

Fixed-Point Input

Usually the form 'f(li)' is used
decimal-multiplier arguments are omitted.

for input and the fraction-width and
Input is performed as follows:

• A character string of li characters is read from the input stream. The
string must contain an optionally-signed, real, fixed-point constant
or else must be entirely blank.

• The input string is assigned to an intermediate variable of data type
'real decimal fixed(p,q)'. If (1) the input constant is 'decimal',
(2) the input constant has a precision and scale-factor within the
maximums of Multics PL/I, and (3) fw and dm are omitted from the
format item, then the precision attribute (p,q) is taken directly from
the input constant.

• The value of the intermediate variable is assigned to the target given
in the data list.

In the steps just given, two assignments are made; one from the stream to an
intermediate variable and a second from the intermediate variable to the target
variable. These assignments are performed as if they arose from an assignment
statement; that is, the necessary conversion is performed and, if the assignment
or the conversion cannot be performed for some reason, the appropriate condition
occurs. The intermediate variable exists only long enough to convey the value
to the target, and is not used in any other way.

Examples of the processing of a five-character input field by a fixed-point
format item follow.

Input Format Intermediate
Stream Item Value Comment

�-�7�.�2�~� f(5) -7.2 The position of the value
�~�7�.�2�~� f(5) +7.2 representation in the field
�~�~�7�.�2� f(5) +7.2 does not affect its
7.2vv D',-\ +7.2 interpretation. 1 I. J)

�~�~�~�~�~� f(5) +0. If the field is blank, its value is o.
f(O) +0. If li=O there is no input, but value is O.

72e-1 f(S) (conv) If the input is not a valid fixed-poir;t
�-�7�~�.�2� f(5) (conv) value representation, the

,
conversion

7.2db f(S) (conv) condition is signalled.

�7�2�~�~�~� f(5,2) +.72 fw::2 gives two fractional digits, and
�7�2�~�~�~� f(5) +72. fw=O (default) gives none.
�7�.�2�~�~� f(5,2) +7.2 But vlhen a decimal point is in the
�7�.�2�~�~� f(S) +7.2 stream, fvl is ignored.

�7�.�2�~�~� f(5,2,-3) +.0072 dm=-3 multiplies input by 10**-3 = .001
�7�.�2�~�~� f(5,2,3) +7200. dm=3 multiplies input by 10**3 = 1000
�7�2�~�~�~� f(5,2,3) +720. fw=2 gives two fractional digits,

then dm=3 multiplies by 1000.

The last two groups of examples show the use of a nonzero fraction width or
decimal multiplier. Such format items should be used only when there is a clear
justification for accepting input values that are not "true" values; this might
occur, for example, when input is being prepared by an automatic device that can
only produce a sequence of digits (but no decimal point or scale factor) on its
output medium.

14-31 AM83

When fw is omitted, it is assumed to be zero; therefore, a value
representation without a decimal point is treated as an integer, which is the
everyday convention. When dm is omitted, it is also assumed to be zero;
therefore, the value is multiplied by 10**0 = 1. Thus the defaults are chosen
so they leave the transmitted value unchanged.

Fixed-Point Output

Usually, the form 'f(~)' or 'f(~,fw)' is used for output, and the
multiplier is omitted. When the form 'f(~)' is used, it is assumed that fw = O.
An intermediate variable is used with output in the same way as was previously
described for input. The data type of the intermediate variable is 'real
decimal fixed(Q,g)'. The scale factor, g, is fw and the significance, Q, is as
large as wallows. That is. p is obtained by reducing w by one if necessary to
all~w for ~ minus sign and (~hen fw is not zero) by on~ --more to allow for a
decimal point; however, Q cannot exceed the maximum Multics precision, 59. The
outbound value is converted to an attractive, right-adjusted value
representation in the output stream, as shown in the follovling examples:

Outbound
Value

-3.
-3.
-3·
+3.

+17.46
+17.46
+17.46
+17.46

+0.
+0.

+17.46
+17.46
+17.46

Format
Item

f(5,2)
f(5)
f(5,3)
f(5,3)

&>Ir- ,.,\
1. \ ::; , c.)

f(5,1)
f(5)
f(5,-1)

f(5,2)
f(5)

f(5,3,-1)
f(5,0,2)
f(5,0,-1)

Output
Stream

-3.00
F.SF.SF.S-3
(size)
3.000

Comment

1=2 provides two fractional digits, and
1=0 (default) provides none.
'-3.000' does not fit in the field.
'3.000' (without sign) does fit.

17.46 ~=2 fits the exact value (in this case),
F.S17.5 1=1 rounds to one fractional digit, and
£SF.SF.S17 d=O rounds to an integer.
(error) <1 must be nonnegative)

£SO.OO
F.SF.SF.SF.SO

1.746
161746
F.SF.SF.SF.S2

There are many ways
to print zero.

dm=-1 multiplies value by 10**-1 = .1
dm=2 multiplies value by 10**2 = 100
then fw = 0 causes rounding.

The last group shows the use of a nonzero decimal multiplier with output. The
use of this feature should be restricted to the applications that are similar to
its use with input; that is, it should be used to change the "true" stored value
of a number to some scaled output form for a specialized application.

FLOATING-POINT FORMAT ITEMS

The stream representation of a floating-point value is processed by the
floating-point format item, which can have any of the following forms:

e(w)
e (~, fw)
e(~,fw,ms)

used for input or output
used primarily for output
used only for output

The value of w (the width) determines the size of the field. The value of fw
(fraction width) determines the nUMber of fractional digits in the mantissa of
the representation. The value of ms (mantissa significance) determines the
nunber of digits in the entire mantissa.

14-32 AM83

Floating-Point Input

Usually the form 'e(~)' is used for input and the fraction-width and
mantissa-significance arguments are omitted. Input is performed as follows:

• A character string of ~ characters is read from the input stream. The
string must contain (1) an ootionallv-signed. real constant that is
either fixed-point or floating-point or~ (2) a' sequence of blanks,
which is interpreted as zero.

• The string is assigned to an intermediate variable of data type 'real
decimal float(Q)~, where Q is the precision of the input constant.

• The value of the intermediate variable
corresponding target in the data list.

is assigned to the

The role of the intermediate variable used here is the same as that used with
the fixed-point format item. It exists only to convey the input to the target
with the required conversions.

Examples of the processing of a seven-character input field by a
floating-point format item follow:

Input Format Inbound
Stream Item Value Comment

1.3e7t6t6 e(7) +1.3e+7 A floating-point or fixed point value
t6-50+4t6 e(7) -50.e+4 representation is accepted at any
t6t6t6t65t6t6 e(7) +5.0e+0 position in the input field.

t6t6t6t6t6t6t6 e(7) +O.Oe+O If the field is blank, its value is O.
e(O) +O.Oe+O If ~ = 0, no input occurs, but value is O.

1.3e7.0 e(7) (conv) If the input is not valid, the
=50-}-fSfSfS ~(7\ (nAnn\ conversion condition occurs. \.11 \. v~.;. ... 10 J

t6t6t613e7 e(7,2) +. 13e7 fw = 2 gives two fractional digits, and
t6t6t613e7 e(7) +13.e7 fw = 0 (default) gives none.
t6t61.3e7 e(7,2) + 1 .3e7 But when a decimal point is in the
t6t61.3e7 e(7) + 1 .3e7 mantissa, fw is ignored

The last four examples show the use of a nonzero fraction width, fw. When an
input constant does not contain a decimal point, fw supplies the position for an
assumed decimal point. As in the case of the fixed-point format item, such
floating-point format items should be used only when there is a clear
justification for accepting input values that are not "true" values.

Floating-Point Output

For output, the data type of the intermediate variable is 'real decimal
float(Q)', where Q is the precision derived from the data type of the value
supplied by the data item. All three forms of the 'e' format are commonly used.
Omitted arguments are interpreted as follows:

means
means

e (~, fw, fw+ 1)
e(~,Q-1 ,Q)

14-33 AM83

Thus, when the mantissa significance is not specified in the format item, it is
calculated so that the mantissa has a one-digit integer part. When neither fw
nor ms is given, the precision of the output value itself, Q, is used. The
outbound value is converted to an attractive representation in the output
stream, as shown in the following examples:

Outbound Format Output
Value Item Stream Comment

7.5 e(11,2,4) l675.00e-001 When both Q and ..§. are given, the
7.5 e(11,0,4) l6RS7500e-003 decimal can be adjusted.
7.5 e(11,3,3) RSO.750e+001 Note leading zero when Q=..§..
7.5 e(11,4,4) 0.7500e+001 Fits because there is no sign

7.5 e(11,3) RS7.500e+000 ~lhen ..§. is not given, the
-7.5 _f11 ..,\ -7.500e+OOO mantissa has ~ • 1 ,4; rr; +-C'" co,", there C I. I I , .) J UT I U.La.L""':>, o.JV

750 e(11,3) RS7.500e+002 is one integer digit
0 e(11,3) RSO.OOOe+OOO Zero has a zero exponent.

+7.5e+0 e (11) RSRSRS7.5e+000 \lhen Q and ..§. are not given, the
+7.500e+0 e (11) RS7.500e+000 precision is taken from the value

itself.

COMPLEX FORMAT ITEMS

The stream representation of a complex value is processed by the complex
format item, which can have either of the following forms:

c(part)
c(part1,part2)

used for input or output
used for input or output

The part, part1, or part2 can be any format item for a real value; that is, one
of the following:

fixed-point format item
floating-point format item
picture format item

This format item always describes two values in the stream: the real and
imaginary parts of the complex value. If only one part is given, it is used
twice. Although imaginary values are usually followed by 'i' in PL/I, this is
not the case when the complex format item is used.

Complex Input

Examples of the use of this format item follow:

Input
Stream

RSRS3RS-2.3
RS3RSRSRS-2.3RS
+2.32e-3-6.80e-3

Format
Item

c(f(3),f(5»
. c(f(5»
c(e(8») .

cef(5))

c(f(5))

Inbound
Value Comment

+3.-2.3i The field is treated as
+3.-2.3i two fields.
+2.32e-3-6.80e-3i

+3.+0.i A blank part is a O.

(conv) 'i' is not allowed.

14-34 AH83

Complex Output

Examples of the use of the complex format item to process output follow:

Outbound
Value

Format
item

+3.0+2.3i c(f(5,2»
+2.32e-3-6.80e-3i .c(e(11,2),e(11,2,2»

+CI.Oe+0-3.0e+2i

+3.0-2.3i
+3.0+2.31

PICTURE FORMAT ITEMS

c(f(8,2»

c(f(4,2»
c(f(4,2»

Output
Stream

i53.00~2.30
~D2.32e-002~-O.68e-002

2SDZSR;0.OOiS-300~OO

(size)
3·002·30

The strea~ represe~tation of any computational value (except 'complex') can
be processed by an appropriate picture format item, which has the form

p"X"

where X is any of the pictures described under "?ictured String Storage" in
Section III, "Value Storage."

·,:hen input is perfor'med under control of the picture fo!""'mat item, the
follo~i~g steps are performed:

• The length of the character string described by the picture is
deter~ined, and a string of that le~gth is read frOM the input strean
an:! 2.ssigned to an intermediate variable of data type 'pi:::!ture"x"'.

o The value of the intermediate variable is assigned to the target
variable.

Both of· the assignments performed during the picture-format input require
fu~th~r comment. The first assignment changes the data type of the input
stri~g, but ~ever changes the string itself. Suppose the input strea~ supplies
the characters '-709' and the format ite~ is 'p"s399"'; then the input value is
, "-7'J9': . and has the data type ' character' . After assignr.e:lt to the
internediate variable, the value is still '-709', but it now has the data type
'picture"s999'!'. Thus the string has been checked for conformity with the
~icture and has been given the interpretation as~ociated with the picture.

inc seco~d assignMent entails the conversion of the value of the
inte~~ediate pictured variable to the dat3 type of the target value. Since the
data tY)8 of the tareet can, in various cases, ::,e any PL/I data type, there are
many ;~ssijle conversions.

·,ihen output is perforned under control of 3. picture forr.1at iten, the
fol10~ing steps are performed:

• The value supplied by the source ex~re3sion in
assi;ned to an intermediate variable of data type
K is the picture given in the pictu~e for~at iten.

the data list is
'piqtureIlK"', where

• The ~alue of the intermediate va~iable, which is already a character.
string, is added to the output strean t:ithout being chan5ed.

14-35 At·t83

I

Just as with input, two assignments are Qade; one from the source expression in
the data list to the intermediate variable, and a second from the intermediate
variable to the output stream. If an assignment cannot be performed, the
appropriate PL/I condition occurs.

The pictures are classified into three groups: fixed-point, floating-point,
and character. A fixed-point picture describes a character string that has the
form of an optionally-signed, fixed-point constant. A floating-point picture
describes a character string that has the form of an optionally-signed
floating-point constant. A character picture describes a character string that
might not be suitable for interpretation as an arithmetic value but could be
useful as an identifier of some kind. Examples of picture format items from
each classification are now given. The commentary given with the examples is an
informal summary of the definitions given for pictures in Section III, "Value
Storage."

Fixed-Point Pictures

The fixed-point picture format item is considered here, and many examples
are given. For each '9' in a picture, a digit appears in the corresponding
character position of the stream; for an's', a sign ('+' or '-' but not a
blank); and for a '-', a blank or a '-' (but not a '+').

Stream Format Internal Comment

-823 p"s999" -823. A signed, three-digit
+823 p"s999" +823. integer with
~823 p"-999" +823. various signs.
-823 p"-999" -823

The examples above should be read in both directions. For example, the first
line should be read first as the transmission of the characters '-823' from the
input stream to a target, and then read a second time as the transmission of the
value of an internal source with value '-823.' to the output stream. This
approach will be used for subsequent examples of the picture format item.

A 'z' matches a digit; but if the digit would be a leading ~, it is
suppressed (replaced by blank) on output and mayor may not be suppressed (at
the option of the user who prepares the data) on input. A sequence as 'sss' is
like 'szz' except that the sign "drifts" to the right when leading zeroes are
suppressed. The sequence' 'represents a "drifting" minus sign in the same
way.

Stream Format Internal Comment

t5~68 zzz9 +0068. Zero suppression
~~R55 zzz9 +0005. and drifting signs
~~~~ zzzz +0000. for input or output 
~+68 sss9 +0068. 
~~-5 ---9 -0005. 

Observe that a blank field can appear in the stream~ but only when there is no 
'9' in the picture. 

9/78 14-36 AM83A 



In ordinary applications of the picture format item, the decimal point is 
indicated in the picture by two characters, ~v.', which matches the in the 
stream. 

Stream 

-53.60 
1111-.60 
lHS829. 

Form-at 

sssv.99 
sssv.99 
----9v. 

Internal 

-053·60 
-000.60 
+00829. 

COr.lClent 

Ordinary deci~al 
points for input 
or output. 

When 'v' and are not adjacent in the picture, the trans~itted value is 
changed. The 'v' indicates the position of the decimal point in the internal 
representation of the value, and the '.' indicates the position of the decimal 
point in the stream representation. Details are given in Section III, "Value 
Storage." 

A parenthesized integer can be ~sed in a picture to indicate repetition of 
the following picture character. For example, 

p"s(7)9" means 
p"(5)sv.(2)9" means 

p"s9999999" 
p"sssssv.99" 

The parenthesized integer must be a constant; that is, it cannot be written as 
an expression and computed when the program is executed. 

When one of the assignments in the interpretation of a picture format item 
would lose a digit at the left end of the value, the 'size' condition occurs. 
But when an assignment would lose a digit at the right end of the value, that 
digit is truncated, without warning, and no condition occurs. Suppose the 
target of input or the source of output has the data type 'dec(6,2)'. The 
following examples show various instances of digit-loss: 

Stream Format dec~6222 Comment 

-9.2362 p"-9.9999" (size) Input error. 
-9.2362 p"-9v.999" -0009.23 Input approximation. 

(size) p"s999" +8264.00 Output error. 
+82 p"s99" +0082.99 Output approximation. 

AM83 



I 

The most remarkable aspect of the picture is its handling of commercial 
symbols. A '$' can be used and can "drift" to the right as a sign can do. 
Commas can be used and a comma is suppressed when an adjacent leading zero is 
suppressed. The suffixes 'cr' and 'db' are allowed. 

Stream 

$129.88 
~R5$6.50 
$2,619 
R5R5~$81 
$9.28cr 

Format 

$999v.99 
$$$9v.99 
$$,$$$ 
$$,$$9 
$9v.99cr 

Internal 

+129.88 
+006.50 
+2619. 
+0081 . 
-9.28 

Comment 

Commercial symbols 
for input 
and output. 

These examples of the fixed-point picture format items do not exhaust all 
the possibilities, but the omitted possibilities are less frequently used. For 
a complete description of fixed-point pictures, see Section III, "Value 
Storage." 

Floating-Point Pictures 

The mantissa of the floating-point picture can be any fixed-point picture 
that does not contain the commercial symbols, '$', 'cr', and 'db'. The exponent 
picture can have's' or '-' as its sign or the sign can be omitted; and up to 
three digits can be used, with 'z' for leading digits if desired. If an 'e' is 
not wanted between the mantissa and the exponent, 'k' is used in the picture 
instead of 'e' and nothing appears in the stream. 

Stream Format Value 

+3.93ge+002 p"s9v.99ges999" +393.9 
R53.93ge+02 p"-9v.99ges99" +393.9 
k$3.939+02 p"-9v.999ks99" +393.9 
R53939-02 p"-9999ks99" +39.39 

Character Pictures 

A character picture can be any sequence of the characters 'x' (matches any 
character) , 'a' (ma tches any let ter, upper or lower case, or blank), or '9' 
(matches any digit or blank). The picture must not be all nines, since it would 
be a fixed-point picture in that case. 

Stream Format Value Comment 

3/may/74 p"9xaaax99" "3/maY/74" Character string, 
29AXQ6 p"99aaax" "29AXQ6" input and 
R5R5~R5k$k$ p"99aaax" "k$~R5R5R5R5" output 

A i 9 i can match a blank only in a character picture. 

9/78 14-38 AM83A 



Gontrol Format Items 

In an edit-directed statement, provision must be made for those positions 
of the str~am that appear between the value representations. Specifically, the 
contribution to layout made by the blanks, linemarks, and pagemarks must be 
taken into account. The control format items are provided for this purpose. 
Two examples of control format items were given in the example program, namely 
'skip' (start a new line) and 'x(3)' (skip three character positions). 

An output stream with the attribute 'print' can be viewed as divided into 
pages and lines and character positions. Any other stream, whether for input or 
output. is divided only into lines and character Dositions within the lines. A 
cha~acter string that is used as a substitut~ for a stream (by means of the 
'string' option of a stream input/output statement) is a single line that is 
divided only into character positions. 

When an input stream is open, it has a stream pointer associated with it. 
The stream pointer indicates the next character position that will be read (or 
skipped) by the next input operation. In contrast, an output stream is created 
as output is performed; that is, character positions as well as the characters 
themselves are added to the end of the stream. But it is legitimate and very 
useful to speak as if the output were created in advance as a sequence of blank 
character positions arranged in lines and pages. This convention allows the use 
of a stream pointer with an output stream and permits language such as "advance 
the stream pointer to the first character position in the third line after the 
current line". 

There are five control format items, as follows: 

x e.g) 
column(e) 
skip(§.)­
line(§.) 
page 

skip §. character positions 
skip to column §. of a line 
skip §. lines 
skip to line §. of a page 
skip to the next page 

The §. in each of these format items can be any expression whose value can be 
converted to an integer. In all cases, the value of §. must be positive or (for 
'x' and 'skip' only) zero. 

x FORMAT ITEf-1 

The 'x' format item has the form 

Let n be the value of the expression §. for a given execution; then the item 
moves the stream pointer forward by n character positions, proceeding from line 
to line or page to page if necessary. If n=O, then the item does nothing. 

14-39 M183 



'column' FORMAT ITEM 

The 'column' format item has the forms: 

column(e) 
col(~) -

Let n be the value of the expression ~ for a given execution; then the item 
advances the stream pointer to the next character position that is in column n; 
that is, to a character position that is the nth character position of a line. 
This interpretation implies that if the stream pointer is beyond the nth column 
the operation is applied to the next line. If n exceeds the length of the line 
(so the specified character position does not exist), the stream pointer is set 
to the beginning of the next line. 

'skip' FORMAT ITEM 

The 'skip' format item has the form: 

skip(~) 

Let n be the value of the expression ~ for a given execution; then the item 
moves the stream pointer to the first character position of the nth line after 
the current line. If n = 0, then the stream pointer is set back to the 
beginning of the current line and the stream is prepared for overprinting of the 
current line; but this case is allowed only for an 'output print' stream. 

'line' FORMAT ITEM 

The 'line' format item has the form: 

line(~) 

Let n be the value of the expression ~ for a given execution; then the item 
moves the stream pointer to the next character position that is the first 
character position of the nth line of a page. If the stream pointer is already 
at such a character position, the stream pointer is not moved. If the stream 
pointer is already past the target position, or if the target position is beyond 
the end of the page, the stream pointer is advanced to the beginning of the next 
page. 

page FORMAT ITEM 

The page' format item has the form: 

page 

The item moves the stream pointer forward to the first character position of the 
next page. 

A control format item can be used only where its use would be reasonable. 
Any control format item can be applied to an output stream with the 'print' 
attribute because it has lines and pages. The 'line' and 'page' items cannot be 
applied to a stream that is not a 'print' output stream because such a stream is 
not divided into pages. The 'skip', 'line', and 'page' items cannot be aoolied 
when the ~string~ option is used because a pseudo-stream is not divided into 
pages or lines~ 

14-40 AM83 



A control format item is executed only when PLI I is "on the \vay" to a da t3. 
format item; that is, when PL/I is prepared to output a value and is reading 
through the format list toward the next format data item. 

Format Lists 

In its simplest form, 
by commas. However, there 
format list; namely, the 
"end-around" repetition. 
paragraphs. 

REMOTE FORMAT ITEMS 

a format list is a sequence of format items separated 
are three facilities for enhancing the form of a 
remote format item, the iterated format item, and the 
These facilities are discussed in the following 

The remote format item has the form: 

r(ref) use a remote format list 

The ref must be a reference that has a scalar format value; that is, a value 
that designates a 'format' statement. Let 'fx' be the format list in the 
designated 'format' statement. When 'r(refY is executed, the scanning of the 
format list in which the remote format item appears is suspended and format 
items are taken from 'fx' until the end of 'fx' is reached. 

ITERATED FORMAT LISTS 

The iterated format list can have any of the following forms: 

int item constant iteration of an item 
int (fl) constant iteration of a format list 
(~) item computed iteration of an item 
e.g) (fl) computed iteration of a format list 

In these forms, int is an unsigned integer, item is a data, control, or remote 
format item, fl is a format list, and ~ is any expression whose value can be 
converted to an integer. Suppose the value of int or ~ (whichever is present) 
is n. Then the iterated format list is interpreted as a sequence of format 
items composed of n repetitions of item or fl (whichever is present). If n is 
zero, the iterated format list is ignored. 

END-AROUND REPETITIONS 

The "end-around" repetition is a simple feature of the edit-directed 
statements. An outermost format list in an edit-directed statement is repeated 
when the end of the list has been reached. An outermost list is the format list 
paired with a data list in the statement. The effect of this convention is that 
the format list can never "run out" before the corresponding data list does. 

14-41 AM83 



The progran fragment that follows shows the use of the compound format 
items: 

F 5 : form at ( a ( i 0), 2 ( p II b b b - - 9 v . 99 11 
) ) ; 

i = 5; 
put( ... )(page, (i-2)(skip, r(F5), col(20), a)); 

The format list in the 'put' statement is equivalent to the following format 
list: 

page, 
skip, .£ilQl, p"bbb--9v.99", p"bbb--9v.99", col(20), .§;., 
skip, .£ilQl, p"bbb--9v.99", p"bbb--9v.99", col(20), .§;., 
skip, .£ilQl, p"bbb--9v.99", p"bbb--9v.99", col(20), .§;., 

page, 
skip, .£ilQl, p"bbb--9v.99", p"bbb--9v.99", col(20), .§;., 
... and so on, ad infinitum. 

In this format list, the data format items have been underlined to distinguish 
them from control format items. It is the data format item that is matched with 
each item in the data list, so the portion of the format list shown would 
accommodate 16 items from the data list. 

The edit-directed statement uses the same form of data list as the 
list-directed statement; and the interpretation of that list to produce a simple 
list of data items was given in the discussion of list-directed input/output. 
Now, immediately above, the interpretation of a format list to produce a simple 
list of format items has been given. On the basis of these interpretations, the 
items of any data list can be matched to the items of the corresponding format 
list. 

Guidelines for Edit-Directed Input/Output 

Edit-directed input/output is preferred whenever the programmer wants to 
assume control over the format of input or output. It provides a wide variety 
of facilities for specifying format; and even within edit-directed techniques 
there is a range of control over details. At one extreme, the programmer can 
use the fixed-point format item and require, in a rather indefinite way, that an 
optionally-signed constant appear in certain columns of a line. At the other 
extreme the programmer can use a picture and control the contents of a line on a 
character-by-character basis. 

The format list associated with an edit-directed statement can easily 
become complicated and unintelligible. It is important that a layout diagram be 
made of the document being read or written, and that the format-list be based on 
this diagram. The 'format' statement can be used to structure a complicated 
format list just as the procedure is used to structure a complicated program. 

14-42 At-183 



The three disciplines of stream input/output can be mixed. For example, 
certain codes at the beginning of an input stream could be read by an 
edit-~irected 'get' statement, and then a specified number of values could be 
read by a simple list-directed statement. However, care must be taken when 
switching back to edit-directed input. Since edit-directed input works on a 
strict column by column basis, a serious error can occur if the effect of the 
preceding non-edit-directed statement is not correctly determined. 

STRING OPTION 

In order to interpret the input/output statements, PL/I must have a large 
and complicated collection of string manipulation operations. In particular, 
the process of applying a format list to the input stream to produce values or 
of applying a format list to a value list to produce an output stream is a 
complicated operation. Accordingly, PL/I has a facility to make this string 
manipulation available independent of the perforcance of input/output. 

A 'get' statement can have an option of the form 'string(~)' instead of the 
usual file option, where ~ is any character-string expression.. In this case, 
the statement will take its input from the value of ~ as if that value were a 
complete stream data set. Similarly, a 'put.' statement can have an option of 
the form 'string(~)' instead of the file option, where ~ is any target that can 
accept a character-string value. In this case, the statement will assign its 
entire output to ~ as if that target were a stream data set. 

Linemarks and pagemarks cannot be used when the 'string' option is used. 
If a 'get' statement with a 'string' option "runs off the end" of the pseudo 
stream, the 'error' condition occurs rather than the 'endfile' condition. Thus 
the extensiqn of input/output statements to the use of the 'string' option 
applies only to the editing process itself and not to those aspects that are 
oriented toward input/output. 

A useful application of the string option arises in connection with a 
troublesome property of stream input: the input of characters cannot be 
controlled by anything that appears later in the stream. Consider an exanple of 
this problem. Suppose 80-character card-images are being read and they can 
occur in either of two formats depending on whether an '*' or a blank appears in 
colu~n 80. This problem can be solved by using the following state~ents: 

get edit(temp)(a(80»; 
if substr(temp,80,1) = "*" 

then get string(temp) edit(C1, C2, C3)(p"$$$$$v.99db", X(7»; 
else get string(temp) edit(C1, C2, C3)(p"$$$$$v.99-", X(8»; 

If a card ends with '*' this sequence of stateMents is equivalent to: 

get edit(C1, C2, C3)(p~$$$$$v.99db~); 

and otherwise the sequence is equivalent to 

get edit(C1, C2, C3)(p"$$$$$v.99-"); 

The use of the string option allows the program to "look ahead" in the input 
strea~ and select a format appropriate to the co~ing values. 

14-43 Ati83 



I 

I 

SPECIAL FEATURES 

In Multics PL/I the sequential 'read' and 'write' statements can be used 
with stream data sets to provide special "line at a time" processing. In this 
special processing mode, - each line (a group of characters terminated by a 
linemark) is treated as a record on input and each record written has a linemark 
appended. 

One very important point is that the PL/I rules for implicit opening have 
not changed. Therefore, a user wishing to use the 'read' or 'write' statements 
must explicitly open the stream using the 'open' statement as described in 
"Opening and Closing Files" earlier in this section. 

'read' Statement 

Special stream input is performed by the 'read' statement when the file 
that is read is a 'stream input' file. For example: 

read file(test2) into(my_string); 

The file 'test2' must be opened for 'stream input' by the 'open' statement. The 
'read' statement must include an 'into' option specifying a scalar 
character-string variable and cannot contain a 'key' option. 

The example statement assigns all characters up to, but not including, the 
next linemark or the end of file to 'my_string'. If no characters remain 
between the 'stream pointer' and the end of file, the 'endfile(test2)' condition 
is signalled. The 'stream pointer' is then placed past the linemark, if any. 
If the assignment of the characters in the input stream to 'my_string' 'would 
cause the 'stringsize' condition to be signalled, the 'record(test2)' condition 
is signalled instead. It is recommended that the 'into' option specify a 
varying character string for ease of use. 

'write' Statement 

Special stream output is performed by the 'write' statement when the file 
written to is a istream output' file. For example: 

write file(report) from(source_string); 

The file 'report' must be opened for 'stream output' by the 'open' statement. 
The 'write' statement must include a 'from' option specifying a scalar 
character-string variable and cannot contain a 'keyfrom' option. 

This 'write' statement appends the characters of 'some_string' and a single 
linemark to the output stream 'report'. 

If the length of 'some_string' is greater than the 'column position' plus 
'line size' the 'record(report)i condition is signalled. Upon return from the 
'on' unit~ the number of characters written are the first 'line size' minus 
'column position' lus one character. Finally, the 'line number' is incremented 
by one and if it s equal to the 'page size' plus one, the 'endpage(report)' 
condition is signa led. 

9/78 14-44 AM83A 



CONDITIONS FOR STREAM INPUT/OUTPUT 

In the following discussion, the conditions that occur during stream 
input/output are described. They are: 

conversion 
endfile(ref) 
endpage(ref) 
name(ref) 
transmit(ref) 
undefinedfile(ref) 

where ref is a reference that yields a file value. The general rules for the 
use of the conditions are given earlier, in Section XIII, "Condition Handling." 
unly some remarks about their application to input/output will be given here. 

Each condition is defined separately for each file value, and thus for each 
file state block. The identifier 'endpage' by itself is not a valid condition; 
but if 'record3' is a file constant name, then 'endpage(record3)' is a valid 
condition. Consider the statement 

on endpage(record3) put file(record3) page line(3); 

When this statement is executed, it establishes the 'put' statement as the 'QQ' 
unit for the condition 'endpage(record3)'. When the end of a page in the output 
stream associated with 'record3' is reached, the 'endpage' is signalled and the 
'on'-unit is executed. When the block that contains the 'on' statement is 
deactivated, the 'on' unit is reverted, and no longer responds to a signal. 

When a condition is signalled, the PL/I processor takes either of two 
actions, as follows: 

• If an 'on' unit is established for the condition, then that 'on' unit 
is executed. If the execution of the 'on' unit runs to completion, 
then control goes back to the point in the program at which the 
condition occurred, and execution is resumed ~il a reasonable way 
(depending on the particular needs of the statement involved). 

• If no 'on' unit is established for the condition, then the default 
'on' unit is executed. The default 'on' unit for each condition is 
described earlier, in Section XIII, "Condition Handling." 

A stream input/output statement can evaluate expressions, and during that 
process a 'fixedoverflow', 'overflow', 'underflow', or 'zerodivide' condition 
may occur. Further, a stream input statement assigns values to targets, and 
during that process a 'size', 'stringrange', 'stringsize', or 'subscriptrange' 
condition may occur. 

9/78 14-44.1 AM83A 



This page intentionally left blank. 

9/78 AM83A 



The PL/I processor saves certain useful values before signalling a 
condition. For each kind of value saved, there is a stack and a built-in 
function. Just before the condition is signalled, the value is placed on the 
top of the stack, and after completion of the established 'on' unit it is 
removed. ~he built-in function is used to access the value during the execution 
of the 'on unit. 

For example, just before any of the conditions mentioned in this section is 
signalled, the file name, expressed as a character-string value, is placed at 
the top of the stack controlled by the 'onfile()' built-in function. During the 
execution of the established 'on' unit for the condition, the file-name 
character-string can be accessed by using the reference 'onfile()'. When 
execution of the on unit is complete, the file name character string is 
removed from the stack. 

conversion Condition 

The 'conversion' condition occurs when an attempt is made to convert an 
invalid character string or pictured value to an arithmetic or bit-string value. 
Just before the condition is signalled, three values are -saved in the stacks 
controlled by the condition built-in functions. The character string being 
converted is placed at the top of the stack controlled by 'onsource()'. The 
leftmost character in the string at which conversion failed, which is sometimes 
the source of the error, is placed at the top of the stack by 'onchar()'. The 
file name is saved as described in the preceding paragraph. 

The 'onsource()' and 'onchar()' functions can be used as pseudo variables, 
and the 'on' unit can assign new variables to them; in this way, it is possible 
to "correct" a character string that is causing trouble. When a normal return 
from the 'on' unit occurs, The PL/I processor resumes its attempt to convert the 
offending character string. If the program has supplied a new and valid value 
by means of 'onsource()' or 'onchar()' then the conversion succeeds, and 
execution continues; otherwise, the conversion error occurs again. 

'endfile' Condition 

The 'endfile' condition occurs when an input statement attempts to read 
beyond the end of a data set. After an established 'on' unit is executed, the 
PL/I processor resumes with the statement after the input statement in which the 
condition occurred. If a later attempt is made to read the data set, the 
condition will occur again. The file name is saved in the stack controlled by 
'onfile()' • 

14-45 AM83 



~endpage~ Condition 

The 'endpage' condition occurs when an output statement completes the nth 
line of a page (by writing a linemark) and n is equal to the "page size" 
associated with the output file. The condition can be caused in either of two 
ways, and the action taken by the PL/I processor on return from an established 
~on' unit varies accordingly. If the condition was caused by an attempt to 
write a data value in the output stream, the output of the data is completed 
when execution resumes. But if the condition was caused by the interpretation 
of a 'skip~ option or format item or a ~line~ option or format item, then the 
option or format item is ignbred; it is assumed that the 'on' unit starts a new 
page and eliminates the need for the blank lines. 

When the 'endpage' condition is signalled, the line number associated with 
the file has already been increased by one and is therefore equal to the page 
size plus one. Normally, the 'on' unit will include a 'page' option or format 
item and will thereby set the line number back to 1. 

Just before the 'endpage' condition is signalled, the file name is saved in 
the stack controlled by the 'onfile()'. If there is no established 'on~ unit 
for the condition, the PL/I processor does not treat the condition as an error; 
instead, a pagemark is added to the output stream, the line number is set to 1, 
and execution of the program continues. 

name Condition 

The ~name~ condition occurs only during data-directed input. Specifically, 
the condition occurs when a stream assignment is read whose variable name does 
not match a variable name in the data list of the controlling 'get' statement or 
a name of a component of a variable that is named in the data list. If the 
'string' option is not specified, then before the condition is signalled, the 
offending assignment from the stream is placed at the top of the stack 
controlled by ~onfield()~, and the variable is therefore available as a 
character-string value for inspection with the 'on~ unit. The file name is 
placed at the top of the stack controlled by 'onfile()~. After an established 
'on~ unit is executed, the PL/I processor returns to the data-directed input as 
if the processing of the offending stream assignment were complete. 

~transmit~ Condition 

The 'transmit' condition occurs when data cannot be transmitted reliably 
between a data set and PL/I storage. Just before the condition is signalled, 
the file name is placed at the top of the stack controlled by ~onfile()'. After 
an established ~on~ unit is executed, the PL/I processor resumes with the 
statement that follows the input/output statement that caused the condition; but 
the value of the data transmitted by the statement is undefined. 

The condition is usually caused by factors beyond the programmer's control, 
such as a hardware failure, so the recovery procedure cannot be initiated until 
the hardware is repaired. 

14-46 At-183 



·undefinedfile' Condition 

The 'undefinedfile' condition occurs when an open statement attempts 
unsuccessfully to open a file. The condition can occur, when, for example, an 
attempt is made to open a record data set for stream input, or when, for another 
example, the 'title' option specifies an invalid attachment or a nonexistent 
file. Just before the condition is signalled, the file name is placed at the 
top of the stack controlled by 'onfile()'. After the established 'on' unit is 
~xecu~ed, the program resumes execution at the statement following the offending 

open statement. 

14-47 AM83 



SECTION XV 

RECORD INPUT/OUTPUT 

The record input/output facility of PL/I is independent of the stream 
input/output facility described in the preceding section; that is, it has its 
own data sets, statements, and programming techniques. The record input/output 
facility is oriented toward communication with permanent storage. The role of 
such storage is to accept values from PL/I at one time and then return them, 
unchanged, at a later time; therefore, each value is transmitted just as it is 
found in PL/I storage. In contrast, stream input/output is oriented toward user 
communication and has many ways of converting between internal values and 
external representations of those values. 

The orientation of record input/output toward communication with permanent 
storage does not prevent its being used for communication with the user. Since 
PL/I has a capacity for conversion of values and string manipulation that is 
independent of any input/output operations, it is possible and even convenient 
to prepare user-oriented character strings before an output operation is 
initiated. Once such a character string has been prepared, it can be 
transmitted as a record to a printer or a terminal. The same considerations 
apply to input. Thus record input/output can handle user communication as well 
as permanent computer storage. 

This section begins with a description of the two kinds of data that are 
involved in record input/output: the record data set, which is the actual 
subject of the input or output, and the file-state block~ which shows the status 
of the operations on the record data set. The section then describes the 
attachment of a PL/I data set to a Multics file. In order to make this section 
complete and independent, the description of the file-state block and file 
attachment repeats some material already given in Section XIV, "Stream 
Input/Output." The section continues by giving a summary of the operations that 
are performed as a part of record input/output. Once this foundation has been 
established, the section proceeds to a definition of the statements that are 
used for record input/output: first, the statements that open and close files 
and then the statements that perform the actual input/output operations. Next, 
the section describes based input/output, which is an advanced and specialized 
feature of record input/output. As the section nears completion, the use of 
record input/output for user communication is illustrated. Finally, the section 
describes the conditions that occur in connection with record input/output. 

15-1 AM83 



RECORD DATA SETS 

A record data set is a collection of records. Each record is a single PL/I 
value; that is, it is a copy of a value that once existed in PL/I storage. The 
record can be a single scalar value; indeed, it can be a "bit(1)" value and thus 
represent only one bit. On the other hand, the record can be an aggregate value 
such as a large and complicated structure or an array of many elements. Some of 
the costs of transmitting and storing a record are the same for records of all 
~izes; therefore, large records are preferred. For example, if a programmer has 
a choice between treating an array as a single record or treating each element 
of the array as a record, then he should choose the first alternative. 

The word "record" is used here to 
collection of information gathered 

mean a 
together 

logical 
because 

record; that is, a 
it belongs together. 

Hardware storage devices do have physical records; that is, units that reflect 
the architecture of the storage device. The relation of the PL/I logical record 
to the physical record is similar to the relation of the PL/I variable to the 
hardware computer word. In both cases, PL/I provides an elaborate and effective 
mechanism to allow a programmer to choose units that correspond to the logical 
requirements of the data and to ignore the boundaries that are built into the 
hardware. 

Organization Of Record Data Sets 

A record data set can be keyed, sequential, or keyed sequential. In a 
keyed data set, each record has a unique key associated with it that can be used 
to access the record directly without scanning through the file. In Multics, 
the key is a character-string value of length up to 256 characters. In a 
sequential data set, the records are arranged in an order that does not change 
and that can be used to pass from one record to the next when the file is being 
processed. In a keyed sequential data set, a record can be accessed either by 
its key or by its sequential position. The organization of a data set 
determines the kinds of operations that can be performed on it. 

When a file is being operated on, it has two indicators associated with it. 
The current record indicator designates the record that has been most recently 
operated on. The next record indicator designates the record that will be read 
if the next operation is a sequential read operation; it is defined only for a 
sequential file. Unless otherwise stated, whenever the current record indicator 
is reset, the next record indicator is adjusted to designate the next record in 
sequence. Under certain circumstances, an indicator is set to null (and does 
not point to any record); for example, when current record indicator is set to 
designate the last record of a file, the next record indicator becomes null. 

Multics Files 

There are a variety of ways to implement a recor~ data set, each reflecting 
different hardware requirements and software techniques. Multics has two 
implementations for a record data set, the sequeqtial and the indexed files. 

A sequential Multics file can be used for an unkeyed sequential PL/I data 
set. Its records are arranged in the order in which they are created, and a 
record can be rewritten only if the new value has the same storage type as the 
old value.' A sequential file is either in virtual memory or on a magnetic tape. 

15-2 AM83 



An indexed Multics file can be used for any keyed PL/I data set, sequential 
or not. Its records are arranged in order of ascending keys. That is, if the 
key kl precedes the key k2 in a file, then the relation kl < k2 (as defined for 
PL/I character strings) must be true. A record can be rewritten in any way; 
that is, the storage type of the new record need not conform to that of the old 
record. An indexed Multics file is always stored in virtual memory. 

RECORD FILES 

A connection must be established between a statement that performs 
input/output and the Multics file on which the operation is to be performed. An 
analysis of this connection follows: 

• The connection begins with the file option that appears in an 
input/output statement. 

• The file option has as its argument a file reference, and the 
evaluation of the file reference yields a file value. 

• The file value designates a file-state block, which is a set of values 
that are used by the PL/I processor in carrying out input/output 
operations. 

• The file-state block contains a data set designator that points to a 
Multics file and thus completes the connection between input/output 
statement and file. 

The main components in the connection just described are the 
and the file reference; these components are described 
paragraphs. 

file-state block 
in the following 

First, however, a problem of terminology must be resolved. In PL/I, the 
source of input and the destination of output is called a data set; but in 
l1ultics, it is called a file. This difference is observed when it is necessary 
to distinguish between the PL/I view of input/output, as in "a keyed sequential 
data set", and the Multics view, as in "an indexed Multics file". The word 
"file" is also used as a PL/I term, and in that usage, it refers to the 
combination of the file-state block and the data set; thus, the phrase "open a 
file" actually refers to the setting of a certain file-state block to control 
input/output with a certain data set. 

File-State Blocks 

Transmission of values between the PL/I processor and a Multics file 
requires bookkeeping data. This data is stored in a portion of system storage 
called a file-state block. \'lhen a file is open, the file-state block contains 
the designator of a Multics file and other information about input/output in 
progress. After the file is closed, the only information in the file-state 
block that is meaningful is that supplied by the attributes, if any; in the 
declaration of the file constant name. A file-state block cannot be accessed 
directly, but its values are changed when input/output is performed on the data 
set with which it is associated. 

15-3 AM83 



The following values in a file-state block are relevant to record 
input/output: 

• The status indicator. This value shows whether the file-state block 
is open or closed. 

• The data set designator. This value points to the Multics file that 
is associated with the file-state block. 

• The file name. This value is a character string that is the 
identifier that is the name of the constant file value that designates 
the file-state block. 

• The file attributes. These attributes are those associated with the 
current use of the file-state block. 

• The current record and next record indicators. These values point to 
the current position of input/output operations within the given data 
set. 

In addition to the items just listed, there are other items, such as buffers, 
that are not of immediate interest tD a programmer. 

File References 

A file-state block is designated by a file value, and the file value is 
supplied by a file reference in a 'file' option. The file reference can be a 
reference to a constant, a variable, or a function. 

A file constant reference is a name that has been declared with the 
following attributes: 

[

external] file 

internal 
[ constant] 

The default rules provide that the scope attribute can be omitted if it is 
'external'. The 'constant' attribute can be omitted in any case, as indicated 
by the square brackets. 

Everv file constant name must have an associated file description. It is 
recommended that this file description be given when the file is opened, as 
described later in this section, under "The 'open' Statement". However, PL/I 
does allow the programmer to write any portion of the file desription attributes 
in the declaration of the file constant name. 

Each declaration of a file constant name associates the name with its own 
file-state block in static system storage. The only exception is the 
declaration of a given name in several different blocks as 'external file 
constant'; in this case, the declarations all refer to a single file-state 
block, as is required by the interpretation of the 'external' attribute. A 
given file constant name and its associated file-state block can be used for 
more than one data set 1n the course of a process by any number of PL/I 
programs. For example, a file-state block can be opened for input from a stream 
data set, closed, opened for updating a record data set, closed again, and so 
on. 

15-4 AM83 



A file variable reference or a file function reference 
variable reference or a function reference of any other type. 
exceptional features of file variable names are: 

is similar to a 
However, two 

• The default scope of a 'file' variable name is 'external', whereas the 
default scope for most other variable names is 'internal'. 

• The attribute 'variable' must be used explicitly for a file variable 
name because the default for a name of type 'fil~' is 'constant'. 

FILE ATTACHMENT 

The Multics I/O system uses a software construct, the I/O switch, to 
control the source or destination of an input/output operation. A PL/I 
file-state block is attached to a Nultics file through a named switch. The 
switch name and the file na~e are the same for an external file. For an 
internal file, a unique name is generated for the switch. 

Two operations, attachment and opening, are associated with I/O switches. 
When an I/O switch is attached, the source or target and the I/O module that 
performs the input/output are established. When an I/O switch is opened, a 
particular mode of processing is established. 

Attaching a Switch 

An I/O switch can be attached either at ~o~Qand level by the 'io call' 
command or within a PL/I program by the execution of an input/output statement. 
If the switch is not attached when the 'open' statement f0r the associated file 
is executed, the information in the 'title' option is used to attach the switch. 
An I/O switch attached by the execution of an 'open' statement for a file is 
detached when the 'close' stateMent for the file is executed. If an I/O switch 
is already attached, neither the 'open' nor t~e corresponding 'close' statement 
has any effect on the switch's attachment. 

ATTACH DESCRIPTION 

7he 'title' option contains the attach des~ription. The attach description 
specifies an I/O module to perform the input ~r output o?eration and the file or 
device to be used as the source or destinatio~ far these operations. For record 
input/output the following I/O modules can be ~sed: 

I/O Hodule 

vfile_ 
syn_ 
record_streaQ 

tape_ansi_ 
tape_ibm_ 

for storage-resident files 
for synonym attachne~t 
for conversion betwee~ 
record and stream f~les 
for tape files 
for tape files 

15-5 At-183 



The form of the attach description depends upon the I/O module. For complete 
details on the attach description of a particular I/O module, see the MPM 
Subroutines or MPM Peripheral I/O. The principal features of the I/O modules, 
vfile_, syn_, and record stream are described later, in Section XVI, "PL/I in 
the Multics System." As an example of an attach description, consider the 
followir.g 'oPen' statement: 

open file(recl) title("vfile_ beta") sequential output; 

The attach description in the 'title' option specifies that the I/O module 
vfile_ is to be used to perform output to the system-resident file in the 
segment 'beta'. 

If no ~title~ attribute is given, a default attach description is formed, 
as follows: 

where fn is the file name. 

Opening a Switch 

An I/O switch can be opened either at command level by the io_call command 
or within a PL/I program by the execution of an input/output statement for the 
file associated with the switch. If the switch is not open when an 'open' 
statement is executed for the file, the information in the file description is 
used to open the switch. 

The file description attributes specify the 
switch's opening mode must be compatible with its 
are compatible with the vfile_ I/O module. For 
modes compatible with other I/O modules, see 
Guide for a table glvlng a list of all opening 
For individual descriptions of 1/0 modules, 
Peripheral I/O or MPM Communications I/O. 

Opening a File 

opening mode of the switch. A 
attachment. All opening modes 
information concerning opening 

Section V of the MPM Reference 
modes supported by I/O modules. 
see MPM Subroutines or MPM 

A PL/I file-state block, or file, is opened by the execution of the first 
input/output statement referencing the file. The file name, title, and file 
description are passed to the Multics I/O System to open the file. If any of 
these options is not explicitly given, a default assumption is derived from the 
input/output statement. 

The Multics I/O system uses the title to attach the switch if it is not 
already attached and the file description to open the switch if it is not 
already open. Then the Multics I/O system returns a data set designator. This 
data set designator makes the connection between the PL/I data set and the 
Multics file. The data set designator is stored in the file-state block for use 
when an input/output operation is performed on that filA. 

9/78 15-6 AM83A 



RECORD INPUT/OUTPUT OPERATIONS 

A summary of record input/output operations is given here. It introduces 
terminology, shows how data sets are manipulated, and gives a general view of 
the record input/output facility. 

When a data set is opened for output, the contents of the data set are 
discarded and the data set is ready to accommodate the writing of new records. 
\lhen a data set is opened for input, the contents are retained and the data set 
is made available for reading of its records. When a data set is opened for 
update, the contents are retained and the data set is made available for 
reading, writing, deleting, or rewriting of records. When a sequential data set 
is opened for 'input' or 'update', the next record indicator is set to designate 
the first record of the data set. The contents of a data set remain accessible 
to PL/I in this way until the data set is closed. 

A given input/output operation uses either the keyed or the sequential 
properties of a data set, but not both; and this distinction is useful in the 
description of record input/output. A keyed operation uses the key supplied by 
an input/output statement to find the record to be operated on. A sequential 
operation uses the current record or next record indicators for this purpose. 

When a record is created and assigned a value it is said to have been 
written. A keyed write operation places the new record and its key in its 
proper sequential position to maintain the ascending sequence of keys. An 
unkeyed write operation places the new record at the end of the data set. In 
either case, the value is copied into the record exactly as it appears in the 
referenced variable in PL/I storage. 

A keyed read operation begins by locating the record that has the specified 
key and designating it as the current record. A sequential read operation 
begins by designating the next record as the current record (and thus advancing 
by one record). In either case, the value of the current record is then copied 
into the designated unit of PL/I storage. If the storage type of the record and 
the storage unit are not identical, the operation is invalid. 

A keyed delete operation begins by locating the record that has the 
specified key and designating it as the current record. A sequential delete 
operation begins by finding the current record. In either case, the current 
record is then discarded, with the result that there no longer is a current 
record; that is, the current record indicator is set to null. 

A rewrite operation replaces an existing record with a new record. If the 
data set is an unkeyed 'sequential' data set, then the new record must have 
exactly the same storage type as the old record. For a keyed 'indexed 
sequential' data set, there is no such restriction. 

The based input/output operations are a relatively specialized facility. 
When based input is performed, PL/I automatically allocates storage with storage 
type identical to the record; and thus a record can be input even when its 
storage type cannot be predicted by the programmer. 

15-7 AM83 



A broad spectrum of errors can occur during record input/output. An 
a~tempt to modify a record in a data set that was opened for output is a 
programming error. The input of a record whose structural attributes do not 
agree with the designated PL/I storage unit may be an input-data error. 
Inaccurate transmission of a value between a data set and PL/I storage is a 
system error. And finally, an attempt to read beyond the end of a sequential 
data set may not be an error at all but rather a convenient way of ending an 
input loop. PL/I detects these conditions when they occur and the programmer 
can provide an "on" unit to respond to each condition with suitable actions. 

OPENING AND CLOSING FILES 

When a file is opened, the file-state block is marked "open" and the data 
set designator, control parameters, and indexes are set in the block. When a 
file is closed, the file is marked "closed" and only information provided by the 
file declaration is meaningful. 

A file is opened when the first input/output statement referencing the file 
is executed. The purpose of the 'open' statement is to provide the title and 
file description for the file opening. However, both these options can be 
omitted from the 'open' statement, and, in that case, a default assumption is 
made. If an 'open' statement is not given for a file, the attributes for the 
file opening are derived from the first input/output statement executed. If a 
file is already open when an open statement is executed, the 'open' statement 
is completely ignored. 

open Statement 

An open statement gives a file value, a title for a Multics file, and a 
file description. Consider the statement 

open file(subscriber) title("vfile_ grp>reg") keyed sequential update; 

In this statement, the file value is given by the file constant name 
'subscriber', the title is the Multics attach decription 'vfile_ grp>reg', and 
the file description is 'keyed sequential update'. The statement is interpreted 
as follows: 

• If the associated I/O switch is not attached, the attach description 
in the 'title' option is used to perform the attachment. 

• If the associated I/O switch is not open, the file description is used 
to establish its opening mode. If the switch is already open, its 
opening mode is checked to see if it is compatible with the file 
description. For this statement, the Multics file must be indexed and 
must be available for both reading and writing. 

• The current record indicator and the next record indicator are set to 
the first record of the data set. 

• Finally, the file-state block is marked open'. 

15-8 AM83 



When a data set is opened for 'output', the effect is to create a new data 
set unless the 'title' option specifies an '-extend' attachment. For example, 
the statement 

open file(subscriber) title(IIvfile_ grp>reg") keyed sequential output; 

has quite a different effect than the previous example. This statement deletes 
the data set designated by 'vfile_ grp>ref' and creates a new, empty data set 
whose organization conforms to the file description. 

The 'title' option can be omitted from an 'open' statement. If the 'title' 
option is omitted, a default attach description is formed. The default attach 
description specifies the input/output module 'vfile_' and the system resident 
file designated by the file name. For example, the statement 

open file(subscriber) keyed direct output; 

is equivalent to 

open file(subscriber) title(IIvfile_ subscriber") keyed direct output; 

FILE DESCRIPTIONS 

The following diagram gives every complete file description that can be 
used to open a data set for record input/output: 

{ 
~:~~~n~~~~ct } { ~~~~~t} [environment(string value) ] record 
keyed sequential update 

A specific file description consists of one of the three lines in the first pair 
of braces, followed by one of the three lines in the second pair of braces, 
followed by an optional 'environment(stringvalue)', followed by the 'record' 
attribute. The latter is enclosed in brackets to show that it can be omitted. 
There are other rules for shortening a file description, but they are 
complicated and their use is not recommended. 

During the time a data set is open under a given file description, the 
attributes in that file description determine which input/output operations are 
permitted. The attributes with which the file description begins determine 
whether the operations can be keyed, sequential, or both, as follows: 

keyed direct permits keyed operations only 

sequential permits sequential operations only 

keyed sequential permits both keyed and sequential operations 

15-9 AH83 



The attribute with which the file description continues deternines the kind of 
statement that can be used to perform input/output, as follows: 

output 

input 

update 

permits the use of a 'write' or 'locate' statement only 

permits the use of a 'read' statement only 

permits the use of a 'write', 'read' , ' delete', or 
'rewrite' statement only; however, a 'write' statement is 
permitted only if the file description includes the 
'keyed' attribute 

observe that 'update' permits almost any input/output statement; however, it 
does not permit the use of a 'locate' statement (which is rarely used in any 
case) or the use of a 'write' statement for a data set that is opened as unkeyed 
'sequential' . 

The 'environment(stringvalue)' attribute is used to read into or write from 
a varying string. On reading, the length of the record determines the length of 
the varying string, and on writing, the length of the varying string determines 
the length of the record. The length field of the varying string and unused 
space in the string are not written and, in this way, space is conserved in the 
file. 

'close' Statement 

The close statement has a simple form, as indicated by the following 
example: 

close file(subscriber); 

This statement marks the file-state block 'subscriber' closed. In addition, it 
clears and frees any buffers which have been allocated and set by previous based 
input/output operations. These buffers are discussed under "Based 
Input/Output", later in this section. 

KEYED INPUT/OUTPUT OPERATIONS 

When an input/output statement contains a 'key' or a 'keyfrom' option, it 
performs keyed input/output. The file on which such a statement operates can 
usually be either 'direct' or 'sequential', but it must be 'keyed' in any case. 

15-10 AM83 



Keyed 'write' Statement 

Consider the statement: 

write file(employee) keyfrom(ssno) from(item(3»); 

The file 'employee' must be a 'keyed output' or 'keyed update' file. The 
statement attempts to create a new record in the file 'employee' under the key 
given by the value of the character-string variable named 'ssna'. If the file 
is 'keyed sequential output'~ the key given by 'ssno' must be greater than any 
key already in the file (so the record goes at the end of the file); otherwise, 
the 'key' condition occurs. The created record becomes the current record and 
its value is the current value of 'item(3)'. However, the operation fails and 
the 'key(employee)' condition occurs if there is already a record in 'employee' 
under the key given by 'ssno'. 

There are two ways to create a keyed sequential data set. The efficient 
way is to write the records in the order of ascending keys; and to achieve this, 
the programmer opens the data set as 'keyed sequential output'. The less 
restricted way is to write ~he records in any order and let Multics sort them 
out; and to do this, the programmer opens the data set as 'direct output'. 

Keyed 'read' Statement 

The 'read' statement with the 'key' option is used for keyed input from a 
file. Consider the statement: 

read file(employee) key(ssno) into(rec.main); 

The file 'employee' must be a 'keyed input' or 'keyed update' file. The 
statement attempts to find a record in the file 'employee' that has the key 
given by 'ssno'. If such a record is found, it becomes the current record and 
is read into the PL/I storage designated by 'rec.main'. The operation fails and 
the 'key(employee)' condition occurs if there is no record in 'employee' under 
the key given by 'ssno'. 

The key associated with a record is a data field in the file outside the 
record, although it can, of course, be duplicated within the record. 

Input and output values must be matched exactly. Suppose the following 
statements are executed in sequence: 

write file(employee) keyfrom(ssno) from(item(3)); 

read file(employee) key(ssno) into(rec.main); 

If 'item(3)' and 'rec.main' have exactly the same structural attributes, these 
statements are equivalent to: 

write file(employee) keyfrom(ssno) from(item(3»; 

rec.main = item(3); 

15-11 AM83 



The appearance of an assignment statement is natural, since a value is being 
transmitted, by way of a record, from one variable to another. However, the 
equivalence just given breaks down when the structural attributes of 'item(3)' 
and 'rec.main' are not exactly the same. When data types do not match, PL/I 
does not convert the value, and when aggregate types do not match PL/I does not 
attempt to promote. Instead, any disagreement of structural attributes is an 
error. 

Keyed 'delete' Statement 

The 'delete' statement with the 'key' option is used for the keyed deletion 
of an existing record from a file. Consider the statement: 

delete file(employee) 

The file 'employee' must be a 'keyed update' file. This statement attempts to 
delete a record from the file 'employee' under the key given by 'ssno'. The key 
is deleted from the file as well as the record, so the key is unused in this 
file after the delete operation. The 'key(employee)' condition occurs if there 
is no record in 'employee' with the key given by 'ssno'. If the file opening is 
sequential, the current record indicator and next record indicator are both set 
to the record following the deleted record. 

Keyed 'rewrite' Statement 

The 'rewrite' statement with the ~key' option is used to write a new 
version of an existing record in a keyed file. Consider the statement: 

rewrite file(employee) key(ssno) from(correction); 

The file must be a 'keyed update' file. This statement attempts to output a 
record to the file 'employee' and enter it under the key given by 'ssno'. The 
new value of the record is taken from the variable 'correction', and the old. 
value of the record is destroyed. The 'key(employee)' condition occurs if there 
is no record in 'employee' under the key given by 'ssno'. 

Since the 'write' statement uses the 'keyfrom' option to specify the key, 
the programmer may be tempted to use a 'keyfrom' option in the 'rewrite' 
statement; but this is a syntactic error. In PL/I, the 'key' option is used 
when a statement attempts to find a given key in a file (as in the 'read', 
'delete', and 'rewrite' statements), and the 'keyfrom' option is used when a 
statement attempts to introduce a given key into the file (as in the 'write' 
statement). 

15-12 At183 



Example of Keyed Input/Output 

Suppose a simple list of subscribers to a monthly magazine is stored as a 
keyed sequential file. Each record gives the name and address of a subscriber 
and the date of expiration of his subscription. The key for each record is a 
12-character string which is made up of the zip code and other identifying 
information. The problem is to extend the date of expiration of subscribers as 
their subscriptions are renewed. The program is as follows: 

RENEW: proc; 
dcl sysin file; 
dcl given file; 
dcl skey char(12) var; 
dcl 01 subs, 

02 name char(30) var, 
02 address char(60) var, 
02 expire, 

03 month dec(2), 
03 year dec(2); 

open file(given) direct update; 
do while ("1"b); 

get list(skey); 
if skey = "END" 

then do; close file(given); return; end; 
read file(given) key(skey) into(subs); 
year = year+ 1 ; 
rewrite file(given) key(skey) from(subs); 
end; 

end; 

An example of input for the program is: 

"94305HARSA82" 
"02139STEIS95" 
"20742MARTB61" 
"ENDII 

This procedure reads keys from the input stream 'sysin' and adds 1 to the year 
of expiration for the corresponding record. The fact that the subscription file 
is declared to be 'direct' does not imply that the data set is not sequential; 
it only means that this use of the data set will not depend on whether or not it 
is sequential. Indeed, a later example in this section uses this same file for 
sequential input/output. 

SEQUENTIAL INPUT/OUTPUT OPERATIONS 

When an input/output statement does not contain a 'key' or a 'keyfrom' 
option; it performs ~equenti~l input/outputo The file on which such a statement 
operates must have the 'sequential' attribute. 

15-13 Al-183 



Sequential 'write' Statement 

Consider the statement: 

write file(subscriber) from(cust); 

The file 'subscriber' must be an unkeyed 'sequential output' file. The 
statement creates a new record at the end of the file, and the current value of 
'cust' is assigned to the record. 

Sequential 'read' Statement 

The 'read' statement without the 'key' option is used for sequential input 
from a file. Consider the statements: 

read file(subscriber) into(cust); 

and 

read file(employee) keyto(ssno) into(cust); 

The file 'subscriber' must be a 'sequential input' or 'sequential update' file 
(keyed or not), and the file 'employee' must be a 'keyed sequential input' or 
'keyed sequential update' file. The indicator associated with the file is moved 
to the next record; that is, the current record indicator in the file-state 
block is given the value of the next record indicator, which is then advanced 
one record. Then the value of the new current record is assigned to 'cust' in 
PL/I storage. The :keyto(ssno)~ option causes the key associated with the 
current record to be assigned to 'ssno' in PL/I storage. 

The 'read' statement can also be used to skip over records in a sequential 
file. Consider the statement: 

read file(subscriber) ignore(3); 

The file 'subscriber' must be a 'sequential input' or 'sequential update' file 
(keyed or not). If the next record indicator designates the ith record of the 
file, then 'ignore(3)' moves the indicator to the (i+3)th record. The current 
record indicator is then given the same value as the next record indicator. 
Thus a subsequent sequential read, rewrite, or delete will reference this 
record. If the end of the file is reached before the operation is complete, the 
current record indicator is set to the null record and the 'endfile(subscriber)' 
condition is signalled. The argument of the 'ignore' option must be greater 
than zero. 

Sequential 'delete' Statement 

The 'delete' statement without the 'key' option is used for deletion of the 
current record of the file. Consider the statement: 

delete file(subscriber); 

The file 'subscriber' must be a 'sequential update' file (keyed or not). The 
statement causes the current record to be deleted. The current record indicator 
and next record indicator are both set to the following record. 

15-14 AM83 



Sequential 'rewrite' Statement 

The 'rewrite' statement without the 'key' option is used to write a new 
version of an existing record in a sequential file. Consider the statement: 

rewrite file(subscriber) from(renewal); 

The file must be 'sequential update' (keyed or not). The statement replaces the 
contents of the current record with the value of 'renewal' in PL/I storage' and 
the old value of the record is destroyed. If the file is not 'keyed', the~ the 
replacement value must have the same storage type as the former value of the 
record. 

Example of Sequential Input/Output 

Once again a list of subscribers to a monthly magazine is stored as a keyed 
sequential file. The problem is to read through the file sequentially, checking 
each record in turn to see if the subscription has run out. Those records that 
represent expired subscriptions are copied into another keyed sequential file. 
The program is as follows: 

TARDY: proc; 
dcl given file; 
dcl tardy file; 
dcl skey char(12); 
dcl 01 subs, 

02 name char(30) var, 
02 address char(60) var, 
02 expire, 

03 month dec(2), 
03 year dec(2); 

open file(given) keyed sequential input; 
open file(tardy) keyed sequential output; 
on endfile(given) goto EXIT; 
do while("1"b); 

read file(given) keyto(skey) into(subs); 
if 12*year+month < 12*74+3 
then write file(tardy) keyfrom(skey) from(subs); 
end; 

EXIT: close file(tardy); 
close file(given); 
end; 

The program tests for subscriptions that expired before March 74. Its most 
interesting point, however, is the use of 'keyed sequential' output. These 
attributes require that 'tardy' be written in order of ascending keys; and this 
requirement is satisfied, since the program is copying from a file, glven', 
that is 'keyed sequential' and necessarily satisfies the requirement. The 
program would still be valid if 'tardy' were declared 'keyed direct', but the 
useful fact that the records will be written in order of ascending keys would 
not be made explicit and PL/I might not perform the output as efficiently as 
possible. Therefore the declaration 'keyed sequential' is best. 

15-15 AM83 



BASED INPUT/OUTPUT OPERATIONS 

Based input/output is a rather advanced and difficult technique of PL/I 
programming. Fortunately, based output is not important in Hultics PL/I and 
need be given no more than passing mention at the end of this discussion. 
However, based input is useful, especially in commercial programming. 

Consider a programming application in which the following vicious circle 
arises: 

The records of a given input file are in several different structural 
forms, and therefore a particular record cannot be read into PL/I storage 
until the storage type of its values have been determined. However, the 
records indication of the 
storage type of a particular record is a code that is contained within the 
record. In short, the record cannot be read until its form is' known and 
its form cannot be known until the record has been read. 

The based input statement breaks this circle by reading a record into system 
storage and thus using a special technique not otherwise available to the user. 

Based Input 

A based input statement can be obtained by writing a 'read' statement with 
a 'set' option instead of an 'into' option. Three forms are possible, as the 
following examples show: 

read file(log) key(itemno) set(ptr); 

read file(log) set(ptr); 

read file(log) keyto(itemno) set(ptr); 

The argument of the 'set' option must be a target for a 'pointer' value. In 
each of these statements, the record is located just as it would be for the 
statement with an 'into' option; the first statement is a keyed operation, the 
second and third are sequential operations. When the record has been located, 
PL/I allocates enough storage from system storage to hold the value of the 
record, copies the record into the storage, and sets 'ptr' to point to the 
beginning of the allocated storage. 

It is useful to think of the input process as follows: PL/I examines the 
record, allocates storage with exactly the same structural attributes as the 
record, and then reads the record into that storage. This could not be done 
with an ordinary 'read' statement (with an 'into' option); there is no way that 
a program can examine a record before reading it in, and an ordinary 'read' 
statement must specify the attributes of the target before the input is 
performed. 

Once the record has been input by means of a based input statement, it is 
interpreted by using the pointer value to associate a based variable with the 
value of the record. Many techniques for the use of based variables can be 
used; but the most important ones are given in the following examples. 

15-16 AM83 



EXAMPLES OF BASED INPUT 

In the first example, a file that contains the daily transactions of a 
repair shop must be read. There are different kinds of transactions, and 
therefore different kinds of structures are required to represent them. The 
transactions covered are as follows; 

2 

3 

Purpose 

Order a replacement part, giving the part number and the source of 
supply. 

Bill a customer, giving name, address, and amount due. 

Record an internal charge, giving a cost center and a cost. 

A program is required to read through the file accumulating the credits. A Code 
1 transaction is ignored, but each Code 2 or Code 3 transaction contributes its 
'amount_due' or 'cost' to the accumulated credits. When the file has been 
completely read, the accumulated total is printed. 

If based input were not available, the file could be designed with two 
records for each transaction. The first record of any pair would give the 
transaction code and the second would be a structure describing the transaction. 
The program would read the code, choose the appropriate target for the second 
record, and then read the second record. The disadvantage of this approach is 
that it uses twice as many records as necessary, and in many cases, would nearly 
double the cost of both the storage and the processing. 

Since based input is available, the file can be written with one record for 
each transaction. Each record is a structure whose first member is the 
transaction code and whose remaining members are appropriate to the kind of 
transaction described. When a record has been read, the code is examined 
(without looking at the rest of the record) and is used to select a statement 
that will use an appropriate based variable to interpret the value of the 
record. The program is as follows: 

SUM: proc; 
dcl total pic"$$$$$$.v99"; 
dcl trans file; 
dcl sysprint file; 
dcl P pointer; 
dcl 01 order based(P), 

02 code dec(1), 
02 part_number char(12), 
02 supplier dec(3); 

dcl 01 bill based(P), 
02 code dec(1), 
02 customer, 

03 name char(20) var, 
03 address char(40) var, 

02 amount_due pic"$$$$.v99"; 
dcl 01 charge based(P), 

02 code dec(1), 
02 cost_center char(3), 
02 cost pic"$$$$.v99"; 

on endfile(trans) goto EXIT; 
open file(trans) sequential input; 
total = 0; 

15-17 AH83 



LOOP: 

L ( 1 ) : 
L(2): 

L (3) : 

EXIT: 

read file(trans) set(P); 
goto L(order.code); 
go to LOOP; 
total = total + amount_due; 
goto LOOP; 
total = total + cost; 
goto LOOP; 
put skip list("total billing:" total); 
close file(trans); 
end; 

This program is easy to read, but it is not so easy to write. The application 
of based variables to the input value must be programmed carefully because 
errors may not be detected. 

The declarations of the structures ' order', 'bill', and ' charge' are as 
might be expected from the definition of the problem. The association of the 
pointer 'P' with each of the three structures saves writing later. For example, 
'order.code' means 'P->order.code' because 'order' is declared 'based(P)'. 

The based input statement at 'LOOP:' reads the value of a 
system storage and sets 'P' to the beginning of the value. 
statement is: 

goto L(order.code); 

record into 
The important 

This statement evaluates the transaction code by overlaying the structure 
'order' on the input value and then obtaining the value of 'order.code'. The 
value of 'order.code" must be 1, 2, or 3 and the appropriate transfer to 'L(i)', 
'L(2)', or 'L(3)' is performed. 

Once the code has been examined, the correct choice for a based variable 
can be made. For example, at 'L(2)', it is known that the record represents a 
bill for a customer, and therefore reference can be made to 'amount_due'. The 
fully-qualified equivalent of this reference is 'P->bill.amount_due', and it 
means: treat the value pointed to by 'p' as if it were like the structure 
'bill' and get the value of 'amount_due' from that structure. 

15-18 AM83 



In this second example, a program generates a two-dimensional array and 
writes it out as a one-record file. Later, another program reads the array and 
processes it. It is assumed that the programs are used repeatedly in this 
sequence, and that the array may have different extents from one application to 
the next; therefore, the extents cannot be given as constants. For these 
programs, self-describing structures are used; that is, each array is 
incorporated in a structure that contains integers that represent the bounds of 
the array. The self-describing structure is designed in a special way so that 
not only the programmer knows where the extents are stored, but the PL/I 
processor also knows. The program that outputs the array is, in part, as 
follows: 

BUILD: procj 
dcl (m,n) fixed; 
dcl 01 S based(p), 

02 extents, 
03 e1 fixed, 
03 e2 fixed, 

02 A(m refer(e1):n refer(e2)); 
dcl p ptr; 
dcl X file; 

(set m and n to the desired values) ••• 

allocate S; 

..• (set the m*n values of the array) 

open file(X) sequential output; 
write file(X) fromeS); 
close file(X); 
end; 

The interesting action in this program is the 'allocate' statement. This 
statement allocates the structure'S' in system storage using the current values 
of 'm' and 'n' as the bounds for the array. At the same time, the "allocate" 
statement assigns the bounds to 'el' and 'e2', so that an explicit record of the 
bounds of the array is made. These are useful when the array is read in by the 
second program that follows: 

USE: proc; 
dcl (m, n) fixed; 
dcl P pointer; 
dcl 01 S based(P), 

02 extents, 
03 e1 fixed, 
03 e2 fixed, 

02 A(m refer(e1), n refer(e2)); 
dcl X file; 
open file(X) sequential input; 
read file(X) set(P); 
close file(X); 

.•• (make use of A) 

end; 

15-19 AM83 



Because the array is self-describing and uses 'refer' options in the proper way, 
PL/:J: "understands" that the extents of the array are given by 'e1' and 'e2'. 
Incidentally, the variables 'm' and 'n' are not used at all in 'USE'; they are 
given to cover the allocation of the array 'A', but the array is not allocated 
in this program. PLII allocates storage according to the requirements of the 
input record, not the declaration of'S'; but then a reference to 'A' is 
interpreted as if that storage had been allocated by 'allocate S;'. 

Based Output 

An ordinary output statement transfers a given value to a portion of system 
storage called an output buffer; then the actual output is performed under 
control of the operating system from that output buffer. There are certain 
techniques that permit a programmer to gain access to 
these are described in the following paragraphs. These 
used only when the need is clearly evident. 

the output 
techniques 

buffer, ... "'~ 
o.11U 

OMISSION OF THE 'from' OPTION 

It is possible to perform output directly from the input buffer; 
under certain circumstances, the 'from' option can be omitted from a 
statement, .as follows: 

rewrite file(employee) key(ssno); 

or 

rewrite file(subscriber); 

should be 

that is, 
'rewrite' 

Such a statement is allowed only if the last input operation on 'employee' or 
'subscriber', respectively, was a based 'read' operation. In that case, the 
'rewrite' statement takes its output value from the input buffer associated with 
the file by the preceding 'read' statement. Thus it is possible to read the 
value of a record into a buffer, modify it in that buffer, and write the value 
out from the same buffer. 

'locate' STATEMENT 

A second facility for programmer control of buffers is the 'locate' 
statement. The 'locate' statement is related to the 'write' statement as the 
based 'read' statement is related to an ordinary 'read'. Consider the 
statement: 

locate buf set(ptr) file(employee) keyfrom(ssno); 

The 'buf' must be a 'based' variable, and if it is declared 'based(ptr)' then 
the 'set' option can be omitted. If the file is not keyed, the 'keyfrom' option 
must be omitted. The effect of this locate statement can be described in terms 
of replacement by two other statements. The 'locate' statement itself can be 
replaced by a statement to allocate 'buf', as follows: 

allocate buf set(ptr); 

15-20 AM83 



Then, at a later point in the program, just before the next output operation on 
the file 'employee' or just before the closing of the file 'employee', the 
actions implied by the following statement are carried out: 

write file(employee) keyfrom(ssno) from(buf); 

Thus the 'locate' statement sets QQ an output buffer but the contents of the 
buffer are not written out until the last possible moment. 

SPECIAL FEATURES 

The record I/O operations of PL/I are designed to be used with record data 
sets in which the record lengths are known ahead of time (e.g., are constant 
length) or in which the records are self defining (e.g., contain the record 
length in the first word of each record). The following paragraph describes a I 
Multics PL/I feature that permits record I/O operations to be used with data 
sets containing records of arbitrary length. 

Environment (stringvalue) 

This attribute is used in the declaration of a file constant or in an open 
statement to modify the normal interpretation of record I/O for varying strings. 
When a file state block has this attribute, a 'write from' statement whose 
source variable is a varying string writes out a record containing just the 
current value of the varying string, not a complete image of its storage. 
Similarly, a 'read into' state~ent whose target is a varying string sets the 
current value of the target to be equal to the contents of the record. The 
operation will be successful as long as the record length does not exceed the 
length of the string. Here is an example: 

dcl x char(200) varying, 
y char(100) varying; 

'J - "abc"; 
rewrite file(f) key("alpha") from (x); 
read file(f) key("alpha") into (y); 

If the file f has the 'environment (stringvalue)' option, the 'rewrite' 
statement places a three character record in the file, and the 'read' statement 
sets the value of y to be 'abc'. If it does not have this attribute, the 
'rewrite' statement places a 200-character record into the file, and the 'read' 
statement raises the record condition, because the length of y's storage is 100 
characters. 

CONDITIONS FOR RECORD INPUT/OUTPUT 

In this discussion, the conditions that occur during record input/output 
are described. They are: 

endfile(ref) 
key(ref)--
record(ref) 
transmit(ref) 
undefinedfile(ref) 

where ref is a reference that yields a file value. The general rules for the 
use of conditions are given earlier, in Section XIII, "Condition Handling"; only 
a summary is given here. 

9/78 15-21 AM83A 

* 



As indicated above, each condition is defined separately for each file 
constant, and thus for each file-state block, whether it is open or not. The 
identifier 'endfile' is not a valid condition; but if 'subscriber' is declared 
'file', then 'endfile(subscriber)' is valid. 

As an example of condition handling, consider the statement: 

on endfile(subscriber) goto EXIT; 

When this statement is executed, it establishes the 'on' unit 'goto EXIT;' for 
the condition 'endfile(subscriber)'. If the 'endfile(subscriber)' condition is 
signalled, the 'on' unit itself is executed. When the block that contains the 
'on' statement is deactivated, the 'on' unit is reverted and no longer responds 
to a signal. 

When a condition occurs, PL/I takes either of two actions, as follows: 

• If an 'on' unit is established for the condition, then that 'on' unit 
is executed. If the execution of the 'on' unit runs to completion, 
control goes back to the point in the program at which the 
interruption occurred, and execution is resumed in a reasonable way 
(depending on the particular needs of the condition). 

• If no 'on' unit is established for the condition, then the default 
'on' unit is executed. The default 'on' unit for each condition is 
described earlier, in Section XIII, "Condition Handling." 

PL/I saves certain values before signalling a condition. For each kind of 
value saved, there is a stack and a built-in function. Just before the 
condition is signalled, the value is placed on the top of the stack, and after 
completion of the established 'on' unit, it is removed. The built-in function 
is used to access the value during the execution of the 'on' unit. 

When a record input/output operation causes a condition to be signalled, 
the following values are saved in the manner just described. First, the file 
name, expressed as a character-string value, is saved in the stack associated 
with the 'onfile()' built-in function. Second, if the file being operated on 
has been opened with the attribute 'keyed', then the current ~ is saved in the 
stack associated with the 'onkey()' built-in function. 

'endfile' Condition 

Suppose the file 'subscriber' is positioned so that its current record is 
the last record in the file, and suppose a sequential 'read' statement is 
executed. Since there is no next record, PL/I signals 'endfile(subscriber)'. 
If an 'on' unit is established for 'endfile(subscriber)', then it is executed; 
and if the 'on' unit runs to completion, execution of the program resumes with 
the statement after the 'read' statement that caused the condition to occur. 

Sometimes the number of records in a file is known in advance, and that 
number can be used to control the loop that reads the records. In such a case, 
an 'endfile' condition indicates an error in the preparation of the input file. 
The programmer may choose to provide an lonl unit for recovery from such an 
error or he may decide to accept the diagnostic message and program abort that 
the system supplies by default. 

9/78 15-22 AMB3A 



An occurrence of an 'endfile' condition is not necessarily an error; 
indeed, it is an excellent way to terminate a loop that processes the records of 
a file. Several of the example programs given in this section use a statement 
such as the following: 

on endfile(subscriber) goto EXIT; 

to exit from a loop that is reading the records of an input file. Such 
programming is especially elegant. A programmer writes a loop that would go on 
reading records forever if there were no end to the file. Then quite 
separately, the programmer writes an 'on' statement that determines the action 
to be taken when the end of the file is reached. This separation of activities 
makes the program easier to write and easier to understand. 

'key' Condition 

The 'key(subscriber)' condition occurs when a wrong assumption is made 
about the keys in the file 'subscriber'. That is, it occurs when a keyed 
'write' statement has a 'keyfrom' option which supplies a key which is already 
in the file; and it occurs when a keyed 'read', 'delete', or 'rewrite' statement 
has a 'key' option that supplies a key that is not already in the file. If an 
'on' unit is established for the condition 'key(subscriber)' it is executed; and 
if it runs to completion, then execution continues with the statement after the 
input/output statement in which the condition occurred. 

This condition has an important role in signalling errors in the use of a 
keyed file. It can also be used to support a legitimate inquiry about the use 
of a key in a file. For example, suppose a file of employees is keyed by social 
security numbers. Then a given number can be checked to see if its owner is an 
employee. First, the statement 

on key(employee) emp = "O"b; 

is executed. Then the following statements are used to branch according to 
whether or not the number was in the file: 

emp = "l"b; 
read file(employee) key(given_ssno) into(info); 
if emp then goto EMPLOYEE; else goto NOT_EMPLOYEE; 

'record' Condition 

The 'record(subscriber)' condition occurs when the value of a record from 
the file 'subscriber' does not fit into the storage provided by the 'into' 
option of a 'read' statement. A value fits if the number of bits it requires is 
exactly the number of machine-level bytes allocated in storage. This condition 
is implementation dependent; however, the following assertion is true for any 
implementation of PL/I: 

If the irecord i condltlon occurs, tnen the input value does not have the 
same storage type as the target given by the 'into' option of the 'read' 
statement. 

Such a condition indicates an error in the program or the input file. After an 
established 'on' unit is executed, PL/I completes its execution of the 'read' 
statement by aSSigning the value of the record to the target, truncating it or 
padding it with zero-valued bits to make it fit the target. 

9/78 15-23 AM83A 



Although it is an error to input a value that does not have the same 
storage type as the target, this condition only occurs when the number of bytes 
required by the value of the record differs from the number of bytes in the 
target. Thus, certain errors go undetected. 

'transmit' Condition 

The 'transmit(subscriber)' condition occurs when data cannot be reliably 
transmitted between the file 'subscriber' and the PL/I storage referenced in the 
statement that attempted the input or output. After an established 'on' unit is 
executed, the program resumes at the point following the input/output statement 
that caused the condition; but the value of the data transmitted by the 
statement is undefined. 

The condition is usually caused by factors beyond the programmer's control, 
such as hardware failure, so the recovery procedure usually cannot be initiated 
until the hardware is repaired. 

'undefinedfile' Condition 

The 'undefinedfile(subscriber)' condition occurs when an 'open' statement 
attempts unsuccessfully to open the file 'subscriber'. The condition can occur 
when, for example, an attempt is made to open an unkeyed data set for 'keyed' 
i n p u L 0 (' 0 u t p u L, 0 C' w hen , f 0 C' 

illegal attachment. After an 
resumes at the point following 
a series of 'open' clauses in 
'open' statement. 

9/78 

anOLner example, Lne ~tiLle~ opLion 8pecifie8 an 
established 'on' unit is executed, the program 

the 'open' clause. This point may be the next of 
an 'open' statement or the statement after the 

15-24 AM83A 



An occurrence of an 'endfile' condition is not necessarily an error; 
indeed, it is an excellent way to terminate a loop that processes the records of 
a file. Several of the example programs given in this section use a statement 
such as the following: 

on endfile(subscriber) goto EXIT; 

to exit from a loop that is reading the records of an input file. Such 
programming is especially elegant. A programmer writes a loop that would go on 
reading records forever if there were no end to the file. Then quite 
separately, the programmer writes an 'on' statement that determines the action 
to be taken when the end of the file is reached. This separation of activities 
makes the program easier to write and easier to understand. 

'key' Condition 

The 'key(subscriber)' condition occurs when a wrong assumption is made 
about the keys in the file 'subscriber'. That is, it occurs when a keyed 
'write' statement has a 'keyfrom' option which supplies a key which is already 
in the file; and it occurs when a keyed ' read', ' delete', or ' rewri te' statement 
has a 'key' option that supplies a key that is not already in the file. If an 
'on' unit is established for the condition 'key(subscriber)' it is executed; and 
if it runs to completion, then execution continues with the statement after the 
input/output statement in which the condition occurred. 

This condition has an important role in signalling errors in the use of a 
keyed file. It can also be used to support a legitimate inquiry about the use 
of a key in a file. For example, suppose a file of employees is keyed by social 
security numbers. Then a given number can be checked to see if its owner is an 
employee. First, the statement 

on key(employee) emp = "O"b; 

is executed. Then the following statements are used to branch according to 
whether or not the number was in the file: 

emp = "1"b; 
read file(employee) key(given_ssno) into(info); 
if emp then goto EMPLOYEE; else goto NOT_EMPLOYEE; 

'record' Condition 

The 'record(subscriber)' condition occurs when the value of a record from 
the file 'subscriber' does not fit into the storage provided by the 'into' 
option of a 'read' statement. A value fits if the number of bits it requires is 
exactly the number of machine-level bytes allocated in storage. This condition 
is implementation dependent; however, the following assertion is true for any 
implementation of PL/I: 

If the 'record' condition occurs, then the input value does not have the 
same storage type as the target given by the 'into' option of the 'read' 
statement. 

Such a condition indicates an error in the program or the input file. After an 
established 'on unit is executed, PL/I completes its execution of the 'read' 
statement by assigning the value of the record to the target, truncating it or 
padding it with zero-valued bits to make it fit the target. 

15-25 A~183 



Although it is an error to input a value that does not have the same 
storage type as the target, this condition only occurs when the number of bytes 
required by the value of the record differs from the number of bytes in the 
target. Thus, certain errors go undetected. 

'transmit' Condition 

The 'transmit(subscriber)' condition occurs when data cannot be reliably 
transmitted between the file 'subscriber' and the PL/I storage referenced in the 
statement that attempted the input or output. After an established 'on' unit is 
executed, the program resumes at the point following the input/output statement 
that caused the condition; but the value of the data transmitted by the 
statement is undefined. 

The condition is usually caused by factors beyond the programmer's control, 
such as hardware failure, so the recovery procedure usually cannot be initiated 
until the hardware is repaired. 

'undefinedfile' Condition 

The 'undefinedfile(subscriber)' condition occurs when an open statement 
attempts unsuccessfully to open the file 'subscriber'. The condition can occur 
when, for example, an attempt is made to open an unkeyed data set for 'keyed' 
input or output, or when, for another example, the 'title# option specifies an 
illegal attachment. After an established 'on' unit is executed, the program 
resumes at the point following the 'open' clause. This point may be the next of 
a series of 'open' clauses in an 'open' statement or the statenent after the 
'open statement. 

15-26 AM83 



SECTION XVI 

PL/I IN THE MULTICS SYSTEM 

Both the PL/I compiler and the programs it compiles execute in the Multics 
system. To compile and execute PL/I programs, the user must understand the 
fundamentals of 11ultics. This section discusses those aspects of Multics that 
are of particular interest to a PL/I programmer. Other manuals describe Multics 
in greater detail; the Multics Users' Guide provides an introduction to Multics 
and the Multics Programmers' Manual gives a detailed description. 

This section has three parts. The first part is a brief description of the 
Multics storage system. Tne second part describes the facilities of Multics 
that are used for compiling and executing PL/I programs, including the PL/I 
compiler itself, the mechanism for linking external procedures, the relation of 
a program to a Multics process, and the attachment of files. The third part 
gives the procedure for running a PL/I program in Multics and includes a 
complete example. 

STORAGE SYSTEM SEGMENTS 

The basic unit of information in the Multics storage system is the segment. 
The Multics storage system consists of two kinds of segments, namely: directory 
segments and non-directory segments. A directory segment contains a list of 
segment names and segment attributes. A nondirectory segment, or simply 
segment, contains data or code. 

Each segment has one or more absolute pathnames. An absolute pathname is a 
sequence of segment names starting from the root directory and proceeding 
through directory segments to the designated segment. A more convenient way to 
reference a segment is by its relative pathname. The relative pathname is a 
sequence of segment names starting from the user's current location in the 
storage system to the designated segment. The user's current location in the 
storage system is called the current working-directory. A working-directory, 
usually based on the user's name and project, is established by the system at 
log-in. For example, suppose a user logs in, as follows: 

login Noman 
password 

16-1 AM83 



As ,part of the log-in procedure, the system establishes a working-directory for 
the user Noman. The pathname for a typical working-directory might be: 

)udd)ProjGiant)Noman 

If the user then creates a segment 'alpha', the following pathnames apply: 

absolute pathname )udd)ProjGiant)Noman)alpha 

relative pathname alpha 

A complete discussion of the log-in procedure and the naming conventions can be 
found in the Multics User's Guide. 

Component Names 

A segment name can consist of a sequence of one or more component ~. 
The character'.' is used to separate one component name from another. For 
example, consider the following segment name: 

alpha.beta.gamma 

This segment name has three components, namely: 'alpha', 'beta', and 'gamma'. 
The Multics PL/I compiler requires that the name of the segment to be compiled 
end with the component' .p11'. The procedure 'RANGE', for example, is entered 
as a source segment named 'RANGE.pI1'. 

Entry Point Names 

A location within a segment that is known externally by a symbolic name is 
called an entry point name. Such a location can be referenced by specifying the 
segment name and the entry point name in the following way: 

where sn is the segment name and ~ is the entry point name. Uhen the segment 
name and the entry point name are the same, the reference can be abbreviated to 
simply the entry point name. For example, the entry point name 'z' in the 
segment 'y' is referred to as 'y$z'. The entry point name 'z' in the segment 
'z' is referred to as 'z$z' or, in the abbreviated form, as 'z'. 

Reference Names 

The name that a process uses to refer to an external variable or procedure 
is called a reference name. Binding between a reference name and the object it 
references is determined by the binder or the dynamic linking facility. 

16-2 AM83 



MULTICS PL/I COMPILER 

The Multics PL/I compiler produces an object segment and an optional 
listing segment. The names of these segments are derived from the name of the 
source segment. sQ, as follows: 

Segment Name 

source sn.o11 

object sn 

listing sn.list 

where §.11 is the segment name specified by the user. 

Entrr Names 

The segment 
entry point name. 

name for an object segment is not necessarily the same as the 
Consider the following procedure: 

0: Droc: 

x: entry; 

y: entry; 

end; 

This procedure has three entry point names: 'p', 'x', and 'y'. If the procedure 
is entered as a source segment named 'p.p11', the object segment is named p. 
The entry point names within the segment 'p' are as follows: 

p$p 
D$X 
p$v 

The first name can be abbreviated, according to the rules for entry point names, 
to simply P. The other names, however, must be referred to as 'p$x' and 
, p$y' . 

To avoid confusion between entry point names and segment names, the 
programmer can name each source segment with the name of its major entry. If a 
procedure has multiple entry point names, the object segment can be given 
additional names by the use of the addname command. In this way, references 
that include the character '$' can be avoided. 

For example, in the procedure 'p' just given, the object segment 
have the names 'x' and 'y' added to it. 

16-3 

p can 

A1'183 



Object Segment 

If no fatal errors are encountered in a compilation, the PL/I a compiler 
produces a standard Multics object segment, which consists of the following 
sections: 

Section 

text 

definitions 

link 

symbol 

Description 

the binary machine language program 

the set of character string names of entry points to 
this segment and of any procedures called by this 
segment. 

the prototype linkage section, to be copied into the 
linkage/static segment when the procedure is rlrst 
referenced. PL/I internal static variables are 
allocated in this section. 

the relocation bits for the text and linkage 
sections. This section is also used for the symbol 
table, if one is requested. 

A complete description of a standard Multics object segment, including an 
alternative object segment layout that has a separate static section, is given 
in the Multics Programmers' Manual. 

The print_Iink_info command can be used to obtain information about a given 
,...,h;ont ~ocrmont ...., - v - _.... - - 0 ... • ... _ ............ 

Listing Segment 

The listing segment contains the output listing produced by the PL/I 
compiler. This output listing is divided into five sections, as follows: 

Section 

source 

symbol 

error 

map 

list 

Description 

a line-numbered copy of the source segment 

a table of the names declared in the program, the 
storage requirements, and a list of external names 

a list of error messages 

an object code map, which gives for each statement 
the location of the beginning of the instruction 
sequence in the object program 

a listing of the object program in an assembly-like 
language 

By specifying control arguments in the pl1 command, the user can request one or 
more sections of the compiler output listing. If no control arguments are 
specified, no listing is produced. 

16-4 AM83 



LINKING 

A PL/I program is defined as a set of external procedures and their 
operating environment. If a program contains more than one external procedure, 
cross references between the procedures must be resolved. Similarly, references 
to external variables must be resolved. In Hultics this is normally done by a 
mechanism known as dynamic linking. For each external object referenced in a 
procedure the procedure's linkage section contains a link. This is a specially 
formatted double word that is used as a pointer value by the procedure's object 
code. The first time the link is referenced during the program's execution, a 
fault occurs. This fault causes a system routine called the linker to be 
invoked. The linker determines the pointer value that denotes the external 
object and replaces the link with this value. All sebsequent references to the 
link get the correct pointer value without intervention of the linker. 

The dynamic linking facility eliminates the need for 
operation that links together all the procedures of a program. 
development this facility has many advantages. For example: 

a preliminary 
During program 

• A program can avoid the problems associated with the use of an 
obsolete version of a procedure. As soon as an error is detected and 
corrected, the new version is available to all users. 

• A program can be tested before all the procedures it uses are 
available. Since the execution of the program can proceed until a 
missing procedure is invoked, useful debugging runs can be made. 

• A program can include references to large special-purpose procedures 
that are called only under unusual circumstances without incurring 
unnecessary overhead. 

• The target of a link can be temporarily changed, by the initiate 
command, to test a new procedure. 

The following paragraphs give more information about dynamic linking and 
briefly describe an alternative facility known as binding. For full details on 
both topics consult the Multics Programmers' Manual, Reference Guide. 

Search Mechanism 

This section explains how the linker finds the target of a link. 

For an ordinary external variable, the linker uses a system maintained 
table to find a location in a system storage pool. The location of a particular 
variable is assigned the first time a link to that variable is snapped. The 
table and storage pool are part of the user's process. 

For other external objects, the linker uses a two step method. First, it 
finds the object segment that is supposed to contain the link~s target, then it 
searches definitions in the object segment for the appropriate name. Normally 
the name resolves to a procedure entry point, but for external variable names of 
the form 'a$b', the name resolves to a data location within the object segment 
or within its static storage. For example, the name iox_$user_input, resolves 
to a ptr in the static storage associated with the system routine iox_. Object 
segments containing such external variables are created by means other than the 
PL/I compiler. 

16-5 AM83 



To find the segment containing the target of a link, the linker uses the 
reference name component of the external name and a set of search rules. The 
nopmal'search rules are as follows: 

1) Search the list of initiated reference names and segments. The first 
time a link is snapped to a segment with a particular name, the name 
is placed on this list. Subsegment links to this name resolve to the 
associated segment. In the course of a process, several names may be 
initiated for the same segment. 

2) Search the referencing directory for a segment whose name is the same 
as the reference name. 

3) Search the working directory in the same fashion. At all times the 
system denotes some directory as the working directory for the user's 
process. The user can change the working directory by use of the 
change_wdir command. 

4) In the same fashion, search a set of library directories. 

The search stops as soon as a segment with the required name is found. If 
that segment does not contain the correct entry point, an error is signalled. 

The set_search_directory and set search rules commands may be used to 
establish different search rules. See the Multics Programmer's Manual, 
Commands, for details. 

Hidden Dangers of Dynamic Linking 

The programmer who is unaware of the fundamental workings of the dynamic 
linking mechanism may experience unexpected difficulties when he attempts to 
execute programs in Multics. Most problems are caused by the fact that the 
system maintains the association between a segment name and its address 
throughout the life of the process. For example, if a programmer executes 
procedure A, which calls a library procedure X, and he then changes to a new 
working directory and executes procedure B which calls an external procedure X 
located in his new working directory, the system will establish a link to the 
original segment. 

The sa~e persistence of meaning occurs for external variables, and this is 
a more common source of trouble. Suppose, for example, that the programmer 
executes a program usin~ external file F declared as: 

dcl F file stream input; 

and then executes a program in which F is declared as: 

dcl F file record update; 

He will get an error message to the effect that the file's attributes conflict 
with its usage. This is because the first program's use of F established it as 
a 'stream input' file. 

16-6 M183 



The general problem here is that the user's program really consists of all 
PL/I procedures invoked in the process. Therefore, an external name can only be 
used for one purpose throughout the life of the process. 

A general way to get around problems of this sort, is to use the new_proc 
command before running a new program that may conflict with the old. 

Binding 

wnen a program that conslsts of several external procedures is ready for 
production, a bound segment can be created for the program by the use of the 
Multics bind command. This command packs a group of separately compiled 
procedures into a single object segment in which links within the segment are 
permanently linked and multiple outward references to the same target are 
condensed into a single outbound link. 

The creation and maintenance of the bound segment involves an additional 
step, but the execution of the program as a bound segment is efficient. In 
fact, the use of a bound segment has most of the advantages of compiling 
procedures together but avoids the problems of a large compilation. For 
example, if one of the procedures that make up a bound segment is found to 
contain an error, the procedure can be recompiled. Then, the procedures can be 
rebound using the corrected version of that compiled procedure. 

16-7 AM83 



INITIALIZATION AND ALLOCATION OF VARIABLES 

The initialization and allocation of variables, file openings, and segment 
linking are related to the duration of a process, as follows: 

• An 'internal static' variable declared with the 'initial' attribute is 
initialized the first time the linker snaps a link to its object 
segment. When the procedure is first invoked, the variable has the 
initial value. During this or subsequent invocations, the value of 
the variable may be explicitly changed: however, the value of the 
variable is not restored to its initial value at each subsequent 
procedure invocation. The value of such a variable is known 
throughout the life of a process. 

• An external static variable is allocated as described under "Linking." 
If declared with the 'initial' attribute it is initialized when 
allocated. During this or subsequent procedure invocations, the value 
of the variable may be explicitly changed; however, the value of the 
variable is not restored to its initial value at each subsequent 
procedure invocation. The value of such a variable is known 
throughout the life of a process. 

• A 'controlled' variable is allocated in system storage and remains 
allocated unless explicitly freed by the execution of a 'free' 
statement. A controlled variable has an associated control block that 
is allocated as though it were a static variable. 

• A 'based' variable can be allocated in system storage or in an area or 
can be equivalenced to an already allocated variable. Such variables 
can be allocated in permanent or per-process temporary areas. If the 
variable is allocated in a permanent area, it is available from 
process to process. However, the value of a pointer, file, entry, or 
label variable is valid only for the life of the process in which it 
is set. 

• A file opened in a process remains open for the duration of the 
process unless it is explicitly closed by the execution of a 'close' 
statement. 

16-8 AM83 



ATTACHING FILES 

The attachment of a PL/I file to a Multics file during program execution 
was described earlier in Sections XIV and XV, "Stream Input/Output" and "Record 
Input/Output," respectively. This attachment can also be performed at command 
level by the io_call command. If an 1/0 switch is attached at command level, 
any attachment specified within the program for the associated file is ignored. 
Command level attachment a~~ows a program to be device independent. A 
programmer can run the same program under different inputloutput environments by 
using different variations on the io_call command. 

Consider, for example, the following program: 

test: proc; 
dcl (a,b) file; 

open file(a) title("vfile_ alpha") stream input; 
open file(b) keyed sequential output; 

end; 

If the liD switches 'a' and 'b' are not attached when the program is executed, 
the attach description 'vfile_ alpha' is used to attach switch 'a' and the 
attach description 'vfile_ b' to attach switch 'b'. Input is then read from the 
storage system file 'alpha' and output is written to the storage system file 
'b'. The user can specify a different source and target for these files by 
attaching the switches at command level. Consider the following sequence of 
commands: 

io_call 
io_call 
test 
io_call 
io_call 

attach a 
attach b 

detach a 
detach b 

syn_ user_input 
vfile_ x 

As a result of the attachments made by the ~v_call commands, when the program is 
executed, input is read from the standard input switch and output is written in 
the storage system file 'x'. 

Note that if an liD switch is attached at command level, it must also be 
detached at command level. Furthermore, it is an error to detach an liD switch 
if the corresponding file-state block has not been closed. If there is any 
doubt about the status of a file-state block, the file_status command can be 
executed. 

The following paragraphs describe the liD switch, the io_call command, and 
the liD modules that can be specified. 

9/78 16-9 AM83A 

I 



I/O Switch 

An I/O switch contains the following items: 

• The switch name. This value is a character string that identifies the 
switch. The switch name is the same as the PL/I file name. 

• The control block pointer. This value is a pointer to the control 
block maintained by the I/O system. 

• The attach description. This value is a character string· that gives 
the I/O module and source or target for the input/output .operations. 
The for~ of the attach description depends upon the I/O module. 

• The opening mode. This value is a character string that describes the 
type of processing to be done. 

When the switch is in the detached state, the attach description is an empty 
string. Similarly, when the switch is in the closed state, the open description 
is an empty string. A switch can be open only if it is attached. 

STANDARD SWITCHES 

As part of the standard initialization of a Multics process, the switch 
~user i/o' is attached to the user's ter~inal. The following switches are 
attached as synonyms for 'user_i/o~: 

user_input 
user _output. 
error_output 

The attachment of the above three switches can be changed. 

io call Command 

The io_call command performs an operation ~n a desi~nated I/O switch. The 
operations attach and detach are described here. A co~plete description of this 
command is given in the i'1ultics Prograrnners' Ha!'lUal. 

To attach an I/O switch the following for~ is USed: 

where sn is the S\.ri tchna~e and ad is the at t:i·::!:" descript ion. 

16-10 



The attach description for each of the most commonly used 1/0 modules is 
given later in this section. 

To detach an 1/0 switch the following form is used: 

where sn is the switchname. 

The current attachment of all the 1/0 switches in a process can be obtained 
by the print_attach_table (pat) command. 

1/0 Modules 

Some 1/0 modules that are relevant to PLII stream and record inputloutput 
are described in the following paragraphs. Detailed descriptions of these and 
other 1/0 modules including modules for tape 1/0 can be found in the Multics 
Programmers' Manual. 

vfile_ 1/0 MODULE 

The vfile 1/0 module performs input from or output to a storage system 
file. The attach description for this 1/0 module has one of the following 
forms: 

vfile_ QQ -extend 

where QQ is the pathname of the segment. 

The -extend control argument indicates ~nat in an opening for output', 
information is to be added to the file; that is, the file is to be extended. 
When the file is opened for 'output', the pointer to the file is positioned to 
the end of the file. 

If the -extend control argument is not specified and the file is opened for 
output, any existing information in the file is destroyed. 

tty_ 1/0 MODULE 

The tty_ 1/0 module performs input from or output to a terminal device. 
The attach description for this module has the form: 

where dn is a character string that identifies the device. 

16-11 AM83 



syn_ 1/0 MODULE 

The 
switch. 

syn_ 1/0 module is used to attach a switch as a synonYM for another 
The attach description for this module has the following form: 

where sn is the name of the 1/0 switch whose attachment is to be used. 

The 1/0 switch sn can itself be attached as a synonym for another switch. 
However, the 1/0 switch that is the final destination of the synonym attachment 
must be attached when the switch for which it is a synonym is opened. 

The file description for any file-state block attached in this way must be 
compatible with the 1/0 module and file designated for the attached switch. 

record_stream_ 1/0 MODULE 

The record stream 1/0 module attaches a source switch to a target switch 
so that record operations on the source switch are converted to stream 
operations on the target switch or stream operations on the source switch are 
converted to record operations on the target switch. The attach description for 
this module has one of the following forms: 

record_stream_ tsn -length n 

record_stream_ -target ad 

record_stream_ -nnl -target ad 

record_stream_ -length n -target ad 

where tsn is the target switch name, n is the length, and ad is an attach 
description. 

The -nnl control argument is used for record to stream conversion. If this 
control argument is not specified for record to stream conversion, a record is 
taken from the source switch, a newline character is appended, and the resulting 
string is given to the target switch. If the -nnl control argument is 
specified, the record is taken from the source switch and given to the target 
switch without modification. 

The -length n control argument is used for stream to record conversion. If 
this control argument is not specified for stream to record conversion, a string 
of bytes ending with a newline character is taken from the source switch, the 
newline character is removed, and the resulting string is given to the target 
switch. If the -length n control argument is specified, a record is formed by 
taking n bytes from the source switch and giving these bytes to the target 
switch. 

The target switch can be specified either by name or by attach description. 
If the target switch is specified by attach description, a unique name is 
created fo~ the switch. 

16-12 AM83 



.:.::e record_str8ao_ I/O module makes it possible for record input/output 
state~en~s to process an unstructured file and for stream input/output 
sta~c2ents to procpss sone structured files. 

As an example of the use of the record_stream_ I/O module, consider the 
followi~g prograo: 

~: proc; 
dcl (a,b) file; 
dcl calc entry(char(80»; 
dcl endfile condition; 
dcl alpha char(80); . 
on endfile(a) goto exit; 
open file(a) sequential input; 
open file(b' sequential output; 

loop: read file(a) into(alpha)j 
call calc(alpha); 
write file(b) from(alpha); 
goto loop; 

exit: close file(a,b); 
end; 

If the record_stream_ I/O module is specified for the 1/0 switches 'a' and 'b', 
the record input/output of the program 'p' can be directed to a terminal. 
Consider the following sequence of commands: 

io - call attach a record - stream user_input 
io - call attach b record - stream - user_output 
p 

io call detach a -io call detach b -
The source switch 'a' is attached to the target switch 'user_input' and the 
source switch 'b' is attached to the target switch 'user_output'. Input is 
taken from the user's terminal and output is directed to the user's terminal. 
The characters in the above command sequence indicate the input/output 
produced by the execution of 'p' on the user's terminal. 

RUNNIN'J A PL/I PROGRA~1 IN HULTICS 

A PL/I progran often consists of some 
previously-compiled external procedures. 
following activities: 

new external procedures and some 
Running such a program involves the 

• Each new procedure is entered as an ASCII source segment. 

• Each new procedure is compiled into an object segment using the 
Multics PL/I compiler. 

• The progr2M is executed by typing the entry nane of a procedure as a 
NU1&lCS command. wnen a separately compiled external procedure is 
called by another procedure, it is linked dyna~ically. 

• If the program does not execute properly, a Multics debugging tool is 
used to locate the source of the error. 

• When the program is debugged, the program s performance can be 
measured and, in some cases, improved. 

The following paragraphs discuss these activities. 

16-13 AM83 



Entering an External Procedure 

To enter the source for an external procedure, the programmer uses an 
editor to create an ASCII source segment. Several general-purpose editors are 
available in Multics for the creation and editing of ASCII segments. The most 
commonly used editors are edm and qedx. 

The standard Multics text editor, edm, is easy to learn and use. The qedx 
editor is more powerful than edm but harder to learn. In addition to the 
capabilities for interactive text modification, the qedx editor has a macro 
facility that can be used to construct editing programs for the systematic 
modification of text. 

The Multics Introductory Users' Guide illustrates the use of the edm editor 
to enter a source segment. The qedx editor is illustrated later in this section 
for the same purpose. A detailed description of both of these editors can be 
found in the MPM Commands. 

Compiling an External Procedure 

To compile an external procedure, the user invokes the PL/I compiler by 
typing the pll command. The first argumen~ of the pll command identifies the 
source segment to be compiled. If the compilation is successful, an object 
segment is usually produced. 

pll COMMAND 

The pll command has the following form: 

pll path {-control_args} 

where: 

1. path 
is the pathname of the PL/I source segment. 

2. control_args 
are one or more control arguments, separated by blanks. 
arguments are optional. 

For a detailed description of the pll command, see the MPM Commands. 

9118 16-14 

These 

AM83A 



The following list gives the control arguments and abbreviations that can 
be specified in the second form. For each control argument a brief description 
is given. 

Control Argument 

-check 
-ck 

-optimize 
-ot 

-brief 
-bf 

-source 
-sc 

-symbols 
-sb 

-map 

-list 
-Is 

-table 
-tb 

-brief_table 
-bftb 

-profile 
-pf 

-severityi 
-svi 

Executing a Program 

Meaning 

perform a syntactic and semantic check of the 
program, and omit the code generation. 

optimize the efficiency of the object segment. 

produce the short form of the error message on 
'user_output' • 

produce the source section of the compiler output 
listing in the listing segment. 

produce the source and symbols sections in the 
listing segment. 

produce the source, symbols, error, and 
sections in the listing segment. 

map 

produce the complete compiler output listing (all 
five sections) in the listing segment. 

generate a full symbol table for use by symbolic 
debugging routines. 

generate a partial symbol table. 

generate additional code to meter the execution of 
individual statements. 

suppress error messages whose severity level is 
less than i (1 ~ i ~ 4). 

To execute a program, the user invokes a procedure by typing its entry name 
as a Multics command. The Multics command, in this case, has one of the 
following forms: 

where Q designates the object segment and entry point as described earlier and ~ 
is an argument. The form '~ •.• ', in the second form, indicates that one or 
more arguments 1 separated by blanks, can be given. 

A procedure that does not have any arguments is executed by typing the 
first form, as follows: 

RANGE 

t1ultics treats the external entry name as a command to locate and begin the 
execution of the segment RANGE containing the entry name RANGE$RANGE. 

16-15 AM83 



A procedure that 
using the second form. 

has only parameters declared 'char(*)' can be executed, 
For example, consider the following external procedure: 

p: proc(x,y); 
dcl (x,y) char(*); 

end; 

The procedure 'p' is executed as a Multics command, as follows: 

p alpha 

The Multics system interprets this line as the command 'p' with the arguments 
'alpha' and '1'. This command provides arguments in the same way as the 
following call statement within a PL/I program: 

call p("alpha","1"); 

When a procedure is invoked in this way, no check on the number of arguments is 
performed. If the correct number of arguments is not given, the results of the 
procedure's execution are undefined. To check the number of arguments, the cu_ 
command, described in the Hultics Programmer's Manual, can be used. 

PROGRAM TERMINATION 

If a program executes correctly, it usually returns to command level when 
the processing is complete. If a program contains errors, its termination is 
unpredictable. Sometlmes, the program completes processing but produces 
incorrect results. Sometimes, the user presses the interrupt key on his 
terminal to suspend its execution. Sometimes, the system suspends the program's 
execution due to the occurrence of an exceptional condition and returns to 
command level. 

When a program is suspended, the user can terminate its execution by typing 
the command release, can continue its execution by typing the command start or 
can invoke another procedure. When a program is suspended during debugging, the 
user can invoke one of the Multics debugging tools to locate the source, 
provided that its suspension was not due to the occurrence of a fatal error. 

Debugging a Program 

To debug a program, the user can select one of the debugging tools provided 
by the Multics system. Two useful tools for debugging PL/I programs are the 
commands probe and trace. An introduction to these debugging aids is given in 
the following paragraphs. A detailed description can be found in the Multics 
Programmers' Manual. 

16-16 Al'183 



probe C011:·IA[~D 

The probe comMand· invokes a debugging system that allows the user to 
interactively examine the state of his prograM. The probe comMand can be used 
for the following purposes: 

• to look at or modify the value of a variable 

• to set a breakpoint 

• to examine the stack of block activations 

• to invoke external subroutines and functions 

The.probe system operates in response to user requests. The user can, for 
exanple, isolate a program bug by setting breakpoints at strategic points within 
his program. When the execution of a program halts at a breakpoint, the user 
can examine the values of key variables. The execution of the program can 
continue in this way, from breakpoint to breakpoint, until the source.of the 
problem is discovered. 

The probe system requires a symbol table and statement map for symbolic 
debugging. These are produced when the table control argument is spec~fied in 
the pI1 command. 

16-17 A~183 



trace CUMMA~D 

The trace command invokes a tool for monitoring all calls to a specified 
set of external procedures. The trace command is useful for both debugging a 
program and measuring its performance. The trace command can be used for the 
following purposes: 

• to print arguments on entry or exit 

• to stop on entry or exit 

• to specify the times when the trace occurs 

• to execute a Multics command line on entry or exit 

• to meter time spent in a procedure 

The user can, for example, request that the arguments for a procedure be printed 
on entry to a procedure and, in this way, a trace of the calls on a procedure 
with the value of each of its arguments is produced. 

Measuring a Program's Performance 

The cost of executing each statement of a program can be determined by 
sPecifying the -profile control argument of the p11 command. The information 
produced is of interest to both the beginning programmer and the expert. For 
the beginning programmer, it is a guide to the economics of programming and 
restores the view of hardware cost that a high-level language otherwise 
obscures. For the expert programmer, it is an indication of the points in a 
program that are unreasonably expensive and that require refinement. 

To measure the performance of a program, the user specifies the -profile 
control argument in the pl1 command that compiles the external procedures of the 
program. When the -profile control argument is specified, additional code is 
generated to calculate statistics about the execution of each statement. After 
the program has been executed, the segment that contains the accumulated 
statistics can be examined by executing the profile command. For a further 
description of the -profile control argument and the profile command, see the 
MPH Commands. 

9/78 16-18 AM83A 



For each statement in each line of the PL/I external procedure, a line is 
printed that gives the number of times the statement was executed, the number of 
instructions executed, and the support subroutines called as a result of the 
statement's execution. For example, consider the following lines from a profile 
listing: 

LINE 

8 
10 
12 

STM COUNT 

5 

COST 

7 
10 + 2 
50 + 15 

PROGRAM 

(stream io put_end) 
(stream=io put_Iist_al put_end) 

The profile listing indicates that the statement on line 8 was executed once; 
this statement requires seven machine language instructions and does not require 
any support subroutines. The statement on line 10 was executed once; this 
statement requires ten machine language instructions and two support 
subroutines, namely stream_io and put_end. The statement on line 12 was 
executed five times; this statement requires ten machine language instructions 
and three support subroutines per execution. 

EXAMPLE OF RUNNING PL/I 

The external procedure 'RANGE', introduced earlier in Section XIV, "Stream 
Input/Uutput," is used here as an example of running a PL/I program. in the 
Multics system. A script showing the entry, compilation, and execution of the 
program 'RANGE' is given in the following paragraphs. 

The program 'RANGE' computes the range of an artillery piece fired on 
ground level. For each trajectory, 'vO' is the initial velocity, 'theta' is 
the angle of elevation, and the result, 'range', is the horizontal distance to 
impact. 

Entering the Example 

To enter the text of the PL/I source program at a terminal, the user calls 
one of the text editors available in the Multics system. For this example, qedx 
is used. The exclamation point is used to indicate lines typed by the user. 
The script begins as follows: 

9/78 

qx 
a 
RANGE: proc(); 

\f 

dcl (va, theta, range) float(15), 
g float(15) init(32.174); 

dcl sind builtin; 
do while("1"b); 

get data(vO, theta); 
if vO=O then return; 
range = «vO**2)*sind(2*theta»/g; 
put skip data(vO, theta, range); 
put skip; 
end; 

end RANGE; 

w RANGE.pI1 
q 

r 1335 1.083 10.048 311 

16-19 AM83A 

I 

I 



The log-in sequence is omitted from the script above. As t~e scri~t 
begins, the user types the com~and qx to invoke the qedx text editor. The 
append request, a, is given to the editor and the editor aw~its input. The user 
types the text of the program followed by \f to terminate the input. Finally, 
the user types the command w to urite the text as a Hulties file named 
, RANGE. pI 1 ' . 

The user is finished -wi th the text edi tor, and he passes control back to 
the Multics command level by means of the quit request, q. The syste~ responds 
with a ready message. 

Compiling the Example 

To compile the external procedure, the user invokes the PL/I cOMpiler by 
the Multics command pll. The segment just created is specified as the source 
and the control argument 'map' is specified to produce a listing seg~ent. The 
script continues as follows: 

pll RANGE -r.laP 
PL/I 

WARNING 15 
The undeclared identifier "sysprint" has been contextually declared 
as a file constant. It will acquire default attributes. 

(.'''OUTil1'' '7C:: 
nnHn~nu .J 
"sysin" 
r 1340 5.101 11.135 264 

Diagnostic remarks are printed on the te~::.i~al by the co~piler. 
case, a warning was issued, but the default interpretation is the 
interpretation. The programmer might elect to add: 

In this 
intended 

dcl (sysprint, sysin) file; 

to the program to eliminate the warning; b~t the program can be run as is. 
diagnostic messages are explicit, English-language messages; therefore, no 
of error messages is included in this manual. 

The PL/I compiler produces an object seg~ent that can be called from 
programmer's terminal or from another external procedure. 

16-20 

The 
list 

AM83 



Executing the Program 

After the procedure is successfully compiled, it can be called at the 
Multics com~and level. The script continues with the execution of the procedure 
as follows: 

RANGE 
vO=1000 theta=35; 

vO= 1.0000e+003 
vO=1000 theta=40; 

vO= 1.0000e+003 
vO=1000 theta=45; 

theta= 3.5000e+001 

theta= 4.0000e+001 

vO= 1.2800e+003 theta= 4.5000e+001 
vO=O theta=45; 
r1344 3.899 41.302 622 

range=2.9207e+004; 

range= 3.060ge+004; 

range= 5.0923e+004; 

In order to execute the program, the user simply types the name of one of its 
external entries (there is only one in this case, 'RANGE'). The user then 
calculates four trajectories, supplying 'vO' and 'theta' each time and getting 
'vO', 'theta', and 'range' back •. The program is designed so that when the user 
enters a zero value for 'vO' the program terminates. At this point, the user 
proceeds to other computing activities or logs out. 

Program Listing 

In the script above, the pl1 command was given with the control argument 
-map. The result is the preparation of a listing segment that contains the 
source, symbol, error and map sections. The symbol section is an excellent 
guide to the declaration of identifiers in PL/I, and the beginning programmer 
should request it and study it for several of his programs. It shows how PL/I 
supplies missing attributes and it shows how identifiers are declared by context 
or implication as well as by 'declare' statements. The map section gives the 
address information usually expected from a storage map, 

The listing is printed in a 132 characters/line format, which does not fit 
on this page, so it is compressed horizontally here. Otherwise, the listing for 
'RANGE' is unchanged. 

16-21 AM83 



SOURCE LISTING 

The source listing gives the version of the compiler used for the 
compilation, the time and date of the compilation, and any options specified. 
Then a line-numbered listing of the source program is given. The source listing 
for the example 'RANGE' is as follows: 

COMPILATION LISTING OF SEGMENT RANGE 
Compiled by Multics PLII Compiler of November 24, 1975. 
Compiled on 03/09/76 0927.3 est Tue 

Options map 

1 RANGE: proc(); 
2 dcl (vO, theta, range) float(15), 
3 g float(15) init(32.174); 
4 do while (" 1 lib) : 
5 get data(~6, theta); 
6 if vO=O then return; 
7 range = (vO**2*sind(2*theta))/g; 
8 put skip data(vO, theta, range); 
9 put skip; 

10 end; 
11 end RANGE; 

Symbol Listing 

The symbol listing gives the names declared in the external procedure, the 
storage requirements, and the external names. The symbol listing for the 
example 'RANGE' is as follows: 

NAMES DECLARED IN THIS COMPILATION. 

IDENTIFIER OFFSET LOC STORAGE CLASS DATA TYPE 

NAMES DECLARED BY DECLARE STATEMENT. 
g 000103 automatic float bin(15) 
range 000102 automatic float bin( 15) 
theta 000101 automatic float bin(15) 
vO 000100 automatic float bin(15) 

NAME DECLARED BY EXPLICIT CONTEXT. 
RANGE 000037 constant entry 

NAMES DECLARED BY CONTEXT OR IMPLICATION. 
sind builtin function 
sysin 000016 constant file 
sysprint 000014 constant file 

STORAGE REQUIREMENTS FOR THIS PROGRAM. 

Object Text Link Symbol Defs Static 
Start 0 0 260 304 171 270 
Length 530 171 24 210 66 2 

ATTRIBUTES AND REFERENCES 

initial dcl 2 set ref 2 7 2 
dcl 2 set ref 7 8 
dcl 2 set ref 5 7 8 
dcl 2 set ref 5 6 7 8 

external dcl 1 ref 1 

internal ref 7 
set ref 0 5 
set ref 0 8 9 

External procedure RANGE uses 150 words of automatic storage 

16-22 AM83 



THE FOLLOWING EXTERNAL OPERATORS ARE USED BY THIS PROGRAM. 
return ext_entry get_end put_end stream_io 

NO EXTERNAL ENTRIES ARE CALLED BY THIS PROGRAM. 

THE FOLLOWING EXTERNAL VARIABLES ARE USED BY THIS PROGRAM. 
sysin sysin.fsb sysprint sysprint.fbs 

Offsets and locations of variables and the starting positions agd ~engths 
under "STORAGE REQUIREMENTS" are given in octal. Thus the variable vo is 
stored at decimal location 64 of the procedure's stack frame. 

Error Listing 

The error listing gives the error diagnostics. The error report of the 
example 'RANGE' is as follows: 

'i'lARNING 75 
The undeclared identifier "sysprint" has been contextually declared as a file 
constant. It will acquire default attributes. 

WARNING 75 
The undeclared identifier "sysin" has been contextually declared as a file 
constant. It will acquire default attributes. 

Map Listing 

The map listing gives the starting locations in the object code for each 
statement of the source language. The map for the example 'RANGE' is as 
follows: 

LINE LOC 
1 000036 
7 000117 

LINE LOC 
2 000056 
8 000131 

LINE LOC 
4 000060 
9 000156 

LINE LOC 
5 000104 

10 000167 

LINE LOC 
6 000115 

11 000170 

The locations are given in octal. Thus the decimal location of the 
statement on line 2 is word 46 of the object segment, word zero being the first 
word in the object segment. 

16-23 Al'183 



APPENDIX A 

GUIDE TO PL/I STATEMENTS 

A brief description of each of the PL/I statements is given in this 
appendix. The emphasis is on the syntax of the statements rather than on the 
interpretation. The entries are arranged in alphabetical order according to the 
initial keyword of each statement. 

PRELIMINARY REMARKS 

The statement descriptions given in this appendix have three parts: the 
syntax diagram, the supplementary rules, and the brief interpretation. The 
syntax diagram is enclosed in a box and uses the special notation described 
later. In the description of the 'signal' statement that appears in this 
appendix, the following syntax diagram is given: 

signal cd 

This diagram defines the 'signal' statement as "the identifier 'signal', 
followed by a cd, followed by a ';'" The supplementary rules provide 
information about the statement that is not given in the diagram. For the 
'signal' statement, th~ supplementary rules are just the clause: 

where cd must be a condi tion designator-' 

This clause defines the syntactic variable, cd, so that the diagram can now be 
interpreted as "the identifier 'signal', followed by a condition designator, 
followed by a ';'11. The brief interpretation discusses the action taken by the 
statement and refers the reader to the appropriate section(s) of this manual for 
a complete definition. For the 'signal' statement, the brief interpretation is: 

The statement signals the condition designated by cd. 
XIII, "Condition Handling." 

Syntax Notation 

See Section 

The following paragraphs are a complete description of the notation that is 
used in the syntax diagrams. Many examples are given. 

A-1 AM83 



BASIC CONSTRUCTS 

In a syntax diagram, an underlined identifier is a syntax variable; it 
represents a set of constructs that is defined somewhere else, either in another 
diagram or in the text. Certain other parts of a diagram, described in the 
following paragraphs, are used for special purposes, such as indicating a list 
of items. All the remaining characters in the syntax diagram are literal 
constructs. Thus in the diagram already given for the 'signal' statement, the 
underlined identifier 'cd' is a syntax variable and 'signal' and ';' are taken 
literally. 

The syntax variables and literal constructs of a diagram are separated from 
one another by blanks. According to the "Separation Rules" given in Section V, 
"Program Syntax," these blanks can be replaced by newlines, tabs, and comments; 
and; in some places~ blanks can be inserted or omitted. Thus, for example, a 
'signal' statement can be written as: 

signal 
fixedoverflow; 

This statement was obtained by replacing the first blank as a newline and 
omitting the blank between the condition designator and the semicolon. 

LIST OF ITEI'1S 

in a syntax diagram, the characters, are not interpreted literally; 
instead, they indicate a list of items separated from one another by commas. 
Similarly, the characters' ... ' indicate a list of items separated by blanks. 
The items in the list are specified by the construct that precedes the , ... 
or 

As an example, consider the syntax diagram for the assignment statement, 
VJhich is: 

target, ... = ~ ; 

This rule is a short way of specifying one of the following forms: 

target = e . - , 
target , target = ~ ; 

target, target, target, = ~ 

(etc.) 

A-2 AH83 



This notation does not imply that the targets must be identical; for example, a 
valid assignment statement is: 

S3(2),X,alpha = M; 

This statement has three different targets. 

As a second example, consider the syntax diagram for the 'free' statement, 
which is: 

free {ref1 in(ref2)} , ... 
Here, each item in the list has the form: 

ref'1 in(ref2) 

This example shows that the construct that precedes the 
sequence of constructs enclosed in curly braces. 

CHOICE OF ITEMS 

, ... can be a 

In a syntax diagram, a vertical list of items enclosed in curly braces 
indicates a choice among those items. As an example, consider the syntax 
diagram for the 'goto' statement: 

{ 
goto } ref 

go to 

This rule is a short way of specifying the following forms: 

goto ref; 

go to ref; 

OPTIONAL ITEHS 

In a syntax diagram, a construct enclosed in square brackets is optional. 
As an example, consider the syntax diagram for the 'if' statement: 

if Q then ex 1 [ else ex2 ] 

This rule is a short way of specifying the following forms: 

if Q then ex1 else ex2 

if Q then ex1 

Not all optional features of statements are marked as such in the syntax 
diagrams; too many brackets obscure the syntax diagram. However, a construct 
that is optional is always mentioned in the supplementary rules that follow a 
syntax diagram. This treatment is accorded primarily to the PL/I constructs 
called options. 

A-3 AH83 



RECURSIVE DIAGRAMS 

Occasionally, a diagram 
contains that syntax variable. 
for declaration: 

that defines a certain syntax variable also 
As an example, consider the following definition 

{ 
id } [ level] -
(declaration, ... ) 

In this diagram, the choice of the 
recursion and produces something like: 

alpha fixed external 

[ attribute ... ] 

first alternative in the braces avoids 

However, the choice of the second alternative introduces a parenthesized list of 
declarations; for example: 

(sysin,sysout) file 

or even: 

(x, (y,z) float, beta) controlled 

Parts of a Statement 

A statement is composed of a prefix, followed by statement body, followed 
by a semicolon. A prefix is composed of a sequence of any number (possibly 
zero) of condition prefixes followed by a sequence of any number (possibly zero) 
of label prefixes. For some statements ('declare' and 'default'), a condition 
prefix must not be used. For some statements ('procedure', ' entry', and 
'format') a label prefix must be used. 

A condition prefix has the form: 

( id, ... 

where each id is an identifier indicating the enabling or disabling of a 
condition. A label prefix has the form: 

where id is an identifier and int is an optionally-signed decimal integer. 

The parts of a 
Syntax." The role of 
"Condition Handling." 
"Program Flo\-l." 

statement are described fully in Section V, "Program 
the condition prefix is defined in Section XIII, 
The role of the label prefix is defined in Section XI, 

A-4 



Soecific Conventions 

Every ref8rence or expression nentioned in the state~ent descriptions must 
yield a scalar value unless an exception is explicitly noted. 

The following syntactic variables are usedthroURhout this appendix with 
the given meaning: 

~, ~, e2, and so on, represents an arbitrary expression 

ref, refl, ref2, and so on, represents an arbitrary reference to a 
constant, variable, or function. 

id represents an arbitrary identifier 

target represents an arbitrary variable reference or pseudo-variable 

Other syntactic variables are used for specific statenents, and their meanings 
are given in the supplementary rules that follow the diagraM in which they are 
used. 

ALLOCATE 

{
allocate} .{ l' d 

in(refl) 
alloc 

set(ref2) } , ... 

where id must be a 'controlled' or 'based' variable name, ref1 must yield an 
area variable, and ref2 must yield a locator variable. The options are selected 
as follows: 

• If id is 'contrOlled', then both options must be omitted. 

• Suppose id is 'based'. If id is declared 'based(g)', then the 'set' 
option can be omitted and 'set(g)' is assumed; otherwise, the 'set' 
option must be given. 

• If id is a 'based' variable intended for allocation in system storage 
rather than in an area variable, then the 'in' option ~ust be omitted. 

• Suppose id is a 'based' variable intended for allocation in an area. 
It" ref2 is declared ' offsetC§)', then the 'in' option can be omitted 
and 'in(~)' is assumed; otherwise, the 'in' option must be given. 

The options can be given in any order, but the order shown above is recommended. 

The statement allocates storage. If id is 'controlled', storage is 
allocated in system storage and is stacked on any previous allocations of ide 
If id is 'based' J storage is allocated either in system storage or the area 
given by the 'in' option; then the locator variable given in the 'set' option is 
set to designate the allocated storage. 

A-5 AH83 



I 

I 

ASSIGN 

..-­, -------------.-r 
I 

target, •.. = e 

I , , 
-,----------------------, 

The expression e is evaluated and its value is assigned to the storage 
specified by each target. The expression e can be any kind of PLII expression, 
scalar or aggregate. A target can be a varIable reference or a pseudo-variable. 
Each target must designate a storage unit that can accommodate the value of ~ 
after the value has been subjected to an allowed conversion of its storage type. 
See Section X, "Value Assignment." 

BEGIN 

begin [options (non_quick)] 

--I , 

The statement is the first statement of a 'begin' block. A 'begin' block 
has two purposes: it groups together the statements contained in the block and 
it delimits the scope of the names declared in the block. The 
'options(non quick)' attribute may be used with the 'begin' statement. See 
Sections V and XI, "Program Syntax" and "Program Flow," respectively. 

CALL 

call ref(!, ..• ) 

-r , 

where, if there are no arguments, the parenthesized argument list, '( !, ... )', 
can be omitted or written as 'C)'. 

The statement invokes a procedure. The ref is evaluated to give an entry 
value. A procedure block is entered at the 'procedure' statement or 'entry' 
statement designated by the value of ref and the procedure is executed for the 
given argument list. The argument list must contain one argument for each 
parameter in the statement at which the procedure is entered. The procedure 
must not return a value for an invocation by a 'call' statement. See Section 
XII, "Procedure Invocation." 

9/78 A-6 AM83A 



CLOSE 

close file(ref) , ... 
--r 

I 

The statement closes one or more files. Each ref specifies a file value, 
and the corresponding file is closed if it is not already closed. See Sections 
XIV and XV, "Stream Input/Output" and "Record Input/Output," respectively. 

DECLARE 

{
deClare} declaration, ••• 
dcl 

where: 

declaration is defined as 

level 
( id 

l ( declaration, 

and where level is an unsigned decimal integer. 
preceded by-a-condition prefix. 

The statement must not be 

The statement declares one or more identifiers. An identifier is declared 
by associating with it a set of attributes and, in the case of a component of a 
structure, a level number. See Section VI, "Declarations." 

9/78 A-7 AM83A 



I 

DEFAULT 

The 'default' statement allows a programmer to extend and modify the 
defaults that are built into PL/I for the declaration of identifiers; in 
addition, it allows the programmer to specify declarations that he wishes to 
have flagged as errors even though they are otherwise valid in PL/I. The 
'default' statement is not recommended for use in an individual program; rather, 
its application lies in the establishment and maintenance of special standards 
for all programs written for a given project or at a given computing 
installation. The 'default' statement is not described here, but a full 
description appears in the PL/I Language Specification. 

DELETE 

delete file(ref) key(~) 

The options are selected as follows: 

o The 'key' option must be omitted if the file is not 'keyed'. 

o The 'key' option cannot be omitted if the file is 'direct'. 

The options can be given in any order, but the order shown above is recommended. 

The statement deletes a record from a data set. The record is specified by 
the file value given by the 'file' option and the character-string value given 
by the 'key' option (if present). See Section XV, "Record Input/Output." 

9/78 A-8 AM83A 



I:: ;While(~) ) 

multiple-do 

where: 

multiple-do is defined as 

do target = repeat ~ \vhile(~) ) 

e8 while(~) 

, ... 
while(~) 

by tl to 

The options and clauses are selected as follows: 

• The option ' while (~)' can be omi t ted. In that case, 'while (" 1 "b)' is 
assumed. 

• The 'by tl' clause can be omitted. In this case, 'by l' is assumed. 

• The 'to e8' clause can be omitted, provided that the 'by' clause is 
not omitted. In this case, the end test associated with the 'to' 
clause is not performed. 

The 'by' clause and the 'to' clause can be interchanged. 

The first of the three forms, 'do;', is the first statement of a 
noniterative g£QQQ. The statements contained in the group are executed exactly 
once. 

The second of the three forms, ' do while <'~..1) : " is the firs t statement of 
an unindexed iterative g£QQQ. Execution of the group begins with a while test. 
The expression e1 is evaluated and must yield a bit-string value. If all of the 
bits are zero bits, then execution is complete; otherwise, the statements in the 
group are executed and another execution of the group begins (with another while 
test). 

The third of the three forms, 'do target = , is the first statement 
of an indexed iterative grOUD. The statement provides an index, specified by 
target, that is used to control the repeated execution of the statements in the 
group. As the second syntax diagram shows, there are three ways to control the 
index; their interpretation is not given here. See Section XI, "Program Flow." 

A-9 AM83 



end [id] 

This statement is the last statement of a group, a 'begin' block, or a 
procedure. The optional identifier id is a closure label; its use is not 
recommended. See Sections V, XI, and XII, IIProgram Syntax", "Program Flow", and 
"Procedure Invocation," respectively. 

entry( id, ... ) [returns( dec1 )] 

where: 

• The statement must be immediately contained in a procedure. 

• The statement must begin with at least one label prefix; however, no 
label prefix can have a subscript. 

• If there are no parameters, the parameter list '( id, ... )' can 
either be omitted or written as 'C)'. 

• Each identifier in the parameter list must be a level-one variable 
name declared in the immediately containing procedure. 

• The number of parameters in the parameter list must equal the number 
of arguments in the argument list of the 'call' statement or function 
reference that invoked this entry. 

• The 'returns' attribute must be omitted or must appear depending on 
whether the entry is invoked by a 'call' statement or a function 
reference. 

• dec1 is the declaration of the value that is returned by the procedure 
when it is invoked at this entry. 

The statement provides an additional entry to a procedure. The entry can 
differ from other entries in its position within the procedure, in its parameter 
list, and in its 'return' attribute. Thus, one procedure can be invoked in 
several different ways if 'entry' statements appear in the procedure. 

A-10 AM83 



FORMAT' 

format (format-list) 

where the statement must be preceded by at least one label-prefix and~ 

format-list is defined as 

n format-item 

I 
format-item 

[ ~ ~ )] {(fOrmat-list 

, ... 

where n is an unsigned integer and the format-items are as follows: 

a(w) 
b(w) 
f(li,fw,dm) 
e(,li,fw,ms) 
c(part1,part2) 
P"K" 
x(e) 
column(.§.) 
skip(.§.) 
line(.§.) 
page 

transmit a character string value representation 
transmit a bit string value representation 
trans~it a fixed-point value representation 
transmit a floating-point value representation 
transmit a complex value representation 
transmit a pictured value representation 
skip.§. character positions 
skip to column.§. of a line 
skip .§. lines 
skip to line.§. of a page 
skip to the next page 

In these format items, li (width) is the number of characters in an input or 
output field, fw (fraction width) is the number of fractional digits in the 
value representation, d~ (decimal multiplier) is a power of ten, ms (mantissa 
significance) is the number of digits in the mantissa of a floating-point value 
representation, part1 and part2 can each be any 'f', 'e', or 'p' format item, K 
must be a PL/I picture, .§. is an arithmetic expression, and ref is a 
format-valued reference. Some of the arguments of format-items can be omitted 
and default values are then assumed. 

The statement supplies a format-list for use in an edit-directed stream 
input/output statement. The format-list provides a format item for each value 
transmitted and also provides format items to skip spaces, lines, and pages 
between value representations. See Section XIV, "Stream Input/Output." 

A-11 AH83 



free , ... 

The option is selected as follows: 

• The 'in' option must be omitted if the storage being freed is a 
controlled variable. 

• The 'in' option must be omitted if the storage being freed is a based 
variable that is allocated in system storage: 

• The 'in' option can be omitted in any case in Multics PL/I; but 
Standard PL/I requires the option for a based variable allocated in an 
area. 

The statement frees the controlled or based variable designated by ref1. 
See Section VII, "Storage Management." 

A-12 



get 

where: 

{

fileCref1) 

string(e2) 

copy(ref2) 

copy(ref2) 

input-option is defined as 

(

dataC data-ref, 

list( get-item, 

edit {C get-item, 

get-item is defined as 

skip(U) } 
input-option 

) ( format-list )} .. .I 

{ 

target 

( get-item, multiQle-do )} 

and where: 

• The get-item for a 'data' option is restricted to a simple or 
unsubscripted structure-qualified variable reference. 

• The format-list is defined under the 'format' statement in this 
appendix. 

• The multiple-do is defined under the 'do' statement in this appendix. 

The options are selected as follows: 

• The 'file' and 'string' options can be omitted. 
'file(sysin)' is assumed. 

In this case, 

• The 'copy' option can be omitted. In this case, no copy of the input 
is made. 

• The parenthesized argument '(ref2)' in the copy 
omitted. In this case, 'copy(sysprint)' is assumed. 

option can be 

• Either the 'skip' option or the input option (but not both) can be 
omitted. In this case; the corresponding skip or input is not 
performed. 

A-13 Al'183 



• The parenthesized argument '(gl)' in the 'skip' option can be omitted. 
In this case, ' skip ( 1 )' is assumed. 

• The list of input items '( data-ref, ... )' can be omitted from the 
'data' input option. In this case, a list of input items including 
every level-one variable accessible from the 'get' state~ent is 
assumed. This variation is expensive, and should not be used without 
due consideration of the cost. 

The options can be given in any order, but the order shown above is recommended. 

The statement reads value 
assigns their values to 
Input/Output." 

{
go to} ref 
go to 

representations from a 
program variables. See 

stream 
Section 

data 
XIV, 

set and 
"Stream 

The statement transfers control to the statement specified by the value of 
ref. See Section XI, "Prograo Flow." 

A-14 AH83 



if ~ then ex1 [else eX2] 

where ex1 and ex2 are executable units. An executable unit is defined as: 

a &£QYQ (a 'do' statement, other statements, and an 'end') 
a begin-block (a 'begin' statement, other statements, and an 'end') 
an independent statement (any statement which acts alone). 

An independent statement is any statement except the following: 

declarative statements: 'declare' and 'default' 
dependent statements: 'format' ,'do' ,'begin' ,'procedure' ,'entry','end'. 

The 'else ex2' clause can be omitted, giving a statement of the form: 

if ~ then ex1 

The statement evaluates ~ to produce a bit-string value. If the bit-string 
value contains a '1' anywhere (and therefore represents "true"), then ex1 is 
executed and ex2 is skipped. If the bit-string contains only '0' bits, then exl 
is skipped and ex2 is executed. If the 'else' clause is omitted, then no. action 
is performed when the bit-stri~g.contains only '0' bits. 

LOCATE 

locate id set(refl) file(ref2) keyfrom(~) 

The options can be omitted as follows: 

• The ' set' option can be 
(elsewhere) as 'based(g)', 
case, 'set(g)' is assul7led. 

o~itted provided that id is ·declared 
where g is a locator qualifier. In this 

• The 'file' option cannot be OMitted. 

• The 'keyfrom' option nust be ol7litted if the file designated by ref1 
does not have the 'keyed' attribute. 

The options can be given in any or-der, but the order shown above is recommended. 

The statement allocates storage for the based variable id and sets the 
locator variable specified by refl. The allocated storage serves as a. buffer, 
and values can be assigned to it by subsequent state~ents. Then, ~hen the next 
output statement is encountered (or the file is closed), the ontents of the 
buffer are output. Output is directed to the file desisnated y ref2 using the 
key given by §. (if the 'keyfro::1' option occurs). See Se~t 0:1 XV, "Record 
Input/Output." 

.A-15 At183 



I 

I 

I 

NULL 

The statement does nothing. It can be used where an executable-unit is 
called for, as in the 'if' and 'on' statements. See SectIons XI and XIII, 
"Program Flowh and "Condition Handling", respectively. 

(")u 
vu 

---'I 

on cr-list [snap] 'on' unit 

where cr-list is a 
'on' unit IS: 

a begin block 
a sta"t'emenr--

list of 

the keyword 'system' 

I 
I 
I 

condition references separated by commas and 

If the 'on' unit is a 'begin' block, then a 'return' statement can appear only 
if it is within a procedure within the 'begin' block. If the 'on' unit is a 
statement, then it must not be any of the following: 

declarative statements: 
dependent statements: 
other excluded statements: 

'declare' and 'default'. 
'format','do','begin','procedure','entry','end'. 
'on','revert','if','return'. 

If an 'on' statement begins with a condition prefix, that prefix applies only to 
the evaluation of the condition name. If the 'on' unit is a 'begin' block or a 
statement, it can have its own condition prefixes, but it cannot have a label 
prefix. 

The statement establishes the 'on' unit as the action which will be taken 
when any conditions in cr-list are signalled. If 'snap' appears~ the Multics 
probe command is called if the program is running interactively. If the program 
is running in absentee, the trace stack command is called. Therefore, either 
probe or trace stack is called Just before the 'on' unit is invoked. If 
'system' is used-as the 'on' unit, the PLII default 'on' unit for the condition 
is invoked. See Section XIII, "Condition Handling." 

9178 A-16 AM83A 



OPEN 

open {file(ref1) title(e1) linesize(e2) pagesize(e3) fd} , ... 

where: 

where fd (the file description) is defined as: 

{

input 
stream 

output [print] [environment (interac ti ve) 1 } 

record 
{

' sequential t ~nput1 
keyed sequential tout put environment(stringvalue) 

keyed direct update 

The options and attributes are selected as follows: 

9/78 

• The 'file' option cannot be omitted. 

• The 'title' option can be omitted. In this case, 'title(vfile fn)' 
is assumed, where fn is the file name specified by the 'file' option. 

• The 'linesize' and 'pagesize' options must be omitted unless the file 
description includes 'output print'. 

• The 'linesize' option can be omitted when the file description 
includes 'output print'. In this case, 'linesize(132)' is assumed for 
most devices (including the printer) but the line size is 
device-dependent for a terminal that uses the tty_ 1/0 module. 

• The 'pagesize' option can be omitted when the file description 
includes 'output print'. In this case, 'pagesize(60)' is assumed for 
most devices (including the printer) but the page size is infinity for 
a terminal that uses the tty_ 1/0 module. 

• The 'stream' and 'record' attributes can be omitted because they can 
be deduced from other attributes given in the file description. 

• The 'output' attribute can be omitted if the file description contains 
the 'print' attribute. 

• The 'environment' attribute can be abbreviated to 'env'. 

• The 'keyed' attribute can be omitted if the file description includes 
the 'direct' attribute. 

A-17 AM83A 



I 

The statement supplies information to control the transmission of data 
between a data set and program storage. The information is stored in a 
file-state block designated by the file value supplied by ref1 in the 'file' 
option. The data set to be used is designated by the character-string value 
supplied by el in the 'title' option. The format of a printed page of output is 
specified by-rntegers supplied by e2 and'e3. The intended use of the data set 
is specified by the file description. -See Sections XIV and XV, on "Stream 
Input/Output" and "Record Input/Output," respectively. 

PROCEDURE 

procedure 
id, ••• ) [attribute •.• ][recursive] 

proc 

where: 

• The statement is the first statement of a procedure block. 

• The statement must begin with at least one label prefix; however, no 
label prefix can have a subscript. 

• If there are no parameters, the parameters list '( id, ••• )' can 
either be omitted or written as 'C)'. 

• Each identifier in the parameter list must be a level-one variable 
declared immediately within the procedure. 

• The number of parameters in the parameter list must equal the number 
of arguments in the argument list of the 'call' statement or function 
reference that invoked this entry. 

• The 'returns' attribute must be omitted or must appear according to 
how the procedure is invoked by a 'call' statement or a function 
reference. If the 'reducible' attribute is given, 'irreducible' 
cannot be given. 

The 'option' attribute may not specify the keyword 'constant'. It may 
specify 'support' only if the 'procedure' statement heads an 'external 
procedure'. It also may specify the word 'non quick'. If the 
'options(main)' attribute appears in an 'external procedure' statement 
and it is the first procedure invoked in a run unit, then the 
'external procedure' is considered the 'main procedure'. 

• dec1 is the declaration of the value which is returned by the 
procedure when it is invoked at this entry. 

• The 'recursive' keyword must be used in Standard PL/I if the procedure 
is recursive. This keyword is ignored by Multics PL/I, which assumes 
that all procedures are recursive. 

The order in which the attribute and 'recursive' keyword are given above is 
recommended, but the reverse order is permitted. 

The statement provides the principal entry to a procedure. 
'entry' statements can be used to provide additional entries to 
procedure. See Section XII~ "Procedure Invocation." 

9/78 A-18 

One or more 
the same 

AM83A 



put jfilecrefll {::::ce~~nece2l} I 
lstringC targetl 

output-option 

where: 

output-option is defined as 

put-item, 

put-item, 

I
dataC 

listC 

edit {c put-item, ) ( format-list )} . ..1 
put-item is defined as 

{

§.3. 

C put-item, multiple-do l} 

and where: 

• The expression, §.3., in a put-item for a 'data' option is restricted to 
a variable reference. 

• The format-list is defined under the 'format' statement in this 
appendix. 

• The multiple-do is defined under the 'do' statement in this appendix. 

The options are selected as follows: 

• The 'file' and 'string' options can be omitted. In this case, 'file 
(sysprint)' is assumed. 

• The 'skip' option, 'page' option, 'line' option, and output-option can 
be omitted in any way provided one of them remains. In these cases, 
the corresponding output operation will not occur. 

• The parenthesized argument '(~)' in the 'skip' option can be omitted. 
In this case, ' skip ( 1 )' is assumed. 

• The list of output items '( put-item, .•. )' can be omitted from the 
'data' output option. In this case, a list of output items including 
every level on variable accessible from the 'put' statement is 
assumed. 

A-19 Al183 



The options can be given in any order, but the order shown in the syntax diagram 
is recommended. 

The statement takes values from program storage (or computes values) and 
writes their representations into a stream data set. See Section XIV, "Stream 
Input/Output." 

read file(ref1) 
{

key (e 1 ) } 

keyto(target) I 
into(ref2) I 
set(ref3) 

ignore(e2) 

The options are selected as follows: 

• The 'key' option must be omitted if the file is not 'keyed' or if the 
'ignore' option is used. 

• The 'key' option cannot be omitted if the file is 'direct'. 

• The 'key to' option must be 
sequential' or if the 'ignore 

omitted if the 
option is used. 

file is not 'keyed 

The options can be given in any order, but the order shown above is recommended. 

The statement reads a record from a data set or skips records in a 
sequential data set. The data set is specified by the file value given in the 
'file' option. The 'key' option gives a character-string value used to locate a 
record. The 'key to' option gives a storage unit suitable for a character-string 
value representing a key. The 'into' option provides storage for an input 
value. The 'set' option provides storage for a pointer to a system buffer into 
which (if this option is used) the record will be read. The 'ignore' option 
gives the number of records to be skipped as an integer value. See Section XV, 
"Record Input/Output." 

A-20 Mi83 



RETURN 

---------------, 
I 

return e ) ] 

The parenthesized expression must appear if the statement returns to a function 
reference, and must be omitted if the statement returns to a procedure call. 

The statement terminates execution of a procedure and returns control to 
the function reference or 'call' statement that invoked it. If this is a return I 
from a 'main procedure', then this is the same as a 'stop' statement. See 
Section XII, "Procedure Invocation." 

REVERT 

revert ~, 

where cr must be a condition reference. 

The statement reverts each condition name provided it was established by an 
'on' statement in the current block. See Section XIII, "Condition Handling." 

REWRITE 

~ ~-~----~~.--~-~~~ --~-~~----..... 
I 

rewrite file(ref1) key(~) from(ref2) 

The options are selected as follows: 

• The 'key' option must be omitted if the file is not 'keyed'. 

• The 'key' option cannot be omitted if the file is 'direct'. 

The options can be given in any order, but the order shown above is recommended. 

The statement replaces a record in a data set. The record to be replaced 
is specified by the file value given by the 'file' option and the 
character-string value given by the 'key' option. The new value for the record 
is supplied by the reference in the 'from' option. See Section XV 1 "Record 
Input/Output." 

9/78 A-21 AM83A 



SIGNAL 

signal cr 

where cr must be a condition reference. 

The statement signals the condition designated by cr. See Section XIII, 
"Condition Handling." 

STOP 

stop 

This statement terminates the program if executed within a run unit. If it 
is not executed within a run unit, control is returned to the Multics command 
processor in such a way that the remainder of the command line is executed. 

WRITE 

write file(refl) keyfrom(~) from(ref2) 

The options are selected as follows: 

• The 'key' option must be omitted if the file is not 'keyed'. 

• The 'key' option cannot be omitted if the file is 'direct'. 

The options can be given in any order, but the order shown above is recommended. 

The statement adds a record to a data set. The destination of the record 
is specified by the file value given by the 'file' option and the 
character-string value given by the 'keyfrom' option (if present). The value 
for the record is supplied by the reference in the 'from' option. See Section 
XV, "Record Input/Output." 

9/78 A-22 AM83A 



APPENDIX B 

NEW FEATURES 

This appendix has been added to the manual to describe two new features 
that will be installed for MR7.0. They are: unsigned binary and 4-bit decimal. 
For the next revision of the manual, these features will be incorporated into 
text and all related topics will reflect their addition. At the present, 
however, the text of the main part of the manual has not been changed. 

'signed' AND 'unsigned' ATTRIBUTES 

The 'signed' and 'unsigned' attributes are both nonstandard and both only 
apply to arithmetic values. They influence the representation of values in 
storage. Real arithmetic data may be stored in variables with or without a sign 
and storage sharing requires that the variables sharing storage are either 
'signed' or 'unsigned', as well as data types and alignment. 

The 'signed' attribute has the following constraints: 

• 'signed' arithmetic variables always contain storage to represent the 
sign of their value 

• 'signed' is assumed if 'unsigned' is not specified 

• 'signed' may be specified for 'fixed' or 'float' variables 

The 'unsigned' attribute has the following keyword and abbreviation: 

Keyword Abbreviation 

unsigned uns 

and has the following constraints: 

9/78 

• 'unsigned', unaligned arithmetic variables do not contain storage to 
represent the sign of their value 

• 'unsigned' must be specified; it is not assumed 

• 'unsigned' variables may only contain nonnegative values 

• 'unsigned' variables may only be specified for 'real', 'fixed', 
'binary' variables 

• the 'size' condition occurs when a negative value is assigned to a 
variable whose declaration contains the 'unsigned' attribute 

B-1 AM83A 



'9-bit' AND '4-bit' DECIMAL 

In Multics PLII, decimal data may be stored in one of two ways: as '9-bit' 
decimal or as '4-bit' decimal. Aligned decimal data, which is the default, is 
stored as '9-bit' decimal with each digit occupying nine bits. Unaligned 
decimal data is stored as '4-bit' decimal with each pair of digits occupying 
nine bits. For a more complete description of standard data types, see 
"Standard Data Type Formats" in Appendix D of the MPM Reference Guide. In that 
discussion, descriptor types 9 through 12 apply to PLII '9-bit' decimal and 
descriptor types 44 through 46 apply to PLII '4-bit' decimal. Also, for a more 
detailed discussion of data descriptors, see "Subroutine Calling Sequences" in 
Section II of the MPM Subsystem Writers' Guide. 

9/78 B-2 AM83A 



HISCELLANEOUS 

$ indicator 
drifting 3-37 
leftmost 3-34 

%include macros 5-7 

& operator 9-41 

* operator 9-9 

+ indicator 
drifting 3-36 
leftmost 3-33 

+ operator 
infix 9-6 

+ operator prefix 9-6 

indicator 3-38 

- indicator 
drifting 3-36 
leftmost 3-33 

- operator 
infix 9-6 

- operator prefix 9-6 

-brief option 16-15 

-brief_table option 16-15 

-check option 16-15 

-extend option 16-11 

-length option 16-12 

-list option 16-15 

-map option 16-15 

-nnl option 16-12 

-optimize option 16-15 

-profile option 16-15, 16-18 

-source option 16-15 

INDEX 

i-1 

-symbols option 16-15 

-table option 16-15, 16-17 

. indicator 3-38 

I in comment 5-10 

I indicator 3-38 

I operator 9-8 

II operator 9-32 

9 indicator 
nonnumeric 3-43 
numeric 3-30 

< operator 
for arithmetic values 9-10 
for string values 9-37 

<= operator 
for arithmetic values 9-10 
for string values 9-37 

= operator 
for address values 9-48 
for arithmetic values 9-10 
for string values 9-37 

> operator 
for arithmetic values 9-10 
for string values 9-37 

>= operator 
for arithmetic values 9-10 
for string values 9-37 

A 

a format item 14-29 

a indicator 3-43 

abbreviations and defaults 
alignment attributes 3-63 
area attribute 3-48 
arithmetic attributes 3-8 
definition of default 3-9 
dimension attribute 3-55 

AM83 



abbreviations and defaults (cont) 
guidelines for use 3-8 
line length 14-11 
management class attributes 7-11 
ordinary string attributes 3-17 
page length 14-11 
picture attributes 3-23 
shortened variable references 8-25 

abbreviations and defaults files 
14-12 

abs function 9-16 

absolute pathname 16-1 

activation indexes 12-35 

activation internal regions 7-4 

activation pointer 12-36 

activation regions 
for procedure activation 12-10 
in recursion 12-28 

activation variable reference 12-38 

add function 9-10 

addr function 

addrel function 9-52 

addresses 
assignment of 10-2 
attributes 3-45 

9-49 

implicit locator targets 4-6 
operations 9-48 
values 2-3 

after function 9-35 

aggregate 
assignment of 10-3 
expressions 8-5 

aggregates 
aggregate type 3-49 

role of 3-2 
guidelines for 
operations on 
values 2-4 

use 3-60 
9-2 

algebraic comparison operators 

aligned attribute 3-62 

alignment types 
attributes 3-61 
role of 3-2 

allocate statement 
for based variables 7-22 
for controlled variables 7-18 
syntax diagram A-5 

allocation function 9-72 

9-10 

i-2 

allocation of storage 7-1 

ambiguous declaration 6-19 

and operator 9-41 

applicability of declarations 6-17 

approximation of arithmetic values 
for conversion 4-8 

area 
assignment of 10-3, 10-7 
attributes 3-47 
condition 7-40 
initialization of 7-6 
operations 9-48 
size 3-47 
storage 3-46 
values 2-4 

area function 9-53 

argument evaluation 
in operations 9-2 

arguments 12-2 
by-reference 12-3 
by-value 12-3 
classification of 12-3 
connected and unconnected 12-5 
guidelines for 12-8 
interpretation of 12-6, 12-10 
passing of 12-2 

arithmetic 
assignment 10-1 
constant literals 8-29 
constants 

as lexemes 5-5 
data types 3-5 
guidelines for data 3-14 
operations 9-3 
storage 3-4 
values 2-1 

arithmetic decimal-point indicator 
3-39 

array 
values 2-4 

arrays 3-53 
dimension attribute 3-54 
operations 9-53 
storage 3-57 
storage layout 3-71 
storage types 3-56 

ASCII characters 2-2, 3-16 
new line 14-2 
rlew page i 4-2 

assignment statements 10-1 
area assignments 10-7 
form of 10-4 
guidelines for 10-8 
interpretation of 10-5 

AM83 



assignment statements (cont) 
order of interpretation 10-7 
overlapping string targets 10-5 
pseudo-variables 10-9 
restrictions 10-5 
special string target 10-6 
syntax diagram A-6 

associated storage types 8-21 

asterisk extent 12-7 

atan function 
Cartesian 9-26 
ordinary 9-25 

atand function 
Cartesian 9-27 
ordinary 9-26 

atanh function 9-29 

attach description 
for record files 
for stream files 

16-10 
15-5 
14-7 

attaching files 16-9 

attributes 6-20 
classification of 6-24 
complete sets 6-20 

for built-in function names 6-23 
for condition names 6-23 
for constant literals 8-34 
for constant names 6-22, 8-39 
for generic names 6-23 
for variable names 6-21 

automatic variables 7-16 
attribute 7-10 
guidelines for 7-32 

B 

b format item 14-29 

b indicator 3-38 

base attribute 
guidelines for choice 

base attributes 3-6 

base variable 7-25 

based input 15-16 

based output 15-20 

based variables 7-20 
attribute 7-10 
guidelines for 7-34 

baseno function 9-52 

baseptr function 9-51 

of 3-15 

i-3 

before function 9-34 

begin block 
as executable unit 11-4, 11-19 
as program structure 5-18 
in general recursion 12-40 

begin statement 
syntax diagram A-6 

binary 
attribute 
function 

bind command 

3-6 
9-62 

7-14, 16-7 

binding 16-7 

bit 3-16 
attribute 3-16 
function 9-65 
operations 9-41 

bit values 2-3 

block 
activation of 11-19 
as program structure 
exit from 11 -1 6 

BNF snytax 5-1 

body 
of do group 11-9 

body of statement 5-14 

books on PL/I 1-12 

bool function 9-42 

Boolean values 2-3 

bounds of array 3-54 

box of storage unit 3-2 

break character 5-3 

5-18 

built-in function names 8-43 
attributes for 6-23 

built-in function references 8-42 

by-reference arguments 12-3 

by-value arguments 12-3 

C 

c format item 14-34 

call statement 12-9 
execution of 12-9 
syntax diagram A-6 

AM83 



capacity of storage 7-37 

ceil function 9-12 

chained recursion 12-28 

character 
attribute 3-16 
function 9-64 
operations 9-45 
values 2-2 

characters 2-2, 3-16 
classification of 5-2 
escape conventions 8-34 

classification 
of arguments 12-3 
of attributes 6-24 
of characters 5-2 
of conditions 13-2 
of lexemes 5-12 
of operators 5-6 
of picture indicators 3-21 
of pictures 3-22 
of statements 5-16 
of values 2-5 

clause 
declaration 6-5 

clauses 
general form 5-14 

close statement 
for record files 15-10 
for streams 14-11 

close statements 
syntax diagram A-7 

collate function 9-45 

collating sequence 9-39, 9-46 

column format item 14-40 

column position 14-5 
initialization of 14-10 

combined declarations 6-6 

command level 
attachment 16-9 

comments 
as lexemes 5-10 

common data attributes 9-5 

comparison operations 9~37 
for value addresses 9-48 

comparison operators 
for arithmetic values 9-10 

compiler 16-3 

i-4 

compiling an external procedure 16-14 

complete attribute sets 6-20 

complex 
attribute 
function 

3-5, 3-23 
9-18, 9-60 

complex arithmetic function 

complex format items 14-34 

complexvalues 2-1 

component names 16-2 

components of aggregate 3-49 

compound list items 14-22 
array variable names 14-22 
iterated list 14-23 

9-17 

structure variable names 14-23 

computational conditions 13-2 

computational values 2-5 

concatenate operator 9-32 

condition 
at tr ibute 13-6 

condition names 
attributes for 6-23 

condition prefix 13-7 
purpose of 5-13 
scope of 13-8 

conditions 13-1 
built-in functions 13-15 
classification of 13-2 
declarations of 13-7 
default enabling 13-9 
enabling and disabling 13-7 
fatal 13-13 
for conversion 4-20 
for storage management 7-39 
for stream input/output 14-44 
guidelines for 13-17 
language-defined 13-2 

computational 13-2 
input/output 13-4 
storage 13-3 
termination 13-3 

occurrence of 13-12 
principal features 13-1 
programmer-defined 13-5 
references 13-6 
signalling of 13-12 

conjg function 9-19 

consequences of if statement 11-4 

constant literals 8-29 
attributes for 8-34 
for arithmetic values 8-29 

AM83 



constant literals (cont) 
for string values 8-32 

constant names 
attributes for 6-22 

constant reference 
as destination of goto 11-16 

constant references 8-35 
to external entries 8-37 
to files 8-38 
to record files 15-4 
to statement addresses 8-35 
to stream files 14-6 

constant storage 7-13 
attribute 7-10 

containing references 8-15 

containment 
definition of 6-3 

contents 
of storage unit 3-2 

contextual declaration 6-10 

control block pointer 16-10 

control characters for streams 14-2 

control format items 14-39 

control list in do statement 11-10 

controlled variables 7-18 
attribute 7-10 
guidelines for 7-33 
stacking of 7-18 

conversion condition 4-21, 14-45 
for arithmetic target 4-7 
for bit-string target 4-16 

conversion of values 4-1 
guidelines for functions 9-69 

conditions for 4-20 
contexts 4-1 

arguments and results 4-3 
assignment statements 4-2 
assignment-like contexts 4-3 
bit-string targets 4-6 
built-ins and expressions 4-4 
character-string targets 4-5 
integer targets 4-5 
locator targets 4-6 

operations for 9-56 
targets 4-2 
to aggregate targets 4-18 
to arithmetic targets 4-7, 9-59 
to bit-string targets 4-16, 9-64 
to character-string targets 4-10, 

9-64 
to locator targets 4-18, 9-66 

convert function 9-57 

i-5 

copy function 9-32 

copy option 
in get statement 14-13 

cos function 9-24 

cosd function 9-25 

cosh function 9-28 

cr indicator 3-33 

credit indicator 3-33 

cross-section of array 8-11 

current record indicator 15-2, 15-4 
initialization of 15-8 

D 

dangling else clause 11-7 

data 
description of 1-2, 3-1 
storage 3-1 
values 2-1 

data address values 2-5 

data format items 14-28 

data frame 
of storage unit 3-10 

data set designator 14-5, 

data sets 
record 15-2 
stream 14-1 

data types 
addresses 3-45 
areas 3-47 
arithmetic 3-5 
complete attribute sets 
conversion of 4-1 
ordinary strings 3-16 
pictured strings 3-20 
role of 3-2 

data-directed input/output 

date function 9-71 

db indicator 3-33 

debit indicator 3-33 

decat function 9-36 

decimal 
attribute 3-6 
function 9-63 

15-4 

6-21 

14-16 

AM83 



decimal-point indicator 3-32 

declaration 6-1 
~bbreviations and defaults 
ambiguous 6-19 
applicability 6-17 
clause of 6-5 
combined declarations 6-6 
contextual 6-10 
establishment of fi-1 
factored declaration 6-6 
implicit 6-10 

6-6 

of built-in function names 
of condition names 6-23, 
of constant names 6-22 

6-23 
14-7 

of entry names 6-8. 
of format names 6=9 
of generic names 6-23 
of label names 6-8 
resolution of names 6-15 
short forms of 6-6 
structure declarations 6-5 

declarations 
of variable names 
simple declarations 

6-21 
6-4 

declare statement 6-4 
guidelines for 6-7 
sequential execution of 11-2 
syntax diagram A-7 

default statement 6-13 
sequential execution of 11-2 

default statements 
syntax diagram A-8 

defined variables 7-29 
attribute 7-10 
guidelines for 7-34 

delete statement 
for keyed input/output 15-12 

direct recursion 12-28 

directory segment 16-1 

disabling conditions 13-7 

divide function 9-10 

division operator 9-8 

do control 
FORTRAN 11-13 
index of 11-15 
repeat 11-12 
single value 11-11 

do group i i-8 
as consequence of if 11-6 
as executable unit 11-4 
as program structure 5-17 
body of 11-9 
index of 11-15 
iterative with index 11-10 
iterative without index 11-9 
noniterative 11-16 

do statement 
syntax diagram A-9 

dollar indicator 3-34 

dollar sign 5-3 

dot function 9-56 

double precision 3-7 

drifting-dollar indicator 3-37 

drifting-sign indicator 3-36 

dynamic linking 16-5 

for sequential input/output 15-14 E 

delete statements 
syntax diagram A-8 

descriptors 
for returned result 12-19 

designator of storage unit 3-2 

destination of goto statement 11-18 

digit indicator 3-22 

digits 5-2 

dimension attribute 3-54 

dimension function 9-54 

dimensionality of array 3-54 

direct attribute 15-9 

e (mathematical quantity) 9-21 

e format item 14-32 

e indicator 3-41 

edit-directed input/output 14-26 

editors 16-14 

edm editor 16-14 

elementary arithmetic operations 9-5 

elements of arrays 3-53 

else clause 11-3, 11-7 

empty function 9-53 

enabling conditions 13-7 

i-6 AH83 



enabling conditions (cont) 
for debugging 13-18 

end statement 12-22 
as procedure exit 12-11 
syntax diagram A-10 

end-round repetitions 14-41 

endfile condition 
for record input/output 
for stream input/output 

endpage condition 14-46 

15-24 
14-45 

entering an external procedure 16-14 

entry 
attribute 3-45 
constant names 8-35 

declaration of 8-37 

entry name versus segment name 16-3 

entry names 
gener ic 12-27 

entry points 
in another external procedure 12-23 
in same external procedure 12-23 
outside the program 12-24 

entry reference 12-22 
constant 12-23 
interpretation of 12-10 

entry references 
function 12-26 
variable 12-25 

entry statement 12-21 
syntax diagram A-10 

environment attribute 14-11, 15-9 

equivalenced based variables 7-25 

erf function 9-30 

erfc function 9-30 

error condition 13-20 

error function 9-30 

escape conventions 
for characters 8-34 

established on unit 13-13 

establishing on units 13-10 

establishment of declarations 6-1 

executable procedure segment 16-4 
name 16-3 

executable unit 11-4 

i-7 

executing a program 16-15 

exit from block 11-16 

exp function 9-21 

exponent 
of float value 3-6 

exponentiation operator 9-9 

expressions 8-1 
aggregate 8-5 
infix 8-47 
nested 8-2 
operator expression 8-46 
parenthesized 8-3 
prefix 8-47 
priority of operators 8-48 

extent 12-7 

extent functions 9-53 

extents 
evaluation of 7-6 
for areas 3-47 
for arrays 3-55 . 
for automatic variables 7-16 
for based variables 7-23 
for controlled variables 7-19 
for defined variables 7-29 
for parameter variables 7-20 
for static variables 7-18 
for strings 3-16 

external entry constant names 
declaration of 8-37 

external procedures 5=20 
binding 16-7 
compiling 16-14 
entering 16-14 
linking 16-5 

external regions 7-4 

external scope 7-14 
attribute 7-10 

F 

f format item 14-30 

f indicator 
fixed-point 3-40 
floating-point 3-42 

factored declarations 6-6 

false value 2-3 

fatal conditions 13-13 

field in stream 14-28 

AH83 



file 
a t t rib ute 3 _I~ 5 
constant references 8-38 
references 

in condition references 
to record files 15-4 

values 2-4 

file descriptions 
for record files 15-9 
for streams 14-11 

file name 14-5, 15-4 

file option 

14-5 

in close statement 14--11, 15-10 
in delete statement 15-12, 15-14 
in get statement 14-13 
in locate statement 15-20 
in open statement 14-10, 15-8 
in put statement 14-14 
in read statement 15-11, 15-14, 

15-16 
in rewrite statement 15-12, 15-15 
in write statement 15-11, 15-14 

file-state blocks 
for record files 15-3 
for streams 14-5 

files 
attachment 16-9 

record files 15-5 
streams 14-7 

opening 
for streams 14-8 
record files 15-6 

references 
for stream input/output 14-6 

filler storage 3-66 

filler zeros 3-8 

finish condition 13-20 

fixed 
attribute 
function 

3-5 
9-60 

fixed-point format items 14-30 

fixed-point picture attributes 3-22 

fixedoverflow condition 
for arithmetic target 4-8 
for conversion 4-20 

float 
attribute 
function 

3-5 
9-61 

floating-point format items 

floating-point indicator 3-41 

floating-point picture attributes 
3-22 

i-8 

floating-point values 3-6 

floor function 9-12 

flow of control 
guidelines for 
summary of 1-4 

format 
attribute 3-45 

11-1 
11-19 

format constant names 8-35 

format lists 14-41 

format statement 14-15 
in general recursion 12-40 
sequential execution of 11-2 
syntax diagram A-11 

FORTRAN control for do 11-13 

free statement 
for based variables 7-22 
for controlled variables 7-18 
syntax diagram A-12 

from option 
in rewrite statement 15-12, 15-15 
in write statement 15-11, 15-14 
omission of 15-20 

fully-qualified reference 6-17 

function references 
interpretation of 
result 12-16 

12-14 
12-15 

G 

general 
recursion 12-34 

generic entry names 12-27 

generic names 
attributes for 6-23 

get statement 14-13 
syntax diagram A-13 

goto statement 11-16 
as procedure exit 12-11, 12-15 
destination of 11-16 
in general recursion 
local attribute for 

goto statements 
syntax diagram 

guidelines 

A-14 

12-42 
11-17 

for %include macros 5-9 
for abbreviations and defaults 3-8 
for aggregates 3-60 
for arguments 12-8 
for arithmetic constants 8-32 

AM83 



guidelines (cont) 
for arithmetic data 3-14 
for assignment statements 10-8 
for built-in functions 8-45 
for condition han~ling 13-17 
for conditions 

for conversion 4-22 
for contextual declarations 6-11 
for conversion functions 9-69 
for data-directed input/output 

14-20 
for declare statements 6-7 
for default statements 6-15 
for edit-directed input/output 

14-42 
for flow of control 11-19 
for identifiers 5-4 
for implicit declarations 6-11 
for like attribute 6-13 
for list-directed input/output 

14-25 
for names 16-3 
for pictured strings 3-44 
for programmed functions 8-45 
for programs 5-20 
for storage class 7-32 
for string data 3-19 
for structures 3-50 
for studying PL/I 1-12 
for subscript list deletion 8-26 
for variable references 8-29 

guidelines for 
scope attributes 7-14 

H 

hbound function 9-54 

high function 9-47 

hyperbolic functions 9-28 

I 

identifiers 
as lexemes 5-3 
guidelines for 5-4 

if statement 11-3 
consequences of 11-4 
dangling else in 11-7 
syntax diagram· A-15 
test is 11-4 
within if statement 11-6 

imag 
function 9-18 
pseudo-variable 10-9 

imaginary outer block 6-4 

imaginary part 3-5, 10-9 

i-9 

immediate containment 
definition of 6-3 

implementation-dependent address 
functions 9-51 

implicit declaration 6-10 

implicit targets 4-4 

in option 7-22 

include macros 5-7 

inclusive-or operator 9-41 

increment of do group 11-13 

independent statement 
as executable unit 11-5 

index function 9-34 

index of do group 11-10 

indexed sequential Hultics file 15-3 

indicator 3-35 

infix operators 8-47 

infix sign operators 9-6 

initial attribute 7-10, 7-35 
evaluation of 7-6 

initialization of do group 11-13 

input at t'r i bute 
for record files 15-9 
for streams 14-11 

input/output 
conditions 
summary of 

13-4 
1-5 

insertion-character indicator 3-38 

integers 
implicit integer targets 4-5 

interactive streams 
description of 14-11 

internal regions 7-4 

internal scope 7-13 
attribute 7-10 

into option 
in read statement 15-11, 15-14 

io call command 16-10 

isub defined variables 7-31 

isubs 
as lexemes 5-7 

AH83 



isubs (cont) 
restriction of 12-3 

iterated format lists 14-41 

iterative do group 
with index 11-10 
without index 11-9 

K 

k indicator 3-41 

key condition 15-25 

key option 
in delete statement 15-12 
in read statement 15-11, 15-16 
in rewrite statement 15-12 

keyed attribute 15-9 

keyed record input/output 15-10 

keyfrom option 
in locate statement 
in write statement 

key to option 

15-20 
15-11 

in read statement 15-16 

keywords 
in statements 
versus names 

label 

5-14 
5-3 

L 

attribute 3-45 

label constant names 8-35 

label prefix 
for do statement 
for end statement 
purpose of 5-13 
to declare a name 

11-9 
11-9 

6-8 

language-defined conditions 
references 13-6 

layout conventions 11-20 

lbound function 9-54 

left-adjusted string 14-30 

13-2 

left-major order of arrays 3-51 

length function 9-40 

length of string 2-2, 3-16, 9-40 

letters 5-2 

i-10 

level numbers 3-49 

level references 8-15 

level-one variable 3-49 

lexemes 5-2 
Sinclude mac ros 
classification of 
identifiers 5-3 
isubs 5-1 
literal constants 
operators 5-6 
pictures 5-1 
punctuators 5-6 
separators 5-10 

5-1 
5-12 

5-5 

like attribute 6-11 

limit of do group 11-13 

line format item 14-40 

line number 14-5 

line option 
in put statement 14-14 

lin e size 14-5 

linemark 14-~ 

lineno function 9-11 

linking 16-5 

list option 
in get statement 
in put statement 

14-13 
14-14 

list-directed input/output 14-21 

listing segment 16-4 
name 16-3 

literal constants 
as lexemes 5-5 

local attribute 11-17 

local transfer of control 

locate statement 
syntax diagram 

15-20 
A-15 

location of variables 8-9 

locator 
attributes 3-45 
values 2-4 

locator qualifiers 8-21 

11-17 

locator-qualified variable reference 
locator-qualified deletion 8-28 

locator-qualified variable references 
8-20 

AH83 



locator-qualifiers 
deletion of 8-28 

log function 9-22 

10g10 function 9-22 

10g2 function 9-22 

logical operators 9-41 

low function 9-47 

M 

major names 8-7 

major types 10-2 

major variable 3-49 

management class 7-10 

mantissa of float value 3-6, 3-7 

manuals on PL/I 1-12 

mathematical operations 9-19 

max function 9-11 

maximum length of string 3-16 

member references 8-15 

members of structures 3-49 

min function 9-11 

mod function 9-14 

mode attributes 3-5 
for pictured storage 3-23 
guidelines for choice of 3-14 

modules 16-11 
for record files 15-5 
for stream files 14-7 
record stream 16-12 
syn 16-12 
tty- 16-11 
vfile 16-11 

multi-valued functions 9-20 

Hul tics files 14=1~, 15-2 

multiplication operator 9-7 

multiply function 9-10 

N 

name 
segment 16-1 

name condition 14-46 

name-sequence 
for declaration 6-16 
for name reference 6-17 

names 
componen t 16-2 
correspondence with storage 7-14 
deletion of 8-26 
guidelines for 
offset 16-2 
segment 

16-3 

for compiler 16-3 
special names 7-4 
versus keywords 5-3 

natural logarithms 9-21 

nested expressions 8-2 

nesting 
of blocks and groups 5-17 
of do statements 11-16 
of if statement 11-6 

next record indicator 15-2, 15-4 
initialization of 15-8 

no-suppression digit indicator 3-30 

noncomputational values 2-5 

noniterative do group 11-6, 11-16 

nonlocal transfer of control 11-17 

nonnumeric indicator 

nonnumeric picture attributes 3-22 

nonstandard operations 9-3 

nonvarying 
attribute 3-17 

normalized bounds of an array 3-56 

normalized structure levels 3-51 

not operator 9-41 

null function 9-50 

null record 15-2 

null statement 
in if statement 
syntax diagram 

11-8 
A-16 

nullo function 9-50 

number system 3-7 

number-of-digits in precision 3-7 

i-11 AM83 



numeric picture attributes 3-22 

o 

object segment 16-4 

occupation record 3-47 

occurrence of conditions 13-12 

offset 
attribute 3-45 
function 9-66 
values 2-4 

offset names 16-2 

on statement 14-11 
syntax diagram A-16 

on unit 
defaults 13-15 

on units 13-13 
establishing and reverting 13-10 
for debugging 13-18 
for file communication 13-18 
in general recursion 12-41 
restrictions 13-13 

onchar 
function 9-78 
pseudo-variable 10-13 

oncode function 9-76 

onfield function 9-77 

onfile function 9-79 
use of 15-24 

onkey function 9-77 
use of 15-24 

onloc function 9-76 

onsource 
function 9-78 
pseudo-variable 10-13 

open statement 
for record files 15-8 
for stream files 14-10 
syntax diagram A-17 

opening mode 16-10 

operands 8-47 

operations 9-1 
conventions for 9-3 

mathematical operations 
string operations 9-30 

conventions for arithmetic 
operations 9-4 

general rules 9-2 

i-12 

operations (cont) 
kinds of 

address 9-48 
area 9-48 
arithmetic 9-3 
array 9-53 
conversion 9-56 
mathematical 9-19 
strings 9-30 
system variable 9-70 

nonstandard 9-3 
summary of 1-4 

operator 9-7 

operator expressions 8-46 

operators 
as lexernes 5-6 
classification of 5-6 

optimization of expression evaluation 
8-5 

options 
general form 5-14 

options attribute 12-24 

or operator 9-41 

order of expression evaluation 8-5 

ordinary external regions 7-4 

output attribute 
for record files 15-9 
for streams 14-11 

output listing 16-4 

overflow condition 
for arithmetic target 4-8 
for conversion 4-21 

overlapping string targets 10-5 

p 

p format item 14-35 

padding for strings 3-17, 9-31 

page format item 14-40 

page option 
in put statement 14-14 

page size 14-5 

pagemark 14-1 

pageno 
function 9-71 
pseudo-variable 10-12 

AM83 



parameter variables 7-20 
attribute 7-10 
guidelines for 7-34 

parameters 12-19 
asterisk extent 12-7 
restrictions on 12-19 

parent designator 12-2, 12-37 

parenthesized expressions 8-3 

parenthesized iterated list 14-23 

partial based variables 7-28 

partial segment names 5-7 

partially-qualified reference 6-18 

passing arguments 12-2 

pathname 
absolute 
relative 

16-1 
16-1 

performance measuring 16-18 

permanent internal regions 7-4 

phase of iterative do 11-11 

picture 
attribute- 3-21 

complex 3-42 
fixed-point 3-26, 3-29 
floating-point 3-22, 3-27, 3-41 
nonnumeric 3-22, 3-43 
numeric 3-22 

attributes 
fixed-point 3-22 

classification of pictures 3-22 
guidelines for 3-44 
indicators 3-21 

arithmetic decimal point 3-39 
decimal-point 3-32 
digit 3-22 
dollar 3-34 
drifting-dollar 3-37 
drifting-sign 3-36 
floating-point 3-41 
insertion characters 3-38 
no-suppression digit 3-30 
nonnumeric 3-43 
scale-factor 

fixed-point 3-40 
floating-point 3-42 

sign 3-33 
zero-suppression 3-35 

lexemes 5-7 
storage 3-20 

arithmetic assignments 3-27 
arithmetic fetches 3-28 
character-string assignments 3-25 
character-string fetches 3-26 
interpretation of 3-23 

values 2-3 
arithmetic 3-26 

i-13 

picture (cont) 
values 

character strings 3-24 

picture format item 14-35 
character 14-38 
fixed-point 14-36 
floating-point 14-38 
use of 3-44 

pl1 command 16-14 

pointer 
attribute 3-45 
function 

nonstandard 9-52 
standard 9-66 

in recursion 12-36 
values 2-4 

position attribute 7-10, 7-31 

power operator 9-9 

precedence for operators 8-48 

precision 
attribute 3-7 
guidelines for choice of 3-15 

precision function 9-64 

prefix of statement 5-13 
condition prefix 13-7 
procedure statement 12-18 

prefix operators 8-47 

prefix sign operators 9-6 

print attribute 14-11 

print_attach_table command 16-11 

priority for operators 8-48 

probe command 16-17 

procedure block 
as program structure 5-18 
external 5-20 
in general recursion 12-39 

procedure statement 12-17 
prefix of 12-18 
syntax diagram A-18 

procedures 12-1, 12-17 
activation 12-10 
deactivation of 12-12 
execution 12-11 
exit from 12-11, 12-15 
recursive 12-20, 12-28 

prod function 9-55 

produce block 
sequential execution of 11-2 

AlvJ83 



produce statement 
sequential execution of 11-2 

product operator 9-7 

profile command 16-18 

program 5-20 
debugging 16-16 
execution 16-15 
guidelines for 5-20 
layout conventions 11-20 
monitoring 16-18 
structure of 1-3, 5-17 
syntax 5-1 
termination 16-16 
validity 1-10 

program flow 11-1 

programmed function references 8-39 

programmer-defined conditions 13-5 
references 13-6 

program_interrupt condition 14-5 

promotion of aggregates 4-18 

pseudo-variable 
in de statement 11=15 

pseudo-variables 
in input/output statements 14-24 
interpretation of 10-9 
list of 10-4 

punctuators 
as lexemes 5-6 

put statement 14-14 
syntax diagram A-19 

Q 

qedx editor 16-14 

quit condition 13-5 

R 

r format item 14-15 

read statement 
for keyed input/output 15-11 
for sequential input/output 15-14 
syntax diagram A-~O 

real 
attribute 3-5, 3-23 
function 9-18, 9-59 
pseudo-variable 10-9 
values 2-1 

real part 3-5, 10-9 

record condition 15-25 

record input/output 15-1 
attachment to Multics files 15-5 
based 15-16 
closing files 15-8 
conditions for 15-23 
data sets 15-2 
files 15-3 
keyed 15-10 
opening files 15-8 
operations 15-7 
sequential 15-13 

record stream I/O module 16-12 

recursion 12-28 
activation indexes in 12-35 
activation variable reference 12-38 
begin block 12-40 
chained 12-32 
format statement 12-40 
general 12-34 
goto statement 12-42 
on units 12-41 
parent designators 12-2, 12-37 
pointers in 12-36 
procedure block 12-39 
statement address constant 

reference 12-39 
surface 12-34 
with arguments 12-31 
without arguments 12-29 

recursive keyword 12-20 

recursive procedures 12-20 

refer option 7-24 

reference 
built-in function reference 8-42 
destination of goto 11-16 

restriction 11-18 
locator-qualified 8-20 
programmed function reference 8-39 
shortened references 8-25 
simple 8-8 
structure-qualified 8-15 
subscripted 8-11 
to variable 8-7 

references 
constant 8-35 

reI function 9-52 

related arithmetic types 3-26 

related character types 3-24 

relational operators 9-37 
for address values 9-48 
for arithmetic values 9-10 

relative pathname 16-1 

i-14 AM83 



release command 16-16 

remote format item 14-15 

remote format items 14-41 

repeat control for do 11-12 

replicators 
in initial attribute 7-35 
in picture 3-21 
in string constants 8-32 

resolution of names 6-15 
rules for 6-13 

resource reservation function 9-73 

return statement 12-22 
as procedure exit 12-11, 12-15 
assumed 11-2 
syntax diagram A-21 

returns attribute 12-19 

reverse function 9-40 

revert statement 
syntax diagram 

14-12 
A-21 

reverting on units 13-10 

rewrite statement 
for keyed input/output 15-12 
for sequential input/output 15-15 
syntax diagram A-21 

right-hand-side expression 10-4 

root block 6-4 

round function 9-13 

rounding 
for conversion 4-8 
for pictured strings 3-31 

s indicator 
drifting 
leftmost 

scalars 

3-36 
3-33 

s 

storage layout 3-67 
values 2-5 

scale attributes 3-5 
guidelines for choice of 3-15 

scale-factor in precision 3-8 

scale-factor indicator 
fixed-point 3-40 
floating-point 3-42 

i-15 

scope 
guidelines for 7-14 
of condition prefix 

scope attributes 6-22 

scope of block 5-18 

scopes 7-13 

search function 

segment 16-i 
directory 16-1 

9-43 

13-8 

executable procedure 16-4 
listing 16-4 
object 16-4 

self-describing structures 15-19 

separation rules 5-10 

separator lexemes 5-10 

sequential attribute 15-9 

sequential execution 11-2 

sequential Multics files 15-2 

set option 7-22 
in locate statement 15-20 
in read statement 15-16 

side effects 8-6 

sign function 9-17 

sign indicator 3-33 

sign operators 9-6 

sign-manipulation functions 

signal statement 14-13 
syntax diagram A-22 

9-16 

signalling of conditions 13-13 

significant digits 3-8 

simple based variables 7-26 

simple declarations 6-4 

simple defined variables 7-30 

simple variable references 8-8 

sin function 9-24 

sind function 9-25 

single precision 3-7 

single-value control for do 11-11 

AM83 



size condition 
for arithmetic target 4-8 
for conversion 4-20 
for pictured strings 3-31 

size function 9-73 

skip format item 14-40 

skip option 
in get statement 14-13 

snap keyword 13-11 

source segment 
name 16-3 

spaces 5-2 
as lexemes 5-10 

special array functions 9-55 

special characters 5-2 

special conversion functions 9-66 

special names 7-4 

special string target 10-6 

sqrt function 9-23 

stac function 9-74 

stack frame 12-10 
in recursion 12-28 

stacking controlled variables 7-18 

start command 16-16 

statement 
address values 2-3 
classification of 5-16 
parts of 

options 5-14 
attributes 5=15 
body 5-14 
clauses 5-14 
keywords 5-14 
prefix 5-13 

statement address constant references 
12-39 

static variables 7-17 
attribute 7-10 
guidelines for 7-33 

statistical analysis functions 9-29 

status indicator 14-5, 15-4 

storage 3-1 

storage class attributes 
guidelines for 7-32 

6-22 

i-16 

storage classes 7-15 

storage condition 7-39 

storage conditons 13-3 

storage layout 3-66 

storage limits 7-38 

storage management 7-1 
conditions for 7-39 
functions 9-72 
fundamental principles 7-3 
operations 7-6 

storage regions 7-4 
capacity of 7-38 
diagrams 7-5 

storage system 16-1 

storage types 3-2 
addresses 3-44 
aggregates 3-49 
areas 3-46 
arithmetic 3-4 
conversion of 4-1 
of expressions 8-3 
ordinary strings 3-16 
pictured strings 3-20 

storage unit 
box 3-2 
contents 3-2 

storage units 3-1 
data frame 3-10 
designator 3-2 
examples of 3-10, 3-18 
interpretation of 3-11 
storage type 3-3 

stream attribute 14-10 

stream input/output 14-1 
attachment to Multics files 
closing files 14-9 
conditions for 14-44 
data sets 14-1 
data-directed 14-16 
edit-directed 14-26 
files 14-4 
list-directed 14-21 
opening files 14-9 
operations 14-8 
statements 14-13 
string option 14-43 

stream pointer 14-5 
initialization of 14-10 

streams 
input 
output 
pseudo 

14-3 
14-3 
14-4 

AM83 



string 
function 9-67 
pseudo-variable 10-11 

string format items 14-29 

string option 14-43 
in get statement 14-14 

string options 
in put statement 14-14 

string overlay based variables 7-27 

string overlay defined variables 7-31 

string-type attributes 3-16 

strings 
assignment of 10-2 
attributes 3-16, 3-21 
constant literals 8-32 
constants 

as lexemes 5-5 
implicit string targets 4-5 
operations 9-30 
ordinary 3-16 
padding 3-17 
pictured 3-20 
values 2-2 

stringsize condition 
for conversion 4-22 
for string target 4-10 

structure 
storage types 3-50 

structure declarations 6-5 

structure-qualified variable reference 
name deletion 8-26 

structure-qualified variable 
references 8-15 

structures 3-49 
storage 3-51 
storage layout 3-68 
values 2-4 

subscripted variable reference 
subscript-list deletion 8-25 

subscripted variable references 8-11 

subscriptrange condition 8-11 
in goto statement 11-17 

subscripts 8-11 
deletion of 8-25 

subsets of PL/I 
for business programming 1-7 
for scientific programming 1-5 
for system programming 1-8 

substr 
function 9-33 
pseudo-variable 10-10 

subtract function 9-10 

sum function 9-55 

sunh function 9-28 

supplementary storage 3-66 

switch 
attachment 

for record files 
for stream files 

I/O 16-10 
name 16-10 
opening 

for record files 
for stream files 

standard 16-10 

switch goto statement 

15-5 
14-7 

15-6 
14-8 

11 -1 6 

syntactic validity 5-1 

syntax 
general rules 5-1 
of statements A-1 

notation A-1 

syntax of statement 
parts statement A-4 

syntax of statements 
conven tions A-5 

syn_ I/O module 16-12 

sysin stream file 14-12 

sysprint stream file 14-12 

system counter functions 9-71 

system keyword 13-11 

system variable 13-16 

system variable operations 

T 

tan function 9-24 

tand function 9-25 

tanh function 9-28 

targets 
for assignment 
for conversion 
implicit 4-4 

10-4 
4-2 

termination conditions 13-3 

9-70 

i-17 AM83 



test 
11-4 in if statement 

in while option 
11-13 

11 -9, 11 -11, 11 -1 2 , 

texts on PL/I 1-12 

then clause 11-3 

time function 9-71 

title option 
for record files 15~8 
for streams 14-10 

trace command 16-18 

transfer of control 11-9 

translate function 9-44 

transmission option 
in get statement 14-13 
in put statement 14-14 

transmit condition 
for record input/output 15~26 
for stream input/output 14-46 

trigonometric functions 9-24 

true value 2-3 

trunc function 9-12 

truncation functions 9-12 

truncation of arithmetic values 
for conversion 4-8 

tty_ I/O module 16-11 

u 

unaligned attribute 3-62 

unconnected aggregates 
restriction of 12-3 

undefined expression evaluation 8-6 

undefined file condition 
for record input/output 
for stream input/output 

underflow condition 
for conversion 4-21 

14-10 
15-26 
14-47 

for arithmetic target 4-8 

un spec 
function 9---68 
pseudo-variable 10-12 

unstructured Multics files 14-4 

update attribute 
for record files 15-9 

usage categories 7-12 

user io switch 16-10 

v 

v indicator 3-39 

v. indicatot 3-32 

valid function 

validity of programs 1-10 

values 
address 2-3 
aggregate 2-4 
area 2-4 
arithmetic 2-1 
array 2-4 
assignment of 10-1 
classification of 2-5 
conversion of 4-1 
kinds of values 2-1 
storage for 3-1 
string 2-2 
structure 2-4 

variabiliti attributes 3-17 

variable names 
attributes for 6-21 

variable references 8-7 
locator qualified 8-20 
shortened references 8-25 
simple 8-8 
structure-qualified 8-15 
subscripted 8-11 

variable storage 7-13 
attribute 7-10 

variables 3-1 

varying 
attribute 3-17 

verify function 9-43 

vfile I/O module 16-11 

w 

while option 
.L1I fORTRAN control 11-13 
in repeat control 11-12 
in single-value control 11-11 
without index 11-9 

working-directory 16-1 

i-18 AM83 



write statement 
for keyed input/output 15-11 
for sequential input/output 15-14 
syntax diagram A-22 

x 

x format item 14-39 

x indicator 3-43 

y 

y indicator 3-35 

z 

z indicator 3-35 

zero-suppression indicator 3-35 

i-19 AM83 



I 
I 
I 
I 
I 
I 

,J 

....J 

<.:J 
Z 
o 
....J 
<{ 

i­
:J 
u 

HONEYWEll INFORMATION SYSTEMS 
Technical Publications Remarks Form 

SERIES 60 (LEVEL 68) MULTICS PLjI 
TITLE REFERENCE MANUAL 

ADDENDUM A 

ERRORS IN PUBLICATION 

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION 

ORDER No.1 AM83A, REV. 0 

DATED I SEPTEMBER 1978 

~\. Your comments .. • .. ill be promptly investigated by appropriate technical personnel and action will be taken U Ly' as required. If you require a written reply. check here and furnish complete mailing address below. 

FROM: NAME __________________________________________ ~ DATE ______________ __ 

TITlE __________________________________________ ___ 

COMPANY ________________________________________ __ 

ADDRE~ ________________________________________ __ 



PLEASE FOLD AND TAPE -
NOTE: U. S. Postal Service will not deliver stapled forms 

J ' 
I 
I 
I 
I 
I 

( 
<:) 
z 
o 
.J 
« 
I­
::> 
u 

I 
I 
I 
! 
I 
I 
I 
I 

~-------------------------------------------------------------------+ 

ATTENTION: PUBLICATIONS. MS 486 

Business Reply Mail 
Postage Stamp Not Necessary if Mailed in the United States 

Postage Wilt Be Paid By: 

HONEYWELL INFORMATION SYSTEMS 
200 SMITH STREET 
WALTHAM, MA 02154 

FIRST CLASS 
PERMIT NO. 39531 
WALTHAM,MA 
02154 

I 
I 
I 
J 
I 
J 
I 
I 
I 
I 
I 
I 

-( 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

------------------------------------------------------------------------------------------------------------- ~ 

Honevweii ., 

I 
I 
I 
J 
I 
I 
t 
I 
J 
I 
I 

i 
I 
I 

C 



MULTICS PL/I REFERENCE MANUAL 
ADDENDUM A 

SUBJECT 

Additions and Changes to the Reference Manual for M ultics PUI 

SPECIAL INSTRUCTIONS 

This is the first addendum to the Multics PUI Reference Manual, Revision 0, dated June 1976. 

Insert the attached pages according to the collating instructions on the back ofthis cover. Throughout the manual, change 
bars in the margins indicate technical additions and changes; asterisks denote deletions. These changes wiil be incor­
porated in the next revision of the manual. The index has not been updated but all single quote items have been merged with 
the regular index. Also, the items in Section 13, which appeared as being in Section 14, have been corrected. The changed 
items in this addendum are: 

begin statement 
on statement 

procedure statement 
translate, search, verify built-ins 

The new items are: 
acos, asin built-ins maxlength built-in 
clock, vclock built-ins octal, hexadecimal constants 
collate9, high9 built-ins options(constant) 
currentsize built-in stacq built-in 
fixed, scaled constants read statement 
ltrim, rtrim built-ins write statement 

The following items are documented in this addendum but will not be available until MR7.0. They are: 

4-bit decimal stackbaseptr 
codeptr stackframeptr 
environmentptr 
nonvar keyword 
options(main) 

st.op statement 
unsigned binary 

Work will begin in January on a revision to this manual. This will be the first complete revision since the manual was 
originally published, so we are interested in getting information about the things you feel the book does or does not do and 
an explanation of what these things are. All of your comments will be reviewed and, depending on the time available, as 
many as possible will be incorporated in the manual. Those that are not done at this time will be kept for future revisions or 
addenda. If it is decided that a suggestion cannot be used, we will write a response to that suggestion explaining why it was 
not used. 

A questionnaire precedes the standard user remark form on the last page of ihis addendum. 

Note: 

Insert this cover after the manual cover to indicate the updating of this document with Addendum A. 

SOFrW ARE SUPPORTED 

Multics Software Release 7.0 

ORDER NUMBER 

AM83A, Rev. 0 

36668 
2.25C83 
Printed in U.S.A. 

September 1978 

Honeywell 



COLLATING INSTRUCTIONS 

To update this manual, remove old pages and insert new pages as follows: 

Remove 

title page, preface 

table'of contents 

1-1 , 1-2 

1-9, 1-10 

1-13, 1-14 

3-17, 3-18 

3-33 through 3-38 

3-55, 3-56 

5-7 through 5-10 

5-15, 5-16 

7-19 through 7-22 

1-37 through 1-40 

8-11 through 8-20 

8-31 through 8-34 

8-39, 8-40 

8-43, 8-44 

9-3, 9-4 

9-17, 9-18 

9-23, 9-24 

9-29, 9-30 

9-31 through 9-52 

9-51, 9-58 

o 71 ~"' ... ~ •• ,y'" 0 711 ;1-' I I"lllVU51J ;1-' .... 

~ 1918, Honeywell Information Systems Inc. 

9118 

Insert 

title page, preface 

v through xx 

1-1 , 1-2 

1-9, 1-10 

1-13, 1-14 

3-17, 3-18 

3-33 through 3-38 

3-55, 3-56 

5-7 t.hrol)gh 5-10 

5-15, 5-16 

7-19 through 1-22 

1-37 through 7-40 

8-11 through 8-20 

8-31 through 8-34 

8-39, 8-40 

8-43, 8-44 

9-3, 9-4 

9-17, 9-18 

9-23, 9-24 
9-24.1, blank 

9-29, 9-30 

9-37 through 9-40 
9-40.1, blank 
9-41 through 9-52 
9-52.1, 9-52.2 

9-57, 9-58 

9-71 through 9=74 
9-14.1, blank 

File No.: 1L23 

AM83A 



Remove 

9-57, 9-58 

9-71 through 9-74 

10-13. 10-14 

11-11, 11-12 

12-5, 12-6 

12-9, 12-10 

12-17, 12-18 

12-31, 12-32 

13-11 through 13-14 

14-1 through 14-4 

14-35 through 14-38 

14-43, 14-44 

15-5, 15-6 

15-21 through 15-26 

16-9, 16-10 

16-13, 16-14 

16-17 through 16-20 

A-5 through A-8 

A-15 through A-18 

A-21, A-22 

i-1 through i-19 

9/78 

Insert 

9-57, 9-58 

9-71 through 9-74 
9-74.1, blank 

10-13, 10-14 

11-11, 11-12 

12-5, 12-6 

12-9, 12-10 

12-17, 12-18 

12-31, 12-32 

13-11 through 13-14 

14-1 through 14-4 

14-35 through 14-38 

14-43, 14-44 
14-44.1, blank 

15-5, 15-6 

15-21 through 15-24 

16-9, 16-10 

16-13, 16-14 

16-17 through 16-20 

A-5 through A-8 

A-15 through A-18 

A-21, A-22 

B-1, B-2 

i-1 through i-19 

questionnaire 

AM83A 



HonevweU information Systems 
In the U.S.A.: 200 Smitfl Street, MS 486. WaIth8m. Massachusetts 02154 
In Canada: 2025 Sheppard Avenue East. WIIIowd •• Ontario M2J 1W5 

In the U.K.: Gre~ West Road. Brentford. Middesex TW8 90H 
In Australia: 124 Walker Street, North Sydney. N.S.W. 2060 

In Mexico: Avenida Nuevo Leon 250, Mexico 11, D.F. 

27537, 5e5S0, Printed in U.S.A. AMS3-00 


