

3-30 BEGINNER'S GUIDE TO THE USE OF MULT!CS

general-purpose subsystems by users with no special privileges.
Though he may not immediately see a use for the fully
sophisticated mechanism, the casual user should be familiar with
some of the more routine aspects of access control.

The most important piece of the access control mechanism is
the access control ~, abbreviated ACL. Every segment has its
own ACL. An ACL consists of a list of names of users who are
permitted to use a segmenti along with the modes (read, execute,
or write) which they may use. To make ACLs meaningful, every
user of Mu1tics is registered, which means a standard name,
different from everyone else, is recorded for him. The password,
typed at login time, is a check on the authenticity of a user

,claiming that he is registered. For convenience in specifying
access control, users may be organized into groups who are
working together. Each such group is given a unique name also,
known as a project identifier. For purposes of controlling
access, the name of a logged in user is the concatenation of the
.user's registered name and his project's name. Two typical
access control names are:

Williams.Apollo.a
Jones.t.iathSim.a

The third component of the name can be different for each
instance of a particular user, if he has two jobs in the system
at once, or is logged in twice. An ACL consists of a series of
access control names, followed by the mode of access allowed to
that name. A user can access a segment only if his name matches
one of the entries on the ACL. For example, the ACL

Williams.Apollo.a re
Jones.MathSim.a rw

would grant access to just those two users, and no one else. To
grant access to all members of a given project, one of the ACL
entries may specify anyon~ by placing an asterisk in the field
normally occupied by the personal name. Similarly, asterisks may
be placed in the other two fields, Thus the access control list

Williams.Apollo.* rew
.Apollo. rw
..* r

would permit Williams, when working on project Apollo, to access
the segment with all modes of access, all other Apollo project
members with slightly restricted access, and all other users of
the system, with read access only.

Access control lists are constructed and modified with the
aid 0 f t h r e e c 01TlTl and s : set a c 1 , del e tea c 1 , and 1 i s t a c 1 •
Permission to use these commands is based on a simple
hierarchical rule: directories also have access control lists.
Permission to modify a directory carries with it the permission
to set the ACLs of segments stored in that directory. Thus, most
users are assigned a directory by their project supervisor; he

ACCESS CONTROL IN MULTICS 3-31

sets the ACL of the directory to allow the user to modify the
directory, and the user then has complete control over who may
access segments he places there.

One minor point of interest here is that the project
supervisor must have had permission to modify the next higher
level directory in order to create the user's new directory, as
well as to set the ACL permitting the user to modify the new
directory. That permission is derived in the same way, by an ACL
controlling the next higher directory. This general pattern
continues up to the root directory, which has an ACL which
permits only the system administrator ability to modify its
contents.

Multics distinguishes among several ways of using
directories, and an ACL intended for a directory indicates these
ways in a manne~ analogous to the access modes of a segment. The
directory access modes are:

s (,a,tatus)

m (modify)

a (APpend)

The user may list the contents and find
out the attributes (such as ACLs) of the
entries in the directory.

The user may delete entries from the
directory and may modify the attributes
of entries in the directory.

The user may add an entry to the
directory, but he may not later delete it
unless he also ill access.

The "an access mode is handy for implementing mailbox facilities
in which the only form of access is to leave a message.

In order that the user not be plagued with constant need to
specify ACLs, each directory contains an initial access control
list (inital ACL) which is automatically placed on every entry
added to that directory. Also, most standard facilities for
creating segments routinely specify appropriate access for at
least the user who created the segment. Thus, a common strategy
is to place in the inital ACL the entries

..* re
..* s

thus allowing all other users freedom to explore, but not change,
the segments and directories contained in the user's directory.

Finally, certain system services such as off-line printing
of segments and backup copying of new and modified segments are
performed by system processes which must have access to any
segments they print or copy. Appropriate ACL entries are
automatically placed on every segment unless the user takes
explicit steps to prevent them from appearing.

3- 32 BEGINNER'S GUIDE TO THE USE OF MUlTICS

This chapter has illustrated the typical usage of some
commonly used commands. However, even a beginning user will
rapidly develop needs for many of the more sophisticated
facil ities available. On the other hand, a cover-to-cover
reading of the Reference Guide is probably not the most
efficient method of gradually expanding one's grasp of system
facilities. Reading the following sequence of material from the
Reference Guide may be useful in getting started:

1. Read the Reference Guide section entitled The Multics
Command Repertoire to become familiar with the kinds of
commands available, and their names.

2. Peruse the remaining parts of Section 1 of the Reference
Guide (The Multics COl1111and language Environment> so that
you will know what kinds of Questions are answered there.
Detailed study of these parts can be deferred to the time
when a need arises.

3. Read the Reference Guide section, The Storage
Directory Kierarehy, and skim the remainder
sections on Using the Multies Storage System.

System
of the

4. Read the following command descriptions; they represent
the set which will be most used, at first:

edm 1 ink login
print un 1 ink logout
dprint list rename
delete listacl pll
help setael getquota

mai I who

5. Read the first few pages of the description of the debug
eoomand. This facility is extremely' powerful, but a
beginner will find that there are a lot of ideas to
master before he can use debug to .its full effectiveness.

6. Read Chapter Four for an introduction to the progral1111ing
enivironment.

7. look at the Reference Guide section,
Status Codes and Meanings, to see
information are listed there •.

list of System
what kinds of

8. At the next level down, the following less frequently
II~O~ ,.."""'"'~ ... ~~ ~"6 ~1~" ,.""~ .. '" 1, ... ", ••• ~ "'
~..,"- "-" """,, ""I '1\;0 U I.,,, 6VUU ,"u ~"U" uuv'"' '".

copy
hold
start
new_proc
release
program_interrupt

change_wdir
print_wdir
archive
status
where

WHERE TO GO FROM HERE 3-33

9. Before beginning to write programs in earnest, review the
section on The Multics Programming Environment, and
especially the part entitled The Subroutine Repertoire.

10. Finally, read the section on Use of the Input and Output
Fac i 1 i ties.

The set of section and command write-ups suggested above
should provide a thorough introduction to both the facilities
available on Multics and also the kinds of reference material
found in this manual.

C HAP T E R 4

PROGRAMMING IN THE MULTICS ENVIRONMENT

September 20, 1973

A programmer may, if he wishes, treat Multics as simply a
PLfl, FORTRAN, APL, BASIC, or LISP machine, and contain his
activities to just the features provided in his preferred
programming language. On the other hand, much of the richness of
the fvlultics programming environment involves use of system
facilities for which there are no available constructs in the
usual languages. To use these features, it is generally
necessary to call upon library and supervisor subroutines.
Unfortunately, a simple description of how to call a subroutine
may give little clue to how it is intended to be used. The
purpose of this chapter is to illustrate typical ways in which
one utilizes many of the properties of the Nultics programming
environment.

The programmer choosing a language for his implementation
should carefully consider the extent to which he will want to go
beyond his language and use system facil ities of Multics which
are missing from his language. As a general rule, one may say
that each of the t1ultics languages matches some well-known
standard for completeness of that language (e.g., .RSI or IBM).
rlowever, in going beyond the standard languages, the programmer
will find that Multics tends to be biased towards convenience of
the PLfl programmer. For example, if one plans to write programs
which directly call the r'lultics storage system privacy and
protection entries, he will be asked to supply arguments which
are, in PLfl, structures. If he is writing in FORTRAN or BASIC,
he has no convenient way to express such structures. Note that
the situation is not hopeless, however. Programs which stay
within the original language can be written with no trouble.
Also, in many cases, one can construct a trivial PL/I interface
subroutine, callable from, say, a FORTRAN program and which goes
on to reinterpret arguments and invoke the Multics facility
desired. Using such techniques, almost any program originally
prepared for another system can be moved into the Multics
env i ronmen t .

4-2 PROGRAMM I NG I N THE fvlUL TICS ENV I ROrJMENT

Probably the quickest way for an experienced programmer to
get a feel for how to program in a new environment is to examine
sample programs. This chapter consists of several examples of
programming for fo'iul tics. Each program is annotated wi th ccmments
to guide the reader. Unfortunately, programs do not always
invoke features in the best order for understanding, so the
following strategy may be useful: as you read each comment, if
its implications are clear and you feel you understand it, check
it off. If you encounter one which does not fit in to your
mental image of what is going on, skip it for the moment. Later
comments may shed some light on the situation, as will later
reference to other parts of the MPM. Finally, a hard core of
obscure points may remain unexplained, in which case the advice
of an expe r I enced t'iu 1 tic s p rog r amme r i s p robab 1 y needed. Be
warned that the range of comments is very wide, from trivial to
significant, from simple to sophisticated, and from obvious to
extremely subtle.

The notes presume that the reader
language. Only those aspects of the
provides some unusual implication are
have been printed out on an IBM 2741
the ASCII circumflex character appears

is famil iar with the PL/I
language for which Multics
mentioned. The programs
(golf-ball) typewriter, so
as a hooked overbar.

Finally, some comments provide suggestions for "good
programming practice." Such suggestions are usually subjective,
and often controversial. f.onetheless, the concept of choosing
among various possible implementation methods one which has
clarity, is consistent, and minimizes side effects is valuable,
so the suggestions are provided as a starting point for the
reader who may wish to develop his own style of good programming
practice.

Basic Addressing Techniques

The most significant difference between the Multics
programming environment and that of most other contemporary
computer programming systems lies in its approach to addressing
onl ine storage. Most computer systems have two sharply distinct
environments: a resident file storage systeM in which programs
are created, and translated programs and data are stored, and an
execution environment consisting of a processor (actually
all 0 cat e din s h 0 r t time bur s t s) and a " cor e i mag e .. , w h i c h
contains the instructions and data for the processor. Supervisor
procedures provide subroutines for physically moving copies of
programs and data back and forth between the t\~O environments.

In :'iul tics, the 1 i ne bet\-,een these t*.JO env i ronments has been
del iberately blurred, so as to simplify program construction:
rllost programs need to be cognizant of only one environment rather

BASIC A[)ORESSltJG TECHNIQUES 4-3

than two. This blending of the two environments is accompl ished
by extending the processor/core-image environment. In' f'.1ultics, -
the share of the processor is termed a process, and the core
image is abstracted into what is called an address space. Each
user when he logs in is assigned one newly created address space,
and a single process which can execute in it.

A Multics address space is not 1 ike the usual core image,
however: it is larger, and it is segmented*. A segment may be
of any size between 0 and 256K 36-bit words and an address space
may have a large number of segments -- a typical Fultics process
has about 200 segments. (The hardware places a limit of 256K
distinct segments, but table sizes in the current software 1 imit
an address space to a number closer to 2000.) Typically, each
separately translated program resides in a different segment;
collections of data which are large enough to be worthy of a
separate name are placed in a segment by themselves.

The segment is also the unit of storage of the Multics
catalogued file storage environment. (Called the ~ultics storage
sYstem.) These two environments, distinct in many other systems,
are automatically mapped together on demand, by the Multics
vi rtual memory system. ~Jhen a program al ready appearing- in the
current address space calls to another one which is not yet
there, a dYnamic linking fault occurs, the supervisor locates the
needed procedure, and maps it into the current address space,
assigning it some as yet unused segment number. Similarly, data
segments are mapped into the address space. In contrast to Many
other systems, this address space is retained throughout the
login session, and its contents gradually are increased as
different programs and data objects are accessed. (Facilities
are also available for starting over with a new address space, or
removing items no longer needed in the address space.) Finally,
all supervisor procedures and commands called by the user are
mapped into the very same address space. Thus, there is a great
uniformity of access methods, to user-written prograMS, to data,
to 1 ibrary or supervisor programs, and to items never before used
but catalogued in the storage system.

As w ill be se e n i nth e e x amp 1 e s \tv'h i c h f 0 1.1 ow, the e f f e c t 0 f
the mapping together of these tv.JO envi ronments can range from the
negligible (programs can be written as though there were a
traditional two-environment system, if desired) to a significant
simplification of programs which make extensive use of the

* This discussion presumes that the reader is famil iar with
the purposes of and mechanisms which allow menory segmentation.
For further background in this area, see the bibliography at the
end of Chapter One and the first parts of Chapter Two. In
addition, books by Organick (The r;ultics Systcn: an E:.xplanat on
of l12 Structure) and ~'Jatson (Tinp Sharing System Des £';n
Concepts) motivate segmentation.

4-4 PROGRAMMiNG IN THE MULTICS ENVIRONMENT

catalogued storage system. We begin with seven brief examples of
programs which are generally simpler than those encountered in
practice, but which illustrate ways in which on-line storage is
accessed in Multics.

1. Internal Automatic Variables. The following program
types the word "Hello" on four successive lines of terminal
output:

a: procedure;
declare i fixed bfnary;
do i = 1 to 4;

pu t 1 is t ("He 11 0") ;
put skip;
end;

return;
end a;

The variable i is by default of Pl/l storage class "internal
automatic": in Multics it is stored in the stack of the current
process and is available by name_ only to program "a" and only
unti 1 "a" returns to its caller. I t is declared binary for
clarity, so that there will be no question in the reader's mind
whether or not a presumably slower decimal addition is involved.

2. Internal Static Variables. The following program, each
time it is called, types out the number of times it has been
called:

b: procedure;
declare j fixed binary internal static initial(I); ,
pu t 1 is t (j, "ca 11 s to b. ") ;
put ski p;
j = j + 1;
return;
end b;

The variable J IS of Pl/l storage class "internal static";
in Multics it is stored in bls linkage section (discussed later)
and is avai lable by name only to program b. I-ts value is
preserved for the life of the process, ,or until procedure b is
recompiled, whichever time is shorter. The "initial" declaration
causes the value of j to be initialized at the time this
procedure is first used in a process.

3 and 4. External Static. Suppose we wish to set a value
from one program and have it printed by some other program in the
same process:

BASIC ADDRESSING TECHNIQUES 4-5

c: procedure;
declare z fixed binary external static;
z = 4;
return;
end c;

d: procedure;
declare z fixed binary external static;
pu t 1 i s t (z) ;
put skip;
return;
end'd;

In both programs, the variable z is of Pl/l storage class
"external static"; in Multics it is stored in a particular
segment (named stat by default, but changeable), and is
available to all procedures in a particular process, until the
process is destroyed. External static is analogous to COMMON in
FORTRAN, but with the impOrtant difference that data items are
accessed by name rather than by relative position in a
declaration.

Each variable which is accessed in this form generates a
dynamic linking fault the first time it is used. later
references to the variable by the same procedure on that or
subsequent calls do not generate the fault. A more complete
discus'sion of dynamic 1 inking appears in a later section of this
chapter.

5. Direct Intersegment References. The following program
prints the sum of the 1000 integers stored in the segment w:

1
2
3
4
5
6
7
8
9

10
11

e: procedure;
declare w$(1000) fixed binary external;
de c 1 are -(i, sum) fix ed bin a r y ;
sum = 0;
do i = 1 to 1000;

sum = sum + w$(i);
end;

pu t 1 i s t (s urn) ;
put skip;
return;
end e;

The dollar sign is recognized as a special identifier by the
Pl/I compiler, and code for statement 6 is constructed which
anticipates dynamic linking to the segment named w. Upon first
execution, a dynamic linking fault is triggered, and a search
undertaken for a segment named w. If one is found, the link is
"snapped," which means that all future references will occur with
a single machine instruction.

4-6 PROGRAMMING IN THE MULTICS ENVIRONMENT

I f no segment named w is found, the dynami c 1 i nker wi 11
return to command level and report an error to the user. As
described later, it is possible to create an appropriate segment
named w, and then continue execution of the interrupted program,
if such action is appropriate.

6. Reference to Named Offsets. The following procedure
calculates the sum of 1000 integers stored in segment.x starting
at the named offset u:

f: procedu re;
declare x$u(1000) fixed binary external;
declare (i, sum) fixed binary;
sum = 0;
do i = 1 to 1000;

sum = sum + x$u(i);
end;

pu t 1 i s t (s urn) ;
put ski p;
return;
end f;

The difference between this example and the previous one is
that segment x is presumed to have some substructure, with named
internal locations, called offsets. To initially create a
segment with such a substructure, one normally uses one of the
compilers or assemblers, since an inbound linkage section must be
constructed for the segment to indicate to the linker where
within the segment the offsets may be found. Unfortunately, the
PL/I language permits specification of such structured segments
only for procedures, not for data. The ALM assembler can be used
for creating structured data segments. (It is expected that in
the future better techniques will become available.)

7. External Reference Starting With a Character String. In
many cases, one starts with a character string representation of
the name of a segment which is to be accessed. In those cases, a
call to the Multics storage system is required in order to map
the segment into the virtual memory and to obtain a pointer to
it:

g: procedure(string);
declare string character(*);
declare p pointer;
declare (i, sum) fixed binary;
declare v(1000) fixed binary based(p);
call hcs_$make_ptr (string, p);
sum = 0;
do i = 1 to 1000;

sum = sum + veil;
end;

return;
end g;

A PROGRAM WHICH TESTS FOR PRIME NUMBERS 4-7

The calling sequence to hcs_$make_ptr is simplified from
real life. The real calling sequence requires specification of
several options unimportant to us here. (This is the only sample
program which will not work if typed in literally as shown. See
the write-up of hcs~$make_ptr in the subroutine section of the
r1PM for the complete calling sequence.)

One may also use, in place of hcs_$make_ptr, another storage
system entry named hcs_$initiate. When using hcs_$initiate, one
directly specifies the path name of the segment desired: no
search is undertaken for the segment as in the case of a dynamic
linking fault. This procedure differs greatly from the examples
above, in which a search is involved. An intermediate situation,
in which library routines are used to construct a tree name
starting with an entry name, is found in the "simple text editor"
example, which appears later in this chapter.

A Program Which Tests for Prime Numbers

In figure 4-1 is a typical small Pl/I program, which may be
used as a model for many simple calculations not involving
special Multics system properties. The program is confined
en~irely to the Pl/I language; presumably it would run unchanged
on any computer system which has a Pl/I, assuming that all the
necessary PL/I features are available. The program is organized
assuming that input and output wiil go from and to an interactive
console. The comments following are keyed to the line numbers
printed to the left of the program. {Note: the source program
is typed in without line numbers. We have added them here to
facilitate making comments, with an asterisk indicating lines
typed by the user, as in chapter 3.>

line corrment

5. All identifiers are explicitly declared, to be sure that no
suprise defaults occur, and to make easier the job of
reading the program for someone else who is asked to
maintain it.

7. These two identifiers are not explicitly used in the
program, but they are implicitly involved in the put list
and get list statements.

9. Character and bit strings are delimited with the ASCI I
double quote mark in the Multics PL/I language.

9. Note that the upper case and lower case letters are
different, whether appearing in comments, literal strings,
or i den t i fie rs •

13. The underscored word ~ will properly go through all the
mechanisms and come out the other end. If we had used
edit-type I/O statements (that is, format statements) we
would have noticed one minor problem: the character

4-8

1*
2
3
4
5
6
7
B
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36*
37
38
39
40* .
41(*)
42
43
44
45*
46(*j
47
48

PROGRAMMING IN THE MUlTICS ENVIRONMENT

print primetest.pl1

primetest: procedure;

declare prime_input fixed binary;
dec 1 a re (sq r t, mod) b u i 1 tin;
declare (sysprintisysin) file;

put 1 i s t (It T y pep rime to bet e s ted : ..) ;
get list (prime_input);
i f p r i me(p r i me_ i npu t)

then put 1 ist (prime_input, "is a prime. II);
else pu tIl s t (p r i me_ i npu t, .. i s ll.Q.t. a pr i me. ") ;

put skip;
return;

p rime: p rocedu re (t ria l-p rime) re turn s (b i t (1)) ;

declare trial-prime fixed binary,
trial_factor fixed binary,
last_factor fixed binary;

1 as t fa c tor = sq r t (t ria 1 Jl rime) ;
do trial_factor = 2 to last_factor;

if mod(trial-prime, trial_factor) = 0
then re tu rn ("Glib);

end;
return ("I U b);

end prime;

end pr imetes t;

r 1406 1.712 9.359 176

p 11 pr imetest
PL/I
r 1409 7.041 56.437 1217

primetest
Type prime to be tested: 121

121 is not a prime.
r 1410 2.960 10.627 557

primetest
Type prime to be tested: 397

397 is a prime.
r 1410 .305 3.172 98

Figure 4-1: A program which tests for prime numbers.

CHECKING ON THE PERFORMANCE OF A PROGRAM 4-9

position counts in format statements are in terms of storage
locations occupied by a character string rather than print
positions required to print the character string. Thus the
s t r i n g .ll.Q..t. wo u 1 d r e qui r e 9, rat her t han 3 , spa c e sin a
format specification. (Three letters, three backspaces, and
three underscores.)

17. This internal procedure is not recursive, and meets several
other rules which permit the compiler to generate a very
fast (I-instruction) calling sequence to it. Storage for
variables of the internal procedure is actually allocated in
the automatic storage area of primetest itself for this
special case. Thus, non-recursive internal procedures are
quite economical organizing tools. -

23. The algorithm used to test for primeness is actually quite
brute force: the only work reduction technique it employs is
to note that at least one factor of a number must be less
than or equal to the square root of the number.

23. Note that the use of the sqrt built-in function involves
conversion from integer to floating-point representation,
and back. These conversions are automatically supplied by
PL/I, but the programmer should be aware ·when he invokes
them, so as not to trigger unnecessary conversion.

In the examples of use of the program, note that the ready
message cost of use is substantially larger the first ,time the
program is invoked. (Compare lines 43 and 48.) This effect is
due to the initial dynamic linking of the procedure to its
environment, including primarily the input and output mechanisms
invoked by put and get.

Checking Qll ~ Performance Qf ~ Program

Often, after putting together a new program, one wishes to
improve its performance. The simplest performance measuring tool
available in Multics is to be found in the ready message. A
slightly more sophisticated approach can be taken by using the
"profi le" option of the PL/I compi ler. For example, if one
wished to compile the primetest program using this option, he
would proceed as in figure 4-2.

The numbers printed in the profile are
statement-by-statement counts of the number of times that the
statement was executed, and the number of machine language
instructions which were involved. The latter number (in the
column headed "COST") is shown as the sum of t\,IO parts, the
inline instruction count, and the number of transfers out to PL/I
support subroutines ("operators"). Thus, line 23 (containing a
use of the single-precision fixed point modulo operator) was
executed 30 times; it apparently consists of 13 machine language
instructions, one of which is the call to the operator which
performs the mod builtin function. The names in parentheses at

1*
2
3
4
5*
6(*)
7
8
9

10*
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

pl1 prlmetest -profile
1)11, Version 11
r.1605 9.089 40+758

p r i metes t
type prime to be tested: 997

997
r 1605 2.409 14+177

Ilr I n tJ) ro fi 1 e p ri me t·e 5 t
•

ll~E STM COUNT COST PROGRAM

prtmetest
5 1 1 29
7 1 1 6 + 3 (stream_ 10
8 1 1 7 + :5 (stream_lo
9 1 1 21 + 4 (stream_to

:L2 1 1 7 + 2 .(s tream_l 0
13 1 1 7 + 1 (return)
:ll 1 1 1:5 + 3 (fxl_to_f12
:l2 1 1 7
:23 1 :50 390 + 30 (mod_fxl)
:25 1 30 240

TOTAL 727 + 46
II"' 1606 1.703 4.991 151

15 a ,p.rt.me.

put_llst_al :put_end)
let_ltst_al let..;end)
put_'1 st_a 1
put_end')

p;ut~ll It_al

ca 11..;ex t_o'ut f12_to_fkl)

Filure 4.2: Use of the execution ~roflle fe~ture.

l»ut_end)

~~
C
r-
......
(-,
(n

/'T1
:z
<
:Xl
o
:z
X
I'T1
Z
-I

DEBUGGING PROGRAMS ON MULTICS 4-11

the right are those of the operators involved. For example, line
21 of the program takes the square root of a fixed binary
integer. Operator fx1_to_f12 converts the integer to floating
point representation for the square root routine. Operator
call_ext_out performs the call to sqrt, and operator f12_to_fxl
converts the result back to integer form.

Other performance measuring tools include the page_trace
comrnand, which prints out a 1 ist of "recently-used pages. Various
clock subroutines may be used to time the execution of
subroutines to microsecond precision.

Debugging Programs 2n Multics

A variety of debugging tools are available on Multics. The
mO$t powerful of these is a prog~am named debug, which permits
source-language breakpoint debugging of PLfl and, FORTRAN
programs. The debug command also has many features useful to the
machine language programmer, but we will concentrate here on a
small subset of its features which can be quickly and easily
applied to a PLfl program.

To understand the examples given below, one must first know
a little about the Multics stack. The stack is essentially a
push down list"used to contain the return points from a series of
outstanding interprocedure calls. It is also used for storage of
automatic variables. If one were to stop a running program and
trace its stack, he would find, starting at the oldest entry in
the stack, a record of the procedures used to initialize the
process, followed by the command language interpreter, followed
by the procedure called at command level and any procedures it
has called. If an unexpected error occurs (or the user presses
the "Quit" button), the system will mark the stack at its current
level, push it down, and call a new invocation of the command
interpreter. Three special commands may then be invoked:
release, hold, and start. If the user types release, the command
interpreter will unwind the stack back to its own previous
invocation, and discard the intervening stack contents. If the
user types hold, the stack contents will be preserved
indefinitely. If the user types start, the system will attempt
to return to the interrupted computation to continue it.
Depending on the nature of the error, and what the user has done
since the error Dccurred, the restart attempt mayor not succeed.
The user may also type any other command, but upon completion of
that command, the command interpreter will automatically perform
a release operation, unless a hold has been requested. A common
response to an unexpected error is to type hold, use other
commands and debugging tools to discover and repair the error,
and then type start, if it still makes sense to continue running
the program.

Consider, now, the script of figure 4-3: The program
printed on lines 3-11 scans the automatic array named "a", using
illegal negative subscripts. Since the program does not specif;,

1*
2
3
4
5
G
7
8
9

10
11
1.2
1.3
1.4
1.5*
1.6
l.7
3.8
19
~~ 0
:~ 1
:!2*
:~3
:24
:25
:26
27
28*
20*
30
31*
32
33
34

print blowup.pl1

blowup:

dcl

procedure;

(j,eC10),loop_lndex) fixed bJn.~YI

do looD_lndex • ·1 to -100000 ~~ .1;
j • a(loop_tndex);
end;

end;

r 1839 1.250 5+43

pl1 blowup -table
PL/I, Version 2

\tJA RN I N G 3 0 7
The variable "a" has been referenced but h,. "eve' bt." let,
r 1840 10.351 5+355

blowup

Error: out_bounds_err bV blowupl16
referencing stBck_41771177 (In procell dlr)
r 1840 1.087 3+35

debul
/blowup/16&t,s

J • a(loop_lndex);
loop_Index
1413 113 ·769
.Q
r 1841 .840 4.271 120

Figure 4.3: A sl~ple example of source laneul,. d.bu'llnl~

:z
C')

~
c:
r­
......
n
(I)

,."

z
<
:;:a
o z
3:
f'T1
Z
-t

DEBUGGING PROGRAMS ON MULTICS 4-13

that subscript checking should be done by PL/I, the compiled code
will attempt to do something with the negative subscripts, in
this case scanning downwards in the stack until the bottom is
reached; a hardware trap will then catch the errant program.

Note that, in preparation for debugging a new program, the
"table" option of the compiler is used, on line 15. This option
requests the compiler to leave its symbol table embedded in the
program, for run-time use. A warning of trouble is provided by
the compiler on line 19, but this does not deter us from trying
the program, on line 22. As predicted, an out-of-bounds fault
occurs when referring to the next location in the stack after
location zero. A standard Multics notation for memory locations
is exhibited twice in the error message, once on line 24 and
again on line 25. On line 24 we see the string:

blowupl16

which is interpreted as "in the segment named blowup, at offset
16 (octal) locations from the base". (This notation should be
read "blowup offset 16".) Thus line 24 gives us the address of
the offending instruction, while line 25 tells us the
out-of-bounds address which it attempted to reference.*

* The message on lines 24 and 25 is printed by the Multics
"default error handler" which means that the program which was
running had not explicitly arranged to respond to the particular
error which occurred. (A PL/I lion condition" statement is used
for explicitly catching such errors.) The following errors are
commonly encountered:

1 i nkage_e r ror

an out of range subscript or
uninitialized subscript or pointer
variable was probably used, leading to a
reference to a legal segment number but
an illegal word address within the
segment.

a call occurred to a subroutine whlcn
cou 1 d no t be f ou nd. I tis po s sib 1 e to
type "holdu , write the missing
subroutine, compile it, and then restart
the program which got the linkage error.

The user's secondary storage allocation
has been exceeded. I f one types "ho 1 d",
he may then list his directory, delete
something, and then restart the program
which ran into the overflow.

For the cause of and recovery from other errors, the MPM sections
on handling of unusual occurrences and condition names shoul~1 bo

consulted.

4-14 PROGRAMMING IN THE MUlTICS ENVIRONMENT

To find out what has gone wrong, we now use the debug
command on line 28: there is no reply when the corrrnand name is
typed, so the next line, 29, contains the first request to debug.
The syntax of debug requests is straightforward, though cryptic
at first. One specifies first a Multics memory address, then
\t'lhat to do at that address. On 1 ine 29, the string
"/blowup/16&t" specifies the address: starting from segment
named lib 1 owup", go to the 16 th 1 oca t i on in the tex t. The s t ring
",s" after that address specifies that the contents of that
location should be printed out, in symbolic (source-instruction)
format. Thus we see, on line 30, the line of code which caused
the out-of-bounds fault to occur.

To inspect individual variables to see what has gone wrong,
one merely mentions them by name, as on line 31, and debug will
print out their position (1413 locations from the base of the
stack, 113 from the current stack frame base) and value (-769 in
the example.) Note that this request fo110\'o/s the general form of
all debug addressing requests, but that defaults are used
profusely. In the absence of a segment name, the last one
mentioned (/blowup/) is used; in the absence of specific
instructions for output format, a format appropriate to the
variable (decimal integer) is used; in the absence of any other
instruction, output printing is assumed. In the place where the
variable name is typed, an arbitrarily complex identifier may be
used. Thus, if the program contained a based, two-dimensional
array named x, one could look at an element of that array by
typing:

p- > x (i, j)

The debug cOlTllland would look up each variable in turn, evaluate
the subscripts, then fetch the array element in question, using
the current value of lip" as a base.

Finally, having satisfied ourselves as to the status of the
program, we exit debug by typing the request on line 33. All
debug requests not related to memory locations are preceded with
a period. Since we did not type hold following the error, the
command language interpreter will release the stack contents upon
return from debug. We have no further use for the errant
program, and for this example it makes no sense to repair it and
continue, so a stack release is the appropriate action.

As an example of breakpoint debugging, consider the pair of
programs in figure 4-4. According to plan, one calls the program
"trev" with a string of words; trev calls recursive procedure
" __ •• 11 .. ___ •• ____ .. L ___ ...1 __ _ .I: _. ___ ...1_ ~_ .L __ ! ___ .L __ : _: ... ~_

I t: V ... V I t: V t: f :::. t: ... I I t: v, U t: , V I wv r u ~ 'II L II t: ~ ... r I II ~ ; ... I I t: II I'" tJ I I I I ... :::.

the reversed string. When we try to run the program, we obtain
the particularly discouraging comment on line 29 -- apparently
the recursive procedure has run wild, and run out of stack space.
A new process, with a new stack, is created automaticallY but
unfortunately the current version of Multics discards the old
process and its stack, which contain most of the clues needed to

1*
2

DEBUGGING PROGRAMS ON MULTICS

print trev.pl1

treY: procedure(string);

declare string character(*) una1 igned,

4-15

3
4
5
6
7
8
9

rev entry(character(*» returns(character(32) varying);
put skip list(rev(string»;

10
11
12
13
14*
15
16
17
18
19
20
21

22
23
24

put skip;

end;

r 1819 1.732 4.670 106

print rev.pl1

rev: procedure(string) returns(character(32) varying);

declare string character(*);
i = index(string," II);
if i = 0 then return(string);
else -re tu rn (rev (sub s t r (s t ring, i)) I 111 "11

(substr(string,l,i»);

end;

r 1820 .513 4.040 133

treY "now is the time"

25
26
27*
28
29
30
31
32

Fatal error. Process has terminated. Out of bounds fault on stack.
New process created.
r 1820 2.006 5.263 127

33* debug
34* /rev/&a5<
35 Break 0 of rev set at 34 from 34
36* •• trev "now is the time"
37 Break 0 at 1 ine 5 of rev, 220134
38* string
l-9 3561 -447 "now is the t ime u

40* .c
41 Break 0 at line 5 of rev 1 220134
42* string
43 4372 -6" is the time"
44* .be stringi.c
45* .c
46 Break - at 1 ine 5 of rev, 220134

string;.c 47
48
49
50
51
52
53

4542 -6 II is the time"
Break - at line 5 of rev, 220134
string;.c

4112 - 6 .. i s the time ..
QUIT
r 1822 13.873 41.426 557

600100236100

Figure 4-4: Breakpoint debugging

1dq spl100

4-16 PROGRAMMING IN THE MUlTICS ENVIRONMENT

debug the program. (Future versions of t1ultics will save some
information about the defunct process.)

Since there is no clue as to why the recursive procedure is
not properly stopping its recursion, we enter debug and, on line
34, place a breakpoint in procedure rev at program line 5. (The
s tr i ng "&as" means 1 i ne 5, the character "<" means set a break.)
Debug responds by printing the old contents of the location it
had to modify; this information is not of interest to us. Now,
we call, from inside debug, out to procedure "trev", on line 36.
(Any ~1ultics command or program may be called from within debug
by typing the two periods at the beginning of the request line.)

Now; debug calls to trey, and the next thing we know, the
hreak point is reached, putting us back into debug, which prints.
the message on line 37. He look at variable "string" to see what
has been handed to the subroutine as an argument. Since the
string printed on line 37 is exactly what we expected, we type .c
on line 40, meaning "continue the program until the break point
is reached again." Again the break point is encountered, and the
string inspected, and it looks OK. Being impatient, we now type
the special lImacro" request on line 44: "whenever a break
occurs, print the contents of "string", then continue." \'Je again
start the program on its \'1ay, and its faul ty behavior immedi ately
becomes apparent as the debugger prints lines 46-51: the
argument string is not changing after the second iteration.
Inspection of the program reveals the trouble; the blank
character should have been stripped from the front of "string"
before recursively calling; changing the second argument of the
first substr in line 21 to i + 1 will fix the program.

On line 52, we have exited from our looping program by
quitting out of it. This leaves us at a higher stack level, with
both our program and our invocation of the debug command
somewhere earlier in the stack. It also leaves program rev with
a breakpoint inserted in its code. To be careful, we should now
type the program_interrupt command, which will return us to the
most recent invocation of debug, so that we may reset the
breakpoint gracefully. Failure to reset the breakpoint would
lead to mysterious difficulties ("mme 2" faults) if we later ran
the program without using debug to control it. Of course we can
also reconpile the program, in which case we also get a new copy
without breakpoints. Figure 4-5 continues the example of figure
4-4, using the program_interrupt command to return to the
debugger, on line 55. Now, to see what the stack looks
like, we request debug to trace the stack contents, with
the.t request on line 56. lines 60-78 are the successive
entiies currently on the stack with the oldest entry firste The
first four entries, on lines 60-63, represent the procedures
provided by the Multics system to set up the standard command
environment, and are unimportant to us right now, except to
notice that line 63 is the command language interpreter. On line
64 is the debug command, the result of typing "debug" back on
line 33. While in debug, we called out, on line 36, to the

54
55*
56*
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79*
80

DEBUGGING PROGRAMS ON MULTICS

program_interrupt
.t

Depth Segno Offset Name

o
1
2
3
4
5
6
7

10
11
12
13
14
15
16

.. 17
20
21
22
.q

200
200
200
200
216
200
231
231
232
220
220
220
220
220
220
220
220
220
220

120 real_init_admin_115771
260 process_overseer_115057
4601isten_12304
760 command_processor_13127

1300 debugl6651
2630 command_processor_13225
3150 full_command-processor_13006
3600 bound_ful1_cP_12366
4010 trevll17
4230 revl115
4400 revl115
4550 revl115
4720 revll15
5070 rev 1115
524-0 revJll5
5410 revl115
556-0 revl115
5730 revlllS
6100 revl34

r 1825 2.438 7.611 251

Figure 4-5: Tracing the call stack.

4-17

program we were debugging. The debug command called out to the
standard command language interpreter, since line 36 contained a
standard Multics command line. Thus, line 65 describes a second
generation of the same program we saw earl ier on line 63. Note,
however, that the location in the stack (the column labeled
Offset) is different for the two generations of the command
language interpreter: the two generations will therefore use
different copies of automatic variables.

The command line typed on line 36 provides as a single
argument a string (including blanks) enclosed in quotation marks.
The command language interpreter is organized in several modules,
such that for the most common (and simplest) syntax, only a small
part of the interpreter is needed. Whenever a more elaborate
syntactical structure is encountered, a more elaborate section of
the interpreter is invoked. In the case at hand, the quoted
string argument triggers a need for the more elaborate
interpreter, so on line 66 we see that a program named
fu"_command-processor_ was called, and it entered an internal
block which debug has tagged with the name bound_fu"_cP_e

4-18 PROGRAMMING IN THE MULTICS ENVIRONMENT

Finally, the command language interpreter constructed a call
to treY, the program being debugged, on line 68. Program trev
then called rev, which called itself recursively several times
before we hit the quit button. Notice than the number of
recursive calls to rev found in the stack (10 in this example) is
greater than the number of times that debug breakpoints were
encountered on 1 ines 35-49. Recall that on line 44, debug was
instructed to let the program run without stopping at
breakpoints, except for printing the contents of the variable
named string. The Multics typewriter output package operates
asynchronously, which means that it begins typing an output
message, and simultaneously returns control to the process
originating the message. The process can then go on to its next

.step, perhaps producing more messages, which the typewriter
package collects in a queue for the typewriter. Thus in our
example, the program had gotten well ahead of the typewriter when
both it and the typewriter output were stopped.

An alternative way of examining the contents of the stack is
to use the command trace_stack, which provides a wealth of
information about each stack level: the arguments used in the
call from the last level, the symbolic instruction which caused
the call, a list of enabled on-conditions at the stack level,
details of any faults or signals which occurred, etc. The MPM
write-up of trace_stack provides more details. The trace_stack
command is especially useful for situations where something
mysterious has happened, which requires help from an expert who
is not available at the moment. The output from trace_stack is
often sufficient to diagnose, OT provide clues in the diagnosis
of very complicated problems.

The reader should not feel that these two short examples
have completely explained the ins and outs of using the debug
command. ~owever, unt.i 1 he has had time to more thoroughly
review the MPM write-up of debug, he may find the samples useful
to imitate while debugging his own programs.

One final comment about symbol tables is of significance:
the symbol table (created by the "table" option of Pl/l) is
stored in the end of the program, in an .otherwise unused area.
If it is not explicitly used, as by the debugger, then it will
not cause -any extra paging activity. It will, however use up
secondary storage space. Thus, i tis recommended that \'Jh i 1 e a
new set of programs is being debugged, the table option be used
in all compilations. After one is reasonably satisfied that all
of his programs are working properly, he may wish to recompile
~ithout the table option, to save long term secondary storage
_'"'.". ... ~ftr
'l..lIglb1\;;~·

The reader should also refer to the MPM Reference Guide
section on the Multics Command Repertoire, where a list of other
useful debugging tools is provided.

ABSENTEE USE OF MULTICS 4-19

Absentee .1Jg of ~1u1 tics

A common programming pattern is to develop a program
on-1 ine, using debugging tools and the ability to interactively
try a variety of test cases to check on a program's correctness.
After the program is working, one may wish to do a large
"production" run. Since the production run may produce much
output or take much time, the programmer dOes not wish to wait at
his terminal for the results. For such cases, he may develop an
absentee job, and submit it for execution. This technique has
several impl ications:

The job is not under control of a terminal, so an
absentee job control segment must be constructed.

Since there is no terminal available, all input and
output must come from and go to the storage system.

The absentee job is placed in a Queue and run as
background to the normal interact ive work of the
system. "This technique provides a buffer of
pre-emptable resources for interactive peak loads, and
meanwhile helps keep the system fully utilized. For
these reasons, the charging rate for absentee jobs is
normally substantially lower than for interactive work.

The job control language of the Multics absentee facil ity is
identical to the command language typed at the console. In
general, an absentee job is given a name, say "a". When run, an
ordinary Multics process is logged in, but its input stream is
attached to a segment named a.absin, and its output stream to a
segment named ,a.absout. Thus to control an absentee job, one
must first create the absentee input segment which contains the
commands to be executed.

In figure 4-6 is a version of the primetest program used
before. It has been modified to be a "production ll program by
adding a do loop. One might interactively start this program to
check that it is producing the expected results:
primetest

QUIT

1
2
3
4
5
6
7

s a prim.e.
s a prime.
s a pr ime.
s not a prime.
s a prime.
s not a prime.
s a pri

r 1519 5.834 20.147 1061

To submit the job for absentee execution, the user first
constructs a control segment to be used for input to the job~
The only input in this case is the command 1 ine required to

4-20

primetest:

declare
declare
declare

prime:

declare

PROGRAMM I tlG I N THE MU L TICS ENV IRONMENT

procedure;

pr i me_i nput f i.xed b i nary;
(sqrt,mod) builtin;
(sysprint) file;

do prime_input = 1 to 150;
i f p rime (p ri me_ i n pu t)

then put 1 ist (prime_input, "is a prime.");
else put 1 is t (pr i me_i nput, .. is .wu. a pr i me. It);

put skip;
end;
return;

procedure(trial-prime) returns (bit(1»;

trial-prime fixed binary,
trial_factor fixed binary,
last_factor fixed binary;

last_factor • sqrt(tria1-prime);
do trial_factor • 2 to last_factor;

if mod(trial-prime, trial_factor) • 0
then return ("Q"b);

end;
return ("1"b)i

end prime;

end primetest;

Figure 4-6: Production version of the primetest program.

DYNAMIC LINKING AND BINDING 4-21

execute program primetest. Thus, he creates a segment named
prime.absin, using an editor:

1*
2
3
4*
5*
6*
7
8*
9*

10
11
12*
13
14

edm prime.absin
Segment not found.
Input.
primetest
logout .
Edit.
w
q
r 1537 2.373 27+214

enter_abs_request prime.absin
23 already requested.
r 1538 4.841 9.083 319

And now, he may go about his business, whether working at
his terminal or logging out, as he chooses. Some time later,
after the jobs ahead of his are processed, a new process will be
logged in and his two commands will be executed. When the job is
finished, a segment named prime.absout will appear in his
directory, which he may print on his terminal, or send to the
high-speed printer, as desired.

Our example absentee job uses only the most rudimentary
features of the absentee facil ity. One can also supply arguments
to be substituted inside the absentee control segment, make
absentee job steps conditional, delay absentee work until a
chosen time, and develop a periodic absentee job which is run,
say, once every two days.

Sometimes, a very elaborate absentee control segment is
constructed, and the user may wish to verify that his absentee
job will operate properly. One useful technique for checking out
an absentee control segment is to use it as a control segment for
the exec_com command, a macro_command facility which accepts the
same kind of control segment as does the absentee facility. The
MPM Reference Guide sections on enter_absentee_request and·
exec_com contain further information on these facil ities.

DYnamic Linking and Binding

A particularly potent programming tool of Multics is the
dynamic 1 inking facility. Dynamic 1 inking consists of delaying
the search for and mapping of a subroutine (or data segment)
until the first call for that subroutine (or use of that data
segment) occurs. Dynamic 1 inking is accompl ished by having the
compiler leave in the object code of a compiled program a special
bit pattern which, if used in an indirect address reference,
causes a machine fault (trap) to the dynamic 1 inker. The 1 inker
inspects the location causing the fault, and from pointers found
there, locates the symbol ic name of the program being called or

4-22 PROGRAMMING IN THE MULTICS ENVIRONMENT

the data segment being referenced. It then locates the
appropriate segment, maps it into the current address space, and
replaces the indirect word with a new one containing the address
of the program or data entry point, so that future references
\Jill not cause a dynamic linking fault.

There are many ways in which dynamic linking can be used,
but the following three are probably most significant:

to permit initial debugging of collections of programs
before the entire collection is completely coded.

to permit a program to include a conditional call to an
elaborate error handling or other special-case handling
program, without invoking a search for or mapping of
that program unless the condition arises in which it is
actually needed.

to permit a group of programmers to work on a
collection of related programs, such that each one
obtains the latest copy of each subroutine as soon as
it becomes available.

Whenever related subprograms are separately translated, they
are norma 11 y 1 inked by the t1u 1 tics dynami c 1 i nker at the time
they are executed. If a set of related programs is known to
always require certain links, then a program known as the binder
may be used to pack them into a single segment, permanently link
any cross references, and condense any common outward references
into a single outbound link. In return for the loss of
flexibility which comes with such permanent binding, one reduces
both the space required for the programs and the number of
library searches which must be undertaken to run the collection
of programs. In addition, binding of separately translated
subroutines retains most of the advantages of separate
translation. (An alternative scheme would be to collect the
procedures together into a single giant procedure, and then
recompile. This alternate scheme has the disadvantage that a
very long recompilation is needed for everyone-line change to
any part of the collection of programs.)

To provide a brief example of the meaning of dynamic
linking, consider the sample console session of figure 4-7.
Procedure k, on lines 9-14, reads an integer from the console,
and then calls one of three different subroutines. Only one of
these subroutines, named y, actually has been written. On line
30, k is invoked, it asks for input, and the input value which
causes y to be called is typed on line 31~ Line 32 provides
evidence that y was called. Note that, although the statement on
line 11 was executed, the conditional test failed, and a call to
procedure x (which has not .yet been written) did not occur.
Since linking is done on demand, and no demand for x occurred,
the fact of its non-existence has not kept us from running our
procedure y.

1*
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20*
21
22
23
24
25
26
27
28
29
30*
31(*)
32
33
34
35*
36(*)
37
38
39
40
41
42
43*
44
45

DYNAMIC LINKING AND BINDING

print k.pll

k:

declare
declare
declare

procedure;

(x,y,z) external entry;
i fixed binary;
(sysprint,sysin) file;

put I ist ("\~hat now? II);
ge t lis t (i);
if i = 1 then call x;
if i = 2 then call y;
if j = 3 then call z;
return;

end k;

r 927 1.075 3.994 178

print y.p11

y: procedure;
declare sysprint file;
put 1 i st (lty has been called. II);
put skip;
end Yi

r 927 .699 1.806 79

k
What now? 2

y has been called.
r 928 .858 2.012 112

k
What now? 3

Error: linkage error by k$k1165
Referencing z I z.
Segment not found.
r 928 1.318 5.855 252

hold
r 928 .199 2.062 38

Figure 4-7: Dynamic linking example.

4-23

4-24

46*
47
48
49*
50*
51'"
52*
53*
54*
55
56'*
57'"
58
59
60'*
61
62
63
64'*
65
66

PROGRAMt11~~G IN THE MULTICS ENVIROflfviENT

edm z.pl1
Segment not found.
Input.
z: procedure;

declare sysprint file;
put 1 ist (liZ has been called");
put skip;
end Z;

Edit.
w
q
r 929 1.280 5.274 223

p11 z
PL/I, Version 2
r930 7.036 20.651 263

start
Z has been called

r 931 .875 2.132 150

Figure 4-7, Continued.

On 1 ine 35, k is invoked again, this time with a request to
call procedure z. Since z does not yet exist, the default error
message on 1 ines 38, 39, and 40 explains that a linkage error
occurred, when subroutine k atte~pted to reference subroutine z.
'~ote, by the way, that 1 ine 38 uses one convention, k$k, to refer
to segment k, entry point k, while line 39 uses a different
convention, zlz, to refer to segment z, entry point z. These two
conventions should be considered equivalent. <One arose from a
standard compiler syntax, while the other arose from a standard
assembler syntax.)

To illustrate that a linkage error is normally recoverable,
a hold command is typed on line 43, and then a program named z is
typeq in and compiled on lines 46-62. <See figure 4-7,
continued.) When start is typed on line 64, we see that the
original call (from line 14 in procedure k) to subroutine z has
now succeeded.

For more information on the details of dynamic 1 inking and
binding see the ~PM Reference Guide sections on object segments,
system 1 ibraries and search rules, and the command bind.

b Simple ~ Editor

Our next sample program is a text editor similar to, but
s imp 1 e r t han, the e dm comma n d use din C hap t e r T h r e e • . I tis a
typical example of an interactive program which makes use of the
Multics storage system via the virtual memory. In overview, the

A SIMPLE TEXT EDITOR 4-25

editor creates two temporary storage areas, each large enough to
hold the entire text segment being edited. It copies the segment
into one of these areas, so as not to harm the original and then,
as the user supplies successive editing requests, constructs in
the other area an edited version of the segment. When the user
finishes a pass through the segment, the editor interchanges the
roles of the two storage areas for the next editing pass. When
finished the appropriate temporary storage area is then copied
back over the original segment.

For this example, we have available a program listing as
produced by the PL/I compiler. The program itself is derived
from the edm command of Multics, and it exhibits several
different styles of coding and commenting, since it has had many
different maintainers.

The reader will also notice that some comments appear to be
critical of the program style or of interfaces to the Multics
supervisor. These comments should be taken in the spirit of
illumination of the mechanisms involved. Often they refer to
points which could easily be repaired, but which have not been in
or d e r to pro v ide a mo rei n t ere s tin gil 1 us t rat ion. Mo s t 0 f the
points criticized are minor in impact. Finally, some comments
mention effectiveness of compiled code for certain constructs.
Experience has shown that as PL/I compiler technology advances,
the range of constructs which produce efficient compiled code
increases. Such comments, then, should be considered to be
dated, and subject to change.

The program begins on page 40 following the comments.

line number

fi rs t
unnum­
bered
1 i ne

fourth
unnum­
bered
1 i ne

1

The compiler both records here and encodes into
the binary object program the date and time of
compilation and the version of the compiler used.
The print_l ink_info command may be used to print- the
date and time of compilation stored in the object
program. If it is not identical to that printed at the
top of the listing, then the listing is for a different
compilation, and should be suspected as being possibly
a different program.

The command "p11 eds -map -optimize" was typed
at the console. This line records the fact that
the map and optimize options were used. The map
option caused a listing and variable storage map to be
produced. A source segment named eds.p11 was used as
input; the compiler constructed output segments named
eds.list (containing the listing) and eds (containing
the compiled binary program.)

No explicit arguments are declared here,
eds should be called with one argument.

even though
The argument

4-26 PROGRAMMING IN THE MULTICS ENVIRONMENT

is instead picked up with a library subroutine which
can return an error indication if the argument is
missing. Since eds is used as a command, it is a good
human engineering practice to check explicitly for
missing arguments; the Pl/I language has no feature to
accomplish this check gracefully. (See lines 84-89.)

4 To avoid errors when program maintenance is performed
by someone other than the original coder, all variables
are explicitly declared. This practice not only avoids
surprises, but also gives an opportunity for a comment
to indicate how each variable is used.

6 . One default which is used here (and is subject to some
debate) is that the precision of fixed binary integers
is not specified, leading to use of fixed binary(17).
This practice has grown up in an attempt to allow the
compiler to choose a hardware supported precision, and
in fear that an exact precision specification might
cause generated code to check and enforce the specified
precision at (presumably) great cost. In fact, most
such considerations are not relevant to the Multics
implementation; for all aligned variables with
precisions less than one word (fixed binary(3S», the
compiler generates code which uses word length hardware
and does not enforce the precision specification.
Ideally, one should consider the expected range of each
variable and specify an appropriate precision for it,
rather than depending on a forgiving implementation
which accidentally supplies more precision than
requested.

7 t·10 s t c h a r act e r s t r i n g sin t his pro gram are de c 1 are d
aligned so as to insure that the fastest possible
accessing code will be produced. The only exceptions
are character strings which are to be used as arguments
to supervisor entries which require unaligned strings.
(See lines 25, 62, and 440). In programs such as this
one, the storage space loss due to use of the aligned
attribute on a few character variables is generally
trivial compared with the space required to hold
accessing code and time required to execute it.
Obviously this comment might not hold in a case where
many hundreds or thousands of character strings are
involved.

All line buffers are designed to hold one long typed
line (132 characters for input terminals with the
widest lines) plus a moderate number of
backspace/overstrike characters. To support memorandum
typing, the buffers permit a 70-character line which is
completely underlined. Note also that the current
typewriter input conversion package has a defect which
requires that the original input line, before erase and

10

12

17,18

18

25

34

36

40

A SIMPLE TEXT EDITOR 4-27

kill editing, and before overstrike canonicalization,
fit into the character buffers provided by the user for
correct conversion to take place.

The variable named code has precision 35 bits, since it
is used as an output argument for several supervisor
entries which return a fixed binary(35) variable. It
would seem appropriate, on a 36-bit machine, to use
fixed binary(35) declarations everywherea However, use
of fixed binary(3S) variables for routine arithmetic
should be avoided since, for example, addition of two
such variables results in a fixed binary(J6) result,
forcing the compiler to generate code for double
preCISion operations from that point on. One must be
careful of the Plfl language rule which requires. the
compiler to maintain full implicit precision on
intermediate results.

Automatic variables with initial values are set to
their initial values every time the program is entered.
This method is at least as effective as a series of
initialization statements at the beginning of the
program, and perhaps clearer to the reader.

All editing is done by direct reference to virtual
memory locations. The variable from_ptr is set to
point to a source of text, and the based variable
from_seg is used for all reference to that text.

The general operation of the editor is copy the text
from one storage area to another, editing on the way.
The names from_seg and to_seg are used for the two
storage areas.

It is necessary for this program to know the I/O stream
name on which input will be typed. Programs which
perform less sophisticated input operations can often
get along with system supplied defaults for the I/O
stream names. (See comment on line 440.)

The Pl/) language provides no direct way to express
literal control characters. The technique used here,
while adding clutter to the program listing at least
works and is machine independent.

One set of supervisor interfaces calls for 24 bit
integers; this declaration guarantees that no precision
conversion is necessary when calling these interfaces.
(See line 97).

Supervisor entries generally use fixed, rather than
varying, strings. (In an earlier compiler
implementation, varying strings were very inefficient,
and based varying strings were forbidden.) Thus, when

4-28

51

52

52

53

55

56

PROGRAMMING IN THE MULTICS ENVIRONMENT

calling older supervisor entries it is occasionally
necessary to simulate a varying string by using a fixed
string and an integer count of the number of characters
in the string. (See lines 84 and 93 for the single
example in this program.)

Subroutines com err and ioa are called with a
different number of arguments each time, a feature not
normally permitted in PL/I. The Multics
implementation, . however, has a feature to permit such
calls to be compiled. The "options" clause warns the
compiler that the feature is to be used for this
external subroutine.

All subroutines other than com_err_ and ioa_ are
completely declared in order to guarantee that the
compiler can check that arguments being passed agree in
attribute with those expected by the subroutine.
Warning diagnostics are printed if the compiler finds
argument conversions to be necessary.

The procedure cu <short for command utility) has
several different entry points. The Multics PL/I
compiler specially handles names of external objects
which contain the dollar sign character. The dollar
sign is taken to be a separator between a segment name
and an offset name in the compiled external linkage.
Thus, this line declares the entry point name arg_ptr
in the segment name cu_.

For many procedures, the segment name and entry point
name are identical, so the compiler also permits the
briefer form cv_dec_, which is handled identically to
cv_dec_$cv_dec_e

The hardcore (ring zero) supervisor entries are all
easily identifiable since they are entered through a
single interface segment named hcs_. Segment hcs_
consists of just a set of transfers on to the
subroutine wanted. A transfer vector is used to
isolate, in one easily available location, all gates to
the t--iultics supervisor. Also, it is in principle
possible to dynamically replace a supervisor routine,
by changing a single transfer instruction.

Note that supervisor entry hcs_$make_seg takes
unaligned character strings for its first three
arguments~ This property will turn out to be a
nuisance later (line 95) since the library subroutine
which constructs the arguments for hcs_$make_seg
returns aligned character strings. See the comments on
lines 93 and 95 for more information.

67

68

73,74

74

74

A SIMPLE TEXT EDITOR 4-29

This implementation-dependent declaration is a based
structure, designed to overlay on top of a 64K Multics
segment, and thereby allow construction of a pointer to
the midpoint of the segment. The declaration depends
on fixed binary variables of precision less than 36
bits occupying one word each.

The comment on this line consists of a single ASCI I
control character, for form feed (octal 014). The
closing syntax for the comment appears at the top left
edge of the next page. Such "vertical punctuation"
between" major parts of a program is recommended for
program readability.

The segment name is copied into an intermediate storage
space" stnc~ it may be used in an error comment. Note
that we should not use the variable ename as the second
argument in the call to hcs_$make_seg, since ename is
aligned and hcs_$make_seg requires unaligned input
arguments.

The first step in the program is to obtain a pointer to
a "scratch" or temporary segment in which intermediate
copies of the text being edited may be stored.
Subroutine hcs_$make_seg will create a segment, if one
does not already exist with the specified name. The
binary string specifies that if a segment is created,
the system should permit read and write access to the
segment. The system creates the segment, maps it into
the address space of this process, and returns a
pointer in the variable from_ptr. The first argument
to hcs_$make_seg specifies the name of the directory in
which the segment should be located. A null string, as
in this case, indicates that the segment is to be
created in the process directory, a suitable home for
temporary segments. The third argument is a place for
a reference name, which would be specified if there
were to be later references to the segment to be
accomplished by dynamic linking. Since no such
reference will occur, a null string is specified.

Although our program has no declared static variables,
the segment eds_temp is now effectively a
program-created static variable. If, for example, one
were to quit out of the editor, issue a "hold" command
to maintain the stack level, and then reinvoke the
editor at a new, deeper, stack level, the second
invocation of the editor would, upon encountering line
74, obtain a pointer to the same segment, eds_temp,
that is being used by the earl ier, interrupted
invocation. If the second invocation of eds overwrites
eds_temp, then upon later return to the earl ier,
interrupted invocation one would probably be in deep
trouble. Three different techniques could have been

4-30

75

77

78

80

84

85

PROGRAt .. 1M I NG I N THE MULTI CS ENV IRONMENT

used to avoid this trouble: 1) document the restriction
that the editor cannot be used recursively, or 2) put a
check in the editor to see if a previously created
eds_temp exists, and give warning if one does, or 3)
implement an automatic, rather than a static, temporary
segment, by using a guaranteed unique name (Multics
subroutine unique_chars_ can be useful here) for the
temporary segment.

If there was trouble creating a buffer segment,
hcs_$make_seg returns a null pointer. It also returns
a status code, but since a non-zero status code is
returned in some non-error cases (e.g., when a segment
named eds_temp was already there) the easiest test for
a disastrous error is on the returned pointer.

The subroutine com_err_ should be called to print out
the error message associated with the returned status
code. However, the calling sequence is quite long, so
an internal subroutine, called from many places in eds,
minimizes the amount of generated call setup code.

One exits from a r·1ultics command by simply returning to
its caller. (See also line 351).

(See comment re line 67). Here, in an economy move, we
create a pointer to the midpoint of the segment just
created. We thus avoid the need to create two
temporary segments for editing. At this point from_seg
points to the base of the segment and to_seg points to
the midpoint. The two halves of the segment will be
used as two buffers for editing. Note that this
strategy restricts the maximum size of a segment which
may be edited, yet the editor nowhere checks to see if
this maximum size is being exceeded, an unfortunate
omissIon. Since lack of a check could cause
overwriting of data, a program with this defect would
not be considered acceptable for the Multics command
1 ibrary.

\lhen a user types a comnand such as "eds a 1 pha" the
first string of characters is taken as the name of a
procedure to be called, while succeeding strings are
taken as character string arguments to that procedure.
Rather than declaring eds to have one argument, which
would not permit a graceful exit if no argument were
typed, we pick up the argument with subroutine
cu_$arg_ptr~ which returns a pointer to the beginning
of the unaligned character string representation of the
first argument, which eds considers to be the name of
the segment to be edited.

For many
indicates

subroutines, any non-zero
that the subroutine could

status code
no t pro pe r 1 y

88

93

93

95

A SIMPLE TEXT EDITOR 4-31

complete, and recovery action is appropriate. In this
case, the most likely error is that the argument is
missing.

When an error occurs now, we do not immediately return,
since we have created a temporary segment, and" shou 1 d
clean up after ourselves first. Thus the transfer to
quitl rather than a return. (See line 348.)

Assuming that a pointer to an argument was returned, we
must now convert that argument to a standard (directory
name, entry name) pai~. The subroutine expand_path_
implements the system-wide standard practice of
interpreting the typed argument as either a path name
relative to the current working directory, or an
absolute path name from the root, as appropriate.

The third and fourth arguments to expand_path_ are
(unnecessarily) required to be pointers to the
character strings in question, rather than the strings
themselves. Because pointers are the formal arguments,
neither the reader, nor a mechanical argument checking
program, can detect whether or not the real arguments
being passed behind the pointers match in type with
those expected by the writer of expand_path_.
Examination of the MPM write-up for expand_path_ tells
us that aligned character strings are required for the
third and fourth arguments, and an unaligned character
string for the first one. (This interface is a
left-over from a time when character string arguments
were very expensive to pass directly.) In such cases,
it is a good practice to represent the arguments as
shown, for clarity, rather than by setting and passing
pointer variables whose purpose is not clear to the
next maintainer of the program. In general, it is a
good practice to consider pointer variables to be
escapes around missing language or system features, and
therefore to isolate their use in a way which makes
clear what is being escaped around. This program
follows this practice whenever possible, but some older
supervisor interfaces force a departure.

\'Je now call hcs_$make_seg agai n, to ei ther create or
get a pointer to the source segment to be edited, this
time specifying the directory and entry names returned
by expand_path~. As mentioned earlier, hcs_$make_seg
requires unaligned character strings in its first three
arguments, but ename and buffer are the aligned return
values from expand_path_. Therefore, the compiler,
noting that the declaration on line 56 disagrees with
those on lines 9 and 15, will automatically generate
code to copy the aligned strings over into unaligned
temporary variables for the duration of the call. The
compiler will normally print a warning diagnostic when

4-32 PROGRAMMING IN THE MULTICS ENVIRONMENT

it generates such code, in case the programmer doesn't
realize that he is forcing a type conversion. To
suppress the warning message, the first two arguments
to hcs_$make_seg have been placed in parentheses, which
are taken by the compiler to be an explicit request for
conversion; therefore no message is printed.

Occasionally one will encounter an extremely bad
practice which has been used to get around the argument
copying: subroutine hcs_$make_seg may be misdeclared
to take aligned arguments. Since it happens that the
Multics implementation of aligned character strings is
identical to unaligned character strings which start on
a word boundary, the misdeclaration happens to work.
This mapping together of aligned and a subset of
unaligned does not necessarily hold in other PL/I
implementatIons, and it does not hold in Multics for
v~riables other than strings. In any case, use of such
constructs is an outstanding example of bad programming
practice for two reasons: first, it relies on obscure
properties of the local implementation; second, one
would like to have available a mechanical technique for
detecting accidentally mismatched arguments;
intentionally mismatched ones would then frustrate
mechanical verification.

97 The storage system provides for every segment a
variable named the bit count. For a text segment, by
convention, the bit count contains the number of
information bits currently stored in the segment.
Subroutine hcs_$status_mins obtains the value of the
bit count.

97 Clearly, the calls to expand_path_,hcs_$make_seg, and
hcs_$status_mins could have been a single subroutine
call to a subroutine which performs all three
functions. Such an interface would eliminate the need
for this procedure to care about (and provide storage
for) such things as the number of characters in the
typed argument string, and the name of the directory
containing the segment being edited. The hassle about
aligned and unaligned strings could be avoided, too.

~g If the segment to be edited did not previously exist,
(that is, the call to hcs_$make_seg created the segment
rather than merely returning a pointer to it) then the
bit count will be zero, and the editor assumes that is
should start in input mode.

103 This statement converts the bit count to a character
count. Note that we have here embedded knowledge of
the number of hardware bits per character in this
program. If the system-wide standard had been to store
a character count with a segment instead, it would not

A SIMPLE TEXT EDITOR 4-33

have been necessary to have an implementation-dependent
statement here. Unfortunately, a stored character
count would get the system into the business of
~aintaining an interpretation of the segment's
contents, which it currently does not do. A still
better strategy would have been to store a tharacter
count in the segment itself, say in the first word,
thus maintaining the view that a segment maintains its
own interpretation.

103 The PL/I language specifies that the result of a divide
operation using the division sign is to be a scaled
fixed point number. To get integer division, the
divide built-in function is used instead.

104 Here, we invoke some of the most powerful features of
the Multics virtual memory. This simple assignment
statement" copies the entire source segment to be edited
into the temporary buffer named from_seg. Highly
optimized machine code performs the actual copy loop.
Note that we are "regarding the entire text segment as a
simple character string of length csize. We may regard
it this way because the storage representation for
permanent text segments is chosen to be identical to
that of a PL/I fixed character string.

106 Be sure to read the comments embedded in the program,
too.

109 Subroutine ioa_ is a handy library output package. It
provides a format facility ~imilar to PL/I and FORTRAN
format statements, and it automatically writes onto the
I/O stream named user_output, which is normally
attached to the interactive user's terminal. When used
as shown, it appends a new line character to the end of
the string given. Programmers who are more concerned
about speed than about compatibility with other
operating systems use ioa_ in preference to PL/I "put"
statements, because ioa_ is a less general facility
which does not touch nearly as many distinct storage
pages.

111 Here we have another interface which (unnecessarily)
requires use of a pointer in its first argument.
Again, one result of this obsolete practice is that
complete type-checking by the compiler is not possible
for that argument. Some of the more sophisticated I/O
system entries use a pointer in the same position, but
with a better reason: those entries can transmit
variables of various types on different calls, so no
single variable declaration could suffice.

111 Subroutine ios_$read_ptr is often used for input rather
than the PL/I statement "read fi le (sysin) into "

4-34 PROGRAMMING IN THE MULTICS ENVIRONMENT

again because the ios_ entry has fewer options and
therefore touches fewer storage pages. The PLfl
facility ultimately calls on the t1ultics ios_ package
anyway. (Again, if one wished to write a program which
would also work on other PL/I systems, he would be
be t te r adv i sed to use the PL/ I 110 s ta temen ts ins tead.)

112 For human engineering, blank lines are ignored by the
editor. Since complete input lines from the typewriter
end with a new line character, the length of a blank
line is one, not zero.

114 The code to isolate a string of characters on the typed
input line is needed in four places, so an internal
subroutine is used. This subroutine is not recursive,
which makes it possible for the compiler to construct a
one-instruction calling sequence to the internal
procedure. Certain constructs (e.g., variables of
adjustable size declared within the subroutine) will
force a more complex calling sequence. For details,
one should review the documentation on the Multics Pl/l
implementation.

116 Although the dispatching technique used here appears
costly, it is really compiled into very quick and
effective code -- 4 machine instructions for each line
of PL/I. For such a short dispatching table, there is
really no point in developing anything more elaborate.
~f the table were larger, one ~ight use subscripted
label constants for greater dispatching speed.

121 Human engineering: the typist is forced to type out
the full name of the one "powerful" editing request
which, if typed by mistake, could cause overwriting of
the or i gi nal segment before that over",Jr it i ng Has
intended.

131 The format and decimal conversion facilities of ioa
are used in a simple way in this example. The "not"
sign in the format string indicates where a converted
variable is to be inserted; the character following the
not sign indicates the form (in this case, a character
string) to which the variable should be converted. The
first argument is the format string, remaining
arguments are variables to be converted and inserted in
the output 1 i ne:

132 Whenever a message is typed which the typist is
probably not expecting, it is good practice to discard
any type-ahead, so that he may examine the error
message, and redo the typed lines in the light of this
new information.

138

142,143

150

152

161

177,187

206

319

A SIMPLE TEXT EDITOR 4-35

The general strategy of" the editor is as follows:
lines from the typewriter go into the variable named
"buffer" until they can be examined. Another buffer,
named "line" holds the current line being "pointed at"
by the eds conceptual pointer. Subroutine "put" copies
the current line onto the end of to_seg," while
subroutine "get" copies the next line in from_seg into
the current line buffer.

If ios_$read_ptr returned a varying string rather than
a fixed string and a count, these two statements could
reduce to "line = buffer". Nore use of varying or
adjustable strings would probably simplify the
appearance of this program quite a bit.

The procedure get_num sets up the variable n to contain
the value of the next typed integer on the request
line. "Such side-effect communication is not an
especially good programming practice.

The delete request is
from from_seg, but
If deletion were a
worthwhile to use
ahead the pointer in
copy operation.

accomplished by reading lines
failing to copy them into to_seg.
common operation, it might be

more complex code to directly push
from_seg, and thus avoid a wasted

More side-effect communication: the variable edct is
always pointing at the last character so far examined
in the typed request line.

All movement of " parts of the material being edited is
accomplished by a simple string substitution, using
appropriate indexes.

The locate request is accomplished by use of the index
built-in function, used on whatever is still unedited
in from_seg.

A negative number in the "next" request results in
moving the conceptual pointer backwards. The resulting
code is quite complex for two reasons:

a) The eds editing strategy requires interchanging the
input and output segments before scanning
backwards, so that the backward scan is with regard
to the latest edited version of the segment.

b) At the time this program was written, there was no
PL/I feature to perform an "index" function
starting from the end of a character string rather
than the beginning. The "reverse" built-in
function could now be used.

4-36

348

362

363

429-431

440

446

457

PROGRA~1M I NG IN TH E MU L TICS ENV I RON~1ENT

Before exiting from the editor, the temporary segment
should be cleaned up. The question of whether the
temporary segment should be deleted or merely truncated
is a slightly fuzzy one. Since the editor is almost
certain to be. used several times in a process, the
choice was made here to llQ1 delete it, so that later
invocations of the editor will result in a faster
response from make_seg. If, on line 74, we had used a
unique name for the temporary segment, then we should
surely gelete it here, since no one will ever ask for a
segment by that name again.

Another human engineering point: since the user may
have typed several lines ahead, the error message
includes the offending request, so that he can tell
which one ran into trouble and where to start retyping.

Note a small "window" in this sequence of code. If the
editor is delayed (by "time-sharing") between lines 362
and 363, it is possible that the message on line 362
will be completed, and the user will have responded by
typing one or more revised input lines, all before line
363 discards all pending input. Although in principle
fixable by a reset option on the write call, Hultics
currently provides no way to cover this timing window.
Fortunately, the window is small enough that most
interactive users will go literally for years without
encountering an example of a timing failure on input
read reset.

The input and output editing buffer areas are
interchanged by these three statements. (-Jere is an
example of localizing the use of pointer variables to
make clear that they are being used as escapes to allow
interchange of the meaning of PL/I identifiers.

To go along wi th the entry poi nt ios_$read_ptr \"lhi ch
used stream name use r _i npu t by def au 1 t, i1u 1 tics does
not have a corresponding reset entry with a default
stream name. As a resu 1 t, \"le rnus t embed the stream
name "user_input" in this program.

Calls to com_err_ and ioa take more setup than most,
because each requires passing of argument descriptors
so that the subroutine at the other end can figure out
how many and what type of arguments have been passed.
Since this editor always uses the same arguments to
call com_err_, a single call in an internal subroutine
avoids having multiple copies of the argument setup
code.

This editor considers typed-in tab characters to be
just as suitable for token delimiters as are blanks.
Ideally, tab characters would never reach the editor,

A SIMPLE TEXT EDITOR 4-37

instead having been replaced by blanks by the
typewriter input routines. Such complete
canonicalization of the input strean would eliminate
lines 457-4G4, but would also require a more
sophisticated strategy elsewhere to handle editing of
text typed in colu~ns.

477 The cv_dec_ library routine is used here rather than a
PL/ I language feature, because cv_Jec \,vi 11 always
return a value, even if the number to be converted is
ill-formed (in which case it returns zero.) Thus the
editor retains co~plete control over the error comments
and messages which will be presented to the user. Such
control is essential if one is to construct a
well-engineered interface which uses consistent and
relevant err6r messages.

The items printed after the program 1 isting by the compiler
do not have 1 ine numbers. They are referred to in the following
comments by name.

The listing of all variables includes a cross-reference
listing, by line number, to facil itate locating all uses of a
given variable. This cross-reference listing is also useful for
discovering unnecessary variables, which are set and never
referenced, or perhaps never referenced at all. Any variable
which is referenced only once is suspect, except for external
subroutines which may happen to be called only once. Variables
never referenced at all appear in the immediately following list.
~ote that structure names used only as qualifiers (e~g., a.b.c)
do not count as uses of the outer names (e.g., a and b). Passing
an entire structure as an argument, or structure substitution,
would count as a use.

(See listing of identifier alt_lth). The default precision
for fixed binary numbers is 17 bits with no fractional part.

"THERE \'JERE NO tJAt1ES DECLARED BY CONTEXT OR IMPLICATION".
This comment was the result of the consistent practice of
explicitly declaring everything. If some identifier had not been
declared, it would appear in a separate list here, and the
compiler would also print a special warning message to the user.

"STORAGE REQU I REt·1ENTS FOR TH I S PROGRAt1". The resu 1 t of
campi 1 ing the above program is the creation of two segments: the
listing segment (printed here) and a segment containing a binary
~achine language program, known as the object segment. The
object segment actually contains several different parts, in a
format which is interpreted by the mechanisMs used for 1 inking to
and executing procedures. The numbers printed under this heading
require the following picture of an object segment for
interpretation:

4-38 PROGJ1AtiMING IN THE t .. 1ULTICS ENVlnONMENT

" I location 0

text

definitions
object

----------------static link

symbol

\.

• object is the entire segment.

• ~ is the binary machine language program,

• definitions is a set of character string names of entry
points to this segment and procedures which it calls.

• link is a prototype linkage section, to be copied into
the linkage/static segment when this procedure is first
used.

• static is the part of the prototype linkage section in
which Pl/l internal static variables are allocated.
Initial values for such variables are stored here.

• Symbol contains relocation bits for the text and
1 inkage areas, in case this segment is to be
permanently bound together with some other object
segment. It also contains other things such as the
date and time of compilation and, if the table option
is specified to the compiler, a symbol table, for
d€bugg i ng. The examp 1 e sho\'.tn here did not lJ~P- the
table option, so the symbol section is quite small.

All of the numbers describing storage requirements are printed in
octal, so, for example;~the binary machine instructions occupy
3015 (octal) locations or 154g (decimal) locations. Since the
program contains about 315 executable statements, each source

A SIMPLE TEXT EDITOR 4-39

program line has apparently expanded to an average of about five
machine language instructions. The program is shown as using two
words of static storage, despite the lack of variables declared
to be internal static. The two words of static storage are
allocated by the compiler for use by prograr.l trace and debugging
packages.

Following the object segment description are details about
automatic storage allocation. All internal procedures except
get_token share automatic storage with the main editor progra~,
which means that fast subroutine calls are compiled to them.
Subroutine get_token could have used a fast subroutine call, but
the compile~, noting the call to get_token from another internal
subroutine (on line 475) conservatively chose to use a full call,
since a back call from get_token might have caused recursion.
Future versions of the compiler may attempt to trace the flow of
such cross calls to guarantee lack of recursion, and thus permit
fast calls in more ·cases.

liTHE FOLLO\:JI NG EXTERNAL OPERATORS ARE USED BY TH I S PROGRAM."
f1any frequently used PL/I features are implemented in a library
segment named pl1_operators_, and are used by fast subroutine
calls compiled into the program. It is useful to get a feeling
for what kinds of lihguistic constructs result in such calls, by
examining a detailed machine language listing some time.

The list of numbers at the end of the program provides a
complete map of the machine instructions generated by each
statement. This map is useful when debugging following the
unexpected printing of a message such as "Out of bounds fault at
location 1104 of segment eds."

Although it was not printed here, it is also possible (by
using the -list option) to have the compiler print out the
detailed machine language program which it generated. Such a
printout is useful for reviewing the performance of a program,
since it may provide clues about use of PL/I constructs which are
inherently expensive to implement. \

(text continues on page 55)

COMP I LA TI at: II 5T It'G OF SEG~1ENT erls
Compiled by Multlcs Pl/I Compiler, VersIon 2 of 15 Au.ust 1972.
Compiled on 09/07/72 2155.0 edt Thu

Options oPtiMize map

1 eds:
2
3
4 / *
5
6 declare
7 declare
8 declare
9 declare

III declare
11 declare
12 declare
13 declare
14 dec I a re
15 declare
1L declare
17 declare
18 declare
19 declare
20 declare
21 declare
22 declare
23 declare
24 declare
25 declare
2b declare
27 declare
28 declare
29 declare
30 declare
31 declare
32 declarl::l
33 declare
34 declare
35 ");
36 declare
37 declare
38 declare
39 declare
40 declare
41 declare
42 declare
43 declare
44 declare
45 declare
46 declare
47 declare
46

procedure;

Internal variable declaratlrins. */

a 1 t_l th
brE!ak
brkl
buffer
code
count
csi'ze
ed<:t
ednm
enCime
exptr
from_ptr
fr<)m_seg
token_lth
g 1 nbs,,'
i
i j
Indf
Indt
iOlname
j
k
1
11 ne
lngth
located
m
n
nl

out_count
out_ptr
out_seg
prc
sname_l th
sname_ptr
status
tempI
tIl n
tkn
to:-seg
to:-pt r

fixed binary;
character(l) aligned;
fixed binary;
character(210) all,ned;
fixed blnary(35);
f I xed b I na ry;
fixed binary Inltlal(O);
fixed binary;
characterO) all~ne(4 Inltla1(IIeds"):
character(32) allgne~;
pointer;
pointer;
character(131072) all~ned bas~A(from_Ptr);
f I xed b I na ry;
bit(1) aligned;
fixed binary;
fixed binary;
flxerl binary Inltlal(O);
fixed binary Inltlal(O):
characterUO) InitIal (lluser_Input"),
fixed binary;
fixed binary;
fixed binary;
character(210) allgnerl;
fixed binary Inltl~I(O);
fixed binary;
fixed binary;
fixed binary;
character(l) allgne" Initial (II

fixed blnary(24);
pointer;
cha racte r (1310 72) all gnerl haled(out_pt r);
fixed binary Inltlal(210);
f I x e ri b I na r y ;
pointer:
blt(72) allgnerl;
bit (1) a 1 I gned:
character(210) all~ned;
character(S) aligned;
character(131072) all~ned hale~(to-Ptr);
pointer;

'* Holrl~ posltln~ ~, next tah. *' ,* Jofo'ds brelll(char fnr chan~~. *, '* Ho'rl~ I~Apx nf chan~e hreak C~IIr. *'
/* Typewriter In~ut huffer •• *, '
/* Fnr rpturnp~ status cn~es. */

,* t'II"'e (\f the f'AItC"r, fC"r ~t),.."e"u. */ ,* HC"lrl, nllme nf sp.~"'~nt ~p.ln~ edrt~~. */
/* TpmDnrary pointer hnl~ert '*/ ,* Pointer t" cllrrpnt ~rn'" se,. */ ,* F~lt'n. I~ from t~ls se;ment. */
/* lp.n~th of t"ken. */ '* nn If "~If opt I"", used In chan«f!. *'

,* Stream naMf' 'or rp.setr~arl. *,

,* Hold~ ll~e currently he'n~ prllterl. */

'* II ter"l "nP,\" II ne" chI!' ractt!r. */
/* Hotrls Ip.~"'ent ~It len~th. *,
/* P~lnt~r tn nut sp~. */
/* ~utll~e sP,ment f"r rpad nr write. *,
/* Size nf all buffers. */ ,* L~n~th ~f s~urc~ sp,~mpnt na~e. *'
/* PoInter to source seCM~nt namp. */
/* To h~l~ "0 status. */

,* quffp.r to hold "utnut "f ch~n.p. */
/* Mnlrls next Item on tyned l'n~ •• ,
/* FAltl~1 I- tn thl~ Sel",,.nt. *'
,* Pointer to tn_IPJ;. */

Z

-I
::t:
rr1

x
C
r­
~

n
en
rr1
Z
<
::a
o z
X
rr1
Z
-I

49 /*
50
51 declare
52 declare
53 declare
54 declare
55 declare
56 declare
57
58 declare
59 declare
60 declare
61 dec 1a re
b2 declare
63 declare
64
&5 declare
uIJ
67 declare
00 /*

external subroutIne declaratIons. */

com_err _
cu_$arg_ptr
cv_dec_
ex pa nd_pa t h_
hcs_$status_mlns
hcs_$make_seg

hcs_$set_bc_seg
hcs_$truncate_seg
loa_
los_$read_ptr
los_$resetread
los_$wrl te_ptr

entry optlonsCvarlabte);
entryCflxeri bInary, pointer, ftxecl bInary, fixe('l blnary(35»;
entry(characterC*) al Igned) r~turns(ftx~rl hlnary);
entry(polnter, fIxed binary, pointer, pointer, flxp.d blnary(3S»;
entry(polnter,flxe~ binary, fixed blnary(24), flxprl hlnary(35»;
entry(character(*), charact~r(*), character(*), flxp('l bln~ry(5),

pointer, fixed blnary(35»:
entry(polnter, fixed blnary(24), flxe~ blnary(3S»:
entryCpolnt~r, flxprl bInary, flxp~btnary(3~»;
entry optlons(varlable);
entry(potnter, flxpd bInary, flxe('l hlnary);
entry(character(*), blt(72) all"ne rl);
entry(polnter, flxerl binary, flxerl hlnary);

Caddr, dIvIde, Index, min, null, substr) bulltl,,;

1 mid basedCfrom_ptr), 2 spaceC327GS) fixed binary, 2 se~(32767) flxe~ hlnary;

»
(I)

~
""0
r­
m

-I
m
><
-f

m
o

-I
o
::0

*/
ld /*
70

PRO G RAM ,. ~'
t'

71 /*
72

Set up Buffer segments.

73
14
15
16
77
18
19
80
81
82
83
84
85
au
87
88
39
90
!:II
92
93
94
95
~b
97
98
99

ename • "eds temp"-
ca 11 hcs_$make_sel (1111, "erll_temp",
If from Ptr • null

then do;
call call_com;
return;
end;

to_ptr • addrCmld.seg);

"" ,

/* Now check to see If an Input arlumen~w~s given */

ferror:

,c:a 11 cu_$a rLpt r C 1, sname_ptr" sname_l th,corle);
~f code~.O then do;

ename • "";
ca 11 ca l1_com;
10 to QU I tl;
end;

/* Now get a pointer to the segment to be erllte(f */

(:a 11 ex pand_path_C sname_pt r, snam"_1 th, a(ftirCbu"e,) ,ad"'..c.,..",.), col'l. h
If code ~. 0 then 10 to ferror;
c:a 11 hcs_$make_sel « buffer)" Cename) jI "",010 llb, nut_pt r, cott ..).;
il f out_pt r • null then go to ferror;
(:a 11 hcs_$status_nll ns (out_pu,", nut_count, code);
If code ~. 0 then go to 'error;
If out_count • 0 then dn;

ca 11 I na_C "Se«ment ~a not '"und.", enam.);
go to plnput;

end;

.,

c:slze • dlvlde(out_count,9,17,0); /* C~a"le hit cnunt tn chAr e~~"t .,
!;ubstrCfro",-seg,l,cslze) • substrCout_se«,l,cslze); ,* Nov. ,,,,,,re, , "t '"t" ~u".r.

Main editing loop •••••

pedlt:
nex t:

ca 11 I oa_< "Ed It. II);

c:a 11 105_$ read_pt rC addr (buffer), prc::, count);

t'

100
101
102
103
104
lOS
106 /*
107
108
109
llll
III
ll2
ll3
114
115
116
117
118
119
120
121

If count-I then go to next; /* I' nul I line t~." .et a"('It~'r ""., ",,,,,'t ~r'", ,rr~r .,
edct • 1; /* Set up counter to ICI" th,s 1'", .• / .
call get_token; ,* 'd,,,t'fv ".xt tok,,,_ .,

If tkn · "I" then .0 tn I n,.rt;
If tkn · "r" then gn to retype;
If tkn · "1" then go to locate;
If tkn • "p" th.n ." tn print;
If tkn · "n" thf!n .n tn nexlln;
If tkn · "save" then go to f 11 e;

'"0
;0
o
C)
;0

~ ::r:
z
Ci)

z
....
X
rn

~
r­
-I

n
(I)

fT1
Z
<
;0
o -3:
fT1
Z

122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
13~
139
140
141
142
143
144
145
146
147
148
14~
150
151
152
153
154
155
150
157
158
159
160
lUI
1l>2
163
164
1L5
106
167
lU8
1b!:l
170
171
172
173
174
175

if tkn "c" then g~ tn chan~e;
If tkn '" "d" thE"n go to dell I n;
If tkn '" "w" then go to w$ave;
If tkn "t" then go to top;
If tkn "b" then to to b('lttom;

. If tkn '" " " then go t~ plnPllt;

/* If none of the above then not a request */

call loa ("''''a' Not an erllt Requf-st", substrCbuffer,l,count ..]»;
ca 11 reset read;
go to next;

/* ********* input mode ********* */

plnput:
input:

call1oa_(''lnput.''); /* print Wor'rf Input */
call 10s_$read_ptr(addrCbuffer),pr'c,count); /* r'pari·a line */
If substr(buffer,l,t> • ","

then if count'" 2 then go to pedlt; /* check for mod~ chan"e */
call put;
substr(l ine,l,count) '" substrCbuffer,l,count); /* Move lInp. II"IPtitter:l tnto Intermerilate st('lrM:~ */
lngth .. count;
go to Input; /* rE"r)PBt 'til "." */

/* ********* delete ********* */

dell in:
ca 11 ge t_num;

do I = 1 to n"l;
call get;

end;
lngth .. 0;
go to next;

/* rio for each 1 In~ to he Melpterl */ ,* net nE"xt llnp, overWrIte currpnt onp. */

1* nunlfy lAst ll·np *,
/* ********* Insert ********* */

Insert:
retype:

call put; /* Arll'1 current line to ('\utput Sflv,ment. */
/* This Is also the retype requE"st. *1

substr(llne,l,count-el'1ct) .. suhstr(huHer,edct+l,cnunt"eri':t); /* ('Iri(f rpplC'lcerl line *1
lngth = cOunt - enct;
go to next;

/* ********* next ********* *1

nex 1 in: call get_num;
If n < 0 then go to backup;
m,j = Indf;
call put;
do i .. 1 to n;

If J>=cslze then go to n_eof;"
k '" indexCsubstrCfrom_seg,j+l cslze-j),nl);
If k-O then do; •

If Indf>=cslze then go to enf;

, ;

1* s~ve wher~ you ~re */

1* Once for eAch nl */
1* check for eof */
I*locate E"n(f of lIne */
/ * no n 1 (E"n f) Il r I n t pn f * /

l>

(I)

:3:
"'0
r­
rn

-t
rn
><
-t

rn
c
-t
o
::0

lngth = 0; 1* Sftt to n('\ line *1
substrCto_seg,lndt+l,cslze-m) • sllhstr(from_se~,~.l,cslzp.-~);I*~~ye '" to~ ~, '11ft *,
I ndf - cs I zei
Indt • Indt + cslze - m;
go to eofi
end;

j • j + k;
end;

indf .. j;
lngth .. k;

/* set polnt~rs *1

slibstrCllne,l,k) - substrCfrom_sPJlt,j-'<+I,ld; /* nut ,,'or"'''. 1 'ne In 1 'n. *1
slibstrCto_seg,lnot+1,lndf-lnRth-",) • sllbstrCfrom_I~K,"'+l~lntl'''lnjr;t'''.m); /* fill I"~st ", fllft */
indt .. tndt + Ind' - lngth - "';
go to next:

17U
177
178
179
180
181
182
183
184
185
1d6
187
lH8
189
190
191 /*
192
193
194
195
1%
197
198
199
200
201
202
203
204
205
20'"
207

********" locate ********* */

20a
209
210
211
212
213
214
215
21G
217
218
219
220
221
222
223
224
225

locate:
If count=edct then go to Incmplti
edct .. edct + 1;

/* check 'or nlal" "I ~t" */
1* Sk'n "'el Iml ter. */

j = Indt;
m = I ndf:

1* Inlt'Al Ize Dnl"tfr~ '''r Inrlex tV"" 5f1114rc'" ~I

n .. cslze-Inn':
call put:
if Ccslze-O) I Cn(-O)

then do;
ca 11 s\OIl tchi
If j>O then n - j - Ii eltp n • 0;
m, j .. 0;
end;

1* S~ve current tine.

I .. IndexCsubstrCfrom_seg, Inn'+I,n),!'\ubstrCbllffp.r,f.t1ct,cnunt-erfct»; l*loc14te*1
If I~·O then do; 1* ,f 'nunti then rf~ *1

do k .. Indf+1 to 1 by -1; /* fI"rf beg'"n',." nf llnflO *1
If substrCfrom_seg,~,l).nl then gn tn '_n1:
end:

k .. 0:

*1

do indf .. k+1 to cslze-l by 1 \o/hl1e(su"strCfr(')m_se~,lnrf',,1)".,,1);I* 'Inti ftnl'f n' tlnflO *1
end:

$ubstrCto_seJ!;,indt+l,k-m) • substrCfrom_se.,m+l,k-rrt);I* ~nye 'n top nf 'Ile *1
Ingth • 'ndf - k;
Indt • Indt + k - m;
substrCllne,l,lngth) • subst-rCfrOl'll_sPI':,k+l,ln.:th):
n .. Ii
~:o to prlntl;
E!nd;

call copy;
call swl tch;
go to eof;

1* nut 'nu,.rt lln~ In lin .. *,

"'0
::0
o
C')
::0
l> :::
:3:

z
C')

~
c:
r­....
n
(I)

m
Z
<
::0
·0
Z
:3:
m
Z

22G
227
228
229
250
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
24t;
247
243
24::1
251.1
251
252
253
l~4
255
256
257
258
259
260
261
2b2
2b3
264
2(J5
2G6
267
2 til:!
2L9
270
271
272
273
274
275
270
277
271:1
279

/* ********* print ********* */

print:

prlntl:
noll ne:

ca 1 1 ge t_nun1;
If lngth • 0 then
do;

end;

call i oa_ (II No 1 I ne • ") ;
go to nollne;

/* prl~t Inrllcatlon of no lInes */

call 10s_$write_ptr(addr(llne),O,mln(prc,lngth»; /* wrIte the ~Ine */
n = n-l;
if n • 0 then go to ne~t; /* any morp to he p~Inte~?,'/

call put;
call get;

go to prlntl;

/* ********* change ********* */

change:
located = 0;
If count = 2 then do;

Incmplt: call 10a_("lmproper: ""a", substr(buff~r,l,count-l»:
ca 11 reset re~rl;

go to next;
end;

brkl = edct + 2;
break = substr(buffer,edct+l,l); /* Plc!.: ... I" the rlell,.,ltln, charaeter. */
I = Index(substrCbuffer,brkl,count-brk1),break);
If laO then go to Incmplt;
j • Index(substr(buffer,l+brkl,count-brkl-I),hreak);
if j=O then j = count-I-brkl+l;
edct • edct + I +] + 1; /* Contlnup scannl~g prllt lln~. */
g 1 obsw = "O"b; / * Assume on 1 y on~ change. */
n • 1; /* Assum~ anly one 11ne chan~erl. */

nxarg: cal I get_token;
if tkn ""= " II then do; / * If t6k.en there, process It. */

if tkn ,= "gil then globsw • "1 It b; /* Change all OCCUrrllnCp.5. */
else call tv_num;

go to nxa rg; / * fry for anothe r a rpUI'"f\nt. */
end;

If Ingth = 0 then go to sklpch; /* SkIp c~an~lnt ~MPty lln~. */

chI: tempi • "a'ib; /*to IndIcate If anythln~ was ctrl on lIne */
m, ij, 1 • 1; /* Intipxe!\ t() strIngs */
If 1=1 then do; /* Arid to hetlnln~ af lIne */

tempi = "1"b;
located = 1;
substr(tlln,1,]-1) • 5ubstr(buffer,hrkl+l,j-1); /* copy part to be arlde~ */
substr(tlln,j,lngth) • suhstrCllne,l,lngth); /* copy nlef lInp */
I j • j + lngth - 1;
go to cprt;
end;

ch2: k = index(substr(llne,m,lngth-m),suhstr(buf'er,hrkJ,l-l»; /*locAtp wh~t 1_ ta hp chan~ed */
If k ... ·O then do;

rr1 o
.....
o
::0

280
281
2a2
283
284
285
286
287
288
289
290
2Yl
292
293
294
295

cprt:

skipch:

substr(tlln,lj,k-1) • substdlfne,m,k-l); 1* copy line un tn chanlCe */
substr(tl In,lj+k-1,j-1) • suhstrCbuffer,brk1+I,j-1);/. nut In chan~p. */
m • m + k + I - 2; /* Incrp.mp.nt InciP)(P's */
Ij :: Ij + k + j - 2;
tempI = "1"b;
located • 1;
If globsw then go to ch2;
end;

substrCtlln, I j, Ingth-m+1) • substd Ilne,m,lngt"-m+l);
Ij • ij + lngth - m;

/* Inrllcatp. that ynu rllrf snmetln« */

/* cnny rpst nf liMp. */

If tempI then call los_S\,rrlte_ptrCarlddtlln),O,Ij); /* write If snmethlnl! chanjPf"rf */
substrCllne,I,lj) • substrCtlln,I,IJ);
1 ng t h :: I j ;
If n<=1 then do;

if located-O then

go to next;
end;

I'l • n-li
,::all put;
,c:a 11 get;
,~o to chI;

do;
ca 11 I oa_(IINoth I ng changerl bi:
ca 11 reset read;
end;

suhstrChu"f"r,J,count-l»;/* If not lnc~terf */

/* *******.* top ********* */

29b
297
298
299
300
3Ul
302
303
3U4
305
30(;
307
308
309
310
311 /*
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
318
329
330
331
332
333

top: ,ca 11 copy;
,::a11 s\'d tch;

go to next;

********* bottom ********* */

bottom: call copy;
Ingth = 0;
go to plnput;

!* *******~* backup ********* */

backup:

newln:

I = indt;
c:all copy;
c:a II swi tch;
Indf = i+l;
do n • n toO;

do indf :: Indf-l to 1 by -1;
if substrCfrom_seg,lndf,l)
end;

if n ~:: 0 then do;
lngth • 0;
n = 1;
Indt, Indf = 0;
go to eof;
end;
end;

.. nl

/*

/* soIIIve ptr!'> */

/* restor~ ptr~ */
Note thllt "n" sti! rt~ ne.!l:at I"p. */

/* '"o~ for ~p.~lnln~ nf llnps */
then go ta newln;

/* went off top of file */

:=:
c
r­
-4

n
t.n

m
Z
<
;:;0
o
z
3:
m
z
-4

Indt • Indf;
substr(to_seg,1,lndt) • substr(from_seg,l,lndt);/- m~Ye In tnp
do Indf • Indt+1 by 1 to cslze;
substr(llne,lndf-lndt,l) • substr(from_seg,lnrlf,l);

If substr(from_seg,lndf,l)-nl then «0 to line_end;
end;

Indf I: cslze;
lngth • Indf - Indt;
go to next;

1* ********** "flle" request ftft******ft* ft/

file:

qult1:

call copy; ,- FInIsh COpy. */
ca 11 save;
call hcs_$truncate_$~,,(from_Ptr,O,corle);
ename • "";
If code ~. 0 then call call_com;
return;

1* ********** write save *********ft */

wsave:
/* FInish copy. */

/* lfh~ starts ~s Inrlt */
elf fll~ */

/* fin~ ~nd of line */ ,* ~ovp. 'nt~ lln~ *'
1* ~e~rc~ 'or end of lIne *'

334
335
336
337
338
33!J
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
35b
357
358
359

catl copy;
ca 11 save;
go to next; '* Contlnup. acce~tln~ rPQu~sts. -/

1* ********ft eof ********. */ 3!.JU
301
302
3b3
364
3b5
3bG
3b7
368
369
370
371
372
373
374
375
376 1*

eof: call ioa_(IIEnd of Ffle reached by:"'""a'·, substdbuHp.r,l,<:olll'1t-l»;
ca 11 reset read;

go to next;

1* ********** FILE SYSTEM ER~OR **-**-._** */

error:
call call_com;
ca 11 reset read;
go to next;

l>

(J)

X
-0
r­
m
.....
m
><
m
c
.....
o
:0

*/
377
318
319
380
381
382
383
384
385
3136
387
}s8
389
HU
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
40~
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429

/* ********* I N T ERN ALP ROC E 0 U RES ********* */

copy:

save:

put:

I) rocedu re;
substr(to_seg,lndt+l,lngth) • sunstr(llne,l,ln~th);
indt ,. Indt + lngth;
lngth ,. 0;
If cslze=O then return;
ij • csize - Indf:

/* copy rest of fll~ Into to fIle */
/* rony currpnt llnp. */

/* If new Input, then no copy neerlerl.
/* ~o rpst of flip. */

if ij>O then substr(to_seg,lnrlt+l,Ij)
indt • Indt + Ij;

• substr(froM_spg,lnrlf+l,lj);
/* spt counter~ */

Indf • cslze:
return;

end copy;

procedure; /* Procerlurp to write out "to" huffer. */
call hcs_$truncate_seg(out_ptr,O,corle);
If code ~. 0 then go to error;
substr(out_seg,l,lndt) • substr(to_seg,l,lndt);
call hcs_$set_bc_seg(out_ptr,lndt*9,code)i
If code ~. 0 then go to error;
return;

end savei

procedure;
substr(to_seg,Indt+l,lngth) - substr(llne,l,lngth);
Indt • indt + lngthi
lngth = Oi .
return;

end put;

/* "'0 move */
/* set counters */
/* Ol~card old lIne. */

get: procedure; /* Get next lIne In ~r(')m_seg Into "lInpll. */
lngth • 0; /* Reset current lIne length. */
if Indf >- cslze then go toeof; /* If no Input left, gIve UP. */
lngth ,. Index(substr(from_seg,lnrlf+l,cslze-Inrlf), nl); /* FInd the next new lIne. */
If lngth • 0 then lngth - cslze-Indf; /* If no nl founrl, trpat end of segment as one.
substr(llne,l,lngth) • substr(from_seg,lndf+l,ln~th); /* Peturn the line to caller. */
Indf = lngth+lndf; /* Hove the ufrom" pointer ahearl one lIne. */
return;

end get;

switch: procedure;
exptr • from_ptri

/* m~kp fro~-ffte to file, ~n~ v.v. */

*/

*/

."
:::0
o
C)

:::0 »
:3:
3:

z
C')

3: c:
r­....
n
(f)

f'T1
Z
<
:::0
o
z
3:
IT1
Z

430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
45b
457
458
459
4bO
461
4b2
463
4b4
465
466
4b7
468
469
470
471
472
473
474
475
476
477
478
479
480
481
4!l2
41:13

reset read:

from_ptr = to_ptr;
to_ptr • exptr;
cslze • Indt;
Indt,llidf • 0;
Ingth = 0;
retu rn;

end switch;

procedure;
ca II I os_$ rese t rearl (I oname, sta tus);
return;

end reset read;

1* Call 1/0 system reset rear' pntry. *1
1* In D~e pIAC~ tn ~lnl~lle c~ll ~~tu~ coMe. */

call_com: procedure; /* raIl c~m~~rr_ fro~ standar~ alaee. */

ge~_token:

call com_err_(code,ednm,ename);
return;

procedure;

1* In oMe place to mlnl~fze call setu~ cOde. *1

tkn • " ": /* Clef'" ClUt nl('f tnl-en. *1
do edct .. edct by 1 to couht while (substdbuff'er,erict,U .. " It);

end;
token Ith • Index(substr(buff'er,ec:!ct,count"erlct)," II); 1* Scan tCl next blankil */
alt_lth • Ind~x(substrCbuffer,edct,count-edct)," II); /* I.nok fl'lr tab also, *1
if token_lth+alt_lth • a 1* Pau token hack, *1

then token_lth • count - erlct; 1* Neither 'nunr', use rest of line. ~I
else do; 1* Onp or both rlell~ltprs were founrl, *1

If token_lt"*alt_lth • 0 1* rhecl< tnr hClth fnunrl. */
then token_lth • token_lth+8It_lth-l; 1* OnlY nne, spt alt_lt" to It. */

end:
else token_1th .. mln(token_lth,1I1t_lth) - J; 1* 'lIHh fnutir', use smallest.

token_lth • mln(8,token_lth);
substrCtkn,l,token_'th) • substrCbuffpr,erlct,token_lth);
edct • edct + tClken_lth;

*1

if alt_lth > 0 then If alt_lth<token_lth then er'ct • erlct - 1;
return;

1* It 1"'tl~l tah, hack up SCAnn~'r.

get_num: procedure;
ca II get_token;

cv_num: entry;
n = cv_dec_(tkn);
If n • 0 then n • 1;
return;

I

end edsi

/* RoutIne tn convert token to hlnAry Inte~er, */
1* Oellmlt thf! token. Itl
/* F.nter hprf! If to~en alr~arly Ava'Iable. *1

1* Oefault count Is 1. *1

»
C/)

3:
-0
r
m
-t
rn
·X
-t

m
0

-t
0
::0

*1

NAI4ES DECLARED IN THIS COI·1PILATION.

IDENTIFIER OFFSET LOC STORAGE CL.~6S DATA TYF>F.

NAr~ES DECLARED BY DECLARE STATEt~ENT •
addr buIltin function

alt _lth 000100 automatic f I xed bin Cl7, ° >
break 000101 automa tic charCl >
brkl 000102 automat Ic fixed blnCl7,t)
buffer 000103 automat I c cha r (210)

code 000170 automat Ic fixed bln(35,0)

com_err_ 000012 cons tant ent ry
count OUOI71 automat Ic fixed blnCl7,0)

cslze 000172 automatic fixed blt1Cl7,0)

cU_$arg_ptr 000014 constant entry
cv_dec_ 000016 constant entry
divide builtin funct Inn
edct 000173 automat Ic f r xed bIll Cl7 , 0)

ednm 000174 automat Ic char (3)
enarne 000175 automat Ic cha r (32)
expand_path_ 000020 constant entry
exptr 000206 automat Ic pointer
from_ptr 000210 automatic pointer

from_seg baserl charCl31(J72)

globsw 000213 automatic blt(l)
hcs_$make_seg 000024 constant entrY
hcs_$set_bc_seg 000026 constant entry
hcs_$ s tatus_m In:; 000022 constant entry
hcs_$ t runca te_sc!g 000030 cons'tant entry
i 000214 automatic flxerl blr,C17,O)

i j 000215 automatic fixed bln(l7,0)

index builtin function

indf 000216 automatic flxerl blnC17,O>

indt 000217 automatic fixed blnC17,0>

Intern~l riel Fe rrf ~n 93 ~3 q3 q3 110 110 138 13~
235, 2~5 290 291)
riel 6 set ref 4j7 458 461 461 463 4GR 468
riel 7 set rpf 2~2' 253 255
dcl R spt ref 2~1 253 253 255 255 256 27~ 27~ 2~1
dcl 9 s~t rpf 9~ ~~ 95 110 110 131 131 1~8 138 13~
1~2 16~ 206 247 247 252 2S3 255 273 27P 2n1 2~5
295 362 362 454 456 457 466
riel 10 s~t ref 74 84 8593 94 95 97 ~e 348 35~ ~n7
398 400 41)1 446
ex te rna 1 ric 1 51 rp f 44 f
riel 11 set r~f 110 112 '31 131 138 13q 142]42 14~
160]60 1e2 193 206 246 247 247 253 255 256 2~~
295 362 362 454 456 457 458
Inltl~l riel 12 set ref 12]O~ 104 104 172 17~ 175
177 177 178 179 19P 2no 212 336 340 12 3P.6 ~~7 ~nn
4H 419 420 432
external rlcl 52 r~f 84
external ric 1 53 ref 477
Internal rlcl 65 rpf 103
rlcl 1~ spt ref 113 160 160 IFO 162 1q~ 1~5 1~5 20~
20fi 251 252 257 257 454 454 454 456 456 457 457
458 466 467 4~7 46~ 468
Initial riel 14 set rrf 14 14 44~
riel 15 set rp.f 73 86 ~~ n3 n5 100 34~ 44F.
exterl"tal ~cl 54 r~f 93
dcl 1G set rpf 429 4~1
rlcl 17 set ref 74 75 80 104 173 177 186 187 206
20~ 2J~ 2J5 218 325 335 337 33R 348 388 41Q 421
429 430
rlcl 1~ set ref 104 173 177 186 187 206 20~ 2J2 215
218 325 335 337 338 388 419 421
dcl 20 set rpf 258 2f2 286
extprnal dcl 56 r~f 74 95
ext~rnal ric 1 58 ref 400
external ric 1 55 rpf ~7
external dcl 59 ref 348 397
dcl 21 s~t ref ~7 151 171 206 207 208 253 254 2~5
255 256 257 270 273 278 281 282 31~ 322
riel 22 set rpf 269 275 280 281 283 283 288 2~~ 28°
290 29] 2n1 2~2 ~87 388 388 388 389
Internal rlcl 65 r~f 173 206 ~53 255 278 41~ 456
457
Inltl~l rlcl 23 set ref 2~ 169 175 178 194 187 1~7
188 197 198 206 208 212 212 216 322 324 324 325
330 334 336 337 337 338 34~ 341 23 387 388 3~0 41~
419 41~ 420 42] 422 422 4~3
Inltl~l rlcl 2~ s~t ref 24 177 179 17~ 187 18~ 18S
1~6 215 217 217 31q ~30 334 335 335 336 337 341

,f:"
I

V1
o

z
C>

Z

-f
::I:
m

3';
C
r­
-f

n
(J)

m
Z
<
::0
o
Z
~
m
z
-f

ioname
ios_$read_ptr
ios_$resetread
I os_$\'Ir I te_pt r'
j

k

I
line

lngth

located
m

min
n

nl

null
out_count
out_ptr
out_seg
prc
seg
sname_lth
sname ... ptr
status
substr

tempI
tkn

100000

000032 constant

000220 automatic
000034 constant
000036 cOnstant
000040 constant
000223 automatic

000224 automatic

000225 automatic
00022G automatic

000313 automatic

000314 autoMatiC
000315 automatic

000316 automatic

000317 automatic

\

000320 automatic
000322 automatic

based
000324 automatic

based
000325 automatic
000326 autoMatic
000330 automatic

000332 automatic
000420 automatic

000333 automatic
000422 automatic

based

entry

charOO)
entry
entry
entry
fixed bln{17,O)

fixed bln(17,0)

f I xed bin (17,0)
cha r{ 210)

f I xeri bin (17, rJ)

fixe rl bin (l 7,0)
f I xerl bin 07,0)

bulltlh functloll
f I xec1 bin (17,0)

char(l)

builtin function
fixed bln(24,0)
pointer
ehar(131072)
f I xerf bin (11,0)
f I xed bin 07,0)
f I xed bin 01, 0)
pointer
hlt(72)
builtin function

blt(1)
eha r (8)

charC210)
pointer

char(131072)

24 385 3R4 384 388 389 389 399 399 400 408 409 40Q
432 433
external nel GO ref 100 109 131 137 232 247 295
362
Initial unall~ned nel 25 set ref 25 25 440
external rfcl 61 ref 110]38
external ~el 62 ref 440
externAl riel 63 rp.f 23S 290
ricl '6 set ref 16~ 172]73 173 182 182 184 18F 1~~
203 203 204 255 256 256 257 273 273 274 275 281
281 283
dcl 27 set ref 173 174 182 185 186 186 18E 208 20~
211 212 215 215 2]6 217 2]8 278 279 280 280 281
282 283
del 28 set ref 2G9
dcl 29 set ref 142 160 186 218 235 235 274 278 280
288 2~1 3~7 383 408 421
Inltlnl riel 30 s~t ref 30 143 154 162 17F 185 187
187 leg 216 218 218 230 235 235 266 274 274 275
278 288 288 28q 292 314 328 341 30 383 383 384 3R~
408 40~ 4~n 410 417 41~ 420 420 421 421 422 4~4
del 31 set rp.f 244 7.72 285 294
rlcl 32 spt rp.f If9 177 177 177 179 187 187 lR7 IP.~
197 2n4 215 215 215 217 269 278 278 280 282 282
2Sr. 2q8 2P.R 2ag
Internal ~cl 65 ref 235 235 463 465
del -33 spt ref 151 168 171 198 200 20~ 203 20G 21~
23~ 2~6 2~7 2~9 2n~ 300 300 323 323 327 32q 477
478 478
Initial dcl 34 set rpf 34 173 209 212 325 3~R 34
419
Internal reI GS ref 7S ~6
dcl 36 set rpf 97 99 103
del 37 set rp.f ~5 96 97 104 3~7 391 400
dcl 38 spt rpf 104 3~q
fnltlal ric I 3~ set rpf 3q 110 138 235 235 3~
array level 2 del 67 set ref 80
riel 40 set ref R4 93
dcl 41 set ref 84 !l3
riel 42 spt ref 440
fnternal riel F5 set ref 104 104 131 131 13~ 142
142 160 160 173 177 177 186 186 187 187 206 206
209 2]2 215 215 218 218 247 247 252 253 255 273
273 274 274 27R 278 280 280 281 281 28~ 288 291
291 295 215 325 335 335 337 337 338 362 362 ~R3
383 38R 388 399 3nq 408 408 419 421 421 454 456
457 466 466
del 43 set ref 268 271 284 290
~cl 45 set ref 116 117 118 119 120 121 122 123 124
125 126 127 2fl 2G~ 453 466 477
del 44 set ref 273 274 280 281 288 290 290 291
dcl 47 set rp.f 80 177 187 215 335 383 388 399 40R
431) 431
del 46 set rpf 177 187 215 335 383 388 399 408

l>

(I)

:;:
-0
r­
I'T1

~
I'T1
><
~

I'T1
C

-f
o
::0

,f:"
I

V1

000212 automatic f I xed bin (17,0)

NAMES DECLARED BY DECLARE STATEMENT AND NEVER RfFEREHCED.
ml d based st ructure-
space based fixed blnC17,O)

NAMES DECLARED
backup
bottom
call_com
ch1
ch2
change
COpy
cprt
cv_num
dell In
eds
eof
error
ferror
file
get
let_num
get_token
I ncmplt
Input
Insert
l_nl
line_end
locate
n_eof
newln
nex lin
next

nol ine
nxarg
pedlt
plnput
print
prlntl
put
qui tl
resetread
retype
save
sk I pch
switch
top
wsave

BY EXPLICIT CONTEXT.
002113 constant
002110 cons tant
002577 cons tant
001542 constant
001616 constant
001362 constant
002334 constant
002007 constant
002771 constant
000645 cons tant
000102 constant
002275 constant
002331 constant
000226 constant
002245 constant
002501 constant
002763 constant
002626 constant
001366 cons tant
000610 constant
000664 constant
001205 constant
002241 constant
001072 cons tant
000751 constant
002162 constant
000707 constant
000417 constant

001353 constant
001515 constant
000404 constant
000575 constant
001311 constant
001330 constant
002460 constant
002247 cons tant
002560 cons tant
000665 cons tant
002413 constant
002036 constant
002543 constant
002105 constant
002272 constant

THERE WERE NO NAMES DECLARED 8Y CO"TEXT OR IMPLICATION.

label
label
entry
label
label
lahel
entry
label
entry
label
entry
label
label
label
label
entry
entry
entry
label
label
label
label
label
label
label
label
label
label

label
label
label
label
label
label
entry
label
ent ry
la'bel
entry
label
entry
label
label

riel lq spt ref 456 458 458 461 461 461 463 4~3 465
465 466 46~ 457 468·

level 1 unaligned rlcl r,7
array levpl 2 dcl F7

dcl 319 re~ 168 319
dcl 313 re~ 126 3B
Internal ~cl 445 ref 77 87 350 368 44,
del 268 ref 268 30~
del '-78 ref 278 286
del 244 rpf 122 24~
Internal dcl 382 ref 222 307 313 320 34~ 355 382
dcl 2~O ref 276 290
Internal del 476 ref 263 476
dcl 149 ref 123 149
external rlcl 1 rpf 1
dcl 362 ref 175 180 224 331 362 418
del 3G8 ref 368 39R 401
del 8(, ref 86 94 ~6 ~p.
dcl 346 ref 121 346
Internal ric I 416 ref 152 13q 302 41~
Internal del 474 ref 149 167 228 474
Internal del 452 ref 114 2G~ 452 475
del 247 ref 193 247 254
riel 138 re' 138 144
dcl 159 re' 116 159
del 212 ref 209 212
dcl 341 re~ 338 341
del 193 rpf 118 193
dcl 175 ref 172 175
del 333 ref 325 333
del 167 ref 120 167
del 110 ref 110 112 133 155 163 189 237 249 2qa
309 342 358 3[,4 371
dcl 236 ref 233 236
del 260 ref 260 264
del 109 ref 109 139
del 137 rpf 101 127 137 315
~cl 228 r~f 119 228
del 235 ref 220 235 240
Internal del 407 ref 1~1 15~ 170 19~ 2~a 30' 407
del 34R ref 88 348
Internal dcl 439 ·ref 132 248 296 ~(\3 370 43q
del 160 ref 117 160
Internal ~cl 396 ref 341 357 396
del 293 ref 266 293
Internal del 428 ref 202 223 308 321 42R
dcl 307 ref 125 307
del 355 ref 124 355

.r:­
I
VI
N

Z

-I
:r:
,."

X
C
r­
-I

n
(I)

,."
Z
<
::c
o
z
X
,."
z

S10Rf\GE REQUIREHENTS FOR THIS PROGRArl.

Obj ec t Text LI nk Symbol Oefs Static
Sta rt 0 0 3162 322r. 3015 3172
Length 3456 3015 42 217 145 2

External procedure eds uses 496 words of automatic storage
Internal procedure copy shares stack frame of parent block
Internal procedure save shares stack fra~e of parent block
Internal procedure put shares stack frame of parent block
Internal procedure get shares stack frame of parent block
Internal procedure switch shares stack frame of parent block
Internal procedure resetread shares stack frame of pareht block
Internal procedure call_com shares stack frame of parent block
Internal procedure get_token uses 68 words of automatic storage
Internal procedure get_num shares stack frame of parent hlock

THE FOLLO~/I r:G EXTERNAL OPERATORS ARE USED BY TH I S PPOCRM4. » r_e_as r_le_a alloc_cs move_csa CSrt_move call_ext_out:"(iF~sc
ca ll_ex t_out call_lnt_thls re turn set_csa set_cs_co cs_move_co (I)
shorten_stack blank_csa I ndex_cs_co Index_cs_l_co ext_entry tnt_entry
rpd_loop_1_lp_bp rpd_loop_1_bp_lp ::s:

'"0
THE FOLLm~H'G EXTERf!AL ENTRIES ARE CALLED BY THIS PPOr,RM1. r-
corn_err _ cU_$arg_ptr cv_dec_ expanrl_nCl th_ rn
hcs_$make_seg hcs_$set_bc_seg hcs_$status ... mlns hcs_$truncate_seg -t i08_ los_$read_ptr 105_$ reset rf'!sd I oS_~"'r I te_pt r m
NO EXTERNAL VARIABLES ARE USED BY THIS PROGRAM. X

-.of

m
c

L Ii~E LOC L II~E LOC LitlE LOC II ~'F. lOC II ~tE LOC I.I"F. LOC LI"F. Lor -f
1 000100 12 000107 14 000110 23 000112 24 000113 25 000114 3-0 000121 0

34 000122 39 000124 73 000126 7r. 000134 75 000114 77 000200 18 00020l :;0

80 000202 84 000205 85 00022r. 8e 000226 87 000231 8~ 000232 93 000233
94 000256 95 000260 96 000327 97 000333 98 OOO~5() 90 000352 100 000354

1111 000375 103 000376 lOr. OOOr.OO 109 000404 110 000411 1l:! 1')1)011~4 J13 OOOr.37
114 000441 116 000445 117 000452 118 OOOr.S7 119 O1)0r.64 120 000471 121 000476
122 000503 123 000510 124 000515 125 000522 126 000527 127 000534 131 000541
132 000572 133 000574 137 000515 138 000610 n~ 000625 HI 0001)34 142 0006~5
143 000642 14r. 000644 149 000G45 151. 0I00Gr.G 152 000657 153 0006FO l5r. 0001'62
155 000GG3. 159 000664 160 0006G5 lG2 000703 1153 00070(; 167 000707 HiS 000710
1li9 000712 170 000715 171 000716 172 0100726 173 000731 1711 000747 175 000751
176 000754 177 000755 178 001003 179 001005 18'1 0010]1 1R2 001012 18~ 0011)13
184 001015 185 001017 186 001021 137 00103!j 1tl8 OOIO(;r. H!'I 001071 193 001072
195 001075 196 001076 197 001100 1~8 001102 lOc) 0011('15 ?ono 01')1106 202 00111 5
203 001116 203 001124 204 001125 206 001127 207 001157 20~ 001H1 209 001167
210 001201 211 001204 212 001205 21r. 001231 215 001233 216 0012f1 217 001264
218 001270 219 001303 220 001305 222 00130G 223 0013n7 224 001310 228 001311
230 001312 232 0013Ir. 233 001327 235 001330 236 01) 13 5 3 2H OO13!'5 238 00n~7
239 001360 2r.0 001361 2r.4 001362 246 001363 2/,7 01)1366 '4~ 00 lIt 17 249 001421
251 001422 252 001425 253 001435 254 00lr.51, 255 00 14.Ii[, 256 0Olr.7F. 257 001505 +="

I
V1
\H

258 001512 259 001513 260 00lS15 261 001521
266 001540 268 001542 269 001543 270 001547
274 001576 275 oouin 276 001615 278 001616
282 001732 283 001737 284 001144 28 5 001746
290 002007 291 002027 292 002034 293 002036
298 002071 300 002100 301 002102 302 002103
309 002107 313 002110 314 002111 31S 002112
322 002117 323 002122 324 002127 325 002135
329 002155 330 002157 331 0021Gl 333 002162
337 002203 338 002227 339 002235 340 002237
347 002246 348 002247 349 002263 350 00226Ci
358 002274 362 002275 363 002326 3Ei4 002330
382 002334 383 002335 384 002351 385 002353
309 002406 390 002410 391 002412 3!:16 00241.3
400 002437 401 002455 402 002457 407 002460
411 002500 416 002501 417 002502 418 002503
422 002540 423 002542 428 002543 429 002544
433 002554 434 002556 435 002557 439 002560
446 002600 447 002621 452 002622 453 002633
457 002703 458 002710 461 002721 4ti3 002731
468 002753 469 002762 474 002763 475 002764
479 003013

252 01)1526 263 001536
271 001552 212 001554
279 001653 280 001fi56
286 001150 2'18 001H2
294 002042 295 002/)44
3:»3 002104 307 002105
319 002U3 320 0')2115
32(; 002]47 :527 002152
334 002H4 H5 002161'
341 002241 342 002244
351 0"2271 ~!i5 002272 •
3M 002331 510 002332
3~6 01)2354 387 "02357
3!)7 0021,14 3!)8 0024~0
40R 0024Cl 4/)!) M2475
41!:) 00%51)6 420 002524
4~0 002546 4'111 002550
440 002561 441 002576
454 0026U 4!i5 002F.Eil
4f·5 01)2737 4':6 0"2744
476 00277? 477 002772

264 001537
273 001556
281 001677
289 1)02003
296 002015
308 002106
321 002116
328 002154
336 002172
346 002245
357 002213
371 002333
388 0023Eil
399 002432
410 002477
421 002533
432 002552
445 002577
45£ 0026£4
467 002751
478 on3007

3:
c:
r­
-t

n
(J)

1"1
Z
<
:;a
o z
~
1"1
Z
-t

HANDL I NG LARGE FILES ON r~UL TICS 4-55

Handling Large Files on hultics

A frequent point of confusion about Multics concerns the
handling of large data files within the segmented virtual memory
environment. A file, in Lultics terminology is a (usually
structured) collection of data of arbitrary size. A file which
happens to require less than 256K words of storage is usually
stored in a single segment of the r.ultics storage system, and is
addressed by mapping the segment containing the entire file into
the current address space. Source and object programs, and
smal1~ linear /\SCII text files are examples of files handled this
way. A file which is larger than 256K words (or which is smaller
but may someday grow that large) is usually stored in several
segments in a single directory in the Multics storage system, and
is addressed by mapping relevant parts (records) of the file into
the current address space. The directory contains, in addition
to the raw data of the file, any maps or indexes needed to
maintain its internal organization. Three file management
facilities (sometimes called Access Methods on IBM systems) are
available tg handle the details of setting up, indexing, and
searching of files. These are:

1. Multi-segment files (MSF): There is a system-wide
standard format for ASCI I text files which require more
than 256K words of storage. ~ost translators, fer
example, are prepared to produce very long output
listings for the printer using this format; the high
speed line printer facilities also recognize the
forma t.

2. File manager: A general purpose, record-oriented file
manipulation system provides sequential record files
and indexed (keyed) record files of up to 100 million
bytes. The files are accessed using the virtual
memory: one calls to the file manager giving the index
or key of the record desired; the file manager returns
a pointer to the location of that record in the address
space, and the program then can manipulate the contents
of the record using, for example, a PL/I based
structure. The file manager provides i"terlocking
facilities for multiple users, and also guarantees
integrity of a file in the case where a systeM failure
occurs while the user is updating the .file. The MPM
reference guide section on the file manager, and
write-ups of a set of subroutines beginning with the
name fm_ should be consulted for further information.

3. Pl/I record-oriented I/O: The full ANSI standard PL/I
I /0 s y s ten i simp 1 enen ted on nu 1 tic s * , all o\-,ri ng
construction of a data nanipulation systen which is in
principle system independent. Since the PL/I I/O

l~- 5 6 PROGRAMM I NG I N THE MULTI CS ENV I ROnt1ENT

system uses the j!iultics File t1anager (2, above) very
large files can be efficiently set up, updated, and
searched using only the PL/I language. For further
information, one should consult the PL/I language
specifications.

In addition, users with unusually sophisticated needs such
as completely inverted files, files with indexes on different
elements, etc., will find that appropriate facil ities can easily
be developed using the virtual memory combined with techniques
similar to those used by the f1ultics File f'ianager. It is
important to realize that the Multics File Manager, while

.organized as a protected subsystem, is written in PL/I, using
·only Multics facilities which are also available to the user.
Thus, a use r cou 1 d cons t ruc t his o\,/n ve rs i on of the F i 1 e ~lanager,
or a more elaborate file accessing system without recourse to
special privil~ges or need to modify the Multics supervisor.

Finally, the t-1ul tics I/O system, which i's organized to allo\"#
attachment of arbitrary source-sink I/O devices, may 'be used to
read and write magnetic tape in any of several formats, for
appl ications in which permanent on-l ine storage. is not
appropriate.

Unfortunately, there does not yet exist a suitable set of
annotated case studies on the use of the file management
facilities. The potential developer of a large file application
is advised to begin by reviewing one or more applications
previously implemented on f.'ultics and which use these tools.

	001
	002
	003
	004
	005
	006
	007
	009
	010
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	2-001
	2-002
	2-003
	2-004
	2-005
	2-006
	2-007
	2-008
	2-009
	2-010
	2-011
	2-012
	2-013
	2-014
	2-015
	2-016
	2-017
	2-018
	2-019
	2-020
	2-021
	2-022
	2-023
	2-024
	2-025
	2-026
	2-027
	2-028
	2-029
	2-030
	2-031
	2-032
	2-033
	2-034
	2-035
	2-036
	2-037
	2-038
	2-039
	2-040
	2-041
	2-042
	2-043
	2-044
	2-045
	2-046
	2-047
	2-048
	2-049
	2-050
	2-051
	2-052
	2-053
	2-054
	2-055
	2-056
	2-057
	2-058
	2-059
	2-060
	2-061
	2-062
	2-063
	2-064
	2-065
	2-066
	2-067
	2-068
	2-069
	2-070
	2-071
	2-072
	2-073
	2-074
	2-075
	2-076
	2-077
	2-078
	2-079
	2-080
	2-081
	2-082
	2-083
	2-084
	2-085
	2-086
	2-087
	2-088
	2-089
	2-090
	2-091
	2-092
	2-093
	2-094
	2-095
	2-096
	2-097
	2-098
	2-099
	2-100
	2-101
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	4-49
	4-50
	4-51
	4-52
	4-53
	4-54
	4-55
	4-56

