
HONEYWELL

l\. 1fT TT TIrs IV ~ U l....J~ '-"

SYSTEM
MAINTENANCE
PROCEDURES
MANUAL

SOFTWARE

SUBJECT

MULTICS SYSTEM
MAINTENANCE PROCEDURES

Maintenance Procedures for the Multics System, Including Those Details
Required for System Configuration, Startup, Shutdown, Normal Operation
(Including BCE), Backup, Dynamic Reconfiguration, Storage System Mainte­
nance, Metering, Bulk I/O Operations, and Crash Recovery

SPECIAL INSTRUCTIONS

This is the fourth revision to AM81, replacing Revision 3, dated May 1985.

Throughout the manual, change bars in the margins indicate technical addi­
tions and changes; asterisks denote deletions.

Refer to the Preface for "Significant Changes:'

SOFTWARE SUPPORTED

Multics Software Release 12.0

ORDER NUMBER

AM81-04 November 1986

Honeywvell

PREFACE

This manual is for Multics system maintainers, system programmers, and
machine room supervisors. Its purpose is to provide them with the reference material
they need to ensure successful system operation. The manual emphasizes detailed
descriptions of system maintenance concepts and functions.

For the most part. Multics operators are expected to use the Operator's Guide
to Multics, Order No. GB61. which emphasizes step-by-step instructions for
performing the most common operations tasks. Only very experienced operators, who
have developed an interest in learning more about operating Multics or need in-depth
information about a given topic, should refer to the Multics System Maintenance
Procedures manual.

For detailed descriptions of maintenance commands, maintenance personnel
should refer to the Multics Administration, Maintenance, and Operations Commands
manual, Order No. GB64. Other manuals that may be of interest to them are those
that document the major hardware modules and peripheral devices commonly used in a
Multics configuration. These manuals are listed in Section 1. For details of Multics
software concepts and organization, and for specific usage of Multics commands and
subroutines, they should refer to the following volumes of the Multics manual set:

Order
Number

AG91
AG92
AG93

Title

Multics Programmer's Reference Manual
Multics Commands and Active Functions
Multics Subroutines and Input/Output Modules

Significant Changes in AM81-04

With Multics release 12.0, BOS becomes totally obsolete. All of the functions
which it performed have now been replaced by equivalent functions performed by
BeE. Therefore, support for BOS has been completely removed from this manual.

The disk volume recovery procedures in Section 10 and Appendix H have been
changed. Instead of using BOS SAVE, RESTOR, SAVE COPY, and TEST, they now
use BCE save. restore, copy _disk, and test_disk.

The information and specifications in this document are subject to change without notice. Consult
YOw Honeywell M:arketing Representativtl fot product or service availability.

©H6neywell Information Systems Inc., 1986 File No.: 1L43 AM81-04

BCE save and restore differ from BOS SA VE and RESTOR in a number of
important ways: they allow you to process multiple sets of save or restore
information, they include tape error recovery procedures. and they offer improved
abort and restart capabilities. A detailed discussion of BCE save and restore has been
added to Section 12.

Support for a new hardware I/O system has been added throughout the
manual. The main components of this system are:

• the information multiplexer unit (IMU), which performs the same functions as
the 10M. but differs from it in that it is controlled by a microprocessor
rather than hardwired;

• the integrated peripheral controllers OPCs). which are the channels in the IMU,
and which include IPC-FIPSs. channels which are controlled by a microprocessor
and allow use of MSU3380/3390 disk devices and MTU8205/8206/8208 tape
devices (IBM compatible devices);

• the maintenance channel adapter (MeA). a microprocessor which controls all
IMU initialization and maintenance functions.

A discussion of IMU configuration has been added to Section 3.

The procedure for communicating with the MCA has been added to Section 4.

The procedure for cold booting BCE via the IMU has been incorporated into
Section 6.

Information about adding an IMU to the system has been added to Section 11.

The "model" field on the iom config card has been changed to accept one of
two values: "iom" or "imu". The value of "nsa" is no longer accepted. Appropriate
changes have been made to the manual. Also. the table of time zones described under
the clok card has been completely revised. Finally, support has been added for a new
config card, the ipc card.

Support for MSU3380/3390 disk devices, which are divided into subvolumes.
and MTU8205/8206/8208 tape devices has been added throughout the manual. Note
that the existence of subvolumes in 3380/3390 disk devices has necessitated changes to
the part and root config cards.

iii AM81-Q4

Support has also been added for MTPS021/S022/S023 tape MPCs (which are
611 tape MPCs in PPU cabinets) and MSPS021/S022/S023 disk MPCs (which are SOO
disk MPCs in PPU cabinets).

The procedure for moving 451 disk packs in Sections 10 and 12 has been
updated.

iv AMSI-Q4

Section 1

Section 2

Section 3

CONTENTS

Introduction
How to Use This Manual
Common Acronyms
Hardware Manuals
Glossary of Terms .

System Description
Hardware
Multics Processor
Memory.

System Clock
Input/Output Multiplexer

Information Multiplexer Unit
Front-End Network Processor
Peripheral Subsystems
Software

Storage Hierarchy
Resource Control Package .

Configuration
Definition
Level 68 System vs DPS 8 System
Devices and Functions
Peripheral Preparation and Operation . .
System Controller Unit (6000)

Level 68 6000 SCU Configuration Panel .
Level 68 6000 SCU Maintenance Panel

System Controller Unit (4MW)
System Controller Unit Display Panel (4MW

SCU)
System Controller Unit Configuration Panel

(4MW SCU)
System Controller Unit Maintenance Panel (4MW

SCU)
Cen tral Processing U ni 15 ••......•.

Configuration Rules
Level 68 Addressing Rules
DPS 8 Addressing Rules = = , , , • •

Level 68 Processor Configuration Panel (PORT
SELECT Panel Area)

DPS 8 Processor Configuration Panel
DPS 8 Processor Maintenance Panel

Input/Output Multiplexer
Input/Output Multiplexer Configuration Panel
Input/Output Multiplexer Maintenance Panel .
Input/Output Multiplexer Operation

v

1-1
1-1
1-2
1-3
1-3

2-1
2-1
2-1
2-1
2-1
2-3
2-3
2-3
2-3
2-3
2-4
2-7

3-1
3-1
3-1
3-2
3-3
3-3
3-3
3-7
3-7

3-7

3-10

3-11
3-11
3-14
3-14
3-16

3-17
3-25
3-28
3-28
3-28
3-32
3-32

AM81-04

Section 4

Section 5

Section 6

Section 7

Information Multiplexer Unit (IMU) 3-33
Front-End Network Processor 3-34

Front-End Network Processor Operation 3-35
Calendar Clock 3-36

Setting Calendar Clock in 4MW SCU 3-36
Setting Calendar Clock in 6000 SCU 3-37

Communicating with the System
The Bootload Console

Effect on System Performance
Console 30-Second Timer .. .
Use of the Bootload Console

The Multidrop Interface (MDI) for IMUs
The Initializer Terminal

Bootload Operating System .

Bootload Command Environment
Bootload Command Environment Description
Configuration Requirements
Loading BCE

Cold Booting BCE
Some Special Requests
Error Recovery during BCE Boot . .
Config Deck and Device Accessibility

BCE Toehold
The Early Dump Facility
BeE Command Language
BCE Commands
Aborting BCE Commands

Multics Configuration Description ..
Multics Configuration File ..

General Description of Config Records
Listing the Config File in BCE . . .
Listing the Config File in Multics .
Sample Configuration Files
chnl
clok .
cpu ..
dbmj
intk
iom .
ipc .
mem
mpc ..
parm
part.
prph
root ..
salv ..
schd
sst
tbis ..

vi

4-1
4-1
4-1
4-1
4-1
4-3
4-4

5-1

6-1
6-1
6-1
6-2
6-2
6-3
6-4
6-5
6-5
6-6
6-7
6-8
6-8

7-1
7-1
7-2
7-2
7-2
7-2
7-5
7-6
7-9
7-11
7-12
7-12
7-13
7-14
7-15
7-17
7-19
7-21
7-27
7-28
7-29
7-31
7-32

AM81-o4

Section 8

Section 9

ted .
udsk

System Startup and Shutdown
Overview of System Startup ..

Bootloading BCE/Multics
The Initializer Process
Initializer Commands

Administrative Ring Commands
User Ring Commands .. .

Admin Mode
send_admin_command Command
Getting Help with Commands .
Initializer Use of Communications Channels
Message Coordinator

Input Delivery and Output Routing
Defining Output Routing

Operating Daemon Processes ..
send_daemon_command Command
Message Coordinator Databases . . .
Startup Commands
Unattended and Automatic Modes

Setting Automatic Mode .. .
Setting Unattended Mode
Returning to Attended Mode

System Shutdown
Shutdown Failure . . .

The Multics Backup Systems .
Dumping

Incremental Dumps . .
Consolidated Dumps
Complete Dumps .. .

Retrieval
Volume Backup

The Volume Backup LSS .
Volume Dumping

Volume Dumper Account Segment
Volume Dumper Contents Segment
Volume Dumper Content Names Segment
Volume Dumper Current Dump Working

Segment
Volume Dumper Dump Control File
Volume Dumper Physical Volume Log

Segment
Volume Dumper Volume Log Segment
Automatic Tape Management
Dump Modes

Incremental Mode
Consolidated Mode
Complete Mode ..

Adding to a Dump Control File
Handling Errors While Volume Dumping

Disk Errors

vii

7-33
7-34

8-1
8-1
8-1
8-2
8-2
8-3
8-4
8-5
8-6
8-7
8-8
8-9
8-10
8-10
8-12
8-15
8-16
8-16
8-17
8-17
8-17
8-18
8-18
8-18

9-1
9-2
9-2
9-3
9-3
9-3
9-4
9-5
9-6
9-7
9-8
9-8

9-8
9-8

9-9
9-9
9-10
9-10
9-10
9-11
9-11
9-11
9-12
9-12

AM81-04

Section 10

Tape Errors
File System Errors
Other Errors

Volume Retrieval
Volume Reloading . . .

Hierarchy Backup
The Hierarchy Backup LSS
Hierarchy Dumping

Incremental Mode ..
Consolidated Mode .
Complete Mode

Hierarchy Retrieval . .
Hierarchy Reloading

Backup Commands

Responding to System Pro blems
Multics System Failures . .

Understanding System Failures
Crashing
Dumping
Emergency Shutdown

How Multics Crashes
Notes on the Multics Operating Environment
Syserr Crashes

Sys Trouble Connects
Ring Zero Derail Crashes
Invalid Fault Crashes
Execute Fault and Unexpected Fault Crashes
Check-stop Crashes
hphcs_$call_bce Crashes
Sys Trouble Connect Handling
Execute Switches Crashes . .

How M ul tics Takes a Dump
The BCE dump Command

Examining a Crashed System ..
Locating the Relevant Process
Examining the Toehold Machine State

Examining the Toehold Machine
Conditions for Execute Switches Crashes

Examining the Toehold Machine
Conditions for Non-Execute Switches
Crashes

Examining Other Machine Conditions
How M ultics Performs an ESD

Recovering from System Failures
Automatic Recovery
Manual Recovery
When to Perform Emergency Shutdown

Doing ESD from the Switches ..
Recovery Failures

System Doesn't Crash
Dump Failure
Emergency Shutdown Failure
Auto Reboot Disabled

viii

9-12
9-12
9-12
9-13
9-14
9-15
9-16
9-17
9-18
9-18
9-19
9-19
9-20
9-20

10-1
10-1
10-1
10-1
10-2
10-3
10-3
10-3
10-3
10-4
10-4
10-4
10-5
10-5
10-5
10-6
10-8
10-8
10-9
10-11
10-11
10-12

10-12

10-13
10-13
10-14
10-14
10-14
10-15
10-15
10-16
10-16
10-16
10-17
10-17
10-19

AM81-04

Bootload Failure
Clock Problems
Root Volume Problems
Non-Root Volume Problems
Disk Table Problems
FNP Load Problems ..

Hardware Problems
Salvaging

Volume Salvaging
Crashes Without ESD . . .
Requesting a Volume Scavenge . .

Scavenging Any In-Use Volume
Scavenging All Volumes of a Mounted

Logical Volume
Scavenging All Volumes With _

Inconsistencies
Requesting a Volume Salvage

Salvaging the Root Physical Volume
(RP\T)

Salvaging All Volumes of the Root
Logical Volume (RL V)

Salvaging Non-RLV Volumes During
Initialization

Salvaging Non-RL V Volumes While the
System is Running

Volume Salvaging Messages .
Directory Salvaging

Online Directory Salvager
Bootload Directory Salvager .

RPV Directory Salvaging
RL V Directory Salvaging

Demand Directory Salvager .
Directory Salvaging Messages ..

Disk Failures
Recognizing a Disk Failure
Determining the Nature of a Disk Failure
Recovering from Disk Failures

Deleting the Failing 10M, MPC or Channel.
Rereadying the Disk Drive
Moving the Disk Volume to Another Drive .
Reloading Disk MPC Firmware
Shutting Down or Crashing the System

Disk Volume Failures
Degrees of Disk Volume Failure
Extent of Disk Volume Failure .
Recovering from Transient Disk Volume

Failure
Recovering from Permanent Disk Volume

Failure
Recovering from Partial Disk Volume Failure
Recovering from Total Disk Volume Failure .

Volume Reloading and BCE
Restore/Volume Reloading ...

BeE Restore/Hierarchy Reloading

ix

10-19
10-19
10-20
10-20
10-21
10-21
10-21
10-21
10-22
10-22
10-23
10-23

10-24

10-24
10-24

10-24

10-25

10-25

10-25
10-26
10-26
10-27
10-28
10-28
10-28
10-28
10-29
10-30
10-30
10-31
10-32
10-32
10-32
10-32
10-33
10-34
10-36
10-36
10-36

10-37

10-37
10-37
10-38

10-38
10-39

AM81-()4

Section 11

Section 12

After Disk Recovery Succeeds
Preparing for Disk Volume Failure

Disk Volume Layout Information
Backup Tape Logs
Offsite Copies of Backup Data
Disk Drive Reconfiguration Plan
Preformatted Disk Volumes
Test System

Disk Volume Recovery Procedures ..
Recovery of the RPV with Volume Reloading
Recovery of a Non-RPV Root Volume with

Volume Reloading
Recovery of a Non-Root Volume with

Volume Reloading
Disk Volume Post-Recovery Procedures

Recovery of Partitions after RLV Volume
Recovery

Volume Salvaging
Hierarchy Salvaging:..
Reverse Connection Failure Detection

Recovering from a Bad Clock Setting ...
Recovering from Bootload Console Failure . .

Dynamic Reconfiguration Procedures
Operational Procedures for Reconfiguration

Notes on Adding and Deleting Processors
Notes on Adding MePlory
Notes on Adding 10Ms
Converting Disk Drives from User I/O to

Storage System Use ... :
Action after a Failure in Reconfiguration

Storage System Maintenance Operations
How to Move a Pack

While Multics Is Not Running
While Multics Is Running

How to Expand a Logical Volume
How to Compress a Logical Volume
How to Perform VTOC Garbage Collection on a

Pack
Segment Adoption
BCE Save and Restore

What Constitutes a Physical Volume Set
What Constitutes a Tape Set
How to Create a Control File ,,:::
How to Execute a Save and What Messages Are

Displayed
How to Abort a Save
How to Restart a Save

How to Execute a Restore and What Messages
Are Displayed .

How to Abort a Restore
How to Restart a Restore

How to Recover from Unrecoverable Tape Errors

10-39
10-39
10-39
10-40
10-40
10-40
10-41
10-42
10-43
10-43

10-46

10-48
10-52

10-52
10-52
10-52
10-53
10-53
10-55

11-1
11-1
11-2
11-2
11-2

11-3
11-3

12-1
12-1
12-1
12-1
12-3
12-4

12-5
12-6
12-7
12-7
12-7
12-7

12-8
12-10
12-11

12-12
12-14
12-15
12-16

AM81-04

Section 13

Operations on Physical Volumes

System Messages and Logs
System Messages

The Form of a System Message
Where Messages Appear .
BCE Messages
Syserr Messages

RCP Messages
RCP Mount MessageS
RCP Access Messages

Disk Error ~1essages
Salvager Messages

Message Coordinator Messages
Backup Daemon Messages
I/O Daemon Messages
Login and Logout Messages .
Other Answering Service Messages

lni tializer Command Responses .
Error Message Documentation

System Logs
Multics System Logs

The Syserr Log
The Answering Service Log
The Admin Log
Message Coordinator Logs ..
Data Management System Logs

Getting Information from Logs ..
Storing and Discarding Old Logs

Dealing With Common Problems . . .
Crashes Without ESD . .
Syserr Log Copy Failures
Damaged LOG Families

Syserr Log Messages
Syserr Log Contents
Format of Syserr Log Messages ..

Severity Codes
Action Codes
Sorting Classes

Binary Data Classes and Binary Data
io_status ..
hwfault
mos
voldamage
segdamage
mdc_del_uidpath
mmdam ..
mpe_poll
fnp_poll ...
confi~deck
vtoce
access_audi t
ibm3270_mde

xi

12-17

13-1
13-1
13-1
13-1
13-2
13-2
13-2
13-2
13-3
13-3
13-3
13-3
13-3
13-4
13-4
13-5
13-5
13-5
13-5
13-5
13-6
13-7
13-8
13-8
13-9
13-10
13-11
13-11
13-11
13-11
13-12
13-12
13-12
13-13
13-14
13-14
13-14
13-15
13-16
13-16
13-19
13-19
13-20
13-20
13-21
13-22
13-22
13-22
13-23
13-25
13-27

AM81-D4

Section 14

Section 15

Metering and Tuning
Metering

Overview of Metering
Detecting Performance Problems
Diagnosing Performance Problems

Metering Databases
System Segment Table (SST) Database
Traffic Control Data (tc_data) Database
Disk Segment (disk_seg) Database
Configuration Deck (confi~deck) Database .

Metering Commands
Metering Design

Extracting Metering Information .
Various Types of Metering Time
Reset Mechanism
Standard Control Arguments

CPU Time Metering
Tuning

Scheduling
Tuning Commands
Tuning Parameters
Selected Changes to Certain Tuning Parameters .

Suggested Values And Guidelines
Metering Output Values ...

disk_meters
disk_queue (dq)
file_system_meters (fsm)
in terrupt_meters (in tm) .
list_vols
post_purge_meters (ppm)
total_time_meters (ttm) .
traffic_control_meters (tcm)
traffic_control_queue (tcq)
vtoc_ buff er _meters
check_cpu_speed
meter-8ate (mg)
system_perf ormance-8ra ph (spg)

SST Size Guidelines
Configuration Guidelines .

Sample Configurations .
Tuning Parameters
Initializer Terminals

Glossary of Metering Terms

Bulk Input/Output
I/O Daemon Directories ..

Contents of daemon_dir_dir Directory
Contents of io_daemon_dir Directory
Con ten ts of cards Directory
Contents of jo_ms~dir Directory

I/O Daemon Tables
I/O Daemon Tables Source Language

Syntax ...
Starem~ts

xii

14-1
14-2
14-3
14-3
14-4
14-5
14-5
14-8
14-10
14-12
14-13
14-15
14-15
14-17
14-18
14-18
14-19
14-20
14-21
14-25
14-25
14-31
14-33
14-33
14-33
14-34
14-34
14-34
14-35
14-35
14-35
14-35
14-35
14-36
14-36
14-36
14-36
14-36
14-36
14-40
14-41
14-42
14-42

15-1
15-1
15-2
15-2
15-4
15-4
15-4
15-4
15-4
15-5

AM81-04

Substatements for Lines
Substatements for Devices
Substatements for Request Types
I/O Daemon Tables Source File Example
Major and Minor Devices
Substatements for Minor Devices
Source File Example Using Minor Devices
Aim Features

Device Classes
Substatements for Device Classes
Substatement for Default Request Type .
Source File Example Using AIM

Standard Driver Modules
printer_driver_ Module
punch_driver_ Module
reader_driver_ Module
spool_d1"iver _ Module .
remote_driver_ Module

Normal Setup of the remote_driver_
(Type I Stations)

Setup for Stations That Cannot Input
Commands (Type II Stations)

Remote Driver <string> Arguments
I/O Modules for Remote Stations
hasp_workstation_ I/O Modules
tty_printer_ I/O Module

Creation and Maintenance of I/O Daemon Tables
Creation and Maintenance of I/O Daemon Queues
Maintenance of AIM Features
Request Type Info Segments

Syntax for the Request Type Info Source
Segment

Example of a Request Type Info Source Segment
Operation of the I/O Daemon
Login and Initialization of the I/O Coordinator
Communicating with the Coordinator .. .

Interrupting the Coordinator
Coordinator Commands

Login and Initialization of Device Drivers
Terminals That Control The Driver

Master Versus Slave Functions
Driver Initialization with a Control Terminal

Driver Command Levels
Normal Driver Command Level ..
Request Command Level
Quit Command Level

Standard Driver Commands
General Control Commands .. .
Control Commands after Interrupting a Request .
Inf ormation Commands
Coordinator Communication Commands
Commands for Terminal Control
Error Recovery Commands

Device Specific Driver Commands

xiii

15-6
15-6
15-8
15-10
15-11
15-11
15-12
15-12
15-14
15-14
15-16
15-16
15-17
15-17
15-18
15-18
15-19
15-19

15-19

15-22
15-22
15-23
15-23
15-24
15-25
15-26
15-27
15-27

15-28
15-31
15-32
15-33
15-33
15-33
15-34
15-35
15-35
15-36
15-36
15-37
15-38
15-38
15-38
15-39
15-40
15-40
15-40
15-40
15-41
15-41
15-41

AM81-D4

Appendix A

Appendix B

Making The Driver Ask For A Command
Entering Commands From A Multifunction Device

Card Reader
Using Preprinted Accountability Forms On The

Control Terminal
Limitations
Operation of the Printer Driver

Processing Requests
Operation of the Punch Driver
Operation of the Reader Driver

Communicating with the Card Daemon
Error Conditions

Operation of the Spool Driver
Login and Initialization
Spooling Parameters
To Continue Spooling
To Terminate Spooling
Spool Driver Messages
Spool Driver Commands

Operation of Remote Drivers
Processing Requests
Sending a Quit Signal to a Remote Driver

I/O Daemon Admin Exec_com Format ...
Generating a Driver Process in Test Mode . .

Test Directory Structure
User Generated Databases
Shared Databases

Manipulating Requests in the Test Queues
The Test Process

Testing a Remote Station .
Setting Breakpoints
Command Level Messages

Sample exec_com File
Test Mode Commands

Setting up a Driver to Driver Message Facility

Summary of Configuration Cards

DPU and DMP /VIP Operating Procedures
Multics DPU Operation

Powering on the DPU
Booting the DPU (Manual Boot) ..
Booting the DPU (Alternate Boot)
DPU Typing Conventions

15-43

15-43

15-43
15-45
15-45
15-45
15-46
15-46
15-46
15-47
15-47
15-47
15-48
15-50
15-50
15-51
15-51
15-51
15-51
15-52
15-53
15-55
15-55
15-56
15-57
15-57
15-57
15-58
15-59
15-59
15-60
15-61
15-61

A-I

B-1
B=l
B-1
B-1
B-2
B-3

Installing the Site Configuration B-3
Displaying Configuration Panels . . B-5
Perf orming System Recovery B-6
Displaying the SCU History Registers B-6
DPU Command Summary B-6

DPU Commands (C? prompt) . . . B-7
TM Mode Commands (OFL? prompt) . B-7
VIP Mode Commands «unit> CMD prompt) B-7
CPU DMP Commands B-7
SCU DMP Commands B-8

xiv AM81-04

Appendix C

Appendix D

Appendix E

Appendix F

Appendix G

Appendix H

Appendix I

10M DMP Commands B-8
Multics DMP /VIP Operation B-8

Getting the VIP Connected to the DMP B-8
Using the DMP/VIP B-8

Startup Checklists of Switch Settings C-l
System Controller Unit Configuration Panel Switches

(6000 SC) . C-1
System Controller Unit Configuration Panel Switches

(4MW SCU) C-2
Central Processing Unit Configuration Panel Switches. C-3
Central Processing Unit Maintenance Panel Switches . C-4
10M Configuration Panel Switches C-5
IMU Configuration C-6
FNP DIA Switches (DN6670) . . C-7

Names of Communications Channels D-1

Continuous Operation Exec Coms E-1
Flag Usage . E-1
Exec_Corns . E-2

Auto.ec . E-2
Dump.ec E-2
Go.ec . . E-3
Rtb.ec . E-3

Sample System Startup F-1

Volume Management . G-1

Alternate Procedures for Disk Volume Recovery H-1
Disk Volume Recovery via BCE Restore/Volume

Reloading .. H-1
Recovery of the RPV with BCE Restore/Volume

Reloading H-1
Recovery of a Non-RPV Root Volume with BCE

Restore/Volume Reloading. H-4
Recovery of a Non-Root Volume with BCE

Restore/Volume Reloading H-6
Disk Volume Recovery via BCE Restore/Hierarchy

Reloading . H-9
Hierarchy Reload of RL V versus Reload of All

Volumes H-9
Recovery of All Volumes with BCE

Restore/Hierarchy Reloading H-10
Recovery of the Root Logical Volu..TJle with BeE

Restore/Hierarchy Reloading H-12
Recovery of a Non-Root Volume with BCE

Restore/Hierarchy Reloading H-15

Multics HEALS 1-1
Description of HEALS 1-1
HEALS Implementation 1-1
HEALS Installation Requirements 1-2

xv AM81-Q4

Appendix J

HEALS Usage
HEALS Reports
Exam pIes of Reports

Channel Assignment Table
I/O Error Report
SOited I/O Error Report
CPU Error Report
MOS EDAC Error Report ..

HEALS Commands
heals_report
prin t_heals_message
truncate_heals_log
update_heals_log

M ul tics Disk Management
Tuning
System Mechanisms .

Segment Control
Page Frame Control -- The Clock

Disk Management Mechanisms -- Hardware and
Software

Physical Channels for MPCs
IPC-FIPS Physical Channel
Logical Channels .. .
Disk Subsystems
Disk Data Structures
Queues
The Free Queue
Drive Queues
Disk Channels
Disk Software Modules

Disk Management
Allocation Locks
The Masked Environment -- Running
Blocking vs. Non-blocking I/O
Multiprogramming
Request Optimization
Load Adaptive Disk Optimization
Implementation of Prioritization
Nearest Logical Seek
Algorithm Implementation ...
Nearest Logical Seek Examples
Optimization Policies . . .
Optimization Dynamics
Systemic Optimization
Stagnation Management
Use of Adaptive Optimization

Metering
The disk_meters Command
Disk Tuning -- the tune_disk Command

Is There a Problem?
What is the Source of the Problem? .. .
What are the Characteristics of the Problem?
What is the Scale of the Problem?

xvi

1-2
1-2
1-3
1-3
1-5
1-6
1-8
1-12
1-13
1-13
1-14
1-16
1-17

J-l
J-l
J-2
J-3
J-3

J-5
J-6
J-6
J-7
J-7
J-8
J-8
J-9
J-9
J-I0
J-I0
J-10
J-I0
J-l1
J-ll
J-12
J-14
J-14
J-16
J-16
J-17
J-18
J-19
J-20
J-21
J-22
J-23
J-23
J-27
J-30
J-30
J-31
J-31
J-32

AM81-04

Table 14-1.
Table 14-2.
Table 14-3.
Table 14-4.
Table 14-5.

Figure 2-1.
Figure 2-2.
Figure 3-1.

Figure 3-2.
Figure 3-3.
Figure 3-4.
Figure 3-5.
Figure 3-6.
Figure 3-7.

Figure 3-8.
Figure 3-9.
Figure 6-1.
Figure 8-1.
Figure 8-2.
Figure 10-1.
Figure 14-1.
Figure J-1.

Index

What Methods can be Used to Resolve the
Problem? . J-33

What do the Numbers Mean? J-35
Conclusions J-37

Tables

Computing Size of AST ...
Figuring Length of tc_data
Figuring Length of disk_seg
Figuring Length of disk_seg
Minimum Disk I/O Capacity per MCPU

Illustra tions

A Multics System Configuration
Multics Directory Hierarchy
Level 68 System Controller Unit (6000 SCU) Configuration

Panel
Level 68 System Controller Unit (4MW SCU) Panels
DPS 8 System Controller Unit Configuration Panel
Level 68 Processor Configuration Panel
DPS 8 Processor Configuration Panel
Port Numbers for a Small Multics System
Level 68 Processor Maintenance Panel and Part of Display

Panel
Level 68 Input/Output Multiplexer Configuration Panel
DPS 8 Input/Output Multiplexer Configuration Panel .
BCE States and Commands/Events That Change Them
Message Coordinator Output Routing
Typical Output Routing Definition
Layout of the DUMP Partition
Performance vs Memory
Multiprocessing Table of Wait Percentages vs.

Multiprogramming

xvii

14-7
14-10
14-11
14-12
14-39

2-2
2-5

3-4
3-8
3-8
3-12
3-13
3-15

3-23
3-29
3-30
6-9
8-11
8-13

10-10
14-24

J-13

i-I

AM81-()4

SECTION 1

INTRODUCTION

HOW TO USE THIS MANUAL

This manual is divided into a large number of sections and appendixes.

Section 1 introduces the manual. provides lists of common acronyms and useful
hardware documentation, and includes a glossary.

Section 2 gives an overview of system hardware and software.

Section 3 describes the configuration process, including details of setting
switches on all major hardware modules.

Section 4 explains how to communicate with the system, and includes
discussions of the bootload console and the initializer terminal.

Section 5, which described the bootload operating system (BOS) , is obsolete and
has been deleted.

Section 6 describes the bootload command environment (BeE).

Section 7 describes the configuration deck and all of the configuration cards.

Section 8 explains how to start the system up and shut it down.

Section 9 describes the hierarchy and volume backup systems.

Section 10 offers advice on recovering from system failures, including
information on volume and directory salvaging, and disk unit failures.

Section 11 discusses dynamic reconfiguration.

Section 12 describes how to do storage system maintenance.

1-1 AM81-04

*

Section 13 reviews system messages.

Section 14 explains how to meter and tune the system, and includes suggested
guidelines and a glossary of metering terms.

Section 15 discusses the bulk input/output facility, emphasizing procedures for
operating the I/O daemon.

Appendix A provides a summary of configuration cards.

Appendix B explains DPU and DMP /VIP operating procedures.

Appendix C provides checklists of switch settings.

Appendix D explains the names of communications channels.

Appendix E discusses system exec_corns.

Appendix F offers a sample system_start_up.ec.

Appendix G discusses volume management.

Appendix H describes alternate procedures for disk volume recovery, thus
serving as· a supplement to Section 10.

Appendix I describes the Honeywell Error Analysis and Logging System
(HEALS) and its use on Multics.

Appendix J discusses Multics disk management, thus serving as a supplement to
Section 14.

COMMON ACRONYMS

The following acronyms are used frequently in this manual:

ASCII
AST
BCE
CPU
CU
DIA
EBCDIC

American Standard Code for Information Interchange
active segment table
bootload command environment
cen tra! processor unit
control unit
device interface adapter
Extended Binary-Coded Decimal Interchange Code

1-2 AM81-D4

EIMA
EIS
FNP
IMU
10M
IPC
MCA
MPC
Rep
RLV
RPV
SC
SCU
SST

execute interrupt mask assignment
extended instruction set
DATANET 6670 front-end network processor
information multiplexer unit
input/ output multiplexer
integrated peripheral controller
maintenance channel adapter
microprogrammed peripheral controller
resource control package
root logical volume
root physical volume
system controller
system control unit
system segment table

HARDW ARE MANUALS

The following manuals document the major hardware modules and peripheral
devices commonly used in the Multics system configuration.

Order No.

AL39
AM46
AM48
AN37
AP88
AT50
AT71
AU76
AY03
AY34
AY83
CB64
DA33
DB28
DC79
58010010

Title

DPS/Level 68 & DPS 8M Multics Processor Manual
L64/66/68 MTU0400/0500/0600 Operation
Series 60 MSU0400 Mass Storage Unit Operation
Series 60 CRU0600/1050 Card Reader Operation
Series 60 PRU1200/1600 Printer Operation
Series 60 CCU0400 Card Reader/Punch PCU0120 Card Punch Operation
L66/68 MSU0402/0451 Mass Storage Unit Operation
L66/68 PRUI100 Printer Operation
L66/68 MSU0500/0501 Mass Storage Unit Operation
L66/68 DATANET 6670 Operation Reference Manual
L64/66/68 CRU0301/0501 Card Reader Operation
L66/68 MTU0610 Magnetic Tape Unit Operation
Series 6000 Equipment Operators Manual
Series 6000 MTS500 Magnetic Tape Subsystem
L66/68 Site Preparation Manual
Information Multiplexer Unit Hardware Operations Manual

GLOSSARY OF TERMS

Included in this glossary are a number of terms commonly used in conjunction
with Multics system operation. This is not intended to be an exhaustive or
all-inclusive list, but rather a supplemental one oriented toward operations usage. A
more extensive glossary of Multics terms is contained in the Multics Programmer's
Reference Manual, Order No. AG91.

answering service
the subsystem that controls interactive and absentee users. It runs in the
initializer process and handles operations such as dialups. logins, and logouts.

1-3 AM81-D4

*

*

*

backup

BeE

refers to those systems which ensure that user and system segments and
directories can be recovered if they are destroyed due to system failure or user
error. See dumping and recovery below.

the bootload command environment; a set of programs within Multics
initialization that perform functions such as bootloading Multics, dumping main
memory, saving and restoring the contents of disk volumes, and initiating
emergency shutdown of Multics.

bootload or boot

crash

to load a fresh copy of a set of programs. Both BeE and Multics can be
bootloaded.

Bootloads of BeE and Multics must be discussed jointly. A "cold" boot of
BeE and Multics recreates the" entire storage system hierarchy on a particular
RPV, discarding previous hierarchies, including all user files. A "warm" boot of
BeE and Multics maintains the current storage system hierarchy. To do a
"cold" boot of BeE and Multics, you first tell BeE to format the RPV with
the cold command, then tell Multics to format the file system with the boot
-cold command. Obviously, the usual procedure is to do a "warm" boot of
BeE and Multics.

The period of time between Multics bootload and shutdown is also spoken of
as a bootload or service session.

a Multics system malfunction that has caused the system to become unavailable
to users. Causes of a Multics system crash may stem from either hardware or
software troubles. In certain instances, the operator may provoke a system
crash (e.g., when the system is in a loop).

daemon
a system service process that performs such tasks as backup, process creation,
network control, and I/O device control.

I/O daemon
the system service process that controls unit record I/O device operations such
as printing and card punching.

dumping
is the procedure by which the Multics backup systems search out, select, and
copy segments and directories from the Multics storage system hierarchy onto
tape. The segments and directories selected for dumping are determined by the
mode (incremental, consolidated, or complete) in which dumping is performed.

hardcore supervisor
the part of the system software which perf orms the supervisory functions of
the. system. It is also called the hard core. It can't be changed while the system
is running, and includes programs which must be present to bring the system
up and programs which run the storage system.

1-4 AM81-04

ini tializer process
is the control process for the system. When the Multics bootload sequence is
started by BeE, the initializer process is created and remains active as long as
Multics is running. The initializer process performs various system functions,
including answering service operations, operator command service, user request
handling, system terminal management, and message routing.

message coordinator
is a set of programs that manage system terminals and handle message routing.
The message coordinator programs run in the initializer process. They anow the
initializer to run more than one terminal channel and let the daemons run
without attached terminals, sending their messages to the initializer for
disposi tion.

recovery
the procedure by which the backup systems recover segments and directories
that have been dumped onto tape and place them back into the storage system
hierarchy. See reloading and retrieving below.

reloading
is the global recovery of a major portion of the hierarchy when it has been
damaged.

retrieving

salvager

is the recovery of individual segments and directories at the request of users.

directory - a subsystem that verifies and repairs the directory hierarchy. It is
invoked automatically when damage is detected and can also be manually run
over all or part of the hierarchy.

volume - is an off! i ne program that operates while the volume is being
mounted and not available for use. It examines the volume for damage caused
by system malfunctions and corrects the damage if possible. The salvager is
invoked automatically in some cases, but it can also be invoked by the operator
on instructions from the programming support staff.

scavenger
an online program that examines storage system volumes for damage caused by
system malfunctions and corrects the damage if possible. The scavenger operates
while the volumes are in service (see also salvager above).

spooling
is a method of queuing users' print requests when the line printer is either out
of service or processing other requests.

syserr log
is a log of messages, called syserr messages, produced by the Multics
supervisor. The syserr messages are written on a reserved area of disk called
the LOG partition. Some are also printed on the bootload console. Periodically,
these messages are copied into a family of log segments named syserr_log in
>scl>syserr_log.

1-5 AM81-()4

system_start_ up.ec
an exec_com segment (Le., a segment containing a list of commands to be
executed). It is invoked automatically when the answering service is initialized
(by either the startup, multics, or go command). The commands executed may
include, but are not limited to, such operations as turning on the message
coordinator before starting the answering service, logging in the daemons after
the answering service is started, and accepting additional channels if the
initializer is to operate more than one terminal.

system control
another name for the initializer process is the system control process.

user control

VToe
another name for the answering service is user control.

volume table of contents; provides information about all of the segments and
directories which reside on a pack, including their location on the pack.

1-6 AM81-04

SECTION 2

SYSTEM DESCRIPTION

HARDWARE

A Multics configuration consists of one or more central processor units (CPUs) ,
one or more input/output multiplexers (laMs) for peripheral interfacing, and one or
more front-end network processors (FNPs) for data communications interfacing.
Memory in the Multics configuration is provided by one or more system controller
units (SCUs) interfacing to memory store units. There can be up to eight SCUs in a
Level 68 System, and up to four SCUs in a DPS 8 System. The function and makeup
of these units is discussed in the following paragraphs and in the technical manuals
referenced in these paragraphs. For an illustration of a Multics system configuration,
see Figure 2-1.

MULTICS PROCESSOR

The processor for the Multics system performs all the computational processing
within the Multics system configuration. The processor is frequently referred to as the
central processing unit (CPU).

The CPU incorporates a manual MODE switch to allow it to selectively
function as eiJber a processor with extended capability (MULTICS mode) or a Series
6000 Processor (GCOS mode). A detailed description of the CPU internal organization
and the more than 300 machine instructions is given in the Multics Processor
Reference Manual (Order No. AL39).

MEMORY

The memory system is composed of one or more SCUs that interface directly
with CPUs, IOMs, and the memory store units that contain the manipulated data.

A typical Multics system has more than one SCU. Associated with each SCU is
an amount of memory, configured into store units.

System Qock

The SCU also contains a calendar clock. It is a 52-bit register that counts one
microsecond intervals. You must set the clock to the number of microseconds since
midnight January 1, 1901 Greenwich mean time (GMT). Details of how to do this are
given in Section 3 of this manual.

2-1 AM81-04

SYSTEM
CONSOLE

BOOT LOAD
CONSOLE

UNIT
RECORD
PROCESSOR

PRINTERS,
PUNCHES,
READERS

CENTRAL
PROCESSING
UNIT

MAGNETIC
TAPE
PROCESSOR

MASS
STORAGE
PROCESSOR

CENTRAL
PROCESSING
UNIT

TERMINALS REMOTE
DEVICES

NETWORKS

REMOTE
DEVICES

REMOTE
DEVICES

LEGEND: ~INDICATES PHYSICALLY REMOTE

Figure 2-1. A Multics System Configuration

2-2 AM81-o4

INPUT /OUTPUT MULTIPLEXER

The 10M functions as the I/O processor for the Multics configuration. It
handles the transfer of data between the main memory, the FNP. and all peripheral
devices including disks, tapes, and unit-record equipment.

Information Multiplexer Unit

The IMU functions much like the 10M for the Multics configuration; i.e., as
an I/O processor. It differs from the 10M in that it is controlled by an internal
microprocessor rather than being hardwired.

Note: throughout this manual, the term "10M" refers to both the 10M and
the IMU, unless otherwise stated.

FRONT-END NETWORK PROCESSOR

The Multics system requires an FNP. Originally. the DATANET 355 FNP was
a partition of the Multics hardware configuration. The DATANET 6670 FNP now
replaces the DAT ANET 355 FNP in Multics configurations. The FNP is a stored
program communications processor that receives and processes information from remote
terminals for direct input to an 10M data channel. The FNP transmits information to
the remote terminals that are connected to the Multics system configuration over
private lines or common carrier communication facilities. The DN6670 is described in
the L66/68 DATANET 6670 Operation Reference Manual. Order No. AY34.

PERIPHERAL SUBSYSTEMS

Peripheral subsystems communicate with the CPU through the 10M using a
standard interface. A list of supporting documentation can be found in Section 1.

SOFTWARE

For complete details of Multics software concepts and organization, refer to
the following manuals:

Multics Programmer's Reference Manual, Order No. AG91
Multics Commands and Active Functions, Order No. AG92
Multics Subroutines and I/O Modules, Order No. AG93

The Multics software of interest to system maintainers includes:

1. Initializer commands -- for controlling operation of the system such as setting
the maximum number of users who can log in. setting the message of the day,
and shutting the system down.

2. Answering service -- for accounting purposes and logging users in and out

2-3 AM81-()4

3. Backup System -- for copying segments and directories from the storage system
onto tape (incremental backup, consolidated backup, complete backup) and
recovering segments and directories from tape and placing them back into the
storage system (upon user request or after a system failure).

4. I/O daemon -- for processing bulk I/O and controlling remote or local job
entry (reading and punching cards. printing output on the high-speed printer).

5. User commands -- such as compilers and text editors.

Storage Hierarchy

You must have an understanding of the layout of the storage system hierarchy
in order to be able to take proper action during recovery from a severe system
failure. A brief description of the Multics storage system hierarchy and system
libraries is given in the following paragraph. Further details are given in the Multics
Programmer's Reference Manual, Order No. AG91.

The Multics storage system includes both system and user segments. Figure 2-2
shows a portion of the storage system hierarchy nearest to the system root The
hierarchy can be viewed as an upside-down tree with the root at top and directories
occurring at each fork in the trunk (i.e .• branches of the tree). This diagram shows
certain directories always found in the hierarchy. The names of all these directories
and the general content of segments inferior to them are listed below.

is the storage location for most system accounting. authorization. and logging
information. (It's the initializer's home directory.) The table printed by the
who command. the message of the day. and the absentee queue segments are
the only generally accessible segments in this directory. Project administration
tables are stored in a directory tree under system_control_l.

• > site

contains segments and directories which contain per-site information.

contains one directory for every process currently in the system. The name of
an individual process directory is derived from the unique identification of the
process. The process directory is used as a place to store all segments that are
intended to have a lifetime no greater than that of the process that creates or
uses them.

contains segments and directories used to support the various I/O system
daemon processes.

2-4 AM81-o4

(root
directory)

system_
control_1

PLUS MISCELLANEOUS
ACCOUNTING, LOG,
LINE USAGE, AND
PASSWORD SEGMENTS

site

~
DIRECTORIES
AND SEGMENTS
CONTAINING
PER-SITE
INFORMATION

process_
dir_dir

daemon_
dir_dir

DIRECTORIES AND
SEGMENTS OF THE
BACKUP AND I/O
DAEMON PROCESS

(name = JONE
process-id) DIRECTORY

PER
PROCESS

user _
dir_dir

system
library
standard

~
ALL NON-HARDCORE
COMMANDS AND
SUBROUTINES
PROVIDED AS
PART OF MULTICS
EXCEPT SEPARATELY
PRICED ITEMS

TEMPORARY PER­
PROCESS INFORMATION

(project
name) }g~CTORY PER

'---....--j PROJECT

(root
directory)

system_
library_1

system_
library_
unbundled

~~
ALLHARDCORE SEPARATELY
COMMANDS AND PRICED
SUBROUTINES COMMANDS
PROVIDED AS AND
PART OF MUL TICS SUBROUTINES
EXCEPT SEPARATELY
PRICED ITEMS

system_
library _
auth_maint

system
library
tools

~
COMMANDS AND
SUBROUTINES OF
THE LOCAL AUTHOR­
MAINTAINED LIBRARY

(user
name)

PER }g~~CTORY
'---..--....--,..-' USER

~
PERSONAL SEGMENTS
.A.ND DIRECTORIES
OFTHISUSER

library
dir
dir

include

~
ALL INCLUDE
FILES (X.INCL.PL 1)

system.
library_
obsolete

Figure 2-2. Multics Directory Hierarchy

2-5

system
library
tandd

AM81-o4

is the base of a subtree containing all of the personal segments of individual
users. The immediate contents of user_dir_dir is a set of directories, one for
each project that uses Multics. Contained in a project directory is usually one
personal directory for each user working on that project.

• >system_library _standard (>sss)

contains the library of commands and subroutines which are provided as part
of Multics but are not part of the hardcore and are not included on the
Multics system tape. These commands and subroutines are documented in the
Multics Commands and Active Functions manual, Order No. AG92, and the
Multics Subroutines and I/O Modules manual, Order No. AG93.

• >system_library _1 (>sl1)

contains the library of commands and subroutines which are part of the
hardcore and are included on the Multics system tape. These commands and
subroutines are documented in the Multics Commands and Active Functions
manual, Order No. AG92 and the Multics Subroutines and //0 Modules
manual, Order No. AG93.

contains all the unbundled (separately priced) software supported on Multics.

is similar to system_library_standard except that it contains private commands
and subroutines provided by programmers of the local installation.

contains the commands and subroutines that are used to administer and
maintain the system and provide programs that constitute the various system
daemon processes for printing, reading and punching cards, etc.

contains sources and object archives for system library programs.

• >system_library _obsolete (>obs)

holds obsolete software programs that are no longer supported by Honeywell.
It is the responsibility of the individual site to convert from using obsolete
software programs to using new software programs.

2-6 AM81-04

• > system_library _tandd (>firmware)

contains the online T&D firmware program that was previously located in the
firmware archive segment >ldd>firmware.

contains software written and supported by third party vendors.

For a complete description of these directories and the segments they contain,
refer to the Multics System Administration Procedures manual, Order No. AK50.

Resource Control Package

The resource control package (Rep) controls and allocates peripheral resources.
Rep keeps usage records on the following types of resources:

• Tape drives

• Storage system disk volume attachments

• User I/O disk drives

• Printers, readers, and punches

• Bootload console

• Special devices

Rep allows special privileged attachments for system daemon processes and for CSD
test and diagnostic programs.

2-7 AM81-04

SECTION 3

CONFIGURA TION

DEFINITION

Configuring the Multics system involves setting switches on the Multics
processor and its associated devices to connect them into a configuration that can run
Multics.

LEVEL 68 SYSTEM VS DPS 8 SYSTEM

The following paragraphs describe the diff erences between a Distributed
Processing System (DPS) 8 and a Level 68 System.

The DPS 8 is a continuation of the Level 68 system. Internally, the DPS 8
processor works differently from the Level 68 processor, but architecturally, they
support the same set of instructions and registers. For users, the primary difference
between the two processors is that the DPS 8 is faster. For operators and system
maintainers, the primary difference is that DPS 8 processors, as well as SCUs and
laMs, do not have maintenance panels. The information that is provided by these
panels in a Level 68 system is provided by displays on a terminal in a DPS 8 system.
The exact panels which do not exist on DPS 8 boxes are as follows:

CPU: Maintenance, Test and Display Panels
SCU: Maintenance and Display Panels
10M: Maintenance and Test Panels

The displays which replace the maintenance panels are produced by the
Dynamic Maintenance Panel (DMP), which is part of the processor. Displays from the
DMP may be accessed in either of two ways: with a standard VIP terminal attached
to the DMP or with a Diagnostics Processor Unit (DPU). The DPU serves as an
interface to the DMP for the processor. the SCU and the 10M. Your decision as to
whether you should use the DPU or the VIP attached to the DMP will depend on the
configuration at your site. You might have one VIP and a patching mechanism to
connect it to the desired DMP interface, or a separate terminal for each DMP
interface. or some combination of these. You might or might not have a DPU.

The DPU is a Level 6 computer system. A basic DPU subsystem contains a
processing unit, a maximum memory size of 128K, a Multiline Communications
Processor (MLCP), a Multiple Device Controller, and a DPU Control Panel. A DPU
subsystem also has a VIP terminal attached to it (currently a VIP7205). You should
not confuse this terminal, which is part of the DPU subsystem, with the terminal
mentioned above, which is connected directly to the DMP.

3-1 AM81-04

The DPU provides a maintenance capability that includes remote maintenance
control of the DPS 8 processor, SCU and 10M. In other words, the switch settings
and the contents of various registers for these units may be displayed on the attached
terminal.

In addition to the maintenance panels being replaced, the configuration panels
on these three units are packaged somewhat differently than they are on the Level 68
machines. For a general view of the DPS 8 processor configuration panel. see Figure
3-6. For general views of the DPS 8 SCU and 10M configuration panels, see Figures
3-3 and 3-9 respectively.

For normal operations, there is little difference in the procedures for setting
switches on the configuration panels of any of the DPS 8 units; the switches are still
on "standard" configuration panels. However, on the processor, the EXECUTE
SWITCHES/EXECUTE FAULT two-position switch is replaced by an EXECUTE
FAULT pushbutton. This means that the procedure for executing fault is the same as
on the Level 68, but the procedure for executing switches is different To execute
switches to return to BCE, you must use either a DPU or a DMP /VIP. Procedures
for operating the DPU and the DMP /VIP are described in Appendix B.

The DPS 8 FNP and memory are the same as the L68 FNP and memory.

You should be aware of the fact that there are some differences between
configuring a Level 68 System and configuring a DPS 8 System. These diff erences are
noted where appropriate throughout this section.

DEVICES AND FUNCTIONS

The Multics configuration includes three kinds of devices: active devices,
passive devices, and peripherals. The CPUs and laMs are active devices. The SCUs
are passive devices. Printers, tape drives, disk drives. card readers. FNPs, and card
punches are examples of peripheral devices.

When active devices reference memory, they generate a 24-bit absolute memory
address that is interpreted by the port selection switches (on the processor
configuration panel) to _ produce a request to a specific SCU for a specific word in the
memory connected to that controller.

There are three rules that simplify setting up the Multics configuration:

1. Every active device must be able to access all SCUs.

2. Every SCU must have . the same active device on the same SCU port, so all
seus must have the same PORT ENABLE settings.

3. Every active device must have the same SCU on the same port, so all active
devices will have the same configuration panel settings.

3-2 AM81-04

PERIPHERAL PREPARATION AND OPERATION

All peripherals must be configured in an online and ready state. Refer to the
appropriate manual for each piece of peripheral equipment. These manuals are listed
in Section 1.

Peripheral devices and terminal devices used by operations personnel vary from
site to site, because adding a new device is possible through a general I/O
programming technique. It is beyond the scope of this document to describe the
operation of each peripheral device or terminal. However, some specific operation of
peripheral devices or terminals is discussed when it is significant to the operation of
Multics.

SYSTEM CONTROLLER UNIT (6000)

Ref er to Figure 3-1 f or a general view of the Level 68 6000 SeD
configuration panel.

Level 68 6000 SCU Configuration Panel

The Level 68 6000 SeD configuration panel contains the following switches:

SYSTEM CONTROL AND MONITOR (CONT&MON/MON/OFF)
SYSTEM BOOT CONTROL (ON/OFF)
ALARM (DISABLE/NORMAL)
MAINTENANCE PANEL MODE (TEST/NORMAL)
STORE A

STORE B

MODE (OF F LI NE/MA I NT /ONLI NE)
SIZE (32K, 64K, 128K, 2S6K)

MODE (OF F L I NE/MA I NT /ONL I NE)
SIZE (32K, 64K, 128K, 256K)

EXECUTE INTERRUPT MASK ASSIGNMENT
(A through 0; OFF/0/l/2/3/4/5/6/7/M)

ADDRESS CONTROL
LOWER STORE (A/B)
OFFSET (OFF, 16K,32K,64K)
I NTERLACE (ON/OF F)

CYCLE PORT PRIORITY (ON/OFF)
PORT CONTROL (ENABLED/PROG CONT/DISABLE)

The three positions of the two MODE selector rotary switches, one for STORE
A and one for STORE B, function as follows:

ON LINE

MAINT

Normal operating position; the memory can be accessed by the SeD
ports.

Maintenance position; the memory cannot be accessed by a 6000 SeD
port, but it can be accessed by the 6000 SeD maintenance panel test
logic.

3-3 AM81-04

... O ••• IIC
tOWt!!
,·rOIIlt

Figure 3-1.

• • •• •
$1'1

,; *" "., rr-'tt",· Q
, •

Level 68 System Controller Unit (6000 SeU) Configuration Panel

3-4 AM81-04

OFF LINE The memory is not accessible by the 6000 seu. This position
effectively removes the memory from the system.

The two SIZE switches (4-position rotary), one for STORE A and one for
STORE B, are used in conjunction with the LOWER STORE toggle switch. Reversing
the LOWER STORE switch reverses the roles of the SIZE switches. The LOWER
STORE toggle switch selects the store to which the lower addresses are routed. The
roles of the SIZE switches are as follows:

1. The SIZE switch to which the LOWER STORE switch is set establishes the
address boundary between the two memory ports.

2. The combined output of the two SIZE switches establishes the upper address
boundary. An attempt to access beyond that boundary produces a nonexistent
address illegal action (IA code 0010 (02 octaD).

If STORE A and STORE B are not equal in size, the larger store must be assigned
the lower store address range.

The OFFSET rotary switch causes the logical addresses of physical blocks of
memory to be exchanged by complementing an address bit. This feature can be used
in conjunction with other configuration switches to assign a faulty block of memory to
a logically nonexistent upper address range. This 4-position switch causes different
address bits to be complemented as follows:

Switch
Position

OFF

16K

32K

64K

Address Bit
Complemented

No address offset

3

2

Address offset only occurs within the memory units since the bit is complemented
after the memory has been selected. Therefore, the address offset does not cause an
exchange of memory ports; offsets equal to or larger than the memory size are
ignored.

The INTERLACE toggle switch enables interleaving between the two stores, A
and B. The two stores must have the same size for interleaved operation.

3-5 AM81-04

The EXECUTE INTERRUPT MASK ASSIGNMENT (EIMA) rotary switches
determine where interrupts sent to memory are directed. The four EIMA rotary
switches, one for each program interrupt register, are used to assign mask registers to
system ports. The normal settings assign one mask register to each CPU configured.
Each switch assigns mask registers as follows:

Position Function

OFF

o

2

3

4

5

6

7

Unassigned

Assigned to

Assigned to

Assigned to

Assigned to

Assigned to

Assigned to

Assigned to

Assigned to

Assigned to

port 0

port

port 2

port 3

port 4

port 5

port 6

port 7

maintenance panel

Assignment of a mask register to a system port designates the port as a control
port. and that port receives interrupt present signals. Up to four system ports can be
designated as control ports. The normal settings assign one mask register to each CPU
conf igured.

The eight PORT CONTROL toggle switches are used to enable specific system
ports either manually or under program control. The three positions operate as
follows:

ENABLE The port is enabled and able to communicate with an active module
regardless of the mask bit.

PROG CONT The pori is under program control and is turned on or off by the
proper bit in the program controlled mask register. This is the normal
position for an enabled Multics port.

DISABLED The port is turned off.

There is an indicator light associated with the PORT ENABLE switch. The
indicator is on whenever a port is enabled.

3-6 AM81-04

The seven CYCLE PORT PRIORITY switches are used to group similar active
modules to assure equal access to memory on the same 6000 SCD. Turning these
switches on causes system ports to be linked to form groups. System ports within a
group have equal access to memory, and no group can link more than five ports. If
all ports within a group place continuous access requests, the ports are granted access
in cyclic order. Access requests between groups are handled on a priority basis; all
access requests by higher priority groups must be satisfied before lower priority access
requests are acknowledged. The CYCLE PORT PRIORITY switches link all 6000 SCD
ports connected to CPDs, and should link other like devices such as IOMs in their
own unique groups. To do this, all switches between CPU ports and between 10M
ports are set DP, and others are set DOWN.

The ALARM switch disables the alarm bell when in the DISABLE position.

The MAINTENANCE PANEL MODE (TEST/NORMAL) switch controls the
operation of the 6000 SCD maintenance panel. In the NORMAL position, the
maintenance panel is disabled. In the TEST position, the 6000 SCD maintenance panel
is enabled.

For a summary of the switch settings to be checked before the system is
brought up, see Appendix C.

Level 68 6000 SCU Maintenance Panel

Switches on this panel are used when setting the calendar clock. The procedure
to set the system clock is described under "Calendar Clock" at the end of this section.

SYSTEM CONTROLLER ~NIT (4MW)

In those installations where a 4MW SCD is present, you must be concerned
with certain displays and hardware switch settings on the equipment. Refer to Figure
3-2 for a general view of the Level 68 4MW SCD configuration panel, and to Figure
3-3 for a general view of the DPS 8 4MW SCD configuration panel.

System Controller Unit Display Panel (4MW SCU)

The following is a list of switches on the 4MW SCD display panel.

SELECT
The SELECT switch selects what is to be displayed in the 12 display lamps.
There are ten possible displays, each of which is explained on the panel.

HISTORY REGISTER
The HISTORY REGISTER switch stores information about the last four 4MW
SCD operations. The switches and displays are of little interest to the operator.

On the DPS 8 4MW SCU, the display has been replaced by a display. For
details, refer to Appendix F:

3-7 AM81-04

Figure 3-2. Level 68 System Controller Unit (4MW SeU) Panels

3-8 AM81-04

PORT EHABlE
U III (5 i 1

;~ f;l("G'QQQQQ

CYCliC PRIORITY

n; '/: 1/3 3/4 415 If. 6/1

:~QQQQQQQ

MOIHXISTEHr ADDRESS
1 1 4 5 , 1 I

:;a!QGlQ"'QGtQ

STATUS PUU CLEAR

HIlI to lUSt IWG STill'

.. II ••• " 0

Figure 3-3. DPS 8 System Controller Unit Configuration Panel

3-9 AM81-04

System Controller Unit Configuration Panel (4MW SCU)

The switches on the 4MW SeD configuration panel are normally read only
when the system is initialized. During Multics operation, internal 4MW SeD registers
corresponding to the configuration switches can be changed by software. These
registers can always be examined through the use of the SELECT thumbwheel on the
4MW SeD display panel.

The DPS 8 4MW SCD configuration panel is almost identical to the Level 68
panel. For a general view of the DPS 8 panel, ref er to Figure 3-3. To set the
switches on the DPS 8 panel, follow the instructions given here for the Level 68
panel. Note that with a DPS 8 4MW seu, the contents of the history registers can
be displayed on a terminal screen. For details, refer to Appendix B.

The following switches are found on the 4MW SeD configuration panel:

PORT ENABLE (ON /OPF 0, 1, 2, 3. 4, 5, 6, 7)
These switches are used to enable specific 4MW seu ports when the system is
initialized. They should be ON for each port connected to a configured CPD
or 10M, and OFF for all others. The initial settings can be changed under
program control. The current settings can be examined by setting the SELECT
thumbwheel on the 4MW SCD display panel to position 4.

CYCLIC PRIORITY (ON/OFF 0/1, 1/2, 2/3, 3/4, 4/5, 5/6, 6/7)
These switches have the same function as the CYCLE PORT PRIORITY
switches on the 6000 SeD. It is not necessary to set these switches on the
4MW SCD. The proper settings are established under software control during
Multics initialization and reconfiguration.

NONEXISTENT ADDRESS (ON/OFF, 2. 3, 4. 5, 6, 7, 8)
These switches are used only when the two store units connected to a 4MW
SCD are different sizes. They indicate the first nonexistent addresss of the
total memory (stores A and B) present on the controller. The switches have
the following values:

Swi tch
Position Size

2 2048K
3 lO24K
4 512K
5 256K
6 128K
7 64K
8 32K

For example, if the controller normally contains 1024K words (configured as A
- 256K, Al - 256K. B - 256K. Bl - 256K) but 128K of Store Bl is defective
(or not present), then switches 4, 5 and 6 should be set to indicate that the
first nonexistent address is 896K.

3-10 AM81-D4

ALARM (ENABLE/DISABLE)
This switch is normally left in the ENABLE position.

PANEL (TEST/NORMAL)
This switch is normally left in the TEST position.

LWR STORE SIZE (O/1/2/3/4/5/6/7)
This thumbwheel switch is used to set the size of the lower store unit
connected to the 4MW SCU. The meanings of the switch positions are
explained on the configuration panel of the 4MW SCU.

MODE (PROGRAM/MANUAL)
This switch must always be in the PROGRAM position.

STORE A, At B, B1, (ONLINE/OFFLINE)
These switches enable the store units connected to a 4MW SCU.

INTERLACE (ON/OFF)
This switch enables the interlacing of the two store units connected to a 4MW
SCU. It should be ON when upper and lower stores are the same size.
Otherwise. it should be OFF.

LWR STORE (A/B)
This switch selects which of the two store units connected to a 4MW SCU
contains the lower addressed memory cells. If both store are not the same
size, the larger store must be lower.

MASK/PORT ASSIGNMENT A, B (OFF/0/1/2/3/4/5/6/7)
These two thumbwheel switches are analagous to the EXECUTE INTERRUPT
MASK ASSIGNMENT switches on a 6000 SCU. When booting, one of them
should be set to the port connected to the bootload CPU. The other should be
set OFF. These switches can be changed internally under program control. The
current settings can be examined by setting the SELECT thumbwheel on the
4MW SCU display panel to positions 8 and 9.

For is a summary of the switch settings to be checked before the system is
brought up, see Appendix C.

System Controller Unit Maintenance Panel (4MW seu)

This panel is of no interest to the operations staff. All switches except the
PROGRAM/MANUAL switch should remain in the down position.

On the DPS 8 4MW SCD, the maintenance panel has been replaced by a
display. For details, refer to Appendix B.

CENTRAL PROCESSING UNITS

Refer to Figure 3-4 for a general view of the Level 68 processor configuration
panel, and to Figure 3-5 f or a general view of the DPS 8 processor configuration
panel.

3-11 AM81-()4

C;0NFIGURATION
SVS1"EM COlli TROt &- MONITOR SYIlTEM IIOOT cOIIITIIOl

PORT SelECT
PORT (NASH INITIALIZE ADDRESS

tNJ\IlLE RANGE

I J I '. f I f

I J • f ~ I
r:&O

'. " !:--,t '. :I • ~

d .. " f,i . .. ,.
E 1\ f

• .f:, 6-. • e ,. f
g~ .. ,. • &-e

'.' " • G&H

• • il • • • "
,.

Zk;.-e
ALARM

fAULT CONTROL

o 1 :z :I .. 5 !l 1 !! 9 10 11 12 13 14 15 16 17

h- .".,"1'.
PRI')(;I:SSOR IfUM8"R 11Il1T1ALIZ£ ..

CLEAR

I

Figure 3-4. Level 68 Processor Configuration Panel

3-12 AM81-04

PROt:£SSIlR IWIit8ER

r 11 -!

~"9"

Figure 3-5. DPS 8 Processor Configuration Panel

3-13 AM81-04

Configuration Rules

In configuring a Multics system, the following configuration rules apply:

1. Each CPU in the system must be connected to every SCU in the system.

2. Each 10M in the system must be connected to every seu in the system.

3. Each SCU in the system must be connected to every CPU and 10M in the
system.

4. Corresponding ports on all CPUs and IOMs must be connected to the same
SCU. For example, port A on every CPU and 10M must be either connected
to the same seu or not connected to any SCU.

5. Corresponding ports on all seus must be connected to the same active device
(epU or 10M). For example, if port 0 on any SCU is connected .to 10M A,
then port 0 on all seus must be connected to 10M A.

6. IOMs should be connected to lower-numbered seu ports than epus.

These rules are illustrated in Figure 3-6, where the port numbers for a small Multics
system consisting of 2 CPUs, 3 SCUs, and 2 IOMs have been indicated.

A Multics system can support up to 16MW of main memory. This is
16,777,216 36-bit words, and it represents a 24-bit address field. These words are
accessed by an absolute address, which can range from 0 to 16,777,215. The main
memory on a given system is divided among the configured SCUs so that each seu
contains a contiguous block of storage. The block of storage associated with each seu
is defined by a base address and a size. Both the base address and the size are
expressed in units of KW, which is 1024 words. The storage associated with the seus
on a system can be assigned arbitrarily, but subject to the addressing rules described
below.

Level 68 Addressing Rules

1. The base address of an SCU must be a multiple of the value defined by the
STORE SIZE patch plug associated with that SCU. Further. this multiple must
be in the range 0 through 7. A STORE SIZE patch plug is associated with
each pair of epu or 10M ports (A and B, C and D, etc.). The patch plugs
are set to the proper memory size by the field engineers and are not resettable
by the site.

2. The size of an SeD must be either the value define.d by the STOFP SIZE
patch plug associated with that SCU or half of that value. Note that the size
of an SCU refers to the range of addresses assigned to the seu. Subject to
the limitations to be discussed, the amount of memory actualiy configured on
the seu may be less than the size.

3. One and only one SeD must have a base address of O. This SCU is called the
bootload seu.

3-14 AM81-04

· CPU A CPU B

A B

_71~1-=-1~
SCU C SCU B SCU A

_31_211

10M A 10M B

Figure 3-6. Port Numbers for a Small Multics System

3-15 AM81-04

4. There can be no overlap in addresses associated with different SeDs.
Specifically, the range of addresses defined by the base and size of one SCU
must not overlap the range of addresses defined by the base and size of any
other SeD. where the size here means the size defined in the STORE SIZE
patch plug associated with the port.

5. During bootload, Multics requires a contiguous section of memory beginning at
absolute address 0 and sufficiently large to contain all routines and data
structures used during the first phase of Multics initialization (i.e., collection 1).
The size of the section required varies among Multics releases, and it also
depends on the size of the SST segment. which is dependent on the parameters
specified by the site on the sst con fig card (refer to Section 7). However.
512KW is adequate for all circumstances. There can be no "holes" in memory
within this region. Beyond this region. "holes" can exist in memory. The
examples below will clarify this point.

DPS 8 Addressing Rules

1. The base address of an SeD must be a multiple of the value defined by the
STORE SIZE thumbwheel switch associated with that port. Further. this
multiple must be in the range 0 through 7. There is a STORE SIZE
thumbwheel switch on the central processor and 10M configuration panel for
each ePD or 10M port (A. B. e. and D). This thumbwheel switch should be
set for each port to be the lowest value that is not smaller than the amount
of main memory configured on that port.

2. The size of an seD is the value defined by the STORE SIZE thumbwheel
switch associated with that SeD. Note that the size of an SeD refers to the
range of addresses assigned to the SeD. Subject to the limitations to be
discussed, the amount of memory actually configured on the SeD may be less
than the size.

3. One and only one SeD must have a base address of O. This SeD is called the
bootload seD.

4. There can be no overlap in addresses associated with different SeDs.
Specifically. the range of addresses defined by the base and size of one seu
must not overlap the range of addresses defined by the base and size of any
other SeD, where the size here means the size defined in the STORE SIZE
thumbwheel switch associated with that seu on each CPU and 10M.

5. During bootload. Multics requires a contiguous section of memory beginning at
absolute address 0 and sufficiently large to contain all routines and data
structures used during the first phase of Multics initialization (i.e .• collection 1).
The size of the section required varieS among rv1ultics releases; it also depends
on the size of the SST segment, which is dependent on the parameters
specified by the site on the sst config card (refer to Section 7). However.
512KW is adequate for all circumstances. There can be no "holes" in memory
within this region. Beyond this region, "holes" can exist in memory. The
examples below will clarify this point.

3-16 AM81-04

Level 68 Processor Configuration Panel (PORT SELECT Panel Area)

The PORT SELECT panel area of the processor configuration panel is identical
in both form and function to the PORT SELECT panel area of the Level 68 10M
configuration panel. The purpose of the switches on these panels is to define how the
CPUs, IOMs, and SCUs in a Level 68 system are connected, and to define the range
of memory addresses associated with each SCU. A Level 68 system may contain a
maximum of 7 CPUs, 4 IOMs, 8 SCUs. and 16MW of main memory in aggregate.
Each CPU on a Level 68 system has 8 ports for connecting that CPU to SCUs; these
ports are identified by the letters a through h. Similarly, each 10M on a Level 68
system has 8 ports for connecting that 10M to SCUs; these ports are identified by the
letters a through h. Each SCU has 8 ports for connecting that SCU to CPUs and
IOMs; these ports are identified by the numbers 0 through 7.

The following paragraphs describe the functions and settings of the various
swi tches on the PORT SELECT panel area of the Level 68 processor and Level 68
10M configuration panels. See Figure 3-5. Note that the IMU may not be configured
with a Level 68 system.

ASSIGNMENT
These three toggle switches define a 3-bit binary number (ranging from 0 to 7)
which determines the base address of the SCU connected to the port. The base
address (in KW) is the product of this number and the value defined by the
STORE SIZE patch plug for the port. For low-order memory the switches
should be set down, to 000; others are set as appropriate.

ADDRESS RANGE
This switch determines the size of the SCU connected to the port. If it is set
to FULL, then the size is the value defined by the STORE SIZE patch plug
for the port If it is set to HALF, then the size is half of the value defined
by the STORE SIZE patch plug for the port.

PORT ENABLE
These switches indicate which ports are active. The switch for each port
connected to an SCU should be ON. The switch for each port that is not
connected to an SCU should be OFF.

INITIALIZE ENABLE
These switches enable the receipt of an initialize signal from the SCU
connected to the ports. This signal is used during the first part of bootload to
set all CPUs to a known (idle) state. The switch for each port connected to
an SCU should- be ON. The switch for each port that is not connected to an
SCU should be OFF.

INTERLACE
This is a 3-position switch that allows interleaving of memory addresses by
port pairs in groups of either two or four words. All INTERLACE switches
should be set OFF for Multics operation.

3-17 AM81-o4

The following examples illustrate the determination of the base address and size
of an SCU from the switches on the configuration panels:

Example 1:

Example 2:

Example 3:

STORE SIZE
patch plug

256KW

1024KW

512KW

ASSIGNMENT
switches

3 (0

o (0 0 0)

2 (0 0)

ADDRESS RANGE
swi tch

FULL

HALF

FULL

Base
Address

768KW

OKW

1024KW

Size

256KW

512KW

512KW

Under the rules defined above, all configuration panels on the system are set
identically. That is, all CPU configuration panels are set identically, and all 10M
configuration panels are set to match the CPU configuration panels.

The following examples illustrate valid and invalid configurations and configuration
panel settings.

Example 4

The following SCUs are configured:

Port STORE SIZE Memory
patch plug

A 512KW 512KW
B 512KW 256KW
C 1024KW 1024KW
D 1024KW 512KW

The following configurations are all valid for this set of SCUs: the ports are listed in
order of increasing base address, which corresponds to the order of mem config cards.

4. 1 Port ASSIGNMENT ADDRESS RANGE Base Size
switches swi tch Address

A 0 (0 0 0) FULL OKW 512KW

B (0 0 1) HALF 512KW 256KW

C (0 0 1) FULL 1024KW 1024KW

D 2 (0 0) HALF 2048KW I:l?I(W
J ""' ...

3-18 AM81-04

4.2. Port ASSIGNMENT ADDRESS RANGE Base Size
switches switch Address

C 0 (0 0 0) FULL OKW 1024KW

B 3 (0 1) HALF 1536KW 256KW

D 2 (0 0) HALF 2048KW 512KW

A 5 (1 0 1) FULL 2560KW 512KW

4.3. Port ASSIGNMENT ADDRESS RANGE Base Size
switches swi tch Address

C 0 (0 0 0) FULL OKW 1024KW

A 2 (0 0) FULL 1024KW 512KW

B 3 (0 1) HALF 1536KW 256KW

D 2 (0 0) HALF 2048KW 512KW

4.4. Port ASSIGNMENT ADDRESS RANGE Base Size
switches switch Address

D 0 (0 0 0) HALF OKW 512KW

C (0 0 1) FULL 1024KW 1024KW

A 4 (1 0 0) FULL 2048KW 512KW

B 5 (1 0 1) HALF 2560KW 256KW

The following are examples of INVALID configurations using the same set of
SCUs:

4.5. Port ASSIGNMENT ADDRESS RANGE Base Size
switches swi tch Address

A 0 (0 0 0) FULL OKW 512KW

C (0 0 1) FULL 1024KW 1024KW

B 3 (0 1) HALF 1536KW 256KW

D 2 (0 0) HALF 2048KW 512KW

The above configuration is INVALID because the absolute addresses of SCUs C and B
overlap, in violation· of addressing rule 4, above.

3-19 AM81-o4

4.6. Port ASSIGNMENT ADDRESS RANGE Base Size
switches switch Address

B 0 (0 0 0) HALF OKW 256KW

A (0 0 1) FULL 512KW 512KW

C (0 0 1) FULL 1024KW 1024KW

D 2 (0 0) HALF 2.048KW 512KW

The above configuration is INVALID--insufficient contiguous memory beginning at
absolute address 0 is provided for Multics initialization. Following addressing rule 5, at
least 512KW of contiguous memory is required, while only 256KW has been provided
(there is a "hole" in main memory in the range 256KW-512KW). Note the difference
between this example and valid configuration 2, above. In valid configuration 2, there
is a "hole" in memory immediately above the bootload SeD. However, 1024KW of
contiguous configured memory beginning at absolute address 0 has been provided,
which is sufficient for Multics initialization.

Example 5

The

5. l.

5.2.

The following SCUs are configured:

Port

A

B

STORE SIZE
patch plug

512KW

512KW

Memory

512KW

256KW

following are valid configurations fur this set of seus:

Port

A

B

Port

A

B

ASSIGNMENT
switches

0 (0 0 0)

(0 0 1)

ASSIGNMENT
switches

o (0 0 0)

4 (j 0 0)

ADDRESS RANGE
switch

FULL

HALF

ADDRESS RANGE
sw itch

FULL

HALF

3-20

Base
Address

OKW

512KW

Base
Address

OKW

2048KW

Size

512KW

256KW

Size

512KW

256KW

AM81-04

Note that there is no valid configuration for this set of seus if seu B is the
bootload seu. The reason for this is that the base address of seu A must be a
multiple of the value determined by the STORE SIZE patch plug, which is 512KW. If
seu B were configured as the bootload seu, there would be a "hole" in memory
between the end of seu B (256KW) and the beginning of seu A (whose base address
would be at least 512KW). Following addressing rule 5, at least 512KW of contiguous
memory beginning at absolute address 0 should be provided for Multics initialization.
Thus any configuration for this set of seus where seu B is the bootload seu would
violate addressing rule 5,

One complication can arise because STORE SIZE patch plugs are available only
in certain standard sizes (e.g., 128KW, 256KW, 512KW, 1024KW). It is possible for an
amount of memory to be configured on an seu which does not correspond to any
standard size patch plug. In this case, a larger size patch plug should be used (e.g.,
512KW for an seu which contains 384KW of memory). For the purpose of setting
the switches on the configuration panels, the seu is treated as if it had the larger
amount of memory defined by its associated STORE SIZE patch plug. However, the
mem conrtg card must reflect the actual amount of memory configured on the seu.
Further, the NONEXISTENT ADDRESS switches on the seu maintenance panel should
reflect the actual amount of memory configured on the seu. In applying addressing
rule 5, the actual memory configured must be considered rather than the amount of
memory indicated by the STORE SIZE patch plug.

The following example should clarify these points.

Example 6

The following seus are configured:

Port

A

B

STORE SIZE
patch plug

512KW

512KW

Memory

384KW

512KW

The following configuration is valid for this set of seus:

6. i. Port

B

A

ASSiGNMENT
switches

o (0 0 0)

(0 0 1)

ADDRESS RANGE
switch

FULL

FULL

Base
Address

OKW

512KW

Size

512KW

512KW

Note that the size associated with SeD A for the purposes of setting the switches on
the configuration panels is larger than the amount of memory actually configured on
seu A. The NONEXISTENT ADDRESS switches on the maintenance panel of seu A
should be set to reflect the actual amount of memory configured. Similarly, the mem
config card for seu A must reflect the actual amount of memory configured
(384KW).

3-21 AM81-Q4

The following configuration is INVALID for this set of SCUs:

6.2. Port ASSIGNMENT ADDRESS RANGE Base Size
switches switch Address

A 0 (0 0 0) FULL OKW 512KW

B (0 0 1) FULL 512KW 512KW

This configuration is invalid because it violates addressing rule 5, above. According to
that rule, there must be at least 512KW of contiguous memory beginning at absolute
address O. In this configuration, there is a "hole" in memory between 192KW and
256KW, even though this uhole" is not reflected in the configuration panel switches.

Note that there was no mention of CPUs or IOMs in the above examples. If
the configuration rules defined above are followed, the switch settings on all CPU and
10M configuration panels are identical. Thus for the purpose of setting switches on
the configuration panels, the number of CPUs and IOMs configured is not relevant.

For a summary of the switch settings to be checked before the system is
brought up, see Appendix C.
.. l2h "Level 68 Processor Maintenance Panel"

Figure 3-7 shows a general view of the Level 68 processor maintenance panel,
and part of the display panel. This part of the display panel has been included to
show where the EXECUTE SWITCHES/EXECUTE FAULT switch is located.

Switches on the maintenance panel are set by CSD or by the programming
staff. They may be set by or under the direction of a responsible person. Switch
settings should not be changed while the system is running. If it is necessary to
change switch settings without shutting down, enter BCE with the bce initializer
command, put the processor in STEP mode, and then change the settings.

The following paragraphs describe the functions and settings of the switches on
the Level 68 processor maintenance panel.

The 36 DAT A switches are used to enter data or an instruction into the
processor.

The ADDRESS toggle switches are used when the maintenance panel command
ENTER STORF. is exe.cute.d. The address set into the l~·~DDRESS switches is always
present for comparison on a maintenance panel stop-on-address condition or a
mode-register-trap-on-address condition. The SEGMENT NUMBER toggle switches are
used for maintenance panei stop-on-address condition.

3-22 AM81-Q4

I • .,. III .~ .". III .' ••• ~ ~. ~; .. tlVv , " ~ ,~, • •• I I· . I' . I I '."W'

f ~~iJ ~ ,,0~ "?! '-;;, ,

III •• ,1It ... ',., , ••• 0 •• III t\V (.J ••• 0 , •••

Figure 3-7. Level 68 Processor Maintenance Panel and Part of Display Panel

3-23 AM81-()4

The DISPLAY ENABLE pushbutton forces an internal condition in the
processor which makes registers and control points available for display. The DISPLAY
ENABLE pushbutton must be used only when the processor is stopped and the
DISPLA Y ENABLED light is not lit. The processor should be placed in STEP mode
before pressing this button. If DISPLAY ENABLE is pushed while the processor is
running, the processor takes indeterminate action that may be fatal to the system.

The DISPLA Y ENABLED condition must always be in effect when viewing
entries on the DATA SCROLL and those entries on the CONTROL POINTS SCROLL
tha tare printed in green.

The VALIDATE pushbutton must be pressed to view entries on the CONTROL
POINTS SCROLL that are printed in red. The VALIDATE pushbutton must be used
only when the processor is stopped, else results similar to those resulting from pushing
DISPLAY ENABLE while the processor is running may occur.

The CYCLE control knob controls if, and in what way, the processor moves
from cycle to cycle. This control knob must be in the OFF position for normal
operation.

The ADDRESS STOP control is used for debugging by system programmers.
This control knob must be in the OFF position for normal operation.

The HISTORY REGISTER DISPLAY CONTROL switches are used in conjunction
with DATA SCROLL position 7 (APU HISTORY REGISTER), position 11 (CU
HISTORY REGISTER), position 12 (OU HISTORY REGISTER) and position 13 (DU
HISTORY REGISTER) to display the contents of the history registers on the DATA
SCROLL. There are 16 registers in the CU, OU, DU, and APU history registers (a
total of 64). The individual one of the 16 registers in each of the CU, OU, DU, and
APU history registers is selected by setting SELECT COUNT switches 0, I, 2, and 3
to the number of the desired register.

The CONTROL POINT SCROLL, DATA SCROLL, DISPLAY SELECT, DISPLAY
I, 2, 3, 4, 5, and 6 switches are used to cycle the register. bus, or control point onto
the maintenance panel display.

The LAMP TEST pushbutton is used to test the maintenance panel indicator
lamps. An unlit lamp indicates either a defective lamp or an open circuit.

The INITIALIZE pushbutton sets all control points to a known state (set to
INITIALIZE CONTROL). It is used to initiaiize the control points without affecting
the data registers.

3-24 AM81-04

DPS 8 Processor Configuration Panel

The DPS 8 processor configuration panel is identical in both form and function
to the DPS 810M configuration panel. The purpose of the switches on these panels
is to define how the CPUs, IOMs, and SCUs in a DPS 8 system are connected; and
to define the range of memory addresses associated with each SCU. A DPS 8 system
may contain a maximum of 6 CPUs, 4 IOMs, 4 SCUs, and 16MW of main memory in
aggregate. Each CPU on a DPS 8 system has 4 ports f or connecting that CPU to
SCUs; these ports are identified by the letters a through d. Similarly, each 10M on a
DPS 8 System has 4 ports for connecting that 10M to SCUs; these ports are
identified by the letters a through d. Each SCU has 8 ports for connecting that SCU
to CPUs and IOMs; these ports are identified by the numbers 0 through 7.

The following paragraphs describe the functions of the various switches on the
DPS 8 processor and DPS 810M configuration panels. See Figure 3-6. See
"Information Multiplexer Unit" later in this section for a description of IMU
configura tion.

ASSIGNMENT
These three toggle switches define a 3-bit binary number (ranging from 0 to 7)
which determines the base address of the SCU connected to the port. The base
address (in KW) is the product of this number and the value defined by the
STORE SIZE thumbwheel switch for the port.

STORE SIZE
This thumbwheel switch determines the size of the SCU connected to the port.

PORT ENABLE
These switches indicate which ports are active. The switch for each port
connected to an SCU should be ON. The switch for each port that is not
connected to an SCU should be OFF.

INITIALIZE ENABLE
These switches enable the receipt of an initialize signal from the SCU
connected to the ports. This signal is used during the first part of bootload to
set all CPUs to a known (idle) state. The switch for each port connected to
an SCU should be ON. The switch for each port that is not connected to an
SCU should be OFF.

INTERLACE
This is a 3-position switch that allows interleaving of memory addresses by
port pairs in groups of four words. (The DPS 8 processor is restricted to NO
or 4-word interlace; 2-word interlace is not supported.) All INTERLACE
switches should be set OFF for Multics operation.

3-25 AM81-04

The following examples illustrate the determination of the base address and size
of an SCU from the switches on the configuration panels:

ASSIGNMENT STORE SIZE Base Size
swi tches thumbwheel swi tch Address

Example 1 : 3 (0 1) 1024KW 3072KW 1024KW

Example 2: 0 (0 0 0) 2048KW OKW 2048KW

Example 3: 2 (0 0) 512KW 1024KW 5l2KW

Under the rules defined above, all configuration panels on the system are set
identically. That is, all CPU configuration panels are set identically, and all 10M
configuration panels are set to match the CPU configuration panels.

The following examples illustrate valid and invalid configurations and configuration
panel settings.

Example 4

The following seus are configured:

Port

A
B
C
D

Memory

512KW
512KW
1024KW
512KW

The following configurations are all valid for this set of seus; the ports are listed in
order of increasing base address, which corresponds to the order of mem config cards.

4. l. Port ASSIGNMENT STORE SIZE Base Size
switches thumbwheel switch Address

A 0 (0 0 0) 512KW OKW 512KW

B (0 0 1) 512KW 512KW 512KW

C (0 0 1) 1024KW lO24KW 1024KW

D 4 (1 0 0) 512KW 2048KW 512KW

3-26 AM81-04

4.2. Port ASSIGNMENT STORE SIZE Base Size
switches thurnbwheel swi tch Address

C 0 (0 0 0) 1024KW OKW 1024KW

B 3 (0 1) 512KW 1536KW 512KW

0 4 (1 0 0) 512KW 2048KW 512KW

A 5 (i 0 i) 512KW 2560KW 512KW

4.3. Port ASSIGNMENT STORE SIZE Base Size
switches thurnbwheel switch Address

C 0 (0 0 0) 1024KW OKW 1024KW

A 2 (0 0) 512KW 1024KW 512KW

B 3 (0 1) 512KW 1536KW 512KW

0 4 (1 0 0) 512KW 2048KW 512KW

4.4. Port ASSIGNMENT STORE SIZE Base Size
switches thurnbwheel swi tch Address

0 0 (0 0 0) 512KW OKW 512KW

C (0 0 1) lO24KW 1024KW 1024KW

A 4 (1 0 0) 512KW 2048KW 512KW

B 5 (1 0 1) 512KW 2560KW 512KW

The following is an example of an INV ALID configuration using the same set of
SCUs.

4.5. Port ASSIGNMENT STORE SIZE Base Size
switches thurnbwheel swi tch Address

A 0 (0 0 0) 512KW OKW 512KW

C (0 0 1) 1024KW 1024KW 1024KW

B 3 (0 1) 512KW 1536KW 512KW

0 4 (1 0 0) 512KW 2048KW 512KW

This configuration is INVALID because the absolute addresses of SCUs C and B
overlap, in violation of addressing rule 4, above.

3-27 AM81-{)4

Note that there was no mention of CPUs or laMs in the above examples. If
the configuration rules defined above are followed, the switch settings on all CPU and
10M configuration panels are identical. Thus, for the purpose of setting switches on
the configuration panels, the number of CPUs and laMs configured is not relevant.

DPS 8 Processor Maintenance Panel

On the DPS 8 CPU, the maintenance panel (as well as the test and display
panels) has been replaced by a display. For details, refer to Appendix B.

INPUT/OUTPUT MULTIPLEXER

Refer to Figure 3-8 for a general view of the Level 68 10M configuration
panel, and to Figure 3-9 for a general view of the DPS 810M configuration panel.

Input/Output Multiplexer Configuration Panel

The 10M configuration panel contains the following switches:

SYSTEM CONTROL & MONITOR (CONT & MON/ MON/OFF)
SYSTEM BOOT CONTROL (ON/OFF)
PORT ENABLE for each port (ON/OFF)
INITIALIZE ENABLE for each port (ON/OFF)
ASS I GNMENT (1/0)
ADDRESS RANGE (FULL/HALF)
INTERLACE (4W/2W/OF F)
ALARM (DISABLE/NORMAL)
MAINTENANCE PANEL MODE (TEST/NORMAL)
10M BASE (12 through 23; 1/0)
I NTERRUPT BASE (6 th rough 18; 1/0)
10M NUMBER (1/0)
SOURCE (CARD/TAPE)
CHANNEL NUMBER CODE

TAPE CHANNEL NUMBER (0 through 5; 1/0)
CARD CHANNEL NUMBER (0 through 5; 1/0)

SYSTEM INITIALIZE
ZERO BASE S.C. PORT NO. (1/0)
OPERATING MODE (PAGED/EXT GCOS/STD GCOS)
BOOTLOAD

The 10M and the processor configuration panels are closely related; in fact,
one of the sides of each is identical to the other. Switches common to the 10M and
processor configuration panels are set identically.

The DPS 810M configuration panel is almost identical to the Level 68 panel.
For a general view of the DPS 8 panel, refer to Figure 3-9. To set the switches on
the DPS 8 panel. follow the instructions given here for the Level 68 panel. Note that
there is a switch on the DPS 8 panel called the PROGRAM MANUAL switch. This
switch should be set to MANUAL, to prevent the configuration from being changed
via a Diagnostics Processor Unit.

3-28 AM81-04

Figure 3-8.

•. ENAIl.lE

ADDRESSES

ZERO-8ASt: S.C.
PORT NO,

o

.. ~~I:~~?E IAg!§IG~A";~ I
.. , g~f"l ~c.:".;;.,

tiN ,-,',~: •.•. 4
OFF,'~ ~.~ ,''f '

ADDRESS
'''$lANGE

Ellio.L...i,l
HALF.

".,'"-'

.,'Ir-<' :.' if) . 'FULL ,.,.
• ,/' •.. ::", / "'. flA.Lf

·ir:t"t.rt
FULL' il'"
HALF,",

~~~.If· 

ca.!) 

;:'. 
OfF 

G&H 
4W 

~~ . 
15 1617 18 IS 20 21 n 23 

OPERATING MODE 

tXT .oeC05. '.-. GTO GECOS-=W 

0'0,0 '000. 

800TUMO 

Level 68 Input/Output Multiplexer Configuration Panel 

3-29 AM81-04 



seu PORT'" 

f 1 ! 

-- !-- ~ 9+--

CIIAIEL $WeT 
• 1 2 ) • 5 

I ~ t-\ f. ,,""' 1-. ."\ , T ~ "'~ ;" ,.J : 

Figure 3-9. DPS 8 Input/Output Multiplexer Configuration Panel 

3-30 AM81-04 



The functions and settings of all switches on the 10M configuration panel are 
described in the following paragraphs. 

For a description of the ASSIGNMENT, INTERLACE. ADDRESS RANGE, and 
PORT ENABLE switches, as well as the STORE SIZE patch plugs, refer to the 
previous discussion on the functions of the processor configuration panel switches. 

The INITIALIZE ENABLE toggle switch allows the port to be initialized from 
other ports. This switch is set ON. When OFF, the port initialize signal is inhibited. 

The SOURCE toggle switch, in conjunction with the CHANNEL NUMBER 
CODE toggle switches, selects the source of the bootload (always TAPE) and defines 
the channel number of the tape subsystem that contains the bootload program. 

The ZERO BASE S.C. PORT NO. toggle switches define the port number of 
the SC through which connects are to be sent to the 10M. 

To set up the 10M for bootloading: 

1. The SOURCE switch is set in the TAPE position. 

2. The tape channel number is set into the TAPE CHANNEL NUMBER switches, 
labeled CHANNEL NUMBER CODE. 

3. The ZERO BASE S.C. PORT NO. switches are set to reflect the SCU port 
number to which the 10M is connected. 

The ALARM toggle switch is used to disable the 10M alarm. 

The MAINTENANCE PANEL MODE toggle switch controls the operation of 
the 10M maintenance panel. For normal operation, this switch is in the NORMAL 
position. In the TEST position, the maintenance panel options of the maintenance 
panel are enabled and the TEST portion of the TEST/NORMAL indicator on the 
operators panel is ON. 

The 12 10M BASE ADDRESS toggle switches are used to set the base address 
for the 10M. The 10M base address (channel mailbox base address) indicates to 
software where control words are located in memory. The 10M base address is an 
18-bit address, but only bits 0 through 11 are set by the 10M BASE ADDRESS 
switches. Bits 12 through 17 are all zeros. 10M base addresses for Multics operation 
are as follows: 

10M A 
10M B 
10M C 
10M 0 

1400 (8) 
2000 (8) 
2400 (8) 
3000 (8) 

3-31 AM81-()4 



The 13 INTERRUPT BASE ADDRESS toggle switches allow the operator to set 
up a base address for interrupt multiplex words (IMWs). Bits 6 through 11 are shared 
with the 10M base address, and bits 16 and 17 identify the 10M number. The 
interrupt base address for Multics operation is 1200(8). 

The SYSTEM INITIALIZE pushbutton is used to send a system initialize signal 
to all enabled ports. 

The BOOTLOAD pushbutton is used to initiate the BOOTLOAD sequence. 

The OPERATING MODE rotary switch must be set to the PAGED position. 

10M NUMBER must be set as follows: 

10M A 
10M B 
10M C 
10M D 

- 00 
- 01 

10 
11 

All other 10M switches should be in the down (NORMAL) position. 

For a summary of the switch settings to be checked before the system is 
brought up, see Appendix c. 

Input/Output Multiplexer Maintenance Panel 

Switches on the 10M maintenance panel should only be set by CSD or by the 
programming staff. 

On the DPS 810M, the maintenance panel (as well as the test panel) has been 
replaced by a display. For details, refer to Appendix B. 

Input/Output Multiplexer Operation 

In order to use the 10M for Multics, the 10M port must be enabled on the 
seus. 

3-32 AM81-04 



INFORMATION MULTIPLEXER UNIT (IMU) 

Unlike other mainframes in the system configuration, the IMU has no 
configuration panel or switches. Instead, configuration functions are performed by the 
maintenance channel adapter (MCA), a microprocessor inside the IMU. The MCA uses 
configuration files stored on diskettes. An IMU can have up to four configuration 
files. To configure the IMU, use the MCA con fig command. This command is menu 
driven. Both the command and the menus are described in the Information 
Multiplexer Unit Hardware Operations Manual, Order No. 58010010. A few of the 
menu functions are also described here. 

To enter IMU bootstrap information, select item 4 of the config command 
menu. The MCA will prompt you with a configuration topic, and with both its 
current value and a list of acceptable input values. To keep the current value, respond 
with a CR. 

• "IMU number" is the number which corresponds to the name of the IMU 
being configured (e.g., "0" = A, "1" = B, etc.). 

• "host oper system" is the type of operating system the IMU is running with 
(e.g., "2" = Multics). 

• "Levell-remote maintenance allowed" enables or disables the Remote Maintenance 
Interface (RMI). This prompt should always be answered by typing "N". 

• "The lowest MCA number" is the lowest MCA number connected to the 
Multidrop lnterface (MDI); see Section 4. 

• "Total number of MCA" is the total number of MCAs on the MDI. 

• "bootstrap enable" indicates whether this IMU can boot the system. 

• "bootstrap automatic" enables or disables automatic booting. This prompt should 
be answered by typing "N". 

• "bootstrap seu port number" is the port number of the SCU through which 
connects are sent to the IMU (i.e., the port on the SCU to which this IMU is 
connected). 

• "bootstrap source" is the device type to boot from. This prompt should be 
answered by typing "2" (for tape). At present Multics can only boot from 
tape. 

• "bootstrap primary channel number" is the channel number of the bootload 
tape subsystem. 

• "interrupt base address" is the address for the Interrupt Multiplexer Words. and 
is calculated by the MCA using the "host oper system" and the "IMU number." 
This prompt should be answered by typing a CR. 

• "mailbox base address" is the address where the software places the control 
words in memory, and is calculated by the MCA using the "host oper system" 
and the "IMU number." This prompt should be answered by typing a CR. 

3-33 AM81-04 



To enter the memory port configuration, select item 5 of the config command 
menu. The MCA will prompt you with a configuration topic, and with both its 
current value and a list of acceptable input values. To keep the current value, respond 
with a CR. 

• "enter memory port number A-D" is the memory port number. 

• "memory port enable" indicates whether the IMU uses this port. 

• "memory port initialize" enables or disables the acceptance of the system 
ini tialize signal f rom this port. 

• "memory port starting address" sets the starting address for this memory. Your 
response may be selected from the following table. 

MEM SIZE 256K 512K 1M 2M 4M 

p S A 0 0 0 0 0 
0 T 0 2·56K 512K 1M 2M 4M 
S A 0 512K 1M 2M 4M 8M 
S R R 768K 1536K 3M 6M 12M 
I T E 1M 2M 4M 8M 
B I S 1280K 2560K 5M 10M 
L N S 1536K 3M 6M 12M 
E G 1792K 3584K 7M 14M 

• "memory port size" is the size of the memory on this port. The valid 
responses are: 256K, 512K, 1M, 2M, 4M. 

• "memory port interlace" enables or disables the interlacing of two memory 
ports. It is recommended that seu ports not be interlaced on a Multics 
system; therefore, this prompt should be answered by typing "N". 

FRONT-END NETWORK PROCESSOR 

The front-end network processor (FNP) provides the logical and physical 
connection between the system and a remote I/O device. There may be up to eight 
FNPs on a Multics system. 

3-34 AM81-04 



Front - End Network Processor Operation 

The DN6670 configuration panel consists of only a direct interface adapter 
(DIA) panel. Set switches on the DIA panel as follows: 

6000 MAILBOX octal 

FNP A t t t t t t t t t t t t 003400 

FNP B t t t t t t t t t t t t 003700 

FNP c t t t t t t t t t t t t 004200 

FNP 0 t t t t t t t t t t t t 004500 

FNP E t t t t t t t t t t t t 005000 

FNP F t t t t t t t t t t t t 005300 

FNP G t t t t t t t t t t t t 005600 

FNP H t t t t t t t t t t t t 006100 

6000 TERMINATE t t t t 3 

6000 EMERGENCY t t t t 7 

HNP MAILBOX t t t t t t 454 

HNP TERMINATE t t t t 2 

HNP SPECIAL INT t t t t 3 

Each FNP may be configured with one or two DIA boards. Each board must 
be configured on a separate FNP port. The FNP ports on which DIA boards may be 
configured are 3. 4, 5. and 14. Each board's FNP port must be cabled to an 10M 
channel. The FNP DIA connections are identified in the Multics config deck by the 
10M channel to which the FNP port is cabled. The Multics software determines 
which FNP port to use in accessing the FNP by references to the 10M channel cabled 
to the active FNP port. The FNP port number is not recorded in the FNP core 
image, nor in Multics supervisor databases, nor on any Multics con fig card. 

A FNP with two DIA boards can be cabled to two different laMs on a single 
Multics system. or to an 10M on each of two different systems. However, only one 
of the DiA boards may be used at a time. The prpb fnp config card for the 10M 
channel cabled to the active DIA must have a state of on; the card for the 10M 
channel cabled to the inactive DIA must have a state of off. 

3-35 AM81-D4 



Cabling a FNP to two different laMs on a single Multics system offers a 
measure of improved reliability. If the 10M attached to the active DIA board breaks 
down, the 10M and its attached FNP can be deleted from the system, and the FNP 
can then be added to the system using the other 10M channel. However, users of the 
FNP at the time of the 10M failure will have to login again. If their processes had 
the save_on_disconnect attribute, they will be able to reconnect to their processes and 
continue the work which was interrupted when the 10M failed. If their processes did 
not have the save_on_disconnect attribute, work in progress when the 10M failed will 
be lost. 

Cabling a FNP to the laMs of two different systems allows the FNP to be 
shifted easily from one system to the other. 

Multics requires that each FNP use a paging mechanism to access FNP memory 
beyond the first 32K words of memory. The paging mechanism on the FNP pager 
board can be disabled for testing purposes, but Multics requires that it be enabled 
during normal operations. Contact your CSD representative if your FNP will not 
operate. Ask him to insure that the paging mechanism is fully operative. 

For a summary of switches to be checked before the system is brought up, see 
Appendix C. 

CALENDAR CLOCK 

The calendar clock is a 52-bit register in each SCU that contains the number 
of elapsed microseconds since January 1, 1901 at midnight, Greenwich mean time 

* (GMT). To set the clock for the 4MW SCU, use the BCE clock setting function. To 
set the clock for the 6000 SC, use the switches on the SC maintenance panel. As 
explained below, enter the appropriate 12-digit octal number corresponding to the date 
and time via the switches labeled DATA, and then press the correct buttons. 

The calendar clock MUST be set accurately; serious damage to the storage 
* system can result if the setting is incorrect. 

* 
Setting Calendar Clock in 4MW SCD 

* Step-by-step procedures for setting the calendar clock in the 4MW SCU are 
available in the Operator's Guide to Multics, Order No. GB61. 

* 

3-36 AM81-{)4 



Setting Calendar Clock in 6000 SCU 

1. After leaving the "early" BCE command level, the BCE clock setting function 
is invoked. You must ensure that the clok configuration card specifies the 
correct time zone. All times entered should be in local time. 

2. BCE will ask you a question of the form: .. 

The current system time is DATE TIME. 
Is this correct? 

3. You may reply "abort" to return to the "early" command level, "yes," or "no." 
If you answer "no," BCE will prompt you for the time with: 

Enter time: 

to which you should provide the current local time, in any form acceptable to 
the convert_date_to_binary _ subroutine. For example: 

year-month-day hour:minutes 

Choose a figure that is slightly (a minute or less) in advance of the current 
time, to allow time f or the next steps to be performed. 

4. BCE will then respond with: 

SCU Switches (octal) TTTTTT TTTTTT 

5. BCE will prompt with: 

Enter ,anything after the switches have been set. 

6. At the CPU, place the STEP CONTROL selector switch on the maintenance 
panel in the MEM position. -

7. At the SC (which must be in TEST mode), enter the number TTTTTT I I I I IT 
in the upper row of the OAT A switches. Enter all zeros in the lower row of 
the DATA switches. 

8. Press the INITIALIZE and the LOAD CLOCK push buttons simultaneously, at 
the instant whe~ the current time reaches the time that was typed. 

9. Turn the STEP CONTROL selector switch on the CPU to OFF and press the 
STEP push button. 

10. Enter tty". 

11. BCE will repeat the question in step 2. This should be answered appropriately. 

* 

3-37 AM81-04 



SECTION 4 

COMMUNICATING WITH THE SYSTEM 

THE BOOTLOAD CONSOLE 

You may use the bootload console to issue Multics initializer commands, 
commands to the daemons, standard Multics commands, and BCE commands when BeE 
is in opera tion. * 

Effect on System Performance 

Under normal circumstances, the bootload console may be used without 
noticeable effect on the performance of the Multics system. However, if there is a 
large burst of syserr messages, then the system pauses and waits for the messages to 
be printed before proceeding with other user or system commands. When messages are 
being printed, the console is in UNLOCK mode (described below). On a one-CPU 
system, the system does nothing else while the console is unlocked. 

Console 30-Second Timer 

The bootload console has a 30-second timer mechanism. When reading input 
from the console, if no character is typed within 30 seconds, the read operation is 
terminated. The 30-second timer is controlled by a switch in the maintenance panel 
on some models of the bootload console. This switch must be set to the ENABLED 
position during operation of both Multics and BCE. 

Use of the Bootload Console 

The bootIoad console operates in two modes: LOCK mode and UNLOCK 
mode. In LOCK mode, the console keyboard is locked and cannot be used to type 
input. In UNLOCK mode, either the keyboard is unlocked and ready to accept input. 
or the bootIoad console is typing output. If the bootload console is in UNLOCK 
mode, the keyboard continues to be unlocked after each input request has completed 
and the system is ready to accept another input line. The console may be returned to 
LOCK mode when you press the EOM button (or the RETURN key for a CSU6601 
console) without typing any other character so that system messages may be printed. 

4-1 AM81-G4 



On all but the model CSU6601 console. the bootload console remains in LOCK 
mode until you press the REQUEST button. When the keyboard is unlocked you may 
type input. The END OF MESSAGE (EOM) button must be pressed to signal that the 
input line has been completed. When the system has processed an input line and is 
ready to accept another, the console keyboard is unlocked. Then you can type the 
next input line without pressing the REQUEST button. In UNLOCK mode. any output 
generated as a result of an input line may be stopped by pressing the REQUEST 
button. However. syserr messages cannot be stopped. Also, when the REQUEST button 
is pushed, the line currently being typed is finished and one more line of output is 
typed before the output is stopped. 

On the model CSU6601 console, the system prompts you when it is expecting 
input. The prompt consists of the characters "M->" at the beginning of a line when 
either BCE or Multics is running. When the CSU6601 console is in LOCK mode, you 
can unlock the console for input by pressing the RETURN key on the keyboard. 
After the system responds with the appropriate prompt, you may type a line of input. 
This line is terminated by pressing the RETURN key, at which time the console is 
placed in LOCK mode. 

Another way that the bootload console may be taken out of UNLOCK mode 
and put back into LOCK mode is by runout of the 30-second timer. When the 
bootload console is UNLOCKED and ready to accept input, if you do not type a 
character within 30 seconds, the timer runs out and the bootload console is placed in 
LOCK mode. In this event, any read operation is terminated, and any input typed on 
the current line is lost. Similar actions take place if any of the following events 
occur: 

• You type an invalid character 

• You turn the ONLINE/OFFLINE switch to OFF 

• You turn the POWER switch on the console maintenance panel to OFF 

The maximum number of input characters that can be typed on one line from a 
bootload console is 84. If this number is exceeded, or if the OPERA TOR ERROR 
button is pushed, the read operation is terminated and all input typed on the current 
line is discarded. However, the operator console remains in UNLOCK mode. 

The bootload console occasionally jams and will not respond to the REQUEST 
button. The set_system_console command may be used to return the console to its 
previous (unjammed) state. This command requires access to the highly privileged gate 
hphcs_, and is documented in the Multics Administration, Maintenance and 
Operations Commands manual. Order No. GB64. Note that this is not an initialize! 
command -- it must be executed in a privileged user process or in admin mode in 
the ini tializer process. 

The substty command (described in the Multics Administration, Maintenance 
and Operations Commands manual, Order No. OB64) is useful in cases of an 
inoperative bootload console when there is no alternate console. It may be used to 
switch the output from the inoperative console to an initializer terminal that is 
working. 

4-2 AM81-()4 



RCP messages and other syserr traffic are not handled by the message 
coordinator. This means that message coordinator commands cannot be used to 
manipulate these messages. For example, the reroute command cannot be used to 
reroute these messages from the bootload console to an initializer terminal. 

The set_system_console command mentioned earlier may be used to stop ring 
zero from sending syserr messages to the console. The messages are automatically 
rerouted to the first initializer terminal accepted during the current bootload. 

THE MULTIDROP INTERFACE (MDI) FOR IMUS 

On systems that have IMUs as I/O multiplexers, you must communicate with 
the maintenance channel adapter (MCA). The MCA controls the hardware functions of 
system booting, IMU maintenance (e.g., IPC firmware loading), and some hardware 
control functions for the IMU. There are three hardware components involved in 
communicating with the MCA. These are: the MCA, the console channel in the IMU 
OPC-CONS), and a console or terminal. These are connected together to form the 
m ul tidrop in terf ace. 

The multidrop interface (MOl) connects MCAs and IPC-CONSs in a daisy-chain 
configuration. The MOl requires at least one IPC-CONS (connected to a console) and 
one MCA. Multiple IPC-CONSs and MCAs may be connected; however, only one 
console may be enabled on the MOL This console is the master console; all other 
consoles are slaves. The master console is the one to which all operator communications 
to all connected MCAs are routed. There are commands that will allow the master 
console designation to be moved from the current master to a slave; however, that 
slave IPC-CONS must have a console or terminal connected. 

Each MCA must be able to reach a master console. If multiple IMUs are 
configured, only one is required to have an IPC-CONS. This IPC-CONS must be 
connected to a console or terminal and be the master console on the MOL If the 
bootload console is on the IMU, it may be used as the master. If not, a separate 
console is required for the MOL This console must be described in the Multics 
configuration deck as "alt". All the MCAs and IPC-CONSs on the system may be 
connected together on one MOl, or each MCA and IPC-CONS in an IMU can be a 
separate MOl, or the components may be combined in other ways, but they must 
meet all the hardware and software requirements for an MOL 

Because the master console may be the bootload console, the IPC-CONS in the 
IMU uses an escape sequence to communicate with an MCA. This convention uses a 
"#" character to determine if the input is for the MOL There can be more than one 
MeA connected to the MDl; therefore, the MCA number must follow the "#" 
character. To show that the MOl is active, a ">" character is printed by the console 
indicating the message will be for an MCA. All commands to the MCA are prefixed 
this way. All output messages are prefixed similarly with "#nn<," where "#" is an 
indication that this is from an MCA, "nn" is the MCA number, and "<" indicates that 
this is an output message. For example, to set the date and time in the MCA, type: 

H01>time 111485,120000 

4-3 AM81-04 



The MCA will respond with: 

#Ol<Monday November 14, 1985. 11/14/85 (12:00:00) 

The MCA number is determined by rocker switches on the MCA board in the IMU. 
These must be set to a number corresponding to the IMU's letter on its iom card in 
the config deck (e.g.. 00 = a, 01 = b, etc.). 

This convention of prefixing the input messages with the "#" character only 
applies when the system does not have the console open for read. If the console is 
open for read (normal operator input), "#" may still be used to delete a character. If 
it is necessary to input to the MCA when the console is open for read, an "ESC#nn" 
pref ixes the message. 

While the ability to tell the MCA the date and time as described above has no 
impact on the Multics system. some of the maintenance functions may have adverse 
effects. Also, by obtaining control of the MCA, control may be obtained over the 
If\.1U and therefore over all devices connected to it. There are no explicit commands 
to read or write devices; however, the potential to compromise data exists. This can 
be considered a security risk. 

To prevent possible adverse effects and avoid the security risk, console input to 
the MCA can be disabled (locked) by using the BeE lock_mca command. This 
command locks console input to the MCA; output from the MCA is still displayed on 
the console. The lock_mca command must be issued before the BeE boot command. 
If lock_mca is not invoked, the default mode of operation for the MCA is to have 
its input enabled (unlocked). To unlock an MCA which is locked, use the BCE 
unlock_mca command. The lock_mca and unlock_mca commands are described in the 
Multics Administration, Maintenance, and Operations Commands manual, Order No. 
GB64. 

THE INITIALIZER TERMINAL 

If more than one terminal channel is connected to the initializer, the output 
from the various sources (e.g., daemon processes) can be routed to divide the work 
among several terminals. For example, all the daemons could be handled by one 
terminal, and the answering service could use another. Or, if all the terminals are 
inoperative, the system, can be run completely from the bootload console. 

All terminals attached to the initializer may input initializer commands. (It is 
possible to restrict a terminal to only certain commands.) It is sometimes difficult to 
input an initializer command between output messages on an initializer terminal, 
because the system keeps interrupting. If you type an empty line on an initializer 
terminal, the system responds: 

OPER: 

4-4 AM81-o4 



and suspends output on that terminal channel. When you complete your command, the 
output is restarted, with no message lost. If you do not finish your command in one 
minute, the output is restarted. (On the bootload console, no output happens while a 
read is open.) 

Terminals may also be added to the initializer dynamically. To do this, dial a 
terminal into Multics as if you were going to log in, but instead of typing login, issue 
a dial command: 

Multics 9.0: PCQ, Phoenix, Az. 
Load = 4r.0 out of 110.0 units: users = 41 

dial system 

The dialed terminal gets a message of the form: 

TN300 405 chn a.h003 dialed to Initializer. 

Also, a message stating that the terminal has dialed in is routed" through the message 
coordinator from the source "as" on the switch severityl to wherever the system_start_up.ec 
has routed "as" messages. This might be the bootload console, an initializer terminal, 
or nowhere. The message looks like this: 

1137 as dial_ctl_: channel a.h013 dialed to Initializer 

You should then issue a series of commands to accept the terminal channel and 
to route output to it. 

accept a.h003 reply dump otw_ 
Ready (User_name) 
define vc2 tty a.h003 
Ready (User_name) 
route dump user_i/o vc2 
Ready (User_name) 

The response on the dialed terminal is a message saying that the initializer has 
attached the channel: 

channel a.h003 attached by Message Coordinator. 

followed by whatever messages are routed to the terminal channel. 

When you are finished with a dialed terminal, or if a curious user tries to dial 
the initializer without permission, you may disconnect the channel from the initializer 
and make ii available for dialups again by typing a drop command: 

drop a.h003 
Ready (User_name) 

The response on the dialed terminal is a message similar to "please reissue dial 
command" and at this point the terminal may be redialed, or used for regular logins, 
or hung up. 

4-5 AM81-04 



SECTION 5 

BOOTLOAD OPERATING SYSTEM 

The. information that was in this section is obsolete and has been deleted. 

5-1 AM81-04 



SECTION 6 

BOOTLOAD COMMAND ENVIRONMENT 

BOOTLOAD COMMAND ENVIRONMENT DESCRIPTION 

The bootload command environment (BeE) comprises a set of programs for 
performing functions such as bootloading Multics, dumping and patching main memory 
and disks, and initiating an emergency shutdown of Multics. 

BeE is contained within tho first two collections of modules on the Multics 
system tape. It consists of the following major parts: 

1. collection zero routines 
a series of programs read in from tape by the 10M which load the other BeE 
programs into memory and load firmware into the bootload tape controller, if 
necessary. 

2. collection one initialization 
a series of programs that are part of Multics initialization proper that also 
initialize the bootload command environment. 

3. toehold program 
a small program permanently residing in main memory at absolute location 
24000 (octal). It communicates closely with Multics to pass control back and 
forth between Multics and BeE. 

4. bootload command utilities 
a series of programs which provide the BeE command level. 

5. command programs 
a number of programs that perform the operator directed functions of BeE. 

CONFIGURATION REQUIREMENTS 

BeE requires a bootload console. In case of bootload console failure, BeE 
searches the configuration deck for an alternate console. If it finds one, the first 
console becomes inoperative. If it doesn't find one, BeE crashes. (See the description 
of the prph ope config card in Section 7.) 

BeE requires 512K of contiguous low order memory. All of BeE's functions 
can be performed within this memory. 

6-1 AM81-()4 



Two special regions of the RPV are used by BCE. These two special regions 
have locations recorded in the label of the RPV. The first is the FILE partition, 
which contains a simple file system used by BCE to hold BCE exec_corns and ASCII 
sources of configuration files. The second is the BCE partition, used by BCE to hold 
the following: 

• BCE itself and BCE command programs 

• The programs needed to boot Multics 

• A saved copy of memory used by Multics when BCE is invoked after a crash 

LOADING BCE 

BCE is loaded via the 10M. Step-by-step procedures for bootloading BCE are 
available in the Operator's Guide to Multics, Order No. GB61. 

Cold Booting BCE 

A cold boot of BCE and Multics recreates the entire storage system hierarchy 
on a particular RPV, discarding previous hierarchies, including all user files. Therefore, 
you shouldn't do a cold boot unless you're sure you want to discard the existing 
hierarchy; i.e., you shouldn't do a cold boot unless the Multics storage system is either 
nonexistent or has been destroyed. Proceed as if you were doing a regular boot. 
Then. when you get the prompt: 

Enter rpv data: 

answer it with: 

where: 

T 

chan 

cold Tehan msp_model drive_model drive_number{sv} 

is the tag of the 10M to which the bootload disk controller (the one 
controlling the disk drive on which the RPV is mounted) is connected (a, b. c 
or d). 

is the number' (in decimal) of the 10M channel to which the bootload disk 
controller is connected (e.g., 24). 

msp_model 
is the model number (in decimal) of the bootload disk controller. 

6-2 AM81-()4 



Valid model numbers are: 

400 (MS P0400) 
451 (MSP0451, DSC0451) 
601 (Msp060 1) 
603 (MS p060 3) 
607 (Mspo607) 
609 (Msp0609) 
611 (MSp061l) 
612 (MSp0612) 
800 (MSP8021, Msp8022, MSp8023) 
i pc (I PC-F IPS) 

drive_model 
is the model number (in decimal) of the disk drive on which the RPV is 
mounted. Valid model numbers are: 

400 (MSU0400) 
402 (MSU0402) 
451 (MSU0451) 
500 (MSU0500) 
501 (MSU050 1) 
3380 (MSU3380) 
3381 (MSU3381) 

drive_number bv} 
is the number of the disk drive and, if drive_model is 3380 or 3381, the name 
of the subvolume on VVhich the RPV is located. The valid subvolume names 
for MSU3380s are a and b. The valid subvolume names for MSU3381s are a, 
b, and c. A subvolume name must be specified for 3380 and 3381 devices; it 
must be omitted for all other disk drive types. An example of drive_number 
for a 451 is "1". An example of drive_number {sv} for a 3380 is "lb". 

The system will enter the init_ vol request loop. (The init_ vol request loop is described 
under the init_vol command in the Multics Administration, Maintenance and 
Operations Commands manual, Order No. GB64.) At this time, you must enter the 
attributes of the RPV. 

Then. when BeE comes to the "early" command level, you must enter the config deck. 
(The BeE commands to do this are described in the Multics Administration, 
Maintenance, and Operations Commands manual, Order No. GB64). When you are 
finished, again proceed as if you were doing a regular boot 

Some Special Requests 

When the system asks you to enter the boot tape MPC model, you can stop 
(crash) initialization by typing "shut." If firmware should not be loaded into this MPC 
for some reason, you can prevent it from being loaded by typing "ipc." 

When the system asks you to enter the RPV data, you can abort booting by 
typing "shut" If firmware should not be loaded into the described MPC for some 
reason, you ~ suppress the load by typing "skip" before you type "rpv" or "cold." 

6-3 AM81-04 



* 

Error Recovery during BeE Boot 

There are several different points during the boot process at which attempts 
are made to allow for error recovery. The methods depend on the point within the 
boot sequence. The following paragraphs discuss the recovery attempts by describing 
some aspects of the internal operation of the boot sequence. 

When you boot BeE directly from the 10M, it executes collection 0 
initialization, which reads in collection 1 (BCE proper). A config deck is synthesized 
from the knowledge of the hardware found during this pass and through questions to 
the operator. A first pass is made through collection 1 to find the RPV and to read 
in the last config deck saved in the CONF partition on disk. If an error occurs 
before this point, most likely a hardware or software failure, the early dump facility 
is invoked (see "The Early Dump Facility" later in this section). Otherwise, this 
environment (memory and the synthesized config deck) is saved on disk. The "early" 
command level is then entered. (Note that time stamps may be wrong at the "early" 
level.) At this point, you must make sure the con fig deck (read from disk) is correct. 
Then you may enter "bce" to actuaHy boot BeE. Initialization continues with a second 
pass through collection 1. If this pass fails, most likely due to either a hardware 
problem or an error in the config deck, the saved environment is restored and you 
are returned to the "early" command level. You may then retry the boot Eventually 
this will succeed and BCE will come to the "boot" command level, having saved this 
new environment and config deck. 

Once at the "boot" command level, you may perform BCE functions. To boot 
Multics, enter "boot". Another pass through collection 1 is made to set up for 
Multics. If an error occurs during this pass (most likely a hardware problem or a bad 
config deck). the environment saved above is restored and you are returned to the 
"bce_crash" command level. Also. if a BeE utility should fail or should encounter a 
BCE breakpoint, this environment is restored and "bce_crash" level entered. (For a 
discussion of BeE breakpoints. refer to the description of the BeE probe command in 
the Multics Administration, Maintenance, and Operations Commands manual, Order 
No. GB64.) At this time, you may enter "crash" level commands to examine the 
failed image (or to debug BeE), or "boot" level commands to fix the config deck (if 
necessary) and to retry the boot of Multics. 

An important thing to remember about coming to the "bee_crash" or returning 
to the "early" command levels is that they use an environment and config deck 
deciared safe on a previous initialization pass. As such, not all devices listed in the 
"current" config deck (the one visible with the config deck editor) may be accessible 
at this level. Generally speaking. to access all devices. the config deck must be correct 
and an initialization pass (the "boot" pass) must be made. If you are in doubt, 
entering "reinitialize" will run another initialization pass. 

Once the "service" pass of collection 1 completes. any further failures of 
initialization or of Multics itself return to the "crash" command level, used for 
examining the crash. At this time, the config deck as used by Multics is used. This is 
done to take into account any reconfigurations performed by Multics. At the "crash" 
level, you should take a dump and perform an emergency shutdown. 

6-4 AM81-04 



Config Deck and Device Accessibility 

When Multics is running, the set of devices that are accessible (to the system 
as a whole) are precisely those described by the config deck. The config deck is kept 
up to date with the state of the devices. However, the real state of devices and their 
accessibility is described by various control tables within Multics. One of the main 
purposes of BCE is to set up these control tables. Since BCE allows arbitrary text 
editing on the con fig deck. it follows that the state of the control tables may not 
match that of the config deck. The following paragraphs describe some of these 
subtleties. 

When you first boot BCE from tape, collection 0 constructs a config deck 
based on operator responses and some hardware switches. This config deck is used to 
construct the control tables at the "early" level. As a result, this config deck and the 
control tables only describe the bootload tape drive, the RPV, and the bootload 
processor. Some fields in the config deck will be incorrect, such as CPU model 
numbers. At the "early" command level, you must make sure that the config deck 
accurately describes all hardware units. These units are not accessible at this time, 
however. 

An attempted boot to "boot" command level builds control tables describing all 
of these hardware units. If this boot succeeds, all of these units are accessible from 
BeE. If it fails, BCE returns to "early" command level with only the initial hardware 
units accessible. 

At the "boot" command level, you may again change the config deck. Any 
units added, for example, will not be accessible at this time, since the control tables 
do not describe them. However, if you boot Multics, Multics will be able to access 
them all, since a Multics boot builds control tables for them all. If this boot fails, 
BCE returns to the "bce_crash" command level, with these new changes not described 
in the control tables (but visible in the config deck). 

Any changes made to the config deck become reflected in the control tables in 
only one of two ways. The first is by your booting to the next BCE command level 
or to Multics. If the config deck is correct, the devices become accessible. The other 
way is by your entering "reinitialize," which runs a new initialization pass and returns 
to the "boot" command level. If this succeeds, the devices become accessible. If it 
fails, BeE returns to "bee_crash" level, without the changes being made. 

BCE TOEHOLD 

The BCE toehold is a program that resides in main memory. The toehold 
communicates very closely with BCE and Multics as follows. 

6-5 AM81-o4 



When Multics is running, the toehold may be invoked by manually forcing the 
processor to execute an XED 24000 (octal) interrupt inhibited instruction. The CPU 
must be in TEST mode when the XED instruction is executed. The toehold saves the 
processor registers and the S12K of low memory. It then reads in a saved copy of 
BeE from the RPV and transfers control to it. BeE then enters its command level 
with a prompt of: 

bce (crash) TIME: 

The toehold is also invoked as a result of either the "go" or the "continue" 
command being issued wi thin BeE. When one of these commands is issued, the 
toehold restores the memory image that it has previously saved and restarts the 
program that was originally running. 

The toehold contains a flagbox of bits that may be ON or OFF and which can 
be read and set both by BCE and Multics. 

To enter BeE manually on a Level 68 system, execute switches with the DATA 
switches set to 024000717200 (XED 24000 interrupt inhibited). To enter BeE manually 
on a DPS 8 system, use the BeE 24000 command. 

Step-by-step procedures for executing switches on both a Level 68 system and 
a DPS 8 system are available in the Operator's Guide to Multics, Order No. GB61. 

THE EARLY DUMP FACILITY 

The early dump facility is a facility within BeE that is capable of saving an 
image of memory to tape when a system failure occurs during collection 1 
initialization. It resides at a fixed location in memory whenever BeE is running (30000 
octan. It is invoked automatically whenever a hardware or software error is detected 
prior to the establishment of the BeE toehold. It can also be entered manually, 
whenever BeE is present (but definitely NOT when Multics is running), by forcing an 
XED 24004. This is done in a manner similar to forcing a manual return to BeE, 
except that the value entered into the DATA switches is 024004717200 (XED 24004 
interrupt inhibited). 

Once entered, the early dump facility may print a flagbox message. It will 
always prompt with: 

Enter tape drive number for memory dump: 

You should reply with the number of a tape drive controlled by the bootload tape 
controller on which a tape is mounted for writing. Memory will be dumped onto this 

* tape at a density of 1600. After performing the dump. BeE will disable itself. 

6-6 AM81-04 



The tape written by this facility can be read with the read_early _dump_tape 
(redt) command and analyzed with the analyze_multics (asm) command, both of which 
are described in the Multics Administration, Maintenance, and Operations Commands 
manual, Order No. GB64. 

BCE COMMAND LANGUAGE 

The command language used within BCE is the normal Multics command 
language (actually the ssu_ request language). Do not confuse this with the command 
language used at the initializer's ring 1 command level. (Refer to the Multics 
Programmer's Reference Manual, Order No. AG91, for a description of Multics 
command/subsystem language.) Full support for active functions, iteration sets, etc. is 
provided. 

Commands to BeE may only be issued at the bootload console. Standard 
typing conventions apply. It is also possible for BCE commands to be placed in 
exec_corns. Exec_corns are ASCII files containing commands and possible input to 
commands. They are run with the "exec_com" command. 

There are three ways to edit a BCE exec_com. One way is to use the BCE 
qedx command within BCE. This way is not recommended. A second way is to use 
the bootload_fs command to copy the exec_com into the Multics storage system, use a 
Multics text editor to edit the exec_com, and use the bootload_fs command to copy 
the exec_com back into the BCE file system. A third way is to get a copy of the 
exec_com from the system library, edit it with a Multics text editor, return it to the 
system library, and then use the generate_mst command to create a new system tape. 
Both the bootload_fs command and the generate_mst command are documented in the 
Multics Administration, Maintenance, and Operations Commands manual, Order No. 
GB64. 

Also, a command may be placed in the flagbox within BeE or Multics for 
BeE to execute whenever Multics crashes or shuts down. 

Whenever BeE is at command level, it responds with a ready message like the 
following: 

bee (state) TIME: 

where "state" is one of the following: 

early 
indicates that system is ready to boot BCE. 

boot 
indicates that system is ready to boot Multics. 

crash 
indicates that Multics has crashed. 

6-7 AM81-04 



bee_crash 
indicates that BCE has crashed. 

See Figure 6-1 for an illustration of the BCE states and some commands/events that 
change them. 

Some commands have subrequests to them, such as qedx and probe. The 
conventions for request lines entered for such commands vary from command to 
command. 

BCE COMMANDS 

Complete descriptions of the BCE commands are presented in the Multics 
Administration, Maintenance and Operations Commands manual, Order No. GB64. 

ABORTING BCE COMMANDS 

Whenever you push the REQUEST button on the console (or the RETURN key 
on the CSU660l) and BCE has not solicited this request from you, the BCE abort 
routine is entered. This routine allows BCE operations to be aborted to various 
extents. When called, the abort function prompts you (on the console) with: 

Abort? 

You may give various answers to this question. If you hit the REQUEST button 
accidentally, you may enter "no" or "n" to return to the interrupted operation. 
Answering "yes" or "y" aborts the operation. If the operation was a sub-request, only 
the sub-request is aborted. Otherwise, the command in question is aborted, returning 
either to the exec_com which called it. if one was present, or to BCE command level. 
Answering "request," "req" or "r" is equivalen t to answering "yes. " Answering 
"command," "com" or "c" aborts the current command, regardless of whether a 
sub-request was in execution or not. Finally, answering "all" or "a" aborts anything in 
execution. returning to BCE command level. 

6-8 AM81-G4 



( 
reinit 

FAILS 

10M 

I 
iNiTIALIZE/BOOTLOAD 

rpv 

c~~J 
· (or ~""'''I------------'''''''l 

reinit 

FAILS 
bce reinit 

rOiE\ I /FAILS 

~-
(,...----------I-=~ (boot)~ ..... ~--------_, 

re~ ( l L CS:l~~S T 
reinit 

J 
------ (bce-crash) boot shut (crash) -------

I SyLM 
boot 

l 
CRASHES 

..... -----..... ~ MULTICS ------~j 

Figure 6-1. BCE States and Commands/Events That Change Them 

6-9 AM81-D4 



SECTION 7 

MUL TICS CONFIGURATION DESCRIPTION 

MULTICS CONFIGURATION FILE 

The following discussion describes records in the con fig (configuration) file. 
Information in this file describes the hardware configuration. tells the system of switch 
settings and operational readiness of specific hardware and peripheral devices. and sets 
several system tuning parameters. This information is specified while in BCE. and 
passed by BCE to Multics; the system software considers this information the 
configuration under which Multics must run. 

Historically. the configuration records were defined by a set of cards in. a 
con fig deck. Today. the config deck is replaced by a config file in which each line 
defines a configuration record. The older terminology. however. still appear in the 
documentation and in the name of the Multics print_con figuration_deck command. 

Old Terminology 

config deck 
config card 

New Terminology 

config file 
config record (line in config file) 

The configuration file is stored by BCE in the CONF partition. It can be input from 
,! file on the Multics system tape or from the bootload console. 

Each configuration record described in this section includes a standard format 
and a labeled format illustration. In the labeled format. each value on a config 
record. except the name of the record. can optionally be preceded by a field label. 
Labeled fields can appear in any order. The interpretation of a con fig record in 
labeled form is that all labeled field values are ordered according to standard format; 
any unlabeled value. then. fill in the missing fields. Thus. 

iom -state on --port 1 a iam 

becomes 

i om ali om on 

in its standard format Con fig records in labeled format are easier to understand than 
records in standard format because each field is preceded by an identifier. 

7-1 AM81-04 



* 

* 

Each site has its own set of config records that define the hard core 
configuration. switch settings, and software tuning parameters used by the site. The 
format of config records is the same for every site. The particular config records. 
their order, and their field values vary to conform to the equipment configuration at 
that site. 

Config records can be divided into five categories: 

1. configuration of major hardware mainframe modules: cpu, iom, mem 

2. configuration of peripheral controllers and devices: chnl, ipc. mpe, prph, udsk 

3. descriptions of software parameters: clok. schd, sst, tcd 

4. parameters of the storage system: part, root, salv 

5. specialized: dbmj, in tk, parm. tbls. 

General Description of Con fig Records 

All records in the con fig file contain free-formatted individual fields separated 
by one or more blank characters. Numbers on config records are usually octal (the 
part and root records are exceptions). Decimal numbers are represented by placing a 
decimal point immediately after the number (e.g.. 10. indicates decimal ten). In some 
record fields. numbers 1 through 8 may be represented by the letters a through h, 
respectively. See examples listed under individual records. 

Listing the Config File in BCE 

After the config file has been read by BeE at bootload time. it may be listed 
by typing the BeE config command to enter the con fig file editor, and then typing 
"l,$p" at the bootload console. The BeE config command is described in the Multics 
Administration, Maintenance, and Operations Commands manual, Order No. GB64. 

Listing the Con fig File in Multics 

When Multics is running, you may list the config deck with the 
print_configuration_deck (pcd) command, described in the Multics Administration, 
Maintenance and Operations Commands manual. Order No. GB64. 

Sample Configuration Files 

Here is a sample configuration file for a large system, with the records in 
general format: 

clok 5 est 24. 
iom a 0 iom on 
i om b 1 i om on 
iom c 2 imu on 
cpu a 7 on dps8 70. 32. 

7-2 AM81-04 



cpu b 6 on dsp8 70. 16. 
cpu c 5 on dsp8 70. 8. 
cpu d 4 on dsp8 70. 8. 
mem a 2048. on 
mem b 2048. on 
mem c 2048. on 
mem d 1024. on 
mpc rntpa 611. a 14. 1 
mpe mtpb 611. b 14. 1 
mpe mspa 612. a 16. 4 
mpe mspb 612. a 20. 4 
mpe mspe 612. a 24. 4 
mpe mspd 612. b 16. 4 
mpe mspe 612. b 20. 4 
mpc mspf 612. b 24. 4 
mpe u r pa 8001. a 10. )2 
mpe urpb 8001. a 12. 2 
prph dska a 16. 4 501. 8 0 22. 451. 2 
chn1 dska b 16. 4 
prph dskb a 20. 4 0 8 501. 8. 0 12. 451. 2 
ehn1 dskb b 20. 4 
prph dske a 24.4 0 16. 501. 3 0 6 451. 2 
chn1 dske a 24. 4 
prph dskg e 16. 4 3380. 16. 
ehnl dskg e 20. 4 
prph tapa a 14. 1 610. 6 
ehn1 tapa b 14. 1 
prph opea a 31. 6601. 80. on 
prph opeb a 24. 6004. 80. alt 
prph opce e 14. 6601. 80. a1t 
prph pr ta a 10. 1201. 600. 136. 
prph prtb a 11. 1201. 600. 136. 
prph rdra a 12. 500. 
prph fnpa a 28. 6670. on 
prph fnpb b 28. 6670. on 
prph fnpc a 29. 6670. on 
prph fnpd b 29. 6670. on 
i pc f ips c 16. 4 
ipe fips c 20. 4 
root dskc 30 dskb 31 dske 28 
part dump dskc 30 
sehd 400000 4 10 100 2 20. 
ted 200. 600. 
sst 3000. 1500. 1000. 200. 
udsk dska 2 
parm ttyb 61440. cerf 
tb1s scav 140. 
dbmj 64. 700. 400. 150. 60. 25. 

Here is the same config file, but with the records in labeled format: 

clok -delta 5 -zone est -boot_delta 24. 
iom -tag a -port a -model iom -state on 
iom -tag b -port 1 -model iom -state on 
iom -tag e -port 2 -model imu -state on 

7-3 

* 

AM81-04 



cpu -tag a -port 7 -state on -type 
cpu -tag b -port 6 -state on -type 
cpu -tag c -port 5 -state on -type 
cpu -tag d -port 4 -state on -type 
mem -port a -size 204B. -state on 
mem -port b -size 204B. -state on 
mem -port c -size 204B. -state on 
mem -port d -size 1024. -state on 

dpsB -model 70. -cache 32. 
dpsB -model 70. -cache 16. 
dpsB -model 70. -cache B. 
dpsB -model 70. -cache B. 

mpc -ctlr mtpa -model 611. - am a -chn 14. -nchan 1 
mpc -ctlr mtpb -model 611. - am b -chn 14. -nchan 1 
mpc -ctlr mspa -model 612. - am a -chn 16. -nchan 4 
mpc -ctlr mspb -model 612. - am a -chn 20. -nchan 4 
mpc -ctlr mspc -model 612. - am a -chn 24. -nchan 4 
mpc -ctlr mspd -model 612. - am b -chn 16. -nchan 4 
mpc -ct1r mspe -model 612. - am b -chn 20. -nchan 4 
mpc -ctlr mspf -model 612. -10m b -chn 24. -nchan 4 
mpc -ctlr urpa -model B001. -iom a -chn 10. ~nchan 2 

-mpc -ctlr urpb -model B001. -iom a -chn 12. -nchan 2 
prph -subsys dska -iom a -chn 16. -nchan 4 -model 501. -number B. 

-model 0 -number 22. -model 451. -number 2 
chnl -subsys dska -iom b -chn 16. -nchan 4 
prph -subsys dskb -iom a -chn 20. -nchan 4 -model 0 -number B. 

-model 501. -number B. -model 0 -number 12. -model 451. 
-number 2 

chnl -subsys dskb -iom b -chn 20. -nchan 4 
prph -subsys dskc -iom a -chn 24. -nchan 4 -model 0 -number 16. 

-model 501. -number 3 -model 0 -number 6. -model 451. 
-number 2 

chnl -subsys dskc -iom a -chn 24. -nchan 
prph -subsys dskg -iom c -chn 16. -nchan 
chnl -subsys dskg - am c -chn 20. -nchan 
prph -subsys tapa - am a -chn 14. -nchan 
chnl -subsys tapa - am b -chn 14. -nchan 
prph -dev ce opca - am a -chn 31. -model 
prph -dev ce opcb - am a -chn 24. -model 
prph -dev ce opcc - am c -chn 14. -model 
prph -dev ce prta - am a -chn 10. -model 
prph -dev ce prtb - am a -chn 11. -model 
prph -dev ce rdra - am a -chn 12. -model 
prph -dev ce fnpa - am a -chn 2B. -model 
prph -dev ce fnpb - am b -chn 2B. -model 
prph -dev ce fnpc - om a -chn 29. -model 
prph -dev ce fnpd - am b -chn 29. -model 
ipc -type fips -iom c -chn 16. -nchan 4 
ipc -type fips -iom c -chn 20. -nchan 4 

4 
4 -model 33Bo. -number 16. 
4 
1 -model 610. -number 6 
1 
6601. 
6004. 
6601. 
1201 . 
1201 . 
500. 

-11 Bo. -state on 
-11 Bo. -state alt 
-11 Bo. -state alt 
- t r a i n 600. - 1 1 1 36 • 
- t r a i n 600. -11 136. 

6670. -state on 
6670. -state on 
6670. -state on 
6670. -state on 

root -subsys dskc -drive 30 -subsys dskb -drive 31 =subsys dske 
-drive 2B 

part -part dump -subsys dskc -drive 30 
schd -wsf 400000. -tefirst 4 -telast 10. -timax 100. -mine 2 -maxe 20. 
tcd -apt 200. -itt 600. 
sst -4k 3000. -16k 1500. -64k 1000. -256k 200. 
udsk -subsys dska -nchan 2 
parm tty b 61440. ccrf 
tbis scav 140. 
dbmj 64. 700. 400. 150. 60. 25. 

7-4 AM81-04 



Note that the parm. tbls. and dbmj records (shown) and the intk and salv records 
(not shown) do not have a labeled format. 

Name: chnl 

This record designates additional channels used to access a given disk or tape 
subsystem through a specified 10M. If a noncontiguous set of channels is used to 
access a given subsystem as. for example. through different lOMs. a chnl record must 
be used. Up to three additional channel groups may be specified. See the prph record 
for more information on disk and tape subsystems. 

Format 

chnl device_name ioml chnl nchanl { ••• iom4 chn4 nchan4} 

where: 

2. iomi 

3. chni 

4. nchani 

Labeled Format 

is the name of the disk or tape subsystem for which channels are 
being specified. It must match the device name of the disk or tape 
subsystem on a prph record. 

is the tag (a, b. c or d) of the 10M that is to be used. 

is the first logical channel (configuration dependent) through which 
the disk or tape subsystem is driven. 

is the number of logical channels (configuration dependent) to be 
used. 

chnl -subsys device name -iom ioml -chn chnl -nchan nchanl 
{ .•. -iom iam4 -chn chn4 -nchan nchan4} 

Examples 

chnl dska b 30. 4 

chnl - subsys dska -iam b -chn 30. -nchan 4 

7-5 AM81-04 



clok 

Name: clok 

I The clok record provides information to system software about how to interpret 
the readings of the calendar clock in a system controller. 

Format 

clok delta zone boot_delta 

where: 

1. delta 

I 2. zone 

is the time difference (number of hours earlier than Greenwich mean 
time). The range of this field should be: 

-12. <= delta <= +11. 

If the value of delta is less than zero, a minus sign must be 
specified. (This field is ignored by BeE, but must still be specified.) 

is up to four characters describing the time zone. The following is a 
list of the acceptable zone names and their corresponding delta and 
zone values. 

clok 

7-6 AM81-G4 



clok 

Zone Name 

Nome Time 
Hawaiian Standard Time 
Yukon Standard Time 
Hawaiian Dayiight Time 
Pacific Standard Time 
Yukon Daylight Time 
Mountain Standard Time 
Pacific Daylight Time 
Central Standard Time 
Mountain Daylight Time 
Eastern Standard Time 
Central Daylight Time 
Atlantic Standard Time 
Eastern Daylight Time 
Newfoundland Standard Time 
Greeland Standard Time 
Atlantic Dayl ight Time 
Newfoundland Dayl ight Time 
Azores Time 
West Africa Time 
Universal Time 
Universal Time 
Greenwich Mean Time 
Central European Time 
Middle Europe Time 
Middle Europe Winter Time 
British Summer Time 
Swedish Winter Time 
French Winter Time 
Heure Francais d'Hiver 
Middle Europe Summer Time 
Eastern European Time 
Swedish Summer Time 
French Summer Time 
Heure Francais d'Ete 
Baghdad Time 
GMT +4 hours. 
GMT +5 hours. 
Indian Standard Time 
GMT +6 hours. 
West Australian Standard Time 
Java Time 
West Australian Daylight Time 
China Coast Time 
Japan Standard Time 
Central Australian Standard Time 
South Austral ian Standard Time 
East Australian Standard Time 
Central Australian Daylight Time 

7-7 

delta 

+ 11 . 
+10. 
+09. 
+09. 
+08. 
+08. 
+07. 
+07. 
+06. 
+06. 
+05. 
+05. 
+04. 
+04. 
+03·5 
+03. 
+03. 
+02.5 
+02. 
+01 . 
+00. 
+00. 
+00. 
-01. 
-01. 
-Ol. 
-Ol. 
-Ol. 
-Ol. 
-01. 
-02. 
-02. 
-02. 
-02. 
-02. 
-03. 
-04. 
-05. 
-05.5 
-06. 
-07. 
-07.5 
-08. 
-08. 
-09. 
-09.5 
-09.5 
-10. 
-10.5 

zone 

nt 
hst 
yst 
hdt 
pst 
ydt 
mst 
pdt 
cst 
mdt 
est 
cdt 
ast 
edt 
nst 
gst 
adt 
ndt 
at 
wat 
ut 
z 
gmt 
cet 
met 
mewt 
bst 
swt 
fwt 
hfh 
mest 
eet 
sst 
fst 
hfe 
bt 
zp4 
zp5 
ist 
zp6 
wast 
jt 
wadt 
cct 
jst 
cast 
sast 
east 
cadt 

clok 

AM81-()4 



clok 

South Australian Daylight Time 
East Australian Daylight Time 
New Zealand Standard Time 

-10.5 
-11. 
-12. 

sadt 
eadt 
nzst 
nzdt New Zealand Daylight Time -13· 

this number reflects the site's normal interval between shutdowns and 
boots in hours (if the number is decimal. the decimal point must be 
supplied). If the system was down for more than the specified 
number of hours, the next time you attempt to boot the system you 
are informed of the "suspicious" situation and asked if you still want 
to boot. This control argument can be used to check for incorrect 
clock settings before damage is done to the storage system. The 
default is off. 

Labeled Format 

clok -delta delta -zone zone -boot_delta boot_delta 

Notes 

This is the record that is changed when daylight savings (or standard) time is 
started or stopped. 

If the operator attempts to boot BeE with an unacceptable value for zone on 
the clok record. the system prints the following message: 

scs_and_clock_init: The zone on the clok 
cbn 
record 

and BeE crashes. If the system was at the "early" state, it will stay there. If it was 
at the "boot" state, it will go to the "bce_crash" state. If it was at the "bee_crash" 
state, it will stay there. The operator should correct the clok record and continuing 
booting. (This means typing ttbcett at the "early" state or "boot" at the "bee_crash" 
state.) 

If the operator attempts to set the calendar clock to a time which is more 
than boot_delta hours after the last shutdown time, the system prints the following 
message: 

The current time is more than the supplied boot_delta hours beyond 
the unmounted time recorded in the RPV label. Is this correct? 

The operator should answer the question, and if necessary, reenter the time: 

clok 

7-8 AM81-()4 



clok 

Examples 

clok +05· est 24. 
c10k -02. eet 
clok + 11 • nt 

c10k -delta +05. -zone est -boot_delta 24. 
clok -delta -02. -zone eet 
clok -de 1 ta + 11 . -zone nt 

Name: cpu 

The cpu identifies a processor in the system configuration. 

Format 

cpu tag port state {type} {model} {cache_size} 

where: 

1. tag 

2. port 

3. state 

4. type 

5. model 

is a letter (a through h) corresponding to the processor number (0 
through 7) set in the processor configuration switches. 

is a number (0 through 7) corresponding to the system controller 
port to which the processor is connected. It is strongly recommended 
that 10Ms be configured on lower-numbered SCU ports than CPUs. 

is either on or off. On signifies that the processor is configured at 
the time Multics is bootloaded. Off signifies that the processor can 
be dynamically added to the configuration at a later time. 

is either 168. dps8, or dps. 

is the model number of the processor. The model number is 60. for 
L68 and DPS processors with no cache and 80. for those with 2K 
cache. The model number is either 70., 62. or 52. for a DPS8 
processor, depending on which submodel you have. 

is the cache size of the processor expressed in Kilo-words (lkw 
1024 words). 

cpu 

7-9 AM81-()4 



cpu 

Labeled Format 

cpu -tag tag -port port -state state 
{-type type -model model -cache cache_size} 

Examples 

cpu a 7 on dpsB 70. 32. 
cpu b 6 on dpsB 62. 16. 
cpu c 5 on dpsB 52. B. 
cpu d 4 off 16B Bo. 2. 
cpu e 3 on dps Bo. 2. 
cpu f 2 off dps 60. o. 

cpu -tag a -port 7 -state on -type dpsB -model 70. -cache 32. 
cpu -tag b -port 6 -state on -type dpsB -model 62. -cache 16. 
cpu -tag c -port 5 -state on -type dpsB -model 52. -cache B. 
cpu -tag d -port 4 -state off -type 168 -model Bo. -cache 2. 
cpu -tag e -port 3 -state on -type dps -model Bo. -cache 2. 
cpu -tag f -port 2 -state off -type dps -model 60. -cache o. 

Notes 

The CPU type. model number and cache size may be optionally specified when 
the config file is built in BCE. When the system is booted or a CPU is added to the 
configuration, internal hardware registers are read to determine the actual CPU type. 
model number and cache '""Size. Then. if these fields have been specified on the cpu 
con fig record image. they are checked for correctness. If any of them have been 
specified incorrectly. a message is sent which sounds the alarm. The discrepant fields 
are then corrected by the software. and the updated cpu config record image is 
restored into the config file segment. If these optional fields have not been specified, 
the software determines what their values should be and updates the cpu config record 
image in the config file segment without sending a message. If for some reason the 
CPU model number can not be determined by reading the appropriate config registers 
within the CPU, the CPU model number field is set to 77 .. 

cpu 

7-10 AM81-o4 



dbmj 

Name: dbmj 

The dbmj (Database Management Journals) record sets up dm.Journal_seL. and I 
also sets various limits on synch-held pages. 

Format 

dbmj max~ournals max_pages astl ast2 ast3 ast4 where: 

1. max.Journals 

3. astl 

4. ast2 

5. ast3 

6. ast4 

Examples 

is the maximum number of before journals allowed. 

is the maximum number of database management pages that may be 
held in memory at any given time. 

is the maximum number of database management segments allowed to 
have a 4K AST pool entry. 

is the maximum number of database management segments allowed to 
have a 16K AST pool entry. 

is the maximum number of database management segments allowed to 
have a 64K AST pool entry. 

is the maximum number of database management segments allowed to 
have a 256K AST pool entry. 

dbmj 64. 700. 400. 150. 60. 25. 

dbmj 

7-11 AM81-()4 



intk 

Name: intk 

The intk record is not physically present in the con fig file. It is a record 
image set up by BCE in the main memory-resident image of the con fig file at 
bootload time, and used to tell Multics whether or not to automatically start up the 
answering service. 

Format 

intk boot drive pl p2 ••• pN 

where: 

1. boot 

2. drive 

3. pi 

Example 

is either warm or cold to specify whether the system is to be 
brought up to a warm or cold bootload. 

is the tape drive from which the system tape is booted. 

are arguments typed to the BeE boot command other than warm. 
cold. or the tape number. These arguments enable special options 
during system startup. 

intk warm 3 star 

Name: iom 

The iom record describes an input/output mainframe (10M or IMU) as part of 
the system configuration. 

Format 

i om tag por t mode 1 s tate where: 

1. tag 

2. port 

is a letter (a. b. c or d) that identifies the 10M or IMU. 

is the system controller port (0 through 7) to which the 10M or 
IMU is connected. It is strongly recommended that I/O mainframes 
be configured on lower-numbered SC ports than CPUs. 

iom 

7-12 AM81-04 



3. model 

4. state 

is either iom, indicating that this I/O mainframe is an 10M, or imu, 
indicating that this I/O mainframe is an IMU. 

is either on, indicating that the I/O mainframe may be used by the 
system, or off. indicating that it may not be used at this time. If 
off. it may be added to the configuration at a later time. 

Labeled Format 

iom -tag tag -port port -model model -state state 

Examples 

iom a 0 iom on 

iom c 3 imu on 

iom -tag a -port 0 -model iom -state on 

iom -tag c -port 3 -model imu -state on 

Name: ipc 

I 

I 
I 
I 
i 
I 
I 
I 
I 
I 
I 
I 
I 
I 

The ipc record is used in the configuration file to associate channel numbers I 
with IPC FIPS controllers. FIPS controllers are only supported for the IMU type of I 
I/O mainframe. The physical channels for this type of I/O mainframe are called I 
IPCs. There must be a separate ipc record for each IPC FIPS controller configured I. 
on the system. 

Format 

ipc type iom chn nchan 

where: 

1. type 

2. iom 

is the type of the IPC. Only the "fips" type must be described in 
the config file. 

is the tag (a, b. c, or d) of the IMU to which the IPC is 
connected. 

7-13 AM81-04 



i~ mem 

3. chn 
is the starting logical channel DLlmber for this IPC. 

4. nchan 
is the number of logical channels for this IPC. 

Labeled Format 

ipc -type fips -iom iom -chn chn -nchan nchan 

Examples 

ipc fips a 20. 2 

ipc -type fips -iom a -chn 20. -nchan 2 

Name: mem 

The mem record defines the system con trollers that are part of the system 
configuration. There is one mem record for each system controller configured in the 
system. These mem records must be placed in the config file in the order in which 
the memories are configured, the lowest-order memory (lowest address) first and the 
highest (highest address) last 

Format 

mem port size state 

where: 

1. port 

2. size 

3. state 

is a value (a through h) that corresponds to the number of the 
active module port to which the system controller is connected. 

is the number of 1024 (2000 octal) word blocks of memory in the 
controller. 

is either on or off. On signifies that the memory is actively 
connected at the time Multics is bootloaded. Ofr signifies that the 
memory is available and, while not actively connected, may be 
brought into the system configuration dynamically at a later time. 

7-14 AM81-04 



mem 

Labeled Format 

mem -port port -size size -state state 

Examples 

mem a 1024. on 
mem b 1024. on 
mem c 1024. off 

mem -port a -size 1024. -state on 
mem -port b -size 1024. -state on 
mem -port c -size 1024. -state off 

Name: mpc 

The mpe record is used in the configuration file to associate channel numbers 
with microprogrammed peripheral controllers (MPCs) and with physical links to MPCs. 
On this record. the 10M number. the base channel number. and number of channels 
for each physical link (PSI A channel) to the MPC is given. There must be a separate 
mpe record for each MPC configured into the system. 

Format 

mpc ctlr_name ctlr model iom1 chanl nchan1 { ... iom4 chan4 nchan4} 

where: 

1. ctlr _name 
is the controller name of the MPC. Controller names must be 
unique -- no two on the system can be the same. Valid controller 
names are: 

mtpx 
mspx 
urpx 

for tape controllers 
for disk (mass storage) controllers 
for unit record controllers 

where x can be any alphanumeric character that makes the name 
unique. 

mpe 

7-15 AM81-04 



m~ m~ 

is the model number of the MPC. The following is a list of 
supported MPCs and their corresponding ctlr _name and ctlr _model 
values. 

MPC_type ctlr name ct 1 r _mode 1 

MTC501 mtp 50l. 
MTC502 mtp 502. 
MTC0602 mtp 602. 
MTP0600 mtp 600. 
MTP0601 mtp 60l. 
MTP0610 mtp 610. 
MTP0611 mtp 61l. 
MTP8021 mtp 611 • 
MTP8022 mtp 611 • 
MTP8023 mtp 611 • 
MSP0400 msp 400. 
DSC0451 msp 451 • 
MSP0451 msp 45l. 
MSp060l msp 60l. 
MSP0603 msp 603. 
MSp0607 msp 607. 
MSP0609 msp 609. 
Msp0611 msp 61l. 
Msp0612 msp 612. 
Msp8021 msp 800. 
Msp8022 msp 800. 
MSP8023 msp 800. 
URC002 urp 2. 
URP0600 urp 600. 
URP8001 urp 8001. 
URP8002 urp 8002. 
URP8004 urp 8004. 

The MSP0609 and MSP0612 controller models require two mpc records, one for 
each half of the controller. 

3. iomi 

4. chani 

5. nchani 

is the 10M to which each link adapter is connected. (See Notes 
below.) 

is the starting logical channel number for each link adapter. (See 
Notes below.) 

is the number of logical channels on each link adapter. (See Notes 
below.) 

7-16 AM81-04 



mpe 

Labeled Format 

Notes 

mpe -etlr etlr name -model etlr model -iom ioml -ehn ehn1 -nehan 
nehanl { ... --iom iom4 -ehn ehn4 -nehan nehan4} 

Up to 4 physical channels can be described on the mpe record. These channels 
must be listed in a specific order. The information for the bootload channel (as set 
on the MPC maintenance panel) must be listed first. The bootload channel is followed 
by the primary channel on the non-bootload link adapter (LA). Following these two 
primary channels are the secondary channels for the LAs, in the same. order as the 
primary channels. If any of these channels are not connected to the mpe they should 
simply be omitted from the mpe record. This ordering of the channels- is important 
to guarantee that the channels will be used in the most efficient manner possible. 

For disk and unit record MPCs. up to eight logical channels may be specified, since 
up to eight logical channels may be configured per physical channel. For tape MPCs. 
up to two logical channels may be specified. However. only one logical channel should 
be specified. since only one logical channel should be configured per physical channel. 

Examples 

mpe mspa 611. a 20. 2 a 24. 2 

mpe -etlr mspa -model 611. -iom a -ehn 20. -nehan 2 -iom a -ehn 24. 
-nehan 2 

Name: parm 

This record is used to define software parameters. More than one parm record 
may be used if many parameters are to be specified, although several parameters may 
be specified on each record. 

Format 

parm parameters 

where parameters can be chosen from the following: 

astk 
enables online maintenance of the SST name table. This increases 
system overhead. but speeds up dumps. 

parm 

7-17 AM81-04 



parm 

ccrf 

chwm 

crwl 

dirw 

dris 

dskq N 

specifies that the system should crash if all available consoles fail or 
if the bootload console is forcibly detached. If this parameter is not 
present, the system will continue to run fOT as long as possible 
without a console. I/O for the console will be sent to the syserr 
log. This parameter should be used by those sites which consider it 
critical that system events be reported in a timely manner. 

causes information to be printed on the bootload console during 
bootload pertaining to the collection 1 high-water mark; that is, the 
number of pages used by early initialization. 

is used only for system debugging. If the parameter crwl is put on 
the parm record, the system returns to BeE on every attempt to 
crawl out of ring 0, with the message: 

verify_lock: crawlout stop specified on parm record 

so that the system staff can take a dump. Typing go causes the 
system to continue operation. 

causes modified directory pages to be written from main memory 
whenever a directory is unlocked. Specifying this parameter increases 
the safety of the system at some cost in increased paging. Process 
directory pages are not written. This parameter must be specified in 
order to keep Data Management-protected files consistent across 
ESO-Iess crashes. 

specifies that the system should not check an 10M's configuration 
settings for consistency before adding the 10M to the system. For 
more information, see "Notes on Adding 10Ms" in Section 11. 

where N specifies the maximum number of disk queue elements that 
can ever be pending (i.e., the maximum number of disk I/O 
operations that can be queued at anyone time). The system enforces 
limits so that the number of elements per disk drive is no fewer 
than 5 * the number of disk drives and no greater than 200 * the 
number of disk drives. If this parameter is not specified, the default 
is 20 elements per drive. 

parm 

7-18 AM81-()4 



parm 

hcpt 

vtb N 

wlim N 

causes information to be printed on the bootload console aunng 
initialization concerning utilization of all defined hard core partitions. 
A message such as the following will be printed for each drive with 
a hardcore partition: 

accept_fs_disk: He PART on dska_07 used 500 out of 
1000 records. 

If this parameter is not specified, the information is recorded in the 
syserr log. 

where N sets the number of VTae buffers. Increasing N may 
reduce the number of VIae reads. The default number of buffers 
is 30. 

where N specifies the maximum number of outstanding writes which 
may be permitted for a memory flush operation to proceed. 
Typically, a memory flush operation. which occurs to safeguard pages, 
will be 1/2 or less of this number. The default is 1/8 of the 
configured pageable memory (in pages). When memory is reconfigured 
the wlim value is recalculated. 

In addition to the above, the TIYB segment 10 may be supplied on a parm 
record followed by a segment length in words, to set the length of tty_bur. The 
default length is 6144. words. 

Example 

parm chwm vtb 40. ttyb 8192. ccrf 

Name: part 

Part records inform BCE and Multics of the location of the areas of disk used I 
for various partitions. 

part 

7-19 AM81-04 



part 

Format 

part partname subsystem drive{sv} 

where: 

1. partname 

2. subsystem 

3. drive bv} 

Labeled Format 

is the name of the partition residing on a particular volume or 
subvolume. The system consults the label of that physical volume to 
determine where the records of the given partition reside. The one 
partition commonly used is: 

dump 
area of disk used to contain dump image. 

is the name of the peripheral subsystem. 

is the decimal number of the disk drive and. if the drive is a 3380 
or 3381. the name of the subvolume on which the partition is 
located. This is an alphanumeric field; it does not accept a period 
(.). 

part -part partname -subsys subsystem -drive drive{sv} 

Notes 

The part record tells the system (BeE and Multics) on which volume a 
partition resides; the location of the partition is found in the- label for that volume. 
Information about which drives contain which partitions can be gathered when using 
the init_vol and rebuild_disk commands (described in the Multics Administration, 
Mai ntenance and Operations Commands manual. Order No. GB64) or by using the 
display_disk_label command (described in the Multics Commands and Active 
Functions manual. Order No. AG92). The BeE. CONF. FILE and LOG partitions 
always reside on the RPV and thus do not need to be specified on the part record. 

Examples 

part dump dskb 

part -part dump -subsys dskb -drive 1 

The above records state that the DUMP partition resides on the volume 
mounted on drive 1 of disk subsystem DSKB. 

part 

7-20 AM81-04 



part 

part dump dske 3b 

part -part dump -subsys dske -drive 3b 

The above records state that the DUMP partition resides on the volume 
mounted on drive 3 subvolume B of disk subsystem DSKE. 

Name: prph 

The prph record supplies all necessary data about a peripheral device or 
subsystem. Since different devices require different amounts of additional data, only 
one device or subsystem may be described on a prph record. 

Format 

The format of the prph record for various peripheral devices is shown below. 
For each record, n can be any single alphabetic or numeric character. 

prph 
prph 
prph 
prph 
prph 
prph 
prph 
prph 
prph 

where: 

l. iom 

2. channel 

ccun am channel model 
dian am channel model 
dskn am channel nchan mode11 d1 {mode12 d2 .•• mode 15 d5} 
fnpn am channel model state 
opcn am channel model line_length state {option} 
prtn am channel model train 1 ine_length 
punn iom channel model 
rdrn iom channel model 
tapn iom channel nchan mode 11 d1 {mode12 d2 •.. mode15 d5} 

is a letter (a, b, c or d) signifying the 10M through which the 
device is driven. 

is the 10M channel through which the device is driven. 

prph 

7-21 AM81-()4 



prph 

3. model 
is a model number for a device. 

The valid model numbers for combination record units (ccun) are: 

401 . CCU040 1 

The model number for a direct channel (dian) may be any number, 
specified at site discretion. If it isn't 0, the -model control argument 
may be used in Rep commands (e.g., assign_resource) to specify a 
class of device. In general, this field will be 0, and the device will 
be specified by name (e.g., diablo 

The valid model numbers for disk drives (dskn) are: 

400. 
402. 
45l. 
500. 
501. 
3380. 
3381 . 
o 

MSU0400 
MSU0402 
MSU0451 
MSU0500 
MSU0501 
MSU3380 
MSU3381 
drive does not exist (see "Examples ll

) 

The valid model numbers for FNPs (fnpn) are: 

6670. DN6670 

The valid model numbers for bootload consoles (open) are: 

6001. 
6004. 
6601 . 

CSU6001 
csu6004 
csu6601 

The valid model numbers for printers (prtn) are: 

401. PRT401 
402. PRT402 
901. PRU0901, PRU0903 

1000. PRU1000 
1200. PRU1200 
,."", pnll'.,,"l nn",.""., 
I ~v I. nu I ~v I , rnUI~V;) 

1600. PRU1600 

prph 

7-22 AM81-04 



prph 

4. nchan 

5. di 

6. state 

The valid model numbers for card punches (punn) are: 

120. PCU0120 
12l. PCU0121 
201. CPZ201 
300. PCU0300 
300. CPZ300 
30l. CPZ301 

The valid model numbers for card readers (rdrn) are: 

201. CRZ201 
301. CRZ301 
500. CRU0500 
501 • CRU050 1 

1050. CRU1050 

The valid model numbers for tape drives (tapn) are: 

500. 
507. 
600. 
610. 
630. 

8200. 
o 

MTU0500 
MTU0500 (7 track) 
MTU0600 
MTU0610 
MTUo630 
MTU8200 
drive does not exist (see "Examples ll

) 

is the number of logical channels to use. The number of channels 
assigned to a physical channel cannot exceed 8. This number must be 
less than or equal to the value configured in the hardware patch 
located in the 10M. 

is the number of drives of type modeli. 

is the state of an FNP or a console. The valid states for an FNP 
are: 

on 

off 

indicates that the FNP may be used by the system. 

indicates that the FNP may not be used by the system. The 
FNP will not be loaded by the answering service even if the 
eMF calls for it to be loaded. 

prph 

7-23 AM81-{)4 



prph 

The valid states for a console are: 

on 

alt 

io 

inop 

specifies that this console is selected as the bootload console 
and is the primary recipient of I/O. There must be one and 
only one console with a state of on. In the event of 
bootload console failure, the system will change the state of 
this console to inop. 

specifies that this console is to be used as an alternate in the 
event of bootload console failure. If the bootload console 
becomes inoperative, the system searches the configuration file 
for a console with a state of alt. If one is found, its state is 
changed to on and it becomes the bootload console. Vlhen 
several consoles are specified as alternates, they are selected in 
the order in which they appear in the configuration file. 

specifies that this console exists, but is not to be used as an 
alternate console. A console with a state of io may be 
attached as an I/O device. 

specifies that this console is inoperative. Normally, this state 
is asigned dynamically during console recovery. A console 
with a state of inop may be attached as an I/O device. 

is the number of characters that can be printed on a line. 
WARNING: although you may specify a line length of greater than 
80 characters f or any kind of bootload console, you must be careful 
if you do this for a CSU6601 console. Line lengths of greater than 
80 characters may cause buffer overflows on CSU6601 consoles. 
Repeated overflows will result in the console being marked inop (see 
the description of "state" below) and removed from service. If you 
suspect this to be a problem, you may bring the console back online 
by using the set_system_console command, documented in the Multics 
Administration, Maintenance and Operations Commands manual, 
Order No. OB64. 

prph 

7-24 AM81-Q4 



prph 

8. option 

9. train 

train 
# 

600. 

600. 

600. 

must be set to "mask" for any CSU6601 console which doesn't have 
C.O firmware. Failure to specify "mask" for such a console will 
result in loss of that console. 

Before the release of C.O firmware, passwords read from a CSU6601 
console were hidden on the printer, but not on the screen. ("The 
screen" in this discussion ref ers to both the VIP terminal and the 
CONRAC monitor, if one is attached to the console.) With the 
release of C.O firmware, passwords read from a CSU6601 console 
which has the firmware are hidden on both the printer and the 
screen. Passwords read from a CSU6601 console which doesn't have 
the firmware, but has "mask" specified on its prph record, are 
hidden on the printer, but not on the screen. (In other words, 
password masking is exactly the same as it was bef ore the release of 
C.O firmware.) A CSU6601 console which doesn't have the firmware 
and doesn't have "mask" specified on its prph record is treated as if 
it does have the firmware. This eventually results in loss of the 
console. 

Note that passwords read from a CSU6601/6004 console are always 
hidden on the printer and never hidden on the CONRAC minotor (if 
one is attached to the console), regardless of the state of the option 
field. 

is the print train image number. The valid numbers for print train 
image numbers are: 

marketing CSO 
device/train description 10# T+O# 

PRT401/402 PRB600 9 
94 character set ASCI I belt 

PRU0901/0903/1201/1203 PRB3600 9 
94 character set ASC! I belt 

PRU1000/1200/1600 PRB0600 9 
94 character set ASCI I belt 

prph 

7-25 AM81-D4 



prph 

Labeled Format 

prph -device ccun -iom iom -chn channel -model model 
prph -device dian -iom iom -chn channel -model model 
prph -subsys dskn -iom iom -chn channel -nchan nchan -model model 1 

-number d1 {-model mode12 -number d2 •.. -model mode15 -number d5} 
prph -device fnpn -iom iom -chn channel - model model -state state 
prph -device opcn -iom iom -chn channel -model model -11 line_length 

-state state {-option option} 
prph -device prtn -iom iom -chn channel -model model -train train -11 

1 i ne_l ength 
prph -device punn -iom iom -chn channel -model model 
prph -device rdrn -iom iom -chn channel -model model 
prph -subsys tapn -iom iom -chn channel -nchan nchan -model mode11 -number 

d1 {-model mode12 -number d2 •.. -model mode15 -number d5} 

Notes 

The prph dia record is used to describe direct channels used for special purposes (i.e .• 
other than for connection to FNPs). 

Examples 

prph dska a 30. 4 0 4 500. 4 45l. 4 
prph tape a 22. 2 630. 2 
prph prta a 15. 1201. 600. 136. 
prph prtb a 14. 1201 • 600. 136. 
prph puna a 17 . 30l. 
prph rdra a 16. 1050. 
prph opca a 20. 6004. 80. on mask 
prph opcb a 24. 6601. 80. alt 
prph fnpa a 28. 6670. on 

prph -subsys dska -iom a -chn 30. -nchan 4 -model 0 -number 4 -model 500. 
-number 4 -model 451- -number 4 

prph -subsys tape - om a -chn 22. -nchan 2 -model 630. -number 2 
prph -device prta - am a -chn 15. -model 1201 • -train 600. -11 136. 
prph -device prtb - om a -chn 14. -model 1201 • -train 600. -11 136. 
prph -device puna - om a -chn 17 • -model 30l. 
prph -device rdra - om a -chn ' r -model 10,0. 10. 

prph -device opca - om a -chn 20. -model 6004. -11 80. -state on 
-option mask 

prph -device opcb -iom a -chn 24. -model 6601. -1 1 80. -state alt 
prph -device fnpa -iom a -chn 28. -model 6670. -state on 

prph 

7-26 AM81-()4 



prph 

Each prph dskn record describes a disk subsystem. and each prph tapn record 
describes a tape subsystem. Note that a subsystem is defined as any group of drives 
and channels where any of the drives may be accessed via any of the channels. For 
disk subsystems this may include several lOMs and MPCs. Disk and tape drive 
numbers within a subsystem start at device number 1. and are consecutive on the prph 
dskn and prph tapn records. Non-existent devices can be represented by model 
number O. as in the first example above. In this example, subsystem DSKA has 
MSU0500 drives on units 5 through 8, and MSU0451 drives on units 9 through 12. 
See the chnl record description for an explanation of how to specify several groups of 
channels for a disk subsystem. Note that no more than 8 channels may be assigned to 
one subsystem. 

Name: root 

The root record specifies the location of the physical volumes of the root I 
logical volume (RL V). 

Format 

root subsysteml drivel{sv} { ••• subsystemN driveN{sv}} 

where: 

1. subsystemi 

2. driveHsv} 

Labeled Format 

is the name of the peripheral subsystem on which a physical volume 
of the RLV is mounted. 

is the decimal number of the disk drive and, if the drive is a 3380 
or a 3381. the name of the subvolume on which that physical volume 
is located. This is an alphanumeric field; it does not accept a period 
(.). 

root -subsys subsysteml -drive drivel{sv} 
{ ••• -subsys subsystemN -drive driveN{sv}} 

root 

7-27 AM81-04 



root 

Notes 

All physical volumes of the RL V should be listed on the root record, 
regardless of whether or not they contain a hardcore partition, unless you are booting 
to rebuild one or more of them with rebuild_disk or to reload one or more of them 
with the volume reloader. In these cases, the vo!ume(s) to be rebuilt or reloaded 
should be omitted from the record. A volume that isn't listed on the root record can 
be added in ring 1 with the add_vol command. However, you should note that the 
system will not make use of a hardcore parition contained in a volume added in ring 
one. The first subsystem/drive pair specified on the root record must be that of the 
root physical volume (RPV). During a cold boot, the root record must list only the 
RPV. 

Examples 

root dska 1 dska 2 dskc Oa dskc lb 

root -subsys dska -drive 1 -subsys dska -drive 2 -subsys dskc 
-drive Oa -subsys dskc -drive lb 

In these examples. assume that the RLV is located on 451 drives DSKA 1 and 
DSKA 2, and on 3380 drives DSKC 0 subvolume A and DSKC 1 subvolume B. 
Information about which drives contain which partitions can be gathered by using the 
jnit_vol and rebuild_disk commands (described in the Multics Administration, 
Mai ntenance and Operations Commands manual, Order No. GB64) or by using the 
display_label command (described in the Multics Commands and Active Functions 
manual. Order No. AG92). 

Name: salv 

This record is used to change the options for all salvaging operations that take 
place before the system reaches ring 4 command level. and for the automatic online 
salvager. 

Format 

salv keys 

where keys may be chosen from the following: 

rbld 
rebuilds all directories 

path 
prints pathname of all directories salvaged 

salv 

7-28 AM81-04 



salv 

debg 
additional error messages will be printed for debugging use only 

dcf 
enables deletion of branches suffering connection failure 

Name: schci 

The schd record is used to set the scheduling factors and parameters in the 
system configuration. All of these can also be set with the change_tunin~parameters 
command. described in the Multics Administration, Maintenance and Operations 
Commands manual. Order No. GB64. 

Format 

schd wsf tefirst telast timax {mine {maxe {maxmaxe}}} 

where: 

1. wsf 

2. tefirst 

3. telast 

is the working set factor. It is used as a multiplier to compute the 
amount of main storage that must be available before a process is 
made eligible, as a function of that process's working set. The wsf is 
given in units of 256K -- that is, a value of 1000000 octal (256K 
decimal) sets the wsf to 1.0. while a value of 400000 octal (128K 
decimal) sets wsf to 0.5. A wsf value of 0.5 means that a process 
can be made eligible if there is sufficient main storage available to 
hold half its working set. as determined by its recent usage of main 
storage. If the schd record is not used. the default is 1.0 (1000000 
octal). 

defines the amount of CPU time for which a process is guaranteed 
to re~ain eligible (if necessary) the first time it runs after an 
interaction. Units are eighths of a second (octal). If the schd record 
is not used, the default is 2 seconds (20 octal). 

defines the amount of CPU time for which a process is guaranteed 
to remain eligible when it is in the last scheduling queue. Units are 
eighths of a second (octal). If the schd record is not used. the 
default is 2 seconds (20 octal). 

schd 

7-29 AM81-()4 



schd schd 

4. timax 

5. mine 

6. maxe 

7. maxmaxe 

Labeled Format 

defines the default amount of CPU time a process remains in the 
last scheduling queue before being rescheduled (at the end of the 
queue). Units are eighths of a second (octal). If the schd record is 
not used, the default is 8 seconds (100 octal). 

is an optional parameter that specifies the minimum number of 
eligible processes. The default is 2 processes. 

is an optional parameter that specifies the maximum number of 
eligible processes; this parameter must be greater than or equal to 
"mine." If this option is specified, "mine" must be specified also. 
The default is 6 processes. 

is an optional parameter that specifies the maximum that "maxe" can 
be raised to during this bootload. It must be greater than or equal 
to "maxe" plus 10. The default is "maxe" plus 10. 

schd -wsf wsf -tefirst tefirst -telast telast -timax timax 
{-mine mine {-maxe maxe {-maxmaxe maxmaxe}}} 

Examples 

schd 400000. 20. 20. 100. 2 6 

schd -wsf 400000. -tefirst 20. -telast 20. -timax 100. 
-mine 2 -maxe 6 

These examples assume a value of 0.5 for wsf; a timing of 2 seconds each for 
temin and temax; a value of 8 seconds for timax; and arbitrary values of 2 and 6 for 
mine and maxe, respectively. 

7-30 AM81-Q4 



sst 

Name: sst 

The sst record describes the partitioning of the system segment table (SST) in 
the system configuration. 

Format 

sst ast1 ast2 ast3 ast4 

where: 

1. astl 

2. ast2 

3. ast3 

4. ast4 

Labeled Format 

is the number of active 4K segments allowed. The default value is 
400. 

is the number of active 16K segments allowed. The default value is 
150. 

is the number of active 64K segments allowed. The default value is 
50. 

is the number of active 256K segments allowed. The default value is 
10. 

sst -4k ast1 -16k ast2 -64k ast3 -256k ast4 

Examples 

sst 442. 220. 45. 15. 

sst -4k 442. -16k 220. -64k 45. -256k 15. 

sst 

7-31 AM81-04 



tbls 

Name: tbIs 

The tbls record is used to specify the length of certain paged system tables. 

Format 

tb 1 s name 1 1 ength 1 {... name4 1 ength4} 

where: 

1. namei 

str 

ioat 

prds 

scav 

2. length 

may be selected from the following: 

specifies the length of the system trailer segment. The size of this 
segment depends in a complicated way on the number of AST entries 
and the amount of segment-sharing among processes. Since the 
number of disk drives is a reasonable (though crude) indication of 
the number of users a system can support, it can provide a simple 
method of figuring the size. Using this method, length for STR 
should be 16 pages for six drives or fewer, and should be increased 
by two pages for every disk drive after the first six. A value of 
64K should be adequate for most sites. 

controls the size of the I/O assignment table. 

controls the size of the processor data segment (there is one such 
segment per configured CPU). The default value is 7. This is always 
the correct value, except when there are no communications multiplexers 
enabled. In that case, a value of 4 should be specified. 

specifies the length of the scavenger's database, in pages. The default 
value is 70KW. The size of this segment determines the number of 
simuitaneous volume scavenges that can be run. The default value 
allows one scavenger at a time to run. An additional 69KW is 
required for each additional simultaneous scavenger. 

is the number of pages in the table. 

If a tbls record is not included in the config file, default values are used as if 
the record read: 

tbls str 16 ioat 4 prds 7 scav 70. 

tbls 

7-32 AM81-04 



ted 

Name: ted 

The tcd record describes the allocation of the databases in the system I 
configuration that contain information needed by the traffic controller. 

Format 

ted apt itt 

where: 

1. apt 

2. itt 

Labeled Format 

is the number of entries in the active process table; the apt 
argument sets the maximum upper bound on number of processes 
logged in. 

is the number of entries in the inter-process transmission table; it 
must be high enough to handle normal message flow. The number 
for itt should be about double the number of apt entries. 

ted -apt apt -itt itt 

Examples 

ted 75. 150. 

ted -apt 75. -itt 150. 

Note 

The system crashes if the ted record is omitted. 

ted 

7-33 AM81-o4 



udsk 

Name: udsk 

The udsk record specifies the number of disk channels and which devices in a 
subsystem are available in the system configuration for user I/O. 

Format 

udsk subsystem nchan {drivel countl ... drive6 count61 

where: 

1. subsystem 

2. nchan 

3. drivei 

4. counti 

is the name of the disk subsystem. 

specifies the maximum number of channels that may be used to 
support user peripheral disk I/O. 

is the first drive number to use. 

is the number of drives to use. 

Up to six drive/count pairs may be specified to indicate the particular units available 
for user peripheral disk I/O. 

Labeled Format 

Notes 

udsk -subsys subsystem -nchan nchan {drive drivel -number 
countl ..• -drive drive6 -number count61 

If the channels indicated are not all required for user I/O, they are available 
for storage system I/O. An individual disk drive can be used for either storage 
system volumes or user peripheral packs. The status of disk drives can be changed 
dynamically during operation by the set_drive_usage command. If no udsk record 
appears for a given subsystem, a default of one channel is assumed. 

Examples 

udsk dska 2 

udsk -subsys dska -nchan 2 

udsk 

7-34 AM81-04 



SECTION 8 

SYSTEM STARTUP AND SHUTDOWN 

OVERVIEW OF SYSTEM SfARTUP 

There are several steps to bringing up M ultics: 

• Configure the system. The pack which contains the RPV must be mounted on 
a drive. 

• Mount the RL V (if not already mounted) and all physical volumes of all 
logical volumes required at the site for starting 

• Boot BCE from the current BCE/Multics system tape 

• Boot Multics from BCE 

• Start up the answering service and log in the daemons to perform backup, 
input/output, and any other specialized procedures (such as network interaction). 

* 

Step-by-step procedures for bringing up Multics are available in the Operator's * 
Guide to Multics, Order No. GB61. What follows is a detailed description of what 
happens when you boot BCE/Multics. 

Bootloading BCE/Multics 

A BCE/Multics bootload is the process of loading the programs that make up 
the bootload command environment, which in turn build up from themselves the 
Multics operating system. The bootloading process loads the programs into memory, 
links them so that they may refer to one another, and sets up any necessary databases. 

BCE and Multics are loaded from a BCE/Multics system tape. The programs 
and data on a system tape are divided into groups called collections. The first 
program on the tape, imbedded in the tape label, is bootload_tape_label. It reads in 
the first collection of programs, collection O. Collection 0 reads in collection 0.5. 
which contains firmware images for the bootload tape controller. Collection 0 
determines the COTiect tape firmware by asking the operator. and loads that firmware. 
It then reads in collection 1 and prelinks it. This permits programs written in PL/I 
to be used. Collection 1 enables paging and starts up BCE. Collection 1 then reads in 

8-1 AM81-04 



collection 1.2. which contains BeE exec_corns and files. and disk firmware images. It 
loads firmware into the bootload disk controller. then reads in collection 1.5. which 
contains some of the BeE programs. BCE also reads collections 2 and 3. needed to 
bootload Multics. into the MST partition of the RPV. 

When BeE is finished. collection 2 is run to initialize and set up the Multics 
storage system and the environment to do reloads and other system startup activities. 
These programs are found in collection 3. Then the initializer process starts running. 

THE INITIALIZER PROCESS 

When the Multics bootload sequence is started by the BeE boot command. a 
process is created which is called the initializer process (Initializer.SysDaemon.z). The 
initializer process is also referred to as the system control process or the answering 
service process. This process remains active as long as the system is running. It 
perf orms many functions for the system. such as: 

1. Answering service operations (e.g.. login. logout> 

2. Operator command service 

3. System reloading 

4. System terminal management and message routing 

5. System accounting 

6. User request handling (rep, new _proc, etc.) 

7. System administration 

The initializer process is controlled by the bootload console and one or more 
initializer (message coordinator) terminals. These terminals are used to input commands 
that control system operation. 

The system cannot operate without an initializer process. If an error occurs 
that makes the initializer process unusable. the system crashes with the message: 

Attempt to terminate initializer process. 

INITIALIZER COMMANDS 

Once the initializer process begins running, you may issue initializer commands. 
Initializer commands control the system. They allow you to do the following: 

• Get information about the state of the system 

• Intervene manually in automatic system functions 

8-2 AM81-04 



• Start and stop nonautomatic system functions 

• Change system operating parameters 

• Debug the system 

• Manipulate storage system volumes 

• Control the message coordinator (including device channels. virtual consoles, 
message routing, sources, and daemons) 

• Reconf igure system resources 

• Do hierarchy and volume recovery 

• Control FNPs and communications channels 

• Control user processes 

Complete descriptions of the initializer commands are presented in the 
Mu/tics Administration, Maintenance and Operations Commands manual, Order No. 
GB64. The initializer runs first in the administrative ring (ring 1) and then in the 
user ring (ring 4). 

Administrative Ring Commands 

When the initializer process enters the administrative ring (ring 1) environment, 
the first thing the ring 1 environment types is a message of the form: 

Multics <sysid> - <date> hhmm.t <zone> <day> 

giving the system identifier from the system tape and the current date, time, and time 
zone. 

In ring 1, the initializer uses only those programs on the BCE/Multics system 
tape. It doesn't reference any files in the storage system. Only the RL V is known -­
the rest of the logical volumes are not mounted until you either issue commands to 
mount them or you move to ring 4. 

If you specified a ring 1 command as an argument to the boot command, this 
ring 1 command is executed automatically. For example, typing: 

boot star 

executes the star (startup) command in ring 1. If you didn't specify any arguments or 
if startup fails, then the ring 1 program types: 

Command: 

and waits for you to type any initializer command allowed in ring 1. 

8-3 AM81-04 



If you type standard, startup, or multics, the initializer leaves the ring 1 
environment and executes subsequent commands in the user ring (ring 4) environment. 

User Ring Commands 

If the initializer process exited from ring 1 because of a startup or multics 
command, then when it enters the user ring (ring 4) environment, the first thing the 
ring 4 environment does is initialize the answering service. 

Once the initializer process begins operation in ring 4, you may issue ring 4 
initializer commands to affect the operation of the system. 

If operator authentication is required at your site, i.e., if the require_opera tor_login 
installation parameter is turned on, you must sign on before you can enter commands. 
If operator authentication is not required. at your site, signing on is optional. To sign 
on, use the sign_on command, which is documented in the Multics Administration, 
Maintenance, and Operations Commands manual, Order No. GB64. The sign_off 
command is also documented in that manual. If the require_operator_login parameter 
is turned on, Multics will demand identification and authentication of operators from 
the successful completion of answering service initialization until shutdown. Multics 
will NOT demand authentication in the bootload command environment, in the ring 1 
initializer environment. or in the pre-answering service ring 4 initializer environment. 

If your site has a timeout period, i.e., if the operatoT_inactivity_limit 
installation parameter is set, you will be automatically signed off if you don't enter 
any commands for more than the specified length of time. 

Both the require_operator_login and the operator_inactivity_limit installation 
parameters are documented in the Multics System Administration Procedures 
manual, Order No. AK50. 

The initializer process is normally waItmg for an initializer command from you. 
After the command is typed in, the initializer performs it, types a ready message, and 
awaits another command. 

If operator authentication is not required at your site, and no one has signed 
on, the ready message looks like this: 

Ready 

If operator authentication is required at your site, 
ready message looks like this: 

Ready (Not Signed on.) 

8-4 

and no one has signed the 

AM81-()4 



Whether or not operator authentication is required, once someone has signed on, the 
ready message looks like this: 

Ready (User_name) 

Online help is available for all ring 4 initializer comma..9Jds via the help 
initializer command. For information on how to use the help initializer command, 
refer to its description in the IVlultics Administration, Maintenance, and Operations 
Commands manual, Order No. GB64. (See also "Getting Help with Comm~'1ds" later 
in this section.) 

Full Multics typing conventions are available in the ring 4 initializer 
environment, except with the reply and intercom commands. These typing conventions 
include the use of special characters, such as parentheses (for iteration), double quotes 
(for quoting), and semicolons (for entering multiple commands on a single line). For 
information on the use of special characters. refer to the Multics Programmer's 
Reference Manual. Order No. AG91. 

ADMIN MODE 

The initializer process is sometimes used to perform special operations (such as 
setting access in the root directory) that a normal process cannot perform. For 
instance, the initializer is the only process that can execute commands before the 
answering service is brought up. Thus, it must be used to repair problems that prevent 
all users from logging in. 

In order to use the initializer process to execute an arbitrary Multics command, 
you must enter admin mode. Because the initializer process has special abilities and 
special limitations, admin mode should only be used by qualified personnel. 

To enter admin mode, type the admin command. You must also supply a 
password to enter admin mode, unless the system administrator has specified that no 
password is needed. 

Once in admin mode, the initializer responds to regular Multics commands 
instead of initializer commands. However, a special command in admin mode permits 
execution of initializer commands. Typing: 

sc_command hmu 

causes the initializer command "hmu" to be executed. 

Admin mode and editing of the message of the day can be entered from the 
bootload console or from any initializer terminal. but only one console or terminal can 
be operating in this mode at a time. 

8-5 AM81-()4 



Use of admin mode is similar to the use of regular Multics. On an initializer 
terminal. issuing a quit signal (hitting the BRK key) has the same effect in admin 
mode as it does in a normal Multics process. (The initializer goes to level 2, the 
command is suspended, and you remain in admin mode.) This is not true on the 
bootload console. which doesn't have a BRK key, or any other way of issuing a quit 
signal. 

To exit from admin mode. type the admin_mode_exit (arne) command. 

send_admin_command COMMAND 

Highly privileged users may send single commands to the initializer to be 
executed in admin mode by using the send_admin_command command. described in 
the Multics Administration, Maintenance and Operations Commands manual, Order 
No. GB64. If a highly privileged user sends such a command, a message is printed on 
the initializer terminal, the command is executed, and the system continues in normal 
operating mode. 

If you're in the user command environment, and you want to enter an 
initalizer command. use the sac command and the sc_command command in 
combination with the initializer command. For example: 

sac sc_command maxu auto 

If you're in the user command environment, and you want to enter an exec command, 
use the sac command and the ec admin command in com bination with the exec 
command. For example: 

sac ec admin attended 

If you're in the user command environment, and you want to make the initializer 
process execute a Multics command, use the sac command in combination with the 
Multics command. For example: 

sac set_system_console -reset 

If you're in the user command environment, and you want to enter a daemon 
command. use the sac command and the sc_command command in combination with 
the initializer reply command, the daemon driver label, and the daemon command. 
For example: 

sac sc_command reply prta go 

Note that you may also enter a daemon command from the user command 
environment by using the send_daemon_command command (described later in this 
section). 

8-6 AM81-Q4 



The send_admin_command command has a number of useful control arguments. 
One is the -notify_by_mail (-ntmaiI) control argument. If you use -ntmail, the system 
will send you mail when your command completes execution. The mail will contain a 
message stating that your command ran. It will also contain all of the output 
produced by your command. For example: 

sac -ntmail word 

Another useful control argument is -query (qy). If you use -qy. the system will print 
your command line on your terminal and ask you if you want to send it. This is 
useful for validating the effects of abbrevs and active functions. For example: 

sac -qy delete [wd]>test_file 

send_admin_command: delete >udd>m>Smith>test_dir>test file 
send_admin_command: Do you want to send this admin command line 

to the initializer <wait info>? 

If the command you want to execute asks a question, you must include the answer 
request in your command line. For example: 

sac answer yes delete_dir >udd>m>Smith>test_dir 

If you don't include the answer request, your command will not be executed. 

The following abbrev will ask you if your sac command line is correct, then 
send it, and print the results from the admin log: 

.ab sac do "send admin command -bfqy &rf2; 
print_sys_log--admin -nhe -dfmt 11111111 -nfmt 11111111 -fm 

&1 11 [calendar_clock] 

I ts use is recommended. 

GETTING HELP WITH COMMANDS 

There are info segments for the following commands in the following 
directories: 

Commands 

user 
pr i v i 1 eged user 
ring 4 initializer 
ring 1 in i t i ali zer 
accounting 
I/O daemon 
BeE 

Directories 

>doc>info 
>doc>pr i v i 1 eged 
>doc>ss>operator 
>doc>ss>rl_initializer 
>doc>ss>accounting 
>doc>ss>io_daemon 
>doc>ss>bce 

* How you look at these info segments depends on what command environment you're 
in. 

8-7 AM81-Q4 



* 

If you're in the user command environment, you can look at info segments for 
user commands by using the user help command. For example: 

help list 

You can look at info segments for all other commands by using the user help 
command and specifying the absolute pathname of the info segment. For example: 

help >doc>privileged>set_system_console 

Or, you can add one or more directories to your info search list, by adding a line to 
your start_up.ec. For example: 

asp info >doc>privileged >doc>ss>rl initializer 

Then you can look at info segments in the directories you added to your info search 
list by using the user help command in the regular way. For example: 

If you're in the ring 4 initializer command environment, you can look at info 
segments for ring 4 initializer commands by using the initializer help command. For 
example: 

help down 

If the info segment you want to look at is for an exec command, specify its name in 
the format "x. command". For example: 

help x.attended 

If you're in the ring 1 initializer, restricted accounting, I/O daemon, or BeE 
command environments, you can't look at info segments at all. Thus, the only 
commands you can get help with in the same environment in which you can run them 
are user, privileged user, and ring 4 initializer commands. For a more detailed 
discussion of command environments. refer to the Multics Administration~ Maintenance, 
and Operations Commands manual, Order No. GB64. 

INITIALIZER USE OF COMMUNICATIONS CHANNElS 

When the system is bootloaded, the answering service first performs input/ output 
on the bootload console. When ring 4 is entered and the message coordinator is 
started; initializer input and output are usually moved to a me-ssage coordinator 
terminal connected to a communications channel. 

The initializer process is in charge of all communications channels known to 
the system. Some of these channels are connected to the answering service and used 
for logins, some are used by the initializer itself for the message coordinator, and 
some are given to other processes to use. 

8-8 AM81-04 



The disposition of communications channels is controlled by the CDT. A 
communications channel connected to Multics may be: 

1. Completely unused: not in the CDT 

2. Inactive: in the CDT but marked INACTIVE (not to be used unless explicitly 
enabled by the operator) 

3. Active: in the CDT and in use for 

a. message coordinator service 

b. login service 

1) Being listened to by the answering service 
2) Attached to a user process 

c. slave service: attachable by some existing user process, but not available 
for logins 

d. dial_out (autocall) 

Initializer commands are available to move a terminal to and from the above 
states in various combinations. 

MESSAGE COORDINATOR 

The message coordinator facility allows the initializer to run multiple communications 
channels and lets the system daemons run without terminals of their own, sending 
their messages to the ini tializer for disposition. The daemons can be logged in 
automatically (by system_start_up.ec or admin.ec) or at operator request (by means of 
the login command). 

To allow for other activity to occur, such as typing in operator messages. the 
message coordinator writes messages in a burst followed by a pause. When both the 
burst size and the delay time are set at the default values, it means that if you want 
to enter a command, after pressing the carriage-return (or the INPUT -REQUEST) 
button, at most 20 messages will print before you can enter the command. The 
set_mc_message_limits command (described in the Multics Administration, Maintenance 
and Operations Commands manual. Order No. GB64) allows the system administrator 
to determine the size of the burst and the duration of the pause. 

Rep messages and other syserr traffic are not handled by the message 
coordinator. This means that message coordinator commands can not be used to 
manipulate these messages. For example. the reroute command can not be used to 
reroute messages from the bootload console to an initializer terminal. 

8-9 AM81-04 



Occasionally, the message coordinator may stop operating due to a system 
problem such as a hung up device. In such a case, you can issue the reset initializer 
command to restart all channels. Channel restart is also attempted if system control 
encounters any fault. 

Input Delivery and Output Routing 

There are two parts to the message coordinator -- delivery of input and 
routing of output. Input delivery is done by the reply command: any terminal owned 
by the message coordinator may (subject to permission) issue reply commands directed 
at any source. 

Output routing is more complex. Each daemon process running over the 
message coordinator attaches one or more switches to a source. In addition, the 
initializer attaches switches to the source "as". When a process writes information to a 
switch attached to a source, a message is sent to the message coordinator containing 
the inf ormation, the name of the switch, and the name of the source. The message 
coordinator looks up the combination of switch name and source name in the message 
routing table (MRT). where it finds one or more routings for each combination. Each 
routing specifies a virtual console. The message coordinator looks up each virtual 
console in the virtual console table (vcons_tab), where is finds a list of one or more 
destinations for each virtual console. The list of destinations may include terminal 
channels, logs, and sinks. The message coordinator routes the message to each 
destination in the list for each virtual console specified by each routing. If the 
destination is a terminal channel, the message is queued for printing on the terminal. 
If the terminal is unavailable (e.g.. has dropped offline), the message waits in the 
queue. Otherwise. it is printed immediately. If the destination is a log, the message is 
written directly into the log. (See the description of system logs in Section 13.) If 
the destination is a sink, the message is discarded. Figure 8-1 illustrates the message 
coordinator output routing process. 

DEFINING OUTPUT ROUTING 

To see how message coordinator output routing is defined in the standard 
system_start_up.ec, refer to Appendix F. In general, the way to define output routing 
is as follows: 

1. Think about your message coordinator output as a number of groups, each 
consisting of all of the output you want to handle together and route to the 
same destination. 

2. For each group of output you want to route to the same terminal. use the 
define command to define one virtual console whose destination is that 
terminal. Then use the route command to route all of the switches on which 
that output is written to that virtual console. 

Note: you may want to define a second virtual console whose destination is 
the same terminal, and route the switches on which some portion of the output 
is written to the second virtual console. This makes it easy to reroute that 
portion of the output to a different terminal in the future if you so desire, 
since the only thing you have to change is the destination of the second virtual 
console. 

8-10 AM81-04 



prta source 

user_output switch 

...-... text 

-.. 

,,-..-

MESSAGE PRODUCED 
BY DAEMON PROCESS 
(>sc1 >mc.message) 

10 person 

SysDaemon project 

prta source 

other entries 

DAEMON USER TABLE 
(OUT) 

} ~ 

L 
prta source 

user_output switch 

ioc vcons 

prta source 

user_output switch 

ioc_remote vcons 

other entries 

MESSAGE ROUTING TABLE 
(MRT) 

ENTRIES CREATED BY 
ROUTE AND REROUTE 

COMMANDS 

J 
~ 

user_output I switch 

mr_prta I attach 
description 

other info 

PROCESS "ATTACH TABLE" 

ioc vcons 

3 n_dest 

ttya.h100 desL1 

log iolog desL2 

sink4 desL3 

ioc_remote vcons 

1 ILdest 

ttya.hOO1 desL1 

other entries 

VIRTUAL CONSOLE TABLE 
(vcons_tab) 

ENTRIES CREATED BY 
DEFINE AND REDEFINE 

COMMANDS 

Figure 8-1. Message Coordinator Output Routing 

8-11 

---
---
---

.... 

OUTPUT ON 
TERMINAL 
CHANNELa.h100 

MESSAGE IN LOG 
> sc1 > as_logs> iolog 

MESSAGE 
DISCARDED 

OUTPUT ON 
TERMINAL 
CHANNEL a.h001 

AM81-o4 



3. For each group of output you want to route to the same log, use the define 
command to define one virtual console whose destination ,is that log. Then use 
the route command to route all of the switches on which that output is 
written to that virtual console. 

Note: NEVER define two virtual consoles whose destination is the same log. 

Figure 8-2 illustrates a typical message coordinator output routing definition. 

Operating Daemon Processes 

Input and output of the daemon processes are passed through the initializer on 
their way to and from the terminal channel. To cause a daemon to be logged in 
from the initializer, type: 

login Person_id.Project_id source_id {login control_argsl 

The daemon logs in and attaches its input and output to the message coordinator as a 
source with name source_id. For example, an I/O daemon can be logged in by 
typing: 

login IO.SysDaemon io2 
Ready (User_name) 
1721 as LOGIN IO.SysDaemon dmn io2 (create) 

The Dumper is logged in so that a complete dump may be started by typing: 

login Dumper.SysDaemon cd1 
Ready (User_name) 
1721 as LOG I N Dumper. SysDaemon dmn cd 1 (c rea te) 

To log out a daemon, issue the logout command from the initializer, giving the 
Person_id, Project_id, and source_id of the daemon. Thus, to log out the dumper, the 
sequence is: 

logout Dumper.SysDaemon cdl 
Ready (User_name) 
2231 as LOGOUT Dumper.SysDaemon dmn cd1 12:11 $23.45 (logout) 

To log out an daemon processes when the system is being shut down, type: 

logout 'Ie ,'e ,'c 

Occasionally, you WIll neea LO send a quit to a daemon process. A speciai 
command is required because the ATTN or INTERRUPT button on an initializer 
terminal is connected to the initializer. not to the daemon~ and is ignored by system 
control. To send a quit to a daemon, type: 

quit source_id 

The daemon will accept the quit command after it has been passed from the 
ini tializer. 

8-12 AM81-04 



MESSAGE COORDINATOR 

i 
IO.SysDaemon I ioc ~ 1 I prta I 

ttya.h100 

III usecilo I I I error i/o I 

I 
I 
I 

IO.SysDaemon I io_misc_log f-----, I prtb log_i/o I I III user i/o I I error i/o I 
J 

log_i/o : 
I 

I 
iolog 

I 

I I I J 

log iolog 

Utility.SysDaemon 

umc ttya.h100 

useLi/o 

Metering.Daemon uLlog log uLlog 

Figure 8-2. Typical Output Routing Definition 

8-13 AM81-04 



The example below shows how the system intermixes output lines from various 
sources on a single console, and how the user replies to a request for input from a 
source. 

reply cord coordinator 
Ready (User_name) 
1953 cord 10 coordinator initialized 
reply prtb driver 
Ready (User_name) 
1953 prtb Enter device name and optional request type: 
--> prtb 
reply prtb prtb printer 
Ready (User name) 
1954 cord New driver for device prtb request type printer 

(ser i es = 10000) 
1954 prtb prtb driver ready at MM/DD/YY 1954.1 EST DAY 
--> prtb 
reply prtb go 
Ready (User_name) 
reply bk start dump sys_dirs xyz 1 60 
Ready (User name) 
1955 bk Begin at MM/DD/YY 1955.6 EST DAY 
1955 bk >user_dir_dir 
1955 bk Type primary dump tape label 
--> bk 
reply bk IC-75 
Ready (User_name) 

The above set of replies are written out only to serve as an example. In 
practice, the commands and replies necessary to start the daemon functions are 
contained in the segment admin.ec, and can be invoked by using the exec (x) 
command. The admin.ec segment is usually modified by each site to suit its 
requirements. Using the admin.ec that is distributed with the system, the above 
functions -- starting the I/O daemon coordinator, the I/O daemon driver for prtb, 
and the incremental backup daemon -- can be accomplished using the following 
commands: 

exec io 
Ready (User_name) 
exec inc xyz iC-75 
Ready (User_name) 

(xyz stands for the user's initials or name.) Complete descriptions of the exec 
commands are presented in the Multics Administration, Maintenance and Operations 
Commands manual, Order No. GB64. 

8-14 AM81-04 



send_daemon_command COMMAND 

Users with the appropriate access may control the operation of system daemon 
processes by using the send_daemon_command command, described in the Mu/tics 
Administration, Maintenance, and Operations Commands manual, Order No. GB64. 
This command allows you to log daemons in and out over specified message 
coordinator source ids, send command lines to daemons, and signal QUITS in daemon 
processes. 

Use of the send_daemon_command command is somewhat different from use 
of the send_admin_command command (described earlier in this section). Access to 
send_admin_command gives a user complete control of the initializer process, as well 
as all daemons controlled by the message coordinator. Access to send_daemon_command 
may be restricted to give a user access to a single daemon process without giving her 
control of other daemon processes or the initializer process. 

The ability to restrict access to the send_daemon_command command is 
controlled by the validate_daemon_command installation parameter. If this parameter is 
enabled. you can use the message coordinator access control segments (MCACS) to 
restrict use of the send_daemon_command command; i.e., you can use them to restrict 
which daemon(s) a user may control with this command. 

If the validate_daemon_command parameter is not enabled, it is impossible to 
restrict use of the send_daemon_command command by users with "rw" access to the 
>scl>admin_acs>send_daemon~command.acs ACS segment. Users with such access may 
use the command to control any daemon. For more information about the 
validate_daemon_command installation parameter and MCACS segments, refer to the 
Mu/tics System Administration Procedures manual. Order No. AK50. 

If you have "c" access, you may use send_daemon_command to log a daemon 
in and out. For example: 

send_daemon_command login rp Repair.SysDaemon -auth system_high 

or: 

send_daemon_command logout rp Repair.SysDaemon 

If you have "r" access. you may use send_daemon_command to send a command to a 
daemon. For example: 

send_daemon_command reply prta go 

If you have "q" access, you may use send_daemon_command to send a QUIT signal to 
. a daemon. For example: 

send_daemon_command quit prta 

8-15 AM81-D4 



When a privileged user sends a command to a daemon via the 
send_daemon_command command, a message is printed on the initializer terminal. the 
command is executed, and the system continues normal operation. 

MESSAGE COORDINATOR DATABASES 

The main databases used by the message coordinator are: 

mc_anstbl 
one entry per terminal channel 

MRT 
message routing table 

vcons_tab 
virtual console table 

mc.message 
incoming messages for message coordinator 

<source> . message 
input messages for other sources 

<channel>.queue 
queued output messages for devices 

These tables are all completely reconstructed each time the message coordinator 
is started. All of these segments are kept in >system_control_l. Their ring brackets 
should be 4.4.4 and access should be rw for the initializer and daemon processes, and 
null for everybody else. 

STARTUP COMMANDS 

The system executes an exec_com called system_start_up.ec when the answering 
service is started. It executes this exec_com in three parts: some commands are 
executed before the answering service is started, some are executed after the answering 
service is ready but before communications channels are listened to, and some are 
executed after communications channels are listened to. The startup command causes 
all three parts to be executed, along with complete initialization of the answering 
service. The multics command causes initialization to stop before part 2 of 
system_start_up.ec has been executed; the go command executes part 2 of system_start_up.ec, 
listens to communications channels, and executes part 3 of system_start_up.ec. 

Normally, the system_start_up.ec performs some message coordinator initialization 
bef ore starting the answering service, and logs in the daemons after the answering 
service is ready. If the initializer is to operate more than one message coordinator 
terminal. the additional channels are accepted (by commands in system_start_up.ec) at 
this time. 

An example of the system-supplied system_start_up.ec is found in Appendix F. 

8-16 AM81-Q4 



UNATTENDED AND AUTOMATIC MODES 

The system may be operated in several modes: attended or unattended, manual 
or automatic. In unattended mode, the system assumes that no tape mount requests 
can be honored. and that the backup and I/O daemons are unavailable. 

In automatic mode, the system automatically performs dumping. and it reboots 
after crashes. Manual mode. indicated by invoking the boot command. allows manual 
and automatic dumping options, but requires positive user instructions to reboot. 

Setting Automatic Mode 

In order to operate the system in automatic mode, invoke the auto exec_com 
as part of the bootload process. instead of typing boot. If the auto exec_com has 
been used, you have the option of turning off automatic mode with the command: 

x auto off 

and may then reenable it with the command: 

x auto on 

If the auto exec_com has not been used to boot the system, neither of these 
commands has any effect. 

Setting Unattended Mode 

A system function is provided in admin.ec so you can conveniently set the 
system into unattended mode. Typing: 

x unattend 

invokes the following steps: 

sc_command reconfigure delete device tape_(Ol 02 03 04 05 06 07 08) 
sc_command word login Unattended service 
set_flagbox unattended true 
set_flagbox auto true 
set_flagbox rebooted false 

Installations with more or fewer than eight tape drives must modify the text of 
admin.ec. These steps leave backup and I/O daemon functions running; some sites may 
wish to modify the text of admin.ec to log some daemon processes out 

8-17 AM81-()4 



Returning to Attended Mode 

When the system has been placed in unattended mode. you may revert to 
attended operation by typing: 

x attend 

which performs the following steps: 

sc_command reconfigure add device tape_(Ol 02 03 04 05 06 07 08) 
sc_command word login 
set_flagbox unattended false 

Other operations such as logging in daemons may be added. 

SYSTEM SHUTDOWN 

System shutdown is the process of ceasing Multics service. There are several 
steps involved in an orderly shutdown. so that the different classes of users can be 
logged out in the correct order. The step-by-step procedure for shutting down the 
system is available in the Operator's Guide to Multics. Order No. GB61. 

Shutdown Failure 

If shutdown fails (does not type the "shutdown complete" message) when the 
shutdown command is issued at the initializer terminal or the bootload console, you 
should enter BeE. If the bootload console keyboard does not unlock. you must enter 
BeE as described under "Returning to BeE" in Section 10. Then you should attempt 
standard recovery procedures. You should always attempt emergency shutdown. See 
Section 10 for details on recovering the system. 

8-18 AM81-o4 



SECTION 9 

THE MULTICS BACKUP SYSTEMS 

The ~1ultics backup systems augment the reliability of t...~e online disk storage 
system. They ensure that user segments and directories can be recovered from tape if 
they are destroyed due to system failure or user error. 

The backup systems perform the following functions: 

1. dumping 

The dumping mechanism searches out, selects, and copies (dumps) onto tape 
segments and directories from the Multics storage hierarchy. The frequency of 
dumping and the length of time for which tapes are kept are determined at 
individual sites. 

2. retrieval 

Retrieval is the recovery of individual segments and directories. It occurs 
during normal Multics operation. 

3. reloading 

Reloading is the reconstruction of a major portion of the hierarchy when it 
has been damaged. 

There are two major Multics backup systems. hierarchy and volume. The 
hierarchy system tree-walks the hierarchy to locate the data it must dump, while the 
volume system scans the physical volumes used by the storage system. The goals and 
general structure of both systems are the same, but the mechanism, cost, and benefits 
differ. 

The volume backup system is organized around the concept of physical 
volumes. The volume -dumper dumps segments and directories, as specified by physical 
volume and VTOe index. In contrast, the hierarchy backup system is organized around 
the storage system directory hierarchy. The hierarchy dumper dumps segments and 
directories as specified by pathname. Similarly, the volume reloader recovers a single 
physical volume, while the hierarchy reloader recovers some portion of the directory 
hierarchy. Both retrievers, volume and hierarchy, recover segments and directories. The 
dump volumes produced by the volume dumper can not be read by the hierarchy 
reloader or retriever and vice versa. 

9-1 AM81-()4 



In the discussions below an overview of dumping and recovery is presented, 
followed by details of the operation of the volume and hierarchy systems. Descriptions 
of the commands used by both backup systems appear in the Multics Administration, 
Mai ntenance and Operations Commands manual, Order No. GB64. 

DUMPING 

The dumping mechanism operates in three modes -- incremental, consolidated, 
and complete. These modes are distinguished by three criteria used to select segments 
and directories for dumping. What is dumped is site-controllable. Usually, only 
information that has changed and will be valuable in the future is dumped. Thus 
per-process information, static libraries, and re-creatable segments and directories are 
not dumped. All other sections of the hierarchy should be included in the search 
route of the backup system. 

Multiple dumper processes, registered as SysDaemon, Daemon, or both, are 
allowed. 

The backup system does not guarantee that segments are dumped in a 
consistent state. For example, it is possible that while the incremental dumper is 
dumping a segment, another process might be writing into that same segment Thus, 
an inconsistent copy of a segment might be produced. However, the modifications that 
cause a segment to be inconsistent also cause another dump of the segment to be 
produced on the next pass of the incremental dumper. Therefore, unless the system 
crashes before the next incremental dump, a consistent copy is eventually produced. 

The high production rate of incremental and consolidated dump tapes makes 
the retention of these tapes for long periods of time impractical. Therefore, 
incremental and consolidated tapes are kept for some short time, perhaps 3 weeks. 
Complete dump tapes are retained for a longer time, perhaps 6 months, with the 
exception of one complete dump tape per month that might be held for a period of 
1 year. 

Incremental Dumps 

Incremental dumping is the principal technique used to keep the backup systems 
abreast of changes to online storage. It is the purpose of an incremental dump to 
discover modifications to online information not reflected in backup tape storage. The 
incremental dump locates and dumps all segments and directories modified more 
recently than they have been dumped. The net effect of the incremental dumping 
scheme is to limit the amount of information that can be lost to those modifications 
that have occurred since the last incremental dump. 

9-2 AM81-()4 



Incremental dumping is triggered periodically by software timers. In order to 
minimize the time span during which modifications to online storage can go unnoticed 
by the backup system, incremental dumps should be produced frequently. On the other 
hand. because backup competes with ordinary users and exerts a considerable drain on 
system resources, it becomes economically desirable to lower the frequency of 
incremental dumps. Therefore~ the time interval between the incremental dump cycles 
at an installation is chosen as a compromise between these two considerations. This 
does not imply that an incremental dump necessarily finishes its search within a single 
time interval. in iact. ii the incremental dumper is given no scheduling advantage, 
several intervals might be required to complete an incremental dump during hours of 
heavy system load. If an incremental dump is not completed before the next 
incremental dump is scheduled to begin. the "next" dump is deferred until the prior 
incremental dump is completed. 

Consolidated Dumps 

A consolidated dump locates and dumps segments and directories that have 
already been dumped by an incremental dump cycle. Since a consolidated dump 
catches modifications accrued over a period of time encompassing many incremental 
dumps, it effectively consolidates the most recent information from a group of 
incremental tapes and thereby facilitates the reloading of this information by 
decreasing the number of tapes that must be processed. Also, since tape is susceptible 
to operational, hardware, and software errors, a consolidated dump provides the 
installation with a second tape copy of the segments and directories dumped during an 
incremental dump. 

Complete Dumps 

A complete dump dumps every segment and directory in the storage system 
without regard for modification time. Unlike incremental and consolidated dumps, 
which attempt to keep the backup tapes up-to-date with the contents of the storage 
system, complete dumps are somewhat different in purpose. 

A complete dump establishes a checkpoint in time, essentially a snapshot of the 
entire Multics storage hierarchy. If it should ever become necessary to recover a 
major portion or the entire contents of online storage. then the tape with the most 
recent complete dump marks a cutoff point beyond which no older dump tapes need 
be inspected. 

RETRIEVAL 

A user who notices that a segment or directory has been lost or damaged can 
submit a request for the retrieval of that segment or directory. The problem the user 
faces is determining which dump operation produced the dump of the segment or 
directory to be retrieved. Usually the most recently produced copy is wanted. In the 
case of a damaged segment, however. the damaged version is likely to have been 
dumped as well, and hence the most recent dump may not be wanted. It is to be 
hoped that a user knows approximately when a segment was lost or damaged, and 
whether the segment has been recently modified. Using these two pieces of 
information. the user can make a reasonable guess as to when the last usable copy of 
the segment was online. 

9-3 AM81-04 



Once an estimate has been made as to the time frame, this estimate can be 
verified by examining the corresponding hierarchy dump map. This operation is 
automatic for volume retrieval, although the user can still specify the time frame if 
desired. The hierarchy dump map indicates the tape reel on which the dump was 
written. A feature of the dump map that is sometimes helpful is the printing of the 
date and time modified attribute for the segment, which effectively points to the next 
most recent dump of the segment. 

The user can. specify that a single segment, a directory without its subtree, or 
a directory including its subtree be recovered. 

Using cross retrieval, a user can specify that a segment or, for hierarchy 
retrieval only, a directory be retrieved with a different pathname. A single segment 
can be cross retrieved by the volume retriever to any point in the storage system 
hierarchy. For hierarchy retrieval only, a directory subtree can be cross retrieved to 
any point in the hierarchy. 

VOLUME BACKUP 

* The volume backup system is designed to allow recovery from most disk 
failures while the system is available for users. Incremental and consolidated volume 
dumping are significantly faster, though less flexible, than their hierarchy counterparts. 
It is not intended for general users; nor is it designed to be used for archival storage, 
or intersite file transmission. It is assumed that the hierarchy backup system will be 
used for these activities. 

The personids "Volume_Dumper", "Volume_Retriever", and "Volume_Reloader" 
must be registered. These personids should be registered on the Daemon project with 

~ .. the multip and daemon attributes. For sites using AIM, the authorization for these 
person ids must also be set at system_high and the home directories must be 
pre-created at system_high. 

To set up the volume backup system, log in the Repair Sysdaernon, or, if 
running in special session using the initializer, execute the following command: 

ec >tools>setup_volume_reloader 

This exec_com will create all directories, segments and message segments necessary for 
running the volume backup system. This exec_com will also set suggested access on 
the directories and segments created. Not all the access that is set is required. If a 
site wishes, the access created for *.Systviaint.* and *.SysAdmin.* may be removed. 

A site will need a sufficient number of tapes to accommodate the entire file 
system and any incremental and consolidated dumps until a subsequent complete dump 
is taken. It is suggested that a new site start with 100 - 300 reels of tape for volume 
backup. 

9-4 AM81-Q4 



The Volume Backup LSS 

The commands for the volume backup system are available under a Limited 
Service Subsystem (LSS). Within this LSS. there is one LSS command table per volume 
backup daemon. These command tables restrict the volume backup command set as 
follows. 

The LSS command table for the volume dumper (Volume_Dumper. Daemon) 
restricts its available command set to: 

complete_volume_dump 
consolidated_volume_dump 
del ete_vol ume_log 
display_pvolog 
display_volume_log 
dmpr_unlock_pv 
end_volume_dump 
incremental_volume_dump 
merge_vol ume_l og 
preattach_dump_volumes 
purge_volume_log 
rebuild_pvolog 
recover_vol ume_l og 
set_volume_log 
set_volume_wakeup_interval 
verifY_dump_volume 
volume_cross_check 
vOlume_dump_trace_off 
volume_dump_trace_on 
wakeup_volume_dump 

The LSS command table for the volume retriever {Volume_Retriever. Daemon) 
restricts its available command set to: 

list_retrieval_requests 
retrieve_from_volume 

The LSS command table for the volume reloader (Volume_Reloader.Daemon) restricts 
its available command set to: 

display_volume_log 
merge_volume_log 
recover_vol ume_l og 
reload_volume 
verify_dump_volume 

9-5 AM81-Q4 



In addition, all three LSS command tables will allow these commands: 

exec com 
help 
home_dir 
logout 
system 
user 

All the commands listed above are described in the Multics Administration, 
Mai ntenance, and Operations Commands manual. Order No. GB64, with the 
exception of list_retrieval_requests, exec_com, help, home_dir. logout, system, and user, 
which are documented in the Multics Commands and Active Functions manual, 
Order No. AG92. (Note that "help" and "logout" here refer to the standard Multics 
commands by those names, not the initializer commands by those names.) 

If your site runs the volume backup system under the supplied LSS, the 
project_start_up.ec for the Daemon project (daemon_project_start_up.ec) selects the 
appropriate command table for each volume backup Person_id based on the result of 
the [user name] active function. 

Also, if your site runs the volume backup system under the supplied LSS, you 
must be careful about making changes to admin.ec. If you change admin.ec so that 
commands not contained in the command tables are sent to the volume backup 
daemons, your operators will not be able to use the "x" command(s) affected by the 
change. 

You may extend the command set available to anyone of the volume backup 
daemons by modifying the appropriate command table and creating the new command 
set via the make_commands command (documented in the Multics Administration, 
Mai ntenance, and Operations Commands manual, Order No. GB64). 

You may allow the full Multics command set to be available to the volume 
backup daemons by not executing the enter_Iss command in daemon_project_start_up.ec. 
This means that the volume backup system will not run as an LSS. 

Volume Dumping 

The volume dumping subsystem produces dumps, usually on magnetic tape. that 
are used by the volume reloader and retrieval subsystems. 

The volume dumper can operate in any user ring and at any AIM level with 
no loss in efficiency or function. The volume dumper requires re access to the 
hc_backup_ and rcp_sys_ gates. It does not require access to the phcs_ and hphcs_ 
gates. 

9-6 AM81-04 



The volume dumper can operate in either a single or multiprocess mode. Thus, 
volume dumping can be partitioned among many processes for either performance or 
security reasons. Partitioning is done by specifying different physical volumes in 
different dump control segments, and can be effected at either the logical or the 
physical volume level. If done, the partitioning must be the same for both incremental 
and consolidated dump operations. If this is not done, certain record keeping 
functions will fail. The dump control segment should specify at least all public 
volumes and may specify any registered volume. If a volume is not mounted, a 
message to that effect is printed, and the physical volume is skipped. 

The structure of the dumper's output is determined by the I/O module used to 
create it. In the default case, it is a magnetic tape written in Multics standard tape 
format. The order of data on a dump volume is as follows: 

1. dump information data record. 

2. contents segment record containing the contents segment of the previous dump 
volume in the same dump mode. 

3. volume log segment record containing the volume log of the physical volume 
being dumped prior to this dump pass. 

4. dump record consisting of the VTOCE of the object and the object if the 
object is nonnull. 

5. repeated instances of item 4 as required. 

6.· volume log segment record containing the volume log of the physical volume 
being dumped after the dump pass completed. 

7. repeated instances of items 3-6 for each physical volume dumped. 

Items 1 and 2 always appear at the beginning of each dump volume. Items 3 through 
6 define the dump of a physical volume and may span multiple dump volumes. If 
any of the individual records specified as items 3 through 6 cannot fit on a dump 
volume, the record is rewritten in its entirety on the next dump volume. 

As the dumper runs, it records information about its operation for use by the 
volume reloader and volume retriever subsystems. This information consists of the 
segments discussed below. 

VOLUME DUMPER ACCOUNT SEGMENT 

A site may choose to charge for volume dumper services. An accounting 
segment is created in the directory: 

for each dump volume written, with the name dump_ volume. account. If this action 
would overwrite an existing segment, the older copy is renamed to dump_volume.account.l, 
and so on. Entries in the account segment consist of the unique ID pathname of the 
segment or directory dumped and the number of records. 

9-7 AM81-Q4 



VOLUME DUMPER CONTENTS SEGMENT 

The contents segment contains a unique identifier for each segment and 
directory written on a dump volume. A contents segment is created in the directory: 

>daemon_dir_dir>volume_backup>contents 

for each dump volume used. It is written on the next dump volume (of the same 
dump mode) and can then be deleted if necessary. The segment name is of the form 
dump_ volume_name. contents. The contents segment is used by the volume retriever to 
bypass searching an entire dump volume when a specific segment or directory is 
needed. Use of the contents segment is explained more fully in the discussion of 
volume retrieval below. 

VOLUME DUMPER CONTENT NAMES SEGMENT 

The content names segment is a multisegment file that contains the name space 
(the total set of names) of each directory that is dumped. The content names segment 
is created in the directory: 

>daemon_dir_dir>volume_backup>contents 

with the name dump_ volume_name. content_names, if the -names control argument is 
given with the incremental_ volume_dump, consolidated_volume_dump, or 
complete_volume_dump commands. The content names segment is used by the volume 
retriever to bypass recovering a directory from a dump volume during branch retrieval. 
Use of the content names segment is explained more fully in the discussion of volume 
retrieval below. 

VOLUME DUMPER CURRENT DUMP WORKING SEGMENT 

The current dump working segment segment is used by the volume dumper to 
maintain a memory of what has been done and what is left to do. It is created in 
the working directory, with the first invocation of the incremental_volume_dump, the 
consolidated_volume_dump, or the complete_volume_dump command. The segment 
name is of the form dump_control_file._name.dump_type.control. 

VOLUME DUMPER DUMP CONTROL FILE 

Volumes are specified via a dump control file as either physical volumes or 
logical volumes. The format of this segment is: 

lv,<logical volume name> 
or 

pv,<physical volume name> 

Each line must specify no more than one name and may not have any blanks. Logical 
volume names are translated into a list of physical volume names. Physical volumes 
are dumped in the order that they appear in the control list. 

9-8 AM81-04 



What is dumped is controlled by the volume specifications in the dump control 
file, and whether the owner of the segment has enabled or disabled the incremental 
and complete volume dumping switches. If both switches are off, the segment is not 
dumped and cannot be recovered. For more information, see the descriptions of the 
volume_dump_switch_off and volume_dump_switch_on commands in the Muitics 
Commands and Active Functions manual, Order No. AG92. 

VOLUME DU.MPER PHYSICAL VOLUME LOG SEGMENT 

In order to determine when a dump volume no longer contains useful 
information, a physical volume log segment is maintained for each dump volume. The 
physical volume log segment contains a record of all physical volumes that have 
inf ormation on the dump volume. It is created in the directory: 

VOLUME DUMPER VOLUME LOG SEGMENT 

As the volume dumper operates on a specified physical volume, it records 
information about its dumping in the volume log segment. There is one valid volume 
log for each physical volume that has been dumped. The volume log contains a record 
of every dump volume that contains information that was dumped from this physical 
volume. Both the volume reloader and the volume retriever subsystems use the volume 
log segment to determine which dump volumes created by the volume dumper should 
be used as input. It is created in the directory: 

for each physical volume dumped; the name of this segment is of the form 
physical_ volume_name. volog. 

The set of dump volumes necessary to logically reconstruct the physical volume 
is referred to as a reload group. Normally, a volume log contains two reload groups. 
The display _ volume_log and set_ volume_log commands can be used to display the 
contents of a volume and to set the number of reload groups it contains, respectively. 
The purge_ volume_log command can be used to clean up a volume log. Should a 
volume log be lost it can be recovered using the recover_volume_log command. Should 
two volume logs exis~ for the same physical volume they can be merged via the 
merge_ volume_log command. 

9-9 AM81-()4 



AUTOMATIC TAPE MANAGEMENT 

The volume dumper can manage its own tapes (uses the -auto control 
argument) if a tape pool is established. To set up and manage a tape pool (also 
known as the volume pool segment), use the create command to create a segment in 
the Dumper default directory >ddd>volume_backup called Volume_Dumper. volumes. 
Use the manage_volume_pool command (fully described in the Multics Commands 
and Active Functions manual, Order No. AG92) to add tape volumes to the volume 
pool for the dumper's use. Volume names must be of the form: 

AAnnnnn or Annnnn 

where A = any alphabetic character and nnnnn is an integer that will fit into 18 bits. 

These volumes are allocated and freed as required by the Volume Dumper 
when the -auto control argument is used. The number of volumes required is 
dependent upon the frequency of dumping, the size of the storage system in use, and 
the number of reload groups (see "Volume Dumper Volume Log Segment" above). The 
use of the volume_cross_check and purge_ volume_log commands is recommended to 
ensure consistency of the databases and to free volumes when inconsistencies have 
prevented them from being freed earlier. 

DUMP MODES 

The volume dumping subsystem operates in one of three ways: 

1. incremental volume dump -- for each physical volume specified, those segments 
and directories that are stored on it are dumped if they have been modified 
since the last incremental volume dump . 

2. consolidated volume dump -- f or each physical volume specified, those 
segments and directories that have been incrementally dumped since the last 
consolidated volume dump are dumped 

3. complete volume dump -- for each physical volume specified, all segments and 
directories are dumped 

I ncremental Mode 

The incremental volume dumper operates cyclically using a default time interval 
of one hour unless otherwise specified. That is. the dumper process is awakened at 
one-hour intervals. It incrementally dumps all physical volumes specified in the dump 
control segment. and then goes blocked to wait for the next wakeup. If the real time 
required to complete a dump cycle exceeds the wakeup interval. the dump cycle 
repeats immediately. The incremental volume dumper should be run whenever the 
Multics system is operational. Incremental volume dumping may be partitioned among 
several different processes. if desired. by specifying different physical volumes in 
different control segments. The dump control segment should specify at least all 
public volumes and may specify any registered volume. If a volume is not mounted. a 
message to that effect is printed. and the physical volume is skipped. 

9-10 AM81-Q4 



The incremental volume dumper is controlled by bit maps that the system 
maintains on a per physical volume basis. These bit maps designate the VTDe entries 
on a physical volume that are to be dumped. The segment or directory described by 
the VTae entry is accessed in cooperation with the Multics supervisor in a manner 
that bypasses the storage system access control list and ring control. 

Conso! idated Mode 

The consolidated volume dumper operates as a single-pass dump, using the same 
control segment as the incremental volume dump~ It is effectively a merge operation 
of all the incremental volume dumps produced since the last consolidated volume 
dump. There is no system requirement that it be run, but its operation significantly 
reduces the amount of input that must be scanned during a volume reload or retrieval 
operation. The consolidated volume dumper is controlled by bit maps in the same way 
as for the incremental volume dumper. The segment or directory described by the 
VTae entry is accessed in cooperation with. the Multics supervisor in a manner that 
bypasses the storage system access control list and ring control. 

Complete Mode 

The complete volume dumper also operates as a single-pass dump but it dumps 
everything. The complete volume dump of a physical volume is the logical equivalent 
of a BeE save of a physical volume. The complete dumper constructs a temporary bit 
map of the VTae entries currently in use before it starts dumping. The segment or 
directory described by the VTOe entry is accessed in cooperation with the Multics 
supervisor in a manner that bypasses the storage system access control list and ring 
control. 

The three modes of volume dumping are invoked as separate commands with 
similar control arguments. The three commands are: 

incremental_volume_dump 
consolidated_volume_dump 
complete_volume_dump 

These commands are described in the Multics Administration, Maintenance, and 
Operations Commands manual, Order No. GB64. 

ADDING TO A DUMP CONTROL FILE 

If it becomes necessary to add a physical volume to an eXIstIng Volume 
Dumper control file, the following procedure should be observed to ensure that the 
reload group is consistent 

• add the volume name to the end of the control file 

• start the dump. The Volume Dumper asks if a restart should be performed. 
This is because it will have determined that the last volume dumped does not 
match the last volume name in the control file. This is the mechanism used to 
automatically restart a dump after a system interruption. Answer no to this 
question. The dump then continues from the first volume in the control file. 

9-11 AM81-04 



HANDLING ERRORS WHILE VOLUME DUMPING 

Disk errors, tape errors, or file system errors can occur while volume dumping. 
The following description explains how to handle each of these types of errors, 
including fatal process errors and system crashes. In general, you can restart the 
volume dump after one of these errors by retyping the command line with which you 
started the dump and including in that line the -restart control argument. 

The -restart control argument can be used to restart complete, consolidated, 
and incremental dumps. For complete and consolidated dumps, the default for -restart 
is to restart from the last volume dumped. For incremental dumps, you must specify 
which physical volume to restart from. 

As the dumper walks through the volumes specified in the dump control file, 
it announces which volume is being dumped. Use this volume name with the -restart 
control argument, e.g.: 

incremental_volume_dump -control control_file_name 
-operator operator_initials -restart restart_volume_name 

Disk Errors 

For disk errors (e.g., "dev inop" or the disk drive drops offline), if the dump 
terminates or is terminated by the operator, use the -restart control argument to 
indicate that dumping should resume with the specified volume. If the volume is 
unreadable, restart from the next physical volume in the sequence to be dumped. 
Transient disk errors usually cause no problems other than the immediate one. 

Tape Errors 

For tape errors, e.g., if the tape drive drops out of ready, use the -restart 
control argument and specify the last volume name announced by the dumper. If the 
tape breaks or is damaged during a complete dump, restart the entire dump. If the 
tape damage occurs during an incremental or consolidated dump, there is no recovery 
technique. 

File System Errors 

For file system errors (e.g., connection failure or "RQO"), correct the cause of 
the error and then use the -restart control argument. 

Other Errors 

For system crashes or fatal process errors by the dumper, use the -restart 
control argument. 

9-12 AM81-Q4 



Volume Retrieval 

Although not intended for archival storage, the volume backup subsystem does 
provide a highly automatic retrieval system. Requests to the retriever, made by using 
the enter_retrieval_request command (see the Mu/tics Commands and Active Functions 
manual, Order No. AG92). are queued for later processing. When you want to start 
retrievals you need only log in a process, normally the volume retriever, and issue the 
retrieve_from_ volume command. 

The retrieve_from_volume command examines the specified queue for retrieval 
requests. For each request, a determination is made as to whether the segment or 
directory to be retrieved exists online. If so, the volume ID of the latest dump 
volume is determined. If the volume ID is not available, then the set of all volume 
identifiers that might contain the segment or directory is determined. If the segment 
or directory is not online, then a recursive search is made for the dump volume 
containing the first superior online directory and the process is repeated. 

As . a result of the above operation there exists a temporary set of dump 
control segments in the process directory that contain entries for segments and 
directories that may be on that dump volume. The control segments and their 
associated volumes are processed in reverse chronological order. When a segment or 
directory is recovered, it is removed from all control segments. 

Segments and directories are recovered as the result of a unique identifier (uid) 
match. The uid is a unique bit pattern associated with a particular segment or 
directory. It does not change if the segment is renamed. However, if a segment is 
copied, or a segment or directory is moved in the hierarchy, the new segment or 
directory acquires a new uid. This also occurs if a segment or directory is reloaded 
using the hierarchy backup system. 

In order to know the uid of a segment or directory, as well as to be able to 
determine the requestor's access to recover it, the directory entry for that segment or 
directory must exist. If it does not. it is recovered first. Once the directory entry is 
recovered, the segment or directory can be recovered. Thus, for deleted segments and 
directories, retrieval is usually a two-step operation. In certain cases this is not true, 
because directories and the segments they describe usually reside on different physical 
volumes. Thus, a directory entry may be lost and retrieved without having to recover 
the segment or subtree. 

The volume retriever obeys the access control rules of the system. Thus it will 
not retrieve a ring 1 segment from a ring 4 request, and it will not retrieve a 
segment to which the requester has no access. 

As noted above, the volume retriever uses a uid match to find the requested 
segmen t or directory. If a segment has been copied or moved in the hierarchy or 
reloaded using the hierarchy backup system, it is not retrievable from any prior dump 
volumes under its former pathname. 

9-13 AM81-Q4 



Determining the set of dump volumes to be searched uses some of the 
segments created and maintained by the volume dumper. The volume log segment is 
used to determine the dump volumes that may contain the desired segment or 
directory and the order in which they should be searched. The volume log is searched 
for in the directory >ddd>volume_backup (unless the -wd control argument has been 
specified). In order to decrease the number of dump volumes that must be searched, 
the contents segment for each dump volume, if available, is searched for a uid match. 
If a uid match is not found, the dump volume is not searched. If the contents 
segment is not available, the dump volume is searched. If the contents names segment 
is available, it is used to further decrease the number of directories scanned during 
branch retrieval. If the retriever can determine, using the contents names segment, 
that the branch name was not in the directory when it was dumped, then the 
directory is not temporarily recovered and thus the number of dump volumes scanned 
is reduced. If the contents names segment is not available, the tape is searched. 

A site may choose to charge for retrievals. To this end a retrieval account 
segment that contains the requestor's name and the number of segments and directories 
recovered is created in the directory: 

At this time no further processing is done; accounting is off by default. 

For more information on volume retrieval refer to the description of 
enter_retrieval_request in the Multics Commands and Active Functions manual, Order 
No. AG92. 

Volume Reloading 

The volume reloader is used to reconstruct the contents of a physical volume. 
It uses as input the reload group indicated by the volume log segment. When invoked, 
the volume reloader determines from the volume log the set of dump· volumes that 
defines a reload group. The reload group is processed in reverse chronological order 
so that once a segment or directory is recovered, subsequent copies can be skipped. 
When a volume reload has completed, the resultant physical volume is a logical image 
of its former self, less any changes that were introduced by the operator (information 
unrecorded by the dumper or unreadable due to operational errors). 

Volume reloading of a physical volume that is of the root logical volume 
(RL V), but not of the root physical volume (RPV), is accomplished by bringing the 
system up to ring 1 initializer command level prior to accepting any physical volumes. 
recovering the associated volume log via the recover _volume_log command, and issuing 
.1.. ___ 1 __ ..3 •• _1 •• ________ ..3 T~ .1.._ • __ 1 •• __ ._ 1.. ___ 1 __ ..3_..3 !_ ... 1.._ non" .1.. __ • __ .. __ 

un; IC;lUi1U_ VUIUlllt; ~UUUUi1UU. 11 LUC; VUIUIUt; LV UC; lC;lUi1UC;U I:> LUt; ~r 'V, LUC; :>y:>Lt;1l1 

must be cold booted to ring 1 command level using a spare disk pack. See "Disk 
Volume Recovery Procedures" in Section 10 for a detailed discussion of this. 

9-14 AM81-04 



The disk pack used by the volume reload facility is accessed as an I/O disk 
and must have been initialized via the init_vol initializer command, or restored from 
BCE, or in some way restructured. The disk pack must be initialized with the name 
and other parameters of the physical volume that is to be rebuilt. The parameters that 
describe the organization of the pack are compared with those stored in the volume 
log and any mismatches are reported to you so you may decide whether to continue 
the reload or reinitialize the physical volume. Volume reloading of any physical 
voiume can be carried out while the system remains operational for users, although the 
logical volume that contains the physical volume to be reloaded is not available. 

The volume reloader uses the user disk facility of the system to read and write 
the disk pack it is rebuilding. Thus, a user disk drive must be available (see the 
set_drive_usage command description in the Multics Administration, Maintenance and 
Operations Commands manual, Order No. GB64, and the description of the udsk card 
in Section 7). 

The volume reloader can run in any user ring, at any AIM level, but it is 
normally run at a system-high AIM level in ring 1. The volume reloader requires re 
access to the following special gates: 

hc_backup_ 
rcp_sys_ 

The volume reloader creates a control segment (in the working directory) for 
each physical volume that it reloads .. The control segment is given the name of the 
physical volume plus the suffix "control"; e.g., dska_1.control. This control segment 
contains information about already reloaded objects and allows the reload operation to 
be restarted should it be interrupted by a system failure. 

If the volume being reloaded contains partitions, the con fig cards describing the 
partition must be removed from the configuration deck prior to booting. Once the 
reload is complete, the system must be shut down and the configuration deck updated. 
For more information, see Section 7. 

When a volume reload is complete, in all cases except that of the RPV the 
physical volume can be used as a direct replacement of the original volume by 
remounting the logical volume, if required, and adjusting the disk table, or putting the 
new disk pack on the old disk drive. In the RPV case, you must take additional 
steps: shut the system down; either move the disk pack to the drive specified on the 
root con fig card, or change the card; and reboot BCE. 

HIERARCHY BACKUP 

The Multics hierarchy backup system protects against the destruction of 
information maintained by the Multics storage system. The hierarchy backup system 
preserves recent copies of all segments and directories known to the storage system on 
magnetic tape, and recovers these copies when needed. 

9-15 AM81-()4 



The hierarchy backup system performs the following functions: 

1. hierarchy dumping 

The hierarchy dumping mechanism copies segments and directories from the 
Multics directory hierarchy onto tape. 

2. hierarchy retrieval 

Hierarchy retrieval is the recovery, during normal Multics operation, of 
specified segments and directories that have been copied onto tape. 

3. hierarchy reloading 

Hierarchy reloading is the recovery of the entire or partial contents of online 
storage in order to resume Multics operation (generally done after a system 
failure). 

Users are normally concerned only with system hierarchy dumping and 
hierarchy retrieving, since reloading is a system function perf ormed when the need 
arises. The frequency of hierarchy dumping and the length of time that hierarchy 
dump tapes are preserved are installation-determined parameters. Examples given in the 
following text are typical values. The operator must check with the local installation 
procedures to find out the parameters for the particular site. 

The Hierarchy Backup LSS 

Some of the commands for the hierarchy backup system are available under a 
Limited Service Subsystem (LSS). Within this LSS. there is one LSS command table 
for the two hierarchy dumpers (Backup.SysDaemon and Dumper.SysDaemon). This 
command table restricts the hierarchy dumpers' available command set to: 

and: 

backup_cleanup 
catchup_dump 
complete_dump 
end_dump 
start_dump 
wakeup_dump 

exec_com 
help 
home_dlr 
logout 
system 
user 

9-16 AM81-04 



All the commands listed above are described in the Multics Administration, 
Mai ntenance, and Operations Commands manual. Order No. OB64. with the 
exception of list_retrieval_requests. exec_com. help. home_dir. logout. system. and user. 
which are documented in the Multics Commands and Active Functions manual. 
Order No. AG92. (Note that "help" and "logout" here refer to the standard Multics 
commands by those names. not the inititalizer commands by those names.) 

If your site runs the hierarchy dumpers under the supplied LSS. the 
project_start_up.ec for the SysDaemon project (sysdaemon_project_start_up.ec) selects 
the appropriate command table for the two hierarchy dumper Person_ids based on the 
result of the [user name] active function. 

Also. if your site runs the hierarchy dumpers under the supplied LSS. you must 
be careful about making changes to admin.ec. If you change admin.ec so that 
commands not contained in the command table are sent to the hierarchy dumper 
daemons. your operators will not be able to use the "x" command(s) affected by the 
change. 

You may extend the command set available to the hierarchy dumper daemons 
by modifying the command table and creating a new command set via the 
make_commands command (documented in the Multics Administration, Maintenance, 
and Operations Commands manual, Order No. 0B64). 

You may allow the full Multics command set to be available to the hierarchy 
dumper daemons by not executing the enter_Iss command in the 
sysdaemon_project_start_up.ec. This means that the hierarchy dumpers will not run as 
an LSS. 

Note that while the volume backup LSS restricts the commands available to all 
three of the volume backup daemons (the volume dumper. the volume retriever, and 
the volume reloader), the hierarchy backup LSS only restricts the commands available 
to two of the hierarchy backup daemons (the two hierarchy dumpers). Thus. access to 
the hierarchy retriever (Retriever.SysDaemon) and the hierarchy reloader 
(Reloader.SysDaemon) must be restricted to trusted individuals. 

Hierarchy Dumping 

The hierarchy dumping mechanism searches out. selects. and copies onto tape 
segments from the Multics directory hierarchy. At the same time, it produces a map 
indicating the segments and directories included in each dump cycle. The hierarchy 
dumper operates in three modes: incremental, consolidated and complete. Usually, only 
information that has changed and will be valuable in the future is dumped. Thus 
per-process information, static libraries, and re-creatable segments and directories are 
not dumped. 

9-17 AM81-04 



It is recommended that all incremental hierarchy dump tapes, consolidated 
* hierarchy dump tapes, and complete hierarchy dump tapes be recorded in a physical 

"pencil and paper" log (the Multics operations log). This log will be self-explanatory 
if you adopt conventions for distinguishing between the different kinds of dumps. and 
stick to them. 

The maps produced by the hierarchy dumper should also be preserved in a 
reverse chronological log. This will aid you later during any hierarchy retrieval that 
may be required. 

Any ring 1 processes may be used to perf orm hierarchy backup operations. 
However. we recommend that you use the following User_ids: 

Backup.SysDaemon 
Dumper.SysDaemon 
Retriever.SysDaemon 
Reloader.SysDaemon 

Whatever processes are used for hierarchy backup operations should not be used for 
any other purposes. 

Two system processes are generally employed by the hierarchy dump system for 
the purpose of dumping. These are: Backup.SysDaemon and Dumper.SysDaemon. The 
Backup.SysDaemon process is used to produce incremental and consolidated dumps. The 
Dumper.SysDaemon process is used to produce complete hierarchy dumps. Complete 
hierarchy dumps can be produced concurrently with incremental or consolidated 
hierarchy dumps. The names of the processes may be anything selected by the site; 
Backup and Dumper are used at most sites. 

INCREMENTAL MODE 

The incremental hierarchy dumper locates and copies all segments and 
directories that have been modified more recently than they have been dumped. For 
any given segment or directory this criterion is determined by comparing the date and 
time modified attribute and the date and time dumped attribute. The period of time 
for incremental hierarchy dumping is short and is determined by each site (the default 
is one hour). 

CONSOLIDATED MODE 

The consolidated hierarchy dumper locates and copies segments and directories 
that have been modified after some specified time in the past. For example, an 
instaHation might choose to run a consolidated hierarchy dump every midnight to copy 
all segments and directories modified since the previous midnight. Consolidated 
hierarchy dumps collect the most recent copies of segments and directories modified 
since the specified time in order to reduce the time needed to reload them from tape. 
Also. the consolidated hierarchy dumper provides additional copies of those segments 
or directories that have been backed up. 

9-18 AM81-04 



Normal incremental hierarchy dumping continues after consolidated hierarchy 
dumping terminates. The process asks you to mount new tapes when the consolidated 
hierarchy dump is complete. 

COMPLETE MODE 

A complete dump dumps every segment or directory without regard to time 
modified. The complete dumper does not interact with the incremental or consolidated 
dumpers. 

A complete hierarchy dump establishes a checkpoint in time, essentially a 
snapshot of the entire Multics storage hierarchy. If it should ever become necessary to 
perform a complete hierarchy recovery, then the most recent complete hierarchy dump 
marks a point in time beyond which no older incremental or consolidated hierarchy 
dump tapes need be inspected. 

Another purpose of complete hierarchy dumping involves tape retention strategy. 
The high production rate of incremental and consolidated hierarchy dump tapes makes 
the long-term retention of these tapes difficult. Therefore. incremental and consolidated 
hierarchy dump tapes may be kept for a short period; for example. three weeks; and 
complete hierarchy dump tapes may be kept for a longer time; for example. six 
months to a year. 

Hierarchy Retrieval 

The hierarchy retrieval system is used to recover segments and directories from 
tapes produced by the hierarchy dumper. Hierarchy retrieval occurs during normal 
Multics system operation. 

A user who notices that a segment or directory has been lost or damaged can 
submit a request for hierarchy retrieval to the Multics operations staff. It is necessary 
to determine which hierarchy dump tape of the segment or directory to retrieve. 
Usually the most recent tape is desired. In the case of a damaged segment. the 
damaged version may have been dumped. In this case. an earlier dump tape is desired. 
Hopefully. a user can inform the operations staff of approximately when a segment 
was lost or damaged. and whether the segment had been recently modified. Using 
these two pieces of information. it is possible to make a reasonable guess as to which 
hierarchy dump tape should be processed. 

Once a conjecture has been made as to which hierarchy dump tape is to be 
retrieved, it can be verified by examining the corresponding hierarchy dump map. The 
map indicates the segments and directories written on that tape. A feature of the 
dump map that is sometimes helpful is the date and time dumped attribute for the 
segment, which points to the approximate location of the next most recent copy of 
the segment to be recovered. 

9-19 AM81-()4 



The user can specify that a single segment, a directory without its subtree, or 
a directory with its subtree be recovered. (A directory for which the subtree is not 
recovered contains only the links and access control information associated with the 
directory itself.) 

A user can also specify that a segment or directory be recovered with a 
different pathname. This is called cross retrieval. Segments and directories can be 
cross-retrieved to any point in the storage system hierarchy. 

Hierarchy retrievals may be done by operators, but they should have 
programming staff assistance. The step-by-step procedure for performing a hierarchy 
retrieval is available in the Operator's Guide to Multics, Order No. GB6l. 

Hierarchy Reloading 

Hierarchy reloads are necessary when some hardware or software problem has 
damaged major portions of the storage system hierarchy. 

In the event that segments are lost or destroyed. the programming staff should 
be notified immediately and the operator should proceed under their supervision. 

Operators should be instructed to keep all salvager output, maps. and online 
printouts for the programming staff. Also, any problems encountered during the reload 
should be reported to the programming staff. 

Hierarchy reloads may be performed from the initializer only if the reload 
command is issued as the first command to the initializer after a BeE boot command 
has been given. For this purpose, the initializer enters a special environment after a 
boot called the administrative ring. 

Hierarchy reloads are discussed in more detail in Section 10 and in Appendix 
H. 

BACKUP COMMANDS 

Complete descriptions of the backup commands are presented in the Multics 
Administration, Maintenance and Operations Commands manual, Order No. GB64. 

9-20 AM81-o4 



SECTION 10 

RESPONDING TO SYSTEM PROBLEMS 

MULTICS SYSTEM FAILURES 

This subsection describes Multics system failures. It includes information on 
how Multics crashes (i.e., returns to BeE), how Multics takes a dump, how you can 
examine a crashed system, and how Multics performs an emergency shutdown. 

Understanding System Failures 

Multics fails when it stops providing services to some or all users. There is a 
cycle of three steps which usually takes place whenever Multics. fails. These steps are 
crashing, dumping, and emergency shutdown. Once these three steps are complete, the 
system can be recovered. Usually, the only recovery needed is rebooting. Sometimes, 
more recovery is needed during or after the reboot. 

CRASHING 

Multics is designed to detect system failures by continually checking for errors. 
It detects errors in two ways: by intercepting hardware faults in critical system code 
and by checking critical system databases for consistency. Multics responds to serious 
errors by stopping operations in a controlled way. The process of stopping operations 
is called crashing. 

In order to crash, Multics must do two things: it must save its state and it 
must transfer control to another system. The system it transfers control to is BeE. It 
transfers control to a copy of BeE which is saved as part of system initialization. 
Ordinarily. BeE will work correctly even in the face of the problem that stopped 
Multics. There are two reasons for this. First, the saved copy of BeE is generally 
safe from damage due to transient disk errors. Second, BeE uses less of the hardware 
than Multics. For example, a serious hardware failure of a tape channel might force 
Multics to crash. Since BeE does not use the tape hardware, it could still operate. 
Information on how to recognize when Multics has crashed is available in the 
Operator's Guide to Multics, Order No. GB61. 

Multics does not always succeed in detecting serious errors. When it doesn't, it 
fails without crashing. There are two kinds of failures which don't crash the system. 
One is a result of the system looping in low level code (i.e., in the hardcore). The 
other is a result of the initializer process hanging. The following events are all signs 
that the system is looping: 

• The system stops responding to your commands 

* 

10-1 AM81-Q4 



• One or all user terminals hang 

• Neither the system administrator nor any users can log in 

• Users who are logged in can't log out 

• You receive a large number of messages which look something like this: 

pxss: notify timeout, event = 144163153167, 
processid = 367256147361 

• On a L68 system, the lights on the control panels of all of the processors are 
steadily lit (i.e., they stop blinking) 

• On the system indicator panel (if your site has one), all of the lights are 
steadily lit except for the bottom one 

The following events are all signs that the initializer process is hanging: 

• The rest of the system seems to be fine, but the initializer doesn't respond to 
your commands (i.e., the bootload console doesn't respond, or it responds, but 
the commands you issue don't seem to get executed) 

• Users can't log in and out 

When Multics fails without crashing. operators or system maintainers must 
manually crash the system using the "execute fault" or "execute switches" mechanisms 
described later in this section. Sometimes it is impossible to get the system to crash. 
The most common reason for this is a power failure that destroys the contents of 
main memory. In this case, dumping and emergency shutdown cannot take place. and 
the system must be rebooted from scratch. 

DUMPING 

A dump is a selective copy of information from a crashed system that is saved 
for later examination. Two facts about the way Multics is designed ensure that dumps 
are an accurate image of the crashed system. First, as stated above, !v1ultics saves its 
state before it transfers control to BCE. Second. when it returns to BCE, it leaves 
things exactly as they were. This permits BCE to take a dump of the crashed system 
which reflects its exact state when the error was detected. You can examine the dump 
with the analyze_multics subsystem. Note that it is also possible to examine the 
crashed system in place with the BCE probe subsystem. (The analyze_multics and BCE 
probe subsystems are described later in this section under "Examining a Crashed 
System. ") Sometimes it's impossible to get a dump. In this case, you should attempt to 
examine the crashed system with BeE probe and proceed with emergency shutdown. 

10-2 AM81-o4 



EMERGENCY SHUTDOWN 

The next step after the dump is emergency shutdown. During an emergency 
shutdown, Multics is restarted in a very limited way to clean up file system operations 
that were in progress at the time of the crash. (The system returns to BCE when 
emergency shutdown finishes.) Thus, ESD can only succeed if the system crashed, 
preserving the Multics image. If ESD succeeds, then all page control operations are 
left in a consistent state. This means that no data in user segments is lost, and no 
free pages are incorrectly marked in use. However, higher level operations are not 
cleaned up. For example, directories can be left in inconsistent states, and changes to 
directories can be lost. The directory salvager corrects these inconsistencies. Sometimes, 
it's impossible to get an emergency shutdown. In this case, you should continue by 
rebooting the system. 

How Multics Crashes 

The following sections contain detailed descriptions of Multics code. 

NOTES ON THE MULTICS OPERATING ENVIRONMENT 

At any given time, each configured Multics CPU is running some process, and 
each process is running some program. When there's an error, the process which 
detects the error is called the crash process. It just means that her process happened 
to detect the error. This does not mean that the user who owns the process caused 
the carsh. Some system messages refer to the owner of the crash process as the 
control process. 

When a process detects an error, it is the program· being run by that process 
which makes the decision to crash. Different programs execute in different 
environments. In some environments, programs are allowed to make external calls to 
other programs. In other environments, they are not. So Multics provides different 
ways for programs to crash. 

SYSERR CRASHES 

The most common way that Multics crashes is by a system program which can 
make external calls discovering some type of fatal error. The program reports the 
error via a call to syserr with a severity code of CRASH (1). (See syserr_constants.incl.pll 
for the standard syserr severity codes.) Any program running in the normal PL/I 
runtime environment of the supervisor can call syserr. When one does, syserr types a 
message on the bootload console (via a call to ocdcm-> that describes the surface 
cause of the crash. An example of a syserr crash message is: 

0802.1 lock: AST lock locked at dir unlock time. 

The beeper is always turned on for crash messages. Syserr calls 
privileged_mode_ut$bce_and_return (pmut$bce_and_return). This program sets the 
scs$sys_trouble_pending flag to the value of scs$processor, stores the process_id of the 
crash process into scs$trouble_processid, and issues a sys trouble connect. 

10-3 AM81-D4 



Sys Trouble Connects 

A sys trouble connect is a way for a program to make the CPU on which it 
is running enter the low level crash handler known as sys_trouble. A program issues a 
sys trouble connect by executing a CIOC (connect) instruction whose target is the CPU 
on which it is running. Sys trouble connects are handled as explained below under 
"Sys Trouble Connect Handling." 

RING ZERO DERAIL CRASHES 

A second way that Multics crashes is by a ring zero system program which 
can't make external calls (and is not part of the fault handler) discovering some type 
of fatal error. The program "reports" the error by executing a DRL (derail) 
instruction. This mechanism allows ALM programs which cannot call syserr to crash 
with an informative message. At compile time, these programs use drl_macros.incl.alm 
to set up DRL instructions. Each DRL instruction's effective address is the location in 
the object segment of a 32 character message. At run time, one of these DRL 
instructions will be executed if there's an error, causing' a derail fault. The derail 
fault handler in fim.alm checks the ring of execution (the PRR) at the time of the 
derail fault. If it's zero, the derail fault handler transfers control to 
fim_util$drl_fault_trouble. This program sets the scs$sys_trouble_pending flag to the 
code "trbl_rO_drl_flt", stores the process_id of the crash process into scs$trouble_processid, 
and issues a sys trouble connect (defined above). The eventual result is a flagbox 
message of the form: "module: reason." When the system returns to BCE. BCE prints 
this flagbox message. Note that ring zero DRL instructions are also used for 
BCE/Multics breakpoints; a DRL with effective address -1 is interpreted as a 
breakpoint 

INVALID FAULT CRASHES 

A third way that Multics crashes is by the program fim.alm or the program 
fim_util.alm detecting an invalid fault. These two programs can detect a number of 
faults in inappropriate circumstances, such as page faults in wired environments. Since 
neither of these programs can print a message, when they detect an invalid fault, they 
set the scs$sys_trouble_pending flag to one of a number of sys trouble codes for 
invalid faults. (There is one code for each kind of invalid fault.) Sys trouble codes 
are defined in sys_trouble_codes.incl.pll and sys_trouble_codes.incl.alm. Later on, in 
the sys trouble connect handler, the code is used to select a flagbox message. In 
addition to setting the flag, fim.alm and fim_util.alm store the process_id of the crash 
process into scs$trouble_processid, and issue a sys trouble connect (defined above). 

10-4 AM81-04 



EXECUTE FAULT AND UNEXPECTED FAULT CRASHES 

A fourth way that Multics crashes is via an execute fault or an unexpected 
fault. An execute fault is a manual crash. caused by an operator or system maintainer. 
It is the preferred way of causing a manual crash, especially on a multi-processor 
system. As mentioned earlier, the system must be manually crashed when it is looping 
or when the initializer process is hanging. To do an execute fault on a Level 68 
system, the operator sets the EXECUTE SWITCHES/EXECUTE FAULT switch on the 
display panel of any processor to EXECUTE FAULT, then presses the EXECUTE 
button on the display panel. On a DPS 8 system. the operator presses the EXECUTE 
button on the configuration panel of any processor. On a DPS 8 system. an execute 
fault may also be done by using the appropriate DPU/DMP VIP mode EX command. 
The step-by-step procedure for executing fault is described in the Operator's Guide 
to Multics, Order No. GB61. 

An unexpected fault is either a trouble fault or a fault which is undefined by 
the hardware. A trouble fault is signalled by the hardware when it encounters an 
error signalling some other fault. This can be caused by CPU hardware problems or 
by corrupted data in the fault vector. An undefined fault is always the result of CPU 
hardware errors. 

The handler for execute faults is wired_fim$xec_fault The handler for 
unexpected faults is wired_fim$unexp_fault. These programs set the scs$sys_trouble_pending 
flag to the sys trouble code for execute fault or unexpected fault, respectively. Sys 
trouble codes are defined in sys_trouble_codes.incl.pll and sys_trouble_codes.incl.alm. 
Later on. . in the sys trouble connect handler, the code is used to select a flagbox 
message. In addition to setting the flag, wired_fim$xec_fault and wired_fim$unexp_fault 
store the process_id of the crash process into scs$trouble_processid. and issue a sys 
trouble connect (defined above). The machine conditions are put directly into 
prds$sys_trouble_datao 

CHECK-STOP CRASHES 

A fifth way that Multics crashes is by a system programmer using the 
check-stop debugging technique. To use this technique, a system programmer sets the 
first nine DATA switches on the maintenance panel of the bootload processor to an 
octal 123. (Note that this can only be done on a Level 68 CPU.) He sets the rest of 
the switches to one of a number of unique codes which each specify a step in the 
initialization process. These codes are defined in real_initializer.pll.pmac. This program 
checks the switches before each step in intialization, and crashes the system if it finds 
the code for that step in the switches. It crashes the system by calling syserr with a 
severity code of CRASH (1). (See syserr_constants.incl.pll for the standard syserr 
severity codes.) Syserr types a message on the bootload console that describes the 
surface cause of the crash, and calls pmut$bce_and_return, This program sets the 
scs$sys_trouble_pending flag to the value of scs$processor, stores the process_id of the 
crash process into scs$trouble_processid. and issues a sys trouble connect (defined 
above). A check-stop crash returns to BCE in a restartable manner. 

10-5 AM81-Q4 



hphes _ Seal 1_ bee CRASHES 

A call to the privileged gate hphcs_$call_bce will crash the system (i.e., force a 
return to BCE) via a call to pmut$bce_and_return. This program sets the 
scs$sys_trouble_pending flag to the value of scs$processor. stores the process_id of the 
crash process into scs$trouble_processid, and issues a sys trouble connect (defined 
above). Note that the initializer bce command calls this gate. 

SYS TROUBLE CONNECT HANDLING 

All of the ways that Multics can crash described so far end by issuing a sys 
trouble connect. The program which is called to process sys trouble connects is known 
as sys_trouble. It stops all processors other than the bootload processor, and transfers 
execution to the BCE toehold. 

There are several different kinds of connects. The following paragraphs 
describe how the system handles connects in general, and then how it handles sys 
trouble connects in particular. 

When the system sends a connect to a processor, the target takes a connect 
fault. The fault vector specifies that the processor should transfer control to 
prds$fast_connect_code on a connect fault. (The source of this code is 
fast_connect_init.alm,) The fault vector also stores the machine conditions in 
prds$fim_data. If the scs$sys_trouble_pending flag is non-zero, the "fast connect code" 
transfers control to wired_fim.alm. This module is the handler for faults which the 
system can legitimately take while running with the PROS (the processor data segment) 
as a stack. On a connect fault, wired_fim is entered at wired_fim$connect_handler. If 
the scs$sys_trouble_pending flag is non-zero (which at this point means that there's a 
sys trouble connect), wired_fim.alm transfers control to sys_trouble$sys_trouble. 

Remember that the system got to this point because a processor sent itself a 
sys trouble connect. The processor which did this is usually the first one to enter 
sys_trouble$sys_trouble. However, some other processor may notice that the 
scs$sys_trouble_pending flag is non-zero and enter sys_trouble$sys_trouble first. 

Whichever processor enters sys_troubie$sys_troubie first notices that it is the 
first processor to do so, and "broadcasts" (sends) connect faults to all of the other 
processors. This broadcast causes the other processors to enter sys_trouble via the path 
explained above. They do not perform the broadcast. The system uses scs$trouble_flags 
to ensure that the broadcast only occurs once. Each bit in scs$trouble_flags 
corresponds to a processor. If a processor finds its bit turned off, it broadcasts. If a 
processor finds its bit turned on, it clears its bit and doesn't broadcast. The way a 
processor determines whether or not its bit is turned on is by comparing the value of 
prds$processor_tag with the value of scs$trouble_flags. The first processor to enter 
sys_trouble$sys_trouble finds its scs$trouble_flags bit turned off, and broadcasts. It 
also turns on the bits correspoding to all of the other processors. So when the other 
processors enter sys_trouble$sys_trouble, they find their scs$trouble_flag bits turned on 

10-6 AM81-04 



and don't broadcast. At this point, all of the processors, including the first one, are 
in sys_trouble, executing the same code. Each processor copies the machine conditions 
of the connect fault from prds$fim_data (in the per-processor data segment PROS) to 
prds$sys_trouble_data. 

BCE only runs on one processor. The procesor it runs on is the bootload 
processor. The boatload processor is initially defined at boatload time as the CPU on 
which BCE last executed; however, should this processor be deleted, reconfiguration 
win assign the responsibility of being bootload processor to some other CPU. Each 
processor must determine whether or not to enter BeE. The criteria it uses is whether 
it is the system-defined bootload processor, NOT whether it is the processor on which 
the crash was detected. The identity of the bootload processor is defined by 
scs$bos_processor_tag. (The name is left over from the time when BOS was the 
primary crash handler.) The way a processor determines whether or not it is the 
bootload processor is by comparing the value of prds$processor_tag with the value of 
scs$bos_processor _tag. 

If there was an invalid fault, execute fault, or unexpected fault crash, and the 
scs$sys_trouble_pending flag has been set to one of the sys trouble codes defined in 
sys_trouble_codes.incl.pll and sys_trouble_codes.incl.alm, then sys_trouble copies the 
correct message into flagbox.message, and sets the bit flagbox.alert in the flagbox 
segment. Similiarly, if there was a ring zero derail crash and the scs$sys_trouble_pending 
flag has been set to "trbl_rO_drl_flt". sys_trouble copies the derail message into 
flagbox.message and sets the bit. 

The bootload processor proceeds to enter BCE. The other processors execute a 
DIS instruction in sys_trouble. A DIS (Delay until Interrupt Signal) instruction is an 
effective HALT instruction. If the BCE go command. which restarts Multics, is 
subsequently executed. connects will be rebroadcast to all CPUs, "interrupting" them 
out of their DIS state. The machine conditions for this subsequent fault will be put 
in prds$fim_data. Note that the copying of the machine conditions to prds$sys_trouble_data. 
described above, prevents this possible subsequent connect fault from overwriting the 
first set of machine conditions (the "sys trouble data"). 

The actual entry of BeE happens as follows. The bootload processor loops for 
a while to allow all pending I/O operations to finish. This loop is inhibited, so the 
processor may take lockup faults. Therefore, the lockup fault vector is temporarily set 
to wired_fim$ignore_fault. Once the loop is completed, an instruction pair consisting 
of an SCU and a TRA is picked up from location TOE_HOLD_MULTICS_ENTRY (3) 
* 2 of the BCE toehold. (The toehold begins at location 24000 octal in absolute 
memory. See toehold_save_dcls_.incl.pll for more information.) The instruction pair is 
patched into the derail fault vector. Finally, a DRL instruction is executed. This 
causes the instruction pair that was just put into the derail fault vector to be 
executed. The SCU instruction stores the seu data in the toehold. The TRA 
instruction transfers control to the toehold in absolute mode. 

10-7 AM81-()4 



EXECUTE SWITCHES CRASHES 

The final way that Multics crashes is via an execute switches. This is a manual 
crash, caused by an operator or system maintainer. It should only be done if an 
execute fault has been unsuccessful. As mentioned earlier, the system must be 
manually crashed when it is looping or when the initializer process is crashing. 
Executing switches is a way of forcing a processor to enter the toehold without having 
to execute any Multics code. Therefore, this method of crashing the system may get 
the system to BCE even when none of the methods described above succeed. 

Executing switches is done by using the processor's execute switches facility. 
This facility is a way of telling the processor to execute an instruction pair at a 
specified absolute location. The toehold has three instruction pairs in it which can be 
executed in this way. When the processor executes the pair at 
TOE_HOLD_CRASH_ENTRY*2 (24000), it returns directly to BCE. When the processor 
executes the pair at TOE_HOLD_ESD_ENTRY*2 (24002), it enters ESD directly. When 
the processor executes the pair at TOE_HOLD_DUMP _ENTRY*2 (24004), it requests 
an "early dump" -- a tape dump of the first 512K of memory. This is only useful 
during collection one initialization. 

To execute switches on a Level 68 system, the operator sets the DATA switches 
on the maintenance panel of any processor to "02400N717200". where N is 0, 2, or 4 
as described above. To execute switches on a DPS 8 system, the operator uses either 
the BCE 24000, 24002, or 24004 command. The step-by-step procedure for executing 
switches on either system is described in the Operator's Guide to Multics, Order No. 
GB61. 

The execute fault method of manually crashing the system ensures that all 
processors are stopped via sys trouble connects. But the processor on which switches 
are executed doesn't do anything to stop the other processors. Thus, it is CRUCIAL 
that the operator stop the other processors before executing switches. Obviously, this is 
not a problem on a one-CPU system. 

How Multics Takes a Dump 

There are two kinds of Multics dumps: early and normal. Early dumps are 
taken by collection zero initialization and put on magnetic tape. They are produced in 
two situations. The first is when collection one fails (in which case, it asks you for 
the number of a tape drive on which it can write the dump). The second is when 
the operator executes switches specifying location 24004, requesting an early dump. 
Early dumps are memory images of the first 512K of memory, which is all the 
memory u..~.d during collections zero and one of initialization. The Multics 
read_early _dump_tape command is used to read these dumps into the file system for 
analysis. 

Normal dumps are taken with the BCE dump command and put in the DUMP 
partition of the RPV. They are partial snapshots of the Multics virtual memory, 
including the databases of processes and segments within processes which contain 
information relevant to the crash. The privileged Multics copy_dump command is used 
to read normal dumps into the file system for analysis. 

10-8 AM81-04 



THE BCE dump COMMAND 

The BCE dump command writes selected segments from selected processes in 
the crashed system to the DUMP partition of the RPV disk. The selection of exactly 
which processes and which segments get dumped is controlled by the control arguments 
supplied to the dump command. The dump command scans the APT (the Active 
Process Table, located in the segment tc_data) of the crashed system, and sele.cts 
processes based on the criteria specified by the control arguments. For each process it 
selects, the dump command then scans the descriptor segment of that process and 
selects segments based on the criteria specified by the control arguments. Normally. all 
of the supervisor databases are dumped, as well as supervisor data in running 
processes. Pure segments (procedures and fixed data) are never dumped, because they 
cannot contain clues to what went wrong. (It's possible that a severe hardware failure 
could damage pure segments, but the need to dump them for this reason is extremely 
rare and does not justify the vast expense of dumping them regularly.) 

The layout of the DUMP partition is as follows. First there is a header, which 
describes what segments (by number and length) have been dumped, and contains the 
machine conditions from the return to BCE. Then there are segment images. For each 
process dumped, the segment images are in order by ascending segment numbers. 
Figure 10-1 depicts the layout of the DUMP partition following execution of the 
dump command. 

After the system is rebooted, the dump has to be copied out of the DUMP 
partition into permanent storage. This is done by the privileged Multics copy _dump 
command, which is usually part of Utility.SysDaemon's start_up.ec. The copy_dump 
command uses the gate hphcs_ and therefore is generally executed by Initializer.SysDaemon 
or Utility.SysDaemon. It determines whether the DUMP partition contains a valid 
dump. If it does, the information in the DUMP partition is copied into one or more 
segments in the directory > dumps. These segments have the name date.time.n.dump_no, 
where date is in the form MMDDYY, time is in the form HHMMSS, n is a number, 
starting at 0, incremented by one for each segment of a multi-segment dump, and 
dump_no is a number incremented by one each time a dump is taken. The 
information in these segments is in the same format as it is in the DUMP partition. 
However, since the DUMP partition can be much longer than the maximum length of 
a segment, each 255K of dump information is placed in its own segment. 

10-9 AM81-04 



o 

2000 

segment map 

segment image 

segment image 

-\ 

\ dump header 
/-

/ 
-\ 

copies of 
\_ segments of 
/ processes 

dumped 

Figure 10-1. Layout of the DUMP Partition 

10-10 AM81-o4 



Examining a Crashed System 

To examine a crashed system, use either the analyze_multics subsystem (AZM) 
or the BeE probe subsystem. Normally, you will reboot the system and examine the 
crash under AZM. Using the BeE probe subsystem is only necessary when the BeE 
dump command fails, when the system crashes repeatedly and you can't reboot it, or 
when you strongly suspect a hardware problem and want to see more information 
bef ore rebooting. 

To examine a crash with AZM, type: 

azm 
sld <dump number> 

To examine a crash with the BeE probe subsystem. type: 

probe -crash 

The most useful azm requests are: 

display, d 

events 

machine_conditions, mc 

stack, sk 

why 

The most useful probe requests are: 

display, ds 

mc 

stack, sk 

displays a selected portion 
of a segment in a dump 

displays significant events which 
occurred just prior to the crash, 
in reverse chronological order 

displays all or parts of machine 
conditions, based on the given pointer 

traces a given stack 

provides a brief description of 
the immediate cause of the crash 

displays a set of locations 
in a specified mode 

d i sp 1 ays, in interpreted form, 
the SCU data found within the 
machine conditions at the specified 
address 

dispiays a stack trace starting 
at the given address 

For a complete description of the azm and BeE probe commands. refer to the 
Multics Administration, Maintenance, and Operations Commands manual, Order No. 
GB64. 

10-11 AM81-Q4 



LOCATING THE RELEVANT PROCESS 

When Multics crashes, it is executing on behalf of some process. This process 
is called the crash process (or the "return to BeE" process). During initialization, the 
crash process is always the initializer. When the azm and probe commands start up, 
they use the information stored in the BeE toehold to find the crash process. Then 
they select it Selecting a process means setting things up so that virtual addresses are 
interpreted within that process' address space. This means that any virtual addresses 
that you type in or that azm or probe types out are relative to the crash process. In 
some rare cases, it will be impossible for azm and probe to determine which process 
returned to BeE. These cases are beyond the scope of this manual. 

EXAMINING THE TOEHOLD MACHINE STATE 

The most important thing to examine is the machine state from the return to 
BeE, known as the "toehold machine state." This machine state, as well as all of the 
items stored in the toehold at BeE entry time, is described by the structure mc_state 
in the include file toehold_save_dcls_.incl. pll. The most important part of the toehold 
machine state to look at is the machine conditions, known as the "toehold machine 
conditions." These are a standard set of Multics machine conditions. Depending on the 
way in which the system returned to BeE, different information in the toehold 
machine conditions will be relevant. 

Examining the Toehold Machine Conditions for Execute Switches Crashes 

For crashes via execute switches, the toehold machine conditions will reveal 
what the system was doing when the operator executed switches. To see these machine 
conditions in AZM, type: 

me -dump 

To see these machine conditions in the BeE probe subsystem, type: 

me toeholdl2760 

Note that the constant "2760" is correct for MR12.0. If your site modifies 
toehold_save_dcls_.incl.pll, this number may change. 

By looking at the value of pointer register 6 (PR6), you can determine what 
stack was in use at the time of the crash and investigate the circumstances further. 
There are some other items stored in the toehold at BeE entry time which may be 
useful in investigating certain crashes, including. for example, history registers. To 
display the history registers in AZM. type: 

hregs -dump 

To display the history registers in the BeE probe subsystem, type: 

ds <address of hregs in toehold> 

Note that AZ~1 interprets history registers, while the BeE probe subsystem merely 
dumps them in octal. 

10-12 AM81-04 



Examining the Toehold Machine Conditions for Non-Execute Switches Crashes 

For all crash mechanisms other than execute switches, the toehold machine 
conditions will describe the machine state at the time of the derail fault that returned 
to BCE. This machine state depends almost entirely on the text of the program 
(sys_trouble or pmut) that executed the derail fault. For this reason, it usually isn't 
neccessary to look at the entire set of machine conditions. PR2 will be useful if 
you're having trouble finding prds$sys_trouble_data in the dump, since it will contain 
the address of prds$sys_trouble_data. 

As explained above, prds$sys_trouble_data will contain the machine conditions 
of each process at the time of the crash. PR6 in these machine conditions will show 
what stack the system was running on when it crashed. If the system crashed via the 
syserr, ring zero derail, or hphcs_$call_bce mechanism, you should trace the relevant 
stack to determine the circumstances surrounding the crash. 

If the system crashed via the invalid fault mechanism, the prds$sys_trouble_data 
machine conditions will show which program crashed the system. 

If the system crashed via the execute fault or unexpected fault mechanism, the 
prds$sys_trouble_data machine conditions are the machine conditions of the fault itself. 
For an execute fault, these machine conditions should allow you to determine why the 
system was doing whatever provoked you to crash it in the first place. For an 
unexpected fault, these machine conditions (together with the crash history registers) 
should allow you to diagnose the problem. This kind of fault is almost always caused 
by either a corrupt fault vector or a CPU hardware error. 

EXAMINING OTHER MACHINE CONDITIONS 

Most of the time, system crashes are associated with faults or interrupts. To 
find out why the system crashed, you have to find the machine conditions for the 
problematic fault or interrupt. If you've gotten this far and still haven't been able to 
figure out why the system crashed, you can try looking at all of the places where the 
system stores machine conditions. These are: 

pds$fim_data 
pds$signal_data 
pds$page_fau 1. t_data 

prds$fim_data 
prds$interrupt_data 

To see which faults store machine conditions in which of these areas, see the 
programs initialize_faults_data. cds and initialize_faults.pll. Once you find the relevant 
machine conditions. you must look at the SCU data and possibly the history registers 
to determine the reason for the fault 

After performing the basic analysis described so far, you may need to examine 
other processes beside the crash process to get a complete understanding of the crash. 
Such an examination is beyond the scope of this manual. 

10-13 AM81-04 



How Multics Performs an ESD 

The emergency shutdown operation is initiated by the BCE esd command, which 
forces a transfer of control to the Multics emergency shutdown procedure and restarts 
the Multics memory image. The emergency shutdown procedure attempts to flush main 
memory contents onto the disk volumes and to shut all disk volumes down. If 
emergency shutdown completes without error, no information in user segments is lost. 
If the system crashed in the middle of a directory update, the directory may be left 
in an inconsistent state. If a user references the directory before a manual salvage is 
done, the directory will be salvaged automatically. 

RECOVERING FROM SYSTEM FAILURES 

This subsection describes automatic and manual recovery from Multics system 
failures, including information about what to do when recovery fails. 

In general, recovering from a system failure involves the following steps: 

1. Returning the system to BeE. 

2. Taking a dump of Multics. 

3. Shutting down the file system as well as possible, which usually means 
perf orming an ESD. 

4. Rebooting Multics. 

5. If the failure prevents a successful boot of Multics, resolving the problem 
which caused the failure, be it software or hardware. 

Automatic Recovery 

Normally, automatic recovery procedures are enabled after a system failure. 
There are 36 switches set up in the BeE toehold for communication between Multics 
and BeE. These switches are set either by the BeE set_flagbox command or by the 
privileged Multics set_flagbox command (both of which are described in the Multics 
Administration, Maintenance, and Operations Commands manual, Order No. GB64). 
One of these switches means "automatic reboot mode is on." When the system is 
running in automatic reboot mode and returns to BCE, the flagbox bce_command 
variable is set to a command that tests the "crashed" indicators to discover whether 
the system failed or shut down normally. If the test indicates a system failure, 
automatic recovery procedures begin. These procedures do the following: 

1. Take a dump of Multics (using the BeE dump command). 

2. Perform an emergency shutdown (using the BeE esd command). 

If the system is running in unattended mode, these procedures may also: 

3. Bring the system up again (using the BeE boot command). Minimally required 
salvaging is done automatically as the system is brought up. 

10-14 AM81-D4 



(See the Multics Administration, Maintenance, and Operations Commands manual, 
Order No. GB64, for descriptions of the BeE dump, esd and boot commands. See the 
Operator's Guide to Multics, Order No. GB61, for descriptions of the step-by-step 
procedures to follow when you're making use of automatic recovery procedures. in 
both automatic and manual modes.) The operator should record the crash according to 
your site's policy as soon as possible after recovery procedures begin. 

When the system reboots automatically after a crash. the operator may not be 
present. Therefore, t.lJ.e following lines appear in the standard system_start_up.ec: 

&if [and [get_flagbox unattended] [get_flagbox rebooted]] 
&then sc_command delete device tape_(Ol 02 03 04 05 06 07 08) 

so that until the operator explicitly reattaches the tape drives or does an "x attend," 
no user process hangs waiting for a tape. In order to prevent the system from cycling 
in a tight loop of boot-crash immediately-recover-boot, the following lines appear: 

&if [and [get_flagbox unattended] [get_flagbox rebooted]] 
&then set_flagbox auto false 

These command lines turn off automatic reboot mode, thus preventing repeated 
attempts to reboot without operator intervention. If these lines are omitted from 
system_start_up.ec, the reboot loop terminates when the BeE dump command finds the 
DUMP partition full. If the system attempts to reboot itself repeatedly, this may be a 
sign of some system problem that does not prevent answering service startup, but 
crashes the system later. If this happens at your site, one solution is to modify 
system_start_up.ec so it submits a deferred absentee job that enables rebooting if the 
system stays up for at least an hour. 

Note that when the system is running in manual mode and returns to BeE, 
automatic recovery procedures do not run. However, the operator may explicitly ask 
for the same procedures to run. 

Note also that automatic recovery procedures can't run until the system returns 
to BeE. So when you have a failure which doesn't crash the system (a loop or a 
hang), you have to force the system to return to BeE before automatic recovery 
procedures can begin. 

Manual Recovery 

If you pref er to recover the system manually, or if automatic recovery 
procedures fail, you may dump Multics. perform ESD, and reboot the system yourself. 
Step-by-step procedures for recovering the system manually are available in the 
Operator's Guide to Multics, Order No. GB61. 

When to Perform Emergency Shutdown 

Emergency shutdown (ESD) should always be performed after a system crash, 
as long as the hardware (especially memory and disk controllers) is operational, no 
disk packs have been moved, and the contents of memory have not been disturbed. 

10-15 AM81-()4 



DO NOT attempt to perform an ESD if memory has been cleared or powered 
off, disk controllers are broken, or disk packs have been moved. Also, since an ESD 
destroys the current memory image, you should only perform one after you've dumped 
Multics or examined the crash with BeE probe, or after you've decided that dumping 
Multics is impossible. 

Doing ESD from the Switches 

If the system is hung, you understand why, and there is no way to get a 
dump, or if you are in BeE and have lost the bootload console, you may perform an 
emergency shutdown from the switches. To do this on a Level 68 system, execute 
switches with the DATA switches set to 024002717200. To do this on a DPS 8 system, 
use the BeE 24002 command (described in Appendix B). 

Recovery Failures 

Note: if anyone of the automatic recovery procedures fails, you will have to 
finish it yourself, then perform any remaining procedures manually. The automatic 
recovery procedures will not restart after you've fixed the one that didn't. work; they 
cease to run automatically once one of them fails. 

SYSTEM DOESN'T CRASH 

When the system doesn't crash, it doesn't return to BeE. A failure which 
doesn't crash the system is usually the result of the system loopipg or the initializer 
process hanging. When this happens, you must crash the system manually by executing 
fault (or by executing switches, if executing fault doesn't work). Step-by-step 
procedures for executing fault and executing switches on both a Level 68" system and a 
DPS 8 system are available in the Operator's Guide to Multics, Order No. GB6l. 
BCE senses this manual intervention and does not perform the automatic operation 
specified in the flagbox bce_command. You may invoke automatic recovery by typing 
nec rtb" or you may recover the system manually. 

You will not be able to return to BeE if the system can't do disk I/O to the 
RPV for any reason (for example. because one or more MPCs are broken). 

Sometimes a system crash sounds the 10M alarm. BCE cannot be successfully 
entered until the 10M alarm is manually reset from the 10M panels. (DO NOT use 
the INITIALIZE button on the bootload console to reset the system after an 10M 
alarm.) The step-by-step procedure for resetting the 10M alarm is available in the 
nnelr~tnr'~ r.lliriel tn IlAlllti,",~ n~~A'" 1'I..T" nut;., '-""t'''''''' 1Lot''"''''''' .., ....... \0lil'1" ......... I..., 'r'~' lor """'"', ~.lw.'-'J. .1. ... v. '-I,UV.L. 

10-16 AM81-04 



DUMP FAILURE 

If the system fails while it's taking a dump of Multics, the first thing you 
should do is try the dump again. (If the dump failf'd because the previous copy_dump 
command was not successful or not reached, and if the DUMP partition is still full, * 
you may save the new dump on any other disk that contains a DUMP partition by 
using the -drive control argument with the dump command.) This allows the new 
dump to be taken without losing the old one. To try the dump again, type nec 
dump." If this works, continue with an ESD. If it doesn't work, give up and 
continue with an ESD. 

EMERGENCY SHUTDOWN FAILURE 

An emergency shutdown can succeed completely, succeed partially, or fail. If it 
succeeds completely, you will receive the following messages (and possibly others): 

beg in emerg'ency shutdown part 1 
emergency shutdown part 1 complete 
shutdown complete 

In this case, continue by rebooting Multics. 

If the ESD succeeds partially, you will receive the following messages: 

begin emergency shutdown part 1 
emergency shutdown part 1 complete 

Then you will receive some combination of the messages described next. 

shutdown_file_system: Error deactivating. Quote may be bad. 

This message indicates that the system failed trying to update its permanent record of 
quota. You will only see this message once per crash. If you get this message, run a 
quota salvage after you reboot Multics. 

disk_emergency: dskX_NN inoperative: shutdown of dskX_NN 
suspended. 

This message indicates that the disk volume mounted on drive dskX_NN could not be 
shut down due to disk, errors. You will see this message once for each broken drive, 
each time you try the ESD. If you get this message, move the pack or reset the 
drive, and then retry the ESD by typing "esd." 

shutdown_file_system: from demount_pv on OCTAL_PVTX. 
ERROR_MESSAGE 

10-17 AM81-Q4 



This message indicates that a disk volume could not be shut down. Some previous 
error message should have reported the disk drive and/or volume name. Normally, if 
a drive is inoperative, the system will have detected the problem, printed a more 
informative message, and given up on the drive before this point. Thus, this message 
should appear very rarely. If you get one or more messages like this without having 
gotten any messages from disk_emergency or elsewhere, you should make sure that all 
drives are ready, and retry the ESO. You can use the test_disk BeE command to try 
to identify the failing drives. 

shutdown_file_system: N locks set. 

This message indicates that some system databases were left inconsistent, even though 
all disk volumes were shut down. You may see this message once, each time you try 
the ESO. You should ignore it 

shutdown complete except for devices suspended. 

If you received any of the "disk_emergency" or "shutdown_file_system: from 
demount_pv" messages described above, this message will be the last one you receive 
before the system returns to BeE. It replaces the "shutdown complete" message. 

As you can see from these messages, what usually happens when the ESO only 
succeeds partially is that some disk volumes get shut down, but others don't In this 
case, you may be able to shut down the rest of the volumes by trying the ESO a 
number of more times. To do this, keep typing "esd." Then continue by rebooting 
Multics. 

If the ESO fails completely, the system will hang or crash. 

When you can't get a successful ESO, you should reboot the system. If you 
had problems with disks or disk MPCs, or if either the RLV or the RPV were tight 
for space, you should volume salvage the RLV when you reboot, by doing a "boot 
rlvs." If you try to reboot without salvaging and fail, try again with salvaging. If you 
don't salvage, you may want to stop in ring 1 and invoke the salvage_dirs command 
(described in the Multics Administration, Maintenance, and Operations Commands 
manual, Order No. GB64). 

If you are running the standard system_start_up.ec, the volume scavenger is run 
automatically to correct volumes with inconsistencies and volumes which weren't shut 
down. For more information about salvaging and scavenging. refer to "Salvaging" later 
in this section. 

Note: sometimes the system crashes before the storage system has been 
accessed. If a premature emergency shutdown is attempted, the following message is 
printed: 

esd: Storage system not enabled. esd not performed. 

and the storage system hierarchy is un touched. 

10-18 AM81-o4 



AUTO REBOOT DISABLED 

When auto reboot is disabled, automatic recovery procedures run as far as 
rebooting Multics. then stop. Auto reboot can be disabled for two reasons. The first 
reason is because the auto_reboot flag is off. The auto_reboot flag may be turned off 
by the set_flagbox command executed while Multics is running. \\Then this happens, 
the exec_corns print a message and exit after recovering (i.e., after doing a dump and 
an esd). In this case, you should just reboot, using ec auto star. 

The second reason auto reboot can be disabled is because the system never 
completed the system_start_up.ec, which means the booting flag is still on. The 
exec_corns take a dump and do an emergency shutdown, but do not reboot Multics. 
In this case, if you got to ring 4 before the system crashed, you should do a "boot 
stan," get into admin mode, and fix the problem. If you crashed before you got to 
ring 4, you should do a "boot rlvs." 

BOOTLOAD FAILURE 

If the system fails while it's rebooting Multics, the first thing you should do is 
run recovery again. If you want the system to perform automatic recovery, type nec 
rtb." If you want to recover the system yourself, use the "ec dump," "esd," and "ec 
auto star" commands. 

Clock Problems 

If you get the following error message: 

initializer: bad_dir_ condition signalled 

you should check the calendar clock. If it's wrong, use the BeE reinitialize command 
with the -time control argument, fix the clock, and then do a "boot rlvs." (The BeE 
reinitialize command is described in the Multics Administration, Maintenance, and 
Operations Commands manual, Order No. GB64.) 

If you attempt to boot Multics with a clock setting which is obviously bad, 
the BeE boot command detects the bad value and either refuses to boot or queries 
you. (See the description of the BeE boot command in the Multics Administration, 
Maintenance, and Operations Commands manual, Order No. GB64.) You should fix 
the clock setting and reboot Multics. 

If the time zone on the clok card is not one that the system accepts (i.e., it 
is not listed in the system's table of time zones), BeE crashes and you go to the 
"bee_crash" state. You should edit the clok card and reboot Multics. (For a list of 
acceptable time zones, see the description of the clok card in Section 7.) 

10-19 AM81-()4 



Root Volume Problems 

If you get the message "No space on RPV", the system will probably crash 
again. This time, when you reboot Multics. do a "boot rlvs." The system will perform 
various kinds of salvaging. then pause in ring 1. Type "star" and the system will 
continue rebooting Multics. 

If you attempt to boot Multics with a non-root volume where an RL V should 
be. the system will fail with one of the following messages: 

init_pvt: no root 
init_pvt: dska 3 has no Multies label 
init_pvt: no partition he on root dska 3 

First, check to see that the correct packs are mounted on the correct drives. (Use the 
BCE display_disk_label command. described in the Multics Administration, Maintenance, 
and Operations Commands manual. Order No. GB64.) If they aren't. fix them. If 
they are, check the root card in the config deck. If it's wrong. correct it. If it's 
right. recover the RPV. Then reboot Multics. 

If the system refuses to leave ring one, and you get a message which says the 
root logical volume is incomplete, the volume registration for the RLV may be 
damaged. It can get damaged if the system crashes without ESD, or if the system 
crashes while you are in the middle of changing the logical volume registration for the 
RL V. To recover from this, the first thing you should do is shut the system down. 
Then you should make sure that all of the physical volumes of the RL V are listed on 
the root card and mounted. Next, you should type: 

boot stan nose 

to reach the ring f our emergency listener level. Once there, use the volume 
registration commands to repair the volume registration for the RLV. Then type: 

hphes_$shutdown 

to leave the emergency listener level and return to BCE. Finally, reboot Multics. 

If this procedure doesn't resolve the problem, shut the system down normally, 
do a "boot nolv", and reregister all of your non-root physical volumes with the 
reregister command in ring one. Then boot to ring four. 

Non-Root Volume Problems 

When the system is unable to accept one or more disk volumes, the initializer 
process types a message and inhibits automatic startup. The system waits at ring 1 or 
ring 4 command level, depending on where it detected the error. The system may be 
unable to accept the volumes for a number of different reasons: the disk drives 
they're mounted on may not be ready, the disk packs may have been moved, or the 
volumes themselves may have been damaged. If the disk drives aren't ready, you 

10-20 AM81-04 



should ready them. If the disk packs have been moved, you should use the add_vol 
command to tell the system where they are. If the volumes have been damaged, you 
should use the del_Iv command to delete them, then recover the packs by using the 
volume reloader or BeE restore. 

Disk Table Problems 

Occasionally, the system may not come to ring 1 command level because of 
problems with the Disk Table (the record of disk configuration) or with storage 
system volume registration. When this happens, include the nodt and/or the nolv 
parameters on the BCE boot command line. (See the BCE boot command description 
in the Multics Administration, Maintenance, and Operations Commands manual, 
Order No. GB64). 

F N P Load Problems 

If an FNP doesn't load, use the load_mpx command to load it. 

HARDWARE PROBLEMS 

If hardware problems are the root of a system failure, none of the procedures 
above will be successful. Hardware problems can be hard to detect. Sometimes, when 
a module is in trouble, the TROUBLE light on its control panel will light up. But 
this isn't always the case. If you suspect that one of the modules is having hardware 
problems, you should notify CSD. Remove the module from the system and 
reconfigure the system before rebooting it. Refer to Section 11. 

SALVAGING 

This subsection describes volume and directory salvaging. 

The system automatically performs certain recovery operations when a pack is 
used after not being demounted or shutdown properly. Other recovery operations are 
perf ormed when damage to directories or physical volumes is detected. These 
operations are known as volume and directory salvaging, respectively, and are 
performed automatically. There are occasions, however, when you are required to 
perform these operations manually. Instructions and reasons for doing so are detailed 
below. 

The volume salvaging program checks a physical volume for inconsistencies. It 
makes two kinds of checks. It checks the allocation of disk pages and VTOCEs on 
the volume to be sure that free pages and VTOCEs are listed as free, that used pages 
and VTOCEs are listed as used, and that no two VTOCEs are using the same page. It 
also checks the internal consistency of each VTOCE to be sure that no dates are in 
the future, that the checksum is reasonable, and that various other data are at least 
plausible. When the volume salvaging program runs offline, at volume acceptance time, 
it is called the volume salvager. When the volume salvaging program runs online, 
while the volume is in use, it is called the volume scavenger. 

10-21 AM81-Q4 



The directory salvaging program checks a directory for internal inconsistencies, 
and optionally, for inconsistencies between the directory and the VTOCEs of its 
entries. When the directory salvaging program runs automatically, it is called the 
online directory salvager. When the directory salvaging program runs automatically 
during initialization, in response to the "boot rlvs" command, it is called the bootload 
directory salvager. When the directory salvaging program runs in response to your 
invocation of either the x repair, salvage_dir, or salvage_dirs command, it is called the 
demand directory salvager. 

Volume Salvaging 

The purpose of volume salvaging is to recover free records and free VTOCEs 
which have been lost to the system. The most common cause of lost records and 
VTOCEs is a crash without emergency shutdown (ESD) , where the volume was 
mounted at the time of the crash. Another possible cause is hard I/O errors on the 
device. Volume salvaging reconstructs the map of available addresses and the list of 
available VTOC entries on a physical volume, and ensures the integrity of the label 
and the VTOe. 

As stated earlier, volume salvaging can be done in one of two ways: with the 
volume scavenger or with the volume salvager. Although each method has the same 
effect, using the volume scavenger is the recommended method. The difference 
between these methods is that the volume scavenger is an online program that operates 
while the volume is in use, while the volume salvager is an offline program . that 
operates while the volume is being mounted and is not available for use. The volume 
salvager should be used only to salvage the RL V during initialization when the system 
will not boot without a salvage (caused, for example, by insufficient space on the 
RLV). 

CRASHES WITHOUT ESD 

Due to some types of hardware and software failure, it is not always possible 
to obtain a completely successful emergency shutdown. When this happens, two kinds 
of problems result. The first is that various inconsistencies appear in the storage 
system at the time of the next bootload. These inconsistencies may reflect themselves 
as damaged or inconsistent directories, lost or damaged segments, and inconsistent 
record-Quota-used totals. The system guarantees that no segment's pages will be listed 
as free, and that no two segments will claim the same page, even when ESD fails. 
However, some segments may become orphaned; i.e .. not in use, but not listed as free. 
The second problem is that some volumes do not get shut down. 

For each volume, the system maintains a count of volume inconsistencies smCe 
the last scavenge. This count is incremented by one as follows: 

• Whenever a volume is mounted without having been demounted properly (for 
example, the first time a volume which was mounted at the time of a crash 
without ESD is mounted following that crash). 

10-22 AM81-o4 



• Whenever an inconsistency is detected in a volume control structure while the 
system is running. Such an inconsitency indicates that records or VTOCEs may 
be lost. These lost records and VTOCEs can be recovered only by a volume 
scavenge. 

The system administrator should monitor volume inconsistency counts with 
either the display _pvte or the display _disk_label command. 

After a crash without ESD, any volume except the RL V may be used without 
any salvaging. The only effect of using a volume without first salvaging it is an 
apparent reduction in its capacity (due to lost records and VTOCEs). Although files 
may be damaged as a result of a crash without ESD, this damage cannot be repaired 
by a volume salvage. So using a volume which was mounted at the time of a crash 
without ESD and which hasn't been salvaged has no effect on files residing on that 
volume. 

During initialization, the system will offline salvage volumes of the RL V only 
if there is danger that initialization might not be able to complete without the salvage. 
The decision to salvage a volume of the RL V is based on the number of free records 
on the volume and the number of free VTOCEs. Other than automatic offline 
salvaging of RL V volumes under certain circumstances, the system does not salvage 
volumes automatically. 

When the system is initialized, the standard system_start_up.ec logs in a 
daemon that automatically scavenges all volumes with inconsistencies and all volumes 
that weren't shut down. 

Following a crash without ESD, the system administrator should monitor the 
number of records and the number of VTOCEs left on each volume which was 
mounted at the time of the crash. If volume capacity is in danger of being exhausted, 
a volume scavenge should be run. 

When a volume is mounted or demounted, the count of inconsistencies is 
examined. If it is non-zero, a message is recorded in the syserr log. This message 
includes the count of inconsistencies, the number of free records, and the number of 
free VTOCEs. 

REQUESTING A VOLUME SCAVENGE 

Scavenging Any In-Use Volume 

Any mounted physical volume can be scavenged at any time. Several physical 
volumes can be scavenged simultaneously, depending on the size of the scavenger's 
database (see the description of the tbls configuration card in Section 7). For example. 
to scavenge the RPV while the system is running, type: 

x scav rpv 

10-23 AM81-04 



To reduce the performance degradation while the scavenger is running, type the 
following instead: 

x scav rpv -nopt 

Each of these command lines logs in a daemon process (Scavenger .SysDaemon) to do 
the scavenge. The start and completion of the scavenge is reported to the console and 
any damage found on the volume is recorded in the syserr log. 

Scavenging All Volumes of a Mounted Logical Volume 

To scavenge all physical volumes belonging to the logical volume libraries, type 
one of the following: 

x scav -lv libraries 

or 

x scav -lv libraries -nopt 

As explained earlier, the -nopt control argument reduces the performance degradation 
caused by the scavenger on other users. It also causes the scavenge to take longer. 

Scavenging All Volumes With Inconsistencies 

Either of the following command lines logs in one or more daemons to 
scavenge all mounted physical volumes for which records or VTOCEs may be lost: 

x scav -all -auto 

or 

x scav -all -auto -nopt 

The x scav command is documented in the Multics Administration, Maintenance, 
and Operations Commands manual, Order No. GB64. 

REQUESTING A VOLUME SALVAGE 

Salvaging the Root Physical Volume (RPV) 

T"L-..n. nn" ,,-...-a..-a ,",,,,,,, ... ...,1 .. 1''"'~ ....... ,.3 ....... _1 .. ., ~.,_~__ ,... ... ,. .. +__ .:_.: .... .:_1.: __ .. .:__ A. --,._--- !-
111";' 1'-1 Y \,o-CUI V~ i>CI.lva.5~ VH1'y YUIU1£; ",Y"LC1U lU1LlC1ULC1L1UU. .t\. 0)C11VC1!;C 1:::> 

requested by including the rpvs option to the BCE boot command. This request causes 
a volume salvage of the RPV and directory salvages of certain critical system 
directories. For example, to salvage the RPV and start up the system normally, type: 

boot rpvs star 

10-24 AM81-04 



Salvaging All Volumes of the Root Logical Volume (RLV) 

Volumes of the RLV can be salvaged only during system initialization. A 
salvage of all volumes of the RL V is requested by including the rlvs option to the 
BCE boot command. This request causes a volume salvage of all member volumes of 
the RLV, including the RPV. and directory salvages of certain critical system 
directories. For example, to salvage all volumes of the RL V and start up the system 
normally, type: 

boot rlvs star 

Salvaging Non-RLV Volumes During Initialization 

Volumes which are not members of the RLV can be salvaged during 
initialization. First, boot the system to ring 1 command level (that is, star, stan, and 
mult must not be used as options to the BCE boot command). At ring 1 command 
level, use the salvage_vol command to request a volume salvage of each volume for 
which one is needed or for all volumes known to the system during initialization 
(except for RLV volumes. which can be salvaged only as described earlier). This 
procedure is shown below: 

bce (boot) 0850.2: 
boot 

Multics MR11.0 - 03/27/82 0853.0 est Sat 
Command: 

salvage_vol -all 

Volume salvage of dska_18, volume lddl of logical vol libraries. 

(A message like this will be sent for each volume as the volume 
is salvaged. It may be followed by other messages from the 
volume salvager.) 

Command: 
star 

Salvaging Non-RLV Volumes While the System is Running 

Prior to salvaging any volume. the logical volume to which it belongs must be 
demounted. Then. the salvage_vol command is used to salvage each physical volwne 
for which a salvage is needed. Following the completion of all volume salvages 
needed, the logical volume can be mounted. For example. the following sequence 
requests a salvage of all physical volumes belonging to the logical volume libraries. In 
this example. logical volume libraries contain two physical volumes: IddO (on dska_15) 
and lddl (on dska_18). 

10-25 AM81-{)4 



dlv libraries 

demount_pv: Unload dska 15 for storage system. 
demount_pv: Unload dska=l8 for storage system. 
demounted lv libraries 
Ready (User_name) 

Volume salvage of dska_15, volume lddO of logical vol libraries. 
(May be followed by other messages from the volume salvager.) 
Ready (User_name) 

salvage_vol ldd1 dska_18 

Volume salvage of dska_18, volume lddl of logical vol libraries. 
(May be followed by other messages from the volume salvager.) 
Ready (User_name) 

av lddO dska 15 
Ready (User_~ame) 

av lddl dska 18 
Ready (User name) 

alv libraries 

Iv libraries mounted 
Ready (User_name) 

The volume salvager reports damage to segments ifi the syserr log. In these 
reports, the volume salvager cannot display the pathnames of the damaged segments; 
therefore, it places binary messages in the syserr log describing these segments. 

You can display the pathnames of the damaged segments by usjng the 
print_sys_Iog command with the -expand control argument For example: 

psl -syserr -from <time> -expand -match salvager scavenger 

The salvage_vol command and the print_sys_Iog command are both documented in the 
Multics Administration, Maintenance, and Operations Commands manual, Order No. 
GB64. 

VOLUME SALVAGING MESSAGES 

The volume scavenger reports its findings for all volumes to the syserr log. 
The volume salvager reports its findings to the console for an RL V volume, and to 
the syserr log for other volumes. 

10-26 AM81-04 



Directory Salvaging 

Directory salvaging detects and corrects errors in one or more directories. It 
has three functions. The first function is to recover disk space by compacting or 
rebuilding directories. This is a routine maintenance operation. 

The second function of directory salvaging is to detect and repair problems 
with directories. There are three kinds of directory problems: forward connection 
failures, inconsistencies between an entry in a directory and the VTOCE for that 
entry, and directory damage. All three kinds of problems can result from disk errors. 
hardware failures. system crashes. especially crashes without ESD. and crawlouts. 

When there is a forward connection failure. the directory entry describes a 
VTOCE which does not exist on the volume. Directory salvaging can detect connection 
failures. but it cannot correct them. since it has no way of finding out where the 
desired VTOCE is for a given directory entry. However. it can delete entries which 
have connection failures. 

When there are inconsistencies between an en try in a directory and the VTOCE 
for that entry, the VTOCE is there, but some important fields in the VTOCE don't 
match the entry in the directory. Directory salvaging can correct the directory for all 
fields except AIM fields. In the case of AIM inconsistencies. it sets the soos (security 
out of service) switch. 

When there is directory damage, the directory is internally inconsistent 
Directory salvaging makes the directory consistent. sometimes deleting entries. ACLs, 
names. or all of the contents to do so. 

The third function of directory salvaging is to insure that segment and 
directory qota values are consistent 

The storage system maintains records-used totals for segments and directories in 
a data structure implemented in the VTOC entries and AST entries for segments and 
directories and their superior directories. When the system (or a given volume) cannot 
be successfully shut down. or when part of the storage system is recovered from a 
previous time via the BeE restore command. the quota-used figures associated with 
segments reloaded or not shut down can become inconsistent with the figures in 
superior directories. This situation becomes apparent to users as inconsistencies reported 
by the get_quota and get_dir_quota commands. These figures can be corrected while 
the system is up by a procedure known as quota salvaging. Quota salvaging may be 
performed on the entire system or on a given subtree of the directory hierarchy. If a 
successful emergency shutdown cannot be achieved. quota salvaging should be 
performed for the entire system during the next bootload. If a given volume is 
restored (via a BCE restore) or not properly shut down. all master directories 
containing segments on that volume must undergo quota recovery. 

10-27 AM81-o4 



ONLINE DIRECTORY SALVAGER 

The online directory salvager is invoked automatically when certain software 
errors or hardware failures occur. It performs directory salvaging upon a single 
directory while the system is running. The salv config card (documented in Section 7) 
is used to set the default options for the online directory salvager. The online 
directory salvager does not salvage quota. 

BOOTlOAD DIRECTORY SALVAGER 

RPV Directory Salvaging 

Whenever a volume salvage is done on the RPV, i.e., whenever you do a boot 
rpvs or rlvs, the bootload directory salvager is invoked automatically to salvage the 
root directory and every other directory used in ring 0 initialization (i.e.. the >. 
>dumps and > Iv directories). This operation is done in order to make sure that the 
system can complete bootload and come up to ring 1 command level. 

RlV Directory Sal vagi ng 

Whenever a volume salvage is done on the RLV. i.e., whenever you do a boot 
rlvs, the bootload directory salvager is invoked automatically to salvage all level 2 
directories, while the system is running in ring 1. This directory salvage is the same 
as that performed when you execute the salvage_dirs command. 

An RL V directory salvage includes a quota salvage of each of the level 2 
directories. After this salvage is complete, the system checks to see if there are at 
least 1000 free records of segments quota in the directories > (the root) and >sc1. If 
either of these directories has less than 1000 records, the system forces it to have 
1000 free records with the equivalent of a set_quota command. When this happens, 
the system prints the following message: 

system_startup_: Forcing quota for <directory> from <old_quota> 
to <new_quota>. Run a quota salvage. 

If you see this message, you should insure that you have enough quota allocated in the 
directory, and then run a quota salvage on it, since forcing quota creates an 
inconsistency. To run the quota salvage, use "x repair" (described below). 

DEMAND DIRECTORY SALVAGER 

For routine maintenance of the hierarchy. invoke the demand directory salvager 
by using the x repair initializer command in ring 4. To recover disk space, which 
should probably be done on a weekly basis, type: 

x repair salv > <number_of_processes> -compact 

It's usually a good idea to find and repair quota inconsistencies when you recover disk 
space. To do this, type: 

x repair salvquota > <number_of_processes> -compact 

10-28 AM81-04 



To completely reconstruct all system directories, which should probably be done on a 
monthly basis, type: 

x repair salv > <number_of_processes> -rebuild 

It's usually a good idea to find and repair quota inconsistencies when you reconstruct 
directories. To do this, type: 

x repair salvquota > <number_of_processes> -rebuild 

Another good idea is to add the -check_ vtoce control argument to the command lines 
above, to clean up any old problems left over from past system crashes. This control 
argument is necessary if you want to detect connection failures, but makes the salvage 
run even slower than it would otherwise. 

After a system crash, the way you invoke the directory salvager depends on 
whether ESD was successful or not. If ESD was successful, you are much more likely 
to have quota problems than other, more serious, problems. Therefore, you should run 
a quota salvage immediately after the crash. In other words, type: 

x repair quota> <number_of_processes> 

Run a normal salvage sometime later, by typing: 

x repair salvquota > <number_of_processes> -check vtoce 

If ESD was not successful and you didn't do a boot rlvs, use the salvage_dirs 
initializer command in ring 1 to salvage critical system directories. Then type "mult". 
If the answering service comes up, run a normal salvage sometime later. In other 
words, type: 

x repair salvquota > <number_of_processes> -check_vtoce 

If the answering service doesn't come up, get into admin mode. Use the salvage_dir 
Multics command from the initializer process to fix directories with problems, and the 
fix_quota_used exec_com from the initializer process to fix local quota problems. To 
use this exec_com, type: 

ec >t>fix_quota_used <dirname> 

Finally, if a user complains about problems with a single directory, use the 
salvage_dir Multics command from a privileged process to salvage that particular 
directory. 

The x repair, salvage_dirs, and salvage_dir commands are all documented in the 
Multics Administration, Maintenance, and Operations Commands manual, Order No. 
GB64. 

10-29 AM81-04 



* 

DI RECTORY SALVAGING MESSAGES 

Both the online directory salvager and the bootload directory salvager print 
their error messages on the bootload console and in the syserr log. Where demand 
directory salvager messages go depends on which command you use to invoke the 
demand salvager. The x repair command logs in one or more daemons, which print 
some of their messages on user_output. All of their messages are also printed in 
dprinted files. Where user_output goes depends on where you route it with the 
message coordinator route and define commands. The salvage_dirs command prints its 
messages on the bootload console and in the syserr log. The salvage_dir command puts 
its messages in a file. 

DISK FAILURES 

This subsection describes disk failures, including how to recognize a disk 
failure, how to determine what kind of disk failure it is, how to recover fr.om 
different kinds of disk failures, and how to be prepared for disk failures. It also 
includes detailed procedures for recovering from various kinds of disk volume failures. 

Recognizing a Disk Failure 

Often, only one disk volume or disk drive is involved in a disk failure. The 
symptom that you'll notice is a burst of error messages for the drive. of the form: 

disk_control: MAJOR_STATUS SUBSTATUS for dskX_NN (iom X chn YY). 
rec RRRR, sect SSSS, main AAAA. 
detailed status: XX XX XX XX XX XX XX XX 

and then a message such as: 

disk control: dska 04 requires intervention. 

with an audible alarm. The error messages may repeat periodically as the system 
attempts to access the drive to determine if it has been made available again. If the 
system is waiting for the drive to become operational and a user is trying to access 
data on the drive, messages of the form: 

pxss: notify timeout, event 
processid = NNNNNNNNNNNN 

144163153167, 

are printed on the bootload console. These messages indicate that disk input/output 
operations are taking longer than normal to complete. If the processid is 003000777777. 
the initializer process is waiting for the drive. and no initializer or admin commands 
can be issued until the drive becomes operational. In SOme cases, the system crashes 
when a disk drive fails; most often, the system continues operating. although without 
the availability of segments on the affected device. 

10-30 AM81-Q4 



Determining the Nature of a Disk Failure 

The disk_control error messages which include 10M and device channel 
numbers, record addresses, and interpretations of error statuses provide many clues 
about the nature and extent of disk failures. Patterns in the device numbers (e.g., 
dskX_NN), 10M and channel numbers, and record addresses can indicate whether the 
failure stems from a malfunctioning 10M, MPC, channel or disk drive. 

If all disk error messages ref er to a single record address, a single device, and 
multiple laMs/channels,· there may be only a single bad record on the disk volume. 
If such is the case, you can prevent further acc·essing of the bad record by using the 
record_to_vtocx command to identify the segment containing the bad record. You can 
then prevent access by turning on the segment's damaged switch, by denying access to 
the segment, or by deleting the segment's VTOCE with the following command: 

hp_delete_vtoce pvname vtocx -clear 

Errors for multiple disk records on a single device, with multiple laMs/channels, 
may indicate a disk drive failure. Any disk records written during the failure event 
(which is possibly ongoing) may be damaged. Another possibility is that read errors 
are occurring, with disk records remaining undamaged. Moving the disk volume to 
another drive might correct the latter problem. 

Errors on multiple devices which all occur through laMs/channels leading to a 
single MPC may indicate an MPC failure. Any disk volume accessible through this 
MPC may have been damaged during the failure event. 

Errors on multiple devices which all occur through a single 10M and channel, 
with 10M system fault messages of the form: 

disk control: Unexpected 10M status SSSS for dskX NN (iom X 
chn YY) . 

may indicate a malfunctioning 10M Peripheral System Interface Adaptor (PSIA). Any 
disk volume accessible through this channel may have been damaged during the failure 
event. 

The preceding patterns are symptoms of various types of failure; they are NOT 
hard-and-fast rules of failure. But analyzing such patterns can be helpful in trying to 
determine which device or devices are failing, and in isolating such devices from the 
system. 

10-31 AM81-()4 



Recovering from Disk Failures 

DELETING THE FAILING 10M, MPC OR CHANNEL 

If disk error patterns indicate that a major device such as an 10M or MPC 
may be malfunctioning, or that a single physical disk channel (lOM PSIA) may be 
malfunctioning, and if the disk volumes accessible through the failing device are 
crossbarred, it is often useful to try deleting the failing 10M, MPC or channel from 
the system. This can help avoid disk error messages, possibly restoring system 
operation with slightly degraded performance. It can also help to identify the failing 
unit, since error messages may stop after the 10M, MPC or channel is deleted. Use 
the reconfigure command to delete possible failing devices. For example: 

rcf delete iom b -delete_all_attachments 
rcf delete mpc mspa 
rcf delete chan b23 

REREADYING THE DISK DRIVE 

When a disk intervention message is reported and the pattern of error messages 
indicates failure of a single disk drive, you should attempt to reready the disk drive 
by pressing its START/STOP button. If rereadying the drive corrects the problem, the 
system prints: 

disk_control: dska_04 now operational. 

and attempts to use segments on the drive again. Sometimes a disk drive may reready 
itself automatically. The system prints out messages and sounds an alarm as long as 
the drive is not operational. 

For MSU0500/501 disk drives, if rereadying does not make the drive 
operational, have your Customer Service Representative check for tripped circuit 
breakers inside the back of the drive. You can also try using the ONLINE/OFFLINE 
button to set the drive offline, then pushing the T&D RESET BUTTON (which is on 
top of the unit in the lowered area between the two disk spindles), and then putting 
the unit back online. However, repeated stopping and starting of an MSU0500/501 
disk drive can damage the drive's motor and should therefore be avoided. 

MOVING THE DISK VOLUME TO ANOTHER DRIVE 

If a disk drive with a removable volume (an MSU0451) cannot be made ready 
and you have an unused disk drive on the same disk subsystem, you can move the 
volume to this spare drive along with the associated disk drive device number plug. 

10-32 AM81-D4 



To move a disk volume from a failing drive to a spare drive, put the failing 
drive in standby mode by pushing the STOP button. If there is a disk volume on the 
spare drive, put that drive in standby mode as well. Remove the device number plugs 
from both the failing drive and the spare drive immediately. When the spindles stop, 
demount any volume from the spare drive, and move the volume from the failing 
drive to the spare drive. Push the START button to start the spare drive. After the 
spare drive becomes ready, insert the device number plug from the failing drive into 
the spare drive; insert the device number plug from the spare drive into the failing 
drive. 

Note that the spare drive must already be ready before you insert the device 
number plug. Note also that you must wait at least 30 seconds from the time you 
remove the plugs until the time you reinsert the plugs. This is because the MPC only 
polls devices every 15 seconds for status changes. 

If the procedure above fails, the following procedure may be tried as an 
alternate. Put the failing drive in offline mode by setting the rotary switch on the 
inside of the back door of the unit. Then power down the failing drive, dismount the 
disk volume, mount it on the spare drive, and swap the device number plugs between 
the failing drive and the spare drive. Set the spare drive in offline mode, ready it, 
and then put it in online mode. 

Note that a similar procedure exists for moving fixed-head disk volumes 
(MSU0500/501s) to another disk drive on the same disk subsystem, but this procedure 
can only be carried out by your Customer Service Representative. The procedure 
involves dismounting the head assembly (HDA) from the failing disk drive and from a 
spare drive on the same subsystem, swapping the head assemblies, and swapping the 
"Berg block" identifiers on the two disk units. Both disk drives should be placed 
offline during this process. This procedure may take up to an hour, but at times, the 
system can continue running with acceptable performance while such a move is 
undertaken. Consult with your Customer Service Representative for further information. 

RELOADING DISK MPC FIRMWARE 

If the system still reports the drive as not operational, either after moving the 
disk volume to another drive, or after attempting to reready the failing drive, it may 
be necessary to reload the firmware in the MPC for the disk subsystem. Reloading 
firmware may also be. necessary if the pattern of disk error messages indicates an 
MPC failure. 

If the failing disk subsystem is serviced by two MPCs, then you will have to 
reload the firmware in both of the MPCs. This can be done most easily by using the 
Multics load_mpe command. For example, if the dska subsystem is serviced by MPCs 
mspa and mpsb, send the following commands to Utility.SysDaemon: 

r ut load_mpe mspa -firmware 
r ut load_mpe mspb -firmware 

Wait for the first command to complete before sending the second command. 

10-33 AM81-04 



Note that it is best to run the load_mpe command from some other process 
besides the initializer process. A failure of this command could cause the initializer 
process to hang or terminate, crashing the system. However, some sites may have 
secured access to other SysDaemon processes (e.g., Utility.SysDaemon). At such sites, 
you can only load the firmware by going into admin mode in the initializer process: 

admin 
load_mpc mspa -firmware 
load_mpc mspb -firmware 
arne 

Also, note that load_mpe can only be used to reload firmware when there are two 
MPCs serving a given disk subsystem. This is because reloading firmware takes the 
MPC out of service, and the system must have an alternate path to access the disk 
subsystem via the second MPC. If a noncrossbarred disk MPC fails to respond, you 
can return to BCE to reload its firmware. When BCE is reentered, it automatically 
polls each MPC to make sure it is operational. If an MPC fails to respond, BCE asks 
whether to reload its firmware, as shown below: 

bce 
load_disk_mpcs: Disk mpcs mspa appear not to be operating. Enter 
disk mpc names to be loaded, or "none" or "abort" or "all": 
mspa 
bce (crash) 1601:3 
go 

Of course, if the disk string con taInmg the RPV is serviced by only one MPC and 
that MPC is failing, you can't return to BCE to reload the MPC firmware. Returning 
to BCE accesses the bce partition on the RPV to read the BCE memory image. 
Failure of the MPC servicing the RPV makes this read operation impossible. 

If so many error messages are being printed on the bootload console that the 
system will not respond to operator requests, you can reinitialize the firmware in the 
disk MPC rather than reloading it, by using the procedure described in the Operators' 
Guide to Multics (Order No. GB6l). This procedure takes the entire system out of 
service for a short period of time, and should only be performed when disk failures 
are severe. 

SHUTTING DOWN OR CRASHING THE SYSTEM 

If you cannot make the failing disk drive operational, the system will continue 
printing error messages. The system can often continue to run with such errors for an 
extended period of time. If it appears to be running properly except for the disk 
errors, attempt to contact your Customer Service Representative for help in correcting 
the disk drive problem. He may be able to correct the problem which prevents 
making the drive ready. without having to shut down the system. 

10-34 AM81-o4 



If many errors are occurring and system performance is seriously degraded, or 
if the initializer process is affected by the disk failure, it may be necessary to shut 
down or crash the system. In this case, you should attempt to shut down the system 
normally. If the system won't respond to the shutdown command, you should follow 
the procedure for dealing with failures that do not crash the system in the Operators' 
Guide to Multics (Order No. GB6l). This procedure includes doing an emergency 
shutdown of Multics. For more information on system crashes, refer to "Crashing" 
earlier in this section. 

During regular or emergency shutdown, the system attempts to shut down as 
many disk volumes as possible. If a volume cannot be shut down because of a 
hardware problem with its disk drive, the system prints the message: 

disk_emergency: dska_XX inoperative: shutdown of dska_XX 
suspended. 

and continues to try to shut down all other drives. When emergency shutdown 
completes, the system prints: 

Shutdown complete except for drives suspended. 

instead of the normal "shutdown complete" message. Once the system has shut down, 
you or your Customer Service Representative should try to make the disk drive 
operational. Then you can issue (or reissue) the esd command to reattempt shutdown 
on the suspended disk drive. 

Sometimes a disk drive can fail in such a way that ESD will not complete for 
other, operational disk drives. If this happens, try powering off the failing disk drive 
and reissuing the esd command. The power off status from the drive will force the 
drive into an inoperative state which the esd command will recognize. The esd 
command will suspend shutdown of the disk volume and move on to other volumes. 

You can issue the esd command as many times as necessary until the shutdown 
completes normally, or until you decide that you cannot make failing drives 
operational. Any disk volumes which remain suspended following ESD may contain 
segments which are damaged. This means that you must perform record quota recovery 
operations (via an "x repair salvquota"). The RPV will be salvaged automatically during 
the next Multics bootload. 

If a disk drive with a removable volume cannot be made operational, the disk 
volume can be moved to any other spare disk drive for the next Multics bootload. 
However, you should be sure that the disk volume has not been damaged by a head 
crash. Moving a damaged disk volume to another drive can cause a head crash on the 
second drive. Have your Customer Service Representative check the disk volume for 
damage. If your CSR is not available, check for fine dust particles on the walls of 
the disk housing where the disk is mounted. Such dust particles usually indicate that a 
head crash has occurred. 

10-35 AM81-D4 



When a disk volume is moved to another drive with a different device 
number t you should boot Multics to ring 1 command level and use the add_vol 
command to tell the system the new location of the disk volume. If the RPV is 
moved to a drive with a different device number, you must reboot BCE so it will be 
able to find the new location of the RPV. The part con fig cards referring to 
partitions on the RPV must be updated to reflect the RPV's new device address. If 
an RLV volume containing a hardcore partition is moved, you must update the root 
config card to reflect the new location of the disk volume. 

Disk Volume Failures 

A disk volume failure happens when the data written on a disk volume has 
become unreadable or damaged. Disk volume failures can result from hardware failure 
of the disk drive on which the volume is mounted, hardware failure of the 10M or 
MPC through which the disk drive is connected to the system, failure of a CPU, 
memory or SCU, or failure of the Multics software which manages disk input/output. 

DEGREES OF DISK VOLUME FAILURE 

One type of disk drive hardware failure is a head crash. in which the sensors 
which read/write magnetic signals on a disk track come in contact with the disk. This 
causes damage to the disk heads and to the disk volume. Another type of failure is a 
marginal track condition, in which the magnetic signal written on a disk track is too 
weak to be read, either because the signal was weak when it was being written, the 
recording media on the track is damaged, or the read sensors and electronics are 
improperly adjusted. MPC failures include failure of the hardware circuit boards in 
the MPC or failure of MPC firmware logic. 

Disk volume failures may be transient or permanent in degree. In a transient 
failure, read operations on a few disk record~ "may produce errors, but attempts to 
reread those records may succeed. In a permanent failure, attempted read operations 
always fail. 

EXTENT OF DISK VOLUME FAILURE 

Disk volume failures may be either partial or total in extent. In a partial 
failure, most records on the disk can be read or rewritten correctly. but a few 
records are unreadable (i.e., read errors occur). In a total failure, most or all records 
on the volume are unreadable. 

To determine the extent of failure. you can use the BCE test_disk command to 
read the entire volume and report records which are unreadable: 

test_disk r dskc_16 
<several disk_control error messages> 
test_disk: Could not read record 47261 on dSkc_16. 

10-36 AM81-04 



The test_disk command normally reads three records at a time. starting from the 
inside of the volume and working outward. When test_disk encounters an error, it 
reverts to single record mode and retries the I/O to locate the failing record. If an 
error is encountered in single record mode. an error message is displayed and the 
record is skipped. You can also manually attempt to reread a failing record reported 
in one of the error messages with the following command: 

test disk r dskc 16 -record 47261 

RECOVERING FROM TRANSIENT DISK VOLUME FAILURE 

It is often possible to recover from transient errors by moving a removable 
disk volume to another drive. Another way of recovering is by using the BCE 
test_disk command to read and rewrite failing records: 

test_disk rw dskc_16 -record 47261 

If the read operation succeeds. then the rewrite operation usually rewrites the data 
with a stronger signal. No further recovery steps are needed. 

RECOVERING FROM PERMANENT DISK VOLUME FAILURE 

If the read operation described above fails after repeated attempts. the failure 
is permanent. and you must follow the procedures for recovering from partial disk 
volume failure (described next) or the procedures for recovering from total disk 
volume failure (described later). depending on the extent of the failure. 

RECOVERING FROM PARTIAL DISK VOLUME FAILURE 

If only a few records on a disk volume are damaged, you can copy the 
remaining data from the damaged volume onto another disk volume using the BCE 
copy_disk command. This method of recovery is much faster than the methods for 
recovering from total failure described below. However, using BeE copy_disk may not 
work, depending on what part of the volume is damaged. Errors in the disk label 
region of the disk (records O. to 7.) make the disk unusable. Errors in the VTOC 
regions can cause the loss of up to five VTOCEs for each unreadable disk record. 
Errors in the paging region affect only the segment which owns the disk record. 

If you decide to try to copy the damaged disk volume, the following example 
shows how to copy the records in the paging region (including the VTOCEs) and any 
partitions on the root2 volume of dskc_16 onto another disk volume mounted on 
dskb_03: 

Once the disk volume. has been copied. you should use the BCE test_disk 
command to zero any records that were not successfully copied onto the new volume: 

test_disk w dskb_03 -record 47261 

10-37 AM81-04 



Disk records that are zeroed should be traced to see what VTOCEs or 
segments have been damaged. If the disk record is in the VTOCE region, then up to 
five VTOCES (segments) have been lost. A complete hierarchy salvage operation should 
be performed to look for connection failures (directory entries that have no 
corresponding VTOCE). Refer to "Hierarchy Salvaging" below. Also, the physical 
volume should be volume-salvaged if VTOCEs were lost, to recover use of the 
VTOCEs for new segments. Refer to "Volume Salvaging" below. If a zeroed disk 
record is in the paging region of the disk volume, you can use the record_to_ vtocx 
command to determine which segment contains the zeroed disk record. This segment 
can then be retrieved. 

RECOVERING FROM TOTAL DISK VOLUME FAILURE 

There are three strategies for recovering from a total disk volume failure: 
volume reloading; a BCE restore followed by volume reloading; a BCE restore followed 
by hierarchy reloading. All three strategies involve replacing physically damaged disk 
volume or volumes with spare volumes, and reloading the contents of the volumes 
from backup tapes. Only the volume reloading strategy is recommended for recovering 
an entire disk volume or set of volumes. Refer to Section 9 for a discussion of 
volume and hierarchy backup facilities. 

Volume Reloading and BCE Restore/Volume Reloading 

The volume reloading and BCE restore/volume reloading strategies can be used 
to recover the Root Physical Volume (RPV), volumes of the Root Logical Volume 
(RLV), and non-root volumes. 

Recovery via volume reloading involves initializing a spare disk volume, and 
reloading complete, consolidated, and incremental dump tapes produced by the volume 
dumper in reverse chronological order. (The most recently dumped tapes are loaded 
first.) The -pvname control argument of the reload_volume command specifies which 
volume or volumes are to be reloaded. This is the recommended strategy. 

Recovery via a BCE restore followed by volume reloading involves replacing the 
damaged disk volume with a spare volume, restoring the most recent BCE save tapes 
for the damaged volume using the BCE restore command, and then reloading the 
consolidated and incremental volume dumper tapes created after the BCE save 
operation was performed. The -save control argument of the reload_volume command 
indicates that the date-contents-modified field of each entry being reloaded should be 
compared with the date-unmounted field of the volume label. Since a volume must be 
unmounted before a BCE save operation can be performed, the date-unmounted value 
placed in the volume label by the BeE restore operation is a good indicator of the 
date on which the BCE save operation was performed. If the entry from the volume 
backup tape is newer than the date-unmounted field from the disk label. then the 
tape entry is reloaded. 

We recommend use of the volume reloading strategy for disk volume recovery. 
The disk recovery procedures described later in this section employ this strategy. 
Circumstances almost never warrant use of the BeE restore/volume reloading strategy. 
Therefore, to avoid confusion, this alternate strategy is documented in Appendix H. 

10-38 AM81-04 



Different procedures must be used when doing volume reloading for RPV, 
RLV, and non-root volumes. The difference stems from the amount of the hierarchy 
which is available for use during volume reload operations. When the RPV is being 
reloaded, the hierarchy isn't available at all. A separate test Multics system must be 
used during the RPV reload operation. (Refer to "Test System" later in this section.) 
When other RL V volumes besides the RPV are being reloaded, you can use the part 
of the hierarchy on the RPV to perf orm the reloading. When a non-root volume is 
being reloaded, you can use the space on the entire RLV or on other mounted 
physical volumes to perform the reloading. See "Disk Volume Recovery Procedures" 
below for descriptions of how to reload each type of volume (RPV, RLV or non-root) 
using the volume reloading disk recovery strategy. 

BCE Restore/Hierarchy Reloading 

The BCE restore/hierarchy reloading strategy can be used to reload a volume 
which is not part of the Root Logical Volume (single volume reload), to reload the 
entire Root Logical Volume (RL V reload), or to reload the entire hierarchy (complete 
reload). BCE restore/hierarchy reloading cannot be used to recover only a single root 
volume (either the RPV or an RL V volume). A complete or RL V reload must be 
performed to recover single RLV volumes. 

The hierarchy backup facility is useful primarily for retrieving or reloading 
entire subtrees of the hierarchy. It is not recommended for reloading one or more 
physical volumes. Therefore, procedures for performing BCE restore/hierarchy reload 
operations are described in Appendix H. 

AFTER DISK RECOVERY SUCCEEDS 

Recovery from partial or total disk failure should be followed by several 
additional steps. After recovering the RPV or other RLV volumes, you may want to 
copy information from the LOG, DUMP, CONF or FILE partitions of the damaged 
volume onto the reloaded disk volume. After recovery succeeds on any volume, 
volume salvaging, hierarchy salvaging, and reverse connection failure garbage collection 
should be performed to make the storage system consistent again. See "Disk Volume 
Post-Recovery Procedures" later in this section for descriptions of how to perform 
these follow up operations. 

Preparing for Disk Volume Failure 

Each site should take steps in advance to prepare for a disk volume failure. 
Should a disk failure occur, these advance steps will speed recovery and minimize 
system and logical volume unavailability. 

DISK VOLUME LAYOUT INFORMATION 

One of the most important steps to take in preparing for disk failure is to 
have hardcopy listings of the disk volume layout available f or each physical volume. 
This information can be printed using the command: 

display_disk_label pvname -long 

10-39 AM81-()4 



The output of this command includes the physical and logical volume unique ids, the 
volume serial number, the location and size of each partition, and the number of 
VTOCEs. This information is often needed to initialize a spare disk volume during 
hierarchy or volume reloads. Hardcopy listings of this information should be produced 
for each physical volume on a regular basis. Perhaps the easiest way to accomplish 
this is via an absentee job that runs periodically. 

BACKUP TAPE LOGS 

Another vital step to take in preparing for disk failure is to have your 
operators maintain an accurate log of BCE save tapes, hierarchy dump tapes, and 
volume dump tapes written during backup procedures. Tape volume names should be 
recorded in a common log, along with the type of dumping operation. When disk 
volume recovery is needed, you will have to know which tapes contain the data to be 
restored or reloaded. The tape log provides that information. 

For a BeE save, the tape volume name consists of two parts: the tape set 
name (e.g., blue, root, June) and the reel number (Le., 1-9999). A BCE save tape set 
is a collection of reels numbered from 1 to N and a locator tape called the "Info" 
tape. The "Info" tape contains the names of all the volumes and partitions that were 
saved and the corresponding tape reels that contain this information. The "Info" tape 
is always the first tape read during a BCE restore, to allow for program control over 
tape mounts. The backup tape log should identify the tapes used for each set and the 
physical volumes saved in each set 

For a hierarchy reload, the log should identify the tapes included in each 
incremental, catchup .and complete dump set. 

The volume reloader maintains its own, online tape logs automatically. 
However, in order to reload these online logS, you must record the tape volume last 
used for volume dumping (incremental, consolidated or complete) for each volume 
backup group. Therefore, your operator should record the volume names of volume 
backup tapes in the tape log as these tapes are written. 

OFFSITE COPIES OF BACKUP DATA 

A prime method of guarding against a major disaster at your site (e.g.. fire in 
the machine room) is to periodically make complete backup tapes of all data on the 
system, and to ship these tapes to an offsite storage location. Along with the tapes. 
you should send hardcopies of pack layout information. tape logs fOi the offsite tapes, 
and other information which would be required to restore the data on your system. 

DISK DRIVE RECONFIGURATION PLAN 

Another step to take in preparing for disk failure is to plan how you would 
reconfigure each of your disk subsystems to handle a disk drive failure. 

10-40 AM81-04 



One reconfiguration technique is to have a spare disk drive in each subsystem. 
If a disk drive with a removable volume fails, its volume can be moved to the spare 
disk drive without interrupting system operation. The procedure for moving a disk 
volume is described above. 

If you don't have a spare disk drive in each disk subsystem, having one spare 
drive is still helpful. When a removable disk volume fails in a disk subsystem which 
does not have a spare drive, you can shut down the system and move the disk volume 
mounted on the failing drive to the spare drive in another subsystem. When booting 
Multics, boot to ring 1 command level and use the add_vol command to specify the 
new location of the moved disk volume. If the volume is the RPV or if it contains 
LOG or DUMP partitions, you will also have to change the part cards in the con fig 
deck. If the volume is an RL V with a hard core partition, you will have to change the 
root config card. 

For nonremovable disk volumes, having a spare disk drive is still a good idea. 
It need not be in the same disk subsystem as the failing drive. Information from a 
failing disk volume can be reloaded onto the spare disk drive and its disk volume. 
Also, in some instances, your Customer Services Representative can move a disk 
volume head assembly (HDA) from a failing disk unit to a spare unit by swapping 
HDAs, as described earlier in this section. During normal operation, the spare disk 
drive can be used for process directories or other temporary data files, or the spare 
drive can be used for a test Multics system, which has a separate hierarchy from the 
production Multics system. 

If there are no spare disk drives in your configuration, your system should be 
divided into two or more logical volumes. You should place data on these logical 
volumes in such a way that the system could run properly without one of the logical 
volumes being mounted. Then if a disk drive fails for an extended period of time, 
you can still run the system without the failing drive by demounting the nonessential 
logical volume and moving data from the failing drive onto a drive used by the 
demounted logical volume. One technique for doing this is to define a separate logical 
volume to hold the information under the >ldd hierarchy, plus process directories. The 
>ldd directory can be created as a master directory before its contents are loaded 
from Multics release tapes. If a disk drive fails, you can then dismount the >ldd 
logical volume and use its disk drive as a spare when reloading information from the 
failing disk volume. Refer to the Multics System Administration Procedures manual 
(Order No. AK50) for a description of how to create master directories. If you 
define a separate logical volume for >ldd, remember to create a separate master 
directory for >ldd>include. The include files in this directory are needed during 
normal system operations for program development. 

PREFORtllATTED DISK VOLUMES 

One of the most time consuming steps in recovering from a disk volume 
failure is formatting and testing of a spare disk volume prior to reloading data from 
the failing disk volume. This step can be avoided during failure recovery by 
formatting and testing spare disk volumes in advance. 

10-41 AM81-04 



Both removable disk volumes (MSU0402 and MSU0451) and nonremovable disk 
volumes (MSU0500 and MSU0501) should be formatted and tested using the online 
r&D tool called MTR, available under TOLTS/MOLTS. Procedures for formatting and 
testing disk volumes are described in the Multics Online Test and Diagnostics 
Reference Manual, Order No. AU77. 

Note: the recovery procedures described later in this section assume that you 
have spare disk volumes already formatted and tested. 

TEST SYSTEM 

It is sometimes necessary to use a small, one-volume Multics system during 
disk recovery operations. This "test" system has its own Multics hierarchy, usually on 
a single disk volume. This test hierarchy is totally separate from the Multics hierarchy 
on your "production" Multics system. 

If your site has removable disk volumes. then the test system can be placed on 
a disk volume which is not normally mounted on a disk drive during production 
operation. If your site has only nonremovable disk volumes, then your one-volume 
system can be stored on BCE save tapes during normal system operation, and restored 
onto a spare disk volume (one used for process directories during normal system 
operation) when you need to run the test Multics system. 

A test Multics system is a tool which serves a variety of functions. Besides 
being needed for recovery of a damaged RPV, the test Multics system can be used to 
check out software changes to the operating system, hardware reconfiguration changes, 
and correctness of repaired hardware after the Customer Service Representative declares 
it to be operational. 

In order to serve all these functions, the test system may need to operate 
under a variety of system configurations. It should be able to operate in the hardware 
configuration used for the production system. But you may want it to run on smaller 
hardware configurations as well, especially if your hardware is fully redundant and can 
be reconfigured into two separate systems. Be sure to maintain accurate configuration 
decks on the test system for all of its possible operating configurations. 

To initially create the one-volume test system, follow the Installation Instructions 
for a new site which are shipped with each Multics release. Be sure that the disk 
volume has been formatted and tested using MTR. Once the test system has been 
created, it can be upgraded for each Multics release in parallel with (or prior to) 
upgrading your production system. 

Because the test system will be run during periods of hardware failure, it is 
important to have an adequate backup for the one-volume system. Use of BCE 
save/restore is recommended. because that is the fastest method of backup and reload. 
You should make two sets of BCE save tapes for the test system, to offset the effects 
of possible tape errors. And you should have offsite copies of your test system's BCE 
save tapes, disk volume layout information, etc. 

10-42 AM81-04 



Disk Volume Recovery Procedures 

The following step-by-step procedures describe how to recover from disk 
volume failures on each type of volume (RPV. RL V, and non-root) using the volume 
reloading disk recovery strategy. The procedures include determining the extent of 
damage and recovering from transient or partial failures. as well as recovering from 
total disk volume failure. If you need to use one of the other disk recovery strategies 
(BeE restore/volume reloading, hierarchy reloading, or BeE restore/hierarchy reloading), 
ref er to Appendix H. 

As stated earlier, the procedures which follow assume that you have spare disk 
volumes already formatted and tested. If you do not have any formatted, tested disk 
volumes available when a disk failure occurs, there are several procedures you can use 
to obtain a formatted disk volume. One of the simplest is to dump the contents of a 
physical volume not needed for system operation onto tape, using the BeE save 
command. Then you can initialize this volume and reload data from the failing disk 
volume onto it. 

If you have a small (one- or two-volume) test system available, you can boot 
that test system, and use online T&D MTR to properly format and test a new 
volume. Or, if the failing disk volume is not part of the RL V, you can boot the 
system using only the RLV. and use MTR to format and test a volume. 

If you do not have a test system available, and one of the volumes of the 
RLV has been damaged, then you should follow the procedure described earlier for 
creating a one-volume Multics system on which you can invoke online T &D MTR to 
format and test a new volume. 

RECOVERY OF THE RPV WITH VOLUME RELOADING 

If a disk volume failure occurs for the RPV. the following procedure can be 
used to recover the contents of the RPV from volume backup tapes. See Section 9 
for general information and more details on volume backup and volume reloading. All 
of the commands used in this procedure are described in the Multics Administration, 
Maintenance and Operations Commands manual, Order No. OB64. 

1. If the system has not already crashed, attempt to recover from the failure by 
following the procedures described above under "Recovering from Disk 
Failures." If that corrects the problem, then skip the remaining steps. 
Otherwise, use the last procedure under "Recovering from Disk Failures" to 
shut down or crash the system. 

2. Consult with your Customer Service Representative to correct any hardware 
failure that is occurring. Have him repair or replace any damaged hardware. 

10-43 AM81-04 



To test the original RPV volume, or to recover its data onto a spare disk volume. you 
* will need to boot BCE and Multics on a temporary RPV. This temporary RPV may 

be obtained in any of the following ways: 

• If your site has prepared a one- or two-volume "test system" for hardware 
and software checkout purposes. you can boot this test system for use in 
testing and reloading the original RPV. 

• If you have BCE save tapes for the original RPV. and a spare disk volume, 
you can restore these save tapes onto the spare disk volume for use as the 
temporary RPV. The actual data on the temporary RPV is not important since 
it will not become part of the production hierarchy; an older set of save tapes 
can be used. as long as the saved RPV is for the Multics release you are 
curren tly running. 

You will have to boot BCE on the temporary RPV. and specify "cold" to the 
"Enter rpv data:" prompt to allow the temporary RPV to be properly 
initialized. After restoring the RPV. remember to update the root and part 
configuration cards to describe only the temporary RPV. 

• If you have neither a "test system" nor save tapes for an RPV. you can 
perform a cold boot of Multics on a spare disk volume to create the 
temporary RPV. To perform the cold boot, follow the procedures in the 
Install ation Instructions for the release you are running. 

Spare disk volumes should be properly formatted and tested as described above under 
"Preformatted Disk Volumes." 

3. Boot BCE on the temporary RPV, as described in the Operators' Guide to 
Multics, Order No. GB6l. 

4. If your Customer Service Representative believes there has been no physical 
damage to the original RPV disk volume, attempt to read it using the BCE 
test_disk command, as described above under "Extent of Disk Volume Failure." 

5. If only transient errors are encountered when reading the original RPV, follow 
the procedures above under "Recovering from Transient Disk Volume Failure." 
and skip the rest of these steps. 

6. If the original RPV is only partially damaged and you decide that loss of the 
unreadable records is acceptable, follow the procedures above under "Recovering 
from Partial Disk Volume Failure," and skip the rest of these steps. 

The steps below attempt to reload RPV information from volume backup tapes 
onto a spare disk volume. These steps assume that the original RPV volume is totally 
unreadable, or that the amount of lost data caused by unreadable records is 
unacceptably high. If your Customer Service Representative believes that the original 
RPV is physically damaged (i.e., scratched or warped), then replace the RPV with a 
spare volume which has already been formatted and tested. as described above under 
"Preformatted Disk Volumes." Otherwise. you can reload data onto the original RPV. 

* 7. Boot Multics on the temporary RPV. coming up to Multics ring 1 command 
level, as described in the Operators' Guide to Multics, Order No. GB6l. 

10-44 AM81-04 



8. Mount the disk volume to be reloaded on any available drive. If necessary, 
convert the drive to a storage system drive, using the set_drive_usage command. 
For example: 

sdu dska_04 ss 

9. Issue an init_ vol command with the -copy control argument Issue directions to 
init_ vol to define the number of VTae entries and the partition names and 
sizes as they were on the destroyed disk volume. Your site should have 
hardcopy printouts oi this disk label information available at an times, as 
described above under "Disk Volume Layout Information." 

Note that you may request more VIOe entries on the volume being reloaded 
than were on the destroyed RPV, but you cannot decrease this number. You 
may increase or decrease the sizes of partitions on the new RPV, or add or 
delete partitions. However, if you do change the partition layout, then you will 
not be able to copy the contents of partitions (such as the LOG and DUMP 
partitions) from the damaged RPV onto the reloaded RPV. Remember to 
include an alternate track partition for a removable disk volume, if the disk 
volume being reloaded has been formatted with alternate track assignments. 

10. Convert the disk drive on which the new RPV is mounted to an I/O drive, 
using the set_drive_usage command. For example: 

sdu dska_04 io 

11. Recover the volume log for the RPV using the recover_volume_log command 
with the -wd control argument For example: 

Mount the last volume backup tape for the volume backup group which 
includes the RPV. The volume name of the last tape should be recorded in 
the tape log, as described above under "Backup Tape Logs." If volume backup 
operations were ongoing at the time of disk failure, you should mount the tape 
which was being written at the time of failure. 

12. Reload the new RPV using the volume reloader, by issuing the reload_volume 
command with the -pvname, -operator, and -wd control arguments. For 
example: 

reload_volume -pvname rpv -operator Jones -wd 

Mount tapes as requested by the reload_volume command. When all tapes have 
been reloaded, continue with the next step. 

13. Shutdown Multics on the temporary RPV. * 

14. If the RPV was reloaded onto a spare volume and the original RPV is partially 
readable, you may want to try to copy the contents of the eONF, FILE, 
DUMP and LOG partitions onto the new RPV, as described below under 
"Recovery of Partitions after RLV Volume Recovery". * 

15. If the newly reloaded RPV is not mounted on the proper disk drive for 
normal operation, move the new RPV to the proper disk drive. 

10-45 AM81-()4 



16. Boot BCE on the newly reloaded RPV, according to normal site procedures. If 
reloading was performed on a spare disk volume rather than on the original 
and the contents of the CONF and FILE partitions was not copied in step 14, 
then the contents of these partitions must be recreated from files on the 
Multics system tape or retyped at the operator's console. The CONF partition 
can be reloaded from a BCE file by typing the command: 

w 
q 

17. Boot Multics according to normal site procedures. 

18. Perform the procedures for salvaging, quota adjustment, and connection failure 
detection described below under "Disk Volume Post-Recovery Procedures." This 
completes recovery of the RPV. 

RECOVERY OF A NON-RPV ROOT VOLUME WITH VOLUME RELOADING 

If a disk volume failure occurs on a volume which is part of the Root Logical 
Volume (RLV) but is not the RPV, the following procedure can be used to recover 
the contents of that volume from volume backup tapes. See Section 9 for general 
information and more details on volume backup and volume reloading. All of the 
commands used in this procedure are described in the Multics Administration, 
Maintenance and Operations Commands manual, Order No. GB64. 

1. If the system has not already crashed, attempt to recover from the failure by 
following the procedures described above under "Recovering from Disk 
Failures." If that corrects the problem, then skip the remaining steps. 
Otherwise, use the last procedure under "Recovering from Disk Failures" to 
shut down or crash the system. 

2. Consult with your Customer Service Representative to correct any hardware 
failure that is occurring. Have him repair or replace any damaged hardware. 

To test the original root volume, or to recover its data onto a spare disk volume, you 
II< win need to boot BCE and Multics on the RPV. 

3. Boot BCE on the RPV, as described in the Operators' Guide to Multics, 
Order No. GB61. 

4. If your Customer Service Representative believes there has been no physical 
damage to the original root disk volume, attempt to read it using the BCE 
test_disk command, as described above under "Extent of Disk Volume Failure." 

5. If only transient errors are encountered when reading the original root volume, 
follow the procedures described above under "Recovering from Transient Disk 
Volume Failure," and skip the rest of these steps. 

6. If the original root volume is only partially damaged and you decide that loss 
of the unreadable records is acceptable, follow the procedures above under 
"Recovering from Partial Disk Volume Failure," and skip the rest of these 
steps. 

10-46 AM81-04 



The steps below attempt to reload root volume information from volume backup tapes 
onto a spare disk volume. These steps assume that the original root volume is totally 
unreadable, or that the amount of lost data caused by unreadable records is 
unacceptably high. If your Customer Service Representative believes that the original 
root volume is physically damaged (i.e., scratched or warped), then replace it with a 
spare volume which has already been formatted and tested, as described above under 
"Preformatted Disk Volumeso" Otherwise, you can reload data onto the original root 
volume. 

7. Remove all disk volumes from the root config card, except for the RPV. If 
any part con fig cards identify the damaged disk volume, remove those part 
cards from the config deck. 

8. Boot Multics on the RPV, coming up to Multics ring 1 command level, as 
described in the Operators' Guide to Multics, Order No. GB61. 

9. Mount the disk volume to be reloaded on any available drive. If necessary, 
convert the drive to a storage system drive, using the set_drive_usage command. 
For example: 

10. Issue an init_ vol command with the -special control argument. Issue directions 
to init_ vol to define the number of VTOC entries and the partition names and 
sizes as they were on the destroyed disk volume. Your site should have 
hardcopy printouts of this disk label information available at all times, as 
described above under "Disk Volume Layout Information." 

* 

Note that you may request more VTOC entries on the volume being reloaded 
than were on the damaged root volume, but you cannot decrease this number. 
You may increase or decrease the sizes of partitions on the new root volume, 
or add or delete partitions. Remember to include an alternate track partition * 
for a removable disk volume, if the disk volume being reloaded has been 
formatted with alternate track assignments. 

11. Convert the disk drive on which the new root volume is mounted to an I/O 
drive, using the set_drive_usage command. For example: 

12. Recover the volume log for the root volume using the recover_volume_log 
command with the -wd control argument. For example: 

recover_volume_log root2 -wd 

Mount the last volume backup tape for the volume backup group which 
includes the FlV. The volume name of the last tape should be recorded in 
the tape log, as described above under "Backup Tape Logs." If volume backup 
operations were ongoing at the time of disk failure, you should mount the tape 
which was being written at the time of failure. 

10-47 AM81-()4 



* 

13. Reload the new root volume using the volume reloader. by issuing the 
reload_volume command with the -pvname. -operator, and -wd control 
arguments. For example: 

reload_volume -pvname root2 -operator Jones -wd 

Mount tapes as requested by the reload_volume command. When all tapes have 
been reloaded. continue with the next step. 

14. Shutdown the Multics running on the RPV. 

15. Restore the root and part config cards to their normal values, either by 
retyping the changed cards or by issuing the BCE "config < deckname> " 
command to load a new copy of the config deck from a BCE file. 

16. If the root volume was reloaded onto a spare volume and the original volume 
is partially readable, you may want to try to copy the contents of the DUMP 
and LOG partitions onto the new RPV, if these partitions were on the 
damaged root volume. Follow the procedure described below under "Recovery 

* of Partitions after RL V Volume Recovery." 

17. If the newly reloaded root volume is not mounted on the proper disk drive 
for normal operation. move the volume to the proper disk drive. 

* 18. Boot BCE on the RPV, according to normal site procedures. Make adjustments 
to the configuration file as necessary. to reflect the current hardware 
configuration and disk volume locations. 

19. Boot Multics according to normal site procedures. 

20. Perform the procedures for salvaging. quota adjustment. and connection failure 
detection described below under "Disk Volume Post-Recovery Procedures." This 
completes recovery of the root volume. 

RECOVERY OF A NON-ROOT VOLUME WITH VOLUME RELOADING 

If a disk volume failure occurs on a volume which is not part of the Root 
Logical Volume (RL V). the following procedure can be used to recover the contents of 
that volume from volume backup tapes. See Section 9 for general information and 
more details on volume backup and volume reloading. All of the commands used in 
this procedure are described in the Multics Administration, Maintenance and 
Operations Commands manual. Order No. GB64. 

1 Tf 1""' ... toUtot........ ", .. to 9'\",1" .. l~ ..... l"1u ~9" .. to"' ... 1"1 "l"l" ............ t 1",.,. ..... ,."'u ... ~ f9""'...... t-"'"" f ... ;h .... "" lo.n 
.L.. .1..1 . "u~ "J""~LU UU.;J UUI. aU~"'J "'.1U.;JU~. a",,~u.lp" "u .l_UY~.l .l.lV.ll.l "l.l,", laJ.U.l!,", VJ 

following the procedures described above under "Recovering from Disk 
Failures." If that corrects the problem, then skip the remaining steps. 
Otherwise, use the last procedure under "Recovering from Disk Failures" to 
shut down or crash the system. 

2. Consult with your Customer Service Representative to correct any hardware 
failure that is occurring. Have him repair or replace any damaged hardware. 

10-48 AM81-04 



To test the original volume, or to recover its data onto a spare disk volume. you will 
need to boot BCE and Multics on the RL V. 

3. Boot BCE as described in the Operators' Guide to Multics, Order No. GB61. 

4. If your Customer Service Representative believes there has been no physical 
damage to the original disk volume, attempt to read it using the BeE test_disk 
command, as described above under "Extent of Disk Volume Failure." 

5. If only transient errors are encountered when reading the original volume, 
follow the procedures above under "Recovering from Transient Disk Volume 
Failure," and skip the rest of these steps. 

6. If the original volume is only partially damaged and you decide that loss of 
the unreadable records is acceptable, follow the procedures described above 
under "Recovering from Partial Disk Volume Failure," and skip the rest of 
these steps. 

The steps below attempt to reload information from volume backup tapes onto a spare 
disk volume. These steps assume that the original volume is totally unreadable, or that 
the amount of lost data caused by unreadable records is unacceptably high. If your 
Customer Service Representative believes that the original volume is physically damaged 
(i.e., scratched or warped). then replace it with a spare volume which has already been 
formatted and tested, as described above under "Preformatted Disk Volumes." 
Otherwise. you can reload data onto the original disk volume. 

* 

7. Boot Multics on the RLV, coming up to Multics ring 1 command level. as * 
described in the Operators' Guide to Multics, Order No. GB61. 

8. To complete the boot. delete the logical volume which contains the damaged 
physical volume, using the del_Iv command. For example: 

del_lv Xpubl ic 

Note: each spindle of an MSU0500/501 disk drive holds two physical volumes, 
accessed through a single disk arm. It is not possible to have one of these 
physical volumes accessed as part of the storage system (via disk_contron while 
the other is used for user I/O operations (via rdisk_ or exercise_disk. which 
use ioi->. This restriction exists because disk_control and 101 do not 
communicate with one another about sharing the single disk arm which accesses 
the two physical volumes. 

To satisfy the requirements of this restriction, the pair of physical volumes of 
a spindle are usually configured in the same manner. with both being part of 
the same logical volume or both being treated as I/O disks, etc.. Because 
reload_volume writes the volume being reloaded using user I/O (via rdisk->, 
reloading one physical volume of an MSU0500 / 501 spindle requires that the 
other physical volume be deleted from the storage system as well. If both 
physical volumes are part of the same logical volume, this is not a problem, 
since deleting the entire logical volume deletes both physical volumes. However, 
if each physical volume is a member of a separate logical volume, then both 
affected logical volumes must be deleted from the system during the 
reload_volume operation. 

10-49 AM81-04 



Note that there is no problem with volume reloading both physical volumes of 
a spindle at the same time, even if they are members of separate logical 
volumes. The system knows how to perform user I/O operations on both 
physical volumes at once, or storage system operations on both at once. 
Problems arise only when attempting to perform user I/O operations on one 
physical volume and storage system operations on the other. 

9. Issue the standard command to move to ring 4: 

standard 

10. If the system can run reasonably without the deleted logical volume, warn users 
(via a message_of_the_day, or with a login warning set by the word command) 
that the logical volume has been deleted for repair operations. For example: 

word login Xpublic volume is offl ine for repairs. 

If the system cannot run reasonably without the deleted logical volume, put the 
system into a special session, using the multics and go commands. This will 
prevent users from logging in: 

multics 
go 

11. Mount the disk volume to be reloaded on any available drive. If necessary, 
convert the drive to a storage system drive, using the set_drive_usage command. 
For example: 

sdu dska_06 ss 

12. Issue an init __ vol command with the -special control argument. Issue directions 
to init_ vol to define the number of VTOC entries and the partition names and 
sizes as they were on the destroyed disk volume. Your site should have 
hardcopy printouts of this disk label information available at all times, as 
described above under "Disk Volume Layout Information." 

Note that you may request more VTOC entries on the volume being reloaded 
than were on the damaged volume, but you cannot decrease this number. 
Remember to include an alternate track partition for a removable disk volume, 
if the disk volume being reloaded has been formatted with alternate track 
assignmen ts. 

13. Convert the disk drive on which the new volume is mounted to an I/O drive, 
using the set_drive_usage command. For example: 

sdu dska_06 io 

10-50 AM81-()4 



14. Login the volume reloader and issue a display_volume_log command to insure 
that the volume log f or the disk to be reloaded is undamaged and up-to-date. 
For example: 

login Volume_Reloader.Daemon vrld 
r vrld display_volume_log xpub02 

If it appears undal11aged (no errors occur while displaying it), and if it includes 
the last tape mounted during the mest recent volume dump operation, then 
reload the volume using the reload_volume command with the -operator and 
-pvname control arguments. For example: 

r vrld reload_volume -pvname xpub02 -operator Jones 

Mount tapes as the reloader asks for them; it will indicate when all necessary 
tapes have been reloaded. 

If the volume log is unavailable or damaged, reload the volume log for the 
disk using the recover_ volume_log command. For example: 

r vrld recover_volume_log xpub02 

Mount the last volume backup tape for the volume backup group which 
includes the failing volume. The volume name of the last tape should be 
recorded in the tape log, as described above under "Backup Tape Logs." If 
volume backup operations were ongoing at the time of disk failure, you should 
mount the tape which was being written at the time of failure. After the 
volume log has been recovered, then reissue the reload_ volume command, as 
shown above. 

15. After volume reloading is complete, issue a set_drive_usage command to convert 
the drive back into storage system usage. For example: 

sdu dska_06 ss 

16. Issue the add_ vol command to inform the system of the new location for the 
reloaded disk volume. For example: 

add_vol xpub02 dska_06 

17. Issue the add_Iv command to add the logical volume containing the reloaded 
disk volume. For example: 

add_lv Xpublic 

18. If the system is in special session, return it to normal session: 

word login 
maxu auto 
abs start 
abs maxu auto 

19. Perform the procedures for salvaging, quota adjustment, and connection failure 
detection described below under "Disk Volume Post-Recovery Procedures." This 
completes recovery of the volume. 

10-51 AM81-Q4 



Disk Volume Post-Recovery Procedures 

Recovery from partial or total disk failure should be followed by several 
additional steps. These steps are described in the subsections which follow. 

RECOVERY OF PARTITIONS AFTER RLV VOLUME RECOVERY 

After recovering the RPV or other RL V volumes, you may want to copy 
information from the LOG, DUMP, CONF or FILE partitions. This can be done 
using the BCE copy _disk facility. For example, to copy the LOG partition onto a new 
RPV volume mounted on dskb_03, type: 

copy_disk dskc_16 dskb_03 -partition log 

* The location of the partition on disk is determined according to the partition 
* information in the disk volume labels. 

VOLUME SALVAGING 

When the system detects that a disk volume may be in an inconsistent state, it 
schedules volume salvaging for that volume. This salvaging occurs automatically during 
Multics bootload. It insures that all records on the disk volume appear in only one 
VTOCE or in the list of free records. It also deletes all per process VTOCEs (e.g., 
VTOCEs for segments in process directories remaining from an earlier Multics session). 

You can manually force volume salvaging of all volumes of the RLV by 
booting Multics with the Root Logical Volume Salvage (RLVS) option: 

boot rlvs 

This command also performs a hierarchy salvage with quota adjustment for the root 
directory (» and all directories immediately below the root (e.g., >sc1). These 
directories include those required to boot Multics. 

Volume scavenging is an operation similar to volume salvaging, but it can be 
performed after the disk volume has been added to the system (when it is in use). 
The following command will create a Scavenger.SysDaemon process to scavenge all 
volumes that have inconsistencies: 

x scav -all -auto -nopt 

Many sites place this command in the start_up.ec of Utility.SysDaemon to insure that 
volumes are automatically scavenged as needed. 

Refer to "Salvaging" earlier in this section for further details. 

10-52 AM81-04 



HIERARCHY SALVAGING 

After a disk volume failure in which the disk has been reloaded, you must 
perform hierarchy salvaging of Multics directories to insure that they are consistent, 
and to detect connection failures (a situation in which a directory entry exists for a 
segment, but its corresponding VTOCE does not exist). After the system is operational, 
the following command should be issued to salvage all directories: 

x repair salvquota > 4 -dcf -compact 

This command creates four Salvager.SysDaemon processes to begin salvaging from the 
root directory (». Directory salvaging repairs any damage, repairs improper quota used 
values, compacts directories which are using more space than necessary, and deletes 
branches which have connection failures. 

To get information about file system damage, check the salvager output 

Refer to "Salvaging" earlier in this section for further details. 

REVERSE CONNECTION FAILURE DETECTION 

Neither volume salvaging nor volume scavenging detect reverse connection 
failures (a situation in which a VIOCE exists but its corresponding directory entry 
does not exist). After a volume has been reloaded, reverse connection failures may 
exist for a segment which was deleted after the most recent volume reload tape was 
written, or for a segment whose directory could not be successfully reloaded. 

Segments associated with a reverse connection failure can be recovered by 
adoption, or the inaccessible VIOCEs can be deleted by garbage collection to recover 
the VIOCE and its disk records. Refer to Section 12, "Segment Adoption" and "How 
to Perform VIOCE Garbage Collection on a Pack,'" for instructions on these 
operations. A useful command for garbage collection on reloaded volumes is: 

sweep_pv pvname -gc -delete 

RECOVERING FRO~ A BAD CLOCK SETTING 

If you discover that you have a bad clock setting, your response will depend 
on how long you've been running with the bad setting, whether the clock was set to a 
time in the future or a time in the past, and how much damage has been done to 
the system. In every case; you must weigh the amount of damage against the effort 
required to fix the clock setting. If you decide to fix the setting, you should follow 
the procedure below. Step 1 offers some suggestions on what to do first, depending 
on your situation. 

10-53 AM81-Q4 



1. a. If you've just brought the system up, and users haven't had a chance to do 
much work, you should crash the system. Do not perform an emergency 
shutdown. If the clock was set to a time in the future, you should keep the 
system down for as long as the clock was off by. Then you should continue 
with step 2. 

b. If the system has been running long enough for users to have done a 
significant amount of work, you should perform a normal shutdown. If the 
clock was set to a time in the future, you should keep the system down for as 
long as the clock was off by, if possible. Then you should continue with step 
2. 

c. If the system has been running for some time with the clock set to a time far 
in the future, the damage to the system may be minimal. You should perform 
a normal shutdown, then continue with step 2. 

d. If the system has been running for a long time with the clock set to a time 
in the past, the damage to the system may be extensive. If it is, you should 
perform a normal shutdown. Then you should RELOAD the entire system with 
hierarchy. backup tapes. Do NOT continue with this procedure. 

2. Set the clock correctly. (Ref er to "Calendar Clock" in Section 3.) 

3. Do a "boot rlvs" with no other arguments. 

4. At ring one command level, do a "salvage_vol -all" to manually salvage all of 
the volumes that haven't been mounted yet. These will be all volumes except 
those RL V volumes with hardcore partitions. Most of the dates in the VTOCEs 
will be corrected by this action, with the exception of date-time-volume-dumped 
dates. 

5. Do an "add_Iv" for all of the volumes that you just salvaged. 

6. At ring four command level, bring the system up in a special session. without 
daemons. It's acceptable to let the daemons log in, but you should log them 
out immediately before they have a chance to get confused. 

7. During the special session, run a complete hierarchy and quota salvage, using "x 
repair salvquota > 2 -rebuild -check_ vtoce". This will correct all dates in the 
directories. 

8. At this point, it's safe to log the daemons in and let users on the system. 

9. If you use the volume dumper, you should run a complete volume dump as 
soon as possible. The hierarchy dumper isn't affected by a bad clock setting. 

10-54 AM81-()4 



10. Multics unique-id values are based on the time, so there may be some 
unique-ids left in the system after this recovery which have already been 
duplicated or will be duplicated in the future. If such duplication occurs, 
unpredictable damage may result For example, the wrong segment may be 
deleted when two segments have the same unique-ide The only way to correct 
this problem is to: (a) restore the file system to a point before the bad clock 
setting occured; (b) recover file system changes made since that point by using 
the hierarchy reloader. (DO NOT use the volume recovery subsystem.) In 
practice, the danger of damage is quite small. Sites should balance the 
likelihood of damage against the cost of recovery. 

11. Some date-time-contents-modified and date-time-used dates will be incorrect 
after this recovery. You don't need to be concerned about these - they will 
fix themselves. 

RECOVERING FROM BOOTLOAD CONSOLE FAILURE 

If an unrecoverable bootload console error occurs, the system will take the 
following actions: 

1. Search the configuration for an alternate console. The alternate chosen will be 
the next alternate encountered in the configuration deck. If the system finds a 
usable alternate, it will: 

a. Unassign the current bootload console and change its state to inop. 

b. Assign the alternate console as the new bootload console and change its 
state to on. 

c. Write a message in the syserr log indicating that automatic console 
recovery has occurred. 

2. If no usable alternate consoles exist and there is an active message coordinator, 
the system will: 

a. Change the state of the current bootload console to inop. 

b. Send all syserr and normal traffic to the message coordinator. 

c. Write a message in the syserr log indicating that automatic console 
recovery has occurred. 

3. If no usable alternate consoles exist, there is no active message coordinator, and 
the ccrf parameter was specified on the parm configuration card, the system 
will: 

a. Change the state of the current bootload console to inop. 

10-55 AM81-()4 



b. Crash with the following message: 

ocdcm_ (console_recovery): console recovery 
fai lure 

If the console is truly inoperative, this message will not be seen but 
will appear in the flagbox and the syserr log. 

4. If no usable alternate consoles exist, there is no active message coordinator, and 
the ccrf parameter was not specified on the parm configuration card, the 
system will: 

a. Change the state of the current bootload console to inop. 

b. Write a message in the syserr log indicating that the console is 
inoperative. 

c. Continue running. Subsequent console traffic will be sent to the syserr 
log. You'll know that this has happened because no syserr messages will 
be printed. To confirm it, you may read the syserr log. You should 
either dial up and accept a message coordinator terminal, or crash the 
system directly into ESD. On a Level 68 system, this is done by 
executing switches with the DATA switches set to 024002717200. On a 
DPS 8 system, this is done by using the BCE 24002 command. 

10-56 AM81-04 



SECTION 11 

DYNAMIC RECONFIGURATION PROCEDURES 

OPERATIONAL PROCEDURES FOR RECONFIGURATION 

Step-by-step procedures for adding and deleting processors, memory, IOMs, 
FNPs, logical channels, tape drives and disk drives, as well as procedures for adding 
an alternate bootload console, deleting the bootload console, and changing the bootload 
console, are available in the Operator's Guide to Multics, Order No. GB61. You can 
also add and delete MPCs, link adapters, and pages of memory. * 

There are five commands you can use for dynamic reconfiguration: the 
reconfigure (rcf) initializer command, the adddev (addd) and the deldev (deld) 
initializer commands, the reconfigure privileged Multics command, and the 
set_system_console privileged Multics command. The reconfigure initializer command 
can only be executed in the initializer process in ring 4. It can be used to add and 
delete tape and disk drives. The adddev and deldev initializer commands can only be 
executed in the initializer process in ring 1. They can be used to add and delete tape 
and disk drives during system recovery, when system re~overy must be done in ring 1 
(for example, a volume reload of the RLV disk volumes or a hierarchy reload of a 
damaged critical system database, such as >scl). These two commands allow you to 
add and delete tape and disk devices as necessary to set up the system for the 
recovery process. For example, they allow you to delete all 800/1600 bpi tape handlers 
and to add only 6250 bpi tape handlers, which is necessary when all system dump 
tapes are written at 6250 bpi. And of course, these commands allow you to delete 
known bad devices that shouldn't be used. The reconfigure and set_system_console 
privileged Multics commands require access to the highly privileged gates hphcs_ and 
rcp_sys_, and can only be executed in a privileged user process, in admin mode in the 
initializer process, or in SysAdmin and SysDaemon processes (which also have the 
necessary access). Detailed descriptions of all three of these commands are available in 
the Multics Administration, Maintenance, and Operations Commands manual, Order 
No. GB64. 

Only entities that are defined by configuration cards at bootload time can be 
added. These cards have fields to indicate if the unit is online or offline at bootload 
time. All the memories actually being used at the time of the bootload must be 
indicated as on in the state field of the mem configuration cards. These memories 
should be the first in the config deck, Memories that might be added later should be 
indicated as off in this field. Normally, there should be a mem card (either on or 
off) in the config deck for every memory in the installation. The cpu card for the 
bootload CPU must be indicated as on in the state field of the cpu card. Any other 
CPUs indicated as on are automatically added at the end of system initialization. 
Those indicated as off can be added later. 

11-1 AM81-04 



The PORT CONTROL switches for all 6000 SCUs running on the system should 
be set in the PROG CO NT position for all ports at all times. Notice that after 
adding a memory, unused ports are left in the OFF position. After the adding of the 
memory is completed, all PORT CONTROL switches should be put in the PROG 
CONT position. 

Notes on Adding and Deleting Processors 

Before you add a CPU to the configuration, you must initialize it. The 
procedure for doing this is included in the procedure for adding a processor in the 
Operator's Guide to Multics, Order No. GB61. 

If you attempt to add a CPU and it fails to start running for some reason, 
the software informs you as to the reason for the failure. If a problem exists, you 
can correct it. Then you can make another attempt to add the processor. 

After your command to delete a processor has finished, the processor switches 
can be changed as desired; the system software ensures that the processor cannot 
access any of the memories. (It is not necessary to change the PORT CONTROL 
switches on all memories for the processor being deleted.) 

Notes on Adding Memory 

Before you add a SCU to the configuration, you must clear its store units. 
The procedure for doing this is included in the procedure for adding memory in the 
Operator's Guide to Multics, Order No. GB61. 

Notes on Adding IOMs 

IOMs and IMUs are both defined by an iom card in the configuration deck 
(the model field is set to either iom or imu). Therefore, the device type to use with 
the reconfigure command is "iom". 

Before you add an 10M to the configuration, you must initialize it. The 
procedure for doing this is included in the procedure for adding an 10M in the 
Operator's Guide to Multics, Order No. GB61. 

During 10M dynamic reconfiguration. the 10M's configuration settings are 
checked for consistency before the 10M is added to the system. Since the 
configuration settings cannot be read directly, they must be validated experimentally, 
by accessing the 10M using a series of test instructions. 

11-2 AM81-04 



If the configuration settings are incorrect, the experiment can damage arbitrary 
sections of main memory. Therefore, all modified memory pages are written out to 
disk before performing the experiment The system will stop responding to users while 
these memory pages are being written and while the experiment is being conducted. 
This pause can last up to 15 seconds, depending upon the number of modified pages 
in memory. 

If experimental results indicate that the configuration settings are incorrect. an 
error message is printed and the bce (crash) environment is entered. Emergency 
shutdown (ESD) is disabled after such crashes, since there are no modified pages in 
memory and since memory contents may have been corrupted by the experiment. 

You can bypass the 10M configuration settings consistency check by adding the 
dris (don't read 10M switches) parameter to the parm card in the config deck. See 
Section 7 for details. 

Converting Disk Drives from User I/O to Storage System Use 

At any time, any disk drive is available for either storage system or user 
input/ output use, but not both. The list_disks initializer command can be used to 
determine the usage status of an RCP disk_drive resource. All user input/ output 
drives are listed as "i/o drive"; all others are storage system. The set_drive_usage 
initializer command can be used to change the usage status of a given drive. 
Step-by-step procedures for converting disk drives from user I/O to storage system 
use and vice versa are available in the Operator's Guide to Multics, Order No. 
GB61. 

Action after a Failure in Reconfiguration 

The reconfiguration commands are all controlled by a reconfiguration lock. If 
a reconfiguration attempt aborts unexpectedly for some reason, this lock may remain 
set When the lock is set, any further attempts to reconfigure result in a message 
stating that reconfiguration is currently in progress. If this happens, the Multics 
command: 

reconfigure$force_unlock 

unlocks the lock so that further reconfiguration attempts may be made. However, it is 
quite possible that the reconfiguration databases will still be in an inconsistent state 
(e.g.. indicating a CPU was added when it really was not). If such is the case, all 
reconfiguration requests should be delayed until after the next bootload. 

11-3 AM81-o4 



SECTION 12 

STORAGE SYSTEM MAINTENANCE OPERATIONS 

HOW TO MOVE A PACK 

Certain procedural steps must be followed when a disk pack is to be moved. 
The procedure varies according to whether or not the system is running when the 
pack is moved. The following discussion lists the procedural steps to follow when 
M~ltics is not running and when it is running. The commands used in these 
procedures are all described in the Multics Administration, Maintenance and 
Operations Commands manual, Order No. GB64. 

While Multics Is Not Running 

1. Stop the drives involved, unload the packs, move them, and reload and restart 
them. 

2. If the root physical volume (RPV) is moved, change the root card. 

3. If any pack that is moved is pointed to by a part card, change the part card 
to name the new location. 

4. If any BCE exec_corns name specific drives, they must be changed. Modify 
them and reload them. 

5. If the con fig deck has changed, edit it and reload it. 

6. Create a new BCE/Multics tape. 

7. Load BCE and Multics using the boot command or the auto exec_com. 

8. If the RPV is moved, a new disk table is created. If this occurs, issue an 
add_vol initializer command for all other volumes of the RLV, and then for 
all other volumes. 

9. If the RPV is not moved, the disk table is retained but contains some 
incorrect assumptions. Issue the list_disks initializer command to see what the 
disk table contains. For each incorrect assumption, issue a del_vol initializer 
command to delete the wrong assumption, and an add_vol initializer command 
to insert the actual situation. Do the RL V first. 

10. Proceed with startup as usual. 

* 

* 

* 

12-1 AM81-o4 



While Multics Is Running 

1. If any of the packs to be moved are part of the RLV, they cannot be moved 
while the system is running. 

2. If any packs contain partitions, they cannot be moved while the system is 
running. 

3. If any packs contain process directory segments (either the RL V or the volumes 
named in the set_pdir_ volumes command), use the vacate_pdir_ volume initializer 
command to force these segments off of the logical volumes. 

4. If the packs can be moved, issue a list_disks initializer command to determine 
the logical volumes that contain them. Issue a del_Iv initializer command to 
demount each such logical volume. 

5. The del_Iv initializer command stops all the drives in each of the logical 
volumes deleted. Cycle up the drives that were not to be moved. 

6. Move the packs that are to be moved, and cycle up the new drives. 

7. Issue a del_vol initializer command for each drive that had a pack taken from 
it. 

8. Issue an add_vol initializer command for each drive that had a pack moved 
onto it. 

9. Perform an add_Iv initializer command for each logical volume containing a 
pack that is moved. 

10. If any BCE exec_corns name specific drives, they must be modified and 
reloaded at the next shutdown. 

When MSU0451 disk units are in use, it is possible to switch drives by 
changing address plugs as well as packs, so that disk drive changes are not seen by 
the software. Packs can be swapped only between two drives attached to the same 
MPC. This is done as follows: 

1. Put the drive you are switching from (the old drive) in STANDBY mode by 
pushing the STOP button. If there is a disk volume on the drive you are 
switching to (the new drive), put that drive in STANDBY mode as well. 

2. Remove the address plugs from both the old drive and the new drive 
immediately. 

3. When the spindles stop, demount any volume from the new drive, and move 
the volume from the old drive to the new drive. 

4. Push the START button to start the new drive. 

5. After the new drive becomes ready, insert the address plug from the old drive 
into the new drive; insert the address plug from the new drive into the old 
drive. 

12-2 AM81-04 



Note that the new drive must already be ready before you insert the address 
plug. Note also that you must wait at least 30 seconds from the time you remove the 
plugs until the time you reinsert the plugs. This is because the MPC only polls 
devices every 15 seconds for status changes. 

If the procedure above fails, the following procedure may be tried as an 
alternate: 

1. Put the drive you are switching from (the old drive) into offline mode, by 
setting the rotary switch on the inside of the back door of the unit 

2. Power down the old drive. 

3. Dismount the disk pack from the old drive and mount it on the drive you are 
switching to (the new drive). 

4. Swap the address plugs between the two drives. 

5. Put the new drive into offline mode, ready it, and then put it into online 
mode. 

HOW TO EXPAND A LOGICAL VOLUME 

To add a physical volume to a logical volume: 

1. If necessary, format the disk pack using the online T &D tool, MTR, under 
TOLTS and MOLTS. Procedures for formatting both MSU0500/MSU0501 and 
MSU0451 disk packs with MTR are described in the Multics Online Test and 
Diagnostics Reference Manual, Order No. AU77. 

2. If a drive must be added to the configuration, and the config deck is changed. 
the disk table may have to be recreated at the next bootload. If so, it will be 
empty, and you will have to issue the add_vol command for each old volume. 

3. Issue an add_ volume_registration command with the -Iv and -pv control 
arguments to add the new physical volume to the specified logical volume. 

4. Issue an in it_vol command to write the label and VTOC of the new physical 
volume. Use the -special control argument if there are partitions, defective 
track space, or special space requirements. Note that every RLV volume must 
have a hard core (HC) partition. 

5. Issue an add_vol command to begin using the new physical volume mounted on 
the specified disk drive. If the root volume is being expanded, schedule a 
shutdown so you can change the root and part config cards as necessary. 

6. Add the volume name to the volume dumper control files, if your site dumps 
by physical volume name. 

12-3 AM81-()4 



The segment creation algorithm somewhat favors physical volumes with a high 
percentage of unused space. This is especially true in cases where the other physical 
volumes in the same logical volume are close to full. This fact might lead to excessive 
arm motion on the drive of the new volume and degraded perf ormance. The 
sweep_pv command and the inhibit_pv command can be used to move segments 
between packs or inhibit segment creation on any pack. All of the commands used in 
this procedure are described in the Multics Administration, Maintenance and 
Operations Commands manual, Order No. GB64. 

HOW TO COMPRESS A LOGICAL VOLUME 

To delete one or more physical volumes from a logical volume: 

1. Make sure that enough free space is available so that the logical volume can 
be compressed. 

2. Make sure that adequate backup dumps and output from the BeE save 
command are available as a hedge against any problems that may arise. 

3. The logical volume to be compressed must be mounted and in use. 

4. Log in a SysDaemon process, preferably in ring 1, and issue the sweep_pv 
command from that process. The command should specify the physical volume 
to be removed and the -move and -force control arguments. Refer to the 
description of the sweep_pv command in the Multics Administration, 
Mai ntenance, and Operations Commands manual, Order No. GB64. 

This operation (vacating the pack) may take 30 minutes to an hour. It should 
be done on a lightly loaded system, due to its impact on I/O performance. 

If several volumes are being removed, they may be vacated in parallel. Log in 
one SysDaemon process for each volume to be vacated in parallel. Issue the 
sweep_pv command from each of the processes, specifying the respective 
physical volume and the -move and -force control arguments. 

5. Delete the physical volume from the volume dumper control files, if your site 
dumps by physical volume name. 

6. Delete the volume log segment using the delete_volume_log command. 

7. When the sweep_pv commands have terminated, inspect all error files, if any 
are produced. If segments cannot be moved, delete them, acquire access, or 
take whatever remedial action is appropriate. Use the sweep_pv command with 
the -move, -force, and -only control arguments to move such segments. It is 
not necessaiY to take any fUithei action for see;Ulents in process directories. 

8. If you're compressing the RLV. bump all users at some scheduled time. Then 
issue the delete_volume_registration command and shut the system down. Before 
rebooting. change the root and part config cards as necessary. Then reboot the 
system. 

12-4 AM81-04 



If you're compressing a non-RL V volume, issue the delete_ volume_registration 
command during system operation. Then issue the del_Iv command to demount 
the entire logical volume. Finally, issue the add_Iv command to remount the 
entire logical volume. If will be necessary to issue an add_vol command for 
each physical volume remaining in the logical volume. (It is advisable to enter 
a special session to compress heavily used non-RL V volumes. This will avoid 
interactive user confusion and absentee user terminations.) 

9. If segments could not be moved by step 4 above, quota recovery must be 
performed at some time to account for the quota used by those segments. 

10. The RPV may not be deleted. Physical volumes on which process directory 
segments reside produce errors of the form: 

"There was an illegal attempt to deactivate an AST entry" 

in the error file and such segments are not moved. This is not a problem, 
since these segments are deleted anyway during the next bootload. 

All of the commands used in this procedure are described in the Multics 
Administration, Maintenance, and Operations Commands manual, Order No. GB64. 

HOW TO PERFORM VTOC GARBAGE COLLECTION ON A PACK 

VTOC garbage collection consists of freeing the VTae entries and pages of 
segments on a given pack that no longer correspond to branches in the storage system 
hierarchy. Since such segments have no branches, they cannot be used by users or 
system processes and waste valuable space. Such segments result when physical volumes 
are recovered via a BCE restore, or in certain crash situations. VTDe garbage 
collection should be performed periodically on all packs as time permits. 

At sites where it is critical to recover the latest versions of segments in case 
of root pack failure, branches may be constructed automatically for segments lacking 
them. This process is known as adoption. (See "Segment Adoption." below.) 

To perform a VIOC garbage collection on a pack, the pack must be part of a 
mounted, in-use logical volume. The garbage collection must be performed from a 
privileged process (SysDaemon). It may take 20 to 45 minutes. 

The sweep_pv command with the -gc, -dl, and -force control arguments is 
issued for each physical volume to be garbage-collected. The -gc control argument 
specifies garbage col1ection; the -dl control argument causes deletion of these segments 
in addition to locating them: the -force control argument specifies that access is to be 
forced. 

12-5 AM81-04 



A report of the garbage collection is produced as well as an error file, if 
errors are encountered. The report is given a three-component name with "pvgc" as 
the first component. The error file (if it is produced) is given a three-component 
name with "pvef" as the first component. Both have the physical volume name as the 
second component of their name and the time the segment was created as the third 
component. 

Multiple processes may be used in parallel to speed up garbage collection of 
multiple volumes. Only one process should perform garbage collection on a single 
volume. 

VTOC garbage collection should be performed when only system users are 
logged in; users renaming directories while it runs can reduce its efficiency. 

The hp_delete_ vtoce command can be used to manually delete VTOCES known 
to be damaged or orphans. This command is documented in the Multics Administration, 
Maintenance and Operations Commands manual, Order No. GB64. 

SEGMENT ADOPTION 

In cases of root pack failure, a BCE restore (or reload via the volume 
reloader) of a root pack can cause valid and useful segments not on that pack to lose 
their branches. Usually, such segments must be deleted via VTOC garbage collection, 
and reloaded (in the case where volume backup is not used), or retrieved in either 
case. This situation can also come about when a directory is damaged by some other 
mishap than pack failure. 

Branches for segments left "orphaned" in this way may be reconstructed 
automatically by a procedure known as segment adoption. Segment adoption constructs 
a branch for an orphan segment, but no name, ACL, and other branch information is 
recovered. A partially unique name is constructed for the segment. At sites where 
having the latest copy of segments is more important than having all of their names 
and access information correct. segment adoption should be used in cases of root pack 
or directory failure. 

Lists of orphan segments may be obtained per physical volume basis by running 
sweep_pv over those volumes with the -gc (without the -dI) control argument. The 
list of segments that can be adopted are those marked as having "no entry" on the 
garbage collection report (pvgc) file. 

All segments that can be adopted on a physical volume can be adopted by 
running the sweep~pv command over the volume with the -gc and -adopt control 
arguments. Segments may be adopted individually with the adopt_seg command. The 
pathnames of the constructed branches are reported to the garbage collection report 
file. 

12-6 AM81-04 



Access to the phcs_ and hc_backup_ gates is required to perform segment 
adoption. 

BCE SAVE AND RESTORE 

What Constitutes a Physical Volume Set 

The BeE save and restore commands allow you to save or restore up to four 
sets of physical volumes at one time. A volume set is defined as all the physical 
volumes and partitions described in a control file or several control files that are to 
be saved in one tape set. The syntax of the commands allow you to define multiple 
control files for a set. These sets are defined by the parameters following the "-set" 
and "-restart" control arguments. See the Multics Administration, Maintenance, and 
Operations Commands manual, Order No. GB64, for a description of the syntax of 
the save and restore commands. 

What Constitutes a Tape Set 

A tape set is defined as the collection of tapes required to save a set of 
physical volumes. The tape reels are numbered 1 to N+l, and include one reel called 
the "Info" reel. Each tape label contains the name of the set as defined by the 
"tape_set" control file request. The "Info" tape is the last tape written during a save, 
and the first tape read during a restore. This tape contains information that relates 
the numbered tape reels and the saved physical volumes. This information aids in tape 
mount requests and allows for partial restores. 

How to Create a Control File 

The first step you must perform in preparation for a save or a restore is to 
create the necessary control file(s). This file defines the tape set name, tape devices, 
physical volumes, and partitions in the volume set. The control file requests are 
described under the descriptions of the save and restore commands in the Multics 
Administration, Maintenance, and Operations Commands manual, Order No. GB64. 

12-7 AM81-()4 



What follows is a sample control file being created at BeE command level. 

qx 
a 
II Save/Restore Tape devices. 
tape_device tapa_02 -density 6250 
tape_device tapa_05 -density 6250 
tape_device tapb_03 -density 6250 
\f 
w save_tapes 
bl 
a 
II Save/Restore control file for the ROOT logical volume. 
tape_set ROOT 
physical_volume rpv dska_Ol 
partition rpv dska_Ol conf file log dump 
physical_volume root2 dska_02 
physical volume root3 dska 03 
physical=volume root4 dska=04 
\f 
w root 1v 
q 

The tape devices were defined in a separate control file so they could be used with 
several physical volume control files, during separate saves or restores. 

How to Execute a Save and What Messages Are Displayed 

Once the control files have been properly set up, you can begin the save 
process by typing the following: 

save -set save_tapes root_lv 

The tape devices are polled, and verified to be accessible and capable of the requested 
density. If problems are detected, a message is displayed and the device is removed 
from the list of available devices. This list is displayed in the order that the drives 
will be used. 

save (ROOT) : The following tape devices will be used: 

A check is made to insure that the physical volume requests match the corresponding 
disk packs. For each physical volume, a message is displayed. Errors are noted by 
h**) in columns 76-78 of the screen (not shown here). 

12-8 AM81-04 



save (ROOT) : Multics Storage System Volume rpv on dska_Ol 
Last updated: 05/08/86 1209.2 mst Fri 

Partition conf: 3908 for 4 records 
Partition f i 1 e: 33836 for 255 records 
Partition dump: 34091 for 3500 records 
Partition log: 37591 for 256 records 

save (ROOT) : Multics Storage System Volume root2 on dska_02 
Last updated: 05108/86 i209.2 mst Fri 

save (ROOT) : Multics Storage System Volume root3 on dska_03 
Last updated: 05/08/86 1209.2 mst Fri 

save (ROOT) : Multics Storage System Volume root4 on dska_04 
Last updated: 05/08/86 1209.2 mst Fri 

If multiple physical volume sets are requested, the above sequence is repeated 
f or each one. After all the sets are examined, the following query is displayed: 

save: Would you like to continue? 

At this point, the output messages can be examined. If all is correct and acceptable, a 
"yes" response causes the save to begin. If any problems need to be corrected, a "no" 
response aborts the save and returns to BeE command level. After corrections are 
made the save request can be re-entered. 

CAUT ION: Any tape that is mounted with a write ring present will be 
considered a premounted save tape and will be written on when the tape device is 
selected. 

If a tape is not mounted, the following message is displayed: 

save (ROOT) : Please mount tapeD 1 on tapa_01. 

If after two minutes no tape has been moun ted, the following query is displayed: 

save (ROOT) : Would you 1 ike to skip to the next tape device? 

One of the following responses must be entered: 

yes, y 

no, n 

This device is skipped and the next device is selected. The tape mount is then 
checked in the same manner. The skipped device remains in the list of 
available tape devices. 

This device is not skipped. The mount for this device is checked again in the 
same manner. 

12-9 AM81-04 



remove 
This device is removed from the list and the next device is selected. The tape 
moun t is then checked in the same manner. 

help, ? 
The possible responses are displayed. 

Once a tape is mounted, the save process can continue. Shown below are the 
messages that will be displayed as the save progresses. This example assumes that tapes 
have been premounted on devices tapa_05 and tapb_03. 

save (ROOT) : 
save (ROOT) : 
save (ROOT) : 
save (ROOT) : 
save (ROOT) : 
save (ROOT) : 
save (ROOT) : 
save (ROOT) : 
save (ROOT) : 
save (ROOT) : 
save (ROOT) : 
save (ROOT) : 

Volume rpv, record 0, on tape# 1 (tapa_02) 
Partition conf on rpv, record 3908, on tape# 1 (tapa_02) 
Partition file on rpv, record 33836, on tape# (tapa 02) 
Partition dump on rpv, record 34091, on tape# (tapa-02) 
Partition log on rpv, record 37591, on tape# (tapa-02) 

Vo 1 ume root2, record 0, on tape# 1 (tapa_02) 
Vo 1 ume root3, record 0, on tape# 1 (tapa 02) 
Unloading tape# 1 from tapa_02, 23537 records (12 errors) 
Volume root3, record 4356, on tape# 2 (tapa_OS) 
Volume root4, record 0, on tape# 2 (tapa_OS) 
Unloading tape# 2 from tapa_OS, 5477 records 
OK to write "Info" tape on tapb_03? 

The query above allows for preassigned "Info" tapes. If you answer "yes", the current 
tape is used; if you answer "no", the tape is dismounted and the following occurs. 

save (ROOT) : Unloading tapb_03 
save (ROOT) : Please mount the IIlnfoll tape on tapb_03. 

After the correct "Info" tape has been mounted and written, the following is 
displayed, indicating that the save request is complete. 

save (ROOT) : Unloading "Info" tape from tapb_03, 3 records 
save (ROOT) : save complete ... 

HOW TO ABORT A SAVE 

A save can be interrupted by use of the console "request" key. If you hit the 
"request" key while a save is in progress, the following prompt will appear: 

save: Abort request: 

You will then be required to input one oi the f ol1owing responses: 

no. n 
This causes the request to be ignored and the save to continue. 

abort 
This aborts all save sets and returns to BeE command level. 

12-10 AM81-04 



restart tape_set 
This allows you to restart the specified tape_set, using its current tape device. 
You are then required to mount the "restart" tape on the device and to follow 
the procedure described below under "How to Restart a Save". Once the 
tape_set has been restarted, the remaining sets will continue operation. 

stop tape_set 
This aborts the specified tape_set, and continues the save for the other sets. 

help, ? 
This displays the possible responses, with a small description of each. 

HOW TO RESTART A SAVE 

Due to various problems that can arise while performing a save, it may be 
necessary to restart a set. -The restart operation can oe invoked in one of three ways: 

• By using the "-restart_set" argument in the command line 

• By giving the "restart tape_set" response to the "Abort request:" prompt 
described above. (See "How to Abort a Save" earlier in this section.) 

• By giving the "restart_set" or "remove_device_from_set" response during error 
recovery. (See "How to Recover from Unrecoverable Tape Errors" later in this 
section.) 

Restarting consists of skipping all volumes and/or partitions that have been 
successfully saved, restarting the save of one volume somewhere in the middle, and 
then continuing normally with the remaining volumes. 

A restart must always start at the beginning of a tape, called the restart tape. 
This is usually the tape being written at the time of failure. The tape label 
successfully written at the beginning of this tape holds all the information about where 
to restart If the tape label on that tape is unreadable, the previous successfully 
written tape in the set can be used as the restart tape and the information in its label 
can be used. 

The tape label is read from the save tape from which you want to restart If 
the tape is not already mounted, the following message is displayed and the normal 
mount procedure is executed. 

save (ROOT) : Please mount the "restart" tape on tapa 02. 
save (ROOT) : Tape# 2 on tapa_02, created 05/08/86 1535.3 mst Thu 

After the tape label has been read, the tape creation time is checked. If the 
time is older than one week, the tape is rejected. This involves unloading the current 
tape and asking that another be mounted. 

12-11 AM81-o4 



The tape label inf ormation is used to locate all the volumes that can be 
skipped and to find out what record number to start at when rewriting the tape. The 
following messages are displayed: 

save (ROOT) : Skipping volume rpv on dska_Ol. 
-save (ROOT) : Skipping volume root2 on dska 02. 
save (ROOT) : Starting from record 4356 of ~olume root3 on dska_03. 

You are then queried with the following: 

save (ROOT) : Do you want to replace or rewrite tape# 2 on tapa_02? 

This query gives you the chance to select a different tape reel, in case the previous 
save was aborted because this tape contained too many errors. Below are the possible 
responses. 

replace, rep 
The current tape will be unloaded and a new tape requested in its place. 

rewri te, rew 
The tape will be rewound and used when the save begins again. 

From this point on, the save resumes normal operation. 

How to Execute a Restore and What Messages Are Displayed 

Once the control files have been properly set uP. you can begin the restore 
process by typing the following: 

restore -set save_tapes root_lv 

The tape devices are polled, and verified to be accessible. If problems are detected. a 
message is displayed and the device is removed from the list of available devices. This 
list is displayed in the order that the drives will be used. 

restore (ROOT) : The following tape devices will be used: 

At this point, the program needs to read in the contents of the "Info" save 
tape. This tape contains the list of volumes and partitions that were saved and the 
starting and ending tape number for each. The "Info" tape is the last tape written as 
part of a save. It allows program control over what tapes are mounted, which saves a 
lot of t;mp ;n ~_:n·("h;no- for t~nPl;1. .- ~ _. ~ •••• - .~~ --. _U·~·o ..... ......1""-..... 

The program now attempts to read the tape on the first device in the list. If 
a tape is not mounted, the following message appears: 

res tore (ROOT): Please mount the II! nfo" tape on tapa_02. 

12-12 AM81-04 



If the tape which is read does not contain a label of "Info", the program 
queries you to find out if the "Info" tape is available. If you answer "no", the 
program uses the label information from the current tape in place of the "Info" data. 
It is in the same format but is not as complete. If you ~~swer "yes", the current 
tape is unloaded and the mount/label read process is restarted. 

If the "Info" tape is not available, the save tape closest to the end of the save 
should be read in its place. This will give the program the greatest amount of 
inf ormation. 

The volumes to be restored are sorted so that they are in the same order as 
they were saved. Each of the disk labels is read and a display / check of the 
information is done. If a problem is detected, the volume is removed from the 
"to-be-processed" list This procedure is duplicated for each restore set Below is an 
example of the information that is displayed during this procedure. Messages that 
indicate a possible problem will have (***) in columns 76-78 (not shown here). 

restore (ROOT) : Multics Storage System Volume rpv on dska 01 
Last updated: 05/08/86 1209.2 mst Fri 

restore (ROOT) : Multics Storage System Volume root2 on dska_02 
Last updated: 05/08/86 1209.2 mst Fri 

restore (ROOT) : Multics Storage System Volume root3 on dska_03 
Last updated: 05/08/86 1209.2 mst Fri 

restore (ROOT) : Multics Storage System Volume.root4 on dska_04 
Last updated: 05/08/86 1209.2 mst Fri 

If multiple physical volume sets are requested, the above sequence is repeated 
for each one. After all the sets are examined, the following query is displayed: 

restore: Would you like to continue? 

At this point, the output messages can be examined. If all is correct and acceptable, a 
"yes" response causes the restore to begin. If any problems need to be corrected, a 
"no" response aborts the restore and returns to BeE command level. After corrections 
are made the restore request can be reentered. 

The program now knows the first tape to be read from the label information 
or at least has a "best guess" if the first tape read was not the "Info" tape. It 
attempts to read this tape on the next tape device in the list If the tape read is not 
the correct tape or if no tape is mounted, the following message is displayed: 

restore (ROOT) : Please mount tape# 1 on tapa_02. 

If after two minutes no tape has been mounted, the following query is displayed: 

restore (ROOT) : Would you like to skip to the next tape device? 

12-13 AM81-04 



One of the following responses must be entered: 

yes, y 
This device is skipped and the next device is selected. The tape mount is then 
checked in the same manner. The skipped device remains in the list of 
available tape devices. 

no, n 
This device is not skipped. The mount for this device is checked again in the 
same manner. 

remove 
This device is removed from the list and the next device is selected. The tape 
moun t is then checked in the same manner. 

help, ? 
The possible responses are displayed. 

After a successful read of the current tape label, the program checks to see if 
another tape in the set is needed. If another tape is needed, a premount message is 
displayed. Shown below is a sample sequence of events during a restore process. 

restore (ROOT) : Tape# 1 on tapa_02, created oS/08/86 lS2S.0 mst Thu 
restore (ROOT) : Please premount tape# 2 on tapa_OS. 
restore (ROOT): Volume rpv, record 0, on tape# 1 (tapa_Ol) 
restore (ROOT): Parti tion conf on rpv, record 3908, on tape# 1 (tapa 02) 
restore (ROOT) : Partition file on rpv, record 33836, on tape# (tapa_02) 
restore (ROOT) : Partition dump on rpv, record 34091, on tape# (tapa 02) 
restore (ROOT) : Partition log on rpv, record 37S91, on tape# (tapa-02) 
restore (ROOT) : Volume root2, record 0, on tape# 1 (tapa_02) 
restore (ROOT): Volume root3, record 0, on tape# 1 (tapa 02) 
restore (ROOT) : Unloading tape# 1 from tapa 02, 23S37 records 
restore (ROOT) : Tape# 2 on tapa OS, created-OS/08/86 lS3S.3 mst Thu 
restore (ROOT) : Volume root3, r;cord 43S6, on ~ape# 2 (tapa OS) 
restore (ROOT) : Volume root4, record 0, on tape# 2 (tapa_OS) 
restore (ROOT) : Unloading tape# 2 from tapa_OS, S477 records 
restore (ROOT) : restore complete .•. 

HOW TO ABORT A RESTORE 

A restore set can be interrupted by use of the console "request" key. If you 
hit the "request" key while a restore is in progress, the following prompt will appear: 

restore: Abort request: 

You will then be required to input one of the following responses: 

no, n 
This causes the request to be ignored and the restore to continue. 

abort 
This aborts all restore sets and returns to BeE command level. 

12-14 AM81-04 



restart tape_set 
This allows you to restart the specified tape_set, using its current tape device. 
You are then required to mount the "restart" tape on the device and follow 
the procedure described below under "How to Restart a Restore." Once the 
tape_set has been restarted, the remaining sets will continue operation. 

stop tape_set 
This aborts the specified tape_set, and continues the restore for the other sets. 

help, ? 
This displays the possible responses, with a small description of each. 

HOW TO REST ART A RESTORE 

Due to various problems that can arise while performing a restore, it may be 
necessary to restart a set. The restart operation can be invoked in one of three ways: 

• By using the "-restart_set" argument in the command line 

• By giving the "restart tape_set" response to the "Abort request:" prompt 
described above. (See "How to Abort a Restore" earlier in this section.) 

• By giving the "restart_set" or "remove_device_from_set" response during error 
recovery. (See "How to Recover from Unrecoverable Tape Errors" later in this 
section.) 

Restarting consists of skipping all volumes and/or partitions that have been 
successfully restored, restarting the restore of one volume somewhere in the middle, 
and then continuing normally with the remaining volumes. 

If you are restarting from the command line, then the "Info" tape must still 
be read before the "restart" tape. 

The tape label is read from the save tape from which you want to restart. If 
the tape is not already mounted, the following message is displayed and the normal 
mount procedure is executed. 

restore (ROOT) : Please mount the " res tart" tape on tapa_02. 
restore (ROOT) : Tape# 2 on tapa_02, created 05/08/86 1535.3 mst Thu 

From the tape label, the program determines which volumes were completed on 
previous tapes and skips them. It then restarts the restore of the first volume on the 
tape that has been requested to be restored. The following messages are displayed: 

restore (ROOT) : Skipping volume rpv on dska_01. 
restore (ROOT) : Skipping volume root2 on dska 02. 
restore (ROOT) : Starting from record 4356 of ~olume root3 on dska_03. 

From this point on the program reverts back into a normal operational mode. 

12-15 AM81-04 



How to Recover from Unrecoverable Tape Errors 

During a save or restore, there are times when errors occur that require special 
handling. These are errors that are either nonretryable or that cause the retry process 
to fail. When an unrecoverable error occurs, a message is displayed that shows the 
error interpreted in English. plus the detailed status in hex (if required). After this 
message is displayed. you are queried as to the course of action that should be taken. 
Shown below is some sample error output. 

abort 

save (ROOT) : Device Attention, Handler check on tapb_03. 
detailed status: 20 8e 28 6D OA 01 16 00 00 16 48 87 24 

18 06 00 00 oe 00 00 08 08 80 00 00 00 
save: Action: 

One of the following responses must be entered: 

This causes the program to abort the entire save/restore and return to BeE 
command level. 

retry, r 

skip. s 

For errors that are retryable, this forces the retry process again. It is invalid 
for nonretryable errors. 

This is only valid for data alert errors detected while doing a restore. The 
unreadable record is skipped and the restore continues by attempting to read 
the next record. 

stop_set, stop 
This causes this set to be aborted, but all other sets to continue operation. 

restart_set, restart, rt 
This allows you to restart this set. using the current tape device. You are then 
required to mount the "restart" tape on the device and follow the restart 
procedures. Once the set has been restarted. the remaining sets continue 
operation, 

remove_device_from_set. remove 

help. ? 

Works like the "restart_set" request above. but removes the current tape device 
from the set and sequences to the next device before going through the restart 
process. This is not a valid response if the next device is the only tape device 
left in the set 

This displays the above possible responses. 

12-16 AM81-()4 



OPERATIONS ON PHYSICAL VOLUMES 

There are several commands that may be invoked to perform operations 
on physical volumes: adopt_seg reconstructs a lost directory branch; inhibit_pv 
and sweep_pv. perform various operations on physical volumes for storage 
system maintenance purposes; and format_disk_pack formats disk packs. 
Complete descriptions of these commands are available in the Multics 
Administration, Maintenance and Operations Commands manual, Order No. 
GB64. 

12-17 AM81-04 



SECTION 13 

SYSTEM MESSAGES AND LOGS 

SYSTEM MESSAGES 

This subsection describes the different types of messages produced by the 
Multics system during operation, including their forms, where they appear, which 
subsystems produce them, and what they mean. 

The Form of a System Message 

A system message usually begins with the time it was sent. After the time, the 
message usually gives its source. After the time and the source comes the body of the 
message. 

There are four major kinds of messages. A BCE message is not indented and 
does not include a time or a source. (The source is always BeE.) 

A syserr message is also not indented. It includes a time with a decimal 
point. Its source is either the name of a subsystem (for example, Rep) or the name 
of a program (for example, disk_control). Some syserr messages do not include their 
source. 

A message coordinator message is indented one space. It includes a time 
without a decimal point. Its source is either a daemon (indicated by the daemon's 
label) or the answering service (indicated by "as"). 

An initializer command response is a response to an initializer command. It 
is not indented, and does not include either a time or a source. (The source is always 
the initializer process.) 

Where Messages Appear 

The following kinds of messages will usually appear on the bootload console: 

• BeE messages 

• Syserr messages: 

• Rep messages 

* 

13-1 AM81-04 



* 

• Disk error messages 

• Salvager messages 

The following kinds of messages will usually appear on the initializer terminaI(s): 

• Message coordinator messages: 

• Backup daemon messages 

• I/O daemon messages 

• Login, logout, and other answering service messages 

• Ini tializer command responses 

BeE Messages 

BeE messages are produced by BeE. An example of a BeE message is: 

Booting t610 on 10M a chn 14 with m610 rev.ll firmware. 

BeE messages are only produced when the system is at BeE level -- during startup 
and after certain system failures. 

Syserr Messages 

Syserr messages are produced by supervisor programs, and by user ring 
programs with access to privileged gates. If the bootload console ceases operation, 
syserr messages are automatically directed to the initializer process, which attempts to 
handle them. 

RCP MESSAGES 

Rep messages are produced by Rep. An example of an Rep message is: 

1420.1 Rep: Authenticate tapa_OS. It has no label. 

The most common Rep messages provide instructions for performing tape and disk 
mounts. 

RCP Mount Messages 

When a process requests the mounting of disk packs or tape reels, the system 
prints a message. There are three different kinds of messages, corresponding to the 
three types of demountable media: tape reels. storage system disk volumes, and user 
I/O disk packs. In each case. a message from Rep is printed on the bootload console 
and the audible alarm sounded. Step-by-step procedures for mounting tapes, user I/O 
disks. and storage system disks are available in the Operator's Guide to Multics. 
Order No. GB61. 

13-2 AM81-o4 



RCP Access Messages 

Access to all devices is controlled by the access control lists on special 
segments, one per device, called access control segments (ACSs). These segments are 
kept in the directory >scl>rcp. If a device is added to the config deck or if one of 
these segments is lost in a crash, the system may type a message like the following at 
the next bootload: 

Rep: Created >sci>rcp>dska_i6.acs with defauit access. 

No users are able to access the device until the system administrator corrects the ACL 
on that ACS. 

DISK ERROR MESSAGES 

Disk error messages are produced by the supervisor. An example of a disk 
error message is: 

0822.5 disk_control: dska_04 requires intervention. 

Disk error messages tell the operator when a disk drive is in trouble, and may 
provide information that will help him solve the problem. 

SALVAGER MESSAGES 

Salvager messages are produced by the salvagers. Examples of salvager messages 
are: 

0643.8 scavenger: Begin scavenge of dska_Ol by 
Scavenger.SysDaemon.z 

0643.8 scavenge_volume: Freed 72 VTOCEs on dska_Ol. 

0643.9 scavenge_volume: 9 VTOCEs on dska_Ol damaged. 

0643.9 scavenger: Scavenge of dska_Ol by Scavenger.SysDaemon.z 
completed. 

Whenever a salvager is invoked to correct a physical volume. the operator will receive 
a whole set of messages. These messages provide information. They don't require a 
response. 

Message Coordinator Messages 

BACKUP DAEMON MESSAGES 

Backup daemon messages are produced by the volume and hierarchy backup 
systems. An example of a backup daemon message is: 

1955 cd2 Input tape label 
->cd2 

13-3 AM81--()4 



A message from a daemon that begins with a "->" is called a sentinel, and indicates 
that the daemon wants input. 

I/O DAEMON MESSAGES 

I/O daemon messages are produced by the I/O daemon processes. An example 
of an I/O daemon message is: 

1956 prtb prtb driver ready at 06/01/83 1956.1 est Wed 
->prtb 

Again, the line beginning with a "->" indicates that the daemon wants input. 

LOGI N AND LOGOUT MESSAGES 

Login and logout messages are produced by user and system processes when 
they login and logout. An example of an interactive user login message is: 

1719 as LOGIN User1.ProjectA int a.h026.001 (create) 

An example of an absentee user login message is: 

1719 as LOGIN User4.ProjectB Q 3 abs2 (create) [my_absentee] 

An example of a system process login message is: 

1719 as LOGIN Backup.SysDaemon dmn bk (create) 

An example of an interactive user logout message is: 

1805 as LOGOUT Userl.ProjectA int a.h026.001 0:17 
$6.92 (logout) 

An example of an absentee user logout message is: 

1805 as LOGOUT User4.ProjectB Q 3 abs2 0:09 $3.41 (logout) 

An example of a system process logout message is: 

1805 as LOGOUT Backup.SysDaemon dmn bk 5:28 $23.45 (logout) 

A great number of login and logout messages are produced. When they're concerned 
with interactive and absentee users, they simply provide information, and don't require 
a response. When they're concerned with system processes, the operator should take 
note of them. They may mean that a daemon is logging in to perform a task that 
may require operator assistance, or possibly that a daemon is logging out because it's 
in trouble. 

13-4 AM81-04 



OTHER ANSWERING SERVICE MESSAGES 

Most other answering service messages simply provide information. An example 
of another answering service message is: 

0345 as act_ctl_: bumping User4.ProjectB for inactivity. 

Initializer Command Responses 

Initializer command responses are produced by the initializer process. An 
example of an initializer command response is: 

reconfigure: CPU a is now running. 

An initializer command response is always printed on the terminal that was used to 
issue the initializer command. Initializer command responses are logged for later 
analysis in . the admin log. 

Error Message Documentation 

Every release of Multics includes an online error messages segment. This 
segment documents all of the error messages that can be generated by the system. It 
also documents quite a few messages which are not error messages, but just regular 
messages. The messages are listed in alphabetical order. Each message description tells 
you where the message gets printed, when you are likely to receive it, what it means, 
and what action, if any. you should take to respond to it. 

If you receive an error message that you don't recognize or don't know how 
to respond to, you can look it up in this segment. The name of the segment is: 

>doc>MR12.0>error_messages.doc 

where "MR12.0" is the number of the Multics release under which you are running. 
We strongly recommend that you dprint a copy of this segment and keep it in the 
machine room. 

SYSTEM LOGS 

This subsection provides general information about Multics system logs, then 
describes each individual log, including what kind of messages they contain, how to get 
information from logs. how to store and discard old logs, and how to deal with 
common problems. 

Multics System Logs 

Multics keeps records of important events in logs. A log is a set of segments 
which contain log messages. Each log message is a record of a system event. System 
programs put log messages into logs using standard subroutines. Maintainers and 
administrators use logs to k~p track of system errors, user problems, I/O devices and 
volumes, and operator activity. 

13-5 AM81-04 



All logs are families of segments. The newest member of the family has a 
name of the form log_name. Older log segments have names of the form 
log_name. YYYYMMDD. HHMMSS. A log segment consists of a header and a series of 
log messages. Each log segment records in its header the directory in which the next 
oldest log segment is located. You can use the display_loLsegment command to see 
the information in the log segment header. 

There are three logs that are always kept by the system: the syserr log, the 
answering service log, and the admin log. There are two other classes of logs that 
your site mayor may not use. If your site runs Data Management, there will be a 
Data Management system log for each Data Management system. If your site defines 
message coordinator "log" destinations, there will be a log for each destination. 

THE SYSERR LOG 

The messages in the syserr log record many different events which occur in 
ring 0 and ring 1. These include: 

• All I/O errors 

• All RCP activity 

• Software and hardware errors detected in rings 0 and 1 

• Reconfiguration activity 

• Activity relevant to system security 

A syserr message which can't be logged is marked with "*lost". 

Users see the syserr log as a normal log family, which consists of one or two 
log segments in >sll, older log segments in >sc1>syserr_Iog, and even older log 
segments in >udd>sa>a>history. (The underlying relationships between these directories 
are explained in more detail in the paragraphs below.) The supervisor syserr 
mechanism puts messages into segments in >s11. The answering service copies them to 
>sc1>syserr_Iog every few minutes. The crank moves segments more than a day old 
from >sc1>syserr_Iog to >udd>sa>a>history. 

The system implements this view with a three part structure. This structure is 
required to accomodate the fact that syserr messages are created in different 
environments. The first part of the structure is called the wired log. This is a wired 
buffer reserved for syserr messages generated by wired sofiware such as page control. 

The second part of the structure is called the LOG partition. This is a special 
area of disk storage located on the RPV. It is reserved for syserr messages generated 
by paged software such as RCP. The LOG partition exists in the file system as one 
or two standard log segments in the directory >s11. The most recent information in 
the LOG partition is contained in the segment named >s11>syserr_Iog. A supervisor 
process called Syserr_Logger.SysDaemon copies messages from the wired log to the 
LOG partition. 

13-6 AM81-04 



The third part of the structure is called the permanent log. It consists of a 
set of standard log segments. The most recent information in the permanent log is 
contained in segments in the directory >sc1>syserr_Iog. The oldest information in the 
permanent log is contained in segments in the directory >udd>sa>a>history. The 
answering service copies messages from the LOG partition to the permanent log (i.e., 
it copies the entire contents of the older of the two segments in >s11 to a new 
segment in >sc1>syserr_log). 

The monitor_sys_log, print_sys_Iog, and summarize_sys_Iog commands (described 
later) all use the n-syserr" control argument to refer to the syserr log. Note that the 
LOG partition segments and the permanent log segments are treated together as one 
standard log family by the Multics logging commands. 

For detailed information about syserr log messages, refer to "Syserr Log 
Messages" later in this section. 

THE ANSWERING SERVICE LOG 

The messages in the answering service log record important events in the 
answering service. These include: 

• Logins and logouts (including accounting information) 

• Use of the dial facility and dial manager 

• System table installations 

• Activity relevant to system security 

The most recent log segment of the answering service log is always 
>sc1>as_logs>log. There will generally be some older log segments in the same 
directory. The crank moves segments more than a day old to >udd>sa>a>history. 

The print_sys_Iog, monitor_sys_log, and summarize_sys_log commands (described 
later) all use the "-answerins-service (-as)" control argument to refer to the answering 
service log. 

13-7 AM81-Q4 



THE ADMIN LOG 

The messages in the admin log record initializer command executions. When an 
operator enters a command at the bootload console or an initializer terminal. or a 
privileged user uses send_admin_command to send a command, the command and all 
of its output are copied into the admin log. The admin log includes special messages 
that allow you to see to what I/O switch output was written. Normally, output is 
written to the switch user_output. However, it can also be written to other switches, 
e.g., error_output. Before writing a message in the admin log, the system checks to 
see if it came from the same I/O switch as the previous message. If not, one of 
these special messages is written first. A special message looks like this: 

error_output: 

The most recent log segment of the admin log is always >sc1>as_Iogs>admin_log. 
Older admin log segments are handled just like older answering service log segments. 

The print_sys_Iog, monitor_sys_log, and summarize_sys_Iog commands (described 
later) all use the n-admin" control argument to refer to the admin log. 

MESSAGE COORDINATOR LOGS 

You can use the message coordinator (described in Section 8) to route message 
coordinator output to logs. All message cordinator logs have their most recent segment 
in >sc1>as_Iogs. The crank copies older segments to >udd>sa>a>hlstory. 

Some output from the initializer process shouldn't or can't be routed to 
message coordinator logs. The answering service has three switches which are connected 
to the message coordinator: severity1, severity2, and severity3. All messages which are 
written to these switches are also logged in the answering service log. Thus, they 
shouldn't be routed to a message coordinator log. Output written on the normal 
process I/O switches (user_output, error_output, and user_i/o) is NOT processed via 
the message coordinator. It is logged in the admin log. Thus, it can't be routed to a 
message coordinator log. 

To define a log as a destination of a virtual console, you must use the 
initializer define command. A typical define command, found in the system_start_up.ec, 
would be: 

sc_command define io10g log iolog 

This adds a destination to the virtual console named niolog" of a log named "iolog." 
The most recent segment of this log would be >sc1>as_Iogs>iolog. 

To route messages to a message coordinator log, you must use the initializer 
route command. A typical system_start_up.ec fragment would be: 

sc_command define ut log log ut_log 
sc_command route ut user i/o ut_log 

13-8 AM81-04 



This adds a destination to the virtual console named "ut_log" of a log named "ut_log." 
The most recent segment of this log would be >sc1>as_logs>ut_log. It then routes all 
output from the switch user_i/o on the source "ut" (where Utility.SysDaemon is 
usually logged in) to >sc1>as_logs>ut_log. 

For all standard daemons, the switch user_i/o will catch all of their output. 
For I/O daemons, there are three interesting switches: user_i/o, error_i/o, and 
10~i/o. The daemon writes all output in response to daemon commands on the 
user_i/o switch. The daemon writes all errors intended for the system operator on the 
error_i/o switch. The daemon writes records of all processed daemon requests on the 
lo~i/ 0 switch. Thus, it is often useful to route lo~i/ 0 to an additional destination. 
A typical system_start_up.ec fragment would be: 

sc_command define ioc tty a.h004 
sc_command define iolog log iolog 
sc_command route prta user i/o ioc 
sc_command route prta error i/o *ioc 
sc_command route prta log_i/o ioc 
sc_command route prta log_i/o iolog 

This sends all output from the daemon to the terminal a.h004, and also sends the 
record of all processed requests to the log iolog. ("*ioc" turns on the beeper when 
errors are printed on the terminal.) 

The print_sys_log, monitor_sys_log, and summarize_sys_Iog commands (described 
later) all use the "-mc_Iog (-men" control argument to refer to message coordinator 
logs. For example: 

DATA MANAGEMENT SYSTEM LOGS 

The messages in a Data Management (OM) system log record important events 
in that Data Management system. These include: 

• Bootloads (recovery and initializations) 

• Data Management daemon activity 

• Exception conditions 

• Idle time-outs 

• Shutdowns 

13-9 AM81-o4 



There is one DM system log for each Data Management system. The most 
recent log segment of a DM system log is always 
>site>Data_Management><authorization»dm_system_log, where <authorization> is the 
AIM authorization of the Data Management system (or system_low if your site doesn't 
use AIM). There can't be more than one Data Management system running at the 
same authorization, so there can never be more than one DM system log with the 
same name. There will generally be some older log segments in the same directory as 
the most recent log segment. The crank does not move the oldest log segments to 
>udd>sa>a>history. DM system log segments can only be moved by a Data 
Management system administrator. 

The print_sys_log, monitor_sys_log, and summarize_sys_Iog commands (described 
later) all use the "-dm_system (-dms)" control argument to refer to DM system logs. 
Note that you must have access to the dm_admin~ate_ gate to manipulate a DM 
system log with one of these commands. 

Getting Information from Logs 

There are three basic commands that retrieve information from logs: print_sys_Iog. 
monitor_sys_log, and summarize_sys_log. These three commands are described below. 
In addition, there are five specialized commands that extract information from the 
syserr log: display_cpu_error, fnp_data_summary, io_error_summary, mos_edac_summary, 
and mpe_data_summary. These five commands are not described here. 

Use the print_sys_log (psI) command to print some or all of the messages 
from any log on your terminal. Here are some examples of the use of this command: 

psl -syserr -last 5 

will print the last five messages from the syserr log. 

psl -syserr -from -lday -to -2hours 

will print all the messages entered in the syserr log after one day ago and before two 
hours ago. 

psl -as -match LOGIN -from -lhour 

will print all the messages containing the string "LOGIN" entered in the answering 
service log in the last hour. 

psl -admin -match /Aword/ -last 5 

will print the last 5 messages in the admin log that beg; n with the string "word". If 
necessary, this command will continue to search until it has scanned the entire log. 

13-10 AM81-04 



Use the monitor_sys_Jog (msI) command to have your process print some or all 
new messages in one or more logs on your terminal as they are added to the log(s). 
Here are some examples of the use of this command: 

msl -as -match LOGIN 

will print all LOGIN messages on your terminal as they happen. If you are using the 
video system, you may want to give these messages their own window. 

msl -as -match LOGIN -osw iog_window 

will send the message to the window associated with the switch log_window. Note that 
you must have previously used the window_call command to define the window. 

Use the summarize_sys_Iog (ss1) command to prepare reports which sort, select, 
and count log messages. See the system-supplied master.ec for examples of the use of 
this command by the crank. 

Complete descriptions of the print_sys_Iog, monitor_sys_log, and summarize_sys_Iog 
commands, as well as the display_cpu_error, fnp_data_summary, io_error_summary, 
mos_edac_summary, and mpe_data_summary commands, are available in the Multics 
Administration, Maintenance, and Operations Commands manual, Order No. GB64. 

Storing and Discarding Old Logs 

The crank uses the move_loLsegments command to move old log segments 
from their inital directories to history directories. When the move_log_segments 
command moves a log segment to a new directory, it records the name of the 
directory in the header of the next newest log segment (in that family). You must use 
this command when you move log segments, to preserve the records of where old log 
segments live. The crank also deletes very old log segments. 

Dealing With Common Problems 

CRASHES WITHOUT ESD 

When there is a crash without ESD, the log segments can be damaged. This 
will cause answering service initialization or the define command to fail. Usually. the 
problem is that the most recent segment is damaged. You can rename or delete it and 
retry initialization. If older segments are destroyed, you may have to use the 
set_IoLhistory _dir command to correct the trail of old log segments. 

SYSERR LOG COpy FAILURES 

When an answering service log copy of the syserr log fails, you will receive 
the following messages: 

syserr_log_man_: 
syserr_log_man_: 

<description of error> 
Automatic syserr log copying disabled. 

13-11 AM81-04 



You should respond by fixing the problem. then typing the following command in the 
initializer process (using admin mode or the sac command): 

DAMAGED LOG FAMILIES 

When one or more log segments of a log family have been damaged, the log 
commands can't find old log segments in the history directory (>udd>sa>a>history). 

The first thing you should do is use the display _log_segment command to 
display the information in the header of each log segment in the log family. Start 
with the most recent log segment and continue displaying headers until you find one 
which contains an incorrect history directory. (Remember that each log segment's 
header records the directory in which the next oldest log segment is located.) 

When you find a log segment whose header contains a bad history directory, 
use the set_los-history _dir command to correct it. Type: 

set_l09_history_dir <log segment> <history dir> 

It's a good idea to continue displaying headers until you've checked all the log 
segments in the log family, in case more than one history directory is recorded 
incorrectly. 

The set_Ios-history_dir command is described in the Multics Commands and 
Active Functions manual, Order No. AG92. 

SYSERR LOG MESSAGES 

This subsection provides more detailed information about syserr log messages, 
including their format, and the meaning of those messages which contain binary data. 

Syserr Log Contents 

The following is an example of the contents of the syserr log as they are 
printed by the print_sys_Iog command (described in the Multics Administration, 
Mai ntenance, and Operations Commands manual, Order No. GB64). 

13-12 AM81-04 



1985-03-11 
13:10:01 
13:13:02 
13:13:03 
13:13:04 
13:13:05 

13: 14: 06 
14:21:07 

14:21:08 

14:30:09 
14: 30: 10' 
14:30:11 
14: 30: 12 

14:31:13 
14:32:14 

14:32:15 

Mon est 
1034548 
1034549 
1034550 
1034551 
1034552 

1034553 
1034554 

1034555 

1034556 
1034557 
1034558 
1034559 

1034560 
1034561 

1034562 

o added memory e 
o added cpu b 
4 RCP: Assigned tape 06 to Dumper.SysDaemon.z 
o RCP: Attached tape-06 for Dumper.SysDaemon.z 
3 RCP: Mount Reel 50202 without ring on tape_06 

for Dumper.SysDaemon.z 
O~RCP: Detached tape_06 from Dumper.SysDaemon.z 
o disk_control~ EDAC performed for dska_07 

. (channel A20). rec 21745, sect 442150, 
main 13262000. 

o disk control: Auto retries for dska 07 
(channel A20). rec 21666, sect 440560, 
main 11550000. 

4 RCP: Assigned tape_02 to Fred.AvgUser.m 
o RCP: Attached tape 02 for Fred.AvgUser.m 
o RCP: Note (tape_02) - 50202,den=l600 
3 RCP: Mount Reel 50202 with ring on tape_02 for 

Fred.AvgUser.m 
o RCP: Detached tape_02 from Fred.AvgUser.m 
o hardware fault: parity fault on CPU C by 

Herbie.SysMaint 
4 mos_memory_check: EDAC error on mem c store a 

I 
+--> text of messageQ 

+--> severity. 

+-> sequence number. 

+--> time message logged. 

Format of Syserr Log Messages 

Each syserr log message consists of the following components: 

sequence number 
A number that is increased by one for each message. This generally serves to 
number the messages, but sequence numbers may be missing from some groups 
of messages. 

time 

severity 

text 

The date and time when the message was logged. 

A combined action code and sorting class. The low-order decimal digit is the 
syserr action code. The high-order digits are the sorting class. Both are 
explained in more detail below. 

The text of the message. 

13-13 AM81-04 



binary data class 
(optional) A character string that identifies the structure/type of the binary 
data, if any, included in the message. It is explained in more detail below. 

binary data 
(optional) A binary data structure containing more detailed information about 
the event than that contained in the text. This information is in a 
machine-readable form. It is explained in more detail below. 

SEVERITY CODES 

A severity code is associated with each message in the syserr log. It consists of 
two parts: an action code and a sorting class. 

Action Codes 

The action code is the least significant digit of the severity code. Constants 
for the action codes are defined in syserr_constants.incl.pll. They are interpreted (at 
message creation time) according to the following table: 

o 

2 

3 

4 

5 

UNUSED 6-9 

(print message on console, log 
message) 

(print message on console, 
activate console alarm, log 
message, return to BeE) 

(print message on console, 
activate console alarm, log 
message, terminate affected 
process) 

(print message on console, 
activate console alarm, log 
message) 

(try to log message, print it on 
console if wired log is f~ll) 

(try to log message, discard it 
i f wi red 1 og f u 1 1) 

Messages with the action code SYSERR_CRASH_SYSTEM typically will not appear in 
the permanent log, since the system immediately crashes. In all other cases, an attempt 
is made to log the message. If the wired log buffer is full, the message is printed on 
the console (unless the action code is SYSERR_LOG_OR_DISCARD). 

13-14 AM81-04 



Sort i ng Classes 

The sorting class is the next (and most) significant digits of the severity code. 
The current values for sorting classes (as defined in syserr_constants.incl.pll) are: 

00 

UNUSED 10 

20 

30 

SYSERR SUCCESSFUL_ACCESS 40 

UNUSED 50-90 

(general system error or status; 
leading zero will not appear 
in pr i nted log) 

(security audit message regarding 
possible covert channel activity) 

(security audit message regarding 
denial of access to a resource) 

(security audit message regarding 
granted access to a system 
resource) 

Sorting classes 20, 30, and 40 are for security audit messages. For more information 
about security auditing, refer to the Multics System Administration Procedures 
manual, Order No. AK50. 

BINARY DATA CLASSES AND BINARY DATA 

Some syserr messages contain structured binary information in addition to the 
text of the message. The binary data is tagged with a 1 to 16 character binary data 
class. (Before MR11.0, it was tagged with a fixed binary data code.) Binary data class 
names and old binary data code constants are defined in syserr_binary_def.incl.pll. 

The log perusal command print_sys_log does not display binary data included in 
syserr messages by default. To display binary data as a dump of octal words, use the 
-octal control argument To display binary data in interpreted form, use the -interpret 
{CLASSES} control argument, where CLASSES is an optional list of those types of 
binary data to be interpreted. If CLASSES is omitted, all classes of binary data 
contained in the messages are interpreted. For a complete description of the 
print_sys_log command, see the Multics Administration, Maintenance, and Operations 
Commands manual, Order No. GB64. In addition to the print_sys_log command, there 
are also commands which operate on groups of syserr messages with the same binary 
data class. For example, the mos_edac_summary command digests information contained 
in messages with the data class "mos". 

13-15 AM81-()4 



The following paragraphs describe each of the syserr binary data classes which 
can be found in the syserr log, and provide examples of expanded binary data. In 
each example, the text of the message is included for completeness. As a convention, 
the text is preceded by "*text*" to distinguish it from that portion of the message 
which is expanded binary data. "*text*" is not printed by the system. The meaning of 
the texts of the messages is not addressed here. For a description of any particular 
text, see the message documentation supplied with the release 
(>doc> [release] >error_messages.doc) or the system module indicated in the message. 
Note that binary data of a particular class may be associated with any number of 
completely different texts. 

io status 

The system logs a syserr message with binary data of this class when an 
interrupt whose status indicates an error or an unusual condition occurs on an I/O 
device. This includes disk errors, tape errors, and console errors. The interpretation of 
the data performed by print_sys_log produces the device, channel. status, and (if 
present) detailed status . The detailed status will be suppressed if it is not useful. as 
determined by heuristics. Although the print_sys_Iog command will interpret the binary 
data for this class of message, use of the io_error_summary command is recommended 
to isolate frequently occurring problems. (For more information, see io_syserr_msg.incl.pU, 
which describes the format of the binary data. It is five words when just the basic 
information is present and eleven words when the detailed status is included. Also see 
expand_io_status_ms~.pl1, which performs the interpretation for print_sys_Iog.) 

The general format of the interpreted data produced by print_sys_log is: 

DEV ICE (chn 1 10M TAG AND CHANNEL NUMBER). MAJOR_STATUS. 
MINOR STATUS.-{DETAILED_STATUS}. 

The following are examples of syserr messages which contain binary data with 
the class io_status, including text and interpreted binary data: 

~':tex t~', i 0 i masked$ inter rupt: I/O er ror. 
tapf_06 (chnl AlB). Device Data Alert. Lateral parity alert. 

*text* ioi masked$interrupt: I/O error. 
tapf_06 (chnl AlB). MPC Data Alert. Multi-track error. 

*text* disk_control: EDAC performed for dska 07 (channel B22). 
*text* rec 21666, sect 440560, main 536000. -
dska_07 (chnl 822). Channel Ready. EDAC correction performed. 

"'text~" disk contro 1: Auto retr i es for dska 07 (channe 1 A20). 
*text* rec 22614, sect 457440, main 10440000. 
dska_07 (chnl A20). Channel Ready. Retried 1 time. 

The modules which log syserr messages which contain binary data with the class 
io_status are: disk_control. ioi_masked. and ocdcm_. 

13-16 AM81-04 



hwfault 

The system logs a syserr message with binary data of this class when a 
hardware error fault is signalled unexpectedly in ring O. The binary data includes the 
associated machine conditions. The interpretation of the data performed by print_sys_Iog 
produces an octal dump of the machine conditions and history registers. Although the 
print_sys_log command will interpret the binary data for this class of message, use of 
the display _cpu_error command is recommended, as it supplies a more useful 
interpretation. (Por more information, see syserr_fault_msg.incl.pll, which describes the 
format of the binary data. It consists of machine conditions followed by history 
registers. Also see expand_hwfault_ms~.pl1, which performs the interpretation for 
prin t_sys_Iog.) 

The general format of the interpreted data produced by print_sys_log is: 

Pointer Registers: 
SEG_NOIWORD_OFFSET(BIT_OFFSET 

[RING NO] <there are 8 of these> 
xO-x7: OCTAL_HAlFWORDS <there are 8 of these> 
a: A_REG_OCTAL_WORD q: ~REG_OCTAl_WORD e: E_REG_OCTAl_WORD 

t: TIMER_REG_IN_OCTAl ralr: RING_ALARM_REG 
Fault Register: FAUlT_REG_IN_OCTAl 
SCU Data: 
OCTAL_WORDS <there are 8 of these> 
EIS Info: 
OCTAL_WORDS <there are 8 of these> 

<The following 4 lines appear for level 68 processors> 

au History Reg Data: 
OCTAL_WORDS <there are 32 of these> 
CU History Reg Data: 
OCTAL_WORDS <there are 32 of these> 
DU History Reg Data: 
OCTAL_WORDS <there are 32 of these> 
APU History Reg Data: 
OCTAL_WORDS <there are 32 of these> 

<The following four 1 i nes appear for DPS 8 processors> 

DU/OU History Reg Data: 
OCTAL_WORDS <there are 32 of these> 
CU History Reg Data: 
OCTAL WORDS <there are 32 of these> 
APU #2 History Reg Data: 
OCTAL WORDS <there are 32 of these> 
APU #1 History Reg Data: 
OCTAL_WORDS <there are 32 of these> 

13-17 AM81-04 



The following is an example of a syserr message which contains binary data 
with the class hwfault. including text and interpreted binary data: 

*text* verify_lock: null_pointer condition by EJUser.Mu1tics.a 
Pointer Registers: 

42 017360 (0) [oJ 230 003540 (0) [oJ 
102 000021 (0) [OJ 230 002500 (0) [OJ 

16 013372 (0) [OJ 77777 000001 (0) [4J 
230 000220 (0) [OJ 325 002004 (0) [0] 

xO-x7: 011300 003004 000002 000731 002520 000000 000000 001040 
a: 134417065731 q: 000000000001 e: 000 t: 000043155 ra1r: 1 
Fault Register: 000000000000 
SCU Data: 
000127170041 000004000051 477777776020 000000000000 
076773500200 000001000400 500000100400 000100100400 
EIS Info: 
000400000000 000400000000 000000000010 004077777770 
001074000115 000000000000 002142000105 000077777671 
DU/OU History Reg Data: 
760204177036 076764235400 760204177036 076764235000 
760204177036 076765755000 760204177036 076766236000 
760204177036 076766236000 760204177036 076767236000 
760204177036 076770236000 760204177036 076770236000 
760204177036 076771116500 760204177036 076772116500 
760204177036 076772116500 760204177036 076772116500 
760300377036 076773116500 760102377636 076773116500 
760301377436 076773116500 720301375436 076773116500 
CU History Reg Data: 
600021755100 054567660442 200011755100 052147372002 
200121236100 052147360402 600021600004 054567700442 
200021600004 000770040442 200121236100 052147340402 
600011116007 054567720442 200011116007 000000010402 
200111601004 000767770442 700021371520 054567740442 
300021371520 052150760402 200011371400 000000010402 
200111100400 000001000400 000111100400 000000000402 
400111100500 054567760442 000101100500 175100530000 
APU #2 History Reg Data: 
002006235100 000000000000 002006235100 000000000000 
002006235100 000000000000 002006235100 000000000000 
000737755100 000000000000 000736236100 000000000000 
077004600004 000000000000 000734236100 000000000000 
000001116007 000000000000 076777601004 000000000000 
001076371520 000000000000 000001371400 000000000000 
000100100400 000000000000 000000100400 000000000000 
000001100500 000000000000 000001100500 000000000000 
APU #1 History Reg Data~ 
003251000402 175077540040 003250200402 024666520000 
003250102402 175057750000 003250006442 114620060304 
002300007540 052147370040 002300007540 052147360000 
001270002076 000770040000 002300007540 052147340000 
001270002000 000000010040 001270002076 000767770040 
002300007540 052150760000 777770000200 000000014040 
001270002000 000001000040 001270002000 000000000040 
777771000400 175100534040 777771000401 175100534002 

13-18 AM81-04 



The modules which log syserr messages which contain binary data with the class 
hwfault are: hardware_fault. scavenger. system_startup_. and verify_lock. 

mos 

If your site is doing mos_memory_check polling (which is invoked by the 
poll_mos_memory command). the system logs a syserr message with binary data of this 
class when aMOS EDAC error occurs. The interpretation of the data performed by 
print_sys_log produces the chip type. the board identifier. and the location on the 
board. Although an interpretation for this class of message is supplied by print_sys_log. 
the mos_edac_summary command is recommended f or use in isolating chips which 
exhibit high error rates. (For more information. see scr.incl.pll. which describes the 
format of the binary data. It consists of the System Controller mode register. Also 
see expand_mos_msg_.pll. which performs the interpretation for print_sys_log.) 

The general format of the interpreted data produced by print_sys_log is: 

MEMORY_TYPE, NNk chip, Error: board X, chip YYY. 

The following are examples of syserr messages which contain binary data with 
the class mos. including text and interpreted binary data: 

*text* mos_memory_check: EOAC error on mem d store b. 
MOS-M128, 16k chip, Error: board A, chip 140 

*text* mos memory check: EOAC error on mem d store a. 
MOS-M128, 16k chip, Error: board H, chip 02C 

The module which logs syserr messages which contain binary data with the- "Class 
mos is mos_memory _check. 

vol damage 

The system logs a syserr message with binary data of this class when it detects 
possible damage to a physical disk storage volume. The only existing case of this is 
the "device read not complete" condition. The interpretation of the data performed by 
print_sys_log produces only the physical volume name. (For more information. see the 
first two words of segdamage_msg.incl.pll. which describe the format of the binary 
data. They hold the physical and logical volume unique IDs. Also see 
expand_voldamage_ms~.pl1. which performs the interpretation for print_sys_logJ 

The general format of the interpreted data produced by print_sys_log is: 

Volume: PHYSICAL_VOLUME_NAME 

13-19 AM81-()4 



The following is an example of a syserr message which contains binary data 
with the class voldamage~ including text and interpreted binary data: 

*text* page_fault: device read not complete dskg_42 075321 
Volume: pubOS3 

The module which logs syserr messages which contain binary data with the class 
voldamage is page_error. 

segdamage 

The system logs a syserr message with binary data of this class when it detects 
new or existing damage to a segment in the hierarchy. Damage to a segment may be 
caused by paging problems, file map checksum problems, or volume inconsistency 
problems. The binary data includes the UID path of the subject segment. The 
interpretation of the data performed by print_sys_log produces the pathname of the 
damaged segment (as derived from the UID path). (For more information, see 
segdamage_msg.incl.pll~ which describes the format of the binary data. Also see 
expand_segdamage_msg_.pll~ which performs the interpretation for print_sys_log.) 

The general format of the interpreted data produced by print_sys_log is: 

Segment: PATHNAME 

The following are examples of syserr messages which contain binary data with 
the class segdamage, including text and interpreted binary data: 

*text* evict_page: fatal parity error moving page, frame at 
15400000, SCU a Segment: >udd>Multics>EJUser>EJUser.profile. 

*text* scavenge volume: damaged switch found on for report.compout 
at 1134 Segment: >udd>SysLib>AvgUser>finance>report.compout 

The modules which log syserr messages which contain binary data with the class 
segdamage are: activate, page_error, salvage_pv, and scavenge_volume. 

mdc_del_uidpath 

The system logs a syserr message with binary data of this class when Master 
Directory Control discovers that a nonexistent directory has been deregistered. The 
binary data includes the UID pathname of the subject directory. The interpretation of 
the data performed by print_sys_log produces the pathname of the missing directory 
(not including its entryname), as derived from the urD path. (The format of the 
binary data is 16 words representing the UID path of the directory in question. There 
is no include file defining this simple array: "dcl uid_path (0:15) bit 36 aligned;". For 
more information, see expand_mdc_del_uidpath_msg_.pll, which performs the interpretation 
for prin t_sys_log.) 

13-20 AM81-04 



The general format of the interpreted data produced by print_sys_log is: 

Directory: PATH 
UID path: OCTAL_WORDS 

The following is an example of a syserr message which contains binary data 
with the class mdc_del_uidpath. including text and interpreted binary data: 

*text* mdc_repair_$validate_uidpaths: Master directory entry with 
*text* bad uidpath deleted from Pubvol_2. >udd>?? 
Directory: >udd>-UNLISTED-
UID path: 777777777777 435712736432 435734234434 000000000000 
000000000000 000000000000 000000000000 000000000000 
000000000000 000000000000 000000000000 000000000000 
000000000000 000000000000 000000000000 000000000000 

The module which logs syserr messages which contain binary data with the class 
mdc_del_uidpath is mdc_repair_. 

mmdam 

The system logs a syserr message with binary data of this class when it detects 
main memory damage and removes a main memory frame due to parity errors. The 
interpretation of the data performed by print_sys_log produces the address of the 
main memory frame and the controller in which it resides. (For more information, 
see syserr_rnmdam_msg.inc1.pll, which describes the format of the binary data. It is 
two words: the first contains the 24 bit main memory address of the page in 
question; the second contains the four character controller tag. Also see 
expand_mmdam_ms~.pll, which performs the interpretation for print_sys_log.) 

The general format of the interpreted data produced by print_sys_log is: 

Page at addr: MAIN_MEM_PAGE_ADDR, controller: SCU TAG. 

The following is an example of a syserr message which contains binary data 
with the class mmdam, including text and interpreted binary data: 

*text* page_fault: Deleting main memory at 1540000, SCU a, 
*text* due to parity errors. 
Page at addr: 15400000, controller: a. 

The modules which log syserr messages which contain binary data with the class 
mmdam are: hardware_fault and page_error. 

13-21 AM81-04 



If your site is doing MPC polling (invoked by the poll_mpe command), the 
system logs a syserr message with binary data of this class when MPC polling 
encounters an error. No interpretation of the data is provided by print_sys_Iog. 
Analysis of this class of message is performed only by mpe_data_summary. (For more 
information, see poll_mpe_data.incl.pll, which describes the format of the binary data.) 

The module which logs syserr messages which contain binary data with the class 
mpc_poll is poll_mpe. 

fnp_poll 

If your site is doing FNP polling (invoked by the poll_fnp command), the 
system logs a syserr message with binary data of this class when FNP polling 
encounters an error. No interpretation of the data is provided by print_sys_Iog. 
Analysis of this class of message is performed only by fnp_data_summary. (For more 
information, see poll_fnp_data.incl.pll, which describes the format of the binary data.) 

The module which logs syserr messages which contain binary data with the class 
fnp_poll is poll_fnp. 

The system logs a syserr message with binary data of this class during system 
initialization, to provide a record of the bootload con fig deck. The binary data simply 
contain configuration cards from the config deck BCE used to boot the system. The 
interpretation of the data performed by print_sys_Iog produces the printed representation 
of the cards in that portion of the config deck (the whole config deck may be split 
over more than one syserr message). (For more information, see confi~deck.incl.pll, 
which describes the format of the binary data. Also see expand_config_deck_ms~.pll, 
which performs the interpretation for print_sys_Iog.) 

The general format of the interpreted data produced by print_sys_Iog is: 

CONFIG_CARD_IMAGE <there are N of these, depending on the size 
of the binary> 

13-22 AM81-04 



The following are examples of syserr messages which contain binary data with 
the class confi~deck. including text and interpreted binary data: 

*text* Config deck, part 1 of 2 
note ~': ~'( ,,;': ~'( MAIN FRAM E ')'c ~': ,'e ,'c 

cpu a 7 on dps8 70. 8. 
iom a 1 iom on 
mem a 4096. on 
note 'I(,/()':),,( CONT ROLL ERS *,h':'I: 

mpe mspa 609. a 20. 2 b 20. 2 
mpe mtpa 502. a 12. 1 b 12. 1 
mpe urpa 600. a 24. 4 
note ,': ')'c ";'c ,': PERI PHER ALS / CHAN NELS ,;'e ,': ~'( ,', 

prph dska a 20. 2 451 • 8. 500. 2. 50l. 10. 0 40. 
SOL 2. 

prph fnpa a 17 . 6670. on 
prph opea a 28. 6601. 80. on 
prph prta a 24. 1600. 600. 136. 
prph prte a 35. 1600. 600. 136. 
prph tapf a 18. 2 0 2 630. 2 610. 2 o. 8. 630. 2. 

*text* Config deck, part 2 of 2 
note ,'e ,', ,'e ,'e PART ITIO NS ,'e ,'e ,', ,'e 

part dump dska 7 
note "lc ,', ,,: ,'e PARA METE RS ,'c ,'e ,'e ,'e 

parm wl im 500. vtb 66. ttyb 65536. ehwm hept freq 400. 
note ,', "le "l: ,'e TUNI NG PARA METE RS 'Ic1('Id: 

sehd 1000000 2 2 100 2 12. 
sst 1000. 500. 300. 100. 
ted 88. 400. 
note ,',,-c ,'( ,'e MISC ELLA NEOU S ,',,'c ,', -J( 

elok 5 est 96. 
dbmj 64. 700. 400. 150. 60. 25· 

The module which logs syserr messages which contain binary data with the class 
confi~deck is system_startup_. 

vtoce 

The system logs a syserr message with binary data of this class when it detects 
damage to the storage system. The binary data includes a copy of the VTOCE of a 
damaged segment or directory, which is saved for later analysis. A vtoce class message 
immediately follows a segdamage class message. The interpretation of the data 
performed by print_sys_log simply produces an octal dump of the VTOCE, broken 
into its main components. (For more information, see vtoce.inc1.pll, which describes 
the format of the binary data. It is a VTOCE image. Also see expand_vtoce_msg_.pll, 
which performs the interpretation for print_sys_log.) 

* 

13-23 AM81-()4 



The general format of the interpreted data produced by print_sys_log is: 

Seg VTOCE UID: OCTAL_WORD, original name: ENTRY_NAME 
VTOCE Header: 
OCTAL_WORDS <there are 12 of these> 
F i 1 e map: 
OCTAL_HALFWORDS <there are 256 of these> 
VTOCE Permanent info: 
OCTAL_WORDS <there are 40 of these> 

The following is an example of a syserr message which contains binary data 
with the class vtoce, including text and interpreted binary data: 

*text* scavenge_volume: Damaged vtoce 6274 (dskf_42). 
Seg VTOCE UID: 134417066243, original name: "vtoce.msgs" 
VTOCE Header: 
000000000000 134417066243 377001001000 456211060024 
456211050210 001000000000 075321777020 000000000002 
000000000000 000000000000 000000000000 000000000000 
F i 1 e map: 
075321 777020 777020 777020 777776 777776 777776 777776 
777776 777776 777776 777776 777776 777776 777776 777776 
777776 777776 777776 777776 777776 777776 777776 777776 
777777 777777 777777 777777 777777 777777 777777 777777 
777777 777777 777777 777777 777777 777777 777777 777777 
777777 777777 777777 777777 777777 777777 777777 777777 
777777 777777 777777 777777 777777 777777 777777 777777 
777777 777777 777777 777777 777777 777777 777777 777777 
777777 777777 777777 777777 777777 777777 777777 777777 
777777 777777 777777 777777 777777 777777 777777 777777 
777777 777777 777777 777777 777777 777777 777777 777777 
777777 777777 777777 777777 777777 777777 777777 777777 
777777 777777 777777 777777 777777 777777 777777 777777 
777777 777777 777777 777777 777777 777777 777777 777777 
777777 777777 777777 777777 777777 777777 777777 777777 
777777 777777 777777 777777 777777 777777 777777 777777 
777777 777777 777777 777777 777777 777777 777777 777777 
777777 777777 777777 777777 777777 777777 777777 777777 
777777 777777 777777 777777 777777 777777 777777 777777 
777777 777777 777777 777777 777777 777777 777777 777777 
777777 777777 777777 777777 777777 777777 777777 777777 
777777 777777 777777 777777 777777 777777 777777 777777 
777777 777777 777777 777777 777777 777777 777777 777777 
777777 777777 777777 777777 777777 777777 777777 777777 
777777 777777 777777 777777 777777 777777 777777 777777 
111111 111111 111111 111111 111111 111111 111111 111111 

777777 777777 777777 777777 777777 777777 777777 777777 
777777 777777 777777 777777 777777 777777 777777 777777 
777777 777777 777777 777777 777777 777777 777777 777777 
777777 777777 777777 777777 777777 777777 777777 777777 
777777 777777 777777 777777 777777 777777 777777 777777 
777777 777777 777777 777777 777777 777777 777777 777777 
777777 777777 777777 777777 777777 777777 777777 777777 

13-24 AM81-04 



VTOCE Permanent info: 
000000000000 000000000000 000000000000 000000000000 
000000000000 000000000000 000000000000 456211050210 
166055000001 000000000000 000000000000 000000000000 
777777777777 124175365342 124176054376 127506006747 
133346065051 000000000000 000000000000 000000000000 
000000000000 000000000000 000000000000 000000000000 
166164157143 145056155163 147163040040 040040040040 
040040040040 040040040040 040040040040 040040040040 
456211026126 516404202602 003775002350 000000000000 
000000000000 000000000000 000000000000 000000000000 

The module which logs syserr messages which contain binary data with the class 
vtoce is scavenge_volume. 

access audit 

The system logs a syserr message with binary data of this class when security 
auditing is done in rings 0 and 1. (Note that other messages using this binary format 
are placed in the answering service log.) The interpretation of the data performed by 
print_sys_log produces: 

1. Information about the audited process ("Subject") and its security related 
attributes ("ring", "Auth", etc.). 

2. Information about the object being accessed (File_System_Object, 
File_System_Attribute, Rep_Object, Admin_Object, Special_Object, or 
Other_Object). The details for each of these objects will differ. 

These messages are typically important only to the system security administrator. They 
are described in detail in the Mu/tics System Administration Procedures manual, 
Order No. AK50. (For more information, see access_audit_bin_header.incl.pll, which 
describes the format of the first part of the binary data (inf ormation about the 
operation and process). and access_audit_ssobj_info.incl.pll, access_audit_rcp_info.incl.pll, 
and access_audit_pnt_info.inc1.pll, which describe the second part of the binary data 
(detailed information about the object). Also see expand_access_audit_ms~.pll, which 
performs the interpretation for print_sys_log.) 

The general format of the interpreted data produced by print_sys_log which is 
common to all of these messages is: 

Subject: GROUP_IO (ring N), PIO=OCTAL_WORO, 
Auth: L:NNNNNN, Min: L:NNNNNN, Max: L:NNNNNN 
OBJECT TYPE, operation type: OPERATION TYPE 
{,operation detail: OCTALo} -

13-25 AM81-04 



The general format of the interpreted data for file system objects is: 

Object: {branch I link} OCTAL_UID in DIR_PATH, 
dtem is DATE 
Raw mode: MODE Ring brackets: N,N,N Class: L:NNNNNN. 
{(Ex mode: MODE Ex ring brackets: N,N,N).} 
Switches: ENTRY_SWITCH_VALUES. 

The general format of the interpreted data for Rep objects is: 

Type: RCP_OBJECT_TYPE, Name: NAME, Owner: USER_ID, Access 
class: L:NNNNNN-L:NNNNNN, Raw mode = MODE, Ring brackets = N,N. 
Attributes: ATTRIBUTES_STR 
Flags: REGISTRY_ENTRY_SWITCH_VALUES 

The general format of the interpreted data for PNT entries is: 

User id = GROUP_ID, Operations = OPERATION_STR 
{, Changed password} {, Changed network password} 
[Old I New] PNT info: 
Alias = STR, Authorization range = L:NNNNNN-L:NNNNNN, 
Audit flags = AUDIT_FLAGS_STR, Flags = PNT_FLAGS_STR 
{, Password time lock = DATE_TIME_STR} 

<the presence of the second occurrence depends on the operation> 

Old PNT info: 
Alias = STR, Authorization range = L:NNNNNN-L:NNNNNN, 
Audit flags = AUDIT_FLAGS_STR, Flags = PNT_FLAGS_STR 
{, Password timelock = DATE_TIME_STR} 

The following are exam pIes of syserr messages which contain binary data with 
the class access_audit. including text and interpreted binary data: 

*text* Audit (dc find): GRANTED modification of fs obj access 
*text* for AvgUser.SysLib.a (0:000000) Level=O to segment 
*text* >process dir dir> BZBBcBCbBBBBBB> BBBJPdGfcpgCFk.ioi 

(0:000000). - -
Subject: AvgUser.SysLib.a (ring 0), PID=007400104003, 
Auth: 0:000000, Min: 0:000000, Max: 0:000000 
File_System_Attribute, operation type: Modify_Access, 
operation detail: 50 
Object: branch 134417067151 in >process_dir_dir>-NO-ACCESS-, 
DTEM is 04/02/85 1620.1 est Tue 
Raw mode: rw Ring brackets: 1:1,1 Class: 0:000000. 
Switches: Adirsw,per_process,Asafety,Amultiple_class,Aaudit, 
Asecurity_oos,Aentrypt,Amaster_dir. 

13-26 AM81-04 



*text* Audit (mseg_check_access_): GRANTED acceptance of a wakeup 
*text* for EJUser.Multics.a (0:000000) Level=4 to segment 
*text* >udd>Multics>EJUser>EJUser.mbx (7:777777). 
Subject: EJUser.Multics.a (ring 4), PID=006300104004, 
Auth: 0:000000, Min: 0:000000, Max: 7:777777 
Special_Object, operation type: Modify_Access 
Object: branch 130355157266 in >user_dir_dir>Multics>EJUser, 
DTEM is 11/30/84 1556.2 est Fri 
Raw mode: rw Ring brackets: 1,1,1 Class: 7:777777. 
(Ex mode: rew Ex Ring brackets: 0,0,0). 
Switches: Adirsw,Aper_process,Asafety,multiple_class,Aaudit, 
Asecurity_oos,Aentrypt,Amaster_dir. 

*text* Audit (rcp access kernel): GRANTED assign device for 
*text* writing for AvgUs~r.SysLTb.a (0:000000) Level=4 to 
*text* tape_drive tapf_15 (0:000000-7:777777) <raw_mode=RW 
*text* rcp ring brackets=5,5>. 
Subject: AvgUser.SysLib.a (ring 4), PID=007400104003, 
Auth: 0:000000, Min: 0:000000, Max: 0:000000 
RCP_Object, operation type: Modify 
Type: tape_drive, Name: tapf_15, Owner: system, Access 
class: 0:000000-7:777777, Raw mode = RW, Ring brackets = 5,5. 
Attributes: track=9,model=630,den=1600,speed=125 
Flags: device,Avolume,Ausage_locked,Arelease_locked, 
Aawaiting_clear,has_acs_path 

*text* Audit (rcp_access_kernel_): GRANTED status of rcp object 
*text* for AvgUser.SysLib.a (0:000000) Level=l to tape vol m-1s 
*text* (0:000000-0:000000) <raw mode=RW rcp ring brack~ts=4,4>. 
Subject: AvgUser.SysLib.a (ring-l), PID=007400104003, 
Auth: 0:000000, Min: 0:000000, Max: 0:000000 
RCP_Object, operation type: Read 
Type: tape_vol, Name: m-ls, Owner: system, Access 
class: 0:000000-0:000000, Raw mode = RW, Ring brackets = 4,4. 
Attributes: track=9,den=1600,length=2400 
Flags: Adevice,volume,Ausage_locked,Arelease_locked, 
Aawaiting_clear,has_acs_path 

The modules which log syserr messages which contain binary data with the class 
audit_access are: access_audit_ and page_error. 

ibm3270 mde 

The system logs a syserr message with binary data of this class when the 
IBM3270 multiplexer detects a "queue write" operation being attempted on a channel 
for which a write is already queued. The interpretation of the data performed by 
print_sys_log produces the state of the device on which the error occurred. (For more 
information, see ibm3270_mpx_data.incl.pll. which describes the format of the binary 
data. Also see expand_ibm3270_mde_ms~.pll, which performs the interpretation for 
prin t_sys_Iog.) 

13-27 AM81-D4 



The general format of the interpreted data produced by print_sys_log is: 

Dev i ce i ndex=N, name=IISTR II , addr=IISTRII, 
screen size=N, line size=N, position=N, 
next_write_chan=N, next_poll_chan=N, next_control chan=N, 
Flags=MDE_FLAGS_STR. 

The following is an example of a syserr message which contains binary data 
with the class ibm3270_mde. including text and interpreted binary data: 

*text* ibm3270_mpx: Attempt to queue write while write queued 
a.h20S.d03 

Devi ce i ndex=3, name=lId03 11
, addr="x", 

screen size=480, line size=80, position=3, 
next_write_chan=4S, next_poll_chan=46, next_control_chan=47, 
Flags=listen,Adialed,Aprinter,hndlquit,Awaiting_for_ready, 
Aerase_req,Asound_alarm,Acontrol_queued,Aend_of_page, 
Akeyboard_restore,Arawo,Arawi,raw3270,raw3270_in_effect, 
write_queued. 

The module which logs syserr messages which contain binary data with the class 
ibm3270_mde is ibm3270_mpx. 

13-28 AM81-04 



SECTION 14 

METERING AND TUNING 

This section describes the techniques and tools used to measure many of the 
Multics supervisor functions and to improve system response by controlling priorities 
and other system functions. 

The Multics system is equipped with facilities for collection of data about 
system operations (metering) and provides adjustable parameters to control priorities 
and other system functions (tuning). This section explains the Multics data collection 
capabilities and discusses corrective actions to be applied to achieve desired system 
perf ormance. 

Note: detailed information about operating, metering. and tuning the Multics 
disk DIM is provided in Appendix J. 

The various metering tools provide information on how the Multics system 
works. As diagnostic aids, they can show how the users are actually using the system, 
what particular actions are being performed most frequently, and whether or not and 
in what area of the system bottlenecks exist. Specific tools determine reasons for 
degradation of system performance. This information can then be used to tune the 
system for maximum performance. 

Metering data is first accumulated by the supervisor code. This code: 

• Records the number of times an event occurs or a particular piece of code is 
executed 

• Records the time required to perform a task 

• Stores the data in metering cells 

The metering commands can then extract this data by r~ding and storing the 
current values of relevant metering cells. Finally, the metering commands report this 
data by: 

• Comparing current metering cell values with previously read values 

• Compiling the desired statistics 

• Arranging the data in a useful format (report or diagram) and displaying it 

14-1 AM81-04 



The information reported by the metering commands determines important 
resource usage and can be used to diagnose specific areas that can be causing 
performance degradation. The system can then be tuned to change its operating 
characteristics (including parameters, configuration, and/or workload) based on the data 
and insights gained from the system's meters to best suit the operating environment 
and/or site policies. Specifically, tuning consists of adjusting the system's hardware. 
hardware configuration, static table sizes, dynamic tuning parameters, and workload. 

When interpreting meters, it is necessary to know the current configuration and 
tuning parameter values. and to understand their implications. When changing 
configuration and tuning parameter values, it is necessary to know the current values 
of the relevant meters, and to understand the expected effect on the meters of the 
changes being made. The guidelines discussed under "Suggested Values and Guidelines" 
later in this section apply to both metering and tuning. Explanations of underlying 
system mechanisms, which must be understood in order to correctly interpret metering 
results and adjust tuning parameters, occur throughout this section. 

The subject of configuring, tuning, and metering a Multics system is very 
complex, and requires a clear understanding of various aspects of the system's 
operation. It is very easy to misinterpret meters and mis-tune a system if one has 
only a superficial understanding of this subject. Thorough, repeated study of this 
section is advised. 

Complete descriptions of all of the metering commands discussed in this section 
are available in the Multics Administration, Maintenance, and Operations Commands 
manual. Order No. GB64. That manual also includes some guidelines on appropriate 
meter values. in the context of the command descriptions. 

The meterin~gate_, meterin~util_, sp~ring_O_info_, spg_util_. and 
system_performance~raph$line subroutines, which may be useful to writers of new 
metering commands, are described in the Multics Subroutines and I/O Modules 
manual, Order No. AG93. 

METERING 

Metering allows you to monitor the usage of system resources. Metering tools 
determine whether or not the system is fully utilized. whether the usage is useful 
work or overhead, and how the availability of resources is reflected to users as 
response time. This information can then be used to tune the system, as well as to 
plan for future needs. 

This subsection describes the detection and diagnostic techniques of metering, 
explains the metering databases and the activities they keep track of, briefly describes 
the categories and functions of the metering commands, and discusses metering design. 

14-2 AM81-04 



Overview of Metering 

Metering serves two purposes. It allows you to detect the existence of actual 
or potential performance problems, and it allows you to diag!1ose the causes of 
performance problems. 

DETECTING PERFORlVlANCE PROBLEMS 

Two useful measures of system performance are response time and throughput. 
It is desirable to minimize response time and maximize throughput. Unfortunately 
those objectives are incompatible. A simple and intuitively obvious result of queueing 
theory is that if a system is loaded to its maximum capacity (maximizing throughput), 
the people that it serves will experience very long waiting times. To avoid this, it is 
necessary to provide excess capacity to serve peak loads, and allow the system to go 
idle at times of light load. 

The decision as to how much excess capacity to provide must be made by each 
Multics site, based on the cost of excess capacity versus the cost of having people 
wait to be served. This decision can be expressed in terms of response time and 
throughput, as follows: maximize throughput, subject to the constraint that response 
times will be at least as good as a specified set of values, for at least a given percent 
of the time. 

Metering commands can be used to determine how well these objectives are 
being met. Failure to meet the objectives can be considered a performance problem. 
The response_meters command can be used to determine if response time objectives 
are being met. The concepts involved in measuring response time are explained in the 
description of that command. in the Multics Administration, Maintenance and 
Operations Commands manual, Order No. GB64. The total_time_meters (ttm) 
command provides the best measure of throughput. The concepts involved in time 
metering are explained under "CPU Time Metering." later in this section. Additional 
information on time metering is given in the description of the ttm command, and 
throughout this section. 

Even when response time and throughput are within acceptable limits, it is 
possible that parts of the system are at or near saturation, and that adjustments could 
be made that would improve performance beyond that which is minimally acceptable. 
To detect situations like this, it is a good idea to periodically (daily or weekly) run a 
complete set of metering commands, and learn to recognize output values that are 
typical for your site. Sudden changes in values, or values that are significantly 
different from the guidelines discussed later in this section, are cause for further 
investigation. 

These periodic measurements should always include separately recorded values 
for a time interval (of half an hour to several hours) at a time when the system is 
heavily loaded. The system's behavior under heavy load is quite different from that 
under light load, and proper configuration and tuning are obviously more critical 
under heavy load. 

14-3 AM81-04 



DIAGNOSING PERFORMANCE PROBLEMS 

The system resources whose saturation can degrade system performance fall into 
three categories: 

1. CPUs 

2. Paging hardware 
- memory 
- disk I/O capacity (channels and disk arms) 

3. Shared system tables (such as the AST, described below) 

The objective of system configuration and tuning is to achieve a good balance 
among these resources, with enough excess capacity in each category to handle peak 
loads. If the usage of anyone of these resources reaches saturation, system 
performance will be degraded, and any excess capacity in the other categories will go 
idle and be wasted. This subject is discussed further under "Tuning." 

The metering commands that give the best picture of utilization of scarce 
system resources are the following: 

- CPUs 
total_time_meters. traffic_control_meters. traffic_control_queue 

- Disk I/O 
disk_meters 

- Memory and system tables 
file_system_meters, post_purge_meters 

The system_perf ormance_graph command produces a graphical summary of 
overall system perf ormance and resource usage. Other metering commands are useful 
in a detailed problem analysis, once the general area of difficulty has been 
determined. 

There are a number of system options that are intended to be used only in 
debugging and problem analysis, or in unusual operational situations. Their use during 
normal operation can be the cause of otherwise unexplainable performance problems. 
These options are enabled by various means, including hardware switches, the config 
deck, and tuning parameters. Thus, the site's periodic performance measurements 
should include the print_con figuration_deck and print_tuning_parameters commands, and 
a visual inspection of hardware switch settings. The normal values and settings for the 
site should be known and documented, and any departure from the normal should be 
investigated. 

14-4 AM81-{)4 



Configuring and tuning a Multics system is a complex operation. It requires a 
good understanding of the system's underlying mechanisms. and a clear idea of what 
you expect to accomplish by each change that you make. Changing configuration and 
tuning parameters based on superficial knowledge or trial and error is always a 
mistake. If you do not know what you are doing. you will probably make things 
worse. 

Metering Databases 

This subsection contains a description of several of the· major databases 
associated with metering. These databases include: 

• The system segment table (sst) database 

• The traffic control data (tc_data) database 

• The configuration deck (confi~deck) database 

• The disk segment (disk_seg) database 

SYSTEM SEGMENT TABLE (SST) DATABASE 

The SST is a wired database (i.e.. it cannot be removed from main memory). 
It contains the data used to manage the contents of main memory and the AST that 
describes active segments. The subsystems of the supervisor known as page control and 
segment control also maintain data in the SST. 

The SST consists of two parts: 

• SST header 

• Active segment table (AST) 

The SST header contains meters, counters, list pointers. and pointers to other 
databases in the SST. The AST consists of entries. known as AST entries or ASTEs. 
each of which contains per-segment data and a page table. A page table is an array 
of page table words (PTWs). Every page table in the system maintained by page 
control is part of an .AST entry; thus, the AST is that place where all page tables in 
a system reside. 

The SST is closely associated with another wired database. the core map. The 
core map is an array of table entries (CMEs) describing each frame of main memory 
in the system and its contents and state. 

The core map entries. AST entries. and PTWs contain numerous implicit and 
explicit threads and pointers linking data about a given page of a given segment, 
defining the structure of the storage system hierarchy among AST entries. and 
maintaining recency-of-use information for the algorithms that multiplex main memory 
and the AST. 

14-5 AM81-04 



In any given Multics configuration, a fixed number of frames of main memory 
are available: this is the amount of main memory configured. The task of page 
control is to satisfy the demand for main memory by multi plexi ng; i.e., controlling 
the sharing in an orderly fashion, of the main memory frames in response to page 
faults. A page fault is the hardware condition that occurs when an attempt is made to 
use a page that is not in main memory. The meters reported by the file_system_meters 
command when the -page control argument is specified (see the command description 
in the Multics Administration, Maintenance, and Operations Commands manual, 
Order No. GB64) indicate the activity of, and load on, page control. These meters 
(and others) can be analyzed to determine if main memory is being used effectively, 
if a paging bottleneck exists, or to interpret other visible manifestations of paging 
behavior. 

During any given bootload of Multics, a fixed number of AST entries are 
available. This number is determined at bootload time by the sst card in the 
configuration deck. This number is thus the upper limit on the number of segments 
that can have page tables in main memory at any given time. Since all non-supervisor 
segments must have a page table in main memory in order to be used, the available 
page tables are multiplexed by segment control in response to segment faults. A 
segment fault is the hardware condition that occurs when an attempt is made to use a 
segment that does not have a page table in main memory. 

There are four sizes of AST entries, capable of describing segments having up 
to 4. 16, 64, or 256 pages. AST entries of a given size are grouped into a pool. The 
number of entries in each pool is specified at bootload time by the sst configuration 
card (see Section 7 for more information on configuration cards). The meters reported 
by the file_system_meters command indicate segment fault activity in the four AST 
pools. These meters (and others) can be analyzed to determine if the AST is being 
utilized effectively, if an AST bottleneck exists, or to interpret any other performance 
manifestations of segment fault activity. An AST is being utilized effectively if it is 
large enough to prevent excessive segment fault activity, but not so large as to 
needlessly use memory that could be available for paging. See the Multics Storage 
System manual. Order No. AN61, for more information on the format of these 
databases and the meaning and interpretation of all the data contained in them. 

A small side issue in tuning an AST is to specify the number of ASTEs for 
the pools to waste as little space as possible in the last page of the AST. This is 
generally done by choosing the desired pool sizes and then adding enough 4K ASTEs 
to fill up the last page. Table 14-1 shows the formula for computing the total size of 
the AST. See the segment sst_seg.cds for complete details on the layout and content 
of sst_seg. 

14-6 AM81-04 



offset 
(octa 1) 

SYSTEM SEGMENT TABLE (SST) 
Hardcore, Wired, Unpaged 

length 
(dec ima 1) 

o --> -:--_____________ --.-

1000 

1000 + --> -
20 -;', A 1 

1000 + --> -
20 ole A 1 + 
34 -;'c A2 

1000 + --> -
20 )'c A 1 + 
34 -;': A2 + 
114 'Ie A3 

AST size 

HEADER 
[meter i ng ce 11 sJ 

sst.incl.p11 

ACTIVE SEGMENT TABLE (AST) 
[AST entries (ASTEs) 

aste. inc1.pll 
and Page Tables (PTs)] 

4K POOL 

16K POOL 

64K POOL 

256K POOL 

is specified in configuration 

sst Al A2 A3 A4 

A1 = # ASTEs in 4K pool 
A2 = # ASTEs in 16K pool 
A3 = # ASTEs in 64K pool 
A4 = # ASTEs in 256K pool 

deck: 

Table 14-1. Computing Size of AST 

14-7 

512 

A1 * 16 + A2 * 28 + 
A3 * 76 + A4 * 268 
(tota 1 AST size) 

Al oJe 16 

A2 'Ie 28 

A3 -J: 76 

A4 "le 268 

AM81-04 



TRAFFIC CONTROL DATA fTC_DATA) DATABASE 

The tc_data segment is the wired database of the Multics traffic controller. 
The Multics traffic controller is responsible for managing the assignment of physical 
processors to Multics processes. and all issues relating to the relative priorities of 
processes. The functions assumed by the traffic controller are often known as 
multiprogramming. multiprocessing. scheduling, dispatching. and processor management. 

Four databases reside in tc_data: 

• Active process table (APT) 

• Work class table (WCT) 

• Interprocess transmission table (ITT) 

The header of tc_data contains static meters. counters. list heads, and other 
information used by the traffic controller. Much of this data can be displayed via the 
traffic_control_meters command. described in the Multics Administration, Maintenance 
and Operations Commands manual. Order No. GB64. 

By far the most important component of tc_data is the APT. The APT consists 
of APT entries (APTEs). One APTE is required for each process in the system. Thus. 
the number of APTEs is the true maximum number of processes that can exist at any 
time. The number of APTEs is fixed for the duration of the Multics bootload and is 
specified at bootload time by the tcd configuration card. Some APTEs. e.g., those of 
the initializer and the syserr logger daemon. exist for the duration of the bootload; 
most, however, are used and freed in response to login, logout. and new_proc 
commands. The APT entry of a process contains all the information required by the 
supervisor when that process is not running. It is used in conjunction with other 
databases when the process is running. Typical of such information is the process 
identifier of the process, the CPU time and memory usage charged to that process, 
the descriptor segment base register (DSBR) value to be loaded to physically switch 
into that process, etc. The APT entry also contains scheduling parameters associated 
with the process, including dynamically computed statistics accumulated during recent 
running of that process. This information is used by the traffic controller to assign 
priorities and processor resources to the process. 

For each processor configured on the system there is a special process known 
as the id Ie process of that processor. The idle process of a processor is a 
full-fledged process with an APT entry. Idle processes are run when no other work, 
i.e., ready process, can be found for a processor to run, or the traffic controller 
determines that no more processes should be granted eligibility, based on main memory 
or administrative sharing constraints. Time spent running idle processes is known as 
idle time. The total_time_meters command displays the accumulated amounts of the 
various types of idle time (see the command description in the Multics Administration, 
Mai ntenance and Operations Commands manual, Order No. GB64, and the discussion 
of CPU time metering at the end of this subsection). The idle processes are always at 
the end of the eligible queue. 

14-8 AM81-04 



The work class table (WCT) consists of WCT entries (WCTEs) defining the 
work classes known to the system. A WCT entry contains the parameters of the work 
class, recent statistics accumulated during running of processes in the work class, and 
the head of the queue of ready, non-eligible processes in the work class. Work class 
parameters and statistics can be displayed via the work_class_meters command, 
described in the Multics Administration Maintenance and Operations Commands 
manual, Order No. GB64. The status of the eligible queue and work class queues can 
be displayed via the traffic_control_queue command, also described in that manual. 

The interprocess transmission table (ITT) consists of all interprocess messages 
associated with wakeups. There are two kinds of wakeups corresponding to the "fast" 
and "regular" event channels (see the ipc_ subroutine described in the Multics 
Subroutines and I/O Modules manual, Order No. AG93). Wakeups for "fast" event 
channels do not involve transmission of data between processes; rather, a bit is turned 
on in the APT entry of the target process, and the execution state of that process 
goes from blocked to ready. Wakeups for "regular" event channels involve copying an 
eight-word message from the sending process to the target process. This message 
includes both the sending and target process identifiers, the target event channel 
identifier, the validation level of the sender, and an arbitrary two-word datum 
supplied by the sender for receipt by the target process. This eight-word message is 
stored in the ITT between the time that the sending process calls the supervisor to 
send a wakeup, and the time that the target process, having been woken up, calls the 
supervisor to retrieve it. A list of these ITT messages queued to a given target process 
is maintained for each process; the head of this list is in the process APT entry. 

Only a fixed number of ITT entries are available. This number is specified at 
bootload time by the tcd configuration card. The supervisor checks and returns an 
error indication to a caller if a call to wakeup might overflow the ITT. T\Vhen a user 
process causes an ITT overflow, an error message is printed on the bootload console 
only if the previous ITT overflow was not caused by the same user process. Any 
attempted IPC wakeups which result in an ITT overflow may cripple the system, since 
user terminal operations, daemon operations, and the message coordinator depend on 
wakeups. 

The tuning of tc_data consists of choosing the sizes of the APT and ITT so 
that each is as large as needed, but not so large as to needlessly use memory that 
could be available for paging. For the APT, the choice of the number of APTEs is 
simple, since it is simply a reflection of the maximum number of users. For the ITT, 
the choice is more difficult, since there may be spurts of usage. A general rule of 
thumb is to have at least twice as many entries in the ITT as in the APT. As with 
the AST, you should try not to waste room in the last page of tc_data. This can be 
accomplished by adding enough ITT entries to fill up the last page. Table 14-2 shows 
how to figure the length of tc_data. See the segment tc_data.cds for complete details 
on the layout and content of tc_data. 

14-9 AM81-04 



Table 14-2. Figuring Length of tc_data 

TRAFFIC CONTROL DATA (TC_DATA) 
Hardcore, Wired, Unpaged 

offset 
(octa 1) 

o --> 

1110 --> 

3000 --> 

3000 + --> 
NAPTES )'c 100 

~---------------------------------------~ 

HEADER 
[metering cellsJ 

tcm.incl.pl1 

WORK CLASS TABLE (WCT) 
[Work Classes 0-16J 

ACT I VE PROCESS TABLE (APT) 
[APT entr i es (APTEs) J 

apte.incl.pl1 

INTERPROCESS TRANSMISSION TABLE 
( ITT) 

length 
(dec ima 1) 

584 

952 (17 -.'c 56) 

NAPTES -.'c 64 

N ITT 1c 8 

TC_DATA size is specified in configuration deck: 

Teo NAPTES NITT 

NAPTES = Number of APTEs in APT 
NITT = Number of entries in ITT 

DISK SEGMENT {DISK_SEG} DATABASE 

The disk_seg segment is a wired, unpaged database used by the disk control 
subsystem to access the various disk subsystems of Multics. It contains a 106-word 
header defining the number of subsystems (among other things), the queues for holding 
requests for the subsystem, and information for up to 32 disk subsystems. The 
per-subsystem information includes the various metering cells used by the disk meter 
commands, the number of logical channels, the number of actual devices, and a 
per-subsystem lock word. Tables 14-3 and 14-4 show how to figure the length of 
disk_seg. 

14-10 AM81-04 



offset 
(octa 1) 

o --> 

Table 14-3. Figuring Length of disk_seg 

DISK SEGMENT (DISK_SEG) 
Hardcore, Wired, Unpaged 

~--------------------------------~ 

HEADER 
[subsystem offsets] 

dskdc1 • i nc1 .pl1 

152 --> 

REQUEST QUEUE ENTRIES 

152 + --> 
6 ole DSKQ 

SUBSYSTEM DSKA DATA 
[dev ice da ta] 

210 + --> 
6 'Ie DSKQ + 
120 ~'( HDA SUBSYSTEM DSKB DATA 

[device data] 

246 + --> 
6 ole DSKQ + · 120 ,'e HDA + · 1"20 ,', HDB · 

length 
(dec i rna 1) 

106 

6 ,,;'c DSKQ 

30 + 80 ,', HDA 

30 + 80 ,'( HDB 

• DSKQ refers to dskq parameter on parm conf i g card, wh i ch 
specifies maximum number of disk queue entries that can ever 
be pending 

• HDA/HDB refer to highest device number 

14-11 AM81-04 



offset 
(octa 1) 

o 

36 --> 

36 + --> 
120 ,'c HD 

36 + --> 
120 )'c HD + 
36 )'( NCHAN 

Table 14-4. Figuring Length of disk_seg 

DISK SEGMENT (DISK SEG) 
[Per-Subsystem Data] 

DISK TABLE 
[metering cells] 

--------------------------------------
DEVICE TABLE 

------------------------------------
CHANNEL TABLE 

----------------------------------

• HD refers to highest device number 

length 
(dec imal) 

30 

80 ,'c HD 

30 ,'c NCHAN 

• NCHAN refers to number of logical channels in subsystem (sum 
of those logical channels specified on prph and chnl config 
cards) 

CONFIGURATION DECK (CONFIG_DECK) DATABASE 

The confi~deck segment is a wired segment that describes the current 
configuration. As dynamic reconfiguration occurs (i.e., hardware modules are deconfigured 
and reconfigured), the state tags for these modules in the confi~deck segment will 
change. 

Each entry in the confi~deck consists of 16 machine words (36 bits per 
word). The first word (4 characters) contains the ASCII name of the card. The 
following 14 words contain various fields, one word per field. The last word of each 
entry contains 14 2-bit type fields corresponding to the 14 field specifiers. These type 
fields specify the storage type of each field (Le., ASCII, octal number, decimal 
number). The remaining 8 bits define the number of valid fields for this card. 

The config_deck may be displayed using the print_configuration_deck command, 
described in the Multics Administration, Maintenance and Operations Commands 
manual, Order No. GB64. 

14-12 AM81-04 



While dynamic reconfiguration of certain hardware modules is possible in 
Multics, the addition of modules not specified in the confi~deck at bootload time is 
not possible. Thus, setting up the configuration before starting the system requires 
special attention. 

In addition to specifying the hardware configuration, the confi~deck also 
contains cards for setting up various tables (e.g., SST, tc_data, disk_seg, vtoc_buffer_seg, 
tty _buf, etc.). The sizes of these tables are static once the system is booted, so 
particular care must be taken to provide optimal values for these entries. 

Metering Commands 

The groups of commands listed below divide the various metering commands 
according to the metering database segments from which they extract information. The 
first group is associated with the SST. the second with the tc_data segment. the third 
with the disk_seg segment, and the last with the confi~deck and all other hardcore 
databases. A brief description of the function of each command is also shown. 

Commands that collect information from the sst_seg segment concerning the 
management of memory. page control, and segment control: 

fi Ie system meters 
- performance information and usage of the page control and segment control 

subsystems. 

flush 
information on page control and system timing. 

post purge meters 
- information collected at post purge time, if post purge is enabled. 

Metering commands that collect information from the tc_data segment concerning 
the management of processes and processors: 

alarm clock meters 
- information about use of simulated timers. 

link meters 
per-process information regarding linker use. 

response meters 
information regarding estimated response time (work classes, scheduling). 

system link meters 
statistics regarding system-wide linker use. 

total time meters 
CPU time percentages and average CPU time spent doing various tasks. 

traffic control meters 
Information regarding processes (scheduling). 

14-13 AM81-Q4 



traffic control queue 
-current state of the eligible queue and work class queues. 

work class meters 
- work class parameters and statistics. 

Metering commands that collect information from the disk_seg segment 
concerning the various disk subsystems: 

disk meters 
- statistics for each disk subsystem (and each device on that subsystem) and 

information on I/O channel saturation. 

disk_queue 
subsystem channel activity and pending I/O requests for each disk subsystem. 

Metering commands that collect information from the confi~deck and all 
other hardcore segments: 

alarm clock meters 
- information on the behavior of the Multics simulated alarm clock. 

cache meters 
- information on central processor, hardware recoverable, cache memory errors. 

command usage count 
information on the number of times commands are used and the User_id for 
each invocation. 

fim meters 
- information on fault processing. 

hc pf meters 
- - system-wide statistics regarding page faults taken on hardcore segments. 

instr speed 
- information on CPU speed. 

interrupt meters 
information on input/output multiplexer (lOM) channel interrupts. 

list vols 
information on currently mounted physical or logical volumes. 

meter gate 
- information for entries in specified hardcore gates. 

meter rcp 
- information on devices controlled by the resource control package (RCP). 

meter_signal 
periormance measurements oi the signalling mechanism. 

14-14 AM81-04 



print configuration deck 
- displays the current system configuration deck. 

pr i nt _ tuni ng yarameters 
displays the current values of the settable tuning parameters. 

system performance graph 
graphical representation of system-wide statistics. 

vtoc buffer meters 
- information regarding the utilization of volume table of contents (VTOC) 

buffers. 

Two metering commands not mentioned above are the channel_comm_meters 
and system_comm_meters commands, which give statistics on the behavior of the 
Multics Communication System and the various communications channels. These 
commands are described in the Multics Administrator's Manual--Communications, 
Order No. CC75. 

Metering Design 

This discussion gives a few recommendations for writing metering commands 
and subroutines. Also described here are some of the conventions used in the standard 
metering commands. 

In general, a metering command must serve three functions: extracting the 
data, arranging it in a useful format, and printing it out. Each of these functions 
must be considered in writing metering commands. 

EXTRACTING METERING INFORMATION 

The metering_util_ subroutine, described in the Multics Subroutines and 110 
Modules manual, Order No. AG93, can be used to extract the metering information 
from the system segment table (SST) and tc_data hard core databases. These databases 
contain global metering data concerning the time the system has been up, the amount 
of memory configured. the number of processes (users) currently on the system, and 
the detailed metering data generated by the page control and traffic control programs 
of the supervisor. The meterin~util_ subroutine allows the caller to get this data 
easily and to reset the data being sampled. In particular. the meterin~uti1_$time entry 
prints the time the system has been up (or the time since the last reset call) in the 
standard format used by most of the metering commands (in the format HH:MM:SS, 
where HH is hours, MM is minutes, and SS is seconds). 

Other hardcore databases referenced by the various metering commands (other 
than the SST and tc_data) are extracted by using the ringO~et_ subroutine. 

The following example illustrates just how the metering of the system takes 
place and how the various metering commands extract the data and display it in a 

14-15 AM81-04 



useful format. This example displays an extract of the page fault handling procedure. 
page_fault aIm. and a portion of the total_time_meters procedure source code. 

FROM page_fault.alm: 

include tc meters 

rccl sys info$clock ,* start metering 
staq pds$time_l -

eppbp tC_data$ restore tcd ptr 
rccl sys_info$clock_,* meter page fault time 
sbaq pds$time_l get cpu time for this fault 
adaq bPlcPu_Pf_time keep sum of times 
staq bp cpu_pf_time 
aos bplcpu_pf_count and count of faults 

FROM total_time_meters.pll: 

ttm: total_time_meters: proc; 

dcl (tcdpl, tcdp2, sstpl, sstp2) ptr static; 
dcl unique fixed bin static init (0); 

%include tcm; 
%include sst; 

if unique = 0 then call metering_util_$get_buffers 
(un i que, ss tp 1, ss tp2, tcdp l, tcdp2, code); 

call metering_util_$fill_buffers (unique); 
call metering_util_$time (unique, meter_time); 

14-16 AM81-04 



/* Now calculate the page fault information */ 

time = tcdp2 -> tcm.cpu_pf_time - tcdpl -> tcm.cpu_pf_time; 
count = tcdp2 -> tcm.cpu_pf_count - tcdpl -> tcm.cpu_pf_count; 
if count = OeO then ave time = OeO; 
else ave time = time/co~nt; 
pc = time/meter_time; 

ca 11 i oa_ (IIPage F au 1 ts 

if reset switch then 
call mete;ing_util_$reset (unique); 

VARIOUS TYPES OF METERING TIME 

Several different types of metering time are of interest to users of metering 
tools. They are: 

real time 
the actual time period as measured by a normal clock. 

virtual CPU time 
the actual CPU time spent in a process or in the system minus all CPU time 
spent in page fault, segment fault, bounds fault, process switching, and 
in terrupt processing. 

total CPU time 
the actual CPU time spent in a process or in the system including all CPU 
time spent in page fault, segment fault, bounds fault, process switching, and 
in terrupt processing. 

idle time 
the amount of time the system was not running a program on behalf of a 
normal process. This time can be partitioned into well-defined subsets. This 
partitioning is of interest to anyone measuring the efficiency of the system. 

processor time 
the amount of CPU-seconds the system has accumulated since it was 
bootioaded. This time is the same as real time for a system that has only one 
processor, but is guaranteed to be different if the system ever had more than 
one processor configured. 

It is often interesting to print out the percentage of time a given program or 
programs spend in the system. To do this an appropriate base must be established 
against which to compare the given quantity. The standard base used by most metering 
commands is the processor time accumulated by the system. Some commands, however, 

14-17 AM81-o4 



base their comparisons against nonidle processor time. Either of these methods is 
acceptable as long as it is clearly stated in some way what the meters represent. 

RESET MECHANISM 

Several metering commands allow you to begin metering again at a specified 
time, usually the time of the call to the command with the -reset control argument 
specified. This type of metering is quite useful and is generally done with the use of 
internal static copies of the databases containing the raw metering data. This resetting 
mechanism never changes the actual meter values kept by the system. Therefore one 
user's use of the reset mechanism has no effect on any other user who might be 
using the metering commands at the same time. 

Although the internal static technique has proved to be very useful and easy to 
program, it does not allow you to specify an arbitrary time interval during the day 
for which metering is desired. To do this, a periodic sampling of the metering data 
must be done. Such sampling of a few values in the SST and tc_data segments is in 
fact done by the answering service program as_meter_ at accounting update time 
(although this data is currently unavailable to general users). as_meter_ stores this 
information in >sc1>stat_seg. It is normally processed and printed each day by the 
crank. 

STANDARD CONTROL ARGUMENTS 

Some control arguments are standard for metering commands. They function as 
described below. If any new metering command is written that performs one of the 
features controlled by these arguments, it should be designed so that it can use these 
same control arguments. 

-reset, -rs 
resets the metering interval for the invoking process so that the interval begins 
at the last call with -reset specified. If the -reset control argument has never 
been given in a process, it is equivalent to having been specified at system 
initialization time (Le., the metering interval begins at system initialization 
time). 

-report_reset. -rr 
generates a full report and then performs the reset operation. 

-brief, -bf 
generates an abbreviated report (Le., some metered data is not printed on the 
report produced by invoking the command). 

The default report, which is generated when any metering command is given 
WIth no control arguments, prints out ail of the metering data normally available. The 
metering interval, by default, begins at system initialization time. Those metering 
commands that accept the -reset argument display the length of the total metering 
interval as their first line of output, in the format HH:MM:SS. where HH is hours, 
MM is minutes, and SS is seconds. 

14-18 AM81-04 



CPU Time Metering 

There are several different viewpoints from which system performance can be 
examined. Each of these viewpoints tells you something different about system 
performance. One of these viewpoints is the allocation of CPU time: the proportion 
of CPU time being spent on useful work rather than on overhead or idling. This 
subsection discusses that viewpoint, and tells you what you can and cannot learn by 
examining the allocation of CPU time. 

Briefly. CPU time can be divided into three categories: idle, overhead, and 
applied. 

Idle time is that which is unused because the load, over some time interval, is 
much lighter than the system's capacity. 

Overhead time is that which is spent performing system functions connected 
with the sharing of the system among a number of users. 

Applied time is that which is spent running user's application programs, or 
perf orming system functions on behalf of those application programs. 

One possible objective of configuration and tuning is to maximize applied time 
and minimize overhead time. This should be done under conditions of heavy load -
that is, when idle time is approaching zero. (When the load is light. tuning is not 
critical. and adjustments made then might not produce optimal performance under 
heavy load.) 

Maximizing applied time tends to maximize throughput. It does not necessarily 
optimize response time. At first. cutting down overhead will have a beneficial effect 
on response time. But in the end, eliminating the last few percentage points of 
overhead can only be done at the expense of response time: favoring long-running 
computations over short interactive ones, thereby reducing the overhead associated with 
frequent process switching and page replacement 

The total_time_meters (ttm) command displays the total CPU time used by the 
system, broken down into over a dozen different categories. A detailed description of 
the output of the ttm command is given in the Multics Administration, Maintenance 
and Operations Commands manual, Order No. GB64. The discussion below gives 
some general guidelines for understanding and interpreting the output. 

14-19 AM81-04 



For the sake of efficiency, the set of time meters maintained, and their 
accuracy, are both determined by the implementation. Thus, they do not map simply 
into the three major categories: idle, overhead, and applied. For example, there are 
five meters with the word "idle" in their names. Three of these measure time wasted 
in idling because of three different kinds of system bottlenecks, (MP, Loading, and 
Work Class Idle); these belong in the overhead category. The other two (NMP and 
Zero Idle) are true idle time caused by light load. They are kept separate because one 
of them (NMP Idle) indicates that users on a lightly loaded system were delayed by 
system bottlenecks. 

Some of the overhead meters displayed by ttm include applied time spent 
perf orming system functions on behalf of users' application programs. It is not 
possible to separate this time from true overhead time. For example, all time spent on 
handling page faults is measured by a single meter. But some page faults are due to 
the sharing of main memory by all the users, while others are due to the automatic 
memory management provided to users by Multics. The latter would occur even if the 
user were alone on the system, and WOUld, on other operating systems, be replaced by 
explicitly programmed file I/O, charged to the application program. 

Thus, applied time consists of the virtual CPU time reported by ttm, plus some 
fraction (that can only be estimated) of the overhead times. On very well balanced 
and well tuned configurations, virtual CPU time has been seen to approach (or even 
exceed) 80%. On such systems, it is estimated that applied time is 85% to 90% and 
true overhead is only 10% to 15%. As configuration and tuning values depart from the 
optimal, all of the increases in reported overhead times should be attributed to true 
overhead. 

The Urn command displays the time allocations both as a percent of total 
system time and as a percent of non-idle time. The purpose of the latter is to allow 
meters taken during periods of light load to be compared to standard values without 
requiring a lot of mental arithmetic. (For example, if the normal virtual CPU time 
percent is 70, then 70% non-idle virtual CPU time during a period of light load is a 
sign of good performance. even though virtual CPU time as a percent of total system 
time is much lower due to the high percent of idle time.) 

However, it cannot be emphasized too strongly that meter readings from 
periods of light load must be interpreted cautiously. Abnormal readings during periods 
of light load are certainly cause for further investigation. However, decisions about 
tuning adjustments or configuration changes should not be based on measurments taken 
under light load. The system's behavior is different under light and heavy loads, and 
adjustments made under light load are unlikely to be optimal under heavy load. 

TUNING 

This subsection gives an overview of scheduling and how it relates to 
performance, summarizes the available tuning commands, and describes each of the 
tuning parameters. It also describes the effects of selected changes to certain tuning 
parameters under various circumstances. 

14-20 AM81-04 



Scheduling 

The following discussion defines some terms and gives a generalized overview 
of scheduling and an idea of how the number of eligible processes affects thrashing 
and thus optimum performance of the system. 

A blocked process is one that is awaiting some event, such as a timer to go 
off or a user to type a line of input 

A ready process is one that is not blocked. It has computation to do and is 
awai ting its turn to run on a CPU. 

An eligible process is a ready process that the scheduler has selected for 
running in the near future. The scheduler tries to keep the' number of eligible 
processes at a value that optimizes system performance. 

A loaded process is one that is eligible and has the first page of its 
descriptor segment and the first page of its PDS loaded into memory and wired there. 
These two pages must be in memory before a process can run; they cannot be brought 
in by page faults because they are used when a process takes a page fault. 

A waiti ng process is a process that is eligible and loaded but cannot use a 
CPU because it requires some other resource as well. Waiting is distinct from the 
blocked state. Wait events occur in a very short time (typically measured in 
milliseconds). Simple wait events are: page read, VTOC read, and page table lock. 

A running process is one that is eligible, loaded, and is actually running on a 
cPU. 

When a running process takes a page fault, the system first takes steps to have 
the page read into memory. Then it attempts to find another process that can be run 
immediately. If it fails to find such a process, the CPU goes idle and some amount 
of CPU time is wasted. 

A process that can run immediately is one that is eligible, loaded, and not 
waiting. Thus, one criterion affecting the optimal number of eligible processes is that 
there should be enough of them to keep to a minimum the times they will all be 
waiting simultaneously (which forces the CPU to go idle). 

If the scheduler fails to find a runnable process and it determines that there 
should be more eligible processes, it makes another one eligible, but this is of no 
immediate benefit It probably will be two page wait times before the newly-eligible 
process is loaded and runnable, so the CPU still has to go idle. 

14-21 AM81-D4 



Making a process eligible implies a short-term commitment of CPU resources. 
The process is allocated a certain amount of CPU time (an eligibility quantum) and it 
is given this amount of CPU time before it loses eligibility. 

There are algorithms for choosing which processes to make eligible, for 
deciding what size quanta to give them (quanta vary between processes and vary over 
time for one process), and for determining priority among eligible processes. The 
significant aspect of eligible processes is that they are given frequent, short slices of 
CPU time, interrupted by their own page faults and by interrupts signalling the 
completion of input/ output for some other process. 

If an eligible process uses its quantum of CPU time without completing its 
computation and going blocked, it is rescheduled. It loses eligibility, it is returned to 
the ready state and some other process is made eligible, loaded, and given a chance to 
run. The real time interval until the rescheduled process again becomes eligible is 
generally much larger then the interval between the getwork schedulings it receives 
while eligible. 

The term "working set" can be used loosely to refer to all of the pages that a 
process is currently using. Early in a process's eligibility quantum, it takes page faults 
frequently since much of its working set is not in memory. Later in the quantum, it 
is hoped that it takes page faults less frequently, because most of its working set has 
been brought into memory and will remain there for the rest of the quantum. 

Eligible processes tend to compete with each other for pages of memory. Thus, 
a second criterion affecting the optimal number of eligible processes is that there 
should be few enough of them so that there is enough memory to hold all of their 
working sets. If there are too many eligible processes (or not enough memory), they 
fight each other for memory, continually forcing out each other's pages, taking page 
faults at a high rate, and accomplishing very little useful work. This condition is 
known as thrashing. 

There are two tuning parameters, max_eligible and min_eligible, used by the 
scheduler to control the number of eligible processes. As their names suggest, they 
specify the maximum and minimum values. 

To summarize the discussion so far: the number of eligible processes must be 
high enough to keep the CPU from going idle too frequently, but there must be 
enough memory to hold the working sets of the eligible processes and avoid thrashing. 

14-22 AM81-Q4 



This assumes a mode of operation in which most of the pages in the working 
sets of ready processes get forced out of memory before the processes become eligible 
again, requiring that those pages be brought back in at the beginning of the next 
eligibility. If there is enough memory so that at least some of those pages remain in 
memory during the intervals between eligibility, that cuts down on the total number of 
page faults taken, reduces the rate at which eligible processes take page faults, and 
thus reduces the number of eligible processes that are needed in order to ensure that 
when one of them takes a page fault there is usually another one that is able to run 
immediately. 

Thus. there are three regions on the curve of performance versus memory size: 
in the low memory region, there is thrashing; in the intermediate memory region. the 
system is not thrashing but there are still a lot of page faults and the number of 
eligible processes must be kept fairly high to avoid time wasted in idling; in the high 
memory region. the page fault rate is lower. the number of eligible processes need not 
be so high, and all of the CPU time that would be consumed by the overhead and 
idling associated with the higher paging rate can be turned into useful computation. 

A system with too little memory continues to function if max_eligible and the 
maximum number of users are set low. but much CPU time is wasted in idling and 
paging overhead. 

Figure 14-1 shows the shape of the performance curve. It relates throughput 
to the ratio of memory to CPU power. It shows the three regions discussed above: 
thrashing. high paging. and low paging. The regions are delimited by points A and B. 
Memory /CPU ratios at or below point A are very likely to cause thrashing. Ratios 
between A and B are usually acceptable but fall short of optimal performance. As 
ratios proceed beyond B into the low paging region. the cost effectiveness of adding 
memory becomes increasingly questionable. 

The values on the performance axis are percents of applied CPU time, as 
defined earlier under "CPU Time Metering." 

The values on the MEM/MCPU axis are megabytes of memory per MCPU. 
(MCPU is a unit of CPU power roughly equivalent to one million instructions per 
second). MCPU is defined later under "Configuration Guidelines." 

As noted under "Suggested Values and Guidelines," the optimal memory/CPU 
ration depends on the memory intensiveness of the application mix at the site. 
Variations of over 25% in the values for points A and B have been observed between 
some sites. 

14-23 AM81-04 



PERFORMANCE 
100 

90 

80 

70 

60 

50 

40 

30 

20 

10 LI------+-----~------~------r_----_+------~I------~------r_----~I 
2 3 4 5 6 7 8 9 

MEM/MCPU 

Figure 14-1. Performance vs Memory 

14-24 AM81-04 



Tuning Commands 

The following tuning commands display and adjust the values that manage 
queueing, paging, the traffic controller, scheduling, processor management, dispatching, 
m ul tiprogramming. and multiprocessing: 

change tuning parameters 
changes - the value of several tuning parameters within the system. 

define work class 
-assigns CPU time to work classes (scheduling). 

print_tuningyarameters 
prints the current values of various tuning parameters within the system. 

set work class 
- temporarily moves a process or a set of processes from one work class to 

another without installing a new master group table (MGT -- see below). 

tune work class 
temPorarily sets or changes scheduling parameters for a single work class. 

work class meters 
- displays currently defined work classes. 

The master group table (MGT) is the segment maintai.ned by the system 
administrator that contains work class information. It can be edited with the ed_mgt 
command (described in the Multics Administration, Maintenance and Operations 
Commands manual, Order No. GB64). 

The installation_parms segment is another table maintained by the system 
administrator containing site-settable system parameters. It is edited by the system 
administrator with the ed_installation_parms command (described in the Multics 
Administration, Maintenance and Operations Commands manual, Order No. GB64). 

Tuning Parameters 

The following descriptions of tuning parameters give the meanings of each 
parameter, plus the units used for each, the data types used in the change_tunin~parameter 
command, and the default values. Note that the data types decimal number of seconds 
and decimal number can be used to express fractional values (e.g.. 0.001 for one 
second, .5 for a multiplier of one-half, etc.). For each parameter, the short name, if 
any. is given in parentheses. Any of the para~eters described below (except for 
max_max_eligible) can be changed via the change_tunin~parameters (ctp) command. 
All of the tuning parameters are kept in the tc_data and sst_seg databases. 

14-25 AM81-04 



tef i rst 

telast 

timax 

is the amount of CPU time (i.e.. initial quantum or time slice) given a process 
after an interaction. When a process changes from the blocked state to the 
ready state, is made eligible. and loaded, it is given tefirst seconds of processor 
time before being made ineligible and placed in the appropriate work class 
queue. The initial value of tefirst is set by the schd configuration card, which 
is fully described in Section 7. The tefirst parameter shows the number of 
seconds, given in decimal number of seconds. The default is 2.0 seconds. 

is the amount of processor time given a process for all subsequent executions. 
The initial value of this parameter is set by the schd configuration card (see 
Section 7). The telast parameter shows the number of seconds, given in decimal 
number of seconds. The default is 2.0 seconds. 

is the maximum value that ti (time since interaction) can assume for an 
interactive process. Once a process has used ti seconds of CPU time since its 
last interaction, the scheduler no longer increments this value; i.e.. all such 
processes are scheduled round-robin, but after processes that have ti less than 
timax. The initial value of this parameter is set by the schd configuration card 
(see Section 7). The timax parameter shows the number of seconds, given in 
decimal number of seconds. The default is 8.0 seconds. 

priority sched inc (psi) 
is the priority scheduler increment. Once a process has been blocked for this 
number of seconds, any wakeup it receives will be treated as if an interaction 
occurred. In other words, this parameter can be used to make processes that 
block always appear to be interactive (thereby getting favorable scheduling). 
Wakeups sent by the tape or tty interrupt handlers are interactive; wakeups 
caused by timers or explicit user action are not interactive unless the target 
process has been blocked for longer than priority_sched_inc. Thus, when 
priority_sched_inc is set to .125 second, an absentee process that pauses for 
longer than this appears to be interactive to the scheduler. The priority_sched_inc 
parameter shows the number of seconds, given in decimal number of seconds. 
The default is 80.0 seconds. 

min_eligible (mine) 
is the minimum number of eligible processes. The scheduler attempts to keep 
at least this many processes eligible. If less than min_eligible processes are 
eligible. the scheduler makes any non-eligible ready process eligible without 
regard to working set. If the value of the post_purge parameter is off, 
min_eligible becomes meaningless, since the working sets of all processes are 
zero. The initial value of this parameter is set by the schd configuration card 
(see Section 7). The min_eligible parameter shows the number of processes, 
given in integers. The default is t\'/o. 

max_el igible (maxe) 
is the maximum allowed number of eligible processes. The scheduler does not 
(usually) allow more than this number of processes in the eligible queue. 
Realtime processes can cause this value to be exceeded and idle processes do 
not count against this number. The initial value of this parameter is set by the 
schd configuration card (see Section 7). The max_eligible parameter shows the 
number of processes, given in integers. The default is six. 

14-26 AM81-04 



max max eligible 
- is the maximum value that max_eligible can take during the current bootload 

of Multics. This is necessary because of the sharing of ring-O stacks. 
Max_max_eligible ring-O stacks are created at bootload time, and this number 
cannot be exceeded. Thus, there can never be more than max_max_eligible 
processes eligible, including realtime processes. The max_max_eligible parameter 
shows the number of processes (expressed as an integer). A value of zero for 
this parameter (on the schd configuration card) will cause its default value to 
be max_eligible plus ten. The max_max_eligible parameter cannot be changed 
by the change_tunin!Lparameters command. It can only be changed by using 
the schd card in the con fig deck (see Section 7). 

max batch el ig (maxabs) 
- is the maximum number of absentee processes that can be eligible at one time. 

A value of zero causes this restriction to be ignored. This parameter is also 
ignored if the scheduler is in deadline mode. 

worki ng set factor (wsf) 
is the multiplier for the working set computation. Once an estimated working 
set has been computed for a process, it is multiplied by this value. The initial 
value of this parameter is set by the schd configuration card (see Section 7). 
The working_set_factor parameter shows the fractional multiplier, given in 
decimal numbers. The default is 1.0. 

working set addend (wsa) 
is the addend for the working set computation. Once an estimated working set 
has been computed for a process, and multiplied by the workin!Lset_factor, 
this value is added to the result. The workin!Lset_addend parameter shows the 
number of pages, given in integers. The default value is zero. 

dead line_mode (d mode) 
tells the scheduler whether to operate in deadline mode or percentage 
(interactive) mode. The value of off implies percentage mode; on implies 
deadline mode. If the deadline_mode tuning parameter is on, processes in 
non-realtime work classes are scheduled according to the deadlines and quanta 
specified for their work classes. If off (which is the default), then 
non-realtime work classes are scheduled according to the percentages specified 
f or their work classes. The answering service sets this parameter at shift 
change time to the value specified by the master group table (MGT). For 
more information, see the ed_mgt command in the Multics Administration, 
Maintenance, and Operations Commands manual, Order No. GB64. 

i nt q enabled (i ntq) 
- - controls the use of the interactive queue. A value of on implies that there is 

an interactive queue; processes are placed in it after an interaction instead of 
in their designated work class queue. A value of off disables the interactive 
queue; processes are placed directly into their designated work class queue after 
an interaction. If the int_~enabled parameter is set to off when the scheduler 
is in percent mode, the specified percentages are more closely observed, but 
response is degraded. The default is on. 

14-27 AM81-04 



postyurge (pp) 
controls the post purging function. If on, the pages of a process are moved to 
the head of the list for the page removal algorithm when the process loses 
eligibility. This switch controls the working set computation as well. If off, 
the working set computation is disabled and the workin~set_factor and 
workin~set_addend parameters have no effect. The page table lock is locked 
during post purging. If this switch is on, the per-process page trace buffer 
does not describe the location of the faulting instruction. This affects the 
page_trace command output. The default is off. 

pre empt sample time (pest) 
- is -used to -set the maximum clock time between invocations of traffic control. 

This is implemented by limiting the value of the timer register when a process 
is given a CPU to: 

pre_empt_sample_time X (number of CPUs onl ine) 

With parameters gp_at_notify and gp_at_ptlnotify set to off (the default value 
for both parameters). traffic control checks for higher priority processes to run 
at least once every pre_empt_sample_time. It shows the number of seconds, 
given in decimal number of seconds. The default is .040 seconds. 

gp at notify (gpn) 
- - controls the actions of the scheduler upon notification of the occurrence of a 

system event (e.g., page read). If on. the process is forced onto a processor. 
The default is off. 

gp_atytlnotify (gpp) 
controls the action of the scheduler upon notification of a global page table 
lock. If on. the process is forced onto a processor. The default is off. 

process initial quantum (piq) 
controls -the first quantum given to a newly created process. Higher values of 
this parameter improve the responsiveness of newly created processes. This 
quantum is in effect until the process goes blocked or exceeds the quantum. A 
reasonable value is the average virtual CPU time reported in the first "ready" 
message for a typical user. This provides fast execution of the start_up.ec. The 
Piocess_initial_quantum parameter shows number of seconds, given in decimal 
number of seconds. The default if 2.0 seconds. 

quityriority (qp) 
is used to recompute the ti of a process after a quit. The new ti value will 
be its old ti value times the quit_priority. This parameter can be used 
administratively to control the action of the scheduler when a user quits. 
Interactive users sometimes quit and restart in order to appear interactive 
during a iong-running command. When quit_priority is O. users appear 
interactive. If the value is 1, the users' scheduling priority is unchanged. and if 
it is 2, the users' priority is actually degraded. This parameter is usually set at 
0, but it can be increased if quit/restarts are a problem at a site. (The output 
from tty_meters shows the frequency of quits on the system.) The quit_priority 
parameter shows the fractional multiplier expressed in decimal. The default 
value is zero. 

14-28 AM81-o4 



notify timeout interval (nto delta) 
-is the allowed interval for a system notify to occur. The scheduler expects any 

system event to occur within this time and complains if it does not occur. The 
notify _timeout_interval parameter shows the number of seconds, given as a 
decimal number of seconds. The default value is 30 seconds. 

notify timeout severity (nto severity) 
-is the severity of the -occurrence of a notify timeout Values can range from 0 

to five and control the action taken when a notify timeout occurs. The 
notify_timeout_5everity shows the number of the severity, given in integers. 
The default value is three. The following table shows what actions are taken 
for each value. The include file syserr_constants.incl.pll contains a definition 
of these values. 

Value 

-1 
o 
1 

2 

3 

4 

5 

write limit (wlim) 

Action 

don't print message, don't log message 
print message, log message 
print message, log message, activate alarm, 
return to BCE 
print message, log message, activate alarm, 
terminate process 
print message, log message, activate alarm 
(normal case for nto) 
try to log message, if log full, print 
message 
try to log message, if log full, discard 
message 

- used by page control to determine the size of page flush operations. Page 
flushes safeguard modified data by writing pages to disk at regular intervals. 
The number of pages which page control will write in a single page flush 
operation is equal to approximately 1/2 the value of the write_limit parameter. 
The maximum number of disk I/O operations that could ever be pending is 
the same as the value of the dskq parameter on the parm con fig card. (Refer 
to Section 7.) 

gv integration 
- controls the granularity of control for work class governing. It is approximately 

the interval over which governing is enforced. For example. if it is set to 
3600. (one hour), a work class with a limit of 10% is limited to 10% of 
available CPU' time within any given one hour period. The gv _integration 
parameter shows number of seconds, given in decimal number of seconds. The 
default value of this parameter causes governing to be instantaneous; that is, 
the governing is four times the value of telast. and it is the smallest value to 
which gv_integration can be set 

realti me _io _priority fio yrior) 
controls whether 101 interrupts cause high priority. If on, an interrupt from 
an 101 device causes the process owning the device to get a high priority CPU 
quantum of short duration immediately after the interrupt. If off. an interrupt 
from an 101 device is treated the same as receipt of remote terminal input 
The default value is off. 

14-29 AM81-D4 



rea/ti me io dead Ii ne (io dead line) 
is- the time interval after an 101 interrupt in which the process will be 
considered for high priority by traffic control. This value is specified in a 
decimal number of seconds. The default value is 0.0 and indicates the process 
is to receive high priority immediately after receipt of the 101 interrupt. This 
parameter has no effect if realtime_io_priority is off. 

rea/ti me io quantum (io quantum) 
is- the length of the high priority quantum (burst), expressed in virtual CPU 
seconds. After this time has expired. the process is given its normal traffic 
control priority. This value is specified in a decimal number of seconds. The 
default value is 0.005 (5 milliseconds). This is sufficiently long to initiate 
another tape I/O and do a small amount of processing. but not long enough 
to impact interactive users adversely. This parameter has no effect if 
realtime_io_priority is off. 

dirlock writebehind (dirw) 
causes modified directory pages to be written from main memory whenever a 
directory is unlocked. Specifying this parameter increases the safety of the 
system at some cost in increased paging. Process directory pages are not 
written. 

Here is some sample output from an invocation of the print_tuning_parameters 
command: 

Current system tuning parameters: 

tefirst 
telast 
timax 
priority_sched_inc 
min_el igible 
max_eligible 
max_batch_elig 
working_set_factor 
working_set_addend 
deadl ine_mode 
int_q_enabled 
post_purge 
pre_empt_sample_time 
gp_at_notify 
gp_at_ptlnotify 
process_initial_quantum 
quit_priority 
nn't i fv 't i mpnllt i ntpr\l;::! 1 .. __ .. ,-_ .... _---_ ... __ .. _. 
notify_timeout_severity 
wr i te_l imi t 
gv_intergration 
realtime_io_priority 
realtime_io_deadline 
realtime_io_quantum 
dirlock_writebehind 

0.5 seconds 
1. seconds 
8. seconds 

80. seconds 
2. 

20. 
o 
0.5 
o 

off 
on 

off 
0.04 seconds 

off 
off 

2. seconds 
0 

~O_ seconds ..,--
3 

335 

14-30 

4. seconds 
on 

O. seconds 
0.005 seconds 

on 

AM81-04 



Selected Changes to Certain Tuning Parameters 

The following discussion describes the effects of selected changes to certain 
tuning parameters under various circumstances. 

The max_eligible, min_eligible, post_purge, working_set_addend, and 
workin~set_factor tuning parameters are used to control the number of processes that 
are multiprogrammed (i.e., allowed to compete for pages of memory). If post_purge is 

. on, then each time a process loses eligibility, page control uses information about the 
process' recent paging behavior to estimate the size of the process' working set (paging 
behavior information is available to page control in the process definition segment). 
This estimate is then multiplied by the wsf, and the result is added to wsa to arrive 
at a final value for the working set of the process. When post_purge is off, the 
estimated working set is always zero and additional information will be recorded in 
the per-process trace table on every page fault (see the description of the page_trace 
command in the Mu/tics Commands and Active Functions manual, Order No. 
AG92). 

The scheduler uses the following criteria to determine whether to make an 
additional process eligible: 

1. Another process may be made eligible if fewer than min_eligible processes are 
currently eligible. 

2. Another process may not be made eligible if more than max_eligible processes 
are currently eligible. 

3. When the number of eligible processes is between mine and maxe, another 
process may be made eligible if the sum of the working sets of the eligible 
processes and the working set of the process being considered for eligibility is 
less than the number of pages of pageable (nonwired) main memory. 

Checks 2 and 3 are ignored for a process in a realtime work class if that 
process' deadline has passed. 

Thus, if you were to make any of the following changes: 

increase min_eligible 
increase max_el igible 
decrease working_set_factor 
decrease working_set_addend 

it would tend to increase multiprogramming, and therefore reduce } .. 1P idle and 
increase paging (possibly causing thrashing if there is too little memory). Conversely, 
decreasing mine or maxe, and increasing wsf or wsa, would have the opposite effect. 

The notify _timeout_interval and notify _timeout_severity parameters control the 
action the system takes when a notify timeout occurs. (A notify timeout occurs when 
a process has been waiting for some event for longer than the notify _timeout_interval, 
and is generally symptomatic of some programming or hardware error.) With the 

14-31 AM81-o4 



tuning parameters set at their default values, when a notify timeout occurs, the process 
is taken out of the waiting state and a message is printed on the bootload console. 
The notify _timeout_severity parameter controls the "severity" of the call (made by the 
system program syserr) that prints this message. Useful values for notify_timeout_severity 
are: 

-1 no call to syserr is made, so no record of the notify timeout is printed or 
logged (useful for temporarily masking a problem). 

1 the system is crashed after the message is printed (useful for debugging by 
system programmers). 

3 the message is printed but no further action is taken. 

The gp_at_ptlnotify and gp_at_notify parameters are used to control the actions 
of the get_processor function of the scheduler. In all cases, get_processor attempts to 
find an idle processor on which to run the notified process. When notifying processes 
waiting for the page table lock, if gp_at_ptlnotify is on, then an attempt is made to 
preempt a lower priority process (one deeper in the eligible queue). When processes 
waiting for other events are notified. the attempt to preempt a lower priority process 
is made only if gp_at_notify is on. If gp_at_ptlnotify is on, paging throughput 
increases at the cost of preemption overhead. If gp_at_notify is on, I/O throughput 
increases at the cost of preemption overhead. The effect of setting these parameters 
"on" is improved performance for processes that take page faults frequently, at the 
expense of the considerable overhead of the preempt mechanism. 

The tefirst, telast, and timax tuning parameters are irrelevant in deadline mode. 
If the scheduler is in percent mode, however, the initial quantum awarded by the 
scheduler after an interaction is tefirst. At all other tim~, the scheduler awards a 
quantum of telast. In percent mode, processes within a work class are sorted either by 
the amount of CPU time used since the process has interacted, or by timax. whichever 
is less. Thus, timax sets a limit on the depth in its work class queue to which a 
process can sink. The following are examples of the use of various settings of tefirst 
and telast in percent mode: 

tefirst 

1 .0 sec 
0.5 
2.0 

1.0 

telast 

0.5 sec 
0.25 
0.5 

2.0 

mot i ve 

first trial setting 
better trivial response 
better response for commands 
using 1 to 2 seconds 
better response for long-running 
commands 

The tefirst, telast, and timax parameters can be set by using a schd card in the config 
deck (see Section 7 for more information). 

The realtime_io_priority, realtime_io_deadline, and realtime_io_quantum tuning 
parameters jointly control the traffic control priority of a process which has received 
an interrupt from an 101 device (usually a tape drive). If realtime_io_priority is off, 
the parameters realtime_io_deadline and realtime_io_burst have no effect. The effect 
of turning realtime_io_priority on is improved throughput for tape I/O-bound 

14-32 AM81-04 



processes (such as the hierarchy and volume dumpers). This is accomplished by 
treating a process which has just received an interrupt for an 101 device as a realtime 
process for one eligibility quantum after receipt of the interrupt. The tuning 
parameters realtime_io_deadline and realtime_io_quantum control that eligibility time. 

SUGGESTED VALUES AND GUIDELINES 

Metering Output Values 

The following paragraphs give some guidelines to be used when evaluating 
output from metering commands. Also shown are some threshold values to watch for 
in the metering output. Guidelines and values are displayed per metering command. 

disk meters 

Lowest possible per-system Average Time Between (ATB) I/O: 

where: 

T + R S 
------- + -----------------

P minimum (l, 0, E) 

P = # physical disk channels 
l = # logical disk channels 
o = # disk spindles 
E = average number of el igible processes 
T transfer time for a Multics record/VTOCE (average) 
R = average rotational latency of the disk drives 
S = average seek time per drive 

There are I/O bottlenecks if: 

A) % busy > 50 * # logical channels for the subsystem. 

B) ATB I/O approaches the limit given by the above formula. 

C} page wait times are > 70 msec. (Values of 50 are typical; values around 30 are 
approaching minimum.) 

D) run lock (count) > 10% of call locks (count). 

E) allocations (%waits) > 2%. 

F) seek_distance > .33 * # cylinders/ disk. 

G) one pack has > 2 * (average # drives) of the I/O traffic. 

14-33 AM81-04 



Other factors: 

A) # errors > 0 indicates hardware problems. 

B) use of alternate tracks increases the time to fetch certain records. 

C) root logical volume overload. RL V contains all directories and system libraries. 
Probably should not contain process directories. 

disk_queue (dq) 

There are I/O bottlenecks if: 

A) # connects in last channel > 50% of # connects in first channel. 

B) disk queues always contain entries. 

C) one pack shows up continually in the disk queue. 

file_system_meters (fsm) 

(# ASTEs) * (meter interval) 
Average Time Active 

# needs 

The ASTE pool sizes are bad if: 

A) grace time < 200 seconds. 

B) AST locked > 50%. 

C) AST lock waiting > 80%. 

D) ATB claim runs < .01 minutes. 

E) grace times for ASTE pools grossly un balanced. 

Memory lap time should be no less than 10 seconds. Values between 20 and 30 
seconds are better. 

interrupt_meters (intm) 

A) attempt to balance FNP channel interrupts. 

B) watch for 1 channel taking > 2 * average number of interrupts. 

14-34 AM81-D4 



list vols 

A) spread process directories to as many volumes as possible. 

B) balance the remaining space between logical volumes. 

post JJurge _meters {ppm} 

A) thrashing percentage should be < 2% if quanta < 2 seconds. 

B) thrashing percentage should always be < 5%. 

A) if page faults (avg) > 3000 microseconds, then I/O bottleneck. 

B) if segment faults (%) > 6%, then bad ASTE pool sizes in SST. 

C) MP idle is controllable by tuning parameters maxe and/or wsf /wsa. 

D) the objective in tuning is to maximize virtual CPU time. Values approaching 
80% can be achieved on systems having sufficient memory. 

E) getwork (%) should not exceed about 5%. 

F) both page faults % and interrupts % should be < 15%. 

G) idle times should approach zero on heavily loaded system. 

traff ic _control_meters (tcm) 

A) if # wait other + # wait page is high, consider turning gp_at_notify off. 

B) response time should be < 1 second. 

C) # notify timeouts should be zero. 

D) # schedulings/interaction should be < 2; otherwise increase tefirst. 

E) # wait PTL high, consider turning post_purge off. as PI lock is locked during 
post purging. 

traff ic _control_queue (tcq) 

A) the interactive queue should be empty or small. If it always contains entries. 
then it's probable that no processes from the work class queues will ever run. 
or will run very infrequently. 

B) tssc of processes in interactive and work class queues should be small. 

14-35 AM81-()4 



vtoc buffer meters - -
A) configure 64 VTOC buffers ("parm vtb 64." configuration card). 

check_cpu_speed 

Use the check_cpu_speed command to verify that all processors are running 
with cache and associative memories enabled. Loss of an associative memory can 
drastically alter the performance of the system. If the hardware diagnoses an 
associative memory problem, it disables that associative memory WITHOUT WARNING. 
Likewise with cache memory problems. 

meter _gate (mg) 

Use the meter~ate command to determine if there are "hot" gate entries (e.g., 
hcs_ entries). This can give an indication of the type of activity on the system. 

systemyerformance_graph (spg) 

The spg output can be useful as it presents a graphical representation of 
several of the values contained in other meters. 

SST Size Guidelines 

An SST that is too small can degrade system performance by 50%. whereas an 
SST that is too large, but less than 10% of main memory, cannot degrade performance 
by more than 5%. That is, it is better to have an SST that is too large than too 
small. A rule-of-thumb is to make the SST big enough so that all permanent wired 
storage does not exceed 10% of available main memory. Remember, all hardcore 
segments and all ring-o segments of all processes (DSEG, PDS, KST) are always active, 
and thus occupy ASTEs permanently. 

Configuration Guidelines 

The following configuration guidelines are presented here for two reasons. 
First, they are intended to emphasize the importance of maintaining a good balance 
between CPU power and paging hardware (memory, disk channels, and disk arms) and 
to give some guidance for achieving this balance. Second, they are intended to give an 
estimate of how many users a given, well-balance configuration can be expected to 
support. 

It must be emphasized that the numbers in these guidelines are subject to 
significant variation, depending on the nature of the users. Users executing simple 
requests separated by long think times place a lighter load on a system than users 
whose requests involve significant amounts of computation and paging. Compute-bound 
applications require a greater propOrtion of CPU capacity in a configuration, while 

14-36 AM81-04 



applications with large working sets require a greater proportion of paging capacity 
(main storage, disk channels, and disk arms). Finally, the number of users that any 
configuration will support is partly a function of how much delay the users will 
tolerate, or conversely. how much they are willing to pay for the excess capacity 
needed to provide them with quick response. 

To the extent that a user community varies from the norm in anyone of the 
above respects (overall load. compute bound. working set size. and tolerance for delay). 
the following guidelines will not accurately describe the configuration requirements. 
These guidelines are based on observations of several of the current Multics sites. 
"The norm" is defined as a user community to which these guidelines apply. 
Variations have been observed between sites of up to 25% in the optimal 
CPU/memory ratio, and up to 50% in the number of users that a given configuration 
will support. The former is due to variations in the CPU intensiveness vs. working set 
size of the applications being used at the site. The latter is due partly to variation in 
the total processing load generated by the applications and partly to variation in the 
users' tolerance for delay. 

It is useful to take these variations into account in capacity planning, by 
thinking of the "users" in the guidelines below as "standard load units." Determine, by 
observation, what fraction or multiple of a standard load unit the average user at your 
site imposes on the system. If you discover that your average user is worth 1.5 
standard load units. then to increase your capacity from 100 users to 150 users, you 
would have to change from a 150 load unit system to a 225 load unit system, using 
the guidelines below. 

These guidelines are based on observations originally made on systems using 
Level 68 CPUs. They have been revalidated using observations from the newer DPS 8 
CPUs. CPU speeds are typically described in units of MIPS (Million Instructions Per 
Second). The ~1IPS rating of a CPU will depend h~vily on the instruction mix used 
to measure it. Some instructions move one word from memory into a register; others 
move up to one million bytes from one set of memory locations to another. In one 
second. a CPU will obviously be able to execute many more of the former than of 
the latter. An instruction mix used to measure a CPU's speed - no matter how fairly 
it is chosen or how consistently it is applied - is essentially arbitrary. It is not 
unusual to observe variations of 10% or more between the effective speeds of the 
same model of CPU at different sites, because of differences in the instruction mix 
used by applications at the sites. 

To avoid causing confusion and misunderstanding by using MIPS in an 
inaccurate way, we have defined a new unit of CPU speed: MCPU (Multics CPU). It 
is equal to the processing power of one Level 68 CPU (with cache). A Level 68 CPU 
has been measured at slightly under 1 MIPS, using one arbitrarily chosen instruction 
mix. The several models of DPS 8M CPU have been measured at various fractions 
and multiples of 1 MCPU: 0.95 (DPS 8/52M). 1.3 (DPS 8/62M), 1.46 (DPS 8/70M -
early mode}), 1.64 (DPS 8/70M - current production moden. and 1.9 (DPS 8/70M -
current production model with 32K cache). 

The CPU requirements in the following guidelines are expressed in terms of 
MCPU. 

14-37 AM81-04 



1. Each 1 MCPU, in a suitable configuration of other hardware, will support 
about 40 logged in users. However, this number varies from a low of 30 to a 
high of 60, as indicated by the rules below. These numbers are at the upper 
end of system capacity; users will be aware of a heavy load, although response 
will be tolerable. 

2. Each 1 MCPU needs a minimum of 4MB of main storage to operate 
effectively. Increasing main storage beyond the 4MB minimum, in 1MB 
increments, will increase capacity by up to eight users for the first increment 
(from 40 to 48) and by successively fewer users for each additional 1MB 
increment (six, four, and two), for a 60 user /MCPU capacity at 8MB/MCPU. 

The capacity increase resulting from additional memory occurs because adding 
memory reduces paging overhead, making more CPU time available to users. It 
has been observed that a virtual CPU time of 50 to 60 percent at 4MB/MCPU 
can be raised to over 80 percent by doubling memory to 8MB/MCPU. The 
actual amount of. memory needed to raise virtual CPU time above 80 percent 
will vary between sites. No significant capacity increase should be expected 
from adding memory when virtual CPU time is already above 80 percent. 

3. The first .5MB of total system memory is taken up by system overhead and is 
unavailable for user paging. The total system capacity must be reduced by four 
users to account for this. 

4. There is a requirement for a minimum amount of disk I/O capacity per 
MCPU. The requirement is a non-linear function of MCPU, and is given in 
Table 14-5. 

The disk I/O capacity requirement is not related to the storage capacity 
required by the total number of registered users. It is based on the need to 
have a certain number of disk I/O operations in progress simultaneously, in 
order to support the paging load generated by the logged in users. 

A disk I/O operation is in progress not only when data is being transferred, 
but also when a disk arm is seeking to a specified cylinder. in preparation for 
a data transfer. Honeywell disk MPCs allow several logical channels to share a 
single physical channel. A seek can be in progress on each logical channel; 
only the (relatively short) data transfer operations contend for use of the 
physical channel. 

The requirement is for a mmtmum number of high use disk arms, and at least 
an equal number of logical channels. A high use disk arm is one which 
accesses a volume containing either directories (the RLV) or process directory 
(PDIR) segments. Faults on the pages of directories or PDIR segments account 
for a very large fraction of all ~1ultics page faults. 

14-38 AM81-Q4 



Table 14-5. Minimum Disk I/O Capacity per MCPU 

MCPU Minimum High Use Disk Arms 
and Logical Channels 

1 7 
2 12 
3 16 
4 20 
5 22 
6 23 
7 24 
8 25 
9-10 26 
11-12 27 
13-14 28 
19-18 29 
19-23 30 
24-29 31 
30-36 32 

The figures for MCPU above 8 are predictions based on extrapolation; they 
have not been verified experimentally. 

5. There must be a minimum of one physical disk channel for each group of 
four high use disk arms. These channels must be capable of simultaneous data 
transfers. That is, they must each be in a separate MPC, or paired in dual 
channel MPCs that are configured so as to be capable of full simultaneous 
dual channel operation. (Some dual channel MPCs have only dual connectability 
and are not capable of simultaneous data transfer.) Of course, the MPCs and 
drives must be configured such that the I/O load of the high use arms is 
distributed evenly across all of the physical channels. 

6. There should be at least as many logical disk channels as the minimum number 
of disk arms given by rule 4. Additional logical channels are useful, up to the 
actual number of disk arms in the configuration or the maximum number of 
logical channels per subsystem, whichever limit is reached first. 

7. There should be no more than four to six high use physical disk channels per 
10M. Six high use channels will saturate an 10M, causing occasional transfer 
timing errors, which will be handled by software retry. (Tape channels that are 
heavily used for high speed transfer place a heavy load on an 10M, and 
should be included in the per-10M limit on high use channels.) Additional low 
use channels, present for redundancy or connectability, may safely be connected 
to an 10M. (A low use channel is one that is not required by the above 
rules.) 

8. It is possible to trade memory for disk hardware, to some extent That is, it 
is possible to compensate for insufficient disk hardware by adding memory. To 
a lesser ex ten t, the reverse is possible (i.e. adding disk hardware to compensate 
for insufficient memory). But this is less effective because insufficient memory 
creates more problems than extra disk hardware can solve. A system should be 

14-39 AM81-04 



able to operate at almost normal efficiency with half the required disk 
hardware if it has double the required memory. Beyond that point (even less 
disk and more memory) the trade is expected to be less effective, to an 
unknown degree. 

SAMPLE CONFIGURATIONS 

A. Minimum Configuration 

1 DPS 8/52M CPU (.95 MCPU) 
1 SCU with 4MB (1 MW) 
1 10M (32 channe 1 s) 
1 Disk MPC, single channel 
4 Model 451 disk drives (152K pages) 
1 DN66 FNP, 32K 

maxe=4, maxu=26 

B. Small Configuration 

1 DPS 8/62M CPU (1.3 MCPU) 
1 SCU with 8MB (2MW) 
1 10M (32 channe 1 s) 
2 Disk MPCs, single channel 
9 Model 451 disk drives (342K pages) 
1 DN66 FNP, 64K 

maxe=9, maxu=66 

c. Medium Configuration 

2 DPS 8/70M CPUs with 32K cache (3.8 MCPU) 
2 SCUs, each with 16 MB (total of 8MW) 
2 IOMs (32 channe 1) 
5 Disk MPCs, single channel 

19 Model 451 disk drives (722K pages) 
3 DN66 FNPs, 64K 

maxe=19, maxu=224 

D. Large Configuration 

4 DPS 8/70M CPUs with 32K cache (7.6 MCPU) 
4 SCUs, each with 16MB (total of 1 bMW) 
2 IOMs (32 channel) 
7 Disk MPCs, single channel 

25 Model 451 disk drives (950K pages) 
6 DN66 FNPs, 64K 

maxe=25, maxu=452 

14-40 AM81-04 



E. Largest Configuration 

6 DPS 8/70M CPUs with 32K cache (11.4 MCPU) 
2 IOMs (32 channel) 
4 SCUs, each with 16MB (total of 16MW) 
7 Disk MPCs, single channel 

27 Model 451 disk drives (i026K pages) 
8 DN66 FNPs, 64K 

maxe=27, maxu=680 

Tuning Parameters 

max_eligible 
the max_eligible (maxe) tuning parameter should be set, initially, to equal the 
required number of high use disk arms given by rule 4, above. Then, it should 
be fine tuned as follows. 

Make measurements and adjustments only during periods of very heavy load. 
Use the total_time_meters command to determine system load and observe the 
results of adjustments. Use the -reset argument, and observe system behavior 
over 15 to 30 minute intervals, to smooth out short term fluctuations and 
ignore the effects of the more distant past. 

Zero idle should be at or near zero during the entire period in which the 
adjustments are being made. It might be necessary to experiment during the 
high use periods of several days to determine the optimim value of maxe for 
the site. 

During these metering and tuning operations, proceed slowly and cautiously. 
Make sure that measurements made after tuning adjustments are repeatable, and 
are not being aff ected by unrelated short-term changes in system or user 
behavior. Measurements should be made several times per day for several days, 
to confirm repeatability 

Tune maxe to minimize MP Idle and maXImIze virtual CPU time. Decrease 
maxe, if necessary, until MP Idle starts to increase significantly. Then increase 
maxe slowly (by 1 for each trial) and record the observed change in MP Idle 
and virtual CPU time. At some point, increasing maxe will produce no further 
improvement (decrease in MP Idle and increase in virtual CPU time). Then, 
either leave maxe at that value, or lower it to the point where no further 
significant improvement was observed. 

On a well balanced hardware configuration, it should be possible to reduce MP 
idle to less than 1%, or even to zero, without introducing any undesirable side 
effects. Such undesirable effects will manifest themselves as an increase in 
some overhead and a resulting decrease in virtual CPU time. On a 
configuration with limited memory, increasing maxe will cause thrashing, but 
even on a system with a liberal amount of memory, setting maxe too high will 
increase scheduling overhead without producing any beneficial results. 

14-41 AM81-04 



If maxe is increased significantly beyond the initial value (given by rule 4), 
examine disk meters (over the same 15 to 30 minute interval as used for 
total_time_meters) for average page wait times significantly exceeding 50 ms. If 
necessary. spread the paging load by adding more high use disk arms. Put 
process directories on more volumes. adding volumes if necessary. and adding 
logical and physical channels as needed to meet the constraints given by the 
configuration rules. above. 

min_eligible 
The min_eligible tuning parameter should be set to 75-80% of max_eligible. 
This reduces the amount of computation necessary in the getwork function of 
the traffic controller. while still allowing some amount of control of main 
memory thrashing by the working set computations. 

Initializer Terminals 

The initializer process performs various functions. the most obvious of which is 
controlling the answering service subsystem that handles logins. logouts. process 
creation. and process destruction. The initializer needs to be able to display its 
messages on the console designated to receive output from the various streams of its 
process. The bootload console is not a good choice for this task. mainly because it is 
slow and pauses after every few lines. This causes the initializer to suspend operation 
as well. until the queued messages can be printed. Thus. the faster messages can be 
printed. the faster the initializer can perform its various functions. It is recommended 
that at least one high-speed hardcopy device be dedicated as a message coordinator 
terminal (two would be even better). Thjs provides the added benefit of being able to 
segregate messages of different types on different terminals (e.g .• login/logout messages 
to one terminal and enter_output_request messages to another). 

GLOSSARY OF METERING TERMS 

activate 

active 

APT 

To make a segment active. Done by reading the VTOCE of the segment. 
setting an ASTE. filling in the ASTE. and hashing it into the AST hash table. 
The parent directory of the segment must be locked in order to activate it. 

1. of a segment. 
Having a page table (and AST entry) in main memory; the criterion for 
whether or not a segment is active is whether or not it is hashed into the 
AST hash table. 

2. (loosely) of a page. 
Belonging to an active segment. 

Active Process Table. This table is contained in the segment tc_data (traffic 
control data database) and contains information on all active processes necessary 
to the traffic controller. The number of entries in the APT is defined at 
bootload time by the tcd configuration card. This is a wired. unpaged segment. 

14-42 AM81-04 



APTE 

AST 

Active Process Table Entry. Each active process contains one APTE in the APT 
of tc_data. An APTE is 64 words containing information about a single process 
required by the traffic controller. 

Active Segment Table. This table is the uppermost part of the segment sst_seg 
(System Segment Table segment) and contains information on and the page 
table for every active. paged segment. The number of entries in the SST is 
defined at bootload time by the sst configuration card. This is a wired, 
unpaged, hardcore segment 

AST hash table 
A table, kept in active_sup_linkage, that holds the heads of hash threads so 
that the UID of any segment may be used to find its ASTE, if it is active. or 
the fact that it is not active. 

ASTE pool 
There are four sizes of AST entries. those containing page tables of 4, 16, 64, 
and 256 PTWs. Those of each size form four pools, that are managed 
separately. 

AST trickle 

ASTE 

ATB 

A mechanism implemented in the AST replacement algorithm that periodically 
updates appropriate ASTEs to their corresponding VTOCEs. It is driven by 
AST traffic. 

Active Segment Table Entry. Each active. paged segment is defined by an 
ASTE. Each ASTE has a 12-word header followed by its page table, which 
may be 4, 16, 64. or 256 words, depending on the size of the segment. 

A verage Time Between; used as an acronym in the output of several meters. 

block(ed) 
A state of a process when it's awaiting some non-system event (wakeup), such 
as an interaction, to occur. When a process goes into the blocked state. it 
loses eligibility. 

boot I Dad 
1. 

2. 

3. 

(verb) to initiate the operation of the Multics system when it is down. i.e .• 
to bring it up by issuing the BCE boot command. 

(noun) the act of bootloading. 

a term used to refer to a single Multics session. Ihe time from startup 
(bootload) until shutdown is referred to as one Multics bootload. 

bound fault 
A fault occurring when an active segment is referenced beyond the bound of 
its page table. resident in the ASTE. When this occurs. the segment's page 
table must be moved to a larger ASTE pool. Bounds fault and boundsfault are 
other terms meaning the same thing. 

14-43 AM81-()4 



branch 

cache 

CME 

A data structure in a directory that describes a segment or directory. A 
segment's branch contains a physical volume ID and VTOC index for the 
VTOCE of the segment. The ACL, names, author and bit count of a segment 
may be found in or from its branch. 

A semiconductor buffer memory in the processor port logic. An attempt is 
made to maintain the most recently fetched words from main memory in the 
cache. The cache provides a substantially faster access time than that of main 
memory. As each processor contains its own cache, strategies are needed to 
prevent confusion about main memory contents. 

Core Map Entry. Each frame (1024 words) of main memory has a 
corresponding CME. CMEs are four words in length and define the current 
status of each frame of main memory. 

connected 
of a process and a segment. A segment is said to be connected to a process, 
or vice versa, if the descriptor segment of that process contains an SDW that 
describes that segment, and is not faulted. 

controller adapter 
Also ref erred to as CA. The CA is the physical connection between an MPC 
and a device. Each MPC can have one or two CAs, and each CA is capable 
of addressing up to 64 devices. 

core map 

core 

CPt 

A page control database that contains a four-word entry (CME) per frame of 
main memory. It is protected by the page table lock. 

An obsolete term used in many program listings and comments for main 
memory. 

Common Peripheral Interface, also referred to as Common Peripheral Channel 
or CPI channel. This is a low-speed channel interface in the 10M. Currently 
this type of channel is only used to connect the bootload console to the 10M. 

dead! ine 
A scheduling mode whereby processes are made eligible at, or shortly after, 
their assigned deadlines. The scheduler chooses the process whose deadline is 
the earliest. 

deadlock 
or deadly embrace. A situation where a process having a given resource is 
waiting for some other process to free a second resource, but unfortunately, 
the process having the second resource is waiting for the first process to free 
that first resource. Locking strategies in Multics are designed to prevent this 
situation. 

14-44 AM81-04 



DIA 

DIM 

Direct Interface Adapter. This is the type of channel used to interface the 
10M with the Front-End Network Processors (FNPs). 

Device Interface Module. The program that contains the code for managing the 
physical operation (as opposed to the logical use) of a device. 

d i spatchi ng 

DSBR 

DSEG 

EDAC 

EHS 

The act of choosing and placing an eligible process in the running state. 

Descriptor Segment Base Register, sometimes referred to as DBR. A hardware 
register containing, among other things, the address of the descriptor segment 
of the process currently executing on the processor. Each Multics processor has 
one DSBR. 

Descriptor Segment. An array of hardware control words called Segment 
Descriptor Words (SOWs) that specifies the mapping between segment numbers 
and either segments or taking a segment fault. Every process has its own 
descriptor segment (segment number 0). When a process is executing on a 
processor, the DSBR of that processor points to the user's DSEG. This is a 
paged segment, and the first page of a process' DSEG must be wired in main 
memory before the process can execute on a processor. 

Error Detection and Correction. Many of the hardware components contain 
logic to detect and correct errors, such as main memory and disk subsystems. 

Entry Hold Switch. A switch in the ASTE of a segment telling the supervisor 
that this segment is not to be deactivated. 

el igible 

entry 

frame 

fsmap 

A process is made eligible by the traffic controller at the time that the latter 
decides that the process should be allowed to consume main memory resources 
(i.e., take page faults). Only eligible processes can run, although they must be 
loaded first. All processes are either eligible or ineligible. 

a branch or link. 

or "main memory frame". A 1024-word block (beginning on a 1024-word 
boundary) of main memory. 

The bit map of the volume map of a physical volume. 

get processor 
- The traffic controller routine that assigns an eligible process to run on a 

processor. This routine always selects the highest-priority ready process in the 
eligible queue to run. If there are no ready processes in the eligible queue, 
get_processor assigns the idle process for that CPU to run. 

14-45 AM81-Q4 



hardcore process 
A process fabricated by the system to perform some periodic overhead 
function. Currently, there are only two hardcore processes defined, 
Syserr_Logger.SysDaemon and MCS_Timer_Daemon.SysDaemon. The 
Syserr_Logger.SysDaemon process copies syserr messages from the wired syserr 
buffer in syserr_data into the syserr LOG partition. The 
MCS_Timer_Daemon.SysDaemon controls MCS timer mechanisms. A hardcore 
process is also called a supervisor process. 

i dIe process 
A process associated with a particular processor. The idle process is run when 
no other process can be found to run on that processor. The idle process 
cannot withstand most faults. If a forbidden fault occurs, the system crashes 
with the message "FAULT IN IDLE PROCESS." This is symptomatic of a 
hardware problem or coding error in an interrupt handling routine. 

idle time 
Processor time spent running the idle process. Idle time can be categorized 
into four types, based on the reason for their occurrence: zero idle, there was 
absolutely no work to be done on the system at that time; NMP or 
non-multiprogramming idle, there was some work to be done, but not enough 
for all processors; MP or multiprogramming idle, there was work to be done 
but the system chose not to perform it due to main memory restraints; and 
loading idle, the time spent waiting for a process to become loaded so that it 
could run on a processor. 

interactive queue 

ITT 

KST 

The scheduling queue where a process is put after an interaction, assuming the 
tuning parameter int_q_enabled is on. 

Interprocess Transmission Table. This table resides after the APT in tc_data. 
Its size is defined by the tcd configuration card. It is used, as its name 
suggests, to transmit wakeups between processes. 

Known Segment Table. A per-process table describing the mapping between 
segment numbers in that process and storage system segments. The segments are 
identified via pointers to their branches (using other segment numbers in that 
process) and unique IDs. The KST also contains a list of private logical 
volumes attached to the process. The KST is a reverse-deciduous segment. 

link adapter 

loaded 

Also ref erred to as LA. The link adapter is the physical connection in an 
MPC connecting it to an 10M. Each MPC can have one or two LAs (i.e.. one 
or two physical channels). There are options available to have non-simultaneous 
switched channels to an MPC. which then allow up to four LAs, but only two 
can be active at once. Physical data transfers can only occur over an LA, one 
at a time per LA. 

A process is said to be loaded when its two critical process pages have been 
wired. Processes are loaded by the traffic controller when they are made 
eligible. Only loaded processes can run on a processor. The two pages 
necessary are page 0 of the process' DSEG and PDS. 

14-46 AM81-04 



lock 
A datum used to serialize processes performing certain actions and using or 
modifying certain databases. A process locks a lock before performing these 
actions or using these databases, and unlocks it when done. Only one process 
may have a lock locked at one time. A process trying to lock a lock that is 
locked by (or to) another process must wait for that lock. Processes are said 
to hold locks when they have them locked. In Multics, a lock is typically a 
single word of storage that is zero when unlocked and contains either the 
process ID or lock ID of the process that has it locked when it is locked. 

locking hierarchy 
A conceptual partial-ordering of a set of locks via the arbitrary relation 
"higher" (». If lock A > lock B, and lock B > lock C, then lock A > lock 
C. There is no inverse, and two locks may be totally unrelated. The locking 
hierarchy is used to prevent deadlock. The rule used by the Multics supervisor 
states that no process may wait for the unlocking of a lock unless that lock is 
higher than every lock it has locked. 

logical channel 
A secondary channel associated with a PSIA channel in an 10M. Control words 
can be placed concurrently in the 10M for all logical channels associated with 
a physical PSIA channel. These control words are accessible by the MPC 
connected to the physical PSIA channel, which allows simultaneous activities 
other than physical data transfers to take place. For example. if a PSIA 
channel has four logical 10M channels associated with it. and this PSIA 
interfaces to an LA of a disk MPC (MSP). and there are four or more seek 
arms connected to that MSP via the CAs of the MSP. then up to four 
simultaneous seek operations can be occurring, although only one physical data 
transf er can be occurring. 

main memory 
(formerly core) the core or MaS memory device from which the processor 
normally fetches instructions and data. All pages must be in main memory to 
be directly used by the processor. 

max eligible 
- or maxe. A tuning parameter defining the maximum allowable number of 

eligible processes. 

meter i ng cell 
Also referred to as cell. These are locations in system tables where various 
system software modules store metering data. 

migrate 
To move a page from main memory to secondary storage. 

min eligible 
- or mine. A tuning parameter defining a minimum number of eligible processes. 

MPC 

The traffic controller will allow this number of eligible processes regardless of 
the sum of their estimated working sets. 

Micro-Programmed Controller. A hardware component that controls peripheral 
devices via control programs that are loaded into it The control programs are 
known as the MPC's firmware. 

14-47 AM81-04 



MSP 

MTP 

Mass Storage Processor. This term is often used to ref er to the MPC 
controlling mass storage devices (i.e .• disk devices). 

Magnetic Tape Processor. This term is often used to refer to the MPC 
controlling magnetic tape units. 

multi processi ng 
Pertaining to the simultaneous execution of two or more processes by a 
multiprocessor system. 

multi programmi ng 
Pertaining to the concurrent execution of two or more processes by 
interleaving their execution. 

notify time-out 

notify 

A traffic controller event that occurs when an expected system event does not 
happen within a specified amount of time. The process which was waiting is 
made ready. as though the event had occurred. Usually. notify time-outs are 
indicated by a message displayed on the bootload console. 

The occurrence of a system event. such as the arrival of a page in main 
memory. When a process goes into the waiting state. it is awaiting a system 
notify. 

page fault 
An exception condition detected by the processor hardware (the appending unit) 
when an attempt is made to use a PTW that specifies that the page of the 
segment is not in main memory. This is indicated by the bit ptw.df being off. 
This causes the unconditional execution of a specific fault vector entry that 
effects transfer to the page fault handler. 

page table lock 
A global lock in the header of the SST that controls access to the page 
control databases. Only one processor is allowed to modify these databases at 
any time to prevent inconsistencies from occurring. 

page table 

page 

The array of PTWs that specifies the mapping between addresses in a segment 
and either main memory frames or page faults. The page table of an segment 
is part of the ASTE; only active segments have page tables. The SOW of a 
paged segment contains the absolute address of its page table. 

A 1024-word extent of data at a 1024-word boundary of some segment. Pages 
belong to segments; they can exist in main memory frames or on disk records 
(or PD records). 

14-48 AM81-04 



PDIR 

PDS 

Process Directory. A temporary directory created for a process at process 
creation time. It contains temporary, per-process segments such as the DSEG, 
PDS, KST, and process stacks. Often the term is used to describe not the 
directory itself, but rather all the segments that are found in the process 
directory (e.g., "process directories are put on the logical volumes specified by 
set_pdir_ volumes"). 

Process Data Segment. A per-process (reverse-deciduous) hardcore segment that 
contains all per-process information needed by a process other than that in the 
SST. The first page of the PDS of a loaded process is wired. 

physical channel 
This term refers to a physical connection between an 10M and a device or 
MPC. Data transfers can only occur over physical channels. CPI and DIA 
physical channels have no associated logical channels. Only PSIA physical 
channels may have multiple associated logical channels. 

post purge 
- A tuning parameter that, when enabled, tells the scheduler to place the pages 

of a process losing eligibility at the head of the list for the page removal 
algorithm. This is done with the assumption that the process is most likely to 
not require these pages for the longest period of time, and thus allows other 
pages to remain in main memory. 

PRDS 
Processor Data Segment. A segment containing information about a single 
processor. This is a paged segment. and acts as a wired, ring-O stack for 
operations that cannot take page faults or lose the processor. 

pre-empt 
Also known as preempt, this refers to the removing of a process from a 
processor for any reason without that process' consent. For example, when a 
process has used its allocated time quantum and is preempted, or an event for 
which a higher-priority process was awaiting occurs and that process preempts 
the currently-executing process. 

process loading 
The bringing into main memory and wlnng of the first page of a process' 
DSEG and the first page of its PDS in order that it may be scheduled to run 
on a processor. 

process 
An address space and an execution point within that address space. All users 
of Multics have a process created for them when they log in to the system. 
As that process touches segments, its address space is expanded accordingly. 

processor time 
The amount of processor-seconds the system has accumulated since it was 
bootloaded. This time is the same as real time f or a system that has only one 
processor, but is guaranteed to be different if the system ever had more than 
one processor configured. 

14-49 AM81-o4 



PSIA 

PTW 

pxss 

PSI Adapter. or PSIA channel. This type of interface channel connects the 
10M to the various MPCs of the system. The PSIA channel has as associated 
patch plug that controls the number of logical channel slots that particular 
connection inhabits in the 10M. A PSIA patch plug can define up to eight 
associated logical channels. 

Page Table Word. A processor hardware control word. an element of a page 
table, that specifies either a main memory frame address or that the processor 
should take a page fault when attempting to use this PTW. 

the traffic controller. The acronym is historical and stands for process 
exchange and switch stack. The traffic controller source is a program named 
pxss.alm. 

quantum 

ready 

An amount of real or virtual processor time, also ref erred to as time slice. 
This term is usually used in conjunction with the traffic controller to mean the 
amount of time a process will be allowed to execute on a processor before 
being preempted and rescheduled. 

A state of a process when it's ready to do some work. A process becomes 
ready when whatever event occurs that it was awaiting, be it a system event or 
a non-system wakeup. Processes must be in the ready state before they can be 
assigned to run on a proc~r. 

real time 
The actual time period as measured by a normal clock. often referred to as 
"wall clock time". 

realti me process 

record 

A process operating in a realtime work class. Such processes are required to 
have good response times. but are unlikely to require long quanta. for example. 
transaction processing applications and I/O daemons. 

A l024-word. contiguous extent of disk that can hold a copy of a page. 

response time 
A term used to refer to the real time between an interaction and the 
beginning of the output from that interaction. However. the traffic_control_meters 
command calls response time the average amount of real time between a 
..,. ... ",,..ococo· ;t"ItO ... <:lI,.t;",t"I <:lIt"I~ tho co"ho~111;t"I~ (",,'3"';t"Io- ol;m'hlo\ nf' th'3t n ... nf'oC'C' 
t'.IV"-'~ 1.J..l"'-'J.u,""',,.V.lJ. Uo.l..Iw. Lr.l.J'" ...n.;'.&..I. ................ J.J..&..lf> ,.I..&..I.U.A.I..&..I.0 ....,.1..&.01....., ... '-', "'... 100.&. ... "" ... t'J.'V'''''~. 

running 
A state of a process when it is actually executing on a processor. 

scheduler 
A term used to refer to the scheduling routines of the traffic controller. 

scheduling 
The act of choosing and promoting an ineligible process to eligible status. 

14-50 AM81-04 



SDW 
Segment Descriptor Word. A hardware control word, an element of the 
descriptor segment, that gives the absolute address of an unpaged segment, or 
the absolute address of the page table of a paged segment. The SDW also 
contains access mode and ring brackets, as well as other information. The SDW 
can also indicate "segment missing," in which case a reference will cause a 
segment fault. 

seek distance 
The number of cylinders of a disk that the seek arm must move in order to 
place itself at the correct cylinder· for the next request. 

segment fault 
An exception condition detected by the processor (the appending unit) when an 
attempt is made to use an SDW that describes a segment not yet connected to 
the process in whose descriptor segment the SDW appears. This is indicated by 
the bit sdw.df being off. A segment fault causes a specific fault vector entry 
to be unconditionally executed, ultimately invoking the segment fault handler. 

setfault 

SST 

SSTNT 

STR 

An operation performed by the procedure of the same name at the time a 
segment is deactivated or its access attributes are changed. This operation 
modifies or faults all of the SDWs for a given segment, located via the trailer 
list. The associative memories of all processors are always cleared as the last 
step of a setfault. 

System Segment Table. A per-system database containing metering information, 
the active process table, and other information. This is a wired, unpaged 
segment whose size is dependent on the amount of main memory present on 
the system and the size of the APT. 

System Segment Table Name Table. A segment contalnIng the names of 
currently active segments. The names are kept current only if specified by the 
parm astk configuration card. 

System Trailer segment. This segment contains trailers, which are entries 
attesting to the fact that a process has an SDW for a given active segment. 
Each active segment possesses a trailer list of such processes. The trailer 
identifies the process via the AST offset of its descriptor segment's ASTE, and 
contains the segment number of the segment in that process. This segment is 
used for setfaults. 

subsystem 

tc 

A logical grouping of peripheral devices, such as disk and tape drives. ~..1ultics 
allows up to 64 devices per subsystem. Each subsystem is handled relatively 
independently by the system software. 10M logical channels are unique for a 
subsystem; i.e., each 10M logical channel will address the devices of only one 
particular subsystem. Any subsystem can have up to eight logical channels 
assigned to it. 

An acronym for traffic controller. 

14-51 AM81-G4 



tc data 
- A wired, unpaged segment containing metering information, the APT, work class 

tables, and the ITT. This segment contains the information pertinent to the 
traffic controller. Its size is determined at bootload time from the tcd 
configuration card. 

te 

tefirst 

telast 

The value of the amount of processor time used by a process in its current 
eligibility quantum. 

Time Eligible First. The amount of processor time given a process after an 
interaction. 

Time Eligible Last. The amount of processor time given a process in all 
subsequent executions. 

thrashing 
Page thrashing is inefficient use of the available main memory whereby a 
process causes some pages to be moved into main memory only to have them 
migrated out of main memory before it's through with them. The process must 
do extra work to bring those pages back into memory. A system that is 
thrashing may spend almost all of its time processing page faults, each of 
which only serves to evict a page needed by another process that will 
immediately cause another page fault when it tries to use that page. Thrashing 
is caused by having too much concurrent demand for the available frames of 
main memory. It can be cured by adding main memory. Alternatively, the 
concurrent demand can be reduced by reducing the number of eligible processes 
or changing the work done by those processes to require fewer page f aul ts. 

Segment thrashing or AST thrashing is inefficient use of the available AST 
entries. It is very similar to page thrashing, but is caused by too much 
concurrent demand for the available AST entries. It can be cured by increasing 
the size of the active segment table (AST), or by changing the work done by 
processes to require fewer segment faults. 

threaded list 
A list where each element of the list contains the address or offset of the 
next element of the list. A doubly-threaded or double-linked list means that 
each element of the list contains the address of the next and the previous 
elements. 

threaded 
This terms refers to an en ti ty being an element of a threaded list. 

throughput 

ti 

The measure of the amount of work performed during a certain period of 
time. The units associated with this measure vary depending upon that being 
examined (e.g., interactions per hour). 

Time since Interaction, The amount of processor time a process has used since 
it interacted. 

14-52 AM81-o4 



timax 
The maximum value that the ti of a process can assume. A process exceeding 
this value is given tefirst as its next te quantum. 

time slice 
The same as quantum. An amount of processor time given a process to 
perf orm a request. 

total CPU time 
The total amount of processor time consumed while a process was executing on 
a processor. This includes the processor time spent performing system overhead 
functions such as page fault processing. notify processing. and interrupt 
processing. 

traffic control 

TRO 

ts 

tssc 

URC 

URP 

This term refers to the management of processes in general. especially as it 
applies to the system scheduler/dispatcher routines. 

An acronym for timer run out. A timer runout fault occurs when a process has 
exhausted the amount of processor time allocated f or that particular scheduling. 

Time since Scheduling. The amount of processor time a process has used since 
its scheduling priority has changed. 

Time Since State Change. The amount of processor time a process has used 
since its process state has changed. i.e., since its APTE was last ·touched by the 
traffic controller. 

Unit Record Controller. This term is often used to refer to the MPC 
controlling unit record devices such as printers. card readers. and card punches. 

Unit Record Processor. This term is often used to refer to the MPC 
controlling unit record devices such as printers. card readers. and card punches. 

virtual CPU time 

VTOC 

V TOCE 

The actual processor time spent in a process or in the system, minus all 
processor time spent in page fault. segment fault. bound fault, process 
swi tching. and interrupt processing. 

Volume Table Of Contents. The part of a storage system volume (disk) 
containine: information as to the contents of that volume. The VTOC occupies 
a fixed. contiguous extent at the beginning of a physical volume. 

Volume Table Of Contents Entry. A 192-word entry in the VTOC describing 
one segment resident on that volume. This description includes record addresses 
and other attributes. one of which is the date-time the segment was created. 

14-53 AM81-04 



wait event 

wait 

The event for which some process is waiting, such as the arrival of a page in 
main memory or the waiting for a lock to be unlocked. 

A state of a process when it's awaiting the occurrence of some system event, 
such as the arrival of a page in main memory. A process does not lose 
eligibility when it goes into the waiting state. A wait is ended by a notify 
signalling the occurrence of the event. 

wakeup 

wired 

A non-system event that causes a blocked process to become ready. 

1. of a page. 
A page that may not be removed from main memory. The bit ptw.wired 
tells page control not to evict this page. 

2. of a segment. 
A segment having some or all of its pages wired. 

work class 
A scheduler term used to group particular processes into different classes, and 
to provide different scheduling priorities to classes of processes. The system 
can accomodate up to 16 separate work classes. 

working set 
An estimate of the use a process requires of the main memory resources. The 
size of a process' working set is predictive of future main memory 
requiremen ts. 

working set addend 
or wS3.. A tuning parameter used in computing the estimated working sets of a 
process, which in turn is used to control main memory th.rashing. 

worki ng set factor 
or wSf. A tuning parameter used in computing the estimated working sets of a 
process, which in turn is used to control main memory thrashing. 

14-54 AM81-04 



SECTION 15 

BULK INPUT/OUTPUT 

The bulk input/output facility is normally used to manage all card reading. 
card punching. and printing requests on both local and remote unit record equipment. 
Printing facilities include a set of prioritized queues for requests submitted by users, 
the management of one or more printers, the handling of special forms, and numerous 
commands to control the operation of this facility. An optional operational mode 
allows the spooling of print requests onto tape for subsequent printing on either the 
same or another system. The card input facilities include both the input of data and 
the input and submission of absentee jobs. This facility is integrated with the Multics 
access control mechanism and the access isolation mechanism (AIM) so that integrity 
of users' data is maintained. Accounting is provided for bulk input/output. 

The software that handles printing, punching, and card input is called the I/O 
daemon. The I/O daemon is organized into a coordinator process and a number of· 
driver processes; a driver is associated with each local or remote device. The I/O 
daemon normally runs with highly privileged access on the SysDaemon project, though 
some of the drivers can run with fewer privileges if the site desires. 

The I/O daemon is normally run with message coordinator terminals. The 
particular terminal or terminals chosen depend on the needs of the site. For remote 
devices, partial control of the process is from the device itself, using its card reader 
or input keyboard if available. 

You set up the environment in which this facility runs by creating and 
modifying the I/O daemon databases, creating info segments or other information to 
inform the user community of what is available, and setting up special operator 
exec_corns or instructions. The operator runs the facilities according to instructions 
given by the system administrator, taking care of the needs of the peripheral devices 
and following special requests made by the system. 

I/O DAEMON DIRECTORIES 

The Multics I/O daemon software depends on the existence of certain 
directories and segments. The most important of these directories and segments are 
created and initialized at a new Multics site by the acct_start_up.ec segment (described 
in the Multics System Administration Procedures manual, Order No. AK50). 

15-1 AM81-04 



In order to set up the I/O daemon to meet the needs of your site. and to 
manage and supervise the various I/O daemon processes. you must be familiar with 
that portion of the hierarchy around which the daemon processes are organized. The 
main node of this hierarchy is the directory named >daemon_dir_dir (with a short 
name of >ddd). This directory contains segments and directories used to support the 
various system daemon processes. 

Contents of daemoD_dir_dir Directory 

The >daemon_dir_dir directory contains the following directories of interest: 

io_daemon_dir 

cards 

holds all I/O daemon databases 

a storage pool for card deck image segments read by the system card input 
process (Iocal or remote station) 

io_ms~dir 
contains mailboxes for each device (station) for which driver to driver messages 
will be sent or received 

These directories and their contents are described in the following paragraphs. 
The access isolation mechanism (AIM) access class f or all these directories is 
system_low. 

CONTENTS OF io daemon dir DIRECTORY - -

The >daemon_dir_dir>io_daemon_dir directory contains a set of administrative 
databases and working storage used to direct the activities of the I/O coordinator 
process and the various device drivers. 

The main database. iod_tables, is set up by you. Most of the other segments 
and directories are created and maintained by the I/O coordinator, acting on 
information contained in the iod_tables segment. 

The following segments are contained in io_daemon_dir: 

coord_comm.ms 
ring 1 message segment in which driver processes place messages for the I/O 
coordinator 

coord_lock 
a segment used by the process overseer of IO.SysDaemon to prevent 
initialization of a driver process before an I/O coordinator has been created; 
also prevents creation of more than one I/O coordinator 

iod_tables 
master control tables for the I/O coordinator; may be compiled by using the 
jod_tabIes_compiler command 

15-2 AM81-04 



iod_tables.iodt 
source segment for iod_tables; may be updated and compiled to yield iod_tables 

iod_ workin~tables 
working copy of iod_tables used by the device drivers and users; copied from 
iod_tables during I/O coordinator initialization 

jodc_data 
a segment containing the process identifier of the I/O coordinator and the 
event channel identifier to be used by a new driver for initial communication 
with the coordinator 

printer_notice 
an optional segment contamlng information that the site administrator wants to 
be printed on the page following the head sheet of every printer listing, local 
or remote. The segment must contain ASCII text. It should be no longer than 
60 lines and the line length should correspond to the shortest printer device in 
use. This feature is useful in notifying users of printing charge rates, available 
request types, when they are processed, stock forms used for each, and other 
useful information covering the printing operations on the system. 

XXX_N.ms 
ring 1 message segment for I/O daemon queues. One such message segment is 
created for each priority queue of a request type. (You normally create these 
segments with the create_daemon_queues command.) XXX is the request type 
name and N is the queue number (1<=N<=4). 

There are several directories contained in the io_daemon_dir, some of which 
are site dependent. Access class information about these directories is included here as 
an aid to those sites using the access isolation mechanism (AIM). 

coord_dir 
working storage for the I/O coordinator, which is created and managed by the 
I/O coordinator; the access class is the authorization of the I/O coordinator 

rqt_info_segs 
created by you to hold any request type info (rqti) segments used by drivers 
(see the cv_prt_rqti command in the Multics Administration, Maintenance 
and Operations Commands manual, Order No. GB64, and "Request Type Info 
Segments" later in this section); the access class is system_low 

meter_dir 
created by you to hold driver metering data (for future use) 

<major device> 
separate directory for each major device currently being run by a device 
driver. These directories are managed by the I/O coordinator and their names 
are site dependent. Each major device directory contains a driver status 
segment for each minor device associated with the major device. The access 
class is the authorization of the device driver. 

15-3 AM81-o4 



CONTENTS OF cards DIRECTORY 

The storage pool for card deck image segments consists of a subtree of the 
directory hierarchy, which is headed by >daemon_dir_dir>cards. One access class 
directory for each access class (as needed) is contained in the cards directory. Storage 
is always allocated within the access class directory that corresponds to the access class 
specified on the ++AIM card. Person directories are contained in the appropriate 
access class directory. A person directory is created f or each person who needs 
temporary storage. A person directory contains all segments and multisegment files for 
a given person at a given access class. For example. if a user with Person_id TSmith 
is at system_low, the following directory is allocated for his card deck image segments: 

>daemon_dir_dir>cards>system_low>TSmith 

CONTENTS OF io_msg_dir DIRECTORY 

The >daemon_dir_dir>io_ms~dir directory contains mailboxes of the form 
<device>.mbx for each device and remote station that uses the driver to driver 
message facility. See "Driver to Driver Message Facility" later in this section. 

I/O DAEMON TABLES 

In order to manage the use and operation of the I/O daemon. an 
administrative database exists that can be adapted to the specific needs of a particular 
Multics site. This database contains several different tables of information and hence 
is referred to as the "I/O daemon tables." The database is generated from a source 
language description prepared by you. The iod_tables_compiler command (described in 
the Multics Administration, Maintenance and Operations Commands manual, Order 
No. GB64) is used to translate the source description into the encoded representation 
of the I/O daemon tables. The encoded representation, which is used by the I/O 
coordinator, must be named "iod_tables". 

For information on setting up HASP RJE station printers, readers, and punches, 
refer to the Multics HASP Service and Uti I ity manual, Order No. GB60. 

I/O Daemon Tables Source Language 

The purpose of the I/O daemon tables source language is to define the devices 
and the request types to be used by the I/O daemon. A source file consists of a 
sequence of statements and substatements that define and describe each device, request 
type, and share.d communications channel. In addition, certain global information items 
are defined that do not pertain to any particular device, request type, or shared 
communications channel. 

SYNT'AX 

The syntax of the source language statements and substatements is of the form: 

<keyword>: <parameter>; 

15-4 AM81-04 



The only exception to this is the "End" statement The keyword of a statement begins 
with a capital letter; the keyword of a substatement is entirely in lowercase letters. 
Substatements describe attributes of devices, communication lines, or request types for 
th~ given statement Each group of one statement and its substatements constitutes a 
statement description. 

PL/I style comments beginning with " / *" and ending with n* In may appear 
anywhere within the source file. Similarly, blanks, tabs, and newlines not embedded 
within a keyword or parameter are ignored. However, in order to include blanks, tabs, 
newlines, colons, or semicolons in a parameter, you must enclose them in quotes. If a 
parameter b~gins with a quote, all immediately following characters up until the next 
quote are taken as the parameter. It is possible to embed quotes within a quoted 
string using the double quoting escape convention of PL/I. 

STATEMENTS 

The following statements may appear anywhere within the source file. 

Time: <number>; 
defines the number of minutes that the coordinator saves a processed request. 
When segment deletion is requested, it is delayed this amount of time. If some 
problem is discovered that necessitates the reprocessing of requests, those 
requests performed less than <number> minutes ago can be restarted. One, and 
only one, Time statement must appear in the file. 

Max_queues: <number>; 
defines the default number of priority queues for each request type. The 
maximum value of <number> is 4. (Queue 1 is the highest priority and queue 
4 is the lowest priority.) One, and only one, Max_queues statement must 
appear in the file. 

Line: <name>; 
defines the name of a logical line_id and denotes the beginning of a shared 
communications line description. Any subsequent substatements (see below) apply 
to this line until the next Line, Device, or Request_type statement is 
encountered. Any <name> may be chosen; it can be a maximum of 32 
characters and cannot contain spaces or periods. There may be up to 360 Line 
statements. This statement is optional. 

Device: <name>; 
defines the name of a major device and denotes the beginning of a device 
description. Any subsequent substatements (see below) apply to this device until 
the next Line, Device, or Request_type statement is encountered. Any <name> 
may be chosen; it can be a maximum of 24 characters and cannot contain 
periods or spaces. At least one Device statement must appear in the file. 

15-5 AM81-o4 



Request_type: <name>; 

End; 

defines the name of a request type and denotes the beginning of a request 
type description. Any subsequent substatements (see below) apply to this request 
type until the next Line, Request_type, or Device statement is encountered. 
Any <name> (not containing periods or spaces) may be chosen; it can be a 
maximum of 24 characters. At least one Request_type statement must appear in 
the file. 

marks the end of the source language description. Unlike all other statements, 
it has no parameter. Any text occurring beyond the End statement is ignored. 
One, and only one, End statement must appear in the file. 

SUBSTATEMENTS FOR LINES 

The following substatements describe various attributes of a shared communications 
line and may appear in any order following a Line statement. 

channel: <name>; 
defines the name of the communications channel to be attached when using the 
logical line_id (defined in the Line statement). It is normally a communications 
channel identifier for an RJE station. The <name> may be up to 32 characters 
and cannot contain any spaces. One, and only one, channel substatement must 
be given for each Line statement. 

a tt_d esc: <string>; 
defines the attach description to be passed to the remote_teleprinter_, 
remote_printer_, and remote_input_ I/O modules. The <string> may be up to 
256 characters and should appear in quotes since there will be imbedded spaces. 
If the control variable ~a appears in <string> it will be replaced by the 
channel <name> (described above). One, and only one, att_desc substatement 
must be given for each Line statement. 

device: <name>; 
defines a major device that can use this logical line_id. A t least one device 
substatement must be given for each Line statement. Any major device 
specified must also have the line: variable; substatement under the Device 
statement. 

SUBSTATEMENTS FOR DEVICES 

The following substatements describe various attributes of a device and may 

driver_module: <name>; 
defines the name of a procedure to be executed by a driver process when 
running the associated device. The <name> can be a full pathname or simply 
an entry name. In the latter case, the search rules are used to locate the 
procedure. Several standard driver modules are provided by the system (see 
"Standard Driver Modules" below). One, and only one, driver_module substatement 
must be given for each Device statement. 

15-6 AM81-04 



default_type: <name>; 
defines the default request type for the associated device. The <name> must 
appear as the parameter in a Request_type statement Unless overridden by the 
operator when a driver is initialized, the driver processes requests of this 
default type. A default_type substatement must not be given for a major 
device if the driver has minor devices; i.e., it must not be given for a Device 
statement if it is given for a minor_device substatement 

args: <string>; 
defines an argument string to be interpreted by the driver module for the 
associated device. The <string> may have any arbitrary format up to a 
maximum of 256 characters. In practice, the composition of the <string> 
depends on the particular driver module that interprets it Each driver module 
has its own conventions for the <string> format (see "Standard Driver 
Modules" below). 

The following three substatements describe alternate methods by which a driver 
may attach the associated device. These substatements are mutually exclusive. One, and 
only one, of these substatements must be given for each device statement 

prph: <name>; 
names an input/output multiplexer (lOM) peripheral channel through which the 
associated device can be attached. The <name> must appear on a prph card in 
the configuration deck. 

line: <name>; 
names a dedicated communications line channel through which the associated 
device can be attached. If <name> is "variable" the channel can be any logical 
line_id defined by a Line statement The driver process must have the dialok 
attribute in the project definition table (PDT) and the communications channel 
must be defined as slave in the channel definition table (CDT). See the MAM 
Communications manual, Order No. CC75. for more information about the 
PDT and the CDT. 

dial_id: <name>; 
defines the dial identifier to be used if the associated device is to be dialed to 
the driver process over a communications line. The driver process must have 
the dialok attribute in the PDT and the communications channel must be 
defined as a login channel in the CDT. 

The following three substatements describe alternate methods by which the 
driver may attach a control terminal. These statements are mutually exclusive. If none 
is specified, the driver assumes that no control terminal is desired. 

ctl_line: <name>; 
names a dedicated communications line channel through which the control 
terminal can be attached. The driver process must have the dialok attribute in 
the project definition table (PDT) and the communications channel must be 
defined as slave in the channel definition table (CDT). See the MAM 
Communications manual, Order No. CC75 , for more information about the 
PDT and the CDT. 

15-7 AM81-04 



ctl_dial_id: <name>; 
defines the dial identifier to be used if the control terminal is to be dialed to 
the driver process over a communications line. The driver process must have 
the dialok attribute in the PDT and the communications channel must be 
defined as a login channel in the CDT. 

ctl_source: <name>; 
defines a message coordinator source name to be associated with the driver. A 
single control terminal accepted by the message coordinator can be used to 
control many different drivers. 

SUBSTATEMENTS FOR REQUEST TYPES 

The following substatements describe various attributes of a request type and 
may appear in any order following a Request_type statement. 

accounting: <name>; 
defines the name of an accounting procedure to be executed by a driver when 
processing requests of the associated type. The <name> can be a full pathname 
or simply an entryname. In the latter case, the search rules are used to locate 
the procedure. Also, the special <name> "system" can be used to indicate the 
standard system accounting procedure. If this substatement is omitted, "system" 
accounting is assumed. 

The special <name> "nothing" indicates that no accounting is to be performed. 
You can use this for running I/O daemons in proceses which don't have access 
to charge users. When the special <name> "nothing". is used, any tail sheet or 
its equivalent will indicate that there was no charge for the request. 

card_charge: "pI, p2, p3, p4"; 
defines the resource price names for the card_charge of each queue of the 
request type. This substatement is optional. If it is not specified, the prices 
from system_info_$io_prices are used. pI through p4 are resource price names, 
which are defined using the ed_installation_parms command (described in the 
Multics Administration, Maintenance and Operations Commands manual, 
Order No. GB64). The prices must be defined before the iod_tables segment is 
compiled. or the compilation will fail. The price names for each queue must 
be given in order, from queue 1 to the maximum number of queues for the 
Request type description. Each price is defined in units of dollars per 1000 
cards. Note: card_charge must not be specified if line_charge is specified. 

default_queue: <number>; 
The default_queue substatement is used to define the default queue for a 
request type. The value of <number> may be from 1 to max_queues. If not 
specifiecl, it is set to the value defined in the max_queue-s substatement, but it 
will not be greater than 3. 

device: <name>; 
specifies a device that can be used to process requests of the associated type. 
The <name> must appear as a parameter in a Device statement. More than 
one device substatement may be specified for a request type. 

15-8 AM81-04 



driver_userid: <access_name>; 
defines the required person and project names for a driver of the associated 
request type. If omitted, the <access_name> defaults to IO.SysDaemon, which is 
the standard system driver. Other access names may be used, f or example, to 
provide a project with its own private driver. The <access_name> you specify 
must have enough access to run the accounting procedure you've specified 
under the "accounting" substatement described earlier. For the standard 
procedure "system." read access is required to the system administration table 
(SAT) and read/write access is required to the PDTs. 

generic_type: <name>; 
defines the generic type of the associated request type. If the generic type 
name matches the request type name, then the request type is the default for 
the generic type. One. and only one, generic_type substatement must be given 
for each Request_type statement. If the generic type is neither "printer" nor 
"punch", the list_daemon_requests command must be used with the -brief 
control argument, and the cancel_daemon_requests command cannot be used. 
(Both of these commands are described in the Multics Commands and Active 
Functions manual, Order No. AG92.) 

line_charge: "pl. p2. p3, p4"; 
The line_charge substatement defines the resource price names for the line 
charge of each queue of the request type. This substatement is optional. If not 
specified, the prices from system_info_$io_prices will be used. If specified, 
each price name must be defined in the system price table, or the compilation 
of the the iod_tables will fail. The price names for each queue must be given 
in order, from queue 1 to the maximum number of queues for the 
Request_type description. Each price is defined in units of dollars per 1000 
lines. 

max_queues: <number>; 
The max_queues substatement may be used to define the maximum number of 
queues for a request type, when it is different from the global Max_queues 
value. This substatement is optional. The value of <number> may be from 1 
to 4. 

page_charge: "p!, p2, p3, p4"; 
The page_charge substatement defines the resource price names for the page 
charge of each queue of the request type. This substatement is optional. If it 
is not specified, the prices from system_info_$io_prices are used. If specified, 
each price name must be defined in the system price table, or the compilation 
of the iod_tables fails. The price names for each queue must be given in 
order. from queue 1 to the maximum number of queues for the Request type 
description. Each price is defined in units of dollars per 1000 pages. Note: 
page_charge must not be specified if generic type is "punch". 

rqti_seg: <name>; 
The rqti_seg substatement is used to define the name of the request type info 
(rqti) segment to be used with the Request_type statement. This substatement is 
optional. When specified, <name> must correspond to a segment entryname in 
the >ddd>idd>rqt_info_segs directory, or the driver will fail initialization. 
When not specified. no driver will look for an rqti segment for this 
Request_type statement 

15-9 AM81-04 



I/O DAEMON TABLES SOURCE FILE EXAMPLE 

The subset of the source language described so far is sufficient to prepare a 
complete I/O daemon tables source file. Many sites will find they have no need of 
any other features. Thus, before describing some of the less commonly used statements 
and substatements, an example of a source file containing just the ones described 
above is presented. 

/* Example of an I/O daemon tables source file */ 

/* Global parameters */ 

Time: 60; 
Max_queues: 3; 

Device: 
driver_module: 
prph: 
default_type: 

Device: 
driver module: 
prph: 
default_type: 

/* save requests for 60 minutes */ 
/* 3 priority queues per request type */ 

printer_l; /* onsite printer */ 
printer_driver_; 
prta; 
printer; 

punch_l ; /~'c ons i te punch 'le/ 

punch_driver_; 
puna; 
punch; 

/* Request types */ 

Request_type: 
generic_type: 
device: 

Request_type: 
generic_type: 
max_queues: 
default_queue: 
1 ine_charge 
device: 

End; 

printer; /* onsite printer requests */ 
printer; 
printer 1; 

punch; /* all punch requests */ 
punch; 
1 ; 
1 ; 
punch_price; 
punch_l; 

In this sample source file there are two devices and two request types. The 
request types are handled by the standard system driver, IO.SysDaemon, as implied by 
the absence of any driver_userid substatement. These two request types, printer and 
punch, are the default types for the entef_output_request and dpunch commands 
respectively. The majority of users concern themselves only with these two request 
types. Output is produced onsite by the printer_1 and punch_1 devices. 

15-10 AM81-04 



MAJOR AND MINOR DEVICES 

Special provisions have been made to handle "combination" devices that contain 
more than one logical device (e.g., a printer and a punch) in a single physical unit. 
The combination device as a whole is referred to as a "major device"; the multiple 
subdevices, such as a printer and a punch, are referred to as "minor devices". A 
major device is connected to Multics via a single communications channel; it can be 
attached by one process only. Therefore, it is not possible to have separate driver 
processes running the separate logical devices. To overcome this problem, the driver 
software has been designed to simulate multiple drivers within a single process. This 
means that from the coordinator's point of view, each logical device is distinct and 
run by an independent driver process. Consequently, each one of these logical devices 
can be fed requests of a different request type and generic type. 

Major devices are defined by the Device statement described earlier. Similarly, 
minor devices are defined by a minor_device substatement. The minor_device 
substatement is treated as a substatement for devices and, as such, can be freely 
intermixed with other substatements for devices. 

minor_device: <name>; 
defines the name of a minor device belonging to the associated major device 
and denotes the beginning of a minor device description. Any subsequent 
substatements (see below) apply to this minor device until the next minor_device 
substatement or Line, Device, or Request_type statement is encountered. Any 
<name> may be chosen up to a maximum of 24 characters. 

If no minor devices are explicitly defined for a major device, then a default 
minor device is defined by implication. The primary purpose of a default minor 
device is to allow certain minor device substatements to be specified for a major 
device when it has no explicit minor devices. One such substatement is the 
default_type substatement that was previously described under "Substatements for 
Devices." In fact, the default_type substatement is actually a substatement for a minor 
device. When no minor devices are explicitly defined, the default_type substatement 
applies to the default minor device of the preceding major device. The same is true 
of all substatements for minor devices. 

SUBSTATEMENTS FOR MINOR DEVICES 

The substatements below describe attributes of a minor device and may appear 
in any order following· a minor_device substatement or following a Device statement if 
no minor devices are specified. 

minor_args: <string>; 
defines an argument string to be interpreted by the driver module for the 
associated major device. The string may have any arbitrary format up to a 
maximum of 256 characters. Conventions for the <string> format expected by 
standard system driver modules are described under "Standard Driver Modules" 
later in this section. 

default_type: <name>; 
defines the default request type for the associated minor device. The <name> 
must appear as a parameter in a Request_type statement 

15-11 AM81-04 



The device substatement described earlier is a substatement for a request type 
and is used to name devices that can process requests of a given type. Usually, the 
parameter of a device substatement is a major device name. However, if minor 
devices are defined for the major device, then the device substatement parameter must 
include both the major and minor device names separated by a period (e.g., 
xyz. prin ter). 

SOURCE FILE EXAMPLE USING MINOR DEVICES 

This example shows a portion of a source file that illustrates the use of minor 
devices. 

Device: 
driver_module: 
args: 
1 i ne: 

minor_device: 
minor_args: 
default_type: 

minor_device: 
minor_args: 
default_type: 

Request_type: 
generic_type: 
device: 

Request_type: 
generic_type: 
device: 

AIM FEATURES 

xyz; /* a combination device */ 
dummy_driver_; 
"dim= xyzll; 
a.hlOO; 
printer; 
"dev= printer"; 
xyz_prt; 
punch; 
"dev= punch"; 
xyz_pun; 

xyz_prt; 
printer; 
xyz.printer; 

xyz_pun; 
punch; 
xyz.punch; 

The I/O daemon incorporates certain features in support of the access isolation 
mechanism (AIM). If your site does not use access classes above system_low. you do 
not need to read the following and should skip to "Standard Driver Modules" below. 

Every request processed by the I/O daemon has an access class. The access 
class of a request is equal to the authorization of the process that submitted the 
request. Each piece of output normally has an access class banner. For print requests, 
the access class banner appears on the head sheet of each printout. For punch 
requests on the local punch, the access class banner apJ)P...ars in the flip cards at the 
beginning of each deck. At remote sites, no access class banner appears. However, if 
the access class of a request is system_low and the access class name for system_low 
is nUll, then the access class banner is omitted. 

15-12 AM81-{)4 



In the interest of security, some sites may find it desirable to have requests of 
the same type automatically separated according to access class. To illustrate how this 
access class separation might be used, imagine a site at which two different access 
classes are defined. One of these, called "public," is available to all users. The other, 
called "confidential," is available to only a limited number of users who deal with 
sensitive information. Further, suppose that the site has two priniers, both of which 
are used to process requests of the same type. Assume that different distribution 
points for public and confidential output exist so that stricter control can be exercised 
over the release of confidential output. In this case, the operators must separate 
confidential output from public output by examining the access class banners. An 
error in bursting or separating the output could result in confidential output being 
accidentally released with public output. In addition to this security weakness, there is 
also the operational burden of separating the output according to access class. 

The I/O daemon offers a solution to the above problems. Each driver process 
can be made to handle only requests of a single access class or a range of access 
classes. Therefore, all public output could be directed to one printer and all 
confidential output to the other. Hence, both the operational burden and the potential 
for operational errors mentioned above are eliminated. To facilitate output handling. 
the public printer could actually be located in the public distribution area while the 
confidential printer could be located in the confidential distribution area. 

The benefits of this automatic separation are not obtained without cost. It is 
probable that printer utilization and hence turnaround time for output will be 
somewhat degraded on the whole. This is because it is unlikely that the amount of 
output will be evenly divided between the access classes. For example, the number of 
public requests might be much larger than the number of confidential requests. In this 
case, the confidential printer would be underutilized. 

Other disadvantages become evident if one considers the situation where there 
are fewer printers than access classes. If instead of two printers, only one were 
available at the hypothetical site, then this printer would have to be switched back 
and forth between public and confidential output. This switching, of course, increases 
the operational burden. Also, it upsets the priority selection of requests. Suppose, for 
example, that the site decides to switch between public and confidential output every 
30 minutes. A print request submitted to queue 1 might have to wait this amount of 
time before being processed. By contrast, if the printer were processing both access 
classes at once, the request would be performed immediately (assuming queue 1 were 
empty). 

Unfortunately, even with the switching of printers from one access class to 
another, automatic access class separation of output simply does not scale up for a 
large number of access classes. Clearly, at some point it becomes impractical to rotate 
a small number of devices among a larger number of access classes. Therefore, sites 
using a large number of access classes or sites not willing to tolerate some of the 
drawbacks cited above may choose to forego automatic access class separation of 
output. In this case, each device can be made to handle the full range of access 
classes from system_low to system_high. Care must be taken to ensure proper 
distribution of output. Control forms can provide a helpful receipt for each piece of 
output. 

15-13 AM81-04 



Dev i ce Classes 

The mechanism for separating output according to access class is the "device 
class." Each request type can be partitioned into any number of separate device 
classes. One or more devices can be specified for each device class. Also, a range of 
access classes can be specified f or each device class. When a driver process is 
initialized, the operator normally indicates the device to be run and the request type. 
However, if device classes are defined for the request type, then the operator must 
also indicate a device class. This determines the access class range of requests that the 
driver processes. 

It is important to note that the device class of a request is not something the 
user can specify. In fact, the entire device class concept is invisible to users. Unlike 
the type and priority queue of a request, the device class is not determined at request 
submission time. Rather, it is determined at request processing time. Hence, it is 
possible to modify the I/O daemon tables and change the predicted device classes of 
requests stored in the queues. 

A device class is defined by a device_class substatement. The device_class 
substatement is treated as a substatement for request types and, as such, can be freely 
intermixed with other substatements for request types. 

device_class: <name>; 
defines the name of a device class belonging to the associated request type and 
denotes the beginning of a device class description. Any subSf'.-quent substatements 
(see below) apply to this device class until the next device_class substatement 
or Request_type, Line, or Device statement is encountered. Any <name> may 
be chosen up to maximum of 24 characters. 

If no device classes are explicitly defined for a request type, then a default 
device class is defined by implication. The primary purpose of a default device class 
is to allow certain substatements for device class to be specified for a request type 
when it has no explicit device classes. One such substatement is the device 
substatement that was previously described under "Substatements for Request Types." In 
fact, the device substatement is actually a substatement for a device class. When no 
device classes are defined, the device substatement applies to the default device class 
for the preceding request type. The same is true of all substatements for device 
classes. 

Substatements for Device Classes 

The substatements beiow describe various attributes of a aeVlce class and may 
appear in any order following a device_class substatement or following a Request_type 
statement if no device classes are defined. 

min_access_class: <access_class>; 
defines the minimum access class of a request to be processed in the associated 
device class. The <access_class> must be a standard access class string as 
defined by the convert_authorization_ subroutine. If omitted, the default 
minimum is system_low. 

15-14 AM81-Q4 



max_access_class: <access_class>; 
defines the maximum access class of a request to be processed in the associated 
device class. The <access_class> must be a standard access class string. If 
omitted, the default maximum is the access_class string given in min_access_class. 

min_banner: <access_class>; 
defines the minimum access class banner to be placed on the head sheet of 
printed output, on the flip cards of punched output, and on the control forms 
for all output Normally, the access class of LlJe request is used. However, if 
this access class is less than that specified fa! min_banner, Llten the 
min_banner value is used. The <access_class> must be a standard access_class 
string. If omitted, the default min_banner is the access_class string given in 
min_access_class. 

device: <name>; 
specifies a device that can be used to process requests of the associated device 
class. The <name> must appear as the parameter of a Device statement. More 
than one device substatement may be specified for a device class. 

Care should be taken to ensure that the full system access range (system_low 
to system_high) is covered by the union of access ranges of the device classes for 
each request type. (If no device classes are defined f or a request type, the 
max_access_class substatement should be set to system_high for the default device 
class.) If not, requests of access classes that are not included are never processed. 
Upon discovering such a request, the I/O coordinator prints an error message and 
skips the request. Also, it should be noted that if two or more device classes from 
the same request type have overlapping access ranges, then a request falling in this 
overlap is assigned to the device class defined first in the I/O daemon tables source 
file. 

As mentioned above, "'when multiple device classes are defined for a request 
type, requests are generally not performed in the usual order dictated by priority and 
submission time. This phenomenon is most noticeable when one device must be shared 
among several device classes. In order to aid the operators in determining when to 
switch a device to a different device class, the I/O coordinator keeps track of 
"waiting" requests. A waiting request is one that is passed over in the normal request 
selection order while the coordinator looks for a request to satisfy a different device 
class, or is explicitly requested to run at high priority by an operator command. A 
count of waiting requests is kept on a per device class basis. When the number of 
waiting requests for a device 'class becomes large, this indicates that the device class is 
receiving inferior service relative to some other device class for the same request type. 
Thus, operators could be instructed to switch a device to another device class whenever 
the number of waiting requests reaches some limit. (See the coordinator command, 
wait_status, in the Multics Administration, Maintenance and Operations Commands 
manual. Order No. GB64.) 

15-15 AM81-04 



Substatement for Default Request Type 

The default_type substatement described earlier under "Substatements for 
Devices" names the default request type that & device processes unless overridden by 
the operator. However, if device classes are defined for the request type, then the 
parameter of the default_type substatement must include both the request type and 
device class names separated by a period (e.g., printer. confidential). 

Source File Example Using AIM 

This example shows a portion of a source file that illustrates the use of AIM 
features. 

Request_type: 
generic_type: 

device_class: 
device: 
device: 

device class: 
min_access_class: 
max_access_class: 
min_banner: 

device: 

Device: 
driver_module: 
prph: 
default_type: 

Device: 
driver_module: 
prph: 
default_type: 

Request_type: 
generic_type: 
max_access_class: 

Device: 
driver_module: 
prph: 
default_type: 

printer; 
printer; 

pub 1 i c; 
pr inter _1 ; 
printer_2; 

/* for system_low output */ 
/* primary public printer */ 
/* can use this one in 

emergenc i es 1c / 

confidential; 
1 eve 11 ; 
system_high; 
leve12; 

/* for output above system_low */ 

/* all confidential output 

printei_2; 

printer_I; 
printer_driver_; 
prta; 
printer.public; 

has at least a level 2 banner 
authorization */ 

/* use only this printer located 
in secure area */ 

printer_2; 
printer_driver_; 
prtb; 
printer.confidential; 

punch; 
punch; 
system_high; 

punch_l; 
punch driver; - -puna; 
punch; 

15-16 

/* handle all access classes */ 

AM81-{)4 



Standard Driver Modules 

A driver module must be specified for each device defined in the I/O daemon 
tables. A driver module is a program that embodies specific knowledge of how to 
manipulate a particular device. The standard driver modules provided by the system 
are described below. 

As mentioned earlier in tnts section, the <string> argument of the args or 
minor_args substatements are interpreted by each individual driver module. Even 
though the format of these strings is defined as arbitrary, each of the standard driver 
modules support a basic <string> having the following syntax: 

key= value 

The key must be unique in <string> and acts like a control argument. The value is 
the argument associated with the key. Keys and values may not contain commas, but 
may contain spaces. The key/value pairs are separated from one another by a comma. 
For example: 

args: 

The complete <string> must appear in quotes and standard Multics quoting 
conventions apply within <string>. The total length of <string> cannot exceed 256 
characters. 

The following paragraphs describe the args and minor_args keys that are 
supported by each of the standard driver modules, as well as other attributes of the 
I/O daemon tables device specification. 

printer_driver _ MODULE 

This driver module should be specified for standard Multics printers. The prph 
substatement must be specified for the associated device. Multiple minor devices are 
not supported and the minor_args substatement is ignored. For standard printer 
operation, no args substatement need be specified. However, the args substatement can 
be used to define a nonstandard device interface module (DIM) and/or a nonstandard 
control terminal accountability form type. This is done by including the following 
key-value pairs in the args substatement. 

dim= <DIM_name> 

The "dim=" key defines <DIM_name> to be the DIM through which the device is 
attached. The default DIM for printer_driver_ is prtdim_, 

The "form_type=" key defines <form_name> to be the control form type. If not 
specified, a default control form type is used. 

15-17 AM81-04 



punch_driver_ MODULE 

This driver module should be specified for standard Multics punches. The prph 
substatement must be specified for the associated device. Multiple minor devices are 
not supported and the minor_args substatement is ignored. For standard punch 
operation, no args substatement need be specified. However. punch_driver_ accepts an 
args statement of the same form as printer_driver_. The default DIM is cpz. 

reader driver MODULE - -
This driver should be specified for standard Multics card readers. The prph 

substatement must be specified for the associated device. Multiple minor devices are 
not supported and the minor_args substatement is ignored. For standard reader 
operation. no args substatement need be specified. However. the following key-value 
pairs may be specified in the args substatement 

dim= <DIM_name> 

The "dim=" key defines <DIM_name> to be the DIM through which the device is 
attached. The default dim for reader_driver_ is crz. 

station= <Station_id> 

The "station=" key defines <Station_id> to be the name of the card input station to 
be associated with this card reader. The default station id is "reader". For example: 

Device: 
driver_module: 
prph: 
default_type: 

Request_type: 
generic_type: 
max_queues: 
device: 

reader; 
reader:,.driver_ 
rdra; 
dummy; 

dummy; 
dummy; 
1 ; 
reader; 

While the reader_driver_ does not process requests from the coordinator. the 
syntax of the iod_tables requires the presence of a request_type substatement. It is 
recommended that the punch request type be used for this purpose, as well as for the 
reader minor device of the remote_driver_. 

Sites with CCU (combined card unit) devices should define two devices: one 
with punch_driver_ for the punch, and one with reader_driver_ for the reader. 

15-18 AM81-o4 



spool_driver _ MODULE 

This driver module should be specified for a major device that will be used to 
write user print requests onto tape instead of the printer. The prph substatement must 
be specified, but the <name> need not be an 10M channel. (It is used as an I/O 
switch name for the tape attachment) The default type may be omitted if the 
operator is required to specify the request type each time the i~device" is used. For 
example: 

Device: 
driver_module: 
prph: 

spooler; 
spool_driver_; 
tape; 

The spool_driver_ ignores all args substatements. It does not accept multiple 
minor devices and does not accept any control terminal specifications. 

remote driver MODULE - -

This driver module should be specified for all remote printer/punch/reader 
stations. Two types of stations are supported by the remote driver. A Type I station 
can be initialized from anyone of several communications lines. A Type II station, 
which does not have an input device, is initialized on a dedicated communications line 
as a predefined station. The two station types are described separately below because 
the iod_tables description of each is different. 

The driver process must have the dialok attribute in the PDT, and it must 
have rw access to the access control segment (ACS) of the communications line it will 
attach. The remote_driver_ can handle one minor device for a card reader and an 
arbitrary number of minor devices for printers and punches within the limits of the 
physical remote device and the line protocol. (A minor device for the reader must be 
specified if the remote device is to read card input.) 

The remote_driver_ is designed for maximum flexibility, so its description is 
rather complex. You should examine the entire subsection before you attempt to set 
up a remote driver in the iod_tables. 

Normal Setup of the remote_driver _ (Type I Stations) 

To set up the remote_driver_ for a remote station, you must define a set of 
communication lines for remote stations, with driver processes listening to each line as 
stations dial in. 

The operator types in the station_id and password via the station command. 
Once validated, the driver locates the major device that has the same name as the 
station_id. and begins initialization. If default request types are defined for the minor 
devices, they are used. If the default request type is omitted for one or more minor 
devices, the remote station operator is asked to specify the request type. Of course, 
the minor device must be allowed to use the request type by a device substatement in 
the Request_type description. 

15-19 AM81-04 



There must be at least one Line statement for each communications line. The 
Line statement defines the logical line_id and specifies the channel, the attach 
description (which defines the terminal type), and which stations may use the line_id. 
For example: 

Line: 
channel: 
att_desc: 

device: 
device: 

Line: 
channel: 
att_desc: 

device: 
device: 

278o_1 ; 
a. hOO 1 ; 
"_tty Aa -terminal ibm2780 
-ebcdic -ttp IBM2780 -runsp 
-bretb -mu 1 t i _record"; 
station_a; 
station_b; 

2780_2; 
a.h002; 
"_tty Aa -terminal ibm2780 
-ebcdic -ttp IBM2780 -runsp 
-bretb -multi_record"; 
station_a; 
station_b; 

-comm bisync_ 
5 -ttd_l imi t 2 

-comm bisync_ 
5 -ttd_l imi t 2 

Each logical line_id (e.g., 2780_1) describes a communications line that a station 
may dial into. The attach description defines the type of station using the channel. If 
a single channel (communications line) is to be used for more than one device type, 
separate line_ids can be defined with the same channel to allow the central site 
operator to choose the device type during driver initialization. 

The attach description string is the one used to attach the teleprinter device, or 
console, of the station. It is also the basis for the attachment description of the other 
minor devices. If the attach description for a minor device is to be different from 
the teleprinter device for that minor device, the attach options may be put into the 
minor args following a desc= key. Any attach options found in the minor args will 
override those of the teleprinter device for that minor device. 

Each station_id that may use a given line_id is listed as a device in the device 
substatement of the Line statement, and each must correspond to a major device in a 
Device statement. 

There must be a Device description specified for each station_id. The Device 
description must include a line substatement with the keyword "variable" specified. 
This will allow the driver to use some or all of the communication lines defined in 
Line statements. Tnere must also be minor_device substatements defined for each 
device attached to the remote terminal. The default_type substatements may be omitted 
if the remote station operator is to specify the request type for the minor devices. 
Normally, the Device description will be general enough to allow the station to run 
any device type, as shown in the following example. (This might not be true if 
special attach options are defined for one or more minor devices using the desc= key 
in the minor_args substatement.) 

15-20 AM81-04 



Device: 
1 i ne: 
driver_module: 

minor_device: 
minor_args: 

minor_device: 
minor_args: 
default_type: 

minor_device: 
minor_args: 
default_type: 

Device: 
line: 
driver_module: 

minor_device: 
minor_args: 
default_type: 

minor_device: 
minor_args: 
default_type: 

minor_device: 
minor_args: 
default_type: 

station_a; 
variable; 
remote_driver_ 

prt; 
"dev= printer"; 
/* no default type has been specified */ 

pun; 
"dev= punch"; 
sta pun; /* makes this rqt required */ 
/* for this minor_device */ 

rdr; /* so we can read cards */ 
"dev= reader"; 
sta_pun; /* just a dummy entry */ 

station_b; 
variable; 
remote_driver_ 

prt; 
"dev= pr i nter l' ; 

stb_prt; /* always true for station_b */ 

pun; 
"dev= punch"; 
stb pun; /* makes this rqt required */ 
/* for this minor_device */ 

rdr; /* so we can read cards */ 
'Idev= reader " ; 
sta_pun; /* just a dummy entry */ 

Each station may dial in on either Line (see example above); its operating 
characteristics will be the same. The Device descriptions for the two stations shown 
have the following difference. Station_a is allowed to specify its printer request type 
after giving its station command, but station_b will always use the stb_prt request type 
because this request type is specified in a default_type substatement. 

The request type that is used for the default type of the reader minor devices 
is needed to suppress questions to the operator and to satisfy the syntax rules of the 
iod_tables_compiler. The request type specified can be any existing request type or it 
can be a dummy request type used for the reader. No requests will ever be sent by 
the coordinator for the reader. 

A Type I station is always assumed to have an input device, which acts as a 
slave terminal for the driver. As such. any control terminal definitions associated with 
the major device will be accepted for the preparation of accountability forms only 
(see "Terminals that Control the Driver" later in this section). However. a Type II 
station may accept a control terminal as a slave terminal if specified. 

15-21 AM81-04 



Setup for Stations That Cannot Input Commands (Type II Stations) 

Because it has no input device, the Type II station can be identified only by 
the line it dials into. Therefore, the line substatement for the major device specifies 
the exact channel name to be used. There are no Line statements associated with this 
type of station. 

Device: 
1 i ne: 
driver_module: 
args: 

minor_device: 
default_type: 
minor_args: 

minor_device: 
default_type: 
minor_args: 

station_c; 
a.h003; 
remote_driver_; 
"station= station_c, slave= no, 
desc= -terminal tty_printer_ -comm tty_; 

prtl; 
stc text; 
"dev= printer, desc= -pll 85 -ppl 66 
-htab -ttp LA120_10061_8xll"; 

prt2; 
stc_prt; 
"dev= printer, desc= -pll 140 

-ppl 88 -htab -ttp LA120_160L_8xl1"; 

A default request type should be specified for each minor device. This is done 
to avoid making the central site operator answer questions from the driver for each 
minor device during driver initialization and reinitialization. 

Remote Driver <string> Arguments 

All the <string> arguments acceptable to the args and minor_args substatements 
that are defined for the remote_driver_ are described as follows: 

a. Arguments which apply to both Type I and Type II stations. 

desc= <attach_description> 
The desc= key is used to specify additional parameters to the lID module in 
the form of an iox_ attach description. This key may be used for any 
minor_args substatement. Any attach options specified will override attach 
options for the teleprinter device andlor any attach options which are common 
to all minor devices. This key is also used in the args substatement for Type 
II stations. to specify attach options for the teleprinter device. For more 
information. see the definition of the attach description for the communications 
module or terminal module associated with the major or minor devices. Also. 
see the aLLaCn OplIons lor Lnese ueVlce modules: remote_teleprinter_, 
remote_printer_. remote_punch_. and remote_reader_. For descriptions of these 
modules and other 110 modules. refer to the Multics Subroutines and I/O 
Modules manual, Order No. AG93. 

dev= <minor_device_type> 
The dev= key is used to specify the device type of a particular minor device. 
This key is required for each minor device. The value of minor_device_type 
must be printer. punch. or reader. 

15-22 AM81-04 



form_type= <ctl_term_form_type> 
The form_type= key is used to specify the name of a control terminal 
accountability form. This is an optional argument and is used for major 
devices only. 

b. Arguments which apply only to Type II stations. 

station= <station_id> 
When the station= key is used in an args substatement, the driver will accept 
any station_id (other than blank). The driver will accept any device dialing in 
on this channel as this station_id without authentication controls. All specified 
minor devices and default request types will be used. Normally, the value will 
be the name of the Device (i.e., the station name). This is used for a station 
without an input device or with a dedicated communications line. 

slave= <yes_or_no> 
The slave= key value of "yes" is used to tell the driver that it should accept 
commands from the remote terminal as a slave terminal, as well as from the 
central site terminal (master terminaI). The slave= yes argument can be used to 
make a Type II station into a Type I station over a dedicated phone line. This 
key is optional and is only used in the args substatement of the major device. 
The default is "no". 

I/O Modules for Remote Stations 

The following paragraphs describe how to define remote stations in the 
iod_tables using two of the available I/O modules. 

hasp_workstation _ I/O Module 

The hasp_workstation_ I/O module allows one or more I/O daemon processes 
to control the devices attached to a remote HASP workstation. 

Each device of the workstation should be configured as a separate Type II I/O 
daemon; the slave parameter of the args substatement for each driver must be given as 
"slave= no"; the line substatement must specify the appropriate subchannel of the 
HASP multiplexed channel on which the remote station will be connected. 

All commands needed to control the I/O daemons driving the devices of a 
HASP workstation must be entered by the central system operator. 

For more information about HASP and the hasp_workstation_ I/O module. 
refer to the Multics HASP Service and Utility Manual, Order No. GB60. 

15-23 AM81-D4 



tty yrinter _ I/O Module 

The tty_printer_ I/O module will allow the I/O daemon to run a hardcopy 
terminal as a printer for enter_output_request requests. It is used with the I/O 
Daemon running the remote_driver_ module for type II Stations. A typical iod_table 
definition for a polled VIP Station would look like: 

Device: 
driver_module: 
1 i ne: 
args: 

minor device: 
minor_args: 
default_type: 

vip 1 ; 
remote driver; 
b.h006:p01; /i MUX channel for printer */ 
"station= vip1, 
desc= -terminal tty_printer_ -comm tty_ 
-pll 118 -ttp VIP7714 -htab -vtab"; 
prt; 
"dev= printer"; 
vipl_prt; 

The hardcopy device of a polled VIP station is typically an OEM version of a 
TN1200 with no keyboard. This means that the usable line length is 118 characters. If 
this line is to be set correctly during driver initialization, the request type definition 
in the iod_tables should specify an "rqti_seg" which sets the physical line length to 
118 (otherwise, remote driver_ will use a default line length of 132 for no rqti 
segment). The paper_info driver command can be used to correct a bad line or page 
length setting. 

If the hardcopy device uses a VFU tape or wheel for Form Feed (FF) and 
Vertical Tab (VT) control. set the stops as follows: 

VT and FF at Line 1 
VT on 1 y at Lines 11, 21, 31, 4 1, 51, 61 

(assumes 66 lines per physical page) 

It is always assumed that the terminal will support FF control characters. 

Adding the -vtab option to the attach description of the args keyword will 
enable vertical tabs to be sent whenever it is more efficient than multiple New Line 
characters. Some terminals do a top of form function for both FF and VT control 
characters. Hence, the -vtab option should not be used for these terminals. 

Adding the -htab option to the attach description of the args keyword causes 
Horizontal Tab (HT) characters to be sent instead of multiple space characters 
whenever possible. 

Often. head and tail sheet banners and separator bars are not needed at a 
polled VIP station (they take a long time to print.) These can be suppressed in the 
rqti_segment or by the driver commands: 

banner_type none 
banner_bars none 

15-24 AM81-04 



The tty _printer_ I/O Module can also be used to make the login terminal of 
a non-system driver act as a printer. You would specify this as follows: 

Device: 
driver_module 
1 i ne: 
args: 

minor_device: 
minor_args: 
default_type: 

Request_type: 
driver_userid 
rqti_seg: 
accounting: 
device: 

my_prt; 
remote driver 
user _i7o; -
"s tation= my_prt, 
desc= -terminal tty printer -comm syn 
-inhibit close -pll-118 -htab -vtab"; -

prt; 
"dev= printer\l; 
private_rqt; 

private_rqt; 
Person_a.Project_b; 
private_rqt_info; 
nothing; /* use the nothing command */ 
my_prt.prt; 

This will cause the printer output switch to be connected via syn_ to the user_i/o 
switch. You can use the -inhibit close attach option to prevent driver commands. 
which result in device detachment. from detaching the user_i/o switch. 

Creation and Maintenance of 110 Daemon Tables 

Creation of the I/O daemon tables begins with the preparation of a source 
segment using the language described earlier in this section. This source segment can 
be produced with any text editor. As mentioned earlier, the source segment is 
translated into a binary representation by the iod_tables_compiler command (described 
in the Multics Administration, Maintenance and Operations Commands manual. 
Order No. GB64). By convention. this command assumes that all source segments have 
a name ending with the iodt suffix. The standard name for the I/O daemon tables 
source segment is iod_tables.iodt. When this segment is compiled. an object segment is 
created with the name iod_tables. 

The I/O coordinator looks for the iod_tables segment during its initialization. 
It expects to find this segment in the directory >daemon_dir_dir>io_daemon_dir. 
(Normally. the source segment is kept in this same directory, although it is not 
essential.) The I/O coordinator also looks for a second segment named iod_workin~tables. 
This segment is the working copy of the I/O daemon tables and is the one referenced 
by driver processes and user processes. The reason for this second segment is to 
facilitate making changes to the I/O daemon tables. Clearly. the source segment can 
be modified at any time since it is not referenced by the I/O daemon or by users. 
Also, the source segment can be recompiled at any time. Doing so changes the 
iod_tables segment, but not the iod_ workin~tables segment 

15-25 AM81-04 



Each time the I/O coordinator is initialized, it replaces the contents of 
iod_ workins-tables with the contents of iod_tables. If no iod_ workins-tables segment 
exists (as would be the case at a new site), one is created with the contents of the 
iod_tables segment Hence, changes to the I/O daemon tables do not take effect until 
the next I/O coordinator initialization. If an immediate change is necessary, then the 
coordinator must be logged out and logged in again. 

At times it may become necessary to examine the contents of iod_tables, 
iod_workinLtables, or some other object segment produced by the iod_tables_compiler. 
For example, one might suspect that the iod_ workins-tables segment has been damaged 
or one might lose the source segment from which iod_tables was generated. The 
print_iod_tables command (described in the Multics Administration, Maintenance and 
Operations Commands manual, Order No. GB64) essentially performs the inverse 
translation of that performed by iod_tables_compiler. Given any object segment 
generated by the iod_tables_compiler, print_iod_tables prints a source language 
description of that object segment. In fact, if the output from this command is 
directed to a segment, the segment can be compiled by the iod_tables_compiler to 
reproduce the object segment 

CREATION AND MAINTENANCE OF I/O DAEMON QUEUES 

The I/O daemon queues are created automatically by use of the 
create_daemon_queues command (described in the Mu/tics Administration, Maintenance 
and Operations Commands manual, Order No. GB64). The queues are created in the 
same directory as the I/O daemon tables, i.e., >daemon_dir_dir> io_daemon_dir. The 
command determines what queues to create based on information contained in the 
iod_tables segment For each request type, one to four queues are created depending 
on the value of Max_queues or the per request type max_queues, whichever is in 
effect The name of each queue is of the form XXX_N.ms where XXX is the request 
type name and N is the priority number. The ms suffix indicates that each queue is a 
ring 1 message segment 

Because the I/O daemon queues are message segmen 1s, access to the queues is 
determined by extended access modes. The IO.SysDaemon identity is given full 
extended access, i.e., add, delete, read, own, and status (adros) to all queues. For 
standard system queues (i.e., queues for which the driver_userid of the corresponding 
request type is IO.SysDaemon). aros permission is given to all users. Otherwise, the 
assumption is made that the queues are dedicated to the particular project named in 
the driver_userid. In this case, aros permission is given just to users of that project' 
The list_acl command can be used to list the extended access on the queues and the 
set_acl command can be used to change the extended access on the queues. 

Changes to the 1/0 daemon tables must sometimes be coordinated with changes 
to the I/O daemon queues. In particular, when a new request type is added, new 
queues must be created for this request type. This can be done as soon as the 
iod_tables segment has been recompiled. Use of the create_daemon_queues command 
does not affect any existing queues, but does create new queues for any newly defined 
request types. If a request type is removed from the I/O daemon tables, the queues 
are not automatically deleted. The delete command can be used to delete obsolete 
queues. 

15-26 AM81-04 



MAINTENANCE OF AIM FEATURES 

At sites using access classes above system_low, a special awareness is required 
of the way in which AIM affects the I/O daemon. To begin with, the I/O 
coordinator should always be logged in at system_high authorization. This is 
appropriate because the coordinator must distribute requests of all access classes. A 
driver process, on the other hand, does not necessarily process requests of all access 
classes. A driver is associated with a device that in turn is associated with a device 
class. The max_access_class for the device class defines an upper limit on request 
access classes handled by the driver. Hence, a driver authorization need be no higher 
than the associated max_access_class. 

The access class of the io_daemon_dir directory must be system_low so that 
users of all authorizations have access to its various databases. The iod_tables and 
iod_workin~tables segments, for example, both have a system_low access class. This 
implies, of course, that the iod_tables segment can only be compiled at system_low 
authorization. The I/O daemon queues should have a system_high access class. This is 
possible because the queues are message segments which, unlike ordinary segments, can 
have a higher access class than their containing directory. The access class of a 
message segment is determined by the maximum authorization of the process that 
creates it. This implies that the create_daemon_queues command should only be used 
by persons having a system_high maximum authorization. Furthermore, because the 
queues are created in a system_low directory, the user of create_daemon_queues must 
have a system_low authorization. 

The directories contained in the io_daemon_dir directory are potentially 
"upgraded," i.e., they may have access classes higher than that of io_daemon_dir. 
Specifically, the access class of the coord_dir directory equals the coordinator 
authorization while the access class of a driver directory equals the authorization of 
the corresponding driver. Thus, at sites using authorizations above system_low, 
upgraded subdirectories are created in io_daemon_dir. This implies that io_daemon_dir 
must have a quota so that quota can be moved to upgraded subdirectories (as required 
by AIM). The coord_dir directory, if upgraded, is assigned a quota of 250 records. 
Each driver directory is assigned a quota of 2 records if no minor devices are 
defined, or else 2 records per minor device. The quota initially assigned to the 
io_daemon_dir directory must take into account the requirements of these subdirectories 
plus the I/O daemon queues and the other segments in io_daemon_dir. Somewhere 
between 300 and 350 records is usually sufficient. 

REQUEST TYPE INFO SEGMENTS 

Each printer request type may have an optional request type info segment (rqti 
segment) associated with it that defines the physical paper characteristics, the logical 
VFU channel stops, and some additional driver control data. It is recommended that a 
special form have a specific request type and thus a separate set of channel stops. 
The channel stops are set only during driver initialization and remain constant for all 
requests done by the driver. 

15-27 AM81-()4 



In addition, a site may wish to use the request type feature to group requests 
that use the same VFU tape, regardless of what preprinted form stock is needed for 
the request. By using the "Aauto_print" driver mode, the operator may run requests 
associated with a given VFU tape (request type) in sequence and change the form 
stock on the printer to meet the needs of each request. 

Printers that have firmware loadable VFC images are loaded by the driver 
during driver initialization (the paper may have to be realigned by the operator). For 
printers that use punched paper VFU tapes, the physical VFU. tape for the request 
type must be mounted on the printer at the time the driver is initialized. The driver 
indicates the number of lines-per-page and the lines-per-inch switch setting that the 
operator should use. 

The size of the head and tail sheets is set automatically to the physical 
dimensions of the paper as defined in the request type info segment. 

The directory named >daemon_dir_dir>io_daemon_dir>rqt_info_segs must give 
sma access to the administrator and s to all other users. The initial ACL for segments 
must be set to rw for the administrator and r to all other users. AIM access, for 
those sites using the access isolation mechanism, should be system_low (the default). 

This directory contains all request type info segments. If a single segment 
describes the paper characteristics for more than one request type, added names may 
be used. in place of separate identical segments. Info segments are only required for 
printer request types that have the rqti_seg substatement in the iod_tables. When no 
rqti segment is used, the defaults described for the cv _prt_rqti command are used (see 
"Syntax for the Request Type Info Source Segment" below). 

The printer rqti segments are created by the cv_prt_rqti table conversion 
command (described in the Multics Administration, Maintenance and Operations 
Commands manual, Order No. GB64). A sample source file is shown in "Example of 
a Request Type Info Segment" below. 

The contents of an rqti segment may be printed by the display _prt_rqti 
command. This command formats its output so that when directed to a file, the file 
can be used as input to the cv_prt_rqti command. 

Syntax for the Request Type Info Source Segment 

The request type info source segment contains keywords that define certain 
values put into the request type info segment. The general syntax is of the form: 

keyword: <value>; 

where the keyword defines a parameter to be set, and the <value> defines what the 
value of the parameter is. 

15-28 AM81-o4 



The keywords and a description of the values acceptable to the cv _prt_rqti 
command are defined as follows: 

driver_attributes: [A] value {, [A] value .. .} ; 
The driver_attributes keyword is used to establish some operating parameters 
for the driver. There are two values defined: autoJo and meter. Each value 
may be preceded by the character "N' to negate the parameter. The 
driver_attributes keyword is optional (the default is Aauto~o.Ameter). 

The autoJo value is used to make the central site or remote printer driver 
request Service from the coordinator immediately after initialization without 
asking for a go command. For printers on remote stations that are always 
made ready to accept print files (e.g., where another computer simulates an 
RJE station), the autoJo value is particularly useful as a means of starting or 
resuming the processing of print requests without operator intervention. 

The .meter value is used to tell the driver to maintain internal metering data 
about its operation. (Note: metering is done according to the driver module 
design and not all driver modules implement metering.) 

driver_wait_time: <number>; 
The driver_ wait_time keyword is optional (the default is 30 seconds.) It is used 
to set the time interval that the driver will sleep if there are no more requests 
in the queues. At the end of the interval. the driver will again ask the 
coordinator to check the queues for requests. The value is a decimal number 
between 30 and 300 seconds. 

banner_type: standard I brief I none; 
The banner_type keyword is optional (the default is ·'standard"). This keyword 
specifies to the driver whether the standard head/tail sheets will be printed for 
each copy of a request, a brief version, or none (separator bars only). The 
value must be either "standard", "brief", or "none". 

banner_bars: double I single I none; 
The banner_bars keyword is optional (the default is "double"). This keyword 
specifies to the driver how the separator bars at the bottom of the head sheet 
are to be printed. "Double" means overstruck separator bars, "single" are 
non-overstruck bars, and "none" causes the bars to be suppressed. 

prt_control: [A] value {, [A] value ... } ; 
The prt_control keyword is used to set some driver request processing modes. 
There are five values defined: auto_print, force_esc, force_nep, force_ctl_char, 
and force_nsep. Each value may be preceded by the character "A" to negate its 
value. The prt_control keyword is optional (the defaults are auto_print, 
A force_esc, Aforce_nep, Aforce_ctl_char, and Aforce_nsep). 

auto_print 
This mode causes the driver to start printing each request as soon as it 
is received from the coordinator (after a go command has been given). 
This is the normal mode of operation. When this mode is turned off 
(A auto_print), the driver goes to request command level immediately 
after printing the log message. This allows the operator to align the 
paper, change the paper, print sample pages and issue all other 
commands allowed at request command level (including the cancel and 
kill commands). 

15-29 AM81-o4 



force_esc 
This mode turns on the esc mode of the printer DIM during the 
processing of each request. This mode must be on if the slew-to-channel 
functions are to operate. (Note: users cannot set this mode with the 
enter_output_request command.) 

force_nep 
This sets the noendpage (nep) mode of the printer DIM during the 
processing of each request. whether the user has requested that mode or 
not This mode should be used f or any request type that uses 
preprinted or preformatted paper (e.g.. gummed labels. invoice forms. 
etc.) This causes the request to be properly formatted even though the 
user may forget to give the "-nep" control argument to the 
enter_output_request command. 

f orce_ctl_char 
This sets the ctl_char mode of the printer DIM during the processing 
of each request. which allows an I/O daemon to send control sequences 
directly to a remote printer instead of discarding the characters or 
printing their octal equivalents. Setting this mode enables users who 
prepare print files through Compose to activate special printer features 
such as superscripting or multiple fonts. This mode is honored only by 
the remote printer driver module. remote_driver_. (Note: users can not 
set this mode with the enter_output_request command.) 

force_nsep 
This mode forces the driver not to produce multiple header and tail 
sheets for a request which generates multiple copies. Instead. a single 
header sheet is produced before the first copy and a single tail sheet is 
produced after the last copy. If this mode is off (flforce_nsep), the 
generation of separators is controlled by users with the enter_output_request 
command. 

message: <"string">; 
The message keyword is optional. If specified. the value must be a character 
string enclosed in quotes, and may include newline characters. This character 
string must not be longer than 256 characters. Any defined message is 
displayed on the message coordinator terminal during the initialization of an 
I/O daemon driver for this request type. Typically. this message would tell the 
operator to mount some special form stock or which VFU tape number to use 
f or this request type. 

paper_length: <number>; 
The paper_length keyword is optional (the default is 66.) The value is a 
decimal number between 10 and 127 which specifies the number of lines on 
.......... ". .... ...,..,.,"",:,.."'1 .... "' .... .n. ...... .r +1-..a ...... ft .... .o..... Tl...A .... " ........ 'h..a... .......f l; ... .ft.r"I ,:1.0. ...... .,..., ... ,:1".. ......... +'kl'\. .... ,., ...... 'h.. ........ 
Vll~ PllJ~I"'a.1 pa.o'" VI 1..11""' pa.p"'I. .111""' llLUllU"'1 VI uu~ u~.P\"UU~ VU 1..11~ UUUI~.l 

of lines per inch that is used (see the "lines_per_inch" keyword). This number 
includes all lines, even though they may normally be used for top or bottom 
margins. For example. there are 66 lines on an l1-inch page at six lines per 
inch. 

15-30 AM81-04 



paper_width: <number>; 
The paper_width keyword is optional (the default is 136 for local printers and 
132 for remote printers). The value is a positive decimal number that specifies 
the maximum number of character positions on one printed line. A warning 
message is given if a value greater than 136 is specified. 

lines_per_inch: <number>; 
The lines_per_inch keyword is optional (the default is 6.) The value is a 
number that specifies the vertical spacing used by the printer for this request 
type. The value must be 6 or 8. 

line( <line_no»: <ch_1,ch_2,ch_3, ... ,ch_n>; 
The line keyword is optional. There may be one line keyword for each line 
from 1 to the paper_length. The line keyword specifies which logical VFU 
channels are defined to stop at <line_no>. There may be 1 to 16 channel stops 
for any given line, each ch_i is a number between 1 and 16. 

For example: 

1 i ne (20) : 1,5,11; 

specifies that a slew to channels 1, 5, or 11 causes the printer to stop at the 
beginning of line 20. 

NOTE: Line 1 is always defined as the form feed position. Typically, the 
operator positions line 1 at the fourth printable line on a page. 

end; 
This keyword is required. The end keyword has no value. It specifies the end 
of the request type info source segment. 

Example of a Request Type Info Source Segment 

/* SAMPLE SOURCE FILE FOR A PRINTER REQUEST TYPE INFO SEGMENT */ 
/ .. ·c Source f i 1 e: i nvo ices. rqt i -le/ 
/* Data segment: invoices */ 

/* The first two keywords apply to the header data only. */ 

driver_attributes: Aauto_go, Ameter; /* the default */ 
driver_wait_time: 30; /* number of seconds driver will */ 

/* wait before asking coord again */ 

/* The following keywords apply only to the printer_driver_ */ 

banner_type: 

banner_bars 

pr t contro 1 : 

standard; /* normal head/tail sheets */ 
Ii: otherwi se say "br i efll or "none ll 

)'(/ 

double; /* overstruck separator bars */ 
/* can be liS i ng 1 ell or IInone li 

)'(/ 

auto_print, Aforce_nep, Aforce_esc, 
Aforce_ctl_char, Aforce_nsep; 

15-31 AM81-Q4 



1* Message to the operator during driver initialization */ 

message: 
"For the invoices, use VFU tape number 12. 
The form stock is in storage bins 22, 23, and 24."; 

1* Physical Paper Info *1 

1* The form stock is only 80 print positions wide and 
72 1 ines per page at 8 lines per inch *1 

paper_width: 
paper_length: 
1 i nes_per _ inch: 

1* Channel Stops *1 

80; 
72; 
8; 

1* default is 136 *1 
/* default is 66 *1 
/* default is 6 *1 

1* The logical channel stops are defined as follows: */ 

line (1) : 1 ; I'lc channel 1 is top of form -lei 
1 i ne (3) : 4; I-lc chan 4 is the address 1 i ne )'tl 
1 i ne (12) : 7; I"c chan 7 is the first entry 1 ine ,'cl 
1 i ne (60) : 7; 1"( and is also the bottom 1 i ne "c/ 

end; 

OPERATION OF THE I/O DAEMON 

The following paragraphs describe the capabilities of the I/O daemon and 
many of the commands and operatin"g procedures needed to make use of these 
capabilities. In practice, at most sites, the commands needed for normal I/O daemon 
operation are contained in the exec_com segments, system_start_up.ec and admin.ec, 
and they need not be typed by the operator. However, you must become familiar 
with the material in this section so you can handle special requests and other unusual 
circumstances correctly. 

All I/O daemons (coordinator and drivers) use the iod_overseer_ process 
overseer. The system administrator should specify this process overseer for each 
daemon in the project master file (PMF) of the daemon's project. Also, he should 
specify the ""vinitproc" attribute in addition to this overseer. 

I/O daemons set their search rules differently from ordinary users. Instead of 
using the "default" set of search rules from the system search rules, they use the 
"io_daemon" set You can change these by using the set_system_search_rules command 
in the system_start_up.ec. 

15-32 AM81-04 



I/O daemons running in test mode (via the test_io_daemon command) do not 
change their search rules. The search rules in effect at the beginning of the test 
remain in f oree. 

For information on how to operate a HASP I/O daemon, refer to the Multics 
HASP Service and Utility Manual, Order No. GB60. 

LOGIN AND INITIALIZATION OF rdE I/O COORDINATOR 

The step-by-step procedure for logging in and starting up the coordinator is 
available in the Operator's Guide to Multics, Order No. GB61. 

COMMUNICATING WITH THE COORDINATOR 

The coordinator performs its job automatically without requiring any instructions 
from the operator. Therefore, it is rarely necessary for the operator to communicate 
with the coordinator. Occasionally, however, you may wish to issue one of the 
commands described below under "Coordinator Commands." 

Interrupting the Coordinator 

It is never necessary to interrupt the coordinator in the course of normal 
operation. However. in the event of a coordinator malfunction, or other unusual 
situation, it is possible to send a quit signal to the coordinator. This signal causes the 
coordinator to suspend its communication with drivers and thus eventually bring all 
drivers to a standstill. For this reason, the quit signal should not normally be used. 

The method for sending a quit signal to the coordinator depends on the 
coordinator terminal. If the coordinator is logged in from an ordinary terminal, you 
simply press the proper key to issue a quit signal (e.g.. A TIN or INTERRUPT). If 
the coordinator is logged in from the initializer terminal as a consoleless daemon. you 
type: 

quit source id 

where source_id is the source name for the coordinator. The coordinator acknowledges 
the quit signal with the message: 

"QUIT II received. 

The coordinator then comes to command level and prints: 

Enter command: 

15-33 AM81-04 



At this point, you may type any of the commands described below under "Coordinator 
Commands" with the exception of the term command. After each command is 
processed, the coordinator returns to command level and again prints: 

Enter command: 

You should not send a second quit signal to the coordinator at this time. If a second 
quit signal is received, the coordinator ignores it and points out the mistake by 
printing the message: 

io_coordinator: QUIT already pending. 

The coordinator should not be left in the quit state for an extended period of time 
since this effectively halts all active driver processes. You should use the start 
command to return the coordinator to normal operation following a quit signal. 

Coordinator Commands 

The following is a list of available coordinator commands. 

1. logout 

logs out the coordinator. Normally, all driver processes should be logged out 
before the coordinator. If driver processes are not logged out, however, they 
automatically detect the fact that the coordinator has been logged out. The 
drivers reinitialize and wait for a new coordinator to be logged in. 

2. list 

causes the coordinator to print a list of active devices, i.e., devices currently 
assigned to drivers. The request type and current request number are printed 
for each active device. 

3. print_devices 

causes the coordinator to print a list of all devices managed by the I/O 
daemon. The devices are grouped according to the request types they service. 
An asterisk (*) appearing before a device indicates that the associated request 
type is the default for the device. The driver access name and the driver 
authorization (if any) are given for each request type. 

causes the coordinator to print a list of device classes for which requests have 
been added to the wait list. The number of waiting requests for each of these 
device classes is also printed. Requests are added to the wait list whenever a 
driver gives the "next" command, or if the coordinator finds a request for a 
device class that is not currently active. At sites having only one device class 
per request type. no requests are automatically added to the wait list. At sites 
having multiple device classes per request type, requests may be held waiting 
whenever one or more drivers are active for a request type. By examining how 
many requests are waiting for various device classes. you can judge when it is 
appropriate to switch a device from one device class to another so that all 
device classes receive adequate service. 

15-34 AM81-04 



5. term device_name 

terminates a driver so that the major device (and all minor devices) assigned to 
it can be assigned to another driver. The device_name for the driver must be 
specified following the command. Normally, driver termination is performed 
automatically when a driver logs out In the case where a driver process 
terminates abnormally, the coordinator does not discover that the process is 
terminated until a new driver attempts to log in; then it is unassigned from 
the old driver process and is assigned to the new driver process. Theref ore, 
the only time it is necessary to use the term command is when you wish to 
terminate an active driver that cannot be logged out This might be necessary, 
for example, if the driver is logged in from a remote location. (If the driver 
process is running, the term command will not cause the driver to detach the 
channel associated with the major device. It will cause the driver to eventually 
fault and probably destroy itself.) 

causes the coordinator to print the number of restartable requests for each 
different request series and to identify those request series for which a restart 
cycle is in progress. 

7. start 

returns the coordinator to normal operation following a quit signal. 

8. help 

lists commands acceptable to the coordinator. 

LOGIN AND INITIALIZATION OF DEVICE DRIVERS 

Step-by-step procedures for logging in and starting up printers, card punches, 
card readers and remote devices are available in the Operator's Guide to Multics. 
Order No. GB61. 

TERMINALS THAT CONTROL THE DRIVER 

A driver process is capable of receiving commands from two sources: the 
normal login terminal .(master terminal) and a slave terminal. The driver MUST have 
a master terminal, but a slave terminal is optional. For most devices, a slave terminal 
is an additional terminal attached to the driver. It is also called a control terminal. 
Any driver can have a control terminal specified (but it is meaningless for some 
drivers, e.g., the spool driver). For devices that have a multifunction device. the 
device itself can act as a slave terminal. 

When the system administrator has specified that a control terminal is to be 
used with a device, the driver is not able to complete its initialization until a control 
terminal has been attached. except in the case of a remote station. 

15-35 AM81-o4 



The slave terminal functions as a source of driver commands and a place to 
write error messages, operational messages, and log messages. 

The control terminal is primarily used to prepare receipts or accountability 
forms to control the distribution of output. The control terminal will take on the 
functions of a slave terminal if there is no other slave terminal defined. 

The control terminal is not always a slave terminal for a remote station. A 
Type I station must login with the device providing command input. Hence, the device 
will remain as the slave terminal, even though a control terminal may be specified for 
the device. A Type II station may use a control terminal as a slave terminal. Also, 
by entering "slave= yes" in the device args string of the iod_tables, the system 
administrator may make the device become the slave terminal even though a control 
terminal is already attached. 

Master Versus Slave Functions 

The authority of the master terminal over the slave terminal ensures that 
central operations has full control of the driver at all times. The slave terminal is 
provided for decentralization of operational control when this feature is needed. When 
the driver has a slave terminal, most operational messages, such as requests for 
commands, are sent to the slave terminal instead of the master terminal. 

The master terminal is assured control at command level by not allowing a quit 
signal to be issued from the slave terminal while the master terminal is executing a 
command. Also, the master terminal can hold the driver at command level indefinitely 
if necessary. (See "Standard Driver Commands" later in this subsection.) 

Otherwise, the slave terminal can perform almost every function that the 
master terminal can. When the slave terminal is a control terminal, a short message is 
printed every time a request is processed. This message can be reformatted at the site 
to provide a more formal accounting for output generated by a driver. (See "Using 
Preprinted Accountability Forms on the Control Terminal" later in this subsection.) 

Driver Initialization with a Control Terminal 

When a control terminal is to be attached by the driver, there is an additional 
step performed just before the driver comes to command level. The driver waits for 
the control terminal to be assigned to it by the system control process. The driver 
may re4uest a specific terminal to be assigned or it may wait for a terminal to "dial" 
the driver process. Normally, no action is required by the central site operator. Only 
the control terminal operator is allowed to take action to connect the terminal. The 
sequence of messages might look like this on the master terminal: 

Enter command or device/request_type: 
prt x 
prt x driver waiting for control terminal "<dial id>" to dial. 

15-36 AM81-()4 



After the control terminal operator "dials" in the control terminal, the driver continues 
with: 

Control terminal accepted. 

prt_x driver ready at 02/02/78 0200.0 est Thur 

Now the driver is at command level. 

While the driver is waiting for the control terminal, the control terminal 
operator must dial the terminal to the driver. First, he must complete the terminal 
phone connection. After the normal greeting message, instead of using the login 
command, the operator types the dial command: 

dial <dial_id> <driver_userid> 

where <dial_id> is the identifier specified in the driver message above, and 
<driver_userid> is the login identifier of the driver '(normally IO.SysDaemon). (For 
more details, refer to the description of the dial command in the Multics Commands 
and Active Functions manual, Order No. AG92.) The control terminal operator must 
know the <dial_id> for the particular driver. However, this is not protected like a 
password. It only serves to distinguish between the various driver processes with the 
same <driver_userid>. A password and User_id may also be required. 

When the dial command is accepted, a connection message followed by the 
driver's ready message is printed on the control terminal: 

prt_x driver ready at 02/02/78 0800.0 est Thur 

Enter command: 

At this point commands are accepted from either the master or slave (control) 
terminals. 

DRIVER COMMAND LEVELS 

The driver supports several different command levels, each associated with the 
function to be performed. These are not the normal Multics process command levels 
and only limited sets of commands specific to a driver process are accepted. Each 
command level other than the normal driver command level identifies the function by 
a word in parentheses following the command request (e.g., "Enter command(quit):" for 
quit command leven. Not all commands may be used at every command level. You 
should be aware of any command level restrictions identified in the command 
descriptions below. 

15-37 AM81-04 



Normal Driver Command Level 

A driver process indicates that it is at normal driver command level by 
printing the request 

Enter command: 

The driver comes to normal command level as soon as all initialization is complete 
and also after each request is finished, if the operator has given commands or set step 
mode. 

Request Command Level 

Request command level is used by some device drivers to allow the operator to 
modify the normal processing of a request For example, the printer driver uses the 
request command level to allow the operator to specify the starting page" of the 
request or print sample pages for alignment. 

The printer driver comes to request command level when it is running in 
"auto_print mode. The remote driver comes to request command level when it is 
running in "auto_print mode or "auto_punch mode. (You can set this mode by using 
the prt_control command or by entering the correct value in the rqti segment.) 
Request command level is distinguished from normal command level by the word 
"request" in parentheses. 

Enter command (request) : 

The use of request command level is a device specific function. For a list of 
commands that may be issued from request command level. refer to "Device Specific 
Driver Commands" later in this section. Most other standard driver commands are also 
available at request command level. 

Quit Command Level 

A quit signal is transmitted to the driver in a manner similar to the way it is 
transmitted to the coordinator (as described earlier). When a quit signal is received, 
the driver suspends its current operation and comes to quit command level. Quit 
command level is distinguished from normal command level by the word "quit" in 
paren theses. 

,': QU I T 'Ie 

Enter command (quit) : 

Several standard driver commands can oniy be used at quit command level; 
they are described below. Most driver specific commands may also be used at quit 
command level. 

15-38 AM81-()4 



STANDARD DRIVER COMMANDS 

The two classes of commands for a driver are: standard driver commands and 
device specific driver commands. The device specific driver commands are described 
later in this section under "Device Specific Driver Commands. " The standard driver 
commands are described here. grouped by their function. Detailed descriptions of all 
the driver commands are available in the Multics Administration, Maintenance and 
Operations Commands manual. Order No. GB64. 

1. generai controi 

ready 
go 
halt 
logout 
step 
hold 
new_device 
inactive_limit 
auto_start_delay 
defer_time 
x 

makes a device ready to process requests 
begins processing of requests 
stops processing of requests on a device 
causes a driver to log out, except for remote drivers 
causes a driver to wait after each request 
holds a driver at command level 
causes a driver to request a new device 
sets time limit for inactivity logout 
sets wait time between quit signal and start command 
sets time limit for automatically deferring requests 
executes site-defined exec_coms 

2. control after interrupting a request (quit) 

start 
kill 
cancel 
restart 
defer 
save 

3. information 

help 
status 

resumes driver operation 
terminates the current request 
terminates and discards the current request 
causes reprocessing of the current request 
sends the current request back to its queue 
saves the current request for possible restarting 

lists all driver commands 
lists current status of the driver 

4. coordinator communication 

restart N 
save N 
restart_q 
next 

5. terminal control 

slave_term 
ctl_term 
slave 
master 

causes reprocessing of previous requests 
saves requests for possible restarting 
returns to the head of each queue 
runs a specified request next 

controls use of a sl~ve terminal 
controls operation of a control terminal 
sends a message to the slave terminal 
sends a message to the master terminal 

15-39 AM81-Q4 



6. error recovery 

reinit 
release 

reinitializes the driver 
returns the driver to normal command level 

Some commands perform more than one function. However, these are clearly 
distinguished by control arguments. 

General Control Commands 

General control commands (item 1 above) are used at normal command level to 
initiate and control the operation of the driver. This set of commands is sufficient to 
run the driver if the operator doesn't encounter any unusual circumstances. 

Control Commands after Interrupting a Request 

The operator interrupts a request by giving the driver a quit signal. The 
commands shown in item 2 above can only be used at quit command level, although 
two have other uses in different contexts. These commands are useful for modifying 
the driver's sequence of operations: 

cancel kill restart 
defer logout save 
halt new device start 
help ready status 
hold release step 

If the operator hasn't given the driver any commands within 60 seconds 
following a quit signal, an automatic start command is executed by the driver. You 
can adjust the 60 second delay by using the auto_start_delay command. 

Information Commands 

The commands in item 3 above provide additional information to the operator. 
For device specific driver commands, the help command identifies those commands 
that may be used for a given driver. 

Coordinator Communication Commands 

These commands (item 4 above) are used by the operator to instruct the 
coordinator in how to handle requests. The operator must be able to prevent the loss 
of requests due to device malfunction. To - this end, the coordinator retains each 
completed request in a "saved" list for a period of time to allow each one to be 
reprocessed if needed. The operator is able to shift the priority of individual requests. 

15-40 AM81-()4 



The coordinator keeps track of the requests in the list by their request 
numbers. The request number argument to the save and restart commands is used to 
identify requests to the coordinator. A request number is composed of a request series 
and a sequential number indicating the order in which the request was processed. For 
example. request number 50289 is the 289th request processed by the device within the 
50000 request number series. Each device or minor device is assigned a series of 10000 
sequence numbers during initialization. The first series after coordinator initialization 
begins at 10001. the second series begins at 20001. and so on. This ensures that each 
request in the coordinator's "saved" list is uniquely identified. 

Commands for Terminal Control 

To ensure the master terminal's ability to define the functions of the slave 
terminal. two commands are provided (item 5 above) to control how the driver treats 
slave terminal input and output. 

Since the slave terminal can be the device itself or an additional terminal. the 
functions that allow the site operator (or device operator) to control the slave are 
separated into two commands: 1) those applying to all slave terminals (the slave_term 
command). and 2) those that only apply to an additional control terminal attached to 
the process (the ctl_term command). 

Error Recovery Commands 

The commanqs in item 6 above are provided for error recovery. There may be 
circumstances that make the driver unable to continue its operation. This could occur 
if the coordinator process were terminated or if some control data were destroyed. 
When the driver can identlfy the problem. it takes some action, if possible. to correct 
the situation. 

Under some conditions, it may be necessary for the operator to reinitialize the 
driver or even to log out without completing any pending requests. 

DEVICE SPECIFIC DRIVER COMMANDS 

The device specific driver commands allow the operator to control the 
operation of different devices. Each driver module is capable of implementing any 
commands necessary to control the operation of its device. 

Driver modules are designed to be molded by a site into a form necessary to 
support its own devices, each with its own set of commands. You should familiarize 
the operator with the commands associated with the driver modules used at your site. 

15-41 AM81-04 



Standard device drivers operate printers and punches and can read card decks 
from remote multifunction devices. One driver even writes printer requests onto tape 
(spool_driver->. There are different device specific commands for these generic 
functions and some additional commands associated with operation of physical devices. 
The operator can use the help command of the driver to display the full set of 
commands the specific driver can accept The device specific commands implemented 
by standard device drivers are listed as follows: 

1. commands for printers: 

banner_bars 
banner_type 
paper_info 
prt_control 
sample_hs 
single 

defines printing of separator bars 
defines what is printed on the banner 
defines paper length, width, and lines per inch 
defines printing control functions 
prints a sample head sheet banner 
single spaces on f ormf eed and vertical tab 

2. commands for printers (request command level only) 

copy 
print 
req_status 
sample 

sets the copy number of the next copy 
prints the next copy starting at the current page 
gives status info about the current request 
prints a sample of the current page 

3. commands for local punches 

(no special punch device commands are required; standard commands may be 
used) 

4. commands for remote punches 

pun_control sets the punch control modes (does not apply to the 
central site punch driver) 
controls punching of separator cards between each output 
deck 

5. command for remote punches (request command level only) 

copy 
punch 
req_status 

sets the copy number of the next copy 
punches the next copy of current request 
gives status info about the current request 

6. commands for card input 

clean_pool 
read_cards 

deletes old card decks 
starts card input 

7. command for control of terminal operation (most drivers) 

prints a sample control form 

8. commands for remote device control 

pause_time 
runollt_spacing 

sets pause time between requests 
sets paper advance after a command request 

15-42 AM81-04 



9. commands for the spool driver 

banner_bars 
paper_info 
prt_control 
sample_hs 
single 

defines printing of separator bars 
defines paper length. width. and lines per inch 
defines printing control functions 
prints a sample head sheet banner 
single spaces on f ormf eed and vertical tab 

MAKING mE DRIVER ASK FOR A COMMAND 

A command may be entered from the master or slave terminals at any time 
after the driver has been initialized. However. when requests are being processed 
continuously. the messages printed on the terminal may interfere with operator input. 
Therefore, it is better to make the driver ask for a command and wait for the 
operator to respond. This may be done in two ways: 

1. During a pause in terminal printing, the operator may simply press the newline 
key of the terminal. This causes the driver to ask for a command before 
processing the next request. (A go command is required to allow the driver to 
continue.) When using the message coordinator, the operator should send the 
hold command to the driver process. 

2. At any time the operator may issue a quit signal to the driver. This suspends 
the current request while the driver asks for a command. After a quit signal. 
if the operator wishes the driver to finish the current request and return to 
command level, he may give the step command followed by the start command. 

NOTE: When the driver is simulating form feeds on the control terminal, a 
quit signal terminates form alignment. The driver completes the control 
terminal message. if possible. before asking for a command. However. the 
ctl_term aligned command or the sample_form command must be given before 
the driver can accept a start command. (See "Using Preprinted Accountability 
Forms on the Control Terminal" later in this section for a more detailed 
explanation of these commands.) 

ENTERING COMMANDS FROM A MULTIFUNCTION DEVICE CARD READER 

A card reader in certain multifunction devices can be used as a slave terminal 
to input commands. Driver commands must be punched on cards, one command line· 
to a card. 

USING PREPRINTED ACCOUNTABILITY FORMS ON mE CONTROL 
TERMINAL 

A control terminal may be used to produce accountability records which 
correspond on a one to one basis with each copy of each request processed by the 
driver. The format of the accountability record may be redefined by each site for 
each driver. In some security related applications, this feature may be used to fill in 
the blanks on preprinted document accountability forms to provide a record of each 
piece of output. 

15-43 AM81-()4 



The format of preprinted forms is likely to be different at each Multics site. 
The system administrator must ensure that a program is provided to correctly print the 
request data on each form. He also must specify the form type identifier to be used 
with the ctI_term command to establish the site program for printing forms. (The 
default form type for all drivers is a one-line message per request.) 

The operator must use the ctI_term form_type command to change the control 
terminal message to the desired format Once the new form type has been accepted 
by a driver, the operator should use the sample_form command to ensure correct 
alignment of the data on the form. This is normally all that is needed as long as the 
terminal hardware provides a form feed capability. 

Otherwise, the operator uses the form feed simulation functions of the driver 
to ensure continued alignment It is very important that the dimensions of the form 
be specified by the driver command. (The commands that set form feed simulation 
and form size can be part of the exec_com that initializes the driver.) 

The following is an example of the command sequence to simulate form 
control of a preprinted form with dimensions 8 inches wide by 5 inches long. 
(Operator input is denoted by an exclamation point (0,) 

Enter command: 
ctl_term simulate 
Forms will have to be aligned. 
Enter command: 
ctl_term page_length 30 
Enter command: 
ctl_term modes 1170 
Enter command: 
sample_form 

[sample data is printed on the control terminal] 

Enter command: 
go 

In this example, there are 30 lines to a 5-inch page and 70 characters to an 8-inch 
line (allowing for margins). The operator should give the sample_form command 
repeatedly until correct alignment of the form is achieved. Finally, he should give the 
go command to begin processing requests. 

\Vhen the operator issues a quit signal to the driver (from any terminal) or 
when an unknown command is entered from the control terminal, the form alignment 
is assumed to be incorrect Therefore, the driver demands that the operator give the 
sample_form command (or the ctl_term aligned command) before the next go 
command (or start command after a quit signaI). This situation might look like: 

Enter command: 
goo 
prta driver: Invalid command for driver - goo 
Enter command: 

15-44 AM81-()4 



go 
Control forms not aligned. 
Enter command: 
sample_form 

[sample form is printed on the control terminal] 

Enter command: 
go 

Now the driver can continue processing requests. Form alignment is ensured for all 
input and output on the control terminal as long as: 

1. commands are entered only when requested 
2. commands from the control terminal are entered correctly 
3. no quit signals are issued 
4. the control terminal maintains paper alignment on the platen 

LIMITATIONS 

With a PRT1200 or PRT1600, 20-lb paper should be used. (The use of lighter 
weight paper may prove problematic.) 

OPERATION OF THE PRINTER DRIVER 

Step-by-step procedures for operating the printer driver are available in the 
Operator's Guide to Multics, Order No. GB61. 

Processing Requests 

If the driver is not running in auto_print mode, the driver comes to the 
request command level after printing a request, ratlier than printing the next request 
automatically. It indicates this by printing: 

Enter command (request) : 

This is not the normal driver command level. The driver is now ready to 
accept additional request control commands (plus a help command) to specify the 
starting page, to print a sample page, or to set the copy number of the current copy. 
These request control commands are described above under "Device Specific Driver 
Commands." At this point, the operator should verify that the correct paper stock is 
on the printer, aligned at the top-inside-page position. The operator may verify the 
alignment of the paper by printing a sample of the starting page (specified by the 
operator) before printing the file. 

After the operator gives the "print" command, the driver prints a head banner 
and the text of the file from the starting page to the end of the file and completes 
the request as described above. 

15-45 AM81-04 



OPERATION OF THE PUNCH DRIVER 

Step-by-step procedures for operating the punch driver are available in the 
Operator's Guide to Multics, Order No. GB61. 

OPERATION OF THE READER DRIVER 

Step-by-step procedures for operating the reader driver are available in the 
Operator's Guide to Multics, Order No. GB61. 

Communicating with the Card Daemon 

When the central site card daemon requires instructions from the operator, it 
types: 

Enter command: 

This occurs after initialization. after reading an end card, after a quit signal, or after 
some error condition is encountered. The following commands are understood by the 
daemon and may be typed on the daemon terminal: 

help 
print a short description of available commands. 

read_cards 

start 

logout 

reinit 

start reading cards from the card reader. The daemon assumes that the reader 
is ready (or waits for it after printing a message). 

continue the operation in progress after having received a quit signal. 

logout the daemon. 

attempt to reinitialize the card daemon by detaching the card reader and 
reattaching it. This command may be used if the daemon appears to be in an 
inconsistent state. 

clean_pool 
delete old card deck copies stored in the system storage areas. This command 
causes the daemon to ask for the age of segnlents to be deleted. (This 
command is normally used at the request of the system administrator or in the 
event of a record quota overilow.) 

15-46 AM81-04 



Error Conditions 

The card daemon attempts to recover from most errors involving incorrectly 
punched control cards by forward spacing to the next card deck. That is, if an error 
occurs during the reading of a card deck, that deck is skipped and the reading 
continues with the next card deck. When the card daemon encounters a deck having 
an access class (as specified on the ++AIM card) that is different from its own access 
authorization, the card daemon stops the card reader and requires that the problem be 
corrected before continuing. 

OPERATION OF THE SPOOL DRIVER 

The Multics spool driver provides an alternative method for processing users' 
print requests when the service printer is either down or substantially backlogged. The 
spool driver obtains queued print requests from the coordinator and writes the requests 
out onto magnetic tape. The tape can then be processed immediately or at a later 
time in one of two ways: the spooling tape can be input to a Multics system using 
the print_spoolins-tape command (described in the Multics Administration, Maintenance 
and Operations Commands manual, Order No. GB64) to write directly on the printer, 
or the spooling tape can be input to another system that has software capable of 
reading and printing the contents of the tape. The spool driver does not implement 
request command level. 

Login and Initialization 

The spool driver runs as a standard I/O driver process and can process printer 
requests. If the printer request type queues are to be used by the spool driver while 
the printer driver is logged in and working, the following situation arises: two drivers 
of the same request type share the processing of requests from the same queues in a 
round robin fashion, the first ready driver getting the next request in the queues. This 
scattering of print requests can result in the printing of two adjacent requests in the 
queue at significantly different times. To avoid this request scattering problem, the 
printer driver should be logged out (or placed in "hold") before bringing up the spool 
driver. 

The spool driver is logged in like any other driver and its operation is selected 
by the operator when the driver requests: 

Enter command or device/request_type: 

The operator responds by typing the name of the spooling device, and either gives a 
request type or relies on the default request type (specified in the iod_tables). 

Any special initialization messages associated with the request type are printed 
at this point. The line length, page length, and lines per inch to be used in printing 
the tape contents are printed for the operator. 

Next, the operator must enter the tape data. At least one tape volume 
identifier (tape number) must be supplied, but additional data may optionally be 
supplied. This optional input includes a recording density and a number of requests 

15-47 AM81-o4 



(files) or a number of lines to limit the spooling operations. The spool driver asks 
for this information by printing: 

Enter vol ids and optional tape data or limits: 

For example, if the operator wishes to spool 95 print requests to volume 
070064 to be recorded at 800 bpi. he types: 

-voljd 070064 -density 800 -files 95 

Spooling Parameters 

The operator may make a selection from the following possible input 
parameters: 

-volid STRs, -vol STRs 
where STR is a six-character volume identifier of a tape reel. Up to three 
volids (separated by spaces) may be specified at one time, and at least one 
volid must be specified. 

-density N, -den N 
where N is either 800 or 1600. If the -density control argument is not 
specified, and the -interchange control argument is not specified, the default 
density is 1600 bpi. Density can only be given once during a spooling session 
or an error is indicated. 

-interchange. -int 
specifies tape recording parameters that comply with the ANSI standard 
requirements for interchange. With this control argument, tape block size is set 
to 2048 characters and recording density is set to 800 bpi. 

-files N, -fl N 
where N is a number between 1 and 999999, indicating the number of files 
(requests) to be written to tape before stopping. There is no default file limit. 
If Lhis parameter is omitted. no limit is set on the number of spooling 
requests. 

-lines N, -In N 
where N is a number between 1 and 999999, indicating the number of printed 
lines to spool before stopping. There is no default line limit If this parameter 
is omitted, no limit is set on the number of lines spooled. 

15-48 AM81-o4 



When the coordinator accepts the spool driver as a driver and all the 
preliminaries of validating the input parameters have been completed, the spool driver 
prints: 

Spool driver ready at 01/30/78 1452.8 edt Mon 

Enter command: 

The spool driver is now at normal command level and ready to start processing 
requests. At this point the operator can modify the paper printing parameters with the 
paper_info command if desired. All standard driver commands can be used as well as 
most device specific driver commands for printers. (The spool driver does not support 
a request command level.) 

To begin processing requests, the operator must type the go command. 
Assuming that some outstanding print requests are queued. the spool driver starts 
processing requests at the go command. The first print request message is printed on 
the spool driver log, followed by a tape mount message; after the first tape reel has 
been mounted, requests continue to be processed and logged sequentially until either 
the queues become empty or one of the spooling limits has been reached. The spool 
driver output log looks something like the following: 

Request 10001 printer q3: >udd>Demo>JSmith>test. 
from JSmith.Demo.a (for "heading" at "destination") 
Charge for request 10001.3: $1.65 (l055 1 i nes, 10 pages) 

Mounting volume xxxxxx with a write ring. 
xxxxxx mounted on tape_04. 

Request 10002 printer q3: >udd>Demo>js>testl 
Request 10003 printer q3: >udd>Demo>js>test2 

When any spooling limits have been reached, i.e., either lines limit or files 
limit. the spool driver prints: 

Reached specified spooling limits; 

Current file limit is xxx 
Current line limit is xxx 

Current file count is xxx 
Current line count is xxx 

Enter new file and/or line limits, or "detach": 

15-49 AM81-D4 



The current file count is a tally of the number of files spooled so far. The 
current line count is a tally of the number of lines spooled so far. Current line limit 
is the line limit stop last set. Current file limit is the file limit stop last set. If the 
limits are zero, then they are not currently set. Each copy that a user requests 
corresponds to one file spooled, but the limits are approximate, as a request is 
processed completely before the limits are checked. 

At this time, the operator must choose to either enter new spooling limits and 
continue. or to terminate the spool driver. If new line limits are specified, the new 
limit is added to the current limit, and spooling continues until that new limit is 
reached. If only a line limit is specified, the files limit is set to zero and only 
reaching the line limit halts spooling; likewise, if only a file limit is specified, the 
line limit is set to zero and only reaching the file limit halts spooling. If both 
incremented limits are specified, they are both incremented and spooling continues 
until one of the two limits is reached, whichever one comes first 

To Continue Spooling 

If the operator wishes to continue when the spooling limits have been reached, 
he must renew the limits by entering new -files and/or -lines parameters. The new 
values are added to the current spooling limits. For example, if the operator types: 

-files 20 -lines 20000 

he adds 20 to the current file limit and 20000 to the current line limit and spooling 
continues. 

If the end of a volume is reached when only one volume identifier has been 
specified, the spool driver asks for additional volume names: 

Reached end of spool ing volume list; 
Enter more vol ids or "detach": 

Here the operator types in another volume identifier, -volid STR. to continue 
spooling or types detach to terminate spooling. 

To Terminate Spooling 

If the operator wishes to terminate spooling when spooling limits have been 
reached, he types "detach." The spool driver responds with a tally of files and lines 
processed and then logs out. 

15-50 AM81-04 



Spool Driver Messages 

The spool driver automatically answers all questions asked by the tape_ansi_ 
I/O module. The operator should not have to type answers to any questions from 
tape_ansi_ that appear in the spool driver log. For example, should a given volume 
need initialization, the following sequence of lines might appear on the spool driver 
terminal: 

tape_ansi_ Volume xxxxxx requires initialization, but 
cannot read VOLl label. 
Do you want to initialize it? yes 

Spool Driver Commands 

The special commands available to the spool driver are a subset of those listed 
for printers. The spool driver does not have a request command level. The commands 
available are: 

banner_bars 
paper_info 
prt control 
sample_hs 
single 

OPERATION OF REMOTE DRIVERS 

Step-by-step procedures for operating remote drivers are available in the 
Operator's Guide to Multics, Order No. GB6l. 

Processing Requests 

If any printer minor devices specify an rqti segment that includes the auto~o 
driver attribute, those devices will automatically be readied as the driver initializes. 
The driver will then skip the request for an initial command and immediately look 
f or requests to process for those minor devices. 

The driver for a remote station provides several device-specific driver 
commands that control any reader, printers. or punches. These are issued from normal 
command level. After a request has been received from the coordinator, the driver 
can come to request command level. This is enabled by the "autoprint mode for 
printers (see the prt_control command) and the "autopunch mode for punches (see the 
pun_control command). 

The driver can accept commands to alter the processing of the current request 
while at request command level. The commands are different for printers and 
punches. 

15-51 AM81-04 



A t request command level, a prin ter device can be adjusted to a specific 
starting page or copy number and can print sample pages, as well as most other driver 
commands. 

At request command level, a punch device can adjust its copy number. The 
basic use of request command level for a punch is to make the driver pause after 
printing the log message, to allow the remote device operator to clear the punch 
device or redirect the data to a specific fiie. This is very important for binary output 
since no separator cards are provided to identify the source, beginning, or termination 
of the data. 

Sending a Quit Signal to a Remote Driver 

Many remote terminals do not have "quit" buttons or special commands (for 
example, "eL" for GI15/RCI protocol). Therefore, to stop the driver from printing, 
the remote station operator must press the STOP button (or equivalent) on the remote 
terminal. This disrupts the normal communications protocol and causes a quit to be 
signalled to the driver. This may cause one problem when using a 2780 bisync 
protocol; since the operator may have stopped the driver while it was printing, it 
cannot ask questions or print information for the operator. 

Sending a quit may cause loss of locally buffered input or output (consult the 
manufacturer's documentation about the device for more information). The operator 
can still input commands. The following commands are useful after a quit signal: 

cancel 

defer 

kill 

logout 

reinit 

release 

restart 

terminate and discard the current request 

send the current request back to its queue 

terminate the current request 

log out the driver (and get ready to run a new remote station) 

reinitialize the driver 

return to normal command level (this may repeat the current request and may 

begin the current request over again (printers go to request command level, 
punches restart at the current copy) 

15-52 AM81-04 



save 
save the current request for possible restarting 

start 
resume whatever the driver process was doing at the time of the quit 

If no commands are entered within 60 seconds after the driver receives a quit 
signal. the driver will automatically execute a start command. For some remote 
stations, 60 seconds is too little time; you may use the auto_start_delay command 
(described in the Multics Administration, Maintenance and Operations Commands 
manual, Order No. GB64) to increase the delay time. The hold command aborts an 
automatic start. 

I/O DAEMON ADMIN EXEC_COM FORMAT 

An I/O daemon admin exec_com provides site-defined driver x command 
functions. The use of admin exec_corns is optional, but when missing, the driver x 
command will not work. See "Setting up a Driver to Driver Message Facility" later in 
this section f or the application of the admin exec_com to the creation of a 
driver-to-driver message facility. 

Each I/O daemon admin exec com is located in the >ddd>idd directory and 
follows standard exec_com rules. There are two types of admin exec_corns: general 
and device specific. These differ only in segment name. to allow the site to separate 
x command functions by device name (station_id for remote stations). The iod_admin.ec 
segment is the general exec_com and will be used by any driver that cannot. find a 
device-specific exec_com. A <device> _admin.ec segment is a device-specific exec_com 
for the given major device; for example, prta_admin.ec is specific to device prta. 
Added names can be used to group several devices under a single device-specific 
exec_com. 

The Multics command iod_command may be used within an admin exec_com to 
execute arbitrary I/O daemon commands. For example: 

may be used in an admin exec_com to change the auto defer time limit for the 
current driver to 30 minutes. The iod_command command is described in detail in the 
Multics Administration, Maintenance and Operations Commands manual, Order No. 
GB64. 

When writing an I/O daemon admin exec_com, you must remember that the 
process that executes it will, most likely, have full SysDaemon access and privileges to 
the system. Therefore, you must be careful when you choose what functions will be 
placed at the hands of a remote station operator or an inexperienced device operator. 

15-53 AM81-()4 



What follows is a sample section of an admin exec_com. It includes examples 
of how some iod_ val active function keys can be used to protect against operator 
errors. This sample is for illustration only; see the iod_admin.ec segment supplied in 
the release for working purposes. 

& ----------------------------------------------------------
& 
& iOd_admin.ec (to be found in >ddd>idd) 
& 
& This is the exec com for the 10 Daemon driver "x" command. 
& The first argument to the "X" command is &1 in this exec_com. 
& The standard action is to transfer control to a label 
& which will implement the function of &1. 
& 
& Any arguments associated with an "x" command function begin 
& with &2 in this exec_com. 

&command_line off 
&goto &l.command 

&labe1 he1p.command 
& 
& For "X he1p" print a list of x command functions. 
& 
&print cdr -user Pers.Proj <seg_ident> 
&print car -user Pers.Proj <seg_ident> 
&print pq {ldr_args} 
&quit 

&labe1 cdr.command 
& 
& For "X cdr -user Pers.Proj <seg_ident>" 
$ to cancel a dprint request for this driver 
& 
&if [not [exists argument &2]] 
&then &goto missing_arg.error 
cdr -rqt [iod_va1 request_type] &f2 
&quit 

&label car.command 
& 
& F or II x car -user Per s. Proj <seg_ i dent>" 
& to cancel an RJE job sent by this station 
& 
&if [not [exists argument &2]J 
&then go to missing_arg.error 
car -sender [iod_val station] &f2 
&quit 

&label pq.command 
& 
& For II x pq {l d r _a r 9 s} II 

& to list all requests that can be processed by this driver 
& 
&if [exists argument &2J 

15-54 AM81-o4 



- &then ldr -a &f2 
&else ldr -a -admin -rqt ([iod_val rqt_string]) -tt 
&quit 

&label &l.command 
& 
& This is a catchall for any undefined command functions. 
& 
&print Undefined driver x command function. 
& 
ioa_ "received command: "'("'a "')" &fl 
& 
&quit 

&label missing_arg.error 
& 
&pr i nt Expected argument miss i ng. Try aga in or type ··x he 1 p". 
& 
&quit 

GENERATING A DRIVER PROCESS IN TEST MODE 

The following information describes how to generate a driver process in a test 
environment This information should be used only as a guide, since it does not cover 
all circumstances and requirements. 

The test environment allows you to test out changes to software and databases 
(ttt, rqti segments, iod_tables, etc.) normally used by the system coordinator and 
drivers, both remote and on-site. The test environment includes more detail in error 
messages, and special commands which control the test process. Full use of the 
Multics command language is provided, enabling you to set breakpoints using either the 
probe or the debug command. 

Test Directory Structure 

The test directory structure is similar to that of the >ddd>idd directory. 
Throughout this subsection, the directory's pathname is indicated by the term 
TEST_OrR. The test directory can be located anywhere where you have sma access. 
Also, some system databases can be shared with those of the system daemons. 

If any request type is configured to use a request type info segment (rqti) , you 
must create the rqt_info_segs directory in the test directory. This directory must 
contain all of the rqti segments you're going to use in the test session. 

15-55 AM81-04 



If you're going to perform card input, you must create the card_pool directory 
in the test directory. This directory has a different name than the cards directory 
used by a standard driver and has a different relative location in the drivers' directory 
structure. This directory must have sufficient quota assigned to it to handle whatever 
card input you're going to perform. Directories and quota are managed in the same 
manner as for the >daemon_dir_dir>cards directory. 

The segments and directories created by the coordinator in the test directory 
are identical to those normally created in the >daemon_dir_dir>io_daemon_dir 
directory (described earlier in this section). 

USER GENERATED DATABASES 

In TEST_DIR, you must create the segment iod_tables.iodt (described earlier in 
this section). You must compile this segment by using the iod_tables_compiler 
command (described in the Multics Administration, Maintenance and Operations 
Commands manual, Order No. GB64) to create the iod_tables segment. 

If you are going to run the driver from other than an IO.SysDaemon process, 
you must add the following to the iod_tables.iodt segment for each request type used: 

driver_userid: 
accounting: 

Person_id.Project_id; 
nothing; 

where Person_id.Project_id identifies the testing process. The special name "nothing" 
disables any attempts by the daemon software to actually charge for any requests. is 
called instead of the charge_user_ subroutine so that actual charges are ignored. If 
you are testing an accounting routine. you should supply its name. 

You are required to create message segment queues for the request types that 
will be used in the test session. You can do this automaticaUy by using the 
create_daemon_queues command or manually by using the message segment commands 
(the create_daemon_queues command and the message segment commands are aU 
described in the Multics Administration, Maintenance and Operations Commands 
manual, Order No. GB64). When you use the create_daemon_queues command. you 
must give the -dr path control argument: 

If you are testing remote devices, your process must have the dialok attribute in the 
PDT and correct access to the access control segment for the communications channel 
or peripheral device. 

You may optionally use a different terminal type table (TIT) than the system 
TIT. Refer to the Mu/tics Programmer's Reference Manual, Order No. AG91, for 
a description of how to set up a TIT. 

If you're going to use the x command, you must Lllclude an iod admin 
exec_com or device admin exec_com in TEST_DIRe 

15-56 AM81-04 



SHARED DATABASES 

The test process can share some databases with the standard system daemon 
drivers. 

The file PNT.pnt in the >system_control_l directory is used by the test process 
to check station identifiers. passwords. and card input users. You may use a test 
version of PNT.pnt instead by issuing the command: 

validate_card_input_$test TEST_DIR 

You may create a test PNT.pnt by issuing the command: 

create_pnt PNT.pnt 

after invoking the command above. 

The required access control segments for card input are also the same ones 
used by the system drivers. The testing process must have the same access to these 
segments as a regular driver process. 

Manipulating Requests in the Test Queues 

Since the test driver process will be using message segments in the test 
directory, the enter_output_request (eor). list_daemon_requests Odd and 
cancel_daemon_requests (cdr) commands must be made aware of the test environment. 
You can do this by calling special entries in each command procedure- and indicating 
the test directory as follows: 

dprint $test TEST_DIR 
ldr$test ldr TEST_DIR 
cdr$test=cdr TEST_DIR 

Once this is done. the normal system printer/punch queues are no longer known to 
the test process. Issuing the new _proc command is one method of restoring access to 
the normal system queues; you could also issue the above commands with the 
pathname >ddd>idd. 

The Test Process 

A standard I/O daemon process operates either as a coordinator or as a driver, 
and a check is made so that only one coordinator is operating on the system at one 
time. In test mode. a single test process may perf orm the functions of both 
coordinator and driver; or, after one interactive test process has become a coordinator, 
another interactive process may become a driver. The second interactive process must 
use the same test directory as the first process. The test processes acting as 
coordinator and driver are unknown to the standard system I/O daemon processes. 

Experimental software should exist in either bound or loose form in the test 
directory. If one component of a bound object segment is loose, then all components 
must be loose. You may want to initiate each object segment first. 

15-57 AM81-()4 



TESTING A REMOTE STATION 

You start the test process by invoking the test_io_daemon command: 

or: 

When you run the coordinator and the driver in a single test process, the dialog from 
this point on looks like the following (your responses are preceded by an exclamation 
point): 

Enter command: coordinator, driver, or return: 

coord 

I/O Coordinator Version: X.X 
I/O Coordinator initialized 

driver 

I/O Daemon Driver Version: X.X 
Driver running in test mode. 
Enter command or device/request type: 

At this point the driver will accept a device name to run a printer. punch, or 
Type II remote device, or a listen command to initialize a Type I remote station. 

Assuming this remote device can accept command input (Le.. is a Type I 
remote device). the dialog continues: 

1 isten g115 1 
A t tach i ng 1 T ne "g 115_111 on channe 1 (b. h002) • 

Responses wiil be different for Type II devices, but operation is essentially the same. 

The test process waits here until the line becomes dialed up, and does not 
respond to input from the terminal; the only way you can get the process's attention 
is to issue a quit signal. This will cause the process to print out the following 
message: 

Enter command (early quit): 

A limited set of commands is available at early quit command level, one of which is 
a help command which lists this set of commands. The process continues waiting for 
the dialup event from the FNP when you issue the start command. When the dialup 
event occurs, the following message is printed: 

Requesting station identifier on 1 ine "g115_1". 

15-58 AM81-04 



At the same time the message "Enter station command:" is sent to the remote device. 
The station command must then be entered from the remote device. 

After the station command has been given. you may run the process as a 
normal driver process. However. because the test entry was used. several other 
commands have been made available to you. One of these is the probe driver 
command. This simply calls the system probe command. From within the probe 
command. you may use all the probe command requests. including "" to execute 
normal Multics commands. 

Within the coordinator I driver test process there exist two pseudo processeS 
stacked above the original interactive process: the coordinator in the middle. and the 
driver on top. Your terminal communicates with the driver process after you type in 
"driver" during initialization. If you issue the logout command. you log out only the 
driver part of the test process; the terminal is then communicating with the 
coordinator part of the test process. You may now start a new driver servicing the 
same or another device defined in the test directory's iod_tables. To terminate the test 
session, issue the return command again. and the coordinator part of the process logs 
out. You are now back to normal Multics interactive command level. 

SETTING BREAKPOINTS 

You may wish to set breaks in the software to investigate a problem. You 
must create a copy of the desired segment and initiate it in the test directory. If the 
segment normally exists in a bound object segment. you must create copies of all 
components and initiated them in the test directory. You may also copy the source 
into the test directory and recompile it with the map and table options. This allows 
you full use of either the probe or the debug command to investigate the problem. 

When using the probe command to set breaks. you may enter probe. set the 
breaks. and optionally bring up the test driver from within probe. If the test driver 
is already initialized. you may use the probe command within test mode to enter 
probe and manipulate break points. 

Some errors occurring before full driver initialization invoke probe automatically, 
while in test mode. You can examine the state of the process at this point. The 
probe quit request will perform the equivalent of a start command in this case. 

COMMAND LEVEL MESSAGES 

The standard command level message for the daemon coordinator I driver is: 

Enter command: 

15-59 AM81-o4 



Other possible levels are: 

early quit 
quit 
request 
i odd signa 1 (test mode on 1 y) 

and are indicated parenthetically in the command level message. For example: 

Enter command (quit) : 

Sample exec_com File 

The following is a sample exec_com which sets up and runs a test 
environment. When creating your own exec_com, remember to replace TEST _DIR with 
the absolute pathname of the test directory. 

&command_line off 
&goto &ec_name 

&label setup_environment 
sa TEST_DIR>** sma [user name].[user project] 
sa TEST_DIR>coord_dir>** rw [user name].[user project] 
sa TEST_DIR>coord_lock rw 
sa TEST DIR>iodc data rw 
mssa TEST_DIR> ([segs *.ms]) adros [user name]. [user project] 
& Initiate software in test directory at this point. 
& set_ttt_path TEST_DIR>TTF.ttt 
&quit 

&label start_iod 
&attach 
test_io_daemon -dr TEST_DIR 
coord 
driver 
&detach 
&quit 

&label use_test_queues 
& Call the test entry of the daemon request commands. 
dprint_$test TEST_DIR 
ldr$test ldr TEST_DIR 
cdr$test=cdr TEST_DIR 
F..nlli't -.,_. ~ 

&label use_system_queues 
dprint_$test >ddd>idd 
ldr$test ldr >ddd>idd 
cdr$test=cdr >ddd>idd 
&quit 

&label make_tables 
& Compile the iod_tables and generate any missing message segments. 

15-60 AM81-04 



iodtc iod_tables 
create_daemon_queues -dr TEST_DIR 
&quit 

Test Mode Commands 

- A detailed description of the test_io_daemon command. including its requests, is 
available in the Multics Administration, Maintenance, and Operations Commands 
manual, Order No.' GB64. 

SETTING UP A DRIVER TO DRIVER MESSAGE FACILITY 

In order for one user to send a message to another user, the first user must 
provide enough information to uniquely identify the second user's mailbox. With the 
standard send_message command this is accomplished by specifying the user_id of the 
person to whom the message is being sent. Because most standard drivers at a given 
site run simultaneously as the pseudo-user IO.SysDaemon, the user_id must be replaced 
by identification specific to individual drivers in order to enable driver to driver 
communication to take place. 

The unique attribute of a standard driver is the major device it is using. For 
a remote driver, the station_id is unique. Therefore. to establish driver to driver 
communication, mailboxes of the form <device>.mbx must be created for each standard 
driver and <station>.mbx for each remote driver. The mailboxes are located in the 
directory >daemon_dir_dir>io_ms~dir. You can set up these mailboxes by typing: 

change_wdir >daemon_dir_dir 
create_dir io_msg_dir -access_class system_low 
set_acl io_msg_dir s * 
change wdir io msg dir 
mbx_create (devicel device2 stationl station2 .•• ) 
mbx_set_acl * adrosw *.SysDaemon adrosw *.Driver_Projects 

The message facility can be extended to all processes by adding the extended 
ACL term aosw *.*.* to each mailbox. This enables a user process to supply the 
device operator with a request_id and ask for that request to be run next. 

At this point, drivers are able to send messages to specific devices by a 
command line of the form: 

send_message -mbx >ddd>io_ms9_dir><device> <message> 

The next step in enabling the message facility is to define commands that allow 
drivers to communicate with each other. To do this, you edit either the default 
iod_admin.ec or the device or station specific exec_corns to produce the three new 
driver commands x am, x sm, and x pm. 

15-61 AM81-04 



To allow drivers to accept messages, add the following to the iod_admin or 
device/station specific exec_com: 

&label am.command 
& 
& for: x am 
& 

-no args needed-

am -mbx >ddd>io_msg_dir>[iod_val station_id] -print -call 
iod_driver_message 

defer_messages -mbx >ddd>io_msg_dir>[iod_val station_id] 
&quit 

This initializes the mailbox; the driver can then receive messages. The iod_ val 
active function returns the major device (or station_id for, remote device) that was 
established during driver initialization. Messages are deferred so that a remote site that 
relies on one printer for both listings and messages will not get messages in the 
middle of printing a request; for remote sites that do not direct messages to the 
printer (i.e., that use a separate console for slave or control output), it is also possible 
to remove the defer_messages command from the exec_com. The iod_driver_message 
program ensures that messages get to a slave if there is one active. 

To allow one driver to send messages to another driver, add the following to 
the iod_admin or device/station specific exec_com: 

&label sm.command 
& 
& for: x sm <station> <message> 
& 
&if [not [exists argument &2]] 
&then &goto missing_arg.error 
&if [not [exists argument &3]] 
&then &goto conversational_sm 
sm -mbx >ddd>io_msg_dir>&2 from driver [iod_val station_idJ: &f3 
&quit 
&label conversational sm 
&print Enter your station_id as the first message line. 
&print Type 11.11 to exit send message. 
send_message -mbx >ddd>io_msg_dir>&2 
&quit 

To allow a driver to print any pending messages (assuming that they are 
deferred as shown above), add the following to the iod_admin or device/station 
specific exec_com: 

&label pm.command 
& 
& for: x pm -no args needed­
& 
pm -mbx >ddd>io_msg_dir>[iod_val station_idJ -call 

iod_driver_message 
&quit 

15-62 AM81-04 



The setup for the driver to driver message facility is now complete. Each 
remote station operator can check for pending messages between requests by giving the 
x pm command. If messages have not been deferred by the x am command, each 
message will appear as soon as it is received. 

15-63 AM81-04 



APPENDIX A 

SUMMARY OF CONFIGURATION CARDS 

The Multics configuration deck is described in detail in Section 7. This 
appendix presents a listing and brief description of the cards that can be used to 
make the requisite configuration deck (which can be input from tape or the bootload 
console). The general and labeled formats of each card are shown. 

The various cards of a configuration deck describe five different categories of 
information: 

1. The configuration of major hardware mainframe modules (identified in the list 
below as "hardware"). 

2. The configuration of peripheral controllers and devices (identified in the list 
below as "device"). 

3. The software parameters related to the configuration in which the Multics 
system must operate (identified in the list below as "software"). 

4. The parameters of the Multics storage system (identified in the list below as 
"system"). 

5. The cards that have specialized meanings in the Multics system (identified in 
the list below as "special"). 

chnl 
Format: 

chnl device_name ioml chnl nchanl { .. .iom4 chn4 nchan4} 
Labeled format: 

chnl -subsys device_name -iom ioml -chn chnl -nchan nchani t.. -iom 
iom4 -chn chn4 -nchan nchan4} 

designates channels used to access a disk or tape subsystem through an 10M 
(device) 

clok 
Format: 

clok delta zone boot_delta 
Labeled format: 

clok -delta delta -zone zone -boot_delta boot_delta 

provides information to system software about how to interpret the readings of 
the calendar clock (software) 

A-I AM81-04 



cpu 
Format: 

cpu tag port state {type} {model} {cache_size} 
Labeled format: 

cpu -tag tag -port port -state state {-type type -model model -cache 
cache_size} 

identifies a central processor in the Multics system configuration (hardware) 

dbmj 
Format 

intk 

iom 

ipc 

dbmj max~ournals max_pages astl ast2 ast3 ast4 

sets up dm~ournal_se~. and also sets various limits on synch-held pages. 

Format: 
intk boot drive pl p2 ... pN 

specifies bootload conditions for bringing up the Multics system (special) 

Format: 
iom tag port model state 

Labeled format: 
iom -tag tag -port port -model model -state state 

describes an I/O mainframe as part of the Mcltics system configuration 
(hardware) 

Format 
ipc type iom chn nchan 

Labeled format: 
ipc -type fips -iom iom -chn chn -nchan nchan 

defines the channel and the IMU for an IPC-FIPS channel (device) 

mem 
Format: 

mem port size state 
Labeled format: 

mem -port port -size size -state state 

defines system controllers that are part of the Multics system configuration 
(hardware) 

A-2 AM8l-04 



mpe 
Format 

mpe ctlr_name ctlr_model ioml chanl nchanl t .. iom4 chan4 nchan4} 
Labeled format 

mpe -ctlr ctlr_name -model ctlr_model -iom ioml 
-chn chnl -nehan nchanl t .. -iom iom4 -chn chn4 -nchan nchan4} 

defines channels and the 10M for an MPC in the Multics system configuration 
(device) 

parm 
Format 

parm parameters 

defines software parameters (special) 

part 
Format 

part partname subsystem drive {sv} 
Labeled Format: 

part -part partname -subsys subsystem -drive drive bv} 

informs BCE and Multics of the location of special areas of disk used for various 
partitions (system) 

prph 
Format: 

prph ccuN iom channel model 
prph diaN iom channel model 
prph dskN iom channel nchan model! dl {mode12 d2 ... modeI5 d5} 
prph fnpN iom channel model state 
prph opeN iom channel model line_length state {option} 
prph prtN iom channel model train line_length 
prph punN iom channel model 
prph rdrN iom channel model 
prph tapN iom channel nchan model! dl {mode12 d2 ... mode15 d5} 

Labeled format: 
prph -device ccuN -iom iom -chn channel -model model 
prph -device diaN -iom iom -chn channel -model model 
prph -subsys dskN -iom iom -chn channel -nchan nchan -model model! 

-number dl {-model model2 -number d2 ... -model model5 -number d5} 
prph -device fnpN -iom iom -chn channel -model model -state state 
prph -device opeN -iom iom -chn channel -model model -train train 

-11 line_length -state state {-option option} 
prph -device prtN -iom iom -chn channel -model model -train 

train -11 line_length 
prph -device punN -iom iom -chn channel -model model 
prph -device rdr N -iom iom -chn channel -model model 
prph -subsys tapN -iom iom -chn channel -nchan "nchan -model model! 

-number dl {-model model2 -number d2 ... -model model5 -number d5} 

A-3 AM8l-04 



supplies all necessary data about a peripheral device in the Multics system 
configuration (device) 

root 
Format: 

sal v 

root subsystem1 drivel {sv} {. .. subsystemN driveN {sv}} 
Labeled format: 

root -subsys subsystem1 -drive drivel {sv} t .. -subsys subsystemN 
-drive driveN {sv}} 

specifies the location of the physical volumes of the RL V (system) 

Format: 
salv keys 

changes default options for all Multics system salvaging operations (system) 

schd 
Format: 

sst 

tbls 

schd wsf tefirst telast timax {mine {maxe {maxmaxe}}} 
Labeled format: 

schd -wsf wsf -tefirst tefirst -telast telast -timax timax {-mine mine { -maxe 
maxe {-maxmaxe maxmaxe}}} 

sets the scheduling factors and parameters in the Multics system configuration 
(software) 

Format: 
sst astl ast2 ast3 ast4 

Labeled format: 
sst -4k astl -16k ast2 -64k ast3 - 256k ast4 

describes the partitioning of the SST database in the Multics system configuration 
(software) 

Format: 
tbls namel lengthl t.. name4 length4} 

specifies the length of certain paged system tables in the Multics system 
configuration (special)' 

A-4 AM8l-04 



ted 
Format: 

ted apt itt 
Labeled format: 

ted -apt apt -itt itt 

describes the allocation of the databases that contain information needed by the 
traffic controller (software) 

udsk 
Format: 

udsk subsystem nchan {drivel countl. .. drive6 count6} 
Labeled format: 

udsk -subsys subsystem -nchan nchan {-drive drivel -number countl ... -drive 
drive6 -number count6} 

specifies the number of channels available for user peripheral I/O on a disk 
subsystem (device) 

A-5 AM8l-04 



APPENDIX B 

DPU AND DMP /VIP OPERATING PROCEDURES 

This appendix explains how to operate a Dynamic Maintenance Panel (DMP) 
via a Diagnostics Processor Unit (DPU) or a standard VIP terminal. 

MULTICS DPU OPERATION 

Powering on the DPU 

Note: never power the DPU on or off with the diskettes in the drives. 

1. Open the door in the front of the DPU, and find the DPU Maintenance 
Panel. Switch on the DPU and the diskette drives. 

2. Switch on the VIP7205 terminal on top of the DPU. 

Booting the DPU (Manual Boot) 

1. At the DPU Maintenance Panel. switch the security key to the unlock position. 
You'll know the key is in the right position when you see the numbers on the 
panel light up. When this is done, the panel is enabled. 

2. Depress the following keys in the order given: 

STEP 
CLEAR 
LOAD 
EXECUTE 

(key marked wi th red "5") 
(white key marked "CLR") 
(key mar ked ilL ") 
(red key rna r ked II E ") 

When this is done, the Quality Logic Tests (QLTs) of the DPU are invoked. 
Both the TRAFFIC and the CHECK lights will go on. 

3. Watch to see that when the TRAFFIC light goes out, the CHECK light also 
goes out If it doesn't, there's something wrong with the DPU, and you should 
call CSD. 

4. Check to see that the D1 register contains "0400" by using the following 
procedure: 

a. If the WRITE and READ lights are on, turn them off by depressing 
the key marked with a red "s" below the STEP light 

b. If the CHANGE light is on, turn it off by depressing the key marked 
"S" below the CHANGE light 

B-1 AM81-04 



c. Depress the key marked "D", then the key marked "1", on the data 
entry pad on the right side of the panel. 

d. "D1" should be displayed in the left hand set of lights (under 
LOCATION), and "0400" should be displayed in the right hand set of 
lights (under CONTENTS). If they aren't, you should call CSD. 

5. Check to see that the EO register contains "0002" by using the following 
procedure: 

a. If the WRITE and READ lights are on, turn them off by depressing 
the key marked with a red "S" below the STEP light 

b. If the CHANGE light is on, turn it off by depressing the key marked 
"S" below the CHANGE light 

c. Depress the key marked "E", then the key marked "0", on the data 
entry pad on the right side on the panel. 

d. "EO" should be displayed in the left hand set of lights (under 
LOCATION), and "0002" should be displayed in the right hand set of 
lights (under CONTENTS). If they aren't, you should call CSD. 

6. Mount the DPU system diskette in drive 0 (the one on the lefd. (Push the 
button to make the door slide up. Slide the door down to close it). Depress 
the EXECUTE key (red key marked "E"). The red light on the drive will light 
up. 

7. After about three minutes. the bootload will be complete. Diskette activity will 
halt, (i.e., lights will stop flashing) and the following message will be displayed 
on the terminal (blank lines are not shown here): 

***DIAGNOSTICS PROCESSOR UNIT A.X (DL6.xX)*** 
RMI ACTIVE <remote maintenance interface status> 
C1 <ready prompt> 

You are done with the DPU Maintenance Panel now. 

Booting the DPU (Alternate Boot) 

If the primary diskette reader (drive 0) doesn't seem to be functioning, you 
can do an alternate boot of the DPU by performing the following steps: 

1. Perform steps 1-3 given above. 

2. Change the D1 register to "0480". (Consult with CSD for the proper 
procedure.) 

3. Mount the DPU system diskette in the other drive (the one on the right). 
Complete steps 6-7 given above. 

You should note that when a diskette reader doesn't seem to be functioning, 
the problem may lie with the diskette itself. not the reader. 

B-2 AM81-()4 



DPU Typing Conventions 

All input to the DPU must be in upper case. The easiest way to accomplish 
this is to depress the CAPS LOCK key and leave it depressed for the remainder of 
your DPU session. 

All input to the DPU, including the use of special controls such as the DEL 
key and the function keys, must be terminated by pressing the RETURN key. This is 
true no matter what mode the DPU is in. 

WARNING: pressing the RETURN key without typing a new command causes 
the previous command to be reexecuted. In other words, when you've executed a 
command on the DPU by typing its name and hitting the RETURN key, if you hit 
the RETURN key again later on, the command will be executed again. This is true 
only in VIP mode (with the "UNT· CMD" prompt), not in general (not with the 
"OFL?" and "C?" prompts). 

Exceptions to the above rules are the character and line kill keys. They are 
not typed in upper case, and are not followed by a carriage return. To delete an 
input character, type "@". To delete an input line, type CTL-X. (This is done by 
depressing the key marked crL and keeping it depressed while you type an X.) 

Installing the Site Configuration 

Once you've received a ready prompt on the terminal, the first thing you 
should do is install the site dependent configuration that is cabled to the DPU. 

Each unit-type (or device, e.g., CPU, SCU, 10M) that is cabled to the DPU 
has an assigned keyname that is used by the DPU to uniquely identify that unit-type. 
The keynames are as follows: . 

CPMxx 
SCUxx 
10Mxx 

DPS 8 Processor 
DPS 8 SCU 
DPS 810M 

where xx is a two-digit number from 00 to 99 that is used to uniquely identify a 
specific unit-type in a multi-unit configuration. 

To install the site configuration, the following steps must be taken: 

1. Verify the DPU cabling from the DPU communication channels to the DMP 
connections in each unit-type. Line 0 is reserved for the RMI modem 
connection. lines 1-7 for seven unit connections, and lines 8-15 for eight more 
optional unit connections. Record the channel number, the unit-type connected 
to it, and the keyname of the unit-type. 

B-3 AM81-()4 



2. Use the CLST command (type "CLST") to display the currently active DPU 
configuration. It will print a listing like the following: 

Chnl 

1000 

0500 

1080 
1100 
1180 
1200 
1280 

Unit 

RMI 

VIP 

CPU-A 
CPU-B 
SCU-A 
SCU-B 
10M-A 

Keyname 

REMOT 

LOCAL 

CPMOO 
CPMOl 
SCUOO 
SCUOl 
10MOO 

Comments 

Reserved by DPU operating system. 
No current requirement to use or 
implement this connection. 

Can be arranged in any order 
to suit a site's needs. 

3. Compare the currently active configuration with the information you recorded 
in step 2. If there are diff erences, perform steps 4 and 5. If not, installing 
the configuration is complete. 

4. Use the CBLD command (type "CBLD") to make any changes to the DPU 
configuration that may be necessary. The CBLD command supports the 
following options: 

BUILD -

ADD -

provides a "fresh start" capability by clearing the previous configuration. 

provides an append capability by preserving the previous configuration 
and adding to it with the prompted-for information. 

CHANGE -

LIST -

allows the current configuration to be changed by accessing the current 
configuration and allowing alteration of either the key name or channel 
number. 

lists the contents of the modified configuration file. 

DONE -
signifies normal termination of the CBLD session and lists the new 
configuration file. 

ABORT -
terminates the CBLD session. The current configuration may have been 
modified, so an automatic list of the configuration is displayed. 

5. If you change the configuration, you must reboot the DPU to get it to use the 
new or modified version. You can do this by repeating steps 1-6 under 
"Booting the DPU (Manual Boot)" or by using the BOOT command, (type 
"BOOT"). Either of these methods will make the changes made to the 
configuration by the CBLD command become effective. Note that the CLST 
command will not display any changes made by the CBLD command until after 
a reboot is performed. 

B-4 AM81-04 



Displaying Configuration Panels 

Once the configuration is installed correctly. you are free to perform whatever 
tasks yeu need to accomplish. To display a unit's configuration panel, the following 
steps must be taken: 

1. Use the OFL command ~o indicate which unit-type you want to work with. 
Type: 

OFL <unit>xx 

where <unit>xx is the keyname of the unit-type. as defined in the 
configuration. For example: 

OFL CPMOO 

2. After initializing. OFL will display the following message: 

RD CMD FILE 

This indicates that it is reading in the command file for the unit-type you 
specified. After loading the command file, OFL will display the following 
message: 

OFL? 

This is the transparent (TM) mode input prompt. When you see this, type 
nYIP". 

3. YIP will display the following message: 

<unit> CMD 

where <unit> is the unit keyname (CPM, SCU or 10M). This is the YIP mode 
input prompt At this point, your actions depend on which unit you're working 
with. 

If you want to display the configuration panel of the CPU or the SCU, 
depress function key I (the key marked "FI") or type "CP". 

If you want to display the configuration panel of the 10M, type "CFG". 

4. Displays which exceed a full screen are automatically stopped at full screen 
intervals. To make a display continue, type a space. To make a display stop, 
depress the DEL key. 

If you try to interrupt a display before it finishes filling a screen, 
indeterminate conditions may occur. 

You should use continuous, repeated, multiple commands with caution, to avoid 
skewed or distorted displays. 

5. Return to TM mode by typing "TM" , or depressing the BRK key. 

B-5 AM81-04 



6. To exit from TM mode, type "QVIT' or depress the BRK key. You must exit 
from TM mode to display another unit's panel, then repeat steps 1-6. 

Performing System Recovery 

Step-by-step procedures for executing fault and executing switches on a DPS 8 
system with both a DPV and a DMP /VIP are available in the Operator's Guide to 
Multics, Order No. GB61. 

Displaying the SCU History Registers 

If a SCU has its HRD light on after a system crash, or at any other time 
when it may be helpful to see the contents of the history registers, you should 
perform the following steps: 

1. If the DPV is already connected to the sev with the HRD light on, verify 
that the current unit is the desired unit with this procedure: 

a. Depress the BRK key. 

b. When the OFL prompt is displayed, type ".V". 

c. When the unit identifier is displayed, check to see that it is that of the 
desired SCV. If it is, continue with step d. If it isn't, continue with 
steps e-f below. 

d. When the OFL prompt is displayed, type "VIP". 

If the DPV is not connected to the sev with the HRD light on, switch the 
current unit to the desired unit with this procedure: 

e. Depress the BRK. key. 

f. When the OFL prompt is displayed, type "QUIT". 

g. When the C prompt is displayed, type "OFL SCVxx". where xx is the 
unit number in the DPU configuration of the desired SCU. 

h. When the OFL prompt is displayed, type "VIP". 

2. Having typed "VIP", you will receive the SCV CMD prompt. When you see 
this, depress function key 3 (the key marked F3). 

3. The contents of the history registers will be displayed on your screen; Follow 
the rules for dealing with full screen displays given in step 4 of "Displaying 
Configuration Panels". 

DPU Command Summary 

The following summary of commands is not complete. If you need more 
information, you should contact the Customer Services Division (CSD) or your 
Customer Services Representative (CSR). 

B-6 AM81-04 



DPU COMMANDS (C? prompt) 

CLST 

CBLD 

BOOT 

OFL 

? 

displays the currently active DPU configuration. It will not display any changes 
made by the CBLD command bef ore a software reboot is performed. 

alters the DPU configuration. 

causes the DPU to perform a software reboot This is usually done to make 
changes made to the configuration by the CBLD command effective. 

enters TM mode, an environment where you can use keyboard commands to 
display configuration panels and perform certain recovery procedures. This 
environment is a result of the DPU/DMP interface. 

gives you help with DPU commands. 

TM MODE COMMANDS (OFL? prompt) 

eU 

VIP 

SUSP 

QUIT 

<BRK> 

displays the current unit identifier (e.g., CPMOO). 

enters VIP mode 

exits TM mode, retaInIng the step condition. This is required if you are 
putting more than one processor in step at a time. 

exits TM mode. This is required if you want to display another unit's 
configuration panel. 

also exits TM mode. 

VIP MODE COMMANDS ( <unit> CMD prompt) 

CPU DMP Commands 

<PI> 
displays the configuration switches of the CPU. 

CF 
displays the configuration switches of the CPU. 

ST CU 
places a processor in step. 

B-7 AM81-o4 



BCE 24000 
causes an EXECUTE SWITCHES function to occur, and automatically takes the 
bootload processor out of step and restarts it. 

BCE 24002 
forces an ESD. 

SCU DMP Commands 

<Pl> 
displays the configuration switches of the SCU. 

CP 
displays the configuration switches of the SCU. 

<P3> 
displays the contents of the history registers of the SCU. This is useful in 
determining why the HRD light is lit on the maintenance panel. 

10M DMP Commands 

CPO 
displays the configuration switches of the 10M. 

MULTICS DMP/VIP OPERATION 

Getting the VIP Connected to the DMP 

1. If each unit (CPU, 10M, SCU) has its own terminal, you can just type on the 
one connected to the unit you want to work with. Otherwise, you must get 
your terminal hooked up to the desired unit before you can begin typing. 

2. Enter several carriage returns. This will enable t.lte DMP to determine the baud 
rate of your terminal. Once the DMP has done this, you will receive the UNT 
CMD prompt, indicating that you are connected to the DMP and in VIP 
mode. 

Using the DMP /VIP 

n_! __ !_ 'TTD _ .... ...3_ .... _ +1....... T'\. ... ..rn "TTn ~.. +1...... .. ... _.... ..... " .... ; ... ~ 4... "TD ~"A"" ,,~ 
OCIUe; IU V.lC IUVUC VU L.UII; JJ.lVJ..l I "J.J. 1~ L.UII; ;)Q,lUII; GO) ~UI0 IU l' .u. lUV"'~ '"'u 

the DPU. The difference is that you don't have to install the site configuration and 
go through the DPU and TM modes first. 

All of the commands listed under "VIP Mode Commands" above are available 
to you. There's only one difference between using these commands on the DPU and 
using them on the DMP /VIP. On the VIP, you don't have to type a carriage return 
after you depress a function key. 

B-8 AM81-D4 



You can use the DMP /VIP to display the configuration panels of the CPU, 
SCU, and 10M, to perform system recovery, and to display the contents of SCU 
history registers. 

B-9 AM81-04 



APPENDIX C 

STARTUP CHECKLISTS OF SWITCH SETTINGS 

The lists that follow summarize switch settings for an major module panels on 
the Honeywell Multics System prior to Multics startup. (The major module panels are 
described in Section 3.) All switch settings should be checked before the Multics 
system is brought up. 

SYSTEM CONTROLLER UNIT CONFIGURATION PANEL SWITCHES (6000 SC) 

Switch 

MAINTENANCE PANEL MODE 

STORE A 

STORE B 

SIZE 

EXECUTE INTERRUPT MASK ASSIGNMENT 

LOWER STORE 

INTERLACE· 

CYCLE PORT PRIORITY 

PORT CONTROL 

Position 

NORMAL 

ON LINE (if used) 

ON LINE (if used) 

Set to size available f or Store A 
and B 

One switch set to the port for each 
CPU that can be configured. Unused 
switches are OFF. 

Whatever is applicable 

If both stores equal. then ON; 
if stores unequal. then OFF. 

Use if applicable. All switches 
between CPU ports and between 
10M ports UP. others DOWN. 

ENABLE ports being used. 
Ports for processors other than the 
bootload CPU should be in the 
PROG CONT position. 

All other switches on the SCU configuration panel should be left in the OFF 
or down position. 

C-l AM81-04 



SYSTEM CONTROLLER UNIT CONFIGURATION PANEL SWITCHES (4MW SCU) 

Switch 

MAINTENANCE PANEL MODE 

STORE A 

STORE Al 

STORE B 

STORE BI 

LWR STORE SIZE 

INTERLACE 

LWR STORE 

MASK/PORT ASSIGNMENT 

PORT ENABLE 

ALARM 

MODE 

Position 

PROGRAM 

ON LINE (if used) 

ON LINE (if used) 

ON LINE (if used) 

ON LINE (if used) 

Set to size available for Store A 
and Store Al. 

ON if both stores equal in size; 
otherwise OFF. 

Whatever is desired. 

Mask A set to port for bootload 
cpu. Mask B set to OFF. 

Ports for all IOMs and the bootload 
CPU ON; other ports OFF. 

ENABLE 

PROGRAM 

All other switches on the SCU configuration panel should be left in the OFF 
or down position. 

C-2 AM81-o4 



CENTRAL PROCESSING UNIT CONFIGURATION PANEL SWITCHES 

Switch 

PORT ENABLE 

INITIALIZE ENABLE 

ASSIGNMENT 

ADDRESS RANGE on L68; 
not present on DPS8 
ALARM 

MAINTENANCE PANEL MODE 

FAULT CONTROL on L68; 
PROCESSOR FAULT BASE 
ADDRESS on DPS8 

PROCESSOR NUMBER 

OPERATING MODE 

Position 

(Low-order memory) ON 

(Ports used) ON 

(Low-order memory) 000 (ttV); others 
as appropriate. 

FULL or HALF. as appropriate. 

NORMAL on L68; ENABLE on 
DPS8. ~---"'-
NORMAL on L68; PROCESSOR on 
DPS8 (in TEST position enables the 
EXECUTE CONTROL portion of 
the processor maintenance pane!). 

100 (octal); switch 11 UP. 

000 (t t t) = CPU A (PRO-D) -
001 (t t t) = CPU B (PRO-I)-
010 (t t t) = CPU C (PRO-2)-
011 (t t t) = CPU D (PRO-3) 
100 (t t t) =. CPU E (PRO-4) 
101 (t t t) = CPU F (PRO-5) 
110 (t t t) = CPU G (PRO-6) 
111 (t t t) = CPU H (PRO-7) 

MULTICS on L68; VMS on DPS8. --
All other switches on the processor configuration panel should be left in the 

OFF or down position. 

C-3 AM81-04 



CENTRAL PROCESSING UNIT MAINTENANCE PANEL SWITCHES 

Switch 

ENABLE MATCH (two switches) 

DATA SWITCHES 

INITIALIZE 
& CLEAR/INITIALIZE CONTROL 

AUTO (Step control section, 
cen ter of panel) 

CYCLE (Step control section) 

EXECUTE PB/SCOPE REPEAT 
(Execute control section) 

EXECUTE SWITCHES/EXECUTE FAULT 

Position 

ON (up) 

Set to XED - Location 24000 
(024000 717200) 

INITIALIZE CONTROL 

OFF 

OFF 

EXECUTE PB (UP) 

EXECUTE FAULT (DOWN) 

All other switches on the processor maintenance panel should be left in the 
OFF or down position. On DPS8 systems, this panel has been replaced by a display. 

C-4 AM81-04 



10M CONFIGURATION PANEL SWITCHES 

Switch 

PORT ENABLE 

INITIALIZE ENABLE 

ASSIGNMENT 

ADDRESS RANGE on L68; not 
present on DPS8 

ALARM 

MAINTENANCE PANEL MODE on L68; 
10M on DPS8 

10M BASE ADDRESS 

INTERRUPT BASE ADDRESS 

10M NUMBER 

SOURCE 

CHANNEL NUMBER CODE on L68; 
CHANNEL SELECT on DPS8 

ZERO BASE S.C. PORT NO. on L68; 
seu PORT NUMBER on DPS8 

OPERATING MODE 

Position 

(Ports used) ON 

(Ports used) ON 

(Low-order memory) 000 (ttt); others 
as appropriate. 

FULL or HALF, as appropriate 

NORMAL on L68; ENABLE on 
DPS8 

NORMAL 

1400 (octal) 
2000 
2400 
3000 

1200 (octal) --

10M A-
10M B-
10M C 
10M D 

00 (tt) = 10M A (JOM-O) -

01 (tt) = 10M B (IOM-l)-

10 (tt) = 10M C (JOM-2) 

11 (tt) = 10M D (JOM-3) 

TAPE 

Tape channel number. 

Set switches to reflect the SCU port 
to which the 10M is cabled 

PAGED 

All other switches on the 10M configuration panel should be left in the OFF 
or down position. 

C-5 A~181-o4 



IMU CONFIGURATION 

MCA configuration files perform the same function for the IMU that switch 
settings perform for the 10M. The values placed in the MCA configuration files are 
similar to the values set in the 10M switches. These values are placed in the MCA 
configuration files via the MCA config command. If you're using a configuration file 
other than the assigned default, you must give the name of the file with the MCA 
iboot and init commands. MCA commands are described in the Information 
Multiplexer Unit Hardware Operations Manual, Order No. 58010010. An example 
of an IMU config file looks like 

CONFIG. 
PATHNAME 
.CMULTIC 

IPC 

SOURCE 
DEVICE 

: S I : 

INTERRUPT MAILBOX 
BASE ADDR BASE ADDR 
001200Q 002000Q 

DSK HW FW 
STATE TAB 10 10 

150 003 15 
150 003 09 
150 003 09 
150 003 03 
150 003 01 
150 003 01 
150 003 06 09 
150 003 06 08 
150 003 15 
150 003 09 --
150 003 09 --
150 003 02 04 
150 003 04 02 
150 003 01 
150 003 01 
150 003 06 09 
150 003 
150 003 

FIRMWARE TOT 
PATHNAME BUS 
-------- 0 
-------- 0 
-------- 0 
-------- 1 
-------- 0 
-------- 0 
IFDKOOCO 1 
IFTPOOBO 1 
-------- 0 
-------- 0 
-------- 0 
IPR540AO 2 
ICRDOOAO 2 
-------- 0 
-------- 0 
IFDKOOCO 1 

150 003 
150 003 
150 003 

15 I I MUCOGO 

PR I. 
CHAN. VARIANTS: 
20-23 RSO REQ=N, 
18 FNP=DATANET 6670 
19 FNP=DATANET 6670 
14 MAS=Y,R.MAINT=N,POLL 
16 RSO REQ=Y, 
28-31 RSO REQ=N, 
40-43 
48-49 
24-27 RSO REQ=N, 
17 FNP=DATANET 6670 
15 FNP=DATANET 6670 
08-09 
10-11 
32-35 RSO REQ=N, 
36-39 RSO REQ=N, 
44-47 

04096 - 08191K,INIT=N 
08192 - 12287K,INIT=N 
00000 - 04095K,INIT=N 

01 TO 01 

PAN DESC 
00 PSI4 
01 NO I C 
02 NDIC 
03 CONS 
04 PSI2 
05 PSI2 
06 FIPD 
07 FIPT 
08 PSI4 
09 NDIC 
10 NDIC 
11 PDS I 
12 DAIC 
13 PSI2 
14 PSI2 
15 FIPD 
17 MP-B 
18 MP-C 
19 MP-D 
20 I MU1 
21 PS 
BOOTHOST 150 OSTYPE=MULTICS, PORT=l, CHAN=16, DEV=OO, SRC=2(TAPE) 

PTW WRITE PERMIT CHECK IS DISABLED. 
23 MCA 003 TRACE (FAULT=Y, BOOT=N, DEBUG=N) 

FAULT CONDITION (CLASS B=Y, CLASS D=N) 
NOTE 1: * = ALTERS WILL BE APPLIED TO FW PATHNAME. 
***END CONFIGURATION LIST*** 

C-6 AM81-D4 



FNP DIA SWITCHES (DN6670) 

6000 MAILBOX 

FNP A 1 1 1 1 1 1 1 t t t 1 1 ----
FNP B 1 4- 111 1 4- ttttt-I I 

FNP C 1 1 111 1 t111t1-
FNP D 1 1 111 1 t 1 1 t 1 t 
FNP E 1 1 111 1 t 1 t 1 1 1 
FNP F 1 1 1 1 1 1 t 1 t 1 t t 
FNP G 1 1 1 1- 1 1 t 1 t t t 1 
FNP H 1 1 1 111 t t 1 1 1 t 

6000 TERMINATE 1 t t 1 
6000 EMERGENCY t t t 1 
HNP MAILBOX 1 1 t 1 t t 
HNP TERMINATE 1 1 t 1 
HNP SPECIAL 1 1 t t 

INTERRUPT 

Each FNP may be configured with one or two DIA boards. Each board 
must be configured on a separate FNP port The FNP ports on which DIA boards 
may be configured are 3,. 4, 5, and 14. Each board's FNP port must be cabled to an 
10M channel. The FNP DIA connections are identified in the Multics config deck by 
the 10M channel to which the FNP port is cabled. The Multics software determines 
which FNP port to use in accessing the FNP by references to the 10M channel cabled 
to the active FNP port. The FNP port number is not recorded in the FNP core 
image, nor in Multics supervisor databases, nor on any Multics con fig card. 

A FNP with two DIA boards can be cabled to two different laMs on a single 
Multics system. or to an 10M on each of two different systems. However, only one 
of the DIA boards may be used at a time. The prph fnp config card for the 10M 
channel cabled to the active D!A must have a state of on; the card for the 10M 
channel cabled to the inactive DIA must have a state of off. 

C-7 AM81-G4 



Cabling a FNP to two different laMs on a single Multics system offers a 
measure of improved reliability. If the 10M attached to the active DIA board breaks 
down, the 10M and its attached FNP can be deleted from the system, and the FNP 
can then be added to the system using the other 10M channel. However, users of the 
FNP at the time of the 10M failure will have to login again. If their processes had 
the save_on_disconnect attribute, they will be able to reconnect to their processes and 
continue the work which was interrupted when the 10M failed. If their processes did 
not have the save_on_disconnect attribute, work in progress when the 10M failed will 
be lost. 

Cabling a FNP to the laMs of two different systems allows the FNP to be 
shifted easily from one system to the other. 

Multics requires that each FNP use a paging mechanism to access FNP memory 
beyond the first 32K words of memory. The paging mechanism on the FNP pager 
board can be disabled for testing purposes, but Multics requires that it be enabled 
during normal operations. Contact your CSD representative if your FNP will not 
operate. Ask him to insure that the paging mechanism is fully operative. 

C-8 AM81-04 



APPENDIX D 

NAMES OF COMMUNICATIONS CHANNELS 

The name of a communications channel is an encoding of the information 
describing the physical connection between the system and a remote I/O device. Every 
such name is a string of 6 to 32 characters. The name is divided into components 
separated by"." characters; each component represents a level of mUltiplexing. 

The first two components have a standard form. and describe a physical 
channel on an FNP. Multiplexed channels (i.e .• subchannels of a concentrator whereby 
multiple terminals are supported on a single FNP channel) have additional components 
identifying the individual subchannels. The form of each component depends on the 
type of multiplexer involved. 

The general form of the name of a physical channel is: 

F.ANSS 

where: 

F 
is an FNP identifer. It may be a. b. c. or d. 

A 
must be h, to indicate a channel of a high-speed line adapter (HSLA). 

N 
is the number of the HSLA on the specifed FNP. It is in the range 0 to 2. 

SS 
is a 2-digit decimal number identifying a subchannel of the specifed HSLA. 

Here are some examples: 
f fJ-NS,$, 
a.h003 FNP a, HSLA 0, subchannel 03 
b.h219 FNP b, HSLA 2, subchannel 19 
c.hlll FNP c, HSLA 1 , subchannel 1 1 

In the following examples, the physical channel b.h108 (i.e .• FNP b, HSLA 1. 
subchannel 8) is assumed to be a concentrator whose subchannels are numbered 
sequen tially from 0 to 15: 

b.hl08.00 
b.h108.03 
b.hl08.15 

subchanne 1 0 (f irs t subchanne 1) 
subchannel 3 
subchannel 15 (last subchannel) 

D-1 AM81-04 



APPENDIX E 

CONTINUOUS OPERATION EXEC COMS 

This appendix describes the BeE exec_coms supplied with the system to 
implement automatic recovery after system crashes: The operator usually types only the 
two command lines: 

ec auto star 

ec go 

to initiate system bootload, with automatic restart if a crash occurs, and the 
system is in unattended mode. 

to restart automatic operation after a manual return to BeE. 

FLAG USAGE 

Several flags and indicators coordinate the BCE and Multics modes of 
operation. The BeE and Multics get_flagbox and set_flagbox commands (described in 
the Multics Administration, Maintenance and Operations Commands manual, Order 
No. GB64) are used to examine and set. respectively, flags in the toehold. Four flags 
have preassigned meanings and are known by keywords in these commands: 

Flag 1: 

Flag 2: 

Flag 4: 

Flag 5: 

auto_reboot 
TRUE if the system is to attempt to reboot itself after it has crashed. 

booting 
TRUE during bootload. It is turned off at the end of part 3 of 
system_start_up.ec, when bootload is over. This flag prevents the system from 
looping attempting to reboot if it crashes before it comes up. 

rebooted 
TRUE if the system has rebooted as a result of automatic operation. 

unattended 
TRUE if the system is not attended by an operator. 

In addition, the "call_bee" and "shut" flags may be examined to determine the mode 
of BeE entry. The "ssenb" flag may also be tested to see if the storage system has 
been enabled. 

E-1 AM81-()4 



EXEC_COMS 

Auto.ec 

This exec_com starts automatic operation. 

&command_line off 
&-
&- automatic reboot ec for bce 
&-
&if [equal [bce_state] "early"] &then &goto cant_boot_early 
&if [equal [bce_state] "crash"] &then &goto cant_boot_crash 
&print Begin auto boot. 
set_flagbox bce_command "" 
set_flagbox auto_reboot true 
set_flagbox booting true 
&input_line off 
&attach 
config_edit 
gp/"cpu/ 
gp/"mem/ 
q 

&detach 
set_flagbox bce_command "exec_com rtb" 
boot &rf1 
&quit 
&label cant_boot_early 
&print The system cannot be booted from the "early" state. 
&print First use "bce" to get to the "boot" state. 
&quit 
&label cant boot_crash 
&print The system cannot be booted from the "crash" state. 
&print First use "reinitialize" to get to the "boot" state. 
&quit 

Dump.ec 

This exec_com performs a standard dump. 

&command_line off 
&-
&- ec so site set 
&- Honeywell supplied defaults are built into the dump command. 
&-
dump -standard &rf1 
&quit 

E-2 AM81-04 



Go.ec 

This exec_com restarts automatic operation after a manual return to bee. 

&command_line off 
&-
&- restart auto operation after manual bce entry 
&-
set_flagbox auto_reboot true 
set_flagbox rebooted false 
set_flagbox booting false 
set_flagobx bce_command "exec_com rtb" 
go 
&quit 

Rtb.ec 

This exec_com determines what operations to perform upon a return to BCE. 

&command_line off 
&-
&- ec to handle returning to bce 
&-
&if [not [get_flagbox call_bce]] &then &goto non_call_entry 
&-
&print bce invoked via hphcs_$call_bce. 
&-
&if [not [query "Should normal recovery procedures be used?"]] 
&then &goto abort_auto_mode 
&-
&label non_call_en~ry 

&-
&- look at the state of things 
&-
&if [not [get_flagbox ssenb]] &then &goto ss_not_enabled 
&-
&- storage system enabled; take a dump and esd 
&-
exec_com dump 
&-
&if [nequal [severity dump] 0] &then &goto dump_okay 
&-
&print Dump failed. 
&goto abort_auto_mode 
&-
&label dump_okay 
&­
emergency_shutdown 
&- return from above is back at rtb 
&-
&label ss not_enabled 
&-
&- Is everything okay? 

E-3 AM81-04 



&-
&if [nequal [shutdown_state] 4] &then &goto okay~shutdown 
&-
&if [nequal [shutdown_state] 3] &then &print Shutdown with locks set. 
&else &print Error during shutdown. 
&goto abort_auto_mode 
&-
&label okay_shutdown 
&-
&- normal shutdown - see if we should reboot 
&-
&if [not [get_flagbox unattended]] &then &goto abort_auto_mode 
&if [not [get_flagbox auto_reboot]] &then &goto abort_auto_mode 
&if [get_flagbox booting] &then &goto system_cant_boot 
&-
set_flagbox rebooted true 
&-
&-inform a.s. that we are doing an automatic reboot 
&-
exec_com auto star 
&quit 
&-
&label system_cant_boot 
&-
&print System crashed during boot. 
&-
&label abort_auto_mode 
&-
set_flagbox bce_command 
set_flagbox auto_reboot false 
set_flagbox rebooted false 
&quit 

E-4 AM81-04 



APPENDIX F 

SAMPLE SYSTEM STARTUP 

& 

& 
& 
& 

****************************************************** 

* * 
* Copyright. (C) Honeywell Information Systems, Inc.,* 
* 1984 * 

& * * 
& * Copyright (c) 1972 by Massachusetts Institute of * 
& * Technology and Honeywell Information Systems, Inc. * 

& * * 
& ****************************************************** 
& 

& SYSTEM_START_UP.EC - Installation-dependent commands at system startup time. 
& 

& This exec_com is invoked by system_control_ three times: 
& 1. Before answering service startup. in response to "startup" or 
& "multics" command. 
& 2. After answering service startup. in response to "startup" or "go" command. 
& 3. After channel attachment. in response to "startup" or "go" command. 
& 

& a ten-second pause is made between step 2 and channel attachment to allow the 
& message coordinator to get output from "login" commands and such out. 
& 

& To log in a Data Management daemon. issue the command line: 
& login Data_Management Daemon <message_coordinator_channe1_id> 

& --------------------------------------------------------------------------------
& 

&command_1ine off 
&goto &1 
& 

&label part1 
& must create and set acls for ".message" segments used by non-SysDaemon daemons: 
& 

&if [exists segment mc.message] &then &else create mc.message; set_acl mc.message 
& rw *.Daemon.* 
&if [exists segment reader.message] &then &else create reader.message; set_ac1 
& reader.message rw *.Daemon.* 
&if [exists segment vinc.message] &then &e1se create vinc.message; set_acl 
& vinc.message rw *.Daemon.* 
&if [exists segment vcons.message] &tnen &else create vcons.message; set_acl 
& vcons.message rw *.Oaemon.* 
&if [exists segment vcomp.message] &then &else create vcomp.message; set_acl 
& vcomp.message rw *.Oaemon.* 
&quit 
& 

&label part2 
& 

F-l AM81-()4 



& 

& 

& 

& 

& 

& 

& 

a.hOOO is an example of an installation-dependent channel number 
of a terminal in an input/output area remote from the main computer 
room. The lines referring to a.hOOO and ioc2d are commented out, 
and are present to show how a remote i/o terminal can be set up 
using the message coordinator 

EXAMPLE OF REMOTE I/O TERMINAL 
& sc_command accept a.hOOO 
sc_command define alarm tty otw -
sc_command define scc tty otw -
sc_command define asc tty otw -
sc_command define ioc tty otw -
sc_command define bkc tty otw 
& EXAMPLE OF REMOTE I/O TERMINAL 
& sc_command define ioc2d tty a.hOOO 
& 

sc_command define iolog log iolog 
sc_command reroute as severity1 default_vcons asc 
sc_command reroute as severity2 default_vcons *asc 
sc_command reroute as severity3 default_vcons *asc 
sc_command route as severity3 *alarm 
sc_command route (i01 i02 cord prta prtb) user_i/o ioc 
& EXAMPLE OF REMOTE I/O TERMINAL 
& sc_command route (i01 prtb cord) user_i/o ioc2d 
sc_command route (i01 i02 cord prta prtb) error_i/o *ioc 
& EXAMPLE OF REMOTE I/O TERMINAL 
& sc_command route (i01 prtb cord) error_i/o *ioc2d 
sc_command route (prta prtb reader i01) log_i/o iolog 
sc_command route (prta prtb reader i01) log_i/o ioc 
& EXAMPLE OF REMOTE I/O TERMINAL 
& sc_command route (prtb i01) log_i/O ioc2d 
sc_command route (bk cd1 cd2 rt vinc vcons vcomp) user_i/o bkc 
sc_command route (bk cd1 cd2 rt vinc vcons vcomp) error_i/o *bkc 
& 

& CHANGE and uncomment the following line to name the volumes that should 
& be used for process directories. 
& sc_command set_pdir_volumes public 
sc - command login !O.SysOaemon cord 
sc -command login Backup.SysOaemon bk 

sc - command login IO.SysOaemon prta 

sc - command login Utility.SysDaemon ut 
sc - command login Volume _Dumper.Daemon vinc 
& 
& if system rebooted itself after a crash, while unattended (flagbox 5 is "unattended") 
&if [and [get_flagbox 5] [get_flagbox rebooted]] &then &else &goto not_unattended_reboot 
& deiete the tape drives 
sc_command reconfigure delete device tape_(01 02 03 04 05 06 07 08) 
& turn off automatic rebooting, to avoid a crash loop 
set_flagbox auto_reboot false 
&label not_unattended_reboot 
& 

&quit 
& 

&1abel part3 
& set_timax 1 

F-2 AM81-o4 



initia1ize_peek_1imits >system_library_1>ring_zero_meter_limits_ASCII_ 
set_flagbox booting false 
hpsa >system_library_1>system_privilege_ re *.Daemon.* 
hpsa >system_library_1>rcp_priv_ re *.HFED.* 
hpsa >system_library_1>phcs_ re *.HFED.* 
hpsa >system_'ibrary_i>tandd_ re *.HFED.* 
set_acl >s11>syserr_'og.** [list_;acl_seg >sc1>syserr_log] 
save_history_registers off -priv 
& The following will log in a daemon to scavenge all mounted physical 
& volumes with inconsistencies. 
ec admin scav -all -auto -nopt 
&quit 
& 
&label &1 
&print ERROR &1 
& end 

F-3 A~81-Q4 



APPENDIX G 

VOLUME MANAGEMENT 

Volumes (e.g., tape reels and disk packs) at a Multics site are usually stored in 
racks that have a specific location for each volume. These locations, or slots, are 
identified by a slot name, which is usually identical to (or derived from) the name of 
the resource that occupies the slot. 

When a user requests the mounting of a volume he supplies its name, which 
can then be used to determine the slot. Operators are responsible for lccating the 
correct volume and mounting it for the user; and for returning volumes to their 
proper slots when they are no longer needed. 

It is necessary that the user's access to the requested volume be verified before 
he is allowed to mount it. At sites running with Rep Resource Management, the 
system performs all the necessary access checking before allowing the mount request to 
appear on the bootload console. In this case. no additional manual access checking 
need be performed. If the site is not using Resource Management. manual access 
checking must be performed as determined by site policy. In this case, there is 
usually a sticker on the volume telling who may mount it. 

If Resource Management is not being used, operators must make sure to 
restrict access to system volumes containing confidential information, such as Backup 
tapes and disk packs containing saves. These should never be mounted for a nonsystem 
user, since this will bypass Multics security. 

When a mount request is made. the system checks the label recorded on the 
volume to ensure that the correct volume has been mounted. Almost all volumes 
contain a valid label in some format that can be recognized by the Multics label 
authentication software. Occasionally, a volume may be requested that was created at a 
different site where it had a different name, or a blank or specially-formatted volume 
is used; and the system either cannot determine the label. or finds a mismatch. In 
this case, the operator is asked to authenticate the mount request. This is done by 
issuing the "x auth" command with the authentication code appearing on the volume. 
The authentication code is a three-letter hash function derived from the volume name. 

The make_volume_labels command (described in the Multics Administration, 
Mai ntenance and Operations Commands manual. Order No. GB64) is used to 
produce stickers for volumes, giving the volume name and authentication code. 

G-1 AM81-04 



APPENDIX H 

ALTERNATE PROCEDURES FOR DISK VOLUME 
RECOVERY 

Section 10 discusses different kinds of disk failures and how to recover from 
them. In its "Disk Volume Recovery Procedures" subsection. it recommends the use of 
volume reloading. This appendix describes a variation of volume reloading: a BeE 
restore operation followed by a volume reload operation. This procedure is almost 
never needed, and for that reason, its description has been placed in this appendix. 
rather than in Section 10. 

This appendix also discusses an alternate procedure for complete disk volume 
recovery: a BeE restore operation followed by a hierarchy reload operation. While 
BeE restore/hierarchy reloading is not generally recommended for reloading complete 
volumes. your site may decide to use this procedure if problems are encountered (e.g., 
many unreadable tapes) during the volume reloading procedures described in Section 
10, or if your site does not use the Volume Backup facility. 

DISK VOLUME RECOVERY VIA BCE RESTORE/VOLUME RELOADING 

Recovery via BeE restore followed by volume reloading involves replacing the 
damaged disk volume with a spare volume, restoring the most recent BeE save tapes 
for the damaged volume using the BeE restore command, and then reloading the 
consolidated and incremental volume dumper tapes created after the BeE save 
operation was performed. The -save control argument of the reload_volume command 
indicates that the date-con tents-modified field of each entry being reloaded should be 
compared with the date-unmounted field of the volume label. Since a volume must be 
unmounted before a BeE save operation can be performed. the date-unmounted value 
placed in the volume label by the BeE restore operation is a good indicator of the 
date on which the BeE save operation was performed. If the entry from the volume 
backup tape is newer than the date-unmounted field from the disk label. then the 
tape entry is reloaded. 

Recovery of the RPV with BCE Restore/Volume Reloading 

If a disk volume failure occurs for the RPV, the following procedure can be 
used to recover the contents of the RPV from a combination of BeE save tapes and 
volume backup tapes. See Section 9 for general information and more details on 
volume backup and volume reloading. All of the commands used in this procedure are 
described in the Multics Administration, Maintenance and Operations Commands 
manual, Order No. GB64. 

H-l AM81-04 



1. If the system has not already crashed, attempt to recover from the failure by 
following the procedures described in Section 10 under "Recovering From Disk 
Failures". If that corrects the problem, then skip the remaining steps. 
Otherwise, use the last procedure under "Recovering From Disk Failures" to 
shut down or crash the system. 

2. Consult with your Customer Service Representative to correct any hardware 
failure that is occurring. Have him repair or replace any damaged hardware. 

To test the original RPV volume, or to recover its data onto a spare disk volume, you 
* will need to boot BCE and Multics on a temporary RPV. This temporary RPV may 

be obtained in any of the following ways: 

• If your site has prepared a one- or two-volume "test system" for hardware 
and software checkout purposes, you can boot this test system f or use in 
testing and reloading the original RPV 

• You can restore the BCE save tapes for the original RPV onto a spare disk 
volume for use as the temporary RPV. The actual data on the temporary RPV 
is not important since it will not become part of the production hierarchy; an 
older set of save tapes can be used, as long as the saved RPV is for the 
Multics release you are currently running. 

You will have to boot BCE on the temporary RPV, and specify "cold" to the "Enter 
rpv data:" prompt to allow the temporary RPV to be properly initialized. After 
restoring the RPV. remember to update the root and part configuration cards to 
describe only the temporary RPV. 

Spare disk volumes should be properly formatted and tested as described in Section 10 
under "Preformatted Disk Volumes." 

3. Boot BCE on the temporary RPV, as described in the Operators' Guide to 
Multics, Order No. GB61. 

4. If your Customer Service Representative believes there has been no physical 
damage to the original RPV disk volume, attempt to read it using the BCE 
test_disk command, as described in Section 10 under "Extent of Disk Volume 
Failure." 

5. If only transient errors are encountered when reading the original RPV, follow 
the procedures described in Section 10 under "Recovering from Transient Disk 
Volume Failure," and skip the rest of these steps. 

6. If the original RPV is only partially damaged and you decide that loss of the 
unreadable records is acceptable, follow the procedures described in Section 10 
under "Recovering from Partial Disk Volume Failure," and skip the rest of 
these steps. 

H-2 AM81-04 



The steps below attempt to reload RPV information from BCE save and volume 
backup tapes onto a spare disk volume. These steps assume that the original RPV 
volume is totally unreadable, or that the amount of lost data caused by unreadable 
records is unacceptably high. If your Customer Service Representative believes that the 
original RPV is physically damaged (i.e., scratched or warped), then replace the RPV 
with a spare volume which has already been formatted and tested. as described in 
Section 10 under "Preformatted Disk Volumes." Otherwise, you can reload data onto 
the original RPV. 

7. Mount the disk volume to be reloaded on any available drive. 

8. Create a restore control file that will identify the new RPV, then use the BeE 
restore command to load information from the BCE save tapes onto the new 
RPV. For example: 

qx 
a 
td tapa_01 
td tapa_02 
ts ROOT 
pv rpv dska_01 
part rpv dska 01 -all 
\f -
w rpv_restore 
q 
restore rpv_restore 

9. Once the BeE save tapes have been restored, boot Multics on the temporary 
RPV, coming up to Multics ring 1 command level, as described in the 
Operator's Guide to Multics, Order No. GB61. 

10. Convert the disk drive on which the new RPV is mounted to an I/O drive. 
using the set_drive_usage command. For example: 

sdu dska_04 io 

11. Recover the volume log for the RPV using the recover_volume_log command 
with the -wd control argument. For example: 

Mount the last volume backup tape for the volume backup group which 
includes the RPV. The volume name of the last tape should be recorded in 
the tape log, as described in Section 10 under "Backup Tape Logs." If volume 
backup operations were ongoing at the time of disk failure, you should mount 
the tape which was being written at the time of failure. 

12. Reload the new RPV using the volume reloader, by issuing the reload_volume 
command with the -pvname, -operator. -save, and -wd control arguments. For 
example: 

reload_volume -pvname rpv -operator Jones -wd -save 

Mcunt tapes as requested by the reload_volume command. When all tapes have 
been reloaded. continue with the next step. 

H-3 AM81-Q4 



* 13. Shutdown Multics on the temporary RPV. 

14. If the RPV was reloaded onto a spare volume and the original RPV is partially 
readable, you may want to try to copy the contents of the CONF, FILE, 
DUMP, and LOG partitions onto the new RPV, as described in Section 10 
under "Recovery of Partitions after RLV Volume Recovery." 

15. If the newly reloaded RPV is not mounted on the proper disk drive for 
normal operation, move the new RPV to the proper disk drive. 

* 16. Boot BCE on the newly reloaded RPV, according to normal site procedures. If 
reloading was performed on a spare disk volume rather than on the original 

* RPV, then the contents of the CONF, BCE, and FILE partitions have been 
* lost. In BCE, you will have to reload the con fig deck from a config file read 

off the BCE tape, using the BCE "config < deckname> " command. Make 
adjustments to the configuration file as necessary. to reflect the current 
hardware configuration and disk volume locations. 

17. Boot Multics according to normal site procedures. 

18. Perform the procedures for salvaging, quota adjustment, and connection failure 
detection described in Section 10 under "Disk Volume Post-Recovery Procedures." 
This completes recovery of the RPV. 

Recovery of a Non-RPV Root Volume with BeE Restore/Volume Reloading 

If a disk volume failure occurs on a volume which is part of the Root Logical 
Volume (RLV), but is not the RPV, the following procedure can be used to recover 
the contents of that volume from BCE save tapes and volume backup tapes. See 
Section 9 for general information and more details on volume backup and volume 
reloading. All of the commands used in this procedure are described in the Multics 
Administration, Maintenance and Operations Commands manual, Order No. GB64. 

1. If the system has not already crashed. attempt to recover from the failure by 
following the procedures described in Section 10 under "Recovering From Disk 
Failures." If that corrects the problem, then skip the remaining steps. 
Otherwise, use the last procedure under "Recovering From Disk Failures" to 
shut down or crash the system. 

2. Consult with your Customer Service Representative to correct any hardware 
failure that is occurring. Have him repair or replace any damaged hardware. 

To test the original root volume, or to recover its data onto a spare disk volume. you 
* will need to boot BCE and Multics on the RPV. 

3. Boot BCE on the RPV, as described in the Operators' Guide to Multics, 
Order No. GB61. 

4. If your Customer Service Representative believes there has been no physical 
damage to the original root disk volume. attempt to read it using the BCE 
test_disk command, as described in Section 10 under "Extent of Disk Volume 
Failure." 

H-4 AM81-04 



5. If only transient errors are encountered when reading the original root volume, 
follow the procedures described in Section 10 under "Recovering from Transient 
Disk Volume Failure," and skip the rest of these steps. 

6. If the original root volume is only partially damaged and you decide that loss 
of the unreadable records is acceptable, f oHow the procedures described in 
Section 10 under "Recovering from Partial Disk Volume Failure," and skip the 
rest of these steps. 

The steps below attempt to reload root volume iniormation from volume backup tapes 
onto a spare disk volume. These steps assume that the original root volume is totally 
unreadable, or that the amount of lost data caused by unreadable records is 
unacceptably high. If your Customer Service Representative believes that the original 
root volume is physically damaged (i.e., scratched or warped), then replace it with a 
spare volume which has already been formatted and tested. as described in Section 10 
under "Preformatted Disk Volumes." Otherwise, you can reload data onto the original 
root volume. 

7. Mount the disk volume to be reloaded on any available drive. 

8. Create a restore control file that will identify the physical volume, then use 
the BCE restore command to load information from the BCE save tapes onto 
the volume. For example: 

qx 
a 
td tapa_Ol 
td tapa_02 
ts ROOT 
pv root2 dska_02 
\f 
w root2_restore 
q 
restore root2_restore 

9. Remove all disk volumes from the root con fig card, except for the RPV. If * 
any part config cards identify the damaged disk volume, remove those part 
cards from the config deck. 

10. Boot Multics on the RPV, coming up to Multics ring 1 command level, as 
described in the Operators' Guide to Multics, Order No. GB61. 

11. Convert the disk drive on which the new root volume is mounted to an I/O 
drive, using the set_drive_usage command. For example: 

H-5 AM81-04 



* 

12. Recover the volume log for the root volume using the recover_ volume_log 
command with the -wd control argument. For example: 

recover_volume_log root2 -wd 

Mount the last volume backup tape for the volume backup group which 
includes the RLV. The volume name of the last tape should be recorded in 
the tape log, as described in Section 10 under "Backup Tape Logs." If volume 
backup operations were ongoing at the time of disk failure, you should mount 
the tape which was being written at the time of failure. 

13. Reload the new root volume using the volume reloader by issuing the 
reload_volume command with the -pvname, -operator, -wd and -save control 
arguments. For example: 

reload_volume -pvname root2 -operator Jones -wd -save 

Mount tapes as requested by the reload_volume command. When all tapes have 
been reloaded, continue with the next step. 

14: Shutdown the Multics running on the RPV. 

15. Restore the root and part config cards to their normal values, either by 
retyping the changed cards or by issuing the BeE "config < deckname> " 
command to load a new copy of the config deck from a BeE file. 

16. If the root volume was reloaded onto a spare volume and the original volume 
is partially readable, you may want to try to copy the contents of the DUMP 
partition onto the new root volume, if this partition was on the damaged root 
volume. Follow the procedure described in Section 10 under "Recovery of 
Partitions after RLV Volume Recovery." This can oLly be done if the location 
of partitions was not changed on the new root. 

17. If the newly reloaded root volume is not mounted on the proper disk drive 
for normal operation, move the volume to the proper disk drive. 

* 18. Boot BeE on the RPV, according to normal site procedures. Make adjustments 
to the configuration file as necessary, to reflect the current hardware 
configuration and disk volume locations. 

19. Boot Multics according to normal site procedures. 

20. Perform the procedures for salvaging, quota adjustment, and connection failure 
detection described in Section 10 under "Disk Volume Post-Recovery Procedures." 
This completes recovery of the root volume. 

Recovery of a Non - Root Volume with BeE Restore/Volume Reloading 

If a disk volume failure occurs on a volume which is not part of the Root 
Logical Volume (RLV), the following procedure can be used to recover the contents of 
that volume from BCE save and volume backup tapes. See Section 9 for general 
inf ormation and more details on volume backup and volume reloading. All of the 
commands used in this procedure are described in the Mu/tics Administration, 
Mai ntenance and Operations Commands manual, Order No. GB64. 

H-6 AM81-04 



1. If the system has not already crashed, attempt to recover from the failure by 
following the procedures described in Section 10 under "Recovering From Disk 
Failures." If that corrects the problem, then skip the remaining steps. 
Otherwise, use the last procedure under "Recovering From Disk Failures" to 
shut down or crash the system. 

2. Consult with your Customer Service Representative to correct any hardware 
failure that is occurring. Have him repair or replace any damaged hardware. 

To test the original volume, or to recover its data onto a spare disk volume, you will 
need to boot BCE and Multics on the RLV. 

3. Boot BCE, as described in the Operators' Guide to Multics, Order No. GB61. 

4. If your Customer Service Representative believes there has been no physical 
damage to the original disk volume, attempt to read it using the BCE test_disk 
command, as described in Section 10 under "Extent of Disk Volume Failure." 

5. If 'only transient errors are encountered when reading the original volume, 
follow the procedures described in Section 10 under "Recovering from Transient 
Disk Volume Failure," and skip the rest of these steps. 

6. If the original volume is only partially damaged and you decide that loss of 
the unreadable records is acceptable, follow the procedures described in Section 
10 under "Recovering from Partial Disk Volume Failure," and skip the rest of 
these steps. 

The steps below attempt to reload information from volume backup tapes onto a spare 
disk volume. These steps assume that the original volume is totally unreadable, or that 
the amount of lost data caused by unreadable records is unacceptably high. If your 
Customer Service Representative believes that the original volume is physically damaged 
(i.e.; scratched or warped), then replace it with a spare volume which has already been 
formatted and tested, as described in Section 10 under "Preformatted Disk Volumes." 
Otherwise, you can reload data onto the original disk volume. 

7. Mount the disk volume to be reloaded on any available drive. 

8. Create a restore control file that will identify the physical volume, then use 
the BCE restore command to load information from the BCE save tapes onto 
the volume. For example: 

qx 
a 
td tapa_Ol 
td tapa_02 
tsXpublic 
pv xpub02 dska_06 
\f 
w xpub_restore 
q 
restore xpub_restore 

* 

9. Boot Multics on the RLV, coming up to Multics ring 1 command level, as * 
described in the Operators' Guide to Multics, Order No. GB61. 

H-7 AM81-o4 



10. To complete the boot, delete the logical volume which contains the damaged 
physical volume, using the del_Iv command. For example: 

del_lv Xpubl ic 

11. Issue the standard command to move to ring 4: 

standard 

12. If the system can run reasonably without the deleted logical volume, warn users 
(via a message_of_the_day, or with a login warning set by the word command) 
that the logical volume has been deleted for repair operations. For example: 

word login Xpublic volume is offline for repairs. 

If the system cannot run reasonably without the deleted logical volume, put the 
system into a special session, using the multics and go commands. This will 
prevent users from logging in: 

multics 
go 

13. Convert the disk drive on which the new volume is mounted to an I/O drive, 
using the set_drive_usage command. For example: 

sdu dska_06 io 

14. Login the volume reloader and issue a reload_volume command with the 
-operator, -pvname, and -save control arguments. For example: 

login Volume_Reloader.Daemon vrld 
r vrld reload_volume -pvname xpub02 -operator Jones -save 

Mount tapes as the reloader asks for them; it will indicate when all necessary 
tapes have been reloaded. 

If the reloader indicates that the volume log is unavailable, recover the volume 
log for the volume using the recover_ volume_log command. For example: 

r vrld recover_volume_log xpub02 

Mount the last volume backup tape for the volume backup group which 
includes the failing volume. The volume name of the last tape should be 
recorded in the tape log, as described in Section 10 under "Backup Tape Logs." 
If volume backup operations were ongoing at the time of disk failure, you 
should mount the tape which was being written at the time of failure. After 
the volume log has been recovered, then reissue the reload_volume command, 
as shown above. 

15. After volume reloading is complete, issue a set_drive_usage command to convert 
the drive back into storage system usage. For example: 

sdu dska 06 ss 

H-8 AM81-Q4 



16. Issue the add_vol command to inform the system of the new location for the 
reloaded disk volume. For example: 

add_vol xpub02 dska_06 

17. Issue the add_Iv command to add the logical volume containing the reloaded 
disk volume. For example: 

add_Iv Xpubl i c 

18. If the system is in special session, return it to normal session: 

word login 
maxu auto 
abs start 
abs maxu auto 

19. Perform the procedures for salvaging, quota adjustment, and connection failure 
detection described in Section 10 under "Disk Volume Post-Recovery Procedures." 
This completes recovery of the volume. 

DISK VOLUME RECOVERY VIA BCE RESTORE/HIERARCHY RELOADING 

The BCE restore/hierarchy reloading strategy can be used to reload a volume 
which is not part of the Root Logical Volume (single volume reload). to reload the 
entire Root Logical Volume (RL V reload), or to reload the entire hierarchy (complete 
reload). BCE restore/hierarchy reloading cannot be used to recover only a single root 
volume (either the RPV or an RL V volume). A complete or RL V reload must be 
performed to recover single RLV volumes. 

The BCE restore/hierarchy reload strategy involves replacing physically damaged 
volumes with spare disk volumes, initializing these volumes, and then reloading 
complete, consolidated and incremental dump tapes onto them in chronological order 
(the order in which they were written). 

Hierarchy Reload of RL V versus Reload of All Volumes 

The loss of a part of the Root Logical Volume (RL V) is always very serious. 
The recovery operation when reloading hierarchy dump tapes is more complex than 
when reloading volume dump tapes. When reloading hierarchy dump tapes, the entire 
RL V must be reloaded rather than just the damaged root volume. 

The need to reload the entire p~V stems from the way the hierarchy reloader 
works. If a directory being reloaded does not already exist, the hierarchy reloader uses 
the next available VTOCE to hold the directory, rather than placing the directory in 
the same VTOCE from which it was dumped. Because directories are being reloaded 
into different locations, superior directories can lose track of the new location, causing 
connection failures. The only method of avoiding such connection failures is to reload 
the entire RL V. 

H-9 AM81-o4 



Another factor adding to the complexity of single volume and RL V hierarchy 
reloads is the requirement of the hierarchy reloader that it operate on a consistent 
copy of the hierarchy. After a BeE restore of one or several volumes is complete. 
directory salvaging and physical volume connection failure detection operations must be 
perf ormed to restore the consistency of the hierarchy before the hierarchy reload is 
performed. Directory salvage operations are needed to delete branches for entries 
which were deleted after the BeE save tapes were made. Reverse connection failure 
detection is needed to recover VTOCEs for segments which were deleted' after the 
BeE save tapes were made (either by adopting these segments or by garbage collecting 
their VTOCEs). The considerable amount of time required to perform these operations 
must be weighed against the simpler. but sometimes longer procedure of doing a 
complete reload of the entire system. 

Recovery of All Volumes with BeE Restore/Hierarchy Reloading 

If a disk volume failure occurs on several different disk volumes (either on 
volumes of the RLV or on non-root volumes), the following procedure can be used to 
recover the contents of all volumes on the system from BeE save and hierarchy 
backup tapes. This procedure is often referred to as a "complete restore/reload" of 
the hierarchy. 

Note that it is possible to recover just the volumes of the RLV, or just a 
single non-root volume. Procedures for such recovery operations are described later in 
this appendix under "Recovery of the Root Logical Volume with BeE Restore/Hierarchy 
Reloading" and "Recovery of a Non-Root Volume with BeE Restore/Hierarchy 
Reloading." However, these recovery operations are more complex than a complete 
restore/reload operation, and they may be more time-consuming as well. You should 
consider the steps involved in each type of BCE restore/hierarchy reloading procedure 
carefully. and choose the best procedure for your particular circumstances. 

See Section 9 for general information and more details on hierarchy backup 
and hierarchy reloading. All of the commands used the procedure below are described 
in the Multics Administration, Maintenance and Operations Commands manual, 
Order No. GB64. 

1. If the system has not already crashed, attempt to recover from the failure by 
following the procedures described in Section 10 under "Recovering From Disk 
Failures". if that corrects the problem, then skip the remammg steps. 
Otherwise, use the last procedure under "Recovering From Disk Failures" to 
shut down or crash the system. 

2. Consult with your Customer Service Representative to correct any hardware 
failure that is occurring. Have him repair or replace any damaged hardware. 

To test the damaged disk volumes, or to recover their data onto spare disk volumes, 
* you will need to boot BCE and Multics on an RPV. The RPV to be used for testing 

can be obtained in any of the following ways: 

• If the RPV of the production Multics system is not one of the damaged disk 
volumes, you can boot BCE on the original RPV for testing and reloading the 
other disk volumes 

H-I0 AM81-04 



• If your site has prepared a one- or two-volume "test system" for hardware 
and software checkout purposes, you can boot this test system f or use in 
testing and reloading the original RPV 

• You can restore the BCE save tapes for your RPV onto a spare disk volume 
for use as the temporary RPV. The actual data on the temporary RPV is not 
important since it will not become part of the production hierarchy; an older 
set of save tapes can be used, as long as the saved RPV is for the Multics 
release you are currently running. 

You will have to boot BCE on the temporary RPV, and specify "cold': to the "Enter I 
rpv data:" prompt to allow the temporary RPV to be properly initialized. After I 
restoring the RPV, remember to update the root and part configuration cards to 
describe only the temporary RPV. 

3. Boot BCE on the chosen RPV, as described in the Operators' Guide to I 
Multics, Order No. GB61. 

4. If your Customer Service Representative believes there has been no physical 
damage to the original disk volumes, attempt to read them using the BCE 
test_disk command, as described in Section 10 under "Extent of Disk Volume 
Failure." 

5. If only transient errors are encountered when reading the original volumes, 
follow the procedures described in Section 10 under "Recovering from Transient 
Disk Volume Failure:' and skip the rest of these steps. 

6. If the original volumes are only partially damaged and you decide that loss of 
the unreadable records is acceptable, follow the procedures described in Section 
10 under "Recovering from Partial Disk Volume Failure," and skip the rest of 
these steps. 

The steps below attempt to reload information from BeE save and hierarchy backup 
tapes onto spare disk volumes. These steps assume that the original volumes are totally 
unreadable, or that the amount of lost data caused by unreadable records is 
unacceptably high. If your Customer Service Representative believes that one or more 
of the original volumes are physically damaged (i.e., scratched or warped), then they 
must be replaced with spare volumes which have already been formatted and tested, as 
described in Section 10 under "Preformatted Disk Volumes." Otherwise, you can reload 
data onto the original disk volumes. 

7. Mount the disk volumes to be reloaded on any available drive. You can use 
the original disk drives if the Customer Service Representative says they are in 
good working condition. 

8. If the original RPV was physically damaged, then you must reboot BCE on the 
spare volume which will become the new RPV. The spare disk volume should 
be properly formatted and tested as described in Section 10 under "Preformatted 
Disk Volumes." You will have to boot BCE on the temporary RPV, and 
answer "cold" to the "Enter rpv data:" prompt to specify that the RPV is to 
be ini tialized. 

Similarly, if you are running on a temporary RPV or on a test system and the 
original RPV is not physically damaged, then you must reboot BCE on the 
original RPV. 

H-11 AM81-<l4 



9. If the RPV was reloaded onto a spare volume and the original RPV is partially 
readable, you may want to try to copy the contents of the CONF, FILE, 
DUMP, and LOG partitions onto the new RPV, as described in Section 10 
under "Recovery of Partitions after RLV Volume Recovery." 

10. Now you must either create restore control files that will define the volumes 
to restore, or use the control files that were created when the original BeE 
save was done. You can restore either one or multiple volume sets. For 
example: 

11. Once the BeE save tapes have been restored, boot Multics on the newly 
reloaded RPV, coming up to ring 1 command level, as described in the 
Operators' Guide to Multics, Order No. GB61. 

12. Attach all logical volumes by typing: 

13. Use the reload command to read, in forward chronological order. all hierarchy 
consolidated and incremental dump tapes made since the BeE save tapes were 
created: 

reload -nomap 

When all tapes have been reloaded, continue with the next step. 

14. Boot Multics according to normal site procedures. 

15. Perform the procedures for salvaging, quota adjustment, and connection failure 
detection described in Section 10 under "Disk Volume Post-Recovery Procedures." 
This completes recovery of the volume. 

Recovery of the Root Logical Volume with BeE Restore/Hierarchy Reloading 

If a disk volume failure occurs on one or more disk volumes of the RL V. the 
following procedure can be used to recover the contents of all volumes of the RL V 
from BeE save and hierarchy backup tapes. This procedure is often referred to as an 
"RLV restore/reload". It it sometimes better than a complete restore/reload because it 
can preserve later copies of non-root segments than those appearing on the backup 
tapes. 

c;:."""" c;:."",.t1".., 0 f,,~ ft'""..,,,,,~ .. 1 1..,f"~ ........ t1",,, .. ..,..:1 ...... ,,~"" ..:I""t,,11., ,...., h1A~"1"'''htr h",."" .... OJ_ OJ~"'~vu -' ~ VA f) .... U .... A Q.! AAA! VA AAA!;L!,,!VU Q.A!Y !.A!VA.... Y .... !.Q.A!,JI VA! LL! .... ! j;&,! .... uJ va",l\.~p 

and hierarchy reloading. All of the commands used the procedure below are described 
in the Multics Administration, Maintenance and Operations Commands manual, 
Order No. GB64. 

1. If the system has not already crashed, attempt to recover from the failure by 
following the procedures described in Section 10 under "Recovering From Disk 
Failures." If that corrects the problem, then skip the remaining steps. 
Otherwise, use the last procedure under "Recovering From Disk Failures" to 
shut down or crash the system. 

H-12 AM81-o4 



2. Consult with your Customer Service Representative to correct any hardware 
failure that is occurring. Have him repair or replace any damaged hardware. 

To test the damaged disk volumes, or to recover their data onto spare disk volumes, 
you will need to boot BeE and Multics on an RPV. The RPV to be used for testing * 
can be obtained in any of the following ways: 

• If the RPV of the production Multics system is not one of the damaged disk 
volumes, you can boot BeE on the original RPV for testing and reloading the 
other disk volumes 

• If your site has prepared a one- or two-volume "test system" for hardware 
and software checkout purposes, you can boot this test system for use in 
testing and reloading the original RPV 

• You can restore the BeE save tapes for your RPV onto a spare disk volume I 
for use as the temporary RPV. The actual data on the temporary RPV is not -I 

important since it will not become part of the production hierarchy; an older 
set of SAVE tapes can be used, as long as the saved RPV is for the Multics ' 
release you are currently running. 

You will have to boot BCE on the temporary RPV, and specify "cold" to the "Enter 
rpv data:" prompt to allow the temporary RPV to be properly initialized. After 
restoring the RPV, remember to update the root and part configuration cards to 
describe only the temporary RPV. 

3. Boot BeE on the chosen RPV, as described in the Operators' Guide to I 
Multics, Order No. GB61. 

4. If your Customer Service Representative believes there has been no physical 
damage to the original disk volumes, attempt to read them using the BeE 
test_disk command, as described in Section 10 under "Extent of Disk Volume 
Failure." 

5. If only transient errors are encountered when reading the original volumes, 
follow the procedures described in Section 10 under "Recovering from Transient 
Disk Volume Failure," and skip the rest of these steps. 

6. If the original volumes are only partially damaged and you decide that loss of 
the unreadable records is acceptable, follow the procedures described in Section 
10 under "Recovering from Partial Disk Volume Failure," and skip the rest of 
these steps. 

The steps below attempt to reload information from BeE save and hierarchy backup 
tapes onto spare disk volumes. These steps assume that the original volumes are totally 
unreadable, or that the amount of lost data caused by unreadable records is 
unacceptably high. If your Customer Service Representative believes that one or more 
of the original volumes are physically damaged (i.e., scratched or warped), then they 
must be replaced with spare volumes which have already been formatted and tested. as 
described in Section 10 under "Preformatted Disk Volumes." Otherwise. you can reload 
data onto the original disk volumes. 

7. Mount the disk volumes to be reloaded on any available drive. You can use 
the original disk drives if the Customer Service Representative says they are in 
good working condition. 

H-13 AM81-04 



8. If the original RPV was physically damaged, then you must reboot BCE on the 
spare volume which will become the new RPV. The spare disk volume should 
be properly formatted and tested as described in Section 10 under "Preformatted 
Disk Volumes." You will have to boot BCE on the temporary RPV, and 
specify "cold" to the "Enter rpv data:" prompt to specify that the RPV is to 
be ini tialized. 

Similarly, if you are running on a temporary RPV or on a test system and the 
original RPV is not physically damaged, then you must reboot BCE on the 
original RPV. 

9. If the RPV was reloaded onto a spare volume and the original RPV is partially 
readable, you may want to try to copy the contents of the CONF, FILE, 
DUMP, and LOG partitions onto the new RPV, as described in Section 10 
under "Recovery of Partitions after RLV Volume Recovery." 

10. Now you must either create restore control files that will define the volumes 
to restore, or use the control files that were created when the original BCE 
save was done. For example: 

11. Once the BCE save tapes have been restored, boot Multics on the newly 
reloaded RPV, coming up to ring 1 command level, as described in the 
Operators' Guide to Multics, Order No. GB61. 

12. Attach all logical volumes by typing: 

13. Salvage the Multics hierarchy by typing: 

salvage_dirs -check_vtoce -delete_connection_failure 

to delete directory branches for entries that were present when the BCE save 
was performed, but have since been deleted. 

14. At this point, you must decide whether or not to try performing segment 
adoption (to create new directory branches to preserve the V TOCEs and 
segment contents for segments created since the BCE save tapes were written). 
If you're going to attempt segment adoption, you must do it now, before 
copies of segments created since the BeE save get reloaded from the backup 
tapes. 

You must also decide whether there is enough space on non-root volumes to 
receive copies of segments created since the BCE save tapes were written. If 
any non~root logical volumeS do not have sufficient space to hold new copies 
of all segments created since the save, you will have to make space on these 
logical volumes. This can be done by "garbage collection:" looking for reverse 
connection failures (VTOCEs that have no directory branch), and deleting these 
VTOCEs. 

If you decide to perform either of these functions, continue with step 15. 
Otherwise, continue with step 19. 

H-14 AM81-04 



15. Issue the standard command to move to ring 4: 

standard 

16. En ter admin mode, using the admin command. 

17. Use the sweep_pv command as described in Section 12 under nSegment 
Adoption" and "How to Perform VTOC Garbage Collection on a Pack." 

18. After performing either of these functions, you must leave admin mode, 
shutdown Multics (to BCE level), reboot Multics to ring 1 command level, and 
add all logical volumes: 

arne 
shut 
boot 
add_lv -all 

19. Use the reload command to read, in forward chronological order, all hierarchy 
consolidated and incremental dump tapes made since the BeE save tapes were 
created: 

reload -nornap 

If reload error files get created, stop the reload process (at the end of a tape). 
Cross out to ring 4 and enter admin mode: 

standard 
adrnin 

Print the error files. If the errors are occurring because one or more logical 
volumes are full. you must perform VTaC garbage collection via sweep_pv. as 
described in Section 12. Then you must leave admin mode, shutdown Multics 
(to BCE level), reboot Multics to ring 1 command level, and add all logical 
volumes: 

arne 
shut 
boot 
add_lv -all 

Finally, you must start the reload process again with the first tape for which 
an error file was created. 

20. When all tapes have been reloaded, shutdown Multics: 

shut 

21. Boot Multics according to normal site procedures. 

22. Perform the procedures for salvaging, quota adjustment, and connection failure 
detection described in Section 10 under "Disk Volume Post-Recovery Procedures." 
This completes recovery of the volume. 

H-15 AM81-()4 



Recovery of a Non - Root Volume with BeE Restore/Hierarchy Reloading 

If a disk volume failure occurs on one or more non-root disk volumes, the 
following procedure can be used to recover the contents of the damaged volumes from 
BCE save and hierarchy backup tapes. This procedure is often referred to as a "single 
volume restore/reload". 

See Section 9 for general information and more details on hierarchy backup 
and hierarchy reloading. All of the commands used the procedure below are described 
in the Multics Administration, Maintenance and Operations Commands manual, 
Order No. GB64. 

1. If the system has not already crashed, attempt to recover from the failure by 
following the procedures described in Section 10 under "Recovering From Disk 
Failures." If that corrects the problem, then skip the remaining steps. 
Otherwise, use the last procedure under "Recovering From Disk Failures" to 
shut down or crash the system. 

2. Consult with your Customer Service Representative to correct any hardware 
failure that is occurring. Have him repair or replace any damaged hardware. 

To test the damaged disk volumes, or to recover their data onto spare disk volumes, 
* you will need to boot BCE and Multics on an RPV. The RPV to be used for testing 

can be the RPV of the production Multics system. 

3. Boot BCE. as described in the Operators' Guide to Multics, Order No. GB61. 

4. If your Customer Service Representative believes there has been no physical 
damage to the original disk volumes, attempt to read them using the BCE 
test_disk command, as described in Section 10 under "Extent of Disk Volume 
Failure." 

5. If only transient errors are encountered when reading the original volumes, 
follow the procedures described in Section 10 under "Recovering from Transient 
Disk Volume Failure," and skip the rest of these steps. 

6. If the original volumes are only partially damaged and you decide that loss of 
the unreadable records is acceptable, follow the procedures described in Section 
10 under "Recovering from Partial Disk Volume Failures," and skip the rest of 
these steps. 

The steps below attempt to reload information from BCE save and hierarchy backup 
tapes onto spare disk volumes. These steps assume that the original volumes are totally 
unreadable, or that the amount of lost data caused by unreadable records is 
unacceptably high. If your Customer Service Representative believes that one or more 
of the- oriiinal- volumes are physically damaged -(i.e., scratched or warped), then they 
must be replaced with spare volumes which have already been formatted and tested, as 
described in Section 10 under "Pref ormatted Disk Volumes." Otherwise, you can reload 
data onto the original disk volumes. 

7. Mount the disk volumes to be reloaded on any available drive. You can use 
the original disk drives if the Customer Service Representative says they are in 
good working condition. 

H-16 AM81-04 



8. Now you must either create restore control files that will define the volumes 
to restore, or use the control files that were created when the original BCE 
save was done. You can restore either one or multiple volume sets. For 
example: 

9. Once the BCE save tapes have been restored, boot Multics on the newly 
reloaded RPV, coming up to ring 1 command level, as described in the 
Operators' Guide to Multics, Order No. GB61. 

10. Attach all logical volumes by typing: 

11. Issue the standard command to move to ring 4: 

standard 

12. Enter admin mode, using the admin command. 

13. Perform "garbage collection" on the volumes being reloaded, looking for reverse 
connection failures (VTOCEs that have no directory branch), and deleting these 
VTOCEs. Such segments have been moved or deleted since the BCE save tapes 
were written. Use the sweep_pv command as described in Section 12 under 
"How to Perform VTOC Garbage Collection on a Pack." 

14. Leave admin mode., shutdown Multics (to BCE leven. reboot Multics to rIng 1 
command level, and add all logical volumes: 

arne 
shut 
boot 
add_lv -all 

15. Use the reload command to read. in forward chronological order, all hierarchy 
consolidated and incremental dump tapes made since the BCE save tapes were 
created: 

reload -nornap -error_on 

Do not use the -pvname control argument. The reload command will only 
reload segments from the tape whose date-con tents-modified is later than that 
of the existing segment on disk. or for which there is no existing disk 
segment. 

If reload error files get created, stop the reload process (at the end of a tape). 
Cross out to ring 4 and en ler admin mode: 

standard 
adrnin 

H-17 AM81-04 



Prin t the error files. If the errors are occurring because one or more logical 
volumes are full. you must perform VTOC garbage collection via sweep_pv. as 
described in Section 12. Then you must leave admin mode. shutdown Multics 
(to BCE level). reboot Multics to ring 1 command level, and add all logical 
volumes: 

arne 
shut 
boot 
add_lv-all 

Finally. you must start the reload process again with the first tape for which 
an error file was created. 

16. When all tapes have been reloaded. shutdown Multics: 

shut 

17. Boot Multics according to normal site procedures. 

18. Perform the procedures for salvaging, quota adjustment. and connection failure 
detection described in Section 10 under "Disk Volume Post-Recovery Procedures." 
This completes recovery of the volumes. 

H-18 AM81-()4 



APPENDIX I 

MUL TICS HEALS 

DESCRIPTION OF HEALS 

HEALS (Honeywell Error Analysis and Logging System) assists Customer 
Services and operations personnel in monitoring the performance of the hardware. It 
provides a record of hardware operation for diagnosing transient malfunctions, tracking 
performance of hardware modules, and predicting scheduled maintenance. 

HEALS IMPLEMENTATION 

The functions of an error analysis and logging system are: 

1. Capturing and logging hardware data. 

2. Sorting and analyzing the data. 

3. Presenting the analyzed data in a series of reports. 

The logging function is performed by the syserr mechanism to the syserr log. 
The other functions are performed by the facilities described in this appendix. 

The syserr log contains a number of entries not needed for the HEALS 
reports, and the time interval of syserr log data is normally not as large as may be 
desired for HEALS error data analysis. Therefore, the syserr log entries of interest to 
HEALS are extracted from the syserr log and written to an independent segment 
named >system_control_l>heals_dir>heals_log (hereafter referred to as the HEALS log). 

The update_heals_log, truncate_heals_log, and print_heals_message commands are 
provided to manage the HEALS log. 

The heals_report command creates a report for the specified time intervals and 
appends it to the output file, which is created if none exists. The default pathname 
of the output file is heals_reports in the working directory. The HEALS log is not 
updated or otherwise changed by the heals_report command. If the latest syserr log 
entries are wanted in the reports, the heals_report command must be preceded by the 
update_heals_log command. 

1-1 AM81-()4 



The segment heals_log and a control data segment (heals_lo~info) are 
contained in the directory >system_control_l>heals_dir. Management of the HEALS log 
is expected to be done by Customer Services personnel. 

HEALS INSfALLATION REQUIREMENTS 

The directory >system_control_l>heals_dir, created by acct_start_up.ec (the 
system accounting startup), must exist 

The heals_log segment is created by the first invocation of the update_heals_log 
command. 

HEALS USAGE 

HEALS is for both routine reporting of hardware errors and for specific 
reports on demand. 

All HEALS reports should be generated on a daily basis following a HEALS 
log update to maintain a continuous record of hardware errors and malfunctions. This 
HEALS activity should be triggered by a scheduled absentee process such as the 
administrative "crank." 

Any time that specific reports are wanted for monitoring or diagnostic 
purposes, the hea.1s_report command can be invoked at the terminal with the name of 
the specific report desired (e.g., heals_report io_error). Similarly, update_heals_log can 
be invoked by a privileged user of HEALS. 

HEALS REPORTS 

HEALS reports are initiated by the heals_report command (described later in 
this section). The names of desired reports, the time period of the reports, and the 
pathname of the report file are specified by arguments to the command. The reports 
are: 

io _ error_report 
contains all I/O errors logged in the syserr log by the ioi_, disk_control, 
dn355. and bulk_store_control subroutines. The entries are in syserr log time 
sequence and contain the full octal status return word. 

sorted_io_error renort 
contains the I/O errors of the io_error report ordered by day and by device 
address (10M number, channel number, and device number). The errors are 
grouped for the convenience of maintenance personnel. Vlithin a device 
address, entries are further ordered by power off, major status, sub status, 
initiate/terminate interrupt, device command, 10M status, and record count 
residue. The octal status word is replaced (to keep the format width to 72 
columns) by additional details of tape and disk errors. 

1-2 AM81-04 



cpu_error_report 
contains history register data and other pertinent data for op_not_complete, 
parity, command, startup, and shutdown faults. 

mos_edac_error _report 
contains the MOS EOAC error entries in syserr log. 

media_io_error _report 
is similar in content to the sorted_io_error report except that the primary sort 
key is media volume name (e.g., tape reel number). 

EXAMPLES OF REPORTS 

Examples of the HEALS reports that result from invocation of the heals_report 
command are shown on the following pages. An exception to this is the media_io_error 
report, which is not shown because its format and content are similar to the 
sorted_io_error report. If a problem is detected in processing an entry for the 
io_error report or the sorted_io_error report, the problem is reported with a comment 
line in place of data in the report entry. If the system is reconfigured between the 
time an error is logged and the time a HEALS run is executed, reassigned channels or 
device names different from those obtained from the configuration table are not 
known to the report generators. These are reported as "ch_unkn" or "dv_unkn". The 
configuration known to HEALS is printed preceding an io_error or sorted_io_error 
report. If a device address cannot be determined. it is assigned 10M number 0 and 
channel number 0 so that the entries are grouped at the beginning of the 
sorted_io_error report. The numbers assigned 0.0 flag the entries as having invalid 
addresses. 

Each entry of a report contains the syserr log sequence number and log time 
so that entries can be cross-referenced to the original syserr log and the HEALS log, 
and between the io_error and sorted_io_error reports. 

Channel Assignment Table 

The configuration known to HEALS that is printed out prior to an io_error or 
sorted_io_error report is shown below. 

1-3 AM81-o4 



CHANNEL ASSIGNMENT TABLE AT TIME OF HEALS RUN 
RUN DATE: 08/15/84 RUN TIME: 1620.4, 
SYSTEM ID: MR11.0 SITE_ID: Honeywe 11 

10M CHNL DEVICE MODEL 
NUM NUM NAME NUMBER 

1 08 prtd 1600 
1 09 prta 1200 
1 10 rdra 301 
1 1 1 puna 300 
1 12 prtc 901 
1 14 rdrb 201 
1 15 punb 201 
1 16 opca 6601 
1 17 fnpa 6670 
1 18 tape 500 
1 24 dska 451 
1 25 dska 451 
1 26 dska 451 
1 27 dska 451 
1 28 dskb 451 
1 29 dskb 451 
1 30 dskb 451 
1 31 dskb 451 

1-4 AM81-()4 



110 Error Report 

IO_ERROR_REPORT: 08/14/84 1619.8 TO 08/15/84 1619.8 PAGE 

SYSERR LOG DEVICE STATUS TLY TAPE_NO STATUS_RETURN 

------------ ---------------
TIME NUMBER NAME I-CC-DD CM MJ-SB-I DISK_AD 

DATE: 08/14/84 DATE: 08/14/84 

1725.4 34421 rdra 1-10-01 01 02-01-t 5 N/A 420140000000 

1809.8 34427 prtd 1-08-01 34 03-10-t 2 N/A 431000000000 

1809.9 34429 prtd 1-08-01 34 02-01-; N/A 420102000000 

1822.4 34440 prtd 1-08-01 34 03-04-t 1 N/A 430400000000 

1834.6 34441 prtd 1-08-01 34 02-01-; 1 N/A 420102000000 

1917.5 34447 tape 1-18-01 15 13-22-t 5 532200000000 

1926.5 34457 tape 1-18-03 15 13-22-t mc019 532200000000 

1939.5 34458 tape 1-18-03 15 13-22-t mc019 532200000000 
1955.4 34482 tape 1-18-04 15 13-22-t mc020 532200000000 

2000.8 34490 tape 1-18-02 15 13-22-t mc021 532200000000 

2006.7 34491 tape 1-18-02 15 13-22-t mc021 532200000000 

2012.3 34499 tape 1-18-01 15 13-22-t mc022 532200000000 

2017.7 34504 tape 1-18-03 05 12-10-t 1 m2088 52 1000000000 

2017.9 34505 tape 1-18-03 05 12-10-t 1 m2088 521000000000 

2018.4 34508 tape 1-18-01 15 13-22-t 2 mc022 532200000000 

2023.2 34516 tape 1-18-04 15 13-22-t 1 mc023 532200000000 

2034.1 34519 tape 1-18-04 15 13-22-t 7 mc023 532200000000 

2045.2 34527 tape 1-18-02 15 13-22-t mc024 532200000000 
2047.9 34528 tape 1-18-02 15 13-22-t mc024 532200000000 
2053.7 34536 tape 1-18-03 15 13-22-t 1 mc025 532200000000 
2103.8 34549 tape 1-18-03 15 13-22-t 3 mc025 532200000000 
2116.8 34557 tape 1-18-04 15 13-22-t mc026 532200000000 

2120.8 34571 tape 1-18-01 15 13-22-t mb025 532200000000 

2208.2 34582 tape 1-18-03 15 03-10-t 1 m2068 431000000000 

2357.9 34586 tape 1-18-01 15 13-22-t 2 mb025 532200000000 

DATE: 08/15/84 DATE: 08/15/84 

0700.3 34610 dska 1-26-02 31 02-20-t 422000000100 

0700.3 34612 dska 1-26-02 31 422456 

0700.3 34614 dska 1-26-02 31 extended: (40 00 00 00 82 00 00 00 00) 
0714.0 34617 tape 1-18-01 15 13-22-t 2 mb026 532200000000 
0728.2 34626 tape 1-18-02 15 13-22-t mb027 532200000000 

END: IO_ERROR_REPORT 

1-5 AM81-04 



Sorted I/O Error Report 

SORTED_IO_ERROR_REPORT: 08/14/84 1619.8 to 08/15/84 1619.8 PAGE 

DEVICE STATUS TLY TAPE_NO DENS RING TR< SYSERR LOG 

I-CC-DD NAME CM 

DATE: 08/14/84 

1-08-01 prtd 34 
1-08-01 prtd 34 
1-08-01 prtd 34 
1-08-01 prtd 34 
end: prtd errors 

1-10-01 rdra 01 
end: rdra errors 

1-18-01 tape 15 
1-18-01 tape 15 
1-18-01 tape 15 
1-18-01 tape 15 
1-18-01 tape 15 
1-18-02 tape 15 
1-18-02 tape 15 
1-18-02 tape 15 
1-18-02 tape 15 
1-18-03 tape 15 
1-18-03 tape 05 
1-18-03 tape 05 
1-18-03 tape 15 
1-18-03 tape 15 
1-18-03 tape 15 
1-18-03 tape 15 
1-18-04 tape 15 
1-18-04 tape 15 
1-18-04 tape 15 
1-18-04 tape 15 
end: tape errors 

DATE: 08/15/84 

1-18-01 tape 15 
1-18-02 tape 15 
end: tape errors 

1-26-02 dska 31 
1-26-02 dska 31 
1-26-02 dska 31 

MJ-SB-I 

02-01-; 
02-01-; 
03-04-t 
03-10-t 

02-01-t 

13-22-t 
13-22-t 
13-22-t 
13-22-t 
13-22-t 
13-22-t 
13-22-t 
13-22-t 
13-22-t 
03-10-t 
12-10-t 
12-10-t 
13-22-t 
13-22-t 
13-22-t 
13-22-t 
13-22-t 
13-22-t 
13-22-t 
13-22-t 

13-22-t 
13-22-t 

02-20-t 

1 

1 

2 

5 

5 

1 

2 

1 

2 

1 

3 

1 

1 

7 

2 

DISK_AD CYL HEAD SEC 

N/A 
N/A 
N/A 
N/A 

N/A 

mc022 
mc022 
mb025 
mb025 
mc021 
mc021 
mc024 
mc024 
m2068 
m2088 
m2088 
mc019 
mc019 
mc025 
mc025 
mc020 
mc023 
mc023 
mc026 

mb026 
mb021 

1600 
1600 
1600 
1600 
1600 
1600 
1600 
1600 
800 
800 
800 
1600 
1600 
1600 
1600 
1600 
1600 
1600 
1600 

1600 
1600 

ys df 

ys df 

ys df 

ys df 

ys df 

ys df 

ys df 

ys df 

ys df 

ys 9 

ys 9 

ys df 

ys df 

ys df 

ys df 

ys df 

ys df 

ys df 

ys ,df 

ys df 

ys df 

422456 555 16 16 
extended: (40 00 00 00 82 00 00 00 00) 

1-6 

TIME NUMBER 

DATE: 08/14/84 

1809.9 
1834.6 
1822.4 
1809.8 

34429 
34441 
34440 
34421 

1125.4 34421 

1911.5 34441 
2012.3 
2018.4 
2120.8 
2351.9 
2000.8 
2006.7 
2045.2 
2047.9 
2208.2 
2017.1 
2017.9 
1926.5 
1939.5 
2053.1 
2103.8 
1955.4 
2023.2 
2034.1 

34499 
34508 
34511 
34586 
34490 
34491 
34521 
34528 
34582 
34504 
34505 
34457 
34458 
34536 
34549 
34482 
34516 
34519 

2116.8 34551 

DATE: 08/15/84 

0714.0 34611 
0728.2 34626 

0700.3 34610 
0700.3 34612 
0100.3 34614 

AM81-o4 



DEVICE STATUS TLY TAPE_ND DENS RING TRK SYSERR LOG 

I-CC-DD NAME CM MJ-SB-I DISK_AD CYL HEAD SEC TIME NUMBER 

DATE: 08/13/84 DATE: 08/13/84 

1-17-07 tapa 00 02-04-; 0902.7 34690 
1-17-07 tapa 00 02-04-; 1013.6 34929 
1-17-07 tapa 00 02-04-; 1 1046.3 35044 
1-16-05 tapa 00 03-10-t 6 0842.3 34641 
1-16-05 tapa 00 03-10-t 1 0842.6 34643 
1-16-05 tapa 00 03-10-t 3 0844.6 34645 
1-16-05 tapa 00 03-40-t 3 0847.7 34647 
1-16-05 tapa 00 03-40-t 0847.8 34650 
1-16-05 tapa 00 03-40-t 0847.8 34652 
1-17-05 tapa 00 03-10-t 0842.3 34642 
1-17-05 tapa 00 03-10-t 0843.5 34644 
1-17-05 tapa 00 03-40-t 0847.7 34649 
1-17-05 tapa 00 03-40-t 0847.8 34651 
1-26-01 dska 00 0O-03-t 0001496 18 16 1126.7 35133 
1-26-01 dska 00 00-03-t 0001507 1 18 27 1129.3 35145 
1-28-11 dskb 34 00-01-t 0081464 107 3 24 1332.3 35465 
1-26-07 dska 00 00-20-t 0120512 158 10 32 0925.9 34736 
1-26-07 dska 00 00-02-t 0121272 159 10 32 0926.0 34737 
1-24-07 dska 35 00-03-t 0402248 529 5 08 0954.2 34843 
1-26-07 dska 00 00-20-t 0404640 532 8 00 0954.1 34841 
1-26-07 dska 35 00-20-t 0405400 533 8 00 0954.2 34842 
1-20-01 dskc 34 00-20-t 0444384 584 13 24 1053.1 35075 
1-20-01 dskc 00 00-20-t 0445144 585 13 24 1053.0 35074 
1-28-11 dskb 00 00-20-t 0592040 779 0 00 1331 .8 35464 
1-16-04 tapa 00 03-10-t 1 dp012 dflt ys df 1355.3 35516 
1-16-04 tapa 00 03-10-t 5 dp012 dflt ys df 1358.5 35522 
1-16-01 tapa 00 03-40-t 11 dp126 dflt ys df 0838.7 34630 
1-16-03 tapa 00 03-10-t 1 dp127 dflt ys df 0839.6 34640 
1-16-03 tapa 00 03-10-t 2 dp127 dflt ys df 0849.6 34660 
1-16-03 tapa 00 03-40-t 2 dp127 dflt ys df 0849.6 34663 

END: SORTED_IO_ERROR REPORT 

1-7 AM81-()4 



CPU Error Report 

CPU_ERROR_REPORT: 

HEALS RUN OF 08/19/84 

from 08/12/84 1081.7 
1102.0 ON SYSTEM MR11.0 

to 08/12/84 1300.0 

_____________ CU Legend ____________ _ ____________ OU Legend ____________ __ 

cy = cycle type (d = direct operand) 
(i=instr .. fetch,o=operand,F=fault) 
(n=indirect,x=xec,*=nop,e=EIS) 

»flags«< 

9b 9-bit byte (IT modifier only) 

mc = memory command 
(OO=rrs,sp; 04=rrs,dp; 10=rcl,sp) 
(12=rmsk,sp; 16=rmsk,dp; 20=cwr,sp) 
(24=cwr,dp; 32=smsk,sp; 36=smsk,dp) 
(40=rd/lck; 54=rgr; 56=sgr) 

ar 

d1 
d2 
dl 
du 
in 

(60=wrt/ulck; 62=con; 66=xec; 72=sxc) it 
»>flags«< 

-y memory address invalid 
br BAR mode 
cl control unit load 

cs 
dr 
fa 
ic 
in 
01 

os 
pa 
pb 
pi 
pl 
pn 
pt 
ra 
ri 
rp 

control unit store 
direct operand 
prepare fault address 
IC value is odd 
inhibited instruction 
operations unit load 
operations unit store 
prepare operand address 
port busy or data from cache 
prepare instruction address 
port select logic not busy 
prepare final indirect address 
prepare operand tally 
request alter word 
request indirect word 
executing repeat 

sa store alter word 
si store indirect word 
tr transfer condition met 
wi request instruction fetch 
xa prepare execute interrupt address 
xe = execute double from even ICT 
xi execute interrupt present 
xo execute double from odd ICT 

oa 
oe 
of 
om 
on 
os 
qr 

rb 
rp 

rs 
sd 
-d 

xO 
x1 
x2 
x3 
x4 
x5 
x6 
x7 

1-8 

A-register in use 
first divide cycle 
second divide cycle 
direct lower operand 
direct upper operand 
first ou cycle 
IT character modifier 
mantissa alignment cycle 
exponent compare cycle 
final OU cycle 
general OU cycle 
normalize cycle 
second cycle of multiple ops 
Q-register in use 
opcode buffer loaded 
primary register loaded 
secondary register loaded 
store data available 
data not available 
index 0 in use 
index 1 in use 
index 2 in use 
index 3 in use 
index 4 in use 
index 5 in use 
index 6 in use 
index 7 in use 

AM81-04 



_____________ OU Legend ____________ __ __ ___________ APU Legend ____________ _ 

mc = data mode (b,4,6,9,w) 
offset = descriptor counter 
»>flags«< 
()a prepare alignment count 

numeric operand (1.2) 
a() = load alpha operand (1,2) 
a1 adjust length 
as alpha store 
bd binary-decimal execution 

bg blanking gate 
cO force stcO 
cg character operation 

for 

d() = descriptor active (1,2,3) 
da data available 
db decimal-binary execution 
dd decimal unit idle 
di decimal unit interrupted 
d1 decimal unit load 
ds decimal unit store 
ei mid-instruction interrupt enabled 
en end instruction 
es end sequence 
ff floating result 
fl ~irst data buffer load 
fp first pointer preparation 
fs end sequence 
1() = load descriptor (1,2,3) 
1d length = direct 
If end first pointer preparation 
1v level < word size 
1x length exhaust 
1< length < 128 
mp executing MOPs 
n() = load numeric operand (1,2) 
nd need descriptor 
ns numeric store 
op operand available 
pc alpha packing cycle 
p1 prepare operand length 
pp prepare operand pointer 
r() = load rewrite register (1,2) 
re write-back partial word 
rf rounding 
rl rewrite register 1 loaded 

seg# = SOWAMR and PTWAMR numbers if 
corresponding MATCH bits are set. 
offset = final store address 
mc = ring number (TSR.TRR) 

»>f1ags«< 
an final address, nonpaged 
ap final address, paged 
f access violation or directed 

fault 
fd fetch descriptor segment PTW 
fh fault waiting 
fs fetch SOW 
md modify descriptor segment PTW 
mp modify PTW 
p1 fetch PTW 
p2 fetch PTW+1 
pm MATCH in PTWAM 
sm MATCH in SOWAM 

1-9 AM81-04 



rw = du=rd+wt control interlock 
sa = select address register 
sg = shift procedure 
xg = exponent network 
xm = extended al,ql modifier 
+g = add-subtract execution 
*g = multiply-divide execution 

syserr sequence #33228, at 08/12/84 1238.7; 
syserr_1og text: op_not_complete fault on CPU B by 

Initializer.SysDaemon.z. 

pointer registers: 

000033570041 000000000027 400326000120 000000000000 
000230000200 342000000005 000006757120 000006757120 

6115070 6115120 331446 61147 20 
15 1374 15 1374 61 4720 6110 . 

index registers: 003126 005070 001260 000000 
000002 000030 000241 000200 

a: 000000002000 q: 000446000000 exp: 000 timer: 000331342 ring_alarm: 0 

000400000000 000400000000 004620252000 771077777707 
000000002000 000077777670 004576002004 000077777734 

fault register: 010400000000 

NUM OU registers CU registers 
1 627000627100 137767003101 200107764000 000033050020 
2 213000213100 123777013505 201037710100 000447050200 
3 450000450300 177777013522 201137710000 000224050200 
4 736000236340 113777003107 300007235120 005072050020 
5 736000736100 133777003110 200007235000 004145042011 
6 621000621100 136777003122 600137735000 000226042201 
7 431210431100 123777003123 200127735000 000007050015 
10 275210275500 127777010221 300007035120 005074050020 
1 1 757000757300 177777010222 200007035000 000050042011 
12 740000740300 175777010223 600137735000 000230050201 
13 213000213100 123777012172 200127735000 000003050015 
14 735000235340 107777000224 300007413120 001464050021 
15 735000735100 127777000225 200007413005 002000550010 
16 035000035500 127777000226 700137757120 000232044201 
17 735000735100 127777000227 300127757120 005076050021 
20 413000735240 023777000230 ~nnl~C7C71~n nncn~~ncnnn? 

JVVI'~/~I "v vVJV/vVJvvv~ 

1-10 AM81-Q4 



NUM 
1 

2 

3 

4 

5 

6 

7 

10 

11 

12 

13 

14 

15 

16 

17 

20 

DU registers 

777757037717 744243410017 

737757037737 744243410017 

737757037737 744243410017 

777757037737 744243410017 

737757037717 744243410017 

777757037737 744243410017 

737757037737 744243410017 

777757037737 744243410017 

777757037717 744243410017 

737757037737 744243410017 

777757037737 744243410017 

777757037737 744243410017 

737757037717 744243410017 

777757037737 744243410017 

737757037737 744243410017 

737757037737 744243410017 

AU registers 

000614006144 023321450775 

000336012000 001145460775 

000336001020 000001470775 

000612006144 023331740775 

000144006450 005621500775 

000336012000 001145500775 

000336001020 000001430775 

000153000000 001775740775 

000152201000 023521720775 

000152011000 000403640775 

000715000000 001775740775 

000714201100 023521620775 

040040040040 040040040040 

040040040040 040040040040 

000224400043 006440000000 

077777400043 000001000000 

HR e 
id## IC __ opcd_ tag_ y seg#_ offset_ me flags 

CU 

CU 2 
CU 3 
CU 4 

CU 5 

OU14 

CU 6 
AU 1 

CU 7 
OU15 

CU10 

CU11 

OU16 

CU12 

AU 2 

CU13 

OU17 

CU14 

CU15 

CU16 

AU 3 

AU 4 

CU17 

CU20 

OU20 

lprp4 

tra 

447 tra 

224 lda 

225 a1s 

226 ad1a 

227 a1s 

230 rscr 

231 staq 

n* 

n* 

n* 
al 

n* 

n* 
n* 

o 

n 

o 

d 

n 

o 

d 

n 

o 

n 
F 

o 

33 

447 

224 

5072 

4145 

4 pa ie -y cl 

4 pa tr wi ; t 

4 pa tr ic wi 

4 pa ri -y it cl 

4 pa -y 01 pb 

rp rs in of ar 

61 226 4 pi pa ic wi pb 

2 2332145 0 ap sm pm 

33 7 4 pa ic wi -y 01 dr pb 

33 

33 

33 

33 

33 
33 

33 

2 

14 
;4 

rs of -d ar 

5074 4 pa ri -y it cl 

50 4 pa -y 01 pb 

230 
114546 

3 

rb rs of -d ar 

4 pi pa ic wi pb 

o an sm 

4 pa ie wi -y 01 dr pb 

rs of -d ar 

;464 4 pa ri -y it cl pb 

2000 54 pa -y 01 

232 

147 

2333174 

4 P i pa r i i c w i i t pb 

o 
o ap sm pm 

5076 4 pa ri ic wi -y it cl pb 

5076 4 pa ri ic wi -y fa it pl 

rp in -d ar qr 

1-11 AM81-o4 



MOS EDAC Error Report 

MOS_EDAC_ERROR_REPORT: from 08/01/84 1059.5 to 08/07/84 1059.5 

HEALS RUN OF 8/19/84 1059.7 ON SYSTEM MR11.0 

LAST ERROR 

LOG_NUM DATE TIME 

21019 08/01/84 1435.7 
EDAC error on mem b 

21589 08/02/84 1049.8 

EDAC error on mem b 

21649 08/03/84 1709.8 

EDAC error on mern b 

22193 08/04/84 1146.8 

EDAC error on mem b 

22273 08/04/84 1256.8 

EDAC error on mem b 

22274 08/04/84 1256.8 

EDAC error on mem b 

22428 08/04/84 1441 .8 

EDAC error on mem b 

22549 08/04/84 1646.8 

EDAC error on mem b 

22661 08/04/84 1951 .8 

EDAC error on mern b 

22730 08/05/84 0001.9 
EDAC error on rnern b 

23343 08/05/84 1606.2 
EDAC error on mem b 

23573 08/06/84 0412.3 

TALLY 

store b. 

1 

store b. 

store b. 

2 
store b. 

2 

store a. 

1 

store b. 

4 

si.:ore a. 

4 

store a. 

2 
store a. 

1 

store b. 

store a. 

ERROR 

RATE 

/MIN 

SYSTEM CONTROLLER REGISTER 

5.00 000000000000 542177400001 
MOS, 4k chip, Error: board M, chip A77 

5.00 000000000000 542177400001 
MOS, 4k chip, Error: board M, chip A77 

5.00 000000000000 542177400001 
MOS, 4k chip, Error: board M, chip A77 

5.00 000000000000 542177400001 
MOS, 4k chip, Error: board M, chip A77 

5.00 000000000000 140737400001 

MOS, 4k chip, Error: board Q, chip A67 

5.00 000000000000 542177400001 
MOS, 4k chip, Error: board M, chip A77 

5.00 000000000000 140737400001 
MOS, 4k chip, Error: board Q, chip A67 

5.00 000000000000 140737400001 

MOS, 4k chip, Error: board Q, chip A67 

5.00 000000000000 140737400001 
MOS, 4k chip, Error: board Q, chip A67 

5.00 000000000000 542177400001 
MOS, 4k chip, Error: board M, chip A77 

5.00 000000000000 340077400001 
MOS, 4k chip, Error: board R, chip A78 

5.00 000000000000 000137400001 
EDAC error on mem c store a, MOS, 4k chip, Error: board Q. chip A17 

1-12 AM81-04 



HEALS COMMANDS 

The commands that can be invoked to produce the HEALS reports are 
described in the remainder of this section. Command descriptions are presented in 
alphabetical order. 

Name: heals_report 

SYNT AX AS A COMMAND 

heals_report {report_names} {-control_args} 

FUNCTION 

produces reports of interest to site-support and Customer Services personnel. The 
reports are appended to a report file specified in the -output_file control argument or 
by default to the heals_reports segment in the working directory. The ASCII report 
segment can be displayed on the terminal or printed on a high-speed line printer. 

ARGUMENTS 

report_names 
can be one or more names from the following list (see -all below): 

io_error 
selects the I/O error report. 

sorted_io_error 
selects the sorted I/O error report 

media_io_error 
selects the media I/O error report. 

cpu_error 
selects the CPU error report. 

mos_edac_error 
selects the MOS EDAC error report 

CONTROL ARGUMENTS 

-all. -a 
specifies that all reports are to be generated. This argument can be used instead 
of listing all report names. 

-from DT, -fm DT 
specifies the date and time after which errors are reported. If this argument is 
not given. the default value is the value of -to time minus 24 hours. 

1-13 AM81-04 



-output_file path, -of path 
puts the report file in the file specified by path. 

-to DT 
specifies the date and time up to which errors are reported. If this argument is 
not given. the default value is the current date and time. 

ACCESS REQUIRED 

You must have r access on >system_control_1>heals_dir>heals_log to use this command. 

NOTES 

The dates specified after the -from and -to control arguments must be acceptable to 
convert_date_to_binary_ (described in the Multics Subroutines and I/O Modules 
manual. Order No. AG93). 

EXAMPLES 

If the command line: 

heals_report io_error -from 03/01/84 -to 03/02/84 

is issued at 2:00 PM, an A~CII report segment named heals_reports suitable for 
printing is created in the current working directory, containing the I/O error report 
for the period from 2:00 PM. March. 1, 1984 to 2:00 PM, March 2. 1984. 

SYNTAX AS A COMMAND 

FUNCTION 

is a tool to be used by administrators for the maintenance of the HEALS log (the 
segment named >system_control_1>heals_dir>heals_log). It allows the printing of all or 
selected messages currently in the log. It can also be used to delete bad records from 
the log as well as to printout parts of each logged record. 

CONTROL ARGUMENTS 

-match SIR 
selects messages with text containing the match string. 

-time DT 
selects all messages that occurred after the specified time. If omitted. a value of 
o is assumed. 

1-14 AM81-04 



-update 
allows you to delete selected messages from t..l1e HEALS log if you have the 
appropriate access. (See "Notes" below.) 

ACCESS REQUIRED 

You must have rw access on >system_control_l>heals_dir>heals_log for the update 
function; otherwise, r access is sufficient 

NOTES 

The date/time following the -time control argument must be of a form acceptable to 
convert_date_to_binary_ (described. in the Mu/tics Subroutines and I/O Modules 
manual, Order No. AG93). 

The print_heals_message command opens the heals_log segment with a mode of 
keyed_seQuential_update to allow messages to be deleted. If a message is selected by 
using either the -time or the -match control argument, you can issue the following 
requests: 

quit, q 
discontinues message processing and returns to command level. 

next 
selects the next message that meets the specified selection requirements. 

delete 
deletes the current record. 

data 
prints the octal data contained in the current record. 

EXAMPLES 

The command line: 

print_heals_message -time 01/01/84 -match ioi_interrupt 

sends to the user_output I/O switch all messages that were received after 01/01/84 
whose ASCII text contains the string "ioi_interrupt". 

1-15 AM81-G4 



SYNTAX AS A COMMAND 

truncate_heals_log N 
or 

truncate_heals_log {-control_args} 

FUNCTION 

deletes records from >system_control_l>heals_dir>heals_log. It is used with the 
update_heals_log command. 

ARGUMENTS 

N 
is the number of days, counted back from the current time, for which messages 
are to remain in the HEALS log. 

CONTROL ARGUMENTS 

-from DT, -fm DT 
starts deleting messa.ges from the specified date/time. If this control argument is 
omitted, a clock value of 0 is assumed; that is, the truncate_heals_log command 
starts deleting messages from the beginning of the log. 

-to DT 
stops deleting messages from the specified date/time. If omitted, a clock value 
equal to the current time is assumed. 

ACCESS REQUIRED 

You must have rw access to the heals_log and heals_Io&-info segments, both located in 
>system_control_l>heals_dir, in order to delete messages from the HEALS log. 

NOTES 

The date/times following the control arguments must be in a form acceptable to 
convert_date_to_binary_ (described in the Multics Subroutines and 110 Modules 
manual, Order No. AG93). 

1-16 AM81-04 



SYNTAX AS A COMMAND 

FUNCTION 

copies messages of interest to HEALS from the syserr log file into the HEALS log. 
The messages copied are those new messages added to the syserr log since the last 
invocation of the update_heals_log command by any process. 

ACCESS REQUIRED 

In order to update the log, the directory >system_control_l>heals_dir must already 
exist, and you must have access to system files as follows: 

re to aUdit_gate and to phcs_ 
r to system_control_l>perm_syserr_log 
rw to system_control_l>heals_dir>heals_log 
rw to system_control_l>heals_dir>heals_log_info 

If either the segment >system_control_l>heals_dir>heals_log or the segment 
>system_control_l>heals_dir>heals_lo~info does not exist, it is created; in this case, 
you need sma access on >system_control_l>heals_dir. The heals_lo~info segment 
contains information about the current heals_log segment 

1-17 AM81-()4 



APPENDIX J 

MULTICS DISK MANAGEMENT 

This appendix deals generally with Multics system performance, how to monitor 
it via metering, and how to improve it via tuning. It deals specifically with system 
performance as it applies to the virtual memory system (physical memory and the disk 
systems), and even more specifically with performance as it applies to the Multics disk 
DIM. which is a significant part of the virtual memory system. 

The Multics dis~ DIM (device interface module) controls disk drives. This 
appendix explains how Multics manages disk systems via the disk DIM. It outlines 
both the hardware and the software basis for the current disk management methods. 
It describes the features of the disk DIM, and provides an understanding of the 
mechanisms of disk control. and the way disk control can affect system operation. 
Finally, it shows you how to improve system performance, especially in high load 
situations (i.e., when there's a high volume of disk I/O), in terms of metering and 
tuning the virtual memory system. 

Throughout this appendix. various meters and values are presented in terms of 
the mechanisms and features which produce them. in an attempt to provide a better 
understanding of how to improve system performance. 

TUNING 

T uni ng may be defined as the art of determining the inefficiencies in the 
operation of a Multics system and correcting them. Tuning involves experimentation, 
theorization, skill, and luck. 

A major component of any tuning effort is the ability to set goals which are 
reasonable and measurable, and to then go through the orderly procedure of 
substantiating what the problems are and what results are attainable. To pursue a 
concerted tuning effort without measurement is diiiicult, if not impossible. To pursue 
a tuning effort for unrealistic and unattainable goals is a waste of time. 

The following questions should be considered as part of any measurement and 
tuning effort 

1. Is there a problem? 
This is a simple question, but one which is usually overlooked. It is not 
sufficient to simply believe that you are not getting enough out of your 
system. You need to determine what you are getting and what you are missing. 
A ballpark figure can be attained by determining what percent of the system is 
delivered as virtual CPU time to the users. 

J-1 AM81-()4 



2. What is the source of the problem? 
Most sites with efficiency problems find that these problems are the result of 
distinct and correctable situations. many of which are caused by the way in 
which the system is used. Generally, such problems are solved without tuning 
those parameters. dealing with hardware, but rather by tuning those parameters 
dealing with parallel system loading. 

3. What are the characteristics of the problem? 
Certain types of problems only become apparent when a system becomes 
loaded. They are typically manif estations of bottleneck areas of system 
performance. A number of these areas exist in the virtual memory system of 
Multics and in its management of disk drives and memory. Recent disk DIM 
enhancements are aimed specifically at these kinds of situations. 

4. What is the scale of the problem? 
The scale of the problem is an indication of the amount of effort which is 
reasonable to expend on its solution. In addition, you need to determine future 
trends for system utilization. If you have 10% of the system left at a 
reasonable level of delivery and you are expanding 15% a year in use, then 
simple tuning methods will not provide a long term solution. 

5. What methods can be used to resolve the problem? 
As noted above, many problems can be resolved by changing the parallel 
loading characteristics of the system, rather than by changing the system's 
hardware tuning characteristics. Some other problems require altering a 
combination of tuning both hardware and loading, to varying levels of 
sa tisf action. 

The result of a tuning effort will be a reduction in the severity of a problem 
situation within the cost and policy limits imposed by the site. Under certain 
constraints, it will be impossible to resolve a problem; in other situations, problems 
will only be partially resolved. It may well be that the only, or best, solution to a 
problem is the addition of more hardware. 

In order to determine when there are problems in system operation, you should 
have an understanding of the mechanisms which manage system resources and the 
avaiiabie meters, so you can interpret the meters in light of the mechanisms in 
operation. 

SYSTEM MECHANISMS 

In order to pick an effective tuning strategy. you must have an understanding 
of the mechanisms by which the system functions. This knowledge, along with the 
values produced by the meters, will permit you to conceptualize where areas of 
inefficiency may exist, and whether they are amenable to tuning. 

J-2 AM81-Q4 



Segment Control 

Multics relies on the management of gross storage entities as segments of 
memory. These segments are controlled through the active segment table (AST), 
which groups all the known segments of the system into four size categories or pools: 
0-4 pages, 5-16 pages, 17-64 pages and 65-256 pages. 

Pools are used to minimize the overhead of memory dedicated to holding the 
AST entries (ASTEs), each of which contains the page table for the pages of its 
segments. An ASTE takes 12 words for its header, and a word per page for its page 
table entries. Thus, in the space of a 256K AST entry (268 words), you can fit 16 4K 
entries, 9 16K entries and 3 64K entries. A system is typically configured with a large 
number of 4K entries, a smaller number of 16K entries, and with the 256K pool 
having the smallest size. This mirrors segment usage and size on a typical system, 
where the average segment size is roughly 5 pages. Thus, the vast majority of 
segments fit in 4K pool entries. 

If a segment is mapped by an ASTE, it is activated; if it is not mapped by 
an ASTE, it is deactivated. Segments must be active to be accessed. If all entries in 
a pool are active and a new segment must be made active, then an old segment 
within the pool is deactivated to make room for the new segment. Deactivation 
requires that all of the segment's pages which are still in memory and have been 
modified must be written back to disk. and the contents of the ASTE written back to 
the VTOC entry on disk, before deactivation is complete. Typically. the set of AST 
entries more than maps the extent of physical memory on the system, and a large 
number of the entries have no modified pages in memory. Though the deactivation 
algorithm preferentially chooses segments which have the minimum deactivation cost 
associated with them, there is still the necessary VTOC update required to complete 
deactivation. Therefore, any activation or deactivation sponsors some disk I/O. The 
maximum disk I/O is sponsored if modified pages exist in the segment to be 
deactivated. 

If there are insufficient AST entries in a pool, a system can experience AST 
thrashi ng. When this happens, demand deactivation removes an entry from the AST 
pool prior to its re-use. This will be seen in the meters as a very low AST pool lap 
time and will probably be experienced by users as a very sluggish system. (Lap time 
for an AST pool is the time it takes the segment replacement mechanism to look at 
all AST entries in the pool once.) The figure for AST lap time should usually exceed 
200 seconds or so at peak system loading. 

Page Frame Control - - The Clock 

Memory is mapped in terms of page frames, each of which is 1024 words in 
length. This mapping utilizes a data structure called the core map. which is a 
circularly linked list of core map entries feMEs}, one per page frame. Each CME 
references an ASTE page table word for a segment page which is in memory; each 
CME also points to the ASTE header. The core map entries are utilized by the page 
replacement algorithm to determine which page frames are free for use and which 
page frames must be written back to disk because they have been modified. 

J-3 AM81-()4 



The clock algorithm is the Multics page replacement algorithm and sets the 
characteristics of virtual memory page replacement. It uses two pointers into the core 
map circular list. The first is termed the replacer (sst.usedp) and points to the 
current head of the list. 

Each time a new page frame is needed, the replacer pointer is used to scan 
the core map looking for a page frame which is unused, not modified, and has a zero 
pin count. (Page pinning is a method of giving working set preference to pages 
faulted by special processes. A pin count associated with the process is copied into 
the CME for a page to be read from disk. Each time the purification process 
(described below) sees a CME with a nonzero pin count for an unmodified page, it 
decrements the pin count. The replacement process (described below) decrements the 
pin count for modified pages. Until a page's pin count has decremented to zero, it is 
not considered for replacement.) The contents of such a page frame can be discarded 
and the page table word altered to indicate the location on disk of the page's 
contents. The page frame is then used as the target for the demanded page to be 
read from disk or to be created if zero. (Zero pages are specially recognized. A page 
of zeros is not typically written to disk, but is instead flagged in the ASTE and 
VTOCE. A reference to such a page causes the paging system to create a page of 
zeros. Zero pages do not count against quota when they are flagged in this manner 
and are not in memory.) 

The second pointer is termed the purifier (sst.wusedp) and points to a core 
map entry already passed by the replacer because it is a modified page whose contents 
no longer correspond to the page con ten ts still on disk. The purifier pointer indicates 
a page which must be written to disk before the page frame contents can be 
discarded and the page frame made available for a new page. When the page write 
has been completed, this completion is posted back to the purification process, which 
marks the page as free and threads it into the core map ahead of the replacer, thus 
making it the next candidate for replacement. (Posting entails notifying page control 

"'cf the completion of the I/O to either clear the page frame for a write or to notify 
a blocked process of the completion of a read.) 

Replacement and purification are the two processes which produce the least 
recently used (LRU) page replacement algorithm. Page faults occur which require 
available page frames as targets for pages read from disk. This requires the 
replacement process to use the replacer pointer to scan the core map looking for a 
good candidate. 

The replacement process runs the purification process if replacement has either 
skipped a pre_seek_limit number of modified pages (currently 15) while seeking a 
f1"&>&> n!la&> f1"!lf'n&> 1'\1" h!lC! t'1'\f'nnl&>t&>hr t';1"t'l&>n th&> t'1'\1"&> f'n!ln tll1;thl'\l1t f17"1n;7"ILY !l f1"&>&> f1"!lf'n&> 
.&.& ........ y ... c .............. .&. ............ , ..., ... .a..a.u.ou- wv.&. .... "'Y ................... J ¥ ...... ..., ............ "' ... .&. .... "'''' ............ .I.u.y "''I''&''.l.J.''''',," ......... "' ....... .&..l.b ... J,.&~ .J..&u. ...... "'..., 

while there exist one or more modified pages. 

J-4 AM81-04 



When run. the purification process initiates all necessary page writes between 
the current purifier and replacer pointers. A page is a candidate for writing if it has 
been modified since it was last read from disk. but has not been used since the last 
time the LRU algorithm scanned it. The replacer algorithm turns off the used flags 
for pages which have not been modified; the purifier algorithm turns off the used 
flags for pages which have been modified. Thus. a page will be written only if it has 
not been referenced at all since the last time it was seen by the purification process. 
Typically, this may take up to twice the current lap time of memory. (Lap time for 
page frames is the time it takes the clock algorithm to scan all memory frames once.) 

The purification mechanism is important because of the I/O burst characteristics 
it gives to page writes. Since page writing is only initiated if a single page frame 
search for a free frame skips 15 modified pages, or the entire core map has been 
circled, the average situation is that more than 15 modified pages will typically exist 
between the purifier and the replacer pointers. It is likely that page writes will occur 
in large but moderately infrequent bursts, while page reads will occur with a rather 
even distribution. 

This means that disk management must have the ability to handle deep bursts 
of activity within its queuing resources to handle these page write situations. 

DISK MANAGEMENT MECHANISMS -- HARDWARE AND SOFTWARE 

This subsection outlines the hardware and software mechanisms of disk 
management. It begins with the hardware, since Multics hardware has some 
characteristics for channel and drive access which form the basic structure of Multics 
disk management. This section is a more detailed explanation of mechanisms than that 
above, since a discussion of the Multics disk DIM is the prime purpose of this 
appendix, and you must understand the concepts of disk control to utilize the metering 
and tuning features of the Multics disk DIM. 

There are two basic classes of hardware disk subsystems. The first consists of 
Honeywell-supplied devices in the following styles: 400. 451, 500, and 501. This class 
of disks is supported on both types of I/O mainframes, the 10M and the IMU. 
These devices have microprogrammed controllers (MPCs), disk controllers that interface 
with the system and disk drives. An MPC is a stored program computer that can be 
loaded with firmware by the system, and can execute various commands to control 
disk operations. Each command is a program within the MPC memory that ties up 
the MPC until command completion. 

The other class consists of devices in the following styles: 3380 and 3381. This 
class of disks is only supported on the I~1U I/O mainframe, and conforms to the 
Federal Information Peripheral Standard (FIPS). The disk controller functions for the 
PIPS devices are done by a combination of three hardware components: the 
head-of-string device, the storage directory, and the IPC-FIPS IMU channel. This 
IPC-FIPS channel in the IMU allows the system to interface with the FIPS disk 
subsystem in the same manner as the MPC subsystem. The firmware. however, is not 
loadable by the system. 

J-5 AM81-o4 



* 
Disk Controllers 

Each disk controller can be connected to 32 disk drives and supports the 
ability to have all drives under its control simultaneously moving their head assemblies 
(seeking). It does this by separating a combined I/O function such as a read or 
write into the component command functions of seek initiation and I/O. Since the 
seek operation is typically the largest physical delay in a disk read or write operation, 
this seek overlap capability provides noticable increases in efficiency. 

Disk drives may be connected to two separate disk controllers to provide what 
is termed dual porting. The controllers support this mode of operation; there is no 
delay in switching control of a drive between controllers. This provides dual paths to 
drives and increases the hardware reliability and fallback capabilities of the system. 
Multics utilizes the possible multiple physical disk controllers and paths to distribute 
physical path loading as much as possible. 

Physical Channels for MPCs 

Disk controllers are connected to the Multics system through physical data 
channel s. Physical data channels are the physical cable and board assemblies 
connecting disk MPCs to I/O mainframes. MSP0451, MSP060l, and MSP0603 disk 
controllers have two physical channels which can be in operation simultaneously. These 
controllers permit two simultaneous physical I/O operations to occur (read or write). 
MSP0607, MSP0609, MSP0611, and MSP0612 disk controllers are meant for faster 
transfer drives and only support a single physical data channel per controller. They 
can only perform a single physical I/O operation at a time. Certain of these faster 
controllers may appear to have two physical channels, but this is essentially packaging 
rather than function. The MSP0609 is two physical MPCs in two separate cabinets; the 
MSP0612 is two physical MPCs in a single cabinet Each MPC is capable of only a 
single physical I/O transfer at a time over its single physical data channel. 

IPC-FIPS Physical Channel 

This channel reacts similarly to the physical channel for the MPC. It connects 
to a port on the storage director, There are two storage directors in a cabinet. Each 
storage director can be connected to the same head-of-string device cabinets. This 
allows dual porting to the PIPS devices. Each physical channel can only perform a 
single I/O data transfer at a time. 

1-6 AM81-o4 



Logical Channels 

Within the Multics I/O mainframe each physical data channel is logically 
divided into a number of addressable entities called logical channels. Each logical 
channel acts as the registers of a controller and can hold an I/O operation. This 
permits a single disk controller to receive a number of I/O requests simultaneously 
through the multiple logical channels configured on a single physical data channeL The 
disk controller will initiate all necessary seeks for these I/O requests in parallel and I 
then wait ior on-cylinder indications from the drives. When one or more drives are 
on-cylinder, the disk controHer determines which of the possible physical data transfers I' 
to initiate, utilizing rotational position sensing to determine a best candidate. When 
the physical data transfer is initiated, the disk controller is tied up until the transfer 
completes, due to the program running in the disk controller. Thus, a disk controller 
permits seek overlap, but is limited to single data transfers per physical data channel. 

You can see that there will be a one-to-one correspondence between the 
number of available logical channels configured to a disk subsystem and the number 
of seeks which can be simultaneously overlapped. This can effect system performance 
in situations where a high degree of seek overlap is essential for efficient disk service. 
On busy systems, for example one which runs 32 451 drives on a single string with 16 
logical channels, it is not uncommon to see an average of eight drives simultaneously 
seeking. Serializing such I/O, by having fewer disk channels, would degrade disk 
system responsiveness. 

Disk Subsystems 

Multics disk drives are each configured with a physical drive number, which is 
utilized by the MPCs to address individual drives. Each MPC is limited to connecting 
up to no more than 32 drives, thus breaking the set of disk drives and disk 
controllers into a number of subsets, due to their physical connectability. These subsets 
are termed disk subsystems. All Multics disk drives are managed in terms of disk 
subsystems. 

A disk subsystem is a direct expression of the physical connectability of its 
disk controllers and disk drives. One characteristic of a subsystem is that all of its 
drives can be accessed through any of the channels assigned to the subsystem. This 
characteristic greatly simplifies the task of channel selection for drive control and thus 
improves basic system efficiency. Depending on the types of MPCs involved, a 
subsystem will have two to four physical data paths divided into up to 32 logical 
channels. 

Though a subsystem may have up to 32 drives physically connected to its 
MPCs. it is common for sites to limit the number of drives per controller to decrease 
data path contention. Thus, most sites have subsystems smaller than 32 drives each. 

j-7 AM81-04 



Disk Data Structures 

Disk drives are controlled by a disk device interface module (disk DIM) 
which uses the databases contained within disk seg. The first structure in disk_seg is 
disk data, used for system-wide information -and to locate all other disk control 
structures. The disk_data structure contains the free queue and free queue lock, the 
subsystem table, and system wide tuning information. 

Individual subsystems are found by an offset from the base of disk_seg stored 
in the subsystem table. Each subsystem is represented by a d i sktab structure which 
holds all drive and drive tuning information, error counters, and meters, and has an 
offset from the beginning of disk_seg to locate the channel table for the subsystem. 
The following diagram illustrates the relationships contained within disk_seg. 

disktab 
one of N 

Queues 

free queue size free queue lock 
housekeeping and tuning information 
subsystem table 

(entry has offset of subsystem disktab) 
free queue 

subsystem lock 
number of channels configured on subsystem 
number of drives configured on subsystem 
number of channels currently online 
drive busy mask 
drive queued mask 
location of channel table for subsystem 
housekeeping and meter information 
drive table of devtab entries 

channel table of chantab entries 
located by disktab entry 

Oueues aTe used with;n disk rnana2ernent to store disk reauests for drives and. "'----- --- ---- ------- ----- ----~---~...,-------_.- -- -~-. - ... ~ 

in the case of the free queue, to establish a pool of entries available for queuing use. 
Queues all have the same structure. 

J-8 AM81-()4 



All queues are found and controlled by a queue head/tail control block 
(QHT), which contains a disk_seg offset to the head of the queue and an offset to 
the tail of the queue. The control block contains metering information such as the 
current number of elements in the queue r depth), the number of allocations done to 
the queue (count), the high water mark of the depth (max_depth) and the sum of 
the depths at the time allocations were done {sum}. The sum and the count permit a 
metering tool to take two readings and, by dividing the difference in the two sums by 
the difference in the two counts, to determine the average queue depth for the time 
period. Average queue depth is a request-averaged, rather than time-averaged, value. 
It is precisely the average of the number of requests which were in the disk queue at 
the time a request was queued. If four requests were queued into an empty queue, 
the average depth would be: <0+1+2+3)/4 or 1.5. 

Queues are forward and backward linked f or ease of insertion and deletion. 
One characteristic of all queues is that the request at the head of the queue is the 
oldest and the request at the tail is the most recent This characteristic is exploited in 
determining request stagnation, as you will see later. 

Queue entries contain all the information needed to process an I/O request. 
They hold a forward and backward link, an indication as to whether a request 
completion interrupt is needed (posting), an en try in use flag, the I/O type, the core 
address of the I/O, the PVT index, and the primary device index and logical device 
index of the drive in the subsystem. They also indicate the cylinder and sector for 
the I/O and the number of sectors to be transferred. The final element of a queue 
entry is the full clock time when the entry was last allocated frem the free queue. 

The Free Queue 

The free queue is the pool of available quentry elements set up when disk_seg 
is initialized. The number of elements in the free queue is a site tunable value and is 
controlled through the config deck with the parm card's dskq parameter. It can be 
specified in the range of 5 through 200 queue elements per configured physical 
volume. If the dskq parameter is not specified, the default is 20 free queue elements 
per configured physical volume. 

The queue control block for the free queue is exactly the same as for any 
queue, with the exception that the free queue insertion and deletion routines use the 
depth counter to indicate the number of elements from the free queue currently in 
use, rather than the number of elements in the queue. This recognizes that queue 
elements are allocated from, rather than to, the free queue. Thus, the average depth 
for the free queue is a measure of the typical number of I/O requests simultaneously, 
though not continuously, loading the disk system. 

Drive Queues 

The Multics disk DIM utilizes a single request queue per drive which holds 
both high and low priority requests for the drive. As you will see later, this provides 
efficiency and ease of request optimization. 

J-9 AM81-04 



Note: PIPS devices are divided into subvolumes. When the disk DIM is called, 
the subvolume record address is converted to a device record address. This allows the 
disk DIM to manage and meter the device as one entity; it need not track each 
subvolume. 

Disk Channels 

The channel table for each subsystem is dynamically allocated according to the 
number of channels found in the con fig deck for the subsystem, and permits up to 32 
disk channels to be configured. This is essentially the hardware limit for the maximum 
MPC configuration possible for a single subsystem of eight logical channels per 
physical data path. 

The channel initialization algorithm of the Multics disk DIM does not impose 
any limits on the configuration of channels. 

(Note: since the disktab structure has devtab as a dynamic sized array. the 
chantab array of the pre-MR11.0 disk DIM has become disk_channel_table and is 
located through the devtab.channel s offset.) 

Disk Software Modules 

The software for disk management utilizes both a PL/1 disk DIM (disk contro/) 
and an ALM disk DIM (dct!). The PL/~ disk_control module is a comPiete and 
functional disk management system with error recovery and reporting. emergency 
shutdown (ESD) reinitialization, queuing, and interrupt management. The ALM dctl 
module contains a subset of this functionality and is only capable of queuing and 
simple interrupt management. The ALM routine is the normal and preferred path for 
disk management, since it is roughly three times faster in operation, but"aoj't defers 
complex interrupt management, disk running, error reporting and recovery to the PL/1 
routine. 

DISK MANAGEMENT 

Disk management is broken into two operational parts, the call side and the 
interrupt side. The call side handles all requests to read or write a sector or page 
on disk. It al10cates and initializes a disk queue element for the request and 
immediately initiates the I/O if the drive is free and a channel is available. If a 
channel is not available or the drive is currently busy, disk management queues the 
request for the drive. 

The interrupt side handles all interrupts and errors and is called through the 
tim to manage the completion of an I/O operation. It validates the completion. 
updates meters, frees the channel. and returns the queue element to the free queue. If 
a drive has a queue of requests and is not busy, the interrupt side will initiate I/O 
for it using the channel just freed. 

J-10 AM81-04 



Allocation Locks 

If the disk DIM is given a request and the free queue resource has been 
totally consumed, the DIM enters an allocation lock situation. In this situation, it 
goes through a loop of ensuring that all possible disk drives are busy and waiting for 
an I/O completion which will free a queue element. In very busy systems, allocation 
locks can account for better than 20% of the overhead of the system. 

In the 11ultics disk DIM, the ability to share the free queue resource among 
all subsystem drives makes good use of the committed memory, given the load 
statistics for drive and subsystem activity. Since the size of the free queue is tunable 
through the con fig deck, and defaults to a reasonable number of queue elements per 
configured drive, a site should be able to configure an adequate free queue size, even 
for high loading situations, to virtually eliminate allocation lock overheads. 

The Masked Environment - - Running 

When the disk DIM is called to make an I/O request. or interrupted to 
handle an MPC or drive action, it runs in a masked environment and cannot detect 
interrupts signalling I/O completions. The DIM utilizes a polling mechanism to detect 
I/O completions when it is in this state. This polling is called running the disks and 
entails having the DIM check the status of every active channel to determine if an 
I/O has completed. If an I/O has completed, the queue element is returned to the 
free queue and a new I/O request may be initiated. Disks are run whenever an 
allocation lock occurs, since the DIM must wait for an I/O completion to recover the 
queue element. Disks are also run every 15 seconds from a timer event in page 
control to ensure no I/Os are missed. The ALM disk DIM calls the PL/1 disk DIM 
to run disks if an allocation lock situation occurs. 

Disk running occurs on the drives of all possible subsystems, since the DIM 
may need to recover a queue element from a different subsystem than the subsystem 
encountering the allocation lock. This recovery is done by running the current 
subsystem, and then running all other subsystems which are immediately lockable. This 
prevents a deadly embrace situation waiting for a locked lock. It is valid because if a 
subsystem is currently locked, it is currently doing I/O, and running is not necessary. 

Running all subsystems has the additional advantage of completing I/O for 
other subsystems while masked which would not otherwise be detected until control 
had returned from the paging system and the processor became unmasked. 

Blocking vs. Non-blocking I/O 

The Multics virtual memory system controls the execution of a process within 
the system. A process which has all its pages in memory executes at the full speed of 
the processor. If the process tries to access data on a page which is not in memory, 
it must wait until the page is available. The process is then blocked for execution. 
When a process is blocked, some other process must be found to utilize the 
processor(s), otherwise the system will be idle and not be used at maximum 
efficiency. 

J-11 AM81-()4 



A process can be blocked while waItIng for a page to be read from disk to 
memory. If the segment containing the page is not resident in the AST (activated), 
then the process must wait for the VTOCE I/O necessary to establish the ASTE page 
table needed to find the page. Thus, it may take up to two disk I/Os to permit a 
process to continue. 

Processes are typically not blocked by pages being written to disk. since this is 
a background task of the virtual memory system, and not directly tied to any normal 
process function. As such, VTOCE write and page write operations are non-blocked. 

Multiprogramming 

As seen above, if a process is blocked for execution, there must be another 
process available for execution if the processor is to be properly utilized and not go 
idle. Multiprogramming is the term used to describe this action, and the level of 
multi programmi ng expresses the number of processes which are typically available for 
execution at the same time. 

In Multics, the level of multiprogramming is controlled by the maxi mum 
eligible tuning value. This indicates the maximum number of processes which may be 
in the eligible queue at a time, and which are then candidates for execution. Most 
Multics systems run in the range of 10 to 20 or more processes in the eligible queue. 
This provides quite a broad base of processes, at least some of which will probably be 
available for execution. 

Figure J-1 provides an indication of the wait percentage and the required levels 
of multiprogramming for various system wait times. The vertical axis indicates the 
level of multiprogramming (i.e., the number of processes); the horizontal axis indicates 
the individual process wait percentage. The table elements indicate the resultant system 
wait times. Table information is taken from the book Operating Systems by Madnick 
and Donovan (MIT Press). 

J-12 AM81-D4 



MP Level Wait Percentage Average per Process 

10.0% 20.0% 30.0% 40.0% 50.0% 60.0% 70.0% Bo.o% 90.0%100.0% 

1 10.0 20.0 30.0 40.0 50.0 60.0 70.0 Bo.o 90.0 100.0 
2 1.0 4.0 9.0 16.0 25·0 36.0 49·0 64.0 81.0 100.0 
3 o. 1 0.8 2.7 6.4 12e5 21 e 6 34.3 51.2 72.9 100$0 
4 0.2 o.B 2.6 6.3 13.0 24.0 41.0 65.6 100.0 
5 · .......... 0.2 1 .0 3. 1 7.8 16.8 32.8 59.0 100.0 
6 · ................ 0.4 i.6 4.7 11 .8 26.2 53. 1 100.0 
7 · ................ 0.2 o.B 2.B B.2 21.0 47.B 100.0 
B · ...................... 0.4 1.7 5.B 16.8 43.0 100.0 
9 · ...................... 0.2 1.0 4.0 13.4 3B.7 100.0 

10 · ............................ 0.6 2.B 10.7 34.9 100.0 
11 · ............................ 0.4 2.0 B.6 31 .4 100.0 
12 · ............................ 0.2 1 .4 6.9 2B.2 100.0 
13 · ............................ o. 1 1 .0 5·5 25.4 100.0 
14 · ................................... 0.7 4.4 22.9 100.0 
15 · .................................. 0.5 3.5 20.6 100.0 
16 · .................................. 0.3 2.B 1B.5 100.0 
17 · .................................. 0.2 2.3 16.7 100.0 
1B · .................................. 0.2 loB 15·0 100.0 
19 · .................................. o. 1 1.4 13·5 100.0 
20 · ........................................ 1.2 12.2 100.0 

.......... Lines indicate 100% processor use 

Figure J-1. Multiprocessing Table of Wait Percentages vs. Multiprogramming 

J-13 AM81-()4 



Request Optimization 

It is important to choose an optimization strategy for scheduling disk I/O 
requests which provides maximum system efficiency. Such a strategy is not one which 
simply provides maximum disk throughput, since you must consider the effect of a 
disk optimization strategy on the system as a whole, not just on the disk system. 

Since a blocking I/O causes a process to wait and possibly idles a processor, it 
is important for blocking I/O operations to be completed as quickly as possible, to 
maximize system throughput and response. 

However, it is possible for the queuing resource, which holds both blocking and 
non-blocking requests, to become saturated. At this point, non-blocking requests 
become blocking requests waiting for queue resources to become available, and in turn 
block the queuing of normal blocking requests. This is termed an allocation lock and 
was described earlier. An allocation lock stops system paging until a physical I/O 
completes, but does not change optimization strategy. As a result, the system runs in a 
de-optimized mode and suffers high paging overheads due to allocation locks. 

As disk loading increases in a system, the simple optimization of high and low 
priority I/O requests leads to situations where a drive is completely occupied in 
servicing high priority requests, and never services low priority requests. Thus, the low 
priority requests stagnate. At this point, a significant queue builds for a busy drive 
and may result in an allocation lock situation. Even if the free queue is made large 
enough to prevent an allocation lock situation, the system will become sluggish and 
unresponsive. Further, there will still be no attempt to service the low priority 
requests and the queue will not shrink. 

The Multics disk DIM has features aimed at optimizing such situations to 
attempt to reduce or eliminate allocation lock overheads and to preserve smooth and 
responsive system action. Ihis is done through an optimization strategy, load adaptive 
disk optimization, which recognizes the problems caused by queue resource saturation 
and the different service priorities needed for different types of I/O. 

Load Adaptive Disk Optimization 

Load adaptive disk optimization recognizes that each type of disk I/O, VIOe 
read, VIOe write, page read and page write may require a different scheduling 
priority as far as efficient system operation is concerned. It also recognizes that this 
priority may depend on the queue load that the I/O type imposes on the system such 
that when heaviiy loaded, the priority should be increased, and when lightly loaded, 
the priority should be decreased. 

For example, if the system is very lightly loaded by I/O requests, there is a 
lot of queue resource left to· buffer non-blocking I/O requests. In this situation, it is 
desirable to provide the best throughput and I/O response to blocking I/O requests. 
However, as the I/O queues become more heavily loaded and approach queue resource 
saturation. it is desirable to increase the priority of non-blocking requests to lighten 
their queue loading and avoid allocation locks. 

J-14 AM81-04 



These two limits are termed the response point and the load point. The 
response point is defined by a queue loading of a single request, and the I/O priority 
desired for the drive for best system wide response and throughput. The load point is 
defined by the maximum queue loading desirable for that I/O type for the drive and 
receives the maximum I/O priority. The following diagram illustrates these concepts. 

high 1>1 

pri::~tY::+I ________ ~ ________________________ ___ 
"4 

low Queue Load high 

2 Defines the read type's response point (Qload=l) 
3 Defines the write type's response point (Qload=l) 
1,4 Define the read type's load point 
1,5 Define the write type's load point 

At any point in time, each disk drive will be operating at some point between 
these two limits. This scheduling priority adjustment should be implemented on a 
per-drive basis to degrade blocking I/O response, system wide, as little as possible. 
This is due to the need to avoid resource saturation and I/O stagnation for a single 
drive. 

This is precisely what the Multics load adaptive disk optimization does. For 
each drive, it maintains an optimization table which has an entry for each type of 
disk I/O. Currently defined types are: 

Page read 
is used for reading pages from disk to memory. It is a blocking I/O type. 

Page write 
is used for writing pages from memory back to disk. It is a non-blocking I/O 
type. 

VIOe read 
is used for reading VIae sectors from disk to memory. It is a blocking I/O 
type. 

VTae write 

Test 

is used for writing VIae sectors from memory to disk. Such an operation is 
non-blocking but is buffered in the very small VTae buffers. As such, it can 
very easily become a blocking I/O when the VIDe buffer resource saturates. 

does not actually initiate I/O at all. This type of I/O is never queued, though 
it does use a queue element As such, it cannot cause queue resource 
saturation, though it can be delayed by saturation. 

J-15 AM81-04 



Bootload read 
only occurs within BCE during initialization of the system. This I/O operation 
has no effect on normal system operation. 

Bootload write 
only occurs within BCE during initialization of the system. This I/O operation 
has no effect on normal system operation. 

Each drive optimization table entry holds a number of values used to 
determine the optimization priority of requests of its I/O type. Each time an I/O 
request is queued or dequeued for a drive, its I/O type is used to determine which 
optimization table entry should be used. Then the current queue depth of that I/O 
type for the drive is determined and used to set the optimization priority. That 
priority stays in effect for that I/O type on that drive until another request is 
queued, or a request is finished and dequeued, and the priority is recalculated. 

The Multics disk DIM has been implemented to make it easy to define and 
optimize new I/O types, as they become identified and their characteristic optimization 
and resource loading is determined. 

Implementation of Prioritization 

There are two basic methods of OptImIzIng disk operations: disk combing and 
nearest seek. Disk combing, sometimes called windshield wiping, involves moving the 
read/write head assembly continuously in one direction servicing requests until no 
further requests can be serviced in that direction. Then head direction is reversed and 
servicing continues. It causes the heads to comb across the surface of the disk like 
the windshield wipers of a car. It has the advantage of ensuring that all disk requests 
will be serviced, but has the disadvantage of not optimizing the ordering of service to 
any particular system advantage. Since requests can wait for a long time if they are 
behind the current head position, it produces indeterminate system wait characteristics 
f or a system such as M ultics. 

The other basic method, nearest seek. involves determining the best seek from 
the current position to be the shortest seek possible of all candidates in the queue. 
This ensures minimum seek times. but does not ensure that all requests will be 
serviced. If the arrival rate of requests is higher than the drive processing rate, then 
some requests will remain unprocessed and will stagnate. This is particularly true if 
there are distinct bands of I/O activity on the surface of the drives, since long seeks 
will be required between bands with much shorter, and therefore preferential, seeks 
within a band. 

Nearest Logical Seek 

The Multics disk DIM modifies the nearest seek algorithm to become a nearest 
logical seek algorithm. It does this by determining a logical seek according to the 
priority of the I/O type and the physical seek length of an I/O request from the 
current head position. 

J-16 AM81-o4 



A logical seek is the physical seek length mUltiplied by an optimization factor 
for the I/O type in question. A high priority I/O has a low optimization factor; a 
low priority I/O has a high optimization factor. The result is that for the same 
physical seek length. a low priority I/O will have a longer logical seek length than a 
high priority I/O. and will be preferentially chosen. 

This results in the following definitions for t.lJ.e response point and the load 
point 

response point (a seek multiplier in units of cylinders) 
The response point occurs at a queue loading of one request and specifies the 
optimization factor to be applied to the physical seek length which will be 
appropriate for this I/O type in terms of deriving maximum system 
responsiveness. 

load point (a queue loading in units of requests) 
The load point occurs at a specified queue loading where maximum I/O 
throughput of the I/O type is desired. This occurs with an optimization factor 
of one, meaning that physical seek length = logical seek length. A bove the 
load point. the optimization factor continues to be one. 

Algorithm Implementation 

It is essential that the load adaptive disk optimization algorithm be efficient to 
implement and comprehensive to use. This subsection details the implementation and 
action of the algorithm. 

The nearest seek algorithm lends itself well to the needs of adaptive 
optimization. As seen above, you can utilize a nearest seek to optimize logical seeks 
just as the nearest seek algorithm normally optimizes physical seeks. An efficient 
conversion of physical seeks to logical seeks can be done by simply multiplying the 
physical seek length with a factor appropriate for conversion of physical seeks to 
logical seeks. 

The nearest seek algorithm normally does a simple comparison between seek 
lengths of all possible requests and the current head position. and then selects the 
shortest seek. The nearest logical seek algorithm does the same. but multiplies the 
physical seek length by the optimization factor for the I/O type of the seek before 
doing the comparison. Thus. only a multiplication is added to the innermost loop of 
the nearest seek algorithm. 

The response point and load point can be considered the endpoints of a line. 
called the optimization line. defined with an X axis of queue loading and a Y axis 
of opti mization factor. As seen above. the optimization factor is a multiplier of 
physical seek length from which the logical seek length is derived. The line can be 
characterized by the formula: 

J-17 AM81-()4 



where Y is the optimization factor and X is the current queue loading of the I/O 
type. Using the response and load points: 

a = (Response Point-l) / (Load Point-l) 
b = Response Point - a 

(In the preceeding straight line formula, the uncommon use of a subtraction of the 
slope from the intercept is done to produce positive slope and intercept values.) 

The optimizing table entry holds the slope and intercept values for the 
optimizing line specified for that I/O type for that drive, the current queue load, and 
the current optimizing factor. Each time a request of that I/O type is queued, the 
queue load value is incremented and the optimization factor is calculated from: 

factor = max (1.0, b - a*X) 

(The use of the MAX function prevents queue loading beyond the load point from 
deoptimizing seeks beyond the maximum load.) 

When the nearest logical seek algorithm runs, it need only refer to the already 
calculated optimization factor. The only complex calculations needed to update the 
factor occur once for a queue insertion and once for a queue deletion. 

Nearest Logical Seek Examples 

The examples which follow indicate the possibilities of this method. They 
utilize two I/O types, Rand W, which have the following cylinder requests in the 
queue: 

Type R: 1, 20, 30, 100 
Type W: 10, 50, 55, 60, 80 

Current head position on cylinder 70. 

To mirror the pre-MRl1.0 queue separation. simply set an optImIzation factor 
for low priority l/Os greater than the number of cylinders on the drive, and an 
optimization factor· for high priority l/Os of one. Then any seek for a low priority 
I/O (W) wili look longer than any possible high priority i/O (R). You then arrive at 
logical seek lengths of: 

R Factor: 1, W Factor: 101 

R Logical seeks: 69, 50, 40, 30 
W Logical seeks: 6060, 2020, 1515, 1010, 1010 

The obvious best seek is the R seek of 30 logical cylinders. And from there all R 
seeks will be done before any W seeks are done. 

J-18 AM81-04 



If you lower the W factor, as would occur with increased queue loading, you 
can see the kind of interactions possible: 

RFactor: 1, W Factor: 3 

R Logical seeks: 69, 50, 40, 30 
W Logical seeks: 180; 60~ 45, 30; 30 

At this point, the last R seek and two of the W seeks look equally good. If you take 
the first of the W seeks, you then get into a close band of WI/Os and finish them 
off. 

Since the optimization factors are being adjusted each time that requests are 
added to a queue or removed from a queue, the relative priorities constantly change 
to reflect the immediate loads of the drive. Thus, the optimization relationships are 
constantly changing to follow the dictates of the established optimization policies and 
the drive loads. 

These examples also demonstrate the tendancy of load adaptive disk optimization 
to cluster I/O requests. Low priority I/Os tend to accumulate in the queue until their 
optimization factor has become small enough to make a low priority I/O become 
preferential. The accumulation of requests tends to make request clusters, in which 
there is very little difference in cylinder positions. 

Once a cluster is entered, it becomes preferential to stay within it, servIcIng 
l/Os with a short seek length, until I/O loading drops sufficiently to make the much 
longer higher priority I/Os look "good" enough to make leaving the cluster 
worthwhile. This can produce bursts of activity with very low seek lengths as 
appropriate for the prevailing load/request characteristics. It will tend to recover drive 
throughput without significantly losing drive responsiveness. 

Optimization Policies 

The Multics disk DIM permits each type of I/O on a drive to be given a 
specific optimization policy, to dictate its optimization. This policy is stated in terms 
of the response point and the load point, and establishes the optimization line for the 
I/O type. The relationships between the optimization lines for all the I/O types for a 
drive establish the drive policy. 

You should choose policies to meet the individual I/O requirements, remembering 
that the optimization factor is a multiplier used to convert physical seek length to 
logical seek length for a nearest logical seek comparison. 

For example: 

VTOC reads 
are essential to establish the conditions to permit page I/O to occur. Thus, 
VTOC reads are top priority. 

J-19 AM81-()4 



VToe writes 
are essential to clear the VTOCE buffers quickly. If any number of them 
build up, they should occur quickly. 

Page reads 
are essential to unblock processor execution, but VTOe reads are more 
important. Typically, VTOe I/O appears to be about 100 cylinders average 
from where page I/O occurs. 

Page writes 

points: 

are essentially background and shouldn't interfere. There are 200 free queue 
elements. 

With these broad statements in mind, you could establish the following response 

VToe read 
response optimization factor is one for maximum throughput. Load point is 
one request (since the factor is one, this really doesn't matter). 

VToe write 
response optimization factor is ten, to leave some headroom for optimization of 
other I/O types at high loads. Load point is three requests, which is roughly 
10% of the VTOe buffer resource. 

Page read 
response optimization factor is 100, to leave optimization headroom and make 
VTOe 1/0 more attractive. Load point is six outstanding requests for adequate 
multiprogramming levels. 

Page write 
response optimization factor is 80000 to completely move write seeks outside of 
the longest logical page read seek (presumes 799 cylinders on the drive). Load 
point is 150 outstanding requests. to leave extra headroom in the queue to 
handle large bursts before allocation locks occur. 

Such a policy ensures that VTDe and page read operations get good 
optimization and speeds system responsiveness and throughput. Anyon-cylinder 
requests will be optimized. If you get very large page write queue buildups, you will 
start to optimize page writes preferentially to page reads until queue loading drops 
again. 

Optimization Dynamics 

The optimization of I/O types is very dynamic in operation, since it is a 
combination of queue loadings and physical seek lengths, The specific optimization 
relationships change from I/O to I/O, as the queue lengths change. Optimization 
relationships also are completely different for different drives experiencing different 
loadings. Thus, the majority of drives will experience optimization relationships which 
optimize VTOe I/O and page reads, while only a few heavily loaded drives will 
decrease blocking response to accentuate non-blocking throughput to decrease queue 
lengths. These relationships and drive loadings will be constantly changing. 

J-20 AM81--G4 



One of the expected characteristics of a loaded system using load adaptive disk 
optimization is that the service ordering of requests will be altered to provide needed 
response and throughput on a drive-by-drive basis. This may make it difficult to do 
precise benchmarking between disk optimization systems, since completion times of 
benchmark processes will vary as a function of drive optimization and request 
clustering. 

Systemic Optimization 

So far, load adaptive disk optimization has been dealt with as it applies to 
single disk drives and their required responsiveness, and the limiting of queue loadings. 
liowever, the queue resource is a system wide resource, rather than a disk subsystem 
or disk drive-related resource. As such, we must also manage the loading of this 
resource system wide must also be managed, to prevent allocation locks and' degraded 
system response. 

This is handled through a system optimization table, residing in disk_data, 
which tracks the system wide queue loading of I/O types. This table has one entry 
for each I/O type which contains: 

depth 
the current system wide load of this I/O type. 

max_depth 
the maximum permissible system wide load of this I/O type. 

fraction 
a fraction expressing the relation: 

fraction = max (0.0, (depth-max_depth)/max_depth) 

This fraction is used in the nearest logical seek algorithm to adjust the drive 
optimization factor as: 

factor = max (1.0, fraction * factor) 

depth_map 
indicates which system optimization entry is to be used for counting l/Os of 
this type. It permits you to use a single system wide depth counter to combine 
queue loadings of more than one type. 

The system wide fraction is used to condition the logical seek length and to 
increase the priority of an I/O type on a drive when the system is approaching a 
predetermined system wide queue loading limit. This limit does not have to be the 
same as that for any drive. Thus. if each individual drive is permitted to use an 
appreciable fraction of the system wide queue resources before the optimization 
algorithm produces a low optimization factor for the drive, the possible over-commitment 
of parallel loading of a number of drives is managed by the system wide optimization 
fraction. 

J-21 AM81-()4 



This recognizes the uneven burst loading characteristics of the system, by 
permitting relatively large individual drive queue limits, without imposing the dangers 
of large distributed bursts causing queue resource exhaustion. 

The system load counters utilize a counter mapping technique to permit more 
than one I/O type to contribute to a combined system loading. For example, VTOe 
operations could map VTOe read and VTae write to the same counter (VTOe read) 
to permit a single VTOe load figure to be derived for the system. This figure could 
be used to accelerate VTOe optimization of both VTOe read and VTae write if 
loading of either increases. ( Note: system load counters are not permitted to become 
negative, which could happen through remapping "on the fly." After a counter 
remapping is done, it is recommended that you reset the depth counters using the 
tune_disk command (described later) to Jet them find their own level again. Otherwise, 
a depth counter might be left artificially high.) 

Stagnation Management 

Throughout this discussion of the load adaptive disk optimizer, the dangers of 
request stagnation have been seen, where the arrival rate and cylinder characteristics of 
requests prevent some of them from ever being serviced by the nearest seek algorithm. 

The Multics disk DIM manages stagnation characteristics by changing its 
optimization policies when stagnation situations occur. This is all part of the load 
adaptive disk optimization. 

Stagnation management utilizes the guaranteed service characteristics of the disk 
combing technique and the queue age characteristics mentioned earlier (i.e., that the 
oldest request in every queue is at the head of the queue and the youngest request is 
at the tai1.) Prior to scanning a drive's queue to determine the nearest logical seek. a 
check is done of the oldest request in the drive queue. If it is older than a site 
tunable stagnation time, currently defaulting to five seconds, then a disk combing 
algorithm is used, rather than a nearest logical seek. 

The disk combing continues motion of the head in the current direction of 
travel and finds the nearest request of any type in that direction. Each time the drive 
is ready for another I/O this time comparison is done, and unless the oldest request 
becomes younger than the stagnation time, disk combing continues. When no more 
requests in the current direction exist, the direction is reversed. 

It is important to note that though the oldest request is older than the 
stagnation time, it is not necessarily the request which is picked for servicing. Thus, a 
number of disk I/Os may be sponsored under disk combing until the oldest request 
gets serviced. And by this time some other request may be· old enough to continue 
disk com bing. 

J-22 AM81-04 



The end result is that the load adaptive disk optimization does provide as 
responsive a system as possible for prevailing conditions. and guarantees servicing of 
all requests. (It is possible to create a secondary stagnation situation under extremely 
high disk loading. Secondary stagnation is thrashing in which the instruction page is 
paged out before the data page is referenced. This requires the instruction page to be 
brought in before execution can continue. To date this has only been produced in 
load tests.) 

Use of Adaptive Optimization 

Load adaptive disk optimization is a Multics disk DIM feature aimed at 
continued system responsiveness and throughput under high disk load situations. It has 
no effect under light load situations and little effect under moderate load situations. 

With it, a site can expect to see a change in the request servICIng 
characteristics of disk drives as these drives become busy. Visible head motion 
becomes smoother and smoother as drive load increases, rather than simply becoming a 
more frequent head move. As drive loading increases to the point where stagnation 
periods for requests approach the stagnation limit, the true disk combing motion 
becomes apparent. 

Experience with load testing indicates that this optimization technique has broad 
tuning response. This makes it easy to use and robust in action. Unless the 
optimization priority relationships are reversed, the system action is acceptable through 
a broad range of load conditions. If optimization priorities are reversed, to give 
highest priority to non-blocking I/O, system responsiveness and total system throughput 
is noticably degraded. 

METERING 

Multics is a system rich in meters. but only a few of them are really essential 
in determining problem areas. Some important metering values are: 

Virtual CPU Time 
This is the bottom line. It is an indication of how much of the CPU 
hardware on the floor is being delivered to the users of the system. It is a 
meter value produced by the total_time_meters (ttm) command and is stated 
in terms of absolute processor percentage and non-idle processor percentage. It 
is the summation of all the virtual CPU time delivered to individual processes. 

J-23 AM81-()4 



Idle Time 
Idle time is the extent to which a processor is not doing any work, and 
represents a possible area of CPU recovery through tuning. There are five idle 
times of interest, all produced by the ttm command: 

Zero Idle 
Zero idle is the time used by the system idle process when no other 
processes are running, none are ready, none are waiting, and no 
processes hold the page table lock. It indicates that there is simply no 
work to be done. No amount of tuning will recover zero idle, but 
changes to process scheduling limits may allow better system use, by 
permitting otherwise-held processes to be executed. 

NMP Idle 
Non-multiprogramming idle is the time used by the system idle process 
when there are no processes eligible to run, but the system is not in a 
zero idle situation. It indicates that there .are not enough processes 
available to provide sufficient system load. It indicates a situation in 
which disk tuning will probably not recover' idle processor time, but 
changes to process scheduling. for example absentee limits, may provide 
better system use. 

Loading Idle 
Loading idle is the time used by the system idle process when there are 
processes eligible to run, but the last eligible process is not yet loaded. 
(A process is loaded when page 0 of its pds and dseg are wired in 
memory.) It indicates a situation where there is sufficient paging for 
the PDS and DSEG pages of a process to get paged out between the 
time when the process becomes ineligible and the time when it becomes 
eligible again. This can also be due to long inter-eligibility time delays 
in relation to the current memory lap time, causing thrashing. 

MP Idle 
Multiprogramming idle is the time used by the system idle process when 
the maximum permissible number of processes eligible to run has been 
reached, or no processes missed becoming eligible because a work class 
maximum has been reached or exceeded. It indicates that there are 
processes to execute, but that one or more processes are blocked from 
execution. typically by I/O in progress, and not all processors are busy. 
It may indicate a situation in which disk tuning will have a payback. 

Work Class Idle 
Work class idle is the time used by the system idle process when 
processes miss becoming eligible because a work class maximum has been 
reached or exceeded and the maximum number of eligible processes has 
not been reached. Ii indicates a situation where changes in usage limits 
might recover more of the processor resource. 

J-24 AM81-()4 



Overheads 
There are a number of areas in which overheads are metered. Overheads can 
be due to the amount of work to be performed and be essentially 
unrecoverable by tun.ing or they can be due to resource saturation which causes 
a processor or the system to spin in a hard loop until the resource becomes 
available. Resource saturation overheads are usually amenable to tuning 
recovery. Some of the important overheads shown by the ttm command are: 

Interrupts 
This is an indication of the overhead required to service interrupts. 
Most interrupts are due to communications and disk management 
Interrupt overhead is typically a direct function of the amount of work 
which must be done. Recovery of disk interrupts will usually only occur 
as a secondary result of tuning, which causes less thrashing to occur, 
and hence less disk I/O. 

Page Faults 
This is an indication of the overhead required to run the paging system. 
It can involve overhead required for a number of spin-locks in page 
control, and can be an indication of saturation of queuing resources. 
Since the queue resource is a tunable value, a site should easily be able 
to set a free queue size which eliminates allocation lock situations. 

The mechanisms of page control and the file system are metered through the 
file system meters (fsm) command. Of primary interest are the meter values 
pertaining to segment activation and deactivation, the use of the AST pool and AST 
locking, and system paging activity and its origins. 

Segment Activation and Deactivation 
Segment activation and deactivation is one of the mechanisms found within 
storage management It makes segment contents accessible to processes, or 
removes them from memory. It is the way in which the AST pool resource is 
managed. Several important meter values are available: 

Activations 
Activations make a segment known to Multics processes and put the 
segment and page table information into an ASTE. Segments can be 
activated due to segment faults, due to an explicit command to make 
them known, for the backup system, or to make directories known and 
their contents available. The various meter values are: segfault, 
makeknown, backup, and directories. 

Deact i vat ions 
Deactivations are used to remove entries from the AST, either explicitly 
to make them unknown or to recover their space to activate another 
segment Recovering space is done by demand deactivation of the 
existing entry and does not constitute the majority of most deactivations 
for a system with sufficient AST pool sizes. 

J-25 AM81-04 



AST Locking and Searching 
AST management is done through the four pools of the AST. The fsm 
command provides quite a bit of information to determine what is occurring: 

AST Lock Information 
The AST is a system wide database which is protected by a locking 
mechanism to ensure serialization of updates. The AST locked value 
indicates the average locked time for the lock and the percentage of 
time the lock is locked. The AST lock waiting average and percent 
value indicate the time lost by processors waiting for the lock. The 
amount of time consumed by processors waiting for the lock may be 
tunable by increasing the number of AST entries. See the discussion of 
lap times under "AST Pool Usage Information" next. 

AST Pool Usage Information 
The AST pool information for the 4K, 16K, 64K, and 256K AST pools 
indicates the usage of the AST entries. The average step size and lap 
time of the pool can indicate whether the AST pool size is appropriate 
f or the typical demand. If lap times drop below 200 seconds or so, an 
unreasonably large number of demand deactivations are required within 
the pool to find entries for new segment activations. 

Pagi ng Activity 

Needc 

Paging activity is the final section of the fsm output. It provides a number of 
interesting values: 

This value indicates the total number of page frames required in the metering 
period and indicates the average time between page faults. It is an indication 
of total system paging activity. Various page fault types are shown in a 
number of meter values as percentages of total paging activity. Since each 
meter value is considered separately, and categories may overlap, it is possible 
for the percentages to add up to a sum greater than 100%. 

Ring 0 faults 
This is the percentage of paging activity for page faults taken while the 
ring of execution is ring O. 

PDIR faults 
This is the percentage of paging activity for page faults taken on 
segments with the per yrocess flag set. It is an indication of the 
amount of total activity which is for temporary work space pages. 

Level 2 faults 
This is the percentage of page faults taken on segments one directory 
level below the root. These include segments within project directories, 
and also se51Uents in many system directories such as ">scl". The latter 
would typically be system tables and installed software in directories 
such as ">sss", ">unb", etc .. 

DI R faults 
This is an indication of the page faulting required to bring directory 
pages into memory. 

J-26 AM81-04 



New Pages 
This is an indication of the page faulting activity due to the creation of 
new pages. It indicates activity which generates new information rather 
than that which brings existing information from disk. Page creations 
do not require data I/O and are done by zeroing the contents of a 
page frame. 

Zero Pages 
This indicates page writing activity in which a page which has been 
modified and is supposed to be written to disk is determined to contain 
zero words only. This is a special case and typically means that the 
ASTE page table word for the page has flags set to indicate a page of 
zeros, and the page is simply discarded rather than written. 

Lap Time 
Lap time is the time it takes the page frame management algorithm to 
scan all the pages in the core map, and is an indication of the amount 
of time a page will remain in memory if unref erenced and unmodified. 
This can be directly compared to the typical user think time or 
intra-eligibility time period to determine if a process will thrash. 
Thrashing occurs if a process loses it pages bef ore it requires them 
again. A process which is not eligible more frequently than the lap 
time of memory stands a very good chance of losing its pages in just 
this manner. This will cause extra disk I/O and produce poor response 
times. 

Page Frame Meters 
A number of meters exist which indicate the activity and characteristics of the 
page frame management algorithm. These are displayed by the fsm command 
and indicate quite a bit about the characteristics of the contents of main 
memory and their utilization. 

Steps 

Skip 

This is the number of steps taken around the core map during the 
metering interval. It indicates the number of core map entries which 
have been looked at to handle the number of page faults previously 
given by the needc value. 

During the search of the core map to find available page frames, the 
management algorithm skips a number of frames. The skip value 
indicates how many frames are skipped, and what percentage of all 
steps are ski ps. This is an indication of the number of pages actually 
replaced within the lap time of the core map, and hence, the page 
I/O rate. 

A page frame is skipped if it is wired in memory and therefore 
cannot be discarded; if it has been used in the last lap time; if it has 
been modified and must be written to disk before it can be discarded; 
if it is pinned in memory for performance reasons. 

J-27 AM81-04 



The disk_meters Command 

Almost all interesting values in disk management can be determined from the 
output of the disk_meters command. There are a number of different sections to the 
meter output: 

System Information 
System information indicates the utilization of the free queue, including the 
average number of requests queued when a request is being queued, the number 
of queue allocations made, the peak depth of requests, and the maximum size 
of the free queue, as well as the number of requests currently queued system 
wide. 

The system section of the output includes the stagnation time value and the 
number of times the ALM DIM received a complex interrupt which required it 
to call the PL/l DIM for interrupt processing. It also indicates the last time 
at which the maximum depth value for queue meters was reset. 

The last part of the system section indicates the system loading table values, 
including the I/O type, the maximum load point for system optimization, the 
current depth of requests for that I/O type, and what counter is being used 
for counting the current depth. Finally, it indicates the current system 
optimizing fraction for that I/O type. For example: 

FREE Queue:Ave 12.1,Alloc 27055222,Max Depth 986/2720,Cur Depth 10 
Stagnate time 5.000 seconds, 646793 PL/l interrupt services. 

Maximum Depth Meters reset at: 01/05/85 0440.1 mst Sat 
PageRd Max Load 6, Depth 3 (PageRd), Fract on 0.5000 
PageWt Max Load 2040, Depth 2 (PageWt), Fract on 0.9990 
VtocRd Max Load 6, Depth 0 (VtocRd), Fract on 1.0000 
VtocWt Max Load 12, Depth 0 (VtocWt), Fract on 1.0000 
BootRd Max Load 6, Depth 0 (BootRd), Fract on 0.0000 
BootWt Max Load 12, Depth 0 (BootWt), Fract on 0.0000 

Subsystem Information 
The subsystem information lists the error counts of EDAC errors, fatal errors, 
and general errors. EDAC errors are data errors recoverable through error 
correction logic; fatal errors are data errors which could not be recovered; 
general errors are things like seek retries. 

The error information is followed by lock information, detailing the number of 
lockings made, the number of times a locking attempt was made when the lock 
was already locked, and the percentage of all calls which had to wait. This is 
followed by the average time of the delay and the percentage of realtime 
caused by waiting. For allocation locks, the lock count is the number of 
allocations, and lock waits are due to exhaustion of free queue resources. For 
example: 

Subsystem dska: 8 Errors 39 EDAC Errors 
Locks Waits %Ca 11 s Average %CPU 

Ca 11 Lock: 15175281 586739 3.8664% 0·539 0.08345% 
Run Lock: 36022 1764 4.8970% 0.366 0.00017% 
Int Lock: 15175037 625676 4.1231% 0.498 0.08216% 
Alloc Lock: 15171250 0 0.0000% 0.000 0.00000% 

J-28 AM81-04 



Detai led Drive Information 
If detailed drive information is requested, a full breakdown of I/O activity per 
I/O type per drive is provided. This indicates the seek count, average seek 
length, queue wait average, channel utilization, and channel wait average. In 
addition, the current queue depth and the optimizing factor (multiplier) for 
the I/O type is given. Queue information may also be listed. It is of the 
same form as the free queue information in the system information block. The 
final area of the output is drive busy information, indicating total channel use, 
the number of I/Os done by combing, and the average drive I/O rate. For 
example: 

dSka_16: PV-rpv of LV-root 
#Seeks AveSeek Queue-wait Channel-wait Queued Multiplier 

PageRd 1006892 143.48 80.0 11 .5% 43.2 ° 99.8 
PageWt 322489 144.87 199·7 3.7% 43.3 ° 50000.0 
VtocRd 88877 171.56 47. 1 0.9% 36.7 ° 23.8 
VtocWt 53563 107.83 50.6 0.4% 27·5 ° 54.5 
TEST ° UNLOADs, 213 TESTs 
dska_16 Queue:Ave 2.5,Al1oc 650556,Max Depth 200/2720,Cur Depth ° 

Channels 16.41% busy, 4253 Combs, 3.9 IO/second. 

Simple Drive Information 
If detailed drive information is not selected. disk_meters prints a different and 
simplified output These outputs are not really equivalent in information 
content. The simplified output indicates read and write counts, average seek 
length for the drive. average time between (ATB) reads and writes in 
milliseconds, and average time between I/O for the drive. For 500 and 501 
style drives, with a primary and secondary physical volume per spindle, the 
primary physical volume has the total drive ATB figure. For example: 

Drive PV 

dska_01 old_dumps 
dska_02 root_b 
dska 03 root_c 
dska=04 root_a 
dska 05 p 11 
dska=06 rpv 
dski_01 pub_a 
dSki_02 list_l 
dski 03 pub_b 
dski=041ist_2 

Reads 

5523 
58148 
47534 
57184 
11017 
57417 
88237 
75341 
88182 
72532 

Writes 

8272 
16258 
9226 

14423 
10308 
20301 
19220 
8686 

19436 
8131 

J-29 

Ave 
Seek 

8 
89 
49 
64 
1 1 
84 
89 
36 
93 
38 

ATB 
Reads 

32770 
3112 
3807 
3165 

16428 
3152 
2051 
2402 
2052 
2495 

ATB 
Writes 

21880 
11132 
19617 
12548 
17558 
8915 
9416 

20837 
9312 

22259 

ATB 
I/O 

13120 
2432 
3188 
2527 
8487 
2328 
945 

961 

AM81-D4 



Channel Information 
The channel information block follows the drive information for each 
subsystem, if selected. It indicates for each channel the number of connects 
issued, the number of I/Os which were completed while masked, the number 
of interrupts which did not have a terminate status, the number of times an 
interrupt occurred for completed I/O, the number of times a termination 
interrupt was received for a channel which was no longer active, and the 
current status of the channel. Status information indicates if the channel is 
currently broken, assigned to 101, or inoperative. For example: 

dskc Channel 

Connects 
A28 3150500 
828 1000147 
A29 251978 
829 25634 
A30 972 
830 1 
A31 27 

Information 
Term by Interrupt 

RUN w/o term 
1046 1024 
530 505 
142 139 
22 22 

2 2 

Disk Tuning - - the tune_disk Command 

get_io 
w/o term 

6 
3 
1 

Term w/o 
Act i ve 

7 
3 
1 

Status 

The Multics disk DIM provides a tuning too] with which you can adjust most 
of the operating parameters of the optimization algorithm. This is the tune_disk 
command. It is described in the Multics Administration, Maintenance, and 
Operations Commands manual, Order No. GB64. 

IS THERE A PROBLEM? 

The metering values described earlier provide a view into the workings of the 
various mechanisms which make up the Multics system. They provide most of the 
information needed to determine if a problem really does exist, and they can guide 
you to the problem areas. 

The most important value to look at when you're trying to determine if there's 
a problem is the virtual CPU time being delivered to the users. If this is high, 
nothing can be gained by tuning. For example, if a system is running approximately 
an average load, and is receiving a virtual CPU time of 90%, then there is probably 
very little to be gained by tuning, since so little is lost to overheads of any kind. 

J-30 AM81-04 



It is important at this point to do a little windage calculation to determine if 
apparent poor response or delivery is simply due to high user loading. If the system 
is providing a high virtual CPU time delivery. but there are a large num ber of users. 
then the formula: 

Per User = Processors * Virtual CPU Time / Users 

indicates roughly what fraction of a processor each user is getting. If it is not 
enough, the only solutions are to add more processors or run fewer users in paranel. 
One way of doing the latter is to defer the absentee load to a less used time period . 
. It is advantageous to distribute system loading as evenly across the 24 hour day as 
possible. given the constraints of major interactive delivery during the working day 
time period. 

What is the Source of the Problem? 

If there is insufficient virtual CPU time delivery to users. the next step in 
handling a problem is to determine what the idle and overhead percentages are. If a 
system is running with very low i die times. then tuning will be aimed at the 
reduction of overhead costs of operation. 

1. High Idle Time 
High idle times are the mark of a system which doesn't have enough work to 
do, or is incapable of getting the work into memory efficiently. 

2. High Overheads 
High overheads are indicative of high system loading situations, and typically 
indicate too much work for the available memory space, rather than poorly 
tuned hardware. (Allocation lock overheads can be an exception, and can be 
handled by tuning.) 

3. Paging Activity 
Paging activity essentially occurs when required data isn't currently available in 
real memory. There are a myriad of causes for this problem. The obvious 
cause is insufficient real memory for the current parallel system load. 

What are the Characteristics of the Problem? 

1. High Idle 

Zero Idle 
If the system has a high zero idle it means that no work is schedulable. If 
this is due to no work available at all, then you don't have a problem. If this 
is due to absentees being held back for extra shifts, then a policy decision may 
be needed to schedule low priority absentee jobs to fill a determined void. 
This solution can be verified by checking absentee queue loadings against system 
activity. If there is a lot of possible pending work while nothing is being 
done. then you may wish to initiate selected processes. 

J-31 AM81-04 



NMP Idle 
If the system has a high NMP idle. many of the problems situations seen with 
a high zero idle may be present. and may be corrected in the same ways. 
However. the paybacks will typically be less since there is already work being 
done, leaving less idle for recovery. 

Note that. on a one processor system. NMP idle will be seen instead of MP 
idle. It can be indicative of higher paging rates, and should be handled like 
MP idle. 

Loading Idle 
If loading idle is significant, then the only solutions will probably be 
introducing additional real memory or increasing process time slices. For 
loading idle to be high. the system must be thrashing a great deal and MP or 
NMP idle are probably considerably higher than loading idle. 

MP Idle 
The major cause of MP idle is an insufficient multiprogramming level for the 
current I/O delays. You may attempt to correct this by increasing 
multiprogramming, if it really is too low. or decreasing I/O delays. 

MP idle can occur at low loading levels because there are not enough processes 
to cover normal page fault delays. However. you can usually recognize such a 
situation by good system responsiveness. low paging and interrupt overheads, 
and low disk I/O rates. 

2. High Overheads 

Paging Overheads 
Paging overheads are typically in the range of 10% or less. Approaching or 
exceeding 10%. even on a busy system. probably indicates a resource bottleneck 
in disk queuing. This can be directly seen as allocation locks in output from 
the disk_meters command. which will also indicate the processor use in the 
allocation locks. The simple corrective action is to configure sufficient free 
queue elements via the config deck. 

I nterrupt Overheads 
Interrupt overheads are a direct indication of actual work being done. To deal 
with them. you have to remove extraneous work by tuning system use or by 
adding more memory to the system. However, there is one reason for excessive 
interrupt overhead which is amenable to disk tuning and can be relatively easily 
identified. It is described next. 

3. Paging Activity 
Each user on a system requires a certain number of pages of his programs and 
N<:!t<:! tn hb ;,., ft"I~ft"ln1'\T tn urn1'V ~ff;,..;~,.,thr Th~c~ n!J~~c <:!1'~ t~1'ft"I~N th~ 
.... """"'" "'"" ..,..., ......... ... .................... "'.lJ '"'" ...... ...,,, A ..................... ...., ... .I. ...... J. ... ...... ....,.,..... Y ..... 01WW' .......... "'........................ "' ...... .... 

work i ng set. The more users in parallel on a system, the higher the system 
working set. If the system doesn't have enough available memory for the 
working sets of the number of users processing. the system will start to thrash. 
Thrashing is a positive feedback and only tends to get worse unless the cause 
is alleviated. 

J-32 AM81-()4 



What is the Scale of the Problem? 

Typically, you cantt remove all the overheads or even all the idle present in 
any system, and as the parallel loading of the system increases, there will be 
unavoidable overheads and costs associated with supporting it If you are not 
experiencing allocation lockst or highly skewed drive or PDIR loadings, then you would 
be very unlikely to get back even 25% of any overheads by tuning the hardware. 

If that scale of recovery is not sufficient, then you are probably faced with 
necessary hardware expansion, or a review of the routines in use. 

Hardware solution scaling can be determined through a number of methods. 
When dealing with situations of high system paging with commensurate poor response 
and low memory lap times, you can do well by trading 1MW for two 501 disk drives. 
There will be a very noticable system pickup. 

Solution scaling is highly tied to existing load levels and user desires. It is 
difficult. without performing a study of existing loading and user characteristics. to 
off er much advice in the way of constructive hardware scaling. 

What Methods can be Used to Resolve the Problem? 

1. High Idle Time 
If your site is experiencing high idle times, you should attempt to shift work 
into periods of high 'fero and NMP idle, and shift work out of periods of 
heavy MP idle (as long as the idle is related to overwork). This primarily 
means shifting absentees, which were intended to be deferred anyway. 

MP idle for high load situations will typically be accompanied by a reasonably 
high paging and interrupt overhead. You may well see noticable allocation locks 
occurring, indicating disk bottlenecking. This bottlenecking can be determined 
by using the disk_meters command to look at queue lengths and averages, and 
drive and channel busy indications. They may well indicate too tight an 
allocation of process directory drives. This will show up as a small number of 
PDIR drives which all have very high I/O rates and appreciable queues. This 
can be resolved by spreading PDIRs through a wider range of drives and/or 
putting PDIR drives on otherwise low activity volumes. 

If there are too few PDIR drives, you will probably find a very noticable 
performance knee at certain load levels. This can be directly attributed to I/O 
saturation of the PDIR drives. 

If PDIR drives are not being run at more than 60% busy or so, you may find 
that the burst characteristics of page replacement are causing allocation locks. 
The resolution of this is very easy: simply configure more free queue elements 
via the parm con fig card's dskq parameter. The wide range. 5 to 200 elements 
per drive, permits sufficient headroom for the free queue. Remember that one 
queue element is roughly equivalent to 1024 words of memory waiting for I/O. 
Configuring more queue elements than page frames doesn't buy anything. At 
most, you probably don't need to do more than about three pages for each 
queue element, which is probably still high. 

J-33 AM81-()4 



A system which has high I/O rates evenly spread across drives may not be 
able to recover MP idle simply because of the inherent high I/O delays 
associated with doing a lot of I/O. You will recover the overhead and I/O 
loading only by adding more real memory or lowering the parallel system load. 

2. High Overheads 

I nterrupt Overheads 
If the interrupt_meters command indicates that the individual interrupt time for 
a disk channel is high, probably two milliseconds or more, or disk channels on 
one subsystem seem to be out of line with disk channels on other subsystems, 
you may be seeing queuing overheads. Such overheads occur if a subsystem is 
receiving a very high load and building appreciable queues. In such a case, the 
throughput of the requests is slaved to the physical throughput of the drives, 
but the interrupt overhead is a direct relationship to the amount of work 

. required to determine the next I/O to service. A very large queue can require 
considerably more work and will be directly seen in the interrupt_meters 
output. You can probably correlate the drive use with the disk_queue meter 
and the disk_meters command, pinning it down to certain drives and then 
determining the origin of their loads. Probably it will be due to process 
directories. The obvious solution is to spread the PDIR activity across a wider 
range of queue servicers. 

If you determine that drive activity is due to specific drive-related I/O uses, 
rather than PDIR activity, it may be necessary to tune the optimization 
response of the drive to better handle the characteristic loads presented. If 
average queue lengths are causing interrupt overheads, you may wish to drop 
the load point of the loaded I/O types to start to give optimization priorities 
at lower queue loadings, and hence lower average interrupt overheads. If there 
will always be a nearly even mix of read and write on the drive, you may 
wish to drop the response point multiplier for writes to provide a more 
competitive position and a lower slope to the optimization line. This removes 
sudden optimization knee effects seen with low queue load points and large 
optimizing line ~lopes. 

This process will be a combination of trial and error, but will probably be 
isolated to only one or two drives and thus will not produce cross-drive 
effects. 

3. Paging Activity 
The Multics disk DIM tends to reduce thrashing to some extent through the 
alteration of queue priorities and request service ordering. As queues build, the 
longer queue I/O types gain servicing priority and increase the service times of 
the blocking 1/0s. This in turn tends to throttle back the processes causing 
the thrashing so they are more in line with the modified pages they are 
producing. Since these processes are probably drive-localized to certain data 
sets, the rest of the system continues with good service and the affected 
processes slow down. 

The major ways of alleviating thrashing are to increase the real memory on the 
system and/or to decrease the number of processes with a parallel demand of 
memory resources. One obvious method of doing the latter is to defer absentee 
processing to an offpeak period. Certainly if a system is saturated during the 
prime shift and has zero idle periods in other shifts, absentee deferral is the 
obvious choice. However, policy and politiCS will tend to govern this solution. 

J-34 AM81-()4 



If a site determines that none of these methods are applicable, then a review 
of software systems is required to determine systems which need optimization. Look 
first at the use of common libraries. Ensure that they are compiled optimized. Then 
look at the code within the systems themselves. 

WHAT DO THE NUMBERS MEAN? 

It can be a very interesting exercise to attempt to determine the ongln of 
various meter values and what causes them to be the way they are. The following 
paragraphs deal with some of the more obvious meter values for the disk meters. 

Average Free Queue Depth 
The average depth of any queue is determined by summing the current depth 
at the time a request is being queued. The long term average will then be an 
indication of typical loading. However, since this is not a time-averaged value, 
it cannot be used to determine the average I/O load. That can only be 
determined by the I/O rate values produced by the disk_meters command. or 
by interrupt counts. 

If a queue has a high average depth but a low average activity, as determined 
by channel busy values, it is indicative of deep burst activity. but infrequent 
requests. It probably means that the drive still retains acceptable I/O 
throughput headroom and is only lightly utilized. It probably is indicative of a 
large memory size for typical system loading. in which the burst activity occurs 
be.cause the light system loading lets a lot of modified pages accumulate prior 
to some action which causes their flushing. It is essentially normal. Even if 
allocation locks are sponsored by this activity. they will probably be a very 
small portion of available CPU time. 

Maximum Queue Depth 
This is an indication of peak I/O queue loadings for a drive. If it is very 
high, but the average queue length is quite low, or the number of l/Ds is 
quite low. then this queue loading is probably the artifact of a memory flush 
operation to ensure pages have been flushed to disk. It will be a normal 
occurance. 

However. if the peak load is high and the average load is high for a 
reasonably busy drive. it indicates a situation where the drive is regularly being 
used and being supplied with a very deep burst of write activity. This is 
probably indicative of insufficient PDIR spread or a specific application which 
generates these characteristics. like a Trouble Report database application. It is 
possible to tune a drive for these I/O characteristics. It·s probably best to 
start by decreasing the load point for the drive's page write I/O type to 
sponsor optimization at lower queue loads. This will have the effect of 
decreased responsiveness to files allocated to that drive, but the rest of the 
system will pick up some of the interrupt overhead released by this action and 
will not suffer cross-drive effects. 

J-35 AM81-()4 



Queue Wait Time 
Queue wait times are indicative of the time that requests tend to sit waiting 
for service. Since they are averages. the deviation from the standard can get 
quite high for a very small sample of requests. particularly if you notice high 
maximum queue depths for the drive. Such cases will probably be the cause of 
any combings which you see. A small percentage of the requests will cause 
combing. sponsored by memory flushes in the idler off-shift time periods. 
Such flushes can sponsor quite deep queue bursts to individual drives. But this 
is a normal system action and occurs only at a time when it makes little 
diff erence. 

You should see that the lowest priority requests. page writes. tend to have the 
higher queue waits. If this is not true. and there are a lot of requests 
processed. then you probably got the priorities backwards. 

Channel Wait Times 
Channel wait times are indicative of the amount of time it takes for a request 
to be passed to the MPC. for the MPC to complete the request. and for the 
DIM to find this out You might notice high channel times for VTOC writes 
on MSU0501 disk drives. This is due to the necessary read and rewrite needed 
to do 64-word sector I/O on these drives. MSU0501 drives are formatted in 
512 word sectors. rather than 64 word sectors. to put more information on the 
formatted drive. 

The MPC handling the 501 drive has two 512 word internal buffers which it 
utilizes for simulating 64 word I/O. The MPC recognizes the presence of a 
write which will not completely fill a 512 word sector. The MPC primes one. 
or both, of its buffers by reading information from the driv.e. It then moves 
data from main memory into the buffer. and re-writes the buffer on the next 
rotation of the spindle. During this operation the MPC is completely tied up 
and does not handle any other processing. including seek overlap. . Thus. it is 
not unusual to see channel wait times for sector re-writes as high as 50 
milliseconds. 

These rewrites will also stop any other I/O through that MPC until they are 
complete. Given normal VTae write rates. this is not really a problem. 
However. AST thrashing from too small an AST pool could increase the degree 
of this problem. 

Since primary and secondary volumes on a spindle share the same head 
actuator, the disk DIM utilizes only a single queue (the primary queue) and 
mixes requests for both volumes. These are optimized together to prevent head 
thrashing. Thus. support of primary and secondary volumes should produce no 
suprises. 

Alloc counts 
The allocation count for a queue is indicative of the number of times a 
request is seen when a drive is already busy. Thus. a comparison of the 
allocation count for a drive queue with the I/O counts for the drive gives a 
good indication of the number of requests which are processed when the drive 
is essentially idle. Most sites will be suprised to see just how idle most of 
their drives really are. Only I/Os which are counted in the allocation count 
are also counted for max_depth and average queue length. since no other 
requests even get queued and immediately acted upon. 

J-36 AM81-04 



Channel Busy 
The channel busy numbers for each I/O type, and for the drive as a whole, 
give an idea of how much a drive is being used and how. Remember that the 
sum of all busy drives on a subsystem cannot usually be more than about 80% 
times the number of channels. So even if a drive is not running in the high 
90% values, it may have no more to give. at least on that subsystem. 

You should also remember that there is a physical load and overhead within 
the MPC for active drives. A site can overload their MPCs and not get full 
delivery from the drives. It may be time to bring in additional MPCs and 
split up subsystems for better physical throughput. One value to look for is 
the number of transfer synchronization losses reported in the MPC statistics. If 
you have a number of transfers which lost synchronization and had to be 
retried. then you are probably overloading either MPC or 10M and hardware 
expansion may be necessary. (Look to adding memory. not drives; this avoids 
the I/O in the first place.) 

Combing 
The combing number indicates the number of disk I/Os completed using the 
disk combing algorithm on a drive. It is indicative of an extensive queue 
buildup or abnormal delays. like a drive offline. A really busy drive can 
probably do a continuous delivery in the range of 25 to 30 I/Os per second, 
meaning that a five second stagnation equates to at least 125 disk I/Os done 
continuously without letup. with one of them not getting serviced for the five 
seconds. So if you see a high number of disk combs and reasonable 
max_depth. you must be having a large number of deep bursts. rather than 
infrequent enormous bursts. This may be indicative of a large memory system 
running nearly idle. and only seeing page flushes, or it may be a danger sign 
that a drive is being overloaded. 

write limit 
Though it has not been mentioned as a tuning factor for disks, page flushing 
has been mentioned as a factor in the generation of deep bursts of disk 
activity. The write_limit tuning parameter serves to control the size of memory 
flushes. 

Conclusions 

A site can adjust tuning parameters on a very detailed level. but these 
parameters are fairly general with a broad and smooth tuning response. System default 
values are based on the number of free queue elements available and rule-of-thumb 
priority defaults. 

A site can adjust the size of the queue buffering resource and remove potential 
bottleneck areas to recover system overheads. but general system default queue 
allocation on the basis of the number of drives will probably be sufficiently generous 
to remove problems. Sites with a small number of very active drives will probably 
wish to set larger queues for their configurations. 

J-37 AM81-04 



The Multics disk DIM is aimed mainly at the busy site. which finds itself low 
on resources and suffers from disk overloading problems during peak periods. The 
disk DIM extends system delivery and responsiveness. without penalizing low and 
medium disk load sites. 

J-38 AM81-04 



.U command (DPU) B-6, B-7 

<F 1> command (DPU) B-5, B-7, 
B-8 

<F3> command (DPU) B-6, B-8 

? command (DPU) B-7 

A 

aborting BCE commands 6-8 

abs command (initial izer) 
maxu 10-51, H-9 
start 10-51, H-9 

accept command (initializer) 
4-5 

accepting a channel 4-5 

access class 15-12, 15-14, 
15-27 

access control segment 
see ACS 

account segment 9-7 

accounting commands 
online help 8-7 

INDEX 

i-I 

acronyms 1-2 

ACS 13-3, 15-19 

action code 13-14 

activated segment 14-42, J-3, 
J-25 

active device 3-2 

active page 14-42 

active process table 
see APT 

active process table entry 
see APTE 

active segment table 
see AST 

active segment table entry 
see ASTE 

adddev command (initializer) 
11-1 

add i ng a channe 1 11-1 

adding a console 11-1 



adding a CPU 11-1,12-3 

adding a disk drive 11-1 

adding a FNP 11-1 

adding a link adapter 11-1 

adding a MPC 11-1 

adding a page 11-1 

adding a SCU 11-1 

adding a tape drive 11-1 

qdding an 10M 11-1 

adding and IMU 11-2 

adding memory 11-1 

add_lv command (initial izer) 
10-26, 10-51, 10-54, 12-2, 
12-5, H-9, H-12, H-14, 
H-15, H-17 

add_vol command (initializer) 
7-28, 10-20, 10-26, 10-35, 
10-41, 10-51, 12-1, 12-2, 
12-3, 12-5, H-8 

add_volume_registration 
command (Mul tics) 12-3 

admin command (Multics) 8-5, 
10~34, H=14, H-17 

admin log 13-5, 13-6, 13-8 
message 13-8 

admin mode 8-5, 10-19, 10-28, 
10-29, 10-34, 11-1, 13-11, 
U_1'. U-1i 
" .L,,+, " .. , 

issuing quit signal 8-5 

administrative ring 
see ring 1 

admin mode exit command 
(Mu 1 t T cs) 8-6, 10-34, 
H-15, H-17 

adopting a segment 10-53, 
12-6, H-9, H-14 

adopt_seg command (Multics) 
12-17 

AIM 9-4, 9-6, 9-15, 10-26, 
13-10, 15-1, 15-2, 15-3, 
15-12, 15-27, 15-28 

algorithms 
clock J-4 
LRU J-4 

allocation lock J-10, J-14, 
J-31, J-32, J-33, J-35 

ALT partition 10-36 

alternate bootload console 
4- 3, 10-55 

analyze_multics command 
(Multics) 6-7,10-2, 
10-11, 10-12 

usefu1 requests 10-11 

answer i ng serv ice 1- 3, 1-6, 
2-3, 4-4, 8-1, 8-4, 8-8, 
8-16, 10-15, 10-28, 10-29, 
13-6, 13-8, 13-11, 14-27, 
14-42 

log 13-6, 13-7, 13-8, 13-25 
message 13-7 

message 13-2, 13-5 

APT 10-9, 14-8, 14-9, 14-42, 
14-46, 14-51, 14-52 

admin.ec 8-9, 8-14, 8-17, 9-6, APTE 14-8, 14-9,' 14-43 
9-17, 15-32 

sample 15-54 

i-2 



AST 14-5, 14-34, 14-43, 14-52, 
J-3, J-12 

hash table 14-43 
locking J-25 
pool 14-6, 14-34, 14-35, 

14-43, J-3, J-25, J-26, 
J-36 

lap time J-3, J-26 
searching J-25 
thrashing J-3, J-36 
trickle 14-43 

ASTE 14-5, 14-6, 14-34, 14-35, 
14-36, 14-42, 14-43, 
14-45, 14-48, 14-52, J-3, 
J-4, J-12, J-25 

ATB 14-33, 14-34, 14-43, J-28 

attend command (x) 8-17 

attended mode 8-17 
setting 8-17 

auth command (x) G-l 

authenticating a volume G-l 

auto command (x) 8-17 

auto.ec 8-17,10-19,12-1, 
E-l, E-2 

automatic mode 8-17, 10-14, 
10-15 

setting 8-17 

automatic recovery 10-14, E-1 

auto start delay command (I/O 
- daemo;) 15-40, 15-53 

average time between 
see ATB 

B 

backup 1-4, 2-3, 9-1 
cross retrieval 9-4, 9-20 
functions 9-1 
hierarchy 9-1, 9-15 

dump map 9-4, 9-17, 9-18, 
9-19 

volume 9-1, 9-4 

backup daemon message 13-2, 
13-3 

backup tape log 10-40, 10-45, 
10-47, 10-51, H-3, H-8, 
H-12, H-16 

BeE 1-4, 6-1, 9-15, 10-7, 
12-1, 12-2, 13-22, E-l 

aborting commands 6-8 
booting 6-2, 8-1, 10-45, 

10-46, 10-48, 10-49, 
12-1, H-4, H-6, H-7, 
H-12, H-17 

cold 6-2 
error recove~y 6-4 

bootload command utilities 
6-1 

breakpoints 6-4, 10-4 
collection one 10-8 

initial ization 6-1 
collection zero 10-8 

routines 6-1 
command language 6-7 
command programs 6=1 
config file 7-1 
configuration 6-1 
device accessibility 6-5 
early dumps 6-6, 10-8 
editing exec_com 6-7 
functions 6-1 
1 isting 7-2 
1 isting config file 7-2 
message 13-1, 13-2 
partition 6-2, 7-20, 10-46, 

H-4 
rebooting 10-35 

i-3 



BCE (cant) 
returning 6-6, 8-18, 10-1, 

10-2, 10-4, 10-5, 10-8, 
10-14, 10-15, 13-14 

special requests 6-3 
states 6-4, 6-7 
toehold 6-1, 6-5, 10-6, 

10-8, 10-11, 10-14, E-1 
flags E-1 
machine conditions 10-12, 

10-13 
machine state 10-12 

BCE 24000 command (DPU) 10-8, 
B-8 

BCE 24002 command (DPU) 10-8, 
10-16, 10-56, B-8 

BCE 24004 command (DPU) 10-8 

bce command (BCE) 6-4 

bce command (initializer) 
10-5, 10-34 

BCE commands 6-8 
bce 6-4 
boot 6-4, 8-2, 8-3, 10-14, 

10-18, 10-19, 10-20, 
10-21, 10-22, 10-24, 
10-25, 10-28, 10-29, 
10-52, 10-54, 12-1, 
14-43, H-15, H-17 

config 7-2, 10-46, 10-48, 
H-4, H-6 

continue 6-6 
copy_disk 10-37, 10-52 
display_disk_label 10-20 
dump 10-8, 10-9, 10-14 
esd 10-14, 10-18, 10-19, 

10-35 
get_flagbox E-1 
go 6-6, 10-7, 10-34 
lock_mca 4-4 
online help 8-7 
probe 10-2, 10-11, 10-12 
qedx 6-7 
reinitialize 6-4, 10-19 

i-4 

BCE commands (cant) 
restore 9-15, 10-20, 10-27, 

10-38, 10-42, 10-44, 
12-5, 12-6, 12-7, H-1, 
H-3, H-5, H-7, H-9, 
H-10, H-11, H-12, H-13, 
H-14, H-15, H-16 

save 9-11, 10-38, 10-40, 
10-42, 10-44, 12-4, 
12-7, H-1, H-3, H-4, 
H-5, H-6, H-7, H-10, 
H-11, H-12, H-13, H-14, 
H-15, H-16, H-17 

set_flagbox 10-14, E-1 
test_disk 10-18, 10-36, 

10-37, 10-44, 10-46, 
10-49, H-2, H-4, H-7, 
H-11, H-13, H-16 

unlock_mca 4-4 

BCE loader control commands 
cold 6-2, 10-44, H-2, H-11, 

H-13 

BCE restore/hierarchy 
reloading 10-38, 10-39, 
H-l, H-9 

recovery of all volumes 
H-10 

recovery of non-root volume 
H-15 

recovery of RLV H-12 

BCE restore/volume reloading 
10-38, H-l 

recovery of non-root volume 
H-6 

recovery of non-RPV root 
volume H-4 

recovery of nonRPV root 
volume H-4 

recovery of RPV H-i 

BCE/Multics system tape 8-1~ 
12-1 

binary data 13-15 

binary data classes 13-15 



binary data classes (cont) 
access_audit 13-25 
config_deck 13-22 
f n p _po 1 1 13 - 2 2 
hwfault 13-16 
ibm3270_mde 13-27 
io_status 13-16 
mdc_del_uidpath 13-20 
mmdam 13-21 
mos 13-19 
mpc_poll 13-22 
segdamage 13-20 
voldamage 13-19 
vtoce 13-23 

blocked process 14-21, 14-43, 
J-10, J-12 

boot 
cold 
warm 

1-4, 14-43 
1-4 
1-4 

boot command (BCE) 6-4, 8-2, 
8-3, 10-14, 10-18, 10-19, 
10-20, 10-21, 10-22, 
10-24, 10-25, 10-28, 
10-29, 10-52, 10-54, 12-1, 
14-43, H-15, H-17 

BOOT command (DPU) B-4, B-7 

booting BCE 6-2, 8-1, JO-45, 
10-46, 10-48, 10-49, 12-1, 
H-4, H-6, H-7, H-12, H-17 

cold 6-2 
error recovery 6-4 

booting DPU 
alternate B-2 
manual B-1, B-4 

booting !MU 3-33 

booting Multics 8-1, 10-45, 
10-46, 10-47, 10-48, 
10-49, 10-54, 12-1, H-4, 
H-5, H-6, H-7, H-12, H-15, 
H-17 

cold 10-44 

bootload 
see boot 

bootload command environment 
see BCE 

bootload command util ities 
(BCE) 6-1 

bootload console 4-1, 6-1, 
8-2, 8-8, 8-18, 13-1, 
13-8, 13-14, 14-42, 14-44 

adding 11-1 
alternate 4-3, 10-55 
and MCA 4-3 
deleting 11-1 
effect on system performance 

4-1 
fai lure 10-55, 13-2 
modes 4-1 
operation 4-1 
password masking 7-25 
prompts 4-2 
rerouting activity 4-2 
states 7-23 
timer 4-1 
unjamming 4-2 

bootload CPU 10-6 

bootload directory salvager 
10-22, 10-28 

bootload failure 10-19 

bootload read J-16 

bootload write J-16 

bootloading 
see booting 

bootload_fs command (Multics) 
6-7 

bound fault 14-43 

branch 14-43 

i-5 



breakpo i nts (BCE) 6-4, 10-4 

breakpoi nts (test mode) 15-55, 

cdr$test_cdr command (Multics) 
15-57 

15-59 COT 8-9, 15-7 

bringing system up 10-54 

bulk I/O 15-1 

CA 14-44 

cache 14-44 

calendar clock 
see clock 

C 

cancel command (I/O daemon) 
15-52 

cancel daemon requests command 
(Mu 1 tics) 15-9, 15-57 

card punch 15-18, 15-19, 
15-35, 15-51 

card reader 15-18, 15-19, 
15-35, 15-46, 15-51 

multifunction device 15-43 

cards 
punching 
reading 

15-1 
15-1 

CBLD command (DPU) B-4, B-7 
options 

ABORT B-4 
ADD B-4 
BUiLD B-4 
CHANGE B-4 
DONE B-4 
LIST B-4 

CCU 15-18 

central processing unit 
see CPU 

CF command (OPU) B-5, B-7, 
B-8 

CFG command (OPU) B-5, B-8 

change_tuning_parameters 
command (Multics) 7-29, 
14-25, 14-26 

channel assignment table 1-3 

channel definition table 
see COT 

channel table J-10 

channels J-30, J-36 
accepting 4-5 

i-6 

add i ng 11-1 
communications 8-8, 8-16, 

15-4, 15-6, 15-7, 15-11, 
15-56, 0-1 

names 0-1 
deleting 10-32, 11-1 
10M C-7 
logical 7-5, 7-17, 7-23, 

14-47, J-7 
physical 7-17, 7-23, 14-49, 

J-6 
terminal 4-4, 8-10, 8-12, 

8-16 

channel_comm_meters command 
(iiultics) 14-i5 

check-stop crash 10-5 

check_cpu_speed command 
(Multics) 14-36 

chnl config card A-I 



chnl config record 7-5 

clean_pool command (I/O 
daemon) 15-46 

clearing a store unit 11-2 

clock 2-1, 3-7, 3-36, 10-19, 
14-28 

algorithm J-4 
bad setting 10-53 
errors 10-19 
setting 3-36, 10-54 

errors 7-8 

clok config card 3-36, 3-37, 
10-19, A-I 

clok config record 7-6 

CLST command (DPU) B-4, B-7 

CME 14-5, 14-44, J- 3, J-4, 
J-27 

cold boot 1-4 

cold command (BCE loader 
contro 1) 6-2 

collecting garbage 10-39, 
10-53, 12-5, H-9, H-14, 
H-17 

collection one 
initialization 

collection zero 
routines 6-1 

collections 8-1 

10-8 
6-1 

10-8 

combined card unit 
see CCU 

command programs (BCE) 6-1 

common per i phera 1 . interface 
see CPI 

communicating with reader 
driver 15-46 

communicating with the 
coordinator 15-33 

communicating with the MeA 
4-3 

communications channel 8-8, 
8-16, 15-4, 15-6, 15-7, 
15-11, 15-56, 0-1 

names 0-1 

complete dumping 9-3 

complete hierarchy dumping 
9-19 

complete mode (dumping) 9-2 

complete volume dumping 9-11, 
10-54 

complete volume dump command 
(Multics) -9-8, 9-11 

compressing a logical volume 
12=4 

i-7 

CONF partition 6-4, 7-1, 7-20, 
10-39, 10-46, 10-52, H-4, 
H-12, H-14 

config cards 11-1, 13-22, 
14-12, A-I 

. chnl A-I 
clok 3-36, 3-37, 10-19, A-I 
cpu 11-1, A-I 
dbmj A-2 
intk A-2 
iom A-2 
ipc A-2 
mem 11-1, A-2 
mpc A-3 
parm 10-55, 10-56, 11-2, 

14-29, 14-36, 14-51, 
A-3, J-9, J-33 



config 
part 

cards (cont) 
10-35, 10-41, 10-44, 

10-47, 10-48, 12-1, 
12-3, 12-4, A-3, H-2, 
H-5, H-6, H-ll, H-13 

prph 
root 

3-35, 15-7, A-3, C-7 
9-15, 10-20, 10-35, 

10-41, 10-44, 10-47, 
10-48, 12-1, 12-3, 12-4, 
A-4, H-2, H-5, H-6, 
H-11, H-13 

salv 
schd 
sst 
tbls 
tcd 

udsk 

10-27, A-4 
14-26, 14-32, A-4 

14-6, 14-43, A-4 
10-23, A-4 

14-8, 14-9, 14-42, 
14-46, 14-52, A-5 
9-15, A-5 

config command (BCE) 7-2, 
10-46, 10-48, H-4, H-6 

config command (MCA) 3-33, 
C-6 

config deck 6-4, 6-5, 9-15, 
10-42, 10-46, 10-48, 
10-55, 11-1, 12-1, 12-3, 
13-3, 13-22, 14-5, 14-6, 
14-12, 14-13, 14-14, 15-7, 
A-I, C-7, H-6, J-9, J-32 

config file 7-1 
BCE 7=1 
listing 7-2 
sample 7-2 

CONFIG partition 10-45 

config records 7-2 
chnl 7-5 
clok 7-6 
cpu 7-9 
dbmj 7=11 
intk 7-12 
iom 7-12 
ipc 7-13 
labeled format 7-1 
mem 7-14 

i-8 

config records (cont) 
mpc 7-15 
parm 7-17 
part 7-19 
prph 7-21 
root 7-27 
salv 7-28 
schd 7-29 
sst 7-31 
standard format 7-1 
tbls 7-32 
tcd 7-33 
udsk 7-34 

configuration 2-1, 3-1, 3-2, 
8-1, 14-4, 14-12, 14-19, 
14-41, J-37 

BCE 6-1 
CPU 2-1, 3-18 
FNP 2-1 
guidel ines 14-36 
IMU 3-33, C-6 
10M 2-1 
large 14-40 
largest 14-40 
medium 14-40 
memory 2-1 
minimum 14-40 
SCU 2-1 
sma 11 14-40 

configuration file 
see config file 

configuration records 
see config records 

connect fault 10-6 

connected process 14-44 

connected segment 14-44 

console 
see bootload console 

consolidated dumping 9-3 



consol idated hierarchy dumping 
9-18 

consol idated mode (dumping) 
9-2 

consolidated volume dumping 
9-11 

consolidated volume dump 
command-(Multi~s) 9-8, 
9-11 

contents names segment 9-8, 
9-13 

contents segment 9-7, 9-i3 

continue command (BCE) 6-6 

control process 10-3 

control terminal 
see slave terminal 

controller adapter 
see CA 

converting a disk drive 11-3 

coo r din a to r 8 - 14 , 15 - 1, 15 - 2 , 
15-3, 15-5, 15-11, 15-15, 
15-18, 15-25, 15-26, 
15-27, 15-29, 15-32, 
15-40, 15-47, 15-49, 
15-51, 15-55 

communicating with i5-33 
interrupting 15-33 
logging in 15-33 
logging out 15-34 
sending quit signal to 

15-33 
starting up 8-14, 15-33 

copy_d i sk command (BCE) 10-37, 
10-52 

copy_dump command (Multics) 
10-8, 10-9, 10-17 

core map 14-5, 14-44, J-3, 
J-4, J-27 

core map entry 
see CME 

counter mapping J-22 

CP I 14-44 

CPU 2-1, 3-11, 7-9, 10-4, 
10-5, 10-8 

adding 11-1,12-3 
addressing rules 

DPS 8 3-14 
Level 68 3-14 

bootload 10-6 
configuration 2-1, 3-18 

rules 3-11 
deleting 11-1 
DPS 8 14-37 

configuration panel 3-25, 
10-5, C-3 

switches 3-25, 10-5, C-3 
in i t i ali zing 11-2 
Level 68 14-37 

configuration panel 3-17, 
10-56, C-3 

display panel 10-5 
maintenance panel 3-22, 

10-5, 10-8, 10-16, 
C-4 

swi tches 3-17, 3-22, 10-5, 
10-8, 10-16, 10-56, 
C-3, C-4 

stopping 10-8 

cpu config card 11-1, A-I 

cpu config record 7-9 

CPU time 14 - 19 , 14 - 26 , 14 - 32 , 
14-38, J-35 

appl ied 14-19, 14-23 
idle 14-19 
overhead 14-19 

crank 13-6, 13-7, 13-10, 
13-11, 14-18 

i-9 



crash process 10-3, 10-4 
locating 10-11 

crashes 1-4 
check-stop 10-5 
execute f au 1 t 10-5, 10-7, 

. 10-13 
execute switches 10-8 
hphcs_Scall_bce 10-5, 10-13 
inval id fault 10-4, 10-7, 

10-13 
ring zero dera i 1 10-4, 10-7, 

10-13 
syserr 10-3, 10-13 
unexpected fault 10-5, 10-7, 

10-13 

crashing 10-1, 10-35, 10-54, 
10-55, 13-11, 13-14 

daemons 1-4, 8-12, 8-15 
dumping 9-2 
hierarchy backup 9-16, 9-17 
I/O 1-4, 2-3, 15-1, 15-13, 

15-29, 15-32 
logging in 8-9, 8-12, 8-15, 

10-54 
logging out 8-12, 8-15 
sending quit signal to 8-12, 

8-15 
starting up 
volume backup 

8-14 
9-4 

daemon_project_start_up.ec 
9-6 

Data Management system log 
13-6, 13-9 

message 13-9 

create command (Multics) 9-10 daylight savings time 7-8 

create daemon queues command 
(Multics) 15-3, 15-26, 
15-27, 15-56 

create_pnt command (Multics) 
15-57 

cross retrieval 9-4, 9-20 

ctl_term command (I/O daemon) 
15-41, 15-43, 15-44 

current dump working segment 
9-8 

cv_prt_rqti command (Multics) 
15-3, 15-28 

daemon drivers 
see daemons 

D 

daemon processes 
see daemons 

dbmj config card A-2 

dbmj config record 7-11 

deactivated segment J-3 

deadline mode 14-44 

deadlock 14-44 

defer command (I/O daemon) 
15-52 

define command (initializer) 
4-5, 8-10, 13-8 

deldev command (initializer) 
11-1 

delete command (Multics) 
15-26 

delete_volume_log command 
(Mul tics) 12-4 

delete_volume_registration 
command (Mu 1 tics) 12-4 

i-l0 



deleting a channel 10-32, 
11-1 

deleting a console 11-1 

deleting a CPU 11-1 

deleting a disk drive 11-1 

deleting a FNP 11-1 

deleting a link adapter 11-1 

deleting a MPC 10-32, 11-1 

deleting a page 11-1 

deleting a SCU 11-1 

deleting a tape dr ive 11-1 

deleting an 10M 10-32, 11-1 

deleting memory 11-1 

delivering input 8-10 

del_lv command (initializer) 
10-20, 10-26, 10-49, 12-2, 
12-5, H-7 

del_vol command (initializer) 
12-1, 12-2 

demand directory salvager 
10-22, 10-28 

descriptor segment 
see DSEG 

descriptor segment base 
register 

see DSBR 

determining nature of a disk 
fai lure 10-31 

device 
active 3-2 

dev ice (cont) 
passive 3-2 

device class 15-14, 15-16, 
15-34 

device interface module 
see DIM 

DIA 14-44 

DIA board 3-35, C-7 

diagnostics processor unit 
see DPU 

dial command (Multics) 4-5, 
15-36 

dialed initializer terminal 
4-5 

DIM 14-45 
disk 14-1, J-l, J-8, J-10, 

J-14, J-16, J-19, J-22, 
J-23, J-28, J-30, J-34, 
J-36, J-37 

I/O 15-17, 15-18, 15-29 

direct interface adapter 
see DIA 

director i es 
I/O daemon 15-1 
system 2-4 

directory salvager 1-5, 10-3, 
10-21, 10-25, 10-26, 
10-28, 10-29 

bootload 10-22, 10-28 
demand 10-22, 10-28 
functions 10-21, 10-26 
messages 10-29 
online 10-22, 10-27 

discarding an old log 13-11 

disconnecting a channel 4-5 

i-II 



disk combing J-16, J-22, J-28, 
J-36, J-37 

disk control 14-10 

disk DIM 14-1, J-1, J-8, J-10, 
J-14, J-16, J-19, J-22, 
J-23, J-28, J-30, J-34, 
J-36, J-37 

disk drives 
adding 11-1 
converting 11-3 
de 1 et i ng 11-1 
failure 10-31 
reconfiguration plan 10-40 
rereadying 10-32 

disk error message 13-1, 13-3 

disk management 
call side J-10 
interrupt side J-10 

disk packs 
formatting 12-3 
moving 12-1 
swapping 12-2 

disk segment 14-5, 14-10, 
14-13, 14-14, J-8 

disk subsystem 14-51, J-7 

disk volumes 
failure 10-36, H-1 

degree 10-36 
extent 10-36 
part i al 10-36 
permanent 10-36 
preparing for 10-39 
tota 1 10-36 
transient 10-36 

layout information 10-39, 
10-45, 10-47, 10-50 

moving to another drive 
10-32 

preformatted 10-41 

disk volumes (cont) 
recovery 

partial failure 10-37 
permanent failure 10-37 
total failure 10-38 
transient fai lure 10-37 

disks 
failure 10-30 

determining nature 10-31 
recognizing 10-30 

messages 10-30 
running J-10 

disk_meters command (Multics) 
14-33, J-28, J-33, J-34, 
J-35 

alloc counts J-36 
average free queue depth 

J-35 
channel busy J-36 
channel info J-30 
channel wait times J-36 
combing J-37 
detailed drive info J-28 
maximum queue depth J-35 
queue wait time J-36 
simple drive info J-28 
subsystem info J-28 
system info J-28 

disk_queue command (Multics) 
14-34 

dispatching 14-45 

display_cpu_error command 
(Multics) 13-10, 13-16 

display_disk_label command 
(BeE) 10-20 

display_disk_label command 
(Multics) 10-23, 10-39 

display_log_segment command 
(Multics) 13-6, 13-12 

i-12 



display_pvte command (Multics) 
10-23 

display volume log command 
(M~ 1 tics) = 9-9, 10-51 

distributed processing system 
8 

see DPS 8 

DMP 3-1, B-1, B-8 
displaying configuration 

panel B-9 
displaying SCU history 

registers B-9 
getting connected B-8 
modes 

VIP B-8 
operating B-8 

dprint_$test command (Multics) 
15-57 

DPS 8 
vs Level 68 3-1 

DPU 3-1, B-1 
boot i ng (a 1 ternate) B-2 
boot i ng (manua 1) 8-1, 8-4 
displaying configuration 

panel B-5 
displaying SCU history 

registers 8-6 
installing site 

configuration 8-3 
modes 

TM 8-5 
VIP 8-5 

operating 8-1 
powering on 8-1 
typing conventions 8-3 
use of RETURN key 8-3 

DPU commands 
.U 8-6, 8-7 
<F1> B-5, 8-7, 8-8 
<F3> B-6, 8-8 
? 8-7 
8CE 24000 10-8, B-8 

DPU commands (cont) 
8CE 24002 10-8, 10-16, 

10-56, 8-8 
8CE 24004 10-8 
800T 8-4, B-7 
C8LD 8-4, 8-7 

ABORT 8-4 
ADD 8-4 
8UILD B-4 
CHANGE 8-4 
DONE B-4 
LIST 8-4 

CF 8-5, 8-7, 8-8 
CFG B-5, 8-8 
CLST 8-4, 8-7 
OFL 8-5, 8-6, B-7 
QUIT 8-5, 8-6, 8-7 
ST cu B-7 
SUSP 8-7 
TM 8-5 
VIP 8-5, 8-6, B-7 

dpunch command (Multics) 
15-10 

drive optimization table J-15, 
J-16 

driver 15-1, 15-2, 15-3, 15-6, 
15-7, 15-11, 15-23, 15-27, 
15-29, 15-32, 15-35, 
15-55, 15-61, 15-62 

i-13 

command levels 15-37 
normal 15-38, 15-49, 

15-51 
quit 15-38 
request 15-38, 15=51 

generating in test mode 
15-55 

initialization with slave 
term ina 1 15-36 

mailbox 15-61 
making it ask for command 

15-43 
printer 15-47 

logging in 15-35 
operation 15-45 
processing requests 15-45 
starting up 15-35 



dr i ver (cont) 
punch 

logging in 15-35 
operation 15-46 
starting up 15-35 

reader 
communicating with 15-46 
errors 15-47 
logging in 15-35 
operation 15-46 
starting up 15-35 

remote 15-51 
logging in 15-35 
operation 15-51 
sending quit signal to 

15-52 
starting up 15-35 

request levels 
request 15-45 

sending quit signal to 
15-38, 15-43 

spool 
logging in 15-47 
messages 15-51 
operation 15-47 
starting up 15-47 

terminating 15-35 

driver modules 15-6, 15-11, 
15-17 

printer_driver_ 15-17 
punch_driver_ 15-18 
reader_driver_ 15-18 
remote_driver_ 15-19, 15-29 
spool_driver_ 15-19 

driver to driver message 
facility 15-61 

setting up 15-61 

drop command (initial izer) 
4-5 

DSBR 14-45 

DSEG 14-45 

dual porting J-6 

dump command (BCE) 
10-14 

10-8, 10-9, 

dump control file 
adding volumes 

9-8 
9-11 

DUMP partition 7-20, 10-8, 
10-15, 10-17, 10-39, 
10-41, 10-45, 10-47, 
10-48, 10-52, H-4, H-6, 
H-12, H-14 

layout 10-9 

dump. eel 0 - 1 7, 10- 19 , E - 2 

dumping (backup) 1-4, 9-1, 
9-2 

complete 9-3 
consolidated 9-3 
daemons 9-2 
hierarchy 9-16, 9-17 
incremental 9-2 
modes 9-2 
tapes 9-2 
volume 9-5, 9-6, 9-12, 

10-54 

dumping (crash) 10-1, 10-2, 
10-8, 10-14, 10-15 

fai lure 10-17 

dynamic maintenance panel 
see DMP 

dynamic reconfiguration 11-1, 
14-12, 14-13 

E 

eariy dump facii ity 6-6, 10-8 

ec admin command (Multics) 
8-6 

EDAC 14-45· 

editing a BCE exec_com 6-7 

i-14 



ed_installation_parms command 
(Multics) 14-25, 15-8 

ed_mgt command (Multics) 
14-25, 14-27 

EHS 14-45 

eli g i b 1 e proce~s 14-21, 14-22, 
14-23, 14-26, 14-31, 
14-45, 14-47, J-24 

eligible queue J-12 

emergency listener level 
10-20 

emergency shutdown 
see ESD 

enter_lss command (Multics) 
9-6, 9-17 

enter_output_request command 
(Multics) 15-10, 15-29, 
15-57 

enter retrieval request 
~ommand (M~ltics) 9-13 

entry 14-45 

entry hold switch 
see EHS 

error detection and correction 
see EDAC 

error message documentation 
13-5, 13-15 

ESD 8-18, 10-1, 10-3, 10-8, 
10-14, 10-15, 10-16, 
10-18, 10-22, 10-26, 
10-28, 10-29, 10-35, 
13-11 

failure 10-17, 10-22 
forcing 10-56 
from switches 10-16 

ESD (cont) 
when to perform 10-16 

esd command (BeE) 10-14, 
10-18, 10-19, 10-35 

examining crashed system 
10-11 

examining toehold machine 
conditions 

execute switches crash 
10-12 

non-execute switches crash 
10-13 

examining toehold machine 
state 10-12 

exec commands 
see x commands 

execute fault crash 10-5, 
10-7, 10-13 

execute switches crash 10-8 
examining toehold machine 

conditions 10-12 

executing fault 10-1, 10-5, 
10-8, 10-16 

execut i ng sw itches 10-1, 10-8, 
10-16, 10-56 

exec_corns 6-7, 12-1, 12-2, 
15-1, E-l 

acct_start_up 15-1, 1-2 
admin 8-9, 8-14, 8-17, 9-6, 

9-17, 15-32 
auto 8-17, 10-19, 12-1, E-1, 

E-2 
daemon_project_start_up 9-6 
dump 10-17, 10-19, E-2 
fix_quota_used 10-28 
go E-1, E-3 
iod_admin 15-53, 15-56, 

15-61, 15-62 
master 13-11 

i-15 



exec_corns (cont) 
prta_admin 15-53 
rtb 10-16, 10-19, E-3 
sysdaemon_project_start_up 

9-17 
system_start_up 1-6, 4-5, 

8-9, 8-10, 8-16, 10-15, 
10-18, 10-19, 10-23, 
13-8, 15-32, F-1 

test mode 15-60 

expanding a logical volume 
12-3 

extended access 15-26 

F 

failures 
boot load 10-19 
boot load console 10-55, 

13-2 
disk 10-30 
disk drive 10-31 
disk volume 10-36, H-l 
dump i ng (crash) 10-17 
ESO 10-17, 10-22 
10M 10-31 
log 13-11 
MPC 10-31, 10-36 
reconfiguration 11-3 
recovery 10-16 
system 10-1 
system shutdown 8-18 

FILE partition 6-2, 7-20, 
10-39, 10-45, 10-46, 
10-52, H-4, H-12, H-14 

file system meters command 
-(Mu1ti~s) 14-6, 14-34, 

J-25, J-26, J-27 

flags in toehold (BCE) E-l 

FNP 2-3, 3-34, 0-1 
add i ng 11-1 
configuration 2-1, 
configuration panel 

C-7 
deleting 11-1 
OIA panel 3-35 
loading 10-21 
operation 3-35 
states 7-23 
switches 3-35, C-7 

3-35 
3-35, 

fnp_data_summary command 
(Mu1tics) 13-10 

forcing an ESO 10-56 

format of syserr log message 
13-13 

formatting a disk pack 12-3 

format disk pack command 
(Mu 1 t i ~s) 12 -17 

frame 14-45 

free queue J-8, J-9, J-I0, 
J-19, J-28, J-32, J-33 

lock J-8 

front-end network processor 
see FNP 

fsmap 14-45 

G 

garbage collection 10-39, 

H-17 

generate_mst command (Mu1tics) 
6-7 

generating a driver in test 
mode 15-55 

i-16 



getting help with commands 
8-5, 8-7 

get_dir_quota command 
(Mu 1 tics) 10-27 

get_flagbox command (BCE) E-l 

get_flagbox command (Multics) 
E-l 

get_quota command (Multics) 
10-27 

glossary 
general terms 
metering terms 

1-3 
14-42 

go command (BCE) 6-6, 10-7, 
10-34 

go command (I/O daemon) 15-29, 
15-43, 15-44, 15-49 

go command (initial izer) 8-16, 
10-50, H-7 

go.ec E-l, E-3 

H 

hang i ng 10-1, 10-5, 10-15, 
10-16 

hardcore 
see supervisor 

hardcore partition 7-28, 
10-35, 12-3 

hardcore supervisor 
see supervisor 

hardware 1-3, 2-1 
errors 10-5, 10-21 
maintaining 1-1 
manuals 1-3 

HASP 15-4, 15-23, 15-32 

hasp_workstation_ I/O module 
15-23 

HDA 10-33, 10-41 

head assembly 
see HDA 

head crash 10-35, 10-36 

HEALS 1-1 
functions 1-1 
log 1-1, 1-3 
r e po r t s 1 - 2 , I - 3 , I - 5 , I - 6 , 

1-8, 1-12 

heals_report command (Multics) 
1-1, 1-2, 1-13 

help command (I/O daemon) 
15-35, 15-40, 15-41, 
15-46 

help command (initializer) 
8-5, 8-8 

help command (Multics) 8-7 

hierarchy backup 9-1, 9-15 
daemons 9-16, 9-17 
dump map 9-4, 9-17, 9-18, 

9-19 
functions 9-16 
LSS 9-16 

hierarchy dumping 9-16, 9-17 
commands 9-17 
complete 9-19 
consol idated 9-18 
incremental 9-18 
modes 9-18 
tapes 9-18 

hierarchy reloading 9-16, 
9-20 

i-17 



hierarchy retrieval 9-16, 
9-19 

hierarchy salvager 10-39, 
10-52, 10-54 

high-speed line adapter 
see HSLA 

hold command (I/O daemon) 
15-43 

Honeywell Error Analysis and 
Logging System 

see HEALS 

hphcs_$call_bce crash 10-5, 
10-13 

hphcs_$shutdown command 
(Mu 1 tics) 10-20 

hp_delete_vtoce command 
(Multics) 10-31, 12-5 

HSLA 0-1 

I/O daemon 1-4, 2-3, 15-1, 
15-13, 15-29, 15-32 

AIM maintenance 15-27 
directories 15-1 
operation 15-32 
queues 15-26, 15-27 

creating 15-26 
maintaining 15-26 
test mode 15-56 

search rules 15-32 
tables 15-2, 15-3, 15-4, 

15-8, 15-9, 15-14, 
15-15, 15-17, 15-18, 
15-19, 15-23, 15-26, 
15-27, 15-35, 15-47, 
15-55 

creating 15-25 
maintaining 15-25 

I/O daemon (cont) 
tables 

source language 15-4, 
15-25 

AIM features 15-12 
major and minor devices 

15-11 
source file 15-10, 

15-12, 15-16 
statements 15-5 
substatements for 

default request 
types 15-16 

substatements for device 
classes 15-14 

substatements for 
devices 15-6 

substatements for lines 
15-6 

substatements for minor 
devices 15-11 

substatements for remote 
drivers 15-22 

substatements for 
request types 15-8 

syntax 15-4 
test mode 15-56 

I/O daemon commands 15-34, 
15-39, 15-41, 15-46, 
15-51 

i-18 

auto_start_delay 15-40, 
15-53 

cance i 15-52 
clean_pool 15-46 
ctl_term 15-41, 15-43, 

15-44 
defer 15-52 
go 15-29, 15-43, 15-44, 

15-49 
help 15-35, 15-40, 15-41, 

15-46 
hold 15-43 
k iii 15-52 
list 15-34 
logout 15-34, 15-46, 15-52 
onl ine help 8-1 
paper_info 15-49 
print 15-45 



I/O daemon commands (cont) 
print_devices 15-34 
prt_control 15-38, 15-51 
pun_control 15-51 
read_cards 15-46 
re in it 15-46 ~ 15-52 
release 15-52 
restart 15-52 
restart_status 15-35 
sample_form 15-43, 15-44 
save 15-53 
slave_term 15-41 
specific driver 15-41 
standard driver 15-39 
start 15-34, 15-35, 15-43, 

15-44, 15-46, 15-53 
station 15-19 
step 15-43 
term 15-35 
wait_status 15-16, 15-34 
x 15-53, 15-56, 15-61, 

15-62 

I/O daemon coordinator 
see coordinator 

I/O daemon message 13-2, 13-4 

I/O modules 
for remote stations 15-23 
hasp_workstation_ 15-23 
remote_input_ 15-6 
remote_printer_ 15-6, 15-22 
remote_punch_ 15-22 
remote_reader_ 15-22 
remote_teleprinter_ 15-6, 

15-22 
tty_printer_ 15-24 

I/O source 8-10 

I/O switch 8-10 

iboot commands (MCA) C-6 

idle J-I0 

idle process 14-8, 14-46, 
J-24 

i d 1 e time 14 - 8 , 14 - 1 7, 14 - 35 , 
14-46, J-24, J-31, J-33 

loading J-24, J-32 
multiprogramming J-24, J-32, 

J-33 
non-multiprogramming J-24, 

J-32, J-33 
work class J-24 
zero J-24, J-31, J-33, J-34 

.. 
IMU 2-3, 3-33, 4-3, 7-12, C-6, 

J-5 
adding 11-2 
booting 3-33 
configuration 3-33, C-6 
configuration files 3-33, 

C-6 
initializing 11-2 
IPC 4-3, 7-13, J-5 
MCA 3-33, 4-3, C-6 
MOl 4-3 

inc command (x) 8-14 

incremental dumping 9-2 

incremental hierarchy dumping 
9-18 

incremental mode (dumping) 
9-2 

incremental volume dumping 
9-10 

incremental_volume_dump 
command (Multics) 9-8, 
9-11 

info search list 8-8 

info segment 8-7 

information multiplexer unit 
see IMU 

inhibit_pv command (Multics) 
12-4, 12-17 

i-19 



init command (MCA) C-6 

initial izer 1-5, 1-6, 4-4, 
4-5, 8-2, 8-5, 8-12, 10-1, 
10-5, 10-9, 10-11, 10-16, 
10-30, 10-34, 11-1, 12-2, 
13-2, 13-8, 14-8, 14-42 

functions 8-2 

initial izer command response 
13-1, 13-2, 13-5, 13-8 

initial izer commands 2-3, 8-2 
abs 

maxu 10-51, H-9 
start 10-51, H-9 

accept 4-5 
adddev 11-1 
add_lv 10-26, 10-51, 10-54, 

12-2, 12-5, H-9, H-12, 
H-14, H-15, H-17 

add vol 7-28, 10-20, 10-26, 
10-35, 10-41, 10-51, 
12-1, 12-2, 12-3, 12-5, 
H-8 

bee 10-5, 10-34 
define 4-5, 8-10, 13-8 
deldev 11-1 
del_lv 10-20, 10-26, 10-49, 

12-2, 12-5, H-7 
del_vol 12-1, 12-2 
drop 4-5 
functions 8-2 
go 8-16, 10-50, H-7 
help 8-5, 8-8 
init_vol 6-3, 7-20, 7-28, 

9-15, 10-45, 10-47, 
10-50, 12-3 

1 ist_disks 11-3, 12-1, 12-2 
load_mpx 10-21 
1 og i n 8 - 12, 10 - 5 1, H-7 
logout 8-12 
maxu 10-51, H-9 
muities 8-16, lU-~U, H-7 
online help 8-7 
qui t 8-12, 15-33 
rebuild_disk 7-20, 7-28 
reconf i gure 10-32, 11-1 
reply 8-6 

initializer commands (cont) 
reroute 4-3, 8-9 
ring 1 8-3 
ring 4 8-4 
route 4-5, 8-10, 13-8 
salvage_dirs 10-18, 10-22, 

10-28, 10-29, H-14 
salvage_vol 10-25, 10-26, 

10-54 
set_drive_usage 9-15, 10-45, 

10-47, 10-50, 10-51, 
11-3, H-3, H-5, H-7 

set_pdir_volumes 12-2 
shutdown 8-18, H-15, H-17, 

H-.18 
sign_off 8-4 
sign_on 8-4 
standard 10-50, H-7, H-14, 

H-17 
startup 8-16 
vacate_pdir_volume 12-2 
word 10-50, 10-51, H-7, H-9 

initializer process 
see initializer 

initializer terminal 
8-8, 13-2, 13-8, 
15-1, 15-33 

dialed 4-5 
operation 4-5 

4-4, 8-2, 
14-42, 

initializing a CPU 11-2 

initializing a driver with a 
slave termina1 15-36 

initializing an IMU 11-2 

initializing an 10M 11-2 

init_vol command (initializer) 
6-3, 7-20, 7-28, 9-15, 

10-45, 10-47, 10-50, 12-3 

input/output multiplexer 
see 10M 

i-20 



installation parameters 
operator_inactivity_limit 

8-4 
require_operator_login 8-4 
validate_daemon_command 

8-15 

interactive queue 14-46 

interprocess transmission 
table 

see ITT 

interrupting the coordinator 
15-33 

interrupt_meters command 
(Mu 1 tic s) 14 - 34, J - 34 

intk config card A-2 

intk config record 7-12 

invalid fault crash 10-~, 

10-7, 10-13 

invoking BCE toehold 6-5 

io command (x) 8=14 

iOd_admin.ec 15-53, 15-56, 
15-61, 15-62 

iod command command (Multics) 
15-53 

jed_tables segment 
see I/O daemon 

tables 

iod tables compiler command 
- (MultTcs) 15-3, 15-4, 

15-25, 15-26, 15-56 

10M 2-3, 3-28, 7-12 
adding 11-1 
bootloading 3-31 
configuration 2-1 
de 1 e t i ng 10-32, 11-1 

10M (cont) 
DPS 8 

configuration panel 3-28, 
C-5 

switches 3-28, C-5 
failure 10-31 
i nit i ali :z i ng 1 i - 2 
Level 68 

configuration panel 3-28, 
3-32, C-5 

switches 3-28, 3-32, C-5 
operation 3-32 

10M alarm 
resetting 10-16 

10M channel C-7 

iom config card A-2 

iom config record 7-12 

io error summary command 
- (Mu 1 tic s) 13 - 10 , 13 - 16 

IPC 4-3, 7-13, J-5 

ipc config card A-2 

ipc config record 7-13 

ITT 14-8,14-9,14-46,14-52 
overflow 14-9 

K 

kill command (i/O daemon) 
15-52 

known segment table 
see KST 

KST 14-46 

i-21 



L 

ldrStest_ldr command (Multics) 
15-57 

least recently used 
see LRU 

Level 68 
vs DPS 8 3-1 

limited service subsystem 
see LSS 

link adapter 14-46 
add i ng 11-1 
de 1 et i ng 11-1 

list command (I/O daemon) 
15-34 

listen command (Multics) 
15-58 

listing config file 
in BCE 7-2 
in Multics 7-2 

list_acl command (Multics) 
15-26 

list daemon requests command 
- (Mu 1 t i ~s) 15-9, 15-57 

list disks command 
-(initializer) 11-3,12-1, 

12-2 

list_vols command (Multics) 
14-35 

load adaptive disk 
optimization J-14, J-19, 
J-21, J-22, J-23 

load point J-15, J-16, J-19, 
J-28, J-34, J-35 

load unit 14-37 

loaded process 14-21, 14-46 

loading a FNP 10-21 

loading a process 14-49 

load_mpc command (Multics) 
10-33, 10-34 

load_mpx command (initializer) 
10-21 

locating crash process 10-11 

lock 14-47 

LOCK mode (bootload console) 
4-1 

locking hierarchy 14-47 

lock_mca command (BCE) 4-4 

log message 13-5 

LOG partition 7-20, 10-39, 
10-41, 10-45, 10-48, 
10-52, 13-7, 14-46, H-4, 
H-12, H-14 

log segment 13-5, 13-6, 13-7, 
13-8, 13-10, 13-11 

logging in a daemon 8-9, 8-12, 
8-15; 10-54 

logging in a printer driver 
15-35 

iogging in a punch driver 
15-35 

logging in a reader driver 
15-35 

logging in a remote driver 
15-35 

i-22 



logging in a spool driver 
15-47 

logging in the coordinator 
15-33 

logging out a daemon 8-12, 
8-15 

logging out the coordinator 
15-34 

logical channel 7-5, 7-17, 
7-23, 14-47, J-7 

logical volumes 
compressing 12-4 
expanding 12-3 

login command (initializer) 
8-12, 10-51, H-7 

login message 13-2, 13-4 

logout command (I/O daemon) 
15-34, 15-46, 15-52 

logout command (initializer) 
8-12 

logout message 13-2, 13-4 

logs 8-10 
admin 13-5, 13-6, 13-8 
answering service 13-6, 

13-7, 13-8, 13-25 
backup tape 10-40, 10-45, 

10-47, 10-51, H-3, H-8, 
H-12, H-16 

Data Management system 13-6, 
13-9 

HEALS 1-1, 1-3 
message coordinator 13-6, 

13-8 
syserr 1-5, 10-23, 10-26, 

10-29, 10-55, 10-56, 
13-6, 13-11, 14-46, 1-1, 
1-3 

system 13-5 

looping 10-1, 10-5, 10-15, 
10-16 

LRU 
algorithm J-4 

LSS 
hierarchy backup 9-16 
volume backup 9-5 

M 

magnetic tape processor 
see MTP 

maintaining hardware 1-1 

maintaining the storage system 
12-1 

maintenance channel adapter 
see MeA 

major device 15-11 

make commands command 
- (Mu 1 tics) 9-6, 9-17 

make volume labels command 
-(Multi~s) G-1 

making a driver ask for a 
command 15-43 

manage_volume_pool command 
(Multics) 9-10 

managing a volume G-1 

manual mode 8-17, 10-15 
setting 8-11 

manual recovery 10-15 

mass storage processor 
see MSP 

i-23 



master group table 
see MGT 

master terminal 15-23, 15-35, 
15-36, 15-37, 15-41, 
15-43 

master.ec 13-11 

maxu command (initia1izer) 
10-51, H-9 

MCA 3-33, 4-3, C-6 
and boot1oad console 4-3 
communicating with 4-3 

MCA commands 
config 3-33, C-6 
iboot C-6 
init C-6 

MCACS 8-15 

MCPU 14-37, 14-38 

MOl 4-3 

mem config card 11-1, A-2 

mem config record 7-14 

memory 2-1, 6-1, 7-14 
add i ng 11-1 
configuration 2-1 
deleting 11-1 
main 14-47 

merge_volume_log command 
(Multics) 9-9 

message coordinator 1-5, 4-3, 
4-5, 8-8, 8-9, lU-~~, 
10-56, 14-9, 15-7, 15-43 

databases 8-16 
input delivery 8-10 
1 og 13 - 6 , 13 - 8 

defining as destination of 
virtual console 13-8 

message 13-8 

message coordinator (cont) 
log 

routing messages 13-8 
message 13 - 1, 13 - 2, 13 - 3 
output routing 8-10 

definition 8-10 

message coordinator access 
control segment 

see MCACS 

message coordinator terminal 
see initia1izer terminal 

message facility 
driver to driver 15-61 

message routing table 
see MRT 

message segment 15-26, 15-27 

messages 

i-24 

answering service 13-2, 
13-5 

backup daemon 13-2, 13-3 
BCE 13-1, 13-2 
directory salvager 10-29 
disk 10-30 
disk error 13-1, 13-3 
error documentation 13-5, 

13-15 
I/O daemon 13-2, 13-4 
log 13-5 
login 13-2,13-4 
logout 13-2, 13-4 
message coordinator 13-1, 

13-2, 13-3 
RCP 4-3, 8-9, 13-1, 13-2 

access 13-3 
mount 13-2 

reaay 8-4 
salvager 13-2, 13-3 
scavenger 10-26 
spool driver 15-51 
syserr 4-1, 4-3, 13-1, 13-2, 

14-46 
system 13-1 
volume salvager 10-26 



metering 14-1, 14-2, J-l 
commands 14-1, 14-4, 14-13 

functions 14-15 
standard control arguments 

14-18 
data 

collecting 14-1, 14-15 
reporting 14-1 

databases 14-5 
configuration deck 14-5, 

14-12, 14-13, 14-14 
disk segment 14-5, 14-10, 

14-13, 14-14, J-8 
system segment table 14-5, 

14-13, 14-15, 14-18, 
14-25s 14-35, 14-36, 
14-43, 14-48, 14-51 

traffic control data 14-5, 
14-8, 14-13, 14-15, 
14-18, 14-25, 14-42, 
14-43, 14-52 

design 14-15 
reset mechanism 14-18 
standard control arguments 

14-18 
evaluating output of 

commands 14-33 
glossary 14-42 
guidelines 14-33 

configuration 14-36 
SST size 14-36 
threshold values 14-33 

performance problems 
CPUs 14-4 
detecting 14-3 
diagnosing 14-4 
paging hardware 14-4 
shared system tables 14-4 

processes 14-21 
purposes 14-3 
tools 14-1 
types of time 14-17 

CPU 14-19, 14-26, 14-32, 
14-38 

appl ied 14-19, 14-23 
idle 14-19 
overhead 14-19 

meter i ng (cont) 
types of time 

idie 14-8, 14-17, 14-35, 
14-46, J-24, J-31, 
J-33 

loading J-24, J-32 
multiprogramming J-24, 

J-32, J-33 
non-multiprogramming 

J-24, J-32, J-33 
work class J-24 
zero J-24, J-31, J-33, 

J-34 
processor 14-17 
rea 1 14-17, 14-50 
total CPU 14-17, 14-53 
virtual CPU 14-17, 14-20, 

14-28, 14-35, 14-38, 
14-41, 14-53, J-2, 
J-23, J-30 

metering cell 14-47 

meter_gate command (Multics) 
14-36 

MGT 14-25, 14-27 

migrate 14-47 

million instructions per 
second 

see MIPS 

minor device 15-11, 15-51 

MIPS 14-37 

modes 
admin 8-5, 10-19, 10-28, 

10-29, 10-34, 11-1, 
13-11, H-14; H-17 

attended 8-17 
automatic 8-17, 10-14, 

10-15 
bootload console 4-1 
complete 9-2 
consolidated 9-2 
deadl ine 14-44 

i-25 



modes (cont) 
incremental 9-2 
manual 8-17, 10-15 
test 15-55 
TM (DPU) 8-5 
unattended 8-17, 10-14 
VIP (DMP) 8-8 
V I P (DPU) 8-5 

monitor_sys_log command 
(Multics) 13-7, 13-8, 
13-9, 13-10 

mos_edac_summary command 
(Multics) 13-10,13-15, 
13-19 

move_log_segment command 
(Mu It i cs) 13-11 

moving a disk pack 
while Multics is not running 

12-1 
while Multics is running 

12-1 

moving a disk volume to 
another drive 10-32 

MPC 7-15, 14-47 
adding 11-1 
deleting 10-32, 11-1 
failure 10-31,10-36 
reinitializing firmware 

10-34 
reloading firmware 10-33 

mpc config card A-3 

mpc config record 7-15 

mpc data summary command 
- (Multics) 13-10 

MRT 8-10, 8-16 

MSP 14-48 

MTP 14-48 

MTR 10-41, 10-42, 12-3 

Multics 
boot i ng 8-1, 10-45, 10-46, 

10-47, 10-48, 10-49, 
10-54, 12-1, H-4, H-5, 
H-6, H-7, H-12, H-15, 
H-17 

cold 10-44 
boot load 8-1, 14-6, 14-8, 

14-26 
listing config file 7-2 
operating environment 10-3 
rebooting 10-14, 10-15, 

10-18, 10-20 

multics command (initializer) 
8-16, 10-50, H-7 

Multics commands 
add_volume_registration 

12-3 

i-26 

admin 8-5, 10-34, H-14, 
H-17 

admin_mode_exit 8-6, 10-34, 
H-15, H-17 

adopt_seg 12-17 
analyze_multics 6-7, 10-2, 

10-11, 10-12 
bootload_fs 6-7 
cancel_daemon_requests 15-9, 

15-57 
cdr$test_cdr 15-57 
change_tuninQ_parameters 

7-29, 14-25, 14-26 
channel_comm_meters 14-15 
check_cpu_speed 14-36 
complete_volume_dump 9-8, 

9-11 
consolidated_volume_dump 

9-8, 9-11 
copy_dump 10-8, 10-9, 10-17 
create 9-10 
create_daemon_queues 15-3, 

15-26, 15-27, 15-56 
create_pnt 15-57 
cv_prt_rqt i 15'-3, 15-28 
delete 15-26 
del ete_volume_l og 12-4 



Multics commands (cont) 
delete_volume_registration 

12-4 

Multics commands (cont) 

dial 4-5, 15-36 
disk_meters 14-33, J-28t 

J-33, J-34, J-35 
alloc counts J-36 
average free queue depth 

J-35 
channel busy J-36 
channel info J-30 
channel wait times J-36 
combing J-37 
detailed drive info J-28 
maximum queue depth J-35 
queue wait time J-36 
simple drive info J-28 
subsystem info J-28 
system info J-28 

disk_queue 14-34 
display_cpu_error 13-10, 

13-16 
display_disk_label 10-23, 

10-39 
display_log_segment 13-6, 

13-12 . 
display_pvte 10-23 
display_volume_log 9.-9, 

10-51 
dprint_$test 15-57 
dpunch 15-10 
ec admin 8-6 
ed_installation_parms 14-25, 

15-8 
ed_mgt 14-25, 14-27 
enter_lss 9-6, 9-17 
enter_output_request 15-10, 

15-29, 15-57 
enter_retrieval_request 

9-13 
file_system_meters 14-6, 

14-34, J~25, J=26, J=27 
fnp_data_summary 13-10 
format_disk_pack 12-17 
generate_mst 6-7 
get_dir_quota 10-27 
get_flagbox E-l 
get_quota 10-27· 
heals_report 1-1,1-2,1-13 

i-27 

help 8-7 
hphcs_$shutdown 10-20 
hp_delete_vtoce 10-31, 12-5 
incremental_volume_dump 9-8, 

9-11 
inhibit_pv 12-4, 12-17 
interrupt_meters 14-34, 

J-34 
iod command 15-53 
iod_tables_compiler 15-3, 

15-4, 15-25, 15-26, 
15-56 

io_error_summary 13-10, 
13-16 

ldr$test_ldr 15-57 
listen 15-58 
list_acl 15-26 
list_daemon_requests 15-9, 

15-57 
list_vols 14-35 
load_mpc 10-33, 10-34 
make_commands 9-6, 9-17 
make_volume_labels G-l 
manage_volume_pool 9-10 
merge_vol ume_l og 9-9 
meter_gate 14-36 
monitor_sys_log 13-7, 13-8, 

13-9, 13-10 
mos edac summary 13-10, 

- 13-15:-"'3-19 
move_log_segment 13-11 
mpc_data_summary 13-10 
new_proc 15-57 
online help 8-7 
page_trace 14-28, 14-31 
post_purge_meters 14-35 
print_configuration_deck 

7-2, 14-4, 14-12 
print_heals_message 1-1, 

1-14 
print_jcd_tables 15-26 
print_spooling_tape 15-47 
print_sys_log 10-26, 13-7, 

13-8, 13-9, 13-10, 
13-12, 13-15, 13-16, 
13-19, 13-20, 13-21, 
13-22, 13-23, 13-25, 
13-27 



Multics commands (cont) 
print_tuning_parameters 

14-4, 14-30 
purge_volume_log 9-9 
read_early_dump_tape 6-7, 

10-8 
reconfigure 11-1 
reconfigure$force_unlock 

11-3 
record_to_vtocx 10-31, 

10-37 
recover_vol ume_l og 9-9, 

9-14, 10-45, 10-47, 
10-51, H-3, H-6, H-7 

reload H-12, H-15, H-17 
reload_volume 9-14; 10-38, 

10-45, 10-48, 1.0-49, 
10-51, H-1, H-3, H-6, 
H-7 

response_time 14-3 
retrieve_from_volume 9-13 
salvage_dir 10-22, 10-28, 

10-29 
sc_command 8-5, 8-6 
send_admin_command 8-6, 

13-8, 13-11 
send_daemon_command 8-15 
set_ac 1 15-26 
set_flagbox 10-14, 10-19, 

E-1 
set_log_history_dir 13-11 
set_mc_message_limits 8-9 
set_system_console 4-2, 

7-24, 11-1 
set_system_search_rules 

15-32 
set_volume_log 9-9 
substty 4-2 
summarize_sys_log 13-7, 

13-8, 13-9, 13-10 
sweep_pv 10-53, 12-4, 12-5, 

12-6, 12-17, H-15, H-17 
syserr_log_man_ 

$restart_ccpying 13-11 
system_comm_meters 14-15 
system_performance_graph 

14-4, 14-36 
test_io_daemon 15-32, 15-58, 

15-61 

Multics commands (cont) 
test_io_daemon 

debug request 15-55, 
15-59 

logout request 15-59 
probe request 15-55, 

15-59 
return request 15-59 

total_time_meters 14-3, 
14-8, 14-19, 14-35, 
14-41, J-23, J-25 

traffic_control_meters 14-8, 
14-35, 14-50 

traffic_control_queue 14-9, 
14-35 

truncate_heals_log 1-1, 
1-16 

tune disk J-30 
update_heals_log 1-1, 1-2, 

1-17 
validate_card_input_$test 

15-57 
volume_cross_check 9-10 
volume_dump_switch_off 9-8 
volume_dump_switch_on 9-8 
vtoc_buffer_meters 14-36 
work_class_meters 14-9 

Multics CPU 
see MCPU 

multidrop interface 
see MOl 

mUltiplexing 14-6 

multiprocessing 14-48 

multiprogramming 14-48, J-12, 
J-32 

N 

nearest logical seek J-16, 
J-19, J-22 

nearest seek J-16 

i-28 



new_proc command (Multics) 
15-57 

non-execute switches crash 
examining toehold machine 

conditions 10-13 

notify time-out 14-48 

operating the I/O daemon 
15-32 

operator authentication 8-4 

operator console 
see boot load console 

operator_inactivity_limit 
installation parameter 

a 8-4 

OF L command (DPU) B-5, B-6, 
B-7 

on-cylinder J-7 

online directory salvager 
10-22, 10-27 

operating a DMP B-8 

operating a DPU B-1 

operating a printer driver 
15-45 

operating a punch driver 
15-46 

operating a reader driver 
15-46 

operating a remote driver 
15-51 

operating a spool driver 
15-47 

operating an initializer 
terminal 4-5 

operating environment 10-3 

operating the bootload console 
4-1 

optimization factor J-17, 
J-19, J-28 

orphan segment 10-22, 12-6 

overheads J-25, J-31, J-34 
interrupts J-25, J-32, J-33, 

J-34, J-35 
page faults J-25, J-32, 

J-33 

P 

page 14-48 
adding 11-1 
deleting 11-1 

page control 14-5, 14-6, 
14-13, 14-29, 14-31 

page fault 14-6, 14-17, 14-21, 
14-22, 14-23, 14-35, 
14-45, 14-48, J-4, J-25, 
J-26 

page flush 14-29, J-35, J-37 

page frame 
lap time J-5, J-27 

page read 14-21, 14-28, J-14, 
J-15, J-19 

page table 14-48 
lock 14-48 

i-29 



page table word 
see PTW 

page write J-14, J-15, J-19, 
J-36 

page_trace command (Multics) 
14-28, 14-31 

paging hardware 14-36 

paging mechanism 3-36, C-8 

panels 
6000 SCU 

configuration 3-3, C-l 
maintenance 3-7 

DPS 8 4MW SCU 
configuration 3-10, C-2 

DPS 8 CPU 
configuration 3-25, 10-5, 

C-3 
DPS 810M 

configuration 3-28, C-5 
FNP 

configuration 3-35, C-7 
DIA 3-35 

Level 68 4MW SCU 
configuration 3-10, C-2 
display 3-7 
maintenance 3-11 

Level 68 CPU 
conf i gurat i on 3-17, 10-56, 

C-3 
display 10-5 
maintenance 3-22, 10-5, 

10-8, 10-16, C-4 
Level 68 10M 

configuration 3-28, 3-32, 
C-5 

oaoer info command (!/O 
daemon) 15-49 

parm config card 10-55, 10-56, 
11-2, 14-29, 14-36, 14-51, 
A-3, J-9, J-33 

parm config record 7-17 

part config card 10-35, 10-41, 
10-44, 10-47, 10-48, 12-1, 
12-3, 12-4, A-3, H-2, H-5, 
H-6, H-ll, H-13 

part config record 7-19 

partial disk volume failure 
10-36 

recovery 10-37 

partitions 7-28, 9-15, 10-45, 
10-47, 12-2, H-ll, H-13, 
H-14 

ALT 10-36 
BCE 6-2, 7-20, 10-46, H-4 
CONF 6-4, 7-1, 7-20, 10-39, 

10-46, 10-52, H-4, H-12, 
H-14 

CONFIG 10-45 
DUMP 7-20, 10-8, 10-9, 

10-15, 10-17, 10-39, 
10-41, 10-45, 10-47, 
10-48, 10-52, H-4, H-6, 
H-12, H-14 

FILE 6-2, 7-20, 10-39, 
10-45, 10-46, 10-52, 
H-4, H-12, H-14 

hardcore 7-28, 10-35, 12-3 
LOG 7-20, 10-39, 10-41, 

10-45, 10-48, 10-52, 
13-7, 14-46, H-4, H-12, 
H-14 

recovering 10-52 

passive device 3-2 

PDIR 14-49, J-33 

PDS 14-21, 14-49 

PDT 11:_"'1 
.. oJ I' 15-9, 15-19, 

peripheral system interface 
adapter 

see PSIA 

peripherals 1-3, 2-3, 3-2, 
3-3~ 7-21, 15-1 

i-30 

I 

I 



permanent disk volume failure 
10-36 

recovery 10-37 

physical channel 7-17, 7-23, 
14-49, J-6 

physical volume log segment 
9-9 

physical volumes 
operations 12-17 

pin count J-4 

PMF 15-32 

PNT 15-57 

polled VIP station 15-24 

posting J-4, J-8 

post_purge_meters command 
(Mul tics) 14-35 

powering on DPU B-1 

PROS 10=6, 14=49 

pre-empt 14-49 

preformatting disk volumes 
10-41 

preparing for disk volume 
failure 10-39 

preprinted accountability 
forms 15-43 

print command (I/O daemon) 
15-45 

printers 15-17, 15-19, 15-35, 
15-51 

pr inter _dr i ver _ dr"i ver modu 1 e 
15-17 

printing 15-1 

print configuration deck 
~ommand (Multi~s) 7-2, 
14-4, 14-12 

print devices command (I/O 
daemon) 15-34 

print_heals_message command 
(Mu 1 tic s) I - 1, I - 14 

print iod tables command 
eMu 1 tics) 15-26 

print_spooling_tape command 
(Mu 1 tics) 15-47 

print_sys_log command 
(Mu 1 tic s) 10-2 6 , 1 3 -7 , 
13-8, 13-9, 13-10, 13-12, 
13-15, 13-16, 13-19, 
13-20, 13-21, 13-22, 
13-23, 13-25, 13-27 

print_tuning_parameters 
command (Multics) 14-4, 
14-30 

probe command (BCE) 10-2, 
10-11, 10-12 

useful requests 10-11 

process data segment 
see PDS 

process directory 
see PDIR 

processes 14-49, C-8 

i-31 

bloc k ed 14 - 2 1, 14 - 43, J - 10, 
J-12 

connected 14-44 
contro 1 10-3 
crash 10-3, 10-4 
eligible 14-21, 14-22, 

14-23, 14-26, 14-31, 
14-45, 14-47, J-24 

idle 14-8, 14-46, J-24 



processes (cont) 
loaded 14-21, 14-46 
loading 14-49 
purification J-4, J-5 
ready 14-21, 14-50 
realtime 14-50 
replacement J-4 
running 14-21, 14-50 
selecting 10-11 
waiting 14-21,14-54 

processor 
see CPU 

processor data segment 
see PROS 

processor time 14-17 

project definition table 
see PDT 

project master file 
see PMF 

prompts (bootload console) 
4-2 

prph config card 3-35, 15-7, 
A-3, C-7 

prph config record 7-21 

prta_admin.ec 15-53 

prt control command (I/O 
- daemon) 15-38 ~ 15-51 

PSIA 10-31, 10-32 

PTW 14-5, 14-48, 14-50 

punching cards 15-1 

punch_driver_ driver module 
15-18 

pun_control command (I/O 
daemon) 15-51 

purge_volume_log command 
(Mu 1 tics) 9-9 

purification process J-4, J-5 

purifier pointer J-4 

Q 

qedx command (BCE) 6-7 

QHT J-8 

quantum 14-50 

quentry J-9 

queue J-8 
average queue depth J-8 
count J-8 
depth J-8, J-35 
max_depth J-8 
sum J-8 

queue head/tail control block 
see QHT 

QUIT command (OPU) B-5, B-6, 
B-7 

quit command (initializer) 
8-12, 15-33 

quota recovery 10-27, 10-35 

quota salvage 10-17, 10-27, 
10-28, 10-54 

R 

RCP 

i-32 

message 4-3, 8-9, 13-1, 
13-2 

access 13-3 
mount 13-2 



RCP (cont) 
resource management G-1 

reader_driver_ driver module 
15-18 

reading cards 15-1, 15-46 

ready message 8-4 

ready process 14-21, 14-50 

read cards command (I/O 
-daemon) 15-46 

read_early_dump_tape command 
(Multics) 6-7,10-8 

real time 14-17, 14-50 

realtime process 14-50 

rebooting BCE 10-35 

rebooting Multics 10-14, 
10-15, 10-18, 10-20 

rebuild_disk command 
(initializer) 7-20,7-28 

recognizing a disk failure 
10-30 

reconfiguration 10-7, 10-21, 
10-42 

dynamic 11-1, 14-12, 14-13 
failure 11-3 
lock 11-3 
plan for disk drives 10-40 

reconfigure command 
(initializer) 10-32, 
11-1 

reconfigure command (Multics) 
11-1 

reconfigure$force_unlock 
command (Mul tics) 11-3 

record 14-50 

record to vtocx command 
(Multics) 10-31,10-37 

recovering a partition 10-52 

recovering from bad clock 
setting 10-53 

recovering from bootload 
console failure 10-55 

recovering quota 10-27, 10-35 

recovery (backup) 1-5, 9-1 

recovery (crash) 10-14 
automatic 10-14 
failure 10-16 
manua 1 10-15 

recover_volume_log command 
(Multics) 9-9,9-14, 
10-45, 10-47, 10-51, H-3, 
H-6, H-7 

reinit command (I/O daemon) 
15-46, 15-52 

reinitialize command (BCE) 
6-4, 10-19 

reinitializing disk MPC 
firmware 10-34 

release command (I/O daemon) 
15-52 

reload command (Multics) H-12, 
H-15, H-17 

reload group 9-9, 9-14 

reloading 1-5, 9-1 
hierarchy 9-16, 9-20 
volume 9-5, 9-14 

i-33 



reloading disk MPC firmware 
10-33 

reload volume command 
{Multics) 9-14, 10-38, 
10-45, 10-48, 10-49, 
10-51, H-1, H-3, H-6, H-7 

remote dev~ce 15-19, 15-35 

remote job entry 
see RJE 

remote stations 15-19, 15-29 
Type I 15-19, 15-22, 15-35 
Type I I 15 - 19 , 15 - 2 2, 15 - 23 , 

15-24, 15-35 

remote driver_ driver module 
15-19, 15-29 

remote_input_ I/O module 15-6 

remote_printer_ I/O module 
15-6, 15-22 

remote_punch_ I/O module 
15-22 

remote_reader_ I/O module 
15-22 

remote_teleprinter_ I/O module 
15=6, 15-22 

repair command (x) 10-22, 
10-28, 10-29, 10-35, 
10-52, 10-54 

replacement process J-4 

replacer pointer J-4 

reply command (initializer) 
8-6 

request type 15-3, 15-4, 15-5, 
15-6, 15-8, 15-9, 15-10, 
15-11, 15-14, 15-15, 
15-16, 15-18, 15-19, 
15-20, 15-21, 15-22, 
15-26, 15-27, 15-30, 
15-31, 15-34, 15-47, 
15-56 

request type info segment 
see rqti segment 

require_operator_login 
installation parameter 
8-4 

rereadying a disk drive 10-32 

reroute command (initializer) 
4-3, 8-9 

rerouting console activity 
4-2 

reset mechanism 14-18 

resetting 10M alarm 10-16 

resource control package 
see RCP 

response point J-15, J-16, 
J-19, J-34 

response time 14-3, 14-19, 
14-35, 14-50 

response_time command 
(Multics) 14-3 

restart command (I/O daemon) 
15-52 

restart status command (i/O 
da;mon) 15-35 

i-34 



restore command (BCE) 9-15, 
10-20, 10-27, 10-38, 
10-42, 10-44, 12-5, 12-6, 
12-7, H-1, H-3, H-5, H-7, 
H-9, H-I0, H-l1, H-12, 
H-13, H-14, H-15, H-16 

retrieval 1-5, 9-1, 9-3 
hierarchy 9-16, 9-19 
volume 9-5, 9-13, 9-14 

retrieve from volume command 
(Multics) 9-13 

returning to BCE 6-6, 8-18, 
10-1, 10-2, 10-4, 10-5, 
10-8, 10-14, 10-15, 13-14 

ring 8-3, 10-20, 12-4 
commands 8-3 

onl ine help 8-7 

ring 4 8-4, 10-19 
commands 8-4 

online help 8-5, 8-7 
typing conventions 8-5 

ring zero derail crash 10-4, 
10-7, 10-13 

RJE 
station 15-4, 15-6, 15-29 

RLV 7-27, 8-1, 9-14, 10-18, 
10-20, 10-22, 10-25, 
10-28, 10-38, 10-39, 
10-41, 10-48, 10-52, 12-1, 
12-2, 12-4, 14-34, H-4, 
H-7, H-9, H-12 

recovery via BCE 
restore/hierarchy 
reloading H-12 

root 2-4 

root config card 9-15, 10-20, 
10-35, 10-41, 10-44, 
10-47, 10-48, 12-1, 12-3, 
12-4, A-4j H-2~ H-5, H-6, 
H-11, H-13 

root config record 7-27 

root logical volume 
see RLV 

root physical volume 
see RPV 

rotational position sensing 
J-7 

route command (initial izer) 
4-5, 8-10, 13-8 

routing output 8-10 
definition 8-10 

routing output to a channel 
4-5 

RPV 1-4, 7-28, 8-1, 9-14, 
9-15, 10-9, 10-16, 10-18, 
10-20, 10-24, 10-25, 
10-28, 10-35, 10-38, 
10-39, 10-41, 10-42, 
10-44, 10-45, 10-47, 
10-52, 12-1, 13-7, H-2, 
H-4, H-9, H-10, H-12, 
H-13, H-14, H-16 

recovery via BCE 
restore/volume 
reloading H-1 

recovery via volume 
reloading 10-43 

rqt i segment 15-3, 15-9, 
15-24, 15-27, 15-51, 
15-55 

source segment 15-31 
syntax 15-28 

rtb.ec 10-16, 10-19, E-3 

i-35 



running a disk J-10 

runn i ng process 14-21, 14-50 

s 

salv config card 10-27, A-4 

salv config record 7-28 

salvager 1-5 
directory 1-5, 10-3, 10-21, 

10-25, 10-26, 10-28, 
10-29 

bootload 10-22 
demand 10-22 
functions 10-21, 10-26 
messages 10-29 
online 10-22 

hierarchy 10-39, 10-52, 
10-54 

message 13-2, 13-3 
vo 1 ume 1-5, 10- 18 , 10-2 1 , 

10-22, 10-25, 10-28, 
10-39, 10-:-52 

functions 10-21, 10-22 
messages 10-26 
requesting 10-24 

salvage_dir command (Multics) 
10-22, 10-28, 10-29 

salvage dirs command 
(i~itializer) 10-18, 
10-22, 10-28, 10-29, H-14 

salvage_vol command 
(initializer) 10-25, 
10-26, 10-54 

salvaging 7-28, 10-14, 10-17, 
10-18, 10-20, 10-21, 
10-23, 10-35, 10-46, 
10-48, 10-51, H-4, H-6, 
H-9, H-12, H-14, H-15, 
H-18 

sa 1 vag i ng (cont) 
quo tal 0 - 1 7, 10- 2 7, 10-28 , 

10-54 

sample_form command (I/O 
daemon) 15-43, 15-44 

SAT 15-9 

save command (BCE) 9-11, 
10-38, 10-40, 10-42, 
10-44, 12-4, 12-7, H-1 t 

H-3, H-4, H-5, H-6, H-7, 
H-10, H-11, H-12, H-13, 
H-14, H-15, H-16, H-17 

save command (I/O daemon) 
15-53 

scav command (x) 10-23, 10-52 

scavenger 1-5, 10-18, 10-21, 
10-22, 10-23, 10-52 

messages 10-26 
requesting 10-23 

schd config card 14-26, 14-32, 
A-4 

schd config record 7-29 

scheduler 14-50 

SCU 2-1, 7-14 
4MW 3-7 
6000 3-3 

i-36 

configuration panel 3-3, 
C-1 

maintenance panel 3-7 
switches 3-3, 3-7, C-1 

add i ng 11-1 
configuration 2-i 
deleting 11-1 
DPS 8 4MW 

configuration panel 3-10, 
C-2 

switches 3-10, C-2 



SCU (cont) 
Level 68 4MW 

configuration panel 3-10, 
C-2 

display panel 3-7 
maintenance panel 3-11 
switches 3-7, 3-10, 3-11, 

C-2 

sc_command command (Multics) 
8-5, 8-6 

seek distance 14-51 

seek overlap J-6 

seeking J-6 

segment contro 1 14-5, 14-6, 
14-13 

segment descriptor word 
see SOW 

segment fault 14-6, 14-17, 
14-35, 14-51, J-25 

segments J-3 
account 9-7 
activated 14-42, J-3, J-25 
adopting 10-53, 12-6, H-9, 

H-14 
connected 14-44 
contents 9-7, 9-13 
contents names 9-8, 9-13 
current dump working 9-8 
deactivated J-3 
info 8-7 
1 og 13 - 5 , 13 - 6 , 13 -7, 13 - 8 , 

13-10, 13-11 
message 15-26, 15-27 
orphan 10-22, 12-6 
physical volume log 9-9 
rqt i 15-3, 15-9, 15-24, 

15-27, 15-51, 15-55 
volume log 9-9, 9-13 
volume pool 9-10 

segments (cont) 
wired 14-54 

selecting a process 10=11 

sending a quit signal to a 
daemon 8-12, 8-15 

sending a quit signal to a 
driver 15-38, 15-43 

sending a quit signal to a 
remote driver 15-52 

sending a quit signal to the 
coordinator 15-33 

send_admin_command command 
(Mu 1 tic s) 8 - 6 , 13 - 8 , 
13-11 

abbrev 8-7 
control args 8-7 

send daemon command command 
- (Mu 1 t i ~ s) 8 - 15 

sentinel 13-3 

setting attended mode 8-17 

setting automatic mode 8-17 

setting clock 3-36, 10-54 
errors 7-8 

setting manual mode 8-17 

setting switches 14-4, C-l 

setting unattended mode 8-17 

setting up a driver to driver 
message facility 15-61 

setting up volume backup 9-4 

set_ac1 command (Multics) 
15-26 

i-37 



set_drive_usage command 
(initializer) 9-15, 
10-45, 10-47, 10-50, 
10-51, 11-3, H-3, H-5, 
H-7 

set_flagbox command (BCE) 
10-14, E-1 

set_flagbox command (Multics) 
10-14, 10-19, E-1 

set_log_history_dir command 
(Multics) 13-11 

set mc message limits command 
- (Multics)- 8-9 

set pdir volumes command 
- (initial izer) 12-2 

set_system_console command 
(Multics) 4-2, 7-24, 
11-1 

set system search rules 
- comma;;d (Mu 1 tics) 15- 32 

set_volume_log command 
(Mu 1 tics) 9-9 

severity code 13-14 

shutdown command (initializer) 
8-18, H-15, H-17, H-18 

shutting down system 8-18, 
10-20, 10-35, 10-45, 
10-48, 10-54, H-4, H-6, 
H-15, H-17 

failure 8-18 

signing off 8-4 

signing on 8-4 

sign_off command (initializer) 
8-4 

sign_on command (initial izer) 
8-4 

sink 8-10 

skip J-27 

slave terminal 15-7, 15-21, 
15-23, 15-35, 15-36, 
15-37, 15-41, 15-43 

slave term command (I/O 
daemon) 15-41 

software 2-3 
concepts 2-3 

sorting class 13-14 

spooling 1-5,15-1,15-19, 
15-47, 15-50 

parameters 15-48 
terminating 15-50 

spool_driver_ driver module 
15-19 

SST 14-5, 14-13, 14-15, 14-18, 
14-25, 14-35, 14-36, 
14-43, 14-48, 14-51 

size guidelines 14-36 

sst config card 14-6, 14-43, 
A-4 

sst config record 7-31 

ST CU command (DPU) B-7 

standard command (initializer) 
10-50, H-7, H-14, H-17 

start command (I/O daemon) 
i5-34, l!;)- j!;), l!;)-4j, 

15-44, 15-46, 15-53 

starting up a daemon 8-14 

i-38 



starting up a printer driver 
15-35 

starting up a punch driver 
15-35 

starting up a reader driver 
15-35 

starting up a remote driver 
15-35 

starting up a spool driver 
15-47 

starting up system 8-1 

starting up the coordinator 
8-14, 15-33 

startup command (initializer) 
8-16 

station command (I/O daemon) 
15-19 

step J-27 

step command (I/O daemon) 
15-43 

stopping a CPU 10-8 

storage system 
hierarchy 2-4 
maintenance 12-1 

store unit 
clearing 11-2 

storing an old log 13-11 

STR 14-51 

substty command (Multics) 4-2 

summarize_sys_log command 
(Mu1tics) 13~7, 13-8, 
13-9, 13-10 

supervisor 1-4, 13-2, 13-6, 
14-1, 14-8, 14-9, 14-46, 
14-47 

SUSP command (DPU) B-7 

swapping disk packs 12-2 

sweep_pv command (Multics) 
10-53, 12-4, 12-5, 12-6, 
12-17, H-15, H-17 

switches C-l 
6000 SCU 3-3, 3-7, C-1 
DPS 8 4MW SCU 3-10, C-2 
DPS 8 CPU 3-25, 10-5, C-3 
DPS 810M 3-28, C-5 
FNP 3-35, C-7 
Level 68 4MW SCU 3-7, 3-10, 

3-11, C-2 
Level 68 CPU 3-17, 3-22, 

10-5,10-8,10-16, 
10-56, C-3, C-4 

Level 68 10M 3-28, 3-32, 
C-5 

setting 14-4, C-l 

sys trouble connect 10-4 
handling 10-6 

sysdaemon_project_start_up.ec 
9-17 

syserr crash 10-3, 10-13 

syserr log 1-5, 10-23, 10-26, 
10-29, 10-55, 10-56, 13-6, 
13-11, 14-46, 1-1, 1-3 

contents 13-12 

i-39 

message 13-6, 13-12 
action code 13-14 
binary data 13-15 
binary data classes 13-15 

access_audit 13-25 
config_deck 13-22 
fnp_pol1 13-22 
hwfau1t 13-16 
ibm3270_mde 13-27 
io_status 13-16 



syserr log (cont) 
message 

binary data classes 
mdc_del_uidpath 13-20 
mmdam 13-21 
mos 13-19 
mpc_poll 13-22 
segdamage 13-20 
vol damage 13-19 
vtoce 13-23 

format 13-13 
severity code 13-14 
sorting class 13-14 

permanent log 13-7, 13-14 
wired log 13-6,13-14, 

14-46 

syserr message 4-1, 4-3, 13-1, 
13-2, 14-46 

syserr_10g_man_ command 
(Mu 1 tics) 

$restart_copying 13-11 

system administration table 
see SAT 

system console 
see boot10ad console 

system control 
see in it i ali zer 

system controller unit 
see SCU 

system failure 10-1 
automatic recovery 10-14, 

E-1 
crashing 10-1 
dump i ng 10-2, 10-8, 10-14, 

10-15 
ESC 8-18, 10-1, 10-3, 10-8, 

iO-i4, 10-15, 10-i6, 
10-18, 10-22, 10-26, 
10-28, 10-29, 10-35, 
13-11 

examining crash 10-11 

system failure (cont) 
executing fault 10-1, 10-5, 

10-8, 10-16 
executing switches 10-1, 

10-8, 10-16, 10-56 
hanging 10-1, 10-5, 10-15, 

10-16 
1 00 pin g 1 0 - 1, 10 - 5 , 1 0 - 15 , 

10-16 
manual recovery 10-15 
rebooting Mu1tics 10-14, 

10-15, 10-18, 10-20 
recovery failure 10-16 
returning to BCE 6-6, 8-18, 

10-1, 10-2, 10-4, 10-5, 
10-8, 10-14, 10-15, 
13-14 

system log 13-5 
discarding 13-11 
failure 13-11 
stor i ng 13-11 

system message 13-1 
form 13-1 
on boot10ad console 13-1 
on initializer terminal 

13-2 

system optimization table 
J-21 ~. 

system segment table 
see SST 

system shutdown 8-18, 10-35, 
10-45, 10-48, 10-54, H-4, 
H-6, H-15, H-17 

failure 8-18 

system startup 8-1, 10-54 

system trailer segment 
see STR 

system comm meters command 
(Mu 1 t i ~ s) 14 - 15 

i-40 



system_performance_graph 
command (Multics) 14-4, 
14-36 

system_start_up.ec 1-6, 4-5, 
8-9, 8-10, 8-16, 10-15, 
10-18, 10-19, 10-23, 13-8, 
15-32, F-1 

T 

tape drives 
adding 11-1 
deleting 11-1 

tape pool 9-10 

tapes 
automatic management 9-10 

tbls config card 10-23, A-4 

tbls config record 7-32 

tcd config card 14-8, 14-9, 
14-42, 14-46, 14-52, A-5 

tcd config record 7-33 

term command (I/O daemon) 
15-35 

terminal channel 4-4, 8-10, 
8-12, 8-16 

accepting 4-5 
disconnecting 4-5 
routing output 4-5 

terminal type table 
see TTT 

terminals 15-35 

terminating a driver 15-35 

test (disk I/O type) J-16 

test mode 15-55 
breakpoints 15-55, 15-59 
databases 15-57 
directory structure 
exec_com 15-60 
I/O daemon queues 
I/O daemon tables 

15-59 
test process 

15-55 

15-56 
15-56, 

coordinator 15-57, 15-58 
driver 15-57, 15-58 

test system 10-39, 10-41, 
10-42, 10-44, H-2, H-10, 
H-11, H-13, H-14 

.test_disk command (BCE) 10-18, 
10-36, 10-37, 10-44, 
10-46, 10-49, H-2, H-4, 
H-7, H-11, H-13, H-16 

test io daemon command 
-(M~ltics) 15-32, 15-58, 

15-61 
debug request 
logout request 
probe request 
return request 

15-55, 15-59 
15-59 

15-55, 15-59 
15-59 

thrashing 14-22, 14-23, 14-31, 
14-35, 14-41, 14-42, 
14-52, J-25, J-27, J-32, 
J-34 

throughput 14-3, 14-19, 14-52, 
J-19, J-23, J-34, J-36 

time zones 7-6 

TM command (DPU) B-5 

TM mode (DPU) B-5 

toehold (BCE) 6-1, 6-5, 10-6, 
10-8, 10-11, 10-14, E-1 

flags E-1 
invoking 6-5 
machine conditions 10-12, 

10-13 

i-41 



toeho 1 d (BCE) (cont) 
machine state 10-12 

total CPU time 14-17, 14-53 

total disk volume failure 
10-36 

recovery 10-38 

total time meters command 
(Mul tics) 14-3, 14-8, 
14-19, 14-35, 14-41, J-23, 
J-25 

traffic control data 14-5, 
14-8, 14-13, 14-15, 14-18, 
14-25, 14-42, 14-43, 
14-52 

traffic controller 
14-30, 14-42, 
14-45, 14-46, 
14-50, 14-52 

functions 14-8 

14-8, 
14-43, 
14-47, 

traffic_control_meters command 
(Mul tics) 14-8, 14-35, 
14-50 

traffic control queue command 
(Multics) -14-9, 14-35 

transient disk volume failure 
10~36 

recovery 10-37 

truncate_heais_iog command 
(Multics) 1-1,1-16 

TTT 15-56 

tty_printer_ I/O module 15-24 

tune_disk command (Multics) 
J-30 

tuning 14-1, 14-4, 14-9, 
14-19, 14-20, J-l, J-30 

commands 14-25 

tun i ng (cont) 
parameters 14-25, 14-30, 

14-41 
deadl ine_mode 14-27 
dirlock_writebehind 14-30 
gp_at_notify 14-28, 14-32, 

14-35 
gp_at_ptlnotify 14-28, 

14-32 
gv_integration 
int_q_enabled 

14-46 

14-29 
14-27, 

max_batch_el igible 14-27 
max_eligible 14-22, 14-23, 

14-26, 14-31, 14-41, 
14-47, J-12 

max_max_eligible 14-26 
min_eligible 14-22, 14-26, 

14-31, 14-42, 14-47 
notify_timeout_interval 

14-29, 14-31 
notify_timeout_severity 

14-29, 14-31 
post_purge 14-26, 14-28, 

14-31, 14-35, 14-49 
pre_empt_sample_time 

14-28 
priority_sched_inc 14-26 
process_initial_quantum 

14-28 
quit_priority 14-28 
realtime_io_deadline 

14-29, 14-30, 14-32 
realtime_io_priority 

14-29, 14-30, 14-32 
realtime_io_quantum 14-32 
tefirst 14-26, 14-32, 

14-35, 14-52 
telast 14-26, 14-32, 

14-52 
timax 14-26, 14-32, 14-52 
working_set_addend 14-27, 

14-28, 14-31, 14-54 
working_set_factor 14=27, 

14-28, 14-31, 14-54 
write_limit ~4-29, J-37 

scheduling 14-21 

i-42 



Type I remote station 15-19, 
15-22, 15-35 

Type I I remote station 15-19, 
15-22, 15-23, 15-24, 
15-35 

U 

udsk config card 9-15, A-5 

udsk config record 7-34 

unattend command (x) 8-17 

unattended mode 8-17, 10-14 
setting 8-17 

unexpected fault crash 10-5, 
10-7, 10-13 

unit record controller 
see URC 

unit record processor 
see URP 

unjamming bootload console 
4-2 

UNLOCK mode (boot load console) 
4-1 

unlock_mca command (BCE) 4-4 

update_heals_log command 
(Multics) 1-1,1-2,1-17 

URC 14-53 

URP 14-53 

user commands 2-3 

user control 
see answering service 

user ring 
see ring 4 

v 

vacate_pdir_volume command 
(initializer) 12-2 

validate card input Stest 
com~and (Multi~s) 15-57 

validate_daemon_command 
installation parameter 
8-15 

VIP command (DPU) 8-5, 8-6, 
8-7 

VIP mode (DMP) 8-8 

VIP mode (DPU) 8-5 

virtual console 8-10, 8-16, 
13-8 

virtual console table 8-10, 
8-16 

virtual CPU time 14-17, 14-20, 
14-28, 14-35, 14-38, 
14-41, 14-53, J-2, J-23, 
J-30 

virtual memory J-l 

volume backup 9-1, 9-4 
contents of dump volume 9-7 
daemons 9-4 
LSS 9-5 
setting up 9-4 

volume dumping 9-6 

i-43 

account segment 9-7 
charging for services 9-7 
commands 9-5 
complete 9-11, 10-54 
consolidated 9-11 



volume dumping (cont) 
contents na~es segment 9-8 
contents segment 9-7 
control file 12-3 
current dump working segment 

9-8 
dump control file 

adding volumes 
errors 9-12 
incremental 9-10 
modes 9-10 

9-8 
9-11 

physical volume log segment 
9-9 

volume log segment 
volume pool segment 

9-9 
9-10 

volume log segment 9-9, 9-13 

volume pool segment 9-10 

volume reloading 9-14, 10-38 
commands 9-5 
recovery of non-root volume 

10-48 
recovery of non-RPV root 

volume 10-46 
recovery of RPV 10-43 

volume retrieval 9-13 
charging for services 9-14 
commands 9-5 
contents names segment 9-13 
contents segment 9-13 
volume log segment 9-13 

volume salvager 1-5, 10-18, 
10-21, 10-22, 10-25, 
10-28, 10-39, 10-52 

functions 10-21, 10-22 
messages 10-26 
requesting 10-24 

volume table of contents 
see VTOC 

volume table of contents entry 
see VTOCE 

volumes 
authenticating G-1 
managing G-1 

volume cross check command 
(Multic~) 9-10 

volume_dump_switch_off command 
(Mu 1 tics) 9-8 

volume_dump_switch_on command 
(Mu 1 tics) 9-8 

VTOC 1-6, 12-3, 12-5, 14-53 

VTOC read 14-21, J-14, J-15, 
J-19, J-22 

VTOC wr i te J-14, J-15, J-19, 
J-22, J-36 

VTOCE 14-53 

vtoc buffer meters command 
(Multi~s) 14-36 

W 

waiting process 14-21, 14-54 

wait status command (I/O 
-daemon) 15-16, 15- 34 

wakeup 14-54 

warm boot 1-4 

WCT 14-8, 14-9 

weTE 11.-0 -..,. ., 

wired J-27 

wired page 14-54 

wired segment 14-54 

i-44 



word command (initializer) 
10-50, 10-51, H-7, H-9 

work class 14-9, 14-27, 14-29, 
14-32, 14-54 

work class table 
see WCT 

work class table entry 
see WCTE 

working set 14-22, 14-27, 
14-31, 14-37, 14-42, 
14-54, J-32 

work class meters command 
- (Mul tics) 14-9 

x 

x command (I/O daemon) 15-53, 
15-56, 15-61, 15-62 

x commands 8-14, 9-6, 9-17 
attend 8-17 
auth G-l 
auto 8-17 
inc 8-14 
io 8-14 
online help 8-7 
repair 10-22, 10-28, 10-29, 

10-35, 10-52, 10-54 
scav 10-23, 10-52 
unattend 8-17 

i-45 



I 
I 
I 
I 
I 
I 
I 

~c~ 

w 
Z 
-l 

<.:) 

Z 
o 
-l 
« 
r­
:J 
u 

t 
I 
I 
I 
I 
I 

'"-, 
I 
I 
I 
I 
I 
I 
I 

HONEYWELL INFORMATION SYSTEMS 
Technical Publications Remarks Form 

MULTICS SYSTEM 
TITLE MAINTENANCE PROCEDURES 

ERRORS IN PUBLICATION 

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION 

Your comments will be investigated by appropriate technical personnel 
and action will be taken as required. Receipt of all forms will be 
acknowledged; however, if you require a detailed reply. check here. 0 

PLEASE FILL IN COMPLETE ADDRESS BELOW. 

FROM: NAME ______________________________________________ _ 

TITLE ______________________________________________ _ 

COMPANY __________________________________________ ___ 

ADDRESS __________________________________________ ___ 

ORDER NO. AM81-04 

DATED NOVEMBER 1986 

DATE _____ _ 



PLEASE FOLD AND TAPE-
NOTE: U.S. Postal Service will not deliver stapled forms 

IIIIII 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 39531 WALTHAM, MA 02154 

POSTAGE WILL BE PAID BY ADDRESSEE 

HONEYWELL INFORMATION SYSTEMS 
200 SMITH STREET 
WALTHAM, MA02154 

ATTN: PUBLICATIONS, MS486 

Honeywell 

UJ 

( 
o 
...J 
« ... 
::::l 
() 

UJ 
Z 
...J 
(.!) 
Z .,.. g 

NO POSTAGE 
NECESSARY 
IF MAILED 

INTHE 
UNITED STATES 

--(: 

l' 

,-
-..il 

I 
I 
I 
I 
I 
I 

« 
Q 
...J 
o 
U. 

UJ 
z 
::::i 
(.!) 

z 
0 
...J 
« 
Q 
...J 
0 
U. 



Together, we can find the answers. 

Honeywell 
Honeyweii iniormation Systems 

U.S.A.: 200 Smith St., MS 486, Waltflam, MA 02154 
canada: 155 Gordon Baker Rd., Willowdale, ON M2H 3N7 

Mexico: Av. Constituyentes 900, 11950 Mexico, D.F. Mexico 
U.K.: Great West Rd., Brentford, Middlesex TW8 9DH Italy: 32 Via Pirelli, 20124 Milano 

Australia: 124 WalkerSt., North Sydney, N.S.W. 2060 S.E. Asia: Mandarin Plaza, Tsimshatsui East, H.K. 

46833, 1186, Printed in U.S.A. AM81-04 


	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	03-33
	03-34
	03-35
	03-36
	03-37
	04-01
	04-02
	04-03
	04-04
	04-05
	05-01
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	07-29
	07-30
	07-31
	07-32
	07-33
	07-34
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	10-27
	10-28
	10-29
	10-30
	10-31
	10-32
	10-33
	10-34
	10-35
	10-36
	10-37
	10-38
	10-39
	10-40
	10-41
	10-42
	10-43
	10-44
	10-45
	10-46
	10-47
	10-48
	10-49
	10-50
	10-51
	10-52
	10-53
	10-54
	10-55
	10-56
	11-01
	11-02
	11-03
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	13-14
	13-15
	13-16
	13-17
	13-18
	13-19
	13-20
	13-21
	13-22
	13-23
	13-24
	13-25
	13-26
	13-27
	13-28
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	14-11
	14-12
	14-13
	14-14
	14-15
	14-16
	14-17
	14-18
	14-19
	14-20
	14-21
	14-22
	14-23
	14-24
	14-25
	14-26
	14-27
	14-28
	14-29
	14-30
	14-31
	14-32
	14-33
	14-34
	14-35
	14-36
	14-37
	14-38
	14-39
	14-40
	14-41
	14-42
	14-43
	14-44
	14-45
	14-46
	14-47
	14-48
	14-49
	14-50
	14-51
	14-52
	14-53
	14-54
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	15-09
	15-10
	15-11
	15-12
	15-13
	15-14
	15-15
	15-16
	15-17
	15-18
	15-19
	15-20
	15-21
	15-22
	15-23
	15-24
	15-25
	15-26
	15-27
	15-28
	15-29
	15-30
	15-31
	15-32
	15-33
	15-34
	15-35
	15-36
	15-37
	15-38
	15-39
	15-40
	15-41
	15-42
	15-43
	15-44
	15-45
	15-46
	15-47
	15-48
	15-49
	15-50
	15-51
	15-52
	15-53
	15-54
	15-55
	15-56
	15-57
	15-58
	15-59
	15-60
	15-61
	15-62
	15-63
	A-01
	A-02
	A-03
	A-04
	A-05
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	D-01
	E-01
	E-02
	E-03
	E-04
	F-01
	F-02
	F-03
	G-01
	H-01
	H-02
	H-03
	H-04
	H-05
	H-06
	H-07
	H-08
	H-09
	H-10
	H-11
	H-12
	H-13
	H-14
	H-15
	H-16
	H-17
	H-18
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10
	I-11
	I-12
	I-13
	I-14
	I-15
	I-16
	I-17
	J-01
	J-02
	J-03
	J-04
	J-05
	J-06
	J-07
	J-08
	J-09
	J-10
	J-11
	J-12
	J-13
	J-14
	J-15
	J-16
	J-17
	J-18
	J-19
	J-20
	J-21
	J-22
	J-23
	J-24
	J-25
	J-26
	J-27
	J-28
	J-29
	J-30
	J-31
	J-32
	J-33
	J-34
	J-35
	J-36
	J-37
	J-38
	index-01
	index-02
	index-03
	index-04
	index-05
	index-06
	index-07
	index-08
	index-09
	index-10
	index-11
	index-12
	index-13
	index-14
	index-15
	index-16
	index-17
	index-18
	index-19
	index-20
	index-21
	index-22
	index-23
	index-24
	index-25
	index-26
	index-27
	index-28
	index-29
	index-30
	index-31
	index-32
	index-33
	index-34
	index-35
	index-36
	index-37
	index-38
	index-39
	index-40
	index-41
	index-42
	index-43
	index-44
	index-45
	replyA
	replyB
	xBack

