
SERIES 60 (LEVEL 68)

MULTICS PROGRAMMER'S MANUAL

COMMANDS AND ACTIVE FUNCTIONS

SUBJECT

Additions and Changes to Standard Multics Commands and Active Functions

SPECIAL INSTRUCTIONS

This is the third revision to AG92, dated January 1979.

This revision replaces Addendum A, B, and C of AG92, Revision 2.

The following commands are obsolete and have been moved to Appendix A in
this manual for user convenience.

fs_chname print_tranlLBearclLrules
mail seLtrans-BearclLrules

The following commands appear in this manual for the first time:

archive_table
converLcharacters
hangup

SOFTWARE SUPPORTED

nO-Bave_o~di8Connect
save_o~disconnect

Multics Software Release B.O

ORDER NUMBER

AG92-03 December 1979

Honeywell

SERIES 60 (LEVEL 68)

MULTICS PROGRAMMER'S MANUAL
COMMANDS AND ACTIVE FUNCTIONS

ADDENDUM.A

SUBJECT

Additions and Changes to Standard Multics Commands and Active Functions

SPECIAL INSTRUCTIONS

This is the first addendum to AG92, Revision 3, dated December 1979.

Insert the attached pages into the manual according to the collating instruc
tionson the back of this cover.

Note:
Insert this cover after the manual cover to indicate the updating of the
document with Addendum A.

SOFrWARE SUPPORTED

Multlcs Software Release 8.0

ORDER NUMB.ER

AG92-03A

26940
1380
Printed in U.S.A.

February 1980

Honeywell.

COLLATING INSTRUCTIONS

To update the manual, remove old pages and insert new pages as follows:

Remove

3-559 through 3-568

3-619, 3-620

4-3, 4-4

Insert

3-240.1, 3-240.2
3-240.3, 3-240.4
3-240.5, 3-240.6
3-240.7, blank

3-559 through 3-568

3-619, blank
3-619.1 through 3-619.32
3-619.33, 3-620

4-3, blank
4-3.1,4-4

4-18.1, blank

4-19, 4-20 4-19, blank
4-19.1,4-20

G) Honeywell Information Systems Inc., 1980 File No.: 1L13

2/80 AG92-03A

The MPM Commands is organized into four sections. Section 1
contains general information on the use of the manual as well as a
desc~iption, and definition, of format. Section 2 contains a list
of the Multics system commands and active function repertoire,
arranged functionally. Section 3 contains descriptions of selected
standard f1ultics system commands and active functions, including the
syntax of each, arranged alphabetically. Section 4 describes
requests used to gairi access to the system.

The MPM Subroutines is organized into three sections. Section
1 contains a list of the s\tPrnutine repertoire, arranged
functionally. Section 2 contairia:-a.escriptions of the standard
Mul tics subrout ines, incl udi ng the'::~d€clare statement, the calli ng
sequence, and usage of each. Section 3 contains the descriptions of
the I/O modules.

The MPM Subsystem Writers' Guide is a reference of interest to
compiler wri ters and wri ters of sophisticated sUbsystems. It
documents user-accessible modules that allow the user to bypass
standard Multics facilities. The interfaces thus documented are a
level deeper into the system than those required by the majority of
users.

Examples of specialized subsystems for which construction
would require reference to the MPM Subsystem Writers' Guide are:

• A subsystem that precisely iroi tates the command
environment of some system other than Multics.

• A subsystem intended to enforce restrictions on the
services available to a set of users (e.g., an APL-only
subsystem for use in an academic class).

• A subsystem that protects some kind of information in a way
not easily expressible with ordinary access control lists
(e.g., a proprietary linear programming system, or an
administrative data base system that permits access only
to program-defined, aggregated information such as
averages and correlations).

The MPM Peripheral I/O manual contains descriptions of commands
and subroutines used to perform peripheral I/O. Included in this
manual are commands and subroutines that manipulate tapes and disks
as I/O devices.

iii AG92-03

The MPM Communications I/O manual contains inf'ormation about the
Multics Communication System. Included are sections on the commands,
su'broutines, and I/O modules used to manipulate communications
I/O. Special purpose communications I/O, such as binary synchronous
communication, is also included.

Several cross-reference facilities help locate information:

• Each manual has a table of contents that identifies the
material (either the name of the section and subsection or
an alphabetically ordered list of command and subroutuine
names) by page number. '

• Each manual contains an index that lists i terns by name and
page 'number •

• Individual program descriptions reference other programs
in the same and other manuals.

iv AG92-03

Section 1

Section 2

CONTENTS

Manual Use and Term Definition
Description of Manual Format
General Definition of a Command ..
General Definition of an Active

Funct ion...
Examples of Command vs. Active

Function Use
Errors ...•....

General Information. . .

Referenqe to Commands and Active
Functions. ~

Functional Headings of Commands ..
Access to the System.
Storage System, Creating and
Editing Segments

Storage System, Segment
Manipulation

Storage System, Directory
Manipulation

Storage System, Access Control.
Storage System, Address Space

Control
Formatted Output Facilities ..
Language Translators, Compilers,
Assemblers, and Interpreters.

Object Segment Manipulation
Debugging and Performance
Monitoring Facilities ...

Input/Output System Control
Command Level Environment
Communication Among Users
Communication with the System.
Accounting. . •
Control of Absentee Computations ..
Miscellaneous Tools

Functional Headings of Active
Functions

Arithmetic
Character String. . .
Condition Handling
Conversion.
Date and Time

v

Page

1-1
1 -1
1-3

1-4

1-4
1-4
1-5

2-1
2-1
2-1

2-1

2-2

2-2
2-2

2-2
2-3

2-3
2-3

2-3
2-4
2-4
2-4
2-5
2-5
2-5
2-5

2-5
2-5
2-6
2-6
2-6
2-6

AG92-03

Section 3

CONTENTS (cont)

Input/Output
Logical
Miscellaneous
Pathname Manipulation
Question Asking
Storage System Attributes
Storage System Names
User/Process Information.

Commands
abbrev (ab)
accept messages (am). .
add name (an)
add --5 ear c h pat h s (a s p). .
add-search-rules (asr) ..
adjust bit-count (abc)
after Taf):
and
answer.

·apl, v2apl ..
archive (ac)
archive table (act) ..
assign resource (ar) ..
attach-audit (ata)
attach-lv (alv) .. .
basic ~
before (be).
binary (bin).
bind (bd)
bool.
branches, nonlinks

nonlinks, see branches ..
calc.
calendar. •
cancel abs request (car)
cancel-cobol program (ccp).
cancel-daemon request (cdr)
c ancel-resource (cnr)
cancel-retrieval request (err).
canoni~alize (ca~on)
c e i l.
change default wdir (cdwd).
change-error mode (cern)
ehange-wdir Tewd)
check Iael
check info segs (cis)
close-file-(cf) .
cobol-.
cobol abs (cba)
collate . . .

vi

Page

2-6
2-6
2-7
2-7
2-7
2-7
2-7
2-7

3-1
3-2
3-7
3-10
3-12
3-15
3-17
3-19
3-20
3-21
3-23
3-25
3-38
3-39
3-43
3~50

3-51
3-53
3-54
3-55
3-62
3-6 /4
3-64
3-66
3-69
3-72
3-75
3-76
3-79
3-80
3-82
3-34
3-85
3-86
3-87
3-88
3-89
3-92
3-93
3-99
3-101

AG92-03

CONTENTS (cont)

collate9. . .
compare
compare ascii (cpa)
contents.
convert characters (eve).
copy (cp)
copy acl ~
copy-cards (ccd)
copy-characters (cpch)
copy-dir (cpd).
copy-file (cpf)
copy-iacl dir
copy-iacl-seg
create (cr)
create_data se~ment (cds)
create dir Ted)
cumulative page trace (cpt)
damagedsw-off Tdsf)
damaged-sw-on (dsn)
date .. -. --:
date compiled (dtc) .
date-time
day -:
day name. . .
debug (db). . .
decat
decimal (dec).
decode.
default
default wdir (dwd)
defer messages (dm)
delete (dl)
delete_acl (da)
delete dir (dd)
delete-iacl dir (did)
delete-iacl-seg (dis)
delete-mess~se (dIm). . ..
delete-name (dn)
delete-search paths (dsp) .
delete-search-rules (dsr) .. .
detach-audit ""[dta).
detach-Iv (dlv)
directories (dirs)
directory
discard output (dco).
display-audit file (daf)
display-cobol-run unit (dcr)
display-pI1io-error (dpe)
divide.- . .. -
do. • • • • •• ••••••

vii

Page

3-102
3-103
3-105
3-109
3-110
3-112
3-115
3-116
3-118
3-119
3-123
3-129
3-130
3-131
3-133
3-134
3-137
3-140
3-141
3-142
3-143
3-145
3-146
3-147
3-148
3-185
3-186
3-187
3-188
3-190
3-191
3-192
3-194
3-196
3-198
3-200
3-202
3-203
3-205
3-206
3-207
3-208
3-209
3-211
3-212
3-213
3-218
3-219
3-220
3-221

AG92-03

CONTENTS (cant)

dprint (dp)
dpunch (dpn). . . .
dump segment (ds) .
edm -:
encode.
enter abs request (ear)
enter-retrieval request (err) .. .
entries -.
entry
equal · . . .
equal name (enm)
exec com (ec)
exists "
expand cobol source (ecs) .. .
f as t. --: . . -:-
file output, fo

revert output, roo
syn output, so
terminal output, to .. .

revert output, ro SEE file output.
syn output, so SEE file output ..
terminal output, to SEE-
file output .. .

files-....... " .
floor
format line (fl)
fortran (ft). •
fortran abs (fa). . ..
gcos (gc) •....•.......
general ready (gr) ••••...
get patnname (gpn) ••.......
get-quota (gq) ...•......•
get-system search rules (gssr) •..
gre~ter . -: . . .-. •.
have mail
help-:- . •
hexadecimal (hex) . • • •
high.
high 9 . . • . . .•
home dir (hd) • .
hour -:
how many users (hmu) 0 •

if.-.. -:
immediate messages (im)
indent (fild). .
index
index set
initiate (in) ..
io call (io)•.
last __ messaee (1m)

viii

Page

3--227
3-232
3-236
3-239
3-241
3-242
3-248
3-250
3-252
3-253
3-254
3-255
3-265
3-269
3-272
3-273
3-273
3-273
3-273
3-273
3-273

3-273
3-276
3-278
3-279
3-281
3-281
3-283
3-284
3-291
3-292
3-293
3-294
3-295
3-296
3-316
3-317
3-318
3-319
3-320
3-321
3-323
3-324
3-325
3-328
3-329
3-331
3-333
'3-349

AG92-03

CONTENTS (cent)

last message sender (lms)
last-message-time (lmt)
length (In) -:-
Ie s s
line length (11)
link-elk)
links, nonbranches.
list (Is) . ~
list abs requests (lar) .
list-accessible (lac) .
list-acl (la)
list-daemon requests (ldr).
list-help (Ih)
list-iacl dir (lid)
list-iacl-seg (lis) •.......
list-not accessible (lnac).
list-ref-names (lrn)
list-resource types (lrt)
list-resources (lr)
list-retrieval requests (lrr) .
logout. . . . -
long date
low --:
lower case•........
1 trim-.
Iv attached
manage volume pool (mvp)
master-directories (mdirs)
max . . • . . • • • • • .
memo. . . .
merge
merge_ascii (ma).
min . . .
minus . .
minute. . .
mod . . . • . .
month
month name•....
move T mv)
move abs request (mar)
move-daemon request (mdr) .. .
move-dir (mvd)•..
move-quota (mq)
msfs-: • .'.
nequal. . •
new fortran .

.
new proc..
ngr~ater. • •
nless
nonmaster directories (nmdirs).

ix

Page

3-350
3-352
3-353
3-354
3-355
3-356
3-358
3-360
3-373
3-378
3-380
3-382
3-386
3-388
3-390
3-392
3-394
3-396
3-397
3-400
3-404
3-405
3-406

.3-407
3-408
3-409
3-410
3-412
3-413
3-414
3-420
3-421
3-426
3-427
3-428
3-429
3-430
3-431
3-432
3-435
3-437
3-440
3-443
3-445
3-447
3-448
3-456
3-457
3-458
3-459

AG92-03

CONTENTS (cont)

no save on disconnect
nondire~to~ies (nondirs).
nonfiles •...•.......•.
nonmsfs
nonnull links (nnlinks)•.
nonsegments (nonsegs)
nonzero files (nzfiles)
nonzero-msfs (nzmsfs) .. .
nonzero=segments (nzsegs) .. .
not
null links.
octal (oct) .
on.
or.
overlay (ov)
page trace (pgt)
path-:-
picture (pic) ..•....
p11
pl1 abs (pa). ..•. . ..
pI us.
print (pr).•
print attach table (pat)
print-auth names (pan)
print-default wdir(pdwd)
print-ma.il (prm)
print-messa~es (pm)
print motd (pmotd).
print-proc auth (ppa) •.•
print-request types (prt) .. .
print-search paths (psp)
print-search-rules (psr)e .
p r i n t - w d i r (pw d). • • • • •
probe -(pb). • •
process dir (pd)•..
profile-(pf) ...•........
program interrupt (pi)
progress (pg)
(1 e dx • • • • • • • • • • • •
query . . . • . . . •
quotient.
read mail (rdm)
rea dy (r dy) •
ready off (rdf)
ready-on (rdn). . . • . •
release (rl)•.•.....
rename (rn)
repeat query (rq).
reprint error (re)
resolve=linkage_error (rle) ..

x

Page

3-461
3-462
3-464
3-466
3-468
3-470
3-472
3-474
3--476
3-478
3-479
3-481
3-482
3-486
3-487
3-488
3-490
3-491
3-493
3-500
3-502
3-503
3-505
3-507
3-508
3-509
3-513
3-515
3-516
3-517
3-518
3-519
3-520
3-521
3-547
3-548
3-555
3-557
3-560
3-568
3-569
3-570
3-586
3-587
3-588
3-589
3-590
3-592
3-594
3-596

AG92-03

CONTENTS (cont)

reserve resource, rsr ~ ..
resource_usage (ru) . ~ ..
response
reverse (rv)
reverse after (rvaf)
reverse-before (rvbe)
reverse-decat (rvdecat)
reverse-index (rvindex)
reverse-search (rvsrh) ...
reverse-verify (rvverify) .
rtrim .-..... .
run
run cobol (rc).
runoff abs (rfa)
safety-sw off (ssf)
safety-sw-on (ssn).
save on dIsconnect.
search.
segments (segs)
send mail (sdm)
send-message (sm)
send-message acknowledge (sma).
send-message-express (smx)
send-message-silent (sms) .. .
set acl (sa):
set=bit_count (sbc)
set cc.
set-fortran common (sfc) ..
set-iacl dir (sid) .. .
set-iacl-seg (sis)
set-search paths (ssp)
set-search-rules (ssr)

- -
severity.
slave
so r t
sort seg (ss)
start (sr).
status (st)
stop_cobol_run (scr)
stop run
string
strip ' .. .
strip_entry (spe)
substr
suffix
system
tape archive (ta)
termInate (tm)
time.
times . .

xi

Page

3-591
3-599
3-601
3-603
3-604
3-605
3-606
3-601
3-608
3-609
3-610
3-611
3-611
3-620
3-622
3-623
3-624
3-625
3-626
3-628
3-648
3-650
3-652
3-653
3-654
3-657
3-658
3-660
3-661
3-663
3-665
3-666
3-668
4-669
3~670
3-671
3-615
3-676
3-682
3-683
3-684
3-685
3-686
3-687
3-688
3-689
2-692
3-104
3-106
3-701

AG92-03

CONTENTS (cont)

trace • . 0 • • • • • • • • • • • •

trace stack (ts)
translate
trunc
truncate (tc) ..
unassign resource (ur).
underline
unique. . .
unlink (ul)
upper_case.
use r.
verify.

.
vfile adjust (vfa)
vfile-status (vfs)
volume dump switch off (vdsf) .
volume-dump-switch-on (vdsn)
walk subtree (ws) :
where (wh)
where search paths, (wsp) .
who .-. . . : . . .
working_dir (wd) ..
yea r.
zero_segments (zsegs) ..

xii

Page

3-708
3-720

3-125
3-726.
3-727
3-729
3-730
3-731
3-732
3-733
3-734
3-738
3-739
3-741
3-743
3-744
3-745
3-147
3-749
3-750
3-153
3-154
3-755

AG92-03

CONTENTS (cont)

Section 4 ' Access to the System ..
dial (d)
enter (e) •• • ••••••
enterp (ep).
hangup.
hello
login (1)
logout..
slave
MAP ••••••••••••
029 and 963

Index

xiii

Page

4-1
4-2
4-4
4-4
4-7
4-8
4-9
4-18
4-19
4-20
4-21

i-1

AG92-03

PREFACE

Primary reference for user and subsystem programming on the
Multics system is contained, in six manuals. The m~nuals are
collectively referred to as the Multics Progra~mers' Manual
(MPM). Throughout this manual, references are frequently made to
the MPM. For convenience, these references will be as follows:

Document

Reference Guide
(Order No. AG91)

Commands and Active Functions
(Ord er No -:-AG92)--

Subroutines
(Order No. AG93)

Subsystem Writers' Guide
(Order No. AK92)

Peripheral Input/Qutput
(Order No. AX J49)

~mm un i cat ion ~_.!.~I!.Q.~.~LQ~~~J~.,:!.~
\Order No. CC92)

Referred To In Text As ._-_._----------

MPM Reference Guide

MPM Commands

MPM Subroutines

MPM Subsystem Writers' Guide

MPM Peripheral I/O

MPM Communications 1/0

The MPM Reference Guide contains general information about
the Multics command and programming environments. It also
defines items used throughout the rest of the MPM and, in
addition, describes such subjects as the command language, the
storage system, and the input/output system.

~ Honeywell Information Systems Inc., 1979 File No.: 1L13

AG92-03

SECTION 1

MANUAL USE AND TERM DEFINITION

This section deals with the proper use of
description of the format used, and a general
terms. New users are particularly encouraged
section.

DESCRIPTION OF MANUAL FORMAT

this manual, a
definition of
to read this

Section 2 contains a breakdown by function of the programs
described in this manual. Section 3 contains an alphabetized
listing of selected standard Multics system commands and active
functions. Section 4 contains descriptions of those commands
used to gain access to the Multics system.

Each description in this manual closely parallels the info
segment format available online by invoking the help command.
Each description provides, minimally, the long (and short) name,
syntax line, and function of the program. Standard headings, in
the order in which they appear when present, aie as follows:

SYNTAX AS A COMMAND:
SYNTAX AS AN ACTIVE FUNCTION:
:[l'UNCT ION:
ARGUMENTS:
CONTROL ARGUMENTS:
ACCESS REQUIRED:
NOTES:
EXAMPLES:

All headings appear in capital letters followed by a colon (:).

Some descriptions contain unique headings such as "LIST OF
KEYS", or "LIST OF REQUESTS".

Syntax lines give the order of required and optional
arguments accepted by a command or active function. Optional
portions of syntax are enclosed in braces ({ I). The syntax for

1-1 AG92-03

active functions is always shown enclosed in brackets (lJ), which
are required for active function use. To indicate that a comm-and
accepts more than one of a specific. argument, the argument name
is pluralized (e.g., paths, {paths}, {-control_args}).

NOTE: Keep in mind the difference between a plural argument
name that is enclosed in braces (i.e., optional) and
one that is not (i.e., required). If the plural
argument is enclosed in braces, clearly no argument
of that type need be specified. However, if there
are no braces, at least one argument of that type
must be specified. Thus "paths" in a syntax line
could also be written as:

path1 {path2 •.. pathn}
The coniention-of using Wpaths" rather than the above
is merely a method of saving space.

Different arguments that must be s~ecified in pairs are
numbered (e.g., xxx1 yyy1 {... xxxn yyynf). To indicate that
the same generic argument must be specified in pairs, the
arguments are indicated with letters and numbers (e.g., pathA1
pathBl { ... pathA~ pathB~}). -

are:
Some of the standard arguments accepted by active functions

str any character string.

num

dt

any character
either decimal
(5, 1024, or
-1 0 • 0 1 b) , an d
1010.001e+5b).

string that represents a number,
or binary. Examples are integers

101b), real numbers (1.37 or
floating-point numbers (1 ~3e+4 or

any date-time character string in a form
acceptable to the convert date to binary
subroutine described in MPM Subrou~ines7 Examplei
are "4/25/79 noon est Sun", "November 7", "7:30 pm
10 June 1980", and "midnight".

star name is any pathname or User id conforming to the star
convention , described under "Star Names" :_n the
MPM Reference Guide.

Arguments, when present, are listed with a brief description
and the default value if any. To indicate one of a group of the
same arguments, an "i" is added to thE; argument name (e.g.,
pathi, User_idl).

The list of control arguments
-control~args in the syntax line.

1-2

gives the possible values for
Both the long and short names

AG92-03

are given when both exist. Those that take values (the following
argument, as in "-path)udd)m)Foo") generally indicate these
values as follows:

8TH any character string; individual command
descriptions indicate any restrictions (e.g., must
be chosen from specified list; must not exceed 136
characters). .

N number; individual command descriptions indicate
whether it is octal or decimal and any other
restrictions (e.g~, cannot be greater than 4).

DT date-time character string in a form acceptable to
the convert date to binary subroutine described

ID

in the MPM Subrou~ines. -

numerical request identifier as described
MPM Reference Guide.

in the

path pathname of a storage system entry; unless
otherwise indicated, it can be either a relative
or an absolute pathname.

1he lines below are samples of control arguments that take
values:

-access name STH, -an STH
·-ring N-; -rg N
-date DT, -dt DT
-home_dir path, -hd path

The "NOTES" section is used to provide additional
information and cross-reference with other manuals.

Examples, while not extensive, attempt to provide additional
help and insight on the proper use and formatting of commands and
active functions. Lines input by the user are preceded by an
exclamation mark (!). Examples of command use show the resvonse
a user can e~p~dt to see on the terminal. Examples of active
function use show the return value substituted by the command
processor for the active string.

GENERAL DEFINITION OF A COMMAND

Commands are invoked at the beginning of command lines typed
to the system, and immediately following unquoted, unbracketed
semicolon (;). Some of the uses commands have are displaying
information on the user's termihal, archiving data, and compiling
programs. Each command has a specific purpose. The default
action performed by a command is generally the most common use of

1-3 AG92-03

I

the command. Many commands have optional arguments that refine
the actions that are performed. When invoked correctly, Moat
commands either print information or modify storage SystPffi
entries, but not both.

GENERAL DEFINITION OF AN ACTIVE FUNCTION

Active functions are most frequently used to· shorten the
amount of typing required to invoke commands. An active function
is invoked inside an active string, a string surrounded by
brackets (lJ), which is replaced by a character string return
value before the command line containing it is executed. ActivG
functions are often used in conjunction with the exec com,
abbrev, and do commands to implement command-language macros7

When several commands are specified on a line, the first is
executed before active functions in the second are expanded, and
so on. Therefore, the execution of a command can affect the
values of active functions appearing later in the line.

Examples of Command vs. Active Function Use

Many programs can be invoked as either command or active
function. The format of the active function return string is
often slightly different from the command's printed output." To
illustrate this difference, examples using the status command and
active function are shown below. In these examples, and all
interacti ve examples throughout this manual, lines typed 'by the
user are preceded with an exclamation mark (!).

, status report1 -nm
names: report first quarter.runoff

reportT.runoff
report1

versus the corresponding status active function and response:

string Lstatus report1 -nmJ
report_first_quarter.runoff report1.runoff report1

Err~rs

Commands report errors by signalling command error and
printing a message. Messages that do not begin with-"Warning:"
usually terminate execution of the command, though later commands
on the same line are subsequently executed.

Active functions report errors by signalling
active function error. Default action is to print a message and
return-to command level. The user should respond by typing:

1-4 AG92-03

release

to abort the command line, and then issue a corrected line.

The command error and active function error conditions are
further described-in the MPM Reference Guide~

GENERAL INFORMATION

Users are enpouraged to take advantage of the information
available in the manual index. The index alphabetically lists
programs by name and subject (i.e., segment, date/time, resource
limits, etc.). Cross references among program descriptions help
to locate programs applicable to a given task.

1-5 AG92-03

SECTION 2

REFERENCE TO COMr·iANDS AND ACTIVE FUNCTIONS

The Multics commands and active functions documented in this
manual are grouped below according to function. All commands and
active functions are listed under at least one functional
heading. Some commands and active functions are listed under
more than one heading. Descriptions appear in Section 3 in
alphabetical order.

FUNCTIONAL HEADINGS OF COMMANDS

Access to the System
Storage System, Creating and Editing Segments
Storage System, Segment Manipulation
Storage System, Directory Manipulation
storage System, Access Control
Storage System, Address Space Control
Formatted Output Facilities
Language Translators, Compilers, Assemblers, and Interpreters
Object Segment Manipulation
Debugging and Performance Monitoring Facilities
Input/Output System Control
Command Level Environment
Communication Among Users
Communication with the System
Accounting
Control of Absentee Computations
Miscellaneous Tools

Acces~ to the System

d.ial
enter
enterp

login
logout

Stora~ System, Creating and Editing Segments

adjust bit count qedx
compare_ascii runoff

2-1 AG92-03

canonicalize
edm
indent
program_interrupt

runoff abs
set bl"t count

Storage System, Segment Manipulation

adjust bit count
archive -
compare
compare ascii
copy -
copy file
create
damaged sw off
damaged-sw-on
delete - -
link

merge_ascii
move
set bit count
sort seg
tape-archive
truncate
unlink
vfile adjust
volume dump s'witch off
volume=dump=switch=on

Storag~ System, Directory Manipulation

add name
cancel retrieval request
copy dTr -
create dir
delete-dir
delete-name
enter retrieval_request
link -
list retrieval requests
list- -

Storage System, Access Control

check iacl
copy acl
copy-iacl dir
copy-iacl-seg
delete acI
delete-iacl dir
delete-iacl-seg
list accessible

move dir
rename
safety sw off
safety-sw-on
status-- -
tape archive
unlink
vfile status
volume dump switch off
volume=dump=switch=on

list acl
list-not accessible
list-iacT dir
list-iacl-seg
set acl -
set-iacl dir
set:iacl=seg

Storage System, Address Space Control

add search paths
add-search-rules
attach Iv -
change-default wdir
change=wdir -
delete_search_paths

2-2

print proc auth
print-search paths
print-search-rules
print-wdir -
set_search_paths
set search rules

AG92-03

delete search rules
detach-Iv
get system search rules
ini~iate - -
list ref names
new proc
pri'nt_default_wdir

Formatted Output Facilities

cancel daemon request
dprint- -
dpunch
dump segment
list=daemon_requests

terminate
terminate refname
terminate segno
terminate-single refname
where - -
where_search_paths

move daemon request
overTay -
print
runoff
runoff abs

Language Translators, Compilers, Assemblers, and Interpreters

apl
basic
bind
cancel cobol 'program
cobol -
cobol abs
create data segment
display cobol run unit
expand cobol source
fast - -
format cobol source
fortran
fortran abs

Object Segment Manipulation

archive
bind
date_compiled

indent
new fortran
old-fortran
pl1
pl1 abs
profile
qedx
run cobol
runoff
runoff abs
set fortran common
stop_cobol_run

Debugging and Performance Monitoring Facilities

attach audit
change-error mode
cumulative page trace
debug . - -
display audit file
display-p11io-error
dump segment -
general ready
page trace
probe

2-3

profile
progress
ready
ready off
ready-on
repeat query
reprint error
resolve-linkage error
trace - -
trace stack

AG92-03

~ut/Output System Control

assign resource
cancel-resource
cancel-daemon request
close file -
console output
copy cards
copy-file
discard output
display-pl1io error
dprint - -
dpunch
file output
io call

Command Level Environment

abbrev
add search paths
add-search-rules
answer
attach audit
change-default wdir
change-error mode
change-wdir -
console output
delete search paths
delete-search-rules
display audit-file
do - -
exec com
fast-
file output
if -
general ready
get system search rules
line_length -
memo

Communication Among Users

accept messages
defer messages
delete_message
immediate messages
print autli names
print=mail
print_messages

2-4

li!1e length
list-daemon requests
list-resource types
list-resources
print
print attach table
print=request_types
reserve resource
tape_archive
unassign resource
vfile adjust
vfile-status

new_proc
on
print default wdir
print-search paths
print-search-rules
print-wdir -
program interrupt
ready -
ready off
ready-on
release
repeat query
reprint error
resolve=linkage_error
run
set search paths
set-search-rules
start -
stop run
where_search_paths

read mail
send-mail
send-message
send-message acknowledge
send-message-express
send=message=silent
who

AG92-03

Communication ~ the System

cancel retrieval request
check Tnfo segs -
damaged sw-off
damaged-sw-on
help --
how many users
enter retrieval_request

Accounting

get quota
move_quota
resource_usage

Control of Absentee Computations

cancel abs request
cobol abs -
enter-abs request
fortran abs
how_many_users

Miscellaneous Tools

calc
calendar
canonicalize
decode
encode

list help
list-retrieval requests
move-abs request
print motd
volume dump switch off
volume-dump-switch-on
who - - -

list abs requests
move-abs-request
pl1 abs -
runoff abs
who

manage_volume_pool
memo
progress
walk subtree

FUNCTIONAL HEADINGS OF ACTIVE FUNCTIONS

Arithmetic
Character String
Condition Handling
Conversion
Date and Time
Input/Output
Logical

Arithmetic

ceil
divide
floor
max
min
minus

2-5

Miscellaneous
Pathname Manipulation
Question Asking
Storage System Attributes
Storage System Names
User/Process Information

mod
plus
quotient
times
trunc

AG92-03

Character String

after
before
bool
collate
collate9
copy characters
decat
format line
high
high9
index
index set
length
low
lower case
Itrim
picture

Condition Handling

on

Conversion

binary
decimal

Date and Time

date
date time
day -
day name
hour
long_date

Input/Output

io call

Logical

and
equal
exists
greater
less

2-6

reverse
reverse after
reverse-before
reverse-decat
reverse-index
reverse-search
reverse-verfiy
rtrim -
search
string
substr
translate
underline
unique
upper case
verify

hexadecimal
octal

minute
month
month name
time
year

nequal
ngreater
nless
not
or

AG92-03

Miscellaneous

contents
default

Pathname Manipulation

directory
entry
equal name
path -

Question Asking

query
response

Stora~e System Attributes

Iv attached
status

Storage System Names

branches
default wdir
directories
entries
files
getpathname
home dir
links
master directories
msfs
nondirectories
nonfiles

User/Process Information

have mail
last-message
last-message sender
last=message=time

2-7

strip
strip entry
suffix

nonmaster directories
nonmsfs
nonnull links
nonsegments
nonzero files
nonzero-msfs
nonzero~segments
null links
process dir
segments
working dir
zero_segments

severity
system
user

AG92-03

SECTION 3

COMMANDS

This section contains descriptions of selected Multics
commands and active functions, presented in alphabetical order.

3-1 AG92-03

abbrev (ab)

SYNTAX AS A COMMAND:

abbrev

FUNCTION: provides the
parts of (or whole)
environment.

abbrev (ab)

user with a mechanism fdr abbreviating
command lines in the normal command

NOTES: The abbrev command sets up a special command processor
that is called for each command line input to the system until
abbrev processing is explicitly reverted. The abbrev command
processor checks each input line to see if it is an abbrev
request line (recognized by a period (.) as the first
nonblank character of the line) and, if so, acts on that
request. (Requests are described below under "List of Control
Requests.") If the input line is not an abbrev request line
and abbreviations are included in the line, the abbreviations
are expanded once and the expanded string is passed on to the
normal Multics command prodessor. The abbrev command
processor is, therefore, spliced in between the listener and
the normal command processor. Note that abbreviations are
expanded only once; i.e., abbreviations cannot be nested.

The abbrev command is driven by a user profile segment that
contains the user's abbreviations and other information
pertinent to execution on the user's behalf. The profile
segment resides (by default) in the user's home directory. If
the profile segment is not found, it is created and
initialized with the name Person id.profile where Person id is
the login name of the user.- For example, if thi user
Washington logs in under the States project, the default
profile segment is: '

>user_dir_dir>States>Washington>Washington.profile

The profile segment being used by abbrev can be changed at any
time with the .u control request (see below) to any profile
segment in the storage system hierarchy to which the user has
appropriate access. The entryname of a profile segment must
have the suffix profile. A new profile segment can be created
by specifying a nonexistent segment to the .u control request.
The segment is then created and initialized as a profile
uegrnen t, nU:Hlrn"i n~~ t.h(~ uner hn.~) the neeennar,Y accens. 'rhe unnr
must be careful not to delete or terminate the segment thnt is

3-2 AG92-03

abbrev (ab) abbrev (ab)

currently being used as his profile unless he first quits out
of abbrev by issuing the .q control request (see belo~).

The user can suppress expansion of a particular string in a
command line by enclosing it within quotes (If). To suppress
expansion of an entire command line, see the .<space> control
request.

A user might want to include the invocation of the abbrev
command in a start up.ec segment so that he is automatically
able to abbreviate- whenever he is logged in. See the MPM
Reference Guide for a definition of start_up.ec.

NOTES ON CONTROL REQUESTS: An abbrev request line has a period
(.) as the first nonblank character of the line. An abbrev
request line, with the exception of the .s and .<space>
requests, is neither checked for embedded abbreviations nor
('even in part) passed on to the command processor. If the
command line is not an abbrev request line, abbrev expands it
and passes it on to the current command processor.

LIST OF CONTROL REQUESTS: The character
period of an abbrev request line is the
The following requests are recognized:

immediately after the
name of the request.

.a <abbr> <rest of line>
add the abbreviation <abbr> to the current profile segment.
It is an abbreviation foi <rest of line>. Note that the <rest
of line> string can contain any characters. If the
abbreviation already exists, the user is asked whether to
redefine it. The user must respond with "yes" or "no". The
abbreviation must be no longer than eight characters and must
not contain break characters. '

.ab <abbr> <rest of line>
add an abbreviation that is expanded only
beginning of a line or directly following a
the expanded line. In other words, this is
for a command name .

. af <abbr> <rest of line>

if found at the
semicolon (;) in

an abbreviation

add an abbreviation to the profile segment and force it to
overwrite any previous abbreviation with the same name. The
user is not asked whether to redefine the abbreviation.

3-3 AG92-03

abbrev (ab) abbrev (ab)

.abf <abbr> <rest of line>
add an abbreviation that is expanded only at the beginning of
a line and force it to replace any previous abbreviation with
the same name. The user is not asked whether to redefine the
abbreviation .

. d <abbr1> •.• <abbrn>

. f

delete- the specifTed abbreviations from the current profile
segment •

enter a mode (the default mode) that forgets each command line
after executing it, See the .r and .s requests .

. 1 <abbr1> ... <abbrn>
list ~he specifie! abbreviations and the strings they stand
for. If no abbreviations are specified, all abbreviations in
the current profile segment are listed .

. la <letter1> ... <lettern>

. q

,~ r

list all-abbreviations- starting with the specified letters.
<letteri> is expected to be a single character. If no letters
are specified, all abbreviations in the current profile
segment are listed .

quit using the abbrev command processor. This request resets
the command processor to the one in use before invoking abbrev
and, hence, prevents any subsequent action on the part of
abbrev until it is explicitly invoked again.

enter a mode that remembers the last line expanded by abbrev.
See the .f and .s requests .

. s <rest of line>
show the user how <rest of line> would be expanded but do not
execute it. The .s request with no arguments shows the user
the last line expanded by abbrev and is valid only if abbrev
is remembering lines. See the .f and .r requests .

. u <profile>

• p

specify to abbrev the pathname of a profile segment to use.
<profile segment> becomes the current working profile segment.
The user needs "r" access to use the profile segment and "w"
access to add and delete abbreviations .

print the name of the profile segment being used.

3-4 AG92-03

abbrev (ab) abbrev (ab)

.<space> <rest of line>
pass <rest of line> on to the current command processor
wit~out expanding it. Using this request, the user can issue
a command line that contains abbreviations that are not to be
expanded.

NOTES ON BREAK CHARACTERS: When abbrev expands a command line,
it treats certain characters as special or break characters.
An abbreviation cannot contain break characters. Any
character string that is less than or equal to eight
characters long and is bounded by break characters is a
candidate for expansion. The string is looked up in the
current profile segment and, if it is found, the expanded form
is placed in (a copy of) the command line to be passed on to
the normal command processor. .

The characters that abbrev treats as break characters are:

newline
formfeed
vertical tab
horizontal tab
space
quote.
dollar sign
apostrophe
grave accent
period
semicolon
vertical bar
parentheses
less than
greater than
brackets
braces

"
$

.
t
I

()
<
>
l J
{ }

EXAMPLES: Suppose that a user is typing the segment name suffix
fortran repeatedly while editing FORTRAN source segments. The
user might wish to abbreviate the suffix to "ft" as follows:

Invoke the abbrev command:

abbrev

Define the abbreviation:

.a ft fortran

3-5 AG92-03

abbrev (ab) abbrev (ab)

Now that "ft" is defined invoke a text editor to create or
edit the source segment:

qedx
r sample.ft

In order to write out one of the segments from qedx by a
different name, the user must type the expanded name since the
qedx command (and not the abbrev command processor) is
intercepting all terminal input. For example, after editirig
sample.fortran the user might want to write out the changed
version as example.fortran. This can be done by typing to
qedx:

w example.fortran

If inst~ad the user types:

w example.ft

a segment is created by exactly that name (example.ft). In
this case, if the user tries to print the segment while at
command level (by typing "print example.ft"), the abbrev
processor expands the command line and the print command looks
for a segment named example.fortran; since no such segment
exists, the print command responds with an error message.

3-6 AG92-03

accept_messages (am) accept_messages (am)

SYNTAX AS A COMMAND:

am {destination} {-control_args}

FUNCTION: initializes or reinitializes the user's process for
accepting messages sent by the send message command and
notifications of the form "You have -mail." sent by the
send mail command.

ARGUM]~NTS :

destination
is of the form Person id.Project id to specify a mailbox. The
default is the user's default mailbox. If destination
contains either < or >, it is assume~ to be the p~thname of a
mailbox.

CONTROL ARGUMENTS:

-brief, -bf
prevents accept messages from informing the user that it is
creating a mailbox and prints messages in short format (see
the -short control argument below).

-pathname path, -pn path
specifies a mailbox by pathname.
This control argument and the
mutually exclusive.

The mbx suffix is assumed.
destination argument are

-call {cmdline}
when the message is received, instead of printing it in the
default format, accept messages calls the command processor
with a string of the form:

cmdline number sender time message {path}

where:

cmdline

number

sender

is any Multics command line; cmdline must be
enclosed in quotes if it contains blanks or other
command language characters.

is the sequence number of
when the -hold control
otherwise, number is O.

the message, assigned
argument is used;

is the User id of the person who sent the message.

3-7 AG92-03

accept_messages (am) accept_messages (am)

time is the date-time the message was sent.

message is the actual message sent.

path is the pathname of the mailbox to which the
message was sent. If the message was sent to the
default mailbox, path is omitted.

To reverse the effect of a previously specified -call control
argument, the user can specify the -call control argument with
no cmdline argument.

-flush DT
discards messages sent before the specified date-time, where
DT is a string acceptable to the convert date to binary
subroutine (described in the MPM Subroutines}. This-control
argument is intended to be used by operators and consultants.

-hold, -hd
holds messages until explicitly deleted by the delete message
command. Messages printed when the -hold is in effect are
preceded by an identifying number.

-long, -lg
precedes every message printed by the sender's Person id and
project_ide This is the default.

-nohold
reverts -hold

-prefix 8TR
places the string 8TR in front of all messages printed as they
are received. The string can be up to 12 characters long and
can contain the ioa_ control strings AI A,I and A_ if desired.

-print, -pr
prints all messages that were received since the last time the
user was accepting messages.

-short, -sh
precedes consecutive messages from the
instead of the Person id and Project_ide

-time N, -tm N

same sender by "_.ft -.

prints undeleted messages every N minutes, preceded by a
message of the form:

You have X messages

3-8 AG92-03

accept __ messages (am) accept_messages (am)

where X is the number of undeleted messages.
time mode is reset.

If N equals 0,

NOTES: The user should not give conflicting control arguments in
the same invocation of the command (i.e., -long and -short or
-long and -brief).

If the mailbox:

)udd>Project_id>Person id>Person id.mbx

does not exist, the accept messages command creates it. An
event channel is created to-receive wakeups from send message
so that when a message is received, it is printed- on the
user's terminal. Messages sent when the user is not logged in
or 'when the user is deferring messages (see the defer messages
command) are saved in the mailbox and can be read-later by
invoking the print messages command. The send mail command
stores mail in the same mailbox. See "Extended Access" in the
print_mail command description for an explanation of mailbox
access.

Channel and process identifiers are stored
mailbox. Since only one process can receive a
message is placed in the mailbox, it is not
several users to share the same mailbox.

3-9

in the user's
wakeup when a
advisable for

AG92-03

add name (an)

SYNTAX AS A COMMAND:

an path names

FUNCTION: adds alternate name(s) to the existing name(s) of a
segment, multisegment file, directory, or link.

ARGUMENTS:

p,ath
. is the pathname of a segment, multisegment file, directory, or

link.

names
are additional names to be added.

ACCESS REQUIRED: modify on the parent directory.

NOTES: The equal
"Constructing and
Guide.

and star conventions
Interpreting Names"

can
in the

be used. See
MPM Reference

Two entries in a directory cannot have the same entryname;
therefore, special action is taken by this command if the
added name already exists in the directory that contains the
path argument. If the added name is an alternate name of
another entry, the name is removed from this entry, added to
the entry specified by path, and the user is informed of this
aation. If the added name is the only name of another entry,
the user is asked whether to delete this entry. If the answer
is "yes", the entry is deleted and the name is added to the
entry specified by path; if the answer is "noH, no action is
taken.

See also the descriptions of the delete name and rename
commands.

EX.AMPLES:

The command line:

an >my_dir>example.p11 sample.p11

3-10 AG92-03

add name (an)

adds the namesample.p11 to the segment example.p11 in the
directory >my_dir.

The command line:

an >udd>**.private ==.public

adds to every entry having a
component a similar name with
the last component.

3-11

name with private as the last
public, 'rather than private, as

AG92-03

SYNTAX AS A COMMAND:

asp search list search path1 {-control args}
search_pathN {-control_args} -

FUNCTION: adds one or more search paths to the specified search
list.

ARGUMENTS:

search list
is the name of the search list to which the new search paths
are added. Synonyms of search list are described in the
individual command descriptions.

search pathi
spe~ifiei a new search path, where search pathi is a relative
or absolute pathname or a keyword. (For a list of acceptable
keywords see "IJist of Keywords" below.) Each search pathi can
be followed by either the -after, -before, -first, or -last
control argument to specify its position within the search
list. If no search path position control argument is
specified, -last is assumed.

CONTROL ARGUMENTS:
are used only with the search_path arguments and can be chosen
from the following:

-after STR, -af STR
specifies that the new search path is positioned after the 8TH
search path. The current search path is an absolute or
relative pathname or a keyword. In representing STH it is
necessary to use the same name that appears when the
print search paths command is invoked. This control argument
is incompatiole with -before and -first.

-before STR, -be STR
specifies that the new search path is positioned before the
STR search path. This control argument is incompatible with
-after and -first.

-first, -ft
specifies that the new search path is positioned as the first
search path in the search list. This control argument is
incompatible with -after and -before.

3-12 AG92-03

-last, -It
specifies that the new search path is positioned as the last
search path in the search list.

LIST OF KEYWORDS:

Listed below are the keywords accepted as search paths in
place of absolute or relative pathnames. There is no
restriction as to the position of any of these keywords within
the search list.

-h6me dir, -hd
-process dir, -pd
-referencing_dir, -rd
-working_dir, -wd

NOTES: In addition, a pathname can be specified with the Multics
active function Luser name] or Luser project]. A search path

. enclosed in quotes is not expanded when placed in the search
list. It is expanded when referenced in a user's process.
This feature allows search paths to be defined that identify
the process directory or home directory of any user.

If a link target does not exist, the search facility continues
to search for a matching entryname.

The search facility is composed of the following commands:

add search paths, asp
delete search paths, dsp
print search path, psp
set search paths, ssp
where_search_paths, wsp

EXAMPLES:

The command line:

asp translator >udd>Project_id>Person_id>include

adds the absolute pathname >udd>Project id>Person id>include
a8 a search path. This new search path -is positioned as the
last search path in the translator search list.

3-13 AG92-03

The command line:

asp trans <include_files -first

adds the absolute pathname represented by the relative
pathname <include files as a search path to the trans search
list where trans Is a synonym for translator. This new search
path is positioned as the first search path in the search
list. .

The command line:

asp info info files -after >doc>info

adds the absolute pathname represented by the relative
pathname info files as a search path to the info search list.
This new search path is positioned in the info search list
after the >doc>info search path.

The command line:

asp translator >udd>[user project]>incl -be >ldd>include

adds the -unexpanded pathname >udd>[user project]>incl to the
translator search list. This new search path is positioned
before the >ldd>include search path.

3-14 AG92-03

add search rules (asr) add search rules (asr)

SYNTAX AS A COMMAND:

asr path11 {-control arg path21} ...
- path1n {-control_arg path2n}

FUNCTION: allows the user to change object segment search rules
dynamically. The search rules to be added can be inserted at
any point in the current search rules.

ARGUMENTS:

path1:i
is usually a pathname (relative or absolute) representing a
directory to be added to the current search rules. It can
also be a keyword (see "List of Keywords" below).

path2i
is'- usually a pathname (relati ve or absolute) -representing a
current search rule. It can also be a keyword (see "List of
Keywords" below).·

CONTROL ARGUMENTS:
must precede the path2i argument~

-before, -be
place path1i before the current search rule identified by
path2i. -

-after, -af
place path1i after the current search rule identified by
pa~h2i. -

LIST OF KEYWORDS: In addition to pathnames, both the path1 and
pa.th2 arguments accept the keywords:

initiated segments
referencing dir
working_dir-

LIST OF PATH1 KEYWORDS:
keywords:

The path1 argument also accepts the

3-15 AG92-03

add search rules (asr)

home dir
process dir
site-de1ined keywords.

add search rules (asr)

(See the description of the set search rules command for an
explanation of the site-defined keywords7)

NOTES: If the add search rules command is invoked without the
control arg and path2i arguments, the pathname or keyword
specified by path1i is appended to the end of the user's
current search rules7

Any representation of a current search rule is acceptable for
the path2i argument. It is not necessary to use the same name
that appears when the print_search_rules command is invoked.

3-16 AG92-03

SYNTAX AS A COMMAND:

abc paths {-control_args} ..

FUNCTION: sets the bi t count of a segment that for some reason does
not have its bit count set properly (e.g., the program that wes
writing the segment got a fault before the bit count was set, or
th~process terminated without the bit count being set).

ARGUMENT:

paths
are the pathnames of segments and multisegment files. The star
convention is allowed.

CONTROL ARGUMENTS:

-character, -ch
set the bit count to the last nonzero character. The default is
the last nonzero word.

-chase I
chases links when using the star convention. The default is to
not chase links when using the star convention.

-long, -lg
print a message when the hi t count of a segment is changed, gi ving
the old and new values.

-no chase I
does not chase links when using the star convention. This is the
default.

ACCESS REQUIRED:
multisegment
required.

The user must have write access on the segment or
file. Modify on the parent directory is not

NOTES: The adjust bi t count command looks for the last nonzero
36-bi t word or (1.f specified) the last nonzero character in the
segment and sets the bi t count to indicate that the word or
character is the last meaningful data in the segment.

If the bit count of a segment can be computed but cannot be set
(e.g., the user has improper access to the segment), the

3-17 AG92-03

adjust_bit count (abc)

computed value is printed so that the user can use the
set bit count command after resetting access or performing other
ne.cessary correcti ve measures. See the description of the
set bit count command. - -

The adjust bit count command should not be used on segments in
structured-files. The vfile adjust command should be used to
adjust inconsistencies in structured files.

3-18 AG92-03

after (af)

SYNTAX AS A COMMAND:

af strA strB

SYNTAX AS AN ACTIVE FUNCTION:

[af strA strB]

after (af)

FUNCTION: returns the string following the first occurrence of
strB in strA. If strB does not occur in strA, the null string
iB returned.

EXAMPLES:

string [after abcdef123def456 def]
123def456
string [after abcdef gh]

string [format_line XyAaZZ [after 1.4596e+17 7JJ
XYZZ

3-19 AG92-03

and

SYNTAX AS A COMMAND:

SYNTAX AS AN ACTIVE FUNCTION:

[and tf_args]

and

FUNCTION: r~turns true if all the tf args are equal to true,
otherwise it returns false. If anyone of the tf args does
not have the value true or false, an error message is· printed.

3-20 AG92-03

ans,wer answer

SYNTAX AS A COMMAND: '

answer STR {-control_argsl command_line

FUNCjION: provides preset answers to questions asked by another
command.

ARGUMENTS:

STR
is the desired answer to any question. If the answer is more
than one word, it must be enclosed in quotes. 'If STR is
-query, the question is passed on to the user. The -query
control argument is the only one that can be used in place of
STR.

command line
is any Multics command line. It can contain any number of
separate arguments (i.e., have spaces within it) and need not
be enclosed in quotes.

CONTROL ARGUMENTS:

-brief, -bf
suppresses printing (on the user's terminal) of both the
qu.estion and the answer.

-query
skips the next
to the user.
switch.

-then STR

answer in a sequence, passing on 'the question
The answer is read read from the user_io I/O

supplies the next answer in a sequence.

-times N
gives the previous answer (STR, -then STR, or -query) N times
only (where N is an integer).

NOTES: Answer provides preset responses to questions by
establishing an on unit for the condition command question,
and then executing the designated command. If the aesignated
command calls the command query subroutine (described in the
MPM Subroutines) to ask a-questIon, the on unit is invoked to
supply the answer. The on unit is reverted when the answer
command returns to command level. See "List of System

3-21 AG92-03

answer answer

Conditions and Default Handlers" in the MPM Reference Guide
for a discussion of the command_question condition.

If a question is asked that requires a yes or no answer, and
the preset answer is neither "yes" nor "no", the on unit is
not invoked.

T~e last answer specified is issued as many times as
necessary, unless followed by the -times N control argument.

EXAMPLES: To delete the test dir directory without being
interrogated by the delete_dir command, type:

answer yes -bf delete dir test dir

To automatically see the first three blocks of an info segment
named fred. info and then be interrogated about seeing any more
blocks, type:

answer yes -times 2 help fred

The help command prints the first block, then prints another
block every time the user answers yes. In this example, the
first three blocks are printed before the user is
interrogated.

Sequences of answers are especially useful in exec corns and
absentee jobs. To supply the sequence of answers ~yes, no,
no, yes", type:

answer yes -then no -times 2 -then yes command line

To supply the sequence of answers "no, ask the user twice,
yes, no", type:

answer no -query -times 2 -then yes -then no command line

3-22 AG92-03

apl apl

SYNTAX AS A COMMAND:

apl {workspace_id} {-control_args}

FUNCTION: invokes the APL interpreter, optionally loading a
saved workspace.

ARGUMENTS:

workspace id
is the pathname of a saved workspace to be loaded. The
default is to load the user's continue workspace, if any,
otherwise to provide a clear workspace.

CONTROL ARGUMENTS:

-terminal type STR, -ttp STR
specifTes the kind of terminal being used. Possible values of
STH are:

1050
2741
1030
ARDS
ASCII
BIT PAl RED
CORR2741
LA36
TEK4013
TEK4015
TELERAY11
TN300
TYPEPAIRED

This control argument specifies which one of several character
translation tables is to be used by APL when reading or
writing to the terminal. Since there are several different
kinds of APL terminals, each incompatible with the rest, it is
important that the correct table be used. Specifying a
terminal ty~e to APL changes the terminal type only as long as
APL is actlve. The default depends on the user's existing
terminal type (refer to the set tty command, in MPM
Communications I/O, CC92). These terminal types default to
the same APL terminal type: 1050, 2741, CORR2741, ARDS,
TN300, TEK4013, TEK4015, ASCII, LA36, TELERAY11. All other
terminal types default to ASCII. The APL terminal types

3-23 AG92-03

apl apl

BITPAIRED and TYPEPAIRED are generic terminal types that can
be used with any APL/ASCII terminal of the appropriate type.

-brief errors, -bfe
causes APL to print short error messages.
default.

-long errors, -lge

This is the

causes APL to print long error messages. The short form of
the message is printed, followed by a more detailed
explanation of the error.

-user number N
ae'ts the APL user number (returned by some APL functions) to
N. The default is 100.

-check; -ck
causes a compatibility error to occur if a monadic transpose
of rank greater than 2, or a residue or encode with a negative
left argument is encountered. (The definition of these cases
is different in Version 2 APL from Version 1 APL).

-debug, -db
causes APL to call the
This puts the user at a
remain in APL. This
debugging apl itself.

listener (cu $cl) upon system errors.
new command level. The default is to
control argument is intended for

-no quit handler, -nqh
causes APL to ignore the quit condition. The default is to
trap all quits within APL.

-temp dir path, -td path
changes the directory that is used to hold
segments that contain the active workspace
default is to use the process directory.

the temporary
to path. The

NOTES: This command invokes the Version 2 APL interpreter, which
replaces the obsolete Version 1 APL interpreter.

For a complete description of the APL language, terminal
conventions, and directions for converting Version 1 APL
workspaces, refer to Multics APL, Order No. AK95.

3-24 AG92-03

archive (ac) archive (ac)

SYNTAX AS A COMMAND:

ac key archive_path paths

FUNCTION: combines an arbitrary number of separate segments into
one single segment. The constituent segments that compose the
archive are called componsnts of the archive segment.

ARGUMENTS:

key
is one of the functions listed below under "List of Keywords."
The key functions are listed according to their operation.

archive path
is the pathname of the archive segment to be created or used.
The archive suffix is added if the user does not supply it.
If the archive segment does not exist for replace and append
operations, it is created as described above. The star
convention can be used with extraction and table of contents
operations.

paths
are the components to be operated on by table of contents and
delete operations. For append, replace, update and extract
operations, each path specifies the pathname of a segment
corresponding to a component whose name is the entryname
portion of the pathname. The star and equal conventions
cannot be used. (Some operations may not require any path
arguments; refer to the specific operation for details.)

LIST OF OPERATIONS! The archive
operations that the Multics
archive segments and to
operations are:

Table of contents

command performs a
user can employ to

maintain existing

print a table of contents of an archive segment.

Append

variety of
create new

ones. The

append components to, or create, an archive segment.

Replace
replace components in, append to, or create an archive
segment.

3-25

archive (ac) archive (ac)

Update operation
update an archive segment by replacing components with more
recently modified ones.

Del,ete
delete specified components of an archive segment.

Extract
extract components from an a~chive segment and place them in
segments in the storage system.

Each of these general operations can be specialized to perform
several functions and, in many cases, can be combined with the
copy and deletion features described below. Such co~binations
give the user extensive control ,over the maintenance of his
archive segments.

LIST OF KEYWORDS:
is one, of the key functions listed below according to their
operation.

Table of Contents Operation:

t

tl

tb

tlb

print the entire table of contents if no components are named
by the path arguments; otherwise print information about the
named components only. A title and column headings are
printed at the top.

print the table of contents in long form; operates like t,
printing more information for each component.

print the table of contents, briefly; operates like t, except
that the title and column headings are suppressed.

print the table of contents
like tl, except that the
stlppressed.

in long form, briefly; operates
title and column headings are

Append Operation:

a
append named components to the archive segment. (The segments

3-26 AG92-03

ar chive (ac) archi ve (ac)

ad

adf

ca

cad

corresponding to the appended components are not affected.)
If a named component is already in the archive, a diagnostic
is issued and the component is not replaced. At least one
component must be named by the path arguments. If the archive
segment does not exist, it is created.

append and delete; operates like a and then deletes all
segments that have been appended to the archive. If the
safety switch is on for any of the corresponding segments, the
user is asked whether to delete the segment.

append and force
deletion of all
archive.

deletion; operates
segments that have

like a
been

and then forces
appended to the

copy and append; operates like a, appending components to a
copy of the new archive segment created in the user's working
directory.

copy, append, and delete; operates like ad, appending
components to a copy of the archive segment and deleting the
appended segments.

cadf
copy, append, and force deletion; operates like adf, appending
components to a copy of the archive segment and forcibly
deleting the segments requested for appending.

Replace Operation:

r

rd

replace components in, or add' components to the archive
segment. When no components are named in the command line,
all components of the archive for which segments by the same
name are found in the user's working directory are replaced.
When a component is named, it is either replaced or added. If
the archive segment does not exist, it is created.

replace and delete; operates like r, replacing or adding
components, then deletes all segments that have been replaced
or added.

3-27 AG92-03

archive (ac) archive (ac)

rdf

cr

crd

replace and force deletion; operates like rand fornes
deletion of all replaced or added segments.

copy and replace; operates like r, placing an updated copy of
the archive segment in the user's working directory instead t'f
changing the original archive segment.

copy, replace and delete; operates like rd, placing an updated
copy o£ the archive segment in the user's working directory.

crdf
copy, replace, and force deletion; operates like rdf, placing
an updated copy of the archive segment in the user's working
directory.

Update Operation:

u

ud

udf

cu

cud

update; operates like r except that it replaces only those
components for which the corresponding segment has a date-time
modified later than that associated with the component in the
archive. If the component is not found in the archive
segment, it is not added.

update and delete; operates like u and deletes all updated
segments after the archive haa been updated.

update and force deletion; operates like u and forces deletion
of all updated segments.

copy and update; operates like u, placing an updated copy of
the archive segment in the user's working directory.

copy, update, and delete; operates like ud, placing an updated
copy of the archive segment in the user's working directory.

cudf
copy, update, and delete force; operates like udf, placing an
updated copy of the archive segment in the user's working
directory.

3-28 AG92-03

archive (ac) archive (ac)

Delete Operation:

d

cd

delete from the archive those oomponents named by the path
arguments.

copy and delete; operates like d, placing an updated copy of
the archive segment in the working directory.

Extract Operations:

x

xf

extract from the archive those components named by the path
arguments, placing them in segments in the storage system.
The directory where a segment is placed is the directory
portion of the path argument. The access mode stored with the
archive component is placed on the segment for the user
performing extraction. If a segment already exists, this
operation observes the duplicated name convention in a manner
similar to the copy command. If no component names are given,
all components are extracted and placed in segments in the
working directory. The archive segment is not modified.

extract and delete force; operates like x, forcing deletion of
any duplicate names or segments found where the new segment is
to be created.

NOTES: The process of placing segments in an archive is
particularly useful as a means of eliminating wasted space
that occurs 'when individual segments do not occupy complete
pages of storage. Archiving is also convenient as a means of
packaging sets of related segments; it is used this way when
interfacing with the Multics binder (see the bind command
description in this document).

The table of contents operation and the extract operation use
the existing ,contents of an archive segment; the other
operations change the contents of an archive segment. A new
archive segment can be created with either the append or
replace operation. In each of the operations that add to or
replace components of the archive, the original segment is
copied and the copy is written into the archive, leaving the
original segment untouched unless deletion is specified as
part of the operation. Use of the various operations is
illustrated in the "Examples" at the end of this description.

3-29 AG92-03

archive (ac) archive (ac)

The table of contents "operation is used to list the contents
of an archive segment. It can be made to print information in
long or brief form with or without column headirigs.

The append operation is used to add components to the archive
segment and to create new archive segments. When adding to an
existing archive, if a component of the same name as the
segment requested for appending is already present in the
archive segment, a diagnostic message is printed on the user's
terminal and the segment is not appended. When several
segments are requested for appending, only those segments
whose names do not match existing components are added to the
archive segment.

The replace operation is similar to the append operation in
that it can add components to the archive segment, and
therefore, it is also used to create new archive segments.
However, unlike the append operation, if a component of the
same name as the segment requested for replacing is already
pre~ent in the archive segment, that component is overwritten
with the contents of the segment. When several segments are
requested for replacing, those ~egments whose names do not
match existing components are added to the archive segment, as
in the append operation.

The update operation replaces existing components only if the
date-time modified of a segment requested for updating is
later than that of the corresponding component currently in
the archive segment. When a segment whose name does not match
an existing component of the archive segment is requested for
updating, it is not added to the archive segment.

The delete operation is used
archive segments. It cannot
system and is not analogous
below.

only to delete components from
delete segments from the storage

to the deletion feature described

The extract
components
operation
operation.

operation is
elsewhere in
performs a

used to create copies
the storage system.

function opposite to

of archive
The extract
the append

In addition to the operations described
featur~s, copying and deletion, that

above, there ar"e two
can be combined with

3-30 AG92-03

archive (ac) archive (ac)

certain operations to modify what they do. Since copying and
deletion are features and not operations, they cannot stand
alone, but must always be combined with those operations that
permit their use. The deletion feature is distinct from the
delete operation, as noted below.

The copying feature can be combined with the append, replace,
update, and delete operations. Since an archive segment can
be located anywhere in the storage system, it is occasionally
convenient to move the segment during the maintenance process
or to modify the . original segment while temporarily retaining
an unmodified version. When the copying feature is used, the
original archive segment is copied from its location in the
storage system, updated, and placed in the user's working
directory.

The deletion feature can be combined with the append, replace,
and update operations to delete segments from the storage
system after they have been added to or replaced in an archive
segment. The deletion can be forced to bypass the system's
safety function, i.e., the user is not asked whether to delete
a protected segment before the deletion is performed. (This
is analogous to the operation of the delete force command.)
Nothing is deleted until after the archive s~gment has been
successfully updated.

Deletion of segments .(deletion feature) is not to be confused
with deletion of components from archive segments. The delete
operation is a stand-alone function of the archive command
that operates only on components of archive segments, deleting
them from the archive. The deletion feature, on the other
hand, performs deletions only when combined with an operation
of the archive command, and then deletes only segments from
the storage system after copies of those segments have been
added to, or used to update, archive segments.

The archive command can operate in two ways: if no components
are named on the command line, the requested operation is
performed on all existing components of the archive segment;
if components are named on the command line, the operation is
performed only on the named components.

The star convention
pathname with extract
cannot be used with

can be used in the archive segment
and table of contents operations; it
append, replace, update, and delete

3-31 AG92-03

archive (ac) archi ve (ac)

operations. Component names cannot be specified using the
star convention. See "Constructing and Interpreting Names" in
the MPM Reference Guide for a discussion of the star
convention.

No commands other than archive, archive table, archive sort,
and reorder archive should be used to manipulate the contents
of an archive segment; using a text editor or other command
might result in unspecified behavior during subsequent
manipulations of that archive segment. See the descriptions
of the archive sort command and the reorder archive command in
the MPM Subsystem Writers' Guide.

Each component of an archive segment retains certain
attributes of the segment from which it was copied. These
c6nsist of a single name, the effective mode of the user who
placed the component in the archive, the date-time the segment
was last modified, and the bit count of the segment. In
addition, the date-time that the component was placed in the
archive segment is maintained. When a component is extracted
from an archive segment and placed in the storage system, the
new segment is given the name of the component, the bit count
of the component, and the mode associated with the component
for the user performing the extraction.

The date-time-modified value of a component has a preclslon of
one tenth'of a minute. This means that a copy of a component
modified less than a tenth of a minute after the archived copy
is not updated. Users who update archives in exec com
segments should be aware of this limitation.

The archive command maintains the order of components within
an archive segment. When new components are added, they are
placed at the end. The archive sort or reorder archive
commands (described in the MPM Subsystem Writers' Guide) can
be used to change the order of components in an archive
segment.

The archive command cannot be used recursivelye The user is
asked a question if the command detects an attempt to use the
archive command prior to the completion of its last operation.

Because the
indiv~sible,

replacement and
it is possible

3-32

deletion
for them

operations are not
to be stopped before

AG92-03

archive (ac) archive (ac)

completion and after the original segment has been truncated.
This can happen, for example, if one gets a record quota
oVE~rflow. When this situation occurs, a message is printed
informing the user of what has happened. In this case, the
only good copy of the updated archive segment is contained in
the process directory.

Archive segments can be placed as components inside other
archive segments, preserving their identity as archives, and
can later be extracted intact.

When the archive command detects an internal inconsistency, it
prints a message and stops the requested operation. For table
of contents and extraction operations, it will have already
completed requests for those components appearing before the
place where the format error is detected.

For segment deletions after replacement requests, if the
specified component name is a link to a segment, the segment
linked to is deleted. The link is not unlinked.

The archive command observes segment protection by
interrogating the user wheri (unforced) deletion is requested
of a segment to which the user does not have write permission.
If the user can obtain write permission (i.e., has modify
permission on the superior directory) and replies that the
segment should be deleted, the segment is deleted.

The archive command refers to the archive segment by full
pathname (rather than only the entryname portion) in all
printed messages. See "Examples" below.

EXAMPLES: Assume that the user has several short segments and
wishes to consolidate them to save space. The working
directory, >udd>Project id>dir one, might initially look like
the following: --

list

Segments = 5, Lengths = 5.

rw 1 epsilon
rw 1 delta
rw 1 gamma

3-33' AG92-03

archive (ac) archive (ac)

rw 1 beta
rw 1 alpha

The user creates an archive segment (using the append key)
containing four of the five segments.

archive a greek alpha beta gamma delta
archive: Creating >udd>Project_id>dir_one>greek~archive

The working directory then has one more segment (the archive
segment), and a table of contents of the new archive segment
shows the four components.

list

Segments = 6, Lengths = 6.

rw 1 greek. archive
rw 1 epsilon
rw 1 delta
rw 1 gamma
rw 1 beta
rw 1 alpha

archive ,tl greek

>udd>Project_id>dir_one>greek.archive

name

alpha
beta
gamma
delta

updated mode

09/12/74 1435.0 rw
09/12/74 1435.0 rw
09/12/74 1435.0 rw
09/12/74 1435.0 rw

modified length

09/12/74 1434.2 441
09/12/74 1434.2 257
09/12/74 1434.2 694
09/12/74 1434.2 109

After changing the segment delta, the user replaces it in the
archive segment and appends (using the replace key) the
segment epsilon to the archive segment. The user also deletes
the component gamma.

AG92-03

archive Cac) archive (ac)

archive r greek delta epsilon
archive: epsilon appended to >udd>Project>dir one>

greek.archive -

archive d greek gamma

A table of contents now shows a different set of components.

archive t greek

>udd>Project_id>dir_one>greek.archive

updated

09/12/74 1435'.0
09/12/74 1435.0
09/12/74 1437.5
09/12/74 1437.5

name

alpha
beta
delta
epsilon

The user later replaces the component alpha with an updated
copy and deletes the storage system segment alpha, causing the
updated column of a table of contents to change and a list of
the working directory to show one less segment.

archive rd greek alpha

archive t greek

>udd>Project_id>dir_one>greek.archive

updated

09/12/74 1641.5
09/12/74 1435.0
09/12/74 1437.5
09/12/74 1437.5

list

alpha
beta
delta
epsilon

Segments = 5, Lengths = 5.

3-35

name

AG92-03

archive (ac) archive (ac)

rw 1 greek. archive
rw 1 epsilon
rw 1 delta
rw 1 gamma
rw 1 beta

In another directory, >udd>Project>dir two, which contains a
more recent version of the segment alpha, the user copies and
updates the archive segment, causing the component alpha to be
replaced and the updated archive segment to be placed in the
working directory.

archive cu <dir one>greek
archive: Copying >udd>Project id>dir one>greek.archive
archive: alpha updated in >udd>Project id>dir two>

greek. archive --

list

Segments = 2, Lengths = 2.

rw
rw

greek. archive
alpha

archive t greek

>udd>Project_id>dir_two>greek.archive

updated

09/12/74 1648.3
09/12/74 1435.0
09/12/74 1437.5
09/12/74 1437 .. 5

alpha
beta
delta
epsilon

ac t <dir_one>greek

name

>udd>Project_id>dir_one>greek.archive

updated name

09/12/74 1641.5 alpha
09/12/74 1435.0 beta

3-36 AG92-03

archive (ac)

09/t2/74 1437.5
09/12/74 1437.5

delta
epsilon

archive (ac)

Notice that the entry in the updated column for the component
alpha differs in the two tables of contents. Finally, the
user extracts two components into the new working directory,
presumably to work on them.

archive x greek beta delta

list

Segments = 4, Lengths = 4.

rw 1 delta
rw 1 beta
rw 1 greek.archive
rw 1 alpha

3-37 AG92-03

archive table (act) archive table (act)

SYNTAX AS A COMMAND:

act archive_path {starnames}

SYNTAX AS AN ACTIVE FUNCTION:

[act archive_path {starnames}]

FUNCTION: returns the names of specified archive components in a
specified archive segment. Names are returned separated by
single spaces.

ARGUMENTS:

archive path
is the pathname of an archive segment, with or without the
archive suffix. The star convention is NOT allowed.

LIST OF OPTIONAL ARGUMENTS:

starnames
are optional component names to be matched against names of
archive components. The star convention is allowed.

NOTES: Invoked as a command, archive table prints the component
names, one name per line.

3-38 AG92-03

assign_.resource (ar) assign_resource (ar)

SYNTAX AS A COMMAND:

ar resource_type {-control_args}

FUNCTION: calls the resource control package (RCP) to assign a
resource to the user's process.

ARGUMENT:

resource type
specifies the type of resource to be assigned. Currently,
only device types can be specified. The -device control
argument is used to name a specific device to assign. Other
control arguments are used to specify characteristics of the
device to be assigned. The following device type keywords are
supported:

tape drive
disk-drive
console
printer
punch
reader
special

CONTROL ARGUMENTS:

-device STR, -dv STR
specifies the name of the device to be assigned. If this
control argument is specified, other control arguments that
specif~ device characteristics are ignored. (See "Examples"
below.) If the -long control argument (see below) is used in
conjunction with this control argument, a message containing
the name of the assigned device is printed on the user's
terminal; otherwise, no message is printed.

-model N
specifies the device model number characteristic. Only a
device that has this model number is assigned. In order to
find the model numbers that are acceptable, use the
print configuration deck command described in System Tools,
Order-No. AZ03. -

-track N, -tk N
specifies the track characteristic of a tape
can be either 9 or 7. If this control
specified and if the -volume control
specified, a track value of 9 is used when
devi.ce.

3-39

drive. The value
argument is not

argument is not
assigning a tape

AG92-03

assign~resource (ar) assign_resource (ar)

-density N, -den N
specifies the density capability characteristic of a tape
drive. There can be more than one instance of this argument.
A tape drive is assigned that is capable of being set to all
of the specified densities. The acceptable values for this
argument are:

200
556
800

1600
6250

Note that the values permitted depend on the particular
hardware on the system.

-train N, -tn N
specifies the print train characteristic of a printer.

-line length N, -11 N
specifies the line length of a printer. Its value must be one
that is found in the "line length" field of a printer PRPH
configuration card. If this field is not specified on a
printer PRPH configuration card, this device characteristic is
ignored for this printer.

-volume STR, -vol STR
specifies the name of a volume. If possible, the device
assigned is one on which this volume has already been placed.
If this is not possible (e.g. t the volume is on a device
assigned to a process) any available, appropriate, and
accessible device will be assigned.

-number N, -nb N
specifies the number of resources to assign. All of the
resources assigned have the device characteristics specified
by any other arguments passed to this command. If this
control argument is not specified, one resource is assigned.

-comment 8TH, -com STR
is a comment string that is displayed to the operator when the
resource is assigned. If more than one string is required,
the entire string must be in quotes. Only printable ASCII
characters are allowed. Any unprintable characters (also tabs
or new lines) found in this string are converted to blanks.

--long, -lg
specifies that all of the device characteristics of the
assigned device should be printed. If this argument is not
supplied, only the name of the assigned device is printed.

3-40 AG92-03

assign __ resource (ar) assign_resource (ar)

--- --~------

-system, -sye
specifies that the user wants to be treated as a system
process during this assignment. If this argument is not
specified or if the user does not have the appropriate access,
then the RCP assumes that this assignment is for a nonsystem
process.

-wait {N}, -wt iN}
specifies that the user wants to wait if the assignment cannot
be made at this time because the resources are assigned to
some other process. The value N specifies the maximum number
of minutes to wait. If N minutes elapse and a resource is not
yet assigned, an error message is printed. If N is not
specified, it is assumed that the user wants to wait
indE~fini tely.

-speed N
specifies the
depend on the
following:

75
125
200

speed of a tape drive. The acceptable values
particular hardware on the system and can be the

NOTES: Currently, only device resources can be assigned. An
assigned device still must be attached by a call to some I/O
module. If a device is successfully assigned, the name of the
device is printed. (If the user requests a specific device
that is successfully assigned, the name of the device is not
printed unless the user asks for it. See the -device and
-long control arguments above.)

EXAMPLES: In the example below, the user issues the
assign resource command with the "tape drive" keyword and the
-model-control argument. The system responds with the name of
the assigned device.

aSSign_resource tape_drive -model 500

Device tape_04 assigned

3-41 AG92-03

ass:Lgn_resource (ar) assign_resource (ar)

In the next example, the user issues the assign resource
command with the "tape drive" keyword and the -device and
-long control arguments.- The system responds with the name of
the assigned device and the model number, track, density and
speed characteristics.

assign_resource tape_drive -device tape_05 -long

Device tape 05 assigned
Model =- 500
Tracks = 9
Densities = 200 556 800 1600
Speed = 1 25

3-42 AG92-03

attach audit (ata) attach audit (ata)

SYNTAX AS A COMMAND:

ata {old_switch {new_switch}} {-control_args}

FUNC~ION: sets up a specified I/O switch, with a
stream input output opening, to be audited by the audit I/O
module-:-

ARGUMENTS:

old switch
1S the name of an I/O switch to be audited. The default is
user i/o. If only one switch is specified, it is the
old switch.

new switch
1S the name of an I/O switch to be used by the audit I/O
module. If only one switch argument is given, it is the
old switch. The default value for new switch is
audit_i/o.<time>, where <time> has the value MM/DD7YY--hhmm.m.

CONTROL ARGUMENTS:

-truncate, -tc
truncates the audit file if it already exists. If this
control argument is not given, the audit file is extended by
default.

-pathname path, -pn path
specifies that path is the pathname of the audit file to use.
If pathname is not given, the audit file is in the user's home
directory and named date.audit.

NOTES: If used with no arguments, attach audit sets up auditing
for the user_i/o I/O switch with input-and output audited and
editing on.

Auditing of old switch is done by moving the attachment of
old switch to new switch and then attaching old switch to
new-switch via audit. See the MPM Subroutines discussion of
the- audit I/O module and the MPM Commands discussion of
detach audTt for more information.

LIST OF AUDITING REQUESTS:
A three-character sequence is used to make an auditing

3-43 AG92-03

attach audit (ata) attach_audit (ata)

! .

!?

!e

!E

!a

! r

!t

!d

!n

request: the audit trigger character ("!" by default),
followed by the specific request character, followed by a
newline. An auditing request can either be alone on a line or
have text preceding it on the same line.

prints the combination of input and/or output being audited.

prints a brief description of available auditing requests.'

enters the audit editor. The entry preceding this sequence
becomes the current line to be edited.

enters the audit editor, and processes any text preceding the
sequence on the same line as editing requests. If no text
precedes the sequence, the effect is the same as for !e.

expands abbreviations in the input line. (See the abbrev
command in this manual for more information.)

redisplays the input line and strips off the newline. Further
input can then be appended to the redisplayed line until
another newline is typed, but no further erase or kill
processing is performed on the redisplayed portion. The
redisplayed line plus the appended input (if an.y) becomes the
input line that is returned to the I/O module being audited.

instructs the audit I/O module not to log the input line;
this makes the input-line transparent.

specifies that the input line to which this is appended is
deleted. This is used to kill a line that has been
redisplayed with the !r request.

specifies no operation; this is useful when the !n follows
another auditing request sequence that the user does not want
interpreted.

NOTES ON AUDIT FILE:

The audit file, by default, has the pathname;

3-44 AG92-03

attach audit (ata) attach audit (ata)

>udd>Project_id>Person_id>date.audit

where date is the first eight characters (the date portion)
returned by the date time subroutine at the time of
attaching, and is of the form "MM/DD/YY". This pathname can
also be specified using active functions:

[home_dir]>[date].audit

The default audit file size is unlimited, and the audit file
can become a multisegment file.

The audit editor operates on entries, rather than lines, and
the entry type identifiers are:

EL edit line

IC input characters

IL input line

OC output characters

TC trace of control operations

TM trace of modes operations

NOTES ON AUDIT EDITOR: The audit editor is invoked by typing the
e or E auditing request sequence described above. It edits
and executes lines that have been logged by the audit I/O
module. The syntax of editing requests is similar to that of
qedx requests (see the qedxcommand in this manual). Any
number of requests can be on the same line; spaces are
ignored.

Addressing is done the same way as in the qedx editor, with
two E)xceptions. The "." is a request for self-identification
rather than an indicator for the current entry, and addresses
are expressed in terms of entries in the audit file rather
than lines in a buffer. The edit buffer contains only one
entry at a time. If the default search tag is in use, as is
the case unless specifically overridden, the absolute entry
number refers to the number of entries, with the default
search tag, from the beginning of the file. Similarly, a
relative entry address refers to the number of entries, with
the default search tag, before or after the current address.

3-45 AG92-03

attach audit (ata) attach __ audi t (ata)

LIST OF EDITING REQUESTS: The audit editor re~uests are
familiar (qedx-like) presented below in two categories:

requests, and special requests.

s/HEGEXP/STR/

ADR

substitutes the string STH for occurrences of the regular
expression HEGEXP in the edit buffer.

locates the entry with address ADR. If ADR is not followed by
a request, the audit file entry is printed. An ADR can
contain an absolute entry reference at its beginning, relative
addresses in any portion, and regular expressions in any
portion. If a regular expression in the address is preceded
by the less than character «), a backward search is done to
find a match for the regular expression. An absolute address
is either a number, or the dollar sign ($) to indicate the
last entry in the audit file.

{ADR1,ADR2}p
prints the current entry if no ADR is specified; prints the
addressed audit file entry if a single address is specified;
prints entries from address 1 through address 2 if two
addresses are specified .

. . 8TR

q

passes the string STR to the command processor and then
returns to the audit editor.

quits the editor and returns the current line to the I/O
module being audi ted, wi th the ! e or ! E" sequence included .

. expand
(see the abbrev
of expansion of

expands abbreviations in the edit buffer
command in the MPM Commands for a discussion
abbreviations) .

• off

. on

. 1

disables auditing of input and output in the editor .

enables auditing of input and output in the editor .

addresses the last audit file entry returned by the audit
editor •

. r[STR]
quits the editor and returns the string STH to the I/O module

3-46 AG92-03

attach audit (ata) attach audit (ata)

• n

being audited. If STR is not specified, the r request quits
the editor and returns the edit buffer .

returns a newline character .

. type
prints the audit file entry type of the current position .

. exec
passes the edit buffer to the command processor and returns to
the audit editor .

. d/STR/

. ?

sets the default search tag to the string STR. If STR is only·
one character, only the first character of the tag is used to
determine if an entry is seen (in counting entries and doing
searches). If STR is two characters, the match is made on
both characters of the tag .

prints a brief description of available audit editor requests.

overrides the default search tag for those requests following
on the same line (i.e., any tag is matched). A newline
reestablishes the default search tag.

The REGEXP field of a substitute request is interpreted as a
qedx-style regular expression. The STR field ~f a substitute
request is also interpreted as in qedx, and the & convention
is supported. If REGEXP is null in a substitute request, the
last REGEXP specified in a previous substitute request is
used.

No lines in the audit file are changed by the editor; only
copies are modified.

If the audit editor is being audited, the audit editor can be
invoked from within the editor. For every level of the
editor, a distinct last returned line is remembered.

EXAMPLES: In the example given below, there has been such
extensive use of the erase character that the user may want to
see it displayed. In order to verify ~he input line given, it

3-47 AG92-03

attach audit (ata) attach audit (ata)

can be replayed by using the !r request. The! at the
beginning of the line indicates lines typed by the user.

str#ty =#-print mod########modes red!r
stty -pmodes red

This line does not end with a newline character, so the next
character typed would appear immediately following the "red"
and on the same line. In this example, -pmodes was entered
instead of -modes. Typing the following on that same line:

##########modes red!r

does not correct the error, but returns:

stty -pmodes redmodes red

The erase character cannot be used to correct portions of a
line that has already been replayed. The current situation
can be corrected as follows:

stty -pmodes redmodes red!e
p
stty -pmodes redmodes red
s/redmodes red/red/ s/pmodes/modes/p
stty -modes red
. r

The above procedure enters the audit editor with the !e
request. The p request prints the contents of the edit
buffer. If no argument is given for p, the most recent input
line is printed. Corrections are made to the line and the
modified line is printed. The request .r exits the audit
editor and returns the line to the I/O module being audited.

An alternative procedure is the following:

stty -pmodes redmodes red!n
stty -modes red

The request !n suppresses the entire input line and it is then
reentered correctly.

In the first example given, there are two ways to set the red
shift mode. It can be turned off and then on again, as
follows:

3-48 AG92-03

attach audit (ata) attach audit (ata)

stty -modes Ared
.1.r!E

The .l.r enters the audit editor. This puts the last entry
returned by the audit editor in the edit buffer, then returns
the contents of the buffer. To request the "stty -modes Ared"
command, type:

</Astty/p.r!E
stty -modes Ared

This does a backward search in the audit file for an input
entry beginning with stty, puts this entry in the edit buffer,
prints the contents of the edit buffer, and returns the
contents of the edit buffer.

To see the last five input entries in the audit file at this
point, type:

--4, p ! E
s/redmodes red/red/ s/pmodes/modes/p
.. r
stty -modes Ared
.1.r!E
</Astty/p.r!E

To see the last five output entries prior to this invocation
of the audit editor, type:

.. d/O/
-4,p
stty -pmodes red stty -pmodes redmodes red
stty -pmodes redmodes red
stty -modes red
stty -modes Ared

Note that the entries that are the result of a replay (!r) do
not end in a newline· character, so they run together on the
same line when being printed.

3-49 AG92-03

attach Iv (alv) attach Iv (alv)

. SYNTAX AS A COMMAND:

alv volume name

FUNCTION: calls the resource control package (RCP) to attach a
logical volume.

ARGUMENTS:

volume name
spe~ifies the name of the volume to be attached.

ACCESS REQUIRED: A user must have rw access to the logical
volume to be attached, as defined by the access control
segment (ACS) associated with the logical volume.

NOTES: Attaching a logical volume involves informing the storage
system that a particular volume is attached for a particular
process. A logical volume (unless it is a public logical
volume) must be attached for each process that wishes to use
it. To be attached, the logical volume must first be
physically mounted. This mounting involves mounting all of
the physical volumes that compose the logical volume.

If the specified volume is
operators are requested to
resources are available.
return until the volume is

. the request.

not already mounted, the system
mount the volume, if appropriate
The attach Iv command does not

mounted or tEe operator has denied

The status command issued with the -device control argument
p·rints the name of the logical volume on which a segment
resides.

3-50 AG92-03

basic basic

SYNTAX AS A COMMAND:

basic path {-coritrol_arg}

FUNCTION: invokes the BASIC compiler to translate a segment
containing BASIC source cbde. Either the compiled code is
executed, or a standard object segment is created to be
executed at a later time.

ARGUMENTS:

path
is the pathname of the segment to be translated.
s:uffix need not appear as part of the pathname.
however, be the last component of the name of
segment.

CONTROL ARGUMENTS:

-compile

The basic
It must,

the source

requests BASIC to compile the program and generate a bindable
Multics standard object segment. The resulting object segment
is placed in the user's working directory.

-t"ime N
where N is a decimal number that requests a limit of N seconds
on the execution of the BASIC program. If the limit is
exceeded, the user is asked whether to continue.

NOTES: The -compile and -time control arguments are
incompati ble . .

If the -compile control argument is not specified, the
compiled code is then executed and not saved for future
execution. If the -compile control argument is specified, a
standard object segment is created for subsequent execution.

For a description of the BASIC language on the Multics system,
consult the Multics BASIC manual, Order No. AM82.

For information on usirtg the FAST subsystem to compile BASIC
source code, refer to the Multics FAST Subsystem Users' Guide,
Order No. AU25.

3-51 AG92-03

basic basic

For a description of the features common to all Multics
programming languages, see "Programming Languages" in the MP~~
Reference Guide. A description of object segments can be
found in the MPM Reference Guide in "Creating an Object
Segment."

3-52 AG92-03

before (be) before (be)

SYNTAX AS A COMMAND:

be strA strB

SYNTAX AS AN ACTIVE FUNCTION:

[be strA strB]

FUNCTION: returns the string preceding the first occurrence of
strB in strA. If strB does not occur in strA, th~ entire
string strA is returned.

EXAMPLES:

! string [before abcdef123defabc def]
abc
string [before abcdef g]
abcdef
string [before abcdef123 abc]

string [format line XY~aZZ [before 1 .4596e+17 7JJ
XY1.4596e+1ZZ -

3-53 AG92-03

binary (bin) binary (bin)

SYNTAX AS A COMMAND:

bin values

SYNTAX AS AN ACTIVE FUNCTION:

[bin values]

FUNCTION: returns one or more values in binary.

ARGUMENTS:

value
is a value to be processed. The last character of value
indicates its type. Acceptable types are binary (b),
quartenary (q), octal (0), hexadecimal (h), and unspecified
(u). Any valid PL/I real value is allowed. The absence of
any specifier means decimal. The unspecified value is limited
to 8 characters.

EXAMPLES:

string [binary 657.40J
110100111 • 1

3-54 AG92-03

bind (bd) bi nd (bd)

SYNTAX AS A COMMAND:

bi'nd paths {-control_args}

FUNCTION: produces a single bound object segment from one or
more unbound object segments, stored in archive segments,
which are called the components of the bound segment.

ARGUMENTS:

paths
are the pathnames of archive segments containing one or more
component object segments to be bound. The archive suffix is
assumed. Up to 16 input archive segments can be specified.
They are logically concatenated in a left-to-right order to
produce a single sequence of input component object segments.

CONTROL ARGUMENTS:

~update paths, ~ud paths ,
indicates that the following list of archive segments (paths)
specifies update rather than input object segments. The
archive suffix is assumed in paths. Up to a combined total of
16 input and update segments can be specified. The contained
update object segments are matched against the input object
~egments by object segment name. Matching update object
segme~ts replace the corresponding input object segments;
unmatched ones are appended to the sequence of input object
segments. If several update object segments have the same
name, only the last one encountered is bound into the bound
segment.

-list, -Is
produces a listing segment whose name is derived from the name
of the bound object segment plus a suffix of list. The
listing segment is generated for the purpose of dprinting; it
contains the bound segment's bind control segment (see "Notes
on Bindfile" below), its bind map, and that information from
the bound obj~ct segment printed by the print link info
command. This control argument cannot be invoked with =map.
In the absence of the -list or -map control arguments, no
listing segment is generated.

-map
produces a listing segment (with the suffixes list and map)
that contains only the bind map information. This control
argument is incompatible with -list. In the absence of the

3-55 AG92-03

bind (bd) bind (bd)

-list or -map control arguments, no listing segment is
generated.

-brief, -bf
suppresses printing of warning messages.

NOTES: Compilers and the assembler produce unbound object
segments. Binding has three benefits: the reduction of
storage fragmentation, the prelinking of external referencE~s
between the components, and the reduction of size of address
space necessary to execute the components.

Each of these benefits saves CPU time and storage usage if the
set of components bound is used with regularity. This
reduction in usage translates directly into lowGr charges for
the users of the bound segment. System efficiency is also
increased by binding together common sets of programs. A
reference in one component to an entrypoint defined in another
component is resolved during the binding. This prelinking
avoids the cost of dynamic linking, and it also ensures that
the reference is linked to the component regardless of the
state of a process at the moment that dynamic linking takes
place. References to an entrypoint are prelinked unless the
contrary is specified by an instruction in the bindfile. The
bindfile is a segment containing instructions that control
various aspects of the binding operation (see "Notes on
Bi~1dfile" below). (See the description of the print link info
command in the MPM Subsystem Writers' Guide.) --

NOTES ON OUTPUT: The binder produces as its output two segmonts:
an executable bound object segment and an optional, printable
ASCII listing segment. The name of the bound segment is, by
default, derived from the entryname of the first input archive
segment encountered by stripping the archive suffix from it.
The name of the listing segment is derived from the name of
the bound segment by adding the list suffix to it. Use of the
Objectname master statement in the bindfile (see nList of
Master Keywords" below) allows the name of the bound segment
to be stated explicitly_ In addition, use of the Addname
master statement in the binding instructions causes additional
segment names to be added to the bound segment. The primary
name of the bound segment must not be the same as the name of
any component.

NOTES ON BINDFILE: The bindfile is a segment containing symbolic
instructions that con~rol the operation of the binder. Its

3-56 AG92-03

bind (bd) bind (bd)

entryname must contain the bind suffix and it must be archived
into anyone of the input archive segments (at any location
within that archive segment) where it is automatically located
and recognized by the binder.

In case two bindfiles are specified, one in an input archive
segment and the other in an update archive segment, the latter
takes precedence and a warning message is printed to that
effect.

The ,syntax of the bindfile statements consist of a keyword
followed by zero or more parameters and then delimited by a
statement delimiter. Master statements pertain to the entire
bound object segment; normal statements pertain to a single
component object within the bound segment. Master statements
are identified by master keywords that begin with a capital
letter; normal keywords begin with a lowercase letter. A
keyword designates a certain action to be undertaken by the
binder pertaining to parameters following the keyword.

LIST OF BINDFILE DELIMITERS:

k~yword delimiter
It is used to identify a keyword followed by one or more
parameters. A keyword that is followed by no parameters is
delimited by a statement delimiter.

statement delimiter.

parameter delimiter
(Note, the last parameter
delimiter).

/* begin comment

*/ end comment

LIST OF MASTER KEYWORDS:

Objectname

is delimited by a statement

the parameter is the segment name of the new bound object.

Order
the parameters are a list of objectnames in the desired
binding order. In the absence of an order statement, binding
is done in the order of the input sequence. The order

3-57 AG92-03

bind (bd) bind (bd)

statement requires that there be a one-to-one correspondence
between its list of para~eters and the components of the input
sequence.

Force Order
same as Order, except that the list of parameters can be a
subset of the input sequence, allowing the archive segments to
contain additional segments that are not to be bound (e.g~,
source programs).

Global
the parameters can be either retain, delete, or no link. The
parameter selected pertains to all component object segments
within the bound segment. A global or explicit statement
concerning a single component object or a single external
symbol of a component object overrides the Global statement
for that component object or symbol.

ACldname
the parameters are the symbolic names to be added to the bound
segment. If Addname has no parameters, it causes the segment
names and synonyms of those component objects for which at
least a single entrypoint was retained to be added to the
bound segment.

No Table
-does not require parameters. It causes the symbol tables from
all the component symbol sections containing symbol tables to
be omitted from the bound segment. If this keyword is not
given, all symbol tables are kept.

Perprocess Static
does no~ require parameters. It causes the perprocess static
flag of the bound segment to be turned on, whi.ch prevents the
internal static storage from being reset during a run unit.

If no bindfile is specified, the binder assumes default
parameters corresponding to the following:

Objectname: segment name of the first input archive file.

Global: retain; /*regenerate all definitions*/

LIST OF NORMAL KEYWORDS:

objectname
the single parameter is the name of a component object as it
appe~rs in the archive segment. The objectname statement

3-58 AG92-03

bind (bd) bind (bd)

indicates that all following normal statements (up to but not
including the next objectname statement) pertain to the
component object whose name is the parameter of the objectname
statement.

synonym
the parameters are symbolic segment names declared to be
synonymous to the component object's objectname. When b is
declared to be a synonym for a, references (in the bound
components) of the form b or b$x (any x) are resolved during
binding by searching for a definition of b or x in component
a. A synonym instruction must be given if such references are
to be prelinked. The synonym instruction also affects dynamic
linking so that if b is a reference name for the bound
segment, then ~eferences of the form b or b$x are resolved by
searching component a. In this case, the synonym instruction
may reduce the cost of dynamic linking, and it .avoids possi ble
ambi'guities when two components contain definitions for the
symbol b. Users should take care to state explicitly in a
synonym statement all the normally used segment names of a
dbmponent object. For example, the create and create dir
commands are implemented in one procedure, and both have
abbreviations; thus a bindfile for the bound segment in which
this procedure resides contains:

objectname: create;

synonym: create, cr, create_dir, cd;

Failure to state segment names results in inefficient linker
performance.

retain
the parameters are the names of entrypoints defined within the
component object segment that the user wishes to retain as
entrypoints of the bound object segment.

delete
the parameters are the names of entrypoints defined within the
component object segment that the user does not wish to be
retained as entrypoints of the new bound segment.

The retain and delete statements are considered exclusive. An
error message is displayed if the binder recognizes that two
or more such statements were made regarding any single
entrypoint.

no link
-the parameters are the names of entrypoints that are not to be

3-59 AG92-03

bind (bd) bind (bd)

prelinked during binding. The no link statement implies a
retain statement for the specified names.

global
the parameter can be either retain, delete, or no link. The
parameter selected becomes effective for all entrypoints of
the component object. An explicit retain, delete, or no link
statement concerning a gi ven entrypoint of the camp'onent
object overrides the global statement for that specific
entrypoint. A global no link causes all external references
to the component objec~ to be regenerated as links to
entrypoints; this allows execution-time substitution of such a
component by a free standing version of it, for example for
debugging purposes.

table
does not require parameters. It causes the symbol table for
the component to be retained and is needed to override the
No_Table master ~eyword, described above.

NOTES ON ERROR MESSAGES: The binder produces three types of
error messages. Messages beginning with the word "Warning" do
not necessarily represent errors, but warn the user of
possible inconsistencies in the input components or bindfile.
Messages beginning with the word "binder It normally represent
errors in the input components. Errors- detected during the
parsing of the bindfile have the format:

Bindfile Error Line #N ••••

where N is the line number of the erroneous statementN If an
error is detected during parsing, the binder aborts because it
cannot bind according to the user's specifications.

The message:

"binder: Fatal error has occurred; binding unsuccessful .. "

indicates that it was impossible for the binder to produce an
executable object segment because of errors detected during
binding. "The bound object segment is left in an unpredictable
state.

EXAMPLES: The bindfile for the debug command, which is named
bound_debug. bind, is as follows:

3-60 AG92-03

bind (bd)

Objectname:
Global:

Addname;

objectname:
synonym:
retain:

objectname:
retain:
objectname:
retain:

bind (bd)

bound debug; .
delete; /*delete all old definitions*/

debug;
db;
debug,
db;

/*add names debug, db, list arg
and gr print to bound segment
bound_debug_*/

/*indicate db is synonymous to debug*/

/*retain entrynames debug$debug and
debug$db*/

list arg ;
list-arg-; /*retain entryname list_arg_$list_arg_*/
gr print;
gr-print; /*retain entryname gr_print$gr_print~/

The following illustrates other uses of the bindfile:

Objectname:
Global:
Order:

Addname:

bound test;
delete; /*delete all old definitions*/
test, /*list all components in the

order they are to be bound*/
test utility,
test-init,
reset;

test,
test_utility, /*add so that link can be

snapped to version in
bound segment*/

reset;

No_Table; /*omit all symbol tables*/

bbjectname: reset;
retain: reset;

objectname: test;
retain: test;

objectname:
synonym::
no link:

test utility;
rest-of test;
test-utility;

table;

/*another entrypoint*/
/*do not prelink to this

entrypoint; generate
external link*/

/*keep this component's
symbol table*7

3-61 AG92-03

bool

SYNTAX AS A COMMAND:

bool B1 B2 B3

SYNTAX AS AN ACTIVE FUNCTION:

[bool B1 B2 B3]

bool

FUNCTION: performs bit string operations on character string
representations of bit strings.

ARGUMENTS:

B1, B2, and B3
are bit strings entered as a and 1 characters. B3 must be 4
bits long. It causes the following logical operatione to be
performed on B1 and B2.

B3

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001

1010
1011
1100
1101
1110
111 1

Name

clear
and

move B1

move B2
xor
or
Aor
Ax:or

invert B2

invert B1

Aand
"'clear

Result

all zeroes
B1 & B2
B1 &"'B2
B1
~B1 & B2
B2
(B1&A B2) (~B1&B2)
B1 I B2
A (B 1 I B2) = (A B 1 & A B2)
A((B1&AB2) I (AB1&B2» =

(~ B1 I B2) & (:B1 I A B2)
AB2
... (... B1 &B2) = (B1:'" B2)
AB1
A(B1&AB2) = (~B1IB2)
... (B 1 &B2) = (A B 1 : A B2)
all ones

NOTES: The shorter of the two strings is extended at the right
with zeroes to equal the length of the longer string.

3-62 AG92-03

bool

EXAMPLES:

string [bool 1010 0101 0111]
1 1 1 1
string [bool 1001001 11010010100110J
0100000010

·3-63

bool

AG92-03

branches branches

SYNTAX AS A COMMAND:

branches star names l-control_argJ

SYNTAX AS AN ACTIVE FUNCTION:

[branches star_names {-control_argIJ

FUNCTION: returns the
segments, directories,
or more star names.

entrynames or absolute pathnames of
and multisegment files that match one

ARGUMENTS:

star name
is a star name to be used in selecting the names to be
returned.

CONTROL ARGUMENTS:

-absolute pathname, -absp
returns absolute pathnames rather than entrynames. The
default is to return entrynames.

NOTES: Only one name per branch is returned; i.e., if a branch
has more than one name that matches star_name, only the first
match found is returned.

Since each entryname (or pathname) returned by branches is
enclosed in quotes, the command processor treats each name as
a single argument regardless of the presence of special
characters in the name.

A synonym for branches is nonlinks.

3-64 AG92-03

branches

EXAMPIJES:

pwd
)udd)Apple)Jones
Is -a

Segments = 7, Lengths = 6.

r w 0 empty_seg .
re 1 test
r w 1 test.list
r w 1 test.p11
re 1 prog
r w 1 prog.list
r w 1 prog. p11

branches

Multisegment-files = 2, Lengths = 770.

r w 513 prog.output
r w 257 prog.data

Directories == 2.

sma prog stuff
sma documents

Links = 3.

prog.temp2
prog. temp1
junk

string [branches prog*.**]

)udd)Apple)Jones)temp seg 2
)udd)Apple)Jones)temp-seg-1
)udd)Apple)Jones)empty_seg

prog.p11 prog.list prog.data prog_stuff prog prog.output
string [branches prog.*J
prog.p11 prog.list prog.data prog.output

3-65 AG92-03

calc calc

SYNTAX AS A COMMAND:

calc {expression}

SYNTAX AS AN ACTIVE FUNCTION:

[calc expression]

FUNCTION: provides the user with a calculator capable of
evaluating arithmetic expressions with operator precedence, a
set of often-used functions, and a memory that is symbolically
addressable (i.e., by identifier).

ARGUMENTS:

expression
is an arithmetic expression (see below) to be evaluated. If
this argument is specified, the calc command prints its value
and returns to command level. The expression arguments must
be quoted if it contains spaces or other command language
characters. Variables are not allowed.

NOTES: Invocation of calc with a newline enters calculator mode.
The user can then type in expressions, assignment statements,
or list requests, separated from each other by one or more
newline characters. All of these operations are described
below.

The user must use the quit request with a newline character to
return to command level.

3-66 AG92-03

calc calc

NOTES ON EXPRESSIONS: Arithmetic expressions involving real
values and the operands +, ,*, I, and ** (addition,
subtraction, multiplication, division, and exponentiation) can
be typed in. A prefix of eith~r plus or minus is allowed.
Parentheses can be used, and blanks between operators and
values are ignored. Calc evaluates each expression according
to rules of precedence and prints out the result. The quit
request (followed by a newline character) returns the user to
command level. The order of evaluation is as follows--

expressions within parentheses

function references

prefix +, prefix -

**

*, I

+, -

For example, if the user types--

2 + 3 * 4

calc responds--

= 14

Operations of the same level are processed from left to right
except for the prefix plus and minus, which are processed from
right to left. This means 2**3**4 is evaluated as (2**3)**4.

Numbers can be integers (123), fixed point (1.23) and floating
point (1.23e+2, 1.23e2, 1.23E2, or 1230E-1). All are stored
as float bin(27). An accuracy of about seven figures is
maintained. Variables (see below) can be used in place of
constants, e.g., pi * r ** 2.

Seven furictions are provided: sin, cos, tan, atan, abs, In,
and log (In is base e, log is base 10). They can be nested to
any level, e.g., sin(ln(var).5*pi/180).

3-67 AG92-03

calc Ctklc

NOTES ON ASSIGNMENT STATEMENTS: The value of an expression cafi
be assigned to a variable. The name of the variable must be
from one to eight characters in length and must be made up of
letters (up~ercase and/or lowercase) and the underscore
character (_). The form is-- .

<variable)=<expression)

For example, the following are legal assignment statements--

x = 35

Rho = sin(2*theta)

The calc command does not print any response to assignment
statements. The variables "pi" and "e" have preassigned
values of 3.14159265 and 2.7182818, respectively.

NOTES ON THE LIST REQUEST: If "list" is typed, calc prints out
the names and values of all the variables that have been
declared so far. The value of any individual variable can be
displayed by typing the name of the variable followed by a
newline character.

EXAMPLES: The lines typed by the user are preceded by an
exclamation mark (!).

calc
2+2
= 4
r = 1.5
pi*r**2
= 7.068583
sin(0.01)
= 9.999832E-3
143e11+(12e13
too few)
143e11+(12e13)
= 1.343E+14
list

r
e
pi
q

=
=
=

1 .5
2.718282
3. 141 592

3-68 AG92-03

calendar calendar

SYNTAX AS A COMMAND:

calendar tDT} {paths} {-control_arg}

FUNCTION: prints a calendar page for one month.

ARGUMENTS:

DT
identifies which month is printed. This argument must be a
date ,acceptable to the convert date to binary subroutine
(deseribed in the MPM Subroutines)-:- 'If-the DT argument is not
given, the current month is printed.

pathi
is the pathname of a segment that contains a list of'events in
the form of text to be inserted into the calendar. For
information on segment format, see "Notes" below.

CONTROL ARGUMENTS:

-fw
labels boxes with fiscal week numbers. The calendar command
assumes that each fiscal week begins on Monday and ends on
Sunday and fiscal week 1 is the first full week of the
calendar year. Fiscal week 1 of 1980 therefore begins on
Monday, January 7, 1980.

NOTES: Each box for a calendar day is 16 characters wide and 7
high~ Each box in the calendar contains the number of the day
of the month; other information can also appear in the box, at
the user's option. The month preceding the specified month
and the month following it are also printed.

Each segment contains lines that set up a string to be
inserted into the appropriate box of the calendar. The fields
in these lines are separated by commas and have the form--

date,07/04,Independence Day

The first field is the operation code (either date, reI,
easter or rename). The second and succeeding fields depend on
which operation code is used. Lines that produce a date not
in the current' month are ignored. Lines beginning with an
asterisk (*) are comment lines. Leading space is NOT allowed.

3-69 AG92-03

.,.

calendar cale.ndar

There are three fields for the date operation code with the
first field containing the operation code, date. The second
field is any date acceptable to the convert_date_to_binary_
subroutine. (This date is converted relative to the day
before the beginning of the month, so that "f4:on II is the fi rst
Monday in the month, etc.) The third field is arbitrary text.
Up to 16 characters are inserted into the calendar in the
appropriate place, if the date specified in the line (see
example above) falls in the calendar month.

There are five fields for the reI operation code. The first
contains the operation code, reI, itself; the second is the
one or two digit month number, or 0, -1, or +1. A month of °
is the current month, -1 is the month preceding the current
month, and +1 is the month following- the current month. The
third is a date, relative to the day before the first of the
previous month. The fourth field is a date relative to the
third field and specifies the day selected. The fifth field
is text. For more complete information on how these can be
specified, see the convert date to binary $relative subroutine
entrypoint in the MPM Subroutines.- Thus,-the line--

rel,11,Mon,Tue,Election Day

defines the first Tuesday after
and places the text, "Election
day box.

the first Monday in November,
Day," in the proper calendar

There are only two fields
second is the text (e.g.,
box for Easter.

for the easter operation code. The
"Easter") that·is inserted into the

easter,Easter

The fourth operation code is rename which has three fields;
the first being the name of the operation code, the second is
an existing day or month name, and the third field is the
character string to replace it.

rename, Monday, Lundi

Users can insert up to six lines of text for any date. This
is accomplished by supplying multiple date or reI entries for
the desired date (see Washington's birthday under "Examples"
below) .

3-70 AG92-03

calendar calendar

EXAMPLES: The following illustrates the kind of segment a user
might create to put fixed holidays into a calendar.

* holidays
*
date,01/01 ,New Year's Day
date,02/02,Ground Hog Day
rel,2,Mon,2 weeks,Washington's
rel,2,Mon,2 weeks, birthday
easter,Easter
rel,4,Mon,2 weeks,Patriot's Day
rel,5,Sun,1 week,Mother's Day
rel,5~05/24,Mon,MemoriaIDay
date,07/04,Independence Day
rel,9,O,Mon,Labor Day
rel,10,Mon,1 week,Columbus Day
date,11/11 ,Veterans Day
rel,11 ,Mon,Tue,Election Day
rel,11,Thu,3 weeks,Thanksgiving
date,12/25,Christmas Day

Additionally, a user might create a segment to include personal
information in a calendar.

* personal calendar info
*
date,12/10,Mike's Birthday
date,03/07,Dad's Birthday

coming December,
and personal
"holidays" and
user types the

Assume that the user wants a calendar for the
including fiscal week numbers, holidays,
information. If the above segments are named
"perso"nal" (and are in the working directory), the
following to print the calendar on the terminal:

calendar 12/01 -fw holidays personal

3-71 AG92-03

SYNTAX AS A COMMAND:

car request_identifiers {-control_args}

FUNCTION: allows a user to delete a request for an absentee
computation that is no longer needed.

ARGUMENTS:

request identifiers
can be chosen from the following--

path
is the full or relati ve pathnarne for the a"bsentee input
segment of the request to be cancelled. The star convention
can be used to matc~ the entry names of segments.

-entry STR, -et STR
identifies the request to be cancelled by STR, the entryname
portion of the absentee input segment pathname. The star
convention is allowed.

-id ID
identifies the
number. See
request ID's.

CONTROL ARGUMENTS:

-foreground, -fg

request to be cancelled by
the MPM Reference Guide for a

i ts req.uest ID
description of

specifies that the foreground absentee queue contains the
request(s)to be cancelled.

--queue N, -q N
specifies that absentee queue N contains the request to be
cancelled, where N is an integer specifying the number of the
queue. The default queue is 3. For convenience in writing
exec cams and abbreviations, the word foreground or fg
following the -queue control argument performs the same
function as the -foreground control argument. If the -queue,
-fg, and -all control arguments are omitted, only the default
priority queue is searched.

·-all, -a
indicates that all priority queues are to be searched starting
with the highest priority queue and ending with the lowest
priority queue.

3-72 AG92-03

-brief, -bf
suppresses messages telling that a particular request
identifier was not found or that requests were cancelled when
using star names or the -all control argument.

-sender STR
specifies
cancelled.
specified.
identifier.

-user User id

that
One
In

only
or

most

requests from sender STR should be
more request identifiers must also be
cases, the sender is an RJE station

specifies the name of the submitter of the request to be
cancelled, if it is not the same as the group identifier of
the process. The User id can be specified as
Person id.Project id, Person id, or .Project ide This control
argument is primarily for operators and admInistrators. Both
rand d extended access to the queue are required.

ACCESS REQUIRED: The user must have read (r) and delete (d)
extended access to the queue.

NOTES: The -queue, -foreground, and -all control arguments are
mutually incompatible.

Normally, deletion can be made only by the user who originated
the request.

When star names are not used and a single request identifier
matches more than one request in the queue(s) searched, none
of the requests are cancelled. However, a message is printed
telling how many matching requests there are.

If the absentee process has already logged in, the user is
given the choice of bumping the job and cancelling the request
from the queue, or allowing the job to continue running and
remain in the queue. This allows the user to cancel a running
absentee process.

3-73 AG92-03

cancel abs request (car)

EXAMPLES:

The command line:

car)udd)Demo)Jones)dump)translate

deletes the absentee request that the user had made in queue 3
that was associated with the control segment
)udd)Demo)Jones)dump)translate.absin.

The command line:

car)udd)Demo)Jones)doc)**.draft

deletes the absentee requests that the user made in queue 3
that were associated with all control segments ending with the
".draft.absin" component combination found in the
)udd)Demo)Jones)doc directory.

3-74 AG92-03

SYNTAX AS A COMMAND:

ccp names {-control_arg}

FUNCTION: causes one or more programs in the current COBOL run
unit to be cancelled.

ARGUMENTS:

names
are the reference na~es of COBOL programs that are active in
the current run unit. If the name specified in the PROG-ID
statement of the program is. different from its associated
namei argument, namei must be in the form ·refname$PROG-ID.

CONTROL ARGUMENTS:

-retain data, -retd
leaves the data segment associated with the program intact for
debugging p.urposes. (See "Notes" below.)

NOTES: The results of the cancel cobol program command and the
execution of the CANCEL statement from within a COBOL program
are similar. The only difference is that if a namei argument
is not actually a component of the current run unit~ an error
message is issued and no action is taken; for the CANCEL
statement, no warning is given in such a case.

To preserve program data for debugging purposes, the
-retain data control argument should be used. The data
associated with the cancelled program is in its last used
state; it is not restored to its initial state until the next
time the program is invoked in the run unit.

Cancelling ensures that the next time the program is invoked
within the run unit, its data is in its initial state. Any
files that have been opened by the program and are still open
are closed and the COBOL data segment is truncated.

Refer to the run cobol command for information concerning the
run unit and the-COBOL runtime environment. Also refer to the
related commands display_cobol_run_unit (dcr) and

·stop_cobol_run (scr).

3-75 AG92-03

cancel_daemon_request (cdr) cancel_daemon~request (cdr)

SYNTAX AS A COMMAND:

cdr request_identifiers {-control_args}

FUNCTION: deletes an I/O daemon request that is no longer needed.

ARGUMENTS:
request_identifiers can be chosen from the following:

path
is the full or relative pathname of the
star convention is allowed to match
segments.

input segment. The
the entrynames of

-entry STR, -et STR
identifies the request to be cancelled by STR, the entryname
portion of the input segment pathname. The star convention is
allowed.

-id ID
identifies. the request to be cancelled by
number. See the MPM Reference Guide for a
Request ID's.

CONTROL ARGUMENTS:

-rE~quest type STR, -rqt STR

its request ID
descriptj.on of

indicates that the request to be cancelled. is to be found in
the queue for the request type identified by the string STR.
If this control argument is not given, the default request
type is "printer". Request types can be listed by the
print_request_types command.

-queue N, -q N
specifies that queue N of the request type contains the
request to be cancelled, where N is a decimal integer
specifying the number of the queue. If this control argument
is omitted, only the default queue for the request type is
searched. This control argument is incompatible with the -all
control argument.

3-76 AG92-03

cancel_daemon_request (cdr) cancel_daemon_request (cdr)

-all, -a
searches all priority queues for the specified request type
starting with the highest priority queue and ending with the
lowest priority queue. This control argument is incompatible
with the -queue control argument.

-brief, -bf
suppresses messages telling that a particular request
identifier was not found or that requests were cancelled when
using star' names or the -all control argument.

-user User id
specifies the name of the submitter of the request to be
cancelled, if not the group identifier of the process. The
User id can be equal to Person id.Project id, Person id, or
.Project ide Both rand d extended access-to the queue are
required-:- This control argument is primarily for operators
and administrators.

ACCESS REQUIRED: The user must have 0 extended access to the
queue to cancel their own requests. The user must have rand
d extended access to cancel a request entered by another user.

NOTES: When star names are not used and a single request
identifier matches more than one request in the queue(s)
searched, none of the requests are cancelled. However, a
message is printed telling how many matching requests there
are ..

Normally, deletion can be made only by the user who originated
the request.

See the descriptions of the dprint and dpunch commands in this
manual.

3-77 AG92-03

cancel_daemon_request (cdr) cancel_daemon_request (cdr)
-------- ---- ----

EXAMPLES: The command line:

cdr)udd)Alpha)Jones)dump>translate.list

deletes the request that the user made in queue 3
default request type printer, to print the
)udd)Alpha)Jones)dump)translate.list.

The command line:

of the
segment

cdr)udd)Alpha)Jones)dump)probe.pl1 -request_type punch

deletes the request that the user made in queue 3 of request
type "punch" to punch the segment
)udd)Alpha)Jones)dump)probe.pl1.

The command line:

cdr joe sam *.*

cancels the requests to print segments joe, sam, and any
requested segments with two-component entrynames in the
current working directory in queue 3 of the default request
type.

3-78 AG92-03

,

cancel resource (cnr) cancel resource (cnr)

SYNTAX AS A COMMAND:

cnr -id reservation_id {-control_arg}

FUNCTION: cancels reservations made with the reserve command
using the reservation identifier obtainable from the
list resources command.

ARGUMENTS:

reservation id
must be- present and is the reservation identifier of the
reservation to be cancelled. It must be preceded by the -id
control argument.

CONTROL ARGUMENTS:

-priv
allows a privileged cancellation to be done, such as the
cancellation of a reservation belonging to another user. Use
of -priv requires access to rcp_sys_.

NOTES: Reservation identifiers can be obtained by using the
list resources command.

3-79 AG92-03

cancel_retrieval_request (crr) cancel_retrieval_request (err)

SYNTAX AS A COMMAND:

crr request_identifiers {-control_args}

FUNCTION: allows a user to delete a request for a volume
retrieval that is no longer needed.

ARGUMENTS:
request_identifiers can be chosen from the following:

path
is the full or relative pathname of the segment or subtree of
the retrieval request to be cancelled. The star convention is
allowed to match the entrynames.

-entry STR, -et STR
identifies the request to be cancelled
portion of the segment or subtree
convention is allowed.

-id ID

by STR, the entryname
pathname. The star

identifies the request to be cancelled specified by its
request ID number. See the MPM Reference Guide for a
description of request IDls.

CONTROL ARGUMENTS:

-queue N, -q N
specifies that retrieval queue N contains the request to be
cancelled, where N is a decimal integer specifying the number
of the queue. If this control argument is omitted, only the
default priority queue is searched. This control argument is
incompatible with the -all control argument.

-all, -a
indicates that all retrieval queues are to be searched
starting with the highest priority queue and ending with the
lowest priority queue. This control argument is incompatible
with the -queue control argument.

-brief, -bf
suppresses messages telling the user that a particular request
identifier was not found or that requests were cancelled when
using star names or the -all control argument.

3-80 AG92-03

cancel_retrieval_request (crr) cancel_retrieval_request (crr)

-user User id
specifies the name of the submitter of the requests to be
cancelled, if not equal to the group identifier of the
process. The User id can be Person id.Project id, Person id,
or .Project ide Both rand dextended access to the queue-are
required. -This control argument is primarily for operators
and administrators.

ACCESS REQUIRED: The user must have read (r) and delete (d)
extended access to the queue.

NOTES: Normally, deletion can be made only by the user who
originated the request.

When star names are not used and a single request identifier
matches more than one request in the queue(s) searched, none
of the requests are cancelled. However, a message is printed
telling how many matching requests there are .

. EXAMPLES:

The command line:

crr)udd)Demo)Jones)dump)translate

deletes the retrieval request for the specified segment or
subtree that the user had made in queue 3.

3-81 AG92-03

canonicalize (canon) canonicalize (canon)

SYNTAX AS A COMMAND:

canon path1 {path2} {-control_arg}

FUNCTION: ensures that the contents of a segment are in
canonical form.

ARGUMENTS:

path1
is the pathname of the input segment.

path2
is the pathname of the output segment.' If path2 is omitted,
path1 is overwritten with the canonicalized contents of the
input segment.

CONTROL ARGUMENTS:
can be -tabs in one of the following two forms:

-tabs -every X
inserts tabs at 1+n*X (where n= 1, 2, 3, ...).

-tabs n1,n2, ... ,n20
inserts tabs at the tab stops specified. Up to 20 tab stops
can be given. No spaces are allowed in the list.

NOTES: The command ensures that all characters in a print
position are sorted in the proper order and removes all ASCII
carriage return (015) characters. When the -tabs control
argument is specified, the canonicalize command replaces blank
spaces with the appropriate tab stops. Conversely, if the
-tabs argument is not specified, horizontal tab stops are
replaced by the correct number of blank spaces.

3-82 AG92-03

canonicalize (canon)

EXAMPLES: To canonicalize the
establish tab stops at three
might type:

canon my_prog -tabs 7,21,35

canonicalize (canon)

segment' named my prog and
specified positions,- the user

To canonicalize the same segment, rename it to new prog, and
set up tab stops at 10-space intervals, the user might type:

canon my_prog new_prog -tabs -every 10

To canonicalize the segment old prog, which already contains
tab stops that are now to be replaced with blank spaces, the
user can accomplish both operations in one pass by typing:

canon old_prog

3-83 AG92-03

ceil

SYNTAX AS A COMMAND:

ceil num

SYNTAX AS AN ACTIVE FUNCTION:

[ceil num]

ceil

FUNCTION: returns the smallest decimal integer greater than or
equal to its argument.

EXAMPLES:

string [ceil 4.7]
5
string [ceil -3.5]
-3

3-84 AG92-03

· SYNTAX AS A COMMAND:

cdwd {path}

FUNCTION: records a specified directory as the user's default
working directory for the duration of the current process or
until the next change_default_wdir command is issued.

ARGUMENTS:

path
is the pathname of a directory. If path is not specified, the
current working directory becomes the default working
directory.

NOTES: The change default wdir command is used in conjunction
with the change wdir command. When the change wdir command is
issued with no argument, the default working dIrectory becomes
the current working directory.

The original default working directory is the user's home
directory upon logging in.

See also the descriptions of· the change_wdir (cwd) and
print_default_wdir (pdwd) commands.

3-85 AG92-03

SYNTAX AS A COMMAND:

cem l-control_args}

FUNCTION: controls the amount of information printed by the
default handler for system conditions. It determines the
length of messages for the life of a process or until it is
invoked again in the process.

CONTROL ARGUMENTS:

-brief, -bf
prints only the condition name.

-long, -lg
prints more complete messages. In particular, if the
condition was detected in a support procedure, the name of
that procedure is printed in addition to the name of the most
recent user procedure. If a segment that signalled a
condition (or caused it to be signalled) is bound, both the
offset relative to the base of the procedure and the offset
relative to the base of the segment are printed.

NOTES: If this command is not issued or is issued with no
control arguments, the user receives default length error
messages. Default length messages are intermediate in length
between the brief and long messages.

For a complete discussion of conditions and their handling see
the MPM Reference Guide. Refer to the description of the
reprint error command for a similar, but more selective,
capabilIty.

3-86 AG92-03

change_wdir (cwd)

SYNTAX AS A COMMAND:

cwd {path}

change_wdir (cwd)

FUNCTION: changes the user's working directory to the directory
specified as an argument.

ARGUMENTS:

path
is the pathname of a directory. If path is not specified, the
default working directory is assumed.

ACCESS REQUIRED: The user must have s permission on the
directory containing path, but no acc~ss to path is required.

NOTES: A working directory is a directory in which the user's
activity is centered. Its pathname is remembered by the
system so that the user need not type the full absolute
pathname of segments inferior to that directory.

If path specifies a nonexistent directory, an error message is
printed on the user's terminal and the current working
directory is not changed.

No access to path is required for this command to be employed.
However, once the working directory has been changed, the user
can proceed only according to the user's access to path. That
is, to effectively use path as a ~orking directory, the user
must have sma access permission for path; however, restricted
uses are possible in accordance with the access mode
attributes on the directory. For example, the user must have
at least status permission to list the directory.

See also the descriptions of the change defaultwdir (cdwd)
and print_default_wdir (pdwd) commands. - -

3-87 AG92-03

check iacl check iac1

SYNTAX AS A COMMAND:

check~iacl {path} {-control_args}

FUNCTION: lists segments whose access control lists (ACLs)
disagree with the initial ACL for segments.

ARGUMENTS:

path
is the pathname of the directory whose segment ACLs are to be
checked against the segment initial ACL. If path is omitted,
the working directory is assumed.

CONTROL ARGUMENTS:

-all, -a
lists User ids in a segment ACL but not contained in the
initial ACL; also lists User ids included in the initial ACL
but omitted from a segment ACL. If this control argument is
not specified, only User ids in addition to those in the
initial ACL are listed. -

-exclude User id, -ex User id
excludes the specified User id from the comparison. Up to ten
-exclude control arguments can be specified. The star
convention is allowed.

EXAMPLES:

check lacl

oldMap.com.runoff
ACL added: rew Jones.Demo.*
ACL added: rew Jordan.Work.*

add search. com. runoff
ACL added: rew Jones.Demo.*

3-88 AG92-03

check_info_segs (cis)

SYNTAX AS A COMMAND:

cis {-control_args}

FUNC~ION: prints a list of new or modified info segments. It
saves the current time in the user profile, so that when it is
invoked again, it lists segments created or modified since the
last invocation.

CONTROL ARGUMENTS:

-date DT, -dt DT
If this argument is specified, check info segs uses the date
specified by DT instead of the date in the user profile. The
DT argument must be acceptable to the convert date to binary
subroutine (described in the MPM Subroutines}. The-time of
l~st invocation in the user profile is not updated to the
current time.

-long, -lg
If this argument is specified, check info segs lists the
date-time-entry-modified as well as the-'-name- of any segment
selected as having been created or modified during the
interval in question.

-brief, -bf
If this argument is specified, chec~info_segs does not print
the names of selected segments and suppresses the comment "no
change" if no segments are selected as having been created or
modified during the interval in question. This control
argument is intended for use with the -call control argument
described below.

-no update, -nud
If this argument is specified, check info segs does not place
the current time into the user profile. -

-call cmdline
If this argument is specified, check_info_segs calls the
command processor with a string of the form "cmdline path" for
each selected segment, after the name of the segment is typed;
path is the absolute pathname of the segment.

o

The cmdline
must be enclosed in quotes if it contains blanks.

-pathname spath, -pn spath
If this control argument is specified, check info segs assumes
that spath is a pathname with one or more as~eris~s (stars) in
the entryname portion. All new or modified segments that

3-89 AG92-03

match spath are selected.
Interpreting Names" in the
discussion of star names.

Refer to "Constructing and
MPM Reference Guide for a

All specified directories are searched, in the order that the
arguments are given. If the -pathname argument is not
specified, the default is to search the directories in the
"info segments" search list for "**.info". See "Notes on
Search List" section below.

NOTES: The first time check info segs is invoked by a particular
user, it just initializes-the time in the user profile to the
current time, prints a comment, and does not list any
segments. If a profile does not exist, check info segs
creates one in the user's home directory. The profile segment
has the name Person id.profile, where Person id is the
Person id given at login time.

The check info segs command checks the
date-time-entry=modified for any segment pointed to by a link,
not the time the link was modified.

The check info segs command cannot detect that a segment has
been deleted since the last invocation of the command.

NOTES ON SEARCH LIST:

The check_info_segs command uses the "info segments" search
list which has the synonyms "info segs" and "infon. The
default "info_segments" search list is:

>doc>iml info
>doc>info

These directories contain info segments provided by the site
and those supplied with the system. Type "pep info" to see
what the current "info" search list is. For more information
about search lists, see the search facility commands, and in
particular, the add_search_pathsdescri.ption in this manual.

EXAMPLES: To check for
specified date, type:

info segments modified since the

cis -date "07/01/79 0900."

3-90 AG92-03

To print all modified info segment~, type:

cis -call print -brief

The -brief control argument is given to check info segs to
suppress duplicate printing of segment names si~ce tlie print
command types the segment name in the heading.

To print just the first block of any modified info segment,
type:

cis -call "answer no help"

To check for all modified segments in a project-maintained
directory >udd>Project_id>doc as well as the default
directories, type the following two command lines:

asp info_segments >udd>Project_id>doc
cis

3-91 AG92-03

close file (Cf) close flle (cf)

SYNTAX AS A COMMAND:

cf {-control_arg} filenames

FUNCTION: closes specified FORTRAN and PL/I files. It closes
all open FORTRAN and PL/I files if the -all control argument
is specified.

ARGUMENTS:

filenames
are the names of open FORTRAN or PL/I files.

CONTROL ARGUMENTS:

-all, -a
closes all open files. In this case, no filename appears.

NOTES: The format of a FORTRAN file name is filenn where nn is a
two-digit number other than 00; e.g., file05. PL/r filenames
are selected by the user and can have any format.

If a specified file cannot be found, an error message is
printed indicating the name of the file. The rest of the
specified files are closed.

For each filename, all PL/I files of that name and, if
applicable, the FORTRAN file of that name are closed.

The command "close file -all" does not affect I/O switches
that are not associated with FORTRAN or PL/I files.

3-92 AG92-03

cobol cobol

SYNTAX AS A COMMAND:

cobol path {-control_args}

FUNCTION: invokes the COBOL compiler to translate a segment
containing the text of a COBOL source program into a Multics
object segment.

ARGUMENTS:

path
is the pathname of a COBOL source segment to be translated by
the COBOL compiler. If path does not have a suffix of cobol,
one is assumed. However, the suffix cobol must be the last
component of the name of the source segment. If the
expand cobol source command is used to create a new segment
with the suffix ex.cobol, a check is made to see if this
segment exists and it is used.

CONTROL ARGUMENTS:

-brief, -bf
causes error messages written to the user output I/O switch to
contain only an error number and statement identification,
once the full message has been given on the first occurrence.
In the normal, nonbrief mode, an explanatory message is
printed for each occurrence.

-check, -ck
is used
program.

-expand, -exp

for syntactic and semantic
No code is generated.

checking of a COBOL

accepts a source segment in the format acceptable to the
expand cobol source command. It expands the source segment by
evaluating COpy and R:EPLACE statements. If the segment to be
translated has the suffix ex.cobol, this control argument is
ignored.

-format, -fmt
accepts a source segment in the format acceptable to the
expand cobol source command. If the segment to be translated
has the suffix ex.cobol, this control argument is ignored.

-leveIN, -levN
causes severity three L-type diagnostics to be written to the
user output I/O switch whenever a COBOL source line contains a
language construct outside the subset specified by N. The

3-93 AG92-03

cobol cobol

value N can be one through five, corresponding to the four
levels specified by the Federal Information Processing
Standards Publication, December 1, 1975 (FIPS PUB 21-1) and to
the extended version of COBOL supported by Multics. These
values are:

1 low level
2 low intermediate level
3 high intermediate level
4 high level
5 Mul tics COBO.L extensions

If a program compiles without any L-type diagnostics, it means
the program is an acceptable subset of Multics COBOL at the
level requested. The default is level 5.

-list, -Is
produces a source program listing with symbols, followed by an
assembly-like listing of the compiled object program. Use of
the -list control argument significantly increases compilation
time and should be avoided whenever possible by using the -map
control argument.

-map
produces a source program listing with symbols, followed by a
map of the object code generated by this compilation. The
-map control argument produces sufficient information to allow
the user to debug most problems online .

.... profile, -pf
generates additional code to meter the execution of individual
statements. Eaoh statement in the object program contains an
additional instruction to increment an internal counter
associated with that statement. After a program has been
executed, the profile command can be used to print the
execution counts.

-runtime check, -rck
produces an object program in which parameters are validated
according to number and -Gype, performs bounds checking on all
subscripted referenced, performs string range checking on all
variable length string references, and verifies the validity
of every index name modification.

-severityN, -svN
causes error messages whose severity is less than N (where N
is 1, 2, 3, or 4) to not be written to the user output I/O
switch. All errors are written into the listing. If this
control argument is not given, a severity level of 2 is

3-94 AG92-03

cobol cobol

assumed. See the description of severi ty lev'els under "Notes
on Error Diagnostics" below.

-table, -tb
generates a full symbol table for use by symbolic debuggers.
The symbol table is part of the symbol section of the object
program and consists of two parts: a statement table that
gives the correspondence between source, line numbers and
object locations and an identifier table that contains
information about every identifier actually referenced by the
source program. The table appears in the symbol section of
the object segment produced by the compilation. This control
argument usually causes the object segment to become
,significantly longer. If the -format control argument is
given with the -table control argument, the symbolic debuggers
are not able to display the source statements.

-temp dir path, -td path
creates the compiler's internal work files in the specified
directory rather than in the process d~rectory. This control
argument may be necessary for very large source files (over
approximately 3000 lines) that incur record quota overflow in
the process directory during compilation.

-debug, -db
leaves the work files generated by the compiler intact after a
compilation. This control argument is used'for debugging the
compiler. The command cobol$clean up can be used to discard
these files. Also, this causes -severity 4 ~rrors to not
unwind and abort the compilation, but rather to invoke a new
level of ,the command processor at the point of the error.

-time, --tm
prints the time (in seconds) and the number of page faults
taken by each phase of the compiler; prints the total time at
the end of the compilation. This information is directed to
the user_output 1/0 switch.

NOTES: The only result of invoking the cobol command without
control arguments is to generate an object segment.

A normal compilation produces an object segment and leaves it
in the user's working directory. If an entry with that name
already exists in the directory, its access control list (ACL)
is 'saved and given to the new copy of the object segment.
Otherwise, the user is given re access to the segment with
ring brackets v,v,v where v is the validation level of the
process that is active when the object segment is created.

3-95 AG92-03

cobol cobol

If the user specifies the -map or -list control arguments, the
cobol command creates a listing segment in the working
directory and gives it a name consisting of the entryname
portion of the source segment with a suffix of list rather
than cobol (e.g., a source segment named business.cobol would
have a listing segment named business.list). The ACL is set
as described for the object segment except that the user is
given rw access to it when newly created. Previous copies of
the object segment and the listing segment are replaced by the
new segments created by the compilation.

A listing segment can also be produced. These segments are
placed in the user's working directory.

This command cannot be called recursively.

For information on COBOL, refer to the Multics COBOL Users'
Guide, Order No. AS43 and the Multics COBOL Reference Manual~
Order No. AS44. See the description of the profile command in
this document.

NOTES ON ERROR DIAGNOSTICS: The COBOL compiler can diagnose and
issue messages for about 800 different errors. These messages
are graded in severity as follows:

Warning only. Compilation continues without ill effect.

2 Co.rrectable error. The compiler attempts to remedy the
situation and continues, possibly without ill effect.
The assumptions the compiler makes in remedying the
situation, however, do not necessarily guarantee the
right results.

3 Uncorrectable but recoverable error. That is, the
program is definitely in error and no meaningful object
code can be produced, but the compiler can continue
executing and diagnosing further errors.

4 Unrecoverable error. The compiler cannot continue beyond
this error. A message is printed and control is returned
to the cobol command. The command writes an abort
message on the error_output I/O switch and returns to its
caller.

3-96 AG92-03

cobol cobol

As indicated above, the user can set the severity level so as
not to be bothered by minor error messages. The user can also
specify the -brief control argument so that the message is
shorter. Since the default severity level is 2, the user must
explicitly specify the -severity1 (or -sv1) control argument
when invoking the cobol command to have warning messages
printed. Neither the -severityN nor -brief control argument
has any effect on the contents of the listing segment if one
is produced.

An example of an error message in its long form is:

22 use after error procedure on extend.
1

** 1 5-250 A use procedure has already been ass09iated with
this processing mode.

If the -brief control argument is specified and message 5-250
has previously been given in its long form, the user instead
sees:

22 use after error procedure on extend.
1

** 5-250

If the user has set the severity level to 3, no message is
printed at all. Notice that the number of asterisks
immediately preceding the error indicator corresponds to the
severity level of the error.

If a listing is produced, the error messages appear
interspersed with the lines of the source program. No more
than 300 messages are printed in the listing.

NOTES ON LISTING: The listing created by the cobol command is a
line-numbered image of the source segment with diagnostics
interspersed. This is followed by a cross-reference table of
all the names de£ined within the program. Following the
cross-reference table is the object code map, which gives the
starting location in the text segment of the instructions for
each statement in the program. The map is sorted by ascending
storage locations. Finally, the listing contains an
assembly-like list of the object code produced. The
executable instructions are grouped under an identifying
header, which contains the source statement that produced the

3-97 AG92-03

cobol cobol

instruction. Opcode, pointer-register, and modifier mnemonics
are printed . alongside the octal instruction. If the address
field of the instruction uses the Ie (self-relative) modifier,
the absolute text location corre,sponding to the relati ve
address is printed on the remarks field of the line.

3-98 AG92-03

cobol abs (cba) cobol abs (cba)

SYNTAX AS A COMMAND:

cba paths {cobol_args} {dp_args} {abs_control_args}

FUNCTION: submi ts an absentee request to perform COBOL
compilations. The absentee process for which cobol abs submits
a request compiles the segments named and prints and-deletes the
listing segment.

ARGUMENTS:

paths
are the pathnames of segments to be compiled.

cobol args
can be one or more control ar~uments accepted by the cobol
command.

dp argB
-can be one or more control arguments (except -delete, -dl) accepteit

by the dprint command.

LIST OF ABSENTEE CONTROL ARGUMENTS:
abs_control_args can be chosen from the following:

-queue N, -q N
specifies in which priority queue the request is to be placed
(N < 3). The default queue is 3; the listing segment is nrinterl
in aprint queue N.

-hold, -hd
specifies that cobol abs should not print or delete the listing
segment.

-limit N, -Ii N
places a limi t on the CPU time used by the absentee process. The
parameter N must be a posi ti ve decimal integer specifying the limi t
in Beconds. The default limit is iiefined by the site for each
queue. An upper limit is defined hy the site for each queue on
each shift. Jobs with limits exceeding the upper limit for the
current shift are deferred to a shift with a higher limit.

-output file path, -of path
specIfies that absentee output is to ~o to the segment whose
pathname is path.

cobol abs (cba) cobol_aba (cba)

NOTES: Control arguments and ·segment pathnames can be mixed
freely and can appear anywhere on the command l:tne after the
command. All control arguments apply to all segment
:pathnames. If an unrecognizable control argument is given,
the absentee request is not submitted.

Unpredictable results can occur if two absentee requests are
submitted that could simultaneously attempt to compile the
same segment or write into the same absout segment.

When doing several compilations, it is more efficient to give
several segment pathnames in one command rather than several
commands. With one command, only one process is set up. Thus
the dynamic intersegment links that need to be snapped when
setting up a process and when invoking the compiler need be
snapped only once.

If the -output file control argument is not specified, an
output segment, path.absout, is created in the user's working
directory (if more than one path is specified, only the first
is used).

If none of the segments to be compiled can be found, no
absentee request is submitted.

3-100 AG92-03

collate

SYNTAX AS A COMMAND:

collate

SYNTAX AS AN ACTIVE FUNCTION:

[collate]

collate

FUNCTION: returns the 128 characters of the ASCII character set
in collating sequence.

3-101 AG92-03

collate9

SYNTAX AS A CQMMAND:

collate9

SYNTAX AS AN ACTIVE FUNCTION:

lcollate9]

collate9

FUNCTION :r~t.\lrns a character string cOl)te.inLng ~ll possible
·9-bit ,bit patter.ns rather than just the 128 ASCI,! onaracters.,
therel'or·e:, making the return.ed string 512 char~ct~rslong.

3-102 AG92-03

compare compare

SYNTAX AS A COMMAND:

compare path1 {loffset1} path2{ loffset2} {-control_args}

FUNCTION: compares two segments and lists their differences. The
comparison is a word-by-word check and can be made wi th a mask so
that only specified parts of each word are compared.

ARGUMENTS:

path1, path2
~re the pathnamesof the segments to be compared. The equal
convention is allowed for path2.

offset1, offset2
are octal offsets wi thin the segments to be compared. The
comparison begins at the word specified or at the first word of
the segment if no offset is specified. If an offset is omitted,
the vertical bar should also be omitted.

CONTROL ARGUMENTS:

-brief, -bf I
prints only the first and last words of each block of discrepancies
that is four or more words in length. The defaul t is to print all
discrepancy words.

-length N, -In N
the comparison should continue for no more than N (octal)
words.

-long, -lg
prints all discrepancy words, unlike -brief.
default.

-mask N

This is the I
the octal mask N is to be used in the comparison. If N is less
than 12 octal digits, it is padded on the left with zeros.

NOTES: The maximum number of words to be compared is the word count
of the first segment minus its offset or the word count of the
second segment minus its offset, whichever is greater. If the
-length control argument is supplied, comparison stops after the
specified number of words. If the segments are of unequal length,
the remaining words of the longer segment are printed as
discrepancies. The word count of a segment is computed by dividing

3-103 AG92-03

compare compare

printed as discrepancies., The wo:rd count of' ~ segment is
compute:d 1'>-,. di vlding the hi t count plus 35 by 36. If the wor'd
count minus the o·f'fset is less than zero, an e"t't'()'t' message is
printed and the com.mand is a.borted.

Any disc'repaneies' found by the command a.re Its:tea in the
follo'wing fo,rmat:

o:tf'set
4
6

contents
404000000002
404000000023

offset
4
6'

con-eent~
OOifli1'7@00023
61'7114'500100

To e'ompe;~r-e segments containing only A.SGII dharacter string
data" nse the" compare_asci i comman,d descr'ibed- in this manual.,

3-1'04 AG92-03

compare_ascii (cpa) compare_ascii (cpa)

SYNTAX AS A COMMAND:

cpa paths {-control_args}

FUNCTION: compares ASCII segments and prints any differences.

ARGUMENTS:

paths
are the pathnames of the segments to be compared. Up to six
segments can be compared, in addition to the original if one
is Bupplied. The equal convention can be used in any pathname
except the first one on the command line, which is assumed to
be the original unless otherwise specified.

CONTROL ARGUMENTS:

-original pathA, -orig pathA
specifies the pathname pathA of the original segment of which
the others are modified versions.

-no original, -no orig
Indicates that no original segment is supplied. If neither
-no original nor -original is given, the first pathname on the
command line is assumed to be the original.

-minchars NN
specifies the minimum number of characters that must be
identical for compare aSCII to assume that it has found the
end of a difference.- The default is 2.0 characters. See
"Notes" below.

-minlines NN
specifies the mInImum number of lines
for compare ascii to assume that it
difference. -The default is two lines.

-totals, -tt

that must be identical
has found the end of a

See "Notes" below.

prints only the totals line, giving the number of differences
and the number of changed lines. The default is to print
discrepancies and totals line.

-no totals, -ntt
does not print the totals line.

-header, -he
prints a heading, gIVIng the full pathname
letter of each segment. This heading is

3-105

and identifying
not printed by

AG92-03

compare_ascii (cpa) compar~_ascii (cpa)

default.

-print new l1nes, -pnl
prints only new lines. New lines are lines found in one or
more of the modified versions but not in the original. An
original must be supplied if this argument is used.

-no numbers, -nnb
loes not print identifying letter and line riumberspreceding
the lines from the segments being compare,d. The defEl-ult is to
print them.

NOTES: The output is organized with the assumption that the
pathA segment was edited to produce pathB. This command
prints lines that were added, replaced, or deleted; it
identifies each line by line number within the respective
segment and also by the letter A or B to indicate which
segment the line is from (A for pathA and B for pathB).

Values for minchars and
being preceded by control
minlines.

minlines can be specified without
arguments. The order is! minchars

The values of minchars and minlines control the size of
displayed differences. Large values for these parameters
cause small, closely-spaced differences to be displayed as one
large difference, while very small values (such as -minlines 1
-minchars 2) will cause emaIl changes to be displayed
individually but might also cause large differences to be
broken down int6 small parts, thereby giving a misleading
picture of what ~as actually done to produce the modified
versions. The user should adjust these parameters to produce
the most useful results.

EXAMPLES: The examples of compare ascii usage below are based on
the segments yesterday.menu and-today.menu displayed here side
by side.

yesterday.menu

Breakfast Menu:
Juice
Toast
Eggs

IJuncheon Menu:
Hot dogs

3-106

today.menu

Breakfast Menu:
Juice
Toast
Eggs

Luncheon Menu:
Hamburger

AG92-03

compare_ascii (cpa) compare_ascii (cpa)

Milk
French fries

Milk
Salad

Supper Menu: French fries
Steak
Baked potato
Coffee

Supper Menu:
Chicken
Rice
Coffee

The default operation of compare ascii is illustrated by the
command line: -

cpa yesterday.menu today.menu

A6
A7
Changed
B6 .
B7
B8

A10
A 11
Changed
1311
1312

Hot dogs
Milk

by B to:
Hamburger
Milk
Salad

Steak
Baked potato

by B to:
Chicken
Rice

Comparison finished: 2 differences, 9 lines.

The following command line shows the use of the -original,
-header, -minlines, and -minchars control arguments. Notice
that the lower values of minlines and minchars isolate the two
changes within the Luncheon menu.

cpa today.menu -orig yesterday. menu -he -minchars 5
-minlines 1

A >udd>m>Jones>yesterday.menu (original)
B >udd>m>Jones>today.menu (new)

A6 Hot dogs
Changed by B to:
B6 Hamburger

Inserted in B:
B8 Salad
Preceding:
A8 French fries

3-107 AG92-03

compare_ascii (cpa)

A10 Steak
A11 Baked potato
Changed by B to:
B11 Chicken
B12 Rice

Comparison finished: 3 differences, 7 lines.

In the' following example the printing of line numbers J old
lines, and the totals line have been suppressed, giving better
visibility to what is new in today.menu.

cpa. yesterday.menu tOday.menu -pnl -nnb -ntt -minchars 5
-minllnee 1

Hamburger
Salad
Chicken
Rice

3-108 AG92-03

contents

SYNTAX AS A COMMAND:

contents path

SYNTAX AS AN ACTIVE FUNCTION:

[contents path]

FUNCTION: returns the contents of a segment as
string. Newline characters in the segment are
blanks in the string.

contents

a character
changed to

EXAMPLES: Assume that the segment named distribution contains a
list of names (each person's name on a" separate line).

The command line:

dp -ds ([contents distribution]) output

prints one copy of the segment output for each name on the
list, using the name as the destination.

3-109 AG92-03

convert characters (eve) convert characters (cve)

SYNTAX AS A COMMAND:

eve key1 {oldpath} {newpath}
or:

eve key2 char_string

FUNCTION: allows the rapid editing of a segment in the case
where a one-for-one replacement of certain characters by
certain other characters must be done. An example of its use
is the conversion of all uppercase characters in a segment to
lowercase characters. Keywords specify the conversion to take
place. For certain of the keys convert characters maintains a
from string and a to string that defin~ the conversion to be
made7 The converte~ segment is the same as the original
except that every instance of the 11th character of
from string present in the original segment is replaced by the
i'th-character of to_string.

The oonversion for
to string that must
"fFom lt and "to" keys.

ARGUMENTS:

key1

the key "sp" uses
have been previously

a from string and
set by -use of the

any o~ the keys listed below in "List of keywords".

oldpath
the pathname of a segment to be converted. If this argument
is omitt~d, the from_string and to_string related to key1 are
printed.

newpath
the pathname of the output segment. If this argument is
omitted, newpath is assumed to be the same as oldpath, and the
converted copy replaces the original.

key2
either "to" or "from" to set to_string or from_string for the
"sp" key.

cha.r string
is the string to be . set as to string or from string. If it
contains blanks, it must be eneiosed in quotes.- .

3-110 AG92-03

convert characters (cvc) convert characters (cvc)

LIST OF KEYWORDS:

lc
converts alphabetic characters to lowercase.

uc
converts alphabetic characters to uppercase.

mp
converts from Multics PL/1 format to IBM 360 PL/1.

bcd
converts BCD special characters to ASCII/EBCDIC equivalents.

dart

sp

converts Multics special characters to corresponding Dartmouth
s~ecial characters as follows:

,.

=
> "
+ <
= >
{ +
" ?
?

uses conversion strings set earlier by the from and to keys:
cve from char_string1;cvc to char_string2

NOTES: The most recent setting of from string and to string in
the user's process is used for conversion with the-"sp" key.
No conversion is attempted for the "sp" key unless both the
from string and the to string are of the same non-zero length.
Any Character not present in the from_string is not changed.

3-111 AG92-03

copy (cp) e.opy(cr)

SYNTAX AS A COMMAND:

cp path1.1. {path2.1. .' •. path1!! path2E.J {-control_arg.s}

FUNc'rrON: causes copies of specified segments andmultisagment
files to be created in the specified directories with the
specified names. Access control lists (ACLs) and multiple
names are optionally copied.

ARGUMENTS:

path1i
19- the :pathname of a segment or multisegment fi1.~ tobe
copied. If path1 is the name of a link, the command copies
the target of the link. The star convention is allowed.

path2i
is-the pathname of a copy to be created from path1i. If the
lastpath2argume.nt is not given, the copy is ,placed in the
working directory with theentryname ofpath1 !!,. T,he equal
convention is allowed.

CONTROL ARGUMENTS:

-acl
copies the ACL.

-all, -a
copies multiple names and ACLs.

-brief, -bf
suppresses, the warni ng messages "Bit count incona,j.ste,nt wi th
current length .•• " and "Current length is not the same as
records used .•• ".

-chase
copies the targets of links that matchpath1. See "NOTES" for
the default action.

-long, -lg
prints warning messages as necessary. This is the default.

-name, -nrn
copies multiple names.

-no acl
aoes not copy the ACL. This is the default.

AG92-03

copy (cp) copy (cp)

-no chase
does not copy the targets of links that match path1. See
"NOTES" for the default action.

,-no name, -nnm
does not copy multiple names. This is the default.

ACCESS REQUIRED: Read access is required for path1!. Status
permission is required for the directory containing path1i.
Append permission is required for the directory containing
path2i. Modify permission is required if the -name, -acl, or
-all control argument is used.

NOTES: The contr61 arguments can appear once anywhere in th~
copy command line after the command name and apply to the
entire copy command line.

The default for chasing links depends on path1.
not a starname, links are chased by default. If
starname, links are not chased.

If path 1 is
path1 is a

If the ACL of a segment or multisegment file is being copied,
the initial ACL of the target directory has no effect on the
ACL of the segment or multisegment file after it has been
copied into that directory. The ACL remains exactly as it was
in the original directory.

Since two entries in a directory cannot have the same
entryname, special action is taken by this command if the name
of the segment or multisegment file being copied (specified by
path1i) already exists in the directory specified by path2i.
If the entry being copied has an alternate name, the entryname
that would have resulted in a duplicate name is removed and
the user is informed of this action; the copying operation
then takes place. If the entry being copied has only one
entryname, the entry that already exists in the directory must
be deleted to remove the name. The user is asked if the
deletion should be done; if the user answers "no", the copying
operation does not take place.

The copy command prints a warning message if the bit count of
path1i is less than its current length or if the current
length is greater than the number of records used. These

3-113 AG92-03

copy (op) copy (cp)

w,~rnings are suppressed by the use of the -brief control
arsument.

~XAMPL:alS:

The camman4 line:

copy >old_dir>fred!liat george.=

copi~s seBment or multisegment file named freq,list in the
directory >old dir into the working directory as george~li8t·

3-114 AG92-03

SYNTAX AS A COMMAND:

copy_acl path11 path21 { •.• path1~ path2ri}

FUNCTION: copies the access control list (ACL) from one file or
directory to another, replacing the current ACL if necessary.

ARGUMENTS:

path1!
is the pathname of a file or directory whose ACL is to be
copied. The star convention is allowed.

path2i
is-the pathname of a file or directory onto which the initial
ACL is to be copied. The equal convention is allowed.

3-115 AG92-03

copy_car'dS (ccd)

SYNTAX AS A COMMAND:

FijNC1~ION: eopieaepecified card image segments from system pool
storage into a user t edi rectory. . The segments to be copied
must have been created using the Multics card input facility.

ARGUMENTS:

d'ecknam.e
18 the na~e that waa ~nter'ed on the deck id ca.rd wh;en the card
d~ck wa.s snb~ltted for reading. Thi star coh.antion is
allowed.

new deck name
is the pathname of the segment in which the matching card
image segment is to be placed,. !f omitted, the working
,directory ianddeck natire are assumed. The equ.al convention is
allowed.

N01ESc See th~ description of the card input tacl11tyift the MPM
Refer'ence Gutde for the· format ef the cOntr·olca.·t'd,a needed
whensu.bm1tting a ca.rd deck to be ready by system operations.
The userp:roces,s ex'ecut tng this tCom:mand must h~ve thre proper
a.ccess to the card inrag:e segment in order t'o pe'rform the copy.
When thef'e ate mlil t iple copies of the same derek in pool
storage, .11 a~e copied~

When decR~~.'nam-e i'Sa startualtle
car·d imaie s~gments in pool
aoceSB, .11 ar~ copied.

and there at'e sev.e;r-ai matching
storage to which the user has

When an attempt is mad'e to read a c'a.rddeCk havin'g the same
name as ;Some previously read deck still in pooi$torage, a
numeric ~uffix is added to the name of the new 'd.eck, e.g.;
"deck name.1 it. Repeated name duplic'ations c'auae ~suc·ces·si vely
larger numeric suffixes to be used. (:Na-me duplacations can
only OCCUl!" for decks 'of the same 'access cla,Ss submitted by the
sa'm'e user.) T-,he copycar'd'8~otnJila:nd inform's the tt:eet of such
dupli:ca.t~;en,s (if any T an-d rettieve-s all co~ples of the
specified deck.

AC·92....;03

copy_eards (ccd) copy_cards (ccd)

Only those card decks having an access class equal to the
user's current authorization can be copied. Other decks are
not found.

The command line:

ccd my_deck

copies the user's card image segment named my deck from the
card pool storage into the user's current working directory.

3-117 AG92-03

----~--------------
copy charactera (cpch)

SYNTAX AS A COMMAND:

cpch str N

SYNTAX AS AN ACTIVE FUNCTION:

[cpch str N]

copy_characters (cpch)

FUNCTION: returns a quot~d string containing N capies of a
speoified string.

EXAMPLES:

string [cpch "1 2 3 " 3J
123 t 231 2 3

3-118 AG92-03

SYNTAX AS A COMMAND:

cpd source dir {target_dir} {-entry_type_keys} {-control_args}

FUNCTION: copies a directory and its subtree to another point in
the hierarchy.

ARGUMENTS:

source dir
is -the pathname of a directory to be copied.
convention is allowed.

target dir

The star

is -the pathname of the copy of the source dire The equal
convention is allowed. If target dir is not specified, the
copy is placed in the working directory with the entryname of
source dire If the target_dir does not exist, it is created.

entry type keys
control-what type of storage system entries in the subtree are
copied. If no entry type key is specified, all entries are
copied. The keys are:- -

--branch, -br
--directory, -dr
--file, -f
--link, -lk
-multisegment file, -msf
-non null lin~, -nnlk
--segment, --sm

If one or more entry type keys are specified, but not the
-directory key, the sub~ree of source dir is not walked.

CONTROL ARGUMENTS:

-brief, -bf
suppresses the printing of warning messages such as "Bit count
is inconsistent with current length" and "Current length is
not the same as records used".

-force
executes the command, when target dir already exists, without
asking the user. If the -forc~ control argument is not
specified, the user is queried.

3-119 AG92-03

-replaoe, ~rp
d~letes the existing contents of target_dir before the copying
begin~. Jf target_dir is non-e;1stent or empty, this control
~rgument bas no effect. The def~~lt is to append the contents
ofsQurce dir to the existing contents of target dire

~acl - -
gives the ACL on the source dir entry to its copy in
target ~ir. Although initial AC~s are still copied, they are
not uied in setting the ACL of the new entries when this
control ~rgument is specified. See "Notes on Access
Provision~ below for further discussion.

-primary, ~pri
copies qnly primary nam?s. If the -.primary cqntro.l ~rgument
~SRQt sp~cif~@d. all the names of the eelect~d entries ~re
copie(1.

~no lip~ tranalation, -nIt
copies l~nks with no chang~. The default is to translate
links being copied. If there are references to the source
directory in the link pathname of a link being copied, the
link pathnam~ is changed to refer to the target directory.

-chase
copi~s the target of a link. The default is not to chase
linka. Ch~sing the links eliwinatea link translatiqp~

WOT~S: Th~ user c~n specify that portions of the ~ubtree be
copied a~~ c~n control the processing of links.' See'~lso the
GOPl, ~Q'I, ,nd move_dir co~m~nds in this m.nual~

ACCESS REQUIRED: Status permission is required for source dir
an4 a~l it the dtrectories in its tr~e. ' Status permissio~ is
required for tbe dir,ctory containing source_dire Read access
is requir~d Qn all files under soqrce dire Append and modify
per~issio~ are re~uired for the- directory containing
target d,i~ if target dir does not exist prior to the
invocatiQ,n of the· copy dir command. Modify' and append
permissiQ~ are required -on target dir if it already exists.
This comID:~nd does not force acces~.- .

NOTES ON ACCESS PROVISION: If the -acl control argument is not
spe.cifieq, the system defau,lt ACLs are added, then the initial
ACL for tbe containing directory is applied (which may change
the syste,m supplied ACL). Ini tial ACLs are always copied for
the current ring of execution.

3-120 AG92-03

copy_dir (cpd) copy_dir (cpd)

NOTES ON THE EXISTENCE OF target dir: If target dir already
exists and -force is not specified, the user is-so informed
and asked if processing should continue. If target dir is
contained in or contains source dir, an appropriate error
message is printed and control is- returned to command level.
Otherwise, the contents of source dir either are appended to
or replace the contents of target dire (See the -replace
control argument.) -

NOTES ON STAR AND EQUAL CONVENTIONS: The star convention in
source dir matches only directory names and copies them.
Matchi~g names associated with other storage types are
ignored.

NOTES ON NAME DUPLICATIONS: Since two entries in a directory
cannot have the same entry name, this command takes special
a6tion if the entryname of the entry being copied already
exists in the directory specified by target dire If the entry
is a directory, it is handled in the- same fashion as
duplication between source dir and target dir is handled,
unless the existing entry- in target dir -is not also a
directory. In this case the entryname Quplication is treated
the same as non-directory entries. The procedure for
non-directory entries is the standard system technique. See
the copy command in this manual.

If the -replace control argument is specified or target_dir
does not exist, name duplication does not occur.

NOTES ON LINK TRANSLATION: If part of the tree is not copied (by
specifying a storage system entry key), problems with link
translation may occur. If the link target in the source dir
tree was in the part of the tree not copied, there may be no
corresponding entry in the target dir tree. Hence,
translation of the link causes the link to become null.

3-121 AG92-03

copy_dir (cpd)

EXAMPLE:

The command line:

cpd old_source new_source -segment -acl

copies all the segments with their ACLs in the directory
old source to the directory new source.

The command l1ne:

cpd old_user new_user -branch

copies all the segments, directories and multisegment files
from the directory old user to the directory new_user (no
links are cop1ed).

3-122 AG92-03

copy_file (cpf) copy_file (cpf)

SYNTAX AS A COMMAND:

FUNCTION: copies records or lines from an input file to an
output file. The copy command makes an exact duplicate of the
input file, whereas copy file produces an output file that has
been restructured for maximum compactness. (See the
description of the copy command in this manual.)

ARGUMENT'S:

LIST OF in control args:
the input file- from which records or lines are read can be
specified by either an I/O switch name or an attach
description. (See "Notes" below.)

-input switch STR, -isw STR
specifies the input file by means of an already attached I/O
switch name, where STR is the switch name.

-input description STR, -ids STR
spe~ifies the input file by means of an attach description
STR. STR must be enclosed in quotes if it contains spaces -or
other command language characters.

LIST OF out control args:
the output file ~o which the records or lines are written can
be specified by either an I/O switch name or an attach
description. (See "Notes" below.)

-output switch STR, -osw STR
specifies the output file by means of an already attached I/O
switch name, where STR is the switch name.

-output description STR, -ods STR
speclfies the output file by means of an attach description
STR. STR must be enclosed in quotes if it contains spaces or
other command language characters.

CONTROL ARGUMENTS:

-keyed
copies both records and keys from a keyed sequential input
file to a keyed sequential output file. The default is to

3-123 AG92-03

copy_file (cpf) copy_file (cpf)

copy records from an i'nput file (e1 ther keyed or not) to e,
sequential output file. (See flNotes on Keyed Fil~$" below.)

-from N" -fro N
caples be,ginning wi th the Nth record or li ne of the i npl;rt
file, where N is a positive integer. The default is to begln
copyin.g with the "next record. tl (See nNotes " belOw.)

-start S!R, -sr STH
copies beginning with the record whose key is STR. where STR
is 256 or fewer ASCII characters. The default is t,o begin
copying with the "next record."

-to N
copies u.ntil the Nth record or line has be,en copied or the
input file is exhausted, whichever occurs firet,. where N is a
positive 1ntegergreater than or equal to the N given with the
-from con~rol argument. This control argument c~n only be
specified if -from i~ also specified. The default is to
perform cop,ing until the input file is exhausted.

-stop 8TH, -sp STR
copies until the record whose key is STH has been copied or
the input file is exhausted, whichever occurs first, where 8TH
is 256 or fewer ASCII 'Characters. This control argument can
be specified without specifying the -start control ar~ument.
However, if -start is specified. the STRgiven with -stop must
be greater than or equal to (according to the AS'OII collating
seq ue nc e) the S TR gi ve n wi t h - st art. Th e d'e f au 1 tis to
perform copying until the input file 1s exhausted.

-count N, -ot N
copies antil N records or lines have been copied or the input
file is exhausted, whichever occurs first, where N is a
positive integer. The default is to perform copying until the
input file is exhausted.

-all, -a
copies until the input file is exhausted. This is the default.

-brief, -bf
suppresses an informativemeesage indicating the number of
records or lines actually copied.

-long, -lg
prints an informative message indicating the number of records
or lines actually copied. This is the default.

-input mode x, -imode x
specifies the opening mode for the input file. If copy_file

3-124 AG92-03

copy_fi.le (cpf)

opens the file, it uses this mode. If the file is already
open, this mode must be consistent with the open mode of the
file (e.g., stream input is consistent with
stream_input_output). Allowable values for x are:

keyed sequential input, ksqi
keyed-sequential-output, ksqo
sequential input-;- sqi
sequential:output, sqo

-output mode x, -omode x

sequential input output, sqio
stream input, si
stream-output, so
stream:input_output, sio

specIfies the opening mode of the
-input_mode above for restrictions.

output file. See

-character, -ch
specifies that
copy file is to
lines.

any positioning of stream files done by
be done in terms of characters rather than

NOTES ON UNSTRUCTURED FILES: With the use of -input mode and
-output mode, it is possible to specify the processing of
unstruc~ured (stream) files with copy file. Three
possibilities involving unstructured files exist: stream to
record, record to ·stream, and stream to stream.

Stream to record copying involves reading input lines and
writing them as records. Record to stream copying involves
reading records, appending a newline character and writing
these characters to the output stream. Stream to stream
copying involves simply reading characters from the input
stream and writing them to the output stream.

In stream to record and record to stream copying, -nnl
inhibits the copying or addition of newline characters.

In copies involving stream input, -from, -to, and -count
specify positions in terms of lines unless -character has been
specified, in which case positioning is in terms of
characters.

NOTES ON KEYED FILES: The copy file command can copy a keyed
sequential file to produce -an output file that has been
restructured for maximum compactness as a keyed file or as
though it were purely sequential. By default, the command
copies only records and does not place keys in the output

3-125 AG92-03

fi1.e. To c_opy the keys, the ~~eyed control argument must be
u~~d... Whe,n ~keyed is used., the input file m~~t, be a keyed
sequ~ntial file. Whether keys are copied or nett oontrol
3rg~ments can be used to ~elimit the range of ~$OOfds to ~e
copied (i.e,l -start, -Btop, -from, -to, ~count)~ Copying is
a.~~~~s per~o,rmed in key order.

N'OT'ES~ ~he ~nput and output files can be any combi~~tion Of
structured or unstructured files. The input file can ~e
oo~{ed·eitherpartially or in its entirety.

1;£ e.1 the,r t.he inp~t o.~ ou1;;put speoification is an at1;;ach
d.Ep~c:t;".iptiO,~,. ~ 1; i~ ~sed. 1?o attach a uniquely {l.awed, I/O sw~ toh
t.o t~e' r·:\:1t~ ~ ~he: s.wi tqh is. opened ,. the' copy.' perfo:rme~, ~nd
th~Ul~ if.ne swi~.ch is c~ose.d a~d (letached. A,lter~~1:;;elYt the
inp~t or o,}\\tput file cB:n be specified by an I/O; ~,wi ~ch name.
Either the i~ call command or iox s~broutine can be used to
a~~~ch '\~, rile ~r~or . {o ih~ invocati6n of tha Qopy_flle
cO,m,rI,l,~ll,<i· ~S8:~ th~ <1.E?s9viption o~ thE) ~o, cal~ c9JPJllia.nq inth:is
ma,n~~]~ a~~ ·t,~~, ~o~_ su.b,ro~tine. in the M<~~Su.bro1!t;,~t\es e.)

If the i~put, f~l.~ is specified "by an I/O, sw,i to1;l. n~Ip.~ and the
swi tch i$: n.ot open, the copy _ fi Ie COr~lIn&n~ o,p,e.~s ~ t for
(keY~<i:) s.~:quential_input or strea.~ input, perfo:rQls "t;he copy,
~~~. <?lo~~:E:l; ~"t. ~ If' t~e. f?Wi tch T.8 ~lready pp.~n, w~en the 
copy_fila, corom.and is invols:.e.d:, the openina lAog;~ In;qst be 
seq'll:enti~:;_input, seqv.enti~1_1np.\l.~,_output, 
keye~ seq~ential_input, keyed_sequential_updata '. stre~,m input, 
or sIre.~w-~input_o~tput. The" sw,i tch 1s. not o:l:.9~,e" ~fter the 
copy has baen performed. 

The, "nex~; record" or "next byte" must be defined if neither 
the -staJ;'t t:lor ~from c()ntrol argument is ~sed to sp.ecify an 
absoluta starting position wi~hin the input file. If the I/O 
sw:i~ch i~ o,pened by the copy_file command, th,e ne~t record is 
t~a fir~~ recor~ of the file; otherwise, the ne~t record is 
that re~9r4 at whic~ the fi~e is positione~ when t~~ Qopy_file 
command is invoked. If the -character control ariument has 
been specified and -from, -to, or -count has been specified 
and the input file ~s a stream, positioning is performed in 
terms of characters rather than lines or records. 

: > , , • , ". • •• • , ~ ; • '. , 

If the o~tput file is specified by an I/O switch name and the 
switch is' not open, the copy file command opens it for 
(keye~_)sequential_output, performs the copy, and closes it. 

3~126 AG92-03 



copy_file (cpf) copy_file (cpf) 

If the switch is already open when the copy file command is 
invoked, the opening mode must be sequential output, 
sequential input output, keyed sequential-output, 
keyed sequential-update, direct output,- direct-update, 
stream output, or stream input output. (In update mode, 
output- file records with keys that duplicate input file 
records are rewritten.) The switch is not closed after the 
copy has been performed. 

The -from and -start control arguments are mutually exclusive. 
The -to, -stop, -count, and -all control arguments are 
mutually exclusive. The -nnl control argument is mutually 
exclusive with stream to stream or record to record copying. 
The -start and -stop control arguments are mutually exclusive 
with stream input. The -brief and -long control arguments are 
mutually exclusive. The informative message, printed by 
default, appears as one of the following: 

345 records copied. 
345 records read; 4002 characters written. 

4002 characters read; 345 records written. 
4002 characters copied. 

EXAMPLES: To copy an entire file from an already attached file 
to the segment in_copy, type: 

cpf -isw in -ods "vfile in_copy" 

To print the first 13 records of a tape file, type: 

cpf -ct 13 -ids "tape ansi 887677 -name TEST21 -ret all" 
-osw u~er_output -ct-13 -

To copy 13 records from an already attached file to another 
already attached file, starting with the 56th record of the 
input file, type: 

cpf -isw in -osw out -from 56 -ct 13 

To copy records 43 through 78 from an already attached file to 
an already attached file, type: 

cpf -isw in -osw out -from 43 -to 78 

3-127 AG92-03 



c,opy fi 1e (cpf) ..,.. 
; iI.,. P 

To oopy all but the first seven records from segment 
testdat~.11 to an already attached file, type: 

cpf -ids "vfile_ testdata.11" -osw out -fm 8 

'TO QOPY an entire keyed sequential file with keys, type: 

cpf -isw in -osw out -all -keyed 

To copy 13 records of a keyed sequential file starting with 
the record whose key is ASD66 to a sequential output file, the 
follOwins llne is typed. (No keys are copied.) 

cpf -iaw in -oaw out -sr ASD66 -ct 13 

To copy the records and keys from a keyed sequential file up 
to, and including the record whose key is bb"bb, type: 

opf -keyed -iew in -oew out -ep "bb""bb" 

To copy a tape_mu,lt_ tape to another tape, type: 

!, cpf -ids "tape mult m2156" -ods "tape mult m2752 -write" 
-.imode si -omode sO' - -

To copy eaoh line in the seement test to a record on a.n output 
'tape, type: 

cpf -ids "vfile test" -ods "tape ansi 792561 -write 
-f'ormat vb -bx 4000" -imode si - -

To copy 20 records of an already attached keyed sequential 
file, starting with the r~cord whose key is ASD60 to a stream 
output file without appending newlinee, type: 

cpf -iew in -osw out -sr ASD60 -ct 20 -omode eo -nnl 

To copy 27 lines without their 
alr$ady attached stream file to 
fi Ie, type: 

newline characters from an 
an already attached output 

cpf ~isw in -osw out -imode s1 -nnl 

3-128 AG,92-03 



SYNTAX AS A COMMAND: 

FUNCTION: copies the initial access control list for directories 
(directory initial ACL) of one directory to another, replacing 
the current directory initial ACL if necessary. 

ARGUMENTS: 

path12:,. 
is the pathname of a directory. 
allowed. 

path2i 

The star convention is 

is-the pathname of the target directory. The equal convention 
is allowed. 

NOTES: See the MPM Reference Guide for a description of initial 
ACL's. 

3-129 AG92-03 



SYNTAX AS A COMMAND: 

FUNCTION: copies a segment 
ACL) from one directory 
initial ACL if necessary. 

ARGUMENTS: 

path1i 

initial ~ccess control list (initial 
to another, replacing the current 

is-the directory from which the initial ACL is to be copied. 
The star convention is allowed. 

path2i 
is-the directory into which the initial ACL is to be copied. 
The equal convention is allowed. 

3-130 AG92-03 



create (or) create (cr) 

SYNTAX AS A COMMAND: 

cr paths 

FUNCTION: causes a segment to be created in a specified 
directory, or in the working directory. That is, it creates a 
storage system entry for an empty segment. 

ARGUMENTS: 

paths 
are pathnames of segments to be created. 

ACCESS REQUIRED: The user must have append access to a directory 
in order to create a segment in that directory. 

NOTES: If the creation of a new segment would introduce a 
duplication of names within the directory, and if the old 
seg~ent has only one name, the user is interrogated whether to 
delete the segment bearing the old instance of the name. If 
the old segment has multiple names, the conflicting name is 
removed and a message to that effect is issued to the user. 
In either case, since the directory is being changed, the user 
must also have modify permission for the directory. 

The user creating the new segment is given rw access to the 
segment created. 

All directories specified in paths must already exist. That 
is, only a single level of the storage system hierarchy can be 
created with this command. 

If anyone of the paths is the name of an existing link, a 
segment is created in the place specified by that link. The 
user must have append access to the directory containing the 
link.target in order to create this segment. 

See the description of the create dir and link commands for an 
explanation of the creation ~f directories and links, 
respectively. 

3-131 AG92-03 



create (cr) 

EXAMPLES: 

The command line: 

or firet_class ..... mail )udd)Demo)Jones)alpha)beta 

creates the segm~nt first clasamail in the working directOry and 
the segment beta in the directory )udd)Demo)Jones)alpha. As 
explained above, the directory alpha must already exist. 

3-132 AG92-03 

! 



SYNTAX AS A COMMAND: 

cds path {-control_argl 

FUNCTION: translates a create data segment (CDS) source program 
into an object segment. -A li~ting segment is optionall~ 
created. These results are placed in the user's working 
directory. This command cannot be called recursively. 

ARGUMENTS: 

path 
is the pathname of a CDS segment. If path does not have a cds 
suffix, one is asssumed. However, the cds suffix must be the 
last component of the name of the source segment. 

CONTROL ARGUMENTS: 

-list, --Is 
produces a source listing of the CDS program used to generate 
the data segment followed by object segment information (as 
printed by the print link info command described in the MPM 
Subsystem Writers' GUide)- about the actual object segment 
created. 

NOTES: The source for create data segment programs is standard 
PL/I with the restriction that the program include a call to 
the create data segment subroutine. The create data segment 
subroutine- creates a standard object segment from PL/I data 
structures passed to it as parameters. These data structures 
can be initialized with arbitrarily complex PL/I statements in 
the CD'S program. (See the MPM Subroutines for a description 
of the create_data_segment_ subroutine.) 

Since the create data segment command invokes the PL/I 
compiler to first compile the CDS segment, any errors that the 
compiler finds are reported by its standard technique. If any 
errors with a severity greater than 2 occur, the CDS run is 
aborted and an object segment is not created. 

3-133 AG92-03 



create di r (cd) 

SYNTAX AS A COMMAND: 

.cd.paths {~con.trol_argsJ 

FUNCTIOW; c~~~e~ a specified directory branch to be ore~ted.in a 
speGifted directory, or in th;e working directory.' That is, it 
creates ~ ~torage system entry for an empty subdirectory. See 
the description of the create command for information on the 
creation of segments. 

ARGUMENTS: 

paths 
are pathnawe~ of directories to be created. 

CONTROL ARGUEMENTS: 

~access c~~~a STR, -ace STR 
appliest.o each pathi and causes each directory created to be 
upgraded to the specified access claes. The ~ccess olass can 
be specified with either long or short names. 

-~Qgical volume VOL, -lv VOL 
speci?ie~ that each directory created is to be a master 
directory Whose segments are to reside on the logical volume 
named VOL. 

-quota N 
specifies the quota to be given to the directory when it is 
cre~ted. This argument must be specified if either the 
-access ¢lass or -logical volume control argument is 
specifi.4. If omitted, the-directory is given zero quota. 
The. va1u,e. of N ~ust be a positive integer, and ~pplies ~o each 
pa,tn,l· 

{ 

I 
ACCESS' REQUIRED: The user must have append per~is8ion to a 

directory in order to create a subdirectory in that directory. 

NOTES: If a quota is specified and the directory being created 
1s not ~ master directory, the containing directory must have 
.sufficiint quota to move iuota to the directory being created. 
(See the move_quota command for additional information~) 

If the creation of a new s~~dlrectory introduces a d~plication 
of names within the directory, and if the old subdirectory has 

3-134 AG92-03 



create dir (cd) create dir (cd) 

only one name, the operation is not performed. If the old 
subdirectory has multiple names, the conflicting name is 
removed and a message to that effect issued to the user. 

The user is gi ven sma access on the created subdir,ectory. 

All superior directories specified in pathi must already 
exist. That is, only a single level of -storage system 
directory hierarchy can be created in a single invocation of 
the create dir command. 

In order to create a master directory, the user must have a 
quota account on the logical volume with sufficient volume 
quota to create the directory. A master directory must always 
have a nonzero quota; therefore, the -quota control argument 
must always be given when creating a master directory. A 
master directory can be created even tho~gh the logical volume 
is not mounted. 

Each upgraded directory must have a quo~a greater than zero 
and must have an access class th~t 1S greater· than its 
containing directory. The specified access class must also be 
less than or equal to the maximum access authorization of the 
process. 

When the -access clas? control argument is specified, the 
command does not- create a new directory through a link. 
Creating through links is allowed only when the access class 
of the containing directory is taken as the default. 

EXAMPLES: 

The command line: 

cd sub >my_dir>alpha>new 

creates the directory sub immediately inferior to the current 
working directory and the directory new immediately inferior 
to the directory >my dir>alpha. As noted above, the 
directories my dir and -alpha must already exist. Both 
directories are-assigned the access class of their containing 
directory. 

3-135 AG92-03 



create dlr(cd) create dir (cd) 

The command line: 

cd subA -access_class a,01,c2 -quota 5 

creat~s the directory subA with an access class of a,c1 ,c2 and 
a. quota. of 5 pages. The directory subA is created immediately 
inferiOr to the working directory. (The access class names a, 
01, and c2 used in the example represent possible names 
defined for the site. Seethe print auth names command for 
more details on access class names.) - -

The command line: 

cd subB -logical_volume 'volz -quota 100 

creates a master directory eubB immediately inferior to the 
working directory. Segments created in this new directory 
will reside on the logical volume named volz. The directory 
BubB is given a quota of 100 records. 

3-136 AGQ2-03 



cumulative_page_trace (cpt) cumulative_page_trace (cpt) 

SYNTAX AS A COMMAND: 

cpt command_line {-control_args} 

FUNCTION: accumulates page trace data so that the total set of 
pages used during the invocation of a command or subsystem can 
be determined. The command accumulates data from one 
invocation of itself to the next. Output from the command is 
in tabular format showing all pages that hav'e been referenced 
by the user's process. A trace in the format of that produced 
by the page_trace command can also be obtained. 

ARGUMENTS: 

command line 
is a character 
proeessor as a 
contains blanks, 
proeedures invoked 
are metered by the 

CONTROL ARGUMENTS: 

-count" -ct 

string to be interpreted by the command 
command line. If this character string 
it must be surrounded by quotes. All 
as a result of processing this command line 
cumulative_page_trace command. 

prints the accumulated results, gIvIng the number of each page 
and the number of faults for each page. This control argument 
cannot be used with -print or -total (see "Notes" below). 

-flush 
clears primary memory before each invocation of the command 
line and after each interrupt. This helps the user determine 
the number of page faults but increases the cost. 

-interrupt N, -int N 
interrupts execution every N virtual CPU milliseconds for page 
fault sampling. The default is 500 CPU milliseconds. 

-long, -lg 
produces output in long format, giving full pathnames. 

-loop N 
calls the command to be metered N times. 

~print, -pr 
prints the accumulated results, giving the number of each page 
referenced. This control argument cannot be used"with -count 
or --total (see "Notes" below). 

3-137 AG92-03 



-print linkage faults 
prints a11- a.ccumulated linkage faults and calls to the 
hcs_$make_ptr entry point. 

-reset, -rs 
resets the table of accumulated data. If the table is not 
reset, data from the current use of cumulat1ve,pagetrace is 
added to that obtained earlier in the process. - -

.... short, -sh 
formats output for a line length of 80. 

-sleep N 
waits for N seconds after each call to the command being 
metered. 

-timers 
includes all faults between Signal and restart. 

-total, -tt 
prints the total number of page faults, the tot8.1 number of 
segment faults, and the number of pages referenced for each 
segment. This control arsument cannot be used with -count or 
-print (see "Notes" below). 

-trace linkage faults 
accumulates- linkage faults information along with page and 
segment fault information. 

-trace path 
writes the trace on the segment named path using an 1/0 switch 
named cpt.out; cumulative_page_trace attaches and detaches 
this switch. 

NOTES: The cumulative page trace command operates by sampling 
and reading the system -trace array after invocation of a 
command and at repeated intervals'. Control arg.uments are 
given to specify the detailed operation of the 
cumulative_page_trace command. 

The command line used to invoke the cumulative page trace 
command includes the command or subsystem to be traced as well 
as optional control arguments. 

At least one of three generic operations must be requested. 
They may all be combined and, if so, are performed in the 
following order: resetting the table of accumulated data, 

3-138 AG92-03 



cumulative_page_trace (cpt) cumulative_page_trace (cpt) 

calling the command to be metered, applying the specified 
control arguments, and printing the results in the specified 
format. 

The default mode of operation uses interrupts for page fault 
sampling with.a default sampling time of 500 milliseconds. If 
this figure is too large, messages indicate that some page 
faults may have been missed; a smaller value can then be 
chosen. The cost of a smaller value is high and may cause 
additional side effects. If the command or subsystem to be 
metered includes the taking of CPUT interrupts, then the 
-timers control argument should be specified. This control 
argument causes some of the page faults of the metering 
mechanism to be included as well. 

Only one of the control arguments -print, -count, or -total 
can be specified. Each of these control ~rguments produces 
printed output in a different format. If more than one format 
is desired, the command must be invoked once for each format. 

The command line: 

cpt "p11 test" -interrupt 400 -trace trace_out 

calls the p11 command to compile the program named test, 
requesting an interrupt every 400 milliseconds to obtain page 
trace information. Trace information is placed in a segment 
named trace out. 

The command line: 

cpt "list -pn )udd)Multics" -loop 2 -sleep 10 

calls the list command twice, and sleeps for 10 seconds 
between calls. 

The command line: 

.! cpt -print 

prints the accumulated results of previous metering. 

3-139 AG92-03 



SYNTAX AS A COMMAND: 

dsfpaths 

FUNCT!O~: resets the damaged swi tch for segments. Sea ttNotes't 
below, for a.n explanation of the damaged switch. 

ARGUMENTS: 

paths 
are pathnames of segments. The star convention is allowed. 

NOTES: If a device error or system crash destroys a ·page of a 
segment, the supervisor turns on the damaged switch associated 
with the segment. ~wo cases of damaged segments CQn occur. 
Sometimes, the only valid copy ot 9. page of the segment is 
destroyed; if so, a page of zeros appears in the segment. In 
other rat~ . cases, a MOdified page of a segment cannot b~ 
written out due to a paging device error; when this occurs, 
the original unmodified page may be supplied. 

An ~tte*pt to reference the contents of a se~merit whose 
damaged switch is on cauSes an error with the message: 

Entry ha.s been damaged. Please type "help 
damaged_segments.gi n 

When a da,111aged segment is detected, the owner of the segment 
should change the a.ccess of the segment so that no other user 
can reference it, a.nd then reset the damaged ·swi tch wi th the 
d.ama.ged sY.off command. The owner should then inspect the 
contents of the segment to determine whether the segment can 
be re-cre:ated or needs to be retr ieved. 

Users canexplici tly turn on the damaged awi tch of asegm·ent. 
This is ~enerally done to test recovery procedures. See the 
descripti~n of the damaged_sw~on command. 

3-140 AG92-03 



SYNTAX AS A COMMAND: 

dsn paths 

FUNCTION: sets the damaged segment switch on for a segment. Th~ 
damaged switch is off for newly created segments. The switch 
can be turned on by the system (see. "Notes" in the 
damaged sw off command for an explanation) or by a user 
conducting-special tests. 

ARGUMENTS: 

paths 
are pathnames of segments. The star convention is allowed. 

NOTES: The damaged swan command is primarily useful for testing 
reeovery procedures: It should not be used instead of normal 
access control procedures for casual denial of normal access. 

3-141 AG92-03 



date 

SYNTAX AS A COMMAND: 

date {dt} 

SYNTAX AS AN ACTIVE FUNCTION: 

[date {dt}] 

date 

FUNCTION: returns the date abbreviation for a specified date or 
the current date. 

ARGUMENTS: 

dt 
is a date-time in 
convert date to binaty. If 
current-date-is-returned. 

EXAMPLES: 

The command line: 

date May 5,1980 

prirtte: 

05/05/80 

The comni9.tl'd line: 

date Monda.y 

a for'm 
no argument 

pr ints th'e next occurrence of a Monday. 

3-142 

acceptable' to 
is specified, the 

AG92-03 



date_compiled (dtc) date_compiled (dtc) 

SYNTAX AS A COMMAND: 

dtc path {-control_arg} {components} 

SYNTAX AS AN. ACTIVE FUNCTION: 

[dtc path {-control_arg} {components}] 

FUNCTION: prints the date and time compiled and the compiler 
identifier for an object segment or an archive of object 
segments. For a bound object segment, the command prints the 
date and time compiled for each component . 

. ARGUMENTS : 

path 
is the pathname of an object segment, bound object segment, or 
an archive of object segments. 

components 
are names of .components in a bound object segment or archive 
of object segments. If component names are specified, 
information on only these components is listed. 

CONTROL ARGUMENTS: 

-brief', -bf 
lists the date and time compiled only (see "Examples" below). 

-long, -lg 
lists the date and time compiled, the segment name, the 
User id of the person who compiled the segment, and the long 
form-of the compiler identifier .(see "Examples" below). 

NOTES: If an archive is listed, the bind file is ignored. 

If neither control . argument is specified, the command lists 
the date and time compiled, the segment name, the User_id, and 
the short compiler identifier (see "Examples" below). 

Invoked as an . active function, dtc returns the first line of 
output that would be printed if it were invoked as a command. 

3-143 AG92-03 



date_compiled (dtc) date_compiled (dtc) 

-------

EXAMPLES: To check the compilation date of a private version of 
the list command in the working directory, type: 

date compiled list -bf 
04/11/77 0922.2 

To check information on the 
system installed command 
demo_command, type: 

latest compilation of a Multics 
(that is unbound), such as 

date compiled >system library standard>demo command 
03/09/77 1615a2 demo_command Martinson.SysMaint.a PL/r 

To get compilation information on an entire bound object 
segment that is part of the standard Multics system, type: 

date compiled >sss>bound binder 
Bound 10/26/77 1337.4 -bound binder Martinson.SysMaint.a 

binder - -
07/26/76 1048.4 bind Martinson.SysMaint.a PL/r 
10/26/77 1328~2 bx Martinson.SysMaint.a cds 

. 
12/27/76 1 354.3 old_make_bindmap_ Martinson. SysMaint. a PIJ/r 

To get detailed, information on one component of a bound object 
segment (in this case, bind in bound_binder_), type: 

date compil~d >sss>bound binder -lg bind 
07/20/76 1048.4 bind Martinson-:-SysMaint.a MulticsPL/I 

Compiler, Release 20e, of May 22, 1976 

3-144 AG92-03 



I ___ ---l--

date time 

SYNTAX AS A COMMAND: 

date time {dt} 

SYNTAX AS AN ACTIVE FUNCTION: 

[da.te_time {dt}] 

date time 

FUNCTION: returns. a date and time value for a specified 
date-time or the current d~te-time consisting of: a date, a 
time from 0000.0 to 2359.9, a time zone, and a day of the 
week. The date and time value is returned as a single, guoted 
string of the form "mm/dd/yy hhmm.m zzz www" (e.g., 
"08/17/76 0945.7 est Tue"). 

ARGUMENTS: 

dt 
is a date-time in a form acceptable to conver date to binary . 
If no argument is specified, the current date=time is 
returned. 

3-145 AG92-03 



day 

SYNTAX AS A COMMAND: 

day {dt} 

SYNTAX AS AN ACTIVE FUNCTION: 

[day {dt}] 

day 

FUNCTION: returns a one- or two-digit number of a day of the 
month, from 1 to 31. 

ARGUMENTS: 

dt 
is a date-time in a form 
convert date to binary. If no argument 
current-day of the month is returned. 

EXAMPLES: 

The command line: 

day Friday 

acceptable to 
is specified, the 

prints the one- or two-digit number of the next occurrence of 
Friday .. 

3-146 AG92-03 



SYNTAX AS A COMMAND: 

day_name {dt} 

SYNTAX AS AN ACTIVE FUNCTION: 

[day_name {dt}] 

day_name 

FUNCTION: returns the full name of a day of the week for a 
specified date or the current date. 

ARGUMENTS: 

dt 
is a date time in a form 
convert date to binary. If no argument 
name of-the current day is returned. 

EXAMPLES: 

The command line: 

day_name 10/19/79 

prlnts: 

Friday 

3-147 

acceptable to 
is specified, the 

AG92-03 



debug (db) debug (db) 

SYNTAX AS A COMMAND: 

debug 

FUNCTION: is an interactive debugging aid to be used in the 
Multics environment. It allows the user to look at or modify 
data or code. The user can stop execution of a program and 
examine its state by inserting "breakpoints" in the program 
before and/or during execution. A concise syntax for user 
requests, coupled with a complete system of defaults for 
unspecified items, allows the user to make many inquiries with 
little effort. Symbolic references permit the user to retreat 
from the machine-oriented debugging techniques of conventional 
systems and to refer to variables of interest directly by 
name. 

The debug command uses a segment in the home directory to keep 
track of information about breaks. This segment is named 
Person id.breaks, where Person_id is the login name of the 
user. - The break segment is created if not found. If the 
segment cannot be created, the break features of debug are 
disabled and unusable. 

Users who do not need the sophisticated machine level 
debugging provided by this command should refer to the probe 
command in this manual. 

With the debug command, the user can: 

Look at data or code; 

Modify data or code; 

Set a break; 

Perform (possibly nonlocal) transfers; 

Call procedures; 

Trace the stack being used; 

Look at procedure arguments; 

Control and coordinate breaks; 

3-148 AG92-03 



debug (db) 

Continue execution after a break fault; 

Change the stack reference frame; 

Print machine registers; and 

Execute commands. 

These functions are provided by two types of debug requests: 
data requests and control requests. The first five functions 
a~ove are performed by data requests; the others, by control 
requests. Multiple debug requests (either data or control) 
can be placed on a line separated by semicolons (;). 

Numbe~ Representation Conventions 

Debug uses both octal and decimal representation of numbers. 
In general, machine-depenoent numbers such as pointers, 
offsets, and registers are assumed to be octal, while counting 
arguments (e.g., specifying a source line number, printing the 
first 20 lines) and variables referenced by name are assumed 
to be decimal. 

A decimal default can be changed to octal by preceding the 
number wi th the escape sequence "&0". An octal defaul t can be 
changed to decimal by preceding the number with "&d". 

Example 

x = 8 

Description 

assign the value 8 to the program variable x. Program 
variables referenced by name are assumed to be decimal; if 
octal representation is preferred, type: 

x = &010 

$q = 77 
assign the value of 77 to the q-register. 
machine dependent and assumed to be 
representation is preferred, type: 

$q = &d63 

Register values are 
octal; if decimal 

/test/&a19 print line 19 of the source segment for test. 

&a19,s8 print 8 source lines, beginning at line 19. 

3-149 AG92-03 



debug (db) debug (db) 

Data Requests 

Data requests cansist of three fields and have the following 
farmat: 

<generalized address> <operatar> <aperands> 

The generalized address defines the actual data or cade of 
interest. It is ultimately reduced to segment number and 
offset by debug befare being used. The aperatar field 
indicates to debug which function to' perform, e.g., print or 
madify the data referenced by the generalized address. The 
aperands field mayor may not be necessary, depending an the 
aperatar. When these fields are specified, they are.separated 
by blanks or commas. 

When debug decodes a data request, it parses the generalized 
address and generates a pointer to the data being referenced. 
This pointer, called the working painter, is changed whenever 
the generalized address is changed. It points into either the 
working segment, its stack frame, or its linkage section. The 
actual segment depends on the most recent specification in a 
generalized address. The form for a generalized address is as 
follows: 

/<segment name>/<offset><segment ID><relative offset> 

where each of the four fields is optional. The segment name 
is either a pathname, a reference name, or a segment number, 
and defines what is called the working segment. The segment 
ID specifies which of the data bases associated with the 
working segment is to be used in setting the working pointer. 
The segment ID can be one of the following: 

&s 

&1 

refers to the stack frame if the working segment is a 
procedure segment with an active stack frame. 

refers 
entry 
ring). 

to an active 
in the linkage 

linkage section (i.e., one with an 
offset table (LOT) for the user's 

3-150 AG92-03 



debug (-db) debug (db) 

&t 

&a 

&p 

&i 

refers to the working segment itself. 

refers to the source program for the working segment. 

refers to the parameters of an active invocation of a 
procedure. 

refers to an active internal static section (i.e., one with 
an entry in the internal static offset table (ISOT) for the 
user's ring). 

The offset field is used as an offset within the segment 
referenced by the working pointer. For' the working segment, 
this offset is relative to the base of the segment. If the 
working pointer points into an actiJe stack frame, the offset 
~s relative to the base of that fram~. If the working pointer 
points into an active linkage sectidn, the offset is relative 
to the beginning of that linkage section. 

The offset can be either a number or a symbolic name. If a 
symbolic name is specified, a symboi table must exist for the 
working segment. See the translator;commands for descriptions 
of symbol table creation. If a symbolic name begins with a 
numeric character, the escape characters &n (for name) must 
precede the name, to ~void interpreting the name as a number. 
For example: 

/test/&n10&t 

can be used in a debug request to specify the location 
aSBociated with FORTRAN line number (i.e., label) 10. 

The relative offset field allows the user to relocate the 
working pointer by a constant value or register. For example, 
a user wishing to reference the fourth word after the stack 
variable i he could use: 

/test/i+4 

as the generalized addr'ess. The relati ve offset can also 
assume the value of a register. For example, if the 
a-register contains the value 4 at the time of a break, then: 

3-151 AG92-03 



debug (db) debug (db) 

/test/100&s$a 

sets the working pointer to offset 104 from the base of the 
stack frame. It is important to note that a + sign is not 
present when a register is used. (See "Registers" below.) 

The three most common values for the segment ID field are &t, 
&s, and &1. These designate that the working pointer is to 
refer to, respectively, the working segment itself, its active 
stack frame, or ·its active linkage section. In addition, two 
other possible values of segment ID allow alternate methods of 
referring to locations in either the working segment or its 
stack frame. 

A segment ID of &a refers to the ASCII source program for the 
working segment. Associated with this segment ID is a decimal 
line number, which must immediately follow the &a. This line 
number is used to generate a working pointer to the first word 
of code compiled for that line. A relative offset can follow 
the line number. Note that the line-number/code-location 
association can only be determined if a symbol table exists 
for the working segment. This example: 

/test_seg/&a219+36 

senerates a'working pointer that points to the thirty-sixth 
(octal) word in the text after the first 'word of code 
generated for line 219 in the source for the segment test seg. 
If an offset field is given before &a, the offset is ignored. 
The offset of the working pointer is generated solely from the 
line number and the relative offset. 

A segment ID of &p refers to the parameters of an active 
invocation of' a procedure. If the current defaults specify an 
active stack frame, a number following the &p specifies the 
parameter that is to be addressed. The offset field is 
ignored, but a relative offset can be specified. This 
example: 

/test_seg/&s;&p4+36,a14 

causes the stack frame for test seg to be the working segment, 
and the first 14 characters-of the data contained at a 
location 36 words after the beginning of the fourth parameter 
are printed in ASCII format. 

3-152 AG92-03 



debug (db) debug (d~) 

It is not necessary to specify all four fields of a 
generalized address. In fact, every field is optionale If a 
field is not specified, a default value is assumed that is 
frequently the last value that the field had. For example: 

/test_seg/line&s+3 

followed by the generalized address: 

+4 

is acceptable. The latter request is equivalent to: 

/test_seg/line&s+7 

One time that the defaults assumed are not the values of the 
previous data request is when a symbolic variable name or 
label is specified that causes some field to change. If this 
is the case, debug might recognize that the segment ID, f6r 
example, of the previous data request is not valid and set it 
appropriately. For example: 

/test_seg/760&s 

followed by: 

regp 

would cause the defaults to be changed to: 

/test_seg/140&1 

if regp is found at a relative offset of 140 (octal) in the 
linkage section. Note that the segment ID is changed to &1 
where it remains until explicitly or implicitly changed again. 

Defaults are also reset to values different from the previous 
values when the segment name field is specified in a 
generalized address. In this case, the following actions are 
taken: 

1) If the segment name begins with &n, take the rest of the 
characters composing the segment name and go to step 3 
below, treating the string as a name. This convention 
allows the use of debug on segments whose names are 
composed of numeric characters. 

3-153 AG92-03 



debug (db) debug (Jb) 

2) If the segment name is really a segment number, this number 
is used in a Search of all active stack frames to see if 
one exists for this segment. The search is from tte 
highest stack depth (deepest in recursion) to the base of 
the stack so that if an active stack frame is found, it is 
the one most recently used. If an active stack frame is 
found, the generalized address defaults are set as follows: 

a. working segment the one specified by the given 
segment number. 

b. offset zero. 

c. segment ID &s, i . e . , the working pointer 
points into the latest stack 
frame for the working segment. 

d. relative offset zero. 

If no active stack frame is found, the defaults are set as 
above except that the segment ID is &t instead of &s, i.e., 
the working pointer points into the working segment itself. 

3) If the segment name is a reference name known in this ring, 
the segment number for the segment being referenced is 
found, and then the defaults are calculated as if this 
segment number were given directly. 

4) If the segment name is a pathname, the specified segment is 
initiated (it can already have been known) and the returned 
segment number is used as above. 

5) If the segment name is of the form segname$entname, the 
stack is searched from the highest active frame (as in step 
2) for the most recent frame associated with the entry 
point entname in the segment segna~e. The working segment 
becomes segname, and the remaining defaults are set as 
described in step 2. 

The entire set of defaults that apply to a debug data request 
can be determined at any time by issuing the .d control 
request to print defaults. For the format and use of this 
request, see the description under "Control Requests" below. 

Operator Field of Data Requests 

After d~coding the generalized 
working pOinter, debug checks 

3-154 

address and 
the operator. 

determining the 
The following 

AG92-03 



debug (db) debug (db) 

five operators are recognized: 

1 . , (comma) print 

2. = assign 

3· < set a break 

4. > alter program control (i.e. , "go to") 

5 · . - call a procedure . -

If a debug request is terminated before an operator is 
encount~red either by a semicolon or a newline character, the 
default operator used is ",", i.e., print. The one exception 
is that a blank line is ignored. The first, second~ and fifth 
operators above have operands. 

Print .Request 

For the print request, there are three optional operands. 
They are a single character specifying the output mode 
desired; a number indicating how much output is being 
requested; and a number in parentheses indicating the size of 
the output. The size has two meanings that are dependent on 
the output mode being used. 

1) If the mode is comp-8 or co~p-5, the size is the number of 
digits plus the sign, if present. 

2) If the mode is not comp-8 or comp-5, the size is the number 
of bits to use in printing one item. 

The size 
0, h, d, 
following 
arguments 
arguments. 

specification is permitted for 
e, f, p, comp-5, comp-8. It 
modes: i; 1, a, b, comp-6, 
are optional and spaces 
For example: 

'\ 42&s , 0 ( 1 8) 1 2 

the following modes: 
is ignored for the 

comp-7. All of the 
can appear between 

requests that 12 (decimal) half words starting at 142 (octal) 
in the stack be printed in·octal format. 

The following output ·modes are available for print requests 
(see "Output Modes" below for a full description): 



debug (db) 

o 

h 

d 

a 

i 

p 

s 

1 

n 

e 

el 

f 

fl 

b 

g 

comp-5 

comp-6 

comp-7 

comp-8 

octal 

half-carriage octal 

ASCII 

instruction 

pointer 

source statement 

code for line number 

no output (just change defaults) 

floating point with exponent 

long floating point with exponent 

floating point 

long floating point 

bit string 

graphic 

COBOL 

COBOL 

COBOL 

COBOL 

The request: 

+36,a14 

debug (db) 

requests that 14 (decimal) characters ,starting at 36 (octal) 
words after the current working pointer be printed in ASCII 
format. The output might be: 

1416 1416 U>user dir dir>" 

3-156 AG92-03 



debug (db) debug (db) 

The two numbers printed in most output modes should be 
interpreted as follows: 

1) If the data is from a stack frame, the first number is the 
relative offset from the base of the stack segment and the 
second number is the relative offset within the stack 

'frame. If the second number is negative, the variable does 
not exist in the current stack frame and is a parameter or 
a global variable. 

2) If the data is from a linkage section, the first number is 
the offset within the combined linkage segment and the 
second number is the offset within the linkage section. 

3) For all other segments, both numbers are the same and 
represent the offset within the segment. 

If a mode is not specified for output, the last specified mode 
is used unless debug realizes another mode is more appropriate 
(e.g., when a symbol specifies a variable of a different 
type). If the amount of output is no~ specified, it is 
assumed to be one unit, i.e., one word for octal output, one 
line for source output, one character for ASCII output, etc. 

Assign Request 

When modifying data or code, the operands (at least one is 
expected) specify the new values to use. For example: 

i = 8; p(1) = 206110, 206132 

assigns the decimal value 8 to i and the values 206110 and 
206132 to p(1 ) and p(2), respectively. (It is assumed that 
both are variables that are defined for the current working 
segment.) If more than one operand is specified in an 
assignment request,consecutive words starting at the working 
pointer are changed. This is illustrated by the assignment to 
the pointer array p. 

3-157 AG92-03 



debug (db) debug (db) 

There are nine acceptable forms for assignment operands: 

1. octal number 

2. decimal number 

3. character string 

4. register value (see "Registers" below) 

5. instruction format input 

6. floating point number 

7. pointer 

8. bit string 

9. variable 

Whether a number is assumed to be octal or decimal on input 
depends on the target. A variable referenced by name is 
assumed to be decimal unless overridden by "&0". Assignment 
to a location specified by offset is assumed to take an octal 
value unless overridden by "&d". 

x = 99 (decimal) 
+2 = 77 (octal) 

Character strings being input must be bracketed by quote 
characters (,,). Bit strings being input must be bracketed by 
quote characters and followed by a b. Floating point numbers 
must not have exponents. 

The word-offset portion of a pointer value being input can 
optionally be followed by either a decimal bit offset in 
parentheses, a ring number in square brackets, or both. If 
both.a bit offset and a ring number are specified, the ring 
number must follow the bit offset, with no intervening blanks. 
For example: 

p = 206125(29); q = 2521104[5]; rp = 2111200(3)[4] 

3-158 AG92-03 



debug (db) debug (db) 

The form~t fOr instruction input is: 

(opcode address,tag) 

The address can specify a base register or a number. For 
example: 

/test/lab2 = (Ida pr6:20) (sta prO:2,*0) (nop 0) 

Sbme value must be given for the address field. 
opcode is specified by the opcode argo 

The zero 

I~put of bit stririgs and character strings changes only those 
bits or characters specified, i.e., a full word might not be 
completely changed. 

Several types of 
a~signment request. 

input can be 
For example: 

/145/13000 = "names" &d16 126 

interspersed in the same 

When different types of input are specified in one request, 
the user should be aware that the bit offset of the temporary 
working pointer might be ignored for certain types of input. 
In the example above, the ASCII for "name" is placed at 
145:13000 and the ASCII for "s" is placed in the first 
character position of 145113001. The next assignment argument 
(&d16) fills in 145113001 with the decimal 16 and hence 
overwrites the "s" of the previous argument. 

In order to better specify more complicated assignments, a 
repetition factor is provided. If a single number (decimal) 
appears in parentheses in an assignment, the next data item is 
assigned repeatedly (i.e., the specified number of times), 
updating the working pointer each time. An example of this 
is: 

string = (32)" " "alpha" 

which results in string being modified so that the first 32 
(decimal) characters are blanks, and the 33rd through the 37th 
contain the string "alpha". 

I 

3-159 AG92-03 



debug (db) debug (db) 

Set Break Request 

A breakpoint is a special modification to the code of a 
program that, when executed, causes control to pass to debug. 
The user is then free to examine and change the states of 
variables, set other breaks, continue execution, etc. When 
setting a break, the working pointer is used directly unless 
it points into the stack. In that case, the working pointer 
is temporarily forced to the text. To set a break at the 
label loop_here in the program parse_words, the user types: 

'/parse_words/loop_here< 

One can also type: 

/parse_words/loop_here+23< 

to set the breakpoint 23 (octal) locations after the first 
word of code for the statement labelled loop_here in the text 
segment. 

One can also set a break by specifying a line number. For 
example: 

/rand/&a26< 

sets a break at the first word of code generated for line 26 
(decimal) of the source program. 

The break number printed by debug when setting a breakpoint is 
used as the name of the break when referring to breaks. After 
a break is reset, the break number is reused. (Resetting a 
break restores the code to its previous value.) 

Once a break has been set at a given location, another break 
cannot be set there. The list breaks control requests .bl and 
.bgl can be used to find out which breaks are set. 

Alter Program Control ~equest 

To alter program control by issuing an explicit transfer, the 
user can type: 

/216/2176> 

3-160 AG92-03 



debug (db) debug (db) 

causing debug to search the stack for an active stack frame 
for the segment 216 (octal) and set the stack pointer to this 
frame. It then transfers to 2176 (octal) in the text 
associated with this stack frame .. 

If no active stack frame is found, debug prints a message and 
waits for further requests. 

Call ~: Procedure Request 

The user can cause debug to call a specified procedure and 
return values into specified locations. This is done by 
specifying := as the operator in a data request. This 
operator expects one operand that is a procedure name with its 
'associated arguments. There are two slightly different ways 
to invoke this feature: first, to invoke a procedure as a 
function call (with the' argument n+1 being the returned 
value); and second, to explicitly call a procedure. When a 
procedure is invoked as a funotion reference, the current 
working pointer is used as the last argument in the argument 
list and, hence, the procedure returns a value into wherever 
the working pointer is pointing. For example: 

/test/fi := sqrt_(2.0) 

causes the sqrt function to be called with the first argument 
2.0 and the ret~rn argument of fi; debug converts the 2.0 into 
a floating point number before the call. 

If no fields are present before the:= is encountered, debug 
does not specify a return argument in the call. (The:= can 
be thought of as "call" in a PL/I program.) For example: 

:= who 

sets up a call to who$who with no arguments. The call: 

:= rename ("foo","moo") 

and: 

.. rename foo moo 

are functionally equivalent. (See Multics command execution 
under "Control. Requests" below.) 

3-161 AG92-03 



debug (db) debug (db) 

The method debug uses in setting up the call is to use ten 
temporary storage areas, one for each of ten possible 
arguments. debug converts the arguments appropriately and 
stores the values in these areas. Each area starts on an even 
location and consists of eight words. These temporary storage 
areas can be looked at or altered with standard data requests. 
They are named %1, ... , %10. For example: 

:= cpu time and paging (0,0,0) 
%1,d - - - -
%2,d 
%3,d 

prints three decimal numbers, all being return values from 
hcs $usage values. The actual call that debug made had three 
arguments -that were all 0. (The first words of the first 
three storage areas were zeroed out prior to the call.) The 
above call can also be made as follows: 

If this is done, the third argument is not zeroed before the 
call. 

Variables can also be used as arguments. For example: 

No conversion is done by debug if n is fixed and sqrt_ expects 
a floating argument. 

The above mentioned temporaries can be used to do simple mode 
conversion. For example, to get the floating point 
representation of 3.7 (in octal) the user can type: 

%1 = 3.7; ,0 

To find the ASCII value for 137 (octal) the user can type: 

%1 = 137137137137 ; ,a4 

A reference to one of these storage areas causes the working 
segment to be changed to the stack segment. 

3-162 AG92-03 



· debug (db) debug (db) 

If one of the arguments in a procedure call is the character 
%, the temporary storage for that argument is not changed 
(e.g., overwritten with the usual argument value). Results 
from some previous work can be passed in that argument 
position. For example: 

Registers 

The hardware registers at the time of a fault (in particular a 
break fault) are available to the user for inspection or 
change. These registers are referenced by preceding the 
register name immediately by a dollar sign ($). The register 
can be looked at by merely typing the register name. For 
example: 

$a 

prints the contents of the a-register at the time of the last 
fault. The value in the a-register can be changed to octal 
146 by typing: 

$a = 146 

Decimal input is allowed also: 

$a = &d19 

The predefined register names used by debug are: 

prO pointer r~gister 0 

pr1 pointer register 

pr2 pointer register 2 

pr3 pointer register 3 

pr4 pointer register 4 

pr5 pointer register 5 

pr6 pointer register 6 

3-163 AG92-03 



debug (db) 

pr7 

prs 

xO 

x1 

x2 

x3 

x4 

x5 

x6 

x7 

a 

q 

aq 

exp 

tr 

ralr 

eaq 

regs 

ppr 

tpr 

even 

odd 

ind 

scu 

all 

pointer register 7 

all pointer registers 

index register 0 

index register 

index register 2 

index register 3 

index register 4 

index register 5 

index register 6 

index register 7 

a-register 

q-register 

debug (db) 

the a- and q-registers considered as a single register 

exponent register 

timer register 

ring alarm register 

the exponent, a- and q-registers in floating point 
format 

all the above from xO through ralr 

procedure pointer register 

temporary pointer register 

even instruction of Store Control Unit (SCU) data 

odd instruction of SCU data 

the indicator register 

all SCU data 

all machine conditions 

3-164 AG92-03 



debug (db) debug (db) 

The user can change the above registers at will (with the 
exception of "ind" and "eaq") with the understanding that if 
execution continue's after the break or transf'ers directly (via 
> in a data request), the values of the hardware registers are 
set to those of the above registers. 

The values in the registers are automatically filled in by 
debug (when it is called or faulted into) with those values 
associated with the last fault found in the stack. The user 
can override these values with the fill registers (.f) and 
crawlout registers (.C) control requests. See "Control 
Requests" below. 

The user can also define registers and use them as a small 
symbolic memory. For example: 

$sta1 = 600220757100; $nop = 11003 

allows the user to later specify: 

/test/210&t = $sta1 $nop $nop 

To print out the contents of all user-defined registers, the 
user can type: 

$user . 

The setting and displaying of registers follows the syntax of 
data requests. However, only the register name and a possible 
new value can appear in a register request. Registers can be 
specified in a general data request only in the relative 
offset field and as operands in.assignmeht requests. Register 
names must be less than or equal to four characters in length. 
Some examples of the use of registers follow: 

/test/i =$q 
/test/O = $xO 
/test/46$xO,a5 

ContrQ~ Requests 

Control requests provide the user with useful functions not 
ne6essarily related to any specific data. The format for a 
control request is: 

3-165 AG92-03 



debug (db) debug (db) 

. <request name> 

Control requests and data requests can be freely mixed on a 
command line if separated by semicolons. However, certain 
control requests use the entire input line and hence ignore 
any semicolons found therein. Spaces are not allowed in most 
control requests. 

The following is a list of all control requests and the 
functions they perform. See "Summary of Data and Control 
Requests" below for a complete review of all requests. 

TRACE STACK' 

The general form is: 

The stack is traced from frame i (counting from 0 at the base 
of the stack) for 1 frames,-where i and 1 are decimal 
integers. If i is less than 0, tracing begins at 0; if iis 
greater than the last valid frame, then only the last frame is, 
traced. If i is not specified, it is assumed to be 0; if 1 is 
not specified, all valid stack frames from i on are traced. 
The name printed in the stack trace is the primary segment 
name unless the s~gment is a PL/I or FORTRAN program in which 
case it is the entryname invoked for the stack frame (i.e., 
the label on the entry or procedure statement). 

Examples: 

.t2,3 

.t 100 

POP OR PUSH STACK 

The general form is: 

.+i or .-i 

3-166 AG92-03 



debug (db) debug (db) 

The working segment is changed by moving up or down the stack 
i frames, where· iis a decimal integer. For example, if the 
working segment's active stack frame is at depth 4 in the 
stack, then: 

.+3 

ch~nges the working segment to the segment whose stack frame 
is at depth 7 in the stack. The defaults for working pointer, 
segment ID, and offset are reinitialized to the base of the 
stack frame, &s, and 0, respectively. 

. SET STACK 

I 

~e 
I 

general form is: 

. i 

The working segment is set to that of stack frame i (starting 
at .0), where i is a decimal integer. The defaults-are set as 
in pushing or-popping the stack. 

EXECUTE MULTICS COMMAND 

The general form is: 

.~<Multics command line> 

The rest of the input line after the.. is interpreted as a 
standard Multics command line and is passed to the standard 
comsand processor with any preceding· characters blanked out. 
Any· valid Multics command line can be given. When setting 
breaks, the. program being debugged must be called in this 
manner because debug sets up a condition handler (for break 
faults) that is active only as long as debug's stack frame is 
active. 

PRINT DEFAULTS 

3-167 AG92-03 



debug (db) 

The general form is: 

.d or .D 

The output might look like: 

. vm 6,.3, 2, 20 

3 /test_seg/14(0)&t,i 212 

or: 

3 />udd>m>foo>test_seg/14(0)&t,i 212 

debug (db) 

The first number (3 above) is the stack frame depth in 
decimal, unless there is no stack frame for the working 
segment, in which case the number is -1. The name of the 
working segment appears between the slashes (test seg above);. 
if .D is used, the full pathname occurs here. The offset 
appears next (14 above); the bit offset (in decimal) of the 
working pointer appears next; the segment ID (&t above) 
appears next; the operator appears next (, for print); the 
output mode appears next (i for instruction); finally the 
segment number of the working segment appears (212 above). To 
find the name/segment number association for a given segment, 
for example segment number 206, the user can type: 

/206/,n;.d 

yielding: 

60 /test_caller/O(O)&s,o 206 

Knowing the name, the user can obtain the same output by 
typing: 

/test_caller/,n;.d 

CONTINUE EXECUTION AFTER A BREAK 

The general form is: 

or: 

3-168 AG92-03 



debug (db) debug (db) 

.ct,~ 

or: 

If i is not specified, it is assumed to be O. If i is 
specIfied, the next i break faults for the current break-are 
skipped. The first i~struction exeouted upon continuation is 
the instruction on which the break occurred. If a t follows 
the c, debug continues in temporary break mode (see "Break 
Requests" below). If an r follows the c, debug resets the 
mode to normal (not temporary). 

Examples: 

.c continue execution . 

. c,3 continue execution, but skip the next three break 
faults for the current break . 

. ct continue execution in temporary break mode. 

QUIT 

The general form is: 

.q 

This request returns from debug to its caller. Note that if 
debug was entered via a break, typing.q returns to the last 
procedure that explicitly called debug. 

CHANGE OUTPUT MODE 

Requests pertaining to debug's terminal output begin with 
".m". 

1) Enter brief output mode: 

.mb 

3-169 AG92-03 



debug (db) debug (db) 

This request places debug in brief output mode, which is 
somewhat less verbose than its normal output mode. In 
particular, assignment requests and the resetting of breaks 
are not acknowledged on the user's terminal; the column 
headings are not printed for a ,stack trace; the printing of 
register contents is somewhat more compact; some error 
messages are abbreviated. 

2) Enter long output mode: 

.ml 

This returns debug to long output mode, which results in 
fuller and more explicit terminal output. Long mode is the 
initial default. 

SET I/O SWITCH NAMES 

These requests allow a user to debug a program that is run 
with file output because it generates extensive output or a 
program that is run from within an exec com after "&attach" 
because it requires much input. The general form is: 

.si switch name 

.so switch-name 

where swi tch name i,dentifies the swi tch name to use for input 
(.si) or out~ut (.so). The named switcE must be attached by 
the user before the request is made. If no switch name is 
given, debug creates one (either debug_input or debug_output). 

1) User makes a switch request but does not give a switch name: 

.si 

.so 

debug creates a switch named debug input or debug output and 
attaches it to the user i/o switch.- This is the usual request 
for debugging programs that require the user_input or 
user output switches to be attached to a file instead of to 
user=i/o. Debug detaches the debug input and debug output 
switches when the user quits debug. - -

3-170 AG92-03 



debug (db) debug (db) 

2) User makes a switch request and gives the switch name: 

.si input switch 

.so output switch 

The user must attach the switch name before making the 
request. This can be used when the-user wants to read debug 
requests from a file. The switches can be restored by typing: 

.si user input 

.so user=output 

Examples: 

The user has directed the output switch named user output to a 
segment, but wants debug diagnostics to be printed on the 
terminal. This can be done by typing: 

debug 
.so 

Since a switch name is not given with the request, debug sets 
up a new I/O switch named debug output as a synonym for 
user i/o, which is the terminal in this case. When the user 
quits debug, the switch named debug_output is detached. 

The user wants to debug a procedure that uses the user input 
switch and has a set of debug requests in another s~gment 
named debug macro. An input switch named macro has been 
attached to the segment of debug requests. The user types: 

debug 
.si macro 

and debug takes requests from the switch named macro and does 
not detach the switch when the user exits debug. An attempt 
by debug to read beyond the end of the macro input stream 
results in an exit from debug. 

BREAK REQUESTS 

The following control requests are specific to breaks and 
begin with ".b". Reference is made to the default object 
segment, which is merely that segment that debug is currently 
working with when performing break requests. The default 

3-171 AG92-03 



debug (db) debug (db) 

object segment is generally specified implicitly when a. break 
is set or hit. It can be changed and determined upon request. 
The default object segment used for break requests is not 
necessarily the same as the segment addressed by the working 
pointer used in data requests. 

Breaks are numbered (named) sequentially starting at 1 but the 
numbers are unique only for the object segment in which the 
break resides. A user can have several breaks with the same 
number defined in different object segments. 

There are two types of global requests that can be performed 
on breaks. The first, or subglobal requests, refer to all 
breaks within the default object segment. The second, or 
global requests, refer to all breaks set by the user (as 
determined from the break segment in the home directory). The 
subglobal request is specified by omitting the break number in 
a break request. The global request is specified by a "g" 
immediately after the "b" of all break requests (see below). 

The general form of all break requests is: 

.bgxl args 

where -the "g", the number i, and the arguments are optional. 
The "x" is replaced by the control character for thE~ break 
request desired. The following break requests are currently 
defined: 

1) Reset a break (or breaks). The forms of the requests are: 

.bri to reset break i of the default object segment . 

. br- to reset all breaks of the default object segment . 

. bgr to reset all breaks known to debug. 

2) List (print information about) a break. 
request are: 

The forms of the 

.bli to list break i of the default object segment . 

. bl- to list all breakS' of the default object segment . 

. bgl to list all breaks known to debug. 

3) Execute a debug request at break time. The forms for this 
request are: 

~'5-1 72 AG9~-O'3 



debug (db) 
! 

debug (db) 

· bei 
· be
.bge 

<rest of line> 
<rest of line> 
<rest of line> 

Specifying the above request causes <rest of line> to be 
inter~reted as a debUg. input line whene~er the appropriate 
break(s) is encountered. If <rest of line> is null, the 
specified breaks have this execute feature reset to normal. 

4) Disable a break (or breaks). 
are: 

The forms of this request 

5) 

.boi disable (turn Qff) break i of the default break 
segment . 

. bo disable all breaks in the default break segment . 

. bgo disable all breaks known to debug.' 

Disabling a break has the effect of preventing the break 
from being taken without discarding the information 
associated with it. A user can disable a break rather than 
reset it if the break is to be needed again in the future. 
A disabled break can be eliminated altogether (reset) by 
the . br r,equest, or reenabled by the . bn request. If the 
break has already been disabled, these requests has no 
effect. 

Enable a break or breaks. The forms of this request are: 

.bni enable (turn on) break i of the default break 
segment. 

· bn enable all breaks in the default break segment. 
· bgn, enable all breaks. 

This request restores a previously disabled break. If the 
break was not disabled, the request has no effect. 

6) Establish a temporary command line to be executed whenever 
breaks are encountered. This request is of the form: 

.bgt <rest of line> 

This causes <rest of line> to be executed as a debug 
request whenever any break is encountered during the 
current process. The difference between this request and 
~bge is that when .bge is typed, the associated line 
remains associated with all breaks until they are reset, or 
until they are changed by .be requests. It is possible to 
have a temporary global command without removing request 
lines associated with individual breaks. If <rest of line> 

3-173 AG92-03 



debug (db) debug (db) 

is null, a previously-established temporary command line js 
disestablished. 

7) Break conditionally. The following requests allow the user 
to change a break into a conditional break, i.e., a break 
that stops only if a certain condition is met. 

.bci arg1 ·<rel> 

.bc- arg1 <reI> 
arg2 
arg2 

arg1 and arg2 can be constants or variables; <reI> can be = 
or .... =. Whenever a specified break is encountered, a test 
is made to see if the equality exists and breaks according 
to whether the user specified = or .... = in setting up the 
conditional break. For example: 

causes break 3 to fault 
value of i is nonzero . 

. bc3 i = j 

whenever it is encountered and the 
Another example: 

causes break 3 to fault whenever it is encountered and the 
value of i is the same as the value of j. The comparison 
is a bit by bit comparison with the number of bits to 
compare being determined by the size and type of the second 
argument. 

If no arguments are given to a set conditional request, the 
specified break is set back to a normal break. For 
example: 

. bc 

causes all breaks of the default object segment to fault 
normally. 

8) Specify the number of times a break 
(skipped). The general form is: 

. bsi n 

should be ignored 

This causes the number of skips to be assigned to break i 
of the default object segment to be n. 

9) Print or change the default obj ect segment.· The form for 
this request is: 

.bd name 

3-174 AG92-03 



I debug (db) 
i 

debug (db) 

where name is the (relative) pathname or segment number of 
the segment to become the default object segment. If name 
is not specified, the p~thname of the default object 
segment is printed. 

10) List the current segments that have breaks. The form for 
this request is: 

. bp 

This r~quest merely interprets the break segment in the 
initial working directory. 

PRINT ARGUMENTS 

The general form is: 

Argument i for the current stack frame is printed in the mode 
specified- by m. If i is not specified, all arguments are 
printed. If -m is not specified, debug decides the output 
mode. Valid values for mare: 

a full word octal 

p pointer 

d decimal 

a ASCII 

b bit string 

I location of argument 

e,f floating point 

? debug decides (the default value for ~) 

Examples: 

.a3 
ARG 3: ">user dir dir" 

3-175 AG92-03 



debug (db) debug (db) 

.a3,0 
ARG 3: 076165163145 

GET FAULT REGISTERS 

The general form is: 

.f 

For register requests debug uses the machine registers of the 
last fault found in the stack starting at the frame currently 
being looked at. (This is the default when debug is entered 
as a result of a break fault.) 

CRAWLOUT REGISTERS 

The general form is: 

.C 

For register requests debug uses the fault data associated 
with the last crawlout (abnormal exit from an inner ring). 

Program Interrup~ Feature 

The user can interrupt debug 
any time, in particular during 
debug request level (i.e., to 
request), the user should type: 

pi 

by pressing the quit button at 
unwanted output .. To return to 

where debug waits for a new 

which is the standard program interrupt manager. 
description of the program_interrupt command.) 

(See the 

Temporary Break Mode 

When debug is in temporary break mode (placed there via a .ct 
control request), the following actions are taken 
automatically: 

3-176 AG92-0:3 



-----
; 

debug (db) debug (db) 

'1) When the user continues any break, another (temporary) 
break is set at the first word of code for the next line of 
source c.ode after the source statement containing the break 
being continued. If debug cannot determine the location of 
the next line of source code, the temporary break is set at 
the word of object code immediately following the break 
being continued. 

2) A temporary break is restored automatically whenever it is 
continued. A temporary break must be explicitly reset by 
the user only when it is not continued. 

Since temporary breaks are set sequentially in a program 
(i.e., at the next statement in the source program), any 
transfers within a program can either skip a temporary break 
or cause code to be executed that was stopped earlier with a 
temporary break. Temporary break mode is designed to be used 
ln programs that are fairly uniform and Sequential in their 
flaw of control. A user should list breaks after using 
temporary break mode to see if any breaks remain active. 

Indirection 

It is quite often desirable to reference the data pointed to 
by the pointer that is pointed to by the working pOinter, 
i.e., to go indirect through the pointer. The user can 
instruct debug to do this by typing * instead of the segment 
name, offset, and segment ID in a generalized address. For 
example: 

/test/regp 

might print: 

1260 110 21412360 

To find what two octal words begin at 21412360, the user need 
type only: 

*,02 

This causes the working pointer to be set to 21412360 and not 
necessarily point into the same segment as before the request. 

3-177 AG92-03 



debug (db) debug (db) 

Breakpoints are implemented by using a special instruction 
(mme2) that causes a hardware fault whenever it is executed. 
When the fault is first encountered in a process using the 
standard process overseer, a static handler for the fault is 
set up which passes control to debug. When debug is entered 
via a break, it does the following: 

1) fills the registers with those of the break fault; 

2) prints the location of the break fault; 

3) waits for requests. 

When continuing after a break fault, debug changes the control 
unit information so that when it is restarted, it executes the 
instruction that used to exist where the break word was 
placed. 

The debug command keeps track of a default object segment. 
All break requests made are relative to the default object 
segment. For example, any reference to break 3 really means 
break 3 of the default object segment. To change (or find 
out) the value of the default object segment, the .bd request 
should be used. 

Variable Names for PL/r and FORTRAN Programs 

If a symbol table was created for a PL/I 
using the table option, then names of 
structures, and arrays can be used. The 
are: 

or FORTRAN program 
labels, scalars, 
only restrictions 

1) that the entire structure name must be specified; 

2) the only expressions that are allowed for subscripts are of 
the form: 

variable + constant 

where variable can be an arbitrary reference as above; 

3) all subscripts must appear last. If a variable is based on 
a particular pointer, that pointer need not be specified. 
Some examples of valid variable references are: 

3-178 AG92-03 



debug (db) 

p-> a.b.c(j,3) 
a.b 
p ( 3 , i + 2) - > qp. a . b (x ( x ( 4 ) + 1 ) ) - > j . a 

Bit Add.ressing 

debug (db) 

When a working pointer is generated to a data item that is 
based on or is a·part of a substructure, a bit offset may be 
required. This bit offset is indeed kept and used. When 
making references to data relative to a working pointer with a 
bit offset, the relocated addresses can still contain a bit 
offset. For example, if the working pointer has the value: 

1 51 13706 ( 1 3 ) 

then the request: 

+16,b3 

sets the working pointer to: 

15113724(13) 

and prints the three bits at this location. 

Output Modes 

The following output modes are acceptable to debug: 

o octal 
The data pointed to by the working pointer is printed in 
full word octal format, eight words per line. 

h half carriage octal 
The data is printed as in 0 format except that only four 
words per line are printed. 

d decimal 
The data is printed in decimal format, eight words per 
line. 

a ASCII 
The data is interpreted as ASCII and printed as such. No 
more than 256 characters are printed in response to a 
single request. 

i instruction 
The data is printed in instructiori format. 

3-179 AG92-03 



debug (db) debug (db) 

p . pointer 

s 

The data is printed in pointer format, i.e., segment number 
and offset (and bit offset if nonzero). 

source statement 
One or more source statement lines are printed 
with the line of source code that generated 
pointed to by the working pOinter (assumed to be 
into the text). For example: 

/test/loop_here+32 ,s2 

starting 
the code 
pointing 

prints two lines of source code starting with the line that 
generated the code, 32 (octal) words after the label 
loop_here. 

Another example: 

/test/&a219,s 

prints line number 219 (decimal) of test.lang where lang is 
the appropriate language suffix. Note that if there was no 
code generated for the specified line, debug prints a 
message, increments the line number, and tries again for up 
to 10 lines. 

1 code for line number 
The code associated with the specified line number is 
printed in instruction format. The line number is 
determined as in s type output. For example: 

/test/&a27,1 

prints the code generated 
test.lang. 

for line 27 (decimal) of 

n no output 
No output. This is used to suppress output when changing 
defaults. 

e floating point with exponent (single precision) 

el long floating point with exponent (double precison) 

f floating point (single precision) 

fl long floating point (double precision) 

b bit string 
The data is printed as if it were a bit string. No more 

3-180 AG92-03 



debug (db) debug (db) 

than 72 bit positions are printed in response to a single 
request. 

g graphic 
The specified number of characters are interpreted as 
Multicsstandard graphics code. The type and value of each 
recognizable item is printed to the terminal. (Refer to 
the Multics Graphics System manual, Order No. AS40 for 
details.) 

comp-5, comp-6, comp-7, comp-8 
The data is printed as if it were a COBOL data type. If 
the size field is used for comp-5 or comp~8, it is the 
number of digits plus sign to use in printing the data. 

comp-5 
comp-6 
comp-7 
comp-8 

byte-aligned packed decimal 
full-word binary integer 
half-word binary integer 
digit-aligned packed decimal 

3-181 AG92-03 



debug (db) 

Summary of Data and Control Requests 

DATA REQUESTS 

/seg name/. offset §_~D reI offset 

pathname number &t number 
ref name symbol &s register 
seg numher &1 
&n seg name &an 
seg$entry &pn 

&i 

debug (db) 
----_.,._--

operator operands 

operands. 
= input list 
< function list 
> . -.-

Segment ID Operator~ Registers Output Modes 

&t text , print $a 0 octal 
$q h half-carriage 

octal 
&s stack = assign $aq d decimal 

$eaq a ASCII 
$xO 

&1 linkage < ·set break i instruction 

&i internal static p pointer 
&an source line > transfer $x7 s source statement 

$prO 1 code for line 
number 

&pn parameter . - call n no output .-
e floating point 

$pr7 el long floating 
point with 
exponent 

$exp f floating point 
$tr fl long floating 

point 
b bit string 
g graphic 

$ralr comp-5 COBOL 
$ppr comp-6 COBOL 
$tpr comp-7 COBOL 
$even comp-8 COBOL 
$odd 
$ind 
$prs 
$regs 

3-182 AG92-03 



debug (db) 

$scu 
$all 

3-183 

debug (db) 

AG92-03 



debug (db) 

.t1.,l 

. +i or .-i 

· i 

· d or . D 
.c,i 

. ct,.!. 

. cr,i 

. q 

. bri 

.br-

· bgr 
. bli 
· bl
. bgl 
. bei <line> 
. be-<line> 

. bge <line> 
· boi 
· bo-

· bgo 
.bni 
. bn-

· bgn 
.bgt <line> 
. bci a1 -rel- a2 
. bc- a1 -rel- a2 

· bsi n 
.bd-name/no. 
· bp 
. a1.,!!! 

. f 

.c 

. mb 

. m1 

debug (db) 

CONTROL REQUESTS 

trace stack from frame 1. for 1 frames. 
pop or push stack by i frames . 
set stack to ilth frame. 
Multics command. 
print default values. 
continue after break fault 

(ignore next i break fault). 
continue, in temporary break mode . 
continue, in normal mode . 
return from debug to caller . 
reset break i . 
reset the br~aks of the default object 

segment. 
reset all breaks. 
list break i . 
list the breaks of the default object segment . 
list all breaks . 
execution line for break i . 
execution line for all breaks of the. 

default object segment. 
execution line for all breaks . 
disable break i. 
disable the break of the default object 

segment. 
disable all breaks. 
enable break i . 
enable the breaks of the default object 

segment. 
enable all breaks. 
establish a temporary global 0ommand . 
make conditional break i . 
make conditional all breaks of default object 

segment. 
set skips of break i to n. 
set (or print) default object segment. 
print names of all segments with breaks. 
print argumenti in mode m . 

(modes: 0, p~ d, a, b,-l, e, f, ?). 
use registers from last fault . 
use crawlout registers . 
change to brief output mode . 
change to long output mode. 

3-184 AG92-03 



deca~ 

SYNTAX AS A COMMAND: 

decat strA strB C 

SYNTAX AS AN ACTIVE FUNCTION: 

[decat strA strB CJ 

decat 

FUNCTION:' performs operations on, bit or character strings. 
These operations are specified by a three digit bit string 
given last in the usage line. 

ARGUMENT'S: 

strA, strB 

C 

are character strings, or bit strings entered as 0 and 1 
chara.cters. 

where C is any three digit bit string expressed as 0 and 1 
characters such as 000,001, ... , 111 . 

NOTES: The first occurrence of strB found in strA divides strA 
into three parts: part prior to strB, part matching strB, and 
part following strB. The digits given in C correspond to 
these three parts. The return string contains the parts of 
strA whose corresponding bit in C is 1. All three parts are 
returned in their original order of appearance in strA. 

EXAMPLES: 

Examples of active function usage follow: 

string [decat abcdef123ghi 123 110J 
abcdef123 
string [decat decat.incl.pI1 .incl 101J 
decat.pl1 

3-185 AG92-03 



decimal (dec) 

SYNTAX AS A COMMAND: 

dec values 

SYNTAX AS AN ACTIVE FUNCTION: 

[dec values] 

FUNCTION: returns one or more values in decimal. 

ARGUMENTS: 

value 

decimal (dec) 

is a value to be processed. The last character of the value 
indicates its type. Acceptable types are binary (b), 
guartenary (q), octal (0), hexadecimal (x), or unspecified 
(u). Any valid PL/I real value is allowed. The absence of 
any specifier means decimal. The unspecified value is limited 
to 8 characters. 

EXAMPLES: 

string [dec 110.1b] 
6.5 

3-186 AG92-03 



decode 

SYNTAX AS A COMMAND: 

decode' path1A {path2A 

decode 

path1N path2N} 

FUNCTION: reconstructs an original segment from an enciphered 
segment according to a key that is not stored in the system. 
The encode command is used to encipher segments. 

ARGUMENTS: 

path1A 
is the pathname of an enciphered segment. The code suffix 
should not be specified because the command attaches the code 
suffix to the path1 argument (e,g., if the user types 
alpha x.code as the path1 argument, the command attaches the 
suffix and looks for a segment named alpha x.code.code). The 
star convention is allowed.' -

path2A 
is the pathname of the deciphered segment to be produced. If 
the last path2 argument is missing, the command constructs a 
pathname from the path1 argument (see "Notes" below). The 
equal convention is allowed. 

NOTES: The decode command requesis the key from the terminal 
only once. All segments specified in an invocation of decode 
are deciphered with the same key. 

If the last path2 argument is riot given, the command places 
the deciphered segment in a segment whose name is the path1 
argument, mintis the code suffix. 

EXAMPLES: 

If the user types the command line: 

decode alpha_x 

the command looks for an enciphered segment named alpha x.code 
a~d places the deciphered segment produced in a segment named 
alpha_x. 



default 

SYNTAX AS A COMMAND: 

default strA IstrE} 

SYNTAX AS AN ACTIVE FUNCTION: 

[default strA {strB}] 

default 

FUNCTION: supplies default arguments to commands, and provides a 
means to override this default when desired. The default 
active function is designed to be used in conjunction with the 
abbrev and do commands. -

NOTES: If strB is not specified or is the null string, strA is 
returned (see the second example below). 

EXAMPLES: In the first example, the user sets up an abbreviation 
using the default active function to automatically compile a 
program with the -map and -table control arguments. The user 
can override the defaults by specifying more than one argument 
when using the abbreviation. Assume that comp pl1 is an 
abbreviaiion for: . -

do "p11 &1 [default ""-map -table"" &2] &f3" 

Thus, typing "comp pl1 test" is the same as typing "p11 test 
-map -table"; typIng "comp pl1 test -list -profile" is the 
same as typing "p11 test -list -profile". 

The next example shows the null input feature of the default 
active function. Assume that my_dp is an abbreviation for: 

do "dp -he [string [default [entry &1] &r2]] 
. -q [default 3 &3] &f4 &1" 

3-188 AG92-03 



default default 

When the user types the command line: 

my_dp >udd>Demo>Roy>design_memo.runout "" 2 -dl 

the null input for the second argument means that default uses 
the default value for this argument (in this case, the 
entryname portion of the pathname). Thus, the expansion of 
the command line is:' 

dp -he design memo.runout -q 2 
-dl >udd>Demo>Roy>design_memo.runout 

3-189 AG92-03 



default wdir (dwd) 

SYNTAX AS A COMMAND: 

dwd 

SYNTAX AS AN ACTIVE FUNCTION: 

[awd] 

default wdir (dwd) 

FUNCTION: returns the pathname of the default working directory 
of the process in which it is invoked, as set by the 
change_default_wdir (cdwd) command. 

3-190 AG92-03 



def~r_messages (dm) defer_messages (dm) 

SYNTAX AS A COMMAND: 

dm {destination} !-control_arg} 

FUNCTION: prevents messages sent by the send message command and 
the "You have mail." notification sent by the send mail 
command from printing on the user's terminal. Instead-;- tl'.e 
user of send message receives notification of the form "User 
has deferred-messages. User id.Project id". The "You havG 
mail" notifications are not saved. -

ARGUMENT: 

destination 
can be of the form Person id.Project id to specify a mailbox. 
The default is the user's default mailbox. If destination 
contains < or >, it is assumed to be the pathname of a 
mailbox. This argument and the -pn path control argument are 
mutually exclusive. 

CONTROIJ ARGUMENTS:, 

-pathname path, -pn path 
specifies a mailbox by pathname. 
This control argument and the 
mutually exclusive. 

The mbx suffix is assumed. 
destination argument are 

NOTES: The print messages command prints mes~ages that have been 
deferred. -

The immediate messages command 
messages as·they are received. 

restores the printing of 

For a description of the mailbox, refer to the accept_messages 
and print~mail commands. 

3-191 AG92-03 



delete Cdl) delete (dl) 

SYNTAX AS A "COMMAND: 

dl {paths} {-control_args} 

FUNCTION: causes the specified segments" and/or multisegment 
files to be deleted. See also the delete dir and unlink 
commands. 

ARGUMENTS: 

paths 
are the pathnames of segments or multisegment files. The star 
convention is allowed. 

CONTROL ARGUMENTS: 

-brief, -bf 
inhibits the printing of an error message if a segment or 
multisegment file to be deleted is not found. 

-force 
deletes the specified entries whether or not they are 
protected, without issuing a query. 

-long, -lg 
prints a message of the form "Deleted file <path>" for each 
entry deleted. 

-name STR, -nm STR 
specifies a nonstandard entry name STR (e.g., invalid starname 
such as **.**.compout or name containing <.) 

ACCESS REQUIRED: The user must have modify permission on the 
containing directory. 

3-192 AG92-03 



delete (dl) delete (dl) 

NOTES: At least one path, or -name STR, must be specified. 

In order to delete a segment or ~ultisegment file with the 
delete commaqd, the entry must have both its safety switch and 
its copy switch off. If either is on, the user is 
interrogated whether to delete the entry. 

Use delete dir to delete directories. Use unlink to delete 
links. 

3-193 



delete acl (da) delete acl (ds.) 

SYNTAX AS A COMMAND: 

da {path) {User_ids} {-control_args} 

FUNCTION: removes entries from the access control lists (ACLs) 
of segments,multisegment files, and directories. 

ARGUMENTS: 

path 
is the pathname of a segment, multisegment file, or directoryn 
If it is -wd, -working dir, or omitted, the working directory 
is assumed. If path is omitted, no User ids can be specified. 
The star convention is allowed. 

User ids 
are access control names that must be of the form 
Person id.Project id.tag. All ACL entries with matching names 
are deleted. (For a description of the matching strategy, see 
set acl in this manual.) If no User ids are specified, the 
use~'s Person id and current Project_iK are assumed. 

CONTROL ARGUMENTS: 

-all, -a 
deletes the entire ACL with the exception of an entry for 
*.SysDaemon.*. 

-directory, -dr 
deletes ACLs for only directories. The default is segments, 
multisegment files, and directories. 

-segment, -sm 
deletes ACLs for only segments and multisegment files. 

-brief, -bf 
suppresses the message "User name not on ACL." 

ACCESS REQUIRED: The user must have modify permission on the 
containing directory. 

NOTES: If the delete acl command is invoked with no arguments, 
it deletes the en~ry for the user's Person id and current 
Proj ect_id. on the ACL of the working directory'7 

3-194 AG92-03 



delete acl (da) delete acl (da) 

An ACL entry for *.SysDaemon.* can be deleted only by 
specifying all three components as a User ide The user should 
be .aware that (leleting access to 'the SysDaemon project 
prevents Backup.SysDaemon.* from saving the segment or 
directory (including the hierarchy inferior to the directory) 
on tape, Dumper.SysDaemon.* from reloading it, and 
Retriever.SysDaemon.* from retrieving it. 

For a description of ACLs, see "Access Control" in the MPM 
Reference Guide. 

EXAMPLES: 

The command line: 

'delete acl news .Faculty. Jones 

deletes from the ACL of news all entries with Project_id 
Faculty and the entry for Jones.*.*. 

The command line: 

da beta.** .. 

deletes from the ACL of every segment, multisegment file, and 
directory (in the working directory) whose entryname has a 

: first component of beta all entries except the one for 
iE' .SY,sDaemon. * . 

The command line,: 

da beta.** .. -sm 

deletes from the ACL of all segments and multi segment files 
(in the working directory) whose entrynames have a first 
component of beta all entries except ~he one for 

.*.SysDaemon.*. 

3-195 AG92-03 



delete dir (dd) delete dir (dd) 

SYNTAX AS A COMMAND: 

dd {paths} {-control_args} 

FUNCTION: causes the specified directories and any segments, 
links, and multisegment files they contain, to be deleted. 
All inferior directories and their contents are also deleted. 

ARGUMENTS: 

paths 
are pathnames of directories. The star convention is allowed. 

CONTROL ARGUMENTS: 

-brief, -bf 
inhibits the printing of an error message if the directory to 
be deleted is not found. 

-force 
deletes the specified directories without issuing a query. 

-long, -lg 
prints a message of the form "Deleted directory <path>" for 
each directory deleted. 

-name STR, -nm STR 
specifies a nonstandard entry name STR (e.g., invalid starname 
such as **.**.compoutor name which contains <.) 

ACCESS REQUIRED: The user must have modify permission on both 
the directory and its superior directory. 

NOTES: At least one path or -name must be specified. 

Before deleting each specified directory, delete dir asks the 
user whether to delete that directory. It is deleted on~y if 
the user types "yes". 

When deleting a nonempty master directory, or a directory 
containing inferior nonempty master directories, the user must 
have previously mounted the logical vOlume(s). If a nonempty 
master directory for an unmounted volume is encountered, no 

3-196 AG92-03 



delete dir.( dd) delete dir (dd) 

subtrees of that master directory are deleted, even if they 
are mounted. 

Use delete to delete segments. Use unlink to delete link 
entries. 

WARNING: Protected segments in pathi or any of its 
subdirectories are not deleted. Segments whose write bracket 
is less than the current ring (except for mailboxes and 
message segments) are also not deleted. Consequently, the 
subtree is not completely deleted if it contains any such 
segments. For a . discussion of protected segments, see the 
safety switch attribute in the MPM Reference Guide. For a 
discussion of ring brackets, see "Intraprocess Access Control" 
in the MPM Reference Guide. 

5-197 AG92-03 



delete iacl dir (did) deleteiacl dir (did) 

SYNTAX AS A COMMAND: 

did {path} I Use'r _ids} {-control_args J 

FUNCTION: deletes entries from a directory's initial access 
control list for directories (directory initial ACL). A 
directory initial ACL contains the ACL entries to be placed on 
directories created in the specified directory. 

ARGUMENTS: 

path 
specifies a pathname of the directory whose directory initial 
ACL should be changed. If path is -wd~ -working dir, or 
omitted, the working directory is assumed. If ~ath is 
omitted, no User ids can be specified. The star convention is 

-a-r1.owEfa::----~'··-"'--:-::-

User iels 
are access control names that must I' be of the form 
Person id.Project id.tag. All entries . in the directory 
initial ACL that match User id are deleted. (For a 
description :,Of the ma~;t,: ching strategy, refer to :the set_acl 
cOlIlmand. ) If no User _i s are specified'l the user's Person_id 
anr current Proj ect_id , re assumed. !' 

CONTROL ARGUMENTS: 

-all, -a 
deletes the entire directory initial ACL with the exception of 
an entry for *.SysDaemon.*. 

-ring N, -rg N 
identifies the ring number whose directory initial ACL should 
be affected. N must be an integer such that user's ring < N < 
7 (there is a separate initial ACL for each ring). If-this 
control argument is not specified, the user's ring is assumed. 

-brief, -bf 
causes the message "User name not on ACL of path" to be 
suppressed. 

ACCESS REQUIRED: The user must have modify (m) permission on the 
directory. 

3-198 AG92-03 



delete iacl dir (did) delete iacl dir (did) 

NOTES: If the delete iacl dir command is given without any 
arguments, the ACL entry for the user's Person id and curr9nt 
Pro'j ect id is deleted from the directory ini tIal ACL of the 
working-directory. 

For a discussion of initial ACLs, see "Access Control" in the 
MPM Reference Guide. 

EXAMPLES: 

The command line: 

did news .Faculty Jones .. 

deletes from the "directory initial ACL of the news directory 
all entries ending in .Faculty.* and all entries with 
Person id Jones. 

The command line: 

did -a 

deletes all entries from the directory initial ACL of the 
working directory. 

The command line: 

did store Jones ~rg 5 

deletes the entry for dones.*.* from the ring 5 directory 
initial ACL of the store directory. 

3-199 AG92-03 



SYNTAX AS A COMMAND: 

dis {path} {User_ids} {-control_args} 

FUNCTION: deletes. entries from a directory's initial access 
control list for segments (segments initial ACL). A segment 
initial ACL contains the ACL entries to be placed on segments 
created in the specified directory. 

ARGUMENTS: 

path 
specifies the pathname o~ a directory 
ACL should be changed. If path is 
omitted, the working directory is 
omitted, no User ids can be specified. 
allowed'! 

whose segment initial 
-wd, -working dir, or 

assumed. If ~ath is 
The star convention is 

User ids 
are access control names that must 
Person id.Project id.tag. All entries 
initial ACL that match the given User ids 
description of the matching strategy, 
manual.) If nO User ids ~re specified, 
and curre~t Project_i~ are; assumed. 

,1.._' f 

CONTROL ARGUMENTS: 

-all, -a 

be of the form 
in the directory 

are deleted. (For a 
see set acl in this 
the user's Person id 

deretes the entire initial ACL,with the exception of a.n entry 
for *.SysDaemon.*. 

• .' <r 

-ring N, -rg N 
identifies the ring numbe~whose segment initial ACL should be 
affected. (There is a separate initial ACL for each ring.) N 
must be an integer such· that user's ring < N < 7). If this 
control argument is not specified, the userTs rIng is assumed. 

-brief, -bf 
causes the message "User name not on ACL of path" to be 
suppressed. 

ACCESS REQUIRED: The user must have 
directory. 

modify ( m) permission on the 

AG92-03 



NOTES: If the delete iacl seg command is given without any 
arguments, the ACL entry for the user's Person id and current 
Project id is deleted from the segment initIal ACL of the 
working-directory. 

For a discussion of initial ACLs, see "Access Control" in the 
MPM Reference Guide. 

EXAMPLES: 

The command line: 

dis news .Multics. Jones 

deletes from the segment initial ACL of the news directory all 
entries with Project_id Multics and the entry for Jones.*.*. 

The command line: 

dis -a 

deletes all entries from the segment initial ACL of the 
working directory. 

The comm~nd line: 

dis store Jones .. -rg 5 

deletes all entries with Person id Jones from the ring 5 
segment initial ACL of the store directory. 

3-201 AG92-03 



delete_message (dIm) delete_message (dIm) 

SYNTAX AS A COMMAND: 

dIm {destination} numbers {-control_args} 

FUNCTION: deletes a message sent by the send message command and 
saved in a mailbox with the -hold control argument to the 
accept message~ command. (See the accept_messages command for 
more details.) 

ARGUMENT: 

destination 
can be of the form Person id.Project id to specify a mailbox. 
If destination contains ei~her < or >~ it is assumed to be the 
pathname of a mailbox. This argument and the -pathname 
control argument are mutually exclusive. 

numbers 
are message numbers as printed by the print_message command 
when accept_messages -hold is in effect. 

CONTROL ARGUMENTS: 

-all, -a 
deletes all messages from the mailbox. 

-pathnama path, -pn path 
specifies a mailbox by pathname. 
This control argument and the 
mutually exclusive. 

The mbx suffix is assumed. 
destination argument are 

NOTES: If no mailbox is specified, the user's default mailbox is 
assumed. For a description of the mailbox, refer to the 
accept_messages and print_mail commands. 

3-202 AG92-03 



delete name (dn) delete name (un) 

SYNTAX AS A COMMAND: 

dn {paths} {-control_arg} 

FUNCTION: deletes specified names from segments, multisegment 
files, links, or directories that have multiple names. 

ARGUMENTS: 

paths 
are pathnames to be deleted. The star convention is allowed. 

CONTROL ARGUMENTS: 

-brief, -bf 
suppresses error messages when entries are not found with 
specified pathnames. The default is -long (-lg). 

-long, -lg 
prints a message of the form "Deleted <path)" for' each name 
deleted. 

-name 8TR, -nm STR 
specifies a nonstandard entry name STR (e.g., invalid starname 
such as *.compout or name containing <). 

ACCESS REQUIRED: The user must have modify permission on the 
parent directory. 

'NOTES: At least one path or -name STR must be specified. In 
keeping with standard practice, each path can be a relative 
pathname or an absolute pathname; its final portion (the 
storage system entryname in question) is deleted from the 
storage system entry it specifies, provided that doing so does 
not leave the segment or directory without a name. If the 
entryname to be deleted is the only name on the storage system 
entry, an error message is printed. 

See the descriptions of the add name and rename commands for 
add:ing and changing names, respectively, on storage system 
entries. 

3-203 AG92-03 



delete name (dn) delete name (an) 

EXAMPLES: 

The command line: 

dn alpha >my_dir>beta 

deletes the name alpha from the list of names for the appropriate 
entry in the current working directory and also deletes the nania 
beta from the list of names for the appropriate entry in the 
directory >my dire Neither alpha nor beta can be the only name 
for their respective entries. 

3-204 AG92-03 



SYNTAX AS A COMMAND: 

dsp search_list search_paths {-control_argJ 

FUNCTION: allows a user to delete one or more search paths from the 
specified search list. 

ARGUMENTS: 

search list ' 
is the name of the search list from which the specified search paths 
are deleted. It must be quoted if it contains space~ or other 
command language characters. 

search pathi 
spe'cifies a search path to be deleted. The search path can be an 
absolute or relative pathname or a keyword. It is necessary to 
use the same name that appears when the print search paths command 
is invoked. - -

CONTROL ARGUMENTS: 

-all, -a 
specifies that the search list itself is to be deleted. Any search I 
paths specified are ignored. This control argument must be used 
to delete all the search paths in a search list. 

NOTES: For a complete list of the search facility commands, see 
add_search_paths in this manual. 

3-205 AG92-03 



delete search rules (dsr) delete search rules (dsr) 

SYNTAX AS A COMMAND: 

dsr paths 

FUNCTION: deletes search rules for object segments. 

ARGUMENTS: 

paths 
are usually directory pathnames (relative or absolute) to be 
deleted from the current search rules. One of the paths can 
be the keyword working_dir (see "Note" below). 

NOTES: Site-defined keywords and the home dir and process_dir 
keywords are not accepted by delete search rules although they 
are accepted by the add search rules command. Although the 
delete search rules command does accept the keywords 
initiated segments and referencing dir, their deletion is 
discouraged and may lead to unpredictable results. 

3-206 AG92-03 



detach audit (dta) 

SYNTAX AS A COMMAND:" 

dta {switchname} 

FUNCTION: removes audit from 
the switch to the state 
attach audit. 

ARGUMENTS: 

switchname 

detach audit (dta) 

the specified switch and restores 
of the switch prior to invoking 

is the switch from which audit is to be removed. If 
switchname is not specified, user~i7o is assumed. 

For further information about the audit facility, see 
in the MPM Subroutines, and attach audit in this 

NOTES: 
audit 
manual. 

3-207 AG92-03 



detach Iv (dlv) detach Iv (dlv) 

SYNTAX AS A COMMAND: 

dlv volume names 

FUNCTION: detaches one or more logical volumes that have been 
attached for the usei's process by the resource control 
package (RC p) . 

ARGUMENTS: 

volume names 
specify the volumes to be detached. 

NOTES: A user can detach all logical volumes attached for the 
process by specifying "all" rather than any volume names. 

The detaching of a logical volume involves telling the storage 
system that the logical volume is no longer attached for this 
process. The detaching of a logical volume do-es not affect 
the attached/detached state of the logical volume for any 
other process. 

3-208 AG92-03 



directories (dirs) directories (dirs) 

SYNTAX AS A COMMAND: 

SYNTAX AS AN ACTIVE FUNCTION: 

[dirs star_names {-control_argJ] 

FUNCTION: returns· the entrynames or absolute pathnames of 
directories that match one or more star names. 

ARGUMENTS: 

star names 
are star names to be used in selecting the names to be 
returned. 

CONTROL ARGUMENTS: 

-absolute pathname, -absp 
returns absolute pathnames rather than entrynames. The 
default is to return entrynames. 

NOTES: Only one name per directory is returned; i.e., if a 
directory has more than one name that matches star_name, only 
the first match found is returned. 

Since each entryname (or pathname) returned by directories is 
enclosed in quotes, the command processor treats each name as 
a single argument rAgardless of the presence of special 
characters in the name. 

EXAMPLES: 

pwd 
)udd)Apple)Jones 
Is -a 

Segments = 3, Lengths = 4. 

re 1 prog 
r w 1 prog.list 
r w 2 prog.p11 

3-209 AG92-03 



directories (dirs) directories (dirs) 

Multisegment-files = 2, Lengths = 770. 

r w 513 prog.output 
r w 257 prog.data 

Directories = 2. 

sma prog stuff 
sma documents 

Links = 1. 

prog.temp1 

string Ldirs **] 
documents prog stuff 
string Ldirs prog*.**] 
prog_stuff 

3-210 AG92-03 



directory 

SYNTAX AS A COMMAND: 

directory path 

SYNTAX AS AN ACTIVE FUNCTION: 

[directory path] 

directory 

FUNCTION: -returns the directory portion of path, after it has 
been expanded into an absolute pathname. 

NOTES: See the description of entry in this manual. 

EXAMPLES: 

In the working directory >udd>m>Jones: 

string Ldirectory >udd>m>Jones>foo] 
>udd>m>Jones 

string Ldirectory bar>foo] 
>udd>m>Jones>bar 

3-211 AG92-03 



discard_output (dco) discard __ output (dco) 

SYNTAX AS A COMMAND: 

dco {-control_arg} command line 

FUNCTION: executes a command line while temporarily suppressing 
output on specified I/O switches. 

CONTROL ARGUMENTS: 

-output switch STR, -osw STH 
where STR is the name of an 
arguments are specified, output 
is suppressed. 

ARGUMENTS: 

command line 

I/O switch. If no control 
on the user_output I/O switch 

is a-command line. It need not be quoted. 

NOTES: If the command specified in command line cannot be 
executed, an error message is printed. 

3-212 AG92-03 



displa.y_audit_file (daf) 

SYNTAX AS A COMMAND: 

daf {path} {-control_argsJ 

FUNCTION: displays the file produced by the audit I/O module. 

ARGUMENTS: 

path 
is the pathname of the audit file to be displayed. If path is 
not specified, the audit file associated with the user i/o 
switch is assumed. If user i/o is not being audited,-the 
audit file currently in use is-the one that is displayed. 

CONTROL ARGUMENTS: 

-from STR, -fm STR 
specifies the first audit file entry to be displayed. If STR 
is a positive . integer, it is interpreted as an entry number. 
If STR is a positive number containing a decimal point, it is 
in~erpreted asa time in 24 hour format. If STR does not fit 
either of the above cases, the audit file is displayed from 
the first entry which matches STR. If -from is not specified, 
the audit file is displayed from the beginning. 

-to STR 
stops the display of the audit file at the point specified by 
STR where STR can have any of the values as described for the 
-from control argument. If -to is not specified, the audit 
file is displayed up to the end. 

-next STH 
displays a specified number of entries from an explicit point 
in the file to the point specified by STR. If STH is in entry 
number format, the next STH entries are displayed. If STH is 
in time format, the entries within the next STH period of time 
after the beginning entry are displayed. If STH is a 
character string, the entries up to the next match of STH are 
displayed. If -next is not specified, all entries to the end 
of the file are displayed. 

-last STH 
starting at the end of the audit 
argument displays entries beginning 
STH. If STH is in entry number 
displayed is STR entries back from 
STH is in time format, the first 

file, the -last control 
at the point specified by 
format, the first entry 
the end of the file. If 
entry is STH hours and 



minutes from the end of the file. If STH is a character 
string, the first entry contains a match for 8TR searching 
from the end of the file. If this control argument is not 
specified, the audit file is displayed from the beginning& 

-match STR1 { ... STRn} 
prints entries containing strings matching any of the STRs. 
If this control argument is not specified, all otherwise 
selected entries are printed. 

-exclude STR1 { ... 8TRn} , -ex STR1 { .•. STRn} 
excludes any entries containing strings matching any of the 
STRs. If this control argument is not specified, all 
otherwise selected entries ara printed. 

-class 8TH1 { ..• STHn} 
prints the entries having a class identifier matching any of 
the STRs. Class indentifiers are as follows: 

EL - edit line 
IL - input line 
10 - input characters 
OC - output characters 
TM - trace of modes operations 
TC - trace of control operations 

If 8TH contains only one character, it is matched on the first 
character of the class identifiers. For example, if STR is I, 
entries having either IL and Ie class identifiers are 
displayed. If -class is not specified, the audit file is 
displayed without class identifiers. 

-reverse 
prints the entries in reverse chronological order. If this 
control argument is not specified, the entries are printed in 
chronological order. 

-switch 8TH 
displays the audit fil3 associated with the I/O switch 
specified by STR if the I/O switch is currently attached. If 
the I/O switch is not attached, an error message is printed. 
If this control argument is not specified, the audit file 
associated with the user_i/o switch is displayed. 

-entry_numbers, -etn 
prints the entry numbers before each entry. 

-metering, -mt 
displays the audit file with metering information at the 
beginning of each line, prBceding the class identifiers if the 

3-214 AG92-03 



-class or -class identifiers 
specified. 

-class identifiers, -cli 

control arguments are also 

displays the audit file with the class identifiers before each 
entry. If the -metering control argument is also specified, 
the metering information precedes class identifiers. 

-string STR, -str STR 
uses STR as a character string with no special interpretation. 
This is useful for preventing STR from being interpreted as a 
control argument, a time, or an entry number. It can be used 
with the -from, -to, -next, -last, -match, and -exclude 
control arguments, for example "-from -string 81". 

-line length N, -11 N 
inserts a newline after the character specified by N if a line 
of output is greater than N characters in length. A 
continuation line is indented to allow for any entry 
descriptors produced by the -metering, -entry numbers, or 
-class identifiers control arguments and preceded by an "*" to 
indicate it is; a continuation of the previous line. 

NOTES: The format of the output, which entries are selected to 
be output, and the file to which the output is directed are 
all specified by the user. For more information on the audit 
facility, see the attach audit description in this manual and 
the audit_ I/O module in-MPM Subroutines. 

The audit meter mode must have been on for there to be any 
metering information in the audit file. Without this 
information, time arguments are invalid. See the audit I/O 
module in the MPM Subroutines. 

The -string control argument is useful in the following 
situations. To pass 1005.2 as a character string to be 
matched, rather than a value of time for the control argument 
-from type: 

daf -from -stririg 1005.2 

To pass -last as a character string to the control argument 
--match type: 

daf -match -string -last 

3-215 AG92-03 



----------,,----_ .. _-_ ... --
display_audi t_file (daf) 

EXAMPLES: 

daf -from 5 -to 20 -11 50 -metering -class_identifiers 

time 
1306.0 
1306.0 

1306.0 
1306.0 
1306.0 
1306.5 

1306.5 

1306.5 
1306.5 
1306.5 
1306.5 
1306.5 
1306.5 

cpu usage 
0.037 
0.019 

0.021 
0.019 
0.076 
0.014 

0.011 

0.008 
0.016 
0.046 
0.011 
0.010 
0.009 

paging class 
8 lL *pr dump truck.p11 1 5 

13 OC dump_truck: proc; 

7 
o 
6 
o 
o 

o 
13 
17 
o 
o 
o 

IL 
OC 
IL 
OC 

OC 

OC 
OC 
IL 
OC 
DC 
DC 

dcl expand pathname $add suff 
*ix entry (char (*);-char-( *) , 
* char (*), char (*), fixed bi 
*n (35); 

dcl get truck_$p~ates entry.( 
*char (*), char (*)~ ptr, fixe 
*d bin (35»; 

dcl dump truck entry (ptr, f 
*ixed bin-(35»; 

rdy 
r 12:07 0.186 level 2,15 
Is *.compin -prn 

Segments = 2, Lengths = 2. 
re 1 ci_setup.compin (1 

*3) 
re hex.compin 

la hex.compin 
rew Carry.Multics.* 
re *.SysDa~mon.* 
re *.*.* 

daf -last 0010;0 -entry_numbers 

entry 
22 fo out -last 0010.0 ~entry numbers;ro 
23 file output: Specified control argument is not 

implemented by this command. -last 
24 revert output: No previous attachment of user output 
25 r 1 345-0. 111 106 -
26 fo out;daf -last 0010.0 -entry_numbers;ro 

3-216 12/12/79 AG92-D3 



daf -from cwd -next cwd -reverse -switch foo -entry_numbers 

entry 

6 cwd use>AG92r2B 
5 r 945 0.075 5.580 112 

4 when the cart stops 
do you whip the cart 
or whip the ox? 

3 say 
2 ~ 945 0.042 87 

cwd 

In the example above, the display audit file command locates 
the first occurrence of cwd in the-switcn foo. It then goes 
to the next occurrence of cwd and prints the results in 
reverse order with the entry_numbers displayed on the left. 

3-217 AG92-03 



--------------
display_cobol_run_unit (dcr) 

SYNTAX AS A COMMAND: 

dcr {-control_args! 

FUNCTION: displays the current state of a COBOL run unit. 

CONTROL ARGUMENTS: 

-long, -lg 
displays more detailed information about each COBOL program in 
the run unit. 

-files 
displays information about the current state of the files that 
have been referenced during the execution of the current run 
unit. 

-all, -a 
prints information about all programs in the run unit, 
including those that have been cancelled. 

NOTES: The minimal information displayed tells which programs 
compose the run unit. Optionally, more detailed information 
can be displayed concerning active files,. data location, and 
other aspects of the run unit. Refer to the run cobol command 
for information concerning the run unit and the-COBOL runtime 
environment. 

The user is also referred to stop cobol run (scr) and 
cancel_cobol_program (ccp) in this manuaL. -

3-218 AG92-03 



SYNTAX AS A COMMAND: 

dpe 

FUNCTION: describes the most recent file on which a PL/I I/O 
error was raised and displays diagnostic information 
associated with that type of error. The display pl1io error 
com.mand is designed to be invoked after the occurrence-of an 
I/O error signal during a PL/I I/O operation. 

EXAMPLE: 

The command line: 

dpe 

might respond with the following display: 

Error on file afile 
Title: vfile afile 
Attributes: open input keyed record sequential 
Last i/o operation attempted: write from 
Attempted "write" operation conflicts with file "input" 

attribute. 
Attempted "from" operation conflicts with file "input" 

attribute. 



divide divide 

SYNTAX AS A COMMAND: 

divide numA numB 

SYNTAX AS AN ACTIVE FUNCTION: 

[divide numA numB] 

FUNCTION: returns the integer part of the decimal quotient of 
numA divided by numB. 

NOTES: See the description of mod and quotient in this manual. 

EXAMPLES: 

string Ldivide'5 4] 
1 

3-220 AG92-03 



do do 

SYNTAX AS A COMMAND: 

do {command_string} {args} 
or 

do {-control_args} 

SYNTAX AS AN ACTIVE FUNCTION: 

[do command_string args] 

FUNCTION: substitutes arguments into a command string. The 
expanded command line is then passed to the current Multics 
command processor for execution. If abbreviations are being 
expanded in the user's process, any abbreviations in the 
expanded command line are expanded. Since the command line 
supplied to the do command is enclosed in quotation marks, 
abbreviations in it are not expanded before do operates on it. 
Control arguments can be used to set the mode of operations. 

As an active function, evaluates to the expanded command line, 
without executing it. 

ARGUMENTS: 

command string 
is a-command line enclosed .in ~uotation marks. Each instance 
of the parameter designator &i (where i is a number from 1 to 
9) found in command string is replaced-by argi. If any argi 
is not supplied, each instance of &i in command string is 
replaced by the.null string. Each instance of the-parameter 
designator &fi is replaced by the arguments argi through the 
last argument supplied, separated by single spaces. Each 
instance of the string &n is replaced by the number of 
arguments supplied. The parameters &qi, &ri, &qfi, and &rfi 
are replaced by quoted arguments. (See "Quote-Doubling and 
Requoting" below.) Each instance of the unique-name 
designator &! found in command string is replaced by a 
15-character identifier unique to the particular invocation of 
the do command .. Finally, each instance of the ampersand pair 
&& is replaced by a single ampersand. Any other ampersand 
discovered in command string causes an error message to be 
printed and the expansion to be terminated. 

argi 
Is a character string argument. Any argument supplied but not 
referenced in a parameter designator is ignored. 

3-221 AG92-03 



do do 

CONTROL ARGUMENTS: 
set ,the mode of 
arguments can only 
nor args are given. 
following: 

operation of the do command. Control 
be specified if neither a command string 

Control_args can be one or more-of the 

-long, -lg 
prints the expanded command line on error_output before it is 
executed or passed back. 

-brief, -bf 
suppresses printing of the expanded command line. This is the 
default. 

-nogo 

-go 

does not pass the expanded command line to the command 
processor. This control argument is ignored if do is invoked 
as an active function. 

passes 'the expanded command line to the command processor. 
This is the default. This control argument is ignored if do 
is invoked as an active function. 

-absentee 
establishes an on unit for the any other condition during the 
execution of the expanded command line. See "Notes on Modes" 
below for additional information about the -absentee control 
argument. 

-interactive 
does not catch any signals. This is the default. (See "Notes 
on Modes" below,) 

NOTES ON MODES: The do command has three modes, the long/brief 
mode, the nogo/go mode, and the absentee/interactive mode. 
These modes are kept in internal static storage and are thus 
remembered from one invocation of do to the next within a 
single process. The modes are set by invoking the do command 
with control arguments and are described under "Control 
Arguments" above. 

The absentee mode is mainly of use in an absenteE3 environment, 
in which any invocation of the default any other on unit 
terminates the process. In the absentee moae, any signal 
caught by the do command merely terminates execution of the 
command line, not the process. A number of conditions, 
however, are not handled by the do command but are passed on 

3-222 AG92-03 



do do 

for their standard Multics treatment; they are quit, 
program interrupt, command error, command query error, 
command-question, and record quota overflow.- (For a 
description of these conditions see "List of System Conditions 
and Default Handlers" in the MPM Reference Guide.) 

NOTES ON QUOTE-DOUBLING AND REQUOTING: In addition to the 
parameter designators &1 &9, the do command also 
recognizes two more sets of parameter designators. They are 
&q1 ... &q9, to request quote-doubling in the actual argument 
as it is substituted into the expanded command line, and &r1 

&r9, to request that the actual argument be requoted as 
well as have its quotes doubled during substitution. 

Quote-doubling can be described as follows. Each parameter 
designator in the command string to be expanded is found 
nested a certain level deep in quotes. If a designator is. 
found to not be within quotes, then its quote-level is zero; 
if it is found between a single pair of quotes, then its 
quote-level is one; and so on. If the parameter designator 
&qi is found nested to quote-level L, then, as argi is 
substituted into the expanded command line each quote 
character found in argi is replaced by 2**L quote characters 
during insertion. This-permits the quote character to survive 
the quote-stripping action to which the command processor 

. subsequently subjects the expanded command line. If &q! is 
not located between quotes, or if argi contains no quo~es, 
then the substitutions performed for-&q! and for &i are 
identical. The string &qfi is replaced by a list of the ith 
through last arguments with-their quotes doubled. 

If the parameter designator &ri is specified, the substituted 
argument argi is placed between- an additional level of quotes 
before having its quotes doubled. More precisely, if the 
parameter designator &ri is found nested to quote-level L, 
2**L quotes are inserted into the expanded line, argi is 
substituted into the expanded line with each of its quotes 
replaced by 2**(L+1 )quotes, and 2**L more quotes are placed 
following it. If argument argi is not supplied, nothing is 
placed in the expanded line; this provides a way to 
distinguish between arguments that are not supplied and 
arguments that are supplied but are null. If argumept argi is 
present, the expansions of &ri, and of &qi written between an 
addiiiional level of quotes, are identical.- The string &rfi is 
replaced by a list of the ith through last arguments, 
requoted. 

3-223 AG92-03 



do dQ 

NOTES ON ACCESSING MORE THAN NINE ARGUMENTS: In addition to the 
normal parameter designators in which the argument to be 
substituted is specified by a single integer, the do command 
accepts the designators &(d ..• d), &f(d ... d), &r(d ... d), and 
&q(d ... d) where d ..• d denotes a string of decimal digits. An 
error message is printed and the expansion is terminated if 
any character other than 0 ... 9 is found between th~ 
parentheses. 

NOTES: For a description of abbreviation expansion, see abbrev 
in this manual. 

EXAMPLES: The do command is particularly useful when used in 
conjunction with the abbreviation processor, initialized by 
the abbrev command. Consider the following abbreviations: 

ADDPLI 
AUTHOR 
CREATE 
LIST 

LISTAB 
LISTAC 
P 
P2 

do "fo &1.1ist;ioa "'I;pli &1;ro" 
do "ioa $nnl &1;status -author &1" 
do "cd &1;sis &1 re *.Demo rew Jay.*n 
do "fo Jay.list;LISTAB;ws &1 LISTAC;ro; 

dp -dl Jay.list" 
do ".1" 
"la;ls -dtem -a" 
do "p11 &1 -list &2 &3" 
do "p11 &1 -list &f2" 

The command line: 

ADDPLI alpha 

expands to: 

fo alpha. list ; ioa_ '" I; pli alpha; ro 

The command line: 

AUTHOR beta 

prints beta and the author of segment beta. 

The command line: 

CREATE games 

3-224 AG92-03 



do do 

expands to: 

cd gamesjsis games re *.Demo rew Jay.* 

This shows an easy method· of automatically setting initial 
aCcess on the segments that will be cataloged in a newly 
created directory. 

The command line: 

LIST )udd)Demo)Jay 

expands to: 

fo Jay.listjLISTABjws )udd)Demo)Jay LISTACjrojdp -dl Jay.list 

that is expanded by abbrev to: 

fo Jay.listjdo ".l"jwS )udd)Demo)Jay "lajls -dtem -a"jro; 
dp -dl Jay.list 

This shows how do can be used at several levels and how it 
allows abbreviations to be used within abbreviations. 

The command line: 

P alpha 

generates the expansion: 

pl1 alpha -list 

whereas the command line: 

P alpha -table 

expands to: 

pl1 alpha -list -table 

This shows how references to unsupplied arguments are deleted. 

The abbreviation P2 is equivalent to P for three or fewer 
arguments. The command line: 

P2 alpha -table -sv3 -optimize 

3-225 AG92-03 



do d,o 

executes the p11 command with the -list, -table, -sv3, and 
-optimize control arguments, whereas: 

P alpha -table -sv3 -optimize 

omits the -optimize control argument. 

3-226 AG92-03 



dprint (dp) dprint (dp) 

SYNTAX AS A COMMAND: 

dp {-control_argsJ {paths} 

FUNCTION: queues specified segments and/or multisegment files 
for printing on one of the Multics line printers. The output 
is by default identified by the requestor's Person ide This 
comman~ does not accept standard object segments. -

ARGUMENTS: 

paths 
are pathnames of segments and/or multisegment files. The star 
convention is NOT allowed. 

CONTROL ARGUMENTS: 

-access label, -albl 
for -each pathi specified, uses the access 
segment as a label at the top and bottom of 
"Notes" below). 

":'brief, -bf 

class of that 
every page (see 

suppresses the message "j requests signalled, k already 
queued. (request type queue)." This control argument cannot 
be overruled Tater· in the command line. (See the 
-request_type and -queue control arguments below.) 

-bottom label STH, -blbl STH 
US€lS -the specified string as a label at the bottom of every 
page (see "Notes" below). 

-copy N, -cp N 
prints N copies (N < 4) of specified paths. This control 
argument can be overruled by a subsequent -copy control 
argument. If pathi is to be deleted after printing, all N 
copies are printed- first. If this control argument is not 
specified, one copy is made. 

-delete, -dl 
deletes (after printing) specified paths. 

-destination STH, -ds STH 
labels subsequent output with the string STH, whioh is used to 
determine where to deliver the output. If this control 
argument is not specified, the default is the requestor's 

3-227 AG92-03 



dprint (dp) dprint (dp) 

Project ide This argument can be overruled by a subsequent 
-destination control argument. 

-header STH, -he STR 
identifies subsequent output by the string STR. If this 
control argument is not specified, the d~fault is the 
requestor's Person ide This argument can be . overruled by a 
subsequent -header control argument. 

-indent N, -in N 
prints specified paths so that the left margin 
columns. If this control argument is not 
indentation occurs. 

-label STH, -lbl STH 

is indented N 
specified, no 

uses the specified string as ~ label at the top and bottom of 
every page (see "Notes" belo\tT). 

-line length N, -11 N 
prints specified paths so that lines longer than N characters 
are continued on the following line, i.e., no line of output 
extends past column N. If this control argument is 
notspecified, a line length of 136 charaoters is us~d. 

-no endpage, -nep 
prints specified paths so that the printer skips to the top of 
a page only when a form-feed character is encountered in the 
input path. This argument causes the -page length control 
argument, if present, to be ignored. . -

-no label, -nlbl 
does not place any labels on the printed output. 

-non edited, -ned 
prints nonprintable control characters as oct~l escapes rather 
than suppressing their printing. 

-notify, -nt 
sends a confirming message when the requested output is done, 
showing the pathname and charge. 

-page_length N, -pI N 
prints specified paths so that no more than N lines are on a 
page. If this control argument is notspecified, a page length 
of 60 lines is used. 

-queue N, -q N 
prints specified 
argument can be 

paths in priority queue N. This control 
overruled by a subsequent -·queue control 

3-228 AG92-03 



dprint (dp) dprint (dp) 

argument. If this control argument is notspecified, queue 3 
is assumed. (See "Notes" below.) 

-request type STH, -rqt STH 
places specified paths in the queue for requests of the type 
identified by the string STH (see "Notes" below). If this 
control argument is notspecified, the default request type is 
"printer". 

-single, -sg 
prints specified 
character in any 
character. 

paths so that any form-feed or vertical-tab 
of the paths is printed as a single newline 

-top label STH, -tlbl STH 
uses the specified string as a . label at the top of every page 
(see "Notes" below). 

-truncate, -tc 
prints specified ·paths so that any line exceeding the line 
length is truncated rather than "folded" onto subsequent 
lines. 

NOTES: If the dprint command is invoked without any arguments, 
the system prints a message giving the status of queue 3. 

If control arguments are present, they affect only paths 
specified after their appearance in the command line. If 
control arguments are specified without a following pathi 
argument, they are ignored for this invocation of the commana 
and a warning message is printed. 

The -queue 1 control argument places requests in the top 
priority queue, -queue 2 places them in the second priority 
queue, and -queue 3 (or not specifying a queue) places them in 
the third priority queue. The existence of lower priority 
queues for a specified request type is determined by the site. 
All requests in the first· queue are processed before any 
requests in the other queues, and so on. Higher priority 
queues usually have a higher cost associated with them. 

The -brief, ~delate, -single, -truncate, and -no endpage 
control arguments cannot be reset in aspecified invoc~tion of 
the command; e.g., once -delete appears in a line, all 
subsequently specified paths are deleted after printing. 

3-229 AG92-03 



dprint (dp) dprint (ap) 

The -request type control argument is used to ensure that a 
request is performed by a member of a particular group of 
printers, e.g., to distinguish between onsite printers and 
remote printers at various locations, or between printers 
being charged to different projects. Only request types of 
generic type "printer" can be specified. Request types can be 
listed by the print_request_types command. 

If a requested output operation cannot be done,.the daemon 
process sends a message to the user of the form: 

Request path reason. 

The -label, -top label, -bottom label, and -access label 
control arguments allow the user to' place labelS on each page 
of printed output. The default labels are access labels, i.e. 
the -access label control argument is assumed. These control 
arguments are read, in sequence, from left to right by the 
dprint command. For example, if -access label is specified, 
it is printed at the top and bottom of the page. If the next 
control argument is -top label STR, then the top access label 
becomes STR but the bottom label remains the same. Each label 
control argument can override the preceding one. The label 
lines are printed on the second line of the page and on the 
next to last line of the page. Note that if the access class 
of pathi is system low and the access class name defined for 
system low is null-; then the d.efault access label is blank. 
The default access label can be overridden by the ..... no label 
control argument if labels are not wanted or 1:>y one of the 
other label-related control arguments. 

The top and bottom labels are treated independently. Thus, 
use of the -top label control argument alone leaves an access 
label as the default bottom label. A page label that exceeds 
136 characters is truncated to that length. Only the first 
line of a page label is printed, i.e., a new line terminates 
the page label. Form feeds and vertical tabs are not 
permitted. The various label control arguments are 
incompatible with the -no_endpage control argument and they 
are ignored independent of the position in the command line of 
the -no_endpage control argument. 

Segments and multisegment files cannot be printed unless 
appropriate system procssses have sufficient access. The 
process that runs devices of the specified class (normally 
IO.SysDaemon) must have read access to all paths to be printed 

3-230 AG92-03 



dprint (dp) dprint (dp) 

and status permission on the containing directory. Pathi 
cannot be deleted after printing unless its safety switch is 
off and the system process has at least sm access on the 
containing directory. Also, pathi is not deleted if it has a 
date-time-contents-modified value later than the 
date-time-contents-modified value at the time of the dprint 
requE~st . 

The 'dprint command does not accept the star convention. It 
prints a warning message if a name containing asterisks is 
encountered, and continues processing its other arguments. 

If pathi specifies a standard Multics storage system object 
segment,- the dprint command prints a warning message and 
continues processing its other arguments. 

EXAMPLE8: 

The command line: 

dp -he Jones -ds BIN-S -cp 2 -dl test1 test7 -he Doe 
text.runout 

causes two copies of each of the segments named test1 and 
test? in the current working directory to be printed with the 
header "Jones" and the destination "BIN-S", and then deleted. 
It also causes two copies of the segment named text.runout in 
the current working directory to be printed with the header 
"Doe" and destination "BIN-S" , then deleted. 

3-231 AG92-03 



dpunch (dpn) dpunch (dpn) 

SYNTAX AS A COMMAND: 

dpn l-control_argsJ {paths} 

FUNCTION: queues specified segments and/or multise~ment files 
for punching by the Multics card punch. It is similar to the 
dprint command. 

ARGUMENTS: 

paths 
are pathnames of segments and/or multisegment files. The star 
convention is NOT allowed. 

CONTROL ARGUMENTS: 

-brief, -bf 
suppresses the message "j requests signalled, k already 
queued. (request type queue)." This control argument cannot 
be overruled later in the command line. (See the 
-request_type and -queue control arguments below.) 

-copy N, -cp N 
punches N copies (N < 4) of specified paths. This control 
argument can be overruled by a subsequent -copy control 
argument. If pathi is to be deleted after punching, all N 
copies are punched- first. If this control argument is not 
specified, one copy is made. 

-delete, -dl . 
deletes (after punching) all specified paths. 

-destination STH, -ds 8TH 
uses the string STR to determine where to deliver the deck. 
If this control argument is not specified, the default is the 
requestor's Project ide This control argument can be 
overruled by a subsequent -destination control argument. 

-header STR, -he STR 
identifies subsequent output by the string STR. If this 
control argument is not specified, the default is the 
requestor's Person ide This control argument can be overruled 
by a subsequent -header control argument. 

3-232 AG92-03 



dpunch (dpn) 

-mcc 
punches the specified paths 
control argument can be 
-7punch control arguments. 

-notify, -nt 

dpunch (dpn) 

using character conversion. This 
overruled by either the -raw or 

sends a confirming message when the requested output is done, 
shoviing the pathname and charge. 

-queue N, -q N 
punches psecified paths in priority queue N (N < 3). This 
control argument can be overruled by a subsequent -queue 
control argument. If this control argument is not specified, 
queue 3 is assumed. (See "Notes" below.) 

-raw 
punches the specified paths using no conversion. 
argument can be overruled by either the -mcc 
control arguments. 

-request type STR, -rqt STR 

This control 
or -7punch 

places speci~ied paths in the queue for requests of the type 
identified by the string STR (see "Notes" below). If this 
control argument is not specified, the default request type is 
"punch." 

-7punch, -7p 
punches the specified paths using 7-punch conversion. For a 
description of conversion modes, see "Bulk Input/Output" in 
the MPM Reference Guide. 

NOTES: See "Input and Output Facilities" in the MPM Reference 
Guide for information on the input/output system. 

If the dpunch command is invoked without any arguments, the 
system prints a message giving the status of queue 3. 

If control arguments are present, they affect only paths 
specified after their appearance on the command line. If 
control arguments are specified without a following pathi 
argument, they are ignored for this invocation of the commana 
and a warning message is printed. 

3-233 AG92-03 



dpunch (dpn) dpunch (dpn) 

The -queue 1 control argument places requests in the top 
priority queue, -queue 2 places them in the second priority 
queue, and -queue 3 (or not specifying a queue) places them in 
the third priority queue. The existence of lower priority 
queues for a specified request type is determined by the site. 
All requests in the first queue are processed before any 
requests in the second queue, and so on. Higher priority 
queues usually have a higher cost associated with them. 

The -delete control argument is the only control argument 
affecting segments that cannot be reset in a specified 
invocation of the command. Once -delete appears in a line, 
all subsequent segments are deleted after punching. 

The -request type control argument is used to ensure that a 
request is performed by a member of a particular group of 
punches, for example, to distinguish between onsite punches 
and remote punches at various locations, or between punches 
being charged to different projects. Only request types of 
generic type "punch" can be specified. Request types can be 
listed by the print_request_types command. 

If a requested output operation cannot be done, the daemon 
process sends a message to the user of the form: 

"Unable to punch" path reason. 

A segment or multisegment file cannot be punched unless 
appropriate system processes have sufficient access. The 
process (normally IO.SysDaemon) that runs devices of the 
specified class must have read access to all files to be 
punched and status permission on the containing directory. A 
file cannot be deleted after punching unless its safety switch 
is off and the system process has at least sm permission on 
the containing directory. Also, a file is not deleted if it 
has a date-time-contents-modified value later than the 
date-time-contents-modified value at the time of the dpunch 
request. 

3-234 AG92-03 



dpunch (dpn) dpunch (dpn) 

The dpunch command does not accept the star convention; it 
prints a warning message if a name containing asterisks is 
encountered and continues processing its other arguments. 

It is suggested that the user, before deleting a file that has 
been punched, read the deck back in and compare it with the 
original (using the compare command) to ensure the absence of 
errors. 

EXAMPLES: 

The command line: 

dpunch a b -mcc -he Doe c.pl1 -dl -7p -he "J. Roe" alpha 

causes segments a and b in the current working directory to be 
punched using 7-punch conversion; segment c.pl1 to be punched 
using character conversion with "for Doe" added to the 
heading;' and segment alpha to be punched using 7-punch 
conversion (and then deleted) with "for J. Roe" added to the 
heading. 

3-235 AG92-03 



dump_segment (ds) dump_segment (ds) 

SYNTAX AS A COMMAND: 

ds path {offset} {lengthl {-control_args} 
or 

ds seg_no {offset} {length} {-control_args} 

SYNTAX AS AN ACTIVE FUNCTION: 

Cds path {offset} {-control_args}] 
or 

Cds seg_no {offset} {-control_argsJ] 

FUNCTION: prints, in octal or hexadecimal format, selected 
portions of a segment. It prints out either four or eight 
words per line and can optionally be instructed to print out 
an edited version of the ASCII, BCD, EBCDIC (in 8 or 9 bits), 
or 4-bit byte representation. 

The active function returns a single word in octal or 
hexadecimal representation. 

ARGUMENTS: 

path 
is the pathname or (octal) segment number of the segment to be 
dumped. If path is a pathname, but looks like a number, the 
preceding argument should be the -name (or -nm) control 
argument (see below). The star convention is allowed for the 
command only. 

offset 
is the (octal) offset of the first word to be dumped. If both 
offset and length are omitted, the entire segment is dumped. 

length 
is the (octal) number of words to be dumped. If offset is 
supplied and length is omitted, 1 word is dumped. 

segno 
is the octal segment number of a segment to be dumped. 

CONTROL ARGUMENTS: 

-4bit 
prints out, or returns, a translation of the octal or 
hexadecimal dump based on the Multics unstructured 4-bit byte. 

3-236 AG92-03 



dump_segment (ds) dump_segment (ds) 

The translation ignores the first bit of each 9-bit byte and 
uses each of the two groups of four bits remaining to generate 
a digit or a sign. 

-address, -addr 
prints the address (relative to the base of the segment) with 
the data. This is the default. 

-bcd 
prints the BCD representation of the words in addition to the 
octal or hexadecimal dump. There are no nonprintable BCD 
characters, so periods can be taken literally. This control 
argument causes the active function to return BCD. 

-block N, -bk N 
dumps words in blocks of N words separated by a blank line. 
The offset, if being printed, is reset to initial value at the 
beginning of each block. 

-character, ~ch, -ascii 
prints the ASCII representation of the words in addition to 
the octal or hexadecimal dump. Characters that cannot be 
printed are represented as periods. This control argument 
causes the active function to return ASCII. 

-ebcdi.c9 
pri.nts the EBCDIC representation of each 9-bit byte in 
addition to the octal or hexadecimal dump. Characters that 
cannot be printed are represented by periods. This control 
argument causes the active function to return 9-bit EBCDIC. 

-ebcdic8 
prints the EBCDIC representation of each eight bits in 
addition to the octal or hexadecimal dump. Characters that 
cannot be printed are represented by periods. If an odd 
number of words is requested to dump, the last four bits of 
the last word do not appear in the translation. This control 
argument causes the active function to return 8-bit EBCDIC. 

-header, -he 
prints a header line containing the pathname (or segment 
number) of the segment being dumped as well as the date-time 
printed. The default is to print a header only if the entire 
segment is being dumped, i.e., if neither the offset nor the 
leng~h argument is specified. 

-hex8 
prints the dumped words in hexadecimal with nine hexadecimal 
digits per word rather than octal with 12 octal digits per 
word. 

3-237 AG92-03 



dump_segment (ds) dump_segment (ds) 

-hex9 
prints the dumped words in hexadecimal with eight hexadecimal 
digits per word rather than 12 octal digits per.word. Each 
pair of hexadecimal digits corresponds to the low-order eight 
bits of each 9-bit byte. 

-long, -lg 
prints eight words on a line. Four is the default. This 
control argument cannot be used with -character 1 -bcd, -4bit, 
-ebcdic8, -ebcdic9, or -short. (Its use with these control 
arguments, other than -short, results in a line longer than 
132 characters.) 

-name PATH, -nm PATH 
indicates that PATH is a pathname even though it may ,look like 
an octal segment number. 

-no address, -nad 
~Qes not print the address. 

-DO header, -nhe 
suppresses printing of the header line even thou,gh the entire 
,segment is being dumped. 

-no offset, -nofs 
does not print the offset. This is the default. 

-offset N, -ofs N 
prints the offset (relative to N 
data being dumped) along with the 
is assumed. 

-short, ..,.sh 

words before the start of 
data. If N is not given, 0 

compacts lines to fit on a terminal with a short line length. 
Single spaces are placed between fields, and only the two 
low-order d-igi ts of the address are pr inted, except when the 
high-order digits change. This shortens output lines to less 
than 80 characters. 

NOTES: Only one of the control arguments: -ebcdic8, -ebcdic9, 
-character, -bcd, or -4bit can be specified. 

When invoked as an active function dump segment returns only 
one word of information, which is located-at offset within the 
segment. If the -4bit, -bcd, -character, -ebcdic9, -ebcdic8, 
-hex8, or -hex9 control arguments are invoked, the information 
is returned in the specified format only. All other arguments 
are ignored in actiVe function invocation. 

3-238 AG92-03 



edm 

SYNTAX AS A COMMAND: 

edm {path} 

edm 

FUNCTION: invokes a simple Multics context editor. It is used 
for creating and editing ASCII segments. This command cannot 
be called recursively. 

ARGUMENTS: 

path 
specifies the pathname of a segment to be created or edited. 
If path is not specified, edm begins in input mode (see 
"Notes" below), ready to accept whatever is subsequently typed 
as input. If path is specified, but the segment does not yet 
exist, edmalso begins in input mode. If path specifies a 
segment that already exists, edm begins in edit mode. 

LIST OF EDITOR ijEQUESTS: 

= 

b 
c 
d 
E 
f 
i 
k 
I 
merge 
move 
n 
p 
q 
qf 
r 
s 
t 
updelete 
upwrite 
v 
w 

backup 
print current line number 
comment mode 
mode change 
bottom 
change 
delete 
execute 
find 
insert 
kill 
locate 
insert segment 
move lines within segment 
next 
print 
quit 
quitforce 
retype 
substitute 
top 
delete to pointer 
write to pointer (upper portion of segment) 
verbose 
write 

3-239 AG92-03 



edm edm 

NOTES: This command operates in response to requests from the 
user. To issue a request, the user must cause edm to be in 
edit mode. This mode is entered in two ways: if the segment 
already exists, it is entered automatically when edm is 
invoked; if dealing with a new segment (and edm has been in 
input mode), the mode change character must be issued. The 
mode change character is the period (.), issued as the only 
character on a line. The command announces its mode by typing 
"Edit." or "Input." when the mode is entered. From edit 
mode, input mode is also entered via the mode change 
character. 

The edm requests are predicated on the assumption that the 
segment consists of a series of lines to which there is a 
conceptual pointer that indicates the current line. (The 
"top" and "bottom" lines of the segment are also meaningful.) 
Various requests explicitly or implicitly cause the pointer to 
be moved; other requests manipulate the line currently pointed 
to. Most requests are indicated by a single character, 
generally the first letter of the name of the request. For 
these requests only the single character (and not the full 
request name) is accepted by the command. Certain requests 
have been considered sufficiently dangerous, or likely to 
confuse the unwary user, that their names must be specified in 
full. 

If the user issues a quit signal while in edit mode and then 
invokes the program interrupt command, the effect of the last 
request executed on the edited copy is nullified. (See 
description of program interrupt in this manual.) In 
addition, any requests -not yet executed are lost. If 
program interrupt is typed after a quit in comment or input 
modes, then all input since last leaving edit mode is lost. A 
user wishing to keep the input must invoke the start command 
following the quit. 

See the FAST Subsystem User's Guide, Order No. AU25 for an 
introduction to the use of edm. 

3-240 AG92-03 



emacs emacs 

SYNTAX AS A COMMAND: 

emacs {-control_args} {paths} 

FUNCTION: enters the Emacs text editor, which has a large repertoire 
of requests for editing and formatting text and programs. Emacs 
is a display-oriented editor designed for use on CRT terminals. 
Se ve r a 1 mod e s 0 fop era t ion for s p e cia lap p 1 i cat ion s (e. g. , R M A I L , 
PL/I, FORTRAN) are proviqed; the default mode entered is 
Fundamental major mode, whose requests are listed below. 

ARGUMENTS: 

paths 
are pathname(s) of segments to be read in. ~ach is put into its 
own appropriately named buffer. 

CONTROL ARGUMENTS: 

-terminal type STR, -ttp STR 
specifIes your terminal type to Emacs, where STR is any recognized 
editor terminal type or the pathname of a control segment to be 
loaded. The terminal type is set permanently; changing the 
Multics terminal type during a login session"does not affect the 
type "remembered" by Emacs. If STR is not a recognized type, Emacs 
queries you after entry, providing a list of recognized types. 
This control argument must precede any other arguments and cannot 
be used with -reset or -query. 

-reset 
specifies that Emacs disregard the terminal type set by the -ttp 
control argument and set it in accord with the Multics terminal 
type instead. This coritrol argument must precede any other 
argumdnts, and cannot be used with -ttp or -query. 

-query 
causes Emacs to query the user for a terminal type wi thout checking 
the Multics terminal type first. The query response can be any 
recognized editor terminal type. This control argument must 
precede any other arguments and cannot be used wi th -ttp or 
-reset. 

-line speed N 
indicates 1 inespeed to obtain proper padd ing (for ARPANet users) , 
where N is the output line baud rate in bits/second. This control 
argument can follow anyone of the above three, but must precede 
paths~and any of the remaining control arguments. 

2/80 3-240. , AG92-03A 



. I 

emacs emacs 

-,no startup, -ns 
prevents use of the user's startup (start up. emacs) . This control 
argument must precede -mc, -ap, or pathi, but must follow any of 
the other control arguments. 

-macros path, -mc path 
loads the segment, specified by path, as Lisp, so that features 
therein are available. 

-apply function name argl arg2 ... argi, 
-ap function nime argl arg2 ... argi 

evaluates (function name' arg 1 'arg2 ... 'argi), where the args 
are ar guments to the named Li sp funct ion (e. g., an Emacs 
request) . This is valuable for constructing abbrevs. This 
control argument must be the last argument. 

NOTES: None of the terminal-type control arguments (-ttp, -reset, 
-query, -line speed) are generally necessary; they are only used 
for solving various communications problems. However, if used, 
they must precede all other control arguments. 

A detailed description of the Multics Emacs text editor can be 
found in the Emacs Text Ed ito r User s' Guide , Order No. C H 21 . 
Information about extensions and instructions for wri ting them are 
provided in the Emacs Extension Wri ters' Guide, Order 
No.CJ52. 

LIST OF FUNDAMENTAL MODE REQUESTS: The following is a list of Emacs 
Fundamental mode requests, alphabetized by the last character. 
Everything preceding the last character of e8Cl1- request is 
arranged in this suborder, under that last character: ", ESC, 
ESC", "X, "X", AZ, "Z". Extended requests are listed separately 
at the end. 

II 
ESC 11 
" XII 

@ 
"@ 
"Z"@ 

CR 
ESC CR 
"XCR 

2/80 

rubout-char 
rubout-word 
kill-backward-sentence 

kill-to-beginning-of-line 
set-or-pop-the-mark 
set-named-mark 

new-line 
cret-and-indent-relative 
eval-multics-command-line 

3-240.2 AG92-03A 



emacs 

ESC 
ESC ESC 
"XEse 

\ 
ESC \ 

\177 
ESC \177 
"'X\177 

"'X( 
"'X) 

"X* 

"'X. 

ESC 
"X; 
"Z; 

"X= 

ESC 

ESC 
"z 

% 

ESC / 

ESC < 
ESC > 

ESC ? 

ESC [ 
,ESC ] 

,ESC " 

ESC -

"XO 
"X1 
"X2 
"X3 
"X4 

2/80 

escape 
eval-lisp-line 
escape-dpnt-exit-minibuf 

escape-char 
delete-white-sides 

rubout-char 
rubout-w'Ord 
kill-backward-sentence 

begin-macro-collection 
end-macro-collection 

show-last-or-current-macro 

set-fill-prefix 

indent-for-comment 
set-comment-column 
kill-comment 

linecounter 

query-replace 

help-on-tap 
underline-word 
remove-underlining-from-word 

regexp-search-command 

go-to-beginning-of-buffer 
go-to-end-of-buffer 

describe-key 

beginning-of-paragraph 
end-of-paragraph 

delete-line-indentation 

unmodify-buffer 

remove-window 
expand-window-to-whole-screen 
create-new-window-and-go-there 
create-new-window-and-stay-there 
select-another-window 

3-240.3 

emacs 

AG92-03A 



emacs emacs 

"A go-to-beginning-of-line 
ESC A backward-sentence 

"S backward-char 
ESC B backword-word 
ESC "B balance-par ens-backward 
"XB select-buffer 
"X"B list-buffers 
"Z"B edit-buffers 

"c re-execute-command 
ESC C capitallze-inltial-word 
"X"C quit-the-editor 

"D delete-char 
ESC D delete-word 
"XD edit-dir 

"'E go-to-end-of-line 
ESC E forward-sentence 

"XE execute-last-editor-macro 
"'X"E comout-command 

"F forward-char 
ESC F forward-word 
ESC "F balance-par ens-forward 
"'XF set-fill-column 
"'X"F find-file 
"'Z"'F get-filename 

"G command-quit 
ESC G go-to-Ilne-number 
ESC AG ignore-prefix 
"'XG get-variable 
"X"G ignore prefix 
"ZG go-to-named-mark 
"Z"G ignore-prefix 

ESC H mark-paragraph 
"'XH mark-who Ie-buffer 

ESC I indent-relative 
ESC "I indent-to-fill-prefix 
"XI insert-file 

"J noop 

"K kill-lines 
ESC K kill-to-end-of-sentence 

2/80 3-240.4 AG92-03A 



---
emacs emacs 
---

AXK kill-buffer 

"L redisplay-command 
ESC L lower-case-word 
"X"L lower-case-region 

"ESC M skip-oyer-indentation 
"XM send-mail 

"N next-line-command 
ESC N down-comment-line 

"0 open-space 
ESC "0 split-line 
"XO select-another-window 
"X"O delete-blank-lines 

"p prev-line-command 
ESC P "prev-comment-line 

"Q quote-char 
ESC Q runoff~fill-paragraph 
"XQ macro-query 

"R reverse-string-search 
ESC R move-to-screen-edge 

"'XR rmail 
... X .... R read-file 

... s string-search 
ESC S center-line 
"xs global-print-command 
"X .... S save-same-file 

"T twiddle-chars 
"XAT toggle-redisplay 

"u multiplier 
ESC U upper-case-word 
..... X"U upper-case-region 

.... V next-screen 
ESC V prey-screen 
ESC "V page-other-window 
"'xv view-lines 
"'Z"V scroll-current-window 

'''W wipe-region 
ESC W copy-region 

2/80 3-240.5 AG92-03A 



emacs 

ESC "W 
"XW 
"X"W 
"l"W 

ESC X 
"XX 
,.X .... X 

"Y 
ESC Y 
ESC "y 

"'z"z 

LIST OF EXTENDED 
ESC X 
ESC X 
ESC X 
ESC X 
ESC X 
ESC X 
ESC X 
ESC X 
ESC X 
ESC X 
ESC X 
ESC X 
ESC X 
ESC X 
ESC X 
ESC X 
ESC X 
ESC X 
ESC X 
ESC X 
ESC X 
ESC X 
ESC X 
ESC X 
ESC X 
ESC X 
ESC X 
ESC X 
ESC X 
ESC X 
ESC X 
ESC X 
ESC X 

2/80 

merge-last-kills-with-next 
multi-word-search 
write-file 
edit-windows 

extended-command 
put-variable 
exchange-point-and-mark 

yank 
wipe-this-and-yank-previous 
yank-minibuf 

signalquit 

REQUESTS: 
accept-msgs 
aIm-mode 
apropos <string> 
describe <extended-request> 
edit-macros 
electric-p11-mode 
filloff 
filIon 
fortran-mode 
fundamental-mode 
Ide bug 
lisp-mode 
list-named-marks 
loadfile <path> 
load11b <library> 
Ivars 
make-wal'l-chart 
opt <option> 
p11-mode 
replace 
reset-minibuffer-s1ze <size> 
reset-screen-size <size> 
runoff-fill-region 
save-macro 
set-comment-prefix "string" 
set-compile-opt ions 1fopt ion str ins" 
set-compiler <compiler) 
set-key <keyname> <command-name> 
set-minibuffer-size <size> 
set-permanent-key <keyname> <command-name> 
set-screen-size <size> 
set-search-mode <search-mode> 

emacs 

setab <abbrevl> <expansionl> <abbrevn> <expansioQ> 

3-240.6 AG92-03A 



emacs 

ESC X 
ESC X 
ESC X 

2/80 

show-macro <macro-name> 
speed type 
speedtypeoff 

3-240.1 

emacs 

AG92-03A 



encode encode 

SYNTAX AS A COMMAND: 

encode path1A {path2A ... path1N path2N} 

FUNCTION: enciphers a segment's contents according to a key that 
is not stored in the system. The enciphered segment has the 
same length as the original segment.· The encode command 
provides additional security for data stor~d in a Multics 
segm.ent. 

ARGUMENTS: 

path1 
is the pathname of a segment to be enciphered. 
convention is allowed. 

path2 

The star 

is the pathname of an enciphered segment to be produced. If 
the last path2 is not specified, it is assumed to be the same 
as path1. The equal convention is allowed. This command 
always appends the code suffix to path2 to produce the name of 
the enciphered segment. . . 

NOTES: The encode command requests an encipherment key (1-11 
characters not including space, semicolon, or tab) from the 
terminal. Printing on the termina~ is suppressed (the printer 
is turned off) while the key i~1 typed. The command then 
requests that the key be typed ~gain, to guard against the 
possi bili ty of mistyping the key.! If the two keys do not 
match, the key is requested twice a~ain. 

I 

All segments specified in an :invocation of encode are 
enciphered with thB same key. 

To reconstruct the original seg~ent from the enciphered 
segment, see the decode command. . 

3-241 AG92-03 



enter abs_request (ear) 

SYNTAX AS A COMMAND: 

ear path {-control_args} 

FUNCTION: allows a user to request that an absentee process be 
created. An absentee process executes commands from a segment 
and places the output in another segment. The user can delay 
the creation of the absentee process until a specified time. 

ARGUMENTS: 

path 
specifies the pathname of the absentee control segment 
associated with this request. The absin suffix is assumed. 
The first argument to the command must be path. 

CONTROL ARGUEMENTS: 

-argum~nt STR, -ag STR 
indicates that the absentee control segment requires 
arguments. STR can be one or more arguments. All arguments 
following -ag on the command line are takeri as arguments to 
the absentee control segment. Therefore -as, if present, must 
be the last control argument to the enter_abs_request command. 

-output file path, -of path 
specIfies the pathname of the output segment. (See "Notes" 
below. ) 

-restart, -rt 
specifies that the computation of this request should be 
started over again from the beginning if interrupted (for 
example, by a system crash). The default is to not restart 
the computation. 

-limit N, -Ii N 
places a limit on the CPU time used by the absentee process. 
The parameter N must be a positive decimal integer specifying 
the limit in seconds. The default limit is defined by the 
site for each queue. An upper limit is defined by the site 
for each queue on each shift. Jobs with limits exceeding the 
upper limit for the current shift are deferred to a shift with 
a higher limit. 

-queue N, -q N 
specifies that absentee queue N should contain the request to 
be entered, where N is an integer specifying the number of the 

3-242 AG92-03 



; 

queue. The default queue is 3~ There are four background 
queues with queue one having i the highest priority. The 
highest numbered queue processedlon each shift is determined 
by the si te. For convenience! in wri ting exec corns and 
abbreviations, the word foregroupd or fg following-the queue 
control argument performs the sam~ function as the -foreground 
control argument •. 

-foreground, -fg I 

places the request in the foreground queue, rather than in one 
of the numbered background queuefs. Jobs in the foreground 
queue are treated, for load cont 01 and charging purposes, as 
interactive logins. That is, a f reground job is logged in if 
the user could have logged in in eractively, and while logged 
in, it occupies a primary slot in the user's load control 
group. Also see the -secondary c~ntrol argument below. 

-secondary 
logs in a foreground job as al secondary user (subject to 
preemption) if there are no primary slots available in the 
user's load control group. By ~efault, a fbreground job is 
only logged in if a primary prbcess can be created for the 
user. 

-time DT, -tm DT 
delays creation of the absentee process until a specified 
date-time, where DT must be a character string acceptable to 
the convert date to binary subroutine (described in the MPM 
Subroutines!. 11 the DT itring contains blanks, it must be 
enclosed in quotes. 

-def~rred indefinitely, -dfi 
does not run a job until the operator releases it. 

-comment STR, -com STR 
associates a comment with the request. If STR contains blanks 
or other command language characters, it must be enclosed in 
quotes. The comment is printed whenever the user or the 
operator lists the request. It can indicate to the operator 
the time or circumstances when a deferred job should be 
released such as when a specified reel of tape is delivered to 
the computer room. 

-resource STR, -rsc STR 
specifies resources given in STR, for example, one or more 
tape drives, and should nbt be started until they are 
available. The resource description must be enclosed in 
quotes if it contains blanks or other command language 
characters. For more information on resource description, see 
the reserve resource command in this manual. 

3-243 AG92-03 



-brief, -bf 
suppresses the message "10: HHMMSS.f; N already requested." 

-long id, -lgid 
prints the long form of the request identifier tn the normal 
message: 

10: yymmddHHMMSS.ffffff; N already requested 

-notify, -nt 
notifies the user (by means of an interactive message sent to 
the user's mailbox) when the job is . logged in, when it is 
logged out, or when it is deferred for any reason other than 
the user's request. The latter might occur because of the 
unavailability of resources or a time limit higher than the 
maximum for the shift. 

-proxy User id 
enters the request on behalf of the specified user. An 
absentee process of that User id will be logged in to run the 
job. Use of this control argument is controlled by the system 
administrator by means of an access control segment. 

-sender STH 
specifies that only requests 
entered. In most cases, the 
identifier. 

from sender 
sender is 

STR should be 
an RJE station 

NOTES: The principal difference between an absentee process and 
an interactive one is that in an .absentee process the 110 
switch user input instead of being attached to a terminal is 
attached to an absentee control segment containing commands 
and control lines, and the I/O switch user output instead of 
being attached to a terminal is attached to an qbsentee output 
segment. The absentee control segment has the same syntax as 
an exec com segment. (See exec com in this manual.) 

An error message, unless it says otherwise, indicates that the 
request has not been submitted. 

If the pathname of the output segment is not specified, the 
output of the absentee process is directed to a segment whose 
pathname is the same as the absentee control segment, except 
that it has a suffix of absout instead of absin. If the 
absout suffix is omitted from the output segment pathname, the 
suffix is assumed. The named output segment mayor may not 
already exist. 

3-244 AG92-03 



-... 
enter __ abs_request (ear) 
______ M ____ _ ----_._------_._--

If the absout segment exists, th~ absentee user 
(Person id.Project id.m or, in the case of a proxy request, 
Person Id.Project Id.p) must have write access to the segme~t. 
If thi absout iegment does not exist, the absentee user 
requires append permission to the directory in which it is to 
be created. 

The command checks for the existence of the absentee input 
segment and rejects a request for an absentee process if it is 
not present. 

The effect of specifying the -time control argument is as if 
the enter abs_request command were issued at the deferret 
time. 

See also the descriptions of the list abs requests and 
cancel abs request commands for information-on aisplaying and 
cancelling-outstanding absentee requests. 

If an absentee job cannot be run or if it terminates 
abnormally, the system sends an interactive user message to 
the submitter's mailbox, whether or not the -notify control 
argument is given. 

EXAMPLES: Suppose that a user wants to request an offline 
compilation. A control segment can be constructed called 
absentee_pI1.absin containing: 

change wdir current dir 
pl1 x =table -map -
dprint -delete x.list 
logout 

3-245 AG92-03 



The command line: 

ear absentee_pl1 

.creates an absentee process (some time in the future) that 
does the following: 

1 • sets the working directory 
current dir, which is inferior 
directory. 

to the directory named 
to the user's normal home 

2. compiles a PL/I program named x.p11 with two control 
arguments. 

3. dprints one copy of the listing segment and then deletes 
it. 

4. logs out. 

The output of these tasks appear in the director~y containing 
absentee_p11.absin in a segment called absent~e_p~1.absout. 

Suppose that an absentee control 
contains the following: 

change wdir &1 
&2 &3 =map &4 
dprint -delete &3.list 
&goto &2.b 
&label p11.b 
&3 
&label fortran.b 
logout 

The command line: 

segment, trans.absin, 

ear trans -Ii 300 -rt -ag work p11 x -table 

requests a restartable absentee process in queue 3 having a 
CPU limit of 300 seconds, that does the following: 

1. sets the working directory to the directory named work, 
which is inferior to the normal home directory. 

3-246 AG92-03 



enter abs_request (ear) 

2. compiles a PL/I program x.pl1 in that directory and 
produces a listing segment containing a map and with an 
object segment containing a symbol table. 

3. issues a dprint request for the listing segment. 

4. executes the program x just compiled in the absentee 
process. 

5~ logs out. 

The command line: 

ear trans -rt -tm "Monday 2300.00" -q 2 -ag comp fortran yz 

creates a request for a restartable absentee process in queue 
2 at the first occurrence of Monday, 11 P.M., that does the 
following: 

1. sets the working directory to the directory named comp, 
which is inferior to the home directory. 

2. compiles a FORTRAN program named yz.fortran and produces 
a listing segment. 

3. issues ,a dprint request for the listing segment. 

4. logs out. 

All of the commands used in the above examples are described 
in this document under the name of the particular command. 

3-247 AG92-03 



enter_retrieval_request (err) enter_retrieval_reguest (err) 

---------,--'--_ .. _-,. 

SYNTAX AS A COMMAND: 

err path {-control_args} 

FUNCTION: queues volume retrieval requests for specific 
segments, directories, multisegment files, and subtrees. 

ARGUMENTS: 

path 
is the pathname of a segment, directory, or node of a subtree. 
The star convention is not allowed. 

CONTROL ARGUMENTS: 

.multisegment file, -msf 
specfies that the object named in path is a multisegment file 
and that all of its components are to be recovered. 

-subtree, -suht 
specifies that the subtree inferior to the directory specified 
in path as well as the directory is to be retrieved. If a 
subtree is found intact after a directory is recovered, then 
no further action is taken, unless a time interval 'has been 
specified. See "Notes" for more information. The default is 
not to retrieve subtrees. 

-queue N, .... q N 
queues requests in priority queue N. The default is queue 3. 

-to DT 
specifies that the search for path and all inferior branches, 
if specified, proceeds from time DT backwards. Thus, objects 
dumped later than time DT are not recovered. Time DT must be 
acceptable to the convert date to binary subroutine. (See 
MPM Subroutines for - a - complete- description of 
convert date to binary.) If this control argument is not 
specified, tIme-OT is assumed to be the start of the retrieval 
operation. 

-from DT, -fm Dr 
specifies that the search for path and all inferior branches, 
if specified, stops at time DT. Thus, objects dumped before 
time Dr are not recovered. Time DT must be acceptable to the 
convert date to binary subroutine. (~ee MPM Subroutines for 
a complete description of convert_date_to_binarY_e) If the 

3-248 AG92-03 



----------_. -.--_. __ . 
enter retrieval_request (err) enter_retrieval_request (err) 

control .argument is·not specified, all valid dump volumes ;.)re 
sear"ched. 

-new path newpath 
. specifies that if the requestor has the correct access to 

retrieve the segment' specified in path above (which must 
already exist) and the correct access to create a segment with 
the pathname newpath, then the object described/identified by 
path is retrieved into newpath. 

-notify, -nt 
specifies that the user is to be notified by online mail of 
the success or failure of the request. The default is to not 
notify the user. 

-previous, -prev 
specifies that the object to be retrieved is the one dumped 
prior to the object presently online. The default is to 
always retrieve the most recent copy. By specifying this 
control argument, the requestor can retrieve successively 
earlier copies of an object. 

ACCESS REQUIRED: The user must have write access or modify 
permission to an object in order to retrieve it. If an object 
has been deleted, then append permission on the containing 
directory is also required. 

NOTES: In certain cases where a directory is damaged, the 
inferior subtree may be unavailable until the directory is 
recovered. When a directory is recovered, and the subtree 
control argument is specified, a check is made to see if the 
subtree is available, and if so, retrieval is assumed 
complete. 

Retrieval requests of objects for which the online copy is 
more recent than the dump copy are refused, unless the 
-previous, -from, or -to control arguments are used. 

The pathnames of the segments and directories to be retrieved 
need not be specified as a set of primary names. Any set of 
valid entrynames is acceptable. 

3-249 AG92-03 



entries 

SYNTAX AS A COMMAND: 

entries star names {-control_arg} 

SYNTAX AS AN ACTIVE FUNCTION: 

[entries star names {-control_arg}] 

FUNCTION: returns the entrynames or 
segments, directories, multisegment 
match one or more star names. 

ARGUMENTS: 

star names 

entries 

absolute pathnames of 
files, and links that 

are star names to be used in selecting the names to be 
returned. 

CONTROL ARGUMENTS: 

-absolute pathname, -absp 
returns absolute pathnames rather than entrynames. 

NOTES: Only one name per entry is returned; i.e., if an entry 
has more than one name that matches a star_name, only the 
first match found 1s returned. 

Since each entryname (or pathname) returned by entries is 
enclosed in Quotes, the command processor treats each name as 
a single argument regardless of the presence of special 
characters in the name. 

See the description of directory, directories, and entry in 
this manual. 

3-250 AG92-03 



entries 

EXAMPLES: 

pwd 
>udd)Apple)Jones 
Is -a 

Segments = 7, Lengths = 6. 

r w 0' empty_seg 
roe 1 test 
ro w 1 test.list 
r w 1 test.pl1 
re 1 prog 
ro w 1 prog.list 
r w . 1 prog.pl1 

Multisegment-files = 2, Lengths = 770. 

r w 513 prog.output 
r w 257 prog.data 

Directories = 2. 

sma prog stuff 
sma documents 

Links = 3. 

entries 

prog.temp2 
prog.temp1 
junk 

)udd)Apple)Jones)temp seg 2 
)udd)Apple)Jones)temp-seg-' 
)udd)Apple)Jones)empty_seg 

string [entries prog,*] 
prog.pl1 prog.list prog.data prog.output prog.temp1 

prog.temp2 
string [entries *.pI1] 
prog.pl1 test.pl1 

~-251 AG92-03 



entry en tr' y 

SYNTAX AS A COMMAND: 

entry path 

SYNTAX AS AN ACTIVE FUNCTION: 

[entry path] 

FUNCTION: returns the entryname portion of path, after it has 
been expanded into an absolute pathname. 

ARGUMENTS: 

path 
is the pathname whose entryname portion is to be returned. 

NOTES: See the description of directory in this manual. 

EXAMPLES: 

In the directory )udd)m)Jones: 

string [entry >udd)m)Jones)foo] 
foo 
string [entry [wd]] 
Jones 

3-252 AG92-03 



equal equal 

SYNTAX AS A COMMAND: 

equal strA strB 

SYNTAX AS AN ACTIVE FUNCTION: 

[equal strA strB] 

FUNCTION: returns true if strA is equal to strB; otherwise it 
returns false. 

ARGUMENTS: 

strA, strB 
are character strings to be compared. 

NOTES: The strings are compared character by character according 
to their ASCII code value (i.e., if the first character in 
each string has the same ASCII code value, compare the second 
character; if their values are identical, compare the third 
character; etc.). Strings of unequal length are compared by 
padding with blanks. 

EXAMPLES: 
! string [equal Ab ab] 

false 

string [equal this this] 
true 

If the current working directory is the default working 
directory: 

equal [wd] [dwd] 
true 

3-253 AG92-03 



-------*--------
equal_name (enm) equal_name (enm) 

SYNTAX AS A COMMAKD: 

enm path equal_path 

SYNTAX AS AN ACTIVE FUNCTION: 

[enm path equal_path] 

FUNCTION: returns an entryname or absolute pathname, constructed 
by applying the equal convention to the specified arguments. 

ARGUMENTS: 

path 
is any pathname. The equal convention is applied to its 
en~ryname portion. 

equal path 
is-a pathname whose entryname portion is an equal name. If 
equal path is only any entryname (i.e., contains no < or > 
characters) then the result is an entryname. Otherwise, the 
result is an absolute pathname. 

NOTES: This active function provides a means of applying equal 
names within abbreviations and exec_com segments. 

For a complete description of the equal convention see "Equal 
Names" in the MPM Reference Guide. 

EXAMPLES: The following abbreviation creates a link and adds 
names to it in a single command line. Assume that linkn is an 
abbreviation for: 

do "link &1 &2; if [exists argument &3] -then 
""an [directory &2]>[equal_name &1 &2] &f3""" 

then the single command line: 

linkn generate report.ec old_=.= old_grpt.ec old_grpt 

is equivalent to the following command lines: 

link generate report.ec old =.= 
add_name old_generate_report.ec old_grpt.ec old_grpt 

3-254 AG92-03 



exec com (ec) exec com (ec) 

SYNTAX AS A COMMAND: 

ec path {optional_args} 

FUNCTION: used to execute a sequence of command lines contained 
in a segment. This command allows the user to construct 
command sequences "that are invoked frequently without retyping 
the commands each time. In addition, control strings can be 
used to substitute argument values into the executed text, 
manage I/O switches, and execute portions of the text 
conditionally. 

ARGUMENTS: 

path 
is pathname of a segment containing commands to be executed 
and control statements to be interpreted. The entryname of 
the segment must have the ec suffix, although the suffix can 
be omitted in the command invocation. If an entryname only is 
specified, i.e., one containing no < or > characters, the 
exec com search list is used to locate the segment. See 
"Notis on Search List" section below. 

optional args 
are character strings to be substituted for special strings in 
the exec com segment. (See "Notes on Argument Substitution" 
below.) -

NOTES ON INPUT SEGMENT: The exec com segment should contain only 
command lines, input lines, and control statements. Normally 
it is created using a text editor, such as qedx. The exec com 
command can be used in conjunction with the abbrev comman~ to 
form abbreviations for command sequences that are used 
frequently. 

When the ampersand character (&) appears in the exec com 
segment, it is interpreted as a special character. It is used 
to denote a string used for argument substitution and to 
signify the start of a control statement. 

NOTES ON ARGUMENT SUBSTITUTION: Strings of the form &i in the 
exec com segment are interpreted as dummy arguments-and are 
replaced by the corresponding arguments to the exec com 

3-255 AG92-03 



exec com (ec) exec com (ec) 

command. For instance, optional arg1 is substituted for the 
string &1 and optional_arg10 is substituted for &10. 

The strings &qi, &ri, &f1" &qf1" and &rfi also indicate 
argument substitution.- The string &qi is replaced by the ith 
argument to the exec com command wIth quotes doubled. The 
string &ri is replacea by the ith argument, requoted. Refer 
to do in -this manual for a description of quote doubling and 
requoting and for examples of the use of &qi, &ri, &fi, &qfi, 
and &rfi. The string &fi is replaced by a -striKg of-the i~h 
through- last arguments -to exec com, separated by blanks. 
Likewise, &qfi is replaced by a string of the ith through last 
arguments witn quotes doubled and &rfi is replaced by a string 
of the ith through last arguments, re~uoted. 

The string &n is replaced by the number of arguments to the 
exec com command. The string &f&n, therefore, Is replaced by 
the -last argument to exec com. The string &ec name is 
replaced by the entryname portion of the exec com-pathname 
without the ec suffix. The string &ec dir is re~laced by the 
directory name portion of the exec_com ~athname. 

Argument substitution can take place in command lines, input 
lines or in control statements, since the replacement of 
arguments is done before the check for a control statement. 

NOTES ON CONTROL STATEMENTS: Control statements permit more 
variety and control in the execution of the command sequences. 
Currently the control statements are: &label, igoto, &attach, 
&detach, &input line, &command line, &ready, &print, &quit, 
&if, &then, and {else. -

Control statements generally must start at the beginning of a 
line with no leading blanks. Two exceptions to this rule are 
the &then statement which can follow an &if clause, and the 
&else statement, which can follow a &then clause. Any control 
statement other than &label, &if, &then, and &else is allowed 
to follow the control words &then and &else. 

&label and &goto 

These statements permit the transfer of control within an 
exec com segment. 

3-256 AG92-03 



------,--------
exec com (ec) exec com (ec) 

&label lo~ation 
identifies the place to which a goto control stateme~t 
transfers control. The location is any string of 32 or fewer 
characters, unique within the exec_com segment. 

&goto location 
causes control to be transferred to the place in the exec com 
segment specified by the label location. Execution then 
continues at the line immediately following the label. 

&attach, &detach, and &input_lin~ 

&attach 
causes the user input I/O switch to be attached to the 
exec com segment.- This means that if this control statement 
is executed, all input read by subsequent commands is taken 
from the segment rather than from the previous source of data 
to which the user_input I/O switch was attached. 

&detach 
causes the user input I/O switch to be reverted to its 
original value. ~y default, the user_input I/O switch is left 
attached to its original source. 

&input line on 
causes input 
be written 
default. 

lines returned when using 
on the user_output I/O 

the attach feature to 
switch. This is the 

&input line off 
causes input lines to not be written out. 

&command_line, &ready, and &print 

These statements allow the control of the user output I/O 
switch. They are useful as tools in observing the progress of 
the exec com execution and in printing messages. 

&command line on 
cause~ subsequent command lin~s 

user output I/O switch before they 
default. 

&command line off 

to be written on the 
are executed. This is the 

causes subsequent command lines to not be written out. 

3-251 AG92-03 



exec com (ec) exec com (ec) 

&ready on 
causes the invocation of the user's ready procedure after the 
execution of each command line. 

&ready off 
causes the user's ready procedure to not be invoked. This is 
the default. 

&print char string 
causes tEe character string following &print to be written out 
on the user output I/O switch. The character A is treated as 
a special cEaracter in a print statement. The following is a 
list of strings that can appear and the characters that 
replace them: 

string 

.... / or .... n/ 
A: or 

- or .... ,.. 

An: 
.... -n-

replacement 

newline character 
form feed (new page) 
horizontal tab 

where n expresses the number of special characters to be 
written-out. 

No other characters should appear following the A character in 
th~ print statement. 

&quit 

This statement causes the current invocation of exec com to 
return to its caller and not to execute subsequent command 
lines. 

&if, &then, and &else 

These statements provide the ability to have command lines, 
input lines, and control statements interpreted conditionally. 

The format of these control statements is: 

&if [ACTIVE FUNCTION {arg1} •.• {argn}] 
&then THEN ~LAUSE 
&else ELSE-CLAUSE 

3-258 AG92-03 



exec com (ec) exec com (ec) 

---.-------

The active furiction reference in an &if control statement is 
evaluated. If the value of the active function is the string 
true, THEN CLAUSE is executed. If the value is false, 
ELSE CLAUSE-is executed. 

&if [ACTIVE FUNCTION {arg1} ..• {argn}] 
This st~tement must start at the beginning of a line. The 
active function is any active function (user-provided or 
sys~em-supplied) that returns as its value a string with the 
value true or false. The arguments to the active function can 
themselves be active functions. (Nesting of active functions 
is permitted.) The active function and its optional 
arguments, enclosed in brackets, must be on the same line as 
the &if string. 

&then THEN CLAUSE 
This stitement must immediately follow the &if statement; it 
can appear on the same line or on the following line. 
THEN CLAUSE is an exec com statement, and can include a 
command line, an input -line, the null statement and most 
control statements. The &label, &if, &then, .and &else control 
statements are not allowed. (Nesting of &if statements is not 
permitted.) THEN CLAUSE must be on the same line as &then. 

&else ELSE CLAUSE 
This statement is optional. When it appears, it must 
immediately follow the &then statement; it can appear on the 
same line or on the following line. ELSE CLAUSE is an 
exec com statement and can include a command lIne, an input 
line~ the null statement and most control statements. The 
&label, &if, &then and &else control statements are not 
allowed. ELSE CLAUSE must be on the same line as &else. 

NOTES ON SEARCH LIST: The exec com command uses the exec com 
search list that has the synonym ec. Type: 

psp ec 

to see what the current exec com search list is. The default 
exec com search list is the working directory. For more 
information on the search facility, see the description of the 
add~search_paths command in this manual. 

NOTES ON HANDLING CONDITIONS: The on command and active function 
can be used to handle conditions raised during the execution 
of an exec com. To handle command error when executing the 
copy command, for example, an exec com can say: 

3-259 AG92-03 



---.----
exec com (ec) 

--_._----

&if [on command error tI" -bf copy PROJ DIR>&1: MY DIR>=] 
&then &goto c~py failed 

. an MY_DIR>&1 &1.[dateJ 

&label copy failed 
&print PROJ:DIR>&1 not copied 

The -bf control argument suppresses a message printed by on 
when the condition is raised. 

The discard output command can be used to suppress output from 
the command-whose success 1s being tested, for example: 

&if [on command error "" -bf dco -osw error output -osw 
user output archive tb source &1.pl1] -

&then &goto no' component 
&print &1.p11 Tn source.archive 

&label no component . 
&print &17p11 not found in source.archive 

The on command. can be used to execute another exec com, or a 
. rec~rsive entry point in the current one, with a ~andler in 
effect. For example: 

on any_other "ec handler" ec test ms ... 
&quit 
&label handler 
tmr mail mbsa mailbox 
in >sss>mail 
&quit 
&label test ms 
tmr mail mbia mailbox 
in MS>mailbox 
MS)mbsa test.mbx adros 
MS>mail test 
&quit 

For more information, see the description of on in t~is 
manual. 

3-260 AG92-03 



exec com (ec) exec com (ec) 

NOTES ON HANDLING QUESTIONS: The ~nswer command can be used to 
supply preset answers to questions asked by commands invoked 
in an exec com. (It is not recommended that answers be 
supplied on iuccessive lines of the exec com with &attach on.) 
The following exec com prints only the fIrst three sections of 
an info segment by-answering "yes" twice and then "no": 

answer yes -times 2 -then no help &1 
&quit 

The following example prints the first three sections of an 
info segment, then prints the next three only if the user 
answers yes: 

answer yes -times 2 -then -query -then yes -times 2 
-then no help &1 

&quit 

For more information, see the description of the answer 
command in this manual. 

NOTES: If a line begins with the & character but is not on~ of 
the current control statements, the entire line is ignored. 
This is one way of including comments in the exec com segment. 
The user is cautioned to leave a blank immediately following 
the & to ensure compatibility with control requests to be 
added to exec com in the future. 

The segment executed by exec com can contain calls to 
exec com. The user must exercise caution when invoking this 
featijre in conjunction with the &attach feature. When 
exec com is called from an exec com using this feature, the 
input read by commands in the second exec com is read from the 
first exec com segment. Generally, if tne &attach feature is 
used, all- calls to exec com should be preceded by &detach 
control statements. 

Several exec corns can be combined into one segment, by using 
the dummy argument &ec name together with the &label and &goto 
statements. If exec corns are grouped together, the exec com 
segment should have -all the names (concatenated with an ec 
suffix) on its storage system entry that can replace &ec name. 

3-261 AG92-03 



exec com (ec) exec com (ec) 

Examples 

EXAMPLES: Assume that the segment a.ec in the user's working 
directory contains: 

pl1 &1 -table -list 
dprint -delete &1.list 
&quit 

The command line: 

exec com a foo 

causes the following commands to be executed: 

pl1 foo -table -list 
dprint -delete foo.list 

Assume that the segment b.ec in the user's working directory 
has an additional name a.ec and contains: 

&goto &ec name 
& -
&label b 
print &1 1 99 
&quit 
& 
&label a 
pl1 &1 -table -list 
dprint -delete &1.list 
&quit 

The command line: 

exec com b my_file 

causes the following command to be executed: 

print my_file 1 99 

3-262 AG92-03 



exec com (ec) 

The command line: 

exec com a foo 

causes the following commands to be executed: 

pl1 foo -table -list 
dprint -delete foo.list 

exec com (ec) 

As~ume that the segment d.ecin the user's working directory 
contains the following: 

&if [exists segment &l.pll] &then 
&else &goto not found 
pll &1 -table -Tist 
dprint -delete &l.list 
&quit 
&label not found 
&print &1.pl1 not found 
&quit 

If the segment foo.pl1 exists, the command line: 

! exec com d foo 

causes the following commands to be executed: 

pl1 foo -table -list 
dprint -delete foo.list 

If the segment foo~pl1 does not exist, the command line: 

. exec com d foo 

outputs the following: 

foo.pll not found 

3-263 AG92-03 



exee com (ee) exec com (ec) 

Assume that the segment 
directory contains: 

test.ec in the user's working 

&print begin &ec name exec com 
&command line off 
create &T.pI1 
&attach 
edm &1.pI1 
i &1: proc; 
&input line off 
i end &1; 
w 
q 
&detach 
&goto &2 
&label compile 
pl1 &1 
&label nocompile 
&print end &ec name &1 &2 exec com 
&quit 

The command line: 

exec com test x compile 

produces the following output: 

begin test eXec com 
Edit. 
i x: proc; 

PL/I 
end test x compile elec com 

3-2611 AG92-03 



exists exists 

SYNTAX AS A COMMAND: 

exists argument {str_args} 
or: 

exists key star_name {-control_arg} 

SYNTAX AS AN ACTIVE FUNCTION: 

[exists argument {str_args}] 
or: 

[exists key star_name {-control_arg}] 

FUNCTION: checks for the existence of various types of items 
depending on the value of the first argument (key). 

ARGUMENTS: 

argument 
is the key "argument" described below in "List of Keys". 

key 
is any key as described below in "List of Keys". 

str args 
are character string,arguments. 

CONTROL ARGUMENTS: 

-chase 
specifies that any keyword that looks for branch entries chase 
links and look at the link targets. 

LIST OF KEYS: 

argument 
true if any str_args are specified; otherwise false. 

branch 
true if any branches 
directories) with a 
otherwise false. 

directory, dir 

(segments, multisegment files, or 
pathname matching star name exist; 

true if any directories with a pathname matching star name 
exist; otherwise false. 

3-265 AG92-03 



exists exists 

entry 
true if any entries 
directories, or links) 
exist; otherwise false. 

(segments, multisegment files, 
with a pathname matching star name 

file 
true if any segments or multisegment files with a pathname 
matching star name e~ist; otherwise false. 

link 
true if any links with a pathname matching star name exist; 
otherwise false. 

master directory, mdir 
true if any master directories with a pathname matching 
star name exist; otherwise false. 

msf 
true if any multi~egment files with a pathname matching 
star name exist; otherwise false. 

nonbfanch 
true if any links with a pathname matching star name exist; 
otherwise false. 

nonfile 
true if any links or directories with a pathname matching 
star name exist; otherwise false. 

nonlink 
true if any directories, segments, or multisegment files with 
a pathname matching star_name exist; otherwise false. 

nonmaster directory, nmdir 
true i1 any directories Which are not master directories with 
a pathname matching star_name exist; otherwise false. 

nonmsf 
true if any directories, segments, or links with a pathname 
matching star_name exist; otherwise false. 

non_null_link, nonnull_link, nnlink 
true if any links with a pathname matching star name exist and 
point to an existing segment, directory, or mul~i.segment file; 
otherwise false. . 

nonsegment, nonseg 
trqe if any links, directories, or multisegment files with a 
pathname matching star name exist; otherwise false. 

3-266 AG92-03 



exists exists 

nonzero file, nzfile 
true-if any nonzero length segments or multisegment files with 
apathname matching star_name exist; otherwise false. 

nonzero msf, nzmsf 
true-if any nonzero length multisegment files with a pathname 
matching star_name exist; otherwise false. 

nonzero segment, rizseg 
true - if any nonzero length segments wi th pathnarne matchir,g 
star name exist; otherwise false. 

null link 
true if any links with a pathname matching star name exist and 
point to nonexistent entries; otherwise false. -

segment, seg 
true if any segments with a pathname matching star name exist; 
otherwise false. 

zero segment, zseg 
true if any, zero length segments wi th a pathname matching 
star name exist; otherwise false. 

3-267 AG92-03 



SYNTAX AS A COMMAND; 

ecs path {-control_args} 

FUNCTION: translates a segment containing the text of a standard 
format COBOL source program containing COpy and REPLACE 
statements to equivalent sQurce programs not containing these 
statements. 

ARGUMENTS: 

path 
is the pathname of the input segment to be modified. If path 
does not have a suffix of oobol, one is assumed. However, the 
cobol ~uffix must be the last component of the name of the 
input segment. The translated segment created by ecs is the 
first component of the ent~yna~e with the suffix ex. cobol 
ad.-ded. 

CONTROL ARGUMENTS: 

-format, -fmt 
converts pseudo free form COBOL source 
standard fixed format COBOL source programs 
COBOL compiler. 

programs to the 
processed by the 

-upper case, -uc 
produce.s a formatted output file entirely in uppercase except 
for the contents of nonnumeric literals, which are left 
exactly as specified in the input file. If this control 
argument is not specified, the file is produced as typed. 

-lower case 
produoes 
for the 
exactly 
argument 

-lc 
a formatted output file entirely in lowercase except 
contents of nonnumeric literals, which are left 

as specified in the input file. If this control 
is not specified, the file is produced as typed. 

NOTES: If the -fmt, -lc, or -uc control arguments are used, the 
expand cobol source command assumes that the input file is in 
free form (as would be typically typed in from a terminal) and 
attempts to reformat each line into the standard COBOL 
reference format described in the Multics COBOL Users' Guide, 
Order No. AS43. Statements in a 'COBOL ~ource program 
generally begin in area B (column 12 and beyond). However, 
certain entries must begin in area A (column 8 through 11). 

3-268 AG92-03 



These are COBOL-defined division names, section names, 
paragraph names,· level indicators, and certain level numbers, 
as well as user-defined section names and paragraph names. 
Additionally, certain characters have special meaning when 
appearing in the indicator area (column 7), such as the 
asterisk, slash, hyphen, and letter "d". 

The expand cobol source command recognizes all COBOL-defined 
names that-are required to appear in ·area A and reformats 
lines c6ntaining them to guarantee that they do so. 
User~defined section names are recognized by the appearance of 
the word "section" on the line while words beginning the line 
and followed im~ediately by a period are assumed to be 
user-defined paragraph names. Source lines containing either 
of these are reformatted similarly to lines containing 
COBOL-defined sections and paragraphs. Lines beginning with 
level numbers 01, 66, 77, 88 are reformatted to begin in area 
A (at column 8) as required in standard American National 
Standard (ANS) COBOL. Lines beginning with level numbers 02 
through 49 are indented a number of spaces identical to the 
numeric value of the level number plus seven (e.g., 02 begins 
at column 9, 05 at column 12). 

Certain characters force special interpretation when they 
begin a free form source line. The slash (I) and asterisk (*) 
when used in this way denote a comment line with or without 
page eject, respectively; the hyphen (-) denotes a 
continuation line. Such lines are reformatted so that these 
special characters appear in the indicator area followed by 
the rest of the line. Additionally,· for continuatton lines, 
the remainder· of the line following th~ hyphen is shifted to 
begin in area B as COBOL prohibits use of area A in this case. 

Debugging lines are probably of little interest for Multics 
COBOL users due to the powerful symbolic debugging facilities 
available on an interactive basis, but they can be specified 
in free form source by beginning the line with "d*". In rare 
instances, in which a user-defined section or paragraph name 
is specified in a way not contextually recognizable by the 
expand cobol source command, the user can force reformatting 
beginning in-area A by beginning the line with "a*" (or "da*" 
in the case of debugging lines). 

All other source lines (i.e., those not beginning with special 
character(s) and not containing entries required to begin in 
area A) are reformatted by insertion of eleven blanks forcing 

3-269 AG92-03 



commencement in 
the free form 
column 12. 

area B. Any indentation already existing in 
file is thereby maintained relative to 

The expand cobol source command also converts all horizontal 
tab characters TASCII code 011) not contained in nonnumeric 
literals to spaces. The number of spaces is determined by 
subtracting the position of the tab character on the source 
line modulo 10 from 10. In this way, the user can input the 
source program using the tab character as a formatting tool, 
yet avoid the fact that this is not part of the standard COBOL 
character set. 

The COBOL source program output is acceptable to any ANS 
compiler with regard to reference format. (Actually, Multics 
COBOL relaxes many of these format requirements. However, it 
is usually desirable to eliminate the warnings and 
observations issued when such ANS rules are violated.) For 
transportability purposes, the output file can be created 
entirely in uppercase or lowercase (with the contents of 
nonnumeric literals left as is) by use of the -upper case and 
-lower case control arguments. If neither is specified, the 
case of all words remains the same as in the input file. 
Notice, all COBOL-defined names and characters with special 
meaning are recognized regardless of case, i.e., they may be 
all in uppercase, all in lowercase, or in mixed case. 

For those users wishing to keep source files in free form, 
identical function described above is available on a per use 
basis via the -format control argument of'the cobol command. 
Refer to the description of the cobol command for further 
information. 

3-270 AG92-03 



fast fast 

SYNTAX AS A COMMAND: 

fast 

FUNCTION: causes the user to enter the FAST subsystem. 

NOTES: For a description of the commands available under FAST, 
see the Multics FAST Subsystem Users' Guide, Order No. AU25. 

To exit the subsystem and return to Multics system command 
level the user should type quit (q). 

3-271 AG92-03 



file_output (fo) 

SYNTAX AS A COMMAND: 

fo jpath} {-control args} 
ro -control args} -
so target sw-{-control args} 
to {-control_args} -

file_output (fo) 

FUNCTION: The file_output (fo) command directs I/O output 
switches to a specified file. The terminal output (to) 
command directs 110 output switches to the user's terminal. 
The syn output (so) command directs output I/O switches to 
another -already open I/O switch. The effects of the first 
three commands can be stacked. The revert output (ro) command 
reverts the effect of these other commands~ i.e., releases the 
most recent, preceding command. 

ARGUMENTS: 

path 
is the pathname of a segment. If the segment does not exist, 
it is created. If path is not specified, the segment 
output_file in the working directory is assumed. 

target sw 
is the name of an open I/O switch to which output is to be 
redirected. It must b~ open for stream output, 
stream input output, or IDS (the older version of -the I/O 
eystemT compatibility. 

CONTROL ARGUMENTS: 

-source switch STR, -ssw STR 
specifies the name of an I/O switch to be redirected. The 
default is user_output. 

-all, -a 
reverts all file output, terminal output, and syn output 
attachments for specified I/O switches or for all switches if 
none are specified. This control argument is applicable to 
the revert_output command only. 

-extend 
extends the output file (default) • 

.... trunca.te, -tc 
truncates an existing output file for file_output. The 
default is to extend the output file. 

3-272 AG92-03 



file_output (fa) file_output (fa) 

NOTES: Each command invocation of file output, terminal output, 
or syn output stacks up another attachment for eacn of the 
specified switches. The revert output command pops and 
restores one, 'attachment from the stack. It does not revert 
attachments made, for example,by the io call command. 

The command line: 

revert_output -ssw STR 

rSverts the latest attachment by one of the following command 
lines: 

file output -ssw STR 
terminal output -ssw STR 
syn_output target -ssw STR 

To avoid getting ready messages in the output file, the 
file output (or syn output) and revert_output commands should 
appear on the same command line. 

EXAMPLES: The command line: 

fo text.cpa;cpa text.old text.new;ro;dp text.cpa 

makes a comparison of two text segments names text.old and 
text.new, places the results of that comparison in the output 
file named text.cpa, and dprints the file text.cpa on a remote 
printer. 

The sequence of commands within an exec com segment: 

fo segs_and_links 
Is -seg 
to 
Is -directory 
ro 
Is -link 
ro 

lists segments and links in the output file named 
segs_and_links and lists directories on the terminal. 

3-273 AG92-03 



file_output (fo) file_output (fo) 

The sequence of lines within an exec_com segment: 

&if [equal &1 tape] &then io attach s1 tape_mult &2; 
io open s1 so 

&if [equal &1 file] &then io attach 81 vfile &2; 
io open 81 so 

&if [equal &1 tty] &then io attach s1 8yn user_i/o 
syn output 81; -

so 81 ;,-WS -wd "list -all"; ro 
&if [not [equal &1 tty]] &then io close 81 
io detach s1 

outputs a 
tape, or 
argument. 

listing of all segments in a subtree to a file, a 
the terminal as specified by the first exec com 

3-274 AG92-03 



files files 

SYNTAX AS A COMMAND: 

files star names {-control_arg} 

SYNTAX AS AN ACTIVE FUNCTION: 

[files star names {-control_arg}] 

FUNCTION: returns the entryname~ or absolute pathnames of 
segments and multisegment files that match one or more star 
names. 

ARGUMENTS: 

star names 
are star names to be used in selecting the names to be 
returned. 

CONTROL ARGUMENTS: 

-absolute pathname, -absp 
returns absolute pathnames rather than entrynames. 

NOTES: Only one name per file is returned; i.e., 
more than one name that matches a star ,name, 
match found is returned. -

if a file has 
only the first 

Since each entryname (or pathname) returned by files is 
enclosed in quotes, the command processor treats each name as 
a single argument regardless of the presence of special 
characters in the name. 

EXAMPLES: 

pwd 
)udd)Apple)Jones 

! .ls -a 

Segments = 7, Lengths = 6. 

r w 0 empty seg 
re 1 test-
r w 1 test.list 

3-275 AG92-03 



files 

r w 1 test.pl1 
re 1 prog 
r w 1 prog.list 

"r w 1 prog.p11 

Multisegment-filee = 2, Lengths = 770. 

r w 513 prog.output 
r w 257 prog.data 

Directories = 2. 

sma prog stuff 
sma documents 

Links = 3. 

prog.temp2 
prog.temp1 
junk 

string [files **] 

)udd)Apple)Jones)temp seg 2 
)udd)Apple)Jones)temp-seg-1 
)udd)Apple)Jones)empty_seg 

files 

prog.p11 prog.list prog.data prog test.pl1 test.list test 
prog.output empty_seg 

string [files *.p11] 
prog.p11 test8p11 

3-276 AG92-03 



floor 

SYNTAX AS A COMMAND: 

floor num 

SYNTAX AS AN ACTIVE FUNCTION: 

[floor num] 

floor 

FUNCTION: returns the largest decimal integer less than or equal 
to its argument. 

EXAMPLES: 

string [floor 4.7] 
4.0 
string [floor -4.7] 
-5.0 

3-277 AG92-03 



format line (fl) 

SYNTAX AS AN ACTIVE FUNCTION: 

[fl control_string largs}] 

format line (fl) 

FUNCTION: returns 
formatted from 
arguments. 

a single, quoted character string that is 
an ioa control string and other optional 

ARGUMENTS: 

control string 
is an ioa control string that is used to format the return 
value of -the active function. The following ioa control 
codes are allowed (for detailed descriptions, see ioa in this 
manual) ; 

Control 

'" 
" 

e 
o 

ANi 
ANf 
AN.df 
"Ne 
"'No 

"[ ... "] 
:~ "N( 

" . , 
lOS "Ns 

AcceEtable Arguments 

any character string 
a character representation of a number, including 
optional exponent (e.g., 315.44 or .278ge+2 or 
11 01 b) 
same as Ad 
same as "d 
same as "d 
same as "d 
aame as Ad 
"true", "false", or an integer character string 
an integer character string 
an integer character string 

In addition, any of the following carriage movement controls 
may be used: 

"NI "NI AN_ ANx AN" "R "B 
or 

"I AI" AX 

where N is an integer count or a "vu. When "v" is given, an 
integer character string from the args is used for count. For 
a complete description of these control strings see the 
description of the ioa subroutine in the MPM Subroutines. 

3-278 AG92-03 



format line (fl) format line (fl) 

args 
are character strings substituted in the formatted return 
value, according to the ioa control string. 

NOTES: If no optional arguments are given, the value returned 
depends on the ioa control string that was specified. 

See the description of the ioa 
Subroutines. 

EXAMPLES: 

In an exec_com segment, the lines: 

subroutine in the MPM 

&if [query [fl ":a copies already eXist.A/Do you want to build 
another?"] ~2] . 

&then ec bUild_new_data[plus 1 &2] 

might be expanded when &2 is 3 to: 

3 copies already exist. 
Do you want to build another? 

The lines: 

string [fl "Insurance option: <2 spaces) 
A[no faultA;regular A]" [query "No Fault?"]] 

prints the following if the user answers "yes" to the query: 

Insurance option: no fault 

3-279 AG92-03 



fortran (ft) fortran (ft) 

NOTES: The Multics system currently supports two FORTRAN 
compilers (see the new fortran and old fortran commands). The 
name fortran (ft) is added to either the new fortran or 
old fortran command, depending on which compiler the site 
wants to use as their "standard" FORTRAN compiler. By 
default, the names fortran and ft are associated with the new 
FORTRAN compiler. 

3-280 AG92-03 



fortran. abs (fa) fortran abs (fa) 

SYNTAX AS A COMMAND: 

fa paths {ft_args} {dp_args} {-control_args} 

FUNCTION: submits an absentee request to perform FORTRAN 
compilations on the site's standard FORTRAN compiler. 

ARGUMENTS: 

paths 
are pathnames of segments to be compiled. 

ft_args 
are one or more control arguments accepted by the fortran 
command. 

dp args 
-are one or more control arguments (except -delete) accepted by the 

dpri.nt command. 

CONTROL ARGUMENTS: 

-queue N, -q N 
specifies in which priority queue the request is to be placed 
(N < 3). The default queue is 3; the listing segment is also 
dprInted in queue N. 

-hold 
specifies that fortran abs should not dprint or delete the listing 
segment. -

-limit N, -Ii N 
pla(~es a limi t on the CPU time used by the "absentee process. The 
parameter N mU$t be a posi ti ve decimal integer specifying the limi t 
in seconds. The default limit is defined by the site for each 
queue. An upper limit is defined by the site for each queue on 
each shift. Jobs with limits exceeding the upper limit for the 
current shift are deferred to a shift with a higher limit. 

-output file path, -of path 
speeTfies that absentee output is to go to the segment whose 
pathname is path. 

3-281 AG92-03 



fortran abs (fa) fortran abs (fa) 

NOTES: The absentee process for which fortran abs submits a 
request compiles the segments named and dprints and deletes 
the listing segment. If the -output file control argument is 
not specified, an output segment, path.absout, is created in 
the user's working directory (if more than one path is 
specified, only the first is used). If none of the segments 
to be compiled can be found, no absentee request is submitted. 

Control arguments and segment pathnames can be mixed freely 
and can appear anywhere on the fortran abs command line after 
the command. All control arguments-apply to all segment 
pathnames. If an unrecognizable control argument is given, 
the absentee request is not submitted. 

Unpredictable results can occur if two absentee requests are 
submitted that could Simultaneously attempt to compile the 
same segment or write into the same absout segment. 

When doing several compilations, it is more efficient to give 
several pathnames in one command rather than several commands. 
With one command, only one process is set up. Thus the 
dynamic intersegment links that need to be snapped when 
setting up a process and when invoking the compiler need be 
snapped only once. 

3-282 AG92-03 



gcos (gc) gcos (gc) 

FUNCTION: invokes the GCOS environment simulator to run a single 
GCOS job, immediately, in the user's process. 

NOTES: Related facilities include the GCOS daemon, which 
provides batch processing for GCOS jobs under Multics and the 
following commands, which may be used to manipulate GCOS 
format files that reside in the Multics storage system: 

gcos sysprint, gsp 
gcos-syspunch, gspn 
gcos:card_utility, gcu 

These commands and the gcos command are fully described in the 
Multics GCOS Environment Simulator manual, Order No. AN05. 

~-283 AG92-03 



general_ready (gr) 

SYNTAX AS A COMMAND: 

gr {-control_args} 

SYNTAX AS AN ACTIVE FUNCTION: 

[gr {-control_args}] 

general_ready (gr) 

FUNCTION: prints a ready message containing specified values in 
a specified format. 

LIST OF CONTROL ARGUMENTS BY FUNCTION: 

Prefix control arguments 
-string 
-control 

Format control arguments 
-inc vcpu 
-total vcpu 
-total-mem units 
-inc cost -
-total cost 
-inc pf 
-total pf 
-level-
-date 
-date time 
-day -
-day name 
-hour 
-minute 
-month 
-time 
-year 
-zone 

Operation control arguments 
-set 
-revert 
-reset 
-call 

LIST OF PREFIX CONTROL ARGUMENTS: These arguments must occur 
prior to any of the format control arguments described below. 

3-284 AG92-03 



general_ready (gr) general_ready (gr) 

The two prefix arguments allow the user to override the 
default formats for the contents of the ready message. They 
are: 

LIST OF FORMAT CONTROL ARGUMENTS: The format and content of the 
ready message are controlled by format arguments. These 
arguments include: control arguments -that identify values to 
be included in the ready message; optional precision numbers 
following some of these control arguments that control the 
number of digits after the decimal point in numeric values; 
and literal character strings that are inserted in the ready 
message. The format arguments are combined in the order of 
their appearance in the general ready command to form an ioa 
control string that controls the format of the ready message. 

Six types of values can be used in a ready message: 

processor usage values (virtual CPU seconds); 
memory usage values (memory units); 
paging operations (both bulk store reads and demand page 

. faults); 
usage cost values (dollar charges); 
command processor level numbers; 
and date/time values (date, time of day, day of the week, 

etc) • 

3-285 AG92-03 



general_ready (gr) general_ready (gr) 

Both total usage values (total usage accrued during this 
process) and incremental usage values (usage accrued since the 
last ready message printed by general ready) can be output in 
the same ready message. The values ~re selected for use in 
the ready message by format control arguments to 
general ready. The format control arguments are listed below 
by type-:-

processor usage values 
These control arguments can be followed by a single numeric 
digit from 1 to 9, to indicate the number of digits that 
should appear to the right of the decimal point in the number 
that is output. The default is three digits. The output 
format of the value can be described by the ioa control 
string" :.nf" where n is 3 by default. 

-inc vc'pu {N} 
incremental virtual CPU value. 

-total vcpu IN} 
tot~l virtual CPU value. 

memory usage values 
These control arguments are used in the same manner as the 
control arguments for processor usage values above. 

-inc mem units IN} 
incremental units. 

-total mem units {N} 
total memory units. 

usage cost values 
These control arguments are used in the same manner as the 
control arguments for processor usage values with the 
following differences. The default number of digits following 
the decimal point is two. The output format of the value can 
be described by the ioa control string" $~.nf" where n is 2 
by default. -

-inc_cost {N} 
incremental cost charges. 

-total cost {N} 
cost charges. 

paging values 
These control arguments are output by the ioa control string 
" :d+~d", where the first number is the number of bulk store 

3-286 AG92-03 



general_ready (gr) general_ready (gr) 

pages read (formerly the number of prepages) and the second is 
the number of demand page faults. 

-inc pf 
i~cremental paging values. 

-total pf 
paglng values. 

command processor level numbers 
This control argument indicates that the command processor and 
stack frame level numbers should be included in the ready 
message. The number of digits is not settable. The level 
numbers are output by the ioa control strin~ "~a", but the 
printed format can be describea by" level .d,~d" where the 
fIrst number is the number of command processor invocations 
and the second is the stack frame depth of the ready message 
procedure's stack frame. If the command processor level is 1, 
the printed format is the null string. 

-level 
. command processor level numbers. 

date values 
These values can be described by the ioa control string " ~a" 
except for the -min, -day, and -year control arguments which 
tise the ioa control string "Aa" (without a leading space). 
The number of digits is not settable. 

-date 
eight-character date (mm/dd/yy). 

-date time 
date and time (mm/dd/yy hhmm.m zzz www). 

-day 
two-digit day (dd). 

-day name 
tnree-character day of the week (www). 

-hour 
two-digit hour (hh). 

-minute 
two-digit minute (mm) 

-month 
two-digit month (mm). 

3-287 AG92-03 



general_ready (gr) general_ready (gr) 

-time, -tm 
six-character time of day (hhmm.m). 

-year 
two-digit year (yy) 

-zone 
three-character time zone (zzz). 

Notice that all values except those date values mentioned 
above are preceded by a space and none of the values are 
suffixed by a space. Any nonkeyword argument (other than a 
single numeric digit following a floating point or dollar 
keyword) is assumed to be a literal string that is inserted in 
the ioa control string being built by general ready. Refer 
to the examples below. -

LIST OF OPERATION CONTROL ARGUMENTS: The following control 
arguments affect the operation of general ready, but do not 
change the format of ready messages. -

-set 
establishes general ready as the current ready message 
procedure. The command processor then calls general ready 
to print a ready message after each command line is 
complete. In addition, the system commands ready, 
ready on, and ready off, determine the operation of 
general ready. Thie- control argument also causes 
general=ready to set an alarm timer to catch shift changes. 

-revert 
makes the system ready procedure the current ready message 
procedure and resets any timer alarms established by 
general_ready to catch shift changes. 

-reset 
resets incremental usage values to zero without printing a 
ready message. 

-call cmdline 
when used with the -set control argument, causes 
general ready to call the command processor to execute 
cmdline- after the completion of every command line. 
cmdline is a single argument to general ready and 
therefore, must be enclosed in quotes if it contains any 
blanks. A frequent use of -call is "-call print messages". 
cmdline is executed even if the printing of reaay messages 
has been inhibited by executing the ready_off command. 

3-288 AG92-03 



general_ready (gr) general_ready (gr) 

The -set and -revert control arguments are mutually exclus).ve. 
A general ready command that includes -set does not print a 
ready message. Instead, it saves the ioa control string 
built from the format and prefix control irguments in the 
command, and uses this ioa string to control the format of 
ready messages printed whe~ command lines complete execution 
or when a ready command is issued. 

A general ready command that includes -revert prints a single 
ready meWsage, only if format or prefix control argumen~~ 
appear in the command with the -revert control argument. 
Otherwise, no ready message is printed. 

If neither -set nor -revert is 
prints one ready message according 
arguments given in the command. 

given, then general ready 
to the format and prefix 

NOTES: The program is designed to allow an almost arbitrary 
format at no additional cost (relative to the system's ready 
procedure) other than the cost associated with the 
general ready command, which sets up the ready message. Once 
a ready message is specified, the ready on, ready, and 
ready off commands control the printing of the ready message 
in the normal manner. 

The general ready command builds up an ioa control string 
(described in the MPM Subroutines) from the order of the 
keywords passed to it. The keywords specify which values to 
output in the ready message. Virtual CPU usage and dollar 
cost can be printed. Both incremental usage (usage accrued 
since the last ready message produced by general ready) and 
total usage (usage accrued during this process) can be in the 
same ready message with the precision of the output (the 
number of decimal places to the right of the decimal point) 
specified by the user. As a command, general ready can be 
used to either print a single ready message or define the 
contents of the ready message printed by the ready command 
(and after every command line if the ready on command is 
executed). When used as an active function, tEe return value 

, of general_ready is the ready message. 

The values for total virtual CPU time and total memory units 
is valid across new processes. The value for cost is valid 
unless a shift change occurred during a previous process. 
~len general_ready is invoked for the first time in a process, 

3-289 AG92-03 



general_ready (gr) general_ready (gr) 

-----_._----_.-

the dollar cost of all usage (in that process) up to that 
point in time is computed at the rates then in effect. 

Due to the manner in which ready message procedures and 
procedures that set up alarm timers are invoked, such 
procedures should not be terminated (by the te~minate and 
terminate refname commands). If it is desired to terminate 
general ready, general ready should be invoked with the 
-revert-control argument before it is terminated. 

EXAMPLES: The following examples illustrate 
facilities of general_ready: 

gr -string READY -date 
-total_vcpu -set 

some of the 

establishes general ready as the current ready procedure since 
the -set keyword appeared. Each ready message has the format: 

READY 01/15/74 TIME 1234.3 VCPU 3.456 23.349 

If the -set keyword had not appeared, a single ready message 
having the above format is printed. The ioa control string 
that general_ready uses to generate the above ready message 
is: 

The 'command line: 

gr -string READY -date -hour 
AxVCPUT -total_vcpu 2 

-minute AxVCPUI -inc_vcpu 

results in a single ready message of the form: 

READY 01/15/74 09:46 vcpur 2.345 VCPUT 34.21 

using the ioa_ control string: 

The above ready message can also be specified by the command 
line: 

gr -control "READY ~a ~a: ~a vcpur ~ .3f VCPUT A .2f~2/" -date 
-hour -minute -inc_vcpu -total_vcpu 

3-290 AG92-03 



get_pathname (gpn) get_pathname (gpn) 

SYNTAX AS A COMMAND: 

gpn {-control_arg} arg. 

SYNTAX AS AN ACTIVE FUNCTION: 

[gpn {-control_arg} argl 

FUNCTION: returns the absolute pathname of the segment 
designated by a specified reference name or segment number. 
(Reference names are discussed ·in the MPM Reference Guide.) 
If the reference name or segment number is not in use,an 
error message is printed. 

ARGUMENTS: 

arg 
is a reference name or octal segment number known to this 
process. 

CONTROL ARGUMENTS: 

-name, -nm 
indicates that arg (which happens to look like an octal 
segment number) is to be interpreted as a reference name. If 
this control argument is not specified, the system assumes arg 
is a reference name only if arg is not a valid octal number. 

3-291 AG92-03 



c----- ------
get_quota (gq) 

SYNTAX AS A COMMAND: 

gq {paths} {-control_arg} 

FUNCTION: returns information about the secondary stQrage quota 
and pages used for a specified directory. 

ARGUMENTS: 

paths 
are pathnames of directories for which quota information is 
desired. If one of the paths is -wd or -working directory, 
the working directory is used. If no paths are specified, the 
working directory is assumed. The star convention is allowed. 

CONTROL ARGUMENTS: 

-long, -lg 
prints output in long format. See "Notes" below. 

NOTES: The short form of output (the default case) prints the 
number of pages of quota assigned to the directory and the 
number of pages used by the 'segments in that directory and any 
inferior directories that are charging against that quota. 
The output is prepared in tabular format, with' a total, when 
more than, one pathname is specified. When only one pathname 
is speoified, a single line of output is printed. 

The long form of output gives the quota and pages-used 
information provided in the short output. In addition, it 
prints the logical volume identifier of segments, the 
time-record product in units of record-days, and the date that 
this number was last updated. Thus, a user can see what 
secondary storage charges the user's accounts are 
accumulating. If the user has inferior directories with 
nonzero quotas, it is necessary to print this product for all 
these directories in order to obtain the charge. 

3-292 AG92-03 



SYNTAX AS A COMMAND: 

gssr 

FUNCTION: prints the definitions of site-defined search rule 
keywords acceptable to the set_search_rules command. 

NOTES: The get system search rules command prints a list of 
standard search rule keywords and directories, each one 
followed by one or more site-defined keywords. If the user 
includes a site-defined keyword in the search segment accepted 
by the set search rules command, the site-defined keyword 
expands into its- definition in the order printed by 
get __ system_search_rules. 

See print search rules, add search rules, delete_search_rules, 
and set search rules in this manual. 

EXAMPLES: 

gssr 
:lni t iated segments , default 
referencing dir, default 
working dir~ default 
)system-library standard, default, system libraries 
)system-library-unbundled, default, system libraries 
>system-library-1, default, system libraries 
)system-library-tools, default, system libraries 
)system-library-auth maint, default, system libraries 
<ready>- - - -

In the example above, default and system libraries are 
site-defined keywords. If the user includes system libraries 
in the search segment accepted by the set search rules 
command, system_libraries expands into: 

>system library standard 
>system-library-unbundled 
>system -Ii brary -1 . 
>system-library-tools 
>system_library=auth_maint 

3-293 AG92-03 



greater 

SYNTAX AS A COMMAND: 

greater strA strB 

SYNTAX AS AN ACTIVE FUNCTION: 

[greater strA strB] 

greater 

FUNCTION: returns true if strA is greater than strB according to 
ASCII collating sequence; otherwise it returns false. 

NOTES: The strings are compared character by character according 
. to their ASCII code value (i.e., if the first character in 

each string has the same ASCII code value, compare the second 
character; if their values are identical, compare the third 
character; etc.). 

To make numeric comparisons of strings, see ngreater and nless 
in this manual. 

3-294 AG92-03 



have mail 

SYNTAX AS A COMMAND: 

have mail {path} 

SYNTAX AS AN ACTIVE FUNCTION: 

[have:.....mail {path}] 

have mail 

FUNCTION: as a command prints the terminal display "You have 
mail" if there is mail in the mailbox specified by path; 
otherwise it prints "No mail". As an active function returns 
true is there is mail in the mailbox specified by path; 
otherwise it returns false. If path is not specified, the 
user's current default mailbox is assumed. 

EXAMPLES: The following lines from an exec com segment print the 
mail at the user's terminal and then dprint the mail on a line 
printer. 

&if [not [have mail]] &then &goto skip_mail 
answer no print mail 
do "file output-&1; answer yes print mail; revert_output; 

dp =he &1 -dl &1" [date].[time]-:-mail 
&label skip_mail 

3-295 AG92-03 



help help 

SYNTAX AS A COMMAND: 

help {info_names} {-control_args} 

FUNCTION: prints information, in the form of online 
documentation called info segments, including descriptions of 
system commands, active functions, and subroutines, 
miscellaneous information about system status, system changes, 
and general information. In addition, each site or user can 
construct info segments to be printe~ by this command. 

ARGUMENTS: 

info names 
are the pathnames or entrynames of infos to be printed. 
Pathnames contain greater-than (» or less-than «) 
characters, or follow a -pathname control argument (described 
below). If a pathname is specified, it identifies the segment 
containing the info to be printed. Otherwise, help searches 
for segments matching an entryname using the "info_segments" 
search list. For subroutines, an entry point name can be 
included in the info name (e.g., subroutine $entty point). A 
suffix of info is assumed. The star conventTon is allowed for 
info names, except when an entry point name is specified or 
when- the -entry point control argument (described below) is 
used. (See "Notes" below for information about the use of the 
star convention with the help command.) 

CONTROL ARGUMENTS: 

-pathname path, -pn path 
specifies the pathname of a segment containing the info to be 
printed. It is useful when the info to be printed is in the 
working directory, or when the pathname begins with a minus 
(-) character. For subroutines, an entry point name can be 
included with the final entryname of path (e.g., -pn 
)udd)Proj)Pers)info)get 8ubr$entry value). A suffix of info 
is assumed. The star-convention- is allowed except when an 
entry point name or -entry point control argument is used. 
(See "Notes" below for information about the use of the star 
convention with the help command.) 

LIST OF CONTROL AHGUMENTS BY FUNCTION: The control arguments are 
arranged here according to the function they perform. The 
categories and their respective control arguments are listed 

3-296 AG92-03 



help help 

below (detailed descriptions follow the list, in the same 
order) : 

info selection 

-pathname path, -pn path 
selects an info segment 

-entry point, -ep 
selects main subroutine info entry point 

information selection 
-header', -he 

prints only a heading line 
-brief header, -bfhe 

prints brief heading with info 
-title 

prints section titles 
-brief, -bf 

prints summary of command, active function, or subroutine info 
-control arg STRs, -ca STRs 

prints only de'scription of an argument 
-all, -a 

prints entire info without questions 

starting paragraph 

-section STRs, -scn STRs 
selects by section title 

-search STRs, -srh STRs selects by words in paragraph 

paragraph grouping 
-minlines ! 

sets minimum paragraph size 
-maxlines J 

sets maximum paragraph grouping size 

LIST OF QUERY RESPONSES: The user can reply to questions asked 
by the help command with any of the responses described in 
detail under "Responses to Questions Asked by the help 
Command" below. Possible responses include: 

yes 
13kip 
rest 
brief 

no 

print the next paragraph 
skip the next paragraph 
print remaining paragraphs 
print a.brief summary of command, active function 
or subroutine usage information 
stop printing information 

3-297 AG92-03 



help help 

The question/answer dialogue continues until all of the 
information is printed, or until the user replies "no". 

EXAMPLES: When the help command is invoked without any 
arguments, it prints information describing how to use the 
help command. Other topics are requested by means of 
info name arguments. For example, to print information about 
the list command, type: 

help list 

The help command begins by printing a heading which identifies 
the information being printed. It then prints the first 
paragraph of information. Then help asks if the user wants 
more help, using a question of the form: 

XXX (7 lines). More help? 

where XXX is the title of the next section of information, or 

8 more lines. More help? 

if the next paragraph contains more information from the 
current section. 

The help command accepts several control arguments which 
select information to be printed. For example, 

help fortran -brief 

briefly describes how to use the fortran command without 
asking the user any questions. 

help fortran*.** -header 

prints the names of info segments whose names begin with 
"fortran". These info segments contain information about 
Multics FORTRAN. 

help acl_matching.gi -all 

prints information 
matched with the 
such as set/acl. 
any questions. 

about how Access Control List entries are 
User ids given in access control commands 
The ~ntire info is printed without asking 

The complete list of control arguments 

3-298 AG92-03 



help help 

accepted by the help command is described below under "Info 
Selection", "Information Selection", "Starting Paragraph", and 
"Paragraph Grouping". 

Contents of Info Segments 

The information printed by help is stored in formatted 
segments called info segments. Each segment contains one or 
more blocks of information, called infos, which describe a 
particular command active function, subroutine, or topic. 

An info begins with a heading line, consisting of a date on 
which the info was last modified and a brief title identifying 
the info. For command and active function infos, the program 
name (including any short name) is used as the title. For 
example: 

04/10/77 list, Is 

For subroutine infos, the subroutine name is used as the 
title. 

Information in an info is divided into paragraphs. A 
paragraph is a group of information lines. The paragraphs in 
an info are separated from one another by two blank lines. 
The help command uses this separation to determine where one 
paragraph ends and the next begins. 

Each paragraph contains a logically complete unit of 
information. Control arguments and responses are available to 
search for and print a particular paragraph. To avoid 
printing unnecessary information when such searches are 
performed, paragraphs are short (1 to 15 lines long) and deal 
with only a single subject. 

The paragraphs describing a given topic are grouped together 
into'a section. The first paragraph of each section begins 
with a title that names the topic described in that section. 
Section titles are short, usually consisting of one or two 
words followed by a colon '(:). 

Standard 
with the 

section titles are used 
Multics system so that 

3-299 

in info 
users 

segments provided 
can search for a 

AG92-03 



help help 

particular information topic. For command and active function 
i~fos, the section titles in their standard order are: 

Syntax: 
shows how the !lrogram is invoked. Arguments are given a 
generic name (e.g., paths indicates that one or more 
pathnames are allowed). Optional arguments are shown in 
braces (e.g., {paths}). If the program allows control 
arguments, they are shown as -control args in the syntax 
line. -

Function: 
gives a brief description of what the program does. 

Arguments: 
gives a brief description of each ~rgument. 

Control arguments: 
gives a brief description of each control argument. 

Notes: 
gives comments, 
information. 

clarifications, or any special case 

Examples: 
gives sample invocations of the program. 

The descriptions )f arguments and control arguments are 
formatted in a special way so that help can print a list of 
all argument and control argument names, or c~ find and 
print the description of an individual argument Each 
descrj ~"~jl"V} begins with a line naming the argument or 
control a~guroent. This naming line includes the short name 
of a control argument, and names any operands required by a 
control argument. The description continues on subsequent 
lines by defining the meaning and function of ~he argument 
or control argument. Lines following the naming line are 
indented three spaces from the left margin so that help can 
identify the naming lines. A s'ample description for the 
dection control argument of the help command is shown 

below. 

-section STRs, -scn STRs 
begins printing at the section whose title contains all 
strings STRs. By default, printing begins at the top. 

3-300 AG92-03 



help help 

Subroutines are described by a series of information 
blocks (infos), one describing each subroutine entry 
point. The first info describes the general purpose of 
the subroutine as a whole, and can include control 
i~formation and notes common to all entry points. It 
includes the following sections. 

Funtion: 
describes the overall function performed by the subroutine. 
This section is optional. 

Entry points in xxx: 
lists the entry points defined in the subroutine. 

Each entry point info includes a Syntax section, glvlng PL/I 
declare and call statements for the subroutine entry point. 
In addition, information from the first info that is common to 
all entry points is copied by help into each entry point info. 
This allows ~ach entry point info to be a complet~ description 
of that entry point. 

Infos can contain section titles other than those listed 
above. A user can issue the help command with the -title 
control argument, or use the title response from within help, 
to list the section titles used in a particular info. 

INFO SBLECTION 

The following control arguments select the information blocks 
(infos) to be printed. If no control arguments from this 
section are specified, and no info name arguments are 
specified, information about the help command is printed. 

-pathname path, -pn path 
specifies the pathname of a segment containing the info to be 
printed. It is useful when the info to be printed is in the 
working directory, or when the pathname begins with a minus 
(-) character. For subroutines, an entry point name can be 
included with the final entryname of path (e.g., 
-pn >udd>Project id>Person id>info>get subr$entry value). A 
suffix of info-is assumed if one is not given. The star 
convention is allowed except when an entry point name or 
-entry point control argument is used. (See "Notes" below for 
information about the use of the star convention with the help 
command.) 

3-301 AG92-03 



help help 

-entry point, -ep 
selects the info describing the main entry point of a 
subroutine. For example, 

help ioa -ep 

prints the info describing the ioa $ioa subroutine entry 
point. When the -entry point control-argument is omitted and 
no entry point name is specified by an info name identifying a 
subroutine info segment, help prints the Tnfo describing the 
general purpose of the subroutine. For example, 

help ioa 

prints the info describing the general purpose of all ioa 
entry points. 

Two other control arguments, -section and -search, further 
select the infos to be printed. The major purpose of these 
control arguments is to select the paragraph to be printed 
first. However, when searching an info selected by info names 
and the -pathname and -entry point control arguments,-if no 
paragraph matching the -section or -search criteria is found, 
that info is passed over without comment. Thus -section and 
-search serve as a secondary info selection mechanism. Refer 
to "Starting Paragraph" below for a description of the 
-section and -search control arguments. Refer to "Notes" 
below for a complete description of this selection mechanism~ 

INFORMATION SELECTION 

The following control arguments select the kind of information 
that help prints. If no information selection control 
argument is specified, help prints a long info heading line, 
followed by the first paragraph in the info. At the end of 
each paragraph, help asks the user if "More help" is needed. 

-header, -he 
prints only a long heading line, including: pathname of the 
info, info heading, and line count. No other information is 
printed. This control argument conflicts with all other 
information selection control arguments. 

-brief header, -bfhe 
shortens the long heading line that is printed by default. 
Instead, help prints a brief heading line, followed by 
information selected by the other information selection 
control arguments or by the first paragraph if no other 

3-302 AG92-03 



help help 

information selection control arguments are specified. A 
brief heading line includes: info heading, and line count. 

-title 
lists the section titles used in the info (including section 
line counts), then asks if the user wishes to see the first 
section. 

-brief, -bf 
prints a brief summary of a command, active function or 
subroutine info segment without asking questions. The summary 
includes the Syntax section, and (for commands and active 
functions) a list of control arguments. This control argument 
conflicts with -title and -all. 

-control arg STRs, -ca STRs 
prints only the descriptions of the control (or other) 
,arguments whose names contain one of the strings STRs. STRs 
must not include a leading minus sign (-). For example, 

help mail -ca brief match exclude 

prints descriptions of the -brief, -match and -exclude control 
arguments of the mail command. All arguments following -ca 
until the next control argument are treated as STRs. The help 
command prints no other information besides the argument 
descriptions and asks no questions of the user. This control 
argument conflicts with -title and -all. 

Often, a control argument name following -ca is typed 
erroneously with a leading minus sign. Because this error 
occurs frequently, help ignores the minus sign on the first 
argument following -ca. However, subsequent arguments 
following -ca having leading minus signs are treated as 
control arguments for the help command, rather than as 
operands for -ca. For example, help treats: 

help mail -ca -brief 

as if the user had typed: 

help mail -ca brief 

and gives a description of the -brief control argument of the 
mail command. However, help reports an error for the command: 

help mail -ca -brief -match -exclude 

because -match and -exclude are not valid control arguments to 
the help command. Note that, if the command: 

3-303 AG92-03 



help help 

help mail -ca -header -brief 

is typed, help does not report an error. The -brief causes 
help to print a summary of the mail command. The -ca -header 
then prints a description of mail's -header control argument. 

These cases point out that the best procedure is to omit 
leading minus signs from the operands of -ca. 

-all, -a 
prints the entire info or subroutine entry point description 
without asking the user questions. 

STARTING PARAGRAPH 

Normally, help begins printing the first paragraph in the 
info. The control arguments below can select a particular 
section and/or a particular paragraph at which printing is to 
start. 

-section STRs, -scn STRs 
begins printing the section whose title contains t4e strings 
STRs. The entire section title is not required. Instead, the 
first section whose title contains all of the strings STRs is 
selected. The strings can appear in the section title in any 
order. The strings can be typed in lowercase, since case is 
ignored during matching operations. All arguments following 
the -section control argument until the next control argument 
are treated as STRs. 

-search STRs, -arh STRs 
begins printing with the first paragraph containing the 
strings STRs. All of the strings must appear in the selected 
paragraph, but they can appear in any order. The strings can 
be typed in lowercase, since case is ignored when matching. 
All arguments following the -search control argument are 
treated as STRs, so -search must be the last control argument 
to the help command. The search usually begins with the first 
paragraph, but when -section is also specified it begins with 
the matching section and continues to the last paragraph 
(i.e., without wraparound). 

When -section or -search control arguments are specified and 
no matching paragraph is found in one of the infos selected by 
an info name or info selection control argument, that info is 
passed over without comment. Thus, the starting paragraph 
control arguments serve as a secondary info selection 
mechanism. 

3-304 AG92-03 



hel~ help 

The starting paragraph control arguments can be used with any 
of the information selection control arguments listed above, 
but its effect differs depending upon which of them are used. 
When' -section or -search is used with -header, only the 
heading lines for infos containing a matching paragraph are 
listed. The matching paragraph itself is not printed. When 
they are used with -brief or -control arg, help prints a 
heading line and then the information selected by -brief or 
-control_arg. The matching paragraph is not printed. 

When -section or -search is used with -no header, a brief 
heading line is printed preceding the matching paragraph. 
When used with -title, help prints a heading line, then the 
list of section titles, and finally the matching paragraph. 
When used with -all, the entire info is printed for infos 
containing a matching paragraph. 

PARAGRAPH GROUPING 

The following control arguments determine how much information 
help prints before asking if the user wants to see more. 

-minlines I 
sets the mlnlmum paragraph size to I lines. Paragraphs 
smaller than this size are printed with preceding paragraphs. 
The default is 4. 

-maxlines J 
sets the maximum paragraph grouping size to J lines. When 
paragraphs are grouped together, the number of grouped lines 
cannot exceed this size. The default is 15. 

The -minlines I control specifies the length in lines of the 
smallest paragraph that help treats as a distinct unit. 
Paragraphs shorter than I lines are printed as part of the 
preceding paragraph. 

The ~maxlines J control limits the number of short paragraphs 
(those shorter than I lines) that are grouped together. No 
more than J lines of information are printed before asking if 
the user wants more help. 

For example, consider an info divided into paragraphs as 
follows: 

3-305 AG92-03 



help help 

Paragraph 1 (8 lines) 
(2 blank lines) 

Paragraph 2 (3 lines) 
(2 blank lines) 

Paragraph 3 (4 lines) 

With -minlines 4 and -maxlines 15, help treats paragraph 2 as 
a short paragraph and prints it with paragraph 1 (total lines 
= 13). However, paragraph 3 is 4 lines long, and is treated 
as a distinct paragraph. 

With -minlines 5 and -maxlines 10, help prints paragraph 1 
separately, since grouping short paragraph 2 with paragraph 1 
prints 13 lines, exceeding -maxlines. Paragraphs 2 and 3 are 
grouped together (total lines = 9) because paragraph 3 is 
shorter than 5 lines. 

Paragraphs that have been seen are not grouped with unseen 
paragraphs. Similarly, paragraphs at the end of one section 
of info are not grouped with those beginning another section. 
Paragraphs are not grouped when the -section or -search 
control arguments are used to find a particular starting 
paragraph. If the wrong paragraph is found by the search, 
grouping might compound the error by printing more of the 
wrong information. For similar reasons, grouping is 
suppressed when the section and search responses are used. 

Responses to Questions Asked ~ the help Command 

The responses accepted when help questions the user are given 
in the list below. Those responses that search the info or 
list section titles operate from the current paragraph to the 
end of the info. No wraparound feature is employed. However, 
-top or -t can be used with these responses to cause searching 
or listing from the top of the info, rather than from the 
current paragraph. 

The help command remembers which paragraphs the user has seen 
and which have been skipped or not yet reached. It asks the 
user to "Review" paragraphs seen before, but asks if "More 
help" is needed for unseen paragraphs. It stops printing if 
all paragraphs have been seen when the end of info is reached. 
However, if any paragraphs were skipped, help asks if user 
wants to see them. If the response is "yes", the first unseen 
paragraph is printed. The user can then answer "skip -seen" 
to view subsequent unseen paragraphs. 

3-306 AG92-03 



help help 

The responses to all questions asked by the help command can 
be chosen from the following: 

yes, y 
prints the next paragraph of information, then asks whether 
the user wants more help. 

no, n 
exits from the current info, and begins printing the next info 
selected by info names given in the help command. Returns 
from the help command if all selected infos have been printed. 

quit, q 
causes the help command to return without printing the 
remaining infos selected by the info names. 

rest {-scn}, r {-scn} 
prints the· rest of the info without intervening questions. If 
-section or -scn control arguments are specified, help prints 
only the rest of the current section without questions. When 
the section has been printed, help then asks whether the user 
wants to see the next section. 

top, t 
skips to the beginning of the info, prints the heading line, 
and asks whether the user wants to see the first section. 

title {-top} 
lists titles and line counts 
current info. If -top or 
section titles. 

of all sections remalnlng in the 
-t is specified, help lists all 

section {STRs} {-top}, scn {STRs} I-top} 
skips to the next section whose title contains all strings 
STRs. Title matching is performed as described above for the 
-section control argument. If -top or -t is specified, title 
searching starts at the beginning of the info. If STRs are 
omitted, help uses the search strings from the previous 
section response or -section control argument. If the search 
fails, help prints the message: 

No matching section found. 

and repeats the previous question. 

search {STRs} {-top}, srh ISTRs} {-top} 
skips to the next paragraph containing all 
Paragraph selection is performed as described 
-search control argument. If -top or -t 

3-307 

strings STRs. 
above for the 

is specified, 

AG92-03 



help help 

searching starts at the beginning of the info. If STRs are 
omitted, help uses the strings from the previous sear0h 
response or -search control argument. If the search faile, 
help prints the message: 

No matching paragraph found. 

and repeats the previous question. 

skip I-scnl I-restl j-seenl I-epl 
s -scn -rest -seen -ep' 

skips the next paragraph and asks whether the user wants to 
see the paragraph following it. If -section or -scn is 
specified, help skips all paragraphs of the current section. 
If -rest or -r, -entry point or -ep are specified, help skips 
the rest of this info-or subroutine entry point description, 
continuing with the next. If -seen is specified, help skips 
to the next paragraph that the user has not seen. Only one of 
these control arguments can be used at a time. 

brief, bf 
prints a summary of a command, active function or subroutine 
info, including Syntax section and a list of control 
arguments, then repeats the previous question. 

control arg STRs, ca STRs 
prints descriptions of 
names contain one of 
previous question. 

control (or 
the strings 

other) arguments whose 
STRs, then repeats the 

entry point {EP NAME}, ep {EP NAME} 
skips to the description of subroutine entry point EP_NAME. 
The EP NAME can be specified as entry point name or 

? 

subroutine_$entry_point_name. For example, - -

ep rsnnl 

when in the info segment describing the ioa subroutine, skips 
to the description of the ioa $rsnnl entry-point. If EP NAME 
is omitted, help skips -to the description of- the 
subroutine $subroutine entry pOint. 

prints a list of available responses. 

prints "help" to identify the current interactive environment. 

3-308 AG92-03 



help help 

command line 
passes the remainder of the· response to the Multics command 
processor as a command line. 

header, he 
prints a long heading line to identify the current info. The 
line includes: pathname of the info, info heading, and line 
count. 

Search List 

The help command uses the "info segments" search list, which 
has synonyms of "info segs" and-uinfo". :F'or more information 
about search lists,- see the descriptions of the search 
facility commands and, in particular, the add_search_paths 
command description in this manual. Type: 

psp info_segments 

to see what the current "info_segments" search list is. The 
default sear9h list is: 

>doc>iml info 
>doc>info 

NOTES: When the star convention is used, the help command 
performs the following steps: 

1 . The info segments whose entrynames 
names are alphabetized within their 
in that order. 

match any of the star 
directory and scanned 

2. When -section and -search control arguments are specified, 
help scans the matching infos until the desired section 
andlor paragraph is found. If a matching paragraph is 
found, help prints it. Then help asks the user whether to 
print remaining paragraphs. Note that any section and 
search responses given at this point scan only the current 
info. If a matching paragraph is not found in one of the 
infos selected by a star name, that info is passed over 
without comment. Thus, it is possible to scan all info 
segments and print only those containing certain section 
titles or certain words. 

3. When -section and -search control' arguments are not 
specified, help begins printing the first paragraph of each 

3-309 AG92-03 



hel: help 

info that matches any of the starnames. Then help asks the 
user whether to print the remaining paragraphs. 

4. The -title, -all, -brief and -control arg control arguments 
apply to each info selected by- the starnames and 
-section/-search string matching. Section titles, a brief 
summary or particular control argument descriptions are 
printed before the matching paragraph. When -all is 
combined with -section or -search, the entire info selected 
by the string matching is printed without questions. 

5. The yes, no, rest, and skip responses operate on the next 
selected paragraph. This paragraph can be the first 
paragraph of the next selected info, or even the first 
paragraph that matches the -section and -search criteria in 
the next selected info. 

6. If the user 
command can 
environment. 

issues a quit signal, the program interrupt 
be used to reenter the interaciive help 
The question asked previously is repeated. 

Info Naming Conventions 

Infos for Multics commands, active functions and subroutines 
are given the name of the particular system module with a 
suffix of info. For example, the info describing the pl1 
compiler command is called pI1.info. 

Information about changes made to a command or active function 
from one release to the next are given the name of the 
particular system module with a suffix of changes. info. For 
example, changes to the fortran compiler are described in 
fortran.changes.info. 

General information describing features or use of the system 
is included in infos whose names end with a suffix of gi.info 
(gi for general information). For example, 
acl matching.gi.info describes how Access Control List entries 
are-matched with User ids in access control commands such as 
set acl. 

More than 500 infos are available. To find information about 
a particular area of the system, use list help, described in 
this manual, or the -header control argument with an entryname 
containing stars to list the names of available infos. For 

3-310 AG92-03 



help help 

example, to list info names related to the FORTRAN compiler, 
the user can type: 

help fortran*.** -he 

To get a list of all general information segments, type: 

help *.gi -he 

Info Segment Format 

Users can create info segments describing their own commands, 
exec coms and application programs. Info segments must be 
formatted ina special way so that the help command can parse 
them into paragraphs. For information about this format, 
type: 

help info_seg.gi 

Examples 

In the examples given below, the lines typed by the user are 
indicated by an exclamation point at the beginning of the line 
or immediately preceding a request. In the first example, the 
user wants to see list. info. 

help list . 
(6 lines follow; 131 lines in info) 
04/10/77 list, Is 

Syntax: Is {entrynames} {-control_args} 

Arguments (9 lines). More help? ! yes 

Arguments: 

entrynames 
are the names of entries to be listed. The star 
convention can be used. If no entrynames are specified, 
all entries in the directory (of the default types or 
the types specified by control arguments) are listed. A 
pathname can be specified instead of an entryname, 
causing the entries specified by its entryname portion 
to be listed, in the directory specified by its 
directory portion. It is an error to specify more than 
one directory to be listed in a single invocation of the 
list command. 

3-311 AG92-03 



help help 

Control arguments (5 lines). More help? no 
r 1459 0.753 744 

In the following example, the user knows what the "Syntax" and 
"Function" sections are but wants to see the control arguments 
section for the list command. Note that the argument for the 
-section control argument can be upper or lower case. 

help list -scn Control 
(7 lines follow; 131 lines in info) 
04/10/77 list, Is 

Control arguments: described below according to their 
functions. 
DIRECTORY 
-pathname path, -pn path 

list entries in the directory named path. Note the 
restriction described above under Arguments. 

15 more lines. More help? ! yes 

ENTRY TYPE 
-segment, -sm 

list segments. 
-multisegment file, -msf 

list multisegment files. 
-file, -f 

list files (segments and multisegment files). 
-directory, -dr 

list directories. 
-branch, -br 

list branches (segments, multisegment files, and 
directories). 

-link, -lk 
list links. 

-all, -a 
list all four entry types. 

12 more lines. More help? no 
r 1500 0.215 264 

In the following example, the user is searching for all the 
list commands that have the word request anywhere in the info. 

help list *.info -srh request 
)doc)info)list abs requests. info (6 lines follow; 56 in 
info) --

3-312 AG92-03 



help help 

07/20/78 list abs requests, lar 
list-daemon requests, ldr 
list=retrieval_requests, lrr 

Syntax: (lar ldr lrr) {reI_path} {-control_args} 

Function & Arguments (9 lines). More help? ! yes 

Function: these commands list requests in the absentee, 
I/O daemon, and retrieval queues, respectively. 

Arguments: 
rel path 

is relative pathname 
end in a starname. 
pathnames. See also 

of request(s) to be listed. It can 
Default is to list requests of all 
the -entry control argument. 

Control arguments (34 lines). More help? no 

>doc>info>list carry requests. info (3 lines follow; 22 in 
info) --
07/12/78 list_carry_requests, lcr 

Syntax: lcr {-control_args} 

r 1732 2.585 647 

If the user wishes to 
with all the entry 
following: 

see the info for the help subroutine 
points described, he would do the 

help help 
>doc>info>help .info 
(3 lines follow, 9 in introduction; 74 lines, 4 entry 

points in info) 
12/11/78 help_ 

Entry points in help_ (4 lines). More help? ! yes 

Entry points in help : 
12/11/78 help $init 
12/11/78 help= (entry 

point), 

12/11/78 
12/11/78 

help $check info_segs 
help=$term 

Entry: 12/11/78 help $init 
(10 lines follow; 16 lines in entry point) More help? 

yes 

3-313 AG92-03 



help 

Syntax: 
declare help $init entry (char(*), char(*), char(*), 

fixed bin~ ptr, fixed bin (35)); 

help 

call help $init (caller, search list name, 
search=list_ref_dir, required_version, Phelp_args, code); 

Notes: The structure pointed to by Phelp_args is declared 
in help_args .incl.pI1. 

Entry points in help_ (4 lines). Review? yes 

Entry points in help : 
12/11/78 help $init 
12/11/78 help= (entry 

point) 

12/11/78 
12/11/78 

Entry: 12/11/78 help (entry point) 

help $check info segs 
help=$term - -

(8 lines follow; 14 lines in entry point). More help? 
no 

r 1644 0.374 567 

If just the help entry point to the help_ subroutine is 
required, type: 

help help -ep 
)doc)info)help .info 
( 1 0 lin e s fall o'w, 1 6 i n en try poi n t ; 
74 lines, 3 other entry points in info) 
12/11/78 help_ (entry point) 

Syntax: 
declare help entry (char(*), ptr, char(*), fixed bin, 

fixed bin(35)); 

call help_ (caller, Phelp_args, suffix, progress, code); 

Notes: The structure pointed to by Phelp args is declared 
in help args .incl.p11, and is obtained to by calling 
help_$inlt. -

Entry points in help (4 lines). More help? no 
r 1642 0.684 920 

To print just a syntax line and a list of control arguments 
for delete_acl, type: 

3-314 AG92-03 



help 

help da -bf 
8yntax: da {path} {User_ids} {-control_args} 

Control arguments: 
--all, -a 

-directory, -dr 
-segment, -sm 

3-315 

-brief, -bf 

help 

AG92-03 



hexadecimal (hex) hexadecimal (hex) 
--- ._-_ .. _--_.-

SYNTAX AS A COMMAND: 

hex values 

SYNTAX AS AN ACTIVE FUNCTION: 

[hex values] 

FUNCTION: returns one or more values in hexadecimal. 

ARGUMENTS: 

value 
is a value to be processed. The last character of the value 
indicates its type. Acceptable types are binary (b), 
quartenary (q), octal (0), hexadecimal (x), or unspecified 
(u). Any valid PL/I real value is allowed.. The absence of 
any specifier means decimal. The specified value is limited 
to 8 characters. 

EXAMPLES: 

string [hex 3770] 
ff 

3-316 AG92-03 



high 

SYNTAX AS AN ACTIVE FUNCTION: 

[high N] 

FUNCTION: returns ,a specified 
(highest) character in the 
character or 177 octal. 

high 

number of copies of the last 
ASCII character set, the PAD 

3-317 AG92 .... 03 



high9 

SYNTAX AS AN ACTIVE FUNCTION: 

[high9 N] 

high9 

FUNCTION: returns a specified number of copies of the last 
(highest) 9-bit bit pattern, 777 octal. 

3-318 AG92-03 



home dir(hd) 

SYNTAX AS A COMMAND: 

hd 

SYNTAX AS AN ACTIVE FUNCTION: 

[hd] 

home dir (hd) 

FUNCTION: returns the pathname of the user's home directory 
(usually of the form >user dir_dir>Project_id>Person_id). 

3-319 AG92-03 



hour 

SYNTAX AS A COMMAND: 

hour {dt} 

SYNTAX AS AN ACTIVE FUNCTION: 

[hour {dt}] 

hour 

FUNCTION: returns the one- or two-digit number of an hour of the 
day, from 0 to 23. 

ARGUMENTS: 

dt 
is a date time in 
convert date to binary. If 
current-hour-is-returned. 

a form 
no argument 

3-320 

acceptable to 
is specified, the 

AG92-03 



SYNTAX AS A COMMAND: 

hmu {-control_args} {optional_args} 

FUNCTION: tells how many. users are currently logged in on the 
system. 

CONTROL ARGUMENTS: 

-long, -lg 
prints additional information including the name of the 
installaiion, the time the system was brought up, the time of 
the next shutdown, if it has been scheduled, and the time of 
the l~st shutdown or crash. Load information on absentee 
users is also printed. 

-absentee, -as 
prints load information on absentee users only, even if the 
absentee facility is not running. 

-brief, -bf 
suppresses the printing of the headers. 
conjunction with one of the optional_args. 

LIST OF OPTIONAL ARGUMENTS: 

Only used in 

specifies that only selected users are to be listed and can be 
one of the following: 

Person id 
liiEs a count of logged in users with the name Person ide 

.Project id 
lists- a count of logged in users with the project name 
Project_ide 

Person id.Project id 
liits a count ~f logged in users with the name and project of 
Person_id and Project_ide 

NOTES: In addition to how many users are currently logged in, 
this command prints the name of the system, the current load 
on the system, and the maximum load. If the absentee facility 
is running, the number of absentee users and the maximum 
number of absentee users is printed also. 

3-321 AG92-03 



-----------~------

If this command is invoked without any arguments, basic 
summary information is printed (see the first example below)~ 

Absentee counts in a selective use of how many users (i.e., 
when an optional_arg is specified) are denoted by an asterisk 
( *) • 

Up to 20 classes of selected users are permitted. 

EXAMPLES: To print summary information, type: 

hmu 
Multics MR8.0, load 15.0/50.0; 15 users, 6 interactive, 

9 daemons. 

To print summary information on absentee users, type: 

hmu -as 
Absentee users 012 

To print the additional information provided by the -long 
control argument, type: 

hmu -IS 
Multics 8.0: peo, Phoenix, Az. 
Load = 13.0 out of 110.0 Units; users = 13, 

4 interactive, 9 daemons. 
Absentee users = 0 background; 
Max background users = 2 
System up since 11/21/79 0908.1 
Last shutdown was at 11/18/79 02304.1 

To print brief information about the SysDaemon project, type: 

hmu -bf .SysDaemon 
.SysDaemon = 3 + 0* 

To print brief information about the user whose Person id is 
Smith, type: 

hmu -bf Smith 
Smith = 1 + 1* 

3-322 AG92-03 



if if 

SYNTAX AS A COMMAND: 

if expression -then cmdline1 {~else cmdline2} 

FUNCTION: provides conditional execution of a command line. 

ARUGMENTS: 

expression 
is true or false. Usually, expression is an active string 
that the command processor evaluates to either true or false. 

cmdline1 
is a command line to be executed if expression is true. If 
the command line contains blanks, it must be enclosed in 
quotes. 

cmdline2 
is an optional command line to be executed if expression is 
false. If the command line contains blanks, it must be 
enclosed in quotes. 

NOTES: If -else cmdline2 is omitted, no action is taken if 
expression is false. If expression is neither true nor false, 
no action is taken. If cmdline1 is not present and expression 
is true, no action is taken. 

EXAMPLES: The following ·abbreviation compares two segments. If 
they are identical, one is deleted; if they are not identical, 
the differences are placed in a file, which is then printed . 

• abc he c k do" i f [ com pa r e & 1 & 2] - the n '''I del e t e & 2 " " - e I s e 
""fo check; cpa &1 &2; ro; dp -dl check""" 

3-323 AG92-03 



immediate_messages (im) immediate_messages (im) 

SYNTAX AS A COMMAND: 

im {destination} {-control_arg} 

FUNCTION: restores the immediate printing of messages sent to 
the user by the send message command and the "You have mail." 
notification sent by-the send mail command. 

ARGUMENTS: 

destination 
is of the form Person id.Project id t~ ~pecify a mailbox. The 
default is the userts default mallbox. If destination 
contains < or >, it is assumed to be the pathname of a 
mailbox. 

CONTROL ARGUMENTS: 

-pathname path, -pn path 
specifies a mailbox by pathname. 
This control argument and the 
mutually exclusive. 

The mbx suffix is assumed. 
destination argument are 

NOTES: This command "cancels" the defer_messages command. 

For a description of the mailbox, refer to the accept_messages 
and print_mail commands. 

3-324 AG92-03 



indent (ind) indent (ind) 

SYNTAX AS A COMMAND: 

ind oldpath {newpath} {-control_args} 

FUNCTION: improves the readability of a PL/I source segment by 
indenting it according to a set of standard conventions 
described below. 

ARGUMENTS: 

oldpath 
is the pathname of the input source segment. Source segments 
with suffixes for PL/I, create data segment, and the 
reduction compiler are recognized. -If the segment does not 
have a recognized suffix, indent attempts to use a segment of 
.pll, name.cds or name.rd, in that order. 

newpath 
is the pathname of the output source segment; The output 
segment must hav~ the same suffix as the input segment. If 
this argument is omitted, newpath is assumed to be the same as 
oldpath, and the indented copy of the program replaces the 
original copy. However, if errors are detected during 
indentation and newpath is not specified, the original copy is 
not replaced. Instead, the pathname . of the temporar y fi Ie 
containing the indented copy is printed in an error message. 

CONTROL ARGUMENTS: 

-brief, -bf 
suppresses warning comments on invalid or non-PL/I characters 
found outside of a string or comment. (Such characters are 
never removed.) When this argument is specified, those errors 
whose warning messages are suppressed do not prevent the 
original copy from beIng replaced. 

-lmargin STR, -1m STR 
sets the left margin (indentation for normal program 
statements) to STH. If this argument is omitted, the default 
left margin is 11. 

-comment STR, -cm STR 
sets the comment column to STR. Comments are lined up in this 
column unless they occur in the beginning of a line or are 
preceded by a blank line. If this argument is omitted, the 
default comment column is 61. 

3-325 AG92-03 



indent (ind) indent (ind) 

-indent STR, -in STR 
sets indentation for each level to STR. Each do, begin, proc, 
and procedure statement causes an additional STR spaces of 
indentation until the matching end statement is encountered. 
If this argument is omitted, the default indentation is 5. 

NOTES ON CONVENTIONS: Declaration statements are indented five 
spaces for dcl declarations and ten for declare declarations. 
Identifiers appearing on different lines of the same declare 
statement are lined up under the first identifier on the first 
line of the statement. Structure declarations are indented 
according to level number; after level two, each additional 
level is indented two additional spaces. 

An additional level of indentation is also provided for the 
then clause of an if-statement; else clauses are lined up with 
the corresponding if. Statements that continue over more than 
one line have an addition~l five spaces of indentation for the 
second and all succeeding lines. 

Multiple spaces are replaced by a single space, except inside 
of strings or for nonleading spaces and tabs in comments. 
Trailing spaces and tabs are removed from all lines. The 
indent command inserts spaces before left parentheses, after 
commas, and around the constructs =, _>, <=, >=, and A=. 
Spaces are deleted if they are found after a left parenthesis 
or before a right parenthesis. Tabs are used wherever 
possible to conserve storage in the output segment. 

The indent command counts parentheses and expects them to 
balance at every semicolon. If parentheses do not balance at 
a semicolon, or if the input segment ends in a string or 
comment, indent prints a warning message. Language keywords 
(do, begin, end, etc.) are recognized only at parenthesis 
level zero, and most keywords are recognized only if they 
appear to begin a statement. 

NOTES ON RESTRICTIONS: Lines longer than 350 characters are 
split, since they overflow indent's buffer size. This is the 
only case in which indent splits a line. 

Labelled end statements do 
statements. 

3-326 

not close multiple open do 

AG92-D3 



indent (ind) indent (ind) 

The indent command assumes that the identifiers begin, end, 
procedure, proc, declare, and dcl are reserved words when they 
appear at the beginning of a statement. If the input contains 
a statement like: 

do = do + 1; 

the indent command interprets it to mean that the statement 
delimits a do group and does not indent correctly. 

Structure level numbers greater than 99 do not indent 
correctly. 

3-327 AG92-03 



index index 

SYNTAX AS A COMMAND: 

index strA strB 

SYNTAX AS AN ACTIVE FUNCTION: 

[index strA strB] 

FUNCTION: returns an integer representing the character position 
in strA where strB begins. If strB does not occur in strA, 0 
is returned. 

EXAMPLES: 

string [index abcdefhgij ef] 
5 
string [index "Now is the time" hte] 
o 

3-328 AG92-03 



index set index set 

SYNTAX AS A COMMAND: 

index set {F1} 81 {I1} •.. {Fn} Bn {In} 

SYNTAX AS AN ACTIVE.FUNCTION: 

[index_set {F1} B1 {I1} .•• {Fn} Bn {In}] 

FUNCTION: returns one or more integers, separated from each 
other by spaces. 

ARGUMENTS: 

F 

B 

I 

is the first number of a set, either a positive or negative 
integer. This argument is optional (see "Examples"). 

is a bound on the set, either a positive or negative integer. 

is the increment between the numbers of a set, either a 
positive or negative integer. If F > B, then I is assumed to 
be a negative integer. Otherwise, I is assumed to be 
positive. This argument is optional (see "Examples"). 

NOTES: If more than one F-B-I triple is specified, F, B, and I 
must be specified in each triple. If only one F-B-I triple is 
specified, I or both I and F can be omitted. I and Fare 
assumed to be 1 if omitted. 

EXAMPLES: The following interactions illustrate the index set 
active function: 

string [index set 6] 
123 4 56-
string [index set 5 21 3] 
5 8 11 14 11 20 
create file_([picture 99 [index set 5 21 3]]) 

3-329 AG92-03 



index set index set 

list file * 
Segments = 6, Lengths = o. 
r w 0 file 20 -r w 0 file 11 -r w 0 file 14 
r w 0 fi le-11 
r w 0 file-OB 
r w 0 file 05 -

The following interactions illustrate command usage: 

index set 4 20 5 
4 9 14' 19 
index set 4 20 5 B 30 6 
4 9 1q 19 8 14 20 26 
index set 5 
1 2 3-4 5 
index set 5 2 
5 4 3-2 

3-330 AG92-03 



initiate (in) initiate (in) 
----,------

SYNTAX AS A COMMAND: 

FUNCTION: enables users to make segments known directly, i.e., not 
using the normal search rules. 

ARGUMENTS: 

path 
is the pathname of a segment to be made known. A relati ve pathname 
can be used. The star convention is NOT allowed. 

ref names 
~re optional reference names by which the segmen~ can be known 
without further initiating. See "Notes" below. 

CONTROL ARGUMENTS: 

-all, -a 
ini tiates all the names on the segment in addi tion to any ref names 
specified. -

-chase I 
used in conjunction with -all, uses the names on a link's target 
rather than those on the link. This is the default. 

-force, -fc 
terminates specified ref names, or the names of the segments if 
no ref names are specified, first if they are already 
ini.tiated. 

-long, -lg 
prints the segment number assigned to the segment on the user's 
terminal. 

-no chase I 
used in conjunction wi th -all, uses the names on a link rather than 
those on the link's target. 

NOTES: For a discussion of search rules, see "Search Rules" in the 
MPM Reference Guide. When this command is used to explici tly make 
known a segment by some reference name, the first reference to 
that name accesses the initiated segment instead of searching 
among the search directories for a segment by that name. 

3-331 AG92-03 



initiate (in) initiate (in) 

If np ref names are specified in the command line, the segment 
is made known by the entryname part of the pathname. If any 
reference name is present in the command line, the entryname 
of the segment is not initiated; the specified reference names 
are. If the pathname is a single element name, the directory 
assumed is the working directory. The star convention is not 
supported. 

If a reference name cannot be initiated, an error message is 
printed and the command continues initiating the other names. 

To make a segment known, the user must have nonnull access to 
that segment. 

EXAMPLES: The command line: 

in )udd)Oemo)Jones)gamma x y 

makes the segment )udd)Oemo)Jones)gamma known, initiating the 
names x and y. 

The command line: 

in pop 

makes the segment pop in the working directory known, and 
initiates it with the reference name pop. 

The command line: 

in xx u v -long 

makes the segment xx in the working directory known, initiates 
the reference names u and v, and prints out the assigned 
segment number. 

3-332 AG92-03 



io call (io) io call (io) 

SYNTAX AS A COMMAND: 

io opname switchname {args} 

SYNTAX AS AN ACTIVE FUNCTION: 

[io opname sWitch_name {args}] 

FUNCTION: performs a variety of operations on specified I/O 
switches and returns a result. 

ARGUMENTS: 

opname 
designates the operation to be performed. Opnames permitted, 
followed by their alternate forms where applicable, are: 

attach 
close 
control 
delete record, delete 
detach-iocb, detach 
destroy iocb 
find iocb 
get chars 

"get-line 
look iocb 
modes 

move attach 
open 
position 
print iocb 
put chars 
reaa key 
read-length 
read-record, read 
rewrIte record, rewrite 
seek key 
write_record, write 

Allowed by the io call active function only: 

attached 
attach desc 
closed
detached 
io module 

opened 
open desc 
test-mode 
valia mode 
valid:op 

See "List of operations" below for a description of each 
opname, its command syntax line, and specific application. 
Operations are arranged functionally rather than 
alphabetically. 

switchname 
is the name of the I/O switch. 

3-333 AG92-03 



io call (io) io call (io) 

args 
can be one or more arguments, depending on the particular 
operation to be performed. 

LIST OF OPERATIONS: Unless otherwise specified, if a control 
block for the I/O switch does not already exist, an error 
message is printed on error output and the operation is not 
performed. If the requested operation is not supported for 
the switch's attachment and/or opening, an error message is 
printed on error_output. 

Differences between command ,and active function invocation are 
described under the individual operations. 

The explanations of the operations cover only the main points 
of interest and, in general, treat only the cases where the 
I/O switch is attached to a file or device. For full details 
see the descriptions of the iox subroutine and the I/O 
modules in the MPM Subroutines "Input and Output Facilities," 
in the MPM Reference Guide. 

Operation: attach 

Syntax: io attach switchname modulename {args} 

where: 

modulename 
is the name of the I/O module to be used in the attachment. 
If modulename contains less-than «) or greater-than (» 
characters, it is assumed to be a pathname, otherwise, it is a 
reference name. 

args 
can be one or more arguments, depending on what is permitted 
by the particular I/O module. 

Function: attaches the I/O switch using the designated I/O 
module. The attach description is the concatenation of 
modulename and args separated by blanks. The attach 
description must conform to the requirements of the I/O 
module. If the I/O modulename is specified by a pathname, it 
is initiated with a reference name equal to the entryname. If 
the entryname or reference name does not contain a dollar sign 

3-334 AG92-03 



io call (io) 

($), the attachment 
modulename$modulenameattach. 
the entry point specified is 
in the MPM Reference Guide. 

io call (io) 

is made by calling 
If a dollar sign is specified, 
called. See "Entry Point Names" 

If a control block for the 
one is created. 

1/0 switch does not already exist, 

Operation: detach_iocb, detach 

Syntax: io detach switchname 

Function: detaches the 1/0 switch. 

2.£eration: open 

Syntax: io open switchname mode 

where mode is one of the following opening modes, which can be 
specified by either its full name or its abbreviation: 

stream_input, si 
stream output, so 
stream-input output, sio 
sequential i~put, sqi 
sequential-output, sqo 
sequential-input output, 

sqio - -

sequential update, squ 
keyed sequential input, ksqi 
keyed-sequential-output, ksqo 
keyed-sequential-update, ksqu 
direct input, di
direct-output, do 
direct-update, du 

Function: 
mode. 

opens the 1/0 switch with the specified opening 

Q.E.eration: close 

Syntax: io close switchname 

Function: closes the 1/0 switch. 

Operation: get_line 

Syntax: io get_line switchname {N} {-control args} 

3-335 AG92-03 



io call Cio) io call Cio) 

N 

where: 

is a decimal number greater than zero specifying the maximum 
number of character~ to be read. 

control args 
can be any of the following: 

-segment path {offset}, -sm path {offset} 
specifies that the line read from the 1/0 switch is to be 
stored in the segment specified by path, at the character 
position specified by offset. The default offset is the 
position after the latest line read, or 1. 

-nnl 

-nl 

specifies that the newline character, if present, is deleted 
from the end of the line. 

specifies that a newline character is added to the end of the 
line if one is not present. 

-lines 
specifies that the offset, if specified, is measured in lines 
rather than characters. This control argument only has 
meaning if the -segment control argument is also specified. 

Function: reads the next line from the file or device to 
which the 1/0 switch is attached. If N is given, and the line 
is longer than N, then only the first N characters are read. 

If the -segment control argument is not specified, the line 
read is written onto the 1/0 switch user output, with a 
newline character appended if one is not present and if -nnl 
has not been specified. 

If the -segment control argument is specified, the line is 
stored in the segment specified by path. If this segment does 
not exist, it is created. If offset is specified, the line is 
stored at that position relative to the start of the segment. 
This is normally measured in characters, unless -lines has 
been used. If ~ffset is omitted, the line is appended to the 
end of the segment. The bit count of the segment is always 
updated to a point beyond the newly added data. 

3-336 AG92-03 



io call (io) io call (io) 

Syntax: [io get_line switchname {N} {-control_args}] 

Function: returns the data read as a quoted string. A 
trailing newline character is deleted. The same control 
arguments are accepted as for the command, with the addition 
of -no quote (-nq) to return the data unquoted. If the 
maximum-number of characters N is not specified, the maximum 
segment size is assumed. 

Operation: get_chars 

N 

Syntax~ io get_chars switchname N {-control_args} 

where: 

is a decimal number greater than zero specifying the number of 
characters to read. 

control args 
can -be selected from the same list as described under the 
get_line operation. 

Function: reads the next N characters from the file or device 
to which the 1/0 switch is attached. The disposition of the 
characters read is the same as described under the get line 
operation; that is, they are written upon user output if the 
-segment control argument is not specified, or stored in a 
segment if the -segment control argument is specified. 

Syntax: [io get_chars switchname {N} {-control_args}] 

Function: returns the data read as a quoted string. A 
trailing newline character is deleted. The same control 
arguments are accepted as for the command, with the addition 
of -no quote (-nq) to return the data unquoted. If the 
maximum-number of characters N is not specified, the maximum 
segment size is assumed. 

QEeration: put_chars 

Syntax: io put_chars switchname {string} {-control_args} 

3-331 AG92-03 



io call (io) 10 call (io) 

where: 

string 
can be any character string. 

control args 
can be any of the following: 

-segment path {length}, -segment path {offset} {length}, 
-sm path {length}, -sm path {offset} {length} 

specifies that the data for . the output operation is to be 
found in the segment specified by pathname. The location and 
length of the data can optionally be described with offset and 
length parameters. 

-nnl 

-nl 

specifies that a newline character is not to be appended to 
the end of the output string. 

specifies that a newline character is to be appended to the 
end of the output line if one is not present. 

-lines 
specifies that offsets and lengths are measured in lines 
instead of characters. 

The string parameter and the -segment control argument are 
mutually exclusive. If a string is specified, the contents of 
the string are output to the liD switch. If the -segment 
control argument is specified, the data is taken from the 
segment specified by path, at the offset and length given. If 
offset i·s omitted, the beginning of the segment is assumed. 
If length is omitted, the entire segment is output. 

If the liD switch is attached to a device, this command 
transmits the characters from the string or the segment to the 
device. If the liD switch is attached to an unstructured 
file, the data is added to the end of the file. The -nl 
control argument is the default on a put chars operation: a 
newline character is added unless one is-already present, or 
the -nnl control argument is specified. 

OQeration: read_record, read 

Syntax: io read record switchname N {-control_args} 

3-338 AG92-03 



N 

io call (io) 

where: 

is a decimal integer greater than zero specifying the size of 
the buffer to use. 

control args 
can -be selected from the same list as described under the 
ge~_line operation. 

Function: reads the next record from the file to which the 
I/O switch is attached into a buffer of length N. If the 
-segment control argument is not specified, the record (or the 
part of it that fits into the buffer) is printed on 
user output. If the -segment control argument is specified, 
the -record is stored in a segment as explained under the 
get_chars operation. 

Syntax: [io read record switchname {N} {-control_args}] 

Function: returns the data read as a quoted string. A 
trailing newline character is deleted. The same control 
arguments are accepted as for the command, with the addition 
of -no quote (-nq) to return the data unquoted. If the 
maximum-number of characters N is not specified, the maximum 
segment size is assumed. 

2£eration: write_record, write 

Syntax: io write record switchname {string} 
{-contr6l_args} 

where: 

string 
is any character string. 

control args 
can -be selected from the same list as described under the 
put_chars operation. 

Function: adds a record to the file to which the I/O switch 
is attached. If the string parameter is specified, the record 

3-339 AG92-03 



io call (io) io call (io) 

is equal to the string. If the -segment control argument is 
specified, the record is extracted from the segment as 
described under the put chars operation. In either case, the 
-nnl control argument ii the default: a newline character is 

. added only if the -nl control argument is specified. If the 
file is a sequential file, the record is added at the end of 
the file. If the file is an indexed file, the recordts key 
must have been defined by a preceding seek_key operation. 

Operation: rewrite_record, rewrite 

Syntax: io rewrite record switchname {string} 
{-control_args} 

where: 

string 
is any character string. 

control args 
can -be selected from the same list as described under the 
put_chars operation. 

Function: replaces the current record in the file to which 
the l/O switch is attached. The new record is either the 
string parameter, or is taken from a segment, as described 
under the write record operation. The current record must 
have been define~ by a preceding read record, seek_key, or 
position operation as follows: -

read record 
current record is the last record read. 

seek key 
current record is record with the designated key. 

position 
current record is the record preceding the record to which the 
file was pOSitioned. 

0Eeration: delete_record, delete 

Syntax: io delete record switchname 

3-340 AG92-03 



-------
io call (io) 

Function: deletes the current record in the file to which the 
I/O switch is attached. The current record is determined as 
in rewrite record above. 

Operation: position 

Syntax: io position switchname type 

where type can be one of the following: 

bof 
sets position to beginning of file. 

eof 
sets position to ~nd of file. 

forward N, fwd N, f N 
sets position forward N records or lines (same as reverse -N). 

reverse N, rev N, r N 
sets position back N records (same as forward -N records). 
any other numeric argument or pair of numeric arguments can be 
spebified, but its function depends on the I/O module being 
used and cannot be implemented for all I/O modules. 

Function: positions the file to which the I/O switch is 
attached. If type is bor, the file is positioned to its 
beginning, so that the next record is the first record 
(structured files), or so that the next byte is the first byte 
(unstructured files). If type is eof, the file is positioned 
to its end; the next record (or next byte) is at the 
end-of-file position. If type is forward or reverse the file 
is positioned forwards or backwards over records (structured 
files) or lines (unstructured files). The number of records 
or lines skipped is determined by the absolute value of N. 

In the case of unstructured files, the next byte position 
after the operation is at a byte immediately following a 
newline character (or at the first byte in the file or at the 
end of the file); and the number of newline characters moved 
over is the absolute value of N. 

If the'I/O switch is attached to a device, only forward skips 
(where type is forward) are allowed. The effect is to discard 
the next N lines input from the device. 

3-341 AG92-03 



io call (io) io call (io) 

Syntax: [io position switchname type] 

Function: attempts the specified position operation and 
returns true if it succeeds, false otherwise. 

Operation: seek_key 

Syntax: io seek_key switchname key 

where key is a 
o ~ length < 256. 

string of ASCII characters with 

Function: positions the indexed file to which the I/O switch 
is attached to the record with the given key. The record's 
length is printed on user_output. Trailing blanks in the key 
are ignored. 

If the file does not contain a record with the specified key, 
it becomes the key for insertion. A following write record 
operation adds a record with this key. 

Syntax: [10 seek_key switchname key] 

Function: returns true if the key exists, false otherwise. 

Operation: read_key 

Syntax: io read_key switchname 

Function: prints, on user output, the key and record length 
of the next record in the i~dexed file to which the 1/0 switch 
is attached. The file's position is not changed. 

Syntax: [io read_key switchname {-control_arg}] 

3-342 AG92-03 



io call (io) io call (io) 
--_._----

Function: returns the value of the key, quoted unless 
-no_quote (-nq) is specified. 

QEeration: read length 

Syntax: io read_length switchname 

Function: 
record in 
attached. 

prints, on user output, the length of 
the structured Tile to which the lID 

The file's position is not changed~ 

Syntax: [io read_length switchname] 

the next 
switch is 

Function: returns the length of the next record, in bytes. 

Operation: control 

Syntax: io control switchname order {args} 

where: 

order 
is one of the orders accepted by the lID module used in the 
attachment of the 1/0 switch. 

args 
are additional arguments dependent upon the order being issued 
and the lID module being used. 

Function: applies only when the 1/0 switch is attached via an 
1/0 module that supports the control lID operation. The exact 
format of the command line depends on the order being issued 
and the 1/0 module being used. For more details, refer to 
"Control Operations from Command Level" in the appropriate 1/0 
module in the MPM Subroutines. If the 1/0 module supports the 
control operation and the paragraph just referenced does not 
appear, it can be assumed that only control orders that do not 
require an info structure can be performed with the io 
command. This Is true because the io call commandlactive 
function uses a null info ptr. (See the-description of the 
iox $control entry point and the lID module's control 
ope~ation, both in the MPM Subroutines.) 

3-343 AG92-03 



io call (io) 10 call (io) 

Syntax: [io control switchname order {args}] 

Function: returns a value that depends on the lID module and 
the order specified. 

~eration: modes 

Syntax: io modes switchname {string} {-control_arg} 

where: 

string 
is a sequence of modes separated by commas. 
not contain blanks. 

control arg 
can De -brief or -bf. 

The string must 

Function: applies only when the 1/0 switch is attached via an 
llO module that supports modes. The command sets only new 
modes specified in string, and then prints the old modes on 
user output. Printing of the old modes is suppressed if the 
-brief control argument is used. 

If the switch name is user ilo, the command refers to the 
modes controlling the user'i terminal. See the· lID module 
tty subroutine description in the MPM Subroutines for an 
expIanation of applicable modes. 

Syntax: [io modes switchname {string}] 

Function: performs the specified modes operation and returns 
the old modes. 

Operation: find iocb 

Syntax: io find iocb switchname 

3-344 AG92-03 



io call (io) io call (io) 

Funetion: prints, on user output, the location of the control 
bloek for the I/O switch.- If it does not already exist, the 
control block is created. 

2Eeration: look iocb 

Syntax: io look iocb switchname 

Function: prints, on user output, the locati6n 6f the control 
block for the I/O sWitch.- If the I/O switch does not exist, 
an error is printed. 

Syntax: [io look_iocb switchname] 

Function: returns true if the specified iocb exists, false 
otherwise. 

Operation: move attach 

Syntax: io move attach switchname switchname2 

where switchname2 is the name of a second I/O switch. 

Function: moves the attachment of the first I/O switch 
(switchname) to the second I/O switch (switchname2). The 
original I/O switch is left in a detached state. 

Oeeration: destroy_iocb 

Syntax: io destroy_iocb switchname 

Function: destroys the I/O switch by deleting its control 
block. The switch must be in a detached state before this 
command is used. Any pointers to the I/O switch become 
invalid. 

Oeeration: print_iocb 

Syntax: io print_iocb switchname 

3-345 AG92-03 



-~,-.------. 

io call (io) io call (io) 

Function: prints, on user output, all of the data in the 
control block for the 110 s~itch, including all pointers and 
entry variables. 

2Eeration: attached 

Syntax: rio attached switchname] 

Function: returns true if the switch is attached, false 
otherwise. 

Q£eration: opened 

Syntax: [io opened swi tchname] 

Function: returns true if the switch is open, false otherwise. 

0eeration: closed 

Syntax: rio closed switchname] 

Function: returns true if the switch is closed, false 
otherwise. 

Q.Eeration: detached 

Syntax: [io detached switchname] 

Function: returns true if the switch is detached, false 
otherwi se. 

Operation: attach desc 

Syntax: [io attach desc switchname {-control_arg}] 

Function: returns the attach description of the switch, 
quoted unless -no_quote (-nq) is specified. 

3-346 AG92-D3 



-------- --_ .. ,---
io call (io) io call (io) 

2£eration: open_desc 

Syntax: [io switchname open_desc {-control_arg}] 

Function: returns the current open description (stream input, 
etc.), quoted unless -no_quote (-nq) is specified. -

Operation: io module 

Syntax: [io io module switchname] 

Function: returns the name of the I/O module through which 
the switch is attached. 

2£eration: valid_op 

Syntax: [io valid_op switchname operation] 

Function: returns true if the operation (put_chars, modes, 
etc.) is defined on the switch. 

2£eration: test mode 

Syntax: [io test mode switchname mode] 

Function: performs a modes operation and returns true if mode 
appears in the mode string, false if Amode appears. 

C?.eeration: valid mode 

Syntax: [io valid mode switchname mode] 

Function: performs a modes operation 
either mode or Amode appears in the 
otherwise. 

3-341 

and returns true if 
mode string, false 

AG92-03 



io call (io) 

Summary of Q£erations 

Syntax: io attach sw1tchname modulename {args} 
Syntax: io detach switchname 
Syntax: io open switchname mode 
Syntax: io close switchname 
Syntax: 10 get line switchname {N} {-control args} 
Syntax: 10 get-chars sw1tchname N {-control ~rgs} 
Syntax: io put-chars sw1tchname{string} {-~ontrol args} 
Syntax: io read record' switchname N {-control args'T 
Syntax: io writi record switchname {string} {=control args] 
Syntax: io rewrite record switchname {string} {-control args} 
Syntax: io delete record switchname -
Syntax: io position switchname type 
Syntax: io seek key switchname key 
Syntax: io read-key switchname 
Syntax: io read-length switchname 
Syntax: io contFol switchname order {args} 
Syntax: io modes sw1tchname {string} {~~ontrol arg} 
Syntax: io find iocb switchname -
Syntax: io look-iocb switchname 
Syntax: 10 move-attach sw1tchname switchname2 
Syntax: io destFoy iocb switchname 
Syntax: io print iocb switchname 

Active function only: 
Syntax: [io attached switchname] 
Syntax: [io opened switchname] 
Syntax: [io closed switchname] 
Syntax: [10 detached switchname] 
Syntax: [10 attach desc sw1tchname {-control arg}] 
Syntax: [10 open disc sw1tchname {-control a~g}] 
Syntax: [10 10 module switchname] -
Syntax: [io va!id op sw1tchname] 
Syntax: [10 test mode sw1tchname] 
Syntax: [10 valia mode sw1tchname] 

3-348 AG92-03 



last m~ssage (1m) - ' . 

---------_.-

SYNTAX ,AS A COMMAND: 

1m {address} 

SYNTAX AS AN ACTIVE FUNCTION: 

[1m {address}] 

FUNCTION; returns the text of the last message received from the 
sand._message command. 

ARGUMENT'S: 
address can be 'any of the following to specify a mailbox: 

-pathname path, -pn path 

STR 

where path is the p~thname of a mailbox. The rnbx suffix is 
assumed. 

specifies a mailbox pathname of STR that contains a > or <. 

Person. Project 
specifies the Person id and Project_id of a user whose mailbox is 
indicated. 

NOTES: See the description of send message, accept message, 
last_message_sender, and last_message_time in this manual. 

3-349 AG92-03 

I 
I 
I 
I 



I 
I 
I 
I 

SYNTAX AS A COMMAND: 

Ims {address} 

SYNTAX AS AN ACTIVE FUNCTION: 

[lms {address}] 

FUNCTION: returns the sender of the last message received (from the 
send message command) in the form "Person id.Projeet id" (e.g., 
RSJones. Demo) . --

ARGUMENTS: 
address can be any of the following to specify a mailbox: 

-pathname path, -pn path 

STR 

where path is the pathname of a mailbox. The mbx suffix i~3 
assumed. 

specifies a mailbox pathname of STR that contains a > or <. 

Person.Project 
spec;ifies the Person id and Project_id of a user whose mailbox is 
indicated. 

NOTES: The user is cautioned against using this active function when 
in polite mode. In polite mode, the system holds all messages 
until the user finishes typing a line (i.e., until the carriage 
is at the left margin). Therefore, it is possible that while the 
user is sending a message, the user t s process can recei ve another 
message from a different user -- a message not yet St3sn. By using 
the last messa~e sender active function in such a situation, the 
user can inadvertently attribute a message to the "wrong" 
person. 

See the descriptions of send message, accept message, 
last_message, and last_message_ time -in this manua.l. 

3-350 AG92-03 



EXAMPLBS: 
message: 

Assume that a user just received the following 

From RSJones.Demo 11/19/76 1231.7 mst Fri: need access to 
test xyz 

A reply can be sent as follows: 

sm elms] sorry for the oversight, you have access now. 

3-351 AG92-03 



I 
I 
I 
I 

---_._---

SYNTAX AS A COMMAND: 

lmt {address} 

SYNTAX AS AN ACTIVE FUNCTION: 

[lmt {address}] 

-_._-----_._-_.-

FUNCTION: returns the time that the last message (from the 
send_message command) was received. 

ARGUMENTS: 
address can be any of the following to specify a mailbox: 

-pathname path, -pn path 

STH 

where path is the pathname of a mailbox. The mbx suffix is 
assumed. 

specifies a mailbox pathname of STH that contains a > or <. 

Person.Project 
specifies the Person id and Project_id of a user whose mailbox is 
indicated. -

NOTES: See the descriptions of send message, accept message, 
last_message, and last_message_sender in this manual.-

3-352 AG92-03 



length (In) 

SYNTAX AS A COMMAND: 

In Htr 

SYNTAX AS AN ACTIVE FUNCTION: 

[In str] 

FUNCTION: returns an integer representing 
characters in str. 

ARGUMENTS: 

str 

length ·(In) 

the number of 

is any string of alphanumeric characters. If str contains 
blanks or other command language characters, it must be 
enclosed in quotes. 

EXAMPL:E:S: 

string [In "A multiple word string"] 
22 

The following example from an exec com segment tests for a 
string that is greater than 27 characters. 

&if [nless [In &1] 27] &then &goto OK 
&print Entry name too long. &1.info 
&quit 
&label OK 
ec exec com2 &1.info 

3-353 AG92-03 



less 

SYNTAX AS A COMMAND: 

less strA strB 

SYNTAX AS AN ACTIVE FUNCTION: 

[less strA strB] 

less 

FUNCTION: returns true if strA is less than strB according to 
ASCII collating sequence; otherwise it returns false. 

NOTES.: The strings are compared character by character according 
to their ASCII code value (i.e., if the first character in 
each string has the same ASCII code value, compare the second 
character; if their values are identical, compare the third 
character; etc.). See nless and ngreater in this manual for a 
way to compare numeric strings. 

3-354 AG92-03 



line_length (11) line_length (11) 

SYNTAX AS A COMMAND: 

11 maxlength 

FUNCTION:. allows the user to control the maximum length of a 
line output to the device that the user's process is connected 
to through the user output I/O switch. This device is usually 
the user's terminal-:-

ARGUMENTS: 

maxlength 
is a positive decimal number greater than 4 that specifies th8 
maximum number of characters that can henceforth be printed on 
a single line using the I/O switch named user output. In most 
cases, this is the maximum length of a line of output printed 
at the user's terminal. 

3-355 AG92-03 



link (lk) link (lk) 

SYNTAX AS A COMMAND: 

lk path11 {path21 ••. path1n path2n} 

FUNCTION: causes a storage system link with a specified namE; to 
be created in a specified directory pointing to a spe6ificd 
s,egment, directory, or link. 

ARGUMENTS: 

path1i 
specifies the pathname of the storage system entry to which 
path2i is to point. The star convention is allowed. The 
pathnames must be specified in pairs. 

path2i 
specifies the pathname of the link to be created. If omitted 
(in the final argument position of a command line only), a 
link to path1i is created in the working directory with the 
entryname poriion of path1i as its ~ntryname. The equal 
convention is allowed. -

ACCESS REQUIRED: The user must have append permission for the 
directory in which the link is to be created. 

NOT'ES: For a discussion of links, see "Directory Contents ft in 
the MPM Reference Guide. 

Entrynames must be unique within the directory. If the 
creation of a specified link would introduce a duplication of 
names within the directory, and if the old entry has only one 
name, the user is interrogated whether to delete the the entry 
bearing the old instance of the name. If the anSwer is "no", 
the link is not created. If the old entry has multiple names, 
the conflicting name is removed and a message to that effect 
is issued to the user. In either case, since the directory in 
which the link is to be created is being chariged, the user 
must also have modify permission for that directory. 

3-356 AG92-03 



link (lk) link (lk) 

EXAMPLE: The command line: 

.! lk >my_dir>beta alpha >dictionary>grammar 

creates two links in the working directory, named alpha and 
grammar; the first points to the segment beta in the direct0ry 
>my dir and the ·second points to the segment grammar in the 
dir~ctory >dictionary. 

3-357 AG92-03 



links links 

SYNTAX AS A COMMAND: 

links star names {-control __ arg} 

SYNTAX AS AN ACTIVE FUNCTION: 

[links star_names {-control_arg}] 

FUNCTION: returns the entrynames or absolute pathnames of links 
that match one or more star names. 

ARGUMENTS: 

star names 
is a star name to be used in selecting the names to be 
returned. 

CONTROL ARGUMENTS: 

-absolute pathname, -absp 
returns absolute pathnames rather than entrynamea. 

NOTES: Only one name per link is returned; i.e." if a link has 
more than one name that matches star_name, only the firBt 
match found is returned. 

Since each entryname (or pathname) returned by links is 
enclosed in quotes, the command processor treats each name as 
a single argument regardless of the presence of special 
characters in the name. 

3-358 AG92-·03 



links links 

EXAMPL:E~S : 

pwd 
)udd)Apple)Jones 
1s -lk 

Links = 3 

prog.t.-mp2 
prog.temp1 
junk 

)udd)Apple)Jones)temp seg 2 
)udd)Apple)JoneS)temp_seg_1 

,)udd)Apple)Jones)empty_seg 

string [links **] 
junk prog.temp1 prog.temp2 
string [links *] 
junk 
string [links **.temp*] 
prog.temp1 prog.temp2 

links ** 
junk prog.temp1 prog.temp2 
links *.temp* -absp 
)udd)Apple)Jones)temp seg 1:prog.temp1 )udd)Apple)Jones) 
temp_seg_1)prog.temp1- -

3-359 AG92-03 



list (Is) list (Is) 

SYNTAX AS A COMMAND: 

l's {entrynames} {-control_args} 

FUNCTION: prints information about entries contained in a single 
directory. A large selection of control arguments enable the 
user to specify the directory to be listed, whiDh entries are 
to be listed, the amount and kind of information to be printed 
for each entry, and the order in which the entries are to be 
listed. 

ARGUMENTS: 

entrynames 
are the names of entries to be listed. If entrynames are 
specified, only entries having at least one name matching an 
entryname argument are listed. The star convention is 
allowed. If no entryname argument is given, all entries (of' 
the types given by control arguments) in the directory are 
listed. A pathname can be specified instead of an entryname. 
In this case, entries matching the entryname portion of the 
pathname, in the directory specified by the direetory portion 
of the pathname, are listed. See the description of the 
-pathname control argument for restrictions on the use of this 
feature. 

Except where otherwise noted in the descriptions of the control 
arguments ("Control Arguments for the list Command" below), 
the entrynames and,control_args arguments can appear anywhere 
on the command line. 

Control Arsuments for the list Command 

The control arguments for the list ,command are described in 
detail on the following pages. For convenience, these 
arguments have been arranged in categories according to the 
function they perform. The categories and their respective 
cont'rol arguments are listed below (detailed descriptions 
follow the list, in the same order): 

directory 
-pathnamepath, -pn path 

entry type 
-segment, -sm 

3-360 AG92-03 



list (Is) list (Is) 

-~tiltisegment file, -msf 
-file, -f -
-directory, -dr 
-branch, -br 
--link, -lk . 
-all, -a 

columns 
-mode, -md 
-length, -In 
-record, -rec 
-name, -nm 
-date time used, -dtu 
-date-time-entry modified, -dtem 
-date-time-contents modified, -dtcm 
-count, -ct -
-link_path, -lp 

totals/header line 
-total, -tt 
-no_header, -nhe 

multiple-name entries 
-primary, -pri 
-match 

entry order 
-sort XX, -sr XX 
-reverse, -rv 

entry exclusion 
-exclude entryname, -ex entryname 
-first N, -ft N 
-from D, -fm D 
-to D 

output format 
-brief, -bf 

. -short, -sh 

NOTES:. If the list command is invoked without any arguments, it 
lists all segments and multisegment files in the working 
directory, printing the name(s), access mode, and length of 
each. Segments and multisegment files are listed separately 
(segments first), each preceded by a line giving the total 
entries of that type and the sum of their lengths. (This line 
is referred to as the totals information or the header.) 
Within each entry type, entries are listed in the order in 
which they are found in the directory. 

3-361 AG92-03 



list (Is) list (1s) 

EXAMPLES: The following example shows the results of invoking 
the list command without any arguments (the line typed by the 

,user is preceded by an exclamation mark): 

list 

Segments = 8, Lengths = 41. 

r w 10 new code info.runout -rew 9 new code info. runoff 
r w 3 work.pl1 
r w 7 work. list 
re 2 'work 
r w 1 print.ec 
r w '1 output_file 
r 8 data base 

Multisegment-files = 1, Lengths = 334. 

r w 334 info_segs 

Notice that the information about the entrie~is arranged in 
columns without column headings. The set of columns printed 
by the list command depends on the control arguments specified 
by the user and the type of entry being listed. 

There are four entry types: segments, multisegment files, 
directories, and links. Segments and multisegment files are 
referred to collectively as files; segments, multisegment 
files, and directories are referred to collectively as 
branches. The set of possible columns is different for 
branches and links. For branches, the set of possible columns 
and their order (from left to right) is: modification date, 
date and time used, access mode, size, names, and number of 
names; for links: date and time entry modified, names, number 
of names, and link pathname. The modification-date column 
contains eith~r the date and time the entry was modified or 
the date and time the contents were modified, and the size 
column contains either records used or length (in records) 
computed from the bit count, as specified by control 
arguments. Unless, otherwise specified by control argumentE~, 
the items printed for branches are: access modes, length, and 
names; for links: names and link pathname. 

The list command offers the user precise control over the 
command output. The various control arguments specify exactly 

3-362 AG92-03 



list (Is) list (Is) 

what is to be printed. Most users will find that the 
following subset of list command control arguments allows them 
to adequately define the desired information. 

-file, -f 
lists information about files. This is the default. 

-dir'ectory, -dr' 
lists information about directories. 

-link, -lk 
lists information about links. 

-name, -nm 
prints the names column, giving primary and any additional 
nam.es of each entry. 

-date time entry modified, -dtem 
prI'nts the date and time the entry was last modified (e.g., by 
the changing of attributes such as names, ACL, or bit count). 

-prima.ry, -pri 
prints only the primary name (in the names column)-of each 
entry. 

-sort XX, -sr XX 
sorts the entries, within each entry type, according to the 
column name specified by XX. (The column names and their 
sorting order are described under "Entry Order" below.) 

-total, -tt 
prints only the heading line (totals information) for each 
entry type specified; this line gives the total number of 
entries and the sum of their sizes. 

Detailed information on each of the above control arguments is 
given in "Control Arguments for the list Command" below. 

DIREC~~ORY 

If no directory is specified, the working directory is 
,assumed. The list command can list only one directory at a 
time, and it is an error to specify more than one directory to 
be listed. 

3-363 AG92-03 



list (Is) list (1.s) 

-pathname path, -pn path 
causes entries in the directory specified by path to be 
listed. 

The directory to be listed can also be specified by glVl~g a 
pathname instead of an entryname, as described earlier. The 
difference between the two methods of specifying a directory 
is that the entire pathname after the -pathname control 
argument is taken to be that of a directory whose entries are 
to be listed, while a pathname not preceded by the -pathname 
control argument is separated into its directory a.nd entryname 
portions, and the former specifies the directory while the 
latter specifies the entries within it that are to be listed. 

ENTRY TYPE 

If no control arguments from this category are specified, the 
-file control argumerit is assumed. More than one of the 
following control arguments can be specified. 

-segment, -sm 
lists information about segments. 

-multisegment file, -msf 
lists information about multisegment files. 

-file, -f . 
lists information about files (i.e., segments and multisegment 
files, in that order). 

-directory, -dr 
lists information about directories. 

-branch, -br 
lists information about branches (i.e., segments, multisegment 
files, and directories, in that order). 

-link, -lk 
lists information about links. 

-all, -a 
lists 
order: 

information about all entry types in the following 
segments, multisegment files, directories, and links. 

3-364 AG92-03 



list (Is) list (Is) 

COLUMNS 

If no control arguments from this category are specified, the 
access-mode, length, and names columns (in that order) are 
printed for branches and the names and link-path columns (in 
that order) are printed for links. More than one of the 
control arguments listed below can be given in a single 
invocation of the list command. When the ~brief, -mode, 
-record, -length, or -name control arguments are specified, 
only the names column plus those columns explicitly selected 
by control arguments are printed. 

The user is given a choice as to what can be printed in two of 
the columns for branches (size and modification date). For 
size, the user' can choose between length computed from the bit 
count and a count of records used. For modification date, the 
user can choose between the date and time the entry was 
modified (e.g., by the changing of attributes such as names, 
ACL, or bit count) and the date and time the contents of the 
segment or directory were modified. 

If sorting by a size or modification date is specified, the 
above choices also apply to sorting, and the specifications of 
what to sort on and what to print must be consistent. For 
example,' it is not possible to print length computed from bit 
count while sorting on records used. 

Because of the way the information is maintained by the 
storage system, the records-used, date-time-contents-modified, 
anddate-time-used values are more expensive to obtain than 
the other items printed by the list command. It is 
recommended that these values not be used for printing or 
sorting except when absolutely necessary. Less expensive 
alternatives are provided that should be suitable in most 
cases (e.g., length computed from bit count, and date and time 
the entry was modified). 

The names column is printed in every invocation of the list 
command except when the user explicitly requests only totals 
information (see "Totals/Header Line" below). 

-mode, -md 
prints the access-mode column. 

3-365 A(l'"'2-03 



list (Is) list (Is) 

-length, -In 
prints current length computed from the bit count. This 
control argument is inconsistent with the -record control 
argument. The -length argument, which is th~ leBs expensive 
of the two, is the default. 

-record, -rec 
prints the records used. This argument is incon8istent with 
the -length control argument. The -record control argument is 
the more expensive of the two. 

-name, -nm 
prints the names column, giving the primary name and any 
additional names of each entry. 

-date time used, -dtu 
prints the date and time the entry was last used. 

-date time entry modified, -dtem 
prInts the date and time the entry was last modified. (e.g., 
by the changing of attributes such as names, ACL, or bit 
count). This argument is inconsistent with the 
-date time contents modified control argument. This argument 
is the less expensive of the two. 

-date time contents modified, -dtcm 
prints -the date and time the contents of the segment or 
directory were last modified. This argument is inconsistent 
with the -date time entry modified control argument; only one 
of the two may-be gIven. -- This argument is the more expensi ve 
of the two. 

-count, -ct 
prints the count column, which gives the' total number of names 
for entries that have more than one name. 

-link path, -lp 
prints the link-path column. 

TOTALS/HEADER LINE 

If no control arguments from this category are spElcified, both 
totals and detailed information are printed. 

-total, -tt 
prints only the heading line (totals information) for each 
entry type specified; this line gives the total number of 
entries and the sum of their sizes. 

3-366 AG92-03 



list (Is) list (Is) 

~na header, -nhe 
amits all heading lines. 

MULTIPLE-NAME ENTRIES 

The cantral arguments in this categary are applicable anly to' 
entries that have mare than ane name. If nO' cantral arguments 
fram this categary are specified, all af the names af the 
specified entries are printed in the names calumn. 

-primary, -pri 
prints', in the names calumn, anly the primary name af each 
entry. This cantral argument daes nat suppress the printing 
af any ather calumns; it merely suppresses the printing af 
secondary names. 

,-match 
printstin the namescalumn, only thasenames that match one· 
af the given entrynames. 

ENTRY ORDER 

If nO' cantral arguments fram this categary are specified, 
entries are printed in the arder in which they are found in 
the directary. 

-sart XX, -sr XX 
sarts entries, within each entry type, accarding to' the sart 
calumn XX where XX can be ane af the fallawing: 

-name, -nm 
sart entries by primary name, accarding to' the standard ASCII 
callating sequence. 

-length, -In 
sart entries by length camputed fram the bit caunt, largest 
first. This argument is incansistent with the -recard cantral 
argument. 

-recard, -rec 
sart·entries by recards used, largest first. This argument is 
inconsistent with the ~length cantral argument. If this 
argument is specified, and the size calumn is being printed, 
the value printed in that calumn is recards used, rather than 
length. 

3-367 AG92-03 



list (Is) list (Is) 

-mode, -md 
sort entries by access mode in the following order: nulJ., r 
(or s), rw (or sm), re, rew (or sma). (This order is the 
result of sorting by the internal representation of the mode.) 

-date time entry modified, -dtem 
sort entries by the date and time the entry was last modified, 
most recent first. This argument is inconsistent with th~ 
-dtcm control argument. If the -dtem control argument ie 
specified and no sort key follows the -sort control argument, 
this argument "is implied as the default sort key. 

-date time contents modified, -dtom 
sort entries by-the date and time the contents of the entrJ' 
were last modified, most recent first. This argument is 
inconsistent with the -dtem control argument. If the -dtcm 
control argument is specified and no sort key follows the 
-sort control argument, this argument is implied as the 
default sort key. 

-date time used, -dtu 
sort entries by the date and time used, most recent first. 

-count, -ct 
sort entries by number of names, most names first. 

It is not necessary for a column to be printed in order to 
sort on it, but note the restrictions described earlier 
regarding sorting on and printing the modification-date and 
size columns. 

If .the sort column XX is omi tted, the default sorting column 
is determined as follows: if no date column is being printed, 
sort by primary name; if only one of the date columns is being 
printed, sort by that date; if both the modification-date and 
date-time-used columns are being printed, sort by the 
modification-date column. 

Links can only be sorted by the name, modification-date, or 
count columns. If sorting by any other column is specified, 
links are printed in the order in which they are found in the 
directory, while branches (if also being listed) are sorted by 
the specified column. (See "Notes" below.) , 

-reverse, -rv 
prints entries in the reverse of the order in which 'they are 

3-368 AG92-03 



list (ls) list (Is) 

found in the directory. If the -sort control argument. is also 
specified, the specified sort is reversed. 

ENTRY EXCLUSION 

The following control .arguments limit the amount of outpu.t 
produced by excluding entries according to either name or date 
or by setting an upper limit on the number of entries listed. 

-exclude entryname, -ex eniryname 
doeEI not list any entries that have a name that matches the 
specified entryname. The star convention is allowed in 
entryname. 

To exclude more than one entryname, the user must give an 
-exclude control argument for each one of them. The 
entrynames specified in all -exclude control arguments and any 
names specified in the entryname arguments (explained on the 
first page of the list command description) operate together 
to limit the entries that are listed. All entries that have 
at least one name that matches anyone of the entrynames 
specified in the -exclude control arguments are excluded from 
the listing. From the entries that remain, those matching any 
of the entryname arguments are listed; if no entryname 
arguments are specified, all the remaining entries are listed. 
(SeE~ "Examples" below.) 

. -first N, -ft N 
lists only the first N entries (after sorting, if specified) 
of each entry type being listed~ The heading lines contain 
the totals figures for all entries that would have been listed 
if the -first control argument had not been specified. This 
control argument is useful to avoid tying up a terminal by 
listing a large directory, when only the first few entries are 
of i.nterest. 

The following two arguments exclude entries on the basis of 
date. The date used in this comparison is the 
modification-date value in all cases except when the only date 
column being printed or sorted on is the date-time-used 
column. If no date column is being printed, the 
date-time-entry-modified value is used. 

3-369 AG92-03 



__ ,0 __ '.-

list (Is) list (Is) 

-from D, -fm D 
does not list any entries that have a date value (selected as 
described above) before the one specified by D. 

-to D 
, ~oes not list any entries that have a date value (selected as 
described above) after the one specified by D. 

The D value after the -from or -to control arguments must be n 
string acceptable to the convert date to binary subroutine l 

described in the MPM Subroutines7 I? the dat~-time string 
contains spaces, the string must be enclosed in quotes. The D 
value should specify both a date and a time; if only a date is 
specified, the convert date to binary subroutine uses the 
current time of day as the default time-:-

If both the -from and -to control arguments are specified, the 
-from D value must be earlier than the -to D value. 

OUTPUT FORMAT 

If no control argument from this category are specified, the 
output format of the list command is not changed. 

-brief, -bf 
if just totals information is being printed, this control 
argument causes the totals information for all se'lected entry 
types to be abbreviated and printed on a single line. 
Otherwise, it suppresses the printing of the default columns 
when they are not explicitly named in control ar~uMents. For 
example, typing: 

Is -dtu -brief 

causes the. names and date-time-used columns, but not the 
access-mode and length columns, to be printed. 

-short, -sh 
prints link pathnames starting two spaces after their 
entrynames, instead of aligning them in column position 35. 

NOTES: The obsolete name for a 
(date time modified, dtm) is accepted, 
argument -and sort key form, as 
date-time-entry-modified value. 

3-370 

modification date 
in both the control 

a synonym for the 

AG92-03 



list (Is) list (Is) 

Links do not have a date-time-contents-modified value. If 
links are being listed and either modification-date value is 
specified for printing, sorting or entry exclusion (using the 
-from and -to control arguments), the date-time-entry-modified 
value of links is used. 

Examples 

The command line: 

Is -pri -ct 

lists all files in the working directory (the default 
directory); the names column contains only the primary names 
of all entries; the total number of names (for those entries 
having more than one name) is printed after the primary name. 
In addition to the names column, the access-mode and length 
columns are printed. 

The command line: 

Is -ex *.* 

lists all the files in the working directory having other than 
two-component names, printing the three default columns 
(access mode, length, and names). 

The command line: 

Is -sm *.* -ex *.p11 

lists all the segments in the 
two-component names whose second 
printing the three default columns. 

The command line: 

Is -dtem -sr 

working directory having 
component is not p11, 

lists all files in the working directory, sorted by the 
date-time-entry-modified column (the default sort key since 
the user specifically requested that date column). The 
date-time-entry-modified column is printed in addition to the 
three default columns. 

3-371 AG92-03 



list (Is) list (Is) 

The command line: 

Is -nm -sr dtm 

lists all files in the working directory, sorted by the 
date-time-entry-modified value. Only the names column is 
printed. Note the use of dtm as a synonym for dtem. 

The command line: 

Is -sm -nm -pri -nhe 

lists only the primary name of each segment in the working 
directory without printing the heading line or any blank 
lines. This combination of arguments, together with the 
file output command, is useful for generating a file that 
contains the primary names of a selected set of entries. 

The command line: 

Is -md -pri 

lists the access mode and primary name of each file in the 
working directory. 

The command line: 

Is -tt -to "7/1/75 000.0" -dtu -ree 

prints the totals (number of entries and total records used) 
for all files that have not been used since the end of Junel 
1975. Notice that the -dtu control argument is used to 
specify that the -to date refers to the date and time used. 

3-372 AG92-03 



SYNTAX AS A COMMAND: 

lar {path} {-control_args} 

FUNC~ION: lists reque~ts in the abseritee queues. 

ARGUMENTS: 

path 
is the pathname of a 
conv~ntion is allowed. 
are selected. If the 
pathnames are selected. 
below. 

CONTROL ARGUMENTS: 

request to be listed. The star 
Only requests matching this pathname 
path argument is not specified, all 
Also see the -entry, control argument 

-absolute pathname, -absp 
prints-the full pathname of each selected request, rather than 
just the entryname. 

-admin {User id}, -am {User id} 
selects the requests of all users, or of the user specified by 
User ide If the -admin control argument is not specified, 
only-the user's own requests are selected. See "Notes" below. 

-all, -a 
searches all queues and prints the totals for each non-empty 
queue whether or not any requests are selected from it. If 
the -all control argument is not specified, nothing is printed 
for queues from which no requests are selected. This control 
argument is incompatible with the -queue control argument. 

-brief, -bf 
prevents the printing of the state and the comment of the 
request. If the -brief control argument is not specified, 
these items are printed. This control argument is 
incompatible with the -long and-total control arguments. 

-deferred indefinitely, -dfi 
selects only requests that are deferred indefinitely. Such 
requests are not run until the operator releases them. 

-entry STR, -et STR. 
selects only requests whose entrynames match STR. The star 
convention is allowed. Directory portions of request 
pathnames are ignored when selecting requests. This control 

3-373 AG92-03 



argument is incompatible with the path argument. 

-foreground, -fg 
searches only the foreground queue, and prints the totals for 
this queue, whether or not any requests are selected from it. 
Also, see the -queue control argument. 

-id ID 
selects only requests whose identifier matches the specified 
ID. 

-immediate, -im 
selects only requests that can be run immediately upon 
reaching the heads of their respective queues. This does not 
include requests deferred indefinitely, requests deferred 
until a specific time, or requests that have reached the head 
of the queue and have been deferred by the system because 
their CPU time limits are higher than the maximum for the 
current shift. It does include requests deferred because of 
load control . or resource unavailability, beeause those 
conditions could change at any time. Also, see the -position 
control argument. 

-long,·-lg 
prints all of the information pertaining to an absentee 
request including the long request identifier and the full 
pathname. If this control argument is omitted, only the short 
request identifier, entryname, state and comment, if present, 
are printed. The -long, -brief, and -total control arguments 
are incompatible. 

-long id, -lgid 
prInts the long form of the request identifier. If this or 
the -long control argument is not specified, the short form of 
the request identifier is printed. 

-position, -psn 
prints the position within its queue of each selected request. 
When used with the -total control argument, it prints a list 
of all the positions of the selected requests. When used with 
the -immediate control argument, it considers only immediate 
requests when computing positions. See "Notes" below. 

-queue N, -q N 
searches only queue N, and prints the totals for that queue, 
whether or not any requests are selected from it. If the 
-queue control argument is not specified, all queues are 
searched but nothing is printed for queues from which no 
requests are selected. For convenience in writing exec_corns 
and abbreviations, the word "foreground" or "fg" following the~ 

3-374 AG92-03 



----------------- --- -------------

-queue control argument performs the same function as the 
-foreground control argument. ThiS' control argument is 
ineompatible with the -all control argument. 

-resource ISTR}, -rsc 18TR} 
selects only requests having a resource requirement. If STH 
'is specified, only requests whose resource descriptions 
contain that string are selected. This control argument also 
causes the resource descriptions of the selected requests to 
be printed, even when the -long control argument is ~ot 
specified. See the reserve resource command in this manual 
for a description of resource description specification. If 
this control argument is not specified, the request type 
"printer" is assumed. 

-sender STR 
specifies that only requests from sender STR should be listed. 
One or more request identifiers must also be specified. In 
most cases, the sender is an RJE station identifier. 

-total, -tt 
prints only the total number of selected requests and the 
total number of requests in the queue plus a list of positions 
if the -position control argument is also specified. If the 
queue is empty, it is not listed. This control argument is 
incompatible with the -long and -brief control arguments. 

-user User id 
selects- only requests entered by the specified' user. See 
"Notes" below. 

ACCESS REQUIRED: The user must have 0 access to the queue(s) to 
invoke lar. The user must have r extended access to the 
queue(s), in order to use the -admin, -position, or -user 
control arguments, since it is necessary to read all requests 
in the queue(s) in order to select those entered by a 
specified user or to compute the pOSitions of the selected 
requests. 

NOTES: All queues are searched for the user's requests; the 
request identification, entryname, state, and comment, if 
present, of each request is printed. If no, arguments are 
specified, only the user's own requests are selected for 
listing. Nothing is printed for queues from which no requests 
are selected. See also the enter_abs_request command in this 
manual. 

3-375 AG92-03 



----'''----._--"''----,-_. 

When a user name is specified, with either the -admin or -user 
control arguments, then proxy requests are selected if either 
the user who entered the request, or the proxy user on ~hose 
behalf it was entered, matches the specified user name. 

The entry name specified after the -entry control argumen~, 
the entry portion of the pathname argument, and the RJB 
station name specified after the -sender control argument, ma;y
each be starnames. 

The User id arguments specified after the -admin or -user may 
have any-of the following forms: 

Person id.Project id 
Person--id. * -
Person-id 
*.Project id 
*.Project-id 
*.* -

matches that user only 
matches that person on any project 
same as Person id.* 
matches any user on that project 
same as *.Project id 
same as -admin with no User id fol 
lowing it 

EXAMPLES: To find out what absentee requests he has in all 
queues, the user types: 

lar 

Queue 1: 1 request. 3 total requests. 
211401 translate.absin 

Queue 3: 2 requests. 6 total requests. 
211421 tasks.abain 
211463 bindings.absin 

To get all information about his absentee requests in queue 1, 
he types: 

lar -q 1 -lg 
Queue 1: 1 request. 6 total requests. 

Request ID: 
Time queued: 
Input segment: 
Restartable: 
Deferred time: 
Output file: 

781211002253.583765 
12/10/78 1922.8 est Sun 
)udd)sys)Jones)monthly status.absin 
yes -
01/07/79 1922.8 est Sun 
>udd>sys>cp>Jones>monthly_status. 
absout 

3-376 AG92-03 



To find out the total number of absentee requests he has in 
all queues, he types: 

lar -tt -a 

Queue 1: 2 requests. 15 total requests. 

Queue 3: 0 requests. 39 total requests. 

Note that queue 2 being empty, does not have a total line 
listed. 

3-377 AG92-03 



list accessible (lac) list accessible (lac) 

SYNTAX AS A COMMAND: 

lac {path} {User_id} {-control_args} 

FUNCTION: scans a directory and lists segments, multisegments, 
files, and directories with a specified access for a specified 
User id. 

ARGUMENTS: 

path 
is the pathname of the directory to be scanned. If path is 
omitted or -wd is specified, the working directory is scanned. 

User id 
is an access name. It can have null components. The star 
convention for access names is allowed. See the description 
of set acl in this manual. If User id is omitted, the User id 
of the-calling process with a star rag is assumed" 

CONTROL ARGUMENTS: 
If no control arguments are specified, all the segments and 
directories to which the named user(s) has nonnull access are 
listed. 

-dir mode STR 
lIsts directories to which the 
modes specified in STR, where 
letters sma. 

-seg mode STR 

named user(s) has any of the 
STR can be any or all of the 

lIsts segments to which the named user(s) has any of the modes 
specified in STR, where STR can be any or all of the letters 
rew. 

ACCESS REQUIRED: The user must have status (5) permission on the 
directory. 

NOTES: If there can be more than one User id (i.e., the 
specified User id has null components), the iodes for each 
matched User id- and the matched User id are listed on a per 
entry basis.-

3-378 AG92-03 



list accessible (lac) 

EXAMPLES: 

lac >udd>work>Smith 

r Smith.profile 
rew Smith.con msgs 
s index-
r mpm cont pull.ec 
r start up:ec 
re namini.runoff 
sma work 
r sr.runoff 

lac >udd>work>Smith -dir mode m 

r Smith.profile 
rew Smith.con msgs 
r mpm cont pull.ec 
r staFt up7ec. 
r naming. runoff 
sma work 
r sr.runoff 

lac -wd .Group. 

r 
rew 
r 
s 
sma 
s 
s 

Smith.profile 
Smith.con msgs 
Smith.con-msgs 
index -
work 
work 
work 

3-319 

list accessible (lac) 

Smith.Group.* 
Smith.Group.* 
Jones.Group.* 
*.Group.* 
Smith.Group.* 
Jones.Group.* 
*.Group.* 

AG92-03 



list acl (la) list acl (la) 

SYNTAX AS A COMMAND: 

la {path} {User_ids} {-control_args} 

SYNTAX AS AN ACTIVE FUNCTION: 

[la {path} {User _id} {-control_args}] 

FUNCTION: lists the access control lists (ACLs) of segments, 
multisegment files, and directories. 

ARGUMENTS: 

path 
is the pathname of a segment, multisegment file, or directory. 
If it is -wd, -working dir, or omitted, the working directory 
is assumed. If it is-omitted, no User ids can be specified. 
The star convention can be used. 

User ids 
are access control names that must be of the form 
Person id.Project id.tag. All ACL entries with matching names 
are li~ted. If U~er id is omitted, the entire ACL is listed. 

CONTROL ARGUMENTS: 

-ring brackets, -rb 
liits the ring brackets. This control argument is not valid 

- is list acl is invoked as an active function. 

-brief, -bf 
suppresses the message "User name not on ACL of path." If 
list acl is invoked as an active function, and User id is not 
on the ACL, the null string is returned regardleis of the 
-brief control argument. 

--directory, -dr 
lists the ACLs of directories only. 
multisegment files, and directories. 

-segment, -sm 

The default is segments, 
(See "Notes" below.) 

lists the ACLs of segments and multisegment files only. 

ACCESS REQUIRED: The user must have status (s) permission on the 
directory. 

3-380 AG92-03 



list acl (la) list acl (la) 

NOTES: The -directory and -segment control arguments are used to 
resolve an ambiguous choice that can occur when path is a star 
name. 

If the list acl command is invoked with no arguments, it lists 
ihe entire ICL of the working directory. 

For a description of ACLs, see "Access Control" in the MPM 
Reference Guide. Ring brackets are discussed under 
"Intraprocess Access Control" in the MPM Reference Guide. For 
a 'description of the matching strategy, refer to set acl in 
this manual. 

EXAMPLES: The command line: 

la notice.runoff .Faculty. Doe 

lists, from the ACL of notice.runoff, all entries with 
Project_id Faculty and the entry for Doe.*.*. 

The command line: 

la *.p11 -rb 

lists the whole ACL and the ring brackets of every segment in 
the working directory that has a two-component name with a 
second component of p11. 

The command line: 

la -wd -rb .Faculty. * * * 

lists access modes and ring 
working directory's ACL whose 
for the * * * entry. 

brackets for. all entries on the 
middle component is Faculty and 

3-381 AG92-03 



list_daemon_requests (ldr) 

SYNTAX AS A COMMAND: 

Idr {path} {-control_args} 

FUNCTION: lists requests in the I/O daemon queues. The request 
identifier and entryname of each request is printed. 

ARGUMENTS: 

path 
is the pathname of a request to be listed. The star 
convention is allowed. Only requests matching this pathname 
are selected. If the path argument is not specified, all 
pathnames are selected. This argument is incompatible with 
the -entry control argument. 

CONTROL ARGUMENTS: 

-absolute pathname, -absp 
prints-the full pathname of each selected request, rather than 
just the entryname. 

-admin {User id}, -am {User id} 
selects the requests of all users, or 
User ida This control argument is 
If the -admin control argument is 
user's own requests are selected. 
Required" below. 

-all, -a 

of the user specified by 
incompatible with -user. 
not specified, only the 
See "Notes" and "Access 

searches all queues and prints the totals for each non-empty 
queue whether or not any requests are selected from it. If 
the -all control argument is not specified, the default queue 
is searched. This control argument is incompatible with the 
-queue control argument. 

-brief, -bf 
suppresses the printing of the state of the request. This 
control argument is incompatible with the -long and -total 
control arguments. 

-entry STR, -et STR 
selects only requests whose entrynames match STR. The star 
convention is. allowed. Directory portions of reques.t 
pathnames are ignored when selecting requests. This control 
argument is incompatible with the path argument. 

3-382 AG92-03 



-id ID 
selects only requests whose identifier matches the specified 
ID. 

-immediate, -im 
selects only requests that can be run immediately and skips 
requests deferred by the 110 daemon. 

-long, -lg 
prints all of the information about each selected request 
including the long request identifier and the full pathname. 
If this control argument is not specified, only the short 
request identifier, entryname, and state are printed. This 
control' argument is incompatible with the -brief and -total 
control arguments. 

-long id, -lgid 
prInts the long form of the request identifier. If this or 
~he -long control argument is not specified, the short form of 
the request identifier is printed. 

-position, -psn 
prints the position within its queue of each selected request. 
When used with the -total control argument, it prints a list 
of all the positions of the selected requests. See "Notes" 
and "Access Required" below. 

-queue N, -q N 
searches queue N, and prints the totals for that queue, 
whether or not any requests are selected from it. If the 
-queue control argument is not specified, the default queue 
for the request type is searched. This control argument is 
incompatible with the -all control argument. 

-request type STR, -rqt STR 
speci1ies that the request moved is found in the queue for the 
request type identified by STR. If this control argument is 
not specified, the default request type is "printer". Request 
types can be listed by the print_request_types command. 

-total, -tt 
prints only the total number of selected requests and the 
total number of requests in the queue plus a list of 
positions, if the -position control argument is specified. If 
the queue is empty, it is not listed. This control argument 
is incompatible with the -long and -brief control arguments. 

3-383 AG92-03 



-user User id 
selects- only requests entered by the specified user. This 
control argument is incompatible with -admin. See "Notes" and 
"Access Required" below. 

ACCESS REQUIRED: The user must have 0 access to the queue(s) to 
invoke ldr. The user must have r extended access to the 
queue(s), in order to use the -admin, -position, or -user 
'control arguments, since it is necessary to read all requests 
in the queue(s) in order to select those entered by a 
specified user or to compute the positions of the selected 
requests. 

NOTES: The User id arguments specified after -admin or -user can 
have any of tne following forms: 

Person id.Project id 
Person-id.* -
Person-id 
*.Project id 
.Project id 
*.* -

matches that user only 
matches that person on any project 
same as Person id.* 
matches any usir on that project 
same as *.Project id 
same as -admin wiIh no User id 

following it 

The state is printed only if it is deferred and the -brief 
argument is not specified. 

EXAMPLES: To find out what dprint requests are in the default 
queue for the default request type, the user types: 

Idr 

Queue 3: 3 requests. 6 total requests. 

211401 translate.list 
211421 ldr. runoff 
211463 Jones.profile 

3-384 AG92-03 



list daemon_requests (ldr) 

To get all information about dprint requests in queue 1 of the 
default request type, the user types: 

Idr -lg -q 1 

Queue 1: 

Hequest ID: 
Time queued: 
Pathname: 
State: 
Copies: 
Delete: 
Heading: 
Destination: 

Request ID: 
Time queued: 
Pathname: 
Copies: 
Delete: 
Heading: 
Destinatioh: 

2 total requests (1 deferred). 

781120185551.598368 
11/20/78 1155.8 mst Mon 
)udd)Tech)Jones)f.symbol 
deferred 
1 
no 
Jones 
Tech 

781121173121.663091 
11/21/78 1031.3 mst Tue 
)udd)Tech)Jones)f.symbol 
1 
no 
Jones 
Tech 

To find out the total number of requests in each queue of the 
request type "punch", the user types: 

Idr -tt -a -rqt punch 

Queue 1: 0 requests. 15 total requests. 
Queue 3: 2 requests. 39 total requests. 

Note that queue 2, being empty, does not have a total line 
listed. 

3-385 AG92-03 



list_help (lh) 

SYNTAX AS A COMMAND: 

lh topic1 topic2 topicN {-control_args} 

FUNCTION: displays the names of all info segments pertaining to 
a given topic. Topics are specified by arguments to the 
list help command. An info segment is considered to pertain 
to a given topic if the topic name appears in (i.e., is a 
substring of) the info segment name. 

ARGUMENTS: 

topic1 through topicN 
are topics to be searched for. 

CONTROL ARGUMENTS: 

-brief, -bf 
does not display the alternate names on the info segments~ 
The default is to display them. 

-all, -a 
displays the names of all info segments. The default is to 
display the names of only those info segments whose names 
match the topiCS specified. 

-pathname path, -pn path 
speoifies the pathname of a direotory to search for applicable 
segments. The default is to search the directories in the 
info_segments search list. See "Notes on Search List" below. 

NOTES ON SEARCH LIST The check info segs command uses the 
"info segments" search list that- has the synonyms "info segs" 
and "Tnfo". The default "info_segments" search list is:-

>doc>iml info 
>doc>info 

These directories contain info segments provided by the site 
and those supplied with the system. Type "print search paths 
info segments" to see what the current "info segients" iearch 
list- is. For more information about search lists, see the 
search facility commands, and in particular, the 
add_search_paths command description in this manual. 

3-386 AG92-03 



EXAMPLES: 

list_help fortran pll 

fortran io.changes 
fortran-io.status 
pll.changes (pll changes) 
pll.status (pll itatus) 
display pllio error (dpe) 
fortran-abs (fa) 
fortran-common.gi 
fortran7gi (ft.gi) 
fortran (ft) 
pll 
pll abs (pa) 
pll-new features (pll new) 
set-fortran common (s?c) 
fort options.gi (fortran options.gi) 
fortran optimizer.gi -
fortran=:io.gi 

3-387 AG92-03 



list iacl dir (lid) list iacl dir (lid) 

SYNTAX AS A COMMAND: 

lid {path} {User_ids} {-control_args} 

SYNTAX AS AN ACTIVE FUNCTION: 

[lid {path} {User_ids} {-control_args}] 

FUNCTION: lists some or all 
initial access control list 
specified directory. 

ARGUMENTS: 

path 

of the entries on 
(directory initial 

a directory 
ACL) of a 

specifies the directory in which the directory initial ACL 
should be listed. The star convention is allowed" If path is 
-wd, -working dir, or omitted, then the working directory is 
assumed. If ~ath is omitted, no User_ids can be specified. 

User ids 
are access control names of the form Person id.Project id.tag~ 
All access names that match the given User Ids are listed. If 
no User id is specified, the entire initial ACL is listed. 

CONTROL ARGUMENTS: 

-ring Nt -rg N 
identifies the ring number whose directory initial ACL should 
be li sted. I f present, it must be followed by· N (wher,e 
o < N <7). This argument can appear anywhere on the line and 
af1ects the whole line. If this argument is not specified, 
the directory initial ACL of the user's current ring is 
listed. 

-brief, -bf 
suppresses the message "User name not on ACL of path." If lid 
is invoked as an active function, and the supplied User id is 
not on the initial ACL, the null string is returned regardless 
of the -bf control argument. 

ACCESS REQUIRED: The user must have status (s) permission on the 
containing directory. 

3-388 AG92-03 



list iacl dir (lid) list iacl dir (lid) 

NOTES: If the list iacl dir command is invoked without any 
arguments, the entiFe inItial ACL for the working directory is 
listed. 

A directory initial ACL contains 
on directories created in the 
discussion of initial ACLs, see 
Reference Guide. 

the ACL entries to be placed 
specified directory. For a 
"Access Control" in the MPM 

For a description of the matching strategy for User_ids, refer 
to set acl in this manual. 

EXAMPLES: 

The command line: 

lid all runoff .raculty Fred •• 

lists, from the directory initialACL of the all runoff 
directory, all entries ending in Faculty.- and all entries 
with the Person id Fred. 

The command line: 

lid -wd -rg 5 

lists entries in the ring 5 directory initial ACL of the 
working directory. 

3-389 AG92-03 



-----------

SYNTAX AS A COMMAND: 

lis {path} {User_ids} {-control_args} 

SYNTAX AS AN ACTIVE FUNCTION: 

[lis {path} {User ids} {-control_args}] 

FUNCTION: lists some or all of the entries on a segment initisl 
access control list (segment initial ACL) in a specified 
directory. 

ARGUMENTS: 

path 
specifies the directory in which the segment initial ACL 
should be listed. The star convention is allowed. If path is 
-wd, -working dir, or omitted, the working directory is 
assumed. If pith is omitted, no User_ids can be specified. 

User ids 
are access control names of the form Person id.Project id.tag. 
All access names that match the given components are-listed. 
If no User id is specified, the entire segment initial ACL is 
listed. 

CONTROL ARGUMENTS: 

-ring N, -rg N 
identifies the ring number whose segment initial ACL should be 
listed. If present, it must be followed by N (where 0 < N < 
7). This argument can appear anywhere on the line and affects 
the whole line. If this argument is not specified, the 
segment initial ACL of the user's current ring is listed. 

-brief, -bf 
suppresses the message "User name not on ACL of path." If lis 
is invoked as an active function, and the supplied User id is 
not on the initial ACL, the null string is returned rega~dless 
of the -bf control argument. 

ACCESS REQUIRED: The user must have status (s) permission on the 
containing directory. 

3-390 AG92-03 



list iacl_seg (lis) 

NOTES: If list iacl seg (lis) is invoked without any arguments, 
the entire segment initial ACL for the working directory is 
listed. 

A segment initial ACL contains the ACL entries to be placed on 
segments created in the specified directory. For a discussion 
of initial ACLs, see "Access Control" in the MPM Reference 
Guide. 

For a description of" the matching strategy for User_ids, refer 
to the set acl command. 

EXAMPLES: 

The command line: 

lis all runoff .Faculty. Fred 

lists, from the segment initial ACL of the all runoff 
directory, all entries with the Project_id Faculty ~nd the 
entry for Fred.*.*. 

The command line: 

lis -wd -rg 5 

lists entries in the ring 5 segment initial ACL of the working 
directory. 

3-391 AG92-D3 



list not accessible (lnac) list not accessible (lnac) 

-------------------

SYNTAX AS A COMMAND: 

lnac {path} {User_id} {-control args} 

FUNCTION: scans 
to which a 
condition. 

ARGUMENTS: 

path 

a directory and lists segments and directories 
given User id does not have a given access 

is the pathname of the directory to be scanned. If path is 
omitted or -wd is specified, the working directory is scanned. 

User id 
ii an access name. It can have null components. The star 
convention for access names is allowed. See the description 
of set acl in this manual. If User id is omitted, the User id 
of the-user's process is assumed. 

CONTROL ARGUMENTS: 
If no control arguments are specified, all segments and 
directories to which the named user(s) has null access are 
listed. 

-dir mode STR 
lIsts directories to which the named user(s) does not have any 
of the modes specified in STR, where STR can be any or all of 
the letters sma. 

-seg mode STR 
lIsts segments to which the named user{s) does not have any of 
the modes specified in STR, where STR can be any or all of the 

. letters rew. 

ACCESS REQUIRED: The user must have status (s) permission on the 
directory. 

3-392 AG92-03 



---~---------.---

list not accessible (lnac) list not accessible (lnac) 

EXAMPLES: 

lnac >udd>work>Smith 
null Smith.mbx 

lnac >udd>work>Smith -dir mode m 
s index 
null Smith.mbx 
s newindex 
s gary1 
s stuff 

3-393 AG92-03 



list ref names (lrn) list ref names (lrn) - --

SYNTAX AS A COMMAND: 

lrn paths {-control_args} 

FUNCTION: lists the reference 
s~gment; it accepts both 
segment specifications. 

names associated with a specified 
segment numbers and pathnames as 

ARGUMENTS: 

paths 
can be segment numbers or pathnames of segments known to the 
user's process. If path is a segment number, the pathname and 
reference names of the segment are printed. If path is a 
pathname, the segment number (in octal) and the reference 
names of the segment are printed. If a pathname looks like a 
control argument (i.e., if it is preceded by a minus sign) or 
a number, then path should be preceded by -name or -nm. 

CONTROL ARGUMENTS: 

-all, -a 
prints the pathnames and reference names of all known 
segments, as well as the reference names of ring 0 segments. 
The -all control argument is equivalent to -from O. 

-brief, -bf 
suppresses printing of the reference names for the entire 
execution of the command. 

-from N, -fm N 

-to 

allows the user to specify a range of segment numbers. This 
control argument can be used with the -to control argument. 
The pathnames and reference names of the segments in this 
range are printed. If -to is not specified, the highest used 
segment number is assumed. 

allows the user to specify a range of segment numbers. This 
control argument can be used with the -from control argument. 
The pathnames and reference names of the segments in this 
range are printed. If -from is not specified, the segment 
number of the first segment not in ring 0 is assumed, unless 
-all is used. 

3-394 AG92-03 



list ref names (lrn) list ref names (lrn) 

------,----------
NOTES: All of the above arguments (segment specifiers and 

control arguments) can be mixed. For example, in the command 
line: 

lrn 156 -from 230 path_one 

the pathname and reference names of segment 156 and of all 
segments from 230 on are printed. The segment number (in 
octal) and the reference names of path_one are printed. 

In the default condition, when called with no arguments, 
list ref names prints information on all segments that are not 
in rIng TI. 

When a pathname is specified, the segment number by which it 
is known is printed. When a segment number is specified, lrn 
also prints the pathname of the segment. 

3-395 AG92-03 



SYNTAX AS A COMMAND: 

lrt {typel •.• typen} {-control_args} 

FUNCTION: prints a list of all resource types described in a 
resource type description table (RTDT). 

ARGUMENTS: 

typei 
ii the resource type defined in the RTDT for which information 
is to be listed. If no type is specified, all known resource 
types are listed. 

CONTROL ARGUMENTS: 

-no header, -nhe 
omits the column headers. 

-pathname path, -pn path 
lists resource types defined in 
If this control argument is not 
in >system_control_' is used. 

-long, -Ig 

the RTDT specified by path. 
specified, the RTDT residing 

lists the defined attributes for each resource type. 

NOTES: For more information on RTDT, see MAM ~~te~, Order No. 
AK50. 

3-396 AG92-03 



list resources (lr) list resources (lr) 

SYNTAX AS A COMMAND: 

lr {-control_args} 

FUNCTtON: lists groups of resources managed by the Resource Control 
Package (RCP), selected according to criteria specified by the 
user. 

CONTROL ARGUMENTS: 

-acquisitions, -acq I 
lists resources acquired by the user specified by the -user control 
argument. If this control argument is used, -type must also be 
specified. 

-assignments, -asm 
lists resource assignments. 

-awaiting clear 
lists those resources that are awaiting manual clearing. 

-device STR, -dv STR 
lists device resources wi th the name STR. No other resources are 
listed . 

. -logical volume, -Iv 
lists-logical volumes that are currently attached. 

-long, -lg 
prints all the information known about each resource liste'd. If 
this control argument is not supplied" only the name is printed 
for each resource listed. 

-mounts, -mts 
lists resources currently mounted by the process. 

-reservations, -resv 
lists only device and volume reservations. 

-type 8TR, -tp STR 
lists resources of the type STR. See list resource types for 
inf()rma~ion on obtaining the names of resource types:-

I 

I 

-user User id I 
selects-a particular user or group of users for whom resource 
inf6rmation is to be printed. This control argument can be used 
only in conjunction with -acquisitions. The User id can be any 
of the following forms: 

3-397 AG92-03 



I 
I 

list resources (lr) list_resources (lr) 

Person. Project 
specifies a particular Person id and 
combination. 

*.Project 
specifies all users on a specified project. 

*.* 
specifies all users (i.e., all acquired rel30urces are 
listed) . 

free 
specifies all resources in the free pool. 

system 
specifies all resources in the system pool. 

** 
specifies all users plus the free and system pools (i~e., all 
registered resources will be listed). 

If this control argument is not specified, the User id of the user 
invoking list resources is assumed. See "Notes on Access 
Restrictions" below. 

NOTES ON ACCESS RESTRICTIONS: Access to rcp admin is required to 
obtain information on other users. Access to read the PDT of a 
project is required to obtain information for the project, using 
*.Project. 

NOTES: If this command is invoked wi thout any arguments, all 
resources assigned and devices attached to the calling process are 
listed. 

EXAMPLES: In the example below, the user issues the list resources 
command wi th no control arguments. The system responds wi th the 
name of the assigned devices. 

lr 

Device Assignments 
Device tape 05 
Device tape 02 

3-398 



list_resources (lr) list resources (lr) 

------,-------------
In the next example, the user issues the list resources 
command with the -long control argument. The system responds 
with all the information known about each resource listed. 

lr -lg 

Device Assignments 
2 devices assigned 

Device tape_ 05 
State = assigned 
Time = 04/30/76 1316.2 edt Fri 
Disp = retain 
Level = 4 
Model = 500 
Tracks = 9 
Densities = 200 556 800 1600 
Speed = 125 

pevice tape_ 02 
State = assigned 
Time = 04/30/76 1314.7 edt Fri 
Disp = retain 
Le~el = 4 
Model = 500 
Tracks = 9 
Densities = 200 556 800 1600 
Speed = 125 

In the following example list resources is invoked to obtain a 
list of tape volumes for which the user is the accounting 
owner. 

lr -tp tape vol -acQ 
4 resources-of type tape vol acquired by Dahl.GNP 
at 05/10/79 2025.5 mst TRu: 

a-153 
a-022 
u-405 
a-558 

3-399 AG92-03 



list_retrieval_requests (lrr) list_retrieval_requests (lrr) 

-------------------------------
SYNTAX AS A COMMAND: 

lrr {path} {-control_args} 

FUNCTION: lists retrieval requests in the retrieval daemon 
queues. The request identifier and entryname of each request 
are printed. 

ARGUMENTS: 

path 
is the pathname of a 
convention is allowed. 
are selected. If the 
pathnames are selected. 
below. 

request to be listed. The star 
Only requests matching this pathname 
path argument is not specified, all 
Also see the -entry control argument 

CONTROL ARGUMENTS: 

-absolute pathname, -absp 
prints-the full pathname of each selected request, rather than 
just the entryname. 

-admin {User id}, -am {User id} 
selects the requests of all users, 
User id. If the -admin control 
only- the user's own requests 
Required" below. 

-all, -a 

or of the user specified by 
argument is not specified, 

are selected. See "Access 

searches all queues and prints the totals for each non-empty 
queue whether or not any requests are selected from it. This 
control argument is incompatible with the -queue control 
argument. 

-brief, -bf 
suppresses the printing of the state of the request. This 
control argument is incompatible with the -long and -total 
control arguments. 

-entry STR, -et STH 
selects only requests whose entrynames match 5TR. The star 
convention is allowed. Directory portions of request 
pathnames are ignored when selecting requests. This control 
argument is incompatible with the path argument. 

3-400 AG92-03 



list_retrieval_requests (lrr) list retrieval_requests (lrr) 

--------------------
-id 10 

selects only requests whose identifiers match the specified 
IDo 

-long p -lg 
prints all the information pertaining to a retrieval request. 
If this control argument is omitted, only the full pathname of 
the object or subtree to be retrieved is printed. 

-long id, -lgid 
prInts the long form of the request identifier. If this or 
the -long control argument is not specified, the short form of 
the request identifier is printed. 

-position, -psn 
prints the position within its queue of each selected request. 
When used with the -total control argument, it prints a list 
of all the positions of the selected requests. See "Access 
Required" below. 

-queue N, -q N 
searches only queue N. If the -queue control argument is not 
specified, only queue 3 is searched. This control argument is 
incompatible with the -all control argument. 

-total, -tt 
prints only the total number of selected requests and the 
total number of requests in the queue plus a list of 
positions, if the -position control argument is specified. If 
the queue is empty, it is not listed. This control argument 
is not compatible with the -long and -brief control arguments. 

-user User id 
selects- only requests entered by the user specified by 
User ide See "Access Required" below. 

ACCESS REQUIRED: The user must have 0 access to the queue(s) to 
invoke lrr. The user must have r extended access to the 
queue(s), in order to use the -admin, -position, or -user 
control arguments, since it is necessary to read all requests 
in the queue(s) in order to select those entered by a 
specified user. 

3-401 AG92-03 



list_retrieval_requests (lrr) list_retrieval_requests (lrr) 

NOTES: The -total, -brief, and -long control arguments are 
incompatible and cannot be used in the same 
list_retrieval_requests command line. 

The default condition is to list only pathnames for the 
default queue. 

The STR after the -admin or -user control arguments can have 
any of the following forms: 

Person id.Project id 
Person-id.* -
Person-id 
*.Project id 
.Project Td 
*.* -

matches that user only 
matches that person on any project 
same as Person id.* 
matches any user on that project 
same as *.Project id 
same as -admin with no User id 

following 

If no arguments are specified, only the user's own requests 
are selected for listing. Also see the 
enter_retrieval_requests comm~nd in this martual. 

EXAMPLES: To get information about retrieval requests in the 
default queue, user Jones types the command line: 

lrr 

Queue 3: 3 requests. 6 total requests. 

211401 mydir 
211421 myseg 
211463 subtree 

To get all information about retrieval requests in queue 1, 
the user types: 

lrr -lg -q 1 

Queue 1: 

Pathname: 
From time: 
Mode: 

1 request. 27 total requests. 

)udd)Demo)Jones)dump)mydir 
01/16/77 2300.0 edt Thu 
notify previous 

3-402 AG92··03 



list_retrieval_requests (lrr) list_retrieval_requests (lrr) 

To get the total number of retrieval requests in all queues, 
the user types: 

lrr -tt -a 

Queue 1: 2 requests. 15 total requests. 

Queue 3: 0 requests. 39 total requests. 

Note that queue 2, being empty, does not have a total line 
listed. 

3-403 AG92-03 



logout logout 

SYNTAX AS A COMMAND: 

logout {-control_args} 

FUNCTION: terminates a user session and ends communication with 
the Multics system. It signals the finish condition for the 
process; and, after the default on unit for the finish 
condition returns, it closes all open files and destroys the 
process. 

CONTROL ARGUMENTS: 

-hold, -hd 
the user's session is terminated. However, communication with 
the Multics system is not terminated, and a user can 
immediately log in without redialing. 

-brief, -bf 
no logout message 
argument has been 
either. 

is printed, and if 
specified, no login 

the -hold control 
message is printed 

NOTES: See "How to Access the Multics System" in the New 
Programmer's Intro, Order No. AL40. 

3-404 AG92-03 



long_date 

SYNTAX AS A COMMAND: 

SYNTAX AS AN ACTIVE FUNCTION: 

[long_date {dt}] 

FUNCTION: returns a month name, a 
single string in the form 
November 2, 1976). 

ARGUMENTS: 

dt 

day number, and a year as a 
"month day, year" (e.g., 

is any string acceptable to convert_date_to_binary_. The 
default is the current date. 

NOTES: See the MPM Subroutines for a complete description of 
convert_date_to_binary_. 

3-405 AG92-03 



low 

SYNTAX AS AN ACTIVE FUNCTION: 

[low N] 

FUNCTION: returns a specified number 
(lowest) character in the ASCII 
character or 000 octal. 

low 

N of copies of the first 
character set, the NUL 

NOTES: See the description of high in this manual. 

3-406 AG92-03 



lower case lower case 

SYNTAX AS A COMMAND: 

lower_case strings 

SYNTAX AS AN ACTIVE FUNCTION: 

[lower_case strings] 

FUNCTION: returns strings with all uppercase alphabetic 
characters translated to lowercase. 

,ARGUMENTS: 

strings 
is one or more character strings. 

NOTES: Returned strings are separated from each other by a 
space. See the description of upper_case in this manual. 

EXAMPLES: 

The following interactions illustrate use of lower case as an 
active function. 

ioa [lower case "The time zone is MST."] 
the-time zo~e is mst. 

The following interactions illustrate use of lower case as a 
,command. 

lower case The time zone is MST. My home is Phoenix. 
the' tIme zone is mst. my home is phoenix. 

3-407 AG92-03 



Itrim 

SYNTAX AS A COMMAND: 

ltrim strA {strB} 

SYNTAX AS AN ACTIVE FUNCTION: 

[ltrim strA {strB}] 

ltr~m 

FUNCTION: returns a character string trimmed of specified 
characters on the left. 

NOTES: The ltrim command, or active function, finds the first 
character of strA not in strB, trims the characters from strA 
preceding this character, and returns the trimmed result. 
Space characters are trimmed if strB is omitted. 

EXAMPLES: 

string [ltrim 000305.000 0] 
305.000 
string [ltrim" This is it. 
This is it. 

3-408 

"] 

AG92-03 



Iv attached Iv attached 

SYNTAX AS A COMMAND: 

Iv attached Iv name 

SYNTAX AS AN ACTIVE FUNCTION: 

FUNCTION: returns true if the volume specified (i.e., the 
Iv name argument) is attached to the user's process or if the 
voI~me is a public logical volume; otherwise it returns false. 

ARGUMENTS: 

Iv name 
-is the name of the logical volume. 

3-409 AG92-03 



·-------------------_.---

--------

SYNTAX AS A COMMAND: 

mvp key args {-control_args} 

SYNTAX AS AN ACTIVE FUNCTION: 

[mvp key args {-control_args}] 

FUNCTION: allows a user or a group of users to regulate the use 
ofa predefined set of volumes (tape reels, etc.). • 

ARGUMENTS: 

args 
are one or more unique volume identifiers. 

LIST OF KEYWORDS: 

add, a 
adds the specified volumes to the user's data base. 

allocate, al 
taking the arguments in pairs, marks volume argi as allocated 
and associates with it argument arg(i+1) as a -comment about 
the volume. If argi Is an asterisi (*), the oldest free 
volume is withdrawn ind a message identifying the volume is 
printed, or returned in the active function case. 

change, c 
. taking the arguments in pairs, changes the comment of volume 

arg! to arg(!+1). Volumes must be in the allocated state. 

comment, cm 
prints the comment associated with each specified volume. 

delete, d 
deletes the specified volumes from the user's data base. 
Volumes must not be in the allocated state. 

free, f 
frees the specified volumes in the user's data base. 

1 i st, 1 
lists information about the specified volumes, or all volumes 
known to the user if no arguments are supplied. Three control 
arguments can also be supplied as part of the list request. 

3-410 AG92-·03 



They are: 

-free 
list only those volumes that are free. 

-match STR 
list only those volumes whose comment contains STR as a 
substring. 

-no header, -nhe 
iuppress printing of the header. 

print, p . 
prints the pathname of the current volume segment. 

reservc~, r 
reserves the specified volumes. 

test, t 
tests whether the specified volumes are free. If argi is an 
asterisk (*), the oldest free volume is printed, or riturned 
in the active function case. 

In the active function case, test returns "true" if any of the 
specified volumes are free. 

use {path}, u {path} 
specifies the pathname of the manage volume pool 
used by future invocations of mv~ in this 
volumes suffix is assumed. If the pathname is 
user's default volume segment is used. 

segment to be 
process. The 
omitted, the 

NOTES: Normally, a tape reel or disk pack is a volume but any 
other set of. objects, such as library books or portable 
terminals could just as easily be regulated. The data base 
describing the pool is named Person id.volumes and exists in 
the user's home directory. This de1ault can be reset via the 
'use' key described above. Objects can be added to or deleted 
from the pool. Associated with each object in the p~ol is a 
state, a state change date, and a comment. An object can have 
one of three states: free, reserved, or allocated. The 
comment field can be any ASCII string up to 64 characters. 
The comment is intended to describe the contents of the volume 
but can a~ easily describe the attach description that created 
the volume. 

3-411 AG92-03 



master directories (mdirs) master directories (mdirs) 

SYNTAX AS A COMMAND: 

mdirs star names {-control_arg} 

SYNTAX AS AN ACTIVE FUNCTION: 

[mdirs star names {-control_arg}] 

FUNCTION: returns the entrynames or absolute pathnames of master 
directories that match one or more star names. 

ARGUMENTS: 

star names 
are star names to be used in selecting the names to be 
returned. 

CONTROL ARGUMENTS: 

-absolute pathname, -absp 
returni absolute pathnames rather than entrynames. 

NOTES: Only one name per directory is returned; i.e., if a 
master directory has more than one name that matches 
star_name, only the first match found is returned. 

Since each entryname (or pathname) returned by 
master directories is enclosed in quotes, the command 
processor treats each name as a single argument regardless of 
the presence of special characters in the name. 

EXAMPLES: The following interaction illustrates the use of the 
master directories active function. 

string [mdirs >udd>**] 
Multics SysMaint 

3-412 AG92-03 



max max 

SYNTAX AS A COMMAND: 

SYNTAX AS AN ACTIVE FUNCTION: 

FUNCTION: returns the maximum of the numeric arguments passed to 
it. 

EXAMPLES: 

string [max 3.6 1e-3J 
3.6 

3-413 AG92-03 



memo memo 

SYNTAX AS A COMMAND: 

memo {-control_erg} {optional_args} {memo_text} 

FUNCTION: creates and manages an interactive notebook and 
reminder list. 

CONTROL ARGUMENTS: 
Only one control argument can appear on the command line, and 
it must be the first argument. If no control argument 
appears, the rest of the line is used to set a memo. If no 
arguments are specified, mature memos are printed or executed 
and alarms are enabled. 

-pathname path, -pn path 
uses the memo segment specified by the pathname path. The 
memo suffix is assumed. If the segment specified by path does 
not exist, memo attempts to create it. This control argument 
must not be followed by any optional arguments. 

-list, -Is 
lists memos selected by the optional arguments in full detail, 
including their maturity times, text, memo numbers and 
information about the optional arguments (optionil args) used 
when the memos were set. No memos are executed~ 

-print, -pr 
prints the 
arguments. 

text of all memos 
No memos are executed. 

selected by the optional 

-delete, -dl 
deletes all memos selected by the optional arguments. 

-off 

-on 

suppresses all memo alarms, until the next memo -on, memo, or 
memo -brief command. This control argument must not be 
followed by any optional arguments. 

enables memo alarms without printing or executing any nonalarm 
memos. This control argument must not be followed by any 
optional arguments. 

-brief, -bf 
suppresses the message "No memos" if none are found. Mature 
memos are printed or executed and alarms are enabled. This 
control argument must not be followed by any optional 
arguments. 

3-414 AG92-03 



memo memo 

LIST OF OPTIONAL ARGUMENTS: 
can be selected from the following optional arguments. Some 
of the arguments can be used for setting memos; some for 
selecting memos to be printed, listed, or deleted; and others 
for both setting and selecting memos. 

memo number 
s~ecifies which memos are to be selected. The value of 
memo number for each memo is printed when the user types memo, 
mem~--brief, or memo -list. 

-date DT, -dt DT 
ident~fies a time (DT) in a form suitable for input to the 
subroutine convert date to binary (see the description for 
this subroutine in the MPM -Subroutines). The DT is truncated 
to ,midnight preceding the date in which DT falls. If uSed 
while setting a memo, then the truncated DT becomes the 
maturity time of the new memo. If memos are being selected, 
only those memos with maturity times prior to or equal to the 
truncated DT are selected. 

-time DT, -tm DT 
identifies a time (DT) in a form suitable for input to the 
subroutine c6nvert date to binary. This optional argument is 
used in the same ianneF ai the -~ate optional argument above 
except that DT is not truncated. 

-alarm, -al 
if a memo is being set, this specifies that the memo is to be 
an alarm. When mature, it is to be printed or executed 
immediately (or as soon as alarms are enabled) and then 
d~leted. If memos are being selected, this argument selects 
any memos that are alarms. 

-repeat DT, -rp DT 
identifies the interval (where DT is a relative time >= 1 
minute and acceptable to convert date to binary) at which this 
memo' is to appear. This optTonal- argument is used when 
setting a memo. When the memo is mature, an identical memo is 
set with a maturity time that' is DT amount of time in the 
future. 

-invisible, -iv 
. specifies that the 

be printed during 
setting a memo.) 

-call 

memo is never to be mature and will never 
a normal memo print. (Used only when 

if a memo is being set, 
is to be passed to the 

this argument specifies that the memo 
command processor as a command. If 

3-415 AG92-03 



memo memo 

memos are being selected, this argument selects any memos that 
are such calls. 

-match STR 
containing substrings matching all of the 

each STR is a character ~tr1ng). The 'remainder 
line is interpreted a~ the set of the strings 

The maximum number of ~trings tha.t can be 
and the maximum length of any one str~ng is 

selects memos 
strings (where 
of the command 
to be matched. 
specified is 32, 
32 characters. 

MEMO TEXT ARGUMENT: 

memo text 
is the text of the memo being set. 
contain up to 132 characters. 

The text portion can 

NOTES: The memo command makes it possible to use Multics as an 
interactive notebook and reminder list containing memos. The 
user can specify a maturity time for each memo'(a time before 
which the memo will not appear). By use of the alarm feature, 
the user can specify the exact time the memo is to be printed 
on the terminal. Memo~ can also be set that are passed 
directly to the command processor and executed as normal 
Multics command lines. Using these features jointly, the user 
can set a memo that actually performs a specified ~ctlon at a 
specified time by itself rather than merely remioding the user 
to perform the action. Finally, the user can specify that the 
memo is to be repeated ~t regular intervals. 

In the default case, memo maintains its information in the 
segment Person id.memo in the user's home directory. If memo 
is invoked and-such a segment does not exist, memo attempts to 
create and initialize it. Optionally, a different memo 
segment can be specified and used, for example in the user's 
start up.ec. Each memo in the memo segment consists of a text 
porti~n containing up to 132 characters, a maturity date, a 
sequence number (memo number) assigned by the memo command, 
and additional information telling whether the memo is to be 
repeated or not and whether it is to be printed or executed~ 

For the user's convenience, control arguments allow the 
printing, listing, and deletion of memos selected by 
subsequent optional arguments. Memos can be selected by 
number, type, maturity time, and content. Other control 
arguments enable or disable memo alarms. 

3-416 AG92-03 



memo memo 

If a date, time, repeat interval, or match string contains 
embedded blanks, that string must be enclosed in quotes so 
that the command processor passes it to memo as a single 
argument. 

If the -pathname control argument is specified, the argument 
that follows must be the pathname of the memo segment that is 
to be used. If a memo segment is specified by this means, it 
continues to be used for the duration of the user's process, 
unless changed again by the -pathnamecontrol argument. If a 
segment with the specified pathname does not exist, memo 
attempts to create it. 

To set a memo, no control arguments are given. Any of the 
optional arguments except -match and memo number can be used 
to specify the type of memo being set and the time it is to 
mature. If no maturity time or date is specified, the 
maturity time is assumed to be the current ti~e. 

If memo is invoked with no arguments or with only the -brief 
control argument, all mature memos are printed or passed to 
the command processor. Alarms are enabled, and any alarms 
pending are printed or executed. 

If either the -print or -list control argument is specified, 
all memos selected by the optional arguments are printed. The 
contents of the memo segment do not change in any way, and 
me~os that would ordinarily be passed to the command processor 
are printed instead. If no optional arguments are used to 
select which memos are to be printed or listed, all memos are 
printed or listed. If the -date or -time optional arguments 
are specified, only those memos that mature before the 
specified date or time are printed. If the -call argument is 
s~ecified, any such memo is printed. If the -alarm argument 
is specified, any alarm memos are printed. 

If the -delete control argument is used, memos selected by the 
optional arguments are deleted. If no optional arguments have 
been used to specify which memos are to be deleted, none are 
deleted. . 

The -off control argument is useful for times when the 
user does not wish any extraneous output, such as when using 
the Multics runoff command. The command line memo -on can be 

3-411 AG92-03 



memo memo 

given to reenable alarms after they have been turned off, or 
it can be used at login or new proc time to enable alarms 
without printing or executing othe~ mature ~emos~ Memo alarms 
are enabled by memo, memo -brief and memo -on commands, only. 

EXAMPLES: In the following sequence of memo examples, inplit 
typed by the user is preceded by an exclamation mark (1). 
Ready messages from the system are omitted. First, the user's 
memo segment is initialized and is demonstrated to have no 
mature memos. Four memos are set and then listed, first in 
their entirety, then alarm memos, then only mature memos, then 
all memos maturing before a specified date. Finally, the only 
mature memo is deleted, and its successful deletion is 
demonstrated. The time of the example is 5/15/73 1729. 

memo 
memo: Creating )udd)Demo)Jones)Jones.memo. 

memo 
No memos. 

memo get bookshelves 
memo -al -dt 5/23/73 -rp 2weeks Staff meeting at two. 
memo -call -al -dt 6/1/13 -rp 1month list -dtem -rv 
memo -tm "Thursday 9am" -rp 1week Weekly report due Friday. 

memo -Is 
1) Tue 05/15/73 1129 get bookshelves 
2) Wed 05/23113 0000 Staff meeting at two. (alarm, "2weeks") 
3) Fri 06/01/73 0000 list -dtem -rv (call, alarm, "1month") 
4) Thu 05/11173 0900 Weekly report due Friday. ("1week") 

memo -Is -al 
2) Wed 05/23/73 0000 Staff meeting at two. (alarm, "2weeks") 
3) Fri 06/01/73 0000 list -dtem -rv (call, alslrm, "1month fU

) 

memo 
1) get bookshelves 

3-418 AG92-03 



memo 

memo -pr -dt 5/30/73 
get bookshelves 
Staff meeting at two. 
Weekly report due Friday. 

memo -dl -match book 

memo 
No memos. 

memo 

3-419 AG92-03 



merge merge 

FUNCTION: provides a generalized file merging capability, which 
is specialized for execution by user-supplied parameters. 

NOTES: The basic function of the merge is to read one or more 
input files of records, which are ordered according to the 
values of one or more key fields (i.e., the files hsve been 
sorted using the sort command), merge (collate) those records 
according to the values of those key fields, and write a 
single file of ordered (or "ranked") records. 

For a detailed description of 
commands, refer to the Multics 
Order No. AW32. 

3-420 

both the sort and merge 
Sort/Merge Reference Manual, 

AG92-03 



merge_ascii (ma) merge_ascii (ma) 

SYNTAX AS A COMMAND: 

ma paths {-control_args} 

FUNCTION: merges two or more related ASCII text segments. 

ARGUMENTS: 

paths 
are pathnames of segments to be merged as automatically as 
possible. Up to six segments can be merged, including those 
preceded by the-edit control_argument. 

CONTROL ARGUMENTS: 

-original path, -orig path 
identifies path a~ the pathname. of a segment containing the 
original version of the text. The proper original is the most 
recent common ancestor of the texts being merged. Overlapping 
changes, even if ~dentical, cause edit mode to be entered. 

-old original path, -old orig path 
identifies path as the pathname of a segment antecedent to the 
most recent common ancestor of the texts being merged and 
allows the automatic picking up of identical changes present 
in all the texts being merged. 

-output file path, ~of path 
put the merged output text in the segment named path. 

-edit path 
merges the segment named path 
mode is entered each time 
specified segment. 

in a nonautomatic manner. Edit 
a modification is found in the 

-minlines N 
specifies the mlnlmum number of lines that must be identical 
for merge aSCll to assume blocks of text in different segments 
are identIcal. The default value of of minlines is 2. 

-minchars N 
specifies the minimum number of characters that 
identical for merge ascii to assume blocks of 
different segments are identical. The default 
minchars is 25. 

3-421 

must be 
text in 

value of 

AG92-03 



merge_ascii (rna) merge_8scii (rna) 

NOTES: The merge ascii program is typically used to merge texts 
that have been-independently modified by several users. If an 
original version of the text is available, and if the user 
desires, merge ascii performs the merge automatically, 
requiring user intervention only when overlapping 
modifications are detected. When user intervention is 
required, merge ascii displays line-numbered blocks of text 
and then enters-edit mode allowing the user to choose lines 
from any text or insert new lines. 

When blocks of text are displayed, each line is preceded by a 
text identifier and a line number. The text identifier A is 
reserved for the original, whether supplied or not. The 
identifiers B-G are assigned to the texts being merged in the 
order in which their pathnames are encountered on the command 
line. The identifier M is used for the merged output, if 
printed while in edit mode. 

The equal convention is allowed; equal processing is based on 
the first path argument in the command invocation. 

Either the -original or -old original (but not both) control 
argument may be used to enabIe automatic merging. If neither 
is supplied, edit mode is entered each time differences are 
found in the segments being merged. The -old original control 
argument should be used judiciously, only if-appropriate, and 
the user fully understands the relationships between the texts 
being merged. 

EXAM PLES: 

The command line: 

ma -orig pathA pathS pathC -of pathM 

automatically merges the contents of pathS and pathC into 
pathM. Because an original version, pathA, . is supplied, all 
nonoverlapping changes in pathS and pathC are placed in pathM. 
Only overlapping changes are displayed on the user's terminal 
and cause edit mode to be entered. (See "Notes on Edit 
Requests" below.) 

3-422 AG92-03 



merge_ascii (ma) merge_ascii (ma) 

The command line: 

rna pathS pathC -of pathM 

performs a nonautomatic merge on the contents of pathS and 
pathC. All differences are displayed and cause edit mode to 
be entered. This type of merging is typically used when there 
is no "original" segment. 

The command line: 

rna -orig pathA -edit pathS -edit pathC -of pathM 

also performs a nonautomatic metge, . but provides information 
to the user about the contents of the original text. In this 
case, although an original segment exists, the user wants 
complete control over what goes into the output segment. 

The command line: 

rna -original pathA pathS -edit pathC -of pathM 

performs a merge in which changes found in pathC cause edit 
mode to be entered. Nonoverlapping changes in pathS are 
picked up and automatically placed in the output segment. 
This combination of control arguments is useful when the uSer 
is familiar with the changes present in pathB but wishes to 
review changes present in pathC before picking them up. 

The command line: 

rna -old_orig pathA pathS pathC -of pathM 

merges pathS and pathC automatically under the assumption that 
pathA is an earlier version of the text than the most recent 
common ancestor of pathB and pathC. Ch?nges present in both 
pathS and pathC are picked up automatically. The 
-old original control argument can also be used to obtain an 
auto~atic merge if pathA is a true original but some changes 
have been appl:~j to both pathS and pathC. If the 
-old original con~rol argument is used and pathA contains 
changes not present in both pathB and pathC, then the 
resulting output sepment is nearly always useless to the user. 

NOTES ON EDIT REQUESTS: 
current block in each 

In any invocation of edit 
text is just the block 

3-423 

mode the 
of lines 

AG92-03 



merge_ascii (rna) merge_ascii (rna) 

previously displayed. The current block in text M is 
initially empty, and is grown as the user selects or inputs 
lines. 

The print (p) and copy (k) requests may address any lines in 
any text (A to M) known to merge ascii. The delete (d) 
request can only be applied to the ~urrent block in text M, 
and has the effect of undoing all edit requests made since 
changes were last displayed. 

The edit requests are described below. In the syntax of the 
edit requests, <text id> is the lowercase letter corresponding 
to the text identifier used by merge ascii; <line no> is a 
line number in the text segment. -Line numbers- can te 
specified as "<" to address the first line or as ">,, to 
specify the last line of a current block. 

<text id>k 
copy current block from specified text (e.g., bk copies 
current block from text B). 

<text id><line no>k 
copy specifIed line from specified text (e.g., b~)k copies line 
5 from text B). 

<text 1d><line no>,<line no>k 
copy specifIed lines-from specified text (e.g., b4,7k copies 
lines 4 through 7 from text B). 

<text id>p 
prInt current block from specified text (e.g., bp prints 
current block from text B). 

<text id><line no>p 
prInt specIfied line from specified text (e.g., b6p prints 
line 6 from text B). 

<text id><line no>,<line no>p 
prInt speci1ied line 1rom specified text (e.g., b12,16p prints 
lines 12 through 16 from text B). 

<text id>d 
delete the current block in specified text (e.g., md deletes 
the current block in text M). 

input 
enter input mode. 

3-424 AG92-03 



----------------
merge_ascii (rna) merge_ascii (rna) 

return from input mode to edit mode. 

go 
exit editor and continue comparison. 

quit 

e 

x 

abort merge and return to command level. If this request is 
given during a merging procedure, all work is lost. Work is 
not saved unless merging is done from the beginning to the end 
of the segments. 

execute rest of line as a Multics ~ommand line. 

display identifiers, current line numbers, and pathnames of 
each text. 

help 
print a list of the edit requests and a brief explanation of 
each ~ne. 

NOTES:· Multiple edit requests, delimited by blanks, can be given 
on .a single request line. However, the quit, go, input, and e 
requests must not be followed by other requests. 

3-425 AG92-03 



min min 

SYNTAX AS A COMMAND: 

SYNTAX AS AN ACTIVE FUNCTION: 

FUNCTION: returns the minimum of the numeric arguments passed to 
it. 

EXAMPLES: 

string [min 3 -4] 
-4 

3-426 AG92··03 



minus 

SYNTAX AS A COMMAND: 

minus numA numB 

SYNTAX AS AN ACTIVE FUNCTION: 

[minus numA numB] 

FUNCTION: returns the result of numA minus numB. 

EXAMPLES: 

string [minus 3.5 3] 
0.5 

3-421 

minus 

AG92-03 



minute 

SYNTAX AS A COMMAND: 

minute {dt} 

SYNTAX AS AN ACTIVE FUNCTION: 

[minute {dt}] 

minute 

FUNCTION: returns the one- or two~digit number of a minute of 
the hour, from 0 to 59. 

ARGUMENTS: 

dt 
is a date-time 
convert ... date to binary • 
current-time-is-used. -

in a form acceptable to 
If no argument is specified, the 

NOTES: See the descriptions of time, hour, date_time, and date 
in this manual. 

EXAMPLES: 

str ing [minute) 
13 

3-428 AG92-03 



\ 

mod mod 

SYNTAX AS A COMMAND: 

mod numA numB 

SYNTAX AS AN ACTIVE FUNCTION: 

[mod numA numB] 

FUNCTION: returns the remainder of numA divided by numB (numA 
modulo numB). 

EXAMPLES: 

string [mod 4. 3] 
1 
string [mod 4.5 3.5] 
1 

3-429 AG92-03 



month month 

SYNTAX AS A COMMAND: 

month {dt} 

SYNTAX AS AN ACTIVE FUNCTION: 

[month {dt}] 

FUNCTION: returns the one- or two-digit number of a month of the 
year, from 1 to 12. 

ARGUME NTS: . 

dt 
is a date-time 
convert date to binary 
current-month is used.-

in a form acceptable to 
If no argument is specified, the 

EXAMPLES: The following example enters an absentee request for 
deferred execution to start at the beginning of the next 
month. 

ear a b s _s e g .- tim e [d ate [mo nth 1 rna nth] /1 ] 

The arguments to the month active function indtcate that "1 
month" should be added to the current date to get the date 
from which the month is to be calculated. The "/1" (when 
concatenated with the calculated month) forms a date string, 
e.g., "2/1". 

3-430 AG92-03 



month name 

SYNTAX AS A COMMAND: 

month name {dt} 

SYNTAX AS AN ACTIVE FUNCTION: 

[month name {dt}] 

month name 

FUNCTION: returns the full name of a month of the year. 

ARGUMENTS: 

dt 
is a date-time in a form acceptable to covert date to binary . 
If n~ argument is specified, th~ current mont~ is ~se~. -

EXAMPLES: 

string [month name 08/09/79] 
August 

3-431 AG92-03 



move (mv) move (mv) 

SYNTAX AS A COMMAND: 

move path11 {path2! •.. path1~ path2~} {-control_arg} 

FUNCTION: causes a designated segment or multisegment file 
(along with its access control list (ACL) and all names) to be 
moved to a new position in the storage system hierarchy. 

ARGUMENTS: 

path1i 
is-the pathname of a segment or multisegment file to be moved. 
The star convention is allowed. 

path2,! 
is the pathname to which path1i is to be moved. The equal 
convention, is allowed. If th~ last path2 segment is not 
specified, path1n is moved to the working directory and given 
the entryname path1~. 

CONTROL ARGUMENTS: 

-acl 
copies the ACL. 

-all, -a 
copies multiple names and ACLs. 

-brief, -bf 
suppresses the' messages "Bit count inconsistent with current 
length ••. " and "Current length is not the same as records 
used •••. " 

-chase 
copies the targets of links that match path1. (See "Notes".) 

-long 
prints warning messages as necessary. This is the default. 

-name, -nm 
copies multiple names. 

-no acl 
does not copy the ACL. This is the default. 

'3-432 AG92-03 



move (mv) move (mv) 

-no chase 
does not copy the targets of links that match path1. (See 
"Notes".) 

-no name, -nnm 
does not copy the multiple names. This is the default. 
~: 

ACCESS REQUIRED: Read access is required for path1i. Status and 
modify permission are required for the direct~ry containing 
path1i. Status, modify, and append permission are required 
for the directory containing path21. 

NOTES: When an entry is moved, it is given all of the names that 
the path1i argument already has plus the entryname specified 
in the path2! argument. 

The default for chasing links depends on path1. If path1 is a 
star name, links are not chased by default, if path1 is not a 
star name, links are chased. 

Since two entries in a directory cannot have the same 
entryname, special action is taken by this command if the 
creation of a segment or multisegment file introduces a 
duplication of names within the directory. If an entry with 
the entryname path2i already exists in the target directory 
and this entry has an alternate name, the conflicting name is 
removed and the user is informed of this action; the move then 
takes place. If the entry having the entryname path2i has 
only one name, the entry must be deleted in order to rimove 
the name. The user is asked if the deletion should be done; 
if the user answers "no", the move does not take place. 

If pathi is protected by the safety switch, the user is asked 
whether-path! is to be deleted after it has been copied. 

The initial ACL of the target directory has no effect on the 
ACL of the segment or multisegment file after it has been 
moved. The ACL remains exactly as it was in the original 
directory. 

3-433 AG92-03 



move (mv) 

EXAMPLES: The command line: 

move alpha >Ooe>= >Ooe>beta b 

moves alpha from the current 
directory >Ooe, keeping the name 
the directory >Ooe to the current 
names b and beta. 

3-434 

move (mv) 

working directory to the 
alpha, and moves beta from 

working directory with the 

AG92-03 



SYNTAX AS A COMMAND: 

mar request_ids {-control_args} 

FUNCTION: moves a request from one absentee queue to another. 
The request is always placed at the end of the target queue. 

ARGUMENTS: request_ids must be one or more of the following-

path 
is the· full or relative pathname of an absin or absentee input 
segment. The star convention is allowed. 

-entry STR, -et STR 
identifies the request to be moved by the entryname portion of 
the absin segment pathname. The star convention is allowed. 

-id 1D 
identifies the request to be moved by the given ID. See the 
MPM Reference Guide for a description of request identifiers. 

CONTROL ARGUMENTS: 

-all, -a 
searches all queues except the target queue. This control 
argument is not compatible with -foreground and -queue control 
arguments. 

-brief, -bf 
suppresses messages telling that a particular request id was 
not found or . which requests were moved when using star names 
or -all. 

-foreground, -fg 
specifies that the foreground queue contains the requests to 
be moved. This control argument is not compatible with -all 
or -queue control arguments. 

-queue N, -q N 
specifies that absentee queue N contains the requests to be 
moved. If not specified, all queues are searched. This 
control argument is not compatible with -all or -foreRround 
control arguments. 

-sender STR 
specifies that only requests from sender STR should be moved. 
One or more request identifiers must be given. 

3-435 AG92-03 



-to queue N, -tq N 
ipecifies which queue to move the request to. (Required) 

-user User id 
is a chiracter string specifying the name of the submitter of 
the request to be moved, if not equal to the group id of the 
process. User id can be of the form Person id.Project id, 
Person id, or .~roject ide This control argumeKt is primaFily 
for the operator and administrators. Both rand d extended 
access to the queue are required. This control argument 
causes the command to use privileged message segment 
primitives that preserve the original identity of the 
submitter. The AIM ring 1 privilege is needed to preserve the 
original AIM attributes: If ring 1 privilege is not present 
the AIM attributes of the user eiecuting mar are used. The 
default is that only requests entered by the user executing 
mar are moved. 

ACCESS REQUIRED: The user must have "0" access to move a user 
owned absentee request, and "adros" access to move another 
user's absentee request. 

NOTES: When star names are not used and a single request id 
matches more than one request in the queue(s) searched, n~ne 
of the requests are moved. However, a message is printed 
telling how many matching requests there are. 

A complete description of User id and AIM attributes can be 
found in the MPM Reference Guidi. 

3-436 AG92-03 



'-
move daemon_request (mdr) 

SYNTAX AS A COMMAND: 

mdr request_identifiers {-control_args} 

FUNCTION: moves a request from 
The move can be within the 
request type to another. The 
end of the target queue. 

REQUEST IDENTIFIERS: 

path 

one I/O daemon queue to another. 
same request type or from one 
request is always placed at the 

is the full o~ relative pathname of the request to be moved~ 
The star convention is allowed to match the entrynames of 
segments. 

-entry STR, -et STR 
identifies the re~uest to be moved by STR, the entryname 
portion of the input segment pathname. The ~tar convention is 
allowed. 

-id ID 
identifies the request to be moved specified by its request 
identifier. 

CONTROL ARGUMENTS: 

-request type STR, -rqt STR 
speci1ies that the request moved is found in the queue(s) for 
the request type identified by STR. If this control argument 
is not specified, ,the default request type is "printer". 
Request types can be listed by the print_request_types 
command. 

-queue N, -q N 
specifies that queue N for the specified request type contains 
the request to be moved, where N is an integer specifying the 
number for the queue. If this control argument is omitted, 
only the default queue for the request type is searched. This 
control argument is incompatible with the -all control 
argument. 

-all, -a 
searches all queues for the requests to be moved. This 
control argument is incompatible with the -queue control 
argument. The target queue is not searched by the -all 
control argument. 

3-437 AG92-03 



move daemon_request (mdr) 

-to request type STR, -to rqt STR 
specifie; that the request should be moved to request type 
STR. If this control argument is not specified, the original 
request type is used. The target request types must be of the 
same generic type as the original request type. 

-to queue N, -to q N 
Is a required-control argument specifying which Queue to move 
the request to. The default queue is 3. 

-brief, -bf 
suppresses messages telling the user that a particular request 
identifier was not found or that requests were moved when 
using star names or the -all control argument. 

-user User id 
specifiis the name of the submitter of the requests to be 
moved. The default is to move only requests entered by the 
user executing the command. The User id can be 
Person id. Project id, Person id, or • Project id .-. This control 
argume~t is priiarily for -the operator a~d administrators. 
Both rand d extended access to the queue are required. This 
control argument causes the command to use privileged message 
segment primitives that preserve the original identity of the 
submitter. If the process has access isolation mechanism 
(AIM) ring one privilege, the AIM attributes of the original 
submitter are preserved. Otherwise, the AIM attributes of the 
current process are used. 

ACCESS REQUIRED: The user must have 0 extended access to the 
queue from which the request is being taken, and a access to 
the queue to which the request is being moved. The user must 
have rand d extended access to move a request owned by 
another user (see the description of the -user control 
argument above). 

NOTES: When star names are not used and a single request 
identifier matches more than one request in the queue(s) 
searched, none of the requests are moved. However, a message 
is printed telling how many matching requests are found. 

See the MPM Reference Guide for a description of request 
identifiers. 

3-438 AG92-·03 



EXAMPLES: To move from every queue, to queue 1, in the default 
request type all requests where the last component of the 
pathname matches "list", the user types: 

mdr -et *.list -to_q 1 -all 

Daemon request mydir.list moved from queue 2 to queue 1. 
Daemon request myseg.list moved from queue 3 to queue 1. 

3-439 AG92-03 



move dir (mvd) 

SYNTAX AS A COMMAND: 

mvd source dir {target_dir} {-entry_type_keys} {-control_args} 

FUNCTION: moves a directory and its subtree, including all of 
the associated attributes, to another point in the hierarchy. 

ARGUMENTS: 

source dir 
is Ihe pathname of the directory to be moved. 

target dir 
is -the new pathname for source dire If the entryname is 
different from one already on source dir, it is added to the 
existing names. If target dir is not-specified, source dir is 
moved to the working directory and given the same entryname. 

entry type keys 
co;trol- what type of storage system entry is moved. If no, 
entry type key is specified, all entries are moved. If any 
entry-type-key is specified, only those entry types specified 
are moved.- The keys are: 

-branch, -br 
-directory, -dr 
-file, -f 
-link, -lk 
-multisegment file, -msf 
-non null link, -nnlk 
-segment,--sm 

If one or more 
-directory key, 
followed. 

entry type keys are specified, but not the 
the subtree of source dir will not be 

, -

CONTROL ARGUMENTS: 

-brief, -bf 
suppresses the printing of warning messages such as "Bit count 
inconsistent with current length" and "Current length is not 
the same as records used". 

-force 
continues execution when target dir already 
asking the user. If the -force control 
specified, the user is queried. 

3-440 

exists , without 
argument is not 

AG92-03 



move dir (mvd) move dir (mvd) 

-replace, -rp 
deletes the contents of target dir existing before the copying 
begins. If target dir is non=existent or empty, this control 
argument has no effect. The default is to append the contents 
of the source directory to the target directory if it already 
exists. 

ACCESS REQUIRED: Status and modify permission are required for 
source dir and all of the directories in its tree, and its 
containing directory. If target dir does not exist, append 
permission is required for its containing directory. If it 
does exist, modify and append permission for target dir are 
required. This command does not force access. -

NOTES ON ACCESS PROVISION: The access control list associated 
with source dir is moved to target_dire 

NOTES ON EXISTENCE OF target dir: If target dir already exists, 
the user is so informed and asked if processing should 
continue unless the -force control argument is specified. If 
target dir is contained in or contains source dir, an 
appropriate error message is printed and control is-returned 
to command level. Otherwise, the contents of source dir 
either are appended to or replace the contents of target dire 
(See the -replace control argument.) -

NOTES ON USE OF STAR AND EQUAL CONVENTIONS: The star and equal 
conventions can be used for source dir and target dir 
respectively. The star convention matches only directory 
names and moves them. Matching names associated with other 
storage types are ignored. 

NOTES ON NAME DUPLICATIONS: Since two entries in a directory 
cannot have the same entryname, this command takes special 
action if the entryname of the entry being copied already 
exists in the directory specified by target dire If the entry 
is a di~ectory, it is handled in the- same fashion as 
duplication between source dir and target dir is handled, 
unless the existing entry in target dir -is not also a 
directory. In this case the entryname duplication is treated 
the same as non-directory entries. The procedure for 
non-directory entries is the standard system technique. If 
the -replace control argument is specified or target dir does 
not exist, name duplication will not occur. See -the copy 
command in this manual. 

3-441 AG92-03 



move dir (mvd) move dir (mvd) 

NOTES ON LINK TRANSLATION: Links are translated; that is, if 
there are references to a source directory in a link pathname, 
the link pathname is changed to refer to the target directory. 
See also the copy, move, and copy_dir commands in this manual. 

If part of the tree 
translation may occur. 
in the part of the 
corresponding entry 
translation of the link 
cause the link to become 

is not moved, problems with link 
If the link in the source dir tree was 
tree not moved, ther~- may be no 
in the target dir tree. Hence, 

(presumably originally non-null) will 
nUll. 

EXAMPLES: If the working directory is )udd)Project)Smlth, the 
command line: 

mvd source dir new)target_dir -rp 

moves the directory named )udd)Project)Smith)source dir and 
its subtree to )udd)Project)Smith)new)target dir replacing its 
contents with the contents of source dire -

3-442 AG92-03 



move_quota (mq) move_quota (mq) 

SYNTAX AS A COMMAND: 

{path~ quota_change~} 

FUNCTION: allows a user to move records of quota between two 
directories, one immediately inferior to (contained in) the 
other. 

ARGUMENTS: 

pathl 
is the pathname of a directory. The quota change takes place 
between this branch and its containing directory. A pathi of 
-wd or -working directory specifies the working directory. 
The star convention is not allowed. 

quota changei 
is-the number of records to be moved between the immediately 
superior (containing) directory quota and the pathi quota. 
The quota change argument can be either a positive or negative 
number. -If it is positive, the quota is moved from the 
containing directory to pathi; if it is negative, the move is 
from pathl to the containing-directory. 

NOTES: The user must have modify permission on both the 
directory specified by pathl and its containing directory. 

After the change, the quota on pathi must be greater than or 
equal to the number of records used In pathl unless the change 
makes the quota zero. 

If the change makes the quota on pathi zero, there must be no 
immediately inferior directory with nonzero quota, and the 
records used and the record-time product for pathl are 
reflected UP to the superior directory. 

If pathi is an upgraded directory (its 
than !he access· class of its 
quota changei must be positive. Quota 
to the con!aining directory of an 
deleting the upgraded directory. 

3-443 

access class is greater 
containing directory), 

can only be moved back 
upgraded directory by 

AG92-03 



--,--,----
move_quota (mq) 

-----, 

Quota cannot be moved between a master directory and its 
containing directory. It can, however, be moved between a 
master directory and an inferior directory as described above. 
See the set_mdir_quota command in .!iAM PrQject, Order No. AK51, 
for information on changing the quota on' a master directory. 

EXAMPLES: 

The command line: 

mq >udd>m>Smith>subl_dir 1000 

adds 1000 records to the quota on >udd>m>Smith>subl dir and 
subtracts 1000 records from the quota on >udd>m>Smith. 

The command line: 

mq >udd>m>Smith>subl_dir>sub2_dir -50 

subtracts 50 records 
>udd>m>Smith>subl dir>sub2 dir 
quota on >udd)m)Smith>subl-dir. 

3-444 

from the 
and adds 50 

quota on 
records to the 

AG92-·03 



msfs msfs 

SYNTAX AS A COMMAND: 

msfs star names {-control_arg} 

SYNTAX AS AN ACTIVE FUNCTION: 

[msfs star names {-control_arg}] 

FUNCTION: returns the entrynames or absolute pathnames of 
multisegment files that match one or more star names. 

ARGUMENTS: 

star names 
are star names to be used in selecting the names to be 
returned. 

CONTROL ARGUMENTS: 

-absolute pathname, -absp 
returns absolute pathnames rather than entrynames. 

NOTES: Only one name per multisegment file is returned; i.e., if 
a multisegment file has more than one name that matches 
star_name, only the first match found is returned. 

Since each entryname (or pathname) returned by msfs is 
enclosed in quotes, the command processor treats each name as 
a single argument regardless of the presence of special 
characters in the name. 

3-445 AG92-03 



msfs msfs 

EXAMPLES: The following interaction illustrates the use of the 
msfs active function. 

pwd 
>udd>Apple>Jones 
Is -a 

Segments = 7, Lengths = 6. 

r w 0 empty_seg 
re 1 test 
r w 1 test.list 
r w 1 test.p11 
re 1 prog 
r w 1 prog.list 
r w 1 prog.p11 

Multisegment-files = 2, Lengths = 770. 

r w 513 
r w 257 

prog.output 
prog.data 

Directories = 2. 

sma prog stuff 
sma documents 

Links = 3. 

prog.temp2 
prog.temp1 
junk 

string [msfs **J 
prog.data prog.output 
string [msfs *.output] 
prog.output 

>udd>Apple>Jones)temp seg 2 
>udd>Apple>Jones)terop-seg-1 
>udd>Apple>Jones>empty_seg 

3-446 AG92··03 



nequal nequal 

SYNTAX AS A COMMAND: 

nequal numA numB 

SYNTAX AS AN ACTIVE FUNCTION: 

[nequal numA numB] 

FUNCTION: returns true if numA is numerically equal to numB; 
.other'wise it returns false. 

NOTES: See the description for other commands and active 
functions pertaining to logical operations and comparing 
numeric data in this manual. 

EXAMPLES: 

string. [nequal 5 5.0] 
true 
string [nequal 001 1 ] 
tr'ue 
string [nequal one 1 ] 
Error 

3-447 AG92-03 



new fortran new fortran 

SYNTAX AS A COMMAND: 

new_fortran path {-control_args} 

FUNCTION: invokes the FORTRAN compiler to translate a segment 
containing the text of a FORTRAN source program into a Multics 
object segment. 

ARGUMENTS: 

path 
is the pathname of a FORTRAN source segment. The fortran 
suffix is assumed if not present. However, the j~ortran suffix 
must be the last component of the name of the source segment 0 

CONTROL ARGUMENTS: 

-brief, -bf 
shortens all error messages written to the user output I/O 
switch and combines error messages as described. under "Notes 
on Error Diagnostics" below. The same error messages appear 
in the listing segment in the long form. 

-brief table, -bftb 
generates a partial symbol table consisting only of a 
statement table that gives the correspondence between source 
line numbers and object locations. The table appea.rs in the 
symbol section of the object segment produced for the 
compilation. This control argument does not significantly 
increase the size of the object program. 

-card 
specifies that the source segment is in card-image format and 
that all uppercase letters not occurring within 
character-string constants are mapped to their lowercase form. 
See Multics FORTRAN, Order No. AT58 for a description of 
card-image format. 

--check, -ck 
is used for syntactic checking of a FORTRAN program. The code 
generation phase of the compiler is not executed and no object 
segment is created. Any requested listing segment will be 
created, but it contains only the source and the error 
messages from the compiler. No symbol table and rio assembly 
listing are produced. 

3-448 AG92--03 



new fortran nevI fortran 

-fold 
maps all uppercase letters not occurring within 
cha~acter-string constants to their lowercase form. This 
control argument is useful for segments that are in free 
format but in uppercase. 

-line- numbers, -In 
ignores line numbers on each input source line. If this 
control argument is not specified, the line numbers for each 
source line are printed. Note that the line numbers are 
printed only if they are input with the source. See Multics 
FORTRAN, Order No. AT58 for information on line numbers. 

-list, -Is 
produces a complete source program listing including an 
assembly-like listing of the compiled program. Use of the 
-list control argument significantly increases compilation 
time and should be avoided whenever possible by using the -map 
control argument. The -map control argument produces 
sufficient information to allow the user to debug most 
problems online. See "Notes on Listing" below. 

-map 
produces 
program. 

a partial source program listing of the compiled 
See "Notes on Listing" below. 

-non relocatable, -nrlc 
inhibits the generation of relocation information. If this 
control argument is specified, the resulting object segment 
cannot be bound. 

-optimize, -at 
performs the following global optimizations: removal of 
common subexpressions, removal of invariant expressions from 
loops, strength reduction, test replacement, constant 
propagation, and removal of assignments made dead by other 
optimizations. Various local optimizations are also 
performed. For further explanation of the above global 
optimizations, see the Multics FORTRAN Users' Guide, Order 
No. CC70. These optimizations tend to reduce the eiecution 
time and size of the object program. Use of this control 
argument can significantly increase compilation time. 

-protile, -pf 
generates additional code to meter the execution of individual 
statements. Each statement in the object program oontains an 
additional instruction to increment an internal counter 
associated with that statement. After a program has been 
executed, the profile command can be used to print the 
execution counts. 

3-449 AG92-03 

I 



new fortran new fortran 

-relocatable, -rIc 
generates relocation information and includes it in the object 
segment- This is the default. 

-safe optimize, -safe ot 
innibits some code movement out of 100Pd by the opt~mizer. 
All other optimizations implied by the -optimiz? control 
argument are performed. Removal of invariant operations from 
portions of a loop that are not always executed when the loop 
is entered is inhibited if these operatioris could possibly 
cause the fixedoverflow, underflow, or overflow conditions to 
be signalled. Assignments and operations that could cause the 
zerodivide or error conditions to be signalled are never 
removed from the abovementioned portions ot a loop whether-;::>r 
not the -safe optimize control argument is .specified. For 
most programs,- the -optimize control argument always gives 
correct results. The -safe optimize control argument is 
necessary only if the -optimize control argulJlent causes a 
valid program to signal the fixedoverflow, underflow, or 
overflow conditions that were not signalled when unoptimized. 
For further information, see the Multics FORTRAN Users' Guide, 
Order No. CC70. -- ---

-severityN, -svN 
does not print error messages whose severity is less than N 
(where N is 1, 2, 3, or 4) alth~ugh all errors are written to 
the listing. If this control argument is not specified, a 
severity level of 1 is assumed. For a description of severity 
levels, see "Notes on Error Diagnostics" below. 

-subscriptrange, -aubrg 
produces extra code for all subscripted array references to 
check for subscript values exceeding the declared dimension 
bounds. Such an error causes the subscriptrange condition to 
be Signalled. This control argument must not be used with 
-optimize .. 

-table, -tb 
generates a full symbol table for use by symbolic debuggers. 
The symbol table is part of the symbol section of the object 
program and consists of two parts: a statement table that 
gives the correspondence between source line numbers and 
object locations, and a name table that contains information 
about names actually referenced by the source program. This 
control argument usually causes the object segment to become 
significantly longer. It may not produce the desired results 
if -optimize is also specified. 

-time, -tm 
prints a table after compilation giving the time (in secondf3), 

3-450 AG92-·03 



new fortran new fortran 

the number of page faults, and the size of the temporary area 
for each phase of the compiler. 

-time ot 
prints a table after optimization giving the time in seconds 
and the number of page faults for each phase of the optimizer. 

NOTES: The only result of invoking the new fortran command 
without control arguments is to generate an object segment. 

A successful compilation produces an object segment and leaves 
it in the user's working directory. If an entry with that 
name already exists in the directory, its access control list 
(ACL) is saved and given to the new copy of the object 
segment. Otherwise, the user is given re access to the 
segment with ring brackets v,v,v where v is the validation 
level of the process. 

If the user specifies the -map or -list control arguments, the 
new fortran (;ommand creates a listing segment in the working 
diiictory and gives it "a name consisting of the entryname 
portion of the source segment with a suffix of list rather 
than fortran (e.g., a source segment named test.fortran has a 
listing segment named test.list). The ACL is as described for 
the object segmetit except that the user is given rw acceSs to 
it when newly created. Previous copies of the object segment 
and the listing segment are replaced by the new segments 
created by the compilation. 

For· information on Multics FORTRAN, refer to the Multics 
FORTRAN, Order No. AT58 and to the Multics FORTRAN Users' 
Guide, Order No. CC70. For information on using the-FAST 
subsystem to compile FORTRAN source 'code, refer to Multics 
FAST Subsystem Users' Guide, Order No. AU25. 

NOTES ON ERROR DIAGNOSTICS! The new FORTRAN compiler can 
diagnose and issue messages for about 200 different errors. 
These messages are graded in severity as follows: 

Warning only. Compilation continues without ill effect. 

2 Correctable error. The compiler remedies the situation and 
continues, probably without ill effect. For example, a 
missing end statement can be and is corrected by simulating 
the appending of an end statement to the source to complete 

3-451 AG92-03 



new fortran new fortra.!1 

the program. 
however. 

This does not guarantee correct results, 

3 An uncorrectable but recoverable error. That is, the 
program is definitely in error and cannot be corrected but 
the compiler can and does continue executing up to the 
point just before code is generated. Thus~ any further 
errors are diagnosed. If the error is detected during code 
generation, code generation is completed although the cOde 
generated is not correct. After the compilation, a message 
is printed to the error output I/O swi tch to inform th(~ 
user that an error of severi ty 3 has occurred.> 

4 An unrecoverable error. The compiler cannot continue 
beyond this error. The message is printed and then control 
is returned to the new fortran command. The command writes 
an abort message to the error output I/O switch and returns 
to its caller. -

Error messages are written to the user output I/O switch as 
they occur. Thus, a user can quit the compilation immediately 
when an error occurs. As indicated above, the user can set 
the severity level so as not to be bothered by minor error 
messages. The user can also specify the , .. brief control 
argument so that messages are shorter. An example of an error 
m-essage in its long form is: 

ERROR 42, severity, on line 107 
Ado statement cannot be the second part of a logical if 

statement. 

If the -brief control argument is specified, the user sees 
instead: 

ERROR 42, severity 3 on line 107 
do 

The -severity 4 control argument suppresses this message 
entirely. 

Once a given error message is printed on the user's terminal 
in the long form, all further instances of that error message 
are printed in the short form. 

3-452 AG92-03 



----,---
new fortran new fortran 

If a listing is being produced, all error messages, regardless 
of severity, appear in the listing segment in their long form. 

NOTES ON SEVERITY: The new fortran command 
following severity values to be used by the 
function when the "fortran" keyword is used: 

Value Meanins 

No compilation yet or no error. 
Warning. 
Correctable error. 
Fatal error. 
Unrecoverable error. 

associates the 
severity active 

o 
1 
2 
3 
4 
5 Bad control arguments or could not find source. 

NOTES ON LISTING: The listing created by the new fortran command 
begins with header lines specifying the complete pathname of 

'the source segment, the version of the FORTRAN compiler used, 
the date and time the compilation occurred, and the control 
arguments specified by the user. 

After the header lines, the following information is provided 
for "each program unit in the compilation: 

• a line-numbered, printable ASCII 
unit. The compiler provides line 
not. 

listing of the program 
numbers if the user does 

• an alphabetized table of all names, except statement 
labels, used in the program unit. Each name appears with 
its attributes, such as mode, storage class, location, and 
type of name, and a list of lines on which it is used. If 
the code generator is not invoked, all names, except 
statement labels, appear in this table. 

• an alphabetized table of all" names, except statement 
labels, declared in the program unit but not used. If the 
name is not a member of a common block, that name is not 
allocated storage. Each name appears with its attributes 
and a list of lines on which it is declared. 

• a table, in ascending numeric order, of all statement 
labels in the program unit. Each label appears with the 
type of statement with which it is associated, its location 

3-453 AG92-03 



new fortran new fortran 

if it is associated with an executable statement, the line 
on which it is declared, and a list of lines on which it is 
used. 

• a table associating each executable source line with an 
object location. The table is arranged by ascending SOurce 
line number. This table is only available if the code 
generator is invoked. 

• a list of error messages for the program unit. All error 
messages appear in their long form. 

• an assembly-like listing of the object segment. Each 
executable statement appears followed by the executable 
instructions generated for that statement. Each 
instruction appears on a line with the octal representation 
of the instruction word, and an assembly-like 
representation of the word including operation code, 
pointer-register, and modifier mnemonics. All offsets in 
the assembly representation are decimal numbers. If the 
address field of the instruction uses the Ie 
(self-relative) modifier, the absolute text location 
corresponding to the relative address is printed in the 
remarks field of the line. If the reference is to a 
constant or name declared by the user, the name is printed 
in the remarks field of the line. 

The assembly-like listing is only produced if the code 
generator is invoked and the user specifies the -list 
control argument. Producing an assembly list significantly 
increases compilation time and the size of the listing 
segment. 

After the above information is put in the listing segment, the 
following general information concerning the object segment is 
appended if the code generator is invoked: 

• an assembly-like listing of all constants allocated in the 
object segment. This is provided only if the user 
specifies the -list control argument. 

• a table showing the storage requirements for the object 
segment. This table gives the size and offset for each 
section of the object segment. The size of the stack frame 
of the object segment is also given. 

• an alphabetized list of all entry point names defined in 
this compilation. Each entry point name appears with the 

3-454 AG92-03 



new fortran new fortran 

object segment offset for its external entry point, the 
program unit in which it appears if it is not a major entry 
point, the line on which it appears, and all external 
references in other program units that are resolved by it. 

• an alphabetized list of all external references made that 
are not resolved within this compilation, including the 
lines on which they are referenced. 

• an alphabetized list of all 
which each is declared, and 
declaration. 

common blocks, the lines on 
the declared length for each 

• a list of all source segments used in the compilation. 
This includes the source segment specified on the command 
line as well as any include files used. 

3-455 AG92-03 



SYNTAX AS A COMMAND: 

FUNCTION: destroys the user's current process and creates a new 
one, using the control arguments given initially with the 
login command, and the optional argument to the new proc 
command itself. Just before the old process is destroyed~ the 
"finish" condition is signalled. After the default on unit 
returns, all open files are closed. The search rules, I/O 
attachments, and working directory for the new process are as 
if the user had just logged in. 

CONTROL ARGUMENTS: 

-authorization STH, -auth STR 
to create the new process at authorization STR, where STR is 
any authorization acceptable to the convert authorization 
subroutine. (See the convert authorization subroutine in the 
MPM Subroutines.) The authorization must be less than or 
equal to both the maximum authorization of the process and the 
access class of the terminal. The default is to create the 
new process at the same authorization. 

NOTES: If the user's initial working directory contains a 
segment named start up.ec, and the user did not log in with 
the -no start up control argument, new_proc causos the command 
line: - -

to be automatically issued in the new process. This feature 
can be used to initialize per-process static variables. 

3-456 AG92-·03 



ngreater ngreater 

SYNTAX AS A COMMAND: 

ngreater numA numB 

SYNTAX AS AN ACTIVE FUNCTION: 

[ngreater numA numB] 

FUNCTION: returns true if numA is numerically greater than numB; 
otherwise it returns false. 

EXAMPL:E:S: 

string [ngreater 5 8] 
false 
string [ngreater9 4] 
true 

3-457 AG92-03 



nless nless 

SYNTAX AS A COMMAND: 

nless numA numB 

SYNTAX AS AN ACTIVE FUNCTION: 

[nless numA numB] 

FUNCTION: returns true if numA is numerically less than numB; 
otherwise it returns false. 

EXAMPLES: 

string [nless 8 4] 
false 
string [nless 4 8] 
true 
string [nless -5 -3] 
true 

3-458 AG92-03 



nonmaster directories (nmdirs) nonmaster directories (nmdirs) 

SYNTAX AS A COMMAND: 

nmdirs star names !-control_arg} 

SYNTAX AS AN ACTIVE FUNCTION: 

[nmdirs star_names !-control_arg}] 

FUNCTION: returns the entrynames or absolute pathnames of 
directories that are not master directories that match one or 
more star names. 

ARGUMENTS: 

star names 
are star names to be used in selecting the names to be 
returned. 

CONTROL ARGUMENTS: 

-absolute pathname, -absp 
returns absolute pathnames rather than entrynames. 

NOTES: Only one name per directory is returned; i.e., if a 
directory has more than one name that matches star_name, only 
the first match found is returned. 

Since each entryname (or pathname) returned by 
nonmaster directories is enclosed in quotes, the command 
processor treats each name as a single argument regardless of 
the presence of special characters in the name. 

3-459 AG92-03 



nonmaster directories (nmdirs) nonmaster directories (nmdirs) 

EXAMPLES: The following interaction illustrates the use of the 
nonmaster directories active function. 

pwd 
)udd)Apple)Jones 
Is -a 

Segments = 7, Lengths = 6. 

r w 0 empty_seg 
re 1 test 
r w 1 test.list 
r w 1 test .. p11 
re 1 prog 
r W 1 prog'tlist 
r w 1 prog.p11 

Multisegment-files = 2, Lengths = 770. 

r w 513 
r w 257 

prog~output 
prog~data 

Directories = 2. 

sma prog stuff 
sma documents 

Links = 3. 

prog.temp2 
prog. temp1 
junk 

string [nmdirs *] 
documents prog_stuff 

>udd>Apple>Jones>temp_seg_2 
>ud d > Appl e > J one s > temp _ s e,g_1 
>udd>Apple>Jones>empty_seg 

3-460 AG92-03 



-------------
.no save on disconnect no save on disconnect 

SYNTAX AS A COMMAND: 

no save on disconnect 

FUNCTION: disables proc~ss preservation across hangups in the 
user's process, causIng the process to log itself out 
automatically if its terminal channel hangs up. 

NOTES: This command is only meaningful if process preservation 
was in effect for the process at login time, either by default 
or because the -save on disconnect control argument was 
specified on the login command line. 

3-461 AG92-03 



nondirectories (nondirs) nondirectories (nondirs) 

SYNTAX AS A COMMAND: 

nondirs star names {-control_argJ 

SYNTAX AS AN ACTIVE FUNCTION: 

[nondirs star_names {-control_argJ] 

FUNCTION: returns the entrynames or absolute pathnames of 
segments, multlsegment files, and links that match one or more 
star names. 

ARGUMENTS: 

star names 
are star names to be used in selecting the names to be 
returned. 

CONTROL ARGUMENTS: 

-absolute pathname, -absp 
returns absolute pathnames rather than entrynames., 

NOTES: Only one name per entry is returned; i.e., if a segment, 
multisegment file, or link has more than one name that matches 
star_name, only the 'first match found is returned. 

Since each entryname (or pathname) returned by nondirectories 
is enclosed in quotes, the command processor treats each name 
as a single argument regardless of the presence of special 
characters in the name. 

3-462 AG92-03 



nondirectories (nondirs) nondirectories (nondirs) 

EXAMPLES: The following interaction illustrates the use of the 
nondirectories active function. 

! 

pwd 
)udd)Apple)Jones 
Is -a 

Segments = 7, Lengths 

r w 0 empty_seg 
re 1 test 
r 'v 1 test.list 
r·w 1 test.p11 
re 1 prog 
r w 1 prog.list 
r w 1 prog.p11 

Multisegment-files = 
r w 513 prog.output 
r w 257 prog.data 

Directories = 2. 

sma prog stuff 
sma documents. 

Links = 3. 

prog.temp2 
prog.temp1 
junk 

= 

2, 

'string [nondirs prog.*] 

6. 

Lengths = 770. 

)udd)Apple)Jones)temp seg 2 
)udd)Apple)Jones)temp-seg-1 
)udd)Apple)Jones)empty_seg 

prog.p11 prog.list prog.data prog.output prog.temp1 
prog.temp2 

string [nondirs *] 
prog test ,empty_seg junk 

3-463 AG92-03 



nonfiles nonfiles 

SYNTAX AS A COMMAND: 

nonfiles star names {-control_arg} 

SYNTAX AS AN ACTIVE FUNCTION: 

[nonfiles star_names {-control_argJ] 

FUNCTION: returns the entrynames or absolute pathnames of 
directories and links that match one or more star names. 

ARGUMENTS: 

star names 
are star names to be used in selecting the names to be 
returned. 

CONTROL ARGUMENTS: 

-absolute pathname, -absp 
returns absolute pathnames rather than entrynames. 

NOTES: Only one name per entry is returned; i.e., if a directory 
or link has more than one name that matches star_name, only 
the first match found is returned. 

Since each entryname (or pathname) returned by nonfiles is 
enclosed in quotes, the command processor treats each name as 
a single argument regardless of the presence of special 
characters in the name. 

3-464 AG92-03 



nonfiles nonfiles 

EXAMPLES: The following interaction illustrates the use of the 
nonfiles active function. 

pwd 
)udd)Apple)Jones 
1s -a 

Segments = 7, Lengths = 6. 

r w 0 empty_seg 
re 1 test 
r w 1 test.list 
r w' 1 test.p11 
re 1 prog 
r w 1 prog.list 
r w 1 prog. p11 

Multisegment-files = 2, Lengths = 770. 

r w 513 
r w 257 

prog.output 
prog.data 

Directories = 2. 

sma prog stuff 
sma documents 

Links = 3". 

prog.temp2 
prog. temp1 
junk 

string [nonfiles *] 
documents prog_stuff junk 

)udd)Apple)Jones)temp seg 2 
)udd)Apple)Jones)temp-seg-1 
)udd)Apple)Jones)empty_seg 

AG92-03 



nonmsfs nonmsfs 

SYNTAX AS A COMMAND: 

nonmsfs star names {-control_arg} 

SYNTAX AS AN ACTIVE FUNCTION: 

[nonmsfs star names {-control_arg}] 

FUNCTION: returns the entrynames or absolute pathnames of 
segments, directories, and links that match one or more star 
names. 

ARGUMENTS: 

star names 
are star names to be used in selecting the names to be 
returned. 

CONTROL ARGUMENTS: 

-absolute pathname, -absp 
returni absolute pathnames rather than entrynames. 

NOTES: Only"one name per entry is returned; i.e., if a segment, 
directory, or link has more than one name that matches 
star_name, only the first match found is returned. 

Since each entryname (or pathname) returned by nonmsfs is 
'enclosed in quotes, the command processor treatf3 each name as 
a single argument regardless of the presenee of special 
characters in the name. 

3-466 AG92-03 



nonmsfs nonmsfs 

EXAMPLES: The following interaction illustrates the use of the 
nonmsfs active function. 

pwd 
)udd)Apple)Jones 
Is -a 

Segments ~ 7, Lengths = 6. 

r w 0 empty_seg 
re 1 test 
r w 1 test.list 
r w 1 test.pl1 
re 1 prog 
r w 1 prog.list 
r w 1 prog. p11 

Multisegment-files = 2, Lengths = 770. 

r w 513 
r w 257 

prog.output 
prog.data 

Directories = 2. 

sma prog stuff 
sma documents 

Links = 3. 

prog.temp2 
prog. temp1 
junk 

)udd)Apple)Jones)temp seg 2 
)udd)Apple)Jones)temp-seg-1 
)udd)Apple)Jones)empty_seg 

string [nonmsfs prog.*] 
prog.p11 prog.list prog.temp1 prog.temp2 
string' [nonmsfs *] 
prog test empty_seg documents prog_stuff junk 

3-467 AG92-03 



nonnull links (nnlinks) nonnull links (nnlinks) 

SYNTAX AS A COMMAND: 

nnlinks star names {-control_arg} 

SYNTAX AS AN ACTIVE FUNCTION: 

[nnlinks star_names l-control_argJ] 

FUNCTION: returns the entrynames or absolute pathnames of links 
for which the target entry exists that match one or more star 
names. 

ARGUMENTS: 

star names 
are star names to be used in selecting the names to be 
returned. 

CONTROL ARGUMENTS: 

-absolute pathname, -absp 
returns absolute pathnames rather than entrynames. 

NOTES: Only one name per link is returned; i.e., if a link has 
more than one name that matches star_name, only the first 
match found is returned. 

Since each entryname (or pathname) returned by nonnull links 
is enclosed in quotes, the command processor treats each name 
as a single argument regardless of the presence of special 
characters in the name. 

3-468 AG92-03 



nonnull links (nnlinks) nonnull links (nnlinks) 

EXAMPLES: The following interaction illustrates the use of "Ghe 
nonnull links active function. 

pwd 
)udd)Apple)Jones 
Is -a 

Segments = 7, Lengths = 6. 

r w 0 empty_seg 
re 1 test 
r w 1 test.list 
r w 1 test.p11 
re 1 prog 
r w 1 prog.list 
r w 1 prog.p11 

Multisegment-files = 
r w 513 prog.output 
r w 257 prog.data 

Directories = 2. 

sma prog stuff 
sma documents 

Links := 3. 

prog.temp2 
prog. temp1 
junk 

string [nnlinks **] 
junk 

2, Lengths = 770. 

)udd)Apple)Jones)temp seg 2 
)'udd)Apple)Jones)temp=seg_1 
)udd)Apple)Jones)empty_seg 

3-469 AG92-03 



nonsegments (nonsegs) nonsegments (nons9gs) 

SYNTAX AS A COMMAND: 

nonsegs star_names {-control_arg} 

SYNTAX AS AN ACTIVE FUNCTION: 

[nonsegs star_names {-control_arg}] 

FUNCTION: returns the entrynames or absolute pathnames of 
directories, multisegment files, or links that match one cr 
more star names. 

ARGUMENTS: 

star names 
are star names to be used in selecting the names to be 
returned. 

CONTROL ARGUMENTS: 

-absolute pathname, -abep 
returns absolute pathn-ames rather than entrynames. 

NOTES: Only one name per entry is returned; i.e., if a 
directory, multisegment file, or link has more than one name 
that matches star name, only the first match found is 
returned. 

Since each ent~yname (or pathname) returned by nonsegments is 
enclosed in quotes, the command processor tre·ats each name as 
a single argument regardless of the presence of special 
characters in the name. 

3-470 AG92-03 



nonsegments (nonsegs) nonsegments (nonsegs) 

EXAMPL.ES: The following interact ion illustrates the use of the 
nonsegments active function. 

pwd 
)udd)Apple)Jones 
ls -a 

Segments = 7, Lengths = 6. 

r w 0 empty_seg 
re 1 test 
r w 1 test. list 
r w 1 test.p11 
re 1 prog 
r w 1 prog.list 
r w 1 prog.p11 

Multisegment-files = 2, Lengths = 770. 

r w 513 prog.output 
r w 257 prog.data 

Directories = 2. 

sma prog stuff 
sma documents 

Links = 3.' 

prog.temp2 
prog. temp1 
junk 

)udd)Apple)Jones)temp seg 2 
)udd)Apple)Jones)temp-seg-1 
)udd)Apple)Jones)empty_seg 

string [nonsegs prog*.**] 
prog.data prog.output prog_stuff prog.temp1 prog.temp2 

3-471 AG92-03 



nonzero files (nzfiles) nonzero files (nzfiles) 

SYNTAX AS A COMMAND: 

nzfiles star names l-control_argJ 

SYNTAX AS AN ACTIVE FUNCTION: 

[nzfiles star_names {-control_argJ] 

FUNCTION: returns the entrynames or absolute pathnames of files 
(segments and mul~isegment files) with a nonzero bit count 
that match one or more star names. 

ARGUMENTS: 

star name.s 
are star names to be used in selecting the names to be 
returned. 

CONTROL ARGUMENT: 

-absolute pathname, -absp 
returns absolute pathnames rather than entrynames. 

NOTES: Only one name per file is returned; i.e., if a file has 
more than one name that matches star_name, only the first 
match found is returned. 

Since each entryname (or pathname) returned by nonzero files 
is enclosed in quotes, the command processor treats eacK name 
as a single argument regardless of the presence of special 
characters in the name. 

3-472 AG92-03 



nonzero files (nzfiles) nonzero files (nzfiles) 

EXAMPLES: The following interaction illustrates the use of the 
nonzero files active function. 

pwd 
)udd)Apple)Jones 
Is -a 

Segments = 7, Lengths = 6. 

r w 0 empty_seg 
re 1 test 
r w 1 test.list 
r w 1 te"st. p11 
re 1 prog 
r w 1 prog.list 
r w 1 prog.p11 

Multisegment-files = 

r w 513 prog.output 
r w 257 p:rog.data 

Directories = 2. 

sma prog stuff 
sma documents 

Links = 3. 

prog.temp2 
prog.temp1 
junk 

string [nzfiles *] 

2, 

prog test 
string [nzfiles prog.*] 

Lengths = 770. 

)udd)Apple)Jones)temp seg 2 
)udd)Apple)Jones)temp-seg-1 
)udd)Apple)Jones)empty_seg 

prog.p11 prog.list prog.data prog.output 

3-473 AG92-03 



nonzero msfs (nzmsfs) nonzero msfs (nzmsfs) 

SYNTAX AS A COMMAND: 

nzmsfs star names {-control_arg} 

SYNTAX AS AN ACTIVE FUNCTION: 

[nzmsfs star names l-control_arg}] 

FUNCTION: returns the entrynames or absolute pathnames of 
multisegment files with a nonzero bit count that match one or 
more star names. 

ARGUMENTS: 

star names 
are star names to be used in selecting the names to be 
returned. 

CONTROL ARGUMENTS: 

-absolute pathname, -absp 
returns absolute pathnames rather than entrynames. 

NOTES: Only one name per msf is returned; i.e., if a 
multisegment file has more than one name that matches 
star_name, only the first match found is returned. 

Since each entryname (or pathname) returned by nonzero msfs is 
enclosed in quotes, the command processor treats. each-name as 
a single argument regardless of the presence of special 
characters in the name. 

3-474 AG92-03 



nonzero msfs (nzmsfs) nonzero msfs (nzmsfs) 

EXAMPLES: The following interaction illustrates the use of the 
nonzero msfs active function. 

pwd 
)udd)Apple)Jones 
Is -a 

Segments = 7, Lengths = 6. 

r w 0 empty_seg 
re 1 test 
r w 1 test.list 
r w 1 test.p11 
re 1 prog 
r w 1 prog.list 
r w 1 prog.p11 

Multisegment-files = 2, Lengths = 770. 

r w 513 
r w 257 

prog.output 
prog.data 

Directories = 2. 

sma prog stuff 
sma documents 

Links = 3. 

prog.temp2 
prog.temp1 
junk 

string [nzmsfs **] 
prog.data prog.output 

)udd)Apple)Jones)temp seg 2 
)udd)Apple)Jones)temp-seg-1 
)udd)Apple)Jones)empty_seg 

3-475 AG92-03 



nonzero_segments (nzsegs) 

SYNTAX AS A COMMAND: 

nzsegs star names {-control_arg} 

SYNTAX AS AN ACTIVE FUNCTION: 

[nzsegs star_names {-control_arg}] 

FUNCTION: returns the entrynames 
segments with a nonzero bit count 
names. 

ARGUMENTS: 

star names 

nonzero_segments (nzsegs) 

or absolute pathnames of 
that match one or more star 

are star names to be used in selecting the names to be 
returned. 

CONTROL ARGUMENTS: 

~absolute pathname, -absp 
returns absolute pathnames rather than entrynamel3. 

NOTES: Only one name per segment is returned; i.e., if a segment 
has more than one name that matches star_name, f:>nly the first 
match found is returned. 

Since each entryname (or pathname) returned by 
nonzero segments is enclosed in quotes, the command processor 
treats -each name as a single argument regardless of the 
presence of special characters in the name. 

3-476 AG92-·03 



nonzero_segments (nzsegs) nonzero_segments (nzsegs) 

EXAMPLES: The following interaction illustrates the use of the 
nonzero_segments active function. 

pwd 
)udd)Apple)Jones 
Is -a 

Begments = 7, Lengths 

r w 0 empty_seg 
re 1 test 
r w 1 test.list 
r w 1 test.p11 
re 1 prog 
r w 1 prog.list 
r w 1 prog. p11 

Multisegment-files = 
r w 513 prog.output 
r w 257 prog.data 

Directories = 2. 

sma prog stuff 
sma documents 

JJinks = 3. 

prog.temp2 
prog. temp1 
junk 

string [nzsegs *] 
prog test 

= 

2, 

6. 

Lengths = 770. 

)udd)Apple)Jones)temp seg 2 
)udd)Apple)Jones)temp-seg-1 
)udd)Apple)Jones)empty_seg 

3-477 AG92-03 



not 

SYNTAX AS A COMMAND: 

not str 

SYNTAX AS AN ACTIVE FUNCTION: 

[not str] 

not 

FUNCTION: returns false if str is equal to true; true if str is 
equal to false; otherwise prints an error message. 

3-478 AG92·-03 



null links null links 

SYNTAX AS A COMMAND: 

null links star names {-control_arg} 

SYNTAX AS AN ACTIVE FUNCTION: 

[null links star names {-control arg}] 

FUNCTION: returns the entrynames or absolute pathnames of links 
for which the target does not exist that match one or more 
star names. 

ARGUMENTS: 

star names 
are star names to be used in selecting the names to be 
returned. 

CONTROL ARGUMENTS: 

-absolute pathname, -absp 
. returns absolute pathnames rather than entrynames. 

NOTES: Only one name per link is returned; i.e., if a link has 
more than one name that matches star_name, only the first 
match found is returned. 

Since each entryname (or pathname) returned by null links is 
enclosed in quotes, the command processor treats eacfi name as 
a single argument regardless of the presence of special 
characters in the name. 

3-479 AG92-03 



null links null links 

EXAMPLES: The following interaction illustrates the use of the 
null links active function. 

pwd 
)udd)Apple)Jones 
Is -a 

Segments = 7, Lengths = 6. 

r w 0 empty_seg 
re 1 test 
r w 1 test.list 
r w 1 test.p11 
re 1 prog 
r w 1 prog.list 
r w 1 prog.p11 

Multisegment-files= 2, Lengths = 770. 

r w 513 prog.output 
r w 257 prog.data 

Directories = 2. 

sma prog stuff. 
sma documents 

Links = 3. 

prog.temp2 
prog.temp1 
junk 

>udd>Apple)Jones)temp_seg_2 
>udd>Apple>Jones>temp seg 1 
>udd>Apple>Jones>empti sel 

string [null links prog.temp*] 
prog.temp1 prog.temp2 

3-480 AG92-03 



octal (oct) octal (oct) 

SYNTAX AS A COMMAND: 

oct values 

SYNTAX AS AN ACTIVE FUNCTION: 

[oct values] 

FUNCTION: returns one or more values in octal. 

ARGUMENTS: 

value 
is a value to be processed. The last character of the value 
indicates its type. Acceptable types are binary (b), 
quartenary (q), octal (0), hexadecimal (x), or unspecified 
(u). Any valid PL/I real value is allowed. The absence of 
any specifier means decimal. The unspecified value is limited 
to 8 characters. 

EXAMPLES: 

"' string [octal 1024] 
2000 

3-481 AG92-03 



on on 

SYNTAX AS A COMMAND: 

on conditions handler com line {-control args} 
subject_com_line-

SYNTAX AS AN ACTIVE FUNCTION: 

[on conditions handler com line {-control_args} 
subject_com_lineJ 

FUNCTION: establishes a handler for a specified set of 
conditions, executes an imbedded command line with this 
handler in effect, and then reverts the handler. The handler 
is another imbedded command line to be ex~cuted if the 
condition is signalled. 

The active function returns true if any 
conditions are signalled during the 
subject com_line, false otherwise. 

ARGUMENTS: 

conditions 

of the specified 
Hxecution of 

is a list of condition names separated by commas to be trapped 
by the on command. 

handler com line 
is toe command line to be executed when one of the conditions 
contained in the list of condition names is raised. If 
handler com line contains spaces or other command language 
characters,-it must be enclosed in quotes. If no command is 
to be executed when a condition is raised, handler com line 
must be given as "". 

subject com line 
is tfie ~ommand line to be executed under the control of on. 
The subject_corn_line consists of the remaining arguments. 

CONTROL ARGUMENTS: 
must appear before subject_corn_line. 

-brief, -bf 
suppresses the comment printed when a condition occurs. 

3-482 AG92-03 



on on 

-long, -lg 
prints a detailed message describing the condition raised, if 
one is available. 

-restart, -rt 

-cl 

continues execution of the subject com line after execution of 
handler com line, or if -cl is also specified, after the start 
command-is executed. 

establishes a new command level after the execution of 
handler com line. The state of subject com line is preserved. 
This control argument is not allowed for the on active 
function. 

-exclude STR, -ex STR 
prevents on from trapping the conditions given in STR. If 
more than one condition is listed, condition names are 
separated by cOmmas. This control argument is useful when 
handling the any_other condition. 

NOTES: The handler com line is a single argument, and must be 
quoted if it contaIns spaces or other command language 
characters, The subject com line consists of the remaining 
arguments on the line and should be quoted if it contains 
parenthesis, brackets, or semicolon. The handler is only in 
effect while subject com line is being executed. After 
executing handler com line~ the on command returns nonlocally, 
thus aborting tEe -execution of subject com line, unless 
-restart has been specified. The standard -default error 
handler is in effect during the execution of handler com line. 

The message produced by the -long control argument is the same 
as the message printed by the reprint error command. The 
-brief and -long control arguments are mutually exclusive. 

See the MPM Reference Guide for a list of standard system 
conditions. 

3-483 AG92-03 



on on 

EXAMPLES: 

The command line: 

on command error "pwd; Is" -bf ws node la 

does a walk subtree starting at the node directory, listing 
the access of the working directory. When the list acl (la) 
command fails, for example, because of insufficient access, 
the pathname and contents of the working directory are printed 
and the user returns to command level since -restart is not 
specified. 

The command line: 

on any_other -ex quit, program_interrupt ,mme2 "ec dump" -,lg 
myprog 

executes the myprog command. If any condition 
quit, program interrupt, and mme2 condition is 
executes the -"ec dump" command, after printing 
explanation of the condition raised. 

The command line: 

on quit,mme2 db -bf -rt testcom 

except the 
raised, on 
a detailed 

executes the testcom command but responds to quits and breaks 
set in testcom by invoking debug. The control arguments -rt, 
causing execution of testcom to continue after the user quits 
out of debug, and -bf, suppressing a warning message when one 
of the specified conditions is signalled, apply to the on 
command. 

In an exec com, the command line: 

on linkage_error "ec linkerr" ec recurse 

calls a recursive entry point in the exec com to continue 
execution, but with a linkage error handler in effect. When 
linkage error is signalled auring the course of running 
recurse:ec, that exec com is aborted and linkerr.ec is run. 

3-484 AG92-03 



on on 

The exec com &if control line: 

&if [on command error "" -bf -rt command_name] 
&then &quit -

executes the command command name. If the command error 
condition is raised, the exec com being executed is termInated 
after completing the execution of the command. The on command 
does not print any message in this example; restarting the 
command error condition will print a message. 

3-485 AG92-03 



or or 

SYNTAX AS A COMMAND: 

SYNTAX AS AN ACTIVE FUNCTION: 

FUNCTION: returns true if any tf arg is equal to true; otherwise 
it returns false. If any tf afg does not have the value true 
or false, an error message i~ printed. 

3-486 AG92·-03 



overlay (ov) overlay (ov) 

SYNTAX AS A COMMAND: 

ov paths {-control args} 

FUNCTION: reads several ASCII segments and writes on the 
user output I/O switch output that is the result of 
supi~imposing print positions from each segment. 

ARGUMENTS; 

paths 
are the pathnames of input segments. 

CONTROL ARGUMENTS: 

-page length N, -pI N 
sets the page length of the output. If this control argument 
is not given, a page length of 60 is used. 

-indent N, -in N 
indents the print positions of an input segment N columns on 
output. This control argument only affects the path 
immediately preceding it. If this control argument is not 
specified, an indent of 0 is used. 

NOTES: Because the overlay command uses the printer conversion 
programs, control characters are removed from input files 
except for newline (NL), backspace (BS), vertical tab (VT), 
and formfeed (FF). 

If identical print positions containing the same characters 
are superimposed, a boldface type results. By following input 
segm~nts with the -indent control argument, the user creates 
output containing columns of text. 

3-481 AG92-03 



page_trace (pgt) page_trace (pgt) 

SYNTAX AS A COMMAND: 

pgt {N} {-control_args} 

FUNCTION: prints a recent history of page faults and other 
system events within the calling process. 

ARGUMENTS: 

N 
prints the last N system events (mostly page faults) recorded 
for the calling process. If N is not specified, all the 
entries in the system trace list for the calling process are 
printed. Currently, there is room for approximately 300 
entries in the system trace array. 

CONTROL ARGUMENTS: 

-from STR, -fm STR 
searches the trace array for a user marker matching STR. If 
one is found, printing begins with it; otherwise 7 printing 
begins with the first element in the array. 

-long, -lg 
prints full pathnames where appropriate. The default is to 
pr int only en,trynames. 

,-no header, -nhe 
suppresses the header that names each column. The default is 
to print the header. 

-output switch swname, -osw swname 
writis all output on the I/O switch named swname, which must 
already be attached and open for stream output. The default 
is to write all output on the user_output-I/O s~litch. 

-to STR 
stops printing if a user marker matching STR is found. The 
default is to print until the end of the array. If both -from 
and -to are specified, the Crom marker is assumed to occur 
before the to marker. 

3-488 AG92-03 



page_trace (pgt) page_trace (pgt) 

NOTES ON OUTPUT FORMAT: The first column of output describes the 
type of trace entry. An empty column indicates that the entry 
is for a page fault. The second column of output is the real 
time, in milliseconds, since the previous entry's event 
occurred. The third column (printed for page faults only) is 
the ring number in which the page fault occurred. The fourth 
column of output contains the page number for entries, where 
appropriate. The fifth column gives the segment number for 
entries, where appropriate. The last column is the entryname 
(or pathname) of the segment for entries, where appropriate. 

NOTES: Since it is possible for segment numbers to be reused 
within a process, and since only segment numbers (not 
entrynames or pathnames) are kept in the trace array, the 
entrynames and pathnames associated with a trace entry may be 
for previous uses of the segment numbers, not the latest ones. 
In fact, the entry and pathnames printed are the current ones 
appropriate for the given segment number. 

For completeness, events occurring while inside the supervisor 
are also listed in the trace. The interpretation of these 
events sometimes requires detailed knowledge of the system 
structure; in particular, they may depend on activities of 
other users. For many purposes, the user will find it 
appropriate to identify the points at which the supervisor Has 
entered and exited and ignore the events in between. 

Typically, any single invocation of a program does not induce 
a page fault on every page touched by the program, since some 
pages may still be in PTimary memory from previous uses or use 
by another process. It may be necessary to obtain several 
traces to fully identify the extent of pages used. 

A count value (N) and either the -from or -to control argument 
cannot be specified in the same invocation of the page_trace 
command. 

3-489 AG92-03 



path 

SYNTAX AS A COMMAND: 

path path 

SYNTAX AS AN ACTIVE FUNCTION: 

[path path] 

path 

FUNCTION: returns the absolute pathname represented by the path 
argument. 

EXAMPLES: Assume that the user's working 
>udd>Demo>JRSmith. 

string [path no seg] 
>udd>Demo>JRSmith>no seg 
string [path <no seg1 
>udd>Demo>no seg-
string [path->no seg] 
>no_seg -

3-490 

directory i.s 

AG92-·03 



picture (pic) picture (pic) 

SYNTAX AS A COMMAND: 

pic pic_string values {-control arg} 

SYNTAX AS AN ACTIVE FUNCTION: 

[pic pic_string values {-control arg}] 

FUNCTION: returns one or more values processed through a 
specified PL/I picture. 

ARGUMENTS: 

pic string 
Is a valid PL/I picture as defined in the PL/I Reference 
Manual and the PL/I Language Specification. 

values 
are strings having data appropriate for editing into the 
picture. Each value must be convertible to the type implied 
by the picture specified. If multiple values are presented, 
the results are separated by single spaces. Any resulting 
value that contains a space is quoted. 

CONTROL ARGUMENTS: 

-strip 
removes 
trailing 
point if 
value. 

leading spaces from edited picture values; removes 
zeros following a decimal point; removes a decimal 

it would have been the last character of a returned 

NOTES: For more information on· PL/I picture and picture strings, 
see the PL/I Reference Manual, Order No. AM83 or the PL/I 
Language Specification, Order No. AG94. 

3-491 AG92-03 



picture (pic) 

EXAMPLES: 

create file ([pic 999 [index_set 8 14]]) 
list file *-

Segments = 1, Lengths = 0 

r w 0 file 014 -r w 0 file 013 -r w 0 file 012 -r w 0 file 011 -r w 0 file 010 -r w 0 file 009 
0 file - 008 r w 

string [pic zzzzz9v.9999 000305.000] 
305.0000 
string [pic zzzzz9v.9999 000305.000 -strip] 
305 

3-492 

picture (pic) 

AG92-03 



p11 p11 

SYNTAX AS A COMMAND: 

p11 path {-control_args} 

FUNCTION: invokes the PL/I 
containing the text of a 
object segment. 

ARGUMENTS: 

path 

compiler to translate a segment 
PL/I source program into a Multics 

is the pathname of a PL/I source segment that is to be 
translated by the PL/I compiler. If path does not have a 
suffix of p11, one is assumed. However, the suffix p11 must 
be the last component of the name of the source segment. 

CONTROL ARGUMENTS: 

-brief, -bf 
causes error messages written into the user output 1/0 switch 
to contain only an error number, statement identification, and 
(when appropriate) the identifier or constant in error. In 
the normal, nonbrief mode, an explanatory message of one or 
more sentences is also written, followed (in most cases) by 
the text of the erroneous statement. 

-brief table, -bftb 
genirates a partial symbol table consisting of only a 
statement table that gives the correspondence between source 
line numbers and object locations for use by symbolic 
debuggers. The table appears in the symbol section of the 
object segment produced for the compilation. This control 
argument does not significantly increase the size of the 
object program. 

-check, -ck 
is used for syntactic and semantic checking of a PL/I program. 
Only the first three phases of the compiler are executed. 
Code generation is skipped, as is the manipulation of the 
working segments used by the code generator. 

-check ansi 
generates an error message of severity 1 for each construct 
the compiler detects that is allowed by Multics PL/I but not 
by the ANSI standard X3.53-1976. 

3-493 AG92-03 



p11 p11 

-list, -Is 
produces a source program listing with symbols, followed by an 
ass~mbly-like listing of the compiled object program. Use of 
the -list control argument significantly increases compilation 
time and should be avoided whenever possible by using the -map 
control argument. 

-long profile, -lpf 
ge~erates additional code that records the virtual CPU time 
and number of page faults for each source statement. It is 
incompatible with the -profile control argument. The new 
profile command can handle both regular and long profiles. 
Use of this feature adds considerable CPU overhead to heavily 
executed code. The extra CPU time is subtracted out, so that 
it does not appear in the report generated by the profile 
command. 

-map 
produces a source program listing with symbols, followed by a 
map of the object code generated by the compilation. The -map 
control argument produces sufficient information to allow the 
user to debug most problems online. 

-optimize, -ot 
invokes an extra compiler phase just before code generation to 
perform certain optimizations, such as the removal of common 
subexpressions, which reduces the size and execution time of 
the object segment. Use of this control argument adds 10% to 
20% to the compilation time. 

-profile, -pf 
generates additional code to meter the execution of individual 
statements. Each statement in the object program contains an 
additional instruction to increment an internal counter 
associated with that statement. After a program has been 
executed, the profile command can be used to print the 
execution counts. See the profile command in this document. 

-separate_static, -ss 
causes the compiler to generate separate sections in the 
object segment created for the linkage information and the 
internal static variables. The default is to place internal 
static variables in the linkage section since both types of 
data are perprocess and writable. The -separate static 
control argument is useful primarily for programs tEat are 
prelinked and can therefore share the linkage section with 
other users. 

-severityN, -svN 
causes error messages whose severity is less than N (where N 

3-494 AG92-03 



p11 p11 

is 1, 2, 3, or 4) to not be written into the user output 
switch although all errors are written into the listing. If 
this control argument is not specified, a severity level of 1 
is assumed. For a description of severity levels, see "Notes 
on Error Diagnostics" below. 

-single symbol list, -ssl 
reformats the symbol table produced by the -map or -list 
control argument to be one, single, alphabetized list. If 
this control argument is not given, the default is to separate 
the symbols into 4 lists, arranged by declaration type. This 
control argument has been added at the request of users who 
find it easier to look up names in one list rather than 4. 

-table, -tb 
generates a full symbol table for use by symbolic debuggers. 
The symbol table is part of the symbol section of the object 
program and consists of two parts: a statement table that 
gives the correspondence between source line numbers and 
object locations, and an identifier table containing 
information about every identifier actually referenced by the 
source program. This control argument usually causes the 
object segment to become significantly longer. 

LIST OF ADDITIONAL CONTROL ARGUMENTS: 
The following control arguments, while available, are probably 
not of interest to every user. 

-debug, -db 
leaves the list-structured internal representation of the 
source programs intact 'after a compilation. This control 
argument is used ·for debugging the compiler. The command 
p11$clean_up can ~e used to discard the list structure. 

-time, -tm 
prints a table after compilation, a table giving the time (in 
seconds), the number of page faults, and the amount of free 
storage used by each of the phases of the compiler. This 
information is also available from the command p11$times 
invoked immediately after a compilation. 

NOTES: The only result of invoking the p11 command without 
control arguments is to generate an object segment. 

A successful compilation produces an object segment and leaves 
it in the user's working directory. If an entry with that 
name already exists in the directory, its access control list 

3-495 AG92-03 



p11 p11 

(ACL) is saved and given to the new copy. Otherwise, the user 
is given re access to the segment with ring brackets v,v,v 
where v is the validation level of the user's process. 

If the user specifies the -map or -list control arguments, the 
pl1 command creates a listing segment in the working directory 
and gives it a name consisting of the entryname portion of the 
source segment with a suffix of list rather than pl1 (e.g., a 
source segment named valid.pl1 has a listing segment named 
valid.list). The ACL is as described for the object segment 
except that the user is given rw access to the newly created 
segment. Previous copies of the object segment and the 
listing segment are replaced by the new segments created by 
the compilation. 

Include files contained in the PL/I source 
translated by the PL/I compiler are located 
translator search list. For more information 
list, see the "Search' List" section below. 

segment to be 
by use of the 

on the search 

A listing segment is optionally produced. 
placed in the user's working directory. 
be called recursively. 

These results are 
This command cannot 

For information on PL/I, refer to the Multics PL/I Language 
Specification manual, Order No. AG94 and the -MUltics PL/I 
Reference Manual, Order No. AM83. 

NOTES ON SEARCH LIST: The PL/I compiler uses the translator 
search list which has the synonym trans. For more information 
on search lists, see the search facility commands and, in 
particular, the add_search_paths command description in thi,s 
manual. 

NOTES ON ERROR DIAGNOSTICS: The PL/I compiler can diagnose and 
issue messages for about 350 different errors. These messages 
are graded in severity as follows: 

1 Warning only. Compilation continues without ill effect. 

2 Correctable error. The compiler remedies the situation and 
continues, probably without ill effect. For example, a 
missing end statement can be corrected by appending the 

3-496 AG92-03 



pl1 pI1 

string ";end;" to the source. This action does not, 
however, guarantee the correct results. 

3 An uncorrectable but recoverable error. That is, the 
program is definitely in error and cannot be corrected but 
the compiler can and does continue executing up to the 
point just before code is generated. Thus, any further 
errors are diagnosed. If the error is detected during code 
generation, code generation is completed although the code 
generated is not correct. After the compilation, a message 
is printed to the error output I/O switch to inform the 
user that an error of sevirity 3 has occurred. 

4 An unrecoverable 
beyond this error. 
is returned to the 
command writes an 
switch and returns 

error. The compiler cannot continue 
The message is printed and then control 

pl1 command unwinding the compiler. The 
abort message into the error output I/O 
to its caller. -

Error messages are written into the user output I/O switch as 
they occur. Thus, a terminal user can quit the compilation 
immediately ~hen an error message is printed. As indicated 
above, the user can set the severity level so as not to be 
bothered by minor error messages. The user can also specify 
the -brief control argument so that the messages are shorter., 
An example of an error message in its long form is: 

ERROR 158, SEVERITY 2 ON LINE 30 
A·constant immediately follows the identifier "zilch". 
SOURCE: a = zilch 4; 

·If the -brief control argument is specified, the user sees 
instead: 

ERROR 158, SEVERITY 2 ON LINE 30 
"zilch" 

The -severity 3 control argument suppresses this message 
entirely. 

Once a given error message is printed on the user's terminal 
in the long form, all further instances of that error message 
are printed in the short form. 

3-497 AG92-03 



p11 p11 

If a listing is being produced, the error messages are also 
written into the listing segment. They appear, sorted by line 
number, after the listing of the source program. No more than 
100 messages are printed in the listing. 

NOTES ON SEVERITY VALUES: The 
following severity values to be 
function: 

pl1 command 
used by the 

associates the 
severity active 

Value Meaning 

o 
1 
2 
3 
4 
5 

No compilation yet or no error. 
Warning. 
Correctable error. 
Fatal error. 
Unrecoverable error. 
Could not find source. 

NOTES ON LISTING: The listing created by the pl1 command begins 
with a line-numbered image of the source segment. This is 
followed by a table of all of the names declared within the 
program. The names are categorized by declaration type as 
follows: 

1. declare statement 

2. explicit context (labels, entries, and parameters) 

3. implicit context 

Within these categories, the symbols are sorted alphabetically 
and then listed with their location; storage class; data type; 
size or precision; level; attributes such as initial, array, 
internal, external, aligned, and unaligned; and a 
cross-reference list. Next is a table of the program's 
storage requirements and the reasons why a block is nonquick. 
Next is a listing of internal static variables, if any exist, 
sorted by offset, and a listing of automatic variables, if 
any, sorted by block and offset. Next is a listing of 
external operators used, external entries called, and external 
variables referenced by the program. The symbol listing is 
followed by the error messages, if any. 

The object code map follows the list of error messages. This 
table gives the starting location in the text segment of the 

3-498 AG92-03 



p11 p11 

instructions generated for statements starting on a given 
line. The table is sorted by ascending storage locations. 

Finally, the listing contains the assembly-like listing of the 
object segment produced (if -list is specified). The 
executable instructions are grouped under an identifying 
header that contains the source statement that produced the 
instruction. Operation code, base-register, and modifier 
mnemonics are printed beside the octal instruction. If the 
address field of the instruction uses the Ie (self-relative) 
modifier, the absolute text location corresponding to the 
relative address is printed on the remarks field of the line. 
If the reference is to a constant, the octal value of the 
first word of the constant is also printed. If the address 
field of the instruction references a symbol declared by the 
user, its name appears in the remarks field of the line. 

3-499 AG92-03 



I 

pIt abs (pa) 

SYNTAX AS A COMMAND: 

pa paths {p11 args} {dp_args} {-control_args} 

FUNCTION: submits an absentee request to p6rform PL/I 
compilations. 

ARGUMENTS: 

paths 
are the pathnames of segments to be compiled. 

p11_args 
are one or more control arguments accepted by the pl1 command. 

dp_args 
are one or more control arguments (except -delete, -dl) 
accepted by the dprint command. 

CONTROL ARGUMENTS: 

-queue N, -q N 
specifies in which priority queue the request is to be placed 
(N < 3). The default queue is 3; the listing segment is also 
dprInted in queue N. 

-hold, -hd 
specifies that p11_abs should not dprint or delete the listing 
segment. 

-limit N, -Ii N 
specifies a time limit in seconds for the absentee job. 
default value is defined by installation site. 

-output file path, -of path 

The 

specIfies that absentee output is to go to the segment whose 
pathname is path. 

NOTES: The absentee process for which p11 abs submits a request 
compiles the segments named and dprInts and deletes the 
listing segments. If the -output file control argument is nut 
specified, an output segment, pa~h.absout, is created in the 
user's working directory (if more than one path is specified, 
only the first is used). If none of the segments to be 
compiled can be found, no absentee request is submitted. 

3-500 AG92-03 



p11 abs (pa) p11 abs Cpa) 

Control arguments and segment pathnames can be mixed freely 
and can appear anywhere on the command line after the command. 
All control arguments apply to all segment pathnames. If an 
unr'ecognizable control argument is given, the absentee request 
is not submitted. 

Unpredictable results can occur if two absentee requests are 
submitted that could simultaneously attempt to compile the 
same segment or write into the same absout segment. 

When doing several compilations, it is more efficient to give 
several segment pathnames in one command rather than several 
commands. With one command, only one process is set up. Thus 
the dynamic intersegment links that need to be snapped when 
setting up a process and when invoking the compiler need be 
snapped only once. 

3-501 AG92-03 



plus plus 

SYNTAX AS A COMMAND: 

SYNTAX AS AN ACTIVE FUNCTION: 

[plus num_args] 

FUNCTION: returns the Sum of num args. If no num_args are 
specified, 0 (the additive identity) is returned. 

3-502 AG92-03 



------
print (pr) print (pr) 

SYNTAX AS A COMMAND: 

pr path {optional_args} 

FUNCTION: prints a specified ASCII segment on the user's 
terminal. 

ARGUMENTS: 

path 
is the pathname of a segment to be printed. 
convention is NOT allowed. 

The star 

LIST OF OPTIONAL ARGUMENTS: 

begin 

end 

is an 
begins. 
line of 
below). 
either. 

optional line number that identifies where printing 
If it is not specified, printing starts on the first 

the segment (after an identifying header, see "Notes" 
If begin is not specified, end cannot be specified 

is a line number that identifies where printing ends. If not 
specified, printing ends with the last line of the segment 
followed by two blank lines and a ready message. If the line 
number specified is greater than the number of llnes in the 
segment, the rest of the segment is printed. 

ACCESS REQUIRED: The user must have read access to the segment 
to be printed. 

NOTES: Unless the user specifies a range of line numbers, the 
command prints the entire segment. Multisegment files cannot 
be printed by invoking the print command. 

If the begin argument is not supplied, a short identifying 
header followed by two blank lines is printed preceding the 
printing of the segment. See "Examples" below. 

The command assumes that newline characters are appropriately 
embedded in the text. Output is written through the I/O 

3-503 AG92-03 



print (pr) print (pr) 

switch, user output, that is usually directed to the user's 
terminal. 

EXAMPLES: 

The command line: 

pr alpha 

prints the segment alpha in the user's working directory in 
its entirety. 

The command line: 

pr alpha 1 

has the same effect, but omits the identifying header. 

The command line: 

pr alpha 10 20 

prints lines 10 through 20 of the segment. 

The command line: 

pr alpha 10 

prints lines 10 through the end of the segment. 

The command line: 

pr.alpha 1 10 

prints the first ten lines of the segment. 

3-504 AG92-03 



print_attach table (pat) 

SYNTAX AS A COMMAND: 

pat {switch names} {-control_args} 

SYNTAX AS AN ACTIVE FUNCTION: 

[pat {switch_names} {-control_args}] 

FUNCTION: prints information on the user's terminal about the 
1/0 switch name associations created by attach calls in the 
user's current ring. 

When invoked as an active function, pat returns the switch 
names selected by the switch names and control arguments. 

ARGUMENTS: 

switch names 
are the names of 
allowed. The -name 
star name processing 
to be a control 
specified switche~ 
currently attached, 
user's.terminal. 

CONTROL ARGUMENTS: 

-brief, -bf 

1/0 switches. The star convention is 
control argument can be used to inhibit 
or to supply a switch name that appears 

argument. Information about only the 
is printed. If a specified switch is not 
a message to that effect is printed on the 

suppresses the printing of information for the four standard 
switch names (user ilo, user input, user output, and 
error_output) even if-they match a starname. -

-attached, ~att 
prints the state of those switches that match the starnames 
only if they are currently attached. This· is the default. 
Only o~e of -attached, ·-all, or -open can be specified. 

-all, -a 
prints the state of all the selected switches 
starnames, .whether they are attached or not. 
argument cannot be used with -attached or -open. 

-open 

that match the 
This control 

prints the state of those switches that match the starnames 

3~505 AG92-03 



print_attach_table (pat) print_attach_table (pat) 

only if they are attached and open. This control argument 
cannot be used with -attached or -all. 

-name switch name, -nm switch name 
forces tEe switch name to be interpreted as a literal 
switch name, even If it looks like a starname or a control 
argument. 

NOTES: The 
indicated 
command. 

attach and open descriptions associated with the 
switch names are printed if pat is invoked as a 

If no arguments are specified, the information for all 
switches currently attached is printed. 

For further information, refer to the description of io call. 

3-506 AG92-03 



SYNTAX AS A COMMAND: 

pan {-control args} 

FUNCTION: prints the names of the sensitivity levels and access 
categories defined for the installation. 

CONTROL ARGUMENTS: 

-level 
lists only the sensitivity levels. 

-category, -cat 
lists only the access categories. 

-brief, -bf 
suppresses the title and headings. 

-all, -a 
lists all pos~ible names (above system high). 

NOTES: Only the names that can be used to describe an access 
class or access authorization between system low and system 
high are printed, unless the -all control argument is 
specified. 

This command lists the names that are acceptable to the 
convert authorization subroutine (described in the MPM 
SubroutInes) to define an access class or access 
authorization. (All commands and system interfaces that use a 
character string to describe an access class use this 
subroutine.) Both the long and short names are printed. 

3-501 AG92-03 



SYNTAX AS A COMMAND: 

pdwd 

'FUNCTION: prints out the pathname of the current default working 
directory on the user's terminal. 

NOTES: See also the descriptions of change wdir, default_wdir, 
and change_default_wdir in this manual. -

3-508 AG92-03 



print_mail (prm) print_mail (prm) 

SYNTAX AS A COMMAND: 

prm {address} {-control_args} 

FUNCTION: prints all the messages in a mailbox, querying the 
user whether to delete each one. 

ARGUMENTS: 

address 
specifies the address of a mailbox. See "List of Addresses" 
below. If no address is specified, the user's default mailbox 
is assumed. 

CONTROL ARGUMENTS: 

-brief, -bf 
suppresses the printing of the informative messages. 

-interactive messages, -im 
operates on interactive messages from send message as well as 
mail messages from send mail. This is the default. 

-list, -Is 
prints a summary of the messages in the mailbox before 
entering the request loop. 

-no interactive messages,-nim 
operates on-send mail messages, not on interactive messages 
sent by send_message. 

LIST OF ADDRESSES: 

-pathname path, -pn path 
where path is the pathname of a mailbox. The mbx suffix is 
assumed. 

-user Person id.Project id 

STR 

specifies-the Person-id and Project_id of a user whose mailbox 
is to be read. -

is any argument not beginning with a minus (-) sign, and is 
interpreted as -pathname STR if it contains> or < characters. 
Otherwise, it is interpreted as -user STR. 

3-509 AG92-03 



print_mail (prm) print_mail (prm) 

NOTES ON QUERY RESPONSES: After 
print_mail asks the question: 

printing each message, 

print_mail: Delete message N? 

where N is the number of the message just printed. 

Five responses are allowed: 

• If the user answers "yes", the message is deleted and the next 
one is printed. 

• If the user answers "no", the message is not d€!leted and the 
next one is printed. 

• If the user answers "reprint", the message just printed is 
printed again, and the question is asked again. 

• If the user "answers "quit" or "q", print mail returns the user 
to command level after deleting the messages specified. 

• If the user answers "abort", print mail returns to command 
level, without deleting any messages.-

NOTES ON CREATING A MAILBOX: A default mailbox 
automatically the first time a user issues 
read mail, accept messages, or print~messages. 
mailbox is: - " 

>user dir_dir>Project_id>Person id>Person id.mbx 

is created 
print mail, 
The default 

NOTES ON EXTENDED ACCESS: Access on a newly created mailbox is 
automatically set to adrosw for the user who created it, aow 
for *.SysDaemon.*, and aow for *.*.*. The types of extended 
access for mailboxes are: 

add 
delete 
read 
own 
status 
wakeup 

a add a message. 
d delete any message. 
r read any message. 
o read or delete only your own messages. 
s find out how many messages are in the mailbox. 
w send a wakeup when adding a message. 

The modes "n", "null", and "" specify null access. 

3-510 AG92-03 



print_mail (prm) print_mail (prm) 

NOTES ON RELATED COMMANDS: Special commands exist to create 
additional mailboxes and to change the attributes of 
mailboxes. These commands, described in the MPM Subsystem 
Writers' Guide, are: 

mbx create 
mbx --delete 
mbx add name 
mbx-defete name 
mbx --rename
mbx--list acl 

mbx set acl 

mbx delete acl 

mbx set max length 
mbx --safety _swi tCh_on 

mbx_safety_switch off 

create a mailbox. 
delete a mailbox. 
add a name to a mailbox. 
delete a name from a mailbox. 
rename a mailbox. 
list the access control list of a 

mailbox. 
change or add entries to the ACL of a 

mailbox. 
delete entries from the ACL of a 

mailbox. 
set the maximum length of a mailbox. 
turn on the safety switch of a 

mailbox. 
turn off the safety switch of a 

mailbox. 

See also the read mail and send mail command in this manual 
for a complete description of the-mail facility. 

3-511 AG92-03 



print_mail (prm) print_mail (prm) 

EXAMPLES: In the following example, the user's input is preceded 
by a! character. 

prm 

'1 (5 lines) 08/29/78 20:23 Mailed by: Smith. Pubs 
Subject: Manual submissions 

<5 lines of text> 

print_mail: Delete message '11 ! no 

'2 (12 lines) 08/29/78 22:47 Mailed by: Jones.Maint 
Subject: Hardware Shipment 

<12 lines of text> 

print_mail: Delete message 1121 ! yes 

'3 (21 lines) 09/27/78 10:45 Mailed by: Wilson.SHARDS 
Subject: Management questionnaire 

<21 lines of text> 

print_mail: Delete message '31 I q 

r 1210 0.091 82 

3-512 AG92-03 



print_messages (pm) 

SYNTAX AS A COMMAND: 

pm {destination} {-control_args} 

FUNCTION: prints any 
(and saved in the 
accepting messages. 

ARGUMENTS: 

destination 

interprocess messages 
user's mailbox) while 

print_messages (pm) 

that were received 
the user was not 

can be of the form Person id.Project id to specify a mailbox. 
If destination contains> or <, it is the pathname of a 
mailbox. If no destination is specified, the user's default 
mailbox is assumed. 

CONTROL ARGUMENTS: 

-all, -a I 
prints all me~sages, including those held by -hold ~ode (see 
accept_messages). This is the default. 

-call .cmdline I 
for each message, ·instead of printing calls the command . 
processor with the line: 

cmdline number sender time message {path} 
For more details, see the accept_messages command. 

-last, -It 
reprints only ~he latest message received. 

-long, -lg 
prints the sender and date-time of every message, even when 
the same for two consecutive messages. 

-new 
when accept_message~-hold mode is in effect, prints only 
those messages that have not been printed before. The default 
is to print all held messages. 

-pathname path, -pn path 
specifies a mailbox by pathname. 
This control argument and the 
mutually exclusive. 

3-513 

The mbx suffix is assumed. 
destination argument are 

AG92-03 

I 
I 

I 



I 
print_messages (pm) print_messages (pm) 

-short, -sh 
prints messages as with accept messages -short, 
redundant sender names in favor of the prefix "=:". 
the default. 

omitting 
This :is 

NOTES: Messages are deleted after they are printed unless the 
-hold argument was given to the accept messages command. The 
"last" message remains available for the life of the process 
or until redefined by a new message. 

If messages are deferred, it is a good practice to print out 
pending messages periodically. 

For a description of the mailbox, refer to the accept messages 
and print mail commands. See also the active functions 
last_message, last_message_sender, and last_message_time. 

3-514 AG92·-03 



print_motd (pmotd) print_motd (pmotd) 

SYNTAX AS A COMMAND: 

pmotd 

FUNCTION: prints out c~anges to the message of the day since the 
last time the command was called. The print motd command is 
intended to be used within a start_up.ec segment. 

NOTES: When pmotd is invoked, the current message of the day is 
first compared with the segment Person id.motd in the user's 
home directory. Next, all lines that-have been appended or 
modified since the last time pmotd was invoked are printed on 
the terminal. Then, the Person id.motd segment is updated for 
use"the next time print_motd is-invoked. 

If the segment Person id.motd does not exist, print motd 
attempts to create it, prints the current message of the-day, 
and initializes Person id.motd. 

3-515 AG92-03 



SYNTAX AS A COMMAND: 

ppa {-control_args} 

FUNCTION: prints the access authorization of the current process 
and current system privileges (if any). 

LIST OF OPTIONAL ARGUMENTS: 

-long, -lg 
prints the site-defined long names (up to 32 characters) for 
the sensitivity levels and categories. 

-all, -a 
prints the maximum access authorization of this process. 

NOTES: If the -long control argument is not specified, the 
access authorization printed is composed of the site-defined 
short names (eight characters or less) for sensttivity levels 
and categories. 

The maximum authorization printed for the -all control 
argument is the maximum authorization that this process could 
have been given at login, and corresponds to the maximum 
access class of upgraded directories that can be created by 
this process. 

3-516 AG92-03 



SYNTAX AS A COMMAND: 

prt {-control args} 

FUNCTION: prints a list of all request types handled by the lID 
daemon. 

CONTROL ARGUMENTS: 

-brief, -bf 
suppresses printing of a heading line. 

-access name STR, -an STR 
prints only those request types having an access name of STh 
of the form Person_id.Project_id. 

-gen type STR, -gt STR 
prints request types of generic type STR. 

NOTES: For each request type, two items of information are 
printed: the access name of the 1/0 daemon driver process 
that performs requests of that type, and the generic type to 
which the request type belongs. An asterisk (*) immediately 
preceding a request type indicates that the request type is 
the default for its generic type. 

The access name IO.SysDaemon indicates a standard re~uest type 
available to all users. Any other access name indicates a 
nonstandard request type that is generally not available to 
all users. 

The generic type ·of a request type determines which commands 
can be used to submit requests of that request type. For 
example, the dprint com~and uses only request types of generic 
type "printer". The dpunch command uses only request types of 
generic type "punch". 

3-517 AG92-03 



._-------

SYNTAX AS A COMMAND: 

psp {search_lists} {-control arg} 

FUNCTION: prints the search paths in the specified search lists. 

ARGUMENTS: 

search list 
is -the name of a search list. If 
specified, all search lists referenced 
printed. 

CONTROL ARGUMENTS: 

-expanded, -exp 

no search lists are 
in this process are 

specifies that all keyword search paths except 
-referencing dir, and all unexpanded search paths, are printed 
as absolute ~athnames. 

NOTES: All synonyms of a search list name are printed if no 
search lists are specified. 

For a complete list of the search facility commands, see the 
add_search_paths command description in this manual. 

3-518 AG92-03 



SYNTAX AS A COMMAND: 

psr 

FUNCTION: 
use. 

prints the object segment search rules currently in 

NOTES: See also the descriptions of the 
add search rules, and delete search rules 
standard search rules are described under 
the MPM Reference Guide. 

3-519 

set search rules, 
commands: The 

"Search Rules" in 

AG92-03 



print_wdir (pwd) prlnt_wdir (pwcl) 

SYNTAX AS A COMMAND: 

pwd 

FUNCTION: prints the pathname of the current working directory. 

NOTES: A working directory is a directory in which the user's 
activity is centered. Its pathname is remembered by the 
system so that the user need not type the absolute pathname of 
segments inferior to that directory. 

See the descriptions of the change wdir, change default wdir, 
and working dir commands. See -also "Search Rules" and 
"Pathnames" Tn the MPM Reference Guide. 

3-520 AG92-03 



probe (pb) probe (pb) 

SYNTAX AS A COMMAND: 

pb {procedure_name} 

FUNCTION: provides symbolic, interactive debugging facilities 
for programs compiled with PL/I, FORTRAN, or COBOL. Its 
features permit a user to interrupt a running, program at a 
particular statement, examine and modify program variables in 
their initial state or during execution, examine the stack of 
block invocations, and list portions of the source program. 
External subroutines and functions can be invoked, with 
arguments as required, for execution under probe control. The 
probe command can be called recursively. 

ARGUMENTS: 

procedure name 
is an -optional argument that gives the pathname or reference 
name of an entry to the procedure or subroutine that is to be 
examined with probe. 

OVERVIEW OF PROCESSING: When probe has been invoked, it accepts 
requests from the user. A probe request consists of a keyword 
(or its abbreviation) that specifies the desired function and 
any arguments required by the particular request. Requests 
are separated from each other by newlines or semicolons. 

A 'series of requests can be given in the form of a request 
list. This is used in breakpoint request lists and 
conditional execution lists. Here, each request is separated 
by semicolons. An example: 

value a; v b; continue 

Probe at all times has a "current language". It communicates 
with the user in terms appropriate to the language of the 
procedure being examined. The syntax of an expression and the 
form of probes output vary from language to language. 

To use probe to the fullest, a program must be compiled so 
that the object segment produced has both a symbol table and a 
statement map (these terms, and others, are defined below in 
"Notes on Terminology"). A symbol table and statement map are 
produced for the languages supported if the -table control 

3-521 AG92-03 



probe (pb) probe (pb) 

--------

argument is given to the compiler. A program can also be 
compiled with the -brief table control argument, which 
produces only a statement ~ap. In this case the user can 
retrieve information about source statements and where the 
program was interrupted, and can set breakpoints, but can do 
little else. 

PROBE POINTERS: Two internal "pointers" 
keep track of the program's state. 
pointer and the "control" pointer. 

are used 
They are 

by probe to 
the "source,If 

The source pointer identifies a line, a block, and a frame. A 
line is a source program line number. The language of the 
source line is the language probe will use with the user. The 
meaning of a block depends on the language. For a PL/I 
program, it specifies the smallest begin block or procedure 
that ciontains the source line. For a FORTRAN program it 
specifies the pro~ram or subprogram the statement occurs in. 
For a COBOL program it indicates the program-id of the 
containing program. The frame specifies a stack frame 
associated with.the block. When there are several invocations 
of the same block on the stack, the frame distinguishes 
between them. If there is no activation of the block, the 
frame portion of the source pointer is null. In this case, 
certain types of storage (i.e. PL/I automatic) are not 
defined. The initial value of the source pOinter is 
determined by the initial value of the control pOinter. 

The control pointer indicates 
before probe was invoked. The 
manner probe was invoked. 

the last location executed 
initial value depends on the 

1) If probe is invoked from a breakpoint, the control pointer 
is set to the line where the break occurred. 

2) If probe is invoked from the command line, then if a 
procedure_name is specified, then if the procedure is 
active, the control pointer is set to the last line 
executed in the most recent invocation of that procedure. 

3) If! the procedure 
control pointer 
procedure. 

in the command line is not active, the 
is set to the entry statement for the 

4) If no procedure name is specified, then if there is a QUIT 
signal or condition frame on the stack, the control pointer 

3-522 AG92-03 



probe (pb) probe (pb) 

is set to the location being executed when the condition 
was signalled. 

5) If no procedure name is specified, and there are no 
condition frames -on the stack, the last line executed in 
the most recent frame is used. (This is usually the 
command processor). 

Information about programs being debugged 
in a segment in the user's home 
Person id.probe, where Person id is the 
This segment is created automatically 
segment should not be deleted, or probe 
reset any breaks it has set. 

is stored by probe 
directory called 

user's log-in name. 
when needed. This 
will be unable to 

RESTRICTIONS ON INPUT LINES: A probe input line cannot contain 
unbalanced parenthesis or unbalanced quotes. This means that 
a request or request list as typed in must fit on one line. 
It cannot contain a newline character. If a long line must be 
typed:, the Multics escape convention of placing a backslash 
before the newline can be used. If the newline character is 
neede~ (in a' character string constant, for example), the 
escap~ sequence \012 can be entered instead. 

PROBE REQUESTS: The following pages present the format and 
function of each probe request, giving first the name of the 
reque~t, then its abbreviated form, if any, and its arguments, 
required and optional. The syntax of the arguments is 
described in the following way: 

i . 
Curly braces enclose optional material 

Where the user can select only one of several options, square 
brackets enclose the list of choices, and the choices are 
separated by a vertical bar. 

Upper case names represent items whose syntax is elsewhere 
defined (for example, EXPRESSION or PLACE). 

Each request that takes arguments is shown with examples of 
its use. Examples may be in the syntax used for PL/I, 
FORTRAN, or COBOL. If an example does not make sense to you, 
it may be in another language. 

3-523 AG92-03 



probe (pb) 

SAMPLE REQUEST WRITE-UP: 

• plugh,p1 
plugh {fault} {-all} 
plugh {N, {M}} {-all} 

probe (pb) 

This request accepts either the word "fault", or a number (N), 
or two numbers separated by a comma (N, M); in any of these 
cases it can also be supplied with the control argument 
It-all". 

The syntax can be written more briefly as: 

plugh {[N {,M} : fault ]} {-all} 

or more verbosely, as: 

plugh {-all} 
plugh N {-all} 
plugh N,M {-all} 
plugh fault {-all} 

Legal uses of the "plugh" request include: 

plugh 4 
plugh 4,712 -all 
plugh fault -a 

Illegal uses include: 

plugh ,275 
plugh 3 fault 
plugh 17+42,4 
plugh N 

M was used without N 
fault and N cantt be together 
17+42 is not a number 
N is not a number 

The following items are used throughout the requests section: 

N, M 
are positive, unsigned integers. 

OBJECT 
is a path name or reference name of an entry point into some 
object segment. 

REQUEST 
is any probe request (or list of requests). 

3-524 AG92-03 



probe (pb) probe (pb) 

PATH 
is a Multics pathname. 

LINE 
is a line of program text in a source segment and/or the set 
of instructions in the object segment corresponding to that 
text. It is defined below under "Syntax of a Line". 

EXPRESSION 
is an expression, 
Expression". 

STRING 

defined below under "Syntax of an 

is a quoted string. Its beginning and end are delimited by 
quotes (""). If a quote character is to be included in the 
string, two quotes should be used. (i.e. "this is a quote: 
"" character"). When the current language is FORTRAN, the 
quote character and the apostrophe (') are considered 
equivalent. Either can delimit a string. For example, 
"preceded by itself, yields falsehood' is a FORTRAN string. 

LIST OF BASIC REQUESTS: 

• • 

This request causes probe to identify itself by printing 
"probe" and the current version number on the terminal. It 
may be used, for example, to determine if a called routine has 
returned. If the current invocation of probe is not the first 
invocation of probe on the stack, the recursive depth is also 
printed. The version number is useful for determining whether 
the version of probe being used has certain features or 
bug-fixes. It should always be included in any trouble report 
about probe . 

• help 
help 
help * 
help TOPIC 

If the help request is invoked with no argument it prints some 
general information about probe. If it is invoked with an 
asterisk (*), it prints a list of all topics; otherwise it 
prints information about TOPIC, if there is any. 

Examples: 

help 
help expressions 

3-525 AG92-03 



probe (pb) probe (pb) 

• list requests, lr 

This request prints a list of all the probe requests. 

• list help, lh 
list=help 

• 
This request prints the names of all topics for which there is 
information. It is exactly the same as "help *" 

COMMAND LINE 

This request passes the remainder of the line (COMMAND LINE) 
directly to the Multics command processor. It can never be 
used in a break request list or a conditional execution list. 
When used, it must be the first request on the line. 

Example: 
.. wd; Is *.p11 

• value, v 
value [ EXPRESSION : CROSS-SECTION ] 

The value of the given EXPRESSION or the array elements 
specified by CROSS-SECTION are displayed. 

A CROSS-SECTION is specified by gIvIng the upper and lower 
bounds of one or more subscripts. An asterisk can be used, 
whidh is equivalent to a cross-section from the lowest to 
highest subscript of an array. 

Examples: 
value arr (1:5,3:7) 
value p -> a.b(j)' 
value a of b of lrec 
value ijptr(*,3) 

The value request can be 
records, in which case 
displayed as well. 

used with PL/I 
the value of 

structures or COBOL 
every component is 

The value request cannot be used with PL/I areas. 

External functions can be called with the value request. The 
argument list can involve arbitrary expressions, and the 
arguments are converted to the proper type, if the called 
function specifies what type of arguments are expected. 

3-526 AG92-03 



probe (pb) probe (pb) 

The value request can print identifier names in short or long 
form, under user control. See the modes request. 

• let, I 
let [VARIABLE I CROSS-SECTION ] = EXPRESSION 

This request sets the specified variable or array elements to 
the value of the expression. If the variable and expression 
are of different types, conversion is performed according to 
the rules of PL/I. Array cross-sections are expressed as in 
the value request. One array cross-section cannot be assigned 
to another, nor can structures be assigned to as a whole. 
Certain PL/I data types can only be assigned to identical 
types. For example, areas can only be assigned to areas, and 
files can only be assigned to files. 

Note that because of unpredictable compiler optimization, the 
change cannot take effect immediately, even though the value 
request shows that the variable has been altered. 

• quit, q 
quit 

Thi~ request causes the current level of probe to return. If 
there is more than one invocation of probe on the stack, the 
user may still be in probe. If there is only one, this 
request causes a return to command level. 

SOURCE REQUESTS: The source pointer is used to indicate a block 
in a program (to resolve variable name conflicts) and a stack 
frame (to resolve separate invokations of a block), and a 
statement (to be printed). Its current value can be displayed 
with the "where" request, its value can be changed by the 
"position" or "use" request. The source line pointed to can 
be printed via the "source" request. 

• where 
where 
where source 
where control 

The where request displays the values of the probe pointers. 
If it is invoked with no argument it displays the values of 
both, otherwise it displays the value of the pointer named. 
You can abbreviate "source" as "sc" and "control" as "ctl". 

3-521 AG92-03 



(1 

probe (pb) probe (pb) 

• use, position, ps 
use 
use LINE 
use {+:-}N 
use level N 
use OBJECT 
use STRING 

The use request selects the block, and the position request 
selects the line number, to be used for subsequent probe 
requests. If invoked as position, the line positioned to is 
displayed. If invoked as use, there is no display. 

If no argument is supplied to use, the source pointer is reset 
to its initial value, which is the value of the control 
pointer. 

The new value of the source pointer can be given in a variety 
of ways: 

• absolutely, 
procedure. 

by giving the LINE within the current 

• relatively, by giving +N or -N. The new source pointer 
value is the statement N statements after or before the 
current statement. 

• a new stack frame can be specified by level 
the number of the stack frame of interest. 
number is given, the highest numbered 
"level" can be abbreviated as "Iv". 

N, where N is 
If too high a 

frame is used. 

• a new procedure can be specified by giving its path or 
reference name (OBJECT). 

• by searching: the user can request that probe search 
through a source segment for an executable line containing 
STRING. Null string (!flI) causes probe to use the last 
search string. It is an error to use an empty quoted 
string expression if there has not been a previous quoted 
string. If the searching fails, the source pointer is not 
changed. 

Examples: 

use level 4 
specify level number - last line executed at level 4. 

ps -4 
statement four statements before current one. 

3-528 AG92-03 



probe (pb) probe (pb) 

ps 2-34 
include file 2, line 34, current procedure. 

ps label 
set to line whose label is "label". 

ps "label:" 
search for line containing the word "label" followed by a 
colon. In effect, the same as the previous example. 

Note that probe deals with executable statements, not source 
lines. The source pointer cannot be set to a source line for 
which no instructions are executed. This includes blank 
lines, comment lines, declarations, and COBOL declarative 
procedures. It is not possible to search for non-executable 
lines either. 

Note also that in PL/I, names, including labels, are not known 
(available for probe) when the source pointer is outside the 
block in which they are declared. This means that probe 
cannot find a label in an internal procedure or begin block 
unless that block is currently the "current block". The label 
can still be found by a search for a character string that 
appears in the labelled line, for example, "label:" . 

• source, sc 
sour(~e {N} 
sourch path PATH 

The first form of the source request prints source lines of 
the current procedure, beginning with the current source line. 
If N is supplied, N lines are printed, otherwise the current 
line is printed. The source pointer remains unchanged. 

A statement can take up many lines, and there may be blank 
lines (or non-executable source lines, such as comments or 
declarations) between statements. Although the source pointer 
can only be set to a line for which code is generated, these 
lines can be displayed along with the statements. If N 
statements are displayed, any non-executable lines between the 
first and the last are also displayed. 

The second form of this request is used to supply the pathname 
of ,the source segment for the current procedure. Multics 
object segments contain within them the absolute pathnames of 
the source segments used to compile them. Sometimes these 

3-529 AG92-03 



probe (pb) probe (pb) 

segments have been moved by the time the object segment is 
being debugged, and when probe attempts to locate them, it 
will fail. When it does, it informs the user that the source 
cannot be located, and the user can supply probe with the path 
of the source by giving it after the path argument. 

BREAK REQUESTS: The next requests deal with setting, printing 
information about, and resetting breakpoints. A breakpoint is 
a list of one or more probe requests associated with a source 
statement. When the statement of a breakpoint is executed, 
the user program is suspended, and probe executes the requests 
associated with the breakpoint. When the requests of the 
breakpoint have executed, the program resumes (unless one of 
the requests was a "quit" or a "goto"). A breakpoint is said 
to be "set" either "before" or "after" a given line number. A 
break before a statement is executed before the statement 
itself is executed. A break after a line occurs after the 
line has been executed. When a transfer is made to statement 
x, a break before statement x is effective, but a break set 
after statement x-1 is not effective. A break set after a 
statement that transfers control (such as a goto or return) 
mayor may not be executed. 

No breaks can be set after any COBOL statement, due to 
restrictions of the compiler . 

• after, af, a 
• before, be, b 

The syntax to set either kind of break is the same: 

before {LINE} {: REQUEST} 
after {LINE} {: REQUEST} 

LINE indicates some statement where the break is to be 
inserted. If none is supplied, the statement identified by 
the source pointer is used. A set of probe requests can be 
associated with the breakpoint by placing the requests after a 
colon. If no requests are given, "halt" is usedti 

Examples: 

b 29 
after foo,2: if a > 7:halt 
b 52: (v f; v j; v c; continue) 

The next two requests are used to print information about 

3-530 AG92-03 



probe (pb) probe (pb) 

breakpoints (status) and to reset breaks (reset). They have a 
very similar argument syntax. In both of them LOC is used to 
distinguish a break set before a LINE from one set after a 
given LINE. LOC can be one of: "before", "be", "b", "after", 
"af", "a". It is only needed when there is a break set both 
before and after a statement. If it is not supplied, both 
breaks set before and breaks set after the LINE are affected . 

• status, st 
status 
status {{LOC} LINE} {-long} 
status OBJECT {-long} 
status -all {-long} 
status * 

The status request lists the breaks set by probe in various 
procedures. The first form selects all breaks in the current 
procedure, the second selects the break at LINE in the current 
procedure. The third form lists all breaks in the procedure 
specified. The fourth form lists all breaks in all segments. 
The last form lists the names of all segments that have have 
breaks set in them. 

If the control argument "-long" appears, the break request 
list associated with the breakpoint is printed. This is the 
default for the second form. 

Examples: 

status >udd)Dog20)Crecho>zlotny 
status 35 -lg 

st b 7 

st -all 

• reset, r 
reset {{LOC} LINE} {-brief} 
resent OBJECT {-brief} 
reset -all {-brief} 
reset * 

lists all breaks in zlotny 
lists breaks before or 

after line 35 
lists only the break 

befor,e 1 ine 7 
lists all breaks in the 

world 

This request resets breakpoints set by probe at selected lines 
in selected procedures. The first form resets the break at 
LINE in the current procedure. If LINE is not given, then if 
the current invocation of probe was caused by a break, that 
break is reset. Otherwise the break at the current line is 

3-531 AG92-03 



probe (pb) probe (pb) 

reset. The second form resets all breaks in the procedure 
specified. The third and fourth forms reset all breaks that 
probe has set. 

As breaks are reset, the source line number and pathname of 
the containing segment are printed, unless -brief is given, in 
which case nothing is printed. 

Examples: 
r -all 
r a $259,1 

r -bf 

r (Weir)estimate prophet 

Reset every break probe can find 
Reset the break after the first 

statement after the line 
labelled "259" 

Reset all breaks in the current 
procedure 

Reset all breaks in procedure 
named 

REQUESTS USEFUL IN BREAKPOINT REQUEST LISTS: 

• halt, h 
halt 

This request causes probe to stop processing the request list 
and read requests from the terminal. A new invocation of 
probe is created, with the control and source pointers set to 
the line of the breakpoint. After a subsequent continuation, 
probe resumes interpreting the break request list that 
contains the halt. When the list is empty, the user's program 
is resumed. This request has no effect when issued from the 
terminal. 

Example: 

b12:if K)O:halt 
(va; halt; v a) 

• pause, pa 
pause 

this breakpoint stops if K)O. 
this list displays the value of 

a before and after stopping . 

This request is equivalent to "halt;reset" in a break request 
list. It causes the procedure to execute a breakpoint once, 
and then reset it when execution is resumed. It has no effect 
if not executed in a breakpoint request list. If the user 
does not eventually continue the breakpoint, the break is not 
reset. 

3-532 AG92-03 



probe (pb) 

FLOW OF CONTROL REQUESTS: 
execution of program 
execution after a break, 
explicit "goto"s. 

• continue, c 
continue 

probe (pb) 

Requests are provided for selected 
statements. The user can resume 
call external procedures, or perform 

This request restarts a program that has been suspended by a 
probe breakpoint. If this request is used in any other 
context, probe returns to its caller, which is usually command 
level. 

• step, s 
step 

This request attempts to step through the current program one 
statement at a time. If the program has been stopped before 
line N, a break is set before line N+1. If the user is 
stopped after line N, the break is set before line N+2. These 
breaks contain "pause" as their sole request list, and thus 
are self-resetting. If the statements being stepped do not 
execute in sequence, the stepping can be unsuccessful. Note 
that PL/1 and FORTRAN do-loops, and conditional statements in 
all languages, do not execute sequentially. 

• continue to, ct 
continue-to LINE 

This request inserts a temporary breakpoint before the LINE 
specified, then continues. The effect is as if the user had 
typed the following: 

before LINE: pause 
continue 

Example: 

ct 11 

• call, cl 
call OBJECT (ARGUMENTS) 

This request calls the external procedure named with the 
arguments given. ARGUMENTS should be a list of arguments to 
the called procedure, separated by commas. If the procedure 

3-533 AG92-03 



probe (pb) pro-be (pb) 

expects arguments of a certain type, those given are converted 
to the expected type. The value request (see above) can be 
used to invoke a function, with the same sort of conversion 
occurring. If the procedure has no arguments, an empty 
argument list "()" must be given. 

Examples: 

PL 1 : 
call sub ("abed", p -> p2 -> bv, 250, addr(k» 

COBOL; 
call eat-master (a of b of new-unit, REC-LEVEL) 

FORTRAN; 
call gamma (43, marigold(i), substr(cs,3» 

• goto, g 
goto LINE 

This request transfers control from probe to the statement 
specified and initiates execution at that point. The syntax 
of LINE is given below. It is an error to use this request to 
goto a line in a procedure that is not active. Because of 
compiler optimization, it can be dangerous to use this 
request. 

Examples: 

goto label var transfer to value of label 
variables 

goto action (4) transfer to value of label 
constant 

goto 110 transfer to statement on line 
110 

goto $110 transfer to line with label 110 
goto $c,1 transfer to the statement after 

the current one 

CONDITIONAL PREDICATES: Probe provides two forms of conditional 
execution. The "if" request evaluates a conditional 
expression, and executes a request list if the expression is 
true. The "while" request repeatedly executes a request list, 
testing the conditional expression before each execution. The 
format of a conditional expression is: 

EXPRESSION OP EXPRESSION: where OP can be <=, <, =, A:, > or >=. 
When the current language is FORTRAN, .leo, .It., .eq., .ne., 
.gt., and .ge. are also accepted. 

3-534 AG92-03 



probe (pb) probe (pb) 

• if. if CONDITIONAL EXPRESSION: REQUESTS 

This request is most useful in a break request, where it can 
be used to cause a conditional halt. REQUEST can be a single 
request, or several probe requests, enclosed in parentheses 
and separated by semicolons. 

• while, wI 
while CONDITIONAL EXPRESSION REQUESTS 

Examples: 

if a < b: let p = addr(a) 
while p A= null: (v p -> r.val; let p = p -> r.next) 
if ijk .ne. 8: halt 

REQUESTS TO CONTROL PROBE: It is possible to control probe's 
behavior in a few ways - the length of error messages, the 
amount of printing done by breaks and by the value request can 
all be controlled. The current language can be specified 
explicitly. In addition, the streams used by probe for input 
and output can be controlled. 

• modes, mode 
modes {MODES} 

The modes request sets various modes internal to probe that 
change the way it functions. If no arguments are given, the 
current modes are printed. MODES can be any combination of 
the following. If conflicting modes are set, the last one in 
the request determines the setting of the mode. 

Most modes take a single argument that is either a LENGTH or a 
BOOLEAN. 

A LENGTH is either "long" ("lg"), "short" ("sh"), or "brief" 
("bf"), and is used to specify the kind or amount of printing 
to be done by a given part of probe. The amount of output 
produced is greatest for "long" and least for "brief", with 
"short" in between. In some cases, "short" and "brief" are 
the same. 

BOOLEAN is used 
be either "yes", 

to turn a mode or feature on or off. It may 
"on", or "true", or "no", "off", or "false". 

3-535 AG92-03 



probe (pb) probe (pb) 

error messages, em LENGTH 
co~trols the length of the text used for an error message. 
The default is long. 

qualification, qf LENGTH 
controls the way variable names are printed by the value 
request. The default is "brief", which caUises only the 
last name of a structure to be printed. If it i& "long", 
names are printed fully qualified. This mode only affects 
the printing of PL/1 names. FORTRAN names are never 
qualified (because the concept of qualification is not used 
in FORTRAN. COBOL names are always printed i.n the "brief" 
format. 

value print, vp LENGTH 
co~trols the circumstances under which the value request 
prints the name of a variable. The default is "short" 
which prints the name only for structures or arrays. If it 
is "long" the name is always printed, and if it is "brief" 
the name is never printed. 

value separator, vs STRING 
caijses the value request to print STRING between the name 
of a variable and its value, if the name is being printed. 
Only the first 32 characters of STRING are used. The 
default is " It. 

prompt BOOLEAN 
controls whether or not a prompting string is printed on 
the terminal when probe is listening for requests. It is 
off by default. 

prompt string STRING 
spe~ifies the string to be used for promptingu The initial 
value is "probe~[(~d)";~s"]:"2x". The STRING is used in a 
call to 10a $nn1, where the first argument is a bit (1) 
that is on- if the current invocation of probe is a 
recursive one, and the second is the current depth . 

• input switch, isw 
isw (SWITCH} 

This request causes probe to take all fUFther command input 
from the switch named. If no SWITCH is supplied, user input 
is used. If there are any other requests in the input lIne or 
break request list that contain this request, they are ignored 
without comment. Input is read from the switch until either a 
new input switch request is read, or all available characters 
are proceised, in which case a message is printed and input is 
reset to user input. If any errors occur, input is reset to 
user input. -The switch SWITCH must be attached and open 
before this request is given. 

3-536 AG92-03 



probe (pb) probe (pb) 

• output switch, osw 
osw { SWITCH } 

This request causes probe to 
switch named. If SWITCH is 
used . 

direct all its output to the 
not specified, user_output is 

• language, lng 
language {LANG} 

If no argument is given, this request prints the name of the 
"current language". Otherwise LANG should be the name of one 
of the supported probe languages. Names accepted are: pl1, 
fortran, ft, and cobol. 

MISCELLANEOUS REQUESTS: 

• display, ds 
display {*} VARIABLE {FORMAT} {N} 

The display request displays an arbitrary location in a 
selected format. If an asterisk appears before VARIABLE, 
indirection is specified and the value of the variable 
specifies the address of the storage to be displayed. 
Otherwise, the address of VARIABLE is the address of the first 
location displayed. It is an error to use display with a 
VARIABLE that has no storage (such as a format constant) or 
with a literal constant, unless indirection is used, in which 
case VARIABLE can be an addressing constant (such as label 
constant), a pointer constant, or an expression with a pointer 
result. 

FORMAT can be one of the following: 

octal, 0 
N is the number of (36 bit) words dumped. 

ascii, character, ch 
N is the number of characters dumped. A non-printable 
character 'is printed as ".". 

instruction, i 
N is the number of instructions dumped. If the instruction 
has descriptors, they are dumped with the instruction. 

pointer, ptr, its 
N' is the number of ITS pointers displayed. 

The default FORMAT is octal, and the default for N is 1. 

3-531 AG92-03 



probe (pb) 

Examples: 

ds * 2531100 octal 20 
ds foo ascii 64 

• stack, sk 
sk {{M ,} N} {all} 

probe (pb) 

dumps 20 words in octal 
displays the first 64 characters 

of foo 

This request traces the stack backwards and displays the first 
N frames. If M is not given, the highest numbered frame is 
the first frame displayed, otherwise the M'th frame is the 
first displayed. If N is not given, all frames are displayed, 
and M cannot be specified. System support frames are not 
displayed unless "all" is given. 

For each block, the frame number is given, as is the name of 
any condition raised in the block. 

Examples: 

• args 
args 

stack 
stack 2 

stack 3,2 

traces the whole stack 
displays the two most recent 

frames 
displays two frames starting 

with frame 3 

The args request displays the names and values of the 
arguments to the current procedure. 

• symbol, sb 
symbol VARIABLE {long} 

This request displays the attributes of the variable specified 
and the name of the block in which it is declared. If the 
size or dimensions of the variable are not constant an attempt 
is made to evaluate the size or extent expression; if the 
value cannot be determined an asterisk (*) is displayed 
instead. If "long" appears after the name of the identifijer, 
and if the identifier is a PL/I structure or COBOL record, the 
attributes of all members of the structure or record are 
displayed as well. 

3-538 AG92-03 



probe (pb) 

• execute, e 
execute STRING 

probe (pb) 

This request passes the quoted string to the Multics command 
processor for execution. This request is useful in break 
request lists and conditional execution lists, where the .. 
escape cannot be used. 

Example: 

e "ioa ""stopped at a break """ 

SYNTAX OF AN EXPRESSION: An expression can be made from variable 
references, constants, and probe builtin functions, which can 
be combined using the arithmetic operators +, -, *, and / for 
addition, subtraction, multiplication and division. 
Parentheses can· be used to indicate order of evaluation. 
Operations of multiplication and division are performed first, 
then those of addition and subtraction. 

COBOL "abbreviated" expressions are not supported. 

SYNTAX OF A VARIABLE~ Variables can be simple identifiers, 
subscripted references, structure qualified references, and 
locator qualified· references. Subscripts can also be 
expressions. 

Spaces are significant in the names of FORTRAN and COBOL 
names. A FORTRAN name cannot contain embedded spaces. Case 
is insignificant in COBOL names in FORTRAN names when the 
object segment was compiled with either "-fold" or "-card". 

Examples: 

COBOL: 
data-elem 
log-type of gen-record (3) 
gen-record.log-type(3) 

PL 1 : 
ignatz (p -> lemma - 3) 

The block in which a variable reference is resolved is 
normally determined by the source pointer, but can be altered 
by providing a different block in brackets after the variable 
nameo A block can be specified in the following ways: 

3-539 AG92-03 



probe (pb) 

Example: 
level N 
-N 

LINE 

OBJECT 

probe (pb) 

the block and frame at level N 
the Nth previous invocation of 

the current block 
the block that contains LINE, in 

its most recent invocation. 
the block named. It can be 

internal to the current 
procedure, or external. 

WARNING: Specifying a block explicitly does not change 
probe's "current language". It is possible that the block 
named is in another language than the current block. Even if 
this is so, data is referenced in terms of the current 
language. 

SYNTAX OF A 
determined 
recognizes 
decimal), 
from 1 to 

CONSTANT: The attributes of a constant are 
by the appearance of the constant. Probe 

arithmetic constants (fixed or floating, binary or 
string constants (character or bit, in any radix 

4), and pointer constants. 

The maximum length of a string constant is 256 characters. 

Examples: 

-123 
10b 
45.37 
4.73e10 
4.21f10 
2.1-0.3i 
123456700 
"abc" 
"quote""instring" 
"1010"b 
"FA07"b4 
"1222"b2 
256 : 1200 
232:7413(9) 
true 
'Nix Olympia' 

fixed dec (3) 
fixed bin (2) 
fixed dec (4,2) 
float dec (3) 
fixed dec (3,-8) 
complex decimal (2,1) 
fixed bin (24) entered in octal 
character string 
character string with embedded quote 
binary bit string 
hexadecimal bit string 
quatenary bit string 
pointer 
pointer with bit offset 
FORTRAN logical constant 
FORTRAN string constant 

Note that the segment number and word offset of a pointer are 
specified in octal, but the bit offset, if any, is specified 
in decimal. 

3-540 AG92-03 



probe (pb) probe (pb) 

PROBE BUILTINS: Many builtin functions are provided. They can 
be referenced as if they were external functions, but if no 
argument is needed, then the argument list can be omitted. 
The substr and unspec builtins can be used as 
pseudo-variables. 

addr (A) 
addrel (P, N) 
baseptr (N) 
length (S) 
maxlength (S) 
null () 
ptr (P, N) 
re I (P) 
segno (P) 
substr (S, N) 
unspec (A) 

In the list above, A stands for any reference to storage, N 
stands for any expression that yields a number, P for any 
expression that yields a pointer value, and S for any 
expression that yields a string. 

All builtins are equivalent to the Multics PL/1 builtins of 
the same name, except for segno and ptr. The ptr builtin is 
like the Multics PL/1 ptr builtin, but also can be supplied 
with a bit offset after the word offset. The segno builtin is 
like the Multics PL/1 baseno builtin, but its result is an 
integer instead of a bit-string. 

Remember that probe reads numbers in decimal, so a reference 
to "baseptr(64)" means the same as "baseptr(100o)". 

Builtins can be prefaced with the "$" character to distinguish 
them from program variables of the same name. 

For the following examples, assume the following declarations, 
depending on your choice of language: 

PL 1 : 
dcl i fixed bin; 
dcl cs char (8); 

FORTRAN: 
integer i 
(~har*8 cs 

3-541 AG92-03 



probe (pb) 

COBOL: 
11 i usage is comp-6. 
11 cs pic a(8). 

probe (pb) 

(No claim is made that these are exactly equivalent data, but 
they are close enough for discussion.) 

Also assume that cs has the val ue "abcde f 't and that i is 2. 

addr (i) 
v substr (cs, i, 3) 
let substr (cs, 4, 1) = 
v length (cs) 
value maxlength(cs) 
v baseptr (2540) 

SYNTAX OF A LINE: 

" 11 

the address of i 
displays "bcd" 
sets cs to "abc ef" 
displays 8 
also displays 8 
displays 25410 

A LINE is used by probe to define a source statement or a 
location in the object segment. It can be a label, a line 
number, or a special probe symbol. Lines in include files can 
be specified by giving the file number before the line number. 
The compilation listing specifies the correspondance between 
file numbers and source files. A statement can be specified 
relative to another statement. A label that looks like a line 
number may be specified by preceding it with a dollar sign. 
This convention must be used for all FORTRAN labels, because 
they are otherwise indistinguishable from number~s. COBOL also 
allows numeric labels, and the dollar sign must be used in 
this case also. 

Examples: 

34 
2-59 
foo(3) 
label,3 

$100 

$c,3 

$b 

3-'542 

line number 34 
line 59 in include file 2 
subscripted label constant 
third statement after one 
labelled by "label" 
statement whose label is 
"100" 
the statement three 
statements after the current 
one 
the statement containing the 
breakpoint that caused the 
current invocation of probe 

AG92-03 



probe (pb) probe (pb) 

NOTES ON TERMINOLOGY 

active 
a procedure is said to be active if its execution is ongoing 
or suspended by an error, quit signal, breakpoint, or call. 
An active procedure is distinguished from one that has never 
been run, has completed execution or has been interrupted and 
aborted by a Multics release command, in that an active 
procedure has at least one stack frame associated with it. 

automatic storage 
a storage class for which space is allocated dynamically in a 
stack frame upon block invocation. As a result, variables of 
this class only have storage assigned to them, and hence a 
legitimate address and value, when the block in which they are 
declared is active. PL/1 variables, by default, belong to 
this class. FORTRAN variables must appear in an "automatic" 
statement in order to belong to this class. 

block 
corresponds to a PL/1 
program or subroutine, 
variable declarations. 

breakpoint 

procedure or begin block or FORTRAN 
and identifies a particular group of 

a point at which program execution is temporarily interrupted 
and probe requests executed. 

invocation 
when a procedure is called recursively, it appears on the 
stack two or more times, and has storage allocated for it the 
same number of times. Each instance of the procedure on the 
stack is considered a separate and distinguishable invocation 
of the block. The values of automatic variables can be 
different in different invocations of the same block. The 
most recent invocation is the topmost in stack trace. 

level number 
?n integer used by probe to uniquely designate each block 
invocation (i.e., each entry in a stack trace). Level one is 
the first (least recent) procedure invoked. Level number is 
NOT necessarily the same as either of the numbers given after 
the word "level" in a ready message. The first of this pair 
gives the count of command levels in effect and gives the 
value n+1, where n is the number of programs (or groups of 
programs) whose execution has been suspended, the second gives 
the number of stack frames in existence and since the probe 
stack includes quick blocks, this number is less than or equal 
to the level number of the last command level in the stack 
trace. 

3-543 AG92-03 



I 

probe (pb) probe (pb) 

quick block 
internal procedures and begin blocks that satisfy certain 
requirements (e.g., are not called recursively, do not contain 
on, signal, or revert statments, etc.) have their automatic 
storage allocated by the blocks that call them. Hence, they 
do not actually have their own stack frames, but share the one 
of the caller. Certain system commands, such as trace stack, 
ignore these blocks. The probe command, however, i~cludes 
them in a stack trace, and treats them as if they were the 
same as any other blocks. The quickness of a block can be 
determined from a program listing containing information about 
the storage requirement of the program (produced with the 
-symbols, -map, or -list control arguments). For example, 
procedure "quick" shares stack frame of external procedure 
"main". 

stack 
if a procedure A calls another procedure B, the execution of A 
is suspended until B returns. If B in turn calls C, this is 
an ordered list of procedure or subroutine calls indicating 
which program called which other program, and which will 
return to which. This ordered list is called the "stack". In 
probe, a trace of the stack can be displayed by use of the 
stack request. The list is given in top-down fashion with the 
most recently called procedure listed first: 

3 
2 
1 

C 
B 
A 

The numbers are level numbers. 

stack frame 
when a block is invoked (that 1s, a procedure is called or a 
begin block is entered), storage is allocated for its 
automatic variables. The area allocated is called a stack 
frame and logically corresponds to each entry in the stack. 

static storage 
a storage class for which space is allocated once per process, 
effectively at the time the procedure is first referenced. As 
a result, variables of this class always have a legitimate 
address and value. Regular FORTRAN variables, and those in a 
common block, have static storage. PL/1 variables must be 
explicitly declared. 

statement map 
a table in the symbol section of an object segment that 
relates locations in the text section (executable mode) to 

3-544 AG9~~-03 



probe (pb) probe (pb) 

source line numbers. This table is produced by a language I 
translator when -table or -brief table is specified. 

support procedure 
a system utility ,routine that provides runtime support for 
other procedures (e.g., the procedure that allocates storage 
as requested by a PL/1 allocate statement). 

symbol table I 
a table in the symbol section of an object segment that 
contains information about the variables (symbols) used in the 
program. A symbol table is produced by a language translator 
when the -table control argument is specified. 

3-545 AG92-03 



I 

I 

I 

I 

I 

probe (pb) 

SUMMARY OF REQUESTS 

request 

after 
args 

before 
call 
continue 
continue to 

display 

execute 
goto 
halt 

help 
if 

input switch 
language 
let 
list builtins 
list-help 
list-requests 
modes 
output_switch 
pause 
position 

quit 

reset 
source 
stack 
status 
step 
symbol 
use 
value 
where 
while 

abbrev 

a 

b 
cl 
c 
ct 

ds 

e 
g 
h 

isw 
Ing 
1 
Ib 
lh 
lr 
mode 
osw 
pa 
ps 

q 

r 
sc 
sk 
st 
s 
sb 
u 
v 
wh 
wI 

probe (pb) 

function 

cause probe to identify itself 
escape to command p~ocessor 
set break after a statement 
print arguments to current 

procedure 
set a break before a statement 
call an external procedure 
restart break 
insert temporary break and 

continue 
display storage in selected 

format 
pass string to command processor 
transfer to a statement 
in break text, establish a probe 

level 
print information about probe 
execute probe requests if 

condition is true 
read probe requests from switch 
set probe langauge 
assign a value to a variable 
list all probe builtins 
list all topics 
list all probe requests 
control probes behavior 
direct probe output to a switch 
stop a program once 
set the source pointer and print 

source line 
return from current probe 

invocation 
delete breaks 
print source lines 
trace the stack 
list breakpoints 
advance one statement and halt 
display attributes of a variable 
set source pointer 
display value of an expression 
display value of probe pointers 
execute commands while condition 

is true 

3-546 AG92-03 



process_dir (pd) 

SYNTAX AS A COMMAND: 

pd 

SYNTAX AS AN ACTIVE FUNCTION: 

[pdJ 

process_dir (pdJ 

FUNCTION: returns the pathname of the process directory of the 
process in which it is invoked. 

3-547 AG92-03 



profile (pf) profile (pf) 

--------

SYNTAX AS A COMMAND: 

pf {program_names} {-control args} 

FUNCTION: a performance measuring tool that analyzes the time 
spent executing each source statement of a program, along with 
other parameters of interest, after the program is run. 

ARGUMENTS: 

program names 
are ~athnames or reference names of programs to be analyzed. 
Any program name that does not include ,,<It or If)" characters 
is assumed Io be a reference name. They need not be specified 
if the -input file control argument is used. 

CONTROL ARGUMENTS: 
Control arguments apply to all programs specified, and can be 
given in any order. 

-print, -pr 
prints the following information for each statement in the 
specified program(s): 

1. Line Number. 

2. Statement Number 
if more than one statement on the line. 

3. Count 
the number of times the statement was executed. 

4. Cost 
an approximation to the accumulated execution time for 
the statement. EquBl to the number of instructions 
executed plus ten times the number of external operators 
called. 

5. Stars (asterisks) 
an indication of the percentage of total cost (or time, 
for long profile data) used in the statement. The 
number of- stars is selected according to the table in 
the "List of Stars" section below. 

6. Names of all external operators called by the statement. 

3-548 AG92··03 



profile (pf) profile (pf) 

For -long profile (actual accumulated time) data, item 4 is 
changed to-the following: 

4a. Time 
actual execution time for the statement in virtual CPU 
microseconds, including all time spent in any operators 
or subroutines invoked by the statement. 

4b. Average Time 
Time di vided by ; Count (the average execution time for 
one execution of the statement). 

4c. Page Faults 
page faults incurred in executing the statement. 

-no header, -nhe 
used with -print to suppress column headings. 

-sort STR 
used with -print to sort profile information into descending 
order of the specified field STR, which can be any of the 
fields in the "List of Ftelds" section below. 

-first N, -ft N 
used with -sort to print only the first N values. 

-long, -lg 
used with -print to include in the output information for 
statements that have never been executed. 

-brief, -bf 
used with -print to exclude from the output all information 
for statements that have never been executed. This is the 
default. 

-list, -Is 
creates a profile listing for all specified programs. The 
profile listing file is given a name consisting of the first 
program name with the language suffix replaced by the pfl 
suffix. It is placed in the working directory. The 
information described above for the -print control argument is 
placed in columns to the left of each source line in the 
profile listing. 

-source dir path, -scd path 
used- with -list when the source segments to be listed have 
been moved from the directories in which they were compiled. 
If -source dir is specified, only the directory specified by 
pathname path is searched for source segments. 

3-549 AG92-03 



profile (pf) pro file (p f ) 

-line length N, -11 N 
used with -list to specify an output width of N characters. 
The default is 132. 

-plot STR 
plots a bar graph, on any supported graphics terminal, of the 
values of the specified field STR. STR can be any of the 
fields in the "List of Fields" section below. Use of this 
control argument requires that the site has installed the 
Multics Graphics System, and that the setup graphics command 
has been executed. See the Multics Graphics Sy~!em, Order No. 
AS40, for more information. 

-from N, -fm N 
used with -print or -plot to begin the output with the data 
for line number N. The default is 1. 

-to N 
used with -print or -plot to end the output with the data for 
line number N. The default is the line number of the last 
executable statement. 

-max points N, -mp N 
u~ed with -plot to specify the maximum number of points (line 
numbers) to be plotted (the graphics resolution). The default 
is 250. The Multics Graphics System is capable of plotting up 
to 1024 points. 

-output file path, -of path 
causisthe profile data for the specified program_names to be 
stored 1n the prof1le data file spec1f1ed by path. The file 
is created 1f it does not already ex1st and is overwritten if 
it already exists. The pfd suffix 1s added to path if it is 
not already present. The profile data is stored in a format 
acceptable to the -input file control argument. The format of 
pfd data files is described by the p11 include file 
pfd format.incl.p11. The stored data is determined by the 
proiram names specified, the -comment control argument and 
whether- the compilation was done using the -profile or 
-long profile options. The name a program was compiled with 
is saved in the profile data file. If program name specifies 
a bound object segment, profile data about each component of 
the bound object segment is saved. 

3-550 AG92-03 



profile (pf) profile (pf) 

-comment STR, -com STR 
used with the -output file control argument to include STR 
with the stored profile data as a comment. This control 
argument can also be used with -plot. If STR is to include 
blanks or other characters recognized as special by the 
command processor, it should be enclosed in quotes. STR can 
be up to 128 characters long. 

-input file path, -if path 
cauies the profile data to be retrieved from the profile data 
file specified by path. Use of this control argument causes 
the current (internal static) profile data, if any, to be 
ignored. The pfd suffix is appended to path if it is not 
already present. If any program names are specified, they 
select a subset of the stored ~ata for analysis. If no 
program names are specified, all data stored in the profile 
data fiTe is used. This control argument is inconsistent with 
-output_file. 

-reset, -rs 
resets (zeros) all current (internal static) profile data for 
the named program(s). When -reset is specified, the resetting 
is done as the very last operation if -print, -list, -plot, or 
-output file are also specified. This control argument is 
inconsiitent with -input_file and -hardcore. 

-hardcore, -hard 
indicates that the specified programs are supervisor 
(hardcore) segments. The current (~nternal static) profile 
data for such programs is retrieved from the address space of 
the supervisor. Hardcore programs compiled with the -profile 
or -long profile control arguments must be installed by 
generatini a Multics System Tape and rebooting Multics. See 
System Programming Tools, Order No. AZ03,- for a description 
of the generate mst command. Note that the current (internal 
static) profile data for hardcore programs cannot be reset 
(zeroed). 

-search dir path, -srhd path 
used--with -hard core to add path to an internal search list of 
hard core object directories. Up to 8 directories can be 
specified. If no search list is specified, >ldd>hard>o is 
searched for copies of the specified program(s). 

3-551 AG92-03 



profile (pf) profile (pf) 

LIST OF STARS: 
4 stars: 20% to 100% 
3 stars: 10% to 20% 
2 stars: 5% to 10% 
1 star: 2.5% to 5% 
no stars: 0% to 2.5% 
one period: Statement was not executed. 

NOTES: The program to be analyzed must be compiled using the 
-profile (-pf) control argument of the cobol, fortran and p11 
commands, or using the -long profile (-lpf) control argument 
of the p11 command. The --long profile compiler control 
argument is used to acquire exact ilapsed time statistics and 
is much more expensive to use than the -profile compiler 
control argument. 

If none of the control arguments -print, -list, -plot, 
-output_file, or -reset is specified, -print is assumed. 

When analyzing several runs of the same program(s) on various 
test cases, -reset should be specified. If -reset is not 
specified, the current (internal static) profile data is 
accumulated (added) for all runs. 

If several identical control arguments are specified, only the 
last one is used, except for -search_dir, as explained above. 

The' current (internal static) data acquired by programs 
compiled with the -long profile control argument is subject to 
small perturbations d~e to asynchronous events outside the 
control. of the data acquisition mechanism. Therefore, 
-long profile results are most reliable when obtained from 
long-executing programs or from multiple executions of the 
same program. 

The execution time for -long profile programs can be up to ten 
times as long as normal due-to the overhead of acquiring CPU 
time and paging data from the supervisor. This overhead is 
subtracted from the current profile data before any further 
processing is done. 

There are two forms of profile data, current and stored. 
Current data is in a form suitable for direct incrementing by 
the program(s) being analyzed and is stored using the p11 
internal static storage class. Current profile data (except 
for hard core programs) can be reset by the -reset control 
argument. Stored profile data is permanent data as stored by 
the -output_file control argument. 

3-552 AG92-03 



profile (pf) profile (pf) 

Profile listing files (pfl) and profile data files (pfd) are 
automatically stored as multisegment files if they are too 
large to fit into a single segment. This feature allows very 
large bound object segments to be analyzed and very large 
source segments to be listed. 

The time and page faults fields are only available for sorting 
or plotting if ~he program was compiled with -long profile. 
If the program was not compiled with -profile, the cost field 
is sorted or plotted instead. 

Profile data generated from statements in include files are 
printed only if the -from or -to control arguments are not 
specified. Include file profile data cannot be plotted. 
Include files which generated profile data are listed after 
the main source program. If the -source dir control argument 
is specified, include files are searched for first in the 
specified source directory, and then in the directory in which 
they were compiled. 

EXAMPLES: The following command lines compile a PL/I program 
with -profile,execute the program once to acquire current 
profile data, and print the 5 most expensive statements. 
! pl1 factorial -profile 

PL/I 24c 
factorial 
n 
1 
2 
3 
4 
5 
6 
1 
8 
9 
10 

n! 
1 
2 
6 
24 

'120 
720 
5040 
40320 
362880 
3628800 

3-553 AG92-03 



profile (pf) profile (pf) 

profile factorial -sort cost -first 5 

Program: factorial 
LINE STMT COUNT COST STARS OPERATORS 

20 45 1710 **** call int other, return 
~O ·10 440 *** call int-this 

call ext out desc 
18 55 220 ** 
18 10 120 * return 
1 1 10 50 

--------
Totals: 144 2604 

The following command line saves the current profile data in 
factorial.pfd. 

profile factorial -of factorial 

The following command line creates a profile listing in 
factorial.pfl from the source segment factorial.pl1 and the 
profile data file factorial.pfd. The listing is prepared for 
a printer with only 50 columns. 

profile -if factorial -Is -11 50 

3-554 AG92'-03 



program_interrupt (pi) program_interrupt (pi) 

SYNTAX AS A COMMAND: 

pi 

FUNCTION: allows the users of certain editors, subsystems, and 
other interactive programs to reenter those programs at known 
places after having interrupted the process by issuing a quit 
signal. 

NOTES: The documentation of each individual program specifies 
whether or not it accommodates the program interrupt feature 
and exactly what its behavior is following such an interrupt. 

Generally speaking, when wanting to reenter a program known to 
accommodate the program interrupt feature, the user issues the 
program interrupt comma~d (or pi) after returning to command 
level by issuing the quit signal. The interrupted program 
usually aborts what it was doing and resumes interaction with 
the user. 

If a program interrupt is mistakenly directed at a program not 
having this Teature, the system default error handler prints a 
message and returns the user to command level. At this point, 
the system is still holding the work that was originally 
interrupted by the quit signal. The user can restart the 
program quit out of by invoking the start command. If the 
user does not desire to continue execution of the program, the 
release command should be issued to return to the command 
level prior to the command just "quit" out of. Refer to the 
descriptions of the release and start commands. 

To make use of the program interrupt facility, a program or 
subsystem must establish a condition handler for the 
program interrupt conditiono When the user invokes the 
program-interrupt command, it signals the program interrupt 
condition, and the handler established by the program or 
subsystem is invoked. For a discussion of conditions see "The 
Multics Condition Mechanism" and "List of System Conditions 
and Default Handlers" in the MPM Reference Guide. 

3-555 AG92-03 



program_interrupt (pi) program_interrupt (pi) 

EXAMPLES: The edm command has a handler for the 
program interrupt condition that stops whatever the editor is 
doing and looks for a request from the user's terminal. Thus, 
a user of edm who inadvertently types "p100" (to print 100 
lines) can kill this printout by issuing a quit signal and 
then typing program interrupt. The edm command responds by 
printing "Edit." and then waiting for editing requests. 

3-556 AG92-03 



progress (pg) progress (pg) 

SYNTAX AS A COMMAND: 

pg {-control arg} {command_line} 

FUNCTION: executes a specified command line and prints 
information about how its execution is progressing in terms of 
CPU time, real time, and page faults. 

CONTROL ARGUMENTS: 
if present, progress performs only the function specified by 
that control argument. No command line argument can follow 
except in the case of -brief (-bf).- The control argument can 
be one of the following: 

-off 

-on 

suppresses the incremental messages (see "Notes on Output 
Messages" below) printed during execution of a command line 
previously initiated, but does not suppress the message 
printed when that command line is finished. This control 
argument can be used to suppress messages while debugging. 

restores the printing of incremental messages during execution 
of the command line. 

-brief, -bf 
permits only the message at completion of the command line to 
be printed. The command line argument is used following this 
control argument. 

-output switch name, -os name 
directs output from the progress command to be printed on the 
1/0 switch named name. The default switch is user i/o. 

-cput N 
prints 
time. 

-realt N 

incremental messages every N 
The default is -cput 10. 

seconds of virtual CPU 

prints incremental messages every N seconds of real time 
instead of virtual CPU time. 

3-551 AG92-03 



progress (pg) progress (pg) 

OPTIONAL ARGUMENTS: 

command line 
is a character string made up by concatenating all the 
arguments to progress (excluding the first if it is a contr01 
argument) with blanks between them. The string is executed as 
a command line. 

NOTES ON OUTPUT MESSAGES: After every 10 seconds of virtual CPU 
time (assuming the default triggering value is used), progress 
prints out a message of the form: 

ct/rt = pt%, ci/ri = pi% (pfi) 

where: 

ct is the number of virtual CPU seconds used by the command 
line so far. 

rt. is the total real seconds used so far. 

pt is the ratio of virtual to real time used by the command 
so far. 

ci is the incremental virtual CPU time (since the last 
message). 

ri is the incremental real time. 

pi is ci expressed as a percentage of ri. 

pfi is the number of page faults per second of virtual CPU 
time (since the last message). 

When the command line finishes, progress prints the following 
message: 

finished: ct/rt = pt% (pft) 

where pft is the number of page faults per second of virtual 
CPU time for the execution of the entire command. 

3-558 AG92-03 



progress (pg) progress (pg) 

EXAMPLES: In the following example, the user wants to see how 
execution is progressing for the compilation of a PL/I source 
program (named newseg.pI1) using the -list control argument to 
the pl1 command. 

progress pl1 newseg -list 
PL/I 
10/30 = 33%, 10/30 = 33% (26) 
20/50 = 40%, 10120 = 50% (17) 
30/123 = 24%, 10/73 = 131 (20) 
finished: 33/150 = 22% (22) 

3-559 AG92-03 



qedx (qx) qedx (qx) 

SYNTAX AS A COMMAND: 

qx 

FUNCTION: used to create and edit segments in Multics. The qedx/ 
edi tor cannot be called recurs i vely. This descr ipt ion of the qedx" 
editor summarizes the editing requests and addressing features 
provided by qedx. 

NOTES: The invocation of qedx puts you in the editor in edit mode, 
where the editor waits for you to type a qedx request. To create 
a new segment, you might perform the following steps: 

1. Invoke qedx and enter input mode by typing one of the input 
requests (e.g., append) as the first qedx request. 

a) Enter text lines into the buffer from the terminal. 

b) Leave input mode by typi ng the escape request sequence 
as the first characters of a new line. 

2. Ins p e c t the con ten t s 0 f the b u f fer and m a k e an y n e c e s s a r y 
corrections using edit or input requests. 

3. Write the contents of the buffer into a new segment using the 
write request. 

4. Exit from the editor using the quit request. 

To edi t an existing segment, you might perform the following 
steps: 

1. Invoke qedx and read the segment into the buffer by giving a 
read request as the first qedx request. 

2. Edit the contents of the buffer using edit and input requests 
as necessary. (The editor makes all changes on a copy of the 
segment, not on the original. Only when you issue a write 
request does the editor overwrite the original segment with the 
edited version.) 

3. Using the write request, write the contents of the modified 
buffer either back into the original segment or,· perhaps, into 
a segment of a different name. 

2/80 3-560 AG92-03A 



I 

qedx (qx) qedx (qx) 

4. Exit from the editor using the quit request. 

You can create and edit any number of segments with a single 
invocation of the editor as long as the contents of the buffer are 
deleted before work is started on each new segmerit. 

C () m pIe t e t u tor i ali n for mat ion 0 n qed xis a va i 1 a. b 1 e in the ~~o~ I e !~. 
~~.!_tor:. ~_~~!_~ G~_i~~, Order No. CG40. 

NOTES ON ADDRESSING: Most edi ting requests are preceded by an 
address specifying the line or lines in the buffer on which the 
request is to operate. Lines in the buffer can be addressed 
by absolute line number; relative line number, i.e., relativ~ to 
the "current" line (+2 means the line that is two lines ahead of 
the current line, -2 means the line that is two lines behind); 3nd 
context (locate the line containing lany string between these 
slashes/). Current line is denoted by period (.); last line of f 

buffer, by dollar sign ($). 

NOTES ON REGULAR EXPRESSIONS: The following characters have 
specialized meanings when used in a regular expression. A regular 
expression is the character string between delimiters, such as in 
a substitute request, or a search string. You can reinvoke the 
last used regular expression by giving a null regular expression 
(II) • 

* signifies any number (or none) of the preceding character. 

when used as the first character of a regular expression, 
signifies the (imaginary) character preceding the first 
character on a line. 

$ when used as the last character of a regular expression, 
signifies the (imaginary) character following the last 
character on a line. 

matches any character on a line. 

LIST OF ESCAPE SEQUENCE REQUESTS: 

\f exits from input mode and terminates the input request; 
returns the user in edit mode. It is used constantly when 
editing a document, and is the key to understanding the 
difference between input mode and edit mode. 

2/80 3-561 AG92-03A 



qedx (qx) qedx (qx) 

\c suppresses the meaning of the escape sequence or special 
character following it. 

\b(X) redirects editor stream to read subsequent input from buffer 
x. 

\r temporarily redirects the input stream to read a single line 
from your terminal. 

NOTES ON REQUESTS: In the list given below, editor requests are 
divided into four categories: input requests, basic edit 
requests, extended edi t requests, and buffer requests. The input 
requests and basic edit requests are sufficient to allow a user 
to create and ed it segments. The extended requests gi ve the user 
the ability to execute commands in the Multics system without 
leaving the editor and also to effect global changes. Because the 
extended requests' are, in general, more difficult to use properly, 
they should be learned only after mastering the input and 
basic edit requests. The buffer requests require a knowledge of 
auxiliary buffers. (Since the nothing and comment requests are 
generally used in macros, they are included wi th the buffer 
requests. ) The buffer requests, used wi th any of the other 
requests, and special escape sequences allow the user to make qedx 
function as an interpretive programming language through the use 
of macros. 

The character given in parentheses is the actual character used 
to invoke the request in qedx and does not always bear a relation 
to the na~e of the request. The second part of each entry shows 
the format, default in parentheses, and brief description. For 
the value of ADR, see "Notes on Addressing lf above; for the value 
of regexp, see "Notes on Regular Expressions" above. 

LIST OF INPUT REQUESTS: These requests enter input mode and must be 
terminated with \f. 

append (a) 
Enter input mode, append lines typed from the terminal after 
a specified line. 

ADRa (.a) append lines after specified line. 

change (c) 

2/80 

Enter input mode, replace the specified line or lines with lines 
typed from the terminal. 

3-562 AG92-03A 



qedx (qx) qedx (qx) 

ADR1,ADR2c (.,.c) change existing line(s); delete and 
replace. 1 

insert (i) 
Enter input mode, insert lines typed from the terminal before 
a specified line. 

ADRi (.i) insert lines before the specified line. 

LIST OF BASIC EDIT REQUESTS: 

delete (d) 
Delete specified line or lines from the buffer. 

ADR1,ADR2d (.,.d) delete line(s). 

print (p) 
Print specified line or lines on the terminal; special case 
print needs address only. 

ADR1,ADR2p (.,.p) print line(s). 

print line number (=) 
Print line number of specified line. 

ADR= (.=) print line number. 

quit (q) 
Exit from the editor. 

q exit from qedx editor. 

read (r) 
Read specified segment into the buffer. 

ADRr path ($r path) append contents of path after specified 
line. 

substitute (5) 

2/80 

Replace specific character strings in specified line or 
lines. 

ADR1,ADR2s/regexp/string/ (.,.s/regexp/string/) substitute 
every string matching regexp in the line(s) with string. If 
string contains &, & is replaced by the characters which matched 
regexp. First character after s is delimiter; it can be any 
character not in either regexp or string. 

" 3.-563 AG92-03A 



qedx (qx) qedx (qx) 

S t r in g sma t chi n g reg ex p don 0 t 0 v e rIa pan d the res ul t 0 f 
substitution is not rescanned. 

wr i te (w) 
Write current buffer into specified segment. 

ADR1,ADR2w {path} (l,$w path) write lines into segm~nt named 
path. If path omitted, a default pathname used if possible, 
otherwise error message printed. 

LIST OF EXTENDED EDIT REQUESTS: 

execute (e) 
passes the remainder of a request line to the Multics command 
processor (i.e., escape to execute other Multics comman~s) 
without leaving the qedx editor. 

e (command line> 

global (g) 
Print, delete, or print line number of all addressed lines that 
contain a match for a specified character string. 

ADR1,ADR2gX/regexpl (l,$gX/regexp/) perform operation on 
lines that contain a match for regexp; X must be d for delete, 
p for print, or = for print line numbers. 

exclude (v) 
Pr int, delete, or pr int 1 ine number of all addressed 1 ines that 
do not contain a specified character string. 

ADR1,ADR2vX/regexpl (1,$vX/regexp/) perform operation on 
lines that do not contain a match for regexp; X must be d for 
delete, p for print, or = for print line numbers. 

LIST OF BUFFER REQUESTS: 

buffer (b) 
switches to specified buffer~ (i.e., switches all subsequent 
editor operations to the specified buffer). 

b(X) go to buffer named X; destroy old contents of buffer 
X. 

move (m) 

2/80 

moves the specified line or lines into the specified 
buffer. 

3-564 AG92··03A 



qedx (qx) qedx (qx) 

ADR1,ADR2m(X) (., .m(X» move line(s) from current buffer into 
buffer named X; destroy old contents of buffer X. 

status (x) 
prints a summary status of all buffers currently in use. 

x gives the current status of all buffers in use. 

nothing (n) 
does not perform a task (used to address a line with no other 
action) . 

ADRn (.n) set value of "." to line addressed. 

comment ( 
ignores the remainder of this request line. 

ADRtI (.It) ignores rest of line; used for comments. 

NOTES ON SPACING: The following rules govern the use of spaces in 
editor requests. 

1. Spaces ar~ taken as literal text when appearing inside of 
regular expressions. Thus, Ithe nl is not the same as 
Ithen/. 

2 .. Spaces cannot appear in numbers, e. g. , if 13 is wri tten as 1 3, 
it is interpreted as 1+3 or 4. 

3. Spaces within addresses except as indicated above are 
ignored. 

4. The treatment of spaces in the body of an edi tor request depends 
on the nature of the request .. 

RESPONSES FROM THE EDITOR: In general, the editor does not respond 
with output on the terminal unless explicitly requested to do so 
(e,.g., with a print or print line number request). The editor does 
not commerit when you enter or exit trom the editor or c~ange to 
and from input and edit modes. The use of frequent print 
requests is recommended for new users of the qedx edi tor. I f you 
inadvertently request a large amount of terminal output from the 
edi tor and wish to abort the output wi thout abandoning all previous 
editing, you can issue the quit signal (by pressing the proper key 
on your terminal, e. g., BRK, ATTN, INTERRUPT), and, after the qui t 
response, you can reenter the edi tor by invoking the 
progr am_in ter rupt (pi) command (fu 11 y descr i bed in the MPM 

2/80 .3-565 AG92-03A 



qedx (qx) qedx (qx) 

Co mm and s). T his act ion c au s est h e e d ito r to a ban don its p r in to u t , 
but leaves the value of "." as if the printout had gone to 
completion. 

If an error is encountered by the editor, an error message is 
printed on your terminal and any editor requests already input 
(i.e., read ahead from the terminal) are discarded. 

If you exit from qedx by issuing the quit signal, and subsequently 
invoke qedx in the same process, the message "qedx: P€!nding work 
in previous invocation will be lost if you proceed; do you wish 
to proceed?" is printed on the terminal. You must type a It yes" 
or "no" answer. 

NOTES ON MACRO USAGE: You can place elaborate edi tor request 
sequences (called macros) into auxiliary buffers and then use the 
editor as an interpretive language. This use of qedx requires a 
fairly detailed understanding of the editor. To invoke a qedx 
macro from command level, you merely place your macro ina 
segment that has the letters qedx as the last component of its name, 
then type: 

qedx path optional args 

where: 

1. path 
specifies the pathname of a segment from which the editor is 
to take its initial instructions. Such a set of instructions 
is commonly referred to as a macro. The editor automatically 
concatenates the suffix qedx to path to obtain the complete 
pathname of the segment containing the qedx instructions. 

2. optional_args 

2/80 

are optional arguments that are appended, each as a separate 
line, to the buffer named args (the first optional argument 
becomes the first line in the buffer and the last optional 
argument becomes the last line). Arguments are used in 
conjunction with a macro specified by the path argument. 

The edi tor executes the qed x requests contain1ed in the 
specified segment and then waits for you to type further 
requests. If path is omitted, the editor waits for you to type 
a qedx request. 

3-566 AG92-03A 



qedx (qx) qedx (qx) 

NOTES ON I/O SWITCHES: While most users interact with the qedx editor 
through a terminal, the edi tor is designed to accept input through 
the user input I/O swi tch and transmi t output through the 
user output I/O switch. These switches can be controlled (using 
the -iox subroutine described in the MPM Subroutines) to 
interface with other devices/files in addition to the user's 
terminal. For convenience, the qedx editor description 
assumes that the user's input/output device is a terminal. 

2/80 3-567 AG92-03A 



, 
! 

query query 

SYNTAX AS AN ACTIVE FUNCTION: 

[query arg] 

FUNCTION: asks the user a question and returns the value true if 
the user's answer to the question is rtyes lt or false if the 
user's answer is "no"; if the user's answer is anything else, 
the query active function prints a message asking for a "yes" 
or "no" answer. 

ARGUMENTS: 

arg 
is the question to be asked. If the question contains spaces 
or other command language characters, it must be enclosed in 
quotes. 

NOTES: The format line active function (see format line in this 
manual), can b~ used to insert other active fu~ction values 
into the question. 

EXAMPLES: The following lines from an exec com segment allow the 
user to control the continued execution ~f the exec com. 

&if [query "Do you wish to continue? It) 
&then 
&else &quit 

3-568 AG92-03 



quotient quotient 

SYNTAX AS A COMMAND: 

quotient numA numB 

SYNTAX AS AN ACTIVE FUNCTION: 

[quotient numA numB] 

FUNCTION: returns the result of numA divided by numB. 

NOTES: See the description of divide, which returns only the 
integer portion of quotient, in this manual. 

EXAMPLES: The following interaction illustrates the quotient 
active function. 

string '[quotient 5 4] 
1 .25 
string [quotient 1 3] 
0.33333333333333333333333333333333333333333333333333333333 
string [quotient 5 2] 
2.5 

3-569 AG92-03 



read mail (rdm) read_mail (rdm) 

SYNTAX AS A COMMAND: 

rdm {input_spec} {-control_args} 

FUNCTION: provides a facility for examlnlng and manipulating 
messages sent by the send mail and mail commands. 

ARGUMENTS: 

input spec 
tells read mail where to read messages. The source can be a 
mailbox specified by pathname or user name. 

If no input spec appears in the command line, the user's 
default mailEox (>udd>Project_id>Person_id>Person id.mbx) is 
read. Since only one source can be read at a time, it is an 
error to include more than one input spec in the read mail 
command line. The permissible forms for input_spec are: 

-log 
reads from the user's logbox instead of from the user's 
mailbox. The logbox is the mailbox Person id.sv.mbx in the 
home directory. 

-mailbox path, -mbx path 
reads from the mailbox sp~cified by path instead of from 
the user's default mailbox. The mbx suffix is added to 
path if it is not present. 

-save path, -sv path 
reads from the mailbox path, instead of from the user's 
default mailbox. The suffix .sv.mbx is added to path if it 
is not present. This control argument is equivalent to 
"-mailbox path.sv". 

-user Person id.Project id 

STR 

reads fr~m the sp~cified user's mailbox. This control 
argument is useful if a segment of the name 
Person_id.Project_id exists in the working directory. 

is any argument that does not begin with a minus sign (-). 
If it contains either of the characters > or <, it is 
interpreted as "-mailbox STR". The mbx suffi.x is added tf 
it is not present. If STR does not contain> or <, it is 
interpreted as "-user STR". 

3-570 AG92-03 



read mail (rdm) read mail (rdm) 

CONTROL ARGUMENTS: 

-brief, -bf 
shortens informative messages printed by read mail. 

-header, -he 
prints message headers by the print (pr) request to read mail. 
(See the section on headers in the description of the 
send mail command.) This is the default. 

-interactive messages, -im 
operates on interactive messages from send message as well as 
mail messages from send mail. If this control argument is not 
given', interactive messages are ignored. 

-list, -Is 
prints a summary of the messages in the mailbox before 
entering the request loop. 

-long, -lg 
pri~ts the full text of informative messages of the read mail 
command, as opposed to -brief. This is the default. 

-no header, -nhe 
omits headers when 
request. Instead, a 
message number, the 
sent, of the form: 

printing messages via ,the print (pr) 
brief header line is printed giving the 
sender, the subject, and the date-time 

#3 (71 lines) 07/22/78 12:20 Mailed By: Jones.Publications 
Subject: Manual Ready 

-no interactive messages, -nim 
operates only on send mail messages, not on interactive 
messages sent by send_message. This is the default. 

-no list, -nls 
aoes not print a summary of messages before entering the 
request loop. This is the default. 

-no print, -npr 
does not print messages before entering the request loop. 
This is the default. 

-no prompt 
does not prompt for read mail requests when inside the 
requests loop. This control argument is equivalent to -prompt 
"".. The default prompt is "read mail(N):", where N is the 
reeursion level if greater than one: 

3-571 AG92-03 



read mail (rdm) read mail (rdm) 

-own 
operates only on the user's own messages instead of on all the 
messages. This control argument can be useful when examining 
another user's mailbox. 

-print, -pr 
prints the messages in the mailbox before entering the request 
loop. 

-prompt STR 
changes the prompt for read mail request lines to STR. If STR 
is "", the user is not prompted. 

-quit 
exits after performing any operations specified by control 
arguments. The default is to enter the request loop. 

-request STR, -rq STR 
specifies an initial request line 
before entering the request loop. 

to be executed by read mail 
Thus, the command line: 

read_mail -rq "print last;quit" -brief 

prints the last message in the user's mailbox and returns to 
command level. 

NOTES ON GENERAL USE: A user whose identification is 
Person_id.Project_id has the default mailbox: 

>udd>Project_id>Person_id>Person_id.mbx 

To read the contents of this mailbox, the user can perform the 
following steps: 

1) Invoke read mail with no arguments. 

2) Issue the "list" request to obtain a summary of the 
messages. This summary contains one line for each message, 
for example: 

1 (11) 07/23/78 18:03 Jones.Publications subject 

giving the relative number of the message, the number of 
lines in parentheses, the date-time sent, the sender's 
name, and as much of the subject as will fit on the line, 
if a subject was specified to the send mail command. 

3-572 AG92-03 



read mail (rdm) read mail (rdm) 

3) Read any selected message n by issuing the request 
"print n" or read all the messages by saying "print all". 

4) Delete any selected message n by issuing the request 
"delete n" or delete the entire -contents of the mailbox by 
say in g t'd e 1 e tea 11 If • 

5) Save any selected message n in a specified mailbox by 
issuing the "save n PATH" request, or say "log nIt to save 
message Qin the default logbox: 

>udd>Project~id>Person_id>Person_id.sv.mbx 

6) Issue the "quit" request to exit read mail. 

The user can read other mailboxes by invoking read mail with 
arguments. The command line: 

rdm >udd>Publications>Jones>Jones 

reads from the mailbox with the specified pathname. Another 
way to read this mailbox is to type: 

rdm Jones.Publications 

which constructs the identical pathname from the specified 
Person id.Project_id pair. 

The command line "read mail -log" reads from the default 
logbox in which the "log"-request saves messages. 

EXAMPLES: A typical dialogue with read mail follows. The user's 
input lines are indicated by an ! character. 

read mail 
You have 4 messages. 

read mail: list 

Msgfl Lines Date Time From Subject 
1 (3 ) 07/17/78 13:48 Jones.Publications new(MORE> 
2 ( 1 ) 07/17/78 20:18 Doe.Software Whe(MORE> 
3 (2 ) 07/18/78 09:23 Smith.Maintenance 
4 ( 1 ) 07/18/78 11 : 51 Brown.Hardware Don<MORE> 

3-573 AG92-03 



read mail (rdm) read mail (rdm) 

read mail: print 

#1 (3 lines) 07/17/78 13:48 Mailed By: Jones.Publications 
Date: 17 July 1978 13:48 est 
From: Jones.Publications 
Subject: new manuals 

The two new manuals you asked about have. arrived in the 
warehouse. Can I have your order? 
----1----
read mail: delete; print all 

#2 (1 line) 07/17/78 20:18 Mailed By: "Doe.Software 
Date: 17 July 1978 20:18 est 
From: Doe.Software 

Where's the new read mail command description? 
----2---- -
'3 (2 lines) 07/18/78 09:23 Mailed By: Smith.Maintenance 
Date: 17 July 1978 09:23 est 
From: Smith. Maintenance 

All index references for Chapter 14 should be Chapter 13. 
TR 2187 forwarded to developers for study. 
----3----
#4 (1 line) 07/18/78 11:51 Mailed By: Brown.Hardware 
Date: 17 July 1978 11:51 est 
From: Brown.Hardware 

Don't be alarmed. It's in the author maintained library. 
----4----
read mail: log 3; delete all 

All messages have been deleted. 

read mail: quit 

r 1034 1.342 4.198 153 

3-574 AG92-03 



read mail (rdm) read mail (rdm) 

In this example, the user invokes read mail, gets a summary 
listing of themailboxcontents.prints all the messages, 
logs the third one, and deletes them all. There was no 
subject given in the summary list for the third message 
because one was not given at the time it was sent. If mail 
has been sent by the mail command, the first 12 characters 
of the message are printed as shown in messages 2 and 4 in 
the summary list. 

DELETION 

Messages deleted by the "delete" request remain in the 
mailbox until the "quit" request is issued to exit 
read mail. In the meantime, deleted messages can be 
un-deleted by issuing the "retrieve" request. If messages 
2 and 4 were deleted by mistake, for example, the request 
"retrieve 2 4" causes them to reappear. 

REQUEST LINE SYNTAX 

A request line beginning with 
escape used to pass command 
command processor. 

" " is treated as a special 
lines directly to the standard 

Other request lines have identical syntax to Multics command 
lines. Arguments containing spaces or other command language 
characters must be quoted. Iteration is specified by means of 
parentheses, for example: 

(log delete) 3 

Semicolon is used to separate multiple requests on a line, for 
example: 

delete 4;print all 

Each request accepts a particular set of arguments. These are 
described in detail in an alphabetical list of requests at the 
end of this command description. 

3-575 AG92-03 



read mail (rdm) read mail (rdm) 

NOTES ON REQUEST FUNCTIONS: 

Brackets in a request line invoke read mail request an 
internal repertoire. Request functions are listed along with 
requests at the end of this command description. 

HELP 

The "help" request describes how to use read 'mail. To see how 
to use a particular request, type: 

help REQUEST_NAME 

NOTES ON REQUESTS: 

In the following list, read mail requests are divided into 
three categories. The first, simple requests, includes the 
ones mentioned so far. The second, copying requests, includes 
the save request and others used to move messages around. The 
third, advanced requests, lists several advanced requests. 

Most requests have short names that can be used instead to 
save typing. A more complete description of each request, 
including its calling sequence, appears at the end of this 
section. 

LIST OF SIMPLE REQUESTS: 

? 
prints a summary of the available read_mail requests. 

identifies the current state of read mail. 

delete (dl) 
deletes specified messages from the mailbox being read. 

help 
prints information on how to use read mail. 

list (Is) 
prints a summary of the specified messages. 

3-576 AG92-,03 



read mail (rdm) read mail (rdrn) 

print (pr) 
prints the specified messages. 

quit (q) 
exits from read mail. 

retrieve (rt) 
retrieves deleted messages. 

LIST OF COPYING REQUESTS: 

append 
copies messages to the end of an eXisting ASCII file. 

copy (ep) 
copies messages into another mailbox without changing them. 

forward (fwd) 

log 

copies messages to another mailbox, adding "Redistributed" 
header fields. 

copies messages to the default logbox, adding original sender 
fields to the header. 

preface 
copies messages to the beginning of an existing ASCII file. 

save ( BV) 

copies messages to a speci fied savebox, adding· original sender 
fields to the header. 

wr 1 te (w) 
copies messages to the end of an old or new ASCII file. 

ADVANCED REQUESTS 

execute (e) 
executes a Multics command line after expanding read mail 
request functions in the line. 

reply (rp) 
sends a reply to the senders of specified messages. 

passes the command line directly to the standard command 
processor. 

3-577 AG92-03 



read mail (rdm) 

NOTES ON REQUEST FUNCTIONS: 

These requests are used in active strings. They return 
strings consisting of one or more message numbers separated by 
spaces, except for the mailbox request function, which returns 
the absolute pathname of the mailbox being read. 

current 
first 
last 
next 
previous 
all 
mailbox, mbx 

NOTES ON MESSAGE SPECIFIERS: Message specifiers refer to 
messages 
numbers, 
qed x-type 
composed 
example: 

in the mailbox. They are composed of message 
keywords, the arithmetic operators + and -, and 
regular expressions for string matching. Ranges are 
of two expressions separated by colon (:), for 

6:last-3 

Message numbers are integers. These are assigned by read mail 
when listing or printing the messages in the mailbox. 
Messages, including deleted messages, keep their numbers 
during an invocation of read_mail. 

The available keywords and their short forms are: 

first, f 
last, 1 
previous, p 
next, n 
current, c 
all, a 

The first four are used like message numbers, for example: 

last-1 

The "current" message is initialized to 1 and changed by 
various requests. The "all" keyword denotes the range of all 
messages, and is equivalent to first:last. 

3-578 AG92-03 



read mail (rdm) read mail (rdm) 

Simple regular expressions are character strings enclosed in 
slashes (/). Slashes inside the match string must be preceded 
by".". More complicated expressions can be built from simple 
ones, the connector "&" for logical AND, and the connector ":,, 
for logical OR. Any of these expressions can be preceded by a 
keyword, for example: 

last/artificial/&/intelligence/ 

which specifies the last message containing both of the 
strings "artificial" and "intelligence". 

Because of the syntax of the request language, 
expressions containing special characters such as 
space, and parenthesis must be enclosed in quotes. 

regular 
quote, 

Keywords can be used as prefixes for regular expressions. As 
prefixes, they mean the first, last, previous, or next message 
matching the given regular expression. The message specifier 
current/STR/ is undefined if the current message does not 
match STR. If a regular expression is not prefixed with a 
keyword, the default keyword is "all". 

Normally, message specifiers refer to messages that have not 
been deleted. The "all" keyword refers to all undeleted 
messages, and "first" refers to the first undeleted message. 
If the -all control argument is specified to a request, 
however, deleted messages are included in the ranges. 

If a range is specified and -all is not specified, there must 
be at least one message within the range that has not been 
deleted. For instance, if the mailbox originally had 20 
messages in it, and 10 and 12 are the only ones left, it is 
perfectly valid to say "print 4:11". This request prints only 
message number 10. 

The values used for "last", "first", "next", and "previous" 
also change depending on whether -all is specified. If -all 
is not specified, they refer only to existing messages. 
Therefore, in the example above, the request line 
"print last-4:l" is the same as "print 10 12" and the request 
line "print last-4:1 -all" is the same as "print 16:20 -all". 
The last two request lines print deleted messages. 

3-579 AG92-03 



read mail (rdm) read_mail (rdm) 

Some examples of message specifiers are: 

1 
1 : 3 
Ifool 
1ast-3 
1-3:1 
next+4 
p-2 
c:c+4 
c+1:l 
lalllbl 
"II it I" 

message number 1 
messages 1 through 3 
all messages containing the string "foo" 
the third from last message 
the last four messages 
the message five after the current one 
three messages previous 
the current message and the next four 
the next through last messages 
all me s sag esc 0 n t a in i n g e i t h eT "a" 0)" " b n 
the last message containing" it " 

LIST OF REQUESTS: 

The syntax of available read mail requests are: 

? 

.. 
insert 
copy {SPECS} path, cp {SPECS} path 
current {-control arg} 
delete {SPECS}, dI {SPECS} 
execute STR, e STR 
first {-control arg} 
forward SPEC ADTIRESSES, fwd SPEC ADDRESSES 
help {STR} 
last {-control arg} 
list {SPECS}, Is {SPECS} 
log {-control arg} {SPECS} 
next {-control arg} 
preface {SPECST path 
previous {-control arg} 
print {-control ari} {SPECS}, pr {-control arg) {SPECS} 
quit {-control args}, q {-control args} -
reply {SPECS} I-control args}, rp-{SPECS} {-control args} 
retrieve {SPECS}, rt {S~ECS} .-
save {-control arg} {SPECS} path, 

sv {-control arg} {SPECS} path 
write {-control-args} {SPECS} path, w {SPECS} path 

LIST OF REQUEST DESCRIPTIONS: 

The various read mail requests are described below. For a 
description of ~eaders and header fields, see the section 
entitled Headers under the send mail command in this document. 

3-580 AG92-03 



read mail (rdm) read mail (rdm) 

? 
prints a summary of the available read_mail requests. 

prints a line identifying read mail and giving the pathname of 
the mailbox being read, the -message count, and the current 
message number, as in: 

read_mail 4.3: Message #7 of 11, 0 deleted )udd)X)x)lies.mbx 

The string "read mail 4.3" indicates the version number of 
read mail. If the recursion level is greater than one, the 
ideri~ifying string is followed by a number in parentheses, for 
example: 

read mail 4.3 (2): 

passes the rest of command line directly to the standard 
command processor, without processing by the read mail request 
processor. The n •• " string must be the first two characters 
of the request line. 

append {SPECS} path 
appends the specified messages complete with header to an 
existing ASCII file. The suffix mail is added to path if it 
is not present. If the file does not already exist, the user 
is asked whether to create it. 

copy {SPECS} path, cp {SPECS} path 
copies the specified messages verbatim into the mailbox 
designated by path. The mbx suffix is added to path if it is 
not present. Unlike the save and log requests, this request 
does not add Date and From header fields if they are missing. 

current {-control arg} 
returns the number of the current message, or 0 if the current 
message has been deleted. If -all is specified, it returns 
the number of the current message whether or not that message 
has been deleted, or 0 if there are no messages. 

delete {SPECS}, dl {SPECS} 
deletes the specified messages. If no messages are specified, 
the current one is deleted. Deleted messages can be retrieved 
before exiting read mail by using the retrieve (rt) request. 

execute STR, e STR -
passes the concatenation of STRs with intervening spaces to 
the Multics command processor. This request is different from 
" " because it is first parsed as a read mail request line. 
The read mail request interpreter expands- read mail request 

3-581 AG92-03 



read mail (rdm) read mail (rdm) 

functions, strips quotes, and performs iteration before the 
line is passed on to the command processor. Therefore, the 
request: 

e ioa [current] 

prints the number of the current message, whereas: 

.. ioa [current] 

produces the error message "Segment current 
" " escape should normally be used to 
command lines from with read mail. 

not found." The 
execute Mul tic!s 

The execute request function can be used to invoke a Multics 
active function from within read mail. For example: 

save [execute date] 

saves the current message in a savebox whose name is the 
current date. 

first {-control_arg} 
returns the number of the first m~ssage that has not been 
deleted, or 0 if all messages have been deleted. If -all is 
specified, it returns the number of the first message whether 
or not that message has been deleted, or 0 if there are no 
messages. 

forward SPEC ADDRESSES, fwd SPEC ADDRESSES 
forwards the messages indicated by the single message 
specifier to ADDRESSES. This request adds three fields to ·the 
header to record where the message came from: 
Redistributed-Date, Redistributed-By, and Redistributed-To. 
Iteration is needed to give more than one message specifier. 

help {STR} 
prints information about the read mail command. If specified, 
3TR is the name of a read mail request or one of the topics 
"requests", "control args",-and "changes". If 3TR is n*", the 
available read mail- topics are listed. If STR is not 
specified, introductory information on the use of read mail is 
printed followed by a llst of topics. -

last {-control arg} 
returns the number of the last message that has not been 
deleted, or 0 if all messages have been deleted. If -all is 
specified, it returns the number of the last message whether 
or not that message has been deleted, or 0 if there are no 
messages. 

3-582 AG92-·03 



read mail (rdm) read mail (rdm) 

list {SPECS}, Is {SPECS} 
prints a summary line for each of the specified messages, for 
example: 

3 (52) 01110118 14:20 Jones.PubliQations subject 

The list request function returns a list of the numbers of the 
specified messages separated by spaces. 

log {-control arg} {SPECS} 
saves the ipecified messages in the user's logbox, the mailbox 
named Person id.sv.mbx in the home directory. Date and From 
header fields are added to those messages that do not have 
them. If the control argument -delete (-dl) is specified, the 
messages are deleted after they are logged. If no messages 
are specified, the current one is logged. 

next {-control arg} 
returns the number of the next message that has not been 
deleted, or 0 if all messages have been deleted. If -all is 
specified, it returns the number of the next message whether 
or not that message has been deleted, or 0 if there is no next 
message. 

preface {SPECS} path 
operates the same as append, but inserts messages at the 
beginning of the ASCII file. 

previous {-control_arg} 
returns the number of the last previous message that has not 
been deleted, or 0 if all messages have been deleted. If -all 
is specified, it returns the number of the previous message 
whether or not that message has been deleted, or 0 if there is 
no previous message. 

print {-control arg} {SPECS}, pr {-control arg} {SPECS} 
prints the ipecified messages. If the- -header (-he) control 
argument is specified, both the header and the text are 
printed. This is the default. If -no header (-nhe) is 
specified, only the text is printed, preceded by a summary 
~ine and the contents (if the fields are present) of the From 
and Subject fields. The printing format is described at the 
beginning of this section. 

quit {-control args}, q {-control args} 
exit~ the ~equest loop and ~he read mail command. Control 
arguments can be -no modify or -nm to prevent any 
modifications made to the mailbox during the invocation of 
read mail, -force or -fc to suppress a question printed if new 
messages have arrived since read mail was invoked. 

3-583 AG92-03 



read mail (rdm) read mail (rdm) 

reply {SPECS} {-control args}, rp {SPECS} {-control args} 
allows the user to reply to the specified messages. A header 
is constructed for each reply, naming the sender of each 
message as the primary recipient of the reply and the 
recipients of each message as the secondary recipients of the 
reply. The text of all the replies is the same. This request 
prompts for "Message:", accepts a message text ending with a 
".", and then enters the send mail request loop. When the 
quit request is issued to send iail, the user is returned to 
read mail. -

The send mail control arguments that can be used by the reply 
request can be chosen from the following: 

-acknowledge, -ack 
-brief, -bf 
-fill, -fl 
-input file path, -if path 
-line length N, -11 N 
-log -
-long 
-message-id, -mid 
-no acknowledge, -nack 
-no-fill, -nfi 
-no=log 
-no message id, -nmid 
-no-request-Ioop, -nrql 
-no-subject~ -nsj 
-request loop, rql 
-save path, -sv path 
-subject STR, -sj STR 
-terminal_input, -ti 

retrieve {SPECS}, rt {SPECS} 
causes the specified messages, if deleted, to be un-deleted. 
This action is allowed until the request loop is exited. When 
the user exits read_mail, all messages deleted by the delete 
(dl) request are actually deleted from the mailbox and can no 
longer be retrieved. 

save {-control arg} {SPECS} path, sv {-control arg} {SPECS} 
saves the -specified messages in the mailbox designated by 
path. The .sv.mbx suffix is added to path if it is not 
present. If the savebox does not eXist, the user is asked 
whether to create it. Date and From fields are automatically 
added to any messages that do not have them. These fields 
preserve information about the origin of the message. If the 
control argument -delete (-dl) is specified, delete the 
messages after saving them. If no messages are specified, the 

3-584 AG92-03 



read_mail (rdm) read mail (rdm) 

current one is saved. 

write {-control args} {SPECS} path, w {-control_args} {SPECS} 
path -
appends the specified messages to the ASCII file designated by 
path. The mail suffix is added to path if it is not present. 
If no messages are specified, the current one is written. 
Date and From fields are added to any messages that do not 
have them. The -extend and -truncate (-tc) control arguments 
accepted by the file_output command can be used here. 

NOTES: Requests, which handle messages on an individual basis, 
allow the user to print messages, delete messages, forward 
messages, save messages either in a segment suitable for 
printing offline or in a mailbox, and print summary 
information for specified messages. In its standard mode of 
operation, read mail enters a request loop where it reads 
requests from the terminal until the quit request causes it to 
exit. By default, requests are prompted by the string 
"read mail: ft. See also the print mail and send mail commands 
in this manual. See "Notes on Extended Access" in the 
print_mail description for an explanation of mailbox access. 

3-585 AG92-03 



ready (rdy) ready (rdy) 

SYNTAX AS A COMMAND: 

rdy 

FUNCTION: types out an up-to-date ready message whose format is 
optionally set by the general ready command. The default 
ready message if general ready Is not used gives the time of 
day and the amount of CPU- time and page faults used since the 
last ready message was typed. If the user is not at the first 
command level, i.e., if some computation has been suspended 
and the stack frames involved not released, the default ready 
message also contains the number of the current command level. 

NOTES:' See the descriptions of 
general_ready in this manual. 

EXAMPLES: 

r 9:47 3.61 29 

r 15:03 .47 12 Level 2 

3-586 AG92-03 



ready_off (rdf) ready_off (rdf) 

SYNTAX AS A COMMAND: 

rdf 

FUNCTION: turns off the ready message typed on the terminal 
after the processing of each command line. Automatic typing 
of the message is suspended until a ready_on command is given. 

NOTES: See the descriptions of ready, 
general_ready in this manual. 

3-587 AG92-03 



SYNTAX AS A COMMAND: 

rdn 

FUNCTION: causes a ready message to be automatically typed on 
the terminal after each command line has been processed. 

NOTES: Since automatic printing of the ready message is in 
effect until ready off is invoked, the ready on command is 
generally used only-to "cancel" the ready_off c~mmand. 

See the descriptions of ready, ready_off, and general_ready in 
this manual. 

3-588 AG92-03 



release (rl) release (rl) 

SYNTAX AS A COMMAND: 

rl {-control_arg} 

FUNCTION: releases the stack history that was automatically 
preserved after a quit signal or unclaimed signal. That is, 
the Multics stack is returned to a point immediately prior to 
the stack frame of the command that was being executed when 
the most recent quit signal or unclaimed signal occurred. 

CONTROL ARGUMENTS: 

-all, -a 
releases the stack history 
released) after all previous 
rather than after only the 
signal. 

preserved 
quit and/or 

most recent 

3-589 

(and not already 
unclaimed signals 

quit or unclaimed 

AG92-03 



rename (rn) 

SYNTAX AS A COMMAND: 

rn {-control arg} pathl name1 { ... {-control_arg} 
path!! name!!} 

rename (rn) 

FUNCTION: replaces a specified segment, multisegment file, 
directory, or link name by a specified new name, without 
affecting any other names the entry might have. 

ARGUMENTS: 

pathi 
ii the pathname of a segment, multisegment file, directory, or 
link. The star convention is allowed. 

namei 
s~ecifies the new name that replaces the storage system 
entryname portion of path.!.. The equal convention 1s allowed. 

CONTROL ARGUMENTS: 

-name, -nm 
indicates that the path argument that follows it is an 
entryname containing special command system symbols (e.g., ( 
or I). This control argument allows the user to rename 
strangely named segments. This control argument disables the 
star convention in the argument that it precedes. 

ACCESS REQUIRED: The user requires modify permission on the 
containing directory. 

NOTES: Since two entries in a directory cannot have the same 
entryname, special action is taken by this command if namei 
already ex ists in the directory spec ified by pathi. If th'e 
entry having the entryname namei has an alternate name, 
entryname namei is removed and the user is informed of this 
action; the renaming operation then takes place. If the entry 
having the entryname namei has only one name, the entry must 
be deleted in order to remove t·he name. The user is asked if 
the deletion should be done; if the user answers "no", the 
renaming operation does not take place. 

3-590 AG92-03 



rename (rn) rename (rn) 

EXAMPLES: 

The command line: 

rename alpha beta >sample_dir>gamma delta 

renames alpha, in the user's working directory, to beta ar.d 
renames gamma, in the directory >sample_dir, to delta. 

The command line: 

rename -name *stuff junk 

renames the segment *stuff, in the working directory, to junk. 

3-591 AG92-03 



repeat_query (rq) repeat_query (rq) 

SYNTAX AS A COMMAND: 

rq 

FUNCTION: repeats the 
subroutine, described 
yet been answered. 

last query (by the command query 
in the MPM Subroutines) if it has not 

NOTES: This command is useful for reinterpreting questions 
(asked by other commands) that are garbled. 

If no question has been asked, or if the latest question was 
answered, the error message "No pending query." is printed. 

The repeat query command does not completely restore the 
environment-in effect at the time of the original query. For 
example, nonstandard attachments of I/O switches are not 
restored. 

EXAMPLES: Suppose that the system starts to print a question 
while the user is typing. The query looks like: 

E@foo.pl1? 

The user signals' QUIT and invokes the repeat_query command. 
The system prints: 

Do you want to delete the old segment foo.pl1? 

The user answers and continues. 

Alternatively; the user can use the" 
issue the repeat_query command: " command escape to 

E@foo.pl1? ! .. rq 

The system responds with: 

Do you want to delete the old segment foo.pl1? 

The user then answers and continues. 

3-592 AG92-03 



re peat __ quer y (rq) repeat_query (rq) 

Another use is to return to a query after interrupting a 
command line issued within the query: 

Do you want to delete the old segment foo.pI1? 

o.print foo.pl1 1 
foo: proc; 
(user signals QUIT) 

rq 

Do you want to delete the old segment foo.pI1? 

3-593 

yes 

AG92-03 



reprint_error (re) reprint_error (re) 

SYNTAX AS A COMMAND: 

re {-control_args} 

FUNCTION: causes the system condition handler to print its 
message for a condition that has already been handled and for 
which stack history is preserved. 

CONTROL ARGUMENTS: 

-depth i, -dh i 
indicates which instance of saved fault information is to be 
used for the message (the most recent instance is depth 1). 
~This control argument can appear only once per command line. 
The default is 1. 

-all, -a 
prints messages oorresponding to all 
condition information. 

-brief,· -bf 
prints the short form of the message. 

-long, -lg 
prints the long form of the message. 

existing sets of 

NOTES: If no control argument is specified, the default action 
r~sults in the selection· of slightly less extensive condition 
inform~tion than that printed by the -long control argument. 

The message mode options for this command have no effect 
on the operation of the default error handler as such. 

EXAMPLES: The following example illustrates some ways the 
reprint_error command can be used. 

change_error_mode -brief 

simf 

Error: seg_fault_error 

reprint error -long 
depth f: 

3-594 AG92-03 



reprint_error (re) reprint_error (re) 

Error: Segment-fault error by command processor 1404 
(>system library 1>bound command loop-13046) -
referencIng >udd)m>Smith)simfI3 - -
(offset is relative to base of segment) 
Incorrect access on entry. 

set acl simf re 

simf 

Error: simfault 000001 

Error: out of bounds while in ring 1 

reprint error -all -brief 
depth 1: 
Error: out of bounds while in ring 1 
depth 2: 
Error: simfault 000001 
dlepth 3: 
Error: seg_fault_error 

reprint error -long -depth 2 
depth 2: 
Error: Attempt by >udd>m>Smith>simf$simfI13 
to reference through null pointer 
(simfault 000001 condition) 

-! reprint error -long -depth 1 
depth 1: 
Error while processing in ring 1: 
out of bounds at deh test11103 
(>system library tools>bound deh test 1341 
Y'eferenc Ing stack 1 1720703 (In process d ir) 
Attempt to access-beyond end of segment. 
Entry into lower ring was by 
call den test gate$obl115 
(system library tools>bound deh test_1115) 
referen~ing den=test_gate_$iob -

3-595 AG92-03 



----------.----

SYNTAX AS A COMMAND: 

rle virtual_entry 

FUNCTION: is invoked to satisfy the linkage fault after a 
process encounters a linkage error. 

ARGUMENTS: 

virtual entry 
is a- virtual entry specifier. For an explanation of virtual 
entries, see the description of the cv_entry_ subroutine in 
the MPM Subsystem Writers' Guide. 

NOTES: The program locates the virtual entry specified as an 
argument and patches the linkage information of the process so 
that when the start command is issued the process continues as 
if the original linkage fault had located the specified 
virtual entry. 

EXAMPLES: The example given below is a typical situation in 
which the program is running and a linkage error is 
encountered. The resolve linkage error command is issued, 
correcting the linkage error and allowing the program 'to 
continue. 

myprog 
Error: Linkage error by >udd)m>vv>myprogI123 
referencing subroutine$entry 
Segment not found. 
r 1234 2.834 123.673 980 level 2, 26 

rle mysub$mysub entry 
r 1234 0.802-23.441 75 level 2, 26 

start 
(myprog is running> 

3-596 AG92-03 



reserve resource reserve resource 

SYNTAX AS A COMMAND: 

reserve resource -control arg 

FUNCTION: reserves a resource or group of resources for use by 
the calling process. The reservation takes effect immediately 
and lasts until cancelled by the cancel resource command or by 
process termination. 

-resource STR, -rsc STR 
specifies a description of the resources to be reserved. If 
this resource description contains spaces or special 
characters, it- must be enclosed in quotes. This resource 
description can also have control arguments and is described 
in more complete detail below. 

NOTES ON RESOURCE DESCRIPTION: A resource description describes 

or: 

or: 

certain devices and volumes by name or by attributes and an 
optional number. It has the following format: 

{-resource type} 
resource_spec.!:!) 

resource specl {-resource_type 

That is, a series of at least one resource spec where all but 
the first must be preceded by the -resource type or -rsct 
control argument. The first need not be preceded by the 
control argument. 

The format of a resource_spec is as follows: 

volume_type name1 {names} 

device_type {names} 

device_type {-control_args} 

where: 

volume type 
can--be either tape vol or disk vol. 
specified with volume type, and it 
for example, 050102. -

3-597 

At least one name must be 
is the name of the volume, 

AG92-03 



--"----,----

reserve resource reserve resource 

device type 
can-be either tape drive or disk drive. Names are the names 
of devices such as Iape 01, and if names are specified with a 
device type, no control-arguments are allowed. Names are not 
requirid, therefore a device type can be specified with no 
names or control arguments. If names are not specified, the 
control args for use with device type can be chosen from the 
following: -

-attributes STR, -attr STR 
the attribute string STR consists of a string of attributes 
with values separated by commas with no spaces. For tape 
drives the attributes are: 

mode= 
track= 

. den= 

For disk drives the only attribute is: 

model= 

Suitab1~ values for these attributes can be found by using 
the 1ist_resource_types command also in this manual. 

-number N, -nb N 
is the number of identical resources of the type desired. 

EXAMPLES: 
rsr -rsc "tape vol 50102 u-309 -rsct tape_drive -attr 

track=9,den=800 -nb 2" 

This command line reserves 
and u-309; two tape drives, 
800 bpi operation. 

four resources: two tapes, 050102 
both being 9-track and capable of 

3-598 AG92-03 



resource_usage (ru) 

SYNTAX AS A COMMAND: 

ru {-control arg} 

FUNCTION: prints a month-to-date repor 
consumption of the user. 

CONTROL ARGUMENTS: 
These are used to select portions of th 
usage information. Only one of the 
specified: 

-total, -tt 

resource_usage (ru) 

of the resource 

available resource 
following can be 

prints the user's dollar totals fi ures including the 
month-to-date dollar charge, the mont ly spending dollar 
limit, and the absolute total spending. 

If the project administrator has set an 
for the user (this limit is indepen 
spending limit), this absolute limit is 
the date on which this limit was last r 
reset interval. The absolute total spe 
is the dollar charge against this absol 
where no absolute limit has been set, 

'spending represents charges running fro 
user was registered on the system. 

-brief, -bf 

bsolute dollar limit 
ent of the monthly 
printed, along with 

set and the limit's 
ding mentioned above 
te limit. In cases 
the absolute total 

the date that the 

prints a header describing the resou ce usage reporting 
period, followed by the month-to-date dollar charge, the 
monthly spending dollar limit and three ollar totals figures 
giving the user's interactive, absentee, nd I/O daemon usage. 

-long, -lg 
prints the most comprehensive picture of 
usage. This display includes the inform 
-brief control argument and includes a 
interactive, absentee, I/O daemon, and de 

the user's resource 
tion selected by the 

expanded report ~f 
ice usage. 

For interactive usage, the dollar ch rge is broken down 
according to shift, monthly dollar limi per shift, charged 
virtual CPU time, charged terminal conn ct ~ime and charged 
memory units expressed in thousands. Absentee usage is 
presented in terms of usage per queue: number of 
dprint/dpunch requested pieces, charged irtual CPU time, and 
charged lines of printed or punched output expressed in 
thousands. 

3-599 AG92-03 



resource_usage (ru) resource_usage (ru) 

The device usage category includes charges for tape (time 
spent with a drive assigned), tape mounts, disk (time spent 
with a disk drive assigned), disk mounts, and logical volumes 
(time spent with a private logical volume attached). In 
addition, a site can define devices corresponding to the 
various lines (tty or network) by which the system is 
accessed, and set prices for their usage. 

NOTES: If no control argument is specified, the default action 
results in the selection of slightly less extensive resource 
usage information than that printed by the -long control 
argument; namely, all dollar charges are printed but resource 
usage expressed as time is not printed. 

The system calculates a user's month-to-date dollar charges 
when it creates the user's process. A user wishing the most 
up-to-date figures should issue the new_proc command prtor to 
typing resource_usage. 

Notice that in a given usage report, shift and queue numbers 
may not appear in consecutive order because only shifts or 
queues with accrued charges are listed. 

If no dollar limit stop has been set by a user's project 
administrator, the resource usage report indicates this by the 
printing of "open" as the dollar limit entry. 

It is not possible for a user to invoke this command to obtain 
information about another user's resource consumption. 

3-600 AG92-03 



response response 

SYNTAX AS AN ACTIVE FUNCTION: 

[response arg {-control_arg}] 

FUNCTION: asks the user a question and returns the answer typed 
by the user. The answer is not returned in quotes; the 
command processor therefore treats the answer as several 
strings if it contains spaces. To treat the returned string 
as a single argument to the command processor, the l[ feature 
of the command language can be used. 

See also the query activ~ function, which requires a yes or no 
answer and returns true or false. 

ARGUMENTS: 

arg 
is the question to be asked. If arg contains spaces or other 
command language characters, it must be enclosed in quotes. 

CONTROL ARGUMENTS: 

-non null 
indicates that the user must give a response. If the user 
replies with an empty (blank) line, the response active 
function prints a message explaining that a null response is 
not allowed and repeats the question. 

-accept STRs 
where STRs are the only responses accepted from the user. If 
a STR contains spaces or other command language characters, it 
must be ~nclosed in quotes. If the user responds to the 
question with an answer that is not one of the specified STRs, 
the response active function prints a message explaining that 
the user's answer is unacceptable, lists the acceptable 
answers, ahd repeats the question. 

EXAMPLES: 

Assume that dpc is an abbreviation for: 

do "dp -cp [response ""Number of copies? ""] &f1" 

then the following interaction: 

3-601 AG92-03 



response 

dpc report 1.runout memo phone.runout 
Number of copies? ! 2 

gets the user two copies of each runout segment. 

response 

Assume that the exec com segment named x.ec contains the 
following line: 

dprint -header [response "What header?" 
-non_null] -copy 2 report.print 

then the following interaction: 

ec x 
What header? ! <carriage return> 
response: Null response not allowed, please retype. 

What header? ! Jones 

prints two copies of report.print with a header of Jones. The 
use of the -non null control argument ensures that a header 
follows the -header control argument to the dprint command; 
otherwise, the -copy control argument to the dprint command 
would be interpreted as the header and the number 2 wo~ld be 
interpreted as the segment name. 

A~sume the k.ec exec_com segment contains the following line: 

dp -rqt [response "Which rqt?" 
remote] resume 

-accept printer unlined 

then the following interaction: 

ec k 

Which rqt? ! plotter 
response: 'plotter' is not an acceptable answer. 
Acceptable answers are: 

'printer' 
'unlined' 
'remote' 

Which rqt? printer 

enters a printer request for one copy of the resume segment. 

3-602 AG92-03 



reverse (rv) reverse (rv) 

SYNTAX AS A COMMAND: 

rv str 

SYNTAX AS AN ACTIVE FUNCTION: 

[rv strJ 

FUNCTION: returns the characters of a specified string in 
reverse order. 

EXAMPLES: 

string [rv abcdefJ 
fedcba 

3-603 AG92-03 



reverse after (rvaf) reverse after (rvaf) 

SYNTAX AS A COMMAND: 

rvaf strA strB 

SYNTAX AS AN ACTIVE FUNCTION: 

[rvaf strA strB] 

FUNCTION: performs the same function as the after active 
function, but in reverse order. 

NOTES: The reverse after active function returns that part of 
strA following the last occurrence of strB in strA (after uses 
the first occurrence). If strB occurs last in strA or does 
not occur at all, a null string is returned. 

[reverse after strA strB] 

is the same as: 

[reverse [before [reverse strA] [reverse strB]]] 

when strB appears in strA. It is a null string when strB does 
not appear in strA. 

EXAMPLES: 

string [reverse_after abcdef123def456 def] 
456 
string [rvaf acebdf g) 

string XY[rvaf 17.245et17 171ZZ 
XYZZ 

3-604 AG92-03 



reverse before (rvbe) reverse before (rvbe) 

SYNTAX AS A COMMAND: 

rvbe strA strB 

SYNTAX AS AN ACTIVE FUNCTION: 

[rvbe strA strB] 

FUNCTION: performs the same function as the before active 
function, but in reverse order. 

NOTES: The reverse before active function returns that part of 
strA preceding the last occurrence of strB in strA (before 
uses the first occurrence). If strB occurs first and nowhere 
else in strA, a null string is returned. If strB does not 
occur in strA, strA is returned. 

[reverse before strA strB] 

is the same as: 

[reverse [after [reverse strA] [reverse strB]]] 

when strB appears in strA. It is the same as strA when strB 
does not appear in strA. 

EXAMPLES: 

string [reverse before abcdef123def456 def] 
abcdef123 -
string [rvbe acebdf g] 
acebdf . 
string XY[~vbe 17.245et17 17]ZZ 
XY17.245e+ZZ 

3-605 AG92-03 



reverse decat (rvdecat) reverse decat (rvdecat) 

SYNTAX AS A COMMAND: 

rvdecat strA strB e 

SYNTAX AS AN ACTIVE FUNCTION: 

[rvdecat strA strB C] 

FUNCTION: performs the same function as the decat active 
function, but in reverse order. 

NOTES: The reverse decat active function returns the 
decatenation of strI with respect to the l~~t occurrence of 
strB 1n strA (decat uses the first occurrence). The value for 
Cis any three digit bit string expressed as a or as 1 
characters such as 000,001, ... ,111. The last occurrence of 
strB found in strA divides strA into three parts: the part 
prior to strB, the part matching strB, and the pa~t following 
strB. Digits of e correspond to these three parts. The 
return string contains the parts of strA whose corresponding 
bit in C is 1. The parts are returned in their original order 
of appearance in strA. 

[reverse_decat strA strB e] 

is the same as: 

[reverse [decat [reverse strA] [reverse strBJ [reverse eJl] 

when strB appears in strA. It is also the same as: 

[decat strA strB e] 

when strB does not appear in strA. 

EXAMPLES: 

string [rvdecat abcdef123defghi def 110] 
abcdef123def 
string [rvdecat abcdef g 100] 
abcdef 

3-606 AG92-03 



reverse index (rvindex) reverse index (rvindez) 

SYNTAX AS A COMMAND: 

rvindex strA strB 

SYNTAX AS AN ACTIVE FUNCTION: 

[rvindex strA strB] 

FUNCTION: performs the same function as the index active 
function, but in reverse order. 

NOTES: The reverse index active function returns 
(character positi~n) in strA of the beginning of 
occurrence of strB (index uses the first occurrence). 
does not appear in strA, 0 is returned. 

[reverse index strA strB] 

is the same as: 

the index 
the last 
If strB 

[length strA] - [index [reverse strA] [reverse strB]] 
+ 2 - [length strB] 

when strB appears in strA. It is 0 when strB does not appear 
in s.tr A. 

EXAMPLES: 

string [rvindex abc123defghi123jkl 123] 
13 
string [rvindex "Now is the time. " hte] 
0 
string [rvindex abcdefghi ef] 
5 

3-607 AG92-03 



-----.----~---

reverse search (rvsrh) reverse search (rvsrh) 

SYNTAX AS A COMMAND: 

rvsrh strA strB 

SYNTAX AS AN ACTIVE FUNCTION: 

[rvsrh strA strB] 

FUNCTION: performs the same function as the search active 
function, but in reverse order. 

NOTES: The reverse search active function returns the index 
(character positi~n) of the last character 1n strA that 
appears in strB (search returns the first such character). If 
no characters of strA appear in strB, 0 is returned. 

[reverse search strA strB] 

is the same as: 

[length strA] - [search [reverse strA] strB] + 1 

when a character of strB appears in strA. 
character of strB does not appear in strA. 

EXAMPLES: 

string [rvsrh "abc = 213" 0123456789] 
9 
string [rvsrh "abc = def" 0123456789] 
o 

3-608 

It is 0 when a 

AG92-03 



reverse_verify (rvverify) reverse verify (rvverify) 

SYNTAX AS A COMMAND: 

rvverify strA strB 

SYNTAX AS AN ACTIVE FUNCTION: 

[rvverify strA strB] 

FUNCTION: performs the same function as the verify active 
function, but in reverse order. 

NOTES: The reverse verify active function returns the index 
(character position) of the last character in strA that does 
not appear in strB (verify returns the first such character). 
If all characters of strA appear in strB, 0 is returned. 

[reverse_verify strA strB] 

is the same as: 

[length strA] - [verify [reverse strA] strB] + 1 

when the characters of strA do not appear in strB. 
when all characters of strA appear in strB. 

EXAMPLES: 

string [rvverify "abc = 123" 0123456789] 
6 
string [rvverify "abc = def" 0123456789] 
9 
string [rvverify 21435 0123456789] 
0 

3-609 

It is 0 

AG92-03 



rtrim rtrirn 

SYNTAX AS A COMMAND: 

rtrim strA strB 

SYNTAX AS AN ACTIVE FUNCTION: 

[rtrim strA strBJ 

FUNCTION: returns a character string trimmed of specified 
characters from the right. 

NOTES: The rtim active function finds the last character of strA 
not in strB, trims characters from strA following this 
character and returns the trimmed result. Space characters 
are trimmed if strB is omitted. 

EXAMPLES: 

string [rtrim 000305.000 0] 
000305. 
string [rtrim [ltrim 000305.000 0] 0] 
305. 
string X[rtrim" This is it. "JY 
X This is it.Y 

3-610 AG92-03 



run run 

SYNTAX AS A COMMAND: 

run {-control args} {program} {program_args} 

FUNCTION: provides the user with a temporary, somewhat isolated, 
environment for the execution of programs. 

ARGUMENTS: 

program 
is the reference name or pathname of the main program for the 
run unit. 

program args 
are the arguments passed to the main program or the exec com 
specified by -exec com. See "Notes on the exec com Feature" 
be-low. 

CONTROL ARGUMENTS: 

-exec com path, -ec path 
executes the exec com path after the environment of the run 
unit is established. 

-no exec com, -nec 
always invokes the main program directly. 

-limit N, -Ii N 
interrupts the run unit every N seconds of virtual CPU time to 
ask the user "Time limit reached. Do you want to continue the 
program?" 

-new reference names, -nrn 
begins the -run unit without any reference names known. The 
reference name control arguments are explained further in 
"Notes on Reference Name Control Arguments". This is the 
default. 

-copy reference names, -crn 
begins the -run unit with a copy of the reference names 
initiated prior to the run unit. See "Notes on Reference Name 
Control Arguments" below. 

-old reference names, -orn 
uses the same reference names inside and outside the run unit. 
See "Notes on Reference Name Control Arguments" below. 

3-611 AG92-03 



run run 

NOTES: The -new reference names, 
-old reference names control 

-copy reference names, and 
arguments are mutually 

incompatible. 

NOTES ON FUNCTION: The run command is primarily intended to aid 
users in executing programs written on systems that have a 
different definition of program than the Multics system has. 
Within the Multics system, a process is a program. Although 
many separately compiled "programs" can be executed in a 
process, they all share such program environment items as 
FORTRAN common blocks, PL/I external static variables, 
reference names, and file openings. This can cause prOblems 
for users with programs that depend on, for example, FORTRAN 
common being reinitialized each time the program is executed. 
However, within the Multics system a run unit is also a 
program. The run command executes the specified program in a 
temporary program environment that is separate from the rest 
of the process and from any other run unit. 

The program attributes that are managed (restored, reset, 
etc.) by the run command are: 

• PL/I internal static storage. 

• PL/I external static variables whose names do not contain 
"$". 

• FORTRAN common blocks whose .names do not cont,ain "$". 

• allocations of PL/I based and controlled storage when the 
program does not specify a particular area. 

• files used 
constructs. 

only through programming 

• reference names and search rules. 

language 110 

All of these are restored to their prior state when the run 
unit terminates. An optional feature, specified by the 
-old reference name control ~rgument, does not restore search 
rules or reference names. 

NOTES ON REFERENCE NAME CONTROL ARGUMENTS: The three reference 
name control arguments affect the management of the address 
space (the segments known to the process). Reference names 
are the names by which the known segments are initiated. The 

3-612 AG92-03 



run run 

default action during environment restoration is to terminate 
all segments made known (initiated for the first time) inside 
the run unit. When this happens, all the reference names used 
inside the run unit are discarded and the names in use prior 
to the run unit are restored. 

The -nrn control argument causes segments to be terminated and 
reference names and search rules to be restored at the end of 
the run unit. The run unit begins without any reference 
names. This option should be chosen when the user wants to be 
sure that the program is calling all the right subroutines and 
not inadvertantly getting some subroutine that happened to 
have the same name but was used earlier in the process. 

The -crn control argument also causes segments to be 
terminated and reference names and search rules to be restored 
at the end of the run unit. The run unit begin~ with the 
reference names already initiated. This option is suitable 
when the user does not expect name conflicts with already 
known segments. 

The -orn control argument does not terminate segments and does 
not manipulate reference names at the end of the run unit. It 
is generally safer. It is necessary in certain situations, 
such as when files are opened before the run unit begins8 

NOTES ON THE exec com FEATURE: The run command uses an exec com 
segment if thi -exec com control argument is specified o~ if 
-no exec com is -not specified and the segment 
proiram ~ame.run.ec is found in the same directory as the main 
program~ Otherwise, the specified main program is invoked 
directly. 

If an exec com segment is used, all command arguments after 
the run control arguments are passed to the exec com. 

If an exec com is not used, the first non-control argument is 
interpreted as the name of the main program for the run. 

NOTES ON SEARCH RULES: The search rules in effect at the 
beginning of the run unit are always the same as those used 
just before the run unit. In order to get the default system 
search rules, an exec com must be used that invokes the 

3-613 AG92-03 



run run 

set search rules command with no arguments before executing 
the-main programo 

If -old reference names (-orn) is specified, any changes to 
the search rules remain when the run unit ends. Otherwise, 
the search rules are restored to the values they had at the 
beginning of the run. 

NOTES ON TERMINATING RUN UNIT: 
terminate a run unit. 

There are several ways to 

• return from the main program or exec_com invoked by the run 
command. 

• execute a stop statement in PL/I or FORTRAN. 

• invoke the stop run command. This can be done from a 
program, an exec ~om, or interactive command level. 

• invoke the release (rl) command. 

Either executing a stop statement or calling stqp run causes 
the finish condition to be signalled. User~ code can 
optionally be called during run unit termination. Refer to 
the description of add epilogue handler in the MPM Subsystem 
Writers' Guide. - - -

NOTES ON RUN UNIT LIMITATIONS: Run units incur significant 
overhead costs. Run units should be used primarily for 
debugging and executing user written programs. 

Any files attached/opened via iox or io call during the run 
unit must be explicitly detached7closed before the run unit 
terminates. 

If any files used in the run unit are opened before the run 
unit begins, the -orn control argument must be used. 

The trace and change error mode commands should not be used 
inside run units. -

3-614 AG92-03 



run run 

The answer command's command line cannot include the run 
command. 

The profile command cannot be used on an 
was executed inside a run unit unless 
perprocess static switch was turned 
Subsystem Writers" below.) 

object segment that 
the object segment's 

on. (See "Notes to 

The list external variables, delete external variables, and 
reset external varIables commands do not handle any PL/I 
exter~al statIc variables or FORTRAN common blocks in the 
pre-·run unit environment that object segments with perprocess 
static use. 

NOTES TO SUBSYSTEM WRITERS: If a procedure's internal static 
storage and linkage section are to be left alone during the 
run unit, the object segment must be given the 
perprocess static attribute. This can be done either by 
including -the global keyword "Perprocess Static;" in the 
bindfile (with no parameters) for bound- segments, or by 
including the perprocess static pseudo-op in aIm procedures, 
or by typing: -

perprocess_static sw_on segname 

There is a corresponding perprocess static sw off command. 
Both are described in the MPM Subsystem-Writers' Guide. 

Object segments without perprocess static that are used both 
insid"e and outside the run units should not have internal 
static pointers to named temporary external segments. Each 
execution of such an object segment in a run unit destroys the 
previous contents of the segment. Instead, the internal 
static pointer should point to a segment managed by the 
Multics temporary segment facility (see the description of 
get_temp_segments_ in the MPM Subroutines). If using 
temporary segments is inappropriate because the information 
must be cumulative, the object segment must have perprocess 
static. 

The run command sets up a "condition wall" so that procedures 
before the run command on the stack do not get control (as the 
result of a signalled condition) until the run unit is 
terminated. 

3-615 AG92-03 



run run 

EXAMPLES: The following command line shows how to run the 
program prog2 with -old reference names: 

run -orn prog2 prog2_arg1 

The following exec com uses the default 
invokes a program whose arguments were 
command: 

&comm~nd line off 
set search rules 
prog2 &f1 
&quit 

search rules and 
given to the run 

The run command line that uses this exec com might be: 

The example shown above is useful when the user wants to call 
a library subroutine and not a private subroutine that has the 
same name and that was already used in the process. The 
example should not be used with the -orn control argument 
because the search rules would be changed permanently, and the 
main purpose of the example 1s to avoid using existing 
reference names. 

The following example shows how to invoke an arbitrary command 
from an exec com within the environment of a run unit: 

&command line off 
&f1 
&quit 

3-616 AG92-03 



run cobol (rc) run cobol (rc) 

SYNTAX AS A COMMAND: 

rc name {-control args} 

FUNCTION: explicitly initiates execution of a COBOL program. 

ARGUMENTS: 

name 
is the reference name or pathname of the "main program" in 
which execution is to be initiated. If a pathname is 
specified, the specified segment is initiated with a reference 
name identical to the entryname portion of the pathname. 
Otherwise, the search rules are used to locate the segment. 
If the name specified in the PROG-ID statement of the COBOL 
program (l.e., the entry point name) is different from the 
current reference name of the object segment, then the name 
specified here must be in the form A$B where A is the pathname 
or reference name of the segment and B is the PROG-ID as 
defined in the IDENTIFICATION DIVISION of the source program. 

CONTROL ARGUMENTS: 

-cobol switch N, -cs N 
sets one or more of the eight COBOL~defined "external 
swj.tches" on, where N is a number from 1 to 8 (or a series of 
numbers separated by spaces) that corresponds to the numbered 
external switch. At the outset of the run unit, the default 
setting of these external switches is off. (The eight 
external switches are defined in the Multics COBOL Reference 
Manual, Order No. AS44.) 

-no stop run, -nsr 
avoids establishment of a handler for the stop_run condition. 
(See "Notes" below.) 

-sort dir path, -sd path 
specifies the directory to be used during execution of this 
run unit for temporary sort work files. If this control 
argument is not specified, the process directory is assumed. 

-sort file size N, -sfs N 
is-the ?loating point representation of the estimated average 
size in characters of the files to be sorted during execution 
of this run unit. This information is used to optimize 
sorting. If not specified, 1e6 is assumed (i.e., one million 
characters). 

3-617 AG92-03 



--------
run cobol (rc) run cobol (rc) 

NOTES: This command is not needed to execute COBOL object 
programs on Multics; it is used to simulate an environment in 
which traditional COBOL concepts can be defined easily. This 
command cannot be called recursively. 

This command enables the user to explicitly define and start 
execution of a COBOL run unit. A run unit is either 
e~plicitly started by the execution of the run cobol command 
or implicitly started by the execution of a- COBOL object 
program either by invocation from command level or from a call 
by another program written in COBOL or another language. A 
run unit is stopped either by the execution of the STOP RUN 
statement in a COBOL object program or by invocation of the 
stop cobol run command. For the duration of time after a run 
unit-is started and before it is stopped, it is said to be 
active. All COBOL programs executed while a run unit is 
active are considered part of that run unit. 

A run unit is a subset of a Multics process; it is stopped 
when the process is ended. Also, when all programs contained 
in a run unit are cancelled, the run unit is stopped (refer to 
the cancel cobol program command). Only one run unit can be 
active at- any -given time in a process. Therefore, the 
run cobol command cannot be invoked tecursively. 
AddItionally, if a run unit has been started implicitly (as 
described "above), the run cobol command cannot be used until 
that run unit has been s~opped; i.e., the run_cobol command 
does not terminate a currently active run unit. 

The explicit creation of a run unit with the run cobol 
command performs the following functions: 

1. Establishment of a "main program", i.e., a program fr()m 
which control does not return to the caller. The EXIT 
PROGRAM statements, when encountered in such a program, 
have no effect, as required in the COBOL definition. An 
implicitly started run unit has no "main program". The 
EXIT PROGRAM statement in all programs contained in such 
a run unit always causes control to be returned to the 
caller, even if the caller is a system program, e.g., the 
command processor. 

2. Setting of the COBOL external switches. These switches 
are set to off unless otherwise specified by the 
-cobol switch control argument. 

3-618 AG92-03 



run cobol (rc) run cobol (rc) 

3. User control of the action taken when a STOP RUN 
statement is executed in a COBOL object program. The 
action normally taken for STOP RUN is cancellationof.all 
programs in the run unit, closing any files left open. 
After this has been done, the data associated with any of 
the programs is no longer available. Thus in a debugging 
environment, it may be useful to redefine the action 
taken for STOP RUN. When the run unit is explicitly 
initiated with the run cobol command, the STOP RUN 
statement causes the signalling of the stop run condition 
for which a handler is established that- performs the 
normal action described above. If the -no stop run 
control argument is specified, this handler- is -not 
established, thus allowing the user to handle the signdl 
using other Multics commands. If the user has not 
explicitly provided a handler for stop run and specifies 
the -no stop run control argument, an- unclaimed signal 
results.- -

The name specified in the run cobol command line need not be a 
COBOL object program. It can be a program produced by any 
language compiler that provides a meaningful interface with 
COBOL programs (e.g., PL/I, FORTRAN). 

Refer to the following related commands: 

display cobol run unit, dcr 
stop cobol run, scr 
cancel cobol program, ccp 
run 

3-619 AG92-03 



runoff (rf) runoff (rf) 

SYNTAX AS A COMMAND: 

rf paths {-control args} 

FUNCTION: is used to type out text segments in manuscript form. 

ARGUMENTS: 

paths 
are the pathnames of input segments or multisegment files 
named entryname.runoff. The runoff suffix must be the last 
component of each entryname; however, the suffix need not be 
supplied in the command line. If two or more pathnames are 
specified, they are treated as if runoff had been invoked 
separately for each one. The ~egments are printed in the 
order in which they occur in the invocation of the command. 

CONTROL ARGUMENTS: 
can be chosen from the following list. Any control argument 
specified anywhere in the command invocation applies to all 
segments; control arguments can be intermixed arbitrarily with 
segment names. Control arguments must be preceded by a minus 
sign. 

-ball N, -bl N 
converts output to a form suitable for an 
equipped with a selectric-type typing 

. ball numbers are 041, 012,.015, and 963. 
form of the terminal device being used. 
argument overrides any specification 
control argument (below). 

-character, -ch 

N typeball on a unit 
element. Acceptable 

The default is the 
Use of this control 

set by the -device 

flags certain key characters in the output by putting the line 
containing the key character in a segment named 
entryname.chars. The normal output is not affected. Page and 
line numbers referring to the normal output appear with each 
flagged line, and reminder characters, enclosed by color-shift 
characters, are substituted for the key characters. The 
default set of key and reminder characters corresponds to 
those unavailable with a 963 typeball, as follows: 

2/80 3-619.1 1\G92-03A 



runoff (rf) runoff (rf) 

Key 
left square bracket 
right square bracket 
left brace 

Reminder 
< 
) 

( 
right brace ) 
tilde t 
grave accent 

The key and reminder characters can be changed by use of the 
.ch control line; specifying a blank reminder character 
removes the associated key character from the set of key 
characters. If a key character would print normally in the 
out put, its h 0 u 1 d a 1 so a p pea r ina . t r con t r 0 1 'I in e tot urn i t 
into a blank in the output. 

-device N, -dv N 
prepares output compatible with the device specified. This is 
usually used when the output is stored in a segment to be 
printed elsewhere. Suitable devices are terminals 2741, 1050, 
37, and the bulk output printers, 202 or 300. Use of this 
control argument overrides any specification set by ~se of the 
-ball control argument; if both are used in one invocation of 
runoff, the last one encountered prevails. 

If neither -device nor -ball 
type is that from which 
unrecognized device type 1s 
ASCII character set. 

-from N, -fm N 

is specified, the default device 
the user is logged in; any 

assumed to support the entire 

starts printing at the page numbered N. If the -page control 
argument is used, printing starts at the renumbered page N. 

-hyphenate, -hph 
When this control argument is used, a procedure named 
hyphenate word, that the user supplies, is invoked to perform 
hyphenati~n whin the next word to be output does not fit in 
the space remaining in a line (see "Hyphenation Procedure 
Calling Sequence" at the end of this description). Otherwise, 
no attempt is made to hyphenate words. 

-indent N, -in N 
indents output N spaces from the left margin (default 
indentation is 0 except for "-device 202," which is the 
default for -segment and has a default indentation of 20; see 
also -number below). This space is in addition to whatever 

2/80 3-619.2 AG92-03A 



runoff (rf) runoff (rf) 

indentation is established by use of the .in control word. 

-no pagination, -npgn 
suppresses page breaks in the output. 

-number, -nb 
prints source line numbers in the left margin of the output; 
minimum indentation of 10 is forced. 

-page N, -pg N 
changes the initial page number to N. All subsequent pages 
~re similarly renumbered. If the control line .pa is used 
within the segment, the -page control argument is overridden 
and the page is numbered according to the .pa control line. 

-parameter ar~, -pm arg 
assigns the argument arg as a string to the internal variable 
"Parameter". 

-pass N 
processes the source segments N times to permit proper 
evaluation of expressions containing symbols that are defined 
at a subsequent point in the input. No output is produced 
until the last pass. 

-segment, -sm 
directs output to the segment or multisegment file named 
entryname.runout. This control argument assumes by default 
that the material is to be dprinted, so the segment is 
prepared compatible with device 202 unless another device is 
specified; thus, unless overridden by the -indent control 
argument, each printed line in the output segment is preceded 
by 20 leading spaces so that the text is approximately 
centered on the page when dprinted. 

-stop, -sp 
waits for a carriage return from the user before beginning 
typing and after each page of output (including after the- last 
page of output). 

-to N 
ends printing after the page numbered N. 

-wait, -wt 
waits for a carriage return from the user before starting 
output, but not between pages. 

2/80 3-619.3 AG92-03A 



runoff (rf) runoff (rf) 

NOTES: Output lines are built from the left margin by adding 
text words until no more words fit on the line; the line is 
then justified by inserting extra blanks to make an even right 
margin. Up to 20 lines each of headers and footers can be 
printed on each page. The pages can be numbered, lines can be 
centered, and equations can be formatted. Space can be 
allowed for diagrams. Detailed control over margins, spacing, 
headers, justification, numbering, and other aspects of format 
is provided by control lines that begin with a period. 
Although the control lines are interspersed within the text, 
they do not appear in the output segment. The output can be 
printed page by page to allow positioning of paper, or it can 
be directed into a segment. Characters not available on the 
device to which outpu~ is directed are replaced by blanks. If 
special symbols must be hand drawn, a separate segment can be 
created that indicates where each symbol should be placed. 
The user can define variables and cause expressions to be 
evaluated; he also has the ability to refer to (and sometimes 
modify) variables connected with the workings of the runoff 
command. 

A runoff input segment contains two types of lines: control 
lines and text lines. A control line begins with a period; 
all other lines are considered text lines. A two-character 
control word appears in the second and third character 
positions of each control line. The control word can take a 
parameter that is separated from the control word by one or 
more spaces. Lines that are entirely blank are treated as if' 
they contained a .sp 1 control line. 

Text lines contain the material to be printed. If an input 
line is too short or too long to fill an output line, material 
is taken from or deferred to the next text line. A line 
beginning with a space is interpreted as a break in the text 
(e.g., the beginning of a new paragraph) and the previous line 
is printed as is. 

Tab characters (ASCII HT) encountered in the input stream are 
converted to the number of spaces required to get to the next 
tab position (11, 21, ... ). Nonprinting control characters in 
the input segment are discarded in the output segment. The 
.tr control word can be used to print these control characters 
in the output segment. 

2/80 3-619.4 AG92-03A 



runoff (rf) runoff (rf) 

When an input text line ends with any of the characters ".11, 
Ii?", "!", ";", or ":!', or with ".", "?", or "!" followed by a 
double quote or ")", two blanks precede the following word (if 
it is placed on the same output line), instead of the normal 
single blank. 

The maximum number of characters per input or output line is 
361; this permits 120 underlined characters plus the newline 
character. 

Terminology 

The following paragraphs describe various terms that are used 
throughout the runoff description. 

FILL AND ADJUST MODES 

Two separate concepts are relevant to understanding how runoff 
formats output: fill mode and adjust mode. In fill mode, 
text is moved from line to line when the input either exceeds 
or cannot fill an output line. Adjust mode right justifies 
the text by inserting extra spaces in the output line, with 
successive lines being padded alternately from the right and 
from the left. Initial spaces on a line are not subject to 
adjustment. Fill mode can be used without adjust, but in 
order for adjust"to work, fill mode must be in effect. 

LINE LENGTH 

The line length is the maximum number of print positions in an 
output line, including all spaces and indentations, but not 
including margins set or implied by the -device, -indent, or 
-number control arguments. 

BREAK 

"A break ensures-that the text that follows is not run together 
with the text before the bteak. The previous line is printed 
out as is, without padding. 

2/80 3-619.5 AG92-03A 



runoff (rf) runoff (rf) 
--------

SPACING BETWEEN LINES 

Vertical spacing within the body of the text is controlled by 
the three control words: . ss, . ds, and . ms (for single, 
double, and multiple spacing respectively). Single spacing is 
the default. Multiple spacing is set by the control line .ms 
N where N-1 is the number of blank lines between text lines. 

PAGE EJECT 

A page eject ensures that no text after the (~ontrol line 
causing the page eject (e. g., . bp for "begin page") is pr inted 
on the c~rrent page. The current page is finished with only 
footers and footnotes at the bottom, and the next text line 
begins the following page. 

MARGINS 

There are four margins on the page vertically. The first 
margin on the page is the number of blank lines between the 
top of the page and the first header; this margin is set by 
the .m1 control word. The second, set by .m2, specifies the 
number of lines between the last header and the first line of 
text. The third (.m3) is between the last line of text and 
th~ first footer. The fourth (.m4) is between the last footer 
and the bottom of ;the page. The default for the first and 
fourth margins is four lines; for the second and third, two 
lines. 

PAGE NUMBERS 

As the output is being prepared, a page number counter is 
kept. This counter can be incremented or set by the user. The 
current value of the counter can be used in a header or footer 
through the use of the symbol "%1\. A page is called odd 
(even) if the current value of the counter is an odd (even) 
number. 

The page numbers can be output as either arabic (the default) 
or roman (using the .ro control word). 

2/80 3-619.6 AG92-03A 



runoff (rf) runoff (rf) 

HEADERS AND FOOTERS 

A header is a line printed at the top of each page. A footer 
is a line printed at the bottom of each page. A page can have 
up to 20 headers and 20 footers. Headers are numbered from 
the top down, footers from the bottom up. The two groups are 
completely independent of each other. Provision is made for 
different headers and footers for odd and even numbered pages. 
Both odd and even headers (footers) can be set together by 
using the .he (.fo) control words. They are set separately by 
using the .eh, .oh, .ef, and .of control words. 

A header/footer control line 
number (denoted in the control 
the title. 

h~s two arguments, the line 
line descriptions as 11#"), and 

The line number parameter of the control line determines which 
header or footer line is being set. If the number is omitted, 
it is assumed to be 1, and all previously defined headers or 
footers of the type specified (odd or even) are cancelled. 
Once set, a line is printed on each page until reset or 
cancelled. 

The title part of the control line begins at the first 
nonblank character after the line number. This character is 
taken to be the delimiting character, and can be any character 
not used in the rest of the title. If the delimiting 
character appears less than four times, the missing last parts 
of the title are taken to be blank. The three parts of the 
title are printed left justified, centered, and right 
justified, respectively, on the line. Any or all parts of the 
title can be null. Justification and centering of a header or 
footer line are derived from the line length and indentation 
in effect at the time of the definition of the header or 
footer, and are used whenever that line is output, regardless 
of the values at the time of use. Any occurrence of the 
special character "%" within a title is replaced by the 
current value of the page counter whenever the title is 
pr i nted . To. c au se a percen t char acter to be pr i nted, "% %" 
must be written in the title. The special character can be 
changed; see the .cc control word. 

2/80 3-619.7 AG92-03A 



runoff (rf) r'unoff (rf) 

Omitting the title in the control line cancels the header or 
footer with that number, including its space on the page 
(e.g., ".he 4" cancels the fourth header). A blank line in 
the header or footer can be achieved by a title consisting 
entirely of one delimiting character (e.g., ".fo 3 $" makes 
the third footer a blank line). Omitting both number and 
title of a header (footer) cancels all headers (footers) of 
the type specified (e.g., ".oh" cancels all headers that were 
specified by any .oh control line). 

Ex p r e s s ion s and ~ x pre s s i 9~ E val u a t_!. 0 n 

An expression can be either arithmetic or string, and consists 
of numbers and operators in appropriate combinations. All 
operations are performed in integer format, except that string 
comparisons are performed on the full lengths of the strings. 

The order of precedence for the operators is: 

(bit-wise negation), (unary) 
*, I, \ (remainder) 
+, - (binary) 
=, <, >, ~, <, > (all are comparison operators that yield -1 

for true or a for false) 
& (bit-wise AND) 
I (bit-wise OR), - (bit-wise equivalence) 

Other guidelines in the use of expressions are as follows: 

1) Parentheses can be used for grouping. 

2) Blanks are ignored outside of constants. 

3) Octal numbers consist of "II" followed by a sequence of 
octal digits. 

4) String constants are surrounded by the double quote 
character; certain special characters are defined by 
multiple-character sequences that begin with the * 
character, as follows: 

** asterisk character 
*" double-quote character 

2/80 3-619.8 AG92-03A 



runoff (rf) 

*b 
*n 
*t 
*s 
*cN 

backspace character 
newline character 
horizontal-tab character 
space character 
character whose decimal value is N 

(where N is 1 to 3 digits) 

runoff (rf) 

5) Concatenation of strings is performed by the juxtaposition 
of the strings involved, in order, left to right. 

6) For positive !, ~, 

string expression(i) 

and: 

string expression(i, k) 

are equivalent 
references: 

to the PL/I substr builtin function 

substr(string expression, i) 

and: 

substr(string expression, iJ k) 

respectively. 

7) For negative i, the substring is defined as starting -i 
characters from the rightmost end of the string; for 
negative~, the substring ends -k characters from the end 
of the string. 

8) Evaluation of substrings takes place after any indicated 
concatenations; string operations have higher precedence 
than all the binary operations. 

9) In any context other than a .sr control line or in a string 
comparison, a string expression is converted to an integer 
in such a way that a one-character string results in the 
ASCII numeric value of the character. 

Expression evaluation takes 
conditions: 

2/80 3-619.9 

place under the following 

AG92-03A 



runoff (rf) runoff (rf) 
--------,-

1) In .sr and .ts control lines. 

2) In all control lines that accept an "N!! or "+N" argument. 

Definition and Substitution of Variables 

Variables can be defined by the use of the .sr control line; 
their values can be retrieved thereafter by a symbolic 
reference. Names of the variables are composed of the 
upper-case and lowercase alphabetic characters, decimal d igi ts, 
and \'/", with a maximum length of 361 characters. When a 
variable is defined, it is given a type based on the type of 
the expression that is to be its value, either arithmetic or 
string. Variables that are undefined at the time of reference 
yield the null string. When enclosed in quotes, a null string 
is equivalent to an arithmetic O. Thus, if a variable called 
var has not been set, this U%var%" is equivalent to 0 when 
used as an expression. 

In substitution of variables, the name of the variable is 
enclosed by "%"; other occurrences of the (~haracter' %" 
encountered during SUbstitution of variables are replaced by 
the value of the page counter; if a "%" character' is to occur 
in the resulting output, it must be coded as H%%" (but see 
also the .cc control word). 

Substitution of variables can occur: 

1) In control lines that take an expression argument if a "%" 
is found as either the first or second character of the 
argument (substitution of variables takes place before 
expression evaluation). 

2) In .ur control lines. 

3) In all titles ('part1'part2'part3'), whether in 
header/footer control lines or as equation lines. 

Many of the variables internal to runoff are available to the 
user (a complete list is given at the end of this 
description). These variables include control argument values 

2/80 3-619.10 AG92-03A 



runoff (rf) 

(or their defaults), values of switches and 
certain special functions. However, the user 
about naming conflicts, since an attempt 
internal variable that is not explicitly 
ignored; i.e., the operation of the command is 

runoff (rf) 

counters, and 
need not worry 

to redefine an 
modifiable is 

unaffected. 

Two special built-in symbols in runoff are provided for use in 
footnote and'equation numbering: "Footl! contains the value of 
the next footnote number available (or the current footnote if 
referred to from within the text of the footnote) and "Eqcnt" 
is provided for equation numbering. The value of "Foot" is 
incremented by one when the closing .ft of a footnote is 
encountered. Any reference to H.Eqcnt" provides the current 
value and causes its value to be incremented by one 
automatically; thus its value-) should be assigned to a 
variable, and the variable should then be used in all further 
references to that equation number. 

Default Conditions 

When no control words are specified, runoff prints the text 
single spaced, right adjusted, with no headers, no footers, 
and no page numbers. 

If page numbers are substituted in headers or equations, they 
are arabic. 

A page consists of 66 lines, numbered 1 through 66. The first 
line is printed on line 7, and the last on line 60, if no 
headers or footers are used. If headers are used, there are 
four lines of top margin (.m1 4), the headers, two blank lines 
(.m22), and then the text. If footers are used, there are 
two lines skipped after the text (.m3 2), footers printed, and 
four lines of bottom margin (.m4 4). 

A line is 65 characters long; the left margin is that of the 
typewriter. The output is compatible with whatever is normal 
for the device from which the runoff command is executed. The 
entire segment is printed, with no wait before beginning or 
between pages. 

2/80 3-619.11 AG92-03A 



runoff (rf) runoff (rf) 

NOTES ON CONTROL LINE FORMATS: The following discussion gives a 
description of each of the control words that can be 
interspersed with the text for format control. Control lines 
do not cause an automatic break unless otherwise specified. 
Arguments of the control words are in the following form: 

. ad 

. ar 

. bp 

. br 

# integer constant 
N integer expression 
+N integer expression preceded by optional 

+ or - sign 
(expression> arbitrary expression (string or integer) 
c character 
cd character pair 
f segment name 
, part 1 ' part2' part3" a title whose parts are to be left 

justified, centered, and right 
justified respectively . 

Adjust: text is printed right justified. Fill mode must 
be in effect for right justification to occur. Fill mode 
and adjust mode are the default conditions. This control 
line causes a break . 

Arabic numerals: when page numbers (S variable) are 
substituted into text or control lines as a result of a .ur 
control line or into a title or equation as it is printed, 
they are in arabic notation. This is the default 
condition . 

Begin page: the next line of text begins on a new page of 
output. This control line causes a break . 

Break: the current output line is finished as is, and the 
next text line begins on a new output line . 

. cc c 

2/80 

Control character: this control line changes the character 
used to surround the names of symbolic variables when they 
are referenced to c. The default special character is "%". 
The character specified by c must thereafter be used to 

3-619.12 AG92-03A 



runoff (rf) runoff (rf) 

refer to symbolic variables, while percent signs are 
t rea ted 1 i t era 11 y . E i the r " . c c %" 0 r . c c res tor est h e"-
percent sign as the special character . 

. ce N 
Center: the next N text lines are centered. Control lines 
and blank lines are not counted as part of the N lines 
being centered. If N is missing, 1 is assumed. This 
control line implies ".ne N" (or ".ne 2N" if double 
spacing) so that all lines centered are on the same page. 
A break occurs . 

. ch cd .. 

. ds 

Characters: each occurrence of the character c is replaced 
in the chars segment (the segment named entrynime.chars) by 
the character d, set off by color-shift characters. If th~ 
d character is-blank, or an unpaired c character appears at 
the end of the line, the c character is not flagged; it 
either occurs as itself in tlie chars segment or not at all 
if no other character on the line was flagged . 

Double space: begin double spacing the text. This control 
line causes a break . 

. ef 0 'part1'part2'part3' 
Even footer: this defines even page footer line number !. 
If 0 is omitted, 1 is assumed. If both # and the title 
(parts 1 to 3) are omitted, all even footers defined by any 
.ef control line are cancelled. For more information, see 
the previous discussion entitled "Headers and Footers." 

.eh 0 'part1'part2'part3' 
Even header: this defines even page header line number O. 
If 0 is omitted, 1 is assumed. If both 0 and the title 
(pa~ts 1 to 3) are omitted, all even headers defined by any 
.eh control line are cancelled. For more information, see 
the previous discussion entitled "Headers and Footers." 

.eq N 

2/80 

Equation: the next N text lines are taken to be equations. 
If N is missing, 1 is assumed. This control line implies 
".ne N" (or ".ne 2NH if double spacing) so that all 
equations are on the same page. The format of the 
equations should be 'part1'part2'part3' just as in headers 
and footers. 

3-619.13 AG92-03A 



runoff (rf) runoff (rf) 

.ex text 
Execute: the remainder of the control line (text) is 
passed to the Multics command processor. Substitution of 
variables can occur if the first or second character of 
text is "%" . 

. fh 'part1'part2'part3' 
Footnote header: before footnotes are printed, a 
demarcation line is printed to separate them from the text. 
The format of this line can be specified through the title 
in the .fh control line. This title is printed in the same 
manner as headers/footers and equations. The default 
footnote header is' a line of underscores from column one to 
the right margin . 

. fi 
Fill: this control line sets the fill mode. In fill mode, 
text is moved from line to line to even the right margin, 
but blanks are not padded to justify exactly. Fill mode is 
the default condition. This control line causes a break . 

. fo # 'part1'part2'part3' 
Footer: even and odd footers are set at the same time; 
this is equivalent to: 

.ef # 'part1'part2'part3' 

.of # 'part1'part2'part3' 
If # is omitted, 1 is assumed. If both # and the title 
(pa~ts 1 to 3) are omitted, all footers are-cancelled. For 
mor·e information, see the discussion entitled "Headers and 
Footers. 1I 

.fr c 
Footnote reset: this control line controls footnote 
numbering according to the argument c. Permitted values of 
care: 
~ Footnote counter is reset at the top of each page. This 

is the default condition. 
f Footnote counter runs continuously through the text. 
u Suppress numbering on the next footnote . 

. ft 

2/80 

Footnote: when .ft is encountered, all subsequent text 
'until the next .ft line is treated as a footnote. Any 
further text on the .ft line is ignored. If a footnote 
occurring near the bottom of a page does not fit on the 

3-619.14 AG92-03A 



runoff (rf) runoff (rf) 

page, as much as necessary is continued at the bottom of 
the next page. If a footnote reference occurs in the 
bottom or next to bottom line of a page, the current page 
is terminated and the line with the footnote reference is 
printed at the top of the next text page . 

. gb STR 
Go back: 
beginning 
"STR" in 
Processing 

the current input segment is searched from the 
until a line of the form ".la STRII is found; 
this case means lithe rest of the line." 

is continued from that point . 

. gf STR 
Go forward: same as .gb, except search forward from the 
current position in the input segment . 

. he # 'part1'part2'part3' 
Header: even and odd headers are set at the same time. 
This is equivalent to: 

.eh # 'part1'part2'part3' 

.oh # 'part1'part2'part3' 
If # is omitted, 1 is assumed. If both # and the title 
(parts 1 to 3) are omitted, all. headers are-cancelled. For 
more information, see the discussion entitled "Headers and 
Footers." 

.if f <expression) 

2/80 

Insert file: the segment specified by f is inserted into 
the text at the point of the ".if f" control line. The 
inserted segment can contain both text and control lines. 
No break occurs. The effect is as if the control line were 
replaced by the segment. Inserts can be nested to a 
maximum depth of 30. The argument f is the entryname of a 
runoff input segment. If the runoff suffix is not included 
in the .if line, it is supplied. The input file is located 
by use of the translator search list that has the synonym 
trans. For more information on search lists, see the 
search facility commands and, in particular, the 
add search paths command description in this manual. If a 
second argument is provided, it is evaluated in the same 
fashion as the expression in .sr, and its value and type 
are associated with the identifier "Parameter"; if no 
second argument is provided the value of "Parameter" 
remains unchanged (or undefined). (In either case, the 
prior value of "Parameter" is not pushed down). 

3-619.15 AG92-03A 



runoff (rf) runoff (rf) 

.in +N 
I~dent: the left margin is indented N spaces by padding N 
leading spaces on each line. The right margin remains 
unchanged. By default N is O. The margin can be reset 
with another ".in Nil request. Either .in or ".in 0" resets 
the original margin. If N is preceded by a plus or a minus 
sign, the indentation is changed by N rather than reset. 
This control line causes a break . 

. 1a STR 
Label: defines the label STR for use as the target of the 
.gb or .gf control word . 

. li N 
Literal: this request causes the next N lines to be 
treated as text, even if they begin with a period (.). If 
N is not specified, 1 is assumed . 

• 11 +N 
LIne length: the line ~ength is set to N. The left m~rgin 
stays the same, and no break occurs. If N is not 
specified, 65 is assumed. If N is preceded by a plus or a 
minus sign, the line length is changed by N rather than 
reset . 

• ma +N 

2/80 

Margins: top and bottom margins are set to N lines. If N 
is preceded by a plus or a minus sign, the margin is 
changed by N rather than reset. The margin 1s the number 
of lines printed above the first header and below the last 
footer. If N is not specified, 4 is assumed. This control 
line is equivalent to: 

• III 1 +N 
.m4 :;N 

Note: Care should be taken in using a top or bottom 
margin of less than three lines if output is to be 
dir~cted to an off-line printer (-sm). Such printers 
typically are set up to skip automatically the first 
and last 3 lines on. each page. Runoff takes this into 
account by putting out fewer newlines to compensate for 
the printer; the compensation cannot work for .m1 or 
.m4 less than 3. It is possible to get around this 
problem by using the -device 037 control ar~gument when 
invoking runoff and special control arguments to the 

3-619.16 AG92-03A 



runoff (rf) runoff (rf) 

command that set up requests for the off-line printer 
(dprint) . 

. mp +N 
Multiple pages: format the output text so that it prints 
on every Nth page (i.e., skips N-1 blank sheets of paper 
between printed pages). This control line is valid cnly 
for output intended for the bulk printer. If N is not 
speci fied, 1 is assumed . 

. ms +N 
Multiple space: begin multiple spacing text, leaving (N-1) 
blank lines between text lines. If N is preceded by a plus 
or a minus sign, the spacing is changed by N rather than 
reset. If N is not specified, 1 is assumed. This control 
line causes a break . 

• m 1 +N 
Margin 1: the margin between the top of the page and the 
first header is set to N lines, or changed by N if N is 
signed. If N is not specified, 4 is assumed. See note in 
description of .ma . 

. m2 +N 
Margin 2: the number of blank lines between the last 
header and the first line of text is set to N, or changed 
by N if N is signed. If N is not specified, 2 is assumed . 

. m3 +N 
Margin 3: 
last line 
changed by 
assumed . 

the number of blank lines printed between the 
of text and the first footer is set to N, or 
N if N is signed. If N is not specified, 2 is 

• m4 +N 

. na 

Margin 4: the margin between the last footer and the 
bottom of the page is set to N lines, or changed by N if N 
is signed. If N is not specified, 4 is assumed. See note 
in description of .ma . 

No adjust: the right margin is not adjusted. This does 
not affect fill mode; text is still moved from one line to 
another. This control line causes a break . 

. ne N 
Need: a block of N lines is needed. If N or more lines 

2/80 3-619 . 1 '7 AG92-03A 



runoff (rf) runoff (rf) 

. nf 

remain on the current page, text continues as before; 
otherwise, the current page is ejected and text continued 
on the next page. The number of lines remaining is 
calculated by subtracting from the current page length the 
sum of the number of lines already printed and the number 
of lines reserved for footers, footnotes, and bottom 
margins. No break is implied; if a line is partially 
formatted but not yet printed when the .ne is encountered, 
it is ignored in the calculation of lines remaining (i.e., 
it is neither printed nor in possession of reserved space). 
Similarly, a footnote or footer defined after the .ne does 
not have space reserved at the time the .ne is encountered. 
If N is not specified, 1 is assumed. If several .ne 
control lines occur consecutively, the N's are not added 
together; only the largest N has effect . 

No fill: fill mode is suppressed, so that a break is 
caused after each text line. Text is printed exactly as it 
is in the input segment. This control line causes a break . 

. of # 'part1'part2'part3' 
Oddfooter: this defines odd page footer line number H. If 
# is omitted, 1 is assumed. If both # and the title (parts 
lto 3) are omitted, all footers defi~ed by any .of control 
line are cancelled. For more information, see the 
discussion entitled "Headers and Footers." 

.oh # 'part1'part2'part3' 

.op 

Oddheader: this defines odd page header line number #. If 
# is omitted, 1 is assumed. If both # and the title (parts 
1 to 3) are omitted, all headers defined by any .oh control 
line are cancelled. For more information, see the 
discussion entitled "Headers and Footers." 

Odd page: the next page number is forced to be odd by 
adding 1 to the page number counter if necessary. A break 
is caused and the current page is ejected. No blank even 
page is made; the even page number is merely skipped . 

. pa ±N 

2/80 

the current line is finished as is (i.e., a break occurs) 
and the current page is ejected. The page number counter 
is set to N, or is changed by N if N was signed. If N is 
omitted, the page number counter is incremented by 1. 

3-619.18 AG92-03A 



runoff (rf) runoff (rf) 

.pi N 
Picture: if N lines remain on the present page, N lines 
are spaced over; otherwise, the text continues as before 
until the bottom of the page is reached, N lines are 
skipped on the next page before any text is printed. 
Headers are printed normally; the space resolved is below 
the headers. This option can be used to allow for pictures 
and diagrams. If several .pi control lines occur 
consecutively, each N is added to the number of lines 
pending and the total is checked against the space 
remaining on the page. All pending space is allotted 
together. If the total is greater than the usable 'space on 
a page, the next page contains only headers and footers and 
the rest of the space is left on the following page. If N 
is not specified, 1 is assumed . 

. pl +N 

. , rd 

. ro 

. rt 

2/80 

Page length: the page length is set to N lines. If N is 
not specified, 66 is assumed. If N is preceded by a plus 
or a minus sign, the page length is changed by N rather 
than reset . 

Read: one line of input is read from the user input 1/0 
switch; this input line is then processed as if it had been 
encountered instead of the .rd control line. Thus it can 
be either a text line or a control line; a break occurs 
only if the replacement line is one that would cause a 
break . 

Roman numerals: when page numbers (% variable) are 
substituted into text or control lines as a result of a .ur 
control line or into a title or equation as it is printed, 
they are in lowercase roman notation. This can be reset to 
arabic numerals (the default) by use of the .ar control 
line . 

Return: cease processing characters from the current input 
segment. If the current input segment was entered by a .if 
control line in another segment, return to the line 
following the .if control line. 

3-619.19 AG92-03A 



runoff (rf) runoff (rf) 

.sk N 
Skip: N page numbers are skipped before the next new page 
by adding N to the current page number counter. No break 
in text occurs. This control line can be used to leave out 
a page number for a figure. If N is not specified, 1 is 
assumed . 

. sp N 
Space N lines: If N is not specified, 1 is assumed. If 
not enough lines remain on the current page, footers are 
printed and the page ejected, but the remaining space is 
not carried over to the next page. The N blank lines are 
produced in addition to any that may occur automatically 
due to a .ds or .ms 'control line. For example, if .sp 4 is 
used with .ss or .ms 1, in effect four blarik lines appear 
between two text lines, with .ds or .ms 2, five lines 
appear, with .ms 3, six lines. 

After skipping the space, the equivalent of a .ne 2 is 
performed in an attempt to avoid separating the first line 
of a paragraph at the bottom of a page from the rest of the 
paragraph on the next page. The .ne feature can be 
avoided, if the user so desires, by using a blank line 
rather than .sp. Otherwise, a blank line is treated as if 
it were a .sp 1 control line. 

This control line causes a break. 

Note: A series of .sp control lines such as: 
.sp a 
.sp b 

is not always equivalent to a single .sp control line 
whose argument is the sum of the individual arguments: 

.sp a+b 
If the .sp a finishes a page, causing a page ejection, 
b blank lines are produced at the top of the new page. 
If .sp a+b is used, the space does not appear at the 
top of the next page . 

. sr name (expression) 
Set re ference: as soc i ates 
identifier name. The type 
(expression)-CeTtl1er numeric 
not provided or cannot be 

value of (expression) with the 
of name is set to the type of 

or strIng); if the expression is 
properly evaluated, a diagnostic 

2/80 3-619.20 AG92-03A 



runoff (rf) runoff (rf) 

. ss 

message is printed. The name identifier can be either a 
user-defined identifier or one of the built-in symbols that 
the user can set (see "Built-In Symbols" below) . 

Single space: begin single spacing text. This is the default 
condition. This control line causes a break . 

. tr cd .. 
Translate: the nonblank character c is translated to d in the 
output. An arbitrary number of-cd pairs can foIl0w the 
initial pair on the same line without intervening spaces. An 
unpaired c character . at the end of a line translatez to a 
blank character. (Translation of a graphic character to a 
blank only in the output is useful for preserving the identity 
ofa particular string of characters, so that the string is 
neither split across a line, nor has padding inserted within 
it.) If several .tr control lines are used in a segment J the 
cd pairs are "added together." Also a particular c character 
can be translated to a different d character by using a new 
.tr control line to override the-previous translation. To 
cancel a cd pair (i.e., have the c character print out as 
itself), use another .tr control line-of the form ".tr cc". A 
.tr control line with no cd pair is ignored . 

. ta N 
Test: process the next input line if the value of N does not 
equal zero (false). If N is not specified, 1 is assumed . 

. ty STR 
Type: write STR (i.e., the rest of the control line) onto tne 
error output lID switch. Substitution of variables can occur 
if the first or second character of STR is "%". If STR is 
omitted, a blank line is written onto the lID switch . 

. un N 
Undent: the next output line is indented N spaces less than 
the current indentation. Adjustment, if in effect, occurs 
only on that part of the line between the normal left 
indentation and the right margin. If N is not specified, its 
value is the current indentation value (i.e., the next output 
line begins at the current left margin). This control line 
causes a break. 

2/80 3-619.21 AG92-03A· 



runoff (rf) runoff (rf) 
---------

.ur text 

. wt 

* 

Use reference: the remainder of the .ur control line (text) 
is scanned, with variables of the form "%name%" replaced by 
their corresponding values (converted back to character string 
form if they were numeric). The line thus constructed is then 
processed as if it had been encountered in the original input 
stream (e.g., it can be another control line, including 
possibly another .ur) . 

Wait: read one line from the user input I/O switch and 
discard it (see the .rd control word description). 

This line is treated as a comment and ignored. 
occurs. 

No break 

This line is treated as a commeht and ignored with respect to 
the output segment. However, the line is printed in the 
appropriate place in the chars output segment. 

Summ~ of Control Arguments 

-ball N, -bl N ; 
Convert output to a form suitable for an N typeball. 

-character, -ch 
Create entryname.chars, listing page and line numbers with red 
reminder characters where certain characters, normally not 
printable, must be drawn in by hand. 

-device N, -dv N 
Prepare output compatible with device N. 

-from N, ~fm N 
Start printing at the page numbered N. 

-hyphenate, -hph 
Call user-supplied procedure to perform hyphenation. 

-indent N, -in N 
Set initial indentation to N. 

2/80 3-619.22 AG92-03A 



runoff (rf) 

-no pagination, -npgn 
Suppress page breaks. 

-number, -nb 
Print source segment line numbers in output. 

-page N, -pg N 
Change the initial page number to N. 

-parameter arg, -pm ~ 

runoff (rf) 

Assign arg as a string to the internal variable "Parameter". 

-pass N 
Make N passes over the input. 

-segment, -sm 
Direct output to 
entryname.runout, 
segment. 

-stop, -sp 

the segment or multisegment 
where entryname is the name of 

Wait for a carriage return before each page. 

-to N 
Finish printing after the page numbered N. 

-wait, -wt 
Wait for a carriage return before the first page. 

Summary of Control Words 

file named 
the input 

The following conventions are used to specify arguments of 
control words: 

# integer constant 
c character 
cd character pair 
exp expression (either numeric or string) 
N integer expression 
+N + indicates update by N; if sign not present, 

- set to N 
f segment name 
t title of the form 'part"1'part2'part3' 

2/80 3-619 .23"~ AG92-03A 



-_ ... _---
runoff (rf) 

-------

Re.9..!!est 

.ad 

. ar 

.bp 

.br 

.cc c 

.ce N 

.ch cd .... 

.ds 

.ef II t 

.eh II t 

.eq N 

.ex text 

.fh t 

.fi 

.fo II t 

.fr c 

.ft 

.gb STR 

.gf STR 

.he II t 

.if f exp 

.in +N 

.la STR 

.1i N 

.li +N· 

.ma +N 

2/80 

Break 

yes 
no 
yes 
yes 
no 

yes 
no 

yes 
no 
no 
yes 
no 

no 

yes 
no 

no 

no 
no 
no 
no 

no 

yes 
no 
no 
no 
no 

Default 

on 
arabic 

N=1 

off 

N=1 

line of 

underscores 
on 

t 

N=O 

N=l 
N=65 
N=4 

Meaning 

Right justify text 
Arabic page numbers 
Begin new page 

runoff (rf) 

Break, begin new line 
Change special character from % 
to c 
Center next N lines 
Note "c" in chars segment as 
"d" 
Double space 
Defines even footer line /I 
Defines even header line /I 
Next N lines are equations 
Call command processor with 
"text" 
Format of footnote demarcation 
line 

Fill output lines 
Equi valent to: . ef II t 

.of II t 
Control footnote numhering: 

"t" reset each page 
Itf" continuous 
"u" numbering suppressed 

for next 
footnote 

Delimits footnotes 
"go back" to label STR 
"go forward" to lablel STR 
E qui val e n t to: . e h II t 

.oh II t 
Segment f.runoff inserted at 
point of request; value of 
"exp" assigned to "Paramater" 
Indent left margin N spaces 
Define label STR 
Next N lines treated as text 
Line length is N 
Equivalent to: .m1 +N 

.m4 +N 

3-619.24 AG92-03A 



runoff (rf) 

.mp +N 

.ms +N 

.m1 +N 

.m2 +N 

.m3 +N 

.m4 +N 

.na 

.ne N 

.nf 

.of II t 

.oh II t 

.op 

.pa +N 

. pi. N 

.pl +N 

.rd 

.ro 

.rt 

.sk N 

.sp N 

.sr sym exp 

.ss 

. t r cd .... 

.ts N 

.ty STR 

.un N 

.ur text 

2/80 

Break 

no 
yes 
no 
no 

no 

no 
yes 
no 

yes 

no 
no 
yes 
yes 
no 

no 
no 

no 
no 

no 

yes 
no 

yes 
no 

no 

no . 

yes 

no 

Default 

N=1 
N=1 
N=4 
N=2 

N=2 

N=4 
off 
N=1 

off 

N=1 

N=66 

arabic 

N=1 

N=1 

no 

N=1 

left margin 

runoff (rf) 

Meaning 

Print only every N-th page 
Multiple space N lines 
Margin above headers set to N 
Margin between headers and tect 
set to N 
Margin between text and footers 
set to N 
Margin below footers set to N 
Do not right justify 
Need N lines; begin new page if 
not enough remain 
Do not fill output lines; print 
them exactly as entered 

~ Defines odd footer line /I 

Defines odd header line /I 

Next page number is odd 
Begin page N 
Skip N lines if N remain; 
otherwise skip N lines on next 
page before any text 
Page length is N 
Read one line of text from the 
user input lID switch and 
process it in place of .rd line 
Roman numeral page numbers 
"Return" from this input 
segment 
Skip N page numbers before next 
new page 
Space N lines 
Assign value of "exp" to 
variable named "sym" 
Single space 
Translate nonblank character c 
into d on output 
Process the next input line 
only if N is not zero 
Write "STR" onto the 
error output lID switch 
Indent next text line N spaces 
less 
Substitute values of variables 
in "text", and scan the line 

3-619.25 AG92-03A 



runoff (rf) 

.wt 

* 

Break 

no 

no 
no 

Default 

runoff (rf) 

Meaning 

again 
Read one line of text from the 
user input I/O switch and 
discard it (for synchronization 
with terminal) 
Comment line; ignored 
Comment line; ignored 

Only those symbols marked yes in the Set column can have values 
assigned by the user. 

All symbols are of type Number unless they are specified to be of 
type String. 

Control words and control arguments that affect the values of the 
variables are indicated in parentheses: (x/y) indicates that x 
sets the switch to true (-1), and y sets it false (0); (a) or 
(a, b, c) indicates that it is affected by a or by a, band c. 

Ad 
Ce 

·CharsTable 

Charsw 

ConvTable 

Date 

Device 

2/80 

Set 

ye~ 

yes 

yes 

yes 

Value 

Adjust (.ad/.na) 
Number of lines remaining to be 
centered (.ce) 
Translation table for chars segment 
output (String) (.ch) 
A chars segment is being created 
(-character) 
Translation table for output. 
Product of DeviceTable and TrTable 
(String) (.tr, -device) 
Date of this invocation of runoff; 
format is mm/dd/yy (String) 
Type of device output is to be 
formatted for (-device, -ball, 
-segment) 

3-619.26 AG92-03A 



runoff (rf) 

Symbol Set 

DevieeTable yes 

Eq 
Eqcnt yes 

ExtraMargin yes 

Fi 
FileName 

Filesw 

Foot yes 
FootHef yes 

Fp yes 

Fr 
From yes 
Ft 
Hyphenating yes 

In 
InputFileName 

InputLines 

LinesLeft 

Ll 
Lp yes 

Ma1 
Ma2 
Ma3 
Ma4 
Ms 

MultiplePagecount 

NestingDepth 

2/80 

runoff (rf) 

Value 

Translation table for physical 
device (String) (-device) 
Equation line counter (.eq) 
Equation reference counter 
(incremented each reference) 
Indent entire text this many spaces 
(-segment, -device, -indent) 
Fill switch (.fi/.nf) 
Name of current primary input 
segment (String) 
True if output is going to a 
segment (~segment) 
Footnote counter (. ft, . fr) 
Footnote reference string in 
footnote body (String) 
First page to print (set at the 
beginning of each pass to the value 
of From) 
Footnote counter reset switch 
First page to print (-from) 
Footnote processing switch (.ft) 
True if an attempt to break a word 
should be made (-hyphenate) 
Indent to here (.in) 
Name of current input segment 
(String) (.if) 
Current line number in current 
source file 
Number of usable text lines left on 
this page 
Line length (.11) 
Last page to print (initialized 
each pass from To) 
Space above header (.rna, .m1) 
Space below header (.m2) 
Space above foot (.m3) 
Space below foot (.ma, .m4) 
Spacing between lines (ss = 1, 
ds = 2, etc.) (.ms, .ss, .ds) 
Form feeds between pages to printer 
( . mp) 
Index into stack of input files 
( . if) 

3-619.27 AG92-03A 



runoff (rf) 

NI 
NNp 
NoFtNo 

NoPaging 

Np 

PadLeft 

Parameter 

Passes 

Pi 
PI 
Print 

Printersw 

PrintLineNumbers 

Roman 
Selsw 

Start 
Stopsw 

TextRef 

Time 

To 
TrTable 

Un 
Waitsw 

2/80 

Set 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

yes 
yes 

yes 

yes 
yes 

yes 

runoff (rf) 

Value 

Last used line number 
Next page number (-page, .pa) 
True to suppress number on next 
footnote reference (.fr) 
True if no pagination is desired 
(-no pagination) 
Current page number (.pa, -page, 
initialized each pass from Start) 
Alternate left/right padding switch 
(.un, .ad) 
Argument passed during insert 
processing (-parameter, . if) 
Number of passes left to make (= 1 
when printing is being performed) 
(-pass) 
Space needed for pictures (.pi) 
Page length (.pl) 
Whether or not to print 
«Fp < Np < Lp) & (Passes < 1» 
Outpuf is Intended for bul~ printer 
(-device, -segment) 
True if source line numbers are to 
be printed in output (-number) 
Roman numeral pagination (.ro/.ar) 
True if typeball other than 963 is 
being used (-ball) 
Initial page number (-page) 
Stop between pages of output 
(-stop) 
Footnote reference string in main 
text (String) 
Local time, in seconds, since 
January 1, 1901. 
Last page to be printed (-to) 
Translation table for user-supplied 
substitutions (String) (.tr) 
Undent to here (.un) 
Wait for input before printing 
first page (-wait) 

3-619.28 AG92-03A 



runoff (rf) runoff (rf) 

NOTES ON HYPHENATION PROCEDURE CALLING SEQUENCE: The runoff 
command provides a means whereby a user-supplied program can 
be called whenever the space available on a line is less than 
the length of the next word (including attached punctuation, 
if any). The mech~nism is activated by use of the -hyphenate 
control argument, and the PL/I calling sequence is provided 
below. 

declare hyphenate word 
fixed bin); 

entry(char(*) unaligned, fixed bin, 

call hyphenate word (string, space, break); 

LIST OF HYPHENATION CONTROL ARGUMENTS: 

string 
is the text word that is to be split. (Input) 

space 
is the number of print positions remaining in the line. 
(Input) 

break 
is the number of characters from the word that should be 
placed on the current line; it should be at least one less 
than the value of space (to allow for the hyphen), and can be 
o to specify that the word is not to be broken. Thus if the 
word "calling" is to be split, and 6 spaces remain in the 
line, the procedure should return the value 4 (adjustment is 
performed after hyphenation). (Output) 

EXAMPLES: The following pages show the 
segment and the result of invoking the 
segment. For an explanation of any 
refer to the respective control word 
this command description. Particularly 

2/80 3-619.29 

creation of a runoff 
runoff command on that 
of the control lines, 
definition earlier in 
notice the follo~ing: 

AG92-03A 



runoff erf) runoff (rf) 

1) The line length control is given before any headers and 
footers. A user who wants a line length other than the 
default one specifies it before specifying his headers and 
footers; if the user does not, the headers and footers on 
the first page are formatted for the default line length. 

2) The .sr control lin~ associates the page number count, at 
the time the title "RUNOFF SAMPLE PAGE" is printed, with 
the identifier rfsample. Refer to the last line of the 
segment (the .ur control line) to see how this ~eference is 
used,. 

3) The translate character (!) is used both to "count" spaces 
(see the a, b, and c items of 2, below) and to prevent an 
unattractive line split (see the last line of the segment. 

qedx 
a 
.pl 84 
.11 80 
.tr 
. fo 1 $$3-%$AG92$ 
.fo 2 $ 
.fo 3 $runoff sample page$runoff sample page$runoff sample 
page$ 
.brf 
.bbl 1 
.he " "" If 

.he 2 $ 

.he 3 XrunoffXXrunoffX 

.he 4 8 88 8 ---. m 1 6 

.m2 3 

.m3 2 

.m4 6 

.sp 7 

.ce 
RUNOFF SAMPLE PAGE 
.sr rfsample % 
.sp 2 
.inl 0 

2/80 3-619.30 AG92-03A 



runoff (rf) runoff (rf) 

2/80 

The runoff command lets the user format his text 
segments through a variety of control words. The control 
words specify such things as: 
.sp 2 
. in 10 
.un 5 
1. Page length and line length (.pl and .11 respectively). 
If not specified by the user, these control word are given 
default values of: 
.sp 
.in +5 
.li 
.pl 66 
.br 
.li 
.11 65 
.in -5 
.sp 
.un 5 
2. Headers and footers, for all pages 
numbered or just even numbered pages. 
for headers and footers are as follows: 
.sp 
.in +5 
.un 5 

or for just odd 
The control word~ 

a.!!!Headers and footers on both odd and even numbered 
pages (.he and .fo) 
.sp 1 
.un 5 
b.!!!Header and footers on just odd numbered pages (.oh and 
.of) 
.sp 1 
.un 5 
c.!!!Headers and footers on just even numbered pages (.eh 
and .ef) 
.sp 1 
.in -5 
.un 5 
3. Margins that control vertical spacing in relation to 
the top of the page, headers, text, footers, and the bottom 
of the page. These margins are defined as follows: 
.sp 
.in +5 

3-619.31 AG92-03A 



---,-------, 

runoff (rf) runoff (rf) 

2/80 

.un 5 
a. Between top of page and first header (.m1) 
.spb 
.un 5 
.bp 
b. Between last header and first line of text (.m2) 
.sp 
.un 5 
c. Between last line of text and first footer (.m3) 
.sp 
.un 5 
d. Between the last footer and bottom of page (.m4) 
.in -5 
.sp 
If not specified by the user, these margins are given 
default values of: 
.sp 
.in +5 
.nf 
.li 4 
• m 1 4 
.m2 2 
.m3 '2 
.m4 4 
.fi 
.in 0 
.sp 2 

To see the runoff segment that created this page, see 
the preceding pages. 
\f 
w example.runoff 
q 
<ready message> 

rf example -wt 

3-619.32 AG92-03A 



runoff (rf) runoff (rf) 

RUNOFF SAMPLE PAGE 

The runoff command lets the user format his 
through a variety of control words. The control 
such things as: 

text segments 
words specify 

1. Page length and line length (.pl and .11 respectively). 
If not specified by ·the user, these control word are 
given default values of: 

.pl 66 

.11 65 

2. ·Headers and footers, for all pages or for just odd 
numbered or just even numbered pages. The control 
words for headers and footers are as follows: 

a. Headers and footers on both odd and even numbered 
pages (.he and .fo) spf 

b. Header and footers on just odd numbered pages (.oh 
and . of) spf 

c. Headers and footers on just even numbered pages 
(.eh and .ef) spf 

3. Margins that control vertical spacing in relation to 
the top of the page, headers, text, footers, and the 
bottom of the page. These margins are defined as 
follows: 

a. Between top of page and first header (.m1) 

b. Between last header and first line of text (.m2) 

c. Between last line of text and first footer (.m3) 

d. Between the last footer and bottom of page (.m4) 

If not specified by the user, these margins are given 
default values of: 

• m 1 4 
.m2 2 
.m3 2 
.m4 4 

To see the runoff segment that created this page, see the 
preceding pages. 

2/80 3-619.33 AG92-03A 



------- ._--

runoff abs (rfa) runoff abs (rfa) 

SYNTAX AS A COMMAND: 

FUNCTION: submits an absentee request to process text segments, 
creating an output segment for each text segment in the user's 
working directory. 

ARGUMENTS: 

paths 
are the pathnames of segments to be processed by the runoff 
command. They need not specify the runoff suffix; ho~ever, 
this suffix must be the last component of each segment's name. 
If more than one pathname is specified, each segment is 
considered a separate runoff task. 

rf args 
-can be one or more control arguments accepted by the runoff 

command. 

ear args 
can be one or more control arguments accepted by the 
enter abs_request command, except -brief (-bf). 

dp args 
-can be one or more control arguments accepted by the dprint 

command, except -brief (-bf) and -truncate (-tt). 

CONTROL ARGUMENTS: 

-queue N, -q N· 
specifies in which priority queue the request is to be placed 
(N < 3). The output files are also dprinted in queue N. The 
default queue is 3. 

-copy N, -cp N 
specifies the number 
(N < 4). The default 

-hold, -hd 

of copies of the segment 
is 1. 

to be dprinted 

specifies that the output segments created by runoff should 
neither be queued for printing nor deleted. Each output 
segment is formatted for printing on a selectric-type 
terminal, with a 963 type ball, unless some other output form 
is specified by one of the runoff control arg~ments. 

3-620 AG92-03 



-----------

runoffabs (rfa) runoff abs (rfa) 

NOTES: The name of the output segment is the name of the text 
segment with the suffix runoff replaced by runout. The 
absentee process then uses the dprint command to queue each 
output segment for printing and deletion. Printing and 
deletion can be withheld if desired. If the -output_file 
(-of) control argument (one of those recognized by the 
enter abs request command) is not specified, the absentee 
process's- output segment is placed in the user's working 

"directory with the name path1.absout, where pathl is the first 
argument to the command. -

Control arguments and pathnames can be mixed freely in the 
command line. All control arguments apply to all pathnames. 
An unrecognizable control argument causes the absentee request 
not to be submitted. 

The -indent control argument applies to the segment produced 
by the runoff command and is not passed to the dprint command. 
If the -indent control argument is not specified, the default 
indentation is 20 spaces. 

When doing several runoffs, it is more efficient to give 
several pathnames in one command, since only one process is 
set up with one command. Thus the cost of process 
initialization need be incurred only once. 

See also the descriptions of enter abs_request and runoff in 
this manual. 

3-621 AG92-03 



SYNTAX AS A COMMAND: 

ssf {paths} 

FUNCTION: turns off the safety switch of a segment, directory, 
or multisegment file, thus permitting the entry to be deleted. 

ARGUMENTS: 

paths 
are pathnames of segments, directories, and multisegment 
files. If one of the paths is -wd or -working directory, the 
safety switch of the working directory is turned off. If no 
paths are specified, the safety switch of only the working 
directory is turned off. The star convention can be used. 

NOTES: See "Directory Contents" in the MPM Reference Guide for a 
description of the safety switch. See also the description of 
safety_sw_on in this manual. 

EXAMPLES: 

The command line: 

ssf test.p11 check.fortran 

turns off t~e safety switch of the segments test.pl1 and 
check.fortran in the working directory. 

The command line: 

ssf *.temp_dir -wd 

turns off the safety switch of all segments, directories, and 
multisegment files (in the working directory) with a 
two-compon~nt name ending in temp_dir, and turns off the 
safety switch of the working directory. 

The command alone, with no arguments: 

ssf 

turns off the safety switch of the working directory. 

3-622 AG92-03 



SYNTAX AS A COMMAND: 

ssn {paths} 

FUNCTION: turns on the safety switch of a segment, directory, or 
multisegment file, thus protecting it from deletion. 

ARGUMENTS: 

paths 
are pathnames of segments, directories, or multisegment files. 
If one of the paths is -wd or -working directory, the safety 
switch of the working directory is turned on. If no paths are 
specified, the safety switch of only the working directory is 
turned on. The star convention can be used. 

NOTES: When the user invokes a command to delete a segment, 
directory, or multisegment file that has the safety switch 
turned on, a query is printed. The specified item is deleted 
only if the user answers "yes." See "Directory Contents" in 
the MPM Reference Guide for a description of the safety 
switch. 

Since the delete dir command already asks the user whether to 
delete the specIfied directories, no further query is made. 
That is, the delete dir command functions in the same manner 
whether the safety ~witch is on or off. See the description 
of delete dir in this manual. 

EXAMPLES: 

The command line: 

safety_sw_on *.alpha 

turns on the safety switches of all segments, or multisegment 
files, and directories found in the working directory with 
two-component names ending in alpha. 

The command alone, with no arguments: 

ssn 

turns on the safety switch of the working directory. 

3-623 AG92-03 



save on disconnect 

SYNTAX AS A COMMAND: 

save on disconnect 

FUNCTION: reverses the effect 
command, re-enabling process 
the user's process. 

save on disconnect 

of the no save on disconnect 
preservation-across -hangups in 

NOTES: This command is only meaningful if process preservation 
was in effect for the process at login tim~, either by default 
or because the -save on disconnect control argument was 
specified on the login c~mmand line. 

3-624 AG92-03 



search search 

SYNTAX AS A COMMAND: 

search strA strB 

SYNTAX AS AN ACTIVE FUNCTION: 

[search strA strB] 

FUNCTION: returns the integer representing the character 
position in strA of the leftmost occurrence of any character 
contained in strB. If no character of strB occurs in strA, 0 
is returned. 

EXAMPLES: The following lines from an exec com segment 
demonstrate how the search active function can be used to 
check that argument 1 does not contain either of the special 
characters used by the star convention. If the argument does 
not contain special characters, execution continues; if it 
does contain special characters, a message is printed and 
execution stops. 

&if [nequal [search &1 I?] 0] 
&then &goto continue 
&print Star name not permitted: &1 
&quit 
&label continue 

The following interactions also illustrate the search active 
function. 

string [search "Paul, Mary;" ",;"] 
5 

string [search "Harry" ",;"] 
o 



---,-,----_._-,--

segments (segs) segments (segs) 
-----.----

SYNTAX AS A COMMAND: 

segs star_names {-control_arg} 

SYNTAX AS AN ACTIVE FUNCTION: 

[segs star names {-control arg}] 

FUNCTION: returns the entrynames or absolute pathnames of 
segments that match one or more star names. 

ARGUMENTS: 

star names 
are star names to be used in selecting the names to be 
returned. 

CONTROL ARGUMENTS: 

-absolute pathname, -absp 
returni absolute pathnames rather than entryn~mes. 

NOTES: Only one name per segment is returned; i.e., if a segment 
has more than one name that matches a star_name, only the 
first match found is returned. 

Since each entryname (or pathname) returned by segments is 
enclosed in quotes, the command processor treats each name as 
a single argument regardless of the presence of special 
characters in the name. 

3-626 AG92-03 



segments (segs) segments (segs) 

EXAMPLES: The following interaction illustrates the use of t~e 
segments active function. 

pwd 
)udd)Apple)Jones 
Is -a 

Segments = 7, Lengths = 6. 

r w 0 empty seg -re 1 test 
r w 1 test.list 
r w 1 test.p11 
re 1 prog 
r w 1 prog.list 
r w 1 prog.p11 

Multisegment-files = 2, Lengths = 770. 

r w 513 
r w 257 

prog.output 
prog.data 

Directories = 2. 

sma prog stuff 
sma documents 

Links = 3. 

prog.temp2 
prog.temp1 
junk 

string [segs *.p11] 
prog.p11 test.p11 
string [segs *] 
prog test empty_seg 

)udd)Apple)Jones)temp seg 2 
)udd)Apple)Jones)temp-seg-1 
)udd)Apple)Jones)empty_seg 

3-627 AG92-03 



-----""-._--

send mail (sdm) send_mail (sdm) 

SYNTAX AS A COMMAND: 

sdm {addresses} {-control args} 

FUNCTION: transmits a message to one or more recipients 
specified by Person id.Project id or mailbox pathname. It 
either accepts an input file or-reads text from the terminal~ 
then either sends the message or reads requests for editing, 
copying and sending. The message is automatically prefixed by 
a header~ whose standard fields give the author(s), the 
intended recipients, and a brief summary of the contents. 
These fields are understood by the read mail and print mail 
commands, also in this manual. See "Extended Aecess" in the 
print_mail description for an explanation of mailbox access. 

ARGUMENTS: 

addresses 
identifies the authors and the recipients of a 
address refers to a mailbox, either by pathname 
The permissible forms of address are: 

message. An 
or by owner. 

STR 
is any argument that does not begin with a minus sign (-). 
If it contains either of the characters> or <, it is 
interpreted as: 

-mailbox STR 

If STR does not contain> or <, it is interpreted as: 

-user STR 

-mailbox path, -mbx path 
specifies a mailbox pathname. The mbx suffix is added to 
path if it is not present. 

-user id Person id.Project id 
spicifies a ~ser as an-address. The correaponding mailbox 
pathname is: 

)udd)Project id>Person id>Person id.mbx 

This control argument is useful when a segment named 
Person_id.Project_id.mbx exists in the working directory. 

3-628 AG92-03 



send mail (sdm) send mail (sdm) 

Addresses can be qualified by the -comment control 
argument. The use of-comment does not affect the 
destination of the message. 

-comment STR, -cmt STR 
places STR in the header field associated with the address 
(including -mailbox and -user) directly preceding. If this 
control argument does not directly follow an address, STR 
is placed by itself in the header field most recently 
referred to. Comments are enclosed in parentheses. For 
example, the command line: 

sdm Jones.Pubs -comment "send mail person" 

creates the header field: 

To: Jones.Pubs (send mail person) 

Any addresses appearing on the command line before the first 
-cc, -from, -reply to, or -to control argument are considered 
primary recipients of the message. (See the description of 
the -to control argument below.) 

The -cc, -from, -reply to, and -to control arguments apply to 
all subsequent addresses until the next of these control 
arguments is given. Any other intervening control arguments 
do not affect this interpretation. 

For example, the sequence: 

addr1 -from addr2 addr3-cc addr4 -to addr5 

causes addr1 and addr5 to be processed by -to, addr2 and addr3 
to be processed by -from, and addr4 to be processed by -cc. 

If conflicting control arguments (for instance, -header and 
-no header) are specified, the last one takes effect. 

CONTROL ARGUMENTS: 
can be interspersed with the addresses and can be chosen from 
the following: 

-abort 
requests that send mail not send the message unless it can be 
successfully delivered to all specified recipients. This is 
the default. 

3-629 AG92-03 



send mail (sdm) send mail (sdm) 

-acknowledge, -ack 
requests that a message be sent to the user of send mail by 
each recipient of the message after they have read the-message 
via read mail or print mail. The user's name is placed in the 
Acknowledge-To header field. 

-brief, -bf 
suppresses printing of the message: 

Mail delivered to ADDRESS. 

when mail is sent. 

-cc ADDRESSES 
adds subsequent ADDRESSES as secondary recipients of the 
message. Mail is sent to these addresses when the send 
request is issued wi th no arguments. (See ~:!.es~~ below.) 
These addresses are placed in the cc header field. (See 
" H e ad e r s" ab 0 veil . ) The rea r e nos e con dar y r e c i pie n t s by 
default. 

-fill 
reformats the text of the message according to ufill-on" and 
"align-left" modes in compose, before sending, entering the 
editor, or entering the request loop. The line length used is 
72 unless specified by the -line length control argument. If 
the -fill control argument is noI specified, the message text 
is left unchanged. 

-from ADDRESSES 
adds subsequent addresses as authors of the message. These 
addresses are placed in the From header field, overriding the 
user's name placed there by default. 

-header, -he 
generates a message header. This is the default. 

-in reply to STR, -irt STR 
places-STR in the In-Reply-To field of the header. This field 
is not present by default. 

-input file path, -if path 
sends a message contained in a file. The file is sent without 
entering the request loop unless -request (-rq) or 
-request loop (-rql) is specified. If -input file is not 
specified, the user is prompted for the message text 
("Message:"). 

-line length N, -11 N 
specifies a line length to be used when adjusting text via 

3-630 AG92-03 



send mail (sdm) send mail (sdm) 

-fill or the fill request. The default line length is 72. 

-log 
sends a copy of the message to the user's logbox, the mailbox 
named Person id.sv.mbx in the home directory. The user's name 
is added to the cc header field. (See "Headers" above".) 

-long, -lg 
prints the "Mail delivered to ADDRESS" message when mail is 
sent. This is the default. 

-message id, -mid 
adds ~a Message-ID field to 
identifier for the message. 

the header, containing a unique 
This is the default. 

-no abort 
specifie~ that 
possible even 
recipients. 

the message be 
if it cannot 

sent to as 
be sent 

many recipients as 
to all specified 

-no acknowledge, -nack 
prevents send mail from requesting that each recipient of the 
message ackno~ledge reading the message. This is the default. 

-no fill, -nfi 
iends the message as typed with no formatting adjustments. 
This is the default. 

-no header, -nhe 
does not add the normal message header to the message. The 
only header fields added are those explicitly requested by 
control arguments or requests. 

-no log 
specifies that a copy of the message is not to be sent to the 
user's logbox. This is the default. 

-no message id, -nmid 
specifies that a Message-ID field is not to be added to the 
header. 

-no prompt 
does not prompt for request lines when inside the request 
loop. The default prompt is "send mail(N):", where N is the 
recursion level if greater than one: 

-no request loop, -nrql 
sends the message without entering the request loop. 
error occurs while sending the message, the request 
entered anyway. This is the default. 

3-631 

If an 
loop is 

AG92-03 



send mail (sdm) send mail (sdm) 

-no subject, -nsj 
ipecifies that a Subject field is not to be added to the 
header. 

-prompt STR 
sets the prompt for the request loop to the ioa control 
string STR. If STR is "", the user is not prompted. 

-reply to ADDRESSES, -rpt ADDRESSES 
adds subsequent addresses to the Reply-To header field. This 
field is not present by defaul t. (See "Headers" above".) 

-request STR, -rq STR 
executes STR as a line of requests after reading the message 
text from the appropriate source. If the quit (q) request is 
not included in STR, the request loop is entered after STR is 
executed. 

-request loop, ~rql 
enteri the request loop before sending a file via -input file 
(-if) or after "." is typed to terminate the input text.- The 
default is to automatically send the message and quit. 

-save path, -sv path 
sends a copy of the message to the savebox path. The suffix 
.sv.mbx is added to path if it is not present. If the savebox 
does not exist, the user is asked whether to create it. The 
user's name with a comment containing the entry name of the 
savebox is added to the cc header field. (See fVHeaders" 
above".) 

-subject STR, 
places STR 
no Subject 
specified, 
"Subject:". 
omitted. 

-sj STR 
in the Subject field of the header. If STR is "", 
field is created. If this control argument is not 
the user is asked for a subject with the prompt 

A blank response causes the Subject field to be 

-terminal_input, -ti 
prompts the user for the message text ("Message:"). The user 
then types the message text terminated by a line consisting of 
a period ("."). This is the default. 

-to ADDRESSES 
adds subsequent ADDRESSES as primary recipients of the 
message. Addresses not preceded by any of the above control 
arguments are also primary recipients. All of these addresses 
are placed in the To header field (see "Headers" above). Mai,l 
is sent to them when the send request is issued with no 
arguments (see "Notes on Request Descriptions" below). Ther'e 

3-632 AG92-03 



send mail (sdm) send mail (sdm) 

are no primary recipients by default. 

EXAMPLES OF GENERAL USE: To send mail to Person_id.Project_id, 
the user types: 

The send mail command prompts "Subject:" and accepts a single 
line of text, then prompts "Message:" and accepts the text cf 
the message to be sent. There are two ways to terminate the 
input text and send the message. 

A line consisting of a period (".") sends the message as it 
was typed and returns to command level. 

The character sequence \f invokes the qedx editor on the text 
that has been typed. The remainder of the line after \f in 
processed as editor requests. Unlike using qedx from command 
level, the user is not required to issue read (r) or write (w) 
requests to reflect changes in the message text. By default, 
when the qedx quit (q) request is typed, the send mail request 
loop is entered. 

The character sequence \fq in text input causes the send mail 
request loop to be entered directly. 

By default, each line of send mail requests is prompted by the 
str"ing "send mail". If one or more invocations of send mail 
have been interrupted by the current invocation, this prompt 
also includes a recursion level, for example "send_mail(3):". 

The "send" request sends the messages to specified addresses 
or to the addresses specified on the send mail command line. 

The "save" request saves a copy of the message to be sent in a 
specified mailbox. The "log" request saves the message in a 
particular mailbox called the user's default logbox: 

>udd>Project_id>Person_id>Person_id.sv.mbx 

3-633 AG92-03 



send mail (sdm) send mail (sdm) 

The "write" request saves a copy of the message in a specified 
printable ASCII file. These requests are useful for keeping 
track of correspondence. 

The "qedx" request can be used to edit the message at any time 
prior to sending. 

The "quit" request exits send mail and returns to command 
level. If the message has not -been sent anywhere, send mail 
asks "Do you wish to send the message?" and accepts a yes or 
no reply. 

EXAMPLES OF REQUEST LINE SYNTAX: A line beginning with ".~" is 
treated as a special escape used to pass command lines 
directly to the standard command processor. 

Other request lines have identical syntax to Multics command 
lines~ Arguments containing spaces or other command language 
characters must be quoted, for example: 

subject "food (not right away)" 

Iteration is specified by means of parentheses, for example: 

save (rdm sdm}_bugs 

Semicolon is used to separate multiple requests on a line, for 
example: 

log;send Jones.Mktg 

Each request accepts a particular set of arguments. These are 
described in detail in an alphabetical list of requests at the 
end of this description. 

NOTES ON REQUEST FUNCTIONS: Brackets in a request line invoke 
send mail request functions, which operate like Multic~ active 
functions but belong to an internal repertoire. Request 
functions are listed along with requests below. 

3-634 AG92-03 



send mail (sdm) send mail (sdm) 

EXAMPLES OF SENDING BY PATHNAME: 

To send to a mailbox bypathname, type: 

sdm path 

if the pathname contains> or <, otherwise use the -mailbox 
control argument: 

sdm -mbx insult mail 

To send a message contained in a file, type: 

sdm DESTINATION -input_file path 

If the -log control argument is specified, the message is 
automatically saved in the default logbox when it is sent. 

dialogue with send mail. The short 
the dialogue are an explanation of 
user's Person id.Project id is 

input lines are indicated by an 

The following is a sample 
paragraphs to the right of 
the transactions. The 
Jones.Aeroproj. The user's 
exclamation point. 

sdm Jones.Aeroproj Brown.Mktg -cc Smith.Mktg 

Subject: New Model Biplanes 
Message: 
We got a big shipment of the new 
modal biplanes 
I think these are a great 
improvement over the 
old traditional 707s, since they 
are stabler 
and carry many more people. 
What do you think? 

-- Dave Jones 
\f 

1,$s/modal/modell 
Imodell 
We got a big shipment of the new 
model biplanes 
.2s/stabler/more stable/p 
old traditonal 707s, since they 
are more stable 

3-635 

The command 
automatically enters 
input mode and text 
is typed. 

Enters qedx editor. 
Make corrections in 
text using qedx 
editing tools. 

AG92-03 



send mail (sdm) send mail (sdm) 

q 

send mail: send 
Mail delivered to Jones.Aeroproj. 

Mail delivered to Brown.Mktg. 
Mail delivered to Smith.Mktg. 

send mail: quit 
r 1052 .191 4.132 109 

Exit qedx and enter 
send mail request loop. 

Sends the message. 
1 copy is put in the 
user's home directory. 
1 copy is sent to Brown. 
Smith.Mktg is a 
secondary redipient. 

NOTES ON REQUESTS: In the following list, send mail requests are 
divided into five categories. The first, simple requests, 
includes several that are useful for the basic operation of 
send mail. The second, editing requests, contains two 
requests for reformatting a message before it is sent. The 
third, copying requests, includes the save request and others 
used to move messages around. The fourth, header requests, 
contains operations on the header fields of a message. These 
header fields are described later in this section. The fifth 
category lists several advanced requests. 

Most requests have short names that can be used instead to 
save typing. A more complete description of each request, 
including its calling sequence, appears at the end of this 
section. 

LIST OF SIMPLE REQUESTS: 

? 
prints a summary of the available send_mail requests. 

identifies the current state of send mail. 

help 
prints information on how to use send mail. 

list (Is) 
prints a short summary of the message. 

print (pr) 
prints the text of the message. 

3-636 AG92-·03 



send mail (sdm) send mail (sdm) 

print header (prhe) 
prInts the header of the message. 

i4. 

quit (q) 
exits from send mail. 

send 
sends the message. 

LIST OF EDITING REQUESTS: 

fill (fi) 
reformats the message text as in "fill" mode. 

qedx (qx) 
invokes the qedx editor on the message text. 

LIST OF COPYING REQUESTS: 

append 
copies the message to the end of an existing ASCII file. 

copy (cp) 
copies the message to specified mailboxes. 

log 
copies the message to the default logbox. 

preface 
copies the message to the beginning of an existing ASCII file. 

save (sv) 
copies the message to specified saveboxes. 

write (w) 
copies the message to an old or new ASCII file. 

LIST OF HEADER REQUESTS: 

cc 
adds to the cc: header field or prints its contents. 

from 
adds to the From: header field or prints its contents. 

in reply to (irt) 
-replaces the In-Reply-To: header field or prints its contents. 

3-637 AG92-03 



send mail (sdm) send mail (sdm) 

message id (mid) 
prints the Message-Id: header field. 

remove (rm) 
removes entries from specifted header fields. 

reply to (rpt) 
adds to the Reply-To: header field or prints its contents. 

subject (sj) 
replaces the Subject: header field or prints its contents. 

to 
adds to the To: header field or prints its contents. 

LIST OF ADVANCED REQUESTS: 

apply (ap) 
applies a Multics command to a file containing the text of the 
message. 

execute (e) 
executes a Multics command line after expanding send mail 
request fu~ctions in the line. 

passes the command line directly to the command processor. 

NOTES ON HEADERS: Messages created by send mail begin with a 
message header. This header contains information used by the 
read mail, print mail and send mail commands to facilitate 
listIng, saving, forwarding, and-replying to messages. 

The message header is separated from the text by one or more 
blank lines. It consists of one or more fields. Each field 
consists of an identifier, a colon, and one or more entries. 
Multiple entries are separated by commas. If a field is too 
long to fit on one line, it is continued on successive lines. 
(See the following example.) 

3-638 AG92-03 



send mail (sdm) 

A sample header is: 

Date: 
From: 
Subject: 
To: 

cc: 

25 May 1918 14:54-EDT 
Jones.Mktg 
headers in send mail 
Smith.Mktg Brown.Mktg 
"{mbx )udd)Pubs)Doe)mlsys.sv}" 
Miller.Pubs 

send mail (sdm) 

. NOTES ON ADDRESSES IN HEADERS: Several header fields contain 
lists of addresses. There are two distinct formats used for 
an address in a header field: 

Person id.Project id 
spe~ifies a uier identifier. It is generated by the -user 
form of address or a STR address that is not a mailbox 
pathname. 

{mbx path} 
specifies a mailbox pathname. The mbx suffix is not included 
in path. 

In addition, any of the above can be followed by a comment in 
parentheses. This comment is supplied by the -comment control 
argument. For example: 

{mbx )udd)Mktg)Jones)mlsys} (Mail System Developers) 

HEADER FIELDS 

The standard header fields are listed below in the order they 
appear in a message. The Date and From fields are always 
present. The others are optional. 

Redistributed-Date 
Redistributed-By 
Redistributed-To 

specify information about 
These fields are added only 

Date 

the forwarding of the message. 
by forward request of read mail. 

contains the date and time when the message was first 
transmitted, for example: 

5 June 1918 23:45 edt 

3-639 AG92-03 



send mail (sdm) send mail (sdm) 

From 
contains a list of addresses identifying the author(s) of the 
message. If -from is not specified and the from request is 
not issued, this field names the user who invoked send mail. 

Subject 
contains a brief description of the contents of the message. 
This field is present only if a non-null string is given to 
the -subject control argument, a non-blank line is given to 
the "Subject:" prompt, or the subject request is issued with 
one or more arguments. 

Sender 
contains the address of the user who actually sent the 
message. This field is created only if the -from control 
argument or the from request is used. 

Reply-To 

To 

cc 

contains a list of addresses to which a reply should be sent. 
When present, read mail uses the addresses given in this field 
instead of the add~esses in the From field as recipients of a 
reply request. This field is created only if the -reply_to 
control argument or the reply_to request is used. 

contains a list of addresses naming the primary recipients of 
the message. The send request when invoked with no arguments 
sends the message to all of these addre~ses. This field is 
created only if primary recipients are specified on the 
command line or if the to request is used. 

contains a list of addresses naming the secondary recipients 
of the message. The send request when invoked ~ith no 
arguments sends the message to these addresses. This field is 
created only if the -cc control argument or the cc request is 
used, or if either -save or -log is specified, in which case a 
cc field entry is created for the person creating the message, 
with a comment containipg the name of the mailbox being saved 
into, as in: 

Smith.Mktg (mail system.sv) 

Acknowledge-To 
contains an address to which an acknowledgement message should 
be sent after someone receiving this piece of mail reads it. 
This field is generated only when the -acknowledge control 
argument to send mail is used. 

3-640 AG92-03 



send mail (sdm) send mail (sdm) 

Message-ID 
contains a unique character string identifier for the message. 
This string is generated by send mail, and is useful when 
reading messages to detect multIple copies of the same 
message. 

In-Reply-To 
contains an ASCII string describing the message to which this 
message is a reply. This field is present only if the 
-in reply to control argument or the in reply_to request is 
used. -

List of Requests 

The available send mail requests are: 

? 

append path 
apply {-control arg} STRs, 

ap {-control-arg} STRs 
cc {ADDRESSES} -
copy path, cp path 
execute STRs, e STRs 
fill {-control arg}, fi {-control_arg} 
from {ADDRESSES} 
help {STR} 
in reply to {STRs}, irt {STRs} 
log -
message id, mid 
preface-path 
print {-control arg}, pr {-control arg} 
print header {-control arg}, prhe T-control arg} 
qedx T-control_arg}, qx {-control_arg} 
quit {-control arg}, q {-control arg} 
remove {ADDRESSES} {-control args} , 

rm {ADDRESSES} {-control irgs} 
reply to {ADDRESSES}, rpt {ADDRESSES} 
save path, sv path 
send {ADDRESSES} {-control args} 
subject {STRs}, sj {STRs} 
to {ADDRESSES} 
write path, w path 

3-641 AG92-03 



--- -------

send mail (sdm) send mail (sdm) 

The available request functions are: 

execute STRs, e STRs 
subject, sj 

Request Descriptions 

? 
prints a summary of the available send mail requests. 

prints a line identifying send mail and the current state of 
the message being created, as in: 

send_mail 3.6: 23 lines (modified) Subject: Zoot Suits 

The· word "modified" indicates that the message has been 
changed since the last use of the send request. The string 
"send mail 3.6" gives the version number of send mail. If the 
current recursion level is greater than one, it is given in 
parentheses, for example: 

send mail 3.6 (level 2): 5 lines: 

passes the command line directly to the command processor . 

. append path 
·appends the message complete with header to the end of an 
existing ASCII file. The suffix mail is added to path if it 
is not present. If the file does not exist, the user is asked 
whether to create it. 

apply {-control arg} STRs, ap {-control_arg} STRs 
places the -message in a temporary segment in the process 
directory, then concatenates STRs with intervening spaces and 
appen~s the pathname of the temporary segment. This 
concatenated command line is passed to the Multics command 
processor. When the command line has completed, the message 

.in send_mail is replaced with the contents of the temporary 
segment. 

3-642 AG92-03 



send mail (sdm) send mail (sdm) 

If the -header' (-he) control argument is specified, this 
request operates on both the header and the text. If 
-no header (-nhe) or no control argument is specified, it 
opi~ates on the text only. Control arguments must precede the 
STRs. 

If the message header is changed by the command line, 
send mail parses it and updates the lists or primary and 
secondary recipients, authors, reply addresses, etc. 

This request can be used to edit the message with an arbitrary 
editor, for example: 

apply teco 

which edits the message using the teco editor command. 

cc {ADDRESSES} 
adds any addresses specified to the list of secondary 
recipients of the message. Mail is sent to these addresses 
when a subsequent send request is issued with no arguments. 
The addresses are added to the cc field, which is created if 
necessary. 

If no addresses are specified, the secondary recipients of the 
message are listed. 

copy path, cp path 
copies the message into the mailbox designated by path. The 
mbx suffix is added to path if it is not present. 

execute STRs, e STRs 
passes the concatenation of STRs with intervening spaces to 
the Multics command processor. This request is different from 
" " because it is first parsed as a·send mail request line. 
The send mail request interpreter expands- send mail request 
functions~ strips quotes, and performs iterati~n before the 
line is passed on to the command processor. 

The execute request function can be used to invoke a Multics 
active function from within send mail. The request line: 

save [execute date] 

saves the message in a savebox whose name is the current date. 

fill {-control arg}, fi {-control arg} 
reformats the message text according to "fill-on" and 
"align-left!' modes in compose. If the -line length N (-11 N) 
control argument is specified, N is used as the line length. 

3 -6 L~ 3 AG92·~,,03 



send mail (sdm) send mail (sdm) 
--_._._------_.-

Otherwise, the value specified to the -line length control 
argument on the send mail command line is used, or 72 if 
-line_length was not specified. 

from {ADDRESSES} 
adds addresses to the list of authors of the message if any 
addresses are specified. The addresses are added to the From 
field of the header. 

If no addresses are specified, the authors of the message are 
listed. 

help {STR} 
prints information about the send mail command. If specified, 
STR is the name of a send mail request or one of the topics 
"requests", "control args", -and "changes". If STR is "*", the 
available .send mail topics are listed. If STR is not 
specified, intr~ductory information on the use of send mail is 
printed followed by a list of topics. 

in reply to {STRs}, irt {STRs} 

log 

repla~es the In-Reply-To field of the message (if any) with 
the concatenation of the STRs with intervening spaces. If no 
STRs are specified, it prints the contents of the In-Reply-To 
field. 

saves a copy of the 
(Person id.sv.mbx). This 
does not already exist. 

message in the user's 
request creates the logbox 

logbox 
if i. t 

message id, mid 
prints the Message-ID field of this message, creating the 
field if necessary. 

preface path 
operates the same as append, but inserts the message at the 
beginning of the ASCII file. 

print {-control arg}, pr {-control arg} 
prints the ~essage. If -brie?header (-bfhe) or no control 
argument is specified, a short summary of the message and the 
text are -printed. If the -header (-he) control argument is 
specified, both the header and the text are printed. If the 
-no header (-nhe) control argument is specified, only the text 
is printed. 

print header {-control arg}, prhe {-control arg} 
prTnts the header- of the message. If -long (-lg) or no 
control argument is specified, the entire header is printed as 

3-644 AG92-03 



send mail (sdm) send mail (sdm) 

it will appear in the message when the message is sent. If 
the -brief (-bf) control argument is . specified, a summary of 
the message is printed. The format of the summary is: 

(N lines in text): 
Subject: STR 
To: ADDRESSES 
cc: ADDRESSES 

qedx {-control arg}, qx {-control arg} 
invokes the-qedx editor to modIfy the message. If the -header 
(-he) control argument is specified, both the header and the 
text are edited. If -no header (-nhe) or no control argument 
is specified, only the text is edited. 

The qedx w (write) request is not necessary to reflect changes 
in the message to send mail. The editor request line 1,$dr 
can be used to restore {he original text. 

If the message header is changed during editing, send mail 
parses it when qedx returns and updates the lists of prImary 
and secondary recipients, authors, reply addresses, etc. 
Requests to send mail (subject, reply to, etc.) are 
recommended over qedi requests for changing Eeader fields. 

quit {-control arg}, q {-control arg} 
exits the -send mail command: If the message has 
sent, or if it has been modified by qedx since it 
sent, and if the -force (-fc) control argument 
specified, the user is queried before exiting. 

remove {ADDRESSES} {-control args} 
rm {ADDRESSES} {-control argi} 

not been 
was last 
is not 

must have at least one ADDRESS or one control argument 
specified. 

This request deletes from the list of primary and/or secondary 
recipients any ADDRESSES appearing before the first -cc, 
-from, -reply_to, or -to control argument. 

ADDRESSES appearing after -cc, -from, -reply_to, or -to are 
deleted from the corresponding field. If any of these control 
arguments is followed by -all or -a, the corresponding field 
is deleted in its entirety. 

If the -in reply to (-irt), -message id (-mid), or -subject 
(-sj) control argument is specified, delete the corresponding 
field in its entirety_ The presence of this class of control 
argument does not affect the interaction of ADDRESSES and the 
other control arguments. 

3-645 AG92-03 



--------------

send mail (sdm) send mail (sdm) 

For example, the request line: 

rm Jones.Mktg -sj -from Smith. Pubs Brown.Pubs -to Doe.Mktg 

removes Jones.Mktg from both the primary and secondary 
recipient lists, deletes the Subject field from the message, 
removes Smith.Pubs and Brown.Pubs from the list of authors of 
the message and removes Doe.Mktg from the primary recipient 
list only. 

reply to {ADDRESSES}, rpt {ADDRESSES} 
adds address, if specified, to the list of addresses to ~se 
when sending a reply to this message. These addresses are 
also appended to the Reply-To field of the header, which is 
created if necessary. 

If no addresses are specified, the addresses to receive 
replies are listed. 

save path, sv path 
saves a copy of the message in the indicated savebox. The 
suffix sv.mbx is added to path if not already present. If the 
savebox does not exist, the user is asked whether to create 
it. 

send {ADDRESSES} {-control args} 
transmits the message t~ the primary and secondary recipients 
if no arguments are specified. 

If any ADDRESSES are specified, the message is transmitted to 
these ADDRESSES without adding them to the message header. 

The control arguments -log and -save path (-sv path) cause a 
copy of the message to be placed in the logbox and specified 
savebox, respectiVely. Other -control args compatible with 
the send request are -abort, -acknowledge (-ack), -brief 
(-bf), -header (-he), -long (-lg), -message id (-mid), 
-no abort, -no acknowledge (-nack), -no header (-nhe), 
-no=message_id C=nmid), -,no_notify (-nnt), ana -notify (-nt). 

subject {STRs}, sj {STRs} 
replaces the Subject field of the message (if any) with the 
concatenation of the STRs with intervening spaces. If no STRs 
are specified, the contents of the Subject field are printed 
instead. 

As a request function, subject returns the contents of the 
Subject field as a single, quoted string. 

3-646 AG92-03 



send mail (sdm) send mail (sdm) 

to {ADDRESSES} 
adds ADDRESSES, if specified, to the list of primary 
recipients of the me~sage. Mail is sent to these addresses 
when a subsequent send request is issued with no arguments. 
The addresses are added to the To field of the header, which 
is created if necessary. 

If no ADDRESSES are specified, the primary recipients of the 
message are listed. 

write path {-control args} 
appends the message complete with header to an ASCII file. 
The suffix mail is added to path if it is not present. The 
segment is created if necessary. The extend and truncate 
(-tc) control arguments accepted by the file output command 
can be used here. The default is -extend. -

3-641 AG92-03 



send message (sm) send_message (sm) 

SYNTAX AS A COMMAND: 

sm Person_id.Project_id {message} 
or: 

sm -pathname path {message} 

FUNCTION: sends messages (one or more, always sent one line at a 
time) to a given user on a given project. 

ARGUMENTS: 

Person id 
is the registered name of the recipient. 

Pr·oject id 
is the name of the recipient's project. 

message 
is an optional string that can be up . to 132 characters long. 
If message is missing from the command line, send message 
types "Input." and accepts lines that it sends, one lIne at a 
time, with each newline character. In this case, input is 
terminated by a line consisting solely of a period. 

CONTROL ARGUMENT: 

-pathname path, -pn path 
causes messages to be sent to a mailbox specified by pathname. 
The mbx suffix is assumed. 

NOTES: For a description of the mailbox, refer to 
accept_messages and print_mail in this manual. 

If the recipient is accepting messages (see accept_messages 
and defer messages in this manual), send message immediately 
prints ea~h message on the recipient's ter~inal. 

Parentheses, quotes, brackets, and semicolons in the command 
line have their usual command language interpretation. 

The user can receive messages while in send message input 
mode, and can therefore carryon a conversation-with a single 
invocation of the command. 

3-648 AG92-03 



send message (sm) send message (sm) 

EXAMPLES: 

If WJones on the Alpha project sends the following to RTSmith 
on the Beta project by using the command line: 

sm RTSmith.Beta need access to your lsg command 

the message prints on RTSmith's terminal (if RTSmith is 
accepting messages) as follows: 

From WJones.Alpha 04/20116 1200.6 mst Tue: need access to 
your lsg command 

The command line: 

! sm Person id.Project id testing complete; installation this 
week 

send s: 

testing complete 

and prints an appropriate error message (e.g., "Segment 
installation not found.") because the characters typed after 
the semicolon are interpreted as another command line. 

The command line: 

sm Person_id.Project_id so long (for now) 

sends two lines: 

so long for 
so long now 

In both of the above examples, the sender's intended message 
would have been sent if it had been enclosed in quotes (e.g., 
"so long (for now)"). 

3-649 AG92-03 



-------------_._-_ ... _-----

send_message_acknowledge (sma) send_message_acknowledge (sma) 

SYNTAX AS A COMMAND: 

sma Person_id.Project_id {message} 

sma -pathname path {message} 

FUNCTION: operates like send message and requests that the 
recipient's process return an-acknowledgement when the message 
is read. 

ARGUMENTS: 

Person id 
is the registered name of the recipient. 

Project id 
is the name of the recipient's project. 

message 
is an optional string that can be up to 132 characters long. 
If message is missing from the command line, 
send message acknowledge types "Input." and accepts lin(~s 
that- it se~ds, one line at a time, with each newline 
character. In this case, input is terminated by a line 
consisting solely of a period. 

CONTROL ARGUMENTS: 

-pathname path, -pn path 
cause~ messages to be sent to a mailbox specified by pathname. 
The mbx suffix is assumed. 

3-650 AG92·-03 



send message_acknowledge (sma) send message_acknowledge (sma) 

NOTES: 

The acknowledgement says: 

From <Person_id.Project_id> <time> Acknowledged. 

if the message is read right away (recipient is accepting 
messages), or: 

From <Person id.Project id> <time> 
Acknowledge message of <sent time> 

if the message is read later. 

If the recipient has insufficie~t access to send an 
acknowledgement, none is sent. No er~or message is printed. 

Notes and examples documented for: send message apply to. 
send_message_acknowledge. 

3-651 AG92-03 



--------------_._-

SYNTAX AS A COMMAND: 

smx Person_id.Project_id {message} 
or: 

smx -pathname path {message} 

FUNCTION: operates like send message but adds the message to the 
recipient's mailbox only- if the recipient will see it 
immediately (i.e., is currently accepting messages). 

ARGUMENTS: 

Person id 
is the registered name of the recipient. 

Project id 
is the name of the recipient's project. 

message 
is an optional string that can be up to 132 characters long. 
If message is missing from the command line, 
send message express types "Input." and accepts lines that it 
sends, one Tine at a time, with each newline character. In 
this case, input is terminated by a line consisting solely of 
a period. 

CONTROL ARGUMENTS: 

-pathname path, -pn path 
causes messages to be sent to a mailbox specified by pathname. 
The mbx suffix is assumed. 

NOTES: Notes and examples documented for send_message apply to 
send_message_express. 

3-652 AG92-03 



send message_silent (sms) 

SYNTAX AS A COMMAND: 

sms Person_id.Project_id {message} 
or: 

sms -pathname path {message} 

I 

FUNCTION: operates like send_message b~t does not print an error 
message if the message cannot be se~t or will not be received 
immediately. ' 

ARGUMENTS: 

Person id 
is the registered name of the recipi~nt. 

'

I 

Projeet id 
is the name of the recipient's proje~t. 

. i 

I 

message i 

is an optional string that can be u~ to 132 characters long. 
If message is missing fro~ the command line, 
send message silent types "Input." and accepts lines that it 
sendi,one Tine at a time, with eabh newline character. In 
this case, input is terminated by al line consisting solely of 

i a period. 

CONTROL ARGUMENTS: 

-pathname path, -pn path I 

~auses mess~ges to be sent to a mail~ox specified by pathname. 
The mbx suffix is assumed. i 

! 

NOTES: Notes and examples documented for send_message apply to 
send_message_silent. i 

3-653 AG92-03 



set acl (sa) set acl (sa) 

SYNTAX AS A COMMAND: 

sa path mode1 {User id1 

FUNCTION: mBnipulates the access control lists (ACLs) of 
segments, multisegment files, and directories. See "Access 
Control" in the MPM Reference Guide for a discussion of ACLs. 

ARGUMENTS: 

path 
is the pathname of a segment, multisegment file, or directory. 
If it is -wd or -working dir, the working directory is 
assumed. The star conventi~n can be used and applies to 
either segments and multisegment files or directories, 
depending on the type of mode specified in mode1. 

modei 
ii a valid access mode. For segments or multisegment files, 
any or all of the letters rew; for directories, any or all of 
the letters sma with the requirement that if modify is 
present, status must also be present. Use null, "n" or "" to 
specify null access. 

User idi 
is an access control name that must be of the form 
Person id.Project id.tag. All ACL entries with matching names 
receiv~ the mode-modei. (For a description of the matching 
strategy, see "Notes" below.) If no match is found and all 
three components are present, an entry is added to the AeL. 
If the last modei has no User id following it, the Person id 
of the user and current Project_id are assumed. 

CONTROL ARGUMENTS: 

-chase 
causes links to be chased when using the star convention. 
(Links are always chased when path is not a starname.) 

-no chase 
causes links to not be chased when using the star convention. 
This is the default. 

-brief, -bf 
suppresses error messages of the form "No match for User id on 
ACL of <path>", where User id does not specify all components. 

3-654 AG92-,03 



set acl (sa) set acl (sa) 

Either of the following control argJments can be specified to 
resolve an ambiguous choice between I segments and directories 
that occur only when mode! is null ~nd the star convention is 
used in path-- ' 

I 

i 

-directory, -dr J 
specifies that only directories are ,ffected. 

-segment, -sm I 

specifies that only segments and I multisegment files are 
affected. This is the default. 

i 
I 

ACCESS REQUIRED: The user needs m~difY permission on the 
containing directory. 

NOTES: The arguments are processe~ 
Therefore, the effect of a particula~ 
changed by a later pair of arguments~ 

The strategy for matching an access I 
i defined by three rules--
I 

1) A literal component, in~ludin~ 
component of the same name. 

from left to _ right. 
pair of arguments can be 

control name argument is 

"*,, matches only a 

2) A missing component not delimite~ by a period is treated 
the same as a literal "*" (e.g., ~"*.Multics" is treated as 
"*.Multics.*"). Missing compon¢nts on the left must be 
delimited by periods. ! 

3) A missing 
component. 

component delimited !by a 
I. 

3-655 

period matches any 

AG92-03 



set acl (sa) set acl (sa) 

EXAMPLES: 

* * * matches only the literal ACL entry "*.*.*". 

Multics matches only the ACL entry "Multics.*.*" .. (The absence 
of a leading period makes Multics the first component.) 

JRSmith .. matches any ACL entry with a first eomponent of 
JRSmith. 

matches any ACL entry. 

matches any ACL entry with a last component of *. 

"" (null string) matches any ACL entry ending in " * *" 

EXAMPLES: 

The command line: 

set_acl *.pI1 rew * 

adds to the ACL of every segment in the working directory that 
has a two-component name with a second component of pl1 an 
entry with mode rew to *.*.* (everyone) if that entry does not 
exist; otherwise it changes the mode of the * * * entry to 
rew. 

The command line: 

sa -wd sm Jones.Faculty 

adds to the ACL of the working directory an entry with mode sm 
for Jones.Faculty.* if that entry does not exist; otherwise it 
changes the mode of the Jones.Faculty.* entry to sm. 

The command line: 

sa alpha.basic rew .Faculty. r Jones.Faculty. 

changes the mode of every entry on the ACL of alpha.basic with 
a middle component of Faculty to rew, then changes the mode of 
every entry that starts with Jones.Faculty to r. 

3-656 AG92-03 



set bit count (sbc) set bit count (sbc) 

SYNTAX AS A COMMAND: 

sbc pathl countl { ... pathQ count~} 

FUNCTION: sets a specified bit count on a specified segment or 
multisegment file, and changes the bit count author for that 
entry to be the user who invoked the command. 

ARGUMENTS: 

pathl:. 
is the pathname of a segment or multisegment file. If path! 
is a link, the bit count of the entry linked to is set. 

counti 
is-the bit count, in decimal, desired for path!. 

ACCESS REQUIRED: The user must have write access on the entry 
whose bit count is to be set. 

NOTES: Setting the bit count on a directory 
several system modules then regard the 
multisegment file. 

is permitted, but 
directory as a 

See "Directory Contents" in the MPM Reference Guide for a 
description of the bit count of an entry. 

3-657 AG92-03 



set cc set cc 

SYNTAX AS A COMMAND: 

set cc fileNN {-control arg} 

FUNCTION: sets the carriage control transformation for a 
specified FORTRAN formatted file either on or off. 

ARGUMENTS: 

fileNN 
is the 
file99. 
printed. 

name of a FORTRAN file in the range of file01 to 
If fileNN is out of range, an error message is 

CONTROL ARGUMENTS: 

-off 

-on 

turns the carriage control transformation 
specified FORTRAN file. 

off for the 

turns the carriage control transformation on for the specified 
FORTRAN file. 

NOTES: When the transformation is on, the first character of 
each line written to the file is changed to a control 
character in accordance with the following table: 

Character Resulting Control Character 

a 
1 
blank 
+ 

Newline 012 (double space) 
Newpage 014 (page eject) 
None (single space) 
The previous line and the current line 
a~e written as a single line split by a 
carriage return character. This causes 
the second line to overprint the first. 
If the file is attached to a terminal, 
the + is ignored. The result is a 
single space between lines. 

3-658 AG92-03 



set cc 

When the transformation is off, the first 
changed. The default is off for all files 
and file42, for which the default is on. 

set cc 

character is not 
except for file06 

EXAMPLES: To turn off the carriage control transformation for 
the FORTRAN file named file06, type the command line: 

set cc file06 -off 

3-659 AG92-03 



set fortran common (sfc) set fortran common (sfc) 

SYNTAX AS A COMMAND: 

sfc paths {-control_arg} 

FUNCTION: initializes common storage for a FORTRAN run. Due to 
the use of dynamic linking 1n the Multics system, if the first 
program to reference a common block is not compiled or bound 
with the block data subprogram that initializes the common 
block, the common block may not be successfully initialized. 
The set fortran common command allows the user to specify the 
segments contaIning the block data subprograms prior to the 
run. 

ARGUMENTS: 

paths 
is a list of pathnames of segments containing block data 
subprograms that initialize common. 

CONTROL ARGUMENTS: 

-long, -IS 
specifies that a message is to be printed if a referenced 
common block has already been allocated. 

NOTES: This command is most convenient in the run exec com used 
to initialize the environment for a FORTRAN run. 

Any common blocks referenced in the specified segments are 
allocated (if necessary) and initialized. If no 
initialization information 1s associated with the referenced 
common block, it is initialized to binary zeroes. If a common 
block was previously allocated, it is effectively deleted and 
reinitialized. 

3-660 AG92-03 



set iacl dir (sid) set iacl dir (sid) 

SYNTAX AS A COMMAND: 

sid path mode1 {User id1 moden User idn} {-control arg} 

FUNCTION: manipulates the directory initial access control lists 
(directory initial ACLs) of directories. 

ARGUMENTS: 

path 
specifies the directory whose directory initial ACL is to be 
chang~d. If it is -wd or -working directory, the directory 
initial ACL for the working directory is changed. The star 
convention can be used. 

modei 
is the mode associated with User idi. It can consist of any 
or all of the letters sma (status~ m~dify, append) except that 
if "m" is given, "s" must also be given. The strings "null", 
"n", and "" specifically deny access to User idi. 

User idi 
is an access control name of the form 
Person id.Project id.tag. If one or more of the components is 
missini, all entrIes that match User idi are changed to modei. 
(For a description of the matching ~tr~tegy, refer to set a~l 
in this manual.) If all three components are present,-the 
directory initial ACL entry with that name is changed to 
modei, or one is added if none exists. If the last modei has 
no User idi following it, the user's name and project are 
assumed. 

CONTROL ARGUMENTS: 

-ring N, -rg N 
. identifies the ring number whose directory initial ACL should 

be set. It can appear anywhere on the line, except between a 
mode and its associated User_id, and affects the whole line. 
If present, it must be followed by N (where user's ring < ~ < 
1)~ .If this control. argument is omitted, the user'sri~g ii 
assumed. 

NOTES: A directory initial ACL contains the ACL entries to be 
placed on directories created in the specified directory.. For 
a discussion of initial ACLs, see "Access Control" in the MPM 
Reference Guide. 

3-661 AG92-03 



set iac1 dir (sid) set iac1 dir (sid) 

EXAMPLES: 

The command line: 

sid listings sm * -ring 5 

adds to the ring 5 directory initial ACL of the listings 
directory an entry with the mode sm for *.*.* (everyone) if 
that entry does not exist; otherwise it changes the mode of 
the *.*.* entry to sm. 

The command line: 

sid -wd sa Jones .. 

changes the mode of all entries with Person id Jones in the 
directory initial ACL of the working directory to sa. If no 
such entries exist, an error message is printed. 

3-662 AG92-03 



set_iacl seg (sis) 

SYNTAX AS A COMMAND: 

sis path mode1 {User id1 moden User idn} {-control arg} 

FUNCTION: manipulates the segment initial access control lists 
(segment initial ACLs) of directories. 

ARGUMENTS: 

path 
specifies a directory whose segment initial ACL is to be 
changed. If it is -wd or -working dir, the segment initial 
ACL for the working directory is cha~ged. The star convention 
can be used. 

modei 
is the mode associated with User idi. It can consist of any 
or all of the letters rew (read, execute, write). The strings 
"null", "n", and "" specifically deny access to User idi. 

User idi 
is an access control name of the form 
Person id.Project id.tag. If one or more of the components is 
missing, all ACL-entries that match User idi are changed to 
modei. (For a description of the matchini s~rategy, refer to 
set_acl in this manual.) If all three components are present, 
the ACL entry with that name is changed to modei, or one is 
added if none exists. -

CONTROL ARGUMENTS: 

-ring N, -rg N 
idehtifies the ring number whose segment initial ACL should be 
set. It can appear anywhere on the line except between a mode 
and its associated User id, and affects the whole line. If 
present it must be followed by N (where user's ring < N < 7). 
If this control argument is omitted, the user's- ri~g is 
assumed. 

NOTES:· A segment initial ACL contains the ACL entries to be 
placed on segments created in the specified directory. For a 
discussion of initial ACLs see "Access Control" in the MPM 
Reference Guide. 

3-663 AG92-03 



----------_. ~.--

EXAMPLES: 

The command line: 

set iacl seg test rew * 

adds to the segment initial ACL in the test directory an entry 
with mode rew for *.*.* (everyone) if that entry does not 
exist; otherwise it changes the mode of the * * * entry to 
rew. 

The command line: 

sis -wd re Jones .. -rg 5 

changes the mode of all entries with Person id Jones in the 
ring 5 segment initial ACL of the working directory to reo If 
no such entries exist, an error message is printed. 

3-664 AG92-03 



SYNTAX AS A COMMAND: 

ssp search_list {search_paths} {-control_arg} 

FUNCTION: allows a user to replace the search paths contained in 
a specified search list. 

ARGUMENTS: 

search list 
is the name of a search list. If this search list does not 
exist, it is created. A warning message is printed if a 
search list is created and it is not system defined. 

search pathi 
is -a seirch path to be added to the specified search list. 
The search paths are added in the order in which they are 
specified in the command line. The search path can be an 
absolute or relative pathname or a keyword. (For a list of 
acceptable keywords see add search paths in this manual.) If 
no search paths are specifiid, thin the specified search list 
is set as if it were being initialized for the first time in 
the user's process. 

CONTROL ARGUMENTS: 

-brief, -bf 
suppresses a warning message for the creation of a search list 
not defined by the" system. 

NOTES: The specified search list 
search paths. It is an error 
list. 

is replaced by the specified 
to create a new empty search 

For a complete list of the search facility commands, see the 
add._search_paths command description in thi s manual. 

3-665 AG92-03 



set search rules (ssr) set search rules (ssr) - -
----------

SYNTAX AS A COMMAND: 

set search rules {path} 

FUNCTION: sets the dynamic linking search rules of the user to 
suit individual needs with only minor restrictions. 

ARGUMENTS: 

path 
is the pathname of a segment containing the ASCII 
representation of search rules. Search rules are absolute 
pathnames and any of the keywords listed below in "List of 
Keywords", one search rule per line. If path is not 
specified, the search rules are reset to the default search 
rules. 

LIST OF KEYWORDS: 

initiated segments 
checks-the already initiated segments. 

referencing dir 
searches- the containing directory of the segment making the 
reference. 

working dir 
searches the working directory. 

home dir 
searches the hom~ directory. 

process dir 
searches the process directory. 

site-defined keywords 
expand into one or more directory pathnames. See the 
get system search rules command for an explanation of the 
values of -these keywords. The "default" keyword can be used 
to obtain the site-defined default rules. 

3-666 



--------

set search rules (ssr) set search rules (ssr) 

NOTES: A maximum of 21 rules is allowed. Leading and trailing 
blanks are allowed, but embedded blanks are not allowed. 

If the user decides not to include the system libraries in the 
search rules, many standard commands cannot be found. 

See also the descriptions 
get system search rules, ' 
delete search rules commands. 

3-661 

of the print search rules, 
add search_rules, - and 

AG92-03 



severity severity· 

SYNTAX AS A COMMAND: 

severity command name 

SYNTAX AS AN ACTIVE FUNCTION: 

[severity command name] 

FUNCTION:. returns a number representing the seve~ity of the most 
recent translation/invocation of the specified command. The 
meaning of the returned value is explained under "Severity" in 
the description of the specified command. 

ARGUMENTS: 

command name 
is eIther p11, map355, or fortran (see "Notes" below). 

NOTES: The fortran command only supports the severity active 
function if the site is using the new FORTRAN compiler as its 
"standard" FORTRAN compiler. 

3-668 AG92-03 



slave slave 

SYNTAX AS A COMMAND: 

slave 

FUNCTION: changes the service type of the channel from login to 
slave for the duration of the connec~ion. 

NOTES: The slave command enables a privileged process to request 
the answering service to assign the channel to it, and then 
attach it. Refer to the description of the dial manager 
subroutine in the MPM Subsystem Writers' Guide- for an 
explanation of the mechanism for requesting channels from the 
answering service. 

4-669 AG92-03 



sort sort 

SYNTAX AS A COMMAND: 

sort 

FUNCTION: provides a generalized file sorting capability, which 
is specialized for execution by user-supplied parameters. 

NOTES: The basic function of the sort is to read one or more 
input files of unordered records, sort these records according 
to the values of one or more key fields, and write a single 
file of ordered (or "ranked") records. 

For a detailed description of the sort command, refer to the 
Multics Sort/Mer~ Reference Manual, Order No. AW32. 

3-670 AG92-03 



SYNTAX AS A COMMAND: 

ss path {-control_~rgs} 

FUNCTION: orders the contents of a segment according to the 
ASCII collating sequence. 

ARGUMENTS: 

path 
specifies the pathname of 
convention is NOT allowed. 

an input segment. The star 

CONTROL ARGUMENTS: 

-all, .. -a 
makes the primary (and only) sort field the entire sort unit; 
i.e., the entire sort unit is considered when sorting. This 
is the default mode of operation. 

-ascending, -asc 
makes the sort in 
collating sequence. 

ascending order, according to the ASCII 
This is the default mode of operation. 

-block N, -bk N 
makes the sort unit a block of N 
positiv~ integer. The default 
below). 

-delimiter STR, -dm STR 

strings where N must be a 
for N is 1 (see "Examples" 

uses STR concatenated with a newline character as the string 
delimiter. The character STR can be any sequence of ASCII 
characters. The default is a single newline character (see 
"Examples" below). 

-descending, -dsc 
makes the sort in descending order, according to the ASCII 
collating sequence. The use of this control argument is 
incompatible with the use of the -ascending control argument. 

-field field spec, -fl field spec 
specifies- the field (or-fields) when sorting within a sort 
unit. The field spec string consists of positive integers 
separated by spaces: 

S1 L1 S2 L2 ... Sn Ln 
notice that the arguments must be specified in pairs. The 
first argument of the pair (represented by "S") is the start 

3-671 AG92-03 



--------------

position of the field in the sort unit (e.g., 1 if the field 
begins at the first character). The second argument 
(represented by "L") is the length of the field, in 
characters. The first pair of field specifications defines 
the primary sort field; the second pair defines the secondary 
sort field; and so forth. The use of this control argument is 
incompatible with the -all or -ordered field control arguments 
(see "Notes" below). 

-ordered field field spec, -ofl field spec 
specilies a sor~ with independent ordering of the fields, 
i.e., mixed ascending and descending fields. The field spec 
arguments must be specified in threes: 

S1 Ll 01 S2 L2 02 ... Sn Ln On 

The first and second arguments are identical to those given 
with the -field control argument (i.e., positive integers 
specifying the start position and length of the sort field). 
The third argument (represented by "a") is either the string 
"asc" to indicate an ascending- field or "dsc" to indicate a 
descending field. Use of this control argument is 
incompatible with the -ascending, -descending, or -field 
control arguments. 

-replace, -rp 
replaces the 
sorted units. 

original contents of the 
This is the default. 

-segment path, -sm path 

input segment with the 

places the sorted units 1n a segment whose pathname 1s path. 
The use of this control argument 1s incompatible with the use 
of the -replace control argument. 

-unique, -uq 
deletes duplicate sort units from the sorted results. The 
default is to retain any duplicated units (see "Notes" below). 

NOTES: Using the control arguments, the segment is broken down 
_ into separate sort units, which are strings or blocks of 
strings. A string can comprise one or more lines. These sort 
units are then sorted, and the ordered units either replace 
the original segment or are placed in a new segment. 

If the sort seg command is invoked without any control args, 
the -replaci, -ascending, -all, and -delimiter c~ntrol 
arguments are assumed, and the default delimiter of a newline 
character is used. That is, the sort_seg command, when 

3-612 AG92-03 



invoked with path as the only argument, sorts the lines of 
that segment in ascending ASCII collating sequence, replacing 
the original segment with the sorted result. 

The start position of a sort field is calculated relative to 
the beginning of a sort unit. If the blocking factor is 
N = 1, the start position is calculated relative to the 
beginning of a string. If the blocking factor is N > 1, the 
start position is calculated relative to the beginning of the 
first string of a block. When calculating field 
specifications within a sort unit of N > 1 strings (blocking 
factor N > 1), string delimiters internal to the sort unit 
should not be considered (see "Examples" below). 

Sort fields/units of unequal length are compared by assuming 
the shorter field/unit to be padded on the right with blanks, 
immediately following the rightmost character. The string 
delimiter is never considered when padding (see "Examples" 
below) . 

If characters are detected in the input segment following the 
final delimited sort unit, they are ignored for the purposes 
of sorting, but ·appear in the sorted output immediately 
following the final delimited sort unit. An error message 
specifies the location of the first nondelimited character. 

A maximum .of 262,'143 units can be sorted. The sort is stable, 
i.e., duplicate units appear in the same order in the sorted 
segment as in the original segment. 

The input segment is sorted using temporary segments in the 
process directory. If the -segment control argument is 
specified, and path is ·the pathname of an already eXisting 
segment, its contents are destroyed upon beginning the sort. 
If the sorted results are to replace the original contents of 
the input file, that replacement do~s not occur until the l~st 
possible moment. 

The -unique control argument deletes duplicate sort units from 
the sorted results. The determination of whether or not a 
sort unit is to be deleted is independent of sort field 
specifications; i.e., given a number of nonidentical sort 
units that contain identical sort fields, all the units do 
appear in the sorted results. 

3-673 AG92-0~ 



sort seg (ss) 
----------

EXAMPLES: Suppose a segment contains the following lines (where 
n1 represents the ASCII newline character): 

ABCDEFGHXYn1 
ABCDEFXYn1 
ABGDEFGHIJXYnl 
ABCXYn1 

The display below shows how the sort seg command sorts the 
contents of this segment, according to the arguments specified 
in the first column (n1 stands for the ASCII newline character 
and ~ stands for the ASCII space character). 

these I define these sorted on l giving 
argumentsl sort units I these fields l'these results 

I I I 

-----------~------------------~----------------~--.~----------~ 
-dm XY lABCDEFGH lABCDEFGH~~ IABCXYn1 

IABCDEF :ABCDEF~»»~ IABCDEFXYn1 
IABCDEFGHIJ IABCDEFGHIJ IABCDEFGHXYn1 
IABC :ABC~~~~~~~ IABCDEFGHIJXYnl 
I I I 

-----------~------------------I----------------~---------------bk 2 IABCDEFGHABCDEF IABCDEFGHABCDEF IABCDEFGHXYn1 
-dm XY lABCDEFGHIJABC :ABCDEFGHIJABC~ lABCDEFXYn1 

lABCDEFGHIJXYn1 
IABCXYn1 

I I I 

-----------~------------------~----------------~---.-----------
-f1 6 4 l ABCDEFGHXY I FGHX I ABCXYn1 

lABCDEFXY lFXYM lABCDEFGHIJXYn1 
IABCDEFGHIJXY IFGHI IABCDEFGHXYn1 
IABCXY I~~~~ IABCDEFXYn1 

-----------+----~-------------+----------------+--------------I 
I 

, 
I 

-f1 1 4 721ABCDEFGHXY 
IABCDEFXY 
IABCDEFGHIJXY 
IABCXY 

I first 
IABCD 
IABCD ' 
IABCD 
IABCX 

second 
GH 
XY 
GH 
~» 

IABCDEFGHXYn1 
IABCDEFGHIJX 
IABCDEFXYnl 
IABCXYn1 

--------~--+------------------+----------------+---------------dm Y lABCDEFGHXABCDEFX IFGHX DE IABCDEFGHIJXYnl 
-bk 2 IABCDEFGHIJXABCX IFGHI DE IABCXYnl 
-f1 6 '4 4 2 l I 

I I 
I , 

IABCDEFGHIJXABCX 
lABCDEFXYnl 

-----~----~+------------------+-------------~--+--------------
-ofl 6 4 

dsc 3 
3 asc 

: lfirst second : 
IABCDEFGHXY IFGHX CDE IABCDEFXYn1 
lABCDEFXY IFXY~ CDE lABCDEFGHXYnl 
IABCDEFGHIJXY lFGHI CDE lABCDEFGHIJXYnl 
l ABCXY l ~»~~ CXY l ABCXYnl 

3-674 AG92-03 



start (sr) start (sr) 

SYNTAX AS A COMMAND: 

start {-control arg} 

FUNCTION: is employed after the quit signal has been issued in 
order to resume execution of the user's process from the point 
of interruption. 

CONTROL ARGUMENTS: 

-no restore, -nr 
Indicates that the standard I/O attachments should not be 
restored. See "Notes" below. 

NOTES: The start command can also be used to resume execution 
after an unclaimed signal, provided that the condition that 
caused the unclaimed signal either is innocuous or has been 
corrected. It restores the attachments of the user input, 
user output, and error output I/O switches, and the mode of 
user-i/o to their val~es at the ti~e of the interruption, 
unleis the -no restore control ar~ument is given. 

The start command can be issued at any time after a quit 
signal as long as a release command has not been given. 

If there is no suspended computation to restart, the command 
prints the message "start ignored." 

3-675 AG92-03 



status (st) status (st) 

SYNTAX AS A COMMAND: 

st paths {-control args} 

FUNCTION: prints selected detailed status information about 
specified storage system entries. 

ARGUMENTS: 

paths 
are the pathnames 
files, and links for 
default pathname is 
specified by -wd or 
can be used. 

of segments, directories, multi segment 
which status information is desired. The 
the working directory, which can also be 
-working_directory. The star convention 

CONTROL ARGUMENTS: 
The following control arguments can be used with any type of 
entry, and can appear anywhere on the line after the command 
name and are in effect for the whole line. 

-type, -tp 
prints the type of entry: 
file, or link. 

segment, directory, multisegment 

-author, -at 
prints the author of the entry. 

-date, -dt 
prints all the relevant dates on the entry_ 

-date time entry modified, -dtem 
prInts the date-time-entry-modified. 

-date time dumped, -dtd 
prInts ~he date-time-dumped by the hierarchy dumper. 

-date time used, -dtu 
prInts the date-time-used. 

-directory, -dr 
selects directories when using the star convention. 

-segment, -sm 
selects segments when using the star convention. 

3-676 AG92-03 



status (st) status (st) 

-link, -lk 
selects links when using the star convention. 

-date_time_volume_dumped, -dtvd 
prints the date-time-dumped by the volume dumper. 

-name, -nm 
prints all the names on the entry. 

-primary, -pri 
prints the primary name on the entry. 

LIST OF TYPE SPECIFIC CONTROL ARGUMENTS: 
The following control args can only be used for segments, 
multisegment files, and-directories. 

-all, ~a 
prints all relevant information about the object i.e., the 
type of entry, names, unique identifier, date used, date 
modified, date branch modified, date dumped by hierarchy and 
volume dumpers, author, bit count author (if different from 
author), device, bit count, records used, current blocks (for 
seg~ents, if "different f~om records used), maximum length in 
w6rds (if type is segment), safety switch (if it is on), 
damaged switch (if it is on), user's mode, ring brackets, 
access class (if it is not null), copy switch (if it is on), 
and the volume dumper control switches (if on). 

-date, -dt 
prints all the dates on the entry: i.e., date used, date 
cont~nts modified, date branch modified, date dumped. 

-access, -ac 
prints the user's effective mode, ring brackets, access class 
(if different from the default), and safety switch (if it is 

"on). 

-length, -In 
for segments: prints the bit count, the number of records 
used, the current blocks (if different from records used), and 
the maximum length in words; 

for multisegment files: prints the 
the whole file, th~"sum of the bit 
and the number of components; 

number of records used by 
counts of all components, 

for directories: 
bit count. 

prints the number of records used and the 

3-677 AG92-03 



status (st) status (st) 

-unique id, -uid 
prints the entry's unique identifier. 

-date time contents modified, -dtcm 
prInts the date-time-contents-modified. 

-bc author, -bca 
prints the bit count author of the entry. 

-copy switch, -csw 
prInts whether the copy switch is on or off. 

-safety switch, -ssw 
prints whether the safety switch is on or off. 

-damaged switch, -dsw 
printi whet~er the damaged switch is on or off. 

-mode, -md 
prints the user's effective mode. 

-access class 
prints the access class. 

-ring brackets, -rb 
prInts the ring brackets. 

-bit count, -bc 
prints the bit count. 

-max length, -ml 
prints the maximum length of a segment. 

-current lerigth, -cl 
prints the current length in pages. 

-records used, -ru 
printi the records used. 

-device, -dv 
prints the logical volume on which the entry resides. 

-logical_volume, -Iv 
prints the logical volume on which the entry resides. This 
control argument is the same as the -device control argument. 

3-678 AG92-03 



status (st) status (st) 

LIST OF CONTROL ARGUMENTS FOR SEGMENTS: 

-comp_volume_dump_switch, -cvds 
prints whether the complete volume dump switch is on or off. 

-incr volume dump switch, -ivds 
prInts whether the incremental volume dump switch is on or 
off. 

-use count, -use 
prihts the number of page faults taken on the segment since 
creation. 

LIST OF CONTROL ARGUMENTS FOR LINKS: 

-all, -a 
prints all relevant information about the link, i.e., the 
pathname of :the entry being linked to, names, unique 
identifier, date link modified, date dumped, and the author of 
the link. 

-chase 
prints status information for the targets of links rather than 
for the links themselves. If a link has no target, link 
information is printed. 

-link_path, -lp 
prints the target pathname. 

NOTES: If no control argument is specified, the following 
information is printed for segments, multisegment files, and 
directories: names, type, date used, date modified, date 
branch modified, bit count, records used, user's mode, access 
class. 

If no control argument is specified, the following information 
is printed for links: the pathname of the entry linked to, 
names, date link modified, date dumped. The -mode, -device, 
and -length control arguments are ignored for links. 

Zero-valued dates (i.e., dates that have never been set) are 
not printed. In addition, attributes in the default state are 
not printed. 

3-679 AG92-03 



I 

I 

status (st) status (st) 

attribute default 

same as author bit count author 
current blocks 
access class 
safety switch 
copy switch 
damaged switch 

same as records used 
null 

complete volume dump switch 
incremental volume dump switch 

off 
off 
off 
on 
on 

Directories that have been used to implement multi segment 
files are labeled as such. 

For a description of the attributes listed, see "Entry 
Attributes" in the MPM Reference Guide. 

EXAMPLES: In the first example, the user requests all the status 
information on the segment named 
)user_dir_dir)Demo)Jones)working_file. 

st )user_dir_dir)Demo)Jones)working_file -all 

names: 

type: 
un :lqu'e id: 
date used: 

test segment 
workIng_file 

date modified: 
branch modified: 
date branch dumped: 
date volume dumped: 
author: 
bit count author: 
volume: 
bit count: 
records used: 
max length: 
mode: 
access class: 
ring brackets: 
safety sw: 
ivds switch: 
use count: 

segment 
764576046673 
01/27/77 1459.0 est Thu 
01/27/77 1459.0 est Thu 
11/19/76 1542.6 est Fri 
01/29/77 0305.4 est Sat 
01/31/77 0305.4 est Mon 
Hamilton.Demo.a 
Jones.Demo.m 
public 
292968 
8 
261120 
rw 
confidential 
4, 4, 4 
on 
off 
869221 

3-680 AG92-03 



status (st) status (st) 

(The current blocks, copy switch, damaged switch, and 
not printed incremental volume dump switch attributes are 

because they have th~ default state values.) 

In the next example, the user asks for specific status 
information on entrynames with the first component of newtest 
in the current working directory. 

status -type -mode -date newtest.* 

>user dir dir>Demo>Smith>newtest.pl1 

type: segment 
date used: 01/26/77 2145.0 est Wed 
date modified: 01/13/77 1630.0 est Thu 
branch modified: 01/13/77 1626.7 est Thu 
date branch dumped: 01/14/77 0305.4 est Fri 
date volume dumped: 01/16/77 0305.4 est Sun 
mode: rew 
ring brackets: 4, 4, 4 

>user dir dir>Demo>Smith>newtest.list 

names: 
type: 
links to: 

date link modified: 

newtest.list 
link 
user dir dir>Demo>Smith>sub dir> 

newtest.list -
01/26/74 2139.3 est Sat 

In the following example, the user asks for status information 
about the directory named >user_dir_dir>Demo>Black>test. 

status >user dir dir>Demo>Black>test 

names: 
type: 
date used: 
date modified: 
branch modified: 
bit count: 
records used: 
mode: 
access class: 

3-681 

test 
directory 
12/05/77 
12/05/77 
11/29/77 
o 
1 

606.6 est Mon 
606.6 est Mon 
957.2 est Tue 

sma 
Sensitive,Research 

AG92-03 



SYNTAX AS A COMMAND: 

scr {-control arg} 

FUNCTION: causes the termination of the current COBOL run unit. 

CONTROL ARGUMENTS: 

-retain data, -retd 
leavis the data segments associated with the programs of t~e 

run unit intact for debugging purposes. See "Notes" below. 

NOTES: The results of the stop_cobol_run command and the 
execution of the STOP RUN statement from within a COBOL 
program are identical. Stopping the run unit consists of 
cleaning up all files that have been opened during the 
execution of the current run unit, and ensuring that the next 
time a program that was a component of this run unit is 
invoked, its data is in its initial state. 

To maintain the value of all data referenced in the run 
unit in its last used state, the -retain data control argument 
should be used. 

Refer to the run cobol command for information concerning the 
run unit and the-COBOL runtime environment. 

See also the description of display cobol run unit (dcr) and 
cancel cobol_program (ccp) in this manual. - -

3-682 AG92-03 



SYNTAX AS A COMMAND: 

FUNCTION: is used in conjunction with the run command to effect 
an abnormal termination of the run-unit created by the run 
command. 

NOTES: Issuing the stop_run command when a run-unit is not 
active on the stack causes the command abort condition to be 
raised. If no special handler for thIs condition has been 
established, the command has no effect. If a run-unit is 
active on the stack, issuing the stop run command signals the 
finish condition, executes the epilogue handlers, and forces a 
return from the run command to its caller. 

For a description of run units see the writeup of run in this 
manual, and the description available in the New 'Programmer's 
Introduction, Order No. AL40. 

3-683 AG92-03 



string string 

SYNTAX AS A COMMAND: 

string {strs} 

SYNTAX AS AN ACTIVE FUNCTION: 

[string {strs}] 

FUNCTION: returns a single character string formed by 
concatenating all of the strings together, separated by single 
spaces. If no strings are specified, a null character string 
is returned. If one or more strings are specified, any quotes 
in these are returned as single quotes. 

EXAMPLES: 
command. 

The following interactions illustrate the string 

str ing He said, "Hi." 
He said, Hi. 
string He said, """Hi.""" 
He said, "Hi."· 

The following interaction illustrates the active function. 

s,tring [string This is "food".] 
This is food. 

3-684 AG92-03 



, strip strip 

SYNTAX AS A COMMAND: 

strip path {str} 

SYNTAX AS AN ACTIVE FUNCTION: 

[strip path {str}] 

FUNCTION: returns the absolute pathname of the specified entry 
with the last component removed, if the entryname portion has 
more. than one component. If str is specified, the last 
component is removed only if it matches str. 

EXAMPLES: The following interactions illustrate the strip active 
function. Assume the working directory is )udd)Demo)Jones. 

string [strip FW25.report.runoff runoff] 
)udd)Demo)Jones)FW25.report 
string [strip FW25.report.runoff] 
)udd)Demo)Jones)FW25.report 
string [strip FW25.report.runoff xyz] 
)udd)Demo)Jones)FW25.report.runoff 

3-685 AG92-03 



strip_entry (spe) 

SYNTAX AS A COMMAND: 

spe path {str} 

SYNTAX AS AN ACTIVE FUNCTION: 

[spe path {str}] 

____________ 0 

strip_entry (spe) 

FUNCTION: returns the entryname portion of the absolute pathname 
returned by the strip active function. If str is not 
specified, the last component of the entryname portion of path 
is removed (if the entryname has more than one component). If 
str is specified", the last component is removed only if it 
matches str. 

3-686 A.G92-03 



substr substr 

SYNTAX AS A COMMAND: 

substr str I {N} 

SYNTAX AS AN ACTIVE FUNCTION: 

[substr str I {N}J 

FUNCTION: returns the portion of str starting with the character 
in position I and continuing for N characters (where I and N 
are decimal integers; I must be greater than zero and N must 
be greater than or equal to zero). If N is omitted, the 
remainder of str is returned. If I is greater than the length 
of str, the null string is returned. If N is greater than the 
remainder of str, the remainder is returned. 

EXAMPLES: The following interaction illustrates the substr 
active function. 

string [substr programmers 4 4J 
gram 

string [substr trounce 3J 
ounce 

3-687 AG92-03 



suffix suffix 

SYNTAX AS A COMMAND: 

suffix path 

SYNTAX AS AN ACTIVE FUNCTION: 

[suffix path] 

FUNCTION: returns the last component of the entryname portion of 
the specified segment. If that entryname has only one 
component, the null string is returned. 

EXAMPLES: 

string [suffix a.pI1] 
pl1 

3-688 AG92-03 



system system 

SYNTAX AS A COMMAND: 

system key 

SYNTAX AS AN ACTIVE FUNCTION: 

[system key]· 

FUNCTION: returns various installation-dependent system 
par.ameter s. 

LIST OF KEYS: 

ARPANET host number 
ARPA network address of the installation or -1 if the 
installation is not attached to the ARPA network. 

company· 
company name. 

date up 
date that the system was brought up, in the form "mm/dd/yy". 

department 
computer center department name. 

down until date 
date that the system will next be brought up, if specified by 
the oper ator·, in the form "mml ddl yy" . 

down unt.il time 
tIme that the system will next be brought up, if specified by 
the operator, in the form "hhmm.t". 

ds_company 
company name, with the characters of the name double spaced. 

dS_department 
computer center department name, with the characters of the 
name double spaced. 

installation id· 
installatIon identification. 

3-689 AG92-03 



system system 

last down date 
dite t~at service was last interrupted, whether by shutdown or 
by crash. 

last down reason 
reason for the last system service interruption, if known. 
The reason can be: 

shutdown normal system shutdown 
crash system crash (no number assigned) 
n number of system crash 

last down time 
tIme tEat service was last interrupted. 

max units 
current maximum number of load units, in the form "nnn.n". 

max users 
current maximum number of users. 

n units 
current number of logged-in load units including daemon and 
absentee, in the form "nnn.n". 

n users 
current number of logged-in 
absentee. 

next down date 

users including daemon and 

diie t~at system will next be shut down, if specified by the 
operator. 

n'ex t down time 
tIme that system will next be shut down, if specified by the 
operator. 

next shift 
next shift number. 

reason down 
reason for next shutdown, if specified by the operator. 

shift 
current shift number. 

shift change date 
date on which current shift number will change to next shift. 

shift change time 
time at w~ich current shift number will change to next shift. 

3-690 AG92-,03 



system system 

sysid 
version number of the hardcore system tape currently running. 

time up 
tIme that the system was brought up, in the form "hhmm.t". 

3-691 AG92-03 



----------------

tape_archive (ta) tape_archive (ta) 

--------------

SYNTAX AS A COMMAND: 

ta key table_path {args} 

FUNCTION: performs a variety of operations to create and 
maintain a set of files on magnetic tape. 

ARGUMENTS: 

key 
is one of the key functions described below. 

table path 
is the pathname of a segment created and maintained by the 
tape archive command to serve as a table of contents for the 
archIve. 

arg"s 
are additional arguments or control arguments 
the particular key chosen. These- arguments 
within the descriptions of each key, below. 

as required by 
are described 

Extract Operations: 

x 

xf 

tape_archive x table_path {components} {-control_arg} 

extracts from the archive those components named by the path 
arguments, .. placing them in segments in the storage system. 
The star convention is allowed for components. The directory 
where a segment is placed is the directory portion of the 
component argument. The ACL, names, and other settable 
segment attributes that were in effect when the component was 
archived are placed onto the new segment. If a segment of the 
same name already exists, it observes the duplicate name 
convention in a manner similar to the copy command. If no 
component names are specified, all components of the archive 
are extracted and placed in the working directory. 

tape_archive xf table_path {components} {-control_arg} 

extracts forcibly; operates like x, but forcibly deletes 
existing segments in the storage system if all their names 
conflict with names of components being extracted. 

3-692 AG92-03 



---------------

tape_archive (ta) tape archive (ta) 

Control args for the extract operation can be the following: 

-single name, -snm 
specIfies that the name of the component, as it appears in the 
table, is to be the only name placed on the newly created file 
in the storage system. The default is to place all the name~ 
on the file. 

!p-pen~ Operations: 

a 

ad 

tape_archive a table_path {paths} {-control_args} 

appends named files to the archive. The star convention is 
allowed for paths. The files that are appended to the archive 
are not otherwise affected. If the named file is already in 
the archive, a diagnostic is issued and the component is not 
replaced. At least one file must be explicitly named by the 
path arguments. If the tape archive does not exist, it is 
created. 

tape_-archive ad table_path {paths} {-control~args} 

appends and deletes; operates like a, but then deletes each 
file that was appended to the archive. Deletion takes place 
after the tape is processed and the file has been successfully 
appended to the tape. If the safety switch is on for any 
named file, the user is queried as to whether the file should 
be deleted. 

adf tape_archive adf table_path {paths} {-control_args} 

appends and deletes forcibly; operates like ad, except that 
the safety switch is disregarded. 

Control args for the append operation can be chosen from the 
following: 

-mode ascii 
-mode binary 
-mode ebcdic 

specify that the file is to be replaced on or appended to the 
tape archive using the specified encoding mode. If ascii or 
ebcdic encoding mode is specified, the file is verified to 
ensure that' it can be encoded in the specified mode without 
loss of information. If it cannot, a warning message is 
printed, and the encoding mode for that file is changed to 

3-693 I\G92-03 



tape_archive (ta) tape_archive (ta) 
----_ .. _- -------

binary. If no explicit mode specifications are specified, the 
file is encoded in the mode determined by the criteria 
described under "Default Encoding Modes". 

-single name, -snm 
specIfies that the name of 
command line, is to be the 
the volume set. 

the component, as specified in the 
only name recorded for the file on 

Replace Operations: 

r 

rd 

tape_archive r table_path {paths} {-control_args} 

replaces components in, or adds components to the tape 
archive. The star convention is allowed for paths. If no 
files are named in the command line, all files of the archive 
for which files by the same name are found in the user's 
working directory are replaced. If a file is explicitly named 
and does not already exist 1n the tape archive, it is 
appended, and an advisory is printed. 

tape_archive rd table_path {paths} {-control_args} 

replaces and deletes; operates like r, and then deletes each 
file that was replaced in or appended to the archive. 
Deletion takes place after the tape is processed and the file 
has been successfully replaced on or appended to the tape. If 
the safety switch is on for any named file, the user is 
queried as to whether the file should be deleted. 

rdf tape_archive rdf table_path {paths} {-control_args} 

replaces and deletes forcibly; operates like rd, except that 
the safety switch is disregarded. 

Control_args for the replace operation can be chosen from the 
following: 

-mode aSCll 
-mode binary 
-mode ebcdic 

specify that the file is to be repla~ed on or appended to the 
tape archive using the specified encoding modeo If ascii or 
ebcdic encoding mode is specified, the file is verified to 
ensure that it can be encoded in the specified mode without 
loss of information. If it cannot, a warning message is 

3-694 AG92-03 



tape_archive (ta) tape_archive (ta) 

printed, ·and the encoding mode for that file is changed to 
binary. If no explicit mode specifications are specified, the 
file is encoded in the mode determined by the criteria 
described under "Default Encoding Modes". 

-single name, -snm 
specIfies that the name of 
command line, is to be the 
the volume set. 

the component, as specified in the 
only name recorded for the file on 

Update Operations: 

u 

ud 

tape_archive u table_path {paths} 

update operates like r except it replaces only those 
components for which the corresponding file has a date-time 
modified later than the date-time associated with the 
component in the archive. If the file is not found in the 
archive, it is not added. 

tape_archive ud table_path {paths} 

updates and· deletes; operates like u, and then deletes each 
. file that was updated in the archive. Deletion takes place 
after the tape is processed and the file has been successfully 
updated on the tape. If the safety switch is on for any named 
file, the user is queried as to whether the file should be 
deleted. 

udftape_archive udf table_path {paths} 

updates and deletes forcibly; operates like ud, except that 
the safety switch is disregarded. 

Delete Operation: 

d 

df 

tape_archive d table_path components 

deletes named components from the 
convention is allowed for components. 

archive. 

tape_archive df table_path components 

The star 

deletes forcibly; operates like d, except that the safety 
switch .is disregarded. 

3-695 AG92-03 



I 

tape_archive (ta) tape archive {tal 
---------

Cancel Operation: 

cancel tape_archive cancel table_path {components} 

cancels any pending requests for the components named. The 
star convention is allowed for components. This operation 
removes any requests scheduled to be performed on the named 
components. If no components are named, the user is queried 
as to whether all pending requests are to be cancelled. 

Table of Contents Oper~!jon: 

t tape_archive t table_path {components} {-control args} 

prints table of contents and associated information for each 
named component of the archive (including files scheduled to 
be placed into the archive), as well as information about the 
archive itself. The star convention is allowed for 
components. 

Control args for the table of contents operation can be chosen 
from the following: 

-brief, -bf 
prints only the component name. 

-long, -lg 
prints all of the information shown below. 

-no header, -nhe 
i~ppresses the header information (blocks [1] and [2J), even 
if -long is specified. 

-header, -he 
prints the header information (blocks [1J and [2J), even is no 
components are specified. 

-all, -a 
causes printing of dead components (components that have been 
logically deleted or replaced, but still exist on the volume 
set. ) 

-pending 
prints only those components for which requests are pending. 

3-696. AG92-03 



tape_archive (ta) tape~archive (ta) 

If no control arguments are specified, a short header, pending 
operations for the named components, and the component names 
are printed. 

Sample Table of Contents 

[1] 11 entries in sample.ta; 2 pending requests. 
Mount of volume set for read pending. 

[2] Auto compaction limit = 0.75 
Compaction warning limit = 0.50 
Waste factor: 561/2441 pages = 0.23 

Date-time tape modified: 
Date-time tape compacted: 

01/20/77 
01/03/77 

Current volume'set contains 1 tape: 
22304 

1231.5 est Fri 
0800.3 est Mon 

Alternate volume set contains no tapes. 

[3] REQ COMPONENT FILENAME (MODE) LEN BC AUTHOR 
DATE ARCHIVED DATE MODIFIED DATE DUMPED 

[A] [B] 
xf bound simulation pack.archive BOUND-SIMULA/0003 (b) 12 

Doe.SIM.a -
12/23/76 1322.6 12/12/76 1430.2 12/12/76 1512.0 

(in >user dir dir>SIM>Doe>library) 

The information printed in the table of contents for each 
component includes: 

,. The type of request pending for the component if any (e.g., 
"xftr); 

• The entry name of the component 
("bound simulation pack.archive"); 

• The'filename of the file on the tape (trBOUND-SIMULA/0003"); 
• A one-letter indication of the recording mode of the file 

("b" for binary, "a" for ascii, and "e" for ebcdic); 
• The length of the file in storage-system records; 
• The bitcount author of the file <"Doe.SIM.a"); 
• The date the file was archived to tape; 
• The date the file was last modified while still in the 

storage system previous to its archival; 
• The date the file was dumped by the Multics backup 

facility; and 

3-697 AG92-03 



tape_archive (ta) 

• If a request is pending, the pathname of the directory in 
which the file exists or is to be created. 

Processing Operation: 

go tape archive go table_path {-control args} 

performs the actual tape mounting and processing of the queued 
file transferral requests. The current volume set is mounted. 
Those components scheduled for extraction are processed. 
Next, additions and replacements are performed. When all tape 
processing has been completed, requests to delete files in the 
storage system that have been appended or replaced are 
processed. Finally, if the processing involves writing to 
tape, the table is modified to reflect the new state of the 
tape archive and appended to the tape. 

Control arguments for the processing operation can be any of 
the following: 

-retain all 
specifies that the volume set is to remain mounted after 
processing is complete. In cases where several successive 
tape processing operations are planned, this control argument 
speeds up processing of requests by reducing the physical 
handling of the tapes. The volume set remains mounted until 
the processing operation is invoked with the -retain none 
control argument. 

-retain none 
reverts the effects of -retain all as described 'above. 

-long, -lg 
causes a message to be printed for each file search, 
extraction, or appending, as they are perfomed on the volume 
set. 

~ompaction Operati9~~ 

compact tape archive compact table_path 

schedules the tape archive for compaction. The compaction 
process causes the active components on the current volume set 
to be copied onto the alternate volume set. This process 
removes cumulative tape waste attributable to inactive tape 
files (components that have been logically deleted, updated, 
or replaced, but never physically removed.) Other file 

3-698 AG92-03 



tape_archive (ta) tape archive (ta) 

transferral requests can be processed at the same time that 
the archive· is being compacted. After the compaction 
operation, the alternate volume set becomes the current volume 
set, and vice verSa. 

Parameter Alteration Operations: 

alter 

changes global attributes of the tape archive that can be set 
by the user. The specific attribute modified depends on th~ 
alter_spec arguments. Arguments recognized in this position 
are: 

warning limit floatnum 
specIfies that an advisory message is to be printed whenever 
the number of wasted tape records on the volume set reaches or 
exceeds a certain fraction of the total tape records. The 
floatnum argument must be from 0.0 to 1.0. The initial 
default for warning_limit is 0.5. 

auto limit floatnum 
s~ecifies that the tape archive should be automatically 
scheduled for compaction at the next mounting whenever the 
number of wasted tape records on the volume set exceed a 
certain fraction of the total tape records used. When 
compaction is automatically scheduled in this manner, an 
advisory message is printed. The floatnum argument must be 
between 0.0 and 1.0. The initial default for auto limit is 
1.0 (never automatically compact.) 

volume old volume spec new volume spec {-alternate} 
specifies that-the volume (reel) with label new volume spec is 
to take the place of the volume old volume spec. If 
old __ volume-;-set is the null string, and the =alternate control 
argument 1S specified, new volume set is appended to the 
alternate volume set; otherwiie, it Is appended to the primary 
volume set. If new volume spec is the null string, 
old __ volume_spec is deleted from-the appropriate volume set. 

volume -number N new_volume_spec {-alternate} 
specifies that the volume with label new volume spec is to 
take the place of the Nth volume in the -primarj volume set 
(the alternate volume set if the -alternate control argument 
appears.) If new volume spec is the null string, the volume 
is deleted. If N-is one greater than the number of volumes 
currently contained in the volume set, the volume is appended 
to the volume set. 

3-699 AG92-03 



-----~ .. ---. ---~--- ... -... --., ... 

tape_archive (ta) tape_archive (ta) 

compaction off 
unschedules any pending compaction of the tape archive. 

Load Table Operation~ 

load table tape archive load table table_path vOlume_id 

causes the copy of the online table kept on a volume set to be 
loaded· into the segment specified by table path. If the 
segment already exists, the user is asked wheth~r it should be 
overwritten. Only the volume id of the initial volume in the 
set need be specified. 

I~ble Reconstruction Q2eration: 

reconstruct tape archive reconstruct table_path volume_id 

causes an entire volume set to be scanned, ~nd an online table 
to be reconstructed strictly from the apparent contents of the 
tape. This operation should only be used when tape errors or 
another catastrophic failure makes the load table op~ration 
impossible. The table created may include files that were 
previously deleted but never physically compacted out. 

Inte~active Mode: 

tape archive direct table_path {-control_arg} 

allows a user to direct the actions of tape archive usin~ an 
interactive mode in which each line typed is-interpreted as a 
key followed' by the arguments (with the exception of 
table path) accepted by that key. This mode of operation is 
exited by typing "go". If any requests are outstanding when 
the mode is exited, the tapes are automatically mounted and 
the requests performed (except as noted below). 

While in the interactive mode, all requests are maintained in 
a temporary copy of the online table, allowing the user to 
abort processing if desired without recording any requests in 
the actual online table. 

All keys are accepted in this mode of operation with the 
exception of the following keys: 

3-700 AG92-03 



tape_archive (ta) tape_archive (ta) 

load table 
reconstruct 

In addition, the following special commands are accepted in 
this mode of operation: 

quit 
specifies that the interactive mode is to be exited without 
performing the actual processing of the requests. Unless 
preceded by the "save" command, all requests made in this 
invocation of tape archive are discarded. If unsaved requests 
exist, the user is-asked to confirm the command. 

save 

go 

specifies that all ·requests made during this invocation of the 
command are to be recorded permanently in the table. 

specifies that all preceding requests are to be recorded into 
the table, and that the volume set is to be mounted and 
processed . 

.. {command ·line}. 
passes £he specified command line to the ~ommand processor. 

causes tape_archive to identify itself. 

,Allowable control arguments to the direct operation are: 

-retain all 
specifies that the volume set is not to be dismounted when the 
"go" request is complete. If this control argument is 
specified, the "go" request does not cause termination of the 
command invocation, but returns the user to the interactive 
mode of tape archive so that more requests maybe entered. 
The "quit" request must be used to exit this mode and dismount 
the volume sets. 

Default E~coding Modes 

If no particular encoding mode is specified for files being 
appended to or replaced in the archive, the following criteria 
are ·appLied to determine the most appropriate mode. 

When performing file replacement, the default encoding mode 
remains unc~anged if it is determined that the file has not 

3~701 AG92-03 



----,-------
tape_archive (ta) tape_archive (ta) 

been altered in any way that precludes encoding it in the same 
mode; otherwise, a diagnostic is printed, and the replacement 
is performed in binary mode. 

Otherwise, the file is recorded in binary mode for reasons of 
efficiency. 

Tape File Naming Conventions 

Tape files of a tape archive volume set follow certain 
conventions with respect-to ordering and naming. 

Each user file is preceded by an attribute file, containing 
the information necessary to re-create the file faithfully in 
the storage system (e.g. names, ACL, and so on.) Attributes 
files are named "ATTRIBUTEFILENNNN", where NNNN is the 
physical file number (by order of occurrence on the tape) of 
the attributes file, e.g., "ATTRIBUTEFILE0023". 

Each user file is named with a unique name constructed of all 
or part of the Multics entry name of the file, one or more 
slash characters, and the physical file number of the file. 
The Multics .file name is truncated or padded with slashes to 
twelve .characters. For example, the name of the tape file 
containing the Multics file named "alpha" might be 
"ALPHAIIIIIII/0024", and the name of the tape file containing 
the Multics file named "source.archive" might be 
"SQURCE.ARCHI/0037". 

Copies of' the online table describing the tape are named 
"ONLINE-TABLE-NNNN" where NNNN is a number re~presenting t.he 
serial number of the online tables on this volume set. This 
number starts from 1 and increases by 1 each time a new table 
is written to the tape. 

NOTES: A tape archive can be used to temporarily hold files that 
will be needed at some fut~re time, but that meanwhile take up 
large amounts of expensive storage space. Additionally, tape 
archives can be used to transfer files between Multics 
systems, and in a limited fashion, from Multics to other 
operating systems. 

3-702 AG92-03 



tape_archive (ta) tape_archive (ta) 

A tape archive consists of one or more reels of tape, known as 
the "volume set", on which files are stored in ANSI standard 
tape format. The constituent files that compose the tape 
archive are called components of the archive. Associated with 
each tape archive is a Multics segment known as the table. 
This segment is created and maintained by the tape archive 
command, and contains information about each component in the 
archive. 

The tape archive command provides the user with the ability to 
append ~omponents to the archive, replace components of the 
archive with new versions, extract components from the 
archive, and delete components from the archive. In addition, 
other facilities include listing the contents of the archive 
and re-creating the online table in the event of catastrophe 
or for file transfer purposes. 

Requests to move components between the tape and the storage 
system are specified via invocations of the tape archive 
command before any reels are actually mounted and processed. 
When all desired transferral requests have been specified; the 
user then invokes "the tape_archive command to mount and 
processth~ tape. 

An interactive mode of operation is supplied that allows the 
user to specify multiple requests to a single invocation of 
the command, and causes the requests to be automatically 
performed after all requests have been satisfactorily entered. 

3-703 AG92-03 



terminate (tm) 

SYNTAX AS A COMMAND: 

tm paths 
tms segnos 
tmr ref names 
tmsr ref names 

terminate (tm) 
--------, 

FUNCTION: allows the user to remove a segment from his address 
space and resets links to the terminated segment. It is most 
useful when recompiling procedures so that the new version can 
be invoked with no linkage complications. Therefore the same 
operation is done automatically by the Multics system 
compilers. The user can also call this command directly in 
order to test various versions of a procedure. 

ARGUMENTS: 
paths 
are pathnames of segments to be terminated. 

ref names 
are the reference names of segments to be terminated. 

segnos 
are segment numbers (in octal) to be terminated. 

NOTES: The tms command allows termination by segment number 
rather than by pathname. 

The tmr command allows termination by reference name rather 
than by ~athname. The segment itself is terminated, not 
merely the particular reference name specified. 

The tmsr command allows termination of a single reference 
name. Unless the specified reference name is the only one by 
which the segment is kriown, the segment is not terminated. 

Caution must be exercised when using these commands as the 
user can unintentionally terminate <within the userws process 
only) a segment of the command language interpreter or another 
critical piece of the environment. The usual result is 
ter~ination of the user's process. 

3-104 AG92··03 



terminate (tm) terminate (tm) 

The terminate commands, with their short names, are as 
follows: 

terminate segno, tms 
terminate-single refname, tmsr 
terminate=refname, tmr 

The star convention is not recognized in any of the above 
. commands. 

3-105 AG92-03 



time 

SYNTAX AS A COMMAND: 

time {dt} 

SYNTAX AS AN ACTIVE FUNCTION: 

[time {dt}] 

t ... me 

FUNCTION: returns 3 four-digit time of day in the form "hh:mm" 
where 00 < hh < 23 and 00 < mm < 59. 

ARGUMENTS: 

. dt 
is a date-time 
convert dat~ to binary . 
current-time-is-used. -

in a form acceptable to 
If no argument is specified, the 

3-706 AG92-03 



times times 

SYNTAX AS A COMMAND: 

times {num_args} 

SYNTAX AS AN ACTIVE FUNCTION: 

[times {num_args}] 

FUNCTION: returns the product of the num args. If no num args 
are specified, 1 (the multiplicative identity) is returned. 

EXAMPLES: 

string [times 6 7.3] 
1~3 • 8 

3-707 AG92-03 



trace trace 

SYNTAX AS A COMMAND: 

trace {-control_args} names 

ARGUMENTS: 

names 
is a pathname or reference name. 
portion of a pathname is used 
"Notes" below.) 

The reference name or entry 
in the trace table. (See 

CONTROL ARGUMENTS: 
apply to the names arguments 
change the current value in 
(See "Notes" below.) 

that follow, and, if applicable, 
the trace control templ~te (TCT). 

-after N 
calls the command processor after calling the traced procedure 
every N times. The default is to NOT call. 

-argument N, -ag N 
prints the arguments every Nth time the procedure is entered. 
The default is to NOT print. 

-before N 
calls the command processor before calling the traced 
procedure every N times. The default is to NOT call. 

-brief, -bf 
prints a short form of the monitoring information. 

-depth N', -dh N 
monitors to the maximum recursion depth of N. The default is 
unlimited. 

-every N, -ev N 
monitors every Nth call. The default is 1. 

-execute STR, -ex STR 
executes the Multics command line specified by the string STR 
whenever the procedure is monitored. 

-first N, -ft N 
starts monitoring on the Nth call. The default is 1. 

-govern STR, -gv STR 
limits/does not limit the recursion level for a procedure, 
where STR can be the string on or off .. The default is off. 

3-708 AG92-03 



trace trace 

See "Recursion Limiting" below. 

-in 
prints the arguments only on entry. This is the default. 

-inout 
prints the arguments on both entry and exit. 
on entry only. 

The default is 

-io switch STR, -is STR 
bhanges the switch for output to the switch specified by STR. 
(See "Notes on Changing Output Switch" below.) 

-last N, -It N 
stops mortitoring after the Nth call. 
coritinue for the life of the process. 

-long, -lg 

The default is to 

prints the long form'of the monitoring information. This is 
.the default. 

-meter STR, -mt,STR 
meters/does not meter the time spent in the procedure, where 
STR can be the string on or off. The default is off. See 
"Notes on Metering" below. 

-out 
prints the arguments only on exit. 
entry. 

-off entryname 

The default is only on 

stops monitoring. the procedure specified byentryname. The 
procedure remains in the trace table, and calls continue to be 
counted. 

-on entryname 
resumes monitoring the specified procedure when it has been 
turned off previously by -off. 

-remove entryname, -rm entryname 
removes the specified procedure from the trace table. Tracing 
can be removed at any time. 

-reset entryname, -rs entryname 
sets .the number of calls and recursion depth of the specified 
procedure to zero. 

-return value STR, -rv STR 
prints/does not print the return value on exit, where STR can 
be the string on or off. The default is off. This control 

3-709 AG92-03 



trace trace 

argument assumes the entry is a function. 

-status *, -st * 
prints the procedures being monitored and their counters. 
(See "Notes" below.) 

~status entryname, -st entryname 
prints the trace parameters and counters for the procedure 
specified by entryname. (See "Notes" below.) 

-stop proc path, -sp path 
chinges the procedure that is called for stop requests from 
the command processor to the procedure specified by path. To 
reset the stop procedure, issue this control argument with no 
path argument. 

-subtotal, -stt 
prints and does not clear the metering statistics. 

-template, -tp 
lists the trace control template. 

-watch STR, -wt STR 
watches all procedures being traced for a change in the 
current contents of the memory word(s) specified by the string 
STR. See "Notes on Watch Facility" below. 

NOTES: The trace command is a debugging tool tha~ lets the user 
monitor all calls to a specified set of external procedures. 
The trace command modifies the standard Multics procedure call 
mechanism so that whenever control enters or leaves one of the 
specified procedures, a debugging procedure is invoked. The 
user can request the following: 

1. Print the arguments at entry, exit, or both. 

2. Stop (by calling the command processor) at entry, exit, or 
both. 

3. Change the frequency that tracing messages are printed 
(e.g., every 100 calls, after the 2000th call, only if the 
recursion depth is less than five, etc.). 

4. Execute a Multics command line at entry, exit, or both. 

5. Meter the time spent in the various procedures being 
monitored. 

3-710 AG92-03 



trace trace 

Use of the trace command 
restrictions: 

is subject to the following 

1. Only external procedures compiled by PL/I, FORTRAN, aIm, or 
COBOL can be traced. 

2. Ring a or gate entries cannot be traced. 

3. Incorrect execution results if the traced procedure looks 
back a fixed number of stack frames, e.g., cu_$arg ptr 
cannot be traced. 

4. Only 1000 procedures can be traced at one time. Up to 16 
locations can be watched at one time. 

5. The procedure being traced and the trace package itself 
must share the same combined linkage segment. 

6. A procedure in a bound segment can only be traced if its 
entry point is externally available. 

7. An aIm procedure can only be traced if it uses the entry 
operator. 

The procedure whose pathname is specified in the command line 
is added to the trace table with the tracing parameters from 
the trace control template (TCT). If the procedure is already 
in the table, the counters are reset and the current 
parameters in TCT are used. 

For control arguments that affect procedures being traced, the 
argument is an entryname or an asterisk (*). If an entryname 
is used, the control argument applies to that procedure. If 
an asterisk is used, the control argument is applied to all 
entries in the trace table. All control arguments that affect 
the TCT must have a number argument (indicated by N above). 

The trace command processes all arguments from left to right 
and they take effect immediately when read. Any parameters 
that are set keep their values across invocations of the 
command. For example: 

trace -every 2 alpha -every 3 beta 

traces the program alpha on every second call and the program 
beta on every third call. 

3-711 AG92-03 



trace trace 

If the user then types: 

trace gamma 

it traces the program gamma on every third call because the 
value for -every was set during the preceding invocation of 
the command. 

EXAMPLES: 

The command line: 

trace -ag 1 -inout test 

prints the arguments for test on entry and exit. 

The command line: 

trace -ag 2 -in -depth 6 test 

prints the arguments for test every second time test is 
entered up to a recursion depth of six, i.e., 2, 4, 6. 

The command line: 

trace -govern on test 

prints the arguments of test each time test' is called with a 
new maximum recursion depth. The trace procedure calls the 
command processor every time the recursion depth is a multiple 
of 10. 

The command line: 

trace -st * -tp 

lists the procedures in the trace table and prints the values 
of the trace control template. 

NOTES ON MESSAGE FORMAT: The message printed when control enters 
a procedure can appear in anyone of several formats, 
depending on the setting of the brief switch and the status of 
the calling procedure. If the calling procedure is unbound or 
occurs in a bound segment containing a bindmap, the message 
takes the form: 

3-712 AG92-03 



trace trace 

Call 4.1 of alpha from beta:121, ap = 204110746. 

This is the fourth call of procedure alpha, at recursion level 
1. The call comes from location 127 in component beta, and 
the argument list is at 204:10746. If the procedure making 
the call is in a bound segment that does not contain a 
bindmap, the message takes the form: 

Call 4.1 of alpha from bound gammal437 (beta), ap = 
204110746. 

The name in parentheses may not always be available and may be 
omitted in some cases. If the user has requested the brief 
output mode, the message is shortened to: 

Call 4.1 of alpha. 

When tracing is requested for a procedure, the parameters for 
that entry are taken from the trace control template (TCT). 
If the user does not alter the values in the TeT, the initial 
defa~lt values are used (see below). The initial values in 
the TCT specify that every call is monitored . 

. NOTES ON TRACE CONTROL TEMPLATE: As mentioned earlier, the trace 
table entry holds a number of parameters for each procedure to 
be traced. The values of the parameters are determined by the 

.. contents of the TCT at the time the table entry is filled in. 
These parameters are used in conjunction with N (the number of 
calls to the traced procedure in this process) and R (the 
current recursion depth) to control when and how the procedure 
should be monitored. The execution count (N) is set to 0 when 
tracing is first started and is incremented by 1 every time 
the traced . procedure is called. The redursion depth (R) is 
set to 0 when tracing is first started and is incremented by 1 
every time control enters the traced procedure and is 
decremented by 1 every time control leaves the traced 
procedure. 

Let: 

D = 
the maximum recursion depth to be monitored (-depth). 

3-713 AG92-03 



trace 

F = 

L = 

E = 

B = 

A = 

trace 

the number of the first call to be monitored (-first) . 

the number of the last call to be monitored (-last). 

how often monitoring should occur (-every) . 

the number of times the procedure is called before trace 
stops at entry to the traced procedure (-beforE!) . 

the·number of times the procedure is called before trace 
stops at exit from the traced procedure (-after). 

AG = 

I = 

o = 

the number of times the pro6edure is called before trace 
prints the arguments of the traced procedure (-argument). 

a bit that is "1"b if the tracing procedure should print 
the arguments of the traced procedure when control goes 
into the traced procedure (-in). 

a bit that is "1"b if the tracing procedure should print 
the arguments of the traced procedure when control goes out 
of the traced procedure (-out). 

A call is monitored and the tracing procedure is called if, 
and only if: 

F <= N <= L 

R <= D 

mod(N,E) = 0 

If AG "= 0, mod(N,abs(AG» = 0, and I = "1"b, trace prints the 
values of the arguments (if any) being passed to the traced 
procedure. All of the arguments are listed when AG < 0. If 
AG < 0, the procedure is assumed to be a function and the 
value of the last argument is printed after the procedure 
returns. 

3-714 AG92-03 



trace trace 

If B = 0 and mod(N,B) = 0, the monitoring procedure prints 
"Stop" and calls the command processor (or a user-set 
procedure if the -stop proc control argument was used). This 
call occurs before the-procedure being traced has created its 
stack frame. 

After control leaves the traced procedure, trace prints a line 
of the form: 

Return N.R from alpha. 

If AG ~= 0 and mod(N,abs(AG» = 0, then all of the arguments 
of the traced procedure are printed if 0 = "1"b; otherwise, if 
AG < 0, the value of the last argument (assumed to be the 
value of the function) is printed. 

Finally, trace calls the command processor. If the -stop proc 
control argument was specified, a procedure set by the user is 
called. This call occurs after the stack frame of the 
procedure being traced has been destroyed. 

NOTES ON METERING: The trace command can be used to meter the 
execution of a specified set of procedures. If the metering 
feature is being used, trace does not call the debugging 
procedure. when control enters a procedure being traced; 
instead~ it determines the current time and the virtual CPU 
time used, and the number of page faults taken by the user's 
pfocess before control enters and after control leaves the 
traced. procedure. This information is used to compute the 
real time 'and CPU time used, and the number of page faul ts 
taken by the traced procedure on a local and global basis. 
The global CPU time is the time spent in the procedure 
including the time spent in any procedures that it calls. The 
local CPU t~me does not include the time spent in any traced 
procedure called by the procedure~ but it does include time 
spent in called procedures that are not being traced. The 

·local and glob~l versions of real time and page faults are 
calculated in a similar manner. Metering is only done when 
the first~ last, every,. and depth tracing conditions are 
satisfied. 

3-715 AG92-03 



trace trace 

The control argument: 

-meter on, -mt on 

sets the metering switch in the TeT; any procedures added to 
the trace table or that have their table entries updated after 
this argument is used are metered. 

The control argument: 

-meter off, -mt off 

turns off the metering switch in the TCT; any procedures 
currently being metered continue to be metered. 

The control argument: 

-total 

causes trace to print the metering statistics of all 
procedures in the trace table. The output specifies the 
number of calls (HCALLS), global CPU time (GCPU), global real 
time (GREAL), global page waits (GPWS), local CPU time (LCPU), 
·local real time (LREAL), local page waits (LPWS), and the 
usage percentage (%USAGE) based on local CPU time, of all the 
procedures being metered. The metering statistics are set to 
o after they are printed. 

The control argument: 

-subtotal, -stt 

prints the same information as the -total control argument, 
but does not clear the statistics. 

3-716 AG92-03 



trace trace 

NOTES ON RECURSION LIMITING: The control argument: 

-govern on, -gv on 

sets a bit in the TCT that causes recursion limiting to be in 
effect for any procedure subsequently added to the trace 
table. When the governing feature is used, the depth control 
parameter is ignored and trace prints the call message only 
when the recursion depth of the traced procedure reaches a 
new, maximum depth. Each call message has a recursion depth 
one greater than the previous call message. In addition, 
trace calls the command processor (or a user-defined procedure 
if the -stop proc control argument was used) whenever the 
recursiondept~ is a multiple of 10. Return messages are not 
printed. This feature enables the user to find and limit 
uncontrolled recursion; it can be very useful in finding the 
procedure(s) responsible for fatal process error. 

The cqntrol argument: 

~govern off, -gvoff 

turns off .the governing switch in the TCT; any procedure 
currently being governed continues to be governed. 

NOTES ON WATCH FACILITY: The trace command has an optional watch 
facility in that trace watches the contents of a set of 
previously specified memory cells. The cells are checked at 
every entry to and every exit from every traced procedure. As 
long as the values in the locations being watched remain the 
same, no action is .taken and no tracing messages are printed. 
The tracing message is printed as soon as trace finds that any 
of the locations being watched has had its value changed. 
This can be ·found either at.entry to or exit from the traced 
procedure~ When any value changes, the tracing message is 
pr~ceded by ·lines that give the new values of all of the 
locations that have changed, and the command processor (or a 
user-set procedure if the -stop_proc control argument was 
used) is called even if the A or B conditions are not met. 
When execution dontinues, the locations that have changed are 
watched with the new value being used in subsequent checks. 
This feature can be very useful in determining the user 
procedures that have incorrectly modified a word of storage. 

3-111 AG92-03 



trace trace 

The control argument: 

-watch STR, -wt STR 

causes all procedures being traced to watch for a change in 
the current contents of the memory word(s) specified by the 
string STR. This string, specifying the location, can consist 
of a single address specification or a series of address 
specifications separated by blanks and surrounded by quotes. 
If an address specification does not contain a vertical bar 
(I), it is taken to be an octal number giving a location in 
the stack; otherwise, it is taken to be a segment number and 
offset in octal in the standard form, e.g., 
segment_numberloffset. 

The control argument: 

-watch off, -wt off 

turns off the watch facility. 

The watch facility differs from other trace facilities in that 
there is a single table of locations being watched that is 
used by all procedures being traced. When the -watch control 
argument is proc~ssed, the new location(s) specified replace 
any locations currently in the watch table. There is no 
provision made for removing a single location from the watch 
table; the user must reissue a watch request 'that omits the 
location'to be removed from the table. 

NOTES ON COMMAND EXECUTION: 
The command execution facility of trace' allows the user 

to specify a Multics command line to be executed whenever the 
trace debugging procedure is called. The trace procedure 
calls the command processor with the specified string after 
printing the tracing message, but before the stop request 
causes the command processor to be called. 

The control argument: 

-execute string 

sets the execution string parameter 
is a single argument, it must be 
contains any spaces. The execution 

3-718 

in the TCT. Since string 
enclosed in quotes if it 

parameter in the TCT is 

. AG92-03 



trace trace 

turned off if string has zero length (-execute ""). The 
following command line: 

trace -ex time test 

causes trace to execute the time command before and after test 
is called. 

NOTES ON CHANGING OUTPUT SWITCH: All of the messages from the 
trace command that may be generated while actually monitoring 
procedures are normally written on the user i/o switch so that 
trace can conveniently be used with procedures that change the 
attachment of the normal switch, user output. The control 
argument: 

-io switch STR 

causes trace to write further monitoring output on the switch 
specified by ·STR. The switch must already be attached and 
opened for stream_output. 

3-719 AG92-03 



trace stack (ts) trace stack (ts) 

SYNTAX AS A COMMAND: 

ts {-control args} 

FUNCTION: prints a detailed explanation of the current process 
stack history in reverse order (most recent frame first). For 
each stack frame, all available information about the 
procedure that established the frame (including, if possible, 
the source statement. last executed), the arguments to that 
(the owning) procedure, and the condition handlers established 
in the frame are printed. For a description of stack frames, 
see "Multics Stack Segments" in the MPM Subsystem Writers' 
Guide. 

CONTROL ARGUMENTS: 

'-brief, -bf 
suppresses listing of arguments and handlers. This control 
argument cannot be specified if -long is also specified as a 
control argument. 

-long, -lg 
prints octal dump of each stack frame. 

-depth N, -dh N 
dumps only N frames. 

NOTES: The trace st~ck command 1s most useful after a fault or 
other error condition. If the command 1s invoked after such 
an error, the machine registers at the time of the fault are 
also printed, as well as an explanation of the ·fault. The 
souroe line in ·which it occurred can be given if the object 
segment is compiled with the -table option. 

NOTES ON OUTPUT FORMAT: The trace stack command is most useful 
after a fault or other error condition. If the command is 
invoked after such an error, the machine registers at the time 
of the fault are also printed, as well as an explanation of 
the fault. The source line in which it occu~red can be given' 
if the object segment is compiled with the -table option. 
When' trace stack is invoked, 'it first searches backward 
through the stack for a stack frame 'containing saved machine 
conditions as the result of a signalled condition. If such a 
frame is found, tracing proceeds backward from that point; 
otherwise, a comment is printed and tracing·begins with the 
stack frame preceding trace stack. 

3-720 AG92-03 



trace stack (ts) trace stack (ts) 

If a machine-conditions frame is found, trace stack repeats 
the system error message describing the fault: Unless the 
-brief control argument is specified, trace stack also prints 
the source line and faulting instruction and a listing of the 
machine registers at the time the error occurred. 

The command then performs a backward trace of the stack, for N 
frames if the -depth N argument was specified, or else until 
the beginning of the stack is reached. 

For each stack frame, trace stack prints the offset of the 
frame, the condition name if-an error occurred in the frame, 
and the identification of the procedure that established the 
frame. If the procedure is a component of a bound segment, 
the bound segment name and the offset of the procedure within 
the bound segment are also printed. 

The trace stack command then· attempts to locate and print the 
source line associated with the last instruction executed in 
the procedure that owns the frame (that is, either a call 
forward or a line that encountered an error). The source line 
can be printed only if the procedure has a symbol table (that 
is, if it was compiled with the -table option) and if the 
source for the procedure is available in the user's working 
directory. If th~ source iine cannot be printed, trace stack 
prihts a comment explaining why. 

Next, trace stack prints the machine instruction last executed 
bi the procidure that owns the current frame. If the machine 
instructibn is a call to a PL/I operator, trace stack also 
prints th~ name of the operator. If the instru~tion is a 
procedure call, trace stack suppresses the octal printout of 
the machine instructi~n and prints the name of the procedure 
being called. 

Unless the -brief control argument is specified, trace_stack 
lists the arguments supplied to the procedure that owns the 
current frame and also lists any enabled condition, default, 
and ~lean-up handlers established in the frame. 

If the -long control argument is specified, trace stack then 
prints an octal. dump of the stack frame, with eight words per 
line. 

3-721 AG92-03 



----_.-._---

trace stack (ts) trace stack (ts) 

EXAMPLES: After a fault that reenters the user environment and 
reaches command level, the user invokes the trace stack 
command. 

For example, after quitting out of the list command, the 
following process history might appear: 

list 

Segments:8, Records:3 

rew 0 mailbox 
r w 
QUIT. 

! trace stack 
quit in ipc$blockl156 
(>system library 1>bound command loop 1156) 

No symbol table for ipc --
156 400010116100 -cmpq pr4110 

Machine registers at time of fault 

prO (ap) 

pr'1 (ab) 
pr2. (bp) 
p.r3· (bb) 
pr4 (lp) 

pr5 (lb) 
pr6 (sp) 

26314656 

1031264 
14112200 
11310 
25312250 

24413614 
24413500 

pr1 (sb) . 24410 

pl1 operators $operator· tablel162 
-(external-symbol in-separate 

nonstandard text section) 
5051264 
as linkagel12200 
tc-datalO 
IB!BJGjFkPBWcNZ.area.linkerI2250 

(internal staticlO for ipo ) 
stack 413614 -
stack-413500 

( =>"kcpMbLH +0000000") 
stack_410 

xO 73 x1 0 x2 0 x3 600000 
x4 0 x5 32 x6 3033 x1 4 
a 000000000000 q 000000000004 e 0 
Timer reg - 1146005, Ring alarm reg - 0 

3-722 AG92··03 



trace stack (ts) trace stack (ts) 

SCU Data: 

4030 400270250011 000000000021 400270000000 000000672000 
000156000200 000154000700 002250370000 600044370120 

Connect Fault (21) 
At: 270/156 ipc \156 (bound command 100p_1156) 
On: cpu a (110) 
Indicators: "bar 
APU Status: xsf, sd-on, pt-on, fabs 
CU Status: rfi, its, fif 
Instructions: 

4036 002250 3700 00 
4037 6 00044 3701 20 

epp4 
epp4 

2250 
pr6/44,* 

Time stored: 08102/77 1635.5 edt Tue (104541674361226602) 
Ring: 4 

Backward trace of stack from 244/3500 

3500 quit ipc $block/156 (bound command 100p_/156) 
No symbol table for ipc 

156 400010116100 -cmpq pr4\10 
ARG 1: 25315704 IBBBJGjFkPBWcNZ.area.linkerI5704 
ARG 2: 24413152 stack 413152 
ARG 3: 0 -

2720 tty $tty_get linel2442 (bound iox 111546) 
No symbol table for tty 
call ext out to ipc $block 

ARG 1: 253T4320 IBBBJGjFkPBWcNZ.area.linkerI4320 
(internal static\154 

for find iocb) 
ARG 2: 244/2660 stack_4/2660 ""( -> "fo stuff") 
ARG 3: 128 
ARG "4: 0 
ARG 5: 0 

2400 listen $listen /461 (bound command loop 11325) 
No symbol table for listen - -
call ext out to iox $get lIne 

- ARG" 1: "" - -
on "cleanup" call listen /256 

(bound_command_loop_11T22) 

3-723 AG92-03 



trace stack (ts) traee stack (ts) 

2100 process overseer $process overseer :473 
(bound command-loop 121ij33) -

No symbol table for process overseer 
call ext out desc to listen-$listen -

- Argument list header invalid. 
on "any other" 

call standard default handler 
$standard default handler j 

(external symbol in separate-nonstandard 
text section) 

2000 user init admin $user init admin :36 
(Eound-comma~d loo~ :21~76) -

No symbol table for user Init admin 
21676 700036670120 ~sp4 - pr7T36,* aIm call 

No arguments. 

End of trace. 

r 1635 1.756 40.790 207 level 2, 9 

3-724 AG92-03 



translate translate 

SYNTAX AS A COMMAND: 

translate strA strB {strC} 

SYNTAX AS AN ACTIVE FUNCTION: 

[translate strA strB {strC}] 

FUNCTION: returns translation in which all the characters of a 
string strA that appear in a string strC are translated to the 
corresponding characters in a string strB. If strC is 
omitted, a default string containing all possible 9-bit bit 
patterns is used, as returned by collate9. 

EXAMPLES: 

string [translate abcdefgh BDFH bdfh] 
aBcDeFgH 
string [translate "My work" KLMNOPQRSTUVWXYZ klmnortvwxyz] 
MY WORK 

3-725 AG92-03 



trunc trunc 

SYNTAX AS A COMMAND: 

trunc num 

SYNTAX AS AN ACTIVE FUNCTION: 

[trunc num] 

FUNCTION: returns the largest decimal integer whose absolute 
value is less than or equal to the absolute value of num. 

EXAMPLES: 

string [trunc 7.6] 
7 
string [trunc -7.6] 
-7 

3-726 AG92-03 



truncate (tc) 

SYNTAX AS A COMMAND: 

tc {-control arg} path {length} 
or: . 

tc segno {length} 

truncate (tc) 

FUNCTION: truncates a segment to an optionally specified length 
and resets the bit count accordingly, setting the bit count 
author to be the user who invoked the command. The segment 
can be specified by pathname or segment number. 

ARGUMENTS: 

path 
is the pathname of a segment. The star convention is NOT 
allowed. 

segno 
is an octal segment number. 

length 
is an octal integer indicating the length of the segment in 
words after truncation. If no length argument is provided, 
zero is assumed. 

CONTROL ARGUMENTS: 

-name, -nm 
·specifies that the octal number following it is a pathname. 

ACCESS REQUIRED: The user must have write access on the segment 
to be truncated. 

NOTES: If the segment is already shorter than the specified 
length, its length is unchanged, but the bit count is set to 
the specified length~ 

This command should not be used on segments that are (or are 
components of) structured files. 

3-121 AG92-03 



truncate (tc) truncate (te) 

EXAMPLES: 

The command line: 

tc alpha 50 

truncates segment alpha to 50 words; i.e., all words from word 
50 (octal) on are zero. The bit count of the segment is set 
to the truncated length. 

3-728 AG92-03 



unassign_resource (ur) unassign_resource (ur) 

SYNTAX AS A COMMAND: 

ur resources {-control args} 

FUNCTION: un assigns one or more resources that have been 
assigned to the user's process by the Resource Control Package 
(RCP). 

ARGUMENTS: 

resources 
specify the resources to be unassigned from the user's 
process. Currently, the only resources managed by RCP are 
devices. If a, device is att~ched, it is automatically 
detached. A user can unassign all devices assigned to the 
process by specifying the keyword "all", or unassign one 
device by specifying its name. 

CONTROL ARGUMENTS: 

-comment STR, -com STR 
is a comment string that is displayed to the operator when the 
resource is unassigned. This comment is displayed only once, 
even if several resources are being unassigned. (See the 
assign_resource command for details about comment strings.) 

-admin, -am 
forces an unassignment. This control argument should be 
specified by highly privileged users who want to unassign a 
resource that is assigned to some other process. 

EXAMPLES: In the example that follows, the user unassigns a tape 
previously assigned by the assign_resource com~and by typing 
the command line: 

ur tape~03 

3-729 AG92-03 



underline underline 

SYNTAX AS A COMMAND: 

underline str_args 

SYNTAX AS AN ACTIVE FUNCTION: 

[underline str args] 

FUNCTION: underlines str args. Each str arg is underlined 
separately in the return value, and this value is 
canonicalized. Those str args containing quotes or spaces are 
quoted in the return value. 

EXAMPLES: The following interactions illustrate the underline 
active function. 

string [underline She said, "be quiet!"] 
She said, be quiet! 
string [underline She said, """be qUiet!"''''] 
She said, "be guiet!" 
string [underline "Now is the time for all ''''folks .... """] 
Now is the time for all "folks .... " 
string [underline "Now is" the time "for all horses."''''] 
Now is the time for all horses." 

3-130 AG92-03 



unique unique 

SYNTAX AS A COMMAND: 

unique {arg} 

SYNTAX AS AN ACTIVE FUNCTION: 

[un:ique {arg}] 

FUNCTION: returns a unique character string as generated by the 
unique chars subroutine (described in the MPM Subroutines). 
Unique-character strings are 15 characters long and begin with 
an exclamation mark (!)~ 

ARGUMENTS: 

arg 
is an .octal number from which the unique character string is 
to be generated. If arg is omitted, the current clock value 
is assumed. 

EXAMPLES: 

string [unique] 
!BBBJHwHMzmmxMF 
string [unique [user process_id]] 
!BPGBzBBBBBBB 

3-731 AG92-03 



unlink (ul) unlink (ul) 

SYNTAX: 

ul {paths} {-control_args} 

FUNCTION: deletes link entries. 

ARGUMENTS: 

paths 
specify storage system link entries to be deleted. 

CONTROL ARGUMENTS: 

-brief, -bf 
inhibits the printing of an error message if a link to be 
deleted is not found. 

-force 
suppresses the query "Do you want to unlink ** in <dir path>?" 
when appropriate. 

-long, -IS 
prints a message of the form "Deleted link <p~th>" for each 
link deleted. 

-name STR, -nm STR 
specifies a nonstandard entry name STR (e.g., an invalid 
starname such as *.compout or a name containing <.) 

ACCESS REQUIRED: The user must have modify permission on the 
directory containing the link. 

NOTES: Use delete to delete segments and multisegment files. 
Use delete dir to delete entries. 

For a discussion of links see "Entry Attributes" in the MPM 
Reference Guide. 

3-732 AG92-·03 



------
upper __ case 
--_._--

SYNTAX AS A COMMAND: 

upper case {strs} 

SYNTAX AS AN ACTIVE FUNCTION: 

[upper_case {strs}] 

FUNCTION: returns all strings with 
characters translated to uppercase 
strings are separated from each other 
input string is returned as a separate 
in quotes if necessary. 

EXAMPLES: 

string [upper case Now is the time.] 
NOW IS THE TIME. 

upper case 

lowercase alphabetic 
characters. Returned 

by single spaces. Each 
output string, enclosed 

string [upper case "Now is the time"] 
NOW IS THE rIME 

3-733 AG92-03 



user user 

SYNTAX AS A COMMAND: 

user key 

SYNTAX AS ~N ACTIVE FUNCTION: 

[user key] 

FUNCTION: returns various user parameters. 

LIST OF KEYS: 

abs queue 
queue number in which user's absentee process is running; 
"interactive" if user has no absentee process. 

absentee 
true if the user is an absentee user; otherwise false. 

absin 
absolute pathname of absentee user's absentee input segment 
including the absin suffix; otherwise a null string. 

absout 
absolute pathname of absentee user's absentee output segment; 

, otherwise a null string. 

anonymous 
true if the user is an anonymous user; otherwise false. 

attributes 
user's attributes determined 
are separated by a comma and a 
The attributes are chosen from 

at login time. The attributes 
blank and end with a semicolon. 
the follo.wing: 

auth 

administrator multip 
anonymous 
brief 
daemon 
dialok 
guaranteed login 
igroup 

no eo 
no prime 
no=secondary 
no_warning 
nobump 
nolist 

nopreempt 
nostartup 
preempting 
primary line 
v outer-module 
vhomedir 
vinitproc 

short string for the authorization of the user's process or 
system_low. 

3-734 AG9:2-03 



user user 

auth long 
long string (in quotes) for the authorization of the user's 
proeess or "system_low". 

brief bit 
true if the user specified the -brief control argument in the 
login line; otherwise false. 

charge type 
devIce charge type,associated with the user's terminal. 

cpu secs 
user's CPU usage (in seconds) since login, in the form "sss.t" 
with leading zeros suppressed. 

device channel 
I/O--device channel associated wi th user's terminal. 

group 
user's load control group. 

initial term id 
userTs terminal identifier code at login. 

initial term type 
userTs t~rminal type at login. 

line type 
lIne type of the user's terminal. It can have one of the 
following values: 

MC Sync SYNC1 
TELNET G115 SYNC2 
none SSC SYNC3 
ASCII 202ETX POLLED VIP 
1050 ASYNC1 VIP 
2741 ,ASYNC2 
ARDS ASYNC3 

log_time 
user connect time (in minutes) since login, the form "mmm.t". 

login date 
date at login time, in the form "mm/dd/yy". 

login time 
time of login, in the form "hhmm.t". 

login word 
word used to log in, i.e., login, enter, enterp. 

3-735 AG92-03 



user user 

max auth 
short string for the maximum authorization of the userts 
process or "system low". 

max auth long -
long string (in quotes) for the maximum authorization of the 
user's process or "system_low". 

n processes 
- number of processes created for the user since login; this 

number equals 1 plus the number of new_proc commands plus the 
number of fatal process errors. 

name 
user's User_id at login time. 

outer module 
inItial outer module for the terminal channel. 

preemption time 
time at which the primary user becomes eligible for group 
preemption, in the form "hhmm.t". 

process id 
userTs process identification in octal. 

process type 
userTs process type. It can have one of the following values: 

interactive 
absentee 
daemon 

process overseer 
name-of user's process overseer. 

project 
user's Project_ide 

protected 
true if the user is currently a primary user and protected 
from preemption; otherwise false. 

secondary 
true if the user is currently subject to preemption; otherwise 
fal se . 

service type 
servIce type of the user's terminal. It can have one of the 
following values: 

login 
FTP 

3-736 



user user 

term fd 
user's terminal identifier code. It is "none" if the user's 
terminal does not have the answerback feature. 

term type 
user's terminal type, which 
defined in the terminal 
Communications I/O. 

weight 

can be any terminal 
type file described 

loading factor system assumes for user's process. 

3-737 

type 
in 

name 
MPM 

AG92-03 



verify verify 

SYNTAX AS A COMMAND: 

verify strA strB 

SYNTAX AS AN ACTtVE FUNCTION: 

[verify strA strB] 

FUNCTION: return~ an integer representing the first character 
position in strA th~t contains a character that does not occur 
anywhere in strB. If every character of strA occurs in strB, 
o is returned. 

EXAMPLES: The following interactions illustrate the verify 
act· i v e fun c t ion. 

string [verify chart chapter] 
0 
string [verify chapter chart] 
4 
string [verify 31 0123456789] 
0 
string [verify 31q22 0123456789] 
3 

3-738 AG92-03 



vfile_adjust (vfa) vfile_adjust (vfa) 

SYNTAX AS A COMMAND: 

vfa path {-control arg} 

FUNCTION: adjusts structured files left in an inconsistent state 
by an interrupted opening, or unstructured files in any stat~. 

ARGUMENTS: 

path 
is the pathname of a file to be adjusted. 

CONTROL ARGUMENTS: 
must be specified only for unstructured files and can be 
selected from the following: 

-set nl 
if the last nonzero byte in the file is not a newline 
character, a newline character is appended. The bit count of 
the file's last nonempty segment is then set to the file's 
last nonzero byte (which is now sure to be a newline 
character). 

-use nl 
the file is truncated after the last newline character. 

-set bc 
tEe bit count of the file's last nonempty segment is set to 
the last nonzero byte in that segment. Any components beyond 
it are deleted. 

-use bc {N} 
the file is truncated to the byte specified 
of multisegment file -component N. If N is 
is taken to be the last nonempty component. 

by the bit count 
not specified, it 

NOTES: For unstructured files a control argument must specify 
the desired adjustment. Otherwise, no control arguments are 
allowed. A sequential or blocked file is adjusted by 
truncation after the last complete record. An indexed file is 
a~justed by finishing the interrupted operation. 

3-739 AG92-03 



-------------
vfile_adjust (vfar vfile_adjust (vfa) 

See the description of the vfile I/O module (described in the 
MPM Subroutines) for further details. The adjust bit count 
command used with the character control argument is iquiialent 
to vfile adjust used with the -set bc control argument, except 
that the latter only operates on- a file that appears to be 
unstructured. 

3-740 AG92-03 



vfile status (vfs) vfile status (vfs) 

SYNTAX AS A COMMAND: 

vfs path 

FUNCTION: prints the apparent type (unstructured, sequential, 
blocked, or indexed) and length of files. For structured 
files, information about the state of the file (if busy) and 
the file version' (unless current) is printed. The maximum 
record length is printed for blocked files. For indexed 
files, the following statistics are printed: 

1. The number of records in the file, including zero length 
records. 

2. The number of nonnull records in the file, if different 
from the above. 

3. The total. length of the records (bytes). 

4. The number of blocks in the free space list for records. 

5. The .height of the index tree (equal to zero for empty 
files) . 

6. The number of' nodes (each 1K words, page aligned) in the 
index tree. 

7. The total length of all keys (bytes). 

8. The number of keys (if different from record count). 

9. The number of duplicate keys (if nonzero). 

10. The total length of duplicate keys (if any). 

ARGUMENTS: 

path 
is the pathname of a segment or multi segment file. If the 
entryname portion of a pathname denotes a directory, it is 
ignored. If no files are found for the given pathname, a 
message to that effect is printed. If the entry is a link, 
the information returned pertains to the entry to which the 
link pOints.' The star conventiOn is permitted. 

3-741 AG92-03 



vfile status (vfs) vfile status (vfs) 

NOTES: Additional information can be obtained through the status 
command. 

Examples 

Assume that the file foo is in the user's working directory. 
The command line: 

vfile status foo 

might produce the following output: 

type: 
bytes: 

unstructured 
4993 

if the file is unstructured, or: 

type: seq~ential 
record s: 603 

if the file is sequential, or: 

type: blocked 
records: 1200 
max reel: 7 bytes 

if the file is blocked, or: 

type: indexed 
record s: 397 
state: locked 
action: write 
record bytes: 
free blocks: 
index height: 

1 

by this process 
in progress 
3970 

2 
nodes: 3 
key bytes: 3176 

if the file is indexed and a write operation has been 
interrupted in the user's process. 

3-742 AG92-03 



volume dump_switch_off (vdsf) 

SYNTAX AS A COMMAND: 

vdsf paths {-control arg} 

FUNCTION: 
segment. 

turns off the specified volume dump switch of a 

ARGUMENTS: 

paths 
are the pathnames of segments whose dump switches are to be 
turned off. The star convention is accepted. 

control arg 
can Ee one of the following: 

CONTROL ARGUMENTS: 

-incremental, -incr 
turns off only the incremental dump switch. 

-complete, -comp 
turns off only the complete dump switch. 

NOTES: If a switch is off, the segment is not dumped during that 
mode of volume dumping and thus may not be available for 
reloading and retrieval. Both volume dump switches 
(incremental and complete) are on by default for all segments 
when they are created. 'The user is cautioned not to turn off 
both volume dump switches unleSS the segment is easily 
re-createable, is a temporary segment that exists outside the 
process directory, or is privately backed up by some 'other 
means. 

For information on turning a volume dump switch back on, see 
the vOlume_dump_switch_on command. 

The two control arguments are mutually exclusive. If neither 
control argument is specified, both volume dump switches are 
turned off. 

The states of the volume dump switches can be displayed using 
the status command. 

3-743 AG92-03 



---.. ----- ---

-----.--•. ------~------

SYNTAX AS A COMMAND: 

vdsn paths {-control_arg} 

FUNCTION: turns on the specified volume dump switch of a segment. 

ARGUMENTS: 

paths 
are the pathnames of segments whose dump switches are to be 
turned on. The star convention is accepted. 

CONTROL ARGUMENTS: 

-incremental, -incr 
~urns on only the incremental dump switch. 

-complete, -comp 
turns on only the complete dump switch. 

NOTES: It a switch is not on, the segment is not dumped during 
that mode of volume dumping, and thus cannot be reloaded or 
retrieved. Both volume dump switches (incremental and 
complete) are on by default for all segments when they are 
created. Therefore, this command is only needed if the user 
had previously turned off one or both switches with the 
volume_dump_switch_off command. 

The two control arguments are mutually exclusivE~. If neither 
control argument is specified, both volume dump switches are 
turned on. 

The states of the volume dump switches can be displayed by the 
status command. 

3-744 AG92-03 



walk subtree (ws) walk subtree (ws) 

SYNTAX AS A COMMAND: 

ws path command line {-control_args} 

FUNCTION: executes a specified command line in a specified 
directory (called the starting node) and in directories 
inferior to the starting node. The command prints the 
pathname of every directory in which the command line is 
executed. 

ARGUMENTS: 

path 
is the starting 
path of -wd or 
directory. 

command line 

node. This must be the first argument. A 
-working_directory specifies the working 

is the command line to be executed. The entire command line 
is taken to be a single argument. A multiple-word command 
line should be typed as a quoted string. 

CONTROL ARGUMENTS: 

-first N, -ft N 
makes N the first level in the storage system hierarchy at 
which the command line is to be executed where, .by definition, 
the starting node is level 1. The default is -ft 1. 

-last N, -It N 
makes N the last level in the storage system hierarchy at 
which the command line is to be executed. The default is -It 
99999, i.e., all levels. 

-brief, -bf 
suppresses printing of the names of the directories in which 
the command line is ex~cuted. 

-bottom up, -bu 
causes execution of the command line to commence at the last 
level and to proceed upward through the storage system 
hierarchy until the first level is reached. In the default 
mode, execution begins at the highest (first) level and 
proceeds downward to the lowest· (last) level. 

3-745 AG92-03 



walk subtree (w~) 

-priv 
invokes a highly privileged primitive to 
Use of this control argument requires 
hphcs_gate. 

-msf 

._ .. _---------

walk subtree (ws) 

list directories. 
access to the 

treats multisegment files as directories. 
multisegment files are not treated as directories. 

Normally, 

NOTES: The walk subtree command has a cleanup handler. If the 
user quits out of the command and immediately types release 
(rl) the user's directory is changed back to what it was prior 
to the invocation of walk subtree. 

EXAMPLES: To list all segments in the current working directory 
having a two-component name with a second component of pl1 the 
user types: 

ws -wd "list *.p11" 

To list two-component names with a second component of p11 in 
directories subordinate to the working directory named George, 
the user types: 

ws )udd)m)George "list *.p11 11 -all 

3-746 AG92-·03 



where (wh) where (wh) 

SYNTAX AS A COMMAND: 

wh names {-control args} 

FUNCTION: uses the standard search rules to search for a given 
segment or entry point. 

names 
are segment and entry point names. The star convention is NOT 
allowed. 

CONTROL ARGUMENTS: 

-all, -a 
lists the pathnames of all segments and entry points with the 
speeified names that can be found using the current search 
rules, the user's effective access to each segment or entry 
point, and the name of the search rule used to find each 
segment or entry point. (See "Examples" below.) 

-entry point, -ep 
searches for entry points. If a name argument does not 
contain a dollar sign ($), the where command searches for the 
entry point "name$name. 

-segment, -sm 
searches for segments. 
contains a dollar sign. 

This is the default, 
(See "Notes" below.) 

unless name 

NOTES:' The command prints out the full pathname of the segment, 
using its primary name and the entry pOint name if one is 
requested. If the segment or entry point is not in the search 
p~th, an error message is printed. 

The primary name of a storage system entry is the name that is 
first in the list of names on that entry. 

If the -all control argument is not specified, the where 
command prints information only about the first matching 
segment or entry point encountered (using the standard search 
rules). 

"~-141 AG92-03 



where (wh) where (wh) 

The -entry point and -segment control arguments are mutually 
exclusive.- If one of these control arguments is used, all the 
name arguments are assumed to be of the type specified. 

If neither the -entry point nor -segment control argument is 
specified, the where -command scans the name arguments. Any 
name arguments that contain a dollar sign are assumed to be 
names of entry points; all others are assumed to be names of 
segments. 

For a discussion of search rules, see "Search Rules" in the 
MPM Reference Guide. 

EXAMPLES: If a user has a private copy of the cwd command in the 
working directory, and that copy has been initiated, the 
command line: 

wh cwd -all 

prints three lines: 

>udd>Project id>Persbn id>wd>cwd 
(re) search rule "initiated segments" 

>udd>Project id>Person id>wd>cwd (re) search r'ule "wd" 
>sss>cwd (reT search rule "system_library_standard" 

3-748 AG92-·03 



SYNTAX AS A COMMAND: 

wsp search_list en tr yname {-control_arSl---_ 

FUNCTION: returns the absolute pathname(s) of entryname when 
search list name and entryname are specified. The search for 
the entryname is made using the current search paths contained 
iri the specified search list. 

ARGUMENTS: 

search list 
is the name of the search list searched. 

entryname 
is the entryname sought. 

CONTROL ARGUMENTS: 

-all, -a 
specifies that all occurrences of this entryname found by 
searching this search list should be returned. 

NOTES: For a complete list of the search facility commands, see 
the add_search_paths command description in this manual. 

EXAMPLES: In the examples below, the exclamation mark is used to 
indicate the lines typed by the user. To find the include 
file struct.incl.p11 using the translator search list, type: 

wsp translator struct.incl.p11 
>user_dir_dir>Project_id>Person_id>struct.incl.p11 

, 
If the -all control argument is specified, and there is more 
than one occurrence of the specified entryname: 

wsp translator struct.incl.p11 -all 
>user dir dir>Project id>Person id>struct.incl.p11 
>user-dir-dir>Project-id)include>struct.incl.pl1 
>library~dir_dir>include>struct.incl.p11 

3-749 AG92-03 



who who 

SYNTAX AS A COMMAND: 

who {-control_args} {-optional_args} 

FUNCTION: lists the number, identification, and status of all 
users of the system; it prints out a header and lists the name 
and project of each user. The header consists of the system 
name, the total number of users, the current system load, the 
maximum load, the current number of absentee users, and the 
maximum number of absentee users. (See the description of the 
how_many_users command to print only the header.) 

CONTROL ARGUMENTS: 

-long, -lg 
prints the date and time logged in, the terminal 
identification and the load units of each user, in addition to 
the user's name and project. The header includes installation 
identification and the time the system was brought up. If 
available, the time of the next scheduled shutdown, the time 
when service will resume after the shutdown, and the time of 
the previous shutdown are printed. 

-project, -pj 
sorts the output by the Project_id of each user. 

-name, -nm 
sorts the output by the name (Person_id) of each user. 

-interactive, -ia 
lists interactive users. See Notes. 

-absentee, -as 
lists absentee users. See Notes. 

-daemon, -dmn 
lists daemon users. See Note~. 

-brief, -bf 
suppresses the printing of the header. 

LIST OF OPTIONAL ARGUMENTS: 

Person id 
lists only users with the name Person ide 

3-750 AG92-03 



who who 

.Project id 
lists-only users with the project name Project_ide 

Person id.Project id 
lists only users with the name Person id and the project name 
Project_ide 

NOTES: If. the control args -interactive, -absentee, or -daemon 
are not specified, the default is to list all three types of 
users. If one or more of these control args is specified, 
on I y use r s· 0 f the s p e c i fie d t Y P e ( s ) are listed. 

Absentee users are denoted in the list by an asterisk (*) 
followin~ Person_id.Project_id. 

If the who command is. specified with no arguments, the system 
responds with a two-line header followed by a list of· 
interactive users sorted according to login time. (See 
"Examples" below.) 

If the -project and -name control arguments are omitted, the 
output is sorted on login time. Both arguments cannot be used 
together, becaus~ the sort is performed on one key at a time. 

If an optional arg is specified, the header is suppressed even 
i f the - I o·n g co n t r 0 I a r g urn en tis s p e c i fie d . 

It is possible to prevent the user's own name from being 
:listed; to do this, the· user should first contact the project 
. administrator. 

EXAMPLES: To print default information, type: 

who 
Multics 2.0, load 4.0/100.00; 4 users,.O, load 4.0/100.00; 

4 user$, 2 interactive, 1 daemons. 
Absentee users 1/2 

IO.SysDaemon 
I.Jones. Facul ty 
Doe.Work 
Smith.Student* 

3-751 AG92-03 



who who 

To print long information for absentee users on the Student 
project (with no header), type: 

who -absentee -long .Student 
10/21/74 0050.2 none 1.0 Smith.Student* 

To print brief information for all users, type: 

who -brief 
IO.SysDaemon 
Jones.Faculty 
Doe.Work 
Smith.Student* 

3-752 AG92-03 



working_dir (wd) 

SYNTAX AS A COMMAND: 

wd 

SYNTAX AS AN ACTIVE FUNCTION: 

[wd] 

working dir (wd) 

FUNCTION: returns the pathname of the working directory of the 
.process in which it is·invoked. 

3-753 AG92-03 



year 

SYNTAX AS A COMMAND: 

year {dtl 

SYNTAX AS AN ACTIVE FUNCTION: 

[year {dtlJ 

year 

FUNCTION: returns the two-digit number of a year of the century 
from 01 to 99. 

ARGUMENTS~ 

dt 
is a date-time 
convert date to binary . 
current-year-is-used. -

a form in 
If no argument 

3-754 

acceptable to 
is specified, the 

AG92-·03 



zero_segments (zsegs) zero segments (zsegs) 

SYNTAX AS A COMMAND: 

zsegs star names. {-control arg} 

SYNTAX AS AN ACTIVE FUNCTION: 

[zsegs star names {-control arg}] 

FUNCTION: returns the entrynames or absolute pathnames of 
segments with a zero bit count that match one or more star 
names. 

ARGUMENTS: 

star name 
is a star name to be used in selecting the names to be 
returned. 

CONTROL ARGUMENTS: 

-absolute pathname, -absp 
returns absolute pathnames rather than entrynames. 

NOTES: Only one name per segment is returned; i.e., if a segment 
has more than one name that matches star name, only the first 
match found is returned. 

Since each entryname (or pathname) returned by zero segments 
is enclosed in quotes, the c6mmand processor treats iach name 
as a single argument regardless of the presence of special 
characters'in the name. 

3-155 AG92-03 



zero_segments (zsegs) zero_segments (zsegs) 

EXAMPLES: The following interaction illustrates the use of the 
zero_segments active function. 

pwd 
>udd>Apple>Jones 
Is -a 

Segments = 1 , Lengths = 6 . 

r w 0 empty_seg 
re 1 test 
r w 1 test.list 
r w 1 test.pl1 
re 1 prog 
r w 1 prog.list 
r w 1 prog.pl1 

Multisegment-files = 2, Lengths = 110. 

r w 513 prog.output 
r w 251 prog.data 

Directories = 2. 

sma prog stuff 
sma documents 

Links = 3. 

prog.temp2 
prog.temp1 
junk 

string [zsegs *] 
empty_seg 

>udd>Apple>Jones>temp seg 2 
>udd)Apple>Jones>temp-seg-' 
>udd>Apple>Jones>empty_seg 

3-156 AG92-·03 



SECTION 4 

ACCESS TO THE SYSTEM 

This section describes. the requests interpreted by the 
answering service. These requests can only be issued from a 
terminal connected to the answering service; that is, one that 
has just dialed up or one that has been returned to the answering 
service after a session terminated with a "logout -hold u command. 
(For more information on gaining access to the system, see "How 
to Access the Multics System" in the Multics Users' Guide, Order 
No. AL40. 

For clarity, this section identifies two categories of 
answering service requests: preaccess and acc~ss. The preaccess 
requests are necessary because certain terminals do not have an 
answerback. By ~onvention, Multics uses a terminal answerback to 
identify the particular type of device being used. The device 
type is used by the system to interpret all input/output. 
Therefore, for input to be understood by Multics and output 
understood by the user, these requests must be specified before 
the access requests. The access requests connect the terminal to 
a process. This p~ocess may exist already (e.g., dial) or be 
created in response to the request (e.g., login). 

4-1 AG92-03 



dial (d) dial (d) 

SYNTAX AS A COMMAND: 

d dial id {Person id.Project_id} 

FUNCTION: used to connect an additional terminal to an existing 
process. It is a request to the answering service to perform 
the connection and to notify the user's process of the new 
terminal connection. 

ARGUMENTS: 

dial id 
is the identifying keyword that uniquely specifies a logged-in 
process that is accepting dial connections. This keyword is 
supplied by that process when it informs the answering service 
that it is accepting dialed terminals. 

Person id.Project id 
is the Person Id and Project_id of the process that the user 
wishes to con~ect to. This argument is required only if the 
dial id is not registered with the system. 

NOTES: When the dial request is invoked, the answering service 
searches for a logged-in process that is accepting dial 
connections using the dial id specified by the user. If no 
sue h pro c e s s i, S f 0 u n d, the me s sag e "D i a 1 11 n e not act i ve . " 1 s 
printed, and the user can try again, with a different dial_id. 
If a process is found, a one-line message verifying the 
connection is printed. All further messages printed on the 
terminal are from the user process itself. 

This request is administratively restricted. 

The Person id.Project id argument is optional if the dial id 
is registered. All argu~ents must be supplied in the correct 
order. 

If the user process terminates or logs out, a message is 
printed on the terminal, and control of the terminal is 
returned to the answering service. 

Users who wish to accept dialed 
with the dialok attribute, and 

4-2 

terminals must be registered 
so must their project. The 

AG92-03 



dial (d) dial Cd) 

dialok attribute is normally assigned by the project 
administrator. Users who wish to accept dialed terminals 
without specification of the Person id.Project id 'must 
register the dial id with the system adminIstrator. 

4-3 AG92-03 



echo echo 

SYNTAX AS A COMMAND: 

echo 

FUNCTION: 
login. 

used to set the terminal into echoplex mode before 

NOTES: This command is equivilent to: 

modes echoplex 

2/80 4-3.1 AG92-03A 



enter (e) 
enterp (ep) 

SYNTAX AS> A COMMAND: 

e {anonymous name} Project id {-control args} 
ep {anonymous_name} Project_id {-controI_args} 

enter (e) 
enterp (ep) 

FUNCTION: used by anonymous users to gain access to Multics. 
Either one is actually a request to the answering service to 
create a process for the anonymous user. Anonym6us users who 
are not to supply a password use the enter (e) request. 
Anonymous users who are to supply a password use the enterp 
(ep) request. 

ARGUMENTS: 

anonymous name 
is an optional identifier that is not checked by the system, 
but is passed to the user's process overseer as if it were a 
person identifier. If anonymous_name is not specified, it is 
assumed to be the same as the project identifier. 

Project id 
is tfi~ identification of the user's project. 

CONTROL ARGUMENTS: 

-brief, -bf 
suppresses messages associated with a successful login. If 
the standard process overseer is being'used, the message of 
the day is not printed. 

-force 
logs the user in if at all possible, provided the user has the 
guaranteed login attribute. Only system users who perform 
emergency repair function~ have the necessary attribute. 

-home_dir path, -hd path 
sets the user's home directory to the path specified, if the 
user's project administrator allows that user specify a home 
directory. 

-modes STR, -mode STR, -md STR 
sets the 1/0 modes associated with the user's terminal to STR, 
where the string STR consists of modes acceptable to the tty 
1/0 module. (See the tty_ 1/0 module description in the MPH 

4-4 AG92-03 



enter (e) 
enterp (ep) 

enter (e) 
enterp (ep) 

Subroutines for a complete explanation of possible modes.) 
TheSTR string is usually a list of modes separated by commas; 
the STR string must not contain blanks. (See "Examples" 
below. ) 

-no preempt, -np 
refuses to log the user in if login can be achieved only by 
preempting some other user in the load control group. 

-no print off, -npf 
~auses- the system to overtype a string of characters to 
provide a black area for typing the password. 

-no start up, -ns 
Instructs the standard process overseer not to execute the 
user's start_up.ec segment, if one exists, and if the project 
administrator allows the user to avoid it. 

-no warning, -nw 
iuppresses even urgent system 
from the operator, both at 
session. Use of this argument 
who are using a remote computer 
typing out long memoranda, when 
be interrupted by even the most 

-outer module p, -om p 

warning and emergency messages 
login and during the user's 
is recommended only for users 
to simulate a terminal, or are 
the process output should not 

serious messages. 

attiches the user's terminal via the outer module named p 
rather than the user's registered outer module, if the user 
has the privilege of specifying an outer module. 

-print off, -pf 
sup~resses overtyping for the password. 
determined by the terminal type. 

The default is 

-~rocess overseer path, -po path 
sets ~he user's process overseer to the procedure given by the 
path specified, if the user's project administrator allows 
that user to specify a process overseer. If path ends in the 
characters ",direct", the specified procedure is called 
directly during process initialization rather than by the 
init_admin procedure provided by the system. This means that 
the program specified by path must perform the tasks that 
would have been performed by the init_admin procedure. 

-ring N, -rg N 
sets the user's initial ring to be ring N, if this ring number 

4-5 AG92-03 



enter (e) 
enterp (ep) 

enter (e) 
enterp (ep) 

is greater than or equal to the user's registered initial ring 
and less than the user's registered maximum ring. 

-subsystem path, -S5 path 
creates the user's process using the prelinked subsystem in 
the directory specified by path. The permission to specify a 
process overseer, which may be given by the user's project 
administrator, also governs the use of the -subsystem 
argument. To override a default subsystem by the project 
administrator, type -ss "". 

-terminal type STR, -ttp STR 
sets the user's terminal type to STR, where STR is any 
terminal type name defined in the standard terminal type 
table. (To obtain a list of terminal types, refer to the 
print terminal types command.) This control argument 
overrIdes the default terminal type. 

NOTES: If neither the -print off nor -no print off control 
argument is specified at log-in, the system attempts to choose 
the option most appropriate for the user's terminal type. 

If the project administrator does not allow the user to 
specify the -subsystem, -outer module, -home dir, 
-process_overseer, or -ring control arguments or if- the 
administrator does allow one or more of these control 
arguments an~ they are incorrectly specified by the user, a 
message is printed and the login 1s refused. 

4-6 AG92-03 



hangup hangup 

SYNTAX AS A COMMAND: 

hangup 

FUNCTION: terminates communication between the terminal and 
Multics system. If the communication is via a dial-up phone 
line, the line is 'hung up. A user who is unable to log in can 
issue the 'hangup request as an alternative to manually hanging 
up the phone. 

4-7 AG92-03 



hello hello 

SYNTAX AS A COMMAND: 

hello 

FUNCTIO~: repeats the greeting message that is printed whenever 
'a terminal is first connected to the system. The request is 
particularly useful after a 963 or 029 request since the 
greeting message is then printed in the proper code. 

4-8 AG92-03 



login (1) login (1) 

SYNTAX AS A COMMAND: 

1 Person_id {Project_id} {-control args} 

FUNCTION: used to gain access 
the answering service to 
procedure, and then either 
connect the terminal to 
belonging to the user. 

ARGUMENTS: 

Person id 

to the system. It is a request to 
start the user identification 

create a proces for the user, or 
an existing disconnected process 

is {he user's registered personal identifier. This argument 
must be supplied. The personal identifier can be replaced by 
a registered "login alias" if the user has one. Aliases, like 
personal identifiers, are registered by the system 
administrator and are unique at the site. The login alias is 
translated into the user's personal identifier during the 
login proces~, and there is no difference between a user 
process created by supplying a personal identifier and one 
created by supplying an alias. 

Project id 
is tEe identification of the user's project. If this argument 
is not supplied, the default project associated with the 
Person id is used. See the -change default project control 
argument below for. changing the default project to the 
Project_id specified by this argument. 

CONTROL ARGUMENTS: 
The following is an alphabetized listing of control arg names. 
Complete description of these control arguments is provided in 
one of the three functional lists that appear below. 

-authorization 
-brief 
-change default auth 
-change-detault-pr6ject 
-change-password 
-connect 
-create 
-destroy 
-force 
-generate password 
-home dir-
-list 

4-9 AG92-03 

I 
I 



login (1) 

-modes 
-new_proc 
-no preempt 
-no-print off 

I -no=save_on_disconnect 
-no_start_up 
-no warning 
-outer module 
-print=off 
-process overseer 
-ring 

I -save on disconnect 
-subsystem 
-terminal type 

LIST OF GENERAL CONTROL ARGUMENTS: 

login (1) 

The following are permitted in any use of the login command: 

-brief, -bf 
suppresses messages associated with a successful login. If 
the standard process overseer is being used, the message of 
the day is not printed. 

-change default auth, -cda 
changes the -user's registered default login authorization to 
the authorization specified by the -authorization control 
argument. If the authorization given by the user is valid, 
the default authorization is changed for subsequent logins, 
and the message "default authorization changed" is printed at 
the terminal. If the -cda control argument is given without 
the -auth argument, an error message is printed. 

-change default project, -cdp 
changes the- user's default project to be the Project id 
specified in this login request line (see the description-of 
the Project id argument above). The default Project id is 
changed for- subsequent logins, and the message "default 
project changed" is printed at the user's terminal. If the 
-cdp control argument is specified without a Project_id 
argument, an error message is printed. 

-change password, -cpw 
chan~es the user's password to a newly given password. The 
login request asks for the old password before it requests the 
new one. It requests the new one twice, to verify the 
spelling. If it is not typed the same both times, the login 
and the password change are refused. If the old password is 
correct, the new password replaces the old for subsequent 
logins, and the message "password changed" is printed at the 

4-10 AG92-03 



login (1) login (1) 

user's terminal. The user should not type the new password as 
part of the control argument. Passwords can be up to eight 
characters long and can not contain imbedded blanks. 

-generate password, -gpw 
changes the user's password to a new password, generated for 
the user by the system. The login request asks for the old 
password first. Then, a new password is generated and typed 
on the user's terminal. The user is asked to retype the new 
password, to verify having seen it. If the user types the new 
password correctly, it replaces the old password for 
subsequent logins, and the message "password changed" is 
printed at the user's terminal. If the user mistypes the new 
password, the login and password change are refused. 

-modes STR, -mode STR, -md STR 
sets the 1/0 modes associated with the user's terminal to STR, 
where the string STR consists of modes acceptable to the tty 
1/0 module. (See the tty 1/0 module description in the MP~ 
Subroutines. for. a compleIe explanation of possible modes.) 
The STR string· is usually a list of modes separated by commas; 
the STR string must not contain blanks. (See "Examples" 
below.) 

-no print off, -npf 
~auses- the system to overtype a string of characters to 
provide a black area for the user to type the password. 

-no warning, -nw . 
suppresses even urgent system 
from the operator, both at 
session. Use of this argument 
who are using a remote computer 
typing out long memoranda, when 
be interrupted by even the most 

warning and emergency messages 
login and during the user's 
is recommended only for users 
to simulate a terminal, or are 
the process output should not 

serious messages. 

-print off, -pf 
sup~resses overtyping for the password. The default for this 
Control argument depends on the terminal type. 

~terminal_type STR, -ttp STR 
sets the user's terminal type to STR, where STR is any 
terminal type name defined in the standard terminal type 
table. This control argument overrides the default terminal 
type. 

LIST OF CONTROL ARGUMENTS FOR PROCESS CREATION: 
The following arguments are to used when requesting the 
creation of a new process. 

4-11 AG92-03 



login (1) login (1) 

-authorization STR, -auth STR 
sets the authorization of the process to that specified by 
STR, where STR is a character string composed of level and 
category names for the desired authorization, separated by 
commas. The STR character string cannot contain any embedded 
blank or tab characters. (The short names for each level and 
category are guaranteed to not contain any blanks or tabs, and 
can be used whenever the corresponding long names do contain 
blanks or tabs.) The STR character string must represent an 
authorization that is less than or equal to the maximum 
authorization of Person id on the project Project ide If this 
control argument is o~itted, the user's regisIered default 
login authorization is used. (See "Access Control" in the MPM 
Reference Guide for more information about process 
authorizations.) 

-force 
logs the user irt if at all possible, provided the user has the 
guaranteed login attribute. Only system users who perform 
emergency repair functions have the necessary attribute. 

-home dir path, -hd path 
sets the user's home directory to the path specified, if the 
user's project administrator allows this choice. 

-no save on disconnect, -nosave 
~ausei tEe user's process to be logged out instead of being 
saved, if it becomes disconnected from its login terminal. 
This argument is used to override a default of 
-save on disconnect, if that default has been set by the 
user'i project administrator. 

-no_preempt, -np 
refuses to log the user in if this can only be done by 
preempting some other user in this user's load control group., 

-no start up, -ns 
Instru~ts the standard process overseer not to execute the 
user's start up.ec segment, if one exists, and if the project 
administrato~ allows this choice. 

-outer_module path, -om path 
attaches the user's terminal via the outer module named path 
rather than the user's registered outer module, if the user is 
allowed this choice. 

-process overseer path, -po path 
sets the user's process overseer to the procedure given by the 
path specified, if the user's project administrator allows 
this choice. If path ends in the characters ",direct", the 

4-12 AG92-03 



login (1) login (1) 

specified procedure is called directly during process 
initialization rather than by the standard procedure provided 
by the system. This means that the program specified by path 
must perform the tasks that would have been performed by the 
standard procedure. 

-ring N, -rg N 
sets the user's initial ring to be ring N, if this ring number 
is greater than or equal to the user's registered initial ring 
and less than the user's registered maximum ring. 

-save on disconnect, -save 
saves-the user's process if it becomes disconnected from its 
login terminal because of a communications line hangup or FNP 
crash. Permission to use the process-saving facility, and the 
setting of whether or not the facility is enabled by default, 
are both under the control of the user's project 
administrator. See the description of the 
no· save on disconnect command elsewhere in this manual. 

-subsystem path, -ss path 
cr~ates the user's process using the prelinked subsystem in 
the directory specified by path. The permission to specify a 
process 6verseer, which can be given by the user's project 
administrator, also governs the use of the -subsystem 
argument. To override a default subsystem specified by the 
project administrator, type -ss. "" 

LIST OF CONTROL ARGUMENTS FOR DISCONNECTED PROCESSES: The 
following are used to specify the disposition of disconnected 
processes. See "Notes on Disconnected Processes" below. 

-connect {N·} 
connects the terminal to the user's disconnected process. If 
more than one such process exists, the process number N must 
be specified. 

·-new proc {N} 
destroys the user's disconnected process and creates a new 
one.. If more than one such process exists, the process number 
N must be specified. 

-destroy {N} 
destroys the user's disconnected process and logs out. If 
more than one such process exists, the process number N must 
be specified. 

-create 
creates a new process without destroying any disconnected 

4-13 AG92-03 

I 
I 
I 

I 
I 



I 

I 

log in (1) login (1) 

processes. This is permitted only for users w~o are allowed 
to have multiple interactive processes. 

-list 
lists the user's disconnected process, showing the process 
number, the time of the original login, and the 1D of the 
channel and terminal that were last connected to the process. 

NOTES: The login request asks for a password from the 
attempts to ensure either that the password does not 
all on the user's terminal or that it is thoroughly 
a string of cover-up characters). The password is a 
one to eight letters and/or digits associated 
Person ide 

user (and 
appear at 
hidden in 
string of 
with the 

After the user responds with the password, the answering 
service looks up the Person id, the Project id, and the 
password in its tibles and v~rifies that the -Person id is 
valid, that the Project id is valid, that the user is a-legal 
user of the project, a~d that the password given matches the 
registered password. If these tests succeed, the user is said 
to be logged in. 

Unless the user already has one or more processes, the normal 
action taken at login is to attempt to create a process. 
First, the load control mechanism is consulted to determine if 
creation of a process for this user would overload either the 
system or the user's load control group. 

If permitted by load control, a process is created for the 
user and the terminal is connected to it (i.e., the terminal 
is .placed under the control of that process). 

The control arguments described above under "List of Process 
Creation Control Argument.s" can be used to spectfy some of the 
attributes of a newly-created process. 

The user might have a disconnected process (one that became 
disconnected from its terminal because of a phone line hangup 
or an FNP crash). In that case, the user can choose among the 
following alternatives: connection of the terminal to the 
process; destruction of the disconnected process, with or 
without the creation of a new one; or logging out without 
affecting the disconnected process. These alternatives are 

4-14 AG92-03 



login (1) login (1) 

described below under "Notes on Disconnected Processes". The 
arguments used to select them are described above under "List 
of Disconnected Process Control Arguments". 

If neither the -print off nor -no print off control argument 
is specified at log-In, the system attempts to choose the 
option most appropriate for the user terminal type. 

Several parameters of the user's process, as noted above, can 
be controlled by the user's project administrator. The 
project administrator can allow the user to override some of 
these attributes by specifying control arguments in the login 
line. 

If the project administrator does not allow the user to 
specify the -subsystem, -outer module, -home dir, 
-process overseer, -save on disconnect~ or -ring co~trol 
argumenti or if the. adminIst~ator does allow one or more of 
these control arguments and they are incorrectly specified by 
the user, a message is printed and the login is refused. 

NOTES ON DISCONNECTED PROCESSES: If a user's project· 
administrator allows it, a user's process can be preserved 
when it becomes disconnected from its terminal because of a 
phone hangup or FNP crash. The user can call back any time 
before the (installation-defined) maximum inactive time and 
ask to be connected to this disconnected process. This 
feature is coritrolled by the -save on disconnect and 
-no save on disconnect control arguments; Ihe-default is set 

·by the user's project administrator. 

'Some users are permitted by their project administrators to 
have several interactive processes simultaneously. These 
users can have more than one disconnected process. Multiple 
disconnected 'prbcesses are numbered consecutively starting 
with 1, in the order of their login times. These process 
numbers must be used as argumen£s when referring to one of a 
se~ of multiple disconnected processes. The number and login 
time of each is printed by the -list argument or the list 
preaccess request. The user can, however, anticipate the 
process numbering and use a number in an argument to the login 
command. The time listed and sorted on is the time of the 
original login from which the process is descended; this time 
is not affected by new_proc or reconnection. 

4-1"5 AG92-03 



I 
login (1) login (1) 

A user with disconnected processes 
the login line, the action to be 
disconnected processes, is told 
disconnected processes and given a 
actions: 

who does not specify, on 
taken with respect to the 
of the existence of the 

choice of the fol1pwing 

1) list the user's disconnected processes; 
2) create an additional process; 
3) connect the terminal to a disconnected process; 
4) destroy a disconnected process, create a new one with the 

same attributes, and connect the terminal to it; 
5) destroy a disconnected process and log out; 
6) log out without affecting any process. 

These are specified by means of the list, create, connect, 
new proc, destroy, and logout preaccess requests.· The 
connect, new proc, and destroy requests take an optiional 
process number as an argument. The help request, when ~ssued 

. from a logged in but disconnected terminal, explains these 
options rather than explaining how to log in. 

EXAMPLES: In the examples below, the lines typed by the user are 
preceded by an exclamation mark (I) and the user's pa$sword 
is shown even though in most cases the system either prints a 
string of cover-up characters to "hide" the password Of" 

temporarily turns off the printing mechanism of the user's 
terminal. 

Probably the 
specify just 
password) as: 

most common form 
the Person id and 

login Jones Demo 
Password: 
mypass 

of the login request is to 
the Project_id (and th~n the 

i 

To set (or change) the default project to Demo, type: 

login Jones Demo -cdp 
Password:! mypass 
Default project changed. 

To set the tabs and crecho I/O modes so the terminal uses tabs 
rather than spaces where appropriate on output and echoes a 

4-16 AG92-03 



login (1) login (1) 

carriage return when a line feed is typed (assuming the user 
has a default project), type: 

login Jones -modes tabs,crecho 
Password: 
mypass 

To change the password from mypass to newpass (assuming the 
user has a default project), type: 

login Jones -cpw 
Password: 
mypass 
New Password: 
newpass 
New Password Again: 
newpass 
Password changed. 

The following example illustrates a 
disconnected process. 

login involving a 

login Jones.Demo 
Password: 

. mypass 

You have 1 disconnected process. 
Jones.Demo logged in 11/16/79 1435.9 est Fri 

from ROSY terminal "none" 
Last login 11/16i79 1435.1 estFri 

from ROSY terminal "none" 
. Please give instructions regarding your 

disconnected process(es). 
Please type list, create, connect, new_proc, destroy, 

logout, or help. 

list 
1) logged in 11/16/79 1435.1 est Fri over channel a.h001, 

terminal "none" 
Please type list, create, connect, new_proc, destroy, 

logout, or help. 

connect 
Your disconnected process will be connected to this terminal 
Wait· for QUIT. 
QUIT 
r 1503:03 .47 12 Level 2 

4-17 AG92-03 



I 

logout logout 

SYNTAX AS A COMMAND: 

logout {-control args} 

FUNCTION: terminates a user session and ends communication with 
the Multics system. It is used from a terminal that is logged 
in but not connected to a process. It informs the answering 
service that the user who gave a correct Person id password 
combination is no longer using the terminal. 

CONTROL ARGUMENTS: 

-hold, -hd 
the user's session is terminated. However, communication with 
the Multics system is not terminated, and a user can 
immediately log in without redialing. 

-brief, -bf 
no logout message 
argument has been 
either. 

is printed, and if 
specified, no login 

4-18 

the -hold control 
message is printed 

AG92-03 



modes modes 

SYNTAX AS A COMMAND: 

modes mode string 

FUNCTION: used to set terminal modes before login. 

ARGUMENTS: 

mode string 
is a list of modes to be set. 

2/80 4-18.1 AG92-03A 



slave ~J.ave 

SYNTAX AS A COMMAND: 

slave 

FUNCTION: changes the service type of the channel from login to 
slave for the duration of the connection. 

NOTES: The slave command enables a privileged process to request 
the answering service to assign the channel to it, and then 
attach it. Refer to the description of the dial manager 
subroutine in the MPM Subsystem Writers' Guide- for an 
explanation of the mechanism for requesting channels from the 
answering service. 

4-19 AG92-03 



terminal type (ttp) terminal type (ttp) 
-_._--_._-_.--_._-

SYNTAX AS A COMMAND: 

ttp terminal type name 

FUNCTION: used to set the terminal type prior to login. 

ARGUMENTS: 

terminal type name 
is thi nami of a system defined terminal type. 

2/80 4-19.1 AG92-03A 



MAP MAP 

SYNTAX AS A COMMAND: 

MAP 

FUNCTION: tells the system that the user is attempting to gain 
access from a terminal whose keyboard generates only uppercase 
characters. This request must be invoked before the access 
requests (e.g., login) can be successfully issued. 

NOTES: Once the request has been issued, the system changes the 
translation tables used by the terminal control software so 
that all uppercase alphabetic characters are translated to 
lowercase. The user still needs to use the special escape 
conventions to represent the ASCII graphics that are not on 
the uppercase-only t~rminal keyboard. Uppercase alphabetic 
characters also require the escape conventions. (See "Escape 
Characters" in the MPM Reference Guide.) After the map 
request is given, the user may log in normally. 

This request must be used for 150-, 300-, and 1200-baud 
terminals if their keyboards can transmit only uppercase 
characters; for any other terminal type, it is ignored. 

EXAMPLES: The following example shows a user invoking the MAP 
request. The lines typed by the user are preceded by an 
exclamation mark (I). 

MAP I LOGIN \JONES \DEMO 
PASSWORD: ! MYPASS 

4-20 AG92-03 



029 and 963 029 and 963 

SYNTAX AS A COMMAND: 

029 

or: 

963 

FUNCTION: requests tell the system whether the user is 
attempting to gain access from a device similar to an EBCDIC 
or Correspondence code IBM Model 2741. These requests must be 
invoked before the access requests (e.g., login) can be 
successfully issued. 

NOTES: If the user attempts to log in from a device similar to 
an EBCDIC or Correspondence code IBM Model 2741, the system 
returns a "Type 'help' for instructions" message accompanied 
by a partially readable line. For example, 

cidu #63 cqn U:"XVOXK Type 029 for Correspondence code. 

or 

Type 963 for EBCDIC. Ula; z17 qis Fiss;nairp;rf; fip;-

The user should respond to this message by typing the 
specified request. 

Once the request has been issued, the system changes the 
translatibn tables used by the terminal control software so 
that all input/output is readable. The user can then log in 
normally. 

These requests are valid for 
IBM Model 2741 only; for any 
ignored. 

134-baud devices similar to an 
other terminal type, they are 

The names (963, 029) of the requests are actually the standard 
part n~mbers of the usual typeballs for EBCDIC and 
Correspondence code IBM Model 2741s, respectively. 

4-21 AG92-03 





APPENDIX A 

OBSOLETE COMMANDS 

This appendix contains selected Multics system commands that 
are obsolete. They appear in alphabetical order for user 
convenience. 

A-1 AG92-03 



fs chname fs chname 

SYNTAX AS A COMMAND: 

fs chname dir name entryname oldna~e newname 

FUNCTION: The fs chname command is an interface to the storage 
system sUbroutIne hcs $chname file (described in the MPM 
Subroutines). It causes an entryname of a specified segment 
to be replaced, deleted, or added. 

ARGUMENTS: 

dir name 
Is the directory name portion of the pathname of the segment 
in question. 

entryname 
is the entryname portion of the pathname of the segment in 
question. 

oldname 
is an old entryname to be deleted. See "Notes H below. 

newname 
is a new entryname to be added. See "Notes" belo~l. 

ACCESS REQUIRED: The user must have modify permission on the 
directory containing the entry in order to make any name 
changes. 

NOTES: This command interprets none of the special command 
system symbols (e.g., *, » and thus allows the user to bypass 
the star convention or to manipulate strangely named segments. 
For segments with ordinary names, the rename, ;add name, and 
delete name commands perform the same function. -

Since the -name control argument of the rename command allows 
the user to ignore special command system symbols and thus 
give a strangely named entry an ordinary name, the fs chname 
command is now obsolete. It is documented here for 
compatibility and will be removed at the next update. 

A-2 AG92-03 



fs chname fs chname 

When both an old entryname and a new entryname appear in the 
command line, the new entryname replaces the old entryname. 
This is equivalent to using the rename command. 

If the old entryname is a null character string ('''') , then the 
new entryname is added to the segment. This is equivalent to 
using the add name command. 

If the new entryname is a null character string (If"), then the 
old entryname is deleted from the segment. This is equivalent 
to using the delete name command. 

A-3 AG92-03 



mail (rnl) mail (ml) 

SYNTAX AS A COMMAND: 

ml path Person idl.Project idl 
{-control-args} -

or: 

ml {destination} {-control args} 

FUNCTION: sends a message to another user or prints messages in 
any mailbox to which the user has sufficient access. 

ARGUMENTS: 

path 
is the pathname of a segment to be sent or is an asterisk (*) 
to indicate that the user wishes to type a messagE~ to be sent 
(see "Notes on Composing Mail" below). 

Person idi 
is ~he-person name of a person to whom mail is to be sent. 

Project idi 
is the name of a project on which Person idi is registered. 

Mail is sent to the mailbox 
>udd>p3Project idi>Person idi>Person idi.mbx for each 
Person_idi.proJect_idi argument in the command line. 

CONTROL ARGUMENTS: 

-acknowledge, -ack 
requests acknowledgement of the pieces 
acknowledgement consists of the string: 

"Acknowledge message of (date-time sent)" 

of mail. The 

and is sent as an interactive message by the mail command when 
the mail command is invoked to print mail. 

-no notify, -nnt 
suppresses the sending of an interactive uYou have mail" 
notification. 

A-4 AG92-03 



---_ •• _--

mail (ml) mail (ml) 

-pathname path, -pn path 
specifies a mailbox by pathname. The mbx suffix is assumed. 

To print messages sent by the mail and send_message commands: 

Syntax: ml {destination} {-control args} 

ARGUMENTS: 

destination 
can b~ of the form Person id.Project id to specify a mailbox. 
The default is the user's default mailbox. If destination 
contains a < or >, it is the pathname of a mailbox. The mbx 
suffix is assumed in this case. 

CONT'ROL ARGUMENTS: 

-header, -he 
prints only the header line for each message. No messages are 
deleted. 

-match STR 
prints messages sent by users whose Person id.Project_id 
matches the Person id. Project id specified ,in STR. If the 
'-exclude control argument has- been specified, exclusion is 
performed before matching. The star convention is allowed. 

-exclude STR, -ex STR 
ignores messages sent by users whose Person id.Project id 
matches the P~rson id.Project id specified in STR. The s~ar 
convention is allo~ed. If tEe -match control argument has 
been specified, exclusion is performed before matching. 

:"'brief, -bf 
prints the total ,number ,of messages in the mailbox. If the 
mailbox is empty, nothing is printed. 

-pathn~me path, -pn path 
specifies a mailbox by pathname. The mbx suffix is assumed. 
This control, argument cannot be used with the destination 
argument. 

A-5 AG92-03 



mail (ml) mail (ml) 

NOTES ON PRINTING MAIL: When the contents of the mailbox named 
by path are printed, they are preceded by a line of the form: 

N messages. 

Each message is preceded by a line of the form: 

i) From: Person id.Project id (sent from) date time (N lines) 

where: 

i 
is the incremental number of the message. The oldest message 
is numbered 1, the next oldest is 2, and so on. The messages 
are printed in ascending numerical order. 

Person id' 
is the registered person identifier of the user who sent the 
message. 

Project id 
is the name of the project on which the sender was logged in 
when he sent the message. 

sent from 
is an optional field that further identifies the sender, e.g., 
the log-in name of an anonymous user, if he has one. 

date 
is the date the message was sent, of the form mm/dd/yy to 
indicate the month, day, and year. 

time 
is the time the message was sent, of the form hhmm.m zzz www 
to indicate the hours, minutes, and tenths of minutes in 
24-hour time followed by the time zone and day of the week. 

N lines 
is the number of lines in the message. 

After printing all messages, the mail command asks whether the 
user wants the messages deleted. If the answer is yes~ all 
messages in the mailbox are deleted. If the answer is no, no 
messages are deleted. In either case, the user returns to 
command level. 

A-6 AG92-03 



mail (ml) mail (ml) 

If the user issues a quit signal while the messages in the 
mailbox are being printed and then issues the 
program interrupt command, the mail command stops printing and 
asks whether to delete all messages in the mailbox, including 
those that were not printed. 

NOTES:: The extended access used on mailboxes, which are ring 1 
segments, permits the creator of a m~ilbox to control other 
users' access to it. Adding, reading, and deleting messages 
are independent privileges under extended access. For 
example, one user can be given access to only add messages, 
another user to add messages and to read and delete only the 
messages he or she has added. For more information on 
extended access, see "Notes on Extended Access" below. Mail 
and interactive messages sent to a user are placed in the 
mailbox: >udd>Project id>Person id>Person id.mbx. For more 
information .on the mail faciTity, see the print mail, 
read_mail, and send_mail command descriptions in this ma~ual. 

If the recipient of mail is accepting interactive messages 
(see 'accept messages in this manual), the recipient receives 
an immediate notification of the form "You have mail from 
Person_id. Proje.ct_id." . 

Segments to be mailed have a maximum length of one record 
(4096 ASCII characters). 

NOTES ON COMPOSING MAIL: If path is *, mail responds with 
~'Input:" and accepts lines from the terminal until a line 
·consisting onl~ of a period (.) is. typed. The typed lines 
are then sent ·to the ~pecifi~d user(s). 

NOTES ON CREATING A MAILBOX: A default mailbox is created 
automatically th~ first time a user prints mail or issues the 
accept messages ·or print~messages commands. The default 
mailbox is: 

>user dir_dir>Project_id>Person id>Person id.mbx 

A-7 AG92-03 



mail (ml) mail (ml) 

NOTES ON EXTENDED ACCESS: Access on a newly created mailbox is 
automatically set to adrosw for the user who created it, aow 
for *.SysDaemon.*, and aow for *.*.*. The types of extended 
access for mailboxes are: 

add a add a message. 

delete d delete any message. 

read r read any message. 

own 0 read or delete only your own messages, i . e . :, 
those sent by you. 

status s find out how many messages are in the mailbox. 

wakeup w send a wakeup when adding a message (used by the 
send message command). 

--

The modes "n", "null", and "" specify null access. 

LIST OF RELATED COMMANDS: Special commands exist to create 
additional mailboxes and to change the attributes of 
mailboxes. These commands, described in the MPM Subsystem 
Writers' Guide, are: 

mbx create 
mbx-delete 
mbx-add name 
mbx-delete name 
mbx-rename
mbx_Iist acl 

mbx set acl 

mbx delete acl 

mbx_set_max_length 
mbx safety switch_on 

mbx safety swi tCh __ off 

create a mailbox. 
delete a mailbox. 
add a name to a mailbox. 
delete a name from a mailbox. 
rename a mailbox. 
list the access control list (ACL) of 
a mailbox. 
change or add entries to the ACL of a 
mailbox. 
delete entries from the ACL of a 
mailbox. 
set the maximum length of a mailbox. 
turn on the safety switch of a 
mailbox. 
turn off the safety switch of a 
mailbox. 

A-8 AG92-03 



print translator search rules 
- (ptsr) 

SYNTAX AS A COMMAND: 

ptsr 

FUNCTION: prints the current 
language translators (pI1, 
include files. 

-----------

print_translator search rules 
(ptsr) 

translator search list 
fortran, basic, etc.) 

used by 
to find 

NOTES: This command has the same effect as "print search paths 
translator". It is recommended that the print-search-paths 
command be used. The synonym for translator search lIst is 
trans. 

A-9 AG92-03 



set translator search rules 
(stsr) 

------------

SYNTAX AS A COMMAND: 

s tsr {paths} 

set translator search rules 
(stsr) 

FUNCTION: manipulates the translator 
languages to find include files. 

search list used by 

ARGUMENTS: 

paths 
are the pathnames of directories to be searched, in the order 
given, when searching for an include file. 

NOTES: The set translator search rules command is identical to 
"set search paths translator". It is recommended that the 
add search paths or set search paths commands be used. The 
synonym for translator is trans~ 

A-10 AG92-03 


	00001
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	002
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	3-001
	3-002
	3-003
	3-004
	3-005
	3-006
	3-007
	3-008
	3-009
	3-010
	3-011
	3-012
	3-013
	3-014
	3-015
	3-016
	3-017
	3-018
	3-019
	3-020
	3-021
	3-022
	3-023
	3-024
	3-025
	3-026
	3-027
	3-028
	3-029
	3-030
	3-031
	3-032
	3-033
	3-034
	3-035
	3-036
	3-037
	3-038
	3-039
	3-040
	3-041
	3-042
	3-043
	3-044
	3-045
	3-046
	3-047
	3-048
	3-049
	3-050
	3-051
	3-052
	3-053
	3-054
	3-055
	3-056
	3-057
	3-058
	3-059
	3-060
	3-061
	3-062
	3-063
	3-064
	3-065
	3-066
	3-067
	3-068
	3-069
	3-070
	3-071
	3-072
	3-073
	3-074
	3-075
	3-076
	3-077
	3-078
	3-079
	3-080
	3-081
	3-082
	3-083
	3-084
	3-085
	3-086
	3-087
	3-088
	3-089
	3-090
	3-091
	3-092
	3-093
	3-094
	3-095
	3-096
	3-097
	3-098
	3-099
	3-100
	3-101
	3-102
	3-103
	3-104
	3-105
	3-106
	3-107
	3-108
	3-109
	3-110
	3-111
	3-112
	3-113
	3-114
	3-115
	3-116
	3-117
	3-118
	3-119
	3-120
	3-121
	3-122
	3-123
	3-124
	3-125
	3-126
	3-127
	3-128
	3-129
	3-130
	3-131
	3-132
	3-133
	3-134
	3-135
	3-136
	3-137
	3-138
	3-139
	3-140
	3-141
	3-142
	3-143
	3-144
	3-145
	3-146
	3-147
	3-148
	3-149
	3-150
	3-151
	3-152
	3-153
	3-154
	3-155
	3-156
	3-157
	3-158
	3-159
	3-160
	3-161
	3-162
	3-163
	3-164
	3-165
	3-166
	3-167
	3-168
	3-169
	3-170
	3-171
	3-172
	3-173
	3-174
	3-175
	3-176
	3-177
	3-178
	3-179
	3-180
	3-181
	3-182
	3-183
	3-184
	3-185
	3-186
	3-187
	3-188
	3-189
	3-190
	3-191
	3-192
	3-193
	3-194
	3-195
	3-196
	3-197
	3-198
	3-199
	3-200
	3-201
	3-202
	3-203
	3-204
	3-205
	3-206
	3-207
	3-208
	3-209
	3-210
	3-211
	3-212
	3-213
	3-214
	3-215
	3-216
	3-217
	3-218
	3-219
	3-220
	3-221
	3-222
	3-223
	3-224
	3-225
	3-226
	3-227
	3-228
	3-229
	3-230
	3-231
	3-232
	3-233
	3-234
	3-235
	3-236
	3-237
	3-238
	3-239
	3-240.0
	3-240.1
	3-240.2
	3-240.3
	3-240.4
	3-240.5
	3-240.6
	3-240.7
	3-241
	3-242
	3-243
	3-244
	3-245
	3-246
	3-247
	3-248
	3-249
	3-250
	3-251
	3-252
	3-253
	3-254
	3-255
	3-256
	3-257
	3-258
	3-259
	3-260
	3-261
	3-262
	3-263
	3-264
	3-265
	3-266
	3-267
	3-268
	3-269
	3-270
	3-271
	3-272
	3-273
	3-274
	3-275
	3-276
	3-277
	3-278
	3-279
	3-280
	3-281
	3-282
	3-283
	3-284
	3-285
	3-286
	3-287
	3-288
	3-289
	3-290
	3-291
	3-292
	3-293
	3-294
	3-295
	3-296
	3-297
	3-298
	3-299
	3-300
	3-301
	3-302
	3-303
	3-304
	3-305
	3-306
	3-307
	3-308
	3-309
	3-310
	3-311
	3-312
	3-313
	3-314
	3-315
	3-316
	3-317
	3-318
	3-319
	3-320
	3-321
	3-322
	3-323
	3-324
	3-325
	3-326
	3-327
	3-328
	3-329
	3-330
	3-331
	3-332
	3-333
	3-334
	3-335
	3-336
	3-337
	3-338
	3-339
	3-340
	3-341
	3-342
	3-343
	3-344
	3-345
	3-346
	3-347
	3-348
	3-349
	3-350
	3-351
	3-352
	3-353
	3-354
	3-355
	3-356
	3-357
	3-358
	3-359
	3-360
	3-361
	3-362
	3-363
	3-364
	3-365
	3-366
	3-367
	3-368
	3-369
	3-370
	3-371
	3-372
	3-373
	3-374
	3-375
	3-376
	3-377
	3-378
	3-379
	3-380
	3-381
	3-382
	3-383
	3-384
	3-385
	3-386
	3-387
	3-388
	3-389
	3-390
	3-391
	3-392
	3-393
	3-394
	3-395
	3-396
	3-397
	3-398
	3-399
	3-400
	3-401
	3-402
	3-403
	3-404
	3-405
	3-406
	3-407
	3-408
	3-409
	3-410
	3-411
	3-412
	3-413
	3-414
	3-415
	3-416
	3-417
	3-418
	3-419
	3-420
	3-421
	3-422
	3-423
	3-424
	3-425
	3-426
	3-427
	3-428
	3-429
	3-430
	3-431
	3-432
	3-433
	3-434
	3-435
	3-436
	3-437
	3-438
	3-439
	3-440
	3-441
	3-442
	3-443
	3-444
	3-445
	3-446
	3-447
	3-448
	3-449
	3-450
	3-451
	3-452
	3-453
	3-454
	3-455
	3-456
	3-457
	3-458
	3-459
	3-460
	3-461
	3-462
	3-463
	3-464
	3-465
	3-466
	3-467
	3-468
	3-469
	3-470
	3-471
	3-472
	3-473
	3-474
	3-475
	3-476
	3-477
	3-478
	3-479
	3-480
	3-481
	3-482
	3-483
	3-484
	3-485
	3-486
	3-487
	3-488
	3-489
	3-490
	3-491
	3-492
	3-493
	3-494
	3-495
	3-496
	3-497
	3-498
	3-499
	3-500
	3-501
	3-502
	3-503
	3-504
	3-505
	3-506
	3-507
	3-508
	3-509
	3-510
	3-511
	3-512
	3-513
	3-514
	3-515
	3-516
	3-517
	3-518
	3-519
	3-520
	3-521
	3-522
	3-523
	3-524
	3-525
	3-526
	3-527
	3-528
	3-529
	3-530
	3-531
	3-532
	3-533
	3-534
	3-535
	3-536
	3-537
	3-538
	3-539
	3-540
	3-541
	3-542
	3-543
	3-544
	3-545
	3-546
	3-547
	3-548
	3-549
	3-550
	3-551
	3-552
	3-553
	3-554
	3-555
	3-556
	3-557
	3-558
	3-559
	3-560
	3-561
	3-562
	3-563
	3-564
	3-565
	3-566
	3-567
	3-568
	3-569
	3-570
	3-571
	3-572
	3-573
	3-574
	3-575
	3-576
	3-577
	3-578
	3-579
	3-580
	3-581
	3-582
	3-583
	3-584
	3-585
	3-586
	3-587
	3-588
	3-589
	3-590
	3-591
	3-592
	3-593
	3-594
	3-595
	3-596
	3-597
	3-598
	3-599
	3-600
	3-601
	3-602
	3-603
	3-604
	3-605
	3-606
	3-607
	3-608
	3-609
	3-610
	3-611
	3-612
	3-613
	3-614
	3-615
	3-616
	3-617
	3-618
	3-619.00
	3-619.01
	3-619.02
	3-619.03
	3-619.04
	3-619.05
	3-619.06
	3-619.07
	3-619.08
	3-619.09
	3-619.10
	3-619.11
	3-619.12
	3-619.13
	3-619.14
	3-619.15
	3-619.16
	3-619.17
	3-619.18
	3-619.19
	3-619.20
	3-619.21
	3-619.22
	3-619.23
	3-619.24
	3-619.25
	3-619.26
	3-619.27
	3-619.28
	3-619.29
	3-619.30
	3-619.31
	3-619.32
	3-619.33
	3-620
	3-621
	3-622
	3-623
	3-624
	3-625
	3-626
	3-627
	3-628
	3-629
	3-630
	3-631
	3-632
	3-633
	3-634
	3-635
	3-636
	3-637
	3-638
	3-639
	3-640
	3-641
	3-642
	3-643
	3-644
	3-645
	3-646
	3-647
	3-648
	3-649
	3-650
	3-651
	3-652
	3-653
	3-654
	3-655
	3-656
	3-657
	3-658
	3-659
	3-660
	3-661
	3-662
	3-663
	3-664
	3-665
	3-666
	3-667
	3-668
	3-669
	3-670
	3-671
	3-672
	3-673
	3-674
	3-675
	3-676
	3-677
	3-678
	3-679
	3-680
	3-681
	3-682
	3-683
	3-684
	3-685
	3-686
	3-687
	3-688
	3-689
	3-690
	3-691
	3-692
	3-693
	3-694
	3-695
	3-696
	3-697
	3-698
	3-699
	3-700
	3-701
	3-702
	3-703
	3-704
	3-705
	3-706
	3-707
	3-708
	3-709
	3-710
	3-711
	3-712
	3-713
	3-714
	3-715
	3-716
	3-717
	3-718
	3-719
	3-720
	3-721
	3-722
	3-723
	3-724
	3-725
	3-726
	3-727
	3-728
	3-729
	3-730
	3-731
	3-732
	3-733
	3-734
	3-735
	3-736
	3-737
	3-738
	3-739
	3-740
	3-741
	3-742
	3-743
	3-744
	3-745
	3-746
	3-747
	3-748
	3-749
	3-750
	3-751
	3-752
	3-753
	3-754
	3-755
	3-756
	4-01
	4-02
	4-03.0
	4-03.1
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18.0
	4-18.1
	4-19.0
	4-19.1
	4-20
	4-21
	4-22
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10

