SERIES 60 (LEVEL 68)
MULTICS PROGRAMMER’'S MANUAL
COMMANDS AND ACTIVE FUNCTIONS

SUBJECT
Additions and Changes to Standard Multics Commands and Active Functions

SPECIAL INSTRUCTIONS
This is the third revision to AG92, dated January 1979.
This revision replaces Addendum A, B, and C of AG92, Revision 2.

The following commands are obsolete and have been moved to Appendix A in
this manual for user convenience.

fs_chname print_trans_search rules

mail set_trans_search_rules

The following commands appear in this manual for the first time:
archive_table no_save_on_disconnect

convert_characters save_on_disconnect

hangup

SOFTWARE SUPPORTED
Multics Software Release 8.0

ORDER NUMBER
AG92-03 , V December 1979

Honeywell

SERIES 60 (LEVEL 68)

MULTICS PROGRAMMER’'S MANUAL
COMMANDS AND ACTIVE FUNCTIONS
ADDENDUM A

SUBJECT

Additions and Changes to Standard Multics Commands and Active Functions

SPECIAL INSTRUCTIONS

This is the first addendum to AG92, Revision 3, dated December 1979.

Insert the attached pages into the manual according to the collating instruc-
tions on the back of this cover.

Note:

Insert this cover after the manual cover to indicate the updating of the
document with Addendum A.

SOFTWARE SUPPORTED
Multics Software Release 8.0

ORDER NUMBER
AG92-03A ' February 1980

26940

PrintedinUSA, Honeywell _

COLLATING INSTRUCTIONS

To update the manual, remove old pages and insert new pages as follows:

Remove v Insert

3-240.1, 3-240.2
3-240.3, 3-240.4
3-240.5, 3-240.6
3-240.7, blank

3-559 through 3-568 . 3-559 through 3-568
3-619, 3-620 : 3-619, blank
3-619.1 through 3-619.32
3-619.33, 3-620

4-3, Ly ’ 4-3, blank
§-3.1, 44

4-18.1, blank

4-19, 4-20 | 4-19, blank
- 4-19.1, 4-20
(:) Honeyweil‘lnformation Systems Inc., 1980 File No.: 1L13

2/80 ' AG92-03A

The MPM Commands is organized into four sections. Section 1
contains general information on the use of the manual as well as a
description, and definition, of format. Section 2 contains a list
of the Multics system commands and active function repertoire,
arranged functionally. Section 3 contains descriptions of selected
standard Multics system commands and active functions, including the
syntax of each, arranged alphabetically. Section 4 describes
requests used to gain access to the system.

The MPM Subroutines is organized into three sections. Section
1 contains a 1list of the subroutine repertoire, arranged
functionally. Section 2 contains_ descriptions of the standard
Multics subroutines, including the “declare statement, the calling

sequence, and usage of each. Section 3 contains the descriptions of
the I/0 modules.

The MPM Subsystem Writers' Guide is a reference of interest to
compiler writers and writers of sophisticated subsystems. It
documents user-accessible modules that allow the user to bypass
standard Multics facilities. The interfaces thus documented are a
level deeper into the system than those required by the majority of
users.

Examples of specialized subsystems for which construction
would require reference to the MPM Subsystem Writers' Guide are:

- A subsystem that ©precisely imitates the command
environment of some system other than Multics.

L A subsystém intended to enforce restrictions on the
services available to a set of users (e.g., an APL-only
subsystem for use in an academic class).

) A subsystem that protects some kind of information in a way
not easily expressible with ordinary access control lists
(e.g., a proprietary linear programming system, or an
administrative data base system that permits access only
to program-defined, aggregated information such as
averages and correlations).

The MPM Peripheral I/0 manual contains descriptions of commands
and subroutines used to perform peripheral I/0. Included in this
manual are commands and subroutines that manipulate tapes and disks

as I/0 devices. '

iii AG92-073

The MPM Communications I/0 manual contains information about the
Multics Communication System. Included are sections on the commands,
subroutines, and I/0 modules used to manipulate communications
I1/0. Special purpose communications I/0, such as binary synchronous
communication, is also included.

Several cross-reference facilities help locate information:

e Each manual has a table of contents that identifies the
material (either the name of the section and subsection or
an alphabetically ordered list of command and subroutuine
names) by page number. ’

L] Each manual contains an index that lists items by name and
page number.

] Individual program descriptions reference other programs
in the same and other manuals.

iv AG92-03

CONTENTS

Page
Section 1 Manual Use and Term Definition. 1-1
' Description of Manual Format 1-1
General Definition of a Command. 1-3
General Definition of an Active
Function. e e e 1-4
Examples of Command vs Active
Function Use 1-4
Errors. 1-4
General Informatlon 1-5
‘Section 2 Reference to Commands and Active
‘ Functions. 2-1
Functional Headlngs of Commands 2-~1
Access to the System. . 2-1
Storage System, Creating and
Editing Segments 2-1

Storage Systen, Segment
Manipulation . .
Storage Systemn, Directory
Manipulation .
Storage System, Access Control
Storage System, Address Space
Control. . .
Formatted Output Fa0111t1es
Language Translators, Compilers,
Assemblers, and Interpreters
Object Segment Manipulation .
Debugging and Performance
Monitoring Facilities. .
Input/Output System Control
Command Level Environment
Communication Among Users .
Communication with the System .
Accounting. . . .
Control of Absentee Computatlons.
Miscellaneous Tools . .
Functional Headlngs of Active
Functions e e e e .
Arithmetic. .
Character String.
Condition Handling.
Conversion.
Date and Time

aaonOYONWT Ul UV W VI NN [\

v AG92-03

"Section 3

CONTENTS (cont)

Input/Qutput.
Logical e e e e e e .
Miscellaneous
Pathname Manipulation . .
Question Asking

Storage System Attrlbutes
Storage System Names. .
User/Process Information.

Commands. . . . e v e e e e
abbrev (ab) . e . . .
accept messages (am). . .

add _name (an) . .
add_search_paths (asp)
add search rules (asr).
adjust_bit count (abec).
after (af).
and

answer, . e e e e e e
apl, VZapl e e e e e e
archlve (ac).

archive table (act)
assign resource (ar). . .
attach audit (ata).
attach_1lv (alv) . . .
basic . . e e e e
before (be) e e e e e
binary (bin).
bind (bd)
bool. « . . .
branches, nonlinks. . . .
nonlinks, see branches
calc. .+ + + v v e e e e
calendar.
cancel abs request (car)
cancel cobol program (ccp).

.

cancel daemon_request (cdr)

cancel resource (cnr) . .

cancel retrieval request (orr)

canonicalize (canon) .
ceil. .

change default wdlr (cdwd)
change error_mode (cem) .
change wdir (ewd)
check iacl. . . . e
check info segs (01s)
close file (ef)
cobol . . e e e e s
cobol abs (cba) e e e
collate

vi

.

O

5}
o)

1]

n)mrun)mrwnjy
1
—NNNNNN OO

| S T T U T O N N R O P I |
WO~ 1NCO OO OUVIUITUTUIU EWwWw NN - a3 —
UFEMDOWOWOUINWOWOREETNNDNUIFW—_L,O0O0WOOoOUTW=0OWO~NTIUINO

wwwwwwwwwwwwwwww*uwwwwwwwwwwwwwwwww

CONTENTS (cont)

collate9.
compare .
compare ascii (cpa)
contents. .
convert characters (cvc)
copy (cp)
copy acl. .
copy cards (ccd) .
copy _characters (cpch).
copy dir (cpd).
copy file (cpf)
copy_iacl dir
copy iacl seg .
create (cT)
create data se ment (cds)
create dir Tod%
cumulative page trace (cpt)
damaged sw_off (dsf).
damaged sw on (dsn)
date. . .
date complled (dtc)
date “time .
day .
day name. .
debug (db).
decat .
decimal (dec)
decode.
default . .
default wdir (dwd)
defer messages (dm)
delete (dl) .
delete acl éda)
delete dir (dd) . .
delete iacl dir (dld)
delete iacl seg (dis)
delete message (dlm).
delete name (dn). . .
‘delete search paths (dsp)
delete search rules (dsr)
detach audit (dta).
detach 1lv (dlv)
directories (dirs)
directory . .
discard output (dco) .
display audit file (daf)
display cobol run unit (der).
display p1110 error (dpe)
divide. .
do.

vii

EAGUEPUE NG NG O U U U U " WU (T R O G G O W S G G S T G S

I
(04)
(@)

LI U TR B DO

SRR LARERDEUVUUWWUWNNN = = oo
WOUTHN = O I U = OWWWO O AUTN OY

@
N

-191

(CAG RGN AU ACARCARGAN AU AUNAV AU RV RS RV AG G ARG AU ARG RS AU RS AG RGN AGA RS

AG92-03

CONTENTS (cont)

dprint (dp)
dpunch (dpn). e e e
dump segment (ds) . e
edm . . . e .+ .
encode. . . .

enter abs request (ear)

enter retTieval request (err)

entries .
entry . « « ¢« « . .
equal . . .

equal name (enm)

exec com (ec)

exists. . .

expand _ cobol source (ecs

fagt. . . .

file output fo . .
revert _output, ro.
syn_ output, so . .
terminal output, to.

revert output, ro SEE file output
syn output, so SEE file output .

terminal output, to SEE
file output. .
files ¢« ¢« « o« « 4+ o« &
floor . .
format llne (fl) .
fortran (ft). . . .
fortran abs (fa)
gcos (gc¢) + + +« + .
general ready (grg.
get pathname (gpn).
get_quota (gq). . .
get system_search_ru
greater o s e & e e
have mail . .
help.
hexadecimal (hex)
high.
high9 . . e e e o s
home dir (hd) « e e e e
hour. .
how_many users (hmu)
if. . . .
immediate messages (1m)
indent (ind). .
index « « « + < ¢ o .
index gset
initiate (in)
io call (io). . . e .
last message (lm)

es.

¢ & =+ 2 o e e 3 e e s e

viii

)

(gss

.

Page

3227
3=232
3-236
3-239 .
3=-241
3242
3-248
3-250
3252
3=-253
3-254
3-255
3-265
3-269
3=272
3-273
3-273
3-273
3=-273
3=-273
3=273

3=-273
3-276
3-278
3-279
3-281
3-281
3-283
3-284
3=291
5-292
3=293
3-294
3-295
3-296
5-316
3-317
3-%318
3-319
3-320
3-321
3-323
3-324
3-325
3-328
3-329
3-331
3-333
3-349

AG92-03

CONTENTS (cont)

last message sender (lms) e « « . . 3=350
last message time (lmt) 3=352
length (n) © 3=353
less. . e e e s e e + « . 32354
line length f11) e e e e e . . . 32355
link (1K) « « « v v ¢ v « « « « . . 32356
links, nonbranches. 3=358
list (1s)« « « « . . 3-360
list abs requests (lar) e e e e . . 32373
list accessible (lac) e e e e e .. 32378
list acl (la)« « . 3=380
1list daemon requests (ldr) « « « . 3382
list help (Ih). . e e e e e e . . 32386
list iacl dir (lld) e e e e e « . . 3-388
list iacl seg (lis) . . .« . . 32390
list not accessible (lnac) 3=392
list ref names (1lrn). . e« . . . 3-304
list_resource_types (1rt) e . . . 3=306
list resources (1r) 3=397
list retrieval _requests (1rr) .« .« 3=400
1080UE. & o « + « o 4 4 4+« o .« . 3-404
long date o 3-405
1OW ¢« ¢ v v 6 v e e e e e e e e e . 3=406

lower case. ¢« v ¢ ¢ v e e 3=407
ltrim . . e+ s e e e e o e o <« « 3=408
1lv_ attached o o e e « « « « 3=409

manage volume pool (mvp) 3-4
master dlrectorles (mdlrs) 3-4
MAX o « o s o o o o o o o o o o « o« 3=4
MEMO. « o« o o o s o o o o o o o« o« o« 3=4
merge e e e o o e+ s & o o« B=4
merge a8011 (ma). 3-4
min . .. 34
MINUS « ¢ ¢ o o o« o o o o o « o o« o« 3B=427
minute. 0 ¢ 3-428
MOAd .« & &« o« o o & o o s o o o« o« o« o 3=429
month . « ¢ ¢ ¢ ¢ ¢ « v « o o « « « 3=43%0
month name. . .« « ¢« ¢« ¢« + « « .+ +« o« 3-43%
move (mv) . . e e e e . . 3=4732
move abs request (mar) e e e . . 3-4735
move daemon request (mdr) 3=437
move dir (mvd). 3=-440
move_quota (mq) N T WA
msfs. e o s e e e o + « o« 32445
nequal. .« « .+ ¢ 4 . 4 4 e e s e . . 3=447
new fortran ¢ . ¢ o . . . 3
NEW PFrOC: « « o « o o o o o o+ o« o « 3
ngreater. + .« + + o+ o« o o o« o« o« . 3=45T7
nless . . « 3
nonmaster dlrectorles (nmdlrs) . 3

ix AG92-03

CONTENTS (cont)

no_save on disconnect
nondirectories (nondirs).
nonfiles.
nonmsfs

nonnull links (nnllnks)
nonsegments (nonsegs)
nonzero files (nzfiles)
nonzero msfs (nzmsfs)
‘nongero_ egments (nzsegs)
not . . e e e e e e e
null llnks

octal (oct)

on. .
or. . e e e
overlay (ov) . . e
page_trace (gt)

path. . . e
picture (plC) e e e
pl1 . . e e

pll abs (pa)

plus. . . .

print (pr) .
print_attach table (pat)
print_auth names (pan). .
print_default wdir (pdwd)
print mail (prm).

print messages pm)
print_motd (pmotd). e
print proc_auth (ppa) . . .
print_request types (prt)
print_search paths (psp).
print search rules (psr).
print wdir (pwd).

probe (pb). . C e
process_dir (pd) .
profile (pf).

program_interrupt (pi).
progress (pg)

qedx. . .

qQUery .« « « .

quotient.

read mail (rdm) . .
ready (rdy)
ready off (rdf)

ready on (rdn). .
release (rl).
rename (rn) . .

repeat query (rq) .
reprint error (re). . .
resolve _linkage error (rle)

20

AG92-03%

CONTENTS (cont)

reserve resource, rsr
resource_usage (ru)
response.

reverse (rv). .
reverse. after (rvaf)
reverse before (rvbe)
reverse_decat (rvdecat)
reverse_index (rvindex)
reverse search (rvsrh).
reverse verify (rvverify)
rtrim . e e e .
run

run cobol (rc)

runoff abs (rfa).
safety sw _off (ssf)
safety sw on (ssn).
save_on_disconnect.
search. .

segments (segs)

send mail (sdm) .

send _message (sm)

send_message acknowledge (sma).

send message express (smx).
send message silent (sms)
set acl (sa).

set _bit count (sbc)

set cc.

set fortran common (sfc)
set _iacl dir (sid).
set_iacl seg (sis).
set_search paths (ssp).
set_search_rules (ssr).
severity.

slave .

sort. .

sort seg (ss)

start (sr).

status (st) .
stop cobol run (scr)
stop_run.

string.

strip . .

strip entry (Spe)
substr. .

suffix.

system. .

tape archive (ta)
terminate (tm).

time.

times

xi

CONTENTS (cont)

trace

trace stack (ts)
translate

trunc .

truncate (tc)

unassign _resource (ur)
underline

unique. .

unlink (ul)

upper_case.

user.

verify.

vfile adJust (vfa)

vfile status (vfs). .
volume dump switch off (vdsf)
volume dump switch on (vdsn).
walk subtree (ws)

where (wh).
where_ search paths, (wsp)
who . . v e
working d1r (wd)

year.

zero segments (zsegs)

xii

AG92-03

CONTENTS (cont)

Page
Section 4 Access to the System. -1
dial (d). 4.2
enter (e) 4y
enterp (ep) Y-y
- hangup. b7
hello . . 4-8
login (1) 4-9
logout. 4-18
slave 4-19
MAP 4-20
029 and 963 421

Index

[N
1
—

xiii AG92-03

PREFACE

Primary reference for user and subsystem programming on the
Multics system 1is contained, in six manuals. The manuals are
collectively referred to as the Multics Programmers' Manual
(MPM). Throughout this manual, references are frequently made to
the MPM. For convenience, these references will be as follows:

Document Referred To In Text As

Reference Guide MPM Reference Guide
(Order No. AG91)

Commands and Active Functions MPM Commands
(Order No. AG92) :

Subroutines MPM Subroutines

(Order No. AG935

Subsystem Writers' Guide MPM Subsystem Writers' Guide
(Order No. AK92)

Peripheral Input/Qutput MPM Peripheral I/0
(Order No. AXH49)

Communications Input/QOutput MPM Communications I1/0
(Order No. CC92)

The MPM Reference Guide contains general information about
the Multics command and programming environments. It also
defines 1items wused throughout the rest of the MPM and, in
addition, describes such subjects as the command language, the
storage system, and the input/output system.

<:> Honeywell Information Systems Inc., 1979 File No.: 1L13
| AG92-03

SECTION 1
MANUAL USE AND TERM DEFINITION
This section deals with the proper wuse of this manual, a

description of +the format wused, and a general definition of

terms. New wusers are particularly encouraged to read this
section.

DESCRIPTION OF MANUAL FORMAT

Section 2 contains a breakdown by function of the programs
described in this manual. Section 3 contains an alphabetized
listing of selected standard Multics system commands and active
functions. Section 4 contains descriptions of those commands
used to gain access to the Multics system.

Each description in this manual closely parallels the info
segment format available online by 1invoking the help command.
Each description provides, minimally, the long (and short) name,
syntax line, and function of +the program. Standard headings, in
the order in which they appear when present, are as follows:

SYNTAX AS A COMMAND:

SYNTAX AS AN ACTIVE FUNCTION:
FUNCTION:

ARGUMENTS :

CONTROL ARGUMENTS:

ACCESS REQUIRED:

NOTES:

EXAMPLES:

All headings appear in capital letters followed by a colon (:).

Some descriptions contain unique headings such as "LIST OF
KEYS", or "LIST OF REQUESTS".

Syntak lines giVe the order of required and optional
arguments accepted by a command or active function. Optional
portions of syntax are enclosed in braces ({}). The syntax for

1-1 AG92-03

active functions is always shown enclosed in brackets ([]), which
are required for active function use. To indicate that a command
accepts more than one of a specific argument, the argument name
is pluralized (e.g., paths, {paths}, {-control args}).

NOTE: Keep in mind the difference between a plural argument
name that is enclosed in braces (i.e., optional) and
one that is not (i.e., required). If +the plural
argument is enclosed in braces, clearly no argument
of that type need be specified. However, if there
are no braces, at least one argument of that type
must be specified. Thus "paths" in a syntax line
could also be written as:

pathl {path2 ... pathn]
The convention of using "paths" rather than the above
is merely a method of saving space. ‘

Different arguments +that must be specified in pairs are
numbered (e.g., xxx1 yyyl {... xxxn yyyn}). To indicate that
the same generic argument must be specified 1in pairs, the
arguments are indicated with letters and numbers (e.g., pathAi
pathBl {... pathAn pathBn}). -

Some of the standard arguments accepted by active functions
are:

str any character string.

num any character string that represents a number,
either decimal or binary. Examples are integers
(5, 1024, or 101b), real numbers (1.37 or
-10.01b), and floating-point numbers (1.3e+4 or
1010.001e+5b).

dat any date-time character string in a form
acceptable to the convert_date_to binary_
subroutine described in MPM Subroutines. Fxamples
are "4/25/79 noon est Sun", "November 7", "7:30 pm
10 June 1980", and "midnight". .

star_name is any pathname or User_id conforming to the star
convention, described under "Star Names" in the
MPM Reference Guide.

Arguments, when present, are listed with a brief description
and the default value if any. To indicate one of a group of the
same arguments, an "i" is added to +the argument name (e.g.,

pathi, User_idi).

The list of control arguments gives the possible values for
-control_args in the syntax line. Both the long and short names

1=2 AG92-03

are given when both exist. Those that take values (the following
argument, as in "-path >udd>m>Foo") generally indicate these
values as follows: ' :

STR any character string; individual command
descriptions indicate any restrictions (e.g., must
be chosen from spec1f1ed list; must not exceed 136
characters).

N number; individual command descriptions indicate
whether it " is octal or decimal and any other
restrictions (e.g., cannot be greater than 4).

DT date-time character string in a form acceptable to
the convert date to binary_ subroutine described
in the MPM Subroutines.

ID : numerical request identifier as described 1in the
‘ MPM Reference Guide.

path | pathname of a storage systen entry; unless
' otherwise indicated, it can be either a relative
or an absolute pathname.

The lines Dbelow are samples of control arguments that take
values:

-access_name STR, -an STR
- -ring N, -rg N

-date DT, -dt DT

-home_dir path, -hd path

The "NOTES" section is used to provide additional
information and cross-reference with other manuals.

Examples, while not extensive, attempt to provide additional
help and insight on the proper use and formatting of commands and
active functions. Lines input by the user are preceded by an
exclamation mark (!). Examples of command use show the response
‘a user can expect to see on the terminal. Examples of active
function use show the return value substituted by the command
processor for the active string.

GENERAL DEFINITION OF A COMMAND

Commands are invoked at the beginning of command lines typed

" to the system, and immediately following unquoted, unbracketed
semicolon (;). Some of the wuses commands have are displaying.
information on the user's terminal, archiving data, and compiling
programs. Each command has a spe01f10 purpose. The default
action performed by a command is generally the most common use of

1-3 AG92-03

the command. Many commands have opﬁional arguments that refine
the actions that are performed. When invoked correctly, moat

commands either print information or modify storage system
entries, but not both. ‘

GENERAL DEFINITION OF AN ACTIVE FUNCTION

Active functions are most frequently used to shorten the
amount of typing required to invoke commands. An active function
is invoked inside an active string, a string surrounded by
brackets ([]), which is replaced by a character string return
value before the command line containing it is executed. Active
functions are often wused in conjunction with +the exec com,
abbrev, and do commands to implement command-language macros.

When several commands are specified on a line, the first is
executed before active functions in the second are expanded, and
so on. Therefore, the execution of a command can affect the
values of active functions appearing later in the line.

Examples of Command vs. Active Function Use

Many programs can be invoked as either command or active
function. The format of the active function return string is
often slightly different from the command's printed output. To
illustrate this difference, examples using the status command and
active function are shown below. In these examples, and all
interactive examples throughout this manual, lines +typed by the
user are preceded with an exclamation mark (!).

! status report! -nm
names: report_first_quarter.runoff
report1.runoff
report1

versus the corresponding status active function and response:
! string |[status reporti -nm|
report_first quarter.runoff reporti.runoff report?

Errors

Commands report errors by signalling command_error and
printing a message. Messages that do not begin with "Warning:"
usually terminate execution of the command, though later commands
on the same line are subsequently executed.

Active functions report errors by signalling
active_function error. Default action is to print a message and
return to command level. The user should respond by typing:

1-4 AG92-03

release

to abort the command line, and then issue a corrected line.

The command_grror and active_function_error conditions are
further described in the MPM Reference Guide.

GENERAL INFORMATION

Users "are encouraged to take advantage of the information
available 1in the manual index. The index alphabetically lists
programs by name and subject (i.e., segment, date/time, resource
limits, etc.). Cross references among program descriptions help
to locate programs applicable to a given task.

- 1-5 AG92-03

SECTION 2

REFERENCE TO COMMANDS AND ACTIVE FUNCTIONS

The Multics commands and active functions documented in this
manual are grouped below according to function. All commands and
active functions are 1listed under at least one functional
heading. Some commands and active functions are 1listed under
more than one heading. Descriptions appear in Section 3 in
alphabetical order.

FUNCTIONAL HEADINGS OF COMMANDS

Access to the System
Storage System, Creating and Editing Segments
Storage System, Segment Manipulation
Storage System, Directory Manipulation
Storage System, Access Control
Storage System, Address Space Control
Formatted Output Facilities
Language Translators, Compilers, Assemblers, and Interpreters
Object Segment Manipulation
Debugging and Performance Monitoring Fa0111t1es
Input/Output System Control
Jommand Level Environment
Jommunication Among Users
>ommunication with the System
Accounting
Control of Absentee Computations
Miscellaneous Tools

Access to the System

dial login
enter logout
enterp

Storage System, Creating and Editing Segments

adjust_bit_count gedx
compare_ascii runoff

2-1 AG92-03

canonicalize

edm

indent
program_interrupt

Storage Systemn,

runoff abs

set_bit count
sort_seg

Segment Manipulation

adjust_bit_count
archive
compare
compare ascii
copy
copy_file
create
damaged sw_off
damaged _sw_on
delete

link

merge ascii

move

set_bit_count

sort_seg

tape archive

truncate

unlink

vfile_adjust

volume _dump switch off
volume dump switch™ _on

Storage System, Directory Manipulation

~add name

cancel retrieval _request
copy_dir

create dir

delete dir

delete name

enter Tetrieval _request
link
1lst_retrleval_requests
list

Storage System, Access Control

check_iacl
copy_ acl

copy_ “iacl dir
copy_lacl_seg
delete acl
delete iacl dir
delete_iacl seg
list_accessible

move dir

rename

safety _sw_ off

safety sw on

status™

tape archive

unlink

vfile status
volume_dump switch off
volume dump switch_on

list_acl _

list not accessible
list iacT dir
list_iacl seg

set acl

set iacl dir
set_iacl seg

Storage System, Address Space Control

add_search paths
add search rules
attach 1v

change default wdir
change “wdir

delete_search_paths

print proc_auth
print_ search_paths
print_search_rules
print wdir
set_search_paths

set_search_rules

AG92-03

“delete search _rules
detach 1v

get system search_rules
initiate

list_ref names

new proc
print_default wdir

Formatted Output Facilities

cancel daemon request
dprint™

dpunch

dump segment

list daemon_requests

terminate

terminate refname
terminate segno
terminate single refname
where - -

where search_paths

move daemon request
overlay

print

runoff

runoff abs

Langdage Translators, Compilers, Assemblers, and Interpreters

apl

basic

bind

cancel cobol ‘program
cobol

cobol_abs

create data segment
display cobol run_unit
expand cobol source
fast

format_cobol source
fortran

fortran abs

Object Segment Manipulation

archive
bind
date_compiled

indent
new_fortran
0ld_fortran
P11

pl1 abs
profile

gedx

run_cobol
runoff

runoff abs
set_fortran common
stop_cobol Trun

Debugging and Performance Monitoring Facilities

attach audit

change error mode
cumulative page trace
debug

display audit file
dlsplay_pl110_error
dump segment

general ready
page_trace

probe

‘profile

progress

ready

ready_off

ready on

repeat_query
reprint_error

resolve linkage error
trace

trace_stack

AG92-03

Input/Output System Control

assign_resource
cancel resource
cancel _daemon_request
close_file
console_output
copy_cards

copy file
discard_output
display_pliio_error
dprint

dpunch

file output

io_call

Command Level Environment

abbrev
add_search_paths
add_search_rules
answer

attach_audit
change_default_wdir
change_error_mode
change_wdir

console output
delete search paths
delete search rules
display audit file
do

exec_com

fast

file output

if

general_ready

get_ system search_rules
line length

memo

Communication Among Users

accept messages
defer messages
delete message
immediate _Mmessages
print_ auth names
print__ mail™

print messages

2-4

line_length
list_daemon_requests
list _resource_types
list_resources
print
print_attach_table
print_request_types
reserve_resource
tape_archive
unassign _resource
vfile adjust

vfile status

new_proc

on

print_default_wdir
prlnt search paths
print_ search rules
prlnt wdir
program*lnterrupt
ready

ready_off

ready_on

release

repeat query
reprint_error
resolve_linkage_ error
run
set_search_paths
set_search_rules
start

stop _run
where_search_paths

read mail

send_mail

send _message
send_message_acknowledge
send _message_express
send_message_silent

who

AG92-03

Communication with the System

cancel retrieval request
check info segs

damaged sw_off
damaged_sw_on

help

how_many users
enter_retrieval request

Accounting

get_quota
move_quota
resource_usage

Control of Absentee Computations

cancel abs_request
cobol abs
enter_abs request
fortran abs
how_many users

Miscellaneous Tools

calc
calendar
canonicalize
decode
encode

list help

list retrieval requests
move abs_request

print motd

volumé_dump switch_off
volume_dump switch_on
who

list abs requests
move abs request
pll abs

runoff abs

who -

manage volume pool
memo

progress

walk subtree

FUNCTIONAL HEADINGS OF ACTIVE FUNCTIONS

Arithmetic
Character String
Condition Handling
Conversion

Date and Time
Input/Output
Logical

Arithmetic

ceil
divide
floor
max
min
minus

Miscellaneous

Pathname Manipulation
Question Asking

Storage System Attributes
Storage System Names
User/Process Information

mod

plus
quotient
times
trunc

AG92-03

Character String

after

before

bool

collate

collate9

copy_characters

decat

format_line

high

high9

index

index_set

length

low

lower_case

itrim
~picture

Condition Handling

on

Conversion

binary
- decimal

Date and Time

date

date time
day —
day_name
hour

long date

Input/Output

io_call

Logical

and
equal
exists
greater
less

2-6

reverse
reverse_after
reverse_ before
reverse decat
reverse index
reverse_search
reverse verfiy
rtrim
search

gtring

substr
translate
underline
unique
upper_case
verify

hexadecimal
octal

minute
month
month_name
time

year

nequal
ngreater
nless
not

or

AG92-03

Miscellaneous

contents
default

Pathname Manipulation

directory
entry .
equal name
path

Question Asking

query
response

Storage System Attributes

lv_attached
status

Storage System Names

branches
default_wdir
directories
entries

files

get _pathname
home_dir

links

master directories
msfs
nondirectories
nonfiles

User/Process Information

have_mail
last_message
last_message_sender
last_message_time

strip
strip entry
suffix

nonmaster_directories
nonmsfs

nonnull links
nonsegments
nonzero files
nonzero_msfs
nonzero_segments
null links
process_dir
segments
working dir
zero_segments

severity
system

- user

AG92-03

SECTION 3

COMMANDS

This section contains descriptions of selected Multics
commands and active functions, presented in alphabetical order.

3-1 AG92-03

- abbrev (ab) abbrev (ab)

SYNTAX AS A COMMAND:

abbrev

FUNCTION: provides the wuser with a mechanism for abbreviating
parts of (or whole) command lines in +the normal command
environment.

NOTES: The abbrev command sets up a special command processor
that is called for each command line input to the system until
abbrev processing is explicitly reverted. The abbrev command

" processor checks each input line to see if it 1is an abbrev
request line (recognized by a period (.) as the first
nonblank character of the 1line) and, if so, acts on that
request. (Requests are described below under "List of Control
Requests.") If +the input line 1is not an abbrev request line
and abbreviations are included in the line, the abbreviations
are expanded once and the expanded string is passed on to the
normal Multics command processor. The abbrev command
processor is, therefore, spliced in between +the listener and
the normal command processor. Note that abbreviations are
expanded only once; i.e., abbreviations cannot be nested.

The abbrev command is driven by a user profile segment that
contains the wuser's abbreviations and other information
pertinent to execution on the wuser's behalf. The profile
segment resides (by default) in the user's home directory. If
the profile gegment is not found, it is created and
initialized with the name Person id.profile where Person id is
the login name of +the user.” For example, if +the user
Washington 1logs in under the States project, the default
profile segment is: v

>user_dir_dir>States>Washingtond>Washington.profile

The profile segment being used by abbrev can be changed at any
time with the .u control request (see below) to any profile
segment in the storage system hierarchy to which the user has
appropriate access. The entryname of a profile segment must
have the suffix profile. A new profile segment can be created
by specifying a nonexistent segment to the .u control request.
The segment 1is then created and initialized as a profile
segment, assuming the user has the necessary access. The user
must be careful not to delete or terminate the segment that is

3-2 AG92-03

abbrev (ab) _ abbrev (ab)

currently being used as his profile unless he first quits out
of abbrev by issuing the .q control request (see below).

The user can suppress expansion of a particular string in a
command line by enclosing it within quotes ("). To suppress
expansion of an entire command 1line, see the .<space> control
request.

A user might want to include the 1invocation of the abbrev

- command in a start up.ec segment so that he is automatically
able to abbreviate whenever he is logged 1in. See +the MPNM
Reference Guide for a definition of start up.ec.

NOTES ON CONTROL REQUESTS: An abbrev request line has a period
(.) as the first nonblank character of the 1line. An abbrev
request line, with the exception of +the .s and .<space>
requests, is neither checked for embedded abbreviations nor
(even 1in part) passed on to the command processor. If the

command line is not an abbrev request line, abbrev expands it
and passes it on to the current command processor.

LIST OF CONTROL REQUESTS: The character immediately after the
period of an abbrev request line is the name of the request.
The following requests are recognized: o

.a <abbr> <rest of line>

add +the abbreviation <abbr> to the current profile segment.

It is an abbreviation for <rest of line>. Note that the <rest
of line> string can contain any characters. If +the
abbreviation already exists, the user 1is asked whether to
redefine it. The wuser must respond with "yes" or "no". The
abbreviation must be no longer than eight characters and must
not contain break characters. '

.ab <abbr> <rest of line>

~ add an abbreviation that is expanded only if found at the
beginning of a 1line or directly following a semicolon (;) in
the expanded 1line. In other words, this is an abbreviation

for a command name.

.af <abbr> <{rest of line>

add an abbreviation +to the profile segment and force it to
overwrite any previous abbreviation with the same name. The
user is not asked whether to redefine the abbreviation.

3-3 AG92-03

abbrev (ab) abbrev (ab)

.abf <abbr> <rest of line>
add an abbreviation that is expanded only at the beginning of
a line and force it +to replace any previous abbreviation with
the same name. The user is not asked whether to redefine the
abbreviation.

.d <abbri> ... <abbrnd>
delete™ the specified abbreviations from +the current profile
segment.

.T

“enter a mode (the default mode) that forgets each command line
after executing it. See the .r and .s requests.

.1 <abbri> ... <abbrn>
list the specified abbreviations and the strings they stand
for. 1If no abbreviations are specified, all abbreviations in
the current profile segment are listed.

.la <letteri> ... <lettern>
list all abbreviations™ starting with the specified letters.
<letteri> is expected to be a single character. If no letters
are specified, all abbreviations in +the current profile
segment are listed.

quit using the abbrev command processor. This request resets
the command processor to the one in use before invoking abbrev

~and, hence, prevents any subsequent action on the part of
abbrev until it is explicitly invoked again.

+»
enter a mode that remembers the last line expanded by abbrev.
See the .f and .8 requests.

.8 <rest of line> _
show the user how <rest of 1line> would be expanded but do not
execute it. The .s request with no arguments shows the user
the last line expanded by abbrev and is valid only if abbrev
is remembering lines. See the .f and .r requests.

.u <profile>

.specify to abbrev the pathname of a profile segment to use.
{profile segment> becomes the current working profile segment.
The user needs "r" access to use the profile segment and "w"
access to add and delete abbreviations.

print the name of the profile segment being used.

3-4 AG92-03

abbrev (ab) ‘ abbrev (ab)

.<{space> <rest of line> -
pass <rest of 1line> on to the current command processor
without expanding it. Using this request, the user can issue
a command line that contains abbreviations that are not to be
expanded.

NOTES ON BREAK CHARACTERS: When abbrev. expands a command line,

' it treats <certain characters as special or break characters.
An abbreviation cannot contain Dbreak characters. Any
character string +that is 1less than or equal to eight
characters 1long and 1is bounded by break characters is a
candidate for expansion. The string is looked wup in the
current profile segment and, if it is found, the expanded form
is placed in (a copy of) the command line to be passed on to
the normal command processor.

The characters that abbrev treats as break characters are:

newline
formfeed
vertical tab
horizontal tab
space :
quote. "
dollar sign $
apostrophe !
grave accent N
period .
semicolon
vertical bar
parentheses
less than
greater than
" brackets
braces

—~—" NS\ A==

EXAMPLES: Suppose that a user 1is typing the segment name suffix
fortran repeatedly while editing FORTRAN source segments. The
user might wish to abbreviate the suffix to "ft" as follows:

Invoke the abbrev command:
! abbrev

Define the abbreviation:

! .a ft fortran

3-5 ' AG92-03

abbrev (ab) abbrev (ab)

Now +that "ft" is defined invoke a text editor +o create or
edit the source segment: :

! qedx
! r sample.ft

In order to write out one of +the segments from gqedx by a
different name, the user must type the expanded name since the
gedx command (and not the abbrev command processor) is
intercepting all terminal input. TFor example, after editing
sample.fortran the user might want to write out the changed
vergsion as example.fortran. This can be done by typing to
gedx: '

! w example.fortran

If instead the user types:

! w example.ft

a segment 1is created by exactly that name (example.ft). 1In
this case, if +the user tries to print the segment while at
command level (by +typing "print example.ft"), +the abbrev
processor expands the command line and the print command looks
for a segment named example.fortran; since no such segment
exists, the print command responds with an error message.

3-6 AG92-03

accept_messages (am) ' accept messages (am)

SYNTAX AS A COMMAND:

am {destination} {-control args}

FUNCTION: initializes or reinitializes the user's process for
accepting messages sent by +the send message command and

notifications of +the form "You have mail." sent Dby the
send_mail command. : ﬂ

ARGUMENTS :

destination

- is of the form Person_id.Project id to specify a mailbox. The
default 1is the user's default mailbox. If destination
contains either < or >, it is assumed to be the pathname of a
mailbox.

CONTROL ARGUMENTS: -

-brief, -bf _
prevents accept _messages from informing the user that it is
creating a mailbox and prints messages in short format (see
the -short control argument below).

-pathname path, -pn path
specifies a mailbox by pathname. The mbx suffix is assumed.
This control argument and the destination argument are
mutually exclusive.

-call {cmdline}
when the message is received, instead of printing it in the
default format, accept messages calls the command processor
with a string of the form: '

cmdline number sender time message {path}

where:

cmdline is any Multics command 1line; cmdline must be
enclosed in quotes if it contains blanks or other
command language characters.

number is the sequence number of the message, assigned
when the -hold control argument is used;
otherwise, number is O.

sender is the User_id of the-person who sent the message.

3-7 ' AG92-03

accept_messages (am) - accept_messages (am)

time is the date-time the message was sent.
message is the actual message sent.
path is +the pathname of +the mailbox +to which the

message was sent. If the message was sent to the
default mailbox, path is omitted.

To reverse the effect of a previously specified -call control
argument, the user can specify the -call control argument with
no cmdline argument.

-flush DT
discards messages sent before the specified date-time, where
DT 1is a string acceptable to +the convert _date to_binary_
subroutine (described in the MPM Subroutines). This control
argument is intended to be used by operators and consultants.

-hold, =hd
holds messages until explicitly deleted by the delete _message
command . Messages printed when the -hold is in effect are
preceded by an identifying number.

-long, -lg
precedes every message printed by the sender's Person_id and
Project_id. This is the default. '

-nohold
reverts -hold

-prefix STR

places the string STR in front of all messages printed as they
are received. The string can be up to 12 characters long and
can contain the ioa_ control strings "/ "| and "~ if desired.

-print, -pr
prints all messages that were received since the last time the
user was accepting messages.

-short, -sh

precedes consecutive messages from the same sender by "=:"
instead of the Person_id and Project_id.

~time N, -tm N
prints undeleted messages every N minutes, preceded by a
message of the form: '

You have X messages

3-8 AG92-03

accept messages (am) accept_messages (am)

where X is the number of undeleted messages. If N equals O,
time mode is reset.

NOTES: The user should not give confliéting control arguments in
the same invocation of the command (i.e., -long and -short or
-long and -brief).

If the mailbox:

>udd>Project_id>Person_id>Person_id.mbx

does not exist, the accept messages command creates it. An
event channel is created to receive wakeups from send message
so that when a message is received, it 1is printed on the
‘user's terminal. Messages sent when the user is not logged in
or when the user is deferring messages (see the defer_messages
command) are saved 'in the mailbox and can be read later by
invoking +the print messages command. The send_mail command
stores mail in the Same mailbox. See "Extended Access" in the
print_mail command description for an explanation of mailbox
access.

Channel and process identifiers are stored in the user's
mailbox. Since only one process can receive a wakeup when a
message 1is placed in the mailbox, it is not advisable for
gseveral users to share the same mailbox.

3-9 AG92-03

add name (an) -add_name (an)

SYNTAX AS A COMMAND:
an path names
FUNCTION: adds alternate name(s) to the existing name(s) of a
segment, multisegment file, directory, or link.
ARGUMENTS:
path
is the pathname of a segment, multisegment file, directory, or
link. .
names

are additional names to be added.

ACCESS REQUIRED: modify on the parent directory.

NOTES: The equal and star conventions can be used. See
"Constructing and Interpreting Names" in the MPM Reference
Guide.

Two entries in a directory cannot have the same entrynane;
therefore, special action is taken by +this command if the
added name already exists in the directory that contains the
path argument. If the added name is an alternate name of
another entry, the name is removed from this entry, added to
the entry specified by path, and +the user is informed of this
action. If the added name is the only name of another entry,
the user is asked whether to delete this entry. If the answer
is "yes", the entry is deleted and the name is added to the
entry specified by path; if the answer is "no", no action is
taken.

See also the descriptions of the delete name and rename
commands.

EXAMPLES:
The command line:

! an >my dir>example.pll sample.pli

3=10 AG92-03%

add_name (an) add name (an)

adds the name -'sample.pl! to the segment example.pll in the
directory >my dir.

The command line:
!' an >udd>**.private ==.public

adds to every entry having a name with private as the last
component a similar name with public, rather than private, as
the last component. v

3-11 AG92-03

~add_search_paths - (asp) add_search_paths (asp)

SYNTAX AS A COMMAND:

asp search_list search_pathl {-control_args}
search_pathN {-control args}

‘FUNCTION: adds one or more search paths to the specified search
list. _

ARGUMENTS:

search list
is tThe name of the search list to which the new search paths
are added. Synonyms of search_list are described in the
individual command descriptions.

search_pathi

specifies a new search path, where search pathi is a relative
or absolute pathname or a keyword. (For a 1isT of acceptable
keywords see "List of Keywords" below.) Each search pathi can
be followed by either the -after, -before, -first, or -last
control argument to specify its position within the search
list. If no .search path position control argument is
specified, -last is assumed.

CONTROL ARGUMENTS:
are used only with the search_path arguments and can be chosen
from the following:

-after STR, -af STR
specifies that the new search path is positioned after the STR
search path. The current search path is an absolute or
relative pathname or a keyword. In representing ©STR it is
necessary to use the same name that appears when the
print_search paths command is invoked. This control argument
is incompatible with -before and -first.

-before STR, -be STR
specifies that +the new search path is positioned Dbefore the
STR search path. This control argument 1is incompatible with
-after and -first.

-first, -ft
specifies that the new search path is positioned as the first
search path 1in the search list. This control argument is
incompatible with -after and -before. : :

3-12 AG92-03

add search paths (asp) add_search_paths (asp)

-last, -1t '
specifies that the new search path is positioned as the last
search path in the search list.

LIST OF KEYWORDS:

Listed below are the keywords accepted as search paths in
place of absolute or relative pathnames. There 1is no

restriction as to the position of any of these keywords within
the search list.

~home_dir, -hd
-process_dir, -pd
-referencing dir, -rd
-working dir, -wd

NOTES: In addition, a pathname can be specified with the Multics
active function |user name] or |user project]. A search path
enclosed in quotes is not expanded when placed in the search
list. It is expanded when referenced in a user's process.
This feature allows search paths to be defined that identify
the process directory or home directory of any user.

If a link target does not exist, the search facility continues
to search for a matching entryname. '

The search facility is composed of the following commands:
add_search_paths, asp

delete_search paths, dsp

print_search_path, psp

set_search paths, ssp

where_search_paths, wsp

EXAMPLES:
The command line:
! asp translator >udd>Project_id>Person_id>include

adds the absolute pathname >udd>Project_id>Person_id>include
ags a search path. This new search path “is positioned as the
last search path in the translator search list.

3173 AG92-03

add_search_paths (asp) add_search_paths (asp)

The command line:
! asp trans <include_files -first
adds the absolute pathname represented by the relative
pathname <include files as a search path +to the trans search
list where trans Is a synonym for translator. This new search
path 1is positioned as the first search path in the search
list.

- The command line:
! agp info info_files -after >docd>info
adds the absolute pathname represented by the relative
pathname info files as a search path to the info search list.
This new search path is positioned in the info search list
after the >doc>info search path.
The command line:

asp translator >udd>[user project]>incl -be >1ldd>include

adds the ‘unexpanded pathname >udd>[user project]>incl +to the

translator search list. This new search path is positioned
before the >ldd>include search path.

3-14 AG92-03

add_search_rules (asr) | add_search _rules (asr)

SYNTAX AS A COMMAND:

asr path1l {-control arg path21} ...
pathin {-control arg path2n}

FPUNCTION: allows the user to change object segment search rules
dynamically. The search rules to be added can be inserted at
any point in the current search rules.

ARGUMENTS :

pathli .
is” usually a pathname (relative or absolute) representing a

directory +to be added to the current search rules. It can
also be a keyword (see "List of Keywords" below).

path2i |
is™ usually a pathname (relative or absolute) representing a
current search rule. It can also be a keyword (see "List of

Keywords" below).

CONTROL ARGUMENTS:
must precede the path2i argument.

-before, -be
place pathii before the current search rule identified by
path2i.

-after, -af
place pathli after +the current search rule identified by
path2i.

"LIST OF KEYWORDS: In addition to pathnames, both the path!1 and
path2 arguments accept the keywords:

initiated_segments

referencing dir.
working dir

LIST' OF PATH1 KEYWORDS: The path1 argument also accepts the
keywords:

3-15 AG92-03

add_search_rules (asr) add_search_rules (asr)

home_dir
process dir
site-defined keywords.

(See the description of the set_search_rules command for an
explanation of the site-defined keywords.)

NOTES: If the add_search_rules command is invoked without the
control arg and path2i arguments, the pathname or keyword
specified by pathli is appended +to the end of +the user's
current search rules.

Any representation of a current search rule is acceptable for

the path2i argument. It is not necessary to use the same name
that appears when the print_search _rules command is invoked.

3-16 : AG92-03

adjust_bit_count (abc) adjust_bit_count (abe)

SYNTAX AS A COMMAND:

abc paths {-control args} *

FUNCTION: sets the bit count of a segment that for some reason does
not have its bit count set properly (e.g., the program that wes
writing the segment got a fault before the bit count was set, or
the process terminated without the bit count being set).

ARGUMENT :

paths ,
are the pathnames of segments and multisegment files. The star
convention is allowed.

CONTROL ARGUMENTS:

-character, -ch . '
set the bit count to the last nonzero character. The default is
the last nongzero word.

-chase
chases links when using the star convention. The default is to
not chase links when using the star convention.

- -long, -lg
print a message when the bit count of a segment is changed, giving
the 0ld and new values.

-no chase

does not chase links when using the star convention. This is the
~default.

ACCESS REQUIRED: The user must have write access on the segment or
multisegment file. Modify on the parent directory is not
required.

NOTES: The adjust bit count command looks for the last nonzero
36-bit word or (if specified) the last nonzero character in the
segment and sets the bit count to indicate that the word or
character is the last meaningful data in the segment.

If the bit count of a segment can be computed but cannot be set
(e.g., the user has improper access to the segment), the

3-17 AG92-03

adjust_bit count (abe) adjust_bit_count (abce)

computed value 1is printed so that the wuser can use the
set_bit_count command after resetting access or performing other
necessary corrective measures. See the description of the
get_bit_count command.

The adjust_bit_count command should not be used on segments in
structured files. The vfile_adjust command should be used to
adjust inconsistencies in structured files.

3-18 AG92-03

~after (af) . after (af)

SYNTAX AS A COMMAND:
af strA strB

SYNTAX AS AN ACTIVE FPUNCTION:
[af strA strB]

FUNCTION: returns +the string following the first occurrence of
strB in strA. If strB does not occur in strA, the null string
ig returned.

EXAMPLES:

! string [after abcdef123def456 def]
123def456
! string [after abcdef gh]

! s%ring [format line XY"aZZ [after 1.4596e+17 7]]
XYZZ T

3-19 : AG92-03

and and

SYNTAX AS A COMMAND:
and tf_args

SYNTAX AS AN ACTIVE FUNCTION:

[and tf_args]

FUNCTION: returns true if all the +tf_args are equal to true,
otherwise it returns false. If any one of +the tf args does
not have the value true or false, an error message is printed.

3-20 AG92-03

answer - answer

SYNTAX AS A COMMAND#‘

answer STR {-control_args} command line

FUNCTION: provides preset answers to questions asked by another
command .

ARGUMENTS :

STR :

is the desired answer to any question. If the answer is more
than one word, it must be enclosed in quotes. If STR is
-query, the question 1is passed on to the wuser. The -query
control argument is the only one that can be used in place of
STR.

command line
~is any Multics command line. It <can contain any number of
separate arguments (i.e., have spaces within it) and need not
be enclosed in quotes.

CONTROL ARGUMENTS:

-brief, -bf
suppresses printing (on +the user's terminal) of both the
question and the answer.

-query
skips the next answer in a sequence, passing on the question
to the user. The answer is read read from the user_io I/O
switch. ' :

-then STR :
supplies the next answer in a sequence.

-times N
gives the previous answer (STR, -then STR, or -query) N times
only (where N is an integer).

NOTES: Answer provides preset responses to questions by
egstablishing an on unit for +the condition command question,
and then executing the designated command. If the designated
command calls the command query_ subroutine (described in the
MPM Subroutines) to ask a question, the on unit is invoked to
supply the answer. The on unit is reverted when the answer
command returns to command level. See "List of System

3-21 AG92-03

answer answer

‘Conditions and Default Handlers" in the MPM Reference Guide
for a discussion of the command gquestion condition.

If a question 1is asked that requires a yes or no answer, and
the preset answer is neither "yes" nor "no", the on unit is
not invoked.

The last answer specified is issued as many times as
necessary, unless followed by the -times N control argument.

EXAMPLES: To delete +the test_dif directory without Ybeing
interrogated by the delete_dir command, type:
! answer yes -bf delete_dir test dir
To automatically see the first three blocks of an info segment
named fred.info and then be interrogated about seeing any more
blocks, type:
! answer yes -times 2 help fred
The help command prints the first block, then prints another
block every time +the user answers yes. In +this example, the

first three blocks are printed before the user 1is
interrogated.

Sequences of answers are especially useful in exec coms and
absentee jobs. To supply the sequence of answers Tyes, no,
no, yes", type:

! answer yes -then no -times 2 -then yes command line

To supply the sequence of answers "no, ask +the user twice,
yes, no", type:

! answer no -query -times 2 ~then yes -then no command line

3-22 AG92-03

SYNTAX AS A COMMAND:

apl {workspace id} {-control args}

FUNCTION: invokés the APL interpreter, optionally 1loading a
saved workspace.

ARGUMENTS ¢

workspace_id :
is +the pathname of a saved workspace to be 1loaded. The
default is +to load the user's continue workspace, if any,
otherwise to provide a clear workspace.

CONTROL ARGUMENTS ¢

-terminal type STR, -ttp STR
- specifies the kind of terminal being used. Possible values of
STR are:

1050

2741

1030

ARDS
ASCII
BITPAIRED
CORR2741
LA36
TEK4013
TEK4015
TELERAY11
N300
TYPEPAIRED

This control argument specifies which one of several character
+translation +tables is to be wused by APL when reading or
writing to the +terminal. Since there are several different
kinds of APL terminals, each incompatible with the rest, it is
important that +the correct +table be used. Specifying a

terminal type to APL changes the terminal type only as long as
APL is active. The default depends on the user's existing
terminal type (refer to the set tty command, in MPM
Communications I/0, CC92). These terminal +types default to
the same APL +terminal +type: 1050, 2741, CORR2741, ARDS,
TN300, TEK4013, TEK4015, ASCII, LA%6, TELERAY11. All other
terminal types default +to ASCII. The APL terminal types

3-23 | AG92-03

apl ‘ apl

R——— [RRSS——

BITPAIRED and TYPEPAIRED are generic terminal +types that can
be used with any APL/ASCII terminal of the appropriate type.

-brief_errors, -bfe
causes APL +to print short error messages. This is the
default.

-long errors, -lge
causes APL +to print long error messages. The short form of
the message 1is printed, followed by a more detailed
explanation of the error.

-user number N
seTs the APL wuser number (returned by some APL functions) to
N. The default is 100. '

-check, -ck
causes a compatibility error to occur if a monadic transpose
of rank greater than 2, or a residue or encode with a negative
left argument is encountered. (The definition of these cases
is different in Version 2 APL from Version 1 APL).

-debug, =-db
causes APL to call the listener (cu $cl) upon system errors.
This puts the user at a new command level. The default is to
remain in APL. This control argument is intended for
debugging apl itself.

-no_qguit_handler, -ngh
causes APL +to ignore the quit condition. The default is to
trap all quite within APL.

~temp_dir path, -td path ‘
changes +the directory that is wused to hold +the temporary
segments that contain the active workspace +to path. The
default is to use the process directory.

NOTES: This command invokes the Version 2 APL interpreter, which
replaces the obsolete Version 1 APL interpreter.

For a complete description of the APL 1language, terminal
conventions, and directions for converting Version 1 APL
workspaces, refer to Multics APL, Order No. AK95.

3-24 AG92-03

archive (ac) archive (ac)

SYNTAX AS A COMMAND:
ac key archive path paths
FUNCTION: combines an arbitrary number of separate segments into

one single segment. The constituent segments that compose the
~archive are called components of the archive segment.

ARGUMENTS :

key
is one of the functions listed below under "List of Keywords."
The key functions are listed according to their operation.

archive path
is the pathname of the archive segment to be created or used.
The archive suffix is added if the user does not supply it.
If the archive segment does not exist for replace and append
operations, it 1is created as described above. The star
convention can be used with extraction and table of contents
operations. '

paths

are the components to be operated on by table of contents and
delete operations. For append, replace, update and extract
operations, each path specifies +the pathname of a segment
corresponding to a component whose name 1is the entryname
portion of +the pathname. The star and equal conventions
cannot be used. (Some operations may not require any path
arguments; refer to the specific operation for details.)

LIST OF OPERATIONS: The archive command performs a variety of
operations that the Multics wuser can employ to create new
archive segments and to maintain existing ones. The
operations are:

Table of contents
print a table of contents of an archive segment.

Append
append components to, or create, an archive segment.

Replace
replace components in, append +to, or create an archive
segment.

3-25 AG92-03

archive (ac) archive (ac)

Update operation
update an archive segment by replacing components with more
recently modified ones.

Delete
delete specified components of an archive segment.

Extract
extract components from an archive segment and place them in
segments in the storage system.

Each of these general operations can be specialized to perform
gseveral functions and, in many cases, can be combined with the
copy and deletion features described below. Such combinations
give the wuser extensive control .over the maintenance o¢f his
archive segments.

LIST OF KEYWORDS:
is one. of the key functions listed below according to their
operation.

Table of Contents Operation:

t
print the entire table of contents if no components are named
by the path arguments; otherwise print information about the
named components only. A title and column headings are
printed at the top.

tl
print the table of contents in 1long form; operates like %,
printing more information for each component.

tb
print the table of contents, briefly; operates like t, except
that the title and column headings are suppressed. :

t1b

print the table of contents in long form, briefly; operates

like t1, except +that +the +title and column headings are
suppressed.

Append Operation:

a
append named components to the archive segment. (The segments

3-26 : AG92-03

archive (ac) archive (ac)

corresponding to the appended components are not affected.)
If a named component is already in the archive, a diagnostic
is 1issued and the component is not replaced. At least one
component must be named by the path arguments. If the archive
segment does not exist, it is created.

ad
append and delete; operates 1like a and +then deletes all
segments that have been appended +to the archive. If the
safety switch is on for any of the corresponding segments, the
user is asked whether to delete the segment.

adf
append and force deletion; operates 1like a and then forces
deletion of all segments +that have been appended to the
archive. ,

ca
copy and append; operates like a, appending components to a
copy of the new archive segment created in the user's working
directory.

cad
copy, append, and delete; operates like ad, appending
components to a copy of the archive segment and deleting the
appended segments.

cadf
copy, append, and force deletion; operates like adf, appending
components to a copy of +the archive segment and forcibly
deleting the segments requested for appending.

Replace Operation:

r
replace components in, or add components to +the archive
segment. When no components are named in the command line,
all components of +the archive for which segments by the same
name are found in the user's working directory are replaced.
When a component is named, it is either replaced or added. If
the archive segment does not exist, it is created.

rd

replace and delete; operates 1like r, replacing or adding
components, then deletes all segments that have been replaced
or added.

3-27 AG92-03

archive (ac) archive (ac)

rdf ‘
replace and force deletion; operates 1like r and forces
deletion of all replaced or added segments.

cr _
copy and replace; operates like r, placing an updated copy of
the archive segment in the user's working directory instead ¢f
changing the original archive segment.

crd
copy, replace and delete; operates like rd, placing an updated
copy of the archive segment in the user's working directory.

crdf
copy, replace, and force deletion; operates like rdf, placing
an updated copy of the archive segment in the user's working
directory.

Update Operation:

u
update; operates like r except that it replaces only those
components for which the corresponding segment has a date-time
modified later than that associated with the component in the
archive. If +the component is not <found in +the archive
gsegment, it is not added.

ud
update and delete; operates like u and deletes all updated
segments after the archive has been updated.

udf
update and force deletion; operates like u and forces deletion
of all updated segments.

cu
copy and update; operates like u, placing an updated copy of
the archive segment in the user's working directory.

cud
copy, update, and delete; operates like ud, placing an updated
copy of the archive segment in the user's working directory.

cﬁdf _
copy, update, and delete force; operates like udf, placing an

updated copy of the archive segment in the wuser's working
directory.

3-28 AG92-03

archive (ac) archive (ac)

Delete Operation:

a)
delete from the archive those components named by the path
arguments.

cd _
copy and delete; operates like d, placing an updated copy of
the archive segment in the working directory.

Extract Operations:

x .
extract from the archive those components named by the path
arguments, placing them in segments in the storage system.
The directory where a segment 1is placed 1is +the directory
portion of the path argument. The access mode stored with the
archive component is ©placed on the segment for +the user
performing extraction. If a segment already exists, this
operation observes the duplicated name convention in a manner
gsimilar to the copy command. If no component names are given,
all components are extracted and placed in segments in the
working directory. The archive segment is not modified.

xf
extract and delete force; operates like x, forcing deletion of
any duplicate names or segments found where the new segment is
to be created.

NOTES: The process of placing segments in an archive is
particularly wuseful as a means of eliminating wasted space
that occurs when individual segments do not occupy complete
pages of storage. Archiving is also convenient as a means of
packaging sets of related segments; it is used +this way when
interfacing with +the Multics binder (see the bind command
description in this document).

The table of contents operation and the extract operation use
the existing contents of an archive segment; the other
operations change +the contents of an archive segment. A new
archive segment can be created with either +the append or
replace operation. In each of the operations that add to or
replace components of +the archive, +the original segment is
copied and the copy is written into the archive, leaving the
original segment untouched unless deletion is specified as
part of +the operation. Use of the various operations is
illustrated in the "Examples" at the end of this description.

3-29 AG92-03

“archive (ac) archive (ac)

The table of contents operation is used to list the contents
of an archive segment. It can be made to print information in
long or brief form with or without column headings.

The append operation is used +to add components to the archive
segment and to create new archive segments. When adding to an
existing archive, 1f a component of the same name as the
gsegment requested for appending is already present in the
archive segment, a diagnostic message is printed on the user's
terminal and +the segment 1is not appended. When several
segments are requested for appending, only those segments
whose names do not match existing components are added to the
archive segment.

The replace operation is similar +to the append operation in
that it can add components to +the archive segment, and
therefore, it is also used +to create new archive segments.
However, unlike the append operation, if a component of the
same name as the segment requested for replacing is already
present in the archive segment, that component is overwritten
with the contents of the segment. When several segments are
requested for replacing, those segments whose names do not
match existing components are added to the archive segment, as
in the append operation.

The update operation replaces existing components only if the
date-time modified of a segment requested for wupdating is
later +than that of the corresponding component currently in
the archive segment. When a segment whose name does not match
an existing component of the archive segment is requested for
updating, it is not added to the archive segment.

The delete operation is used only to delete components from
archive segments. It cannot delete segments from the storage

system and is not analogous to the deletion feature described
below. o

The extract operation is wused to create copies of archive

components elsewhere in the storage system. The extract
operation performs a function opposite to +the append
operation.

In addition to the operations described above, there are two
features, copying and deletion, +that can be combined with

3-30 AG92-03

archive (ac) : archive (ac)

certain operations to modify what they do. Since copying and
deletion are features and not operations, +they cannot stand
alone, but must always be combined with those operations that
permit their wuse. The deletion feature 1is distinct from the
delete operation, as noted below.

The copying feature can be combined with the append, replace,
update, and delete operations. Since an archive segment can
be located anywhere in the storage system, it is occasionally
convenient to move the segment during the maintenance process
or to modify the - original segment while temporarily retaining
an unmodified version. When the copying feature is used, the
original archive segment is copied from its location in the
storage system, updated, and placed in the wuser's working
directory.

The deletion feature can be combined with the append, replace,
and update operations to delete segments from the storage
system after they have been added to or replaced in an archive
segment. The deletion can be forced to bypass the system's
safety function, i.e., the user is not asked whether to delete
a protected segment before the deletion is performed. (This
is analogous to the operation of +the delete force command.)
Nothing is deleted until after +the archive segment has been
successfully updated.

Deletion of segments .(deletion feature) is not to be confused
with deletion of components from archive segments. The delete
operation 1is a stand-alone function of the archive command
that operates only on components of archive segments, deleting
them from the archive. The deletion feature, on the other
hand, performs deletions only when combined with an operation
of the archive command, and +then deletes only segments from
the storage system after copies of those segments have been
added to, or used to update, archive segments.

The archive command can operate in two ways: 1if no components
are named on the command line, the requested operation is
performed on all existing components of +the archive segment;
if components are named on the command line, the operation is
performed only on the named components.

The star convention can be used in the archive segment
pathname with extract and table of contents operations; it
cannot be wused with append, replace, update, and delete

3-31 AG92-03

archive (ac) archive (ac)

operations. Component names cannot be specified wusing the
star convention. See "Constructing and Interpreting Names" in
the MPM Reference Guide for a discussion of the star
convention.

No commands other than archive, archive table, archive_sort,
and reorder_archive should be wused to manipulate the contents
of an archive segment; using a text editor or other command
might result in unspecified Dbehavior during subsequent
manipulations of +that archive segment. See the descriptions
of the archive sort command and the reorder archive command in
the MPM Subsystem Writers' Guide. -

Each component of an archive segment retains certain
attributes of the segment from which it was copied. These
congsist of a sgingle name, the effective mode of the user who
placed the component in the archive, the date-~time the segment
was last modified, and the bit count of the segment. In
addition, the date-time that the component was placed in the
archive segment is maintained. When a component is extracted
from an archive segment and placed in the storage system, the
new segment is given the name of the component, the bit count
of the component, and the mode associated with the component
for the user performing the extraction.

The date-time-modified value of a component has a precision of
one tenth of a minute. This means that a copy of a component
modified less than a tenth of a minute after the archived copy
is not wupdated. Users who wupdate archives in exec _com
segments should be aware of this limitation.

The archive command maintains the order of components within
an archive segment. When new components are added, they are
placed at the end. The archive_sort or reorder_archive
commands (described in the MPM Subsystem Writers' Guide) can
be used +to change the order of components in an archive
segment.

The archive command cannot be used recursively. The user is

asked a question if the command detects an attempt to use the
archive command prior to the completion of its last operation.

Because the replacement and deletion operations are not
indivisible, it is possible for them to be stopped before

3=32 AG92-03

archive (ac) archive (ac)

completion and after the original segment has been truncated.
This can happen, for example, if one gets a record quota
overflow. When this situation occurs, a message is printed
informing the wuser of what has happened. In +this case, the
only good copy of the wupdated archive segment is contained in
the process directory.

Archive segments can be placed as components inside other
archive segments, preserving their identity as archives, and
can later be extracted intact.

When the archive command detects an internal inconsistency, it
prints a message and stops the requested operation. For table
of contents and extraction operations, it will have already
completed requests for those components appearing before the
place where the format error is detected.

For segment deletions after replacement requests, 1if the
~specified component name is a link to a segment, the segment
linked to is deleted. The link is not unlinked.

The archive command observes segment protection by
interrogating the user when (unforced) deletion is requested
of a segment to which the user does not have write permission.
If the wuser can obtain write permission (i.e., has modify
permission on the superior directory) and replies +that the
segment should be deleted, the segment is deleted.

The archive command refers +to the archive segment by full
pathname (rather +than only +the entryname portion) in all
printed messages. See "Examples" below.

EXAMPLES: Assume +that the user has several short segments and
wishes +to consolidate them to save space. The working
directory, >udd>Project_id>dir_one, might initially look like
the following:

! list

Segments = 5, Lengths = 5.

rw 1 epsilon
rw 1 delta
rw 1 gamma

3-33 AG92-03

archive (ac) archive (ac)

rw 1 beta
rw 1 alpha

The user creates an archive segment (using the append key)
containing four of the five segments.

! archive a greek alpha beta gamma delta
archive: Creating >udd>Project id>dir one>greek.archive

The working directory then has one more segment (the archive
segment), and a table of contents of the new archive segment
shows the four components.

! list

Segments = 6, Lengths = 6.

rw 1 greek.archive
Tw. 1 epsilon

rw 1 delta

rw 1 gamma

rvw 1 Dbeta

rw 1 alpha

! archive tl1 greek

>udd>Project_id>dir_oned>greek.archive

name updated mode modified length
alpha 09/12/74 1435.0 rw 09/12/74 1434.2 441
beta 09/12/74 1435.0 rw 09/12/74 1434.2 257
gamma 09/12/74 1435.0 rw 09/12/74 1434.2 694
delta 09/12/74 14%35.0 rw 09/12/74 1434.2 109

After changing the segment delta, +the user replaces it in the
archive segment and appends (using +the replace key) the
segment epsilon to the archive segment. The user also desletes
the component gamma.

3-34 AG92-03

archive (ac)

archive (ac)

! archive r greek delta epsilon
archive: epsilon appended to >udd>Project>dir_one>
greek.archive

! archive d greek gamma

A table of contents now shows a different set of components.

! archive t greek

>udd>Project_id>dir_one>greek.archive

updated

09/12/74 1435.0
09/12/74 1435.0
09/12/74 1437.5
09/12/T74 1437.5

name

alpha
beta
delta
epsilon

The user later replaces the component alpha with an updated
copy and deletes the storage system segment alpha, causing the
updated column of a table of contents to change and a list of
the working directory to show one less segment.

! archive rd greek alpha

! archive t greek

>udd>Project_id>dir_oned>greek.archive

updated .

09/12/74 1641.5
09/12/74 1435.0
09/12/74 1437.5
09/12/74 1437.5

! 1list

name

alpha
beta
delta
epsilon

Segments = 5, Lengths = 5.

3-35 AG92-03

archive (ac) archive (ac)

rw 1 greek.archive
rw 1 epsilon

rw 1 delta

rw 1 gamma

rw 1 beta

In another directory, >udd>Project>dir_ two, which contains a
more recent version of the segment alpha, the user copies and
updates the archive segment, causing the component alpha to be
replaced and the wupdated archive segment to be placed in the
working directory.

! archive cu <dir oned>greek
archive: Copying >udd>Project_id>dir_onedgreek.archive
archive: alpha updated in >udd>Project_id>dir_twod>
greek.archive
!' 1list
Segments = 2, Lengths = 2.
rw 1 greek.archive
rw 1 alpha

! archive t greek

>udd>Project_id>dir_twod>greek.archive
updated name

09/12/74 1648.3 alpha
09/12/74 1435.0 Dbeta
09/12/74 1437.5 delta
09/12/74 1437.5 epsilon

! ac t <dir_onedgreek

>udd>Project_id>dir_one>greek.archive
updated name
09/12/74 1641.5 alpha
09/12/74 1435.0 Dbeta

3-36 AG92-03

archive (ac) archive (ac)

09/12/74 1437.5 delta
09/12/74 1437.5 epsilon

Notice that the entry in the updated column for the component
alpha differs in the two tables of contents. Finally, the
user extracts two components into the new working directory,
presumably to work on them.

! archive x greek beta delta

' list

Segments = 4, Lengths = 4.

rw 1 delta
rw 1 beta
rw 1 greek.archive
rw 1 alpha

3=37 AG92-03

archive_table (act) archive_table (act)

SYNTAX AS A COMMAND:

act archive_path {starnames}

SYNTAX AS AN ACTIVE FUNCTION:
[act archive path {starnames}]

FUNCTION: returns the names of specified archive components in a
specified archive segment. Names are returned separated by
single spaces.

ARGUMENTS:

archive_path
is the pathname of an archive segment, with or without the
archive suffix. The star convention is NOT allowed.

LIST OF OPTIONAL ARGUMENTS:

starnames

are optional component names to be matched against names of
archive components. The star convention is allowed.

NOTES: Invoked as a command, archive_table prints the component
names, one name per line.

3-38 AG92-03

assign resource (ar) assign resource (ar)

SYNTAX AS A COMMAND:

ar resource_type {-control_args}

FUNCTION: calls the resource control package (RCP) to assign a
resource to the user's process.

ARGUMENT :

resource_type

specifies +the type of resource to be assigned. Currently,
only device +types can be specified. The -device control
argument is used +to name a specific device to assign. Other
control arguments are used to specify characteristics of the
device to be assigned. The following device type keywords are
supported:

tape_drive

disk drive

console

printer

punch

reader

special

CONTROL ARGUMENTS:

—-device STR, -dv STR

specifies +the name of the device to be assigned. If this
control argument is specified, other control arguments that
specify device characteristics are ignored. (See "Examples™
below. If the -long control argument (see below) is used in
conjunction with +this control argument, a message containing
the name of the assigned device is printed on the user's
terminal; otherwise, no message is printed.

-model N
gspecifies +the device model number characteristic. Only a
device that has this model number is assigned. In order to

find the model numbers that are acceptable, use the
print_configuration_deck command described in System Tools,
Order No. AZO3.

-track N, -tk N
gpecifies the track characteristic of a tape drive. The value
can be either 9 or 7. If +this control argument is not
gpecified and if the -volume control argument 1is not
specified, a track value of 9 is used when assigning a tape
device.

3-39 AG92-03

assign resource (ar) assign resource (ar)

~density N, -den N
specifies +the density capability characteristic of a tape
drive. There can be more than one instance of this argument.
A tape drive 1is assigned that is capable of being set to all
of +the specified densities. The acceptable values for this
argument are:
200
556
800
1600
6250

Note +that the values permitted depend on the particular
hardware on the system.

-train N, -tn N
specifies the print train characteristic of a printer.

-line length N, -11 N
gpecifies the line length of a printer. Its value must be one
that 1is found 1in the "line 1length" field of a printer PRPI
configuration card. If this field 4is not specified on a
printer PRPH configuration card, this device characteristic is
ignored for this printer.

-volume STR, -vol STR
specifies the name of a volume. If possible, +the device
agsigned is one on which +this volume has already been placed.
If +this is not possible (e.g., the volume is on a device
assigned to a process) any available, appropriate, and
accessible device will be assigned.

_ —number N, -nb N

specifies the number of resources to assign. All of the
resources assigned have the device characteristics specified
by any other arguments passed to +this command. If this

control argument is not specified, one resource is assigned.

-comment STR, -=com STR
is a comment string that ig displayed to the operator when the
resource is assigned. If more +than one string is required,
the entire string must be 1in quotes. Only printable ASCII
characters are allowed. Any unprintable characters (also tabs
or new lines) found in this string are converted to blanks.

-long, -lg
gpecifies +that all of +the device characteristics of the
assigned device should be printed. If this argument is not

supplied, only the name of the assigned device is printed.

340 AG92-03

assign_resource (ar) assign resource (ar)

-system, -sys
gpecifies that the wuser wants +to be treated as a system
process during this assignment. If this argument is not
specified or if the user does not have the appropriate access,
then the RCP assumes that this assignment is for a nonsystem
process.

-wait {N}, -wt {N}

specifies that the user wants to wait if the assignment cannot
be made at +this time because the resources are assigned to
some other process. The value N specifies the maximum number
of minutes to wait. If N minutes elapse and a resource is not
yet assigned, an error message is printed. If N is not
specified, it 1is assumed that the user wants to wait
indefinitely. '

-speed N _
gpecifies the speed of a tape drive. The acceptable values
depend on the particular hardware on the system and can be the
following:
75
125
200

NOTES: Currently, only device resources can be assigned. An
assigned device still must be attached by a call to some 1I/0
module. If a device is successfully assigned, the name of the
device is printed. (If the wuser requests a specific device
that is successfully assigned, the name of the device is not
printed unless the wuser asks for it. See the -device and
-long control arguments above.)

EXAMPLES: In the example below, the user issues the
assign resource command with the "tape drive" keyword and the
-model control argument. The system responds with the name of
the assigned device.

! assign resource tape_drive -model 500

Device tape 04 assigned

3-41 AG92-03

assign_resource (ar) ' assign resource (ar)

In the next example, the user 1issues the assign resource
command with the "tape drive" keyword and the -device and
~-long control arguments. The system responds with the name of
the assigned device and the model number, track, density and
gpeed characteristics.

! assign resource tape drive -device tape 05 -long

Device tape OS5 assigned

Model = 500

Tracks = 9

Densities = 200 556 800 1600
Speed = 125

342 AG92-03

attach_audit (ata) attach audit (ata)

SYNTAX AS A COMMAND:

ata {old switch {new switch}} {-control args}

FUNCTION: sets up a specified I/O switch, with a
stream input output opening, to be audited by the audit 1I/0
module.

ARGUMENTS:

0ld switch ‘
is the name of an I/0 switch to be audited. The default is .
user i/o. If only one switch 1is specified, it 1is the

old _switch.

new switch
is the name of an I/O switch to be used by the audit I/0
module. If only one switch argument is given, it is the
old switch. The default value for new switch is
auth_i/o.<time>, where <time> has the value MM/DD/YY--hhmm.m.

CONTROL ARGUMENTS:

-truncate, -tc
truncates the audit file if it already exists. If this
control argument is not given, the audit file 1is extended by
default.

~pathname path, -pn path
specifies that path is the pathname of the audit file to use.
If pathname is not given, the audit file is in the user's home
directory and named date.audit.

- NOTES: If used with no arguments, attach audit sets up auditing

for the user_i/o I/0 switch with input and output audited and
editing on.

Auditing of old_switch is done by moving the attachment of
old switch +to new switch and then attaching o0ld switch to
new_switch via audit . See the MPM Subroutines discussion of
the” audit I/0 module and the MPM Commands discussion of
detach audit for more information.

LIST OF AUDITING REQUESTS:
A three-character sequence 1is used +to make an auditing

3-47% AG92-03

attach audit (ata) attach audit (ata)

12

le

'E

't

'd

request: the audit +trigger character ("!" by default),
followed Dby the specific request character, followed by a
newline. An auditing request can either be alone on a line or
have text preceding it on the same line.

prints the combination of input and/or output being audited.
prints a brief description of available auditing requests.

enters the audit editor. The entry preceding this sequence
becomes the current line to be edited.

enters the audit editor, and processes any text preceding the
sequence on the same line as editing requests. If no text
precedes the sequence, the effect is the same as for !le.

expands abbreviations in the input 1line. (See the abbrev
command in this manual for more information.)

redisplays the input line and strips off the newline. Further
input can +then be appended +to the redisplayed 1line until
another newline 1is +typed, but no further erase or kill
processing is performed on the redisplayed ortion. The
redisplayed line plus the appended input (if any) becomes the
input line that is returned to the I/0 module being audited.

instructs the audit_ I/0 module not to log the input line;
this makes the input line transparent.

specifies that the input line to which this is appended is
deleted. This is wused to kill a 1line that has been
redisplayed with the !r request.

specifies no operation; this is wuseful when +the !'n follows
another auditing request sequence that the user does not want
interpreted.

NOTES ON AUDIT FILE:

The audit file, by default, has the pathname:

3-44 AG92-03

attach _audit (ata) attach audit (ata)

>udd>Project_id>Person_id>date.audit
where date is the first eight characters (the date portion)
returned by the date_time_ subroutine at the time of
attaching, and is of the form "MM/DD/YY". This pathname can
also be specified using active functions:
[home_dir]>[date].audit
The default audit file size is unlimited, and +the audit file
can become a multisegment file. '
The audit editor operates on entries, rather than lines, and
the entry type identifiers are:
EL edit line

ic input characters

IL input line

0oC output characters
- TC trace of control operations
™ - trace of modes operations

NOTES ON AUDIT EDITOR: The audit editor is invoked by typing the
e or E auditing request sequence described above. It edits
and executes lines that have been 1logged by the audit_ 1/0
module. The syntax of editing requests is similar to that of
gedx requests (see the qedx command in this manual). Any
number of requests can be on the same line; spaces are
ignored.

"Addressing is done the same way as in the qedx editor, with
two exceptions. The "." 1is a request for self-identification
rather than an indicator for +the current entry, and addresses
are expressed in terms of entries in the audit file rather
than 1lines in a buffer. The edit buffer contains only one
entry at a time. If the default search tag is in use, as is
the case unless specifically overridden, +the absolute entry
number refers to the number of entries, with the default
search tag, from the Dbeginning of +the file. Similarly, a
relative entry address refers to the number of entries, with
the default search tag, before or after the current address.

3-45 AG92-03

attach_audit (ata) attach audit (ata)

- LIST OF EDITING REQUESTS: The audit editor requests are

presented below in +two categories: familiar gqedx-like)
requests, and special requests.

s/REGEXP/STR/
substitutes +the string STR for occurrences of the regular
expression REGEXP in the edit buffer.

ADR

locates the entry with address ADR. If ADR is not followed by
a request, the audit file entry 1is printed. An ADR can
contain an absolute entry reference at its beginning, relative
addresses 1in any portion, and regular expressions in any
portion. If a regular expression in the address is preceded
by the less than character (<), a backward search is done to
find a match for the regular expression. An absolute address
is either a number, or the dollar sign ($) to indicate the
last entry in the audit file.

{ADR1,ADR2}p
prints the current entry if no ADR is specified; prints the
addressed audit file entry if a single address is specified;
prints entries from address 1 +through address 2 if two
addresses are specified.

. .STR
passes the string STR +to the command processor and then
returns to the audit editor.

quits the editor and returns the current 1line to +the I/0
module being audited, with the 'e or !E sequence included.

.expand
expands abbreviations in the edit buffer (see the abbrev
command in the MPM Commands for a discussion of expansion of
abbreviations).

.off
disables auditing of input and output in the editor.

.on
enables auditing of input and output in the editor.

'l
addresses the last audit file entry returned by the audit
editor.

.r[STR]
quits the editor and returns the string STR to the I/0 module

346 AG92-03

attach audit (ata) attach audit (ata)

being audited. If STR is not specified, the r request quits
the editor and returns the edit buffer.

.n
returns a newline character.

.type
prints the audit file entry type of the current position.

.exec
passes the edit buffer to the command processor and returns to
the audit editor.

.d/STR/ _
sets the default search tag to the string STR. If STR is only
one character, only the first character of the tag is used to
determine if an entry is seen (in counting entries and doing
searches). If STR is two characters, the match is made on
both characters of the tag.

prints a brief description of available audit editor requests.

overrides the default search tag for those requests following
on the same 1line (i.e., any tag is matched). A newline
reestablishes the default search tag.

The REGEXP field of a substitute request is interpreted as a
qedx-style regular expression. The STR field of a substitute
request is also interpreted as in qedx, and +the & convention
is supported. If REGEXP is null in a substitute request, the
last REGEXP specified in a previous substitute request is
used.

No 1lines in the audit file are changed by the editor; only
copies are modified.

If the audit editor is being audited, the audit editor can be
invoked from within +the editor. For every 1level of the
editor, a distinct last returned line is remembered.

EXAMPLES: In the example given below, there has been such
extensive use of the erase character that the user may want to
see it displayed. In order to verify the input line given, it

3-47 AG92-03

attach audit (ata) attach audit (ata)

can be replayed by wusing the !r request. The ! at the
beginning of the line indicates lines typed by the user.

! stri#ty =#-print_mod########modes red!r
stty -pmodes red

This line does not end with a newline character, so the next
character typed would appear immediately following the "red"
and on the same line. In this example, -pmodes was entered
instead of -modes. Typing the following on that same line:

! #H########nodes red!r
does not correct the error, but returns:

stty -pmodes redmodes red

The ~erase character cannot be wused to correct portions of a
line +that has already been replayed. The current situation
can be corrected as follows:

! sttty -pmodes redmodes red'e
1
L
stty -pmodes redmodes red
! s/redmodes red/red/ s/pmodes/modes/p
stty -modes red
!' .r

The above procedure enters the audit editor with +the le
request. The p request prints the contents of the edit
buffer. If no argument is given for p, the most recent input
line 1is printed. Corrections are made +to the 1line and the
modified 1line is printed. The request .r exits +the audit
editor and returns the line to the I/0 module being audited.

An alternative procedure is the following:

!' sgtty -pmodes redmodes red!n
! stty -modes red

The request !n suppresses the entire input line and it is then
reentered correctly. -

In the first example given, there are two ways to set the red
shift mode. It can be turned off and +then on again, as
follows:

3-48 AG92-03

attach_audit (ata) attach audit (ata)

! stty -modes “red |
' J1.r!'E

The .1l.r enters the audit editor. This puts the last entry
returned by the audit editor in the edit buffer, then returns
the contents of the buffer. To request the "stty -modes “red"
command, type:

! </"stty/p.r!E
gtty -modes “red

This does a backward search in +the audit file for an input
entry beginning with stty, puts this entry in the edit buffer,
prints the contents of +the edit buffer, and returns the
contents of the edit buffer.

To see the last five input entries in the audit file at this
point, type:

! -4,p!E
s/;edmodes red/red/ s/pmodes/modes/p
.r . .
stty -modes “red
l.T7!'E

</*stty/p.r!E

To see the 1last five output entries prior to this invocation
of the audit editor, type:

1 .d/0/
! "4"p
stty —-pmodes red stty -pmodes redmodes red
gstty -pmodes redmodes red
stty -modes red
stty -modes “red

Note that the entries that are the result of a replay (!r) do

not end in a newline - character, so they run together on the
same line when being printed.

3-49 AG92-03

attach 1v (alv) | ' attach_lv (alv)

. SYNTAX AS A COMMAND:

alv volume_ name

FUNCTION: calls the resource control package (RCP) to attach a
logical volume. ‘

ARGUMENTS:

volume name
gspecifies the name of the volume to be attached.

ACCESS REQUIRED: A user must have rw access to the logical
' volume to be attached, as defined by the access control
segment (ACS) associated with the logical volume.

NOTES: Attaching a logical volume involves informing the storage
gystem that a particular volume is attached for a particular
process. A logical volume (unless it is a public logical
volume) must be attached for each process that wishes to use
it. To be attached, the 1logical volume must first be
physically mounted. This mounting involves mounting all of
the physical volumes that compose the logical volume.

If +the specified volume is not already mounted, the system
operators are requested +to mount the volume, if appropriate
regsources are available. The attach lv command does not
return until the volume is mounted or the operator has denied
- the request.

The status command issued with the -device control argument
prints the name of +the 1logical volume on which a segment
resides.

3-50 AG92-03

basiC»‘ basic

SYNTAX AS A COMMAND:

basic path {-control arg}

FUNCTION: invokes +the BASIC compiler +to translate a segment
containing BASIC source code. Either the compiled code is
executed, or a standard object segment 1is created to be
executed at a later time.

ARGUMENTS:

path
is the pathname of the segment to be translated. The basic
suffix need not appear as part of +the pathname. It must,
however, be the last component of the name of the source
segment.

CONTROL ARGUMENTS:

-compile
requests BASIC to compile the program and generate a bindable
Multics standard object segment. The resulting object segment
is placed in the user's working directory.

-time N ‘
where N is a decimal number that requests a limit of N seconds
on the execution of the BASIC program. If +the 1limit is
exceeded, the user is asked whether to continue.

NOTES: The -compile and ~-time control arguments are
incompatible.

If +the -compile control argument is not specified, the
compiled code 1is +then executed and not saved for future
execution. If +the -compile control argument is specified, a
standard object segment is created for subsequent execution.

For a description of the BASIC language on the Multics systemn,
consult the Multics BASIC manual, Order No. AM82.

For information on using the FAST subsystem to compile BASIC

source code, refer to the Multics FAST Subsystem Users' Guide,
Order No. AU25.

3-51 AG92-03

basic basic

For a description of the features common to all Multics
programming languages, see "Programming Languages" in the MPM
Reference Guide. A description of object segments can be
found in the MPM Reference Guide in "Creating an Object
Segment."

3-52 | AG92-03

before (be) before (be)

SYNTAX AS A COMMAND:

be strA strB

SYNTAX-AS AN ACTIVE FUNCTION:
[be strA strB]

PUNCTION: returns the string preceding the first occurrence of
gtrB in strA. If strB does not occur in strA, the entire
string strA is returned. '

EXAMPLES:

! string [before abcdefi23defabc def)
abc :
! string [before abcdef g]
abcdef -

! string [before abcdef123 abc]

! string_[format;line XY"aZZ% [before 1.459e+17 7))
XY1.4596e+1Z7Z

353 , AG92-03

binary (bin) binary (bin)

SYNTAX AS A COMMAND:

"bin values

SYNTAX AS AN ACTIVE FUNCTION:

[bin values |
FUNCTION: returns one or more values in binary.

ARGUMENTS:

value
is a value to be processed. The last character of value
indicates its type. Acceptable types are binary (b),
uartenary (q), octal (o), hexadecimal (h), and unspecified
u). Any wvalid PL/I real value is allowed. The absence of
any specifier means decimal. The unspecified value is limited
to 8 characters.

EXAMPLES:

! string [binary 657.40]
110100111 .1

3-54 AG92-03

bind (bd) | - bind (bd)

SYNTAX AS A COMMAND:

bind paths {-control args}

FUNCTION: produces a single bound object segment from one or
more unbound object segments, stored in archive segments,
which are called the components of the bound segment.

ARGUMENTS:

paths
are the pathnames of archive segments containing one or more
component object segments to be bound. The archive suffix is
assumed. Up to 16 input archive segments can be specified.
They are logically concatenated in a 1left-to-right order to
produce a single sequence of input component object segments.

CONTROL ARGUMENTS:

-update paths, =-ud paths o
indicates that the following 1list of archive segments (paths)
specifies wupdate rather +than input object segments. The
archive suffix is assumed in paths. Up to a combined total of
16 input and update segments can be specified. The contained
update object segments are matched against the input object
segments by object segment name. Matching wupdate object
segments replace the corresponding input object segments;
unmatched ones are appended to +the sequence of input object

segments. If several update object segments have the same
name, orily +the last one encountered is bound into the bound
segment .

-list, -ls

produces a listing segment whose name is derived from the name
of the bound object segment plus a suffix of 1list. The
listing segment is generated for the purpose of dprinting; it
contains the bound segment's bind control segment (see "Notes
on Bindfile" Ybelow), its bind map, and that information from
the bound object segment printed by the print link info
command. This control argument cannot be invoked with -map.
In the absence of the -list or -map control arguments, no
listing segment is generated.

-map . v
produces a 1listing segment (with +the suffixes list and map)
that contains only the bind map information. This control
argument is incompatible with -list. In the absence of the

3-55 AG92-03

bind (bd) , bind (bd)

-list or -map control arguments, no 1listing segment 1is
generated.

-brief, -bf
suppresses printing of warning messages.

NOTES: Compilers and the assembler produce unbound object
segments. Binding has three benefits: the reduction of
storage fragmentation, the prelinking of external references
between the components, and the reduction of size of address
space necessary to execute the components.

Each of these benefits saves CPU time and storage usage if the
set of components bound is used with regularity. This
reduction in usage translates directly into lower charges for
the users of the bound segment. System efficiency is also
increased by binding together common sets cf prcgrams. A
reference in one component to an entrypoint defined in another
component is resolved during the binding. This prelinking
avoids the cost of dynamic linking, and it also ensures that
the reference is 1linked to the component regardless of the
state of a process att the moment that dynamic linking takes
place. References +to an entrypoint are prelinked unless the
contrary is specified by an instruction in the bindfile. The
bindfile 1is a segment containing instructions that control
various aspects of the Dbinding operation (see "Notes on
Bindfile" below). (See the description of the print_link info
command in the MPM Subsystem Writers' Guide.)

NOTES ON OUTPUT: The binder produces as its output two segments:
an executable bound object segment and an optional, printable
ASCII listing segment. The name of the bound segment is, by
default, derived from the entryname of the first input archive
segment encountered by stripping the archive suffix from it.
The name of the listing segment is derived from +the name of
the bound segment by adding the list suffix to it. Use of the
Objectname master statement in the Dbindfile (see "List of
Master Keywords" Dbelow) allows the name of the bound segment
to be stated explicitly. In addition, use of +the Addname
master statement in the binding instructions causes additional
segment names to be added to the bound segment. The primary
name of the bound segment must not be the same as the name of
any component.

NOTES ON BINDFILE: The bindfile is a segment containing symbolic
instructions +that control +the operation of +the binder. Its

3-56 AG92-073

bind (bd) bind (bd)

entryname must contain the bind suffix and it must be archived
‘into any one of the input archive segments (at any location
within that archive segment) where it is automatically located
and recognized by the binder.

In case two bindfiles are specified, one in an input archive
segment and the other in an update archive segment, the latter
takes precedence and a warning message 1is printed +to that
effect. .

The syntax of +the bindfile statements consist of a keyword
followed by =zero or more parameters and then delimited by a
statement delimiter. Master statements pertain to the entire
bound object segment; normal statements pertain +to a single
component object within the bound segment. Master statements
are identified by master keywords that begin with a capital
letter; normal keywords begin with a lowercase letter. A
keyword designates a certain action +to be undertaken by the
binder pertaining to parameters following the keyword.

"LIST OF BINDFILE DELIMITERS:
keyword delimiter
It is wused to identify a keyword followed by one or more
parameters. A keyword that is followed by no parameters is
delimited by a statement delimiter.

; statement delimiter.

’ parameter delimiter
(Note, the 1last parameter is delimited by a statement
delimiter).

/* Ybegin comment

*/ end comment

LIST OF MASTER KEYWORDS:

Objectname
the parameter is the segment name of the new bound object.

Order
the parameters are a 1list of objectnames in +the desired

binding order. 1In the absence of an order statement, binding
is done 1in the order of the input sequence. The order

3=-57 AG92-03

bind (bd) bind (bd)

[EOSUE M ——

statement requires that there be a one-to-one correspondence
between its list of parameters and the components of the input
. sequence.

Force_Order
same as Order, except that the 1list of parameters can bhe a
subset of the input sequence, allowing the archive segnents to
contain additional segments that are not to be bound (e.g.,
source progranms) .

Global
the parameters can be either retain, delete, or no_link. The
parameter selected pertains to all component object segments
within the bound segment. A gloval or explicit statement
concerning a single component object or a single external
symbol of a component object overrides the Global statement
for that component object or symbol.

Addname
the parameters are the symbolic names to be added to the bound
segment. If Addname has no parameters, it causes the segment
names and synonyms of those component objects for which at
least a single entrypoint was retained to be added +to the
bound segment.

No_Table
does not require parameters. It causes the symbol tables from
all the component symbol sections containing symbol tables to
be omitted from the bound segment. If this keyword is not
given, all symbol tables are kept.

Perprocess Static

does not require parameters. It causes the perprocess static

flag of the bound segment to be turned on, which prevents the
internal static storage from being reset during a run unit.

If no bindfile 1is gpecified, the binder assumes default
parameters corresponding to the following:
Objectname: segment name of the first input archive file.

Global: retain; /*regenerate all definitions*/

LIST OF NORMAL KEYWORDS:
objectname

the single parameter is the name of a component object as it
appears in the archive segment. The objectname statement

3-58 AG92-03%

bind (bd) bind (bd)

indicates that all following normal statements (up to but not
including the next objectname statement) pertain to the
component object whose name is the parameter of the objectname
statement.

synonym
the parameters are symbolic segment names declared to be
synonymous to the component object's objectname. When b is
declared to be a synonym for a, references (in the bound
components) of the form b or b$x (any x) are resolved during
binding by searching for a definition of b or x in component
-~ a. A synonym instruction must be given if such references are
to be prelinked. The synonym instruction also affects dynamic
linking so that if b is a reference name for the bound
segment, then references of the form b or b¥x are resolved by
searching component a. In this case, the synonym instruction
may reduce the cost of dynamic linking, and it avoids possible
ambiguities when two components contain definitions for the
symbol b. Users should take care to state explicitly in a
synonym statement all the normally used segment names of a
component object. For example, the create and create dir
commands are implemented in one procedure, and both have
abbreviations; thus a bindfile for the bound segment in which
this procedure resides contains:

objectname: create;
synonym: create, cr, create_dir, cd;

Failure to state segment names results in inefficient linker
performance.

retain .
the parameters are the names of entrypoints defined within the
component object segment +that the wuser wishes to retain as
entrypoints of the bound object segment.

delete ’

the parameters are the names of entrypoints defined within the
component object segment +that the user does not wish %o be
retained as entrypoints of the new bound segment.

The retain and delete statements are considered exclusive. An
error message 1is displayed if the binder recognizes that two
or more such statements were made regarding any single
entrypoint.

no_link
the parameters are the names of entrypoints that are not to be

3-59 AG92-03

bind (Dbd) . bind (bd)

A st i, B me———

prelinked during 'binding. The no_link statement implies a
retain statement for the specified names.

global

the parameter can be either retain, delete, or no_link. The
parameter selected becomes effective for all entrypoints of
the component object. An explicit retain, delete, or no_link
statement concerning a given entrypoint of +the component
object overrides the global statement for that specific
entrypoint. A global no link causes all external references
to +the component object +to be regenerated as 1links to
entrypoints; this allows execution-time substitution of such a
component by a free standing version of it, for example for
debugging purposes.

table
does not require parameters. It causes the symbol table for
the component to he retained and is needed +to override the
No_Table master keyword, described above.

NOTES ON ERROR MESSAGES: The binder produces three types of
error messages. Messages beginning with the word "Warning" do
not necessarily represent errors, but warn the user of
possible inconsistencies in the input components or bindfile.
Messages beginning with the word "binder " normally represent
errors in the input components. Errors detected during the
parsing of the bindfile have the format:

- Bindfile Error Line #N

where N is the line number o¢f the erroneous statement. If an
error is detected during parsing, the binder aborts because it
cannot bind according to the user's specifications.

The message:

"binder_: Fatal error has occurred; binding unsuccessful."
indicates that it was impossible for the binder to produce an
executable object gegment Dbecause of errors detected during

binding. The bound object segment is left in an unpredictable
state.

EXAMPLES: The bindfile for the debug command, which is named
bound debug.bind, is as follows:

3-60 AG92-03%

bind (bd)

Objectname:
Global:

Addname;

objectname:
synonym:
retain:

objectname:
- retain:
objectname:
retain:

bound_debug;.

delete; /*delete all old definitions*/
/*add names debug, db, list_arg_
and gr print to bound segment
bound_debug_*/
debug; :
db; "~ /*indicate db is synonymous to debug*/
debug,
db; /*¥retain entrynames debug$debug and
debug$db*/
list_arg_;
list_arg_; /*retain entryname list_arg $list_arg */
ar prlnt
gr_print; /*retain entryname gr_print$gr_print*/

The following illustrates other uses of the bindfile:

Objectname:
Global:
Order:

Addname:

No_Table;

objectname:
~retain:

objectname:
retain:

objectnamé:
synonym:
no_link:

bound test;
delete;
test,

/*delete all old definitions*/

/*list all components in the
order they are to be bound*/

test_utility,

test_init,

reset;

test,

test_utility, /*add so that 11nk can be
snapped to version in
bound segment*/

reset; '

/*omit all symbol tables*/

reset;
reset;

test;

 test;

test_utility;
rest of test;

_of _ /*another entrypoint*/
test utTlity;

/*do not prelink to this
entrypoint; generate
external link*/

/*keep this component's

table;
symbol table*/

3-61

bind (Dbd)

AG92-03

bool

SYNTAX AS A COMMAND:
bool B1 B2 B3

SYNTAX AS AN ACTIVE FUNCTION:

[bool B1 B2 B3]

FUNCTION: performs

bool

bit string operations on character string

representations of bit strings.

ARGUMENTS:
B1, B2, and B3

are bit strings entered as 0 and 1 characters. B3 must be 4
bits long. It causes the following 1logical operations to be

performed on B!l and B2.

B3 Name
0000 clear
0001 and

0010

0011 move B1
0100

0101 move B2
0110 Xor

o111 or

1000 “or

1001 “xor
1010 invert B2
1011

1100 invert B1
1101

1110 “and

1111 “clear

Result

all zeroes
B1 & B2
B1 &"B2

(B1&"B2) | ("B1&B2)

B1 | B2

“(B1!B2) = ("B1&"B2)
“((B1&"B2) | ("B1&B2)) =
. ("B1{B2) & (B1{"B2)

"("B1&B2) = (Bt]|"B2)
“B1

“§B1&"B2) = ("B1!B2)
"(B1&B2) = ("B1]°B2)
all ones

NOTES: The shorter of the two strings is extended at the right
with zeroes to equal the length of the longer string.

3-62 AG92-03

bool

EXAMPLES:

! string [bool 1010 0101 0111]
1111 ’

! string [bool 1001001 1101001010 0110]
0100000010

' 3-63

bool

AG92-03

e

branches branches

e — T

SYNTAX AS A COMMAND:

branches star_names {-control_arg}

SYNTAX AS AN ACTIVE FUNCTION:

[branches star_names {-control arg}]

FUNCTION: returns the entrynames or absolute pathnames of
segments, directories, and multisegment files +that match one
or more star names.

ARGUMENTS :

star_name
is a star name +to Dbe used in selecting the names to be
returned.

CONTROL ARGUMENTS:

—-absolute_ pathname, -absp
returns absolute pathnames rather +than entrynames. The
default is to return entrynames.

NOTES: Only one name per branch is returned; 1i.e., if a branch
has more than one name that matches star name, only the first
‘match found is returned. -

Since each entryname (or pathname) returned by branches is
enclosed in quotes, the command processor treats each name as
a s8ingle argument regardless of +the presence of special
characters in the name. .

A synonym for branches is nonlinks.

3-64 AG92-03

branches branches

EXAMPLES:
! pwd
>udd>Apple>Jones
!' 1ls -a
Segments = 7, Lengths = 6.

rw O empty_seg

re 1 test

rw 1 test.list
rw 1 test.plt
re 1 prog

rw 1 prog.list
r w 1 prog.pli

Multisegment~files = 2, Lengths = 770.

rw 513 prog.output
r w 257 prog.data
Directories = 2.

sma prog_stuff
sma documents

Links = 3.

prog.temp?2 >udd>Apple>Jones>temp seg 2
prog.templ >udd>Apple>Jones>temp seg 1
junk ' >udd>Apple>Jones>empty seg

! string [branches prog*.**]

prog.pll prog.list prog.data prog stuff prog prog.output
! string [branches prog.* -

prog.pl1 prog.list prog.data prog.output

3-65 AG92-03

‘calc _ calc

SYNTAX AS A COMMAND:

calc {expression]}

SYNTAX AS AN ACTIVE FUNCTION:

[calc expression]

FUNCTION: provides the wuser with a ¢alculator capable of
evaluating arithmetic expressions with operator precedence, a
set of often-used functions, and a memory that is symbolically
addressable (i.e., by identifier).

ARGUMENTS:

expression
is an arithmetic expression (see below) to be evaluated. If
this argument is specified, the calc command prints its value
and returns to command level. The expression arguments must
be quoted if it containsg spaces or other command language
characters. Variables are not allowed.

NOTES: Invocation of calc with a newline enters calculator mode.
The user can then +type in expressions, assignment statements,
or 1list requests, separated from each other by one or more
newline characters. All of +these operations are described
below.

The user must use the quit request with a newline character to
return to command level.

3-66 : AG92-03

calc calc

NOTES ON EXPRESSIONS: Arithmetic expressions involving real
values and the operands +, -, *, /, and ** (addition,
subtraction, multiplication, division, and exponentiation) can
be typed in. A prefix of either plus or minus is allowed.
Parentheses can be used, and blanks between operators and
values are ignored. Calc evaluates each expression according
to rules of precedence and prints out the result. The quit
request (followed by a newline character) returns the user to
command level. The order of evaluation is as follows--

expressions within parentheses
function references

prefix +, prefix -

*%
*,

+, -
For example,'if'the user types--
2+ 3 *'4
calc responds--
= 14

Operations of the same level are processed from left to right
except for the prefix plus and minus, which are processed from
right to left. This means 2%*3%%4 ig evaluated as (2%*3)**4,

Numbers can be integers (123), fixed point (1.23) and floating
point (1.23e+2, 1.23%e2, 1.23E2, or 1230E-1). All are stored
as float bin(27). An accuracy of about seven figures is
maintained. Variables (see below) can be used in place of
constants, e.g., pi * r ** 2,

Seven functions are provided: sin, cos, tan, atan, abs, 1ln,
and log (1n is base e, log is base 10). They can be nested to
any level, e.g., sin(1ln(var).5%pi/180).

3-67 AG92-03

calce culce

NOTES ON ASSIGNMENT STATEMENTS: The value of an expression can
be assigned to a variable. The name of +the variable must be
from one to eight characters in 1length and must be made up of
letters (uppercase and/or lowercase) and the underscore
character ? The form is--

{variable>=<expression>

For example, the following are legal assignment statements--
= 35
Rho = sin(2*theta)

The calc command does not print any response to assignment
statements. The variables "pi" and "e" have preassigned
values of 3.14159265 and 2.7182818, respectively.

NOTES ON THE LIST REQUEST: If "list" is +typed, calc prints out
the names and values of all the variables that have been
declared so far. The value of any individual variable can be
displayed by typing +the name of +the variable followed by a
newline character.

EXAMPLES: The 4iines +typed by the user are preceded by an
exclamation mark (!).

! calc
T 242
= 4
' r=1.5
! pi¥r¥x*2
= 7.068583
!' 8in(0.01)
= 9.999832E-3
' 143%3e11+(12e13
too few)
! 143e11+(12e13)

1.343E+14
! llst

8282
1592

@
(I |
Wl\)—‘
-—‘\.1\)1
-

3-68 AG92-03

calendar calendar

SYNTAX AS A COMMAND:

calendar {DT} {paths} {-control arg}
FUNCTION: prints a calendar page for one month.

ARGUMENTS:

DT '
identifies which month is printed. This argument must Dbe a
date .acceptable to the convert _date to_binary_ subroutine
(described in the MPM Subroutines). ' If the DT argument is not
given, the current month is printed.

pathi .

is the pathname of a segment that contains a list of events in
the form of text to be inserted into +the calendar. For
information on segment format, see "Notes" below.

CONTROL ARGUMENTS:

-fw
labels boxes with fiscal week numbers. The calendar command
assumes that each fiscal week begins on Monday and ends on
Sunday and fiscal week 1 is the first full week of the
calendar year. Fiscal week 1 of 1980 therefore begins on
Monday, January 7, 1980.

NOTES: ZEach box for a calendar day is 16 characters wide and 7
high. Each box in the calendar contains the number of the day
of the month; other information can also appear in the box, at
the wuser's option. The month preceding +the specified month
and the month following it are also printed.

Each segment contains 1lines that set up a string to be
inserted into the appropriate box of the calendar. The fields
in these lines are separated by commas and have the form--

date,07/04,Independence Day

The first field is +the operation code (either date, rel,
easter or rename). The second and succeeding fields depend on
which operation code 1is used. Lines that produce a date not
in +the current month are ignored. Lines beginning with an
asterisk (*) are comment lines. Leading space is NOT allowed.

3-69 AG92-03

calendar ~ calendar

There are three fields for the date operation code with the
first field containing the operation code, date. The second
field 1is any date acceptable to the convert date to_binary
subroutine. (This date is converted relative To ~the day
before the beginning of the month, so that "Mon" is the first
Monday in the month, etc.) The third field is arbitrary text.
Up %o 16 characters are inserted into the calendar in the
appropriate place, if the date specified in the 1line (see
example above) falls in the calendar month.

There are five fields for the rel operation code. The first
contains the operation code, rel, itself; the second is the
one or two digit month number, or O, -1, or +1. A month of O
is the current month, -1 is the month preceding the current
month, and +1 is the month following the current month. The
third is a date, relative to the day before the first of the
previous month. The fourth field is a date relative to the
third field and specifies the day selected. The fifth field
is text. For more complete information on how these can be
specified, see the convert_date to_binary $relative subroutine
entrypoint in the MPM Subroutines. Thus, the line--

rel,11,Mon,Tue,Election Day

defines the first Tuesday after the first Monday in November,
and places the text, "Election Day," in the proper calendar
day box.

There are only two fields <for the easter operation code. The
second is the text (e.g., "Easter") that is inserted into the
box for Easter.

easter, Easter

The fourth operation code is rename which has three fields;
the first being the name of the operation code, the second is
an existing day or month name, and +the third field is the
character string to replace it.

rename, Monday, Lundi
‘Users can insert wup to six lines of text for any date. This
is accomplished by supplying multiple date or rel entries for

the d§sired date (see Washington's birthday under "Examples"
below).

3=T0 AG92~03

calendar calendar

EXAMPLES: The following illustrates the kind of segment a user
might create to put fixed holidays into a calendar.

* holidays
*

date,01/01,New Year's Day
date,02/02,Ground Hog Day
rel,2,Mon,2 weeks,Washington's
rel,2,Mon,2 weeks, birthday
easter,Easter

rel,4,Mon,2 weeks,Patriot's Day
rel,5,Sun,1 week,Mother's Day
rel,5,05/24,Mon,Memorial Day
~date,07/04,Independence Day
rel,9,0,Mon,Labor Day
rel,10,Mon,1 week,Columbus Day
date,11/11,Veterans Day
rel,11,Mon,Tue,Election Day
rel,11,Thu,? weeks,Thanksgiving
date,12/25,Christmas Day

Additionally, a user might create a segment to include personal
information in a calendar.

* personal calendar info

*

date,12/10,Mike's Birthday
date,03/07,Dad's Birthday

Assume that the user wants a calendar for the coming December,
including fiscal week numbers, holidays, and personal
information. If +the above segments are named "holidays" and
"personal" (and are in the working directory), the user types the
following to print the calendar on the terminal:

calendar 12/01 -fw holidays personal

- 3-T1 ' AG92-03

cancel abs request (car) ' cancel abs request (car)

SYNTAX AS A COMMAND:

car request_identifiers {-control_args}

FUNCTION: allows a user to delete a request for an absentee
computation that is no longer needed.

ARGUMENTS :

request identifiers
can be chosen from the following--

path
is the full or relative pathname for the absentee input
segment of the request to be cancelled. The star convention
can be used to match the entry names of segments.

-entry STR, -et STR
identifies the request to be cancelled by STR, the entryname
portion of +the absentee input segment pathname. The star
convention is allowed.

-id ID
identifies the request to be cancelled by its request ID
number . See the MPM Reference Guide for a description of
request ID's.

CONTROL ARGUMENTS:

-foreground, -fg
specifies that the foreground absentee queue contains the
request(s) to be cancelled.

-queue N, -q N
specifies +that absentee queue N contains the request to be
cancelled, where N is an integer specifying the number of the
queue. The default queue is 3. For convenience in writing
exec_coms and abbreviations, the word foreground or fg
following the -queue control argument performs the same
function as the -foreground control argument. If the -queue,
-fg, and -all control arguments are omitted, only the default

- priority queue is searched.

-all, -a
iﬁdicates that all priority queues are to be searched starting
with +the highest priority queue and ending with the lowest
priority queue.

3-T2 AG92-03

cancel_abs_request (car) cancel abs_request (car)

-brief, -bf :
suppresses messages telling that a particular request
identifier was not found or that requests were cancelled when
using star names or the -all control argument.

-gender STR
specifies that only requests from sender STR should be
cancelled. One or more request identifiers must also be
gspecified. In most cases, the sender is an RJE station
identifier.

-user User id
specifies +the name of +the submitter of +the request to be
cancelled, if it is not +the same as the group identifier of
the process. The User id can be specified as
Person id.Project_id, Person_id, or .Project_id. This control
argument is primarily for operators and administrators. Both
r and d extended access to the queue are required.

ACCESS REQUIRED: The wuser must have read (r) and delete (d)
extended access to the queue.

NOTES: The -queue, -foreground, and —-all control arguments are
mutually incompatible. _ :

Normally, deletion can be made only by the user who originated
the request.

When star names are not used and a single request identifier
matches more +than one request in the queue(s) searched, none
of the requests are cancelled. However, a message is printed
telling how many matching requests there are.

If +the absentee process has already 1logged in, the user is
given the choice of bumping the job and cancelling the request
from the queue, or allowing the job to continue running and
remain in the queue. This allows the user to cancel a running
absentee process.

3-73 AG92-03

cancel_abs_request (car) cancel abs request (car)

EXAMPLES:
The command line:
! car >udd>Demo>Jones>dump>translate

deletes the absentee request that the user had made in queue 3
that was associated with the control segment
>udd>Demo>Jones>dump> translate.absin.

The command line:
' car >udd>Demo>Jones>doc>**.draft

deletes the absentee requests that the user made 1in queue 3
that were associated with all control segments ending with the
".draft.absin" component combination found in the
>udd>Demo>Jones>doc directory.

3-74 AG92-03

cancél_cobol_program (cep) cancel cobol program (ccp)

SYNTAX AS A COMMAND:

ccp names {-control arg}

FUNCTION: causes one or more programs in the current COBOL run
unit to be cancelled.

ARGUMENTS :

names . . :
are the reference names of COBOL programs that are active in
the current run unit. If +the name specified in the PROG-ID
statement of +the program 1is . different from its associated
namei argument, namei must be in the form refname$PROG-ID.

CONTROL ARGUMENTS:

-retain data, -retd
leaves the data segment associated with the program intact for
debugging purposes. (See "Notes" below.)

NOTES: The results of the cancel cobol program command and the
execution of the CANCEL statement from within a COBOL program
are similar. The only difference is that if a namei argument
is not actually a component of +the current run unit, an error
message - 1is 1issued and no action is taken; for +the CANCEL
statement, no warning is given in such a case.

To preserve progranm data . for debugging purposes, the
-retain_data control argument should be used. The data
asgociated with the cancelled program is in its 1last used
state; it is not restored to its initial state until the next
time the program is invoked in the run unit.

Cancelling ensures that the next time the program is invoked
within the run unit, its data is in its initial state. Any
files that have been opened by +the program and are still open
are closed and the COBOL data segment is truncated.

Refer to the run_cobol command for information concerning the
run unit and the COBOL runtime environment. Also refer to the
related commands display cobol_run unit (der) and
‘stop_cobol_run (scr). -

3-75 AG92-03%

cancel_daemon_request (cdr) cancel daemon_request (edr)

SYNTAX AS A COMMAND:

cdr request identifiers {-control_args}
FUNCTION: deletes an I/0 daemon request that is no longer needed.

ARGUMENTS :
request_identifiers can be chosen from the following:

path
is the full or relative pathname of the input segment. The
star convention 1is allowed to match +the entrynames of
segments.

-entry STR, -et STR
identifies the request to be cancelled by STR, the entryname
portion of the input segment pathname. The star convention is
allowed.

-id ID
identifies the request to be cancelled by its request ID
number . See the MPM Reference Guide for a description of
Request ID's.

CONTROL ARGUMENTS:

-request_type STR, -rqt SIR
indicates that the request to be cancelled is +to be found in
the queue for +the request type identified by the string STR.
If +this control argument is not given, +the default request
type 1is "printer". Request +types can be 1listed Dby the
print_request_types command.

-quene N, -q N
gpecifies +that queue N of the request +type contains the
request to be cancelled, where N is a decimal integer
specifying the number of the queue. If this control argument
is omitted, only the default queue for the request type is
searched. This control argument is incompatible with the -all
control argument.

3-76 AG92-03

cancel daemon_request (cdr) cancel_daemon_request (cdr)

-all, -a
searches all priority queues for the specified request type
starting with +the highest priority queue and ending with the
lowest priority queue. This control argument is incompatible
with the -queue control argument.

-brief, -bf
suppresses messages telling that a particular request
identifier was not found or that requests were cancelled when
using star names or the -all control argument.

-user User_id
specifies +the name of +the submitter of +the request to be
cancelled, if not the group identifier of the process. The
User_id can be equal to Person_id.Project_id, Person_id, or
.Project _id. Both r and d extended access to the queue are
required. This control argument is primarily for operators
and administrators.

ACCESS REQUIRED: The wuser must have o extended access to the
queue to cancel their own requests. The user must have r and
d extended access to cancel a request entered by another user.

NOTES: When star names are not used and a single request
identifier matches more than one request in the queue(s)
searched, none of the requests are cancellegd. However, a
message 1is printed +telling how many matching requests there
are. : '

Normally, deletion can be made only by the user who originated
the request. -

See the descriptions of the dprint and dpunch commands in this
manual . :

3=T7 AG92-03

cancel daemon request (cdr) cancel daemon request (cdr)

EXAMPLES: The command line:

! cdr >udd>Alphad>Jones>dump>translate.list

made in queue 3 of the

deletes +the request that +the user
default request type printer, to print the segment

>udd>Alpha>Jones>dump>translate.list.

The command line:

cdr >udd>Alpha>Jones>dump>probe.pll -request type punch
deletes the request that the user made in queue 3 of request
type "punch" to punch the segment
>udd>Alpha>Jones>dump>probe.pli.

The command line:

! c¢cdr joe sam *.*
print segments joe, sam, and any

two-component entrynames 1in the

cancels the requests to
3 of the default request

requested segments with
current working directory in queue

type.

3-78 AG92-03

cancel_resource (cnr) _ cancel _resource (cnr)

SYNTAX AS A COMMAND:

cnr -id reservation_id {-control_arg}

FUNCTION: cancels reservations made with the reserve command
using the reservation identifier obtainable from the
list_resources command.

ARGUMENTS:

reservation id
must be present and 1is +the reservation identifier of the
reservation to be cancelled. It must be preceded by the -id
control argument.

CONTROL ARGUMENTS:

~priv
allows a privileged cancellation to be done, such as the
cancellation of a reservation belonging to another user. Use
of -priv requires access to rcp sys_.

NOTES: Reservation identifiers can be obtained by using the
list_resources command.

3-T79 AG92-03

cancel_retrieval request (crr) cancel retrieval request (crr)

" SYNTAX AS A COMMAND:

crr request identifiers {-control_args]

FUNCTION: allows a user to delete a request for a volume
retrieval that is no longer needed.

ARGUMENTS:
request_identifiers can be chosen from the following:

path
is the full or relative pathname of the segment or subtree of
the retrieval request to be cancelled. The star convention is
allowed to match the entrynames.

-entry STR, -et STR
identifies the request to be cancelled by STR, the entryname
portion of the segment or subtree pathname. The star
convention is allowed.

-id ID
identifies +the request +to be cancelled specified by its
request ID number. Jee the MPM Reference Guide for a
description of request ID's. :

CONTROL ARGUMENTS:

-queue N, -q N
specifies that retrieval queue N contains the request to be
cancelled, where N is a decimal integer specifying the number
of the queue. If this control argument is omitted, only the
default priority queue is searched. This control argument is
incompatible with the -all control argument.

-all, -a
indicates that all retrieval queues are +to be searched
starting with +the highest priority queue and ending with the
lowest priority queue. This control argument is incompatible
with the -queue control argument.

-brief, -bf
suppresses messages telling the user that a particular request
identifier was not found or that requests were cancelled when
using star names or the ~all control argument.

3-80 AG92-03

cancel retrieval request (crr) cancel_retrieval_ request (crr)

-user User_id
specifies +the name of the submitter of +the requests to be
cancelled, if not equal +to +the group identifier of the
process. The User_id can be Person_id.Project_id, Person_id,
or .Project _id. Both r and d extended access to the queue are
required. This control argument is primarily for operators
and administrators.

ACCESS REQUIRED: The user must have read (r) and delete (4)
extended access to the queue.

NOTES: Normally, deletion can be made only by the wuser who
originated the request.

When star names are not used and a single request identifier
matches more than one request in the queue(s) searched, none
of the requests are cancelled. However, a message is printed
telling how many matching requests there are.

EXAMPLES:
The command line:

! crr >udd>Demo>Jones>dump>trahslate

deletes the retrieval request for +the specified segment or
subtree that the user had made in queue 3.

3-81 AG92-03

canonicalize (canon) canonicalize (canon)

SYNTAX AS A COMMAND:

canon pathl {path2} {-control arg}

FUNCTION: ensures that the contents of a segment are in
canonical form.

ARGUMENTS:

pathl
is the pathname of the input segment.

path?2
is the pathname of the output segment.. If path2 is omitted,
pathlt 1is overwritten with the canonicalized contents of the
input segment.

CONTROL ARGUMENTS:
can be -tabs in one of the following two forms:

-tabg -every X
inserts tabs at 1+n*X (where n=1, 2, 3, ...).

-tabs n1,n2,...,n20
inserts tabs at +the tab stops specified. Up to 20 tab stops
can be given. No spaces are allowed in the list.

NOTES: The command ensures that all characters in a print
position are sorted in the proper order and removes all ASCII
carriage return (015) characters. When the -tabs control

" argument is specified, the canonicalize command replaces blank
spaces with the appropriate tab stops. Conversely, if the
-tabs argument is not specified, horizontal tab stops are
replaced by the correct number of blank spaces.

3-82 AG92-03

canonicalize (canon) canonicalize (canon)

EXAMPLES: To canonicalize the segment named my prog and
establish +tab stops at three specified positions, the user
might type: :

! canon my prog -tabs 7,21,35

To canonicalize the same segment, rename it to new_prog, and
set up tab stops at 10-space intervals, the user might type:

!» canon my prog new_prog -tabs -every 10
To canonicalize the segment old_prog, which already contains

tab stops that are now to be replaced with blank spaces, the
user can accomplish both operations in one pass by typing:

! canon o0ld_prog

3-83 AG92-03

ceil

SYNTAX AS A COMMAND:

ceil num

SYNTAX AS AN ACTIVE FUNCTION:

[ceil num]

FUNCTION: returns the smallest decimal integer
equal to its argument.

- EXAMPLES:
! gtring [ceil 4.7]

5
! string [ceil -3.5]
-3

3-84

greater than or

AG92-03

change_default_wdir (cdwd) change default wdir (cdwd)

SYNTAX AS A COMMAND:
cdwd {path}

FUNCTION: records a specified directory as the user's default
working directory for the duration of +the current process or
until the next change default wdir command is issued.

ARGUMENTS:

‘ path

is the pathname of a directory. If path is not specified, the
current working directory becomes the default working
directory.

NOTES: The change_default_wdir command is wused in conjunction
with the change wdir command. When the change wdir command is
issued with no argument, the default working directory becomes
the current working directory.

The original default working directory is the wuser's home
directory upon logging in.

See also the descriptions of the change wdir (cwd) and
print default_wdir (pdwd) commands. :

3-85 AG92-03

change error_mode (cem) change error_mode (cem)

SYNTAX AS A COMMAND:

cem {-control args}

FUNCTION: controls the amount of information printed by the
default handler for system conditions. It determines the
length of messages for the life of a process or until it is
invoked again in the process.

CONTROL ARGUMENTS:

-brief, -bf
prints only the condition name.
~-long, -1lg '
prints more complete messages. In particular, if the

condition was detected in a support procedure, +the name of
that procedure is printed in addition +to the name of the most
recent user procedure. If a segment +that signalled a
condition (or caused it to be signalled) is bound, both the
offset relative +to the base of the procedure and the offset
relative to the base of the segment are printed.

NOTES: If +this command 1is not issued or is issued with no
control arguments, +the user receives default length error
messages. Default length messages are intermediate in length
between the brief and long messages.

For a complete discussion of conditions and their handling see
the MPM Reference Guide. Refer to the description of the
reprint_error command for a similar, but more selective,
capability.

3-86 AG92-03

change wdir (cwd) change wdir (cwd)

- SYNTAX AS A COMMAND:

cwd {path}

FUNCTION: changes the user's working directory to the directory
specified as an argument.

ARGUMENTS:

prath _
is the pathname of a directory. If path is not specified, the
default working directory is assumed.

- ACCESS REQUIRED: The wuser must have s permission on the
directory containing path, but no accéss to path is required.

NOTES: A working directory is a directory in which the user's
activity 1is centered. Its pathname is remembered by the
gsystem so +that +the user need not type the full absolute
pathname of segments inferior to that directory. '

If path specifies a nonexistent directory, an error message is
printed on the wuser's +terminal and the current working
directory is not changed.

No access to path is required for this command to be employed.
However, once the working directory has been changed, the user
can proceed only according to the user's access to path. That
is, to effectively use path as a working directory, the user
must have sma access permission for path; however, restricted
uses are possible in accordance with the access mode
attributes on the directory. For example, the user must have
- at least status permission to list the directory.

See also the descriptions of the change default _wdir (cdwd)
and print default wdir (pdwd) commands.

3-87 AG92-03

check_iacl check iacl

SYNTAX AS A COMMAND:

check iacl {path} {-control args}

FUNCTION: lists segments whose access control lists (ACLs)
disagree with the initial ACL for segments.

ARGUMENTS:

path
is the pathname of the directory whose segment ACLs are to be
checked against the segment initial ACL. If path is omitted,
the working directory is assumed.

CONTROL ARGUMENTS:

-all, -a
lists User_ids in a segment ACL but not contained in the
initial ACL; also lists User_ids included in the initial ACL
but omitted from a segment ACL. If this control argument is
not specified, only User ids in addition to +those in the
initial ACL are listed.

-exclude User_id, =-ex ﬁser_id
excludes the specified User id from the comparison. Up to ten
-exclude control arguments can be specified. The star
convention is allowed.
EXAMPLES:
! check iacl
oldMap.com.runoff
ACL added: rew Jones.Demo.*
ACL added: rew Jordan.Work.*

add search.com.runoff
ACL added: rew Jones.Demo.*

3-88 AG92-03

check info segs (cis) check info segs (cis)

SYNTAX AS A COMMAND:

cis {-control args}

FUNCTION: prints a list of new or modified info segments. I%
saves the current time in the user profile, so that when it is
invoked again, it 1lsts segments created or modified since the
last invocation.

CONTROL ARGUMENTS:

~-date DT, -4t DT
If this argument is specified, check info_segs wuses the date
specified by DT instead of the date in the user profile. The
DT argument must be acceptable to the convert date to_binary
subroutine (described in +the MPM Subroutines). The time of
last invocation in +the user profile is not updated to the
current time.

-long, -1g
If +this argument is specified, check_info segs 1lists the
date-time-entry-modified as well as the name of any segment
selected as having been created or modified during the
interval in question.

-brief, -bf
If this argument is specified, check info_segs does not print
the names of selected segments and suppresses the comment "no
change" if no segments are selected as having been created or
modified during +the interval in question. This control
argument is intended for use with +the -call control argument
described below.

-no_update, -nud
If this argument is specified, check info segs does not place
the current time into the user profile.

-call cmdline
If +this argument is specified, check info segs calls the
command processor with a string of the form "cmdline path" for
each selected segment, after the name of the segment is typed;
path is the absolute pathname of the segment. The cmdline
must be enclosed in quotes if it contains blanks.

-pathname spath, -pn spath _
If this control argument is specified, check info segs assumes
that spath is a pathname with one or more asterisks %stars) in
the entryname portion. All new or modified segments that

3-89 AG92-03

check_info_segs (cis) check_info segs (cis)

match spath are selected. Refer to "Constructing and
Interpreting Names" in the MPM Reference Guide for a
discussion of star names.

All specified directories are searched, in the order that the

arguments are given. If the -pathname argument is not
gspecified, the default 1is to search the directories in the
"info_segments" search 1list for "¥*.info". See "Notes on

Search List" section below.

NOTES: The first time check_info segs is invoked by a particular
user, it just initializes the Time in the user profile to the
current time, prints a comment, and does not 1list any
gegments. If a profile does not exist, check info segs
creates one in the user's home directory. The profile segment
has the name Person_id.profile, where Person_id is the
Person id given at login time.

The check_info_segs command checks the
date-time-entry-modified for any segment pointed to by a link,
not the time the link was modified.

The check _info_segs command cannot detect that a segment has
been deleted since the last invocation of the command.

- NOTES ON SEARCH LIST:

The check info_segs command wuses the "info_segments" search
list which has the synonyms "info_segs" and "info". The
default "info segments" search list is:

>doc>iml_info
>doc>info

These directories contain info segments provided by the site
and those supplied with the system. Type "psp info" to see
what the current "info" search 1list is. Por more information
about search 1lists, see the search facility commands, and in

particular, the add_search paths description in this manual.
EXAMPLES: To check for info segments modified since the

specified date, type:

! cis -date "07/01/79 0900."

3-90 AG92-03

check_info_segs (cis) check info_segs (cis)

To print all modified info segments, type:

! c¢is -call print -brief
The -brief control argument is given to check info_segs to
suppress duplicate printing of segment names since the print

command types the segment name in the heading.

b

To print just the first ©block of any modified info segment,

type:
! cis -call "answer no help"

a project-maintained

To check for all modified segments in
as the default

directory >udd>Project_id>doc as well
directories, type the following two command lines:
! asp info segments >udd>Project_id>doc

! cis v

3-91 AG92-03

close file (ef) close file (cf)

SYNTAX AS A COMMAND:
cf {-control arg} filenames

FUNCTION: closes specified PORTRAN and PL/I files. It closes
all open FORTRAN and PL/I files if the -all control argument
is specified.

ARGUMENTS:

filenames _
are the names of open FORTRAN or PL/I files.

CONTROL ARGUMENTS:

-all, -a

closes all open files. In this case, no filename appears.

NOTES: The format of a FORTRAN file name is filenn where nn is a
two-digit number other than 00; e.g., file05. PL/I file names
are selected by the user and can have any format.

If a specified file cannot be found, an error message is
printed indicating the name of +the file. The rest of the
specified files are closed.

For each filename, all PL/I files of that name and, if
applicable, the FORTRAN file of that name are closed.

The command "close file -all" does not affect I/0 switches
that are not associated with FORTRAN or PL/I files.

3-92 AG92-03

cobol : cobol

SYNTAX AS A COMMAND:

~ cobol path {-control args}

FUNCTION: invokes +the COBOL compiler +to translate a segment
containing the text of a COBOL source program into a Multics
object segment.

ARGUMENTS :

path

is the pathname of a COBOL source segment to be translated by
the COBOL compiler. If path does not have a suffix of cobol,
one is assumed. However, the suffix cobol must be the last
component of the name of the source segment. If the
expand cobol source command is wused to create a new segment
with The suffix ex.cobol, a check is made to see if this
segment exists and it is used.

CONTROL ARGUMENTS:

-brief, -bf
causes error messages written to the user_output I/0 switch to
contain only an error number and statement identification,
once the full message has been given on the first occurrence.
In the normal, nonbrief mode, an explanatory message is
printed for each occurrence.

~check, -ck
is used for syntactic and semantic checking of a COBOL
program. No code is generated.

-expand, -exp
accepts a source segment in +the format acceptable to the
expand cobol_source command. It expands the source segment by
evaluating COPY and REPLACE statements. If the segment to be
translated has the suffix ex.cobol, this control argument is
ignored.

~-format, -fmt
accepts a source segment in +the format acceptable to the
expand_cobol_source command. If the segment to be translated
has the suffix ex.cobol, this control argument is ignored.

-levelN, -levN
causes severity three L-type diagnostics to be written to the
user_output I/0 switch whenever a COBOL source line contains a
language construct outside the subset specified by N. The

3-93 AG92-03

cobol cobol

value N can Dbe one through five, corresponding +to the four
levels specified by +the Pederal Information Processing
Standards Publication, December 1, 1975 (FIPS PUB 21-1) and %o
the extended version of COBOL supported by Multics. These
values are:

low level

low intermediate level
high intermediate level
high level

Multics COBOL extensions

UTH0IN0 =

If a program compiles without any L-type diagnostics, it means
the program is an acceptable subset of Multics COBOL at the
level requested. The default is level 5.

~list, -1s
produces a source program listing with symbols, followed by an
assembly-like listing of the compiled object program. Use of
the -1list control argument significantly increases compilation
time and should be avoided whenever possible by using the -map
control argument.

-map
produces a source program listing with symbols, followed by a
map of the object code generated by this compilation. The
-map control argument produces sufficient information to allow
the user to debug most problems online.

-profile, -pf
generates additional code to meter the execution of individual
statements. ZFach statement in +the object program contains an
additional instruction +to increment an internal counter
asgociated with that statement. After a program has been
executed, the profile command can be used +to print the
execution counts.

-runtime_ check, -rck
produces an object program in which parameters are validated
according to number and cype, performs bounds checking on all
subscripted referenced, performs string range checking on all
variable length strlng references, and verifies the validity
of every index name modification.

-severityN, -svN
causes error messages whose severity is less than N (where N
is 1, 2, 3, or 4) to not be written to the user_output 1/0
switch. All errors are written into the 1listing. If this
control argument is not given, a severity level of 2 is

3-94 AG92-03

cobol cobol

assumed. See the description of severity levels under "Notes
on Error Diagnostics" below.

-table, -tb

generates a full symbol table for wuse by symbolic debuggers.
The symbol table is part of the symbol section of the object
program and consists of two parts: a statement table that
gives +the correspondence between source 1line numbers and
object locations and an identifier +%able +that contains
information about every identifier actually referenced by the
source program. The table appears in the symbol section of
the object segment produced by the compilation. This control
argument usually causes the object segment to Ybecome
significantly 1longer. If the -format control argument is
given with the -table control argument, the symbolic debuggers
are not able to display the source statements.

~temp dir path, -td path
creates the compiler's internal work files in the specified
directory rather than in +the process directory. This control
argument may be necessary for very large source files (over
approximately 3000 lines) that incur record quota overflow in
the process directory during compilation.

-debug, -db _
leaves the work files generated by the compiler intact after a
compilation. This control argument is used for debugging the
compiler. The command cobol$clean up can be used to discard
these files. Also, this causes severity 4 errors to not
unwind and abort the compilation, but rather to invoke a new
level of the command processor at the point of the error.

-time, --tm
prints +the time (in seconds) and the number of page faults
taken by each phase of the compiler; prints the total time at
the end of the compilation. This information is directed to
the user_output I/0 switch.

NOTES: The only result of invoking the cobol command without
control arguments is to generate an object segment.

A normal compilation produces an object segment and leaves it
in the user's working directory. If an entry with that name
already exists in the directory, its access control list (ACL)
is 'saved and given to the new copy of the object segment.
Otherwise, the user 1is given re access to the segment with
ring brackets v,v,v where v is +the validation 1level of the
process that is active when the object segment is created.

3-95 | AG92-03

cobol cobol

If the user specifies the -map or -list control arguments, the
cobol command creates a 1listing segment in +the working
directory and gives it a name consisting of +the entryname
portion of the source segment with a suffix of list rather
than cobol (e.g., a source segment named business.ccbol would
have a listing segment named business.list). The ACL is set
as described for the object segment except that +the user is
given rw access to it when newly created. Previous copies of

- the object segment and the listing segment are replaced by the
new segments created by the compilation.

A listing segment can also be produced. These . segments are
placed in the user's working directory.

This command cannot be called recursively.

For information on COBOL, refer +to the Multics COBOL Users'
Guide, Order No. AS43% and the Multics COBOL Reference Manual,
Order No. AS44. See the description of the profile command in
this document.

NOTES ON ERROR DIAGNOSTICS: The COBOL compiler can diagnose and
issue messages for about 800 different errors. These messages
are graded in severity as follows:

1 Warning only. Compilation continues without i1l effect.

2 Correctable error. The compiler attempts to remedy the
situation and continues, possibly without 111l effect.
The assumptions the compiler makes in remedying the
gsituation, however, do not necessarily guarantee the
right results.

% Uncorrectable but recoverable error. That is, the
program is definitely in error and no meaningful object
code can be produced, but the compiler can continue
executing and diagnosing further errors.

4 Unrecoverable error. The compiler cannot continue beyond
this error. A message is printed and control is returned

to the cobol command. The command writes an abort
message on the error output I/0 switch and returns to its
caller.

3-96 AG92-03

cobol ' cobol

As indicated above, the user can set the severity level so as
not to be bothered by minor error messages. The user can also
specify the -brief control argument so that the message is
shorter. Since the default severity level is 2, the user must
explicitly specify the -severity!l (or =-sv1) control argument
when invoking +the cobol command to have warning messages
printed. Neither the -severityN nor -~brief control argument
has any effect on the contents of the 1listing segment if one
is produced.

An example of an error message in its long form is:

22 use after error procedure on extend.

1
**¥ 1 5-250 A use procedure has already been associated with
this processing mode.

If the -brief control argument is specified and message 5-250
has previously been given in its long form, the user instead
sees: :

22 - use after error procedure on extend.
- 1
¥% | 5250

If the wuser has set the severity level +to 3, no message is
printed at all. Notice that the number of asterisks
immediately preceding the error indicator corresponds to the
severity level of the error.

If a listing is produced, +the error messages appear
interspersed with +the lines of the source program. No more
than 300 messages are printed in the listing.

NOTES ON LISTING: The listing created Dby the cobol command is a
line-numbered image of the source segment with diagnostics
interspersed. This is followed by a cross-reference table of
all +the names defined within the program. Following the
cross-reference table is the object code map, which gives the
starting location in the text segment of the instructions for
each statement in the program. The map is sorted by ascending
storage locations. Finally, the listing contains an
assembly-like list of the object code produced. The
executable instructions are grouped under an identifying
header, which contains the - source statement that produced the

3-97 AG92-03

cobol cobol

instruction. Opcode, pointer-register, and modifier mnemonics
are printed alongside the octal instruction. If the address
field of the instruction uses the IC (self-relative) modifier,
the absolute text 1location corresponding +to the relative
address is printed on the remarks field of the line.

3-98 AG92-03%

cobol_abs (cba) cobol ahs (cha)

SYNTAX AS A COMMAND:

cba paths {cobol_args} {dp_args} {abs_control args}

FUNCTION: submits an absentee request to perform COBOL
compilations. The absentee process for which cobol abs submits

a request compiles the segments named and prints and deletes the
listing segment.

ARGUMENTS ;

paths .
are the pathnames of segments to be compiled.

cobol_args
can be one or more control arguments accepted by the cobol
command. ' v

dp_args ‘
can be one or more control arguments (except -delete, -d1) accepted
by the dprint command.

'LIST OF ABSENTEE CONTROL ARGUMENTS:
abs_control_args can be chosen from the following:

-queue N, -q N :
specifies in which priority queue the request is to be placed
(N < 3). The default queue is 3; the listing segment is nrinted
in dprint queue N.

-hold, -hd
specifies that cobol_abs should not print or delete the listing
segment.

-limit N, -1i N
" places a limit on the CPU time used by the absentee process. The
parameter Nmust be a positive decimal integer specifying the 1imit
in seconds. The default limit is defined by the site for each
queue. An upper limit is defined by the site for each queue on
each shift. Jobs with limits exceeding the upper 1limit for the
current shift are deferred to a shift with a higher limit.

-output file path, -of path

specifies that absentee output is to go to the segment whose
pathname is path.

3.99 . AGA2-03

cobol_abs (cba) cobol_absg (cba)

NOTES: Control arguments and -segment pathnames can be mixed
freely and can appear anywhere on the command 1line after the
command. All control arguments apply to all segment
pathnames. If an unrecognizable control argument is given,
the absentee request is not submitted.

Unpredictable results can occur if two absentee requests are
submitted +that could simultaneously attempt to compile the
same segment or write into the same absout segment.

When doing several compilations, it 1is more efficient to give
several segment pathnames in one command rather than several
commands. With one command, only one process is set up. Thus
the dynamic intersegment links that need to be snapped when
setting up a process and when invoking the compiler need be
snapped only once.

If the -output file control argument is not specified, an
output segment, path.absout, is created in the user's working
directory (if more than one path is specified, only the first
is used).

If none of the segments to be compiled can be found, no
absentee request is submitted.

3-100 AG92-03

collate . collate

SYNTAX AS A COMMAND:

collate

- SYNTAX AS AN ACTIVE FUNCTION:

[collate]

FUNCTION: returns the 128 characters of the ASCII character set
in collating sequence.

3-101 | AG92-03

et

collate9 collateQ

SYNTAX AS A COMMAND:
collate9

SYNTAX AS AN ACTIVE FUNCTION:
[collate9]

FUNCTION: returns a character string containing all possible
9-bit bit patterns rather than just the 128 ASCII characters,
therefore, making the returned string 512 characters long.

3-102 AG92-03

compare ' compare

SYNTAX AS A COMMAND:

compare pathi{|offset1} path2{|offset2} {-control args}

FUNCTION: compares two segments and lists their differences. The
comparison is a word-by-word check and can be made with a mask so
that only specified parts of each word are compared.

ARGUMENTS:

pathl, path2
are the pathnames of the segments to be compared. The equal
convention is allowed for path2.

offsett, offset2
are octal offsets within the segments to be compared. The
comparison begins at the word specified or at the first word of
the segment if no offset is specified. If an offset is omitted,
the vertical bar should also be omitted.

CONTROIL. ARGUMENTS:

~-brief, -bf ,
prints only the first and last words of each block of discrepancies
that is four or more words in length. The default is to print all
discrepancy words.

-length N, -1n N
the comparison should continue for no more than N (octal)
words. »

-long, -lg
prints all discrepancy words, unlike -brief. This 1is the
default. :

-mask N '
the octal mask N is to be used in the comparison. If N is less
than 12 octal digits, it is padded on the left with zeros.

NOTES: The maximum number of words to be compared is the word count
af the first segment minus its offset or the word count of the
second segment minus its offset, whichever is greater. If the
-length control argument is supplied, comparison stops after the
specified number of words. If the segments are of unequal length,
the remaining words of +the longer segment are printed as
discrepancies. The word count of a segment is computed by dividing

3-103% : AG92-03

compare : compare

printed as discrepancies. The word count of a segment is
computed by dividing the bit count plus 3% by 36. If the word
count minus the offset is less than zero, an error message is
printed and the command ig aborted.

Any discrepancies found by the command are listed in the
following format:

offset - contents offset contents
4 404000000002 4 0001776000023

6 404000000023 6 6TTTTAZ00100

To compare segments containing only ASCII character-string
date, use the compare_ascii command described in this manual.

3-104 AG92-03

compare ascii (cpa) compare_ascii (cpa)

SYNTAX AS A COMMAND:

cpa paths {-control args}
FUNCTION: compares ASCII segments and prints any differences.

ARGUMENTS:

- paths _

are the pathnames of the segments to be compared. Up to six
segments can be compared, in addition to the original if one
is supplied. The equal convention can be used in any pathname
except the first one on the command line, which is assumed to
be. the original unless otherwise specified.

CONTROIL. ARGUMENTS:

-original pathA, -orig pathA
specifies the pathname pathA of the original segment of which
the others are modified versions.

-no_original, -no_orig
indicates that no original segment is supplied. If neither
-no_original nor -original is given, the first pathname on the
command llne is assumed to be the original.

-minchars NN
specifies +the minimum number of characters that must be
identical for compare_ascii to assume that it has found the
end of a difference. The default is 20 characters. See
"Notes" below.

-minlines NN
specifies the minimum number of lines that must be identical
for compare ascii to assume that it has found the end of a
difference. ~The default is two lines. See "Notes" below.

-totals, -tt
prints only the totals line, giving the number of differences
and the number of changed 1lines. The default is +to print
discrepancies and totals line.

-no_totals, -ntt
doeg not print the totals line.

-header, -=he

prints a heading, giving the full pathname and identifying
letter of each segment. This heading is not printed by

3-105 ‘ AG92-0%

compare_ascii (cpa) — compare‘ascii (cpa)

default.

=print_new_lines, -pnl
prints only new lines. New 1lines are lines found in one or
more of the modified versions but not in +the original. An
original must be supplied if this argument is used.

-no numbersg, -nnd
does not print identifying letter and 1line numbers preceding

the lines from the segments being compared. The default is to
print them.

NOTES: The output is organized with the assumption that the
pathA segment was edited +to produce pathB. This command
prints 1lines that were added, replaced, or deleted; it
identifies each 1line by 1line number within the respective
segment and also by the 1letter A or B to indicate which
segment the line is from (A for pathA and B for pathB).

Values for minchars and minlines can be specified without
being preceded by control arguments. The order is: minchars
minlines. »

The values of minchars and minlines control +the size of
displayed differences. Large values for these parameters
cause small, closely-spaced differences to be displayed as one
large difference, while very small values (such as -minlines 1
-minchars 2) will cause small changes to be displayed
individually but might also cause 1large differences to be
broken down into small parts, thereby giving a misleading
picture of what was actually done +to produce the modified
versions. The user should adjust these parameters to produce
the most useful results.

EXAMPLES: The examples of compare ascii usage below are based on

the segments yesterday.menu and today.menu displayed here side
by side.

yesterday.menu today.menu
Breakfast Menu: Breakfast Menu:
Juice Juice
Toagt Toast
Eggs Eggs
Luncheon Menu: Luncheon Menu:
Hot dogs Hamburger

3-106 AG92-03

compare_ascii (cpa)

Milk
French fries
Supper Menu:

compare_ascii (cpa}

Milk
Salad
French fries

Steak Supper Menu:

Baked potato Chicken

Coffee Rice
Coffee

The default operation of compare_ascii is illustrated by the
command line:

! c¢pa yesterday.menu today.menu

A6 ~ Hot dogs
AT ; Milk
Changed by B to:

B6 Hamburger
BT Milk

B8 Salad

A10 - Steak

A1 Baked potato
Changed by B to:
B11 Chicken
B12 Rice

omparison finished: 2 differences, 9 lines.

The following command line shows the use of the -original,

-header, -minlines, and -minchars control arguments. Notice

that the lower values of minlines and minchars isolate the two

changes within the Luncheon menu.

! cpa today.menu -orig yesterday.menu -he -minchars 5
-minlines 1

A >udd>md>Jonesd>yesterday.menu (original)
B >udd>m>Jones>today.menu (new)

A6 . Hot dogs -
Changed by B to:
B6 Hamburger

Inserted in B:

B8 ‘Salad
Preceding:
A8 French fries

3-107 AG92-03

compare_ascii (cpa) ' : compare_ascii (cra)

A10 Steak

A1 v Baked potato
Changed by B to:

B11 Chicken

B12 _ Rice

Comparison finished: 3 differences, 7 lines.

In +the following example the printing of 1line numbers, old
lines, and the totals line have been suppressed, giving better
visibility to what is new in today.menu.

! cpa yesterday.menu today.menu -pnl -nnb -ntt -minchars 5
-minlines 1

Hamburger
Salad
Chicken
Rice

3-108 AG92-03

contents ‘ contents

SYNTAX AS A COMMAND:

contents path

SYNTAX AS AN ACTIVE FUNCTION:

[contents path]

FUNCTION:. returns the contents of a segmént as a character
string. Newline characters in +the segment are changed to
blanks in the string.

EXAMPLES: Assume that the segment named distribution contains a
list of names (each person's name on a separate line).

The command line:.
! dp -ds ([contents distribution]) output

prints one copy of the segment output for each name on the
list, using the name as the destination.

3-109 AG92-03

convert_characters (cve) convert_characters (cvc)

SYNTAX AS A COMMAND:

cve key! {oldpath} {newpath]
or: .
cve key2 char_string

FUNCTION: allows the rapid editing of a segment in the case
where a one-for-one replacement of certain characters by
certain other characters must be done. An example of its use
is the conversion of all uppercase characters in a segment to
lowercase characters. Keywords specify the conversion to take
place. For certain of the keys convert characters maintains a
from string and a to string that define the conversion to be
made. = The converted segment 1is the same as the original
except that every instance of the i*th character of
from string present in the original segment is replaced by the
i'th character of to_string.

The oconversion for +the key '"sp" uses a from_string and
to_string that must have been previously set by wuse of the
"from" and "to" keys.

ARGUMENTS:

key1 _
eny of the keys listed below in "List of keywords™.

oldpath
the pathname of a segment to be converted. If this argument
is omitted, the from string and +to_string related to key! are
printed.

newpath ‘ :
the pathname of the output segment. If +this argument is
omitted, newpath is assumed to be the same as oldpath, and the
converted copy replaces the original.

key?2
either "to" or "from" to set to_string or from_string for the
|lsp" key.

char_string

is the string to be set as to string or from_string. If it
contains blanks, it must be enclosed in quotes.

3-110 AG92-03

convert_characters (cvc) convert characters (cve)

LIST OF KEYWORDS:

1c
converts alphabetic characters to lowercase.

uc
converts alphabetic characters to uppercase.

mp .
converts from Multics PL/1 format to IBM 360 PL/1.

becd :
converts BCD special characters to ASCII/EBCDIC equivalents.

dart

converts Multics special characters to corresponding Dartmouth
special characters as follows:

~ 1

=-~—i|+\/'»
D F e VA =l

D

sp .
uses conversion strings set earlier by the from and to keys:
cve from char_stringl;cvec to char_string?2

NOTES: The most recent setting of from string and to string in
the user's process is used for conversion with the "sp" key.
No conversion is attempted for +the "sp" key unless both the
from string and the to string are of the same non-zero length.
Any Tharacter not present in the from_string is not changed.

3-111 o AG92-03

—— e

copy (cp) . copy (cr)

SYNTAX AS A COMMAND:
cp path1l {path21 ... pathin path2n} {-control_args}

FUNCTION: causes copies of specified segments and multisegment
files to be created in the specified directories with the
specified names. Access control 1lists (ACLs) and multiple
names are optionally copied. '

ARGUMENTS:

path11
is the pathname of a segment or multisegment file to be
copied. If path!l is the name of a link, the command copies
the target of the link. The star convention is allowed.

path2i

P is"the pathname of a copy to be created from path1i. If the
last path2 argument is not given, the copy is placed in the
working directory with the entryname of pathin. The equal
convention is allowed.

CONTROL ARGUMENTS:

-acl
copies the ACL.

copies multiple names and ACLs.

~brief, -bf
suppresses the warning messages "Bit count inconsistent with
current length..." and "Current length is not +the same as
records used.

~-chase

copies the targets of links that match patht. See "NOTES" for
the default action.

-long, -1lg
prints warning messages as necessary. This is the default

-name, -nm
copies multiple names.

-no acl
does not copy the ACL. This is the default.

3-112 AG92-03

copy (cp) copy (cp)

-no chase

does not copy the targets of links +that match pathil. See
"NOTES" for the default action.

'=no_name, -nnm
does not copy multiple names. This is the default.

ACCESS REQUIRED: Read access is required for pathti. Status
permission is required for the directory containing pathli.
Append permission is required for the directory containing
path2i. Modify permission is required if the -name, -acl, or
-all control argument is used.

NOTES: The control arguments can appear once anywhere in the
copy command line after the command name and apply to the
entire copy command line. :

The default for chasing links depends on pathi. If patht is

not a starname, links are chased by default. If pathl is a
starname, links are not chased.

If the ACL of a segment or multisegment file is being copied,
the initial ACL of the target directory has no effect on the
ACL of the segment or multisegment file after it has been
copied into that directory. The ACL remains exactly as it was
in the original directory.

Since two entries in a directory cannot have the same
entryname, special action is taken by this command if the name
of the segment or multisegment file being copied (specified by
path1i) already exists in the directory specified by path2i.
If the entry being copied has an alternate name, the entryname
that would have resulted in a duplicate name 1is removed and
the wuser is informed of +this action; the copying operation
then takes place. If the entry being copied has only one
entryname, the entry that already exists in the directory must
be deleted to remove the name. The user is asked if the
deletion should be done; if the user answers "no", the copying
operation does not take place. ‘

The copy command prints a warning message if the bit count of
path1i is 1less than its current length or if the current
length is greater than +the number of records used. These

3-113 AG92-03

copy (ep) - o copy (cp)

warnings are suppressed by the use of +the -brief control
argument. '
EXAMPLES:
The command line:
! copy >01d_dir>fred.list george.=

copies segment or multisegment file named fred,list 1in the
directory >0ld_dir into the working directory as george.list.

3-114 AG92-03

e

copy_acl , copy_acl
SYNTAX AS A COMMAND:
copy_acl path1l path21 {... pathin path2n}

FUNCTION: copies the access control 1list (ACL) from one file or
directory to another, replacing the current ACL if necessary.

ARGUMENTS:

pathli
is the pathname of a file or directory whose ACL 1is to be
copied. The star convention is allowed.

path2i
is the pathname of a file or directory onto which the initial

ACL is to be copied. The equal convention is allowed.

3-115 AG92-03

copy_cards (ced) , copy_cards (ccd)

SYNTAX AS A COMMAND:

ccd deck_hame {new_deck name}

FUNCTION: copies specified card image segments from system pool
storage into a user's directory. The segments to be copied
must have been created using the Multics card input facility.

ARGUMENTS:

deck name :
18 the nahme that was entered on the deck id card when %the card
- deck was submitted for reading. The star convention is
allowed.

new_deck name
is the pathname of the gsegment in which the matching card
image segment 1is to be placed. If omitted, +the working
directory and deck name are assumed. The equal convention is
allowed. :

NOTES: See the description of the card input facility im the MPM
Reference Guide for +the format of the control cards needed
when submitting a card deck to be ready by system operations.
The user process executing this command must have the proper
access to the card image segment in order to perform the copy.
When thefe are multiple copies of +the same deck in pool
storage, all atre copied.

When deck_name is a starhame and there are several matching
card imageé segments in pool storage to which the wuser has
access, all are copied. '

When an @attempt is made to read a card deck having the same
name as Bome previously read deck =still in pool storage, a
numeric ®Buffix is wadded to the name of the new deck, e.g.,
"deck _name.1". Repeated name duplications cause successively
larger numeric suffixes to be used. (Name duplications can
only occur for decks of the same access class submitted by the
same user.) The copy cards ¢ommand informs the umer of such
dupliecations (if anyT and retrieves all copies of the
specified deck.

copy_cards (ccd) copy_cards (ccd)

Only +those card decks having an access class equal to the

user's current authorization can be copied. Other decks are
not found.

EXAMPLES:
The command line:
! ccd my_deck

copies the wuser's card image segment named my_deck from the
card pool storage into the user's current working directory.

3-117 AG92-03

copy_characters (cpch) copy_characters (cpch)

'SYNTAX AS A COMMAND:
cpch str N

SYNTAX AS AN ACTIVE FUNCTION:
[cpch gtr N] |

FUNCTION: returns a quoted string containing ¥ copies of a
specified string.

EXAMPLES:

! string [epch ™ 23 n 3]
1231231273

3-118 _ AG92-03

copy_dir (epd) ’ copy_dir (cpd)

SYNTAX AS A COMMAND:
cpd source_dir {target_dir} {-entry_ type keys} {-control args}

FUNCTION: copies a directory and its subtree to another point in
the hierarchy.

ARGUMENTS:
source dir

is the pathname of a directory to be copied. The star
convention is allowed.

target_dir
is “the pathname of the copy of the source_dir. The equal
convention is allowed. If target dir is not specified, the

copy is placed in the working directory with the entryname of
source_dir. If the target_dir does not exist, it is created.

entry type keys
control what type of storage system entries in the subtree are
copied. If no entry type key is specified, all entries are
copied. The keys are:

-branch, -br

-directory, -dr

-file, -f

-link, -1k

-multisegment file, -msf
-non_null link, -nnlk
-segment, -sm

If one or more entry type keys are specified, but not the
-directory key, the subltree of source_dir is not walked.

CONTROL ARGUMENTS:

-brief, -bf
suppresses the printing of warning messages such as "Bit count
is 1inconsistent with current length" and "Current length is
not the same as records used".

~-force
executes the command, when target_dir already exists, without
asking the user. If the -force control argument is not

specified, the user is queried.

3-119 AG92-03

copy_dir (cpd) - copy_dir (cpad)

-replace, -rp
deletes the existing contents of target_dir before the copying
beging. If target_dir is non-existent or empty, this control
argument has no effect. The default is to append the contents
of source_ dir to the existing contents of target_dir.

-acl
gives the ACL on the source dir entry to its copy in
target_dir. Although initial ACTs are still copied, they are
not used in setting the ACL of the new entries when this
control argument is specified. See "Notes on Access
Provision" below for further discussion.

-primary, -pri o
copies only primary names. If the -primary control argument
is not specified, all the names of the selected entries are
copied.

-ne_lipk translation, -nlt
copies 1links with no change. The default is to translate
links Ybeing copied. If there are references %o the source
directory in the 1link pathname of a link Dbeing copied, the
link pathname is changed to refer to the target directory.

-chase
copies the target of a 1link. The default is not to chase
linkg. Chasing the links eliminates link translation.

NOTES: The user can specify that portions of the subtree be
copied and can control the processing of links. See also the
copy, move, gnd move_dir commands in this manual.

ACCESS REQUIRED: Status permission is required for source dir
and all of the directories 1in its tree. Status permission is
required for the directory containing source_dir. Read access
is requlred on all files wunder souyrce_dir. Append and modify
permission are required for the™ directory containing
target_dir if target_dir does not exist prior to the
1nvocat10n of the copy dir command . Modify and append
permission are required “on target_dir if it already exists.
This command does not force access. :

NOTES ON ACCESS PROVISION: If the -acl control argument is not

specified, the system default ACLs are added, then the initial
ACL for the containing directory 1is applied (which may change
the system supplled ACL). 1Initial ACLs are always copied for
the current ring of execution. ,

3-120 AG92-03

copy_dir (cpd) copy_dir (cpd)

NOTES ON THE EXISTENCE OF target dir: If target dir already
exists and -force is not specified, the user is so informed
and asked if processing should continue. If +target_dir is
contained in or contains source dir, an appropriate error
message is printed and control is returned to command level.
Otherwise, the contents of source dir either are appended to
or replace the contents of target dir. (See the -replace
control argument.) -

NOTES ON STAR AND EQUAL CONVENTIONS: The star convention in
source_dir matches only directory names and copies themn.
Matching names associated with other storage types are
ignored. :

NOTES ON NAME DUPLICATIONS: Since two entries 1in a directory
cannot have +the same entry name, this command takes special
action 1f +the entryname of the entry being copied already
exists in the directory specified by target dir. If the entry
is a directory, it is handled in the same fashion as
duplication between source dir and target dir 1is handled,
unless the existing entry in target dir “is not also a
directory. In this case +the entryname duplication is treated
the same as non-directory entries. The procedure for
non-directory entries is the standard system technique. BSee
the copy command in this manual.

If +the -replace control argument is specified or target_dir
does not exist, name duplication does not occur.

NOTES ON LINK TRANSLATION: If part of the tree is not copied (by
specifying a storage system entry key), problems with link
translation may occur. If the link target in the source_dir
tree was in the part of the tree not copied, there may be no
corresponding entry in the target dir tree. Hence,
translation of the link causes the link to become null.

3-121 AG92-03

copy_dir (cpd) ‘ copy_dir (cpd)

EXAMPLE:
The command line:
! cpd old_source new_source -segment -acl

copies all +the segments with their ACLs in the directory
0ld_source to the directory new_source.

The command line:
! c¢pd old_user new_user ~branch
copies all the segments, directories and multisegment files

from the directory old user +to +the directory new_user (no
links are copied). - "

3-122 AG92-03

copy_file (cpf) copy_file (cpf)

SYNTAX AS A COMMAND:

cpf in_control arg out_control_arg {-control args}

FUNCTION: copies . records or 1lines from an input file to an
output file. The copy command makes an exact duplicate of the
input file, whereas copy file produces an output file that has
been restructured for maximum compactness. (See the
description of the copy command in this manual.)

ARGUMENTS :

LIST OF in_control args:
the input file™ from which records or lines are read can be
specified by either an I/0 switch name or an attach
description. (See "Notes" below.)

-input_switch STR, -isw STR
specifies the input file by means of an already attached I/0
switch name, where STR is the switch name.

-input_description STR, -ids STR
gspecifies +the input file by means of an attach description
STR. ©STR must be enclosed in quotes if it contains spaces -or
other command language characters.

LIST OF out_control args: v
the output file To which the records or lines are written can
be specified by either an I/0 switch name or an attach
description. (See "Notes" below.)

-output_switch STR, -osw STR
specifies the output file by means of an already attached I/0
switch name, where STR is the switch name.

-output description STR, -ods STR
specifies the output file by means of an attach description
STR. STR must be enclosed in quotes if it contains spaces or
other command language characters.

CONTROL ARGUMENTS:
-keyed

copies both records and keys from a keyed sequential input
file +to a keyed sequential output file. The default is to

3-123 AG92-03

copy_file (cpf) copy_file (cpf)

copy records from an input file (either keyed or not) to a
sequential output file. (See "Notes on Keyed Files" below.)

~from N, -fm N
copies Dbeginning with +the Nth record or 1line of +the input
file, where N is a positive integer. The default is to begin
copying with the "next record." (See "Notes" below.)

-gtart STR, -sr STR
copies beginning with the record whose key is STR, where STR
is 256 or fewer ASCII characters. The default is to begin
copying with the "next record.”

-to N
copies uyntil the ©Nth record or 1line has been copied or the
input file is exhausted, whichever occurs firgt, whete N is a
positive integer greater than or equal to the N giveén with the -
-from control argument. This control argument can only be
specified if ~from is also specified. The default 1is to
perform copying until the input file is exhausted.

-stop 8TR, «sp STR '

copies until the record whose key is STR has been copied or
the input file is exhausted, whichever occurs first, where STR
is 256 or fewer ASCII characters. This control argument can
be specified without specifying the -start control argument.
However, if -start is specified, the STR given with -stop must
be greater than or equal to (according to the ASCII collating
sequence) the STR given with ~-start. The default 1is to
perform copying until the input file is exhausted.

-count N, «ct N
copies until N records or lines have been copied or the input
file 1is exhausted, whichever occurs first, where N is a
positive integer. The default% is to perform copying until the
input file is exhausted.

copies until the input file is exhausted. This is the default.

~brief, -bf
suppresses an informative message indicating the number of
records or lines actually copied.

prints an informative message indicating the number of records
or lines actually copied. his is the default.

-input_mode x, -imode x '
specifies the opening mode for the input file. If copy_file

3-124 AG92-03

copy_file (epf) copy file (cpf)

opens the file, it uses this mode. If the file is already
open, this mode must be consistent with the open mode of the
file (e.g., stream_input is consistent with
stream_input_output). Allowable values for x are:

keyed_sequential input, ksqi sequential_ input_output, sqio
keyed sequential output, ksqo stream input, si

sequential input’, saqi stream_output, so

sequential output, sqo stream_input_output, sio

-output_mode x, -omode x
specifies the opening mode of the output file. See
—input_mode above for restrictions.

-character, -ch

- specifies that any positioning of stream files done by
copy_file 1is to be done in terms of characters rather than
lines.

NOTES ON UNSTRUCTURED FILES: With the use of -input mode and
-output mode, it 1is possible to specify the processing of
unstructured (stream) files with copy file. Three
possibilities involving wunstructured files exist: stream to
record, record to stream, and stream to stream.

Stream +to0 record copying involves reading input 1lines and
writing +them as records. Record to stream copying involves
reading records, appending a newline character and writing
these characters to +the output stream. Stream to stream
copying involves simply reading characters from the input
stream and writing them to the output stream.

In stream to record and record to stream copying, -nnl
inhibits the copying or addition of newline characters.

In copies involving stream input, -from, -to, and -count
specify positions in terms of lines unless -character has been
specified, in which case positioning is in terms of

characters.

NOTES ON KEYED FILES: The copy_file command can copy a keyed
sequential file +to produce an output file that has been
restructured for maximum compactness as a keyed file or as

though it were purely sequential. By default, the command
copies only records and does not place keys in the output

3-125 AG92-03

copy_file (cpf) . copy_file (cpf)

file. To copy the keys, the -keyed control argument must be
used. When -keyed is used, the input file must be a keyed
sequential file. Whether keys are copied or not, control
arguments can be used to delimit the range of records to be
copied (i.e., -start, -stop, -from, -to, -count). Copying is
always performed in key order.

NOTES: The input and output files can be any combination of
structured or unstructured files. The input file can be
copied either partially or in its entirety.

If either +the input or output specification is an attach
description, it is used to attach a uniquely named I/O switch
to the file. The switch 1is opened, the copy performed, and
then the gwitch is clogsed and detached. Alternately, the
input or output file can be speolfled by an I/O gwitch name.
Either the io_call command or iox subroutine can be used to

attach the file prior to the invocation of +the copy file
command. (See the description of the io call commandg in this
manual and the iox_ subroutine in the MPM‘Subroutxnes.)

If the 1qgut file is specified by an I/0 switch name and the
switch not open, the copy file command opens it for
(keyed)sequentlal input or stream input, performs the copy,
and cloges 1it. If" the gwitch Ts already open vwhen the
copy_file command is invoked, the opening mode must be
seQuentlal input, sequential input output,
keyed sequential input, keyed _sequential update, stream input,

or s?re%m input™ output. The™ switch is not clogsed affer the
copy has been performed.

The "next record" or "next byte" must be defined if neither
the -start nor -from control argument is used to specify an
abgolute starting position within the input file. If the I/0
switch is opened by the copy file command, the next record is
the flrst record of the flle, otherwise, the next record is
that record at which the file is positioned when the copy_file
command is invoked. If the -character control argument has
been specified and —from, -to, or -count has been specified
and the input file is a stream, positioning is performed in
terms of characters rather than lines or records.

If the output file is specified by an I/0 switch name and the
switch is not open, +the copy_file command opens it for
(keyed_)sequential output, performs the copy, and closes it.

3-126 AG92-03

copy_file (cpf) | copy file (cpf)

If the switch is already open when the copy file command is
invoked, the opening 'mode must be sequential output,

sequential _input_output, keyed sequential output,
keyed_sequential update, direct output,” direct_update,
stream output, or stream input output. (In update mode,

output™ file records with keys +that duplicate input file
records are rewritten.) The switch is not closed after the
copy has been performed.

The -from and -start control arguments are mutually exclusive.
The -to, -stop, =-count, and -all control arguments are
mutually exclusive. The -nnl control argument is mutually
exclusive with stream to stream or record to record copying.
The -start and -stop control arguments are mutually exclusive
with stream input. The -brief and -long control arguments are
mutually exclusive. The informative message, printed by
default, appears as one of the following:

345 records copied.
345 records read;