HONEYWELL

MULIICS
SYSTEM
MAINTENANCE
PROCEDURES
MANUAL

SOFTWARE

MULTICS SYSTEM
MAINTENANCE PROCEDURES

SUBJECT

Maintenance Procedures for the Multics System, Including Those Details
Required for System Configuration, Startup, Shutdown, Normal Operation
(Including BCE), Backup, Dynamic Reconfiguration, Storage System Mainte-
nance, Metering, Bulk I/O Operations, and Crash Recovery

SPECIAL INSTRUCTIONS

This is the fourth revision to AM81, replacing Revision 3, dated May 1985.

Throughout the manual, change bars in the margins indicate technical addi-
tions and changes; asterisks denote deletions.

Refer to the Preface for “Significant Changes.”

SOFTWARE SUPPORTED
Multics Software Release 12.0

ORDER NUMBER
AMSB1-04 November 1986

Honeywell

PREFACE

This manual is for Multics system maintainers, system programmers, and
machine room supervisors. Its purpose is to provide them with the reference material
they need to ensure successful system operation. The manual emphasizes detailed
descriptions of sysiem maintenance concepts and functions.

For the most part, Multics operators are expected to use the Operator's Guide
to Multics, Order No. GB61, which emphasizes step-by-step instructions for
performing the most common operations tasks. Only very experienced operators, who
have developed an interest in learning more about operating Multics or need in—depth

information about a given topic, should refer to the Multics System Maintenance
. Procedures manual.

For detailed descriptions of maintenance commands, maintenance personnel
should refer to the Mu/tics Administration, Maintenance, and Operations Commands
manual, Order No. GB64. Other manuals that may be of interest to them are those
that document the major hardware modules and peripheral devices commonly used in a
Multics configuration. These manuals are listed in Section 1. For details of Multics
software concepts and organization, and for specific usage of Multics commands and
subroutines, they should refer to the following volumes of the Multics manual set:

Order

Number Title

AGI1 Multics Programmer’s Reference Manual

AG92 Multics Commands and Active Functions
AG93 Multics Subroutines and Input/Output Modules

Significant Changes in AM81-04

With Multics release 12.0, BOS becomes totally obsolete. All of the functions
which it performed have now been replaced by equivalent functions performed by
BCE. Therefore, support for BOS has been completely removed from this manual.

The disk volume recovery procedures in Section 10 and Appendix H have been
changed. Instead of using BOS SAVE, RESTOR, SAVE COPY, and TEST, they now
use BCE save, restore, copy_disk, and test_disk.

The information and specifications in this document are subject to change without notice. Consult
your Honeywell Marketing Representative for product or service availability.

©Honeywell Information Systems Inc., 1986 File No.: 1143 AMS81-04

BCE save and restore differ from BOS SAVE and RESTOR in a number of
important ways: they allow you to process multiple sets of save or restore
information, they include tape error recovery procedures, and they offer improved
abort and restart capabilities. A detailed discussion of BCE save and restore has been
added to Section 12.

Support for a new hardware 1/0 system has been added throughout the
manual. The main components of this system are:

e the information multiplexer unit (IMU), which performs the same functions as
the IOM, but differs from it in that it is controlled by a microprocessor
rather than hardwired;

e the integrated peripheral controllers (IPCs), which are the channels in the IMU,
and which include IPC-FIPSs, channels which are controlled by a microprocessor
and allow use of MSU3380/3390 disk devices and MTUB8205/8206/8208 tape
devices (IBM compatible devices);

e the maintenance channel adapter (MCA), a microprocessor which controls all
IMU initialization and maintenance functions.

A discussion of IMU configuration has been added to Section 3.
The procedure for communicating with the MCA has been added to Section 4.

The procedure for cold booting BCE via the IMU has been incorporated into
Section 6.

Information about adding an IMU to the system has been added to Section 11.

The "model" field on the iom config card has been changed to accept one of
two values: "iom" or "imu". The value of "nsa" is no longer accepted. Appropriate
changes have been made to the manual. Also, the table of time zones described under
the clok card has been completely revised. Finally, support has been added for a new
config card, the ipc card.

Support for MSU3380/3390 disk devices, which are divided into subvolumes,
and MTUS8205/8206/8208 tape devices has been added throughout the manual. Note
that the existence of subvolumes in 3380/3390 disk devices has necessitated changes to
the part and root config cards.

iii AMS81-04

Support has also been added for MTP8021/8022/8023 tape MPCs (which are
611 tape MPCs in PPU cabinets) and MSP8021/8022/8023 disk MPCs (which are 800
disk MPCs in PPU cabinets).

The procedure for moving 451 disk packs in Sections 10 and 12 has been
updated.

iv AM381-04

Section 1

Section 2

Section 3

Introduction ¢ . i i it i e e
How to Use This Manual
Common ACTONYMS v v v v v s e v e e e e e
Hardware Manuals
Glossary of Terms

System Description it
Hardware,
Multics Processor ittt i
MemoTy i e e e e e e e e e e e e

System Clock
Input/Output Multiplexer
Information Multiplexer Unit
Front-End Network Processor
Peripheral Subsystems
Software e e e e
Storage Hierarchy
Resource Control Package

Configurationt
Definition i e
Level 68 System vs DPS 8 System
Devices and Functions
Peripheral Preparation and Operation
System Controller Unit (6000)

Level 68 6000 SCU Configuration Panel
Level 68 6000 SCU Maintenance Panel
System Controller Unit 4MW)
System Controller Unit Display Panel (4MW
SCU) . . i e e e
System Controller Unit Configuration Panel
MW SCU)
System Controller Unit Maintenance Panel (4MW
SCU) ... e e
Central Processing Units
Configuration Rules
Level 68 Addressing Rules
DPS 8§ Addressing Rules
Level 68 Processor Configuration Panel (PORT
SELECT Panel Area)
DPS 8 Processor Configuration Panel
DPS 8 Processor Maintenance Panel
Input/OQutput Multiplexer
Input/Output Multiplexer Configuration Panel
Input/Output Multiplexer Maintenance Panel . . .
Input/Output Multiplexer Operation

3-10
3-11

Information Multiplexer Unit IMU) 3-33

Front-End Network Processor 3-34
Front-End Network Processor Operation 3-35
Calendar Clock 3-36
Setting Calendar Clock in 4MW SCU 3-36
Setting Calendar Clock in 6000 SCU 3-37
Section 4 Communicating with the System 4-1
The Bootload Console 4-1
Effect on System Performance 4-1
Console 30-Second Timer 4-~1
Use of the Bootload Console 4-1
The Multidrop Interface (MDI) for IMUs 4-3
The Initializer Terminal 4-4
Section 5 Bootload Operating System 5-1
Section 6 Bootload Command Environment 6-1
Bootload Command Environment Description 6-1
Configuration Requirements 6-1
Loading BCE 6-2
Cold Booting BCE 6-2
Some Special Requests 6-3
Error Recovery during BCE Boot 6-4
Config Deck and Device Accessibility 6-5
BCE Toehold 6-5
The Early Dump Facility 6-6
BCE Command Language 6-7
BCE Commandsc¢oououueun.. 6-8
Aborting BCE Commands 6-8
Section 7 Multics Configuration Description 7-1
Multics Configuration File 7-1
General Description of Config Records 7-2
Listing the Config File in BCE 7-2
Listing the Config File in Multics 7-2
Sample Configuration Files 7-2
chnl e e 7-5
clok e 7-6

07 11 7-9
dbmj e e 7-11
101 1 <O 7-12
103 1+ 7-12

IPC o e e e e e e e e e e e e e 7-13
14T+ ¥ 7-14
13« 7-15
2= 1.1 7-17

2 o S 7-19
PrPh .. e e e e 7-21
TOOL . . . it e e e e e e e e e e 7-27
SAIV L . e e e e e e e e e e e e e 7-28
schd e e 7-29

] 7-31
thls e e e 7-32

vi AMB1-04

UASK . . L e e e e e e e e e e e 7-34
Section 8 System Startup and Shutdown 8-1
Overview of System Startup 8-1
Bootloading BCE/Multies 8-1
The Initializer Process« 8-2
Initializer Commands 8-2
Administrative Ring Commands 8-3
User Ring Commands 8-4
Admin Mode, 8-5
send_admin_command Command 8-6
Getting Help with Commands 8-7
Initializer Use of Communications Channels 8-8
Message Coordinator 8-9
Input Delivery and Output Routing 8-10
Defining Output Routing 8-10
Operating Daemon Processes 8-12
send_daemon_command Command 8-15
Message Coordinator Databases 8-16
Startup Commands 8-16
Unattended and Automatic Modes 8-17
Setting Automatic Mode 8-17
Setting Unattended Mode 8-17
Returning to Attended Mode 8-18
System Shutdown u..... 8-18
Shutdown Failure 8-18
Section 9 The Multics Backup Systems 9-1
Dumping e e e e e e 9-2
Incremental Dumps 9-2
Consolidated Dumps 9-3
Complete Dumps 9-3
Retrieval 9-3
Volume Backup 9-4
The Volume Backup LSS 9-5
Volume Dumping 9-6
Volume Dumper Account Segment 9-7
Volume Dumper Contents Segment 9-8
Volume Dumper Content Names Segment .. 9-8

Volume Dumper Current Dump Working
Segment 9-8
Volume Dumper Dump Control File 9-8

Volume Dumper Physical Volume Log

Segment, 9-9
Volume Dumper Volume Log Segment 9-9
Automatic Tape Management 9-10
Dump Modes 9-10

Incremental Mode 9-10
Consolidated Mode 9-11
Complete Mode 9-11
Adding to a Dump Control File 9-11
Handling Errors While Volume Dumping . .. 9-12
Disk Errors 9-12

vii AMSB1-04

Tape Errors 9-12

File System Errors 9-12

Other Errors 9-12

Volume Retrieval 9-13
Volume Reloading 9-14
Hierarchy Backup 9-15
The Hierarchy Backup LSS 9-16
Hierarchy Dumping 9-17
Incremental Mode 9-18
Consolidated Mode 9-18
Complete Mode 9-19
Hierarchy Retrieval 9-19
Hierarchy Reloading 9-20
Backup Commands¢c.0ou.ou.. 9-20
Section 10 Responding to System Problems 10~-1
Multics System Failures 10-1
Understanding System Failures 10-1
Crashing 10-1
Dumping 10-2
Emergency Shutdown 10-3

How Multics Crashes 10-3
Notes on the Multics Operating Environment 10-3

Syserr Crashes 10-3

Sys Trouble Connects 10-4

Ring Zero Derail Crashes 10-4

Invalid Fault Crashes 10-4

Execute Fault and Unexpected Fault Crashes 10-5
Check-stop Crashes 10-3
hphcs_S$call_bce Crashes 10-5

Sys Trouble Connect Handling 10-6

Execute Switches Crashes 10-8

How Multics Takes a Dump 10-8
The BCE dump Command 10-9
Examining a Crashed System 10~11
Locating the Relevant Process 10-11
Examining the Toehold Machine State 10-12

Examining the Toehold Machine

Conditions for Execute Switches Crashes 10-12
Examining the Toehold Machine

Conditions for Non-Execute Switches

Crashes 10-13
Examining Other Machine Conditions 10-13
How Multics Performs an ESD 10-14
Recovering from Sysiem Failures i0-14
Automatic Recovery 10-14
Manual Recovery v e un.. 10~-15
When to Perform Emergency Shutdown 10-15
Doing ESD from the Switches 10-16
Recovery Failures 10-16
System Doesn’t Crash 10-16
Dump Failure 10-17
Emergency Shutdown Failure 10-17
Auto Reboot Disabled 10-19

viii AMS81-04

Bootload Failure
Clock Problems
Root Volume Problems
Non-Root Volume Problems
Disk Table Problems
FNP Load Problems
Hardware Problems
Salvaging o e e
Volume Salvagingc.o.v.v.o...
Crashes Without ESD
Requesting ‘a Volume Scavenge
Scavenging Any In-Use Volume
Scavenging All Volumes of a Mounted
Logical Volume
Scavenging All Volumes With .
Inconsistencies
Requesting a Volume Salvage
Salvaging the Root Physical Volume
RPV) .. . i
Salvaging All Volumes of the Root
Logical Volume (RLV)
Salvaging Non-RLV Volumes During
Initialization
Salvaging Non-RLV Volumes While the
System is Running
Volume Salvaging Messages
Directory Salvaging
Online Directory Salvager
Bootload Directory Salvager
RPV Directory Salvaging
RLV Directory Salvaging
Demand Directory Salvager
Directory Salvaging Messages
Disk Failures
Recognizing a Disk Failure
Determining the Nature of a Disk Failure
Recovering from Disk Failures
Deleting the Failing IOM, MPC or Channel .
Rereadying the Disk Drive
Moving the Disk Volume to Another Drive .
Reloading Disk MPC Firmware
Shutting Down or Crashing the System .
Disk Volume Failures
Degrees of Disk Volume Failure
Extent of Disk Volume Failure
Recovering from Transient Disk Volume
Failure
Recovering from Permanent Disk Volume
Failure e
Recovering from Partial Disk Volume Failure
Recovering from Total Disk Volume Failure .
Volume Reloading and BCE
Restore/Volume Reloading
BCE Restore/Hierarchy Reloading

After Disk Recovery Succeeds 10-39

Preparing for Disk Volume Failure 10-39
Disk Volume Layout Information 10-39
Backup Tape Logs 10-40
Offsite Copies of Backup Data 10-40
Disk Drive Reconfiguration Plan 10-40
Preformatted Disk Volumes 10-41
Test System00v.... 10-42

Disk Volume Recovery Procedures 10-43

Recovery of the RPV with Volume Reloading 10-43
Recovery of a Non—-RPV Root Volume with

Volume Reloading 10-46
Recovery of a Non-Root Volume with
Volume Reloading 10-48
Disk Volume Post-Recovery Procedures 10-52
Recovery of Partitions after RLV Volume
Recoveryo, 10-52
Volume Salvaging 10-52
Hierarchy Salvaging 10-52
Reverse Connection Failure Detection 10-53
Recovering from a Bad Clock Setting 10-53
Recovering from Bootload Console Failure 10-55
Section 11 Dynamic Reconfiguration Procedures 11-1
Operational Procedures for Reconfiguration 11-1
Notes on Adding and Deleting Processors 11-2
Notes on Adding Memory 11-2
Notes on Adding IOMs 11-2
Converting Disk Drives from User 1/0 to
Storage System Use 11-3
Action after a Failure in Reconfiguration 11-3
Section 12 Storage System Maintenance Operations 12-1
How to Move a Pack 12-1
While Multics Is Not Running 12-1
While Multics Is Running 12-1
How to Expand a Logical Volume 12-3
How to Compress a Logical Volume 12-4
How to Perform VTOC Garbage Collection on a
Pack e 12-5
Segment Adoption, 12-6
BCE Save and Restore 12-7
What Constitutes a Physical Volume Set 12-7
What Constitutes a Tape Set 12-7
How to Create a Control File 12-7
How to Execute a Save and What Messages Are
Displayed 12-8
How to Abort a Save 12-10
How to Restart a Save 12-11
How to Execute a Restore and What Messages
Are Displayed 12-12
How to Abort a Restore 12-14
How to Restart a Restore 12-15

How to Recover from Unrecoverable Tape Errors 12-16

X AMB81-04

Operations on Physical Volumes 12-17

Section 13 System Messages and Logs 13-1
System MeSsages ittt e e 13-1
The Form of a System Message 13-1
Where Messages Appear 13-1
BCE Messages v v v v v v vt vt 13-2
Syserr Messages 13-2
RCP Messageso v v v i vn e 13-2
RCP Mount Messages 13-2

RCP Access Messages 13-3

Disk Error Messages 13-3
Salvager Messages i ... 13-3
Message Coordinator Messages 13-3
Backup Daemon Messages 13-3
I/O Daemon Messages 13-4
Login and Logout Messages 13-4
Other Answering Service Messages 13-5
Initializer Command Responses 13-5
Error Message Documentation 13-5
System Logs 13-5
Multics System Logs 13-5
The Syserr Log e e e e 13-6
The Answering Service Log 13-7
The Admin Log 13-8
Message Coordinator Logs 13-8
Data Management System Logs 13-9
Getting Information from Logs 13-10
Storing and Discarding Old Logs 13-11
Dealing With Common Problems 13-11
Crashes Without ESD 13-11
Syserr Log Copy Failures 13-11
Damaged LOG Families 13-12
Syserr Log Messages, 13-12
Syserr Log Contents 13-12
Format of Syserr Log Messages 13-13
Severity Codes e e e 13-14
Action Codes 13-14

Sorting Classes 13-14

Binary Data Classes and Binary Data 13-15
10_Status e e .. 13-16

hwfault 13-16

MOS & v v v v e e e e e e e e e 13-19
voldamage 13-19
segdamage 13-20
mdc_del_uwidpath 13-20

mmdam 13-21
mpc_poll, 13-22
fop_poll, 13-22

config. deck 13-22

VIOCE & i it e e e e e e e e e 13-23
access_audit 13-25
ibm3270_mde 13-27

Xi AMB1-04

Section 14 Metering and Tuning ot v v v i v et
Metering @ @ i i e
Overview of Metering
Detecting Performance Problems
Diagnosing Performance Problems
Metering Databases
System Segment Table (SST) Database
Traffic Control Data (tc_data) Database . . .
Disk Segment (disk_seg) Database
Configuration Deck (config_deck) Database .
Metering Commands
Metering Design
Extracting Metering Information
Various Types of Metering Time
Reset Mechanism
Standard Control Arguments
CPU Time Metering
Tuning e e e e e e e
Scheduling
Tuning Commands
Tuning Parameters e e e e
Selected Changes to Certain Tuning Parameters . .
Suggested Values And Guidelines
Metering Qutput Values
disk_meters
disk_queue (dgq)
file_system_meters (fsm)
interrupt_meters (intm)
listvols,
post_purge_meters (ppm)
total_time_meters (ttm)
traffic_control_meters (tcm)
traffic_control_queuve (tcq)
vtoc_buffer_meters
check_cpu_speed
meter_gate (mg)
system_performance_graph (spg)
SST Size Guidelines
Configuration Guidelines
Sample Configurations
Tuning Parameters
Initializer Terminals
Glossary of Metering Terms

Section 15 Bulk Input/Outputu....
1/0 Daemon Directories

Contents of daemon_dir_dir Directory

Contents of io_daemon_dir Directory

Contents of cards Directory

Contents of io_msg_dir Directory

1/0 Daemon Tables

1/0 Daemon Tables Source Language

Syntax e

Statements

xii

AM31-04

Substatements for Lines
Substatements for Devices
Substatements for Request Types
1/0 Daemon Tables Source File Example
Major and Minor Devices
Substatements for Minor Devices
Source File Example Using Minor Devices .
Aim Features
Device Classes
Substatements for Device Classes
Substatement for Default Request Type .
Source File Example Using AIM
Standard Driver Modules
printer_driver_ Module
punch_driver_ Module
reader_driver_ Module
spool_driver_ Module
remote_driver_ Module
Normal Setup of the remote_driver_
(Type I Stations)
Setup for Stations That Cannot Input
Commands (Type II Stations)
Remote Driver <string> Arguments
1/0 Modules for Remote Stations
hasp_workstation_ I/0 Modules
tty_printer_ I/O Module
Creation and Maintenance of I/0 Daemon Tables
Creation and Maintenance of 1/0 Daemon Queues . .
Maintenance of AIM Features
Request Type Info Segments
Syntax for the Request Type Info Source
Segment
Example of a Request Type Info Source Segment
Operation of the I/O Daemon
Login and Initialization of the I/0 Coordinator
Communicating with the Coordinator
Interrupting the Coordinator
Coordinator Commands
Login and Initialization of Device Drivers
Terminals That Control The Driver
Master Versus Slave Functions
Driver Initialization with a Control Terminal . . .
Driver Command Levels
Normal Driver Command Level
Request Command Level
Quit Command Level e e e e e e e
Standard Driver Commands
General Control Commands
Control Commands after Interrupting a Request
Information Commands
Coordinator Communication Commands
Commands for Terminal Control
Error Recovery Commands
Device Specific Driver Commands

xiii

AMS1-04

Making The Driver Ask For A Command 15-43
Entering Commands From A Multifunction Device

Card Reader, 15-43
Using Preprinted Accountability Forms On The
Control Terminal 15-43
Limitations 15-45
Operation of the Printer Driver 15-45
Processing Requests 15-45
Operation of the Punch Driver 15-46
Operation of the Reader Driver 15-46
Communicating with the Card Daemon 15-46
Error Conditions 15-47
Operation of the Spool Driver 15-47
Login and Initialization 15-47
Spooling Parameters 15-48
To Continue Spooling 15-50
To Terminate Spooling 15-50
Spool Driver MeSsages« v v v v v v v e wa . 15-51
Spool Driver Commands 15-51
Operation of Remote Drivers 15-51
Processing Requests 15-51
Sending a Quit Signal to a Remote Driver 15-52
1/0 Daemon Admin Exec_com Format 15-53
Generating a Driver Process in Test Mode 15-55
Test Directory Structure 15-55
User Generated Databases 15-56
Shared Databases 15-57
Manipulating Requests in the Test Queues 15-57
The Test Process 15-57
Testing a Remote Station 15-58
Setting Breakpoints 15-59
Command Level Messages 15-59
Sample exec_com File 15-60
Test Mode Commands 15-61
Setting up a Driver to Driver Message Facility 15-61
Appendix A Summary of Configuration Cards A-1
Appendix B DPU and DMP/VIP Operating Procedures B-1
Multics DPU Operation B-1
Powering on the DPU B-1
Booting the DPU (Manual Boot) B-1
Booting the DPU (Alternate Boot) B-2
DPU Typing Conventions B-3
Installing the Site Configuration B-3
Displaying Configuration Panels B-5
Performing System Recovery B-6
Displaying the SCU History Registers B-6
DPU Command Summary B-6
DPU Commands (C? prompt) B-7

TM Mode Commands (OFL? prompt) B-7
VIP Mode Commands (<unit> CMD prompt) B-7
CPU DMP Commands B-7
SCU DMP Commands B-8

Xiv AMS81-04

Appendix C

Appendix D
Appendix E

Appendix F
Appendix G

Appendix H

Appendix [

IOM DMP Commands B-8

Multics DMP/VIP Operation B-8
Getting the VIP Connected to the DMP B-8
Using the DMP/VIP B-8
Startup Checklists of Switch Settings C-1
System Controller Unit Configuration Pane! Switches
6000 SC) e C-1
System Controller Unit Configuration Panel Switches
AMW SCU) e e e e Cc-2
Central Processing Unit Configuration Panel Switches . C-3
Central Processing Unit Maintenance Panel Switches . C-4
IOM Configuration Panel Switches C-5
IMU Configuration C-6
FNP DIA Switches (DN6670) C-7
Names of Communications Channels D-1
Continuous Operation Exec Coms E-1
Flag Usage E-1
Exec_Coms i ittt E-2
AUO.EC it e e e e e e e E-2
Dump.ec it E-2
GO.EC . . . e e e e e E-3
Rthec E-3
Sample System Startup F-1
Volume Management G-1
Alternate Procedures for Disk Volume Recovery H-1
Disk Volume Recovery via BCE Restore/Volume
Reloading H-1
Recovery of the RPV with BCE Restore/Volume
Reloading H-1
Recovery of a Non-RPV Root Volume with BCE
Restore/Volume Reloading H-4
Recovery of a Non—-Root Volume with BCE
Restore/Volume Reloading H-6
Disk Volume Recovery via BCE Restore/Hierarchy
Reloading, H-9
Hierarchy Reload of RLV versus Reload of All
Volumes H-9
Recovery of All Volumes with BCE
Restore/Hierarchy Reloading H-10
Recovery of the Root Logical Volume with BCE
Restore/Hierarchy Reloading H-12
Recovery of a Non-Root Volume with BCE
Restore/Hierarchy Reloading H-15
Multics HEALS 1-1
Description of HEALS 1-1
HEALS Implementation 1-1
HEALS Installation Requirements I-2

XV AMB1-04

HEALS Usage, I-2

HEAIS Reports I-2
Examples of Reports I-3
Channel Assignment Table I-3
170 Error Report« I-5
Sorted I/0O Error Report 1-6
CPU Error Report 1-8
MOS EDAC Error Report 1-12
HEALS Commandst v v v v o, 1-13
heals_teport 1-13
print_heals_message 1-14
truncate_heals_log i-16
update_heals_log 1-17
Appendix J Multics Disk Management J-1
Tuning e e e e e J-1
System Mechanisms J-2
Segment Control J-3
Page Frame Control —— The Clock J-3
Disk Management Mechanisms —— Hardware and
Software i e e e e e J-5
Physical Channels for MPCs J-6
IPC-FIPS Physical Channel J-6
Logical Channels J-7
Disk Subsystems J-7
Disk Data Structures J-8
Queues J-8
The Free Queue J-9
Drive Queuesc... J-9
Disk Channels J-10
Disk Software Modules J-10
Disk Management J-1
Allocation Locks J-10
The Masked Environment —— Running J-11
Blocking vs. Non-blocking I/O0 J-11
Multiprogramming J-12
Request Optimization J-14
Load Adaptive Disk Optimization J-14
Implementation of Prioritization J-16
Nearest Logical Seek J-16
Algorithm Implementation J-17
Nearest Logical Seek Examples J-18
Optimization Policies J-19
Optimization Dynamics J-20
Systemic Optimization J-21
Stagnation Management J-22
Use of Adaptive Optimization J-23
Metering i e e e e J-23
The disk_meters Command J-27
Disk Tuning — the tune_disk Command J-30
Is There a Problem? J-30
What is the Source of the Problem? J=31
What are the Characteristics of the Problem? .. J-31
What is the Scale of the Problem? J-32

xvi AMS81-04

Table 14-1.
Table 14-2.
Table 14-3.
Table 14-4.
Table 14-5.

Figure 2-1.
Figure 2-2.
Figure 3-1

Figure 3
Figure 3
Figure 3
Figure 3
Figure 3
Figure 3

Figure 3-8.
Figure 3-9.
Figure 6-1.
Figure 8-1.
Figure 8-2.
Figure 10-1.
Figure 14-1.
Figure J-1.

Index

What Methods can be Used to Resolve the
Problem? e,
What do the Numbers Mean?
ConclusionNS . . v v v v v e e e e e e e e e

Tables

Computing Size of AST
Figuring Length of tc_data
Figuring Length of disk_seg
Figuring Length of disk_ seg
Minimum Disk I/0 Capacity per MCPU

Illustrations

A Multics System Configuration
Multics Directory Hierarchy
Level 68 System Controller Unit (6000 SCU) Configuration
Panel e
Level 68 System Controller Unit (4MW SCU) Panels
DPS 8§ System Controller Unit Configuration Panel
Level 68 Processor Configuration Panel
DPS 8 Processor Configuration Panel
Port Numbers for a Small Multics System
Level 68 Processor Maintenance Panel and Part of Display
Panel e e e e e
Level 68 Input/QOutput Multiplexer Configuration Panel . .
DPS 8 Input/Output Multiplexer Configuration Panel
BCE States and Commands/Events That Change Them
Message Coordinator Output Routing
Typical Output Routing Definition
Layout of the DUMP Partition
Performance vs Memory
Multiprocessing Table of Wait Percentages vs.
Multiprogramming e it e

.................................

Xvii

AM81-04

SECTION 1
INTRODUCTION

HOW TO USE THIS MANUAL

This manual is divided into a large number of sections and appendixes.

Section 1 introduces the manual, provides lists of common acronyms and useful
hardware documentation, and includes a glossary.

Section 2 gives an overview of system hardware and software.

Section 3 describes the configuration process, including details of setting
switches on all major hardware modules.

Section 4 explains how to communicate with the system, and includes
discussions of the bootload console and the initializer terminal.

Section 5, which described the bootload operating system (BOS), is obsolete and |
has been deleted. |

Section 6 describes the bootload command environment (BCE).

Section 7 describes the configuration deck and all of the configuration cards.
Section 8 explains how to start the system up and shut it down.

Section 9 describes the hierarchy and volume backup systems.

Section 10 offers advice on rtecovering from system failures, including
information on volume and directory salvaging, and disk unit failures.

Section 11 discusses dynamic reconfiguration.

Section 12 describes how to do storage system maintenance.

1-1 AMB1-04

Section 13 reviews system messages.

Section 14 explains how to meter and tune the system, and includes suggested
guidelines and a glossary of metering terms.

Section 15 discusses the bulk input/output facility, emphasizing procedures for
operating the 1/0 daemon.

Appendix A provides a summary of configuration cards.
Appendix B explains DPU and DMP/VIP operating procedures.
Appendix C provides checklists of switch settings.

Appendix D explains the names of communications channels.
Appendi); E discusses system exec_coms.

Appendix F offers a sample system_start_up.ec.

Appendix G discusses volume management.

Appendix H describes alternate procedures for disk volume recovery, thus
serving as a supplement to Section 10.

Appendix I describes the Honeywell Error Analysis and Logging System
(HEALS) and its use on Multics.

Appendix J discusses Multics disk management, thus serving as a supplement to
Section 14.

COMMON ACRONYMS

The following acronyms are used frequently in this manual:

ASCII American Standard Code for Information Interchange
AST active segment table

BCE bootload command environment

CPU central processor unit

CuU control unit

DIiA device interface adapter

EBCDIC Extended Binary-Coded Decimal Interchange Code

1-2 AMS81-04

EIMA
EIS
FNP
IMU
IOM
IPC
MCA
MPC
RCP
RLV
RPV
SC
SCU
SST

execute interrupt mask assignment

extended instruction set

DATANET 6670 front-end network processor
information multiplexer unit

input/output multiplexer

integrated peripheral controller
maintenance channel adapter
microprogrammed peripheral controller

resource control package

root logical volume
root physical volume
system controller
system control unit
system segment table

HARDWARE MANUALS

The following manuals document the major hardware modules and peripheral

devices commonly used in the Multics system configuration.

Order No.

AL39
AM46
AM48
AN37
APg88
ATS0
ATT1
AU76
AY03
AY34
AY83
CB64
DA33
DB28
DC79
58010010

Title

DPS/Level 68 & DPS 8M Multics Processor Manual
L64/66/68 MTU0400/0500/0600 Operation

Series 60 MSUQ0400 Mass Storage Unit Operation
Series 60 CRU0600/1050 Card Reader Operation
Series 60 PRU1200/1600 Printer Operation

Series 60 CCU0400 Card Reader/Punch PCU(0120 Card Punch Operation

L66/68 MSU0402/0451 Mass Storage Unit Operation
L66/68 PRU1100 Printer Operation

L66/68 MSU0500/0501 Mass Storage Unit Operation
L66/68 DATANET 6670 Operation Reference Manual
L64/66/68 CRU0301/0501 Card Reader Operation

L66/68 MTU0610 Magnetic Tape Unit Operation

Series 6000 Equipment Operators Manual

Series 6000 MTS500 Magnetic Tape Subsystem

L66/68 Site Preparation Manual

Information Multiplexer Unit Hardware Operations Manual

GLOSSARY OF TERMS

Included in this glossary are a number of terms commonly used in conjunction
with Multics system operation. This

is not
all-inclusive list, but rather a supplemental one oriented toward operations usage.

intended to be an exhaustive or
A

more extensive glossary of Muitics terms is contained in the Au/tics Programmer’'s
Reference Manual, Order No. AG9].

answering service
the subsystem that controls interactive and absentee users.
initializer process and handles operations such as dialups, logins, and logouts.

It rurs in the

AMBS81-04

backup
refers to those systems which ensure that user and system segments and
directories can be recovered if they are destroyed due to system failure or user
error. See dumping and recovery below.

the bootload command environment; a set of programs within Multics
initialization that perform functions such as bootloading Multics, dumping main
memory, saving and restoring the contents of disk volumes, and initiating
emergency shutdown of Multics.

bootload or boot

to load a fresh copy of a set of programs. Both BCE and Multics can be
bootloaded.

Bootloads of BCE and Multics must be discussed jointly. A "cold" boot of
BCE and Multics recreates the entire storage system hierarchy on a particular
RPV, discarding previous hierarchies, including all user files. A "warm" boot of
BCE and Multics maintains the current storage system hierarchy. To do a
"cold" boot of BCE and Multics, you first tell BCE to format the RPV with
the cold command, then tell Multics to format the file system with the boot
—-cold command. Obviously, the usual procedure is to do a "warm" boot of
BCE and Multics.

The period of time between Multics bootload and shutdown is also spoken of
as a bootload or service session.

crash
a Multics system malfunction that has caused the sysiem to become unavailable
to users. Causes of a Multics system crash may stem from either hardware or
software troubles. In certain instances, the operator may provoke a system
crash (e.g., when the system is in a loop).

daemon

a system service process that performs such tasks as backup, process creation,
network control, and 1/0 device control.

1/0 daemon
the system service process that controls unit record 1/0 device operations such
as printing and card punching.

dumping
is the procedure by which the Multics backup systems search out, select, and
copy segments and directories from the Multics storage system hierarchy onto
tape. The segments and directories selected for dumping are determined by the
mode (incremental, consolidated, or complete) in which dumping is performed.

hardcore supervisor
the part of the system software which performs the supervisory functions of
the.system. It is also called the hardcore. It can’t be changed while the system
is running, and includes programs which must be present to bring the system
up and programs which run the storage system.

1-4 AMB1-04

initializer process
is the control process for the system. When the Multics bootload sequence is
started by BCE, the initializer process is created and remains active as long as
Multics is running. The initializer process performs varicus system functions,
including answering service operations, operator command service, user request
handling, system terminal management, and message routing.

message coordinator
is a set of programs that manage system terminals and handle message routing
The message coordinator programs run in the initializer process. They allow the
initializer to run more than one terminal channel and let the daemons run
without attached terminals, sending their messages to the initializer for
disposition.

recovery
the procedure by which the backup systems recover segments and directories
that have been dumped onto tape and place them back into the storage system
hierarchy. See reloading and retrieving below.

reloading
is the global recovery of a major portion of the hierarchy when it has been
damaged.

retrieving
is the recovery of individual segments and directories at the request of users.

salvager
directory - a subsystem that verifies and repairs the directory hierarchy. It is
invoked automatically when damage is detected and can also be manually run
over all or part of the hierarchy.

volume - is an off/ine program that operates while the volume is being
mounted and not available for use. It examines the volume for damage caused
by system malfunctions and corrects the damage if possible. The salvager is
invoked automatically in some cases, but it can also be invoked by the operator
on instructions from the programming support staff.

scavenger
an on/ine program that examines storage system volumes for damage caused by
system malfunctions and corrects the damage if possible. The scavenger operates
while the volumes are in service (see also salvager above).

spooling
is a method of queuing users’ print requests when the line printer is either out
of service or processing other requests.

sysert log
is a log of messages, called syserr messages, produced by the Multics
supervisor. The syserr messages are written on a reserved area of disk called
the LOG partition. Some are also printed on the bootload console. Periodically,
these messages are copied into a family of log segments named syserr_log in
>scl>syserr_log.

1-5 AMB81-04

system_start_up.ec

an exec_com segment (i.e., a segment containing a list of commands to be
executed). It is invoked automatically when the answering service is initialized
(by either the startup, multics, or go command). The commands executed may
include, but are not limited to, such operations as turning on the message
coordinator before starting the answering service, logging in the daemons after
the answering service is started, and accepting additional channels if the
initializer is to operate more than one terminal.

system control
another name for the initializer process is the system control process.

user control
another name for the answering service is user control.

VTOC

volume table of contents; provides information about all of the segments and
directories which reside on a pack, including their location on the pack.

1-6 AMS81-04

SECTION 2
SYSTEM DESCRIPTION

HARDWARE

A Multics configuration consists of one or more central processor units {CPUs),
one or more input/output multiplexers (IOMs) for peripheral interfacing, and one or
more front-end network processors (FNPs) for data communications interfacing.
Memory in the Multics configuration is provided by one or more system controller
units (SCUs) interfacing to memory store units. There can be up to eight SCUs in a
Level 68 System, and up to four SCUs in a DPS 8 System. The function and makeup
of these units is discussed in the following paragraphs and in the technical manuals
referenced in these paragraphs. For an illustration of a Multics system configuration,
see Figure 2-1.

MULTICS PROCESSOR

The processor for the Multics system performs all the computational processing
within the Multics system configuration. The processor is frequently referred to as the
central processing unit (CPU).

The CPU incorporates a manual MODE switch to allow it to selectively
function as either a processor with extended capability (MULTICS mode) or a Series
6000 Processor (GCOS mode). A detailed description of the CPU internal organization
and the more than 300 machine instructions is given in the Multics Processor
Reference Manual (Order No. AL39).

MEMORY

The memory system is composed of one or more SCUs that interface directly
with CPUs, IOMs, and the memory store units that contain the manipulated data.

A typical Multics system has more than one SCU. Associated with each SCU is
an amount of memory, configured into store units.

System Clock

The SCU also contains a calendar clock. It is a 52-bit register that counts one
microsecond intervals. You must set the clock to the number of microseconds since
midnight January 1, 1901 Greenwich mean time (GMT). Details of how to do this are
given in Section 3 of this manual.

2-1 AMB1-04

CENTRAL CENTRAL
PROCESSING PROCESSING
UNIT UNIT
SYSTEM SYSTEM
SYSTEM CONTROLLER [MEMORY MEMORY b CONTROLLER
CONSOLE URe SN
NETWORKS
1OM COMM.
CHANNEL CHANNEL
1OM COMM.
BOOTLOAD CHANNEL ‘oM IOM CHANNEL FRONT-END |CHANNEL WORK- REMOTE
CONSOLE MU PROCESSOR | "V STATION DEVICES
OM IOM
IOM COMM. COMM. COMM.
CHANNEL / canneL| — CHANNEL CHANNEL "\ _CHANNEL CHANNEL
UNIT MAGNETIC MASS
RECORD TAPE STORAGE TERMINALS BE\";‘%EES SE\“/‘BTE%
PROCESSOR PROCESSOR PROCESSOR
D
PRINTERS,
PUNCHES,
READERS
LEGEND: e INDICATES PHYSICALLY REMOTE
. .
==
Figure 2-1. A Multics System Configuration

AMBS81-04

INPUT/OUTPUT MULTIPLEXER

The IOM functions as the 1/0 processor for the Multics configuration. It
handles the transfer of datz between the main memory, the FNP, and all peripheral
devices including disks, tapes, and unit-record equipment.

Information Multiplexer Unit
The IMU functions much like the IOM for the Multics configuration; i.e., as

an I/0 processor. It differs from the IOM in that it is controlled by an internal
microprocessor rather than being hardwired.

Note: throughout this manual, the term "IOM" refers to both the IOM and
the IMU, unless otherwise stated.

FRONT-END NETWORK PROCESSOR

The Multics system requires an FNP. Originally, the DATANET 355 FNP was
a partition of the Multics hardware configuration. The DATANET 6670 FNP now
replaces the DATANET 355 FNP in Multics configurations. The FNP is a stored
program communications processor that receives and processes information from remote
terminals for direct input to an IOM data channel. The FNP transmits information to
the remote terminals that are connected to the Multics system configuration over
private lines or common carrier communication facilities. The DN6670 is described in
the L66/68 DATANET 6670 Operation Reference Manual, Order No. AY34.

PERIPHERAL SUBSYSTEMS
Periphera! subsystems communicate with the CPU through the IOM using a
standard interface. A list of supporting documentation can be found in Section 1.

SOFTWARE

For complete details of Muitics software concepts and organization, refer to
the following manuals:

Multics Programmer's Reference Manual, Order No. AGY91
Mulftics Commands and Active Functions, Qrder No. AG92
Multics Subroutines and 1/0 Modules, Order No. AG93
The Multics software of interest 1o system maintainers includes:
1. Initializer commands —-- for controlling operation of the system such as setting
the maximum number of users who can log in, setting the message of the day,

and shutting the system down.

2. Answering service —— for accounting purposes and logging users in and out.

2-3 AMB81-04

3. Backup System —- for copying segments and directories from the storage system
onto tape (incremental backup, consolidated backup, complete backup) and
recovering segments and directories from tape and placing them back into the
storage system (upon user request or after a system failure).

4. I/0 daemon —- for processing bulk I/0 and controlling remote or local job
entry (reading and punching cards, printing output on the high-speed printer).

5. User commands —— such as compilers and text editors.

Storage Hierarchy

You must have an understanding of the layout of the storage system hierarchy
in order to be able to take proper action during recovery from a severe system
failure. A brief description of the Multics storage system hierarchy and system
libraries is given in the following paragraph. Further details are given in the Mu/tics
Programmer’'s Reference Manual, Order No. AGY1.

The Multics storage system includes both system and user segments. Figure 2-2
shows a portion of the storage system hierarchy nearest to the system root. The
hierarchy can be viewed as an upside-down tree with the root at top and directories
occurring at each fork in the trunk (i.e., branches of the tree). This diagram shows
certain directories always found in the hierarchy. The names of all these directories
and the general content of segments inferior to them are listed below.

e >system_control_1 (>scl)

is the storage location for most system accounting, authorization, and logging
information. (It’s the initializer’s home directory.) The table printed by the
who command, the message of the day, and the absentee queue segments are
the only generally accessible segments in this directory. Project administration
tables are stored in a directory tree under system_control_1.

e >site

contains segments and directories which contain per-site information.

e >process_dir_dir (>pdd)

contains one directory for every process currently in the system. The name of
an individual process directory is derived from the unique identification of the

process. The process directory is used as a place to store all segments that are

intended to have a lifetime no greater than that of the process that creates or
uses them.

e >daemon_dir_dir (>ddd)

contains segments and directories used to support the various 1/0 system
daemon processes.

2-4 AMS1-04

I

L

system_ site process_ daemon_ user_ System
control_1 dir_dir dir_dir dir_dir library
standard
/] A /] \
—— o 3000
fibsentee) DIRECTORIES g'IEFgCTSTBSIES AND Nt/
AND SEGMENTS MENTS OF THE
0 CONTAINING BACKUP AND /O ALLNON-HARDCORE
PER-SITE DAEMON PROCESS SOMMANDS AN
“ / INFORMATION PUSROUTINES
PLUS MISCELLANEOUS p?glv |0F MGLTICS
m%%%ﬁggeiilﬁge, L?i?ees; o) | (ONE EXCEPT SEPARATELY
P A ENTS EIE%ECTORY PRICED ITEMS
7 T\ PROCESS (project ONE
N name) DIRECTORY
TEMPORARY PER- PER
PROCESS INFORMATION | PROJECT
ser ONE
ool DIRECTORY
PER
58
N s
(oot PERSONAL SEGMENTS
directory) AND DIRECTORIES
OF THIS USER
i system_
stem_ system _ system _ system library systemn . system :
ﬁt‘,’,afy"L library _ library _ library . dir library _ library gtr)éary_
unbundled auth_maint tools dir obsolete tandd pa rt_y
S — N e’ 4 include
ALL HARDCORE SEPARATELY COMMANDS AND
COMMANDS AND PRICED SUBROUTINES OF
SUBROUTINES COMMANDS THE LOCAL AUTHOR-
PROVIDED AS AND MAINTAINED LIBRARY
PARTOFMULTICS SUBROUTINES
EXCEPT SEPARATELY e
PRICED ITEMS ALL INGLUDE
FILES (X.INCL.PL1)
Figure 2-2. Multics Directory Hierarchy
2-5 AMS81-04

>user_dir_dir (>udd)

is the base of a subtree containing all of the personal segments of individual
users. The immediate contents of user_dir_dir is a set of directories, one for
each project that uses Multics. Contained in a project directory is usually one
personal directory for each user working on that project.
>system_library_standard (>sss)

contains the library of commands and subroutines which are provided as part
of Multics but are not part of the hardcore and are not included on the
Multics system tape. These commands and subroutines are documented in the
Multics Commands and Active Functions manual, Order No. AG92, and the
Multics Subroutines and /]0 Modules manual, Order No. AG93.
>system_library_1 (>sl1)

contains the library of commands and subroutines which are part of the
hardcore and are included on the Multics system tape. These commands and
subroutines are documented in the Multics Commands and Active Functions
manual, Order No. AG92 and the Multics Subroutines and /0 Modules
manual, Order No. AGS93.

>system_library_unbundled (>unb)

contains all the unbundled (separately priced) software supported on Multics.

>system_library_auth_maint (>am)

is similar to system_library_standard except that it contains private commands
and subroutines provided by programmers of the local installation.
>system_library_tools (>t)

contains the commands and subroutines that are used to administer and

maintain the system and provide programs that constitute the various system
daemon processes for printing, reading and punching cards, etc.

>library_dir_dir (>1dd)

contains sources and object archives for system library programs.

>system_library_obsolete (>obs)
holds obsolete software programs that are no longer supported by Honeywell.

It is the responsibility of the individual site to convert from using obsolete
software programs to using new software programs.

2-6 AM81-04

e >system_library_tandd (>firmware)

contains the online T&D firmware program that was previously located in the
firmware archive segment >ldd>firmware.

e >system_library_3rd_party (>sl3p)
contains software written and supported by third party vendors.
For a complete description of these directories and the segments they contain,
refer to the Multics System Administration Procedures manual, Order No. AKS0.

Resource Control Package

The resource control package (RCP) controls and allocates peripheral resources.
RCP keeps usage records on the following types of resources:

e Tape drives

e Storage system disk volume attachments
e User 1/0 disk drives

e Printers, readers, and punches

e Bootload console

e Special devices

RCP allows special privileged attachments for system daemon processes and for CSD
test and diagnostic programs.

2-7 AMB81-04

SECTION 3
CONFIGURATION

DEFINITION

Configuring the Multics system involves setting switches on the Multics
processor and its associated devices to connect them into a configuration that can run
Multics.

LEVEL 68 SYSTEM VS DPS 8 SYSTEM

The following paragraphs describe the differences between a Distributed
Processing System (DPS) 8 and a Level 68 System.

The DPS 8 is a continuation of the Level 68 system. Internally, the DPS &
processor works differently from the Level 68 processor, but architecturally, they
support the same set of instructions and registers. For users, the primary difference
between the two processors is that the DPS 8 is faster. For operators and system
maintainers, the primary difference is that DPS 8 processors, as well as SCUs and
IOMs, do not have maintenance panels. The information that is provided by these
panels in a Level 68 system is provided by displays on a terminal in a DPS 8 system.
The exact panels which do not exist on DPS 8 boxes are as follows:

CPU: Maintenance, Test and Display Panels
SCU: Maintenance and Display Panels
IOM: Maintenance and Test Panels

The displays which replace the maintenance panels are produced by the
Dynamic Maintenance Panel (DMP), which is part of the processor. Displays from the
DMP may be accessed in either of two ways: with a standard VIP terminal attached
to the DMP or with a Diagnostics Processor Unit (DPU). The DPU serves as an
interface to the DMP for the processor, the SCU and the IOM. Your decision as to
whether you should use the DPU or the VIP attached to the DMP will depend on the
configuration at your site. You might have one VIP and a patching mechanism to
connect it to the desired DMP interface, or a separate terminal for each DMP
interface, or some combination of these. You might or might not have a DPU.

The DPU is a Level 6 computer system. A basic DPU subsystem contains a
processing unit, a maximum memory size of 128K, a Multiline Communications
Processor (MLCP), a Multiple Device Controller, and a DPU Control Panel. A DPU
subsystem also has a VIP terminal attached to it (currently a VIP7205). You should
not confuse this terminal, which is part of the DPU subsystem, with the terminal
mentioned above, which is connected directly to the DMP.

3-1 AMB1-04

The DPU provides a maintenance capability that includes remote maintenance
control of the DPS 8 processor, SCU and IOM. In other words, the switch settings
and the contents of various registers for these units may be displayed on the attached
terminal.

In addition to the maintenance panels being replaced, the configuration panels
on these three units are packaged somewhat differently than they are on the Level 68
machines. For a general view of the DPS 8 processor configuration panel, see Figure
3-6. For general views of the DPS 8 SCU and IOM configuration panels, see Figures
3-3 and 3-9 respectively.

For normal operations, there is little difference in the procedures for setting
switches on the configuration panels of any of the DPS 8§ units; the switches are still
on "standard" configuration panels. However, on the processor, the EXECUTE
SWITCHES/EXECUTE FAULT two-position switch is replaced by an EXECUTE
FAULT pushbutton. This means that the procedure for executing fault is the same as
on the Level 68, but the procedure for executing switches is different. To execute
switches to return to BCE, you must use either a DPU or a DMP/VIP. Procedures
for operating the DPU and the DMP/VIP are described in Appendix B.

The DPS 8 FNP and memory are the same as the L68 FNP and memory.

You should be aware of the fact that there are some differences between
configuring a Level 68 System and configuring a DPS § System. These differences are
noted where appropriate throughout this section.

DEVICES AND FUNCTIONS
The Multics configuration includes three kinds of devices: active devices,
passive devices, and peripherals. The CPUs and IOMs are active devices. The SCUs

are passive devices. Printers, tape drives, disk drives, card readers, FNPs, and card
punches are examples of peripheral devices.

When active devices reference memory, they generate a 24-bit absolute memory
address that 1is interpreted by the port selection switches (on the processor
| configuration panel) to produce a request to a specific SCU for a specific word in the
memory connected to that controller.

There are three rules that simplify setting up the Multics configuration:

1. Every active device must be able to access all SCUs.

2. Every SCU must have the same active device on the same SCU port, so all
SCUs must have the same PORT ENABLE settings.

3. Every active device must have the same SCU on the same port, so all active
devices will have the same configuration panel settings.

3-2 AMB1-04

PERIPHERAL PREPARATION AND OPERATION

All peripherals must be configured in an online and ready state. Refer to the
appropriate manual for each piece of peripheral equipment. These manuals are listed
in Section 1.

Peripheral devices and terminal devices used by operations personnel vary from
site to site, because adding a new device is possible through a general 1/0
programming technique. It is beyond the scope of this document to describe the
operation of each peripheral device or terminal. However, some specific operation of
peripheral devices or terminals is discussed when it is significant to the operation of
Multics.

SYSTEM CONTROLLER UNIT (6000)

Refer to Figure 3-1 for a general view of the Level 68 6000 SCU
configuration panel.

Level 68 6000 SCU Configuration Panel

The Level 68 6000 SCU configuration panel contains the following switches:

SYSTEM CONTROL AND MONITOR (CONTEMON/MON/OFF)
SYSTEM BOOT CONTROL (ON/OFF)
ALARM (DISABLE/NORMAL)
MAINTENANCE PANEL MODE (TEST/NORMAL)
STORE A
MODE (OFFLINE/MAINT/ONLINE)
SIZE (32K,6LK, 128K, 256K)
STORE B
MODE (OFFLINE/MAINT/ONLINE)
SIZE (32K,6LK, 128K, 256K)
EXECUTE INTERRUPT MASK ASSIGNMENT
(A through D; OFF/0/1/2/3/L4/5/6/7/M)
ADDRESS CONTROL
LOWER STORE (A/B)
OFFSET (OFF, 16K, 32K,6LK)
INTERLACE (ON/OFF)
CYCLE PORT PRIORITY (ON/OFF)
PORT CONTROL (ENABLED/PROG CONT/DISABLE)

The three positions of the two MODE selector rotary switches, one for STORE
A and one for STORE B, function as follows:

ON LINE Normal operating position; the memory can be accessed by the SCU
ports.

MAINT Maintenance position; the memory cannot be accessed by a 6000 SCU

port, but it can be accessed by the 6000 SCU maintenance panel test
logic.

3-3 AMS1-04

L BYORE A
L MODE

ADORESS CONTROL ..

W

Figure 3-1. Level 68 System Controller Unit (6000 SCU) Configuration Panel

3-4 AMB1-04

OFF LINE The memory is not accessible by the 6000 SCU. This position
effectively removes the memory from the system.

The two SIZE switches (4-position rotary), one for STORE A and one for
STORE B, are used in conjunction with the LOWER STORE toggle switch. Reversing
the LOWER STORE switch reverses the roles of the SIZE switches. The LOWER
STORE toggle switch selects the store to which the lower addresses are routed. The
roles of the SIZE switches are as follows:

1. The SIZE switch to which the LOWER STORE switch is set establishes the
address boundary between the two memory ports.

2. The combined output of the two SIZE switches establishes the upper address
boundary. An attempt to access beyond that boundary produces a nonexistent
address illegal action (IA code 0010 (02 octal)).

If STORE A and STORE B are not equal in size, the larger store must be assigned
the lower store address range.

The OFFSET rotary switch causes the logical addresses of physical blocks of
memory to be exchanged by complementing an address bit. This feature can be used
in conjunction with other configuration switches to assign a faulty block of memory to
a logically nonexistent upper address range. This 4-position switch causes different
address bits to be complemented as follows:

Switch Address Bit
Position Complemented
OFF No address offset
16K 3
32K 2
6LK 1

Address offset only occurs within the memory units since the bit is complemented
after the memory has been selected. Therefore, the address offset does not cause an
exchange of memory ports; offsets equal to or larger than the memory size are
ignored.

The INTERLACE toggle switch enables interleaving between the two stores, A
and B. The two stores must have the same size for interleaved operation.

3-5 AMBS81-04

The EXECUTE INTERRUPT MASK ASSIGNMENT (EIMA) rotary switches
determine where interrupts sent to memory are directed. The four EIMA rotary
switches, one for each program interrupt register, are used to assign mask registers to
system ports. The normal settings assign one mask register to each CPU configured.
Each switch assigns mask registers as follows:

Position Function
OFF Unassigned
0 Assigned to port O

1 Assigned to port 1

2 Assigned to port 2
3 Assigned to port 3
Assigned to port L4
5 Assigned to port 5
6 Assigned to port 6
7 Assigned to port 7
M Assigned to maintenance panel

Assignment of a mask register to a system port designates the port as a control
port, and that port receives interrupt present signals. Up to four system ports can be
designated as control ports. The normal settings assign one mask register to each CPU
configured.

The eight PORT CONTROL toggle switches are used to enable specific system
ports either manually or under program control. The three positions operate as
follows:

ENABLE The port is enabled and able to communicate with an active module
regardless of the mask bit.

PROG CONT The port is under program control and is turned on or off by the
proper bit in the program controlled mask register. This is the normal
position for an enabled Multics port.

DISABLED The port is turned off.

There is an indicator light associated with the PORT ENABLE switch. The
indicator is on whenever a port is enabled.

3-6 AM81-04

The seven CYCLE PORT PRIORITY switches are used to group similar active
modules to assure equal access to memory on the same 6000 SCU. Turning these
switches on causes system ports to be linked to form groups. System ports within a
group have equal access to memory, and no group can link more than five ports. If
all ports within a group place continuous access requests, the ports are granted access
in cyclic order. Access requests between groups are handled on a priority basis; all
access requests by higher priority groups must be satisfied before lower priority access
requests are acknowledged. The CYCLE PORT PRIORITY switches link all 6000 SCU
ports connected to CPUs, and should link other like devices such as IOMs in their
own unique groups. To do this, all switches between CPU ports and between IOM
ports are set UP, and others are set DOWN.

The ALARM switch disables the alarm bell when in the DISABLE position.

The MAINTENANCE PANEL MODE (TEST/NORMAL) switch controls the
operation of the 6000 SCU maintenance panel. In the NORMAL position, the
maintenance panel is disabled. In the TEST position, the 6000 SCU maintenance panel
is enabled.

For a summary of the switch settings to be checked before the system is
brought up, see Appendix C.

Level 68 6000 SCU Maintenance Panel

Switches on this panel are used when setting the calendar clock. The procedure
to set the system clock is described under "Calendar Clock™ at the end of this section.

SYSTEM CONTROLLER “UNIT 4MW)

In those installations where a 4MW SCU is present, you must be concerned
with certain displays and hardware switch settings on the equipment. Refer to Figure
3-2 for a general view of the Level 68 4MW SCU configuration panel, and to Figure
3-3 for a general view of the DPS 8§ 4MW SCU configuration panel.

System Controller Unit Display Panel 4MW SCU)
The following is a list of switches on the 4MW SCU display panel.

SELECT
The SELECT switch selects what is to be displayed in the 12 display lamps.
There are ten possible displays, each of which is explained on the panel

HISTORY REGISTER
The HISTORY REGISTER switch stores information about the last four 4MW
SCU operations. The switches and displays are of little interest to the operator.

On the DPS 8 4MW SCU, the display has been replaced by a display. For
details, refer to Appendix F.

3-7 AMB1-04

SCU DISPLAY SCU CONF&GURATE{}N

HISTORY REGISTER
(POSITIONS 0.1,2.3)

Al
3 u!|s 16 17118 19 zol2y 22 23}
gm smc v 5 JODRES i MASK/PORT ASSIGNMENT
o LATE ! G, L] <]
- e
3 FLAGS

PORT cycLic
ENABLE / PRIOR

STATUS STOP ON 1A
RO BUSY
- P . 0 . _é_ .
TO MARG {{STOPPED O

MASK B H

| AssionmeNT _ - orF] MARGIN GONTROL
: OVR DIS DIS

PROGRAM PAR PAR
7 MODE REGISTER MARGINS & Q Q N
STROBES
304 $E0C
SLOW SLOW
£l rFasT .
NORM

Figure 3-2. Level 68 System Controller Unit (4MW SCU) Panels

3-8 AMBS81-04

SCU CONFIGURATION

PORT ENABLE ALARM

¢

ENABLE 2}
DisaBLt !:;?

SCU MAINTENANCE : _

INTIALIZE STATUS PANEL CLEAR
HRE m o OBUSY MARS

Figure 3-3. DPS 8 System Controller Unit Configuration Panel

3-9 AMS81-04

System Controller Unit Configuration Panel 4MW SCU)

The switches on the 4MW SCU configuration panel are normally read only
when the system is initialized. During Multics operation, internal 4MW SCU registers
corresponding to the configuration switches can be changed by software. These

registers can always be examined through the use of the SELECT thumbwheel on the
4MW SCU display panel.

The DPS 8 4MW SCU configuration panel is almost identical to the Level 68
panel. For a general view of the DPS 8 panel, refer to Figure 3-3. To set the
switches on the DPS 8 panel, follow the instructions given here for the Level 68
panel. Note that with a DPS 8§ 4MW SCU, the contents of the history registers can
be displayed on a terminal screen. For details, refer to Appendix B.

The following switches are found on the 4MW SCU configuration panel:

PORT ENABLE (ON/OFF 0, 1, 2, 3, 4, 5,6, 7)
These switches are used to enable specific 4MW SCU ports when the system is
initialized. They should be ON for each port connected to a configured CPU
or IOM, and OFF for all others. The initial settings can be changed under
program control. The current settings can be examined by setting the SELECT
thumbwheel on the 4dMW SCU display panel to position 4.

CYCLIC PRIORITY (ON/OFF 0/1, 1/2, 2/3, 3/4, 4/5, 5/6, 6/7)
These switches have the same function as the CYCLE PORT PRIORITY
switches on the 6000 SE€EU. It is not necessary to set these switches on the
4MW SCU. The proper settings are established under software control during
Multics initialization and reconfiguration.

NONEXISTENT ADDRESS (ON/OFF, 2, 3, 4, 5, 6, 7, 8)
These switches are used only when the two store units connected to a 4MW
SCU are different sizes. They indicate the first nonexistent addresss of the
total memory (stores A and B) present on the controller. The switches have
the following values:

Switch
Position Size

[o o N I e A RN 3 B VAN N
N
U
(<)
=~

For example, if the controller normally contains 1024K words (configured as A
- 256K, Al - 256K, B - 256K, Bl - 256K) but 128K of Store Bl is defective
(or not present), then switches 4, 5 and 6 should be set to indicate that the
first nonexistent address is 896K.

3-10 AMB81-04

ALARM (ENABLE/DISABLE)
This switch is normally left in the ENABLE position.

PANEL (TEST/NORMAL)
This switch is normally left in the TEST position.

LWR STORE SIZE {(0/1/2/3/4/5/6/7)
This thumbwheel switch is used to set the size of the lower store unit
connected to the 4MW SCU. The meanings of the switch positions are
explained on the configuration panel of the 4MW SCU.

MODE (PROGRAM/MANUAL)
This switch must always be in the PROGRAM position.

STORE A, Al, B, Bl, (ONLINE/OFFLINE)
These switches enable the store units connected to a 4MW SCU.

INTERLACE (ON/OFF)
This switch enables the interlacing of the two store units connected to a 4MW
SCU. It should be ON when upper and lower stores are the same size.
Otherwise, it should be OFF.

LWR STORE (A/B)
This switch selects which of the two siore units connected to a 4MW SCU
contains the lower addressed memory cells. If both store are not the same
size, the larger store must be lower.

MASK /PORT ASSIGNMENT A, B (OFF/0/1/2/3/4/5/6/7)
These two thumbwheel switches are analagous to the EXECUTE INTERRUPT
MASK ASSIGNMENT switches on a 6000 SCU. When booting, one of them
should be set to the port connected to the bootload CPU. The other should be
set OFF. These switches can be changed internally under program control. The
current settings can be examined by setting the SELECT thumbwheel on the
4MW SCU display panel to positions 8 and 9.

For is a summary of the switch settings to be checked before the system is
brought up, see Appendix C.

System Controller Unit Maintenance Panel (dMW SCU)

This panel is of no interest to the operations staff. All switches except the
PROGRAM/MANUAL switch should remain in the down position.

On the DPS 8§ 4MW SCU, the maintenance panel has been replaced by a
display. For details, refer to Appendix B.

CENTRAL PROCESSING UNITS
Refer to Figure 3-4 for a general view of the Level 68 processor configuration

panel, and to Figure 3-5 for a general view of the DPS 8 processor configuration
panel.

3-11 AMB81-04 v

CONFIGURATION

SYSTEM CONTROL & MONITOR
By

SYSTEM BOOT CONTROL
3 M

PORT SELECT INTERLACE
PORT ENABLE INITIALIZE |ASSIGN) ADGRESS
ENABLE N RANGE

b pbreer b
- é

Fee e
TELe L@
P8 Gre ree8 Hi-e
Fee e L8
F8® Fe 208 @

" Q.tim') %:%ﬁ ‘C.,§ *® @ FuLL

ARB

DISARLE
NUHMAL

FAULT CONTROL

o+ 2 3 & 5 8 7 B 9% W M 12 13 4 1B W 7
poeecéde

MODE

1
5

2! 2°
o £ 83 +
o % L P s -
‘ GECOS,

Figure 3-4. Level 68 Processor Configuration Panel

3-12 AMB81-04

_ CPU CONFIGURATION

STORE SiZE

-~ i

PROCESSOR

RIS

5 -

RSy

onisL

PROCESSOR FAULY BASE ADDRESS

H

Figure 3-5.

H $ k]

Pe P OB

INITCLERR { _ DXECUTE

DPS 8 Processor Configuration Panel

3-13

AMB1-04

Configuration Rules

In configuring a Multics system, the following configuration rules apply:

1. Each CPU in the system must be connected to every SCU in the system.

2. Each IOM in the system must be connected to every SCU in the system.

3. Each SCU in the system must be connected to every CPU and IOM in the
system.

4. Corresponding ports on all CPUs and IOMs must be connected to the same

SCU. For example, port A on every CPU and IOM must be either connected
to the same SCU or not connected to any SCU.

5. Corresponding ports on all SCUs must be connected to the same active device
(CPU or IOM). For example, if port 0 on any SCU is connected .to IOM A,
then port 0 on all SCUs must be connected to IOM A.

6. IOMs should be connected to lower-numbered SCU ports than CPUs.

These rules are illustrated in Figure 3-6, where the port numbers for a small Multics
system consisting of 2 CPUs, 3 SCUs, and 2 IOMs have been indicated.

A Multics system can support up to 16MW of main memory. This is
16,777,216 36-bit words, and it represents a 24-bit address field. These words are
accessed by an absolute address, which can range from 0 to 16,777,215. The main
memory on a given system is divided among the configured SCUs so that each SCU
contains a contiguous block of storage. The block of storage associated with each SCU
is defined by a base address and a size. Both the base address and the size are
expressed in units of KW, which is 1024 words. The storage associated with the SCUs
on a system can be assigned arbitrarily, but subject to the addressing rules described
below.

Level 68 Addressing Rules

1. The base address of an SCU must be a multiple of the value defined by the
STORE SIZE patch plug associated with that SCU. Further, this multiple must
be in the range 0 through 7. A STORE SIZE patch plug is associated with
each pair of CPU or IOM ports (A and B, C and D, etc.). The patch plugs
are set to the proper memory size by the field engineers and are not resettable
by the site.

2. The size of an SCU must be either the value defined by the STORE SIZE
patch plug associated with that SCU or half of that value. Note that the size
of an SCU refers to the range of addresses assigned to the SCU. Subject to
the limitations to be discussed, the amount of memory actually configured on

the SCU may be less than the size.

3. One and only one SCU must have a base address of 0. This SCU is called the
bootload SCU.

3-14 AMB1-04

IEEE
SCU B

3|2

.7|

T

SCU A

A|B\CID

IOM B

Figure 3~-6. Port Numbers for a Small Multics System

3-15

I 0

AMB1-04

4, There can be no overlap in addresses associated with different SCUs.
Specifically, the range of addresses defined by the base and size of one SCU
must not overlap the range of addresses defined by the base and size of any
other SCU, where the size here means the size defined in the STORE SIZE
patch plug associated with the port.

5. During bootload, Multics requires a contiguous section of memory beginning at
absolute address 0 and sufficiently large to contain all routines and data
structures used during the first phase of Multics initialization (i.e., collection 1).
The size of the section required varies among Multics releases, and it also
depends on the size of the SST segment, which is dependent on the parameters
specified by the site on the sst config card (refer to Section 7). However,
512KW is adequate for all circumstances. There can be no "holes” in memory
within this region. Beyond this region, "holes" can exist in memory. The
examples below will clarify this point.

DPS 8 Addressing Rules

1 The base address of an SCU must be a muitiple of the value defined by the
STORE SIZE thumbwheel switch associated with that port. Further, this
multiple must be in the range 0 through 7. There is a STORE SIZE
thumbwheel switch on the central processor and IOM configuration panel for
each CPU or IOM port (A, B, C, and D). This thumbwheel switch should be
set for each port to be the lowest value that is not smaller than the amount
of main memory configured on that port.

2. The size of an SCU is the value defined by the STORE SIZE thumbwheel
switch associated with that SCU. Note that the size of an SCU refers to the
range of addresses assigned to the SCU. Subject to the limitations to be
discussed, the amount of memory actually configured on the SCU may be less
than the size.

3. One and only one SCU must have a base address of 0. This SCU is called the
bootload SCU.

4, There can be no overlap in addresses associated with different SCUs.
Specifically, the range of addresses defined by the base and size of one SCU
must not overlap the range of addresses defined by the base and size of any
other SCU, where the size here means the size defined in the STORE SIZE
thumbwheel switch associated with that SCU on each CPU and IOM.

S. During bootload, Multics requires a contiguous section of memory beginning at
absolute address 0 and sufficiently large to contain all routines and data
structures used during the first phase of Multics initialization (i.e., collection 1).
The size of the section required varies among Multics releases; it aiso depends
on the size of the SST segment, which is dependent on the parameters
specified by the site on the sst config card (refer to Section 7). However,
512KW is adequate for all circumstances. There can be no "holes” in memory
within this region. Beyond this region, "holes" can exist in memory. The
examples below will clarify this point.

3-16 AMS1-04

Level 68 Processor Configuration Panel (PORT SELECT Panel Area)

The PORT SELECT panel area of the processor configuration panel is identical
in both form and function to the PORT SELECT panel area of the Level 68 IOM |
configuration panel. The purpose of the switches on these panels is to define how the
CPUs, IOMs, and SCUs in a Level 68 system are connected, and to define the range i
of memory addresses associated with each SCU. A Level 68 system may contain 2
maximum of 7 CPUs, 4 IOMs, 8§ SCUs, and 16MW of main memory in aggregate.
Each CPU on a Level 68 system has 8 ports for connecting that CPU to SCUs; these
ports are identified by the letters a through h. Similarly, each IOM on a Level 68
system has 8 ports for connecting that IOM to SCUs; these ports are identified by the
letters a through h. Each SCU has 8§ ports for connecting that SCU to CPUs and
IOMs; these ports are identified by the numbers O through 7.

The following paragraphs describe the functions and settings of the various
switches on the PORT SELECT panel area of the Level 68 processor and Level 68 |
IOM configuration panels. See Figure 3-5. Note that the IMU may not be configured |
with a Level 68 system. l

ASSIGNMENT
These three toggle switches define a 3-bit binary number (ranging from 0 to 7)
which determines the base address of the SCU connected to the port. The base
address (in KW) is the product of this number and the value defined by the
STORE SIZE patch plug for the port. For low-order memory the switches
should be set down, to 000; others are set as appropriate.

ADDRESS RANGE
This switch determines the size of the SCU connected to the port. If it is set
to FULL, then the size is the value defined by the STORE SIZE patch plug
for the port. If it is set to HALF, then the size is half of the value defined
by the STORE SIZE patch plug for the port.

PORT ENABLE
These switches indicate which ports are active. The switch for each port
connected to an SCU should be ON. The switch for each port that is not
connected to an SCU should be OFF.

INITIALIZE ENABLE
These switches enable the receipt of an initialize signal from the SCU
connected to the ports. This signal is used during the first part of bootload to
set all CPUs to a known (idle) state. The switch for each port connected to
an SCU should" be ON. The switch for each port that is not connected to an
SCU should be OFF.

INTERLACE
This is a 3-position switch that allows interieaving of memory addresses by
port pairs in groups of either two or four words. All INTERLACE switches
should be set OFF for Multics operation.

3-17 AMS1-04

The following examples illustrate the determination of the base address and size
of an SCU from the switches on the configuration panels:

STORE SIZE ASSIGNMENT ADDRESS RANGE Base Size
patch plug switches switch Address
Example 1: 256KW 3 011 FULL 768KwW 256KW
Example 2: 1024KW 0 (0 00) HALF OKW 512KW
Example 3: 512KW 2 (010) FULL 102LKW 512KW

Under the rules defined above, all configuration panels on the system are set
identically. That is, all CPU configuration panels are set identically, and all IOM
configuration panels are set to match the CPU configuration panels.

The following examples illustrate valid and invalid configurations and configuration
panel settings.

Example 4

The following SCUs are configured:

Port STORE SIZE Memory
patch plug

A 512KW 512KW

B 512KW 256KW

C 102LKW 102LKW

D 102LKwW 512KW

The following configurations are all valid for this set of SCUs; the ports are listed in
order of increasing base address, which corresponds to the order of mem config cards.

L. Port ASSIGNMENT ADDRESS RANGE Base Size
switches switch Address

A 0 (0 00) FULL OKW 512KW

B 1 (00 1) HALF 512KwW 256KW

c 1 (001) FULL 1024KW 102L4KW

D 2 (01 0) HALF 20L8KW S12KW

3-18 AMS81-04

L.2.

L.3.

L.,

SCUs:

L.5.

Port ASS|GNMENT
swi tches
c 0 (000
B 3011
D 2 (010)
A 5 (101)
Port ASSIGNMENT
switches
C 0 (0 00)
A 2 (01 0)
B 3 (01 71)
D 2 (01 0)
Port ASSIGNMENT
switches
D 0 (0 00)
c 1 (00 1)
A L (100
B 5 (101

ADDRESS RANGE
switch

FULL

HALF

HALF

FULL

ADDRESS RANGE
switch

FULL

FULL

HALF

HALF

ADDRESS RANGE
switch

HALF

FULL

FULL

HALF

Base
Address

OKW
1536KW
20L8KwW
2560KW
Base
Address

OKW
1024KW
1536KW
20L8KW
Base
Address

OKW
102LKW
2048KwW

2560KW

Size

102LKW
256KW
512KW

512KW

Size

102LKW
512KW
256KW

512KW

Size

512KW
102LKW
512KW

256KW

The following are examples of INVALID configurations using the same

Port ASS|IGNMENT
switches

A 0 (0 00)

C 1 (6o

B 3 (011

D 2 (01 0)

ADDRESS RANGE
switch

FULL

FULL

HALF

HALF

Base
Address

OKW
102LKW
1536KW

20L8KwW

Size

512KW
102LKW
256KW

512KW

set of

The above configuration is INVALID because the absolute addresses of SCUs C and B
overlap, in violation of addressing rule 4, above.

3-19

AMRB1-04

L.6. Port ASSIGNMENT

switches
B 0 (000
A 1 (00 1)
c 1 0o
D 2 (010

ADDRESS RANGE
switch

HALF
FULL
FULL

HALF

Base Size
Address
OKW 256KW

512KW 512KW
102LKW 1024KW

20L8Kw 512KW

The above configuration is INVALID--insufficient contiguous memory beginning at
absolute address 0 is provided for Multics initialization. Following addressing rule 3, at
least 512KW of contiguous memory is required, while only 256KW has been provided
(there is a "hole" in main memory in the range 256KW-512KW). Note the difference
between this example and valid configuration 2, above. In valid configuration 2, there
is a "hole" in memory immediately above the bootload SCU. However, 1024KW of
contiguous configured memory beginning at absolute address 0 has been provided,
which is sufficient for Multics initialization.

Example §

The following SCUs are configured:

Port STORE SIZE
patch plug

A 512KW

‘B 512KW

The following are valid configurations for this set of SCUs:

5.1. Port ASSIGNMENT
switches
A 0 (00 0)
B 1 (00 1)

5.2. Port ASSIGNMENT
swi tches
A 0 (000

B 4 (1 o00)

Memory

S512KW

256KW

ADDRESS RANGE
switch

FULL

HALF

ADDRESS RANGE
switch

FULL

HALF

3-20

Base Size
Address

OKW 512KW
512KW 256KwW
Base Size
Address

OKW 512KW
20L8KwW 256KW

AMS81-04

Note that there is no valid configuration for this set of SCUs if SCU B is the
bootload SCU. The reason for this is that the base address of SCU A must be a
multiple of the value determined by the STORE SIZE patch plug, which is 512KW. If
SCU B were configured as the bootload SCU, there would be a "hole" in memory
between the end of SCU B (256KW) and the beginning of SCU A (whose base address
would be at least 512KW). Following addressing rule 3, at least 512KW of contiguous
memory beginning at absolute address 0 should be provided for Multics initialization.
Thus any configuration for this set of SCUs where SCU B is the bootload SCU would
violate addressing rule $.

One complication can arise because STORE SIZE patch plugs are available only
in certain standard sizes (e.g., 128KW, 256KW, 512KW, 1024KW). It is possible for an
amount of memory to be configured on an SCU which does not correspond to any
standard size patch plug. In this case, a larger size patch plug should be used (e.g.,
512KW for an SCU which contains 384KW of memory). For the purpose of setting
the switches on the configuration panels, the SCU is treated as if it had the larger
amount of memory defined by its associated STORE SIZE patch plug. However, the
mem config card must reflect the actual amount of memory configured on the SCU.
Further, the NONEXISTENT ADDRESS switches on the SCU maintenance panel should
reflect the actual amount of memory configured on the SCU. In applying addressing
rule 5, the actual memory configured must be considered rather than the amount of
memory indicated by the STORE SIZE patch plug.

The following example should clarify these points.

Example 6

The following SCUs are configured:

Port STORE SIZE Memory
patch plug

A 512KW 38LKW

B 512KW 512KW

The following configuration is valid for this set of SCUs:

6.1. Port ASSiGNMENT ADDRESS RANGE Base Size
switches switch Address

B 0 (0 00) FULL OKW 512KW

A 1 (00 1) FULL 512KW 512KW

Note that the size associated with SCU A for the purposes of setting the switches on
the configuration panels is iarger than the amount of memory actually configured on
SCU A. The NONEXISTENT ADDRESS switches on the maintenance panel of SCU A
should be set to reflect the actual amount of memory configured. Similarly, the mem
config card for SCU A must reflect the actual amount of memory configured
(384KW).

3-21 AMB1-04

The following configuration is INVALID for this set of SCUs:

6.2. Port ASSIGNMENT ADDRESS RANGE Base Size
switches switch Address

A 0 (0 00) v FULL OKW 512KwW

B 1 (00 1) FULL L12KW 512KW

This configuration is invalid because it violates addressing rule 5, above. According to
that rule, there must be at least 512KW of contiguous memory beginning at absolute
address 0. In this configuration, there is a "hole” in memory between 192KW and
256KW, even though this "hole" is not reflected in the configuration panel switches.

Note that there was no mention of CPUs or IOMs in the above examples. If
the configuration rules defined above are followed, the switch settings on all CPU and
IOM configuration panels are identical. Thus for the purpose of setting switches on
the configuration panels, the number of CPUs and IOMs configured is not relevant.

For a summary of the switch settings to be checked before the system is
brought up, see Appendix C.
. 12h "Level 68 Processor Maintenance Panel”

Figure 3-7 shows a general view of the Level 68 processor maintenance panel,
and part of the display panel. This part of the display panel has been included to
show where the EXECUTE SWITCHES/EXECUTE FAULT switch is located.

Switches on the maintenance panel are set by CSD or by the programming
staff. They may be set by or under the direction of a responsible person. Switch
settings should not be changed while the system is running. If it is necessary to
change switch settings without shutting down, enter BCE with the bce initializer
command, put the processor in STEP mode, and then change the settings.

The following paragraphs describe the functions and settings of the switches on
the Level 68 processor maintenance panel.

The 36 DATA switches are used to enter data or an instruction into the
Processor.

The ADDRESS toggle switches are used when the maintenance panel command
ENTER STORE is executed. The address set into the ADDRESS switches

U E 10 UIe AL ir switches is al'v'v'ﬁys
present for comparison on a maintenance panel stop-on-address condition or a
mode-register-trap—on—address condition. The SEGMENT NUMBER toggle switches are
used for maintenance panel stop—on-address condition.

3-22 AM81-04

SONTARL PO SR

S Y T TRy

E-s

N T T AP T Y Y T T T T 1 e

W

TRADEERS
DISLLEY FRECT

T

006000000008 80800

b A e LG i

Bttt

N
DR R FUSCEIUN BLS TR TRALH

DG s

0806000908000 00

9000000000008 8w

Figure 3-7. Level 68 Processor Maintenance Panel and Part of Display Panel

3-23 AMBS81-04

The DISPLAY ENABLE pushbutton forces an internal condition in the
processor which makes registers and control points available for display. The DISPLAY
ENABLE pushbutton must be used only when the processor is stopped and the
DISPLAY ENABLED light is not lit. The processor should be placed in STEP mode
before pressing this button. If DISPLAY ENABLE is pushed while the processor is
running, the processor takes indeterminate action that may be fatal to the system.

The DISPLAY ENABLED condition must always be in effect when viewing
entries on the DATA SCROLL and those entries on the CONTROL POINTS SCROLL
that are printed in green.

The VALIDATE pushbutton must be pressed to view entries on the CONTROL
POINTS SCROLL that are printed in red. The VALIDATE pushbutton must be used
only when the processor is stopped, else results similar to those resulting from pushing
DISPLAY ENABLE while the processor is running may occur.

The CYCLE control knob controls if, and in what way, the processor moves
from cycle to cycle. This control knob must be in the OFF position for normal
operation.

The ADDRESS STOP control is used for debugging by system programmers.
This control knob must be in the OFF position for normal operation.

The HISTORY REGISTER DISPLAY CONTROL switches are used in conjunction
with DATA SCROLL position 7 {(APU HISTORY REGISTER), position 11 (CU
HISTORY REGISTER), position 12 (OU HISTORY REGISTER) and position 13 (DU
HISTORY REGISTER) to display the contents of the history registers on the DATA
SCROLL. There are 16 registers in the CU, OU, DU, and APU history registers (a
total of 64). The individual one of the 16 registers in each of the CU, OU, DU, and
APU history registers is selected by setting SELECT COUNT switches 0, 1, 2, and 3
to the number of the desired register.

The CONTROL POINT SCROLL, DATA SCROLL, DISPLAY SELECT, DISPLAY
1, 2, 3, 4, 5, and 6 switches are used to cycle the register, bus, or control point onto
the maintenance panel display.

The LAMP TEST pushbutton is used to test the maintenance panel indicator
lamps. An unlit lamp indicates either a defective lamp or an open circuit.

The INITIALIZE pushbutton sets all control points to a known state (set to
INITIALIZE CONTROL). It is used to initialize the control points without affecting
the data registers.

3-24 AMS81-04

DPS 8 Processor Configuration Panel

The DPS 8 processor configuration panel is identical in both form and function
to the DPS 8 IOM configuration panel. The purpose of the switches on these panels |
is to define how the CPUs, IOMs, and SCUs in a DPS 8 system are connected; and
to define the range of memory addresses associated with each SCU. A DPS 8 system
may contain a maximum of 6 CPUs, 4 IOMs, 4 SCUs, and 16MW of main memory in
aggregate. Each CPU on a DPS 8 system has 4 ports for connecting that CPU to
SCUs; these ports are identified by the letters a through d. Similarly, each IOM on a
DPS 8 System has 4 ports for connecting that IOM to SCUs; these ports are
identified by the letters a through d. Each SCU has 8 ports for connecting that SCU
to CPUs and IOMs; these ports are identified by the numbers 0 through 7.

The following paragraphs describe the functions of the various switches on the
DPS 8 processor and DPS 8 IOM configuration panels. See Figure 3-6. See |
"Information Multiplexer Unit" later in this section for a description of IMU |
configuration. |

ASSIGNMENT
These three toggle switches define a 3-bit binary number (ranging from 0 to 7)
which determines the base address of the SCU connected to the port. The base
address (in KW) is the product of this number and the value defined by the
STORE SIZE thumbwheel switch for the port.

STORE SIZE
This thumbwheel switch determines the size of the SCU connected to the port.

PORT ENABLE
These switches indicate which ports are active. The switch for each port
connected to an SCU should be ON. The switch for each port that is not
connected to an SCU should be OFF.

INITIALIZE ENABLE
These switches enable the receipt of an initialize signal from the SCU
connected to the ports. This signal is used during the first part of bootload to
set all CPUs to a known (idle) state. The switch for each port connected to
an SCU should be ON. The switch for each port that is not connected to an
SCU should be OFF.

INTERLACE
This is a 3-position switch that allows interleaving of memory addresses by
port pairs in groups of four words. (The DPS 8 processor is restricted to NO
or 4-word interlace; 2-word interlace is not supported.) All INTERLACE
switches should be set OFF for Multics operation.

3-25 AMB1-04

The following examples illustrate the determination of the base address and size
of an SCU from the switches on the configuration panels:

ASSIGNMENT STORE SIZE Base

switches thumbwheel switch Address
Example 1: 3 (017) 1024KW 3072KW
Example 2: 0 (0 00) 20L8KwW OKW
Example 3: 2 (010) 512KW 102LKW

Under the rules defined above,

Size

1024KW
20L8KW

512KW

all configuration panels on the system are set

identically. That is, all CPU configuration panels are set identically, and all IOM
configuration panels are set to match the CPU configuration panels.

The following examples illustrate valid and invalid configurations and configuration

panel settings.

Example 4

The following SCUs are configured:

Port

o0 W >

Memory

512KW
512KW
1024KW
512KW

The following configurations are all valid for this set of SCUs; the ports are listed in
order of increasing base address, which corresponds to the order of mem config cards.

L.1. Port

ASS|GNMENT STORE SIZE

swi tches thumbwheel switch
0 (000) 512KwW
1 (001) 512KW
1 (001 102LKW
L (1 00) 512KW
3-26

Base

Address

OKW
512KW
102LKW

20L8KwW

Size

512KW
512KW
1024KW

512KW

AMB1-04

k.2. Port

4.3, Port

k.4, Port

ASS IGNMENT

swi tches
0 (0 00)
3011
L (10 0)

501

ASS|IGNMENT

switches
0 (0 00)
2 (010)
3011
L (100

ASS | GNMENT

switches
0 (0 00)

1 (00 1)

L (10 0)

5 (001

STORE SIZE
thumbwheel switch

1024KW
512KW
512KW
512KW

STORE SIZE
thumbwheel switch

102LKW
512KW
512KW
512KW

STORE SIZE
thumbwheel switch

512KW
1024KW
S12KW

512KW

Base
Address

OKW

1536KW
20L8KW
2560KwW

Base
Address

OKW

102LKW
1536KW
2048KW

Base
Address

OKW
102LKW
20L8KwW

2560KW

102LKW

102LKW

1024KW

The following is an example of an INVALID configuration using the same set of

SCUs.

4.5, Port
A
C
B

D

ASSIGNMENT

switches
0 (0 00)
1 (00 1)
3010
L (100

STORE SIZE
thumbwheel switch

512KW
102LKW
512KW

512KW

Base
Address

OKW
102LKW
1536KW

20L8BKW

102L4KW

This configuration is INVALID because the absolute addresses of SCUs C and B
overlap, in violation of addressing rule 4, above.

3-27

AMB1-04

Note that there was no mention of CPUs or IOMs in the above examples. If
the configuration rules defined above are followed, the switch settings on all CPU and
IOM configuration panels are identical. Thus, for the purpose of setting switches on
the configuration panels, the number of CPUs and IOMs configured is not relevant.

DPS 8 Processor Maintenance Panel

On the DPS 8 CPU, the maintenance panel (as well as the test and display
panels) has been replaced by a display. For details, refer to Appendix B.

INPUT/OUTPUT MULTIPLEXER

Refer to Figure 3-8 for a general view of the Level 68 IOM configuration
panel, and to Figure 3-9 for a general view of the DPS 8 IOM configuration panel.

Input/Qutput Multiplexer Configuration Panel

The IOM configuration panel contains the following switches:

SYSTEM CONTROL & MONITOR (CONT & MON/ MON/OFF)
SYSTEM BOOT CONTROL (ON/OFF)
PORT ENABLE for each port (ON/OFF)
INITIALIZE ENABLE for each port (ON/OFF)
ASSIGNMENT (1/0)
ADDRESS RANGE (FULL/HALF)
INTERLACE (4W/2W/OFF)
ALARM (DISABLE/NORMAL)
MAINTENANCE PANEL MODE (TEST/NORMAL)
IOM BASE (12 through 23; 1/0)
INTERRUPT BASE (6 through 18; 1/0)
IOM NUMBER (1/0)
SOURCE (CARD/TAPE)
CHANNEL NUMBER CODE
TAPE CHANNEL NUMBER (0 through 5; 1/0)
CARD CHANNEL NUMBER (0 through 5; 1/0)
SYSTEM INITIALIZE
ZERO BASE S.C. PORT NO. (1/0)
OPERATING MODE (PAGED/EXT GCOS/STD GCOS)
BOOTLOAD

The IOM and the processor configuration panels are closely related; in fact,
one of the sides of each is identical to the other. Switches common to the IOM and

processor configuration panels are set identical

17
PNV $ LY V] Wil LIV,]\J .

The DPS 8 IOM configuration panel is almost identical to the Level 68 panel.
For a general view of the DPS 8 panel, refer to Figure 3-9. To set the switches on
the DPS 8 panel, follow the instructions given here for the Level 68 panel. Note that
there is a switch on the DPS 8 panel called the PROGRAM MANUAL switch. This
switch should be set to MANUAL, to prevent the configuration from being changed
via a Diagnostics Processor Unit.

3-28 AMS81-04

INTERLACE

I

SYSTEM
INETIALIZE

Figure 3-8. Level 68 Input/Output Multiplexer Configuration Panel

3-29 AMBS81-04

» 10M CONFIGURATION 4

dren

®
=

L EE PR

Figure 3-9. DPS 8 Input/Output Multiplexer Configuration Panel

3-30 AM81-04

The functions and settings of all switches on the IOM configuration panel are
described in the following paragraphs.

For a description of the ASSIGNMENT, INTERLACE, ADDRESS RANGE, and
PORT ENABLE switches, as well as the STORE SIZE patch plugs, refer to the
previous discussion on the functions of the processor configuration panel switches.

The INITIALIZE ENABLE toggle switch allows the port to be initialized from
other ports. This switch is set ON. When OFF, the port initialize signal is inhibited.

The SOURCE toggle switch, in conjunction with the CHANNEL NUMBER
CODE toggle switches, selects the source of the bootload (always TAPE) and defines
the channel number of the tape subsystem that contains the bootload program.

The ZERO BASE S.C. PORT NO. toggle switches define the port number of
the SC through which connects are to be sent to the IOM.

To set up the IOM for bootloading:
1. The SOURCE switch is set in the TAPE position.

2. The tape channel number is set into the TAPE CHANNEL NUMBER switches,
labeled CHANNEL NUMBER CODE.

3. The ZERO BASE S.C. PORT NO. switches are set to reflect the SCU port
number to which the IOM is connected.

The ALARM toggle switch is used to disable the IOM alarm.

The MAINTENANCE PANEL MODE toggle switch controls the operation of
the IOM maintenance panel. For normal operation, this switch is in the NORMAL
position. In the TEST position, the maintenance panel options of the maintenance
panel are enabled and the TEST portion of the TEST/NORMAL indicator on the
operators panel is ON.

The 12 IOM BASE ADDRESS toggle switches are used to set the base address
for the IOM. The IOM base address (channel mailbox base address) indicates to
software where control words are located in memory. The IOM base address is an
18-bit address, but only bits 0 through 11 are set by the IOM BASE ADDRESS
switches. Bits 12 through 17 are all zeros. IOM base addresses for Multics operation
are as follows:

IOM A - 1400 (8)
IOM B - 2000 (8)
IOM C - 2400 (8)
IOM D - 3000 (8)

3-31 AMB81-04

The 13 INTERRUPT BASE ADDRESS toggle switches allow the operator to set
up a base address for interrupt multiplex words (IMWs). Bits 6 through 11 are shared
with the IOM base address, and bits 16 and 17 identify the IOM number. The
interrupt base address for Multics operation is 1200(8).

The SYSTEM INITIALIZE pushbutton is used to send a system initialize signal
to all enabled ports.

The BOOTLOAD pushbutton is used to initiate the BOOTLOAD sequence.

The OPERATING MODE rotary switch must be set to the PAGED position.

IOM NUMBER must be set as follows:

IOM A - 00
iIOM B - 01
IODMC - 10
IOM D - 11

All other IOM switches should be in the down (NORMAL) position.

For a summary of the switch settings to be checked before the system is
brought up, see Appendix C.

Input/Output Multiplexer Maintenance Panel

Switches on the IOM maintenance panel should only be set by CSD or by the
programming staff.

On the DPS 8 IOM, the maintenance panel (as well as the test panel) has been
replaced by a display. For details, refer to Appendix B.

Input/Output Multiplexer Operation

In order to use the IOM for Multics, the IOM port must be enabled on the
SCUs.

3-32 AMB81-04

INFORMATION MULTIPLEXER UNIT (IMU)

Unlike other mainframes in the system configuration, the IMU has no
configuration panel or switches. Instead, configuration functions are performed by the
maintenance channel adapter (MCA), a microprocessor inside the IMU. The MCA uses
configuration files stored on diskettes. An IMU can have up to four configuration
files. To configure the IMU, use the MCA config command. This command is menu
driven. Both the command and the menus are described in the /nformation
Multiplexer Unit Hardware Operations Manual, Order No. 58010010. A few of the
menu functions are also described here.

To enter IMU bootstrap information, select item 4 of the config command
menu. The MCA will prompt you with a configuration topic, and with both its
current value and a list of acceptable input values. To keep the current value, respond
with a CR.

e "IMU number" is the number which corresponds to the name of the IMU
being configured (e.g., "0" = A, "1" = B, etc.).

e "host oper system" is the type of operating system the IMU is running with
(e.g., "2" = Multics).

e "Levell-remote maintenance allowed" enables or disables the Remote Maintenance
Interface (RMI). This prompt should always be answered by typing "N".

e "The lowest MCA number" is the lowest MCA number connected to the
Multidrop Interface (MDI); see Section 4.

e "Total number of MCA" is the total number of MCAs on the MDI.
e "bootstrap enable" indicates whether this IMU can boot the system.

e "bootstrap automatic" enables or disables automatic booting. This prompt should
be answered by typing "N".

e "bootstrap scu port number” is the port number of the SCU through which
connects are sent to the IMU (i.e., the port on the SCU to which this IMU is
connected).

e "bootstrap source” is the device type to boot from. This prompt should be
answered by typing "2" (for tape). At present Multics can only boot from
tape.

e "bootstrap primary channel number” is the channel number of the bootload
tape subsystem.

e interrupt base address” is the address for the Interrupt Multiplexer Words, and
is calculated by the MCA using the "host oper system" and the "IMU number.”
This prompt should be answered by typing a CR.

e "mailbox base address” is the address where the software places the control
words in memory, and is calculated by the MCA using the "host oper system"
and the "IMU number." This prompt should be answered by typing a CR.

3-33 AM381-04

To enter the memory port configuration, select item 5 of the config command
menu. The MCA will prompt you with a configuration topic, and with both its
current value and a list of acceptable input values. To keep the current value, respond
with a CR.

¢ "enter memory port number A-D" is the memory port number.
e "memory port enable” indicates whether the IMU uses this port.

e "memory port initialize" enables or disables the acceptance of the system
initialize signal from this port.

e "memory port starting address" sets the starting address for this memory. Your
response may be selected from the following table.

MEM SIZE 256K 512K M 2M LM
P S A 0 0 0 0 0

o T D 256K 512K ™ 2K LM
S A D 512K ™ 2M LM 8M
S R R 768K 1536K 3M 6M 12M
| T E M 2M LM 8M

B !) 1280K 2560K 5M 10M

L N S 1536K 3M 6M 12M

E G 1792K 358LK M TLM

e "memory port size" is the size of the memory on this port. The valid
responses are: 256K, 512K, 1M, 2M, 4M.

e "memory port interlace" enables or disables the interlacing of two memory
ports. It is recommended that SCU ports not be interlaced on a Multics
system; therefore, this prompt should be answered by typing "N".

FRONT-END NETWORK PROCESSOR
The front-end network processor (FNP) provides the logical and physical

connection between the system and a remote 1/0 device. There may be up to eight
FNPs on a Multics system.

3-34 AMS1-04

Front-End Network Processor Operation

The DN6670 configuration panel consists of only a direct interface adapter
(DIA) panel. Set switches on the DIA panel as follows:

6000 MAILBOX octal
FNP A PPt 11t Tyvyytt ooskoo
FNP B t14t41t tyYyyyy o oo3700
FNP C tttt1t Yttty oos200
FNP D ttt4t1t Yttyty oousoo
NP E t11111 Ytyt1t oos000
NP F tt11t4t Ytytyy oos300
FNP G 111111 Y1yyyt oose00
FNP H tt1t11t Yy¥ttty ookloo
6000 TERMINATE tyYyy 1 3
6000 EMERGENCY RAR 7
HNP MAILBOX ERERA L5k
HNP TERMINATE +4¢v1 2
HNP SPECIAL INT R 3

Each FNP may be configured with one or two DIA boards. Each board must
be configured on a separate FNP port. The FNP ports on which DIA boards may be
configured are 3, 4, 5, and 14. Each board’s FNP port must be cabled to an IOM
channel. The FNP DIA connections are identified in the Multics config deck by the
IOM channel to which the FNP port is cabled. The Multics software determines
which FNP port to use in accessing the FNP by references to the IOM channel cabled
to the active FNP port. The FNP port number is not recorded in the FNP core
image, nor in Multics supervisor databases, nor on any Multics config card.

A FNP with two DIA boards can be cabled to two different IOMs on a single
Multics system, or to an IOM on each of two different systems. However, only one
of the DIA boards may be used at a time. The prph fnp config card for the IOM
channel cabled to the active DIA must have a state of on; the card for the IOM
channel cabled to the inactive DIA must have a state of off.

3-35 AMB81-04

*

Cabling a FNP to two different IOMs on a single Multics system offers a
measure of improved reliability. If the IOM attached to the active DIA board breaks
down, the IOM and its attached FNP can be deleted from the system, and the FNP
can then be added to the system using the other IOM channel. However, users of the
FNP at the time of the IOM failure will have to login again. If their processes had
the save_on_disconnect attribute, they will be able to reconnect to their processes and
continue the work which was interrupted when the IOM failed. If their processes did
not have the save_on_disconnect attribute, work in progress when the IOM failed will
be lost.

Cabling a FNP to the IOMs of two different systems allows the FNP to be
shifted easily from one system to the other.

Multics requires that each FNP use a paging mechanism to access FNP memory
beyond the first 32K words of memory. The paging mechanism on the FNP pager
board can be disabled for testing purposes, but Multics requires that it be enabled
during normal operations. Contact your CSD representative if your FNP will not
operate. Ask him to insure that the paging mechanism is fully operative.

For a summary of switches to be checked before the system is brought up, see
Appendix C.

CALENDAR CLOCK

The calendar clock is a 52-bit register in each SCU that contains the number
of elapsed microseconds since January 1, 1901 at midnight, Greenwich mean time
(GMT). To set the clock for the 4MW SCU, use the BCE clock setting function. To
set the clock for the 6000 SC, use the switches on the SC maintenance panel. As
explained below, enter the appropriate 12-digit octal number corresponding to the date
and time via the switches labeled DATA, and then press the correct buttons.

The calendar clock MUST be set accurately; serious damage to the storage
system can result if the setting is incorrect.

Setting Calendar Clock in 4dMW SCU

Step-by-step procedures for setting the calendar clock in the 4MW SCU are
available in the Operator’'s Guide to Multics, Order No. GB6l.

3-36 AM81-04

Setting Calendar Clock in 6000 SCU |

1 After leaving the "early” BCE command level, the BCE clock setting function
is invoked. You must ensure that the clok configuration card specifies the
correct time zone. All times entered should be in local time.

2. BCE will ask you a question of the form:..

The current system time is DATE TIME.
Is this correct? '

3. You may reply "abort” to return to the "early" command level, "yes,” or "no.”
If you answer "no,” BCE will prompt you for the time with:

Enter time:

to which you should provide the current local time, in any form acceptable to
the convert_date_to_binary_ subroutine. For example:

year-month-day hour:minutes

Choose a figure that is slightly (a minute or less) in advance of the current
time, to allow time for the next steps to be performed.

4. BCE will then respond with:

SCU Switches (octal) TTTTTT TTTTTT

5. BCE will prompt with:

Enter anything after the switches have been set.

*
6. At the CPU, place the STEP CONTROL selector switch on the maintenance
panel in the MEM position.

7. At the SC (which must be in TEST mode), enter the number TTTITT TTTTTT
in the upper row of the DATA switches. Enter all zeros in the lower row of
the DATA switches.

8. Press the INITIALIZE and the LOAD CLOCK pushbuttons simultanecusly, at
the instant when the current time reaches the time that was typed.

9. Turn the STEP CONTROL selector switch on the CPU to OFF and press the
STEP pushbutton.

10. Enter "y".

1L BCE will repeat the question in step 2. This should be answered appropriately.

3-37 AMB1-04

SECTION 4
COMMUNICATING WITH THE SYSTEM

THE BOOTLOAD CONSOLE

You may use the bootload console to issue Multics initializer commands,
commands to the daemons, standard Multics commands, and BCE commands when BCE
is in operation. *

Effect on System Performance

Under normal circumstances, the bootload consocle may be used without
noticeable effect on the performance of the Multics system. However, if there is a
large burst of syserr messages, then the system pauses and waits for the messages to
be printed before proceeding with other user or system commands. When messages are
being printed, the console is in UNLOCK mode (described below). On a one-CPU
system, the system does nothing else while the console is unlocked.

Console 30-Second Timer

The bootload console has a 30-second timer mechanism. When reading input
from the console, if no character is typed within 30 seconds, the read operation is
terminated. The 30-second timer is controlled by a switch in the maintenance panel
on some models of the bootload console. This switch must be set to the ENABLED
position during operation of both Multics and BCE. }

Use of the Bootload Console

The bootload console operates in two modes: LOCK mode and UNLOCK
mode. In LOCK mode, the console keyboard is locked and cannot be used to type
input. In UNLOCK mode, either the keyboard is unlocked and ready to accept input,
or the bootload console is typing output. If the bootload console is in UNLOCK
mode, the keyboard continues to be unlocked after each input request has completed
and the system is ready to accept another input line. The console may be returned to
LOCK mode when you press the EOM button (or the RETURN key for a CSU6601
console) without typing any other character so that system messages may be printed.

4-1 AMBS81-04

On all but the model CSU6601 console, the bootload console remains in LOCK
mode until you press the REQUEST button. When the keyboard is unlocked you may
type input. The END OF MESSAGE (EOM) button must be pressed to signal that the
input line has been completed. When the system has processed an input line and is
ready to accept another, the console keyboard is unlocked. Then you can type the
next input line without pressing the REQUEST button. In UNLOCK mode, any output
generated as a result of an input line may be stopped by pressing the REQUEST
button. However, syserr messages cannot be stopped. Also, when the REQUEST button
is pushed, the line currently being typed is finished and one more line of output is
typed before the output is stopped.

On the model CSU6601 console, the system prompts you when it is expecting
input. The prompt consists of the characters "M->" at the beginning of a line when
either BCE or Multics is running. When the CSU6601 console is in LOCK mode, you
can unlock the console for input by pressing the RETURN key on the keyboard.
After the system responds with the appropriate prompt, you may type a line of input.
This line is terminated by pressing the RETURN key, at which time the console is
placed in LOCK mode.

Another way that the bootload console may be taken out of UNLOCK mode
and put back into LOCK mode is by runout of the 30-second timer. When the
bootload console is UNLOCKED and ready to accept input, if you do not type a
character within 30 seconds, the timer runs out and the bootload console is placed in
LOCK mode. In this event, any read operation is terminated, and any input typed on
the current line is lost. Similar actions take place if any of the following events
occur:

e You type an invalid character
e You turn the ONLINE/OFFLINE switch to OFF
e You turn the POWER switch on the console maintenance panel to OFF

The maximum number of input characters that can be typed on one line from a
bootload console is 84. If this number is exceeded, or if the OPERATOR ERROR
button is pushed, the read operation is terminated and all input typed on the current
line is discarded. However, the operator console remains in UNLOCK mode.

The bootload console occasionally jams and will not respond to the REQUEST
button. The set_system_console command may be used to return the console to its
previous (unjammed) state. This command requires access to the highly privileged gate
hphes_, and is documented in the Multics Administration, Maintenance and
Operations Commands manual, Order No. GB64. Note that this is not an initializer
command —— it must be executed in a privileged user process or in admin mode in
the initializer process.

The substty command (described in the Muftics Administration, Maintenance
and Operations Commands manual, Order No. GB64) is useful in cases of an
inoperative bootload console when there is no alternate console. It may be used to
switch the output from the inoperative console 1o an initializer terminal that is
working.

4-2 AMS81-04

RCP messages and other syserr traffic are not handled by the message
coordinator. This means that message coordinator commands cannot be used to
manipulate these messages. For example, the reroute command cannot be used to
reroute these messages from the bootload console to an initializer terminal.

The set_system_console command mentioned earlier may be used to stop ring
zero from sending syserr messages to the console. The messages are automatically
rerouted to the first initializer terminal accepted during the current bootload.

THE MULTIDROP INTERFACE (MDI) FOR IMUS

On systems that have IMUs as 1/0 multiplexers, you must communicate with
the maintenance channel adapter (MCA). The MCA controls the hardware functions of
system booting, IMU maintenance (e.g.,, IPC firmware loading), and some hardware
control functions for the IMU. There are three hardware components involved in
communicating with the MCA. These are: the MCA, the console channel in the IMU
(IPC-CONS), and a console or terminal. These are connected together to form the
multidrop interface.

The multidrop interface (MDI) connects MCAs and IPC-CONSs in a daisy-chain
configuration. The MDI requires at least one IPC-CONS {connected to a console) and
one MCA. Multiple IPC-CONSs and MCAs may be connected; however, only one
console may be enabled on the MDI This console is the master console; all other
consoles are slaves. The master console is the one to which all operator communications
to all connected MCAs are routed. There are commands that will allow the master
console designation to be moved from the current master to a slave; however, that
slave TPC~-CONS must have a console or terminal connected.

Each MCA must be able to reach a master console. If multiple IMUs are
configured, only one is required to have an IPC-CONS. This IPC-CONS must be
connected to a console or terminal and be the master console on the MDI If the
bootload console is on the IMU, it may be used as the master. If not, a separate
console is required for the MDI. This console must be described in the Multics
configuration deck as "alt". All the MCAs and IPC-CONSs on the system may be
connected together on one MDI, or each MCA and IPC-CONS in an IMU can be a
separate MDI, or the components may be combined in other ways, but they must
meet all the hardware and software requirements for an MDI

Because the master console may be the bootload console, the IPC-CONS in the
IMU uses an escape sequence to communicate with an MCA. This convention uses a
"#" character to determine if the input is for the MDI. There can be more than one
MCA connecied ito the MDI; therefore, the MCA number must folilow the "#"
character. To show that the MDI is active, a ">" character is printed by the console
indicating the message will be for an MCA. All commands to the MCA are prefixed
this way. All output messages are prefixed similarly with "#nn<," where "#" is an
indication that this is from an MCA, "nn" is the MCA number, and "<" indicates that
this is an output message. For example, to set the date and time in the MCA, type:

#01>time 111L485,120000

4-3 AMS81-04

The MCA will respond with:
#01<Monday November 14, 1985. 11/14/85 (12:00:00)

The MCA number is determined by rocker switches on the MCA board in the IMU.
These must be set to a number corresponding to the IMU’s letter on its iom card in
the config deck (e.g., 00 = a, 01 = b, etc.).

This convention of prefixing the input messages with the "#" character only
applies when the system does not have the console open for read. If the console is
open for read (normal operator input), "#" may still be used to delete a character. If
it is necessary to input to the MCA when the console is open for read, an "ESC#nn"
prefixes the message.

While the ability to tell the MCA the date and time as described above has no
impact on the Multics system, some of the maintenance functions may have adverse
effects. Also, by obtaining control of the MCA, control may be obtained over the
IMU and therefore over all devices connected to it. There are no explicit commands
to read or write devices; however, the potential to compromise data exists. This can
be considered a security risk.

To prevent possible adverse effects and avoid the security risk, console input to
the MCA can be disabled (locked) by using the BCE lock_mca command. This
command locks console input to the MCA; output from the MCA is still displayed on
the console. The lock_mca command must be issued before the BCE boot command.
If lock_mca is not invoked, the defauit mode of operation for the MCA is to have
its input enabled (unlocked). To unlock an MCA which is locked, use the BCE
unlock_mca command. The lock_mca and unlock_mca commands are described in the
Multics Administration, Maintenance, and Operations Commands manual, Order No.
GBo64.

THE INITIALIZER TERMINAL

If more than one terminal channel is connected to the initializer, the output
from the various sources (e.g., daemon processes) can be routed to divide the work
among several terminals. For example, all the daemons could be handled by one
terminal, and the answering service could use another. Or, if all the terminals are
inoperative, the system. can be run completely from the bootload console.

All terminals attached to the initializer may input initializer commands. (It is
possible to restrict a terminal to only certain commands.) It is sometimes difficult to
input an initializer command between output messages on an initializer terminal,
because the system keeps interrupting. If you type an empty line on an initializer
terminal, the sysiem responds:

OPER:

4-4 AMS81-04

and suspends output on that terminal channel. When you complete your command, the
output is restarted, with no message lost. If you do not finish your command in one
minute, the output is restarted. (On the bootload console, no output happens while a
read is open.)

Terminals may also be added o the initializer dynamically. To do this, dial a
terminal into Multics as if you were going to log in, but instead of typing login, issue
a dial command:

Multics 9.0: PCO, Phoenix, Az.
Load = 41.0 out of 110.0 units: users = k1

! dial system

The dialed terminal gets a message of the form:

TN300 405 chn a.h003 dialed to Initializer.

Also, a message stating that the terminal has dialed in is routed through the message
coordinator from the source "as" on the switch severityl to wherever the system_start_up.ec
has routed "as" messages. This might be the bootload console, an initializer terminal,
or nowhere. The message looks like this:

1137 as dial_ctl_: channel a.hC13 dialed to Initializer

You should then issue a series of commands to accept the terminal channel and
to route output to it.

! accept a.h003 reply dump otw_
Ready (User_name)

! define ve2 tty a.h003
Ready (User_name)

! route dump user_i/o vc2
Ready (User_name)

The response on the dialed terminal is a message saying that the initializer has
attached the channel:

channel a.h003 attached by Message Coordinator. |

followed by whatever messages are routed to the terminal channel

When you are finished with a dialed terminal, or if a curious user tries to dial
the initializer without permission, you may disconnect the channel from the initializer
and make it avaiiable for dialups again by typing a drop command:

! drop a.h003
Ready (User_name)

The response on the dialed terminal is a message similar to "please reissue dial
command” and at this point the terminal may be redialed, or used for regular logins,
or hung up.

4-5 AMS1-04

SECTION 5
BOOTLOAD OPERATING SYSTEM

The information that was in this section is obsolete and has been deleted. i

5-1 AMB81-04

SECTION 6
BOOTLOAD COMMAND ENVIRONMENT

BOOTLOAD COMMAND ENVIRONMENT DESCRIPTION

The bootload command environment (BCE) comprises a set of programs for
performing functions such as bootloading Multics, dumping and patching main memory
and disks, and initiating an emergency shutdown of Multics.

BCE is contained within thc first two collections of modules on the Multics
system tape. It consists of the following major parts:

1. collection zero routines
a series of programs read in from tape by the IOM which load the other BCE
programs into memory and load firmware into the bootload tape controller, if |
necessary.

2. collection one initialization
a series of programs that are part of Multics initialization proper that also
initialize the bootload command environment.

3. toehold program
a small program permanently residing in main memory at absolute location
24000 (octal). It communicates closely with Multics to pass control back and
forth between Multics and BCE.

4, bootload command utilities
a series of programs which provide the BCE command level.

5. command programs ,

a number of programs that perform the operator directed functions of BCE.
CONFIGURATION REQUIREMENTS

BCE requires a bootload console. In case of bootload console failure, BCE
searches the configuration deck for an alternate console. If it finds one, the first

console becomes inoperative. If it doesn’t find one, BCE crashes. (See the description
of the prph opc config card in Section 7.)

BCE requires 512K of contiguous low order memory. All of BCE’s functions
can be performed within this memory.

6-1 AM31-04

Two special regions of the RPV are used by BCE. These two special regions
have locations recorded in the label of the RPV. The first is the FILE partition,
which contains a simple file system used by BCE to hold BCE exec_coms and ASCII
sources of configuration files. The second is the BCE partition, used by BCE to hold
the following:

e BCE itself and BCE command programs
e The programs needed to boot Multics

e A saved copy of memory used by Multics when BCE is invoked after a crash

LOADING BCE

| BCE is loaded via the IOM. Step-by-step procedures for bootloading BCE are
| available in the Operator's Guide to Multics, Order No. GB6l.

Cold Booting BCE

A cold boot of BCE and Multics recreates the entire storage system hierarchy
on a particular RPV, discarding previous hierarchies, including all user files. Therefore,
you shouldn’t do a cold boot unless you're sure you want to discard the existing
hierarchy; i.e., you shouldn’t do a cold boot unless the Multics storage system is either
nonexistent or has been destroyed. Proceed as if you were doing a regular boot.
Then, when vou get the prompt:

Enter rpv data:
answer it with:

| cold Tchan msp_model drive_model drive_number {sv}

where:
T
| is the tag of the IOM to which the bootload disk controller (the one
controlling the disk drive on which the RPV is mounted) is connected (a, b, ¢
or d).
chan)
is the number (in decimal) of the IOM channel to which the bootload disk
I controller is connected (e.g., 24).
| msp_model

l is the model number (in decimal) of the bootload disk controller.

6-2 AMS81-04

Valid model numbers are:

4oo (MSP0OL0OO)

451 (MSPOL51, DSCOL51)

601 (MSP0601)

603 (MSP0603)

607 (MSP0607)

609 (MSP0609)

611 (MSPO611)

612 (MSP0612)

800 (MSP8021, MSP8022, MSP8023) |
ipc (IPC-FIPS) |

drive_model

is the model number (in decimal) of the disk drive on which the RPV is
mounted. Valid model numbers are:

400 (MSU0LOO)
Lo2 (MSUOLO?2)
451 (MSUOL51)
500 (MSU0500)
501 (MSU0501)
3380 (MSU3380)
3381 (MSU3381)

drive_number {sv}
is the number of the disk drive and, if drive_model is 3380 or 3381, the name
of the subvolume on which the RPV is located. The valid subvolume names
for MSU3380s are a and b. The valid subvolume names for MSU3381s are a,
b, and c. A subvolume name must be specified for 3380 and 3381 devices; it
must be omitted for all other disk drive types. An example of drive_number
for a 451 is "1". An example of drive_number{sv} for a 3380 is "1b".

The system will enter the init_vol request loop. (The init_vol request loop is described
under the init_vol command in the Multics Administration, Maintenance and
Operations Commands manual, Order No. GB64.) At this time, you must enter the
attributes of the RPV.

Then, when BCE comes to the “early"” command level, you must enter the config deck.
(The BCE commands to do this are described in the Multics Administration,
Maintenance, and Operations Commands manual, Order No. GB64). When you are
finished, again proceed as if you were doing a regular boot.

Some Special Requests

When the system asks you f{o emter the boot tape MPC medel, you can stop
(crash) initialization by typing “"shut." If firmware should not be loaded into this MPC
for some reason, you can prevent it from being loaded by typing "ipc."

When the system asks you to enter the RPV data, you can abort booting by
typing "shut” If firmware should not be loaded into the described MPC for some
reason, you can suppress the load by typing "skip" before you type "rpv" or "cold."

6-3 AMB81-04

Error Recovery during BCE Boot

There are several different points during the boot process at which attempts
are made to allow for error recovery. The methods depend on the point within the
boot sequence. The following paragraphs discuss the recovery attempts by describing
some aspects of the internal operation of the boot sequence.

When you boot BCE directly from the IOM, it executes collection 0
initialization, which reads in collection 1 (BCE proper). A config deck is synthesized
from the knowledge of the hardware found during this pass and through questions to
the operator. A first pass is made through collection 1 to find the RPV and to read
in the last config deck saved in the CONF partition on disk. If an error occurs
before this point, most likely a hardware or software failure, the early dump facility
is invoked (see "The Early Dump Facility" later in this section). Otherwise, this
environment (memory and the synthesized config deck) is saved on disk. The “early"
command level is then entered. (Note that time stamps may be wrong at the "early”
level.) At this point, you must make sure the config deck (read from disk) is correct.
Then you may enter "bce" to actually boot BCE. Initialization continues with a second
pass through collection 1. If this pass fails, most likely due to either a hardware
problem or an error in the config deck, the saved environment is restored and you
are returned to the "early” command level. You may then retry the boot. Eventually
this will succeed and BCE will come to the "boot" command level, having saved this
new environment and config deck.

Once at the "boot" command level, you may perform BCE functions. To boot
Multics, enter "boot". Another pass through collection 1 is made to set up for
Multics. If an error occurs during this pass (most likely a hardware problem or a bad
config deck), the environment saved above is restored and you are returned io the
"bce_crash” command level. Also, if a BCE utility should fail or should encounter a
BCE breakpoint, this environment is restored and "bce_crash” level entered. (For a
discussion of BCE breakpoints, refer to the description of the BCE probe command in
the Multics Administration, Maintenance, and Operations Commands manual, Order
No. GB64.) At this time, you may enter "crash” level commands to examine the
failed image (or to debug BCE), or "boot" level commands to fix the config deck (if
necessary) and to retry the boot of Multics.

An important thing to remember about coming to the "bce_crash" or returning
to the "early" command levels is that they use an environment and config deck
declared safe on a previous initialization pass. As such, not all devices listed in the
"current” config deck (the one visible with the config deck editor) may be accessible
at this level. Generally speaking, to access all devices, the config deck must be correct
and an initialization pass (the "boot" pass) must be made. If you are in doubt,
entering "reinitialize" will run another initialization pass.

Once the "service" pass of cellection 1 completes, any further failures of
initialization or of Multics itself return to the "crash” command level, used for
examining the crash. At this time, the config deck as used by Multics is used. This is
done to take into account any reconfigurations performed by Multics. At the "crash"”
level, you should take a dump and perform an emergency shutdown.

6-4 AMB81-04

Config Deck and Device Accessibility

When Multics is running, the set of devices that are accessible (to the system
as a whole) are precisely those described by the config deck. The config deck is kept
up to date with the state of the devices. However, the real state of devices and their
accessibility is described by various control tables within Multics. One of the main
purposes of BCE is to set up these control tables. Since BCE allows arbitrary text
editing on the config deck, it follows that the state of the control tables may not
match that of the config deck. The following paragraphs describe some of these
subtleties.

When you first boot BCE from tape, collection 0 constructs a config deck
based on operator responses and some hardware switches. This config deck is used to
construct the control tables at the "early” level. As a result, this config deck and the
control tables only describe the bootload tape drive, the RPV, and the bootload
processor. Some fields in the config deck will be incorrect, such as CPU model
numbers. At the "early” command level, you must make sure that the config deck
accurately describes all hardware units. These units are not accessible at this time,
however.

An attempted boot to "boot" command level builds control tables describing all
of these hardware units. If this boot succeeds, all of these units are accessible from
BCE. If it fails, BCE returns to "early” command level with only the initial hardware
units accessible.

At the "boot" command level, you may again change the config deck. Any
units added, for example, will not be accessible at this time, since the control tables
do not describe them. However, if you boot Muitics, Multics will be able to access
them all, since a Multics boot builds control tables for them all. If this boot fails,
BCE returns to the "bce_crash"” command level, with these new changes not described
in the control tables (but visible in the config deck).

Any changes made to the config deck become reflected in the control tables in
only one of two ways. The first is by your booting to the next BCE command level
or to Multics. If the config deck is correct, the devices become accessible. The other
way is by your entering "reinitialize,"” which runs a new initialization pass and returns
to the "boot" command level. If this succeeds, the devices become accessible. If it
fails, BCE returns to "bce_crash" level, without the changes being made.

BCE TOEHOLD

The BCE toehold is a program that resides in main memory. The toehold
communicates very closely with BCE and Multics as follows.

6-5 AMBS81-04

When Multics is running, the toehold may be invoked by manually forcing the
processor to execute an XED 24000 (octal) interrupt inhibited instruction. The CPU
must be in TEST mode when the XED instruction is executed. The toehold saves the
processor registers and the 512K of low memory. It then reads in a saved copy of
BCE from the RPV and transfers control to it. BCE then enters its command level
with a prompt of:

bce (crash) TIME:

The toehold is also invoked as a result of either the "go" or the "continue"
command being issued within BCE. When one of these commands is issued, the
toehold restores the memory image that it has previously saved and restarts the
program that was originally running.

The toehold contains a flagbox of bits that may be ON or OFF and which can
be read and set both by BCE and Multics.

To enter BCE manually on a Level 68 system, execute switches with the DATA
switches set to 024000717200 (XED 24000 interrupt inhibited). To enter BCE manually
on a DPS 8 system, use the BCE 24000 command.

Step-by-step procedures for executing switches on both a Level 68 system and
a DPS 8 system are available in the Operator’'s Guide to Mul/tics, Order No. GB6l.

THE EARLY DUMP FACILITY

The early dump facility is a facility within BCE that is capable of saving an
image of memory 1o tape when a system failure occurs during collection 1
initialization. It resides at a fixed location in memory whenever BCE is running (30000
octal). It is invoked automatically whenever a hardware or software error is detected
prior to the establishment of the BCE toehold. It can also be entered manually,
whenever BCE is present (but definitely NVO7 when Multics is running), by forcing an
XED 24004. This is done in a manner similar to forcing a manual return to BCE,
except that the value entered into the DATA switches is 024004717200 (XED 24004
interrupt inhibited).

Once entered, the early dump facility may print a flagbox message. It will
always prompt with:
Enter tape drive number for memory dump:

You should reply with the number of a tape drive controlled by the bootload tape
i controller on which a tape is mounted for writing. Memory will be dumped onto this
« tape at a density of 1600. After performing the dump, BCE will disable itself.

6-6 AMB81-04

The tape written by this facility can be read with the read_early_dump_tape
(redt) command and analyzed with the analyze_multics (asm) command, both of which
are described in the Multics Administration, Maintenance, and Operations Commands
manual, Order No. GB64.

BCE COMMAND LANGUAGE

The command language used within BCE is the normal Multics command
language (actually the ssu_ request language). Do not confuse this with the command
language used at the initializer’s ring 1 command level. (Refer to the Multics
Programmer’s Reference Manual/, Order No. AG9Y91, for a description of Multics
command/subsystem language.) Full support for active functions, iteration sets, etc. is
provided.

Commands to BCE may only be issued at the bootload console. Standard
typing conventions apply. It is also possible for BCE commands to be placed in
exec_coms. Exec_coms are ASCII files containing commands and possible input to
commands. They are run with the "exec_com" command.

There are three ways to edit a BCE exec_com. One way is to use the BCE
gedx command within BCE. This way is not recommended. A second way is to use
the bootload_fs command to copy the exec_com into the Multics storage system, use a
Multics text editor to edit the exec_com, and use the bootload_fs command to copy
the exec_com back into the BCE file system. A third way is to get a copy of the
exec_com from the system library, edit it with a Multics text editor, return it to the
system library, and then use the generate_mst command to create a new system tape.
Both the bootload_fs command and the generate_mst command are documented in the
Multics Administration, Maintenance, and Operations Commands manual, Order No.
GB64.

Also, a command may be placed in the flagbox within BCE or Multics for
BCE to execute whenever Multics crashes or shuts down.

Whenever BCE is at command level, it responds with a ready message like the
following:

bce (state) TIME:

where "state" is one of the following:

early

indicates that system is ready to boot BCE.
boot

indicates that system is ready to boot Multics.
crash

indicates that Multics has crashed.

6-7 AMB81-04

bce_crash
indicates that BCE has crashed.

See Figure 6-1 for an illustration of the BCE states and some commands/events that
change them.

Some commands have subrequests to them, such as qgedx and probe. The
conventions for request lines entered for such commands vary from command to
command.

BCE COMMANDS

Complete descriptions of the BCE commands are presented in the Mu/tics
Administration, Maintenance and Operations Commands manual, Order No. GB64.

ABORTING BCE COMMANDS

Whenever you push the REQUEST button on the console (or the RETURN key
on the CSU6601) and BCE has not solicited this request from you, the BCE abort
routine is entered. This routine allows BCE operations to be aborted to various
extents. When called, the abort function prompts you (on the console) with:

Abort?

You may give various answers to this question. If you hit the REQUEST button
accidentally, you may enter "no" or "n" to return to the interrupted operation.
Answering "yes" or "y" aborts the operation. If the operation was a sub-request, only
the sub-request is aborted. Otherwise, the command in question is aborted, returning
either to the exec_com which called it, if one was present, or to BCE command level
Answering '"request,” "req" or "r" is equivalent to answering "yes." Answering
"command,” "com" or "c" aborts the current command, regardless of whether a
sub-request was in execution or not. Finally, answering "all” or "a" aborts anything in
execution, returning to BCE command level.

6-8 AMB81-04

iNITIALIZE/BOOTLOAD
pv
SYSTEM
CRASHES
Y
(P (early) - ﬂ
reinit bee reinit reinit
FAILS FAILS FAILS
reinit
(' (bOOt) e \
reinit (/’/ reinit
SYSTEM esd
CRASHES
;——— (bce-crash) boot shut (crash) _/
boot SYSTEM
CRASHES
‘, J
- > MULTICS

Figure 6-1. BCE States and Commands/Events That Change Them

6-9 AMBS81-04

SECTION 7
MULTICS CONFIGURATION DESCRIPTION

MULTICS CONFIGURATION FILE

The following discussion describes records in the config (configuration) file.
Information in this file describes the hardware configuration, tells the system of switch
settings and operational readiness of specific hardware and peripheral devices, and sets
several system tuning parameters. This information is specified while in BCE, and
passed by BCE to Multics; the system software considers this information the
configuration under which Multics must run.

Historically, the configuration records were defined by a set of cards in a
config deck. Today, the config deck is replaced by a config file in which each line
defines a configuration record. The older terminology, however, still appear in the
documentation and in the name of the Multics print_configuration_deck command.

0id Terminology New Terminology
config deck config file
config card config record (line in config file)

The configuration file is stored by BCE in the CONF partition. It can be input from
.2 file on the Multics system tape or from the bootload console.

Each configuration record described in this section includes a standard format
and a Ilabeled format illustration. In the labeled format, each value on a config
record, except the name of the record, can optionally be preceded by a field label
Labeled fields can appear in any order. The interpretation of a config record in
labeled form is that all labeled field values are ordered according to standard format;
any unlabeled value, then, fill in the missing fields. Thus,

iom -state on -port 1 a iom
becomes

iom a 1 iom on

in its standard format. Config records in labeled format are easier to understand than
records in standard format because each field is preceded by an identifier.

7-1 AMS81-04

Each site has its own set of config records that define the hardcore
configuration, switch settings, and software tuning parameters used by the site. The
format of config records is the same for every site. The particular config records,
their order, and their field values vary to conform to the equipment configuration at
that site.

Config records can be divided into five categories:

1. configuration of major hardware mainframe modules: cpu, iom, mem

2. configuration of peripheral controllers and devices: chnl, ipc, mpe, prph, udsk
3. descriptions of software parameters: clok, schd, sst, tcd

4. parameters of the storage system: part, root, salv

5. specialized: dbmj, intk, parm, tbls.

General Description of Config Records

All records in the config file contain free-formatted individual fields separated
by one or more blank characters. Numbers on config records are usually octal (the
part and root records are exceptions). Decimal numbers are represented by placing a
decimal point immediately after the number (e.g., 10. indicates decimal ten). In some
record fields, numbers 1 through 8 may be represented by the letters a through h,
respectively. See examples listed under individual records.

Listing the Config File in BCE

After the config file has been read by BCE at bootload time, it may be listed
by typing the BCE config command to enter the config file editor, and then typing
"1,$p" at the bootload console. The BCE config command is described in the Mu/tics
Administration, Maintenance, and Operations Commands manual, Order No. GB64.

Listing the Config File in Multics

When Multics is running, you may list the config deck with the
print_configuration_deck (pcd) command, described in the Mul/tics Administration,
Maintenance and Operations Commands manual, Order No. GB64.

Sample Configuration Files

Here is a sample configuration file for a large system, with the records in
general format:

clok 5 est 24,
iom a 0O iom on
iom b 1 iom on
iom ¢ 2 imu on
cpu a 7 on dps8 70. 32.

1-2 AMS81-04

cpu
cpu
cpu
mem
mem
mem
mem
mpc
mpc
mpc
mpc
mpc¢
mpc¢
mpc
mpc
mpc
mpc
prph
chnl
prph
chnl
prph
chnl
prph
chnl
prph
chnl
prph
prph
prph
prph
prph
prph
prph
prph
prph
prph

8001. a 10. 2
8001. a 12. 2
L 501. 8 0 22. L51,

b 6 on dsp8
¢ 5 on dsp8
d 4 on dsp8
a 20L48. on
b 2048. on
c 2048. on
d 1024, on
mtpa 611, a
mtpb 611. b
mspa 612. a
mspb 612. a
mspc 612. a
mspd 612. b
mspe 612. b
mspf 612. b
urpa
urpb
dska a 16.
dska b 16.
dskb a 20.
dskb b 20.
dskc a 2L,
dskc a 24,
dskg ¢ 16.
dskg ¢ 20.
tapa a 1k.
tapa b 14.
opca a 31.
opcb a 24,
opcc ¢ 14,
prta a 10.
prtb a 11.
rdra a 12.
fnpa a 28.
fnpb b 28.
fnpc a 29.
frpd b 29.
L

ipc fips ¢ 16.
ipc fips ¢ 20. &4
root dskc 30 dskb 31 dske 28
part dump dskc 30
schd 400000 4 10 100 2 20.
ted 200. 600.

1500.
udsk dska 2
parm ttyb 61440, ccrf
tbls scav 140.
dbmj 64. 700. 400. 150. 60. 25.

sst

3000.

Here is the same config file, but with the records in labeled format:

70.
70.

1L,
1L,
16.
20.
2k,
16.
20.
24,

Lol Sl N

N

4L 0 8 501. 8. 0 12.
L

L

L

L 3380. 16.

L

1 610. 6

1

6601. 80. on
6004. 80. alt
6601. 80. alt
1201. 600. 136.
1201. 600. 136.
500.

6670. on

6670. on

6670. on

6670. on

1000.

70. 16.

200.

2

451. 2

0 16. 501. 3 0 6 451, 2

clok -delta 5 -zone est -boot_delta 2i.

iom -tag a -port O -model

iom -state on

iom -tag b -port 1 -model iom -state on
iom -tag ¢ -port 2 -model imu -state on

7-3

AMB1-04

cpu -tag a -port 7 -state on -type dps8 -model 70. -cache 32.
cpu -tag b -port 6 -state on -type dps8 -model 70. -cache 16.
cpu -tag ¢ -port 5 -state on -type dps8 -model 70. -cache 8.
cpu -tag d -port L4 -state on -type dps8 -model 70. -cache 8.
mem -port a -size 2048. -state on
mem -port b ~size 2048. -state on
mem -port ¢ -size 2048. -state on
mem -port d -size 1024. -state on
mpc -ctlr mtpa -model 611. -iom
mpc -ctlr mtpb -model 611. -iom
mpc -ctlr mspa -model 612. -iom
mpc -ctlr mspb -model 612. -iom
mpc -ctlr mspc -model 612. -iom
mpc -ctlr mspd -model 612. -iom
mpc -ctlr mspe -model 612. -iom -chn 20. -nchan
mpc -ctlr mspf -model 612. -iom -chn 2L4. -nchan
mpc -ctlr urpa -model 8001. -iom a -chn 10. ~nchan 2
-mpc -ctlr urpb -model 8001. -iom a -chn 12. -nchan 2
prph -subsys dska -iom a -chn 16. -nchan 4 -model 501. -number 8.
-model O -number 22. -model 451. -number 2
chnl -subsys dska -iom b -chn 16. -nchan &
prph -subsys dskb -iom a -chn 20. -nchan 4 -model O -number 8.
-model 501. -number 8. -model O -number 12. -model 451.
~number 2
chnl -subsys dskb -iom b -chn 20. -nchan &
prph -subsys dskc¢ -iom a2 -chn 24. -nchan 4 -model O -number 16.
-model 501. -number 3 -model 0 -number 6. -model L51,
-number 2
chnl -subsys dskc -iom a
prph -subsys dskg -iom ¢
chnl -subsys dskg -iom ¢
prph -subsys tapa -iom a
chnl -subsys tapa -iom b -chn 14. -nchan 1
prph -device opca -iom a -chn 31. -model 6601. -11 80. -state on
prph -device opcb -iom a -chn 24. -model 600L. -11 80. -state alt
c
a
a
a
a
b
a

-chn k. -nchan
-chn 14. -nchan
-chn 16. -nchan
-chn 20. -nchan
-chn 24. -nchan
-chn 16. -nchan

Lok o R o Y TR RN VRN @ i 1]
S~ eres— -

-chn 24, -nchan &4

-chn 16. -nchan 4 -model 3380. -number 16.
-chn 20. -nchan 4

-chn 14. -nchan 1 -model 610. -number 6

prph -device opcc -iom ¢ -chn 14. -model 6601. -11 80. -state alt

prph -device prta -iom -chn 10. -model 1201. -train 600. -11 136.

prph -device prtb -iom ~chn 11. -model 1201. -train 600. -11 136,

prph -device rdra ~iom a -chn 12. -model 500.

prph -device fnpa -iom a -chn 28. -model 6670. -state on

prph -device fnpb -iom b -chn 28. -model 6670. -state on

prph -device fnpc -iom -chn 29. -model 6670. -siate on

prph -device fnpd -iom b -chn 29. -model 6670. -state on

ipc -type fips ~iom ¢ -chn 16. -nchan L

ipc -type fips -iom ¢ -chn 20. -nchan L

root -subsys dskc -drive 30 -subsys d
-drive 28

part -part dump -subsys dskc -drive 30

schd -wsf 400000. -tefirst L -telast 10. -timax 100. -mine 2 -maxe 20.

ted -apt 200. -itt 600.

sst -Lk 3000. -16k 1500. -6L4k 1000. -256k 200.

udsk -subsys dska -nchan 2

parm tty b 61440. ccrf

tbis scav 140.

dbmj 64. 700. L0OO. 150. 60. 25.

(1]
x
o
1
Q
-t

-4 AMS1-04

Note that the parm, tbls, and dbmj records (shown) and the intk and salv records |
(not shown) do not have a labeled format. |

Name: chnl

This record designates additional channels used to access a given disk or lape i
subsystem through a specified IOM. If a noncontiguous set of channels is used to
access a given subsystem as, for example, through different IOMs, a chnl record must |
be used. Up to three additional channel groups may be specified. See the prph record |
for more information on disk and tape subsystems. l

Format
chnl device_name iom! chnl nchanl {... iombk chnk nchank}
where:
1. device_name
is the name of the disk or tape subsystem for which channels are

being specified. It must match the device name of the disk or tape
subsystem on a prph record. |

2. iomi
is the tag (a, b, ¢ or d) of the IOM that is to be used.

3. chni
is the first logical channel {configuration dependent) through which
the disk or tape subsystem is driven.

4. nchani

is the number of logical channels (configuration dependent) to be
used.

Labeled Format

chnl -subsys device_name -iom ioml -chn chnl -nchan nchanl
{... -iom iomk -chn chnk -nchan nchank}

Examples

chnl dska b 30. &

chnl - subsys dska ~iom b -chn 30. -nchan &

7-5 AM81-04

clok clok

Name: clok

l The clok record provides information to system software about how to interpret
the readings of the calendar clock in a system controller.

Format

clok delta zone boot_delta

where:
1. delta
is the time difference (number of hours earlier than Greenwich mean
time). The range of this field should be:
-12. <= delta <= +11.
If the value of delta is less than zero, a minus sign must be
specified. (This field is ignored by BCE, but must still be specified.)
2. zone

is up to four characters describing the time zone. The following is a
list of the acceptable zone names and their corresponding delta and
zone values.

7-6 AMS81-04

clok clok

Zone Name delta zone
Nome Time +11. nt
Hawaiian Standard Time +10. hst
Yukon Standard Time +03. yst
Hawaiian Dayiight Time +09. hdt
Pacific Standard Time +08. pst
Yukon Daylight Time +08. ydt
Mountain Standard Time +07. mst
Pacific Daylight Time +07. pdt
Central Standard Time +06. cst
Mountain Daylight Time +06. mdt
Eastern Standard Time +05. est
Central Daylight Time +05. cdt
Atlantic Standard Time +0k. ast
Eastern Daylight Time +04 . edt
Newfoundland Standard Time +03.5 nst
Greeland Standard Time +03. gst
Atlantic Daylight Time +03. adt
Newfoundland Daylight Time +02.5 ndt
Azores Time +02. at
West Africa Time +01. wat
Universal Time +00. ut
Universal Time +00. z
Greenwich Mean Time +00. gmt
Central European Time -01. cet
Middle Europe Time -01. met
Middle Europe Winter Time -01. mewt
British Summer Time -01. bst
Swedish Winter Time -01. swt
French Winter Time -01. fwt
Heure Francais d'Hiver -01. hfh
Middle Europe Summer Time -02. mest
Eastern European Time -02. eet
Swedish Summer Time -02. sst
French Summer Time -02. fst
Heure Francais d'Ete -02. hfe
Baghdad Time -03. bt
GMT +4 hours. -0k, zph
GMT +5 hours. -05. 2p5
Indian Standard Time -05.5 ist
GMT +6 hours. -06.) zpb
West Australian Standard Time -07. wast
Java Time -07.5 Jt
West Australian Daylight Time -08. wadt
China Coast Time -08. cet
Japan Standard Time -09. jst
Central Australian Standard Time -09.5 cast
South Australian Standard Time -09.5 sast
East Australian Standard Time -10. east
Central Australian Daylight Time -10.5 cadt

7-7 AMBS81-04

clok clok

| South Australian Daylight Time -10.5 sadt

| East Australian Daylight Time =11, eadt

i New Zealand Standard Time -12. nzst

i New Zealand Daylight Time -13. nzdt
3. boot_delta

this number reflects the site’s normal interval between shutdowns and
boots in hours (if the number is decimal, the decimal point must be
supplied). If the system was down for more than the specified
number of hours, the next time you attempt to boot the system you
are informed of the "suspicious" situation and asked if you still want
to boot. This control argument can be used to check for incorrect
clock settings before damage is done to the storage system. The
default is off.

Labeled Format

clok -delta delta -zone zone -boot_delta boot_delta

Notes

| This is the record that is changed when daylight savings (or standard) time is
started or stopped.

If the operator attempts to boot BCE with an unacceptable value for zone on
the clok record, the system prints the following message:
l

scs_and_clock_init: The zone on the clok
cbn

record

is not in time_info_.

and BCE crashes. If the system was at the "early” state, it will stay there. If it was
at the "boot" state, it will go to the "bce_crash" state. If it was at the "bce_crash"

| state, it will stay there. The operator should correct the clok record and continuing
bootix)xg. (This means typing "bce" at the "early" state or "boot" at the "bce_crash”
state.

If the operator attempts to set the calendar clock to a time which is more
than boot_delta hours after the last shutdown time, the system prints the following
message:

The current time is more than the supplied boot_delta hours beyond
the unmounted time recorded in the RPV label. |Is this correct?

The operator should answer the question, and if necessary, reenter the time.

7-8 AMB81-04

clok cpu

Examples

ciock +05. est 24.
clok -02. eet
clok +11. nt

clok -delta +05. -zone est -boot_delta 2k.
clok -delta -02. -zone eet
clok -delta +11. -zone nt

Name: cpu

The cpu identifies a processor in the system configuration.

Format

cpu tag port state {type} {model} {cache_size}

where:

1. tag
is a letter (a through h) corresponding to the processor number (0
through 7) set in the processor configuration switches.

2. port
is a number (0 through 7) corresponding to the system controller
port to which the processor is connected. It is strongly recommended
that IOMs be configured on lower-numbered SCU ports than CPUs.

3. state
is either on or off. On signifies that the processor is configured at
the time Multics is bootloaded. Off signifies that the processor can
be dynamically added to the configuration at a later time.

4, type
is either 168, dps8, or dps.

5. model

is the model number of the processor. The model number is 60. for
L68 and DPS processors with no cache and 80. for those with 2K
cache. The model number is either 70., 62. or 52. for a DPS§
processor, depending on which submodel you have.

6. cache_size

is the cache size of the processor expressed in Kilo-words (1kw =
1024 words).

= AMS81-04

cpu

cpu

Labeled Format

cpu -tag tag -port port -state state
{-type type -model model -cache cache_size}

Examples

cpu a 7 on dps8 70. 32.

cpu b 6 on dps8 62. 16.

cpu ¢ 5 on dps8 52. 8.

cpu d L off 168 80. 2.

cpu e 3 on dps 80. 2.

cpu f 2 off dps 60. O

cpu -tag a -port 7 -state on -type dps8 -model 70. -cache 32.
cpu -tag b -port 6 -state on -~type dps8 -model 62. -cache 16.
cpu -tag ¢ -port 5 -state on -type dps8 -model 52. -cache 8.
cpu -tag d -port 4 -state off -type 168 -model 80. -cache 2.
cpu -tag e -port 3 -state on -type dps -model 80. -cache 2.
cpu -tag f -port 2 -state off -type dps -model 60. -cache 0.
Notes

The CPU type, model number and cache size may be optionally specified when
the config file is built in BCE. When the system is booted or a CPU is added to the
configuration, internal hardware registers are read to determine the actual CPU type,
model number and cachewsize. Then, if these fields have been specified on the cpu
config record image, they are checked for correctness. If any of them have been
specified incorrectly, a message is sent which sounds the alarm. The discrepant fields
are then corrected by the software, and the updated cpu config record image is
restored into the config file segment. If these optional fields have not been specified,
the software determines what their values should be and updates the cpu config record
image in the config file segment without sending a message. If for some reason the
CPU model number can not be determined by reading the appropriate config registers
within the CPU, the CPU model number field is set to 77..

7-10 AMS81-04

dbmj dbmj

Name: dbmj

The dbmj (Database Management Journals) record sets up dm_journal_seg , and |
alsc sets various limits on synch-held pages.
Format

dbmj max_journals max_pages astl ast2 ast3 asth where:

1. max_journals
is the maximum number of before journals allowed.

2. max_pages
is the maximum number of database management pages that may be
held in memory at any given time.

3. astl
is the maximum number of database management segments allowed to
have a 4K AST pool entry.

4. ast?
is the maximum number of database management segments allowed to
have a 16K AST pool entry.

S. ast3
is the maximum number of database management segments allowed to
have a2 64K AST pool entry.

6. ast4
is the maximum number of database management segments allowed to
have a 256K AST pool entry.

Examples

dbmj 64. 700. L400. 150. 60. 25.

7-11 AM81-04

intk

iom

Name: intk

The intk record is not physically present in the config file. It is a record
image set up by BCE in the main memory-resident image of the config file at
bootload time, and used to tell Multics whether or not to automatically start up the
answering service.

Format

intk boot drive pl p2 ... pN

where:

1. boot
is either warm or cold to specify whether the system is to be
brought up to a warm or cold bootload.

2. drive
is the tape drive from which the system tape is booted.

3. pi
are arguments typed to the BCE boot command other than warm,
cold, or the tape number. These arguments enable special options
during system startup.

Example

intk warm 3 star

Name: iom

The iom record describes an input/output mainframe (IOM or IMU) as part of

' the system configuration.

Format

iom tag port model state where:

[y

tag
is a letter (a, b, ¢ or d) that identifies the IOM or IMU.

2. port
is the system controller port (0 through 7) to which the IOM or
IMU is connected. It is strongly recommended that I/0 mainframes
be configured on lower—numbered SC ports than CPUs.

7-12 AM81-04

iom ipc

3. model
is either iom, indicating that this I/0 mainframe is an IOM, or imu, i
indicating that this I/0O mainframe is an IMU. i

4. state '
is either on, indicating that the I/O mainframe may be used by the |
system, or off, indicating that it may not be used at this time. If
off, it may be added to the configuration at a later time.

Labeled Format

iom -tag tag -port port -model model -state state

Examples
iom a 0 iom on
iom ¢ 3 imu on
jom -tag a -port O -model iom -state on

iom -tag ¢ -port 3 -model imu -state on

Name: ipc

The ipc record is used in the configuration file to associate channel numbers
with IPC FIPS controllers. FIPS controllers are only supported for the IMU type of
1/C mainframe. The physical channels for this type of 1/0 mainframe are called
IPCs. There must be a separate ipc record for each IPC FIPS controller configured
on the system.

Format

ipc type iom chn nchan

where:

1. type
is the type of the IPC. Only the "fips" type must be described in
the config fil¢.

2. iom

is the tag (a, b, ¢, or d of the IMU to which the IPC is
connected.

7-13 AMBS81-04

ipc

mem

3. chn
is the starting logical channel number for this IPC.

4. nchan
is the number of logical channels for this IPC.
Labeled Format

ipc ~type fips -iom iom -chn chn -nchan nchan

Examples
ipc fips a 20. 2

ipc -type fips -iom a -chn 20. -nchan 2

Name: mem

The mem record defines the system controllers that are part of the system
configuration. There is one mem record for each system controller configured in the
system. These mem records must be placed in the config file in the order in which
the memories are configured, the lowest—-order memory (lowest address) first and the
highest (highest address) last.

Format

mem port size state

where:

1. port
is a value (a through h) that corresponds to the number of the
active module port to which the system controller is connected.

2. size
is the number of 1024 (2000 octal) word blocks of memory in the
controller.

3. state

is either on or off. On signifies that the memory is actively
connected at the time Multics is bootloaded. Off signifies that the
memory 1is available and, while not actively connected, may be
brought into the system configuration dynamically at a later time.

7-14 AMB81-04

mem

Labeled Format

mem -port port -size size -state state

Examples

mem a 102L. on
mem b 102L. on
mem ¢ 1024. off

mem -port a -size 102L. -state on
mem -port b -size 102L. -state on
mem ~-port ¢ -size 102L, ~-state off

Name: mpc

The mpc record is used in the configuration file to associate channel numbers l

with microprogrammed peripheral controllers (MPCs) and with physical links to MPCs.

On this record, the IOM number, the base channel number, and number of channels
for each physical link (PSIA channel) to the MPC is given. There must be a separate

mpc record for each MPC configured into the system.

Format

mpc ctlr_name ctlr_model ioml chanl nchanl {... iomh chank nchank}

where:

1. ctlr_name

is the controller name of the MPC. Controller names must be

unique —— no two on the system can be the same. Valid controller
names are:
mtpx for tape controllers
mspx for disk (mass storage) controllers
urpx for unit record controllers

where ¥ can be any alphanumeric character that makes the name
unique.

mpc

7-15 AMB1-04

mpe

2. ctir_model
is the model number of the MPC. The following is a list of
supported MPCs and their corresponding ctlr_name and ctlr_model

values.

MPC_type ctlr_name ctlir_model
MTC501 mtp 501.
MTC502 mtp 502.
MTC0602 mtp 602.
MTP0600 mtp 600.
MTPO601 mtp 601.
MTP0610 mtp 610.
MTPO611 mtp 611.
MTP8021 mtp 611.
MTP8022 mtp 611.
MTP8023 mtp 611.
MSPOLOO msp 400.
DSCOL51 msp 457,
MSPOL5 msp 451.
MSP0601 msp 601.
MSP0603 msp 603.
MSP0O607 msp 607.
MSP0609 msp 609.
MSPO611 msp 611.
MSP0O612 msp 612.
MSP8021 msp 800.
MSP8022 msp 800.
MSP8023 msp 800.
URC002 urp 2.
URP0600 urp 600.
URP8001 urp 8001.
URP8002 urp 8002.
URP80OOL urp 800L.

| The MSP0609 and MSP0612 controller models require two mpc records, one for
each half of the controller.

3. iomi
is the IOM to which each link adapter is connected. (See Notes
below.)

4. chani
is the starting logical channel number for each link adapter. (See
Notes below.)

5. nchani

is the number of logical channels on each link adapter. (See Notes
below.)

7-16 AMB81-04

mpc

Labeled Format

mpc -ctlr ctlr_name -model ctlr_model -iom ioml -chn chnl -nchan
nchanl {... -iom iomk -chn chnk -nchan nchank}

Notes

Up to 4 physical channels can be described on the mpc record. These channels
must be listed in a specific order. The information for the bootload channel (as set
on the MPC maintenance panel) must be listed first. The bootload channel is followed
by the primary channel on the non-bootload link adapter (LA). Following these two
primary channels are the secondary channels for the LAs, in the same. order as the
primary channels. If any of these channels are not connected to the mpc they should
simply be omitted from the mpc record. This ordering of the channels is important |
to guarantee that the channels will be used in the most efficient manner possible.

For disk and unit record MPCs, up to eight logical channels may be specified, since
up to eight logical channels may be configured per physical channel. For tape MPCs,
up to two logical channels may be specified. However, only one logical channel should
be specified, since only one logical channel should be configured per physical channel.
Examples

mpc mspa 611. a 20. 2 a 24, 2

mpc -ctlr mspa -model 611. -iom a -chn 20. -nchan 2 -iom a -chn 24.
-nchan 2

Name: parm

This record is used to define software parameters. More than one parm record
may be used if many parameters are to be specified, although several parameters may
be specified on each record. '
Format

parm parameters
where parameters can be chosen from the following:

astk

enables online maintenance of the SST name table. This increases
system overhead, but speeds up dumps.

7-17 AMB81-04

parm parm

cerf
specifies that the system should crash if all available consoles fail or
if the bootload console is forcibly detached. If this parameter is not
present, the system will continue to run for as long as possible
without a console. 1/0 for the console will be sent to the syserr
log. This parameter should be used by those sites which consider it
critical that system events be reported in a timely manner.

chwm
causes information to be printed on the bootload console during
bootload pertaining to the collection 1 high-water mark; that is, the
number of pages used by early initialization.

crwl
is used omly for system debugging. If the parameter crwl is put on
the parm record, the system returns to BCE on every attempt to
crawl out of ring 0, with the message:

verify_lock: crawlout stop specified on parm record

so that the system staff can take a dump. Typing go causes the
system to continue operation.

dirw
causes modified directory pages to be written from main memory
whenever a directory is unlocked. Specifying this parameter increases
the safety of the system at some cost in increased paging. Process
directory pages are not written. This parameter must be specified in
order to keep Data Management—protected files consistent across
ESD-less crashes.

dris
| specifies that the system should not check an IOM’s configuration
l settings for consistency before adding the IOM to the system. For
i more information, see "Notes on Adding IOMs" in Section 11.

dskqg N

where N specifies the maximum number of disk queue elements that
can ever be pending (i.e, the maximum number of disk /0
operations that can be queued at any one time). The system enforces
limits so that the number of elements per disk drive is no fewer
than § * the number of disk drives and no greater than 200 * the
number of disk drives. If this parameter is nct specified, the default
is 20 elements per drive.

7-18 AM81-04

parm part

hept
causes information to be printed on the bootload console during
initialization concerning utilization of all defined hardcore partitions.
A message such as the following will be printed for each drive with
a hardcore partition:

accept_fs_disk: HC PART on dska_07 used 500 out of
1000 records.

If this parameter is not specified, the information is recorded in the
syserr log.

vtb N
where N sets the number of VTOC buffers. Increasing N may
reduce the number of VTOC reads. The default number of buffers
is 30. .

wlim N
where N specifies the maximum number of outstanding writes which
may be permitted for a memory flush operation to proceed.
Typically, a memory flush operation, which occurs to safeguard pages,
will be 1/2 or less of this number. The default is 1/8 of the
configured pageable memory (in pages). When memory is reconfigured
the wlim value is recalculated.

In addition to the above, the TTYB segment ID may be supplied on a parm
record followed by a segment length in words, to set the length of tty_buf. The |
default length is 6144. words. '

Example

parm chwm vtb 40. ttyb 8192. cecrf

Name: part

Part records inform BCE and Multics of the location of the areas of disk used |
for various partitions.

7-19 AMBS81-04

part part

Format

| part partname subsystem drive{sv}

where:
1. partname
| is the name of the partition residing on a particular volume or
| subvolume. The system consults the label of that physical volume to
determine where the records of the given partition reside. The one
partition commonly used is:
dump
area of disk used to contain dump image.
2. subsystem

is the name of the peripheral subsystem.

3. drive{sv}
is the decimal number of the disk drive and, if the drive is a 3380
or 3381, the name of the subvolume on which the partition is
located. This is an alphanumeric field; it does not accept a period

).

Labeled Format

| part -part partname -subsys subsystem -drive drive{sv}

| Notes

| The part record tells the system (BCE and Multics) on which volume a
partition resides; the location of the partition is found in the label for that volume.
Information about which drives contain which partitions can be gathered when using
the init_vol and rebuild_disk commands (described in the Mul/tics Administration,
Maintenance and Operations Commands manual, Order No. GB64) or by using the

| display_disk_label command (described in the Multics Commands and Active
Functions manual, Order No. AGY92). The BCE, CONF, FILE and LOG partitions

| always reside on the RPV and thus do not need to be specified on the part record.

Examples
part dump dskb 1

part -part dump -subsys dskb -drive 1

| The above records state that the DUMP partition resides on the volume
mounted on drive 1 of disk subsystem DSKB.

7-20 AM81-04

part

part dump dske 3b

part -part dump -subsys dske -drive 3b

The above records state that the DUMP partition resides on the volume

mounted on drive 3 subvolume B of disk subsystem DSKE.

Name: prph

The prph record supplies all necessary data about a peripheral device or |
subsystem. Since different devices require different amounts of additional data, only
one device or subsystem may be described on a prph record.

Format

The format of the prph record for various peripheral devices is shown below. |
alphabetic or numeric character.

For each record, n can be

prph
prph
prph
prph
prph
prph
prph
prph
prph

where:

1. iom

2. channel

ccun
dian
dskn
fnpn
open
prtn
punn
rdrn
tapn

iom
iom
iom
iom
iom
iom
iom
iom
iom

any single

channel
channel
channel
channel
channel
channel
channel
channel
channel

model
mode|
nchan
mode]l
model
model
model
model
nchan

modell d1 {model2 d2...model5 d5}

state
line_length state {option}
train line_length

modell d1 {model2 d2...model5 d5}

is a letter (a, b, ¢ or d) signifying the IOM through which the
device is driven.

is the IOM channel through which the device is driven.

7-21

AM81-04

prph prph

3. model
is a model number for a device.

| The valid model numbers for combination record units (ccun) are:

Lo1. ccuokon

The model number for a direct channel (dian) may be any number,
specified at site discretion. If it isn’t 0, the -model control argument
may be used in RCP commands (e.g., assign_resource) to specify a
class of device. In general, this field will be 0, and the device will
be specified by name (e.g., diab).

The valid model numbers for disk drives (dskn) are:

Loo. MSUO0LOO
Lo2. MSU0LO2
L5y, MSUOL51
500. MSUO500
501. MSUO501
l 3380. Msu3380
| 3381. Msu3381

0 drive does not exist (see "Examples')

The valid model numbers for FNPs (fnpn) are:
6670. DN6670

The valid model numbers for bootload consoles (opcn) are:

6001. CSU6001
600L. CSU600L
6601. CSU6601

The valid model numbers for printers (prtn) are:

Loil. PRTLOI

Lo2. PRTLO2

901. PRU0901, PRUO903
1000. PRU1000
1200. PRU1200

TN ntirTa N1 DRIITAaNA2
1201. PRU1I201, PRUI2C3

1600. PRU1600

7-22 AMB81-04

The valid model numbers for card punches (punn) are:

120.
121.
201.
300.
300.
301.

The valid model numbers for card readers (rdrn) are:

201.
301.
500.
501.
1050.

The valid model numbers for tape drives (tapn) are:

PCUO120
PCUO121
CPZ201
PCUG3G60
CPZ300
CPZ301

CRZ201
CRZ301
CRU0500
CRUO501
CRU1050

drive does not exist (see "Examples'')

(7 track)

prph

is the number of logical channels to use. The number of channels
assigned to a physical channel cannot exceed 8. This number must be
less than or equal to the value configured in the hardware paich

is the state of an FNP or a console. The valid states for an FNP

indicates that the FNP may be used by the system.

500. MTUO500
507. MTUO500
600. MTU0600
610. MTU0610
630. MTU0630
8200. MTU8200
0]
4. nchan T
located in the IOM.
5. di
is the number of drives of type modeli.
6. state
are:
on
of f

indicates that the FNP may not be used by the system. The
FNP will not be loaded by the answering service even if the

CMF calls for it to be loaded.

7-23

AMS81-04

prph prph

The valid states for a console are:

on
specifies that this console is selected as the bootload console
and is the primary recipient of I/0. There must be one and
only one console with a state of on. In the event of
bootload console failure, the system will change the state of
this console to inop.

alt

specifies that this console is to be used as an alternate in the
event of bootload console failure. If the bootload console
becomes inoperative, the system searches the configuration file
for a console with a state of alt. If one is found, its state is
changed to on and it becomes the bootload console. When
several consoles are specified as alternates, they are selected in
the order in which they appear in the configuration file.

io
specifies that this console exists, but is not to be used as an
alternate console. A console with a state of io may be
attached as an I1/0 device.

inop
specifies that this console is inoperative. Normally, this state
is asigned dynamically during console recovery. A console
with a state of inop may be attached as an I1/0 device.

7. line_length

is the number of characters that can be printed on a line
WARNING: although you may specify a line length of greater than
80 characters for any kind of bootload console, you must be careful
if you do this for a CSU6601 console. Line lengths of greater than
80 characters may cause buffer overflows on CSU6601 consoles.
Repeated overflows will result in the console being marked inop (see
the description of "state" below) and removed from service. If you
suspect this to be a problem, you may bring the console back online
by using the set_system_console command, documented in the Mu/tics
Administration, Maintenance and Operations Commands manual,
Order No. GBé4.

7-24 AMS1-04

prph

8.

9.

option

train

train

600.

600.

600.

must be set to "mask" for any CSU6601 console which doesn’t have
C.0 firmware. Failure to specify "mask" for such a console will
result in loss of that console.

Before the release of C.0 firmware, passwords read from a CSU6601
console were hidden on the printer, but not on the screen. ("The
screen” in this discussion refers to both the VIP terminal and the
CONRAC monitor, if one is attached to the console.) With the
release of C.0 firmware, passwords read from a CSU6601 console
which has the firmware are hidden on both the printer and the
screen. Passwords read from a CSU6601 console which doesn’t have
the firmware, but has "mask" specified on its prph record, are
hidden on the printer, but not on the screen. (In other words,
password masking is exactly the same as it was before the release of
C.0 firmware.) A CSU6601 console which doesn’t have the firmware
and doesn’t have "mask" specified on its prph record is treated as if
it does have the firmware. This eventually results in loss of the
console.

Note that passwords read from a CSU6601/6004 console are always
hidden on the printer and never hidden on the CONRAC minotor (if
one is attached to the console), regardless of the state of the option
field.

is the print train image number. The valid numbers for print train
image numbers are:

marketing CSD

device/train description | D# T+D#

PRTLO1/402 PRB600 9
94 character set ASCI| belt

PRU0901/0903/1201/1203 PRB3600 9
94 character set ASC!I| belt

PRU1000/1200/1600 PRB0O600 9

94 character set ASCII belt

prph

7-25 : AMBS81-04

prph prph

Labeled Format

prph -device ccun -iom iom -chn channel -model model

prph -device dian -iom iom -chn channel -model model

prph -subsys dskn -iom iom -chn channel -nchan nchan -model modell
-number d1 {-model medel2 -number d2...-model model5 -number d5}

prph -device fnpn -iom iom -chn channel - model model -state state

prph -device opcn -iom iom -chn channel -model model -11 line_length
-state state {-option option}

prph -device prtn -iom iom -chn channel -model model -train train -11
line_length

prph -device punn -iom iom -chn channel -model model

prph -device rdrn -iom iom -chn channel -model model

prph -subsys tapn -iom iom -chn channel -nchan nchan -model modell -number
d1 {-model model2 -number d2...-model model5 -number d5}

Notes

' The prph dia record is used to describe direct channels used for special purposes. (i.e.,
other than for connection to FNPs).

Examples

prph dska a 30. 4 O L 500. 4 LB1. 4
prph tape a 22. 2 630. 2

prph prta a 15. 1201. 600. 136.

prph prtb a 14. 1201. 600. 136.

prph puna a 17. 301.

prph rdra a 16. 1050.

prph opca a 20. 6004. B80. on mask

prph opecb a 24. 6601. 80. alt

prph fnpa a 28. 6670. on

prph -subsys dska -iom a -chn 30. -nchan 4 -model 0 -number L -model 500.
-number 4 -model 451, -number &4

prph -subsys tape -iom a -chn 22. -nchan 2 -model 630. -number 2

prph -device prta -iom a -chn 15. -model 1201. -train 600. =11 136.

prph -device prtb -iom a -chn 14. -model 1201. -train 600. -11 136.

prph ~device puna -iom a -chn 17. -model 301.

prph -device rdra -iom a -chn 16. -model 1050.

prph -device opca -iom a -chn 20. -model 6004. -11 80. -state on
-option mask

prph -device opcb -iom a -chn 2L. -model 6601. -11 80. -state alt

prph -device fnpa -iom a -chn 28. -model 6670. -state on

7-26 AM81-04

prph root

Each prph dskn record describes a disk subsystem, and each prph tapn record |
describes a tape subsystem. Note that a subsystem is defined as any group of drives
and channels where any of the drives may be accessed via any of the channels. For
disk subsystems this may include several IOMs and MPCs. Disk and tape drive
numbers within a subsystem siart at device number 1, and are consecutive on the prph
dskn and prph tapn records. Non-existent devices can be represented by model |
number 0, as in the first example above. In this example, subsystem DSKA has
MSUO0500 drives on units 5 through 8, and MSU0451 drives on units 9 through 12.
See the chnl record description for an explanation of how to specify several groups of |
channels for a disk subsystem. Note that no more than § channels may be assigned to
one subsystem.

Name: root

The root record specifies the location of the physical volumes of the root |
logical volume (RLV).

Format
root subsysteml drivel{sv} {...subsystemN driveN{sv}}
where:

1. subsystemi
is the name of the peripheral subsystem on which a physical volume |
of the RLV is mounted.

2. drivei{sv}
is the decimal number of the disk drive and, if the drive is a 3380
or a 3381, the name of the subvolume on which that physical volume
is located. This is an alphanumeric field; it does not accept a period

().

Labeled Format

root -subsys subsysteml -drive drivel{sv} i
{... -subsys subsystemN -drive driveN{sv}} I

1-21 AMS81-04

root

Notes

All physical volumes of the RLV should be listed on the root record,
regardless of whether or not they contain a hardcore partition, unless you are booting
to rebuild one or more of them with rebuild_disk or to reload one or more of them
with the volume reloader. In these cases, the volume(s) to be rebuilt or reloaded
should be omitted from the record. A volume that isn’t listed on the root record can
be added in ring 1 with the add_vol command. However, you should note that the
system will not make use of a hardcore parition contained in a volume added in ring
one. The first subsystem/drive pair specified on the root record must be that of the

root physical volume (RPV). During a cold boot, the root record must list only the
RPV.

Examples
root dska 1 dska 2 dskc 0a dskc 1b

root -subsys dska -drive 1 -subsys dska =-drive 2 -subsys dskc
-drive Oa -subsys dskc -drive 1b

In these examvples, assume that the RLV is located on 451 drives DSKA 1 and
DSKA 2, and on 3380 drives DSKC 0 subvolume A and DSKC 1 subvolume B.
Information about which drives contain which partitions can be gathered by using the
init_vol and rebuild_disk commands (described in the Multics Administration,
Maintenance and Operations Commands manual, Order No. GB64) or by using the
display_label command (described in the Mu/tics Commands and Active Functions
manual, Order No. AG92).

Name: salv

This record is used to change the options for all salvaging operations that take
place before the system reaches ring 4 command level, and for the automatic online
salvager.

Format
salv keys

where keys may be chosen from the following:

rbld
rebuilds all directories

path
prints pathname of all directories salvaged

salv

7-28 AMB81-04

salv schd

debg
additional error messages will be printed for debugging use only
dcf
enables deletion of branches suffering connection failure
Name: schd

The schd record is used to set the scheduling factors and parameters in the
system configuration. All of these can also be set with the change_tuning_parameters
command, described in the Multics Administration, Maintenance and Operations
Commands manual, Order No. GB64.

Format
schd wsf tefirst telast timax {mine {maxe {maxmaxe}}}
where:

1. wsf

is the working set factor. It is used as a multiplier to compute the
amount of main storage that must be available before a process is
made eligible, as a function of that process’s working set. The wsf is
given in units of 256K -- that is, a value of 1000000 octal (256K
decimal) sets the wsf to 1.0, while a value of 400000 octal (128K
decimal) sets wsf to 0.5. A wsf value of 0.5 means that a process
can be made eligible if there is sufficient main storage available to
hold half its working set, as determined by its recent usage of main
storage. If the schd record is not used, the default is 1.0 (1000000 |
octal).

2, tefirst
defines the amount of CPU time for which a process is guaranteed
to remain eligible (if necessary) the first time it runs after an
interaction. Units are eighths of a second (octal). If the schd record |
is not used, the default is 2 seconds (20 octal).

3. telast
defines the amount of CPU time for which a process is guaranteed
to remain eligible when it is in the last scheduling queue. Units are
eighths of a second (octal). If the schd record is not used, the |
default is 2 seconds (20 octal).

7-29 AMB81-04

schd

schd

4, timax
defines the default amount of CPU time a process remains in the
last scheduling queue before being rescheduled (at the end of the
queue). Units are eighths of a second (octal). If the schd record is
not used, the default is 8 seconds (100 octal).

5. mine
is an optional parameter that specifies the minimum number of
eligible processes. The default is 2 processes.

6. maxe

is an optional parameter that specifies the maximum number of
eligible processes; this parameter must be greater than or equal to
"mine." If this option is specified, "mine" must be specified also.
The default is 6 processes.

7. maxmaxe
is an optional parameter that specifies the maximum that "maxe" can

be raised to during this bootload. It must be greater than or equal
to "maxe" plus 10. The default is "maxe" plus 10.
Labeled Format
schd -wsf wsf -tefirst tefirst -telast telast -timax timax
{-mine mine {-maxe maxe {-maxmaxe maxmaxe}}}
Examples

schd 400000. 20. 20. 100. 2 6

schd -wsf LOO0O0OO. -tefirst 20. -telast 20. -timax 100.
-mine 2 -maxe 6

These examples assume a value of 0.5 for wsf; a timing of 2 seconds each for
temin and temax; a value of 8 seconds for timax; and arbitrary values of 2 and 6 for
mine and maxe, respectively.

7-30 AM81-04

sst

sst

Name: sst
The sst record describes the partitioning of the system segment table (SST) in |
the system configuration.

Format

sst astl ast2 ast3 asth

where:

1. astl
is the number of active 4K segments allowed. The default value is
400.

2. ast2
is the number of active 16K segments allowed. The default value is
150.

3. ast3
is the number of active 64K segments allowed. The default value is
50.

4. ast4

is the number of active 256K segments allowed. The default value is
10.

Labeled Format

sst -4k astl -16k ast2 -6kLk ast3 -256k asth

Examples
sst L4h2. 220. 45. 15.

sst -bk L4h2. -16k 220. -6Lk 45. -256k 15.

7-31 AMRB1-04

tbls tbls

Name: tbls

| The tbls record is used to specify the length of certain paged system tables.

Format

tbls namel lengthl {... namel lengthk}
where:

1. namei
may be selected from the following:

str

specifies the length of the system trailer segment. The size of this
segment depends in a complicated way on the number of AST entries
and the amount of segment-sharing among processes. Since the
number of disk drives is a reasonable (though crude) indication of
the number of users a system can support, it can provide a simple
method of figuring the size. Using this method, length for STR
should be 16 pages for six drives or fewer, and should be increased
by two pages for every disk drive after the first six. A value of
64K should be adequate for most sites.

ioat
controls the size of the 1/0 assignment table.

prds
controls the size of the processor data segment (there is one such
segment per configured CPU). The default value is 7. This is always
the correct value, except when there are no communications multiplexers
enabled. In that case, a value of 4 should be specified.

scav
specifies the length of the scavenger’s database, in pages. The default
value is 70KW. The size of this segment determines the number of
simuitaneous volume scavenges that can be run. The default value
allows one scavenger at a time to run. An additional 69KW is
required for each additional simultaneous scavenger.

2. length
is the number of pages in the table.

If a tbls record is not included in the config file, default values are used as if
| the record read: ‘
tbis str 16 ioat 4 prds 7 scav 70.

7-32 AM81-04

ted

Name: tcd

The tcd record describes the allocation of the databases in the system |
configuration that contain information needed by the traffic controller.

Format
ted apt itt

where:

1. apt :
is the number of entries in the active process table; the apt
argument sets the maximum upper bound on number of processes
logged in.

2. itt

is the number of entries in the inter—process transmission table; it
must be high enough to handle normal message flow. The number
for itt should be about double the number of apt entries.

Labeled Format

tcd -apt apt -itt itt

Examples
ted 75. 150.

ted -apt 75. -itt 150.

Note

The system crashes if the tcd record is omitted.

7-33 AMBS1-04

udsk

udsk

Name: udsk

The udsk record specifies the number of disk channels and which devices in a
subsystem are available in the system configuration for user 1/0.

Format
udsk subsystem nchan {drivel countl ... drivebé counté}
where:

1. subsystem
is the name of the disk subsystem.

2. nchan
specifies the maximum number of channels that may be used to
support user peripheral disk 1/0.

3. drivei
is the first drive number to use.

4. counti

is the number of drives to use.

Up to six drive/count pairs may be specified to indicate the particular units available
for user peripheral disk 1/0.
Labeled Format

udsk -subsys subsystem -nchan nchan {drive drivel -number

countl ... -drive drive6 -number counté}

Notes

If the channels indicated are not all required for user 1/0, they are available
for storage system I/0. An individual disk drive can be used for either storage
system volumes or user peripheral packs. The status of disk drives can be changed

dynamically during operation by the set_drive_usage command. If no udsk record
appears for a given subsystem, a default of one channel is assumed.

Examples
udsk dska 2

udsk -subsys dska -nchan 2

7-34 AMS1-04

SECTION 8
SYSTEM STARTUP AND SHUTDOWN

OVERVIEW OF SYSTEM STARTUP
There are several steps to bringing up Multics:

e Configure the system. The pack which contains the RPV must be mounted on
a drive.

*
e Mount the RLV (if not already mounted) and all physical volumes of all
logical volumes required at the site for starting

e Boot BCE from the current BCE/Muitics system tape
e Boot Multics from BCE

e Start up the answering service and log in the daemons to perform backup,
input/output, and any other specialized procedures (such as network interaction).

Step-by-step procedures for bringing up Multics are available in the Operator’s,
Guide to Multics, Order No. GB6l. What follows is a detailed description of what
happens when you boot BCE/Multics.

Bootloading BCE/Multics

A BCE/Multics bootload is the process of loading the programs that make up
the bootload command environment, which in turn build up from themselves the
Multics operating system. The bootloading process loads the programs into memory,
links them so that they may refer to one another, and sets up any necessary databases.

BCE and Multics are loaded from a BCE/Multics system tape. The programs
and data on a system tape are divided into groups called collections. The first
program on the tape, imbedded in the tape label, is bootload_tape_label. It reads in
the first collection of programs, collection 0. Collection 0 reads in collection 0.5,
which contains firmware images for the bootload tape controller. Collection 0
determines the correct tape firmware by asking the operator, and loads that firmware.
It then reads in collection 1 and prelinks it. This permits programs written in PL/I
to be used. Collection 1 enables paging and starts up BCE. Collection 1 then reads in

8-1 AM81-04

collection 1.2, which contains BCE exec_coms and files, and disk firmware images. It
loads firmware into the bootload disk controller, then reads in collection 1.5, which
contains some of the BCE programs. BCE also reads collections 2 and 3, needed to
bootload Multics, into the MST partition of the RPV.

When BCE is finished, collection 2 is run to initialize and set up the Multics
storage system and the environment to do reloads and other system startup activities.
These programs are found in collection 3. Then the initializer process starts running.

THE INITIALIZER PROCESS

When the Multics bootload sequence is started by the BCE boot command, a
process is created which is called the initializer process (Initializer.SysDaemon.z). The
initializer process is also referred to as the system control process or the answering
service process. This process remains active as long as the system is running. It
performs many functions for the system, such as:

1. Answering service operations (e.g., login, logout)
2. Operator command service

3. System reloading

4, System terminal management and message routing
5. System accounting

6. User request handling (rcp, new_proc, etc.)

7. System administration

The initializer process is controlled by the bootload console and one or more
initializer (message coordinator) terminals. These terminals are used to input commands
that control system operation.

The system cannot operate without an initializer process. If an error occurs
that makes the initializer process unusable, the system crashes with the message:

Attempt to terminate initializer process.

INITIALIZER COMMANDS

Once the initializer process begins running, you may issue initializer commands.
Initializer commands control the system. They allow you to do the following:

e Get information about the state of the system

e Intervene manually in automatic system functions

8-2 AMS81-04

e Start and stop nonautomatic system functions
e Change system operating parameters

e Debug the system

e Manipulate storage system volumes

e Control the message coordinator (including device channels, virtual consoles,
message routing, sources, and daemons)

e Reconfigure system resources

e Do hierarchy and volume recovery

e Control FNPs and communications channels

e Control user processes

Complete descriptions of the initializer commands are presented in the

Multics Administration, Maintenance and Operations Commands manual, Order No.
GB64. The initializer runs first in the administrative ring (ring 1) and then in the
user ring (ring 4).
Administrative Ring Commands

When the initializer process enters the administrative ring (ring 1) environment,
the first thing the ring 1 environment types is a message of the form:

Multics <sysid> - <date> hhmm.t <zone> <day>

giving the system identifier from the system tape and the current date, time, and time
zone.

In ring 1, the initializer uses only those programs on the BCE/Multics system
tape. It doesn’t reference any files in the storage system. Only the RLV is known —
the rest of the logical volumes are not mounted until you either issue commands to
mount them or you move to ring 4.

If you specified a ring 1 command as an argument to the boot command, this
ring 1 command is executed automatically. For example, typing:

boot star

executes the star (startup) command in ring 1. If you didn’t specify any arguments or
if startup fails, then the ring 1 program types:

Command:

and waits for you to type any initializer command allowed in ring 1.

8-3 AMB81-04

If you type standard, startup, or multics, the initializer leaves the ring 1
environment and executes subsequent commands in the user ring (ring 4) environment.

User Ring Commands

If the initializer process exited from ring 1 because of a startup or multics
command, then when it enters the user ring (ring 4) environment, the first thing the
ring 4 environment does is initialize the answering service.

Once the initializer process begins operation in ring 4, you may issue ring 4
initializer commands to affect the operation of the system.

If operator authentication is required at your site, i.e., if the require_operator_login
installation parameter is turned on, you must sign on before you can enter commands.
If operator authentication is not required.- at your site, signing on is optional. To sign
on, use the sign_on command, which is documented in the Mu/ltics Administration,
Maintenance, and Operations Commands manual, Order No. GB64. The sign_off
command is also documented in that manual. If the require_operator_login parameter
is turned on, Multics will demand identification and authentication of operators from
the successful completion of answering service initialization until shutdown. Multics
will NVOT demand authentication in the bootload command environment, in the ring 1
initializer environment, or in the pre-answering service ring 4 initializer environment.

If your site has a timeout period, i.e., if the operator_inactivity_limit
installation parameter is set, you will be automatically signed off if you don’t enter
any commands for more than the specified length of time.

Both the require_operator_login and the operator_inactivity_limit installation
parameters are documented in the Mu/tics System Administration Procedures
manual, Order No. AKSO0.

The initializer process is normally waiting for an initializer command from you.
After the command is typed in, the initializer performs it, types a ready message, and
awaits another command.

If operator authentication is not required at your site, and no one has signed
on, the ready message looks like this:

Ready

If operator authentication is required at your site, and no one
ready message looks like this:

ju g

as signed eon, the

Ready (Not Signed on.)

8-4 AM81-04

Whether or not operator authentication is required, once someone has signed on, the
ready message looks like this:

Ready (User_name)

Online help is available for all ring 4 initializer commands via the help
initializer command. For information on how to use the help initializer command,
refer to its description in the Muliics Administration, Maintenance, and Operations
Commands manual, Order No. GB64. (See also "Getting Help with Commands" later
in this section.)

Full Multics typing conventions are available in the ring 4 initializer
environment, except with the reply and intercom commands. These typing conventions
include the use of special characters, such as parentheses (for iteration), double quotes
(for quoting), and semicolons (for entering multiple commands on a single line). For
information on the use of special characters, refer to the Multics Programmer’s
Reference Manual/, Order No. AG9Il.

ADMIN MODE

The initializer process is sometimes used to perform special operations (such as
setting access in the root directory) that a normal process cannot perform. For
instance, the initializer is the only process that can execute commands before the
answering service is brought up. Thus, it must be used to repair problems that prevent
all users from logging in.

In order to use the initializer process to execute an arbitrary Multics command,
you must enter admin mode. Because the initializer process has special abilities and
special limitations, admin mode should only be used by qualified personnel.

To enter admin mode, type the admin command. You must also supply a
password to enter admin mode, unless the system administrator has specified that no
password is needed.

Once in admin mode, the initializer responds to regular Muitics commands
instead of initializer commands. However, a special command in admin mode permits
execution of initializer commands. Typing

sc_command hmu
causes the initializer command "hmu" to be executed.
Admin mode and editing of the message of the day can be entered from the

bootload console or from any initializer terminal, but only one console or terminal can
be operating in this mode at a time.

8-5 AMB1-04

Use of admin mode is similar to the use of regular Multics. On an initializer
terminal, issuing a quit signal (hitting the BRK key) has the same effect in admin
mode as it does in a normal Multics process. (The initializer goes to level 2, the
command is suspended, and you remain in admin mode.) This is not true on the
bootload console, which doesn’t have a BRK key, or any other way of issuing a quit
signal.

To exit from admin mode, type the admin_mode_exit (ame) command.

send__admin__command COMMAND

Highly privileged users may send single commands to the initializer to be
executed in admin mode by using the send_admin_command command, described in
the Multics Administration, Maintenance and Operations Commands manual, Order
No. GB64. If a highly privileged user sends such a command, a message is printed on
the initializer terminal, the command is executed, and the system continues in normal
operating mode.

If you're in the user command environment, and you want to enter an
initalizer command, use the sac command and the sc_command command in
combination with the initializer command. For example:

sac sc_command maxu auto

If you're in the user command environment, and you want to enter an exec command,
use the sac command and the ec admin command in combination with the exec
command. For example:

sac ec admin attended

If youre in the user command environment, and you want to make the initializer
process execute a Multics command, use the sac command in combination with the
Multics command. For example:

sac set_system_console -reset

If youre in the user command environment, and you want to enter a daemon

the initializer reply command, the daemon driver label, and the daemon command.
For example:

sac sc_command reply prta go

Note that you may also enter a daemon command from the user command
environment by using the send_daemon_command command (described later in this
section).

8-6 AMB81-04

The send_admin_command command has a number of useful control arguments.
One is the -notify_by_mail (-ntmail) control argument. If you use -ntmail, the system
will send you mail when your command completes execution. The mail will contain a
message stating that your command ran. It will also contain all of the output
produced by your command. For example:

sac -ntmail word

Another useful control argument is —query (qv). If you use —qy, the system will print
your command line on your terminal and ask you if you want to send it. This is
useful for validating the effects of abbrevs and active functions. For example:

sac -qy delete [wd]>test_file

send_admin_command: delete >udd>m>Smith>test_dir>test_file

send_admin_command: Do you want to send this admin command line
to the initializer <wait info>?

If the command you want to eXecute asks a question, you must include the answer
request in your command line. For example:

sac answer yes delete_dir >udd>m>Smith>test_dir

If you don’'t include the answer request, your command will not be executed.
The following abbrev will ask you if your sac command line is correct, then
send it, and print the results from the admin log:
.ab sac do '"'send_admin_command -bfqy &rf2;
print_sys_log -admin -nhe -dfmt ""'"! -nfmt """ -fm

&1" [calendar_clock]

Its use is recommended.

GETTING HELP WITH COMMANDS

There are info segments for the following commands in the following
directories:

Commands Directories

user >doc>info

privileged user >doc>privileged

ring 4 initializer >doc>ss>operator

ring 1 initializer >doc>ss>ri_initializer
accounting >doc>ss>accounting

1/0 daemon >doc>ss>io_daemon

BCE >doc>ss>bce

*
How you look at these info segments depends on what command environment you're
in,

8-7 AMB81-04

If you're in the user command environment, you can look at info segments for
user commands by using the user help command. For example:

help list

You can look at info segments for all other commands by using the user help
command and specifying the absolute pathname of the info segment. For example:

help >doc>privileged>set_system_console

Or, you can add one or more directories to your info search list, by adding a line to
your start_up.ec. For example:

asp info >doc>privileged >doc>ss>r1_initializer

Then you can look at info segments in the directories you added to your info search
list by using the user help command in the regular way. For example:

help set_system_console

If you're in the ring 4 initializer command environment, you can look at info
segments for ring 4 initializer commands by using the initializer help command. For
example:

help down

If the info segment you want to look at is for an exec command, specify its name in
the format "x.command”. For example:

help x.attended

If you're in the ring 1 initializer, restricted accounting, I/0O daemon, or BCE
command environments, you can't look at info segments at all. Thus, the only
commands you can get help with in the same environment in which you can run them
are user, privileged user, and ring 4 initializer commands. For a more detailed
discussion of command environments, refer to the Mul/tics Administration, Maintenance,
and Operations Commands manual, Order No. GB64.

INITIALIZER USE OF COMMUNICATIONS CHANNELS

When the system is bootloaded, the answering service first performs input/output
on the bootload console. When ring 4 is entered and the message coordinator is
started, initializer input and output are usually moved to a message coordinator

=uall 44282 Jo8L=n s

terminal connected to a communications channel.

The initializer process is in charge of all communications channels known to
the system. Some of these channels are connected to the answering service and used
for logins, some are used by the initializer itself for the message coordinator, and
some are given to other processes to use.

8-8 AM81-04

The disposition of communications channels is controlled by the CDT. A
communications channel connected to Multics may be:

1 Completely unused: not in the CDT

2. Inactive: in the CDT but marked INACTIVE (not to be used unless explicitly
enabled by the operator)

3. Active: in the CDT and in use for
a. message coordinator service
b. login service

1) Being listened to by the answering service
2) Attached to a user process

c. slave service: attachable by some existing user process, but not available
for logins
d. dial_out {(autocall)

Initializer commands are available to move a terminal to and from the above
states in various combinations.

MESSAGE COORDINATOR

The message coordinator facility allows the initializer to run multiple communications
channels and lets the system daemons run without terminals of their own, sending
their messages to the initializer for disposition. The daemons can be logged in
automatically (by system_start_up.ec or admin.ec) or at operator request (by means of
the login command).

To allow for other activity to occur, such as typing in operator messages, the
message coordinator writes messages in a burst followed by a pause. When both the
burst size and the delay time are set at the default values, it means that if you want
to enter a command, after pressing the carriage-treturn (or the INPUT-REQUEST)
button, at most 20 messages will print before you can enter the command. The
set_mc_message_limits command (described in the Multics Administration, Maintenance
and Operations Commands manual, Order No. GB64) allows the system administrator
to determine the size of the burst and the duration of the pause.

RCP messages and other syserr traffic are not handled by the message
coordinator. This means that message coordinator commands can not be used to
manipulate these messages. For example, the reroute command can not be used to
reroute messages from the bootload console to an initializer terminal.

8-9 AMS81-04

Occasionally, the message coordinator may stop operating due to a system
problem such as a hung up device. In such a case, you can issue the reset initializer
command to restart all channels. Channel restart is also attempted if system control
encounters any fault.

Input Delivery and Output Routing

There are two parts to the message coordinator -- delivery of input and
routing of output. Input delivery is done by the reply command: any terminal owned
by the message coordinator may (subject to permission) issue reply commands directed
at any source.

Output routing is more complex. Each daemon process running over the
message coordinator attaches one or more switches to a source. In addition, the
initializer attaches switches to the source "as". When a process writes information to a
switch attached to a source, a message is sent to the message coordinator containing
the information, the name of the switch, and the name of the source. The message
coordinator looks up the combination of switch name and source name in the message
routing table (MRT), where it finds one or more routings for each combination. Each
routing specifies a virtual console. The message coordinator looks up each virtual
console in the virtual console table (vcons_tab), where is finds a list of one or more
destinations for each virtual console. The list of destinations may include terminal
channels, logs, and sinks. The message coordinator routes the message to each
destination in the list for each virtual console specified by each routing. If the
destination is a terminal channel, the message is queued for printing on the terminal.
If the terminal is unavailable (e.g., has dropped offline), the message waits in the
queue. Otherwise, it is printed immediately. If the destination is a log, the message is
written directly into the log. (See the description of system logs in Section 13.) If
the destination is a sink, the message is discarded. Figure 8-1 illustrates the message
coordinator output routing process.

DEFINING OUTPUT ROUTING

To see how message coordinator output routing is defined in the standard

system_start_up.ec, refer to Appendix F. In general, the way to define output routing
is as follows:

1 Think about your message coordinator output as a number of groups, each
consisting of all of the output you want to handle together and route to the
same destination.

2. For each group of output you want to route to the same terminal, use the
define command to define one virtual console whose destination 1is that
terminal. Then use the route command to route all of the switches on which
that output is written to that virtual console.

Note: you may want to define a second virtual console whose destination is
the same terminal, and route the switches on which some portion of the output
is written to the second virtual console. This makes it easy to reroute that
portion of the output to a different terminal in the future if you so desire,

since the only thing you have ito change is the destination of the second virtual
console.

8-10 AMR1-04

10 person user_output switch
SysDaemon project mr_prta dgnscarcigtion
prta source
other info
other entries
DAEMON USER TABLE PROCESS “ATTACH TABLE”
prta source N prta source > ioc vcons
user_output switch — user_output switch 3 n_dest OUTPUT ON
TERMINAL
—~ text ioc veons } _ tty a.h100 dest_1 | CHANNEL a.h100
- MESSAGE IN LOG
—~ prta source log iolog dest_ 2 ™ >sc1>as_logs>iolog
ser_output itch sink 4 dest_3 MESSAGE
~ user—odtput | swhe DISCARDED
ioc__remote veons } ———eer——————| j0C_remote veons
MESSAGE PRODUCED 1 n_dest
BY DAEMON PROCESS OUTPUT ON
(>sc1>mec.message) tty a.h001 dest_1 [TERMINAL
other entries CHANNEL a.h001
other entries
MESSAGE ROUTING TABLE VIRTUAL CONSOLE TABLE
M (vcons_tab)
ENTRIES CREATED BY ENTRIES CREATED BY
ROUTE AND REROUTE DEFINE AND REDEFINE
COMMANDS COMMANDS

Figure 8-1. Message Coordinator Output Routing

8-11 AMB1-04

3. For each group of output you want to route to the same log, use the define
command to define one virtual console whose destination is that log. Then use
the route command to route all of the switches on which that output is
written to that virtual console.

Note: NEVER define two virtual consoles whose destination is the same log.

Figure 8-2 illustrates a typical message coordinator output routing definition.

Operating Daemon Processes

Input and output of the daemon processes are passed through the initializer on
their way to and from the terminal channel. To cause a daemon to be logged in
from the initializer, type:

! login Person_id.Project_id source_id {login control_args}

The daemon logs in and attaches its input and output to the message coordinator as a
source with name source_id. For example, an I/0 daemon can be logged in by
typing:

! login 10.SysDaemon io2
Ready (User_name)
1721 as LOGIN 10.SysBaemon dmn ioc2 (create)

The Dumper is logged in so that a complete dump may be started by typing:

! login Dumper.SysDaemon cdl
Ready (User_name)
1721 as LOGIN Dumper.SysDaemon dmn cdl (create)

To log out a daemon, issue the logout command from the initializer, giving the
Person_id, Project_id, and source_id of the daemon. Thus, to log out the dumper, the
sequence is:

! logout Dumper.SysDaemon cdl

Ready (User_name)
2231 as LOGOUT Dumper.SysDaemon dmn cdl 12:11 $23.45 (logout)

To log out all daemon processes when the system is being shui down, type:
!' logout # % =%
Occasionally, you will need to send a quit to a daemon process. A special
command is required because the ATTN or INTERRUPT button on an initializer
terminal is connected to the initializer, not to the daemon. and is ignored by system

control. To send a quit to a daemon, type:

! quit source_id

The daemon will accept the quit command after it has been passed from the
initializer.

8-12 AM81-04

MESSAGE COORDINATOR

|
10.SysDaemon : ioc = ttya.n100 ~—rp
prta i
| user_ilo ! |
error_i/o 1
[}
|
i
10.SysDaemon : io_misc_log |—» logio_misc_log
prtb log_ifo 1
T user_i/o 1 I
error_ilo ! I
log_ilo H)
T iolog —» logiolog
1
! |
Utility.SysDaemon !
ut 1
: umc > ttya.h100 «—
; |
user_i/o — —
1
1
1
Metering.Daemon _—_—J | ut_log > log ut_log
mt 1
1
I user_ifo :
1

Figure 8-2. Typical Output Routing Definition

8-13 AMB81-04

The example below shows how the system intermixes output lines from various

sources on a single console, and how the user replies to a request for input from a
source.

! reply cord coordinator
Ready (User_name)
1953 cord 10 coordinator initialized
! reply prtb driver
Ready (User_name)
1953 prtb Enter device name and optional request type:
--> prtb
! reply prtb prtb printer
Ready (User_name)
1954 cord New driver for device prtb request type printer
(series =10000)
1954 prtb prtb driver ready at MM/DD/YY 1954.1 EST DAY
--> prtb
! reply prtb go
Ready (User_name)
! reply bk start_dump sys_dirs xyz 1 60
Ready (User_name)
1955 bk Begin at MM/DD/YY 1955.6 EST DAY
1955 bk >user_dir_dir
1955 bk Type primary dump tape label
--> bk
! reply bk IC-75
Ready (User_name)

The above set of replies are written out only to serve as an example. In

practice, the commands and replies necessary to start the daemon functions are
contained in the segment admin.ec, and can be invoked by using the exec (x)
command. The admin.ec segment is usually modified by each site to suit its
requirements. Using the admin.ec that is distributed with the system, the above

functions -- starting the 1/0O daemon coordinator, the I/0 daemon driver for prtb,
and the incremental backup daemon -- can be accomplished using the following
commands:

! exec io

(xyz

Ready (User_name)
exec inc xyz iC-75
Ready (User_name)

stands for the user’s initials or name.) Complete descriptions of the exec

commands are presented in the Multics Administration, Maintenance and Operations
Commands manual, Order No. GB64.

8-14 AMB1-04

send__daemon__command COMMAND

Users with the appropriate access may control the operation of system daemon
processes by using the send_daemon_command command, described in the Multics
Administration, Maintenance, and Operations Commands manual, Order No. GB64.
This command allows you to log daemons in and out over specified message
coordinator source ids, send command lines to daemons, and signal QUITS in daemon
processes.

Use of the send_daemon_command command is somewhat different from use
of the send_admin_command command (described earlier in this section). Access to
send_admin_command gives a user complete control of the initializer process, as well
as all daemons controlled by the message coordinator. Access 10 send_daemon_command
may be restricted to give a user access to a single daemon process without giving her
control of other daemon processes or the initializer process.

The ability to restrict access to the send_daemon_command command is
controlled by the validate_daemon_command installation parameter. If this parameter is
enabled, you can use the message coordinator access control segments (MCACS) to
restrict use of the send_daemon_command command; i.e., you can use them {o restrict
which daemon(s) a user may control with this command.

If the validate_daemon_command parameter is not enabled, it is impossible to
restrict use of the send_daemon_command command by users with "rw" access to the
>s¢1>admin_acs>send_daemon_command.acs ACS segment. Users with such access may
use the command to control any daemon. For more information about the
validate_daemon_command installation parameter and MCACS segments, refer to the
Multics System Administration Procedures manual, Order No. AKS50.

If you have "c" access, you may use send_daemon_command to log a daemon
in and out. For example:

send_daemon_command login rp Repair.SysBaemon -auth system_high
or:

send_daemon_command logout rp Repair.SysDaemon

If you have "r" access, you may use send_daemon_command to send a command to a
daemon. For example:

send_daemon_command reply prta go

If you have "q" access, you may use send_daemon_command to send a QUIT signal to
. & daemon. For example:

send_daemon_command quit prta

8-15 AMS81-04

When a privileged wuser sends a command to a daemon via the
send_daemon_command command, a message is printed on the initializer terminal, the
command is executed, and the system continues normal operation.

MESSAGE COORDINATOR DATABASES

The main databases used by the message coordinator are:

mc_anstbi
one entry per terminal channel

MRT

message routing table
vcons_tab

virtual console table
mc.message :

incoming messages for message coordinator

<source>.message
input messages for other sources

<channel>.queue
queued output messages for devices

These tables are all completely reconstructed each time the message coordinator
is started. All of these segments are kept in >system_control_1. Their ring brackets
should be 4,44 and access should be rw for the initializer and daemon processes, and
null for everybody else.

STARTUP COMMANDS

The system executes an exec_com called system_start_up.ec when the answering
service is started. It executes this exec_com in three parts: some commands are
executed before the answering service is started, some are executed after the answering
service is ready but before communications channels are listened to, and some are
executed after communications channels are listened to. The startup command causes
all three parts to be executed, along with complete initialization of the answering
service. The multics command causes initialization to stop before part 2 of
system_start_up.ec has been executed; the go command executes part 2 of system_start_up.ec,
listens to communications channels, and executes part 3 of system_start_up.ec.

Normally, the system_start_up.ec performs some message coordinator initialization
before starting the answering service, and logs in the daemons after the answering
service is ready. If the initializer is to operate more than one message coordinator
terminal, the additional channels are accepted (by commands in system_start_up.ec) at
this time.

An example of the system-supplied system_start_up.ec is found in Appendix F.

8-16 AMB81-04

UNATTENDED AND AUTOMATIC MODES

The system may be operated in several modes: attended or unattended, manual
or automatic. In unattended mode, the system assumes that no tape mount requests
can be honored, and that the backup and I/0O daemons are unavailable.

In automatic mode, the system automatically performs dumping, and it reboots
after crashes. Manual mode, indicated by invoking the boot command, allows manual
and automatic dumping options, but requires positive user instructions to reboot.

Setting Automatic Mode

In order to operate the system in automatic mode, invoke the auto exec_com
as part of the bootload process, instead of typing boot. If the auto exec_com has
been used, you have the option of turning off automatic mode with the command:

X auto off

and may then reenable it with the command:

X auto on

If the auto exec_com has not been used to boot the system, neither of these
commands has any effect.

Setting Unattended Mode

A system function is provided in admin.ec so you can conveniently set the
system into unattended mode. Typing:

X unattend

invokes the following steps:

sc_command reconfigure delete device tape_(01 02 03 Ok 05 06 07 08)
sc_command word login Unattended service

set_flagbox unattended true

set_flagbox auto true

set_flagbox rebooted false

Installations with more or fewer than eight tape drives must modify the text of
admin.ec. These steps leave backup and I/0 daemon functions running; some sites may
wish to modify the text of admin.ec io iog some daemon processes out.

8-17 AM81-04

Returning to Attended Mode

When the system has been placed in unattended mode, you may revert to
attended operation by typing:

X attend
which performs the following steps:

sc_command reconfigure add device tape_(01 02 03 Ok 05 06 07 08)
sc_command word login
set_flagbox unattended false

Other operations such as logging in daemons may be added.

SYSTEM SHUTDOWN

System shutdown is the process of ceasing Multics service. There are several
steps involved in an orderly shutdown, so that the different classes of users can be
logged out in the correct order. The step—by-step procedure for shutting down the
system is available in the Operator’'s Guide to Mul/tics, Order No. GB6l.

Shutdown Failure

If shutdown fails (does not type the "shutdown complete” message) when the
shutdown command is issued at the initializer terminal or the boetload console, you
should enter BCE. If the bootload console keyboard does not unlock, you must enter
BCE as described under "Returning to BCE" in Section 10. Then you should attempt
standard recovery procedures. You should always attempt emergency shutdown. See
Section 10 for details on recovering the system.

8-18 AMB81-04

SECTION 9
THE MULTICS BACKUP SYSTEMS

The Multics backup systems augment the reliability of the online disk storage
system. They ensure that user segments and directories can be recovered from tape if
they are destroyed due to system failure or user error.

The backup systems perform the following functions:
1. dumping

The dumping mechanism searches out, selects, and copies {(dumps) onto tape
segments and directories from the Multics storage hierarchy. The frequency of
dumping and the length of time for which tapes are kept are determined at
individual sites.

2. retrieval

Retrieval is the recovery of individual segments and directories. It occurs
during normal Multics operation.

3 reloading

Reloading is the reconstruction of a major portion of the hierarchy when it
has been damaged.

There are two major Multics backup systems, hierarchy and volume. The
hierarchy system tree—walks the hierarchy to locate the data it must dump, while the
volume system scans the physical volumes used by the storage system. The goals and
general structure of both systems are the same, but the mechanism, cost, and benefits
differ.

The volume backup system is organized around the concept of physical
volumes. The volume -dumper dumps segments and direciories, as specified by physical
volume and VTOC index. In contrast, the hierarchy backup system is organized around
the storage system directory hierarchy. The hierarchy dumper dumps segments and
directories as specified by pathname. Similarly, the volume reloader recovers a single
physical volume, while the hierarchy reloader recovers some portion of the directory
hierarchy. Both retrievers, volume and hierarchy, recover segments and directories. The
dump volumes produced by the volume dumper can not be read by the hierarchy
reloader or retriever and vice versa.

9-1 AMRB1-04

In the discussions below an overview of dumping and recovery is presented,
followed by details of the operation of the volume and hierarchy systems. Descriptions
of the commands used by both backup systems appear in the Multics Administration,
Maintenance and Operations Commands manual, Order No. GB64.

DUMPING

The dumping mechanism operates in three modes —- incremental, consolidated,
and complete. These modes are distinguished by three criteria used to select segments
and directories for dumping. What is dumped is site—controllable. Usually, only
information that has changed and will be valuable in the future is dumped. Thus
per—process information, static libraries, and re—creatable segments and directories are
not dumped. All other sections of the hierarchy should be included in the search
route of the backup system.

Multiple dumper processes, registered as SysDaemon, Daemon, or both, are
allowed.

The backup system does not guarantee that segments are dumped in a
consistent state. For example, it is possible that while the incremental dumper is
dumping a segment, another process might be writing into that same segment. Thus,
an inconsistent copy of a segment might be produced. However, the modifications that
cause a segment to be inconsistent also cause another dump of the segment to be
produced on the next pass of the incremental dumper. Therefore, unless the system
crashes before the next incremental dump, a consistent copy is eventually produced.

The high production rate of incremental and consolidated dump tapes makes
the retention of these tapes for long periods of time impractical. Therefore,
incremental and consolidated tapes are kept for some short time, perhaps 3 weeks.
Complete dump tapes are retained for a longer time, perhaps 6 months, with the
exception of one complete dump tape per month that might be held for a period of
1 year.

Incremental Dumps

Incremental dumping is the principal techmnique used o keep the backup systems
abreast of changes to online storage. It is the purpose of an incremental dump to
discover modifications to online information not reflected in backup tape storage. The
incremental dump locates and dumps all segments and directories modified more
recently than they have been dumped. The net effect of the incremental dumping
scheme is to limit the amount of information that can be lost to those modifications
that have occurred since the last incremental dump.

9-2 AMS81-04

Incremental dumping is triggered periodically by software timers. In order to
minimize the time span during which modifications to online storage can go unnoticed
by the backup system, incremental dumps should be produced frequently. On the other
hand, because backup competes with ordinary users and exerts a considerable drain on
system resources, it becomes economically desirable to lower the frequency of
incremental dumps. Therefore, the time interval between the incremental dump cycles
at an installation is chosen as a compromise between these two considerations. This
does not imply that an incremental dump necessarily finishes its search within a single
time interval. in fact, if the incrementai dumper is given no scheduling advantage,
several intervals might be required to complete an incremental dump during hours of
heavy system load. If an incremental dump is not completed before the next
incremental dump is scheduled to begin, the "next” dump is deferred until the prior
incremental dump is completed.

Consolidated Dumps

A consolidated dump locates and dumps segments and directories that have
already been dumped by an incremental dump cycle. Since a consolidated dump
catches modifications accrued over a period of time encompassing many incremental
dumps, it effectively consolidates the most recent information from a group of
incremental tapes and thereby facilitates the reloading of this information by
decreasing the number of tapes that must be processed. Also, since tape is susceptible
to operational, hardware, and software errors, a consolidated dump provides the
installation with a second tape copy of the segments and directories dumped during an
incremental dump.

Complete Dumps

A complete dump dumps every segment and directory in the storage system
without regard for modification time. Unlike incremental and consolidated dumps,
which attempt to keep the backup tapes up-to—date with the contents of the storage
system, complete dumps are somewhat different in purpose.

A complete dump establishes a checkpoint in time, essentially a snapshot of the
entire Multics storage hierarchy. If it should ever become necessary to recover a
major portion or the entire contents of online storage, then the tape with the most
recent complete dump marks a cutoff point beyond which no older dump tapes need
be inspected.

RETRIEVAL

A user who notices that a segment or directory has been lost or damaged can
submit a request for the retrieval of that segment or directory. The problem the user
faces is determining which dump operation produced the dump of the segment or
directory to be retrieved. Usually the most recently produced copy is wanted. In the
case of a damaged segment, however, the damaged version is likely to have been
dumped as well, and hence the most recent dump may not be wanted. It is to be
hoped that a user knows approximately when a segment was lost or damaged, and
whether the segment has been recently modified. Using these two pieces of
information, the user can make a reasonable guess as to when the last usable copy of
the segment was online.

9-3 AMB81-04

Once an estimate has been made as to the time frame, this estimate can be
verified by examining the corresponding hierarchy dump map. This operation is
automatic for volume retrieval, although the user can still specify the time frame if
desired. The hierarchy dump map indicates the tape reel on which the dump was
written. A feature of the dump map that is sometimes helpful is the printing of the
date and time modified attribute for the segment, which effectively points to the next
most recent dump of the segment.

The user can. specify that a single segment, a directory without its subtree, or
a directory including its subtree be recovered.

Using cross retrieval, a user can specify that a segment or, for hierarchy
retrieval only, a directory be retrieved with a different pathname. A single segment
can be cross retrieved by the volume retriever to any point in the storage system
hierarchy. For hierarchy retrieval only, a directory subtree can be cross retrieved to
any point in the hierarchy.

VOLUME BACKUP

The volume backup system is designed to allow recovery from most disk
failures while the system is available for users. Incremental and consolidated volume
dumping are significantly faster, though less flexible, than their hierarchy counterparts.
It is not intended for general users; nor is it designed to be used for archival storage,
or intersite file transmission. It is assumed that the hierarchy backup system will be
used for these activities.

The personids "Volume_Dumper”, "Volume_Retriever", and "Volume_Reloader"
must be registered. These personids should be registered on the Daemon project with
the multip and daemon attributes. For sites using AIM, the authorization for these
personids must also be set at system_high and the home directories must be
pre-created at system_high.

To set up the volume backup system, log in the Repair Sysdaemon, or, if
running in special session using the initializer, execute the following command:

ec >tools>setup_veolume_reloader

This exec_com will create all directories, segments and message segments necessary for
running the volume backup system. This exec_com will also set suggested access on
the directories and segments created. Not all the access that is set is required. If a

mntad Lo o Qe mlad a mom

citom wriclime 4laa mmmace e <R A armed a Quro A deniin b seemzr s e s]
SILE WISIIES, ul€ aClEsS Crcéaica 101 FOYdVIALILT allu T.0ydAUlLLIN.T llidy UT 1CLIOVCU.

A site will need a sufficient number of tapes to accommodate the entire file
system and any incremental and consolidated dumps until a subsequent complete dump
is taken. It is suggested that a new site start with 100 - 300 reels of tape for volume
backup.

9-4 AM81-04

The Volume Backup LSS

The commands for the volume backup system are available under a Limited
Service Subsystem (LSS). Within this LSS, there is one LSS command table per volume
backup daemon. These command tables restrict the volume backup command set as
follows.

The LSS command table for the volume dumper (Voiume_Dumper.Daemon)
restricts its available command set to:

complete_volume_dump
consol idated_volume_dump
delete_volume_log
display_pvolog
display_volume_log
dmpr_unlock_pv
end_volume_dump
incremental_volume_dump
merge_volume_log
preattach_dump_volumes
purge_volume_log
rebuild_pvolog
recover_volume_log
set_volume_log
set_volume_wakeup_interval
ver ify_dump_volume
volume_cross_check
volume_dump_trace_off
volume_dump_trace_on
wakeup_volume_dump

The LSS command table for the volume retriever (Volume_Retriever.Dacmon)
restricts its available command set to:

list_retrieval_requests
retrieve_from_volume

The LSS command table for the volume reloader (Volume_Reloader.Daemon) restricts
its available command set to:

display_volume_log
merge_volume_log
recover_volume_log
reload_volume
verify_ dump_volume

9-5 AMB1-04

In addition, all three LSS command tables will allow these commands:

exec_com
help
home_dir
logout
system
user

All the commands listed above are described in the Mu/ltics Administration,
Maintenance, and Operations Commands manual, Order No. GB64, with the
exception of list_retrieval_requests, exec_com, help, home_dir, logout, system, and user,
which are documented in the Multics Commands and Active Functions manual,
Order No. AG92. (Note that "help" and "logout” here refer to the standard Multics
commands by those names, not the initializer commands by those names.)

If your site runs the volume backup system under the supplied LSS, the
project_start_up.ec for the Daemon project (daemon_project_start_up.ec) selects the
appropriate command table for each volume backup Person_id based on the result of
the [user name] active function.

Also, if your site runs the volume backup system under the supplied LSS, you
must be careful about making changes to admin.ec. If you change admin.ec so that
commands not contained in the command tables are sent to the volume backup
daemons, your operators will not be able to use the "x" command(s) affected by the
change.

You may extend the command set available to any one of the volume backup
daemons by modifying the appropriate command table and creating the new command
set via the make_commands command (documented in the Multics Administration,
Maintenance, and Operations Commands manual, Order No. GB64).

You may allow the full Multics command set to be available to the volume
backup daemons by not executing the enter_lss command in daemon_project_start_up.ec.
This means that the volume backup system will not run as an LSS.

Volume Dumping

The volume dumping subsystem produces dumps, usually on magnetic tape, that
are used by the volume reloader and retrieval subsystems.

The volume dumper can operate in any user ring and at any AIM level with
no loss in efficiency or function. The volume dumper requires re access to the
he_backup_ and rcp_sys_ gates. It does not require access to the phcs_ and hphes_

gates.

9-6 AM81-04

The volume dumper can operate in either a single or multiprocess mode. Thus,
volume dumping can be partitioned among many processes for either performance or
security reasons. Partitioning is done by specifying different physical volumes in
different dump control segments, and can be effected at either the logical or the
physical volume level. If done, the partitioning must be the same for both incremental
and consolidated dump operations. If this is not done, certain record Kkeeping
functions will fail. The dump control segment should specify at least all public
volumes and may specify any registered volume. If a volume is not mounted, a
message 10 that effect is printed, and the physical volume is skipped.

The structure of the dumper’s output is determined by the I/0O module used to
create it. In the default case, it is a magnetic tape written in Multics standard tape
format. The order of data on a dump volume is as follows:

L dump information data record.

2, contents segment record containing the contents segment of the previous dump
volume in the same dump mode.

3. volume log segment record containing the volume log of the physical volume
being dumped prior to this dump pass.

4, dump record consisting of the VITOCE of the object and the object if the
object is nonnull.

5. repeated instances of item 4 as required.

6.- volume log segment record containing the volume log of the physical volume
being dumped after the dump pass completed.

7. repeated instances of items 3-6 for each physical volume dumped.

Items 1 and 2 always appear at the beginning of each dump volume. Items 3 through
6 define the dump of a physical volume and may span multiple dump volumes. If
any of the individual records specified as items 3 through 6 cannot fit on a dump
volume, the record is rewritten in its entirety on the next dump volume.

As the dumper runs, it records information about its operation for use by the
volume reloader and volume retriever subsystems. This information consists of the
segments discussed below.

VOLUME DUMPER ACCOUNT SEGMENT

A site may choose to charge for volume dumper services. An accounting
segment is created in the directory:

>system_control_1>volume_backup_accounts

for each dump volume written, with the name dump_volume.account. If this action
would overwrite an existing segment, the older copy is renamed to dump_volume.account.l,
and so on. Entries in the account segment consist of the unique ID pathname of the
segment or directory dumped and the number of records.

9-1 AMS81-04

VOLUME DUMPER CONTENTS SEGMENT

The contents segment contains a unique identifier for each segment and
directory written on a dump volume. A contents segment is created in the directory:

>daemon_dir_dir>volume_backup>contents

for each dump volume used. It is written on the next dump volume (of the same
dump mode) and can then be deleted if necessary. The segment name is of the form
dump_volume_name.contents. The contents segment is used by the volume retriever to
bypass searching an entire dump volume when a specific segment or directory is
needed. Use of the contents segment is explained more fully in the discussion of
volume retrieval below.

VOLUME DUMPER CONTENT NAMES SEGMENT

The content names segment is a multisegment file that contains the name space
(the total set of names) of each directory that is dumped. The content names segment
is created in the directory:

>daemon_dir_dir>volume_backup>contents

with the name dump_volume_name.content_names, if the -names control argument is
given with the incremental_volume_dump, consolidated_volume_dump, or
complete_volume_dump commands. The content names segment is used by the volume
retriever to bypass recovering a directory from a dump volume during branch retrieval.
Use of the content names segment is explained more fully in the discussion of volume
retrieval below.

VOLUME DUMPER CURRENT DUMP WORKING SEGMENT

The current dump working segment segment is used by the volume dumper to
maintain a memory of what has been done and what is left to do. It is created in
the working directory, with the first invocation of the incremental_volume_dump, the
consolidated_volume_dump, or the complete_volume dump command. The segment
name is of the form dump_control_file_name.dump_type.control.

VOLUME DUMPER DUMP CONTROL FILE

Volumes are specified via a dump control file as either physical volumes or
logical volumes. The format of this segment is:

or
pv,<physical volume name>

Each line must specify no more than one name and may not have any blanks. Logical
volume names are translated into a list of physical volume names. Physical volumes
are dumped in the order that they appear in the control list.

9-8 AM81-04

What is dumped is controlled by the volume specifications in the dump control
file, and whether the owner of the segment has enabled or disabled the incremental
and complete volume dumping switches. If both switches are off, the segment is not
dumped and cannot be recovered. For more information, see the descriptions of the
volume_dump_switch_off and volume_dump_switch_on commands in the Mu/tics
Commands and Active Functions manual, Order No. AG92.

VOLUME DUMPER PHYSICAL VOLUME LOG SEGMENT

In order to determine when a dump volume no Ilonger contains useful
information, a physical volume log segment is maintained for each dump volume. The
physical volume log segment contains a record of all physical volumes that have
information on the dump volume. It is created in the directory:

>daemon_dir_dir>volume_backup>pvolog

VOLUME DUMPER VOLUME LOG SEGMENT

As the volume dumper operates on a specified physical volume, it records
information about its dumping in the volume log segment. There is one valid volume
log for each physical volume that has been dumped. The volume log contains a record
of every dump volume that contains information that was dumped from this physical
volume. Both the volume reloader and the volume retriever subsystems use the volume
log segment to determine which dump volumes created by the volume dumper should
be used as input. It is created in the directory:

>daemon_dir_dir>volume_backup

for each physical volume dumped: the name of this segment is of the form
physical_volume_name.volog.

The set of dump volumes necessary to logically reconstruct the physical volume
is referred to as a reload group. Normally, a volume log contains two reload groups.
The display_volume_log and set_volume_log commands can be used to display the
contents of a volume and to set the number of reload groups it contains, respectively.
The purge_volume log command can be used to clean up a volume log. Should a
volume log be lost it can be recovered using the recover_volume_log command. Should
two volume logs exist for the same physical volume they can be merged via the
merge_volume_log command.

9-9 AM31-04

AUTOMATIC TAPE MANAGEMENT

The volume dumper can manage its own tapes (uses the =-auto control
argument) if a tape pool is established. To set up and manage a tape pool (also
known as the volume pool segment), use the create command to create a segment in
the Dumper default directory >ddd>volume_backup called Volume_Dumper.volumes.
Use the manage_volume_pool command (fully described in the Mu/tics Commands
and Active Functions manual, Order No. AG92) to add tape volumes to the volume
pool for the dumper’s use. Volume names must be of the form:

AAnnnnn or Annnnn

where A = any alphabetic character and nnnnn is an integer that will fit into 18 bits.

These volumes are allocated and freed as required by the Volume Dumper
when the -auto control argument is used. The number of volumes required is
dependent upon the frequency of dumping, the size of the storage system in use, and
the number of reload groups (see "Volume Dumper Volume Log Segment" above). The
use of the volume_cross_check and purge_volume_log commands is recommended to
ensure consistency of the databases and to free volumes when inconsistencies have
prevented them from being freed earlier.

DUMP MODES
The volume dumping subsystem operates in one of three ways:

1. incremental volume dump —-- for each physical volume specified, those segments
and directories that are stored on it are dumped if they have been modified
since the last incremental volume dump

2. consolidated volume dump -- for each physical volume specified, those
segments and directories that have been incrementally dumped since the last
consolidated volume dump are dumped

3. complete volume dump —- for each physical volume specified, all segments and
directories are dumped

fncremental Mode

The incremental volume dumper operates cyclically using a default time interval
of one hour unless otherwise specified. That is, the dumper process is awakened at
one~-hour intervals. It incrementally dumps all physical volumes specified in the dump
control segment, and then goes blocked to wait for the next wakeup. If the real time
required to complete a dump cycle exceeds the wakeup interval, the dump cycle
repeats immediately. The incremental volume dumper should be run whenever the
Multics system is operational. Incremental volume dumping may be partitioned among
several different processes, if desired, by specifying different physical volumes in
different control segments. The dump control segment should specify at least all
public volumes and may specify any registered volume. If a volume is not mounted, a
message to that effect is printed, and the physical volume is skipped.

9-10 AMB81-04

The incremental volume dumper is controlled by bit maps that the system
maintains on a per physical volume basis. These bit maps designate the VTOC entries
on a physical volume that are to be dumped. The segment or directory described by
the VTOC entry is accessed in cooperation with the Multics supervisor in a manner
that bypasses the storage system access control list and ring control.

Consolidated Mode

The consolidated volume dumper operates as a single-pass dump, using the same
control segment as the incremental volume dump. It is effectively a merge operation
of all the incremental volume dumps produced since the last consolidated volume
dump. There is no system requirement that it be run, but its operation significantly
reduces the amount of input that must be scanned during a volume reload or retrieval
operation. The consolidated volume dumper is controlled by bit maps in the same way
as for the incremental volume dumper. The segment or directory described by the
VTOC entry is accessed in cooperation with .the Multics supervisor in a manner that
bypasses the storage system access control list and ring control.

Complete Mode

The complete volume dumper also operates as a single-pass dump but it dumps
everything. The complete volume dump of a physical volume is the logical equivalent |
of a BCE save of a physical volume. The complete dumper constructs a temporary bit |
map of the VTOC entries currently in use before it starts dumping. The segment or
directory described by the VTOC entry is accessed in cooperation with the Multics
supervisor in a manner that bypasses the storage system access control list and ring
control.

The three modes of volume dumping are invoked as separate commands with
similar control arguments. The three commands are:

incremental_volume_dump
consolidated_volume_dump
complete_volume_dump

These commands are described in the Mu/ltics Administration, Maintenance, and
Operations Commands manual, Order No. GBé64.

ADDING TO A DUMP CONTROL FILE

If it becomes necessary to add a physical volume to an existing Volume
Dumper control file, the following procedure should be observed to ensure that the
reload group is consistent:

e add the volume name to the end of the control file

e start the dump. The Volume Dumper asks if a restart should be performed.
This is because it will have determined that the last volume dumped does not
match the last volume name in the control file. This is the mechanism used to
automatically restart a dump after a system interruption. Answer no to this
question. The dump then continues from the first volume in the control file.

9-11 AMBR1-04

HANDLING ERRORS WHILE VOLUME DUMPING

Disk errors, tape errors, or file system errors can occur while volume dumping.
The following description explains how to handle each of these types of errors,
including fatal process errors and system crashes. In general, you can restart the
volume dump after one of these errors by retyping the command line with which you
started the dump and including in that line the -restart control argument.

The -restart control argument can be used to restart complete, consolidated,
and incremental dumps. For complete and consolidated dumps, the default for -restart
is to restart from the last volume dumped. For incremental dumps, you must specify
which physical volume to restart from.

As the dumper walks through the volumes specified in the dump control file,
it announces which volume is being dumped. Use this volume name with the -restart
control argument, e.g.:

incremental_volume_dump -control control_file_name
-operator operator_initials -restart restart_volume_name

Disk Errors

For disk errors (e.g., "dev inop” or the disk drive drops offline), if the dump
terminates or is terminated by the operator, use the -restart control argument to
indicate that dumping should resume with the specified volume. If the volume is
unreadable, restart from the next physical volume in the sequence to be dumped.
Transient disk errors usually cause no problems other than the immediate one.

Tape Errors

For tape errors, e.g., if the tape drive drops out of ready, use the -restart
control argument and specify the last volume name announced by the dumper. If the
tape breaks or is damaged during a complete dump, restart the entire dump. If the

tape damage occurs during an incremental or consolidated dump, there is no recovery
technique.

File System Errors

For file system errors (e.g., connection failure or "RQO"), correct the cause of
the error and then use the -restart control argument.

Other Errors

For system crashes or fatal process errors by the dumper, use the -restart
control argument.

9-12 AMS81-04

Volume Retrieval

Although not intended for archival storage, the volume backup subsystem does
provide a highly automatic retrieval system. Requests to the retriever, made by using
the enter_retrieval_request command (see the Multics Commands and Active Functions
manual, Order No. AG92), are queued for later processing. When you want to start
retrievals you need only log in a process, normally the volume retriever, and issue the
retrieve_from_volume command.

The retrieve_from_volume command examines the specified queue for retrieval
requests. For each request, a determination is made as to whether the segment or
directory to be retrieved exists online. If so, the volume ID of the latest dump
volume is determined. If the volume ID is not available, then the set of all volume
identifiers that might contain the segment or directory is determined. If the segment
or directory is not online, then a recursive search is made for the dump volume
containing the first superior online directory and the process is repeated.

As "a result of the above operation there exists a temporary set of dump
control segments in the process directory that contain entries for segments and
directories that may be on that dump volume. The control segments and their
associated volumes are processed in reverse chronological order. When a segment or
directory is recovered, it is removed from all control segments.

Segments and directories are recovered as the result of a unique identifier (uid)
match. The uid is a unique bit pattern associated with a particular segment or
directory. It does not change if the segment is renamed. However, if a segment is
copied, or a segment or directory is moved in the hierarchy, the new segment or
directory acquires a new uid. This also occurs if a segment or directory is reloaded
using the hierarchy backup system.

In order to know the uid of a segment or directory, as well as to be able to
determine the requestor’s access to recover it, the directory entry for that segment or
directory must exist. If it does not, it is recovered first. Once the directory entry is
recovered, the segment or directory can be recovered. Thus, for deleted segments and
directories, retrieval is usually a two-step operation. In certain cases this is not true,
because directories and the segments they describe usually reside on different physical
volumes. Thus, a directory entry may be lost and retrieved without having to recover
the segment or subtree.

The volume retriever obeys the access control rules of the system. Thus it will
not retrieve a ring 1 segment from a ring 4 request, and it will not retrieve a
segment to which the reguester has no access.

As noted above, the volume retriever uses a uid match to find the requested
segment or directory. If a segment has been copied or moved in the hierarchy or
reloaded using the hierarchy backup system, it is not retrievable from any prior dump
volumes under its former pathname.

9-13 AMS81-04

Determining the set of dump volumes to be searched uses some of the
segments created and maintained by the volume dumper. The volume log segment is
used to determine the dump volumes that may contain the desired segment or
directory and the order in which they should be searched. The volume log is searched
for in the directory >ddd>volume_backup (unless the -wd control argument has been
specified). In order to decrease the number of dump volumes that must be searched,
the contents segment for each dump volume, if available, is searched for a uid match.
If a uid match is not found, the dump volume is not searched. If the contents
segment is not available, the dump volume is searched. If the contents names segment
is available, it is used to further decrease the number of directories scanned during
branch retrieval. If the retriever can determine, using the contents names segment,
that the branch name was not in the directory when it was dumped, then the
directory is not temporarily recovered and thus the number of dump volumes scanned
is reduced. If the contents names segment is not available, the tape is searched.

A site may choose to charge for retrievals. To this end a retrieval account
segment that contains the requestor’s name and the number of segments and directories
trecovered is created in the directory:

>system_control_1>volume_backup_accounts

At this time no further processing is done; accounting is off by default.

For more information on volume retrieval refer to the description of
enter_retrieval_request in the Multics Commands and Active Functions manual, Order
No. AG92.

Volume Reloading

The volume reloader is used to reconstruct the contents of a physical volume.
It uses as input the reload group indicated by the volume log segment. When invoked,
the volume reloader determines from the volume log the set of dump volumes that
defines a reload group. The reload group is processed in reverse chronological order
so that once a segment or directory is recovered, subsequent copies can be skipped.
When a volume reload has completed, the resultant physical volume is a logical image
of its former self, less any changes that were introduced by the operator {(information
unrecorded by the dumper or unreadable due to operational errors).

Volume reloading of a physical volume that is of the root logical volume
(RLV), but not of the root physical volume (RPV), is accomplished by bringing the
system up to ring 1 initializer command level prior to accepting any physical volumes,
recovering the associated volume log via the recover_volume_log command, and issuing
the reload_volume command. If the volume to be reloaded is the RPV, the system
must be cold booted to ring 1 command level using a spare disk pack. See "Disk
Volume Recovery Procedures” in Section 10 for a detailed discussion of this.

9-14 AMB81-04

The disk pack used by the volume reload facility is accessed as an I/O disk
and must have been initialized via the init_vol initializer command, or restored from |
BCE, or in some way restructured. The disk pack must be initialized with the name l
and other parameters of the physical volume that is to be rebuilt. The parameters that
describe the organization of the pack are compared with those stored in the volume
log and any mismatches are reported to you so you may decide whether to continue
the reload or reinitialize the physical volume. Volume reloading of any physical
volume can be carried out while the system remains operational for users, although the
logical volume that contains the physical volume to be reloaded is not available.

The volume reloader uses the user disk facility of the system to read and write
the disk pack it is rebuilding. Thus, a user disk drive must be available (see the
set_drive_usage command description in the Multics Administration, Maintenance and
Operations Commands manual, Order No. GB64, and the description of the udsk card
in Section 7).

The volume reloader can run in any user ring, at any AIM level, but it is
normally run at a system-high AIM level in ring 1. The volume reloader requires re
access to the following special gates:

he_backup_
rcp_sys_

The volume reloader creates a control segment (in the working directory) for
each physical volume that it reloads. The control segment is given the name of the
physical volume plus the suffix "control"; e.g., dska_l.control. This control segment
contains information about already reloaded objects and allows the reload operation to
be restarted should it be interrupted by a system failure.

If the volume being reloaded contains partitions, the config cards describing the
partition must be removed from the configuration deck prior to booting. Once the
reload is complete, the system must be shut down and the configuration deck updated.
For more information, see Section 7.

When a volume reload is complete, in all cases except that of the RPV the
physical volume can be used as a direct replacement of the original volume by
remounting the logical volume, if required, and adjusting the disk table, or putting the
new disk pack on the old disk drive. In the RPV case, you must take additional
steps: shut the system down; either move the disk pack to the drive specified on the
root config card, or change the card; and reboot BCE.

HIERARCHY BACKUP

The Multics hierarchy backup system protects against the destruction of
information maintained by the Multics storage system. The hierarchy backup system
preserves recent copies of all segments and directories known to the storage system on
magnetic tape, and recovers these copies when needed.

9-15 AMBS81-04

The hierarchy backup system performs the following functions:

L hierarchy dumping

The hierarchy dumping mechanism copies segments and directories from the
Multics directory hierarchy onto tape.

2. hierarchy retrieval

Hierarchy retrieval is the recovery, during normal Multics operation, of
specified segments and directories that have been copied onto tape.

3. hierarchy reloading

Hierarchy reloading is the recovery of the entire or partial contents of online
storage in order to resume Multics operation (generally done after a system
failure).

Users are normally concerned only with system hierarchy dumping and
hierarchy retrieving, since reloading is a system function performed when the need
arises. The frequency of hierarchy dumping and the length of time that hierarchy
dump tapes are preserved are installation—determined parameters. Examples given in the
following text are typical values. The operator must check with the local installation
procedures to find out the parameters for the particular site.

The Hierarchy Backup LSS

Some of the commands for the hierarchy backup system are available under a
Limited Service Subsystem (LSS). Within this LSS, there is one LSS command table
for the two hierarchy dumpers (Backup.SysDaemon and Dumper.SysDaemon). This
command table restricts the hierarchy dumpers’ available command set to:

backup_cleanup
catchup_dump
complete_dump
end_dump
start_dump
wakeup_dump

and:

exec_com
help
home dir
logout
system
user

9-16 AMS81-04

All the commands listed above are described in the Multics Administration,
Maintenance, and Operations (Commands manual, Order No. GB64, with the
exception of list_retrieval_requests, exec_com, help, home_dir, logout, system, and user,
which are documented in the Mu/tics Commands and Active Functions manual,
Order No. AG92. (Note that "help” and "logout" here refer to the standard Multics
commands by those names, not the inititalizer commands by those names.)

If your site runs the hierarchy dumpers under the supplied LSS, the
project_start_up.ec for the SysDaemon project (sysdaemon_project_start_up.ec) selects
the appropriate command table for the two hierarchy dumper Person_ids based on the
result of the [user name] active function.

Also, if your site runs the hierarchy dumpers under the supplied LSS, you must
be careful about making changes to admin.ec. If you change admin.ec so that
commands not contained in the command table are sent to the hierarchy dumper
daemons, your operators will not be able to use the "x" command(s) affected by the
change.

You may extend the command set available to the hierarchy dumper daemons
by modifying the command table and creating a new command set via the
make_commands command (documented in the Muitics Administration, Maintenance,
and Operations Commands manual, Order No. GB64).

You may allow the full Muitics command set to be available to the hierarchy
dumper daemons by not executing the enter_lss command in the
sysdaemon_project_start_up.ec. This means that the hierarchy dumpers will not run as
an LSS.

Note that while the volume backup LSS restricts the commands available to all
three of the volume backup daemons (the volume dumper, the volume retriever, and
the volume reloader), the hierarchy backup LSS only restricts the commands available
to two of the hierarchy backup daemons (the two hierarchy dumpers). Thus, access to
the hierarchy retriever (Retriever.SysDaemon) and the hierarchy reloader
(Reloader.SysDaemon) must be restricted to trusted individuals.

Hierarchy Dumping

The hierarchy dumping mechanism searches out, selects, and copies onto tape
segments from the Multics directory hierarchy. At the same time, it produces a map
indicating the segments and directories included in each dump cycle. The hierarchy
dumper operates in three modes: incremental, consolidaied and complete. Usually, only
information that has changed and will be valuable in the future is dumped. Thus
per-process information, static libraries, and re-creatable segments and directories are
not dumped.

9-17 AM81-04

It is recommended that all incremental hierarchy dump tapes, consolidated

« hierarchy dump tapes, and complete hierarchy dump tapes be recorded in a physical

"pencil and paper" log (the Multics operations log). This log will be self-explanatory

if you adopt conventions for distinguishing between the different kinds of dumps, and
stick to them.

The maps produced by the hierarchy dumper should also be preserved in a
reverse chronological log. This will aid you later during any hierarchy retrieval that
may be required.

Any ring 1 processes may be used to perform hierarchy backup operations.
However, we recommend that you use the following User_ids:

Backup.SysDaemon
Dumper .SysDaemon
Retriever.SysDaemon
Reloader.SysDaemon

Whatever processes are used for hierarchy backup operations should not be used for
any other purposes.

Two system processes are generally employed by the hierarchy dump system for
the purpose of dumping. These are: Backup.SysDaemon and Dumper.SysDaemon. The
Backup.SysDaemon process is used to produce incremental and consolidated dumps. The
Dumper.SysDaemon process is used to produce complete hierarchy dumps. Complete
hierarchy dumps can be produced concurrently with incremental or consolidated
hierarchy dumps. The names of the processes may be anything selected by the site;
Backup and Dumper are used at most sites.

INCREMENTAL MODE

The incremental hierarchy dumper locates and copies all segments and
directories that have been modified more recently than they have been dumped. For
any given segment or directory this criterion is determined by comparing the date and
time modified attribute and the date and time dumped attribute. The period of time
for incremental hierarchy dumping is short and is determined by each site (the default
is one hour).

CONSOLIDATED MODE

The consolidated hierarchy dumper locates and copies segments and directories
that have been modified after some specified time in the past. For example, an
installation might choose to run a consolidated hierarchy dump every midnight to copy
all segments and directories modified since the previous midnight. Consolidated
hierarchy dumps collect the most recent copies of segments and directories modified
since the specified time in order to reduce the time needed to reload them from tape.
Also, the consolidated hierarchy dumper provides additional copies of those segments
or directories that have been backed up.

9-18 AMBSB1-04

Normal incremental hierarchy dumping continues after consolidated hierarchy
dumping terminates. The process asks you to mount new tapes when the consolidated
hierarchy dump is complete.

COMPLETE MODE

A complete dump dumps every segment or directory without regard (o time
modified. The complete dumper does not interact with the incremental or consolidated
dumpers.

A complete hierarchy dump establishes a checkpoint in time, essentially a
snapshot of the entire Multics storage hierarchy. If it should ever become necessary to
perform a complete hierarchy recovery, then the most recent complete hierarchy dump
marks a point in time beyond which no older incremental or consolidated hierarchy
dump tapes need be inspected.

Another purpose of complete hierarchy dumping involves tape retention strategy.
The high production rate of incremental and consolidated hierarchy dump tapes makes
the long-term retention of these tapes difficult. Therefore, incremental and consolidated
hierarchy dump tapes may be kept for a short period; for example, three weeks; and
complete hierarchy dump tapes may be kept for a longer time; for example, six
months to a year.

Hierarchy Retrieval

The hierarchy retrieval system is used to recover segments and directories from
tapes produced by the hierarchy dumper. Hierarchy retrieval occurs during normal
Multics system operation.

A user who notices that a segment or directory has been lost or damaged can
submit a request for hierarchy retrieval to the Multics operations staff. It is necessary
to determine which hierarchy dump tape of the segment or directory to retrieve.
Usually the most recent tape is desired. In the case of a damaged segment, the
damaged version may have been dumped. In this case, an earlier dump tape is desired.
Hopefully, a user can inform the operations staff of approximately when a segment
was lost or damaged, and whether the segment had been recently modified. Using
these two pieces of information, it is possible to make & reasonable guess as to which
hierarchy dump tape should be processed.

Once a conjecture has been made as to which hierarchy dump tape is to be
retrieved, it can be verified by examining the corresponding hierarchy dump map. The
map indicates the segments and directories written on that tape. A feature of the
dump map that is sometimes helpful is the date and time dumped attribute for the
segment, which points to the approximate location of the next most recent copy of
the segment to be recovered.

9-19 AMS81-04

The user can specify that a single segment, a directory without its subtree, or
a directory with its subtree be recovered. (A directory for which the subtree is not
recovered contains only the links and access control information associated with the
directory itself.)

A user can also specify that a segment or directory be recovered with a
different pathname. This is called cross retrieval. Segments and directories can be
cross-retrieved to any point in the storage system hierarchy.

Hierarchy retrievals may be done by operators, but they should have
programming staff assistance. The step—-by-step procedure for performing a hierarchy
retrieval is available in the Operator's Guide to Multics, Order No. GB61.

Hierarchy Reloading

Hierarchy reloads are necessary when some hardware or software problem has
damaged major portions of the storage system hierarchy.

In the event that segments are lost or destroyed, the programming staff should
be notified immediately and the operator should proceed under their supervision.

Operators should be instructed to keep all salvager output, maps, and online
printouts for the programming staff. Also, any problems encountered during the reload
should be reported to the programming staff.

Hierarchy reloads may be performed from the initializer only if the reload
command is issued as the first command to the initializer after a BCE boot command
has been given. For this purpose, the initializer enters a special environment after a
boot called the administrative ring.

Hierarchy reloads are discussed in more detail in Section 10 and in Appendix
H.

BACKUP COMMANDS

Complete descriptions of the backup commands are presented in the Multics
Administration, Maintenance and Operations Commands manual, Order No. GB64.

9-20 AMB1-04

SECTION 10
RESPONDING TO SYSTEM PROBLEMS

MULTICS SYSTEM FAILURES

This subsection describes Multics system failures. It includes information on
how Multics crashes (i.e., returns to BCE), how Multics takes a dump, how you can
examine a crashed system, and how Multics performs an emergency shutdown.

Understanding System Failures

Multics fails when it stops providing services to some or all users. There is a
cycle of three steps which usually takes place whenever Multics. fails. These steps are
crashing, dumping, and emergency shutdown. Once these three steps are complete, the
system can be recovered. Usually, the only recovery needed is rebooting. Sometimes,
more recovery is needed during or after the reboot.

CRASHING

Multics is designed to detect system failures by continually checking for errors.
It detects errors in two ways: by intercepting hardware faults in critical system code
and by checking critical system databases for consistency. Multics responds to serious
errors by stopping operations in a controlled way. The process of stopping operations
is called crashing.

In order to crash, Multics must do two things: it must save its state and it
must transfer control to another system. The system it transfers control to is BCE. It
transfers control to a copy of BCE which is saved as part of sysiem initialization.
Ordinarily, BCE will work correctly even in the face of the problem that stopped
Multics. There are two reasons for this. First, the saved copy of BCE is generally
safe from damage due to transient disk errors. Second, BCE uses less of the hardware
than Muiltics. For example, a serious hardware failure of a tape channel might force
Multics to crash. Since BCE does not use the tape hardware, it could still operate.
Information on how to recognize when Multics has crashed is available in the
Operator's Guide to Multics, Order No. GB6l.

*
Multics does not always succeed in detecting serious errors. When it doesn’t, it

fails without crashing. There are two kinds of failures which don’t crash the system.
One is a result of the system looping in low level code (i.e,, in the hardcore). The
other is a result of the initializer process hanging. The following events are all signs
that the system is looping:

e The system stops responding to your commands

10-1 AMg1-04

e One or all user terminals hang
e Neither the system administrator nor any users can log in
e Users who are logged in can’t log out

e You receive a large number of messages which look something like this:

pxss: notify timeout, event = 144163153167,
processid = 367256147361

e On a L68 system, the lights on the control panels of all of the processors are
steadily lit (i.e., they stop blinking)

e On the system indicator panel (if your site has one), all of the lights are
steadily lit except for the bottom one

The following events are all signs that the initializer process is hanging:

e The rest of the system seems to be fine, but the initializer doesn’t respond to
your commands (i.e., the bootload console doesn’t respond, or it responds, but
the commands you issue don’t seem to get executed)

e Users can’t log in and out

When Multics fails without crashing, operators or system maintainers must
manually crash the system using the "execute fault” or "execute switches” mechanisms
described later in this section. Sometimes it is impossible to get the system to crash.
The most common reason for this is a power failure that destroys the contents of
main memory. In this case, dumping and emergency shutdown cannot take place, and
the system must be rebooted from scratch.

DUMPING

A dump is a selective copy of information from a crashed system that is saved
for later examination. Two facts about the way Multics is designed ensure that dumps
are an accurate image of the crashed system. First, as stated above, Multics saves its
state before it transfers control to BCE. Second, when it returns to BCE, it leaves
things exactly as they were. This permits BCE to take a dump of the crashed system
which reflects iis exact state when the error was detecied. You can examine the dump
with the analyze_multics subsystem. Note that it is also possible to examine the
crashed system in place with the BCE probe subsystem. (The analyze multics and BCE
probe subsystems are described later in this section under "Examining a Crashed
System.") Sometimes it’s impossible to get a dump. In this case, you should attempt to

s o~

examine the crashed sysiem with BCE probe and proceed with emergency shutdown.

10-2 AMS1-04

EMERGENCY SHUTDOWN

The next step after the dump is emergency shutdown. During an emergency
shutdown, Multics is restarted in a very limited way to clean up file system operations
that were in progress at the time of the crash. (The system returns to BCE when
emergency shutdown finishes.) Thus, ESD can only succeed if the system crashed,
preserving the Multics image. If ESD succeeds, then all page control operations are
left in a consistent state. This means that no data in user segments is lost, and no
free pages are incorrectly marked in use. However, higher level operations are not
cleaned up. For example, directories can be left in inconsistent states, and changes to
directories can be lost. The directory salvager corrects these inconsistencies. Sometimes,
it’s impossible 1o get an emergency shutdown. In this case, you should continue by
rebooting the system.

How Multics Crashes

The following sections contain detailed descriptions of Multics code.

NOTES ON THE MULTICS OPERATING ENVIRONMENT

At any given time, each configured Multics CPU is running some process, and
each process is running some program. When there’s an error, the process which
detects the error is called the crash process. It just means that her process happened
to detect the error. This does not mean that the user who owns the process caused
the carsh. Some system messages refer to the owner of the crash process as the
control process.

When a process detects an error, it is the program being run by that process
which makes the decision to crash. Different programs execute in different
environments. In some environments, programs are allowed to make external calls to
other programs. In other environments, they are not. So Multics provides different
ways for programs to crash.

SYSERR CRASHES

The most common way that Multics crashes is by a system program which can
make external calls discovering some type of fatal error. The program reports the
error via a call to syserr with a severity code of CRASH (1). (See syserr_constants.incl.pll
for the standard syserr severity codes.) Any program running in the normal PL/I
runtime environment of the supervisor can call syserr. When one does, syserr types a
message on the bootload console (via a call to ocdecm_) that describes the surface
cause of the crash. An example of a syserr crash message is:

0802.1 lock: AST lock locked at dir unlock time.

The beeper is always turned on for crash messages. Syserr calls
privileged_mode_ut$bce_and_return (pmut$bce_and_return). This program sets the
scs§sys_trouble_pending flag to the value of scs§processor, stores the process_id of the
crash process into scs$trouble processid, and issues a sys trouble connect.

10-3 AMS1-04

Sys Trouble Connects

A sys trouble connect is a way for a program to make the CPU on which it
is running enter the low level crash handler known as sys_trouble. A program issues a
sys trouble connect by executing a CIOC (connect) instruction whose target is the CPU
on which it is running. Sys trouble connects are handled as explained below under
"Sys Trouble Connect Handling.”

RING ZERO DERA/L CRASHES

A second way that Multics crashes is by a ring zero system program which
can’t make external calls (and is not part of the fault handler) discovering some type
of fatal error. The program ‘reports" the error by executing a DRL (derail
instruction. This mechanism allows ALM programs which cannot call syserr to crash
with an informative message. At compile time, these programs use drl_macros.incl.alm
to set up DRL instructions. Each DRL instruction’s effective address is the location in
the object segment of a 32 character message. At run time, one of these DRL
instructions will be executed if there’s an error, causing- a derail fault. The derail
fault handler in fim.alm checks the ring of execution (the PRR) at the time of the
derail fault. If it's zero, the derail fault handler transfers control to
fim_util$drl_fault_trouble. This program sets the scs$sys_trouble_pending flag to the
code "trbl_r0_drl_flt", stores the process_id of the crash process into scs$trouble_processid,
and issues a sys trouble connect (defined above). The eventual result is a flagbox
message of the form: "module: reason." When the system returns to BCE, BCE prints
this flagbox message. Note that ring zero DRL instructions are also used for
BCE/Multics breakpoints; a DRL with effective address -1 is interpreted as a
breakpoint.

INVALID FAULT CRASHES

A third way that Multics crashes is by the program fim.alm or the program
fim_util.alm detecting an invalid fault. These two programs can detect a number of
faults in inappropriate circumstances, such as page faults in wired environments. Since
neither of these programs can print a message, when they detect an invalid fault, they
set the scs$sys_trouble_pending flag to one of a number of sys trouble codes for
invalid faults. (There is one code for each kind of invalid fault.) Sys trouble codes
are defined in sys_trouble_codes.incl.pll and sys_trouble_codes.incl.alm. Later on, in
the sys trouble connect handler, the code is used to select a flagbox message. In
addition to setting the flag, fim.alm and fim_util.alm store the process_id of the crash
process into scs$trouble_processid, and issue a sys trouble connect (defined above).

10-4 AMB81-04

EXECUTE FAULT AND UNEXPECTED FAULT CRASHES

A fourth way that Multics crashes is via an execute fault or an unexpected
fault. An execute fault is a manual crash, caused by an operator or system maintainer.
It is the preferred way of causing a manual crash, especially on a multi—processor
system. As mentioned earlier, the system must be manually crashed when it is looping
or when the initializer process is hanging. To do an execute fault on a Level 68
system, the operator sets the EXECUTE SWITCHES/EXECUTE FAULT switch on the
display panel of any processor to EXECUTE FAULT, then presses the EXECUTE
button on the display panel. On a DPS 8§ system, the operaior presses the EXECUTE
button on the configuration panel of any processor. On a DPS 8 system, an execute
fault may also be done by using the appropriate DPU/DMP VIP mode EX command.
The step—-by-step procedure for executing fault is described in the Operator’'s Guide
to Multics, Order No. GB61.

An unexpected fault is either a trouble fault or a fault which is undefined by
the hardware. A trouble fault is signalled by the hardware when it encounters an
error signalling some other fault. This can be caused by CPU hardware problems or
by corrupted data in the fault vector. An undefined fault is always the result of CPU
hardware errors.

The handler for execute faults is wired_fim$xec_fault. The handler for
unexpected faults is wired_fim$unexp_fault. These programs set the scs$sys_trouble_pending
flag to the sys trouble code for execute fault or unexpected fault, respectively. Sys
trouble codes are defined in sys_trouble_codes.incl.pll and sys_irouble_codes.incl.alm.
Later on, 'in the sys trouble connect handler, the code is used to select a flagbox
message. In addition to setting the flag, wired_fim$xec_fault and wired_fim$unexp_fault
store the process_id of the crash process into scs$trouble_processid, and issue a sys
trouble connect (defined above). The machine conditions are put directly into
prds$sys_trouble_data.

CHECK-STOP CRASHES

A fifth way that Multics crashes is by a system programmer using the
check-stop debugging technique. To use this technique, a system programmer sets the
first nine DATA switches on the maintenance panel of the bootload processor to an
octal 123. (Note that this can only be done on a Level 68 CPU.) He sets the rest of
the switches to one of a number of unique codes which each specify a step in the
initialization process. These codes are defined in real_initializer.pll.pmac. This program
checks the switches before each step in intialization, and crashes the system if it finds
the code for that step in the switches. It crashes the system by calling syserr with a
severity code of CRASH (1). (See syserr_constants.incl.pll for the standard syserr
severity codes.) Syserr types a message on the bootload console that describes the
surface cause of the crash, and calls pmut$bce_and_return. This program sets the
scs$sys_trouble_pending flag to the value of scs$processor, stores the process_id of the
crash process into scs$trouble_processid, and issues a sys trouble connect (defined
above). A check-stop crash returns to BCE in a restartable manner.

10-5 AMB1-04

hphes_Scall _bce CRASHES

A call to the privileged gate hphcs_$call_bce will crash the system (i.e., force a
return to BCE) via a call to pmut$bce_and_return. This program sets the
scs$sys_trouble_pending flag to the value of scs$processor, stores the process_id of the
crash process into scs$trouble_processid, and issues a sys trouble connect (defined
above). Note that the initializer bce command calls this gate.

SYS TROUBLE CONNECT HANDLING

All of the ways that Multics can crash described so far end by issuing a sys
trouble connect. The program which is called to process sys trouble connects is known
as sys_trouble. It stops all processors other than the bootload processor, and transfers
execution to the BCE toehold.

There are several different kinds of connects. The following paragraphs
describe how the system handles connects in general, and then how it handles sys
trouble connects in particular.

When the system sends a connect to a processor, the target takes a connect
fault. The fault vector specifies that the processor should transfer control to
prds$fast_connect_code on a connect fault. (The source of this code is
fast_connect_init.alm.) The fault vector also stores the machine conditions in
prds$fim_data. If the scs$sys_trouble_pending flag is non-zero, the "fast connect code”
transfers control to wired_fim.alm. This module is the handler for faults which the
system can legitimately take while running with the PRDS (the processor data segment)
as a stack. On a connect fault, wired_fim is entered at wired_fimS$connect_handler. If
the scs$sys_trouble_pending flag is non-zero (which at this point means that there’s a
sys trouble connect), wired_fim.alm transfers control to sys_trouble$sys_trouble.

Remember that the system got to this point because a processor sent itself a
sys trouble connect. The processor which did this is usually the first one to enter
sys_trouble$sys_trouble. = However, some other processor may notice that the
scs$sys_trouble_pending flag is non-zero and enter sys_trouble$sys_trouble first.

Whichever processor enters sys_trouble$sys_trouble first notices that it is the
first processor to do so, and "broadcasts" (sends) connect faults to all of the other
processors. This broadcast causes the other processors to enter sys_trouble via the path
explained above. They do not perform the broadcast. The system uses scs$trouble_flags
to ensure that the broadcast only occurs once. Each bit in scs$trouble_flags
corresponds to a processor. If a processor finds its bit turned off, it broadcasts. If a
processor finds its bit turned on, it clears its bit and doesn’t broadcast. The way a
processor determines whether or not its bit is turned on is by comparing the value of
prds$processor_tag with the value of scs$trouble_flags. The first processor to enter
sys_trouble$sys_trouble finds its scs$trouble_flags bit turned off, and broadcasts. It
also turns on the bits correspoding to all of the other processors. So when the other
processors enter sys_trouble$sys_trouble, they find their scs$trouble_flag bits turned on

10-6 AMS81-04

and don’t broadcast. At this point, all of the processors, including the first one, are
in sys_trouble, executing the same code. Each processor copies the machine conditions
of the connect fault from prds$fim_data (in the per—processor data segment PRDS) to
prds$sys_trouble_data.

BCE only runs on one processor. The procesor it runs on is the bootioad
processor. The bootload processor is initially defined at bootload time as the CPU on
which BCE last executed; however, should this processor be deleted, reconfiguration
will assign the responsibility of being bootload processor to some other CPU. Each
processor must determine whether or not 1o enter BCE. The criteria it uses is whether
it is the system-defined bootload processor, VO7 whether it is the processor on which
the crash was detected. The identity of the bootload processor is defined by
scs$bos_processor_tag. (The name is left over from the time when BOS was the
primary crash handler.) The way a processor determines whether or not it is the
bootload processor is by comparing the value of prds$processor_tag with the value of
scs$bos_processor_tag.

If there was an invalid fault, execute fault, or unexpected fault crash, and the
scs$sys_trouble_pending flag has been set to one of the sys trouble codes defined in
sys_trouble_codes.incl.pll and sys_trouble_codes.incl.alm, then sys_trouble copies the
correct message into flagbox.message, and sets the bit flagbox.alert in the flagbox
segment. Similiarly, if there was a ring zero derail crash and the scs$sys_trouble_pending
flag has been set to "trbl_r0_drl_fIt", sys_trouble copies the derail message into
flagbox.message and sets the bit.

The bootload processor proceeds to enter BCE. The other processors execute a
DIS instruction in sys_trouble. A DIS (Delay until Interrupt Signal) instruction is an
effective HALT instruction. If the BCE go command, which restarts Multics, is
subsequently executed. connects will be rebroadcast to all CPUs, "interrupting" them
out of their DIS state. The machine conditions for this subsequent fault will be put
in prds$fim_data. Note that the copying of the machine conditions to prds$sys_trouble_data,
described above, prevents this possible subsequent connect fault from overwriting the
first set of machine conditions (the "sys trouble data").

The actual entry of BCE happens as follows. The bootload processor loops for
a while to allow all pending 1/0O operations to finish. This loop is inhibited, so the
processor may take lockup faults. Therefore, the lockup fault vector is temporarily set
to wired_fim$ignore_fault. Once the loop is completed, an instruction pair consisting
of an SCU and a TRA is picked up from location TOE_HOLD_MULTICS_ENTRY (3)
* 2 of the BCE toehold. (The toehold begins at location 24000 octal in absolute
memory. See toehold_save_dcls_.incl.pll for more information.) The instruction pair is
patched into the derail fault vector. Finally, a DRL instruction is executed. This
causes the instruction pair that was just put into the derail fault vector to be
executed. The SCU instruction stores the SCU data in the toehold. The TRA
instruction transfers control to the toehold in absolute mode.

10-7 AMB1-04

EXECUTE SWITCHES CRASHES

The final way that Multics crashes is via an execute switches. This is a manual
crash, caused by an operator or system maintainer. It should only be done if an
execute fault has been unsuccessful. As mentioned earlier, the system must be
manually crashed when it is looping or when the initializer process is crashing.
Executing switches is a way of forcing a processor to enter the tochold without having
to execute any Multics code. Therefore, this method of crashing the system may get
the system to BCE even when none of the methods described above succeed.

Executing switches is done by using the processor’s execute switches facility.
This facility is a way of telling the processor to execute an instruction pair at a
specified absolute location. The toehold has three instruction pairs in it which can be
executed in this way. When the processor executes the pair at
TOE_HOLD_CRASH_ENTRY*2 (24000), it returns directly to BCE. When the processor
executes the pair at TOE_HOLD_ESD_ENTRY#*2 (24002), it enters ESD directly. When
the processor executes the pair at TOE_HOLD_DUMP_ENTRY*2 (24004), it requests
an "early dump" —— a tape dump of the first 512K of memory. This is only useful
during collection one initialization.

To execute switches on a Level 68 system, the operator sets the DATA switches
on the maintenance panel of any processor to "02400N717200", where N is 0, 2, or 4
as described above. To execute switches on a DPS 8 system, the operator uses either
the BCE 24000, 24002, or 24004 command. The step-by-step procedure for executing
switches on either system is described in the Operator’'s Guide to Muftics, Order No.
GBe6l1.

The execute fault method of manually crashing the system ensures that all
processors are stopped via sys trouble connects. But the processor on which switches
are executed doesn’t do anything to stop the other processors. Thus, it is CRUC/AL
that the operator stop the other processors before executing switches. Obviously, this is
not a problem on a one-CPU system.

How Multics Takes a Dump

There are two kinds of Multics dumps: early and normal. Early dumps are
taken by collection zero initialization and put on magnetic tape. They are produced in
two situations. The first is when collection one fails (in which case, it asks you for
the number of a tape drive on which it can write the dump). The second is when
the operator executes switches specifying location 24004, requesting an early dump.

Early dumps are memory images of the first 512K of memory, which is all the
memory used during collections zero and one of 1initiglization. The Multics

read_early_dump_tape command is used to read these dumps into the file system for
analysis.

Normal dumps are taken with the BCE dump command and put in the DUMP
partition of the RPV. They are partial snapshots of the Multics virtual memory,
including the databases of processes and segments within processes which contain
information relevant to the crash. The privileged Multics copy_dump command is used
to read normal dumps into the file system for analysis.

10-8 AM81-04

THE BCE dump COMMAND

The BCE dump command writes selected segments from selected processes in
the crashed system to the DUMP partition of the RPV disk. The selection of exactly
which processes and which segments get dumped is controlled by the control arguments
supplied to the dump command. The dump command scans the APT (the Active
Process Table, located in the segment tc_data) of the crashed system, and selects
processes based on the criteria specified by the control arguments. For each process it
selects, the dump command then scans the descriptor segment of that process and
selects segments based on the criteria specified by the control arguments. Normally, all
of the supervisor databases are dumped, as well as supervisor data in running
processes. Pure segments (procedures and fixed data) are never dumped, because they
cannot contain clues to what went wrong. (It’s possible that a severe hardware failure
could damage pure segments, but the need to dump them for this reason is extremely
rare and does not justify the vast expense of dumping them regularly.)

The layout of the DUMP partition is as follows. First there is a header, which
describes what segments (by number and length) have been dumped, and contains the
machine conditions from the return to BCE. Then there are segment images. For each
process dumped, the segment images are in order by ascending segment numbers.
Figure 10-1 depicts the layout of the DUMP partition following execution of the
dump command.

After the system is rebooted, the dump has to be copied out of the DUMP
partition into permanent storage. This is done by the privileged Multics copy_dump
command, which is usually part of Utility.SysDaemon’s start_up.ec. The copy_dump
command uses the gate hphcs_ and therefore is generally executed by Initializer.SysDaemon
or Utility.SysDaemon. It determines whether the DUMP partition contains a valid
dump. If it does, the information in the DUMP partition is copied into one or more
segments in the directory >dumps. These segments have the name date.time.n.dump_no,
where date is in the form MMDDYY, time is in the form HHMMSS, n is a number,
starting at 0, incremented by one for each segment of a multi-segment dump, and
dump_no is a number incremented by one each time a dump is taken. The
information in these segments is in the same format as it is in the DUMP partition.
However, since the DUMP partition can be much longer than the maximum length of
a segment, each 255K of dump information is placed in its own segment.

10-9 AMB1-04

2000

segment map

segment image

segment image

Figure 10-1.

_ dump header
/

copies of
_ segments of
/ processes
dumped

Layout of the DUMP Partition

10-10

AM31-04

Examining a Crashed System

To examine a crashed system, use either the analyze_multics subsystem (AZM)
or the BCE probe subsysiem. Normally, you will reboot the system and examine the
crash under AZM. Using the BCE probe subsystem is only necessary when the BCE
dump command fails, when the system crashes repeatedly and you can’t reboot it, or
when you strongly suspect a hardware problem and want to see more information

efore rebooting.

To examine a crash with AZM, type:

azm
sld <dump number>

To examine a crash with the BCE probe subsystem, type:

probe -crash

The most useful azm requests are:

display, d

events

machine_conditions, mc

stack, sk

why

The most useful probe requests are:

display, ds

mc

stack, sk

displays a selected portion
of a segment in a dump

displays significant events which
occurred just prior to the crash,
in reverse chronological order

displays all or parts of machine
conditions, based on the given pointer

traces a given stack

provides a brief description of
the immediate cause of the crash

displays a set of locations
in a specified mode

displays, in interpreted form,

the SCU data found within the
machine conditions at the specified
address

displays a stack trace starting
at the given address

For a complete description of the azm and BCE probe commands, refer to the
Multics Administration, Maintenance, and QOperations Commands manual, Order No.

GBo64.

10-11

AMB81-04

LOCATING THE RELEVANT PROCESS

When Multics crashes, it is executing on behalf of some process. This process
is called the crash process (or the "return to BCE" process). During initialization, the
crash process is always the initializer. When the azm and probe commands start up,
they use the information stored in the BCE toehold to find the crash process. Then
they select it. Selecting a process means setting things up so that virtual addresses are
interpreted within that process’ address space. This means that any virtual addresses
that you type in or that azm or probe types out are relative to the crash process. In
some rare cases, it will be impossible for azm and probe to determine which process
returned to BCE. These cases are beyond the scope of this manual.

EXAMINING THE TOEHOLD MACHINE STATE

The most important thing to examine is the machine state from the return to
BCE, known as the "toehold machine state." This machine state, as well as all of the
items stored in the toehold at BCE entry time, is described by the structure mc_state
in the include file toehold_save_dcls_.incl.pll. The most important part of the toehold
machine state to look at is the machine conditions, known as the "toehold machine
conditions.” These are a standard set of Multics machine conditions. Depending on the
way in which the system returned to BCE, different information in the toehold
machine conditions will be relevant.

Examining the Toehold Machine Conditions for Execute Switches Crashes

For crashes via execute switches, the toehold machine conditions will reveal
what the system was doing when the operator executed switches. To see these machine
conditions in AZM, type:

mc -dump

To see these machine conditions in the BCE probe subsystem, type:

mc toehold|2760

Note that the constant "2760" 1is correct for MRI12.0. If your site modifies
toehold_save_dcls_.incl.pll, this number may change.

By looking at the value of pointer register 6 (PR6), you can determine what
stack was in use at the time of the crash and investigate the circumstances further.
There are some other items stored in the toehold at BCE entry time which may be
useful in investigating certain crashes, including, for example, history registers. To
display the history registers in AZM, type:

hregs -dump
To display the history registers in the BCE probe subsystem, type:

ds <address of hregs in toehold>

Note that AZM interprets history registers, while the BCE probe subsystem merely
dumps them in octal

10-12 AMS81-04

Examining the Toehol!d Machine Conditions for Non-Execute Switches Crashes

For all crash mechanisms other than execute switches, the toehold machine
conditions will describe the machine state at the time of the derail fault that returned
to BCE. This machine state depends almost entirely on the text of the program
(sys_trouble or pmut) that executed the derail fault. For this reason, it usually isn’t
neccessary to look at the entire set of machine conditions. PR2 will be useful if
you're having trouble finding prds$sys_trouble_data in the dump, since it will contain
the address of prds$sys_trouble_data.

As explained above, prds$sys_trouble_data will contain the machine conditions
of each process at the time of the crash. PR6é in these machine conditions will show
what stack the system was running on when it crashed. If the system crashed via the
syserr, ring zero derail, or hphcs_$call_bce mechanism, you should trace the relevant
stack to determine the circumstances surrounding the crash.

If the system crashed via the invalid fault mechanism, the prds$sys_trouble_data
machine conditions will show which program crashed the system.

If the system crashed via the execute fault or unexpected fault mechanism, the
prds$sys_trouble_data machine conditions are the machine conditions of the fault itself.
For an execute fault, these machine conditions should allow you to. determine why the
system was doing whatever provoked you to crash it in the first place. For an
unexpected fault, these machine conditions (together with the crash history registers)
should allow you to diagnose the problem. This kind of fault is almost always caused
by either a corrupt fault vector or a CPU hardware error.

EXAMINING OTHER MACHINE CONDITIONS

Most of the time, system crashes are associated with faults or interrupts. To
find out why the system crashed, you have to find the machine conditions for the
problematic fault or interrupt. If you've gotten this far and still haven’t been able to
figure out why the system crashed, you can try looking at all of the places where the
system stores machine conditions. These are:

pds$fim_data
pds$signal_data
pdsSpage_fault_data

prds$fim_data
prdsSinterrupt_data

To see which faults store machine conditions in which of these areas, see the
programs initialize_faults_data.cds and initialize_faults.pll. Once you find the relevant
machine conditions, you must look at the SCU data and possibly the history registers
to determine the reason for the fault

After performing the basic analysis described so far, you may need to examine
other processes beside the crash process to get a complete understanding of the crash.
Such an examination is beyond the scope of this manual.

10-13 AMR1-04

How Multics Performs an ESD

The emergency shutdown operation is initiated by the BCE esd command, which
forces a transfer of control to the Multics emergency shutdown procedure and restarts
the Multics memory image. The emergency shutdown procedure attempts to flush main
memory contents onto the disk volumes and to shut all disk volumes down. If
emergency shutdown completes without error, no information in user segments is lost.
If the system crashed in the middile of a directory update, the directory may be Ileft
in an inconsistent state. If a user references the directory before a manual salvage is
done, the directory will be salvaged automatically.

RECOVERING FROM SYSTEM FAILURES

This subsection describes automatic and manual recovery from Multics system
failures, including information about what to do when recovery fails.

In general, recovering from a system failure involves the following steps:

1. Returning the system to BCE.
2. Taking a dump of Multics.
3. Shutting down the file system as well as possible, which usually means

performing an ESD.
4. Rebooting Multics.

5. If the failure prevents a successful boot of Multics, resclving the problem
which caused the failure, be it software or hardware.

Automatic Recovery

Normally, automatic recovery procedures are enabled after a system failure.
There are 36 switches set up in the BCE toehold for communication between Multics
and BCE. These switches are set either by the BCE set_flagbox command or by the
privileged Multics set_flagbox command (both of which are described in the Multics
Administration, Maintenance, and Operations Commands manual, Order No. GB64).
One of these switches means “automatic reboot mode is on." When the system is
running in automatic reboot mode and returns to BCE, the flagbox bce_command
variable is set to a command that tests the "crashed" indicators to discover whether
the system failed or shut down normally. If the test indicates a system failure,
automatic recovery procedures begin. These procedures do the following:

1. Take a dump of Multics (using the BCE dump command).
2. Perform an emergency shutdown (using the BCE esd command).
If the system is running in unattended mode, these procedures may also:

3. Bring the system up again (using the BCE boot command). Minimally required
salvaging is done automatically as the system is brought up.

10-14 AMB1-04

(See the Multics Administration, Maintenance, and Operations Commands manual,
Order No. GB64, for descriptions of the BCE dump, esd and boot commands. See the
Operator's Guide to Multics, Order No. GB61, for descriptions of the step—by-step
procedures to follow when youwre making use of automatic recovery procedures, in
both automatic and manual modes.) The operator should record the crash according to
your site’s policy as soon as possible after recovery procedures begin.

When the system reboots automatically after a crash, the operator may not be
present. Therefore, the following lines appear in the standard system_start_up.ec:

&if [and [get_flagbox unattended] [get_flagbox rebooted]]
&then sc_command delete device tape_(01 02 03 OL 05 06 07 08)

so that until the operator explicitly reattaches the tape drives or does an "x attend,”
no user process hangs waiting for a tape. In order to prevent the system from cycling
in a tight loop of boot-crash immediately-recover-boot, the following lines appear:

&if [and [get_flagbox unattended] [get_flagbox rebooted]]
&then set_flagbox auto false

These command lines turn off automatic reboot mode, thus preventing repeated
attempts to reboot without operator intervention. If these lines are omitted from
system_start_up.ec, the reboot loop terminates when the BCE dump command finds the
DUMP partition full. If the system attempts to reboot itself repeatedly, this may be a
sign of some system problem that does not prevent answering service startup, but
crashes the system later. If this happens at your site, one solution is to modify
system_start_up.ec so it submits a deferred absentee job that enables rebooting if the
system stays up for at least an hour.

Note that when the system is running in manual mode and returns to BCE,
automatic recovery procedures do not run. However, the operator may explicitly ask
for the same procedures to run.

Note also that automatic recovery procedures can’t run until the system returns
to BCE. So when you have a failure which doesn’t crash the system (a loop or a
hang), you have to force the system to return to BCE before automatic recovery
procedures can begin.

Manual Recovery

If you prefer to recover the system manually, or if automatic recovery
procedures fail, you may dump Multics, perform ESD, and reboot the system yourself.
Step-by-step procedures for recovering the system manually are available in the
Operator's Guide to Multics, Order No. GB6l.

When to Perform Emergency Shutdown
Emergency shutdown (ESD) should always be performed after a system crash,

as long as the hardware (especially memory and disk controllers) is operational, no
disk packs have been moved, and the contents of memory have not been disturbed.

10-15 AMBSB1-04

DO NOT attempt to perform an ESD if memory has been cleared or powered
off, disk controllers are broken, or disk packs have been moved. Also, since an ESD
destroys the current memory image, you should only perform one after you've dumped
Multics or examined the crash with BCE probe, or after youwve decided that dumping
Multics is impossible.

Doing ESD from the Switches

If the system is hung, you understand why, and there is no way to get a
dump, or if you are in BCE and have lost the bootload console, you may perform an
emergency shutdown from the switches. To do this on a Level 68 system, execute
switches with the DATA switches set to 024002717200. To do this on a DPS 8 system,
use the BCE 24002 command {(described in Appendix B).

Recovery Failures

Note: if any one of the automatic recovery procedures fails, you will have to
finish it yourself, then perform any remaining procedures manually. The automatic
recovery procedures will not restart after you've fixed the one that didn’t work; they
cease to run automatically once one of them fails.

SYSTEM DOESN'T CRASH

When the system doesn’t crash, it doesn’t return to BCE. A failure which
doesn’t crash the system 1is usually the result of the system looping or the initializer
process hanging. When this happens, you must crash the system manually by executing
fault (or by executing switches, if executing fault doesn’t work). Step-by-step
procedures for executing fault and executing switches on both a Level 68 system and a
DPS 8 system are available in the Operator's Guide to Multics, Order No. GB61.
BCE senses this manual intervention and does not perform the automatic operation
specified in the flagbox bce_command. You may invoke automatic recovery by typing
"ec Ttb" or you may recover the system manually.

You will not be able to return to BCE if the system can’t do disk I/0 to the
RPV for any reason (for example, because one or more MPCs are broken).

Sometimes a system crash sounds the IOM alarm. BCE cannot be successfully
entered until the IOM alarm is manually reset from the IOM panels. (DO NOT use
the INITIALIZE button on the bootload console to reset the system after an IOM
alarm.) The step-by-step procedure for resetting the IOM alarm is available in the

Operator's Guide to Multics, Order No. GBSl

10-16 AMB1-04

DUMP FAILURE

If the system fails while it’s taking a dump of Multics, the first thing you
should do is try the dump again. (If the dump failed because the previous copy_dump
command was not successful or not reached, and if the DUMP partition is still full,
you may save the new dump on any other disk that contains a DUMP partition by
using the —-drive control argument with the dump command.) This allows the new
dump to be taken without losing the old one. To try the dump again, type "ec
dump." If this works, continue with an ESD. If it doesn’t work, give up and

continue with an ESD.

EMERGENCY SHUTDOWN FA/LURE

An emergency shutdown can succeed completely, succeed partially, or fail.
succeeds completely, you will receive the following messages (and possibly others):

begin emergency shutdown part 1
emergency shutdown part 1 complete
shutdown complete

In this case, continue by rebooting Multics.

If the ESD succeeds partially, you will receive the following messages:

begin emergency shutdown part 1
emergency shutdown part 1 complete

Then you will receive some combination of the messages described next.

shutdown_file_system: Error deactivating. Quote may be bad.

If it

This message indicates that the system failed trying to update its permanent record of
quota. You will only see this message once per crash. If you get this message, run a

quota salvage after you reboot Multics.

disk_emergency: dskX_NN inoperative: shutdown of dskX_NN
suspended.

This message indicates that the disk volume mounted on drive dskX_NN could not be
shut down due to disk errors. You will see this message once for each broken drive,
each time you try the ESD. If you get this message, move the pack or reset the

drive, and then retry the ESD by typing "esd.”

shutdown_file_system: from demount_pv on OCTAL_PVTX.
ERROR_MESSAGE

10-17

AMBSB1-04

This message indicates that a disk volume could not be shut down. Some previous
error message should have reported the disk drive and/or volume name. Normally, if
a drive is inoperative, the system will have detected the problem, printed a more
informative message, and given up on the drive before this point. Thus, this message
should appear very rarely. If you get one or more messages like this without having
gotten any messages from disk_emergency or elsewhere, you should make sure that all
drives are ready, and retry the ESD. You can use the test_disk BCE command to try
to identify the failing drives.

shutdown_file_system: N locks set.

This message indicates that some system databases were left inconsistent, even though
all disk volumes were shut down. You may see this message once, each time you try
the ESD. You should ignore it.

shutdown complete except for devices suspended.

If you received any of the "disk_emergency” or ‘"shutdown_file_system: from
demount_pv" messages described above, this message will be the last one you receive
before the system returns to BCE. It replaces the "shutdown complete” message.

As you can see from these messages, what usually happens when the ESD only
succeeds partially is that some disk volumes get shut down, but others don’t. In this
case, you may be able to shut down the rest of the volumes by trying the ESD a
number of more times. To do this, keep typing "esd." Then continue by rebooting
Multics.

If the ESD fails completely, the system will hang or crash.

When you can’t get a successful ESD, you should reboot the system. If you
had problems with disks or disk MPCs, or if either the RLV or the RPV were tight
for space, you should volume salvage the RLV when you reboot, by doing a "boot
rlvs.” If you try to reboot without salvaging and fail, try again with salvaging. If you
don’t salvage, you may want to stop in r