
SERIES 60 (LEVEL 68)

MULTICS COMMUNICATION SYSTEM
SYSTEM DESIGNERS' NOTEBOOK

SUBJECT

Description of the Multics Communication System

SPECIAL INSTRUCTIONS

This System Designers' Notebook (SDN) completely supersedes ANa5, Rev. o.
The manual has been extensively revised to reflect software changes incor­
porated in the current Multics Software Release, and therefore does not include
change indicators (asterisks or change bars).

This SDN describes certain internal modules constituting the Multics System. It
is intended as a reference for those who are thoroughly familiar with the
implementation details of the Multics operating system. Interfaces described
herein should not be used by application programmers or subsystem writers;
such programmers and writers are concerned with the external interfaces only.

As Multics evolves, Honeywell will add, delete, and modify module descriptions
in subsequent SDN updates. Honeywell does not ensure that the internal
functions and internal module interfaces will remain compatible with previous
versions.

SOFTWARE SUPPORTED

Multics Software Release 7.0

ORDER NUMBER

ANa5-01 October 1979

Honeywell

Preface

Multics manuals are intended for use by Multics system maintenance per­
sonnel, development personnel, and others who are thoroughly familiar with
Multics internal system operation. They are not intended for application pro­
grammers or subsystem writers.

The manuals contain descriptions of modules that serve as internal inter­
faces and perform special system functions. These documents do not describe
external interfaces, which are used by application and system programmers.

This manual contains a description of the software that makes up the Multics
Communication System. This description is by no means complete in all its
details; for a thorough understanding of Multics Communication System, or of
any particular area within this system, this manual should be used for reference
in conjunction with the source of the relevant programs.

Sites that intend to add specialized communication protocols to the system,
or to modify existing protocols for special application, should pay particular
attention to Section 12, which includes a description of the macro language in
which FNP control tables are written and instructions for incorporating a
new set of control tables into the FNP software.

© Honeywell Infonuation Systems Inc., 1979 File No.: ILl3

In addition to this manual, the volumes of the Multics
Programmers' Manual (MPM) should be \ referred to for details of
software concepts and organization, external interfaces, and for
specific usage of Multics Commands and subroutines'. These
volumes are:

MPM Reference Guide, Order No. AG91

MPM Commands and Active Functions, Order No. AG92

MPM Subroutines, Order No. AG93

MPM Subsystem Writers' Guide, Order No. AK92

MPM Peripheral Input/Output, Order No. AX49

MPM Communications Input/Output, Order No. CC92

iii AN85-01

Section 1

Section 2

CONTENTS

Overview of Ring 0 Multics Communication
System ..••••••••••

Introduction • • • . • • • • • • • • •
Responsi b il i ties of the CS • •
Structure of the CS Portion of

Multics Communication System.
FNP Interface Modules ••
User Interface Modules ••

tty write Module ..••••••
tty=read Module ••••
tty index Module • •

Multiplexing Interfaces
Some Standard Sequences .••.

Channel Initialization ••
Dialup. • •••
Output. • •••
Input . .•••
Quit •••
Hangup .••

Hardcore Data Bases • .
Data Bases Used for Communication

with FNP.
dn3:55 data
dn355-mailbox ••
tty b~f •••••••

tty buf Header ••
Circular Buffer •
Logical Channel Table (LCT)
Dynamic Portion of tty_buf ••

Free Block . • • . • • • • .
Data Buffer •.••.•••.
Per-Channel Control Blocks •

Wired Terminal Control Block

Page

1-1
1-1
1-1

1-2
1-2
1-3
1-3
1-3
1-3
1-4
1-4
1-4
1-4
l-5
1-5
1-5
1-6

2-1

2-1
2-1
2-1
2-2
2-3
2-3
2-3
2-4
2-4
2-5
2-5

(wTCB) •••••.•.•.• 2-5
Physical Channel Block (PCB). 2-6

Pseudo-DCWs. • . • • • 2-6
Delay Queue Entries. . • . • . • 2-6

tty area • • • . • • • . • . • • • •. 2-6
Iogical Channel Name Table (LCNT) • 2-7
Terminal Control Block (TCB). 2-7

tty_tables 2-7

iv AN85-01

Section 3

Section 4

Section 5

CONTENTS (cont)

Multiplexing ••••••••
Multiplexed Channels • •

Basic Design •••
Multiplexer Types •••••
Calls and Interrupts .
channel manager AND
priv channel manager ••••••••.

Entries to-channel manager ••
Interrupt Types-and Associated
Data. • • • • • • • • • • • • •

Entries in priv channel manager • •
Multiplexer Transfer Vector -- cmtv ••
Programming Considerations -- Wired

Code. • • • • • • • • • •
Multiplexer Initialization ••

Database Initialization •••
Loading • • . • • • • • •
Subchannel Initialization •

Crashing and Reinitialization.
Examples of Call and Interrupt Paths •

FNP Interface Module ••••••••••.
Calls and Interrupts • • • •
Mailbox Transactions • • • • • • • • •

Transactions Initiated by the FNP
FNP-Controlled Mailboxes •
Processing the ReD • • • •
send output Operation Code •
Short Input -- input in mailbox.
Long Input -- - -

accept direct input . . •
Handling the accept input
Interrupt • • • • ~ •

Transactions Initiated by the CS •.
Output Data •••••••••
Global Operations.. '..

Locks ..•••••
Delay Queuing •••••••••••

Interfaces to the User Ring • • • • • • .
Output Conversion - tty write ••

Preliminary Conversion ••.••
Formatting...... • .• •..• • •
Translation • • • • • • • . •
Buffer Allocation and Copying
Space Allocation and Character

Counting • • • • . • • •
Input Conversion - tty read.

Space Management •• -
Copying • • • • • • • • • •

v

Page

3-1
3-1
3-1
3-2
3-3

3-3
3-4

3-11
3-14
3-20

3-21
3-21
3-21
3-22
3-22
3-22
3-23

4-1
4-1
4-2
4-2
4-2
4-2
4-3
4-3

4-4

4-4
4-5
4-5
4-6
4-6
4-7

5-1
5-2
5-3
5-4
5-5
5-5

5-6
5-7
5-9
5-10

AN85-01

Section 6

Section 7

Section 8

CONTENTS (cont)

Page

In 'rawi' Mode ••••••• 5-10
5-10

• • • • 5-11
5-11

Not In 'rawi' Mode.
Translation • • • • • •
Canonicalization ••••••
Erase and Kill Processing •
Escape Sequence Processing.
Echo Negotiation ••••••

• • • • 5-13

Utility Functions - tty index ••
Initializing a Channel ••.•
Terminating a Channel • . . •
Assigning a Channel to a Process ••
Assigning an Event Channel •••.•
Separating a Channel from a Process
Ascertaining the State of a Channel
Aborting Input and/or Output •.
Control Operations ••.••.•••

read status Operation.
write status Operation
printer off Operation.
printer-on Operation . • . .
set terminal data Operation.
wru-Operation .•..
Modes •.•.••.•

Privileged Operations ..

5-14
5-16
5-17
5-17
5-17
5-17
5-18
5-18
5-19
5-19
5-19
5-20
5-20
5-20
5-21
5-21
5-22
5-22
5-23

dump fnp Operation • . • • • •
patcn fnp Operation ••

• -- 5-23

fnp break Operation ..
enable breakall mode Operation .
disable_breakalI_mode Operation.

Hardcore Utilities ••..
Locking and Queuing •• -.
Space Management

Allocation •••
Freeing . • • • •
Needed Space. •• • ••••••

Assembler Language Utilities
tty util Module .•••.
dn3~5_util Subroutine • • • . • • •

5-23
5-24
5-24
5-24

6-1
6-1
6-3
6-3
6-4
6-4
6-5
6-5
6-5

Initialization of Hardcore Data Bases.. 7-1
Preliminary Initialization • 7-1
LCT Initialization ••• ' • • 7-2
Multiplexer Initialization 7-2
Channel Initialization • 7-2

Tools and Debugging Aids ..
Tools. . . • .- • .•..

tty meters ..
tty:dump •.

vi

8-1
8-1
8 1
8-2

AN85-01

Section 9

Section 10

Section 11

CONTENTS (cont)

tty analyze • . 0 •

Syserr-Messages ••.•
FNP Crashes • . . •
Other FNP Messages ..

Crashes Generated by Multics
Communication System. •

Lock Errors . . . • . .
Free Space Errors . • • .

Overview of the FNP Software ••.
Responsibilities of the FNP ..
Structure of FNP Multics

Communication System. • . .
Data Bases. •••.

Channel Management . • . .
Interrupts and Scheduling .•
Data Paths • .

Input • .
Output ...•

Page

8-4
8-6
8-6
8-6

8-6
8-7
8-7

9-1
9-1

9-1
9-3
9-3
9-3
9-4
9-4
9-4

FNP Data Bases. . . 10-1
System Communications Region . • 10-1
10M Table .•• " 10-1
Hardware Communications Regions. . 10-3
Software Communications Regions~ . 10-3

LSLA Software Communications Region 10-4
HSLA Software Communications Region 10-4

LSLA Table . • • • • • . 10-4
HSLA Table •....•.•...... 10-5
Terminal Information Block . . • 10-7
TIB Table. 10-7
Buffer Pool. • • . • . . 10-7

Free Block. • • . • 10-7
Input/Output Buffer. • . 10-7
Echo Buffer .•. 0 0 • 10-8
DIA Request Queue • • • 10-8
Error Message Queue ..•••. 10-9
Delay Timing Tables •• 10-9
Other Blocks. • . • . • •• .• 10-10

Scheduler • 0 0 • • • •

Master Dispatcher ..•
Secondary Dispatcher
Timer Management . .
Elapsed Time Metering.

Idle Time Metering.
Instruction Counter

vii

.
Sampling. .

11-1
• • 11-1

11-3
· 11-4
• 11-7
· 11-7

• • 11-7

AN85-01

Section 12

Section 13

CONTENTS (cont)

Page

Terminal And Line Control •••••••• 12-1
Organization of the Control Tables •• 12-1

Division Into Modules • • • 12-1
Tables Included in the
control tables Module ••••••• 12-2

Header ~ ~ ~ ~ ~ ~ • •. •• 12-2
Device Info Table. • •. •• 12-3
Device-Type/Speed Table ••••• 12-5
Addressing Strings • • ••• 12-5

Control Table Interpreter. • . • • . • 12-5
Timeout • • • e e 8 12-6
Out"put. • • • • 12-6
Test-state. • • • • • • • 12-6
Status. • • • • • 12-6

Status And Control Bits •••••••• 12-7
Status Bits. '. • • 12-7
Control Bits. • • . • 12-9

First Word • • • ••.•• 12-9
Second Word. . • •.••• 12-10

Op Blocks. • • . . . 12-10
TIB Extension Addressing. . . 12-10
Op Block Summary Lists •••• e e 0 12-11
Description of Scan Control Strings 12-39

Providing Additional Control Tables .. 12-43
Pseudo-ops and Data-defining Macros 12-44

Listing Controls .•••.••. 12-44
External Symbol Definitions ••. 12-44
Internal Symbol Definitions ... 12-45
Character Control Tables 12-45
Suppression of Op Block

Expansion • . • 12-46
Interaction with the Main Control
Tables Module •••••.••..• 12-46

Line Types ••.••••.•.• 12-46
Answerback Reading ••.•.•. 12-47
Useful Labels in the Main Module 12-47

Programming Considerations.. • 12-47
Requests from the CS . • 12-48
Output from the CS .• • .. 12-48
Input from the Channel . •. 12-48
Abnormal Conditions on the

Channel . • • • • • • • •. 12-49
Line Control and Line Status .• 12-49
User-Ring I/O Modules. • 12-50

Example of a Control Tables Module. 12-50

FNP Hardware Managers . • •
D I A. • • • • • • • • • •

. 13-1

. 13-1
Operation of the DIA ••.•.... 13-i
DIA Transactions. . .. 13-3

viii AN85-01

Section 14

Section 15

Section 16

CONTENTS (cont)

Page

Queues •••••••••••• 13-4
Interrupt Handlers ••••••••• 13-5
Summaries of DIA Transactions ••• 13-5

Transactions Initiated by the CS 13-5
Transactions Initiated by the

FNP • • • • • • • •
Input Data • • • • • •

LSLA . • . . • • • • • •

• 13-6
13-7
13-9

• • 13-9
• 13-10
• 13-10
• 13-11

Operation of the LSLA • •
Interrupt Processor • • •

Transmit Status Handling •
Receive Status Handling.
Abnormal Status Handling • 13-11

•••• 13-12 Output Frame Generator.
Command Sub-ops • • • • •
Input Frame Processor • •
Echoing • . • • • • •

HSLA • • • • • • • • • •
Calls to hsla man • •
HSLA Status .-•••.•

• • • • • 1 3-1 3
• 13-13
• 13-15
· 13-15
• 13-16
• 13-17

Example of HSLA Processing ••. • • 13-17
13-18

• • • • • 13-19
• 13-20

CCT Management.
Echoing • • • .

Console •.••••

FNP Utility Functions
Space Management ~
TIB Address Calculation .•
Fault Processing •.•

• • 14-1
· • 14-1

· 14-2
• 14-2
• 14-3
· 14-3

10M Channel Faults .•
Metering . • • . • • • . •
Output Sub-Ops . . • • • • • • . • 14-4
Tracing ..•.••..•

Loading and InitializationQ
bind fnp Command • • •
load-fnp Su~routine. •
gicb-Rou~ine ••.• " ••
init Module ••.•••

• 14-5

• 15-1
· • 15-1

• 15-2
• . 15-4

· 15-5
· • 15-5 DIA Initialization ••

HSLA Initialization.
LSLA Initialization .

• • • . • 15-6

T I BIn i t i ali z at ibn>. • •
Completion of Initialization •.
Status Reporting •••

FNP Crash Analysis •••...••
How the FNP Crashes ••

• • 15-6
15-7

· . 15-1
· 15-8

· 16-1
• 16-1

Dumping the FNP ••••••
fdump_fnp_ ••

• 16-1
• • • 16-1

ix AN85-01

Section 17

Appendix A

Appendix B

Appendix C

Appendix D

CONTENTS (cont)

FD355 and DMP355 •••••
Obtaining A Printed Dump. .

Interpreting An FNP Dump • •

• 16-2
• • 16-2

16-2
Format of the Dump. • . • • 16-3
Crash Reason •••••. • • • • . • 16-4
Fault Identification~ ~
Machine Registers . . • •
Trace Table • • • . • • .
Tracing Subroutine Calls.
Other Useful Information •••

· . 16-5
· • 16-5

• • • . . 16-6
· 16-6
• 16-7

FNP-Related Commands ••..
Core Image Preparation .

map355 .•••••••
coreload •••

. . . • 17-1
• 17-1

• • . • • 17-1
• •• 17-2

Dump Analysis •• • • • • • 17 - 3

Mailbox Operation Codes
Operation Codes Sent from the CS to

the FNP • • • • • • • • • • • •
Operations Sent with a WCD 1/0

Command •••••••••..•
Operations Sent with a WTX 1/0

Command ••••••••••••
Operations Sent with an RTX 1/0

Command •••••••••.••
Operation Codes Sent from the FNP to

the CS.
Operations Sent with an RCD 1/0

Command. .• • •
Subtypes used with Alter Parameters
Operations ••••

Mode Changes •••
Other Subtypes ••

Command Descriptions~ •
coreload •••••
debug fnp, db fnp •••.•••

SeTecting aebug fnp Mode
Summary of debug fnp Requests ••

online dump 355, od-355 •
online-dump-fnp, od-fnp
tty_analyze~ tta .• - •••

FNP Memory Configurator •

Layout of FNP Memory ••••

x

A-1

A-1

A-1

A-6

A-6

A-7

A-7

A-9
A-9
A-10

B-1
B-2
B-3
B-3
B-16
B-21
B-22
B-24

C-1

D-1

AN85-01

Appendix E

Figure 3-1
Figure 3-2
Figure 13-1

CONTENTS (cont)

Pago

Automatic Baud Rate Detection • 0 • • •• E-1
Lead Control Selection of 1200 Baud. • E-1
Bit Sampling Selection of Other Baud

Rates . . • • • • . • • • . • • • •• E-1
Modems • • • • • • • • • • • • • • • • E-2

Modem Options Needed for Autobaud. E-2
Algorithm. • E-2

Notes • . • • • . • • • • . • . • . E-3

ILLUSTRATIONS

Possible Paths of write Call •.
Possible Paths of Interrupt . •
FNP DIA DCW Format•.•

xi

3-24
3-25

.• 13-2

AN85-01

SECTION 1

OVERVIEW OF RING 0 MULTICS COMMUNICATION SYSTEM

INTRODUCTION

The Multics Communication System is responsible for the
transmission of characters between the Multics virtual memory and
various user equipment (particularly terminals) connected by
means of telecommunications channels to the Front-End Network
Processor (FNP). The software constituting Multics Communication
System resides partly in ring zero of the central system (CS) and
partly in the FNP itself. Communication between the two
computers (the CS and the FNP) takes place over the Direct
Interface Adapter (DIA), a peripheral device of theFNP. A
Multics CS may be connected to up to four FNPs simultaneously.
The FNP for which Multics Communication System was origin~lly
designed was called the DATANET 355, which is why the strings
"355" and "dn355" appear in the names of many of the programs and
data bases described in this document.

This manual is intended to provide a general understanding
of the workings of Multics Communication System. For complete
details of implementation, the reader should examine the source
code itself.

Section 1 through Section 8 of this manual describe the
portion of Multics Communication System that is residen~ in the
CS; Sections 9 through 17 describe the portion resident in the
FNP. The appendices contain details of implementation such as
command descriptions, specific codes used in various contexts,
etc.

RESPONSIBILITIES OF THE CS

The primary responsibilities of the CS with respect to
communications are in the following areas:

1. The association of communications channels (e.g., the
data path to a user's terminal) with Multics processes;

1-1 AN85-01

2. dispatching input from the various communications
channels to the appropriate processes;

3. converting output
form suitable for
terminals);

supplied by Multics processes to a
sending to its destination (e.g.,

4. management of the ring a terminal I/O buffer space
(tty_buf);

5. multiplexing and demultiplexing the subchannels of a
concentrator channel;

6. management of the FNP, i.e., loading it at system
initialization time, recovering when it crashes, etc.

STRUCTURE OF THE CS PORTION OF MULTICS COMMUNICATION SYSTEM

The major components of the CS portion of Multics
Communication System are the FNP interface modules, three user
interface modules (tty_write, tty_read, and tty_index), and
interfaces between levels of multiplexing. Other components
include utility routines for the management of locks and buffer
space; initialization routines; and special subroutines used by
the user interface modules. Brief descriptions of the major
components appear below; all the components are discussed in more
detail in Sections 4-8. The multiplexing mechanism is described
in Section 3.

FNP Interface Modules

The standard FNP interface module is dn355; it is the only
program in the system that communicates directly with the FNP
(except for the routines that load and dump the FNP). If a
root-level multiplexer (see Section 3) other than a DATANET 6600
or DATANET 6670 running Multics Communication System is used, a
site-supplied module interfacing to this multiple~er would
replace dn355. Except as otherwise noted, the discussions in
this manual assume that the 'standard module is being used.

The dn355 module is invoked in either of two ways: it is
called from tty write and tty index through the FNP multiplexer
module, fnp multiplexer, to- send output data and control
information, respectively, to the FNP; and it processes
interrupts from the FNP when the latter sends input data or
control information. Control information is passed between the
FNP and the CS by means of a wired segment named dn355 mailbox;
user data is read into and written from a wired segm~nt named
tty_buf. These two segments are described in more detail in
Section 2.

1-2 AN85-01

In general, all I/O over the DIA is initiated by the FNP;
the only kind of I/O operation initiated by dn355 is an interrupt
that instructs the FNP software to read a submailbox of
dn355_mailbox. The details of this mechanism are spelled out in
Sections 4 and 13.

User Interface Modules

The three user interface modules, tty write, tty read, and
tty index, are called from the user ring through entrIes in the
gate hcs. User processes usually do this through the I/O switch
mechanism, i.e., by calling entries in iox which call entries in
the user-ring terminal I/O module, tty. The answering service,
which requires more direct control ov~r the channel, calls the
hcs entries directly. See also the User Ring Input/Output PLM,
Order No. AN57.

The uses of these three modules are explained briefly below;
they are described in more detail in Section 5.

tty_write MODULE

The tty write module prepares user-supplied output for
transmission to the FNP, places the output in tty buf, and calls
channel_manager$write to initiate the transmission. If there is
insufficient space in tty buf to hold all of the supplied output
at once, tty write only processes part of it; the caller
generally goes- blocked in this case, and receives a wakeup when
Multics Communication System is ready to handle the rest of the
output.

tty_read MODULE

A user process that is ready to handle terminal input calls
one of several entries in tty read, which copies whatever input
is available from the specified channel into a buffer supplied by
the caller. If there is no available input from the channel, the
caller normally goes blocked; a wakeup is sent when input
arrives from the FNP.

tty_index MODULE

The tt~ index module contains a variety of entries concerned
with control-of a channel or the data bases associated with it.
The tty index, tty attach, tty event, tty detach, and
tty_new_proc entries -deal with the associatTons between
communications channels and processes; the tty order and
tty abort entries are used to send control information about the
channel to the FNP and to modify the treatment by Multics
Communication System of input and output data.

1-3 AN85-01

Multiplexing Interfaces

Two call-switching ~odules, channel_manager and
priv channel manager, are used to pass calls and interrupts from
one level of multiplexing to the next. They are described in
more detail in Section 3.

The standard FNP multiplexer module, fnp multiplexer, is
called by channel manager to send output and control information
to an FNP. Its task is to format an FNP mailbox and pass it on
to dn355.

The interrupt handler for nonmultiplexed channels is
tty interrupt. This is the module that sends wakeups to user
processes when input arrives or output finishes.

SOME STANDARD SEQUENCES

Channel Initialization

As each FNP or concentrator channel is initialized, the
answering service takes control of each subchannel of the FNP or
concentrator as defined in the channel definition table (CDT) by
calling tty_attach for each one. After a channel is attached',
the answering service issues' a "listen" request by calling
tty order; tty order forwards the request to fnp multiplexer,
which encodes it into a mailbox to send to the FNP. -Once the FNP
has received a "listen" request for the channel, it is prepared
to accept dialups from the channel.

Dialup

When a connection is' established between the FNP and a
communications channel, the FNP sends a mailbox to the CS with
the operation code "accept new terminal" (see Appendix A for a
description of mailbox operation codes).

The dn355 module sends a mailbox back to the FNP saying
"terminal accepted," and forwards the interrupt to tty interrupt,
which wakes up the answering service to inform it of the dialup.
If a user then logs in from the newly-dialed-up terminal, a
process is created, and the answering service "lends" the channel
to this process by calling tty new proc, thus establishing the
new process as the "user" of the-cha~nel.

1-4 AN85-01

Output

When the user of the channel calls tty write, his data (or
as much of it as can be handled at once) is c~pied first into the
internal buffers of tty write (see Section 5); tty write then
performs the necessary conversions and translations,-copies the
data into tty buf (either starting an output chain for the
channel, or appending to an already existing one), and calls
channel manager$write. The call is eventually forwarded to
dn355, which sends a mailbox to the FNP telling it that there is
output for the channel, and also telling how much and where in
tty buf it is; the FNP then copies the output from tty buf into
FNP-mernory in preparation for transmitting it to the-channel.
Once the FNP has copied the output, dn355 frees the buffers
composing the output chain in tty_buf.

Input

When a "break" character (i.e., ,an end-of-message character,
typically a newline) is input, the FNP sends a mailbox informing
the GS that input of a certain length has been received over the
channel. If there is room for it, dn355 replies with a mailbox
instructing the FNP to copy the input into the circular buffer in
the header of tty_buf (see Section 2); once the FNP I/O has
completed, dn355 allocates an input chain in tty buf, copies the
da ta in to thi s cha in froln the c ircul ar buffer and send s an
"accept input" interrupt to tty interrupt. If the process using
the channel has unsuccessfully attempted to obtain input from the
channel (as .indicated by a flag in the wired terminal control
block (WTGB)), a wakeup is seflt to inform it that the input has
arrived.

When the user process calls tty read (either because it
received the wakeup, or simply because-it was ready to receive
input), the data is copied into the internal buffers of tty_read,
translated and converted appropriately, and copied into the
buffer supplied by the caller. Once it has processed the input,
tty_read frees the input chain buffers in tty_buf.

When a user presses the ATTENTION or INTERRUPT key at a
terminal, a "line break" condition is generated, which is
recognized by the FNP and reflected back to the GS. If the
channel is in "hndlqui til mode (wnich it usually is), dn355
jiscards any pending output currently in tty_buf intended for the
physical channel. The interrupt is then forwarded through
channel manager to tty interrupt, which discards any pending
input and output from or to the logical channel. If quits have
been "enabled" through the use of the quit enable control
operation (as they almost always are), tty Interrupt calls

1-5 AN85-01

pxss$ips wakeup int, which causes the "quit" condition to be
signall-ed in the user process.

Hangup

A hangup (disconnection of the channel) can be initiated by
the CS (as a result of a "hangup" control request sent through
tty order), in which case the FNP takes action to disconnect the
channel; or the FNP may detect that the channel has disconnected,
as a result of either deliberate action by the user of the
terminal or failure of the communications equipment. In either
case, once the FNP is satisfied that the connection has been
broken, it sends a mailbox with the operation code "terminal
disconnected." On receiving this mailbox, dn355 forwards the
interrupt to tty interrupt, which sends a wakeup to the "owning"
process (generally the answering service) and frees any input and
output chains associated with the chapnel. After receiving the
hangup wakeup, the answering service usually issues another
"listen" request so that the channel can be dialed up again.

If the channel that hung up is a multiplexed channel, the
interrupt handler for that channel sends a "crash" interrupt to
tty_interrupt for each currently active subchannel. These
interrupts are handled exactly like hangup interrupts, except
that tty interrupt does not wake up the owning process, since the
sUbchannels cannot be listened to again until the multiplexer is
reconnected. The interrupt handler for the major channel does
wake up the answering service, which then takes appropriate
action to reinitialize the major channel and its subchannels, as
described in Sections 3 and 1.

1-6 AN85-01

SECTION 2

HARDCORE DATA BASES

DATA BASES USED FOR COMMUNICATION WITH FNP

Two wired segments are used by the Multics hard core for
communication with, and storing information about, the various
configured FNPs. These segments are dn355 data, which describes
the FNP configuration and current status of each FNP, and
dn355 mailbox, which is used for direct communication with the
FNP as described in Section 4.

The format of dn355 data is described in the include fil~
dn355 data.incl.pI1. The- first part of the segment contains
general configuration information; the remainder consists of one
block of FNP-specific information for each configured FNP. This
block (called fnp info) is the multiplexer database for the FNP;
a pointer to the- corresponding block is kept in each FNP's LCT
entry (see the discussion of the LCT later in this section) and
passed to the various entries in fnp multiplexer. Included in
the fnp info block is a pointer to the- FNP's mailbox area and a
pOinter-to an array of physical channel blocks (PCBs) containing
information relevant to the individual" subchannels of the FNP.

dn355_mailbox

This segment contains a mailbox area for each configured
FNP. 300(8) words are reserved for each mailbox area.

Each mailbox area consists of an 8-word header followed by
twelve submailboxes. The submailboxes are· used for individual
communications between the FNP and the CS. The first eight
submailboxes are eight words each, and are used for transactions
originating in the CS. The remaining four submailboxes are 28
words each, and are used for transactions originating in the FNP.
See Section 4 for further information on the use of submailboxes.

2-1 AN85-01

The formats of the mailbox header and the submailboxes are
described in the include file dn35,_mailbox.incl.pl1. The
mailbox header includes the following items: the peripheral
control word (pew) used to send interrupts to the FNP over the
DIA; an array of flags indicating which CS-controlled
submailboxes are currently in use; and a "terminate interrupt
multiplex word" (timw) used by the FNP to indicate that it has
processed a particular submailbox. Each bit that is on in the
timw corresponds to a submailbox used by the FNP since the last
time dn355 examined it. The mailbox header also contains two
words of "crash data" that are filled in by the fault handler of
the FNP when the FNP crashes, giving the type of fault that
caused the crash, the FNP instruction counter at the time of the
fault, and, if applicable, encoded information enabling dn355 to
find an appropriate error message in dn355 messages (see
Section 8). -

Each subwailbox contains an I/O command and an operation
code (opcode). The I/O command indicates which of four classes
of operations the submailbox specifies; the opcode indicates the
specific operation. The four possible I/O command values are:

1 = read control data (rcd):
control information being passed from the FNP to the CS.

2 = read text (rtx):
terminal input being passed from the FNP to the CS.

3 = write control data (wcd):
control information being passed from the CS to the FNP.

4 = write text (wtx):
terminal output being passed from the CS to the FNP.

The opcodes are summarized in Appendix A.
commands are defined in mailbox_ops.incl.pl1.

Opcodes and I/O

A submailbox may also contain additional information
describing the operation in detail. The meaning of this
additional information varies according to the opcode. Each
submailbox includes in its low-order 18 bits a checksum which is
the sum of all the 9-bit bytes in the remainder of the
submailbox.

, " ~" -

The wired segment tty buf is used by all portions of the
hard core communications system. It contains information of
general interest to Multics Communication System, the control
blocks associated with each communications channel, and the pool
of free spaoe in which input buffers are allocated~

2-2 AN85-01

Its size can be set by means of a PARM TTYB card in the
configuration deck, e.g.:

PARM TTYB 8192.

The default size is 5120 words (5K).

The layout of tty_buf is as follows: the first part is a
header, containing information about the current state of the
communications system and a variety of metering information; then
comes a circular buffer into which terminal input is written by
the FNP; following this is the logical channel table (LCT),
allocated during initialization. The remainder of the segment is
free space, in which are allocated data buffers, various control
blocks and delay queues.

tty_buf Header

The format of the tty buf header is described in the include
file tty buf.incl.p11. It contains control words giving the
origin and length of the free space pool, the size of the
circular buffer, and the address of the LCT. It ~lso is used to
store a variety of metering information relating to Multics
Communication System, which is copied out as needed by the
tty meters command. The first word of the tty buf header is a
lock used by tty space man to ensure that no -two processors
attempt to update the free space pool at the same time.

Circular Buffer

The circular buffer (also called the circular queue) is a
buffer in which long input messages are stored directly by the
FNP. (Short messages are sent in submailboxes; see Section 4
for more information.) Its size may be set by a PARM TTYQ card
in the configuration deck, eag.:

PARM TTYQ 1024.

The default size is 256 words. The circular buffer cannot be
smaller than 256 words.

Logical Channel Table (LCT)

The logical channel table (LCT) consists of a
array of LCT entries (LCTEs). There is an LCTE for
(at each level of multiplexing) defined in the CDT.
allocated in tty buf at system initialization
entries may be -allocated in case the number
channels is to be increased while the system is

2-3

header and an
every channel

The array is
time; spare

of configured
running. The

AN85-01

number of such spare entries is determined by the
spare channel count keyword in the CMF; the default is 10. The
format of the-LCT is described in the include file lct.incl.pI1.

The LCT header contains the size of the array of LCTEs, a
pOinter to the logical channel name table (LCNT), which is
discussed later in this section, and a global lock for the delay
queues (see the discussion of locking and queuing in Section 6).

The position of a channel's LCTE in the LCTE array is that
channel's device index (devx), which is the number used
throughout ring zero to identify the channel. The contents of an
LCTE include: the "multiplexer type" of the channel (e.g., FNP,
"tty" or nonmul tiplexed channel, etc.); a pointer to the
database associated with the channel; the devx of the channel's
parent mul tiplexer or "major channel"; the subchannel of the
major channel that this channel represents; the devx of the
physical channel (i.e., subchannel of an FNP) of which this
channel is a descendant (which is the same as the channel's own
devx if the LCTE is that of a physical FNP channel); a lock used
to ensure that the LCTE is never modified by more than one
process at a time; and various flags. An entry-in-use flag is
used to indicate whether the LCTE is currently valid; this flag
is turned on when the channel is initialized, and turned off when
it is terminated. (See the discussions of multiplexing in
Section 3 and initialization in Section 7 for more details.)

Tne information in the LCTE is used by channel_manager
(described in Section 3) to determine what multiplexer module to
forward calls to, and to enable it to identify the multiplexer
channel and subchannel to the called entry.

Dynamic Portion of tty_buf

The remainder of tty buf is allocatable space, which may be
used for any of the following purposes:

• free block
• data buffer (input or output)
• per-channel control block
• output pseudo-DCW list
• delay queue entry

FREE BLOCK

A free block is a contiguou5 block of any even number of
words that is available for allocation by tty space man (see the
discussion of space management in Section 6). It-has a header
that contains its size in words and the offset in tty buf of the
next free block. Free blocks are chained together Tn order of

2-4 AN85-01

increasing address; a word in the tty buf header contains the
offset of the first free block in the chain. Adjacent free
blocks are combined into larger blocks as they become free.

DATA BUFFER

A data buffer contains either input characters that have
come from a channel or output characters that are to be sent to a
channel. The input or output for a particular channel are
organized into chains of such buffers (called input chains and
output chains). Eacn buffer in such a chain is a block whose
size is a multiple of 16 words, up to a limit of 128 words. The
first word of a buffer is a control word containing the offset of
the next buffer in the chain, a size code indicating the size of
the buffer, the tally of valid characters actually present in the
buffer, and some flags. The remainder of the buffer contains
data charaters. The size code has a value between 0 and 7
inclusive, and is one less than the size of the buffer in
multiples of 16 words; in other words, a code of 0 indicates a
size of 16 words, a code of 1 indicates a size of 32 words, and a
code of 7 indicates a size of 128 words. The format of a data
buffer is described in the include file
tty_buffer_block.incl.pI1.

PER-CHANNEL CONTROL BLOCKS

Per-channel control blocks are allocated as needed in
tty_buf when each channel is initialized. The format of such a
control block depends on the type of the channel. Two standard
formats are described here: the wired terminal control block and
the physical channel block.

Wired Terminal Control Block (WTCB)

The wired terminal control block (WTCB) is the primary
database for a nonmultiplexed channel; the database pointer in
the LCTE of such a channel points to its WTCB. The WTCB is used
by tty read, tty write, tty index, and tty interrupt. Its format
is described in the include-file wtcb.incl:pl1.

The WTCB contains all information about the current state of
the channel that is ever needed or modified by tty interrupt,
which cannot reference unwired data. This information includes
the identification of the "owning" and "user" processes for the
channel, and the event channels used for waking up these
processes; the baud rate and line type of the channel, which are
set at dialup ~ime; the offsets of any currently-active input
and output chains; and various flags. The WTCB also contains a
pointer to the unwired terminal control block (TCB), described
later in this section.

2-5 AN85-01

Physical Channel Block (PCB)

The physical channel block (PCB) contains information
specific to a physical subchannel of an FNP. It is used by
fnp_multiplexer and dn355. The format of the PCB is described in
the include file pcb.incl.pI1.

The PCBs for the subchannels of an FNP are allocated in a
contiguous array when the FNP is initialized; the fnp info
block for each FNP contains a pointer to the beginning of the PCB
array for that FNP. The subchannel number of each physical
channel is the index into the PCB array of that channel's PCB.

The PCB contains flags describing the current state of the
physical channel, and pointers to any output chain that has been
passed to fnp_multiplexer but not yet sent over the DIA.

PSEUDO-DCdS

An output "pseudo-DCW" list is used to send an FNP the
addresses and tallies of the individual buffers in an output
chain. An output chain is described by an array of up to 16
pseudo-DCWs in a single allocated block. Each pseudo-DCW
occupies one word, containing the absolute address of an output
buffer and the number of characters in the buffer.

DELAY QUEUE ENTRIES

The delay queue for a channel contains entries describing
interrupt events for that channel that could not be processed
because the channel's LCTE was locked at the time of the
interrupt. These queue entries are processed when it is time to
unlock the LCTE (see Section 6 for details). A delay queue entry
contains the offset in tty buf of the next entry in the channel's
queue (if any) and the interrupt type and data that were passed
to channel manager$interrupt (see Section 3). If a delay queue
exists for a channel, the offsets of its first and last entries
appear in the channel's LCTE.

tty area - .
The unwired ring-zero segment tty_area is used for control

blocks that are not ne~ded by any-wired' pro~rams. "It i-s managed
by means of the PL/I area mechanism.

Two types of databases are allocated in tty area: the
logical channel name table (LCNT) and (unwired) termTnal control
blocks (TCBs).

2-6 AN85-01

Logical Channel Name Table (LCNT)

The LCNT is an array of channel names. Each name in the
LCNT occupies the same relative position as the named channel's
LCTE in the LCT. Thus the LCNT can be used to derive a channel's
name from its devx or vice versa. The format of channel names is
described in MPM Communications Input/Output, Order No. CC92.

Terminal Control Block (TCB)

There is a TC8 for each initialized nonmultiplexed channel.
It contains information used at call time for the conversion and
translation of input and output data as described in Section 5.
The format of the TCB is described in the include file
tco.incl.pll. The TCB for each channel is found by following a
pointer in the channel's WTCB (see above).

The TCB includes pointers to the various conversion and
translation tables kept in tty tables (discussed below). For
each type of table, two relative pointers are kept in the TCB: a
current table pointer and a default table pointer. The default
table pointer is used to reset the current table to the default
for the channel's terminal type. If the default table pointer is
-1, the current table is the default table; otherwise, the
current table has been set explicitly, and the default table is
made the current table if an order is made to set the table to
its default. value.

tty_tables

The unwired segment tty tables contains all the tables to be
used in converting terminal input and output between the form
stored internally and the form in which it is received from or
sent to the terminal. These tables are supplied by user-ring
programs by means of the set input translation,
set output translation, set input conversion,
set=output=conversion, set_special, and set delay orders.

The tty tables segment is managed by a utility program named
tty tables mgr, which is called by tty index. The segment
consists of a header and an area in which the tables are
allocated. Each table in the area is preceded by a descriptor
that identifies the table type and links tables of that type in a
list. Six table types are supported:

1. input translation

2. output translation

3. input conversion

2-7 AN85-01

4. output conversion

5. special

6. delay

Tne tty tables header contains a relative pointer to the first
table 07 each type. The format of the tty tables header and the
table descriptor are described in - the include file
tty tables.incl.pll; the formats of the tables themselves are
described in the include file tty converteincl~p11; the tables
are discussed in more detail in the description of the tty 1/0
module in MPM Communications InputlOutput, Order No. CC92. -

The tables are shared as necessary, i.e., if two channels
are using identical tables of any type, only one copy of the
table is kept in tty_tables. Accordingly, a reference count is
kept in the table descriptor to indicate how many TCBs contain
pointers to the table; a table is not freed until the reference
count goes to zero.

2-8 AN85-01

SECTION 3

MULTIPLEXING

MULTIPLEXED CHANNELS

The device associated with a physical FNP channel may be
some kind of concentrator that controls multiple terminals
(examples of such concentrators include the Honeywell VIP 7700
series and the IBM Model 3270 series). Multics Communication
System is capable of treating each such terminal as a separate
lo~ical channel. In this case, the channel occupied by the
concentrator is called a multiplexed channel, and the
concentrator is referred to as a multiplexer; the logical
channels associated with the individual terminals are called
subchannels of the multiplexer. The multiplexed channel and its
subchannels must all be defined in the CUT. A subchannel of a"
multiplexer might itself be multiplexed. Such multiplexing can
be carried to any number of levels.

Since an FNP controls many channels, but communicates with
the central system over a single channel (the DIA), the FNP may
be regarded as a multiplexer. Frequent reference is made in this
manual to a channel's multiplexer or "parent multiplexer" (i.e.,
the multiplexer of which it is a subchannel); when the channel
referred to is a physical FNP channel, the parent multiplexer is
the FNP. A channel's parent multiplexer is also sometimes called
its "major channel."

Basic Design

The basic design for ring 0 demultiplexers centers around a
database called the logical channel table (LCT) and a class of
programs called multiplexer modules.

The LCT contains one entry for every channel and subchannel
managed by Multics Communication System. An LCT entry is
identified by a device index (devx). LCT entries correspond to
various levels of multiplexing. Starting at the bottom level,
there is one LCT entry for each FNP. At the next level, there is
one LCT entry for each physical channel on each FNP. If one of

3-1 AN85-01

these physical channels is multiplexed, then there is one LeT
entry for each subchannel. A subchannel itself can be
multiplexed, in which case there is yet another level of
subchannels.

A separate multiplexer module, or group of modules, is
required for each type of multiplexed device. Each such module
must provide a standard set of interfaces that are invoked
through a call switch named channel manager. Some of these
interfaces are invoked in response to user calls while others are
invoked in response to interrupts. Call-side operations are
routed through a series of transitions from subchannel to major
channel whereas interrupts follow the reverse path. At each
transition, channel_manager is invoked to select the appropriate
multiplexer module as determined by the channel type of the
target channel. In the interrupt case, the multiplexer module is
also referred to as an interrupt handler.

Taken together, the LCT and the multiplexer modules yield a
systematic approach to handling arbitrary levels of multiplexing.
Each call-side operation propagates downward through one or more
levels of multiplexing until reaching the FNP multiplexer. Each
interrupt-side operation propagates upward through one or more
levels of demultiplexing until reaching a nonmultiplexed logical
channel.

MULTIPLEXER TYPES

Each logical communications channel has associated with it a
channel type or "multiplexer type", which is specified in its
entry in the channel definition table (CDT) (see the Multics
Administrators' Manual Communications, Order No CC75, for a
description of the CDT). Honeywell supplies multiplexer modules
to support several types of multiplexers, and others can be added
by sites to suit their individual needs (which requires
modifications and additions to the supervisor). The name of a
multiplexer module is associated with the multiplexer type in a
transfer vector module, cmtv, which is described later in this
section. The following types are reserved for system use:

tty
mcs

ibm3210
vip1160

(nonmultiplexed channel)
(DN6600 or DN6610 FNP using Multics Communication
System protocol)
(IBM Model 3270 controller)
(Honeywell VIP1760 and 1700 series)

In addition, the types user1, user2, user3, user4, and user5 are
available for site-supplied multiplexer modules.

3-2 AN85-01

The remainder of this section describes the general
structure of multiplexing in ring 0, including the interfaces to
be used and the conventions to be followed in writing additional
multiplexer modules.

CALLS AND INTERRUPTS

The ring 0 portion of Multics Communication System is driven
both by calls from outer rings (for output and control
operations) and by interrupts from the FNP (for input and status
reporting). Calls enter ring 0 at the "leaf node" level, i.e.,
at the level of nonmultiplexed terminal channels; entries that
are called directly through gates into ring 0 are all in the
modules tty read, tty write, and tty index (with the exception of
a few privIleged operations performed directly on multiplexed
channels, described later in this section). If the operation
requested by the caller requires the involvement of the major
channel, the called module calls one of the standard entries in
channel manager, which forwards the call to the corresponding
entry i~ the appropriate multiplexer module. (These entries are
described later in this section.) The multiplexer module may, in
turn, pass the calIon to its major channel (again through
channel manager), and so on, until eventually the call reaches
the multiplexer for the physical channel; for channels of a
standard FNP (DN6bOU or DN667U), this module is fnp_multiplexer.

Interrupts sent by the FNP over. the DIA are handled by
dn355$interrupt. This entry figures out which sub channel of the
FNP. (if any) the interrupt is intended for, and calls
channel mana5er$interrupt in order to pass the interrupt to the
approprIate handler for the subchannel. The arguments passed
include the interrupt type and any associated data. If the FNP
subchannel is multiplexed, and the interrupt is for one of its
subchannels, the interrupt handler calls
channel manager$interrupt again, and thus the interrupt is passed
along until it reaches tty interrupt, the interrupt handler for
nonmultiplexed channels. The tty interrupt module takes the
action appropriate to the interrupt type, which often includes
sending a wakeup to the process that has the channel attached.

channel_manager AND priv_channel_manager

The call-switching function of channel manager is actually
divided between two Inodules, channel manager itself and
priv channel manager~ The latter is - used to forward
initIalization and special-purpose control calls, most of which
are applied to the multiplexer channel itself rather than one of
its subchannels.

3-3 AN85-01

Entries to channel_manager

In any given multiplexer module, there is an entry
corresponding to, and having the same name as, each entry in
channel_manager. The arguments to channel manager are passed
through to the multiplexer module, with the exception of the
devx, which channel manager translates into a database pointer
and a subchannel number. The database pOinter points to a
database whose format and use depends on the particular
multiplexer type; each multiple~er maintains one such database
for each major channel of its type. This database is constructed
by the init multiplexer entry of the multiplexer (see below),
which returns a pointer to the database. This pointer is kept in
the major channel's LeT entry.

The following is a summary of the entries to
channel_manager, including a brief description of the purpose of,
and the arguments to, each entry. These entries are all declared
in the include file channel manager dcls.incl.pll. Unless
otherwise noted, for calls to multiplexer modules, .the devx in
each entry is replaced by two input arguments: the database
pointer and the subchannel number.

Entry: channel_manager$read

This entry is called to obtain any input for the specified
subchannel that is being hel9 by the multiplexer. Such input is
passed to the caller in chained buffers allocated in tty buf, as
described in Section 2; the number of characters in each buffer
is provided in the tally field of the buffer. In general, a
multiplexer module need not call channel manager$read unless an
input_available interrupt (see below) has been received.

Usage

declare channel manager$read (fixed bin, ptr, bit(1)
aligned, fIxed bin(35));

call channel manager$read (devx, chain_ptr, more_input_flag,
cOde); -

where: ,."

(Output)

is a pointer to the first buffer in the chain. If no input
is available, chain ptr is set to null.

3-4 AN85-01

code

(Output)

is set to "1"b if there is additional input for the
subchannel that has not returned in the input chain.

(Output)

is a standard system status code.

Entry: channel_manager$write

This entry is called to send output to the specified
subchannel. The output is passed in a buffer chain like the one
described for the read entry above. The multiplexer entry may
perform further processing on the output data if necessary (for
instance, to put it into a format recognized by the multiplexing
device). The multiplexer entry may, for whatever reason, accept
all, part, or none of the output; this is reflected by the
returned value of the chain_ptr.

Usage

NOTE: A multiplexer module should never call
channel manager$write for a particular multiplexer
channel- unless a send output interrupt (see below)
has been received for that channel.

declare channel manager$write (fixed bin, ptr, fixed
bin(35»; -

call channel_manager$write (devx, chain_ptr, code);

where:

chain ptr (Input/Output)

code

is a pointer to the first buffer in the output chain. If
all the output in the chain is accepted by the write entry
of the multiplexer, chain ptr is set to null; otherwise it
is set to the address of the first buffer of the remainder
of the chain. In the latter case, the chain is not
guaranteed to occupy the same buffers after the call as
before; it is the responsibility of the caller to examine
the chain pointed to by the new chain_ptr.

(Output)

is a standard status code. It may be error table $noalloc
to indicate that insufficient space was available in tty_buf
to process the output.

3-5 AN85-01

Entry: channel_manager$control

This entry is called to perform a control operation on the
specified subchannel. The set of operations supported may vary
depending on the multiplexer type, but must include the
following:

Usage

listen
hangup
wr i te status
abort-
wru

declare channel manager$control (fixed bin, char(*), ptr,
fixed bin (3S));

call channel manager$control (devx, control_type, info_ptr,
code); -

where:

(Input)

is the name of the operation to be performed.

info ptr (Input)

code

is a pointer to any additional data required to specify the
operation. The format of this data depends on the type of
operation. If no data is supplied, info_ptr should be null.

(Output)

is a standard system status code. It may be
error table $undefined order request to indicate that the
specified operation is not -supported for this multiplexer
type.

3-6 AN85-01

Entry: channel_manager$check_modes

This entry is called to ascertain which, if any, of the
specified modes are recognized by the multiplexer and whether the
specified set of modes is valid. The caller should provide an
entry in the modes change list structure described below for each
mode it intends to set, to find out if the multiplexer needs to
set the mode as well.

Usage

declare channel manager$check modes (fixed bin, ptr, fixed
bin(35»; - -

call channel_manager$check_modes (devx, mclp, code);

where:

mclp

code

Notes

(Input)

is a pointer to the structure described under "Notes,"
below.

(Output)

is a standard system status code. It may be
error taole $bad mode to indicate that one or more of the
specified modes Is recognized by the multiplexer, but cannot
be set for the specified subchannel.

The mclp argument must point to the structure described
below, which is defined in the include file
mcs_modes_change_list.incl.pI1:

declare 1 mcl aligned based,
2 version fixed bin,
2 n entries fixed bin,
2 lIne_len fixed bi-n-,."
2 page len fixed bin,
2 flags

3 init bit(1) unaligned,
3 11 error bit(1) unaligned,
3 pI-error bit(1) unaligned,
3 mbz bit(33) unaligned,

2 entries (36) like mcle;

3-7 AN85-01

where:

version (Input)

is the version number of the structure; it must be 1.

n entries (Input)

is the number of entries (see below) that are used.

line len (Input)

init

if the new setting of the line length ("11") mode, or -1 if
the line length is not being changed.

(Input)

is the new setting of the page length ("pI") mode, or -1 if
the page length is not being changed.

(Input)

is "1"b if the "init" mode was specified, indicating that
all unspecified modes are to be turned off. (This flag may
be ignored by the check modes entry, but is used by the
set modes entry described-below.)

11 error (Output)

is set to "1"b if the supplied line length cannot be set.

(Output)

is set to "1"b if the supplied page length cannot be set.

entries

are entries for the individual modes (one for each mode), in
the format described by the following structure:

dcl 1 mcle aligned based,

where:

mode name

2 mode name char(16) unaligned,
2 flags

3 mode switch bit(1) unaligned,
3 force bit(1) unaligned,
3 mpx mode bit(1) unaligned,
3 error bit(1) unaligned;
3 mbz bit(32) unaligned;

(Input)

is the name of the mode.

3-8 AN85-01

mode switch (Input)

force

error

is "l"b if the mode is to be turned on, or "O"b if it is to
be turned off.

(Input)

is "l"b if no error indication is to be returned for this
mode.

(Output)

is set to "l"b if the mode is recognized as valid by the
multiplexer.

(Output)

is set to "l"b if the mode is recognized as invalid by the
multiplexer and force (above) "is "O"b. If this flag is
turned on in any entry, a code of error_table_$bad_mode is
returned.

Entry: channel_manager$set_modes

This entry is called to change the setting of the specified
modes for the specified subchannel. This entry should not be
called unless the check m.odes entry (see above) has returned a
code of 0 for the specifIed modes and subchannel.

Usage

declare channel manager$set modes (fixed bin, ptr, fixed
bin(35»; - -

call channel_manager$set_modes (devx, mclp, code);

where:

rnclp

code

(Input)

is as described for the check modes entry, above. The
rnpx mode flag in each entry in-the structure is now to be
taken as an input argument; if it is "l"b, the mode is to
be set by the multiplexer.

(Output)

is a standard system status code.

3-9 AN85-01

Entry: channel_manager$get_modes

Tnis entry is called to find out the current settings of
modes known to the multiplexer for the specified subchannel.

Usage

declare channel manager$get modes (fixed bin, char(*), fixed
bin(35»; - -

call channel_manager$get_modes (devx, modes, code);

where:

modes

code

(Output)

is set to the list of modes known to the multiplexer,
separated by commas. Modes that are currently off for the
specified subchannel are preceded by a A character.

(Output)

is a standard system status. code. It may be
error table $smallarg to indicate that the modes argument
labove) was-not long enough to hold the entire list of modes
(in which case the list is returned, but truncated).

Entry: channel_manager$interrupt

This entry is called to forward interrupts from a
multiplexer's interrupt handler to the interrupt handler for one
of its subchannels. The database pOinter provided by
channel manager pOints to the dat~base of the logical channel
receiving the interrupt; accordingly, no subchannel number is
passed. The interrupt handler may, on the basis of information
provided with the interrupt, forward the interrupt to one of its
subchannels.

Usage

declare channel manager$interrupt (fixed bin, fixed bin,
bit(72) aITgned»; .

call channel_manager$interrupt (devx, int_tYPe, int_data);

3-10 AN85-01

where:

(Input)

is the type of interrupt.
below.

Interrupt types are summarized

int data (Input)

is any additional data required to describe the interrupt.
The data associated with each interrupt type is summarized
below.

INTERRUPT TYPES AND ASSOCIATED DATA

The interrupt types and the structures of the associated
data are defined in mcs_interrupt_info.incl.pI1. The summaries
below are intended to supplement, not replace, the information by
the include file.

Type:
dialup

Associated Data:
line type, baud rate, maximum output buffer size.

Purpose:
report that the channel has dialed up and is available
for I/O.

Type:
hangup

Associated Data:
none

3-11 AN85-01

Purpose:
report the logical or physical disconnection of the
channel. This information is ultimately passed on to
the answering service, which will listen for further
dialups on the channel.

Type:
crash

Associated Data:
none

Pur pose:
same as hangup, except that the
not to listen for further dialups.
is used when the channel's parent
up.

Type:
send_output

Associated Data:
none

Purpose:

answering service is
This interrupt type
has crashed or hung

inform the handler that the channel is ready to accept
output.

Type:
input_available

Associated Data:
none

Purpose:
inform the handler that the multiplexer has input for
the channel. This input can be picked up by a call to
channel manager$read. See "Notes" below for -more
information.

Type:
accept_input

Associatea Data:
chain pOinters, number of characters, flags.

Purpose:
pass input on to the subchannel. The input chain is in
buffers in tty buf. After receivihg this interrupt,
the handler is -responsible for further disposition of
the input.

3-12 AN85-01

Type:
input_rejected

Associated Data:
none.

Purpose:
inform ~ne handler that input for this channel has been
rejected by the FNP interrupt handler because of space
problems. Tne handler should take whatever action is
appropriate (such as sending wakeups, or passing the
interrupt on to any of its subchannels that have input)
to free any buffer space for which it is responsible.

Type:
quit

Associated Data:
none

Purpose:

Type:

report that a quit (line break, interrupt) signal has
been received from the subchannels

line status

Associated Data:
status information from the FNP

Purpose:

Type:

report status reported by the FNP control tables that
run the channel's line type.

dial status

Associated Data:
status of a dialout operation.

Purpose:

Type:

report the result of a dialout operation to a channel
equipped with an automatic calling unit (ACU). This
interrupt is unlikely to be meaningful for any channel
other than a physical subchannel of an FNP.

wru timeout

3-13 AN85-01

Notes

Associated Data:
none

Purpose:
report that a "who-are-you" operation sent to the
channel received no response.

Type:
space_available

Associated Data:
none

Purpose:
report that space that has been requested for an output
operation is (or may be) now available; any pending
output should be retried.

A multiplexer that needs to perform extensive
transformations on its input data should send input_available
interrupts to its subchannels, so that the transformations can be
performed when a read call is made rather than at interrupt time.
If major transformations are not required, the accept input
interrupt mec~anism is likely to be more efficient. -

Entries in priv_channel_manager

The entries in priv channel_manager are called to perform
privileged operations on communications channels. Most of these
calls apply to multiplexer channels themselves rather than to
nonmultiplexed subchannels. The most commonly used of these
calls originate in the initializer process. Unless otherwise
specified, the privileged entries can be reached from outer rings
only through the hphcs_ gate.

The entries to priv channel manager are summarized below. Unless
otherwise specified~ the devx argument is replaced by a database
pointer in forwarding the call to the corresponding "entry in the
multiplexer module, and other arguments are unchanged.

Entry: priv_channel_manager$init_multiplexer

This entry is called by the answering service to cause the
multiplexer module to initialize its databases. The answering
service makes one such call for every multiplexed channel of an
FNP when the FNP is loaded, and for each subchannel of such a

3-14 AN85-01

multiplexed channel that is also
must be initialized before it
subchannels can be used.

multiplexed. Each multiplexer
can be loaded or any of its

Usage

declare priv channel manager$init multiplexer (fixed bin,
fixed bTn, ptr,-fixed bin(35));

call priv channel manager$init multiplexer (devx, chan_type,
mux_Init_info_ptr, code);-

where:

devx (Input)

is the device index of the multiplexer channel.

chan type (Input)

code

is the channel's multiplexer type.

(Input)

is a pointer to a structure identifying all the .subchannels
of the multiplexer. This structure contains the name of
each subchannel; priv channel manager fills in the devx of
each subchannel" before passing the structure on to the
multiplexer module. The format of the structure is
described by the include file mux_init_info.incl.pll.

(Output)

is a standard system status code.

The call is forwarded to the
multiplexer module as follows:

init_multiplexer entry or the

declare <name>$init multiplexer (fixed bin, ptr, ptr, fixed
bin(35»; -

call <name>$init multiplexer (devx,
data_base_ptr, code); -.'

where:

devx (Input)

is as above.

3-15 AN85-01

code

(Input)

is as above.

(Output)

is a pointer to the multiplexer database for this major
channel. It will be passed back to the multiplexer module
in subsequent calls in order to identify the major channel.
The init_multiplexer entry is expected to allocate the
database in tty buf (see Section 6 for a discussion of space
management). -

(Output)

is as above.

Entry: priv_channel_manager$terminate_multiplexer

This entry is called after a' multiplexer has been shut down
or crashed, and after all its subchannels have been" terminated.
Its primary purpose is to free the multiplexer database and
perform any other necessary cleaning up. In general, if a
multiplexer crashes or hangs up it will be terminated and
reinitialized automaticallY by the answering service.

Usage

declare priv channel manager$terminate multiplexer (fixed
bin, fixed bin(35»; -

call priv channel manager$terminate multiplexer (devx,
code); - -

where arguments are as above.

Entry: priv_channel_manager$start

This entry is called to make a loaded and initialized
multiplexer active, i.e., to enable listening on its subchannels.
It is called either automatically after the multiplexer is
loaded, or in response to an operator command of start_mpx.

3-16 AN85-01

Usage

declare priv channel manager$start (fixed bin, fixed
bin(35»; -

call priv_channel_manager$start (devx, code);

where arguments are as above.

Entry: priv_channel_manager$stop

This entry is called to prevent dialups from coming in from
the subchannels of a multiplexer. Currently active subchannels
are not affected. It is invoked as a result of the operator
command stop_mpx.

Usage

declare priv channel manager$stop (fixed bin, fixed
bin(35»; -

call priv_channel_manager$stop (devx, code);

where arguments are as above.

Entry: priv_channel_manager$shutdown

This entry is called to
subchannels of a multiplexer.
multiplexer crashes or hangs
multiplexer is shut down.

Usage

force
It is

up, and

disconnection of all
called whenever the

whenever its parent

declare priv channel manager$shutdown (fixed bin, fixed
bin(35»); -

call priv_channel_manager$shutdown (devx, code);

where arguments are as above.

3-17 AN85-01

Entry: priv_channel_manager$priv_control

This entry is called to perform a control operation on toe
multiplexer channel itself (as opposed to one of its
subchannels). The particular operations supported depend on the
multiplexer type. This entry is accessible only through the gate
phcs_.

Usage

declare priv channel manager$priv control (char(*), char(*),
ptr, fixed bin(35)); -

call priv channel manager$priv control (chan_name,
control_type~ info_ptr, code);

where:

chan name (Input)

oode

is the name of the multiplexer channel.
the database pointer in forwarding
multiplexer module.

(Input)

is the name of the control operation.

(Input)

It is replaced by
the call to the

is a pointer to any
control operation.
should be null.

additional data
If there is no

associated with the
such data, info ptr

(Output)

is a standard system status code. It may be
error table $undefined order request to indicate that the
specified control_type-is not supported.

Entry: priv_channel_manager$hpriv_control

This entry is exactly like the priv_control entry described
above, except that it is accessible only through the gate hphcs_.

3-18 AN85-01

Usage

declare priv channel manager$hpriv control (char(*),
char(*)~ ptr, fIxed bin(35»;-

call priv channel manager$hpriv control (chan_name,
control_type~ info_ptr, code);

where arguments are the same as in
priv_channel_manager$priv_control.

This entry is called to initialize a nonmultiplexed channel.
A site-supplied multiplexer module need not include a
corresponding entry.

Usage

declare priv channel manager$init channel (fixed bin, ptr,
fixed bIn(35»;- -

call priv channel manager$init channel (devx, info_ptr,
code); - -

where:

devx (Input)

is the device index of the channel.

info ptr (Input)

code

is a pointer to additional data needed to initialize the
channel (currently not used).

(Output)

is as above.

Entry: priv_channel_manager$terminate_channel

This entry is called to terminate a nonmultiplexed channel.
A site-supplied multiplexer module need not include a
corresponding entry.

3-19 AN85-01

Usage

declare priv channel manager$terminate channel (fixed bin,
fixed bTn(35»;- -

call priv_channel_manager$terminate_channel (devx, code);

where arguments are as above.

This entry is called by an outer ring procedure to obtain
the devx of a channel whose name is known. This call is not
forwarded by priv_channel_manager.

Usage

declare priv channel manager$get devx (char(*), fixed bin,
fixed bin(35»;- -

call priv_channel_manager$get_devx (chan_name, devx, code);

where:

chan name (Input)

is the name of the channel whose devx is to be returned.

devx (Output)

is the devx of the channel.

code (Output)

is as above.

MULTIPLEXER TRANSFER VECTOR -~ cmtv

A transfer vector module written in ALM, named cmtv, is used
by channel manager and priv channel manager to forward calls to
the appropriate multiplexer and interrupt handler entries. The
source program cmtv.alm includes definitions of assembler macros
used for defining the entries to be called for any specified
multiplexer type. A macro statement must be included for each
multiplexer type supported by a given site. The entries

3-20 AN85-01

specified for a multiplexer type may be all in one module or
distributed among several modules. The source of cmtv contains
comments describing the format of the required macro statements;
the definitions of eXisting multiplexer types may be taken as
models.

PROGRAMMING CONSIDERATIONS -- WIRED CODE

Because the interrupt handler portion of a mU~~lp~exer runs
at system interrupt time, the module containing the interrupt
entry must be wired. This means not only that its entry in the
MST header must specify the wired attribute, but that is must not
reference unwired databases (such as error table). In addition,
any entry that can be called at interrupt time must also be wired
and be capable of wiring its stack if necessary. In particular,
if the interrupt handler generates send output interrupts, the
write entry must be prepared to run at -interrupt time, since
tty interrupt sometimes calls channel manager$write in response
to such interrupts. -

In order to avoid excessive system interrupt overhead,
extensive data transformations at interrupt time should be
avoided if possible. As noted above, the necessity for extensive
transformations of input can be avoided by the use of
input available (rather than accept input) interrupts, thereby
postponing data transformation until the read entry of the
multiplexer is called.

MULTIPLEXER INITIALIZATION

At answering service startup time, the initializer process.
initializes each configured FNP (or other root-level multiplexer)
that is specified (and not marked inactive) in the CDT. This
process includes initializing each active, configured subchannel
of such a multiplexer, and so on down to the level of the
nonmultiplexed channel. (If a multiplexer is marked inactive in
the CDT, it is not initialized automatically, but may later be
initialized manually by means of the load_mpx operator command.)

The process of initializing a multiplexer may be regarded as
having three stages: database initialization, loading, and
subchannel initialization.

Database Initialization

Database initialization is accomplished by a call to the
init multiplexer.entry of the multiplexer module, as described
earlIer in this section. The initializer calls
hphcs $init multiplexer, which call is forwarded to
priv_chanel=manager$init_multiplexer, which in turn calls the

3-21 AN85-01

multiplexer module through cmtv. The init multiplexer entry is
responsible for allocating and initializing-any databases needed
by the multiplexer module.

Loading

The loading of each type of multiplexer is handled by an
answering service (user-ring) module named as <TYPE> mpx , where
<TYPE> is the name of the multiplexer type. This module contains
two entries, named load and dump (see below)e The load entry
makes whatever calls are necessary to the supervisor in order to
accomplish physical initialization of the multiplexer connection.
This may involve calling a special supervisor loading module, or
(more likely) calling the hpriv control entry of the multiplexer
lfiodule (through hphcs $hpriv control) with a control operation
used for loading. The loading process may be as simple as
issuing a "listen" control operation on the multiplexer channel
and waiting for a dialup interrupt, or it may involve a handshake
sequence with the channel, depending on the type of
communications protocol being used. In either case, once the
connection is established, the multiplexer module must inform the
initializer by means of a wakeup over an event channel whose name
is passed on to ring 0 at load time. If the load fails, the
initializer must be similarly informed. The result of the load
attempt is reflected in the event message associated with the
wakeup.

Subchannel Initialization

Once the initializer has been informed that a multiplexer
has been loaded successfully, it proceeds to initialize all
subchannels of the multiplexer, by calling hphcs $init channel
(for nonmultiplexed channels) or hphcs $init multiplexer (for
multiplexed channels) for each one. The-Ioadi~g process is also
reiterated for each multiplexed subchannel.

CRASHING AND REINITIALIZATION

If the multiplexer module detects that the multiplexer
channel has "crashed", i.e, hung up or otherwise become unusable,
it takes the following steps:

1 •

2.

Send a crash interrupt
subchannel;

to each currently active

Send a wakeup to the initializer
channel provided at load time) to
multiplexer is down.

3-22

(over the event
notify it that the

AN85-01

On recelvlng this wakeup, the initializer attempts to take a
dump of the multiplexer by calling the as <TYPE> mpx $dump entry
in the multiplexer-specific answering service module mentioned
under "Initialization" above. (If no dumping mechanism eXists,
the entry should simply return.) The initializer then calls the
shutdown entry of the multiplexer to clean up and deallocate its
databases, and then reinitializes it as described above.

EXAMPLES OF CALL AND INTERRUPT PATHS

Figure 3-1 shows some possible paths of calls to Multics
Communication System to send output to various channels. Each
path in and out of channel_manager is labeled according to the
channels on whose behalf the call is being made. The boxes
marked with an asterisk represent hypothetical multiplexers; the
example shows both a multiplexed subchannel of an FNP (called
"intermediate mpx") and a site-specific substitute for the
DN6600/6670 (~alled "other fnp"). The paths for other calls
(such as start or control)-are similar. Note that under some
circumstances a given level of multiplexer might not pass a call
on to the next level.

Figure 3-2 shows the paths taken by interrupts from various
channels on the same configuration as in Figure 3-1. Once again,
the paths into and out of channel manager are labeled in order to
show the paths taken by interr.upts from specific channels. .

3-23 AN85-01

user program

iox_$put_chars

(hcs_)

tty_ write

a.hOO1
b.hOO2

, a.h112.01

,
channel_ manager$write --

b.hOO2 1 a.hOOl f a.hl12.01

t a.h112 J
* *

other _ fnp$write fnp_multiplexer$write intermediate_mpx$write

I
a.h112

dn355

*
Non-Datanet Datanet
FNP FNP

Figure 3-1. Possible Paths of write Call

3-24 AN85-01

b.hOO2

I
*

other _fnp$interrupt

0
*

Non-Datanet
FNP

Figure 3-2.

(to user process)

• I

wakeup

tty _interrupt$interrupt

a.h001
,

b.h002
a.h 112.01 I

channel_managerSinterrupt

+ p. a.h001 +
a.h112

dn355$interrupt

Datanet
FNP

*
intermediate _ m px$i nterru pt

a.h112 t

a.h112.01

Possible Paths of Interrupt

3-25 AN85-01

SECTION 4

FNP INTERFACE MODULE

All communication with the FNP over the Direct Interface
Adapter (DIA) is managed by the dn355 module. Control
information is passed between the two computers by means of the
mailbox segment, dn355 mailbox. A pointer to the mailbox area
used for each FNP is set in dn355 data at system initialization
time by fnp_init. The mailbox area is described in Section 2.

When Multics Communication System was originally designed,
one of the design goals was compatibility with another FNP
software package called NPS. This goal was subsequently
abandoned, but some of the compatibility features remain; this is
the source of some peculiarities in the FNP/CS interface, such as
the use of some apparently unnecessary mailbox operation codes
and the presence of some unused fields in the submailbox.

CALLS AND INTERRUPTS

There are four entry points to dn355: dn355$send_wcd and
dn355$send wcd global, which are called by fnp multiplexer to
send output or- control information to the FNP; dn355$interrupt,
which is invoked when an interrupt arrives from the FNP; and
dn355$hangup_fnp_Iines, which is called when an FNP is shut down.

The normal "called" entry (dn355$send wcd) is passed a
mailbox operation code and optional command data, which is copied
into the lowest-numbered available submailbox to be sent to the
FNP; it then calls the internal procedure send mbx to interrupt
the FNP at the level corresponding to the submailbox. If the
operation being performed is the transmission of output data,
some more processing is required before sending the mailbox, as
described later in this section. The send wcd global entry is
used for control information that is not specIfic-to a particular
channel. .

An interrupt comes from the FNP under either of the
following circumstances:

4-1 ANB5-01

• the FNP has
submailbox,
submailbox;

filled in or completed processing of a
and wants the CS to look at that

• the FNP has crashed and sent an "emergency" interrupt.

If the FNP has crashed, the interrupt level (passed to
dn355$interrupt in its fourth argument) is 7; in this case,
words 6 and 7 of the mailbox header describe the cause of the
crash. If the interrupt level is 3 (for a "normal" FNP
interrupt), dn355 checks the "terminate interrupt multiplex word"
(TIMw) in the mailbox header to see if the FNP has processed a
submailbox, as explained in more detail later in this section.

It should be noted that, each time dn355$interrupt runs,
there may have been more than one interrupt from the FNP since
the last time it ran; for instance, interrupts may have been
masked when the FNP interrupt occurred (dn355$send wcd usually
runs with interrupts masked). Accordingly, dn355$interrupt takes
care of all pending business (submailboxes processed by the FNP)
every time it runs.

MAILBOX TRANSACTIONS

Transactions Initiated by the FNP

FNP-CONTROLLED MAILBOXES

Mailboxes 8 through 11 are reserved for FNP-initiated
transactions; it is the responsibility of the FNP to know which
of these mailboxes are currently available. whenever the FNP
needs to initiate a transaction with the CS, it selects one of
these mailboxes and fills it in with the FNP line number of the
relevant channel, an RCD (read control data) I/O command, the
operation code describing the particular transaction, and any
associated command data. It then writes the subrnailbox into CS
memory, turns on the bit in the TIMW in the mailbox header
corresponding to the submailbox, and sends an interrupt to the
CS.

PROCESSING THE RCD

When dn355 runs as a result of the abovementioned interrupt
it examines any submailboxes corresponding to 1-bits in the TIMW.
In the case of the mailbox used in the preceding paragraphs, it
sees the RCD I/O command and knows that it must process the
operation code supplied by the FNP. For most operation codes,
such as "accept new terminal", "disconnected line", or nbreak

4-2 1\ 11.,0,- f"\'"
R.l~ OJ -u I

condition", this processing is simple and straightforward; it
consists primarily of forwarding the interrupt to
channel manager$interrupt, and in some cases rewriting the
mailbox with an appropriate acknowledging operation code. The
interrupt is eventually forwarded to tty interrupt, which sends a
wakeup to the relevant process to inform it of the change in the
channel's state. The FNP is notified that the CS has processed
the mailbox by means of an interrupt; if the interrupt is at the
level corresponding to the mailbox number (8 to 11), it means
that dn355 has updated the contents of the mailbox, and the FNP
must read it back; an interrupt at a level 4 greater than the
mailbox (i.e., 12 to 15) means that the mailbox is free for
further use.

There are three RCD operation codes that require a more
extended transaction between the FNP and the CS: "send_output",
"input in mailbox", and "accept direct input." These operation
codes are used as "carriers" for- reporting the .amount of buffer
space currently available in the FNP; this value is copied from
the command data by dn355 and kept both for metering purposes and
to determine how much output to send ~t a time.

send_output OPERATION CODE

The "send output" operation code is sent by the FNP when it
is ready to accept output for a particular channel. When dn355
finds this operation code in a submailbox, it checks to see if
there is any output for that channel waiting in tty buf; if there
is not, it forwards a send output interrupt through
channel manager to tty interrupt, ~hich either calls back with
any pending output that it did not send before, or wakes up the
user process. If there is output waiting, dn355 prepares to send
a WTX (write text) submailbox, as described later under
"Transactions Initiated by the CS."

SHORT INPUT -- input_in_mailbox

The "input in mailbox" operation code indicates that the FNP
has 100 characters-or less of input for the channel identified in
the submailbox. The input itself is contained in the submailboxa
If there is enough free space in tty buf to copy this input into
a buffer, dn355 allocates such a buffer, copies the data into it,
and forwards an "accept input" interrupte It then sends the FNP
an interrupt to free the submailbox. If buffer space cannot be
obtained, dn355 rewrites the mailbox with a "reject request"
operation code. In response to this code, the FNP retries the
"input_in_mailbox" one second later.

4-3 AN85-01

LONG INPUT -- accept_direct_input

The "accept direct input" operation code indicates that the
FNP has more than 100 characters of input for the channel
identified in the submailbox. This input will be written by the
FNP into the circular buffer in the header of tty buf.
Accordingly, dn355 checks to see if there is sufficient space in
the circular buffer for the specified number of characters; if
there is not, or if it appears that there will not be enough
space in tty buf to build an input chain, dn355 rewrites the
subrnailbox with the "reject request" operation code as above"

If there is sufficient space, dn355 fills in the submailbox
with an RTX (read text) 1/0 command, an "input accepted"
operation code, the absolute address pointed to by the circular
buffer free pointer (tty buf.cq next), and the character count.
If the data will not all-fit between cq next and the end of the
Circular buffer, the remaining data is put at the beginning of
the buffer, and a "wraparound" address and character count are
also provided in the submailbox. The free pointer (cq next) is
updated to point past the last character that will be input, the
free size indicator (tty buf.cq free) is decremented accordingly,
and the subrnailbox is sent to the FNP.

The FNP responds to the RTX submailbox by writing the input
into the designated portiones) of the circular buffer and setting
the TIMW bit for the subrnailbox so that dn355 will look at it
again. When dn355 sees the RTX, it allocates a sufficient number
of buffers to hold the input, and chains them to the channel's
input chain (or starts an input chain if one does not already
exist for the channel). Any space left at the end of the last
buffer in an existing input chain is used before additional
buffers are allocated. The data is then copied from the circular
buffer into the input chain, cq free is incremented by the amount
of space thus freed in the circular buffer, an interrupt is sent
to the FNP to free the submailbox, and an "accept input"
interrupt is forwarded as above. -

HANDLING THE accept_input INTERRUPT

If the input contains a break character (as indicated by a
flag in the interrupt data) and the using process has tried
unsuccessfully to read data from the channel (as indicated by
wtcb.rflag), tty interrupt sends a wakeup to the process so that
it will call tty-read again and . pick up the input • (A wakeup is
also sent if -the process is waiting for the terminal's
answerback, as indicated by wtcb.wru.) An exception to this
arises when the break character is a formfeed; in this case,
dn355 does not forward an "accept input" interrupt. If output to
the channel had been suspended because of a full-page condition,
dn355 checks to see if the PCB points to a pending output chain;
if it does not, a "send_output" interrupt is forwarded;

4-4 AN85-01

otherwise, an entry is added to dn355's delay queue so that
output processing will be resumed when dn355 finishes dealing
with the input. (See also the description of the delay queue
mechanism later in this section.)

Transactions Initiated by the CS

When tty write or fnp multiplexer wants tq send output or
control information respectively to the FNP, a call is made to
fnp multiplexer, which in turn calls dn355$send wcd or
dn355$send wcd global. The calling sequence of these entry
points includes the operation code to be sent to the FNP and the
associated command data, if any. When called at either of these
entries, dn355 scans the "used" flags in the mailbox header
looking for an unused submailbox. If all the submailboxes are
currently in use, it calls the internal procedure make q entry to
create an entry for the transaction in the delay queue, and
returns; otherwise, it fills in the first free submailbox it
finds and sends it to the FNP.

When passing control information, dn355 simply copies the
operation code and command data into the submailbox, sets the
line number in accordance with the device index supplied by the
caller, sets the submailbox I/O command to WeD (write control
data), and calls iom manager to interrupt the FNP at the
appropriate level. When the FNP has read the submailbox, it sets
the corresponding TIMW bit and sends an interrupt;
dn355$interrupt then sees the interrupt for a WeD submailbox and,
knowing that the submailbox has been processed by the FNP, simply
marks it as free (by turning off the corresponding "used lf flag)~
More work has to be done, however, if the operation code is
"accept d irec t out put, II ind i.cating tha t ther e is out put data to
be sent to the FNP. The processing of output data by dn355 is
described below.

OUTPUT DATA

The internal procedure process send output is invoked in
response to ei ther a 11 send_output" oper atTon code sen t froin the
FNP or a call to dn355$send wcd with an "accept direct output"
operation code. It ensures that there is in fact an output chain
for the current channel, and that output to that channel has not
been suspended because of a full-page condition; assuming both
tests iucceed, a block is allocated in tty buf in which an array
of "pseudo-DeWs" describing the output is b~ilt. Each pseudo-DeW
contains the absolute address and character tally of one buffer
in the output chain; the number of pseudo-DCWs constructed, and
hence the number of buffers of output that are sent to the FNP in
one transaction, depends on the amount of buffer space remaining
in the FNP and the actual size of the chain, but in no case may
exceed 16, which is the number of pseudo-DeWs that fit in one
block. If dn355, while scanning the output chain, encounters a

4-5 AN85-01

buffer with its end of page flag on, that buffer is the last one
to be sent in this transaction, and pcb.end frame is turned on so
that the remainder of the chain (if any) will be processed when,
and only when, a formfeed is input from the channel (see "Input
Data," above).

Once the pseudo-DCWs have been built, the absolute address
of the pseudo-DCW block and the number of pseudo-DCWs is put in a
submailbox, along with a WTX (write text) 1/0 command and an
"accept direct output" operation code (as a matter of NPS
compatiEility,-the operation code is "accept last output" if the
last buffer in the output chain is being sent, but the FNP makes
no distinction between these two codes). This submailbox is then
sent to the FNP. If the last buffer in the output chain is being
sent in this transaction, and dn355 was entered through the
interrupt en try ,a "send output" interrupt is sent to
channel manager. On receipt-of this interrupt, tty interrupt may
send the next block of output if one is available, or send a
wakeup to the user process so that tty_write can be called again.
The forward pointer in the last buffer transmitted is set to zero
so that any remalnlng buffers in the output chain will not be
freed when the output completes (see below).

When the FNP reads -the submailbox containing the WTX, it
reads the pseudo-DCW block and then uses the pseudo-DCWs to read
the actual data into FNP memory. Once it has done this, it sets
the TIMw bit corresponding to the submailbox; wnen dn355 examines
the submailbox containing the WTX, it frees the portion of the
output chain that was transmitted and the pseudo-DC~ block.

GLOBAL OPERATIONS

A few of the control operations sent to the FNP do not refer
to any particular channel but rather to the FNP itself:
"accept_calls," IIdont_accept_calls," "dump_fnp," and "patch fnp."
These are treated like other control operations, except that
dn355 is called at the send wcd global entry rather than
send wcd. The line number field-in the submailbox is accordingly
set to zero. For dump fnp and patch fnp, used to dump and patch
specified portions of-FNP memory, respectively, fnp multiplexer
has called pxss$wait so that it can be informed when the 1/0 is
complete; therefore, when the WCD submailbox is freed, if it
contains either of these operation codes, dn355$interrupt calls
pxss$noti fy.

LOCKS

The channel lock in the LCTE for an FNP is used to protect
not only the LCTE, but also the fnp info structure, all PCBs, and
the mailbox area for that FNP froi simultaneous access by more
than one processor. Because these data bases are accessed at

4-6 AN85-01

interrupt time before channel_manager is invoked, dn355 and
fnp multiplexer must manage the lock themselves, instead of
relying on tty_lock as described in Section 6. (A flag in the
LCTE informs channel manager that it is not to call tty lock for
an FNP channel.) Accordingly, dn355$interrupt and most entries
in fnp multiplexer loop on the channel lock shortly after being
called~ The fnp multiplexer entries must call pmut$wire and mask
before doing thIs so as not to lose the processor with the FNP
channel locked; they also check to see if they have been called
as a result of an interrupt, in which case the channel has
already been locked by dn355.

In addition, the circular buffer must be locked when the
relevant pointers and free space indicators are being updated, to
prevent two or more processors from attempting to modify it
simultaneously on behalf of . different FNPs. This situation is
not covered by tne fact that the circular buffer is never
accessed without the FNP channel being locked because there is
only one circular buffer for the whole system, rather than one
per FNP.

DELAY ~UEUING

If a mailbox transaction could not be performed when it was
requested because no submailbox was availaole, an entry is added
to a "delay queue" allocated in tty buf so that the requested
processing can be performed later. -There is a separate delay
queue for each FNP. An entry in this queue contains the offset
of the PCB for the relevant channel, the mailbox operation code,
and any associated command data. If the entry is for a global
FNP operation, the PCB offset is O.

The dn355$interrupt entry checks to see if there are any
entries in the current FNP's queue before and after examining the
TIMW; if there are, it calls an internal procedure named
process q, which performs the operation requested by each queue
entry as long as there are submailboxes available.

4-7 AN85-01

SECTION 5

INTERFACES TO THE USER RING

This section describes the hardcore portions of Multics
Communication System that are called from outer rings in user
processes. There are three modules that can be called thus:

1. tty write
pro~esses user-supplied output, copies it into tty buf,
and passes it on through dn355 to the FNP. It is
called through the hcs ~tty write and
hphcs_$tty_write_force gate entries. - -

2. tty read
converts terminal input from tty buf and copies it into
a user- suppl ied buffer. It is called ·through the
~cs_$tty_read and hcs_$tty_get_Iine gate entries.

3. tty index
performs a variety of user-requested utility functions,
principally the processing of control operations. It
is called at a variety of entry points through several
gate entries, discussed later in this section.

The precise calling sequences of these entry points can be
ascertained by looking at the source code. In general, neither
user nor system programs call these gate entries directly, but go
through the 1/0 system (iox) which calls entries in the
user-ring typewriter I/O module (tty). For details of this
mechanism, see the User Ring Input/Output PLM, Order No. AN57.

Both the tty write and tty read modules make use of an ALM
subroutine tty_util_, which -uses EIS instructions to do
translations and searches" of the input ... and ou~put character
strings. In addition, tty read calls tty canon to put input
strings in canonical form (for a complete description of Multics
canonical form, see the MPM Communications Input/Output, Order
No. CC92)~ The tty index module calls tty modes to perform a
"rnodes" control operation. All three modules use tty tables to
select translation and special-characters tables. -

5-1 AN85-01

The TCB contains relative pOinters to the various tables
used in the conversion of input and output~ These pointirs are
set to zero when the channel is initialized, and subsequently set
to default values by the "set terminal data" order. They may
subsequently be changed as a result of control operations such as
set delays, set output translation, etc.; they are always
restored to the -default values when the "using" process is
changed. The pointers used for output conversion by tty_write
are copied into automatic storage.

OUTPUT CONVERSION - tty_write

The tty write module takes user-supplied ASCII characters
and converts-them to a form suitable for printing on the user's
terminal. Before it begins, it ensures that the device index
passed to it is valid, that it refers to a terminal that is
currently dialed up, and that the user process is actually using
that terminal (i.e., wtcb.uproc contains the current process'
idle It locks the LCTE to ensure that the terminal's state does
not change out from under it (unless it was called at the
tty write$locked entry, which is called with the LCTE already
locked by tty index to write printer_on and printer_off
sequences). -

~he caller provides the count of characters that are to be
processed ("nelem") and tty write returns the number that were
actually processed ("nelemt"): If nelemt is less than nelem, it
is assumed that the caller will go blocked on the event channel
named by wtcb.event; to signify that this is the case, tty write
turns wtcb.wflag on. On finding the flag on, tty interrupt-sends
a wakeup over the event channel when a send output interrupt
COlnes from the FNP, as described in Section 4. -

The functions of tty_write can be logically divided into
four phases:

1. Preliminary conversion, as in the translation of
lowercase letters to uppercase for a Teletype Model 33
or terminals in "capo" mode;

2. Formatting, e.g., substitution of escape sequences,
insertion of newline characters in long lines,
canonicalization and optimization of white space, etc.;

3. Translation, as from ASCII to EBCDIC;

4. Buffer allocation and copying of characters into
buffers in tty_buf, from which they are read by the
FNP.

5-2 AN85-01

Each phase is executed over the entire input string (or as much
of it as is transmitted at once) before passing on to the next
phase. In most cases, of course, either phase 1 or phase 3 or
both can be omitted; in "rawo" mode, tty_write can and does
proceed directly to phase 4.

Each phase is provided with an "input pointer" to the
location where the previous phase left the data in its latest
form. This pointer points either to the user's original input or
to either of two buffers in the automatic storage of tty_write,
as described later.

The rest of this section contains a more detailed
description of the four phases of conversion mentioned above and
a discussion of space allocation and character counting.

Preliminary Conversion

Certain terminals require uppercase-only output; similarly,
a user can specify (by entering "capo" mode) that all lowercase
letters are to be converted to uppercase for output. These cases
are treated identically by tty write: an mvt (move with
translation) instruction is used to copy the user's data into an
automatic buffer, using a translation table that substitutes
uppercase ASCII for lowercase. If the user is in "edited" mode,
this is all that needs to be done for this phase; if not,
however, each letter that was originally uppercase must be
preceded by an escape character ("\"). Therefore, in " edited"
mode, the translation table also replaces each uppercase letter
with the same character with its high-order bit (the "400(8)"
bit) turned on. After the mvt is completed, an scm (scan with
mask) instruction is executed to find the first character with
the "400" bit on; if one is found, all characters to the left of
it are copied to a second internal buffer, an escape is inserted
after the copied characters, and the high-order bit of the found
character is turned off. The scm is repeated on the remainder of
the characters in the first buffer until all characters have been
copied to the second buffer with escapes inserted as needed. If
no characters with the high-order bit on are found in the entire
string, no copying is done.

5-3 AN85-01

Formatting

The search for, and correct handling of, "interesting"
characters is the most crucial function of tty write, and the one
to which most of the time spent in tty write is devoted. The
identification of "interesting" characte~s is facilitated by the
use of the tct (test character and translate) instruction under
control of the output conversion table, which contains zero
entries for all "uninteresting" characters and various indicators
identifying the different kinds of "interesting" ones: carriage
movement characters; ribbon shifts, and characters requiring the
substitution of escape sequences.

The formatting phase of tty write calls tty util $find char
to find the first "interesting" character Tn the string;
tty util $find char returns a tally of "uninteresting" characters
skipped over, -the indicator value f,or the character it stopped
at, and an updated pointer to the character at which to start the
next scan. The tty write module copies the uninteresting
characters into an internal buffer (whichever one does not
contain the source string) and examines the indicator. If it
designates an escape sequence, the sequence is inserted in the
buffer. For a newline, vertical tab, or formfeed character, the
special chars table is indexed to find the appropriate
representation of the character, and the delay table is searched
to find the correct number of delays to be inserted depending on
column position, terminal type; and baud rate. For "white space"
(horizontal tab, backspace, carriage return, or two or more
blanks) tty write simply calculates and remembers what column
position to end up in; this information is either used to insert
appropriate carriage motion characters before the next graphic to
be inserted, or discarded if the next character involves vertical
carriage motion. This process is repeated until all the source
characters are used up. If it happens that the first call to
tty util $find char returns an indicator of zero and has used up
the-entire source string, no characters are moved by this phase.

Another responsibility of the formatting phase is the
counting of output lines and watching for full pages. When the
line count reaches maximum, the formatting phase inserts a
warning string (such as "EOP"). and a sentinel character at the
end of the page, and the copying phase (see below) later removes
each sentinel and turns on a flag in the buffer that ends the
page. When dn355 sees this flag, it ceases transmission, and
sets pcb.end frame. When it receives input for a channel with
pcb.end frame-on, it scans this input for a formfeed.; if it finds
one, it-turns off the flag and starts up output for the channel
again.

5-4 AN85-01

Translation

The translation phase is very similar to the preliminary
conversion phase described earlier. An mvt instruction is used
to copy the entire string from wherever it was left by the
preceding phase to an automatic buffer, translating it from ASCII
to the appropriate output code in the process. This does not
complete the process for a terminal which requires case-shift
characters (which currently includes most terminals for which
translation is done); the insertion of case-shift characters is
done in a similar manner to the insertion of escapes before
capital letters as described under "Preliminary Conversion." The
translation table causes the high-order bit of each uppercase
character'to be turned on (in this context, the term uppercase
refers not only to capital letters but to all characters for
which the shift key must be depressed while typing) and the
"200(8)" bit of each lowercase character to be turned on;
characters that may be in either case (such as space) contain no
extra bits. After translation, an scm is done to find the first
character in the opposite case to the one in which the terminal
was at the start of the output; all characters to the left of it
are copied, an appropriate shift character is inserted after the
copied characters, and another scm is used to find the next
change of case. If all the output characters are in the same
case, no copying is done. Note that it is not necessary to turn
off the high-order bits of the uppercase characters, since these
bits are ignored by the remainder of Multics Communication System
and ultimately thrown away tiy the FNP.

Buffer Allocation and Copying

Tne final phase of tty_write consists of allocating buffers
in tty buf and copying the final output into these buffers. The
maximum buffer size for a channel is derived from its baud rate
-- the faster the channel, the larger the buffers it gets. The
size of buffer actually allocated for a given output message is
the smallest multiple of 16 words in which the entire message
will fit; if the entire message does not fit in the channel's
maximum-size buffer, additional buffers are .allocated and chained
on to the first one. If an end-of-page sentinel is encountered,
a flag is turned on in the current buffer, and the buffer is not
filled past the sentinel. If output already processed for the
particular channel has not yet been sent, a chain of buffers for
that channel already exists, starting at the offset in
wtcb:write first; if the last buffer in this chain is not full,
and does not have its end-of-page flag on, it is filled before
further buffers are allocated. If the last buffer is less than
the maximum size, it is replaced (if possible) by a larger buffer
in which is placed the contents of the original buffer and as
much of the new output will fit. The newly-allocated buffers are
threaded onto the old chain. If wtcb.write first is zero,
tty write starts a new chain. Finally, if wtcb.send output is
on,-indicating that the parent multiplexer is prepared-to handle
output for the channel, tty_write calls channel_manager$write to

5-5 AN85-01

forward the output chain (or as much of it as possible) to the
multiplexer.

Space Allocation and Character Counting

Because the input string undergoes wholesale modification at
several pOints, it is necessary to decide how many of the user's
characters to process before actually doing anything. Certain
constraints are applied to keep anyone channel from monopolizing
tty_buf: no more than a certain fraction of available buffers in
tty buf are to be assigned to a single channel at any time; and
no -output chain of more than a certain number of buffers is
built. The particular numbers involved are, for the sake of
cpnvenience and simplicity, preset system-wide constants. The
current 'values are 1/4 and 16 respectively; i.e., no channel is
ever assi~ned more than 1/4 as many buffers as are free at the
time of assignment, or more than 16 buffers is a single output
chain.

_ Tnis restriction does not apply when tty write is entered at
tty write force; in this case, the channel can have as many
buffers as it needs as lon~ as at least 32 words are left over.

The number of characters to process may then be expressed as:

nchars = min(chars_supplied, maxbuf*chars_per_buffer)

If the terminal is in "rawo" mode, this is the number of
characters that are actually shipped, and nothing further need be
done. In general, however, the number of characters actually
output is somewhat larger than the number supplied; meters done
at various times show an average growth ratio of about 6:5.
Accordingly, for nonraw output, tty write multiplies nchars as
calculated above by 0.8 to allow for growth (this actually allows
for a growth ratio of 5:4, giving us some leeway). As a result,
the size of the output string can grow by as much as 25% without
requiring more buffers than one channel is "supposed" to have;
however, the restriction to 1/4 of the available buffers is a
very conservative one, so if it occasionally proves necessary to
allocate an "extra" buffer, the overall effect on available
buffer space should not be noticeable.

An additional consideration ari~es from the use of internal
buffers in tty wr~te. Because of the possibility of more than
one intermediate copy, two such buffers are needed, and rather
than create two segments so as to allow each buffer to grow
essentially without limit, it was decided to set aside fixed-size
buffers in the stack frame of tty write. The size chosen for
each of these buffers is the maximum-allowable output chain size.

5-6

," "

Clearly growth ratios greater than 5:4 can and do occur;
there are pathological cases such as an object or other non-ASCII
segment being printed on a 2741 terminal, which involves a growth
ratio of more than 6:1 «upper shift> ~ <lower shift> nnn for
each input character, plus added newlines and tc markers)-.--Thus,
despite precautions, tty write must be prepared for the
possibility that in the course of translation or formatting it
will run out-of space in the internal buffere When this happens,
the number of input characters to be handled is cut in half, and
character processing is started over from phase 1.

If space in tty buf is unusually tight, then an abnormal
character string that is not large enough to overflow the
internal buffer space might nonetheless require the allocation of
more buffers than are available. ~ If tty write finds that it is
about to allocate the last buffer, it takes the same action as if
it were about to overflow one of its internal buffers, i.e.,
divide the number of input characters in half and start over. If
this happens often, it is probably an indication that tty buf is
too small, and its size as defined on the PARf'1 TTYB-of the
configuration deck card should be increased.

If no buffers at all can be obtained, either because there
are none available or because the channel already has as many as
it is entitled to, no output is processed and zero is returned in
nelemt. If, in addition, wtcb.send output is on,
tty space man$needs space is called to ensure that the process
rec~ives i wakeup ~hen more buffers become availaole (see the
discussion of tty space man in Section 6). If wtcb.send output
is off, it is sufflcient-to turn on wtcb.wflag; this ensures that
the process receives a wakeup when the multiplexer next requests
output.

INPUT CONVERSION - tty_read

The tty read m~dule takes typed input characters from the
specified channel"-- input chain (pointed to by wtcb.fblock) and
copies them,aftr - suitable conversion, to a buffer supplied by
the caller. Ther- are two entries to tty read that are normally
called: tty read ~tself and tty read$tty get line. The former
is called as-a result of a get chars operation, the latt~r as a
result of a get line operation. The Qlllerence is that the
get line entry o~ly returns characters up to a~d including the
first available newline character. Like tty_write, tty_read
first validates the device index and ensures that it corresponds
to an active channel, as well as locking the LCTE. Also lik~
t~y_write, it takes an input argument ("nelem") specifying the
Slze of the caller's buffer and returns an output argument
("nelemt") specifying the actual number of characters copied into
the caller's buffer. nelemt is the smallest of the following:

5-7 AN85-01

- nelem;

the total number of characters (after conversion) in the
read chain;

- if tty get line was called,
(after -conversion) up to and
character in the read chain.

the number of characters
including the first newline

If nelemt is zero, it is assumed that the caller will go
blocked on the event channel whose name is in wtcb.event;
tty read accordingly turns wtcb.rflag on when returning zero in
nelemt. When input containing a break character is copied into
tty buf by dn355 and forwarded to tty_interrupt (as described in
Section 4), if wtcb.rflag is on, tty interrupt sends a wakeup
over the event channel so that the user-process can call tty_read
again.

The break character recognized by tty read
according to the line type associated with the
general, the oreak character is a newline character.

is determined
channel. In

Certain transformations may be performed on the characters
typed by the user, such as reduction to canonical form, removal
of "erased" and "killed" characters, and the interpretation of
escape sequences. The application of these transformations
depends on both the modes associated with the channel and the
contents of the relevant tables in tty_tables.

The functions of tty_read may be divided into the following
phases:

1. Copying raw input data from tty_buf, and freeing the
ring 0 buffers;

2. Translation to ASCII

3. Canonicalization of the contents of column positions

4. Erase and kill processing

5. Escape sequence processing

Clearly, these five phases are not always necessary. Phases 3,
4, and 5 depend on "can," "erkl," and "esc" modes, respectively;
in "rawi" mode, only phase 1 is required.

For convenience and to
generic term used here for

ensure consistency, conversion (the
the relevant subset of phases 2

5-8 AN85-01

through 5)is done on all characters up to and including the
first break character in the input chain, whether or not the
break character is found within the limit specified by the
caller. This avoids the possibility of terminating conversion in
the middle of an escape sequence or a line that is subsequently
killed, and also allows for the possible shrinkage of the input
string (through the deletion of extraneous white space and the
condensation of escape sequences, for example). "Extra"
Characters thus converted (i.e., those that cannot be returned
oecause Lne caLLer has not provided sufficient space) are saved
in reallocated buffers in tty_buf; these buffers are marked by
turning on buffer.converted and chained to the head of the
channel's input chain so that they can be picked up by the next
call to tty read. In two exceptional cases, conversion cannot
proceed to the first break character: the first is, obviously,
when no break character is present; the other is when the size of
the internal automatic buffer,s of tty_read is exceeded.

The remainder of this discussion consists of a few remarks
on the management of the internal buffer of tty read and a more
detailed description of the five conversion phases mentioned
above.

Space Management

During conversion, intermediate forms of the input string
result from each conversion phase; for the storage of these
intermediate strings, two buffers are maintained in the automatic
storage of tty read. Clearly this sets an upper limit on the
allowable length of the input string. The normal limiting
factor, of course, is the presence of a break character, and
input lines longer than 1UO characters are rare; a further
limitation is imposed by the FNP software, which takes a channel
out of receive mode if more than 600 characters are input without
a break character, causing "exhaust" status in the FNP (see
Section 12). The input string can grow during canonicalization
through the replacement of carriage returns by multiple
backspaces, but this occurrence too is rare. All in all, a
buffer size of 720 is very unlikely to be exceeded.

Consequently, no more than 720 characters are copied into
the internal buffer from tty buf. If the canonicalization phase
attempts to increase the length of the string past 720, tty read
reduces the limit by one-third and starts again. Because 01 the
possibility that this restart may be necessary, buffers in the
read chain from which characters have been copied cannot be freed
until after the canonicalization phase is completed.

Since conversion is, if possible, carried out on all
characters up to and including the first break character, the
final converted string may be larger than the buffer provided by

5-9 AN85-01

the caller. If this is the case, enough characters to fill the
caller's buffer are returned; the remainder of the converted
characters, as indicated above, are saved in buffers in tty buf
in each of which buffer.converted is set. In addition, if one of
these buffers contains a break character (the last one generally
does), buffer.break is turned on in that buffer. These buffers
are added to the head of the input chain as described aoove.

Copying

IN 'rawi' MODE

The copying phase in "rawi" mode is very simple. Characters
are copied from tty buf, starting at the head of the input chain,
directly into the -caller's buffer, until either the caller's
buffer is filled or the input chain is exhausted. Any buffer from
which all the characters are thus copied is freed.

NOT IN 'rawi' MODE

If there are any "converted" buffers at the head of the
input chain, characters are copied from these buffers directly
into the caller's buffer until either the caller's buffer is
full, a break character has been copied, or the chain of
converted buffers is exhausted. (In general, the last converted
buffer contains a break character, and nonlast converted buffers
do not.) Any converted buffer from which all the characters are
copied is freed.

If there are no converted buffers, or the converted buffer
chain is exhausted without encountering a break character or
filling the caller's buffer, characters are copied from the
unconverted input chain (if present) into the first automatic
buffer of tty read until either a break character is encountered,
the input chain is exhausted, or the internal buffer is filled.
Buffers are not freed at this time, for the reason given above
under "Space Management."

Because the FNP does not normally send input to the CS until
a break character is typed, the input chain almost always ends
with a break cha~acter. (Consequently, the 60nverted c~ain
usually does, too.) It might not if there was a quit on a
channel not in "hndlquit" mode (in "hndlquit" mode the input
chain is discarded on a quit), if the channel exceeded the
600-character limit enforced by the FNP software, or if the input
is the answerback of the terminal.

5-10 AN85-01

If any characters were
conversion of tne contents of
begins.

Translation

copied from unconverted buffers,
the automatic buffer of tty_read

If a translation table exists for the channel, it is used in
a call to tty util $mvt to copy the characters from one internal
buffer to the other, simultaneously translating it to ASCII.
Translation is required for IBM-type terminals using either EBCD
or Correspondence character codes; it is also used to translate
capital letters to lowercase for uppercase-only terminals such as
a Teletype Model 33. (Escaped letters are changed back to
uppercase by the escape-processing phase.)

The translation phase does not have to deal with case-shift
characters, since the FNP is responsible for recognizing case
shifts and for turning on the 100(8) bit in all uppercase
characters (characters on shifting terminals are only six bits).
All that is necessary in the CS is a translation table that
includes characters with the "100" bit on and translates
case-shift characters to ASCII NUL characters.

If the channel is not in "ctl char" mode, a further
translation is' done using a general ~table that translates
"invisible" characters to NUL (all zero) characters. NUL
characters are subsequently discarded by the canonicalization
phase. An "invisible" character is any ASCII control character
that does not move the carriage or paper, i.e., one that cannot
be seen when it is typed. This translation is omitted for
terminals such as the IBM Model 2741 and the IBM Model 1050.

Canonicalization

Column-position canonicalization takes care of itself unless
the input string contains leftward carriage motion, i.e.,
backspace and/or carriage return characters. In addition,
backspaces and carriage returns at the left margin or immediately
preceding a newline are discarded. In other cases,
canonicalization must be performed in accordance with the rules
given in the MPH Communications I/O.

The canonicalizatton phase therefore begins by searching the
internal buffer (using the PL/I "search" builtin) for a
left-motion character (carriage return or backspace). If the
first character is a left-motion character, the buffer pointer is
advanced by one character, the string length is decremented by
one, and tne new string is searched as before. If a left-motion
character is found, a verify builtin is used to discover if the
rest of the line consists of white space (backspaces, carriage

5-11 AN85-01

returns, spaces, horizontal tabs, or NULs) followed by a newline.
If this is the case, the string length is reduced to the result
of the search, and the newline is copied to the new end of the
string. If a left-motion character is discovered in any other
position, tty_canon is called to perform column canonicalization.

The tty canon subroutine applies the following algorithm:
store each printing graphic from the input string in an array
along with its correct column position; sort the array by column
position, and by character within each column position; restore
the characters to the input string location in the resulting
order, inserting backspaces and spaces as appropriate. Tabs must
be treated as a slightly special case of printing graphic, so
that tabs that are in no way overstruck are preserved but others
are replaced by spaces.

The calling sequence of tty canon has been set up so that
the module could theoretically be ~alled with an arbitrary string
in other environments than that of ring 0 Multics Communication
System. The resulting calling sequence is still not ideal, as it
contains arguments that are both input and output; this approach
is retained for reasons of efficiency.

The structure used for the elements of the sorting array
makes the sort very easy, thus~

dcl column array (max size) aligned,
2 column fixed bin (17) unaligned,
2 erase bit (1) unaligned,
2 kill bit (1) unaligned,
2 vertical bit (1) unaligned,
2 pad bit (5) unaligned,
2 not tab bit (1) unaligned,
2 char char (1) unaligned;

Tne uerase" bit indicates an erase character; tne "kill" bit
indicates a kill character; the "vertical" bit indicates a
nonnewline character requiring vertical carriage motion (i.e.,
vertical tab or forrnfeed); the "not tab" bit is on for any
character except a horizontal t~b. It can be seen that by
treating each element of the array as a single value for the'
purpose of sorting, the characters automatically come out in
column order and in character order in each column, except that:
1) an erase character is always the .lastcharacter -in its column
position; 2) a kill character is last in its column position
unless overstruck with an erase character; 3) a horizontal tab is
always the first character in its column position; and 4) a
vertical-motion character follows all characters other than an
erase or kill character. Since during the initial scan, a
vertical-motion character causes both the "current" column and
the "starting" column to be set to the next highest multiple of

5-12 AN85-01

1000 (the "starting" coluilln is the column assigned to the left
margin, initially 0), a vertical-motion character cannot share a
column position unless 1000 or more column positions are actually
typed. A newline is assigned a column position of 2**17 - 1 so
that it always sorts to the end of the line.

Kill processing is not done by tty canon; kill characters
are sorted to the end of the column position to make things
easier for the kill-processing phase of tty read. Erase
characters are only interesting to tty_canon- if they are
overstruck; since an overstruck erase character sorts to the end
of its column position, the rescan step, when it finds an erase
character ·that is not first in its column position, deletes it
and all preceding characters with the same column position.

Since a tab sorts to the beginning of its starting column
position, it is sufficient to check whether the graphic following
the tab has a column position less than the next tab stop; if it
does, the tab is dropped, and spaces are inserted as they are
whenever there is gap between two graphics. Otherwise the tab is
inserted in the final string.

NUL characters are not stored in the column array; thus
tty_canon completes the elimination of "invisible" characters.

The maximum length of the input string is passed as an
argument to tty canon; if the final string exceeds this length,
only max length- characters are returned, and a status code of
error_table_$long_record is returned.

Upon return from tty canon, if the status code is zero,
tty read frees the ring 0- buffers from which characters were
copIed, as explained above; otherwise it reduces its internal
buffer size limit by one-third and starts again from the copying
phase.

If the canonicalization phase completes without calling
tty canon, the string may still contain NUL characters; therefore
if tty canon has not been called, tty read indexes the string for
NUL characters, and copies the characters preceding and following
each NUL into the other internal buffer, decrementing the string
length by one for each NUL it findse:

Erase and Kill Processing

Erase and kill processing is really done in two passes, kill
and then erase. The string resulting from the canonicalization
phase is indexed from the right for a kill character; if one is

5-13 AN85-01

found, and the immediately preceding character is not a
nonoverstruck escape character, the pointer to the beginning of
the string is incremented to point to the character following the
kill character, and the length of the string is decremented
accordingly. If the kill character is preceded by an escape
character that is not preceded by a backspace, the pointer and
the length are not changed, and the remainder of the string (if
any) is scanned for further kill characters.

The string resulting from the kill pass is now indexed for
an erase character. If one is found anywhere but at the
beginning of the string, the cnaracters before and after the
erased character(s) must be copied to the other internal buffer.
The basic lIlechanism is to copy the characters to the left of the
erased characters, decrement the count of total input characters
by the number of erased characters plus one for the erase itself,
and resume the scan starting with the character after the erase
character. (If tne erase character is preceded by an escape
character not preceded by a backspace, the escape and erase
characters are copied along with the preceding characters.) When
the end of the string is reached, provided any copying has been
done, all characters to the right of the last erase character are
copied.

The number of characters to be erased (i.e., not copied) is
determined as follows: if the character preceding the erase is
"whi te space" (space or horizontal tab) the source string is
searched backward for a nonwhite character, and all characters to
the right of it are erased; if the character preceding the erase
is a printing graphic, then the source string is searched
backward until two nonbackspace characters are found in
succession, whereupon all characters from the one to the left of
the leftmost backspace on are erased. Note that the character
immediately preceding the erase character cannot be a backspace,
since all overstruck erase characters are processed by tty_canon.

If the second or subsequent scan turns up an erase character
as the first character in the string (as would happen if two
erase characters were typed in succession), the determination of
tne number of erased characters is made in the same fashion as
that described above, except that the characters at the end of
the target string are examined; the erasing is carried out by
decrementing the target pointer so that the erased characters are
overwritten, and decrementing the overall length, accordingly.

Escape Sequence Processing

This phase, which is implemented in a similar manner to the
formatting phase of tty write as described above, actually deals
not only with escape sequences, but with the elimination of white
space before break characters and of characters designated as

5-14 AN85-01

being "thrown away" for the current terminal type. It uses test
character and translate (tct) instructions under control of the
input conversion table associated with the channel.

This phase uses tty util $tct, which scans for "interesting"
characters and returns a tally of characters skipped over, the
indicator value for tne character stopped at, and an updated
pointer to the character stopped at. If the tally is nonzero,
tty read copies the skipped characters into whichever internal
buffer does not contain the source string; then it examines the
indicator. For a break character, it scans the copied characters
(if any) from the right for the last printing graphic; the break
character is copied immediately to the right of it. If any
intervening white space was found, the length of the final string
is decremented by the number of white-space characters. Finally,
a flag is set to indicate that a break was found.

If the scan finds a formfeed, and the terminal has a nonzero
page length, the formfeed is thrown away, on the assumption that
the user typed it for the purpose of starting a new page.
Otherwise it is stored as a normal character. The tty interrupt
module is responsible for adjusting the current line count on the
page when a formfeed or newline is input.

If the indicator shows an escape character, tty read must
find out if it is in fact the start of an escape sequence. If the
channel is not in "esc" mode, or if the character immediately
preceding or either of the two characters immediately following
the escape character is a backspace, the escape is copied as a
normal character and the scan continues. (The backspace test is
to ensure that neither the escape nor the column position to its
immediate right is overstrUCk.) If the following character is an
escape, erase, or kill character, it is copied to the target
string; if it is an octal digit, the character whose value is
represented by the one to three nonoverstruck octal digits
following the escape character is inserted in the target string;
if the escape is followed by zero or more white-space characters
followed by a newline, all characters from the escape through the
newline are skipped (the newline is not treated as a break in
this case); otherwise the character following the escape is
looked up in the input escapes string in the appropriate
special chars structure (described in MPM Communications
Input/Output, Order No. CC92). If it is founcr,-the corresponding
character from the input_results string is inserted in the target
string. If the character is not found, then there is no escape
sequence, and the escape character is copied"as above. If an
escape sequence is identified, the pointer used for the next call
to tty_util_$tct is updated to point past the end of the escape
sequence.

5-15 AN85-01

If the indicator shows that the character is to be thrown
away, it is not counted in the length of the final string, and
the scan continues starting with the following character. Note
that "invisible" characters (see above) have already been thrown
away by the time this phase is reached. If the first call to
tty util $tct returns an indicator of zero and uses up the entire
source string, no characters at all are copied by this phase.

If the total number of characters in the now fully-converted
string plus the number of previously-converted characters already
copied into the caller's buffer is less than or equal to the
number of characters requested by the caller, and the converted
string ends in a break character, all the converted characters
are copied into the caller's buffer, and tty read returns. If
the total number of converted c~aracters e~ceeds the number
requested by the caller, the caller's maximum is copied into the
caller's buffer, and the remainder are placed in "~onverted"
buffers in tty buf as described, above, to be picked up by a
future call. If-the total number of converted characters is less
than the number requested by the caller, and the converted string
does not end in a break character (either because a break
character was escaped, or because the internal buffer size limit
was reached), all available characters are copied to the caller's
buffer and, if an input chain is still present, the next block of
characters (up to the next break) is copied from the input chain
and converted as above; any excess characters resulting from the
latter conversion are saved in "converted" buffers as above.

Echo Negotiation

A special method of input processing is available to users
of breakall mode, intended for use with the experimental emacs
editor. This feature is called "echo negotiation"; when it is
in effect, although an interrupt is generated by every input
character, tty interrupt only sends wakeups when one of a list of
designated characters is encountered. Characters that do not
cause wakeups are "echoed" by tty interrupt, i.e., they are
returned to the FNP as output. -

The feature is implemented by a combination of a control
operation to establish the characters that generate a wakeup, and
an entry to tty read to start echoing. The
"set echo break table" order establishes a table of'characters in
ring 0; once the table has been established, the entry
tty read$echo negotiate get chars may be called to initiate echo
neg~tiation. -This entry d~es everything that the main tty read
entry does; in addition, if it is called at a time when no Tnput
for the channel is present in ring 0, it sets a flag in the WTCB.
When input arrives and this flag is on, tty_interrupt looks up
each character in the table, and either echoes it or wakes up the
process. Echo negotiation is turned off by any of the following
events: a call to either of the two normal tty_read entries; a

5-16 AN85-01

call to the echo negotiate get chars entry that results in
char acter s being returned (in-which case a coun t of the number of
characters that have been echoed is also returned); the arrival
of a character in the echo break table; or the accumulation of a
specified number of characters (which is set by the call to the
eCho_negotiate_get_chars entry).

UTILITY FUNCTIONS - tty_index

The tty index module has several entry points that can be
called through gates to perform various operations on a
nonmultiplexed communications channel on behalf of an outer ring.
These functions include initializing, attaching and detaching of
channels, passing "ownership" of channels between processes, the
implementation of control operations, etc. One other entry,
tty index$initialize tcb, is called by tty read and tty write if
they are called before the TCB is initialized. The remainder of
this section describes the actions of the different entries.

Initializing a Channel

The init channel entry is called by
priv channel manager$init channel (see Section 3) to initialize a
nonmultiplexed channel. -It simply allocates a WTCB in tty buf
and a TCB in tty area and returns a pointer to the WTCB-for
priv_cnannel_manager to store in the channel's LCTE.

Terminating a Channel

The terminate channel entry is similarly called by
priv channel managerfterminate channel when a channel's parent
HlultIplexer -crashes or hangs-up. Its function is to free the
space occupied by the TCB and the WTCB.

Assigning a Channel to a Process

The two entries, tty index and tty attach, given a channel
name, return the device- index and the current state of the
channel to an outer-ring caller. They are called through the
gate entries hcs $tty index and hcs $tty attach. The device
index can then be . used in subsequent -calls to tty_read,
tty write, and other ~ntries in tty index. If appropriate, they
also make the cur.rent process either the "owning" process of the
channel (wtcb .hproc) or the ," using" process" (wtcb. uproc). The
two entry points behave in the same way" except that tty attach
sets an event channel name in the WTCB, as described' later. In
effect, a call to tty attach is equivalent to a call to tty index
followed by a call to tty event (see below); the following
description of the actions of- tty index applies to tty attach as
well. - -

5-17 AN85-01

The first thing tty index does is to look up the channel
name in the LCNT, in order to obtain the device index. It uses
this to get a pointer to the LCTE of the channel, which it locks.
At this point, if no process has previously been assigned
ownership of the channel and the calling process is the
initializer, the calling process is made ~he owning process. If
wtcb.hproc is not zero, the calling process' id must already be
in either wtcb.hproc or wtcb.uproc; if it is not, an error code
is returned and nothing is done. If the caller is entitled to
alter the state of the channel (as determined by the above test),
the caller's process id is placed in wtcb.uproc (it may have been
there already, or the answering service may have taken control of
the channel in preparation for creating a new process). If
wtcb.uproc is changed by this action, the pointers (in the TCB)
to the conversion tables are set to default values. The state of
the channel (listening, dialed, or neither) is set according to
tne flags in the WTCB; then tty index returns (or, if the
tty attach entry was called, it joins the code for tty event,
described below). -

All entries that deal with a specific channel, other than
init channel, terminate channel, tty index, and tty attach, call
an internal procedure, setup, that ensures that the-device index
supplied by the caller is valid, locks the LCTE, gets pointers to
the WTCB and the TCB, and checks to see whether the caller is
entitled to access to the channel (either the channel is unowned
or the caller is either the owner or the user of the channel).
It also sets the state of the channel, which is returned to the
caller.

Assigning an Event Channel

The tty_event entry is called through the hcs $tty event
gate entry to record the name of the event channel-over-which
Multics Communication System-originated wakeups are to be sent.
After the usual validation, the event channel name supplied by
the caller is placed in wtcb.event; this event channel is then
used for all output completions, break character inputs, and
similar events. If the caller is the owning process, the event
channel name is also placed in wtcb.hevent, and is used to signal
dialups and hangups as well.

Separating a Channel from a Process

Two entries are used to break the connection between a
process and a communications channel: tty detach and new proc.
The tty detach entry, called through hcs=$tty_detach, has two
uses, depending on the value of its second argument (dflag): if
dflag is zero, the caller is presumably the owner, in which case,
the channel is taken away from the current user (i.e., wtcb.uproc

5-18

is set to zero)--if the user calls this entry, nothing is done;
if dflag is nonzero, the caller must be the owner, who is making
the call in order to give up ownership of the channel. In this
latter case, tty detach calls channel manager$control to hang the
line up and sets wtcb.hproc to zero. As far as is known, the
initializer never calls this entry with dflag nonzero.

The new proc entry is called through hcs $tty new proc by
the "owning"-process in order to change the "usIng" process. If
the channel is not dialed, nothing is done; otherwise, the value
of the second argument (nproc) replaces the old contents of
wtcb.uproc. This entry is called by the answering service after
it is woken up by a user's new~proc command.

Ascertaining the State of a Channel

The tty state entry is called through hcs $tty state in
order to find-out if a channel is dialed, listening, or-neither.
It returns the appropriate code based on the values of flags in
the WTCB.

Aborting Input and/or Output

The tty abort entry is called through hcs $tty abort as a
result of a -"resetread" or "resetwrite" control-oper~tion. The
second argument indicates whether input or output is to be
aborted; 1 means input, 2 means output, 3 means both. The
general procedure is the same in either case: the input or
output chain is freed and the head and tail pointers in the WTCB
are zeroed. The" abort" order is forwarded through
channel manager$control to cause any pending input or output
being held at nigher levels of multiplexing or in the FNP itself
to be discarded.

Control Operations

Ti1e rest of tty_index--which is to say about two-thirds of
it--is devoted to the implementation of the various control
operations available through the typewriter DIM. The tty order
entry, called through hcs $tty order, implements all the control
operations available to users through iox and tty (except for
resetread, resetwrite, and abort, which- are im~lemented by
tty_abort, above) as well as the modes operation. In general,
these operations have to be forwarded to the major channel
through channel manager$control, in case action by the
multiplexer module Ts required to implement the operation.

The effect of the control operations implemented in
tty_index is described in the description of the tty I/O module
in the MPM Communications Input/Output, Order No. CC92. Rather

5-19 AN85-01

than describe the implementation of each control operation in
detail-, the rest of this section discusses special actions of a
nonobvious nature which must be taken in connection with certain
operations.

read status OPERATION

This operation is used by outer-ring programs that wish to
find out the state of the input chain without necessarily going
blocked. Since all the characters in an input buffer are not
necessarily processed by a single call to tty read, tty order
must check, if there is exactly one buffer in -the read chain,
whether it contains characters that tty read has not processed;
hence, the buffer tally is compared against wtcb.fchar (which is
the offset of the first unprocessed character position in the
buffer), and if they are equal, tty order returns the information
that there is no input available-in' tty buf. Whenever this
result is returned (it is also returned if wtcb.fblock is zero,
of course), wtcb.rflag is turned on so that if the caller chooses
to go blocked for input later a wakeup is sent when the input
arrives.

write status OPERATION

If this operation reports that output is going on,
wtcb.wflag illust be turned on so that if the caller goes blocked
for output later it can be woken up when the current output chain
is sent.

printer_off OPERATION

This operation is intended to prevent typed input from
appearing on the terminal, for example when reading passwords.
Since echoplex and replay modes both involve input being printed
on the terminal by the FNP, special handling is required if an
outer-ring program invokes the printer off operation while the
channel is in either of these two modes.-

The normal method for turnin~ the pr1nter off is to send the
printer-off sequence defined in the special-characters table for
the current terminal type as output. This is done by temporarily
placing the channel in rawo mode, calling tty write$locked so
that tty ~rite does not attempt to lock the LCTE 1sinde tty index
has already done so), and re'storing the previous setting of rawo
mode. If the special-characters table for the current terminal
type does not contain a printer-off sequence, no output is sent
and a status code of error table $action not performed is
returned. - - --

5-20 AN85-01

If the channel is in echoplex mode, disabling the terminal's
local-copy function would be ineffective (and has probably
already been done). In this case, tty order sends a modes
operation to channel manager to take the channel out of echoplex
mode; the mode bits In the TCB, however, are not changed so that
echoplex is automatically restored if a printer on control
operation is requested later. -

If the channel is in replay mode, tty order must tell the
FNP to take it out of replay mode when turning the printer off in
response to an outer-ring request. As with echoplex mode, when
the printer off operation does take the channel out of replay
mode, it leaves tcb .replay on so that replay is restored by a
subsequent printer_on operation.

The actual output operation to turn the printer off is
effected by an internal procedure, which is also called to
disable local copying when the channel is put in echoplex mode
(see discussion of "Modes", below).

printer_on OPERATION

The printer_on operation is used to undo the effect of a
previous printer_off operation. The same considerations apply:
if the channel is ih echoplex mode, rather than enabling the
local-copy function, tty order tells the FNP to start
echoplexing; if the channel is in replay mode, the FNP is told to
resume replaying. For more information, see the discussion of
echoplex mode under "Modes," below.

set terminal data OPERATION

The set terminal data operation is used by tty to implement
the set_term_type order. It extracts information from the
terminal type table (TTT) entry for the requested terminal type,
and stores it in the structure defined in the include file
terminal type data.incl.pl1; this structure is passed to
tty order with the set terminal data operation. It includes
pointers to the default- translation, conversion, special, and
delay tables for the terminal type; these tables are copied into
tty tables by calls to tty tables mgr, and pointers to the copies
are-set in the TCB. The -default table pointers in the TCB are
set to -1 to indicate that the default tables are in effect.

The setting of a terminal type by tty_ may include, besides
passing the set_terminal_data operation to tty_order, passing in
the initial modes for the terminal type and writing the initial
string to the terminal. These operations are accomplished by
separate calls to tty_order and tty_write, respectively.

5-21 AN85-01

wru OPERATION

The wru ("who-are-you") operation, used to initiate a read
of the terminal's answerback, is available only to the owning
process. The wtcb.wru flag is turned on so that a wakeup is sent
to the requesting process when the FNP returns the answerback
sequence even if the sequence does not contain a break character.

MODES

The modes operation is implemented in four phases: first,
the 'call er- suppl ied char ac ter str ing is val id ated, and bit
strings are set up indicating which modes are to be turned on and
off; second, the modes are forwarded to the parent multiplexer,
in case any action at the next level of multiplexing is required;
third, the appropriate mode bits in the TCB are turned on and
off, and any other special actions required for each particular
mode are taken; finally, the previous settings of tcb.modes are
converted into a character string to be returned to the caller.
If any error is discovered during the first phase, no modes are
changed, and an error code is returned. The modes operation is
implemented in a separated module named tty_modes, which is
called by tty_order.

Validation consists primarily of ensuring that all the mode
names supplied by the caller are actually names of modes
recognized by Multics Communication System. This includes
calling channel manager$check modes to see if any of the modes
are recognized by the multiplexer module. In a few cases,
however, further checking must be done. For line length and page
1 eng t h , t he mod e n am e ("11" 0 r " pI") m us t b e foIl 0 we d by an
integer that is either zero or in the range of 5<=n<=255. For
"fulldpx" (full duplex) or any of the echoing modes (crecho,
Ifecho, tabecho, or echoplex) the channel must be capable of
operating in full-duplex mode; this is . determined by looking up
the line type (wtcb.line type) in a table of line types capable
of running in full d~plex. (This test is performed by
fnp multiplexer$check modes~) In addition, for crecho, Ifecho,
and-echoplex modes, the FNP has to supply padding when echoing
carriage motion characters; tty modes, therefore, forwards the
channel's current delay table to the FNP.

The actual setting of a mode by tty modes entails turning on
or off the corresponding bit in tcb.modes. For most modes, this
is all that has to be done; these are modes that affect the
operation of the hardcore portion of Multics Communication System
only, and not the FNP. For other modes, it is necessary to send
an alter parameters operation to the FNP (see Appendix A for a
description of the alter parameters operation) telling it to turn
the specified mode on or-off. This is all that needs to be done
for tabecho, hndlquit, replay, and polite modes. Echoplex mode
is more complicated: when turning it on, not only is the delay

5-22 AN85-01

table forwarded, but a printer off operation is requested to
disable local-copy (see the discussion of the printer_off
operation, above); similarly, when turning echoplex off, a
printer_on operation is requested to restore local copy.

Line length and page length are not recorded in tcb.modes at
all, but are reflected in tcb.colmax and tcb.linemax
respectively. A zero value for either of these lengths means
that checking for maximum line or page length is suppressed.

Privileged Operations

Privileged operations may
these are invoked through the
hphcs_$tty~control and

be defined for a multiplexer;
gates phcs $tty control and

forwarded - through
and priv channel manager$priv control

priv-channel-manager$hpriv control, respectively. The ones
described below are those-defined for an FNP channel; they are
inplemented by the fnp multiplexer module. The dump fnp
operation is implemented by the priv control entry; the others
are implemented by the hpriv_control entry.

dump_fnp Operation

In order to obtain the contents of a specified portion of
FNP memory, it is necessary to supply a wired buffer for the FNP
to write into; accordingly, a sufficient amount of space is
allocated in tty buf. The fnp info structure contains a lock
used to prevent more than one -dump_fnp or patch_fnp operation
from using the facility simultaneously and a
dump patch in progress flag to indicate that such an operation is
currently going on. After fnp_multiplexer calls dn355$send_wcd.
to tell the FNP to dump the specified memory locations into the
wired buffer, it waits (using the wait/notify mechanism of pxss)
until the DIA I/O is complete. When dn355 receives an interrupt
for the submailbox used for the dump fnp operation (see Section 4
for a more detailed description of- this mechanism) it sends a
notify for the event reserved fo~ use by Multics Communication
System and turns off the dump patch in progress flag. When
fnp multiplexer receives the notIfy and sees that the flag is
off-;- it copies the data from tty buf into the buffer supplied by
the caller, frees the wired buffer, and unlocks the loc'k.

patch_fnp Operation

This operation allocates space in tty buf and uses the
"dump patch lock" in fnp info in the same manner as the dump fnp
operation, aside from the essential and obvious difference that
caller-supplied data is placed in the wired buffer by
fnp_multiplexer and sent to the FNP. The wait/notify mechanism
is also used in the same way.

5-23 AN85-01

The patch fnp operation assumes that the caller has
previously done-a dump_fnp operation, the results of which must
be supplied with the patch fnp call so that the old and new
contents of each word of FNP memory being patched can be reported
on the operator console and in the syserr log.

fnp_break Operation

This operation is used to manage breakpoints in FNP control
tables. (See the discussion of control tables in Section 12 and
the description of the debug fnp command in Appendix B.) The
data structure includes an FNP-address, an optional channel name,
and the action to be performed by the FNP; this action may be to
set a breakpoint, to restart a channel stopped at a breakpoint,
or to reset a breakpoint. If no channel name is specified, the
action is taken to apply to all subchannels of that FNP. The
contents of the structure are passed (with appropriate
modifications) to dn355$send global wcd, which passes them to the
FNP in a submailbox with an 'Operati'On code of "fnp_break".

enable_breakall_mode Operation

This operation must be performed before breakall mode can be
used on subchannels of the FNP. A channel naille is passed with
the control operation; it may be either the name of the FNP
channel itself or the name of one of its subchannels. If it is
the name of the FNP channel, the mode is enabled for all channels
on that FNP, and a flag is set in the fnp_info structure. If the
name specified is that of a subchannel, the wode is enabled for
that subchannel only, and a flag is turned on in its PCB. For
breakall mode to be turned on for a channel, either its PCB flag
or the FNP's global flag must be on.

disable_breakall_lllode Operation

This operation undoes the effect of an earlier
enable breakall mode operation by turning off the specified flag.
Note tliat if an-FNP channel name is specified, no PCB flags are
turned off; thus a disable_breakall_mode operation for an entire
FNP does not affect subchannels for which breakall mode has been
enabled explicitly.

5-24 AN85-01

SECTION 6

HARDCORE UTILITIES

This section describes the operation of two utilities widely
used by ring 0 Multics Communication
tty space man; and two special-purpose
subroutines, tty_util_ and dn355_util.

LOCKING AND QUEUING

System, tty lock and
assembler - language

The program that manages the "channel lock" in each LCTE,
used to prevent access to either the LCTE or any of the
associated channel's databases when their state is potentially
inconsistent, is tty lock. The following entries are provided:
lock channel and unlock channel, which lock and unlock LCTEs at
call time; lock channel-into . and unlock channel int, which lock
and unlock LCTEs-at interrupt time; flush-queue, which is used to
clean out pending queue entries when a channel is terminated; and
verify, which is called by verify lock when a crawlout occurs, to
make sure no process leaves ring-O with a processor lock locked.
Because some of these entries are called at interrupt time,
tty_lock must be wired.

The lock channel entry is called by channel manager,
tty read, tty-write, and tty_index before any references to an
LCTE. (dn355- does its own LCTE locking, as described in
Section 4.) It uses a stac instruction to attempt to lock the
LCTE; if the lock is already locked to some other process, the
stac fails, and a wait/notify mechanism is used to determine when
the lock becomes unlocked. The notify reqd flag in the LCTE is
turned on; lock channel calls pxss$addevent to establish an event
associated with the lock, tries once more to lock the lock (in
case the other process has unlocked it in tne lnterlm), and, II

it still fails, calls pxss$wait~ The process.now waits until a
noti fy is sen t "for the assoc iated even t; when thi s happens,
lock_channel tries again to lock the lock, and, if it still
cannot do so, reestablishes the event and waits again.

The lock channel int entry is called by
channel_manager$interrupt. Since pxss$wait must not be called at

6-1 AN85-01

interrupt time, this entry does not wait for the lock if it is
already locked; instead, it adds an entry to the channel's delay
queue. This queue entry contains the interrupt type and
associated data. Any queue entries added in this way are
processed when the channel is unlocked, as described later in
this section.

If lock channel int succeeds in locking the ·channel, it sets
a locked for-interrupt flag in the LCTE. The reason for this is
that the-interrupt handler may call one of the other entries in
channel manager in order to pass information back to the
multiplexer as a result of the interrupt. In this case,
lock channel would find the channel already locked; the setting
of the locked for interrupt flag would indicate that it was all
right for the call-to proceed without waiting for the lock to be
unlocked, since the operation channel manager was called to
perform is part of the same transaction- that locked the channel
in the first place.

The unlock channel and unlock channel int entries are almost
exactly alike, except for their treatment of the
locked for interrupt flag. The unlock channel int entry turns
the flag off before unlocking the channel; the unlOCk channel
entry does not unlOCk the channel at all if the flag is on, since
the unlock channel int entry is due to be called later.

Before unlocking the channel, either unlock 'entry processes
the channel's delay queue: for each entry in the queue, it calls
channel manager$queued interrupt (which differs from
channel-manager$interrupt only in that it does not attempt to
lock and unlock the channel) and frees the queue entry. When no
more entries remain in the queue, the lock is unlocked.

A separate lock known as the queue lock is used to protect
the delay queues from simultaneous modification. This lock is
also used to protect changes in the state of a channel lock that
could require referencing a queue; i.e., lock channel int never
locks a channel lock, and no one ever unlocks one, without first
locking the queue lock. This strategy is modeled on that used
for the coreadd queue lock, which is described in detail in the
Multics Storage System PLM, Order NO. AN61.

Once a channel lock is unlocked~ i£ notify reqd is on,
either unlock entry calls pxss$notify so that the process that is
waiting in lock_channel can try once again to lock the lOCk.

The verify entry is called by verify lock at crawlout time.
~L checks to see if the global tty buf lock; tty bufeslock, is
locked to the current process; if 'It is, cleanup=locks crashes

6-2 AN85-01

the system, since the state of tty buf itself must be assumed to
be inconsistent. Similarly, the system crashes if queue lock is
locked to the current process, or any channel lock for a channel
whose "special lock" flag is on, indicating that the channel's
multiplexer (rather than tty_lock) manages the lock.

SPACE MANAGEMENT

Wired buffer space in tty buf is managed by entries in
tty_space_man. While manipulating-the buffer pool, these entries
must have the global or "system" lock, tty buf.slock, locked; to
avoid losing the processor wnile this lock is locked, they must
run wired and masked. Three kinds of action are performed by
tty space man: allocation, freeing, and the setting of
"space needed" flags. The formats of the blocks manipulated by
tty_space_man are described in Section 2.

Allocation

Space in tty buf may be allocated either for use in buffer
chains (for input and output data) or for any of the various
control structures described in Section 2. Buffers are allocated
by the entries get_buffer and get_chain; other control blocks are
allocated by the entry get space. The principal difference is
that the size of a buffer is- always a multiple of 16 words, with
a maximum size of 128 words; get_space, on the other hand, can
allocate space in any even number of wo~ds. The buffer
allocation entries set the size code in each allocated buffer
(the meaning of the size code is explained in the description of
data buffers in Section 2).

The get buffer entry is called to allocate a single buffer
whose size is a multiple of 16 words; get chain is called to
allocate a chain of such buffers, all of -equal size, each
containin~ a relative pointer to the next one in the chain;
get_space allocates a block of arbitrary size. In any case,
tty space man searches the chain of free blocks from the lowest
add~ess, Tooking for the smallest free block that is large enough
to contain a buffer or block of the requested size. If a chain
is being allocated, this process is repeated for each requested
buffer, and each buffer allocated (except the last one) has its
Ifnext" pointer set to the offset of the following buffer. The
buffer allocation entrie~ also update a field in the LCTE of the
channel on whose behalf they were called, to indicate how much
input and output space is currently assigned to that channelv
~his information is used by dn355 and tty write to determine how
much input and output, respectively, to iccept for-the channel ..
The contents of a buffer or block are set to zero upon
allocation, except for the size code and forward pointer if
appropriate. If tty space man is unable ~o find a block or
blocks of the requested size', it returns a null pointer; it is
the responsibility of the ca,ler to take appropriate action.

6-3 AN85-01

Freeing

The free buffer entry is called to free a single buffer;
free chain is called to free a chain of buffers, and return the
number of buffers in the freed chain. The free space entry is
called to free a block of arbitrary size. A block allocated by
get space must be freed by free space; buffers allocated by
get-buffer or get chain must be freed by free buffer or
free chain, although buffers that were allocated separately can
be freed as a chain, and vice versa. The free buffer and
free chain entries deduce the size of each buffer-being freed
from-its size code; free space must be told the size of the block
to be freed. The last buffer in a chain to be freed by
free_chain is identified by a forward pointer of O.

Each buffer or block freed is threaded into the free chain
at the appropriate point (the free chain is sorted by increasing
address). If the newly free block is immediately preceded and/or
followed by an already free block, the adjacent biocks are
combined into a single, larger free block.

Once the supplied buffers have been freed, the freeing
entries process any pending "space_needed" requests, as explained
below.

Needed Space

When tty write is unable to allocate any buffers in which to
build an output chain, it calls tty space man$needs space to
ensure that a wakeup is sent to the calling process-when more
buffers become available. This entry sets the "space needed"
flag in the channel's LCTE, and also sets a flag in the-tty buf
header to indicate that there is an LCTE with its space_needed
flag set.

When tty_space_man finishes freeing a buffer, chain, or
block, it checks the flag in the tty buf header and, if it is on,
searches the entire LCT for entries with the space needed flag
on. For each one it finds, it calls channel manager$interrupt
wi th an interrupt type of "space available"; tty interrupt
handles this interrupt by sending a ~akeup to the process using
the channel. This enables each process to retry its call to
tty write; of course, there is no guarantee that it will now be
po s sib 1 e to all 0 c ate b u f fer s . for· ·:t he . c han n e 1 , but i f 'n 0 t "
tty space man$needs space is called again. When tty space man is
finIshed -searching-the LCT, it checks again to- see if any
space needed flags nave been turned on again as a result of any
of the interrupts it generated. If not, it turns off the flag in
the tty_buf header.

6-4 AN85-01

ASSEMBLER LANGUAGE UTILITIES

The tty util module contains entries called by tty read and
tty write to scan and/or translate strings of input or output
characters using EI3 instructions. The occasions on which these
entries are called are described in Section 5; a brief summary of
the available entries is included herea

mvt

SCUl

tct

translates a string under control 'of a translation
table.

searches a string for a character with its 400(8) bit
or its 200(8) bit on, depending on how it is called.

searches a string for a character whose indicator in
a conversion table is nonzero, and returns the
position of the character and the value of the
indicator.

find char
like tct, except that it also checks explicitly for
characters with either of their two high-order bits
00, and for white space combinations beginning with a
bl ank.

illegal_char
scans a string for a character with either o~ b6th of
its two high-order bits on.

All of these entries are provided with a pointer to, and the
length of, the string to be processed. All except mvt update the
pointer and the length to reflect how much of the string was
scanned before the specified condition was met.

dn355_util Subroutine

The dn355 util subroutine contains a single entry,
dn3~5 util$compure parity, which is used _ to ensure that the ~PCW
sent to the DIA for interrupting, bootloading, -or dumping t_h~ f,~p
has odd parity. If the parity of the PC~ is not already odd; the
subroutine makes it so by turning on bit:22. .

6-5 AN85-01

SECTION 7

INITIALIZATION OF HARDCORE DATA BASES

The dynamic data bases used by ring 0 Multics Communication
System, i.e., dn355 mailbox, dn355 data, tty_area, tty_tables,
and tty buf, are initialized in several stages: preliminary
initialization during hardcore initialization (collection 1); LCT
initialization during answering service initialization (after a
startup, multics, or go command); and the initialization of
per-channel and per-multiplexer data bases as the multiplexers
are initialized and loaded. These data bases are all described
in Section 2.

PRELIMINARY INITIALIZATION

The program called initializer, which runs during
collection initialization, calls fnp init to process
configuration cards relating to Multics Communication System.
(See the Multics Operators' Handbook,' Order No. AM81, for a
description of these cards.) First it calls get main to allocate
wired storage for tty buf, using the size specified on a PARM
TTYB card; if no such -card is present, a default size of 5120
words (5K) is used. The absolute address of the base of tty buf
is calculated and stored. The size of the circular buffer is
determined from a PARM TTYQ card; if·no such card is present, a
default size of 256 words is used. The necessary amount of space
for the circular buffer is reserved at the end of the tty buf
header; the remainder of tty buf, starting at the next 0 mod 16
address, is marked as the free- pool, which initially consists of
one free block. Then the areas in tty_tables and tty_area are
initialized as empty areas.

Finally, dn355 data and dn355 mailbox are initialized in
accordance with all-FNP cards found in the configuration deck.
These cards are checked for validity and consistency; for each
one, the 10M number and 10M channel assigned to the specified FNP
are copied into the entry in dn355 data for that FNP, and the
mailbox pointer is set to address-the correct mailbox area.
Calls are made to iom manager to assign dn355$interrupt as the
interrupt handler for-the specified 10M channels; in addition,

7-1 AN85-01

fnp init calls iom manager$iom set list for each FNP, since
iom_manager requires-this call in order to perform I/O properly.

LCT INITIALIZATION

During answerin~ service initialization, the initializer
process scans the CDT to determine how many communications
channels are defined; based on this, and on the value specified
for the spare_channel_count keyword, it determines the number of
LCTEs required, and calls the gate entry hphcs $lct init. This
call is forwarded to priv channel manager$lct init, which calls
tty space man$get space to- allocate space for the LCT and also
allocates-space for the LCNT in tty area. It then assigns LCTEs
at the beginning of the LCT to howeier many FNPs are configured,
and sets their special lock flags to indicate that
channel_manager is not to attempt to lock these channels.

MULTIPLEXER INITIALIZATION

Before loading a multiplexer,the answering service calls
hphcs $init multiplexer, which call is forwarded through
priv channel manager to the initialization entry of the
appr~priate -multiplexer module, as explained in Section 3. In
the case of an FNP, this entry is
fnp multiplexer$init multiplexer. It initializes the specified
FNP's fnp info structure in dn355 data, and allocates a
contiguous block of space for PCBs for all the subchannels of the
FNP. The array of channel names passed to this entry is sorted
in ascending order, so init multiplexer knows that the channels
for any given line adapter (HSLA"or LSLA) are contiguous; this
enables it to assign them contiguous PCBs and store the PCB index
of the first channel on each adapter in the fnp info structure,
thereby reducing the number of entries dn355 has to scan in order
to find the PCB for a channel specified in a submailbox from the
FNP.

CHANNEL INITIALIZATION

Before issuing a "listen" control operation to a
calls

through
allocates

nonmultiplexed channel, the answering service
hphcs_$init_channelj this call is forwarded
priv channel manager to tty index$init channel, which
the channel's WTCB and TCB as-explained 1n Section 5.

7-2 " ... , () ~ ("'\.,

R.l'4 0:> -u I

SECTION 8

TOOLS AND DEBUGGING AIDS

A few commands are provided to allow a user process to
obtain information about the current state of the CS portion of ,
Multics Communication System and its associated databases; they
can be helpful in debugging Multics Communication System. This
section describes these commands. It also includes information
on error messages that Multics Communication System may write on
the syserr console and/or into the syserr log, as well as some
pointers on analyzing Multics Communication System-related system
crashes.

TOOLS

Three commands are discussed in this section: tty meters,
which displays the metering information kept in tty-buf by
Multics Communication System (see Section 2 for descriptions of
the individual structure items); tty dump, which displays the
current state of a single channel;~ and tty analyze, which
displays information extracted from a systew -dump. Command
descriptions of some of these commands appear in Appendix B;
others appear in the Multics Administrators' Manual (MAM)
Communications, Order No. CC7,.

t.ty_meter s

The tty meters command us~s information stored in the header
of tty buf to derive statistics on the behavior of Multics
Communication System and of the various communications channels.
It uses two temporary segments to keep two copies of tty buf, and
one for a copy of dn355 data. The two copies of" tty buf can be
thought of as the "current" copy and the "old" copy. The current
copy is filled in from ring 0 every time the command is invoked;
the old copy, initially all 0, is updated from the current copy
whenever the -reset control argument is used. The statistics
pr in ted by the comuland reflect the differences between the val ues
in the old copy and in the current copy. The command description
for tty_meters is in MAM -- Communications, Order No~ CC75.

8-1 AN85-01

The command can operate in either normal mode or long mode.
(It operates in normal mode unless the -long control argument is
used.) In normal mode, only the header of tty buf is copied from
ring 0, up to but not including the first word of the circular
buffer. In long mode, all of tty buf is copied, and additional
information on how many terminals-of each type are dialed up is
derived by scanning all the WTCBs. The values of
wtcb.send output, wtcb.rflag, and wtcb.wflag are also used in
long mode-to determine how many channels are currently sending
input or receiving output. Because the length of the header is
specified in ring zero meter limits ASCII ,use of long mode
requires access to the phcs_ gate. - -

The copy of dn355 data is· used to extract the version
identifier of the Multics Communication System running in each
configured FNP. This information is displayed at the beginning
of the output of tty meter, along with the FNP core image name
specified in the CDT.- The average number of free buffers in each
FNP is also derived from dn355_data.

The tty dump command displays various databases of a
specified communications channel. It makes copies of tty area,
tty buf, and dn355 data. It can be used to display information
derTved from either a running system or an FDUMP. Use of this
command with a live system requires access to the phcs gate.
The channel can be selected by specifying either the channel name
or a person name. If a channel name is specified i the LCNT is
searched for that channel's entry. If a person name is
specified, the answer table is searched for a logged-in user
having that name; if one is found, information is displayed about
the communications channel(s) assigned to that user's process by
the answering service. The command description for tty dump is
in MAM -- Communications, Order No. CC75. -

The format of the information displayed by tty_dump depends
on the multiplexer type of the specified channel. For a
nonmultiplexed channel, the WTCB and TCB are displayed, along
with the contents of any current input and/or output chains. The
-subchannel control argument may be used to indicate that the
database of the parent multiplexer, or at least that portion of
it that concerns the specified channel, is to be displayed (for a
physical channel of an FNP, this means to display the channel's
PCB). The -all control argument specifies that the dataoases
associated with t~e channel at all levels of multiplexing (up to
and including the physical FNP channel) are to be displayed. The
-lcte control argument indicates the LCT£ of the specified
channel (and its parents if -all is specified) is to be
displayed.

8-2 " .. , n r- t'"'\ ...
.n.l~O?-U I

For channel types other than nonmultiplexed ("tty")
channels, a subroutine that displays the associated multiplexer
databases must be provided. Its name must be of the form
TYPE dump, where TYPE is the name of the multiplexer type (e.g.,
userT_dump_ for the multiplexer type "userl"). The calling
sequence of this subroutine is described below, using a
m u 1 tip 1 ex e r t y p e 0 f "u s e r 1 n for the sa k e 0 f e x am pIe ~

declare user1 dump entry (pointer, pointer, pointer, fixed
bin, bit-(1)f;

call userl dump (ttybp, areap, database_ptr, subchan,
b r i e f= s w) ;-

where:

ttybp (Input)
is a pointer to the base of tty_buf.

areap (Input)
is a pointer to the base of tty_area.

database ptr (Input)
is a pointer to the multiplexer's database.

subchan (Input)
is the subchannel number of the channel about which
information was requested. A subchannel number of -1
indicates that information is requested for all
subchannels.

brief sw (Input)
is "l"b if the -brief control argument to tty_dump
was specified; otherwise it is "O"b.

A system-supplied
vip7760_dump_.

example of such a subroutine is

An entry to tty dump called print chain is provided to allow
multiplexer dumping- subroutines to share the code in tty dump
that displays the contents of an input or output chain.- Its
calling sequence is described below.

declare tty dump$print chain entry (pointer, char(*), fixed
bin, bIt (1)); -

call tty dump$print chain (ttybp, chain_name, chain_start,
bri"ef_sw); -

where:

ttybp (Input)
is a pointer to the base of tty_buf.

8-3 AN85-01

chain name (Input)
is a character string identifying the type of chain;
it is prin~ed before the contents of the chain.

chain start (Input)
is the offset in tty_buf of the first buffer in the
chain.

brief sw (Input)
is "1"b if only the offset, size, and flags
associated with each buffer are to be displayed. If
it is "O"b, the contents of each buffer are displayed
as well.

The tty analyze command produces formatted output describing
the contents-of tty buf taken from a Multics segment dump. The
command description-for tty analyze appears in Appendix B. It
calls the extract command to copy tty buf, tty area,
dn355 mailbox, and dn355 data from a specifie~ dump in >~umps.
It then loops through the-array of PCBs for each configured FNPj
for each one, it displays the contents of the PCB. If the
channel is not multiplexed, it then displays the contents of the
WTCB; otherwise it calls a subroutine (described below) to
display the multiplexer database, and searches the LCNT for all
subchannels of the multiplexed channel. This process is repeated
through all levels of multiplexing (down to the WTCB level) until
the databases of all d~scendants of each physical channel have
been displayed. For each channel, the delay queue, if any,
pointed to by the LCTE is also displayed. In addition, for each
channel having a read and/or write chain it prints the addresses
of all buffers in each such chain. If the -long control argument
is specified, the contents of each buffer are also printed (in
octal). Each buffer (and each database) thus accounted for is
marked with a special pattern so that multiple uses of a single
block can be detected.

For each mul tiplexer type (other than "mcs" and It tty"), a
subroutine must be supplied that displays the contents of
multiplexer databases. Its name must be of the form
TYPE analyze ,where TYPE is the name of the multiplexer type
(e.g:-, user1 analyze for the multiplexer type "user1"). The
calling sequence of this subroutine is described below, using a
mul ti pI ex er type of "user 1" for the sake 0 f exam'pl e.

declare user1 analyze entry (pointer, pointer, fixed bin,
entry, bIt(1»; -

call user1 analyze (ttybp, areap, devx, check_used_entry,
longsw) ; -

8-4 AN85-01

where:

",tybp (Input)
is a pointer to the base of tty_ buf.

areap (Input)
is" a pointer to the base of tty_area.

devx (Input)
is the device index of the multiplexer channel.

check_used_entry (Input)
is the entry to be called to mark a buffer or control
block as having been accounted for; the calling
sequence is described below.

longsw (Input)
is "1"b if the "-16ng" control argument to
tty_analyze was specified; otherwise it is '''O"b.

A system-supplied
vip7760_analyze_.

example of such a subroutine is

For every control block or buffer that it displays, the
subroutine should call the check used entry passed to it by
tty analyze to account for the space. -The calling "sequence of
this entry 1s as follows:

declare check used entry entry (pointer, fixed "bin)
variable; -

where:

block_ptr (Input)
is a pointer to
for.

the buffer or block to be accounted

nwords (Input)
is the length of the buffer or block in words.

After all channels have been checked, tty analyze displays
the addresses of all FNP delay" ~queue entries -created by dn355
(see Section 4). Then it searches dn355_mailbox for any
currently-active submailboxes that contain an 1/0 command of WTX,
and displays the addresses of any pseudo-DeW lists pOinted to by
such mailboxes. If the -long control argument is specified, the
contents of these blocks are also displayed. Then tty analyze
follows the free block chain starting at tty buf.free,-and any
invalid chain pointers are reported. Finally,-a list is printed

8-5 AN85-01

of the addresses of all blocks in tty_buf not otherwise accounted
for.

SYSERR MESSAGES

The messages discussed here are those messages generated by
calls to syserr without crashing Multics. (Crashes generated by
Multics Communication System are discussed later in this
section.) Almost all nonfatal error messages produced by Multics
Communication System are the result of conditions detected by the
FNP.

FNP Crashes

When an FNP crashes (as described in Sections 13 and 16) it
sends an "emergency" interrupt to the CS; dn355 handles this
interrupt by interpreting the crash data in words 6 and 7 of the
mailbox header of that FNP (mailbox headers are described in
Sections 2 and 16). Using the type of FNP fault and the contents
of the FNP instruction counter, it looks up the appropriate
message in dn355 messages, and prints it on the syserr console.
It then signals the process that bootloaded the FNP (which is
generally the initializer process), and reports hangup conditions
on all channels connected to that FNP.

Other,FNP Messages

When a submailbox from the FNP contains an "error message"
operation code, the error code included in the command data is
used to index an array of messages in dn355 messages to find the
one to print on the console. These messages describe nonfatal
FNP errors, such as certain types of DIA I/O error, possibly
runaway HSLA subchannels, and the like. They do not normally
require any action, but they are sometimes useful in tracking
down other problems. If some FNP channels do not seem to be
behaving properly, or if an FNP crash is not readily analyzable,
any error messages sent by that FNP may provide useful additional
information. These messages all indicate probable hardware·
problems.

CRASHES GENERATED BY MULTICS COMMUNICATION SYSTEM

The CS portion of Multics Communication System elects to
crash (by calling syserr) if certain inconsistent or "impossible"
conditions are 'detected; for example, an attempt to unlock a
lock that turns out to have been locked by some other process, an
unrecognizable submailbox sent from the FNP, or an interrupt on
an unrecognized level. These conditions are all quite rare, and
the associated syserr messages are generally self-explanatory.
It is often a good idea to dump the FNP as well as the CS when an
Multics Communication System-related crash occurs, particularly

8-6 AN85-01

one resulting from a faulty submailbox. There is a class of
errors detected by tty space man (see Section 6) indicating that
the buffer pool is in an inconsistent state; tty analyze may be
useful here, as is visual examination of a dump of tty_buf. In
general, dn355 mailbox, dn355 data, and tty buf should all be
dumped after an- Multics CommunTcation System=related or Multics
Communication System-suspected crash.

Two particular types of crash message are insufficiently
explicit to be self-explanatory; both are accompanied by codes
that can be used to determine the nature of the error. These
codes ar€ discussed below.

Lock Errors

A message of the form:

dn355: lock A= processid, error = n

indicates tha~ dn355 attempted to unlock a lock but discovered
that the lock did not contain the ID of the currently running
process. The code n can have either one of the following values:

5 the circular buffer lock was invalid

6 dn355$interrupt found the FNP channel lock invalid

Free Space Errors

A message of the form:

tty_space_man: error of the Nth kind: ERR TYPE

indicates an inconsistency or other problem in the buffer pool.
These conditions are detected by tty_space_man (see Section 6.)

N and ERR TYPE r:an have the following values:

N ERR-TYPE

Mylock error

2 Unlock error

3 Bad address

Explanation

A process attempting to lock the
tty_buf lock already had it locked

A process attempting to unlock the
tty_buf lock did not have it locked

One of the freeing entries was
called with an address outside the
free pool

8-7 AN85-01

4 Already free An attempt was made to free space
that was already free

8-0 AN85-01

SECTION 9

OVERVIEW OF THE FNP SOFTWARE

RESPONSIBILITIES OF THE FNP

The FNP-resident portion of Muitics Communication System has
the following major functions:

1 • controlling the various
accordance with the
protocols;

communications channels in
appropriate communications

2. keeping the CS informed of the current state of each
channel;

3. presenting input data from the various channels to the
CS;

4. transmitting output
appropriate channels;

supplied by the CS to the

5. performing all echoing functions supported by Multics
Communication System (linefeed and carriage return
echo, tabs echoed as spaces, echoplex, replay).

STRUCTURE OF FNP MULTICS COMMUNICATION SYSTEM

Tne major components of the FNP software are listed below:

1. Scheduler - handles interrupts, decides which routine
to run, manages timers. The scheduler is discussed in
greater detail in Section 11.

2. Terminal control functions: control tables and the
control table interpreter - implement individual
communications protocols, keep track of the state of
each channel. These functions are discussed in greater
detail in Section 12.

9-1 AN85-01

3. Hardware managers control the direct interface
adapter (DlA), low-speed line adapter (LSLA),
high-speed line adapter (HSLA), and the FNP console.
Hardware managers are discussed in Section 13.

4 • Utilities - buffer space
tracing functions, etc.
Section 14.

management, fault handling,
Utilities are discussed in

Each of these components is implemented by one or more
modules written in the FNP assembler language, 355MAP. Each
module is assembled separately using the map355 command, which
invokes the assembler (in an ordinary Multics process) under GCOS
simulation; the assembled modules are combined into a "core
image" for the FNP by the bind fnp command. The resulting core
image is loaded into the FNP oy-the Multics initializer at system
initialization time, or at any time in response to the operator
command load mpx. See MAM-Communications, Order No. CC75 for
descriptions-of the map355and bind fnp commands, and Section 15
for a description of the bootloading-of the FNP.

The modules that Cou1pose the core image are listed below.
For each module, the long or "external" form of the name is the
one used in specifying the source and object segments for the
module, and is the name used in this document to refer to the
HIOd ul e; the short or "in ter nal" form is the symbol tha t defines
the module within tne core image and is stored in the module
itself as part of the "module chain" used in printing dumps of
the FNP (see Section 16).

External name

scheduler

interpreter

control tables

other control
tables modules

dia man

Isla man

hsla man

console man

utilities

Internal name

sked

intp

ctrl

dia

Isla

hsla

cons

util

9-2

Comments

control
interpreter

table

main control tables
module

see Section 12

DIA manager

LSLA manager

HSLA manager

FNP console manager

/I ",0 c: f"\ 1
.M.l'IOJ-UI

ic sampler icsamp

trace trac

breakpoint_man bkpt

init init

Data Bases

meters values of the
instruction counter
at interrupt time
(see Section 11)

performs memory
tracing functions
(see Sections 14 and
16)

manages breakpoints
in control tables
(see the description
of the debug fnp
command in Appendix
B)

FNP initialization
program

A variety of common databases are used by all these modules
to communicate information about the states of the various
channels and hardware adapters; the data bases are described in
Section 10. The most important of these is the terminal
information block (TIB); there is one TIB for every configured
channel, which describes the current state of the channel. The
TIB is referenced by almost every module in the FNP; as a matter
of software convention, the address of the TIB for the channel of
current interest is held in index register 1.

CHANNEL MANAGEMENT

It may be convenient to view each channel as being managed
by its own "process" in the FNP, where the state of the "process"
is described by its TIB. The control tables are run in such a
ilprocess" whenever there is any work to do for the associated
channel; when the "process" is not running, a field in the TIB
(t.cur) identifies the place in the control tables at which
execution last stopped.

INTERRUPTS AND SCHEDULING

The FNP is driven by interrupts, which come primarily from
four sources:

1. the DIA, either sent from the CS or used to signal the
completion of DIA 1/0;

9-3 AN85-01

2. the LSLA reporting status resulting from the processing
of an input or output frame;

3. the HSLA reporting status for a particular subchannel;

4. the interval timer, when a software-established timer
runs out.

A routine that handles an interrupt does very little other
than identifying the reason for the interrupt and scheduling
another routine to do the work required by the event that caused
the interrupt; for example, the control tables are never run at
interrupt time, but may be either scheduled to run as a result of
a timer interrupt or called by another scheduled routine. The
interrupt and scheduling mechanisms are described in Section 11.

DATA PATHS

Input

When a user types a message-ending character (typically
newline) an interrupt is generated (on an HSLA channel) or the
character is recognized in an LSLA input frame, and "break
character" status is sent to the control tables for the channel;
the address of the beginning of the input message is stored in
the TlB. The control tables, possibly after examining the data,
execute a "sendin" operation block, which queues up a request for
DIA 1/0. when dia_man runs, it fills in a submailbox either with
the input itself or with an operation code saying that input is
available and a tally of characters in the message. In the
latter case, the CS replies with another submailbox telling the
FNP where to put the data; dia man builds a DCW list to copy the
data from FNP buffers into CS main memory, and when the liD
completes it frees the buffers in the FNP.

Output

When output is ready to be sent from the CS, the CS prepares
a mailbox telling tne FNP the location of a block of
"pseudo-DCws" containing the addresses and tallies of output
buffers in the CS. After reading this submailbox, dia man reads
in the pseudo-DCWs, and uses the information in them to read the
data from CS memory into buffers in the FNP. The address of the
first of these buffers is stored in the TIB, and dia man calls
the interpreter to start the control tables. The latter generate
a call to Isla man or hsla man to send the data characters to the
appropriate channel; when the last character in a buffer is sent
to the channel, the buffer is freed.

9-4 AN85-01

SECTION 10

FNP DATA BASES

This section describes various data bases used by the FNP
software. Some data bases used primarily by the hardware, but of
interest to the systems programmer" are described in the
Datanet 355 Macro Assembler Program manual, Order No. BB9B.

The fields in most of the data bases described in this
section are defined by macros that are included in those modules
that reference the various data bases. The names given in these
descriptions are the names used in the macros. In some cases,
the reader is referred to the macro definitions themselves for a
detailed list of ~he contents of the data bases.

StSTEM COMMUNICATIONS REGION

The system communications region contains a variety of
information of general interest to the Multics Communication
System software. It begins at absolute location 640 (octal) in
FNP memory and currently extends through location 677, but space
is reserved for its expansion up to location 775. Its contents
are described by the "comreg" macro. Fields in the system
communications region have names beginning with ".cr".

10M TABLE

The 10M table is a 32-word ar~a describing the configuration
of the channels on the Input/Output Multiplexer (10M) of the FNP.
It is used during FNP initialization. The address of the 10M
table is kept in .criom in the system communications ~egion (see
above).

Up to 16 channels may be configured on the 10M, and each
entry in the 10M table corresponding to such a channel is two
words long. The format of the 10M table is descrioed below.

10-1 AN85-01

(/ord s Meaning

0- 1 1st dey ice element (FNP console)
2- 3 2nd d ev ic e element (FNP reader)
4- 5 3rd dey ice element (FNP printer)
6- 7 4th device element (not implemented)

10-11 5th dey ice element (DlA)
12-13 6th dey ice element (not implemented)
14-15 7th dey ice element (HSLA 0)
16-17 8th dey ice element (HSLA 1)
20~21 9th device element (HSLA 2)
22-23 10th device element (LSLA 0)
24-25 11 th dey ice element (LSLA 1)
26-27 12th device element (LSLA 2)
30-31 13th dey ice element (LSLA 3)
32-33 14th dey ice element (LSLA 4)
34-35 15th device element (LSLA 5)
36-37 16th device element (clock)

Dev ice El emen t Fonaat:

word 0 - flal?; word
word 1 - address of HSLA table or LSLA table if

device is HSLA or LSLA respectively

Flag Word Format:

Bit Description

o multiplexed channel (not used)
1 device released (not used)
2 asynchronous device (not used)

3-5 adapter number (if LSLA or HSLA)

6 T & D in control (not used)
7-8 character length code (not used)

9-13 device type code
=================================== crosses 3-bit boundary
14-17 device speed code (for LSLA only)

Device Type Codes:

Name

dnimp
dclock
ddia
dhsla
dlsla

Code Meaning

00 not implemented
01 clock
02 DlA
03 HSLA
04 LSLA

10-2 AN85-01

dcon
dpr int

05
06

console
printer

HARDWARE COMMUNICATIONS REGIONS

There is one 16-word hardware communications region
associated with each configured LSLA, and one for each subchannel
of each HSLA. The hardware communications region for the first
LSLA (which is called LSLA 0) starts at absolute location 500
(octal); tne one for LSLA 1 starts at location 520, etc. The
hardware communications region for subchannel 0 of HSLA 0 starts
at location 1000 (octal); for subchannel 1 of HSLA 0, at 1020,
etc. Sinc~ there are 32 subchannels per HSLA, the hardware
communications regions for each complete HSLA occupy 512 decimal
(= 1000 octal) words, so that the hardware communications regions
for the second HSLA (if more than one is configured) start at
location 2000, and for the third at 3000.

The hardware communications regions contain the indirect
control words (ICWs) used by the LSLA and HSLA hardware in
sending and receiving data and for storing status. Some of the
fields in the hardware communications region are used differently
depending on whether the device is an HSLA subchannel or an LSLA,
as noted in the description below. The hardware communications
region is defined by the "hwcm" macro.

Words

0-
2- 3
4- 5
6- 7

10

11
12-13

12
13

14-15
16-17

16

Mnemonic

h.ricO
h.ric1
h.sicO
h.sic1
h.baw
hcmt1
h. sfcm
h.mask

hcmt2
hcmt3

h.aicw
h.cnfg
hcmt4

Meaning

primary receive icw
alternate receive iew
primary send icw
alternate send icw
base address word (HSLA)
count of missed STX frames (LSLA)
address of software comm region
mask register (HSLA subchannel 0 only on
DN355 and DN6600; HSLA Subchannels 0,
8,16, and 24 on DN6670)
count of attempts to resync (LSLA)
maximum number of successive resyne
attempts (LSLA)
active status icw
configuration status (HSLA)
temporary counter (LSLA)

SOFTWARE COMMUNICATIONS REGIONS

There is a software communications region for each LSLA and
for each configured HSLA subchannel. The software communications
region contains information about the state of the relevant
hardware channel that is primarily of interest to the software

10-3 AN85-01

module that manages the relevant adapter (i.e., lsla man or
hsla man). The address of each software communications region is
kept-in the corresponding hardware communications region. Fields
in the software communications region have names beginning with
"sf.". Flags in the software communications region have names
beginning with "sff".

LSLA Software Communications Region

Since there cannot be more than six LSLA software
communications regions (one for each configured LSLA) , space is
reserved for as many as will be needed at the end of the module
lsla man, depending on the number of LSLAs specified in the bind
file-(see the description of bind fnp comIlland in Section 17).
The format of an LSLA software communications region is described
by the "sfcm" macro with a parameter of "lsla".

HSLA Software Communications Region

Since there is one software communications region for each
configured HSLA subchannel, and therefore anywhere from zero to
32 for each HSLA, space is not reserved for them when the core
image is bound; rather, they are allocated as needed during FNP
initialization (see Section 15). The format of an HSLA software
communications region is described by the "sfcm" macro with a
parameter of "hsla".

LSLA TABLE

There is an LSLA table for each configured LSLA, and an
entry in the LSLA table for each configured time slot on each
LSLA. (See Section 13 for an. explanation of LSLA time slots.)
The LSLA table entries are used to make the connection between
LSLA time slots and actual communications channels.

The starting address of the LSLA table for each LSLA is kept
in the 10M table entry for that LSLA. Since time slot 0 is
reserved for use as a T & D slot, the first entry of each LSLA
table is unused.

The format of an LSLA table entry is described below.

Name

It.flg
It.sid
It.tib

Offset

o
o
1

Meaning

flag word (bits 0-14)
slot identifier (bits 15-17)
TIB address

10-4 AN85-0i

HSLA

Flag Word (It.flg):

Symbol

1 tfbbk
I tfdcw

ltfst
Itfbrk
Itfbex

I tfrqs
ltfdtr

ltfibrn

Bit Mask

04 020000
05 010000

06
07
08

09
10

1 1

004000
002000
001000

000400
000200

000100

Meaning

line break status received
new dcw list pending for line

request for status is pending
sending delays for line break
break on next input character

current setting of request to send
current setting of data terminal

ready
IBM-type (odd parity) terminal

--
I tfesc
ltfste
It fskp

Time

TABLE

12
13
14

000040
000020
000010

escape sent before command
status character expected
skip next character

Slot Identification Codes (It.sid):

Name Code Meaning

Itl0 0 10 cps
It30a 1 30 cps, slot 1
It30b 2 30 cps, slot 2
It30c 3 30 cps, slot 3

4 invalid
It15a 5 15 cps, slot 1
It15b 6 15 cps, slot 2

7 unused slot

There is an HSLA table for each configured HSLA, and an
entry in each HSLA table for each configured subchannel. The
HSLA table is used at FNP initialization time; it is the path by
which information contained in the CDT for each channel is passed
to the FNP.

The starting address of the HSLA table for each HSLA is kept
in the 10M table entry for that HSLA. The format of an HSLA
table entry is described below, and is defined by the "hslatb"
macro.

word 0 - basic subchannel data described below

word 1 - address of TIB

10-5 AN85-01

Basic Subchannel Data:

htfcc 0 400000 concentrator channel (not used)
htfpl 1 200000 private line modem or hardwired
htfasy 2 100000 asynchronous channel

htfopl 3 040000 option 1 :

automatic baud rate detection (async)
EBCDIC code (binary synchronous)

htfop2 4 020000 option 2 (not used)

htfmdm 5-8 017000 modem type (4 bits)
--
htflnt 9-13 000760 line type (5 bits)
--
htfspd 14-17 000017 device speed code (4 bits)

Modem Types:

1 Bell 10jA or 113
2 Bell 201C
3 Bell 202C5
4 Bell 202C6
5 Bell 20BA
6 Bell 208B
7 Bell 209A

Line types are described as part of the Terminal Information
Block (below) .

Device Speed Codes:

Code Async Speed Sync Speed

01 75 2000
02 110 2400
03 134.5 3600
04 150 4800
05 300 5400
06 600 7200
07 1050 9600
10 1200 19200
11 1800 40800
12 option 50000

10-6 AN85-01

TERMINAL INFORMATION BLOCK

There is a terminal information block (TIB) for each
configured channel. Each TIB is allocated at FNP initialization
time; it describes the state of the channel from a software point
of view, and is referenced by almost every module in the system.
The address of the TIB is kept in the corresponding LSLA or HSLA
table entry, and also, in the case of HSLA channels, in the
corresponding software communications region. Names of fields in
the TIB begin with "t. n ; names of bits in the status word
(t .stat) begin wi th "tsf"; names of flags in TIB flag words
begin wi th "tf". The format of a TIB is described by the "tib"
macro.

TIB TABLE

At the base of the init module is a table of 2-word entries,
one entry for each configured channel. The first word of each
entry contains the address of the channel's TIB; the second word
contains the address of a buffer containing a queue of DIA I/O
requests on behalf of the channel. If there are no such
requests, the second word is zero. This table is used by dia man
to service each channel in turn, as described in Section 13. -

BUFFER POOL

The buffer pool consists of free blocks and buffers
allocated for various purposes, such as channel I/O, scheduler
queues, DIA request queues, etc. The formats of various types of
blocks are described below.

Free Block

A free block may be any even size. The first two words are
used to identify a free bloc~ and thread it into the free chain.
The head of the free chain is pointed to by .crnxa in the system
communications region (above).

word 0 address of next free block (zero if this is last
one)

1 size of free block in words

Input/Output Buffer

Buffers used for input from and output to channels are
allocated in 32-word blocks as described in Section 14. Each
buffer starts at a 0 mod 32 address. The format of a buffer
allocated for channel I/O is shown below, and is defined by the
"buffer" macro.

10-7 AN85-01

bf.nxt
bf.siz

bf.flg
bf.tly
bf.dta

Buffer

bfflst
bffbrk
bfftra

bffrpy
bffctl
bffhld

Echo Buffer

0
1

1
1
2

Flag

3
4
5

6
1
8

address of next buffer in chain
size of buffer (bits 0-2)
(in 32-word blocks)
flags (bits 3-8)
tally of buffer (bits 9-11)
start of data

Word (bf.flg):

040000
020000
010000

004000
002000
001000

last buffer in message
buffer contains break character
throwaway buffer when done inputting

last buffer in replay chain
buffer consists of keybd/prtr control
hold output buffer until dmpout

operation

Echo buffers are used by Isla man and hsla man to store
characters to be sent to a channel in any of the four echoing
modes (tab echo, linefeed echo, carriage return echo, and
echoplex). They are 32 words long. The format of an echo buffer
is described below.

word 0 character address of next place to store an echo
character

character address of next character to be output

2 bits 0-8: number of outstanding characters to be
echoed

remainder up to 59 data characters

If an attempt is made to add a character to an echo buffer
that is full of characters not yet echoed, the TIB flag tfbel is
turned on. This indicates to the LSLA or HSLA manager that a BEL
character should be output, in order to warn the user that echoed
characters have been lost.

DIA Request ~ueue

The control tables enqueue requests for DIA I/O by means of
"signal" and "sendin" operations; these requests are put in
buffers for later processing by dia man (see Section 13). There

10-0 AN85-01

is a separate queue for each TIB; the starting address of each
queu~ is kept in the TIB table (see above).

The format of a buffer in a DIA request queue is described
below.

word 0 address of next buffer in queue (zero if this one
is last)

1 number of queue entries currently in buffer

2 address of next available location in buffer

3-31 queue entries

The first word of a queue entry has the following fqrmat:

bits 0-5 flags (only used if operation is "accept input")

6-8 number of data words

9-17 operation code to be sent to CS

If the word count (bits 6-8) is nonzero, one or more words
of descriptive data follow, depending on the operation code.

The following flags are defined:

o 400000 request is active

200000 request has been rejected by CS

2 100000 there is a "quit" or "hangup" signal later in
this queue

Error Message ~ueue

In a few cases, the FNP software sends error messages to the
CS to be printed on the syserr console~ These error messages are
queued in a single queue built in chained buffers, and processed
by dia man. The queue has the same format as the DIA request
queue (above).

Delay Timing Tables

The delay timing tables are used when echoing input
characters to determine how many delay characters are to be sent
following a carriage motion character. When the CS sends an

10-9 AN85-01

"AI ter Parameters" operation to enter echoplex, linefeed echo, or
carriage return echo mode, the associated data in the submailbox
includes the delay timing table to be used (see Appendix A).

A delay timing table is shared among two or more channels
using the same delay values. Delay timing tables are allocated
and chained together; the first one is pointed to by .crdly in
the system communications region. The format of the delay timing
table is defined by the dlytbl macro. It includes forward and
backward pointers, a reference count indicating how many channels
are sharing it, and the following values:

dl.lf

dl.cr

dl.tba

dl.tbb

dl.bs

dl.ff

Other Blocks

is the number of delays to be sent with a linefeed.

is 512 times the number of delays to be sent with a
carriage return for each column traversed. The
formula for determining the total number of delays to
be sent with a carriage return is:

3 + (dl.cr*ncolumns)/512

is the minimum number of delays to be sent with a
horizontal tab.

is 512 times the number of additional delays to be
sent with a horizontal tab for each column traversed.
The formula for determining the total number of
delays to be sent with a horizontal tab is:

dl.toa + (dl.tbb*ncolumns)/512

is the number of delays to be sent with a backspace.

is the number of delays to be sent with a formfeed.

Blocks allocated from the buffer pool used for purposes not
discussed above are described in the sections on the modules that
use them.

10-10 AN85-01

SECTION 11

SCHEDULER

The FNP scheduler is responsible for controlling the
execution environment of the FNP. The scheduler consists of
three main parts: the master dispatcher, the secondary
dispatcher, and the timer management routines.

MASTER DISPATCHER

The master dispatcher is normally run in response to an
interrupt. Interrupts in the FNP are handled by setting bits in
interrupt cells at location 400-417(8). These cells are
maintained by the hardware and scanned in a priority order.
Whenever one of these bits is found to be on, the interrupt is
presenfed to the processor, which computes an address based on
which cell is set. This address is in the range 0-400(8), which
represents the 256 possible int~rrupt cells in the FNP. If the
processor is not inhibited, it executes a "tsy" indirect to the
computed address. This location contains another level of
indirect addressing, to the interrupt processing routine.
However, if all interrupts of a certain class (e.g., HSLA or LSLA
interrupts) go to a common routine, no information as to which
device caused the interrupt is available. To solve this problem,
the location in the interrupt vector contains not the address of
the interrupt processing routine, but instead the address of a
three-word jump table. This table has the following format:

zero

tsy interrupt hndlr
.....

coded word

11-1 AN85-01

There is a separate table for each interrupt vector address
(0-400(8)), and these tables are set up by the hardware managers
that run the device. Thus, when an interrupt occurs, the
hardware will tsy indirect through the interrupt vector to the
3-word jump table, store the instruction counter (Ie) at the time
of the interrupt in the first word, and execute the tsy in the
second word. This stores the address of the third word of the
jump table in the first word of the interrupt handler, so the
software can determine where the interrupt occurred and which
device caused it.

In general, the tsy instruction in the second word of the
jump table is a tsy to invp (the interrupt vector processor), an
entry in the scheduler. This enables the scheduler to be invoked
on each interrupt, and allows interrupt priorities to be assigned
and enforced by the software.

The third word of the jump table, abbreviated 3wjt, has the
following form:

0

I ioc

where:

1 • ioc

2. dev id

3. mod

JI4
10 11 17

I I
devid mod

4 7 7

is the 10M channel number of this device.

is a device specific identifier for multiple device
channels (e.g., HSLA number and subchannel).

is a scheduler module number for the module to be
called for this interrupt.

When invp is entered, it saves the third word of the jump
table, the Ie at the time of the interrupt, and all machine
registers. It then enters the master dispatcher, which searches
its tables looking for the highest priority interrupt. If the
new interrupt is highest priority, it is run first; otherwise,
the previous interrupt routine is restarted. Note that this
scheme allows the actual interrupt service routine (e.g., hintr
for HSLAs) to run uninhibited, to allow higher priority
interrupts to occur. An interrupted occurrence of an interrupt
handler is always allowed to complete before a new instance of
the same interrupt handler is run.

11-2 n uOC ('\1
.H.nUJ-vl

When the interrupt handler is finished, it returns to the
master dispatcher (via a tra mdisp) and the master dispatcher
clear·s this entry from its tables and starts a search for a new
routine to run. The last entry in the dispatcher's table is an
entry for the secondary dispatcher. If any routines have been
queued to be run, this entry is marked active. Thus, if no
interrupt routines are to be run, the secondary dispatcher runs a
queued routine.

This scheme causes the secondary dispatcher to be considered
as if it were the lowest possible priority interrupt routine. If
the secondary dispatcher, or a routine it is running, is
interrupted, the master dispatcher saves all of the information
as before, but when it is about to restart the queued routine,
control is not returned to the point of interruption but instead
to a secondary entry point in the secondary dispatcher. The
secondary dispatcher can then reexamine its queues and run the
highest priority routine and complet~ the interrupted routine at
a later time.

SECONDARY DISPATCHER

Most interrupt routines called by the master dispatcher
collect information about the interrupt and queue a routine to
process it. Queueing of a routine is done via the scheduler
entry dspqur. This entry gets its arguments in three registers
as follows:

0 1 1 12 17

a reg time_delay priority

routine to run - -q reg

xl reg info _ptr

where:

1. time delay
- is the delay, in seconds, before the routine is to be

run.

2. priority
is a scheduler priority (explained below).

11-3 AN85-01

3. routine to run
Is the address of the routine to be executed when its
turn comes.

4. info ptr
is passed to the routine in index register 1 at the
time it is run.

The time_delay may be zero, indicating that the routine is to be
run as soon as possible. The priority is one of three groups:
high (0-7), medium (10-17), or low (20-27). It is very important
to note that the scheduler does not preempt a routine in a group
with another routine in the same group, i.e., a routine started
in the high group always runs to completion before any other
routine is run. This implies that if a routine is scheduled in
the medium priority group and an interrupt occurs that schedules
a high priority routine, the high priority routine is run
immediately. Thus, a medium priority routine cannot use any of
the same storage or subroutines (unless the subroutine is
inhibited) as a high priority routine. The current
implementation of Multics Communication System uses only the high
priority group, to avoid problems caused by two routines of
different priority groups calling the same subroutine.

TIMER MANAGEMENT

Two uses are made of the timer management mechanism in the
sCheduler: the delayed queuein5 function, and terminal control
timing functions.

The delayed queueing function is invoked via a call to
dspqur, the dispatcher queueing routine, as described above.
When dspqur notices that a delay has been specified, a queue
entry is made in a special time delay dispatch queue, and the
clock is updated if required.

Terminal control timing functions are handled from the
control tables by the interpreter via the scheduler entry setime.
Two arguments are passed to setime as follows:

a reg time

x 1 reg

11-4 AN85-0i

where:

1. time

2. tib ptr

is the number of seconds to wait
occurs, and can be zero to reset
for this channel.

before a timeout
the current timer

is tne aOoress of the terminal information block
(TIB) for the channel.

When setime is called, it searches its current queue for an entry
for the requested TIB, and frees it from the list if one is
found. It then makes a new entry in its special TIB queue for
this TIB. The clock is updated if necessary.

The FNP clock is a 36-bit simulated real-time clock that
counts the number of milliseconds since the bootload of the FNP.
This clock is maintained by using the interval timer of the FNP
to count real milliseconds. The simulated real-time clock always
contains the time at which the interval timer will run out; i.e.,
when the interval timer runs out, the simulated real-time clock
contains the current time. If no timers are required by either
the TIB timer or the delay queue, then the inverval timer is set
to its maximum value (2**18 milliseconds, approximately 4.4
minutes) and this amount is . added to the simulated real-time
clock.

11-5 AN85-01

When either of the timer routines is called, it gets the
current time by subtracting the interval timer from the simulated
real-time clock. The routine then adds the number of
milliseconds of delay required by its caller and saves this
information as the real time at which timeout is to occur. The
delay queue manager keeps 6-word queue entries for each delayed
routine as follows:

forward pointer

routine addr

real time
clock value
(two words)

register x1

priority

These entries are
timeout manager,
pointer and the
t.time. The TIB
the earliest time

threaded with the earliest time first. The TIB
setime, keeps 2-word queue entries, a forward
TIB address, with the clock value stored at
timeout manager also threads the entries with
first.

Updating the clock consists of inspecting the first entry on
the list just rethreaded and comparing the time in that entry to
the simulated real-time clock. If it is earlier, the simulated
real-time clock and the interval timer are updated to the earlier
value.

When the interval timer runs out, both lists are searched
for eligible timeouts. For each entry selected dspqur is called
(with a zero delay value) and the entry is freed. Then the first
entries of the two lists are compared to find the earliest time
value and the simulated real-time clock and interval timer are
updated with the new value. If no entries are present in either
list, the time is set to the maximum.

11-6 AN85-01

ELAPSED TIME METERING

The elapsed timer is used to meter the relative amount of
time the FNP is idle, and optionally to record the parts of the
system in which the most execution time is spent. The elapsed
timer is set by software to run out and thus generate an
interrupt every 50 milliseconds, at which time the elapsed time
runout handler is executed. The 50-millisecond interval can be
changed by use of the sample_time request to the debug_fnp
command ..

Idle Time Metering

The elapsed time runout handler examines the instruction
counter at the time of the interrupt to see if it contains the
address of the "dis" instruction in the master dispatcher that is
executed if there is nothing to do. If the dis instruction
address is present, an "idle" counter is incremented by one;
otherwise, a "busy" counter is incrementede The idle time
request to the debug_fnp command (see Appendix B) deterloines the
amount of idle time by comparing these two counters.

Instruction Counter Sampling

If the ic sampler module is included in the core image, the
elapsed timer-runout handler calls an entry in it, icmon. If
instruction counter sampling has been enabled. by the debug fnp
request line "ic sample start", icmon increments a "buciet"
associated with the 16-word range of addresses in which the
instruction counter at the time of the interrupt falls. This
information can be examined by means of the ic sample request to
the debug_fnp command, as explained in the description of the
debug_fnp command in Appendix B.

11-7 AN85-01

SECTION 12

TERMINAL AND LINE CONTROL

Terminal and line control in Multics Communication System is
managed by a set of control tables that consists of macros
defining operations to be performed for each configured
communications channel. The macros do not generate executable
FNP instructions; rather, each macro generates a block of data
(referred to as an operation block or "op block") which is
recognized by a program called the interpreter. Loosely, a set
of op blocks is executed on behalf of some channel; what this
really means is that the interpreter is invoked to perform the
operations specified by those op blocks.

ORGANIZATION OF THE CONTROL TABLES

Division Into"Modules

The Multics Communication System control tables consist of
several modules, and additional modules may be added as
necessary. The main module, control tables, contains the op
block macros for the most commonly usid line types, as well as
tables defining various attributes of each line type. The other
modules contain op blocks for various special-purpose line types
or special types of line-control operations; these modules are
optional and may be omitted from the Multics Communication System
core image (as descr:bed in Section 17) if the relevant line type
or special functiou is not used. The following supplementary
control_tables modules are currently implemented:

acu tables
performs "dial out" operations to an automatic call
unit (ACU)

autobaud tabJ:es
per?orms automatic baud-rate detection on asynchronous
HSLA subchannels

ards tables
controls an ARDS-like terminal on a Bell 202C modem

12-1 AN85-01

t202 tables
-controls a TermiNet 1200 terminal on a Bell 202C6 modem

g115 tables
-implements the G115 synchronous line protocol (RCI)

vip tables
- controls a

operation
VIP 1105 display terminal in nonpolled

bsc tables
controls a bisync binary synchronous subchannel of an
HSLA

polled vip tables
controls a VIP 1100 or VIP 1160 subsystem in polled
operation

ibm3210 tables
controls an IBM Model 3210 controller and associated
displays and printers (bsc_tables must also be
included)

Tables Included in the control_tables Module

HEADER

At the base of control tables is an array of pOinters to
tables that other parts of Multics Communication System need to
be able to find: This array consists of the following:

word 0
address of the first op block to be executed for all
channels

word 1
address of an array of pointers to device info tables.
This array is indexed by line type to find the device
info table itself (described below)

word 2
unused

word 3
address of the
below)

word 4

device-type/speed table (described

address of the first op block to be executed when
reading a terminal's answerback

12-2 AN85-01

DEVICE INFO TABLE

There is a device info table for each line type. The device
info table has the following format:

seq2

-
unused

keyboard address

printer address

flags

nl cr

tab bs

upshift downshift

break list break1
indicator

break2 etc.

where:

seq1, seq2
are the two sequence characters to be used in
alternate messages to a synchronous channel; they are
ignored for an asynchronous channel.

keyboard address
is the address of the default keyboard addressing
string for this line type.

printer address
is the address of the default printer addressing
string for this line type.

12-3 AN85-01

flags
indicate the default settings of certain flags in the
terminal information block (TIB) and the software
communications region:

bit 17
is the default setting of tfctrl (keyboard and
printer addressing required)

bi t 16
is the default setting of sffsct (default GGT is
short--ignored for LSLA channels)

bit 15
is the default setting of tfsftr (terminal uses
case-shift characters)

The following six characters are used in determining column
position as a result of input or output. A character of all ones
means that no applicable character exists for the specified line
type.

nl is the newline character

cr is the carriage return character

tab is the horizontal tab character

bs is the backspace character

upshift is the uppercase shift character

downshift is the lowercase shift character

The remainder of the device info table is the break list,
used for identifying break (end-of-message) characters on an LSLA
channel; it is ignored for HSLA channels. The indicator is
either 775 (octal), which indicates that break character status
should be signalled in response to the input character
immediately following the 'character specified in break1, or it is
the number of characters (1 to 7) in the break list; break
character status is signalled when one of these characters is
input.

12-4 AN85-01

DEVICE-TYPE/SPEED TABLE

This table is used at initialization time to derive the
default line type of each channel from the supplied baud rate
code. Each entry is one 18-bit word in the following format:

o 1 4 5 8 9 17
! A I MBZ I BC I TYPE

where:

1 • A

2. BC

3. TYPE

is 0 for an asynchronous channel or
synchronous channel.

for a

is the baud rate code, encoded as in an HSLA table
entry (see Section 10).

is the default line type associated with a channel
having the specified synchronous attribute and baud
rate.

ADDRESSING STRINGS

The addressing strings pointed to by the device info table
(see above) are strings of up to four characters used to
"address" (i.e., enable) the keyboards and printers of certain
terminals. Normally, such strings are required only for
IBM 1050- and 2741-like terminals; the strings provided for the
"ASCII" line type are generally only· used for Teletype Model 37
terminals. The use of these strings is determined by the setting
of the TIB flag tfctrl, which can be turned on or off at the
request of the CS by means of an "Alter Parameters" mailbox
operation (see Appendix A).

CONTROL TABLE INTERPRETER

The interpreter is the program that performs the operations
described by the "executable" portion of the control tables,
i.e., the op blocks. Whenever the interpreter is invoked on
behalf'of any channel, it uses the TIB whose address is in index
register 1; t.cur in this-TIB contains the address of the first
op block to be executed, which must be a wait op block. (See
Section 10 for a description of the TIB.) The interpreter passes
over the specified op blocks, either proceeding from one to the
next or "branching" elsewhere in the tables, depending on the op
blocks being processed, until another wait or a waitm op block is
encountered. At this point, t.cur is updated to point to the new
block (wait) or left as it was on entry (waitm), and the

12-5 AN85-01

interpreter returns to its caller. The individual op blocks and
their effects are described later in this section.

The interpreter may be entered at any of four different
entry pOints, representing four different types of event:
timeout, output, test-state, or status. These four event types
are discussed in somewhat more detail below.

Timeout

A timeout occurs when a timer started by a setime op block
runs out. A timer interrupt is processed by the scheduler (see
Section 11), which causes the interpreter to be invoked at the
entry point itime. Op block execution begins at the first branch
address specified in the wait block pointed to by t.cur; if the
address is zero, the interpreter returns without doing anything.
If a timeout address is specified in a wait block, the block
should be preceded by a setime op block, so that a timeout is in
fact possible.

Output

When output for a channel arrives from the CS, and output is
not currently being sent to that channel (as indicated by the TIB
flag tfwrit), dia man calls the interpreter entry point iwrite to
start sending output to the channel. (See the discussion of
dia man in Section 13.) Op block execution begins at the second
branch address specified in the wait block pointed to by t.cur;
if the address is zero, the interpreter returns without doing
anything.

Test-state

When the CS sends a submailbox containing one of a variety
of WCD operation codes (see Appendix A) intended to change the
state of a channel, dia man turns appropriate TIB flags on or off
and calls the interpreter at the entry point itest. Op block
execution begins at the third branch address specified in the
wait block pointed to by t.cur; if the address is zero, the
interpreter returns without doing anything. The normal action by
the control tables at a test-state branch is to test any TIB
flags that are of interest in view of the current state of the
channel.

Status

When hsla man or Isla man detects any of several kinds of
change in the status of a channel, it calls the interpreter at
the entry point istat. A word describing the latest status of
the channel is passed in the A register. The kinds of status

12-6 AN85-01

change reported in this manner include changes in data-set
status, the receipt of a break character (as defined by either
the break list or the CCT), and various kinds of software status
generated by contrl or cmd op blocks. The meanings of the
individual bits in the status word are described later in this
section.

When the interpreter is called at istat, it examines the op
blocks immediately following the wait block pointed to by t.cur;
in general, each wait block is followed by one or more status
blocks. Each status block contains a word of "on" bits, a word
of "off" bits, and a branch address. A status block is
"satisfied" by the status word passed in the A register if all
the 1-bits in the "on"-word of the status block are on in the
status word and all the 1-bits in the "off"-word of the status
block are off in the status word. (Zero bi ts in the status block
are ignored.) The status blocks are examined in order to see if
any of them are satisfied by the supplied status word; as soon as
one is found that is satisfied, op block execution proceeds
starting at the branch address specified in the satisfied status
block. If the interpreter finds a nonstatus block before finding
any satisfied status blocks, it returns without doing anything
(the status is effectively ignored).

STATUS AND CONTROL BITS

The meanings of the bits used in status op blocks, status
words passed to istat, and crod and contrl op blocks are described
below. These bits are defined by the csbits macro; the tconst
macro defines the alternate forms of their names that are
normally used in control tables.

Status Bits

Bits 0-3 each have two different meanings: one for a
channel connected to an automatic call unit (ACU), the other for
a binary synchronous (bisync) channel.

Bit position Mask Name Meaning

o 400000 ads ACU: raised data set status

bscdmk bisync: delayed marker

200000 acr ACU: abandon call and retry

bscmrk bisync: marker status

2 100000 dlo ACU: data line occupied

12-7 AN85-01

Bit ,eosition Mask Name Meanins;

bscrcr bisync: receive block
termination

3 040000 pwi ACU: power indicator

rcvto bisync: receive timeout

4 020000 xte transfer timing error

5 010000 parity parity error

6 004000 exh "exhaust" status: indicates
that absolute input buffer
limit has been reached for
the channel

ring ring indicator

8 001000 brkchr break character received

9 000400 break line break received (e.g.,
INTERRUPT button pr essed)

10 000200 prexh "pre-exhaust" status:
indicates that initial input
buffer limit has been
reached for the channel

11 000100 term terminate status (generated
by control tables)

12 000040 marker mar ker status (generated by
control tables)

13 000020 st status requested (generated
by control tables)

14 000010 suprec supervisory receive

1, 000004 dsr data set ready

16 000002 cts clear to send

17 000001 cd carrier detect

Bits 11-17 correspond to bits 11-17 of the TIB status word,
t.stat.

12-8 AN85-01

Control Bits

These bits are specified in the contrl op block or in the
cmd sub-operation of the dcwlst op block. (The contrl macro
generates a dcwlst op block consisting of one cmd sub-operation.
See the descriptions of the individual op blocks later in this
section.) A cmd sub-operation usually contains one word of
control bits, but may optionally contain a second word.

FIRST WORD

Bit position

0-2'

3

4

5

6

7

10

12

13

14

15

16

17

Mask

100000

040000

020000

010000

004000

002000

001000

000400

000200

100

O'J0040

000020

000010

000004

()00002

000001

Name

rrts

srts

strm

smark

sbrk

stat

rsup

ssup

rdtr

sdtr

rxmit

sxmit

rrec

srec

12-9

Meaning

identifies sub-operation
as CMD

not used

reset request-to-send

set request-to-send

send terminate status
(reflected as "term" in
subseq~ent status)

send marker status
(reflected as "marker" in
subsequent status)

send line
terminal

break to

send status to control
tables (reflected as "st"
in subsequent status)

reset
transmit

supervisory

set supervisory transmit

reset data terminal ready

set data terminal ready

reset transmit mode

set transmit mode

reset receive mode

set receive mode

AN85-01

SECOND WORD

Bit position

0-2

3-15

16

11

OP BLOCKS

Mask Name

500000

000002 rcrq

000001 scrq

Meaning

identifies second word of
CMD sub-operation

not used

reset call request (ACU)

set call request (ACU)

The individual op blocks used in the control tables are
described below. For each op block, the syntax of the
corresponding macro is given, followed by a description of its
effect and a schematic representation of the generated code.

TIB Extension Addressing

Each TIB may have a TIB extension associated with it. This
extension is dynamically allocated and freed with the getext and
retext op blocks. The extension may be used to hold either
character variables, word variables, or both. Each variable type
has its own addressing conventions. Character addresses are
values in the ran~e 460(8) to 411(8). These addresses correspond
to the first 16 characters (8 words) of the TIB extension. There
can be at most 16 TIB character variables, and all must be
located in the first 8 words of the TIB extension. Word
addresses are in the form of a negative word offset: the first
word of tne extension is -1, the second -2, etc. TIB character
variables are used by op blocks such as setchr and inscan. TIB
word variables are used by op blocks such as setlcl, tstlcl, etc.

Defining the format of the TIB extension can be simplified
through the use of the tibex macro. This macro will equate a
label to the next available word or character address and keep a
tally of words used. The general format is:

tibex <label>,<type>

where <label> is the name of the address to be defined, and
<type> is either "char" or "word".

12-10 AN85-01

For example:

ex
tibex
tibex
tibex
tibex

a,char
b,char
c,char
d,word
e,char

will equate a to 460, b to 461, c to 462, d to -3, and e to 466.
In addition, the variable tibxsz will be set to 4, which is the
correct number of words to allocate with the getext macro.

Dp Block Summary Lists

The op blocks described in this section are listed below,
sorted first alphabetically and next by octal identifier. The
page number on which each op block is described is given after
the name and identifier of that op block.

acntr
addlcl
bkptop
bldmsg
calasm
cal sub
ckinpt
clrflg
clrlcf
cmd
crnpchr
config
contrl
dcwlst
dmpmsg
dmpout
dmprpy
dumpin
echo
getext
gocase
goto
gotov
gotype
gtinpt
holdot
ifhsla
iftype
input
inscan
linctl
linsta
meter
nullop

'7'77024
777055
77'7064
77'7032
7'77063
7'77036
777043
777011
777060

777035
777042

777005
777053
777013
777046
777033
777051
777026
777075
777001
777074
7'7700'7
777044
777040
777041
777002

777030
77'7065
777060
7'77015
777070

12-22
12-32
12-38
12-27
12-36
12-24
12-30
12 ... 20
12-33
12-15
12-24
12-28
12-18
12-15
12-27
12-20
12-30
12-27
12-31
12-22
12-39
12-13
12-38
12-19
12-30
12-28
12-28
12-13
12-16
12-26
12-38
12-37
12-25
12-38

12-11

output
outscn
prepnl
punt
rdtly
replay
retext
retsub
scntr
sendin
setcct
setchr
setflg
setime
setlcf
setlcl
setlcv
settmv
setype
signal
status
stpchn
tcntr
tstflg
tstglb
tstlcf
tstlcl
tstlcv
tstrpy
tstwrt
unwind
wait
waitm

777031
777047
'777000

777045
777027
777037
777023
777017
777052
777034
777010
777006
777057
777054
777062
777072
777022
777014
777004

77'7025
777012
777021
77'7061
777056
777067
771050
777020
777071
777003
777016

12-17
12-26
12-31
12-13
12-16
12-30
12-23
12-24
12-21
12-25
12-31
12-23
12-19
12-18
12-33
12-32
12-34
12-35
12-21
12-22
12-15
12-18
12-22
12-20
12-25
12-34
12-33
12-35
12-31
12-25
12-38
12-14
12-21

AN85-01

The following list ~orts the op block by octal identifier
(those having no identifier are included at the end of the list).
Again, the page number on which the op block is described is
given after the octal identifier and name of that op block.

777000
777001
777002
777003
777004
777005
'777006
777007
777010
777011
777012
777013
7,{,7014
777015
777016
777017
777020
777021
'77'7022
777023
777024
777025
777026
777027
777030
777031
777032
777033
777034
777035
777036
777037
777040
777041

punt
goto
iftype
wait
status
dcwlst
setime
go type
setflg
clrfleS
tstflg
dmpout
signal
meter
waitm
sendin
tstwrt
tstglb
setype
scntr
acntr
tcntr
getext
retext
inscan
outscn
bldmsg
dumpin
setchr
cmpchr
calsub
retsub
holdot
ifhsla

12-13
12-13
12-13
12-14
12-15
12-15
12-18
12-19
12-19
12-20
12-20
12-20
12-22
12-25
12-21
12-25
12-25
12-25
12-21
12-21
12-22
12-22
12-22
12-23
12-26
12-26
12-27
12-27
12-23
12-24
12-24
12-24
12-28
12-28

12-12

777042
777043
777044
777045
777046
777047
777050
777051
777052
777053
777054
7'77055
777056
777057
777060
777061
777062
777063
777064
777065
777065
777067
777070
777071
777072
777074
777075

config
ckinpt
gtinpt
replay
dmprpy
prepnl
tstrpy
echo
setcct
dmpmsg
se tl cl
addlcl
tstlcl
setlcf
clrlcf
tstlcf
se tl cv
calasm
bkptop
linctl
linsta
tstlcr
nullop
unwind
settmv
gotov'
goc ase
cmd
input
rdtly
output
contrl
stpchn

12-28
12-30
12-30
12-30
12-30
12-31
12-31
12-31
12-31
12-27
12-32
12-32
12-33
12-33
12-33
12-34
12-34
12-36
12-38
12-37
12-37
12-35
12-38
12-38
12-35
12-38
12-39
12-15
12-16
12-16
12-1 '7
12-18
12-18

AN85-01

De Block: punt

Causes the FNP to crash.

777000

De Block: goto <label>

Performs an unconditional branch to the op block specified by
<label>.

777001

addr(label)

Dp Block: iftype <type>,<label>

Performs a "goto <label>" if the line type is equal to <type>.

777002

type

addr(label)

12-13 AN85-01

DE Block: wait <timeout label>,<write label>,<test state label>

This op block causes the
happen on the channel
possibilities:

interpreter to wait for some event to
before proceeding. There are 4

1. A "goto <timeout label>" is performed if the timer for the
hannel runs out. (see setime)

2. A "goto <write label>" is performed if the FNP receives
output data from the CS for the channel

3. A "goto <test state label>" is performed if the FNP receives
an order from the CS that changes certain TIB flags (tfhang,
tflisn, tfercv, tfrabt, tfwabt, tfxhld, tfacu) or the global
flags gbfhng or gbfuPe

4. If status occurs for the channel, a check is made to see if
status op blocks follow the wait op block. If so, they are
checked to see what action is to be taken with the status.

Any or all of the operands may be O. In this case, the event
will be ignored if it happens.

777003

addr(timeout)

addr(write)

addr(test state)

12-14 AN85-01

Op Block: status <on bits>,<off bits>,<label>

Status op blocks may only follow a wait op block. If status
occurs for the channel, the current wait block is checked to see
if status op blocks follow it. If so, each status op block is
checked to see if it matches the status received. If so, a
"goto <label>" is performed. The status is considered to match
the op block if all the bits specified in the first operand are
on and all the bits specified in the second operand are off. If
no status blocks match the status received, the status is
discarded and the channel reverts to the wait state. The
meanings of the bits are described under "Status and Control
Bits," above.

777004

addr(label)

on bits

off bits

Op Block: dcwlst

The dcwlst op block is used
must De followed by sub-op
performed.

777005

to perform I/O on the channef. It
blocks that specify the I/O to be

sub-op: cmd <commands>[,<secondary commands>]

This sub-op defines control operations to be performed on the
channel. The second operand is only required if one of the
secondary commands listed below is used. Commands valid in the
first operand are:

srec
rrec
sxmit
rxmit
sdtr
rdtr
ssup
rsup

000001
000002
000004
000010
000020
000040
000100
000200

set receive mode
reset receive mode
set transmit mode
reset transmit mode
set data terminal ready
reset data terminal ready
set supervisory transmit
reset supervisory transmit

12-15 AN85-01

stat
sbrk
smark
sterm
srts
rrts

000400
001000
002000
004000
010000
020000

store status
send channel break
send marker status
send terminate status
set request to send
reset request to send

The following are valid commands in the second operand:

scrq
rcrq

000001
000002

set call request
reset call request

1 command flags

5 secondary flags

The second word is only generated when the <secondary· commands>
operand is used in the crod sub-oPe

sub-op: input <tally>,<char>

This sub-op causes characters to be read and
either the tally runs out, or the character
encountered. It is valid only for LSLA channels.

I 2 I tally char

sub-op: rdtly <tally>

discarded until
specified is

This sub-op block reads the number of characters specified by
<tally>. It is valid only for LSLA channels.

I 4 I tally 000

12-16 AN85-01

sub-op: output «op1>,<op2>, ... ,<opn»

The output sub-op inserts data into the output buffer chain to be
written to the terrninal. The <op1:,> consist of data or control
codes.

3 000 op1

op2 op3

opn 477

All op.! less than 400(8) are considered to be literal characters
and are inserted directly into the output chain. The opi greater
than 400(8) are control codes from the following list: -

adprtr

adkybd

outmsg

repeat

401

~02

403

404

Insert the terminal's pr inter
addressing str ing.

Insert the terminal's keyboard
addressing string.

Insert any data from the CS for
this channel. If this control type
is used, it must be the last
operand in the output Sub-oPe

Inserts a single character a
specified number of times. The
operand following the repeat
operand is the character to repeat;
the next operand is the count.

477 End of output Sub-ope This code is
inserted automatically when the
output sub-op is generated. It may
appear in either half of the word,
depending on the number of operands
that precede it.

12-17 AN85-01

Oe Block: contrl <op1>[,<op2>J

This op block is used
channel. It is not a
following sequence:

to perform a control operation on the
separate op block, but generates the

dcwlst
cmd <op1>[,<op2>J

Oe Block: stpchn

This op block is used to terminate all 1/0 on the channel. It is
not a separate op block, but generates a calsub (see below) to
the following sequence:

.xxx.

Oe Block:

contrl
wait
status
retsub

rrec+rxmi t+ smar k
0,0,0
marker ,0, .xxx.

setime <time>

Sets a timer for the specified interval.
the interval is in seconds; if negative,
if 0, any outstanding timer is disabled.

777006

time

12-18

If <time> is positive,
it is in milliseconds;

AN85-01

Op Block: gotype (labeI1>,(labeI2>, ••• ,(labeln>

Performs a computed go to, using the line type as the index. If
the line type is out of the range of labels specified, control
falls through to the next op block.

77700'7

addr(labeI1)

addr(labeI2)

addr(labeln)

777000

Op Block: setflg (flag1>[,(flag2>, •••)

Sets flags in the TIB. The flags specified may be defined either
in t.flg or t.flg2.

71'7010

word 1 flags

word 2 flags

12-19 AN85-01

Op Block: clrflg «flag1 >[,<flag2>, ...])

Clears flags in the TIB.

777011

word 1 flags

word 2 flags

Op Block: tstflg«flag1>[,<flag2>, ...]),<label>

Performs a "goto <label>" if all the flags specified are on in
the TIB.

777012

addr(label)

word 1 flags

word 2 flags

Op Block: dmpout

Frees all the buffers in the output chain.

777013 I
Op Block: signal <conditiGn>

This op block allows the FNP to signal a condition to the CS.
The following conditions are defined:

dialup 100 connection has been established

101 channel has been disconnected

12-20 AN85-01

sndout 105 ready for output

quit 113 line break condition

wrutim 114 "who- ar e-you" timeout

acupwi 120 no power to ACU

acudlo 121 data line occupied (ACU)

acuacr 122 dialout failed (ACU)

acung 123 invalid ACU request

777014

conditionll

Op Block: waitm

The waitm op block returns the channel to a wait state at the
most recently executed wait 6p block~

777016

Op Block: setype <type>

The setype op block is used to set the line type in the TIB.

777022

type

Op Block: scntr <value>

This op block is used to set the counter in the TIB.

12-21 AN85-01

777023

value

De Block: acntr <value>

This op block is used to add a value to the counter in the TIB.

777024

value

De Block: tcntr <value>,<label>

This op block is used to test the counter in the TIB. If the
counter is equal to <value>, a "goto <label>" is performed.

777025

value

addr(label)

De Block: getext [<size>J,<label>

The getext op block allocates a TIB extension of <size> words in
length. This may be used for temporary storage of characters,
messages, etc. Dnly one TIB extension can be associated with
each TIB, and it must be freed before a new extension can be
allocated. If the extension cannot be allocated, a
~goto <label>" is performed. It the <size> operand is omitted,
the current value of tibxsz is used. This variable is defined
automatically by the tibex macro (see "TIB Extension Addressing,"
above).

12-22 AN85-01

777026

size

addr(label)

Op Block: retext

The retext op block frees the TIB extension allocated by a getext
op block. A TIB extension must be present to use this op block.

777027

Op Block: setchr <destination),<source)

The setchr op block stores a character in the TIB extension. The
destination must be a TIB extension address in the range 460(8)
to 477(8) (corresponding to a character offset in the TIB
extension of 0(8) to 17(8». The source may be another TIB
extension address (if in the range 460(8) to 471(8», or a
literal character (if any other value). The TIB must have an
extension allocated before this op block is used.

777034

dest source

12-23 AN85-01

0E Block: cmpchr <source>,<test>,<label>

The cmpchr op block compares two characters and performs a
"goto <label>" if they are equal. The source and test values may
be either literal characters or TIB extension addresses. (See
the setchr op block.)

777035

source test

addr(label)

0E Block: calsub <label>

The calsub op block is used to call a subroutine within the
control tables. The interpreter saves the address of the op
block following the calsub and performs a "goto <label>". Only
two levels of subroutine are allowed; a wait op block may not
appear in an inmost-level subroutine (i.e., one which is called
by another subroutine); a stpchn op block may not appear within
any subroutine. .

777036

addr(label)

Op Block: retsub

The retsub op block is used to return from a subroutine called by
a calsub op block. The interpreter gets the next op block from
the word following the calsub op block.

777037

12-24 AN85-01

Op Block: meter <event>

This op block increments the meter assigned to <event>. It may be
used to keep track of unusual occurrences. See the discussion of
metering in Section 14.

777015

eventlJ

Op Block: sendin

This op block causes any pending input from the channel to be
sent to the CS.

777017

Op Block: tstwrt <label>

This o.P block causes a "goto <label>" if there is any pending
output for the channel.

777020

addr(label)

Op Block: tstglb <switches>,<label>

This op block performs a "goto <label>" if all the bits specified
in <switches> are on in the global switch word used to maintain
information of global interest to Multics Communication System.
The following switcnes are defined:

gbfup 000001

gbfhng 000002

CS is running

all lines are to be disconnected as
a result of a "blast hangup"
command

12-25 AN85-01

gbfbla

Op Block:

000004

777021

switches

addr(label)

output is being sent to all
channels for a "blast" command

inscan <control>,<label>

This op block causes the current input chain to be scanned under
control of the control string defined at the label <control>. If
the scan fails, a "goto <label>" is performed. Control string
formats are described later in this section.

777030

addr(control)

addr(label)

Op Block: outscn <control>,<label>

This op block is similar to the inscan op block except that it
scans the current output chain.

777031

addr(control)

addr(label)

12-26 AN85-01

Op Block: bldmsg <message>,<label>

This op block causes the output message specified by the
character string at the label <message> to be chained on to the
head of the channel's current output chain. It is suitable for
generating message blocks for synchronous line protocols. If the
message cannot be built, a "goto <label>" is performed. Each
character in the message is one of the following:

Op Block:

514 turn on the "last buffer" flag in the last
buffer of the message

TIB extension character address

other

insert the -character from the specified TIB
extension address in the message

literal character to be inserted into the
message

777032

addr(message)

addr(label)

dumpin

This op block causes any pending input for the channel to be
discarded.

771033

Up Block: dmpmsg

This op block causes the current input message (i.e., all input
data up to and including a buffer with the "last" flag on) to be
discarded.

771053

12-27 AN85-01

Op Blo.ck: holdot

This op block causes the "hold buffer" flag to be set in every
buffer of the current output message (i.e., all output buffers up
to the first one wi th its" last buffer" flag set). It is used to
prevent output buffers from being discarded when they have been
transmitted, in case it is necessary to retransmit a message as a
result of an error.

777040

Op Block: ifhsla <label>

This op block executes a "goto <label>" if the channel is
configured on an HSLA.

777041

addr(label)

Op Block: config

This op block causes
must be followed by
reconfiguration.

an HSLA subchannel to be reconfigured. It
sub-op blocks specifying the details of the

777042

12-28 AN85-01

sub-op: smode <pcw bits>

This sub-op causes the bits that are on in
turned on in the HSLA configuration PCW. The
specified in <pcw bits> are:

<pcw bits> to be
bits that may be

fg .. icw

fg .lpr

fg.lps

fg .lpo

fg.5bt

fg.6bt

fg.7bt

fg.8bt

I I

000001 two send ICWs

000002 lateral parity receive

000004 lateral parity send

000010 odd lateral parity

000020 5-bit character mode

000040 6-bit character mode

000100 7-bit character mode

000200 8-bit character mode

pew bits I

sub-op: rmode <pcw bits>

The rmode sub-op causes the bits that are on in <pcw bits> to be
turned off in HSLA configuration PCW, where <pcw bits> are as
described above for the smode sub-oPe

pcw bits

sub-op: baud <baud rate>

The baud sub-op specifies that the baud . rate for the channel is
to be set to <baud rate>. If <baud rate> is zero, the value in
t.cntr (set by a scntr op block) is to be used.

baud rate I

12-29 AN85-01

Op Block: ckinpt <label)

The ckinpt op block is used
channel ends in a partial line
left margin). It is useful in
sending output to a channel
partial line of input, a "goto

111043

addr(label)

Op Block: gtinpt

to see if
(i.e., the

determining
in" po lite"
<label)" is

the input chain for a
terminal is not at the
whether to wait before

mode. If there is no
done.

This op block copies the current input chain into the "replay"
chain pointed to by t.rcp. It is used for replaying interrupted
input to a channel in "replay" mode.

111044
I

Op Block: replay

This op block sends the contents of the "replay" chain as output
to the channel.

111045

Op Block: dmprpy

This op block causes the contents of the "replay" chain, if any,
to be discarded.

111046

12-30 AN85-01

Op Block: prepnl

This op block is used to output a newline character before
sending output that interrupts a partial line of input.

777047

Op Block: tstrpy <label>

This op block performs a "goto <label>" if there is no replay
chain pointed to by t.rcp.

777050

addr(label)

Op Block: echo <char>

This op block causes the character specified by <char> to be
inserted in the echo buffer for echoing at the next opportunity.

777051

zero char

Op Block: setcct <cct_spec>

This op block causes an HSLA channel to start using the specified
character control table (GGT). <cct spec> may be the address of
a GeT, or any of the following codes (defined in the cctdef
macro):

scc.dl o

scc. d f

scc.bs 2

delete the eeT 'currently in use

use the default eGT for the current
line type and modes

return to the base GeT when the
table switch feature has been used
(see discussion of eeTs later in
this section)

12-31 AN85-01

77'7052

Op Block: setlcl <var>,<value>

This op block sets the local variable <var> to the value given.
The variable may be either a TIB extension offset or an absolute
FNP address.

777054

addr(var)

value

Op Block: addlcl <var>,<value>

This op block adds the <value> specified to the local variable
<var>. The variable may be either a TIB extension offset. or an
absolute FNP address.

777055

addr(var)

value

12-32 AN85-01

Op Block: tstlcl <var>,<value>,<label>

This op block compares the \ variable <var> with <value>, and if
they are equal, does a goto <label>.

~ ______ 7_77_0_5_6 ______ ~1
addr(var)

value

addr(label)

Op Block: setlcf <var>,<flags>

This op block turns on the bits specified by <flags> in the local
variable <var>.

777057

addr(var)

flags

Op Block: clrlcf <var>,<flags>

This op block clears the bits specified by <flags> in the local
variable <var>.

777060

addr(var)

flags

12-33 AN85-01

Op Block: tstlcf <var>,<flags>,<label>

This op block tests the bits specified by <flags> in the local
variable <var>, and if they all are on, does a goto <label>.

777061

addr(var)

flags

addr(label)

Op Block: setlcv <var1>,<var2>

This op block sets the local variable <var1> to the value of
local variable <var2>.

777062

addr(var1)

addr(var2)

12-34 AN85-01

Op Block: tstlcv <var1>,<var2>,<label>

This op block compares
with that of the local
performs a goto <label>.

the value of the local variable <var1>
variable <var2>; if they are equal, it

777067

addr(var1)

addr(var2)

addr(label)

Op Block: settmv <var>

This op block sets a timer using the value of the local variable
<var> for the time interval.

777072

addr(var)

12-35 AN85-01

Op Block: calasm <address>,«param1, ... , param~»

This op block calls a subroutine written in 355MAP assembler
language. The subroutine is specified by its address in the
first operand. If the subroutine requires arguments, they may be
specified as a list in the second argument. The assembler
subroutine is entered with the TIB address in index register 1,
the argument count in index register 2, and the address of the
argument list in index register 3. When the subroutine returns,
it must either zero index register 2, which implies an inline
return to the next op block, or load index register 2 with the
address of the op block to return to.

777063

addr(subr)

arg count

arg 1

arg n

12-36 AN85-01

Op Block: linctl <address>,<label>

This op block checks to see if the current test-state event is
the result of a "line control" order from the CS, and if so
stores the four words of data associated with the order at
<address>, which can be either a TIB extension address (of word
type) or an absolute FNP address. If no "line control" order was
sent, it performs a goto <label>.

777065

address

addr(label)

Op Block: linsta <address>

This op block reports line status to the CS. The four words at
<address> are sent to the CS and stored as line status for the
channel; no 1/0 can be done on the channel until a "line status"
order is performed by the 1/0 module to pick up the-status.
<address> can be either a TIB extension address or an absolute
FNP address.

777066

address

12-37 AN85-01

Op Block: bkptop

This op block represents a breakpoint in the control tables. It
is inserted by breakpoint_man when a breakpoint is set using
debug fnp. See the discussion of breakpoints in the description
of the debug_fnp command in Appendix B.

777064

Op Block: nullop

This op block is a
following op block.

no-operation.

777070

Op Block: unwind

Control proceeds to the

This op block clears any pending subroutine return addresses. It
can be used in preparation for a "non-local" goto from within a
subroutine to the outermost level of op block execution.

777071

Op Block: gotov <var>

This op block performs a goto to the label whose address nas been
stored in the local variable <var>.

'777074

addr(var)

12-38 AN85-01

Op Block: gocase <var>,<value_label>,<goto_label>

This op block selects a branch address depending on the value of
the local variable <var>. <value label> identifies a list of
character values generated by means of a chstr macro (described
below under "Description of Scan Control Strings"); <goto label>
identifies a list of possible branch addresses. The value list
is scanned from left to right until a value is found that is
equal to the value of <var>; then a goto is done to the
corresponding branch address. If no match for <var> is found~
control proceeds to the following op block.

The list of addresses may be generated by means of the adrlst
macro, as follows:

adrlst (labell, label2, ... , labeln)

The values in the value list may be either character literals or
TIB extension addresses.

777075

addr(var)

addr(value label)

addr(goto_label)

Description of Scan Control Strings

The scan op blocks work with a scan control string and the
characters in either the input or output buffer chain. The
control string consists of a series of characters that are
interpreted to find what actions to perform. Each character of
the form 5xx(8) is a code indicating an action to be performed.
The rest of this section describes these actions in detail. Some
of the action codes require one or more data characters as well.
For these codes, the data characters follow the action code in
the control string. A data character may be either a literal
value or a TIB extension address. A TIB extension address is
indicated by a data character in the range 460(8) to 477(8); when
one of these codes is encountered, the data character is fetched
from the TIB extension (character 0(8) through 17(a)
respectively).

12-39 AN85-01

The control string for the scan op block is generated by the
chstr macro, as follows:

chstr (op1,op2, •.• opn)

opn 777

The end of string marKer (777) is inserted automatically by the
chstr illacro after the last operand given. It may appear in
either half of the last word, depebding on how many operands
precede it.

Durin6 the scan, a pointer is Kept to the current character
in the buffer chain. This pOinter is undefined whenever the
control tables are entered (i.e., when resuming after a wait
block). The pointer must be initialized to the first character
in the chain with the "rescan" control code. Most control codes
either deal with the character designated by the current chain
pOinter, or move the pointer in some fashion.

The following codes may appear in the control string:

match 501
The next character in the control string is the match
character. It may be either a literal value or a TIB
extension address. If the next character in the
chain is equal to the match character, the scan
continues; otherwise, the scan terminates and the
failure exit is taken.

search 502
The next character in the control string is the match
character. The curr~nt chain is scanned looking for
the match character~ If it is not found, the scan
fails. If it is found, the scan continues, and the
chain pointer is left at the character that was
found.

i~nore 5U3
Bumps tne chain pointer to the next character. The
character skipped over is omitted from any block
check calculation. If the pOinter is already past
the last character, an inscan will fail. An outscn;

12-40 AN85-01

sbcc

endchn

cbcc

however, increases the length of the output chain by
1 character and moves the pOinter over the character.

504
Sets a flag to start the block check calculation.
All characters passed over in the chain (by ignore,
search, etc.) are exclusive orled into the block
check accumulator.

Sets the chain pointer to the last character in the
last buffer in the buffer chaino

506
Stops the block check calculation and compares the
accumulated result with the next character in the
buffer chain. If it matches, the scan continues.
Otherwise, the scan fails.

cmask 507
This control requires two more characters in the
control string. The first is a match character and
the second is a mask. The match character and the
next character in the buffer chain are both andled
with the mask. If the results are equal, the scan
continues; otherwise, it fails.

rescan 510
Resets the current buffer chain pointer to the start
of the appropriate chain. This is normally the first
operation in a scan control string.

strlrc :511
Starts the "longitudinal
computation. It is identical
"sbcc" control (above).

outlrc 512

redundancy check"
in meaning to the

(Used for output scans only) inserts the acc~mulated
block check character at the character position
indicated by the chain pointer.

cmpl rc 5 1 ~.~
Identical to Cbcc.

seteom 514
Turns on the "last buffer in message" flag in the
buffer into whieh the chain pointer points.

replac 515
Must be followed by a data character, which is either
a literal character or a TIB extension address. The
resulting character (the literal or the character at
the TIB extension address) replaces the character
addressed by the chain pointer.

12-41 AN85-01

cmplst 516
Must be followed by one or more data characters as
specified above. The character addressed by the
chain pointer is compared with each data character in
turn; if it matches one of them, the remaining data
characters are skipped and the scan continues. If
the end of the control string or another scan control
is encountered before the current character is
matched, the scan fails.

movchr 517
Must be followed by a TIB extension address. The
character addressed by the chain pointer is copied to
the specified TIB extension address.

movmsk 520
Must be followed by two data characters, of which the
first is a TIB extension address and the second is a
mask. The character addressed by the chain pointer
is and'ed with the mask and stored at the specified
TIB extension address.

count 521
Indicates that a count of characters in the chain is
to be accumulated at the TIB extension address
specified. by the next character in the control
string. For every character passed over by a search,
serch2, nxtchr, or ignore control, the value at the
TIB extension address is incremented by 1.

serch2 522
Is the same as search (above) except that the search
is made for either of the two data characters
following the control. If either character is found
in the chain, the chain pointer is set to address the
character found; if neither character is found, the
scan fails.

setbit 523
Must be followed by a character that is used as a
mask. The mask is orled into the character addressed
by the chain pointer.

Must be followed by a character that is used as a
mask. For every 1-bit in the mask,the corresponding
bit in the character addressed by the chain pointer
is turned off.

12-42 AN85-01

chktrm 525
Must be followed by a data character,
compared to the next-to-last character in
the chain pointer is set to address this
If the characters are equal, the scan
otherwise it fails. If there are fewer
characters in the chain, the scan fails.

which is
the chain;
character.
continues;

than two

mvlst2 526
Must be followed by two TIB extension addresses. The
next-to-last character in the chain is copied into
the first TIB extension address, and the last
character in the chain is copied into the second TIB
extension address. The chain pointer is set to
address the last character in the chain. If there
are fewer than two characters in the chain, the scan
fails.

nxtchr 527
Bumps the chain pointer to the next character in the
same manner as "ignore", except that the character
passed over is included in the block check
calculation if an "sbcc" or "strlrc" control is in
effect.

PROVIDING ADDITIONAL CONTROL TABLES

A site may provide additional special-purpose control tables
in order to run some communications protocol not supported by the
standard Multics Communication System. The appropriate way to do
this is as follows:

1. Write a module using the op block macros described
above;

2. Assemble it by means of the map355 command;

3. Add the name of the new module to the "Order" statement
in the bindfile used by the bind_fnp command;

4. Create a new core image using the bind_fnp command;

5. Specify the pathname of the new core image in the
"image" statement of the channel master file (CMF), and
use the cv cmf command to generate a new channel
definition table (CDT). -

The rest of this section contains information needed to write a
useful control tables module (step 1 above). For more details on
steps 2-4, see the descriptions of the map355 and bind_fnp
commands in Section 17; for more details on step 5, see the MAM
Communications, Order No. CC75.

12-43 AN85-01

Pseudo-ops and Data-defining Macros

The source of a control tables module should begin with a
few 355MAP pseudo-operations and macros that define symbols
required for proper operation of the op blocks that make up the
main body of the control tables. Some of the pseudo-ops
mentioned here serve simply to increase the readability of the
listing; others, particularly "symdef" and "symref" pseudo-ops,
are required for correct operation. All 355MAP pseudo-operations
are described in the manual, DATANET355 Macro Assembler Program,
Order No. BB98.

LISTING CONTROLS

The following sequence of pseudo-ops and macros is present
at the beginning of all control tables modules supplied as part
of Multics Communication System. It is advisable to use a
similar sequence in installation-~upplied modules.

lbl ,< full_name>
ttl <suitable page heading>
editp on
pmc off
detail off
pcc off
pmc save,on

<n arne> null
start <name>

where <full name> is the name of the source segment (without the
".map355" suffix), <suitable page heading> is a heading that
appears on every page of the listin5, and <name> is the name of
the module as it appears in dumps of the FNP (see Section 16);
<name> is a 355MAP symbol, and accordingly cannot exceed six
characters in length.

EXTERNAL SYMBOL DEFINITIONS

Any symbol defined in the module that is referenced in any
o the r mod u 1 emu s tap pea r: as the 0 per and 0 fa" s ym d e f"
pseudo-operation in the module in which it is defined. If the
installation-supplied module replaces a standard module, any
"syrndef" pseudo-operations appearing in tne standard module must
also appear in its replacement. In any case j the label at which
the tables are initially entered for each channel must appear in
a "symdef" pseudo-operation. See also the discussion of
"Interaction with the Main Control Tables Module" later in this
section.

12-44 AN85-01

Any symbol referenced in the module that refers to a symbol­
defined in another module must appear as an operand of a "symref"
pseudo-operation in the referencing module. (Such symbols must,
of course, also appear in "symdef" pseudo-operations in the
defining module.) The symbols most likely to be referenced by a
control tables module are "begin," "hungup," "stpchn," and
"error," all of which are defined in the main control tables
module, control tables. See the discussion of "Interaction with
the Main Control Tables Module" later in this section for
details.

INTERNAL SYMBOL DEFI~ITIONS

The following macros are required to define data that is
referenced symbolically by the op block macros:

tib
defines the fields and flags in the TIB.

csbits
defines the bits used in contrl, cmd, and status op
blocks.

tconst
defines many useful constants, including
frequently-used ASCII and EBCDIC characters.

CHARACTER CONTROL TABLES

If character control tables (eCTs) other than the standard
ones provided in the control tables module are needed, they must
be provided in the installatIon-supplied module. To facilitate
the coding of CCTs, the cctdef macro should appear; this macro
assigns mnemonic names to the bit patterns for the most
commonly-used CCT entries. Each eeT must be forced to a 0 mod 64
address by preceding it with a "base 64" pseudo-operation.

The setcct op block must be used in the control tables
module to estaolish the use of this eeT. The implementation of
some protocols may require the use of the table-switching
feature, whereby the coding of a particular input character in
the eCT may automatically cause the HSLA hardware to switch to a
different eeT; in such a case, an array of from 2 to 4
contiguous eeTs are provided. Switching back to the original
(base) eeT is accomplished either through the appearance of a
character appropriately encoded in the new eeT, or by software by
means of the setcct op block with a cct spec of cct.bs (see the
description of the setcct op block). -The bsc tables module
contains examples of the use of this feature.

12-45 AN85-01

SUPPRESSION OF OP BLOCK EXPANSION

The remainder of the module consists of op blocks suitable
for "execution" by the interpreter, along with "chstr" macros
(described earlier in this section) for any scan or bldmsg
control strings required. If a "PIllC restore" pseudo-operation
appears before the beginning of tne "executaole" op blocks, the
355MAP expansions of the macros do not appear in the listing; the
absence of tnese expansions greatly increases the readability of
the listing.

Interaction with the Main Control Tables Module

The addition of a new communications protocol may require
minor changes to the main control tables Inodule (control_tables);
in any case, it is important to understand how the new module
interacts with control tables.

LINE TYPES

The control tables used to drive any channel are selected on
the basis of its line type. In general, the correct way to add a
communications protocol is to use one of the line types reserved
for site-defined protocols: ASYNC1, ASYNC2, or ASYNC3 for an
asynchronous protocol, or SYNC1, SYNC2, or SYNC3 for a
synchronous protocol. Tne name of this line type can then be
specified in the channel master file (CMF) for those channels
using the new protocol. The device table for that line type is
specified in control tables, as explained earlier in this
section. -

Finally, entry into the new module is effected by means of a
gotype op block at the label "start" in the control tables
module. The label on the starting op block of the added-module
must be the same as the symbol to which the gotype op block
branches for the line type in question. This symbol must appear
in a "symdef" pseudo-operation in the added module.

The symbols associated with the reserved line types are as
follows:

ASYNC1
ASYNC2
ASYNC3
SYNC1
SYNC2
SYNC3

a1star
a2star
a3star
s1star
s2star
s3star

12-46 AN85-01

ANSWERBACK READING

If the line type being replaced has an answerback (or
who-are-you) capability, and the gotype op block at the label
anslp in control tables branches somewhere for the type in
question, a corresponding label must be supplied. If a
who-are-you sequence is to be sent to the channel, the op blocks
to send it and receive the answerback must begin at this label
(which is invoked automatically in response to a who-are-you
request from the central system); if the who=are=you request is
to be ignored, the following sequence should be used:

signal
goto

wrutim
<main wait block>

where <main wait block> is the label on the normal "idle" wait
block described under "Programming Considerations" below. In
general, synchronous line protocols do not include an answerback
capability; since additional special-purpose line protocols are
usually synchronous, the answerback function is not expected to
be a concern to most sites.

USEFUL LABELS IN THE MAIN MODULE

Op block execution for each channel always starts at the
label begin in control tables. When a channel is disconnected,
the module may return to begin in order to wait for a listen
request from the CS; it is more usual, however, to go to hungup
(also in the control_tables module) to turn off data terminal
ready and wait for the listen request. Another label in
control_tables that may be of interest is error; branching to
this op block causes the FNP to crash, which might be the only
recourse in case of unaccountable results indicating software
errors. This can be a useful tool in debugging a new control
tables module. The stpchn label is the address of the subroutine
invoked by the stpchn op block.

Programming Considerations

At entry to the added module, a test should be made to
ensure that the TIB flag tflisn is on, indicating that the CS is
prepared to communicate with the channel. If the flag is off,
the control tables should wait for a test-state event, which
should return to the label begin in the main module. If the
tflisn flag is on, the tables should proceed to initiate
communication with the channel (usually by raising the DTR
dataset lead and waiting for some combination of DSR, CD, and
CTS) •

12-47 AN85-01

Once the connection has been established, the action of the
control tables will be driven by various events:

1. Requests from the CS, indicated by "test-state" events
and the setting of various TIB flags;

2. Output from the CS, indicated by "write" events and the
presence of an output chain;

3. Input froill the channel, indicated by "status" events;

4. Abnormal conditions on the channel, also indicated by
"status" events.

In most cases, the module contains an "idle" wait block, to be
branched to when any particular transaction completes, where it
waits for the first of these events that occurs. If some
activity on the channel is required at'specified time intervals,
this wait block should be provided with a timeout branch a~ well.

REQUESTS FROM TrlE CS

The most usual requests from the CS are listen, hangup,
dump input, and dump output. These are all effected by means of
a test-state event, with the TIB flags tflisn, tfhang, tfrabt, or
tfwabt, respectively, turned on. The control tables should take
appropriate action in each case.' The listen request is not
~enerally sent to an active channel, and can usually be ignored;
after a hangup request, the channel should be disconnected;
dump input and dump output can be handled by dumpin and dmpout op
blocks respectively. In case the test-state event occurs at a
wait block that is not checking for it, these flags should be
tested at appropriate times.

OUTPUT FROM THE CS

When output arrives from the CS, and output is not already
in progress for the channel, a write event is signalled to the
control tables; appropriate dcwlst op blocks should be executed
to send the output to the channel, generally storing terminate
status on completion. The wait blocks used in actually
completing the I/O snould not branch on write events; but before
returning to the idle wait block, a tstwrt op block should be
used to check for the presence of additipnal output.

INPUT FROM THE CHANNEL

A completed input message from the channel is indicated by
brkchr status. The normal response to this status is to check
the input message for validity (if necessary) and execute a
sendin op block to ship the input data to the CS. Of course, if

12-48 AN85-01

the expected input is some kind of control message
acknowledgement of output), it can be processed in the
tables and discarded, rather than being sent to the CS.

ABNORMAL CONDITIONS ON THE CHANNEL

(e.g.,
control

A wait block
should always be

executed when the channel is in receive mode
followed by status blocks to check for various

conditions. Loss of carrier mayor may not be interesting,
depending on the line protocol; loss of data set ready (DSR)
generally indicates that the connection has been broken.
"Pre-exhaust" status (prexh) is generated when 10 input buffers
have been filled and no break character has been encountered; it
is usually advisable to respond by shipping the accumulated input
and continuin~ to accept further input.

Exhaust status (exh) is generated wnen an excessive amount
of input has accumulated; in this case, the normal response is
to temporarily shut off the channel (by means of a stpchn op
olock), and not re-enter receive mode until after output has been
sent to the channel or a line break has been received. A line
break is indicated by break status; it usually indicates that a
user has generated an interrupt from a terminal, which should be
echoed oack to the CS by means of a signal quit op block. Input
transfer timing error (xte) status may be generated if an input
buffer could not be set up in time; it should be treated like
exhaust status. Finally, channel hardware errors may be
reflected as parity status; this may be ejther ignored or treated
like-exhaust status.

LINE CONTROL AND LINE STATUS

The line control and line status mechanisms can be used to
facilitate communication between a control tables module and
ei~her a user-ring 1/0 module or a ring-O multiplexer module
without the rest of Multics Communication System having to know
anything about the specific protocol. The linsta (line status)
op block passes 72 bits of arbitrary information to the CS,
resulting in a "l':.:le status" interrupt; this interrupt may be
intercepted by a multiplexer module, but if it reaches
tLY interrupt, tte latter stores the status and sets a flag in
the-wTCB and wakes up the process using the channel (see Sections
3 and 4 for further information about interrupts). The
information can oe obtained by an 1/0 module by means of the
line status control operation (described below).

Similarly, if an 1/0 module or a multiplexer issues a
,I' lin e con t r 0 1 nco n t r 0 lop era t ion (d esc rib e d below), 72 bit s 0 f
associated data are sent to the FNP; the interpreter is called
with a "test-state" event. The control tables can then pick up

12-49 AN85-01

the associated data by means of a linctl op block, provided the
op block is executed in response to the same test-state event.

US~R-RING 1/0 MODULES

A control tables module that implements a protocol not
otherwi~e supported by Multics probably requires the cooperation
of a special-purpose 1/0 module. (Examples of such combinations
in system supplied software include the RCI protocol, implemented
by g115 tables and the g115 1/0 module; and the binary
synchronous protocol, implemented by bsc tables and the bisync
1/0 module.) The type of cooperation Involved may include ~
common understanding of message formats, so that the 1/0 module
can prepare output messages in a format that the control tables
expect, and conversely for input messages. It may also include
the use of the line status and line control mechanism.

Once line status has reached the WTCB level, any attempt by
the user process to do 1/0 on the channel (through calls to
tty_read and tty_write) result in a status code of
error table $line status pending being returned. This condition
can only be-cleared by issuing a "line status" control operation;
the info pointer passed with the control call must point to a
bit(72) variable which is to be filled in with the line status
sent from the FNP. If a "line status" control operation is
issued when no line 'status is in fact pending, a status code of
error_table_$no_line_status is returned.

To send arbitrary control information to the control tables,
the 1/0 module issues a "line control" control operation. The
info pointer must point to a bit(72) variable containing the
information to be forwarded to the FNP.

Example of a Control Tables Module

The source of a sample control tables module, sim tables, is
reproduced below. This module uses a line type of SYNC1, so the
initial label is s1star.

This example implements a very simple protocol, and does not
make use of all of the features described in this section; for
examples of more sophisticated protocols, see the source of
bsc tables and polled_vip_tables.

Following the source of sim tables is a line-by-line
explanation of the purpose of each macro.

12-50 AN85-01

NOTES: Comment lines in 355MAP are indicated by either a
star (*) in column 1 or the rem pseudo-operation in
the operations field. When rem is used (as is
usually the case), the string rem is replaced by
blanks in the listing. To improve readability,
frequent use is made of otherwise blank rem lines.
In the example below, these lines are replaced by
blank lines. Text following white space after the
operand field is also treated as a comment. The 1*
~nd *1 delimiters around the comments are entirely
conventional; they are not required by the assembler.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
2'7
28
2,;)

30
31
32
33
34

It has been necessary for printing purposes to
break some of the long control strings into two or
more lines. In an actual source program these lines
would not be broken unless they extended past column
72.

Ibl ,sim_tables
ttl sim tables to control sync lines
pcc off-
pmc off

* * * * * * * * * * * *' *' * * * * * * *' * * *' * * *' * *'
*
*
*
*
*
*
*
*'
*'

*
*'
*'
*' * * *' *'

sim

sim tables

these tables implement the protocol
of the sync line simulator. this simul~tor
is based on the vip7700 protocol.

* * * * *' * * *' *' * * *' * * * * * * *' * * * *
null

symdef
symdef

symref
symref
symref

start

pmc
tib
csbits
tconst

stm
s1star

begin
error
nanga

SilO

save,on

12-51 AN85-01

35
36
37 chr100
38 chr140
39 chr 141
40 chr124
41 chr 146
42
43 iscn6

44 iscn7

45 iscn8

46
47 oscn1
48 oscn2

49 oscn3
50
51 ackmsg

52 nakmsg

53
54 id lmsg

55
56
57 s1star
58
59
60 slisn
61
62
63
b4
65 sdiald
66
67
68 sget
69
70
71
72
73
74
75
76
77
78
79
80 srcvd
81

pmc
ttls
bool
bool
bool
bool
bool

chstr

chstr

chstr

chstr
chstr

chstr

chstr

chstr

chstr

ttls
tstflg
wait

contrl

wait
status

signal
goto
ttls
tstwrt
tstflg

contrl
setime
wait
status
status
status
status
status

in sc an
inscan

restore
constants for sync line tables
100
140
141
124
146

(rescan,search,soh,ignore,strlrc,
search,etx,ignore,cmplrc)

(rescan,search,soh,ignore,
ignore,match,ack)

(rescan,search,soh,ignore,
ignore,match,dle)

(rescan,search,etx)
(rescan,search,soh,ignore,strlrc,
search,etx,ignore,outlrc)

(rescan,chKtrm,etx)

(syn,syn,syn,syn,soh,chr141,ack,
stx,etx,chr146,eot,seteom)

(syn,syn,syn,syn,soh,chr141,nak,
stx,chr100,chr141,etx,chr124,
eot,seteom)

(syn,syn,syn,syn,soh,chr100,dle,
chr100,etx,seteom)

dial up control for simulator
tflisn,O,slisn 1* listen to line? *1
O,O,begin

sdtr+srts+stat 1* bring up leads *1

O,O,tshang 1* dial or hang? *1
cd+cts+dsr,O,sdiald

dialup
sget 1* start off protocol *1
sget and srcvd input for sync lines
sendr
tfhang,O,shang

srec+rxmit
o
O,sendr,tshang
brkchr,O,srcvd
parity,O,nakit
exh,O,pause
xte,O,pause
0, d sr+cd ,shang

iscn6,nakit
iscn8,notidl

12-52 AN85-01

d2 dumpin
83 goto sntack
84
85 notidl sendin
66 dmpout
87
88 bldrnsg ackmsg,error
89
90 sndrnsg holdot
91 dcwlst
92 cmd sxmit
93 output (outrosg)
94 cmd sterm+rxmit
95
96 wait 0,0,0
97 status term,O,sntack
98 status o , d s r + cd , s han g
99

100 sn tack setime ° 101 tstflg tfhang,O,shang
102
103 wait O,O,tshang
104 status brkchr,O,srcvd
10:) status parity,O,nakit
106 status exh,O,pause
lU7 status xte,O,pause
100 status O,dsr+cd ,shang
109
11 U pause stpchn
111 duropin
112 dropout
113 setime
114 wait nakit1,0,tshang
115 status O,dsr+cd ,shang
116
117 nakit stpchn
118 dumpin
119 dmpout
120
121 nakit1 tcntr 2000,rstcnt
122 acntr 1
123 contrl srec
124
125 nakit2 bldmsg nakrosg ,error
126 goto sndmsg
127
128 rstcnt scntr ° 129 goto nakit1
130 tshang tstflg tfhang,O,shang
131 waitm
132
133 shang stpchn
134 duropin
135 dmpout
136 goto hanga

12-53 AN85-01

13'7 ttls sendr for sync lines
138 sendr outscn oscn3,gtmore
139 goto sendit
140
141 gtmore signal sndout
142 wait O,sendr,tshang
143
144 sendit holdot
145
146 resend dcwlst
147 crnd sxmi t+srec
14d output (outmsg)
149 cmd rxrnit
150
151 sndone setime 30
152 tstflg tfhang,O,shang
153
154 wait badack,O,tshang
155 status brkchr,O,gotack
156 status parity,O,badack
157 status exh,O,badack
158
159 bad ack stpchn
160 dumpin
161 goto resend
162
163 gotack inscan iscn6, badack
164 inscan iscn7 ,badack
165 dumpin
166 dropout
167 se time 10
168 contrl rrec
169 wait sndidl,sendr,tshang
170
171 sndidl bldmsg idlrnsg,error
172 outscn oscn2,error
173 holdot
174
175 dcwlst
17b crnd sxmit
177 output (outmsg)
178 crnd sterm+rxmit
179
180 setime ° lSl wait 0,0,0
i82 status term,O,sntidl
103
184 sntidl dmpout
185 tstflg tfhang,O,shang
186 tstwrt sendr
18'7 wait O,sendr,tshang
188 end

12-54 AN85-01

Line

- 4

S -1d

22-23

25-27

29-36

31-41

43-49

51-54

57

58

61-62

65-66

6d

69

71-79

80

81-83

85-88

90-94

Purpose

Listing controls

Introductory comments explaining purpose of module

Definitions of symbols referenced by other modules

Indicates that the indicated symbols are defined
in other modules

Macros defining useful symbols

Assign symbolic names to some useful character
values

Scan control strings

Canned message formats used by bldmsg op blocks

See if CS wants to communicate with channel

If not, wait until it does, go to control_tables
label "begin" for preliminary testing

~ait here for dataset leads CD, CIS, DSR to come
on. When they do, goto sdiald.

Tell CS about connection to communications device,
and start looking for data at sget.

Check for output fro~ CS for communications
device.

Check for request from CS to disconnect.

Otherwise, wait for output from CS (go to sendr
when it comes) or input from device (goto srcvd).
Also watch for device errors such as parity or
dropped dataset leads.

Scan input looking for LRC error, goto nakit.

Check for data message. If actual data go to
notidl. Otherwise throwaway input message and
wait at sntack.

Send data to CS, throw out last ACK, build new
ACK.

Hold current message for possible retransmission;
set transmit mode and send message.

Wait for message transmission to complete or data
set to drop (preferably the former).

12-S5 AN85-01

Line

100-101

103-108

110-115

117-123

125-126

130

133-136

13b-139

141-142

144

146-149

151-157

159-161

163-164

165-169

171-173

180-195

186-188

Purpose

Sent the ACK, test for CS request to disconnect.

Wait for next input message. goto srcvd when it
arrives. parity error, NAK message. overrun,
goto pause.

Wait a second and send NAK.

Throwaway the input and output; count the bad
message, testing for overflow first.

Construct a NAK message.

ReS~t counter to zero.

If CS requested disconnect, do it here.

Throwaway the input and output, go to standard
disconnect routine.

Make sure output ends in ETX; if not, go. to
gtmore, else go to sendit.

Ask. for more output.

Hold the message for possible retransmission.

Send the message.

Wait 30 seconds for a response.

Bad ACK, retransmit message.

Check the LRC (logical redundancy check), look for
ACKj if bad, transmit message again.

Discard the output, it was sent ok; wait 10
seconds for more to send, else send idle message.

Construct the idle message, compute LRC.

Send it.

~ait for idle to transmit,_ then throw it away.

wait forever for more output from CS, or
disconnect request.

12-56 AN85-01

SECTION 13

FNP HARDWARE MANAGERS

This section describes the FNP software that controls the
four principal peripheral devices connected to the FNP: the
Direct Interface Adapter (DIA), the Low Speed Line Adapter
(LSLA), the High Speed Line Adapter (HSLA), and the console.

DIA

The Direct Interface Adapter (DIA) is the hardware interface
between the FNP and the CS 10M. The FNP module dia man is
responsible for handling DIA interrupts, initiating DIA IIO, and
passing on data sent from the CS to the other modules in the FNP.

While the FNP is running, all data transfer over the DIA is
initiated by dia man; the onry DIA operation -that may be
initiated by the CS is "Interrupt FNP", which is used to inform
dia man that a mailbox is ready to read.

Operation of the DIA

The address field of the CIOC instruction used to start DIA
1/0 points to the DIA PCW mailbox (at location 454 (8) in FNP
memory), which contains a PCW that must be refreshed before each
connect. The only part of the PCW that is interpreted is the
address field, whic:: points to a "list ICW" which in turn points
to a list of DCW~ that specify the actual 1/0 operations to be
performed by the ~'IA. The tally field of the list ICW specifies
the number of 36-bit words in the DCW list; each DCW actually
consists of a pair of 36-bit words.

13-1 AN85-01

The format of a DIA DCW is

First Word Pair

0 1 1
0 7 8

J
I

MAIN MEMORY ADDRESS :0 0

18

shown below:

2 2 2 2 2
0 1 234

J J J I
I I I I

O:U:LlO:
I I I I
I I I I

3 1 1 1

2 3
9 0

J
I

LEV/ADREXTl

6

3
5

OP CODE

6

Second Word Pair

0
·0

I
I

:0

0 0 1 1 2 2 2 2 2
2 3 7 8 0 1 2 3 4

i I i I i I
I I I I I I

0 1 l FNP ADDRESS :0 0 O:U:L:Ol TALLY
I I I I I
I I I I I

3 15 3 1 1 1

Figure 13-1. FNP DIA DCW Format

The DIA opcodes used by Multics Communication System are:

3
5

12

"transfer gate" (65) - i.e., read and clear CS memory, OR
result to FNP memory

disconnect and interrupt FNP (70)

interrupt CS (73)·

data transfer from FNP to CS (75)

data transfer from CS to FNP (76)

If the opcode is "interrupt CS", bits 24-29 of the first
36-bit word of the DCW specify the interrupt cell to be set; if
the opcode specifies data transfer, these bits are the high-order
6 bits of the CS address.

All address fields 1n the DIA pew, list lew, and DeWs must
specify 36-bit addressing; all tallies are in 36-bit words.

13-2 AN85-01

The dia man module builds its
location in dTa man itself; space is
transfer up to- the maximum number
transmitted at once.

DCW list in a reserved
reserved for a DCW list to
of buffers that may be

DIA Transactions

A complete transaction between the FNP and the CS generally
requires more than one DIA 1/0 operation (e.g., reading a
submailbox, transferring data, writing a submailbox, etc.).
Accordingly, a "transaction control word" is used to determine
the current state of the current transaction; it is examined
whenever an 1/0 operation completes, and interpreted by the DIA
transaction processor, dtrans. This. word, which is kept in the
internal storage of dia man, can have any of the following
values: -

o first interrupt since bootload

output pseudo-DCW list was read

2 output data transfer complete

3 submailbox was read from CS

4 buffered input data transfer complete

5 "blast" output message was read

6 data was read for patching FNP memory

7 submailbox containing input was written to CS

8 not used

9 submailbox was freed

10 submailbox was written to CS

A value of 1 through 7 means that further action by dia man
is required; any other value indicates that the curFent
transaction is complete.

To prevent confusion and overcomplication in dia man, only
one transaction control word, and only one area for tEe storage
of submailbox contents, are reserved in dia man; thus, only one
transaction can be going on at any time. This is enforced by
means of a software lock (the "DIA lock") which is locked when a
transaction begins and unlocked when it completes.

13-3 AN85-01

The initiation of a transaction can be requested by either
the FNP or the es at any time; such a request is processed by
adding an entry to an appropriate queue and calling the secondary
dispatcher (see Section 11) to schedule dgetwk, the routine that
initiates DIA transactions. When dgetwk runs, it checks the DIA
lock; if it is locked, nothing is done (dgetwk runs again later
after the lock is unlocked). If the lock is not locked, dgetwk
locks it and checks the mailbox queue and the DIA request queues
(see below) to see if a transaction request is pending; if so, it
initiates the transaction, as described later in this section.
If no transactions have been requested, dgetwk unlocks the DIA
lock and returns.

Queues

Two queuing mechanisms are used to drive DIA transactions:
the mailbox queue and the DIA request queues.

The mailbox queue ident'ifies the submailboxes that the es
wants the FNP to read. It is a circular queue of 16 entries;
each entry contains either the number of a submailbox (0-15) or
-1 to indicate a free entry. An entry is added to the queue
nhenever a mailbox interrupt is received from the es; the oldest
entry is removed by dgetwk when it finds the queue nonempty and
builds a DeW list to read the submailbox specified by that entry.

As explained in Section 4, there are actually only 12
submailboxes, of which 4 (submailboxes 8-11) are controlled by
dia man. Submailbox numbers 12-15 are used by the es to indicate
that it has processed one of submailboxes 8-11 without modifying
it.

The group of queues known collectively as the DIA request
queues contains one queue for -each configured channel and one
global queue used to report errors to the es. The queue address
of each channel is kept in the TIB table entry for that channel
(a zero value means that there are no queue entries for the
channel). An entry is added to the queue of a channel by the
denq subroutine when the FNP has information to pass to the es,
usually as the result of a "signal" op block in a control tables
module (see Section 12). Each entry in the queue contains a
submailbox operation code. Entries are extracted from the queue
by the fetch subroutine when a submailbox containing an ReD (read
control data) command is constructed by dia ·man, as explained in
more detail below.

13-4 AN85-01

Interrupt Handlers

Two routines handle DIA interrupts: dterm and dmail.
Terminate interrupts, which are generated as a result of the
"disconnect and interrupt" DCW placed at the end of every DIA DCW
list constructed by dia man, indicate the completion of a DIA I/O
operation and are directed to dterm. This routine checks the DIA
status to ensure that the I/O completed successfully, and if so
it examines the transaction control word. If the value of the
transaction control word is one that requires action (see above),
dtrans is scheduled to proceed with the transaction; otherwise,
the current transaction is complete, and dterm unlocks the DIA
lock and calls gate, the subroutine that schedules dgetwk.

When the CS connects to the DIA, the result is a "special"
or mailbox interrupt at the level corresponding to a submailbox
that the FNP is supposed to read. This interrupt is handled by
dmail, which copies the interrupt level (i.e., the submailbox
number) into the next available entry in the mailbox queue and
calls gate. When dgetwk runs, it finds the entry in the mailbox
queue and initiates the reading of the submailbox as described
above.

If the interrupt level is in the range 12-15, no submailbox
is read; instead, the submailbox whose number is four less than
the interrupt level (i.e., one of submailboxes 8-11) is marked
free for further use by dia_man.

Summaries of DIA Transactions

TRANSACTIONS INITIATED BY THE CS

When the CS has control information or output data to send
to the FNP, it fills in a submailbox as described in Section 4
and sends an interrupt over the DIA. This interrupt is handled
by dmail as described above; when the submailbox is read, the
transaction control word is set to "submailbox read" so that when
the I/O completes and dtrans runs, the mailbox decoder (decmbx)
is called. The I/O command in the submailbox is either WCD (for
control information) or WTX (for output data). If it is WCD,
decmbx dispatches according to a table of operation codes and
takes the appropriate action. In many cases, this consists of
setting a flag in the TIB and calling itest, the "test-state"
e~try of the interpreter. In a few cases, the operation requires
~urther DIA I/O, but usually all that remains to be done is to
"free" the submailbox by turning on the corresponding bit in the
mailbox terminate interrupt multiplex word (see Section 4) and
set the transaction control word accordingJ.y. When the I/O to
update the TIMW terminates, the transaction is complete.

13-5 AN85-01

If the liD command is WTX, the submailbox contains the
address and length of a "pseudo-DCW" list containing the
addresses and tallies of data buffers in tty buf. In this case,
dia man connects to a DCW list to read them Into a reserved area
in dia man. When the liD completes and dtrans runs, another DCW
list is built making use of the information in the pseudo-DCWs,
buffers are allocated for the actual output, and a connect is
done to copy it. When this liD operation completes, dtrans calls
the write subroutine, which checks to see if output is currently
being sent to the channel, as indicated by the TIB flag tfwrit.
If the flag is on, dia man simply e~tends the output chain
pointed to by t.ocur to include the new output. If the length of
the resulting chain is no greater than a per-channel threshold
(usually 2 or 4 buffers depending on channel speed), a flag is
set in the submailbox to indicate a "send output" operation; in
this case, the submailbox is rewritten to the CS at the end of
the transaction. If the tfwrit flag is off, then the new output
is appended to the chain pointed to by t.ocp (or t.ocp is set to
point to the new output if there is no existing chain) and the
iwrite entry of the interpreter is called so that the control
tables can deal with the output. Then the mailbox is finally
freed or rewritten, completing the transaction.

If there is insufficient free buffer space for either the
pseudo-DCWs or the output itself, dia man frees any buffers
allocated so far in connection with the -output transaction, and
reschedules processing of the submailbox. This is done by
scheduling the rpmbx subroutine to run after six seconds; this
routine adds an entry to the mailbox queue for the specified
submailbox. As a result, dgetwk rereads the mailbox exactly as
if an interrupt for it had arrived from the CS, and the entire
transaction is retried.

A WCD submailbox containing a blast operation code is a
special case of output data, in that the submailbox contains the
address of the actual output. In this case a DCW list is set up
to read the blast message, after which the data is copied and
sent to every dialed-up channel.

TRANSACTIONS INITIATED BY THE FNP

When denq is called (either as a result of a signal or
sendin op block, or by write, hsla man, or lSla man to request
more output), an entry is added to the request- queue for the
specified TIB containing the specified mailbox -operation code~
The count of pending queue entries is increased by one, unless
there is already an entry in the queue of that channel containing
an accept input operation code; an accept input blocks the queue,
for reasons explained below. Similarly, a call to derrq adds an
entry to the global queue. In either case, when dgetwk runs, it
sees that the queue entry count has been incremented, and calls
the filmbx subroutine, which allocates an FNP-controlled

13-6 AN85-01

submailbox, fills it in with an RCD liD command, and calls the
fetch subroutine to get an entry from the appropriate request
queue; fetch checks the global queue first and returns the oldest
entry in this queue if it is not empty. Otherwise, the request
queue for the channel whose TIB list entry is addressed by the
current request queue pointer is examined, and if it contains a
pending request, this is returned; if not, the request queue
pointer is advanced and the queue of the next channel is checked.
Once an entry is found, the request queue pointer is set to point
to the next entry in the TIB list, so that the request qUeues are
examined in a round-robin fashion, thus giving more or less equal
service to all active channels. If the entry contains any
operation code other than accept input, the entry is freed by
setting it to zero, and the queue buffer containing it is freed
if there are no more entries in it.

The operation code is put in the FNP copy of the submailbox,
and the line number of the channel and any additional information
is filled in. If the operation code is "line disconnected",
indicating a hangup condition, certain fields in the TIB are
reinitialized, and any associated echo and lor CCT buffers are
freed. A DCW list is built to write the submailbox to the CS and
to turn on the corresponding TIMW bit; when the CS has processed
the submailbox, it interrupts the FNP on the corresponding level
(as explained above), thus completing the transaction.

INPUT DATA

The transmission of input data is a two-stage operation, and
accordingly is somewhat more complicated. When a sendin op block
is executed, the interpreter calls denq with an accept input
operation code; denq copies the current input chain (pointed to
by t.icp) into the DIA input chain (pointed to by t.dcp); if it
is longer than 10 buffers or more than 600 characters, it is
split up into two or more messages by marking the last buffer of
each "submessage" with a "last" flag and putting an additional
accept input entry in the queue. As a rule, each accept input
entry must correspond to a complete input message ending with a
buffer containing a "last" flag.

When filmbx processes the queue entry containing the accept
input, it calls incnt to count the number of characters in the
input message addressed by t.dcp; this count is placed in the
submailbox. It may be that there is insufficient space in
tty buf for the input message, in which case the accept input has
to be retried later; therefore the entry cannot be removed from
the queue until the input has been accepted. That is why entries
added to a queue behind an accept input entry do not increase the
queue entry count immediately; they must not be processed until
the accept input is removed from the queue. When the accept

13-7 AN85-01

input is copied to the submailbox, the queue is'marked with an
"active" flag so that it will not be picked up for another
submailbox.

If the data message is longer than 100 characters, the
accept input submailbox is sent to the es to tell it how many
characters to accept. If the es has room for the input, it
modifies the submailbox to describe where to put it in the
circular buffer as described in Section 4; the 1/0 command is
changed to RTX to tell dia man that the input should be sent.
The addresses and tallies in-the submailbox are used by indata to
build a DeW list to copy the input to the es. At this pOint the
accept input entry is removed from the request queue, and the
queue entry count is increased by the number of entries (if any)
behind it in that queue, up to and including the next accept
input in the queue of that channel (if there is one).

When the 1/0 to copy the input completes, dtrans frees the
DIA input chain and connects to a DCW list to free the
submailbox, completing the transaction.

If the input message is 100 characters or less, it is copied
directly into the submailbox, and the submailbox is written to
the CS. The transaction control word in this case is not set to
"mailbox written", but rather to "input sent in mailbox". This
indicates to dterm that it is neither to unlock the DIA nor to
schedule dtrans; the es is obligated to respond with an
interrupt to free or update the submailbox. When this interrupt
arrives, dmail ensures that either dtrans is scheduled or the
lock is unlocked.

If the es has room for the input, it sends an interrupt at
the appropriate mailbox-freeing level; dtrans then frees the
input chain, removes the accept input request from the request
queue, and updates the queue entry count as described above.

If the es does not have enough space to accept the input
(whether short or long), instead of an RTX command, it updates
the submailbox with a WeD command and a "reject request"
operation code. When this submailbox is read, the accept input
queue entry is marked with a "rejected" flag, and the retry
routine, dretry, is scheduled to run one second later. When
dretry runs, it finds the rej~cted request in the queue, turns
off the "rejected" and "active" flags, and increments the queue
entry count, thus restarting the transaction.

Quits and hangups overrlae retrying a, rejected request.
This is enforced by the following mechanism: when a quit or
hangup entry is added to a request queue that already contains an

13-8 AN85-01

accept input entry, the accept input entry is marked with a
"quit" flag; if an accept input entry with a "quit" flag is
rejected, it is not retried, but rather it and all subsequent
accept input entries are cleansed from the queue by the cleanq
subroutine. In addition, if a quit or hangup entry is added to a
queue containing an already rejected accept input entry, the
queue is cleansed then and there. In this case, dretry finds
that the request to be retried is gone, and takes no action.

LSLA

The Low Speed Line Adapter (LSLA) is the interface between
the FNP and asynchronous communications channels with speeds of
from 110 to 300 baud. Up to six LSLAs can be configured per FNP.
They are managed by the Isla man module.

Operation of the LSLA

Once it is started by init (see Section 15), the LSLA runs
continuously. It provides one input "frame" every· 100
milliseconds, and expects one outp~t frame every 100
milliseconds. Each such frame consists of 60+1 one-character
"time slots", of which 52 contain data characters received from
or to be sent to the various channels. A 10 character-per-second
(110 baud) channel uses one slot per frame; a 15 cps (133 or
150 baud) channel uses two slots per frame, but the second slot
is unused in every other frame; a 30 cps (300 baud) channel uses
three slots per frame. The slots and channels are bound together
during FNP initialization; the 4SLA table entry for each slot
indicates the channel speed and sequential position of the slot
within the channel, and contains the address of the TIB of that
channel. This table is described in Section 10.

Because of slight variations in terminal speed, output
frames may actually be 61 characters long, and input frames 59.
The first five characters in a frame must be four SYN characters
and an STX; the sixth is an unused T & D slot, and the data slots
are in character positions 7-58. The ICWs used by the LSLA are
set to start a fram~ at the fourth character position (right half
of the second word) in a 32-word buffer, so that the longest
(61-character) fr~mes are right-adjusted in their buffers. The
first word of the buffer is used for control information.

13-9 AN85-01

An odd-parity US character (037) is used as a fill
character; its presence in a slot indicates that no character is
to be sent to, or has been received from, the channel. An
odd-parity ESC character (233) indicates that the next nonfill
character associated with the particular channel (either in the
next slot or the next frame) is a command to the LSLA (in an
output frame) or a status character (in an input frame). Status
and command characters have 8-bit odd parity; data characters
have 8-bit even parity.

Whenever a complete input frame is ready to process, and
whenever a complete output frame has been sent, the LSLA stores
status in the software communications region and interrupts the
FNP.

Interrupt. Processor

The LSLA interrupt processor, lip, is invoked to handle an
LSLA interrupt at the end of a frame. It examines each pending
status word in the software communications region. When it
handles a status, it first checks to make sure that the status
indicates that the LSLA is running normally; if it is not, it
determines the nature of the error, and, if appropriate, queues
an error message to be sent to the CS and/or reconnects to the
LSLA. Some extra tests are made to see if the LSLA has just been
started, since it may take a few frames to begih running
properly.

TRANSMIT STATUS HANDLING

Two static buffers following the software communications
region are used alternately for output frames. The two output
ICWs in the hardware communications region are initialized to
point to these two buffers. When the first one is exhausted, the
LSLA sends an interrupt and starts outputting the second one.
The interrupt processor, meanwhile, refreshes the first ICW,
initializes the first buffer with fill characters, and schedules
the output frame generator, loutpt, to fill in the slots in the
first buffer with appropriate data characters. When the LSLA
finishes outputting the second buffer, it sends an interrupt and
switches back to the first one; lip refreshes the second ICW and
the second buffer as above.

13-10 AN85-01

RECEIVE STATUS HANDLING

Two buffers are initially allocated for input frames; when
the first one is filled, the LSLA stores status, interrupts the
FNP, and starts on the second one. The interrupt processor must
refresh the first ICW and provide a buffer to switch to when the
second one is filled. First it ensures that the LSLA is properly
synchronized by checking that the fifth character in the frame is
really an STX; if it is not, the frame is not processed, and the
same buffer is used for the next input frame. The software
communications region flag sffnsx is turned on to indicate that
the last frame was incorrect; if the STX is missing or misplaced
in two successive frames, the flag sffrsy is set, and the next
time transmit status is processed a "resynchroniie" pew is sent
to the LSLA to get it back in sync.

When receive status is accompanied by a correct input frame,
the input processor checks to see if it consists entirely of fill
characters. If it does, the buffer containing the frame can be
reused, so the most recently exhausted ICW is set to point to it.
If the frame contained characters other than the fill character,
the input frame processor, linput, is scheduled to interpret the
frame; a new buffer is allocated, and the most recently exhausted
receive ICW is set to point to the new buffer so that the LSLA
can start to fill it when the frame currently being received is
complete.

ABNORMAL STATUS HANDLING

If a status other than a normal pretally run out is received,
special action may be necessary. If any of the normal dataset
leads of the LSLA have dropped, the LSLA must be resynchronized,
so sffrsy is turned on. If tally runout status occurs, it
signifies that an ICW did not get refreshed quite fast enough;
lip simply ensures that both applicable ICWs (either send or
receive) are properly filled in and reconnects to the LSLA.
Other unexpected status conditions are reported to the CS via the
error message mechanism, and the LSLA is resynchronized if
necessary.

13-11 AN85-01

Output Frame Generator

The LSLA output frame generator, loutpt, is scheduled to
fill an output frame every 100 milliseconds. (The SYN and STX
characters are assembled into the output frames and do not need
to be refreshed.) For each slot, it checks the LSLA table entry
to see what is going on for the associated channel. If a dcwlst
op block has been executed for the channel since the previous
output frame was processed, ltfdcw is on, and the subroutine
loudcw is called to process the first sub-op in the list. If
this is a command sub-op, it may result in a command sequence
being started; an odd-parity ESC has been placed in the slot, and
ltfesc turned on so that loutpt will put a command character in
the next slot for the same channel. If the sub-op is output, the
outprc subroutine (described in Section 14) is called to set up
the output chain and put the channel in transmit mode. Other
sub-ops are handled by the input frame processor.

If no control sequence is being sent, loutpt must decide
whether to place an output character from the CS or an input
character from the echo buffer in the slot. If the channel is
not in transmit mode, and there is a pending character in the
echo buffer, the echoed character is put in the slot. If the
channel is in transmit mode, the decision as to whether to use an
output character or an echo character depends on the setting of
the TIB flag tfecho, which is used to prevent output and echo
characters from being interspersed. If the flag is on, it
indicates that an echo sequence is going on, and echo characters
have priority; otherwise, output characters have priority and
echoing is not resumed until the output chain is exhausted. If
tfecho is on, but there are no pending echo characters, the flag
is turned off and an output character is sent. If there are no
output or echo characters pending, the slot is left as it is
(containing a fill character).

When an output character is put in a slot, the move
subroutine is called to adjust t.pos to reflect the new column
position of the terminal. The, character is given appropriate
parity for the type of terminal, and copied into the output slot.
If it was the last character in a data buffer, the buffer is
freed and the output chain adjusted accordingly; if the length of
the chain crosses the output threshold for the channel, a request
for more output is queued to be sent to the CS. If the output
chain is now completely exhausted, tfwrit is turned off so that
dia man can know to call iwrite the' next time output for the
channel arrives from the CS~

13-12 AN85-01

Command Sub-ops

A command (cmd) sub-op of a dcwlst op block in the control
tables usually requires the sending of a command sequence to the
LSLA. These sub-ops are handled by the comand subroutine, which
constructs a command character based on the controls specified in
the sub-oPe If one of the controls is a request for status, a
special status request command character must be sent after the
normal command character (if anY)Q Of course, each of these
characters must be preceded by odd-parity ESC characters.

A line break sent to the channel causes the line to drop for
up to 600 milliseconds; accordingly, a command to generate a line
break must be followed by 600 milliseconds worth of fill
characters. The Itfbrk flag is set to indicate to loutpt that a
line break is in progress, and t.bcnt reflects the number of
character times to wait before attempting to send data to the
terminal. Since the first character after a break is sometimes
garbled, the first character sent by loutpt after a line break is
a DEL character.

It should be realized that by the time loutpt runs, the
control tables have reached a wait state; it is possible for an
event occurring between output frames to start the control tables
running again, with the result that a new dcwlst op block is to
be started. On the other hand, once the escape character "has
been sent, the following cGmmand character must be sent in the
next slot for the channel. Accordingly, Itfesc takes priority in
loutpt, followed by ltfdcw, the flag indicating that a new dcwlst
op block has been encountered~

Input Frame Processor

The input frame processor, linput, is scheduled whenever a
complete input frame has been received. Its task is to examine
every data slot in the frame and take appropriate action. Any
slot containing a fill character can be ignored, as can any slot
not corresponding to a configured channel. If the slot contains
an odd-parity ESC character, the LSLA table flag ltfste is set so
that the next slot for the same channel will be treated as a
status character. A status character is converted to an
a~propriate status word recognizable by the control tables, and
the interpreter is called. A line break condition is bounded by
two status characters, one with the »line break» bit on, and one
with this bit off; all intervening slots for the same channel are
ignored.

13-13 AN85-01

If the slot contains a data character, its treatment depends
on whether or not an input or rdtly sub-op is being processed.
For an input sub-op, the character is compared against the
character specified in the sub-op; if they are equal, the sub-op
is satisfied and t.dcwl and t.dcwa are updated accordingly.
Characters appearing during a rdtly sub-op are treated like
ordinary data characters, but the associated tally is decremented
for each character found. Data characters are ignored if the
channel is not in receive mode.

If the slot contains a normal input character, the move
subroutine is called to determine if it is a carriage-movement or
case-shift character, and to adjust t.pos to reflect changes in
the column position of the terminal. If the channel is in
crecho, Ifecho, or tabecho mode, and the character is one of the
relevant characters, appropriate character(s) are added to the
echo buffer. For terminals using case-shift characters,
uppercase characters are marked by turning on the 100(8) bit. In
echoplex mode, all characters are added to the echo buffer.

If an input chain does not already exist for the channel, a
buffer is allocated and its address stored in t.icp. Otherwise
the new character is added to the last buffer in the current
chain, if possible; if this buffer is full, a new one is
allocated. If the allocation results in a chain of maximum
allowable length, exhaust status is sent to the control tables,
which may take whatever action is deemed appropriate (for
example, taking the channel out of receive mode). This mechanism
is intended to prevent ~ny one channel from absorbing an
excessive portion of the available buffer space.

The input character is then looked up in the break list to
see if break character status should be sent to the control
tables. If it is, then tfwrit is turned on so that if the
channel is in echoplex mode and currently receiving output, the
completed input message will be echoed when the current output is
complete, and before any additional output from the CS is sent to
the channel, since dia man will not append the latter to the
current output chain.

If the channel is in blk xfer mode (indicated by the TIB
flag tffrmi) no break characters are recognized while a "frame"
or block of input is in progress, except for the frame-ending
character. The TIB flag tffip indicates whe~her a frame is in
progress. This flag is turned on by the appearance of a
frame-begin character while tffrmi is on, and turned off by the
appearance of a frame-end character.

13-14 AN85-01

Echoing

The puteco subroutine is used to add a character to the echo
buffer for later echoing. The geteco subroutine is called by
loutpt to obtain a character from the echo buffer. The echo
buffer is circular, with an input pointer and an output pointer
maintained by puteco and geteco respectively.

When geteco returns a character, it normally advances the
output pointer. There are two exceptions, however. In tabecho
mode, when geteco finds a tab in the echo buffer it replaces it
with the negative of the number of spaces to echo; successive
calls to geteco result in its returning a space and incrementing
this count, only advancing the output pointer when the count
reaches zero. Similarly, when a carriage-movement character
requiring delays is found, it is returned but replaced in the
echo buffer by 128 plus the number of delays required. Thus when
geteco encounters a character whose 200(8) bit is on, it returns
a NUL and decrements the character value by one; when this
reaches 128, the output pointer is updated.

HSLA

The hsla man module is responsible for operation of the High
Speed Line Adapter (HSLA) and all of the subchannels connected to
it. The module is logically divided in two sections, the call
side and the status processing side.

The HSLA manager uses four data bases to control the
operation of the HSLA: the hardware communications region, used
by the hardware for indirect control words (IeWs), etc.; the HSLA
table, used during initialization to configure the subchannel;
the software communications region, used to keep HSLA-specific
data such as status and leW pointers; and the terminal
information block (TIB), the database of the control tables. The
format of the hardware communications region and HSLA control
words may be found in Section 10 and the Formats PLM,
respectively. The HSLA software communications region contains
the hardware status queue, pointed to by the status leW of the
hardware communications region, and the software status queue,
pointed to by two pointers in the software communications region.
(The format of the software communications region is described in
Section 10.) The hardware status queue is filled by the hardware
via the status leW, and for each status word deposited an HSLA
interrupt occurs. These interrupts are processed by the hintr
routine, which removes status words from the hardware status
queue and places them in the next available spot in the software
status queue. The software communications region also contains
flag bits used to control the HSLA and pointers to the buffers
corresponding to the IeWs in the hardware communications region.

13-15 AN85-01

The TIB contains pointers to the current input and output chains,
the current DCW list from the control tables, if any, and status
and flag bits.

Calls to hsla man

The call side of hsla man contains four entry points: hdcw,
hcfg, hmode, and hgeti.- The hdcw entry is the DCW list
processor, called by the interpreter to process standard DCW
lists found in the control tables. The hcfg entry is the HSLA
configuration change entry, called by the interpreter to process
configuration change sub-ops. The hmode entry is used when the
echoing mode bits are changed to signal the software that a new
character control table (CCT) may be required. The hgeti entry
is used for the replay and polite mode operations, to test for
the presence and make copies of any partial input line.

DCW list processing consists of interpreting each sub-op in
the DCW list. Command sub-ops are processed by the cmdprc
subroutine, and if receive mode is turned on, the bldibf
subroutine is called. This subroutine sets up the input buffers
for the channel; it also checks for a partially filled input
buffer and sets up the ICWs required to complete the input
buffer. This is required if the input is completed in another
buffer. The dia man routine is not able to transfer the data as
a contiguous character stream, as all data must be on a 36-bit
boundary. It should also be noted that hsla man always sets the
tally of input buffers to one 36-bit word less than the maximum
that would fit, to allow for possible in~ut tally runouts.that
may store one character of data beyond the maximum tally
specified.

If the processing of a command sub-op leaves the channel in
transmit mode, the bldobf subroutine is called. This subroutine
calls the outprc utility routine to process an output sub-op, and
then the seticw subroutine, to set up the output ICWs. The
processing of the DCW list is suspended upon encountering an
output sub-op, to allow the data transfer to complete. When it
does, hdcw is called to complete processing of the DeW list.

The processing of each piece of a DeW list is completed when
hdcw issues an HSLA pew to . the channel. This is the mechanism
used by hsla man to indicate changes in modes and dataset leads,
ana ~o signil the software that these changes are complete.
Therefore, in most cases, when hdcw issues the pew, the pew
operation code is a "request receive status", which causes an
interrupt to occur and status to be stored indicating the new
state of the channel.

13-16 AN85-01

HSLA Status

All status is queued by hintr as described above and
processed by the hstprc routine. This routine does some initial
checking on the status and then determines whether the status is
receive or transmit type and processes it accordingly_ Actual
status processing is done by subroutines that correspond to each
important bit in the status and the routines are dispatched by
status bit lookup taDles. These tables list the important status
bits in an order that allows the first routine dispatched to do
all functions related to that status. Thus, only one routine is
normally dispatched for each status word.

Besides dispatching the main status processing routines,
hstprc is responsible for keeping the channel in step with the
software and running properly. The largest part of this job is
making sure that the ICW indicators in the status are in
agreement with the s.oftware ICW indicators for both receive and
transmit ICWs. If the software and hardware appear to be out of
phase with respect to the ICW indicator, the software attempts to
recover the channel and reestablish a consistent channel state.
The hstprc routine also handles echoplex mode by running the
echock subroutine to make sure that any available echo data is
output. If certain conditions are met when hstprc finishes
processing all queued status (e.g., last status was receive
status, there is no active mode, etc.), hstprc calls hdcw to
process any remaining DeWs.

"Example of HSLA Processing

To clarify this discussion, an example of an ASCII line
connected to the HSLA is useful. Assume that the channel is not
dialed up, but that data terminal ready has been presented to the
dataset. The phone rings and answers, presenting clear to send,
carrier detect and dataset ready to the HSLA subchannel. The
subchannel fabricates a status word with the dataset status
change indicator on and the new dataset status. This status is
stored via the status ICW in the hardware communications region,
and an interrupt is generated for this subchannel. The hintr
routine is called ta pick up the status, place it in the software
status queue, and schedule hstprc. The status is processed and
the ipdss subrou~ine sends the new status bits to the control
tables. The CS is informed of the dialup and responds with an
output message. The control tables call hdcw with a DCW list to
send the output. This DCW list consists of three sub-ops: a
command sub-op to set transmit mode, an output sub-op to send the
output, and another command sub-op to reset transmit mode and
send terminate status. The DCW list processor, hdcw, processes
the first two sub-ops, sets up the output ICWs, and issues a PCW
to set transmit mode. This results in a status store of a
receive status word. The status processor records the new state
of the channel, notices that output is still going on and
returns. The greeting message is usually two buffers, so at the

13-17 AN85-01

completion of the first one, an output pretally runout occurs and
status is stored. The hstprc routine calls the opptro subroutine
to free the output buffer and set up the leW for the next buffer.
Since there are only two buffers, no leW is set up. Later
another output pretally runout occurs and hstprc calls opptro
again. Almost immediately an output tally runout occurs,
indicating that all output is complete, and hstprc calls optro,
which notices a remaining DeW list and calls hdcw. The hdcw
routine issues a pew turning off transmit mode; hstprc processes
the status and sends terminate status to the control tables. The
control tables are waiting for this status and proceed to issue a
DeW to set receive mode. This DeW list ~s processed by hdcw,
which sets up the input buffers, sets up the pew to turn on
receive mode and, since this is the first time the channel has
been in receive mode, sets the address of the default character
control table (eeT) in the base address word (BAW) of the
hardware communications region. The eeT is used by the HSLA to
determine what status to store, if any, for each character
received. The pew is then issued and the status is processed to
update the channel state. The device begins to send characters,
which are stored by the HSLA. If the size of the first input
buffer is exceeded, the HSLA generates input pre-tally runout
status, which causes hstprc to call ipptro; the buffer is placed
on the input chain and a new buffer is allocated. When a newline
(or any "break" character) is sent, the HSLA stores terminate
status and switches IeWs. The hstprc routine calls ipterm, which
places the buffer on the input chain, sends status to the control
tables, and allocates a new input buffer. The control tables
send this input to the es and if any output results the cycle is
repeate9; otherwise, the channel remains in receive mode.

eeT Management

The hsla man module is responsible for ensuring that the
base address word (BAW) in the hardware communications region for
each channel points to the correct eeT for that channel. Because
the 6 low-order bits of the eeT address are not stored in the
BAW, every eeT must begin at the 0 mod 64 address.

For a eeT that is coded into a control tables module and
specified in a setcct op block (see Section 12), the eeT address
is simply stored in the BAW and in the software communications
region~ This is the normal method for synchronous channels. In
general, for asynchronous channels, the eeT is constructed
according to certain modes as specified in the TIB flags; to
save space, such eeTs are shared among channels
mode settings.

13-18 AN85-01

To enable the sharing of CCTs, each dynamic CCT is described
by a CCT descriptor; these descriptors ar~ chained together, and
the first one in the chain is pointed to by .crcct in the system
communications region. The format of a CCT descriptor is as
follows:

cct.nx

cct.pr

cct.ad

cct.sz

cct.rc

address of next
CCT descriptor

address of previous
CCT descriptor

address of CCT

size of CCT in words

reference count
(number of channels
using this CCT)

When the state of one of the relevant modes (echoplex,
tabecho, Ifecho, breakall, or blk xfer) changes, the subroutine
makcct is called to construct an appropriate CCT; such a CCT
would generate terminate (break character) status for newline
and ETX characters, plus carriage returns· if in Ifecho mode (or
if in breakall mode, for all characters); marker status for tabs
(if in tabecho mode) or for all characters (if in echoplex mode);
or to switch to a second CGT upon receipt of a frame-begin
character in blk xfer mode. The shrcct subroutine is then called
to examine all currently-allocated dynamic CCTs to see if there
is one that is identical to the newly-constructed one; if so,
the reference count in that GCT's descriptor is incremented by
one, and its address stored in the BAW and the software
communications region. If no matching CCT is found, a new
descriptor is allocated, and a block on a 54-word boundary is
allocated and the new CGT copied into this block. The descriptor
is threaded onto the head of the chain of descriptors. The
reference count in the descriptor of the channel's old GCT (if
any) is decremented by one; if it goes to zero, the GCT and its
descriptor are freed.

Echoing

When marker or terminate status is generated, the scan
subroutine is called to examine the contents of the current input
buffer if any echoing modes (lfecho, crecho, tabecho, or
echoplex) are on. Each character is looked up in the carriage
movement table in the channel's device info table (see
Section 12); if any echoing is required, the appropriate

13-19 AN85-01

characters are placed in the echo buffer. The scan subroutine
also keeps track of the terminal's column position so as to be
able to determine how many delay characters to echo along with a
carriage return or tab, and how many spaces to echo for a tab in
tabecho mode.

The echock subroutine checks to see if the echo buffer
contains any un echoed characters, and, if so, sets up an ICW to
output them and puts the channel in transmit mode. This
subroutine is called by scan or at the completion of status
processing if the channel is not currently in transmit mode; it
is also called when output tally run out status is reported by the
channel. This arrangement ensures that echoing will be performed
as soon as possible without interfering with current output.

CONSOLE

The FNP console, if one is configured, is managed by the
module console man. This module is invoked either from other
modules to print messages, or as a result of operator
intervention. Messages are printed on the console by init if
errors are detected during initialization, and by the fault
handler when the FNP crashes. Operator input is accepted after
the operator presses the "interrupt" button on the console.

The modules that call console man to print messages do so by
calling the wcon subroutine. When this routine is called, it is
assumed that the FNP is not engaged in normal operation, but
rather is either being initialized or is about to crash.
Accordingly, once the connect has been done to print the message,
wcon simply waits for a terminate interrupt; this interrupt is
handled by contip, which returns immediately to the caller.

During normal operation, interrupts are handled by consol,
which schedules either tmcon or spcon, depending on whether a
terminate or a "special" interrupt was received. A special
interrupt is generated when the operator presses the interrupt
button on the console. Two ioutines are used to perform console
1/0 during normal operation: wrcon, which prints a message and
then issues a read to the console, and write, which just prints a
message. Each of these routines is passed the address of a
routine to be scheduled when the 1/0 completes.

13-20 AN85-01

When the operator presses the interrupt button, a special
interrupt occurs and spcon is scheduled. When spcon runs, it
calls wrcon to print the message "???"; when tmcon handles the
terminate interrupt at completion of the write, it transfers back
into wrcon to issue a read. This read terminates when one of the
following happens: a carriage return is typed, a "control-x" is
typed, or a 30-second timer runs out. In the latter two cases,
the write and read are reissued; otherwise the spconb routine is
scheduled to process the input. If the input is a recognized
command, tne appropriate action is taken, after which wrcon is
called again with a message of "MORE?" to allow further commands
to be input. If the input is null (i.e., it consists of just a
carriage return), console man returns to the secondary
dispatcher; no further console 1/0 is done until another special
interrupt occurs. If an unrecognized command is typed, wrcon is
called with the message "WHAT?"

Recognized commands are FEEK, ALTER, and ABORT. The PEEK
command is used to display the contents of FNP memory, and takes
one or two arguments: the first is the starting address to be
displayed, and the second, if present, is the number of words to
display (if the second argument is omitted, one word is
displayed). Eight words are displayed on a line; the write
routine is called for each line until the request has been
satisfied.

The ALTER command is used to modify a word of FNP memory.
It takes two arguments: the first is the address of the word to
be modified, and the second is the value to be put at that
address; after modifying the word, the alter subroutine calls the
peek subroutine to display it.

Arguments to PEEK and ALTER
separated by commas and no spaces.
by the idx subroutine.

are octal numbers, and are
These arguments are processed

The ABORT command crashes the FNP by transferring to conabt,
the entry in the utilities that simulates a fault called "console
abort".

It shourd be noted that the console software prints
uppercase output and expects uppercase input, and that the
cJnsole channel interrupts on receipt of a carriage return, not a
newline.

There is rarely any cccasion to use any of the console
commands; the effects of the PEEK and ALTER commands can be
achieved much more easily and flexibly by means of the debug_fnp
command (described in Appendix B).

13-21 AN85-01

SECTION 14

FNP UTILITY FUNCTIONS

This section describes various utility functions used in the
course of operation of the FNP software. These functions include
buffer space management, TIB address calculation, fault
processing, metering, and output sub-op pr6cessing, all performed
by routines in the utilities module; and the memory tracing
facility, handled by the trace module.

SPACE MANAGEMENT

Buffers are allocated and freed either individually or in
threaded lists. The getbuf, getubf, and frebuf subroutines are
used to allocate and free a single buffer; getlbf and frelbf are
used to allocate and free buffer chains. The getubf subroutine
is used for noncritical buffers, and refuse.s to allocate a buffer
if fewer than 20 32-word blocks are available; getbuf allocates
a buffer whenever sufficient space is available. In addition,
space for control blocks (as distinguished from data buffers) is
allocated and freed by the subroutines getmem and fremem. The
free pool consists of a chain of free blocks: the address of the
first free block is in .crnxa in the system communications
region, and the free blocks are chained together by means of
forward pointers; see the description of a free block in
Section 10. The free blocks are chained together in order by
address; in other words, the forward pointer always points to a
block with a higher address than the current block. When a block
is allocated, getbuf or getmem adjusts the forward pointer in the
immediately preceding free bloCk. When a block is freed, frebuf
or fremem checks to see if the newly-freed block is immediately
preceded and/or followed by a free block; if so, the adjacent
blocks are consolidated into one larger block.

The size of a buffer can be any multiple of 32 words (up to
2S6 words). When a ouffer is allocated, a size code indicating
the correct multiple of 32 words is placed in the high-order
three Oits of the second word (0 = 32 words, 1 = 64, etc.); the
rest of the buffer is set to zero. All buffers are allocated
starting at 0 mod 32 addresses. The size of a control block

14-1 AN85-01

allocated by getmem can be any even number of words and can begin
at any even address.

When getlbf is called to allocate a chain of buffers, it
calls getbuf repeatedly, setting the forward pOinter (in the
first word) of each buffer to the previously-allocated buffer.
When frelbf is called to free a buffer chain, it calls frebuf for
each individual buffer until it has freed one whose forward
pointer is zero.

TIB ADDRESS CALCULATIO~

The gettib subroutine is called by various modules (notably
dia man) to obtain a TIB address given a 10-bit line number.
This is done by first using the high-order portion of the line
number to determine the adapter (HSLA or LSLA) on which the
specified channel is confIgured, and then finding the entry for
that adapter in the 10M table. The gettib routine uses the
knowledge that the HSLAs are on 10M channels 6 through 8 and the
LSLAs are on channels 9 through 14. The 10M table entry points
to the HSLA or LSLA table for the relevant adapter; the low-order
part of the line number is then used to find the correct entry
within the HSLA or LSLA table, which in turn contains the TIB
address. The formats of the various table entries are described
in Section 10.

FAULT PROCESSING

The hardware fault vectors at absolute locations 440 through
447 point to an array of locations in the utilities module,
starting at hfv. When a fault occurs, a tsy to the location
specified by the fault vector is executed; at this location is
another tsy to the fault processor, fp. Tnus fp can determine
the type of fault by seeing where it was called from (wnich
location after hfv), and the location at which the fault occurred
by examining the target of the original tsy.

The contents of tne machine registers and the value of the
instruction counter at the time of the fault are saved in a known
location in the utilities module (wnose address is kept in .crreg
in the system communications region). For almost all faults, the
FNP then crashes in an orderly fashion, as described below.
Certain types of 10M channel fault, "however, can be restarted;
these are discussed later in this section.

When crashing the system, fp first determines the name of
the fault based on the location at which the fault processor was
entered; then it masks all tne HSLAs and LSLAs and sets the
interrupt vectors for all devices except the console to point to
an "ignore" subroutine that simply restarts the interrupt. The

14-2 AN85-01

console terminate interrupt vector is set to point to contip (see
the discussion of the FNP console in Section 13). A subroutine
is then called to print a message on the console describing the
fault. This message includes the name of the fault and the
instruction counter; if the fault is an illegal opcode, the
contents of the faulting instruction are printed as well. for an
10M channel fault, the channel number and the fault status are
printed instead of the instruction counter. This subroutine also
puts the necessary information in the location from which it is
later sent to the CS.

A partially preset DIA DCW list is now completed in order to
write the crash information into words 6 and 7 of the CS mailbox
header; after allowing time for the I/O to complete, another DCW
list is sent to the DIA to interrupt the CS at the "emergency
interrupt" level. This interrupt is interpreted by the CS as
described in Section 8.

Finally, mask pews are sent to
interrupts are disaoled, and a dis
effectively stopping the FNP.

10M Channel Faults

all FNP I/O cnannels, all
instruction is execu~ed,

Two cases of 10M channel- faul t are considered nonfatal. One
of these is a fault status of 14 (octal) on channel 0, which used
to occur as a result of some hardware problems in the clock on
the DATANET 355 (it might still occur at a site with an old 355
in which the relevant field change has never been made). The
other case is a parity error on an HSLA channel. The fault
processor checks for these two cases by examining the 10M fault
status words starting at location 420. If the appropriate status
is found, an error message is queued for dia man to handle as
described in Section 13; then the registers are restored and a
tr~nsfer is made to the value of the instruction counter at the
time of the fault. Note that the vector for 10M channel faults
is set to return while the fault processor is running, so that
further 10M channel faults cannot interfere with its attempts to
recognize a nonfatal 10M channel fault.

METERING

Two metering entry pOints are provided in the utilities
il10dule: lneterc, which updates "counting" meters, and metert,
whict"l updates "timing" meters. A call to meterc results in
aading 1 to the specified countin~ meter; a call to illetert adds a
spec i fied amoun t. 0 f time to a spec i fied timin~ meter. Spac e is
reserved for 50 meters of each type. At present, no timing
meters have Deen defined, and counting meters are only used to
Keep track of certain abnormal conditions. The following
counting meters have Deen defined:

14-3 AN85-01

LSLA output tally runout

2 LSLA input tally runout

3 abnormal LSLA status

4 quit signalled as a result of loss of carrier

5 no CCT available corresponding to a requested wode
change

b abnormal printer status

These meters are stored in a static area in the utilities module
and can oe inspected by using the display request to the
debug_fnp command (see Appendix B).

In addition, some meters referring to faulty LSLA input
frames are kept in the hardware communications region for each
LSLA; see the description of the hardware communications region
in Section 10. Idle time metering and instruction counter
sampling are implemented as described in Section 11.

OUTPUT SUB-OPS .

The outprc subroutine is called by both hsla man and
Isla man to process an output sub-op of a dcwlst op block. The
format and purpose of the output sub-op are described in
Section 12. The function of the outprc subroutine is to put the
data specified in the output sub-op into the buffer chain whose
origin is in t.ocur. If no such chain eXists, outprc must start
one.

For any output control other than outmsg, the subroutine
insert is called to add the specified characters to the output
chain. If insert has to allocate a new buffer, it turns on the
bffctl flag in that buffer; such a buffer is not included in
t.ocnt.

The outmsg control causes the buffer chain whose head is
pointed to by t.ocp to be appended to the chain at t.ocur. At
this time tfwrit is turned on so that dia man can tell that
output is in progress, and t.ocnt is incremented according to the
length of the ne~ chain; if t.ocnt is not now over the buffer
threshold, a request to the CS for more output is queued.

For most synchronous line types it
complete messages to the channel, and to

14-4

is necessary to send
hold on to them until

AN85-01

they have been acknowledged; therefore the t.ocur cnain, if
present, should never contain more or less than one complete
messa~e. This is enforced by use of the bffhld buffer flag,
which is set oy a holdot op block. when outprc sees bffhld on in
the first Duffer in the t.ocp chain, it copies t.ocp to t.ocur
rather than threading into an existing chain. (It is an error if
t.ocur is nonzero; this is why an outmsg control for a "held"
buffer chain cannot be combined with any other output control, as
explained in Section 12.) In this case, t.olst is set to point
not necessarily to the last buffer in the t.ocp chain but to the
first buffer in that chain whose bfflst ("last buffer") flag is
on; t.ocnt is not incremented, no "send output" request is
queued, and tfwrit is not changed. This ~revents dia man from
appending further output to the t.ocur chain; it- is the
responsibility of the control tables to issue send output
requests for complete messages as necessary. -

TRACING

At various places in the FNP software, trace macros have
been inserted to generate calls to the trace module. These calls
result in entries being added to the memory trace buffer.

The memory trace buffer is a circular buffer allocated at
the end 0 f t h.e t r ace mod u Ie; its size is de t e r [a in ed by the 11 s i z eli
statement associated with a "type: trace" statement in the FNP
bindfile. (See the description of bind fnp in Section 17.) The
lowest address in the trace buffer i~ 'kept in .crtrb in the
system com~unications region; .crtrc points to the oldest entry
in the buffer, and is initialized to be equal to .crtrb.- Once
the trace buffer has been filled once, new entries overwrite the
oldest ones, and .crtrc is advanced when such overwriting occurs.
The entry at the highest address is followed by a word containing
the "physical end" pattern, which is 525250 (octal); the entry
most recently added to the buffer is followed by a word
containing the "logical end" pattern, 525252. Thus, any program
that interprets the trace buffer (as described in Section 16)
starts at the address contained in .crtrc and processes entries
until the physical end pattern is found; it then starts over at
.crtrb and continues processing entries until it encounters the
logical end pattern.

14-5 AN85-01

An entry in the trace buffer has the following format:

o 5 6 11 12 17
I module: type count

where:

module

type

count

time

time

data words

is the number of the module that made the trace call;

is a number identifying the trace type within the
module;

is the number of data words associated with the entry
(which may be zero);

is the low-order 18 bits of the FNP clock at the time
of the trace call;

data words
are a variable number of words of optional associated
data.

The module and type numbers are used in conjunction to determine
the ffiessa~e to use when printing the trace buffer from a dump
(see Section 16). In addition, trace checks the module number
against the trace enable mask, wnich is specified in the bindfile
and Kept in .crtra in the system cOlnmunications region; if the
bit in .crtra that corresponds to tne specified module number is
not on, no entry is added to the trace buffer. The norlnal
set tin g 0 f t r1 e t rae e en a () 1 e iii ask i ~ e i t r1 e r 3 j r(7 7 7, w r-l i c h a 11 0 W S

tracing of every module except the scheduler and Isla man, or
3177'17 which excepts the utilities module as well. The most
comul0n and useful method of exafl1inin~ the trace buffer is by
means of the print trace request to the debug_fnp command (see
Appendix B). -

14-6 AN85-01

SECTION 15

LOADING AND INITIALIZATION

The loading and initialization of the FNP software is
accomplished in four separate phases. First, the bind fnp
cOlfiuland combines the individual object loodules and produces a
simple core image of the FNP. The load fnp subroutine, called
by the answering service, patches -the- core image with
configuration data obtained from the channel definition table
(COT) and starts the bootload of the FNP. The first pro~ram run
by the FNP in response to the bootload interrupt is giCb, the
intercomputer bootload module. This routine checks the DIA
status and configuration and completes the loading of the FNP
software if the configuration is correct. When the FNP software
has been loaded gicb transfers control to init, the FNP software
initialization routine. The init routine checks the
configuration of the communications adapters, and prepares data
bases for their use.

bind_fnp COMMAND

The bind fnp command is similar to the Multics binder; it
takes object modules and a bindfile and produces a bound segment.
Tne object modules are produced by the FNP assembler, invoked by
the map355 command. The bindfile consists of statements
describing the maximum configuration of the FNP to be loaded, the
Hlodules to be included in this core image, and the size of
certain tables. The output of bind fnp is a segment containing
an FNP core image. This core image-has space allocated for the
interrupt vectors, fault vectors, LSLA and HSLA hardware
communications regions, 10M table and LSLA and HSLA tables. All
of these tables are uninitialized with the exception of the 10M
table whiCh indicates the illaximum configuration this core image
can support. Tne Dind fnp command is designed to allow tailoring
of the final core image to support the exact number and type of
cnannels configured on the destination FNP. A command
description of bind fnp appears in the MAM Communications,
Order No. CC75. -

15-1 AN85-01

load_fnp_ SUBROUTINE

The load fnp subroutine prepares the core image for
bootload into -the-FNP. A segment is created in the process
directory to contain the bootload program, gicb, and the core
image. This segment is laid out as follows:

o

1

o mod 64

T

T
1

boot dcw

gicb

padding to next
multiple of 64

core image
T
1
I

----------------------1
the copy of giCb from the system tape in >system_library_l is
copied into the boot segment in the process directory. The core
ima~e specified ih the cor is also copied into the boot segment.

The gicb routine contains a bootload communications area in
its last 32 words which must be filled in before the FNP is
bootloaded. This cOffiffiunications area contains the DlA list lCW
and DC~ list to be used to read in the core image, the mailbox
address and terminate and emergency interrupt cell values which
are checked against the configuration switches on the DlA, the
load limits (high and low) for the core image, and checksums for
gicb and the core image.

The load fnp subroutine calls ring 0 to get the mailbox
address and interrupt cell values and puts ~nem in the bQotload
communications area. The core image load limits are copied out
of the core image segment where the bind_fnp command left them,
and stored in the bootload communications region.

15-2 ANS5-01

Next, the CDT is scanned for each channel on the FNP being
loaded, and information about the configuration of the channel is
saved in an array. Also, the number of LSLAs and HSLAs required
to support these channels is computed. Then load fnp searches
the 10M table in the core image and determines if rhe ~ore image
can support the required number of LSLAs and HSLAs. If not, the
load attempt is aborted. If this test succeeds, the LSLA table
is filled in by time slot with the desired configuration of the
LSLA. When the FNP initialization routine runs, it will compare
the actual configuration to the desired configuration and report
any errors.

The information for HSLAs is processed in a similar fashion,
with configuration information patched into the HSLA table.
Also, for HSLAs a configuration PCW is set up for each channel
based on the channel configuration. This PCw is stored in the
HSLA hardware communications region for the channel where the FNP
initialization routine will use it to configure the subchannel.
For asynchronous channels, a basic PCW model is assigned wnich
specifies two send ICWs, CCT enaole, transmit even parity, and no
receive parity check. This PCW is modified based on subchannel
configuration and baud rate. If it is an EBCDIC code channel the
character length is set to 7 bits (6 data plus 1 parity) and the
parity generate and check is turned off. For non-EBCDIC channels
the character length is set to 8 bits ('7 data plus 1 parity).
Finally, the baud rate of the channel is set in the PCW from the
configuration information. For synchronous channels, the HSLA
table is filled in as above, with information extracted from the
CDT. The HSLA PCW is .. created by the internal procedure
process line type. This procedure dispatches on the line type of
the cha~nel Io set up configuration pews.

The communications region in the core image is modified to
indicate the actual number of LSLAs and HSLAs, the date and time
of bootloading, and the setting of the console enabled switch
(from the check switch argument to load fnp). Then the checksum
of the core lmage is computed and- saved in the bootload
communications region of gicb. The segment is wired to get
absolute addresses and the DIA list lew and Dews are filled in.
The FNP addresses in the DeWs are assembled into gicb and need
not be modified. The disconnect DCW is filled in and parity is
computed on all Dews in the list. The list leW tally is set to
the number of Dews in the list. The checksum of gicb is computed
and stored in the last word of the bootload communications area
and the bootload is started by a call to hphcs $load fnp. This
routine must fill in the bootload pew in the mailbox and issue a
connect to the DIA. At Chis point, load fnp is done; it saves a
pointer to the boot segment so that it ~ay ~e deleted later, and
returns.

15-3 AN850-01

gicb ROUTINE

The connect to the Dootload pew causes the DIA to read the
gicb routine into the FNP under control of the boot lew, which is
the first word of the boot segment. The DIA then loads a DIA
list leW from the first location loaded by the bootload ICW
(location zero) and proceeds as if a connect had been received
from the FNP. The DeW list pointed to by this list leW contains
one DCW, a disconnect DCw. Tnis disconnect causes a DIA status
store and terminate interrupt. The terminate interrupt causes a
tsy indirect through the interrupt vector at location 102(cl),
which has been loaded with the address of the entry into the
bootload prograll1. The FNP has now been started and gicb is
running.

Tne gicb routine is entered at location 1000(8), where it
tests the DIA status for errors and computes a checksum on the
unmodified parts of itself, after correcting certain
modifications. This checksum should be equal to the one computed
by load fnp and stored in the bootload communications area. The
bootload communications area is then moved into the program from
the end to its final location. Next, gicb reads the DIA
configuration and compares it against the configuration supplied
in the bootload communications area. If they disagree, the
boatload is terminated. If the configuration is good and the DIA
is properly set up, gicb connects to the DIA DCW list to read in
the core image, starting at location 1000(8), and waits fo~ the
terminate interrupt. When it occurs, DIA status is checked and
the checksum of the core image is computed and checked. If these
are good, a small move routine is moved to the end of the core
image (just following the program limits area) as follows:

gicb

I I

...L ...L

T T
I !

I
I

I I

...L ...L
core image .. ,

low limit hi~h limit
low limit high limit
count entrypoint

move routine

15-4 AN85-01

Then gicb transfers to the move routine, which moves the core
image to the location specified by the prot?;ram limits area,
clears the rest of memory and transfers to the entry point in the
core image. This entry point is specified in the bind fnp
bindfile and is normally in the module init. -

init MODULE

The init module is responsible for TIB and software
communications region allocation for all configured channels,
initialization of the HSLAs, initialization and startup of the
LSLAs, and initialization of the DIA. It uses the 10M table to
determine which 10M channels are supported by the core image
being run, and the HSLA and LSLA tables as modified by load fnp
to determine how each communications channel is to be config~red:
During its operation, any errors encountered are reported on the
FNP console if one is configured, and if the core image can
support it (as determined by the value of .crcon in the system
communications region).

First, the buffer pool is initialized to start at the end of
init. Tne interrupt vectors are saved so that init can handle
interrupts itself from the devices it is initializing without
oringing the scheduler mechanism to bear, and a test is made on
each 10M channel to see if the corresponding device is present.
An "initialize" pe~ is sent to each HSLA so that I/O can be done
later on each subchannel. Then init cycles through the 10M table
so that it can do further initialization for those devices that
require it: the DIA, the LSLAs and the HSLAs.

DIA Initialization

The DIA initialization subroutine stores the address of the
DIA "t'erminate" jump table in the interrupt vector save area, and
the addresses of the 16 "special" interrupt jump tables located
in dia man in the interrupt vectors that are used for interrupts
from the es. (See Section 13 for details.) It then reads the
DIA configuration switches, placing in a predetermined location
in dia man the address in es memory of the FNP mailbox area and
the interrupt levels on which the es expects to receive FNP
interrupts. Once it has done this, it sets up a DIA Dew list to
send status to the CS informing it that init has been entered;
the CS can then unwire the segment from which the core imat?;e was
bootloaded (see above) immediately, rather than waiting until FNP
initialization is complete.

15-5 AN85-01

HSLA Initialization

The HSLA initialization routine is called once for each HSLA
specified in the 10M table. For each possible sub channel on the
HSLA, it picks up the configuration pew stored in the
corresponding hardware communications region by load fnp; if
this is zero, the subchannel is not configured.- If the
subchannel is to be configured, the address of the corresponding
Jump table in hsla man is stored in the interrupt vector for that
subchannel; an "unmask" pew is sent to the subchannel, followed
by the confi~uration pew mentioned above. Then init sends a
"request configuration status" pew and waits 10 milliseconds for
the status to be stored; this status is checked to see if it
corresponds to the specified configuration. If it does, a
software communications re~ion and TIB for the sUbchannel are
allocated and initialized (the initialization of a TIB is
discussed later in this section). The modem type and flags
specified in the HSLA table entry are used to deterilline if any
flags have to be set in the TIB and/or the software
communications region, and the line type, if specified, is stored
in the TIB, overriding the default based on the baud rate· (see
"TIB Initialization" discussion below).

If a subchannel is not supposed to be configured (a zero
configuration pew has been supplied), the exhaust bit is set in
the status leW in the hardware communications region. If the
configuration status obtained above does not reflect the intended
configuration, or no configuration status was stored, a message
is printed (if possible) on the FNP console, and a pew is sent to
mask the subchannel.

LSLA Initialization

The LSLA initialization routine is called once for each LSLA
I specified in the 10M table. It first sets the number of time
slots associated with tne LSLA according to the speed specified
for the LSLA in the 10M table (normally 4HOO bits per second,
although 2400 is theoretically possible). It then ensures that
the LSLA is running properly by putting it in receive mode and
checking to see that incoming input frames begin with STX
characters; the distance between successive STX characters is
used to determine if the LSLA is running at the specified speed.
A series of output frames is sent with a special configuration
request sequence in the first (1 & D) time slot; this results in
an input frame being stored that describes the confi~uration of
each time slot. (See Section 13 for an explanation of the
relationship between time slots and communications channels.)
The baud rate of each channel is determined by observing how many
slots in succession ·contain the same configuration information.
(The low-order bit of the slot alternates between on and off from
one channel to the next, so if two adjacent slots are equal they
must belong to the same channel.) The configuration inf6rmation
in each slot is compared with the information placed in the LSLA

15-6 AN85-01

table by load fnp; if they disagree, FNP initialization is
aborted, unless the disagreement results from the complete
absence of a channel either from the LSLA table (and hence the
CDT) or from the configuration frame. A TIB is allocated and
initialized for every channel thus validated.

Initial input frame buffers are allocated, and the ICWs in
the hardware communications region are initialized to point to
them. The initial input frame generally contains two SYN
characters instead of the usual four; the initialization of the
primary receive ICw reflects this. The tally for future input
frames is taken from sf.ity in the software communications
region, which is set to the normal frame length.

Send ICWs in the hardware communications region are set to
point to the output buffers that are assembled into Isla man
following the software co!nmunications region. The address of-the
jump table for this LSLA is stored in the appropriate terminate
interrupt vector; those fields in the software communications
region that are not preset at assembly time are initialized. The
starting address of the LSLA table is stored in the software
communications region, and the output frame buffers are
initialized with the LSLA "fill" characters.

TIB Initialization

When a TIB is allocated for an HSLA or LSLA channel, certain
fields are filled in. The default line type of the channel is
determined by searching the device table in the control tables
module (see Section 12) for the specified baud rate. The address
of the first op block in the control tables to be executed is
stored in t.cur, and certain flags are set according to the
information in the device table entry for the line type of the
channel. The address of the newly-allocated TIB is added to the
end of the TIB table at the beginning of init.

Completion of Initialization

Once the initialization of all 1/0 channels is complete,
init reports successful initialization to the CS (see below,
"Status Reporting"). All of the init module from the end of the
TIB table on is "freed" so as to be available for use as buffer
space later. The interpreter is called at the "test-staten entry
to start off the control tables for each configured channel.
Each configured LSLA is put into send and receive modes. The
interrupt vectors for the interval and elapsed timers are set up,
interrupts are enabled, and init exits by transferring to the
master dispatcher, which will wait until an interrupt arrives
(see Section 11).

15-7 AN85-01

Status Reporting

During FNP initialization, status is reported to the CS over
the DIA by storing a 36-bit status in word 6 of the mailbox
header in CS memory and sending an interrupt to the CS. This
status has the following format:

bit

o

1-2

3-5

6-8

9-17

18-35

meaning

on if valid FNP bootload status

not used

major status

not used

minor status (when error reported by init)

10M channel (when error reported by init)

The major status has one of the following values:

o initialization completed successfully

checksum error in core image

2 I/O error reading core image

3 error reported by gicb

4 error reported by in it

5 init entered (wired segment can be released)

If the major status is 4, the minor status is used to find a more
detailed error message in dn355 messages, and the 10M channel
indicates which channel on the FNP-IOM was being initialized when
the error was detected.

15-8 AN85-01

SECTION 16

FNP CRASH ANALYSIS

HOW THE FNP CRASHES

The FNP ceases operation as a result of most faults, as
described in Section 14. Some of these faults are
hardware-induced, such as memory parity, 10M channel faults,
illegal interrupts, etc.; others are more likely to be caused by
faulty software. The most frequent cause of FNP crashes is an
inconsistent or unacceptable condition detected by the Muitics
Communication System software, which then deliberately executes
an illegal operation code contained in a specially coded word.
This word, generated by a "die" macro, contains a number
identifying the module containing it and a code identifying the
particular condition detected. The fault code, the FNP
instruction counter, and the faulting instruction itself are all
stored in words 6 and 7 of the mailbox header in CS memory, and
an "emergency" interrupt is sent over the DIA. The information
in the mailbox header is used by dn355 to write a message on the
syserr console describing the crash; dn355 also sends a wakeup to
the process that bootloaded the FNP (generally the initializer)
to inform it of the crash.

DUMPING THE FNP

fdump_fnp_

When the initializer is told that the FNP has crashed, it
calls fdump fnp in order to dump the contents of FNP memory into
CS memory. -Such a dump can also be initiated manually be means
of the operator command fdump fnp.' In either case, fdump fnp
creates a segment in >dumps wIth an entryname derived from the
FNP tag and the date and time of the crash; it then calls
hphcs $fdump fnp (a gate entry leading to fnp util$fdump) to do
the actual dumping. This ring 0 procedure uses-fnp_dump_seg as a
buffer for the contents of the dump.

16-1 AN85-01

Dumping the FNP is one of the two cases in which 1/0 over
the DIA is initiated by the es (the other one is bootloading the
FNP). The es address provided in the DIA pew points to a control
word containing the FNP address and tally to be used to dump data
into es memory immediately following the control word. Since
this control word is the third word of fnp dump seg, FNP memory
is read in pieces of 1021 words; after each interrupt from the
DIA, a 1021-word piece of data is copied into the segment created
by fdump_fnp_, until all of FNP memory has been read.

FD355 and DMP355

If Multics crashes and it is desirable to examine the
contents of FNP memory, a dump can be taken by means of either of
the BOS commands FD355 or DMP355. FD355 creates a dump (in the
dump partition) that is later copied into)dumps with a name
derived from the current ERF (error report form) number like that
of an FDUMP, but with a final component of "355". DMP355 dumps
the contents of the FNP directly to a printer. See the System
Dump Analysis PLM, Order No. AN53, for more information.

Obtaining A Printed Dump

An FNP dump in)dumps can be converted to a form suitable
for printing by use of either the online dump fnp command or the
online dump 355 command. By specifying- "fiTe" for the -dim
control argument and a pathname for the -device control argument,
the user produces a formatted copy of the dump that can then be
dprinted. The online dump 355 command can only be used to format
dumps created by FD3~5 (see above); online dump fnp may be used
to format dumps produced by either of the methods described
above, but if it is used on a dump created by FD355, the
-pathname control argument is necessary to specify the name of
the dump. See the descriptions of the two commands in
Appendix B.

In general, a printed dump is not needed; the debug fnp
command (described in Appendix B) can be used to analyze the Qump
online. A printed dump might be useful if the person analyzing
the dump is unable to log in to the site at which the dump was
taken, or if it seems necessary to scan the contents of FNP
memory because it has been completely or largely overwritten.

INTERPRETING AN FNP DUMP

The interpretation of an FNP dump is normally carried out by
means of the debug fnp command. The paragraphs below describe
the format of a printed dump in case that is all the analyzer of
the dump has available. References are nonetheless included to
the debug fnp requests that may be used to obtain the information
described:-

16-2 AN85-01

Format of the Dump

The header of a printed FNP dump identifies the segment
containing the dump and the FNP that was dumped; this is followed
by the date and time that the core image was created by bind fnp
and the date and time that the FNP was last bootloaded. If the
FNP crashed as a result of a "die" macro (as described above),
the "crash reason" derived from the contents of the "die" word is
printed. Then comes a line identifying tne fault that
precipitated the crash ("illegal opcode" in the case of a
software-induced crash) followed by the contents of all the
machine registers at the time of the fault.

The next item is the module chain, a list gIvIng the
starting address of each FNP module identified by its "short"
name (see Section 9 for a discussion of module names). This is
followed by the "trace table," containing messages describing all
the events appearing in the circular trace buffer, oldest first
(see the description of the memory tracing mechanism in
Section 14).

The remainder of the dump
FNP memory, eight 18-bit words
following:

presents the entire contents of
per line. Each line contains the

• absolute address of the first word on the line (in
octal)

• the name of the module containing the line (this field
is blank for low memory before the start of the first
module)

• relative address within the module (in o~tal)

• the octal contents of the eight words starting at the
specified address

• the ASCII representation
(characters that cannot be
blanks)

of the same eight words
represented are replaced by

Duplicate lines are not printed; a star (*) following the
absolute address indicates that duplicate lines immediately
preceding the current line have been omitted. Appendix D
contains a detailed description of the layout of FNP memory.

16-3 AN85-01

Crash Reason

The "crash reason" message, identical to the message printed
on the syserr console when the FNP crashes, indicates what
condition the FNP software detected. It is printed in response
to the why request to debug fnp. If it is any of the messages
listed below, an FNP hardware-problem is indicated:

dia man: unrecoverable liD error

dia man: more then 5 consecutive liD errors

dia man: 3 consecutive mailbox checksum errors

hsla man: receive transfer timing error

hsla man: xmit transfer timing error

Isla man: send transfer timing error

Isla man: more than 10 successive re-sync attempts

Other messages, indicating software errors, are apt to be
self-explanatory, but a few require some clarification.

A message saying "buffer allocation failed" generally
indicates that some channel or set of channels has gone out of
control allocating buffers, and the mechanisms intended to
prevent this have failed. The crash in this case _almost always
occurs in Isla man (if any LSLAs are configured), since an LSLA
input buffer must be allocated every 100 milliseconds for each
LSLA, as described in Section 13; it does not necessarily
indicate a failure of the LSLA software. It may be, in fact,
that an attempt is being made to run more channels than a single
FNP can handle, particularly if a large number of HSLA channels
are configured; HSLA channels are particularly expensive in terms
of buffer space.

Crash messages from the interpreter indicate probable errors
in a control tables module, particularly if installation-supplied
or installation-modified control tables are being used. It may
be helpful in such cases to note that index register 2 usually
contains the address of the current op block when the interpreter
is running, and that index register 1 contains the current TIB
address. The interpreter message "type not of form 777xxx"
indicates an attempt to execute an op block that is not really an
op block; in particular, if index register 2 contains 776(8), an
attempt was made to transfer into a control tables module not
included in the core image. The last few entries in the trace
table (see below) are likely to be useful in determining how this
happened.

16-4 AN85-01

Various error messages produced by the utilities module
indicate ~rrors detected by the buffer-freeing routine. In some
of these cases it is useful to check the free space chain
starting at ~crnxa, described in Section 14. Most often,
however, it is more interesting to find out what routine called
frebuf, and what it was trying to free; see "Tracing Subroutine
Calls," below, for details. Note that if the error message is
"tried to free bUller Wl~n address < .crbuf", the offending
address is in index register 3.

Fault Identification

If the fault name that appears in the dump is "illegal
opcode," "overflow," "store fault," or "divide check," a probable
software problem is indicated. If an illegal opcode was
generated by a "die" macro, a crash reason message also appears,
as described above. In all other cases of software failure, it
is probably necessary to go through the instruction counter and
find out what was being executed at the time of the fault. .

If the crash was caused by an operator typing "ABORT" on the
FNP console (see Section 13), the fault identification line in
the dump simply says "abort." If the fault is anything other
than those mentioned so far, a hardware problem is indicated.

If the FNP did not crash,· but was dumped either by an
operator fdump fnp command or by the FD355 command after a
Multics crash, Ihe fault identification is "none."

Machine Registers

The line after the fault identification gives the octal
contents of the machine registers at the time of the fault, in
the following order:

instruction counter

indicator register

A register

Q register

index register 1

16-5 AN85-01

index register 2

index register 3

interrupt enable register

elapsed timer register

These values are saved in an array of locations in the utilities
module by the fault-handling software, as described in
Section 14; accordingly, if there was no fault (fault indicator
is "none"), they appear in the dump as all zero. They are
printed in response to the regs request to debug_fnp.

Some common uses of index registers are described here,
since they may be useful in pinpointing problems. When any work
that is specific to a channel is being done, the address of that
channel's TIB is virtually always in index register 1. Index
register 2 is generally used by the interpreter to point to the
current op block; hsla man normally keeps the address of the
software communications region in index register 2. The address
of a buffer or buffer chain being allocated or freed is passed to
the buffer freeing routine or returned by the buffer allocation
routine in index register 3.

Trace Table

The trace table reports the contents of the memory trace
buffer at the time of the fault, and thus describes the events
immediately preceding the crash. The types of events normally
appearing in the trace include: all DIA transactions; interrupts
from, and status reported by, all active HSLA subchannels; and
all calls to the interpreter and the op blocks executed as a
result of such calls. If the failure seems to be in connection
with a particular channel, it is often useful to examine only
those trace entries that reflect events related to that channel,
thus effectively obtaining a history of the channel for up to
several seconds before the crash. Allor part of the trace table
can be printed by means of the print_trace request to debug_fnp.

Tracing Subroutine Calls

Having determined by means of the instruction counter what
subroutine the FNP was executing in at the time of the fault, it
is sometimes useful to find out how it got there. In most cases,
the first word of the currently executing subroutine (whose
address can be found with the help of program listings) contains
the absolute address of the location to which the subroutine was
expected to return. Once this location is found in the dump, the
module name and relative address can be used to determine what
routine made the call; if necessary, the first word of this

16-6 AN85-01

routine can be examined to find out where it was called from,
etc. This can be done automatically using the call trace request
to debug_fnp.

Other Useful Information

See Section 10 for a description of various FNP data bases,
Appendix B for a description of the debug fnp command, and
Appendix D for a description of the layout of rNP memory.

16-7 AN85-01

SECTION 17

FNP-RELATED COMMANDS

This section describes the operations of various Multics
commands that deal with FNP core images and dumps. The usage of
all these commands is described in Appendix B, except for map355,
which is described in the MAM Communications, Order No. CC75.
The commands described in this section are divided into two
groups: those that are used in core image preparation, and those
that are used in analyzing FNP dumps.

CORE IMAGE PREPARATION

The commands described here are map355, which is used to
invoke the 355MAP assembler., and coreload, which tranforms a
single FNP object segment into an FNP core image. An additional
command, bind fnp, binds a collection of FNP object segments into
a core image;-its operation is described in Section 15.

map355

The map355 command prepares a GCOS job deck for processing
by the GCOS environment simulator, which it then invokes by
calling the gcos command. The job deck is created in a segment
in the process directory with an entryname of NAME.jobdk , where
NAME is the name of the module to be assembled, truncated to 11
characters (if it is longer) to allow for additional suffixes.
For more information on GCOS job decks, see the Multics GCOS
Environment Simulator manual, Order No. AN05.

The GeOS simulator~ when invoked by map355, runs the 355MAP
assembler, using a source segment with the entryname NAME.map355,
where NAME is the name of the module (not truncated), and
produces an object segment having the form of a GCOS binary card
deck. Such a deck can be read by the GCOS utility gcos gsr read
and interpreted by commands such as bind fnp and coreload.- This
segment is created in the working directory with an entryname of
NAME.objdk. In addition, a GCOS listing file (in BCD) is
produced in either the working directory or the process
directory, depending on whether or not the -gcos_list control

17-1 AN85-01

argument is specified; its entryname is NAME.glist in the working
directory or NAME.glist in the process directory. In either
case, map355 converts this file to an ASCII listing file by
calling gcos sysprint. The result of the conversion is placed in
the working directory with an entryname of NAME. list if the -list
control argument is specified; otherwise it is placed in the
process directory with the entryname NAME.list_.

After converting the listing file, map355 searches it for a
line of the form:

there were N warning flags in the above assembly

where N is either the word "no" or the number of errors detected
by the 355MAP assembler. This line is printed on the user's
terminal. If any errors were detected, map355 searches the file
for lines containing warning flags (identified by a letter in the
first column) and prints each such line found on the terminal.
Finally, it deletes all tempor~ry files created in the process
directory by either map355 or the GCOS simulator and two
temporary files created by the simulator in . the working
directory.

coreload

The core load command uses an object deck' produced by the
map355 command and produces a segment suitable for loading into
and ex~cution by an FNP. The input object deck has an entryname
of NAME.objdk, and the output core image segment has an entryname
of NAME. NAME.objdk must be an absolute object deck, i.e., it
must contain no relocatable text. This can be ensured by the
presence of an abs pseudo-operation in the source segment
(NAME.map355).

The coreload command reads the object deck one card image at
a time by calling gcos gsr read. Each card is identified as
either an absolute text card-or an end-of-deck card. (Any other
type of card is reported as an error.) Each text card contains
one or more blocks of text, where each block is preceded by a
header containing the starting address of the block and the
number of 18-bit words of text in the block. The header
information is used to copy the text from the card image to the
corresponding address in the output segment, and to find the next
block on the card, if any.

When either an end-of-deck card is encountered or the input
segment is exhausted, coreload calculates the number of 36-bit
words in the core image by taking half of the last 18-bit address
containing text; this count is stored in the first 36-bit word of
the output segment, and is used to set the bit count of the
segment.

17-2 AN85-01

DUMP ANALYSIS

The online dump fnp and online dump 355 commands are used to
produce an ASCII representation of an FNP dump that was generated
as described in Section 16. Both commands call online 355 dump
to process the dump; the difference between them- is- that
online dump fnp can process dumps created by the fdump fnp
initializer- command with names of the form fnp.TAG.DATE.TIME,
whereas online dump 355, which is an entry in the online dump
command, only recognIzes dumps generated by the BOS command FD355
with names of the form DATE.TIME.N.ERFNO.355. The output of
online 355 dump is written to a stream using iOs; the
attachment-of toe stream is determined according to the =dim and
-device arguments specified in the command line. Output is
usually directed through the file DIM to a file that can then be
printed or examined online using an editor. For more information
on interpreting the dump, see Section 16.

The debug fnp command is used for online FNP dump analysis,
as well as for-displaying and interpreting the contents of either
the memory of a running FNP or a core image in the Multics
virtual memory. It can be used on dumps created by either
fdump fnp or FD355. It uses a database derived from the source
of the Multics Communication System macro library (macros.map355)
in order to recognize the symbolic names of fields in the TIB,
software communications region, etc., and to print comments in
response to the explain command. Some specially-coded comment
lines are included in the macro source in order. to identify the
information required by debug fnp. For details on the usage of
debug_fnp, see Appendix B. -

17-3 AN85-01

APPENDIX A

MAILBOX OPERATION CODES

This appendix lists all the operation codes placed in the
submailboxes used for communication between the CS and the FNP.
For each operation code, the following information is given: the
octal value of the code, its purpose, and a description of the
associated data, if any, passed elsewhere in the submailbox.

OPERATION CODES SENT FROM THE CS TO THE FNP

Operations Sent with a WCD I/O Command

Terminal Accepted (000)

Purpose: Acknowledge the connection of a channel.

Associated Data: Word 2: Bits 0 ••• 17
contain the output buffer threshold; FNP
sends a "send output" operation when output
chain falls below this size.

Disconnect Line (001)

Purpose: Instruct the FNP to hang up the channel.

Associated Data: None

Disconnect All Lines (002)

Purpose: Hang up any currently connected
accepting dialups. Data terminal
off for all channels; no further
until the FNP is reloaded.

Associated Data: None

A-1

channels, stop
ready is turned
DIA I/O is done

AN85-01

Don't Accept Calls (003)

Purpose: Instruct the FNP to ignore dialups until the next
accept calls operation.

Associated Data: None

Accept Calls (004)

Purpose: Start allowing dialups.

Associated Data: Word 2: Bits 0 ••• 17
contain absolute address of the end of the
circular buffer in tty_buf.

Set Line Type (006)

Purpose: Change the line type of a channel.

Associated Data: Word 2: Bits 0 ... 17
contain the new line type.

Enter Receive Mode (007)

Purpose: Cause a channel using the
with a Bell 202C modem to
data ..

TermiNet 1200 interface
start receiving input

Associated Data: None

Set Framing Characters '(01 0)

Purpose: Provide the frame begin and frame end characters to
be recognized when in blk_xfer mode.

Associated Data: Word 2: bits 0 ..• 8
contain the frame_begin character.

bits 9 ••• 17
contain the frame end character.

A-2 AN85-01

Blast (011)

Purpose: Send a specific message to all connected terminals
(used by the BOS BLAST command).

As~ociated Data: Word 5: bits 0 ••• 17

Dial Out (014)

contain the absolute address of a block of
96 36-bit words that consist of 32-word
output buffers containing the message in
ASCII, EBCDIC, and correspondence codes.

Purpose: Dial out over a channel attached to an automatic
call unit.

Associated Data: Word 1: bits 0 •.• 17
contain the number of digits in the phone
number~

Words 2-3
contain the digits of the phone number, 6
bits for each digit.

Reject Request (016)

Purpose: Report that there is insufficient room in the
circular buffer for the channel's input (see "Accept
Input"). The FNP will retry the input request after
one second.

Associated Data: None

Terminal Rejected (020)

Purpose: Refuse a connection requested by the FNP by means of
an accept new terminal operation (see below), either
because of lack of space in tty buf or because the
channel is not in the "listenini" or "dialing-out"
state.

Associated Data: None

Disconnect Accepted (021)

Purpose: Acknowledge a line disconnected operation (see
below) sent by the FNP.

Associated Data: None

A-3 AN85-01

Dump Memory (023)

Purpose: Copy a specified portion of FNP memory to Multics
memory.

Associated Data: Word 2

Patch Memory (024)

contains the absolute address of the CS
buffer to which the data is to be copied.

Word 3: Bits 0 ... 17
contain the starting FNP address from which
data is to be copied.

Bits 18 ..• 35
contain the number of 18-bit words to be
copied.

Purpose: Replace the contents of a specified portion of FNP
memory.

Associated Data: Word 2:

Set Break (025)

contains the absolute address of the buffer
containing the data to be patched into the
FNP.

Word 3:
contains the FNP address and tally as
descr i bed for D,ump Memory (above).

Purpose: Set, reset or restart a breakpoint in a control
tables module.

Associated Data: Word 2: bits Oe~.17
contain the
to which the
ones if the
channels.

bits 18 .•. 35

FNP line number of the channel
breakpoint is to apply, or all
breakpoint is to apply to all

contain the FNP address of the breakpoint.

Word 3: bits 0 ... 17
contains 1 to set a breakpoint; 2 to reset a
breakpoint; or 3 to restart execution
suspended at a breakpoint.

bit 18
is "1"b if memory tracing is to stop when a
channel hits the breakpoint.

A-4 AN85-01

Line Control (026)

Purpose: Send line control information to a control tables
module.

Associated Data: Words 2-4
contain the 72
information.

bits of line control

Synchronous Message Size (027)

Purpose: Inform the FNP that the input messages
synchronous channel are expected to be no
than a specified size. This enables the
allocate buffers of an appropriate size.

Associated Data: Word 2: bits 0 ••• 17

from a
larger
FNP to

contain the message size in characters.

Break Acknowledged (035)

Purpose: Acknowledge a line break operation (see below) sent
by the FNP.

Associated Data: None

Alter Parameters (042)

Purpose: This operation code is used as a mechanism for
extending the ~et of operation codes, particularly
in connection with mode changes. The precise
function of the operation depends on the subtype;
the various Alter Parameters subtypes are described
later in this appendix.

Associated Data: Word 2: Bits 0 ••• 8
contain the subtype.
the subtype.

Checksum Error (043)

Other data depends on

Purpose: Report that the submailbox most recently sent by the
FNP contained an incorrect checksum.

Associated Data: None

Set Delay Table (045}

A-5 AN85-01

Purpose: Provide a delay table to be used by the channel when
echoing carriage movement characters.

Associated Data: Words 2-4
contain the six delay values, 18 bits for
each value.

Operations Sent with a WTX 1/0 Command

Accept Output (012)

Purpose: Inform the FNP that
specified channel.

output is available for a

Associated Data: Word 5: Bits 0 ... 17
contain the absolute address of a list of
"pseudo-DCWs" glvlng the addresses and
tallies to be used in reading the output
data.

Bits 18 ... 35
contain the number of pseudo-DCWs in the
list.

Accept Last Output (013)

Exactly like accept output (above) except that its use
indicates that the output being sent is at the end of a
6180 write chain.

Operations Sent with an RTX 1/0 Command

Input Accepted (005)

Purpose: Respond to an accept input operation (see below) by
providing the address (in the circular buffer) to
which input is to be sent.

Associated Data: Word 5: Bits 0 ... 17
contain the beginning absolute address of
the portion of the circular buffer into
which the input is to be placed.

Bits 18 ... 35
contain the number of characters to be
placed in the specified location.

Word 4:
If nonzero, contains the address and tally
as described above for the remaining data.
This word is only used if the input request

A-6 AN85-01

required a
buffer.

wraparound of the circular

OPERATION CODES SENT FROM THE FNP TO THE CS

Operations Sent with an RCD 1/0 Command

Accept New Terminal (100)

Purpose: Report that a dialup has been received on a channel.

Associated Data: Word 2
contains the line type of the channel.

Word 3
contains the baud
channel, or O.

rate of an autobaud

Line Disconnected (101)

Purpose: Report that a channel has hung up.

Associated Data: None

Input in Mailbox (102)

Purpose: Transfer a short input message from the FNP to the
CS.

Associated Data: Word 0: Bits 18 ... 35

Send Output (105)

contain the number of 32-word blocks
currently available in the FNP.

Word 1: Bits 9 ... 17
contain the number of
input message.

characters in the

Words 2-26
contain the
characters).

input message (up to 100

Word 27: Bit 16
is "1"b if an output chain is present in the
FNP.

Bit 17
is "1"b if the input contains a break
character.

A-7 AN85-01

Purpose: Inform the CS that the FNP is prepared to accept
output for a channel.

Associated Data: Word 0: Bits 18 ..• 35
contain the number of 32-word blocks
currently available in the FNP.

Accept Input (112)

Purpose: Inform the CS
available.

that input from a channel is

Associated Data: Word 0: Bits 18 ... 35

Line Break (113)

contain the number of 32-word blocks
currently available in the FNP.

Word 2: Bits 0 ••. 17
contain the number of characters of input
available.

Bit 34
is "1"b if an output chain is present in the
FNP.

Bit 35
is "1"b if the
character.

input contains a break

Purpose: Report that a line break condition has been detected
on a channel.

Associated Data: None

"Wru" Timeout (114)

Purpose: Report that a channel did not
operation (requested by an
operation with a wru subtype).

Associated Data: None

Error Message (115)

respond to a "wru"
alter parameters

Purpose: Report an error condition and cause a message to be
printed on the syserr console.

Associated Data: Word 2: Bits 0 ••• 17
contain a code indicating the type of error.

A-8 AN85-01

Bits 18 ... 35
contain the first of up to three pieces of
data to be used in constructing the error
message.

Word 3: Bits 0 •.. 17
contain the second piece of data; bits
18 ••. 35 contain the third piece.

NOTE: The following 4 operation codes are used to report
failure of a dialout attempt made as a result of a
dial out operation (see above). None of them has any
associated data.

No Power to ACU (120)
Data Line Occupied (121)
Dial Out Failed (122)
Unable to Dial Out (123)

Line Status (124)

Purpose: Report line status generated by a linsta op block.

Associated Data: Words 2-3
contain the 72-bit line status.

SUBTYPES USED WITH ALTER PARAMETERS OPERATIONS

In all cases, word 2, bits 0 ... 8 of the submailbox contain
the subtype.

Mode Changes

The following subtypes are all used to turn a specified mode
on or off for a specified channel. Word 2, bit 17 is "1"b if the
mode is to be turned on, or "O"b if it is to be turned off.
Unless otherwise specified, these subtypes do not supply any
other data.

Full Duplex (003)

Crecho (010) - carriage return echo

Lfecho (011) - linefeed echo

Lock (012) - turn keyboard and printer addressing on or off.

Tab Echo (016)

A-9 AN85-01

Listen (020)

Additional Data: if the mode is being turned on, word 2, bits
18 ••• 35 contain the size, in characters, of
input buffers to be allocated for the
channel.

Handle Quit (021)

Echoplex (024)

Transmit-hold (025)

Replay (027)

Polite (030)

Block Transfer (031)

Additional Data: Word 2: Bits 18 ••• 35

Breakall (033)

Prefixnl (034)

Other Subtypes

Dump Output (015)

contain the size, in characters, of each
input buffer to be used when not within a
frame.

Word 3: Bits 0 ... 17
contain the buffer size to be used within a
frame.

Purpose: Discard any untransmitted output.

Associated Data: None

Change Control String (022)

Purpose: Change index of strings used for keyboard and
printer _....1...J ___ : __

dUUlt:i::>i::>.Lll~.

Associated Data: Word 2: Bits 9 ... 17

Wru (023)

contain the index of the new set of control
strings.

A-10 AN 85-0 1

Purpose: Send a "Wru" command to the channel in order to read
a terminal's answerback.

Associated Data: None

Dump Input (026)

Purpose: Discard any pending input.

Associated Data: None

Set Buffer Size (028)

Purpose: Inform the FNP what size input buffer to allocate
for the channel (used for dialout channels).

Associated Data: Word 2: Bit 17
is "1"b.

Bits 18 ... 35
contain the size, in characters, of input
buffers to be allocated for the channel.

A-11 AN85-01

APPENDIX B

COMMAND DESCRIPTIONS

This appendix consists of command descriptions ·for the
following commands: coreload, debug_fnp, online_dump_fnp,
online dump 355, and tty analyze. This appendix describes the
use of-these commands in the manner of the MPM. The operation of
coreload, online dump fnp, and online .dump 355 is described in
Section 17; that of tty anaylze is described In Section 8. Other
commands that were described in previous editions of this PLM are
now described in the MAM-Communications, Order No. CC75:
bind_fnp, map355, tty_dump,-and tty_meters.

B-1 AN85-01

coreload coreload

Name: coreload

The coreload command converts a single object program
produced by map355 to a core image segment suitable for loading
into an FNP. The object program must be absolute, i.e., it must
not contain relocatable text.

Usage

coreload path

where path is the pathname of the object segment; if the suffix
".objdk" is not present, it is assumed. The result of the
conversion is a segment in the working directory whose entry name
is the same as that of the input object segment with the suffix
".objdk" removed.

B-2 AN85-01

Name: debug_fnp, db_fnp

The debug fnp command is a debugging aid intended to be used
by FNP software developers and in FNP dump analysis. The command
can be used to patch or dump memory in a running FNP, to examine
a dump from a crashed FNP or a core image segment before it is
loaded, to set breakpoints in a running FNP, symbolically display
FNP control blocks, buffers, etc.

Usage

where initial request line specifies the first request(s)
debug fnp is to-execute~ If initial request line contains blanks
or semicolons, it must be enclosed 1n quotes. Once the initial
request(s), if any, are completed, debug fnp reads request lines
from user input. Each line may contain multiple requests 1

separated by semicolons. If an error occurs in any request, the
remainder of the requests on that line will not be executed. Any
debug fnp request can be aborted by issuing a "Quit" followed by
a Multics "program_interrupt" command.

Selecting debug=fnp Mode

The debug fnp command can be set up to operate on either a
running FNP, a-dump segment, or a core image segment. When first
invoked, the command is set up to examine the first configured
FNP. It is possible to switch betweens dumps, core images, and
running FNPs at any time. With few exceptions, most debug fnp
requests work the same regardless of whether a running FNP, a
dump, or a core image is selected.

To select a running FNP:

fnp tag

where "tag" is "a", "b", "c", or "d".

To select a core image:

image path

B-3 AN85-01

To select a dump:

dump path

where path is the Multics pathname of a segment containing the
dump or the core image. Core image segments and dump segments
have different formats, so these requests are not
interchangeable. The pathnames on the dump and image requests
can also be starnames, - providing they match one and only one
entry in the directory specified.

In most cases, it is not necessary to know the pathname of
the dump to be examined, as spe~ial requests are provided for
selecting dumps.

To list all the dumps currently in the dump directory:

dumps

The default dump directory is ">dumps" but this can be
changed by:

dump_dir {path}

where path is the pathname of
is omitted, the name of the
printed.

To select the latest dump:

the new dump directory. If "path"
current dump directory will be

The next earliest dump can be selected with:

The prev dump request can be used repeatedly as long as there are
more dumps.

To select the next latest dump:

8-4 AN85-01

The next dump and prey dump requests can be used to peruse any or
all of -the dumps in the dump directory, going in either
direction.

If dealing with a dump which contains multiple FNPs, such as
a BOS fdump, the following request is used to select which FNP in
the dump is examined:

select_fnp tag

where tag is "a", "b", "c", or "d".

To find out what FNP, dump, or core image is selected:

what

will print the FNP tag, or the pathname.

Expressions

Many of the following requests take numeric arguments such
as addresses, lengths, etc. Any of these arguments can be
expressed as a generalized FNP expression. Expressions can be
arbitrarily complex, containing n(It, n)", "+", "_", "*", and "/"
with their normal meanings and precedence. The symbol "I" is
synonymous with n+", as in moduleloffset. Indirection can be
specified by ",*", following the address to indirect through.
Numeric constants are interpreted as octal, unless they are
followed by a ".", in which case they are decimal. The symbol
"*,, can be used for the current location counter, which is
generally the last address used in a display or patch request.
Many common FNP symbols can also be used, including all fields in
the system communications region, the hardware communications
region, the software communications region, and the TIB. (Note:
before TIB, hwcm, and sfcm addresses can be used, the addresses
of these control blocks must be established. See the "line" and
"set" requests). A symbol may also be any op block mnemonic, the
name of any FNP object module, or a machine instruction
(specified by surrounding the instruction by apostrophes). In
addition, user symbols can be defined. Examples of expressions:

hslal500
t.icp,*
*+30

tibI14,*+10

(offset 500(8) in hsla man)
(the contents of t.icp-in the current TIB)
(30(8) words beyond the current location
counter)
(10(8) words beyond the address contained in
word 14(8) of the current TIB)

B-5 AN85-01

goto
'lda 0,2,b.0'
cax3

(a goto op block code, i.e., 777001)
(instruction word)
(apostrophe not needed if no operand)

DISPLAYING FNP MEMORY

To display the contents of FNP words:

display address {length} {mode}
d address {length} {mode}

where "address" is the starting address, "length" is the number
of words, and "mode" is the display mode. The symbol ,,*" will be
set to the address sepcified. The following display modes can be
used:

octal, oct
character, ch
address, addr
clock, ck
instruction, inst
opblock, op
decimal, dec
bit
ebcdic, ebc

(in form module\offset)
(4 FNP words as a Multics clock)
(355 instruction format)
(pseudo opblock format)

If omitted, the length defaults to 1 unless "address" is a
predefined FNP symbol, in which case the appropriate length for
that symbol will be used. Similarly, if the mode is omitted,
octal is used, unless "address" is a predefined FNP symbol in
which case the mode appropriate for that symbol is used.

To display a buffer:

buffer {address} {mode} {-briefl-bf}
buf {address} {mode} {-briefl-bf}

where "address" is the address of the buffer, "mode" is the mode
to display it in (see display request), and -brief means display
only the first 2 words of the buffer. If "address" is omitted,
the next buffer pointer frornthe preV10US buffer displayed is
used. If "mode" is omitted, character mode is assumed. If
-brief is not specified, the entire buffer is displayed. The
length is determined automatically by reading the buffer header.

To display a buffer chain:

B-6 AN85-01

buffer chain {address} {mode} {-briefl-bf}
bufc {address} {mode} {-briefl-bf}

where the arguments are the same as in the buffer request. This
request will follow the threads in the buffer chain, displaying
each buffer.

If the data being displayed is in the form of threaded
control blocks, the following requests can be used:

block {address} {-offsetl-o offset} {-length I-I length}
blk {address} {-offset:-o offset} {-lengthl-l length}

will display a control block at the address specified. The
length of the block is specified with -length. The default is 8
words. The offset to the forward pointer in the block is
specified with -offset. The default is O. If the address is not
specified, the next block in the chain will be displayed (using
the forward pointer from the previous block)e

To display an entire chain of control blocks:

block chain {address~ {-offsetl-o offset}
{-length:-l length}

blkc {address} {-offsetl-o offset} {-length/-l length}

will display control blocks until one with a zero forward pointer
is encountered.

If the data being displayed is a word of flags, the flags
request can be used to show the setting of individual bits.

flags address {type}

where address is the the address of the word containing flags,
and the type can be:

t.stat
t.flg
t.flg2
sf.flg
istat
hs.1
hs.2

TIB status word
first TIB flag word
second TIB flag word
HSLA sfcm flags
interpreter status word
first word of HSLA hardware status
second word of HSLA hardware status

B-7 AN85-01

If {type} is omitted, it is assumed to be the same as
"address", which then must be one of the items in the above list.
The flags are listed by name, as they appear in the macros.map355
source file. The explain request (see other requests) can be
used to help with unfamiliar names. Occasionally, the value of a
flag word is known (from a trace, for example), without knowing
an address of it. In this case, the following form can be used:

flags =expression type

where expression is any valid expression, and type is one of the
types shown above.

PATCHING FNP MEMORY

To patch the contents of FNP memory:

patch address arg1 •.• {argn}

where address is the starting address to patch, and the argi
represent patch data. Each arg! may be an expression
representing the value to be stored in 1 FNP word, or a charac~er

. string in quotes (which may contain more that 1 word of data).
The total number of words patched cannot exceed 32. Before the
patch is applied, the effects of the patch are displayed (old and
new contents of every word) and the user is asked to verify that
the patch is correct. The symbol "*,, will be set to the address
specified. Examples of patch requests:

patch 43102 203456 -1 2
patch .crver "3.1x"
patch ctrl:1400 goto ctrl:1600
patch hsla:1541 'tze 13' cax3 'Ida 0,2,b.1'

A shorthand form of this request is:

=arg1 •.. {argn}

which is equivalent to:

patch * ar g 1 ";;,, {ar gn }

Individual flag bits in words of flags can be manipulated
with the following requests:

B-8 AN85-01

will set the bit associated with the flag~symbol specified in the
appropriate word. In a similiar way,

will clear an individual bit. Currently, these requests are not
indivisible operations: this means that if other flags bits in
the word are dynamically changing, these requests may change
their value if they happen to have been changed between the time
the word was read and when it was rewritten.

DUMP ANALYSIS REQUESTS

The following requests are only valid when using debug_fnp
on a dump.

To find out the cause of a dump:

why

will print the type of fault which caused the crash, and if the
crash was caused by a "die" opcode in the FNP, will interpret the
reason for the crash.

The request:

regs

will print the contents of all machine registers at the time of
the fault.

If the fault occured in a subroutine (as defined by the
map355 "subr" macro), information about the call is available
with:

call trace address {-longl-lg}

This request will start at the address
backward trace of all subroutine calls.
the registers saved at each subroutine
printed. This request can also be used on
information is probably changing too fast
useful.

8-9

specified and perform a
If -long is specified,
level will also be

a running FNP, but the
for the request to be

AN85-01

FNP TRACE TABLES

A running FNP or a dump contains a trace table of the most
recent events occuring in the FNP. The trace. table can be
displayed with:

print trace {start}
print=trace {start} {count}

where start indicates the starting trace message and count is the
number of messages to display. If no arguments are given, the
entire trace table is printed. If no count is given, the trace
table is displayed from the starting point specified to the end.
If the start number is positive it is counted from the oldest
message; if negative, it is counted from the most recent. For
example:

print_trace 200.

will skip the 199 oldest entries and print the rest.

print_trace -50.

will print the 50 most recent messages.

Printing the trace table of a running FNP is only meaningful
if tracing has been suspended; otherwise the table is changing
too fast to be interpreted. Tracing can be suspended in a
running FNP by:

stop_trace

and restarted with:

start trace

Tracing can also be stopped and started with some of the
breakpoint requests explained below.

Which modules in the FNP are
trace mask, kept in FNP memory.
updated with:

trace mask {modules}

traced is determined by the
This mask may be examined or

If used with no arguments, trace mask will display and interpret
the current trace mask. If modules are given, they represent
modules to be added to or deleted from the current mask. The

B-10 AN85-01

module should be specified as 'name' or '+name' to set the
tracing bit for the module; it should be '-name' or ,Aname' to
turn off the corresponding bit. In addition, all and none may be
specified. For example:

trace mask hsla Adia -Isla

turns on tracing for hsla man and turn off tracing for dia man
and Isla man.

trace mask none dia

turns off tracing for all modules except dia man.

Tracing cannot be turned on for a
included in the trace mask specified in
the core image was created.

module that was not
the bind file with which

FNP BREAKPOINT FACILITY

The control table interpreter in the FNP allows breakpoints
to be set in the interpreted control tables. A breakpoint will
cause the line encountering it to stop execution in the
interpreter until a command is given to restart it.

Breakpoints are often a useful tool but a certain amount of
care must be excercised in their use. The following points are
important:

1. Breakpoints can only be set in interpreted op blocks.
They cannot be set at machine instructions.

2. While at a break, the line is executing an op block
equivalent to:

wait 0,0,0

followed by no status blocks. This means that timers
can run out unnoticed, status will be ignored, hangups
can be missed, etc. For this reason, it may be
difficult to restart a channel after a breakpoint.

3. Breakpoints cannot be set at subroutine levels where
waits would be illegal.

4. Breakpoints cannot be set when a restart may execute a
waitm op block.

B-11 AN85-01

5. Breakpoints cannot be set at a status op block.

6. If a breakpoint is set at a wait op block, it must be
reset before the line is restarted. In addition, a
breakpoint may not be set at a wait if any channels are
currently waiting at that block.

7. Control tables that use local internal variables (as
opposed to variables in the TIB extension) cannot
depend on these variables being preserved during the
break unless no other channels that may use the same
control tables are running.

8. No notice is given when a channel encounters a
breakpoint. The list break request will list all
breakpoints and show what channels are stopped at each
one.

To set a breakpoint:

set break address {channel name} {-stop trace}
sb address {channel_name} T-stop_trace}-

~

will set a breakpoint at the address specified. If a
channel name is given, the breakpoint will apply to that channel
only. -Any other channel encountering the breakpoint will
continue execution. If -stop trace is specified, the FNP will
automatically suspend tracing- if any channel stops at that
breakpoint.

To reset a break:

reset break address
reset-break -all
rb address
rb -all

will reset a break at the address sPecified. Any channels
stopped at the break are not automatically restarted. If -all is
sPecified, all breaks wilr-De reset.

To start a channel stopped at a breakpoint,

B-12 AN85-01

start channel name {address} {-reset} {-start trace}
start -all
sr channel name {address} {-reset} {-start trace}
sr -all

will restart the channel specified. If an address is given, the
channel will be restarted at the address given, instead of where
it was stopped. If -reset is specified, the break will be reset
before the channel is started. If -start trace is specified,
tracing will resume as the channel is restarted. If-all is
specified, all channels at breakpoints at the time the request is
issued will be restarted.

To list FNP breakpoints:

list treak
Ib

will list all FNP breakpoints and the channels stopped at each.

Performance Analysis Requests

The FNP software periodically samples the instruction
counter to determine whe.ther the FNP is running or idling. This
meter can be displayed with the idle time request, as follows:

idle_time {-reset:-rs}

will print the percent of time the FNP
bootload, or the last time the request
-reset control argument.

has been idling since
was invoked with the

The sampling interval used by the FNP for metering this data
can be printed or set with the following request:

sample_time {new_time}

where new time, ·if specified, is the new sampling interval in
milliseconas. The argument must be between 1 and 1000. If no
argument is given, the current sampling interval is printed. The
default sampling time when the FNP is booted is 50 milliseconds.

More detailed information on FNP usage can be collected by
configuring the module 'ic sampler' in the FNP core image. This
module will periodically sample the instruction counter (at the
rate set by the sample_time request) and add 1 to a bucket which

B-13 AN85-01

represents a small range (typically 16) of FNP addresses. With
this data it can be determined with some precision where the FNP
is spending its time when it is running.

This instruction counter sampling feature is controlled by
the ic sample request, which is only accepted if the ic sampler
module-is configured in the FNP. The following options of the
request are used to control ic sampling:

ic_sample start

starts the IC sampling feature. Sampling is normally disabled
when the FNP is booted.

ic_sample stop

stops IC sampling.

ic_sample reset

zeroes all the sampling buckets.

The following options are used to display the information
collected:

ic_sample module

prints a table showing each module in the core image and what
percentage of samples collected occur in that module.

ic_sample histogramlhist {fraction}

prints a histogram showing each bucket address that has data, and
the percent of non-idle time that bucket represents. The fraction
argument, if specified, must be a floating point number between
0.0 and 1.0. If this option is used, the histogram will only
contain the most frequently used buckets. Enough buckets will be
printed so that the fraction specified of the total data
collected will be printed. For example, if the fraction is .9,
10% of the data collected will not be displayed by discarding
infrequently referenced buckets. This option is useful in
deleting "noise" from the histogram.

B-14 AN85-01

Other Requests

To select a specfic channel:

line {channel name}

will locate the TIB, software communications region, and hardware
communications region of the channel specified. Once these
addresses are set, fields in . these control blocks can be
referenced by name in any expression in other requests. The
channel can be specified either in Multics form (a.h012) or as an
FNP channel number (1014). If no channel is specified, the name
of the current channel is printed. If the channel selected is
not on the current FNP, the proper FNP will be selected
automatically.

To print a summary of FNP buffer usage:

buffer status {-brief:-bf}
bstat T-brief:-bf}

will print a table showing each channel and how much buffer space
in the FNP it is using. If -brief is used, only summary
information is printed.

To set a symbol:

set symbol value

where symbol is f * , , 'ti b', 'hwcm f , 'sfcm " or any user-de fined
symbol. Setting control block addresses (tib, hwcm, sfcm) is
more easily done with the line request, but can be manually done
with the set request in case internal FNP tables have been
damaged. Note that setting any of these control block addresses
has no effect on the current value of other control blockso
Setting n*" is also done by any dump or patch request. Once set,
a symbol may be used in any expression in any other request.

To display a list of modules in the core image:

map

will display a list of modules, their addresses, and the dates on
which they were last assembled.

To interpret an FNP address:

B-15 AN85-01

convert address {address 1} ... {addressn}
cva {adaress 1} •.. {addressn}

will convert each address to any other meaningful form that can
be derived. For example, octal values will be converted to
module/offset, and vice versa.

To find the explanation of any FNP. symbol (usally the output
of a flags or convert_address request):

explain sym1 {sym2} .•• {symn}

where symi are symbols to be explained. This command will print
the comment from the line in macros.map355 that defines the
symbol.

To execute any Multics command:

e Command Line

will pass 'Command Line' to the command processer.

To exit from debug_fnp,

quit
q

Summary of debug_fnp Requests

Request Arguments Function

block, blk

block_chain,
blkc

buffer, buf

buffer chain,
bufc -

address {-offset N}{-length N} display a
control block

address {-offset n' r ., _ __ _.L t_ t.I 1
1'l J t - .. U~ [J g l" Il 1'4 J

address {mode}{-brief}

address {mode}{-brief}

B-16

display a
chain of
control blocks

display a
buffer

display a
chain of
buffers

AN85-01

Request

buffer status,
bstat -

call trace

clear_flag

convert_address,
cva

display, d

dump

dumps

e

explain

flags

Arguments

{-brief}

address {-long}

flag_symbol

expressions

address {length}{mode}

path

path

command line

address {type}

B-11

Function

summarize
buffer usage

trace
subroutine
calls

turn off a
flag bit

reinterpret
expressions
in various
formats

display
contents of
memory
location

select an
FNP dump

select the
directory in
which dumps
are to be­
found

print a list
of available
dumps

execute a
Multics
command line

print
comments
associated
with symbol
definitions

list the
names of

AN85-01

Request

fnp

idle time

image

line

list break,
lb

map

Arguments

=expression type

(various)

{-reset}

path

channel name

B-18

Function

flag bits
·set at an
address

interpret
the flag bits
specified by
expression
according to
type

select a
running FNP

control the
instruction
counter
sampling
feature

print the
percentage of
FNP idle time

select a
core image

select the
latest dump
in the dump
directory

set control
block
addresses
for specified

list current
FNP
breakpoints

print a list
of module
names with
starting

AN85-01

Request

patch

prev_dump

quit, q

regs

reset break,
rb -

set

Arguments

address values

{start}{count}

address or -all

{interval}

symbol value

B-19

Function

address and
date compiled

select the
next latest
dump

modify one or
more memory
locations

select the
next earliest
dump

display a
specified
portion of
the trace
buffer

exit from
debug_fnp

display
register
contents

reset
breakpoint(s)

print or
change the
sampling
interval

select the
dump of a
specific FNP
within a
BOS dump

assign a
value to
a symbol

AN85-01

Request

set break,
sb -

start

start trace

trace mask

what

why

Arguments

address {channel}{-stop_trace}

flag_symbol

channel {address}{-reset}
{-start trace}

{modules}

B-20

Function

set a
breakpoint

turn on a
flag bit

restart a
breakpoint

resume
tracing

suspend
tracing

display or
modify the
list of
modules being
traced

print the
name of" the
current FNP,
dump, or
core image

print the
error message
describing
a crash

AN85-01

The online dump 355 command formats an FNP dump generated by
the BOS command-FD355 for output to a terminal or a printer.

Usage

where:

1. erfno
is the number of the error report form (ERF)
associated with the dump.

2. control args

Note

iay be chosen from the following list of optional
control arguments:

-dev STR
sends the output to the device named STR, which may
be the pathname of a file if file is specified with
the -dim control argument (below).-

-dim STR
outputs the dump using the ios
module (DIM) whose name is STR.

-tag I

device interface

formats only the dump of the FNP whose tag is I,
where I is either a, b, c, or d. If this control
argument is omitted, dumps are formatted for all FNPs
that were configured when the FD355 command was
issued.

If neither the -dim nor the -dev control argument is
specified, default values of prtdim and prta, respectively, are
supplied. Unless the process issuing the command is sufficiently
privileged to attach a printer, these control arguments must be
supplied.

B-21 AN85-01

online_dump_fnp

Name: online_dump_fnp, od_fnp

The online dump fnp command is used to output an ASCII dump
of an FNP correspondTng to a core dump in >dumps.

Usage

where control_args can be chosen from the following:

-tag FNP tag
specifies the FNP tag component of the dump name (see
"Note" below).

-date mmddyy, -dt mmddyy
specifies the date component of the dump name (see
"Note" below). If this argument is not supplied, the
current date is used.

-time hhmm, -tm hhmm
specifies the time component of the dump name (see
"Note" below).

-pathname path, -pn path
specifies the pathname (relative or absolute) of the
dump segment. This argument, if specified, overrides
the -date, -time, and -tag control arguments if any
of them are supplied. If this argument is not
supplied, the -tag, -date, and -time control
arguments are used to find the dump segment (see
"Note" below).

-dim dim name
specifies the device interface module (DIM) to be
used to output the dump. For reasons of
compatibility, it must be an lOS-type DIM. This
argument must be supplied.

-device device name, ~dv device name
specifies the device to which the dump is to be
output. This argument must be supplied. If -dim is
file, -device must be a relative or absolute
pathname.

B-22 AN85-01

Note

The name of an FNP dump segment is of the form
fnp.TAG.DATE.TIME, where TAG, DATE, and TIME are as described
above under the relevant control arguments. In specifying the
dump segment to online dump fnp (other than by using the
-pathname control argument), the TAG and/or TIME component may be
omitted if the remaining information is sufficient to uniquely
identify the dump.

B-23 AN85-01

tty_analyze tty_analyze

Name: tty_analyze, tta

The tty analyze command analyzes the contents of a copy of
tty buf which it extracts from a dump. It performs certain tests
to verify the consistency of the contents of tty_buf.

Usage

tty_analyze erfno {-control_arg}

where:

1 . erfno
is the number of the dump from which the copy of
tty_buf is to be extracted.

2. control arg
may be -long (or -lg). If present the contents of
each input and output buffer will be printed,
otherwise only the addresses of the buffers will be
printed.

B-24 AN85-01

APPENDIX C

FNP MEMORY CONFIGURATOR

This appendix provides a memory configurator that can be
used to approximate maximum memory utilization in the FNP.

C-l AN85-01

MULTICS COMMUNICATION SYSTEM MEMORY CONFIGURATOR
TAB L E 1

MODULE

acu tables
ards tables
auto baud tables
breakpoint man
bsc tables­
console man
g115 tables
ibm3270 tables
t202 tables
trace
trace buffer
vip tables
hsla man
lsla-man
control tables
dia man­
interpreter
scheduler
utilities
interupt vect
iom tables
hsla hwcm
init

HSLA Chans

32 tty <9600
40 tty <9600
48 tty <9600
56 tty <9600
64 tty <9600
72 tty <9600
An rt'\T 7of\nn
VV W''''J ,.." --

88 tty <9600
96 tty ~9600

X

LENGTH

112
710
262
268

2296
476

1920
616
546
446
xxx

1152
3340
1936
1674
3136
1918
1178
1630

512
32

xxxx
3278

Half/
Full·
duplex

v

21
216
"
"

"
"
"
"

or

MUST TOTAL
HAVE

* 476

* 1674
* 3136
* 1918
* 1178
* 1630
* 512
* 32

No. of HSLAs X 512

T A B

Echo-
mode *

~e!ltll!l'!!!l> __

v

"
It

Ii

"
"
"
"

L

=

E 2
Half/
Full
duplex

v

912
8640

10368
12096
13824
15552
17280 - . -

19008
20736

or

SubTotal1

Echo-
mode *

v

793
9920

11904
13888
15872
17856
19840 -
21824
21328

SubTota12

* ----

TOTAL

I I I

C-2 AN85-01

T A B L E 3
Half/ Half/
Full Echo- Full
duplex mode * duplex

LSLA Chans X ----- or ----- = ----- or
I I I
I I I

V V V

No. of tty ~300 00(5) 132(6)

No. of LSLAs <6 170(7) 170(7)

* echomode = echoplex,crecho,lfecho, and/or

No. of Chans

g115 protocol
2780 protocol
3780 protocol

Legend: (1)

Legend: (3)

Legend: (5)

X

=

=

=

(10 buf

192
224
256

SFCM
TIB

TB tbl
10 buf

SFCM
TIB

TS tbl
TB ext

TIB
TB tbl
10 buf

T A B L E 4

+ Misc.) =

108(3)
118(4)
118

52 Legend:
34

2
128

216

52 Legend:
34

2
20

--;os

34 Legend:
2

64

100

C-3

Echo- TOTAL
mode *

I
I

V

SubTotal3

tabecho

----~ = TOTAL

I
I

V

300
342
374

Subtota14

(2) = SFCM 52
TIB 34

TB tbl 2
10 buf 160

248

(4) = SFCM 52
TIB 34

TB tbl 2
TB ext 30

118

(6) = TIB 34
TS tbl 2
10 buf 96

132

AN85-01

Legend: (7) = SFCM
10 buf

HOW TO USE THE CONF1GURATOR

42
128

170

To compute
configuring
algorithm.

the available free
required software

buffer space (as a
modules) use the

result of
following

1. Sum the length of all required modules in the TOTAL column
(Table 1) to obtain SubTota11.

2. Enter the appropriate length of Half/full duplex, or
echoplex HSLA tty channels' in the TOTAL column (Table 2) to
obtain SubTota12.

3. Enter the appropriate length of Half/Full duplex, or
echoplex LSLA tty channels in the TOTAL column (Table 3).
Next, multiply the number of configured LSLAs by 170 and
enter in TOTAL column and add to obtain SubTota13.

4. Enter the appropriate length of the g115 and 2780/3780
cnannels in the TOTAL column (Table 4) to obtain SubTota14.

5. Add SubTota11, SUbTota12, SubTota13 and SubTota14. Subtract
that sum from the value 32,768; the difference is the amount
of available free buffer space.

C-4 AN85-01

APPENDIX D

LAYOUT OF FNP MEMORY

This appendix describes the assignment of various parts of
FNP memory under Multics Communication System. This information
may prove helpful in reading dumps of the FNP.

The low-order 1000 (octal) locations contain the fixed
fields described below. Locations 640 through 775 are not all
used at present; the unused locations are reserved for future
extensions of the system communications region.

Location Name Description

0- 37'7 intv 10M interrupt vectors
400- 417 intv 10M interrupt cells

10M Channel Fault Status Words

420 tyfts typewriter fault status word
421 crfts card reader fault status word
422 lpfts line printer fault status word
423 mtfts magnetic tape fault status word
424 difts DIA fault status word
425
426 hlfts hsla 1 fault status word
427 h2fts hsla 2 fault status word
430 h3fts hsla 3 fault status word
431 l1fts Isla 1 fault status word
432 12fts Isla 2 fault status word
433 13fts Isla 3 fault status word
434 l~fts Isla 4 fault status word
435 15fts Isla 5 fault status word
436 16fts lsl.a 6 fault status word
437 tmfts timer fault status word

D-l AN85-01

440
441
442
443
444
445
446
447

450
451
452
453

454- 455
4:>6- 457
460- 461
462- 463
464- 465
466- 467
470- 471
472- 473
474- 4'77
500- 517
520- 537
540- 557
560- 577
600- 617
620- 637

640- 775

776- 777

suflt
sdfl t
par fl t
iopflt
ovfl t
memfl t
dvfl t
ipiflt

itmb
etmb

dimb
dist
tyst
tyicw
crst
cricw
lpst
lpicw

11mb
12mb
13mb
14mb
15mb
16mb

CPU Fault Vectors

startup fault
shutdown fault
memory parity fault
illegal operation fault
overflow fault
illegal memory operation fault
divide check fault
illegal program interrupt fault

10M Mailbox Communications Region

interval timer mailbox
elapsed timer mailbox

OlA pcw mailbox
OlA status icw mailbox
typewriter status icw mailbox
typewriter data icw mailbox
card reader status icw mailbox
card reader data icw mailbox
line printer status icw mailbox
line printer data icw mailbox

lsla 1 hardware communications region
lsla 2 hardware communications region
lsla 3 hardware communications region
lsla 4 hardware communications region

.lsla 5 hardware communications region
lsla 6 hardware communications region

Communications region (described in
Section 10)

missing module code

Starting at location 1000(8) are the HSLA hardware
communications regions for as many HSLAs as the core image
supports. Each hardware communicatioris region occupies 20(8)
words, and there is one for each subchannel on a given HSLA; thus
the hardware communications regions for each HSLA occupy 1000
locations. These regions are described in Section 10. The
number of HSLAs supported is determined by the tihsla ii statement
in the core image bindfile, and is kept in .crnhs (location 654)
in the system communications region.

Following the HSLA hardware communications regions is the
10M table (described in Section 10); its starting address is
either iODO, 2000, 3000, or 4000, according to whether zero, one,
two, or three HSLAs are supported. This address is kept in
.criom (location 653) in the system communications region.

0-2 AN85-01

Next come the HSLA tables for each configured HSLA, followed
by the LSLA tables for each configured LSLA. The addresses of
the individual tables are found in the second word of the 10M
table entry for the corresponding adapter. Each HSLA table is
100(d) words, two for each possible subchannel. The effective
size of each LSLA table depends on how many time slots are in
use; an entry of all ones marks the end of an LSLA table.

After the LSLA tables come the FNP programs themselves, in
the order specified by the bindfile. The beginning of the
program area can be identified in a dump by the first appearance
of a module name after the absolute address. Note that the trace
table comes at the end of the trace module, as described in
Section 14.

As explained in Section 15, the last module, init, is
converted to buffer space after initialization; accordingly,
after the TIB table at the beginning of init, the remainder of
the module is either free or in use as buffers. Immediately
following the location that was originally the end of init come
the TIBs and HSLA software communications regions, allocated by
in it as described in Section 15; the remainder of memory after
the last TIB is again part of the buffer pool. Note that in the
dump the entire high-order portion of memory is marked as being
part of init.

D-3 AN85-01

The following is a schematic drawing of all FNP memory_

0

500
520
540
560
600
620
640

1000

I
I
I
I

7
/
T

7
/

low memory
(see above)

LSLA 0 HWCM
LSLA 1 HWCM
LSLA 2 HWCM
LSLA 3 HWCM
LSLA 4 HWCM
LSLA 5 HWCM

system communications
region

7
/
T

7
/
I

776 : -m"""'i-s-s"""i-n-g-:
lmodule
lcode

HSLA HWCMs
I
I

7 7
/ /

(nhslas+l)*1000 T ____________________________ ___
I 10M table

+40
HSLA tables

LSLA tables

program modules

(origin of init) TIB TABLE
buffer pool

TIBs and SFCMs

BUFFER POOL

D-4 AN85-01

APPENDIX E

AUTOMATIC BAUD RATE DETECTION

The automatic baud rate detection (autobaud) feature of the
Multics Communication System is designed to recognize/configure
the baud rate (hits per second) of an asynchronous HSLA channel
at dialup time. The autobaud facility selects a baud rate of
1200 if a lead from the answer modem is on; otherwise it selects
a rate of 110, 133, 150 or 300 baud based on the sampling of bit
changes for the first incoming character, which is expected to be
"1" or "L".

LEAD CONTROL SELECTION OF 1200 BAUD

If the answer modem turns on pin 12 of the cable connected
from it to' the FNP, the channel is set to 1200 baud and the
channel is then handled in the normal manner. The answering
modem can be set to respond to a switch on the originate modem
which indicates that the terminal is operating at 1200 baud. The
operation of the channel will not appear any different to the
user than if h~ had dialed into a strictly 1200 baud channel
(there is no requirement for the user to type any characters
before receiving the login banner).

BIT SAMPLING SELECTION OF OTHER BAUD RATES

If the signal on pin 12 is off, sampling for the bit changes
of an input character is performed. To accomplish this, the
following sequence occurs:

1. The user establishes a connection with the host.

2. The user types in either the letter "1" or "L".

3. The software in the FNP scans the incoming bit stream
looking for bit changes at 300 baud. Since the "1" (or
"L") character is known, the changes in state of the
bits ("0" or "1") indicate the timing necessary to
transmit the bits, and therefore the baud rate of the
channel is determined.

£-1 AN85-01

4. From here the channel is handled in the normal manner.
The a~swerback is checked, initial string sent if any
and the login banner is displayed.

5. The user types in any of the preaccess commands (MAP,
etc.) if desired.

6. The user logs into the system using "1" again for
"login", enter, etc.

MODEMS

Any asynchronous HSLA channel may be configured with the
autobaud feature. For dialup 'channels not using special modems,
the channel will only be able to detect baud rates up to 300
baud. In this range, most modems and acoustic couplers are able
to interface with host modems. For hardwired channels, a special
switch could be installed to make use of the pin 12 lead change
and operate up ~o 1200 baud.

There are several modems which can be used on channels
configured with the autobaud feature which make use of the pin 12
lead change. Vadic (3467) and Western Electric (212A) are two
manufacturers that make such modems. Special circuits are
required to hancrle the data over voice-grade dialup lines. It is
because of these special circuits that a modem" of one
manufacturer will not necessarily be able to interface to a modem
of another manufacturer.

Modem Options Needed for Autobaud

The modem must be able to indicate the position of the high
speed switch on the originate modem. This indication is signaled
by pin 12 of the RS232 interface.

a. In the Western,
enabled in the
installed.

Electric 212A modem,
answer modem when the

this feature is
"YQ" option is

b. It is currently unknown how other modem manufactures
treat this feature.

ALGORITHM

The following is the algorithm used to determine the baud
rates for various terminals. This discussion is directed towards
people knowledgeable in communications who wish to understand the
design of the autobaud facility.

E-2 AN85-01

egend:

B - start bit (begin)
P parity bit
E - stop bit ~end)
X - bit in the 300 baud sample whose value is uncertain because

it depends on the parity bit of incoming character

otes

1. A communications line can be in one of two states, 1
(also called "mark" condition) and 0 (also called
"space" condition).

2. The line is normally held in a 1 statea

3. The first incoming bit is always a start bit, which
(being a 0 bit by definition) changes the line state to
o and causes the hardware to begin sampling bits.

4. The bits of a charcter are transmitted after the start
bit starting with the least significant bit and ending
with the parity.bit after the most significant bit,
followed by one or two stop bits.

5. A stop bit is a 1 state held on the line for one bit
time interval.

6. The channel is set up to receive 7 data bits plus 1
parit~ bit (8 information bits) with one start and stop
bit (a total of 10 bits). The parity bit in the
sampl~ng is stripped off before the comp~rison.

7. Bits in the sampling dependent on the parity bit of the
incoming character are masked off (shown as X in
sampling lines below).

In the following diagrams, all sampling is done at 300 baud.
, the incoming lines below, the time between the vertical bars
s the bit time for the indicated baud rate in relation to the
)0 baud rate shown in the sampling lines.

f the terminal is operating at 110 baud:
,coming "L" is: : B I 0 I 0 I 1
ampling yields: IBIOIOIOIOIOIOIOIPIEI

,coming "1" is:
ampling yields:

first char= 000

: B I 0 101
IBIO:OIOIOIOIOIOIPIE:

first char= 000

E-3

I 0 I 0 I I P
IBIOIOIOIOIOl1111PIEI

second char= 140

1 I 0 I 1: I P
IBIOIOl1111111111PIEI

second char= 174

AN85-01

E

E

If the terminal is operating at 150 baud:
inc om i n g "L" is: I B I 0 I 0 I 1 : 1 I 0 I 0 : 1 I PIE I
sampling yields: IBlOIOlOIOIOl1111PIEIBIOIOl01111lXIXIPIEI

first char= 140 second char= 030 (170 if P=1)

incoming "1" is:
sampling yields:

I B I 0 : 0 : 1 : 1 10: 1 I 1 I PIE I
IBIOIOIOIOIO: 1 11 IPIEIBIO: 1 I 1 11 11 IXIXIPIEI

first char= 140 second char= 036 (176 if P=1)

If the terminal is operating at 133 baud:

The following is an approximation of what can occur. It has been
found that the bit stream seen when sampling a 133 baud "1" at
300 baud is dependent on the hardware involved. This includes
the terminal as well as the channel doing the sampling. The
characters in parentheses and braces are the result of these
variations and were for the most part arrived at empirically.

There are no uppercase characters on currently known 133 baud
devices. When the shift key is depressed, a "shift-up" character
is sent. When the shift key is released, a "shift-down"
character is sent.

Note that the stop bit for the first 300 baud character is shown
with a shorter bit time. This is an attempt to explain what the
different channel hardware reports "seeing" during the sampling.
This may be due to the lack of a proper "1" state on the line at
the time the stop bit is expected.

B o
For an EBCD terminal (1=61):
first 4 Bits of incoming "1" is:
sampling yields: I B I 0 I 1 : 1

first char= 016

o
100

{030, 034}
o I P

I 0 I I o last bits of incoming "1" is:
continued sampling yields: lEI B I 0 : 1 I 1 I 1

second char= 076 (074)
1 : 1 : 0
{ 170}

Therefore, if the first character is a 016 and the second
character is a 076 or 074; the channel is set to 133 baud.

It has been observed that if the Ilrst character is 030' or 034
and the second is 170 (those noted in braces above), the channel
should also be set to 133 baud.

E-4 AN85-01

I
I •• •
I
I •••

I
I

P

~or a Correspondence terminal (1=06):
~irst 4 Bits of incoming "1" is: : B : 0 :
)ampling yields: : B : 0 : 0 : 0 : ?

.ast bits of incoming "1" is:
;ontinuea sampling yields:

first char= 160 (170)

o o
:E: B 0 I 0 : 0 0
second char= 140 (100)

1 : 1 : P

o
o

Therefore, if the first character is a 160 or 170 and the
;econd character is a 140 or 100, the channel is set to 133 baud.

E-5 AN85-01

I

I • • •
I , ...

I
i

P

INDEX

A

accept input 13-6, 13-7, 13-8

accept direct_input operation code
4=4

accept direct output operation code
4=5, 4-6-

ACU
see automatic call unit

addressing strings 12-5

answer table 8-2

answerback 12-2, 12-47, A-11

answering service 1-4, 3-14, 3-22,
7-2

autobaud E-1

break character 1-5, 4-4, 5-8, 5-9,
5-10, 5-15, 5-16, 5-18, 5-22, 9-4,
12-7, 12-49, 13-19, A-7

break list 12-4, 13-14

breakall mode 5-16, 5-24

breakpoint 5-24, 12-38, A-4, B-11

buffer 5-2, 5-5, 6-4, 10-7, 10-8
allocation 16-4
allocation and copying 5-2
chain 6-3, 6-4
pool 10-7, 15-5
size 5-5

C

canonical f?rm 5-8

canonicalization 5-9, 5-11

automatic baud rate detection 12-1 CCT

automatic call unit (ACU) 3-13, 12-1,
12-7, A-3

B

base address word (BAW) 13-17, 13-18

see character control table

CCT descriptor 13-18

CDT
see channel definition table

central system (CS)
responsibilities 1-1

baud rate 5-5, 12-5, 12-29, 15-6, A-7, channel
E-1 initialization 7-2

lock 4-7, 6-1, 6-2
BAW name 2-7, 5-17

see base address word output 1-5
type 3-2

binary synchronous 12-2, 12-7, 12-50

bindfile 12-43, 14-5, 14-6, 15-1,
15-5

channel definition table (CDT) 1-4,
2-3,3-1,3-21,7-2,10-5,12-43,
15-2, 15-6

block check 12-41, 12-43

bootload communications region 15-2,
15-3, 15-4

boot load program 15-2

i-l

channel master file (CMF) 12-43,
12-46

channel manager 1-4, 3-3, 6-1
$checK modes entry 3-7
$control entry 3-6

AN85-01

channel manager (cont)
$get modes entry 3-10
$interrupt entry 3-10
$read entry 3-4
$set modes entry 3-9
$write entry 3-5

character control table (CCT) 12-31,
12-45, 13-16, 13-17

checksum 2-2

circular buffer 2-3, 4-4, 4-7, 7-1,
8-2, 13-8, A-2, A-6

circular queue 2-3

cmtv 3-2, 3-20

command data 4-1, 4-5

communications channels 1-1

concentrator 3-1
channel 1-2

configuration
cards 7-1
deck 2-2, 2-3, 7-1

control blocks
per-channel 2-5

control operation 3-6, 5-19

control table 5-24, 9-3, 9-4, 12-1,
13-5, 13-13, 13-14, 13-15, 13-17

conversion 5-8, 5-11
and translation tables 2-7
table 5-18, 5-21, 6-5

copying 5-10

core image 9-2,12-1,12-43,15-1,
15-2, 16-3, 17-1

coreload command 17-2

crash 8-6

crash interrupt 1-6

crawlout 6-2

D

data buffer 2-5

database pointer 3-4

debug_fnp command 5-24

delay 13-15
characters 13-19

delay (cont)
queue 2-6, 4-4, 4-5, 4-7, 6-1, 6-2,

8-4, 8-5
table 5-4, 5-21, 10-10, A-5

device
info tables 12-2

device element 10-2

device index (devx) 2-4, 2-7, 3-1,
3-4, 3-20, 4-5, 5-2, 5-7, 5-17,
5-18

device speed codes 10-7

devx
see device index

DlA
see direct interface adapter

dialout operation 3-13

dialups 1-4

direct interface adapter (DlA) 4-1,
6-5, 13-1

initialization 15-5
interrupts 13-5
lock 13-3,13-5
request queue 10-7, 10-9, 13-4,

13- 6, 13-8

disable breakall mode operation 5-24

dn355 1-2, 3-3, 4-1

dn355_data 2-1

dn355_mailbox 2-1

dn355=util 6-1, 6-5

dump 14-6

dump_fnp operation 5-23

E

echo buffer 10-8, 12-31, 13-12, 13-14,
13-15, 13-19, 13-20

echo negotiation 5-16

elapsed timer 11-7

enable breakall mode operation 5-24

erase 5-15

erase character 5-13, 5-14

erase processing 5-14

error message queue 10-10

i-2 AN85-01

error messages 8-1, 8-6

escape 5-15
character 5-3, 5-14, 5-15
sequence 5-2, 5-4, 5-8, 5-15

event channel 5-18

exhaust status 12-8, 12-49, 13-14

F

fault 16-1, 16-3, 16-5, B-9

fault vector 14-2

fill character 13-10, 13-11, 13-12,

hardware communications region 10-3,
13-15, B-5, B-15

hardware communications region (HSLA)
15-3, 15-6

hardware communications region (LSLA)
14-4, 15-7

hardware status queue 13-15

high-speed line adapter (HSLA) 7-2,
13-15, £-1

initialization 15-6
software communications region 10-4
table 10-5, 13-15, 14-2, 15-3, 15-5

hndlquit mode 1-5

13-13, 15-7 HSLA

FNP
bootload 15-2
clock 11-5
console 13-20
core images 17-1
crashes 8-6
dump 16-1, 17-1
dump analysis 17-3
initiated transactions 4-2
interface modules 1-2

see module
space management 14-1

fnp_break operation 5-24

fnp_info 2-1, 2-6, 4-7, 7-2

fnp_multiplexer 1-2, 1-4, 3-3

formatting 5-2

formfeed 4-4, 4-5, 5-4

free
block 2-4,10-7,10-8,14-1
chain 10-8
pool 7-1, 14-1
space 2-3, 4-3
space errors 8-7

G

get_buffer entry 6-3

get_chars operation 5-7

get_line operation 5-7

global operations 4-6

H

hangup 1-6

i-3

see high-speed line adapter

I

110 command 2-2

110 module 12-49, 12-50

110 system (iox) 5-1

idle time metering 11-7

indicator 5-4, 5-15, 6-5

indirect control words (IeWs) 10-3

initialization
answering service 1-4
channel 1-4

input chain 2-5, 3-5, 3-12, 4-4, 5-7,
5-19, 5-20, 8- 3, 12-26, 12-30

input conversion table 5-15

input frame 13-9, 13-10, 13-11, 13-13,
14-4, 15-6

input message 12-27

input_accepted operation code 4-4

input_in_mailbox operation code 4-3

instruction counter sampling 11-7

interface modules
FNP 1-2
user 1-2

interpreter 9-4, 12-5, 13-5, 13-13,
16-4

interrupt 3-3, 3-10, 3-23, 4-1, 9-3
cells 11-1
handler 3-3, 3-10, 3-21

AN85-01

interrupt (cont)
level 4-2, 4-3
type 3- 3, 3-11
vector 11-1, 11-2, 15-5, 15-7

interval timer 11-5

10M
channel fault 14-2,14-3,16-1
table 10-1,14-2,15-3,15-5
table entry 10-4

J

jump table 11-1, 11-2

K

keyboard addressing 12-3, 12-17, A-10

kill character 5-13, 5-14, 5-15

kill processing 5-13, 5-14

L

LCNT
see logical channel name table

LCT
see logical channel table

LCT entries (LCTEs) 2-3

LCTE 2-6, 4-7, 5-2, 5-7, 5-18, 6-1,
6-3, 7-2, 8-2

line
adapter 7-2
control 12-49, 12-50, A-5
number 4-5, 13-6, 14-2
status 12-37, 12=49, 12-50, A-9
type 5-8, 12-1, 12-5, 12-13, 12-19,

12-21, 12-31, 12-46, 15-7, A-7

line control order 12-37

local variable 12-32, 12-33, 12-34,
12-35, 12-38, 12-39

lock errors 8-7

locking 6~1

lock channel entry 6-1

lock channel int entry 6-1

logical channel 3-1, 3-10

logical channel name table (LCNT) 2-4,
2-6, 5-18, 7-2, 8-2, 8-4

i-4

logical channel table (LCT) 2-3, 3-1,
6-4, 7-2

low-speed line adapter (LSLA) 7-2,
13-9

initialization 15-6
interrupt processor 13-10
software communications regions

10-4
table 10-4, 13-9, 13-12, 14-2, 15-3,

15-5, 15-6
time slots 10-4

LSLA
see low-speed line adapter

mailbox 13-1
area 2- 1, 4-1

M

header 8-6, 14-3, 15-8, 16-1
operation code 4-1, 4-7
queue 13-4, 13-6

major channel 2-4, 3-1, 3-3, 3-16,
5-19

marker status 12-8, 12-9, 13-19

master dispatcher 11-1, 11-3, 11-7,
15-7

metering 8-1, 14-3

modem E-1

modem option E-2

modes 3-7, 5-8

modes operation 5-19, 5-22

module
call-switching 1-4
chain 16-3
FNP interface 1-2
FNP multiplexer 1-2
multiplexer 1-4, 2-4, 3-5
number 14-6
transfer vector 3-20
tty index 1-3
tty-read 1-3
tty-write 1-3
user interface 1-2, 1-3

Multics processes 1-1

multiplexed channel 3-1

multiplexer 3-1
database 2-1, 3-16, 8-4
initialization 3-14, 3-21, 7-2
loading 3-14, 3-22
module 2-4$ 3-1 f 3-2, 5-19, 7-2~

12-49
see module

AN85-

multiplexer (cont)
subchannel 2-ij, 3-1
termination 3-16
transfer vector module 3-20
type 2-4, 3-2, 3-20, 8-2, 8-4

multiplexing 1-2

multiplexing interfaces 1-ij

N

newline 5-ij, 5-1, 5-8

nonmultiplexed channel 2-5, 5-11

o

op block 12-5, 12-10, B-5

operation code (opcode) 2-2, ij-5,
10-9, A-1

output chain 2-5, 2-6, 3-5, 4-ij, 4-5,
5-5, 5-6, 5-19, 5-20, 8-3, 12-26,
12-21, 14-4

output conversion 5-2

output frame 13-9 t 13-10, 13-12, 15-6

output message 12-21, 12-28

owning process 2-5

P

parent multiplexer 2-4, 3-1, 3-11,
5-5, 8-2

patch_fnp operation 5-24

PCB
see physical channel block

PCW
see peripheral control word

peripheral control word (PCW) 2-1,
6-5

physical channel 2-4, 3=1, 3=3, B-2,
8-4

physical channel block (PCB) 2-6, 4-1

pr~-exhaust status 12-8, 12-49

preliminary conversion 5-2

printer addressing 12-3, 12-11, A-10

i-5

printer_off operation 5-20, 5-22

printer_off sequence 5-20

printer_on operation 5-21

priv channel manager 1-4, 3-3, 3-14
$get devx entry 3-20
$hprIv control entry 3-18
$init channel entry 3-19
$init-multiplexer entry 3-14
$priv-control entry 3-18
$shutaown entry 3-11
$start entry 3-16
$stop entry 3-11
$terminate channel entry 3-19
$terminate:multiplexer entry 3-16

pseudo-DCW 4-5, 8-5, 9-4, A-6

pseudo-DCW list 2-6, 13-5

Q

queue lock 6-2

quit 5-10

quit condition 1-5

R

RCD
see read control data

RCI 12-50

read control data (RCD) 2-2, 4-2,
13-4

command 13-6

read text (RTX) 2-2, 4-4, 13-8

read_status operation 5-20

reject request operation code· 4-3,
4-4

rejected request 13-8

replay chain 12-30, 12-31

responsibilities
central system ,-,
Multics Communication System

character transmission 1-1

RTX
see read text

AN85-01

S

scan 12-26, 12-39, 12-40

scan control string 12-39

scheduler queues 10-7

secondary dispatcher 11-3

segment dump 8-4

send output 3-5
interrupt 3-21, 4-4, 4-6, 5-2
operation code 4-3, 4-5

,set terminal data operation 5-21

size code 2-5, 6-3, 14-1

software communications region 10-4,
13-15, 15-5, 15-7, 16-6, B-5,
B-15

~oftware communications region (HSLA)
10-4, 10-7, .13-18, 15-6

software communications region (LSLA)
10-4, 13-10

software status queue 13-15, 13-17

space allocation 6-3

s,p'ace management 5-9, 6-3

space_needed 6-4

.pecial table 5-21

special_characters table 5-4, 5-20

special_chars 5-15

status 12-7, 12-14, 12-15, B-11

,sUbchannel 2-4
'multiplexer 2-4

subchannel number 2-6, 3-4

submsilbox 2-1, 4-1, 9-4, A-1

system communications region 10-1,
10-10, 14-1, 14-2, 14-5, 14-6,
15-5, B-5

-system crashes 8-1

T

table descriptor 2-7, 2-8

table types 2-7

tally 2-5

TCB

i-6

see terminal control block

terminal control block (TCB) 2-6, 2-7,
5-2, 5-17

terminal 1/0
buffer space 1-2

terminal information block (TIB) 9-3,
10-6, 10-7, 11-5, 12-3, 12-5,
13-5, 13-15, 14-2, 15-5, B-15

extens ion 12-10, 12-22, 12-23,
12-27, 12-32, 12-37, 12-39,
12-40, 12-42, 12-43, B-12

initialization 15-7
table 10-7, 13-4

terminal type table (TTT) 5-21

terminate interrupt multiplex word
(timw) 2-1, 4-2, 4-4, 4-5, 4-6,
4-7, 13-5, 13-7

terminate status 12-8, 12-9, 12-48

TIB
see terminal information block

time slot 13-9, 15-3, 15-6

timeout 12-6, 12-48

timer 12-14,12-18, 12-35, B-11

timer management 11-4

TIMW
see terminate interrupt multiplex

word

trace
buffer 14-5, 16-3
mask 14-6, B-10
table 16-3, 16-4, 16-6, B-10

tracing 14-5

transaction control word 13-3, 13-5,
13-8

transfer timing error 12-49

translation 5-2

translation table 5-11, 5-21, 6-5

tty_ 5-1

tty analyze command 8-1, 8-4, 8-5,
- 8-6

tty_area 2-6

tty_attach 5-17

AN85-01

tty buf 2-2, 4-3, 5-5, 6-3
header 2-3
lock 6-2

tty_canon 5-11, 5-12

tty_dump command 8-1, 8-2

tty_event 5-18

tty index 1-3, 3-3, 5-1, 5-2, 5-17,
- 5-18, 5-19, 6-1

tty interrupt 2-5, 3-3, 3-21, 4-3,
- 4-4, 5-16

tty_lock 4-7, 6-1

tty_meters command 2-3, 8-1

tty_order 5-21

tty read 1-3, 3-3, 5-1, 5-7, 5-8,
- 5-16, 5-17, 5-20, 6-1, 6-5

tty_space_man 2-3, 2-4, 6-1, 8-6

tty_state 5-19

tty_tables 2-7

tty_tables_mgr 2-7

tty_util_ 6-1, 6-5

tty write 1-3, 3-3, 5-1, 5-2, 5-3,
- 5-4, 5-5, 5-7, 5-17, 5-21, 6-1,

6-5

u

user interface modules
see module

user process 2-5

v

vertical tab 5-4

w

wakeup 1-3, 1-5, 1-6, 3-3, 3-22, 4-3,
4-4, 4-6; 5-2, 5-7, 5-8, 5-16,
5-18, 6-4

weD
see write oo~trol data

white space 5-4

i-7

wired terminal control block (WTeB)
2-5

write control data (WeD) 2-2, 4-5,
12-6, 13-5, 13-8

write text (WTX) 2-2, 4-6, 13-5

write_status operation 5-20

wru operation 5-22

WTeB
see wired terminal control block

WTX
see write text

AN85-01

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	07-01
	07-02
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	09-01
	09-02
	09-03
	09-04
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	12-18
	12-19
	12-20
	12-21
	12-22
	12-23
	12-24
	12-25
	12-26
	12-27
	12-28
	12-29
	12-30
	12-31
	12-32
	12-33
	12-34
	12-35
	12-36
	12-37
	12-38
	12-39
	12-40
	12-41
	12-42
	12-43
	12-44
	12-45
	12-46
	12-47
	12-48
	12-49
	12-50
	12-51
	12-52
	12-53
	12-54
	12-55
	12-56
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	13-14
	13-15
	13-16
	13-17
	13-18
	13-19
	13-20
	13-21
	13-22
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	16-01
	16-02
	16-03
	16-04
	16-05
	16-06
	16-07
	16-08
	17-01
	17-02
	17-03
	17-04
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	B-24
	C-01
	C-02
	C-03
	C-04
	D-01
	D-02
	D-03
	D-04
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	i-01
	i-02
	i-03
	i-04
	i-05
	i-06
	i-07
	i-08

