

create__wordlist (cwl)

NOTES

Words in the text segment are separated by the following delimiter (white space)
characters:

space
horizontal tab
vertical tab
newline

form feed

Punctuation characters are removed from the word. The characters "([{ are
removed from the /eft side of the word. The characters ")]}.,;:7 are removed from
the right side of the word. Also, PAD characters (octal 177) are removed from the
left side of the word.

Additional special processing is performed on each word after all punctuation is
removed. A summary of this special processing is given below: ‘

e if the entire word is underscored, then the underscores are removed. If only
part of a word is underscored, then the underscores remain.

e if the word contains no letters, i.e., consists entirely of punctuation characters
or other special characters, then the word is excluded from the wordlist. The
-no_exclude control argument disables the automatic exclusion of such words.

. EXAMPLES

The table below shows examples of how punctuation is removed from a word and
how special processing is performed.

WORD BEFORE WORD IN

PROCESSING WORDLIST
example example
‘example” example
example.) example
{example} example
example example
exam.ple exam.ple
Jexample(Yexample(
1000 (trimmed)
1,000 (trimmed)
7-5.2 (trimmed)
+1) (trimmed)
1/2 (trimmed)
1A 1A
1(2) (trimmed)

4-10 AZ98-02

delete__dict__words (ddw)

delete__dict__words (ddw)

The delete_dict_words command deletes one or more words from a WORDPRO
dictionary.

SYNTAX AS A COMMAND
ddw path {words} {-control_args}

ARGUMENTS

path
is the pathname of the dictionary. If path does not have the suffix dict, one
is assumed; however, dict must be the last component of the dictionary segment
name.

words
are words to be deleted from the dictionary. At least one word is required
unless -input_file is specified (see below). If a word is not found in the
dictionary, a warning message is issued.

CONTROL ARGUMENTS

—brief

-bf
suppresses the warning message usually given when a word is not found in the
dictionary.

-count

-ct
reporis the number of words deleted and the number of words in the
dictionary.

-input_file path

-if path
deletes from the dictionary the words contained in the segment specified by
patii. Words in this segmeni should be separaied by newiines. This conirol
argument may be specified more than once.

-word string
deletes the word string from the dictionary even though string may look like
a control argument.

NOTES

A word to be deleted from the dictionary must be spelled in its raw form, i.e.,
without indicating hyphenation points or the no-trim attribute (see add_dict_words
command above).

4-11 AZ98-02

delete__dict__words (ddw)

EXAMPLES

To delete the word examp/e from the dictionary Webster.dict in the Project_id
directory, type:

ddw >udd>Project_id>Webster example
To delete the word basic from the dictionary my_words.dict in the current working
directory, type:
ddw my_words basic
To delete the words test, /in-house, and Mu/tics from the dictionary good_words.dict,
type:
ddw good_words test in-house Multics

4-12 AZ98-02

find__dict__words (fdw)

find__dict__words (fdw)

The find_dict_words command finds and displays words contained in the sequence
of dictionaries defined by the dict search list

SYNTAX AS A COMMAND

fdw {words} {-control_args}

ARGUMENTS

words
are words to be found. At least one word must be given unless the
—-input_file control argument is specified.

CONTROL ARGUMENTS

~brief
~-bf
suppresses the warning message usually given when a word is not found.

—dictionary
~dict ‘
displays the} pathname of the dictionary in which the _word was found.

—exact_match

—exm
finds only those words that match a dictionary word exactly, i.e., no special
processing is performed with respect to capitalization (see "Note" below).

—inpui_file path

-if path
finds words in the segment specified by path. Words in this segment must be
separated by newlines. This control argument may be specified more than once.

-output_file path

~of path
writes words found into the segment specified by path instead of displaying
words on the user's terminal. Words are separated by newlines in the ouiput
segment.

~Taw
displays the words without indicating the no-trim attribute or hyphenation
points (see add_dict_words command above). Otherwise, words are printed in
the format accepted by add_dict_words.

-word string
finds the word string even though string may look like a control argument.

NOTES

When searching for a word in a dictionary, special processing of capital letters is
performed unless the -exact_match control argument is specified. This special processing
is identical to that performed by the trim_wordlist command below.

4-13 AZ98-02

hyphenate__word__

hyphenate__word__

The hyphenate_word_ subroutine returns the character position at which a word can
be hyphenated. The word is located in a dictionary via the dict search list.

USAGE SYNTAX

declare hyphenate_word_ entry (char(*), fixed bin,
fixed bin, fixed bin(35));
call hyphenate_word_ (string, space, break, code),

-OR-

declare hyphenate_word_ entry {(char(+), fixed bin, fixed bin);
call hyphenate_word_ (string, space, break),

ARGUMENTS

string (input)
the text word that is to be split.

space (input)
the number of print positions remaining in the line.

break (output)
the number of characters from the word that should be placed on the current
line; it should be at least one less than the value of space (to allow for the
hyphen), and can be 0 o specify that the word is not to be broken. Thus if
the word "calling" is to be split, and six spaces remain in the line, the
procedure should return the value 4 (adjustment is performed after hyphenation).

code (output)
a standard status code. In order to retain compatibility with an older version
of this subroutine, this argument is optional, depending upon how hyphenate_word_
is declared in the calling program. If this subroutine is called with only three
arguments, then no code is returned.

4-14 AZ98-02

list__dict__words (1dw)

list__dict__words (1dw)

The list_dict_words command displays a list of words in a WORDPRO dictionary.

SYNTAX AS A COMMAND
ldw path {words} {-control_args}

ARGUMENTS

path
is the pathname of the dictionary to be listed. If path does not have the
suffix dict, one is assumed; however, dict must be the last component of the
dictionary segment name.

words

are words to be listed. If no words are specified, and if the -input_file
control argument is not specified, all words in the dictionary. are listed.

CONTROL ARGUMENTS

-brief

-bf
suppresses the warning message usually given when a word is not found in the
dictionary. ' '

-input_file path

-if path
lists the words contained in the segment specified by path. Words in this
segment should be separated by newlines. This control argument may be
specified more than once.

-output_file path

-of path
writes words to be listed into the segment specified by path instead of printing
words on the user’s terminal. The words are separated by newlines in the
output segment.

=Taw
displays the words without indicating the no-trim attribute or hyphenation
points. Otherwise, words are listed in the format accepted by the add_dict_words
command above.

-word string
lists the word string even though string may look like a control argument.

4-15 AZ98-02

list__dict__words (Idw)

NOTES

When listing an entire dictionary, or any large number of dictionary words, it may
be convenient to use the list_dict_words command together with the print_wordlist
command to obtain multiple column output. This is accomplished by using the
-output_file control argument to create a wordlist (i.e., a segment whose entryname has
the suffix wl). The resulting wordlist can then be printed by the print_wordlist

command.

For example, the following command sequence displays the dictionary English.dict:

list_dict_words English -output_file dict_words.wl
print_wordlist dict_words

In the above example, all words in English.dict are displayed in ASCII collating
order (i.e., the order in which they are stored in the dictionary). This ordering is
different from the alphabetical ordering used for wordlists. However, the create_wordlist
command can be used to alphabetize dictionary words. For example, the following
command sequence displays the dictionary English.dict in alphabetical order. The
dictionary words are in raw format.

Tist_dict_words English -raw -output_file raw_words
create_wordlist raw_words
print_wordlist raw_words

If raw format is not desired, the command sequence below can be used:

ldw English -raw -of raw_words
cwl raw_words
ldw English -if raw_words.wl -of dict_words.wl

print_werdlist dict_words

4-16 AZ98-02

locate__words (1w)

locate__words (Iw)

The locate_words command locates all occurrences of a given word within a
specified text segment. The user can specify more than one word to be located. For
each occurrence of a given word within the text segment, the number of the lines
containing the word is displayed.

SYNTAX AS A COMMAND
\w path words {-contro/_args}

ARGUMENTS

path
is the pathname of the text segment.

words
are words to be located in the text segment.

CONTROL ARGUMENTS

—-count
-ct
displays only the number of occurrences for each word.

-from n

-fm n
the text segment is searched starting from the line number specified by n. If
this control argument is not specified, the text segment is searched starting
from the first line.

~header
~he
displays the pathname of the text segment.

~lines {n} .

-li {n}
for each occurrence of a given word, the lines (and line numbers) starting n
lines before, through » lines after the line containing the word are displiayed.
Thus, if n is 1, three lines are displayed. If » is not specified, only the line
containing the word is displayed (Default).

-long

_lg
for each occurrence of a given word, the line (and line number) of that word
is displayed.

-to n
the text segment is searched up to and including the line number specified by

n. If this control argument is not specified, the text segment is searched to the
last line.

-word string
locates the word string even though string may look like a control argument.

4-17 AZ98-02

locate__words (Iw)

NOTES
The -count control argument is mutually exclusive with the —long and -lines control
arguments.

~ Words are found in the text segment in the same way as described for the
create_wordlist command. Words containing no letters can be found even though they
are normally excluded from a wordlist.

4-18 AZ98-02

print__wordlist (pwl)

print__wordlist (pwl)

The print_wordlist command displays (prints) the words contained in a wordlist
segment in a multiple column format (see the create_wordlist command above).

SYNTAX AS A COMMAND
pwl path {-control_args}

ARGUMENTS

path
is the pathname of a wordlist segment. If path does not have the suffix wi,
one is assumed; however, wl must be the last component of the segment name.

CONTROL ARGUMENTS

-columns »

—-cols 7
specifies that the output is to contain n columns. The default number of
columns depends on the line length and the column width (see "Notes" below).

-column_width »

-cW n
specifies that the column width is ~ characters. The default column width is
20.

—output_file path

—-of path
directs the ouiput to the segment specified by path? in a format suitable for
printing on a line printer.

—page_length n

-pl #
specifies that the page length is » lines. The default page length is 60 if
—output_file is specified; otherwise, it is 66.

-vertical_margin 7

-vm n
specifies that the vertical margin size is n lines. The default vertical margin
size is 0 if —output_file is specified; otherwise, it is 3.

NOTES

The default number of columns is the maximum number of columns that fit within
the line length. If the -output_file control argument is specified, a line length of 136
is assumed. Otherwise, the line length defined for the user_output switch is used. If
none is defined, a line length of 72 is assumed.

If the length of a word is greater than or equal to the column width, the word is
truncated. An asterisk (*) is appended to such words to indicate truncation.

Output is divided into pages. Each page has a top and bottom vertical margin
consisting of n blank lines where n is the vertical margin size. These lines are included

4-19 AZ98-02

print__wordlist (pwl)

in the page length. The column height on a page is equal to the page length minus
twice the vertical margin size. In the default case, the column height equals 60 lines
whether or not the -output_file control argument is specified. On the last page of
output, the column height is reduced to the minimum height needed to accommodate
remaining words. If the -output_file control argument is specified, each page is
terminated by an ASCII new page character (octal 014).

4-20 AZ98-02

revise__words (rw)

revise__words (rw)
The revise_words command replaces all occurrences of a given word within a

specified text segment with a new word called the revision. The user can specify more
than one word to be revised.

SYNTAX AS A COMMAND

rw path word1 revi ... {wordn revn} {-control_args}
ARGUMENTS
path
is the pathname of the text segment.
wordi
is a word in the text segment fo be revised.
revi

is the revision (i.e., the replacement for wordy/).

CONTROL ARGUMENTS

—brief
-bf
suppresses the display of the number of revisions for each word/.

—from n

~fm n
revisions are made in the text segment starting from the line number specified
by n. If this control argument is not specified, the text segment is processed
starting from the first line.

-header
~he
displays the pathname of the text segment.

-lines {n}

-li {m
for each revision made, the lines (and line numbers) starting »~ lines before,
through » lines after the line containing the revision are displayed. Thus, if »
is 1, three lines are displayed. If n is not specified, only the line containing
the revision is displayed (Default).

-long
for each word revised, the line (and line number) where the revision is made is
displayed.

-to n
revisions are made in the text segment up to and including the line number
specified by n. If this control argument is not specified, the text segment is
processed to the last line. :

4-21 AZ98-02

revise__words (rw)

~word string! string2
replaces the word string? with the revision string2 even though string? may
look like a control argument.

NOTES

The -brief control argument is mutually exclusive with the -long and -lines control
arguments.

Words are found in the text segment in the same way as described for the
create_wordlist command. Words containing no letters can be revised even though they
are normally excluded from a wordlist.

EXAMPLES

To replace the word typpoo with the word typo wherever it occurs in document.compin,
type:
revise_words document.compin typpoo typo
If there are two occurrences of typpoo, the command displays the message:
2 revisions for '"typpoo"

4-22 AZ98-02

trim__wordlist (twl)

trim__wordlist (twl)

The trim_wordlist command trims (deletes) all words in the specified wordlist
segment that are found in one or more WORDPRO dictionaries. The dictionaries may
be specified explicitly or else the dict search list is used. The trimmed wordlist segment
replaces the original wordlist segment. The number of words trimmed and the number
of words remaining in the trimmed wordlist segment are displayed.

SYNTAX AS A COMMAND
twl path {dict_paths} {-control_args}

ARGUMENTS

path .
is the pathname of the wordlist segment to be trimmed. If pat#” does not have
the suffix wl, one is assumed; however, wl must be the last component of the
segment name. '

dict_paths
are the pathnames of dictionaries to be searched in order. If dict_paths does
not have a suffix of dict, one is assumed; however, dict must be the last
component of the dictionary segment name. If no dict_paths are specified, the
dictionaries in the dict search list are used.

CONTROL ARGUMENTS

-brief
-bf

sunnresses the disnlayv of the number of words trimmed and the number of
uuyy.l WANT NS Milw HAOYA“J i Sildw AdAW4112 "wrd i TV Wi e Vd AA2LRAEWNE CALind LiEW A, 29 Vi

words remaining in the trimmed wordlist segment.

—exact_match

-exm
frims only those words that match exactly a word found in a dictionary, i.e.,
no special processing is performed with respect to capitalization (see "Notes"
below).

NOTES

For each word processed, the dictionaries are searched in the order specified or as
defined in the dict search list. Normally, when a word is found in a dictionary, it is
trimmed. However, if the word found has the no-trim attribute, then the word is not
trimmed and no more dictionaries are searched for this word.

When searching for a word in a dictionary, special processing of capital letters is
performed unless the -exact_match control argument is specified. Most words in a
dictionary consist of all lowercase letters. These words match any representations of
themselves that are either all lowercase letters, all lowercase letters with a leading
capital letter, or all capital letters. Words in a dictionary that have a leading capital
letter only match representations of themselves that have a leading capital letter or are
all capital letters. Words in a dictionary that consist of all capital letters or mixed

4-23 AZ98-02

trim__wordlist (twl)

lowercase and capital letters only match representations of themselves that have the

identical capitalization.

The table below shows examples of different ways a word in a dictionary may be
capitalized. It also shows which representations of these words match and which do not

match.

WORD

example

Multics

WORDPRO

non—-ASCII

MATCH

example
Example
EXAMPLE

Multics
MULTICS

WORDPRO
Wordpro
WordPro

non—-ASCII

NO MATCH

ExAmple

multics
MULTics

wordpro

non-ascii
Non—-ASCII
NON-ASCII

4-24

AZ98-02

SECTION 5

SPEEDTYPE

SPEEDTYPING

The primary goal of Speedtype is to allow users to type input data more quickly.
Speedtyping, quite simply, is the ability to type a document using the least possible
number of key-strokes. Typing speed is therefore increased since less is typed.

Speedtype can also help improve typing accuracy. Typing accuracy is improved by
defining and using symbols for words or phrases that are often mistyped. For example,
the common typo teh (intended to be th§ can be corrected automatically by having
Speedtype expand the symbol teh into the. Even better, this typo can be eliminated
entirely by typing the symbol t and have Speedtype expand it into the

Speedtype is quite similar to the Multics abbrev subsystem (see the description of
the abbrev command in Mu/ltics Commands) which expands command line input.
Speedtype, however, can define, maintain, and list a set of abbreviations that can be
typed as input text and then expanded.

In order to avoid confusion and ambiguity in terminology between Speedtype and
abbrev, the term abbreviation is not used when discussing Speedtype. Instead, the term
symbo/ is used. All Speedtype commands are named to conform to this terminology.

The primary job of Speedtype is to expand text. The following paragraphs describe
the features of Speedtype that are involved in the expansion process.

Text Segments

Speedtype deais with two types of files; text segments and symbol dictionaries. A
text segment contains the input text processed by Speedtype. This processing involves
searching through the text segment and expanding all defined symbols. The expanded
text is copied into an output text segment.

Speedtype processes an input text segment as just one long character string. The
resulting output text segment may also be thought of as one character string. The input
string is divided into pairs of tokens. Speedtype recognizes two types of tokens:
delimiter tokens and text tokems. Certain ASCII characters are designated as delimiter
characters (in general, white space and punctuation characters other than period). All
other characters are considered text characters. Speedtype divides an input string into
pairs of tokens.

<space>Now...<space>country

5-1 AZ98-02

Not shown are the special cases that may exist at the beginning and end of an input
string where one of the tokens in a pair may be missing.

Speedtype also recognizes special delimiter and text characters if they are present.
If they are found in certain positions, special processing is performed. For example:

<space>~ - where ~ is an escape character

|country+. - where | is a prefix character(s),
+ is a suffix character, and
. is termination (period)

Speedtype performs special processing on the last character of a delimiter token and
on the first and last characters of a text token. This special processing is outlined
below and discussed in detail later in this section.

Escapes :
Certain delimiter characters are recognized as escape characters. If the last
character of a delimiter token is an escape character, then special processing is
performed on the following text token.

Prefixes
Certain text characters are recognized as prefix characters. If a prefix character
is found at the beginning of a text token, then special processing is performed.
Recognized prefix characters are not considered part of the symbol. Prefix
characters found within the text token cause no special processing and are
considered part of the symbol. More than one prefix character may precede
the symbol.

Capitalization
If the first character of the symbol is an uppercase letter. then the first letter
of the expansion string representing this symbol is capitalized when copied into
the output string.

Suffixes
Certain text characters are recognized as suffix characters. If the last character
of a text token (after any trailing period is removed) is a suffix character, then
special processing is performed. A recognized suffix character is not considered
part of the symbol. Suffix characters found within the text token cause no
special processing and are considered part of the symbol. Only one suffix
character may follow the symbol.

Period
If the last character of a text token is a period ".", then it is stripped from
the text token. The period is copied into the output string after the text token
is processed.

Symbol Dictionaries

A symbol dictionary contains all of the information needed by Speedtype to
expand an input string. A symbol dictionary is similar to an abbrev profife segment
(explained in the description of the abbrev command in Mu/tics Commands). A
symbol dictionary s identified by the entryname suffix, symbols (e.g.,
standard_words.symbols). Speedtype allows a user to specify the symbol dictionary

5-2 AZ98-02

used. As a default, Speedtype uses a symbol dictionary in the user’s home directory.
The default symbol dictionary has the pathname:

>udd>Project>Person_id>Person_id.symbols

A symbol dictionary contains three types of information. Speedtype commands
allow a user to set, change, and list all of this information. The three types of
information are:

Options
Several types of control information are kept in a symbol dictionary. These
Speedtype options may be set by a user. (See the option_symbols command at
the end of this section for a description of the Speedtype options.) The
Speedtype options are:

Delimiters (except escapes and white space)
Escape Characters
Prefix Characters
Suffix Characters

Symbols
A symbol is a character string that represents a word or phrase. A symbol
must be unique within a symbol dictionary. Since symbols are found within
text tokens, they may not contain any delimiter characters. The first character
of a symbol may not be a prefix character, and the last character of a symbol
may not be a suffix character or a period.

Expansions
Every defined symbol has a corresponding expansion string. Expansions do not
have to be unique within a symbol dictionary. An expansion may contain any
character, including delimiter characters. All suffixing, capitalization, and
underlining is performed on expansions, not on symbols Associated with each
expansion is information that specifies how Speedtyne is 1o perform- suffixing
on that expansion.

Expansion Process

Speedtype uses the general expansion algorithm described above. However, Speedtype
also performs special processing. A more detailed description of how Speedtype expands
a toKen pair is given below:

Delimiters
Processing of the delimiter token only involves copying it into the output
string.

Escape Processing
If the last character of the delimiter token is an escape character, then special
processing is performed on the following text token. Escape characters
contained within the delimiter token are not recognized as escapes. The most
important type of escape processing involves inhibiting any processing of the
following text token. Instead, the text token is just copied into the output
string.

5-3 AZ98-02

Finding the Symbol
If no escape inhibits the processing of the text token, then the next step is to
find the symbol contained in the text token. This involves stripping off any
prefix characters, suffix characier, or trailing period. If no symbol is found
within the text token (i.e., it consists of just prefix and/or suffix characters)
then no further processing is performed on this text token and it is copied as
is into the output string.

Decapitalization
If the text token contains a symbol, then it is placed in lowercase. This
involves testing the first character of the symbol, and if it is an uppercase
letter, translating it to lowercase. This translation is actually performed on a
temporary copy of the symbol. The original input symbol is not modified.

Expansion
Speedtype then takes the lowercase symbol and searches for it in the current
symbol dictionary. If found, the expansion for this symbol is copied into the
output string, otherwise the original input symbol (and any suffix character) is
copied.

Capitalization
If the input symbol was put in lowercase and replaced by expansion, then
Speedtype capitalizes the expansion string copied into the output string. This
involves testing the first character of the expansion string, and if it is a
lowercase letter, translating it to uppercase.

Suffix Processing
If a suffix character was stripped from the symbol, and if the symbol was
expanded, then Speedtype performs suffixing on the expansion string copied into
the output string. This processing depends upon the suffix and how the suffix
is defined for this symbol.

Prefix Processing
If any prefix characters were stripped from the symbol, then Speedtype
performs prefix processing on the symbol or the expansion string which was
copied into the output string. Prefix processing is always performed after any
capitalization or suffixing.

Period Processing
If a period was stripped from the symbol, then it is added to the output string
after all other processing of the text token is performed.

Escapes

The escapes recognized by Speedtype are listed below. The actual escape characters
recognized are defined in a symbol dictionary and may be set by the user. Listed with
each escape is its name and its default character. The special processing performed for
annlh acrana dc alen Aacrrithad
wawvil uwayv 1D AldV WWOVL 1 UMAL,

~ (temp)

The temp (temporary) escape is the standard Speedtype escape. It causes
Speedtype 1o not process the following text token. Thus this escape can be used
to prevent a symbol from being expanded and can prohibit prefix processing

5-4 AZ98-02

for the next text token. Instead, the text token is copied as is into the output
string. The temp escape character itself is not copied into the output string.

octal 177 (pad)

The pad escape is useful in situations where an input text segment is also used
as the output text segment and is expanded over and over. The effect of this
escape is the same as that for the temp escape. However, unlike the temp
escape, this escape character is copied into the output .ur string. The default
character used for the pad escape is the pad character (ASCII code 177). Even
though this character is copied into the output string, it is not printed. Users
are cautioned that the presence of a pad character in the text segment may
cause problems during subsequent editing.

' (perm)
The perm (permanent) escape is a convenient way for a user to enter a pad
escape. The effect of this escape is the same as the temp escape, and like the
pad escape, it is copied into the output string. However, the perm escape
character is then converted to the pad escape character.

: (trans)
The function of the trans (transparent) escape is to concatenate text tokens
that are processed separately. The trans escape character is not copied into the
output string. The following text token is processed as if no escape was
recognized. Any prefix processing performed on the previous text token is
continued and performed on the next text token. Additional prefix processing
may be specified.

; (space)

The function of the space escape is to generate spaces (ASCII blanks) in the
output string. The processing of this escape is conditional on the first
characters of the following text token. If the following text token begins with
one or two numeric characters (numbers from 0 to 99), then the space escape
character and these numeric characters are replaced in the output string with
the specified number of spaces. For example, " ;5" is replaced by five spaces
in the output string. The rest of the text token is then processed normally. If
the following text token does not contain a number as specified above, then the
space escape character remains unchanged in the output string and the following
text token is processed as if no escape was recognized.

Suffixes

Suffix processing is performed only on defined symbols. If a symbol is not
defined, or if the specified suffix is turned off for the symbol, then no suffix
processing is performed. Instead, the symbol and the suffix character are copied as is

inta tha Aliten qtes
111 Lidw Uutpdt oul xﬁg.

Appending a suffix to a symbol’s expansion string is done in several different ways
depending upon how the suffix is defined for the symbol. The normal way is to just
addition the suffix string associated with the suffix directly to the expansion string.
However, to accommodate the many anomalies of the English language, such tricks as
dropping the last letter, doubling the last letter, adding letters, etc., may be performed
on the expansion string in order to addition a suffix string.

5-5 AZ98-02

A user has considerable control over how Speedtype performs suffixing. (See the
add_symbols command at the end of this section for a description of how Speedtype
performs suffixing.) A user may disable suffixing for a given symbol, or just disable
onc or more suffixes for that symbol. A user may als

process a suffix for a symbol.

~ gemanid a AlLasnct wrorr

«r ALLL nmneat o
SPLLlly a uJilivlCHl way 1w

The suffixes currently recognized by Speedtype are listed below. The actual
characters representing the suffixes are defined in a symbol dictionary and may be set
by the user. Except for pl/ura/, the suffix string associated with each suffix is the
suffix itself. Also listed with each suffix is the default character used to represent that
suffix.

Suffix Name Suffix String Default Character
plural s +
ed ed -
ing ing *
er er =
ly 1y
Prefixes

Prefix processing is performed on the text token string copied into the output
string. It is performed regardless of whether symbol expansion was performed, and is
always performed after capitalization and suffixing have been performed.

The prefixes recognized by Speedtype are listed below. The actual prefix characters
recognized are defined in a symbol dictionary and may be set by the user. Listed for
each prefix is its name and its default character. The special processing performed for
each prefix is also described.

(under)

The function of the under (underline) prefix is to underline the output string.
The underlining is performed by taking each character of the output string and
adding, in a canonical way, a backspace character and an underscore character.
The resulting underlined string is in canonical form. Underlining is not
performed if the output string already contains backspace characters.

| (upper)
The function of the upper (uppercase) prefix is to translate the output string
into uppercase. Each lowercase letter in the output string is translated to
uppercase. Characters that are not lowercase letters are not changed. If both
the upper and under prefixes are recognized, then regardless of the order in
which they are specified, uppercase processing is performed first.

5-6 AZ98-02

add__symbols (asb)

add__symbols (asb)

The add_symbols command adds a symbol to the current symbol dictionary. All
suffixes are enabled for the added symbol.

SYNTAX AS A COMMAND

asb symbol expansion {-contro/_args}

ARGUMENTS

symbol
is the symbol to be added. Its length must be 7 characters or less and it may
not contain delimiter characters. Its first character may not be a defined prefix
character or a capital letter, and its last character may not be a defined suffix
character or a period.

expansion
is the expansion string that replaces the symbol. The length of the expansion
string must not exceed 56 characters. The expansion string may contain any
characters. If the expansion string contains spaces and/or tabs, then it must be
enclosed in quotes.

CONTROL ARGUMENTS

—force

-fc
specifies that the replacement of an existing symbol should be done without
question. If the symbol is already defined, and this argument is not specified,
then the user is asked to authorize the replacement of the symbol

-suffix string
enables or disables suffixing for this symbol. str/ing must be either on or off.
If string is on then suffixing is enabled and all suffixes are processed
according to the default rules described in "Notes" below. If string is off,
then all suffixes are disabled for the symbol. If this control argument is not
specified, then on is assumed.

—piurai string
defines the plural suffix for this symbol. string must be on or off, or a string
that can be used as the plural of the expansion of this symbol. If string is |
on, then the plural suffix is enabled for this symbol and processed according to |
the default rules for the plural suffix. If string is off the plural suffix is
disabled for this symbol.

-ed string
defines the ed suffix for this symbol. This control argument follows the same
rules as the —plural control argument.

—-ing string
defines the ing suffix for this symbol. This control argument follows the same
rules as the -plural control argument.

5-7 AZ98-02

add__symbols (asb)

—-er string
defines the er suffix for this symbol. This control argument follows the same
rules as the —piural control argument.

~ly string
defines the ly suffix for this symbol. This conirol argument follows the same
rules as the -plural control argument.

NOTES

The default rule for appending a suffix string to an expansion string is a function
of the suffix and the word type of the expansion string.

The word type of the expansion string is determined from its last characters. The
characters Cand Vare used below to represent consonants and vowels. The character X
is used to represent any character. The word types recognized and the suffix strings
used are:

REF. NO. WORD TYPES

0 other (=> none of those below)
1 XCe

2 XVe

3 XCy

4 XVy

5 Xch, Xsh, or Xex

6 cve

REF. NO. SUFFIX STRINGS

1 s (plural)
2 ed
3 ing
4 er
5 ly
The actions performed by Speedtype when adding a suffix string to an expansion

string are:
REF. NO. SUFFIX ACTIONS

add suffix string directly

drop last character, add suffix string

doubie last character, add suffix string

replace last character with i, add suffix string
replace last character with ie, add suffix string
add e, add suffix string

SN AW

The suffix action table presented below shows the action performed by Speedtype
when adding a specified suffix string to an expansion string of a given word type.

5-8 AZ98-02

SUFFIX ACTION TABLE

Word Type
Ref. No.

SUFFIX STRING REF. NO.

11213 14]5
O 1111171
111121222
241 (2]112]1
351411 | 4 |1
4111141 1}1]1
561|111
6 11 13]13]|3]1

5-9

add__symbols (asb)

AZ98-02

change__symbols (csb)

change__symbols (csb)

The change_symbols command changes the expansion or suffixing of specified
symbol. Control arguments are processed one at a time. Specifying more than one
control argument has the same effect as issuing the command several times with one
control argument each time.

| SYNTAX AS A COMMAND
| csb symbol {-control_args}

ARGUMENTS

symbo/
is the symbol changed. This symbol must be defined in the current symbol
dictionary. .

CONTROL ARGUMENTS
| one or more arguments /must be chosen from the following:

—exp string :
where string represents the new expansion string for this symbol. This control
argument does not change the way suffixing is performed for the symbol.

—suffix string _
enables or disables suffixing for this symbol. string must be either on or off.
If string is on, then suffixing is enabled and all suffixes are processed
according to the default rules described in the "Notes" of the option_symbols
command below. If string is off, then all suffixes are disabled for the symbol.
If this control argument is not specified, then on is assumed.

-plural string
defines the plural suffix for this symbol. string must be on or off, or a string
| that can be used as the plural of the expansion of this symbol. If string is
| on, then the plural suffix is enabled for this symbol and processed according to
the default rules for the plural suffix. If string is off, the plural suffix is
disabled for this symbol.

-ed string
defines the ed suffix for this symbol. This control argument follows the same
rules as the —plural control argument.

-ing string
defines the ing suffix for this symbol. This control argument follows the same
rules as the —plural control argument.

—er String
defines the er suffix for this symbol. This control argument follows the same
rules as the -plural control argument.

-ly string
defines the ly suffix for this symbol. This control argument follows the same
rules as the —plural control argument.

5-10 AZ98-02

delete__symbols (dsb)

delete__symbols (dsb)

The delete_symbols command deletes the specified symbols from the current symbol
dictionary.

SYNTAX AS A COMMAND
dsb symbo/s
where symbol/s are the symbols to be deleted from the current symbol dictionary.

5-11 AZ98-02

expand__symbols (esb)

expand__symbols (esb)

The expand_symbols command takes an input text segment and expands it using the

options and symbols defined in the current symbol dictionary.

SYNTAX AS A COMMAND
esb input_path foutput_path}

ARGUMENTS

input_path
is the pathname of the input text segment.

output_path

is an optional pathname of an output text segment. If no output pathname is
specified, the original contents of the input text segment are overwritten with

the expanded material.

5-12

AZ98-02

find__symbols (fsb)

find__symbols (fsb)

The find_symbols command finds and lists all of the symbols associated with
specified expansions contained in the current symbol dictionary. One, several, or all
expansions may be listed.

SYNTAX AS A COMMAND

fsb {expansions} {-contro/_args}

ARGUMENTS

expansions
are optional arguments that specify expansions to find and list. If an expansion
is tepresented by more than one symbol, all of its symbols are found and
listed. If any given expansion is not found, a message is printed stating that
the expansion is not defined. If no expansions are specified, all expansions in
the current symbol dictionary are listed. The expansions are listed in order
according to ASCII collating sequence.

CONTROL ARGUMENTS

-long

-lg
specifies that for each symbol listed, its expansion string with suffixing is listed
for each suffix enabled for that symbol.

-option
specifies that all option information for the current symbol dictionary is to be
listed (see the option_symbols command for a complete description of option
information). If this is the only control argument specified, only the option
information is listed.

-total

-1t
specifies that the total number of symbols defined in the current symbol
dictionary is to be printed. If this is the only control argument specified, only
the total is printed.

5-13 AZ98-02

list__symbols (Isb)

list__symbols (Isb)

The list_symbols command lists one, or several, or all of the symbols defined in
the current symbol dictionary.

SYNTAX AS A COMMAND
Isb {symbols} {-control/_args}

ARGUMENTS

symbols
are optional arguments that specify the symbols to list. If any given symbol is
not found, then a message is printed stating that the symbol is not defined. If
no symbols are specified, then all symbols in the current symbol dictionary are
listed. The list is in ASCII collating sequence order.

CONTROL ARGUMENTS

-long

-]g
specifies that for each symbol listed, its expansion string with suffixing is listed
for each suffix enabled for that symbol.

-option
specifies that all option information for the current symboi dictionary is to be
listed (see the option_symbols command for a description of option information).
If this is the only control argument specified, then only the option information
is listed.

-total

-t
specifies that the total number of symbols defined in the current symbol
dictionary is to be printed. If this is the only control argument specified, then
only the total is printed.

5-14 AZ93-02

option__symbols {(osb)

option__symbols (osb)

The option_symbols command allows a user 1o change certain optional control
information in the current symbol dictionary. This information is summarized in
"Notes" below.

SYNTAX AS A COMMAND

osb {control/_args}

CONTROL ARGUMENTS

all except —delim set corresponding escape, prefix, or suffix characters recognized
by Speedtype to the character specified by X (see "Notes" below). A complete
explanation of the escape, prefix, and suffix characters is given earlier in this
section.

—delim string
specifies a new set of delimiter characters. None of the characters in this
string may be currently defined escape, prefix, or suffix characters.

-pad X

-perm X

~temp X

—trans X

-space X

NOTES

A summary of all Speedtype options is given below. The default character(s) used
to represent each option is also shown.

Delimiters:

Escapes (see below)
White space (space, tab, newline)
Others ,(Ti<>{1{}"

5-15 AZ98-02

option__symbols (osb)

Escapes:

pad (octal 177)
perm '
temp ~
trans :
space ;
Prefixes:

under
upper l
Suffixes:

plural
ed
ing

er

ly

"% | +

EXAMPLES

To set the temporary escape character to &, type:
osb -temp &

5-16 AZ98-02

print__symbols__path (psbp)
print__symbols__path (psbp)
The print_symbols_path command oprints the pathname of the current symbol

dictionary.

SYNTAX AS A COMMAND
psbp

5-17 AZ98-02

retain__symbols (rsb)

retain__symbols (rsh)

The retain_symbols command takes an input text segment and inserts Speedtype
escape characters wherever symbols would be expanded if this text segment were being
processed by the expand_symbols command. All symbols in the text segment are thus
retained during future expansion.

SYNTAX AS A COMMAND
1sb input_path {output_path} {-contro/_args}

ARGUMENTS

input_path
is the pathname of the input text segment.

output_path
is the optional pathname of an output text segment. If no output pathname is
specified, the original contents of the input text segment are overwritien.

CONTROL ARGUMENTS

—perm
specifies that the perm escape character is to be used. If no control argument
is specified, -perm is assumed.

~-temp
specifies that the temp escape character is to be used. Specifying this control
argument causes the symbols in the output text segment to be retained for only
one expansion.

NOTES

In addition to inserting the specified escape character wherever necessary, all
existing pad escapes are converted to the specified escape. This allows for more
convenient editing of the input text segment, since all escape characters are thus
printable. (Refer to the escape description earlier in this section.)

5-18 AZ98-02

show__symbols (ssb)

show__symbols (ssb)

The show_symbols command shows how Speedtype expands an input string. The
expansion is performed using the options and symbols in the current symbol dictionary.
The expanded string is printed on the user’s terminal. :

SYNTAX AS A COMMAND
ssb terms

where terms are arguments that are concatenated into the input string that is expanded.
These terms are separated in the input string by one space. If other spacing is desired,
the input string should be enclosed in quotes.

EXAMPLES

To show the expansion for the term th which is defined in the current symbol
dictionary, type:

! ssb th
these

If the term th is not defined in the user’s current dictionary then the system
response would be th,

5-19 AZ98-02

use__symbols (usb)

use__symbols (usb)

The use_symbols command sets the curreni symbol dictionary. All Speedtype
commands then use this symbol dictionary. If this symbol dictionary does not exist, the
user is asked if it should be created.

SYNTAX AS A COMMAND
usb path

where path is the pathname of the symbol dictionary that is to be the new current
symbol dictionary. If path does not have a suffix of symbols, one is assumed; however,
symbols must be the last component of the symbols dictionary segment name.

NOTES

If other Speedtype commands are issued in a user’s process before the use_symbols
command, then those commands use the default symbol dictionary in the user’s home
directory. The default symbol dictionary has the pathname:

>udd>Project_id>Person_id>Person_id.symbois

5-20 AZ98-02

SECTION 6

LIST PROCESSING

List Processing involves maintenance, sorting, and selection of items in a list (e.g.,
names, words, numbers) and the production of documents that use this information.
The processing steps involve creating an input file, compiling this file into a form that
can be manipulated by the List Processing commands, and manipulating this new file
with files that define formats for the final output.

LIST PROCESSING FUNCTIONS

The main functions of List Processing are:

list maintenance (i.e., entry and update of information in a list)
sorting

selection

report generation

An example of the use of List Processing is a dental office that maintains a list of
all patients serviced by that office. The data maintained for each patient might include
the patient’'s name, address, phone number, -date of last visit, etc. When a patient first
visits the office, the patient is added to the list. This involves using a text editor (see
Section 2) to input information about the patient, which may be updated later. For
example, on each subsequent visit, the date of last visit is updated for that patient.

This dental patient list can be used to produce various documents. For example, the
dentist may want a report listing the name, address, and phone number of all patients,
sorted alphabetically by patient name, or a form letter reminding the patient to visit
the office for a checkup. Perhaps the dentist sends this letter to those selected patients
who have not visited the office for six months or more.

On Multics, List Processing is done with a set of commands that maintain and
process online lists of information. These commands can be used to produce simple
reports like the ones described above; they also provide a means by which the output
can be saved in a segment or direcied to the terminal. Once in a segment, the output
can be mailed to other users using the Multics mail facility (see Mu/tics Commands),
or can be further processed by the Compose Text Formatter (see Section 4 of this
manual) to produce reports and form letters.

LIST PROCESSING FILES

List Processing uses three types of files (listin, lister, and listform), each type
identified by its entryname suffix. A description of each of these types follows.

6-1 AZ98-02

Listin File

A listin file is an ASCII file used to input and update a list. It is identified by
the entryname suffix .listin (eg, monthly.listin) Records can be added to,
deleted from, or updated in this list simply by editing the file with a text editor.

The format of a listin file is simple. It consists of the following three parts:
1. Header

The header specifies the record and field delimiter characters, the optional
comment delimiter, and the field names. It is located at the beginning of the
file and contains the following statements:

Comment_delimiter: c; or Cd: «c¢;
Record_delimiter: r; or Rd: r;
Field_delimiter: f; or Fd: f;
Field_names: fnl, ... fnK; or Fn: fnl, ... fnK;
Records:

The Comment_delimiter statement enables comments in the listin segment and
specifies the character or characters used to begin and end comments.
Comments may appear anywhere that white space is allowed and are ignored.
No comments may precede this statement in the listin file. If this statement is
not given, then no comments are allowed in the listin file. If the string "pll"
is specified in the Comment_delimiter statement then comments begin with "/*"
and end with "*/"; otherwise the comment delimiter must be exactly one
character long and must be chosen from the set below, in which case that
single delimiter both begins and ends comments. It should be noted that the
usage of the PL/I-style comments in conjunction with the usage of the "*" as
either record or field delimiters can cause problems and should be avoided if
possible.

The Record_delimiter statement specifies the character used to separate records.
If this statement is not given, the default record delimiter is a dollar sign ($).

The Field_delimiter statement specifies the character used to separate fields
within a record. If this statement is not given, the default field delimiter
character is an equal sign (=). Record and field delimiters must be exactly one
character long, cannot be the same, and must be chosen from the following set:

'#8%&x=7@" | ~

The Records statement must be the last statement in the header, and is
required. It specifies the end of the header and the beginning of the record
information.

2. Fields

The fields contain the various types of information stored in a list (e.g., first
name, last name, street address, date of employment, etc.). Because data records
are stored separately within a listin file, the field names must be given with
each data record. Within an individual data record, a field is specified by a
field delimiter character followed immediately by the field name (e.g., =Iname).
Any amount of white space (space, horizontal tab, vertical tab, newline, or new
page) can follow the field name (e.g., =Iname Smith). If the field value
contains anv record. field. or comment delimiters, then it must be quoted (e.g.,
=amount "$1.00") and in this case any embedded quotes must be doubled. A
field value ends at the next record or field delimiter. Leading and trailing

6-2 AZ98-02

white space is removed from field values, though such space can be retained by
including it within quotation marks that surround the entire field value.

All of the field names used in a list must be specified in the Field_names
statement of the header. Field names may be from 1 to 32 characters in
length, must begin with an alphabetic character, and must contain only
alphabetic, numeric, and underscore characters,

3. Data Records

The data records (hereafter simply referred to as records) contain the specific
information associated with the subject of each record. The beginning of each
record is denoted by the record delimiter character, followed by a list of
-fields. A record may contain some or all of the fields defined in the header,
and fields not specified for a record are considered to be null. Duplicate fields
are not allowed within a record.

Lister File

A lister file contains the records entered and updated through a listin file and
serves as the file from which the processes of merging, trimming, sorting, selecting, and
document processing are performed. It is identified by the entryname suffix .lister
(e.g., monthly.lister). After records have been input or updated in a listin file, the
create_list command (described below) transfers them to a lister file. When a lister
record is created, it is assigned a decimal identifier that is unique within the lister file
and remains assigned 1o the record -as long as the file exists. If the record is deleted,
its unique identifier is not rteused. -If the create_list command is used to Te-create an
existing lister file, the unique identifiers change. The unique identifier is referred to by
the reserved field name ™uid". Since lister files are formatted binary files, they cannot
be displayed by using the print command, as listin files can and must be. They can
only be displayed by the process_list or the display_list commands, though they can be
manipulated by the append_list, copy_list, merge_lIist, modify_Iist, sort_iist, and trim_list
commands. Other functions are provided by the describe_list and expand_list commands |
(all of the lister commands are described below). : [

Listform File

A listform file defines the format of a document to be produced from a list of
records. It is identified by the entryname suffix .listform (e.g., monthly.listform)
Information from a list is copied into a document in the format specified by the
listform being used. A single listform file may be used with a number of lister files,
just as one lister file can be used with several listform files.

Three sections of a document may be defined. These three sections are the Before
section, the After section, and the Record section. The Before and After sections are
optional and useful for organizational purposes; i.e., the Before section may be used for
headings and introductory matter, and the After section for closings and summary
material. The Record section, however, is necessary for processing records. The
functions of field insertion, sorting, and selection require the presence of a Record
section within the listform to correspond to the lister records. Examples of these
sections are in the sample listform files under "Sample List Processing Files" below.

6-3 AZ98-02

These three listform sections are further described as follows:
Before

This section is added io the document as a preface before any records are
processed. It may contain any desired text, including compose controls. The
beginning of the Before section is identified by the string ''<Begin before:>".
The end of the Before section is identified by the string ''<end;>".

Record

This section describes the document format for each lister file record processed.
It contains field value' strings to be copied from the lister file being processed
(see "Field Insertion” below), compose controls, and any desired text. The
beginning of the Record section is identified by the string ''<Begin record:>'"
The end of the Record section is identified by the string ''<end;>".

After

This section is added to the document after all records are processed. It may
contain any desired text, including compose controls. The beginning of the
After section is identified by the string ''<Begin after:>'' the end of the
After section is identified by the string ''<end;>'!

FIELD INSERTION

In order to insert information from the lister file into the document, a field name
enclosed in angle brackets (<>) is included in the record section of the listform file
(e.g., <city>).

An optional field width may also be specified. For example, <city,10> specifies that
the value string of the field "city" is to occupy 10 character positions. If the current
value string is less than the specified field width, then it is padded on the right with
blanks. If the current value string is greater than the specified field width, then it is
truncated (cut off) on the right so its length is equal to the specified field width.

An optional field alignment may also be specified if a field width is specified. For
example, <city,10,r> specifies that the value string of this field is to be right-aligned
within the 10-character field width. The alignment indicators "1" for left and "¢" for
center may also be specified. If no alignment is specified, the value string is
left-aligned.

To insert arguments into the document using the process_list command with the
-argument control argument, an argument name (enclosed in angle brackets) may be
included in the text of the before, after, or record section. The argument name is
replaced by the actual argument when the section is processed. Field widths and field
alignments may also be specified for argument insertions.

Argument names are of the form :argl, argl,.... :argN. For an example of the use
of the -argument control argument, see the example beneath the sample letter under
"Sample List Processing Files" below. Arguments specified by the -argument control
argument, but never referenced by an argument name, are diagnosed with a warning;

enmmand functinn is rorri

. i
1-3., I.lle WAillli1dlid 1 dlawliviG { but a warning 15 A1en‘°}'ef\d en the tprm1ng]

A An
WLl 1 Lwd Ves Yvaiinagy pY un:ynu AAAAAAAAAAAA
Arguments named in a listform segment, but never specified by the —argument control
argument are also diagnosed with a warning. A null string is used in place of the

missing argument. The -brief_errors control argument suppresses these warnings.

6-4 AZ98-02

Listform files are character-oriented rather than line—oriented, so placement of field
names within these files dictates the line output. Thus, when field or character strings
follow immediately after a <Begin record:> control, no blank lines are inserted. When
the field name or character string begins on the next line, one blank line is inserted.
The following format produces no blank lines between records:

<Begin record:> <fname> <lname>
<end;>

One blank line is inserted between each record by the following listform format:

<Begin record:>
<fname> <Ilname>
<end;>

One blank line can also be produced by moving the <end;> control, as in:
<Begin record:> <fname> <lname>
<end;>

The unique identifier of a lister record can be inserted into a List Processing |
document by specifying <:uid> in the Record section of the listform file.

Finally, by use of listform files, the current date, the present time, and the number
of records being processed with the current command invocation can be inserted in a
List Processing document. These special fields can be inserted separately in any of the
three listform sections; Before, Record, and After, using the format:

<:date>
<:time>
<:record_count>

When the process_list command is invoked with a listform file containing any of these
special fields, the specified information is automatically inserted into the document
being printed without any type of control argument in the command line.

ANGLE BRACKET ESCAPES

To place a single left angle bracket in the text, enter two left angle brackets (<<).
A single right angle bracket is left as is in the document when it is used with two left
angle brackets (e.g., <<Phoenix> becomes <Phoenix> in the output). A single right angle
bracket is also left as is in the output when it is used with no left angle brackets (e.g.,
Phoenix> remains Phoenix>).

SORTING

The sorting process sorts records in a file according to specific criteria. These
criteria are indicated in the -sort control argument which is used with both the
sort_list and process_list commands. With the —sort control argument, a list of names
and addresses, for instance, can be printed in alphabetical order according to first

name, last name, city, street, or any field within its record.

Note: Within this section, references to alphabetical order refer to a sorting
sequence identical to the ASCII collating sequence with the exception that
lowercase letters immediately follow the corresponding uppercase letters.

6-5 AZ98-..

The -sort control argument always takes a character—string argument which specifies
the record fields used to control the sort. Its format is:

~sort string
-st string

Note that the character-string string must be surrounded by quotation marks when

the string contains blanks or reserved characters and internal quotation marks must
be doubled.

The character-string consists of one or more field specifications separated by spaces.
The first field specification defines the primary sort field; the second field specification
defines the secondary sort field; and so forth. The lister file acted upon is reordered
permanently when using the sort_list command; the lister file is not altered when using
the -sort control argument with the process_list command.

A field specification consists of two parts, a field name and optional order and

type control arguments. The order and type control arguments can be chosen from the
following:

-ascending

-asc
specifies that this field is to be sorted into ascending order. If no order
control argument is specified, then ascending order is assumed (e.g., 0123456789Aa...Z2).

—descending
—dsc
specifies that this field is to be sorted into descending order.

—alphabetic -
-alp
specifies that the field is to be sorted alphabetically.

-numeric

-num :
specifies that this field is to be sorted numerically by temporarily converting
each field value to a float decimal(29) value. Values that cannot be converted,
sort as if they had the value zero.

The sort performed by the -sort control argument is stable; that is, records with
equal fields stay in the same relative order, whether an ascending or descending sort is
performed. For examples of the use of the -sort control argument, see "Sample List
Processing Files” and the sort_list command description in this section.

SELECTION

The selection feature enables a List Processing command to select from a lister file
only certain records upon which to perform its function. The command, through the
use of the control argument described below, specifies requirements for desired fields.
If a record meets the requirements it is processed: otherwise it is skipped.

For instance, from a complete list of names and addresses, separate lists could be
printed for all entries with last name beginning with any letter, all residents of one
town, all residents of one state, or all entries with the exception of those containing
some specified criteria.

The -select control argument (which can be used with the copy_list, process_list,
and trim_list commands) always takes a character-string argument. Its format is:

6-6 AZ98-02

-select string
-sel string

In this argument, the character-string string must be surrounded by quotation
marks. Each record in the specified lister file is tested to determine whether or
not the record fulfills the selection criteria. Those that do are processed.

The -select control argument consists of one or more field comparisons. A field
comparison involves comparing a test string to the value of the specified field in the
current record. The field comparison statement always consists of three parts:

“"field name comparison operator test string"
_ - — g
where:

field_name
is the name of a field contained in the lister file. The reserved field name
":any" may be used to specify any field in the record. The reserved field name |
":uid" may be used to specify the unique identifier of a record. |

comparison_operator
specifies what comparison is performed. The opposite comparison is performed
if the comparison operator is preceded by "not". The List Processing comparison
operators are:

contain(s) :
test string is contained in the field value. The comparison is made without
regard to case (i.e., uppercase letters compare equal to lowercase letters).

equal(s)
test string is equal to the field value. Uppercase letters- are distinct from
lowercase letters with this operator.

greater

field value is alphabetically greater than the test string (e.g., 0123456789Aa...Z2).
less

field value is alphabetically less than the test string.

nequal(s)
field value string is numerically equal to the numeric value of test string.

ngreater
field value string is numerically greater than the test string.

nless
field value string is numerically less than the test string.

test_string
is the string that is compared to the field value string. The special test string
"null" is used to test whether or not the field is nu//. ie., missing from the
current record. The special test string "numeric" is used to test whether or not
the field value string is numeric, i.e., can be converted to a number. Null
fields are always non—numeric.

Several field comparisons may be specified by the -select control argument. Field
comparisons are combined by the logical operators "and", "or", or "not". In the absence
of parentheses, the prefix "not" operator is evaluated first, then the infix "and”
operator, then the infix "or" operator. Parentheses may be used to specify the exact
order of evaluation. These rules are similar to the PL/I rules for Boolean expressions.

6-7 AZ98-02

The special test strings ":null" and ":numeric" can only be used with the equal or
nequal comparison operators. ‘

(not), and nless ignore records that have null fields. Unless the special test string

|
|
! The comparison operators (not) contain, (not) greater, (not) less, (not) ngreater, or
l
| ™null" is used, (not) equal and (not) nequal also ignore records with null fields.

For examples of the use of the -select control argument, see "Sample List
Processing Files" below, and the process_list and trim_list command described later in
this section. '

SAMPLE LIST PROCESSING FILES

A sample list and two specific uses (mailing list and form letter) are shown below.

Using the dental office example, the first file shown below (patients.listin) is the
one containing a list of the patient’s names, addresses, and other pertinent information.
Its appearance is exactly as entered by the user with the text editor, except for the
heading "patients.listin”, which is added when the file is displayed by the print
command. The listin file can be displayed by entering the command:

print patients.listin

which results in the following display:
patients.listin

| Comment_delimiter: pll;
Record_delimiter: $;
Field_delimiter: =;
Field_names: fname, lname,street,city,state,zip.phone,
date,message;
Records:
$
=fname John
=]name Doe
=street 71 Pine Street
=city Boston
=state Massachusetts
=zip 02020
=phone (617) 555-7654
=date 770520
=message you and your family well

=fname Jane
=lname Smith
=street 898 Smith Avenue
=city Needham
=state Massachusetts
=zip 02112
=phone (617) 555-4567
=date 750713
| =message you well
$
=fname Francis
] =1name Jones /*formerly Wilson%/

6-8 AZ98-02

=street PO BOX 999

=city Cambridge

=state Massachusetts

=zip 02139

=phone (617) 555-7869

=date 770131

=message you well |

The next sample file, addresses.listform, defines the format to be used while
processing patients.lister (created from patients.listin}) to generate the address report
below (final desired output). Its appearance is exactly as entered by the user with the
text editor, except for the heading "addresses.listform”, which is added when the file is
displayed by the print command. The listform file can be displayed by entering the
command: ’

print addresses.listform

which results in the following display:
addresses.listform

<Begin before:>
Dental Patient Addresses

<end;>

<Begin record:><fname> <Iname>
<street>

<city>, <state> <zip>

Tel: <phone>

<end;>

<Begin after:> Dental Associates
<end;>

The create_list command makes a lister file named patients.lister from the listin file
named patients.listin. The process_list command then operates on the lister file,
formatting the records according to the addresses.listform file and arranging the records
alphabetically by last name as specified by the —sort control argument. The following
command lines are used to create the lister file and process it with the listform file:

create_list patients.listin
process_list patients.lister addresses.listform -sort lname

which resuits in the following display:
Dental Patient Addresses
John Doe
71 Pine Street

Boston, Massachusetts 02020
Tel: (617) 555-7654

6-9 AZ98-02

The file,

Francis Jones

PO BOX 999

Cambridge, Massachusetts 02139
Tel: (617) 555-7869

Jane Smith

898 Smith Avenue

Needham, Massachusetts 02112
Tel: (617) 555-4567

Dental Associates

print letter.listform

which results in the following display:
letter.listform

<Begin record:>
.pdl 40

.pdw 55

.inl 30

fif

Dental Associates
1001 Jamaica Avenue
Boston, Mass. 02003
{(617) 555-6000

.spb 2

.inl

<fname> <lname>
<street>

<city>, <state> <zip>
.fin

.inl

.spb

Dear <fname>:

.spb

| hope this letter finds <message>.
It has been over six months since your last visit to our
office. Please call and make an appointment

to have a checkup.
.spb

.inl 30

Keep smiling,

.spb 2

J. Kelly, D.M.D.

6-10

letter.listform, defines the format of the form Iletter,
manipulated with patients.lister, creates the Sample Letter (shown below) specifically for
Jane Smith. Using the process_list command with the -select control argument to
specify other records within patients.lister, the same letter can be composed for any or
all patients on the list, using any available field as a criterion. Its appearance is exactly
as entered by the user with the text editor, except for the heading "letter.listform",
which is added when the file is displayed by the print command. The listform file can
be displayed by entering the command:

which, when

AZ98-02

.brp
<end;>

SAMPLE LETTER

The process_list command selects Jane Smith from the patients.lister file, processes
it with the letter.listform file, and sends it to an output file named letter.compin. This
segment is then operated on by the compose command to produce the letter to Jane
Smith. The following command lines are used to create the sample output from the
lister file:

! pls patients letter -sel fname equal Jane and lname egual Smith
~of letter.compin
! compose letter

which results in the following display:

Dental Associates
1001 Jamaica Avenue
Boston, Mass. 02003
(617) 555-6000

Jane Smith
898 Smith Avenue
Needham, Massachusetts 02112

I hope this letter finds you well. It has been
over six months since your last visit to our office.
Please call and make an appointment to have a checkup.

Keep smiling,

J. Kelly, D.M.D.

Now assume that Dr. Kelly takes in a partner (Dr. O'Brian). When composing the
reminder in the future he wants to designate from command level whose name is to be
on each letter individually. In letter.listform (see example above that displays
"letter.listform"), he replaces:

J. Kelly, D.M.D.

with an argument name of the form:

<:argl>

6-11 AZ98-02

The next time that a letter is needed, he types:

ents er -sel 1name egual Doe -of letter.compin
-ag "W. O0’Brian, D.M.D."

and the letter is supplied with Dr. O’Brian’s name in the signature block.

6-12 AZ98-02

append__list (als)

append__list (als)

The append_list command adds a record to a lister file.

SYNTAX AS A COMMAND
als path -control_args

ARGUMENTS

path :
is the pathname of the lister file. The suffix lister must be the last component
of the lister segment name; however, if path does not have a suffix of lister,
one is assumed.

CONTROL ARGUMENTS

-field_name fie/d_name string

—-fn fie/d_name string
causes the value of string to be assigned to the field indicated by f/e/d_name.
If string contains spaces, it must be enclosed in quotes. This control argument
is required and may be given more than once. Those fields for which this
control argument is not given are assigned null values.

-string string
-Str String
uses string as a character string with no special interpretation. This is useful

for preventing string from being interpreted as a control argument. It is to be

used with the -field_name control argument (e.g., "-field_name rating -string

nmy
U .

EXAMPLES

To append a record (o an existing lister file, type:
als patients -fn fname Benjamin -fn lname Walker

6-13 AZ98-02

copy__list (cpls)

copy__list (cpls)

The copy_list command creates a new list segment from an existing list
segment. All, or selected, records of the existing list segment are copied into the new
list segment. The new list segment is created in the working directory. Any existing
copy of this segment is overwritien.

SYNTAX AS A COMMAND
cpls path! path2 {-control_args}

ARGUMENTS

pathi
is the pathname of the existing lister file. The suffix lister must be the last
component of the list segment name; however, if path7 does not have a suffix
of lister, one is assumed.

path2
is the pathname of the new list segment. The suffix lister must be the last
component of the list segment name; however, if path2 does not have a suffix
of lister, one is assumed.

CONTROL ARGUMENTS
—select string
-sel string
~ copies records specified by string (the string argument must be enclosed in
quotes). If this control argument is not specified, then all records are copied.
(For a complete description of how to specify string, see "Selection" earlier in
this section.)

—totals
-1t
displays the number of records copied.

EXAMPLES

To copy all records that have a city field equal to Boston from patients.lister into
Boston_patients.lister, type:

cpls patients Boston_patients -sel '"city equal Boston"

To copy all records that do not have a city field equal to Boston from
patients.lister into Mass_patients.lister, type:

cpls patients Mass_patients -sel ''city not equal Boston"

For more examples of the use of this control argument. see the trim_list command
description.

6-14 AZ98-02

create__list (cls)

create__list (cls)

The create_list command creates a lister file from a listin file.

SYNTAX AS A COMMAND
cls path {-control_arg}

ARGUMENTS

path
is the pathname of the listin file. The suffix listin must be the last component
of the listin segment name; however, if path does not have a suffix of listin,
one is assumed. A lister file is created in the working directory with the same
entryname as path, and with the entryname suffix of listin changed to lister.
Any existing copy of this lister file is overwritten.

CONTROL ARGUMENTS

control_arg
can be —totals or -tt to display the number of records in path.

NOTES

The creation of a lister file is the only List Processing operation which uses listin
files as input. All other operations use lister files as input (which are unprintable files
containing ASCII and binary information).

A ulistin file provides an ASCII representation of a list. It is used to input and
update a list. The listin files can be created and updated by using any text editor.

Example

To create patients.lister from patients.listin (which contains three data records) and
display the number of records in patients.listin, type:

! cls patients -tt
create_list: 3 records.

6-15 AZ98-02

describe__list (dls)

describe__list (dls)

The describe_list command displays information about a lister file.

SYNTAX AS A COMMAND
dls path {-control/_args}

SYNTAX AS AN ACT/VE FUNCTION
[dis path {-control_args}]

ARGUMENTS

path
is the pathname of the lister file. The suffix lister must be the last component
of the lister segment name;, however, if path does not have a suffix of lister,
one is assumed.

CONTROL ARGUMENTS

—delimiter {record|fiel/d}

—dm {record|field}
displays the value of the record or field delimiter. If the record and field
keywords are omitted.then both delimiters are printed.

-field_name
-fn
displays the field_names in the lister file.

—select string

-sel string
specifies those records to be indicated by the —total control argument. If this
control argument is not specified, then the total number of records in the file
is used. (For a complete description of how to specify string see "Selection”
earlier in this section.)

—total
=Tt
displays the total number of records.

NOTES

If no control arguments are given, or only the -select control argument is given,
then the record and field delimiters, total, and the field names are displayed.

If none or more than one of -delimiter {record|field}. —-total. or -field_name are
specified, the values are returned in the following order: record_delimiter, field_delimiter,
total, and field_names.

6-16 AZ98-02

Example

dis mlist
mlist.lister

Total Records:
Record_delimiter:
Field_delimiter:
Field_names:
alias,mproj;

07/02/80 1606.4 mst wed

748

n

’
’

name,did, addr,current, years,personid,

dis mlist -sel "mproj equal SysAdmin" -total

)

6-17

describe__list (dls)

AZ98-02

display__list (dils)

display__list (dils)

The display_list command displays (prints) selected portions of selected Ilister
records.

SYNTAX AS A COMMAND
dils path {-control_args}

SYNTAX AS AN ACTIVE FUNCTION
[dils path {-control_args})

ARGUMENTS

path
is the pathname of the lister file. The suffix lister must be the last component
of the lister segment name; however, if path does not have a suffix of lister,
one is assumed.

CONTROL ARGUMENTS

—brief_errors
-bfe
suppresses the warning when no records match the selection expression.

-field_name fie/d_names

-fn fie/ld_names
causes the specified fie/d_names to be displayed, in the order indicated. This
control argument must be given.

-select string

-sel string
specifies those records whose fields are to be displayed. If this control
argument 1is not specified, then all records are used. (For a complete
description of how to specify siring, type "help process_list".)

6-18 AZ98-02

expénd_list (els)

expand__list (els)

The expand_list command creaies a. listin segment from a lister segment. The
number of records expanded is displayed. The operation performed by this command is
the opposite of that performed by the create_list command.

SYNTAX AS A COMMAND
els path {-control/_args}

ARGUMENTS

path
is the pathname of the lister segment. If the entryname suffix - lister is not
specified, then it is added. A listin segment is created in the working directory
with the same entryname as path, and with the entryname suffix lister changed
to listin. Any existing copy of this listin segment is overwritten.

CONTROL ARGUMENTS

~line_length n

-1l n
specifies that the line length of the ASCII listin segment is to be 77 characters.
If this control argument is not specified, then only one field is placed on each
line. A field is placed on a new line only if adding the field to the current
line would exceed the specified line length. At least one field is placed on
each line.

—totals
-t
displays the number of records expanded.

NCOTES
The ASCII listin segment created by this command has the following format:
e The first two lines specify the record and ficld delimiier characiers.

e Beginning on the third line are the field names. They are separated by a
comma and a space. A field name is placed at the beginning of a new line if
adding it to the current line would exceed the specified line length.

e Each record begins with a line containing just the record delimiter character.

]

Unless -line_length is specified, each field is placed on a separaite line and
indented one space.

6-19 AZ98-02

merge__list (mls)

merge__list (mls)

The merge_list command combines two lister files into a single lister file. The file
resulting from the merge may be a new lister file, or it may replace an existing lister
file. The fields defined in the two lister files must be identical, and the fields to be
compared must be in ascending order. The comparisons are performed without regard
to case (uppercase letters compare equal to lowercase letters). Sorting must be done by
the sort_list command.

SYNTAX AS A COMMAND
mls mas_path up_path {out_path} {-control args}

ARGUMENTS

mas_path
is the pathname of the master lister file. The suffix lister must be the last
component of the lister file name; however, if mas_path does not have a
suffix of lister, one is assumed.

up_path
is the pathname of the update lister file. The suffix lister must be the last
component of the lister file name; however, if up_path does not have a suffix
of lister, one is assumed.

out_path
is the pathname of the output lister file. The suffix lister must be the last
component of the lister file name; however, if out_pats does not have a suffix
of lister, one is assumed. If this argument is not specified, the master liSter
file is replaced.

CONTROL ARGUMENTS

—field_name fn7 ... fni

-fn fn? ... fni
specifies that fields 7n7 through fn/ are used as the controlling fields for the
merge. (Records can only be merged if they contain the same fields, though
some of those fields may be null.) The fields are compared without regard to
~case. If this control argument is not specified, then all fields are used to
control the merge.

-totals
-t
displays the number of records in the master, update, and output files.

Only one of the following four control arguments (-add. -and -or, or -subtract)
can be specified:

-add
copies into the output lister file all records from the master lister file p/us all

records from the update lister file. Thus records contained in both lister files
are listed twice in the output file. (Default)

6-20 AZ98-02

merge__list (mls)

-and . .
copies into the output file those records in the master lister file that are a/so
in the update lister file. That is, those records that are listed in both files are
listed once in the output file; no records from the update lister file are copied.

-or
copies into the output lister file all records in either the master lister file or
the update lister file. Duplicate records are copied only from the update lister
file and thus appear only once in the output file.

-subtract

-sub
copies into the output lister file all records in the master lister file that are
not also contained in the update lister file. Thus no duplicate records are
copied and no records from the update lister file are copied.

NOTES

The table below shows how master and update lister files are merged for each of
the four merge operations: add, and, or, and sub. The letters listed in the table body
represent individual records, with duplications of letters simply representing different
recordings of the same basic record. When records represented in both the master and
update files are listed in the output file, the letters representing them are given the
associated numeric shown in parenthesis with the identified file in order to indicate
which recording of a particular record actually went into the output file.

Operation Master File(1) Update File(2) | Output File

add abcde defgh a b cdl d2
el e2 f gh

and abcde defgh dl el

or abcde defgh abcd2e2
fgh

sub "abcde defgh abec

EXAMPLES

To copy into Boston_patients.lister all records in patients.lister that have the city
field equal to Boston and print the total number of records, type:

copy_list patients Boston_patients -sel ''city equal Boston" -tt

=

H 3 Sexr £ wal o+ .
To delete from patientslister all records that have the city field egual to Bosio

and print the total number of records, type:

! trim_list patients -sel "city equal Boston" -tt
trim_list: 1 record deleted.

To merge the lister files patients.lister and Boston_patients.lister using the city name
as the controlling field for the merge and display the total number of records, first the

6-21 AZ98-02

merge__list (mls)

sort_list command is issued to sort the patients file into ascending alphabetical order by
city: ' , ‘
sort_list patients -sort city

and then the merge:

! merge_list patients Boston_patients -tt -fn city
merge_list: 3 master and 1 update records merged into 4 output records.
! merge_list patients Boston_patients out_patients -tt -fn city -and
merge_list: 4 master and 1 update records merged into 1 output record.

6-22 AZ98-02

modify__list (mdls)

modify__list (mdls)

The modify_list command modifies a field or fields in selected lister records.

SYNTAX AS A COMMAND
mdls path -control_args

ARGUMENTS

path i
is the pathname of the lister file. The suffix lister must be the last component
of the lister segment name; however, if path does not have a suffix of lister,
one is assumed.

CONTROL ARGUMENTS
One or more arguments /must be chosen from the following:

—brief_errors
-bfe
suppresses the warning when no records match the selection expression.

-field_name fie/d_name string

-fn fie/ld_name string
causes the value of string to be assigned to the field indicated by fie/d_name.
If string contains spaces, it must be enclosed in quotes. This control argument
is required and may be given more than once. ‘

-select string

-sel string
SC1 SITINYG

specifies those records to be modified. If this control argument is not
specified, then all the records are modified. (For a complete description of
how to specify string, type "help process_list")

—string string

—str string
uses string as a character string with no special interpretation. This is useful
for preventing string from being interpreted as a control argument. It is to be
used with the -field_name control argument (e.g., ''-field_name rating
-string -20"),

~total
~tt

displays the number of records modified.

6-23 AZ98-02

process__list (pls)

process__list (pls)

The process_list command produces a documeni from all or selecied records in a
lister file. The format of the document is defined in a listform file. Other text
processors, such as compose, may be used to further format the document. By default,
the document is printed on the user’s terminal. Alternatively, it may be saved in a
segment. For a description of the structure of a listform file and information on field
insertion, angle bracket escapes, and the selection and sorting procedures (—select and
-sort control arguments), see those earlier portions of this section.

SYNTAX AS A COMMAND
pls /ist_path {form_path} {-control/_args}

ARGUMENTS

list_path
is the pathname of the lister file to be processed. The suffix lister must be the
last component of the lister file name; however, if //st_path does not have a
suffix of lister, one is assumed.

form_path
is the pathname of the listform file that defines the format of the document.
If form_path does not have a suffix of listform, one is assumed. If this
argument is not specified, a listform file in the working directory is used that
has the same eniryname as //st_path, with the entryname suffix of lister
changed to listform.

CONTROL ARGUMENTS

—arguments String

-ag string
indicates that the listform segment requires arguments. If present, it must be
followed by at least one argument. All arguments following this control
argument on the command line are taken as arguments to the listform segment.
Thus, if present, this must be the /ast contro/ argument on the command
line.

—brief_errors

-bfe
suppresses warnings about missing or extra arguments for the -ag control
argument. Suppresses warning when no records are selected.

—extend

—ex
specifies that the document produced by this command is to be appended to
the segment specified by path (-output_file must also be given). The default is

Py P ponemenl ataler

o el atl
i0 lcpiavc pa.tu VULLPICLCLY .

—output_file {path}

—-of {path}
specifies that the document produced by this command is saved in the segment
specified by path (see Sample Letter in "Sample List Processing Files" earlier in

6-24 AZ98-02

process__list (pls)

this section). If path is not specified, this output segment is placed in the |
working directory with an entry name the same as form_path and the suffix |
|
I

listform changed to list.

~-select string
-sel string

specifies the records selected for processing. If this control argument is not
specified, then all records in the list are processed (see "Selection" earlier in

this section).

-sort string
-st string

sorts the records processed according to string, which is a string enclosed in
-quotes. The new ordering of the list is in effect only for the duration of the

command. The lister file is not modified.

If this control argument is not

specified, then records are processed in the order in which they currently

appear in the lister file (see "Sorting" earlier in this section).

~totals
-t

displays the number of records processed.

EXAMPLES

Since the process_list command is an intermediate step in List Processing operations,
assume that the user has already created a segment named students.listin, containing the
first name, last name, city, state, and zip of three students; this segment includes three
records, each consisting of the above mentioned five fields. Also assume that, using the
create_list command, students.lister has been created, and a format for the list,

names.listform also exists. Following is a copy of the segment students.listin:

Record_delimiter: $;

Field_delimiter: =;

Field_names: fname,lname,city,state,zip;

Records:

S

=fname

=]name Smith
=city Boston
=state MA
=2ip 02114
$

=fname Tim

=1name Jones
=city Cambridge
=state MA

=fname Victor

=] name Red

=city Cambridge
=state MA

=zip 02139

S

AZ98-02

process__list (pls)

The first record in this segment has a null fname, and. the second record contains a
null zip field. As shown in the first field (fname) of the second record, the amount of
white space between the field name and the field value is completely arbitrary {(as is

the space between field value and field delimiter), and makes no difference when
processing.

The following listform segment does not utilize the optional before or after
sections, so it creates no heading or ending lines in the final output. Following is a
copy of the format-defining segment, names.listform:

<Begin record:>

- <fname> <lname> o
<city>, <state> <zip>
<end;> '

To have the process_list command select (print) all records that have a last name
(Iname) field less than "m" (i.e., all persons whose last name is from A to L), type:

! pls students names -sel "Tname less m"
Tim Jones
Cambridge, MA
r 725 0.401 3.782 61

To have the process_list command select (print) all records that have any field
whose value is null, type:

! pls students names -sel ":any eqgqual :nuli®
Smith
Boston, MA 02114

Tim Jones
Cambridge, MA
r 726 0.182 0.006 2

To have the process_list command select (print) all records that do not have a city
field of Boston, type:

! pls students names -sel "city not equal Boston"
Tim Jones
Cambridge, MA

Victor Red
Cambridge, MA 02139
r 727 1.053 2.682 4

i To have ihe process_list command seiect {print) all records and save the resuit in
| the segment names.list in the working directory, type:

pls students names -of

6-26 AZ98-02

sort__list (sls)

sort__list (sls)

- The sort_list command sorts the records in the specified lister file. The records are
sorted according to the fields specified in the -sort control argument (see "Sorting"
above). Fields are sorted without regard to case; that is, they are sorted into
alphabetical order and not ASCII order.

SYNTAX AS A COMMAND

sls path -control_arg

ARGUMENTS

path »
is the pathname of the lister file to be sorted. The suffix lister must be the
last component of the lister file name; however, if path does not have a suffix
of lister, one is assumed.

CONTROL ARGUMENTS

control_arg
must be -sort string or -ststring to specify how the records in the lister file
are to be sorted (see "Sorting" above). If the command is invoked without
specifying this control argument, the sort_list command responds with a
two-line message showing proper usage.

EXAMPLES

To sort the list of patient records into ascending alphabetical order by the zip
field, type:

sort_list patients -st zip

To sort the list of patient records into descending alphabetical order (most recent
first) by the date field, type:

sort_list patients -st ''date -dsc"

Normally, an alphabetical sort cannot be used to sort dates, but when the dates are of
the form YYMMDD (year, month, day), an alphabetical sort correctly orders the dates.

To sort the list of patient records into descending alphabetical order (most recent
first) by the date field, with those records having the same date sorted into ascending
alphabetical order by the Iname field, type:

sort_iist patients -st ‘“date -dsc iname -asc®

To sort the list of patient records into ascending alphabetical order by the Ilname
(last name) field, type:

sort_list patients -st ''lname fname"

If some records have equal Iname fields, they are further sorted (ascending. alphabetically)
by fname (first name).

6-27 AZ98-02

sort__list (sls)

| To sort the list of patient records into ascending numerical order by the zip field
| (zip code address), type:
|
l

sort_list patients -st "zip -num'

6-28 ‘ AZ98-02

trim__list (tls)

trim__list (tls)

The trim_list command deletes selected records from the specified lister file.
Because selection is required for trimming any lists, the select control argument must be
used with this command (see "Selection" above).

SYNTAX AS A COMMAND
tls path -control_arg {-optional arg}

ARGUMENTS

path
is the pathname of the lister file being trimmed. The suffix lister must be the
last component of the lister file name; however, if path does not have a suffix
of lister, one is assumed.

CONTROL ARGUMENTS

control_arg
must be -select string or -selstring to specify the records selected for
deletion. This is a required argument.

optional_arg
can only be -totals or -tt to display the number of records deleted.

EXAMPLES
To select (i.e, delete) from the file patienis.lister all records thai have an fname
(first name) field equal to John and an Iname (last name) field equal to Smith, type:
trim_list patients -sel "fname equal John and 1name equal Smith"

To select from patients.lister all records that have an Iname equal to Doe or Jones,
type:
trim_list patients -sel "lname equal Doe or lname equal Jones'

To seiect from patients.lister all records that have a state field equal to MA or IL,
and have a zip field that is not null, type:

trim_list patients -sel '"(state equal MA or state equal IL)
and zip not equal :null"

To select from patients.lister all records that have a street field that contains the
substring "PO BOX", type:

trim_list patients -sel '"street contains '""P0O BOX"""

Notice the extra set of quotes required for the test string (see "Selection" earlier in this
section for description of quotation marks in -select_arg).

To select from patients.lister all records that contain any field containing the
substring "PO BOX", type:

tls patients -sel ":any contains ""PO BOX"""

6-29 AZ98-02

This Appendix shows the byte value assignments for the extended character set
(metacharacters) used by compose while constructing the coded page image structure.
The characters defined in this table may appear in the image, both singly and in
various combinations. The device writer procedure decodes the charaters into printable
characters and control sequences acceptable to the target device.

000 NUL
001 SOH
002 STX
003 ETX
004 EOT
005 ENQ
006 ACK
007 BEL
010 BSP
011 HT
012 NL
013 VT
014 FF
015 CR
016 RRS

N17 RDRC

Vi LN

020 DLE
021 DC1
022 DC2
023 DC3
024 DC4
025 NAK
026 SYN
0Z7 ETB
030 CAN
031 oct3l
032 SUB
033 ESC
034 FS
035 GS
036 RS
037 US
040 SP
041 !
042 "
043 #
044 §
045 %

APPENDIX A

COMPOSE METACHARACTER TABLE

046 &
047 °
050 (
051)
052 =*
053 +
054 ,
055 -
056 .
057 /
060 0
061
062
063
064
065
066
067
070
071
072
073
074
075
076
077
100
101
102

TN 00 IO LA A W

mMOQEW»@=Vv I A

114 L
115 M
116 N
117 O
120 P
121 Q
122 R
123 S
124 T
125 U
126 V
127 W
130 X
131Y
132 Z

122 T

109 L

134 \
135]
136 »
137 _
140
141 a
142 b
143 ¢
144 d
145 e
146 f
147 g
150 h
151 i
152 j
153 k
154 1
155 m
156 n
157 o
160 p
161 g

162 1
163 s
164 t
165 u
166 v
167 w
170 x
1My
172 z
173 {
174 |
175 }
176 ~
177 DEL
200

m1

FAVPS

202
203
204
205
206
207
210
211
212
213
214
215
216
217
220
221
222
233
224
225
226
227

AZ98-02

230
231

232
233

et

234

235

236

237

240

241

242

243

244

245

246

247

250

251

252 mlpy
253 pl_mi
254 nabla
255 EMd
256

257 slash
260

261 dagger
262

263

264

265

266

267

270

271

272

273 perpen
274

275 not_eq
276

277 PAD
300

301 dbldag
302

303 cright
304 delta
305

306

307

310

311

312

313

314

315 bullet

316
317
320
321
322
323
324
325
326
327
330
331
332
333
334
335
336
337
340

363
364
365
366
367
370
3n
372
373
374
375
376
377
400
401
402
403

prll

PI

tmark

tfore

approx

infin

theta

pi

square
overbar
PS

sup0
supl
sup?
sup3

404
405
406
407
410
411
412
413
414
415
- 416
417
420
421
422
423
424
425
426
427
430
431
432
433
434
435
436
437
440
441
442
443
444
445
446
447
450
451
452
453
454
455
456
457
460

462
463
464
465

467
470
471

sup4
sups
supb
sup7
sup8
sup9
EM
EM_
EN
EN_
ENd
THIN
DEVIT
Iquote
Tquote
multiply
modmark
daro
dbot
dlvert
delmark
drvert
dtop
laro
one {
one [
leirc
one(
Taro
one}
one]
reire
one)
uparo

(tp
[ht
[md
[bt
[hb
[f1
Jtp
Jht
Imd
1bt
]hb
11
{tp
{ht
{md
{bt
{hb
{f1
}tp

472 }ht
473 }md
474 bt
475 }hb
476 }fl
477 Iptp
500 1pht
501 1pmd
502 1pbt
503 lphb
504 1pfl
505 rptp
506 rpht
507 rpmd
510 rpbt
511 rphb
512 rpfl
513 ltp
514 Iht
515 Imd
516 1bt
517 1hdb
520 1f}
521 ltp
522 1lht
523 limd
524 1ibt
525 1lhb
526 1f
527 art
530 art
531 /onehi
532 vrule
533 hstrt
534 hiline
535 hterm
536 Isint
537 1sint
540 boxtl
541 boxt
542 boxtr
543 boxl
544 box+
545 boxr
546 boxbl
547 boxb
550 boxbr
551 loztl
552 loztr
553 lozl
554 lozr
555 lozbl
556 lozbr
557

AZ98-02

560

654
655
656
657
660
661

663
664

666
667

A-3

670
671
672
673
674
675
676
677
700
701
702
703
704
705
706

710
711
712
713
714
715
716
717
720
721
722
723
724
725
726

lnle el
Lt

730
731
732
733

734
735
736
737
740
741
742
743
744
745
746
747
750
751
752
753
754
755
756
57
760
761
762
763
764
765
766
767
770
771
772

S
773

774
775
776 CMODE
777 GMODE

AZ98-02

APPENDIX B

REFERENCE TO COMMANDS/SUBROUTINES
BY FUNCTION

This appendix contains the Multics commands and subroutines that are part of the
WORDPRO system, arranged according to function.

WORDPRO COMMANDS

compdv
Translates a device description file into a binary table for use by the Formatter.

compose (comp)
Prepares formatted documents from raw text segments for various documentation
devices using an extensive list of text formatting control lines and control arguments
1o the compose command.

compose_index
Produces a cross-reference index file from raw data.

convert_runoff {cv_rf)

Converts a tunoff input segment into a compose input segment.
display_comp_dsm (ddsm)

Displays selected information from a compose device description table.
expand_device_writer (xdw)

Expands an expansion input file into an expansion output file.
format_document (fdoc)

Prepares formatted documents from raw text segments using a limited set of text
formatting control lines.

process_compout (pco)
Processes one or more compose output files to an online device, or to a magnetic
or punched paper tape.

DICTIONARY COMMANDS/SUBROUTINES

add_dict_words (adw)

Adds words o a WORDPRO dictionary.
count_dict_words (cdw)

Counts words in a WORDPRO dictionary.
create_wordlist (cwl)

Creates a wordlist segment from a text segment.
delete_dict_words (ddw)

Deletes words from a WORDPRO dictionary.

B-1 AZ98-02

find_dict_words (fdw)

Finds words in the set of WORDPRO dictionaries defined by the search facility.
hyphenate_word_

Returns the character position at which a word can be hyphenated.
list_dict_words {ldw)

Lists words in a WORDPRO dictionary.
locate_words (iw)

Locates all occurrences of one or more words in a text segment.
print_wordlist (pwl)

Displays the words in a wordlist segment.

revise_words (rw)
Replaces all occurrences of one or more words in a text segment with a
corresponding revision.

trim_wordlist (twl)

Deletes all words in a wordlist segment that can be found in a specified sequence
of dictionaries.

SPEEDTYPE COMMANDS

add_symbols (asb)
Adds symbols to the current symbol dictionary.
change_symbols (csb)
Changes the expansion or suffixing of a symbol in the current symbol dictionary.
delete_symbois (dsb)
Deletes symbols from the current symbol dictionary.
expand_symbols (esb)
Expands all the symbols in a specified text segment.
find_symbols (fsb)
Finds and lists symbols in the current symbol dictionary that represent specified
expansions.
list_symbols (Isb)
Lists symbols in the current symbol dictionary.
option_symbols (osb)
Sets options in the current symbol dictionary.
print_symbols_path (psbp)
Displays the pathname of the current symbol dictionary.
retain_symbols (rsb)

Retains all symbols in a specified text segment by placing a Speedtype escape in
front of each symbol.

show_symbols (ssb)
Expands an input string and displays the output string.

use_symbols (usb)
Sets the current symbol dictionary.

B-2 AZ98-02

LIST PROCESSING COMMANDS

append_list (als)
Adds a record to a lister file.
copy_list (cpls)
Creates a new lister file from an existing lister file.

create_list (cls)
Creates a lister file from a listin file.

describe_list (dls)
Displays information about a lister file.

display_list (dils)

Displays selected portions of selected lister records.
expand_list (els)

Creates a listin segment from a lister segment.
merge_list (mls)

Combines two lister files into a single lister file.

modify_list (mdls)
Modifies a field or fields in selected lister records.

process_list (pls)
Produces a document from selected records in a lister file.

sort_list (sls)
Sorts the records in a lister file.

trim_list (tls)
Deletes selected records from the specified lister file.

B-3 AZ98-02

APPENDIX C

DEVICE SUPPORT TOOLS

DEVICE WRITER SOURCE EXPANDER

The Device Writer Source Expander is a special adaptation of a general text string
manipulation facility that expands a device writer source expansion input file into an
expanded device writer source output file. A device writer source expansion input file
is a mixture of literal text and expansion constructs. The corresponding expanded device
writer source output file contains the literal text, as—is, with the expansion constructs
replaced by their corresponding strings (if any) that may be compiled with the PL/I
compiler to obtain the device writer object module. Throughout the remainder of this
section, these two files are referred to simply as the /nput file and the output file
and the Device Writer Source Expander is referred to simply as the £xpander.

The Expander provides these features:

Variables and arrays with three data storage classes
Value assignment

Expression evaluation

Iteration

Conditional execution

Internal and external expansion calling

Active function calling

® & 6 6 & 0 o

The language has intentionally been made very context—sensitive in order to allow,
as much as possible, literal text to be entered as it is to be generated.

EXPANSION CONSTRUCTS

Expansion constructs are made up of expansion tokens, white space (the ASCII
"motion" characters, SP, HT, LF, etc.), and literal text. Throughout the remainder of
this section, expansion constructs are referred 1o simply as constructs,

Expansion tokens consist of an ampersand (&) followed by zero or more
alphanumeric characters followed by one non-alphanumeric character. There are two
types of tokens: keyword tokens and terminator tokens (See "Expansion Tokens" below
for a complete list of tokens). For some tokens, the non-alphanumeric character is
taken as part of the token; for others, it is considered part of the following input text;
for still others (if it is white space), it is discarded. Throughout the remainder of this
section, expansion tokens are referred to simply as tokens.

Every construct must begin with a keyword token and each has a very specific
termination condition. There are four different classes of constructs, as determined by
termination conditions.

e Self-terminating
e Matching character terminator
¢ General terminator token

C-1 AZ98-02

e Specific terminator token

Constructs can be nested. When they are, the beginning and ending of each nested
construct must be fotally within all containing constructs. Any expansions produced by
this nesting are "protected,” that is, they do not change the existing syntax of the
original containing construct.

In the following descriptions, constructs are defined with the skeleton:
kkk bodyttt

where

kkk
is the keyword token

body
is the body (literal text, possible white space, and nested bodies and
constructs) of the construct and may be null. (This term is used in
conjunction with many of the Expander features.)

The white space shown in the skeleton above preceding the body is always
discarded and is not shown the definitions following. Any white space
within the body or between the body and the terminator is either discarded
or sent to the output file as the user directs. Literal text is sent to the
output file without modification.

The use of the term "body" in the descriptions following implies that it is
evaluated as an expression (see "Expression Evaluation" below).

ttt
is the terminator token and may be null

EXPANSION DEFINITIONS

An expansion definition begins with a definition keyword token and name, ends
with a specific definition terminator token, and has a body that is a mixture of literal
text, white space, and constructs consisting of any number of lines (including zero).
There are two forms: the static form (shown first) and the dynamic form.

&expand<SP>expansion-name<NL>expansion-body &expend<NL>
&define<SP...>expansion-name<NL>expansion-body&dend<NL>

The expansion-name may be up to 26 characters long, must begin with an alphabetic,
and contain only alphanumerics and "_". <SP> and <NL> are required characters.
<SP...> represents one or more <SP> characters.

A static expansion definition may exist as all or an independent part (that is, an
unnested fragment) of an expansion input file or an expansion library file. An
expansion library file consists of on/y static expansion definitions with possible
interspersed commentary. It produces no output other than the commentary when
expanded from Multics command level since the commentary does not contain expansion
calls. Any expansion input file may be accessed as though it were an expansion library
file in order to use static expansions defined therein {as long as ihe naming
requirements are met). The files may be free-standing segments or archive components
and must have the name name.xdw.

A dynamic expansion definition may exist only as a nested construct within a
static expansion definition or an expansion input file.

C-2 AZ98-02

The essential difference between the two forms is that the use of a static expansion
yields the expansion-body as given but the use of a dynamic expansion yields a static
expansion definition having the expanded name and expansion-body of the dynamic
expansion.

Any attempt to redefine a static expansion (by either of these two forms) in the
same invocation of the Expander is an error; however, if the new definition is
character—for—character identical with the existing definition, the attempted redefinition
is ignored.

Examples
The static form:
&expand ck
if (code ™= 0)
then do;
call com_err_ (code, "&name', &1);
return;
end;
&expend

Using this static expansion yields the five PL/I code lines with the two nested
constructs expanded and including all the white space.

The dynamic form:

&expand exp_def
&define A
<Abody>;&dend
&define B
<Bbody>; &dend
&expend

Using the static expansion df yields the two new static expansions:

gexpand A
<expanded-Abody>; &expend
&expand B
<expanded-Bbody>; &expend

VARIABLES AND ARRAYS

A variable declaration construct begins with a declaration keyword token and a
name, ends with a general terminator token, and may contain array extents and/or an
initial value. There are three data storage classes, each with its own keyword token:

Local, like PL/I automatic; keyword token "&loc"
Internal, like PL/I internal static; keyword token "&int"

Exiernal. iike PL/1 exiernai sialic; keyword itoken "&ext”

All variab/es must be declared before they can be referenced. Local data are
available only for the current invocation of the expansion in which they are declared.
Internal data are available at any time after declaration for any invocation of the
expansion in which they are declared. External data are available at any time after
declaration in any expansion file.

Variable names may be up to 16 characters long, must begin with an alphabetic
character, and contain only alphanumerics and "_". There is no conflict between

C-3 AZ98-02

variable names and expansion names because of the syntax; however, scalar variable
names and array variable names conflict. When searching for a variable name, the
Expander searches the data classes in the order shown above.

Variable values are 9-bit byte character strings with a minimum size of zero and
a maximum size of 1,044,480 (as determined by maximum segment size). Numeric
values may be only decimal numbers (that is, no coded exponential forms like 2.4e4 or
10*#3), have a maximum magnitude of 10s48 power and a resolution of nine decimal
places.- Variables declared without initial values are initialized with a null string.
Throughout the remainder of this section, assign means that a value is given to the
variable and access means that the value of the variable replaces the reference.

An attempt to redeclare an existing variable with different attributes is an error;
however, a redeclaration with identical attributes is ignored.

All the declarations described below can define variables in any of the classes,
however, the declarations and examples show only Local variables, that is, use the
"&loc" keyword tokens. In any of them, "&int" or "&ext" may be substituted for the
” &IOC".

Scalar Variables

&loc name&;
&loc name=initial-value-body &;

Scalar variables may be declared with or without initial values. If initia/-value-body
is given, it is assigned as the initial value of name.

Examples
&loc stuffé;
declares a Local scalar with no initial value.
&loc one=1&;
declares a Local scalar with an initial value.
&loc copy_it=&ité;

declares a Local scalar with the current value of another variable as its
initial value.

Array Variables

In this section, the terms "scalar reference”, "subscripted reference”, and "array
reference” are used in discussing references to an array variable. The definitions of
these references are given below.

Note: Throughout this section, the braces ({}) shown in reference to array
variables are required as part of the construct syntax and do not mean
that the enclosed expr is optional.

scalar &name
subscripted &nameiexpr} or &name €xpiiexprl}
array &name {}

The term "expr", appearing here for the first time, refers to a construct that is
evaluated as an arithmetic expression (see "Arithmetic Expressions” below).

C-4 AZ98-02

The limit for the upper and lower bounds of arrays is 34,359,738,367 as determined
by the maximum positive binary integer. The limit for the extent of arrays is 130,558
as determined by maximum segment size.

Any reference 10 any array element outside the declared extent is an error. An
array access 1o an array with an empty extent is replaced with a null string.

FIXED ARRAYS

&loc name{expri.expr2} &;
&loc namelexpri.expr2}=initial-value-body &;

Fixed arrays may be declared with or without initial values and have non-varying
extents as determined by the upper and lower bounds given in their declarations. expr7
specifies the lower bound and expr2 specifies the upper bound. If /nitial-value-body
is given, it is assigned to each element of the array being created. Fixed array elements
are assigned and accessed with subscripted or array references.

Examples
§loc ten_nulls{1:10}¢&;
declares a Local fixed array with 10 null elements.
§loc fifty_5s{1:50}=56;
declares a Local fixed array containing 50 elements with initial value 5.

&loc holders{&first:&last}é&;

deciares a Local fixed array whose extent is determined by the current
values of other variables.

VARYING ARRAYS

&loc nameiexprl.expr2} var&;

A varying array is like a fixed array except that it must be declared without initial
values and the upper and lower bounds are adjusted dynamically as elements are
assigned values. expr7 specifies the minimum lower bound and expr2 specifies the
maximum upper bound. When created, the array is empty with no extent. Varying
array elements are assigned and accessed with subscripted or array references, but an
attempted access outside the current extent is an error.

Examples

&loc some_Os{1:25}varé;
declares a Local varying array to hold up to 25 elements.

&loc twoway_array{-&size:&size}varég;
declare a Local varying array whose maximum extent is one more than

ipa tha Tevn Al o

twice the value of some other variable.

LIST ARRAYS

&loc nameiexpr}list&;

A list array is a set of unique elements and must be declared without initial values.
expr is the maximum number of elements the list is to hold. When created, the list is

C-5 AZ98-02

empty with no extent. A list assignment is made with a scalar reference; the list is
searched to see if the given value is there and it is added if the search fails. A list is
accessed with subscripted or array references, but an attempted access outside the
current extent is an error. Lists are ordered according to the order in Wwhich
assignments are made.

Example

&loc et_dcls{20}1isté&;
declares a Local list array that can hold 20 entries.

STACK ARRAYS

&loc namef{expr}fifo&;
&loc name {exprilifo&;

A stack array may be either a push-down/pop-up stack (last-in-first-out or lifo)
or a linear delay queue (first-in—first-out or fifo) and must be declared without initial
values. expr is the maximum number of elements the stack is to hold. A stack
assignment is made with a scalar reference, the given value being added as the newest
element. A scalar access to a fifo stack causes the oldest element to be accessed and
deleted. A scalar access to a lifo stack causes the newest element to be accessed and
deleted. A stack array may also be accessed with subscripted references, but these
references cause no "movement" of the stack. The subscript value 0 accesses the
top-of-stack (or next-out) element, -1 accesses the next-to-top element, etc. An array
access to a stack is an error.

Examples
§loc push_stack{25}1ifos;
declares a Local push/pop stack that holds up to 25 entries.

&loc queue{10}fifoé&;
declares a Local queue with 10 elements.

VALUE ASSIGNMENT

&let name=value-body &,
&let name {expr} =value-body &,
&let namef{expri.expr2}=value-body &;

An assignment construct begins with an assignment keyword token and a name,
ends with a general terminator token, and may contain array subscripts or ranges
and/or a value. A value may be assigned to a scalar, an array element, or a range of
array elements. If a range is specified, va/ue-body is assigned to every array element
in the range.

Examples

tlet feet_per_mile=5280¢&;
assign a value to a scalar.
&let var{2}=gvar{ile;
assigns the value of the first element of the array to the second element. .

&let array{1:5}=3%;
assign "3" as the value of the first five elements of array.

C-6 AZ98-02

EXPRESSION EVALUATION

An expression is a collection of constructs, variable accesses, other embedded
expressions, literal text, and possible white space that is replaced by the Expander with
a single character string representing its value. The result of evaluating an expression is
a string value or numeric value that must obey the limits mentioned earlier.

Accessing Variables

Variables are accessed by using their names as though they were keyword tokens.
The termination conditions for the constructs thus created depend on the form of
reference and are specified in the descriptions following.

SCALAR ACCESSES

&name

The keyword tioken becomes a self-terminating construct, but the construct
terminator (the non-alphanumeric character following the token) may not be "(" or "{".
The construct is replaced by the value of mame. This form of access may be made to
scalars and stack arrays. Referencing a stack array causes the accessed value to be
removed from the stack. (See "Stack Arrays" above.)

Examples
&let Var=fooé;
then:

&Var any literal text ...
becomes foo any literal text ...

if &var>0
becomes if foo>0

&Varé.bar
becomes foobar

&varég. (1)
becomes foo (1)

SUBSCRIPTED ACCESSES

&name {expr}
&name{expri:expr2}
&name {expri:expr2,string-body}

The non-alphanumeric character following neme must be "{" and becomes pari of
the keyword token. The token begins a construct that is terminated by the matching
"1". expr or expri and expr2 are evaluated (see "Arithmetic Expressions™ below) to
obtain the element or range of elements to be accessed.

The first form above may be used to access all array types and the construct is
replaced by the value of the selected array element.

Examples

C-7 AZ98-02

&fixed_array{5}
is replaced with the value of the fifth element of fixed_array

glist{slast}

is replaced by the value of that element of 1ist whose list position is
given by the value of last.

&stack {0}

is replaced by the value of the next element to be recovered from the
stack,

The second form may be used to access fixed, varying, and list arrays and the
construct is replaced by the list of values of the selected range of array elements,
separated by a single blank character. A subscripted access to any unassigned element in
the declared extent is replaced with a null string.

Examples

gvarying_array{-2:3} :
is replaced with the six elements of varying_array whose subscript values
lie between -2 and 3, inclusive, separated by single blanks.

Elist{l:&last}

if last contains the extent of 1ist, it is replaced by the entire contents
of list separated by single blanks.

The third form may be used to access fixed, varying, and list arrays and the
construct is replaced by the list of values of the selected range of array elements,
separated by string-body. The length of string-body is limited to 150 characters.
Literal appearances of "&" and "}" in string-body must be protected (see "Protected
Strings" below). If the selected range is empty, the construct is replaced with a null
siring.

Example

&A_list{l:¢&last,, }

if last contains the extent of A_list, it is replaced by the entire
contents of A_list separated by the string ", "

ARRAY ACCESSES

&name {}
&name {,string-body}

Array accesses are a special case of subscripted accesses where the subscript
expression is given as a null string rather than being evaluated to a null string, implying
an empty range. The usage of array accesses is identical to the second and third forms
of subscripted accesses above except that the range is the entire extent of the array.
An array reference to a varying array, a list , or a stack addresses the current extent,
not the declared extent.

Example
gA_list{,, }
is replaced by the entire contents of A_list, separated by the string ", "

(Note that result of this access is the same as that of the previous example,
but does not depend on the value of some other variable.)

C-8 AZ98-02

Accessing Arguments

An expansion may be called with a list of arguments to be used as parameters.
(See "Expansion Calling" below.) The called expansion may access these arguments with
argument access expressions. Arguments are accessed by using their argument list
position numbers as though they were keyword tokens. The termination conditions for
the constructs thus created depend on the form of reference and are specified in the
descriptions following.

SINGLE ARGUMENT ACCESSES

&n
&nn

The token forms a self-terminating construct that is replaced by the value of the
argument having the given position in the argument list. The construct terminator is the
first non—-numeric character and the number may not have more than two digits. If the
reference is to an argument beyond the argument list, the construct is replaced with a
null string.

Examples
&3
is replaced with the value of the third argument.
&05
is replaced with the value of the fifth argument.

elh
is replaced with the value of the fourteenth argument.

MULTIPLE ARGUMENT ACCESSES

& {expr}
& lexpri:expr2}
&f{expri:expr2,string-body}

At times it is necessary to reference an argument via the value of a variable, or to
reference more than one argument. This is done by accessing the argument list as
though it were a nameless array (see "Array Accesses” above). The keyword token is
"& {" and begins a construct that is terminated by a matching “}".

Examples
&{&arg_counter}
is replaced by the argument whose list position is given by arg_counter,

&§{2:4}
is replaced by a list of the values of the second, third, and fourth
arguments, separated by a single blank.

§{1:3, +1}
1s replaced by an expression representing the sum of the first three
arguments.

C-9 AZ98-02

declare &{, fixed bin (17);
declare } fixed bin (17);
creates PL/I declarations for all the arguments.

ARGUMENT COUNT

& *
This keyword token forms a self-terminating comstruct that is replaced by the
number of elements in the argument list with which the expansion was called.
Example
& {&x}

is replaced with the value of the last argument regardless of how many
have been given.

Protected Strings

&&

This keyword token forms a self-terminating construct that is replaced by a single
ampersand.
Example
if flag && index > 0 then do;
creates a PL/I logic test statement.
&"string-body &"

The keyword token is "&"" and it begins a construct that is terminated by the next
occurrence of the same keyword token and protects any literal string. The construct is
replaced by the literal, unexpanded string-body. string-body may not contain an
embedded protected string.

Example

{earray{,s"}e" {13}
forms a blank separated list of array elements, each enclosed in braces.

Arithmetic Expressions

&lexpr)

The keyword token is "&(" and begins a construct that is terminated by the
matching ™". expr may contain only decimal numeric literals, embedded arithmetic
expressions, and arithmetic and relational operators. expr is first expanded as an
expansion expression and then evaluated as an arithmetic expression. The value of the
arithmetic expression replaces the construct.

The arithmetic operators supported are
+ addition
- subtraction
/ division

C-10 AZ98-02

* multiplication
() factor grouping
Examples
glet array{3}=¢ (sarray{2}+1)¢;

assign the third element of the array a value that is one greater than the
second element.

garray{& (2%&2+1) :& (2%83+1) }
access a range of array elements given by the values of the second and
third arguments where the subscript expression is "2ZN+1".

&(array{,+})&;
is replaced with the sum of all the elements of the array.

Note: This construct fails if the array is not fully populated, that is,
if it contains any null elements, since the resulting summation
construct contains a double operator that gives rise to a missing
operand error (see next example.) The result of summing an
empty array is a null value.

& (sarray{,+0})&;
the digit "0" ensures success of the construct by representing any null
elements with "+0".

The relational operators have lower precedence than the arithmetic operators, that
is, within a factor group, all arithmetic is completed before any.relations are tested.
The result of a relational test is given a numeric value "(" representing "faise" or a
numeric value "1" representing "true". In the evaluation of a relational test, any term
with a non-zero value is considered true.

The relational operators supported are:
= equal
A= not—equal
> greater
< less
<= less-or—equal (not-greater)
>= greater-or-equal (not-less)
Exampies

& (81>0)
is replaced with "1" if the first argument is positive; otherwise, it is
replaced with "0".

& ((sarray{1}7=0)+(sarray{2}"=0))

is true if either (value = "1} or both {value = "2") of the first two
elements of array are non-zero and false (value = "0") if both are zero.
(Note here that the addition operator takes on the role of the Boolean OR
operator.)

&let flag=6 ((§17=0) % (627=0) * (§37=0)) &;
assigns "0" to flag if any of the first three arguments is zero and "1" if
all three are simultaneously non-zero. (Note here that the multiplication
operator takes on the role of the Boolean AND operator.)

C-11 AZ98-02

ITERATION

An iteration construct begins with an iteration keyword token, ends with a specific
construct terminator token, and contains a iwo-part iteration body and a test clause.
The test clause begins with a test keyword token, ends with a general terminator tokKen,
and contains a test body.

&do body1 &while test-body&; body2 &od

Any of body1, body2, or test-body may be null, however, if test-body is null, it
is considered absolutely true and the iteration never terminates. In order to establish
effective control over the iteration, either body7 or body2 must modify the condition
tested by test-body.

test-body may be an arithmetic relational expression as described in "Expression
Evaluation" above, or may be a string expression of either of the forms:

string-body
string-body1 RELOP string-body2

where RELOP is any of the relational operators discussed in "Expression Evaluation”
above. string-body is considered false if it has any of the values "0", "F", "FALSE",
or "NO" (without regard to case); any other values are considered true. For the
purposes of comparison, the shorter of string-body? and string-body2 is padded out
to the length of the longer with ASCII blanks and the values of the characters are
determined by the ASCII collating sequence. In the first form, white space is stripped
from both sides of string-body. In the second form, white space is stripped from the
left sides of the /estring-bodyies but is retained on the right sides.

The flow of control in the iteration proceeds as follows:
1. body? is executed.

test-body is evaluated. If it is false, control proceeds to the construct
following the iteration construct terminator. If it is true, control proceeds to

step 3.
3. bodyZz is executed and control goes back to step 1.
Example
&Elet vv=§&%§;
&do

- (8{evv}) &+

slet vv=E (svv-1)§;

gwhile & (8vv>0)é&;

&od
creates a parenthesized, comma-separated list of all the arguments with the
order of the arguments inverted. Note that an array access to the argument
list can be used to create a similar list with the argument in their given
order.

Note: The token &t is a white space control token and serves only to
improve the readability of the expansion input file. See

~ 1l an A

MR A 11 "
Miscellaneous Fcatures" below.

C-12 AZ98-02

CONDITIONAL EXECUTION

A conditional execution construct begins with a conditional keyword token and a
test clause, ends with a specific construct terminator token, must contain a "then"
clause, may contain any number of "elseif” clauses, and may contain a single "else"
clause.

&if test-body &then then-body
&elseif test-body &then then-body
&else e/se-body
&fi

The test-body 1is the same as that for the iteration construct described above.

Note: The format shown for this construct (multiline with indents) is for
clarity of presentation only and is not required for correct usage.

If the evaluation of any test-body results in a true value, then the corresponding
then-body is executed and the the rest of the construct is skipped. If no test-body is
true, then the e/se-body is executed if present.

Examples

&if £§(5(81)>0) &then &let sign=+&;
telse &let sign=-§;
&fi
captures the arithmetic sign of the first argument. (Note here that the
nested arithmetic expression in the test clause ensures that the argument is
handled correctly if it is an expression rather than a value.)

§if &(&%<2) &then
gerror L,Second argument missing.&; &return
&fi
reports a calling sequence error and returns to the caller.

Note: See "Miscellaneous Features” below for descriptions of the
&error and &return constructs.

EXPANSION CALLING

Expansions are called (that is, execution control passed to them) by using their
names as though they were keyword tokens.

&expansion-namef{arg-body 1,arg-body2,...)

The non-alphanumeric character following expansion-name must be "(" and
becomes part of the keyword token. The token begins a construct that is terminated by
the matching ")".

expansion-name may be either name or segmentSname. The Expander keeps an
internal list of all expansions it has encountered during execution. When a reference to
name is made, the list is searched for that name. If the search fails, name is
promoted to nameSname and an external search for that name is made using the
expansion search list. An explicit reference to segmentSname causes the Expander to
forego searching the internal list and make a direct external reference to the segment,
again using the expansion search list if the segment is not known.

Up to 99 string arguments may be passed in the call, and each is limited to 500
characters after leading white space is discarded.

C-13 AZ98-02

Any ", "(", or ")" characters resulting from the expansion of an arg-body are
literal characters; that is, they do not contribute to the syntax of the call construct.

If any arg-body is enclosed in parentheses, then it is considered a list argument,
that is, a parenthesized list of values passed as a single argument.

Examples

&a_exp (abc,def)

calls expansion a_exp with the arguments '‘abc' and 'def!'
ta_exp (&
abc,defg") "

calls expansion a_exp with the argument '‘abc,def',

&a_exp ((abc,def))
calls expansion a_exp with the argument " (abc,def)".

&let var=abc,def&;&a_exp (svar)
calls expansion a_exp with the argument ''abc,def",

ta_exp (§2,&b_exp ()
calls expansion a_exp with two arguments; the second argument of the
current expansion and the expansion of ''b_exp'.

&let name=éstrip_suffix(éentry,.pll)é&;
calls expansion strip_suffix with two arguments and assigns the resulting
expansion to the variable name,

ACTIVE FUNCTION CALLING

& [active-expr]

The keyword token is "&[" and begins a construct that is terminated by the
matching "]". active-expr and the active function return string is limited to 500
characters. active-expr is first expanded as an expansion expression and then processed
as an active function. The active function return string replaces the construct.

Examples

This file created by &[user person] on &[date] at &[time].
generates an audit trail time-stamp.

The path is &[string [dir &1]>[file &§2]].
generates an audit trail pathname.

MISCELLANEOUS FEATURES

The miscellaneous features discussed in this section are presented alphabetically and
listed below.

Built-in functions

Comments

Emptying Arrays

Error Reporting
Expansion Debugging
General Terminator Token
Null Separator Tokens

C-14 AZ98-02

Quote Processing
Rescanning

Return

White Space Control

Built-in functions

Three built-in functions are provided.

e Length
e Substr
e Usage

LENGTH FUNCT!ON
&length string-body &;

The keyword token begins a construct that ends with the general terminator token
and contains a string. The construct is replaced by the number of characters in
String-body.

The function is supported internally (rather than requiring an active function call)
because of its expected high frequency of use and because the string may contain white
space.

Example

&length &1&;
is replaced by the number of characters in the first argument.

SUBSTR FUNCTION

&substr string-body, expri&;
&substr string-body, expri, expr2&;
&substr string-body, expri: expr2&,

The keyword token begins a construct that ends with the general ierminator token
and contains a string and one or two subscript expressions. The length of string-body
is limited to 16384 characters. Both exprs must refer to character positions within
string-body or the input file is in error,

This function is supported internally (rather than requiring an active function call)
because of its expected high frequency of use and the extended capabilities provided.

The first form above is replaced by that part of string-body from character
position expr? to the end. If expr7 1is negative, then the character position is
calculated from the end of string-body rather than from the start.

Examples

&substr abcdefg, 3&;
is replaced by cdefg,

&substr abcdefg,-3&;
is replaced by efg.

The second form is replaced by that part of string-body from character position
expr! for a total resultant string length of expr2. If expr? is negative, then the

C-15 AZ98-02

character position is calculated from the end of string-body rather than from the
start.

If the number of characters in string-body following the calculated character
position is less than the magnitude of expr2, the resultant string is padded to the
required length with ASCII space (SP) characters. If expr2 is negative, the padding is
to the left of the resultant strimg;, otherwise, it is to the right. If no padding is
needed, then the sign of expr2 is immaterial.

Examples

&substr abcdefg,2,36;
is replaced by bcd,

&substr abcdefg,2,-36;
is replaced by bed.

&substr abcdefg,3,56&;
is replaced by cdefg.

&substr abcdefg,3,86;
is replaced by cdefg<SP><SP><SP>,

&substr abcdefg,-3,88;
is replaced by efg<SP><SP><SP><SP><SP>,

&substr abcdefg,-3,-8&;
is replaced by <SP><SP><SP><SP><SP>efg,

The third form is replaced by that part of string-body from character position
expr! to character position expr2. If either expr is negative, then the corresponding
character position is calculated from the end of string-body rather than from the
start. Both exprs must refer o character positions within string-body or the input file
is in error. Further, epxr2 must refer to a character position to the right of that
given by expri.

Examples

&substr abcdefg,3:5&;
is replaced by cde,

&substr abcdefg,-3:-2&;
is replaced by ef.

USAGE FUNCTION
&usage /ca-ct/-string&;

This function provides a means of documenting the expansions that are used in the
generation of an expansion output file. In essence, it is a means of dumping the
Expander’s internal expansion reference list (see "Expansion Calling" above) in a format
determined by the user. It should be used only in "primary" expansion files (that is,
files intended for use in the command line invoking the Expander) and not within any
expansion definition. Further, it should be the last construct in the file so as to not
lose any references.

ioa-ct/-string is an ioa_ control string that describes the format of the output
(see Multics Subroutines for a description of io0a_). It is passed to ioa_Srsnnl with
three string arguments each of which must have a string conversion key ("a) in the
control string. The three arguments are (in the order passed):

C-16 AZ98-02

e the pathname of the directory containing the macro input file
¢ the entryname of the expansion input file
¢ the name of the expansion

Every expansion used appears once in the display and the order is the "natural”
order, that is, the order in which the reference first appeared.

Example
&usage /% "a>"a -- "a %/7/&;
generates a list of all expansion file pathnames and expansion names as
PL/1 comments at the end of a generated PL/I source file.
Comments

&comment comment&;

The keyword token begins a construct that ends with the general terminator token
and contains a comment. The comment is treated as a literal string; it is not expanded
and does not contribute in any way to the processing of the expansion.

Note: In this sing/e case, the general terminator token does not change the
existing white space supression action (see "White Space Control” below).

Emptying Arrays

&empty array-nameg&;

The keyword token begins a construct that ends with the general terminator token
and contains an array name. The array is emptied by setting its extent to zero and all
its elements to null. '

Error Reporting
&error sev-expr, err-body &;

The keyword token begins a construct that ends with the general terminator token
and contains a severity expression and an error message body. sev-expr must be an
arithmetic expression in the range 0-4 and is used to select one of the message forms
shown below. The formatted messages are written to the error_output I/0 switch.

The error message forms are:
0 for the user’s information

NOTE: EXPANSION <name>, line <nn>.
<err-message>

1 a minor error that does not affect the validity of the output

WARNING EXPANSION <name>, line <nn>.
<err-message>

2 a substantive error that causes the output to be invalid

ERROR SEVERITY 2 EXPANSION <name>, line <nn>.
<err-message>

C-17 AZ98-02

3 a major error that prevents creation of the expansion output file but allows
processing (o continue in order to report additional errors

ERROR SEVERITY 3 EXPANSION <name>, line <nn>.
<err-message>
4 a fatal error that prevents further processing of the expansion input file

ERROR SEVERITY L EXPANSION <name>, line <nn>.
<err-message>

Examples
gerror 0,This code does not reference any error_table_ entries.&;
gerror 1,Second argument missing, "13" assumedé§;
gerror 2,Source syntax error. Program will not compile.é&;
terror 3,Required sections not supplied.&;

gerror 4,Table name not supplied.&;

General Terminator Token

&;
This token is used to signal the logical end of various other constructs. It does not
contribute directly to the expansion output file.

Null Separator Tokens

&.

This token acts as a terminator token and enables the copying of white space
within expansion constructs into the expansion output file. It is used to resolve
ambiguities that might otherwise exist and to allow expansion constructs to create white
space in the expansion output file. All white space between it and the next token is
copied to the expansion output file; however, white space in any comments encountered
is discarded as part of the comments.

&+

This token disables the copying of white space within expansion constructs into the
expansion output file. It is used to suppress the copying of white space intended solely
to improve the readability of the expansion input file. All white space (and comments)
between it and the next token is discarded.

Examples
ta_exp(A,1)
§2&6.0
the third construct is replaced by 10. Were the null separator token not

+ th t + ¥
present, the construct would be a reference to (nonexistent) argument 20 of

the expansion call.

C-18 AZ98-02

&if o e 0
loop: do ...

end loop;&fié&.

else ...
the white line is copied to the expansion output file to separate the "end”
and 'else” statements.

&if ...
... of the people,&+

gcomment end of fragment 1&;

&fi by the people,
the expansion output file contains "... of the people, by the people,

"
e

Quote Processing

The Expander is internally language—independent. However, because it can communicate
with the Multics operating system and may be used to generate source code for
languages supported by Multics, it must be able to manipulate quoted strings in a
manner consistent with that expected by Multics. A quoted string is any string of
characters enclosed within ASCII double-quote (') marks and, for this usage, limited to
16384 characters.

"e body &;

The keyword token begins a construct that ends with the general terminator token.
The result of the construct is a string with all quote marks doubled. Note that body is
not converted from an unquoted string to a quoted string.

&unquote body&;

The keyword token begins a construct that ends with the general terminator token.
The result of the construct is a string with all doubled quote marks reduced to single
quote marks. If body is a quoted string, it is converted to an unquoted string.

Examples

Processed on : &unquote &[date_time]é&;
strips the quote marks from the string returned by the date_time active
function.

call my_proc (""e &string_argé;'');

ensures that any quote marks within string_arg are correctly passed to
the procedure.

Rescanning

&scan body&;

The keyword token begins a construct that ends with the general terminator token.
In this conmstruct, body is expanded normally and then the resulting expansion is
re—expanded as though it were another body. Normally, any constructs appearing in an

C-19 AZ98-02

expansion are "protected"; that is, they are not subjected to further expansion. In some
applications, it is necessary that any such constructs be expanded.

Examples
gexp_1("a,b,&[time],d")

exp_l is expanded with the single argument a,b,&[time],d and contains
any of the following expansion calls.

gexp_2(&1)
exp_2 is expanded with one argument, a,b,&[time],d,

gexp_2 (&scan &1&;)
exp_2 is expanded with one argument, a,b,08:21,d.

&scan &&exp_2(&1)&;
exp_2 is expanded with four arguments, g b, 08:21, andd.

Return

&return

The keyword token becomes a self-terminating construct that causes an immediate
halt of processing of the current expansion.

Example

Eif &(&%=0) &then
gerror 2,No arguments, call ignored.&; &return
&fi
terminates the processing of an expansion if no arguments are given.

WHITE SPACE CONTROL

White space is any of the ASCII motion characters; HT, SP, NL, VT, and FF.
These characters are normally discarded when they appear as shown below; however,
they may be preserved by use of the null separator tokens discussed earlier.

1. After the expansion tokens:

&+ &error &od!&then

&; &fi "e!&unquote
&do &if &scan! &usage
&else &length &substr!&while
&elseif

2. After "(" and "," in an expansion call argument list (at level 1, that is,
outside all nesting due the parenthesis usage).

After the ')" in the expansion of "&(expr)'.

4. After "="in &let &loc &int , andéext .

s

EXPANSION TOKENS

As mentioned briefly above, expansion constructs fall into four different classes as
determined by their termination conditions. This section lists the tokens that form

C-20 AZ98-02

constructs in each of the four classes and then gives a sorted list of all tokens for
quick reference.

Self -terminating Constructs

&& literal &

&* number of arguments given
&+ begin white space skipping
&. end white space skipping

&:; general terminator token

&n argument reference (constant)
&nn argument reference (constant)
&return expansion return

&name variable reference

Matching Character Terminator Constructs

&" body &" protected string

& [body] ' active function call
&expansion-name(body) expansion call

&name{ body } array reference

&{ body } parameter reference (index or list)

General Terminator Token Constructs

&comment string &; comment

&empty name &; array emptying

&error body &; error message generator

&length body &: string measurement

&let body &: variable value assignment

&loc body &; local variable declaration

&int body &: internal (static) variable declaration
&ext body &; external (static) variable declaration
"e body &; quote-mark duplication

&scan body &; construct rescanning

&substr body &; character substrings

&unquote body &; quote—-mark reduction

&usage body &; ¢Xpansion usage reporting

&while body &; do group control clause

Specific Terminator Token Constructs

&expand body &expend<NL> static expansion definition

&define body &dend<NL> dynamic expansion definition

&do body &od limited or repetitive execution group

&if body &fi conditional execution group

&else body &fi if group control clause

&elseif body XXX if group control clause (XXX may be &elseif,
&else, or &fi)

&then body XXX if group control clause (XXX may be &elseif,

&else, or &fi)

C-21 AZ98-02

Sorted Token List

The following is a sorted list of all tokens without regard to class or usage.

&"
&&
&*
&+
&.
&;
&I[1

&{}

&comment

&define

&dend

&do

&else

&elseif

&empty

&error

&expand
&expansion-name()
&expend

&ext

&fi

&if

&int

&length

&let

&loc

&n

&nn

&name

&name { }

&od

"e

&return

&scan

&substr

&then

&unquote

&usage

&while

Reserved Words

protected string

literal &

number of arguments given

begin white space skipping

end white space skipping

general terminator token

active function call

parameter reference (index or list)
comment

dynamic expansion definition
dynamic expansion definition terminator
limited or repetitive execution group
if group control clause

if group control clause

array emptying

error message generator

static expansion definition
expansion call

static expansion definition terminator
external (static) variable declaration
if group terminator

conditional execution group
internal (static) variable declaration
string measurement

variable value assignment

local variable declaration

argument reference (constant)
argument reference (constant)
variable reference

array reference

do group terminator

quote-mark duplication

expansion return

construct rescanning

character substrings

if group control clause
quote-mark reduction

expansion usage reporting

do group control clause

It is apparent that all the keywords in the lists above are reserved words and may
not be used as variable names. In addition, there are a few others that are reserved for

future extensions of the Expander.

arg expand
comment expend
define ext
dend fi

The complete list is shown below.

let substr

loc then

macro trace

member unquote
C-22

AZ98-02

do hbound mend usage

else if od while
elseif int quote

empty Ibound return

error length scan

Annotated Example

The following is an example of the definition, use, and result of an expansion that
could aid a PL/I programmer in managing references to the Multics system error_table_.
The expansion is called with an error_table_ entry name each time a reference to the
entry is wanted. All the different entry names are saved in a list variable and a final

call to the expansion without an entry name rteturns the PL/I declaration list for all
the entries used.

&gexpand et_ Define the et_ expansion.

gint et_list{50}1ist&; Declare the error_table_ list. Note that repeated
executions of this have no effect due to the
identical attribute feature of variable declarations.

&if &(&%=0) If no argument is given, generate the error_table_

&then declaration list with an array reference to et_list.

dcl error_table_S&et_{, fixed bin(35)ext static;

dcl error_table_S} fixed bin(35)ext static;

gelse However, if there is an argument, add it to et_list

Elet et_list=&18&; if it is not already there.

error_table_3$§1 Return the error_table. - reference string--for use in
the PL/I program.

&fisexpend End if group and expansion definition.

Next, assume an expansion to generate PL/I source code that contains the following
fragments.

if (code = &et_(badarg))

then code = &et_(notfound) ;

code = get_(badarg);

set_()
end;

Finally, when the above fragments are expanded, the following PL/I code results.

if (code = error_table_Sbadarg)
then code = error_table_Snotfound;

code = error_table_Sbadarg;
dcl error_table_Sbadarg fixed bin(35)ext static;

dcl error_table_Snotfound fixed bin(35)ext static;
end;

C-23 AZ98-02

DEVICE WRITER

The device_writer_ is the object segment that contains the procedure to convert
the coded output page image created by the Formatter into ihe characier siream needed
by the output device. It operates as an external subroutine of the Formatter and, as
such, is required to conform to certain conventions and restrictions. To ensure this
conformance, a "skeleton" procedure is provided by a static source expansion named
comp_dev_writer.xdw (see "Device Writer Source Expander" above).

The expansion provides a uniform coding style, defines all required entrypoints and
their interfaces, makes certain error checks, includes the structure declarations for all
the Formatter internal data bases needed, defines a number of external expansion
variables (some with default initial values) that the user can change to affect the action
of the Expander in generating output, and, most importantly, provides empty code
fragments for all image-to—character-stream conversions that require explicit knowledge
of the output device.

The code fragments are all defined as external expansion variables with null initial
values. In order to activate any fragment, the user need only reassign the variable value
with some PL/I code sequence. The expansion value assignment statements are written
in a file named device_writer_.p/7.xdw. The final statement in the file must be an
Expander call to comp_dev_writer.xdw.

The result of expanding device writer_.p/1.xdw is a PL/I source segment named
device_writer_.p/1. There are comments throughout that indicate where built-in pieces
of code have been selected by the value of &devclass. Comments also introduce
user-supplied code fragments. Users must acquaint themselves with the general structure
of the writer in order to write compatible code fragments.

Note: This description is a first attempt to document a complex and sophisticated
software development tool. It is difficult to determine, a priori, the level
of detail that should be included. Therefore, the interested reader must
study the released files for the Honeywell-supported devices to gain a full
understanding of what is required in the creation of a device writer_
modaule.

Variables and Code Fragments

The following describes the external expansion variables whose values may be set by
the user. The descriptions are shown as expansion constructs with a requirement/default
comment and a descriptive paragraph. The order of presentation is alphabetical;
however, the fragments may appear in any order in device writer_.pl1.xdw.

&ext art_proc= PL//-code&; optional; default = null
any coding needed to support advanced graphic features (beyond simple
plotting) in the device. This feature is not yet used by the Formatter and the
variable name "art_proc" is considered as reserved for a future exiension.

&ext dcls= PL//-code&:; optional; default = null
PL/1 declarations for all variables needed by the code fragments following that
are not already declared by comp_dev_writer.xdw. The PL/I compiler reports
any redeclarations as errors.

Note: Understanding of the declarations and use of the expansion
variables should be a primary goal in the study of the released
Honeywell-supported device moduies.

C-24 AZ98-02

&ext devclass= c¢/assg&; required; no default
the device class for the device. The value given here must be the same as that
given for DevClass in device.compdv.

&ext device= device&; required; no defauit
the name of the device for which the procedure is being generated. All the
various uses of this name (both here and in device.compdv) must be
consistent.

&ext disp_rtn= PL//-code&; optional; (see text)
the code needed to produce the interpreted display discussed under "Display
Mode Interpretations” in the description of the process_compout command (see
Section 3). The default is:

call comp_util_Sdisplay ((dev_chars));

This is the routine used by the Formatter to display input lines
in error messages.

&ext epilogue= PL//-code&; optional; default = null
any coding needed to write necessary data to the output after the end of the
document.

&ext file_init= PL//-code&; optional; default = null
any coding needed for initialization of the writer at the beginning of an input
file.

&ext foot_proc= PL//-code&; optional; default = null
any coding necessary to convert footnote references into the form to be used
on this device; for example, superior digits. comp._dev_writer.xdw supplies what
is used for device classes typewriter and diablo.

&ext image_init= PL//-code&; optional; default = null :
any coding needed for initialization at the beginning of a "window image". For
example, in vip7801_writer_, each output "page" is made up of windows that fit
on the screen.

&ext line_finish= PL//-codeg&; optional; default = null
any coding needed to complete the preparation of a line for the output stream.

&ext line_init= PL//-code&; optional, default = null
any coding needed to begin processing of an input line image. A line image is
a coded structure in the page image and may contain only part of an output
line, for example, a title part or the text for one of several table columns.

&ext machines= types&; optional; default = terminals
used only to specialize certain descriptive comments. Other possible values are
"typesetters” and "lineprinters."”

&ext multi_pitch= n&; optional; default = 0
n may have only the values "0" and "1". "0" means that the device is a
typewriter class device with a fixed pitch setting. "1" means that, even though
the device is not a diablo class device, it does support more than one pitch
setting. :

&ext notes= PL//-comments&; optional, default = null

any PL/I commentary. It is inserted into the PL/I source just ahead of the
opening "procedure” statement.

&ext other_procs= PL//-code&;, optional;, default = null
" any additional internal PL/I utility procedures needed by the writer.

C-25 AZ98-02

&ext page_finish= PL//-codeg&; optional; default = null
any coding needed to complete (run out) a page on the device.

&ext page_init= PL//-code&; optional, default = null
any coding needed for writer initialization at the beginning of an output page.

&ext plot= PL//-code&; required, no default
the coding needed to do simple horizontal and/or vertical vectors and shifts on
the device, regardless of what additional graphic capability the device may have.

&ext process_text= PL//-code&; optional; default = null
any coding that converts the text strings in line images to output device native
characters in the required code set and format.

&ext restore= PL//-code&; optional; default = nuil
PL/1 assignment statements that restore any saved user variables (see save
following).

&ext save= PL//-code&; optional; default = -null
blank line (for example, a line containing nothing but font changes) suppression
requires that certain variable values be saved at the beginning of an input line
so that they may be restored if the line is truly blank. This code is PL/I
assignments that add other user—defined variables to the saved data,

&ext set_font= PL//-code&; optional; default = null
any coding needed to effect a font change in the device.

&ext set_media= PL//-code&; optional; default = null
any coding needed to set the device to the desired font.

&ext set_ps= PL//-code&; optional; default = null
any coding needed to effect a pointsize change in ‘the device. This and set_font
may be interdependent or may be completely independent, depending on the
device.

&tabx= PL//-code &; optional; default = null
code to support direct (or absolute) horizontal tabulation in the device.

DEVICE TABLE COMPILER

The Device Table Compiler is a language translator that translates the plain
language description of a device intended for use by the WORDPRO Text Formatter
into the required binary table form. The input to the translator consists of various
statements in the language described below and contained in an unformatted stream file
named device.compdv, where device is an arbitrarily chosen name for the device to
be supported. This input file is referred to below as the device description file. The
output is a coded binary table in a segment named device.comp_dsm that is accessed
directly by the Formatter.

The process_compout command is referenced in the text below. The description of
this command may be found in Section 3. Also, in the remainder of this section, the
WORDPRO Text Formatter is referred to simply as the Formatter. Its description

cmmmer len Lasriad v Cantinea N
fmay b€ 1Oound in Seclion <.

C-26 AZ98-02

The Device Description Language

The device description file consists of nine parts that must appear in the order
shown (unless otherwise noted):

Global Values (distributed)
Symbol Declarations (optional)
Media Character Table

Media Tables

View Tables

Definitions (optional)

Font Tables

Size Tables

Device Tables

GENERAL SYNTAX

Literals

A quoted-string means a string delimited by the double quote character ("). If a
quote is needed within such a string, it must be doubled. For example:

"A quoted string”
"A ""quotw"" String"

Comments

A comment may be placed any place in the source where the syntax allows white
space 1o appear (except within a quoted string). A comment is any string beginning
with /* and ending with */. For example:

/* This is a comment */
/* And this is a
multiline comment */

Names

A name means a string of not more than 32 characiers beginning with an
alphabeuc followed by an arbitrary series of alphanumerlcs and/or underscores. All
names in a device description file must be globally unique.. For some usages, name is
restricted to less than 32 characters. The restrictions are given in the discussions of the
various usages. For example:

here_is_1

Fonts

Two different forms of fonts are supported: the "family" font and the "bachelor”
font. A "family" is a group of fonts of different styles all of which have the same

C-27 AZ98-02

typeface such as Century Schoolbook or Helvetica. A "bachelor" is a font that has no
such close relatives such as NewsCommercialPi (NCPi) or APL.

Anywhere font appears, it is a name having the form famil/y/member or bachelor.

Braces, Ellipses, and Vertical Lines

A term or group of terms may be enclosed in opening and closing braces ({})
and/or followed by an ellipsis (...). The braces mean that the enclosure is optional, the
ellipsis means that the preceding term or term group may be repeated as desired, and
the vertical line means a choice between (or among) the terms must be made. For
example,

integer {, integer|= ..}

stands for a comma-separated list of /ntegers and equal signs of any length that must
start with an integer. N

! nput
input is a single character given by either of:

000
3 octal digits

"c"
any single—quoted character

Range
range is an inclusive ordered set of characters given as /nput.input. For example:
"A“:"Z"
the uppercase alphabet

000:007
the first eight ASCII control characters

Qutput
output is a blank separated list of elements selected from the following

000
3 octal digits

"string"
any quoted string

XXX

any declared symbol (See "Symbol Declarations” below)
nin{output)

nn rtepetitions of an output string
SELF

When used in media character token definitions, means the graphic being
defined. This is a reserved word; it may not be used as a name.

C-28 AZ98-02

For example:
dcl: square, "Z" 010 "N"; /% a black square %/

Media Characters

A mediachar is an internal token referring to some graphic symbol or control
action available in the device. It may have the form of an /nput, or an eight-character
name. Note that A and "A" are not the same med/iachar.

Media Character List

A mediacharlist is a blank-separated list of medijachars given as any of the
following:
000
the octal value of a mediachar that is defined as an /nput.

!YXXX"
a string of mediachars, each of which is defined as an /nput.

yyy
a mediachar that is defined as a name.

nn(Mediacharlist)
nn rtepetitions of a mediachar/ist

Media

A media table is a named aggregate of media character tokens wherein each token
is assigned a character width value given in "strokes". A "stroke" is an arbitrary,
dimensionless number of parts into which an EM unit is divided for the purpose of

defining characier widths for a device and must be ai ieast as large as the resolution of
the device. The term comes from antiquity and refers to the number of strokes
required with a given size pen nib to get a line of some desired thickness.

Switch

switch is the setting of a binary switch bit. It may have two values; on or off.

Numbers

Numbers are given as one of the following forms.
integer _
a dimensionless decimal integer, for example:
2
253
-3
units

a decimal number given in the current space measurement units (see Units
under "Global Values" below), for example:

C-29 AZ98-02

9
-1.5
97.25

SYNTAX OF THE SECTIONS

G/obal Values

The Global Values section is not a formally delimited section, but consists of any
number of the following statements distributed randomly throughout the file. The
statements define values that apply to all sections following their appearance. All have
local counterparts to specify different values for a particular table.

Data dependencies affect the order in which certain statements may appear. Any
such restrictions are given in the descriptions of the affected statements.

The statements all have default values that describe the default (ASCII or printer)
device. Unless otherwise noted in the text, the default values are those shown in the
individual examples.

Artproc: name {$name};
the entryname and optional entrypoint of the procedure that supports special
artwork features for the device. This entry is normally needed only for devices
having graphic features beyond the scope of plotting and simple typographic
rules. The default entryname is derived from the name of the device (see
Outproc below).

Neote: This interface is not yet active due to lack of a specific
application. The calling sequence is not yet defined. Its projected
use is for the processing of half-tone raster files and generalized
graphics files.

Artproc: ascii_writer_Sartproc;

Attach: guoted-string;
the attach description to use for the output switch when formatted output is
not being written to a file. If not given, no online output is possible for the
device.

Attach: '"syn user_output';

Cleanup: mediacharlist,
the control string that must be sent to the device to restore its normal mode
of operation when interrupted in the middle of output. This string is required
for plotting terminals to take them out of PLOT mode when interrupted.

Cleanup: "'"; /* no cleanup needed */
Comment: guoted-string,
a string that is emitted to a compout file as a part of its header. It is used by
the process_compout command Wwhen transcribing the file onic the outpiit
medium.

C-30 AZ98-02

Comment: "'"'; /% null comment %/

DefaultMargs: wunits, units, units, units,
the default values for the top, header, footer, and bottom page margins,
respectively. This feature allows for devices (such as Braille embossers) that
demand page margins other than those normally assumed for a printed
document.

DefaultMargs; 48,24,2L4,48; /% 4,2,2,4 lines %/

DevClass: quoted-string;
the class of the device. This string is placed in the output file header for use
by the process_compout command and is used to set the DeviceClass built-in of
the Formatter.

DevClass: '"typewriter';

DevName: quoted-string;
the generic name of the machine within DevClass for which the Device Tables
in this file provide support, e.g., V-I-P, Dymo, APS within "photocomp” or
dtc300s, hyterm within "diablo". Note that within a generic device, such as
dic300s, there may be different specific devices (see "Device Table" selection
below) for minor differences such as running in 12-pitch rather than 10-pitch.
This string is also used to set the DeviceName built-in of the Formatier.

DevName: '“ascii';

Endpage: /nput
the font character to select the page eject sequence for the device. A value of
000 means that there is no eject sequence.

Endpage: 000; /% ascii =/
Endpage: O1k; /% printer =%

Footproc: {name {$name}} {, font};
the optional entryname and entrypoint of the procedure to process footnote
references and the optional font for them. The default entryname is derived
from the name of the device (see "Outproc" below) and the default font is the
default font for the device. (See "The Device Writer" below for the description
of the calling sequence for this interface.)

Footproc: ascii_writer_Sfootproc, ascii;

FootrefSeparator: /nput ;
the Maultics character to separate muliiple fooinote references at the -same place
in the text.

FootrefSeparator: "!'; /% parens are sufficient %/

Interleave: switch;

the setting of the line sorting switch for the Formatter. If the switch is on,
the output in the page image structure is sorted by the Formatter so as to
appear in strictly increasing page depth order because the device does not
support reverse leading to return to the top of the page for multi-column
output. If the switch is off, the output lines appear in the page image by page
depth within the columns, each column being a sub—array in the structure. The
default value for the switch is off; it must be set on for device with DevClass
values of "typewriter", "diablo", or "printer."

Interleave: on; /% sort output %

C-31 AZ98-02

Letterspace: /nteger;
the maximum amount of interletter space allowed, given in strokes.

Letterspace: 0; /% not supported %/

. MaxFiles: /nteger |unlimited;

the maximum number of files t0 be written on a reel of magnetic tape. The
process_compout command calls for an additional reel when this value is
reached while processing "compout" files. The number of input tape reel files
for some typesetters is limited by the software in their front-end computers. If
this statement is omitted or is given with the keyword "unlimited", then the
tape may contain any number of files.

MaxFiles: unlimited;
MaxPages: /nteger |unlimited;
the maximum number of pages to be contained in an output file for the
device. The process_compout command produces output files containing no
more than this number of pages. Input files for some devices are limited by
such factors as size of paper tape input reel, capacity of tape cassette or film

magazine, etc. If this statement is omitted or is given with the keyword
"unlimited”, then the file may contain any number of pages.

MaxPages: unlimited;

MaxPageLength: units |unlimited;
the maximum length of a page. If this statement is omitted or is given with
the keyword "unlimited”, then the page may be as long as the user cares to
make it.

MaxPagelength: unlimited;

MaxPageWidth: units;
the maximum width of an output page.

MaxPageWidth: 979.2; /% 136 columns %/

MinBotMarg: units;
the minimum page bottom margin for the device.

MinBotMarg: 0; /% ascii %/
MinBotMarg+ 36; /%printer %/
MinLead: wnits;
the minimum amount of "lead" (vertical spacing) available in the device.
MinLead: 12; /% 1 line %/
MinSpace: wnits;
the minimum value of horizontal space available in the device.
MinSpace: 7.2; /% 1 column %/
MinTopMarg: wnits;
the minimum page top margin for the device.

MinTopMarg: 0; /% ascii %/
MinTopMarg: 36; /*printer %/

C-32 AZ98-02

Outproc: name {$name} ; _
the entryname and optional entrypoint of the procedure that converts the coded
page image structure constructed by the Formatter into a character stream
acceptable to the device. This is the procedure that translates internal signal
bytes into device control codes. The default entryname for the device described
in device.compdv is device_writer_. (See "Device Writer" earlier in this
section for the description of the calling sequence for this interface.)

OQutproc: ascii_writer_; /* ascii device %/

Sizes: name;
the name of the default Size Table. name must have already been defined as
the name of a Size Table section. If this statement is not given, the name of
the first Size Table defined is used.

Sizes: onesize;

Stream: switch;

the setting of the compout file type switch for the Formatter. If the switch is
set on, the compout file written when the -output_file control arg of the
Formatter is given is an ASCII stream file suitable for processing with the
print and dprint commands. If the switch is set off, the compout file is a
sequential file containing coded binary device information that must be
processed with process_compout command. Normally, this switch is set on only
for the ASCII and printer devices, but it may be used for any other device
that has only those features commonly found in ASCII terminals or it could be
treated (by Multics) as a line printer. The default value for the switch is off;
it must be set on for the ASCII device.

Stream: on;

Strokes: /nteger;
the number of strokes to be used for width values in Media Tables.
TapeRec: /nteger |unlimited;
the length in characters of records to be used when writing to a tape. If this

statement is omitted or is given with the keyword "unlimited", then the tape
records may contain any number of characters.

TapeRec: unlimited;
Units: keyword;

the physical units in which space values are given. Space values are given as
normal decimal numbers, e.g., 2, 14.7, and (.025. The valid Keywords are:

pi pica (10-pitch) monospace characters and lines
el elite (12-pitch) monospace characters and lines
in inches

mm millimeters
pc typographic picas (6 picas = 1 inch)

pt typographic points {72 poinis = 1 inch)
PP picas and points as a decimal number
Units: pt; /% default is points %/

Wordspace: min, avg, max, mediachar;
the default range of allowable interword space for devices described in the file.

C-33 AZ98-02

min, avg, max

specify the minimum, average, and maximum values, respectively, given in
strokes. They must obey the relation:

0 <= min <= avg <= max
and are defined as:

min

the least amount of interword space
avg

the average amount of interword space. This is the amount used
for all wordspace characters in unjustified lines.

Note: This value must be the same as the width given for
mediachar. See "Media Tables” below.
max
the maximum amount of interword space allowed before hyphenation
or letterspacing is attempted. Note that justified lines may contain
more than max space, but only in case hyphenation and letterspacing
fail or are not allowed.

mediachar
the character string to be emitted for wordspace insertion.

For example:

Wordspace: 1,1,2,SP; /* ascii, strokes = 1 %/
Wordspace: 3,6,9,SP; /% dtc300s, strokes =

Symbol Declarations

Symbols that represent output character strings may be defined for convenience in
constructing media characters. All such symbols must be defined before their use.

dcl: name, output,

name
the name of the symbol being defined and is restricted to a maximum
length of 8 characters.

output
the character string to replace a reference to the symbol.

For example:

dci: BSP, 010;
dcl: HT, 011;
dcl: 1f, 012;

Media Character Table
The Media Character Table section contains the symbols and output values for

all media character tokens to be used in the Media Tables following. It
consists of the following media character statement.

C-34 AZ98-02

MediaChars: mediachar output {, mediachar output ..},
dcl: BSP,:010;

mediachar
the media character token(s) being defined given as a name,
an /nput, or arange.

output
the output character string to replace a reference to the token.

For example:

MediaChars:

SP i ll,

010 SELF, 014 SELF, 033 SELF, 016 SELF,

017 SELF, BEREAS & SELF, 177 SELF, USR BSP "_“,
NIL Illl;

Media Tables

The Media Table section contains the character width values for all mediachars in
all the physical media used by the fonts defined for the device. It consists of any
number of Media: statements, each having any number of width value statements. The
syntax is devised in such a way that the table may actually be formatted as a table in
the input, that is, all width values in the first column are for the first medianame, the
second column for the second medianame, etc.

Media: medianame { medianame ...}
mediachar {integer} { {integer|=} ...};

medianame

the name(s) of the media being defined.
mediachar

as for MediaChars: above.

i nteger
the width of the character given in strokes. If this value is omitted, the
character is undefined in the associated media.
If "=" is given in the second or subsequent column, the value in the
preceding column is repeated. It is an error to give "=" in the first
column.

For example (from a Mergenthaler V-I-P description):

/* (A-534 is the Mergenthaler number for Universal Greek with Math.) */

/# A-21860, A-534, A-187, A-6614, A-145, A-1i108, A-408 #/
Strokes: 18;

Media: mNCP 1, mUGM, mCSR, mCSRx, mCS1I, mCSBR, mCSBI;

AQ1, 09, 14, =, =, =, 15, 13;
AQ2, 18, 15, 10, Bl =, s 09;
AO3, 15, =, 10, =, =, =, 08
AO4, 10, 06, 10, = =, =, 08;
AQOS, 06, 11, i8, =, 17, 18, 17;

C-35 AZ98-02

View Tables

A View is a switch-like "variable" (in the sense of a Multics 1/0O switch) through
which an attachment is made to a Media Table (see “viewselect:” under Unique Local
device Values below). A View may attach to only one Media Table, but a Media Table
may have any number of Views attached to it. An example is the superior and inferior
fonts in a Mergenthaler V-I-P typesetter that are identical in all respects except that
they are on different film plaques due to their different baseline offsets. The View
Table section consists of any number of the following View: statement.

View: viewname medianame {, viewname medianame ..};

viewname
the name of the View being defined.

medianame
the name of the Media Table to which an attachment will be made.

For example:
View: PICA mASC10, ELITE mASC12, APL mASC10;

Definitions

A Definition is a named aggregate of MediaChars that may be used in several
different fonts. The Definitions section consists of any number of the following Def:
statement, each followed by any number of graphic definitions.

Def: defname;
graphic {viewname} definition,

defname
the name of the mediachar aggregate being defined.

graphic
may be chosen from:

input §, input ...}

keyword { keyword ...}
any of:

C-36 AZ98-02

EM EM space

EN EN space

thin thin space

EM- EM dash

EN- EN dash

hyphen hyphen

EM_ EM-aligned dash
EN_ EN-aligned dash
PS punctuation space

113

opening double—quote
” closing double—quote
AO N

A
A2
A3
) F superior digits
AS

A6

AT

A8

AQ J

These keywords may be thought of as "built-in" symbols that must
be assigned values if they are to be included in a font. Note that
"hyphen" must be assigned a value in order that the hyphenation
mechanism in the Formatter may work.

art artname {, art artname ...}
a keyword and the conventional name of the artwork construct or
element selected from one of the following groups.

This group contains graphics that are complete in themselves (the
so—called "one-highs").

[opening bracket] closing bracket

{ opening brace } closing brace

(opening) closing parenthesis
parenthesis | concatenate

| vertical bar X multiply

® bullet d delete star

m change bar \ left slant

/' divide t trademark

¢ copyright v down arrowhead

A up arrowhead — right arrowhead

<« left arrowhead

This group contains graphics that are parts of larger artwork constructs,
e.g., rules, boxes, diamonds, and lozenges.

D# diamond top Dv diamond bottom
D< diamond left D> diamond right
CIf left half-circie Crt right half-circle
-tul horizontal rule lrul vertical rule
/tul right slant rule \rul left slant rule

C-37 AZ98-02

This group contains the parts for the multiline math symbols. The
graphics for any symbol form a consistent set; if a math symbol is to
be defined, all the parts must be given.

||[|| ||]n u{n u}u ||(|| n)u ||I|| nl In symbol

[tp Jtp {tp }tp Iptp rptp |tp tp tops

[ht Jht {ht }ht 1Ipht rpht |ht ht half tops
[md Imd {md 3Imd 1Ipmd rpmd |md md middles

fhb Jhb {hb }hb Iphb rphb hb hb half bottoms
[bt Jbt {bt }bt Ipbt rpbt [bt bt bottoms

[fF1 1f1 {f1. 1f1 ipfl rpfl fi f1 fillers

Note: Because the left and right parentheses are used as part of
the syntax of the device description language they may not
be used in forming tokens; hence the need to use the "lp"
and "rp" constructs for their artname parts. -

viewname
the name of the View: that attaches the Media Table holding the character
widths to be used in calculating the width of the definition. The default
View: is the View: attaching the Media Table for each font that refers to
this Def:.

definition
replacement for graphic chosen from:

mediacharlist
the assigned width of the definition is calculated from the width
values of the elements of mediacharlist.

mediacharlist=integer
the calculated width the mediachar/ist (as above) is compared to
integer. If they are the same, the value is assigned as the width of
the definition; if not, an error message is generated. This form is
useful in ensuring that plot strings are the correct width for the font
in which they are to be used.

{mediacharlist)=integer
integer is assigned as the width of the definition without regard to
the calculated width. This form is useful in forcing the width of plot
strings when the calculated width is known to be wrong.

For example:

Def: etcs /% miscellaneous chars */
016:017 (SELF) =03 /% red/black ribbon shifts */
221 3" /% ellipsis %/
177 NIL; /% ASCI1 PAD %/

Font Table

A font table contains the width and output string for each characier contained in a
font. In this context, a "character"” is a 9-bit byte placed in the output page image by
the Formatter. This byte may be a normal ASCII graphic or a coded signal for some
other output sequence. '

C-38 AZ98-02

A device description file may specify up to 100 fonts; each Font Table beginning
with a Font statement and ending with the beginning of any Size Table, Device Table,
or other Font Table.

A Font Table section consists of any number of Font statements, each followed by
an optional local wordspace: statement and any number of ref: statements, and graphic
definitions.

Font: fontname viewname,

{wordspace: min, avg, max, mediachar,}
{ref: defname;}

{graphic {viewname} definition}

fontname
the name of the font table being defined.

viewname
the name of the default View attaching the Media Table for any graphic
definitions given in this font.

wordspace: min, avg, max, output,
as for the global Wordspace described earlier but applying only to this
font.

ref: defname,
a reference to some existing Def:.

graphic {viewname} definition;
as for "Definitions" above.

Size Table

A Size Table is a list of allowable pointsize values that may be used in conjunction

with any number of Fonts in any number of Device Tables. That is to say, a Size

diveiii ey [N YA~

Table may be referenced any number of times and may be used with one Font in some
Device Table and a different Font in some other Device Table. A device description
must contain at least one Size Table.

A Size Table section consists of exactly one Size statement of the form:
Size: name, units{, units}...;

name
is the internal reference name of the pointsize list being defined.

units

is a value to be entered into the list. At least one units value must be
given.

For example:
Size: pitchl0, 7.2;

Device Table

A Device Table describes a specific device and provides the data needed by the
Formatter to prepare output for that device. The data in the table is gathered from
default values, Global Values, Font Table references, Size Table references, and Local

C-39 AZ98-02

Device Values. There can be any number of Device Tables in a device description file,
either describing different machines that are similar enough to share many attributes, or
different configurations of the same machine.

Font Tables and Size Tables may be freely shared among Device Tables. However,
if a font "borrows" from some other font, then both the "loaner" and "borrower" Font
Tables must be included in the Device Table. For example the Mergenthaler V-I-P
font "ascii" is based on the Clarinda font but it borrows a few characters from
NewsCommercialPi. Hence, if the "ascii" font is to be included in a Device Table for
the V-I-P, then "NCPi" must also be included. If it is not, then the Formatter reports
errors if the borrowed characters are used.

In some machines, like the Mergenthaler V-I-P, that have limited font capacity,
many Device Tables are likely to be needed to describe the many different
configurations. Other machines, such as the Autologic APS-5, that have large font
storage capacity usually need only one Device Table.

A Device Table section begins with a Device statement and ends with the beginning
of another Device Table or the end of the device description file. Global Values may
also appear within a Device Table section.

Device: name{,alias} {like device};

name
is the name to be attached to the Device Table. It is the name by which
the device is known to the Formatter and is given as a parameter with the
—device control argument (of the Formatter). name.comp_dsm. is added to
the output segment if it is not the primary entryname.

alias
is an additional name by which the device may be know, e.g., a short
name. This a//as is handled identically to the primary name.

device

is the name of some previously defined Device Table that is to be used as
a model for this device. If this Device statement is followed immediately
by another Device statement or is the last statement in the device
description file, the other Device Table is referenced directly by internal
pointers. If any changes to the model are made (with Global or Local
Device Value statements), the other Device Table is copied as initial values
for a new Device Table.

GLOBALILOCAL DEVICE VALUES

All the device-rtelated items discussed in Global Values above have local counterparts.
Local Device Values apply only to the Device Table in which they appear; any given
are discarded when the Device Table is completed. The syntax of the Local Device
Values is identical to the corresponding Global Values except that the keyword tokens
are spelled with all lowercase letters. These Local Device Values are all set to their
current Global or default values when a Device Table is initialized (unless device is
used).

The Global/Local Device Values statements are listed below.

artproc: name {$name}
attach: gquoted-string;
cleanup: mediacharlist;

C-40 AZ98-02

comment: quoted-string,
defaultmargs: units, units, units, units;
devclass: quoted-string,
devname: quoted-string,
endpage: /nput;

footproc: {name{$name}} {, family/member|bachelor};
footrefseparator; /nput;
interleave: switch;

letterspace: /nteger;

maxfiles: /integer |unlimited;
maxpages: /nteger |unlimited;
maxpagelength: units |unlimited;
maxpagewidth: units;
minbotmarg: units;

minlead: wunits,

minspace: units;

mintopmarg: units;

outproc: name {$name} ;

sizes: hame;

stream: switch;

taperec: /nteger |unlimited;
units: keyword,

UNIQUE LOCAL DEVICE VALUES

The following Local Device Values have no Global Device Value counterparts.
init: /nitfont initsize;
initfont
the initial font for the device given either as fami/y/member or bachelor.
initsize
the initial pointsize for the device. It must be a value in the initial Size
Table for the device (see "sizes:" above).
For example:

init: CenturySchoolbook/medium 10;
init: ascii 7.2;
family: name {, name};
the external name and optional aliases of a group of fonts of different styles
all of which have the same typeface.
For example:
family: CenturySchoolbook, CS;

member: /namef{, /name, ..} fontref;
a member font in the preceding family.

/name
the external name and optional aliases of the member.

C-41 AZ98-02

fontref
the name of the Font Table containing widths and replacements for
characters in the font.

For example:

member: /medium, /m, /roman, /r CSmed;
member: /bold, /b CSbolid;

bachelor: namef{, name, ...} fontref;
"bachelor” fonts that have no family/member structure.

name
as for family: above.

fontref
as for member: above.

For example:

use: GrkMath, GM UGM;
use: APL, apl APL;

viewselect: view mediacharlist{, view mediacharlist, ...}:
the attachment descriptions for all the fonts used in the device.

view
the name of the View through which the attachment is to be made.

mediacharlist
the character string giving the information needed by the device writer to
construct the font change control that is sent to the device to cause it to
select and use the desired Media. The content of this information depends
on the device and the design of the device writer procedure.

For example:

viewselect: VvASCI| Pwheel pitchl0 "6";
viewselect: vAPL Awheel pitchl0 "6";

ARTWORK PART DESCRI/PTIONS

The artwork parts for incremental plotting terminals are plot strings made up of
various motion characters and the dot () character. When strings for such a terminal
are constructed, they should conform to the following specifications.

In these diagrams, the grid of dots represents the 48 possible dot positions in a
print position. The starting position of the pattern is the lower left corner of the grid,
that being the position at which a single "." would print in normal typing mode. If
there is a "+" in a diagram, then its position is the final position of the print head; if
not, the print head returns to the starting position. An "o" represents a grid position
where a ".” must be placed. Note that the print column for vertical lines is the left
edge of the grid.

C-42 AZ98-02

"One-High" Math

ll[ll

00000
Oeenn

Oceons

00000
o]
(o]
(o]
(o}
(o}
o
e}
o
e}
e}
o
00000

]ll

.. [o]

o »

L R A
e o o o s e s

.
.
.
.
RN
.
.
ve ot

llxll

oo 0 0

OC.e.0.
0.0..
«Oee
0.0..
0...0.
O0

NOTE: The "+" in the)
It may be changed to any other letter of the users choice.

nan

s s s

Osene
000...
00000. .
O000000.

s s 0 0.

Symbols

II{II

000 000

«Qenee
Oivvee
Ocevee
Q..

cen
0'00000
ces s
[«
Oceonn

.

(o]
o]
o
o}
o}

e o o o ¢ o

.+ o]

o}

IICII

D A IR

..

O.
O.
O.
O.
O.
O.
O .

o]

ees.000...
..00...00..
eOceeensasOn
OcereaeeaaOn
OceoeseaseOn
(o DR Y o I
DY« DA « AN

00
000

"c¢" diagram represents the position of the "c

« e e e s .

. 00000

(ele}

[ele]e]
o

e e e s .

e o o e s s s o

Oceowve
O.co
O¢ew

Q..

e o o o s o o o

.
.
.
-

.

-

u}n

«Covew
«eOo0e
«Oenn

Oesun

.
.
.
.
.

e e o o o o o &

Q0.
00000. .

o s e ¢ o @

C-43

1 (IAI

lldll

.

e s 00
e e e o

-
.
o0 0 0 e
-

O0...0.

0.0...
000C000.
0.0...

0...0..+

lltll

e s o000

¢ s 002 0

0000000.
«e.0..0.
.0..00...00.
.0..0.0.0.0.
«0..0..0..0.
«0.e:e0.0.e O,

-
.
.

.

.
.
.

II<_I|

* s s e

« s e o @

* s e e+ s e e o

II) 1] mnin

[o A

(e}

.0.

o e o o o s o o
* o ¢ 2 o o s o
e s o s 4 o o o

0000000000000

I!/ll

ssee.0
esesO.
ese0..
«e0.
«Oee
Q.o

L ST S Y

s e 0 00

"

nosu

o T
00 coeass.t

000
0000
000
(o]e]

e o e s 8 e s e

* e o 4 ¢ s e o

* o s & ¢ o s o

+
0000000000000

(o]

«0..
«Ose
.0..
«O..
«O..
«0..
«.0..
.0..

« & s o s 2 o 0
e o o o ¢ o o @

0000

-

(o PEPE
eOseee

.

s e s e 0

Oues
.0..
..0.
cee0
ceesO
eoetO

for "copyright".

AZ98-02

Large Artwork Elements

‘IID/\II ”DV" IID<I| lID>I|

cerene O.....0 teeeesO Outeans
cecene .0...0 csessO Y« D
cemane ..0.0. Y Y o JRPN
ceceae eeeO. R < PN N <
cesene I Y < R eessO.
I« O ceeeen R o TN Y « PO
..0.0.% ceeaesst A I & e eO.. .t
o o o o]

(o] (] o) o)

Hc‘fll “Cl’t"

O ceceen ceeeO.
O cevene esseO.
verselt coees

000 [o]o o]
0000 0000

"'FU]" ulru]u ”/FU‘" "\FU]"

ceeeen Ocuavee cevaan ceeene
ceeees Oueven creses [« J
ceaees Oveenn ceesaO Ocevnn
ceseee Ocenne eaesO. eOuenn
P Oieces cesO.. Y < PRV
N (< JAPIN N « TRV ee.0..
oooooo+ veseset Ouvat A A

Math Symbol Top Parts

"[tp“ ”]tp“ ”{tp" ”}tp” ”lptp” “rptp" ”|tp” nlltpu

00000 00000 000 000 000 000 o) °o o
Cinvas [« TP eOcens Oiiveoe +0cene Ocivese Oieeee O Oucene
Otnnne Ouvens (< JN Oicees Ouvvens Oieves Ouveee O Ou.ne
Oveees Ocenns Ovecnn Civeevs Oiinns Oiveee Oieees O .Ocens
[« YN Cevnnn Ouvunne Oiivee Oununs Oivvee Oueeese O .O....
[« J A [« YA (o T Oiieve Ournnn Oiveee Oivwsse O .O....
[« J Oconns Oieens Oteeese Oueens Oienn Oiivss O .O....
Oceves Teeenn Civenn Ceveve Cuveos C.vvee Diiie: O O....
Ouen.ot Ocsoast O.vv..t Civveet Ovuneot Oiesst 0.t 0 JO... .t

C—44 AZ98-02

Math Symbol Haif-top Parts

"[ht” ”]ht" ”{ht" ”}ht“ "Ipht“ “rpht“ ”Iht” ullhtn

e e s 0 e e o LI LY e e o 00 ..

00000. 00000 ..., 2000, OO0 tvesse +.000. 000 22vvve Ouireee O .Oun..
Ocenne (o JR [< JRT Oiesess +0oece Oceseee Oivees O ¢0ees.
(o JN Oceces Ocevne Oieeee Ouienas Oievee ODieeee O Oeune
Oceane Ouveean Oavone O.eeoe Oosoas Oceose Oeseee O Oeene
Oceneat Ooeuaot Oeveoat Oeeaset Oueeest QOcavsst Ot 0 .O....F

Math Symbol Middle Parts

”[md“ ”]md“ “{md“ “}md“ U]pmd“ “rpmd"

El
2
El
2

o o o] o o] o (o} o o

Oeenns Cevons (- DN Oieese Oernns Oieeee Otrieee O O0eene
Ocrnns Ousvss Cevone Oeeeese Ouvnnn Oiesse Oessee O .O0cenve
[JA Oreven o J eOceese Oeannn Qivese Oeiriass O 0inwe
Oieene Oeeeee O cavens eeOees Oeaeee Oievee Oaeees O O¢ene
[JAN [« JR [« J eOcees Ouennn Oiieese Ouiveese O Ouves
Osnvee Oesven (= J Oieeee Ounnns Oisieee Oieaee O Oevee
Oeeeas [JRP [« P Oceves Ocevas Oieeee Oiveee O oOeene
Oeeeaot Ocesoet Oceesot Oieseet Ot Oveeest Ot O (0.t

Math Symbol Half-bottom Parts

“[hb“ “]hb" “{hb” "}hb“ ”lphb” "rphb” ulhbn nlihbn

IR ceeenne tees e cevene EREEE eseccene ces s ces e
R cs e e ceeene ere e ceecane cecene EEEEE ces e
Ceevense Oeceee Oseewnn Oeesee Oocenn Oseeee Oivees O 0.
o} e} o} (o] e} o} o} (o o]
o] o} o} o} o} o} o o o
o} o} o [e] o o} o} o o0
00000 00000 000 000 000 000 o} o O0

Math Symbol Bottom Parts

“[bt" ”]bt“ ll{btll "}bt" n]pbtn "rpbt" "lbt" nI Ibtll

) o} o o o o o o ©

[« RPN Oveens [« JRPRRN Oieves Oeanns Oceees Oieeee O Oeunn
[T Ocanns [« JRPN Oteces Oeensen Oieees Oieeee O .Oeane
Ceesese Coooos [o T Oeeses Teeons Oveiees Oieeee O Oiene
Ouenne Otienns [« JRPIN (o T o S Occeee Oueeeee O .Ouunn
[« T Oceens Ovennn Oveees Oeenas Oieeee Oieeee O O0uieeow
[« Ovevas [~ IR (o T « Oveees Oueewe O .Oconn
[« T (o RN «Ouenn o S « Oteeese Oirieese O .Ouune
00000 .+00000.....+ ..000.+000+ ..000.4000 i....tF Ot O LOL..

C-45 AZ98-02

Math Symbol Filler Parts

u[f]u u]f]n n{f]u n}f]n "]pfl" "rpfl“ 'ulf]n n||f]u

o (o] (s} o o (o] o o o

Oeoven (o RPN Osvnnn Oieeee Ooseen Oseene Oiseee ©O .O.ve
Oceven Oeovee [o R Oieeee ODoaeoe (o PP Qieeee O Oecess
Ovecen (o O [« FUPENENES Oseees Oceens [« FUPEREEN Ocsees O Oeene
O¢oavee Osvens Oceens Oceven Oveves Oieees Oiveesse O Oo0wne
Ocovee Oveven Qeeoeee Qieeee Ooeene Oieeee Oievee O 0.0
Oceeen Oseees Oveeee Oeeene Oceven Oerveen OQiveee O Oensee
Oceeeve Oceeen o Oevenn Ocevsn Oceoeno Oievee O Oenne
[= I Oosene Covenne Osennn Oceveo Oseene OQeeeee O 0.0

C-46 AZ98-02

APPENDIX D

GLOSSARY

The following list is WORDPRO-specific and does not duplicate common Muitics
glossary terms in other documentation (see Mu/tics Reference Manual.)

artwork
In compose, overstruck character patterns displayed as various symbols and line art
features (e.g., diagrams, flow charts, logos).

built-in symbol
A variable (number, on, off) which is built into one of the programs being used;
not affected by user unless its value is specifically changed by a related control or
control argument.

block (text block)
In compose, the basic premise for text processing; all text material is made up of
blocks of text on which compose processing takes place, using the surrounding
controls as the basis for formatting.

canonicalization
The conversion of a terminal input line into a standard (canonical) form. This is
done so that lines that appear the same on the printed page, but that may have
been typed differently (i.e., characters overstruck in a different order), appear the
same to the system (see Multics Reference Manual).

carriage return
Movement of the typing mechanism to the first column of the next line. On
Multics, this action is the result of the ASCII linefeed character. The terminal type
determines which key(s) the user presses to perform the equivalent action (e.g.,
RETURN, LF, or NL).

command
A program designed to be called by typing its name at a terminal. Most commands
are system-maintained, but any user program that takes only character-string input
arguments can be used as a command (see Mu/tics Reference Manual).

command level
The process state in which lines input from a user’s terminal are interpreted by the
system as a command (i.e.,, the line is sent to the command processor). A user is at
command level or when he or she logs in, or when a command completes,
encounters an error, or is stopped by issuing the quit signal. Command level is
normally indicated by a ready message (see Mu/tics Reference Manual).

command processor
The program thai interprets the lines input at command level and calls the

appropriate programs, after processing parentheses and active functions (see Mu/tics
Reference Manual).

compin
A compose input file, made up of text and compose text controls {see Section 3).

D-1 AZ98-02

compose :
A command that, given input (text and controls), formats it according to the
conditions set by the user (controls and control arguments) and produces the desired
output (see Section 3).

compout
A compose output file, created (compiled) from the compin file, usually consisting
of formatted text, diagrams, etc., the format having been defined by the user
through the use of the controls (see Section 3).

control (control line)
In compose or format_document, a line that defines an action to be taken while
formatting the output. It always begins with a period in the first character
position, followed by several alphabetic characters, and sometimes another string
that further describes the action to be taken. '

control argument

An argument to a command that specifies what the user wants done, or what
information the user is interested in. System control arguments begin with a
hyphen, such as -all, -long, or -hold. The meaning of each control argument
accepted by a specific command is given as part of the description of the
command. Many control arguments have standard abbreviations such as -lg for
-long. A list of the abbreviations of the most frequently used control arguments is
found in Appendix A of SDN - Standards. (System commands are described in
Multics Commands.)

crash
An unplanned termination of system availability caused by problems in hardware
and/or software.

delimiter
(1) In Speedtype, a character used to delimit between text tokens (symbols including
prefix and suffix characters).

(2) In List Processing, a user-specified character used to delimit between each
record in the list, between each field of each record, and between comments and
data.

dictionary
In WORDPRO, an online list of words (supplied by the system or created by the
user) with which any file can be compared, to find misspelled words, unwanted
words, etc.

edm
A text editor that allows users to create input segments (text), then edit these
segments making substitutions and changes.

emacs
A text editor that allows users to create input segments (text), then edit these
segments making substitutions and changes.

equation
In compose, also called <title>, a three-part title of the form: |partl|part2|part3|.

escape character
In Speedtype. a signal that the text token immediately following is to be processed
specially, i.e., not expanded (see token).

D-2 AZ98-02

expand
In Speedtype, the process by which symbols are lengthened. from their shorthand-type
abbreviated form to the correctly—spelled words and phrases..

fdocin
A format_document input file made up of any types of text and format_document
text controls (see format_document).

fdocout
A format_document oufput file usually consisting of formatted text that has been
defined by the user through use of controls (see control above).

file
A term that stands for segment and/or multisegment file.

format_document
A command that, given input (text and controls) formats the segment according to
the conditions set by the user (controls and command control arguments) producing
the desired output.

help files
See info segments.

indent
In compose and format_document, a control that ‘indents all following text until
another control indicates undent or indent zero (reset the indent to zero).

info segments
The segments whose contents are printed by invoking the help command. These
segments, sometimes called help files, give information about. the system. The
system info segments are kept in the directory >documentation>info_segments
(>doc>info). The info segments that are peculiar to an installation are kept in
>doc>iml_info_segments. (see the help command.in Mu/tics Commands).

line art
Graphic constructs (pictures, tables, etc). that can be created online.

List Processing
A group of related commands that enable the user to create lists, define formats to
'be used in the manipulation of these lists, and produce personalized form letters,
billing statements, reminders, etc.

lister
In List Processing, an unprintable file containing ASCII and binary information; a

compiled version of the list that can be processed by the various list processing
commands.

listform .
In List Processing, a file that shows (defines) the format of a document to be
produced; a combination of a lister file and a 11stform file, processed together,
creates the desired end result.

listin
In List Processing, an ASCII file containing components (records), each of which is
a complete entry in the list, that can be entered and updated using any text editor
(see record below).

project
An arbitrary set of users grouped together for accounting and access control
purposes.

D-3 AZ938-02

Project_id
The name assigned to a project.

nanvy
wwa

A text editor that allows users to create input segments (text), then edit these
segments making substitutions and changes.

quit request
Several commands that read input from the keyboard and use the typed request
"quit" or "q" to indicate that the user is done. This is not the same as issuing the
quit signal.

quit signal
A method used to interrupt a running program. The quit condition is raised by
pressing the key on a terminal, such as ATTN, BRK, INTERRUPT. This condition
normally causes the printing of QUIT followed by establishment of a new command
level (see Multics Reference Manual).

quote
A character used to delimit strings in commands and source programs. On Multics
this is the double—quote (octal 042), not to be confused with the single quote or
apostrophe (octal 047).

ready message
A message that is displayed each time a user is at command level. The display of
this message may be inhibited, or the user may define a personal ready message.
The standard sysiem ready message tells the time of day and the number of CPU
seconds, memory units, and page faults since the last ready message plus the current
listener level (if greater than 1).

record
In List Processing, a division of a list containing all fields of related information
grouped together. as one item in the list (e.g., name, address, city, and state of one
person grouped together

recursion
The ability of a procedure to invoke itself.

Speedtype
A tool that enables the user to "type shorthand"; users can specify abbreviations
(symbols) for lengthy or frequently used words and/or phrases, enabling faster
input, to be later automatically expanded.

star convention
A method used by many commands to specify a group of segments and/or
directories using one name (see Mu/tics Reference Manual).

subsystem
A collection of programs that provide a special environment for some particular
purpose, such as editing, calculation, or data management. It may perform its own
command processing, file handling, and accounting. A subsystem is said to be
closed if: (1) all necessary operations can be handled within the subsystem and (2)
no way exists to use the normal Multics environment from within the subsystem.

suffix _
The last component of an entryname (components are separated by a period ()
that usually specifies the type of segment (e.g.. .pll and .list). A segment without a
suffix is usually an object segment or data segment (see Mu/ltics Reference
Manual).

D4 AZ98-02

teco
A text editor that allows users to create input segments (text), then edit these
segments making substitutions and changes.

ted
A text editor that allows users to create input segments (text), then edit these
segments making substitutions and changes.

token (text token)
In Speedtype, the symbol used in place of a word or phrase, with a prefix, suffix,
underline, or capitalize character attached.

undent
In compose or format_document, a control used in conjunction with the indent

control.

D-5 AZ98-02

abbreviations
adw (add_dict_words command)
als (append_list command)
asb {add_symbols command)
cdw (count_dict_words command)
cls (create_Tist command)
cndx (compose_index command)
comp (compose command)
cpls (copy_list command)
csb {(change_symbols command)
cv_rf (convert_runoff command)
cwl (create_wordlist command)
ddsm (display comp_dsm command)
ddw (delete_dict_words command)
dils (display_list command)
dls (describe_list)
dsb (delete _symbols command)
els (expand_list command)
esb (expand_symbols command)
fdoc (format_document command)
fdw (find_dict_words command)
fifo (first=in-{irst-out)
fsb (find_symbols command)
1dw (list_dict_words command)
lifo (last-in—first-out)
Isb (list_symbols command
Iw_(locate_words command)
mdls modif}r,_hst command)
mils (merge_list command) -
osb {option_symbols command
pco (process_compout command)
pls (process_list command}
psbp (print_symbols_path command)
pwl (print_wordlist command
1sb (retain_symbols command
™W trewse__woras command)
sls {sort_list command)
ssb (show_symbols command)
tls_(trim_Tist command)
twl ﬁtrlm_wordhst command)
usb (use_symbols command) .
xdw (expand_device_writer command)

add_dict_words (adw) command 4-6
add_svmbols (asb) command 5-7
append_list (als) command 6-13
change_symbols (csb} command 5-10

commands
add_dict_words (adw) 4-6
add_symbols (asb) 5-7
append_list {(als) 6-13
change_svmbols (csb) 5-10
comd’v‘3—(2) 3-3
compose (comp) 3~
com%se_indexp ?cndx) 3-8
convert_runoff (cv_rf) 3-11
copy_list (cpls) 6-14
count_dict_words (cdw) 4-8
create_list (cls) 6-1
create_wordlist {cwl) 4-9
delete_dict_words (ddw) 4-11
delete_symbols (dsb) 5-11
describe_list (dls) 6-16

- commands (cont.)

INDEX

i) dsm (ddsm) 3-12
display_list {(dils) 6-18
expand_device_writer (xdw) 3-18
expand_list (els) 6-19
expand_symbols ((esb) 5-12
find_dict_words (fdw) 4-13
find_symbols (fsb) 5-1
formai_document (fdoc) 3-20
list_dict_words (Idw) 4-15
list_symbols (Isb) 5-14
locaté_words (lw) 4-18
megge_lxst (lels) ?—20
modify_list (mdis) 6-23
option_symbols (osb) 5-15
pr;nt_symbo,ls_{)ath (psbg) 5-17
print_wordlist {(pwl) 4-2
Process_compou gpao) 3-28
process_list {)ls) -24
retain_symbols (rsb) 5-18
revise_words (tw) 4-22
show_symbols (ssb) 5-19
sort_Tist {sls) 6-27
trim_list (tls) 6-29
trim_wordlist {twl) 4-24
use_symbols (usb) 5-20

compdv command 3-2
compose (comp) command 3-3
compose metacharacter table A-1

compose Text Formatter 2-1
also see Formatter
compose_index (cndx) command 3-8

comprehensive control summary 2-58

control summary
comprehensive 2-58

convert_runoff (cv_rf) command 3-11
copy_list (cpls) command 6-14
count_dict_words (cdw) command 4-8
create_list (cls) command 6-15
create_wordlist (cwl) command 4-9
delete_dict_words (ddw) command 4-11
delete_symbols (dsb) command 5-11
describe_list (dls) command 6-16
Device Suppori Tools |

Device Table Co Z;Zﬂer C-26

Device Writer C-
Device Writer Source Expander C-1

Device Table Compiler C-26
device description language C-27
artwork part descriptions C-42
general syntax C-27
global/local device values C-40
see syntax .
unigue local device values C—-41

display_com

AZ98-02

Device Writer Source Expander C-1
see Expander

dict search list 4-1

dictionaries 4-1

commands
add_dict_words (adw) 4-6
count_dict_words (cdw) 4-8
create_wordlist (cwl) 4-9
delete_dict_words (ddw) 4-11
find_dict_words (fdw) 4-13
list_dict_words (ldw) 4-15
locate_words (lw) 4-18
print_wordlist (pwl) 4-20
revise_words (rw) 4-22
trim_wordlist (twl) 4-24

hyphenation 4-2
{)roble;ms 4-2
echnique 4-2
when needed 4-2

spelling errors 4-4
correction 4-5
detection 4-4
unwanted words 4-4
wordlist segments 4-5

subroutine
hy;f:henate_word_ 4-14

use 4-1

o
files 4-2
standard 4-1
user—supplied 4-1

display_comp_dsm (ddsm) command 3-12
display_list (dils} command 6-18
expand_device_writer (xdw) command 3-18
expand_list {(eis) command 6-1%
expand_symbols (esb) command 5-12

Expander C-1 _ .
active function calling C-14
built-in functions C-15
commands) i
expand_device_writer (xdw) 3-18
comments C-17
conditional execution C-13
constructs C-1
nesting C-2 .
termination condition C-1
tokens C-1
emptying arrays C-17
error reporting C-17
expansion calling C-13
expansion_definition C-2
dynamic C-2
static C-2
expansion tokens C-20
examples C-23.
expression evaluation C-7
accessing arguments C-9
arg couni C-10
multiple arg accesses C-9
single arg_accesses C-9
accessing variables C-7
array accesses C—8
scalar accesses C-7
_subscripted accesses C-7
arithmetic expression C-10
_arithmetic operators C-10
arithmetic expressions

i-2

Expander (cont.)
relational operators C-11
rotected strings C-10
features C-1
general terminator token C-18
iteration C-12
miscellaneous features C-14
null separator tokens C-18
quote processing C-19
rescanning C-1
return C-20
value assignment C—-6
variables and arrays C-3
access C-4
arrary variables C-4
1xed arrays C-5
list arrays C-5
stack arrays C-6
varying arrays C-5
assign C-4
scalar variables C-4
white space control C-20

find_dict_words (fdw) command 4-13
find_symbols (fsb) command 5-13
format_document (fdoc) command 3-20

formatter 2-1

command
compose (comp) 3-3

compose 2-1
artwork 2-26
built-in variables 2-22
comprehensive control summary 2-58
formatter controls 2-31
formatting features 2-2, 2-10
general svntax 2-1

elementary 3-20
commands

format_document (fdoc) 3-20

control lines 3-20
default 3-20

glossary D-1
hyphenate_word_ subroutine 4-14

List Processing 6-1

angle bracket escapes 6-3

commands
append_list (als) 6-13
copy_list (cpls) 6-14
create_list {(cls) 6-15
describe_list (dls) 6-16
display_Tist t ils) 6-18
expand_list (els) 6-19
merge_list (mls} 6-20
modify_list (mdls) 6-23
process_list (pls) 6-24
sort_list (sls) 6-27

. trim_list (tls) 6-29

field insertion 6-4

files 6-2
lister 6-3
listform 6-3
listin 6-2

functions 6-1

sample files 6-8

selection 6-6

sorting 6-5

list_dict_words (ldw) command 4-15

AZ93-02

list_symbols (Isb) command 5-14
locate_words (lw) command 4-18
merge_list (mis) command 6-20
metacharacter table (compose) A-1
modify_list (mdls) command 6-23
option_symbols (osb) command 5-15

print_symbols_path (psbp) command 5-17

print_wordlist (pwl) command 4-20
process_compout (pco) command 3-28
process_list (pls) command 6-24

reference to_commands/subroutines by function

Dictionary _B-l
%1%roces}s3m B-3
Vgordpsr/geB—l

retain_symbols (rsb) command 5-18
revise_words (rw) command 4-22
show_symbols (ssb) command 5-19
sort_list (sls}) command 6-27

speedtype 5-1

commands
add_symbols (asb) 5-7
change_symbols (csb) 5-10
delete_symbols {dsb) 5-11
expand_symbols (esb) 5-12
find_symbols (fsb) 5-13
list_symbols (Isb) 5-14
op,m(tm__syrgbfls (cggb)(agl 517
rint_symbols_pa -
?ef,ain__gymboﬁ%rsb) gs_@ .

~ show_symbols (ssb) 5-19

use_symbols (usb) 5-20

features 5-1

i-3

speedtype (cont.)

escapes 5-4
expansion process 5-3
prefixes 56
suffixes 5-5 .
symbol dictionaries 5-2

speedtyping 5-1

text ségment 5-1

text segments 5-1

tokens 5-1

subroutine
hyphenate_word_ 4-14

syntax C-30
definitions C-36
device table C-39
font table C-38
global values C-30
media character table C-34
media tables C-35
size table C-39
symbol declarations C-34
view tables C-36

text formatter 3-20
see formatter

trim_list (tls) command 6-29
trim_wordlist (twl) command 4-24
use_symbols (usb) command 5-20

WORDPRO
definition of 1-1
glossary- PD-1-

Wordpro_commands 3-1
compdv 3-2
compose {(comp 3—%
compose_index{cndx %-8
convert_runoff (cv_zf) 3-11
disp‘.ag_eomp_dsm {ddsm) 3-12
expand_
format_document (fdoc) 3-20
process_compout (pco) 3-28

device_writer (xdw) 3-18

AZ98-02

T —— ——— —

e e e e e — — — - CUT ALONG LINE —

e o ———— —————— — —— — — — o — o — o — — o —

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

MULTICS WORDPRO
TITLE REFERENCE MANUAL

ERRORS IN PUBLICATION

ORDER NO.

AZ98-02

DATED

JULY 1983

. SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION.

r-\ Your comments will be investigated by appropriate technical personnel
and action will be taken as required. Receipt of all forms will be
acknowledged; however, if you require a detailed reply, check here.

FROM: NAME

TITLE

COMPANY

ADDRESS

DATE

PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service will not deliver stapled forms

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 39531 WALTHAM, MA02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATIONS, MS486

e

Honeyw

T — — — —}——— — — — — — — . CUT ALONG L

————————————— e e e e s

—— —— — =

FOLD ALONG LINE

FOLD ALONG LINE

Together, we can find the answers.

Honeywell

ne;vnvell Information Systems
U.S.A.: 200 Smith St., MS 486, Waitham, MA 02154
Camda 155 Gordon Baker Rd Wllowdale ON M2H 3N7
U '\ \Jlb‘dl VVUD[nU DIUI llll)lu, I\Illuulb'wl | V'O :7IJI'| llﬂly \3‘ Vld I'I‘IGIII, CU IC‘V l‘V‘IIIdII
Mexico: Avenida Nuevo Leon 250, Mexico 11, D.F. Japan: 2-2 Kanda Jimbo-cho Chiyoda-ku, Tokyo
Australia: 124 Walker St.. North Sydney, N.S.W. 2060 S.E. Asia: Mandarin Plaza, Tsimshatsui East, H.K.

39364, 5C1283, Printed in U.S.A. AZ98-02

