
iHONEYWELL INTEROFFICE CORRESPONDENCE
PHOENIX OPERATIONS - HONEYWELL INFORMATION SYSTEMS

DATE 771212 -------- PHONE MAIL ZONE COPIES

TO Specification File --------
____ FR O M C. Bjerke~

SF section: 14.4
COMPONENT LADC doc n 0257A-O

page 1
SUBJECT I/O Design Specification

This specification has incorporated changes to the original design
specification suggested by the I/O Design Review Committee and as
such represents the design to be implemented.

'. CF2!5(!5-71)

SF section:
doc II
date

14.4
0257A-O
771212

page

Design Specifications for a New I/O System

1. INTRODUCTION

The interim I/O System consists of two parts: IOQ and IDS.
IOQ contains the caller and user interfaces; IDS, which was
adapted from GCOS lOS, contains the I/O scheduling,
interrupt, and error recovery routines.

In order to meet several requirements of the CP-6 I/O
System, The interim IDS will be replaced with a new set of
I/O processing routines ("the new IDS"). Although some
internal changes to IOQ will be necessary, the interfaces to
IOQ for routines outside of the I/O System will remain
essentially unchanged.

1.1 REQUIREMENTS

The New I/O System for CP-6 will provide the following
features:

o It will be written mostly in PL6 for easy maintenance.

o Each handler will be an independent set of routines.
Common code will be primarily subroutines.

o Table searches will be minimized by using queue
structures where applicable.

o It will be designed for a multi-processor environment.

o It will be designed so that a wide variety of device
handlers may be accomodated, including those
specifically mentioned herein.

r

o Disk I/O will be scheduled so as to mlnlmlze arm
positioning delays and rotational latency.

1.2 Conventions

1.2.1 Module and Entry Point Names

All module and entry point names will have the following
prefixes:

2

1 .2.2

1.2.3

Prefix Module

Console Handler
Disk Handler
Line Printer Handler
IOQ
Card Punch Handler
Packet Allocator
Card Reader Handler

SF section:
doc 11
date
page

14.4
0251A-0
111212

3

NIC$
NID$
NIL$
NIO$
NIP$
NIQ$
NIR$
NIS$
NIT$
NIU$

Driver and Interrupt Distributor (BMAP)
Magnetic Tape Handler
Utility Subroutines (PL6)

External Symbol Names

All external symbol names defined in the above modules will
have the prefix: NI_.

Calling Sequences

All calling sequences will be PL-6 calling sequences, which are
described in AF sect. 6.3, #0137.

1 .3 Scope

This document describes the new IDS. Section 2 discusses those
aspects of the hardware which must be taken into consideration
when designing the 1/0 System. Section 3 contains an overview.
Section 4 describes the data structures. Section 5 describes
the procedures. Section 6 describes the changes to IOQ and
entry points of IOQ which are used by lOS.

This document does not describe the individual device handlers,
other than indicating the general modus operandi thereof.

1 .4 Re ferences

This design specification is based on information contained in
the following documents:

58001190
43A239854
4 3A 177880
4 3A 171879
58001108
58008518
43A232230

EPS-1 4 Megaword System Controller
EPS-1 6000B Input/Output Multiplexer (10M) Centr,
EPS-1 6000 10M Peripheral Subsystem Interface Ad
EPS-1 MPC - PSI Link Adapter
EPS-l Unit Record MPC Controller/Subsystem
EPS-1 MTP601 Tape Controller
EPS-l DSC181/DSC190 Controller

2. HARDWARE CONSIDERATIONS

SF section:
doc I
date
page

14.4
0257A-O
771212

4

The general configuration of the L66 I/O hardware is shown in
Fig. 2.1. There may be up to four CPUs. By the use of mask
registers, I/O interrupts can be selectively directed to
different CPUs. However, in order to maintain the current
concept utilized in the Job Scheduler, all 1/0 interrupts will
be sent to one CPU. There may be more than one System
Controller (SCU), but if all of the CPUs and IOMs are to have
the same address space, the only purpose for more SCUs is to
provide more than 4 megawords of memory. There may be up to
four Input/Output Multiplexors (IOMs), but each 10M is
controlled independently and identically. Multiple IOMs can be
used to provide greater I/O bandwidth and/or more I/O channels.

A ~icro-Programmed Controller (MPC) may have one or two Link
Adapters, each of which is capable of performing one data
transfer operation at a time. Thus, two Link Adapters allow
two simultaneous data transfer operations on dual-access tape
and disk subsystems. Each Link Adapter may be connected to one
or two Peripheral Subsystem Interface Adapters (PSIAs). The
only purpose for having two PSIAs attached to one Link Adapter
is to provide redundant paths to the MPC. Typically, the two
PSIAs would be connected to different IOMs. Each PSIA may
control up to eight I/O channels. The latter are usually
called logical channels, to distinguish them from physical
channels, which connect PSIAs to Link Adapters. The use of
multiple logical channels on a PSIA depends on the type of
peripheral subsystem.

A unit record MPC can control up to eight peripherals such as
card readers, line printers, and card punches. Each device is
assigned the same logical channel number on all of the PSIAs
connected to the MPC. Thus, there may be up to four paths to
each device (2 Link Adapters X 2 PSIAs). However, since unit
record data transfers are always buffered in the MPC and the
data transfer time is much less than the device cycle time,
more than one Link Adapt~r or PSIA only provide redundant paths
to the MPC. Th us, a' un it record peri pher al wo uld usually be
accessed by the same channel. Any contention between the
devices for logical channels would be resolved by the MPC and
thus would be transparent to the 1/0 software in the CPU.

A magnetic tape MPC can control up to 16 tape drives via a 1 X
N or a 2 X N switch. Thus, with two Link Adapters, two tape
drives may be doing simultaneous data transfers. Keeping a
Link Adapter busy requires only two logical channels on the
PSIA: one for the current request being processed, -and one to
hold a request which can be started immediately when the
current request is finished. If there are more than two
logical channels, a request issued to the lowest priority
channel may never be started because enough requests are issued
on higher priority channels to keep the Link Adapter busy.
Thus, I/O scheduling for a tape subsystem must resolve

.
I

SF section:
doc ,
date
page

14.4
0257A-O
771212

5

contention for the channels and, for maximum throughput, should
keep both Link Adapters (if there are two) busy.

A disk subsystem may have one or two MPCs, each of which may
have one or two Link Adapters, thus a maximum disk subsystem
may perform four simultaneous data transfers.- On a disk
subsystem, the multiple logical channels of the PSIA are used
to implement seek overlap. When a request is issued to a disk
channel, the MPC initiates the seek phase of the request, then
releases the logical channel so that other logical channels may
be processed. In this manner, several disk drives may all be
seeking simultaneously. When one of them arrives at the
requested sector, the MPC restarts the corresponding logical
channel, and performs the data transfer operation. If a disk
arrives at the requested sector while a data transfer is in
progress, the on-sector interrupt from the drive will be
ignored and will occur again on the next revolution. However,
if maximum performance is to be obtained from the disk
subsystem, the disk liD software must still schedule disk
operations so as to minimize arm positioning delays and
rotational latency. Thus, liD scheduling for a disk subsystem
must resolve contention for the channels, it should keep all of
the Link Adapters busy, and it should schedule the requests for
a drive so as to minimize seek delays.

3. OVERVIEW

SF section:
doc n
date
page

14.4
0257A-O
771212

6

The new lOS will consist of the Driver, the Interrupt
Distributor, the Lost Interrupt Poller, and several device
handlers, one for each type of supported devi~e. The Driver
will set up the connect and payload channel mailboxes and issue
the Connect lID Channel (CIOC) instruction to initiate the IIO
operation. The Interrupt Distributor will be entered whenever
an interrupt occurs. It will determine the channel which
caused the interrupt and call the Poster of the device handler
for that channel. The Lost Interrupt Poller is called
periodically to check for lost interrupts. In addition, there
will be some common subroutines, such as an interface to KEYIN.

Each handler will consist of a Scheduler and a Poster. The
Scheduler is called by IOQ or the Poster to schedule the device
for the IIO operation. The Poster is called by the Interrupt
Distributor when an interrupt occurs to start the next request
on the interrupting channel, analyze the completed request,
perform any necessary error recovery, and return the completed
request to IOQ for end-action processing.

SF section:
doc II
date
page

14.4
0257A-O
111212

1

3.1 Table and Queue Structure

3. 1 • 1

3. 1 .2

The static table structure for the New I/O System is shown
in Fig. 3.1. The dynamic table and queue structure is shown
in Fig. 3.2.

Tables

All of the I/O tables will be constructed at startup or
recovery time from configuration information stored on disk.
Each table will have a pointer in the New I/O System's
static storage; this pointer will be set up when the table
is constructed.

o Device Control Table (N$DCT)

The Device Control Table contains scheduling
information for all local and remote devices.

o Channel Table (NI$CHT)

The Channel Table points to the Driver Queue Header and
Poster for each channel.

o Driver Queue Header (NI$DQH)

The Driver Queue Header contains scheduling data for a
channel.

o Subsystem Queue Header (NI$SQH)

The Subsystem Queue Header contains scheduling data for
a sub system.

Queues

All FIFO queues will be linked circularly, where each entry
points to its successor, and the last entry points to the
first. The queue header, i.e., the pointer to the queue,
then pOints to the last entry in the queue. This saves
space, in that the queue header needs only one pointer, yet
allows easy enqueuing at either end of the queue and easy
dequeuing at the head of the queue.

o Scheduler Queue

Each device has a queue of outstanding requests called
the Scheduler Queue. For most devices, this will be a
FIFO queue, but for disk, the requests will be ordered
according to arm position, so as to minimize arm
positioning delays. The header of each Scheduler Queue
is in the Device Control Table entry. As requests are
received, IOQ enqueues them on the requested device's
Scheduler Queue. When a channel has been assigned to

SF section:
doc #
date

14.4
0257A-O
771212

page

this device, the device Scheduler will move those
requests which can be processed as a group to the
Driver Queue.

o Assign Queue

Each subsystem will have a Assign Queue, which is a
FIFO queue of devices waiting for channels to become
available. The Assign Queue header is in the Subsystem
Queue Header. The device Scheduler will put an idle
device on the Assign Queue when there are requests on
that device's Scheduler Queue. When a channel is
assigned to the device, the device will be removed from
the Assign Queue.

o Driver Queue

Each channel will have a Driver Queue, which is a queue
of requests that are ready to be started. This queue
will be FIFO for most devices, but for disk, it will be
ordered according to sector position within a track, so
as to minimize rotational latency. At any moment in
time, a Driver Queue will contain requests for only one
device. For a disk channel, the Driver Queue will
contain requests for only a single cylinder of a disk
pack. The device Scheduler enqueues requests on the
Driver Queue when a channel has been assigned. The
device Poster removes a request from the Driver Queue
when it terminates.

This two-level queuing structure (Scheduler Queue and
Driver Queue) is designed to maximize disk throughput.
Basically, the Scheduler Queue is a queue of cylinders
to be accessed, and the Driver Queue is a queue of
requests for the current cylinder.

r

8

3.2 I/O Request Processing

SF section:
doc ,
date
page

14.4
0257A-O
771212

9

In the New I/O System, IOQ is called for both local and remote
peripheral requests. On receiving a request, IOQ enqueues the
request on the Scheduler Queue for the device. Then, if this
request is for a remote device, IOQ calls the Front End
Interface to process the request. If this request is for a
local device, IOQ allocates an lOS Request Packet and links it
to the 10Q Request Packet. From the information in the IOQ
Request Packet, IOQ then sets up the PCW, LPWX, and DCW list in
the lOS Request Packet and calls the device Scheduler for the
requested device.

If the device is idle, the device Scheduler enqueues the device
on the Assign Queue for that subsystem. It then processes the
Assign Queue, assigning a channel to each device thereon, until
there are no more channels available or the Assign Queue is
empty.

When a channel is assigned to a device (see section 3.4), the
device is removed from the Assign Queue, and one or more
requests, depending on the device, are moved from the device's
Scheduler Queue to the channel's Driver Queue. The Driver is
then called to start the first request on the channel's Driver
Queue.

The Driver sets up the connect and payload channel mailboxes
and issues the CIOC instruction to start the I/O operation.

When the interrupt occurs, the Interrupt Distributor determines
the channel number and calls the device Poster for that
channel. If no errors occurred, the Poster calls the Driver to
start the next request on this channel. If there were no
errors or the errors were unrecoverable, the completed request
is returned to IOQ for end-action processing. If the channel
is now idle, the Poster calls the device Scheduler to restart
the channel. If an error occurred that must be retried, the
request is rescheduled tQ be processed next. If repositioning
is required before the retry, reserved lOS Request Packets are
used to effect the repositioning and are scheduled ahead of the
request packet. This rescheduling may be done in either of two
ways, depending on the device. For sequential deVices, i.e.,
devices other than disk, it requeues the lOS packet on t~
Driver Queue and calls the Driver to process the request. For
disk devices, it requeues the IDS packet on the Scheduler Queue
and calls the device Scheduler to process the request. If an
error occurred which requires operator intervention, a message
is sent to the operator's console, and the request and the
contents of the channel's Driver Queue are moved back to the
beginning of the device'S Scheduler Queue. The device
Scheduler is then called to restart the channel (with requests
for another device). The completion of the operator
intervention may be signaled either by a special interrupt or
an operator keyin. In the former case, the Interrupt

SF section:
doc ,
date
page

14.4
0251A-D
711212
10

Distributor will post the special interrupt to the device
Poster. In the latter case, lOS' interface to KEYIN will post
the key in to the Poster. When the operator intervention is
complete, the device will be inserted at the beginning of the
Assign Queue, and the device Scheduler will be called to
restart the device.

3.3 Channel Assignment

SF section:
doc n
date
page

14.4
0257A-O
771212
1 1

The multiplicity of channels which may access a subsystem
requires that channels be assigned dynamically to devices as
they are needed. For unit record subsystems,. this channel
assignment amounts only to selecting an available one from
those configured. For tape and disk subsystems, Link Adapters
and channels are assigned in a round-robin fashion. When there
is a device to be assigned to a channel, the next Link Adapter
with an available channel is found, and the device is assigned
to the next available channel on that Link Adapter.

3.4 Direct Channel lID

An entry point to the Driver will be provided for issuing a
connect to a direct channel. The Front End Handler will have
an Poster of its own for handling interrupts from the direct
channel.

3.5 Lost Interrupts

Occasionally, the hardware may fail in such a manner that no
interrupts are returned from an lID operation. For this
reason, we need a Lost Interrupt Poller, i.e., a routine which
is called periodically, say, every 5-10 seconds, to poll all of
the active channels to see if a channel has been active for an
unreasonably long time. If this is so, i.e., a lost interrupt
has occurred, the device Poster is called with a unique
interrupt level. The latter will then take the appropriate
error recovery action.

3.6 Error Statistics and Error Logging

All lID errors will be logged in the system error log.
Presumably there will b~ a ghost job that will monitor the
error log and warn the operator if the error rate on a device
exceeds an acceptable level (thresholding). The error log
entry will include a time stamp, the external device
identification, the 10M and channel numbers, the hardware
status words, and any extended status that may be available.
In the case of a memory error during 110, memory mapping
information will also be included.

3.7 Test and Diagnostics

The New 1/0 System will provide options in the IOQ Request
Packet for specifying T&D 1/0. This will take the form of a
unique logical function code, which will indicate that the DCW
list is already set up (in the job's virtual memory), and that
no error recovery or logging are to be performed on this

SF section:
doc II
date
page

request. The lID System tables will have provision for
reserving a device for T&D.

14.4
0257 A-O
771212
12

4. DATA STRUCTURES

SF section:
doc ,
date
page

14.4
0257A-O
771212
13

The following packets and tables will be used by the New 1/0
System:

4.1 10Q Request Packet (N$REQ)

The IOQ Request Packet is used for all 1/0 requests for both
local and remote devices. It contains the information which
must be provided by the caller and space for information to be
returned to the caller on completion.

~MAC N$REQ(NAME=N$REQ,STCLASS=BASED);
DCL 1 NAME STCLASS ALIGNED, If 1/0 REQUEST PACKET *1

o 123 4 5 6 7 801 2 3 4 5 678 0 1 2 3 4 5 6 7 801 234 5 6 7 ~
1 1 ,

-----------~-----I-----------------I---~-------------I ----------------. o FL$
1 1 , -----------------,-----------------,-----------------,---------------_. lOLA

DCTX lDRELADDR
1 , 1

-----------------,-----------------I~----------------, ----------------2 BUFSIZE
I 1
I I

:OPFLG
lU:A\E:ElWIB\HIRI:

1 , 1 -----------------,-----------------,-----------------1----------------3 BUF$
1 1 , -----------------,-----------------,-----------------,----------------4 PTP :n # n # n , n , # # # # # # # # #
, 1 1 -----------------,-----------------,-----------------1----------------

5 DCB$
1 1 , -----------------,-----------------1-----------------,----------------

6 EAENTRY
1 I , -----------------.----------------_.,-----------------,----------------

7 EAINFO
1 , I -----------------,-----------------1-----------------,----------------

10 EVNTINFO
1 , , -----------------,-----------------,-----------------,----------------

11 ARSIZE ;*;CC ;USERII
: IERR :ABN :
: ;I;PlI:EIE:B:

1 , 1 -----------------1-----------------1-----------------,----------------
12 ARCT

1 , I

-----------------,-----------------,-----------------, ---------------~
13 RCT

, , 1

-----------------,-----------------,-----------------, --------~------~

2 FL$ PTR,
2 DLA ALIGNED,

3 DCTX UBIN(15) UNAL,
3 DRELADDR UBIN(21) UNAL,

2 SLA REDEF DLA,
3 SETX UBIN(9) UNAL,
3 SRELADDR UBIN(27) UNAL,

1* LINK TO NEXT PACKET IN QUEUE *1
II DEVICE LOGICAL ADDRESS *1
II DEVICE TABLE INDEX *1
II DEVICE-RELATIVE ADDRESS *1
II SET LOGICAL ADDRESS II
1* PACK SET INDEX *1
If SET-RELATIVE ADDRESS *1

2 BUFSIZE UBIN(20) UNAL,
2 * BIT (1) ,
2 FC UBIN(6) UNAL,
2 OPFLG,

3 US ER BIT (1) ,
3 ARS BIT(1),
3 E VN T BIT (1) ,
3 EA BIT(1),
3 W A IT BIT (1) ,
3 BPF BIT(1),
3 HOLD BIT (1) ,
3 REQ BIT (1) ,
3 SET BIT (1) ,

2 BUF $ PTR,
2 BUFADDR REDEF BUF$ UBIN(26),
2 BUFVIRT REDEF BUF$,

3 * BIT(5),
3 BASE UBIN(18) UNAL,
3 BYTE UBIN(3) UNAL,
3 * BIT(10),

2 BUFREAL REDEF BUF$,
3 EXTA UBIN(6) UNAL,
3 ADR UBIN(18) UNAL,
3 BYTE UBIN(2) UNAL,
3 * BIT(10),

2 PTP UBIN(18) UNAL,
2 DCB$ PTR,
2 EAENTRY EPTR,
2 EAINFO UBIN(36),

IMENDj

2 EVNTINFO UBIN(36),
2 ARSIZE UBIN(20) UNAL,
2 * BIT (1) ,
2 CC,

3 ERR,
4 10 BIT (1) ,
4 PE BIT(1),
4 I NVD BIT (1) ,

3 ABN,
4 E OF BIT (1) ,
4 EOT BIT(1),
4 BOT BIT (1) ,

2 USER# UBIN(9) UNAL,
2 ARCT SBIN ~ORD,
2 RCT SBIN WORD;

SF section:
doc f1
date
page

14.4
0251A-O
111212
14

1* BUFFER SIZE (BYTES) *1

1* LOGICAL FUNCTION CODE *1
1* OPERATION FLAGS *1
1* USER-ASSOCIATED lID *1
1* SET ARS OF DCB *1
1* REPORT COMPLETION EVENT *1
1* CALL END-ACTION ROUTINE *1
1* BLOCK ASSOCIATED USER AFTER QUEUE
1* BUF$ CONTAINS PTR -> BUFFER *1
1* DO NOT RELEASE PACKET ON COMPLETI
1* RE-QUEUE PACKET *1
1* O=REQ TO DEV, 1=REQ TO SET *1
1* -> BUFFER IF BPF='1 'B *1
1* BUFFER ADDRESS IF BPF='O'B *1
1* VIRTUAL BUFFER ADDRESS IF PTP

1* REAL BUFFER ADDRESS IF PTP=O *1

1* BPF=O: PAGE TABLE POINTER (O=REA)
1* -> USER'S DCB *1
1* END-ACTION PROCEDURE *1
1* END-ACTION PARAMETER *1
1* EVENT INFO *1
1* ACTUAL RECORD SIZE *1

1* LOGICAL COMPLETION CODE (O=OK) *

1* 1/0 ERROR *1
1* PARITY ERROR *1
1* INVALID OPERATION */

/* END-OF-FILE */
1* END-OF-TAPE *1
1* BEGINNING-OF-TAPE */
1* USER ID *1
/* ACTUAL RECORD COUNT *1
1* RECORD COUNT *1

4.2 105 Request Packet (NI$REQ)

SF section:
doc II
date
page

14.4
0257A-O
771212
15

The 105 Request Packet is allocated by IOQ for a local device
I/O request. It resides in real memory and contains
information specific to a local device I/O operation.

~MAC NI$REQ(NAME=NI$REQ,STCLASS=BASED);
DCL 1 NAME STCLASS DALIGNED, /* I/O REQUEST PACKET */

o 1 2 3 4 5 6 7 8 0 1 234 567 8 0 1 234 567 8 0 1 234 567 8
I , , I

I-----------------,-----------~-----I--------------~-- ,-----------------
O;FL$

I , I I ,-----------------,-----------------,-----------------,-----------------
1 lIOQ$

I , I I ,-----------------,-----------------,-----------------,-----------------2'DCT$
, , I -----------------,-----------------,-----------------,-----------------3 ERReT lLPWCONT In n n n # # # n # n H # # # # # # # # # # # # n
I I I -----------------,-----------------,-----------------,-----------------4 pcw

* lAEX

CHANNEL lPTP lFLAGS
I I I -----------------,-----------------,-----------------,---------------_.

6 LPWX
BASE :SIZE

I I I -----------------1-----------------1-----------------,-----------------7 Dew
FWA lICP lTYPE lTALLY

I I I -----------------,-----------------,-----------------,---------------_.
10 Dew

FWA :ICP lTYPE lTALLY
I I I -----------------,-----------------,-----------------,-----------------

11 Dew
FWA lICP lTYPE lTALLY

I I I -----------------,-----------------,-----------------,----------------.
12 DCW

FWA lICP lTYPE lTALLY
, I I -----------------,-----------------,-----------------,---------------_.

13 Dew
FWA lICP lTYPE ITALLY , 1 , -----------------,-----------------,-----------------1----------------

14 SEEK
seL :SSZ lSECTOR
-----------------:-----------------:-----------------: ---------------~

15 CL$
I , -,

~----------------I-----------------I-----------------, ----------------16 STATUS
P:P;MAJOR lMINOR :O;M;* :I;*:CHAN :IOM l* :RCR

, I I -----------------.-----------------,-----------------,----------------
17

lNCP :R;* lTALLYR
I , I

-----------------1-----------------1-----------------, ~---~~~--------~

2 FL$ PTR,
2 IOQ$ PTR,
2 DCT$ PTR,
2 ERRCT UBIN(6) UNAL,
2 LPWCONT BIT(6),
2 PCW DALIGNED,

3 I B1T(12),
3 AEX UBIN(6) UNAL,
3 I DC W BIT (3) ,
3 M BIT(1),
3 * B1T(14),
3 CHANNEL UBIN(9) UNAL,
3 PTP UBIN(18) UNAL,
3 FLAGS BIT(9),

2 LPWX ALIGNED,
3 BASE UBIN(18) UNAL,
3 SIZE UBIN(18) UNAL,

2 DCW(O:4),
3 FWA UBIN(18) UNAL,
3 ICP UBIN(3) UNAL,
3 TYPE BIT(3),
3 TALLY UBIN(12) UNAL,

JMEND;

2 SEEK ALIGNED,
3 SCL UBIN(12) UNAL,
3 SSZ UBIN(4) UNAL,
3 SECTOR UBIN(20) UNAL,

2 CL$ PTR,
2 STATUS DALIGNED,

3 PRESENCE BIT(1),
3 POWEROFF BIT(1),
3 MAJOR BIT(4),
3 MINOR BIT(6),
3 ODD BIT(1),
3 M ARKE R BIT (1) ,
3 I BIT(2),
3 I NINT BIT (1) ,
3 I BIT(1),
3 CHAN BIT(3),
310M BIT(3),
3 I 8IT(6),
3 RCR UBIN(6) UNAL,
3 NWA UBIN(18) UNAL,
3 NCP UBIN(3) UNAL,
3 READFLG BIT(1),
3 I BIT (2) ,
3 TALLYR UBIN(12) UNAL;

SF section:
doc II
date
page

14.4
0257A-O
771212
16

II LINK TO NEXT PACKET IN QUEUE II
II -> ASSOCIATED IOQ REQUEST PACKET
II -> DEVICE II
II ERROR RETRY COUNT II
II LPW CONTROL BITS II
1* PERIPHERAL CONTROL WORD *1

II ADDRESS EXTENSION (FOR REAL lID)
II INIT('7 '0), rDCW FLAG II
II MASK BIT II

II CHANNEL NUMBER II
II PAGE TABLE POINTER II
II PTP, PGE, AUX II
II LIST POINTER WORD EXTENSION II
II LOWER BOUND (MOD 2 WORDS) II
II SIZE (WORDS) II
1* DCW LIST II
1* FIRST WORD ADDRESS II
II INITIAL CHARACTER POSITION *1
1* DCW TYPE II
II WORD COUNT II
II DISK SEEK ADDRESS WORD II
II SECTOR COUNT LIMIT *1
II SECTOR SIZE II
II SEEK ADDRESS II
II LINK TO DCW LIST PACKETS II
II STATUS WORDS II
II ALWAYS ONE II
II POWER OFF STATUS fl
II DEVICE MAJOR STATUS II
II DEVICE MINOR STATUS II
II ODD WORD COUNT II
II MARKER INTERRUPT II

If INITIATION INTERRUPT II

II CHANNEL STATUS II
If 10M STATUS II

If RECORD COUNT RESIDUE *1
If NEXT WORD ADDRESS II
If NEXT CHAR POSITION II
If READIWRITE FLAG II

If TALLY RESIDUE *1

SF section:
doc II
date
page

14.4
0257A-O
771212
17

4.3 Device Control Table (N$DCT)

The Device Control Table contains scheduling information for
both local and remote devices. It is accessed by a parallel
table of pointers, called NDCT; the index into this table of
pointers is the Device Control Table Index (DtTX). The pointer
table will be pointed to by the pointer, N$DCT$$. Thus, a
reference to a field in the Device Control Table would appear
as:

N$DCT$$->NDCT(DCTX)->N$DCT.field.

This pointer-table structure allows OCT entries to be of
different sizes and allows dynamic allocation of packets for
remote devices.

~MAC N$DCT(NAME=N$DCT,STCLASS=BASED);
DCL 1 NAME STCLASS ALIGNED, 1* OCT ENTRY *1

o 1 234 5 6 1 801 234 567 801 234 567 801 234 5 6 7 E
I t I I ,-----------------,-----------------1-----------------.-----------------

O:FL$
t t t ,

I-----------------,-~---------------I----------------- ,-----------------
1 :DEVNM

, I , ,

, - - - - - - - - , - - - - - - - - I - - - - - - - - , - - - - - - - -
2'

I , , -----------------,-----------------,-----------------,-----------------
3 DCTX :DFLG ITYPE :DVN

:I:O:*;O:L:O:
I , I -----------------,-----------------,-----------------,-----------------

4 SQ$
, I I

-----~-----------,-----------------I-----------------I ----------------. 5 SPEC
, , I

-----------------I----------~~-----I-----------------I ----------------. 6 SPECINFO , , , -----------------,-----------------,-----------------,----------------. 1 SQH$
, , I

-----------------I-------~---------I-~---------------I ----------------
10,DQH$, , , ,

I-----------------I-----------------I-~---------------I~---------------11 :STATE :STA:n Inn n # n n # n n n n # # # # n n # # n n # n n n
I , , , ,-----------------1-----------------,-----------------,----------------12 ERROR , , , -----------------,-----------------,-----------------,----------------13 DISK
SETL$, , ,
-----------------I-----------------I-~---------------,-------~--------14
* , , ,-----------------,----------------

15 :n n n n n n n # # # n # n n n # n
1 :n n n n # # n # # # n # # n # # #
, I , , ,-----------------,-----------------,-----------------,----------------

~MEND;

2 FL$ PTR,
2 DEVNM CHAR(8) ALIGNED,
2 DCTX UBIN(18) UNAL,
2 DFLG,

3 INPUT BIT(1),
3 OUTPUT BIT (1),
3 * BIT (1) ,
3 OCK BIT (1) ,
3 LCL BIT(l),
3 OLDSC BIT (1) ,

2 TYPE UBIN(6) UNAL,
2 DVN UBIN(6) UNAL,
2 SQ$ PTR,
2 SPEC EPTR,
2 SPECINFO UBIN(36),
2 SQH$ PTR,
2 DQH$ PTR,
2 STATE UBIN(6) UNAL,
2 STATUS UBIN(2) UNAL,
2 ERROR UBIN(36),
2 DISK,

3 SETL$ PTR,
3 * BIT(54),

2 PRINTER REDEF DISK,
3 VFC$ PTR,
3 CHAIN$ PTR,
3 VFCL UBIN(9) UNAL,
3 CHAINL UBIN(9) UNAL;

SF section:
doc II
date
page

14.4
0251A-O
171212
18

/* FORWARD LINK FOR ASSIGN QUEUE */
/* DEVICE NAME E.G. LP02 */
/* DCT INDEX *1
/* DEVIC E FLAGS * I

/* OPERATOR'S CONSOLE */
/* LOCAL DEVICE *1

/* DEVICE TYPE */
/* DEVICE NUMBER */
/* HEAD OF SCHEDULER QUEUE */
/* SPECIAL INTRP ENTRY *1
/* SPECIAL INTRP INFORMATION */
/* -> SUBSYSTEM QUEUE HEADER */
/* CURRENTLY ASSIGNED DRIVER QUEUE
/* SCHEDULING STATE */
/* DEVICE STATUS (UP,DOWN,T&D) *1
/* ERROR STATISTICS */
/* DISK-SPECIFIC DATA *1
1* LINK TO NEXT PACK IN SET *1

/* PRINTER-SPECIFIC DATA */
1* -> VFC IMAGE */
1* -> CHAIN IMAGE *1
1* VFC-- IMAGE LENGTH * /
1* CHAIN IMAGE LENGTH */

4.4 Device Table (NI$DVT)

SF section:
doc II
date
page

14.4
0257A-O
771212
19

The Device Table contains static information for each type of
local device in the system. The index into this table is the
device type, which is contained in each local. entry of the
Device Control Table. This table will be pointed to by the
pointer, NIDVT.

~MAC NI$DVT(NAME:NI$OVT,STCLASS:"(O:O) BASED(NIDVT)t1);
DCL 1 NAME STCLASS ALIGNED,

o 1 234 5 6 7 801 234 5 6 1 8 0 1 2 3 4 5 6 1 8 0 1 2 3 4 561 E
I I I -----------------1-----------------1-----------------,-----------------o DOT$
I I I -----------------1-----------------1-----------------1-----------------

1 S CHED 1 I I -----------------,-----------------,-----------------1----------------.
2 POST

I I I -----------------,-----------------,-----------------,---------------_.
3 CYLINDERS lSURFACES : CYLSIZ E :SECTORS lP HI

I 1 I -----------------1-----------------,-----------------,----------------.
4 MODEL

5
I I I

- - - - - - - - 1 - - - - - - - - 1 - - - - - - - - 1 - - - - - - - -

I I I

--------------~--,-----------------,-----------------I ----------------

2 OOT$ PTR,
2 SCHED EPTR,
2 POST EPTR,
2 CYLINDERS UBIN(12) UNAL,
2 SURFACES UBIN(6) UNAL,
2 CYLSIZE UBIN(9) UNAL,
2 SECTORS UBIN(6) UNAL,
2 PSIA BIT(l),

1* PRE-HANDLER ENTRY *1
1* -> DEVICE SCHEDULER *1
1* POST-HANDLER ENTRY *1
1* (DISK) NUMBER OF CYLINDERS *1
1* (DISK) NUMBER OF SURFACES *1
1* (DISK) NUMBER OF SECTORS/CYLINDE
1* (DISK) NUMBER OF SECTORS/TRACK *
1* DEVICE ATTACHED TO PSIA *1

2 MODEL CHAR(8) ALIGNED;
~MEND;

1* MODEL NUMBER (ASCII) *1

4.5 Channel Table (NI$CHT)

SF section:
doc #
date
page

14.4
0257A-O
771212
20

The Channel Table is indexed by the 10M number and the channel
number and contains an entry for each possible channel
(overhead and payload) in the system. The entry for each
configured channel contains a pointer to the Driver Queue
Header and an entry pointer to the Poster for that channel.
This table will be pointed to by the pointer, NICHT.

~MAC NI$CHT(NAME=NI$CHT,STCLASS="(0:63) BASED(NICHT)");
DCL 1 NAME STCLASS ALIGNED,

o 123 4 567 801 2 3 4 5 6 7 801 2 3 4 5 6 7 801 2 3 4 5 678 , , , , ,-----------------,-----------------,-----------------,-----------------
O:DQH$, , , , 1-----------------,-----------------1-----------------1-----------------
1 :POSTER , , , , ,-----------------1-----------------,-----------------1-----------------

2 DQH$ PTR,
2 POSTER EPTR;

~MEND;

1* -> DRIVER QUEUE HEADER *1
1* POSTER *1

"\ .

4.6 Driver Queue Header (NI$DQH)

SF section:
doc II
date
page

14.4
0257A-O
771212
21

The Driver Queue Header contains configuration and scheduling
information for a particular channel. For multi-device
subsystems, the Driver Queue Headers are grou.ped by Link
Adapter; for unit record subsystems, the Driver Queue Headers
are grouped by device.

~MAC NI$DQH(NAME=NI$DQH,STCLASS=BASED)j
DCL 1 NAME STCLASS ALIGNED,

o , 234 567 8 a , 234 567 8 a 1 234 567 801 234 567 ~
I I I I ,-----------------1-----------------1-----------------,-----------------

O:FL$
, I I I 1-----------------,-----------------,-----------------,----------------.

"GATE
I I I -----------------,-----------------.-----------------,---------------_.

:STATUS :LA :STATE :LOSTINT 2 IOCHAN
10M :CHANNEL :

I I I -----------------,-----------------,-----------------,----------------3 SQH$
I I ,

-----------------,-----------------,-----------------, -----~----------
4 DQ$

I , , -----------------,-----------------,-----------------,----------------
5 ERROR

I I I -----------------,-----------------,-----------------,----------------
2 FL$ PTR,
2 GATE SBIN ALIGNED,
2 IOCHAN,

310M UBIN(6) UNAL,
3 CHANNEL UBIN(6) UNAL,

2 STATUS UBIN(6) UNAL,
2 LA UBIN(6) UNAL,
2 STATE UBIN(6) UNAL,
2 LOSTINT UBIN(6) UNAL,
2 SQH$ PTR,
2 DQ$ PTR,
2 ERROR UBIN(36);

~MEND;

/* LINK TO NEXT CHANNEL ON LINK ADA
/* GATE ON DRIVER QUEUE */

/* 10M NUMBER */
/* CHANNEL NUMBER */
/* CHANNEL STATUS (UP,DOWN,T&D) */
/* LINK ADAPTER NUMBER */
/* SCHEDULING STATE */
/* LOST INTERRUPT FLAG */
/* -> SUBSYSTEM QUEUE HEADER */
/* HEAD OF DRIVER QUEUE */
/* ERROR STATISTICS */

SF section:
doc n
date
page

14.4
0257A-O
771212
22

4.7 Subsystem Queue Header (NI$SQH)

For each configured peripheral subsystem, there is a Subsystem
Queue Header. It contains conffguration and scheduling
information for that subsystem. Each Subsystem Table entry
consists of two sections: the first is global data, and the
second is a table of data for each Link Adapter on the
subsystem.

%MAC NI$SQH(NAME=NI$SQH,STCLASS=BASED);
DCL 1 NAME STCLASS ALIGNED,

o 1 2 3 4 567 801 2 345 6 7 801 2 3 4 567 801 2 3 456 1 E
ttl t ,-----------------,-----------------,-----------------,-----------------

O'GATE
I , , -----------------,-----------------,-----------------,-----------------1 DCT$
I I , -----------------,-----------------,-----------------,-----------------2 NDCT INLA ILAX :n # # n n n # # n # n # # # # # # # # # # # # 7
I , , -----------------,-----------------1-----------------,-----------------

3 AQ$
I I ,

-----------------,-----------------,-----------------1 ------~---------.
4 LA

NCHAN INACT :STAln # n # # n n # # n n n # n # # # n n # # ;

5

6

, I , -----------------1-----------------,-----------------,----------------
DQH$

, I I -----------------,-----------------,-----------------,---------------_.
ERROR , , , -----------------,-----------------,-----------------1----------------
LEVEL 2 ARRAY: 4 (' 4'0) ENTRIES TOTAL. , , , , ,-----------------,-----------------,-----------------,----------------

2 GATE SBIN ALIGNED,
2 DCT$ PTR,
2 NDCT UBIN(6) UNAL,
2 NLA UBIN(3) UNAL,
2 LAX UBIN(3) UNAL,
2 AQ$ PTR,
2 LA(O:3),

3 NCHAN UBIN(6) UNAL,
3 NACT UBIN(6) UNAL,
3 STATUS UBIN(2) UNAL,
3 DQH$ PTR,
3 ERROR UBIN(36);

1* GATE ON SCHEDULING TABLES *1
1* -> FIRST DCT ENTRY *1
1* NUMBER OF DEVICES *1
1* NUMBER OF LINK ADAPTERS *1
1* NEXT LINK ADAPTER INDEX *1
1* HEAD OF ASSIGN QUEUE *1
1* LINK ADAPTER TABLE: *1
1* NUMBER OF CONFIGURED CHANNELS *1
1* NUMBER OF ACTIVE CHANNELS *1
1* LINK ADAPTER STATUS (UP,DOWN,T&D
1* -> NEXT CHANNEL'S DRIVER QUEUE H
1* ERROR STATISTI~S *1

%MEND;

4.8 10M Table

SF section:
doc II
date
page

14.4
0257A-O
771212
23

The 10M table contains data needed to manage the overhead
channels of an 10M. There is a table of pointers to the 10M
table packets; this pointer table is indexed by the 10M number.

~MAC NI$IOM(NAME=NI$IOM,STCLASS=BASED);
DCL 1 NAME STCLASS ALIGNED,

o 123 4 5 6 7 801 2 3 4 5 6 7 801 2 3 4 567 801 234 567 8
I I I -----------------,-----------------,-----------------,-----------------

o GATE
I I I -----------------,-----------------,-----------------,-----------------

, MBX$
I I I -----------------,-----------------,-----------------1-----------------

2 I OM II :LASTCON :NEXTF : N EXTS :MAXS :* : ADDRE
t I I -----------------,-----------------1-----------------1-----------------

3 FLTBUF :SPECBUF
• I I -----------------,-----------------,-----------------,-----------------

~MEND;

2 GATE SBIN ALIGNED,
2 MBX$ PTR,
2 IOMO UBIN(6) UNAL,
2 LASTCON UBIN(6) UNAL,
2 NEXTF UBIN(6) UNAL,
2 NEXTS UBIN(6) UNAL,
2 MAXS UBIN(6) UNAL,
2 * BIT(3),
2 ADDRESS UBIN(3) UNAL,
2 FLTBUF UBIN(18) UNAL,
2 SPECBUF UBIN(18) UNAL;

1* GATE ON CONNECT CHANNEL *1
1* -> MAILBOXES *1
1* 10M NUMBER *1
1* LAST CONNECTED CHANNEL *1
1* INDEX TO NEXT WORD IN FAULT BUFFI
1* INDEX TO NEXT WORD IN SPECIAL IN~
1* WORST CASE NEXTS *1

1* 10M ADDRESS (FOR CIOC) *1
1* LaC. OF FAULT BUFFER (IN REAL) *
1* LOC. OF SPECIAL INTERRUPT BUFFER

5. PROCEDURES

5.1 Driver (NIS$DRIVER)

SF section:
doc ,
date
page

14.4
0257A-O
771212
24

The Driver starts the 1/0 operation for the first request on a
given Driver Queue.

Calling Seguence

CALL NIS$DRIVER(DQH$);

where: DQH$ points to a Driver Queue Header.

Entry Conditions

Interrupts must be disabled.
The Driver Queue must not be locked.
The channel must not be busy.

Exit Conditions

The 1/0 is started. ~
The Driver Queue is not locked.

Description

The pew (Peripheral Control Word) is set up from the PCW and
PTP fields of the request packet and the channel number of the
Driver Queue Header. The payload channel mailbox is set up to
point to the DCW list and status doubleword of the request
packet. The CIOC is then issued with the connect channel
mailbox pointing to the PCW. Since the Driver may be called by
the device Scheduler or the device Poster, it must be able to
run with interrupts enabled or disabled. The Driver does not
remove the first request from the Driver Queue; it is removed
by the device Poster.

5.2 Interrupt Distributor (NIS$INTDIS)

SF section:
doc n
date
page

14.4
0257A-O
771212
25

The Interrupt Distributor determines the interrupting channel
and calls the associated Poster.

Calling Seguence

The Interrupt Distributor is called by the wired-in CLIMB
instruction to the entry descriptor at location 30(octal).
This entry descriptor must be type 11 and must specify the
Monitor's Linkage Segment, the Monitor's privileged Instruction
Segment, and WSR (Working Space Register) number O.

Description

The Interrupt Distributor determines the interrupt level and
the interrupting channel number from the Interrupt Cell number
in the Safe-Store Frame and the corresponding IMW (Interrupt
Mask Word). If the interrupt was from the system fault channel
or the special status channel, the fault word or special status
word, respectively, is examined to determine the associated
payload channel number. The fault word or special status word
is altered to look like a peripheral status word by inserting a
major status code of 17(octal) for a fault interrupt or
16(octal) for a special interrupt. The fault word or special
status word is passed to the device Poster along with the
Driver Queue Header of the interrupting payload channel and the
interrupt level. The device Poster for the payload channel is
then called to process the interrupt. On return from the
device Poster, the Interrupt Distributor loops back to process
any other interrupts that were indicated in the current IMW.
When all of them have been processed, the Interrupt Distributor
returns to the interrupted routine.

. 5.3 Lost Interrupt Poller (NIS$LOSTINT)

SF section:
doc n
date
page

14.4
0257A-O
771212
26

The Lost Interrupt Poller is called periodically to check for
lost interrupts.

Calling Sequence

CALL NIS$LOSTINT;

Entry Conditions

Interrupts must be enabled.
No driver queues may be locked.

Exit Conditions

Interrupts will be enabled.
No driver queues will be locked.

Description

The Lost Interrupt Poller is called periodically, say, every
5-10 seconds. Each time it is called, it scans all of the
channels' Driver Queue Headers. For each channel, if the Lost
Interrupt Flag is not set and the channel is active, the Lost
Interrupt Flag is set. If the Lost Interrupt Flag is already
set, a lost interrupt condition has occurred, since the channel
has been active since the previous polling cycle. (The Lost
Interrupt Flag is cleared by the Driver when starting a request
and by the Interrupt Distributor when a termination interrupt
occurs.) The lost interrupt is reported to the device handler
by calling the device Poster with a unique interrupt level.
Interrupts are disabled while each channel is being processed.

5.4 Lock Gate Routine (NIS$LOCK)

SF section:
doc /I
date
page

14.4
0257A-O
771212
27

The Lock Gate routine is a fast assembly-language routine for
locking a gate.

Calling Sequence

CALL NIS$LOCK(GATE);

where: GATE is the gate to be locked.

Entry Conditions

GATE must be a word-aligned 36-bit field.

Exit Conditions

The gate is locked.

De s c rip t ion

A gate is used to synchronize code sequences r~nning in two or
more CPUs. The gate is locked when its value is zero. When a
gate has been locked by one CPU, it cannot be locked by any
other CPU. This routine locks a gate by using a Load
Accumulator and Clear (LDAC) instruction. If the gate is
already locked, NIS$LOCK loops on the LDAC until it is
unlocked. If the gate is locked for an excessive length of
time (more than 16 ms.), the system will crash with a lockup
fault. The gate may be unlocked merely by storing a non-zero
value into it.

5.5 Queue Handling Macros

SF section:
doc ,
date
page

These PL-6 macros are provided for enqueuing and dequeuing
packets from FIFO queues.

Calling Seguences

To enqueue a packet at the tail of a queue:

~ENQUEUE(pn=p$,Qn=Q$);

To enqueue a packet at the head of a queue:

~REQUEUE(pn=p$,Qn=Q$);

To dequeue a packet from the head of a queue:

~DEQUEUE(pn=p$,Qn=Q$);

where:

P$ points to the packet to be queued, or, on return,
points to the packet dequeued.

Q$ points to the queue header.

Entry Conditions

None

Exit Conditions

ENQUEUE
REQUEUE

The specified packet has been linked into the queue.

DEQUEUE

14.4
0257A-O
771212
28

The first packet on the specified queue has been removed
from the queue and returned in Pt. If the queue is empty,
P$=ADDR(NIL) is returned.

Description

If the queue is empty, ENQUEUE and REQUEUE set the queue header
to point to the new packet, and set the link field of the
packet to point to itself. If the queue is not empt3, ENQUEUE
inserts the new packet after the packet pOinted to by the queue
header, then sets the queue header to point to the new packet.
REQUEUE inserts the new packet after the packet pointed to by
the queue header but does not change the queue header.

If the queue is empty, DEQUEUE returns P$=ADDR(NIL). If not,
it unlinks the packet following the packet pointed to by the

SF section:
doc II
date
page

14.4
0257A-O
771212
29

queue header and returns it to the caller. If this is the last
packet on the queue, the queue header is set to ADDR(NIL).

5.6 Device Scheduler (Nlx$SCHEO)

SF section:
doc ,
date
page

14.4
0257A-O
771212
30

The device Scheduler enqueues the device on the Assign Queue,
assigns a channel to the device, and schedules a list of
requests to be executed.

Calling Sequence

CALL Nlx$SCHED(DCT$);

where:
DCT$ points to the Device Control Entry for the device.

Entry Conditions

Interrupts are enabled.
The Subsystem Tables and Driver Queue are not locked.

Exit Conditions

If a channel was available, lID has been started.
Interrupts are enabled.
The Subsystem Tables and Driver Queue are not locked.

Description

On entry to the device Scheduler, if there are requests on the
device's Scheduler Queue and the device is not busy, it is
enqueued on the Assign Queue. Then, if there is an available
channel, the first device on the Assign Queue is removed and
assigned to the next availaole channel, and requests from the
device's Scheduler Queue are moved to the channel's Driver
Queue. For most devices, only one list of requests will be
moved to the Driver Queue at a time. However, in order to
minimize disk rotational latency, all of the disk requests for
a cylinder will be moved to the Driver Queue as a group. The
Driver is then called to start the first request. On return
from the Driver, the de~ice Scheduler loops back to process
another channel. When there are no more available channels or
no entries on the Assign Queue, the Device Scheduler is done.

5.1 Device Poster (Nlx$POSTER)

SF section:
doc ,
date
page

The device Poster analyzes interrupts, calls the Driver to
restart the channel, performs error recovery, and returns
completed requests to IOQ for end-action processing.

Calling Sequence

CALL NIx$POSTER(DQH$,LEVEL,STATUS);

14.4
0251A-O
711212
31

where:
DQH$ points to the Driver Queue Header of the interrupting

payload channel.
LEVEL is the interrupt level:

o
1
2
3

overhead
termination
marker
special

STATUS is the fault word or special status word.

Entry Conditions

Interrupts are disabled.
The Driver Queue is not locked.

Exit Conditions

Interrupts are disabled.
The Driver Queue is not locked.

Description

t

The device Poster is called by the Interrupt Distributor to
process the interrupt. If this is a termination interrupt, the
current request is removed from the Driver Queue. If there
were no errors, the Driv~r is called to start the next request
on the Driver Queue. Marker interrupts are ignored; this
interrupt level is included for the Front End (Direct Channel)
Handler. If this is a special interrupt, i.e., an asynchronous
interrupt, it may be used by error recovery routines; otherwise
it will be passed to IOQ for a possible caller of special
interrupt control. If this is a fault interrupt, the fault
word is stored in the second status word of the current
request.

If there were no errors or the errors were unrecoverable, the
completed request is returned to IOQ for end-action processing.
If a recoverable error occurred, the appropriate error recovery
technique is applied. To retry the operation, the device
Scheduler is called. If repositioning is required, reserved
request packets are used to effect the repositioning.

6. IOQ INTERFACES FOR lOS

SF section:
doc n
date
page

The following entry points to IOQ are used only by lOS.

6.1 I/O Completion Routine (NIO$COMP)

14.4
0257A-O
771212
32

NIO$COMP performs all caller- and user-related actions related
to I/O completion.

Calling Sequence

CALL NIO$COMP(Q$);

where: Q$ points to the request.

Entry Conditions

Interrupts are enabled.
No gates are locked.

Exit Conditions

The request packet has been either returned to the caller,
requeued for a new operation, or released.

Description

From the hardware status words, NIO$COMP sets the completion
code, actual record size, and actual record count fields of the
10Q Request Packet and releases the lOS Request Packet. Then,
depending on the setting of bits in the request's OPFLG field,
NIO$COMP may do one or more of the following:

o Set completion information in the user's DCB.

o Report an "I/O Completion" event to the Job Scheduler.

o Call an end-action ~outine. (Note: an end-action routine
may not request any resources, such as request packets.)

o Requeue the IOQ Request Packet for a New I/O operation.

o Release the packet.

SF section:
doc ,
date
page

6.2 Special Interrupt Completion Routine (NIO$SPCOMP)

14.4
0257A-O
771212
33

If a caller has requested special interrupt control, NIO$SPCOMP
calls his end-action routine.

Calling Seguence

CALL NIO$SPCOMP(DCTX,STATUS);

where:
DCTX is the Device Table Index of the interrupting device.
STATUS is the special interrupt hardware status word.

Entry Conditions

Interrupts are enabled.
No gates are locked.

Exit Conditions

If this special enterrupt has been requested, the caller's
end-action routine has been called.

Description

NIO$SPCOMP is called for every special interrupt that is not
used by the device Poster. It checks the Device Table to see
if this special interrupt has been requested. If so, the
requestor's end-action routine is called with the hardware
status word. (Note: an end-action routine may not request any
resources, such as request packets.)

'.

cpu cPU

•

N#VT

I '

U----

I - I ... -;..
,

'-

I
:.:..

7~
uQH#

/
SQH$ -

f)QHi ..
-;~ .

-. // IriS:? ,~

5 Q H-# -"- -~.-
'-

I ~'-' -:~
.--

DQJiJt /
,/

!

/

-~--------~----------------------------------....

5 CN r=.DUL(;~ Q (.IE l.I E

Nji<EQ.

AQ# ---;--- FLf$

LA

DQH$ -.--

------'- F L ,
t--'-":'---~

sq$

\
\

