

Entry: initialize_permit

This function is called by move_tape_ to query the user for
permission to initialize a volume. It returns a bit indicating
whether or not permission is granted. (The standards provide for
automatic initialization of blank tapes and correctly labeled
expired volumes.) based upon the value of vl.write_VUL1, the
VOLl label valid/invalid indicator, control is passed to one of
an array of labels. Each section initializes the particular
query to be issued and transfers to the common code.

Entry: initialize_permitA

This function entry point is called by fill_fl_from_HDRl and
write_new_section to query the user for permission to
reinitialize an unexpired volume. It returns a bit indicating
whether or not permission is granted. (The expired/unexpired
status of the first file section on a volume is sufficient to
determine the status of the entire volume.) After initializing
the query to be issued, control passes to the common code.

The common code completes the initialization of the
query_info structure and calls the external procedure
command_query_. If the returned answer is "yes" (permission
granted), the procedure returns the value "1 "b. Otherwise, it
returns the value "O"b.

Entry: initialize volume

This procedure is called by abort_file, fill_fl_from_HDR1,
wove_tape_, and write_new_section to initialize a volume. Volume
initialization consists of writing a VULl label and, depending
upon the standard, one or two file label double tape mark
sequences.

The volume's vl.cflX is invalidated and
tape_ansi_tape_io_$order is invoked to rewind the volume. An
ANSI or IBM V0Ll label is constructed in cseg.lbl_buf A state
variable is set to indicate that either two (ANSI) or one (IBM)
file label - double tape mark sequences are to be written. The
procedure write_label is called to write the VOLl label.

An ANSI or IBM dummy HDRl label is placed in cseg.lbl_buf,
and write label lS called to write it out. The procedure
tape_ansi_tape_io_ is invoked to write two tape marks. In the
AWSI case, the same process is repeated for an EOFl label -
double tape mark sequence.

11-30 AN57

The result is that the volume is initialized according to the
standard:

ANSI VOL 1 H DR 1 * * E (j F' 1 * if

IBM VOL 1 liDR 1 * *

where * represents a tape mark.

An ANSI volume is initialized with a valid first file
structure, but that an IBM volume is not. If an error occurs
during any step of the initialization process, the procedure
returns whatever error code it received from write label or
tape_ansi_tape_io_$order.

Entry: lrec_open

This procedure is called by the $open code to perform final
validation of the logical record characteristics and to
initialize the cseg for file opening. Validation consists of
checking the record and block lengths in their contextual setting
(i.e., depending upon file set standard, opening mode, and record
format). If either the record length or block length is invalid,
a nonlocal transfer is made to er_exit with error code
error_table_$invalid_record_length or
error_table_$invalid_block_length, respectively. In the IBM
case, the encoding mode is also validated and if it is binary, a
similar transfer is made with the error code
error_table_$invalid_encoding_mode.

The cseg is initialized. The procedure
tape_ansi_tape_io_$open is invoked to initialize the tseg buffer
management strategy. The variable cseg.lrec.blkcnt is set to
zero in the input case and to fl.blkcnt in the output case. In
all output modes but extend, fl.blkcnt contains zero. In extend
mode, it contains the current block count. This convention
ensures that the block count eventually written in the EOF1 or
£UV1 label (taken from cseg.lrec.blkcnt) reflects the cumulative
block count resulting from an extend operation.

This procedure is called by the extend_file portion of the
$open code to position the volume set to immediately beyond the
last data block of the file. The file chain is scanned starting
with the current link (corresponding to the first file section)

11-3 1 AN57

until the last file section link is found. (The extend chain
portion of the $open code has already built the file chain to
that last link, if it did not already exist.) The procedure
move_tape_ is called to position the volume set to the trailer
labels of that section, and back_T~ is called to backspace over
the end-of-data tape mark. These steps correctly position the
voluQe set for f'ile extension. If either of the above called
procedures returns an error code, a nonlocal transfer is made to
er exit.

This procedure is responsible for volume set positioning and
implements the Ill; tvlodule' s triadic (volume index, file section
index, intrasection position) position specification mechanism.
It is the only internal procedure that itself contains internal
procedures, and is therefore documented in the style of an
external procedure.

Usage call move_tape_ (vX, fX, posit, ecode);

1. vX is the index of the volume link corresponding
to the df3ired volume. (Input)

2. fX is the index of the file link corresponding
to the desired file section. (Output)

3. posit

4. ecurle

is the intrafile section position code:
o - HDRl label
1 - first data block
2 - EOFl or EU~l label
(Input)

is a standard status code. (Output)

Ihe variable vl.rcp_id is checked to determine whether or
not the desired volume is currently mounted. If it is not
mounted and the number of assigned drives (cseg.nabtive) equals
or exceeds the user-specified maximum (cseg.ndrives), the
internal procedure find_candidate is invoked to determine the
volume index of a volume that can be demounted. The procedure
tape_ansi_mount_cntl_$remount is then called to demount the
volume located by find_candidate and mount the desired volume on
its drive. If the number of assigned drives is less than the
user-specified maximum, tape_ansi_mount_cntl_$mount is invoked to
assign a new device and mount the desired volume. Should this
request for new device assignment cause the process device limit
to be exceeded, move_tape_ recovers automatically by performing
the find_candidate/tape_ansi_mount_cntl_$remount sequence
described above.

1 ~ - 32 AN57

~hether or not the desired volume was mounted when
move_tape_ was invoked, it is mounted at this point. The
v~lume's drive number (vl.rcp_id) and IPC event channel id
(vl.event_chan) are placed in the tdcm_ tseg portion of the cseg.
This step makes known, independent of the volume link index, the
parameters that determine the device currently being used by the
I/U Module. When tape_ansi_tape_io_ is replaced by an
rcp_/tape_ioi_ interface, the tseg will be obviated; however,
the current device parameters should still be maintained outside
of the volume link, in order to provide for device I/O
independent of the file chain/volume chain mechanism.

The status of the VOL1 volume label is determined by
checking vl.write_VOL1, which was set by tape_ansi_mount_cntl_
when the volume was mounted. This variable specifies whether or
not a VOL1 label.need be written, and if so, why. A nonzero
value indicates that a new label should be written. If the
opening mode (cseg.open_mode) is for sequential_input, the need
to write a label is an unrecoverable error; i.e., the tape's
VOL1 label characteristics preclude its being processed as
specified by the attach description. In this case, the external
procedure ioa_ is invoked to print an explanatory message via
user_output, normally directed to the user's terminal. The
message text varies with the value of vl.write_VUL1, explicitly
specifying the discrepancy detected between the attach
description and the actual volume characteristics. The procedure
then exits with the error code error_table_$uninitialized_volume.

If, however, the opening mode is for sequential_output, the
volume can be (re-)initialized, contingent upon the successful
completion of a series of checks. If vX, the volume link index
parameter, specifies the first volume of the volume set, then the
function creating_first is invoked. If the attach description
specifies creation of other than the first file of the file set,
the operation is invalid because (re-)initializing the first
volume set member effectively truncates the file set. An
explanatory message is issued as described above, and the
procedure exits with the error code
error_table_$uninitialized_volume. If vl.write VUL1 indicates
that the tape is blank, no further checks need be performed;
otherwise, the procedure initialize_permit is invoked to query
the user for permission to initialize. If permission is denied,
the procedure exits with the error code
error_table_$uninitialized_volume. If permission is granted, the
procedure initialize_volume is called to initialize the volume.
If a nonzero error code is returned, the procedure exits with
that code; otherwise, vl.write_VOL1 is set to 0, indicating that
the volume no longer requires (re-)initialization.

The procedure begins to position the
variable can_retry, initialized to

11-33

tape.
"O"b

The automatic
upon procedure

Al~ 57

activation, is set to "l"b. when an error is detected within
move_tape_, control always passes to the error exit code labeled
error. This code invalidates the volume position (vl.cflX) and
tests can_retry. If it is "l"b, it is set to "O"b and control
passes to the label retry, which restarts the positioning
operation. If it is already "O"b, the procedure returns with
whatever error code is set. This algorithm provides one
opportunity to resynchronize a volume's position with its volume
link position data.

If the volume position is unknown or in the ~UL/UVL label
set (vl.cflX = G), the internal procedure move to_first HDH is
invoked to position the volume to the first HuRl label on the
tape. (lhis procedure call is labeled retry.) Once this has
been done, vl.cflX is set to the index of the first file section
on the volume (vl.fflX). The intrafile position indicator
(vl.pos) is also known, and is set to indicate the HDR label
group.

If t'X, the file link index parameter, is greater than
vl.cf11, rnove_tape_ must position forward a calculated number of
tape marks. Positioning is done by the internal procedure
move forward. If fX is less than vl.cfIX, the internal procedure
move_backward is invoked, and if fX is equal to vl.cfIX, either
move_forward or move_backward is invoked depending upon the value
of vl.pos. Even if vl.pos is equal to posit, the intrafile
position parameter, move_backward is invoked to ensure that the
tape is positioned at the initial block of the desired positiori
and not at an indeterminate medial point. vl.cflX and vl.pos are
then set to fX and posit, respectively, indicating that the
requested positioning operation has been successfully per'formed,
and the procedure returns. Should an error occur during any of
the above steps, a transfer to error is made with whatever error
code has been detected.

Internal Procedures

Entry: find candidate

This procedure searches the volume chain for a mounted
voluQe to be demounted, allowing the desired volume to be mounted
in its place. The search goes from the first volume set member
to the volume preceding the desired volume, and then from the
last volume chain entry to the volume link following the desired
volume. The first mounted volume ends the search. The algorithm

AN57

results in mInImum mounting/demounting if volume processing is
performed in the usual manner, i.e., sequentially, from first to
l~st volume set member. If no mounted volume is found, the
procedure performs a nonlocal transfer to error with the code
error_table_$invalid_cseg. This is done because find_candidate
is never invoked unless move_tape_ has determined that a
candidate for demounting does exist, by comparing cseg.ndrives
with cseg.nactive.

This is the procedure that actually implements tape
positioning by issuing calls to tape_ansi_tape_io_$order. It
contains the entry points move_forward and move_backward, as well
as the entries move_to_first_UHL and move_to_first_DTL, neither
of which is currently used.

The entry point tape_io_$order is called to rewind the
volume. The procedure read_label is invoked to read a label, and
the call is repeated until a label beginning with HDR is
encountered. (This call is labeled HDR_search.) The entry point
tape_io_$order is called again to backspace to the beginning of
the label, and the procedure returns.

Entry: move_forward

This entry point calls tape_ansi_tape_io_$order to forward
space over as many tape marks as is necessary to perform the
desired positioning operation.

Entry: move_backward

This entry calls tape_ansi_tape_io_$order to perform all but
one of the backspace file operations necessary to correctly
position the tape. The last such operation is also performed by
tape_ansi_tape_io_$order, but the error code is specially checked
to determine whether or not the volume was left positioned at
beginning of tape. If it was, control transfers to HDR_search to
effect positioning to the HuRl label, as opposed to the VuLl
label. Otherwise, tape_ansi_tape_io_$order is invoked to forward
space over the last tape mark encountered, leaving the tape
correctly positioned.

11-35 AN57

Entry: next_volume

This function is called by process_~UX, as well as by the
mainline entry data_eot, to determine whether or not the next
volume set member already exists or can be created. A return
value of "1"b indicates that it can.

If the volume link index of the current file link (fl.vlX)
is less than the highest vol ume chain index (cseg. vcl~) , the
procedure immediately returns "l"b because the next volume is
already known. If fl.vlX is 64, the implementation restriction
on the maxilflum number of volumes, then the external procedure
ioa is called to issue an explanatory message and the procedure
returns "O"b. This case is not treated as an error in the usual
sense, because file set processing can and must be continued as
though no other volume were available.

having derived no information from the volume chain, the
procedure examines the current file link to determine whether or
not the name of the next volume can be extracted from the trailer
label set. If it cannot, another_volume is invoked to query the
user for the name of the next volume, if any. Should both of the
above fail to provide the next volume, the procedure returns
"O"b. If ei ther does, cseg. vcN is incremen ted to reflect the
addition of a new volume link and vI init is called to initialize
it. The volume name is then set in the new volume link, and the
procedure returns "l"b. The algorithm ensures that a volume name
entered into the volume chain (from the attach description, etc.)
can override the one specified in an EOV2 label, if the one field
exists.

Entry: process_BGX

This procedure is called by build2, as well as by the
mainline entry data_eof, to read the trailer label set, validate
its contents, and store information in the file link.

An on unit for the conversion condition is first established
that transfers control to an error exit, bad_EOX, which returns
the error code invalid label format. The procedure read_label is
invoked to read the first trailer label. If this read encounters
a tape mark, the procedure returns the error code
error_table_$invalid_file_set_format because either an EOF1 or
~OVl label must be present. The file link trailer type (fl.eox)
is set according to whether the label read is an EOF1 or an EOV1.
This variable indicates whether or not volume switching is to be
performed upon detection of a tape mark (indicating end of file
section) while reading data, i.e., whether or not the file
section is the last (or only) section of the file. If the label

11-36 AN57

is neither E0F1 nor EOV1, the procedure returns the error code
error_table_$invalid_file_set_format.

Data, such as generation version number and block count, are
extracted and stored in the file link. The procedure read label
is invoked again to read the second trailer label, if any. If
the read operation encounters a tape mark, no EGF2 or EOV2 label
exists; tape_ansi_tape_io_$order is therefore called to space
back into the trailer label set. If the first label was an EOF1,
processing is complete and the procedure returns. If the first
label was an EOV1, another file section must reside on the next
volume. The procedure next_volume is called to determine its
name, if possible. The volume name, if found, is stored in the
file link and the procedure returns. Otherwise, the procedure
returns the error code error_table_$no_next_volume.

If a second trailer label is present, it must be either a
UTL or of the same type as the first trailer label. An UTL is
treated as though no second label were read at all. If the types
differ (e.g., EvE1 and EOV2), the procedure returns the error
code error_table_$invalid_file_set_format. If the types match
and the trailer set is EOF, the EOF2 lab~l need not be processed
(as it is an exact duplicate of the BDR2) and the procedure
returns.

If the second label is an EUV2, indica ting an Ai~.sI file se t,
and the label contains the name of the next volume, that name is
stored in the file link and the procedure returns. If any of the
above are not satisfied, next_volume is invoked to attempt to
determine the name of the next volume. The name, if one can be
determined, is stored in the file link and the procedure returns.
Utherwise, the error code error_table_$no_next_volume is
returned.

Entry: read_HUR1

This procedure is called by build1, desired_check, and
fill fl from_HDR1 to read and validate a HDR1 label. The
parameter eofsw is first set to "O"b. This variable indicates
whether a tape mark, as opposed to a HDR1 label, is read. The
procedure read_label is invoked to read a label into
cseg.lbl_buf. If a label is successfully read, it must be a HDRI
label. Otherwise, the error code
error_table_$invalid_file_set_format is returned. If a tape mark
is detected, the volume link intrafile position indicator
(vl.pos) is incremented to reflect the tape mark crossing. The
procedure back_TM is called to backspace over the tape mark, the
eofsw parameter is set to "1 "b, and the procedure returns. A
tape mark where a HDR1 label would otherwise be found indicates
the logical end of the volume. In addition, since read HuR1 is

11-37 AN57

never invoked once an EOV trailer set has been processed on a
volume, finding a tape mark also indicates the logical end of the
file set. If an error is detected while reading or backspacing,
the procedure returns that error code.

Entry: read Hvft2

This procedure is called by build1 to read and validate a
HDR2 label. The file link variable fl.HDR2 is first set to "O"b.
This variable indicates whether or not the file section contains
HDR2 (and, by implication, EOF2 or EO~2) labels, and therefore
whether or not the file attributes (block length, record format,
etc.) can be obtained from the file itself. The procedure
read_label is invoked to read a label into cseg.lbl_buf. If a
hDH2 label is read,· fl. HDR2 is set to "1 "b. Any other label
(i.e., UHL label) is ignored. If a tape mark is detected, vl.pos
is incremented and back_TM is called to backspace over it. The
lack of a hDR2 label is not an error.

Entry: read_label

This procedure is called by move_tape_, process_EUX,
read_HDR1, and read_HDR2 to read a file or volume label into
cseg.lbl_buf. The entry point tape_ansi_tape_io_$sync_read is
called to synchronously read one tape block. If a block is
successfully read, its length is checked to determine whether or
not the block could be a label. A length of less than 80
characters causes the procedure to return the error code
error_table_$invalid_label_format. If the block length is 80
characters or more, it is moved from the synchronous I/O buffer
to cseg.lbl_buf. If the file set is IBM standard, the external
procedure ebcdic to_ascii_ is called to perform character code
conversion.

Entry: write_label

This entry point is called by initialize_volume and
write_BURs to write a file or volume label from cseg.lbl_buf.
The label is first moved from cseg.lbl_buf into the synchronous
I/O buffer. If the file set is IBM standard, the external
procedure ascii_to_ebcdic_ is called to perform character code
conversion. The entry point tape_ansi_tape_io_$sync_write is
then invoked to synchronously write the label.

11-3b AN57

This procedure is called from the $open code to initialize a
file link preparatory to file ~reation. Since the file link
describes a new entity, it must be completely filled in from
user-specified data, invariable creation-specific values, and (if
necessary) a set of file attribute defaults. The HDR1 portion of
the file link data is initialized in part from the file data
structure and in part from constants within the procedure itself.
The procedure fill_flhdr2_from_fd is then invoked to complete the
BDR2 portion of the file link.

This procedure is called from the $open code to initialize
the file data structure preparatory to file extension or
modification, and to modify and/or complete the file link. The
file name and sequence number are set in file data from
fl.file_id and fl.sequence, respectively, in case one or the
other was not explicitly specified in the attach description. If
the file set is ANSI standard, the file link version number is
incremented to reflect the pending operation. The file link
creation date is set to the current date. If the operation is
file modification, the current file block count (fl.blkcnt) is
zeroed, because modification truncates the file. Otherwise, the
block count is left as is, because the operation of file
extension leaves the file's current contents unaltered and the
block count must therefore be incremented from its initial value.

The procedure fill_fdhdr2_from_fl is invoked to fill the
BDR2 portion of the file data structure from the file link. This
step ensures that any file attributes specified in the attach
description do, in fact, match the attributes recorded in the
HDR2 label, if any. The procedure fill_flhdr2_from_fd is invoked
to fill the HDR2 portion of the file link from the file data
structure, without applying any defaults. This step ensures that
the pending operation is not performed unless a ccmplete,
consistent attribute set has been composed from the attach
description, the HDR2 label (if any), or both.

11-39 AN57

This procedure is called from the $open code to initialize
or complete a file data structure preparatory to reading a file.
The file link is never changed to conform to the file data, and
the two can in fact differ as regards the file attributes. A
file can therefore be processed according to a mOl't::; or less
arbitrary set of file data (user-specified) attributes t while
preserving the file's actual characteristics in the file link.

The file identifier and sequence number are first copied
from the file link into the file data structure, in case one or
the other was not specified in the attach description. If the
record format was user-specified (fd.format "= 0), the record
bing attribute (fd.blocked) is also known. If they are not
specified, the record format and blocking attribute must be
obtained from the HlJR2 portion of the file link. The block
length (fd.blklen) and record length (fd.reclen) are similarly
checked and, if necessary, their values are set from the file
link. In the case of the record length, however, defaults can in
some cases be applied when the file link contains no information.
Under all other circumstances, failure of the file link to supply
a record format, record length, or block length not specified in
the attach description results in a nonlocal transfer to er_exit,
with the error code error_table_$insufficient_open.

If the file set is ANSI, the block prefix length (fd.bo) is
set from the file link because this value, if present, is
invariant. If the file was written by the I/O Nodule, the
blocking attribute and character encoding mode (fd.mode) are also
set from the file link, if not user-specified. If neither
user-specified nor obtainable from the file link, they are set to
the ANSI defaults, blocked and ASCII, respectively.

For an IBrvi
mode are set to
user-specified.

file set, the blocking attribute and encoding
blocked and EBCDIC, respectively, if not

This procedure is called from the $open code to initialize
the file data structure preparatory to file generation, and to
modify and/or complete the file link. The file name and sequence
number are set in the file data from the file link, in case one
or the other was not specified at attach time. The file link
generation number (fl.generation) is incremented by 1, modulo
10000. (The largest possible value is 9999.) The generation
version number is set to 0, indicating a new generation, and the
creation and expiration dates (fl.creation and fl.expiration) are

11-40 AN57

set from the file data. The procedure fill_fdhdr2_from_fl is
invoked to attempt to fill the HDR2 portion of the file data from
the file link. This step ensures that any file attributes
specified in the attach description do, in fact, match the
attributes recorded in the HDR2 label, if any. The procedure
fill flhdr2_from_fd is called to fill the HDR2 portion of the
file link from the file data, without applying any defaults.
This step ensures that a complete, consistent attribute set is
composed from the attach description, the HDR2 label (if any), or
both.

Entry: truncate chains

This procedure is called from the $open code preparatory to
creating, extending, modifying, or generating a file. Since the
act of writing physically truncates the file set, the file and
volume chains must be correspondingly truncated. This procedure
is also invoked by consistent and abort_file to perform the same
function should an output operation be abnormally terminated
during opening or closing.

A cleanup handler is first established so that interrupting
the truncation process does not leave the chains in an
inconsistent state. The file chain is truncated immediately
following the link pointed to by cseg.flP. This file link is
referred to as the desired link. The value of cseg.flP is saved,
so that it can be reset to point to this link once the truncation
process is complete. The desired link at that point is the last
link in the chain. If, therefore, the desired link is already
the last link, no action need be taken and the procedure simply
returns. Otherwise, cseg.flP is set to point to the next link in
the chain (cseg.flP = cseg.flP -> fl.nextP). This link is
referred to as the truncation link. The forward chain pointer in
the desired link (cseg.flP -> fl.backP -> fl.nextP) is nulled,
logically truncating the file chain. However, the truncation
link as well as all following links (if any) are still physically
allocated in cseg.chain_area.

If the truncation link is not an eofsl, its file link index
(fl.flX) occurs in the range of its associated volume link (vI
(fl.vIX).fflX ~ fl.flX ~ vI (fl.vIX).lflX). This volume link
must therefore be either partially or completely truncated;
i.e., reference to the truncation link and all subsequent file
links (if any) must be removed. In addition, all subsequent
volume links must be entirely truncated. Since an eofsl has no
associated volume link, truncating the eofsl does not affect the
volume chain at all. If the truncation link corresponds to the
first file section on a volume (fl.flX = vI (fl.flX).ffIX), that
volume link is entirely truncated (vl.fflX, vl.cflX, vl.lflX =
0). utherwise, the volume link must be partially truncated. The

11-41 AN57

last file link index for the volume (vI (fl.vIX).lfIX) is set to
the desired file link index (vI (fl. vlX) .lflX = fl. fIX - 1),
since that is the last file link on the volume. In either case,
all subsequent volume links, if any, are entirely truncated.

because the critical portion of the procedure is complete,
the cleanup handler is reverted. Beginning with the truncation
link, it and all subsequent links (if any) are freed from
cseg.chaio_area. cseg.flP is restored to point to the desired
link.

Entry: vI init

lhis procedure is called by next_volume to initialize a new
volume link. Every member of the volume link structure except
the volume name (vl.volname), is set.

Entry: vname

This function is called by another_volume to validate and
normalize a use~-supplied volume name. If the volume name is
longer than b characters, it is invalid and the procedure returns
"O"b. If it is exactly G characters, the procedure returns "l"b.
If it is less than 6 characters, the name is normalized and the
procedure returns "l u b. If the name is entirely numeric, it is
normalized by right justifying and padding on the left with zeros
to length six. If not entirely numeric, it is normalized by left
justifying and padding on the right with blanks to length six.

Entry: write_HDRs

This procedure is called by the $open code to write HDRl and
hVk2 labels as part of the file creation and generation
processes. It is also called by write_new_section to write the
header ~aoels for a new file section. ~t sets tne Ille llnK
trailer label type (fl.eox) to 0, indicating that the file
section contains (as of yet) no trailer labels, and transfers to
the common body of code.

11-42 AN57

Entry: write_EOFs

This entry point is called by the $close code to write an
EOF trailer label set once file processing is complete. It is
also called by abort_file to overwrite an EOV trailer set with an
EOF trailer set, thus truncating one or more defective file
section(s). It sets fl.eox to 1, indicating an EOF trailer set
and that the file section is the last (or only) of the file. It
then transfers to the common body of code.

Entry: write_EOVs

This entry, point is called by the mainline data_eot code to
write an EOV trailer label set once physical end of tape has been
detected by the logical record I/O procedure. It sets fl.eox to
2, indicating an E0V trailer set and that the file section is
medial.

The common code performs the actual label writing by
invoking write_label. The procedure write_HDRs always writes a
HDR2 label, but that write_EOFs and write_EOVs will only write an
~0F2 or EOV2 if the file's header label set includes a HDR2.
This practice ensures that the header and trailer label sets of
files not created or generated by the I/O Module' remain
symmetric. The physical end of tape is ignored, so that volume
switching is only driven by 80T during logical record I/O
operations.

Entry: write_TM

This procedure is called by numerous internal procedures to
write either 1 or 2 tape marks, adjusting the volume link
intrafile position indicator (vl.pos) accordingly. The entry
point tape_ansi_tape_io_$order is invoked to perform the actual
tape mark write operation(s). For each tape mark written, vl.pos
is incremented. This is done according to the rules of modulo 3
arithmetic, and an overflow causes the current file link index
(vl.cflX) to be incremented. (There are only 3 possible
intrafile positions.)

11-43 AN57

Entry: write new_section

This procedure is called by the mainline data_eot code to
add a new file section to a file. The variable cseg.flF is set
to point to the next file link, which must be an eofsl, and
make_eofsl_real is invoked to establish a file/volume link
interrelationship. The procedure build_eofsl is called to append
another eofsl to the file chain, and move_tape_ is called to
position the volume set preparatory to writing the new section's
header labels.

before the labels can be written, however, the first HDRl
label on the volume must be checked to ensure that the volume's
current contents are expired. If this is not the case,
initialize_permitA is invoked to query the user for permission to
overwrite. if permission is denied, the procedure returns the
error code error_table_$unexpired_volume. Otherwise,
initialize_volume is invoked to reinitialize and move_tape_ is
called to reposition for writing.

The procedure fill_new_section_fl is called to fill the file
link with data derived from the previous section's link, and
write HDHs is called to write the new header label set. The
procedure write_TM is invoked to write one tape mark.

This module performs the iox_$open and iox_$close functions
for IBM NL (nonlabeled) file sets. In addition, it performs
end-of-file and end-of-volume processing for
tape_ansi_ibm_lrec_io_, as well as beginning-of-file and
end-of-file positioning for tape_ansi_position_.

This entry point performs the iox_$open function. It
positions to the attached file, mounts ana/or demounts volumes as
needed, and maintains the volume chain.

11-44 AN57

Usage

dcl tape_ansi_nl_file_cntl_$open ext entry
(ptr, fixed bin, bit (1) aligned, fixed bin (35»);

See the description of tape_ansi_file_cntl_ for a discussion of
the arguments.

If code is nonzero, an error has occurred and the 1/0 switch
is not open. The following is a nonexhaustive list of the
error_table codes that can be returned. See the description of
tape_ansi_file_cntl_ for a discussion of their meanings.

file_aborted
file_busy
incompatible_attach
incompatible_encoding_mode
insufficient_open
invalid_block_length
invalid_cseg
invalid_file_set_format
invalid_record_length
noalloc
no_file
no_next_volume
uninitialized_volume

II~TEfiNAL LUGIC

The cseg pointer is obtained from the IOCB. If either
cseg.invalid or cseg.file_lock is "1"b, an error exit is taken
with the error code error_table_$invalid_cseg or
error_table_$file_busy, respectively. A cleanup handler is
established to ensure that neither the cseg nor the file is left
in an inconsistent state. The opening mode is validated against
the attach description. If a discrepancy exists, the procedure
returns the error code error_table_$incompatible_attach.

The file link pointer (cseg.flP) is set to null, and the
file data volume index (fd.vlX) is initialized to 1, for the
first (or only) volume. The file chain is not used by this
procedure, since it does not maintain a "history" of the file
set. All data used to process a particular file are maintained
in the file data structure. This being the case, it is necessary
to index into the volume chain using a file data variable
(fd.vlX), as opposed to the corresponding file link variable
(fl.vlX), which is undefined.

11-45 AN57

If' the opening is for sequential_input, the record format
and block length must be specified. For all record formats
except U, the record length must also be specified. The absence
of any of the above attributes causes the procedure to return the
error code error_table_$insufficient_open. If the character
encoding mode is not specified, its defaul t is EBCDIC. The
procedure move is invoked to position to the file. If an error
occurs, the procedure transfers to the label er_exit with
whatever error code was returned. The code at er exit calls
consistent before returning to ensure that no inconsistencies
exist in the file or the cseg. If the positioning is successful,
lrec_open is called to perform final consistency checks on the
file attributes and to initialize the logical record I/O control
structure (cseg.lrec). If no error has been detected, the I/O
switch is opened and the procedure returns.

If the opening is for sequential_output, the output mode
must be create. (Wonlabeled files cannot be attached for
extension, modification, or generation.) If the record format is
not specified, its default is VB. If the block length is not
specified, i ts default is b 192. An unspecified record length
defaults to the block length if the record format is F or FB, to
8l8b if the record format is V or VB, or to 1044580
(sys_info_$max_seg_size ~ 4) if the record forQat is ~S or VBS.
The default encoding mode is ~bCDIC. The procedure move is
called to position to the desired file. If an error occurs, the
procedure transfers to er_exit with whatever error code was
returned. The procedure lrec_open is called to perform the final
attribute consistency checks and to initialize the logical record
I/O structure. If this step succeeds, the I/O switch is opened
and the procedure returns.

This entry point is called by tape_ansi_ibm_lrec_io_ when a
tape mark is detected in the course of a read operation. It
determines whether the EOF indicates the end of the file or
merely the end of a file section. In the latter case, volume
switching is performed.

usage

dcl tape_ansi_nl_file_cntl_$data_eof ext entry
(ptr, fixed bin (35));

If code is neither zero nor error_table_$no_next_volume, an
error has occurred and the I/u switch is closed. The latter code
indicates that no additional volumes are available, and that
further I/O activity should be prohibited.

i 1-46 f\)'1t:::7
.n.u,.; I

INTERNAL LOGIC

The cseg pointer is obtained from the 10eB. It is not
necessary to check either cseg.invalid or cseg.file_lock. The
former must be "O"b, or tape_ansi_ibm_lrec_io_ could not have
been invoked, and the latter must be "l lt b because it ~ invoked.
The consistency code (cc) is set to zero and a cleanup handler is
established.

Since the caller has already read over a tape mark (into the
next file), the volume link's current position indicator
(vl.cflX) must be incremented. (The variable vl.cflX does not
strictly represent an index into the file chain, but rather the
actual physical file number. The variable vl.pos is not used
because there are no intrafile pOSitions within a nonlabeled
file, and vl.fflX. and vl.lflX are not used because there is no
file chain upon which to base a range of indices.) The entry
point tape_ansi_ibm_lrec_io_$close is called to terminate 1/0 on
the file section, synchronize the tape position, etc. If an
error occurs during this process, consistent is invoked and the
1/0 switch is closed.

To read a multivolume file, the user must specify every
volume set member in the attach description. Hence, determining
whether the file section is the last (or only) one of the file
set (and therefore whether or not volume switching is required)
is a minor task. If the current volume index ·(fd.vlX) is equal
to the index of the last volume (cseg.vcN), the file section is
terminal and the procedure returns the status code
error_table_$end_of_info. Otherwise, move is called to position
to the next file section, which is by definition the first file
on the next volume. If an error occurs while positioning,
consistent is invoked and the liD switch is closed. If
positioning is successful, the procedure returns to
tape_ansi_ibm_lrec_io_ to resume reading data.

This entry point is called by tape_ansi_ibm_lrec_io_ when
end of tape is detected in the course of a data write operation,
and by tape_ansi_control_ in response to an "feov" order. It
switches to the next volume of the volume set, if any.

Usage

dcl tape_ansi_nl_file_cntl_$data_eot ext entry
(ptr, fixed bin (35»;

11-47 AN57

If code is neither zero nor error_table_$no_next_volume, an
error has occurred and the l/U switch is closed. The latter code
indicates that no additional volu~es are available and that
further 1/0 activity should be prohibited.

INTERNAL LUGIC

The. cseg pointer is obtained from the IGCB. For the
reasons stated above, neither cseg.invalid nor cseg.file_lock
need be checked. The procedure next_volume is invoked to
determine whether or' 'not another volume is available for
continued processing. If not, the procedure returns the status
code error_table_$no_next_volume.

If a volume is available, cc is set to 2 and a cleanup
handler is established. This handler prevents leaving an
inconsistent file section on the volume set should the procedure
be prematurely terminated. The procedure write_TM is invoked to
write a single tape mark, which logically terminates the file
section. If an error occurs, consistent is invoked and the I/u
switch is closed. writing the tape mark leaves the file set in a
consistent state. Therefore, the consistency code can be reset
to 0, so that the file section is not truncated should an error
occur in a subsequent step. The procedure move is called to
position to the beginning of the next volume, where the new file
section is recorded. If an error occurs, consistent is invoked
and the I/U switch is closed. If positioning is successful, the
procedure returns to tape_ansi_ibm_lrec_io_ to resume writing
da ta.

This entry point is called by tape_ansi_position_ to
implement the -1 (position to beginning of file) operation.

dcl tape_ansi_nl_file_cntl_$beginning_of_file
ext entry (ptr, fixed bin (35));

call tape_ansi_nl_file_cntl_$beginning_of_file
(iocbP, code);

If code is nonzero, an error has occurred and the 110 switch
J..;) closed.

11-4b AN57

INTERNAL LOGIC

The cseg pointer is obtained from the 10CB. Neither
cseg.invalid nor cseg.file_lock need be checked. The variable cc
is set to 0 and a cleanup handler is established that calls
consistent and closes the I/O switch. The procedure move is
invoked to position to the first (or only) file section. If an
error occurs, consistent is called and the I/O switch is closed.

-~is entry point is called by tape_ansi_position_ to
implement the +1 (position to end-of-file) operation.

usage

dcl tape_ansi_nl_file_cntl_$end_of_file
ext entry (ptr, fixed bin (35»;

call tape_ansi_nl_file_cntl_$end_of_file
(iocbP, code);

If code is nonzero, an error has occurred and the I/O switch
is closed.

INTER~AL LOGIC

The cseg pointer is obtained from the IOCB. Neither
cseg.invalid nor cseg.file_lock need be checked. The variable cc
is set to 0 and a cleanup handler is established that calls
consistent and closes the I/O switch.

If the file is already positioned past the end-of-file tape
mark (as the result of tape_ansi_ibm_lrec_io_ read operations),
tape_ansi_tape_io_$order is invoked to position immediately after
the last data block (immediately preceding the tape mark). The
current position indicator (vl.cfIX) is decremented to reflect
the new position, and the procedure returns.

otherwise, tape_ansi_ibm_Irec_io_$close is called to
synchronize the tape position before performing any other
positioning operation. If the current volume is not the last of
the volume set (fd.vIX R= cseg.vcN), the current file section is
not the last of tne file. The procedure move is therefore

11-49 AN57

invoked to position to the last section, which by definition must
be the first file on the last volume. The entry point
tape_ansi_tape_io_$order is invoked twice: first, to position
immediately after the end-of-file tape mark, and second, to
backspace immediately before it.

If any of the above procedure calls results in an error,
consistent is invoked and the 1/0 switch is closed.

This entry point performs the iox_$close
read case, it merely terminates logical
consistent manner and closes the 1/0 switch.
it writes the end-of-fil·e and end-of-file-set
closes the 1/0 switch.

Usage

function. In the
record 1/0 in a

In the write case,
tape marks and then

del tape_ansi_nl_file_cntl_$close ext entry
(ptr, fixed bin (35));

call tape_ansi_nl_file_cntl_$close (iocbP, code);

If code is nonzero, an error has occurred. In the write
case, the file (or a portion thereof) may be truncated. In
either case, the 1/0 switch is always closed.

INTERNAL L0GIC

The cseg pointer is obtained from the IOCB. If the file is
in use (cseg.file_lock = "1"b), the procedure returns the error
code error_table_$file_busy~ If cseg.invalid is "l"b, the 110
switch must be closed, but no operations can be performed on the
file itself. The return code is set to error_table_$invalid_cseg
and a cleanup handler is established that closes the 110 switch.
The 1/0 switch is then closed.

If the 1/0 switch is open for sequential_input, cc is set to
o and a cleanup handler is established that calls consistent and
closes the I/U switch. The entry point
tape_ansi_ibm_Irec_io_$close is invoked to synchronize the tape,
the volume is rewound if the close_rewind order has been issued,
and the 1/0 switch is closed.

11-50 AN57

If the opening was for sequential_output, cc is set to 2 and
a cleanup handler is established that calls consistent and closes
the lID switch. The entry point tape_ansi_ibm_lrec_io_$close is
invoked to synchronize the tape. If end of tape is detected, it
is ignored, because the 1/0 module processes EaT only when
writing data via the tape_ansi_ibrn_lrec_io_$write_record entry.
The procedure write_TM is called to write two tape marks (one for
end-of-file, the other for end-of-file-set). EOT is similarly
ignored. The variable cc is then reset to 0, since the file
section is now valid, and the 1/0 switch is closed.

If an error occurs during any of the above procedure calls,
consistent is invoked and the 1/0 switch is closed.

Internal Procedures

Entry: abort_file

\

~his procedure is called by consistent when an unrecoverable
error occurs during the processing of an output file. After the
volume position (vl.cfIX) is invalidated, write_TM is invoked to
write two tape marks. If the tape marks are successfully
written, the file set format is valid. An informatory message is
written on user_output via ioa~ and the procedure returns. If
the tape marks cannot be written, the file set format is invalid,
and a message is issued to that effect. End-of-tape while
writing the tape marks is ignored because EUT is processed only
at write data time.

Entry: consistent

This procedure is called from multiple points within the
module when an error occurs during file (as opposed to data)
processing. It ensures that the control segment is always a
valid model of the file set, and that the file set is
self-consistent.

Depending upon the consistency code (cc), one of two actions
is taken. For consistency codes ° and 1, the current volume's
current file position indicator (vI (fd.vlX).cfIX) is invalidated
and the procedure returns. (tape_ansi_nl_file_cntl_ retains the
three-valued consistency code used by tape_ansi_file_cntl_, even

11-51 AN57

though codes 0 and 1 result in identical actions.) For code 2,
abort_file is called to ensure that the file set is left in a
consistent state.

entry: handler

This procedure is called by the on unit of the any_other
condition handler established prior to IOCB manipulation.
because IPS interrupts are masked immediately after the on unit
is established, this procedure should almost never be invoked.
If it is invoked, one of two cases has occurred.

If the I~S mask is nonzero, interrupts have already been
masked and none should have occurred. This is regarded as a
fatal error, and the external procedure terminate_process_ is
called to terminate the process. This drastic step is necessary
to ensure that critical IOC5s are always valid. If the IPS mask
is zero, the interrupt has occurred during the fraction of time
between on unit establishment and IfS masking, and the interrupt
is valid. The external procedure continue_to_signal_ is
therefore called to pass the condition down the stack.

Entry: initialize_permitA

This function is called by move when a newly mounted volume
is found to have a VOL1 label and the volume is targeted to
receive output data (thus destroying the label). The external
procedure command_query_ is invoked to query the user for
permission to use the volume. If permission 1S granted, the
procedure returns "1"b. If permission is denied, the procedure
returns "O"b.

Entry: initialize_permitB

This function entry point in the procedure
initialize_permitA is called by move when the first block of a
newly mounted volume targeted to receive output data is found to
be unreadable. Since it cannot be determined whether or not the
volume is indeed labeled, tne user must be queried for
permission. The external procedure command_query_ is called to
perform the query. If permission is granted, the procedure
returns 1f1"b. If permission is denied, the procedure returns
"O"b.

11-52 AN57

Entry: lrec_open

This procedure is called from the mainline open code as the
last step in the opening process prior to 10GB manipulation. It
performs final validity checks on the file attributes and
initializes the logical record I/O control structure (cseg.lrec).

The block length is checked to ensure that it is not greater
than 8192 (the present implementation restriction). If the
opening mode is for sequential_output, the block length must also
be greater than 18, and evenly divisible by 4. (The block
length, effectively, must be at least twenty. The two separate
constraints are enforced to distinguish between a standard
requirement that blocks of 18 or fewer bytes are not permitted
and an implementation restriction that only words can be
written.) The remaining checks apply to block/record length
interrelationships on a per-format basis. If any of the above
steps fails, the procedure performs a nonlocal transfer to
er_exit.

Entry: move

This procedure is called from multiple points within the
module to perform the actual tape positioning function.

If the desired volume is not mounted and the user-specified
device limit would not be exceeded, tape_ansi_mount_cntl_$mount
is called to mount the volume on a newly assigned device. If the
new device assignment cannot be completed because it would exceed
the process's device limit, control is transferred to the remount
algorithm described below.

If the user-specified device limit would be exceeded, the
desired volume can only be mounted in place of some other volume,
an operation termed remounting. The volume chain is searched to
select the volume to be demounted, first from the first volume
set member up to the desired volume, and then from the last
volume set member down to the desired volume. The search
algorithm is optimized for the most usual case of sequential
volume processing, and a candidate volume is always found. The
entry point tape_ansi_mount_cntl_$remount is called to demount
the candidate volume and to (re)mount the desired volume on the
same device.

If the desired volume is already mounted when move is
invoked, none of the above steps need be done. In any case, the
drive number (currently stored in vl.rcp_id) and event channel id
(vl.event chan) of the (now) current volume are stored in the
tseg portion of the cseg. When rcp_ and tape_ioi_ replace tdcm_
as the device interfaces, these two steps will have to be

11-53 AN57

modified. It is likely, however, tha t the rcp_id, the even t
channel, and the tape_ioi_ id of the current volume will still be
maintained in the cseg outside the volume chain.

The volume index maintained in the file link (fl.vlX) is set
to the volume index of the current volume. It is this step that
actually makes a volume the "current volume", since all
references for positioning and volume activity (outside of move)
are volune link references of the form vI (fl.vlX).

If the opening mode is sequential_output, a number of checks
must be performed before the volume can be used. If the VOLl
label status code (vl.write_VUL1) indicates either a blank tape
or no VULl label, the volume can be used without further
checking. Any other code indicates the presence (actual or
possible) of a VOLl label that cannot be overwritten unless
certain criteria are satisfied.

If the file to be written is not the first file, the volume
cannot possibly be reformatted as a nonlabeled volume. The
external procedure 10a_ is called to write an informatory message
on user_output, and the procedure returns the error code
error_table_$~ninitialized_volume. If it is the first file,
initialization can be possible. Based upon the value of
vl.write_VOL1, either initialize_permitA or initialize_permitB is
called to query the user for permission. If permission is
granted, tape_ansi_tape_io_$order is called to rewind the tape
and write_TM 1S called to over~rite the VULl label with two tape
marks. The variable vl.cflX is set to indicate the new current
file position (3), and vl.write_V0Ll is set to indicate the
absence of a VOLl label.

Volume positioning complete, the procedure positions to the
desired file. If the current position is unknown (vl.cflX = 0),
tape_ansi_tape_io_$order is called to rewind the volume and
vl.cflX is set to 1. If the volume is positioned before the
desired file (vl.cflX < fX, the desired file index), the
difference is computed and tape_ansi_tape_io_$order is invoked to
forward space the appropriate number of tape marks. If blank
tape is detected, the desired file does not exist. The error
code error_table_$no_file is returned.

If the volume is positioned after the desired file (vl.cflX
> fX), a combination of tape_ansi_tape_io_$order calls to
backspace and forward space files is issued to effect the desired
positioning. If the volume is positioned at the desired file
(vl.cflX = fX), tape_ansi_tape_io_$order calls are issued to
ensure that the volume is positioned to the first block of the
file and not to an intermediate, indeterminate position.

If none of' the above steps results in an error, vl.cflX is
set to fX and the procedure returns. If an error occurs during
any step, vl.cflX is set to 0 and the procedure returns whatever
error code was set.

11-54 AN57

Entry: next_volume

This function is called by the data_eot entry to determine
whether or not another volume is available for concatenation to
the volume set. It is called only in the output cSincee, since
the volume set membership for the input case is determined
entirely by the volume list specified in the attach description.

If the current volume is not the last of the volume chain
(fd.vlX < cseg.vcN), the next volume exists and the procedure
returns n 1 "b. If the current volume index is 63, the
implementation maximum, the external procedure ioa_ is invoked to
issue an informatory message on user_output and the procedure
returns "O"b. If neither of the above cases is satisfied,
another_volume is called to query the user for the next volume
name, if any. If none is supplied, the procedure returns "O"b.
If one is supplied, tne volume chain is extended (cseg.vcN is
incremented), vl_init called to initialize the new link, and the
link's volume name is ·set. The procedure returns "1 "b.

This procedure is called by next_volume to initialize a new
volume link. ~very structure member except the volume name is
set appropriately to a logically null value.

E.ntry: vname

This function is called by another_volume to validate and
normalize a volume name. A volume name must be six characters or
fewer. If it is longer than six characters, the procedure
returns "O"b. CJtherwise, there are two normalization cases. If
the name is entirely numeric, it is padded on the left with zeros
to length six. If it is not entirely numeric, it is padded with
blanks on the right to length six. The procedure returns "l"b.

Entry: another_volume

This function is called by next_volume to determine whether
or not a user-specified volume is to be concatenated to the
volume set. It is only invoked if end of tape (EDT) is detected
during a data write operation.

1he external procedure command_query_ is invoked to query
the user as tO,whether or not processing is to be continued on
anotner volume. If processing is not to continue, the procedure
returns "O"t.! If processing is to continue, command_query_ is
called again t~ obtain the name of the volume, along with an
optional mount message. The supplied volume name is validated by
calling vname. If it is invalid, command_query_ is invoked again
to obtain a valid name. If the comment is invalid,

11-55 AN57

comrnand_query_ is similarly invoked. Unce a valid volume name
(and optional comment) is obtained, the procedure returns "1"b.

This procedure is called to write either one or two tape
marks, thus terminating a file section or file set, respecti.vely.
The entry point tape_ansi_tape~io_$order is invoked to write the
tape mark(s) and the volume's current file position (vl.cflX) is
incremented for each tape mark written. If EOT is detected it is
ignored, so that all volume switching takes place at data write
time.

This module performs the iox_$detach function for both
tape_ansi_ and tape_ibm_o It performs resource disposition as
specified in the attach description, issues a volume set status
message if necessary, and manipulates the lUeB to indicate the
detached state.

usage

dcl tape_ansi_detach_ ext entry (ptr, fixed bin (35»;

where:

1 • iocbP is a pointer to the lUCB. (Input)

2. code is a standard status code. (Output)

If code is error_table_$file_busy, the I/O switch is not
detached. If code is zero or any other nonzero value, the I/O
switch is detached.

11-56 AN57

Internal Logic

The cseg pointer is obtained from the IOCB and
cseg.file_lock is tested to ensure that an 1/0 operation is not
in progress. If the file is locked, the procedure returns the
error code error_table_$file_busy. Otherwise, the file is locked
and a cleanup handler is established. If the cseg pointer is
null when the cleanup handler is invoked, the IOCB is detached.
NO resource disposition or volume set status activity is
possible. If the cseg pointer is nonnull, the detach operation
is performed as though the specified disposition were "-retain
none". Thus, a quit while detaching always results in a detached
IOCB, though resource disposition mayor may not be performed as
specified in the attach description.

Une of five possible resource disposition functions is then
performed. Curr~ntly, only two of the functions are distinct:
retention of no resources, and retention of all resources. When
the I/u module is converted to call rcp_ directly, the default
rcp_ retention function can be added. When rcp_ is further
enhanced to provide individual resource management of both
devices and volumes, the additional disposition options of device
retention and volume retention can be implemented.

If no resources are to be retained, cseg.write_ring and
cseg. pro tec tare se t to II 0" b . (Since all dev ices are unass igned ,
they can neither have volumes mounted with rings nor be file
protected.) The volume chain is ,then scanned for links having
nonzero vl.rcp_id values. Such a value indicates an assigned
device. Such a link's vl.cflX is invalidated, and
tape_ansi_mount_cntl_$free is called to unassign the device. If
an error occurs during unassignment, cseg.invalid is set to "l"b
and the scan continues. When all links up to and including vI
(cseg.vcN, the last active link) have been checked, control
transfers to perform the 1/0 module's internal detach-state
functions. If all resources are to be retained, cseg.invalid is
checked to ensure that the 1/0 module is capable of performing
another attachment. If not, control is transferred to the
resource unassignment code.

There are three steps to be performed when the 1/0 module
enters the detached state. 'First, if an iox_$read_length
operation was ever performed, the temporary buffer segment in the
process directory must be truncated. Therefore, if cseg.rlP is
nonnull, the external procedure hcs_$truncate_seg is invoked to
truncate the segment and 6seg.rlN (the segment's character count)
is set to -1, indicating no record in the buffer.

11-57 AN57

~econd, it must be determined whether or not the control
segment is internally consistent, hence usable in a subsequent
attachment. If cseg.invalid is "O"b, the cseg is usable.
utherwise, the cseg must be deleted so that a subsequent
a t t a c h me n t (i fan y) rna k e san en t i roe I y new c s e g, f i I e c h a in, etc .
The external procedure hcs_$delentry_seg is invoked to delete the
control segment and the read length buffer segment (if any).

7he third and last step is performed only if the cseg is
valid, volumes have been demounted, and write rings were in
place. Under this combination of circu~stances, it is possible
that the volume set membership of a multivolume file or file set
changed during the course of the attachment. Since the user may
not know exactly how many volumes are included in the volume set,
an informative message is issued.

If the file set is IBM nonlabeled, a test is made to
determine whether the last volume processed (fd.vlX) is the last
volume of the volume chain (cseg.vcN). If so, no message need be
issued because the entire volume set membership must have been
specified either in the attach description, or by the user via
the command_query_ facility. If not, an informative message is
issued and the volume chain is truncated to the last volume set
member (cseg.vcN = fd.vIX). This is done to ensure that volumes
that are not volume set members are not considered as such in
subsequent attachments.

If the file set is either ANSI or IBM SL, it is determined
whether or not the last volume in the volume chain contains a
file section. If it does, the volume set membership comprises
all volumes and no message need be issued. If it does not, the
volume chain is scanned to find the last voluQe set member, and
the volume chain is truncated at that point. An informative
message is then issued.

tinally, the IUCb is manipulated to indicate the detached
state. If the cseg still exists (it normally does, unless it was
deleted previously due to an inconsistency), the file and file
set locks (cseg.file_lock and cseg.file_set_lock) are set to "D"b
and the read length buffer segment (if any) is terminated by
calling the external procedure hcs_$terminate_noname~

This module performs the iox_$read_record and
iox_$write_record functions for ANSI file sets.

11-5b AN57

usage

This entry point performs the iox_$read_record function.

dcl tape_ansi_lrec_io_$read_record ext entry (ptr, ptr,
fixed bin (21), fixed bin (21), fixed bin (35»;

call tape_ansi_lrec_io_$read_record (iocbP, ubP,
buf_len, rec_len, code);

where:

1 • iocbP is a pointer to the IOCB. (Input)

2. ubP is a pointer to the user's record buffer.
(Input)

3 · buf_len is the number of characters to be read.
(Input)

4. rec - len is the number of characters actually read.
(Uutput)

5. code is a standard status code. (Output)

The following is a nonexhaustive list of error_table_ codes
that can be returned:

file in use for other I/O activity; no data
returned.

unrecoverable error occurred; all, some, or
no data returned. Data can be incorrect.

actual record length exceeded buf_len
(requested length); buf_len characters
returned, remainder of record discarded.

invalid_record_desc a variable-length or spanned record's RCW or
SCW 'is invalid; some or no data returned.
Data can be incorrect.

a parity error occurred while reading;
some, or no data returned. Data
incorrect.

all,
can be

It is important to note that for the blocked record formats,
error_table_$tape_error is returned with the first record of the
block that contains the error. Since a parity error is
associated with a physical block as opposed to a logical record,
the first record mayor may not contain the invalid character or

11-59 AN57

characters. If subsequent iox_$read_record calls are made,
records from the same block can contain the invalid data even
though their return codes are zero.

1i~IShIJAL LOGIC

'rile cseg pcin~er is obtained from thp 10CB and
0ssg.file_lock is checked to ensure that the file is not in use.
if the file is _in use, the status coae error _table._$file_busy is
retur~ed. if tne file is not in use, a cleanup handler is
establi3f1ed and the Li.le is locked. If invoked, the cleanup
haGoler unlocks the file lock (cseg.file_lock) and sets the
logical record I/U lock (cseg.lrec.code) to
error_table_$fatal_error. This step is necessary because an
interrupted logical I/U operation can leave the internal liD
buffers and logical record processing variables in an
inconsistent state. The logical record 1/0 lock is checked and
If it is nonzero, the procedure immediately returns that error
code.

The desired record may have already been read as the result
of an iox_$read_length call. If so, the read_length buffer count
contains a valid value (cseg.rlN = -1). If the user's request
(buf_len) is equal to or greater than the number of characters in
the buffer (cseg.rl~), cseg.rlN characters are returned with
status code zero. If buf_len is less than cseg.rlN, buf_len
characters are returned with status code
error_table_$long_record. The appropriate number of characters
are moved into the user's buffer from the read_length buffer and
rec len is set to the number of characters moved. The variable
cseg.rlN is set to -1 to indicate that the read_length buffer no
longer contains a valid record. The logical record count
(cseg.lrec.reccnt) is incremented, the file is unlocked, and the
procedure returns.

If the record is not in the read_length buffer, control is
transferred to one of the four format routines. Three automatic
variables are used by all four routines t6 control their
operation. The variable remain is set by the internal procedure
get_record and contains the number of characters in the block
that remain to be processed. The variable move is set by the
format routines to the number of characters moved to the user's
buffer by the internal procedure move_to_user. The variable
req_off is set to the number -of characters processed by a single
10gi6a1 record request. Its value cari differ from that of move
and is used by the internal procedure read_release both to locate
the beginning of the next record within a block and to release
the 1/0 buffer when the block is exhausted.

,11-60 AN57

For U format, get_record is called to obtain a record. The
variable move is set equal to remain, because a U format record
fills an entire block including pad characters (if any). If
buf_len is less than move, the long record switch (the automatic
variable long_record) is set to "1"b and move is set to buf_len
so that the number of characters returned is equal to the number
requested. (In the absence of any other I/U error or event,
long_record = "1"b at exit time causes the procedure to return
the status code error_table_$long_record.) Since each logical
record request requires a new block, req_off is set equal to
remain so that the I/O buffer is released. The procedure
move_to_user is called to move the record to the user's buffer
and read release is called to release the I/O buffer. Control
then passes to the normal exit routine.

For F and FB format, get_record is called to obtain a
record. If the file's record length (fd.reclen) exceeds remain,
a short record situation exists. Since iox_ does not treat this
case as an error, mov~ is set equal to remain without setting a
status code. If fd.reclen is less than or equal to remain, move
is set equal to fd.reclen so that only one record's worth of data
is moved. If buf_Ien is less than move, the user's buffer is too
small to contain all the available data. The long record switch
is therefore set to "1"b and move is set equal to buf_Ien so that
only the requested number of characters is moved. The variable
req_off is set to fd.reclen because each logical record request
must process an entire record, even if only a portion of that
record is actually moved to the user's buffer.- The procedure
move to user is called to move the data and read release is
called to position beyond the record. (In F format~ the I/O
buffer is released after each record is processed; In FB format,
it is only released after the last record in a block has been
processed.) Control then passes to the normal.exit routine.

For D and DB format, get_record is called to obtain a
record. If a block pad character (circumflex, u ,,) is found
where the HCW should be, the remainder of the block contains no
valid data. The entry point tape_ansi_tape_io_$release_buffer is
called to release the I/O buffer and control -passes back to the
get_record call. Ond~ a record has been obtained, a pointer to
the record's RCw (record control word) is made and the record's
actual length is extracted into -the automatic variable data_len.
If the data length cannot be extracted, or if it exceeds the
number of characters remaining in the block (remain - 4), control
passes to the invalid record descriptor error exit. If the new
is valid, move is set equal to data_len. If, however, buf_Ien is
less than move, long_record is set to "1"b and move is reset
equal to buf_Ien. The variable cseg.lrec.offset, the current
processing offset within the I/U buffer, is incremented by 4 (the
length of an HCw) so that the HCW is not processed as part of the
data. The variable req_off is set equal to data_len so that the
request processes the entire record, even if only a portion is
actually being returned. The procedure .move_to_user is called to
move the data to the user's buffer. The procedure read release

11-61 AN57

is called to position beyond the record. Control then passes to
the normal exit routine.

For Sand Sb format, get_record is called to obt~in a record
segment. To keep track of the number of characters tha t have yet
to be moved into the user's buffer to satisfy the request, the
alltomatic variable left is initialized to buf_len. proce~s_sw is
then invoked to process and validate the segment's sew (segment
con t r 0 1 w 0 r d) and toe x t rae t the s e g men t 's d a t a _~ e ;~ i. t h i n t c
d a t a _1 en. If 1 eft i s g rea t e r t han 0 r e qua 1 to d a t a_I i2 n, a 11 t h c>

d a t 3 i nth e s e g Iil e n tis nee d e dan d m 0 v e iss e t e q u Cl. 1. to d a t 3. _1 en.
If :eft is less than data_len, only a portion of the segment is
needed to satisfy the (balance of the) request. In this case,
long_record is set equal to "1"b and move is set equal to left.
The procedure move to user is invoked to move the data to the
user's buffer, left is decremented by move to equal the number of
characters still required to complete the request, and
read release is called to position beyond the record segment.

The SCw type code is then checked. If the code indicates
either a complete or terminal record segment, the entire logical
record has been processed and control passes to the normal exit
routine. If not, the remaining record segments must either be
skipped (if the user's request is satisfied), or processed (if
their data is needed to complete the request). In the latter
case, left is nonzero. The procedure get_record is called to
obtain the next record segment and control is passed back to the
process_s~ call described above. In the former case, left is
zero. The procedure skip_segments is called to position beyond
the last segment of the record. Control then passes to the
normal exit routine with long_record set to "l"b because the user
requested fewer characters than the record contains.

The normal exit routine incremerts the logical record count
(cseg.lrec.reccnt). If a parity e'ror has occurred, the return
cod~ is set to error_table_$tape_erlor. Otherwise, it is set to
zero or whatever error code has been set by a previous step. If
the return code is zero and long_record is "1"b, the return code
is set to error_table_$longrecord. An error code therefore
overrides tge reporting of the long record condition. The
variable r~c_Ien is set equal to the automatic variable total,
whose value has been maintained by move_to_user to be the total
number of Characters placed in the user's buffer. The variable
cseg.file_lock is set to "O"b and the procedure returns.

The error and invalid record descriptor exit routines
perform the same functions as described above, with the exception
of incrementing cseg.lrec.reccnt. I

11-62 AN57

INTERNAL PROCBDURES

Entry: get_record

This procedure makes a logical record available to the
record format routines, either by reading a new block into an 1/0
buffer, or by setting the buffer processing vari~bles for the
next record already in a buffer.

If the I/O buffer pointer (cseg.lrec.bufP) is nonnull, at
least one record is already in the I/O buffer. The variable
remain is set to the number of characters not yet processed and
the procedure returns. If cseg.lrec.bufP is null,
tape_ansi_tape_io_$read is called to read a block. The variable
cseg.lrec.bufP is set to point to the I/O buffer and
cseg.lrec.nc_buf is set to the number of characters read. If the
call returns a nonzero. code, there are two main possibilities.

If the code is error_table_$eof_record, an end-of-file Qark
has been read. The entry point tape_ansi_file_cntl_$data_eof is
invoked to determine whether the actual end of the file has been
reached or whether the file is continued on another voluQe. If a
zero code is returned, the file is continued on the next volume.
Since tape_ansi_file_cntl_ has performed all necessary volume
switching functions, control is simply passed back to the
tape_ansi_tape_io_$read call. If the code is nonzero, either no
more data exists or an error has occurred, and control passes to
the exit routine.

If tape_ansi_tape_io_$read returns any other nonzero code, a
parity or fatal error has occurred. If the code is
error_table_$tape_error, the parity error switch (the automatic
variable "parity_error") is set to "1"b and the current
iox_$read_record operation is continued. Any other code causes
control to pass to the error exit routine. (The iox_$control
operation "reset_error_lock" can be used to permit further
iox_$read_record calls, if and only if the lock value is equal to
error_table_$tape_error.)

If the code was zero or error_table_$tape_etror, the block
count (cseg.lrec.blkcnt) is incremented and cseg.offset is set to
the file's buffer offset value (fd.bo). This causes the block
prefix (if any) to be skipped. As ANSI blocks can be padded to
any length with circumflex characters (rr "); it is necessary to
elimir:ate them (logically) from the I/O buffer. If cseg .nc_buf
exceeds the desired block length (fd.blklen), the excess can be
eliminated easily by setting cseg.nc_buf to fd.blklen. This step
also ensures that no more characters can be extracted from a
block than have been specified. Since U format blocks are
processed with pad characters (if any) and D, Db, S, and SB
records contain explicit data lengths, no further processing is
necessary. The var ia ble remain is se t to the n u:~ber 0 f

11-63 AN57

characters available for processing (cseg.nc_buf
and the procedure returns.

cseg.offset)

For ~ and FB format, a further pad stripping algorithm must
be applied. The number of records in the block is computed by
dividing the number of possible data characters in the block
(cseg.nc_buf - [d.bo) by the number of characters in a record
(fd.reclen). The number of characters (if any) that do 1~0t fill
a complete record is computed by taking the number of possible
data characters modulo the record length. If these characters
are all pad characters, they are eliminated (logically) by
decrementing cseg.nc_buf. If any are not pad cnaracters, they
are as a group considered to form a short record, remain is set,
and the procedure returns. If characters not contained in a
complete record are not found, or if such characters are all
padding, it is possible that additional padding exists. Starting
with the last record in the block, each record is tested to
determine whether it is all pad characters. Each record of
padding causes cseg.nc_buf to be decremented by fd.reclen. The
first record that is not padding causes remain to be set and the
procedure to return. Eventually, reQain is set to the number of
characters available for processing.

Entry: process_sw

This procedure is called by the Sand SB format routine to
validate and process an sew. If the first character of what
ought to be an sew is found to be a pad character,
tape_ansi_tape_io_$release_buffer is called to release the 1/0
buffer. The procedure get_record is then called to obtain a
record segment from the next block and control passes back to the
pad checking code described above. Once an sew has been
obtair.ed, the segment's data length is extracted into data_len,
its type code is validated, and data_len is checked against the
actual number of characters remaining in the block. An
inconsistency detected by these checks results in a nonlocal
transfer to the invalid record descriptor error exit. If the sew
is valid, cseg.offset is incremented by 5 (the length of an SeW)
so that the sew is not processed as part of the segment's data.
The variable req_off is set equal to data_len.

11-64 AN57

Entry: skip_segments

This procedure is called by the Sand SB format routine to
skip record segments that are not required to satisfy the user's
request (buf_len < total record length). The procedure
get_record is called to obtain a record segment, and process_sw
is called to process and validate its sew. If the type code. is
that of a final segment, read_release is called to position
beyond it and the procedure returns. Otherwise, read_release is
called and control passes back to the get_record call. This
algorithm is continued until the final segment is encountered and
skipped.

This procedure is called by all four format routines to move
data from the I/U buffer to the user's buffer. If move is zero,
no data is to be moved and the procedure returns. Otherwise, a
pointer is made to the first character to be moved from the 1/0
buffer, and another pointer is made to the location within the
user's buffer where that character is to be placed. If the
encoding mode (fd.mode) is not EBCDIC, no character conversion
need be performed and the data is simply moved. Otherwise,
ebcdic to ascii is invoked to translate and move the data. The
automatic-variable total is incremented by the value of move, to
maintain a count of the total number of characters moved.

Entry: read_release

This procedure is called to release a logical record or
record segment from an 1/0 buffer. If the record is the last (or
only) one in the buffer, the entire buffer is also,released. The
variable cseg.offset (the current processing offset within the
buffer) is incremented by the value of req_off (the number of
characters processed by the format routine). The variable remain
is calculated by subtracting the new current offset from the
buffer character count (cseg.nc_buf). (The variable remain can
become negative.) If the record format is S or SB and remain is
less than 5, the I/G buffer is released, because the remaining
characters are too few to be even the sew of a zero-length record
segment. If remain is greater than or equal to 5, the procedure
returns.

For all other formats, if remain is less than 4, usually the
1/0 buffer is to be released. For U format this is always the

11-65 AN57

case, and similarly for D and LB format because four characters
is insufficient for even the RCw of a zero-length record. In
these cases, the buffer is released and the procedure returns.
For F and r'B format, however, the buffer is only released if the
logical record length is greater than the value of remain. If
the logical record length is less than or equal to remain, the
procedure simply returns. This practice causes the loss of short
records (short record length < record length < li) in some
unusual J but possible, cases. Unfortunately, it is the only way
to avoid processing the pad bytes (octal value 000) appended to
blocks that have lengths not evenly divisible by 4. This
ambiguity is built into the current software interface (tdcm_) to
the t1TS500 hardware and should no longer be a problem when the
proposed interface (tape_ioi_) is implemented. The I/U buffer is
released by calling tape_ansi_tape_io_$release_buffer.

Ihis entry point performs the iox_$write_record function for
A I~ S I f i I e set s .

del tape_ansi_Irec_io_$write_record entry (ptr,
ptr, fixed bin (21), fixed bin (35»;

call tape_ansi_Irec_io_$write_record (iocbP,
ubP; buf_Ien, code);

where:

1 •

2.

3.

4.

tha t

10cbP is a pointer to the IOCB. (Input)

ubP is a pointer to the user's buffer. (Input)

buf len is the number of characters to be written. -
(,Input)

code is a standard status code. (Output)

The following is a nonexhaustive list of error - table codes -
can be returned.

file in use for other I/O activity;
not written.

unrecoverable error occurred;
'srrbrs below.

11-66

see

record

Write

AN57

~RITE EHRORS

buf_len exceeds the maximum record and/or
block length; the record is not written.

no more records can be written on the current
volume. For Sand SB format, the record may
be partially written; for all other formats,
the record is not written.

a parity I/O error has occurred; see "Write
Errors" below.

In the case of a fatal or parity erro~, more records can be
affected than just the particular record being written when the
error code is returned. It is important to note that such an
error is detected upon the writing of a block, and that each
iox_$write_record call does not necessarily cause a block to be
written. Hence, a zero status code does not guarantee that a
record has been written at all, let alone written correctly. Fb
format blocks always, and DB and SB blocks can, contain multiple
records, so that an error in writing a block affects every record
packed into the block.

In addition, tape_ansi_ does not wait to check the status of
a write operation after the operation has been issued. In the
time between issuing a write operation and receiving its status,
a number of further write operations can be issued. This method
of operation is termed asynchronous processing and normally is
highly satisfactory. If an I/U error occurs, however, not only
is the erroneous block not written, but all blocks queued for
writing subsequent to the error block are not written. Even in
this case it is possible to maintain an accurate block count, but
since the number of records per block can vary, an accurate
record count cannot be maintained. Since U, F, and D format
place only one record per block, the actual number of records
written equals the block count (available by calling iox_$control
"file_status" operation). For FB, DB, and SB format, an
indeterminate number of records packed into blocks subsequent to
the error block are not written, and for Sand SB format, the
record can have been partially written in blocks prior to the
error'" block.

11-67 A.l~ 57

I~T~R~AL LUGIC

The cseg pointer is obtained from the 10CB and the
cseg.file_lock is checked to be sure that the file is not busy
fer other 1/0 activity. If it is busy, the procedure immediately
returns the error code error_table_$file_busy. Otherwise, a
cleanup handler is established and the file lock is locked. If
invoked, the cleanup handler unlocks the file lock and sets the
logical record I/U lock to error_table_$fatal_error. This step
:3 ne2cssary because an interrupted logical I/O operation can
_eave the I/U buffer and its processing variables in an
i~consistent state.

The logical record 1/0 lock (cseg.lrec.code) is checked to
ensure that I/U has not been inhibited due to an unrecoverable
error. If the cseg.lrec.code is nonzero, the return code is set
to the logical I/U lock value, the file lock (cseg.file_lock) is
unlocked, and the procedure returns. If all is well, the
intrafile position indicator (vI (fl.fIX).pos) is checked to
determine whether or not the tape is positioned in the data
portion of the file. The first time iox_$write_record is called
subsequent to an opening, the tape is positioned in the file's
header label group. In this case,
tape_ansi_file_cntl_$position_for_output is called to write the
header label group tape mark, such action defining the transition
into the data portion of the file. If an error occurs while
writing this tape mark, cseg.lrec.code is set to the error code
value and control passes to the error exit routine. The tape
mark is not written until the first logical record call for the
following reason. The ANSI standard requires volume switching to
be performed if end-of-tape is detected while writing the header
label group. This causes a null file section to be recorded on
the old volume. Yet if the liD switch is then closed without an
intervening 1/0 operation, another null file section is written
on the new volume. By inhibiting the detection of end-of-tape
until the header label group tape mark is written (this is not a
Standard violation), and by delaying writing the tape mark until
the first write operation, volume switching can be avoided if no
write operations are issued. The close call causes just a single
null file section to be written on the current volume.

Control then passes to one of the four record format
routines. For U format, buf_Ien is checked to ensure that it
does not exceed the maximum number of characters that can fit in
a block (fd.blklen - fd.bo). If its value is too large, control
passes to the long record error exit. The procedure get_buf is
called to obtain an 1/0 buffer and move (the number of characters
to be moved from the users buffer) is set equal to buf_Ien. The
variable req_off (the number of characters to be written by this
request) is also set equal to buf_Ien, and move_to_buf is called
to move the user's data into the 1/0 buffer. The procedure
write_buf is called to write the block, and control passes to the
normal exit routine.

11-68 AN57

For F dild FB format, buf_len is checked to ensure that it
doe~ not exceed the record length (fd.reclen). If it does,
control passes to the long record error exit routine. The
procedure get_buf is called to obtain an I/O buffer, if
necessary. (For F format, an 1/0 buffer is obtained for each
call, because each record requires a new block.) The variable
move is set equal to buf_Ien and remain is set to the number of
pad characters that must be appended to the user's data to make a
complete record (fd.reclen - buf_Ien). This step is necessary
because fi~ea-format records must be of identical lengths. If
remain is nonzero, the appropriate number of blanks are inserted
into tne IIG buffer. The variable req_off is set equal to
fd.reclen because each request processes a complete record, even
if buf_len is less than fd.reclen. The procedure move_to_buf is
called to move the user's data into the I/O buffer immediately
before the inserted padding (if any). If records are not blocked
(F format), write_buf is called to write the record. Otherwise,
write buf is not called unless the block contains as many records
as can fit (cseg.off'set = fs.blklen). Control then passes to the
normal exit routine.

For D and DB format, data_len (the length of the record) is
set to buf_Ien plus 4 (the length of an RCW). The value of
data len is checked to ensure that it does not exceed fd.reclen.
If it does, control passes to the long record error exit. The
procedure get_buf is called to obtain an I/O buffer, if
necessary. (An I/O buffer is always obtained for D format,
because each record requires a new block.) ·For DB format, it
must be determined if the record to be written can fit into the
current block, or if a new block is required. If data_len
exceeds the number of remaining characters in the block
(fd.blklen - cseg.offset), then write_buf is called to write the
current block and get_buf is called to obtain a new I/O buffer.
Either way, a pointer is made to the I/O buffer location where
the record's HCw is to be constructed and the HCW is inserted.
The variable cseg.offset is incremented by 4 so that the RCW is
considered when computing the total block length, and req_off is
set equal to buf_len. The variable move is also set equal to
buf_Ien and move_to_buf is called to move the user's data. If
records are not blocked, write_buf is called to write the record.
Otherwise, write_buf is not called unless another record cannot
fit in the current block (fd.blklen - cseg.offset < 4·, where 4 is
the length of a zero-length record). Control then passes to the
normal exit routine.

For Sand SB format, buf_len is checked to ensure that it
does ~ot exceed fd.reclen. If it does, control passes to the
longer record error exit. The procedure get_buf is called to
obtain an I/U buffer, if necessary. (An I/O buffer is always
obtained for S format, because each record segment requires a new
block.) The variable left contains the number of characters
still to be moved from the user's buffer, and is initialized
equal to buf_len. As each record segment is written, left is
decremented by the number of characters written in that segment.

11-69 AN57

The variable remain is set to the number of characters remaining
in the current block (fd.blklen - cseg.offset). A pointer is
made to the IILJ buffer location where an sew is to be
constructed.

The type code set in the seW is dependent upon the amount of
data still to be written (left) and the available space in the
current block (remain). If left + 5 (the balance of the user's
request plus 5 characters for the Sew) can fit in the bleck, the
record segment is either a complete or final segment. If no data
from the record has been previously placed into anc'ther segment,
the type is complete; i.e., the segment contains the entire
record. If some data has been placed into another' segment, then
the type is final; i.e., the segment is the last of a group of
segments that in toto make up the record. In either case, move
is set equal to left, since the data to be moved into the segment
is the balanCE: of the request. If left + 5 char'acter's cannot fi t
into the block, the record segment is either an initial or medial
segment. If' no data from the record has been previously placed
into another segment, the type is initial; i.e., the segment is
the first of a group of segments that in toto make up the record.
If some data has been placed into another segment, the type is
medial; i.e., the segment is one of a group of three or more
segments (Dut neither the first nor the la~t) that i.n toto make
up . the record. In either case, move is set equal to remain - 5,
so that as much data as will fit into the block is moved, leaving
room for the 5 character sew.

The variable left is decremented by the value of move,
giving the amount of data (if any) to be moved into subsequent
seg~ents. The variable data_len, the actual record segment
length, is set equal to move + 5 (to include the Sew) and is
inserted into the sew. The variable cseg.offset is incremented
by 5, so that the SCW is considered when computing the total
block length. The variable req_off is set equal to move and
move to buf is called to ~ove the user's data into the 1/0
buffer. The variable remain is set to the number of characters
remaining in the block (remain - data_len). If record segments
are not blocked (S format), control passes to write the 1/0
buffer. If record segments are blocked, the I/O buffer is only
written if another nonzero length record segment could not fit
into the block (remain < 6).

If the 1/0 buffer is to be written, write_buf is called to
write it, get_buf is called to obtain another, and remain is set
to the number of characters available in the new buffer
(fd.blklen - cseg.offset). Whether or not the 1/0 buffer was
written, left is checked to determine whether or not the user's
request has been satisfied. If left is nonzero, control passes
back to make another SCW pointer for the next record segment. If
left is zero, control passes to the normal exit routine.

The normal exit routine first incraments the logical record
count (cseg.lrec.reccnt) and then sets the return code and

11-70 AN57

logical I/O lock to the code returned by the last I/O operation
(normally zero). If csw (the tape_ansi_Irec_io_$close entry
switch) is "l"b, control passes to that entry's exit routine.
Otherwise 9 the file lock is unlocked and the procedure returns.
(The variable csw is initialized to "O"b upon procedure block
activation, but is set to "l lf b by the tape_ansi_Irec_io_$close
entry.) The long record and error exits perform similar
functions, with the exception of incrementing cseg.lrec.reccnt.

INTERNAL PROC~DURES

This procedure is called to obtain an I/O buffer, if one is
needed. If the I/O buffer pOinter (cseg.lrec.bufP) is nonnull, a
buffer is available and the procedure returns. If it is null,
tape_ansi_tape_io_$get_buffer is called to make an I/U buffer
available. lne current offset equal within the buffer
(cseg.offset equal) is set equal to the buffer offset length
(fd.bo) to reserve space for a block prefix (if any). If the
buffer offset length is nonzero, a block prefix of all blanks is
inserted.

This procedure is called to move data from the user's buffer
to the I/U buffer. If move is zero, there is no data to be
moved. In this case, cseg.offset is incremented by the value of
req_off (the number of characters processed by the request) and
the procedure returns. (The variable cseg.offset must be
incremented to allow for the case of zero-length records in D,
DB, S, and Sb format. Such records consist of Rews or sews
alone.) If data is to be moved, pointers are made to the offset
within the 1/0 buffer where the data is to be placed, and to the
offset in the user's buffer from whicb the data is to be taken.
If the encoding mode (fd.mode) is either ASCII or binary, the
data is moved. If the mode is EBCDIC, ascii to_ebcdic is called
to translate and move the data. The variable total is
incremented by the value of move, to maintain a count of the
total number of characters moved. The variable cseg.offset is
incremented by the value of req_off.

11-7 1 Ai~ 57

t..ntry: write but'

This procedure writes a block, appending block pad
chara'::;ters if necessary. If cseg.offset is less than 20, the
biock must be padded. This is necessary for two reasons: 1)
Dlocks of fewer than 1b characters must not be written, and 2)
blocks to be written must consist of an integral number of words
(4 characters/word). The number of pad characters is comruted by
subtracting cseg.offset (the number of characters rresently in
tte b~sck) from 20, and control passes to perform the padding.

If cseg.offset is greater than or equal to 20 but not evenly
divisible by four, the block must still be paJded to satisfy
requirement 2) above. Padding for both cases is performed by
inserting the appropriate number of pad characters into the I/O
buffer immediately following its current contents, and then
incrementing cseg.offset to reflect the new, adjusted block
length.

The entry point tape_ansi_tape_io_$write is called to write
the block. If the return code is zero, the block count
(c s e g . Ire c . b 1 K C n t) is inc rem e n ted and the p r' 0 c e d u r ere t u r' :J s . If
the return code is nonzero, there are t~o major possibilities.
If the code is not error_table_$eov_on_write, an error has
occurred. The block count is decremented if more than one block
was not written (cseg.blkcnt = cseg.blkcnt
cseg.soft_status.nbuf + 1). (The suspended buffer count is
currently obtained directly from the cseg. Eventually, when
tape_ioi_ becomes the device interface, a tape_ioi_ status entry
is called to obtain this value.) The logical record count is
invalidated by setting it negative, and control passes to the
error exit.

If the code is error_table_$eov_on_write, end-of-tape has
been detected. This is more in the nature of an event than an
error. Tne variable cseg.lrec.blkcnt is incremented, because the
block has been successfully written. If cs~ is "1"b (i.e., the
procedure was entered at the $close entry point), the procedure
simply returns. This is done so that EOT detection at cluse time
does not force volume switching, with the resultant.recording of
a null file section on another volume. If csw is "onb,
tape_ansi_file_cntl_$data_eot is called to switch volumes. If
the returned code is zero, volume switching has occurred and the
procedure returns. If the code is nonzero, the volume switch did
not take place. This can be due either to an error or to the
lack of another volume. If the record format is S or SB and the
entire record has not yet been written (left ~= 0). control
passes to the error exit. If the record format is other than S
or SB, or the entire spanned record has been written (left = 0),
this particular iox_$write_record call can complete successfully.
Further calls must, however, be inhibi ted, therefore
cseg.lrec.code is set to the error code value. The return code
is set to zero, the file is unlocked, and the procedure returns.

11-72 AN57

This entry point is called by tape_ansi_file_cntl_$close to
terminate logical record 1/0 in a consistent manner at close
time.

Usage

dcl tape_ansi_lrec_io_$close entry (ptr, fixed bin (35»;

call tape_ansi_lrec_io_$close (acP, code);

where:

1 • acP is a pointer to the cseg. (Input)

2. code i& a standard status code. (Output)

INTERNAL LOGIC

The cseg pointer is copied from the argument list and the
close entry switch (csw) is set to "lffb. This switch governs the
action taken if write_buf must be called and either an err'or or
EOT occurs. If the I/U switch is open for sequential_input and
the I/U buffer pointer is null, control passes to the buffer
management reset exit to perform that function and return. If
the pointer is nonnull, control passes to the buffer release exit
to perform that function, reset the buffer management strategy,
and return.

If the 1/0 switch is open for sequential_output and there is
no current 1/0 buffer, control passes to the buffer management
reset exit. If there is an 1/0 buffer (cseg.lrec.bufP ~= null)
but cseg.offEct is either 0 or fd.bo, the liD buffer does not
contain any data. In this case, control passes to the buffer
management reset exit. If, "however, the processing offset is
neither a nor fd.bo, the buffer contains data that must be
written. In this case, write_buf is called and control passes to
the buffer release exit.

The buffer release exit calls
tape_ansi_tape_io_$releas€_buffer to release the current 1/0
buffer, calls tape_ansi_tape_io_$close to reset the buffer
management strategy, and returns. The buffer management reset
exit calls tape_ansi_tap€_io_$close and returns.

11-73 AN57

This module performs the iox_$read_record and
i 0 x _ $ w r i t e _ r e cor d fun c t ion s for I Bfvl f i I e set s .

Usage

lhis entry point performs the iox_$read_record function.

del tape_ansl_ibm_lrec_io_$read_record ext entry (ptr, ptr,
fixed bin (21), fixed bin (21), fixed bin (35»;

call tape_ansi_ibm_Irec_io_$read_record (iocbP, ubP,
buf_len, rec_Ien, code);

where:

1 • iocbP

2. ubP

3. buf_Ien

4. rec len -

5. code

is a pointer to the lOeB. (Input)

is a pointer to the user's record buffer.
(Input)

is the number of characters to be read.
(Input)

is the number of characters actually read.
(Output)

is a standard status code. (Uutput)

The following is a nonexhaustive list of
error_table_ codes that can be returned:

file in use for other I/O activity; no data
returned.

unrecoverable error occurred; all, some, or
no data returned. Data can be incorrect.

actual record length exceeded buf_Ien
(requested length); buf_Ien characters
returned, r~mainder of record discarded.

invalid_record_desc a variable-length or spanned record's RDW or
SDW is invalid; some or no data returned.
Data can be incorrect~

11-74 AN57

a parity error occurred while reading;
some, or no data returned. Data
incorrect.

all,
can be

It is important to note that for the blocked record formats,
tape_error is returned with the first record of the block that
contains the error. Since a parity error is associated with a
physical block as opposed to a logical record, the first record
mayor may not contain the invalid character or characters. If
subsequent iox_$read_record calls are made, records from the same
block can contain the invalid data even though their return codes
are zero.

INTERNAL LUGIC

The cseg point~r is obtained from the IOCB and
cseg.file_lock is checked to ensure that the file is not in use.
If the file is in use, the status code error_table_$file_busy is
returned. If the file is not in use, a cleanup handler is
established and the file is locked. If invoked, the cleanup
handler unlocks the file lock (cseg.file_lock) and sets the
logical record I/O lock (cseg.lrec.code) to
error_table_$fatal_error. This step is necessary because an
interrupted logical I/O operation can leave the internal I/O
buffers and logical record processing variables in an
inconsistent state. The logical record I/U lock is then checked,
and if it is nonzero, the procedure immediately returns that
error code.

The desired record can have already been read as the result
of an iox_$read_length call. If so, the read_length buffer count
will contain a valid value (cseg.rIN ~= -1). If the user's
request (buf_Ien) is equal to or greater than the number of
characters in the buffer (cseg.rIN), cseg.rlN characters are
returned with status code zero. If buf_Ien is less than
cseg.rIN, buf_Ien characters are returned with the status code
error_table_$long_record. The appropriate number of characters
are moved into the user's buffer from the read_length buffer and
rec_len is set to the number of characters moved. The variable
cseg.rlN is set to -1 to indicate that the read_length buffer no
longer contains a valid record. The logical record count
(cseg.lrec.reccnt) is incremented, the file is unlocked, and the
procedure returns.

If the record is not in the read_length buffer, control is
transferred to one of the four format routines. Three automatic
variables are used by all four routines to control their
operation. The variable remain is set by the internal procedure
get_record and contains the number of characters in the block
that remain to be processed. The variable move is set by the

11-75 AN57

format routines to the number of characters moved to the user's
buffer by the internal procedure move to user. The variable
req_off is set to the number of characters processed by a single
logical record request. It can differ from move and is used by
the internal procedure read_release both to locate the beginning
of the next record within a block and to release the I/O buffer
when the block is exhausted.

tor u format, get_record is called to obtain a record. The
variable move is set equal to remain, because a {) format record
f~lls an entire block. If buf_len is less than ~cJe, the long
record swi tch (the automatic variable long_record) j.s set to "1 "b
and move is set equal to buf_len, so that the number of
characters returned will be the number requested. (In the
absence of any other 1/0 error or event, long_record = "l"b at
exit time causes the procedure to return the status code
error_table_$long_record.) Since each logical record request
requires a new block, req_off is set equal to remain so that the
1/0 buffer will be released. The procedure movc_to_user is then
called to move the record to the user's buffer and read release
is called to release the 1/0 buffer. Control then passes to the
normal exit routine.

For F and Fb format, get_record is called to obtain a
record. If the file's record length (fd.reclen) exceeds the
value of remain, a short record situation exists. Since iox_
does not treat this case as an error, move is set equal to remain
without setting a status code. If fd.reclen is less than or
equal to remain, move is set equal to fd.reclen so that only one
record's worth of data is moved. If buf_len is less than move,
the user's buffer is too small to contain all the available data.
The long record switch is therefore set to "l"b and move is set
to buf_len so that only the requested number of characters is
moved. The variable req_off is set equal to fd.reclen because
each logical record request must process an entire record, even
if only a portion of that record is actually moved to the user's
buffer. The procedure move_to user is called to move the data
and read_release is called to position beyond the record. (In F
format, the liD buffer is released after every record is
processed. In FB format, it is only released after the last
record in a block has been processed.) Control then passes to
the normal exit routine.

For V and VB format, get_record is called to obtain a
record. A pointer to the record's RDW (record descriptor word)
is made. The record length is extracted, decremented by 4 (the
length of the RDw itself), and set into the automatic variable
data len. Ihe RDW length field is a 15 bit signed binary number
(16 bits in all), recorded as two 8-bit frames. When reading in
j-mode, each frame is stored into a 9-bit byte with the
high-order bit of each 'byte set to O. In order to recompose the
original binary number, the low-order 8 bits of the high-order
byte must be shifted right by 1 bit, into the high-order bit
location of the low-order byte.

11-76 AN57

If the data length cannot be extracted, or if it exceeds the
number of characters remaining in the block (remain - 4), control
passes to the invalid record descriptor error exit. If the RDw
is valid, move is set equal to data_len. If, however, buf_Ien is
less than move, long_record ·is set to "l"b and move is reset
equal to buf_len. The variable cseg.lrec.offset, the current
processing offset within the I/O buffer, is incremented by 4 (the
length of an RDw) so that the RDW is not processed as part of the
data. The variable req_off is set equal to data_len so that the
request will process the entire record, even if only a portion is
actually being returned, and move_to_user is called. The
procedure read_release is invoked to position beyond the record.
Control then passes to the normal exit routine.

For VS and vas format, get_record is called to obtain a
record segment. To keep track of the number of characters that
have yet to be moved into the user's buffer to satisfy the
request, the automatic variable left is initialized equal to
buf_Ien. The procedure process_sw is invoked to process and
validate the segment's SDW (segment descriptor word) and to
extract the segment's data length into data_len. If left is
greater than or equal to data_len, all the data in the segment is
needed and wove is set equal to data_len. If left is less than
data_len, only a portion of the segment is needed to satisfy the
(balance of the) request. In this case, long_record is set to
"l"b and move is set equal to left. The procedure move_to_user
is invoked to move the data to the user's buffer, left is
decremented by the value of move to give the number of characters
still required to complete the request, and read release is
called to position beyond the record segment.

The SDW type code is checked. If the code indicates either
a complete or terminal record segment, the entire logical record
has been processed and control passes to the normal exit routine.
If not, the remaining record segments must either be skipped (if
the user's request is satisfied), or processed (if their data is
needed to complete the request). In the latter case, left is
nonzero. Tne procedure get_record is called to obtain the next
record segment and control is passed back to the process_sw call
described above. In the former case, left is zero. The
procedure skip_segments is called to position beyond the last
segment of the record. Control then passes to the normal exit
routine with long_record set to "l"b because the user requested
fewer characters than the record contained.

The normal exit routine increments the logical record count
(cseg.lrec.reccnt). If a parity error has occurred, the return
code is set to error_table_$tape_error. Otherwise, it is set to
zero or whatever error code has been set by a previous step. If
no error has 'occurr~.;dbut long_record is "1 "b, the return code is
set to error~table:""'$long_record. (An error code therefore
overrides the rep6rting of the long record condition.) The
variable rec_Ien is set equal to the a~tomatic variable total,
whose value has .been maintained by move_to user to be the total

11-77 AN57

number of characters placed in the user's buffer. The variable
cseg. file_lock is set to "O"b and the procedure r·eturns. The
error and invalid record descriptor exit routines perform the
same functions as described above, with the exception of
incrementing cseg.lrec.reccnt.

Entry: get_reccrd

lnis procedure makes a logical record available to the
record format routines, either by reading a new block into an 1/0
buffer, or by setting the buffer prooessing variables for the
next record already in a buffer.

If the IIU buffer pointer (cseg.lr'ec.bufP) is nonn1111, at
least one record is already in the 1/0 buffer. 1h0 variable
remain is set to the number of characters not yet processed, and
the procedure returns. If cseg.lrec.bufP is null,
tape_ansi_tape_io_$read is called to read a block. The variable
cseg.lrec.bufP is set to point to the 1/0 buffer and
cseg.lrec.nc_buf is set to the number of characters read. If the
call returns a nonzero code, there are two main possibilities.

If tne code is error_table_$eof_record, an end-of-file mark
has been read. Either tape_ansi_nl_file_cntl_$data_eof or
tape_ansi_file_cntl_$data_eof is invoked to determine whether an
end-of-file mark has been read or the file is continued on
another volume. If a zero code is returned, the file is
continued on the next volume. Since tape_ansi_file_cntl_ has
performed all necessary volume switching functions t control is
simply passed back to the tape_ansi_tape_io_$read call. If the
code is nonzero, either no more data exists or an er~ror has
occurred, and control passes to the error exit routine.

If tape_ansi_tape_io_$read returns any other nonzero code, a
parity or fatal error has occurred. If the code is
error_table_$tape_error, the parity error switch (the automatic
varl.aoJ.e parity_error) is set to "l"b and the current
iox_$read_record operation is completed. Any other error code
causes control to pass immediately to the error exit routine.
(Tne iox_$control operation "r'eset_error _lock" can be used to
permit further iox_$read_record calls,if and only if the lock
value is error_table_$tape_error.)

If the code was zero or error_table_$tape_error, the block
count (cseg.lrec.blkcnt) is incremented. If cseg.nc_buf exceeds

11-7 b AN57

fd.01klen, cseg.nc_buf is set equal to fd.blklen to eliminate the
UI~ .';,:1 ~i ted charac ters . There are three possi bil i tie s if
cS8g.nc_buf exceeds fd.blklen. The user can have specified an
incorrect block length, causing data to be lost, the block length
can be specified with the intent of causing the latter portion of
a block to be ignored, or the "extra ft characters can have been
appended by the MTS500 tape subsystem. The latter case occurs
when a block whose length is not evenly divisible by 4 is read,
and the subsystem pads the block to a word boundary with octal
000. This behavior is a result of the inability of the current
tape device interface (tdcm_) to process blocks on a
per-character basis, and should no longer occur when tape_ioi_
becomes the device interface.

Since V, VB, VVS, and VB~ format blocks contain BOWs (block
descriptor words), the b1~ block length field is checked against
cseg.nc_buf. If cseg.nc_buf is less than the BDW length value,
control passes to the invalid descriptor error exit. (before
performing this comparison, the BDW length field must be
recomposed in the same manner as the RDW length field, described
above.) The variable cseg.nc_buf is set to the BDW length value,
to discard any HTS500 block pad characters not eliminated in the
previous fd.blklen check, and cseg.offset is set to 4 (the length
of the BDW itself) to indicate that the BDW has been processed.
The variable remain is set to the number of characters available
for processing (cseg.nc_buf - cseg.offset), and the procedure
returns. For D, F, and FB format, cseg.offset is set to 0,
remain is set, and the procedure returns.

Entry: process_sw

This procedure is called by the VS and VBS format routine to
validate and process an SDw. The SDW length value is recomposed
as described above, decremented by 4 (the length of the SDW
itself), and the resulting segment data length is stored into
data_len. The variable data_len is checked against the actual
number of characters remaining in the block and the SDW type code
is validated. An inconsistency detected by these checks results
in a nonlocal transfer to the invalid record descriptor error
exit. If the SUw is valid, cseg.offset is incremented by 4 (the
length of an SDw) so that the SDW is not processed as part of the
segment's data. The variable req_off is set equal to data_len
and the procedure returns.

11-79 AN57

entry: skip_seg~ents

This procedure is called by the VS and VbS format routine to
sKip record segments that are not required to satisfy the user's
request (buf len < total record length). The procedure
get_record is called to obtain a record segment and process_sw is
called to process and validate its SDW. If the type code is that
cf a final segment, read_release is called to position beyorld it,
and the procedure returns. Otherwise, read_release is called and
control passes back to the get_record call. This algorithm is
conti~ued until the final segment is encountered anci skipped.

Entry: move to u~er

This procedure is called by all four format routines to move
data from the 1/0 buffer to the user's buffer. If move is zero,
no data is to be moved and the procedure returns. Otherwise, a
pointer is made to the first character to be moved from the liD
Duffer, and another pointer is made to the location within the
user 1 s tuffer where that character is to be placed. If the
encoding mode (fd.mode) is not EBCDIC, no character conversion
need be performed and the data is simply moved. Otherwise,
ebcdic to_ascii is invoked to translate and move the data. The
automatic variable total is incremented by the value of move, to
maintain a count of the total number of characters moved.

Entry: read_release

This procedure is called to release a logical record or
record segment from an 1/0 buffer. If the record is the last (or
only) one in the buffer, the entire buffer is also released. The
variable cseg.offset (the current processing offset within the
buffer) is incremented by the value of req_off (the number of
characters processed by the format routine). The value of remain
is calculated by subtracting the new current offset from the
buffer character count (cseg.nc_buf). (The variable remain can
become negative.) ~I remain is 4 or greater, the procedure
returns without releasing the I/O buffer, because the remaining
characters must be valid data.

If remain is less than 4, usually the I/O buffer is
exhausted 'and is to be released by calling
tape_ansi_tape_io_$release_buffer before the procedure returns.
For U format this is always the case, because a U format request
al~ays processes every character (req_off is set equal to

11-80 AN57

remain). For V, VB, VVS, and VBVS, this is similarly the case,
because fewer than 4 characters does not even allow for a
4-character BDW. For F and FB format however, the buffer is only
released if the logical record length is greater than the value
of remain. If the logical record length is less than or equal to
remain, the procedure simply returns. This causes the loss of
short records (short record length < record length < 4) in some
unusual, but possible, cases. Unfortunately, this is the only
way to avoid processing the pad bytes (octal value 000) appended
to blocks that have lengths not evenly divisible by 4.

This entry point performs the iox_$write_record function for
IBi'1 file sets.

Usage

dcl tape_ansi_ibm_lrec_io_$write_record entry (ptr,
ptr, fixed bin (21), fixed bin (35»;

call tape_ansi_ibm_lrec_io_$write_record (iocbP,
ubP, buf_len, code);

where:

1 . iocbP is a pointer to the IOCB. (Input)

2. ubE' is a pointer to the user's buffer. (Input)

3. buf - len is the number _of characters to be written.
(Input)

4. code is a standard status code. (Output)

The following is a nonexhaustive list of error_table_ codes
that can be returned.

file in use for other I/U activity;
not written.

record

unreCuVtl'dt:e error occurred;
Errors" below.

see "Write

buf_len exceeds the maximum record and/or
block length; the record is not written.

11-b 1 AN57

WRITE EkRUHS

no more records can be written on the current
volume. For VS and VBS format, the record
can be partially written; for all other
formats, the record is not written.

a parity 1/0 error has occurred;
t.rrors below.

see I~ri te

In the case of a fatal or parity error, more records can be
affected than just the particular record being written when the
error code is returned. Such an error is detected upon the
writing of a block, and each iox_$write_record call does not
necessarily cause a block to be written. Hence, a zero status
code does not guarantee that a record has been written at all,
let alone written correctly. FE format blocks always, and VB and
VbS blocks can, contain multiple records, so that an error in
writing a block affects every record packed into the block.

In addition, tape_ansi_ does not wait to check the status of
a write operation after the operation has been issued. Indeed,
in the time between issuing a write operation and receiving its
status, a number of further write operations can have been
issued. This method of operation is termed asynchronous
processing and normally is highly satisfactory. If an 1/0 error
occurs, however, not only is the erroneous block not written, but
all bloCKS queued for writing subsequent to the error block are
not written. Even in this case it is possible to maintain an
accurate block count, but since the number of records per block
can vary, an accurate record count cannot be maintained. Since
U, F, and V format place only one record per block, the actual
nu~ber of records written equals the block count (available by
calling iox_$control "file_status" operation). For FB, VB, and
VBS format, an indeterminate number of records packed into blocks
subsequent to the error block are not written, and for VS and VBS
format, the record can have been partially written in blocks
prior to the error block.

INTERNAL LOGIC

The cseg pointer is obtained from the IOCB and
cseg.file_lock is checked to be sure that the file is not busy
for other 1/0 activity. If it is busy, ·the procedure immediately
returns the error code error_table_$file_busy. Otherwise, a
cleanup handler is established and the file lock is locked. If

11-b2 AN5'7

invoked, the cleanup handler unlocks the file lock and sets the
logical record I/O lock to error_table_$fatal_error. This step
is necessary because an interrupted logical I/O operation can
leave the I/O buffer and its processing variables in an
inconsistent state.

The logical record I/O lock (cseg.lrec.code) is checked to
ensure that I/O has not been inhibited due to an unrecoverable
error. If cseg.lrec.code is nonzero, the file leek
(cseg.file_lock) is unlocked and the procedure returns with code
set to the logical I/O lock value. If the file is nonlabeled,
the intrafile position indicator (vI (fl.flX).pos) is checked to
determine whether or not the tape is positioned in the data
portion of the file. The first timeiox_$write_record is called
subsequent to an opening, the tape is positioned in the file's
header label group. In this case,
tape_ansi_file_cntl_$position_for_output . ~s called to write the
header label group tape mark, such action defining the transition
into the data portion'of the file. If an error occurs while
writing this tape mark, control passes to the error exit routine.

The tape mark is not written until the first logical record
write call for the following reason. Volume switching is
performed if end-of-tape is detected while writing the header
label group. This causes a null file section to be recorded on
the old volume. Yet if the I/O switch is closed without an
intervening write operation, another null file section is written
on the new volume. By inhibiting the detection of end-of-tape
until the header label group tape mark is written, and by
delaying writing the tape mark until the first write operation,
volume switching can be avoided if no write operations are
issued. The close call causes just a single null file section to
be written on the current volume.

Control then passes to one of the four record format
routines. For U format, buf~lenis checked to ensure that it
does not exceed the maximum number of characters that can fit in
a block (fd.blklen). If its value is too large, control passes
to the long record error exit. The procedure get_buf is called
to obtain an I/O buffer and move (the number of characters to be
moved from the users buffer) is set equal to buf_Ien. The
'rariat';le req_v; [(Lilt::: uULfloec uf characters Lo be wri tten by this
request) is also set equal to buf_Ien and move_to_buf is called
to move the user's data into the I/U buffer. The procedure
write buf is called to write the block, and control passes to the
normal exit routine.

For F and FB format, buf_Ien is checked to ensure that it
does not exceed the record length (fd.reclen). If it does,
control passes to the long record error exit routine. The
procedure get_buf is called to obtain an 1/0 buffer, if
necessary. (For F format, an I/O buffer is obtained for each
call, because each record requires a 'new block.) The variable
move is then set equal to buf_Ien and remain is set to the number

11-83 AN57

of pad characters that must be appended to the user's data to
Qake a complete record (fd.reclen buf_len). This step is
necessary because fixed-format records must be of identical
lengths. if remain is nonzero, the appropriate number of blanks
are inserted into the I/O buffer. The variable req_off is set
equal to i'd.reclen because each request processes a complete
record, even if but"_len is less than fd.reclen. The procedure
move to buf is called to move the user's data into the 1/0 buffer
imm8~ialely before the inserted padding (if any). If records are
not b 1 0 c ked (f for mat), w r i t e _ b u f is call edt o· w r i t e the r e cor d .
utherwise, write_buf is not called unless the block contains as
many records as can fit (cseg.offset = fs.blklen). Control then
passes to th~ normal exit routine.

~or V and Vb format, data len (the length of the record) is
set to bur_len plus 4 (the length of an RDW). The variable
data len is checked to ensure that it does not exceed fd.reclen.
If it does, ~ontrol passes to the long record error exit. The
procedure get_buf is called to obtain an I/O buffer, if
necessary. (An I/O buffer is always obtained for V format, since
each record requires a new block.) For VB format, it must be
determined if the record to be written can fit into the current
block, or if a new block is required. If data_len exceeds the
number of remaining characters in the block (fd.blklen
cseg.offset), write_buf is called to write the current block and
get_buf is called to obtain a new I/O buffer. Either way, a
pointer is made to the I/O buffer location where the record's RDW
is to be constructed.

The kDW location is saved in cseg.saveP. Because of the
aforementioned tdcm_ - MTS500 block length problems, the length
of blocks being written must be evenly divisible by 4 to avoid
ectal 000 padding out to the word boundary. Such padding would
no: be reflected in the block's BDw and would cause the block to
~e u~readable by an IBM system. To avoid this problem, the last
record of a V or Vb format block is extended with blanks out to
the word boundary and the EDW is adjusted accordingly. Of
course, the kDw for the extended record must be similarly
incremented. Its location is saved for this reason.

The record length (data_len) is decomposed and placed into
the RDW length field. (The decomposition process is the reverse
of the RDW recomposition process described above, done for the
same reason.) The variable cseg.offset is incremented by 4, so
that the RDW is considered when computing the total block length,
and req_off is set equal to buf_Ien. The variable move is also
set equal to buf_Ien and move_to_buf is called to move the user's
data. If records are not blocked, write_buf is called to write
the record. Otherwise, write_buf is not called unless another
record could not fit in the current block (fd.blklen
cseg.offset < 4, where 4 is the length of a zero-length record).
Control then passes to the normal exit routine.

i i -b4 AN57

For VS and VBS format, buf_len is checked to ensure that it
does not exceed fd.reclen. If it does, control passes to the
longer record error exit. The procedure get_buf is called to
obtain an 1/0 buffer, if necessary. (An 1/0 buffer is always
obtained for VS format, because each record segment requires a
new block.) The variable left contains the number of characters
still to be moved from the user's buffer, and is initialized
equal to buf_len. As each record segment is written, left is
decremented by the number of characters written in that segment.
The variable remain is set to the number of characters remaining
in the current block (fd.blklen - cseg.offset). A pointer is
made to the 1/0 buffer locatiori where an SDW is to be
constructed, and the location is saved in cseg.saveP for the
reason described above.

The number of characters that can still be placed into the
current block is computed. If left, the (balance of the) user's
request, plus 4 (the length of an SLW) characters is greater than
remain, move is set to as many data characters as will fit
(remain 4). If left + 4 is not greater than remain, the
(balance of the) user's request can fit entirely within the
current block. It must then be determined whether or not
sufficient characters would remain in the block to contain a
segment of a subsequent record. If left + 4 is less than or
equal to remain - 5, sufficient room would remain for a 5
character segment (4 character SDW plus 1 data character) of the
nEJxt reccrd. In this case, move is set equal .to left .and the
(balance of the) user's request is placed into the current block.

If, however, a segment of a subsequent record could not fit
into the current block, the current segment of the current record
is the last segment in the block. Steps must be taken to ensure
that placing the block segment into the block does not result in
a block with a length not evenly divisible by 4. Such a block
would be padded with octal 000 out to a word boundary, resulting
in unreadable blocks, as described above. The number of
characters of the segment that would be placed into the last word
of the block is computed. If the word would be filled, move is
set equal to left because no padding occurs. Otherwise, move is
set equal to left decremented by the number of characters that
would be placed in the last word. Those characters are written
in a subsequent segment in the next block. The variable left is
then decremented by the value of move to give the amount of data
(if any) to be written in subsequent segments.

The type code set in the SDW is dependent upon both the
amount of data still to be written (left), and whether or not the
segment to be written is the first of the record. If no data
from the record has been previously placed into another segment
(first scan = "l"b) and no data remains to be written in a
subsequen t segmen t (left = 0), the type is complete; i. e., the
segment contains the entire record. If some data has been placed
into another segment (first_span = "O"b), and no data remains to
be written, the type is final; i.e., the segment is the last of

11-05 AN57

a group of-segments tnat in toto make up the record. If no data
fro~ the record has been previously placed into another segment
and more remains to be written in subsequent segments (left ~=
0), the type is initial; i.e., the segment is the first of a
group of segments that in toto make up the record. If some data
has been placed into another segment and more remains to he
written, the type is medial; i.e., the segment is one of a group
of three or more segments (but neither the first nor the last)
that in toto make up the record.

The variable data_len, the actual record segment length, is set
equal to move + 4 (to include the SUW), decomposed (as ·described
above), and placed into the SDW length field. For DOS files
(cseg.standard = 3), a special check is made for zero-length
record SLws. If the SDW length value is 4 (no data), the
high-order bit of·the SDW length field must be set to "1"b. The
variable cseg.offset is incremented by 5, so that the SDW is
considered when computing the total block length. The variable
req_off is set equal to move, and move_to_buf is called to move
the user's data into the I/O buffer. The variable remain is set
to the number of characters now The variable remaining in the
block (remain - data_len). If record segments are not blocked
(VS format), control passes to write the I/U buffer. If record
segments are blocked, the 1/0 buffer is only written if another
nonzero length record segment could not fit into the block
(remain < 5).

If the I/C buffer is to be written, write_buf is called to
write it, get_buf is called to obtain another, and remain is set
to the number of characters available in the new buffer
(fd.blklen cseg.offset). Whether or not the I/O buffer was
written, left is checked to determine whether or not the user's
request has been satisfied. If left is nonzero, control passes
back to make another SDW pointer for the next record segment; if
left is zero, control passes to the normal exit routine.

The normal exit routine increments the logical record count
(cseg.lrec.reccnt) and sets the return code and cseg.lrec.code to
the code returned by the last 1/0 operation (normally zero). If
csw (the tape_ansi_ibm_lrec_io_$close entry switch) is "1 n b,
control then passes to that entry's exit routine. OtherWise, the
file lock is unlocked and the procedure returns. (The variable
csw is initialized to "onb upon procedure block activation, but
is set to "1"b by the tape_ansi_ibm_lrec_io_$close entry.)

The long record and error exits perform similar functions,
with the exception of incrementing cseg.lrec.reccnt.

11-86 AN57

INTERNAL PROCEDURES

Entry: get_buf

This procedure is called to obtain an I/O buffer, if one is
needed. If the I/O buffer pointer (cseg.lrec.bufP) is nonnull, a
buffer is available and the procedure returns. If it is null,
tape_ansi_tape_io_$get_buffer is called to make an I/O buffer
available. If the record format is V, Vb, VVS,or VBVS, the
current offset within the buffer (cseg.offset) is set to 4, to
reserve space for the hDW. For all other formats, it is set to
o.

This procedure is called to move data from the user's buffer
to the I/O buffer. If move is zero, there is no data to be
moved. In this case, cseg.offset is incremented by the value of
req_off (the number of characters processed by the request) and
the procedure returns. (The variable cseg.offset must be
incremented to allow for the case of zero-length records in V,
VB, VVS, and VES format. Such records consist of RDWs or SDWs
alone.) If data is to be moved, pointers are made to the offset
within the I/O buffer where the data is to be placed, and to the
offset in the user's buffer from which the data is to be taken.
If the encoding mode (fd.mode) is ASCII, the data is moved. If
the mode is EBCDIC, ascii_to_ebcdic_ is called to translate and
move the data. The variable total is incremented by the value of
move, to maintain a count of the total number of characters
moved. The variable cseg.offset is incremented by req_off, and
the procedure returns.

11-b7 AN57

Entry: write_buf

This procedure writes a block, appending block pad
characters if necessary. If cseg.offset is less than 20 and the
format is neither F nor FB, the block must be padded. This step
is necessary for two reasons: 1) blocks of fewer than 18
characters must not be written, and 2) blocks to be written must
consist of an integral number of words (4 charact~rs/word). The
number of pad characters is computed by subtracting cseg.offset
(the number of characters presently in the block) from 20, and
control passes to perform the padding'.

If cseg.offset is greater than or equal to 20 but not evenly
aivisible by four, the block must still be padded to satisfy
requirement 2) above. Padding for both cases is performed by
inserting the appropriate number of pad characters into the I/O
buffer immediately following its current contents, and then
incrementing cseg.offset to reflect the new, adjusted block
length. In addition, for V, Vb, VS, and VBS format, the BDW and
last HDW in the block must be incremented to reflect the addition
of the padding.

The entry point tape_ansi_tape_io_$write is called to write
the block. If the return code is zero, the block count
(cseg.lrec.blkcnt) is incremented and the procedure returns. If
the return code is nonzero, there are two major possibilities.
If the code is not error_table_$eov_on_write, an error has
occurred, and the block count is decremented if more than one
block was not written (cseg.blkcnt = cseg.blkcnt
cseg.soft_status.nbuf + 1). (The suspended buffer count is
currently obtained directly from the cseg. Eventually, when
tape_ioi_ becomes the device interface, a tape_ioi_ status entry
will be called to obtain this value.) The logical record count
is invalidated by setting it negative, and control passes to the
error exit.

If the code is error_table_$eov_on_write, then end-of-tape
has been detected. This is more in the nature of an event than
an error. The variable cseg.lrec.blkcnt is incremented, because
the block has been successfully written. If csw is "1"b (i.e.,
the procedure was entered at the $close entry pOint), the
procedure simply returns. This is done so that EOT detection at
close time does not force volume switching, with the resultant
recording of a null file section on another volume. If csw is
"O"b, either tape_ansi_nl_file_cntl_$data_eot or
tape_ansi_file_cntl_$data_eot is called to switch volumes. If
the returned code is zero, volume switching has occurred and the
procedure returns. If the code is nonzero, the volume switch did
not take place. This can be due either to an error or to the
lack of another volume. If the format is VS or VBS and the
entire record has not yet been written (left = 0), control
passes to the error exit. If the format is other than VS or VBS,
or if VS or VES and the entire record has been written (left =

11-88 AN57

0), this iox_$write_record operation is not in error. Further
operations must be inhibited nevertheless, because there is no
more room on the volume. To this end, cseg.lrec.code (the
logical 1/0 lock) is set to the error code value. The return
code is then set to 0, because this operation is successful, and
control passes to unlock the file lock and return.

This entry point is called by tape_ansi_file_cntl_$close to
terminate logical record 1/0 in a consistent manner at close
time.

Usage

dcl tape_ansi_ibm_lrec_io_$close entry (ptr,
fixed bin (35»;

where:

1 • ac.P is a pointer to the cseg. (Input)

2. code is a standard status code. (Output)

INTERNAL LOGIC

The cseg pointer is copied from the argument list and the
close entry switch (csw) is set to "l"b. This switch governs the
action taken if write_buf must be called and either an error or
EaT occurs. If the 1/0 switch is open for sequen.tial_input, and
the I/O buffer pointer is null, control passes to the buffer
management reset exit to perform that function and return. If
the pointer is nonnull, control passes to the buffer release exit
to perform that function, reset the buffer management strategy,
and return.

If the 1/0 switch is open for sequential_output and there is
no current 1/0 buffer, control passes to the buffer management
reset exit. Bven if an 1/0 buffer exists, it may not contain any
valid data. If cseg.offset is zero, it surely does not, and if
cseg.offset is 4 and the record format is V, VB, VS, or VBS, the
buffer only contains a BLW. In either case, control passes to
the buffer management reset exit. Utherwise, the buffer contains

11-b 9 A~57

data that must be written. The procedure write_buf is called,
and control passes to the buffer release exit.

The buffer release exit calls
tape_ansi_tape_io_$release_buffer to release the current 1/0
buffer, calls tape_ansi_tape_io_$close to reset the buffer
management strategy, and returns. The buffer management reset
exit calls tape_ansi_tape_io_$close and returns.

This module performs the iox_$read_length function. It
reads a record, returns its length, and saves the record in a
buffer for future use by an iox_$read_record call.

Usage

dcl tape_ansi_read_Iength_ entry (ptr, fixed bin (21),
fixed bin (35»;

call tape_ansi_read_Iength_ (iocbP, reclen, code);

where:

1 • iocbP

2. reclen

3. code

is a pointer to the IOCB. (Input)

is the length of the next
characters. (Output)

record,

is a standard status code. (Output)

in

If code is error_table_$tape_error,
returned but can be in error. If code is

the record length is
any other nonzero

value, the record length is undefinede

Internal Logic

The cseg pointer is obtained from the IOCB and cseg.invalid
is checked to determine if the cseg has an internal
inconsistency. If it does, the procedure immediately returns the
error code error_table_$invalid_cseg. The variable
cseg.file_lock is checked to ensure that .the file is not in use
for other 1/0 activity. If it is in use, the procedure
immediately returns the error code error_table_$file_busy.

11-90 AN57

utherwise, a cleanup handler is established and the file is
locked. If invoked, the cleanup handler unlocks the file lock
and sets the logical record I/O lock (cseg.lrec.code) to
error_table_$fatal_error. This action is necessary because an
interrupted read_length operation can leave the logical record
processing variables in an inconsistent state.

The read_length buffer pointer (csegerIP) is checked to
determine whether or not a read_length buffer exists. If the
pOlnter is null, one does not. The external procedure
hcs_$make_seg is invoked to make a segment in the process
directory. The entry name of the segment is formed as follows:

module_name I I first_volname : I "_.rl"

where module_name is the name of the I/O module (tape_ansi_ or
tape_ibm_) and first_volname is the volume name of the first (or
only) volume of the volume set. If an eFror occurs while making
the segment, the procedure returns the code
error_table_$fatal_error. If no error occurs, the maximum buffer
length is computed and saved in the internal static variable
nc_wanted. when reading a record to determine its length, the
procedure must be sure to request every possible character in the
record, and no record can contain more than nc_wanted characters.
Control then passes to read a record.

If cseg.rlP is
exists. The buffer

nonnull, the read_length buffer already
character count (cseg.rlN) is checked to

determine whether or not the buffer already contains a record.
This is possible if two iox_$read_length calls are issued without
an intervening iox_$read_record call; the second
iox_$read_length call references the same record as the first.
If cseg.rlN is not equal to -1, the buffer already contains a
record. The return code is set to zero, reclen is set equal to
cseg.rlN, the file is unlocked, and the procedure returns.

If cseg.rlN is -1, then a record must be read into the
buffer. To do so, the file must first be unlocked, and
tape_ansi_lrec_io_$read_record or
tape_ansi_ibm_lrec_io_$read_record must be called to read the
record. The call requests nc_wanted characters~ The variable
cseg.rlN is set to the number actually read. The file is then
locked once again. If the returned code is either zero or
error_table_$tape_error, the logical record count
(cseg.lrec.reccnt) is decremented. This is done because although
the record count was incremented by the read_record call, the
record has not actually been read (by the user). The variable
reclen is set to cseg.rIN, the file is unlocked, and the
procedure returns.

If the returned code is any other value, the read_record
operation has failed. The variable reclen is set to zero,
cseg.rlN is set to -1 (to ensure that the buffer contents are
invalidated), the file is unlocked, and the procedure returns.

11-9 1 AN57

This module implements the iox_$position function.
Positioning to beginning-of-file, end-of-file, and forward a
specified number of records are supported. Positioning backwards
a specified number of records is not supported.

usage

dcl tape_ansi_position_ entry (ptr, fixed bin, fixed bin,
fixed bin (35»;

call tape_a~si_position_ (iocbP, type, n, code);

where:

1 •

2.

3.

4.

that

iocbP

type

n

code

The following

is a pointer to the lOeB. (Input)

specifies the type of positioning to be
performed. The following types are
supported:
-1 beginning-of-file
o forward n records (see n below)
1 end-of-file
(Input)

specifies the number of records to be
positioned if type O. If type ...

0, over, = =
n is ignored. The value of n must be > O.
If n = 0, no action is performed. (Input)

is a standard status code. (Output)

is a nonexhaustive list of error table codes - -
can be returned.

the control segment is invalid;
operation was not performed.

the

the file is already in use for other lID
activity; the operation was not performed.

an unrecoverable lID error occurred; the
operation mayor may not have been completed.
The lID switch mayor may not have been
closed.

a parity lID error occu~red. If the lID
switch is open, the operation was completed.
If not, the operation may not have been
completed~

11-92 AN57

Internal Logic

logical end-of-file encountered before
completing a position forward n records
request. The file is positioned at
end-of-file.

either type or n is invalid;
was not performed.

the operation

The cseg pointer is extracted from the IOCB. The variable
cseg.invalid is checked to determine whether or not the control
segment is valid. If it is not valid, the error code
error_table_$invalid_cseg is returned. Otherwise, the file lock
(cseg.file_lock) is .checked to determine whether the file is
already busy for other 1/0 activity. If it is busy, the
procedure returns the error code error_table_$file_busy.
Otherwise, a cleanup handler is established and cseg.file_lock is
set. If invoked, the cleanup handler sets the logical record 1/0
lock to error_table_$fatal_error and unlocks the file lock. This
step is necessary because an interrupted positioning operation
can leave the logical record processing variables in an
inconsistent state.

The type argument is validated to ensure that it falls
within the range -1 S type ~ +1. If it does, control passes to
perform the appropriate positioning operation. If it does not,
the return code is set to error~table_$bad_arg and control passes
to the exit routine.

Position to beginning-of-file

Either tape_ansi_nl_file_cntl_$beginning_of_file or
tape_ansi_file_cntl_$beginning_of_file is called to perform the
actual positioning operation. If the returned code is nonzero,
the logical record 1/0 lock is set to that value. Control then
passes to the exit routine.

Position to end-of-file

Either tape_ansi_nl_file_cntl_$end_of_file or
tape_ansi_file_cntl_$end_of_file is called to perform the actual
positioning operation. If the returned code is nonzero, the
logical record I/U lock is set to that value. Control then
passes to the exit routine.

Position forward n records

The return code is initialized to zero because no procedure
calls can be made. The automatic variable tape_error is

11-93 AN57

initialized to "O"b. This variable is used to determine whether
or not a parity error has occurred in the course of pOSitioning.

If n = 0, no records are to be skipped and control passes to
the exit routine. Because each block can contain an
indeterminate number of records, it would be necessary to
maintain a logical record map for every block to implement
positioning backwards. Since the cost of such an implemeqtation
is excessive, n < 0 is not supported. If n < 0, the return code
is set to error_table_$bad_arg and control passes to the exit
routine. If n > 0, the argument is copied into the automatic
variable i so that the record count can be decremented without
affecting the caller's parameter.

The read_length buffer character count (cseg.rlN) is checked
to determine whether or not the buffer contains a record. If it
does (cseg.rlN "'=' -1), the buffer is "emptied" (cseg.rll\l = -1)
and the record count is decremented. These actions are logically
equivalent to skipping 1 record. If there was no record in the
read length buffer or if additional records must be skipped,
positioning involves physical tape motion.

Records are skipped by invoking either
tape_ansi_lrec_io_$read_record or
tape_ansi_ibm_lrec_io_$read_record. The variable cseg.file_lock
is set to "O"b so that the logical liD procedure does not find
the file locked upon invocation. The appropriate procedure is
called with a null user buffer pointer and a zero buffer length
so that a logical record is processed buti no information is
returned. If the returned code is either zero or
error_table_$long_record, the read is considered to have
completed normally. (Since the length of the record read is
almost always greater than the buffer length (0), code is almost
always error_table_$long_record. In this case, code is reset to
zero and ignored. If the record read has zero length, code is
zero.) If the returned code is error_table_$tape_error, a parity
error has occurred. This error does not absolutely preclude
further reading. In order to continue, the logical 1/0 lock is
unlocked (cseg.lrec.code = 0) and tape_error is set to "1"b so
that the procedure eventually returns error_table_$tape_error to
its caller. If the returned code is any other value
(error_table_$end_of_info, error_table_$fatal_error, etc.), no
further positioning is possible and control passes to the exit
routine. If proceSSing is to continue, the file lock is locked
again and the above algorithm is repeated until the positioning
request has been satisfied.

Once the request is complete, tape_error is checked to
determine whether a parity error has occurred while proceSSing.
If so, cseg.code is set to error_table_$tape_error, relocking the
logical record liD lock, and the return code is set to
error_table_$tape_error.

11-94 AN57

The exit routine unlocks the file lock (cseg.file_lock) and
returns whatever code has been set in a previous step.

This procedure performs all the volume and device management
functions of the I/O module. Currently coded to use the tdcm_
interface, it must eventually be recoded to use rcp_ and
tape_ioi_, The internal logic descriptions are therefore
confined to describing the functions performed and ignoring the
particulars of implementation,

This entry point is called to assign a device, mount a
volume on that device, and read the volume's VOLl label (if any).

Usage

dcl tape_ansi_mount_cntl_$mount entry (ptr, fixed bin,
fixed bin (35»;

where:

1 . cP

2. vlX

3. code

If code
is assigned.

is

is a pointer to the control segment. (Input)

is the index of the volume link associated
with the volume to be mounted. (Input)

is a standard status code. (Output)

nonzero, the volume is not mounted and no device

11-95 A~57

II~T ER~AL LUGIC

A cleanup handler is established that calls the internal
procedure cleaner. If invoked, cleaner demounts the volume (if
moun ted) and unassigns the device (if assigned). After the
cleanup handler is established, a device is aSSigned and the
active drive count (cseg.nactive) is incremented. The internal
procedure mount_request is called to issue a mount message to the
user, mount the desired volume (specified in the volume link),
an~ issue another message when the mount is complete. The
internal procedure vOL1_check is called to validate the VUL1
label against its expected characteristics and set the VOLl
status variable (vl.write_VuLl) accordingly. The volume link is
filled with the assignment, mount, and VOLl validation data, and
the procedure returns. If an error occurs during any of the
above steps, control passes to the error exit routine.

The error exit ,routine invokes the internal procedure
cleaner, sets the return code to error_table_$bad_mount_request,
and returns.

This entry point is called to demount a volume from an
assigned device and mount a different volume on the same device.

lisage

dcl tape_ansi_mount_cntl_$remount entry (ptr, fixed bin,
fixed bin, fixed bin (35»);

call tape_ansi_mount_cntl_$remount (cP, down_vlX,
vlX, code);

where:

1 • cF is a pointer to the control segmen t . (Input)

2. down vlX is the index of the volume link associated
•• .: '- I.. ~I..- volume to be demounted. (Input) W.1. 1..11 l,Il~

3. vlX is the index of the volume link associated
with the volume to be mounted. (Input)

4. code is a standard status code. (Output)

If code is nonzero, the requested
mounted but the volume to be demounted may
and its device unassigned.

volume has not been
have been demounted

11-96 AN57

INTERNAL LOGIC

A cleanup handler is established to call the internal
procedure cleaner, described above. The current file position
(vl.cfIX) of the volume to be demounted is invalidated and the
internal procedure unload is called to demount the volume. The
volume link's device identifier (vl.rcp_id) is invalidated and
control passes to call mount_request, continuing as described
above.

This entry point is called to demount all mounted volumes,
request that write permit rings be inser-ted, and mount the
volumes again. The write ring switch (cseg.write_ring) is set to
" 1" b , ind ica ting tha t all vol urnes are to be moun ted \-li th wri te
permit rings.

Usage

del tape_ansi_mount_cntl_$insert_rings entry (ptr,
fixed bin (35»;

This entry point is called to issue a hardware file protect
order to every assigned device. The write protect switch
(cseg.protect) is set to "l"b, indicating that writing is
inhibited.

usage

dcl tape_ansi_mount_cntl_$write_protect entry (ptr,
fixed bin (35»;

11-97 AN57

This entry point is called to issue a hardware file permit
order to every assigned device. ,The write protect switch is set
to "Oflb, indicating that writing is not inhibited.

Usage

dcl tape_ansi_mount_cntl_$write_per~it entry (ptr,
{'ixed bin (35»; ,

This entry point is called to demount a volu~e and unassign
its device.

Usage

dcl tape_ansi_mount_cntl_$free entry (ptr, fixed bin,
fixed bin (35»;

where:

1 . cP

2. vlX

3. code

is a pointer to the control segment. (Input)

is the index of the volume link associated
with the volume to be demounted, and whose
device is to be unassigned. (Input)

is a standard status code. (Output)

If code is nonzero, the volume may not have been demounted
and the device may not have been unassigned,

Internal Logic

A cleanup handler is established, as described above, and
the current file position (vl.cfIX) is invalidated. The volume
is then demounted and its device unassigned. The active drive
count (cseg.nactive) is decremented, the volume link's device
identifier (vl.rcp_id) is invalidated, and the procedure returns.

11-96 AN57

If an error occurs during any of the above steps, control passes
to the error exit routine.

Internal Procedures

The only internal procedure described is VOL1_check. The
others have been functionally described in the above text and are
highly dependent in their implementation upon the tdcm_
interface.

Entry: VUL1_check

This internal procedure validates the VOL1 label (if any) of
a newly mounted volume and sets the VOL1 status variable
(vl.write_VOL1) accordingly. This variable takes the following
values:

o

2

3

4

the VOL1 label is correct. For an A~SI file
set, this means that the first block is an
ANSI VOL1 label. for an IBM file set, this
means that the first block is an IBM SL VOLl
label. If a density has been specified or
inferred (cseg.density n= -1), the VOL1 label
density meets the specification. In
addition, the recorded volume identifier
matches the expected volume identifier.

the tape is blank; i.e., the first read
operation detected 25 feet of blank tape and
returned blank-tape-on-read status.

the first block is unreadable. Either the
volume is recorded at an unreadable density,
or with the wrong number of tracks, or the
tape is defective, or the hardware is
malfunctioning, etc.

the first block is not a VOL1 label.
VOL1 label is not treated as such
context of an A~SI file set.)

(An IBM
in the

the first block is a valid VOL1 label, but
the recorded volume identifier does not match
the expected volume identifier.

11-99 AN57

5 the VOLl label is correct in all respects but
density. The recorded density does not meet
the specified or inferred density
(cseg.density) .

Currently, this procedure operates independently of the
(eventual) rcp_ volume registration mechanism. It must
eventually be modified to work in accordance with that mechanism,
The majority of its checking functions will be performed by rcp_
itself.

This procedure performs the actual tape operations required
by the I/O module. Currently, the procedure is an interface to
tdcm_. when tape_ioi_ is implemented, the I/O module can be
recoded to call tape_ioi_ directly, or else this procedure should
be rewritten to interface to tape_ioi_. The following
documentation provides only a functional description of each
entry point, since the implementation is entirely tdcm_
dependent.

This entry point is called to initialize the tdcm_ tseg
contained in the control segment. Currently, it is called only
once at initial attach time, before a device has been attached.
Eventually, it should perform the tape_ioi_$initialize function
and be called (multiply) at device assignment time.

usage

call tape_ansi_tape_io_$attach (cP);

where cP is a pointer to the control segment. (Input) (Input)

11-100 AN57

This entry point is called at logical record I/O open time
(lrec_open internal procedure in tape_ansi_file_cntl_ and
tape_ansi_nl_file_cntl_) to initialize the tseg for asynchronous
I/O. Eventually, it should call tape_ioi_ to set buffer sizes,
I/O modes, etc.

usage

where cP is a po~nter to the control segment. (Input)

This entry point is called at logical record I/O close time
(by tape_ansi_lrec_io_$close or tape_ansi_ibm_lrec_io_$close) to
synchronize the tape, ,backspacing if necessary in the read case,
writing the remaining buffers in the write case.

Usage

where:

1 •

2.

cP .

code

is a pointer to the control segment. (Input)

is a standard status code. (Output)

The value of code can be either zero or
error_table_$fatal_error. (EaT detection during write
synchronization is ignored.)

This entry pOint is called to obtain a pointer to an I/O
buffer that will subsequently be written.

11-101 AN57

Usage

del tape_ansi_tape_io_$get_buffer entry (ptr, ptr,
fixed bin (35));

where:

1 • cP is a pointer to the control segment. (Input)

2. bF is a pointer to the 1/0 buffer. (Output)

3. code is a standard status code. (Output)

The value of code can be either zero or
error_table_$fatal~error. In the latter case, bP is nUll.

This entry point is called to release an I/U buffer once it
is no longer needed; i.e., subsequent to a read operation or
after a get_buffer call if no write is to be issued.

Usage

del tape_ansi_tape_io_$release_buffer entry (ptr, ptr,
fixed bin (35));

where:

1 • cP is a pointer to the control segment. (Input)

2. bP is a pointer to the liD buffer to be
released. (Input)

3 · code is a standard status code. (Output)

The '\I~ 111Q of code can be either zero or .. \06..,"-4"-'"

error_table_$fatal_error.

11-102 AN57

mode.

usage

This entry point is called to read one block in asynchronous

dcl tape_ansi_tape_io_$read entry (ptr, ptr, fixed bin,
fixed bin (35.).);

where:

1 •

2.

3 ·

4.

cP

bP

ccount

code

is a poin ter to the con trol" se gmen t . (Input)

is a pointer to the I/O buffer containing the
b.lock. ' (Output)

is the number of characters read. (Output)

is a standard status code. (Output)

If code is zero, the block was read correctly. The
following error_table_ codes can be returned:

an end-of~file mark was read; bP is null and
ccount is O.

25 feet of blank tape read; bP is null and
ccount is O.

parity error detected; a block was read.

unrecoverable program or I/O error;
null and ccount is O.

bP is

This entry point is called to read a block in synchronous
mode. The block is read into a special synchronous liD buffer
pointed to by cseg.syncP.

Usage
..

del tape_ansi_tape_io~$sync_read entry (ptr, fixed bin,
fixed bin (35»;

11-103 AN57

where:

1 •

2. ccount

3. code

is a pointer to the control segment. (Input)

is the number of characters read. (Output)

is a standard st&tus code. (Output)

If code is zero, the read was successful. The following
error_table_ codes can be returned: eof_record, blank_tape,
tape_error, and fatal_error. If code is nonzero, ccount is zero.

This entry point is called to write a block in synchronous
mode. The block is written from a special synchronous I/O buffer
pointed to by cseg.syncP.

Usage

dcl tape_ansi_tape_io_$sync_write entry (ptr, ccount,
fixed bin (35»;

where:

1 •

2.

3 ·

cP

ccount

code

is a pointer to the control segment. (Input)

is the number of characters to be written.
(Input)

is a standard status code. (Output)

If code is zero, the write was successful. The following
error_table_ codes can be returned:

end-or-tape was detected;
written correctly.

the block was

a parity error occurred; the block was not
written or was written incorrectly.

an unrecoverable program or 1/0
occurred; the block was not written.

11-1G4

error

AN57

mode.

Usage

This entry point is called to write a block in asynchronous

dcl tape_ansi_tape_io_$write entry (ptr, ptr, fixed bin,
fixed bin (35));

where:

1 • cf is a pointer to the control segment. (Input)

2. bf' is a pointer to the I/O buffer to be written.
(Input)

'j

.) . ccount is the number of characters to be written.
(Input)

4. code is a standard status code.

If code is zero, the block was written correctly. The
following error_table_ codes can be returned:

end~of~tape was detected;
written correctly.

the block was

a parity error occurred; the block was not
written.

an unrecoverable program or I/O error
occurred; the block was not written or was
written incorrectly.

This entry point is called to iSSUe an order operation. The
following orders can be issued:

bsf
bsr
ers
fsf
fsr
rqs
rss

backspace file
backspace record
erase
forward space file
forward space record
request status
reset status

11-105 A~57

rew
run
eof
pro
per
san

rewind
rewind and unload
write end-of-file mark
set file protect
set file permit
set density (qualified further)

del tape_ansi_tape_io_$order entry (ptr, char (3),
fixed bin, fixed bin (35»;

where:

1 •

2. order

3· q

4. code

is a pointer to the control segment. (Input)

is .the
above.

order to
(Input)

be performed, as listed

is the order qualifier. The value of q is
ignored unless the order is "sdn". In this
case, q can be:
o 200 bpi
1 556 bpi
2 800 bpi
3 1600 bpi (Input)

is a standard status code. (Output)

If code is zero, the order was performed correctly. The
following error_table_ codes can be returned:

possible for all orders; an
program or I/O error occurred.
or may not have been performed.

unrecoverable
The order may

possible for bsf and bsr on~y; the tape
is/was positioned at beginning-of-tape. The
order mayor may not have been· performed.

possible for ers and eof only; end-of-tape
detected. The order was performed correctly.

possible for fsr and bsr only;
spaced over an end-of-file mark.

the order

possible
occurred.
performed.

for all orders; an I/O error
The orQer mayor may not have been

11-106 AN57

This module is called by tape_ansi_tape_io_ to interpret the
10M status bits. It generates an array of error table status
codes. When tape_ioi_ becomes the device 1/0 interface, this
module will no longer be needed.

Usage

del (P+- ~) •
v 1 I ,

where:

1 • hP is a pointer to a hardware status structure.
(Input)

The hardware status structure is declared as follows:

dcl 1 hdw_status based (hP),
2 iom_bits bit (72) aligned,
2 no_minor fixed bin,
2 major fixed bin (35),
2 minor (10) fixed bin (35);

I~ 10M status bits *1
1* number of minor codes *1

1* major status code *1
1* minor status codes *1

Internal Logic

The procedure is passed the structure with
hdw_status.iom_bits set to the IO~ status to be interpreted. The
variable hdw_status.no_minor is set to the number of minor status
codes, the major status code is placed in hdw_status.major, and
the hdw_status.minor array is filled with the minor status
code(s).

This module is called by tape_ansi_attach_ to validate an
iox_ attach description.

Usage

dcl tape_ansi_parse_options_ entry (ptr, (*) char (*)
varying, char (32) varying, fixed bin (35»;

call tape_ansi_parse_options_ (taoP, options, error, code);

11-107 Al'J57

where:

1 ° taof

2. options

3 ° error

4. code

Internal Logic

is a pOinter to the attach options structure
(tao., as declared by
tape_attach_options.incl.p11. (Input)

is an array of attach description lexemes, as
parsed by iox_o (Input)

is a diagnostic message.
is zero; it can be
nonzero. (Output)

It is null if code
nonnull if code is

is a standard status code. If code is
nonzero, the attach description is invalid.
(Output)

The variables error and code are initialized to "" and zero,
respectively. If the number of elements in the options array
(tao.noptions) is zero, the procedure immediately returns the
error code error_table_$noarg because the attach description
cannot be null.

Processing begins with the volume list, which is the first
section of the attach description. The array index i is
initialized to 1. The variable hyphen_ok is set to "O"b to
indicate that the first options array element should be a volume
name and therefore should not begin with a hyphen. The element
is tested to determine if it is "-volume" or "-vol", either of
which indicates that the next element is a volume name that may
or may not begin with a hyphen. If the element is "-volume" or
If-vol", hyphen_ok is set to "l"b and no_next is invoked to
determine whether or not the next element exists. If the next
element does not exist, the procedure returns the error code set
by no_next because the -volume option requires a following volume
name. If the next elemen~ exists, no_next has incremented the
array index to access it.

The next element is tested to determine whether or not it
begins with a hyphen. If it does not, hyphen_ok is set to "oub
(whether or not it was previously "1"b) and control passes to
validate the element as a volume name. If the element begins
with a hyphen, the value of hyphen_ok is tested. If hyphen_ok =
"O"b, the element is assumed to be an attach option and control
passes to the attach option validation code. (The first array
element can not be an attach option, but ~ be either -volume,
-vol, or a volume name.) If hyphen_ok = "l"b, hyphen_ok is reset
to "O"b and control passes to validate the element as a volume
name.

1 1 -1 06 AN57

The function vname is invoked to validate and normalize the
volume name. If the element is not a valid volume name, the
procedure returns error_table_$bad_tapeid. If the volume limit
is not exceeded, the volume count is incremented and the volume
name is placed into the volume name array (tao.volname). If the
options array is not exhausted, the next element is tested to
determine whether or not it is "-comment" or "-com".

If it is either, no_next is invoked to determine whether or
not the next element (the comment text) exists. The length of
the comment text is validated and the text is saved in the mount
time comment array (tao.comment). Whether or not a comment was
processed, control passes to test for a -volume or -vol element,
as described above. This algorithm is repeated until either an
attach option is encountered or the options array is exhausted.

The attach options are processed by comparing them against a
list of valid options and transferring control to the appropriate
option processing routines. The actions performed by these
routines are best described by the PL/I code itself. Each
routine sets a tao structure mem~er to reflect either the
appearance of a particular option or its associated value.

Internal Procedures

Entry: no_next

This function is called to determine whether or not the
options array contains another element when one is required (For
example, -block requires a subsequent element, the block length.)
If the current array index plus 1 is greater than the index of
the last element, another element does not exist. In this case,
error.(the diagnostic message) is set equal to the current
element (the option requiring the missing element), code is set
to error_table_$nodescr, and the procedure returns "l"b. If the
next element exists, the array index is incremented and the
procedure returns "O"b.

11-109 AN57

This function is called to validate and normalize a volume
name. If the volume name is longer than six characters, it is
invalid. In this case, the function returns a null string and
the value "O"b. If the length is exactly six, the volume name is
valid and does not require normalization. In this case, the
func tion re turns the or ig inal vol ume name and the val ue "1 II b • If
the volume name is shorter than six ch~racters, it must be
normalized. If the name is entirely numeric, it is nOt'malized by
padding on' the left with zeros to length six. If it is not
entirely numeric, it is normalized by padding on the right with
blanks to length six. The function then returns the normalized
volume name and the value "1"b.

Usage

This module implements the iox_$control function.

del tape_ansi_control_ entry (ptr, char (*), ptr,
fixed bin (35»;

call tape~ansi_control_ (iocbP, order, infoP, code);

where:

1 • iocbP is a pointer to the IOCB. (Input)

2. order is the control order to be performed.
(Input)

3. infoP is a pointer to the information structure for
a particular .order, if required, (Input)

4. code is a standard status code. (Output)

The following is a nonexhaustive list of error~table_ codes
returned:

the requested order could not be performed
because the I/O switch ~s not open.

the requested order
information painter,
pointer points to. an
structure.

11-110

requires
or the
invalid

a nonnull
information
information

AN57

action_not_performed

Internal Logic

the requested order is not implemented.

the requested order could not be performed.
The state of the I/O module (i.e., opening
mode, lock value, etc.) did not meet an
order-specific criterion.

The requested order is compared against an array of
implemented orders (order_Iist.name). If no match is found, the
procedure returns the error code error_table_$no_operation.
Otherwise, order_list.must_be_open is checked to determine
whether or not the I/O switch must be open. If it must be open
and it is not, the pr6cedure returns error_table_$not_open. The
variable order_list.non_null_ptr is tested to determine whether
or not the order requires an information structure. If it does
and infoP is null the procedure returns error_table_$bad_arg.

'If both tests succeed, the cseg pointer is extracted from
the 10GB and cseg.invalid is tested to determine whether or not
the cseg is valid. If not, the procedure returns
error_table_$invalid_cseg. The file lock (cseg.file_lock) is
tested to determine whether the file is already in use for other
I/O activity. If it is in use, the procedure retur~s
error_table_$file_busy. If it is not in use, a cleanup handler
is established and cseg.file_lock is set to "1"b. If invoked,
the cleanup handler resets cseg.file_lock to "Dub. The return
code is initialized to zero and control transfers to process the
particular order requested:

hardware_statu:3

The hardware status string pointed to by infoP is filled
with the 10M status bits from the last I/O operation
(cseg.hdw_status.bits) and control passes to the exit routine.

status

Th~ status structure (declared by device_status.incl.p11)
painted to by infoP is filled from the I/O status structured
generated by the last I/O operation (cseg.hdw_status) and control
passes to the exit routine.

volume_status

The volume status structure (declared by
tape_volume_status.incl.pI1) pointed to by infoP is filled with
status information describing the "current" volume. If the file

11-111 AN57

set is IBM nonlabeled, the current volume is specified by fd.vIX,
the volume currently (or last) in use. If no volume has yet been
used (fd.vlX = 0), the first volume of the volume set is the
current volume. For ANSI and IBM SL file sets, the current
volume is specified by fl.vlX, the volume on which the file
section currently (or last) in use resides. If no file section
has yet been used (cseg.flP = cseg.fcP), or the file link pointer
has been invalidated due to an error (cseg.flP.= null), the first
volume of the volume set is the current volume. The structure is
filled in from the volume link and control passes to the exit
routine.

feov

This order forces end of volume on the current volume. If
the 1/0 switch is not open-for sequential_output, code is set to
error_table_$action_not_performed and control pas~es to the exit
routine. (This order is used only to force a volume switch when
writing.) Either· tape_ansi_file_cntl_$data_eot or
tape_ansi_nl_file_cntl_$data_eot is called to simulate the
detection of end-of-tape. The file control procedure performs
all necessary volume termination and switching functions. If the
returned code is zero, volume switching has been performed
successfully and control passes to the exit routine. If the
returned code is nonzero, volume switching did not occur, due
either to an error or the lack of another volume. In either
case, the logical record 1/0 lock (cseg.lrec.code) is locked to
inhibit further 1/0, by setting it equal to the returned code.
If the returned code is error_table_$no_next_volume, it is set to
zero and control passes to the exit routine. Otherwise, an error
has occurred and the value of code is passed on to the exit
routine.

This order specifies that the current volume is to be
rewound when the 1/0 switch is next closed. The rewind function
is performed by the file control procedure. The variable
cseg.close_rewind is set to "1"b and control passes to the exit
routine.

retention

This order is preserved for historical reasons only. The
resource retention variable (cseg.retain) is set to the value of
the number pOinted to by infoP.

The file status structure (declared by
tape_file_status.incl.p11) pointed to by infoP is filled in with
status information describing the "current" file. If the file
set is IBM NL and no file has yet been used, the file status
state variable (tape_file_status.state) is set to zero (no

11-112 AN57

information) and control passes to the exit routine. If the file
set is ANSI or IBM SL and the file link pointer does not point to
a link (cseg.fIP = null or cseg.fcP), tape_file_status.state is
similarly set to zero and control passes to the exit routine.
Even if cseg.flP does point to a link, the file section may not
be a part of the attached file. In this case, the above action
is also taken.

Once the current file is known, the rOCB open description
pointer is checked to determine whether or not the I/O switch is
open. If it is not open, tape_file_status.state is set to 1 (not
open). If it is open, the state variable is set to either 2
(cseg.lrec.code = 0, logical I/O not locked), 'or 3
(cseg.lrec.code = 0, logical I/O locked.) The remainder of the
file status structure is filled in according to whether or not
the file set is IBM NL.

retain_none
retain_all

These orders set cseg.retain to 1 (retain neither volumes
not devices) or 4 (retain both volumes and devices),
respectively. Control then passes to the exit routine.
Eventually, the following retain orders should be implemented:

retain_default
retain_devices
retain_volumes

cseg.retain = Q
cseg.retain = 2
cseg.retain = 3

If the I/O switch is not open for sequential_input, the
return code is set to error_table_$action_not_performed and
control passes to the exit routine. If the I/O switch is open
for sequential_input, the logical record I/O lock
(cseg.lrec.code) is checked to determine if it can be unlocked
(cseg.lrec.code = error_table_$tape_error). If it can, the lock
is unlocked (set = 0). (If the lock value is already zero,
nothing need be done.) Any other lock value causes the return
code to be set to error_table_$action_not_performed. Control
then passes to the exit routine.

The exit routine sets the file lock to "Q"b and returns
whatever code has been previously set.

11-113 ANS7

SECTION XII

THE tape_mult_ I/O MODULE

INTRODUCTION

The tape_mult_ I/O module supports I/O to and from Multics
standard tapes. (See "Multics Standard Magnetic Tape Format" in
Section III of the MPM Peripheral Input/Output Manual, Order
No. AX49.

This section will be expanded in a future edition.

12-1 AN57

SECTION XIII

THE tape_nstd_ 1/0 MODULE

INTRODUCTION

The tape_nstd_ 1/0 module supports 1/0 to and from records
on magnetic tape. No logical record or file format is proce~sed
or enforced.

This section will be expanded in a future edition.

13-1 AN57

SECTION XIV

Ti-iE rdisk_ IiO MODULE

INTRODUCTION

The rdisk_ 1/0 module performs explicit 1/0 on
user-attachable disk volumes. These volumes are mounted as "1/0"
disks as opposed to storage system disks. Physical operations on
the disk are performed via the 110 interfacer ioi_o

This section will be expanded in a future edition.

14-1 AN57

SECTION XV

THE record_stream_ IIO MODULE

INTRODUCTION

This liD module associates two IIO switches, causing
sequential operations on one switch to generate (or be generated
by) corresponding stream operations on the other switch.

PROGRAM MODULES

The record_stream IIO module is composed of the following
five programs:

record_stream_attach.p11
implements attach, detach, open, and close
operations. Dispatches to the appropriate module for
the opening mode at open and close.

rs_open_str_in.p11
implements the get_chars, get_line, and position
operations in openings for stream_input.

rs_open_str_out.p11
implements the put_chars operation in openings for
stream_output~

rs_open_seq_in.p11
implements the read_record, read_length, and position
operations in openings for sequential_input.

rs_open_seq_out.pll
implements the write record operation in openings for
sequential_output.

15-1 AN57

MODULE record_stream_attach.pI1

~ntry: record_stream_attach

This entry point performs the attach operation aocording to
the specified attach options. The attach description is
validated and placed in an initialized data block, pointed to by
iocb.attach_data_ptr. If the -target option is specified, a
uniquely named 1/0 switch is attached using the remaining options
to form the target attach description.

This entry poin~ implements the open operation for all
opening modes. The target 1/0 switch is opened, or if already
open, its mode is verified.

Except in the case of openings for sequential output, a
uniquely named temporary buffer segment is created and pointed to
by iocb.open_data_ptr.

The appropriate module for the given opening mode is called
to set up the IOCB entry values for the supported operations,
before completing the opeping in the common code.

Entry: close_rs

This entry point implements the close operation. In the
case of stream_output, the remaining buffer contents (if any) are
written out on the target switch. The temporary buffer segment
is deleted. If the target switch was initially closed, it is
closed again.

Entry: detach_rs

This entry point implements the detach_iocb operation. If
the target switch was specified via the ~target option, it is
detached as well.

15-2 AN51

These entry points implement
operations simply by passing the
without modification.

Entry: get_chars_rs

the modes and control
call to the target switch

This entry point implements the get_chars operation. The
returned data is copied from the buffer segment, whose initial
offset and tail_length are adjusted accordingly. When its
contents are exhausted, read_record operations are issued on the
target switch into the buffer segment. If the attachment does
not specify the -nnl option, a newline character is appended to
each record placed in the buffer.

This entry point implements the get_line operation similarly
to the get_chars operation. The difference is that the length of
the returned string is determined via the index of a newline
character in the buffer tail.

This entry point implements the position operation (except
for skipping backwards, which is not supported).

For positioning to either end of the file, the call is
simply passed on to the target switch and the buffer contents are
discarded.

For skipping forward, the logic is identical to that for the
get_line operation, except that no data is copied out of the
buffer.

15-3 AN57

This entry point implements the put_chars operation.
-length (-In) attach option was specified, fixed length
are written to the target switch as the required number
are made available. The remainder, if any, is appended
buffer segment, to be written by a subsequent operation.

If the
records

of bytes
to the

In the default attachment case, the treatment is similar.
Variable-length records are formed from lines with trailing
newlines deleted and are written out as they become available.
An incomplete line is appended to the buffer and is written on
the target switch as part of the next record.

This entry point implements the read_record operation. If
the buffer segment contains a record, it is returned to the user
and the buffer contents are discarded.

If the buffer is empty, a record is obtained directly from
the target switch via either a get_chars or get~line operation,
depending on the specified attach option.

This entry point implement 9 the read_length operation.
the buffer segment contains a record, its length is returned.

Otherwise, a record is read into the buffer from the target.
switch using either get_line or get~charsJ and its length is
returned.

15-4 AN57

~ntry: position_seq_rs

This entry point implements the position operation (except
for backward skipping).

For positioning to either end of
passed directly to the target switch and
contents are discarded.

the file, the call is
the buffer segment's

For skipping forward in the default case, the call is simply
passed to the target switch. Otherwise, if the -length (-In)
attach option was specified, records are successively read into
the buffer segment until the required number has been skipped or
the end of the file is reached. 1 If the buffer segment initially
contained a record, the first skip is accomplished by discarding
the buffer contertts.

This entry point implements the write_reco~d operation. No
buffer segment is required in this case. A put_chars operation
is issued to the target switch with the same arguments as those
passed to this entry point. If the -nnl attach option was not
~pecified, a second put_chars operation is issued to the target
switch to append a single newline-character.

15-5 AN57

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

TITLE
LEVEL 68 MULTICS
USER RING INPUT/OUTPUT SYSTEM
PROGRAM LOGIC MANUAL

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your com'ments will be investigated by appropriate technical personnel
and action will be taken as reauired. Receiot of all forms will be
acknowledged; however, if yo~ require a d~tailed reply, check here. 0

FROM: NAME ---
TITLE __________________________________ _

COMPANY ---------
ADDRESS _____________________________________ __

ORDER No·1 ANS 7, Rev. 0

DATED I MAY 1977

DATE

PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service will not deliver stapled forms

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 39531 WALTHAM, MA02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATIONS, MS486

Honeywell

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Honeywell
HOII.~"'" IntoImalion Systems .

~ the U.SA: 200 &nih S1raet, MS 486, Wallham. MassactUIeIIs 02154
~ OnIda: 2025 ~ Avenue East, WIowdaIe, Ontario M2J 1W5

~ the UK: Great West Road, BrenIIord, MiddIeaex TW8 9DH
~ AuaIraIa: 124 W",. SIraet, North Sydney, N.S.W. 2060
~ Mexico: AY8I'ida Nuew Leon 250, Mexico 11, D.F.

31490, 1C581, Pmted i1 U.S.A. NEl, Rev. 0

