

The result is that the volume 1s 1initialized according to the
standard:

ANSI VOL1 HDR1 * * E(QF1 * #
IBM VOL1 HDR1 # *
where * represents a tape mark.

An ANS1 volume 1s 1initialized with a wvalid first file
structure, but that an IBM volume is not. If an error occurs
during any step of the initialization process, the procedure
returns whatever error code it received from write_label or
tape_ansi_tape_io_$order.

Entry: lrec_open

This procedure is called by the $open code to perform final
validation of the 1logical record characteristics and to
initialize the <c¢seg for file opening. Validation consists of
checking the record and block lengths in their contextual setting
(i.e., depending upon file set standard, opening mode, and record
format). If either the record length or block length is invalid,
a nonlocal transfer 1s made to er_exit with error code
error_table_¢$invalid_record_length or
error_table_$invalid_block_length, respectively. In the IBM
case, the encoding mode is also validated and if it is binary, a
similar transfer is made with the error code
error_table_$invalid_encoding_mode.

The cseg is initialized. The procedure
tape_ansi_tape_io_$open is invoked to initialize the tseg buffer
management strategy. The variable <cseg.lrec.blkent is set to
zero in the input case and to fl.blkecnt in the output case. In
all output modes but extend, fl.blkecnt contains zero. 1In extend
mode, it contains the current block count. This convention
ensures that the block count eventually written in the EOF1 or
EOV1 label (taken from cseg.lrec.blkcnt) reflects the cumulative
block count resulting from an extend operation.

Entry: move_to_EUD

This procedure 1is called by the extend_file portion of the
$open code to position the volume set to immediately beyond the
last data block of the file. The file chain is scanned starting
with the current link (corresponding to the first file section)

11-31 ANDST

until the 1last file section link is found. (The extend_chain
portion of the $open code has already built the file <chain to
that last 1link, if it did not already exist.) The procedure
move_tape_ is called to position the volume set to the trailer
labels of that section, and back_TM is called to backspace over
the end-of-data tape mark. These steps correctly position the
volume set for file extension. If either of the above called
procedures returns an error code, a nonlocal transfer is made to
er_exit.

pntry: move_tape_

This procedure is responsible for volume set positioning and
implements the I/0 Module's triadic (volume index, file section
index, intrasection position) position specification mechanism.
It is the only internal procedure that itself contains internal
procedures, and is therefore documented 1in the style of an
external procedure.

Usage call move_tape_ (vX, fX, posit, ecode);

1. vX is the index of the volume link corresponding
to the desired volume. (Input)

2. X is the index of the file 1link corresponding
to the desired file section. (Output)

3. posit is the intrafile section position code:
0 - HDR1 label
1 - first data block
2 - EOF1 or EUV1 label
(Input)

4, ecoude is a standard status code. (Output)

The variable vl.rcp_id 1is checked to determine whether or
not the desired volume 1s currently mounted. If it 1is not
mounted and the number of assigried drives (cseg.nactive) equals
or exceeds the wuser-specified maximum (cseg.ndrives), the
internal procedure find_candidate 1is invoked to determine the
volume index of a volume that can be demounted. The procedure
tape_ansi_mount_cntl_$remount is then called to demount the
volume located by find_candidate and mount the desired volume on

its drive. If the number of assigned drives is less than the
user-specified maximum, tape_ansi_mount_cntl_¢$mount is invoked to
assign a new device and mount the desired volume. Should this

request for new device assignment cause the process device limit
to be exceeded, move_tape_ recovers automatically by performing

the find_candidate/tape_ansi_mount_cntl_$remount sequence
described above.

11-32 ANST

Wwhether or not the desired volume was mounted when
move_tape_ was 1invoked, it 1is mounted at this point. The
volume's drive number (vl.rcp_id) and IPC event channel id
(vl.event_chan) are placed in the tdcm_ tseg portion of the cseg.
This step makes known, independent of the volume link index, the
parameters that determine the device currently being used by the
1/0 Mcdule. When tape_ansi_tape_io_ is replaced by an
rcp_/tape_ioi_ interface, the tseg will be obviated; however,
the current device parameters should still be maintained outside
of the vclume 1link, 1in order to provide for device /0
independent of the file chain/volume chain mechanism.

The status of the VOL1 volume label is determined by
checking vl.write_VOL1, which was set by tape_ansi_mount_cntl_
when the volume was mounted. This variable specifies whether or
not a VOL1 label need be written, and if so, why. A nongzero
value 1indicates that a new label should be written. If the
opening mode (cseg.open_mode) is for sequential_input, the need
to write a label 1is an unrecoverable error; 1i.e., the tape's
VOL1 1label characteristics preclude its being processed as
specified by the attach description. In this case, the external
procedure ioca_ is invoked to print an explanatory message yvia
user_output, normally directed to the user's terminal. The
message text varies with the value of vl.write_VOL1, explicitly
specifying the discrepancy detected between the attach
description and the actual volume characteristics. The procedure
then exits with the error code error_table_$uninitialized_volume.

1f, however, the opening mode is for sequential_output, the
volume can be (re-)initialized, contingent upon the successful
completion of a series of checks. If vX, the volume 1link index
parameter, specifies the first volume of the volume set, then the
function creating_first 1is 1invoked. If the attach description
specifies creation of other than the first file of the file set,
the operation 1is invalid because (re-)initializing the first

volume set member effectively truncates the file set. An
explanatory message 1is 1issued as described above, and the
procedure exits with the error code
error_table_$uninitialized_volume. If wvl.write_VOL1 1indicates

that the tape is blank, no further checks need be performed;
otherwise, the procedure initialize_permit is invoked to query

the user for permission to initialize. If permission is denied,
the procedure exits with the error code
error_table_$uninitialized_volume. If permission is granted, the

procedure initialize_volume is called to initialize the volume.
If a nonzero error code is returned, the procedure exits with
that code; otherwise, vl.write_VOL1 is set to 0, indicating that
the volume no longer requires (re-)initialization.

The procedure begins to position the tape. The automatic
variable can_retry, initialized to "O"b upon procedure

11-33 ANST

activation, is set to "1"b. Wwhen an error 1is detected within
move_tape_, control always passes to the error exit code labeled
error. This code invalidates the volume position (vl.cflX) and

tests can_retry. If it is "1"b, it is set to "0O"b and control
passes to the label retry, which restarts the positioning
operation. If it 1is already "0"b, the procedure returns with
whatever error code 1s set. This algorithm provides one

opportunity to resynchronize a volume's position with its volume
link position data.

If the volume position is unknown or in the CL/UVL label

set (vl.eflX = (), the internal procedure move_to_first_HDK is
invoked to position the volume to the first HDR1 label on the
tape. (This procedure call 1is labeled retry.) Once this has

been done, vl.cflX is set to the index of the first file section
on the volume (v1.fflX). The 1intrafile position indicator
(vl.pos) is also known, and is set to indicate the HDR 1label
group.

If tX, the file 1link 1index parameter, 1is greater than
vl.cflx, move_tape_ must position forward a calculated number of
tape marks. Positioning 1is done by the internal procedure
move_forward. If t'X is less than vl.cflX, the internal procedure
move_backward is invoked, and it fX is equal to vl.cflX, either
move_forward or move_backward is invoked depending upon the value
of vl.pos. Even 1if wvl.pos 1is equal to posit, the intrafile
position parameter, move_backward is invoked to ensure that the
tape 1s positioned at the initial block of the desired position
and not at an indeterminate medial point. vl.cflX and vl.pos are
then set to fX and posit, respectively, 1indicating that the
requested positioning operation has been successfully performed,
and the procedure returns. Should an error occur during any of

the above steps, a transfer to error is made with whatever error
code has been detected.

Internal Procedures

Entry: find_candidate

This procedure searches the volume chain for a mounted
volume to be demounted, allowing the desired volume to be mounted
in 1its ©place. The search goes from the first volume set member
to the volume preceding the desired volume, and then from the

last volume chain entry to the volume link fcllowing the desired
volume. The first mounted volume ends the search. The algorithm

11-24U
Pi=35h

o>
=
n
=1

results in minimum mounting/demounting if volume processing is
performed in the usual manner, i.e., sequentially, from first to
last volume set member., If no mounted volume 1is found, the
procedure performs a nonlocal transfer to error with the code
error_table_$invalid_cseg. This is done because find_candidate
is never invoked unless move_tape_ has determined that a
candidate for demounting does exist, by comparing c¢seg.ndrives
with cseg.nactive.

Entryv: move_to_first_HLR

This is the procedure that actually implements tape
positioning by issuing calls to tape_ansi_tape_io_$order. It
contains the entry points move_forward and move_backward, as well
as the entries move_to_first_UHL and move_to_first_UTL, neither
of which is currently used.

The entry point tape_io_g$order 1is <called to rewind the
volume. The procedure read_label is invoked to read a label, and
the c¢all 1is repeated wuntil a 1label ©beginning with HDR is
encountered. (This call is labeled HDR_search.) The entry point
tape_io_$order is called again to backspace to the beginning of
the label, and the procedure returns.

Entry: move_forward

This entry point calls tape_ansi_tape_io_g$order to forward
space over as many tape marks as 1is necessary to perform the
desired positioning operation.

Entry: move_backward

This entry calls tape_ansi_tape_io_$order to perform all but
one of the Dbackspace file operations necessary to correctly
position the tape. The last such operation is also performed by
tape_ansi_tape_io_g$order, but the error code is specially checked
to determine whether or not the volume was left positioned at
beginning of tape. If it was, control transfers to HDK_search to
effect positioning to the HLR1 label, as opposed to the VOL1
label. (therwise, tape_ansi_tape_io_$order is invoked to forward
space over the last tape mark encountered, leaving the tape
correctly positioned.

11-35 ' ANDT

Entry: next_volune

This function is called by process_kUX, as well as by the
mainline entry data_eot, to determine whether or not the next
volume set member already exists or can be created. A return
value of "1"b indicates that it can.

1f the volume link index of the current file link (fl.v1lX)

is less than the highest volume chain index (cseg.vel), the
procedure immediately returns "1"b because the next volume is
already known. If fl.vlX is 64, the implementation restriction

on the maximum number of volumes, then the external procedure
ica_ is called to issue an explanatory message and the procedure
returns "0"b. This case is not treated as an error in the usual
sense, because file set processing can and must be continued as
though no other volume were available.

hHaving derived no information from the volume chain, the
procedure examines the current file link to determine whether or
not the name of the next volume can be extracted from the trailer
label set. If it cannot, another_volume is invoked fo query the
user for the name of the next volume, if any. Should both of the
above fail to prcvide the next volume, the procedure returns
"Ovp. If either does, c¢seg.vcN is incremented to reflect the
addition of a new volume link and vl_init is called to initialize
it. The volume name is then set in the new volume link, and the
procedure returns "1"b. The algorithm ensures that a volume name
entered into the volume chain (from the attach description, etc.)
can override the one specified in an EOVZ label, if the one field
exists.

Entry: process_EGUX

This procedure 1is <called by build2, as well as by the
mainline entry data_eof, to read the trailer label set, validate
its contents, and store information in the file 1link.

An on unit for the conversion condition is first established
that transfers control to an error exit, bad_EOX, which returns
the error code invalid_label_format. The procedure read_label is
invoked to read the first trailer label. If this read encounters
a tape mark, the procedure returns the error code
error_table_$invalid_file_set_format because either an EOF1 or
EOV1 label must be present. The file link trailer type (fl.eox)
is set according to whether the label read is an EOF1 or an EOVI1,.
This wvariable indicates whether or not volume switching is to be
performed upon detection of a tape mark (indicating end of file
section) while reading data, 1i.e., whether or not the file
section is the last (or only) section of the file. If the label

11-36 ANS7

is neither EOF1 nor EOV1, the procedure returns the error code
error_table_$invalid_file_set_format.

Data, such as generation version number and block count, are
extracted and stored in the file link. The procedure read_label
is invoked again to read the second trailer label, if any. If
the read operation encounters a tape mark, no LOF2 or EOV2 1label
exists, tape_ansi_tape_io_$order 1is therefore called to space
back into the trailer label set. If the first label was an EQF 1,
processing is complete and the procedure returns. If the first
label was an EQOV1, another file section must reside on the next
volume. The procedure next_volume is <called to determine 1its
name, 1if possible. The volume name, if found, is stored in the
file link and the procedure returns. Otherwise, the procedure
returns the error code error_table_$no_next_volume.

If a second trailer label is present, it must be either a
UTL or of the same type as the first trailer 1label. An UTL is
treated as though no second label were read at all. If the types
differ (e.g., EUF1 and EOVez), the procedure returns the error
code error_table_¢$invalid_file_set_format. If the types match
and the trailer set is EOF, the EOFZ2 label need not be processed
(as it is an exact duplicate of the HDR2) and the procedure
returns.

If the second label is an EuUVZ, indicating an AiSI file set,
and the label contains the name of the next volume, that name is
stored in the file link and the procedure returns. If any of the
above are not satisfied, next_volume is 1invoked to attempt to
determine the name of the next volume. The name, if one can be
determined, is stored in the file link and the procedure returns.
Utherwise, the error code error_table_$no_next_volume is
returned.

Entry: read_HDR1

This procedure 1is called by buildl, desired_check, and

fill _fl1_from_HDR'?'! to read and validate a HDR1 label. The
parameter eofsw 1is first set to "O"b. This variable indicates
whether a tape mark, as opposed to a HDR1 label, 1is read. The

procedure read_label is invoked to read a label into
cseg.lbl_buf. If a label is successfully read, it must be a HDR1
label. Otherwise, the error code
error_table_$invalid_file_set_format is returned. If a tape mark
is detected, the volume 1link intrafile position indicator
(vl.pos) is incremented to reflect the tape mark crossing. The
procedure back_TM is called to backspace over the tape mark, the
eofsw parameter is set to "1"b, and the procedure returns. A
tape mark where a HDEK1 label would otherwise be found indicates
the logical end of the volume. In addition, since read_HDLR1 is

11=-37 ANBT

never 1invoked once an kOUV trailer set has been processed on a
volume, finding a tape mark also indicates the logical end of the
file set. If an error is detected while reading or backspacing,
the procedure returns that error code.

kntry: read_HUKZ2

This procedure 1s called by build?l to read and validate a
HDRZ label. The file link variable fl.HDR2 is first set to "0O"b.
This variable indicates whether or not the file section contains
HUR2 (and, by implication, EOFz or EOV2) labels, and therefore
whether or not the file attributes (block length, record format,
etc.) can be obtained from the file itself. The procedure
read_label is invoked to read a label into c¢seg.lbl_buf. f a
HDKk2 1label 1is read, fl.HDR2 1is set to "1"b. Any other label
(i.e., UHL label) is ignored. If a tape mark is detected, vl.pos
is incremented and back_TM is called to backspace over it. The
lack of a HDRZ2 label is not an error.

Entry: read_label

This procedure is called by move_tape_, process_EUX,
read_HDK1, and read_HLRz to read a file or volume 1label into
cseg.lbl_buf. The entry point tape_ansi_tape_io_$sync_read is

called to synchronously read one tape block. If a block 1is
successfully read, its length is checked to determine whether or
not the block could be a 1label. A 1length of 1less than &0

characters causes the procedure to return the error code
error_table_¢$invalid_label_format. If the block length is &0
characters or more, it is moved from the synchronous I/0 buffer
to cseg.lbl_buf. If the file set is IBM standard, the external
procedure ebecdic_to_ascii_ 1is called to perform character code
conversion. :

Entry: write_label

This entry point 1is called by initialize_volume and
write_HDRs to write a file or volume label from cseg.lbl_buf.
The label is first moved from cseg.lbl_buf into the synchronous
1/0 buffer. If the file set 1is 1IBM standard, the external
procedure ascii_to_ebecdic_ is called to perform character code
conversion. The entry point tape_ansi_tape_io_$sync_write is
then invoked to synchronously write the label.

11-38 ANST

Entry: setup_for_create

This procedure is called from the $open code to initialize a
file link preparatory to file creation. Since the file 1link
describes a new entity, it nust be completely filled in from
user-specified data, invariable creation-specific values, and (if
necessary) a set of file attribute defaults. The HDR1 portion of
the file link data is initialized in part from the file data
structure and in part from constants within the procedure itself.
The procedure fill_flhdr2_from_fd is then invoked to complete the
HDRZ portion of the file link.

Entry: setup_for_extend_modify

This procedure is called from the $open code to initialize
the file data structure preparatory to file extension or
modification, and to modify and/or complete the file link. The
file name and sequence number are set 1n file data from
fl.file_id and fl.sequence, respectively, in case one or the
other was not explicitly specified in the attach description. If
the file set is ANSI standard, the file link version number 1is
incremented to reflect +the pending operation. The file link
creation date is set to the current date. If the operation 1is
file modification, the current file block count (fl.blkent) is
zeroed, because modification truncates the file. Otherwise, the
block count 1is left as 1is, because the operation of file
extension leaves the file's current contents unaltered and the
block count must therefore be incremented from its initial value.

The procedure fill_fdhdr2_from_fl 1is 1invoked to fill the
HDRZ portion of the file data structure from the file link. This
step ensures that any file attributes specified 1in the attach
description do, in fact, match the attributes recorded in the
HDR2 label, if any. The procedure fill_flhdr2_from_fd is invoked
to fill the HDRZ portion of the file 1link from the file data
structure, without applying any defaults. This step ensures that
the pending operation 1is not performed unless a complete,
consistent attribute set has been composed from the attach
description, the HDR2 label (if any), or both.

11-39 ANST

kntry: setup_for_read

This procedure 1is called from the $open code to initialize
or complete a file data structure preparatory to reading a file.
The file 1link is never changed to conform to the file data, and
the two can in fact differ as regards +the file attributes. A
file can therefore be processed according to a more or less
arbitrary set of file data (user-specified) attributes, while
preserving the file's actual characteristics in the file link.

The file identifier and sequence number are first copied
from the file 1link into the file data structure, in case one or
the other was not specified in the attach description. If the
record format was user-specified (fd.format "= 0), the record
b ing attribute (fd.blocked) is also known. 1If they are not
specified, the record format and blocking attribute must be
ocbtained from the HDRZ2 portion of the file link. The block
length (fd.blklen) and record length (fd.reclen) are similarly
checked and, if necessary, their values are set from the file
link. In the case of the record length, however, defaults can in
some cases be applied when the file link contains no information.
Under all other circumstances, failure of the file link to supply
a record format, record length, or block length not specified in
the attach description results in a nonlocal transfer to er_exit,
with the error code error_table_$insufficient_open.

If the file set is ANSI, the block prefix length (fd.bo) is
set from the file 1link because this value, if present, is

invariant. If the file was written by the 1I/0 Module, the
blocking attribute and character encoding mode (fd.mode) are also
set from the file 1link, 1if not wuser-specified. If neither

user-specified nor obtainable from the file link, they are set to
the ANSI defaults, blocked and ASCII, respectively.

For an IBM file set, the blocking attribute and encoding
mode are set to blocked and EBCDIC, respectively, if not
user-specified.

Entry: setup_for_generate

This procedure is called from the $open code to initialize
the file data structure preparatory to file generation, and to
modify and/or complete the file link. The file name and sequence
number are set in the file data from the file link, in case one
or the other was not specified at attach time. The file 1link
generation number (fl.generation) 1is incremented by 1, modulo
10000. (The largest possible value 1is 9999.) The generation
version number is set to 0, indicating a new generation, and the
creation and expiration dates (fl.creation and fl.expiration) are

11-40 ANST

set from the file data. The procedure fill_fdhdr2_from_fl is
invoked to attempt to fill the HDR2 portion of the file data from
the file 1link. This step -ensures that any file attributes
specified in the attach description do, 1in fact, match the
attributes recorded in the HDR2 label, if any. The procedure
fill_flhdr2_from_fd is called to fill the HDR2 portion of the
file 1link from the file data, without applying any defaults.
This step ensures that a complete, consistent attribute set 1is

composed from the attach description, the HDR2 label (if any), or
both.

Entry: truncate_chains

This procedure is called from the $open code preparatory to
creating, extending, modifying, or generating a file. Since the
act of writing physically truncates the file set, the file and
volume chains must be correspondingly truncated. This procedure
is also invoked by consistent and abort_file to perform the same
function should an output operation be abnormally terminated
during opening or closing.

A cleanup handler is first established so that interrupting
the truncation process does not 1leave the chains in an
inconsistent state. The file <chain 1is truncated immediately
following the link pointed to by cseg.f1lP. This file 1link is
referred to as the desired link. The value of cseg.flP is saved,
so that it can be reset to point to this 1link once the truncation
process 1is complete. The desired link at that point is the last
link in the chain. If, therefore, the desired 1link 1is already
the last 1link, no action need be taken and the procedure simply
returns. Otherwise, c¢seg.flP is set to point to the next link in
the chain (cseg.flP = <c¢seg.flP =-> fl.nextP). This 1link is
referred to as the truncation link. The forward chain pointer in
the desired 1link (cseg.flP -> fl.backP =-> fl.nextP) is nulled,
logically truncating the file chain. However, the truncation
link as well as all following links (if any) are still physically
allocated in c¢seg.chain_area.

If the truncation link is not an eofsl, its file link index
(f1.f1X) occurs in the range of its associated volume 1link (vl
(f1.v1X).ffl1X << fl.flXx < vl (fl.v1X).1f1X). This volume link
must therefore be either partially or completely truncated;
i.e., reference to the truncation link and all subsequent file
links (if any) must be removed. In addition, all subsequent
volume 1links must be entirely truncated. Since an eofsl has no
associated volume link, truncating the eofsl does not affect the
volume chain at all. If the truncation link corresponds to the
first file section on a volume (fl.f1X = vl (fl.f1X).ffl1X), that
volume 1link is entirely truncated (v1.fflX, vl.cflX, v1.1flX =
0). Otherwise, the volume link must be partially truncated. The

11-41 ANST

last file link index for the volume (vl (fl.vlX).1flX) is set to
the desired file 1link index (vl (fl.v1X).1flX = f1.f1X - 1),
since that is the last file link on the volume. In either case,
all subsequent volume links, if any, are entirely truncated.

tecause the critical portion of the procedure is conplete,
the cleanup handler is reverted. Beginning with the truncation
link, it and all subsequent 1links (if any) are freed from
cseg.chain_area. <c¢seg.flP is restored to point to the desired
link.

Entry: vl_init

This procedure is called by next_volume to initialize a new
volume link. Every member of the volume 1link structure except
the volume name (vl.volname), is set.

Entry: vname

This function 1is called by another_volume to validate and
normalize a user-supplied volume name. If the volume name 1is
longer than 6 characters, it is invalid and the procedure returns
"O"b., If it is exactly 0 characters, the procedure returns "1"b.
If it 1is less than 6 characters, the name is normalized and the
procedure returns "1"b. If the name is entirely numeric, it 1is
normalized by right justifying and padding on the left with zeros
to length six. If not entirely numeric, it is normalized by left
justifying and padding on the right with blanks to length six.

Entry: write_HDRs

This procedure is called by the $open code to write HDR1 and
HDK2 labels as part of the file creation and generation
processes. 1t is also called by write_new_section to write the
header 1labels for a new file section. It sets the file link
trailer label type (fl.eox) to 0, indicating that the file
section contains (as of yet) no trailer labels, and transfers to
the common body of code.

11-42 ANST

Entry: write_EUFs

This entry point is called by the $close code to write an
EOF trailer 1label set once file processing is complete. It is
also called by abort_file to overwrite an EQV trailer set with an
EOF trailer set; thus truncating one or more defective file
section(s). It sets fl.eox to 1, indicating an EOF trailer set
and that the file section is the last (or only) of the file. It
then transfers to the common body of code.

Entry: write_EOVs

This entry point is called by the mainline data_eot code to
write an EQV trailer label set once physical end of tape has been
detected by the logical record I/0 procedure. It sets fl.eox to
2, 1indicating an EOV trailer set and that the file section is
medial.

The common code performs the actual 1label writing by
invoking write_label. The procedure write_HDRs always writes a
HDRZ label, but that write_EOFs and write_EOVs will only write an
EOF2 or EQVZ2 if the file's header label set includes a HDR2.
This practice ensures that the header and trailer label sets of
files not created or generated by the I/0 Module remain
symmetric. The physical end of tape is ignored, so that volume
switching is only driven by EOT during logical record 1I/0
operations.

Entry: write_TM

This prcocedure is called by numerous internal procedures to
write either 1 or 2 tape marks, adjusting the volume 1link
intrafile position indicator (vl.pos) accordingly. The entry
point tape_ansi_tape_io_$order is invoked to perform the actual
tape mark write operation(s). For each tape mark written, vl.pos
is 1incremented. This is done according to the rules of modulo 3
arithmetic, and an overflow causes the current file 1link index
(vl.cflX) to be incremented. (There are only 3 possible
intrafile positions.)

11-43 ANST

pntry: write_new_section

This procedure is called by the mainline data_eot code to
add a new file section to a file. The variable c¢seg.flF is set
to point to the next file link, which mwmust be an eofsl, and
make_eofsl_real is invoked to establish a file/volume 1link
interrelationship. The procedure build_eofsl is called to append
another eofsl to the file chain, and move_tape_ 1is called to
position the volume set preparatory to writing the new section's
neader iabels.

pefore the labels can be written, however, the first HDR1
label on the volume must be checked to ensure that the volume's
current contents are expired. If this 1is not the case,
initialize_permitA is invoked to query the user for permission to
overwrite. If permission 1is denied, the procedure returns the
error code error_table_g$unexpired_volume. UOtherwise,
initialize_volume 1s invoked to reinitialize and move_tape_ is
called to reposition for writing.

The procedure fill_new_section_fl is called to fill the file
link with data derived from the previous section's 1link, and

write_HDRs is called to write the new header label set. The
procedure write_TM is invoked to write one tape mark.

MODULE: tape_ansi_nl_file_cntl_

This module performs the iox_$open and iox_$close functions
for IBM NL (nonlabeled) file sets. 1In addition, it performs
end-of-file and end-of-volume processing for
tape_ansi_ibm_lrec_io_, as well as beginning-of-file and
end-of-file positioning for tape_ansi_position_.

Entry: tape_ansi_nl_file_cntl_$open

This entry point performs the iox_$open function. It
positions to the attached file, mounts and/or demounts volumes as
needed, and maintains the volume chain.

11-44 ANS5T

Usage

del tape_ansi_nl_file_cntl_$open ext entry
(ptr, fixed bin, bit (1) aligned, fixed bin (35));

call tape_ansi_nl_file_cntl_$open (iocbP, mode, mbz, code);

See the description of tape_ansi_file_cntl_ for a discussion of
the arguments.

If code is nonzero, an error has occurred and the 1/0 switch
is not open. The following 1is a nonexhaustive list of the
error_table_ codes that can be returned. See the description of
tape_ansi_file_cntl_ for a discussion of their meanings.

file_aborted

file_busy
incompatible_attach
incompatible_encoding_mode
insufficient_open
invalid_block_length
invalid_cseg
invalid_file_set_format
invalid_record_length
noalloc

no_file
no_next_volume
uninitialized_volume

INTERNAL LOGIC

The cseg pointer 1is obtained from the ICCB. 1If either
cseg.invalid or cseg.file_lock is "1"b, an error exit 1is taken
with the error code error_table_$invalid_cseg or
error_table_$file_busy, respectively. 4 cleanup handler is
established to ensure that neither the c¢seg nor the file is left
in an inconsistent state. The opening mode is validated against
the attach description. If a discrepancy exists, the procedure
returns the error code error_table_$incompatible_attach.

The file link pointer (cseg.flP) is set to null, and the
file data volume index (fd.v1lX) is initialized to 1, for the
first (or only) volume. The file chain is not wused by this
procedure, since it does not maintain a "history" of the file
set. All data used to process a particular file are maintained
in the file data structure. This being the case, it is necessary
to index into the volume chain wusing a file data variable
(fd.v1lX), as opposed to the corresponding file 1link variable
(f1.v1X), which is undefined.

11-45 ANST

If the opening 1is for sequential_input, the record format
and block length must be specified. For all record formats
except U, the record length must also be specified. The absence
of any of the above attributes causes the procedure to return the

error code error_table_$insufficient_open. If the character
encoding mode is not specified, its default is EBCDIC. The
procedure move is invoked to position to the file. If an error
occurs, the procedure transfers to the label er_exit with
whatever error code was returned. The code at er_exit calls
consistent before returning to ensure that no inccnsistencies
exist in the file or the cseg. If the positioning is successful,

lrec_open is called to perform final consistency checks on the
file attributes and to initialize the logical record I/0 control
structure (cseg.lrec). If no error has been detected, the I/0
switch is opened and the procedure returns.

If the opening 1is for sequential_output, the output mode
must be create. (Nonlabeled files <cannot be attached for
extensicn, modification, or generation.) If the record format is
not specified, 1its default is VE. If the block length is not
specified, its default is ©8192. An unspecified record length
defaults to the block length if the record format is F or FB, to
818 if the record format is V or VB, or to 1044580
(sys_info_$max_seg_size * 4) if the record format is VS or VBS.
The default encoding mode 1is LEbCDIC. The procedure move is
called to position to the desired file. If an error occurs, the
procedure transfers to er_exit with whatever error code was
returned. The procedure lrec_open is called to perform the final
attribute consistency checks and to initialize the logical record
I/0 structure. If this step succeeds, the 1/0 switch is opened
and the procedure returns.

~

Entry: tape_ansi_nl_file_cntl_g$data_eof

This entry point is called by tape_ansi_ibm_lrec_io_ when a
tape mark 1is detected in the course of a read operation. It
determines whether the EOF indicates the end of the file or
merely the end of a file section. In the latter case, volume
switching is performed.

Usage

del tape_ansi_nl_file_cntl_g$data_eof ext entry
(ptr, fixed bin {(35));

call tape_ansi_nl_file_cntl_$data_eof (iocbP, code);

If code is neither zero nor error_table_$no_next_volume, an
error has occurred and the 1/0 switch is closed. The latter code
indicates that no additional volumes are available, and that
further 1/0 activity should be prohibited.

o>

11-46

INTERNAL LOGIC

The c¢seg pointer is obtained from the IGCB. It 1is not
necessary to check either cseg.invalid or cseg.file_lock. The
former must be "O"b, or tape_ansi_ibm_lrec_io_ could not have
been invoked, and the latter must be "1"b because it was invoked.
The consistency code (cc) is set to zero and a cleanup handler is
established.

Since the caller has already read over a tape mark (into the
next file), the volume 1link's current position indicator
(vl.cf1X) must be incremented. (The variable vl.cflX does not
strictly represent an index into the file chain, but rather the
actual physical file number. The variable vl.pos 1is not used
because there are no intrafile positions within a nonlabeled
file, and v1.fflX and v1.1f1lX are not used because there 1is no
file <chain wupon which to base a range of indices.) The entry
point tape_ansi_ibm_lrec_io_$close is called to terminate I1/0 on
the file section, synchronize the tape position, ete. If an
error occurs during this process, consistent is invoked and the
I/0 switch is closed.

To read a multivolume file, the user must specify every
volume set member in the attach description. Hence, determining
whether the file section is the last (or only) one of the file
set (and therefore whether or not volume switching is required)
is a minor task. If the current volume index (fd.v1lX) is equal
to the index of the last volume (cseg.vcN), the file section 1is
terminal and the procedure returns the status code
error_table_¢$end_of_info. Otherwise, move is called to position
to the next file section, which is by definition the first file

on the next volume. If an error occurs while positioning,
consistent is invoked and the I/0 switch 1is closed. If
positioning is successful, the procedure returns to

tape_ansi_ibm_lrec_io_ to resume reading data.

Entry: tape_ansi_nl_file_cntl_¢$data_eot

This entry point 1is called by tape_ansi_ibm_1lrec_io_ when
end of tape is detected in the course of a data write operation,
and by tape_ansi_control_ 1in response to an "feov" order. It
switches to the next volume of the volume set, if any.

Usage

dcl tape_ansi_nl_file_cntl_g$data_eot ext entry
(ptr, fixed bin (35));

call tape_ansi_nl_file_cntl_g$data_eot (iocbP, code);

11-47 ANST

If code is neither zero nor error_table_$no_next_volume, an
error has occurred and the 1/0U switch is closed. The latter code
indicates that no additional volumes are available and that
further 1/0 activity shouid be prohibited.

INTERWAL LOGIC

The cseg pointer 1is obtained from the IUCB. For the
reasons stated above, neither c¢seg.invalid nor cseg.file_lock
need be checked. The procedure next_volume is 1invoked to

determine whether or ‘'not another volume 1is available for
continued processing. If not, the procedure returns the status
code error_table_3sno_next_volume.

If a vclume 1is available, cc is set to 2 and a cleanup
handler 1s established. This handler prevents leaving an
inconsistent file section on the volume set should the procedure
be prematurely terminated. The procedure write_TM is invoked to
write a single tape mark, which logically terminates the file
section. If an error occurs, consistent 1s invoked and the I/u
switch is closed. Writing the tape mark leaves the file set in a
consistent state. Therefore, the consistency code can be reset
to 0, so that the file section is not truncated should an error

occur 1in a subsequent step. The procedure move is called to
position to the beginning of the next volume, where the new file
section 1is recorded. If an error occurs, consistent is invoked

and the 1/0U switch is closed. If positioning is successful, the
procedure vreturns to ‘tape_ansi_ibm_lrec_io_ to resume writing
data.

Entryv: tape_ansi_nl_file_cntl_g¢beginning_of_file

This entry point 1is called by tape_ansi_position_ to
implement the -1 (position to beginning of file) operation.
Usage

del tape_ansi_nl_file_cntl_g¢$beginning_of_file
ext entry (ptr, fixed bin (35));

call tape_ansi_nl_file_cntl_$beginning_of_file
(iocbP, code);

If code is nonzero, an error has occurred and the I/0 switch
i3 closed.

11-48 ANST

INTERNAL LOGIC

The c¢seg pointer 1is obtained from the IO0OCB. Neither
cseg.invalid nor cseg.file_lock need be checked. The variable cc
is set to 0 and a cleanup handler 1is established that calls
consistent and closes the I/0 switch. The procedure move is
invoked to position to the first (or only) file section. If an
error ccurs, consistent is called and the I/0 switch is closed.

Entry: tape_ansi_nl_file_cntl_$end_of_file

“ris entryl point 1is called by tape_ansi_position_ to
implement the +1 (position to end-of-file) operation.

Usage

del tape_ansi_nl_file_cntl_g$end_of_file
ext entry (ptr, fixed bin (35));

call tape_ansi_nl_file_cntl_$end_of_file
(iocbP, code);

If code is nonzero, an error has occurred and the I/0 switch
is closed.

INTERNAL LOGIC

The c¢seg pointer 1is obtained from the I0CB. Neither
cseg.invalid nor cseg.file_lock need be checked. The variable cc
is set to 0 and a <c¢leanup handler 1is westablished that calls
consistent and closes the I/0 switch. :

If the file is already positioned past the end-of-file tape
mark (as the result of tape_ansi_ibm_lrec_io_ read operations),
tape_ansi_tape_io_g$order is invoked to position immediately after
the 1last data block (immediately preceding the tape mark). The
current position indicator (vl.cflX) is decremented to reflect
the new position, and the procedure returns.

Otherwise, tape_ansi_ibm_1lrec_io_g$close is called to
synchronize the tape position before performing any other
positioning operation. If the current volume is not the last of
the volume set (fd.vlX "= cseg.veN), the current file section is
not the last of the file. The procedure move is therefore

11-4¢6 ANST

invoked to position to the last section, which by definition must
be the first file on the 1last volume. The entry point
tape_ansi_tape_io_$order is 1invoked twice: first, to position
immediately after the end-of-file tape mark, and second, to
backspace immediately before it.

It any of the above procedure calls results in an error,
consistent is invoked and the I/0 switch is closed.

Entry: tape_ansi_nl_file_cntl_g$close

This entry point performs the iox_$close function. In the
read case, it merely terminates 1logical record I/0 in a
consistent manner and closes the I/0 switch. 1In the write case,
it writes the end-of-file and end-of-file-set tape marks and then
closes the I/0 switch.

Usage

del tape_ansi_nl_file_cntl_$close ext entry
(ptr, fixed bin (35));
call tape_ansi_nl_file_cntl_$close (iocbP, code);

If code 1s nonzero, an error has occurred. In the write
case, the file (or a portion thereof) may be truncated. In
either case, the I/0 switch is always closed.

INTERNAL LOGIC

The <c¢seg pointer is obtained from the IOCB. If the file is
in use (cseg.file_lock = "1"b), the procedure returns the error
code error_table_$file_busy. If cseg.invalid is "1"b, the I/0
switch must be closed, but no operations can be performed on the
file itself. The return code is set to error_table_$invalid_cseg
and a cleanup handler is established that closes the 1I/0 switch.
The 1/0 switch is then closed.

If the I/0 switch is open for sequential_input, cc is set to
0 and a cleanup handler is established that calls consistent and
closes the I/0 switceh. The entry point
tape_ansi_ibm_1lrec_io_$close is invoked to synchronize the tape,
the volume is rewound if the close_rewind order has been issued,
and the I/0 switch is closed.

11=50 ANS57

If the opening was for sequential_output, cc is set to 2 and
a cleanup handler is established that calls consistent and closes
the I/0 switch. The entry point tape_ansi_ibm_lrec_io_$close 1is
invoked to synchronize the tape. If end of tape is detected, it
is ignored, because the 1I/0 module processes EOT only when
writing data via the tape_ansi_ibm_lrec_io_$write_record entry.
The procedure write_TM is called to write two tape marks (one for
end-of-file, the other for end-of-file-set). EOT 1is similarly
ignored. The variable <cc 1is then reset to 0, since the file
section 1is now valid, and the 1/0 switch is closed.

If an error occurs during any of the above procedure calls,
consistent is invoked and the I1/0 switch is closed.

Internal Procedures

Entry: abort_file

This procedure is called by consistent when an unrecoverable
error occurs during the processing of an output file. After the
volume position (vl.cflX) is invalidated, write_TM is invoked to
write two tape marks. If the ‘tape marks are successfully
written, the file set format is valid. An informatory message is
written on user_output via ioa_ and the procedure returns. If
the tape marks cannot be written, the file set format is invalid,
and a message 1s 1issued to that effect. End-of-tape while
writing the tape marks is ignored because EUT is processed only
at write data time.

Entry: consistent

This procedure 1is <called from multiple points within the
module when an errcr occurs during file (as opposed to data)
processing. It ensures that the control segment is always a
valid model of the file set, and that the file set is
self-consistent.

Depending upon the consistency code (cc), one of two actions
is taken. For consistency codes 0 and 1, the current volume's
current file position indicator (vl (fd.vlX).cflX) is invalidated
and the procedure returns. (tape_ansi_nl_file_cntl_ retains the
three-valued consistency code used by tape_ansi_file_cntl_, even

11=51 ANST

though codes 0 and 1 result in identical actions.) For code 2,
abort_file 1is ~called to ensure that the file set is left in a

consistent state.

Entry: handler

This procedure is called by the on wunit of the any_other
condition handler established prior to I0CB manipulation.
because IPS5 interrupts are masked immediately after the on unit
is established, this procedure should almost never be invoked.
If it is invoked, one of two cases has occurred.

If the IFS mask is nonzero, interrupts have already been
masked and none should have occurred. This is regarded as a
fatal error, and the external procedure terminate_process_ is
called to terminate the process. This drastic step is necessary
to ensure that critical 10Cbs are always valid. If the IPS mask
is =zero, the interrupt has occurred during the fraction of time
between on unit establishment and 1PS masking, and the interrupt

is valid. The external procedure continue_to_signal_ is
therefore called to pass the condition down the stack.

Entry: initialize_permitA

This function is called by move when a newly mounted volume
is found to have a VOL1 1label and the volume is targeted to

receive output data (thus destroying the label). The external
procedure command_query_ is invoked to query the user for
permission to use the volume. If permission 1is granted, the

procedure returns "1"b. If permission is denied, the procedure
returns "G"b.

Entry: initialize_permith

This function entry point in the procedure
initialize_permitA 1is called by move when the first block of a
newly mounted volume targeted to receive output data is found to
be unreadable. Since it cannot be determined whether or not the

volume 1is 1indeed 1labeled, the wuser must be queried for
permission. The external procedure command_query_ is called to

perform the query. If permission 1is granted, the procedure
returns "1"b. If permission 1is denied, the procedure returns
llO"b .

11-52 ANST

kntry: lrec_open

This procedure is called from the mainline open code as the
last step in the opening process prior to IOCB manipulation. It
performs final wvalidity checks on the file attributes and
initializes the logical record I1/0 control structure (cseg.lrec).

The block length is checked to ensure that it is not greater
than &192 (the present implementation restriction). If the
cpening mode is for sequential_output, the block length must also
be greater than 16, and evenly divisible by 4. (The block
length, effectively, must be at least twenty. The two separate
constraints are enforced to distinguish between a standard
requirement that blocks of 18 or fewer bytes are not permitted
and an 1implementation restriction that only words can be
written.) The remaining checks apply to block/record length
interrelationships on a per-format basis. If any of the above
steps fails, the procedure performs a nonlocal transfer to
er_exit. :

Entry: move

This procedure is called from multiple points within the
module to perform the actual tape positioning function.

If the desired volume is not mounted and the user-specified
device limit would not be exceeded, tape_ansi_mount_cntl_$mount
is called to mount the volume on a newly assigned device. If the
new device assignment cannot be completed because it would exceed
the process's device 1limit, control is transferred to the remount
algorithm described below.

If the user-specified device 1limit would be exceeded, the
desired volume can only be mounted in place of some other volume,
an operation termed remounting. The volume chain is searched to
select +the volume to be demounted, first from the first volume
set member up to the desired volume, and then from the last
volume set member down to the desired volume. The search
algorithm is optimized for the most usual case of sequential
volume processing, and a candidate volume is always found. The
entry point tape_ansi_mount_cntl_$remount is called to demount
the candidate volume and to (re)mount the desired volume on the
same device.

If the desired volume 1is already mounted when mnove 1is
invoked, none of the above steps need be done. In any case, the
drive number (currently stored in vl.rcp_id) and event channel id
(vl.event_chan) of the (now) current volume are stored 1in the
tseg portion of the cseg. When rcp_ and tape_ioi_ replace tdem_
as the device 1interfaces, these two steps will have to be

1153 ' ANST

modified. It is likely, however, that the rcp_id, the event
channel, and the tape_ioi_ id of the current volume will still be
maintained in the c¢seg outside the volume chain.

The volume index maintained in the file link (fl.v1X) is set
to the volume index of the current volume. It is this step that
actually makes a volume the T'"current volume", since all
references for positioning and volume activity (outside of move)
are volume link references of the form vl (fl.vlX).

If the opening mode is sequential_output, a number of checks
must be performed before the volume can be used. If the VOL1
label status code (vl.write_VUL1) indicates either a blank tape
or no VUOL1 1latel, the volume can be wused without further
checking. Any other c¢ode indicates the presence (actual or
possible) of a VOL1 1label that cannot be overwritten unless
certain criteria are satisfied.

If the file to be written is not the first file, the volume
cannot possibly be reformatted as a nonlabeled volume. The
external procedure ioa_ is called to write an informatory message
on user_output, and the procedure returns the error code
error_table_$uninitialized_volume. If it 1is the first file,
initialization can be possible. based wupon the value of
vli.Wwrite_VOL1, either initialize_permitA or initialize_permitB is
called to query the wuser for permission. If permission is
granted, tape_ansi_tape_io_¢$order 1is called to rewind the tape
and write_TM is called to overwrite the VUL1 label with two tape
marks. The variable vl.cflX is set to indicate the new current
file position (3), and vl.write_VUL1 1is set to indicate the
absence of a VOL1 label.

Volume positioning complete, the procedure positions to the
desired file. 1If the current position is unknown (vl.cflX = 0),
tape_ansi_tape_io_$order is called to rewind the volume and
vl.ci1lX is set to 1. If the volume 1is positioned before the
desired file (vl.cflX < fX, the desired file index), the
difference is computed and tape_ansi_tape_io_$order is invoked to
forward space the appropriate number of tape nmarks. If blank
tape 1is detected, the desired file does not exist. The error
code error_table_$no_file is returned.

If the volume is positioned after the desired file (vl.cflX
> fX), a combination of tape_ansi_tape_io_$order calls to
backspace and forward space files is issued to effect the desired
positioning. If the volume is positioned at the desired file
(vl.cflX = fX), tape_ansi_tape_io_¢$order calls are issued to
ensure that the volume is positioned to the first block of the
file and not to an intermediate, indeterminate position.

If none of the above steps results in an error, vl.cflX is
set to fX and the procedure returns. If an error occurs during
any step, vl.cflX is set to 0 and the procedure returns whatever
error code was set.

11-54 ANST

Entry: next_volume

This function is called by the data_eot entry to determine
whether or not another volume is available for concatenation to
the volume set. It is called only in the output csincee, since
the volume set membership for the input case is determined
entirely by the vclume list specified in the attach description.

If the current volume is nof the last of the volume chain
(fd.v1X < cseg.vcN), the next volume exists and the procedure
returns "19b. If the current volume index 1is 63, the
implementation maximum, the external procedure ioa_ is invoked to
issue an informatory message on user_output and the procedure
returns "0"b. If neither of the above cases is satisfied,
another_volume is called to query the user for the next volume
name, 1f any. If none is supplied, the procedure returns "Q"b.
If one is supplied, the volume chain 1is extended (cseg.vceN is
incremented), vl_init called to initialize the new link, and the
link's volume name is .set. The procedure returns "1"b.

Entry: vi_init

This procedure 1is called by next_volume to initialize a new
volume 1link. Every structure member except the volume name is
set appropriately to a logically null value.

Entry: vname

This function is called by another_volume to validate and
normalize a volume name. A volume name must be six characters or
fewer. If it 1is longer than six characters, the procedure
returns "0"b. Otherwise, there are two normalization cases. If
the name is entirely numeric, it is padded on the left with zeros
to length six. If it is not entirely numeric, it is padded with
blanks on the right to length six. The procedure returns "1"b.

Entry: another_volume

This function is called by next_volume to determine whether
or not a user-specified volume 1is to be concatenated to the
volume set. It is only invoked if end of tape (ECT) is detected
during a data write operation.

The external procedure command_gquery_ is invoked to query
the user as to whether or not processing is to be continued on
anotner volume. If processing is not to continue, the procedure
returns "0"b. 6 If processing is to continue, command_gquery_ is
called again to obtain the name of the volume, along wWith an
optional mount message. The supplied volume name is validated by
calling vname. If it is invalid, command_query_ is invoked again
to obtain a valid name. If the comment 1is invalid,

11-55 ANST

command_query_ is similarly invoked. Unce a valid volume name
(and optional comment) is obtained, the procedure returns "1"b.

kntry: write_TM

This procedure is called to write either one or two tape
marks, thus terminating a file section or file set, respectively.
The entry point tape_ansi_tape_io_$order is invoked to write the
tape mark(s) and the volume's current file position (vl.cflX) is
incremented for each tape mark written. If EQOT is detected it is
ignored, so that all volume switching takes place at data write
time.

MODULE: tape_ansi_detach_

This module performs the iox_$detach function for both
tape_ansi_ and tape_ibm_. It performs resource disposition as
specified in the attach description, issues a volume set status

message 1if necessary, and manipulates the IOCB to indicate the
detached state.

Usage
dcl tape_ansi_detach_ ext entry (ptr, fixed bin (35));

call tape_énsi_detach_ (iocbF, code);

where:
1. iocbP is a pointer to the IUCBE. (lnput)
2. code is a standard status code. (Qutput)

1f code is error_table_$file_busy, the 1I/0 switch is not
detached. If code 1is zero or any other nonzero value, the I/0
switch is detached.

11-56 ANST

Internal Logic

The cseg pointer is obtained from the I0CB and
cseg.file_lock 1is tested to ensure that an I/0 operation is not
in progress. If the file is locked, the procedure returns the
error code error_table_g$file_busy. Otherwise, the file is locked
and a cleanup handler is established. If the cseg pointer is
null when the cleanup handler is invoked, the IQOCE 1is detached.
NO resource disposition or volume set status activity is
possible. If the cseg pointer is nonnull, the detach operation
is performed as though the specified disposition were "-retain
none". Thus, a quit while detaching always results in a detached
I0CB, though resource disposition may or may not be performed as
specified in the attach description.

Une of five possible resource disposition functions is then
performed. Currently, only two of the functions are distinct:
retention of no resources, and retention of all resources. When
the I/U module is converted to call rcp_ directly, the default
rcp_ retention function <can be added. When rcp_ is further
enhanced to provide 1individual resource management of both
devices and volumes, the additional disposition options of device
retention and volume retention can be implemented.

If no resources are to be retained, cseg.write_ring and
cseg.protect are set to "O"b. (Since all devices are unassigned,
they can neither have volumes mounted with rings nor be file
protected.) The volume chain is then scanned for links having
nonzero vl.rcp_id values. Such a value 1indicates an assigned
device. Such a link's vl.ceflX is invalidated, and
tape_ansi_mount_cntl_$free is called to unassign the device. If
an error occurs during unassignment, cseg.invalid is set to "1"b
and the scan continues. When all links up to and 1including vl
(cseg.veh, the last active 1link) have been checked, control
transfers to perform the 1I/0 module's internal detach-state
functions. If all resources are to be retained, cseg.invalid is
checked to ensure that the 1/0 module is capable of performing
another attachment. If not, control 1is transferred to the
resource unassignment code.

There are three steps to be performed when the I/0 module
enters the detached state. First, if an iox_$read_length
operation was ever performed, the temporary buffer segment in the
process directory must be truncated. Therefore, if c¢seg.rlP is
nonnull, the external procedure hcs_$truncate_seg is invoked to
truncate the segment and cseg.rlN (the segment's character count)
is set to -1, indicating no record in the buffer.

1157 ANST

Second, it must be determined whether or not the control
segment 1is 1internally consistent, hence usable in a subsequent
attachment. If c¢seg.invalid 1is "0"b, the <c¢seg 1is usable.
Utherwise, the <c¢seg must be deleted so that a subsequent
attachment (if any) makes an entirely new cseg, file chain, etc.
The external procedure hcs_$delentry_seg is invoked to delete the
control segment and the read length buffer segment (if any).

The third and 1last step is performed only if the cseg is
valid, volumes have been demounted, and write rings were in
place. Uunder this combination of circumstances, it is possible
that the volume set membership of a multivolume file or file set
changed during the course of the attachment. Since the user may
not know exactly how many volumes are included in the volume set,
an informative message is issued.

If the file set 1is IBM nonlabeled, a test is made to
determine whether the last volume processed (fd.v1X) is the last
volume of the volume chain (cseg.veN). If so, no message need be
issued because the entire volume set membership must have been
specified either in the attach description, or by the user via
the command_query_ facility. If not, an informative message 1is
issued and the volume chain is truncated to the last volume set
nmember (cseg.veN = fd.v1lX). This is done to ensure that volumes
that are not volume set members are not considered as such in
subsequent attachments.

If the file set is either ANSI or IBM SL, it 1is determined
whether or not the last volume in the vclume chain contains a
file section. If it does, the volume set membership comprises
all volumes and no message need be issued. If it does not, the
volume chain is scanned to find the last volume set member, and
the volume chain 1s truncated at that point. An informative
message is then issued.

tinally, the I0UCb is manipulated to indicate the detached
state. If the cseg still exists (it normally does, unless it was
deleted previously due to an inconsistency), the file and file
set locks (cseg.file_lock and cseg.file_set_lock) are set to "O"b
and the read length buffer segment (if any) 1is terminated by
calling the external procedure hcs_$terminate_noname.

MODULE: tape_ansi_lrec_io_

This module performs the iox_$read_record and
iox_$write_record functions for ANSI file sets.

11=-58 ANST

Entry: tape_ansi_lrec_io_$read_record

This entry point performs the iox_$read_record function.

Usage

del tape_ansi_lrec_io_$read_record ext entry (ptr, ptr,
tixed bin (21), fixed bin (21), fixed bin (35));

call tape_ansi_lrec_1io_$read_record (iocbP, ubP,
buf_len, rec_len, code);

where:

1. iocbPF is a pointer to the IOCB. (Input)

2. ubP is a pointer to the user's vrecord buffer.
(Input)

3. buf_1len is the number of characters to be read.
(Input)

4, rec_len is the number of characters actually read.
(vutput)

5. code is a standard status code. (Output)

The following is a nonexhaustive list of error_table_ codes
that can be returned:

file_busy file in use for other I/0 activity; no data

returned.
fatal_error unrecoverable error occurred; all, some, or

no data returned. Data can be incorrect.

long_record actual record length exceeded buf_len
(requested length); buf_len characters
returned, remainder of record discarded.

invalid_record_desc a variable-length or spanned record's RCW or
: SCWw 1is 1invalid; some or no data returned.
Lata can be incorrect.

tape_error a parity error occurred while reading; all,
some, or no data .returned. Data can be
incorrect.

It is important to note that for the blocked record formats,
error_table_$tape_error is returned with the first record of the
block that contains the error. Since a parity error is
associated with a physical block as opposed to a logical record,
the first record may or may not contain the invalid character or

11-59 ANST

characters. If subsequent 1iox_$read_record calls are made,
records from the same block can contain the invalid data even
though their return codes are zero.

InTexNAL LUGIC

g opcinter is obtained from the I0CB and
k 13 checked to ensure that the file is not in use.
s in use, the status cocae error_table_3file_busy 1is
returned. i the file 1is not in use, a c¢cieanup handler is
establisned and the file is locked. If invoked, ‘the «cleanup
narnacler unlocks the file 1lock (cseg.file_lock) and sets the
logical record 1/0 lock (cseg.lrec.code) to
error_table_g$fatal_error. This step 1s necessary because an
interrupted logical I1/0 operation can leave the internal I1/0
buffers and logical record processing variables 1in an
incecnsistent state. Thne logical record I/0 lock is checked and
If it 1is nonzero, the procedure immediately returns that error
code.

The desired record may have already been read as the result
of an icx_gread_length call. 1If so, the read_length buffer count
contains a valid value (cseg.rlN "= -1). If the user's reguest
(buf_len) is equal to or greater than the number of characters in
the buffer (cseg.rln), c¢seg.rlN characters are returned with

status code <zero. If buf_len 1is less than cseg.rlN, buf_len
characters are returned with status code
error_table_$long_record. The appropriate number of characters

are moved into the user's buffer from the read_length buffer and
rec_len 1is set to the number of characters moved. The variable
cseg.rlN is set to -1 to indicate that the read_length buffer no
longer contains a valid record. The logical record count
(cseg.lrec.recent) is incremented, the file is unlocked, and the
procedure returns.

If the record is not in the read_length buffer, contreol is
transferred to one of the four format routines. Three automatic
variables are wused by all four routines to control their
operation. The variable remain is set by the internal procedure
get_record and contains the number of characters in the block
that remain to be processed. The variable move 1is set by the
format routines to the number of characters moved to the user's
buffer by the 1internal procedure move_to_user. The variable
req_off 1is set to the number of characters processed by a single
logical record request. Its value can differ from that of move
and is used by the internal procedure read_release both to locate
the beginning of the next record within a block and to release
the I/0 buffer when the block is exhausted.

11-60 AN57

For U format, get_record is called to obtain a record. The
variable move 1is set equal to remain, because a U format record
fills an entire block including pad characters (if any). If
buf_len 1is less than move, the long record switch (the automatic
variable long_record) is set to "1"b and move is set to buf_len
so that the number of characters returned is equal to the number
requested. (In the absence of any other I/0 error or event,
long_record = "1"b at exit time causes the procedure to return
the status code error_table_$long_record.) Since each logical
record request requires a new Dblock, req_off is set equal to

remain so that the I/0 buffer 1is released. The procedure
move_to_user 1s called to move the record to the user's buffer
and read_release 1is called to release the 1I/0 buffer. Control

then passes to the normal exit routine.

For F and FB format, get_record is <called to obtain a
record. If the file's record length (fd.reclen) exceeds remain,
a short record situation exists. Since iox_ does not treat this
case as an error, move is set equal to remain without setting a
status code. If fd.reclen is less than or equal to remain, move
is set equal to fd.reclen so that only one record's worth of data
is moved. If buf_len is less than move, the user's buffer is too
small to contain all the available data. The long record switch
is therefore set to "1"b and move is set equal to buf_len so that
only the requested number of characters is moved. The variable
req_off is set to fd.reclen because each logical record request
must process an entire record, even if only a portion of that

record is actually moved to the wuser's buffer. The procedure
move_to_user 1s called to move the data and read_release is
called to position beyond the record. (In F format, the 1/0

buffer is released after each record is processed; 1In FB format,
it 1s only released after the last record in a block has been
processed.) Control then passes to the normal exit routine.

For D and DB format, get_record 1is called to obtain a
record. If a block pad character (circumflex, """) is found
where the RCW should be, the remainder of the block contains no
valid data. The entry point tape_ansi_tape_io_$release_buffer is
called to release the I/0 buffer and control passes back to the
get_record call. Once a record has been obtained, a pointer to
the record's RCW (record control word) is made and the record's
actual length is extracted into the automatic variable data_len.
If the data 1length cannot be extracted, or if it exceeds the
number of characters remaining in the block (remain - 4), control
passes to the invalid record descriptor error exit. If the RCW
is valid, move is set equal to data_len. If, however, buf_len is
less than move, long_record 1is set to "1"b and move is reset
equal to buf_len. The variable cseg.lrec.offset, the current
processing offset within the I/0 buffer, is incremented by 4 (the
length of an RCW) so that the RCW is not processed as part of the
data. The variable req_off is set equal to data_len so that the
request processes the entire record, even if only a portion 1is
actually being returned. The procedure move_to_user is called to
move the data to the user's buffer. The procedure read_release

11-61 ANBT

is called to position beyond the record. Control then passes to
the normal exit routine.

For S and Sb format, get_record is called to obtain a record
segment. To keep track of the number of characters that have yet
to be moved 1into the user's buffer to satisfy the request, the
automatic variable left is initialized to buf_len. process_sw 1is
then invoked to process and validate the segment's SCw (segment
control word) and to extract the segment's data length intc
data_len. If left is greater than or equal to data_len, all the
data in the segment is needed and move is set equsa' to data_len.
If left is less than data_len, only a portion of tne segment 1is
needed tc satisfy the (balance of the) request. In this case,
long_record is set equal to "1"b and move is set equal to left.
The procedure move_to_user 1s invoked to move the data to the
user's buffer, left is decremented by move to equal the number of
characters still required to complete the request, and
read_release is called to position beyond the record segment.

The SCw type <code is then checked. 1If the code indicates
either a complete or terminal record segment, the entire logical
record has been processed and control passes to the normal exit
routine. If not, the remaining record segments must eilther be
skipped (if the user's request is satisfied), or processed (if
their data is needed to complete the request). In the 1latter
case, left 1s nonzero, The procedure get_record is called to
obtain the next record segment and control is passed back to the
process_sw call described above. In the former case, left is
zero. The procedure skip_segments is called to position beyond
the last segment of the record. Control then passes to the
normal exit routine with long_record set to "1"b because the user
requested fewer characters than the record contains.

The normal exit routine incremenrts the logical record count
(cseg.lrec.reccnt). If a parity e'ror has occurred, the return
code 1s set to error_table_g$tape_eriror. Otherwise, it is set to
zerc or whatever error code has been set by a previous step. If
the return cocde is zero and long_record is "1"b, the return code
is set to error_table_$longrecord. An error code therefore
overrides the reporting of the 1long record conditicn. The
variable rec_len 1is set equal to the automatic variable total,
whose value has been maintained by move_to_user to be the total
number of characters placed in the user's buffer. The variable
cseg.file_lock is set to "O"b and the procedure returns.

The error and 1invalid record descriptor exit routines
perform the same functions as described above, with the exception
/

of incrementing cseg.lrec.reccnt.) J

11-62 ANST

INTERNAL PROCEDURES
Entry: get_record

This procedure makes a logical record available toc the
record format routines, either by reading a new block into an I/0
buffer, or by setting the buffer processing variables for the
next record already in a buffer.

If the I/0 buffer pointer (cseg.lrec.bufP) is nonnull, at
least one record is already in the 1I/0 buffer. The wvariable
remain 1s set to the number of characters not yet processed and
the procedure returns. If cseg.lrec.bufP is null,
tape_ansi_tape_io_¢$read is called to read a block. The variable
cseg.lrec.bufP 1is set to point to the I/0 buffer and
cseg.lrec.nc_buf is set to the number of characters read. If the
call returns a nonzero code, there are two main possibilities.

If the code is error_table_$eof_record, an end-of-file nark
has been read. The entry point tape_ansi_file_cntl_$data_eof 1is
invoked to determine whether the actual end of the file has been
reached or whether the file is continued on another volume. If a
zero code 1s returned, the file is continued on the next volume.
Since tape_ansi_file_cntl_ has performed all necessary volume
switching functions, control is simply passed back to the
tape_ansi_tape_io_¢$read call. If the code is nonzero, either no
more data exists or an error has occurred, and ccontrol passes to
the exit routine.

If tape_ansi_tape_io_$read returns any other nonzero code, a

parity or fatal error has occurred. If the code is
error_table_g$tape_error, the parity error switch (the automatic
variable "parity_error") is set to M"1"b and the current

iox_$read_record operation is continued. Any other code causes
control to pass to the error exit routine. (The iox_$control
operation '"reset_error_lock" can be used to permit further
iox_¢$read_record calls, if and only if the lock value is equal to
error_table_$tape_error.)

If the code was zero or error_table_$tape_error, the block
count (cseg.lrec.blkent) is incremented and cseg.offset is set to
the file's buffer offset value (fd.bo). This causes the block
prefix (if any) to be skipped. As ANSI blocks can be padded to
any length with circumflex characters ("""), it is necessary to
eliminate them (logically) from the I/0 buffer. If cseg.nc_buf
exceeds the desired block length (fd.blklen), the excess can be
eliminated easily by setting c¢seg.nc_buf to fd.blklen. This step
also ensures that no more characters can be extracted from a
block than have been specified. Since U format blocks are
processed with pad characters (if any) and D, Db, S, and SB
records contain explicit data lengths, no further processing is
necessary. The variable remain is set to the number of

11-63 ANST

characters available for processing (cseg.nc_buf - cseg.offset)
and the procedure returns.

For +t and Fb format, a further pad stripping algorithm must
be applied. The number of records in the block 1is computed by
dividing the number of possible data characters in the block
(cseg.nc_buf - fd.bo) by the number of characters in a record
(fd.reclen). The number of characters (if any) that do rot fill
a complete record is computed by taking the number of possible
data characters modulc the record length. If these characters
are all pad characters, they are eliminated (iogically) by

decrementing <c¢seg.nc_buf. If any are not pad characters, they
are as a group considered to form a short record, remain is set,
and the procedure returns. If characters not contained in a

complete record are not found, or if such characters are all
padding, it is possible that additional padding exists. Starting
with the last record in the block, each record is tested to
determine whether it is all pad characters. Each record of
padding causes c¢seg.nc_buf to be decremented by fd.reclen. The
first record that is not padding causes remain to be set and the
procedure to return. Eventually, remain is set to the number of
characters available for processing.

Entry: process_sw

This procedure is called by the S and SB format routine to
validate and process an SCW. If the first character of what
ought to be an SCw is found to be a pad character,
tape_ansi_tape_io_$release_buffer 1is called to release the I/0
buffer. The procedure get_record is then called to obtain a
record segment from the next block and control passes back to the
pad checking code described above. Once an SCW has been
obtairned, the segment's data length is extracted 1into data_len,
its type <code is validated, and data_len is checked against the
actual number of characters remaining in the block. An
inconsistency detected by these checks vresults in a nonlocal
transfer to the invalid record descriptor error exit. If the SCW
is valid, cseg.offset is incremented by 5 (the length of an SCW)
so that the SCW is not processed as part of the segment's data.
The variable req_off is set equal to data_len.

11-64 ANS5T

Entry: skip_segments

This procedure is called by the S and Sb format routine to
skip record segments that are not required to satisfy the user's
request (buf_len < total record length). The procedure
get_record 1is called to obtain a record segment, and process_sw
is called to process and validate its SCW. If the type code . is
that of a final segment, read_release 1s called to position
beyond it and the procedure returns. Otherwise, read_release 1is
called and control passes back to the get_record call. This
algorithm is continued until the final segment is encountered and
skipped. :

Entry: move_to_user

This procedure is called by all four format routines to move
data from the I/0 buffer to the user's buffer. If move is zero,
no data 1is to be moved and the procedure returns. Utherwise, a
pointer is made to the first character to be moved from the I/0
buffer, and another pointer is made to the location within the
user's buffer where that character 1is to be 'placed. If the
encoding mode (fd.mode) 1is not EBCDIC, no character conversion
need be performed and the data 1is simply moved. Otherwise,
ebcdic_to_ascii_ 1is invoked to translate and move the data. The
automatic variable total is incremented by the value of move, to
maintain a count of the total number of characters moved.

tntry: read_release

This procedure 1is <called to release a logical record or
record segment from an I/0 buffer. If the record is the last (or
only) one in the buffer, the entire buffer is also released. The
variable cseg.offset (the current processing offset within the
buffer) is incremented by the value of req_off (the number of
characters processed by the format routine). The variable remain
is calculated by subtracting the new current offset from the
buffer character count (cseg.nc_buf). (The variable remain can
become negative.) If the record format is S or SB and remain is
less than 5, the 1I/0 buffer is released, because the remaining
characters are too few to be even the SCW of a zero-length record
segment. If remain is greater than or equal to 5, the procedure
returns.

For all other férmats, if remain is less than 4, usually the
I/0 buffer 1is to be released. For U format this is always the

11-65 ANST

case, and similarly for L and LB format because four characters
is insufficient for even the RCW of a zero-length record. In
these cases, the buffer is released and the procedure returns.
For F and FB format, however, the buffer is only released if the
logical record length is greater than the value of remain. If
the 1logical record 1length is less than or equal to remain, the
procedure simply returns. This practice causes the loss of short
records (short record 1length < vrecord 1length < 4) in some
unusual,; but possible, cases. Unfortunately, it is the only way
to avoid processing the pad bytes (octal value 000) appended to
blocks that have lengths not evenly divisible by 4. This
ambiguity is built into the current software interface (tdem_) to
the MTS500 hardware and should no longer be a problem when the
proposed interface (tape_ioi_) is implemented. The I/0 buffer is
released by calling tape_ansi_tape_io_$release_buffer.

Entry: tape_ansi_lrec_io_$write_record

This entry point performs the iox_$write_record function for
ANSI file sets.

Usage

del tape_ansi_lrec_io_$write_record entry (ptr,
ptr, fixed bin (21), fixed bin (35));

call tape_ansi_lrec_io_$write_record (iochbP,
ubF, buf_len, code);

where:

1. iocbP is a pointer to the IOCB. (Input)

2. ubP is a pointer to the user's buffer. (Input)

3. buf_len is the number of characters to be written.
(Input)

y, code is a standard status code. (Output)

The following is a nonexhaustive list of error_table_ codes
that can be returned.

file_busy file in use for other 1/0 activity; record
not written.

fatal_error unrecoverable error occurred; sSee Write
Errors below.

11-66 ANST

long_record buf_len exceeds the maximum record and/or
block length; the record is not written.

eov_on_write no more records can be written on the current
volume. For S and SB format, the record may
be partially written; for all other formats,
the record is not written.

tape_error a parity I1/0 error has cccurred; see "Write
Errors" below.

wRITE ERRORS

In the case of a fatal or parity error, more records can be
affected than just the particular record being written when the
error code 1is returned. It is important to note that such an
error is detected upon the writing of a block, and that each
iox_$write_record <call does not necessarily cause a block to be
written. Hence, a zero status code does not guarantee that a
record has been written at all, let alone written correctly. FB
format blocks always, and DB and SB blocks can, contain multiple
records, so that an error in writing a block affects every record
packed into the block.

In addition, tape_ansi_ does not wait to check the status of
a wWrite operation after the operation has been issued. In the
time between issuing a write operation and receiving its status,
a number of further write operations can be issued. This method
of operation is termed asynchronous processing and normally is

highly satisfactory. If an 1/0 error occurs, however, not only
is the erroneous block not written, but all blocks queued for
writing subsequent to the error block are not written. Even in

this case it is possible to maintain an accurate block count, but
since the number of records per block can vary, an accurate
record count cannot be maintained. Since U, F, and D format
place only one record per block, the actual number of records
written equals the block count (available by calling iox_$control
"file_status"” operation). For FB, LB, and SbB format, an
indeterminate number of records packed into blocks subsequent to
the error block are not written, and for S and SB format, the
record can have been partially written in blocks prior to the
error block.

11-67 ANST

INTERNAL LOGIC

The cseg pointer 1is obtained from the I10CB and the
cseg.file_lock is checked to be sure that the file 1is not busy
fcr other 1/0 activity. If it is busy, the procedure immediately

returns the error code error_table_¢$file_busy. Otherwise, a
cieanup nhandler is established and the file lock is 1locked. If
invoked, the cleanup handler unlocks the file lock and sets the
lcgical record I/0C lock to error_table_¢$fatal_error. This step
is necessary because an interrupted logical I/0 operation can
_save the I/0 buffer and 1its processing variables in an

inconsistent state.

The 1logical record 1/0 lock (cseg.lrec.code) is checked to
ensure that I/0 has not been inhibited due to an unrecoverable

error. If the cseg.lrec.code 1s nonzero, the return code is set
to the logical I/U lock value, the file lock (cseg.file_lock) 1is
unlocked, and the procedure returns. If all 1is well, the

intrafile position indicator (vl (fl.flX).pos) 1is checked to
determine whether or not the tape 1is positioned in the data
portion of the file. The first time iox_$write_record is called
subsequent to an opening, the tape is positioned in the file's
header label group. In this case,
tape_ansi_file_cntl_$position_for_output 1is called to write the
header label group tape mark, such action defining the transition

into the data portion of the file. If an error occurs while
writing this tape mark, cseg.lrec.code is set to the error code
value and control passes to the error exit routine. The tape

mark 1s not written until the first logical record call for the
following reason. The ANSI standard requires volume switching to
be performed if end-of-tape is detected while writing the header
label group. This causes a null file section to be recorded on
the old volume. Yet if the I/0 switch is then closed without an
intervening 1/0 operation, another null file section is written
on the new volume. By inhibiting the detection of end-of-tape
until the header label group tape mark is written (this is not a
Standard violation), and by delaying writing the tape mark until
the first write operation, volume switching can be avoided if no
Wwrite operations are issued. The close call causes just a single
null file section to be written on the current volume.

Control then passes to one of the four record format
routines. For U format, buf_len is checked to ensure that it
does not exceed the maximum number of characters that can fit in
a block (fd.blklen - fd.bo). If its value is too large, control
passes to the long record error exit. The procedure get_buf is
called to obtain an I1I/0 buffer and move (the number of characters
to be moved from the users buffer) is set equal to buf_len. The
variable req_off (the number of characters to be written by this
request) is also set equal to buf_len, and move_to_buf is called
to move the wuser's data 1into the I/0 buffer. The procedure
write_buf is called to write the block, and control passes to the
normal exit routine.

11-68 AN5T

For F and FB format, buf_len is checked to ensure that it
does not exceed the record 1length (fd.reclen). If it does,
control passes to the 1long record error exit routine. The
procedure get_buf is called to obtain an I/0 buffer, if
necessary. (for F format, an I/0 buffer 1is obtained for each
call, because each record requires a new block.) The variable
move 1s set equal to buf_len and remain is set to the number of
pad characters that must be appended to the user's data to make a
complete record (fd.reclen - buf_len). This step is necessary
because fi:ea-format records must be of identical 1lengths. If
remain 1is nonzero, the appropriate number of blanks are inserted
intc tne 1/G buffer. The wvariable req_off 1is set equal to
fd.reclen because each request processes a complete record, even
if buf_len is less than fd.reclen. The procedure move_tc_buf 1is
called to move the user's data into the I/0 buffer immediately
before the inserted padding (if any). If records are not blocked
(F format), write_buf is called to write the record. Otherwise,
write_buf is not called unless the block contains as many records
as can fit (cseg.offset = fs.blklen). Control then passes to the
normal exit routine.

For D and LB format, data_len (the length of the record) is
set to buf_len plus 4 (the length of an RCW). The value of
data_len 1is checked to ensure that it does not exceed fd.reclen.
If it does, control passes to the long record error exit. The
procedure get_buf is called to obtain an 1/0 buffer, if
necessary. (An I/0 buffer 1is always obtained for D fornmat,
because each record requires a new block.) For DB format, it
must be determined if the record to be written can fit into the
current block, or 1if a new block 1is required. If data_len
exceeds the number of remaining characters in the block
(fd.blklen - cseg.offset), then write_buf is called to write the
current block and get_buf is called to obtain a new I/0 buffer.
bither way, a pointer is made to the I/0 buffer location where
the record's KCw is to be constructed and the RCW 1is 1inserted.
The variable cseg.offset is incremented by 4 so that the RCW is
considered when computing the total block length, and req_off is
set equal to buf_len. The variable move is also set equal to
buf_len and move_to_buf is called to move the wuser's data. If
records are not blocked, write_buf is called to write the record.
Otherwise, write_buf 1is not called unless another record cannot
fit in the current block (fd.blklen - cseg.offset < 4, where 4 is
the length of a zero-length record). Control then passes to the
normal exit routine.

Fer 8 and SB format, buf_len is checked to ensure that it
does not exceed fd.reclen. If it does, control passes to the
longer record error exit. The procedure get_buf is called to
obtain an 1/0 buffer, if necessary. (An I/0 buffer 1is always
obtained for S format, because each record segment requires a new
block.) The variable 1left contains the number of characters
still to be moved from the user's buffer, and is initialized
equal to buf_len. As each record segment is written, left is
decremented by the number of characters written in that segment.

11-69 ANST

The variable remain is set to the number of characters remaining
in the current blcck (fd.blklen -~ cseg.offset). A pointer is
made to the I/U0 buffer location where an SCWw 1is ¢to be
constructed.

The type code set in the SCW is dependent upon the amount of
data still to be written (left) and the available space in the
current block (remain). If left + 5 (the balance of the user's
request plus 5 characters for the SCw) can fit in the blcck, the
record segment 1s either a complete or final segment. If no data
from tne record has been previously placed into ancther segment,
the type is complete; 1i.e., the segment contains the entire
record. If some data has been placed into another segment, then
the type 1s final; 1.e., the segment is the last of a group of
segments that 1in toto make up the record. In either case, move
is set equal to left, since the data to be moved into the segment
is the balance of the request. If left + 5 characters cannot fit
into the block, the record segment is either an initial or medial
segment. If no data from the record has been previously placed
into another segment, the type is initial; 1i.e., the segment is
the first of a group of segments that in toto make up the record.
If some data has been placed into another segment, the type is
medial; i.e., the segment 1is one of a group of three or more
segments (but neither the first nor the last) that in toto make
up the record. In either case, move is set equal to remain - 5,
so that as much data as will fit into the block is moved, leaving
room for the 5 character SCW.

The variable left is decremented by the value of move,
giving the amount of data (if any) to be moved into subsequent
segments. The variable data_len, the actual record segment
length, 1is =set equal to move + 5 (to include the SCwW) and is
inserted into the SCW. The variable cseg.offset is incremented
by 5, so that +the SCW is considered when computing the total
block length. The variable req_off 1is set equal to move and
move_to_buf 1is called to nmnove the wuser's data into the I/0
buffer. The variable remain is set to the number of characters
remaining in the block (remain - data_len). If record segments
are not blocked (S format), control passes to write the I1/0
buffer. If record segments are blocked, the I/0 buffer is only
written if another nonzerc length record segment could not fit
into the block {remain < 6)}.

If the 1/0 buffer is to be written, write_buf is called to
write it, get_buf is called to obtain another, and remain is set
to the number of characters available in the new buffer
(fd.blklen - cseg.offset). Whether or not the 1I/0 buffer was
written, left 1is checked to determine whether or not the user's
request has been satisfied. If left is nonzero, control passes
back to make another SCW pointer for the next record segment. If
left is zero, control passes to the normal exit routine.

The normal exit routine first increments the logical record
count (cseg.lrec.reccnt) and then sets the return code and

11=-70 ANST

logical 1I/0 1lock to the code returned by the last I1I/0 operation
(normally zero). If c¢sw (the tape_ansi_lrec_io_$close entry
switch) is "1"b, control passes to that entry's exit routine.
Otherwise, the file lock is unlocked and the procedure returns.
(The variable csw 1is initialized to "0"b upon procedure block
activation, but is set to "1"b by the tape_ansi_lrec_io_$close
entry.) The long record and error exits perform similar
functions, with the exception of 1incrementing c¢seg.lrec.reccnt.

INTERNAL PROCEDURES

Entry: get_buf

This procedure is called to obtain an I/0 buffer, if one is
needed. If the I/0 buffer pointer (cseg.lrec.bufP) is nonnull, a
buffer is available and the procedure returns. If it 1is null,
tape_ansi_tape_io_g$get_buffer 1is called to make an I/0 buffer
available. The current offset equal within the buffer
(cseg.offset equal) 1is set equal to the buffer offset length
(fd.bo) to reserve space for a block prefix (if any). If the
buffer offset length is nonzero, a block prefix of all blanks is
inserted.

kntry: move_to_buf

This procedure is called to move data from the user's buffer
to the I/0 buffer. If move is zero, there 1is no data to be
moved. In this case, cseg.offset is incremented by the value of
reg_off (the number of characters processed by the request) and
the procedure returns. (The variable «cseg.offset must be
incremented to allow for the case of zero-length records in D,
DB, S, and Sb format. Such records consist of RCWs or SCWs
alcne.) If data is to be moved, pointers are made to the offset
within the I/0 buffer where the data is to be placed, and to the
offset in the user's buffer from which the data is to be taken.
If the encoding mode (fd.mode) is either ASCII or binary, the
data is moved. If the mode is EBCDIC, ascii_to_ebcdic_ is called
to translate an move the data. The variable total is
incremented by the value of move, to maintain a count of the
total number of characters moved. The variable c¢seg.offset 1is
incremented by the value of req_off.

11-71 ANST

kntry: write_buf

This procedure writes a block, appending block pad
characters if necessary. If cseg.offset is less than 20, the
biock must be padded. This is necessary for twc reasons: 1)
nlocks of fewer than 1b characters must not be written, and 2)
blocks tn be written must consist of an integral number of words
(4 charascters/word). The number of pad characters is computed by
subtracting cseg.offset (the number of characters presently 1in
the bicek) from 20, and control passes to perform the padding.

If cseg.offset 1s greater than or equal to 20 but not evenly
divisible by four, the block must still be padded to satisfy
requirement 2) above. Padding for both cases is performed by
inserting the appropriate number of pad characters into the 1I/0
buffer immediately following its current contents, and then
incrementing cseg.offset to reflect the new, adjusted block
length. .

The entry point tape_ansi_tape_io_$write is called to write
the block. If the return code 1s =zero, the block count
(cseg.lrec.blkent) is incremented and the procedure returns. if
the return code is nonzero, there are two major possibilities.
If the code 1is not error_table_$eov_on_write, an error has
occurred. The block count is decremented if more than one block
was not written (cseg.blkent = cseg.blkent -
cseg.soft_status.nbut + 1). (The suspended buffer count is
currently obtained directly from the cseg. Eventually, when
tape_ioi_ becomes the device interface, a tape_ici_ status entry
is called to obtain this value.) The logical record count is
invalidated by setting it negative, and control passes to the
error exit.

If the code is error_table_$eov_on_write, end-of-tape has

been detected. This 1is more in the nature of an event than an
error. Tne variable cseg.lrec.blkent is incremented, because the
block has been successfully written. If csw is "1"b (i.e., the

prccedure was entered at the $close entry point), the procedure
simply returns. This is done so that EOT detection at close time
does not force volume switching, with the resultant recording of
a null file section on another volume. If csw 1is "0"b,
tape_ansi_file_cntl_$data_eot is called to switch volumes. If
the returned code is zero, volume switching has occurred and the
procedure returns. If the code is nonzero, the volume switch did
not take place. This can be due either to an error or to the
lack of another volume. If the record format is S or SB and the
entire record has not yet been written (left "= 0), control
passes to the error exit. If the record format is other than S
or SB, or the entire spanned record has been written (left = 0),
this particular iox_$write_record call can complete successfully.
Further calls must, however, be inhibited, therefore
cseg.lrec.code is set to the error code value. The return code
is set to zero, the file is unlocked, and the procedure returns.

11=72 AN57

Entry: tape_ansi_lrec_io_$close

This entry point is called by tape_ansi_file_cntl_$close to
terminate logical record I/0 in a consistent manner at close
time.

Usage
del tape_ansi_lrec_io_$close entry (ptr, fixed bin (35));

call tape_ansi_lrec_io_g$close (acP, code);

where:
1. acP ‘ is a pointer to the cseg. (Input)
2. code is a standard status code. (Output)

INTERNAL LOGIC

The cseg pointer 1is copied from the argument list and the
close entry switch (csw) is set to "1"b. This switch governs the
action taken if write_buf nust be called and either an error or
EOT occurs. If the 1/U switch is open for sequential_input and
the I/0 buffer pointer is null, control passes to the buffer
management reset exit to perform that function and return. If
the pointer is nonnull, control passes to the buffer release exit
to perform that function, reset the buffer management strategy,
and return.

If the 1/0 switch is open for sequential_output and there is
no current I/0 buffer, control passes to the buffer management
reset exit. If there is an I1/0 buffer (cseg.lrec.bufP "= null)
but cseg.offsct 1is either 0 or fd.bo, the I/0 buffer does not
contain any data. In this case, control passes to the buffer
management reset exit. If, "however, the processing offset is
neither 0 nor fd.bo, the buffer contains data that must be
written. In this case, write_buf is called and control passes to
the buffer release exit.

The buffer release exit calls
tape_ansi_tape_io_$release_buffer to release the current 1/0
buffer, calls tape_ansi_tape_io_$close to reset the buffer

management strategy, and returns. The buffer management reset
exit calls tape_ansi_tape_io_¢$close and returns.

11=-73 ANST

MODULE: tape_ansi_ibm_lrec_io_

This module performs the iox_¢$read_record and
iox_¢$write_record functions for IBM file sets.

Entry: tape_ansi_ibm_lrec_io_g¢$read_record

This entry point performs the iox_g$read_record function.

Usage

del tape_ansi_ibm_lrec_ioc_$read_record ext entry (ptr, ptr,
fixed bin (21), fixed bin (21), fixed bin (35));

call tape_ansi_ibm_lrec_io_$read_record (iocbP, ubP,
buf_len, rec_len, code);

where:

1. iocbP is a pointer to the IOCB. (Input)

2. ubP is a pointer to the user's record buffer.
(Input)

3. buf_len is the number of characters to be read.
(Input)

by, rec_len is the number of characters actually read.
(butput)

5. code is a standard status code. (Output)

The following is a nonexhaustive list of

error_table__ codes that can be returned:

file_busy file in use for other I1/0 activity; no data
returned.

fatal_error unrecoverable error occurred; all, some, or
no data returned. Data can be incorrect.

long_record actual record length exceeded buf_len

(requested length); buf_len characters
returned, remainder of record discarded.

invalid_record_desc a variable-length or spanned record's RDW or

SDW 1is invalid; some or no data returned.
Data can be incorrect.

11=-74 ANST

tape_error a parity error occurred while reading; all,
some, or no data returned. Data can be
incorrect.

It is important to note that for the blocked record formats,
tape_error is returned with the first record of the block that
contains the error. Since a parity error is associated with a
physical block as opposed to a logical record, the first record
may or may not contain the invalid character or characters. If
subsequent iox_¢$read_record calls are made, records from the same
block can contain the invalid data even though their return codes
are zero.

INTERNAL LOGIC

The c¢seg pointer is obtained fron the IOCB and
cseg.file_lock 1s checked tc ensure that the file is not in use.
If the file is in use, the status code error_table_g$file_busy is
returned. If the file 1is not 1in wuse, a cleanup handler is
established and the file is locked. If invoked, the cleanup
handler wunlocks the file 1lock (cseg.file_lock) and sets the
logical record I/0 lock (cseg.lrec.code) to
error_table_¢fatal_error. This step 1s necessary because an
interrupted logical I/0 operation <can leave the internal 1/0
buffers and logical record processing variables in an
inconsistent state. The logical record I/0 lock is then checked,
and if it is nonzero, the procedure immediately returns that
error code.

The desired record can have already been read as the result
of an lox_$read_length call. If so, the read_length buffer count
will contain a valid value (cseg.rlN "= =1). If the wuser's
request (buf_len) 1is wequal to or greater than the number of
characters in the buffer (cseg.rlN), c¢seg.rlN characters are

returned with status code =zero. If buf_len 1is 1less than
cseg.rlN, buf_len characters are returned with the status code
error_table_$long_record. The appropriate number of characters

are noved into the user's buffer from the read_length buffer and
rec_len 1is set to the number of characters moved. The variable
cseg.rlhN is set to -1 to indicate that the read._length buffer no
longer contains a valid record. The logical record count
(cseg.lrec.reccnt) is incremented, the file is unlocked, and the
procedure returns.

If the record is not in the read_length buffer, control is
transferred to one of the four format routines. Three automatic
variables are wused by all four routines to control their
cperation. The variable remain is set by the internal procedure
get_record and contains the number of characters in the block
that remain to be processed. The variable move is set by the

11-75 ANST

format routines to the number of characters moved to the user's

buffer by the internal procedure move_to_user. The variable
req_off is set to the number of characters processed by a single
logical record request. 1t can differ from move and is used by

the internal procedure read_release both to locate the beginning
of the next record within a block and to release the 1I/C buffer
when the block is exhausted.

For U format, get_record is called to obtain a record. The
variable move 1is set equal to remain, because a U format record
fills an entire block. If buf_len 1is less than ncve, the 1long
record switch (the automatic variable long_record, is set to "1"b
and mnmove 1is set equal to buf_len, so that the number of

characters returned will be the number requested. (In the
absence of any other I/0 error or event, long_record = "1"b at
exit time causes the procedure to return the status code
error_table_$long_record.) Since each logical record request

requires a new block, req_off is set equal to remain so that the
I/0 buffer will be released. The procedure move_to_user is then
called to move the record to the user's buffer and read_release
is called to release the 1/0 buffer. Control then passes to the
normal exit routine.

For F and Fb Tformat, get_record is called to obtain a
record. If the file's record length (fd.reclen) exceeds the
value of remain, a short record situation exists. Since iox_
does not treat this case as an error, move is set equal to remain
without setting a status code. If fd.reclen is less than or
equal to remain, move 1is set equal to fd.reclen so that only one
record's worth of data is moved. If buf_len is less than move,
the user's buffer is too small to contain all the available data.
The long record switch is therefore set to "1"b and move 1is set
to buf_len so that only the requested number of characters is
moved. The variable req_off is set equal to fd.reclen because
each logical record request must process an entire record, even
if only a portion of that record is actually moved to the user's
buffer. The procedure move_to_user is called to move the data
and read_release is called to position beyond the record. (In F
format, the 1I/0 buffer 1is released after every record is
processed. In FB format, it is only released after the last
record in a block has been processed.) Control then passes to
the normal exit routine.

For V and VB format, get_record 1is called to obtain a
record. A pointer to the record's RDW (record descriptor word)
is made. The record length is extracted, decremented by U4 (the
length of the RDW itself), and set into the automatic variable
data_len. The RDW length field is a 15 bit signed binary number
(16 bits in all), recorded as two 8-bit frames. When reading in
j-mode, each frame 1is stored 1into a 9-bit byte with the
high-crder bit of each byte set to 0. 1In order to recompose the
original binary number, the low-order & bits of the high-order
byte must be shifted right by 1 bit, into the high-order bit
location of the low-order byte.

11-76 ANST

If the data length cannot be extracted, or if it exceeds the
number of characters remaining in the block (remain - 4), control
passes to the invalid record descriptor error exit. If the RDW
is valid, move is set equal to data_len. If, however, buf_len is
less than move, long_record 'is set to "1"b and move is reset
equal to buf_len. The variable cseg.lrec.offset, the current
processing off'set within the I/0 buffer, is incremented by 4 (the
length of an RDw) so that the KRDW is not processed as part of the
data. The variable req_off is set equal to data_len so that the
request will process the entire record, even if only a portion is
actually being returned, and move_to_user 1is called. The
procedure read_release is invoked to pesition beyond the record.
Control then passes to the normal exit routine.

For VS and VBS format, get_record 1is called to obtain a
record segment. To keep track of the number of characters that
have yet to be moved into the user's buffer to satisfy the
request, the automatic variable 1left 1is initialized equal to
buf_len. The procedure process_sw 1s 1invoked to process and
validate the segment's SUW (segment descriptor word) and to
extract the segment's data length into data_len. If left is
greater than or equal to data_len, all the data in the segment is
needed and move 1s set equal to data_len. If left is less than
data_len, only a portion of the segment is needed to satisfy the
(balance of the) request. In this case, long_record is set to
"1"b and move is set equal to left. The procedure move_to_user
is invoked to move the data to the user's buffer, left is
decremented by the value of move to give the number of characters
still required to complete the request, and read_release 1is
called to position beyond the record segment.

The SLW type code is checked. If the code indicates either
a complete or terminal record segment, the entire logical record
has been processed and control passes to the normal exit routine.
If not, the remaining record segments must either be skipped (if
the user's request is satisfied), or processed (if their data is
needed to complete the request). In the latter case, left is
nonzero. Tne procedure get_record is called to obtain the next
record segment and control is passed back to the process_sw call
described above. In the former case, 1left is zero. The
procedure skip_segments 1is called to position beyond the last
segment of the record. Control then passes to the normal exit
routine with 1long_record set to "1"b because the user requested
fewer characters than the record contained.

The normal exit routine increments the logical record count
(cseg.lrec.reccnt). If a parity error has occurred, the return
code is set to error_table_$tape_error. (Otherwise, it is set to
zero or whatever error code has been set by a previous step. If
no error has occurred but long_record is "1"b, the return code is
set to error_table_$long_record. (An error code therefore
overrides the reporting of the 1long record condition.) The
variable rec_len is set equal to the automatic variable total,
whose value has been maintained by move_to_user to be the total

11=-77 ANST

number of characters placed in the user's buffer. The wvariable
cseg.file_lock 1s set to "O"b and tne procedure returns. The
error and invalid record descriptor exit routines perform the
same functions as described above, with the exception of
incrementing cseg.lrec.reccnt.

INTERNAL PRUCHDURES

Entry: get_reccrd

This procedure makes a logical record available to the
record format routines, either by reading a new block into an I/0
buffer, or by setting the buffer processing variables for the
next record already in a buffer.

if the 1/0 buffer pointer (cseg.lrec.bufP) is nonnull, at

least one record 1is already in the I1/0 buffer. '1h2 variable
remain is set to the number of characters not yet processed, and
the procedure returns. Ir cseg.lrec.buff is null,

tape_ansi_tape_io_$read is called to read a block. The variable
cseg.lrec.bufP is set to point to the I1/0 buffer and
cseg.lrec.nc_buf is set to the number of characters read. If the
call returns a nonzero code, there are two main possibilities.

If the code is error_table_$eof_record, an end-of-file mark
has been read. Either tape_ansi_nl_file_cntl_¢$data_eof or
tape_ansi_file_cntl_¢$data_eof is invoked to determine whether an
end-cf~file mark has been read or the file is continued on

another volumne. If a zero code 1is returned, the file 1is
continued on the next volume. Since tape_ansi_file_cntl_ has
performed all necessary volume switching functions, control is

simply passed back to the tape_ansi_tape_io_$read call. If the
code is nonzero, either no more data exists or an error has
occurred, and control passes to the errcor exit routine.

If tape_ansi_tape_io_$read returns any other nonzero code, a

parity or fatal error has occurred. If the code 1is
error_table_¢$tape_error, the parity error switch (the automatic
variable parity_error) is set to "1"b and the current

iox_$read_record operation is completed. Any other error code
causes control to pass 1immediately to the error exit routine.
(Tne iox_g$control operation "reset_error_lock" <can be used to
permit further 1iox_$read_record calls, if and only if the lock
value is error_table_g$tape_error.)

If the code was zero or error_table_$tape_error, the block
count (cseg.lrec.blkent) is incremented. If cseg.nc_buf exceeds

11=-T7b6 ANST

fd.clklen, cseg.nc_buf is set equal to fd.blklen to eliminate the
unuwanted characters. There are three possibilities if
cseg.nc_buf exceeds fd.blklen. The user can have specified an
incorrect block length, causing data to be lost, the block length
can be specified with the intent of causing the latter portion of
a block to be ignored, or the "extra" characters can have been
appended by the MTS500 tape subsystem. The latter case occurs
when a block whose length is not evenly divisible by 4 1is read,
and the subsystem pads the block to a word boundary with octal
000. This behavior is a result of the inability of the current
tape device interface (tdem_) to process blocks on a
per-character basis, and should no longer occur when tape_ioci_
becomes the device interface.

Since V, VB, VVS, and VBS format blocks contain BDWs (block
descriptor words), the bBLWw block length field is checked against
cseg.nc_buf. If c¢seg.nc_buf is less than the BEDW length value,
control passes to the invalid descriptor error exit. (before
performing this comparison, the BbBDW length field must be
recomposed in the same manner as the KDW length field, described
above.) The variable cseg.nc_buf is set to the BDW length value,
to discard any MTS500 block pad characters not eliminated in the
previous fd.blklen check, and cseg.offset is set to 4 (the length
of the BDw itself) to indicate that the BDW has been processed.
The ~variable remain 1s set to the number of characters available
for processing (cseg.nc_buf - c¢seg.offset), and the procedure
returns. For U, F, and FB format, cseg.offset is set to 0,
remain is set, and the procedure returns.

Entry: process_sw

This procedure is called by the VS and VBS format routine to
validate and process an Sbw. The SLW length value is recomposed
as described above, decremented by 4 (the length of the SDW
itself), and the resulting segment data length 1is stored into
data_len. The variable data_len is checked against the actual
number of characters remaining in the block and the SDW type code
is validated. An inconsistency detected by these checks results
in a nonlocal transfer to the invalid record descriptor error
exit. If the Sbw is valid, cseg.offset is incremented by 4 (the
length of an SDLW) so that the SDW is not processed as part of the
segment's data. The variable req_off is set equal to data_len
and the procedure returns.

11=79 ANST7

tntry: skip_segments

This procedure is called by the VS and VBS format routine to
skip record segments that are not required to satisfy the user's
request (buf_len < total record length). The procedure
get_record is called to obtain a record segment and process_sw is
called to process and validate its SDW. If the type code is that
cf a final segment, read_release is called to position beyond it,
and the procedure returns. Otherwise, read_release is called and
control passes back to the get_record call. This algorithm is
continued until the final segment is encountered and skipped.

Entry: move_to_user

This procedure is called by all four format routines to move
data from the I/0 buffer to the user's buffer. 1If move 1is zero,
no data is to be moved and the procedure returns. Utherwise, a
pointer 1is made to the first character to be moved from the I/0
puffer, and another pointer is made to the location within the
user's tuffer where that character 1is to be placed. If the
encoding mcde (fd.mode) is not EBCDIC, no character conversion
need be performed and the data is simply moved. Otherwise,
ebecdic_to_ascii_ is invoked to translate and move the data. The
automatic variable total is incremented by the value of move, to
maintain a count of the total number of characters noved.

Entry: read_release

This procedure is called to release a 1logical record or
record segment from an 1/0 buffer. If the record is the last (or
only) one in the buffer, the entire buffer is also released. The
variable c¢seg.offset (the current processing offset within the
buffer) is incremented by the value of req_off (the number of
characters processed by the format routine). The value of remain
is calculated by subtracting the new current offset from the
buffer character count (cseg.nc_buf). (The variable remain can
become negative.) If remain 1is 4 or greater, the procedure
returns without releasing the I/0 buffer, because the remaining
characters must be valid data.

If remain is 1less than 4, wusually the I/0 buffer is
exhausted ‘and is to be released by calling
tape_ansi_tape_io_$release_buffer before the procedure returns.
For U format this is always the case, because a U format request
always processes every character (reg_off is set equal to

11-80 ANST7

remain). For V, VB, VVS, and VBVS, this is similarly the case,
because fewer than 4 characters does not even allow for a
4-character BDW. For F and FB format however, the buffer is only
released if the logical record length is greater than the value
of remain. If the logical record length is less than or equal to
remain, the procedure simply returns. This causes the loss of
short records (short record length < record length < 4) in some
unusual, but possible, <cases. Unfortunately, this is the only
way to aveid processing the pad bytes (octal value 000) appended
to blocks that have lengths not evenly divisible by 4.

Entry: tape_ansi_ibm_lrec_io_$write_record

This entry point performs the iox_¢$write_record function for
IbM file sets. :

Usage

del tape_ansi_ibm_lrec_io_$write_record entry (ptr,
ptr, fixed bin (21), fixed bin (35));

call tape_ansi_ibm_lrec_io_$write_record (iocbP,
ubP, buf_len, code);

where:

1. iocbP is a pointer to the IOCB. (Input)

2. ubF is a pointer to the user's buffer. (Input)

3. buf_len is the number of characters to be written.
(Input)

4. code is a standard status code. (OQOutput)

The following is a nonexhaustive list of error_table_ codes
that can be returned.

file_busy file in use for other I1/0 activity; record
nct written.

fatal_error unrecouveratle error occurred; see "Write
Errors" below.

long_record buf_len exceeds the maximum record and/or
block length; the record is not written.

11-861 ANST

eov_on_write no more records can be written on the current
volume. For VS and VBS format, the record
can be partially written; for all other
formats, the record is not written.

tape_error a parity 1/0 error has occurred; see write
trrors below.

WRITE ERRURS

In the case of a fatal or parity error, more records can be
affected than just the particular record being written when ‘the
error code 1s returned. Such an error is detected upon the
writing of a block, and each 1iox_¢$write_record call does not
necessarily cause a block to be written. Hence, a zero status
code does not guarantee that a record has been written at all,
let alone written correctly. FB format blocks always, and VB and
VES blocks can, contain multiple records, so that an error in
writing a block affects every record packed into the block.

In addition, tape_ansi_ does not wait to check the status of
a write operation after the operation has been 1issued. Indeed,
in the time between issuing a write operation and receiving its
status, a number of further write operations can have been
issued. This methed of operation is termed asynchronous
processing and normally is highly satisfactory. 1f an I1/0 error
occurs, however, not only is the erroneocus block not written, but
all blocks queued for writing subsequent to the error block are
not written. &Even in this case it is possible to maintain an
accurate block count, but since the number of records per block
can vary, an accurate record count cannot be maintained. Since
U, F, and V format place only one record per block, the actual
number of records written equals the block count (available by
calling 1iox_$control "file_status" operation). For FB, VB, and
VES format, an indeterminate number of records packed into blocks
subsequent to the error block are not written, and for VS and VBS
format, the record can have been partially written in blocks
prior to the error block.

INTERNAL LOGIC

The cseg pointer is obtained from the I0CB and
cseg.file_lock is checked to be sure that the file is not busy
for other I/0 activity. If it is busy, the procedure immediately
returns the error code error_table_¢$file_busy. Otherwise, a
cleanup handler is established and the file lock is 1locked. If

11-862 ANST

invoked, the <cleanup handler unlocks the file lock and sets the
logical record 1I/0 lock to error_table_g$fatal_error. This step
is necessary because an interrupted logical I/0 operation can
leave the 1I1/0 buffer and its processing variables 1in an
inconsistent state. '

The logical record I/0 lock (cseg.lrec.code) is checked to
ensure that I/0 has not been inhibited due to an unrecoverable
error. If cseg.lrec.code is nonzero, the file lock
(cseg.file_lock) is unlocked and the procedure returns with code
set to the 1logical I/0 lock value. If the file is nonlabeled,
the intrafile position indicator (vl (fl1.fl1X).pos) is checked to
determine whether or not the tape 1is positioned in the data
portion of the file. The first time iox_$write_record is called
subsequent to an opening, the tape is positioned in the file's
header label group. In this case,
tape_ansi_file_cntl_$position_for_output ..is called to write the
header label group tape mark, such action defining the transition
into the data portion of the file. If an error occurs while

writing this tape mark, control passes to the error exit routine.

The tape mark is not written until the first logical record
write <call for the following reason. Volume switching is
performed 1if end-of-tape 1s detected while writing the header
label group. This causes a null file section to be recorded on
the old volume. Yet if the I/0 switch is closed without an
intervening write operation, another null file section is written
on the new volume. By inhibiting the detection of end-of-tape
until the header 1label group tape mark 1is written, and by
delaying writing the tape mark until the first write operation,
volume switching can be avoided 1if no write operations are
issued. The close call causes just a single null file section to
be written on the current volume.

Contrcol then passes to one of the four record format
routines. For U format, buf_len is checked to ensure that it
does not exceed the maximum number of characters that can fit in
a block (fd.blklen). If its value is too large, control passes
to the long record error exit. The procedure get_buf is called
to obtain an I/0 buffer and move (the number of characters to be
moved from the users buffer) is set equal to - buf_len. The
rariaple reg_ouif (tue numver of characters to be written by this
request) is also set equal to buf_len and move_to_buf is called
to move the wuser's data into the I1/0 buffer. The procedure
write_buf is called to write the block, and control passes to the
normal exit routine.

For F and FB format, buf_len is checked to ensure that it
does not exceed the record length (fd.reclen). If it does,
control passes to the 1long record error exit routine. The
procedure get_buf is called to obtain an I1/0 buffer, if
necessary. (For F format, an I1/0 buffer 1is obtained for each
call, because each record requires a new block.) The variable
move is then set equal to buf_len and remain is set to the number

11-83 ' ANS7

of pad characters that must be appended to the wuser's data to

make a complete record (fd.reclen - buf_len). This step is
necessary because fixed-format records must be of identical
lengths. If remain is nonzero, the appropriate number of blanks

are inserted into the 1I/0 buffer. The variable req_off 1is set
equal to fd.reclen because each request processes a complete

record, even if buf_len is less than fd.reclen. The procedure
nove_to_buf is called to move the user's data into the I/0 buffer
immediately before the inserted padding (if any). 1If records are

not blocked (F format), write_buf is called to write the record.
vtherwise, write_buf is not called unless the block contains as
many records as can fit {(cseg.offset = fs.blklen). Control then
passes to the normal exit routine.

for V and Vk format, data_len (the length of the record) is
set to buf_len plus 4 (the 1length of an RDW). The variable
data_len is checked to ensure that it does not exceed fd.reclen.
if it dces, <control passes to the long record error exit. The
procedure get_buf is <called to obtain an I/0 buffer, if
necessary. (An I/0 buffer is always obtained for V format, since
each record requires a new block.) For VB format, it must be
determined if the record to be written can fit into the current
block, or 1if a new block 1s required. If data_len exceeds the
number of remaining characters in the block (fd.blklen -
cseg.offset), write_buf is called to write the current block and
get_buf is called to obtain a new I/0 buffer. Either way, a
pointer is made to the I/0 buffer location where the record's RDW
is to be constructed.

The kDUW location 1s saved in cseg.saveP. Because of the
aforementioned tdem_ - MTS500 block length problems, the 1length
of blocks being written must be evenly divisible by 4 to avoid
cctal (000 padding out to the word boundary. Such padding would
not be reflected in the block's BDW and would cause the block to
he unreadable by an 1BM system. To avoid this problem, the last
record of a V or Vb format block is extended with blanks out to
the word boundary and the BEDW 1is adjusted accordingly. of
ccurse, the RDW for the extended record must be similarly
incremented. Its location is saved for this reason.

The record length (data_len) is decomposed and placed into
the RDW length field. (The decomposition process is the reverse
of the RDW recomposition process described above, done for the
same reason.) The variable cseg.offset is incremented by 4, so
that the RDW is considered when computing the total block length,
and req_off is set equal to buf_len. The variable move 1is also
set equal to buf_len and move_to_buf is called to move the user's
data. If records are not blocked, write_buf is called to write
the record. Otherwise, write_buf is not called unless another
record could not fit in the current block (fd.blklen -
cseg.offset < 4, where 4 is the length of a zero-length record).
Control then passes to the normal exit routine.

11-864 AN5T

For VS and VBS format, buf_len is checked to ensure that it
does not exceed fd.reclen. If it does, control passes to the
longer record error exit. The procedure get_buf is called to
obtain an I/0 buffer, if necessary. (An I1/0 buffer 1is always
obtained for VS format, because each record segment requires a
new block.) The variable left contains the number of characters
stil tc be moved from the user's buffer, and 1is initialized
equal to buf_len. As each record segment 1is written, left 1is
decremented by the number of characters written in that segment.
The variable remain is set to the number of characters remaining
in the current block (fd.blklen - cseg.offset). A pointer is
made to the I/0 buffer location where an SDW is to be
constructed, and :the 1location is saved in cseg.saveP for the
reason described above.

The number of characters that can still be placed 1into the
current block is computed. If left, the (balance of the) user's
request, plus 4 (the length of an SLW) characters is greater than
remain, move is set to as many data characters as will fit
(remain - 4). If left + 4 1is not greater than remain, the
(balance of the) user's request can fit entirely within the
current block. It must then be determined whether or not
sufficient characters would remain in the block to contain a
segment of a subsequent record. If left + 4 is less than or
equal to remain - 5, sufficient room would remain for a 5
character segment (4 character SDW plus 1 data character) of the
next reccrd. In this case, move is set equal +to 1left .and the
(balance of the) user's request is placed into the current block.

If, however, a segment of a subsequent record could not fit
into the current block, the current segment of the current record

is the last segment in the block. JSteps must be taken to ensure
that placing the block segment intc the block does not result in

a block with a length not evenly divisible by 4. Such a block
would be padded with octal 000 out to a word boundary, resulting
in unreadable blocks, as described above. The number of

cnaracters of the segment that would be placed into the last word
cf the block 1is computed. If the word would be filled, move is
set equal to left because no padding occurs. Otherwise, move 1is
set equal to left decremented by the number of characters that
would be placed in the last word. Those characters are written
in a subsequent segment in the next block. The variable left is
then decremented by the value of move to give the amount of data
(if any) to be written in subsequent segments.

The type <code set 1in the 3SDW is dependent upon both the
amount of data still to be written (left), and whether or not the
segment to be written is the first of the record. If no data
from the record has been previously placed into another segment
(first_scan = "1"b) and no data remains to be written in a
subsequent segment (left = C), the type is complete; 1i.e., the
segment contains the entire record. If some data has been placed
into another segment (first_span = "QO"b), and no data remains to
be written, the type is final; 1i.e., the segment is the last of

11-65 ANST

a group of ‘'segments that in toto make up the record. If nc data
from the record has been previously placed into another segment
and more remains to be written in subsequent segments (left =
0), the type is initial; 1i.e., the segment 1is the first of a
group of segments that in toto make up the record. If some data
has been placed into another segment and more remains %o be
written, the type is medial; 1i.e., the segment is one of & group
of three or more segments (but neither the first nor the last)
that in toto make up the record.

The variable data_len, the actual record segment length, is set
equal to move + 4 (to include the SLW), decomposed (as .described
above), and placed into the SDW length field. For DOS files
(cseg.standard = 3), a special <check 1is made for zero-length
record SOCWs. If the SDW length value is 4 (no data), the
high-order bit of the SDW length field must be set to "1"b. The
variable cseg.offset is 1incremented by 5, so that the SDW is
considered when computing the total block 1length. The variable
req_off is set equal to move, and move_to_buf is called to move
the user's data into the I/0 buffer. The variable remain is set
to the number of characters now The variable remaining in the
block (remain - data_len). If record segments are not blocked
(VS format), control passes to write the I/0 buffer. If record
segments are blocked, the I/0 buffer is only written if another
nonzero length record segment could not fit into the block
(remain < 5).

If the I/C buffer is to be written, write_buf is called to
write 1it, get_buf is called to obtain another, and remain is set
to the number of characters available in the new buffer
(fd.tlklen - cseg.offset). Whether or not the I/0 buffer was
written, left is checked to determine whether or not the user's
request has been satisfied. If left is nonzero, control passes
back to make another SDW pointer for the next record segment; if
left is zero, control passes to the normal exit routine.

The normal exit routine increments the logical record count
(cseg.lrec.reccent) and sets the return code and cseg.lrec.code to
the code returned by the last 1/0 operation (normally zero). If
csw (the tape_ansi_ibm_lrec_io_$close entry switch) is "1i"p,
control then passes to that entry's exit routine. Otherwise, the
file lock 1s unlocked and the procedure returns. (The variable
csw is initialized to "O"b upon procedure block activation, but
is set to "1"b by the tape_ansi_ibm_lrec_io_$close entry.)

The 1long record and error exits perform similar functions,
with the exception of incrementing c¢seg.lrec.recent.

11-86 ANS7

INTERNAL PROCEDURES

Entry: get_buf

This procedure is called to obtain an I/0 buffer, if one is
needed. If the I1/0 buffer pointer (cseg.lrec.bufP) is nonnull, a
buffer 1is available and the procedure returns. If it is null,
tape_ansi_tape_1io_¢$get_buffer is called to make an I/0 buffer
available. If the record format is V, Vb, VVS, or VBVS, the
current offset within the buffer (cseg.offset) is set to 4, to
reserve space for the BDW. For all other formats, it is set to
0.

Entry: move_to_buf

This procedure is called to move data from the user's buffer
to the I/0 buffer. If move is zero, there 1is no data to be

moved. In this case, c¢seg.offset 1s incremented by the value of
req_off (the number of characters processed by the request) and
the procedure returns. (The variable c¢seg.offset must be

incremented to allow for the case of zero-length records in V,
VB, VVS, and VBS format. Such records consist of RDWs or SDWs
alone.) If data is to be moved, pointers are made to the offset
within the I/0 buffer where the data is to be placed, and to the
offset in the user's buffer from which the data is to be taken.
1If the encoding mode (fd.mode) is ASCII, the data is moved. 1If
the mode is EBCDIC, ascii_to_ebedic_ is called to translate and
move the data. The variable total is incremented by the value of
move, to maintain a count of the total number of characters
moved. The variable cseg.offset is incremented by req_off, and
the procedure returns.

11=-67 ANST7

Entry: write_buf

This procedure writes a block, appending block pad
characters if necessary. If cseg.offset is less than 20 and the
fcrmat 1is neither F nor FB, the block must be padded. This step

is necessary for two reasons: 1) blocks of fewer than 18
characters must not be written, and 2) blocks to be written must
consist of an integral number of words (4 characters/word). The

number of pad characters is computed by subtracting cseg.offset
(the number of characters presently in the block) from 20, and
control passes to perform the padding.

If cseg.offset is greater than or equal to 20 but not evenly
aivisible by four, the block must still be padded to satisfy
requirement 2) above. Padding for both cases 1is performed by
inserting the appropriate number of pad characters into the I1/0
buffer immediately following 1its current contents, and then
incrementing cseg.offset to reflect the new, adjusted block
length. 1In addition, for V, Vb, VS, and VBS format, the BDW and
last HKDW in the block must be incremented to reflect the addition
cf the padding.

The entry point tape_ansi_tape_io_$write is called to write
the ©block. If the return code 1is =zero, the block count
(cseg.lrec.blkcent) 1is incremented and the procedure returns. If
the return code is nonzero, there are two major possibilities.
if the code 1is not error_table_$eov_on_write, an error has
occurred, and the block count is decremented 1if more than one
block was not Wwritten (cseg.blkent = cseg.blkent -
cseg.soft_status.nbuf + 1). (The suspended buffer count 1is
currently obtained directly from the «c¢seg. Eventually, when
tape_ioi_ becomes the device interface, a tape_ioi_ status entry
will be called to obtain this value.) The logical record count
is invalidated by setting it negative, and control passes to the
error exit.

If the code is error_table_$eov_on_write, then end-of-tape
has been detected. This is more in the nature of an event than
an error. The variable cseg.lrec.blkent is incremented, because
the block has been successfully written. If c¢csw is "1"b (i.e.,
the procedure was entered at the $close entry point), the
procedure simply returns. This is done so that EOT detection at
close time does not force volume switching, with the resultant

recording of a null file section on another volume. If c¢csw 1is
"G"Db, either tape_ansi_nl_file_cntl_g$data_eot or
tape_ansi_file_cntl_¢data_eot is called to switech volumes. If

the returned code is zero, volume switching has occurred and the
procedure returns. 1If the code is nonzero, the volume switch did
not take place. This can be due either to an error or to the
lack of another volume. If the format is VS or VBS and the
entire record has not yet been written (left "= 0), control

passes to the error exit. If the format is other than VS or VBS,
or if VS or VBS and the entire record has been written (left =

11-88 ' ANS5T7

0), this iox_$write_record operation is not 1in error. Further
operations must be inhibited nevertheless, because there is no
more room on the volume. To this end, c¢seg.lrec.code (the
logical I/0 1lock) 1is set to the error code value. The return
code is then set to 0, because this operation is successful, and
control passes to unlock the file lock and return,

Entry: tape_ansi_ibm_lrec_io_$close

This entry point is called by tape_ansi_file_cntl_g$close to
terminate logical record 1I/0G in a consistent manner at close
time.

Usage

del tape_ansi_ibm_lrec_io_$close entry (ptr,
fixed bin (35));

call tape_ansi_ibm_lrec_io_$close (acP, code);

where:
1. ack is a pointer to the cseg. (Input)
2. code is a standard status code. (Output)

INTERNAL LOGIC

Tne <cseg pointer 1is copied from the argument list and the
close entry switch (csw) is set to "1"b, This switch governs the
action taken if write_buf must be called and either an error or
EOT occurs. If the I/0 switch.is open for sequential_input, and
the I/0 buffer pointer is null, control passes to the buffer
management reset exit to perform that function and return. If
the pointer is nonnull, control passes to the buffer release exit
to perform that function, reset the buffer management strategy,
and return.

If the I/0 switch is open for sequential_output and there is
no current I1/0 buffer, ccntrol passes to the buffer management
reset exit. Even if an I1/0 buffer exists, it may not contain any
valid data. If cseg.offset is zero, it surely does not, and if
cseg.offset 1is 4 and the record format is V, VB, VS, or VBS, the
buffer only contains a BLW. In either case, control passes to
the buffer management reset exit. Utherwise, the buffer contains

11-89 ANST

data that must be written. The procedure write_buf is called,
and control passes to the buffer release exit,

The buffer release exit calls
tape_ansi_tape_io_$release_buffer to release the current I/0
buffer, calls tape_ansi_tape_io_¢$close to reset the buffer
managemnent strategy, and returns. The buffer management reset
exit calls tape_ansi_tape_io_$close and returns.

MGDULE: tape_ansi_read_length_

This module performs the iox_$read_length function. It
reads a record, returns 1its length, and saves the record in a
buffer for future use by an iox_$read_record call.

Usage

dcl tape_ansi_read_length_ entry (ptr, fixed bin (21),
fixed bin (35));

call tape_ansi_read_length_ (iocbP, reclen, code);

where:

1. iocbP is a pointer to the IOCB. (Input)

2. reclen is the 1length of the next record, in
characters. (Output)

3. code is a standard status code. (Output)

If code 1is error_table_g$tape_error, the record length is
returned but can be in error. If code 1is any other nonzero
value, the record length is undefined.

Internal Logic

The cseg pointer is obtained from the IOCB and cseg.invalid
is checked to determine if the cseg has an internal
inconsistency. If it does, the procedure immediately returns the
error code error_table_$invalid_cseg. The variable
cseg.file_lock is checked to ensure that the file is not in use
for other I/0 activity. If it is in use, the procedure
immediately returns the error code error_table_¢$file_busy.

11-90 ANST

Otherwise, a cleanup handler 1s established and the file is
locked. If invoked, the cleanup handler unlocks the file lock
and sets the logical record I/0 1lock (cseg.lrec.code) to
error_table_$fatal_error. This action 1is necessary because an
interrupted read_length operation can leave the 1logical record
processing variables in an inconsistent state.

The read_length buffer pointer (cseg.rlP) is checked to
determine whether or not a read_length buffer exists. If the
pointer is null, one does not. The external procedure
hes_$make_seg is invoked to make a segment in the process
directory. The entry name of the segment is formed as follows:

module_name || first_volname || "_.rl"

where module_name is the name of the I/0 module (tape_ansi_ or
tape_ibm_) and first_volname is the volume name of the first (or
only) volume of the volume set. If an error occurs while making
the segment, ~the procedure returns the code
error_table_¢$fatal_error. If no error occurs, the maximum buffer
length is computed and saved in the internal static variable
nc_wanted. When reading a record to determine its length, the
procedure must be sure to request every possible character in the
record, and no record can contain more than nc_wanted characters.
Control then passes to read a record.

If cseg.rlP 1s nonnull, the read_length buffer already
exists. The buffer character count (cseg.rlN) is checked to
determine whether or not the buffer already contains a record.
This is possible if two iox_¢$read_length calls are issued without
an intervening iox_$read_record call; the second
iox_$read_length call references the same record as the first.
If c¢seg.rlN 1s not -equal to -1, the buffer already contains a
record. The return code is set to zero, reclen is set equal to
cseg.rlN, the file 1s unlocked, and the procedure returns.

If cseg.rlhN is =1, then a record must be read into the
buffer. To do so, the file must first be unlocked, and
tape_ansi_lrec_io_$read_record or
tape_ansi_ibm_lrec_io_$read_record must be <called to read the
record. The call requests nc_wanted characters. The variable
cseg.rlN is set to the number actually read. The file 1is then
locked once again. If the returned code 1is either zero or
error_table_$tape_error, the logical record count
(cseg.lrec.reccent) is decremented. This is done because although
the record count was incremented by the read_record call, the
record has not actually been read (by the wuser). The variable
reclen 1is set to «c¢seg.rlN, the file 1is unlocked, and the
procedure returns.

If the returned code is any other wvalue, the read_record
operation has failed. The variable reclen 1is set to zero,
cseg.rlN is set to -1 (to ensure that the buffer contents are
invalidated), the file is unlocked, and the procedure returns.

11-91 ANS57

MODULE: tape_ansi_position_

This module implements - the iox_¢$position function.
Positioning to beginning-of-file, end-of-file, and forward a
specified number of records are supported. Positioning backwards
a specified number of records is not supported.

Usage

del tape_ansi_position_ entry (ptr, fixed bin, fixed bin,
fixed bin (35));

call tape_ansi_position_ (iocbP, type, n, code);
where:
1. iocbP is a pointer to the IOCB. (Input)

2. type specifies the type of positioning to be
performed. The following types are
supported:

-1 beginning-of-file

0 forward n records (see n below)
1 end-of-file

(Input)

3. n specifies the number of records to be
positioned over, if type = 0. If type "= 0,
n is ignored. The value of n must be > O.
If n = 0, no action is performed. (Input)

y, code is a standard status code. (Qutput)

The following is a nonexhaustive list of error_table_ codes
that can be returned.

invalid_cseg the control segment is invalid; the
operation was not performed.

file_busy the file is already in wuse for other I/0
activity; the operation was not performed.

fatal_error an unrecoverable I/0 error occurred; the

operation may or may not have been completed.
The I/0 switch may or may not have been
closed.

tape_error a parity I/0 error occurred. If the 1I/0
switch 1is open, the operation was completed.
If not, the operation may not have been
completed.

11=-92 ANST

end_of_info logical end-of-file encountered before
completing a position forward n records

request. The file is positioned at
end-of-file.
bad_arg either type or n is invalid; the operation

was not performed.

Internal Logic

The c¢seg pointer is extracted from the IOCB. The variable
cseg.invalid is checked to determine whether or not the control
segment is valid. If it 1is not wvalid, the error code
error_table_¢$invalid_cseg is returned. Otherwise, the file 1lock
(cseg.file_lock) is .checked to determine whether the file is
already busy for other I/0 activity. If it 1is busy, the
procedure returns the error code error_table_$file_busy.
Utherwise, a cleanup handler is established and cseg.file_lock is
set. If invoked, the cleanup handler sets the logical record I/0
lock to error_table_¢$fatal_error and unlocks the file lock. This
step is necessary because an interrupted positioning operation
can leave the 1logical record processing variables in an
inconsistent state.

The type argument is validated to ensure that it falls
within the range -1 £ type £ +1. If it does, control passes to
perform the appropriate positioning operation. If it does not,
the return code is set to error_table_¢$bad_arg and control passes
to the exit routine,.

Position to beginhing-of-file

Either tape_ansi_nl_file_cntl_¢$beginning_of_file or
tape_ansi_file_cntl_¢$beginning_of_file is called to perform the
actual positioning operation. If the returned code is nonzero,
the logical record I/0 lock is set to that value. Control then
passes to the exit routine.

Position to end-of-file

Either tape_ansi_nl_file_cntl_$end_of_file or
tape_ansi_file_cntl_$end_of_file is called to perform the actual
positioning operation. If the returned code is nonzero, the
logical record I/0 lock is set to that value. Control then
passes to the exit routine.

Position forward n records

The return code is initialized to zero because no procedure
calls can be made. The automatic variable tape_error is

11-93 ANST

initialized to "0"b. This variable is used to determine whether
or not a parity error has occurred in the course of positioning.

If n = 0, no records are to be skipped and control passes to
the exit routine. because: each block can contain an
indeterminate number of records, 1t would be necessary to
maintain a logical record map for every block to implement
positioning backwards. Since the cost of such an implementation

is excessive, n < 0 is not supported. If n < 0, the return code
is set to error_table_$bad_arg and control passes to the exit
routine. If n > 0, the argument is copied into the automatic

variable i1 so that the record count can be decremented without
affecting the caller's parameter.

The read_length buffer character count (cseg.rlN) is checked
to determine whether or not the buffer contains a record. If it
does (cseg.rlN "= -1), the buffer is "emptied" (cseg.rlN = 1)
and the record count is decremented. These actions are logically
equivalent to skipping 1 record. If there was no record in the
read length buffer or if additional records must be skipped,

positioning involves physical tape motion.

Records are skipped by invoking either
tape_ansi_lrec_io_$read_record or
tape_ansi_ibm_lrec_io_$read_record. The variable cseg.file_lock
is set to "0"b so that the logical I/0 procedure does not find
the file 1locked wupon invocation. The appropriate procedure is
called with a null user buffer pointer and a zero buffer length
so that a logical record 1is processed but»no information is
returned. If the returned code is either - zero or
error_table_$long_record, the read is considered to have
completed normally. (Since the length of the record read is
almost always greater than the buffer length (0), code is almost
always error_table_$long_record. In this case, code is reset to
zero and ignored. If the record read has zero length, code is
zero.,) If the returned code is error_table_$tape_error, a parity
error has occurred. This error does not absolutely preclude
further reading. In order to continue, the logical I/0 lock is
unlocked (cseg.lrec.code = 0) and tape_error is set to "1"b so
that the procedure eventually returns error_table_g$tape_error to
its caller. If the returned code is any . other value
(error_table_¢$end_of_info, error_table_¢$fatal_error, etc.), no
further positioning is possible and control passes to the exit
routine. If processing is to continue, the file lock is locked
again and the above algorithm is repeated until the positioning
request has been satisfied.

Once the request is complete, tape_error is checked to
determine whether a parity error has occurred while processing.
If so, cseg.code is set to error_table_$tape_error, relocking the
logical record I/0 1lock, and the return code is set to
error_table_$tape_error.

11-94 AN5T

The exit routine unlocks the file lock (cseg.file_lock) and
returns whatever code has been set in a previous step.

MODULE: tape_ansi_mount_cntl_

This procedure performs all the volume and device management
functions of the I/0 module. Currently coded to use the tdem_
interface, it must eventually be recoded to use rcp_ and
tape_ioi_. The internal 1logic descriptions are therefore
confined to describing the functions performed and ignoring the
particulars of implementation.

Entry: tape_ansi_mount_cntl_$mount

This entry point 1is called to assign a device, mount a
volume on that device, and read the volume's VOL1 label (if any).

Usage

decl tape_ansi_mount_cntl_$mount entry (ptr, fixed bin,
fixed bin (35));

call tape_ansi_mount_cntl_$mount (cP, v1X, code);

where:

1. cP is a pointer to the control segment. (Input)

2. vliX is the index of the volume 1link associated
with the volume to be mounted. (Input)

3 code is a standard status code. (OQutput)

If code is nonzero, the volume is not mounted and no device
is assigned.

11-95 ANST

INTERNAL LUGIC

A cleanup handler is established that calls the internal
procedure cleaner. If invoked, cleaner demounts the volume (if
mounted) and unassigns the device (if assigned). After the
cleanup handler is established, a device is assigned and the
active drive count (cseg.nactive) is incremented. The internal
procedure mount_request is called to issue a mount message to the
user, mount the desired volume (specified in the volume link),
anc issue ancther message when the mount 1is complete. The
internal procedure VOLI1_check 1is called to validate the VUL
label against its expected characteristics and set the VOLI1
status variable (vl.write_VOUL1) accordingly. The volume link is
filled with the assignment, mount, and VOL1 validation data, and
the procedure returns. If an error occurs during any of the
above steps, control passes to the error exit routine.

The error exit routine 1invokes the internal procedure

cleaner, sets the return code to error_table_$bad_mount_request,
and returns.

Entry: tape_ansi_mount_cntl_$remount

This entry point is called to demount a volume from an
assigned device and mount a different volume on the same device.

Usage

dcl tape_ansi_mount_cntl_$remount entry (ptr, fixed bin,
fixed bin, fixed bin (35));

call tape_ansi_mount_cntl_$remount (cP, down_vlX,

v1lX, code);

where:

1. cF is a pointer to the control segment. (Input)

2. down_vl1X is the index of the volume 1link associated
with the volume to be demounted. (Input)

3. v1X is the index of the volume 1link asscciated
with the volume to be mounted. (Input)

y, code is a standard status code. (Output)

If code 1is nonzero, the requested volume has not been
mounted but the volume to be demounted may have been demounted
and its device unassigned.

11-906 ANS57

INTERNAL LOGIC

A cleanup handler 1is established to «c¢all the internal
procedure cleaner, described above. The current file position
(vl.cf1lX) of +the volume to be demounted is invalidated and the
internal procedure unload is called to demount the volume. The
volume link's device identifier (vl.rcp_id) is invalidated and
control passes to call mount_request, continuing as described
above. ‘

Entry: tape_ansi_mount_cntl_$insert_rings

This entry point is called to demount all mounted volumes,
request that write permit rings be 1inserted, and mount the
volunes again. The write ring switch (cseg.write_ring) is set to
"1"b, indicating that all volumes are to be mounted with write
permit rings. ‘

Usage

del tape_ansi_mount_cntl_$insert_rings entry (ptr,
fixed bin (35));

call tape_ansi_mount_cntl_g$insert_rings (cP, code);

Entry: tape_ansi_mount_cntl_$write_protect

This entry point is called to issue a hardware file protect

order to every assigned device. The write protect switch
(cseg.protect) 1is set to "I1"b, 1indicating that writing is
inhibited.

Usage

del tape_ansi_mount_cntl_$write_protect entry (ptr,
fixed bin (35));

call tape_ansi_mount_cntl_gwrite_protect (cP, code);

11-97 ANST

Entry: tape_ansi_mount_cntl_$write_permit

This entry point is called to issue a hardware file permit
order to every assigned device. The write protect switch is set
tc "0"b, indicating that writing is not inhibited.

Usage

dcl tape_ansi_mount_cntl_$write_permit entry (ptr,
tixed tin (35));

call tape_ansi_mount_cntl_$write_permit (cP, code);

Entry: tape_ansi_mount_cntl_g$free

This entry point is called to demount a volume and unassign
its device.

Usage

del tape_ansi_mount_cntl_¢$free entry (ptr, fixed bin,
fixed bin (35));

call tape_ansi_mount_cntl_¢$free (cP, v1X, code);

where:

1. cP is a pointer to the control segment. (Input)

2. vliX is the index of the volume 1link associated
with the volume to be demounted, and whose
device is to be unassigned. (Input)

3. code is a standard status code. (Output)

If code is nonzero, the volume may not have been demounted
and the device may not have been unassigned,

Internal Logic

A cleanup handler 1is established, as described above, and
the current file position (vl.cflX) is invalidated. The volume
is then demounted and its device unassigned. The active drive
count (cseg.nactive) is decremented, the volume 1link's device
identifier (vl.rcp_id) is invalidated, and the procedure returns.

11-98 ANS5T

If an error occurs during any of the above steps, control passes
to the error exit routine.

Internal Procedures

The only internal procedure described is VOL1_check. The
others have been functionally described in the above text and are
highly dependent in their implementation wupon the tdem_
interface.

Entry: VOL1_check

This internal procedure validates the VOL1 label (if any) of
a newly mounted volume and sets the VOL1 status variable
(vl.write_VOL1) accordingly. This variable takes the following
values: .

0 the VOL1 label is correct. For an ANSI file
set, this means that the first block is an
ANSI VOL1 label. For an IBM file set, this
means that the first block is an IBM SL VOL1
label. If a density has been specified or
inferred (cseg.density "= -1), the VOL1 label
density meets the specification. In
addition, the recorded volume identifier
matches the expected volume identifier.

1 the tape is blank; i.e., the first read
operation detected 25 feet of blank tape and
returned blank-tape-on-read status.

the first block is unreadable. Either the
volume 1s recorded at an unreadable density,
or with the wrong number of tracks, or the
tape is defective, or the hardware is
malfunctioning, etc.

Ny

3 ‘ the first block is not a VOL1 label. (An IBM

VOL1 label is not treated as such 1in the
context of an ANSI file set.)

4 the first block is a valid VOL1 1label, but

the recorded volume identifier does not match
the expected volume identifier.

11-96 ANST

5 the VOL1 label is correct in all respects but
density. The recorded density does not meet
the specified or inferred density
(cseg.density).

Currently, this procedure operates independently of the
(eventual) rcp_ volume registration mechanism. It must

eventually be modified to work in accordance with that mechanism,
The majority of its checking functions will be performed by rcp_
itself.

MUDULE: tape_ansi_tape_io_

This procedure performs the actual tape operations required
by the I/0 module. Currently, the procedure is an interface to
tdem_. When tape_ioi_ is implemented, the 1I/0 module can be
recoded to call tape_ioi_ directly, or else this procedure should
be rewritten to interface to tape_ioi_. The following
documentation provides only a functional description of each
entry point, since the 1implementation 1is entirely tdem_
dependent.

Entry: tape_ansi_tape_io_g$attach

This entry point is called to 1initialize the tdem_ tseg
contained in the control segment. Currently, it is called only
once at initial attach time, before a device has been attached.
Eventually, it should perform the tape_ioi_$initialize function
and be called (multiply) at device assignment time.

Usage
del tape_ansi_tape_io_$attach entry (ptr);
call tape_ansi_tape_1io_$attach (cP);

where cP is a pointer to the control segment. (Input) (Input)

11-100 ANST

Entry: tape_ansi_tape_io_$open

This entry point is called at logical record I/0 open time
(lrec_open internal procedure in tape_ansi_file_cntl_ and
tape_ansi_nl_file_cntl_) to initialize the tseg for asynchronous
I/0. Eventually, it should call tape_ioi_ to set buffer sizes,
I/0 modes, etc.

Usage

del tape_ansi_tape_io_$open entry (ptr);
call tape_ansi_tape_io_g$open (cP);

where cP is a pointer to the control segment. (Input)

Entry: tape_ansi_tape_io_$close

This entry point is called at logical record 1I/0 close time
(by tape_ansi_lrec_io_3$close or tape_ansi_ibm_lrec_io_$close) to
synchronize the tape,.backspacing if necessary in the read case,
writing the remaining buffers in the write case. '

Usage
del tape_ansi_tape_io_$close entry (ptr, fixed bin (35));

call tape_ansi_tape_io_$close (cP, code);

where:
1. cPk . is a pointer to the control segment. (Input)
2. code is a standard status code. (Output)

The value of code can be either zero or
error_table_¢$fatal_error. (EQT detection during write

synchronization is ignored.)

Entry: tape_ansi_tape_io_$get_buffer

This entry point is called to obtain a pointer to an 1I/0
buffer that will subsequently be written.

N

11-101 ANST

Usage

dcl tape_ansi_tape_io_$get_buffer entry (ptr, ptr,
fixed bin (35));

call tape_ansi_tape_io_¢$get_buffer (cP, bP, code);

where:
1. cP is a pointer to the control segment. (Input)
Z. bF is a pointer to the I/0 buffer. (Qutput)
3. code is a standard status éode. (Output)
The value of code can be either zero or

error_table_g$fatal_error. In the latter case, bP is null.

Entry: tape_ansi_tape_io_$release_buffer

This entry point is called to release an 1/0 buffer once it
is no 1longer needed; i.e., subsequent to a read operation or
after a get_buffer call if no write is to be issued.

Usage

dcl tape_ansi_tape_io_$release_buffer entry (ptr, ptr,
fixed bin (35));

call tape_ansi_tape_io_$release_buffer (cF, bP, code);

where:
1. cP is a pointer to the control segment. (Input)
2. bP is a pointer to the 1I/0 buffer to be
released. (Input)
3. code is a standardvstatus code. (Output)
The value of code can be either zero or

error_table_g$fatal_error.

11-102 ANST

Entry: tape_ansi_tape_io_$read

This entry point is called to read one block in asynchronous

mede.
Usage
acl tape_ansi_tape_io $read entry (ptr, ptr, fixed bin,
fixed bin (35));
call tape_ansi_tape_io_$read (cP, bP, ccount, code);
where:
1. cP is a pointer to the control segment. (Input)
2. bP is a pointer to the I/0 buffer containing the
‘ block. - (Output)
3. ccount is thé number of characters read. (Output)
4, code is a standard status code. (Qutput)

If code 1is zero, the block 'was read correctly. The
fecllowing error_table_ ccdes can be returned:

eof_record an end-of-file mark was read; bF is null and
' ccount is 0.

blank_tape 25 feet of blank tape read; bP is null and
, ccount is 0.

tape_error parity error detected; a block was read.

fatal_error unrecoverable program or 1/0 error; bP 1is

null and ccount is 0.
Entry: tape_ansi_tape_io_$sync_read

This entry point 1is called tc read a block in synchronous
mode. The block is read into a spe01al synchronous I/0 buffer
p01nted to by cseg.syncP.

Usage

del tape_ansi_tape;io;$sync_read entry (ptr, fixed bin,
fixed bin (35));

call tape_ansi_tape_io_$sync_read (cP, ccount, code);

11-103 ANST

where:

1. cF is a pointer to the control segment. (Input)
2. ccount is the number of characters read. (OQutput)
3. code is a standard status code. (QOutput)

If code 1is 2zero, the read was successful. The following
error_table_ codes <can be returned: eof_record, blank_tape,
tape_error, and fatal_error. If code is nonzero, ccount is zero.

Entry: tape_ansi_tdpe_io_$sync_write

This entry point is called to write a block in synchronous
mode. .The block is written from a special synchronous I1I/0 buffer
pointed to by cseg.syncP.

Usage

del tape_ansi_tape_io_$sync_write entry (ptr, ccount,
fixed bin (35)); '

call tape_ansi_tape_io_$sync_write (cP, ccount, code);

where:

1. cP is a pointer to the control segment. (Input)

2. ccount is the number of characters to be written.
(Input)

3. code is a standard status code. (Output)

If code 1is =zero, the write was successful. The following
error_table_ codes can be returned:

eov_on_write end-of-tape was detected; the block was
written correctly.

tape_error a parity error occurred; the block was not
written or was written incorrectly.
fatal_error an unrecoverable program or I/0 error

occurred; the block was not written.

11-1G64 ANST

Entry: tape_ansi_tape_io_g$write
This entry point is called to write a block in asynchronous
mode. _

Usage

dcl tape_ansi_tape_io_$write entry (ptr, ptr, fixed bin,
fixed bin (35)); ‘

call tape_ansi_tape_io_$write (cP, bP, ccount, code);

where:

1. ck is a pointer to the control segment. (Input)

2. bF is a pointer to the I/0 buffer to be written.
(Input)

3. ccount is the number of characters to be written.
(Input)

4. code is a standard status code.

If code 1s zero, the block was written correctly. The
following error_table_ codes can be returned:

)

eov_on_write end-of-tape was detected; the block was
written correctly.

tape_eﬁror a parity error occurred; the block was not
written.

fatal_error an unrecoverable program or I/0 error
occurred; the block was not written or was

written incorrectly.

kntry: tape_ansi_tape_io_gorder

This entry point 1is called to 1issue an order operation. The
following orders can be issued:

bsf packspace file

bsr backspace record

ers erase

fsf forward space file
fsr forward space record
rgs request status

rss reset status

11-105 ANST

rew rewind

run rewind and unload

gof write end-of-file mark

pro set file protect

per set file permit

san set density (qualified further)
Usage

del tape_ansi_tape_io_$order entry (ptr, char (3),
tixed bin, fixed bin (35));

call tape_ansi_tape_io_$order (cP, order, g, code);

where:

1. ck * is a pointer to the control segment. (Input)

2. order is the order to be performed, as listed
above. (Input)

3. q is the order qualifier. The value of q 1is
ignored wunless the order is "sdn". In this
case, q can be:

0 200 bpi
1 556 bpi
2 800 bpi
3 1600 bpi (Input)

4, code is a standard status code. (OQOutput)

If code is zero, the order was performed correctly. The

following error_table_ codes can be returned:

fatal_error possible for all orders; an unrecoverable
program or I1/0 error occurred. The order may
or may not have been performed.

positioned_on_bot possible for bsf and bsr only; the tape
is/was positioned at beginning-of-tape. The
order may or may not have been performed.

eov_on_write possible for ers and eof only; end-of-tape
detected. The order was performed correctly.

eof_record possible for fsr and bsr only; the order
spaced over an end-of-file mark.

tape_error possible for all orders; an I/0 error
occurred. The order may or may not have been
performed.

11-106 ANST

MODULE: tape_ansi_interpret_status_

This module is called by tape_ansi_tape_io_ to interpret the
IOM status bits. It generates an array of error_table_ status
codes. When tape_ioi_ becomes the device I/0 interface, this
module will no longer be needed.

Usage

del tape_ansi_interpret_status_ entry (ptr);
call tape_ansi_interpret_status_ (hP);
where:

1. hP : is a pointer to a hardware status structure.
(Input)

The hardware status structure is declared as follows:

del 1 hdw_status based (hP),
2 iom_bits bit (72) aligned, /% IOM status bits #/
2 no_minor fixed bin, /* number of minor codes ¥/
2 major fixed bin (35), /* major status code ¥/
2 minor (10) fixed bin (35); /* minor status codes ¥/

Internal Logic

The procedure is passed the structure with
hdw_status.iom_bits set to the ICOM status to be interpreted. The
variable hdw_status.no_minor is set to the number of minor status
codes, the major status code is placed in hdw_status.major, and
the hdw_status.minor array 1is filled with the minor status

code(s).

MODULE: tape_ansi_parse_options_

This module is called by tape_ansi_attach_ to validate an
iox_ attach description.

Usage

del tape_ansi_parse_options_ entry (ptr, (*) char (%)
varying, char (32) varying, fixed bin (35));

call tape_ansi_parse_options_ (taoP, options, error, code);

11-107 ANST7

where:

1. taokF is a peinter to the attach options structure
(tao., as declared by
tape_attach_options.incl.pll1. (Input)

z. options is an array of attach description lexemes, as
parsed by iox_. (Input)

3. error is a diagnostic message. It is null if code
is zero; it can be nonnull if code is

nonzero. (Output)

4, code is a standard status code. If code 1is
nonzero, the attach description is invalid.
(Output)

Internal Logic

The variables error and code are initialized to "" and zero,
respectively. 1If the number of elements in the options array
(tao.noptions) 1is zero, the procedure immediately returns the
error code error_table_g$noarg because the attach description
cannot be null,

Processing begins with the volume list, which is the first
section of the attach description. The array index 1 1is
initialized to 1. ‘The variable hyphen_ok 1is set to "0"b to
indicate that the first options array element should be a volume
name and therefore should not begin with a hyphen. The element
is tested to determine if it is "-volume" or "-vol", either of
which indicates that the next element is a volume name that may
or may not begin with a hyphen. If the element is "-volume" or
"-vol", hyphen_ok 1is set to "1"b and no_next is invoked to
determine whether or not the next element exists. If the next
element does not exist, the procedure returns the error code set
by no_next because the -volume option requires a following volume
name. If the next element ex1sts, no_next has incremented the
array index to access 1it.

The next element 1is tested to determine whether or not it
begins with a hyphen. If it does not, hyphen_ok is set to "0"b
(whether or not it was previously "1"b) and control passes to
validate the element as a volume name. If the element begins
with a hyphen, the value of hyphen_ok is tested. If hyphen_ok =
"O"b, the element is assumed to be an attach option and control
passes to the attach option validation code. (The first array
element can not be an attach option, but must be either -~volume,
-vol, or a volume name.) If hyphen_ok = "1"b, hyphen_ok is reset
to "0"b and control passes to validate the element as a volume
name.

11-106 ANST

The function vname is invoked to validate and normalize the
volume name. If the element 1is not a valid volume name, the
procedure returns error_table_g$bad_tapeid. If the volume limit
is not exceeded, the volume count is incremented and the volume
name is placed into the volume name array (tao.volname). If the
options array 1is not exhausted, the next element is tested to
determine whether or not it is "-comment" or "-com". :

If it is either, no_next is invoked to determine whether or
not the next element (the comment text) exists. The length of
the comment text is validated and the text is saved in the mount
time comment array (tao.comment). Whether or not a comment was
processed, control passes to test for a -volume or -vol element,
as described above. This algorithm is repeated until either an
attach option is encountered or the options array 1is exhausted.

The attach options are processed by comparing them against a
list of valid options and transferring control to the appropriate
option processing routines. The actions performed by these
routines are best described by the PL/I code itself. Each
routine sets a tao structure member to reflect either the
appearance of a particular option or its associated value.

Internal Procedures

Entry: no_next

This function is called to determine whether or not the
options array contains another element when one is required (For
example, -block requires a subsequent element, the block length.)
If the current array index plus 1 is greater than the index of
the last element, another element does not exist. In this case,
error . (the diagnostic message) 1s set equal to the current
element (the option requiring the missing element), code is set
to error_table_$nodescr, and the procedure returns "1"b. If the
next element exists, the array 1index 1is incremented and the
procedure returns "Q"b,

11-109 ANST

Entry: vname

This function is called to validate and normalize a volune
name. If the volume name is longer than six characters, it is
invalid. 1In this case, the function returns a null string and
the value "0"b. If the length is exactly six, the volume name is
valid and does not require normalization. 1In this case, the
function returns the original volume name and the value "1"b, If
the volume name is shorter than six chgracters, 1t must be
normalized. If the name is entirely numeric, it is normalized by
padding on- the 1left with =zeros to length six. If it is not
entirely numeric, it is normalized by padding on the right with
blanks to 1length six. The function then returns the normalized
volume name and the value "1"b.

MODULE: tape_ansi_control_

This module implements the iox_$control function.

Usage

dcl tape_ansi_control_ entry (ptr, char (*), ptr,
fixed bin (35));

call tape_ansi_control_ (iocbP, order, infoP, code);

where:

1. iocbP is a pointer to the IOCB. (Input)

2. order is the control order to be performed.
(Input)

3. infoP is a pointer to the information structure for
a particular order, if required, (Input)

kL, code is a standard status code. (Output)

The following is a nonexhaustive list of error_table_ codes

returned:

not_open the requested order could not be performed
because the I/0 switch is not open.

bad_arg the requested order requires a nonnull

information pointer, or the information
pointer points to. an invalid information
structure.

11-110 AN5T

no_operation the requested order is not implemented.

action_not_performed :
the requested order could not be performed.
The state of the I/0 module (i.e., opening
mode, lock value, etec.) did not meet an
order-specific criterion.

Internal Logic

The requested order 1is compared against an array of
implemented orders (order_list.name). If no match is found, the
procedure returns the error ' code error_table_$no_operation.
Otherwise, order_list.must_be_open is checked to determine
whether or not the I/0 switch must be open. If it must be open
and it is not, the procedure returns error_table_¢$not_open. The
variable order_list.non_null_ptr is tested to determine whether
or not the order requires an information structure. If it does
and infoP is null the procedure returns error_table_$bad_arg.

-If both tests succeed, the c¢seg pointer 1is extracted from
the IOCB and cseg.invalid is tested to determine whether or not
the cseg is valid. If not, the procedure returns
error_table_$invalid_cseg. The +file 1lock (cseg.file_1lock) is
tested to determine whether the file is already in use for other
I/0 activity. If it is in use, the procedure returns
error_table_¢$file_busy. If it is not in use, a cleanup handler
is established and c¢seg.file_lock is set to "1"b. If invoked,
the cleanup handler resets cseg.file_lock to "0O"b. The return
code 1is initialized to zero and control transfers to process the
particular order requested:

hardware_status

The hardware status string pointed to by infoP is filled
with the IOM status bits from the 1last I/0 operation
(cseg.hdw_status.bits) and control passes to the exit routine.

status

The status structure (declared by device_status.incl.pl1)
pointed to by infoP is filled from the I/0 status structured
generated by the last 1I/0 operation (cseg.hdw_status) and control
passes to the exit routine.

volume_status
The volume status © structure (declared by

tape_volume_status.incl.pl1) pointed to by infoP is filled with
status information describing the "current" volume. If the file

11=-111 AnS7

set is IBM nonlabeled, the current volume is specified by fd.vl1lX,
the volume currently (or last) in use. If no volume has yet been
used (fd.vlX = 0), the first volume of the volume set is the
current volume. For ANSI and IBM SL file sets, the current
volume 1is specified by fl.vlX, the volume on which the file
section currently (or last) in use resides. If no file section
has yet been used (cseg.flF = cseg.fcP), or the file link pointer
has been invalidated due to an error (cseg.flP = null), the first
volume of the volume set is the current volume. The structure is
filled in from the volume link and control passes to the exit
routine.

feov

This order forces end of volume on the current volunme. If
the 1I/0 switch is not open for sequential_output, code is set to
error_table_g$action_not_performed and control passes to the exit
routine. (This order is used only to force a volume switch when
writing.) Either . tape_ansi_file_cntl_g$data_eot or
tape_ansi_nl_file_cntl_$data_eot is called to simulate the
detection of end-of-tape. The file control procedure performs
all necessary volume termination and switching functions. If the
returned code 1is zero, volume switching has been performed

successfully and control passes to the exit routine. If the
returned code 1is nonzero, volume switching did not occur, due
either to an error or the lack of another volune. In either

case, the logical record I/0 lock (cseg.lrec.code) is locked to
inhibit further 1/0, by setting it equal to the returned code.
If the returned code is error_table_$no_next_volume, it is set to
zero and control passes to the exit routine. Otherwise, an error
has occurred and the value of code is passed on to the exit
routine.

close_rewind

This order specifies that the current volume 1is to be
rewound when the I/0 switch is next closed. The rewind function
is performed by the file <control procedure. The wvariable
cseg.close_rewind 1is set to "1"b and control passes to the exit
routine.

retention

This order is preserved for historical reasons only. The
rescurce retention variable (cseg.retain) is set to the value of
the number pointed to by infoP.

file_status

The file status structure (declared by
tape_file_status.inecl.pli1) pointed to by infoP is filled in with
status information describing the "current" file. If the file
set is IBM NL and no file has yet been used, the file status
state variable (tape_file_status.state) is set to zero (no

11-112 ANS57

information) and control passes to the exit routine. If the file
set is ANSI or IBM SL and the file link pointer does not point to
a link (cseg.flP = null or cseg.fcP), tape_file_status.state is
similarly set to zero and control passes to the exit routine.
Even if cseg.flP does point to a link, the file section may not
be a part of the attached file. 1In this case, the above action
is also taken.

Once the current file is known, the IOCB open description
pointer is checked to determine whether or not the I/0 switch is
cpen. If it is not open, tape_file_status.state is set to 1 (not
open). If it 1is open, the state variable is set to either 2
(cseg.lrec.code = 0, logical I/0 not locked), or 3
(cseg.lrec.code "= 0, logical I/0 locked.) The remainder of the
file status structure is filled in according to whether or not
the file set is IBM KL.

retain_none
retain_all

These orders set cseg.retain to 1 (retain neither volumes
not devices) or 4 (retain both volumes and devices),
respectively. Control then passes to the exit vroutine.
kEventually, the following retain orders should be implemented:

retain_default cseg.retain = 0
retain_devices ¢cseg.retain = 2
retain_volumes cseg.retain = 3

reset_error_lock

If the 1/0 switch is not open for sequential_input, the
return code 1is set to error_table_$action_not_performed and
control passes to the exit routine, If the I/0 switch 1is open

for sequential_input, the logical record I/0 lock
(cseg.lrec.code) is checked to determine if it can be wunlocked
(cseg.lrec.code = error_table_g$tape_error). If it can, the lock
is unlocked (set = 0). (If the 1lock value 1is already =zero,

nothing need be done.) Any other lock value causes the return
code to be set to error_table_$action_not_performed. Control
then passes to the exit routine.

The exit routine sets the file lock tec "0"b and returns
whatever code has been previously set. '

11-113 ANST

SECTION XII

THE tape_mult_ I/0 MODULE

INTRODUCTION

The tape_mult_ I/0 module supports I/0 to and from Multics
standard tapes. (See "Multics Standard Magnetic Tape Format" in

Section III of the MPM Peripheral Input/Qutput Manual, Order
No. AX49.

This section will be expanded in a future edition.

12-1 ANST

SECTION XIII

THE tape_nstd_ I/0 MODULE

INTRODUCTION

The tape_nstd_ I/0 module supports I/0 to and from records
on magnetic tape. No logical record or file format is processed
or enforced.

This section will be expanded in a future edition.

131 ANS7

SECTION XIV

TrE rdisk_ 1I/0 MODULE

INTRODUCTION

The rdisk_ I/0 module performs explicit I/0 an
user-attachable disk volumes. These volumes are mounted as "I/O"
disks as opposed to storage system disks. Physical operations on
the disk are performed via the I/0 interfacer ioi_.

This section will be expanded in a future edition.

14-1 ANST

SECTION XV

THE record_stream_ I/0 MODULE

INTRODUCTION

This I/0 module associates two I/0 switches, causing
sequential operations on one switch to generate (or be generated
by) corresponding stream operations on the other switch.

PROGRAM MODULES

The record_stream_ I/0 module is composed of the following
five programs:

record_stream_attach.pll
implements attach, detach, open, and close
operations. Dispatches to the appropriate module for
the opening mode at open and close,.

rs_open_str_in.pl1
implements the get_chars, get_line, and position
operations in openings for stream_input.

rs_open_str_out.pll
implements the put_chars operation in openings for
stream_output.

rs_open_seq_in.pl1
implements the read_record, read_length, and position
operations in openings for sequential_input.

rs_open_seq_out.pli

implements the write_record operation in openings for
sequential_output.

15=1 ANST

MODULE record_stream_attach.pl1

Entry: record_stream_attach

This entry point performs the attach operation according teo
the specified attach options. The attach description 1is
validated and placed in an initialized data block, pointed to by
iocb.attach_data_ptr. If the ~target option 1is specified, a
uniquely named I1/0 switch is attached using the remaining options
to form the target attach description.

Entry: open_rs

This entry point implements the open operation for all
opening modes. The target I/0 switch is opened, or if already
open, its mode is verified.

Except in the case of openings for sequential output, a
uniquely named temporary buffer segment is created and pointed to
by iocb.open_data_ptr.

The appropriate module for the given opening mode is called
to set up the I0CB entry values for the supported operations,
before completing the opeping in the common code. i

Entry: close_rs

This entry point implements the close operation. In the
case of stream_output, the remaining buffer contents (if any) are
written out on the target switch. The temporary buffer segment
is deleted. If the target switch was initially closed, it is
closed again.

Entry: detach_rs

This entry point implements the detach_iocb operation. If
the target switch was specified via the ~target option, it is
detached as well.

15=-2 ANST

Entries: modes_rs, control_rs

These entry points implement the modes and control

operations simply by passing the <c¢all to the target switch
without modification.

MODULE rs_open_str_in.pl1

Entry: get_chars_rs

This entry point implements the .get_chars operation. The
returned data is copied from the buffer segment, whose initial
offset and tail_length are adjusted accordingly. When its
contents are exhausted, read_record operations are issued on the
target switch into the buffer segment. If the attachment does
not specify the -nnl option, a newline character is appended to
each record placed in the buffer,

Entry: get_line_rs

This entry point implements the get_line operation similarly
to the get_chars operation. The difference is that the length of
the returned string is determined via the index of a newline
character in the buffer tail.

Entry: position_str_rs

This entry point implemehts the position operation (except
for skipping backwards, which is not supported).

For positioning to either end of the file, the call 1is
simply passed on to the target switch and the buffer contents are
discarded. .

For skipping forward; the logic is identical to that for the
get_line operation, except that no data is copied out of the
buffer.

15-3 ANST

MODULE rs_open_str_out.pl1

bEntry: put_chars_rs

This entry point implements the put_chars operation. If the
-length (-1n) attach option was specified, fixed 1length records
are written to the target switch as the required number of bytes
are made available. The remainder, if any, is appended to the
buffer segment, to be written by a subsequent operation.

In the default attachment case, the treatment is similar.
Variable-length records are formed from 1lines with trailing
newlines deleted and are written out as they become available.
An incomplete line is appended to the buffer and 1is written on
the target switch as part of the next record.

MODULE rs_open_seq_in.pl1

Entry: read_recobd_rs

This entry point implements the read_record operation. If
the buffer segment contains a record, it is returned to the user
and the buffer contents are discarded.

If the buffer is empty, a record is obtained directly from
the target switch via either a get_chars or get_line operation,
depending on the specified attach option.

Entry: read_length_rs

Thi entry p

oint implements the read_length operation. If
the buffer segment contains a record, its length is returned.
Otherwise, a record is read into the buffer from the target .
switch wusing either get_line or get_chars, and its length is
returned.

15-4 ANST

Entry: position_seq_rs

This entry point implements the position operation (except
for backward skipping).

For positioning to either end of the file, the call is
passed directly to the target switch and the buffer segment's
contents are discarded.

For skipping forward in the default case, the call is simply
passed to the target switch. Otherwise, if the -~length (-1n)
attach option was specified, records are successively read into
the buffer segment until the required number has been skipped or
the end of the file is reached.r If the buffer segment initially
contained a record, the first skip is accomplished by discarding
the buffer contents.

MODULE rs_open_seq_out.pl1

Entry: write_record_rs

This entry point implements the write_record operation. No
buffer segment is required in this case. A put_chars operation
is issued to the target switch with the same arguments as those
passed to this entry point. If the -nnl attach option was not
specified, a second put_chars operation is issued to the target
switch to append a single newline-character.

15=-5 ANST

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

LEVEL 68 MULTICS ORDERNO. | AN57,Rev. 0

TITLE | ySER RING INPUT/OUTPUT SYSTEM

PROGRAM LOGIC MANUAL
DATED | MAY 1977

ERRORS IN PUBLICATION

SUGGESTIONS FOR iMPRGVEMENT TO PUBLICATION

and action will be taken as required. Receipt of all forms will be

Your comments will be investigated by appropriate technical personnel
acknowledged; however, if you require a detailed reply, check here.

DATE

FROM: NAME
TITLE
COMPANY
ADDRESS

PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service will not deliver stapled forms

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 39531 WALTHAM, MA02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATIONS, MS486

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

Honeywell

ANS7, Rev. 0

Honeywell
T
Leon 250, Mexico 11
Printed in U.S.A.

