
HONEYWELL

I MULTICS
gedx TEXT EDITOR
USER'S GUIDE

, SOFTWARE

SUBJECT

MULTICS

qedx TEXT EDITOR
USER'S GUIDE

Detailed Description of the Multics qedx Text Editor, Including Comprehensive
Discussions of the Related Requests and Editing Techniques

SPECIAL INSTRUCTIONS

This manual presupposes some basic knowledge of the Multics system provided
by the 2-volume set, New Users' Introduction to Multics. Some of the pre
liminary information covered in that set is briefly summarized here, however,
so that users at any level of experience can comprehend the techniques covered
in this manual.

SOFrWARESUPPORTED

Multics Software Release 10.1

ORDER NUMBER

'CG40-01 February 1983

Honeywell

PREFACE

This book is a detailed description of qedx, a Multics text
editor; it provides all the necessary information to edit text
and programs online. Users reading this book are expected to be
familiar with the Multics concepts described in the 2-volume set,
New Users' Introduction to Multics - Part I (Order No. CH24),
and - Part II (Order No. -CH25).

The sections of this manual fully describe the qedx editor
and explain the steps required, from the most basic, elementary
tasks through advanced methods for accomplishing the same tasks
in a more efficient, effective and powerful way, up to the most
sophisticated techniques for moving text and creating macros.

Section 1 tells how to log in (establish a connection with
the computer), and how to log out (break the connection); simple
methods for deleting (erasing) a mistyped character, word, or
line and how to enter the qedx editor ("call" qedx) and exit from
it.

Section 2 explains how to type new information in from your
terminal (create text) and how to save that information for reuse
(write a segment).

Section 3 extensively describes editing an existing segment;
ways to locate, print, and delete lines; make substitutions on a
line(s): add, replace and insert more text; explains "regular
expressions" and special characters for use in e~itin9; and shows
how to print, list, and delete segments.

The information and specifications in this docwnent are subject to change without notice. This
document contains information about Honeywell products or services that may not be available
outside the United States. Consult your Honeywell Marketing Representati ve.

© Honeywell Information Systems Inc., 1983 File No.: 1L53,1U53

CG40-01

Section 4 shows several examples of real editing sessions
and lists some hints for new users.

Section 5 details the advanced edit requests, and describes
special escape sequences, use of buffers for moving text,
repeated editor sequences, and macros.

Appendix A is a glossary of qedx terminology, and Appendix B
is.the command description itself (which also appears in the MPM
Commands). Appendix C is a summary of addressing conventions;
Appendix D contains the reference descriptions for all requests;
and Appendix E lists qedx error messages, including what
corrective actions to take.

Significant Changes in CG40-01

The manual format -has been extensively revised. There are
no major changes to the text in this revision.

The Multics Commands and Active Functions, Order No. AG92,
is referred to in this -manual as the MPM Commands; and the
Multics Subroutines, Order No. AG93 , is referred to here as the
MPM Subroutines.

Manual Conventions

Often, user typed lines and lines typed by Multics are shown
together in the same example (these examples are called
interactive examples). To differentiate between these lines, an
exclamation mark (!) precedes user-typed text. This is done
only to distinguish user text from system-generated text; you
should not actually begin your text with an exclamation mark.

Also, a "carriage return" (moving the typing mechanism to
the first column of the next line, called a newline on Multics)
is implied at the end of every user-typed line.

iii CG40-01

Section 1

Section 2

Section 3

CONTENTS

Introduction •• • • • • ••••••
Getting Started • • • • • • • • • • •

Logging In To Multics •••••••
Logging Out • •• • • • • • • •
Correcting Typing Errors •• • • •

The qedx Editor •• • • • • •
Invoking qedx • • •
Exiting From qedx • · . .

· .
· . .

qedx Requests •• •• • • • • • •
Operation Modes • • • •••

Input Requests vs. Edit
Requests • • •

Input Mode • • • • • • • • •
Edi t Mode • •

Requests • • • • • · .
Input Requests • · . . . · .
Edi t Requests • • • • • • •

Entering New Text • • • • · . .
Buffers ••••• -••••••
Creating Text ••• • • • • •

append (a, \f) request •••
Saving Your Work • • •

write (w) request •
Naming the Saved Segment •

Exiting from qedx · . .
quit (q) request •••••

· . · . .

· . .
Editing An Existing Document ••••••

Locating and Printing Lines •• • • •
Current Line And Pointer •• •
Printing The Current Line • • •

Addresses • • • • • • • •• •• •
Absolute Line Number • • •

Pr~nt~ng a Single Line • • • • •
Prlntlng More Than One Line

Relative Line Number •••
Current Line • • • • • • • •
Print Current Line Number (=)
Last Line ($> •••••••••
Printing The Entire Contents Of

Your Buffer • • • • • •••••

iv

Page

1-1
1-1
1-1
1-3
1-3
1-4
1-5
1-5
1-5
1-6

1-6
1-8
1-8
1-8
1-9
1-9

2-1
2-1
2-2
2-2
2-3
2-3
2-4
2-6
2-6

3-1
3-1
3-2
3-2
3-2
3-3
3-4
':l-I:;.
oJ oJ

3-6
3-6
3-6
3-6

3-8

CG40-01

Section 4

Section 5

CONTENTS (cont)

.
Interrupting a Lengthy Print
Request • • • • • • • • • • • •

Context Addressing (Regular
Expressions) • • • • • • • • • • •

Special Characters in Regular
Expressions • • • • • • • • • •

Null Regular Expression •• • •
Compound Addresses ••••••
Default Addresses • • •••••••
Common Mistakes In Addressing •

Substitute Request ••••••••••
The Ampersand (&) •.•••••••

Deleting Lines • • • • • • • • • • • •
Adding More Text • • • • • • • • •
Replacing Lines of Text • • • • •
Inserting Text •• • • • • . .
Printing, Listing, and Deleting

Segments •••• • • • • • •

Sample Terminal Session • •• • • • •
Sample Invocation •• • • • • • •
Editing Example With Both Input~ And
Edit Requests ••••••••••••

Helpful Hints for New qedx Users • • •

Advanced Edit Requests • v •• 5 ••••

Extended Edit Requests • • • • • • • •
How To Execute a Multics Command

From Inside qedx • • • • • • • • •
e (execute) request ••••

Global Printing, Deleting, And
Printing Line Numbers •• " ••

g (global) request •••••
v (exclude) request ••• • ••

Buffer Requests • • • • • • • • • • •
Creating and Changing Buffers • • •

b(Name) request ••••••••
Movipg Blocks Of Lines (Cut And

Paste) • • • • • • • • • • • • • •
m{Name) request ••••••••

How To Check The Status Of Your
Buffers • • • • • • • • • • •

x (status) request •••••••
Repositioning The Pointer.

n (nothing) request ••.••••
Annotating (Comment) Macros ••••

" (comment) request . .
Special Escape Sequences • • • • • • •
Use of Buffers for Moving Text • • • •

v

Page

3-8

3-9

3-10
3-13
3-14
3-14
3-15
3-15
3-18
3-18
3-19
3-20
3-22

3-22

4-1
4-1

4-5
4-6

5-2

5-2
5-2

5-4
5-4
5-5
5-7
5-8
5-8

5-8
5-8

5-9
5-9
5-10
5-10
5-10
5-10
5-11
5-12

CG40-01

Ann~nniY A •• s:- s:- - • - - - --

Appendix B

Appendix C

Appendix D

Appendix E

Index

Figure 1-1.

CONTENTS (cont)

Repeated Editor Sequences
Editor Macros •••••••••
Initialization of Macros •••

Additional Arguments ••••
Notes on Macro Use

Glossary

. .

qedx Command
qedx, qx •

.
Summary of Addressing Conventions . .
Request Descriptions

a (append) • • • • • • • • • •
c (change) • • • • • • • • ••
i (insert) • • •• • •••••
r (read) • • • • • • • • • • •
p (print) = = = : =
= (print line number) ••••••
d (delete) ••••••
s (substitute) • • ••
w (write). • • • • • • • • • • •
q (quit) •••••••••
e (execute) •••••••••••
g (global) • • ••••••••
v (exclude) ••••••••• ••
b (change buffer) •••••• • •
m (move) •••••••••••
x (buffer status) •••••
n (nothing) ••• ••
" (comment) 0 • 0 = 0 0 = = •

qedx Error Messages •
.

ILLUSTRATIONS

Modes of qedx • • • • • •

vi

Page

5-15
5-16
5-19
5-22
5-23

A-l

B-1
B-1

C-1

D-1
D-3
D-6
D-7
D-9
D-12
D-16
D-18
D-2Q
D-23
D-25
D-26
D-27
D-29
D-31
D-32
D-33
D-34
D-36

E-1

i-1

1-7

CG40-01

SECTION 1

INTRODUCTION

This section briefly describes preliminary actions such as
logging in, logging out, and correcting errors as you type; these
are fully described in the New Users' Introduction-Part I. The
procedures for entering and exiting the qedx editor are also
explained here, along with a brief introduction to qedx editing
requests.

GETTING STARTED

. The first thing to do is establish a connection with the
computer; this is called 109ging in. To log in you must be
registered on Multics as a member of a certain project. You are
given a User id (user identification) which consists of a
Person_id (name) and project_id (project name). For example,
Mary Smith, working in the sales department, may be given the
following User_id: .

Smith.Sales

This User id belongs to Mary alone; no one else can use it
because Mary also has a password, which along with her User id
allows her to use Multics. The password is a secret between Mary
and the system ("the system" is the Multics computer system).

Logging In To Multics

The procedure for logging in is explained in depth in the
New Users' Introduction-Part I. To briefly summarize the method
for establishing a connection between your terminal and Multics,
you turn power on for the terminal, dial the appropriate
telephone number, and when you hear a beep signal, either press a
button or place the telephone receiver in the modem and press the
linefeed key. (This method is employed unless your terminal is
directly connected. to Multics, in which case you do not need to
dial a phone number.)

1-1 CG40-01

When a connection has been established, a header like this
is printed by Multics on the terminal:

Multics 8.0: pea, Phoenix, Az.
Load = 26.0 out of 100.0 units: users = 26

At this point, you issue the login command and your
Person_id, separated by a blank. Multics commands are words that
you type to tell the system an action to take. In this case
specify that you want to log in.

login Smith
Password:

NOTE: In examples throughout this document an exclamation
mark (!) precedes text typed by you, to
differentiate between Multics-generated and
user-typed lines. You should not actually begin your
text with an exclamation mark. Also, a "carriage
return~--moving the cursor to the first column of the
next line (called a "newline" on Multics) is implied
at the end of every user-typed line. The carriage
return conceptually sends the typed line to the
computer. See the glossary under newline for
details.

Multics then requests your password. Depending on your
terminal, the prin±ing of the password is either suppressed
(i.e., nothing prints out when you type it) or hidden in a string
of cover-up characters typed by the system. If you make an error
during the log-in procedure, the system informs you of it and
asks you to try again:

(Mary mistyped her password here)
Incorrect password supplied.
Please try again or type "help" for instructions.
login Smith
Password: .
(Mary correctly typed her password here)

After typing your password successfully, the system responds
with information regarding your last log in:

Smith Sales logged in 10/19/82 0937.5 mst Tue from ASCII
terminal "234".

Last login 10/18/82 1359.8 mst Mon from ASCII terminal
"234".

1-2 CG40-01

Once the system has logged you in it prints a ready message.
This may take a little time. This message is printed to indicate
that Multics is at command level and ready to receive a command.
The ready message consists of the letter "r" followed by the time
of day and three numbers that reflect system resource usage. For
more information about the ready message, refer to the
description of the ready command in the MPM Commands.

r 937 1.314 1.332 30

The complete log-in sequence for Mary Smith is:

login Smith
Password:
(Mary types her password here)
Smith Sales logged in 10/19/82 0937.5 mst Tue

from ASCII terminal "234".
Last login 10/18/82 1359.8 mst Mon from ASCII terminal "234".
r 937 1.314 1.332 30

Logging Out

To break the connection between the terminal and Multics,
issue the logout command. The system responds by printing your
identification, the date and time of the log out, and the total
CPU time and memory units used:

logout
Smith Sales logged out 10/19/82 1249.4 mst TUe
CPU usage 17 sec, memory usage 103.1 units.
hangup

The word "hangup" is printed by Multics to remind you to hang up
the telephone and to show you that the connection has been broken
on purpose.

Correcting Typing Errors

There are two special symbols for correcting typing errors
whether you are at Multics command level or using the editor.
They are the character~delete ("erase"j and the line-delete
("kill"). The number sign (#) is the character-delete symbol,
and the commercial at sign (@) is the line-delete symbol.

1-3 CG40-01

The character-delete symbol "erases" one previously typed
character when typed directly after the error. The line-delete
symbol "erases" every character previously typed on the line
("kills" the whole line). Examples of both symbols are given in
the login command lines below. Each line is interpreted by
Multics as "login Smith":

login SM#mith

logen ###in Smith

logen Smit@login Smith

kigum @loge#in Smith

login # Smith

Notice that several successive number signs erase an equal
number of typed characters preceding them (see the second line
above). However, a single number sign following "white space"
(any combination of spaces·and horizontal tabs) erases all the
white space (see the last line above). This white space rule
saves you the trouble of remembering how many spaces or tabs you
just typed, and reduces the number of keystrokes necessary to
remove any white space.

Note that number signs and commercial at signs do not cause
characters to be erased from the screen of a video termInal, but
Multics responds as though the characters have been erased when
you type the newline. '

THE gedx EDITOR

The Multics qedx editor is used by word processing
personnel, programmers and administrators to enter data into the

* computer system and make corrections or updates to that data.
The qedx editor is used by people in a wide variety of jobs, for
many different kinds of tasks, but they all share in common the
need for (1) creation of a document (letter, memo, program), and
(2) retention of that document for updating or correcting errors.

The name of the editor, qedx, is also a command (its short
name is qx) that you type when you want Multics to "turn on" or
invoke the editor. You invoke the editor to either (1) type new
text into Multics or (2) edit some already-existing text. Typing
new text into the system is often referred to in this manual as
creating text. '

1-4 CG40-01

Invoking gedx

When you type:

qedx

the result is as if someone had placed in front of you a blank
pad of paper, pencil, eraser, and file cabinet. The imaginary
blank pad is referred to by qedx as the buff~rQ Throughout this
manual there are many references to the buffer: for now, think of
the buffer as that blank paper facing you. (Remember, you must
type a carriage return after every line you type at your
terminal, or the computer dOesn't receive it.)

There is no acknowledgement (Multics prints no prompt)
stating that you are in qedxi just assume that the editor is
waiting for you to tell it to do something (see "qedx Requests"
below).

It may seem premature to introduce the method for quitting
from qe~x before describing methods of editing; however, it is
reassurIng to know ahead of time and especially helpful when
beginning to experiment with qedx.

When you type:

q

you exit (i.e., quit) the qedx editor. After you quit, the
system responds with a ready message; you are back at command
level. This is the gedx quit request (typed: q).

qx
q
r 651 0.150 0.020 4

gedx REQUESTS

INVOKE QEDX AND
EXIT IMMEDIATELY

To perform editing functions {create text, print it, change
or delete it)i qedx provides reguests~ If you think again of the
buffer as a blank piece of paper, you can see what a request
does. Requests make it possible for you to write on the blank
pad of paper, as well as erase and rewrite. Finally, you can
crumple it up and throw it away 2! place it in your file cabinet.

NOTE: Your work is always thrown away unless you ask for it
to be filed (called "writing it to a segment").

1-5 CG40-01

These actions are explained in detail in Sections. 2 and 3.
All requests are entered as lowercase letters. You can use the
erase and kill symbols mentioned above to correct typing errors
on qedx requests.

Operation Modes

INPUT REQUESTS VS. EDIT REQUESTS

There are two kinds of qedx requests: input requests and
edit requests. After issuing an input request, you are in input
mode; when not in input mode, you are in edit mode. To create
text you must be in input mode and to edit text you must be in
edit mode. However, to edit you must have pre-existing text to
edit. Enter qedx and use an input request to create new text or
enter qedx and immediately read in existing text you intend to
edit.

When entering qedx, you are automatically in edit mode. You
must take explicit action to switch from edit to input and vice
versa. The request that you issue determines your mode: an input
request switches you from edit to input mode, and an input
terminator terminates your input and switches you back to edit
mode.

1-6 CG40-01

When working in qedx, make sure you know which of the two
modes you are in. You can verify which mode you are in by typing
the input terminator (\f). If you are in input mode, you will be
switched to edit mode. If you are in edit mode, qedx prints an
error message on your terminal, and you remain in edit mode.

I
I

command level

I
I

qedx
- I

t

edit mode

input request
I

l
I input mode
J

f
I
q
I
I

I
I
J

-,

I
I

f
I
\f
I
I

Figure 1-1. Modes of qed~

~hen you are in input mode, qedx does not verify that facti
that 1S, there is no response from qedx to you. In edit mode
there is no response either; however, you can- easily verify that
you are in edit mode by issuing the input terminator. If you are
in edit mode, and type "\f", qedx responds by printing a message
indicating that the backslash is not'a valid q~dx request. If
you are in input mode and type "\f", qedx takes you out of input
mode.

1-7 CG40-01

Input Mode

Input mode allows you to enter new text from the terminal,
until you type "\f" to leave input mode: it is analogous to
writing lines of text on a page of your blank pad. Enter input
mode by typing an input request, followed by a newline character.
The lines that follow are all accepted as text, until you leave
input mode by typing the input terminator (escaping from input
mode).

Section 2 explains how to input text, as well as how to save
it.

Edit Mode

Edit mode allows you to edit existing text. You can print,
delete, add, and make substitutions on a line of text. Also, you
can perform these operations on more than one line, or on every
line of your text, with one request.

As previously mentioned, when you first enter qedx you are
in edit mode, and to edit text, you must have already created it.
In edit mode, you take the page of text from your pad and begin
to erase and rewrite, then destroy the old copy by replacing it
with the rewritten one.

Section 3 describes the edit requests used to perform the
qedx equivalents of these actions.

Reguests

In the qedx editor, input and edit modes operate according
to the descriptions of the requests listed below.

It is important to remember that the only messages qedx
prints at your terminal are error messages (see Appendix E).
When most requests are performed, nothing is printed. The best
way to acquire proficiency and familiarity with the modes and
requests of qedx is to try them.

1-8 CG40-01

Following is a
fully described in
form:

summary of basic qedx requests (which are
Sections 2 and 3). They are listed in the

x (Y)
DESCRIPTION

where X is the ~equest (what you type to perform the
operation), Y 1S what the request stands for, and
DESCRIPTION tells what the request does.

Many requests can
than the current
Section 3.

operate on more than one line, or lines other
one. See the discussion of addressing in

INPUT REQUESTS

a (append)
enters input mode and appends (adds) lines typed from
the terminal into the buffer after the current line.

c (change)
enters input mode and changes (replaces) the current
lin~ with lines typed from the terminal. .

i (insert)
enters input mode and inserts lines typed from the
terminal before the current line.

NOTE: The input terminator (\f), leaves input mode and enters
edit mode. The sequence \034 is a synonym \f. On
terminals with no backslash, use .f instead.

EDIT REQUESTS

w PATH (write)
saves your work; names the contents of the buffer PATH
and puts PATH in permanent storage.

r PATH (read)
reads (copies) the contents of the existing text named
PATH into your buffer.

p (print)
prints the contents of the line.

= (print line number)
prints the current line number.

1-9 CG40-01

s/old/new/ (substitute)
makes a change on a line; substitutes every occurrence
of "old" with "new" on a line ("old" is a regular
expression--see the discussion of regular expressi~ns
in Section 3).

d (delete)
erases the current line.

q (quit)
takes yuu out of the editor and returns to Multics
command level. Remember, your work is not saved until
you explicitly save it with the write request.

There are other requests, for
programming, described in Section 5.

1-10

advanced editing and

CG40-01

SECTION 2

ENTERING NEW TEXT

This section describes how to enter new text into a buffer
using an input request, how to leave input mode, how to save the
contents of the buffer with the write request, and the
conventions used when naming a segment.

BUFFERS

A buffer is a temporary work space--the "blank pad of paper"
previously mentioned. You can create a few lines of text in it,
or many pages: you can make changes on lines, delete them and add
more.

However, all of this text is temporary until you do
something to make it permanent. When you want to save some text
that you have created in your buffer, you write the contents of
the buffer into a segment. A segment can be compared to a
labeled "file folder" in a "filing cabinet"; it is the basic unit
of information stored on Multics. It may contain data, text, or
programs, and has a name (called its entryname). (For more
information on segments, entrynames, and permanent storage, see
the New Users' Introduction.) When you do a write request, the
temporary copy in the buffer is duplicated and given an entryname
by which you can refer to it, and is put in permanent storage.
You can now keep this segment for an indefinite period of time,
edit it (saving changes), and manipulate it in other ways (some
are listed at the end of Section 3, ~Printing, Listing, and
Deleting Segments").

2-1 CG40-01

When you call qedx and are presented with an empty buffer,
you either enter new text into this empty buffer or read an
existing segment into it. The following example shows that the
buffer is empty by using the "pH (print) request after entering
qedx. There is nothing for the request to print:

qx
p
Buffer empty

The error message "Buffer empty" is printed by qed~: the error
consists of asking qedx to print when there is nothing to print.
(Refer to Appendix E for other qedx error messages.)

CREATING TEXT

append (a, \f) request

Since the buffer is empty when you enter qedx, your first
request to qedx should be to enter new text. You can enter new
text using the append request (typed; a)~ The append request
tells qedx to append all following lines to the contents of the
buffer, until you indicate otherwise by issuing the input
terminator (typed: \f). Since the buffer is empty, any input
appended becomes the only contents of the buffer. The input text
typed on your terminal following this request may be a single
line, several lines, or an entire document. The input terminator
tells qedx that you are finished entering input and wish to
return to edit mode to issue other qedx requests.

The example below shows how text is put into the empty
buffer using the append request, then the input terminator (\f)
is typed to leave input mode and go into edit mode:

qx ENTER QEDX
a ISSUE APPEND REQUEST
The Multics text editor, qedx, TYPE IN TEXT
is a line-oriented editor.
It performs editing
functions on lines,
using requests.
\f LEAVE INPUT MODE

(INPUT TERMINATOR)

Remember that the append request
common error is to enter qedx and
attempting to input text immediately.

2-2

puts you
forget

in input
to type

--..::1- 'II. UlUUt:. 1\

an "a",

CG40-01

The example below shows what happens when a user enters qedx
and forgets to type the append (a) r~quest to begin input. As
soon as the user types a carriage return at the end of the line
of text, qedx prints an error message and the user knows that the
text has not been input. (The "pH request verifies that the
buffer is empty.) At this point the user recognizes the mistake
and types the append request to correctly enter the text, ending
the input with "\f" on the following line:

qx
This is the beginning of new text A MISTAKE-FORGOT TO qedx:
T not recognized as a request. ISSUE APPEND REQUEST
P Buffer empty.
a ISSUE APPEND REQUEST
This is the beginning of new text TYPE IN TEXT
\f LEAVE INPUT MODE

SAVING YOUR WORK

write (w) reguest

When you exit fromqedx, whatever is in your buffer is lost
if it has not been written into permanent storage (your "file
cabinet"). You can save your work by making up a name for the
segment (e.g., work) and typing this name after a write request
(typed: w):

w work WRITING OUT A BUFFER
(SAVING THE CONTENTS)

The write request is mandatory once you create something that you
want to save: if you issue the write request, your "paper" from
the blank pad which now contains your work is saved in storage
("filed"). If you neglect to write your work and exit from qedx,
your work is thrown away, never to be seen again.

You must be in edit mode to issue the write request or any
other edit request. When you leave input mode by typing "\f",
you automatically enter edit mode. If xvu are net in edit mode,
edit requests are interpreted as input to be added to the buffer.
(If this happens, you will have to delete them.) The "w" request
saves the entire contents of the buffer in a segment that has the
name that you specify. When you type the "w" request correctly,
Multics does not respond. You can assume that the text is
written in the specified segment, and continue your work.

2-3 CG40-01

*

NAMING THE SAVED SEGMENT

The entryname you give for the segment can be from one to 32
characters long. The write request is followed by a Multics
pathname. (Pathnames are fully described in the New Users'
Introduction.) You usually specify a segment by entryname, which
is a name without any greater-than or less-than characters (><).
The qedx command restricts the characters that can be used in an
entryname in a write request. The allowed characters include:

letters (uppercase and lowercase)
digits (0 to 9)
, , _,1\ + - • : {"l

The entryname cannot begin or end with a period (.) or
contain two or more consecutive periods. These restrictions are
necessary because qedx users sometimes think they are in input
mode and type lines such as:

what time is it?
(contains spaces)

wjo your cooperation ...
* (contains a slash, spaces, and three periods)

In edit mode these lines would cause write operations, if the
entryname restrictions did not prevent this. If segments were
written, their names (e.g., "hat time is it?") would cause
problems when you tried to use them. Characters like the
asterisk (*), for instance, have special meanings: a name
containing an asterisk invokes the Multics star convention
(described in the New Users' Introduction).

It is not necessary to leave a space between the "w" (write)
and the intended name; however, the space is recommended to avoid
confusion and inadvertent naming. For example, if you type:

what

while you are in edit mode, you write the contents of your buffer
into a segment named "hat" because the "w" is interpreted as a

* writ~ request rather than the initial letter of the name. If you
type:

w what

in edit mode, you write the contents of your buffer into a
segment named "what".

2-4 CG40-01

In summary, the segment-naming restrictions are intended as
protection against accidental loss of data by writing unknowingly
into a strange segment that mysteriously appears in your
directory (see the discussion of listing segments in Section 3).

The following example shows text input as explained
previously, taken a step further with the "w h request to name and
permanently store the contents of the buffer in a segment. In
terms of the conceptual blank pad of paper, the example shows how
you write text on that paper and then file the paper in a folder
under the heading "made_up_name h in your filing cabinet.

qx
a
The Multics .text editor, qedx,
is a line-oriented editor.
It performs editing
functions on lines,
using requests.
\f
w made_up_name

TYPING IN TEXT

SAVING IT

Now you have a segment called hmade_up_name", which is a
permanent copy of the buffer text.

The following example shows a case where you have entered
~om~ tpyt. writt~n it to ~ ~pompnt. ~nn vnll nnw w~nr rn ~nn mnr~ _______ _, .. w ______ ~ ______ -;:; ,_ _, _co ... _ ~ _ =,,~ .,,~.,.... \W,.,. __ ••• "W"_

lines to it. Switching from input mode to edit mode (which is
necessary to store the text), back to input to add more lines,
and finally back to edit to save the new lines is a common
sequence of operations. You don't have to exit qedx when you
have finished input and enter qedx again in order to edit.

qx
a
The Multics text editor, qedx,
is a line-oriented editor.
\f
w new_name
a
It performs editing
functions on lines,
using requests.
\f
w

2-5

ADDING MORE TEXT

DEFAULT PATHNAME (ASSUMED)

CG40-01

The last line in the previous example, a "w" alone on a line,
shows that once you have named the segment ("window name"), qedx
remembers that name and assumes it for later write requests when
no name is specified. The name is forgotten when you exit from
qedx.

It is a good idea to issue many "w" requests during a long
qedx session, in case there is trouble with the telephone line or
terminal and you become accidentally cut off. If this happens,
changes made after your last "w" can be lost.

Input and editing are performed not on the saved segment but
on a copy of a segment in the buffer. The permanent segment is
therefore protected against inadvertent destruction, since the

* work you do is on a "duplicate".

There are two other input requests: the change request
(typed: c) and the insert request (typed: i). These requests
are discussed in Section 3 since they are particularly useful for
manipulating existing text (replacing and inserting linesj. Use
the append request when creating new text. The change and insert
requests are more practical for handling existing text.

EXITING FROM qedx

quit (9) request

Instructions for exiting the editor are repeated here to
remind you that if you are creating work to be saved, you must
write it to a segment prior to exiting or it will not be saved.
Remember that to save your latest changes, you must issue a final
"w" request before quitting. After you quit, Multics responds
with a ready message; you are back at command level.

qx
a
A few lines of text
\f
w lines
q
r 651 0.150 0.020 4 COMMAND LEVEL

2-6 CG40-01

In the previous example, the text has been saved: it is contained
in a segment named lines, and can be edited at a later time (see
Section 3).

WARNING: qedx does not automatically save your work: to
save it you must use the write request.

If you type a "q" and nothing happens, you are almost surely
in input mode. The "q" has probably been entered into the
buffer: preceding lines may also be part of the text--that is,
entered unintentionally. This type of mistake is also common to
new users. Remember, if you type any edit request, expecting a
response and receiving none, you are probably in input mode.
Type "\f", then "p" to print your current line. You may have to
delete some edit requests that have become part of the buffer
(see Section 3).

Assume in the example below that as you begin to use qedx,
you make the common mistake of forgetting to end your input with
"\f". You add text, and then type" a "q" while in input mode.
When the "q" does not take effect (i.e., you do not receive a
ready message indicating that you are at command level), you
recognize the fact that you have neglected to leave input mode.
Type a "\f", delete the lines mistakenly added to the buffer,
write the correction, and then type another quit request:

a
and more text and I'm done.
'w lines
q
\f
-1 P
w lines
d
p
q
d
w lines
q
r 850 0.377 0.426 36 .

2-7

MiSTAKE--YOU WAIT A LONG TIME
AND RECEIVE NO READY MESSAGE

END INPUT
LOCATE AND DELETE MISTAKES

(DESCRIBED IN SECTION 3)

SAVE
QUIT

CG40-01

SECTION 3

EDITING AN EXISTING DOCUMENT

When you enter qedx and issue the read request (r
name_of_your_segment), you are asking for an already existing
segment to be placed in your buffer. If you have previously
created a segment named my_seg, you ask for qedx to read it this
way:

qedx
r my_seg

and qedx makes a copy of my_seg, obtained from the stored segment
(which has been "filed" and remains intact), and puts the copy in
your buffer. When you issue the read request above, you remain
in edit mode, and the copy of my seg is at your disposal.
Nothing prints out, however, until you request it. Now that the
text is in your buffer, you can change it--make corrections, add
lines, delete lines, edit it any way you wish. When you have
finished editing the text, you must issue a final write request
if you want your work to be saved. When you type a "w", the
contents of your buffer destroy and replace the contents of the
stored segment my seg. For this write request, it is not
necessary to specIfy "my_seg"; you merely type "w" and qedx
remembers the name from the read request above, writing the
changes into that segment.

LOCATING AND PRINTING LINES

The following discussion describes the different methods of
finding the lines that are to be edited--"locating lines."

3-1 CG40-01

Current Line And Pointer

Two important concepts are the current line and the pointer.
Briefly, the last line edited or input is the current line. If
you input five lines of text, then type "\f" (reverting to edit
mode), the fifth line is the current line. The pointer is an
imaginary one that indicates the current line. As you edit from
line to line the position of the pointer changes.

Going forward in tne butter means moving toward the last
line in the buffer; going backward means going toward line 1.

In the example below, the pointer is on the fifth line of
the text. If you correct a mistake on the third line, the
pointer moves to that line, and the third line becomes the
current line.

Printing The Current Line

TO print the current line, there IS a special character
recognized by qedx, the period (typed: .). When you use the
period as an edit request, qedx prints the line you are currently
working on:

qx
a
first line
second line
third line
fourth line
fifth line
\f . PRINT CURRENT LINE
fifth line

After you read a segment into your buffer, the current line
(before you begin to edit) is the last line in the buffer. This
is because that line is the one that qedx worked on last (copied
into the buffer).

ADDRESSES

The qedx editor is called a
requests operate on lines of text.
an address. soecifvinq the line or
requested operation. -

3-2

line-oriented editor since its
Most requests are preceded by
lines on which to perform the

CG40-01

There are three ways to address a line or set of lines:

1. By absolute line number (e.g., 1, 3, 6)

2. By relative line number (e.g., -2, +5, +10)

3. By context (e.g., /The editor/ addresses a
containing the character string "The editor")

line

For example, to print the first line of the buffer, you
specify 1 as the address for the print request: to print lines
one through five you specify lines 1,5 (this is a compound
address, explained in detail later) as follows (assume the buffer
contents are as shown above):

Ip
first line
1,Sp
first line
second line
third line
fourth line
fifth line

PRINTING A RANGE

Methods of addressing are described below; see also Appendix A,
which is a comprehensive summary of qedx addressing conventions.

Absolute Line Number

Each line of text in the buffer is given an-implicit line
number by qedx. That is, each line is invisibly numbered; as
addition and deletion of lines is done, the lines are invisibly
renumbered by qedx, and kept sequentially in order. The text:

first line
second line
third line

is perceived by qedx as:

1
2
3

&..: ,: -...... ,,!:»"" ut:

second line
third line

3-3 CG40-01

*

Therefore, if you know the line number of a line, you can address
it by its absolute line number. (These line numbers are NOT
printed at your terminal alongside each line.) Bear in mind that
line numbers change as lines are added or deleted. If you add or
delete lines and then attempt to address using "old" line numbers
you may get confused since the line numbers changed when you
altered the contents of the buffer.

Tne following example shows
subsequent renumbering of the lines

a line being added, and the
in the buffer by qedx:

2a
second-and-half-line
\f

ADDING A LINE

The lines of text in the buffer are now perceived as:

1 first line
2 second line
3 second-and-half-line
4 third line

QEDX
INVISIBLY
RENUMBERS

* You can also edit the text from th~ "bottom up" (to ensure
that changes of line numbers do not affect you). Assume that
your buffer contains ten lines, and you know that you need to

I edit lines number 2, 4, and 8. You can begin editing at line 8,
I even add 20 lines after it, but when you go to line 4 to edit it,
I it is still line 4 because the alterations were made to the text
* after this line.

PRINTING A SINGLE LINE

To print a single line, type the address (absolute,
relative, or by context) of the line. The pointer moves to that
line and prints it. This is the special case of the print
request: qedx locates the line you specify and prints it even
though you did not type a "p".

The following example shows the use of an absolute line
number address: as the line addressed is printed, the current
line pointer moves to the specified line. (The text in this
example will be assumed to be in the buffer for the rest of the
examples on addressing unless otherwise noted.)

3-4 CG40-01

Assume the buffer contains:

The Multics text editor, qedx,
is a line-oriented editor.
It performs editing
functions on lines,
using requests.

You want qedx to print the third line of the buffer:

3 PRINT LINE 3
It performs editing

The "p" request (in the case of a one-line address) is assumed;
any time you type a one-line address, qedx prints the contents of
the line addressed unless you request otherwise.

PRINTING MORE THAN ONE LINE

You may also specify a range of addresses on which to
perform a request. This range consists of the address ~f the
first line, a comma, and the address of the last line. The
request is then performed on the first line through the last line
of the range; i.e., including the lines between.

For example, to print the first, second,
frnm the example above; type the address range
the print request:

and third lines
1~3 followed by

1,3p PRINT LINES 1 THROUGH 3
The Multics text editor, qedx,
is a line-oriented editor.
It performs editing

Notice that the print request (p) is included in the example
above. An entire address range is not printed by default if no
print request is specified. So, to print a block of text, use a *
range followed by apR; to print only one line, use the address
designating a single line.

3-5 CG40-01

As shown in the example below, to print a block of lines you
must specify the "p", or qedx ignores the first part of the range
and performs the request on the second part (after the comma):

1,3
It performs editing

Relative Line Number

Addressing by relative line number specifies a line by
describing its position in the buffer in relation to the current
line. In other words, you may not know the absolute line number
of the text in the buffer, but want to address a line that you
know to be . two lines above the current line, so you use its
relative address (-2). You can also use a relative address to
specify an address range.

CURRENT LINE

As previously m:nFioned, the period (.) is a spec~~l
address that means "tne current lIne." When you type this
address without specifying a request, it prints the current line
(see the examples below).

PRINT CURRENT LINE NUMBER (=)

In qedx, the egual sign (=) is a request that prints the
line number (but not the contents) of the current line:

3
/performs/

.2
using requests.
! =
5

LAST LINE <$)

PRINT LINE NUMBER OF THE NEXT LINE
CONTAINING "performs"

PRINT THE LINE THAT IS TWO LINES
DOWN FROM IT

PRINT LINE NUMBER OF CURRENT LINE

Another special address is the dollar sign <$). When used
to address a line in the buffer (with no accompanying request) it
means go to the last line in the buffer (you needn't know its
line number) and print the contents of that line:

$
using requests.

3-6 CG40-01

In the following example, the first line you type is the
period to print your current line. Then you use a relative line
number address to request qedx to print the line located two
lines before your current line. Next, you type the relative line
number for the following third line. After you type each
request, the new current line is printed:

PRINT CURRENT LINE
It performs editing
-2
The Multics text editor, qedx,
+3
functions on lines,

BACK TWO

FORWARD THREE

When addressing by relative line number, a minus sign (-)
followed by any number tells qedx to move backward in the buffer
that number of lines; a plus sign (+) followed by a number means
move forward in the buffer that number of lines. Relative
addresses assume the current line to be the starting point.
(Appendix C contains more details about different forms of
address.)

When a relative line number address is used, the current
line is not counted as one of the lines in that address. In the
above example, when -2 is typed, the pointer moves to the second
line above the current line.

You can also soecifv "+3" bv tvoina ".3": many users orefer
this method ~i~~e-i~~y ~on't hav~ i~ u;e the"shifi- key f~r the
plus sign •

• 3p PRINT THE THIRD LINE BELOW
It performs editing THE CURRENT LINE

The next example prints a range of lines with relative line
numbers:

1S a line-oriented editor.
-l,+lp
The Multics text editor, qedx,
is a line-oriented editor.
It performs editing

3-7

PRINTS PRECEDING,
CURRENT, AND
FOLLOWING LINE

CG40-01

PRINTING THE ENTIRE CONTENTS OF YOUR BUFFER

To print the first line through the last line of the buffer,
type:

l,$p
The Multics text editor, qedx,
is a line-oriented editor.
It performs editing
functions on lines,
using requests.

NOTE: If you have issued this request, and then decide that
you do not want to see the whole buffer, you can
interrupt printing with the QUIT key and then get
back to qedx with the program interrupt (pi) command
(see below). -

INTERRUPTING A LENGTHY PRINT REQUEST

When asking for the contents of the buffer to be printed
(e.g., first through last lines),. occasionally you decide that
you don't want to wait for all the lines to be printed. You can
interrupt processing of your request by pressing the QUIT key
(sometimes labeled ATTN, BRK, or INTERRUPT). This action takes
you out of qedx and back to command level; Multics prints QUIT
and a ready message containing the word "level" and additional
information that you needn't be concerned with. Type the Multics
command "program interrupt" (pi) to reenter qedx. Your print
request has been aborted; now you are in edit mode and can issue
another request. (At this point, the current line is set to the
last line addressed in your print request.)

Assume the contents of the buffer to be the same as shown
above.

l,$p
The Multics text editor, qedx,
is ori
QUIT
r 651 00291 0.218 24 level 2, 14
pi

using requests

3-8

USER PRESSED THE INTERRUPT
KEY HERE

\

CG4Q-Ol

Context Addressing .(Regular Expressions)

To use this form of addressing, specify the desired line by
typing a set of characters, words, etc., (a character string)
within a pair of slashes (/). At the line after the current
line, qedx begins a forward search for the specified string. If
the string is not found after searching through the last line in
the buffer, qedx returns to the top of the buffer (line 1) and
searches down to the current line. If the string is still not
found, qedx prints a message indicating so.

The character string (regular expression) is searched for
exactly as you type it. If the search fails, make sure you have
typed it exactly, character-for-character as it appears in your
text. Notice that you can use a context address to specify an
address range. Also shown in the example below is a comeound
address; in this case a regular expression is combined wlth a
relative line number to address the line immediately preceding
the line that contains "lines". Compound addresses can contain
any combination of different forms of address (for more
information, see "Compound Addresses" below).

/sixth/
Search failed.
/editing/
It performs editing
/editor, qedx,/
The Multics text editor, qedx,
/editing/,/using/p
It performs editing
functions on lines,
using requests.
/lines/-1
It performs editing

1,/It/p
The Multics text editor, qedx,
is a line-oriented editor.
It performs editing
+l,/us/ p
functions on lines,
using requests.
jMultics/,/Multics/+1p
The Multics text editor, qedx,
is a line-oriented editor.

3-9

SEARCH FOR A STRING

COMPOUND ADDRESS

PRINT LINE 1 THROUGH LINE I
CONTAINING "It"

PRINT NEXT LINE THROUGH
LINE CONTAINING "us"

PRINT LINE CONTAINING
"Multics" THROUGH THE
LINE FOLLOWING IT

CG40-01

In its simplest form, a regular expression is one or more
characters delimited by the right slant character <I). For
example, all of the following are valid regular expressions:

lonel
lone orl
IForl
IFI
Icharacters,1
Iters,1
1:1

A regular expression search begins to search for that
regular expression at the line following the current line, goes
to the bottom of the buffer, then wraps to the top and goes down
to the current line. After starting the search it stops at the
first occurrence of the regular expression:

.
using requests.
Ifunctions/
functions on lines.

SEARCH STARTS FROM HERE,
GOES TO TOP AND DO~~~ TO
LINE CONTAINING "functions"

Notice that spaces and punctuation characters can be part of a
regular expression •. However, certain characters have special
meanings when used in regular expressions.

SPECIAL CHARACTERS IN REGULAR EXPRESSIONS

You can use one or more of the special characters in a
regular expression to uniquely identify a particular character
string with a minimum of typing. These special characters have
no distinctive meaning to qedx when you are in input mode; they
are only recognized in regular expressions while in edit mode.
The characters with special meanings are:

/ delimits a regular expression (commonly referred to as
"slash")

* means any number (including none) of the preceding
character (asterisk, commonly referred to in Multics as
"star").

matches any single character. Period
differently from the address "~"; which
current line.

3-10

is interpreted
refers to the

CG40-01

as the first character in a regular expression, means
the (imaginary) "character" preceding the first
character on a line (circumflex, commonly referred to
in Multics as "not symbol"). It is used to match lines
beginning with a specified string.

$ as the last character in a regular expression, means
the (imaginary) "character" following the last
character on a line. Dollar sign is interpreted
differently form the address "$", which refers to the
last line.

Below are some examples that show how these characters can
be used. Create some text in your buffer and try a few of these
combinations.

/a/

label

lab*c/

lin •• tol

lin.*tol

I"abc/

labc$1

l"abc.*def$1

Matches the letter "a" anywhere on a line.

Matches the string "abc" anywhere on a
line.

Matches "ac", "abc", "abbe", "abbbc" , etc.
anywhere on a line.

Matches "in" followed by any two characters
followed by "to" anywhere on a line.

Matches "in" followed by any number of any
characters (including none) followed by
"to" anywhere on a line.

Matches a line beginning with "abc".

Matches a line ending with "abc".

Matches a line beginning with
ending with "def" and having
(including nothing) in between.

Matches any line.

"abc" and
anything

Matches an empty line (a line containing
only a newline character).

3-11 CG40-01

Following are
searches with some
established above).

some examples that show regular expression
special characters (searching the text

The example below shows a search for the characters ned,"
followed by any number of characters, followed by the characters
"or":

/ed.*orj FIND THE STRING STARTING ned"
The Multics text editor, qedx, AND ENDING "or"

The regular expression below defines a line that begins with an
"f":

/"f/ FIND THE LINE BEGINNING WITH "f"
functions on lines,

The next one searches for a line beginning with "un:

/"t;/
uSlng requests.

The following regular expression searches for the next line
whose last character is a comma:

/,$/
The Multics text editor, qedx,

The next one searches for a line containing an "M", followed
by any number of any characters, followed by a comma:

/M.*,/
The Multics text editor, qedx,

It is possible to use these characters without their special
meaning; simply type the "\c" escape sequence before the special
character. On terminals with no backslash (\) character, type ~c
instead.

3-12 CG40-01

For example, to match the string "1*" appearing anywhere on
a line, the regular expression is:

I\c/\c*/

The first slash is the delimiter and the backslash c following it
tells qedx to interpret the following slash literally (as part of
the regular expression--not a special character). Next, another
backslash c indicates the following character is to be part of
the regular expression, then the asterisk, then the closing slash
(delimiter). If you had typed the string "//*/" in an attempt to
search for "/*", qedx would have printed back an error message.

One more special character is the ampersand (&). It only
has a special meaning in a substitute request (see below) where
it stands for the contents of the regular expression.

NULL REGULAR EXPRESSION

The qedx editor remembers the last regular expression used.
You can reuse the last regular expression typed by using a null
regular expression (i.e., 1/). This feature saves a lot of
typing time during editing, especially if the regular expression
is long or difficult to type. For example, the following
expression matches a line containing "editor":

NOw, given a null regular expression, ~edx searches for the next
occurrence of the same string:

1/

Next, search using the dollar sign as a special character to
indicate the end of the line:

1,$1
The Multics text editor, qedx,

To search for the next line ending .with a comma, type:

II
functions on lines,

3-13 CG40-01

Compound Addresses

The three forms of addressing can be combined to form
compound addresses, for example by combining a regular expression
and a relative address:

/qedx/+l
is a line-oriented editor.

The above example locates the line containing "qedx", then moves
the pointer to the next line and prints that line.

! • , +3p
is a line-oriented editor.
It performs editing
functions on lines,
using requests.

In the above example a period
address range, requesting qedx to
the next three lines.

(current line) is part of the
print the current line through

For more information on compound addresses, see Appendix C.

Default Addresses

For most qedx requests, if no address is specified, the
request is assumed to apply to the address of the current line.
For example, the print request with no address means print the
current. line.

When you type "l,$p" and print the first through the last
lines in your buffer, the pointer stops at the last line, so the
last line is the current line. If you then type an "a" to append
to the buffer contents, the input lines you type are input after
the last line, although you did not specify an address:

l,$p
The Multics text editor, qedx,
is a line-oriented editor.
It performs editing
functions on lines,
using requests.
a
Now this becomes the line
\f
"

3-14 CG40-0l

This assumed address is called a default address. When Multics
assumes some information that you do not specify, that
information is referred to as default information. The default
address for the "an request is the current line.

Common Mistakes In Addressing

Shown below are some common errors made in specifying
addresses; the line numbers specified are higher than any in the
buffer, or beyond the end of the buffer--nonexistent. (Assume
that the buffer contains four lines and the curr~nt line is line
2.)

-4
Address out of buffer (negative address).

The address specified asks for lines to be printed that do not
exist (they would be before line 1 in the buffer).

-4,-9p
Address wrap-around.

The print request above asks qedx to print lines from the bottom
up, which qedx does"not do. Lines are printed only from the top

,down.

+1,+5p
Address out of buffer (too big).

The request above asks qedx to print lines that would be beyond
the last line in the buffer.

SUBSTITUTE REQUEST

The substitute request (typed:
s/substitute this/with this/) substitutes for any number of
characters on a line a new set of characters. You can issue more
than one substitute request on a line. Specify what is to be
changed, and what to change it to. For example, assume the line
is:

just for now

and you want to change it to:

Just for Today

3-15 CG40-01

To do this, type:

s/j/J/p
Just for now
s/now/Today/p
Just for Today

or equivalently:

s/j/J/s/now/Today/p
Just for Today

In the line:

s/old/new/

the string "old" is called the search string, and the string
"new" is called the substitution string.

The slashes are called delimiters, and can be any character
as long as that character does not appear within either the
search or substitution string (see example below). The example
above shows that any number of substitute requests appear on one
line. Also, new users are advised to combine substitution
requests with print requests, to verify changes. Substitutions
can be made on blocks of text, using address ranges as described
above.

The substitute request performs the substitution for every
occurrence of the specified string in the line (or lines), so be
sure that the substitution you are making is correct:

The Multics text editor, qedx,
s/x/X/p
The Multics teXt editor, qedX,
s/ed/ED/p
The Multics teXt EDitor, qEDX,

As mentioned above, the delimiter symbol need not be a
slash:

s/the/yyy/p
yyy Multics teXt EDitor, qEDX,
szyyyzThez p
The Multics teXt EDitor, qEDX,

3-16 CG40-01

You may get a message from
attempted substitution has failed.
typed the search string exactly as
the following example) •

.
The Multics teXt EDitor, qEDX,
s/QEDX/qedx/p
Substitution failed.
s/ED/ed/s/X/x/p
The Multics text editor, qedx,

qedx indicating that the
Check to make sure you have

it appears in the text (as in

Another reason that the substitution can fail is that you ask for
a substitution on a line that does not contain the search string.
You can try typing a "p", verifying the text on your current
line.

s/performs/does/p
Substitution failed.
p
The Multics text editor, qedx,
+2
It performs editing
s/performs/does/p
It does editing

Substitution is always performed from left to right; if
there is more than one match on a line, the first (leftmost)
match is substituted, then the next one to the right and so on.
For example, in the following example, the first character on the
line is a match for the string: the substitution is performed on
it, then the substitution is performed on the next match on the
line, etc.: that is, the result of substitution is not rescanned
for matches:

aaa
s/a/aaa/p
aaaaaaaaa

Match strings do not overlap, i.e., qedx takes the first,
shortest matching string to perform the substitution on:

aaa
s/aa/b/p
ba

3-17 CG40-01

The Ampersand ~

The & (ampersand) character, when used in the substitution
string, "duplicates" the string that matched the regular
expression (search string).

For example:

.
It does editing
s/It/(&)/p
(It) does editing
s/".*$/&?&/p
(It) does editing?(It)

DELETING LINES

REPLACE "It" WITH "(It)"

REPLACE THE WHOLE LINE
does editing WITH ITSELF, QUESTION

MARK, AND ITSELF AGAIN

The delete request (typed: d) deletes a line or lines of
text from the buffer.

For example, assume the buffer contains the three lines
shown, and the current line is line one. To delete line three in
the buffer, type:

first line
second line
third line
3d

and the third line is deleted (you could also use "+2d" or
"/third/d").

When you delete a line, the current line becomes the one
immediately following the deleted line. In the example below,
the first and second lines are deleted and then the current line
is printed:

that

.1,2d
P
third line

To delete
c:n,:.,..ifi,:.~ -1:'-------
1,$d
P

every line in the buffer, use
the first through the last line:

Buffer empty.

3-18 CG40-01

ADDING MORE TEXT ---- ----
Lines of text are added to

request, as described in Section
existing segment, after reading the
type an "a":

the buffer with the append
2. When adding text to an
segment into the buffer, you

qx
r text
l,$p
The Multics text editor, qedx,
It performs editing
functions on lines
using requests.
a
The requests are fully described in
this manual.
\f
w
l,$p
The Multics text editor, qedx,
is a line-oriented editor.
is a line-oriented editor.
It performs editing
functions on lines,
using requests.
The requests are fully described in
this manual.

Most requests are preceded by an address, so qedx knows
where to take the desired action as described earlier in this
section. The example above shows that qedx assumes an address
with the request (in this case, the append request) if you do not
supply one.

When you type the append request as above, the lines
following it are added after the current line (in this case, the
last line in the buffer), even though you did not specify an
address; qedx uses the default address. A read request
automatically sets the current line to the 'last line in the
buffer. The current line is the default of the append request.
Therefore, an aooend with no address typed after you read
something-into the-buffer appends text at the end.

3-19 CG40-01

By specifying an address, you designate exactly where the
lines are to be added (to add them somewhere other than at the
end):

/line-/
is a line-oriented editor.
=
2
.a
The three methods of
locating lines
addressing.
\f
w
2,6p
is a line-oriented editor.
The three methods of
locating lines are called
addressing.
It performs editing

Every line in the buffer following line 2 is renumbered after the
append request, since qedx keeps track of the new lines of text
being added (see the beginning of this section).

REPLACING LINES OF TEXT -- ----
Replace a line or lines of text use the change request

(typed: c). The change request, also an input request, must be
terminated with the "\f" (just like the append request). Locate
the line or lines that you wish to replace, type "c", then the
replacement text followed by "\f". The change request is like
deleting the addressed lines and replacing them with new lines.

3-20 CG40-01

In the following example, one line of text is repl~ced with
three new lines:

1, $P
Input and editing operations are performed
in a temporary workspace called a buffer.
in a temporary workspace called a buffer.
3c
When you edit an already existing segment,
a copy of that segment
is placed in the buffer.
\f
w
1 , $p
Input and editing operations are performed
in a temporary workspace called a
buffer. When you edit an already existing
segment, a copy of that segment is
placed in the buffer.

Below is an example that shows three lines of text being replaced
with one:

1,$p
Input and editing operations are performed
in a temporary workspace called a buffer.
When you edit an already existing segment,
a CODY of that seament
is piaced in a buffer.
3,5c
When you issue the write request (w),
\f
w
1,$p
Input and editing operations are performed
in a temporary workspace called a buffer.
When you issue the write request (w),

The change request is very powerful and deletes text with no way
to get it back. Verify that you are on the l~ne you want to
change before using the change request.

3-21 CG40-01

INSERTING TEXT

The insert request (typed: i) inserts text (any number of
lines) into the buffer before the line you specify. This request
is also terminated by "\f". Give the address of the line before
the text which is to be inserted, followed by the insert request.
If you want to insert text above the current line, you do not
need to specify an address--the current line is the default
address (see the example below).

In the following example, the insert
no address specified; qedx assumes the
case, the last line) as the address:

request is shown with
current line (in this

l,$p
Input and editing operations are performed
When you edit an already existing segment,
i
in a temporary workspace called a buffer.
\f
w
l,$p
Input and editing workspace called a buffer.
in a temporary workspace called a buffer.
When you edit an already existing segment,

You can insert any number of lines in this manner: always
end your insertions with the "\f" input terminator (just like the
append request).

PRINTING, LISTING, AND DELETING SEGMENTS

After text segments have been created using the qedx write
request, use Multics commands to list, print, delete and
manipulate them. These commands are not part of qedx; they are
issued at command level (after a ready message). (The list,
print, dprint, and delete commands are fully described in the
Commands.)

3-22 CG40-01

The directory in which you create your segments is usually
your working directory and it contains a list of those segments.
To see the list, use the list command:

r 1629 0.023 0.000 0

list

Segments = 2, Lengths = 2.

r w 1 example
r w 1 memo

r 1629 0.159 0.350 17

NOTE: The"r w" is access information and "Lengths" refers
to the combined lengths of the segments. These
topics are beyond the scope of this manual; they are
fully described in the New Users' Introduction.

The list command prints a list of every segment in the
directory along with its length and other information.

The following example asks for information pertaining to a
particular segment named memo. Multics responds with a list
consisting only of that segment called memo:

list memo

Segments = 1, Lengths = 1.

r w 1 memo

r 1629 0.025 0.000 0

3-23 CG40-01

Below is an example that shows the print command. The name
of a segment is given with the command, telling the system what
segment to print. Multics prints a banner that tells you the
name of the segment, the date, and the time:

r 1645 0.123 0.930 30

print example

example 03/26/79 1645.1 mst Mon

The Multics text editor, qedx,
is a line-oriented editor.
It performs editing
functions on lines,
using requests.

r 1645 0.032 0.260 4

To print segments too large to print at your terminal, use
the dprint command. This command performs an action very similar
to the print command--the only difference is that instead of
printing the file out at your terminal, dprint prints it on a
high~speed printer. An acknowledgement of your dprint command is
printed on the terminal.

r 655 0.043 0.264 9

dprint example
1 request signalled, 1 already in printer queue 3
r 656 0.527 4.970 70

The dprint command above prints the segment "example" on the
high-speed printer; the dprint command puts your Person id and
Project id as the heading on the printout. To specify-a more
complete destination, use the -destination and -header control
arguments described for dprint in the Commands.

3-24 CG40-01

Below, the delete command is used to delete the segment
named "example". Then the list command is used to again list the
segments in that directory, verifying that the segment named
"text" has been deleted:

delete example
r 1645 0.119 0.142 2

list

Segments = 1, Lengths = 1.

r w 1 memo

r 1645 0.034 0.006 2

3-25 CG40-01

SECTION 4

SAMPLE TERMINAL SESSION

This section describes a sample terminal session using
regular expressions and special characters, gives some hints for
new users, and shows several more editing examples.

SAMPLE INVOCATION

The sample invocation below shows a typical editing session
with qedx.

You are creating new text, so invoke qedx and enter an input
request immediately. Type in the lines, making use of the
character and line delete symbols, then leave input mode \DY
typing "\f") and save the information in a segment named
edi ting_text: .

qedx
a
Input and editing operations are performed
inati# a temporary workspace called a buffer.
When you edir#t an already existing segment,
a copy of that segmenr
us okac@is placed in a buffer.
All of the changes you make are
made on the copy,
not the orginal segment.
The edi ted version of the segment.
replaces the original only
on your orders (issuing
the write request
\f
w editing text

4-1 CG4Q-Q1

At this point you have a new segment named editing text in your
working directory: the text you have created is still in your
buffer. If you exit the editor now, the text is saved because
you wrote it in the segment. Remember, buffers are temporary--to
save text, you must write it into a segment (permanent). You are
still in the qedx editor--in edit mode. To check the material
you have just input, you can issue a print request:

1, $p
Input and editing operations are performed
in a temporary workspace called a buffer.
When you edit an already existing segment,
a copy of that segmenr
is placed in a buffer.
All of the changes you make are
made on the copy,
not the orginal segment.
The edited version of the segment
replaces the original only
on your orders (issuing
the write request

The "1,$" preceding the request is an address
of telling qedx to make the request operate
After looking at the input material, you see
be corrected. Correct the lines using qedx
overwrite the segment by issuing a "w" (write)

/copy/
a copy of that segmenr
s/menr/ment/p
a copy of that segment
/not the/
not the orginal segment.
s/org/orig/p
not the original segment.
+4
the write request
s/st/st) • /p
the write request).
w
q
r 1026 0.608 5.510 261

4-2

range--i.e., a way
on all the lines.
lines that need to
edit requests and

request again.

CG4Q-Ol

· Notice how combined "s" and "p" requests cause qedx to print
out the edited line for verification. You can have as many
separate editing requests on the same line as you want (except
for "r", "w" and "q"). Also notice the editing request line "+4"
to tell the editor to go four lines ahead of the current line
(addressing by relative line number). This technique is highly
recommended. Addressing is an important concept in. a
line-oriented editor like qedx; it enables you to tell qedx what
lines the editing request should work on. And finally, notice
the second "w" (write) request; it is not necessary to give a
path argument with the second, and any succeeding, "w" requests
as long as you want the name of the segment to remain the same.

Now that you are familiar with qedx, you should check the
following examples. You can see that there are several different
!ays to edit the same material. As your familiarity with qedx
lncreases, you tend to type less to accomplish the same tasks.
The examples that follow illustrate this "type less" approach.

For the first example, consider the editing_text segment
given in the sample invocation at the beginning of this section.
After the input request, the buffer contained:

Input and editing operations are performed
in a temporary workspace called a buffer.
When you edit an already existing segment,
a copy of that segmenr
;e """~"b~ .:"" ~~-... ..., j:' ""' ii g iWUj"j"Ci..

All of the changes you make are
made on the copy,
not the orginal segment.
The edited version of the segment
replaces the original only
on your orders (issuing
the write request

The three errors in the text were corrected with these
lines:

jcopy/
a copy of that segmenr
sjmenrjment/p
a copy of that segment
/not the/
not the orginal segment.
s/org/orig/p
not the original segment.
+4
the write request
s/stjst) ./p
the write request).

4-3 CG4Q-Ol

Another way to accomplish the same corrections is:

or:

4s/menr/ment/
/orgi/s//origi/
/requests/s//&)./

4s/.S/t/+3s/org/orig//stS/s//&)./

As another example, assume the buffer contains the following
lines:

Mondays child is far of face:
Tuesday's child is full of grace;
Wednesday's child is loving and givng;
Thursday's child works gard fir uts kuvubgl

These lines can be corrected in any of the following ways
(with new users more apt to use a method similar to the first
one):

Is/days/day's/s/far/fair/p
Monday's child is fair of face;
/givng/s//giving/p
Wednesday's child is loving and giving;
Iwork/s/works.*$/works hard for its living;/p
Thursday's child works hard for its living;

Two other ways to correct the lines are:

and:

Is/days/day's/ s/far/fair/
/AW/s/vng/ving/
+Is/works.*$/works hard for its living;/

Is/y/y'/s/r/ir/
/vng/s//ving/
$s/works.*s/works hard for its living;/

4-4 CG40-0I

EDITING EXAMPLE WITH BOTH INPUT AND EDIT REQUESTS

The most typical editing session is one where you go from
edit mode, to input, and back to edit, in the process of
changing, inserting and adding lines, in addition to merely
fixing errors on lines. Below is an example of such a session;
the most important thing to remember is to type "\f" each time
you go from input to edit, and to frequently write your
corrections and additions (w). Comments describing each action
taken are to the right of the example.

qx ENTER EDITOR (EDIT MODE)
r example READ SEGMENT INTO BUFFER
1,$p PRINT ALL LINES
Input and editing operatons are performed
in a temporary workspace callec by buffer.
When you edit an already existing segment,
is placed in a buffer.
All of the changes you make are
made on the copy.
The edited version of the segment
write request
the write request).
Is/tons/tions/p FIX TYPO

performed Input and editing operations are
+'ls/lec/led/p
in a temporary workspace called
s/by/a/p

FIX TYPO
by buffer.

in a temporary workspace called a
/i ~ T'\ 1 ~"'A~ /; / - 1:' _ / ...

a copy of that segment
\f
w
+2
All of the changes you make are
made on the copy,
a
not the original segment.
\f
w
+1

SUBSTITUTE
buffer.

WORD

LEAVE INPUT (INTO EDIT)
SAVE CORRECTIONS
GO DOWN 3 LINES AND PRINT

ADD A LINE (INTO INPUT)

LEAVE INPUT (INTO EDIT)
SAVE ADDITION
GO DOWN 1 LINE AND PRINT

The editited version of the segment
s/iti/i/ p FIX TYPO
The edited version of the segment

+1
write request
c
replaces the original only
on your orders (issuing
\f
w
1,$p

4-5

GO DOWN 1 LINE AND PRINT

CHANGE (REPLACE 1 LINE
WITH 2 LINES)

LEAVE INPUT (INTO EDIT)
SAVE ADDITION
PRINT ALL LINES

CG40-01

Input and editing operations are performed
in a temporary workspace called a buffer.
When you edit an already existing segment,
a copy of that segment
is placed in a buffer.
All of the changes you make
are made on the copy,
not the original segment.
The edited version of the segment
replaces the original only
on your orders (issuing
the write request).
q LEAVE THE EDITOR

r 658 0.092 0.030 5 AT COMMAND LEVEL

HELPFUL HINTS FOR NEW gedx USERS

The following list offers suggestions for users who are just
beginning to work with the qedx editor.

..

.1.. Get in the habit of
to verify changes.

2. Remember the escape sequence to terminate input is "\f"
(on terminals with no backslash, use ~f instead).

a. After issuing an input request (e.g., a for
append), all lines until "\f" are considered
input, including intended "w" and "q" requests.
Without the "\f" sequence, any lines you type and
intend as editor requests are simply more text,
which you must locate and delete later.

b. Often, users unknowingly put qedx in input mode by
mistyping an editing request. If qedx does not
respond to editing requests (e.g., you type "pH
and nothing happens), chances are very good that
qedx is in input mode. Type the "\f" sequence,
print the current line and preceding lines to see
if they need to be deleted, delete them if
necessary and then continue editing.

3. If you have a lot of typing or editing to do, it is
wise to issue the "w" request often to ensure that all
the work up to that time is permanently recorded. If
you are in edit mode f type "w". If you are doing a lot
of input, use this sequence often:

! \f (go to edit)
! w (write)

a (go back to input)

4-6 CG40-01

If some problem should occur (with the system, the
telephone line, or the terminal), you lose only the
work done since the last "w" request. Also, if you
work and then type a "q", forgetting to type a "w"
first, all your work done since the last "w" is lost.

4. The qedx editor accepts more than one editing request
on a single line. However, the following requests must
be terminated by a newline character: therefore each
one must be on a line by itself or at the end of a line
containing other requests.

r read
w write
q quit .

5. The qedx editor makes all changes on the buffer
contents, not on the stored segment. Only when you
lssue a "w" (write) request does the editor overwrite
the original segment with the edited buffer contents.

6. If you attempt a substit.ution and get back a message
indicating that the substitution "failed", check to
make sure that you are on the right line (p), then
check to make sure that you typed the characters in the
search string exactly as they appear in that line.
Remember that "*", "A", ".", and "$" are special
characters in a regular expression. To match these
characters in text, type "\c" before them.

7. If you want to create new text, have entered qedx and
begun typing text in, and get a message that says "not
recognized as a request," you have forgotten to type
the "a" to put yourself in input mode.

8. To print, list, or delete segments (as described in
Section 3), you must be at command level. These are
Multics commands, not qedx requests. If you are in
qedx and need to use these commands, type "w," then "q"
(quit from qedx) , wait for a ready message, then
proceed. (See also the "en (execute) request in
Sec t i on 5.) .

9. If you have been editing your work by referring to
absolute line numbers, remember that if you delete or
add lines qedx renumbers the lines, so check to make
sure what line you're on.

4-7 CG40-01

10. Generally, you should not issue a QUIT signal (press
ATTN, BRK, INTERRUPT, etc.) while in the editor unless
you are prepared to lose all of the work you have done
since the last "w" (write) request.

Occasionally, however, use of the QUIT signal is very
handy. Suppose you have read a segment containing
several hundred lines into the buffer and type "l,$p"
by mistake. You should issue a QUIT signal, wait for
the system to respond (stops printing lines on your
terminal, then QUIT and a ready message are printed on
the terminal), and then issue the program interrupt
command. The program_interrupt command (short name,
pi) returns you to qedx where the editor waits for the
next request, just as though no interruption has
occurred, and the interrupted request is discarded.

If you issue a QUIT signal accidentally while in the
editor, you should wait for the system to respond (as
above), and then issue the start command. The start
command (short name, sr) returns you to qedx where the
editor continues processing the interrupted request.
However, if you are in the middle of a printout some of
it may be discarded by Multics before it reaches your
terminal (i.e., it will not start printing from the
exact point that it stopped).

4-8 CG40-01

SECTION 5

ADVANCED EDIT REQUESTS

This section introduces some more advanced qedx editing
requests: the extended edit requests and buffer requests. Some
extended edit requests allow you to selectively print, delete,
~nd print the line numbers of only lines that you specify; that
1S, you can perform these operations on a large number of lines
with one request, but the operation need not be performed on
every line within the text block. Another extended .edit request
enables you to execute Multics commands from within qedx.

The buffer requests include descriptions of how to use
buffers for moving text ("cut and paste"), the meaning of q~dx
special escape sequences, and a more technical discussion of qedx
macros.

LIST OF EXTENDED EDIT REQUESTS

execute (e)

global (g)

exclude (v)

Pass remainder of request line to
the Multics command processor
(i.e., escape to execute other
Multics commands).

Print, delete, or print line
numbers of all addressed lines that
match a specified regular
expression.

Print, delete, or print line
numbers of all addressed lines that
do not match a given regular
expression.

5-1 CG40-01

LIST OF BUFFER REQUESTS

buffer (b)

move (m)

status (x)

nothing (n)

comment (")

EXTENDED EDIT REQUESTS

Switch to a specified buffer (i.e.,
do subsequent editor operations to
the specified buffer).

Move specified lines
specified buffer.

into the

Print a summary of the status of
all buffers currently in use, and
indicate in which buffer you are
currently working.

Do nothing
pointer to a
other action).

(used to
line but

move the
perform no

Ignore the remainder of the request
line.

The editor requests discussed up to this point comprise a
basic subset sufficient for most applications. The following
requests offer you more advanced and, in general, more powerful
capabilities.

How To Execute A Multics Command From Inside gedx

e (execute) request

The execute (e) request allows you to "escape" from the qedx
environment temporarily to type Multics commands as if you were
at command level. You may want to do this just as a matter of
convenience, or you may be using several buffers (described later
in this section) that would all be lost if you ended the session.

It is often necessary to type a Multics command to obtain
some information that is pertinent to the work you are doing in
qedx. You can use the execute request to enlist the aid of

* Multics commands without having to exit from qedx.

5-2 CG40-01

The "en signals qedx that ·the rest of the line is to be sent
directly to the command processor, which interprets the command
line you type and executes the line. When the command is
finished executing, you are still in qedx, and your current line
remains the same as it was before you issued the execute request.

w
e dprint filel
1 request signalled, •••

1,$d
r file2
<Editing>

•
w
e dprint file2
1 request signalled, •••
1,$d
r file3

SAVE ALL CHANGES
EXECUTE DPRINT COMMAND FROM QEDX
MULTICS ACKNOWLEDGEMENT

CLEAR THE BUFFER
READ ANOTHER SEGMENT

SAVE CHANGES
DPRINT COMMAND
ACKNOWLEDGEMENT
CLEAR BUFF·ER
READ ANOTHER SEGMENT

One example where you might use this request is if you are
editing in qedx, receive a message from another user, and wish to
reply without interrupting your work.

Assume you have text in the buffer and are editing when you
receive a message:

as mentioned earlier
From Smith.Sales 10/18/821200.6 mst Mon: where is the

draft memo?
e sm Smith Sales check your mailbox .
as mentioned earlier

The only command that you cannot execute in this manner is
qedx; ·if you try to execute qedx, a warning message is printed
stating that the previous qed x session will be lost if you
continue (see Appendix E, "Error Messages").

The most common mistake made when using this request is
forgetting to precede your command with the "en. When this
happens and you are in edit mode, qedx attempts to interpret the
command as an edit request. When qedx fails to recognize the
initial character as a request, it prints a message indicating so
(see Appendix E).. I f you are in input mode and attempt to

5-3 CG40-01

execute a Multics command in this manner, the line you type is
entered as input into the buffer.

When using this request, before typing the carriage return
at the end of the line, check to make sure that you have preceded

* the command line with an "en to avoid a qedx error.

Global Printing, Deleting, And Printing Line Numbers

g (global) request

The global request (g) prints, deletes, or prints the line
numbers of every line in your buffer that contains the regular
expression that you specify. The global req~est can be preceded
by a line number or range of lines as the address--if you do not
specify an address, "1,$" is assumed. Immediately following the
"g" you specify one of three actions to be taken: "pH (print),
"=" (print line number), or "d" (delete). The last part of a
global request is the search string.

For example, to print every line in the buffer that contains
the word "fiscal", type:

gp/fiscal/

Since no address is specified in the above example, the range
assumed is "1,$".

Suppose you have a segment of financial data and there are
total lines for each division. These lines contain the division
name, the word "TOTAL", and the dollar amount. You want to print
just these total lines:

qx
r finance data
gp/TOTAL/-

• .
(lines print here)

q

ENTER QEDX
READ THE DESIRED SEGMENT
PRINT THE LINES CONTAINING TOTAL

QUIT THE EDIT SESSION

To globally print line numbers, use "g=". This request
prints the line numbers (not the content) of those lines in the
address range that contain the string specified in the regular
expression. If no .address is specified, qedx assumes "1,$".

5-4 CG40-01

Suppose you want to find all references to "Figure 1" in
your text, but beyond that you want to print the text that is
three lines before and after the reference. A global print would
print each line with "Figure 1" in it, but you would still not
easily accomplish your desired goal. Below is a solution using
the. "g=" request in combination with the regular print request
(assume there are only two references to Figure 1):

qx
r text
g=/Figure 1/
132
184
129,135p

.
181,187p

q

ENTER QEDX
READ THE TEXT
PRINT LINE NUMBERS OF INTEREST
ASSUME THESE TWO ARE

THE RESULTS
NOW PRINT THE TEXT ON

EITHER SIDE OF
THE IDENTIFIED LINES

QUIT THE EDIT SESSION

To delete the lines within an address range that contain a
certain regular expression, use "gd" (global delete). This way
only those certain lines within the range, as opposed to every
liri~ in the range (with the regular delete request) are deleted.

For example, suppose you have a data segment with entries
from two fiscal years= Assume that these entries are
intermingled, and that the last four characters of each entry are
"FY78" or "FY79". You want to have a segment that contains only
the "FY79" lines. The usual delete request won't work, except by
searching for each "FY78" line and deleting each one on a
case-by-case basis. The solution is:

qx
r composite data
gd/FY78$/ -
w fy79_Data
q

v (exclude) request

ENTER QEDX
READ THE SEGMENT
DELETE LINES ENDING WITH "FY78"
WRITE WHAT'S LEFT TO NEW SEGMENT
QUIT THE EDIT SESSION

There are three requests comparable to the globals described
above. These are the "v" (exclude) requests. They also delete,
print, and print line numbers: the key difference is that the
exclude requests select all the lines that do not contain strings
that match the string specified in the regular expression. The
format for the exclude requests is the same as for the global
requests, with "v" instead of "g".

5-5 CG40-01

The form of
same as for the
"1,$" is assumed.

address used in exclude requests is also the
global requests--if no address is specified,

The exclude print request (vp) prints all lines in the
address range that do not contain a string matching the regular
expression; this request is complementary to the global print.
You use it to see all lines except those which contain a
particular string.

Consider a segment with a variety of programming language
entries, each having a descriptive name such as fortran, pll, or
cobol; you are interested in printing all entries except for the
ones related to cobol. The sequence of requests is:

qx
r languages
vp/cobol/

.
(lines print here)

q

ENTER QEDX
READ THE SEGMENT
PRINT ALL LINES EXCEPT

THOSE WITH "cobol"

QUIT THE EDIT SESSION

The exclude print line numbers request (v=) prints the line
numbers of those lines in the address range that do not contain
the string specified.

For this example, consider a segment in which you need to
locate all entries that contain "FY79" somewhere in the line.
Since the position of the string in the lines may vary, a visual
scan would not be a satisfactory way to verify its presence. Use
the "v=" request first to see if any lines are missing the "FY79"
string, then correct those lines by line number. Here is the
complete sequence:

qx
r fy79 data
v=/FY79/

.
(line numbers here)

q

READ THE SEGMENT
PRINT THE LINE NUMBERS .

OF ALL ENTRIES WITHOUT "FY79"

5-6 CG40-01

The exclude delete request (vd) deletes all lines in the
address range except those that contain a string matching the
regular expression.

In this example, consider a segment with single line
entries consisting of geologic sample analysis. Each line
contains the name of some element or mineral along with location
information. You wish to delete all lines except those which
contain the word "COAL", saving the coal information in a new
segment:

qx
r sample data
vd/COALj-
w coal data
q

BUFFER REQUESTS

DELETE LINES EXCEPT THOSE WITH "COAL"
WRITE WHAT'S LEFT INTO NEW SEGMENT

The discussion up to this point has assumed the existence of
only a single buffer. Actually, qedx supports a virtually
unlimited number of buffers. One buffer at a time can be
designated as the active or current buffer; any other buffers at
this time are referred to as auxiliary buffers. All of the
editor requests described so far operate within the current
buffer. Descriptions below show how to create buffers, switch
the active status from one buffer to another, obtain some
information about all the buffers; and move text from one buffer
to another. Finally, you see how to enter qedx commands into a
buffer and execute the commands as a group.

Each buffer is given a name of 1 to 16 characters. When the
editor is invok d, a single buffer (buffer 0) is created by the
editor and made the current buffer.

There are two other buffers that qedx may create on its own,
depending on how it is called (see "Initialization of Macros"
below) these are named "exec" and "args". Except for these three
names, naming of additional buffers is completely up to you.
Additional buffers can be created merely by referencing a
previously undefined buffer name: in other words, you create a
buffer by using it. Each buffer is implemented as a separate
segment and, thus, is capable of holding any segment.

Buffer names of more than one character must be enclosed in
parentheses; for example, the buffer name Fred is typed as
"(Fred)". A buffer name consisting of a single character can be
typed with or without the enclosing parentheses (e.g., "y" is the
same as "(y)").

5-7 CG40-01

WARNING: Buffers exist for only the current invocation of
qedx. That is, if you create several auxiliary
buffers, issue the quit request and then invoke
qedx again, the auxiliary buffers you created
earlier are. gone.

The buffer requests allow you to create auxiliary buffers,
move text from one buffer to another, and check on the status of
all buffers currently in use. In addition, these requests
provide an interpretive programming capability when used in
conjunction with certain escape sequences (see "Special Escape
Sequences" below). It is important to remember when manipulating
buffers that any information in any buffer that you wish to save
must be written into a segment. There are three main buffer
requests: the change buffer request, the move request, and the
buffer status request.

Creating and Changing Buffers

b(Name).request

The change buffer request does not use an address; it is
typed "b(Name)". It means that the buffer designated by (Name)
becomes the current buffer--"go to buffer (Name)". If the buffer
does not alreadY,exist, it is created and is empty. If it did
already exist, it becomes the current buffer and its contents
remain unchanged. (See the example below.)

Moving Blocks Of Lines (Cut And Paste)

m(Name) request

The move request uses an address range to designate a block
of lines that you move to an auxiliary buffer--in this case,
buffer (Name). This request can be preceded by a one-line
address, or an address range (specifying a block of lines to be
moved). The default address for this request is the current
line. The ,lines that you move are deleted from the current
buffer, and they replace the entire contents of buffer "(Name)".
If buffer "(Name)" does not exist, it is created by this request.
It is important to note that buffer "(Name)" does not become the
current buffer. If you now want to edit the lines that you have
moved, you must change buffers with the "b" request. (See the
example below:)

5-8 CG40-01

How To Check The Status Of Your Buffers --- -- -- ----

x (status) request

You often need to check the status of your buffers as you
create new buffers and manipulate buffer contents. The buffer
status request (x) lists the buffers you have created, the number
of lines they contain, and tells which buffer you are currently
in (indicated by -». If the contents of a buffer were read from
a single segment on permanent storage, ·the default pathname is
printed. An example of the result of an "x" request is:

42 (0) >udd>Multics>JDoe>memo.compose
16-> (temp)

This output indicates that there are 42 lines in buffer "0" (the
one created by qedx) and its contents came from the segment
called memo.compose. There is also another buffer named "temp"
with 16 lines in it: "temp" is the current buffer. It cannot be
determined where the contents of "temp" came from.

The example below is a "sneak preview" of "cutting and
pasting" with Multics. Later, review this example some more for
a better understanding of the buffer requests.

Assume you are in edit mode and want to "cut and paste" your
text by repositioning some groups of lines~ First, move the
lines into another buffer, and then put them ba~k into the
original buffer in the new position:

l,$p
qedx supports a
virtually unlimited
number of buffers.
Up to now, all
work we discussed
has been done in
one buffer (buffer 0).
1,3mA MOVE FIRST THREE LINES INTO BUFFER A
bA GO TO BUFFER A (CHANGE BUFFER REQUEST)
l,$p
qedx supports a
virtually unlimited
number of buffers.
bO GO BACK TO ORIGINAL BUFFER
$ GO TO LAST LINE
one buffer (buffer 0).
a
\bA\f
w
1,$p

APPEND THE CONTENTS OF BUFFER A
(SEE BELOW) AND RETURN TO EDIT MODE.
WRITE THE NEW CHANGES
PRINT THE WHOLE BUFFER

5-9 CG40-01

Up to now, all
work, we discussed
has been done in
one buffer (buffer 0).
qedx supports a
virtually unlimited
number of buffers.

The example shows how to move lines one through three into a
buffer named A (the move request creates buffer A at the same
time); the lines are deleted from buffer 0 at the time they are
moved. Then go to buffer A and print its contents, verifying
that the lines have been moved. Then go back to buffer 0 and
append the contents of buffer A after the last line, end by
printing every line in the buffer. To make the change permanent,
issue a write request.

The "\b" special escape sequence is described in detail
below.

Repositioning The Pointer

n (nothing) request

The "n" request resets the position of the pointer to the
specified address and perform~ no other action. This request is
useful when executing a serIes of requests (a repeated editor
seguence) where an action is performed at predetermined intervals
within the sequence (see "Repeated Editor Sequences" later in
this section).

Annotating (Comment) Macros

" (comment) request

The comment request annotates any type of material contained
in a segment; precede your comments with quotation marks and they
are ignored by qedx when executing the requests (see the examples
later in this section).

5-10 CG40-01

SPECIAL ESCAPE SEQUENCES

The input to qedx can be viewed as a flow of characters.
Depending on the context, some of these characters are
interpreted as editor requests and others are interpreted as
literal text (input). The following escape sequences are
recognized by the editor, in either context, as directives to
alter the input character flow in some fashion.

\b(X) If this sequence is used while in input mode, the
contents of buffer X are considered to be literal
text and are placed in the current buffer at the
place that you type the "\b(X)". However, if
another "\b" escape sequence is encountered while
accepting input from buffer X, the newly
encountered escape sequence is also replaced by
the contents of the named buffer. The editor
allows the nested replacement of "\b" escape
sequences by the contents of named buffers to a
depth of SOD nested "\b" escape sequences-.

If this sequence is used while in edit mode (see
"Initialization of Macros"), qedx attempts to
interpret and execute the contents of X as if they
were edit requests. The requests are interpreted
by qedx as if they had been typed in by you, the
only difference is that the request sequence is
predetermined. The reauests are executed
sequentially and the rule for nested "\b" is the
same as above.

The buffer to which the input is redirected can
contain editor requests, literal text or both. If
the editor is executing a request obtained from a
buffer (rather than from the terminal) and the
request specifies a regular expression search for
which no match is found, the usual error comment
is suppressed and the remaining contents of the
buffer are skipped.

Reading the contents of buffer X does not change
the contents of the buffer; the contents of buffer
X remain constant. Thus, qedx can read input from
buffer X many times (see the discussion on
"Repeated Editor Sequences" below).

5-11 CG40-01

\c

\

This escape sequence temporarily redirects the
input to read a single line from your terminal and
is normally used when executing editor requests
contained in a buffer (a macro). The "\r" is
removed from the input stream and replaced with
the next complete line entered from your terminal,
including the newline. In the line that replaces
the "\r" sequence, additional "\r" or "\b" escape
sequences have no effect.

This escape 7equence signals qedx to ignore the
special meanlng of the immediately following
character, which can be:

1. Any of the special characters used in a
regular expression search string ("f," "&,"
"*," "$," "A," and "."). That character is
then interpreted literally as part of the
regular expression, or:

2. Any of the escape sequences used by qedx
("\f," "\b," "\r" and "\c")." These escape
sequences can then be input as literal text.

If you want to enter
("#" or "@") as literal
backslash.

the erase or kill symbols
text, precede them with a

USE OF BUFFERS FOR MOVING TEXT

Perhaps the most common use of buffers in qedx is for moving
text from one part of a segment to another. A typical pattern is
to place the text to be moved into an auxiliary buffer with a
move request. For example, the request:

1,5m{temp)

moves lines 1 through 5 of the current buffer into the auxiliary
buffer temp and deletes them from the current buffer. Once the
lines have been moved to an auxiliary buffer, they can be used as
literal text in conjunction with an input request. For example,
to insert the lines in buffer temp immediately before the last
line in the current buffer, the following sequence might be used:

5-12 CG4Q-Ol

In this case, the pointer goes to the last line in the buffer,
qedx enters input mode (the insert request), and the literal text
in buffer "temp" is treated as input to the editor and inserted
before the addressed line. Notice that the "\f" immediately
follows the "\b" escape sequence. If the "\f" is put on a new
line, a blank line will follow the last line of buffer "temp"
text that was just inserted in the current buffer. The blank
line is caused by the two successive newline characters: one is
the last character in buffer "temp" and the other is inserted
between the "\b" and the "\f" escape sequences.

For example, assume that buffer 0 contains the following text:

The Multics text editor, qedx,
is a line-oriented editor.
It performs editing
functions on lines,
using requests.

If you type:

1,5m(temp)

the result is:

Buffer 0 contents

<buffer empty>
<Yo are still
in this buffer.>

Buffer (temp) contents

The Multics text editor, qedx,
is a line-oriented editor.
It performs editing
using requests.

Suppose that you want to append the contents of "b(temp)" to the
empty "bon. Type:

a \b(temp)\f

the result is:

Buffer 0 contents

The Multics text editor, qedx,
is a line-oriented editor.-
It performs editing
functions on lines,
using requests.

5-13

Buffer (temp) contents

The Multics text editor, qedx,
is a line-oriented editor.
It performs editing
functions on lines,
using requests.

CG40-01

The move request actually moves the lines from one buffer to
another (i.e., they are deleted from the original buffer),
whereas the "\b" escape sequence copies buffer contents into
another buffer (i.e., the text remains in both places).

Assume that you have a segment
want to move lines 50 through 80
containing "SECTION 5":

named report in which you
immediately after the line

Request
qx
r report
50,aOm1

/SECTION 5/a

\b1\f

w

q

Comments
"Enter the qedx editor"
"Read the original text"
"Move lines 50 thru ao to buffer 1"
"These lines are deleted from"
" the current buffer and they become"
" the sole contents of buffer 1"
"Locate the line with SECTION 5 and"
" switch to the input mode"
" with the append request"
"Transfer contents of buffer 1 to this"
" point and switch back to"
~ the edit mode with the \f"
"Write the revised buffer back"
" to permanent storage"
"Quit the edit session"

It should also be noted that whenever one buffer is
transferred to another buffer with a "\b" as above, the contents
of the auxiliary buffer are not changed. This means that text
which might be repeated throughout a document can be stored in a
buffer and transferred as required to the current buffer. This
is particularly useful in programming applications.

5-14 CG40-01

REPEATED EDITOR SEQUENCES

Another common use for buffers is for the definition of
frequently used editing sequences. It is possible to put a
series of requests in a buffer and have them executed as a group.
The request lines are entered in the same way as text. Switch to
a buffer, use the append request to type in the requests, and
then return to edit mode. For example, if you were faced with
the task of adding the same text sequence in several places in a
document, you might elect to type the editing sequence into a
buffer only once and then invoke the contents of the buffer as
many times as necessary. In the example given below, buffer NEW
contains the necessary editor requests and literal text to append
four lines of text at any point in the current buffer and then
print them out (assume that the current buffer is buffer OLD):

Buffer OLD contents

Using the
Multics Text Editor
The use of buffers
enables you to

Request:

2\b(NEW)

Resulting buffer contents:

Buffer OLD contents

Using the
Multics Text Editor
The text editor,
qedx, is a
line-oriented
text editor.
The use of buffers
enables you to

Buffer NEW contents

a
The text editor,
qedx, is a
line-oriented
\f
.-4,.lp

Buffer NEW contents

<Same as above>

5-15 CG40-01

Resulting console outpu~:

Multics Text Editor
The text editor,
qedx, is a
line-oriented
text editor.
The use of buffers

In this example, the buffer "NEW" is invoked in edit mode rather
than in input mode. Therefore it is eXecuted as a sequence of
requests rather than appended or inserted in its entirety. The
address (2, shown above) becomes the address of the append
request and specifies the point at which the text is to be
appended. The four lines of text in buffer NEW (lines 2-5 in
"Buffer NEW contents" above) are appended to the current buffer;
the "\f" terminates the append request; and the print request
prints the line preceding the appended lines, the four appended
lines, and the line following the appended lines.

Editor Macros

The set of requests contained in a buffer can be saved on
permanent storage for use in a later session. The use of buffers
in qedx allows you to place these editor request sequences
(commonly called macros) into auxiliary buffers and use the
editor as an interpretive programming language.

Suppose you have a file with pairs of entries, and you must
place the word "coal" at the beginning of every even-numbered
line (e.g., 2, 4, 6).

First invoke qedx and store the appropriate requests in a buffer:

qedx
b3
a
sjAjcoal/
.2n
\c\b3
\f

INVOKE THE EDITOR
SWITCH TO BUFFER 3
CHANGE TO INPUT MODE
PLACE WORD "COAL" AT START OF LINE
MOVE CURRENT LINE POINTER AHEAD 2 LINES
CAUSE BUFFER 3.TO BE EXECUTED REPEATEDLY
LEAVE INPUT MODE AND RETURN TO EDIT MODE

In "\c\b3", the initial "\c" forces the editor to treat the "\b"
simply as text. Please note that buffer 3 now has the following
contents:

s/A/coalj
.2n
\b3

5-16 CG40-01

Now read the segment into buffer 0 and execute requests in buffer
3:

bQ
r coal data

SWITCH TO BUFFER 0
READ THE SEGMENT

2n - START THE POINTER AT LINE NUMBER 2
EXECUTE THE REQUESTS STORED IN BUFFER 3 \b3

The process terminates when it finishes the last
even-numbered line in buffer 0 with the "Address out of buffer"
message (see Appendix E). NOw, you save the modified data.

w
q

WRITE coal data BACK TO PERMANENT STORAGE
QUIT FROM THE EDITOR

In the example discussed below, a macro is impiemented to
read text from the terminal until an input terminating sequence,
a line consisting only of ".". When you type the terminating
sequence, the macro asks you for a name under which the text is
filed and exits from the editor. The macro is implemented with
three executable buffers named start, read, and test and is
invoked by diverting the input to buffer start.

Example: Buffer start contents: e fl "Input:"
\b(read)

Buffer read contents:

Buffer test contents:

~~ v-
\r\f
\b(test)
\b(read)

s/"\c.$//
d
e fl "Give me a segment name:"
w \r
q

Explanation of start buffer:

1 ... The first request is an escape to the command processor
to call the format line command (short name fl) to
print the message "Input:" on your terminal. (For more
information on the format line command, see the
Subroutines.)

2. The second request executes the contents of buffer
read.

5-17 CG40-01

Explanation of read buffer:

1. The first request ($a) places
to append text to the end
(presumably buffer 0).

the editor in input mode
of the current buffer

2. One line is read from your terminal (\r) and the append
request is terminated (\f).

3. The contents of buffer test is executed.

4. If the substitute request in buffer test is
unsuccessful (i.e., the line does not consist of a
single period in the position), the contents of buffer
read are executed again.

Explanation of test buffer:

1. The first line uses a substitute request to test the
current line (the line just read in with "\r" by the
above append request) for the input terminating
sequence (a line consisting only of "."). If the
regular expression in the substitute request fails to
find the terminating sequence, the remaining requests
in buffer test are ignored, and control is passed back
to the point just after the last request executed in
buffer read (i.e., the request "\b(read)" is the next
request to be executed).

2. If the terminating sequence is found in
line that contained the terminating
deleted.

step 1, the
sequence is

3. Again, format line is used to type a message to you.
This time, the macro asks you for a segment name in
which the input lines appended are to be stored.

4. The contents of the current buffer containing the input
lines are written into a segment, the name of which is
read from the terminal by the \r escape sequence.

S. The macro exits from the editor with a quit request.
If the quit request were not included, qedx would
expect further instructions from your terminal at this
point.

5-18 CG40-01

Initialization of Macros

The editor provides a means through which a qedx macro can
be invoked directly from command level.

A sequence of editing requests can be saved in permanent
storage and executed as above by simply reading them into a
buffer rather than typing them in. Another useful time to
execute requests is when qedx is invoked. In this case the
requests must be stored in a segment ending with the name
".qedx". Assume that each month you have a financial report
created on the system and you edit this file each month to
extract certain subsets of information. Also assume that the
main report format and the editing functions are the same month
to month. Store the edit requests in a segment which contains a
complete set of requests from the initial read of the data file
to the final quit. Suppose now these requests are stored in a
segment named "financial_extract.qedx". Then each month the only
command required by you is:

qx financial extract

This command causes the segment to be read into a buffer -named
"exec". The requests stored in "exec" are then executed.

As a final example, let us extend the financial example
above one step further. Assume that the original financial data
segment you wish to edit ends with the name of a month, say of
the form "JAN", "FEB", etc. It is poss~ble to supply this unique
designator on the same line with which you invoke qedx and make~
use of it in the commands stored in financial_extract.qedx. The
qedx command now looks like this:

qx financial_extract JAN

and the first line of the commands you
financial_extract.qedx looks like this:

r finance_repo~t_\b(args)

have stored in

One month your pre-stored requests can read finance_report~JUL
and another month they can read finance_report_NOV. Notice also
the use of the buffer named "args", created by qedx to hold the
additional data (arguments) you might wish to supply to a
pre-stored set of editing requests. Each additional item of data
is stored in successive lines in buffer "args".

5-19 CG40-01

You can invoke qedx in the following fashion:

qedx path

The above command is equivalent to entering the editor with the
simple command:

qedx

and immediately executing the following series of requests:

b(exec)
r path.qedx
bO
\b(exec)

GO TO BUFFER exec
READ THE SEGMENT NAMED path.qedx
GO BACK TO BUFFER 0
EXECUTE THE REQUESTS CONTAINED IN

BUFFER exec

This request sequence reads the initial macro segment into buffer
exec, changes the current buffer back to buffer 0 and executes
the contents of buffer exec. This series of requests is
sufficient to allow a multibuffer macro to be read into qedx from
a segment and then executed.

For example, the macro given in the previous example can be
initialized and run from a segment with the following contents
(actual lines used to enter this segment are shown further
below) :

b(start)
$a
e fl Input:
\c\b(read)
\f
b(read)$a
$a
\c\r\c\f
\c\b(test)
\c\b(read)
\f

GO TO BUFFER start
APPEND ITS CONTENTS (SHOWN ABOVE)

GO TO BUFFER read
APPEND ITS CONTENTS (SHOWN ABOVE)

b(test)$a GO TO BUFFER test
S/A\C\C.$// APPEND ITS CONTENTS (SHOWN ABOVE)
e fl "Give me a segment name:"
w \c\r
q
\f
bO
\b(start)

GO TO BUFFER 0 (MAIN)
INVOKE THE MACRO

5-20 CG4Q-Ql

The contents of the buffers are first appended with append
requests. Notice that all escape sequences placed into a buffer
as literal text must be preceded by a "\c" escape sequence.
Thus, the second line input to the read buffer is input as:

and produces the following line:

The example below shows the lines typed to enter this macro,
creating the segment path.qedx:

qx
a
b(start)
$a
e fl Input:
\c\c\c\b (read)
\c\f
b(read) $a .
\c\c\c\r\c\c\c\f
\c\c\c\b(test)
\c\c\c\b(read)
\c\f
b(test)$a
S/A\C\C\C\c.$//
..:I
u
e fl "Give me a segment name:"
w \c\c\c\r
q
\c\f
bO
\c\b(start)
\f
w path.qedx
q
r 951 0.902 0.788 61

PRODUCES "\c\b"
PRODUCES "\f"

PRODUCES "\c\r\c\f"
PRODUCES "\c\b(test)"
PRODUCES "\c\b(read)"
PRODUCES "\f"

PRODUCES "\c\c"

PRODUCES "\c\r"

PRODUCES "\f"

PRODUCES "\b(start)"

Note carefully ~he use of escape sequences. If you print
the contents of this buffer after entering it as shown here, you
find the contents of the buffer to be the same as the contents of
the segment shown above.

5-21 CG40-01

Finally, here is an actual invocation of the macro:

qx path
Input:
begin to enter lines here
continuing down
until you're finished, then
•
Give me a segment name:
storage
r 1001 0.560 0.206 26

Here, you see the new segment, storage. Notice that the input
terminator (.) has been deleted:

print storage

storage 06/13/79 1001.2 mst wed

begin to enter lines here
continuing down
until you're finished, then

r 1001 0.057 0.002 1

ADDITIONAL ARGUMENTS

The qedx editor can be invoked with more than one argument.
Thus, the command line:

qedx read path

is the equivalent of:

qedx
b(exec)
r read.qedx
b(args)
a
path
\f
bO
\b(exec)

INVOKE QEDX
GO TO BUFFER exec
READ read.qedx
GO TO BUFFER args
APPEND "path"

GO TO BUFFER 0
EXECUTE BUFFER exec

5-22 CG40-01

If the contents of read.qedx is:

r \b(args)

then the contents of the exec and args buffers become:

r \b{args) path

and the request \b{exec) reads the segment path into buffer O.
The editor then waits for further commands from you.

With the same contents of read.qedx, the invocation:

qedx read path 1,$s/x/y/ w q

enters into the exec and args buffers the following:

r \b{args) path
1,$s/x/y/
w
q

This causes the editor to read the segment path into buffer 0,
substitute for every occurrence of x the character y, write out
rnA C:AnmAnr n::arn ::ann rnAn ""11; r !:linn "'Arll,..n r" ,..nmm::ann 1 AUAl
.... .0;,..:..,..,. ..,,,... ':iAGo.,.."a.a... 1::' __ "'''''A I &.... ~ .. 40~a,;j. ":i~. WJ. tWD • .a~ ~~...... ~...... ~ 'V' "' a~ .--.,..".,

Notes on Macro Use

Since the name of the segment to be read in appears on the
command line, this feature allows you to use abbreviations (see
the description of the abbrev command in the Commands) in the
names of segments to be edited.

There is no safeguard to keep the editor from changing a
buffer from which it is also accepting editor requests. If this
is attempted, havoc can be the result.

5-23 CG40-01

APPENDIX A

GLOSSARY

absolute address
The lmaginary line number qedx gives to each line of text in
the buffer.

address (ADR)
A means of telling qedx what line to locate. An address can
be:
(1) absolute line number (e.g., 1),
(2) relative line number (e.g., +5),
(3) context address (matches regular expressions to strings

in the line (e.g., /locate this/).

ampersand (&)
A special character used in the replacement part of a
substitute request (e.g., s/this/is replaced by this/) where
it duplicates the string that is to be replaced (e.g.,
s/this/is replaced by &/ means the same as the substitution
above) •

asterisk (*)
A duplicating character in a regular expression; means any
number (including none) of the preceding character.

backslash c (\c)
A qedx escape sequence that causes the special character
that follows to be interpreted as literal.

backslash f (\f)
A qedx escape sequence to end input; it puts you in edit
mode.

A-l CG40-01

buffer
A temporary workspace ("scratch pad") created by qedx; all
input and editing is done in a buffer.

carriage return
A term meaning that the
column of the next line.

character delete
See erase.

character string (also s ring)

typing mechanism moves to the first
See newline below.

A group of characters (letters, words, symbols), including
spaces, used in a regular expression.

circumflex (A)
A special character that matches the beginning of a line
when used in a regular expression: that is, an imaginary
character that precedes the first character on a line."

command
A program which is called when you type its name: you type a
command instructing Multics to perform some action for you.

command level
A term used to indicate that lines input from your terminal
are interpreted by Multics as a command (i.e., the line is
sent to the command processor). You are at command level
when you log in, when a command completes or encounters an
error, or when you stop command execution by issuing a quit
signal. Command level is indicated by a ready message.

compound address
A way to locate a line (or more than one line) using some
combination of absolute, relative, or context addressing
(e.g., /power/+l).

context address
A means of locating a line which contains the character
string that you specify in a regular expression (e.g.,
/FIND/ locates the next line that contains the string
"FIND").

A-2 CG40-01

current line
The line of text in the buffer that you are currently or
have just finished working on.

default
An action taken by Multics unless specifically instructed
otherwise.

delete (dl)
A Multics command to delete a segment.

delimiter
A character placed in front of and at the end of a regular
expression; used for context addressing and substitution.

directory
A segment that contains information describing segments
and/or other directories.

directory hierarchy
The tree-structural organization of the contents of the
Multics storage system.

directory (home)
The directory under which the user logs in.
directory is named:

>udd>Project_id>Person_id

Usually this

This directory is also
directory.

known as the initial working

directory (working)
The directory under which the user is doing work. Often the
working directory is also the home directory. (This is
always true at login time.) The user can -redefine the
working directory by use of the change_wdir co~mand.

dollar sign ($>
A special character used as:
(1) an address in a qedx request (specifies the last line

in the buffer), or:
(2) the imaginary character that follows the last character

on a line, when used in a regular expression.

A-3 CG40-01

dprint (dp)
A Multics command to print the contents of a segment on a
high-speed printer.

edit mode
One of two modes of operation in qedx: it allows you to:

entry

(1) perform editing functions (e.g., substitution,
deletion, printing) on data,

(2) read in the contents of existing data, and:
(3) save your editing work: If the data is new, it is

placed in storage: if it is taken from storage and
changed (existing), you can overwrite the stored
version with the newest version.

An item catalogued in a directory, such as a segment.

entryname
The name by which a segment is catalogued in a directory.

erase (#)
The symbol used on Multics to "erase" the character
immediately preceding it (e.g., "tha#e" is seen by Multics
as "the"). To input an erase character as text, type "\#".

error message

exit

file

A message from Multics indicating that some action you
called for was not carried out.

See quit request.

A term sometimes used to mean segment (see segment).

home directory
See directory (home) above.

input mode
One of the two modes of ooeration in aedx: it allows you to
enter new data from your terminal until you signal the end
of input.

A-4 CG40-Ql

kill (@)
The symbol used on Multics to
everything) that precedes it on a
character as text, type "\@".

line delete
See kill ..

linefeed
See newline.

list (Is)
A Multics command to list segments.

log in

erase anything (and
line. To input a kill

To establish a connection between your terminal and Multics.

log out

.
macro

mode

To break the connection between your terminal and Multics •

An elaborate editor request sequence.

In qedx, you work in one of two modes:
mode.

input mode or edit

Multics Programmer's Reference Manual
. The primary reference manual for Multics (see the preface of

this document).

newline
A term used to indicate that the typing mechanism moves to
the leftmost column of the next line. The terminal type
determines which key(s) you press to perform the equivalent
action (e.g., RETURN, LINE SPACE, or NL).

A-5 CG40-01

null regular expression (II)
When a regular expression is used, II can be used repeatedly
to search for the previous regular expression (see "regular
expression" below).

password
A character string supplied by you and known only to you and
Multics. You use it when you log in to validate your
identity.

pathname
A character string that specifies a segment by its position
in the storage system hierarchy (sometimes referred to as
"path").

period (.)
A special character used as:
(l) an address in a qedx request (specifies the current

line), or:
(2) a character in a regular expression (can be used in

place of any single character in a character string).

Person id
A-unique name assigned to each user of the system. It is
usually some form of your name and contains both uppercase
and lowercase characters. It cannot contain blank
characters. Associated with your Person_id is a single
password.

pointer
A conceptual indicator which moves from line to line as you
specify lines that you wish to work on; it always indicates
the current line.

print (pr)
A Multics command to print a segment.

project
An arbitrary set of users grouped together for accounting
and access control purposes.

project administrator
A person who specifies spending limits and other attributes
for all of the users on a particular project.

A-6 CG40-01

Project_id
A name under which a particular project is registered on the
system.

quit request
A qedx request to exit the editor: not the same as QUIT (see
below) s

QUIT signal

range

The means by which you may interrupt Multics from processing
a lengthy qedx print request, a program or command lines.
The QUIT signal is invoked by pressing the ATTN, INTERRUPT,
BRK, or QUIT key on the terminal: Multics responds with a
ready message and a new command level.

A two-part address given in the form 1,5 which includes the
first through the fifth line.

ready message
A message that is printed each time you are at command
level, indicating the system is "ready" to accept another
command.

regular expression (/REGEXP/)
One or more characters delimited by a slash: it matches a
string of characters and is used to search for a line and
make substitutions on a line.

relative address
The location of a line in relation to the current line in
the buffer.

request
Within qedx, the means by which you signal to create, add
to, delete, change, and save your work.

A-7 CG40-01

segment
The basic unit of information within the Multics storage
system. Each segment can contain data, programs, or text.

string (STRING)
See character string.

user dir_dir (udd)
-The- user directory director~, which contains all project
directories. Its pathname 1S >udd, and all user segments
and directories are subordinate to it.

User id (user identification)
-Used to refer to a Person_id.Project_id pair.

A-a CG40-01

APPENDIX B

qedx Command

Following is a copy of the qedx command description that
appears in the Commands. This description is intended only as a
summary of qedx features. For a detailed discussion of
addressing, see Appendix C; for an in-depth description of each
request, see Appendix D.

qedx, qx qedx, qx

QEDX, ~

The qedx editor can be used to create and edit segments in
Multics. The qedx editor cannot be called recursively. This
description of the qedx editor summarizes the editing requests
and addressing features provided by qedx.

Standard Usage

qedx

This invocation puts you in the eOltor in edit mode, where the
editor waits for you to type a qedx request. To create a new
segment, you might perform the following steps:

1. Invoke qedx and
input requests
request.

enter input mode by typing
(e.g., append) as the

B-1

one of the
first qedx

CG40-01

qedx, qx qedx, qx

a. Enter text
terminal.

lines into the buffer from the

b. Leave input mode by typing the escape request
sequence as the first characters of a new line.

2. Inspect the contents of the buffer and make any
necessary corrections using edit or input requests.

3. Write the contents of the buffer into a new segment
using the write request.

4. Exit from the editor using the quit request.

To edit an existing segment, you might perform the following
steps:

1. Invoke qedx and read the segment into the buffer by
giving a read request as the first qedx request.

2. Edit the contents of the buffer using edit and input
requests as necessary. (The editor makes all changes
on a copy of the segment, not on the original. Only
when you issue a write request does the editor
overwrite the original segment with the edited
version.j

3. Using the write request, write the contents of the
modified buffer either back into the original segment
or, perhaps, into a segment of a different name.

4. Exit from the editor using the quit request.

You can create and edit any number of segments with a single
invocation of the editor as long as the contents of the buffer
are deleted before work is started on each new segment.

ADDRESSING

Most editing requests are preceded by an address specifying
the line or lines in the buffer on which the reauest is to
operate. Lines in the buffer can be addressed by absolute line
number: relative line number, i.e., relative to the "current"
line (+2 means the line that is two lines ahead of the current
line, -2 means the line that is two lines behind): and context
(locate the line containing /any string between these slashes/I.

B-2 CG40-01

qedx, qx qedx, qx

Current line is denoted by period (.); la~t line of buffer, by
dollar sign ($).

REGULAR EXPRESSION

The following characters have specialized meanings when used
in a regular expression. A regular expression is the character
string between delimiters, such as in a substitute request, or a
search string. You can reinvoke the last used regular expression
by giving a null regular expression (II).

* signifies any number (or
character.

none) of the preceding

A when used as the first character of a regular
expression, signifies the (imaginary) character
preceding the first character on a line.

$ when used as the last character of a regular
expression, signifies the (imaginary) character
following the last character on a line.

matches any character on a line.

ESCAPE SEQUENCE

\f exit from input mode and terminate the input request;
puts you in edit mode. It is used constantly when
editing a document, and is the key to understanding the
difference between input mode and edit "mode. The
sequence \034 is a synonym for \f.

\c suppress the meaning of the escape sequence or special
character following it.

\b(X) redirect editor stream to read subsequent input from
buffer X. The sequence \030 is a synonym for \b.

\r temporarily redirect the input stream to read a single
line from your terminal.

NOTE: On terminals with no
cent-sign (~) instead.

B-3

backslash (\), use

CG40-01

qedx# qx. qedx, qx

REQUESTS

In the list given below, editor requests are divided into
four categories: input requests, basic edit requests, extended
edit requests, and buffer requests. The input requests and basic
edit requests are sufficient to allow a user to create and edit
segments. The extended requests give the user the ability to
execute Multics commands without leaving the editor and also to
effect global changes. Because the requests are, in general,
more difficult to use properly, they should be learned only after
mastering the input and basic edit requests. The buffer requests
require a knowledge of auxiliary buffers. (Since the nothing and
comment requests are generally used in macros, they are included
with the buffer requests.) The buffer requests, used with any of
the other requests, and special escape sequences allow the user
to make qedx function as an interpretive programming language
th(ough the use of macros.

The character given in parentheses is the actual character
used to invoke the request in qedx and does not always bear a
relation to the name of the request. The second part of each
entry shows the format, default in parentheses, and brief
description. For the value of ADR, see "Addressing" above; for
the value of regexp, see "Regular Expression" above.

Input Requests

These requests enter input mode and must be terminated with
\f.

append (a)
Enter input mode, append lines ~yped from the terminal
after a specified line.

ADRa (.a) append lines after specified line.

change (c)
Enter input mode, replace the specified line or lines
with lines typed from the terminal.

ADR1,ADR2c (=i=C) change existing line(s): delete and
replace.

B-4 CG40-01

qedx, qx qedx, qx

insert (i)
Enter input mode, insert lines typed from the terminal
before a specified line.

ADRi (.i) insert lines before the specified line.

Basic Edit Requests

delete (d)
Delete specified line or lines from the buffer.

ADR1,ADR2d (.,.d) delete line(s).

print (p)
Print specified line or lines on the terminal; special
case print needs address only.

ADR1,ADR2p (.,.p) print line(s).

print -line number (=)
Print line number of specified line.

ADR= (.=) print line number.

quit (g or Q)
Exit from the editor.

read (r)
Read specified segment into the buffer.

ADRr path ($r path) append contents
specified line.

B-5

of path after

CG40-01

*

qedx, qx qedx, qx

substitute (s)
Replace specific character strings in specified line or
lines.

ADR1,ADR2s/regexp/string/ (.,.s/regexp/string/)
substitute every string matching regexp in the line(s)
with string. If string contains &, & is replaced by
the characters which matched regexp. First character
after s is delimiter; it can be any character not in
either regexp or string. Strings matching regexp do
not overlap and the result of substitution is not
rescanned.

write (w)
Write current buffer into specified segment.

ADR1,ADR2w {path} (l,$w path) write lines into segment
named path. If path omitted, a default pathname used
if possible, otherwise error message printed.

Extended Edit Requests

execute (e)
Pass remainder of request line to the Multics command
processor (i.e., escape to execute other Multics
commands).

e <command line> execute command line without leaving
editor.

global (g)
Print, delete, or
lines that contain
string.

print line number of all addressed
a match for a specified character

ADR1,ADR2gX/regexp/ (l,$gX/regexp/) perform operation
on lines that contain a match for regexp; X must be d
for delete, p for print, or = for print line numbers.

B-6 CG40-01

qedx, qx qedx, qx

exclude (v)
Print, delete, or print line number of all addressed
lines that do not contain a specified character string.

ADR1,ADR2vX/regexp/ (l,$vX/regexp/) perform operation
on lines that do not contain a match for regexp: X must
be d for delete, p for print, or = for print line
numbers.

Buffer Requests

buffer (b)
Switch to specified buffer (i.e., switch all subsequent
editor operations to the specified buffer).

b(X) go to buffer named X: destroy old contents of
buffer X.

move (m)
Move specified line or lines into the specified buffer.

ADR1,ADR2m(X) (.,.m(X» move
buffer into buffer named X:
buffer X.

line(s) from current
destroy old contents of

status (x)
Print a summary of the status of all buffers currently
in use.

x give the status of all buffers in use.

nothing (n)
Do nothing (used to address a line with no other
action).

ADRn <en> set value of

comment (")

" " e to line addressed.

Ignore the remainder of this request line.

ADR" (.") ignore rest of line; used for comments.

B-7 CG40-01

qedx, qx qedx, qx

Spacing

The following rules govern the use of spaces in editor
requests.

1. Spaces are taken as literal text when appearing inside
of regular expressions. Thus, /the n/ is not the same
as /then/.

2. Spaces cannot appear in numbers, e.g., if 13 is written
as 1 3, it is interpreted as 1+3 or 4.

3. Spaces within addresses except as indicated above are
ignored.

4. The treatment of soac@s in the bodv of an editor
request depends on th~- n~ture of the request.

Responses From the Editor

In general, the editor does not respond with output on the
ter~inal unless explicitly requested to do so (e.g., with a print
or print line number requesti. The editor does not comment when
you enter or exit from the editor or change to and from input and
edit modes. The use of frequent print requests is recommended
for new users of the qed x editor.

Stopping gedx Execution

If you inadvertently request a large amount of terminal
output from the editor. and wish to abort the output without
abandoning all previous ~ditin9, you can issue the quit signal
(by pressing the proper key on your terminal, e.g., BRK, ATTN,
INTERRUPT), and, after the quit response, you can reenter the
editor by invoking the program interrupt (pi) command (fully
described in the Commands). ThIs action causes the editor to
abandon ItS prIntout, but leaves the value of"" as if the
printout had gone to completion.

B-8 CG40-01

qedx, qx qedx, qx

If an error is encountered by the editor, an error message
is printed on your terminal and any editor requests already input
(i.e., read ahead from the terminal) are discarded.

If you
subsequently
Pending work
do you wish
type a "yes"

Macro Usage

exit from qedx by issuing the quit signal, and
invoke qedx in the same process, the message "qedx:
in previous invocation will be lost if you proceed;
to proceed?" is printed on the terminal. You must
or "no" answer.

You can place elaborate editor request sequences (called
macros) into auxiliary buffers and then use the editor as an
interpretive language. This use of qedx requires a fairly
detailed understanding of the editor. To invoke a qedx macro
from command level, you merely place your macro in a segment that
has the letters qedx as the last component of its name, then
type:

qedx path optional_args

where:

1. path
specifies the pathname of a segment from which the
editor is to take its initial instructions. Such a
set of instructions is commonly referred to as a
macro. The editor automatically concatenates the
suffix qedx to path to obtain the complete pathname
of the segment containing the qedx instructions.

2. optional args
are optional arguments that are appended, each as a
separate line, to the buffer named args (the first
optional argument becomes the first line in the
buffer and the last optional argument becomes the
last line). Arguments are used in conjunction with a
macro specified by the path argument.

The editor executes the qedx requests contained in the
specified segment and then waits for you to type further
requests. If path is omitted, the editor waits for you to type a
qedx request.

B-9 CG40-01

qedx, qx qedx, .qx

Notes

While most users interact with the qedx editor through a
terminal, the editor is designed to accept input through the
user_input I/O switch and transmit output through the user_output
I/O switch. These switches can be controlled (using the iox_
subroutine described in the Subroutines) to interface with other
devices/files in addition to the user's terminal. For
convenience, the qedx editor description assumes that the user's
input/output device is a terminal.

B-10 CG40-01

APPENDIX C

SUMMARY OF ADDRESSING CONVENTIONS

There are three basic means by which lines in the buffer can
be addressed:

1. Addressing by absolute line number

2. Addressing by relative line number, i.e., relative to
the "current" line

3. Addressing by context

In addition, a line address can be formed using a combination of
the above techniques.

Addressing by Absolute Line Number

Each line in the buffer can be addressed by a decimal
integer indicating the current position of the line within the
buffer. The first line in the buffer is line 1, the second line
2, etc. The last line in the buffer can be addressed either by
line number or by using the $ character, which is interpreted to
mean "the last line currently in the buffer." In certain cases
it is possible to address the (fictitious) line preceding line 1
in the buffer by addressing line o.

As lines are added to or deleted from the buffer, the line
numbers of all lines that follow the added or deleted lines are
changed accordingly. For example, if line 15 is deleted from the
buffer, line 16 becomes line 15, 17 becomes 16, and so on.

C-l CG40-01

If an attempt is made to address a line not contained in the
buffer, an error message is printed by the editor. If the buffer
is currently empty, as it is when the editor is first entered,
only the line numbers 0 and $ are considered valid.

Addressing by Relative line Number

The qedx editor maintains the notion of a "current" line
that is specified by using the character "." (period).
Normally, the current line is the last line addressed by an edit
request or the last line entered from the terminal by an input
request. The value of "." after each editor request is
documented in the description of the request.

Lines can be addressed relative to the current line number
by using an address consisting of "." followed by a signed
decimal integer specifying the position of the desired line
relative to the current line. For example, the address ~+1
specifies the line immediately following the current ~ine and the
address .-1 specifies the line immediately preceding the current
line.

When specifying an increment to the current line number, the
+ sign can be omitted (e.g., .5 is interpreted as .+5). In
addition, when specifying a decrement to the current line number,
the "." itself can be omitted (e.g., -3)is interpreted as .-3).
It is also possible to follow the "." with a series of signed
decimal integers (e.g., .5+5-3 is interpreted as .+7).

Addressing by Context

Lines can be addressed by context by using a "regular
expression" to match a string of characters on a line. When used
as an address, a regular expression specifies the first line
encountered that contains a string of characters that matches the
regular expression. In its simplest form, a regular expression
is a character or a string of characters delimited by the right
slant character (/). For example, in the following text, the
regular expression labcl matches line 2.

a: procedure;
abc=def:
x=y;
end a:

C-2 CG40-01

To use a regular expression as an address, the use: types
IregexpI, where regexp is any valid regular expresslon as
described below. The search for a regular expression begins on
the line following the current line (i.e., .+1) and continues
through the entire buffer, if necessary, until it again reaches
the current line. In other words, the search proceeds from .+1
to $ and then from line 1 to the current line. If the search is
successful, Iregexpl specifies the first line encountered during
the search in which a match was found.

A regular expression can consist of any character in the
ASCII set except the newline character. However, the following
characters have specialized meanings in regular expressions.

I Delimits a regular expression used as an address.

* Signifies "any number (or none) of the preceding
character".

A

$

When used as the first character
expression, the A character signifies
preceding the first character on a line.

When used as the last character
expression, the $ character signifies
following the last character on a line.

Matches any character on a line.

of a regular
the character

of a regular
the character

Some examples follow:

lal

label

lab*cl

lin . . tol

lin.*tol

Matches the letter "a" anywhere on a
line.

Matches the string "abc" anywhere on a
line.

Matches "ac", "abc" , "abbc", "abbbc",
etc. anywhere on a line.

Matches "in" followed by any two
characters followed by "to" anywhere on
a line.

Matches "in" followed by any number of
any characters (including none) followed
by "to" anywhere on a line.

C-3 CG40-01

IAabcl

labc$1

IAabc.*def$1

/A·*$I

IA$I

Matches a line beginning with "abc".

Matches a line ending with "abc".

Matches a line beginning with "abc" and
ending with "def".

Matches any line.

Matches an empty line (a line containing
only a newline character).

The special meanings of "I", "*",
a regular· expression can be removed
character with the escape sequence \c.

"$", "A", and
by preceding

"." within
the special

l\c/\c*1 Matches the string "1*" anywhere on a
line.

The editor remembers the last regular expression used in any
context. The user can reinvoke the last used regular expression
by using a null regular expression (i.e., II). In addition, a
regular expression can be followed by a signed decimal integer in
the same manner as when addressing relative to the current line
number. For example, the addresses labc/+5-3, labc/+2 or labc/2
all address the second line following a line containing "abc".

The two uses of "." and "$" (as line numbers and as· special
characters in regular expressions) are distinguished by context.

Compound Addresses

An address can be formed using a combination of the
techniques described above. The following rules are intended as
a general guide in the formation of these compound addresses.

1. If an absolute line number is to appear in an address,
it must be the first component of the address.

A relative line
compound address.

number

C-4

can anywhere in a

CG40-01

3. A regular expression can appear anywhere in a compound
address.

a. An absolute line number can be followed by a
regular expression. This construct is used to
begin the regular expression search after a
specific line number. For example, the address
10/abcl starts the search for /abel immediately
after line 10.

b. A regular expression can follow or be followed by
an address specified by a relative line number.
For example, the address .-a/abc/ starts the
search eight lines before the current line, while
/abc/.8 addresses the line eight lines after the
first occurrence of labc/.

c. A regular expression can be followed by another
regular expression. For example, the address
/abc//def/ matches the first line containing "def"
appearing after the first line containing "abc".
As mentioned earlier, a regular expression can be
followed by a decimal integer. For example, the
address /abc/-lO/def/.S starts the search for
Idef/ 10 lines before the first line to match
/abc/ and if /def/ is matched, the value of the
compound address is the fifth line following the
line containing the match for /def/.

Addressing a Series of Lines

Several of the editor requests can be used to operate on a
series of lines in the buffer. To specify a series of lines, two
addresses must be given in the following general form:

ADR1,ADR2

The pair of addresses specifies the series of lines starting with
the line addressed bv the address ADRl through the line addressed
by ADR2, inclusive •.

C-5 CG40-01

Examples:

1,5 specifies line 1 through line 5.

1,$ specifies the entire contents of the buffer •

• l,/abc/ specifies the line following the current line

When a
computation
computation
changed by
the address

.1,.2

through the first line (after the current
line) containing "abc".

comma is used to separate addresses, the address
of the second address is unaffected by the

of the first address (i.e., the value of "." is not
the evaluation of the first address). For example,
pair:

specifies a series of two lines, the line
current line through the second line after

immediately after the
the current linee

However, if a semicolon is used to separate addresses
instead of a comma, the value of "." is set to the line
addressed by ADRI before the evaluation of ADR2 begins.)n
contrast to the example given immediately above,· the address
pair:

.1;.2

specifies a series of three lines, the line immediately following
the original current line through the second line following the
line specified by ADRI. As a further example, the address pair:

/abc/lO

is equival~nt to the address pair:

/abc/,/abc/+lO

C-6 CG40-01

Addressing Errors

The following list describes the various errors that can
occur when the editor is attempting to evaluate an address.

1. "Buffer empty" -- An attempt has been made to reference
a specific line when the buffer is empty. (Only "s",
"." and "0" are legal addresses within an empty buffer
and only if used with a read, append, or insert
request.)

2. "Address out of buffer" -- An attempt has been made to
refer to a nonexistent line (e.g., an address of 20
when there are fewer than 20 lines in the buffer or an
address of .+5 when the current line is fewer than 5
lines from the last line in the buffer).

3. "Address wrap around" -- An attempt has been made to
address a series of lines in which the line number of
the second line addressed is less than the line number
of the first (e.g., S,l).

4. "Search fai ed" A regular expression search
initiated from the user's terminal has failed to find a
match.

5. "Syntax error in regular expression" A regular
""'V""'9"A~~" "n ,,~a~ '!!!II ~ '!!!lIn '!!!II~~9"a~~ h'!!!ll ~ n,..~"..".n _9"",....a9"1~,
;;;;AJ:-'.;;;;~~"'V'6 \oi~;;;;"'" g~ g.& u ""'.;;;;~.., ."u~ .,...,~ ..,;;;;;;;;II,t" • ...,,t"l

delimited, or successive asterisks have been
encountered without an escape sequence character (e.g.,
lab**c/) •

6. "II undefined" -- A null regular expression has been
used and no previously typed regular expression is
available.

C-7 CG40-01

APPENDIX D

REQUEST DESCRIPTIONS

This appendix describes each qedx request in detail; the
format is described below. Described first are the basic
requests (in the order listed below), then the extended edit
requests, and finally the buffer requests.

REQUEST DESCRIPTIONS

A request to qedx can generally take anyone of the
following three general formats:

<request>
ADR<request>
ADR1.ADR2<reauest>

~ -------
where ADR is a one-line address, ADRl and ADR2 are the first and
second components of an address range, and <request> is a qedx
request. When addressing a series of lines (ADR1,ADR2<request»,
anyone of the three types of addressing (absolute, relative, or
context) can be used for either ADRl or ADR2. For example, if
line 1 is the current line and the buffer contains the following:

b:procedure;
a=r;
c=s;
k=t;
end b;

You could print lines 2 through 4 by typing a p (print) request
preceded by anyone of several address combinations; a few of the
possible print requests are given below:

2,4p
2,+3p
2,/J\k/p
+l,/J\k/p
/a=/,+3p
/a=/,/"k/p

D-l CG40-01

In each of the request descriptions that follow, several
"standard" headings are used:

Name gives the invocation character followed by the
request name

Format shows the proper format to use when invoking
the request

"."->

explains what action qedx takes if you do not
specify an address in the request

identifies the position of the current line
after the request operation is completed

Example shows correct usage of the request, including
buffer ~ontents before and after the request
is given, and shows line(s) printed at the
terminal as a result of the request (console
output)

Basic Requests

The basic requests are presented in a functional order,
i.e., input requests before edit requests. Within the edit
requests, read is first and quit is last. The exact order is:

Invocation Character Name

a \f append
c \f change
i \f insert
r read
p print
= print line number
d delete
s substitute
w write
q quit

NOTE: You should remember when entering text that you must
terminate an input request with the \f escape
sequence. The qedx editor cannot respond to another
request until it is in edit mode. All lines,
includinq ones you intend as requests, are regarded
as input-until the \f escape sequence is given.-

D-2 CG40-01

Advanced Requests

The second group of descriptions consists of the advanced
qedx editing requests: extended edit requests and buffer
requests.

EXTENDED EDIT REQUESTS

Invocation Character

BUFFER REQUESTS

e
g
v

Invocation Character

a (append)

~ (APPEND)

b
m
x
n
"

Name

execute
global include
global exclude

Name

change buffer
move
buffer status
nothing
comment

a (append)

The append request enters input lines
create a new segment, or, appends these
addressed by the append request.

from the terminal to
lines after the line

Format:

Default:

Value of ".":

ADRa or a
TEXT
\f

TEXT
\f

a means append after current line.

set to last line appended.

D-3 CG40-01

a (append)

ExamQle 1:

ExamQle 2:

Buffer contents:

<buffer empty>

Request sequence:

a
This can be
a letter,
memo, report,
or user manual.
\f

Resulting buffer contents:

This can be
a letter,
memo, report,

"."-> or user manual.

Resulting console output:

None

Buffer contents:

This can be
a letter,
or user manual.

Request sequence:

2a
memo, report,
\ f
\.

D-4

or

a (append)

/letter/a
memo, report,
\f ,-

CG40-01

a (append)

Example 3:

Note:

Resulting buffer contents:

This can be
a letter,

"."-> memo, report,
or user manual.

Resulting console output:

None

Buffer contents:

the text editor,
qedx, is a
text editor

Request sequence:

2a
line-oriented
\f

or

Resulting buffer contents:

the text editor,
qedx, is a

"."-> line-oriented
text editor.

Resulting console output:

None

a (append)

laedx/a
line-oriented
\f

The request Oa can be used to insert text before
line 1 of the buffer.

D-5 CG40-01

C (CHANGE)

The change request enters input lines from the terminal and
inserts the new text in place of the addressed line or lines.

Format:

Default:

Value of " ". . .
Example 1:

ADR1,ADR2c or ADRc or c
TEXT TEXT
\f \f

TEXT
\f

c means change the current line~

set to last line input.

Buffer contents:

This can be
a letter, or
memo,
report
or user manual.

Request sequence:

3,4c
memo, report,
\f

or

R~sulting buffer contents:

This can be
a letter,

"."-> memo, report,
or user manual.

Resulting console output:

None

D-6

This can be
a letter,
memo
or user manual.

3c
memo, report,
\f

CG40-01

c (change)

Example 2:

i (insert)

1. (I NSERT)

Buffer contents:

The text editor,
qedx, is a
line-
oriented
text editor.

Request sequence:

3,4c
line-oriented
\f

Resulting buffer contents:

The text editor,
qedx, is a
line-oriented
text editor.

Resulting console output:

None

c (change)

i (insert)

The insert request enters input lines from the terminal and
inserts the new text immediately before the addressed line.

Format: ADRi or i
TEXT
\f

TEXT
\f

D-7 CG40-0l

i (insert)

Default:

Value of " " : .
Example 1:

"

Exam2le 2:

i (insert)

i means insert before current line.

set to last line inserted.

Buffer contents:

This can be
memo, report,
or user manual.

Request sequence:

2i
a letter, or
\f

Resulting buffer contents:

This can be
."-> a letter,

memo, report,
or user manual.

Resulting console output:

None

Buffer contents:

The text editor
qedx, is a
text editor.

Request sequence:

3i
line-oriented
\f

D-8

or

ImAm", I; I ~" I ..

a
\f

letter,

$i
line-oriented
\f

CG40-01

i (insert)

r (read)

R (READ)

Format:

Default:

Value of " ". . .

Resulting buffer contents:

The text editor,
qedx, is a

"."-> line-oriented
text editor.

Resulting console output:

None:

i (insert)

r (read)

The read request puts the contents of an
already existing segment into the buffer. This
request appends the contents of a specified
segment to the buffer after the addressed line.

r path or ADRr path

where path is the pathname of the segment to be
read into the buffer. The pathname can be
preceded with any number of spaces and must be
followed immediately by a newline character.

r path is taken to mean $r path.

set to the last line read from the segment.

D-9 CG40-01

r (read)

Example 1:

Example 2:

Buffer contents:

You can input:
text,
programs

Request:

2r extra or

r (read)

/text/r extra

where extra is a segment containing the following
text:

(such as
letters, niemos~
lengthy reports)

Resulting buffer contents:

You can input:
text,
(such as
letters, memos,

"."-> lengthy reports)
programs

Resulting console output:

None

Buffer contents:

<buffer empty>

D-10 CG40-01

r (read)

Note:

r (read)

Request:

r b.p11

where b.p11 is the following:

b: procedure;
c=d
end bi

Resulting buffer contents:

b: procedure;
c=d

"."-> end b;

Resulting console output:

None

The request
contents of
bufferw

"Or path"
a segment

is used to insert the
before line 1 of the

The read request sets the default pathname for the buffer to
the pathname given in the request, if the buffer was empty before
the request. (See also the write request below.) For example:

Buffer contents:

<buffer empty>

Request:

r filel

reads the- contents of file1 into the buffer: if you edit file1
and then issue a write request:

Request:

w

your edited version is written to the default pathname, file1.

D-l1 CG40-01

r (read) r (read)

However, the read request issued in a nonempty buffer resets
the default pathname for the buffer to null. Thus, you can read
an unlimited number of segments into the buffer, but when you
attempt to issue a write, you must specify a pathname, i.e.,
those segments are "protected" from being destroyed.

For example:

p (print)

P (PRINT)

Buffer contents:

<buffer empty>

Request:

r filel
r file2
w

qedx prints:

No pathname given.

w newfile

p (print)

The print request prints the addressed line or set of lines
on your terminal.

Format:

Default:

Value of " ". . .

ADRl,ADR2p or ADRp or p

p means print the current line.

set to
(i.e.,

last line addressed by the print request
the last line to be printed).

D-12 CG40-01

p (print)

Example 1:

"

Example 2:

Buffer contents:

a: procedure;
x=y;
q=r;
s=t;
end a;

Request:

2,4p or /x=/,/s=/p

Resulting buffer contents:

Same as above.

Resulting console output:

x=y;
q=r:

."-> s=t;

Request:

l,$p

Resulting buffer contents:

Same as abot-/e

Resulting console output:

a: procedure;
x=y;
q=r;
S=ti

"."-> end a;

D-l3

p (print)

CG40-01

p (print)

Example 3:

Buffer contents:

The text editor,
qedx, is a
line-oriented
editor.

Request sequence:

1,3p

Resulting buffer contents:

Same as above

Resulting console output:

The text editor,
qedx, is a

"."-> line-oriented

p (print)

There is' a special case of the print request that sets the
value of "." to a specific line and prints the line. This usage
needs no letter to tell qedx what operation to perform; you
merely type a valid address (generally a context address although
any type is permitted) followed by a newline character. In
context addressing, a search is done through the file starting
with the first line after the current line to the last line in
the file, and then from line number one to the current line (see
the discussion of context addressing in Appendix C).

Format:

Default:

Value of " ". . .

ADR

typing a period (.) prints the current line.

set to line addressed by request.

0-14 CG40-01

p (print) p (print)

Example 1:

Buffer contents:

aardvark
" ."-> emu

gnu
kiwi
rhea

Request:

/I\k/ or +2 or 4

Result:

kiwi

Example 2:

Buffer contents:

aardvark
" ."-> emu

gnu
kiwi
rhea

Request:

/I\a/ or -1 or 1

RA~'" .p •
-~""'~

aardvark

D-15 CG40-01

= (print line number) = (print line number)

= (PRINT LINE NUMBER)

This request prints the line number of the addressed line.

Format:

Default:

Value of ".":

Example 1:

ADR= or =

= means print the line number of the current
line.

set to line addressed by request.

a: procedurei
X=Yi
P=qi
end ai

Request:

/qi/=

Resulting buffer contents:

Same as above

Resulting console output:

3

D-16 CG40-01

= (print line number)

Example 2:

Example 3:

Buffer contents:

Same as above

Request:

$=

Resulting buffer contents:

Same as above

Resulting console output:

4

Buffer contents:

The text editor,
qedx, is a
line-oriented
text editor.

Request sequence:

/line/=

Resulting buffer contents: .

Same as above

Resulting console output:

3

D-17

= (print line number)

CG40-01

= (print line number) = (print line number)

Example 4

d (delete)

~ (DELETE)

Buffer contents:

The text editor,
qedx, is a

"."-> line-oriented
text editor.

Request:

=

Resulting buffer contents:

Same as above

Resulting console output:

3

d (delete)

The delete request deletes the addressed line or set of
lines from the buffer.

Format:

Default:

Value of " ". . .

ADR1,ADR2d or ADRd or d

d means delete the current line.

set to line immediately following
deleted.

D-18

the last line

CG40-01

d (delete)

Example 1:

Example 2:

Buffer contents:

a: procedure;
x=y;
q=r;
s=t;
end a;

Request sequence:

3,4d or /q=/,/s=/d

Resulting buffer contents:

a: procedure;
x=y;

"."-> et:ld a;

Resulting console output:

None

Buffer contents:

The text editor,
qedx, is a
line-oriented
text editor.

Request sequence:

3d

D-19

d (delete)

CG40-01

d (delete)

s (substitute)

§. (SUBSTITUTE)

Resulting buffer contents:

The text editor,
qedx, is a

"."-> text editor.

Resulting console output:

None

d (delete)

s (substitute)

The substitute request modifies the contents of the
addressed lines, by replacing all strings that match a given
regular expression with a specified character string.

Format:

Default:

Value of " ". . .

ADR1,ADR2s/REGEXP/STRING/
or

ADRs/REGEXP/STRING/
or

S/REGEXP/STRING/

(The first character after the "s" is taken to be
the request delimiter and can be any character
not appearing in either REGEXP or STRING. It
must be the same in all three instances.)

S/REGEXP/STRING/ means substitute STRING for
REGEXP in the current line.

to last line addressed by r~nll~~t_ --"":1,-----

D-2Q CG40-01

s (~ubstitute)

Operation:

Example 1:

Example 2:

s (substitute)

Each character string in the addressed line or
lines that matches REGEXP (see Section 3 for a
description of regular expressions) is replaced
with the character string STRING. If STRING
contains the special character &, each & is
replaced by the string matching REGEXP. The
special meaning of & can be suppressed by
preceding the & with the \c escape sequence.
However, when used in REGEXP the ampersand has no
special meaning.

Buffer contents:

The quick brown sox

Request:

s/sox/fox/

Resulting buffer contents:

The quick brown fox

Resulting console output:

None

Buffer contents:

The qedx text editor

Request:

s/qedx/(&)/

D-21 CG40-01

s (substitute)

Example 3:

Example 4:

Resulting buffer contents:

The (qedx) text editor

Resulting console output:

None

Buffer contents:

a=b
c=d
x=y

Request:

1,$s/$/;/

Resulting buffer contents:

a=b:
c=d;

"."-> x=y;

Resulting console output:

None

Buffer contents:

The text editor,
qedx~ is a
line-oriented
text editor.

D-22

s (substitute)

CG40-01

s (substitute)

w (write)

Request sequence:

1,$ s/"/?/

Resulting buffer contents:

?The text editor,
?qedx, is a
?line-oriented
?text editor.

Resulting console output:

None

s (substitute)

w (write)

The write request writes the addressed line or set of lines
from the buffer into a specified segment. The buffer and current
line are unchanged.

Format: w path or ADR1,ADR2w path

where path is the pathname of the segment whose
contents are to be replaced by the addressed
lines in the buffer. If the segment does not
already exist, a new segment is created with the
specified name. II the segment does already
exist, the old contents are replaced by the
addressed lines. The old segment contents are
destroyed.

D-23 CG40-01

w (write)

Default:

Value of ".":

Example 1:

w (write)

The pathname can be preceded by any number of
spaces and must be followed immediately by a
newline character. If path is omitted, the
default pathname for the buffer is used. If path
is omitted and the buffer has no default
pathname, the message "No pathname given" is
--~~~~~ ~~~ ~~ ~-~~~~ ~~ ~~~-" 10''" .&. 11'-'::"" gil"" I'''' g\". ... ~ "'" ~ ~ ",gr.,""".

w path is taken to mean 1,$w path.

unchanged.

A regular expression
searches for a
certain character
string in the buffer

Request:

w reg_exp

Resulting buffer contents:

Either the buffer contents replaces the
contents of the segment reg_exp in your
working directory (if the segment named
reg exp already exists) or reg exp is
created in the working directory and
contains the contents of the buffer. The
buffer contents are unchanged.

Resulting console output:

None

\

D-24 CG4Q-01

w (write)

Example 2:

Note:

q (quit)

g (QUIT)

Buffer contents:

The text editor,
qedx, is a
line-oriented
text editor.

Request sequence:

w editor

Resulting buffer contents:

w (write)

Same as above: now a segment named editor
has been created containing same contents as
the buffer.

Resulting console output:

The write request must be the last request on a line.

q (quit)

The quit request is used to exit from the editor and does
not itself to save the results of any editing that might have
been done. If you wish to save the modified contents of the
buffer, you must explicitly issue a write request.

Format: q

D-25 CG40-01

q (quit)

Default:

Note:

e (execute)

~ (EXl!:CUTE)

q (quit)

the quit request cannot have an address.

The quit request must be the last request on a
line.

e (execute)

The execute request invokes the Multics command system
without exiting from the editor. Whenever an execute request is
recognized, Lne remaining characters in the request line are
received as if you were out of qedx and at command level. The
execute request can be followed by any legal Multics command
line. However, you should not invoke qedx again.

Format:

Value of

Example:

" ". . .

e <command line>

Unchanged.

The request line:

e print report

can be used to print the segment in your working
directory named report. After the segment is
printed on the your terminal, you can continue
your work in qedx as though you had not issued
the execute request. (You are still "in" qedx.)

D-26 CG40-01

e (execute)

Note:

g (global)

f! (GLOBAL)

e (e.xecute)

The request line:

e list; print_mail

lists the contents of the your working directory
and prints the contents of your mailbox (if any).

If you wish to abort a command line invoked with
the execute request, you can issue the quit
signal and then invoke the program_interrupt (pi)
command (described in the Commands) to abort the
command line and restore control to qedx.

g (global)

The global request is used in conjunction with one of the
following requests: print, delete, or print line number. The d,
p, or = request operates only on those lines addressed by the
global request that contain a match for a specified regular
expression.

Format:

Default:

ADR1,ADR2gXjREGEXP/ or gX/REGEXP/

where X must be one of the following requests:

d to delete lines containing REGEXP
p to print lines containing REGEXP
= to print the line numbers of lines
containing REGEXP

The character immediately following the
request X is taken to be the regular
expression delimiter and can be any
character not appearing in REGEXP.

gX/REGEXPj is taken to mean 1,$gX/REGEXP/

D-27 CG40-01

g (global)

Value of " ". . .

Exa~pl~ 1:

Example 2:

g (global)

Set to ADR2 of request, if an address range is
given, or to the last line in the buffer if no
address is given.

Buffer contents:

eagle
whale
wolf
baby sea lion
star

Request:

gdjwj

Resulting buffer contents:

eagle
baby sea lion

"."-> star

Resulting console output:

None

Buffer contents:

The text editor,
qedx, is a
line-oriented
text editor.

Request sequence:

gpzxz

D-28 CG40-01

g (global)

v (exclude)

y (EXCLUDE)

Resulting buffer contents:

Same as above

Resulting console output:

The text editor,
qedx, is a
text editor.

9 (global)

v (exclude)

The exclude request is also used in conjunction with one of
the following requests: print, delete, or print line number.
The d, p, or = request operates only on those lines addressed by
the exclude request that do not contain a match for a specified
regular expression. --

Format:

Default:

Value of " ". -------.

ADR1,ADR2vX/REGEXP/ or vX/REGEXP/

where X must be one of the following requests:

d to delete lines not containing REGEXP
p to print lines not containing REGEXP
= to print the line numbers of lines not

containing REGEXP

The character immediately following the
request X is taken to be the reQular
expression delimiter and can be- any
character not appearing in REGEXP.

vX/REGEXP/ is taken to mean 1,$vX/REGEXP/

Set to ADR2 of request, if an address range is
given, or to the last line in the buffer if no
address is given.

D-29 CG40-01

v (exclude)

Example 1:

Example 2:

Buffer contents:

eagle
whale
baby sea lion
wolf
star

Request:

v=/w/

Resulting buffer contents:

Same as above

Resulting console output:

1
3
5

Buffer contents:

The text editor,
qedx, is a
line-oriented
text editor.

Request sequence:

vpyxy

D-30

v (exclude)

CG40-01

v (exclude)

Resulting buffer contents:

Same as above

Resulting console output:

line-oriented

v (exclude)

b (change buffer) b (change buffer)

! (CHANGE BUFFER)

The change buffer request designates an auxiliary buffer as
the current buffer. The previously designated current buffer
becomes an auxiliary buffer.

Format:

Value of " ". . .

bN or b(STR)

where N can be a single digit or character, and
STR is more than one number or character string;
N or (STR) is the name of the buffer that is to
become the current buffer.

Restored to the value of "." when this buffer
was last used· as the current buffer (i.e., the
value of "." is maintained separately for each
buffer and saved as part of the buffer status).
If a new buffer is created, then "" is
undefined.

D-31 CG40-01

m (move) m (move)

~ (MOVE)

The move request moves one or more lines from the current
buffer to a specified auxiliary buffer. The "moved" lines are
deleted from the current buffer. The addressed lines replace the
previous contents (if any) of the auxiliary buffer. The entire
old contents of the auxiliary buffer are lost.

Format:

Default:

Value of ".":

Example:

ADR1,ADR2m(X) or ADRm(X) or m(X)

where X is the name of the auxiliary buffer to
which the lines are to be moved.

m(X) means move the current line

Set to the line after the last line moved in the
current buffer.

Contents of:

Current Buffer

eagle
whale
baby sea lion .
wolf
star

D-32

Buffer B

a letter
a memo

CG40-01

m (move) m (move)

Request:

3,4mB or /bab/,/wo/mB

Resulting buffer contents:

Current Buffer

eagle
whale

"."-> star

"."->

Resulting console output:

None

x (buffer status)

! (BUFFER STATUS)

Buffer B

baby sea lion
wolf

x (buffer status)

The buffer status request prints a summary of the status of
all buffers currently in use. The name and length (in lines) of
each buffer is listed; the current buffer is marked with a right
arrow ,,->" to the left of the buffer name. Finally, each
buffer's default pathname, if any, is listed.

Format:

Value of " ". . .
x

Unchanged.

D-33 CG40-01

x (buffer st~tus) x (buffer status)

Example:

n (nothing)

!:! (NOTHING)

If you have created the additional buffers textl
and programl and have designated textl as your
current buffer, the output from the buffer status
request might be as follows.

157
32
53

(n\
\ v I demo

->(text1)
(program1)

This output indicates 157 lines in buffer 0 (the
initial buffer), 32 lines in text1 (the current
buffer) and 53 lines in programl. It also
indicates that the default pathname for buffer 0
is demo (in your working directory) and that
buffers text1 and programl have no default
pathnames.

n (nothing)

The nothing
buffer (i.e., sets

request addresses
the value of "."

a particular line in the
to a particular line). No
is not printed" other action is taken; i.e., the line

Format:

Default:

Value of " ". . .

ADRn or n

n is taken to mean .n

Set to line addressed by request.

D-34 CG40-01

n(nothing)

Example:

Buffer contents:

read
"."-> write

substitute
change
delete

Request:

/ch/n

Resulting buffer contents:

read
write
substitute

"."-> change
delete

Resulting console output:

None

n (nothing)

Note: This request is normally only used in macros (see Section
5) •

D-35 CG40-01

" (comment) " (comment)

" (COMMENT)

The comment request is generally used to annotate qedx
macros and also can be used to annotate online work. The editor
ignores the remainder of the request line.

Format:

Default:

Value of

Example:

" ". . .

ADR" or "

" is taken to mean "

Set to line addressed by request.

Buffer contents:

"This macro enters special headers
"for subroutine descriptions
b(heads)
a
<This is the macro>

Resulting console output:

None

D-36 CG40-01

APPENDIX E

qedx ERROR MESSAGES

This section lists the error messages that may be printed on
your terminal during a qedx session, the meaning of each message,
and describes what action you should take to remedy the error.

The error" messages described here are listed in four
categories: addressing errors, syntax errors, regular expression
errors, and miscellaneous errors. Within each category, the
messages are shown with the most frequently-received messages
first to the rarely-received messages last.

There are about 20 error messages that may be printed at
your terminal which are not described here. They are Multics
error messages (not qedx error messages) which may, however,
occur during a qedx session. They appear in the form:

qedx: <Multics error message>

The Multics error messages are
Multics Error Messages manual, Order No.

fully described
CH26-00.

in the

Below are some general suggestions to prevent common
mistakes that generate these messages, and explanations for why
you may receive an error message that seems to have no connection
to an ~ction you requested.

GENERAL PREVENTIVE SUGGESTIONS

One of the most common actions that results in an error
message is when you attempt to type something while Multics is
printing a response to your previous action.

E-l CG40-01

If you type
causes output to
Multics to finish
the line you type
this happens, type
line.

a qedx request (or any Multics command) that
be printed at your terminal, always wait for
printing before you type anything: otherwise

gets garbled and a syntax error results. If
a few @ signs and retype your request on a new

Also important to keep in mind is that when you type a
number of requests on a line an~ one re9u~st fails, the rest of
the line is ignored (the actlon speclfled In any succeeding
request{s) is not taken). Therefore, you must find out which
request failed, and reissue that request and any that followed
it.

There are cases where the error message you receive may seem
totally inappropriate in relation to the request you meant to
type. This is most often due to either a typographical error, or
thinking you are in input mode when you are really in edit mode.

For instance, often syntax errors in edit requests. occur
when you think you are in input mode. Depending on the first
letter of the line you type as input, qedx may interpret that
line as an incorrectly formatted edit request (when it really was
not intended as a request). In this case, you should type the
appropriate input request, and then proceed.

Another common error is when you try to type a regular
expression, either to locate a line or as part of a substitute
request, and forget one of the delimiters. Again, depending on
the first letter of your intended regular expression, qedx may
interpret that line as an incorrectly formatted request of some
kind, so the error message you receive may seem unrelated to your
intended action. Usually you can trace the problem back to a
typographical error.

ADDRESSING ERRORS

Search failed.
This means that a regular expression search has failed,'
the request was aborted, and your current line remains
the same as before you made the search. No action is
taken; your current line remains the same.

E-2 CG40-01

You should check to see if you have typed the regular
expression correctly.

Address out of buffer (too big).
This means that the address you specified is a line
that is not within the addressing range (e.g., if you
address line 20 and the buffer only contains 15 lines).
No action is taken; your current line is the same as
before you made the request.

You should:

1. Check to make sure that you have typed the address
correctly, that it does not exceed the length of
your buffer, and retype the address on a new line.

2. Check to make sure that you have addressed the
correct line: another way to address the line you
want is to use a regular expression to locate the
line containing a certain character string.

Address out of buffer (negative address).
This means that you have specified a line that is not
within the addressing range, e.g., if you address -5
(meaning go backwards in the buffer five lines) when
you are on line one. No action is taken; your current
line is the same as before you made the request.

You should:

1. Type a period to print the current line or an
equal sign to print the current line number.

2. You can avoid this error message by locating the
line with a regular expression instead of line
number (find the line by something you know to be
on it).

E-3 CG40-01

Address wrap-around
This means that you typed an address range that is not
valid. The pointer only moves in one direction, which
is toward the last line in the buffer. Thus the second
address in a range must be greater than the first. For
example, the print request 20,15p produces this error
message since the second line number specified is less
than the first. No action is taken and your current
line remains the same.

You should:

1. Check the addresses you typed in the range to make
sure that the second address is greater than the
first.

2. Try addressing the lines using a different form of
address; it may make more sense.

Address syntax error:
This means that whatever you typed has been interpreted
as a mistyped address. No action is taken; your
current line is the same as before you made the
request.

You should check to make sure that the request you
typed is a legal form of address, and type it again on
a new line.

SYNTAX ERRORS

Syntax error in substitute request.
This means that whatever you typed has been interpreted
as a mistyped substitute request. No action is taken
and your current line remains the same. The usual
cause of this message is leaving out the last
delimiter, e.g. s/a/b.

You should:

1. If you meant the line to be input, type an input
request and then proceed.

2. !I you meant to specify a regular expression,
surround it with delimiters.

E-4 CG40-01

3. For a substitute request, make sure that the
delimiter (character immediately following the
"s") is the same in all three instances, and that
you have remembered to type a closing delimiter.

Syntax error in regular expression.
This means that whatever you typed has been interpreted
as a mistyped regular expression. No action is taken
and your current line is the same as before you made
the request.

You should:

1. Check to make sure that the line yo~ typed is a
legal regular expression.

2. If there are special characters (for instance,
slashes) within your regular expression, make sure
that you have preceded them by the "\c" escape
sequence.

Syntax error in quit request.
This means that whatever you typed has been interpreted
as a mistyped quit request (q). No action is taken and
your current line remains the same.

You should:

1. If you meant the line to be input, type an input
request and then proceed.

2. If you meant to specify a regular expression,
surround it with delimiters.

3. If you really are attempting to quit, you cannot
precede the "q" with any form of address, and it
must be followed immediately by a newline
character. -

Syntax error in global request.
This means that whatever you typed has been interpreted
as mistyped global request. No action is taken and
your current line remains the same.

E-5 CG40-01

You should:

1. Make sure that you have included the request that
accompanies the global request, indicating what
action is to be taken globally.

2. Make sure that the regular expression has been
closed with a delimiter.

REGULAR EXPRESSION ERRORS

II undefined in regular expression.
This means that you attempted to locate a line using a
null regular expression without first defining a
regular expression. (A null regular expression (II)
means repeat the search for the last regular expression
typed.) No action is taken, and your current line
remains the same.

You should type the regular expression in its entirety.

Invalid use of * in regular expression.
This means that you have incorrectly (or inadvertently)
used the special character asterisk within a regular
expression.

You should:

1. Check the line vou typed--examine your usage of
the asterisk (see the discussion of special
characters).

2. If you want the asterisk to be a
the expression, precede it with
sequence.

Regular expression is too long.

literal part of
the "\c" escape

This means that whatever you typed was interpreted as a
regular expression that is too long. No action taken;
current line remains the same. (This message is very

E-6 CG40-01

You should:

1. Make sure that you are attempting to define a
regular expression and not make a substitution.

2. If it is a regular expression, shorten it.

Regular expression is too complex.
This means that whatever you typed has been interpreted
as a regular expression that is too complex. No action
is taken; current line remains the same. (This message
is very rare.)

You should:

1. Make sure that you are attempting to define a
regular expression and not make a substitution.

2. If it is a regular expression, redefine it more
simply.

MISCELLANEOUS ERRORS

Substitution failed.
This means that the substitute request you attempted
did not work. No action is taken and your current line
remains the same.

You should:

1. Make sure that you have typed the sequence of
characters to be replaced exactly as they appear
on the line (this is the most common mistake).

2. Make sure that you are on (or have specified) the
current line on which to make the substitution.

3. If you have used special characters (. * A. $) in
any part of the request, make sure you have. used
them correctly or preceded them (for literal
translation) with the "\c" escape sequence.

4. Make sure the delimiter that
immediately following the "s" is
that is used throughout the request.

E-7

the character
the delimiter

CG40-01

qedx: x not recognized as a request.
This means that qedx was expecting a request or an
address as the first letter of the line you typed, and
instead it encountered X, where X is anything other
than a request or address. Since X is not recognized
as a request, the rest of the line you typed is
ignored; your current line remains the same.

You should:

1. If you meant the line to be input, type an input
request and then proceed.

2. If you meant to specify a regular expression,
surround it with delimiters.

Buffer empty.
This is self-explanatory; you have issued a request and
qedx cannot carry it out because the buffer is empty.

You should:

1. Check to see if you forgot to put something in the
buffer with a read or input request.

2. See if you have inadvertently moved lines into
another buffer by typing either an "m" or "b"
request as the first letter on a line while in
edit mode, or type "x" to see if you have more
than one buffer.

3. If you are working with more than one buffer, you
may be in a different buffer than you think. Type
an "x", which lists your buffers and shows which
buffer you are currently working in.

4. Check to see if you typed a
beginning with a "d", in which
deleted a line or lines of text.

No pathname given.

"d" or
case

a line
you have

This means that you have issued a read request without
specifying a pathname, or a write request in an
instance where an accompanying pathname is required.
No action is taken, and your current line remains the
same.

E-8 CG40-01

You should:

1. Type an "x" to list buffers--you may be in the
wrong buffer.

2. Issue the
pathname.

.
request again, this time with a

3. Remember, if you write the buffer contents to an
existing pathname (that is, the pathname of an
existing segment), you overwrite the contents of
that segment.

Buffer (Name) not found.
This means that you have specified a request to act on
a buffer named (Name), which you have not created. You
are still on the same line in the same buffer as before
you made the request.

You should:

1. If the buffer you specified has a
than one character, make sure you
within parentheses. .

name of more
type the name

2. Type an "x" to display a list of all buffers,
their names, number of lines in each, and show
which buffer you are currently working in.

3. If the buffer you specified does not exist, you
can create it with the change buffer (b) request.

qedx: Command line too long.
This means that the command line that you used to call
qedx is too long (e.g., attempting to invoke qedx with
a command line of the form "qedx macro first_argument
second_argument ••• " where the combined characters in
the argum~nts is over 512 characters) 8

You should issue a shorter command line.

E-9 CG40-01

qedx: Pending work in previous invocation will be lost if
you proceed; .

do you wish to proceed?
This means that you have invoked qedx again without
first issuing a quit request to exit from your previous
invocation. This is not allowed in qedx. (You have
probably pressed the QUIT key and are attempting to
reenter qedx.)

You should type "no" when asked if yo·u wish to proceed,
which will take you back into qedx to the same line you
were on. Your work is not lost this way, and you can
continue as if you had not been interrupted.

If you type "yes" in answer to the
enter qedx anew--the buffer is empty
work is lost.

query above, you
and all previous

qedx: Entry not found.
Error in buffer args at

start.compin
level 2.

Current buffer is 0 at level O.

Buffer args not found.
Error in buffer exec at level 1.
Unexecuted lines in buffer:

bO
Current buffer is exec at level O.

These are two separate occurrences of the same buffer
error message. The first line in each case is
different because this is the line that shows what
problem caused this buffer error.

This message means that there was an error while
executing in a buffer and only occurs when you are
working with macros in more than one buffer.

You should type an "x" for buffer status, and see which
buffer you are in and which buffer you want to go to.

£-10 CG40-01

MISCELLANEOUS

(precedes user-typed lines)
1-2

"(comment) 5-10

$

see character deletion

(in regular expression)
3-11

(print last line) 3-6

& (ampersand) 3-18

* 3-10

• (print current line) 3-2

in regular expression 3-10

/ 3-9, 3-10

J J "'" A'" II .l-.L.l

= (print line number) 3-6,
D-16

@

see line deletion

\c 3-12

1\ 3-11

INDEX

A

a (append) 2-2, D-3

absolute line number 3-3

adding text 3-19

address 3-2

i-1

absolute 3-3, C-1
compound 3-14, C-4
context 3=9, C-2
default 3-14
range 3-5, C-5
relative 3-6, C-2
see also locating lines

addressing conventions
summary C-1

addressing mistakes, common
3-15

ADR (address) 3-2, D-1

advanced edit requests 5-1,
D-3

buffer requests 5-7
(comment) D-36

b (change buffer) D-31
m (move) D-32
n (nothing) D-34
x (buffer status) D-33

extended edit requests 5-2
e (execute) D-26
g (global) D-27

CG40-01

advanced edit requests (cont)
extended edit requests

v (exclude) D-29

B

b (buffer change) 5-8

basic request de~criptions
= (print line number) D-16

a (append) D-3
c (change) D-6
d (delete) D-18
i (insert) D-7
p (print) D-12
q (qu it) .. D- 2 5
r (read) D-9
s (substitute) D-20
w (wri te) D-23

buffer 1-5, 2-1
see also moving text with

buffers

buffers, creating and changing
5-8

C

c (change) 3-20, D-6

carriage return 1-2

character deletion 1-3

character string 3-9

characters
correcting mistyped 1-3

command level 1-3

context addressing 3-9

correcting typing errors 1-3

creating text
a (append) 2-2

current line 3-2

D

d (delete) 3-18, D-18

de£aulti in addressing 3-19

delete command 3-23

deleting lines
d (delete) 3-18

deleting segments
delete command 3-23

dprint command 3-24

E

e (execute) 5-2

edit existing document 3-1
r (read) 3-1

i-2

edit mode
see operation modes

editing examples 4-3

entering text 1-11

entering the editor 1-5

error messages
descriptions of E-1

errors
addressing C-7
typographical 1-3

example with input and edit
requests 4-5

exiting qedx 1-5
q (Quit) 1-5, 2-6

CG40-01

G

g (global) 5-4

g= (global print line number)
5-4

gd (global delete) 5-5

gp (global print) 5-4

H

helpful hints for new qedx
users 4-6

I

i (insert) 3-22, D-7

implicit print request 3-4,
D-14

input mode
a (append) 1-6
see operation modes

input requests vs. edit
requests 1-6

input terminator 1-6, 2-2

line number
absolute 3-3
relative 3-6

list command 3-22

listing segments
list command 3-22

locate and print
see implicit print request

locating and printing lines
3-1

locating lines
addressing 3-2

absolute line number 3-3,
C-1

range 3-5
compound 3-14, C-4
context 3-9, C-2
implicit print request

3-4
relative line number 3-6,

C-2
series of lines C-5

current line 3-2
pointer 3-2

logging in 1-1
login command 1-2

logging out
logout command 1-3

inserting text M
i (insert) 3-22

interrupting print request
3-8

invoking qedx 1-5

L

line deletion 1-3

i-3

m (move) 5-8

macros
see use of editor macros

moving lines (cut and paste)
5-8

moving text with buffers 5-12

CG40-01

N

n (nothing) 5-10

naming conventions 2-4

newline 1-2

null regular expression 3-13

o

operation modes 1-6
input vs. edit 1-6

edit 1-8
input 1-7

p (print) D-12

password 1-2

pointer 3-2

P

print command 3-22

print entire buffer 3-8

printing certain lines
$ (dollar sign) 3-6
= (equal) 3-6

printing segments
dprint command 3-24
print command 3-22

Q

q (quit) 2-6, D-25

qedx command description B-1

R

r (read) D-9

reading segments
r (read) 3-1

ready message 1-3

regular expression
null 3-13
special characters in 3-10

i-4

regular expression (REGEXP)
3-9

relative line number 3-6

repeated editor sequences
5-15

replacing text
c (change) 3-20

request descriptions D-1

requests 1-5

response from qedx 1-7

s

s (substitute) 3-15, D-20
delimiters 3-16

sample invocation 4-1

sample terminal session 4-1

saving your work
w (write) 2-3

search string 3-16

special characters 3-10
in user input

1-3
@ 1-3

CG40-01

special escape sequences 5-11

string
search 3-16
substitution 3-16

substitute request 3-15

substitution string 3-16

T

typing errors, correcting 1-3

u

use of editor macros 5-16
macro initialization 5-19
notes on macro use 5-23

v

v (exclude) 5-5

V= (global print line number)
5-6

vd (exclude delete) 5-6

vp (exclude print) 5-6

w

w (write) 2-3, D-23

white space 1-4

x

x (buffer status) 5-9

i-5 CG40-01

I
I
I
I
I
1
I
I
I
w
Z

-'
<.!)
z
o
-'
<!
I
::l
U

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

MULTICS
TITLE qedx TEXT EDITOR

USER'S GUIDE

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments wi!! be investigated by appropriate technical personnel
and action will be taken as required. Receipt of all forms will be
acknowledged; however, if you require a detailed reply, check here. D

FROM: NAME --
TITLE _______________ . _________ _

COMPANY ------~-----
ADDRESS __ __

ORDER No·1 CG40-01

DATED I . FEBRUARY 1983

DATE·

PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service will not deliver stapled forms

I II II I

I BUSINESS REPLY MAil
FIRST CLASS PERMIT NO. 39531 WALTHAM, MA02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATIONS, MS486

Honeywell

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

w
z
:::i
C)
z
o
J
c:(

~
::>
u

I
I
I
I
I
I ~
I J

I t:)

I Z .g
«
a
J
o
U.

Honeywell
Hone~ell Information Systems

in the U.S.A.: 200 Smitft Street, MS 486, Waltham, Massachusetts 02154
In Canada: 155 Gordon Baker Road, Willowdale, Ontario M2H 3N7

In the U.K.: Great West Road, Brentford, Middlesex TWa 9DH
In Australia: 124 Walker Street, North Sydney, N.S.W. 2060

In Mexico: Avenida Nuevo Leon 250, Mexico 11, D.F.

36283, 183, Printed in U.S.A. CG40-01

	000
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	D-14
	D-15
	D-16
	D-17
	D-18
	D-19
	D-20
	D-21
	D-22
	D-23
	D-24
	D-25
	D-26
	D-27
	D-28
	D-29
	D-30
	D-31
	D-32
	D-33
	D-34
	D-35
	D-36
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	i-1
	i-2
	i-3
	i-4
	i-5
	replyA
	replyB
	xBack

