

You can set the "severity level" with the -severityN control
argument so as not to be bothered by minor error messages; it is
up to you to determine what severity level you wish to ignore.
(The -severityN control argument affects only the compilation it
iss p e c i f i ed fo r .) 1ft he s ever i t Y 1 ev eli sse t to 4, for e x am pIe ,
all error messages are suppressed except severity 5 errors. Errors
of severity 5 cannot be suppressed. Use of the -severityN control
a r gum en t d uri n g the deb ug gin g ph a s e s 0 f pr 0 gram d ev e 10 pm en tis
not recommended, since these error messages can prov ide help in
uncovering bugs. If, during the course of an editing/debugging
session, . you suppress error messages below a certain level of
severity, new error messages below that level will not be printed
on your terminal, and you would not know about any such errors
that crop up as a result of debugging changes. As an alternative,
you can specify the -brief control argument in the event that you
want to see the messages in some form but also want to save time
at the terminal. The -brief control argument causes the compiler
to print a shortened form of all error messages. In the example
above, the error message whose long form was:

ERROR 116, SEVERITY 3 ON LINE 5
Syntax error. A binary operator is required in place of

the name goto 30

would appear in its shortened form as

ERROR 116, SEVERITY 3 ON LINE 5

Once an error message appears on your terminal in long form,
all further instances of that error message for a single compilation
appear in a shortened form, whether or not you specify the -brief
con t r 0 1 a r g urn en t . Th e - b r i e f con t r 0 1 a r gum en tis pro b a b 1 Y m 0 r e

. useful than the -severityN control argument.

I LANGUAGE OPTIONS

Multics FORTRAN is being brought into conformance with the
1977 ANSI standard for FORTRAN (FORTRAN 77). As this process is
carried out, certain incompatible changes to the language must be
introduced. To red uce the impact of these changes, two options
are available for controlling the interpretation of constructs
whose meanings are different under FORTRAN 77.

I
Under the ansi66 option, the "old" interpretation of

incompatible constructs is used. The interpretation corresponds
to the 1966 ANSI standard for FORTRAN with many extensions specific
to Multics FORTRAN.

3-6 CC70-01

LISTING SEGMENT

Use the -map or -list control arguments when you need a
listing of the program. Both control arguments produce a complete
1 ine-numbered source program listing, and the -list control argument
produces an assembly-like listing of the compiled program. Use
of the -list control argument significantly increases compilation
time (and the cost of yourlistinK) and should be avoided whenever
possible wi th the -map control argument. The -map control argu-ment
produces enough information to allow you to debug most problems
online. It creates a listing segment giving the correspondences
between 1 ine numbers and object locations, the correspondences
between names and octal object locations, and a list of statements
and object locations. It does not provide an assembly-like listing
of the object code itself. Both types of listing will appear in
a segment with the .list suffix

test. list

in the working directory. This segment can be printed online, on
the high-speed printer via the dprint command, or examined with a
text editor.

Format of listing Segment

The listing segment created by the fortran command invoked
with the -map or -list control argument begins with header lines
specifying the absolute pathname of the source segment, the version
of the FORTRAN compiler used, the date and time of compilation, I
the control arguments requested ~ and the options specified by I
%global statements. This information is particularly useful in I
the event that a bug turns up in a program that has been in use
over a period of time.

2/83 3-7 CC70-01B

After the header line, the following information is provided
for each program unit in the compilation:

2/83

• A line-numbered ASCII listing of the source segment of
each program unit. The compiler provides line numbers
if you do not.

• An alphabetical table of all names, except statement
labels, used in each program unit. Each· name appears
wi th its attributes, such as mode, storage class, and
location, and a list of all lines on which it is used.
If the code generator is not invoked, that is, the compiler
is invoked only with the -check control argument, only
names, except statement labels, appear in this table.

3-7 . 1 CC70-01B

• An alphabetical table of all names, except statement
labels, declared in the program but not used. If the
name is not a member of a common block, that name is
not allocated storage. Each name appears with its
attributes and the line on which it is declared.

• A table, in ascending numeric order, of all statement
labels in the program unit. Each label appears with
the type of statement with which it is associated, its
location if it is associated with an executable
statement, the line on which it is declared, and a list
of lines on which it is used.

• A table associating each executable source line with an
object location. The table is arranged by aGcending
line number. It is available only if the code
generator is invoked.

• A list of error messages for the program unit. All
error messages appear in their long form.

• An assembly-like listing of the object segment. Each
executable statement appears followed by the executable
instructions generated for that statement. Each
instruction appears on a line with the octal
representation of the instruction word, and an
assembly-like representation of the word including
operation-code, pointer-register, and modifier
mnemoni9's. All offsets in the assembly representation
are decimal numbers. If the address field of the
instruction uses the IC (self-relative) modifier, the
absolute text locations corresponding to the relative
address is printed in the remarks field of the line.
If the reference is to a constant or name you have
declared, the name is printed in the remarks field of
the line. The assembly-like listing is provided only
if you specify the -list control argument.

• An assembly-like listing of all constants allocated in
the object segment. This is provided only if you
specify the -list control argument. .

• A table showing the storage requirements for the object
segment. This table gives the size and offset for each
section of the object segment. The size of the stack
frame of the object segment is also given.

• An alphabetized list of all entrypoint names defined in
the compilation. Each entrypoint name appears with the
object segment offset for its external entrypoint, the
program unit in which it appears if it is not a main
entry point, the line on which it appears, and all
external reference names in other program units that
are resolved by it.

3-8 CC70-01

reference names in other program units that are resolved
by it ..

• An alphabetized list of all external references made
that are not resolved within this compilation, including
the lines on which they are referenced.

• An alphabetized list of all common blocks, the lines on
which they are declared, and the declared length for
each declaration.

• A list of all source segments used in the compilation,
including the source program specified in the fortran
command line, as well as any source segments referenced
by %include statements. (See the Multics FORTRAN manual
for a description of the %include statement.)

OPTIMIZATION

Use of the optimizer tends to reduce the execution time and
size of the program, while increasing compilation time. The
-optimize control argument should be used only after a program is
fully debugged. The -optimize control argument performs the
following global optimizations: removal of common subexpressions,
removal of invariant expressions from loops, strength reduction,
test replacement, constant propagations, and removal of assignments
made dead by other optimizations. (See Appendix B of this manual
for further information on these and other optimizations.)

The -safe optimize control argument prevents some code from
being taken out-of loops by the optimizer. All other optimizations
implied by the -optimize control argument are performed. Invariant
operations that are not always executed on entry into a loop are
not removed if it is possible that these operations could cause
the fixedoverflow, underflow, or overflow condi tions to be signalled.
Assignments and operations that could cause the zerodivide or
error conditions to be signalled are never removed from the
above-mentioned portions of a loop, whether or not the -safe optimize
control argument is specified. (See Appendix B of this manual
for information about the optimizer.)

The =optimize centrol argumeDt will give correct results for
most programs compiled without the -safe optimize control argument.
Only under the following--and very unusual--circumstances will
the -safe optimize control argument be necessary: if the -optimize
control argument causes a valid program to signal the fixedoverflow,
underflow, or overflow conditions, when such conditions were not
signalled for a nonoptimized program.

3-9 CC70-01

Optimization requires some additional room in the operand
region for the converter to store certain temporaries it creates.
Thus, some large programs will not compile with the -optimize
control argument. To circumvent this difficulty, the program may
be divided and placed into two segments. To maintain the speed
of calls under this circumstance, as many of the subroutines as
possible should be made local.

The -optimize control argument should not be used with the
-table 'control argument, since the optimizer may remove information
that would otherwise appear in the symbol table. Debug programs
before optimization.

IMPROVING PROGRAM SPEED

The FORTRAN compiler supports two types of program profiling.
The -profile control argument enables you to generate additional
code that meters the number of times each individual statement is
executed. The -long profile control argument enables actual timing
of execution speed -according to the system realtime clock a.nd
does actual page fault counts. The -long profile control argument
produces a more accurate representation- of execut ion speed and
overhead, but a program compiled with -long profile takes
considerably longer to execute than one compiled- wi th -profile
due to the overhead of actual measurement at runtime, as opposed

I
to time estimation at profiling time. The -long profile control
argument is also capable of showing 10 overhead and the time
taken by called routines, which -profile is unable to do.

After you have developed a program that compiles and executes
correctly, it may be desirable to speed the program up. The

I profiling arguments enable you to determine what parts of the
program, and the associa ted subprograms, take up the greatest
amount of execution time. After execution of a program, use the
profile command to print the execution count (see the description

I in the Commands and Acti ve Functions manua 1) • Statement costs
shown for optimized programs may be misleading, in that code may
be moved by the optimizer from one statement to another, and be
charged to the statement it is moved to rather than being charged
to the statement for which the code was created. See Appendix B
of this manual for more details about optimization.

12/83 3-10 CC70-01C

CARD-IMAGE AND FREE-FORM SOURCE PROGRAMS

The -card control argument is used for compiling source programs I
wri tten according to ei ther the ANSI66 or ANSI77 standard; that I
is, source programs that are not freeform. It specifies that the
source program is in card-image format, and it implies the -fold
control argument, which maps all uppercase letters not occurring
wi thin character-string constants to their lowercase form. The
-fold control argument alone is also useful for compiling source
programs that are input either partly or wholly in uppercase
characters. Programs with FORTRAN keywords in uppercase and
variables in lowercase, for example, will not execute correctly
in Mul tics unless compiled wi th the -fold control argument. If
you need to modify an existing program by adding new material,
such as a subroutine, in lowercase (typing it in from the terminal) ,
the program as a whole will not execute correctly if the older
stratum of the code is in uppercase characters and the modifications
are in lowercase. The -fold control argument is the only way to
accommodate situations like those just described, short of typing
the whole source over in lowercase, since the -fold control argument
distinguishes character-string constants from the rest of the code.
The -fold control argument is particularly useful, in short, for
compiling uppercase source programs as free-form format segments,
as if they were typed consistently in lowercase characters.

2/83 3-10.1 CC10-01B

DEBUGGING

There are two Multics system commands that are used in
debugging: the probe command and the debug command. (For more
information about debugging, see Appendix A of this manual, in
which debugging is described in detail; and the description in
the MPM Commands manual of the probe and debug commands.)

The -table control argument generates a full symbol table
giving the correspondences between source line numbers and object
locations, and a table with the name and location of each
variable. The presence of such information in the object segment
makes it possible to ask the debugger for variables by name. The
-table control argument is useful with the probe command and with
the debug command. Note, however, that the I-table control
argument adds significantly to the size of the object segment
created.

The -brief table control argument generates a partial symbol
table that gives the correspondences between line numbers and
object locations. Perhaps the most important function of the
-brief table control arg~~ent is that it permits runtime error
messages to get the line number where the error occurs. Also,
with either probe or debug, you can set "breakpoints" at
different lines of the program. A program compiled with the
-brief table control argument could also be debugged with the
debug command, but not with the probe command since with the
debug command it is possible to locate variables by octal address
(such information is available in the listing segment, if one
exists). It should be emphasized, however, that the debug
command is useful chiefly for machine-oriented debugging, and
that the probe command is useful chiefly for source-oriented
debugging. For debugging FORTRAN programs, the probe command is
recommended. The -brief table control argument is not useful for
debugging with the probe command because probe does not use
machine-level symbolic information.

In general, it is desirable to have a listing segment online
for a program that is to be debugged. If storage considerations
make this impossible, a hard copy of the source listing will
serve as well. If there is no such hard copy, debugging can
still be accomplished using a hard copy of the source program
alone if the program was originally compiled with the -table
control argument. If the program was not compiled with this
control argument, recompilation may be necessary, with
modification of the object code a possible result.
Debugging--even with probe--in the absence of some form of source
listing is not recommended practice. Although the probe command
itself looks at the program online, it is in general a good idea
to have a printed listing ready at hand for quick reference

3-11 CC70-01

during interactive debugging sessions at
Appendix A for a more detailed discussion
debugging issues.)

the terminal. (See
of these and other

The -table control argument may not produce the results you
expect if the -optimize control argument is specified in the same
compilation, since the optimizer may re~ove some of the
information that would otherwise appear in the full symbol table.
In the development stage, a 'program should be debugged thoroughly
before you compile it with the -optimize control argument. (See
"Improving Program Speed" and "Optimization," above.)

Note that the -list and -map control arguments (see "Listing
Segment," above) have no effect on the object code, and that in
order to use the debug and probe commands in debugging, the
-brief table or -table control arguments must be specified in
order to make the information presented in the listing available
to the debuggers.

Executing a FORTRAN Program

FORTRAN programs that are executed in the standard Multics
environment can take advantage of (and are governed by) the
powerful conventions of the Multics system. A FORTRAN program
can be called directly from command level, like any command,
mArely by glvlng its name to the command processor. (The
language at present does not easily handle arguments.) For
example, if test prime is a program that reads a number from the
terminal and determines whether it is prime, the program would be
invoked from command level as follows:

test prime

Input number to test:

4617

The number is not prime.

r 14: 1 6 O. 1 37 3. 1 42 1 8

If the program accesses storage system files or external'
storage devices, some advance preparation prior to execution may
be needed (see Section 5, Input/Output in Multics FORTRAN), but
the name of the program is always the means of executing it.

3-12 CC70-01

SECTION 4

CONSTRAINTS

The following paragraphs give the limitations imposed in Multics
FORTRAN on the size of redords, files, programs, statements, arrays,
common blocks, bound segments, and stack segments.

LENGTH AND FORM OF RECORDS

The length and form of a formatted record is determined by
the format specification and the output data transfer list used
to create the record. The number of records input by a formatted
read statement is a function of the number of list elements and
of the content of the format specification. The formatted read
may be either sequential or direct access. The number of records
output by a formatted write statement is a function of the number
of list elements and of the format specification.

On input, formatted records are padded on the right with as
many blanks as are required by the specified input format. A
record delimiter (slash) in the format statement causes a new
record to be read when it is processed.

The total number of computer words represented by the items
in an unformatted input list must not exceed the total number of
words represented by the unformatted output list that originally
created the record. The elements in both lists should be of the
same mode. The data modes must match; if you use mixed modes in
unformatted data transfer lists your program is in error and you
must be aware of the internal representations of the items involved,
as well as the difficul ties that stem from such use of mixed
modes.

Unformatted read and write statements read or write a single
unformatted record to or from the file. The maximum record length
allowed for an unformatted record is close to the size of a segment,
allowing for the overhead requirements imposed by the associated
1/0 module.

4-1 CC70-01

Files

In general, files contain records of varying length. There
is no default maximum record length. A maximum record length can
be attributed to a vfile blocked file (see Section 5 for a
description of attributes). In such a case all the records allocated
are of the same size, as far as the storage they occupy, although
the record may not take up all the storage available for it. You
must take care to ensure that the records in an existing file for
which you specify a maximum record length attribute are not longer
than the value specified. A write statement that creates a record
longer than the specified maximum is in error.

I 10 Transfer Limits

Multics FORTRAN 10 works through Multics 10 DIM (Device
Interface Module), which actually performs the 10 operations. To
this date, all DIMs are capable of transferring a segment or less
in a single operation. This limits the size of a binary 10 operation,
which is record oriented, to a segment or less. Thus, you may
not be able to do binary 10 of arrays, or combinations of arrays
that exceed this single-oper~tion size limit. This will be
particularly noticeable when you are using Very Large Arrays.

Programs

The maximum segment size is 261, 1 ~O words of storage. An
object segment (the compiled version of a main program and all
the associated subprograms) may not exceed this length.

Statements and Line Numbers

The maximum size of a single statement is 1320 characters.
The maximum number of statements in a single compilation should
not exceed 16383. This figure is the highest line number acceptable
tot h e com p i I era n d tot he in t era c t i v e deb u g gin g ut iIi tie s • Pro gram s
more than 16383 lines long can of course be compiled, and listing
segments created for them, but the lines above 16383 will not be

I accessible to the debuggers. This constraint is system-wide and
independent of FORTRAN. In addition, the debuggers cannot display
source lines located more than 262,144 characters from the start
of the source segment.

12/83 4-2 CC10-01C

Arrays and Common Blocks

For programs compiled with neither the la nor vIa options,
the limits of storage are: the combined size of the stack frame
(which contains automatic) of the compilation unit cannot exceed
62,000 words, and the size of the combined linkage section (which
contains static) cannot excee-d 128K. (N-ote that the agg-re-gate
size of static for binding is 16K.)

When the la option has been selected, individual array sizes
of 255K are supported in both static and automatic, with the
compiler collecting storage items and allocating storage areas
external to both the stack and area linker.. When the vIa parm
option has been selected, individual array parameters are limited
to 2**24 words of storage. When the vIa option is in effect, any
numeric array or numeric common block can be up to 2**24 words in
length, and character arrays can be up to 255K words. (The vIa
option turns on the la option as well, while the vIa parm option
does not.) -

Binder

The size of a program bound into a single segment by the
bind command (including storage for all variables, local or common,
that are bound with the program) must not be in excess of 261,120
words ..

When you bind a program--a main program and all its associated
subprograms--in a single obj ect segment wi th the bind command,
all the static variables must fit into 16,384 words of storage.
(For more information on the binder, see Section 1 of this manual
and the description of the bind command in the Commands and Active I
Functions manual.)

Stack Segment

The maximum stack frame size allowed by the FORTRAN compiler
is 62,000 words of storage. (See Section 1 of this manual for a I
description of the stack segment.) The automatic variables in a
program must therefore fit into 64K words of storage. The maximum
stack size is 261,120 words of storage, but when you exceed 60,000
words of storage, the storage condition is signalled. Each time
the storage condition is signalled an error message is printed.
If the user types "start," the stack is extended by an additional
48K words. When the maximum stack size is exceeded, the user's
process terminates.

12/83 4-3 CC70-01C

Normal Storage vs. Large Arrays and Very Large Arrays

Mul tics FORTRAN release 10.2 provides two extensi ve
enhancements to the intrinsic language storage capacity of FORTRAN.
Two storage forms, Large Arrays (LA) and Very Large Arrays (VLA),
provide the programmer with language addressable arrays that
individually may be up to 2**24 words in length, and you may have
aggregate storage available to your program in the range of 2**29
words.

12/83

Previous limits in force were:

Stack Frame Length

The stack frame, which holds all automat ic variables,
and compiler temporary variables, was previously limited
to 62,000 words per compilation unit.

Internal Static Length

Internal static is part of the combined linkage section
of the compilation/bind unit. The total length of a
combined linkage section is 128K words. Static (save
variables exist within static) is a portion of this
area, which also contains initialization and linkage
information. (Note that the aggregate size of static
for binding is 16K.)

Common block length

Two forms of common block length were in force. Named
common could be up to 255K (261120) words in length,
while blank common was 255K-50 words in length (261070
words). Blank common was always allocated by the system
at this maximum length.

The size limits for common, automatic, and static storage
were for the aggregate as expressed by the total size
for automatic of all temporaries and all automatic
variables for the compilation. Static was the aggregate
of all save variables, the linkage section, and the
definition/initialization section for the compilation
unit. Common was the aggregate storage size as assigned
by the programmer for each named common block, or the
total size of blank common within the compilation unit.

4-4 CC70-01C

LARGE ARRAYS AND VERY LARGE ARRAYS

Large Arrays are a compiler collection of the variables for
automatic and static storage into units that are individually
within the hardware addressing limits of the processor (255K),
but that may in total require an aggregate space larger than the
previous automatic and/or static lim~ts.

Wi th the la option in force, all arrays become members of
externally allocated storage areas and are managed by the compiler
for storage collection and the runtime system for allocation,
release, and initialization. There will be one or more segments
allocated by a fortran storage manager , either within the process
directory or a specified "quota" directory, for each static or
automatic variable. In the case of automatic variables, this
will occur on the same basis as the allocation of stack frames--the
automatic Large Arrays will be synonymous wi th the stack frame
that "owns" them.

With the vIa option in force, arrays may be declared to be
larger than a single segment of storage, and thus incapable of
being directly addressed by the hardware of the processor. in a
simple manner. This option enables the generation of extended
addressing code to permi t normal FORTRAN array addressing in a
language-transparent fashion. The current size limit for each
individual VLA is 2**24 words.

VLAs may exist for automatic, static, and common, with certain
restrictions. A VLA cannot contain characters, since the EIS
instruction set is incapable of crossing segment boundaries, and
Multics 10 system limits may restrict the size of a single binary
10 operation to less than 255Kwords. The last restriction limits
the ability to use implied do-loops on VLAs and prohibits their
unsubscripted use in a binary 10 list.

Automatic storage space allocated in LAs and VLAs is allocated
upon entry to a compilation unit and is released upon exit from
the compilation unit, either through a normal program return, a
stop statement, or a release back to a command level below the
start of the stack frame that "owns" the storage.

Static storage space allocated in LAs and VLAs is allocated
upon first entry to a compilation unit and is released by the
termination of the "owning" compilation unit or bind unit, through
either a delete or terminate command, or the supported system
subroutines.

12/83 4-5 CC70-01C

I

Common storage space allocated in VLAs is allocated upon
first entering a compilation unit and is released either by process
termination, or by the delete external variables or
set fortran common commands. At this time;-there is no binder/linker
support to enable binding and dynamic common creation of VLA common.

Permenent common storage cannot be used wi th VLAs because
permanent common storage can only be one segment in length.

ACCURACY OF REAL NUMBERS

Multics' hardware operations may sometimes cause equivalent
arithmetic expressions to produce slightly different computational
results. (Two arithmetic expressions are mathematically equivalent
if their mathematical values are equal for all possible values of
their primaries.)

This can be demonstrated with double-precision numbers. The
floating-point register (EAQ) represents a mantissa with 12 bits,
whereas double-precision numbers in storage have only 63 bits of
mantissa. Thus, the "same" number may have slightly different
values in the register and in storage, though this difference
will always be less than one part in 2**21 for single-precision
numbers and less than one part in 2**63 for double-precision numbers.

OVERFLOWS IN INTEGER MULTIPLICATIONS

The hardware instruction that performs integer multiplication
returns a double-precision integer resul t, but only the least
significant half of that resul t is stored. Thus, in a simple
assignment statement such as "i=j*k","i" wil: receive the expected
value only if the product of "j" and "k" fits in a single-precision
integer. Otherwise, "i" will get an unexpected value, but no
error will be diagnosed.

If you are willing to accept a slight increase in the object
size and execution time of your program, the compiler will insert
extra code after each integer multiplication to see if the result
exceeds single preclslon. When this option is chosen, the
"fixedoverflow" condition will be signalled whenever the result
of an integer multiplication is too large. (This is the same
thing that happens when the sum of two int.egers exceeds single
precision.) You may choose to ignore the condition and restart
the program, in which case the most significant half of the product
is merely discarded.

12/83 4-6 CC10-01C

Checking for single-precision overflows in integer
multiplication can be enabled by the -check multiply control argument
of the fortran command or by the check multiply option of a %global
or %options statement. This checking can be disabled by the
-no check mul tiply control argument or by the no check mul tiply
optlon. By default, checking is enabled unless optimization is
requested. (See Section 3 above for a description of the fortran
command and Section 1 of Multics FORTRAN for a description of the
%global and %options statements.

12/83 4-7 CC70":'01C

SECTION 5

INPUT/OUTPUT IN MULTICS FORTRAN

INTRODUCTORY COMMENTS

It is useful, for most purposes, to look at input/output
processing in Multics FORTRAN entirely in FORTRAN terms. The
Multics FORTRAN implementation takes advantage of the design of
the I/O system, which is intended to be, to a high degree,
transparent--invisibly at work behind the scenes, doing
input/output for you automatically. Your FORTRAN program doesn't
know anything about the I/O system, and in many common
programming situations you don't have to either. In fact, the
Multics IIO system can be ·seen as a group of commands issued
outside FORTRAN programs. These commands can be called in
conjunction with FORTRAN programs (see "Connection Outside the
Program," below for a discussion of that subject). More
typically, input/output processing is handled with little or no
direct intervention from you. The actual work of input/output:
which can vary a great deal in nature, is performed by a
subsystem called the FORTRAN runtime I/O routines, which is
completely transparent. What you need to know is that it is the
job of the FORTRAN runtime I/O routines to do input/output as
directed by your program.

If you do not know anything about the Multics I/O system,
and do not want to know anything about it, you can still do a lot
with Multics FORTRAN. The next part of this section, in fact, is
a guide to what you can do with little or no knowledge of the I/O
system itself. Later parts cover the use of the open statement
in FORTRAN, and hence describe some features of the I/O system;
and finally there is a description of the command interface to
the I/O system. If you are already familiar with the basics of
Multics FORTRAN input/output, you may want to skip ahead to the
subsection "Explicit Connection," which covers the use of the
open statement and connection outside the program, i.e., from
command level. If you are new to Multics, however, even a quick
scan of the fundamentals will be instructive.

5-1 CC70-01

Fundamentals of Input/Output

The unit number in the FORTRAN program is the means of
referring to a file from within the program. When FORTRAN was
first developed, a unit was a particular physical device, such as
a tape drive. Today, in Multics FORTRAN particularly, the unit
has no ironclad association with a particular device. Even the
units associated with devices by default can be explicitly
connected to any files you choose. In general, then, a unit is
something that has the property of being connected to or
disconnected from a file. Connection is simply the association
of the unit mentioned in your program with some physical storage
medium.

Many systems require you to take explicit action in order to
establish the connection between unit and file--often outside the
program itself. While Multics offers various ways of connecting
a unit outside the program, it is also possible for you to use
the defaults in a way that requires neither external connection
nor connection with open statements. If you are new to Multics
or new to FORTRAN or both, you may find it useful to stick to the
defaults and use only implicit connection at first. However,
input/output tasks may require you to tell the system what to do
in such detail that it is desirable to specify much of the
connection explicitly; so you can also connect with an open
statement or connect outside the program, as the standard
requires. What follows describes the various ways to connect a
unit in Multics FORTRAN, in terms of what you type at the
terminal or what instructions you must include in your programs.
There is only as much discussion of implementation details as is
absolutely necessary for clarity. (If you want to know more
about the implementation, especially of the FORTRAN runtime I/O
routines, see the Multics FORTRAN manual, Section 10.) "Implicit
Connection" below explains 1tlhat happens when programs do
input/output without using open statements to establish or change
connection. "Explicit Connection" explains the use of the open
statement, as well as preconnection from command level.

Implicit Connection

A unit is connected when a file is open and attached. In
Multics, connection is either implicit or explicit. The FORTRAN
Standard specifies that a unit is connected either by an open
statement or by preconnection. Preconnection may be a result of
job control language action or may be by processor-dependent
defaults. Implicit connection is an example of the latter.
Multics requires no job control action in connecting a unit.
Instead, in implicit connection, Multics does the work for
you--that is, the system takes all the steps necessary to connect
a unit. (This method of connection is an extension of Standard
FORTRAN.) Implicit connection takes place when there is no open
statement in the program and no external, explicit preconnection.

5-2 CC70-01

(External preconnection is discussed below under "io call attach
for Device Independence.")

A program that contains data transfer statements, but no
open statements, and which is not externally connected, results
in implicit connection of the units specified by the unit numbers
in the data transfer statements. The unit numbers 5 and 41
default to the terminal for input, ana unit nu-mbe-rs6 and 42
default to the terminal for output. Unit 0 is always considered
preconnected to the terminal for input/output, and cannot be
connected to any other device.

Input output

unIt number 5, 41 b, 4~

default
connection tty tty

The default connection in the absence of an open statement
has the same effect as if the program contained an open statement
of the proper form for the file or device which is associated
with the unit number, and the type of I/O which is being
requested in the I/O statement causing the default opening. The
basic examples given later in the section show approximately what
the "default open" looks like.

The really important point is that you need not take any
action outside the program itself in order to connect the unit.
If your program uses the default unit numbers, you need do
nothing to ,;onnect the unit other than to include a data transfer
statement in your program. But, to restrict yourself to the
default unit numbers is little better than it would be to have no
unit numbers at all. You have a hundred unit numbers available
in all (0 through 99). You could create a catalogue in your
hierarchy--for example a catalogue for input, and a catalogue for
output, each with a hundred files 0 through 99. Multics provides
greater flexibility still, since you can give files any names you
choose, just so long as they conform to the naming conventions
described in Section 1.

When you do not want to do input/output at the
terminal--which is probably most of the time--it is not
convenient to use default unit numbers. Implicit connection is
possible, however, with all one hundred unit numbers. Implicit
connection, when it is not to the terminal, is to a file in the
storage system. Therefore when you use any unit number other
than the five mentioned above, Multics connects by default to a

5-3 CC70-01

storafe system file - a file in virtual storage, by which is
usual y meant a segment in the hierarchy.

The Use of Implicit Connection

There are two main reasons to connect a unit implicitly:

• You want to do input/output from the terminal directly
and therefore use the default unit numbers

• Your program uses temporary files discarded at the end
of a run

NOTE: If the reason your program does not contain an open
statement is that it was written in accordance with
the FORTRAN Standard of 1966, we don't suggest that
you rewrite it merely to insert open statements. We
do suggest that you avoid doing input/output via
implicit connection, but rather connect the unit
externally (as explained below under "io call attach
for Device Independence"). If y'ou connect a uni t
outside the program you must disconnect it outside
the program also.

Input Data Transfers

When implicit connection is established by a read statement,
such as:

read (35, 100) i, j, k

if a file corresponding to unit 35 and containing data exists in
your working directory, the read will occur automatically; but
you must have done something to create the file prior to the
read, and it must have a name that corresponds to the unit
number--a name of the form filenn (with nn being the two-digit
representation of the unit numberT. In the case illustrated in
the read statement above r the file in the storage system would be
file35. If no such file exists, the read fails, and Multics
prints an error message that says you have attempted a read on a
file that isn't to be found. If for some reason there is a file
with the right name, but it is an empty file, a read statement
referencing it will also be in error.

Output Data Transfers

The handling of output data transfers is symmetrical with
that of input data transfers, but there is a difference. If a
file corresponding to the unit does not already exist, Multics
will create one, and data can be written into it. So files
referenced by output data transfer statements need not exist

5-4 CC70-01

beforetimes. If no file exists to write the output to, the one
Multics creates gets a name that corresponds to the unit number.
If an appropriately named file exists before the unit is
referenced in the program, the implicit connection takes place
just as in the case of an input data transfer from an existing
file, as explained above.

Explicit Connection

It may not always be convenient for you to write programs
that depend on the defaults for implicit connection. Units used
in existing programs written in accord with the ANSI Standard of
1966 (which did not allow open statements) may be connected from
outside the program at command level. When you write the program
using an open statement, you can specify the details of
connection with great precision within the program itself.

There are, broadly speaking, two ways to establish explicit
connection: 1) You can connect outside the program; 2) You can
use the open statement within the program. Because connection
outside the program requires greater knowledge of the Multics I/O
system than other methods do, it is postponed until the end of
this section. However,

IF YOUR PROGRAM MUST BE CONNECTED EXTERNALLY

because it was written that way, without open statements but
requiring something other than the standard system input/output
defaults, read "io call attach for Device Independence" and
ii'Whatis a I/O Switch~ii, below.

Using the Open Statement

The main use of the open statement is to connect a unit
explicitly within the program. You are encouraged to use it for
another reason: its presence in the source program can help to
make your intentions clearer to any later programmers who need to
maintain the code--such as yourself, two days from now.

Ordinarily, you will use the open statement to connect,
explicitly, units that are not con~ected to the terminal by
default. It is possible to use the open statement to connect any
unit to the terminal, but in general:

USE IMPLICIT CONNECTION FOR TERMINAL I/O

and reserve explicit connection with the open statement for units
that have no special default association.

5-5 CC70-01

*

Unit numbers other than 0, 5, 6, 41, and 42 are assumed to
identify storage-system files.

The open statement provides a great deal of power and flexibility
for input/output processing, but as a resul tit appears to be
very complicated to use. In fact, in order to use all the powerful
options of the open statement. you must have a more detailed
knowledge of the Multics I/O system than it is within the scope
of this manual to provide. Most FORTRAN programmers, however, do
not need such detailed knowledge of the inner workings of Multics,
and it is possible to get along perfectly well with a simple
subset of open statement options, such as that described in the
following pages.

WHAT IS IN THIS SUBSECTION

The examples and explanations that follow describe the forms
of the open statement minimally necessary for getting the results
obtained by the FORTRAN runtime I/O routines in doing implicit
connection for each of the types of FORTRAN input/output- There
are then examples of how to connect any FORTRAN unit (not only 0,
5. 6, 41, and 42) to the terminal. as well as how to connect
units 5, 6. 41, and 42 to storage-system files. Next. there are
some examples of how to use the open statement to connect tape
files.

In most of these examples, files opened for write are opened
with mode=iiinout", while files opened for read are opened with
mode="in". (The meanings of the various mode values are described,
along with other unit attributes, in the Multics FORTRAN manual,
and will not be repeated here unless required in order to make an
example completely clear.) This and other keywords specifying
attributes are listed below, before the examples begin.

2/83 5-6 CC70-01B

W-RITE READ

I DEFAULT MODE inout in

Shown above are the default and standard opening modes for
implicit connection. In most of the examples below, except in
opening units 5, 6, 41, and 42 for connection to the terminal,
you can substitute "out" for "inout," or "inout" for "in," with
no effect on the resul ts. If you plan to do both reads and
writes on the same file within one program, it is more efficient
to open the file once for mode:" inout" than to open it for one
mode, close it, and then reopen it for the other. Moreover, if
you want to open a file for inout, you can omit the mode:"inout"
specifier altogether, since "inout" is the default mode for open.
(Some of the more rarely used IIO modules do not allow "inout"
openings--an attempt to do it will get you an error message at
runtime saying "invalid mode specified for device," and you will
have to change the open statement to specify the particular mode
required.)

In the examples below, the open statement includes specific
unit numbers. In all cases, any other unit number might just as
well have been used, and in your own programs you may use any
valid number, except as noted and with the general exception that
no other unit may be substituted for examples using unit number
0; nor may unit 0 be substituted in examples using other numbers.
Unit 0 must be used to refer to the terminal.

Many examples show how to use the file specifier to designate
a storage-system file by pathname when the default file name is
not wanted. Use of a pathname to designate a file is usually not
a good idea, for you will have to edit your program if the file
is moved (for absolute pathnames) or if you change working directories
(for relative pathnames). However, when the file is to be created,
closed, and reopened later in the same run, and not used otherwise,
it may be appropriate to designate a file by pathname. Another
use of a pathname to designate a file is in applications in which
it is certain that the file will stay in the same place forever.
Finally, since the value given with the file specifier can be a
character expression, it can be uSed in cases where the FORTRAN
program asks for the name of a file, reads it into a character
variable, and then uses that variable as the file name
(file:char_variable_containing_name).

In examples that show how to turn on the standard carriage-control
conventions, the full form is used. If the + (overprint) carriage
control is not used in the program, the defer specifier can be
omitted.

12/81 5-7 CC70-01A

The err and iostat specifiers can be used in any open statement
except when specifying unit number 0, and these specifiers do not
appear in any of the examples.

If the associated file exists and is not empty, whether the
program reads from it or writes into it, the attributes expressed
in the open statement must correspond to the actual attributes of
the file. The main thing to keep in mind as far as your FORTRAN
program is concerned is that the file must be defined with attributes
that are consistent with the type of input/output processing you
plan to do. You would not, for example, attempt to do unformatted
input/output on the terminal, and an attempt to do so would produce
an error message from the FORTRAN runtime I/O rout ines. Consistency
of attributes does not in all cases mean identity--a full knowledge
of the vfile I/O module (beyond the scope of this manual) would
provide you with ways to change the apparent attributes of a file
for differing purposes. It should also be mentioned here that.
references, below, to the vfile I/O module and its control orders
describe operations performed by these runtime I/O routines. The
information is offered for clarity. Nothing in the sections on
the open statement requires you to take explicit action with respect
to vfile or any other I/O module. The attach specifier is supplied
with the-open statement, for use by those with sufficient knowledge
of the I/O system to use it, but no information about its use is
provided in this manual.

It is recommended that in general you use the open statement
when writing new programs, since it makes explicit in the source
what you intend your program to do~ It will in many instances do
little or nothing else; but while the presence of the open statement
may not materially alter the behavior of a program in execution,
the open statement is helpful to you for future reference and
will be similarly helpful to the next generation of programmers
to use your programs. The open statement supplements the implicit
method of connection in essentially two ways: 1) it allows you
to include in your program explicit instructions to do what the
FORTRAN runtime I/O routines would otherwise do for you; 2) it
allows you to alter the default connection.

12/81 5-8 CC70-01A

with
"I/O

the open
Control

A complete list of specifiers available
statement appears, with explanations, under
Statements" in Section 5 of Multics FORTRAN.
themselves are listed for quick reference below.

The specifiers

access

binary stream
blank
carriage
defer
err
file

form
iostat
ioswitch
mode
prompt
recl
status
unit

The following are some examples
statements, showing which forms to
connection.

TERMINAL READ/WRITE (UNIT 0)

of standard forms
use for what

of open
kind of

Unit 0, which is used in print and input statements, and in
read statements that do not specify a unit number, is the easiest
to use. To use the open statement to open unit ° explicitly in
the same way the FORTRAN runtime I/O routines do it in implicit
connection, use the statement:

12/81 5-8.1 CC70-01A

I

This page intentionally left blank.

12/81 CC70-01A

open (0)

The defer, carriage, and prompt specifiers are the only
others that may appear. To open unit 0 with standard carriage
control conventions, use:

open (0, defer=.true., carriage=.true.)

TERMINAL READ (UNITS 5 AND 41)

When you use one of these units in a read statement, the
FORTRAN runtime I/O routines assume that the unit number refers
to the terminal unless you open the unit explicitly for
connection to some other file or device. To use the open
statement to open unit 5 explicitly in the same way that the
FORTRAN runtime I/O routines do it in implicit connection, use an
open statement of the form:

open (5, mode="in", form="formatted", access="sequential")

Substitute 41 for 5 to open unit 41.

You may use the prompt specifier
prompting is required.

(prompt=.true.) if

TERMINAL WRITE (UNITS 6 AND 42)

When you use one of these units in a write statement, the
FORTRAN runtime I/O routines assume that it refers to the
terminal unless you explicitly use the open statement to connect
it to some other file or device. To use the open statement to
connect unit 6 explicitly the same way that the FORTRAN runtime
I/O routines do it in implicit connection, use an open statement
of the form:

open (6, mode="out", form="formatted", access="sequential")

The defaults for these units are defer=.false. and
carriage=.true., which means that all the standard carriage
control characters except + will work. For full carriage
control, including +, use an open statement of the form:

open (6, mode="out". form="formatted" ..
access="sequential", defer=.tru~.)

To completely disable carriage control, use
statement of the form:

open (6, mode="out", form="formatted",
access="sequential", carriage=.false.)

Substitute 42 for 6 to open unit 42.

5-9

an open

CC70-01

FORMATTED SEQUENTIAL I/O TO STORAGE SYSTEM FILES

Formatted sequential input/output to a storage system file
is what the FORTRAN runtime I/O routines assume you want when you
use a simple formatted read or write such as:

read (45, 1 00) i, j, k

NOTE: The examples below apply to all units except 0, 5, 6,
41, and 42.

For input, use an open statement of the form:

open (45, mode="in", form="formatted")

For output, use an open statement of the form:

open (45, mode="inout", form="formatted fl
)

You may include the specifier access="sequential" for
clarity if you wish. Carriage control is normally disabled on
storage system files, but you can turn it on by using the
specifiers defer=.true. and carriage=.true. Carriage control is
not normally useful or desirable when writing to a storage system
file, however.

The examples given above refer to a file in your working
directory named file45. If you open for out or inout when the
file does not exist, a vfile stream unstructured file is created
with that name. The vfile control order -extend is vsed to
allow you to append new output to the file by positioning first
to the end (that is, by reading until you get to the end of the
file) and then writing; you should open the file for
mode="inout" if you intend to make use of this feature.

If you wish to open a file under a name other than file45,
you may use the specifier file="<pathname>", where the pathname
is the relative or absolute pathname of the desired file, as in

open (45, mode="in", form="formatted",
file=">udd>Proj>Person>datafile")

You may use the recl specifier to define a maximum record
length if you so desire. If you use the recl specifier when the
file exists, the file must already have a defined maximum record
length, and the length specified in the open statement must match
the length already associated with the file. The file is opened
with the vfile controls -no end and -extend, so that information
already in the file will no~ be destroyed by the opening. You

5-10 CC70-01

must position to the end of file as described above if you want
to append data to the file.

If you use the recl specifier when the file does not exist,
and it is being opened for out or inout, it is created as a
vfile blocked file with a maximum record length as specifiede
(See the MPM Subroutines manual for a complete description of the
vfile I/O module. If you do not understand the relationship
between files and I/O modules, see "What's a I/O Switch?" below.)

UNFORMATTED SEQUENTIAL I/O TO STORAGE SYSTEM FILES

Unformatted sequential I/O to a storage system file is what
the FORTRAN runtime I/O routines assume when you use a simple
unformatted read or write, such as:

read (47) i, j, k:

This form of read statement gives the most compact representation
of data for temporary files, but it is machine-dependent and
recommended only if the data need not be transported from Multics
to other systems. This form of the read statement also places a
heavier burden on the programmer, since there is no checking of
data types (see the Multics FORTRAN manual for fuller details).
The examples below a~ply to all units except 0, 5, 6, 41, and 42.

For input, use an open statement of the form:

" , '" (A'7 "~e-".;V'I'"
VJ:Jcu \"tl, lUVU. - .Ll.L J

For output, use an open statement of the form:

open (47, mode=" inout")

You may use the specifiers access="sequential" and
form="unformatted" for the sake of clarity. You may not use the
carriage, defer, or prompt specifiers.

The example given refers to a file named file47 in your
working directory. If you open a file for out or inout when l~
does not exist, a vfile sequential file is created with that
name. When the file already exists, the vfile control order
-extend is used, so that you can add output to the file by
positioning first to the end (that is, by reading until you get
~o the end of the file), and then writing; you should open the
file for inout if you plan to do this.

5-11 CC70-01

If you wish to open a file with a name other than file47,
you may include the specifier file="<pathname)", where pathname
is the absolute or relative pathname of the desired file, as in

open (47, mode="inout", file="mydata")

which refers to a file named mydata in your working directory.

You may use the recl specifier to specify a maximum record
length. If you use the recl specifier when the file exists, the
file must already have a defined maximum record length, and the
length specified in the open statement must match the length
already associated with the file. The file is opened with the
vfile controls -no end and -extend, so that information already
in the file will not be destroyed by the opening. You must
position to the end of file as described above if you want to
append data to the file.

If you use the recl specifier when the file does not exist,
and you are opening it for out or inout, it is created as a
vfile blocked file with a maximum record length as specified.
(See the MPM Subroutines manual for a complete description of the
vfile I/O module. If you do not understand the relationship
between files and I/O modules, see "What's a I/O Switch?" below.)

DIRECT ACCESS FORMATTED I/O TO STORAGE SYSTEM FILES

Direct access formatted I/O is what the FORTRAN runtime I/O
routines assume when you use direct access formatted reads or
writes such as:

read (49' 2, 1 00) i, j, k

NOTE: The examples below apply to all units except 0, 5, 6,
41, and 42.

For input, use an open statement of the form:

open (49, mode="in", access="direct", form="formatted")

For output, use an open statement of the form:

open (49, mode="inout", access="direct", form="formatted")

The example refers to a file named file49 in your working
directory. If you open the file for out or inout when it does
not exist, a vfile keyed sequential indexed file is created with
that name. If the file-exists, the vfile control -extend is
used so that the data in it will not be destroyed by the opening.

5-12 CC70-01

If you wish to open a file with a name other than file49,
you may use the specifier file="(pathname)" where pathname is the
relative or absolute pathname of the desired file, as in:

open (49, mode="in", access="direct",
form="formatted", file=">udd>Proj>Person>data")

which refers to
>udd>proj>Person.

a file named data in the directory

You may use the recl specifier to specify a maximum record
length, if you desire. If you use the recl specifier when the
file exists, the file must already have a defined maximum record
length attribute, and the length specified in the open statement
must match the length already associated with the file. The file
is opened with the vfile controls -no end and -extend so that
information already in the file will not be destroyed by the
opening.

If you use the recl specifier when the file does not exist,
and it is being opened for out or inout, it is created as a
vfile blocked file with a maximum record length as specified.
(See the MPM Subroutines manual for a complete description of the
vfile I/O module. If you do not understand the relationshi~
between files and I/O modules, see "What's a I/O Switch?" below.)

The use of recl is recommended if all records are known to
be about the same size, since blocked files can be manipulated
more efficiently than indexed files. If the records differ in
size, use of recl will waste space but speed processing. You
will have to decide for yourself which alternative gives better
overall use of resources for each particular case. If the
maximum record length is unknown, recl cannot be used.

DIRECT ACCESS UNFORMATTED I/O TO STORAGE SYSTEM FILES

Direct access unformatted I/O is what the FORTRAN runtime
I/O routines assume when you use a direct access unformatted read
or write, such as:

read (51 '4) i, j, k

This version of the read statement gives a fairly compact
representation of data for temporary files, but it is
machine-dependent and so is recommended only if the data will not
be transported from Multics to other systems. This read
statement also places a heavier burden on the programmer, since
there is no checking of data types (see the Multics FORTRAN
manual for fuller details).

5-13 CC70-01

NOTE: The examples below apply to all units except 0, 5, 6,
41, and 42.

For input, use an open statement of the form:

open (51, mode="in", access="direct")

For output, use an open statement of the form:

open (51, mode="inout", access="direct")

You may add the specifier form="unformatted" for clarity. You
may not use the carriage, defer, and prompt specifiers.

The example above refers to a file named file51 in your
working directory. If you open a file for out or inout when it
does not exist, a vfile keyed sequential indexed file is created
with that name. The vfTle control order -extend is used so that
if the file already exists the data in it will not be destroyed
by the opening.

If you wish to open a file with a name other than file51 •
you may use the specifier file="<pathnname)" where pathname is
the relative or absolute pathname of the desired file, as in

open (51, mode="in", access="direct", file="my_data")

which refers to a file named my_data in your working directory.

You may use the recl specifier to specify a maximum record
length, if you desire. If you use the recl specifier when the
file exists, the file must already have a defined maximum record
length attribute, and the length specified in the open statement
must match the length already associated with the file. The file
is opened with the vfile controls -no end and -extend so that
information already in the file will not be destroyed by the
opening.

If you use the recl specifier when the file does not exist
and is being opened for out or inout, it is created as a vfile
blocked file with a maximum record length as specified. (See the
MPM Subroutines manual for a comnlete descrintion of the vfile
I/O module. If you do not understand the relationship between
files and I/O modules, see "What's a I/O Switch?" below.)

The use of recl is recommended if all records are known to
be about the same size, since blocked files are processed with

5-14 CC70-01

less cpu time than indexed files. If the records differ in size
use of recl will waste space, but speed processing. You will
have to decide for yourself which alternative gives better
overall use of resources for each particular case. If the
maximum record length is unknown, recl cannot be used.

BINARY STREAM FILES

Binary stream files are a Multics-specific file type. They
provide a way of getting 36-bit words of data from a file in the
storage system to your program and back. The use of binary
stream files is not recommended--they are, moreover, usually
unnecessary, in that there is little you can do with them that
you can't do with FORTRAN unformatted files. In any case, only
files created as binary stream files by FORTRAN should be read as
binary stream files. Essentially, if you have to look up the
information on how to open a binary stream file, you shouldn't be
using it. However, for those of you who insist upon finding new
and different ways to get yourselves in trouble, here goes:

You may open a binary stream file for either direct or sequential
I/O. If you open it for direct I/O, each word is considered a
separate record.

For sequential input, use an open statement of the form:

open (99, mode="in", binary stream=.true.)

For direct input, use an open statement of the form:

open (99, mode="in", access="direct", binary stream=.true.)

For sequential output, use an open statement of the form:

open (99, mode="inout", binary_stream=.true.)

For direct output, use an open statement of the form:

open (99, mode="inout". access="direct".
binary stream = ~true.) .

The examples refer to a file named file99 in your working
directory. If you open a file for out or inout when it does not
exist, a vfile unstructured stream file is created with that
name. If the -file already exists, the vfile control order
-no trunc is used, so that information in the fTle will not be
des~royed by the open statement. This allows you to append new
output to the file, by positioning to the end (that is, by
reading until it gets to the end of the file) and then writing;

5-15 CC70-01

the file should be opened for inout if you intend to use this
method.

If you wish to open a file with a name other than file99,
you may use the specifier file="(pathname)", where pathname is
the relative or absolute pathname of the desired file, as in:

open (99, mode="in", binary stream=.true., file="bad_idea")

which refers to a file named bad idea in your working directory.

CONNECTING NONSTANDARD UNITS TO THE TERMINAL

The easiest way to connect a nonstandard unit (that is, a
unit other than 0, 5, 6, 41, or 42) to the terminal is to use

open (55, form="formatted", io_switch="user_i/o")

This opens FORTRAN unit 55 connected to the terminal for input
and output. The specifiers access="sequential" and mode="inout"
may be added. If you want to open the unit for input only, you
may specify mode="in", in which case io switch="user input" may
be used; if you want to open only for output, you may specify
mode=tlout", in which case the io switch may be either
"user output" or "error output". All- four named io switches
usually refer to the terminal, but if you are using fiTe output
or discard_output commands the distinction may matter. -

If you want to be truly fancy, you can use

open (55, form="formatted", attach="syn_ user_i/o n)

Again, you may use the other io switch names if mode is set to
correspond.

When you open a nonstandard file as connected to the
terminal, carriage control for terminal I/O is disabled. To get
standard carriage control, add the specifiers carriage=.true. and
defer=.true. to the open statement. You may also use the prompt
attribute if you desire.

CONNECTING A DEFAULT TERMINAL UNIT TO A FILE

The default terminal units are 0, 5, 6, 41, and 42. Unit 0
must always be connected to the terminal; units 5, 6, 41, and 42
may be connected to files. Heaven only knows why you would want
to connect one of these to a file, as there are 95 other units
available. On the other hand, since there's always someone, this
section describes how to do it. Simply use the normal form

5-16 CC70-01

described above for the particular type of I/O you want, using
the unit number (5, 6, 41, 42) desired, but add one of the
specifiers file="<filename>" or attach="vfile <filename>", where
filename is the name of the file you want. This will let FORTRAN
know that you want the unit to refer to a file rather than to the
terminal. Note that the normal rules for carriage control for
these unit numbers apply. If you use unit 6 Or 42, and you don't
want carriage control, or the opening is not for sequential
formatted output, include the specifiers defer=.false. and
carriage=.false. If you are opening unit 6 or 42 for sequential
formatted output and you want carriage control, include the
specifiers defer=.true. and carriage=.true. For example:

open (5, access="direct", form="unformatted", mode="in",
attach="vfile file05")

open (6, access="sequential", mode="iriout",
form="formatted",

carriage=.false., defer=.false.,
file=">udd>myproj>me>foo")

CONNECTING 6 OR 42 FOR TERMINAL INPUT, 5 OR 41 FOR TERMINAL OUTPUT

Don't be ridiculous. If you really want to do this, you'll
have to figure it out for yourself. We won't be a party to such
foolishness.

CONNECTIONS TO TAPE FILES

Each of the tape I/O modules is different, and has different
capabilities. The examples given below are intended as skeletons
only, not as complete cookbook statements to suit every need.
Before using a tape I/O module you should read the documentation
for it in the MPM Peripheral I/O Guide, to determine whether any
additional arguments are needed in the attach description. These
are to be placed in the examples where the marker <ADDED ARGS>
appears.

Note that some of the tape I/O modules impose restrictions
upon you beyond those imposed on a given opening by FORTRAN. For
example, tapes can be opened only for sequential I/O. As this is
FORTRAN's default, the access specifier can be omitted. In
addition, at the time of this writing, tape nstd requires that
all records be an integral number of words (a -multiple of 4
characters) long; tape ibm and tape ansi do not allow certain
positioning operations,- in-particular, the backspace operation;
and tape ibm , tape ansi, and tape mult do not allow inout
opening. - ThIs list of restrictions is not meant to be
exhaustive, and may change in any case, so you should check MPM
Peripheral I/O.

5-17 CC70-01

The form specifier may be given as either "formatted" or
"unformatted." with unformatted the default. Formatted tape ansi
is recommended if you intend to transport the tape to a non-Multics
system.

For input use an open statement of the form~

open (1 D , mode="in", attach="tape ansi volDD1 -nm file name
<ADDED ARGS>") - -

open (1 D , mode="in", attach="tape ibm volDD1 -nm file name
<ADDED ARGS>") - -

open (1 0 , mode="in", attach="tape_mult volDD1
<ADDED ARGS>") -

open (10, mode="in", attach="tape_nstd_ volOD1
<ADDED ARGS>")

For output, use an open statement of the form

open (11, mode="out", attach="tape_ansi_ volD01 -nm
file name

-cr -ring <ADDED_ARGS>")

open (11, mode="out", attach="tape ibm volDD1 -nm file name
-cr -ring <ADDED_ARGS>") -

open (11, mode="out", attach="tape mult volDD1 -write
<ADDED ARGS>")

open (11, mode="inout", attach="tape_nstd volDD1 -write
<ADDED ARGS>")

Using the Inquire Statement

Some files cannot be read or written by direct access in a
FORTRAN program. The inquire statement enables you to determine,
from wi thin the program f the opening modes for a file. When a
file is already connected to a uni t, the inquire statement can
ascertain the attributes of the unit. Use of the inquire statement
is explained in detail in the Multics FORTRAN manual.

2/83 5-18 CC70-D18

io call attach for Device Independence

Full coverage of this subject is beyond the scope of this
manual. A quick overview should be given, though. For this example 1

formatted sequential input is assumed. The methods are the same
for other types of 1/0, but you must make sure that the file or
device you attach externally can support the type of 1/0 you
intend to do. For example, you cannot open a uni t for direct access
1/0 if it has been attached to a tape file. and you cannot-open a
unit forunform-atted 1/0 if it has been attached to the termih-al.-

In the examples for tapes the flag <ADDED ARGS) means that
you may need to supply additional arguments. yOU should read the
tape module documentation in MPM Peripheral 1/0 Manual before
using a tape module; that will tell you what the possible arguments
are.

2/83 5-18.1 CC70-01B

This page intentionally left blank.

2/83 CC70-01B

One feature of the Multics FORTRAN runtime I/O package is
that when it closes a file it only undoes those things which it
did. Thus, if you externally attach unit 20 to a vfile named
>udd>proj>me>foo, all FORTRAN programs which you run which use
unit 20 will reference that same file, until you detach unit 20
using the iocall command, until YQur run uni:r--(if you t re using
them) ends, or until your process terminates. Be sure you detach
anything which you attach, unless this file-sharing is what you
want.

All the examples use unit 20. You may substitute any other
unit you like. The file and attach specifiers cannot be used in
the open statement inside the program if you attach the file
externally.

Example 1: Using FORTRAN unit names

If the program contains the statement:

open (20, form="formatted", mode="in", prompt=.true.)

or uses unit 20 for formatted sequential input with implicit
opening, then executing the command:

io_call attach file20 syn_ user i/o

before running the program will cause read statements referencing
unit 20 to take input from the terminal (with prompting, if the
open statement was used); the command:

io call attach file20 vfile >udd>proj>me>data

will cause :ead statements referencing unit 20 to take input from
the storage system file named >udd>proj>me>data; and the command:

io call attach file20 tape_ansi vol475 -nm data
<ADDED ARGS>

will cause read statements referencing unit 20 to take input from
the file named data on the ANSI Standard format tape with the
label vo1475. Don~t forget to say:

io call detach file20

when you're done.

Example l: Using mnemonic io switch names

If you don't want to have to remember what file20 is, as
compared with file19 and file21, you can use more mnemonic names,

5-19 CC70-01

by using the ioswitch specifier in the open statement. Assuming
the same files as example 1, you could say, in the program:

open (20, form="formatted", mode="in", prompt=.true.,
ioswitch="input_data")

Then, to take data from the terminal, you would use the
command:

io call attach input_data syn_ user_i/o.

before running the program. To use the storage system file, use:

io call attach input_data vfile >udd>proj>me>data

Finally, for the tape file, use:

io call attach input data tape_ansi vol475 -nm data
<ADDED ARGS>-

When you do it this way, references to unit 20 in other
FORTRAN programs won't get the same connection (unless the other
programs also open with ioswitch="input_data"); but you should
still remember to say:

io_call detach input data

when your program ends.

A vfile or tape file need not exist at the time you execute
io call to attach to it, so this method can also be used to gain
device independence for files which you plan to create in the
run. If you're creating the file on a tape, remember to check
MPM Peripheral I/O to see what arguments you need. In
particular, you need at least -ring (for tape ansi and tape ibm)
or -write (for tape mult and tape nstd) before you can wrTte on
the tape at all. vfile- also can take added arguments, but in
most circumstances you'll meet in FORTRAN you shouldn't need
them. If you are curious, see the vfile documentation in MPM
Subroutines.

And don't forget "io call detach".

io call open for Complete External Connection

It is possible to use the io call command to open a file
outside the program. You may wish- to perform all the steps of
connection from command level, using the io call attach and
io call open commands. (Use io_call open only after first

5-20 CC70-01

invoking io call attach; you cannot open a file that has not been
attached, any more than you can open a door without a handle.
And watch your parking meters!) If you intend to do the I/O by
hand, however, it is imperative that you be fully familiar with
the details of the FORTRAN runtime I/O routines, described in
Section 10 of the Multics FORTRAN manual, as well as with the
Multics I/O system as described in the MPM Reference, before
using the io_call open command.

Although a complete discussion of the io call open command
is beyond the scope of this manual, an introductory sketch is
called for. What is offered below presents the bare essentials
only.

You might invoke the io call open command for input/output,
as follows:

io call open user io sequential_input_output

This invocation of io call open is the one appropriate for
formatted sequential read or write statements in your program.
An open statement in the same program may specify the mode
attribute as inout, in, or out.

Why do you have the option of giving two distinct and even
slightly differing mode specifications for one program, one in
the io call open command and one in the open statement within the
program itself? The question must receive two answers.

First, for most programming purposes, it is completely
unnecessary to use the io call open command in conjunction with
the open statement, since what the open statement specifies, will
be faithfully carried out by the FORTRAN runtime I/O routines.
So why bother? In explicitly specifying both attachment and
opening through the medium of the io call command, you get direct
control of and the steps of connection, but you also greatly
increase your chances of making a programming error. The general
philosophy behind these comments is "What Multics can do for you,
let it do for you." That's what Multics is all about, so the
first answer to the question of why you have all these options
is, "never mind, don't do it." The second answer is more
pragmatic. If you must open with the io ca~~ open command, use
an opening mode that is identical to or-broader than what your
program specifies in a data transfer or an open statement. If
your program does input and output on the same file, open the
file for input/output. That is the answer to why the modes, as
specified in the io call open command and in the open statement,
may differ.

5-21 CC70-01

To get an idea of the difficulty associated with opening the
file with the io call open command, consider the following
example. You invoke io call open more narrowly than in the first
example above, i.e.:

io call open user_output sequential_output

or

io_call open user_input sequential_input

In either case the open mode is too restrictive to permit an
opening within your FORTRAN program for ANY of the other modes.
The first case is appropriate for a program that does output
only; the second for a program that does input only. You could
use two invocations of io call open, one for input, one for
output, on two different fIles. The mode specified for a file
outside the program, however, must always either be less
restrictive than or the same as the modes specified for a file
inside the program.

MAKE YOUR OPENING MODES CONSISTENT

The opening mode specified in the io call open command must
not be more restrictive than the mode specified in the
corresponding open statement, and it must not be in direct
conflict with it either (out vs. in, for example.)

Also, if the open statement specifies a more restrictive
mode than that specified in the io call open command (in vs.
inout, for example), subsequent data- transfers on the file are
limited to the mode specified in the open statement. The fact
that the mode specified in the io call open command is less
restrictive than that specified in the open statement, that is to
say, does not determine the mode for your program. To change the
mode specified in an open statement you must include a close
statement, and then a new open statement specifying the new mode.

Finally, it should be clear that you are
use the io call open command. But if you must
to use io call close at the end!

WHAT'S A I/O SWITCH?

The Multics I/O system, rather than
directly to files, connects devices to files
of I/O switches and I/O modules.

5-22

not encouraged to
use it, remember

connecting devices
through the medium

CC70-01

I a
MOD------

I
DEVICE UNIT

Each of these items has a name, and connection may be
regarded as the association--in your programming environment, and
yours only--of one such collection of names. The unit number in
the FORTRAN program is associated with the name of a file or a
device, which is in turn associated with the name of an I/O
switch. This association is called attachment. The I/O switch
(and hence the associated file or device) is associated by name
with the I/O module, and the I/O module with some device. (From
the viewpoint of the Multics I/O system, the storage system--or
more precisely, any segment in virtual storage--is a device.
Devices are physical storage of some kind.)

In simplest terms, the unit number is the number used in a
FORTRAN I/O statement to specify a device or a file. The device,
or file is a real device such as your terminal, or a file in the
storage system or on some other medium such as tape. The I/O
module is a system program designed to operate on data in or on
such a file or device, and to provide a standard interface to the
user I/O routines--in this case, the FORTRAN runtime support
package. Aside from knowing that these I/O modules exist, you
need not normally know anything more about them. The io switch
can be viewed as nothing more than a sort of note from Multics to
itself, telling it which unit number in your program refers to
which I/O module/device or I/O module/file combination, and
keeping track of the state of the file or device and of some of
its characteristics.

5-23 CC70-01

SECTION 6

CONVERSION TO FORTRAN 77

FORTRAN 77 ON MULTICS ------- -- -- -------
The FORTRAN 77 language is being implemented on Multics by

extending the current Multics FORTRAN compiler. The ultimate
goal of this extension is to produce a compiler that accepts
programs that conform to the FORTRAN 77 standard, that continues
to accept existing Multics FORTRAN programs with no modification,
and that attempts to smooth the transition from 1966 FORTRAN to
FORTRAN 77.

To help meet this goal, two new options have been
introduced--ansi66 and ansi77. Any particular program unit is
compiled with one of these options in effect. Program units
compiled under the ansi66 option will be interpreted as they have
been interpreted by Multics FORTRAN in the past. Program units
compiled under the ansi77 option will be interpreted according to
the FORTRAN 77 standard wherever it differs from the existing
Multics FORTRAN language. The default is ansi66a

It is important to note that the distinction between ansi66
and ansi77 does not affect all new features of FORTRAN 77, nor
does it affect all features of Multics FORTRAN that are
extensions to the 1966 standard. Instead~ the distinction serves
only to control the interpretation of constructs that have
different, incompatible meanings or implementations in Multics
FORTRAN and FORTRAN 77.

As many features from Multics FORTRAN and from FORTRAN 77 as
possible are available under both the ansi66 and ansi77 options.
The benefit of this approach is twofold. First, it allows
existing programs to use some of the new features in FORTRAN 77
without full conversion. Second, it allows programs to be easily
converted to FORTRAN 77; only the particular constructs that are
incompatible need be changed.

12/81 6-1 CC70-01A

CONVERSIONS

Certain FORTRAN 17 features differ from Multics FORTRAN in
such ways that existing programs must be converted in order to
run under the ansi17 option with the same semantics. Described
below are six of the most useful conversions to make. All the
differences between the ansi66 and ansi77 options are listed in
Appendix B of the Multics FORTRAN manual.

Character-Mode Variables in Common Blocks

Under the ansi77 option, character-mode variables cannot be
mixed with variables of other modes in a common block. Common
blocks in ansi66 programs that contain both character and
noncharacter data must be split into two separate common blocks,
one for character data and one for noncharacter data.

Equivalencing Character-Mode Data

Under the ansi17 options, character-mode variables cannot be
equivalenced with variables of other modes. Such equivalencing
in ansi66 programs should be replaced with explicit assignment
statements. For complex and double-precision data, the
corresponding character variable should be given the length 8.
For integer, real, and logical data, the corresponding character
variable should be given the length 4~

Whenever the storage in question is to be viewed as
noncharacter data, the program should explicitly assign the
character value to an integer, real, double-precision, or complex
variable. Whenever the storage is to be viewed as character
data, it may be inspected directly.

Default Character-String Length

Under the ansi77 option, the default length for character
variables has changed from 8 to 1. To avoid ambiguity, all
character statements in the program should be inspected to ensure
that every character mode variable has an explicitly declared
length.

12/81 6-2 CC70-01A

Packed Character-String Layout

The representation of character data in storage is different
under the ansi?7 option. In the ansi66 implementation, all
character variables and array elements are stored as aligned
character strings, that is, starting on a word boundary in the
computer memory. In the ansi77 implementation, character
variables may be stored as unaligned character strings; that is,
each array element follows the preceding element with no
intervening paddfng. --Thus, ele-ments-may -beg-In at character
positions that are not word boundaries. This change will most
seriously affect programs that use permanent common blocks (those
whose names end with "$") or unformatted files that contain
character data and that were written by an ansi66 program.

An ansi?1 program can access character data in ansi66 format
as follows:

1) For each character datum in ansi66 format, the ansi??
program should declare a corresponding character datum.
The length of the character datum in the ansi66 program
should be the smallest multiple of 4 that is greater
than or equal to the length declared in the ansi66
program. For example, a character*15 variable becomes
character*16, and a character*32 variable remains
character*32.

2) The next step is to use the substring notation wherever
an ansi?1 variable is used to access ansi66 data. If
the variable is declared character*15 in the ansi66
program, the ansi77
character*i6 variable
(1:15).

program should reference a
with the substring notation

This technique can be used in converting old format data to
the new format by reading the data as described above and writing
it to a new file or common block with an ansi17 program.

Zero-Trip Do Loops

For ansi66 programs being converted to ansi11, each do loop
must be examined. If the logic of the program depends on the
loop being executed at least once in all circumstances, the final
loop value should be changed to use the max or min intrinsic
function. That is because under the ansi11 option loop counts
that are zero or negative cause the loop to be skipped entirely,
whereas under ansi66, loops are always executed at least once.

12/81 6-3 CC10-01A

I

For an example of this conversion,

do 100 I = J,K

might be changed to

do 100 I = J, max (J,K)

to ensure that the loop is executed once. If you know the increment
to be negative, the min intrinsic function should be used instead
of max.

Blank Lines

Under the ansi11 option, blank lines are treated as comment
lines and thus ignored. The ansi66 option treats them as initial
lines. Hence, when a blank line precedes a continuation line,
the latter is treated as a continuation of the blank line

The following program demonstrates this difference:

" options card;
program blank line
integer foo, 100got05, k
data foo /66/, foogot05 /111
k = foo

& goto 5
100 format ("This was compiled with the ansi", i2, "option.")

5 write (6,100) k
step
end

If you compile this program with the ansi66 option, the blank
line is interpreted as an initial line, so the n&goto 5" is a
continuation of the blank line and k is set to foo, i.e., 66. If
you use the ansi 11 option, the blank line is ignored, and the
value of k is set to foogot05, i. e., 11, because the "goto 5" is
treated as a continuation of the line "k = foo".

To convert ansi66 programs to ansi 11, take out the continuation
marker (e. g ., "&") so that the 1 ine so marked is treated as an
initial line.

2/83 6-4 CC10-01B

APPENDIX A

DEBUGGING

This section covers the debugging of FORTRAN programs in the Multics
system, with the emphasis on interactive debugging with the probe command.

First, there is a description of the specifications for a program that
plays tic-tac-toe, followed by discussion of the way this program works. Next
follows a version of the source program, with comments. The first version of
the program is incorrect and doesn't play fair. Following this version of the
program is a script of a debugging session. The script provides an example of
the use of the probe command and some of its major re~uests, but you are
encouraged to read the description of the probe command in the MPM Commands as
well. Finally there is a version of the corrected source program.

SPECIFICATIONS FOR TIC-TAC-TOE PROGRAM

The program plays optimally--that is, it wins if it is possible to win,
otherwise it draws. (Either player can always force a draw in tic-tac-toe.)

After each machine move the board is printed, showing the moves on the
board.

The cells of the board are numbered from 1 to 9, from
cell to the lower right hand cell. The numbered board is
invocation of the program, and not again.

the upper left hand
printed at the first

Your moves are c~refully checked for validity. A valid move must be in a
cell where there is not a move already, and it must be a digit from 1 to 9. End
of file causes a draw.

The program detects wins or draws, prints the winner, and the final state
of the board.

Only one game is played at each invocation of the program.

HOW THE PROGRAM WORKS

A listing of the
three program units,
subprogram.

source program appears below. The program consists of
main_, mover, and won. There is also a block data

The main program performs all the input/output for the program, checks the
player's moves, and calls the subprograms, mover and won. Its first action, if

A-1 CC70-01

this is the first invocation of the program in the player's current environment,
is to print the numbering scheme and the instructions. It then enters the main
loop at statement 5. This loop reads the player's moves, validates them, checks
for a win by the player, gets a machine move from the subroutine, checks for a
win by the machine, displays the board, and continues in this vein until the
game ends. Statements executed for a draw (97), a win by the player (99), a win
by the machine (100) print the result (who wins, or "Cat's game" if there is a
draw) and the final board.

A few details: the board is represented as an integer array (board), with
one array element for every cell. The state of a cell (empty, x, or 0) is
recorded in the corresponding array element, which is assigned a different
integer for each state. The particular integer values used to represent the
states are chosen for convenience and have no significance apart from their use
in selecting array elements elsewhere in the program.

The array is stored in the
program units can reference it.
51) used to print the board.

named common block tic tac toe, where all the
Note, also, the complicated format (statement

The subroutine, mover, sets its parameter to the nu~er of the square into
which the machine moves, or to zero if there is no empty square left (the game
is a draw). Two two-dimensional arrays, paths and paths thru cell, contain
invariant information about the game. - -

The term path means three cells in the same row, column, or diagonal. The
array, paths, aerrnes the eight paths in the game by giving the cell numbers of
the cells in the path, and the array, paths thru cells, gives the path numbers
of the paths that pass through each cell. -The center cell (5) has four paths
through it, the corner cells have three, the rest two; zero is used to indicate
the absence of a path.

The first group of statements in the subroutine, a loop ending at 10,
calculate the pathsum of each path. The pathsum is an integer value that gives
the state of each path. A unique weight is assigned to each state of a cell.
The pathsum of a path is the sum of the weights of each of its cells. The
values used to represent the weight of each state of a cell can be chosen
arbitrarily, as long as each interesting state of a path has its own unique
value. The paths of interest are those that have: two o's and no x, one 0 and
no x, one x and no 0, and two x's and no o.

The subroutine determines what move to
in order of priority (they appear in order
that determines the move the machine makes.
next rule. Except in the case of a draw, at
will be applicable. The rules are:

make by trying five strategic rules
below). If 'a rule is applicable,
If not, the program goes to the

least one of the first four rules

1. Search for a path with two o's and no x. This path can be completed
to give the machine a win. A three-statement loop (98-100) must be
executed to find the empty cell, since pathsum does not tell which
cell of a path is empty.

2. Search for a path with two x's and no 0, and block to keep the player
from winning. The loop in rule 1 is executed for rule 2 as well.

3. Search for a square common to at least two paths, of which each
contains only an o. If the square common to both paths is moved into,
creating a fork, this presents the player with the impossible
requirement of blocking two paths at once.

4. Search for a square that would present the machine with a fork if the
player moved into it. The search in rule 4 differs from that in rule
3 only in respect to the pathsum of interest. In each case, the

A-2 CC70-0i

5.

subroutine looks at each cell and all the paths through it (stored in
wins thru cell), keeps a count (integer k) of the number of paths in
the desired state (depending on whether the rule being applied is 3 or
4). There is a special check to discard path zero, which indicates
the absence of a path. If count (k) is greater than 1, the cell being
inspected is the one to move into. Note that the searches in rule 3
and rule 4 are over each cell, while those in rule 1 and rule 2 are
over each path.

Search the board, in order of the priority of the cells, for an empty
cell. The order of priority is: center, corner cells, and other
cells.

6. No empty means draw.

The function won takes as input the cell number of the move last made,
determines whether the move is by the player or the machine, and returns .true.
if the move won the game for the player, .false. otherwise. The cell number of
the move last made is then transformed into an x, y pair, used to address the
3-by-3 array, brd, which uses the same storage as the array, board. This
procedure allows examination of all cells in the same row or column, because all
will have either the same x or Y 90ordinate. For the cells on a diagonal, an
equivalent procedure is adopted to locate all the cells on the same diagonal.
The function checks both diagonals, and therefore, unless the cell is in the
center, a path that does not contain the cell; but this is safe since if there
were a win on the other diagonal the function would have found it in a previous
call.

The faulty version of the program follows, with explanatory comments.

A Program to Play Tic-Tac-Toe

c A program to play tic-tac-toe.
c This version has bugs in it

c

*

c
c
c
c
c
c
c
c

common Itic tac toel board(9)
integer board -
parameter empty=1
parameter hj.s=2
parameter mine=3

Logical function won determines whether moves are winners or not.

logical won

Defines the characters used to print the board

character*1 symbol(3) I" ", "x", "0"1
logical polite
data polite l.true.1

Start up.
As game opens, polite is true (as initialized in data statement),
so the rules of the game are printed and the board
is printed out showing the numbering scheme.
The variable is set to .false.,
and subsequently the rules
and numbered board
are not printed out.

A-3 CC70-01

5

*
*

50

8

c
c
c
c
c
c

6

1 1
I I

if (.not.polite) go to 5
polite = .false.
print, "Play tic-tac-toe. Type 1-9 to play."
print
print, " 1 :2:3"
print, " 4T5Tb"
print, " 7T8T9"
print

print, " Your move?"

The next statement reads the player's move from the terminal,
typed in response to query above.

read(5, 50, end=97, err=8) move
format(v)
if(move .gt. 0 .and. move .le. 9) go to 6
print, "Invalid input."
go to 5

The value of move has been checked to see if it is
on the board--that is, between 1 and 9.
The program must
now make sure the move is to an empty square.
The variables empty, his, and mine
are initialized by the block data subprogram.

if (board(move) .eq. empty) go to 17
if (board(move) .eq. his) print 11, "You", move
if (board(move) .eq. mine) print 11," In, move
format(1x, a3, " have already played It, i1, ".")
go to 5

c The player's move is to an
c empty square, so put it on the board.

17 board(move) = his

c See if this move won game for the player.

c
c
c

c

c
c

c

52

if (won(move)) go to 99

The player hasn't won yet, and it is
the machine's turn, so it is necessary to get
a machine move from the subroutine, mover.

call mover(move)

Check move to see if game is drawn.

if (move .eq. 0) go to 97

Game is not drawn, so inform player of machine's move
and put move on board.

print 52, move
format(" My move is ", i1)
board(move) = mine

Check whether machine has just won. (The won function does it.)

A-4 CC70-01

if (won(move)) go to 101

c Since there is no winner yet, print the board and continue play.

print 51, (symbol(board(i)). i = 1, 9)
51 format(/2(1x,2(1x,a1 ,1x,1hl} ,1x,a1/1x,11 (1h-)/)

& ,1x,2(1x,a1 ,1x,1hl) ,1x,a1/)
go to 5

97 print," Cat's game."
go to 100

99 print," You win!"
go to 1 00

101 print," I win."
100 continue

c Come here at game's end, regardless of outcome.

print 51, (symbol(board(i)), i = 1, 9)
continue
stop
end

c This subroutine will figure out the next move for a game of
c tic-tac-toe. The strategy involves looking for an offensive
c move and then looking for a defensive one of the same priority.

c
c
c
c
c

*
*
*

&
&
&
&
&
&
&

subroutine mover(move)
common /tic tac toe/ board(9)
integer board -
parameter empty=1
parameter his=2
parameter mine=3
automatic i, j, k, 1, m

All possible paths in the game. Each path has three cells.
Each number represents a cell. The numbers are ordered
to correspond to the paths along which a game can be won.

integer paths(3,8)
data paths /1,2,3, !path 1

4,5,6, !path 2
7,8,9, !path 3
1,4,7, !path 4
2,5,8, !path 5
3,6,9, !path 6
1,5,9, !path 7
3,5,8/ !path 8

The numbers of the paths that pass through a given cell.
No cell has more than
4 paths through it (center).
The corner cells each have 3 paths through them.
The rest have 2. ° represents "no path".

integer paths thru cell (4,9)
data paths tnru cell /1,4,7,0,

& - - 2,4,0,0,
& 3,4,8,0,

1,5,0,0,
2,5,7,9,
3,5,0,0,

1,6,8,0,
2,6,0,0,
3,6,7,0/

!cells 1,2,3,
!cells 4,5,6,
!cells 7,8,9.

*
*

Holds the pathsum, or the sum of the weights of the different
states of a cell.

integer pathsum(8)

A-5 CC70-01

* weights for the three states of a cell,
* in order "empty", "his", and "mine".

*

in t e ge r we i gh t (3) /0, 1 ,4/

* Order in which we will choose a cell when using rule S.

9
10

*
*
*

integer cells(9)
data cells /5, 1, 3, 7, 9, 2, 4, 6, 8/

c.alculate the pathsums. The variable k is a counter.

do 10 i = 1,8 ! for each path
pathsum(i) = 0
do 9 j = 1, 3 ! for each cell in a path

k = board(paths(j,i))
pathsum(i) = pathsum(i) + weight(k)

continue

Find a path with two in a row for me,
and play a third cell to win
(offensive move, rule 1).

do 20 j = 1,8
20 if (pathsum(j) .eq. (weight(mine)*2)) go to 98 ! is pathsum right?

*
*

Find a path with two in a row for his, and playa third cell to block
the path (defensive move, rule 2).

25

*
*
*
*
*
*
*
*

do 25 j = 1, 8
if (p at h sum (j) . eq. (wei gh t (his) * 2)) go t 0 98

Try to make two two-in-a-rows for me (offensive move, rule 3).
For each cell, start counting at 0 for each path thru cell,
If there is no path, escape for each cell; --
count the number of paths through the cell that have
a pathsum of 4. If it finds two or more
such paths through one cell,
the machine
moves into that cell.

do 40 move = 1, 9
k = 0
do 45 1 = 1, 4

if (paths thru cell(l, move) .eq. 0) go to 45
if (pathsum(paths thru cell(l,move)).eq.weight(mine))k=k + 1

45 continue --
40 if (k • gt. 1) go to 100

* Try to block two two-in-a-row for player (defensive move, rule 4)

do 49 move = 1, 9
do 47 1 = 1, 4

if (paths thru cell(l, move) .eq. 0) go to 47
if (pathsum(paths thru cell(l,move)).eq.weight(his))k=k + 1

47 continue --
49 if (k .gt. 1) go to 100

* No offensive or defensive move so just pick a cell (rule 5).

A-6 CC70-01

':0 60 i = 1,9
move = cells(i) ! look through cells in order of priority
if (board(move) .eq. empty) go to 100 ! is cell empty?

60 continue

* No move is found so the game is a draw

move = 0 !O means "draw" to caller
go to 100

98 do 99 i = 1, 3
move = paths(i j)

99 if (board(move~ .eq. empty) go to 100

*

100 return

*
*

end

logical function won(pos)
common /tic tac toe/ board(9)
integer board -
parameter empty=1
parameter his=2
parameter mine=3

integer pos, brd(3,3), x or 0, x, y
logical horizontal, vertTcaT, diagonal 1, diagonal 2
automatic x or 0, i, x, y, horizontal,-vertical, dIagonal 1,

& diagonal 2- -
equivalence Tbrd, board)

horizontal = .true. ; vertical
x_or_o = board(pos)

x is the row
y is the column

x mod(pos, 3)
y (pos-1) /3+ 1

.true.

* Check horizontal and vertical simultaneously.

10

20

30

do 10 i = 1, 3
if (brd(x,i).ne.x or o)horizontal=.false.
if (brd(i,y).ne.x=or=o)vertical=.false.

!found a cellon this
!path that is in
!different state

continue

Is the cellon a diagonal?

diagonal 1 = x .eq. y
diagonal-2 = x + y .eq. 4
if(.not:diagonal 1 .and.
do 20 i = 1, 3 -

!is cellon left-to-right downward diagonal?
!is cellon left-to-right upward diagonal?

.not.diagonal_2) go to 30 !not on diagonal

if (brd(i, i) .ne. x or 0) diagonal 1 = .false.
if (brd(i, 4-i) .ne.-x or 0) diagonal 2 = .false.

won = horizontal .or. vertIcal .or. diagonal 1 .or. diagonal 2
return --
won = horizontal .or. vertical
return
end

block data
common /tic_tac_toe/ board(9)
parameter empty=1
parameter his=2
parameter mine=3
integer board/9*empty/
end

A-7 CC70-01

Script of Debugging Session

The following is a line by line script of a debugging session.
in the form given above is debugged with the probe command. The
mark (!) indicates input lines, and the unmarked lines are output.
brackets explain features of the probe command; comments in
programmer's thoughts in the course of debugging.

bug
Play tic-tac-toe. Type 1-9 to play.

1 1213
4T5Tb
718:9

Your move?
1

My move is 1~--------~----------------------------'

o I

I I
I I

Your move?
2

The program is cheating!
You have already played 1.

My move is 1~ • .-------~r---------------------------,

o : x 1

Your move?
4

My move is 2

o I 0 l

x 1

I I
I I

Your move?
3

It seems stuck on eell 1.

Error: subscriptrange condition by
>user dir dir>Multics>JRDavis>doc>fug>bug$main 11315 (line 284)
A subscript value has exceeded array bounds. -
system handler for error returns to command level

r 1301 0.355 28.102 346 level 2, 13

probe [YOU invoke the probe command.]

Condition subscriptrange raised at line 284 of won.

The program
exclamation
Comments in
boxes show

[
When probe is invoked after an error it tells]
you what the error is and where it occurred.

source [ThiS request displays the source at line 284]

if (brd(x, i) .ne. x or 0) horizontal = .false.
! found a cellon this-path that is in different state

value brd (x,i)
subscript 1 outside range (1 :3)
Cannot get address of brd.

A-8 CC70-01

v x

o The calculation of x is wrong when pos is 3,6,or 9
v pos~------~it ought to be x = mod(pos -1,3) + 1.

3
v y

1

let x = 3 [x is set to the correct value]

after 277 [ThiS breakpoint will cause x to have the correct value]

: if X.= 0 : let x = 3
Break set after line 277 of bug.

continue
[

After an error, continue returns to the command level]
from which probe was invoked.

r 1303 0.729 68.508 876 level 2, 13

start

My move is 5

o : 0 : x

x : 0 :

I I
I I

Your move?
8

My move is 9
I win.

o : 0 : x

x : 0 :

x t 0

STOP

r 1303 0.363 41.725 381

[
After a subscript range error'J
start retries the line where
error occurred.

probe bUg~ Explicitly say what program to examine;

use mover~ Explicitly indicate sUbProgram.1

before $40:if k > 1 halt ~ Stop when using rule 3.1

[

Even though you specify a FORTRAN]
Break set before line 225 of bug. STATEMENT LABEL the probe command

gives you information in terms
of source line number.

A-9 CC70-01

b $49:if k > 1: halt~ Stop when using rule 4.

Break set before line 235 of bug.

! .. bug [The program is called using the" "escape request]
Play tic-tac-toe. Type 1-9 to play.

1 : 2: 3
4T5Tb~------------~

7:8:9

Your move?

5~----------------------~

Your move?
1

It printed the rules again.
This is a bug.

I have already played 5.
It mistakenly thinks it has played 5.

I have already played 1 ~ Is this the same board as before?

Your move?
8

You have already played 8.

Your move?

QUIT

If so, none of my moves will work, so--

r 1304 0.324 22.529 410 level 2, 19
probe

Condi tion qui t raised at block: 1 54. [blOCk is a routine called by the read.J

use bug
where [

The where request shows: 1) where bug was when it]
"called out"; 2) stack level and name of program;
3) where control returns when execution resumes
after a "continue." .

Current line is line 47 of bug.
Using level 11: main.
Control at block:154.-

! v board(*)
board(1) 3

["*,, may be used to display every element of the array]

board(2) 3
board(3) 2
board(4) 2
board(5) 3
board(6) 1
board(7) 1
board(8) 2

board(9) 3
I board(*) = 1~ This IS the board from last game
c so set every cell to empty.

r 1310 0.452 54.132 583 level 2, 19

A-10 CC70-01

sr

5 « This time the move is accepted.

Stopped before line 235 of mover.
! v k

2
v move

2
! v board(move)
board(2) 1

v I

Program plans to move into cell 2. The cell is
empty as a look at the board shows. All four
paths through the cell have been examined.

5~------~The next step is to check paths-thru-cell to
ensure correct data, then pathsums of paths
through cell 2 and finally the board.

! v paths thru cell(*,move)
paths thru celI(1 ,2) 1
paths-thru-cell(2,2) 5
paths-thru-cell(3,2) 0
paths-thru-cell(4,2) 0

! v pathsum(1)
pathsum (1) 0

! v pathsum(5)
pathsum(5) 1

! v board(*)
board (1) 1
board(2) 1
board(3) 1
board(4) 1
board(5) 2
board(6) 1
board(7) 1
board(8) 1
board(9) 1

The~e is no reason why k should be 2. The board,
paths, and pathsum are correct--therefore counting
must be wrong. Set a break that will halt before
counting.

b 233:if pathsum(paths thru cell(l,move))
Break set before line 233 of bug.

! ps 30
if (.not.polite) go to 5

weight(2):halt

b: let board(*) = 1~ • .-__ ~IMake board empty before each game. I

Break set before line 32 of bug.

quit
q

[
Each time you type 'quit', one level of invocation]
of the probe command falls away

r 1314 0.767 66.092 873
bug

Play tic-tac-toe. Type 1-9 to play.

A-11 CC70-01

Your move?
5

Stopped before
! v move

line 233 of mover.

1
v I

3
v k ~~------~This is a legitimate instance of a path with

o one "0" on it. It is correct to count it.
c Keep going!

Stopped before line 233 of mover.

v move
2

v I
2 III This one is correct too.

c

Stopped before line 235 of mover.

v k
2 ~ ____________ ~K is 2? But each move so far had only one

v move path through it with one "0".

2~------------~

status
Break before line 233.
Break before line 32.
Break before line 235.
Break before line 225.
Break after line 277.

r b 233; r b 235

K is not being reset to 0 for each move. You set
the appropriate break to fix. List all breaks
to see which can be reset.

Break reset before line 233 of bug.
Break reset before line 235 of bug.

b 236:let k = 0
Break set before line 231 of bug.

c

My move is 2 ~ ______ ~It persists with the move it had decided to make. I
o I

I x I

A-12 CC70-01

Your move?
8

My move is 3

010

I x I

I x I
Your move?

1
My move is 9

x I 0 I 0

: x :

: x : 0
Your move?

6
My move is 4

x : 0 : 0

o : x : x

: x : 0

Your move?
7

Cat's game.

x : 0 : 0

o : x : x

x : x : 0

STOP Perhaps all bugs are now fixed?

r 1326 1.949 208.147 2833
bug

Play tic-tac-toe. Type 1-9 to play.

Your move?
5

My move is 5 ~. ____

: 0 :

NO

A-13 CC70-01

Your move?

QUIT~ __ ~ ... and release the failing invocation of bug.

r 1327 0.331 22.717 260 level 2, 15
rl

r 1327 0.035 3.896 62
probe bug

a $40:if k > 1 :(v move; halt)
Symbol 40 not declared

Breaks were reset too soon.
Replace them.

use mover
[

You must set the pointer to the desired sUbroutine]
or it won't be. possible to find the label.

a $40:if k > 1 : (v move; halt)
Break set after line 225 of bug.

! a $49:if k > 1 : (v move; halt)
Break set after line 235 of bug.

use main

b 33 [set a break to find out why board is printed each time.]

Break set before line 33 of bug.
q

r 1330 0.281 39.723 716
! bug
Stopped before line 33 of main .

v polite [
FORTRAN logical variables are printed as !!1 !!b when]
they are .true. and "O"b when .false.

"1 "b

sb polite Why didn't polite keep its value from last time?

logical autcmatic
Declared in main

r ~ ______ ~It is an automatic variable, in~tead of a 'save'.
Now that we know, the break is useless.

Break reset before line 33 of bug.
! c
Play tic-tac-toe. Type 1-9 to play.

1 1213
4T5Tb
71819

Your move?
5

My move is 5 ~4~----~ Why didn't it hit the break?

1 0 I

Your move?

A-14 CC70-01

Stupped before line 225 of mover. ~ Hit the rule 3 break. I
st

Break after line 235.
Break before line 231.
Break before line 32.
Break before line 225.
Break after line 225.
Break after line 277.

r The list of breaks shows breaks both before 1

l
and after line 225, and after 235. The J
breaks ought to be before, because breaks
after a line aren't executed if the line
does a goto.

st at 235
Break after line 235:if k > 1 : (v move

r a 235
Break reset after line 235 of bug.

! b 235:if k > 1: (v move; halt)
Break set before line 235 of bug.

q
r 1335 0.506 45.840 592

bug
Play tic-tac-toe. Type 1-9 to play.

Your move?
5

5

halt)

Stopped before line 235 of mover. I This time it hit the break. ~ ______ ----a

v k
4

v board(*)
board (1) 1
board(2)
board(3) 1
board(4) 1
board(5) 2
board(6) 1
board(7) 1
board(8) 1
board(9) 1

! v paths thru cell(*,5)
paths thru cel1(1 ,5) 2
paths-thru-cell(2,5) 5
paths-thru-cell(3,5) 7
paths=thru=cell(4,5) 8

v pathsum(*) The board, paths, and pathsums are correct. You
pathsu~(1) 0 ~ealize that the code doee~'t check to see if the
pathsum(2) 1 cell is empty. Rule 4 is stated as 'Find a cell
pathsum(3) 0 that is the intersection of two paths, each of
pathsum(4) 0 which has one "0"; it should be 'Find an empty cell
pathsum(5) 1 that is ' You can't patch this bug with a probe
pathsum(6) 0 break, so you must edit the source and recompile.
pathsum(7) 1 List all the breaks, as a reminder of where the
pathsum(8) 1~----~source needs correction.

! st

Break before line 235.
Break before line 231.
Break before line 32.
Break before line 225.

A-15 CC70-01

Break after line 277.
Break after line 225.

st b 32
Break before line 32:let board(*) =

st a 277
Break after line 277:if x = 0 : let x = 3

q
r 1337 0.751 51.764 736

twO~ • .-----~IThe edited program is now named 'two'.

Play tic~tac-toe. Type 1-9 to play.

Your move?
5

My move is

o :

: x :

I
I

Your move
3

Should be 7. Rule 2 is not working.1 My move is 8 ~ • .-------~
0: : x

: x :

: 0 :
Your move?

7
You win!

0: : x

: x :

x : 0 :

probe two

use mover
b $98~------~Set a break at the beginning of the loop

transferred to by rule 2.

Break set before line 259 of two.
! q
r 1422 0.152 29.289 387

two
Your move?

5
My move is

o :

: x :

A-16 CC70-01

Your move?

stopped before line 259 of mover.

v j~.~----~IWhat path is it trying to block you on?1

8
! v pathsum(8)
pathsum(8) 2

! v board(*)
board(1) 3
board(2) 1
board(3) 2
board(4) 1
board(5) 2
board(6) 1
board(7) 1

board(8)
board(9)

1

1 • Ipath 8 is right, as is pathsum and board. I

v paths (*,8)

3 paths(1,S)
paths(2,8)
paths(3,S)

5 The path was not defined right. Must have
S~-~------~made a typing error.

1 paths(3,S) = 7

q
r 1428 0.057 10.033 105

! two
Your move?

5
My move is

- I
U I

I I
I I

Your move?
3

Stopped before line 259 of mover.
! r b 259
Break reset before line 259 of two.

c
My move is 7

0: : x

0: :
Your move?

6
My move is 4
I win.

0: : x

o : x : x

o :

A-17 CC70-01

STOP

r 1429 0.309 35.534 512
two

Y~ur move?~ • .---------~IMaYbe all bugs are fiXed?1

My move is 5

x I

I 0 I
I I
I I

Your move?
4

My move is 1

o I x I

x I 0 I
I I
I I

Your move?
9

My move is 3

o I x I 0

x I 0 I

I x
Your move?

7
My move is 8

o : x : 0

x I 0 I

x I 0 I x
Your move?

6
Cat's game.

o I x I 0

x I 0 I x

x I 0 I x

STOP

r 1429 0.324 18.500 333

~~'-------------------11 One more test casel two

Your move?
1

My move is 5

x I

I 0 I
I !
I I

Your move?

A-18 CC70-01

9
My move is 3

x: : 0

: 0 :

: I x
Your move?

7
My move is 8

x: I 0

: 0 :

x I 0 : x
Your move?

4
You win!

x I I 0

x I 0 I

x I 0 I x

STOP

The algorithm itself is defective. Correction is left to the interested
reader. Hint: the blocking strategy used by rule 4 is the incorrect part.

Corrected Program to Play Tic-Tac-Toe

c A program to play tic-tac-toe.

common /tic tac toe/ board(9)
integer board -
parameter empty=1
parameter his=2
parameter mine=3

logical won
* defines the characters used to print the board

character*1 symbol(3) /" "~ "x"~ "0"/
integer i
logical polite
save polite
data polite /.true./

c Start up.

*
2

clear the board for a new game
do 2 i =·1 9

board(i) = empty

A-19 CC70-01

c
c

c

c

c

c

c

c

c

c

if (.not.polite) go to 5
polite = .false.
print, "Play tic-tac-toe. Type 1-9 to play."
print
pI' i nt, " 1 : 2 : 3"
print, " 4T5'6"
print, " tt-at9'''
print

5 print," Your move?"
read(5, 50, end=97, err=8) move

50 format(v)
if(move .gt. 0 .and. move .le. 9) go to 6

8 print, "Invalid input."
go to 5

6

11

17

52

51

97

99

101
100

move has been checked it is on the board.
make sure it is an empty square

if (board(move) .eq. empty) go to 17
if (board(move) .eq. his) print 11, "You", move
if (board(move) .eq. mine) print 11," I", move
format(1x, a3, " have already played" i1, ".")
go to 5

move is to an empty square, so put it in the board
board(move) = his

see if user has won
if (won(move)) go to 99

user hasnt won, get a machine move
call mover(move)

see if game is really drawn
if (move .eq. 0) go to 97

game isnt drawn, so tell user what machine did, and put move in
print 52, move
format(" My move is ", i1)
board(move) = mine

see if machine has just won
if (won(move)) go to 101

no winner yet, print board and continue to play
print 51, (symbol(board(i)), i = 1, 9)
format(/2(1x,2(1x,a1 ,1x,1h:),1x,a1/1x,11 (1h-)/)

& ,1x,2(1x,a1,1x,1h:),1x,a1/)
go to 5
print, " Cat's game."
go to 100
print, " You win!"
go to 100
print, " I win."
continue

come here at games end, regardless of outcom~
print 51, (symbol(board(i)), i = 1,9)
continue
stop
end

c This subroutine will figure out the next move for a game of
c tic-tac-toe. The strategy involves looking for an offensive
c move and then looking for a defensive one of the same priority.

subroutine mover(move)
common /tic tac toe/ board(9)
integer board -
parameter empty=1
parameter his=2
parameter mine=3

automatic i, j, k, 1, m

A-20 CC70-01

*

&
&
&
&
&
&
&

*

&
&

*

*

*

All possible paths in the game.
integer paths(3,8)

data paths /1,2,3, !path 1
4,5,6, !path 2
7,8,9, !path 3
1,4,7, !path 4
2,5,8, !path 5
3,6,9, !path 6
1,5,9, !path 7
3,5,7/ !path 8

The numbers of paths which yass
integer paths thru cell (4,9

through a given

data paths_thru_cell /1,4,7,0, 1,5,0,0,

Holds the pathsum
integer pathsum(8)

2,4,0,0,
3,4,8,0,

2,5,7,8,
3,5,0,0,

weights for the three states of a cell
integer weight (3) /0,1,4/

1,6,8,0,
2,6,0,0,
3,6,7,0

Order in which we will choose a cell. (rule 5)
integer cells(9)
data cells /5, 1, 3, 7, 9, 2, 4, 6, 8/

cell.

2,4,0,0,

* calculate the pathsums
do 10 i = 1, 8

pathsum(i) = °
do 9 j = 1, 3

k = board(paths(j,i))
9 pathsum(i) = pathsum(i) + weight(k)
10 continue

* Find two in a row for me, and win.

do 20 j = 1, 8
20 if (pathsum(j) .eq. (weight(mine)*2)) go to 98

* Find two in a row for his, and block it.

do 25 j = 1, 8
25 if (pathsum(j) .eq. (weight(his)*2)) go to 98

* Try to make two two-in-a-rows for me (offensive).

45
40

*

47
49

*

do 40 move = 1, 9
k = °
II (board(move)· .ne. empty) go to 40
do 45 I = 1, 4

if (paths thru cell(l, move) .eq. 0) go to 45
if (pathsum(paths thru cell(l,move)).eq.weight(mine)) k

continue --
if (k .gt. 1) go to 100

try to b100k tW0 two-i~-a-row for user

do 49 move = 1, 9
k = ° if (board(move) .ne. empty) go to 49
do 47 I = 1, 4

if (paths thru cell(l, move) .eq. 0) go to 47
if (pathsum(paths thru cell(l,move)).eq.weight(his)) k

continue --
if (k .gt. 1) go to 100

No offensive or defensive move so just pick a cell.

A-21

k + 1

k + 1

CC70-01

do 60 i = 1,9
move = cells(i)
if (board(move) .eq. empty) go to 100

60 continue

* no move is found so the game is a draw
move = 0
go to 100

98 do 99 i = 1, 3
move = paths(i, j)

99 if (board(move) .eq. empty) go to 100
100 return

end
logical function won(pos)
common /tic tac toe/ board(9)
integer board -
parameter empty=1
parameter his=2
parameter mine=3

integer pos, brd(3,3), x or 0, x, y
logical horizontal, verticaI, diagonal 1, diagonal 2
automatic x or 0, i, x, y, horizontal,-vertical, diagonal 1,

& diagonal 2- -
equivalence Tbrd, board)

horizontal = .true. ; vertical = .true.
x or 0 = board(pos)

* x is the row
* y is the column

x = mod(pos -1 ,3) +
y = (pos-1) /3+ 1

* Check horizontal and vertical simultaneously.

do 10 i = 1, 3
if (brd(x, i) .ne. x or 0) horizontal = .false.
if (brd(i, y) .ne. x=or=o) vertical = .false.

10 continue

* Check diagonal if possible.

diagonal 1 = x .eq. y
diagonal-2 = x + y .eq. 4
if(.not~diagonal 1 .and .. not.diagonal 2) go to 30
do 20 i = 1, 3 - -

if (brd(i, i) .ne. x or 0) diagonal 1 = .false.
20 if (brd(i, 4-i) .ne.-x or 0) diagonal 2 = .false.

won = horizontal .or. vertical .or. diagonal 1 .or. diagonal 2
return -. -

30 won = horizontal .or. vertical
return
end

A-22 CC70-01

APPENDIX B

OPTIMIZATION

This chapter describes many of the optimizations performed
by the Multics FORTRAN compiler when you specify the -optimize or
-safe optimize control arguments. The information in this
section is of primary interest to advanced users.

LOCAL OPTIMIZATIONS

Local optimizations are those that improve the code
generated for a particular statement without considering or
affecting the rest of the program. "Improved code" is code that
is executed more efficiently, or faster, than code that is not
optimized.

Machine-Independent Local Optimizations

IMPROVEMENT OF LOGICAL if STATEMENTS

This optimization improves the code
statement so that expressions not needed
outcome of the statement are not evaluated.
makes the more readable

if(m .It. 4 .and. n .gt. 5) i=3

as efficient as

if (m .ge. 4) goto 100
if (n .le. 5) goto 100
i=3

100 continue

for a logical if
in determining the
This optimization

Note that in this case, function references contained in
logical expressions in a logical if statement are not necessarily
evaluated. Programs that depend on the evaluation of the entire

B-1 CC70-01

expression in a logical if statement are in error, and may not
execute as desired if you compile them with the -optimize control
argument.

Machine-Dependent Local Optimizations

The following machine or implementation dependent
optimizations are of special interest.

QUICK SUBPROGRAM CALL

If subprogram A and subprogram B are compiled seperately and
A calls B, a full Multics calling sequence is generated,
executing many instructions and requiring the creation of a
Multics stack frame for both subprograms. If subprograms A and B
are compiled together (in the same invocation of the fortran
command), the compiler optimizes the call from A to B. Thus,

subroutine a

call b

end

subroutine b

end

is much more efficient than

subroutine a subroutine b

call b end

end

See Sections 3 and 5 for discussions of these issues from a
different viewpoint.

B-2 CC70-01

IMPLIED DO-LOOPS

Doing I/O on an array using a reference to the array as a
whole is normally more efficient than doing I/O on an array using
an implied do-loop with an array element, because the former
executes one call to the I/O system for the entire array, for
every data transfer, while the latter executes one call to the
I/O system for every array element. However, the compiler
attempts to recognize implied do-loops that do I/O on a vector (a
contiguous area of storage) and replaces these loops with I/O
calls for the entire vector. Thus the data transfer statement

write(6)(a(i), i=1,100)

with this optimization can become as efficient as

write (6) a

assuming that "a" is an array of 100 elements. The optimizing
algorithm processes nested implied do-loops from inside out. A
partial list follows of the constraints that must be satisfied at
each level in order for this optimization to take place:

• The item to be transmitted must be subscripted

• The subscript at a particular level must be the same as
the index of the do at the same level

• The increment of the do-loop must be 1

• The array element must be the only item In the data
list of the implied do-loop at this level

• The subscript at a particular level must not be a
potential alias of any other subscript

• Inner implied do-loops must cover a complete dimension

Since in FORTRAN an array
subscripts vary most rapidly, the
innermost dimension. Thus, given

dimension a(20,30)

the optimization occurs for

is allocated so that
inner loops should

write (6) ((a(i,j), i=1,20), j=1,30)

but not for

write (6) ((a(i, j), j=1 ,30), i=1,20)

B-3

leftmost
match the

CC70-01

GLOBAL OPTIMIZATIONS

Global optimizations are those that optimize code over more
than one statement and/or consider conditions over an entire
program unit. This type of optimization is performed for every
program unit in a compilation if you invoke the compiler with the
-optimize or -safe_optimize control argument.

Machine-Independent Global Optimizations

Most of the global optimizations done by the Multics FORTRAN
optimizer are machine-independent, except that it is assumed that
an addition executes faster than a multiplication does. These
global optimizations can be classified according to whether they
are meant to improve the execution of a loop or are more general
in their effect. The more general optimizations are discussed
first in what follows.

Non-Loop-Oriented Optimization

REMOVAL OF COMMON SUBEXPRESSIONS

This optimization attempts to avoid repeated evaluation of
the same expression. ·When the expression first occurs, its value
is saved in a temporary compiler-created variable, and that value
is used when the expression occurs again instead of its being
reevaluated. The optimization occurs for two instances of the
same expression only if all the following constraints are
satisfied.

• the first instance of the expression must always be
executed before the second

• none of the input operand values can change between the
two instances

• all operators in the expression, including functions,
yield a given result with given operands (e.g., 2+2 is
always 4, not sometimes 4 and sometimes 3)

• no operators in the expression have "side-effects." A
side-effect means doing I/O or changing the value of a
variable other than by means of the assignment
operator.

B-4 CC70-01

In the following case

a + b*c

a + b*c

the value of a + b*c is calculated only once and
other instances of that expression as long
constraints are satisfied. Note that in the case

is used in all
as the above

b + c

a + b + c

there is no common expression to eliminate because
FORTRAN require the second expression to be seen as
If you write

b + c

a + (b + c)

the rules of
(a + b) + c.

The expression b + C becomes common and is evaluated only once.

CONSTANT PROPAGATION

This optimization causes expressions with constant operands
to be evaluated at compile time, and causes the known constant
values of variables to be propagated to where the variable occurs
in other expressions. This latter case might result in the
recognition of other constant expressions. For example,

i = 3*4 gives i = 12
j = i+5 gives j = 17

This optimization is not applied to arrays or to array elements.
Most built-in functions with constant arguments are not, as of
MR7.0, evaluated at compilation time.

B-5 CC70-01

LOOP-ORIENTED OPTIMIZATIONS

All loop-oriented optimizations are made under the
assumption that code inside a loop is executed more often than
code outside the loop. These optimizations, therefore, try to
replace computations inside a loop with other computations
outside the loop. Wherever the basic assumption does not hold,
the optimizer will not succeed in speeding up execution.

REMOVAL OF INVARIANT EXPRESSIONS FROM LOOPS

This is the most obvious loop-oriented optimization. If an
expression is loop-invariant, it is evaluated ahead of the loop
itself, and its value is then used inside the loop. In order for
this optimization to be performed on a particular expression, the
following constraints must be satisfied:

• all input operands must not change their values within
the loop

• all operators must produce the same value for the same
set of inputs

• if the -safe optimize control argument is specified, or
if the operation is likely to cause an interrupt to
occur if given bad inputs (e.g., /,**,sqrt, asin), then
the expression must be in a part of the loop that is
always executed if the loop is entered.

For example, take the following loop:

do 100 i=1,10000
array(i) = i+x**y

100 continue

This would be transformed into

T = x**y
do 100 i = 1,10000
array(i) = i+T

100 continue

where T is a temporary, with a substantial decrease in execution
time.

Assignment statements may also be removed from loops. To
remove an assignment statement from a loop, the above mentioned
constraints must hold for the expression on the right hand side
of the equal sign. In addition, the following constraints must
be satisfied:

B-6 CC70-01

is

• The target of the assignment must not be referenced in
the loop before the assignment statement is referenced

• The value of the target of the assignment must not be
changed elsewhere in the loop

•
For

100

The assignment statement must be in a part of the
that is always executed if the loop is entered.

example, the following loop

do 100 i = 1,10000
a = x**y
array(i) = a*i
continue

transformed by the optimizer to

a = x**y
do 100 i = 1 ,10000
array(i) = a*i

100 continue

with no change in the meaning of the program, but the following
loop is not transformed because it violates the above constraints
and would change the meaning of the program:

do 100 i = 1,10000,2
a = x**-:[
array(i) = a*i
a = x/y
a "''''a'TT('; +1' = a. *.J....; J \.J. I I

100 continue

In this case, the assignment statements setting "au could
not be removed, although x**y and x/y could be removed.

-safe_optimize VS. -optimize

It is a goal of a good optimizer that a valid program should
produce the same results given the same inputs, whether optimized
or not. Obviously, if optimization causes a fault to occur when
an optimized program is run, and running the unoptimized program
does not cause a fault, this goal is not met. This unfortunate
situation could occur if the optimizer removed an expression from
a part of the loop that is not always executed if the loop is
entered. For example, removing x/y from the following loop would
be a mistake:

do 100 i = 1,10000
array(i) = i
if (y .ne. 0) array(i) = (x/y)*i

B-7 CC70-01

I

100 continue

because a zerodivide fault would occur if y were equal to zero.
Therefore operations such as /, •• , and most buil t-in function
references are not removed from loops unless they are in the part
of the loop that is always executed, whether or not the -safe optimize
control argument is specified. The operators +, -, and * present
a different case. They are extremely unlikely to cause a fault,
no matter what inputs they receive. Therefore, if the -optimize
control argument is specified, these operators may be removed
from a loop even if not in the part of the loop that is always
executed. This raises a very slight possibility that a
fixedoverflow, overflow, or underflow fault might occur with the
optimized program that would not occur with the unoptimized program.
For this rare case, the -safe optimize control argument is available.
If the -safe optimize control argument is specified, the
"always-executed n constraint is rigidly enforced for the +, ,
and * operators. It is recommended that you not specify the
-safe optimize control argument unless you really have to, since
it inhibits much valuable optimization and the likelihood that it
is needed is extremely low. (A better way to get the effect of
specifying the -safe optimize control argument is to specify the
safe keyword in a %options or %global statement. This statement
has the added advantage of making it explicit in the source that
the "always-executed" constraint must be rigidly enforced. Again
this is not recommended unless testing shows it to be necessary.)

STRENGTH REDUCTION

An induction variable is one that is altered within a loop
only by incrementing it by a constant or loop-invariant variable.
The index variable of a do-loop is an example of an induction
variable. The optimizer also recognizes induction variables that
are altered by assigning to them a simple linear function of
another induction variable and loop-invariant expressions or
constants. Induction variables are frequently mul tiplied by or
added to constants or loop-invariant expressions, and these
operations can be "reduced" to cheaper additions by introducing
new induction variables. This form of optimization is called
strength reduction.

12/81

For example, consider the program fragment:

common a(50,50)
do 100 i = 1,500
a(1,i) = a(1,i) + 3.0

100 continue

B-8 CC70-01A

In its internal representation, the compiler sees this as
equivalent to:

1" IV

i = 1
a(50*i) = a(50*i)+ 3.0
i = i + 1
if (i .le. 500) goto 10

To replace 50*i by a new induction variable TI, we initialize
TI to 50*i before the loop and increment TI by 50 after i is
incremented:

10

i = 1
TI = 50*i
a(TI) = a(TI) + 3.0
i = i + 1
TI = TI + 50
if (i .1 e • 500) goto 10

The resulting program
eliminated multiplications.
the fragment even further.

TEST REPLACEMENT

fragment is faster because of the
Further optim i zations will speed up

It is quite likely that strength reduction will have eliminated
from a loop all references to an induction variable except the
incrementing of the var iable and, po ssibl y, a test of that variable
against a loop constant to exit the loop. If this is true, and
if the val ue of the induction variable is not needed after the
loop is executed, the incrementing of the induction variable is
deleted and the test, if any, is changed to use one of the newl y
created induction variables.

For example, if we take the program fragment described in
the strength reduction section and apply test replacement to it,
we get:

10

12/81

i = 1

a(TI) = a(TI) + 3.0
TI = TI + 50
if (TI .le. 25000) goto 10

B-9 CC70-01A

I

I

I

REMOVAL OF DEAD ASSIGNMENTS

The optimizer applies its algorithms to loops from the inside
out. If we take the program fragment described above, and apply
constant propagation to the outer loop, we get:

i = 1
TI = 50

10 a(TI) = a(TI) + 3.0
TI = TI + 50
i f (T I • 1 e • 25000) go to 1 0

Notice that this has made the assignment to "i" useless since
its value is never used. This is called a "dead assignment."
The optimizer then removes this dead assignment giving:

TI = 50
10 a(TI) = a(TI) + 3.0

TI = TI + 50
if (TI .le. 25000) goto 10

for a tremendous improvement in efficiency over the original program
fragment.

At present, the optimizer removes only those assignments made
dead by a combination of test replacement and constant propagation.

Machine-Dependent Global Optimization

As of MR10.2, several machine-dependent global optimizations
are performed by the compiler.

GLOBAL POINTER REGISTER USE

Pointer register management attempts optimal use of pointer
registers allocated across loops. During the first pass of the
optimizing code generator, an analysis of potential pointer register
use is made, usage counts are determined, and the most frequently
used global pointers are set up to be loaded at the start of
loops, scanning from the innermost to the outermost loops.

12/83 ,B-10 CC70-01C

GLOBAL INDEX REGISTER I
Index register management attempts optimal use of index

registers allocated across loops. During the "first pass of the
optimizing code generator, an analysis of potential index register
use is made, usage counts are determined, and the most frequently
used global indexes are set up to be loade"d at the start of
loops, scanning from the innermost to the outermost.

PROCESSOR INSTRUCTION FETCH PADDING

Both the optimizing and nonoptimizing code generators pad
the entry label within do-loops in order to start them on an
even-word boundary. This optimization causes the processor to
have always two executable instructions available from the fetch
at the start of the loop, which produces as much as an eight
percent improvement over starting at an odd-word boundary. The
optimizing code generator does this only for the innermost loops
in order to reduce code size, while the nonoptimizing compiler
does this to all loops.

12/83 B-1 O. 1 CC70-01C

This page intentionally left blank.

12/83 CC70-01C

By applying the optimization described here to the program I
segment used in the previous section, the following object code
results:

epp7 pr4/q,* addr (common block)
Ixl2 50,dl

$10: fld pr7/-50,2 a
fad =3.0,du
fstr pr7/-50,2 a

adlx2 50,du
c-mpx2 25000,du
tmoy $10

POINTERS FOR EFFICIENT CODING STYLE USING THE FORTRAN OPTIMIZER

12/81

• When using arrays in loops, have the leftmost subscripts
vary most rapidly. This decreases paging.

• If a set of subprograms is called during the execution
of a program, compile the subprograms and the main program
together in the same source segment. This method of
compilation produces faster calling sequences, as
described above in the beginning of this section under
"Quick Subprogram Call."

• If no arguments in a quick call to a subroutine or
function are subscripted, or are formal parameters or
are in common storage, the calling sequence will be
shorter ..

• Avoid the
parameters
Because of
expressions
inhibited.

use of equivalenced variables and formal
as do-loop indexes and array subscripts.
potential aliasing, the optimization of
containing these variables is partially

• Avoid the use of variables in common as do-loop indexes
and as subscripts in loops that contain subroutine calls,
function references, or references to formal parameters.

• Code programs in a straight-line manner and avoid
circuitous and involved logic with many goto statements.
use do-loops for looping rather than if statements.
Although the optimizer recognizes all loops whether or
not they are do-loops, optimization is often better with
do-loops because, topologically, they tend to be
well-formed loops.

• Avoid extended range do-loops.

B-11 CC70-01A

I
I

I

12/81

• Avoid use of assigned goto statements. Besides making
a program more obscure to the reader, assigned goto
statements are not handled well because they obscure
the program flow.

• Avoid end= or err= branches to points wi thin loops.
These branches are best used to points outside of all
loops in a program unit.

• Control all do-loops with integer variables rather than
real or complex variables. Strength reduction is applied
only to integer variables.

• Use a save statement to name local variables whose values
must be saved across successive invocations of a program
uni t. Otherwise, do not use a save statement. Use
automatic variables when values need not be saved.

• Order the terms in a complicated logical expression in
a logical if statement such that the most likely relational
expression to decide the result comes first.

• Attempt to do I/O on whole arrays or vectors rather
than scattered array elements when inputting or outputting
arrays.

B-12 CC70-01A

APPENDIX C

COMPATIBILITY WITH NON-FORTRAN PROGRAMS

FORTRAN programs can reference PL/I procedures exactly as
they would reference subroutine or function subprograms. There
are no restrictions on the types of arguments passed from a
FORTRAN subprogram to a PL/I procedure. The following table
indicates the proper PL/I declaration for each FORTRAN data type.

WARNING: As a result of differences between PL/I and FORTRAN
languages, bit(1) aligned in PL/I is not equivalent
to logical in FORTRAN.

FORTRAN

integer i,j,k
real a,b
double precision d,e
complex c
logical r,s
character*7 cs

call subr (x,y,z,$10,$5)

subroutine subr (a,b,c,*)

return 5

PL/I

declare (i,j,k) fixed bin(35);
declare (a,b) float bin;
declare (d,e) float bin(63);
declare c float bin complex;
declare (r,s) bit(36) aligned;
declare cs char(7) aligned;

integer value=O;
call subr (x,y,z,integer value);
I*if integer value>O and <=number of
label args, then go to label array
(integer value)*1

subr: procedure(a,b,c)returns
(fixed bin);

return (~ , . , ~, ,

FORTRAN subprograms may be called by PL/I procedures and may
receive arguments of any FORTRAN data type.

Multidimensional PL/I arrays can be passed to FORTRAN and
vice versa if the dimensions are reversed and the subscripts are
reversed. This is because FORTRAN stores arrays in column-major
order while PL/I stores them in row-major order.

C-1 CC70-01

Example:

dimension q(5,10),r(10)
real q,r,s

call x(q,r,s)

x: proc(a,b,c);
dcl a(10,5) float,
b(10) float,
c float;

Note: q(2,3) is referenced in x as a(3,2).

The FORTRAN call is identical to a PL/I call and is fully
compatible with Multics standards. FORTRAN subprograms can call
and be called by programs written in any language that obeys
these conventions and implements Multics standard data types that
correspond to the FORTRAN data types. FORTRAN subprograms may
call any of the Multics system entries whose arguments are
restricted to the data types available in Multics FORTRAN.

Three classes of procedure require descriptors in PL/I: (1)
all procedures declared "options (variable) ," (2) all procedures
declared with star extents, and (3) all Multics commands. A PL/I
procedure is considered to have star extents if its declaration
(or Usage Description) contains the character "*,,

If a called PL/I procedure expects descriptors, the calling
FORTRAN program must declare the entry name in an external
statement with the "(descriptors)" attribute.

Example:

external ioa (descriptors), sort_seg (descriptors)

call ioa ("Error retype the values")

.
call ioa ("Job "'a,"d lines completed", job_name, line count)

call sort seg ("temp_file")

C-2 CC70-01

Example:

nr IT r ~I .L

dcl a entry(fixed bin, char (5»;
dcl b entry(fixed bin, char (*»;

FORTRAN

external b (descriptors)

call a (5, "Hello")

call b (-4, "Bye")

In the example above the declarations on the left are PL/I
and the code on the right shows how the declaration is written in
FORTRAN. Notice that b requires descriptors; a does not.

C-3 CC70-01

APPENDIX D

ERROR MESSAGES

A complete list follows of compilation-time error messages
and runtime 1/0 error messages. In the case of the compilation-time
messages, xxx indicates the point in the message where specific
information about the actual error is inserted by the compiler.
The runtime 1/0 messages would also be more specific in real
cases.

All error messages that begin with "Compiler error:" are
errors in the compiler itself and should never occur. If such an
error message dOes occur, you should report it to maintenance
personnel at your site, and save the source so that the error can
be duplicated and corrected by the developers.

COMPILE-TIME ERROR MESSAGES

ERROR
NUMBER

001

002

003

004

005

006

007

12/81

SEVERITY

3

3

3

2

3

2

MESSAGE

This segment contains no FORTRAN statements,
just comment lines.

Extra end statement encountered.

Main program must
in the segment.

be the first program 1\"'" ; f
lAiJ..1.. v

Executable statements cannot appear in a block
data subprogram.

This statement is preceded by an unconditional
transfer of control and cannot be referenced.

Syntax error in xxx statement. Text follows
logical end of statement.

This subprogram must contain at least one

D-1 CC70-01A

I

008

009

010

011

012

013

014

I 015

016

017

018

I 019

020

021

022

023

024

12/81

3

2

3

3

3

3

3

3

2

3

3

3

3

3

3

3

executable statement.

The do loop ending wi th xxx has not been
terminated.

Return value of function xxx has not been set.

Syntax error. A variable name is required in
place of xxx.

Syntax error. A right parenthesis is required
in place of xxx.

The label xxx has been referenced but not
declared.

Syntax error.
of xxx.

A slash is required in place

xxx is declared with variable bounds but is
not a parameter.

More than one unnamed block data subprogram.

A xxx statement cannot terminate a do loop.

, A xxx statement cannot appear in a main program.

xxx is the index of two or more nested implied
do loops.

xxx, which is a bound of xxx, is not an scalar
integer, parameter, constant, or in_common.

xxx cannot be declared as a member of the
common block xxx.

xxx cannot be referenced as a subroutine.

Syntax error. A left parenthesis is required
in place of xxx.

Syntax error. A statement label is required
in place of xxx.

Syntax error. An unsigned integer constant
is required in place of xxx.

D-2 CC70-01A

025

026

027

028

029

030

031

032

033

034

035

036

-037

038

039

040

041

042

043

12/81

3

3

3

3

2

3

3

3

3

3

3

3

3

3

3

3

3

Syntax error. A reference to a scalar variable
is required in place of xxx.

Syntax error.
of xxx.

A comma is required in place

Implementation restriction: Do loop and block
if nesting has exceeded xxx.

Syntax error. An equivalence group must contain
at least two members.

An xxx statement file must be a variable, ~rray, ,
or array element of arithmetic or character
type.

The xxx attribute is redundant or conflicting
for xxx and is ignored.

A xxx statement must have a xxx specification. I

This is not an assignment statement and xxx
is not a known keyword.

A global save statement must be the only save
statement in a program unit.

Syntax error. A left parenthesis encountered
that does not delimit an implied do loop.

A xxx statement cannot appear in a main program.

The real constant xxx has more than xxx digits
and has been converted to double precision.

Syntax error. A format statement must have a
statement label.

A program unit cannot contain both automatic
statements and save statements.

xxx can only appear in this parameter 1 ist
once.

Syntax error. A keyword is required in place
of xxx.

Syntax error. A label, variable name, or list
of labels is required in place of xxx.

A xxx statement cannot be the second part of
a logical if statement.

xxx has been referenced but not set.

D-3 CC70-01A

044

045

046

047

I 048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

12/81

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

Syntax error. The keyword xxx is required in
place of xxx.

Syntax error. A single letter is required in
place of xxx.

Syntax error. The letter range specified must
be in ascending alphabetical order.

Syntax error. The letters in the letter range
must be in the same case.

The xxx keyword has been specified more than
once in this statement.

Syntax error. An equals sign is required in
place of xxx.

Syntax error. A constant is required in place
of xxx.

Syntax error. Only arithmetic constants can
be signed.

Syntax error. The characters xxx are out of
place.

Syntax error. A character string constant is
required in place of xxx.

Pathname in library statement is not acceptable.

Implementation restriction: A statement
function is limited to xxx arguments.

This xxx statement is out of sequence and is
ignored.

Adding a word to common block xxx in order to
store xxx on a double word boundary.

xxx is a member of common and cannot have
variable bounds.

Storage class for xxx conflicts with storage
class of the equivalence group.

Attempt to equivalence xxx to more than one
location.

Attempt to change the address of common block
xxx.

Cannot equivalence a member of a common block,
xxx, to another common block, xxx.

D-4 CC70-01A

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

12/81

3

3

3

3

4

2

3

3

3

3

3

3

3

3

3

3

Alignment requirements for equivalence group
containing xxx cannot be resolved.

xxx cannot appear in an equivalence group.

xxx cannot appear in an equivalence group
because it has variable bounds.

Syntax error. xxx is not a valid keyword for
the xxx statement.

Implementation restriction: xxx has overflowed
its limit of xxx words.

xxx, which is a formal parameter of the statement
function xxx, has not been referenced.

The statement label xxx is less than
greater than 99999.

or

The statement label xxx has been previously
defined. This definition is ignored.

This executable statement label is used as a
format specification.

This format statement label is used in an
executable context.

The statement label on this statement cannot
be referenced.

A reference to an executable statement label
is required in place of xxx.

A reference to a format statement label is
required in place of xxx.

A subscripted reference to xxx is not possible.

This reference to xxx is not valid because it
has variable bounds.

The subscript xxx exceeds the corresponding
xxx bound for xxx.

A reference to xxx has xxx subscripts.

D-5 CC70-01A

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

I 096

097

098

099

12/81

3

2

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

Initialization of common blocks can only occur
in a block data subprogram. xxx not
initialized.

More than one initial value assigned to an
element of xxx.

Fewer constants than variables in a data
specification.

The mode of xxx is not compatible with the
mode of xxx.

More constants than variables in a data
specification.

Implementation restriction: Format
specification is longer than xxx characters.

Syntax error in a format specification. xxx

Implementation restriction:
length of xxx exceeds xxx.

The character

Syntax error. A format or namelist reference
is required in place of xxx.

Implementation restriction: Implied do loop
nesting exceeds xxx.

Syntax error. Parentheses do not balance.

Syntax error in an implied do loop.

xxx is not a keyword or variable name and
cannot start a FORTRAN statement.

xxx cannot be declared as a builtin function.

Syntax error. An operand is required in place
of xxx.

Only scalar variables and array elements may
appear in a set context.

The fun ct ion xxx cannot appear in a set cont ext.

xxx is followed by a parenthesized list but
is not dimensioned and cannot be a function.

xxx is dimensioned and must appear in this
context with subscripts.

xxx is an entry value and cannot appear in
this context.

D-6 CC70-01A

100

101

102

103

104

105

106

107

108

109

·110

111
I I I

112

11 3

114

115

116

117

118

119

120

12/81

3

3

3

2

2

3

3

2

2

3

3

3

3

3

3

3

3

3

3

3

xxx cannot appear in this context.

Syntax error. A binary operator is required
in place of xxx.

Syntax error. Unexpected occurrence of xxx.

Implementation restriction: The line number
xxx must be less than 16384.

Missing end statement. One will be supplied
by the compiler.

Syntax error. Statement consisting of only a
statement label.

The character xxx is not a member of the FORTRAN
character set or is out of place.

Invalid use of xxx.

Character string constant whose length is zero.

A character string constant has been terminated
by the end of the statement.

Implementation restriction: More than xxx
constants in this statement.

Text of this statement exceeds xxx characters.

A continuation line was encountered that was
not preceded by an initial line.

There is no line number on this line: xxx

The rightmost six digits of xxx will be used
as the line number.

The line number xxx is not greater than xxx.

Syntax error. Decimal point missing from end
of an operator or logical constant •

• xxx. is not an operator or constant known
to this compiler.

Missing or incomplete exponent field. The value
zero will be used.

Integer constant xx·x cannot be represented
internally.

More than xxx digits in the floating point
constant xxx.

D-7 CC70-01A

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

. 1136

137

138

12/83

3

3

3

3

2

3

3

3

2

3

3

3

2

3

3

3

3

Exponent overflow while converting the floating
point constant xxx.

Exponent underflow while converting the
floating point constant xxx~

Implementation restriction:
tokens in this statement.

More than xxx

Implementation restriction: Tokens are limited
to xxx characters.

The data type of xxx must be the same as that
of xxx.

xxx cannot be assigned an initial value.

The name xxx cannot be used as an entry point
name.

xxx is a member of blank common and cannot be
assigned an initial value.

The letter range specified in this statement
overlaps a previous range.

xxx is contained in an octal constant but is
not an octal digit.

A statement label appears on a line wi thout
any other text.

This statement contains a line with more than
80 characters.

A nonnumeric character was encountered in a
label field.

Text appears after the closing right parenthesis
of a format specificatione

The variable xxx must be the index variable
of a containing implied do loop •

Implementation restriction: The xxx of xxx
exceeds 262143.

A prefix minus cannot precede xxx.

Implementation restriction: There are more
than xxx arguments in this reference to xxx.

D-8 CC70-01C

139

140

141

142

143

144

145

146

147

1 JI Q
I -rv

149

150

151

152

153

154

155

12/83

2

3

2

3

3

3

3

2

3

3

3

3

3

A character constant used to initialize xxx
is longer than xxx characters.

Variable xxx has already been defined and cannot
appear in a xxx statement.

xxx must be a scalar integer reference.

The named constant xxx must not appear in this
context.

The expression starting wi th xxx must be a
scalar or subscripted variable.

Warning: the meaning
exponentiation has been
previous release.

of
changed

multiple
from a

This xxx statement cannot have an input/output
list.

This xxx statement must have an input/output
list.

Variable xxx was declared with *-length, but
is not a parameter or external
function--length has been set to xxx.

Line xxx was interpreted as a comment, but a I
legal non-space character follows the initial I
c.

Asterisks designating external units are not
permitted in xxx statements.

Unknown keyword xxx found in %global statement.

Unknown keyword xxx found in %options statement.

The terminating semicolon is missing from a
%options or %global statement.

The concatenation operator may only be l!sed
if the ansi 77 control argument or option
was specified.

The substring operation may only be used if
the ansi 77 control argument or option was
specified.

Invalid substring of xxx.
be applied to simple
elements.

D-9

Substring may only
variables or array

CC70-01C

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

I 111

12/83

3

3

3

3

3

3

3

3

3

3

3

3

3

3

4

3

xxx cannot contain both ansi77 character
variables and other data types.

An equi valence group cannot contain both ansi 77
character variables and other data types.

Star-extent character strings may only be used
if the ansi 77 control argument or option
was specified.

This statement contains a substring reference
to xxx, which is not of the character data
type.

The %include statement does not contain a file
name.

The include file name xxx is longer than 19
characters. Statement ignored.

Include file xxx not found. Statement ignored.

Implementation restriction: only 255 include
files allowed per compilation. Include file
xxx ignored.

Implementation restriction: include file xxx
exceeds the nesting limit of 32. Statement
ignored.

This reference to xxx would cause infinite
recursion of include files. Statement
ignored.

An assumed-size array is not permitted in an
xxx statement.

The array xxx has an assumed-size declarator
in other than the upper bound of the last
dimension.

A lower dimension bound of xxx is greater than
the corresponding upper bound.

A dimension bound of xxx is neither a constant
expression nor a scalar integer variable.

Compiler error: An invalid data type has been
encountered during evaluation of a parameter
expression.

A non-constant operand xxx was found while
evaluating xxx.

D-10 CC70-01C

172

173

174

. 175

176

177

178

179

180

1 81

1Q')
, vc....

183

184

185

186

187

188

189

12/83

3

3

3

3

3

4

3

3

3

3

3

3

3

2

3

2

2

An operator whose operands are of invalid type
was found while evaluating xxx •

An at tempt was made to use an unimplemented
operation while evaluating xxx.

The xx~ condition was raised during evaluation
of xxx.

An invalid operator was found during evaluation
of xxx.

An operand of invalid data type was found during
evaluation of xxx.

Compiler error: the parameter statement work
area has overflowed.

The block if beginning at line xxx has not
been terminated.

The keyword xxx is missing in a xxx statement.

There is no block if statement corresponding
to this xxx statement.

This xxx statement has followed an else
statement in the same block if.

The do loop ending at xxx must be ended before
this xxx statement.

This statement ends a do loop, but the do
loop ending at xxx must be ended first.

This statement ends a do loop, but the block
if at line xxx must be ended first~

The label xxx is on a statement that must not
be referenced.

xxx is not the name of a common block.

Invalid specification or combination of
specifications in a xxx statement: xxx.

The compiler is unable to get status information
on source or include file xxx. The object
segment will be nonstandard.

Implementation restriction: There are more I
than xxx arguments in this parameter list.

D-11

I 191

I
I

192

193

200

201

202

203

204

205

206

229

300

301

302

303

304

305

306

12/83

2

2

2

4

4

4

3

3

4

4

3

3

3

3

3

2

3

The xxx xxx supercedes xxx.

The control argument xxx supercedes the %global
option xxx.

An invalid %global has been found and will be
ignored. All % global must be at the beginning
of the program.

Compiler error: the converter has encountered
an unexpected operator with the op_code xxx.

Compiler error! attempt to increment polish
beyond end of polish input stack. -

Compiler error: the converter work segment
has overflowed while adding an entry to the
xxx list.

Compiler error: an sf dummy arg has been found
that does not match a known invocation.

Implementation restriction: an operator cannot
use more than xxx operands.

Compiler error: converter work stack pointer
has become negative.

Compiler error: converter work stack pointer
has exceeded its upper bound of xxx.

Constant type not implemented.

xxx must be a scalar integer variable.

xxx must be a scalar integer variable.

The data type of a file expression, xxx, must
be integer.

An internal file must have the character data
type.

The record number expression, xxx, must be
integer.

The encode or decode string may not be of
logical data type.

Error detected in the definition of the
statement function xxx.

D-12 CC10-01C

307

308

309

310

311

312

313

314

315

316

317

319

320

321

322

323

324

325

12/83

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

Insufficient number of arguments in a reference
to the statement function xxx.

Too many arguments supplied in a reference to
the statement function xxx.

The data type of xxx is not compatible with
its use.

The data type of xxx is not compatible wi th
its use.

xxx is complex and xxx is double precision in
an expression.

xxx is double precision and xxx is complex in
an expression.

The data type of xxx must be logical.

The arguments to the builtin function xxx must
have the same data type.

xxx does not have an arithmetic data type.

The do-loop control variable xxx cannot be
complex.

xxx in a do statement must be arithmetic •

~~~ A~'~~~ ~~~~~~1 
J.llC UV-.LVV~ I.,.;Vl1v.LV.L 

........... ~~ -'"',--va..L·.La.U.Lt: xxx _ •• _L. 
UlUo::>l, be 

arithmetic. 

Wrong number of arguments in a reference to 
the builtin function xxx. 

The builtin function xxx has an argument, xxx, 
that is not arithmetic. 

Error in the use of the builtin function xxx. 
xxx has an invalid data type. 

Error in the use of the builtin function xxx. 
xxx and xxx are complex values. 

The complex value xxx cannot be used in this 
comparison. 

xxx in a logical if, block if, or else if 
statement must be a logical value. 

xxx in an arithmetic if statement must be an 
arithmetic value. 

D-13 CC70-01C 



326 

327 

328 

329 

330 

331 

332 

333 

334 

335 

336 

337 

338 

339 

340 

341 

342 

343 

12/83 

3 

3 

3 

2 

4 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

xxx in a computed if statement must be an 
arithmetic value. 

Insufficient number of labels in a computed 
goto statement. 

The complex values xxx and xxx cannot be used 
in this comparison. 

The format item xxx must be an integer array 
or a character variable. 

Compiler error: obsolete macro xxx occurs in 
the text. 

The margin setting xxx must have the integer 
data type. 

The filename xxx must be a character string. 

The filetype xxx must be a character string. 

In the use of the statement function xxx, xxx 
does not have the correct data type. 

The file to be chained to xxx must be a character 
string or an integer array. 

The system to be chained to xxx must be a 
character string or an integer array. 

The character variable xxx cannot be assigned 
to an arithmetic variable. 

xxx cannot be assigned to xxx, because it is 
not a logical variable. 

The logical value xxx cannot be an operand of 
a relational operator. 

The arithmetic value xxx can only be compared 
to another arithmetic value or a hollerith 
constant. 

xxx does not have the character or integer 
data type and cannot be compared with xxx. 

Error in processing the label list in a computed 
goto statement. 

The data type of the sta tement function xxx 
must be arithmetic or logical. 

D-14 CC70-01C 



344 

345 

346 

347 

348 

349 

350 

351 

352 

353 

354 

355 

356 

357 

358 

380 

381 

382 

12/83 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

4 

2 

3 

4 

4 

Cannot convert a double precision expression 
to complex in the statement function xxx. 

Cannot convert a complex expression to double 
precision in the statement function xxx. 

Cannot convert the defining expression to the 
data type of the statement function xxx. 

The statement function xxx does not have the 
proper data type. 

This reference to xxx contains a character 
argument that may require descriptors. 

An error has been detected in the processing 
of an open field. 

The iostat variable xxx must have the integer 
data type. 

The argument xxx used in this field must have 
the character data type. 

The argument xxx used in this field must have 
the integer data type. 

The argument xxx used in this field must have 
the logical data type. 

xxx is used in a character expression but does 
not have the character data type. 

The character valued function parameter xxx 
may not be declared to have *-length. 

An error has been detected in the processing 
of an inquire statement field. 

Compiler error: Invalid field number xxx 
encountered in inquire statement. 

The format 
Array. 

i tern xxx cannot be a Very Large I 
An undefined label has been found in this 

program. 

Compiler error: the output from the optimizer 
overwrites the next statement. 

Compiler error: xxx does not agree with xxx. 

D-15 CC70-01C 



4 

I 384 

385 4 

386 4 

388 4 

389 

390 4 

391 4 

I 400 2 

I 401 2 

402 4 

403 4 

404 4 

405 4 

406 4 

12/83 

Compiler error: The optimizer has encountered 
an unexpected operator with the op_code xxx. 

The code from LINE xxx to LINE xxx is unreachable 
or unnecessary. It will not be compiled. 

Implementation restriction: optimization has 
terminated due to lack of available bits in 
the masks. 

Compiler error: Inconsistency found between 
an operator and the inputs chain of one of 
its inputs. 

This loop has been eliminated because, after 
optimization, it has no effect on the result 
of the program. 

Implementation restriction: flow unit table 
overflow. Simplify flow of control: use 
do statements for looping. 

This loop has no exit. 

Implementation restriction: optimizer has 
created too many new operators. 

Compiler error: an expression unthreaded by 
strength reduction is input to other 
expressions. 

xxx has been called with an inconsistent number 
of arguments. 

xxx is inconsistent wi th the corresponding 
argument type used in xxx. 

Compiler error: an invalid index has been 
used with a xxx macro. 

Compiler error: 
arguments has 
func. 

a return macro 
been used to return 

without 
from a 

Compiler error: a return macro with an argument 
has been used to return from a proc. 

Compiler error: an exit macro has been used 
to return from a func. 

Compiler error: an exit macro has been used 
in a proc not invoked by scan. 

D-16 CC70-01C 



407 

408 

409 

410 

411 

412 

413 

414 

415 

416 

417 
I r 

II" 0 
<-flU 

419 

420 

421 

422 

423 

12/83 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

3 

3 

Compiler error: xxx overflows its maximum of 
xxx words. 

Compiler error: an s return has been used 
when no matching s_ciil exists. 

Compiler error: an ind jump macro was used 
when the eaq was not in an indicator substate. 

Compiler error: 
was used when 
state. 

an if ind or unless ind macro 
the eaq was in an invalid 

Compiler error: an add to address macro was 
used with non-rel constant xxx. 

Compiler error: 
the character 
operand xxx. 

an attempt was made to get 
length of the noncharacter 

Compiler error: there was an attempt to execute 
a nonexecutable macro. 

Implementation restriction: xxx has overflowed 
its limit of xxx words. 

Compiler error: the reference count of xxx 
has become less than O. 

Compiler error: 
field. 

xxx has an invalid address 

Compil er € l~;'-C;': :::::~::-:. ~~~ 0 ~ po int er regist er 
for addressing, but is neither a parameter 
nor in common. 

Compiler error: no index or pointer registers 
are available for allocation. 

Compiler error: the offset of xxx cannot be 
found in storage. 

Co~piler error: a~ attempt was made to update 
the eaq with xxx to the ind state. 

Compiler error: an attempt was made to load 
xxx into an invalid eaq state. 

The subscript xxx of xxx is out of range. 

The number of subscripts of xxx does not equal 
the number of its bounds. 

D-17 CC70-01C 



424 

425 

426 

427 

428 

429 

430 

431 

432 

433 

434 

435 

436 

43'7 

438 

439 

440 

441 

12/83 

4 

4 

4 

3 

2 

3 

2 

4 

4 

4 

4 

4 

4 

4 

4 

Compiler error: xxx not implemented. 

Compiler error: operand stack in improper state 
at end of subprogram. 

The length for common block xxx has been 
increased to xxx words. 

Compiler error: the address of xxx has been 
lost. 

The entry point xxx has been mul tiply declared. 

Mul tics restriction: The common block name 
xxx contains a dollar sign and cannot be 
initialized. 

Compiler error: the value of xxx should be 
in the index register, but it has been lost. 

The subscript xxx of parameter xxx is out of 
range. 

The common block xxx is initialized more than 
once8 The first initialization is used. 

Implementation restriction: the product of 
xxx and xxx cannot be stored in the stack. 

Common block xxx is declared wi th more than 
one length. 

Compiler error: xxx must be a temporary or 
an array ref. 

Compiler error: obsolete macro xxx occurs in 
the text. 

Compiler error: a var pr.oc is invoked by a 
call macro. 

Compiler error: proc arg count not equal to 
actual arg count. xxx xxx 

Compiler error: eaq not loaded by load_for test 
macro. 

Compiler error: eaq not loaded correctly for 
xxx. 

Compiler error: operand xxx in return macro 
is not a temporary node. 

D-18 . CC70-01C 



442 4 

1l1l':2 
, '..J 

444 4 

445 4 

446 4 

447 4 

448 4 

449 4 

450 4 

451 

452 4 

453 4 

454 4 

455 4 

3 

457 3 

458 3 

12/83 

Compiler error: 
address. 

temporary already has an 

Only the first xxx characters of xxx can be 
used. 

Compiler error: This statement cannot have a 
machine state associated with it. 

Compiler error: xxx has an invalid xxx field. 

Compiler error: 
address field. 

xxx has an uninitialized 

Compiler error: an increment cannot be added 
to the address of xxx. 

Compil er error: Could not put operand into 
EAQ machine state. 

Compiler error: Both A and Q found already 
locked by eaq_man. 

Compiler error: An operand that should be in 
the eaq was not found by get_eaq_name. 

Implementation restriction: Global xxx table 
overflows. Optimization may be degraded. 

Compiler error: data type xxx undefined for 
a call to create constant. 

Compiler error: attempt to load global item 
in a reserved register. 

Compiler error: attempt to set up xxx while 
it has a nonpositive reference count. 

Compiler error: 
polish that 
quadruples. 

an opera tor appears in 
should only appear in 

the 
the 

Compiler error: the reference count of xxx 
was left too high. 

The xxx appears in a substring reference to 
xxx, but falls outside the range of a legal 
character index. 

The xxx which appears as a subscript of xxx I 
does not have a numerical data type. 

D-19 CC70-01C 



I 459 

460 

461 

462 

463 

464 

465 

466 

467 

468 

I 469 

500 

501 

502 

503 

I 523 

12/83 

3 

3 

3 

4 

4 

4 

4 

4 

4 

3 

2 

2 

2 

2 

2 

4 

The xxx which appears in a substring reference 
to xxx does not'have a numerical data type. 

A substring reference to xxx has a constant 
length that is less than 1. 

The xxx intrinsic function may not be used as 
an external function. 

Compiler error: No integer constant was present 
on the operand stack when the int to char1 
macro was invoked. 

Compiler error: No character constant was 
present on the operand stack when the 
char1 to int macro was invoked. 

Compiler error: The optimizing code generator 
encountered the xxx intrinsic function. 

Compiler error: The output of an operator 
called from a scan is not a temporary. 

Compiler error: An emi t eis macro wi th the 
equal lengths flag was encountered in which 
the length of the second operand was nonzero. 

Compiler error: base man store temp cannot 
find a usable pointer register:-

xxx requires argument descriptors and may not 
be passed the assumed size array xxx. 

Implementation restriction: Cannot initialize 
/xxx/ the definition section would overflow 
its limit of xxx words. 

Cannot get pointer to subsequent source segment. 

Number of symbols exceeds xxx. Symbol table 
will be processed in sections. 

Compiler Error: Unknown node xxx discovered 
in symbol table. 

The symbol xxx cannot be chained to others of 
the same name because the symbol table is 
too large. 

Compiler error: VLA xxx has been encountered 
which is neither auto, static, common, nor 
parameter. 

D-20 CC10-01C 



524 

525 

3 

4 

Development compiler error: xxx 

Compiler error: unknown error xxx. 

RUNTIME I/O ERROR MESSAGES 

In a real situation, the messages listed below would occur 
accompanied by varying amounts of supplementary information, which 
might include: 

(1) the specific item that is in error 

(2) a description of the processing attempted by the FORTRAN 
runtime I/O routines when the error occurred 

(3) where in the program the error occurred, and 

(4) where in the file the error occurred. 

Error messages include brief descriptive comments. 

fortran io: Error in access field. 

fortran io: This open attribute cannot be supplied if the file 
is already connected. 

fortran io: This open attribute cannot be supplied if the file 
is already opened. 

fortran io: Error in the attach description field. 

fortran io: Invalid or unexpected character in external data field. 

fortran io: Error in the blank field. 

fortran io: This file cannot be backspaced or rewound. 

fortran io: This file cannot be read. 

fortran io: This file cannot be opened with the requested mode. 

fortran io: This file opening does not permit file truncation. 

fortran io: This file opening does not permit output operations. 

fortran io: Error in the close statement attributes. 

fortran io: External data field cannot be converted. 

fortran io: Double word binary files are limi ted to double precision 
data. 

12/83 D-21 CC70-01C 



fortran io: Error in the filename field. 

fortran io: FORTRAN I/O Error. 
personnel. 

Contact FORTRAN maintenance 

fortran io: Error in the form field. 

fortran io: Error in format specification. 

fortran io: Infinite loop in format. There is a list item but 
the format has no field descriptors. 

fortran io: Formatted files are limited to formatted records. 

fortran io: The file opening is not compatible with the existing 
file. 

fortran io: An attempt has been made to access a record beyond 
the end of an internal file. 

fortran io: Only prompt, defer, and carriage attributes are allowed 
for file O. 

fortran io: Only the print or terminal file type can be specified 
for file o. 

fortran io: This operation is not allowed for file O. 

fortran io: Invalid value for the maximum record length. 

fortran io: The value of a scale factor must be between -8 and 8 
inclusive. 

fortran io: Error in the I/O switch field. 

fortran io: Maximum record length exceeded. 

fortran io: Namelist input must begin with a header. 

fortran io: Error in the mode field. 

fortran io: File must be empty in order to set maximum record 
length. 

fortran io: Error in namelist I/O. 

fortran io: This file is not a blocked file. 

fortran io: This file opening does not permit direct access I/O. 

fortran io: File must be open before being used. 

12/83 D-22 CC10-01C 



fortran io: This file was not created, opened, and at tached by 
FORTRAN 1/0 .. 

fortran io: This file opening 
1/0. 

does not noY>m;r 
tJ"-.L LU..,L v access 

fortran io: These two open attributes are mutually exclusive. 

fortran io: The open attributes are incomplete. 

fortran io: Maximum format parenthesis level exceeded. 

fortran io: Attem~t to read more data than the record contains. 

fortran io: Error in status field. 

fortran io: Syntax error in the external data field. 

fortran io: Unformatted files are limited to unformatted records. 

fortran io: The file type of the external file is not recognized. 

fortran io: The 1/0 switch was not opened by FORTRAN and it does 
not support the requested mode. 

12/83 D-23 CC70-01C 



MULTICS FORTRAN USER'S GUIDE 
ADDENDUMC 

SUBJECT 

Changes to the Manual 

SPECIAL INSTRUCTIONS 

This is the third addendum to CC70, Revision 1, dated December 1979. Refer to 
the Preface for ~~Significant Changes." 

Insert the attached pages into the manual according to the collating instruc
tions on the back of this cover. Throughout the manual, change bars in the 
margins indicate technical additions; asterisks denote deletions. 

Note: 
Insert this cover after the manual cover to indicate the updating of the 
document with Addendum C. 

SOFTWARE SUPPORTED 

Multics Software Release 1002 

ORDER NUMBER 

CC70-01C 

39098 
11183 
Printed in U.S.A. 

December 1983 

Honeywell 



COLLATING INSTRUCTIONS 

To update the manual, remove old pages and insert new pages as follows: 

Remove 

iii through viii 
ix, blank 

1-6.1, blank 
1 -7, 1-8 

1-13, 1-14 

1-15 through 1-20 

1-23, blank 
1 -23 • 1, 1 -24 

3-3 through 3-6 

3-9, 3-10 

4-1 through 4-4 

B-9, B-10 

D-7 through D-22 
D-23, blank 

i-1 through i-8 

The infonnation and specifications in this document are subject to change without notice. This 
document contains infonnation about Honeywell products or services that may not be available 
outside the United States. Consult your Honeywell Marketing Representative. 

Insert 

iii through viii 
ix, blank 

1-7, 1-8 
1-8 • 1, 1 -8 . 2 

1-13, 1-14 

1-15 through 1-20 
1-20.1, blank 

1 -23, 1 -23 . 1 
1 -23 • 2, 1 -24 

3-3, 3-4 
3-5, 3-5.1 
3-5.2, 3-6 

3-9, 3-1 0 

4-1 through 4-6 
4-7, blank 

B-9, B-10 
B-1 0 • 1, b 1 an k 

D-7 through D-22 
D-23, blank 

i-1 through i-8 
i-9, blank 

o Honeywell Information Systems Inc., 1983 File No.: 1L13, 1U13 

12/83 CC70-01C 



LEVEL 68 

MULTICS FORTRAN 
USERS' GUIDE 
ADDENDUMB 

SUBJECT 

Changes to the Manual 

SPECIAL INSTRUCTIONS 

This is the second addendum to CC70, Revision 1, dated December 1979. Refer to 
the Preface for ··Significant Changes." 

Insert the attached pages into the manual according to the collating instruc
tions on the back of this cover. Throughout the manual, change bars in the 
margins indicate technical additions; asterisks denote deletions. 

Note: 
Insert this cover after the manual cover to indicate the updating of the 
document with Addendum B. 

SOFTWARE SUPPORTED 

Multics Software Release 10.1 

ORDER NUMBER 

CC70-01B 

36163 
7.5C183 
Printed in U.S.A. 

February 1983 

Honeywell 



COLLATING INSTRUCTIONS 

To update the manual, remove old pages and insert new pages as follows: 

Remove Insert 

iii through ix, blank 
1-3 through 1-6 

.1-13,1-14 

3-3 through 3-6 

3-7 through 3-10 

4-1 through 4-4 
5-5 through 5-6 
5-17,5-18 

6-3,6-4 
i-I thorugh i-8 

The information and specifications in this document are 
subject to change without notice. This document contains 
information about Honeywell products or services that may 
not be available outside the United States. Consult your 
Honeywell Marketing Representative. 

© Honeywell Information Systems Inc.,-1983 
2/83 

iii through ix, blank 
1-3 through 1-6 
1-6.1, blank 
1-13,1-14 
1-14.1, blank 
3-3,3-4 
3-5, blank 
3-5.1,3-6 
3-7, blank 
3-7.1,3-8 
3-9,3-10 
3-10.1, blank 
4-1 through 4-4 
5-5,5-6 
5-17,5-18 
5-18.1, blank 
6-3,6-4 
i-I through i-8 

File No.: ILI3, I UI3 
CC70-01B 



SERIES 60 (LEVEL 68) 

MULTICS FORTRAN 
USERS' GUIDE 
ADDENDUM A 

SUBJECT 

This is the first addendum to CC70-01 (dated December 1979). 

Insert the attached pages into the manual according to the collating 
instructions on the back of this cover. 

Section 6 is new. In other sections, change bars indicate new and changed 
information; asterisks denote deletions. These changes will be incorporated into 
the next revision of this manual. 

Note: 
Insert this cover after the manual cover to indicate the updating of the 
document with Addendum A. 

SOFTWARE SUPPORTED 

Multics Software Release 9.1 

ORDER NUMBER 

CC70-01A 

33573 
5C182 
Printed in U.S.A. 

December 1981 

Honeywell 



COLLATING INSTRUCTIONS 

To update the manual, remove old pages and insert new pages as follows: 

Remove 

title page, preface 

iii through vii, blank 

1-13 through 1-24 

2-1, 2-2 

3-3 through 3-6 

4-3, blank 

5-5 through 5-8 

8-7 through 8-12 

D-1 through D-14 

i-1 through i-8 

The information and specifications in this document are 
subject to change without notice. This document contains 
information about Honeywell products or servi.cea that may 
not be available outside the United States. Consult your 
Honeywell Marketing Repreaentative. 

~ Honeywell Information Systems Inc., 1981 

12/81 

Insert 

title page, preface 

iii through ix, blank 

1-13 through 1-23, blank 
1-23.1, 1-24 

2-1, 2-2 

3-3 through 3-6.2 

4-3, blank 

5-5 thro"gh 5-8.1, blank 

6~1 through 6-4 

8-7 through 8-12 

D-1 through D-23, blank 

i-1 through 1-8 

File No.: 1L13 

CC70-01A 



PREFACE 

The purpose of this manual is to supplement Multics FORTRAN, 
Order No. AT58. 

Anyone faced with the prospect of learning to use an unfamiliar 
computer system is likely to experience some frustration in trying 
to get information out of the manuals that are supposed to explain 
it all. The inexperienced or occasional user is often at a loss 
for where to start understanding it all, especially since the 
manual explaining it all seems to assume everything. You want to 
know where there is a manual explaining how to use the manual 
that is supposed to explain it all. 

The FORTRAN Users' Guide is written in the hope that all of 
you who want to write FORTRAN programs on the Multics system can 
get answers to basic questions both about the system and about 
the the FORTRAN dialect embodied on it. 

If you are new to the system, whatever your level of 
sophistication as a programmer, the first section, "Introduction 
to Multics," provides a general overview of the system from the 
standpoint of FORTRAN programming. You are strongly encouraged 
to read through this section carefully before reading any other 
part of the manual. 

Sections are so designed as to make them independent of each 
other. Depending on what you want to know, you can read the rest 
of the manual in any order you choose. 

12/81 CC10-01A 



INDEX 

2-3 

$ 1-10, 2-3 

2-5 

2-5 

Addressing 

A 

and linking 1-8.2 

Ampersand character 2-5 

ansi66 
selection 3-5, 6-1 

ansi77 
selection 3-5, 6-1 

Arrays 
dimensions 4-3 
large arrays 1-8, 1-16, 

1~19.2 

size 1-13, 4-3 
very large arrays 1-8, 1-13, 

1-16, 1-19.2 

Assembly listing 3-8 
see also Listing and Source 

listing 

i-1 

Asterisk character 2-3 

B 

Binder 
allocation of storage for 

variables 4-3 
analogous to linkage editor 

1-31 
and -relocatable 3-7 
and block data subprograms 

1-13 
automatic variables 1-31 
block data subprogram 1-13 
common 4-3 
common storage 1-13, 1-32 
effect on dynamic linking 

1-31 
local 4-3 
search rules 1-31 

Block data subprogram 
common variables 1-13 

Block data subprograms 1-13 

Bound segment 4-3 

CC70-01C 



C 

Calling sequence 1-15, B-2 

Card-image format 
see Format 

Command level 1-5, 2-1 
defined 1-5 

Commands 
add search rules 1-11 
bind 1-31 
debug 2-7, 3-12 
fortran 3-1 
initiate 1-11 
list 1-14.1 
new proc 1-16 
print search rules 1-11 
probe- 2-7, 3-12 
release 1-23.1 
run 1 -22, 1 -23 
set fortran common 1-13, 

1-14 
common block definitions 

1-13 
set search rules 
start 1-23. 1 
status 1-14.1 
terminate refname 

1 -11 

1 -11 

Comment character 
card-image format 2-8 
free-form format 2-3 

Common blocks i-i2, i-i5, 3-9 
allocation of 1-13 
declaration of 1-14 
initialized by block data 

subprogram 1-13, 1-32 
initialized to zero 1-13 
initialized with 

set fortran common 
1-13 

permanent 1-13, 1-14 
size 4-3 
storage of 1-8 
very large common 1-17 

i-2 

Common storage 
unlabeled 1-15 

compatibility 
with non-FORTRAN programs 

C-1 

Compiler 3-3 
control arguments 

see Control arguments 
error messages 3-2, 3-4.1 
invocation of 3-1 
listing 3-7 
metering 3-10 
optimizing 3-9 
options 

see Control arguments 
output of 3-1 
program units compiled 

separately 1-15, 1-21, 
1-26, 1-19.1, 1-19.2 

program units compiled 
together 1-15, 1-19.2 

relocation 3-7 
required argument 3-1 
subscript checking 3-6 
symbol table 3-11 

connection 
explicit 
implicit 
of a unit 

Constants 

5-5, 5-18.1 
5-2 

5-2 

Character-string 
card-image format 2-7 

Hollerith 
card-image format 2-7 

optimization 3-9 

Continuation character 
card-image format 2-5, 2-8 
free-form format 2-5 

Control arguments 3-4 
-brief table 3-11 
-card -2-7, 3-10.1 
-check 3-3 
-check_multiply 4-7 

CC70-01C 



Control arguments (cont) 
-fold 3-10.1 
-large array 3-4 
-line numbers 2-7, 3-1 
-list- 3-1, 3-8, 3-11, 3-12 
-long~profile 3-4 
-map -3-1, 3-12 
-no check multiply 4-1 
-optimize- 3-9, 3-12 
-profile 3-10 
-relocatable 3-1 
-safe optimize 3-6 
-severityN 3-3 
-subscript range 3-6 

with -optimize 3-6 
with -table or -brief 

table 3-6 
-table 3-1, 3-8, 3-11, 3-12 
-time ot 3-9 
-vla -3-4.1 
-vla parm 3-4.1 
compIler options 3-1, 3-3, 

3-6, 3-1, 3-8, 3-11 
safe_optimize 3-9 

Conversion 
card-image to free-form 

format 2-1 

Data types 
complex 1-15 

D 

double precision 1-15 

Debugging 
-brief table 3-11 
-table- 3-11 
and -brief table 3-11 
and -subscriptrange 3-6 
debug 3-11 
full symbol table 3-11 
interaction of -table and 

-optimize 3-12 
line numbers 2-1, 4-2 
probe 3-11 

Directory 

i-3 

as segment 1-2 
segments listed in 1-2 
working 3-2 

Directory hierarchy 
defined 1-2 
file system 1-4 
pathnames in 1-2, 1-5 
search rules and 1-5 
see also Search rules 
segment located by entryname 

1-5 

Dollar-sign character 1-10, 
2-3 

Dynamic linking 
ambiguous references 1-5, 

1-11 
common blocks 1-14 
consequences of 1-11 
defined 1-9 
initiated segments 1-11 
linker 1-8.2 
reference names and 1-10 
resolution of external 

references 1-8 

E 

Efficiency B-10 

End line 2-6 

Entryname 
defined 1-2 

Entrypoint name 
defined 1-10 
main i - -j 2 

Error messages 
severity control 

Exclamation mark 

3-4. 1 

2-3 

CC10-01C 



Executable code 
sharing of 1-8.2 

External addresses 
patching unnecessary 1-8.2 

External references 
see Dynamic linking 

F 

Fault, linkage" 1-9, 1-14, 
1-8.2 

Faults 
linkage 1-31 

File 
defined 1-2 

Files 4-2 

Format 
card-image 2-1, 3-10.1 

comments 2-8 
compiling 2-7 
continuation 2-8 
line numbers 2-8 

free-form 2-3, 2-5, 3-10.1 
comments 2-5 
continuation 2-5 
conversion to 2-7 

FORTRAN 
binder 1-31 
compiler 2-6, 3-2, 3-6, 3-7, 

3-8, 3-9, 3-10, 3-11 
source program 

card-image and free-form 
format 3-10.1 

card-image format 2-1 
compiling of 3-1 
correcting 3-2 
creating and editing of 

2-1 
free-form format 2-3, 2-5 
input formats 2-3 

FORTRAN (cont) 
source program 

listing 3-1 
source segment 3-3 

creating 2-1 
creating and editing of 

2-1 
name of 3-1 

storage classes 1-15, 1-21, 
1-19.1 

valid programs 1-18, 1-20, 
1-19.2 

FORTRAN source program 
free-form format 2-3 

Free-form format 
see Format 

H 

Home directory 
as initial Working directory 

1-3 
see Directory 

I/O switch 
defined 5-22 

I 

implicit connection 5-2 

Initializing variables 
to zero 1-19.1 

Input data transfers 5-4 

Input format 
control arguments 2-3 

Input/Output 
as comments 5-1 
implicit 5-1 
input 5-4 

i-4 CC10-01C 



Input/Output (cont) 
open statement 5-5, 5-8.1 
,.... •• ~ ....... ~ t:: 11 
UUV}.JUl" :';-"'T 

Inquire statement 5-18 

Integer multiplications 4-6 

Large Arrays 
see Arrays 

Line number 
defined 2-7 
maximum 2-7 

L 

Linkage fault 1-9, 1-14, 1-31, 
1-8.2 

Linker 1-10, 1-14 
addressing 1-10 
entrynames 

search 1-10 
entrypoint names 

search 1-10 
reference name 1-22 
standard linkage mechanism 

1-12 

Listing 3-7 
-line numbers 3-7 
-table 3-7 
assembly-like 3-8 
contents of 3-7 
control arguments 

-brief table 3-11 
-list -3-7 
-map 3-7 
-table 3-7 

header 3-7 
see also Source listing, 3-7 
statement labels 3-7 
symbolic names 3-8 

Listing segment 3-7 

i-5 

Load module 
vs Multics 1-8.1 

M 

Main program 1-12 

o 

Object segment 1-8.2 
contents of 1-8 
linkage section 1-8 
standard Multics 1-8 

open statement 
binary stream files 5-15 
default terminal unit to 

file 5-16 
nonstandard units 5-16 
reversing defaults 5-17 
storage system files 5-10, 

5-11, 5-12, 5-13 
tape connection 5-17 
terminal read 5-9 
terminal write 5-9 

open statements 
terminal read/write 5-8.1 

Optimization 
common sub expressions 3-9, 

T'\ II 
.0-'-+ 

constant propagation 3-9 
dead assignments 3-9, B-10 
efficient coding B-10 
global B-4, B-10 
implied do-loops B-2 
i~varia~t 2xpressions 3=9, 

B-7 
invariant operations 3-9 
local B-1 

machine-dependent 
quick call B-2 

machine-independent B-1 
logical if statements B-1 

CC70-01C 



Optimization (cont) R 
operand region 3-10 
strength reduction 3-9, B-8 

Optimizations 
global B-4 

Optimizer 3-9 
evaluation of function 

references B-1 

Pathname 
absolute 1-2 
relative 1-2 

P 

see also Directory hierarchy 

Pathnames 
entrynames as components of 

1-2 

PL/I 
argument transmission C-1 
declaration for FORTRAN data 

types C-1 

preconnection 
see implicit connection and 

explicit connection 

Program units 
compiled separately 1-18 

main 1-12 
compiled together 1-12, 

1-18 

Programs 
size of 4-2 

Q 

quit and start 1-23 

Ready message 1-5 

Records 
length and form 4-1 

Reference name 
and entrypoint names 1-10 
defined 1-10 

i-6 

dynamic linking and 1-10 
initiated 1-22 
state at end of run 1-23 

Reference name table 1-8 
defined 1-10 

Relocation 
of code, at run time 1-8.2 
see also Binder 

Run un i t 1 -1 6 
and reference names 1-22, 

1-23 
as new environment 1-23 
defined 1-22 
discarded storage at end of 

run 1-23 
effect on automatic storage 

1-22 
effect on permanent common 

blocks 1-22 
free storage area 1-22 
initialization of free 

storage area 1-22 

Run units 
resolution of external 

references 1-8 
see also Dynamic linking 

S 

Search rules 
defined 1-11 
manipulation of 1-11 

CC70-01C 



Segment 
attributes 1-2 
defined 1-2 
executable object 
listing 3-7 
object 1-12, 3-2, 

addressing 1-10 
linkage section 
merged by binder 
. 1-31 

3-1 

3-8 

1-8, 1-10 
(bound) 

one main per 1-12 
source 3-3 
stack 4-3 
standard Multics object 1-8 

Semicolon 2-5 

set fortran common command 
1-14, 1-23 

Source listing 
contents of 

2-5, 3-7 
3-7 

control arguments 
-brief table 3-11 
-list -3-7 
-map 3-7 
-table 3-7 

header 3-7 
see also listing 
statement labels 3-7.1 
symbolic names 3-8 

Source program 3-2 
-line numbers 3-7 
card-Tmage 2-7 
creating and editing of 2-1 
free-form format 2-3, 2-5 

Source segment 
creating and editing of . 2-1, 

2-2 

Special characters 
ampersand 2-5 
asterisk 2-3 
comment 2-3, 2-8 
comments 2-3 
continuation 2-5, 2-8 
dollar sign 1-10, 1-15, 2-3 

i-7 

Special characters (cont) 
exclamation mark 2-3 
semicolon 

in free-form format 2-5 
underscore 2-3 

Stack Segment 4-3 
defined 1-7 
header 1-7 
illustrated 1-24 
size 4-3 
stack frames 1-7 

defined 1-7 
illustrated 1-24 

Standard Multics object 
segment 3-1 

Statement labels 2-5 

Statements 
%global 1-20, 4-7 
%options 1-20, 4-7 
automatic 1-21 
common 1-15 
data 1-13, 1-21 
data transfer 

input 5-4 
output 5-4 

number allowed 4-2 
open 

examples of 5-8.1 
how to use 5-5 

pause 1-23.1 
save 1-20, 1-21, 1-22, 

1-19.2 
optimizer and 1-21 

size 4-2 
stop 1-23.1 

Storage 
al.l.OCa~lOn of 1-20, '1-21, 

1-8.1, 1-19.2 
automatic 1-15 
common 1-15 
static 1-15 

automatic 1-15, 1-17, . -26 
allocation of 1-15 

CC70-01C 



Storage (cont) 
automatic 

in programs compiled 
separately 1-20 

in programs compiled 
together 1-20 

large and very large 
arrays 1-16, 1-19.2 

quick call 1-17 
classes 1-15 

automatic 1-15 
default 

local 1-15 
normal common 1-15 
permanent common 1-15 
static 1-15 

common 1-13,1-22 
allocation of 1-16 
state at end of run 1-23 

common blocks 1-32 
constraints on local static 

size 1-32 
default 1-21 
free storage area 1-7, 1-8 

common blocks 1-8 
linkage section 1-8, 1-9, 

1-12 
links 1-9 
of external variables 

1-13 
reference name table 1-8 
run unit 1-22 
static variables 1-8, 

1-16 
initialization of 1-15, 

1 -8. 1 
local 1-20, 1-21, 1-22, 

1-19 .. 1 
see automatic/static 1-15 
static 1-20 

local static 
at end of run 1-23 

managed storage 1-7, 1-8, 
1-16, 1-17 

normal common 1-15 
permanent common 1-15 
release of 1-20 
Stack segment 1-7 
static 1-8, 1-15 

i-8 

Storage (cont) 
static 

allocation of 1-16 
common and local 1-17 
large and very large 

arrays 1-16 
very large common 1-17 

Storage system 
directory hierarchy 1-1 
segment 1-2 

Subscript errors 3-6 

Symbolic names 2-3 
common blocks 3-9 
dollar sign entrypoint name 

1-12 
dollar sign in external 2-3 
entrypoint names 3-8 
external 3-8 

T 

terminal I/O 5-5 

Text editor 2-1 
qedx 2-2 

U 

Underscore character 2-3 

unit 
connection to file 5-1 
default connection 5-3 
defined 5-1 
open statement 5-5 

v 

Variables 
automatic 1-15, 1-20, 1-21 

CC70-01C 



Variables (cont) 
automatic 

allocation of 1-19.1 
explicit initialization of 

1-20 
in programs compiled 

separately 1-20 
in programs compiled 

together 1-20 
initialization of 1-15 

programs compiled 
separately 1-18 

programs compiled 
together 1-18 

uninitialized 1-19.2 
external 1-12 

in free storage area 1-13 
initial values 

zero 1-20 
initial values of 1-13, 

1-21, 1-22, 1-19.2 
and data statement 1-21 
zero 1-19.2 

initial values of zero 
1-19.1 

initialized in data 
statement 

programs compiled together 
1-20 

local 1-20 
static 1-20 

static 1-15, 1-20, 1-22 
allocation of 1-20, 1-21 
initialization of 1-16 
storage of 1-8 

storage allocation of 1-8.1 
undefined 1-20, 1-19.1, 

1-19.2 

Very Large Arrays 
see Arrays 

Very Large Common 
see Common blocks 

W 

Working directory 3-2 
defined 1-3 
see Directory 

i-9 CC70-01C 



w 
Z 
....J 

CJ 
z 

HONEYWELL INFORMATION SYSTEMS 
Technical Publications Remarks Form 

I 
TITlE I 

I 

SERIES 60 (LEVEL 68) 
MULTICS FORTRAN 
USERS' GUIDE 

o ERRORS IN PUBLICATION 
....J 
<t: 
r
:J 
u 

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION 

Your comments will be investigated by appropriate technical personnel 
and action will be taken as required. Receipt of all forms will be 
acknowledged; however, if you require a detailed reply, check here. D 

FROM: NAME -----

TITLE _____________ _ 

COMPANY 

ADDRESS _________________________ __ 

ORDER No.1 
I 

I 
DATED I 

DATE 

CC70-01 

I 
DECEMBER 19791 



PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service will not deliver stapled forms 

I II II I 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 39531 WALTHAM, MA02154 

POSTAGE WILL BE PAID BY ADDRESSEE 

HONEYWELL INFORMATION SYSTEMS 
200 SMITH STREET 
WALTHAM, MA 02154 

ATTN: PUBLICATIONS, MS486 

Honeywell 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

I 

I 
I 
I 
I 
I 
I 

( 
-' 
l:) 
z 
o 
-' 
<t: 
f-
~ 
U 

I 
I 
I 
I 
I 
I ~ 
I -' 
I l:) 

I Z 
-1IIlS 

« 

<t: 
o 
-' 
o 
1..1.. 

UJ 
Z 

-' 
l:) 
Z 

....... 0 

I ~ 
I 0 

I ~ 
I 1..1.. 

I 
I 



Together. we can find the answers. 

Honeywell 
Honeywell information Systems 

U.S.A.: 200 Smith St., MS 486, Waltflam, MA 02154 
Canada: 155 Gordon Baker Rd., Willowdale, ON M2H 3N7 

U.K.: Great West. Rd., Brentford, Middlesex TW8 90H naly: 32 Via Pirelli, 20124 Milano 
Mexico: Avenida Nuevo Leon 250, Mexico 11, O.F. Japan: 2-2 Kanda Jimbo-cho Chiyoda-ku, Tokyo 

Australia: 124 Walker St., North Sydney, N.S.W. 2060 S.E. Asia: Mandarin Plaza, Tsimshatsui East, H.K. 

26434, 3.5C983, Printed in U.S.A. CC70-01 


