CP-6

oEdit Screen Editor Reference Manual

CP-6
6EDIT SCREEN EDITOR REFERENCE MANUAL

SUBJECT

Reference Information for the Bull CP-6 6Edit Screen-Oriented Editor

SPECIAL INSTRUCTIONS
This edition supersedes CET70-01, dated December 1988.

SOFTWARE SUPPORTED
6Edit Version A03 under CP-6 Operating System E00

DATE
June 1990
ORDER NUMBER Worldwide
Information
CE70-02 W

Bul &

Preface

This reference describes the concepts, features, and commands for the A03 version of the
CP-6 6Edit screen editor, running on the E00 version of the CP-6 operating system. This
reference is intended for the experienced user of 6Edit.

UNIX 1s a registered trademark of AT&T.

The Bull Los Angeles Development Center Documentation Group authors, edits, reviews
and creates laser print masters with integrated text and graphics using CP-6 CAP (Computer

Aided Publication).

Readers of this document may report errors or suggest changes through a STAR on the
CP-6 STARLOG system.

Bull disclains the implied warranties of merchantability and fitness for a particular purpose
and nxikes no express warranties except as nxy be stated in its written agreement with and
for its customer. In no event is Bull liable 10 anvone for any indirect. special or consequential
danziges.

The infornmtion and specifications in this docunent are subject to change without notice.
Consult your Bull Sales Representative for product or service availability.

Copyright © Bull HN Information Systems Inc., 1990 File No.: 1W13 CE70-02

Table of Contents

Section 1. Overview of 6Edit e s e a s e s e s e e e e e e e e e e .
What is 6Edit? . . . e e e e e e e e e s e e e e e e e e e e e
Files, Record Keys, and Records e e e e e e e s e e e e e s e e e

File Pointer . . & & ¢ & & & &4 & & o a = o s s s s » = 2 = @« « = =
Blocks f e e s s e e s s m e e s e e s s e e ae e e e
Specifying a BLock e e s s m e e s e e e e e e s s e e e e e e
What You Can Do With a Block . . . & & & ¢ & & 4o &4 & 4 o ¢ o o = &
Edit Block . . . & o v ¢ ¢ @ 4 4 4t h i e e e h e e e e e e e .
Edit Block Stack & & ¢ ¢ 4 i 4 e i e e e e e e e e e e
Selected Block . . . & & & & & & 4 4 4 & & o = o = « s = « s « = =
Compound Blocks e .
Expressions e s s e s s e s s s m s s s e e e s s e e e s s
String EXPressions & ¢ ¢ 4 & 4t st 4 e s e e a e e e e
Block Expressions e e e e e s e e s a e e e e e e e e e e e e
Keywords and Abbreviations ¢« . ¢ ¢« & ¢ 4 ¢ 4 s e = e - - . <=M
Command Lines and Continuation ¢« & &« &+ & 4 ¢ & o & =« = » - 1-13
Lexical Functions e B
$CONTROL Identifier - . e e L
$CONTROL-Literal Funct1on e B)
$CONTROL-Record Function & ¢ 4 4 « = a o = « = = « « 1-16
$CONTROL-Value Function e R 4
$COMMENT Identifier . - e L]
Function Key and Control Key Notation e
NaMBS ' & & v v &t et t e e e e e e e e e e e e e e ae e e ... 1-20
Value Types e R Y4
SubStitution i it e e e e e e e e e e e e e e e e ... 122
Copy and Move Operations . . . & & &¢ &+ v o & & = & = & = =« « & « « = 1225
Record Key Generation e e s e e e e e e e e e e e e e e e e
Rekeying a Keyed File e e s m e e e e s e s e ama e aeoa.

R G U QK (L I QI QT (T QP QT G Y
|
2 D200V N VT UVNTWUWNDN 2

|
o

'
o

—_
|

-

-

-
[
NN
o w

Section 2. Using 6Edit e
DCBS & & 4 ittt et e e e e e e e s s e e e e e e ae e s e e e
Context File . & & & & 4 & v 4t 4t 4 o o o & o o = = & o o = = =« = « »

Searching for a Context File o o o ¢ o o
Starting 6Edit - . .
Faster 6Edit Invocation e e s e e e e e e e e e e e e e e e e e
Screen Appearance e
IBEX Window e e s e e e e e e e e e e s e e e s e e s e e e
Command Window . . . &« & & & & ¢ & @ 4 o ¢ & o = o = 2 & o o =

.

.

.

.

.

.

.

.

.

.

.

.
NNNNI})NNNN
CONOOEEUWN o

CE70-02 iii

Section 3.
Entering Commands When Full-Screen Ed1t1ng

iv

Editing Window . . .

Vertical Scroll Margins
Hor izontal Scroll Margins

Wordwrap

Multiple Editing w1ndows .

Input Editing Functions
Moving the Cursor . .

Replacing and Inserting Characters

Replacement Mode . .
Insertion Mode . .
Deleting Characters .

Splitting and Joining Records

Serial Editing . . .
6Edit Commands

Command Summary e e e .
AFTER Command - e e .
COPY Command
DATE Command
DELETE Command
DIRECTORY Command . .
DISPLAY Command - - .
0 Command
EDIT Command
END, EXIT, QUIT and XIT
EQUALS Command
ERASE Command e e e =
HELP Command
IF and ELSE Commands .
KEYIN Command
LOCATION Command . . .
MOVE Command
OUTPUT Command
OVER Command
PRINT Command - e e
READ Command
RESTORE Command . . .
SAVE Command
SHOW Command
SYNONYM Command . - .
TIME Command
WINDOW Command

| |
JPOK QL W (L QL (R W S G SV G GV o IV e

NVOONOC OO WWAa O

. . . v e s e
NNNNNNI}\)NNNNI‘\)N

WWNWW‘NLNYJWWLNWWWW

.
[UL lY‘
WWWWOWNNNNNNNQ 2O O a0 O0ONNUVNTUVEREWNAao

COVINaaO 0V O0OONOOCWVMEEOOOPE WA

WNWWWWL'NWWWWMW

CE70-02

Section 4. String Expressions
String Expressions
Logical Operators .
Relational Operators . . .
Wildcard Operators
Arithmetic Operators . . .
CONCATENATE Operator . . .

Section 5. Block Expressions
Using Block Expressions 8
Specifying User-Defined
Concepts « .« « .« .
Block Operands
Absolute Block Operands
Relative Block Operands

Block Options - e e s
Evaluation Options . .
Processing Options . .

in 6Edit . . .

Block Operands

Evaluation of Block Operands

Signals e e e e e e e .
Block Expression Components
General Form of Block Expr
SELECT Clause e e e - .
Repeated Blocks - ..
Enclosed Blocks - - -
Movement Expressions . .
THRU Clause e - e s e .
ADJUST Clause c e s e .

essions . .

Movement Expression Components

ALL OF Option - e e e e
BACKWARD Option . e e .
BEGINNING OF Option . .
BY Option e & s s e s .
END OF Option e s e e s
FILE Block Operand . . .
FORWARD Option
Names as Block Operands
Special location_names

Pattern-String Block Operand

Syntax of the Pattern St

$CONTROL-Beginning of Match Pattern

ring

$CONTROL-End of Match Pattern Function

$CONTROL-Question Patter

$CONTROL-Value Function in the Pattern String

$CONTROL-Wildcard Patter
POSITION Block Operand .

CE70-02

n Function . .

n Function . .

Function

. T . e
(LR, RV, RV, RV, RV, RV, BV, BV, RV, BV, BV, BV, BV, BV, BV, N, BV, |
!

|
-
W WN

J-\#\-b-r#\b-b
NOUVMPSWB-o

|
D DOV NTTO NS WA

|
o

|
o

5-14
5-17
5-17
5-18
5-19
5-19
5-20
5-21
5-22
5-23
5-24
5-25

. 5-26

5-27
5-27
5-28
5-28
5-29
5-30

PROTECT Option &« & v & & v & &« o .
RECORD Block Operand
Record Keys as Block Operands .« e e e e
SKIP Option e e e s e s e e e e e e e s .
STRING Block Operan s e e e e e e e e e

Appendix A. Predefined Names e e e e e e e e
Using Predefined Names
Predefined Names « .« « . « . .

Appendix B. Predefined String Functions
Appendix C. Context Files in 6Edit e e e e .

Appendix D. Customizing the 6Edit User Interface
Reasons to Customize « « « &« .
Customizing: Know the Keyboard
Customizing: Know the Functions Required .
Customizing: Know the Users e e e e e e s
Invoking Functions « . « &
Invoking Functions on a Personal Computer .
Associating Functions with Invocations . . .
Established Association e e e e e e
Mnemonic Association - .
Physical Association
Hazards e e e s e e e e e e e e e e ..

Appendix E. Input Editing Functions

Appendix F. The ASCII Character Set

Table
Table

Input Editing Functions
The ASCII Character Set

Tables:
Table 1-1. Operations in the Edit Block Stack. .
Table 2-1. 6Edit Setup Files
Table 2-2. Cursor Key Functions.
Table 2-3. Delete Functions.
Table 3-1. Command Summary« . « . . .
Table 4-1. String Functions.
Table 4-2. String Operators.
Table A-1. Predefined Name Classifications . . .
Table A-2. Predefined Names.
Table B-1. String Functions.
Table C-1. Standard Names in a Context File. . .
Table C-2. Common Functions Defined By a Context
E-1
F-1

vi

L]
UOOUU'UUUUUUU
ONNOOOOUVEEWN D -

.

m
1

-—

.

-
}

—

| I R |
~N W

| I R R R L
wvi

. . . P .
ﬂmhﬁm>>f-‘\WNNNa
DO A A AN PNNNSDS LN~

CE70-02

Figures:

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
- Figure
Figure
Figure
Figure
Figure
Figure
Figure

CE70-02

OOOOOOUVINNNND-S a0

LU AL AU A N N N N U N AN N N N B B |
VBN PRPUWNSNOOVMIENWN

Example of a Block
Example of a Block
Example of a Block
Example of a Block

Keywords and Reserved Special Characters

CONTROL-Record Function Before
CONTROL-Record Function After.
The 6Edit Screen
Vertical Scroll Margins. . . .
Hor izontal Scroll Margins. . .

Two Styles of Multiple Editing Windows .

Using the ADJUST Clause. . .

Standard Context File.
DECVT100 Context File.
PCTX364 Context File

VIP7205 Context File
VIP7801/VIP7802 Context File .
Zenith 219 Context File. . . .

LN R Y Y R N
~NOo-N

NN ™ WW

NN D D o oy
1

OOOOOOOO NN
|
-_eed =00 ON P

[|
NN O

]

HMNO

About This Manual

This document describes the CP-6 6Edit screen editor.

This manual is intended to be a complete reference for the experienced user,
and is intended for reference rather than tutorial use. The manual is
organized as follows:

SECTION 1, OVERVIEW OF 6EDIT, describes the conceptual model upon which 6Edit
is based: the objects it manipulates and the operations it performs on those
objects. No details of actual use are given in Section 1, however.

SECTION 2, USING 6EDIT, presents the details of how to run 6Edit, the
environment it requires, and how it appears to the user.

SECTION 3, 6EDIT COMMANDS, presents atl of the 6Edit commands, their options,
and examples of their use.

SECTION 4, STRING EXPRESSIONS, describes string expressions, how to form them,
and how they are evaluated by 6Edit.

SECTION 5, BLOCK EXPRESSIONS IN 6EDIT, describes block expressions, how. to
form them, and how they are evaluated by 6Edit.

APPENDIX A, PREDEFINED NAMES, Lists 6Edit's predefined names and describes
their values and uses.

APPENDIX B, PREDEFINED STRING FUNCTIONS, describes the built-in functions
supported by 6Edit in string expressions.

APPENDIX C, CONTEXT FILES IN 6EDIT, describes the standard context file and
its components, and presents examples of terminal-specific context files.

APPENDIX D, CUSTOMIZING THE 6EDIT USER INTERFACE, discusses how to tailor the
6Edit user interface to your individual needs.

APPENDIX E, INPUT EDITING FUNCTIONS, Lists all input editing functions
available to the 6Edit user.

APPENDIX F, THE ASCII CHARACTER SET, tists the ASCII character set with
decimal conversions.

CE70-02 ix

Changes Since Last Release

There have been several changes to this manual to answer STARs and to correct
spelling, format, and the HELP facility. These changes have been marked with
change bars. Significant content changes are:

Overview

(o]

The new predefined string function $KEY (or <key>) is explained in
'Function Key and Control Key Notation', Section 1. S$SKEY (or <key>) is
provided to represent function key names in KEYIN commands or EQUALS
commands.

The parsing of $CONTROL-functions in string expressions is now performed
only when the value of the string is actually used. It is no longer done
when simply assigning the string expression to an EQUALS variable. 1In
previous versions, parsing was performed at both times. So, for example,
if a terminal had a function key sending <ESC><%.>, an EQUALS command might
assign that string to a variable with the key's name, for later use in a
KEYIN command. In previous versions, the EQUALS command would require
four percents. In AQ3, it only needs two. See '$CONTROL Identifier',

[P S -
Section 1.

Using 6Edit

o

(o]

6BUILD and 6X are alternate command names to invoke 6Edit.

6Edit chooses unused UC streams for command and editing windows.

Normally, it will use UC10 for the command window and UC11 for the first
editing window. Additional editing windows normally start at UC12. These
points are discussed in ‘'Command Window' and ‘'Editing Window' in Section 2
(per star 32148).

'Editing Window' in Section 2 explains that it is now possible to enter a
command in the command window and have the cursor remain there for another
command, by terminating the command with <CNTL-C> instead of <CR>.

'Multiple Editing Windows' has been added to Section 2.
6Edit can now be used conveniently in batch or on-line modes, or with
non-CRT terminals. 'Serial Editing' in Section 2 and the subheadings

'Switching between Serial and Screen Editing' and 'Manipulating Data in
Serial Editing Mode' have been added.

CE70-02

6Edit Commands

o

(o}

The DELETE FILE form of the DELETE command has been added to Section 3
(per STAR 23879).

DO or ! commands can now be used to call other processors from within
6Edit (per STAR 23353).

The EQUALS command syntax in Section 3 is changed. The IN phrase now
permits identification of a specific editing window.

An example showing the $KEY predefined string function has been added to
the description of the EQUALS command in Section 3 (per STAR 28846).

The IF and ELSE commands, which provide conditional execution of multiple
commands in a single Line, have been added to Section 3.

The KEYIN command syntax in Section 3 is changed. The IN phrase now
permits identification of a specific editing window.

The KEYIN command description in Section 3 has been expanded to explain
and illustrate the use of the $KEY predefined string function in KEYIN
commands (per STAR 28846).

A new command, SHOW, displays 6Edit name definitions and selected records
(per STAR 26518); see Section 3.

A new command, WINDOW, has been added to Section 3 (per STAR 26429)..

String Expressions

(o)

The discussion of string expressions has been expanded.

Block Expressions in 6Edit

(o}

CE70-02

The BY option is changed for cases in which a block expression also
creates a new edit block: that key increment overrides the value in the
$BY predefined name for the rest of the Life of that edit block. See See
the 'BY Option' example, Section 5.

It is now possible to create and manipulate consecutive files and keyed
files with text keys instead of 3-byte binary edit keys, as explained in
'FILE Block Operand', Section 5.

A new $CONTROL function, W, for wildcard pattern searching has been added
to Section 5 (per STAR 32349).

Xi

o String block expressions can now be constructed from the corresponding
wildcard portions of pattern expressions. See 'STRING Block Operand',
Section 5.

Predefined Names
o The tfollowing new predefined names have been added to Appendix A:

BY, SCONTEXT, SDIRECTION, SEND_MARK, SEXIST, $FILEORG, SFILERECORDS,
SFILETYPE, SINITIALIZE, SKEY_GENERATION, SPOINT, $PROTECT, SREKEY,
$SCREEN, $SCROLL, STEXTEDIT, $WI_BORDER, SWI_PERCENT, ANY, AO, BACKWARD,
BIN10, BINHLF, BIN521, BO, DONT_PROTECT, EO, FORWARD, NEW, OLD, PROTECT,
STRING (per STARs 36719, 30049, 26518).

0 $BY existed previously but was not documented. The default key increment
for new records, $BY, is now set and displayed as an edit key. If $BY was
used with previous versions of 6Edit, the values used will now have to be
divided by 1000.

o The description of the SMATCH_LIMIT predefined name in Appendix A has been
modified.

Predefined String Functions

o Three new predefined string functions have been added to Appendix B:
$CMDVAR and $KEY (per STAR 28846), and $CNTL.

o The $INPUT string function described in Appendix B now reads from the
command window instead of M$UC. This change, the result of an improvement
to the X$EVAL routines, allows a more convenient interface for a "string
substitution' KEYIN or SYNONYM command. Any other new features and bug
fixes in the X$EVAL host library package as of 3/1/90 are also available
in AQ3 6Edit.

Context Files in 6Edit

o) Sample context files -- for DECTV100, PCTV7800 and PCTX364 -- have been
added to Appendix C.

Customizing the 6Edit User Interface
o] A discussion of function key definitions on a personal computer, using the

KEYIN command with the SKEY predefined string function, has been added to
Appendix D.

xii CE70-02

Input Editing Functions

o These functions have been added: <ESC> <CNTL-D>, <ESC> <E>,
<ESC> <n> <H>, <ESC> <n> <M>.

Additional Changes

In addition to the changes specific to this manual, the following software
changes and corrections have also been made to 6Edit:

o String expressions may now include predefined names that start with a
dollar sign (per 32020). For example, SHOW LOCATIONS $NOT_COPIED .

o When REKEY (the synonym for COPY CURRENT OVER CURRENT) is used to rekey a
file, the cursor now returns to the current position in the editing window
(per STAR 25698).

0 S$CONTROL functions with more than one parameter, such as ZV(m,n) and
ZW(min,max), now work properly in pattern-matching strings. For example,
PATTERN ZV(75,80). (Per STAR 32349.)

o Moving a string to the left within the same record now works properly (per
STAR 37411/25800).

o] When you attempt to edit a file that someone else has open in PROTECT
mode, 6Edit now lLets you open the file, still keeping it in PROTECT mode.
The message "File filename is busy; open for reading only" is displayed.
(Per STAR 26824.)

o0 Per star 31671, 6Edit now stays in serial mode long enough for context
file changes to control the building of the command window.

On-Line HELP Facility

The 6Edit processor supports an on-line HELP facility. 6Edit users can
display syntax formats, parameter descriptions, and examples at the terminal.

The 6Edit HELP facility includes information about the 6Edit processor and
commands.

For a List of HELP topics from the system command level (!) or from another
processor, enter the following at the terminal:

HELP (6EDIT) TOPICS
From within the 6Edit processor, enter:

HELP TOPICS

CE70-02 xiii

Related Manuals

Following is the List of manuals supporting the CP-é6 Operating System,

Release:

ORDER

NUMBER TITLE

End User Facilities

HA03-01
HAO04-01
HA09-00
HA10-00
HA12-01
HA13-01
HA15-00
CE30-02
CE70-02
CE73-00

CP-6 Introduction to MAIL

CP-6 MAIL Reference

CP-6 Introduction to ARGENT

CP-6 ARGENT Reference

CP-6 ADAPT Reference

CP-6 FORGE Reference

CP-6 PC Terminal (PCT) Facility Reference
CP-6 IDP Reference

CP-6 6Edit Screen Editor Reference

CP-6 Introduction to 6Edit Screen Editing

Database Management

HA01-01
HAQ2-03
CE35-03
CE36-03
CE54-01

CP-6 Introduction to ARES
CP-6 ARES Reference

CP-6 1-D-S/II1 Reference
CP-6 1-D-S/11 DBA Reference
CP-6 1-D-S/11 Guide

Publishing

HAQ7-00
HA08-00
HA18-00
HA19-00
HA27-00
HA28-00
HA29-00
HA30-00
CE48-02
CE53-00
CE59-00

Xiv

CP-6 CAP Administrator Guide (A00Q)
CP-6 CAP Reference (ADQ)

CP-6 Introduction to CAP (A00)
Getting Started with CAP (AOQQ)

CAP DSL Reference (B00)

CAP ADSL Reference (B00)

CP-6 CAP User Guide (B0O)

CP-6 CAP Administrator Guide (B00)
CP-6 TEXT Processing Reference
CP-6 TEXT Processing Primer

CP-6 FASTEXT Guide

PUBLICATION
DATE

October 1986
September 1986
August 1985
October 1985
December 1988
December 1988
July 1986
July 1982
June 1990
April 1985
August 1985
June 1990
December 1988
December 1988
December 1988
February 1987
February 1987
April 1987
August 1987
February 1989
February 1989
February 1989
February 1989
February 1987
June 1981
December 1982

AR 1.0

* o F A * * % 3k % % o F * % %

DX F VDLOLWL F * % X%

CE70-02

Transaction Processing

CE49-01 CP-6 TP Applications Programmer Guide
CE50-02 CP-6 TP Administrator Guide
CE51-02 CP-6 FPL Reference

Application Programming

HA17-00
CE28-01
CE29-02
CE46-02
CE68-00
CE69-00
CE31-05
CE47-05
CE32-03
CE37-00
CE38-05
CE4L0-04
CE42-03
CE55-01
CE72-00

CP-6
CP-6
CP-6
CP-6
CP-6
CP-6
CpP-6
CP-6
CP-6
CP-6
CP-6
CpP-6
CP-6
CP-6
cP-6

C Language Reference

SORT/MERGE Reference

COBOL Reference (COBOL-74)

COBOL Programmer Guide (COBOL-74)
COBOL Reference (COBOL-85)

COBOL Programmer Guide (COBOL-85)
FORTRAN Reference (FORTRAN-77)
FORTRAN Programmer Guide (FORTRAN-77)
BASIC Reference

RPGI1 Reference

APL Reference

Programmer Reference

Programmer Pocket Guide
Application Programmer Handbook
DIGS (Graphics) Reference

System Programming and Support

HA11-00
HA20-01
HA21-01
HA22-01
CE34-05
CE39-04
CE44-03
CE60-00
CE61-01
CE62-00
CE64-03
CE65-00
CE66-02
CE67-01
CE71-02
CE74-01
CE75-01

CE70-02

cP-6
CP-6
cP-6
cP-6
CP-6
cP-6
CP-6
CP-6
CP-6
CP-6
CP-6
CcP-6
CP-6
CP-6
cP-6
CP-6
CP-6

FEP Programming Concepts

System Support Reference (A-P)
System Support Reference (Q-2)
System Support Reference (Appendices)
Operations Reference

DELTA Reference

PL-6 Reference

System Manager Handbook
Customer Support Handbook
System Programmer Guide
Operations Pocket Guide

FEP Assemblers Reference

FEP Monitor Services Reference
FEP Library Services Reference
Host Library Services Reference

Host Monitor Services Reference (Desc.)
Host Monitor Services Reference (Struc.)

August
December
December

June
February
February
February
April
April
December
December
March
December
December
December
August
January
March

May
December
December
December
December
December
December
March
October
January
August
March
December
December
December
December
December

1985
1988
1988

1990
1983
1983
1983
1986
1986
1988
1988
1985
1979
1988
1988
1989
1984
1985

1985
1988
1988
1988
1988
1988
1988
1985
1987
1984
1989
1985
1988
1988
1988
1988
1988

*

* % o Ok O Z o %k H ¥ Ok F H F *

F o ok ok % % Ok % % o o F F X F * O

XV

General Purpose

HA16-01 CP-6 X Account Pocket Guide

CE45-01 Getting Started with Timesharing
CE56-03 (P-6 Pocket Guide to Documentation
CE58-00 CP-6 Monitor Error Message Reference

Hardware

DH03-01 DPS 8 Assembly Instructions
DX20-00 DPS 90 Assembly Instructions
DZ51-00 DPS 8000 Assembly Instructions

Legend

available only from Newton Highlands

tZ ! o*
o nn

Ordering

Manuals may be ordered using Form No. HB-2808 from:

Bull HN Information Systems Inc.
Customer Services Operation
Publications Order Entry

141 Needham Street

MA35/219

Newton Highlands, MA 02161 U.S.A.

or may be ordered by telephone:

Internal orders:
(617) 552-5374

Customer ordersx: (800) 343-6665

(617) 552-5199 (fax)

* publications and supplies

XxVi

(617) 552-5199 (fax)

August

November
February
December

1989
1987
1987
1988

electronic update available on release tape (EO0Q or prior release)

* % ok

order from Newton Highlands (also supplied on software release tape)
system-supplied only (not currently available from Newton Highlands)

CE70-02

Notation Conventions

Notation Conventions used in command specifications and examples are listed
below.

Notation Description

Brackets

Brackets are used to enclose an optional element. For
example:

[movement] indicates that a value for movement may
be entered.

When enclosing keywords, brackets signify that all of the
bracketed portion may be entered or omitted. For example:

DI[SPLAY] indicates that the command DISPLAY
can be entered as either the word
DISPLAY, or simply as the first two
characters, DI.

Note: A slash (/) may replace brackets in a figure or lList
of commands. For example:

AC/CEPT SEND means that the first two characters of the
ACCEPT name may be entered.

I1f more than one element is enciosed in brackets, the
notation indicates an optional choice. Multiple
elements in brackets are separated by an OR bar or
listed on separate lLines. Ffor example,

CE70-02 xvii

Notation Description

[ALL 1 ldevlist]
and

[ALL]
[ldevlist]

have identical meaning: either ALL or a list of logical
device names is permitted.

OR Bar

The OR bar separates elements enclosed in braces or
brackets from which one must or may be chosen. For
example:

{ENDIXIT) indicates that either END or XIT may
be entered.

Braces

Braces around words separated by | (OR bars) indicate a
required choice. For example:

{E[NDJIXI[T]IQULIT]} means either END, XIT, or QUIT
must be selected.

Lowercase

Lowercase letters identify an element that must be replaced
by a user-selected value. For example:

DE[LETE] BL[OCK] block_expression indicates the user
supplies a value for
block_expression.

XViii CE70-02

Notation Description

Careted Letters

Letters inside carats (<>) identify physical keys on the
terminal. Carats are not typed. The indicated keys are
pressed. For example:

<ESC> indicates touch the Escape key.
Another example:

<CNTL-T> means press and hold down the Control key while
pressing the "T" key.

Horizontal ELlLLipsis

Hor izontal ellipsis indicates that a previous bracketed
element may be repeated or that elements have been omitted.
For example:

movement[[movement]...] indicates that one or more move-
ment expressions may be entered.

CE70-02 | Xix

Section 1

Overview of GEAdit

This section describes the major concepts behind the operation of the CP-6
6Edit file editor. Actual procedures are covered later in the manual.

What is BEdit?

6Edit is a screen-oriented file editor. It inserts, deletes, and replaces
data in a file. Although 6Edit accesses the file by reading and writing
records, when using 6Edit you do not have to give instructions in terms of
records.

You normally interact with 6Edit using "full-screen editing,'" wherein 6Edit
displays a portion of the file on the screen and you can update it directly by
simply moving the cursor to the desired data on the screen, and typing in new
data.

wWhen full-screen editing, you press keys on your terminal. Some of these keys
cause 6Edit to perform actions, and some of the keys simply insert data into
the file being edited. As you move the cursor, 6Edit automatically scrolls
the file data up or down, using the terminal screen as a movable "window' on
the data in the file.

6Edit allows you, the user, to edit data in a variety of ways. For example:

o Interactive editing, using the editing window. Single keystrokes on your
terminal keyboard allow you to perform many common editing functions, such
as ad hoc or repeated changes (e.g., change all x's to y's).

o Interactive editing, using the command window. Verbal commands typed in
6Edit's command window enable more complex changes and additions, often
involving data at arbitrary locations throughout the file.

o Customization. The ability toc change commands with user-defined synonyms,
to alter key function definitions, and to customize the 6Edit context file
for individual editing needs, makes 6Edit a highly versatile editing
processor.

Overview of 6Edit
CE70-02 1-1

What is 6Edit?

Most of the editing that occurs in 6Edit consists of selecting the data to be
changed, and actually changing the data. 6Edit offers flexibility in both of
these steps. Users can pertorm them:

o} Interactively, for ad hoc editing.

o Semi-automaticalty, visually selecting information, then either skipping
or changing the selection.

o Automatically, using any combination of commands, which can be
automatically repeated throughout the file.

Files, Record Keys, and Records

6Edit is used to edit disk files only. It can only access edit-keyed,
string-keyed, consecutive, and unit record (UR) files. Edit-keyed files are
CP-6 keyed files with 3-byte binary keys. Each record has a record key
associated with it. The record keys are numbers between 0 and 99999.999,
inclusive, with at most three digits to the right of the decimal point.

File Pointer
6Edit keeps track of a "file pointer' which '"points" to a Location in a file.
You can move the file pointer in three ways:

o When full-screen editing, the cursor is effectively the file pointer.
When you move the cursor (with, for example, the backspace key on the
terminal), you are moving 6Edit's file pointer.

0 You can use the terminal's function keys to move the file pointer, by
moving forward or backward in a file in units of characters, words,
records, matches of a pattern string, etc. You must first tell 6Edit what
the terminal's function keys mean, usually in a 'context file." (See
Appendix C, Context Files in 6Edit.)

0 You can enter commands to move the file pointer in the same way as the
terminal function keys. (Actually, the terminal function keys simply
generate commands; anything you can do with commands, you can make your
terminal function keys do). You can also enter commands to move the file
pointer to a specific file, or a record within a file, by typing the
specific file name and/or record key in a command.

Overview of 6Edit
1-2 CE70-02

File Pointer

Blocks

The 6Edit editing commands work with "blocks' of data. A block can be an
entire file, or any portion of a file. As shown in Figures 1-1 through 1-4, a
block is usually a string of characters taken from one or several records in a
file.

A block can be a portion of one record, excluding the record boundary at
the end of the record.

Example:

The elevator doors in the lLobby

ing downtown were open late Wed-
nesday afternoon, but the elevator
car was not there. Tom Hall, 42,

Figure 1-1. Example of a Block

A block can be all or part of a record, including the end-of-record
boundary.
Example:
The elevator doors in the lLobby

of thelSecond National Bank Build- |

ing downtown were open late Wed-

nesday afternoon, but the elevator

car was not there. Tom Hall, 42,

Figure 1-2. Example of a Block

Overview of 6Edit
CE70-02 1-3

=LtV Ro

A block can be a set of records, with portions of the first and last
records (excluding the final end-of-record boundary).

Example:

The elevator doors in the Llobby

car was not there. Tom Hall, 42,

Figure 1-3. Example of a Block

A block can be a set of records, with all or part of the first record and
all of the last record, including the final end-of-record boundary.

Example:

The elevator doors in the lobby

—— e i > - ——————— ———————————— = ——

|
|
I ing downtown were open lLate Wed- |
I nesday afternoon, but the elevator |

car was not there. Tom Hall, 42,

Figure 1-4. Example of a Block

Overview of 6Edit
1-4 CE70-02

Blocks

Specifying a Block
You specify a block of data to edit by '"selecting" the block. There are two
ways to select a block:

o When full-screen editing, you can direct the cursor to the beginning and
the end of the block, moving it with the arrow keys or the function keys
on the terminal. Moving the cursor is equivalent to moving the file
pointer.

o You can enter commands which direct the file pointer to the beginning and
the end of the block to be selected.

What You Can Do With a Block

Once a block is selected, you can enter an editing command (or use a function
key on your terminal) to manipulate the block of data. The things you can do
with a block of data include:

o] Delete the selected block of data.

o] Copy the block of data to another location, either in the same file or a
different file.

o Move the block of data to another lLocation (same as copying the block,
except that after copying it, it is deleted from its original location)
either in the same file or a different file.

o] Insert previously selected data after the selected block.

o Replace the selected block with another block of data (which you
previously selected).

o Give a name to the location of the selected block. Thereafter, using that
name in a 6Edit command tells 6Edit to use the current data at that
Location.

o Edit the selected block. (See "Edit Block' below.)

There are two special blocks used in 6Edit: the edit block and the
selected block.

Overview of 6Edit
CE70-02 1-5

What You Can Do With a2 Block

Edit Block

The implicit subject of all editing operations is the "edit block."” The edit
block is any set of records in any file. It can comprise one record or an
entire file. Usually the edit block is all or a large portion of a file.

You can edit less than an entire file, simply by telling 6Edit which portion
ot the file, or block, you want to edit. This is useful when you want to
Limit editing operations to one portion of the file.

You can set the edit block explicitly with the EDIT command; you can refer to
it explicitly using the "CURRENT" predefined name.

The default for all editing commands is to edit a block which is located
entirely inside the edit block. You can override this limitation, and specify
a block anywhere in any file. (See Section 5, Block Expressions in 6Edit.)

When you specify a file, or some other block operand which is lLocated outside
the current edit block, 6Edit automatically changes the edit block to the
specified file. This is called an "implicit EDIT" because it is as though
6Edit automatically inserted an EDIT command in front of the command you
entered. An impiicit EDIT can occur during the following commands:

AFTER
DELETE
DISPLAY
LOCATION
OVER

For example, assume you have typed the following command:
EDIT FILE ACCTS_PAYABLE
The edit block is now all of file "ACCTS_PAYABLE". 1f you type the command:
DISPLAY 23
it displays record 23 from file ACCTS_PAYABLE. Your search is lLimited to the
material within the existing edit block only; 6Edit does not search for record

23 before the first record, or beyond the last record of the current edit
block.

Overview of 6Edit
1-6 CE70-02

Edit Block

Now, you type this command:
DISPLAY FILE INVENTORY 23

Because you explicitly specified a file, it becomes the new edit block; the
command displays record 23 from file "INVENTORY", and the new edit block is
all of file INVENTORY.

Note that the following two commands have the same effect on the edit block:

EDIT FILE ACCTS_PAYABLE
DISPLAY FILE ACCTS_PAYABLE

Contrast with this the very different effects of the following two commands on
the edit block:

EDIT FILE ACCTS_PAYABLE 23
DISPLAY FILE ACCTS_PAYABLE 23

The EDIT command in this example sets the edit block to just record 23 of file
ACCTS_PAYABLE; the DISPLAY command in the example sets the edit block to all
of the ACCTS_PAYABLE file, then displays record 23.

Edit Block Stack

When you change to a new edit block, the previous edit block is not forgotten.
6Edit maintains an "edit block stack', which holds the specifications of
previous edit blocks.

The edit block stack has a pointer, which refers to the current edit block
specification (the "CURRENT'" predefined name). When the edit block changes,
either explicitly (EDIT command) or implicitly, 6Edit adds an entry to the
edit block stack, and stores the specification of the new edit block in that
entry.

You can easily refer to the block specification in the previous entry in the
edit block stack by using the PREVIOUS block operand in a block expression.
The PREVIOUS block operand always changes the edit block, but instead of
appending the new edit block specification to the end of the edit block stack,
6Edit simply moves the edit block stack's pointer backward one entry. The new
edit block is the previous edit block specification from the edit block stack.
Once you have used PREVIOUS, you can similarly use the NEXT block operand to
advance the edit block stack's pointer. The following examples illustrate
responses generated by the edit block stack.

Overview of 6Edit
CE70-02 1-7

Edit Block Stack

Note that when you change to a new edit block, thus adding a new entry to the
stack, any entries from the current entry to the end of the stack are removed

from the stack.

into the stack, since there is no longer a NEXT file in the stack.

Thus, you may not EDIT NEXT after introducing a new entry

Table 1-1. Operations in the Edit Block Stack
You type: Edit Block Stack:
EDIT FILE ABC | FILE ABC |
current
EDIT FILE DEF | FILE ABC | FILE DEF
current
EDIT PREVIOUS | FILE ABC | FILE DEF
current
EDIT NEXT | FILE ABC | FILE DEF
current
EDIT FILE GHI | FILE ABC | FILE DEF FILE GHI |
current
EDIT PREVIOUS | FILE ABC | FILE DEF FILE GHI |
current
EDIT PREVIOUS | FILE ABC | FILE DEF FILE GHI |
current

1-8

Overview of 6Edit

CE70-02

Edit Block Stack

Table 1-1. Operations in the Edit Block Stack (cont)

EDIT FILE XYZ | FILE ABC | FILE XYZ |

current

Selected Block

The "selected block" is the lLast block you specified, either by moving the
file pointer (cursor) or by entering commands. You manipulate the selected
block using the editing commands: it can be deleted, moved, replaced, etc.

For example, if you move the cursor to the beginning of a sentence, type THRU
in the command window, then move the cursor to the end of the sentence, you
have designated the new selected block. If you then type DELETE THAT in the
command window, 6Edit deletes the sentence from the file.

Compound Blocks

In complex editing situations, you can specify ''compound blocks" in 6Edit
commands. There are two types of compound blocks: repeated blocks and
enclosed blocks.

Repeated Blocks

Sometimes you want an editing operation to be performed at several locations
in a fite. For example, you may want to replace all appearances of the word
"horse'" with the word 'giraffe.'"” Rather than find each location and perform
the operation manually each time, 6Edit allows you tc enter a command which
specifies a "repeated block."

Specification of a repeated block in a command causes the entire command to be
repeated as many times as needed, each time at a different location in the
file. A block expression tells 6Edit how to move the file pointer to find the
location of each repetition of the operation. (See below.)

Overview of 6Edit
CE70-02 1-9

Enclosed Blocks

"Enclosed blocks" are used in commands to Limit movement of the file pointer
temporarily. For example, you can specify that a pattern search be Limited to
a single record. This single record is called the "enclosing block."

Expressions

6Edit commands involve two types of expressions: string expressions and block
expressions.

String Expressions

A string expression specifies either a number or a string of characters,
depending on the context in which it is used. A string expression can combine
different types of strings into one string by concatenating them. Also, a
string expression can combine strings and numbers with the usual logical,
relational, and arithmetic operators, producing a string of characters which
represent logical (true or false), or numeric results.

The types of strings which can be used in string expressions are:

o] String constants: strings of characters enclosed in apostrophes ('), or
decimal numbers (not enclosed in apostrophes). The strings or decimal
numbers represent constants. Character data (including non-displayable
characters) may be entered using ASCII characters, their decimal codes, or
their ASCII names. (See $CONTROL-Value Function later in this section.)

o EQUALS-names: names of variables which have been assigned string values
with the EQUALS command. These may be names you create or predefined
names. 6Edit uses the value of a name in place of the name when
evaluating the string expression.

o Predefined string functions: functions analogous to IBEX system functions
that yield values (such as the date, the current directory account, the
absolute value of an expression), and functions such as $CNTL and $KEY
that yield strings that identify control keys, function keys, and special
keystroke sequences.

Overview of 6Edit
1-10 CE70-02

String Expressions

Block Expressions

A block expression specifies a block of data in a file. All editing commands
have a single block expression as a parameter. This expression specifies the
block of data upon which the editing command is to operate (to delete the
block, to copy the block, to replace the block, etc.)

Block expressions can indicate whether the block resides in a specific file,
or if it resides in the edit block (the block currently being edited). The
boundaries of a block can be given in absolute terms, such as a specific
location in a file, or in relative terms, such as forward or backward from the
current file pointer locetion, or in a combination of these.

The LOCATION command allows you to give a name to the location of a block.
Later, you can use that name in a block expression to refer to the designated
block.

Block expressions can be enclosed and repeated. When a block expression
specifies a repeated block, the entire editing operation of which the block
expression is a parameter is repeated.

Keywords and Abbreviations

6Edit commands use a keyword-style notation. ALl keywords may be spelled out
fully, or abbreviated. You can choose any editing function by simply using
the alphabetic characters, the numerals, and seven special characters. The
following figure summarizes the keywords and non-alphabetic characters used.

Overview of 6Edit
CE70-02 1-11

Keywords and Abbreviations

Keywords

6BUILD * DONT MOVE * REPEAT
6EDIT EDIT NEW RESET
6X EDITING * NEXT * RESTORE
ADJUST END NUMBER * SAVE
AFTER EO OF SELECT
ALL EQUALS oLD * SESSION
ANY *% ERASE ON * SETUP
AO EXIT *%x% OUTPUT SHOW
BACKWARD FILE OVER SKIP
BEGINNING FORWARD PATTERN STRING
BLOCK * HELP PATTERNS SYNONYM
BO * HERE PERCENT SYNONYMS
BY IN POSITION * THAT
COMMAND I8 POSITIONS THROUGH
COPY * KEY * PREVIOUS THRU
* CURRENT KEYIN *% PRINT * TIME
* DATE KEYINS PROTECT T0

DELETE LINES QUIT *%x TOPICS

*xx DIRECTORY LOCATION READ WINDOW
DISPLAY LOCATIONS RECORD WINDOWS

RECORDS XIT

ALl of the above may be entered in upper or lower case and may
be abbreviated to exactly the first two characters, except
those preceded by one or more asterisks.

* - must be abbreviated to exactly the first four characters.
*x — abbreviation is not permitted.

x%%x - may be abbreviated with three or more characters.

Non-alphabetic Characters

Numerals: O through 9
Special Characters: ' C) , . ; ?

Figure 1-5. Keywords and Reserved Special Characters

Overview of 6Edit

Keywords and Abbreviations

CE70-02

Command Lines and Continuation

A "command Line'" is one record from the ''command stream.'" The command stream
usually originates from the keyboard of your terminal. (With the READ
command, you can switch the command stream to any file. Command lines will
then be read from that file. See Section 3, 6Edit Commands.)

Command Lines contain one or more commands. Multiple commands in one command
Line are separated by a semicolon (;).

If the command you type is longer than one lLine, type a semicolon as the last
-character of each ongoing Line (except the last lLine of the command).

Example:

CO0 ST 'This drawn-out Line renders the command Lengthy' AFTER;
FI XYZ 20.5

Lexica! Functions

You can instruct 6Edit to perform certain lexical functions during command
entry. You can invoke these functions by using identifier characters, which
are the values of two predefined names: $CONTROL and $COMMENT.

Initially, 6Edit uses the following default identifier characters for the
SCONTROL and $COMMENT functions:

% invokes the $CONTROL function
" invokes the $COMMENT function

6Edit lLooks for the $COMMENT identifier in command input and READ-file
records, and for the $CONTROL identifier in quoted strings. It does not Llook
for these identifiers (nor perform their functions) in records read from data
files.

It is possible to use the $CONTROL or $COMMENT identifier without invoking its
lexical function. This can be accomplished in two ways. One is to disable
the name. To do this, you assign an empty string to the predefined name
$CONTROL or $COMMENT. Thereafter, 6Edit does not support the functions
invoked by $CONTROL or $COMMENT, and will not Look for the identifier in
command lines, READ-file records, or quoted strings.

Or, when using the $CONTROL identifier, you can enter it twice (see
$CONTROL-L iteral Function, below.)

Overview of 6Edit
CE70-02 1-13

The functions invoked by the $CONTROL and $COMMENT identifiers are described
below.

$CONTROL identifier

The $CONTROL identifier is used to invoke several functions which are called
"$CONTROL functions'". Initially, the value of $CONTROL is the percent sign
(7).

The character following the $CONTROL identifier is called the
"function identifier'.

Some of the $CONTROL functions require an operand to be included along with
the function identifier. Normally, a $CONTROL function is specified as
follows:

$CONTROL_identifier function_identifier
These characters are to be entered together; there is no space between them.
Parameters:
$CONTROL_identifier represents one or two characters designating the
current value of the $CONTROL predefined name. (See Lexical Functions,

above.)

function_identitfier specifies the function 6Edit is to perform.

For example, assume that the $CONTROL identifier is %:
VoS invokes the $CONTROL-Literal function
%R invokes the $CONTROL-Record function
yAY; invokes the $CONTROL-Value function

Note: S$CONTROL functions used in EQUALS commands are not interpreted when
assigned, but only when the resulting variable is used in a different command.

Certain $CONTROL functions require one or two operands along with the function
jdentifier. Enclose both in parentheses following the function identifier:

$CONTROL_identifier function_identifier ([operand])

Overview of 6Edit
1-14 CE70-02

$CONTROL Identifier

For example:

YA Q) invokes the $CONTROL-Value function with no operands

AV(23) jinvokes the $CONTROL-Value function with one operand: 23

ZV(23,255) invokes the $CONTROL-Value function with two operands:
23 and 255

To change the identifier which invokes $CONTROL functions, you assign a
different character value to the $CONTROL predefined name. The characters
assigned to the $CONTROL name must reside in the following set:

Yt oo 08 L & x o+ - R @ <

= > / [\] ~ ' { | } ~
However, the characters which represent the current value of the $COMMENT
predefined name (initially "), cannot be used in the value of the $CONTROL
predefined name.

The following paragraphs describe most of the $CONTROL functions available.
See Section 5, Block Expressions in 6Edit, for descriptions of additional
$CONTROL functions which may only be used in pattern strings.

BCONTROL-L i teral Function

Function Identifier: the $CONTROL identifier itself.

This $CONTROL function allows you to include the $CONTROL identifier itself in
quoted strings. 6Edit recognizes two adjacent occurrences of the $CONTROL
identifier as representing a single $CONTROL identifier; no other Llexical
function is performed.
Example:
COPY STRING '487% are qualified' AFTER HERE
inserts the string "48%Z are qualified” into the file.

Overview of 6Edit
CE70-02 1-15

$CONTROL Identifier

$CONTROL-Record Function
Function Identifier: R
The $CONTROL-Record function represents an "end-of-record boundary."

This function may be invoked in quoted strings. The $CONTROL-Record function
is the only way to represent an end-of-record boundary in quoted strings.

Example:

COPY STRING 'The quick brown foxZRjumped over the lazy dogZR' AFTER 10

inserts two records after record 10.0 in the file being edited. The first
record contains '"The quick brown fox'; the second record contains

"jumped over the lazy dog'".

COPY STRING 'whenever available ' AFTER 10 SELECT ‘respond '

inserts two words into record 10.0 after the word '"respond'". Note the absence
of any $CONTROL-Record function: the quoted string does not represent a
record, but just a string of characters. This command creates no new records.

Record 10.0 is simply lengthened.

Figure 1-6, below, illustrates the quoted string before the $CONTROL-Record
function.

We would appreciate an itemized inventory sheet from your

department. You can | respond | stock

arrives from the Omaha branch. We will expect a complete

list, signed and dated by the area manager, at that time.

Figure 1-6. CONTROL-Record Function Before

COPY STRING ‘'whenever availableZR' AFTER 10 SELECT ‘'respond '
inserts two words into record 10.0 after the word 'respond"”. Also, because

the $CONTROL-Record function is included in the quoted string, a new record is
inserted after record 10.0.

Overview of 6Edit
1-16 CE70-02

$CONTROL Identifier

Figure 1-7, below, illustrates the quoted string after two $CONTROL-Record
commands.

CO ST 'whenever available ' AF 10 SE ‘respond '

We would appreciate an itemized inventory sheet from your

department. You can respond | whenever available | stock

arrives from the Omaha branch. We will expect a complete

List, signed and dated by the area manager, at that time.

CO ST 'whenever availableZR' AF 10 SE 'respond '

We would appreciate an itemized inventory sheet from your

department. You can | respond whenever available |

stock

arrives from the Omaha branch. We will expect a complete

list, signed and dated by the area manager, at that time.

Figure 1-7. CONTROL-Record Function After

SCONTROL-Vaiue Function

Function Identifier: V

Parameters:

value is a decimal number between 0 and 511, inclusive.

The $CONTROL-Value function allows you to enter any 9-bit byte value in quoted
strings.

This function requires an operand following the function identifier.

Overview of 6Edit
CE70-02 1-17

For example, assuming that $CONTROL is %, to enter a quoted string which
contains a single byte with a value of 23, you would type:

TAV(23)?
Example:
ESC EQ 'Zv(27)'

detines a name, ESC, with the value of the escape character. The number 27 is
the decimal ASCII code for the Escape character.

KEYIN 'ZV(27)A' 1S 'harbinger of glad tidings'
redefines the terminal key sequence Escape A. Hereafter, whenever <ESC> <A>

is typed at the terminal keyboard, it appears as the phrase 'harbinger of glad
tidings".

$COMMENT Identifier

The $COMMENT identifier is used to denote commentary in command lines. The
quotation mark (") is the initial $COMMENT identifier.

When the $COMMENT identifier appears in a command line outside of a quoted
string, 6Edit ignores the following text, until the next appearance of the
$COMMENT identifier or the end of the command Line. This allows you to append
commentary to command lines by separating the commentary from the actual
command(s) with the $COMMENT identifier.

Note that the $COMMENT identifier is not recognized inside quoted literal
strings.

Example:

CASE EQ OFF '"This is commentary

is not concluded by a quotation mark, because the commentary occurs at the end
of the command line.

LOCATION CHAPTER_1 IS "Definition follows:" BO CURRENT THRU '.brp'

differs from the former command line. Here, the commentary occurs in the
middle of the command Line, and is therefore enclosed by quotation marks.

Overview of 6Edit
1-18 CE70-02

$COMMENT Identifier

To change the identifier which invokes $COMMENT functions, you assign a
different character value to the $COMMENT predefined name. The characters
assigned to the $COMMENT name must reside in the following set:

! " # $ Z & * + - a - <

However, the characters which represent the current value of the $CONTROL
predefined name (initially %) cannot be used in the value of the $COMMENT
predefined name.

Function Key and Control Key Notation

6Edit recognizes function keys, control keys, and ASCII control codes as
string expressions. The key or code name must be enclosed in angle brackets
("<", ">") or be the argument of the $KEY function, for example:

KEYIN <F1> IS ...
KEYIN <UPARROW> IS ...
KEYIN <ENT> IS ...
KEYIN <F1>11'A' IS ...

Note that abbreviations accepted by IMP (such as "ENT" for "ENTER'" above) will
also be accepted by 6Edit.

Also note the last example above: function keys may be used as introducers
for multi-key sequences.

6Edit accepts the name of any key on the terminal keyboard inside the angle
brackets. This includes not only the FEP/profile-defined function keys, but
also the ASCII control characters (plus the DEL character) as mnemonics:

NUL ENQ LF SI DC4 EM RS
SOH ACK vT DLE NAK SuB us
STX BEL FF DC1 SYN ESC DEL
ETX BS CR DC2 ETB FS

EOT HT SO DC3 CAN GS

Also, ASCII control keys can be included inside the angle brackets, using the
identifier "CNTL":

<CNTL-x>

where "x" is any one of: @, A-Z, [, \, 1, ~, _
./ a-z, {, I, }, -

Overview of 6Edit
CE70-02 1-19

Function Key and Control Key Notation

The ASCII mnemonics evaluate to the corresponding ASCII code (0 - 31 and 127).
However, use of the function key elements in a numeric expression yields an
error; use of the function key elements in an expression not used (eventually)
by the KEYIN command yields unpredictable results.

The angle bracket notation is intended to reinforce the notation used in the
manuals when referring to keystrokes at the terminal keyboard. See CE70 and
CE73, Notation Conventions.

Additionally, the $CNTL predefined string function is permitted in string
expressions:

$CNTL
$CNTL is much lLike the <CNTL-x> expression element; it is included as a
computational form of <CNTL-x>: $CNTL takes a string argument possibly longer
than one character, whereas the angle bracket notation is limited to a single
character. S$CNTL returns a string which contains the ASCII control-codes for
the characters in the original string.
Examples:
KEYIN <ESC>I1'A"' IS <CNTL-C>11'BA SK 20 RE'II<CR>
KEYIN ESCII'A' IS <ETX>11'BA SK 20 RE'IICR
The above two examples are identical; the second assumes that the names "ESC"
and "CR" have been defined by the user, probably in the context file as they

are now.

DOITTOIT E@ SINPUT('Type control char to define: ')
KEYIN $CNTL(DOITTOIT) IS <ESC>!I'SR'IISCNTL('[W")

Note that <CNTL-[> is Escape, so "SCNTL('[W')" is the sequence <ESC> <CNTL-W>.

Names

In 6Edit, you can create your own names for things. This makes it easier to
remember specific details, such as the location of data. Names also make it
easier to refer to something repeatedly, such as an often-used sequence of
keywords.

Each name has a value associated with it; the value is the location or object
to which the name refers.

Overview of 6Edit
1-20 CE70-02

Names

You create names with the assignment commands; these commands are also used to
change the value of a name. The assignment commands are:

EQUALS
LOCATION
SYNONYM
KEYIN

Some names are ''predefined" by 6Edit; that is, whenever you run 6Edit the
names have already been created. These names are used to communicate details
between you and 6éEdit. You can change the value of some of the predefined
names; others may not be changed by you, their values are changed internally
by 6Edit.

Names are used in several ways in 6Edit:

o The EQUALS command assigns a reasonably short value (up to 511 characters)
to a name. The value is stored as a string of characters, which may
represent numeric or character data, depending on how the name is later
used. The name can be used in the expression component of a command;
6Edit uses the name's value in place of the name when evaluating the
expression.

0 The LOCATION command assigns to a name the boundaries of a block of data
in a file. To later refer to that location in the file, incltude the name
in an editing command; 6Edit treats the name as a reference to the block.

o The SYNONYM command assigns a fragment of a 6Edit command Line to a name.
If 6Edit later sees the name in a command lLine, it replaces it with the
fragment which is the name's value.

o The KEYIN command redefines a key on your terminal. Here, the name being
assigned is the actual character or sequence of characters generated by
the terminal key, or an encoded representation of the name of the key.
When a terminal key is redefined, the CP-6 system will cause it to
generate any sequence of characters that you specify. When you type the
key (or sequence of keys), the system will echo on your terminal the
sequence of characters which represent the name's value.

Overview of 6Edit
CE70-02 1-21

Value Types

When assigning a value to a name, you must be aware of the "type'" of the
value. The type of a value is determined by the assignment command you use to
assign the value to a name.

Each of the assignment commands assigns a different type to the name's new
value. The types of values supported by 6Edit are:

o EQUALS-value: a string of up to 511 characters.
0 LOCATION-value: a specitic block of data in a specific file.
0 SYNONYM-value: a fragment of a 6Edit command-line.

0 KEYIN-value: an arbitrary sequence of characters as they would be typed
at a terminal, including escape and other control characters which may
invoke editing functions (such as backspace or carriage return).

Beware of the required "type'" of the predefined names. Each of the predefined
names may only be assigned values of a specific type. Appendix A,

Predefined Names, Lists the predefined names along with the command which
should be used to assign values to each of them. 1If you try to assign a value
to a predefined name using the wrong command, 6Edit rejects the command.

Substitution

"Substitution' refers to the substitution of the value of a name for the name
itself. Substitution may occur when you enter command lines and data to
6Edit; substitution may also be performed on input from your terminal and from
command files.

In 6Edit, there are four methods of substitution. These correspond to the
four types of values which a name may have.

Overview of 6Edit
1-22 CE70-02

Substitution

The table below contrasts the different methods of substitution.

Assignment Command Lexically Semantically Evaluated Type
name EQUALS string_exp checked checked now string
LOCATION name IS blk_exp checked checked now location
SYNONYM name IS fragment checked unchecked later -

KEYIN name IS string_exp unchecked | unchecked Later -

For the EQUALS and LOCATION commands, the expression for the value is
evaluated when the assignment command is processed; the result of the
evaluation is the value given to the name. However, for the SYNONYM and KEYIN
commands, the value is saved as a sequence of characters. Later, when the
name is used, 6Edit evaluates the saved sequence of characters.

EQUALS-Values and LOCATION-Values

The EQUALS and LOCATION commands operate similarly, with the exception of the
type of the value they assign to a name. For the EQUALS command, the value is
a character string (which may represent a number). For the LOCATION command,
the value is the location of a block of data in a file.

Example:

START_POS EQUALS END_POS

is legal. END_POS is evaluated now.

ANSWER EQUALS 'ABC

is illegal, and will be rejected. The string has unbalanced quotes.

LOCATION CHAPTER_1 IS FILE MY_BOOK SKIP 3

is illegal, and will be rejected. The block _expression must be complete. It

is evaluated now. The SKIP 3 option must be followed by a block operand.
(See Section 5, Block Expressions in 6Edit, for details.)

Overview of 6Edit
CE70-02 1-23

Substitution

SYNONYM-Values

When processing a SYNONYM command, the fragment which is the value is
lexically checked (parsed), and any comments are removed. However, no further
processing of the fragment is performed. The value assigned to the name is
simply the decommented text of this fragmented command Lline.

A name whose value is a SYNONYM-value can be used anywhere in any 6Edit
command line, including the SYNONYM-value of a SYNONYM command. 6Edit
substitutes the fragment which is its value for the name. 6Edit semantically
checks the fragment only when the name is used, for example, when a fragment
is substituted into a command line.

Example:

SYNONYM START_POS IS END_POS

is legal. END_POS will not be evaluated until START_POS is used.
SYNONYM ANSWER IS 'ABC

is illegal, and will be rejected. The string has unbalancéd quotes.

SYNONYM CHAPTER_1 IS FILE MY_BOOK SKIP 3
is Legal. The block_expression witt not be evaluated until CHAPTER_1 is used
in a command line.

KEYIN-Values

Normally, values in assignment commands must at least be lexically correct
(parsable into legal fragments). A lexically unchecked value (enclosed in
string delimiters) is allowed in the KEYIN command only. When redefining a
terminal key, it is useful to be able to generate any sequence of characters.
A KEYIN-value, then, is any arbitrary sequence of characters; it may include
displayable and non-displayable characters, control-characters, and
input-editing functions recognized by the CP-6 system.

KEYIN-values are only useful when running 6Edit on-lLine. A name whose value
is a KEYIN-value is recognized by the CP-6 system whenever you type the
keystrokes which form the name. When the keystrokes are received by the
system, the sequence of characters that represents the name's value is
substituted for the keystrokes that comprise the name.

Note that 6Edit substitutes KEYIN-values for their names in any input from the
terminal (command Lines as well as data records). KEYIN-values are not
substituted, however, in input from command files (initiated with the READ
command) .

Overview of 6Edit
1-24 CE70-02

Substitution

Example:

KEYIN 'Zv(10)* IS '''ABC'

is legal. When you type linefeed (ASCII1 10), the characters
'ABC

appear on the terminal.

Copy and Move Operations

In 6Edit, you can copy or move a block of data from one lLocation to another.
This is done in two steps:

1. First, you specify the block you want to copy or move; this is called the
"source block."” The COPY and MOVE commands specify the source block for
the operation.

2. Then, you specify the 'destination' for the copy/move. Use the AFTER
command to insert the source block at a location in a file. Or, use the
OVER command to replace a destination block with the source block.

The COPY and MOVE commands do not make any changes to the file; they just
specify the source block for the copy/move operation. Only when you enter an
AFTER or OVER command is the copy/move operation performed.

Both the source and destination blocks can be any sequence of characters,
records, or parts of records. 6Edit uses the same commands to copy/move one
characters, an entire file, a sentence, or a few words.

When copying a block of data, 6Edit maintains any 'record boundaries'" in the
block; that is, characters which were together in one record in the source
block remain together in one record after the operation, at the destination
location.

Record Key Generation

In a copy/move operation, the source block may or may not include record
boundaries. 1If the source block does include a record boundary, 6Edit must
insert new records into the file at the destination lLocation.

Overview of 6Edit
CE70-02 1-25

Record Key Generation

Unkeyed Files

Records may not be inserted into consecutive files or unit record (UR) files
except at the end of the file. 6Edit does not need to generate any record
keys in this case.

Edit-Keyed Files

If the destination file uses edit keys, new keys must be generated for any
inserted records. 6Edit adds the vatue of the BY option to the key of the
destination record to compute the new record keys. The BY option may be
specified in the block_expression of the AFTER or OVER commands. If no BY
option is given, 6Edit uses the value of the predefined name $BY.

If a key created with this increment conflicts with a key already in the file,
6Edit divides the increment by 10. This division is repeated until a new key,
one which does not conflict with any already in the file, is created.

If no such key can be created, 6Edit tries to move some records nearby to make
room for the insertion, governed by the S$REKEY predefined name. If SREKEY is
zero, 6Edit discontinues the copy/move operation, informs you of the problem,
and no further processing of the source block, such as deletion for a MOVE
command, occurs.

String-Keyed Files

Records may only be inserted into a string-keyed file individually and by
explicitly specifying the key to be used.

Rekeying a Keyed File
When 6Edit tries to create a new record key and is not able to and $REKEY is

zero, it will abort the operation. If the file is an edit-keyed file, you can
rekey the file and resume the operation using the following command:
COPY CURRENT OVER CURRENT
The synonym REKEY, defined in the standard context files, can be used instead:
REKEY

This command can only be used when you are editing the entire file.

Optionally, you can add the BY option to control the record keys used when
rekeying the file as follows:

COPY CURRENT OVER CURRENT BY 5

Overview of 6Edit
1-26 CE70-02

Rekeying a Keyed File

or
REKEY BY 5
uses 5.0 as the first record key in the rekeyed file. Each successive record

wiltl have a key which is larger by five more increments than the previous key
(i.e., the rekeyed file's keys will be 5.0, 10.0, 15.0, 20.0, ...).

Overview of 6Edit
CE70-02 1-27

Rekeying 2 Keyed File

Section 2

Using 6Edit

This section describes the environment which 6Edit requires for operation, the
invocation of the 6Edit processor, and the user interface.

DCBs

6Edit uses eleven DCBs. Before starting 6Edit, you can set some of the DCBs
to other files or devices, using the IBEX SET command. The following List
descr ibes each DCB.

M$SI

can be set to a file containing 6Edit commands. 6Edit executes these commands
after it reads the context file.

MS6E

can be set to the window which 6Edit is to use as the terminal screen. If it
is not set, 6Edit uses all but the top lLine of UCO1.

MSFILE

can be set to correspond to the file to be initially edited. You may also
designate the initial file on the IBEX command Lline.

M$DO

receives error messages from 6Edit in non-interactive mode (BATCH or XEQ), or
if set to a file.

MS$EI, MSE9, MS6EQ0, M$6EQT, MSEW
are reset (or '"scrubbed") by 6Edit. You should not set them.
M3SME

receives information messages in non-interactive mode, and accepts command
input in interactive but not full-screen mode (e.g., $SCREEN E@ ().

Using 6Edit
CE70-02 2-1

DCBs

MsLO

is used in non-interactive mode to echo commands if echoing is enabled (in
IBEX), to display error messages, and to display information from the SHOW
command. It is normally assigned to the command window, but may be redirected
via the OUTPUT command.

Context File

When 6Edit is invoked, it first Looks for a 'context file' containing 6Edit
commands. These commands set up the environment in which to do your editing.

The file 6Edit looks for is called:
:6EDIT_CONTEXT_profilename

where profilename is the name of your current terminal profile. If 6Edit
cannot locate that name, it looks for:

T6EDIT_CONTEXT

6Edit looks for the

s ile names first in your !DIR account, then in your
logon account, and f

1 l
y in .:LIBRARY.

e
i

t
na

6Edit's standard context filte is :6EDIT_CONTEXT.:LIBRARY. It supplies common
assignments. This context file is terminal independent, because it uses
Escape sequences and control-keys for all functions, and does not assume that
your terminal has any function keys. There are other context files, designed
for use with specific terminal profiles, in the .:LIBRARY account.

As an alternative to these context files, you can build your own personal
context file in your logon account. Because 6Edit reads the context file
every time it is invoked, the context file should contain only those commands
which you want executed every time you run 6Edit. This eliminates the need to
retype them each time you invoke 6Edit.

For example, you may want to include KEYIN commands in the context file to
redefine the keys of your terminal. This is particularly useful if your
terminal has function keys or unlabeled keys: you can define them to generate
any sequence of characters, commands and/or input editing functions you wish.
(See Section 3, 6Edit Commands, for a discussion of the KEYIN command.)

You may also want to include SYNONYM commands in the context file. These
define words or special characters to be synonyms for 6Edit keywords or
phrases. (See Section 3, 6Edit Commands, for a discussion of the SYNONYM
command.)

Using 6Edit
2-2 CE70-02

Context File

Before you alter the contents of a context file, you should copy the standard
context file into your account, and then change it. (Appendix C, Context
Files in 6Edit, provides examples of 6Edit context files. Appendix D,
Customizing the 6Edit User Intertface, provides some guidelines to consider
before designing a context file.)

Searching for a Context File

You can override the fixed name and directory search lList which 6Edit uses to
find a context file at start-up by using the IBEX LET command:

'LET SETUP_6EDIT="+id"'
where fid can be any of the following:

o Only a file name (no account, packset name, or password can be given).
6Edit Looks for just this file name in your !DIR account, then in your
Logon account, and finally in .:LIBRARY.

o Only an account. ©6Edit Looks for the :6EDIT_CONTEXT_profilename file
name, then for :6EDIT_CONTEXT. However, it looks for these file names
only in the account specified in fid.

o Both a file name (which may include an optional packset name and password)
and an account. 6Edit looks for just that file name in only the specified
account.

In the file name portion of the fid, you can use two special character
strings:

>U - If this appears in the fid, it is replaced with the current
user's name.

>P - If this appears in the fid, it is replaced with the current
terminal profile name. (If 6Edit is running in batch mode,
>P is simply removed from the fid.)

In both of these substitutions, an underscore (_) separates the substituted
text from the rest of the fid.

The following table gives examples of different values of SETUP_6EDIT and

files 6Edit searches for. The current terminal profile used is VIP7801, and
the user name is EMCZ2EINSTEIN.

Using 6Edit
CE70-02 2-3

Searching for a Context File

Table 2-1. 6Edit Setup Files

If SETUP_6EDIT is set to: then 6Edit Looks for one of these files:

t6EDIT_CONTEXT>P :6EDIT_CONTEXT.dir_account
:6EDIT_CONTEXT_VIP7801.dir_account
:6EDIT_CONTEXT. lLogon_account
:6EDIT_CONTEXT_VIP7801.logon_account
:6EDIT_CONTEXT.:LIBRARY
:6EDIT_CONTEXT_VIP7801.:LIBRARY

WP>U>P WP_EMC2EINSTEIN.dir_account
WP_EMCZEINSTEIN_VIP7801.dir_account
WP_EMC2EINSTEIN. logon_account
WP_EMC2EINSTEIN_VIP7801.Llogon_account
WP_EMCZ2EINSTEIN.:LIBRARY
WP_EMC2EINSTEIN_VIP7801.:LIBRARY

6E_DOCUM>P.EINSACCT 6E_DOCUM.EINSACCT
6E_DOCUM_VIP7801.EINSACCT

LEINSACCT t6EDIT_CONTEXT.EINSACCT
:6EDIT_CONTEXT_VIP7801.EINSACCT

Starting GEdit
6Edit is entered from IBEX using the following command:

'{6E[DIT]I6B[UILD]I6XY [fid] [(command List[)]]

Parameters:
fid jdentifies the initial file to be edited.
command List specifies one or more initial commands. (See Section 3, 6Edit

Commands, for a command summary.) If a READ command is included in the
command List, the trailing right parenthesis must be omitted.

Using 6Edit
2_4 CE70-02

Starting 6Edit

Description:

Note that the context file is read and executed before the IBEX command Line's
command list is executed. This means, for example, that synonyms defined in
the context file can be used in the command Llist.

If a command List includes more than one command, the commands must be
“separated by semicolons (;).

When started, 6tEdit displays a greeting:

6Edit AQ3 Here.
There is a delay while 6Edit reads the context file appropriate for this
session, based on your terminal profile name and your current file management
(DIR) account. If fid is included in the IBEX command Line, 6Edit displays it
after clearing the terminal screen. If fid is omitted from the IBEX command
line, 6Edit prompts for a command. When waiting for a command to be entered,
6Edit displays an asterisk (%) on the terminal screen.
Examples:

'6EDIT DAILY_JOB
or

'6EDIT (FILE DAILY_JOB
or

'6E DAILY JOB

starts 6Edit, editing the file DAILY_JOB, the beginning of which is displayed
in the editing window.

'6EDIT (NEW FILE WEEKLY_JOB.MYACCT
or
'6BUILD WEEKLY_JOB.MYACCT

starts 6Edit, creating a new file named "WEEKLY_JOB" in account "MYACCT". The
editing window is initially empty, ready for you to enter text into the file.

'6EDIT (PROTECT FILE YEAR_END_JOB)
or
'6X YEAR_END_JOB

Using 6Edit
CE70-02 2-5

starts 6Edit, editing the file YEAR_END_JOB. This file is "protected', that
is, you cannot make changes to the file, you can only view the file in the
editing window.

'6EDIT DB_UPDATES (28.4)

starts 6Edit, editing file DB_UPDATES. The command List specifies that 6Edit
is to put the cursor on the record with key 28.4. 1Instead of displaying the
beginning of the file, 6Edit displays the records near record 28.4 in the
editing window.

Faster BEdit Invocation

6Edit processes a file created by 6Edit's SAVE command much faster than a
normal textual READ-file. To start 6Edit faster, you should first SAVE an
encoded version of the context file you wish to use.

For exampte, if you plan to use the standard context file, run 6Edit and use
the SAVE command as follows:

'6EDIT

* 6Edit AD3 Here.

* Reading :6EDIT_CONTEXT.someaccount.
*SAVE SETUP TO :6EDIT_CONTEXT.youraccount

Now, the next time you start 6Edit, it will use the encoded version of the
context file.

Screen Appearance

6Edit typically divides the screen as illustrated in Figure 2-1 and explained
in the following paragraphs. Additional capabilities affecting screen
appearance -- multiple editing windows and serial editing -- are described
later in this section.

6Edit normally divides the terminal screen into three "windows': the "IBEX
window' in the top line of the screen, the '"command window" in the upper half
of the screen, and the "editing window" in the lLower half of the screen. A
straight Line across the screen forms a "border'" which separates the IBEX and
command windows from the editing window.

Using 6Edit
2-6 CE70-02

Screen Appearance

I IBEX window

|
[
| % command window I
|
|

Figure 2-1. The 6Edit Screen

You can edit the characters appearing in any window using the input editing
functions. Input editing functions (entered at the keyboard) are key
sequences beginning with the control (<CNTL>) or escape (<ESC>) key. Some
input editing functions are introduced lLater in this section. (See Appendix E
for a List of all input editing functions supported by 6Edit.)

IBEX Window
The IBEX window is represented by one Line above the command window at the top
of your terminal screen. The IBEX window processes certain global commands

when you are in 6Edit. It is an option.

To remove the IBEX window from your screen, enter the following command at the
IBEX prompt before starting 6Edit:

'SET M$6E UCO1
or

'ADJUST MS$6E UCO1
before any editing command.
If you remove the IBEX window, you have an extra lLine for editing. Also,
since what you've really done is to combine the IBEX window and the command
window, any commands that need to use the IBEX window will probably have more

tines available. The disadvantage of combining the IBEX and command windows
is that since keyins and IMPs are really the same thing, any keyins that you

Using 6Edit
CE70-02 2-7

Screen Appearance

define in 6tdit for the command window will remain in the IBEX window after

you exit 6Edit. You will have to restore any needed IMPs either manually or
via the $RESTORE predefined name. This problem can be eliminated if you do

not need to use keyins in the command window by specifying "IN EDITING" for

all your keyin definitions.

If you do not remove the IBEX window, any IMPs or keyins used in your context
file during that session are removed when you exit 6Edit. 6Edit restores your
terminal environment to its former status.

By not removing the IBEX window, you give up screen space. Since the window
uses a Line at the top of your screen, you are short one editing window Lline
at the bottom.

For example, if you normally define <ESC> <1> to issue a CHECK command, and
you redefine Escape 1 during a 6Edit session to generate a COPY THAT command,
then when you leave 6Edit:

o] If you had an IBEX window during the 6Edit session (the default), <ESC>
<1> reverts back to generating the CHECK command.

o] If you did not have an IBEX window during the 6Edit session (i.e., you
'SET M$6E UCO1 before starting 6Edit), <ESC> <1> still generates the COPY
THAT command. (See the SRESTORE name in Appendix A, Predefined Names.)

Command Window

Lines at the top of your screen (above the border line) comprise the command
window. The number of Lines in this window changes depending on the window's
usage. When the command window displays messages, it grows larger; when you
type commands in this window, it remains small.

When the cursor is in the command window, you can type 6Edit commands. (See
Section 3, 6Edit Commands, for details.)

You can control the minimum and maximum size of the command window by
assigning values to the predefined names "S$SMIN_COMMAND' and ''$MAX_COMMAND'".
(See Appendix A, Predefined Names.)

The stream name for the 6Edit command window is the lLowest unused UC stream
greater than UC09 (usually UC10).

Using 6Edit
2-8 CE70-02

Screen Appearance

Editing Window

The editing window occupies the lLower portion of your terminal screen (below
the border line). It displays records from the file being edited.

Besides using the input editing functions, you can edit the data in the
editing window using the editing commands. (See Section 3, 6Edit Commands.)

To move the cursor from the editing window to the command window, type
<CNTL-C> (hold down the Control key, while typing the lLetter C once). To
return to the editing window without typing a command, type <CR> on an empty
command Line. To type a command and lLeave the cursor in the command window,
terminate the command with <CNTL-C>. These functions may differ according to
your context file.

The stream name for the 6Edit editing window is the second lowest unused UC
stream greater than UC09 (usually UC11). Additional editing windows start at
the next unused UC stream (usually UC12 and higher).

Vertical Scroll Margins

The editing window has two vertical 'scroll margins."” These margins are the
top and bottom subportions of the editing window:

| % | command window

| | editing window

Figure 2-2. Vertical Scroll Margins

6Edit keeps the cursor out of the scroll margins whenever possible. (An
exception is when the editing window displays the beginning or end of the
file, so you cannot scroll any more in that direction.) Thus, text surrounds
the cursor at all times. If you try to move the cursor into a scroll margin,
6Edit scrolis the data so the cursor is no longer in the scroll margin.

Using 6Edit
CE70-02 2-9

Screen Appearance

You can change the size of the scroll margin, from a minimum of zero lines to
a maximum of half the editing window height. To do this, assign a number to
the predefined name "$VSCROLL_MARGIN'. (See Appendix A, Predefined Names.)

Horizonta! Scro!l Margins

In addition to scrolling vertically, the 6Edit window can also scroll
horizontally. Horizontal scroll margins act on the same principle as vertical
scroll margins; however, horizontal margins scroll from right to lLeft, or from

left to right.

These margins are located at the right and lLeft of the editing window:

| % | command window

m |
a |
r | editing window
gl
il
n |

Figure 2-3. Horizontal Scroll Margins

6Edit keeps the cursor out of the scroll margins whenever possible. 1If you
try to move the cursor into the margin, 6Edit scrolls the data so that the
cursor is no longer in the margin.

You can change the size of a horizontal scroll margin, from a minimum of zero
columns to a maximum of half the editing window width. To do this, assign a
number tc the predefined name "SHSCROLL_MARGIN". (See Appendix A, Predefined
Names.)

Using 6Edit
2-10 CE70-02

Screen Appearance

Wordwrap

6Edit supports a special feature called "wordwrap.'" As you type text, 6Edit
allows you to type as far as the right margin; when you cross that margin,
wordwrap automatically replaces the last word of the record at the beginning
of a new record. Thus you can enter text without ever pressing the Return
key.

You can enact the wordwrap mode with the $WORDWRAP predefined name. (See
Appendix A, Predefined Names.) The value assigned to $SWORDWRAP is the right
margin column number you choose. A value greater than 11 implements the
wordwrap mode. To discontinue the wordwrap mode, set $WORDWRAP to 0 or 1;
this is the default.

Multiple Editing Windows

Multiple editing windows are permitted. The WINDOW commands, explained in
Section 3, allow you to create and remove editing windows. (There will always
be just one command window.) At any one time, you're working with just one
editing window, called the "current" editing window.

Each editing window remembers its own instances of:

the edit block ("CURRENT");

the edit block stack (for "EDIT PREVIOUS' and "EDIT NEXT");
the file pointer ("HERE");

the selected block ("THAT").

Different editing windows can be editing the same file or different files.
You can select a block in one window, switch to a different editing window,
and insert the data in the new window.

The editing windows must be created either side-by-side (horizontal windows),

or stacked one above the other (vertical windows). The horizontal and
vertical modes of window creation are illustrated in the following figure.

Using 6Edit
CE70-02 2-11

Screen Appearance

| command window | | command window I
R e e e L I B et L L |
! ed. | ed. | editing I | editing window #1 I
| win. | win. | window 1 b |
I #1 | #2 | #3 I | editing window #2 I
| I I | ! [
Horizontal editing windows Vertical editing windows

Figure 2-4. Two Styles of Multiple Editing Windows

The "'mode' for creating new editing windows (horizontal or vertical) is
determined when the second editing window is created. To switch "modes", you
must remove all but one editing window, and create a second editing window in
the desired mode. Only vertical mode is implemented in A03 6Edit, however.

The minimum window size is: for horizontal windows, ten positions; and for
vertical windows, one Line plus the border, if present. The only practical
Limit on the number of windows which can be created is the size of the 6Edit
screen.

Editing windows are numbered starting at one, top-to-bottom or teft-to-right.
The predefined name $WI_BORDER controls borders between windows. The value of
$WI_BORDER is a single character, or no characters (the empty string); the

initial value is . This character witl be used to form the border between
windows; if $WI_BORDER is set to the empty string, then borders are not used.

To move the cursor from the current editing window to the next one, type
<CNTL-N> (hold down the Controli key, while typing the Letter N once). The
cursor can be in the current editing window or the command window. If the
current editing window is the last one, <CNTL-N> moves to the first one.

Using 6Edit
2-12 CE70-02

Screen Appearance

Input Editing Functions

Generally, input editing functions affect characters under or near the cursor
by moving, deleting, etc.

These key sequences are those in effect at logon, before any new IMP keys are
designated. You, the user, may redefine these keys on your terminal keyboard.
(See Appendix D, Customizing the 6Edit User Interface, for more information.)
1f you decide to redefine the standard key sequences, those listed here (and
in Appendix E) may not work as described.

- Input editing functions may be typed at the keyboard directly, by typing a
sequence of one, two, or three keys.

The following paragraphs describe the key seguences you can use to move the

cursor, replace, insert, and delete characters, and split and join records.

These input editing functions are executed by the Front End Processor. (See
Appendix E for a complete List of input editing functions.)

Moving the Cursor

The following key functions move the cursor (and, when necessary, scroll the
data in the editing window). These functions do not change the data in the
file.

Table 2-2. Cursor Key Functions

Command Function and Description

<BS> or <CNTL-H>

Backspace.

<CNTL=-R>

Forward space.

Using 6Edit
CE70-02 2-13

Moving the Cursor

Table 2-2. Cursor Key Functions (cont)

Command Function and Description

<TAB> or <CNTL-1>
Tab.

<CNTL-W>
Move to right/left word.
Moves the cursor to the right or left word. The direction in
which the cursor moves depends on the last <BS> or <CNTL-R> key
typed.
A "word'" represents a contiguous string of non-space
characters. Any number of spaces may appear between words.
ALl spaces are skipped when moving to the next word. 1If the
recordwrap mode is disabled, this key function is Limited to
the current record; when you reach the beginning or end of the
record, this function changes direction and moves to the next
word in the opposite direction. If the recordwrap mode is
enabled, this key function will move to the next or previous
record when it hits the edges of the current record. (See the
$RECORDWRAP predefined name in Appendix A, Predefined Names.)
You can use the KEYIN command to define keys that can move
either left or right to the previous or next word. (See the
examples for the KEYIN command in Section 3.)

<ESC> <(CR>
Move cursor to beginning of current record.

<ESC> <N>
Move cursor to the end of current record.

Using 6Edit
2-14 CE70-02

Moving the Cursor

Table 2-2. Cursor Key Functions (cont)

Command Function and Description

<CR>
Move cursor to beginning of next record. 1If the cursor is in
the command window, <CR> returns the cursor to the current
editing window.

<ESC> <A>
Move cursor up one record.

<ESC>
Move cursor down one record.
For <CR>, <ESC> <A>, and <ESC> , the cursor moves by
records, not by Lines on your terminal. I1f a record occupies
more than one Line of the display, ''move cursor up'" moves the
cursor to the same position of the previous record, (not the
previous line). This movement may appear to jump over terminal
Lines. The same is true of "move cursor to beginning of next
record" and "move cursor down'.

<CNTL-C>
Moves the cursor to the command window. This function may also
be used to terminate a command and keep the cursor in the
command window.

<CNTL-N>

"Moves the cursor from the current editing window to the next

one. If the current editing window is the last one, it moves
the cursor to the first one. From the command window, <CNTL-N>
is equivalent to <CR><CNTL-N>.

CE70-02

The context file that 6Edit reads initially may have defined other keys on
your terminal keyboard, to move the cursor over groups of records, or to
search the file for specific data.

Using 6Edit
2-15

Moving the Cursor

Replacing and Inserting Characters

There are two modes available for typing data in 6Edit: the replacement mode
and the insertion mode. (There is another mode, the overstrike mode, but its
use is more specialized, and is not described here.) These modes are
available whenever you use CP-6; they are described here only because they are
particularly helpful when using 6Edit. The following paragraphs provide an
introduction to these modes. (For detailed information on their use, see the
CP-6 Programmer Reference (CE40), Section 6, Terminal Control.)

You may do all your editing in either mode, or you may switch between modes.
The technique you use is a matter of personal preference as well as the nature
of your editing.

Replacement Mode

When you logon to CP-6, you are initially in the replacement mode. In this
mode, each character you type replaces the character under the cursor. You
can insert characters into a record at the end of the record. To insert
characters anywhere else in the record, you must define an "insertion window"
by typing <ESC> <J>, or <ESC> <>>; then, characters you type at the right end
of the insertion window are inserted into the record at that point.

The insertion window '"encloses'" the action of many input editing functions.
For example, the <ESC> <CR> sequence moves the cursor to the beginning of the
insertion window. If you move the cursor beyond the insertion window, the
window expands, encompassing the entire record.

Insertion Mode

As an alternative to the replacement mode, you can use the insertion mode. To
tell the system tc use the insertion mode, enter <ESC> <'>., Later, to return
to the replacement mode, enter <ESC> <M>. Or use the $INSERT predefined name.

The insertion mode inserts characters into the record; it never replaces
characters. To replace characters in the insertion mode, you must first
delete the characters you want replaced, then insert the new characters.

1f you define an insertion window in the insertion mode, it maintains many of
the same effects as in the replacement mode. For example, many of the input
editing functions are lLimited to the insertion window. However, regardless of
whether the cursor is at the end of the insertion window, all characters typed
are inserted into the record, they never replace characters already there.

Using 6Edit
2-16 CE70-02

Replacing and Inserting Characters

Deleting Characters
You can delete characters in several ways.

Table 2-3. Delete Functions

Command Function and Description

Delete character.

Usually deletes the character under the cursor. However, in
the replacement mode only, if the cursor is at the end of the
insertion window, deletes the character to the left of
the cursor.

<ESC>

Delete left character.
Always deletes the character to the left ot the cursor.

<ESC> <CNTL-K>

Delete characters from the beginning of the record up to the
character just to the lLeft of the cursor.

<ESC> <K>

Delete the character under the cursor and all characters to the
right to the end of the record.

<ESC> <CNTL-L>

Pelete the record from the file.
This is the same as <ESC> <X>, but it also deletes the record
from the file.

Using 6Edit

CE70-02 2-17

Deleting Characters

Table 2-3. Delete Functions (cont)

Command Function and Description ~

Delete word.
Deletes the character under the cursor, and all characters to
the right up to the start of the next word.

You can use the KEYIN command to define keys that can delete
either the previous or the next word. (See the examples for
the KEYIN command in Section 3.)

<ESC> <X>
Delete the entire record. ‘
This does not remove the record key from the file, but does
delete all characters in the record.

<CNTL=-X>

Same as <ESC> <X>.

Splitting and Joining Records

Splitting records allows you to insert blank Lines, and add new records to the
file. Type <ESC> <LF> to "split" a record, i.e. break it up into two separate
records. The characters under and to the right of the cursor are removed from
the current record and placed in a record which is inserted into the file
following the current record. To insert new records in the middle of a file,
type <ESC> <N> to go to the end of the record, and then type <ESC> <LF>. This
creates a new record after the initial record.

Another way to insert records in the middle of a file is from the beginning of
the record. Type <ESC> <CR> to go to the beginning of the record. Then type
<ESC> <LF>. This creates a new record at the cursor line.

To add data at the end of a file, go to the end of the file, using the EO CURR

command in the command window. This command positions the cursor on a blank
Line. Type the new record. Then type either <CR> or <ESC> <LF>.

Using 6Edit
2-18 CE70-02

Splitting and Joining Records

Using <ESC> <BS>, you can join two records together into one record. This
function works only when the cursor is at the beginning or the end of the
record. If the cursor is at the beginning of the record, it joins this record
to the previous record. If the cursor is at the end of the record, the
following record attaches to the last character of the cursor record when you
type <ESC> <BS>.

The presence of a blank space between words when joining or splitting Lines is
controlled by the S$STEXTEDIT predefined name. See Appendix A for details.

Serial Editing

6Edit provides the serial editing mode for circumstances when full-screen
editing is inappropriate or inefficient. These cases are as follows:

o] When using 6Edit non-interactively (i.e., as a result of the IBEX BATCH or
XEQ commands)

o When using 6Edit online at a non-CRT terminal that permits neither full
screen display nor scrolling

o When using 6Edit to perform well-defined editing tasks such that it is
more efficient not to wait for the editing window to be filled with a full
screen of data every time the file pointer is pointed elsewhere within the
file.

Note that in serial editing, window-specific values for EQUALS-names and
KEYINs are ignored, as is the size and position of a new window created with
the WINDOW command.

When serial editing, a block expression by itself as a command (with no
editing verb such as COPY or AFTER) moves the file pointer without displaying
any data. To display data, an explicit DISPLAY command is necessary.

Switching between Serial and Screen Editing

When 6Edit is started, it determines if the user is running online and if the
terminal can support screen editing. If the user is not online or if the
terminal profile reveals that the terminal cannot screen edit, 6Edit forces
the user into serial editing mode. That is, it sets the predefined name
$SCREEN to O (the height of the terminal "screen").

The online CRT user choose between serial editing and screen editing by
setting $SCREEN back to the number of Llines that 6Edit should use as the
screen size. Setting $SCREEN to ON (or 1) restores the current maximum screen
size allowed. Setting $SCREEN to OFF (or Q) enters serial mode.

Using 6Edit
CE70-02 2-19

Splitting and Joining Records

Manipulating Data in Serial Editing Mode

In serial editing mode, with $COMMAND set on (the default), 6Edit commands are
used to manipulate the data. With $COMMAND oftf, 6Edit prompts with the key of
the "here" record, and uses reread mode for editing the data.

Special activation characters perform special functions:

<LF> terminates editing of the current record, and moves to the next one.
<LF> is <CNTL-J>.

‘<EOT> terminates editing of the current record, and moves to the previous one.
<EQT> is <CNTL-D>.

<SYN> splits the current record at the cursor position, and possibly moves to
the new one, depending on whether it is empty. If wordwrap is set, typing
at the end, past the wordwrap position, will cause the insertion of a new
record just as it does in screen editing mode. <SYN> is <CNTL-V>.

Other activation characters (i.e., all normal ones plus <ETX>) cause a command
prompt, just as in screen editing.

Using 6Edit
2-20 CE70-02

Splitting and Joining Records

Section 3

6Edit Commands

This section describes in detail each of the commands supported by 6Edit.

Entering Commands When Full-Screen Editing

When you are full-screen editing in 6Edit, your terminal's display screen is
divided into two "windows." Commands for 6Edit may only be entered when the
cursor is in the upper window, which is called the "command window." 1If the
cursor is in the lower window, you can move it to the command window by typing
<CNTL-C> on your terminal. Hold down the Control key, as if shifting, then
type the '"C" key. This keystroke may differ according to your context file.
(See Appendix C, Context Files in 6Edit, for standard key definitions.)

when the cursor is in the command window of the screen, you can enter command
Lines normally. You can use aill the features described in this section.
Command Summary

There are three categories of commands in 6Edit: editing, assignment, and

housekeeping. The general syntax for all 6Edit commands is shown in Table
3-1.

Table 3-1. Command Summary

Type Syntax Description

Editing Commands
6E[DIT] file Begin editing (by displaying the

’ specified block)

6B[UILD] file Create a new file
6X file Edit block in protected mode
ED[IT] block Begin editing (sets edit block)
[DI[SPLAY]}] block Display a block
Co[PY] {btocklstring} Set source tor copy operation

6Edit Commands
CE70-02 3-1

Command Summary

Table 3-1.

Command Summary (cont)

Type Syntax

Description

MO[VE] blocl
AF[TER] block
OV[ER] block

DE[LETE] block

Assignment Commands
name EQ[UAL[S]] string
LO[CATION] name [IS] block
SY[NONYM] name [IS] fragment
KE[YIN] str_1 IS str_2

Housekeeping Commands
TIME
DA[TE]
DIR[ECTORY] [fidIR[ESET]]

~”

DOI!} ¢
[ELP] [

ommand
{(processor)] [topic]

3

IF str [cd];cds[;ELSE [cd];cds]
READ fid

OUT[PUT] [location] [optlist]
PRINT [ALLILdevlist]

ERASE [ALLIldevlist]
EN[D]IX[IT]1Q[UIT]

REST[ORE] fid

SAVE [option] {TOIONIOVER} fid
SH[OW] option

[function] WI[NDOW] [option]

Set source for copy,; delete

after copy

Copy source, inserting after block
Copy source, replacing block
Delete a block

Assign string value to name

Make name refer to block

Make name a synonym for fragment
Redefine a terminal key

Display current date and time
Display current date and time
Change default account and
packset name

Call another processor

Display specified on-lLine
information

Conditionally execute commands.
Read 6Edit commands from fid

Send output to specified lLocation
Direct accumulated output to
destination

Delete specified output

Exit 6Edit
Restore context
fid

Save current context information
Displays strings, assigned
names, records in a block, keyin
definitions, and windows

Creates a new editing window,
changes current editing window,
or switches to another editing
window

information from

6Edit Commands

3-2

CE70-02

Command Summary

AFTER Command

Syntax:

AF[TER] [BL[0CK]] block_expression
Parameters:

block_expression specifies the lLocation at which to insert the source
block.

Description:

The AFTER command is used to insert a block of data into a file. The
block_expression specifies the destination location for the insertion
operation. The current source block is inserted into a location just after
the end of the block specified by block_expression. (The source block was set
by the last COPY or MOVE command.)

The source and destination blocks may be whole records, parts of records, or
any combination of these.

Example:

COPY 1 THRU 5 AFTER 10

inserts a copy of records 1 through 5 after record 10.

COPY 1 THRU 5 AFTER FILE OCTOBER_BILLS 42

copies records 1 through 5 to record 42 of the specified file.
Related Topics:

Copy/Move Operations

COPY Command

MOVE Command
OVER Command

6Edit Commands
CE70-02 3-3

AFTER Command

COPY Command

Syntax

CO[PY] {[BL[OCK]] block _expression}
{ST[RING] string_expression}

Parameters:
block_expression is the block of data to be copied.
string_expression is the string of characters to be copied.

Description:

The COPY command specifies the source block for the next AFTER or OVER
command.

The COPY command is a passive command. To have any effect, it must be
followed by an AFTER or OVER command.

6Edit remembers the location of the source block for use later by the AFTER
and OVER commands.

If block_expression is given, then 6Edit simply remembers the location of the
block specified, it does not keep a separate copy of the data. 1If
string_expression is given, then 6Edit keeps a copy of the value of
string_expression for later use by the AFTER and OVER commands.

Example:

COPY 2 PO 10 THRU EO 4

specitfies a source block which begins at position 10 of record 2, and ends at
the end of record 4. 6Edit ignores this data until it receives the next AFTER
or OVER command.

COPY ST 'X' OVER REPEAT SELECT 'Y'

replaces all 'Y's with 'X's. This command searches for 'Y's starting at the
current file pointer location, and proceeds to the end of the edit block.

6Edit Commands
3.4 CE70-02

COPY Command

Related Topics:
Copy/Move Operations
MOVE Command

AFTER Command
OVER Command

DATE Command

Syntax:

DATE

Parameters:

None

Description:

DATE (a synonym for the TIME command) displays the current date and time.
Example:

DATE

requests a display of the current data and time. A sample display is:
MAY 22 81 14:39

Related Commands:

TIME

DELETE Command

Syntax:

DE[LETE] [BL[OCK]] block_expression

6Edit Commands
CE70-02

Q

DELETE Comman

Parameters:

block_expression is the block of data to be deleted.

Description:

The DELETE command deletes its operand. After deleting the block, the
location vacated by the block becomes the new selected block. Note that this
is an "empty" block: it contains no data characters.

Note that "block_expression' can explicitly specify an entire file (e.g.,
"FILE filename'). 1In this case, the file itself is deleted, not just the

records in it.

If a file is open for editing when DELETE FILE is entered, the editing window
is cleared, and the following messages appear in the command window:

* File filename deleted.
* EDIT PREVIOUS will restore the Edit Block.

If the file open for editing was the one deleted and no other files are in the
edit block stack, the EDIT PREVIOUS message is not issued. A deleted file
cannot be restored by 6Edit.

If the file open for editing was a file other than the one deleted, then
entering EDIT PREVIOUS will return that file to the screen.

Example:

DELETE 5

means delete record 5.

DELETE BO CURRENT THRU 5 PO 20

means delete everything from the beginning of the current edit block through
record 5 position 20.

DELETE FILE TRANS

means delete the file TRANS and all the records in it.

6Edit Commands
3-6 CE70-02

DELETE Command

DIRECTORY Command

Syntax:

DIR[ECTORY] [fidIR[ESET]]

Parameters:

fid is a fid containing only an account name, and an optional packset name.
- bescription:

The DIRECTORY command changes the default account and packset for fids. These
defaults are used if a fid in any later command does not include an account
and packset name. If neither the fid nor the RESET option is included, 6Edit
simply displays the current directory.

The RESET keyword specifies that the default account and packset name are to
be reset to the user defaults (i.e., the defaults in effect when you lLogged on
to the system).

Example:

DIR .SYSLIB

directs subsequent fids that do not include an account to default to the
.SYSLIB account and to the packset associated with that account.

DISPLAY Command

Syntax:

[DI[SPLAY]] [BL[OCK]] block_expression

Parameters:
block_expression is the block of data to be displayed.
6Edit Commands
CE70-02 3-7

DISPLAY Command

Description:
The DISPLAY command displays the value of its operand.
DISPLAY SKIP 20 RECORDS

means move the cursor to the record which is 20 records beyond the current
cursor record. A section of the file surrounding this record is displayed in
the editing window.

SKIP 20 RECORDS

performs the same function as the above command, except that 6Edit does not
forget the block selected before the command; it simply changes the block's
boundar ies.

DISPLAY 428.5
means move the cursor to the record in the current edit block with key 428.5.

The verb DISPLAY may be omitted from the command Line. However, there is a
variation in the command's effect: when the verb DISPLAY is given, 6Edit
forgets any block selected prior to the command, and the block_expression in
the DISPLAY command becomes the new selected block.

On the other hand, when the verb DISPLAY is omitted, block_expression only
changes part of the specification of the block being selected (if any) prior
to this command. For example:

Form Result

5 Moves the cursor to record 5.0

THRU Begins selecting a block

10 The selected block is now 5.0 THRU 10.0
SKIP 3 RECORDS The selected block is now 5.0 THRU

the third record after 10.0

Compare the above sequence of commands with the following:

5 Moves the cursor to record 5.0
THRU Begins selecting a block
10 The selected block is now 5.0 THRU 10.0

DI SKIP 3 RECORDS Forgets the former selected block;
the selected block is now the third
record after record 10.0

In serial editing mode, the DISPLAY command displays only the complete records

constituting the selected block (through M$L0O), and only if the verb DISPLAY
is used explicitty.

6Edit Commands
3-8 CE70-02

DISPLAY Command

DO Command

Syntax:

{DO1'!'} command

Parameters:

command specifies an IBEX-level command.
Description:

The DO command is used to call another processor from within 6Edit.

EDIT Command

Syntax:

ED[IT] [BL[OCK]] block_expression

Parameters:

block_expression is the block of data to be edited.

Description:

The EDIT command causes its operand to become the new "edit block." The edit
block is used by 6Edit in block expressions; it Limits pattern searches, and
is the implicit file in which you move the file pointer. (See Section 5,

Block Expressions in 6Edit.)

The previous edit block is not forgotten. 1Its specification remains in the
edit block stack.

The block_expression is not required to specify an entire file; however, the
block it specifies must begin and end on record boundaries, that is,
block_expression must specify some number of complete records.

Sometimes it is convenient to Limit file pointer movement to some sub-portion
of the file. EDITing a sub-portion of a file also Limits the display of data
around the file pointer, which can be useful when your terminal operates at a
low speed (thus displaying data takes longer).

6Edit Commands
CE70-02 3-9

EDIT Command

The predefined name '"CURRENT'" is set by 6Edit automatically whenever the EDIT
command is given. The value of "CURRENT" is the location of the current edit
block. For example, the block expression "EO CURRENT" moves the file pointer
to the end of the current edit block.
You use the EDIT command when creating a new file. Type the command

EDIT NEW FILE fid
at the asterisk prompt.
Example:

EDIT FILE OPPORTUNITY_KNOCKS

begins editing the file "OPPORTUNITY_KNOCKS". An entry for this new edit
block is added to the edit block stack.

EDIT NEW FILE ACCEPTANCE_LETTER

creates a new file "ACCEPTANCE_LETTER", and begins editing it. An entry for
this new edit block is added to the edit block stack.

EDIT 50 THRU 15286

edits a sub-portion of the current edit block. Specifically, the new edit
block starts at record 50.0 and continues through (and including) record
15286.0. An entry for this new edit block is added to the edit block stack.
EDIT PREVIOUS

reverts to editing the block whose specification was saved in the edit block
stack immediately prior to the current edit block. The edit block stack is
not altered, but the "CURRENT'" entry changes.

Related Topics:

Edit Block
Edit Block Stack

6Edit Commands
3-10 CE70-02

EDIT Command

END, EXIT, QUIT and XIT Commands

Syntax:
{E[NDJIEX[IT]IQLUITIIX[IT]}
Parameters:

None

Description:

This command terminates 6Edit. Control is returned to the command processor

(IBEX).

The keywords, END, EXIT, QUIT, and XIT perform exactly the same function. ALl
editing changes you made during an editing session take effect when you change
the record. Therefore, you can terminate 6Edit at any time without losing any

of the editing work you have done.

However , any name settings (such as KEYINS, SYNONYMS, EQUALS, and LOCATION
names) that you made during the session will be lLost when you type the END

command and leave 6Edit.

EQUALS Command

Syntax:
[{cOo[MMAND] [WI[NDOW]] }]
name EQ[UALS] string_expression [IN {ED[ITING] [WI[NDOWS]]}]
[{WI[NDOW] window_num 3}]

Parameters:

name is any name; it must be between 1 and 31 characters in length.
"name' may include:

o] Alphabetic characters
o Digits (except as the first character of name)

o $ _ # and @
string_expression is any string expression.
window_num is a number between 1 and the number of editing windows.
6Edit Commands
CE70-02

The

3-1

Description:

The EQUALS command assigns the value of string_expression to name. The name
may be a predefined name, a name ycu previously created with an assignment
command, or a new name you are creating now.

when you type an EQUALS command, 6Edit evaluates string_expression to yield a
string of characters. (If numbers were used or computed in string_expression,
6Edit converts them to character form using decimal representation.) 6Edit
assigns this character string to name. Thereafter, name can be used in string
or block expressions; 6Edit replaces it with the character string which was
assigned to it by this EQUALS command.

Note: Except when name is $INTRO_1 or $INTRO_Z2, $CONTROL functions in the
character string are not interpreted when assigned but only when the resulting
variable is used in a different command.

The value of name will not change until you explicitly assign a new value to
it. (Certain predefined names disobey this rule; 6Edit updates their values
internally at certain points in the processing of commands.)

The IN-clause can be appended to the EQUALS command only when name is one of
the following predefined names:

$AUTOTAB SINTRO_2
$END_MARK $KEY_GENERATION
$EZ_APPEND $RECORDWRAP
$HSALL $SCROLL
$HSCROLL STEXTEDIT
$HSCROLL_MARGIN $VSCROLL
SINSERT $VSCROLL_MARGIN
$INTRO_1 SWORDWRAP

If you include the IN-clause when assigning a value to one of these predefined
names, then the value affects only the command or editing window, depending on
which is specified. If you omit the IN-clause when assigning a value to one
of these predefined names, then the value affects both the command and editing
windows. Note that $SCROLL works only in the command window. "IN EDITING
WINDOW" causes all editing windows to be affected. "IN WINDOW window_num"
affects only the specified window.

For details on the predefined names listed above, see Appendix A, Predefined
Names.

6Edit Commands
3-12 CE70-02

EQUALS Command

Example:
MODEL EQUALS MODEL .PLUS. 3

increments the value of MODEL (a hypothetical name you have already defined)
by 3.

SWORDWRAP EQUALS 76

sets the value of the predefined name $WORDWRAP to 76 (i.e., enables wordwrap
mode, Llimiting lines to 76 characters). See Appendix A, Predefined Names, for
details on the $WORDWRAP name and wordwrap mode.

$HSCROLL_MARGIN EQUALS 5 IN COMMAND WINDOW

enables horizontal scrolling in the command window only. It does not affect
horizontal scrolling in the editing window.

$INTRO_1 EQUALS $KEY(F&)

sets the primary introducer for KEYIN names to $KEY(F4). This permits
definitions of keyins such as KEYIN SKEY(F4)II1'R' IS ... to establish the
actions taken when you type F4 followed by R. See the KEYIN command, later in
this section, for details on the use of KEYIN and the $KEY(keyname) predefined
string function.

Related Topics:

Substitution

ERASE Command

Syntax:
ERASE [ALLIldevlist]
Parameters:

ALL specifies that the accumulated outputs for all logical devices are to
be deleted. This is the default.

6Edit Commands
CE70-02 3-13

ERASE Command

ldevlist specifies that the accumulated outputs for the specified logical
device or devices are to be deleted. The list is entered in the format

Ldevname[,ldevname]...
ldevname is a leogical device name established through the LDEV command.
Description:
ERASE deletes the accumulated output for logical devices.
Example:
ERASE ALL

deletes all output accumulated for all logical devices defined for the session
or job.

Related Commands:

PRINT

HELP Command

Format:
HLELP] [(fid)] [TOPICS] [keyword1 [-] [keyword2]
Note: The following elements can be specified in any order:
(fid)
TOPICS
[keyword1] [-] [keyword2]
For example, HELP (fid) keyword1 - keyword2 TOPICS is acceptable.

Parameters:

(fid) specifies the processor name (for example, 6EDIT). 1If (fid) is
omitted, the current processor is assumed.

TOPICS requests a list of topic or subtopic names, rather than an
information message.

6Edit Commands
3-14 CE70-02

HELP Command

Form Result

HELP (fid) TOPICS Lists all topics
HELP (fid) TOPICS keywordl - keyword2 Lists all topics in the range
specified by keywordl1 - keyword 2

HELP (fid) TOPICS keyword1? Lists all topics beginning with
the prefix specified by keyword1
HELP (fid) TOPICS keyword1 Lists all subtopics for the

topic specified by keyword1

keyword1 [- [keyword2]] specifies a topic, a range of topics, or a topic
and subtopic to identify what HELP information is requested.

HELP (fid) keyword1 Displays the first Level
information message for
the topic keyword1

HELP (fid) keyword1 keyword2 Displays the information
message for keywordl1, but only
the level identified by the
subtopic keyword?2

HELP (fid) TOPICS keyword1 [-] [keyword2]Lists topic or subtopic
names. See TOPICS parameter.

keyword1 may include the wildcard (?) character as the rightmost character, if
TOPICS is specified.

Description:

HELP displays information.

HELP messages have levels. Once the initial level has been displayed,
entering a question mark displays the next level, usually containing greater
detail. Entering two question marks displays the entire message.

The standard HELP command is provided by most processors. The HELP facility
for each processor is available only to users with sufficient privilege to use

the processor itself. The HELP command can be used either within the
processor or in IBEX.

6Edit Commands
CE70-02 3-15

HELP Command

IF and ELSE Commands

Format:

1F string_expr [command] ; commands [; ELSE [command] ; commands]

Parameters:

string_expr specifies an expression that evaluates to a number.

command specifies any 6Edit command.

commands specifies any 6Edit commands.

Description:

The IF and ELSE commands permit conditional execution of multiple commands in
a single command Line. If the string expression evaltuates to a number greater
than zero, any commands preceding the corresponding ELSE are executed, and the
rest of the line (ELSE and beyond) is ignored. 1If the string expression
evaiuates to zero, the commands following ELSE are executed.

The IF/ELSE construct can be nested to any depth.

Examples:

IF $SAUTOTAB PO NU $AUTOTAB; ELSE PO NU 1

positions to the autotab column of the current record.

RE 'bird'; IF $MATCHES COPY STRING 'bath' AFTER BO 'ZR'

appends the word "bath" to the next record containing the word "bird".

KEYIN Command

Syntax:
KE[YIN] string_expression_1 IS string_expression_2
[{co[MMAND] [WI[NDOW]] }]

[IN {ED[ITING] [WI[NDOWS]]}]
[{WI[NDOW] window_num 3}]

6Edit Commands
3-16 CE70-02

KEYIN Command

Parameters:

string_expression_1 specifies the character or character sequence to be
typed on the terminal keyboard. It must evaluate to one, two, or three
characters, or a function key name possibly followed by one character.
Additional rules governing string_expression_1 are explained under
"Description’ below.

string_expression_2 specifies the characters to be substituted for
string_expression_1 when the latter is typed at the terminal keyboard.
Information on expressing non-displayable characters in string_expression_2
are explained under 'Description' below.

window_num is a window number between 1 and the number of editing windows.
Description:

The KEYIN command redefines the keys on your terminal. It is only effective
when 6Edit is being used in the screen-editing mode, and the command stream is
originating from your terminal. 6Edit uses the CP-6 IMP facility to perform
substitution. :

After using this command, whenever the CP-6 system sees the
string_expression_1 character(s) coming from your terminal, it acts as though
you had typed string_expression_2 instead. The system even displays
string_expression_2 on your terminal, instead of the characters you had typed
(that is, instead of string_expression_1).

Any character value may appear in either string_expression_1 or
string_expression_2, including non-displayable characters. 1In
string_expression_1, non-displayable characters represent control keys; in
string_expression_2, they represent input editing functions. This distinction
is important. For example:

18 is the ASCII decimal code for <CNTL-R>. When "ZV(18)" appears in
string_expression_1, it represents the <CNTL-R> key on the keyboard, the
meaning of which you can define using the KEYIN command. However, when
"ZV(18)" appears in string_expression_2, it always represents the "move
right one character'" input editing function, no matter how you have
redefined <CNTL-R>. (See Appendix E for a Llist of input editing
functions.)

The IN-clause can be appended to any KEYIN command. If you include the
IN-clause, the string_expression_1 key or key sequence is defined only in the
command or editing window, depending on which is specified. If you omit the
IN-clause, then string_expression_1 is defined in both the command and editing
windows.

6Edit Commands
CE70-02 3-17

NOTE: Typing an immediate-type function before 6Edit has IMPed the key

sequence tc 2 typeahead-type function invokes an immediate-type function
rather than the 6Edit definition of the key sequence.

This situation occurs only when using immediate-type input editing
functions. The immediate-type input editing functions are:

ESC Sequences Control Characters
<ESC><A> <ESC> <CNTL-A> <CNTL-G>

<ESC> <ESC> <CNTL-B> <CNTL-S>

<ESC><G> <ESC> <ESC> <CNTL-X>

<ESC><H> <CNTL-Y>

<ESC><Q>

<ESC><W>

<ESC><Y>

To avoid this situation, use FCNTBL=CP5S2 with the IBEX TERMINAL command
before invoking 6Edit.

Defining a key sequence to be immediate-type in one window but
typeahead-type in another window may give unpredictable results. Either
key sequence detinition could be used by the FEP, depending on where 6Edit
is in its processing of the last terminal input.

Several rules apply to string_expression_1.

o]

If string_expression_1 evaluates to exactly one token (character or
function key name), it may be any token valtue which can be generated at
your terminal keyboard.

1t string_expression_1 evaluates to two tokens the first must equal either
the "primary introducer' or the 'secondary introducer.'" These one- or
two-token values ‘are set by the predefined names "$INTRO_1" and
"$INTRO_2"; initially, $INTRO_1 is the Escape character and $INTRO_Z has
no value. (See Appendix A, Predefined Names. Also, refer to the CP-6
Programmer Reference Manual (CE40) Section IMP, for an explanation of
introducers.)

In addition, the following rules apply. 1If string_expression_1 is

(o}

3-18

1 token lLong: string_expression_1 need not match either $INTRO_1 or
$INTRO_2.

2 tokens long: the first character must equal either $INTRO_1 or $INTRO_2
and the second must be a character (not a function key name).

6Edit Commands
CE70-02

KEYIN Command

o

3 tokens long: the first two characters must equal $INTRO_1 or S$INTRO_2.
Only the first can be a function key name.

The last or only character of string_expression_1 may be any character value
which can be generated at your terminal keyboard.

Non-displayable tokens may be included in either string_expression_1 or
string_expression_2. You can enter these tokens in string_expression_1 or
string_expression_2 in one of these ways:

(o)

Using the $KEY(keyname) predefined string function or its equivalent
notation: <keyname>. The parameter for this function is a keyname, such
as ESC. For example, the F1 function key may be represented as $KEY(F1)
or as <F1>. To obtain the spelling for any non-displayable key, use the
IMP command SPELL.

A unique feature of the $KEY predefined string function is that it can be
used to represent a function key that sends one, two, three, or even four
characters. These keys may be functions keys such as F1 or SF1 (i.e.,
Shift F1). For PCs operating with PCT, $KEY may be used to assign meaning
to AlLt-Fn or Cntl-Fn keys (see Appendix C and D for details).

Using the $CNTL('char') predefined string function or its equivalent
notation: <CNTL-char>. The parameter for this function, ''char", is any
character which when pressed with the CNTL key sends a control character.

Using the $CONTROL-Value function. The parameter for the function is the
ASCI1I decimal code for the control key (e.g., <CNTL-D>), or the ASCII
control character (e.g., <ESC>) that you are defining. (See Appendix F
for the ASCII names, their control characters, and their decimal codes.)
In the example,

KEYIN 'Zv(27)0' IS ...

#V(27) represents the <ESC> control character; %V is the $CONTROL-Value
function and (27) is the ASCII decimal code for <ESC>, which in this
example is defined as being followed by the zero character.

Using EQUALS names that you have previously defined, usually in your
context file. The standard context file (see Appendix C) defines names
for the most common non-displayable characters: ESC for <ESC> and CR for
<CR>. Then, use the CONCATENATE operator to combine the name with other
characters to comprise string_expression_1. For example:

KEYIN ESCII'L"' IS...

6Edit Commands

CE70-02 3-19

KEYIN Command

$KEY and $CNTL or their angle bracket notations provide advantages over the
other two methods of expressing non-displayable characters. The chief
advantages are as follows:

o Self-documenting commands.

Expressing keystrokes as you see them on the keyboard makes it easier to
remember how to invoke the keyin by looking at the command again, or
displaying the available keyins with the SHOW command.

o Expanded number of special sequences available at the terminal.

Your terminal probably has keys that send two-, three-, or even
four-character sequences when pressed; you can assign meanings within
6Edit to many of these keys. Without $KEY, you would need to use both
$INTRO_1 and $INTRO_2 it you assign both two- and three-character
sequences, and you would find it quite difficult, if not impossible, to
assign meanings to the four-character keys.

Using the default single-character introducer, <ESC>, you might not be
able to define enough functions to make editing convenient in your
environment. You would then need to define some that require more than
one keystroke to enter. Since most of the two-stroke sequences using
<ESC> are already defined for input editing functions in the FEP, you
would have to either give up some of those or use less-convenient
three-stroke keyins.

With $KEY, however, you can define all the single-stroke keyins without
using either $INTRO_1 or $INTRO_2 at all. With the introducer names still
free, you can then use any key as the introducer for up to two sets of
two-stroke keyins. You can also choose as the introducer a key that sends
more than one character. This is much more convenient to type than a
control character, and does not force you to use a printing character.

You then have the equivalent of four sets of keyins available instead of
two.

Examples:
The examples below are numbered for ease of use.
Example 1a.
KE <ESC>!1'L" IS <CNTL-C>11'SKIP 20 BO RECORDS'I|I<CR>

causes the key sequence Escape-L to generate the characters ETX, SKIP 20
BO RECORDS, and CR. When <ESC> <L> is typed at the keyboard, three things

6Edit Commands
3-20 CE70-02

KEYIN Command

happen:

1. The <CNTL-C> character causes the cursor to move to the command
window. Trnis occurs because <CNTL-C> is 6Edit's input activation
function to move the cursor to the command window.

2. The command '"SKIP 20 BO RECORDS" is entered in the command window.

3. The <CR> character causes the command to be executed by 6Edit.

Example 1b.

KE ESCII'L' IS CMDII'SKIP 20 BO RECORDS'IICR

is identical to the previous command, but it takes advantage of EQUALS
names. This command assumes that you have already entered the following
command:

ESC EQUALS <ESC>; CMD EQUALS <CNTL-C>; CR EQUALS <CR>
Note that since string_expression_1 is two characters long in both of the

above examples, $INTRO_1 or $INTRO_2 must be set to <ESC> for the key
definitions to work.

Example 1c.

By using the $KEY function in the above examples, $INTRO_1 or $INTRO_Z2 do
not have to be used. With $KEY, any available single function key that
sends a character sequence (usually ESC and something else) can be used
instead of the Escape-L sequence to perform the 'SKIP 20 BO RECORDS"
function.

Suppose F2 is the desired key for this function. The following KEYIN
command can then be entered:

KE <F2> IS <CNTL-C>!|'SKIP 20 BO RECORDS'|I<CR>

With the EQUALS names defined as above, this command could alsoc be entered
as:

KE <F2> IS CMDI1'SKIP 20 BO RECORDS'IICR
If the F2 key on your keyboard sends <ESC><L>, these commands perform the
same functions as the first two KEYIN commands above, but with a single

keystroke, F2, and without having to first set an introducer character
with $INTRO_1 or $INTRO_2.

6Edit Commands

CE70-02 3-21

KEYIN Command

Example 2:
KEYIN '7%V(23)' IS '"ZV(27)5RZV(23)'
or
KEYIN $CNTL(W) IS 'ZV(27)5RIV(23)"

defines the <CNTL-W> key, specified by %ZV(23), to move the cursor left by
one word. In this command:

o ZV(27)5R is the ASCII decimal code for escape (<ESC>), followed by
"5R". (See Appendix F for the ASCII character codes.) This input
editing function sets the 'left" direction for the "move one word"
function to follow. (See Input Editing Functions in Appendix E for
more information.)

o ZV(23) is the ASCII decimal code for <CNTL-W>. <CNTL-W> is the 'move
one word" input editing function.

If all the "one-stroke'" function keys in your environment were already
defined, and you might want to use a shifted function key instead of
<CNTL-W>, so you could enter the following KEYIN command:
KEYIN $KEY(SF3) IS '7ZV(27)5RZV(23)'
This performs the "move Left one word" function with two keystrokes,
Shift-F3. Single and shifted function keys can be defined in a similar
manner for the rest of the examples below.

Example 3:
KEYIN <CNTL-E> IS °'ZV(27)5S7%v(23)"
defines the <CNTL-E> key to move the cursor right by one word. In this
command, similarly to Example 2, %V(27)5S sets the 'right" direction for
the '"move one word" function to follow.

Example 4:
KEYIN <CNTL-D> IS <ESC>!I'5R'II<ETB>|I<ESC>|I<ETB>

defines the <CNTL-D> key to delete the word to the left of the cursor. 1In

6Edit Commands
3-22 CE70-02

KEYIN Command

this command:

0 <ESC>II'5R' is an input editing function that sets the "left"
direction for the "move one word" function to follow. (See Input
Editing Functions in Appendix E for more information.)

0 <ETB> is the ASCII character code for <CNTL-W>. This is the '"move one
word" input editing function; the cursor moves to the beginning of the
previous word in the record.

O <ESC>iI<ETB> are the ASCII character codes which comprise the 'delete
word" input editing function.

Example 5:
KEYIN <FF> IS <ESC>!I<CNTL-W>

defines the <CNTL-L> key to delete the word under and to the right of the
cursor. <FF> is the ASCII character code for <CNTL-L>.

Example 6:
KEYIN <CR> IS <ESC>1I<LF> IN EDITING

causes the carriage return key to generate the characters Escape and
Linefeed, in the editing window only; it does not affect the carriage
return key when the cursor is in the command window.

This KEYIN is useful when you want to add several Lines of text in the
middle of a file, or if you are used to PC or UNIX editors where <CR>
represents a record boundary. Normally, the carriage return key simply
moves the cursor to the beginning of the next record; to add a new record,
you must type <ESC> <LF> (the Escape and Linefeed keys). However, this
KEYIN command allows you to use the carriage return key to generate the
Escape Linefeed sequence. You must include an IN-clause in this KEYIN
command because you do not want the carriage return key to generate <ESC>
<LF> when you type it in the command window. By adding "IN EDITING" to
the KEYIN command, the definition of the carriage return key in the
command window is unchanged.

6Edit Commands
CE70-02 : 3-23

KEYIN Command

Related Topics:

Substitution

LOCATION Command

Syntax:
LO[CATION] name [IS] [BL[OCK]] block_expression
Parameters:

name is any name; it must be between 1 and 31 characters in lLength. A name
may include:

o] Alphabetic characters
o] Digits (except as the first character of name)
o 3 # and @

block_expression specifies the block description of the new value of name.
Description:

The LOCATION command remembers the boundaries of its block operand as the
value of name. Thereafter, you can use name in a block expression, and 6Edit

interprets it to refer to the block specified by block_expression in this
LOCATION command.

The name parameter is required. It must be a name you create.

The operand of the LOCATION command is called a '"named block."

Between the time the LOCATION command is given and the time of a reference to
name, you should be aware that changes to the contents or location of the
named block will effectively change the value of name as well, since name
simply refers to the '"location" of the named block, it does not hold a copy of
the block's contents.

Example:

LOCATION C1 IS BO 1 THRU & POSITION 15

finds the specified block, and assigns the location of that block to the name

C1. In subsequent commands, 6Edit evaluates (1 as representing this lLocation.
For example:

6Edit Commands
3-24 CE70-02

LOCATION Command

COPY C1 AFTER 7

copies from the beginning of record 1 through column 15 of record 4. The data
is inserted after record 7. C1 still refers to the block located at

BO 1 THRU 4 POSITION 15. It did not move with the data.

Related Topics:

Substitution

MOVE Command

Syntax:

MO[VE] [BL[OCK]] block_expression

Parameters:

block_expression is the block of data to be moved.
Description:

The basic operation of the MOVE command is the same as for the COPY command.
The operand becomes the new source block.

For the MOVE command, however, 6Edit remembers that the source block is to be
deleted after use. Later, when an AFTER or OVER command refers to the source
block, it will delete the source block after copying it to the specified
destination.

After receiving this command, the operand becomes the new selected block.
Example:

MOVE 2 THRU 22 AFTER 40

moves the records 2 through 22 to a new position after record 40. The source

block (records 2 through 22) is deleted after being copied to its new location
(after 40).

6Edit Commands
CE70-02 3-25

MOVE Command

Related Topics:

Copy/Move Operations
COPY Command
AFTER Command
OVER Command

OUTPUT Command

Syntax:
[[ON] LP[dlocation]]

OUT[PUT] [[OVER] fid] [(option[,option]...[)]]
[[INTO] ME]
[[T0]]

Parameters:

{ONIOVERIINTOITO} directs output processing. OVER causes an existing file
to the overwritten. INTO causes file extension. ON and TO are synonyms used

to create a new file. If the file exists, an error will occur. The default

1s ON.

fid any valid CP-6 file identifier.

LP directs output to the default Line printer. dlocation identifies a
specific line printer.

ME redirects output to the user's terminal.
option is one of the following:
F[ORM]={formnamel ' formname"} FORM applies to unit record files and unit

record devices. Specifies the name of a form to be mounted on a unit
record device. formname is a 1-6 character string, which can be quoted.
The name must have been defined to the system by the system manager (via
the Form Definition File). The default is blank, which means the default
form for a unit record device and form 'STDLP' for unit record files.

I[XTNS1ZE]}=value Specifies an initial disk storage allocation (in
blocks) for the output file. value must be in the range of 1 through
134217727. The default is 2.

O[RGANIZATION={C[ONSECUTIVE]JIU[NITJR[ECORD]} Specifies the organization

of the output file as either CONSECUTIVE or UNIT RECORD. If this option
is not specified, the output file is created as a UR file.

6Edit Commands
3-26 CE70-02

OUTPUT Command

X[TNSIZE]=value Use of this option causes an automatic MSEXTEND when
needed. value specifies a secondary disk storage allocation (in blocks)
for the output file, and must be in the range 1 through 32000. The
default is 2.

Description:

This command sends subseguent output to the specified file.

OVER Command

Syntax:

OV[ER] [BL[OCK]] block_expression

Parameters:

block_expression is the block of data to be replaced by the source block.
Description:

The OVER command is used for replacement. It is generally equivalent to first
deleting the destination block by using block_expression, then inserting the
source block into the location vacated by the destination block. (The source

block was set by the last COPY or MOVE command.)

The source and destination blocks may be whole records, parts of records, or
any combination of these.

Example:

COPY 5 THRU 45 PO 10 OVER 230 THRU 460

deletes any data characters that previously existed in records 230 through
460. It then inserts the new data (from the beginning of record 5 through
position 10 of record 45) at record 230.

Related Topics:

Copy/Move Operations

COoPY Command

MOVE Command
AFTER Command

6Edit Commands
CE70-02 3-27

OVER Command

PRINT Command
Syntax:

PRINT [ALL!Lldevlist]
Parameters:

ALL specifies that the accumulated outputs for all logical devices are to
be sent to their destinations immediately. This is the default.

ldevlist specifies that the accumulated outputs for the specified logical
device or devices are to be sent to their destination(s) immediately. The
List is entered in the format

Ldevname[,lLdevname]...
ldevname is a logical device name established through the LDEV command.

Description:

PRINT directs that output accumulated for logical devices be sent to its
destination immediately.

Example:
PRINT LPO1,LPOZ

causes the accumulated output associated with logical devices LP0O1 and LP02 to
be sent immediately to the associated destinations.

Related Commands:

ERASE

6Edit Commands
3-.28 CE70-02

PRINT Command

READ Command

Syntax:

READ fid

Parameters:

fid ijs the fid of a file containing valid 6Edit commands.

- Description:

This command directs 6Edit to read the specified file (fid). The file
specified by fid must contain one 6Edit command Line in each record. 6Edit
reads the command Lines and executes them as if they had been typed at the
terminal, except that KEYIN substitutions are not performed. 6Edit stops
reading command lines from the file when it reaches the end of the file; then

it reverts to reading command lLines from the command stream.

You may include a READ command as one of the commands in the file specified by
fid. You may nest READ commands in this way indefinitely.

When using multiple commands on a Line, the READ command can appear at any
place on the command Lline.

RESTORE Command

Syntax:
REST[ORE] fid
Parameters:

fid specifies the fid of a file which was created with 6Edit's SAVE
command.

Description:
The RESTORE command restores context information from a file which was created
with the SAVE command. It merges the information from the SAVE-file with the
current context in the following way:
o] SYNONYMs and KEYINs from the SAVE-file are added to those already defined

when the RESTORE command is given.

6Edit Commands

CE70-02 3-29

RESTORE Command

o] Predefined EQUALS-names from the SAVE-file replace the values of all
predefined EQUALS-names at the time the RESTORE command is given. That
is, the values of all predefined names (see Appendix A, Predefined Names)
are saved in the SAVE-file,; therefore, when the RESTORE command is given,
all operating parameters are restored to their values as saved in the
SAVE-file.

o] User-defined EQUALS-names from the SAVE-file are added to the EQUALS-names
already defined when the RESTORE command is given.

o] LOCATION-names from the SAVE-file are added to those already defined when
the RESTORE command is given. If the files to which these names refer no
longer exist, or if they have been rekeyed, then using such LOCATION-names
may give unexpected results.

o] I+ the SAVE-file contains window information (i.e., if SAVE SESSION or
SAVE ALL was used to create the SAVE-file), then when the RESTORE command
is given, any editing windows and their edit block stacks are discarded.
In addition, the editing window information from the SAVE-file is used to
create a new editing window(s) and edit block stack(s). Again, if the
files to which this window information refers no lLonger exist, or if they
have been rekeyed, then the RESTORE command may give unexpected results.

Related Commands:

SAVE

SAVE Command
Syntax:
[AL[L] 1{ 70 13}

SAVE [SETU[P] J{ ON 1} ftid
[SESS[ION]] { OVER }

Parameters:
fid is the fid of the file to save the requested context information in.
ALL saves all of the context file information.

SETUP saves the value of all EQUALS-names, KEYIN-names, and SYNONYM-names.
It does not save the value of LOCATION-names or any window information.

6Edit Commands
3-30 CE70-02

SAVE Command

SESSION saves the value of all LOCATION-names, as well as information about
the windows currently on your terminal screen. For the editing windows, this
includes the window dimensions, the files you are currently editing, the
current locations of the cursor, and the entire edit block stacks (the files
you edited previously), for each editing window.

Description:

The SAVE command directs 6Edit to save current context information in a file.
The file created by the SAVE command is called a "SAVE file". The SAVE file
can be used later to restore the saved context using the RESTORE command (or
using the file as the context file which is read when 6Edit is started, see

Context Files). If you do not specify the type of information to be saved,
all the current context file information is saved.

If "TO fid" or "ON fid" is used, the file specified by fid must not yet exist;
the SAVE command creates the file. If "OVER fid" is used, then the SAVE
command replaces the file if it already exists, or creates it if it does not
yet exist.

The file created by a SAVE command is a special encoded ''workspace' file, with
file type "We'. It cannot usefully be edited using EDIT or 6Edit, and should
not be altered in any way by the user. 6Edit can detect most changes to the
file, and will not restore an encoded context file which has been modified.
Related Topics:

RESTORE Command
Context Files

SHOW Command

Syntax:

SH[OW] option

Parameters:

option is one of the following:

ST[RING] string_expression displays the string represented by
string_expression.

KE[YINS] displays the keyin definitions.
[EQ[UALS]] [name [TH[RU] name2]] displays one, some, or all EQUALS
definitions.
6Edit Commands
CE70-02 3-31

SHOW Command

LO[CATIONS] [name [TH[RU] name2]] displays one, some, or all LOCATIONS
definitions.

SY[NONYMS] [name [TH[RU] name2]] displays one, some, or all SYNONYMS
definitions.

[BL[OCK]] block_expression displays complete records selected by a block
expression, preceded by the record key in an appropriate format.

[WI[NDOWS]] displays window definitions.
Description:

The SHOW command is used for terminal display of string operands, the values
of names created with assignment commands (KEYIN, EQUALS, LOCATION, and
SYNONYM), and records within a selected block.

The SHOW command displays its output through M$LO, which defaults to the
command window. Unless the command is activated with <LF> (instead of a
carriage return), the command window is first expanded to occupy the space
used by the editing window and the IBEX window, and one additional read from
the command window is forced after the display. With <LF>, the display is
presented in the command window and the cursor returns immediately to the
editing window.

In SHOW displays of KEYIN definitions or EQUALS names for which different
definitions exist for different windows, the window for which a definition
applies is indicated in parentheses after the name. (edt) represents the
first editing window. (cmd) represents the command window. (edn) represents
the nth editing window.

Example:

SHOW STRING S$KEY(ESC)!I1'[36m’

On a color ANSI-compatible terminal, changes the display to a light-blue
color.

SHOW STRING HEREII', 'IISDATE(TY="LOCAL')<LF>

displays the current file FID, record key, column, and date in the command
window, without interrupting the editing window.

SHOW $AUTOTAB

displays the current setting of the $AUTOTAB EQUALS variable (predefined
name).

6Edit Commands
3-32 CE70-02

SHOW Command

SHOW 'A’

displays the next record in the current file that contains an "A'".

SHOW FILE :6EDIT_CONTEXT REPEAT SELECT RECORD SELECT 'A°

displays all records in the file :6EDIT_CONTEXT that contain an "A".
SHOW $NOT_COPIED

displays the records that were not included in a failed copy operation.
SHOW LO $NOT_COPIED

displays a block expression describing the records that were not included in a
failed copy operation.

SHOW S$INSERT

displays the current setting of the $INSERT EQUALS variable. If $INSERT is
set to ON only in the command window, the display would be

"$INSERT(cmd) ON".

SHOW WINDOWS

displays the current window definitions.

SYNONYM Command

Syntax:
SY[NONYM] name [IS] fragment
Parameters:

name can be any character other than $CONTROL, $COMMENT, semi-colon (;), or
have a digit as the first character.

fragment is any set of words, quoted strings, or special characters, up to
the end of the command Lline.

6Edit Commands
CE70-02 3-33

Description:

The SYNONYM command assigns to name any fragment of a 6Edit command line. It
is used to create your own variations of the basic syntax.

Because name can be either a normal name (which Looks Like a keyword) or a
string of special characters (which lLooks Like an operator symbol), you can
create your own syntax by defining name to be some series of already-defined
names or symbols.

The fragment parameter specifies any set of words, quoted strings, or special
characters, up to the end of the command Lline.

The following restrictions apply to the fragment parameter:

0 Quoted strings must be completely specified (that is, you cannot have
unbalanced string delimiters in a fragment).

o The command separator character semicolon (;) has no effect in a fragment
when the SYNONYM command is processed. That is, it does not mark the end
of the SYNONYM command; instead, it is included in a fragment. Later,
when name is given in a command Line, any semicolons included in the
fragment (along with the other characters in a fragment) are recognized,
and demarcate separate commands in the command line.

A semicolon appearing at the end of a command line normally indicates that
the command is continued on the next lLine. However, this is not true when
a SYNONYM command appears in the command line. As for the command
separator, the trailing semicolon is included in the fragment. Later,
when the SYNONYM name is given in a command Line, the trailing semicolon
in a fragment is treated as a command separator, if more characters follow
the SYNONYM name on the command Line, or as a command line continuation
indicator, if no characters follow the SYNONYM name.

o] Other substitutions can be used in a fragment. Specifically, names
defined with previous SYNONYM commands may appear. Substitutions for them
take place when this SYNONYM command is processed and before the new value
is assigned to name. Names defined with the EQUALS and LOCATION commands
may also appear in a fragment; however, substitutions for them do not
occur until name is used later in a command Lline.

o The current $COMMENT character is recognized in a fragment, and has its
usual effect at the time the SYNONYM command is processed.

o) 6Edit does not recognize $CONTROL characters in quoted strings until the
synonym is used. Then, only the current value of $CONTROL is
acknowledged. Be careful when using $CONTROL functions in a fragment: do
not change the value of $CONTROL, or unexpected results might occur.

6Edit Commands
3-34 CE70-02

SYNONYM Command

Example:
SYNONYM EP IS EDIT PREVIOUS

makes EP a synonym for EDIT PREVIOUS. When EP is typed at the command prompt,
6Edit will perform the EDIT PREVIOUS command.

SYNONYM - THRU

renders the dash (-) a synonym for THRU. When you type <-> in a command,
6Edit henceforth interprets it as the THRU keyword.

Related Topics:

Substitution

TIME Command

Syntax:

TIME

Parameters:

None

Description:

TIME displays the current time and date. The format of the display is:
mmm dd 'yy hh:mm (month)(day)(year)(hours)(minutes)
Example:

TIME

displays the current time and date.

Related Commands:

DATE

6Edit Commands
CE70-02 3-35

T

(=]

ME Command

WINDOW Command

Syntax:

Form 1, for creating a new editing window:

[{PO[SITIONS]}]
NE[W] WI[NDOW] [expr {LI[NES] }]
[{PE[RCENT] 3 1]

Form 2, for changing an existing editing window:

[{PO[SITIONS]}]
WI[NDOW] [window_num] [expr {LI[NES] }]
[{PE[RCENT] 3}]

Form 3, for switching to another editing window:

{ NEXT } [{PO[SITIONS]}]
{ PREV[IOUS] } WI[NDOW] [expr {LI[NES 1]
[{PE[RCENT] 1}]

Form 4, for deleting an editing window:

DE[LETE] WI[NDOW] [window_num]

Parameters:

expr is a 6Edit string expression which evaluates to a number.

window_num is a 6Edit string expression between 1 and the number of editing
windows.

Description:

The WINDOW command can be used to create a new editing window, change or
remove an existing editing window, or to switch to another editing window.

6Edit Commands
3-36 CE70-02

WINDOW Command

o Creating a New Editing Window
To create an editing window, form 1 of the WINDOW command is used:

NEW WINDOW expr POSITIONS will create a new window which is "expr'
positions wide and the height of the editing window portion of the
6Edit screen. The new window will be created at the right of the
rightmost editing window. Not implemented for AO3 version.

NEW WINDOW expr LINES will create a new window which is "expr"
Lines high and the width of the 6Edit screen. The new window will be
created at the bottom of the bottom editing window.

NEW WINDOW expr PERCENT will create a new window which is "expr"
percent of the size of the 6Edit screen, along the dimension of the
window creation mode. The new window will be created at the bottom or
right of the bottom or rightmost editing window.

If expr is given but neither POSITIONS, LINES, nor PERCENT is given, then
PERCENT is assumed.

Examples:

NE WI

will create a new editing window in the current creation mode; if there
are no editing windows yet or just one, a new vertical window will be

created at the bottom of the current editing window. S$WI_PERCENT will
determine the window size.

NE WI; FI xxx

will create the new editing window, and will begin editing file "xxx" in
the new window.

o Changing or Removing an Editing Window
To change the size of the current editing window, form 2 of the WINDOW
command is used.
To remove the current editing window, use:

DELETE WINDOW

The window will be deleted, removing it from the screen. The space it
occupied will be given to the editing window above it or to its left.

6Edit Commands
CE70-02 3-37

WINDOW Command

If expr (given as either a number of positions, a number of lines, or as a
percentage of the screen size) specifies the entire editing window portion
of the 6Edit screen (or anything larger), then 6Edit assumes you want to
remove all editing windows except the current one. Thus:

WINDOW 100 PERCENT

will make the current editing window into the only one on the screen,
temporarily removing all others.

Switching Between Editing Windows
There are two ways to switch to a different editing window: using the
WINDOW command, or by typing an activation character.

In the command window, you can type form 3 of the WINDOW command:

{ NEXT }
{ PREV[IOUS] } WINDOW

This will move the cursor to the current file pointer Location in the
window to the 'next'" or '"previous'" editing window. NEXT means the window
to the right or below the current window; PREVIOUS means the window to the
left or above the current window. This movement "wraps' at the edges of
the editing window portion of the 6Edit screen; for example, typing
"PREVIOUS WINDOW' when the cursor is in the Left-most editing window wilil
move the cursor to the right-most editing window.

Also in the command window, you can type form 2 of the WINDOW command
specifying a window number but no size option:

WINDOW 2
This will move the cursor directly to the indicated editing window.
1f 6Edit is being run on-line, the <CNTL-N> activation character can be
used to move the cursor to the next editing window. '"Wrapping'" around the

screen at the edges occurs as described above.

Even if 6Edit is reading from the command window when <CNTL-N> is typed,
the cursor will be moved to the next editing window.

Related Topics:

Multiple Editing Windows
EQUALS Command
KEYIN Command

6Edit Commands
CE70-02

WINDOW Command

Section 4

String Expressions

String Expressions

A string expression can specify either a character or a numeric value,
depending on how it is used. Certain commands and string operators anticipate
character operands. For them, an expression which evaluates to a numeric
value is converted to a character string containing a decimal representation
of the numeric value. I1f a command or string operator expects a numeric
operand and you supply a string expression which evaluates to a character
value, then 6Edit assumes that the string contains a decimal representation of
a number, and tries to convert the string to a numeric value. If the string
does not contain a reasonable decimal representation of a number, 6Edit
rejects the expression and the command in which it is used. The maximum
length of a string expression is 511 characters.

String expressions consist of functions, operators, constants, and variables.
In 6Edit (and IBEX) string expressions, constants are either decimal numbers
or quoted strings. Variables are symbols whose values have been defined by
6Edit EQUALS (and IBEX LET) commands, or by the processor itself (such as the
6Edit predefined names and IBEX system variables).

Most of the 6Edit's string operators and functions are also implemented by
IBEX. The following tables List 6Edit's string operators and string
functions. (For a complete description of the string functions, refer to
Appendix B, Predefined String Functions.)

String Expressions
CE70-02 4-1

Table 4-1. String Functions
$ABS $FID_ORG $LOC $SUBSTR
$ACCT $FID_RECS $MAX $SWITCH
$CMDVAR $FID_TYPE $MIN $SYSID
$CNTL $FID_UGRANS $MOD $TERM_FEP
$DATE $FLAG $MODE $TERM_LINE
$DAY SHSET $NAME $TERM_PROFILE
$DIR $INDEX $PRIV_ACTIVE STERM_SPEED
$EOF $INPUT $PRIV_AUTH $TIME
$FID_ASN $KEY $REM $UPC
$FID_EXIST $KEYIN $RERUN $VERIFY
$FID_GRANS $LASTBATCH $SEARCH $VERSION
$SFID_NGAVAL SLENGTH $SITE $W00

Table 4-2. String Operators
& .AND. <= LE.
<? .CONTAINS. < .LT.
i1 ! _CONCAT. =7 .MATCHES.
/ .DIVIDED. - .MINUS.
= -EQ. ~= .NE.
>= .GE. ~ -NOT.
> .GT. I .OR.
7= .IMB. + .PLUS.
? .IN. * .TIMES.

Note that string operators can be typed as symbols, or words.

used, however, they must be enclosed by periods.

If words are

The special characters used as string operators are not reserved for this use.
You can use the SYNONYM command (see Section 3, 6Edit Commands) to assign a
special character to some other 6Edit keyword or command.

For example, the dash (-) is often interpreted to mean "through." To use the
dash in this way, you would define it as a synonym for the 6Edit THRU keyword:

SYNONYM - THRU
After defining the dash to mean THRU, you cannot use it to mean subtract.
Instead, use .MINUS. to perform subtraction functions, or define another

synonym:

SYNONYM _ .MINUS.

String Expressions

L-2 CE70-02

After defining these two synonyms, you can use a dash (-) to mean THRU, and an
underscore (_) to mean subtract.

Example:

Using the above synonyms,

DI 5-10

means display records 5 through 10.
SIZE EQ 5_10

means the name SIZE now has the value -5.

Logical Operators

Syntax:

number {&!.AND.} number
number {11.0R.} number
{~1.NOT.} number

Parameters:

number is a string expression. It evaluates to a logical value, and must
consist of one or more numerals.

Description:

These operators compute Boolean values from their operands. All operands are
assumed to represent logical values, that is, either a true value or a false
value. ALl operands must be numeric; 6Edit interprets their values as:

o True, if number is non-zero (either greater than zero or less than zero).
o False, if number is exactly zero.

The .AND. operator forms the logical conjunction of its two operands. The
result is either one or zero, representing true or false respectively. The
result is one if both operands are true. The result will be zero if either or
both operands are false.

The .OR. operator forms the logical union of its two operands. The result is
either one or zero, representing true or false respectively. The result is
zero if both operands are false. The result is one if either or both operands
are true.

String Expressions
CE70-02 4-3

The .NOT. operator forms the logical inverse of its operand. The result is
either one or zero, representing true or false respectively. The result is
zero if the operand is true. The result is one if the operand is false.

Relational Operators

Syntax:

string-1 {=1.EQ.} string-2
string-1 {~=1.NE.} string-2
string-1 {<1.LT.} string-2
string-1 {<=I.LE.} string-2
string-1 {>1.6T7.} string-2
string-1 {>=1.6E.} string-2

Parameters:

string-1 is a string expression. It evaluates to the operand to be
compared.

string-2 is a string expression. It represents the value to which string-1

is compared.

Description:

These operators compare their two operands.

If both operands are numeric, then a numeric comparison is performed (10 is
equal to 010, 01 is less than 010). 1f either operand is not numeric, a
character-by-character string comparison is performed. If one string is
shorter than the other, 6Edit pads it with blanks.

The result computed by each of these operators is a numeric operand: either
1, indicating that the relation is true, or 0, indicating that the relation is
false.

The result of the .EQ. operator is true if the two strings are equal, false
otherwise.

The result of the .NE. operator is true if the two strings are unequal, false
otherwise.

The result of the .LT. operator is true if string-1 is less than string-2,
false otherwise.

The result of the .LE. operator is true if string-1 is less than or equal to
string-2, false otherwise.
String Expressions

4-4 CE70-02

Relational Operators

The result of the .GT. operator is true if string-1 is greater than string-2,
false otherwise.

The result of the .GE. operator is true if string-1 is greater than or equal
to string-2, false otherwise.

Wildcard Operators

Syntax:

string-1 {?=1.IMB.} string-2
string-1 {=?1.MATCHES.} string-2
string-1 {7>1.IN.} string-2
string-1 {<?1.CONTAINS.} string-2

Parameters:

string-1 is a string expression. It evaluates to the operand to be
compared.

string-2 is a string expression. It represents the value to which string-1

is compared.
Description:

These operators compare their two operands, taking the wildcard function into
account.

Wildcard operators resemble relational operators, but allow one string to
contain one or more 'wildcard" characters, the gquestion mark (?). A wildcard
character (?) appearing in one string matches a sequence of any number of
characters (including O characters) in the other string. For example:
If the wildcarded string is

‘Product is ? stock'
then it equals both of the following strings:

'Product is in stock'

‘Product is out of stock'
Note that the wildcard character (?) used by these operators appears
differently than the $CONTROL-Question Pattern function. (See Section 5,

Block Expressions in 6Edit.) In the latter instance, the $CONTROL character
is used, whereas for wildcard operatocrs, the question mark is used alone.

String Expressions
CE70-02 4-5

Wildcard Operators

Like the relational operators, the result computed by each of these wildcard
operators is a numeric operand: either 1, indicating that the relation is
true, or 0, indicating that the relation is false. Unlike the relational
operators, string-1 and string-2 are always treated as sequences of
characters: a character-by-character string comparison is always performed.

The .IMB. and .MATCHES. operators look for the complete match of a wildcarded
string. The .IN. and .CONTAINS. operators look for a contained wildcarded
string.

The result of the .IMB. ("Is Matched By') operator, accounting for wildcard
characters, is true if the two strings are equal, false otherwise. Question
marks appearing in string-1 represent wildcard characters; however, question
marks appearing in string-2 are given no special interpretation, they are
taken at face value.

The result of the .MATCHES. operator, accounting for wildcard characters, is
true if the two strings are equal, false otherwise. Question marks appearing
in string-2 represent wildcard characters; however, question marks appearing
in string-1 are given no special interpretation, they are taken at face value.

The result of the .IN. operator, accounting for wildcard characters, is true
if string-1 is a substring of string-2, false otherwise. Question marks
appearing in string-1 represent wildcard characters; however, question marks
appearing in string-2 are given no special interpretation, they are taken at
face value.

The result of the .CONTAINS. operator, accounting for wildcard characters, is
true if string-1 contains string-2 as a substring, false otherwise. Question
marks appearing in string-2 represent witdcard characters; however, question
marks appearing in string-1 are given no special interpretation, they are
taken at face value.

Arithmetic Operators

Syntax:

[number-1] {+1.PLUS.} number-2
[number-1] {-1.MINUS.} number-2
number-1 {x|.TIMES.} number-2
number-1 {/1.DIVIDED.} number-2

String Expressions
4-6 CE70-02

Arithmetic Operators

Parameters:
number-1 and number-2 represent the operands to be combined.
Description:

These operators perform arithmetic functions with their operands. All
operands must be numeric.

The .PLUS. operator adds its two operands. If number-1 is omitted, the result
is number-2 itself.

The .MINUS. operator subtracts number-2 from number-1, or, if number-1 is
omitted, from zero.

The .TIMES. operator multiplies its two operands.

The .DIVIDED. operator divides number-1 by number-2.

CONCATENATE Operator

Syntax:

string-1 {1l or !! or .CONCAT.} string-2

Parameters:

string identifies the character or characters to be joined.
Description:

The .CONCAT. operator joins its two string operands into one string.

String Expressions
CE70-02 4-7

Section 5

Block Expressions in 6Edit

This section discusses the types of block expressions used in 6Edit, and
explains them in context.

Using Block Expressions

6Edit editing commands work with "blocks" of data. A block can be an entire
file, or any portion of a file.

A "block expression'" specifies a block in a file. As with other types of
expressions, a block expression consists of block operands, which are combined
by block operators to yield a result. The result of the evaluation of a block
expression is itself a block operand.

Block operands differ from operands in string expressions. They not only have
values associated with them, they have locations as well. The "location"
associated with a block operand is the lLocation of a block within a file; the
value of a block operand is the contents of the file at that location.

Evaluation of block expressions also differs from evaluation of string
expressions. The evaluation of block operands results in not only a value and
a location, but a signal as well. This signal indicates the success or
failure of the evaluation of the block operand. Continued evaluation of the
block expression depends on the success or failure of the evaluation of each
block operand in the block expression.

Specifying User-Def ined Block Operands

In a block expression, you can use the basic block operands which are
predefined by 6Edit, or you can define a block yourself and use it as a block
operand. For example, you can define a group of three contiguous records as a
block, then use this block as a block operand in a block expression.

In fact, the result of any block expression is a '"user-defined block."

Block Expressions
CE70-02 5-1

By combining the basic block operands and other user-defined block operands
with "block options'" and ''block operators,'” you can define a user-defined
block to be any continguous set of data characters anywhere in any file. This
is done generally as follows.

After indicating the file in which the data characters reside, you use block
operators and operands to move a file pointer through the file. The file
pointer points to a single character in a record. Usually, you delimit a
block by:

1. Moving the file pointer to the first character of the block (the starting
point);

2. Typing the THRU keyword;

3. Moving the file pointer to the character following the last character of
the block (the ending point).

Note that blocks need not start or end on record boundaries.
Basically, a block expression specifies three things:

o The "enclosing block." This is the file (or other block) in which the
block being specified resides. If omitted, the edit block is used as the
enclosing block. In commands, you can specify an enclosing block which is
different than the edit block by explicitly naming the file (or other
absolute block operand; see below) to use as the enclosing block for this
block expression.

The enclosing block timits the movement of the file pointer and hence the
bounds of the block being specified by the block expression. The block
being specified must Lie completely within the bounds of the enclosing
block.

o The starting point of the block. If omitted and an enclosing block was
specified explicitly, then the starting point of the block defaults to the
start of the enclosing block; if omitted and no enclosing block was
explicitly specified, then the starting point of the block defaults to the
current location of the file pointer.

When moving the file pointer to the desired starting point, you are not
allowed to move it outside the bounds of the enclosing block. Attempts to
do so will be rejected.

o The ending point of the block. If omitted, the end of the last block
operand given in the starting point specification is assumed; if the
starting point was itself omitted, then the ending point of the block
defaults to the end of the current selected block.

Block Expressions
5-2 CE70-02

Using Block Expressions

When moving the file pointer to the desired ending point, you are not
allowed to move the file pointer outside the bounds of the enclosing
block. Attempts to do so will be rejected.

Block expressions allow you to specify these components in many different
ways. For example, after specifying a starting point and an ending point for
the block being defined, you can change either or both boundaries (ADJUST
clause). This can be useful when you are specifying the block interactively,
and you want to change the boundaries of the block being defined as you
examine the data in the file.

Also, you can specify a 'repeated block." A repeated block is a block which
is repeated throughout a file. It must not contain any absolute block
operands. For example, you can define three records of a file to be a block;
you can also repeat that block expression, thus defining each three-record
group in the file to be a block. When a command includes a block expression
which specifies a repeated block, then the command is repeated, once for each
instance of the repeated block. In the example just given, the command which
included the repeated block expression would be repeated, each time operating
on a different three-record group in the file.

Concepts

This subsection describes the concepts necessary for a complete understanding
of block expressions.

Block Operands

Operands in block expressions are usually blocks themselves. You build up the
specification of a block by using the basic block operands predefined by
6Edit:

A file.

A string expression whose value is treated as a file.

A previously-selected and named block.

The previous or next entry in the edit block stack.

A record in a file.

A data character in a record.

A string of data characters in a file which match a user-specified
pattern string.

O0O0OO0OOOO

Generally, you can combine any of the above basic blocks to specify your own
block, no matter what the "shape' or location of the block. For instance, you
can specify a block to be three records in a file, or to be two records in a
file and the first twenty characters of the next record in the file.

Block Expressions
CE70-02 5-3

Block Operands

There are two classes of block operands: absolute and relative. They are
discussed in the following paragraphs.

Absolute Block Operands

An "absolute'" block operand is one which has a specific location. The
absolute block operands are:

FILE fid

STRING string_expression
PREVIOUS

NEXT

location_name

record_key

When evaluating an absolute block operand, the location of the file pointer
after evaluating the operand has absolutely nothing to do with the location of
the file pointer before evaluating the operand. For instance, record 62 of
file "ABC" is an absolute block operand; there is only one location specified
by that block.

o] FILE specifies a file to be used as a block operand. A block expression
can contain onty one FILE operand, which must be the first block operand
in the expression.

o] STRING specifies a string expression whose value is to be treated as a
file, and used as a block operand. Usually the string expression value is
treated as record O of a one-record file; however, by including the
$CONTROL-Record function in the string expression, a multi-record "file"
may be specified.

Like FILE, STRING may be used only once in a block expression, and only as
the first block operand in the expression.

o] PREVIOUS designates the previous edit block as a block operand. There may
be only one PREVIOUS operand in a block expression, and it must be the
first block operand in the expression.

0 NEXT designates the next edit block in the edit block stack as a block
operand. There may be only one NEXT operand in a block expression, and it
must be the first block operand in the expression.

o The "location_name" specifies a previously-specified and named block to be
used as an absolute block operand. This allows you to define your own
absolute block operands and give a name to them (with the LOCATION
command); thereafter, that name can be used in other block expressions as
an absolute block operand.

Block Expressions
5-4 CE70-02

Block Operands

The lLocation_names may be used more than once in block expressions;

however, all location_names used in a block expression must specify blocks

residing in the same file. If a location_name is not the first operand in

a block expression, then all location_names in the expression must specify

blocks residing in the same file as the current edit block.

o A '"record_key" identifies a specific record within the current enclosing
block which is to be used as a block operand.

Relative Block Operands

A "relative'" block operand is a block which may be Located anywhere in any
file. For instance, a record as a block (with no record key) may be located
anywhere in a file. A file is typically made up of many such records.

The relative block operands are RECORD, POSITION, and pattern-string.

Relative block operands are used to tell 6Edit in a relative way how to move
the file pointer. The location of the file pointer after evaluating the
operand is relative to the location of the file pointer before evaluating the
operand. For example, assume that the file pointer is at position 21 of
record 62 in file "ABC"; you can tell 6Edit to move forward five RECORD. 1In
this use, RECORD is a relative block operand; its actual lLocation is relative
to the current location of the file pointer. No specific record key was
given, only 'direction" and '"skip" block options ('"forward" and "five"
respectively).

ALl the relative block operands specify a block located at or around the
current file pointer location. By preceding the operand with the SKIP option,
you can move the file pointer forward or backward in units of the block
operand; for example, SKIP moves by records with the RECORD operand, but by
positions within a record when used with the POSITION operand, and by
pattern-matches when used with the pattern-string operand.

o RECORD specifies the record to which the file pointer points as the block
operand.

o POSITION specifies as the block operand the one data character to which
the file pointer currently points. It may also be used to specify a
position within the record to which the file pointer currently points.

o "Pattern-string"” is a string expression; its value is a pattern to search
for within the enclosing block. If a match is found, the matching data in
the enclosing block is the block operand specified by 'pattern-string."

Block Expressions

CE70-02 5-5

Block Operands

Block Options
You can modify block operands with "block options."

1f a block operand is given without a particular option, 6Edit uses as the
default the current value of the predefined name for that option. There is a
specific predefined name for each option. The value assigned to these names,
if any, is usually the keyword for the desired option (see the EQUALS
command). If the predefined name for an option has no value and the option
was not specified with a block operand, 6Edit uses a standard default.

There are two kinds of block options: 'evaluation options' and "processing
options."”

Evaluation Options

The evaluation options tell 6Edit how to evaluate the block operand with which
they are specified, that is, how to move the file pointer through the file

looking for an instance of the block operand.

In a command line, the evaluation options are typed before the block operand
to which they apply.

"Point" option '"Direction' option "Skip'" option
ALL OF FORWARD SK1P
BEGINNING OF BACKWARD

END OF

o] The point option specifies to what point in the block operand the file
pointer is to be moved. ALL OF moves the file pointer to either the start
or the end of the block operand, as appropriate, and selects the entire
block operand. BEGINNING OF always moves the file pointer to the
beginning of the block operand. END OF always moves the file pointer to
the end 6f the block operand. Both of the lLatter select only the end
point of the operand. The default is $POINT.

o The direction option tells 6Edit in which direction the file pointer is to

be moved from its current location, forward or backward. The default is
$DIRECTION.

Block Expressions
5-6 CE70-02

Block Options

The skip option specifies which instance of a relative block operand is to
be located. For example, if you specify a skip option (with its skip
count) with a pattern-string block operand, then 6Edit does not treat the
first match of the pattern string as the block operand, but instead the
"nth" match (where ''n" is the skip count). The default is $SKIP.

Processing Options

The processing options give 6Edit additional instructions on how to process a
block after evaluation.

The processing options apply to the result of the evaluation of the entire
block expression, not to just one operand in the expression. Therefore, in a
command Lin-, the processing options are typed before or after the entire
block expression.

OPTION: "Protect" "Exist" "Structure" "Key increment"
PROTECT NEW EDITKEY BY
DONT PROTECT OoLD STRINGKEY
ANY SEQUENTIAL

The protect option controls modification of the contents of the block
during editing. PROTECT prohibits any modification of the data in the
block during the processing of the command which includes the block
expression. DONT PROTECT explicitly allows modification. The default is
$PROTECT.

The exist option performs a test on the file you are about to process.
After locating the file specified by a block expression, 6Edit examines
the exist option (if any) included in the block expression. NEW tells
6Edit that this block evaluation succeeds only if the file does not exist,
hence the file is created. OLD tells 6Edit that the block evaluation
succeeds only if the file does exist. ANY creates the file if it does not
exist, or uses it if it does exist. The default is $EXIST.

The structure option tells 6Edit how to treat the file in terms of record
keys and insertion techniques.

The key increment option tells 6Edit how to generate new record keys when
inserting records into a file. It is used on blocks which will be the
destination of a copy or move operation. 6Edit inserts records into
destination blocks; it needs to generate new record keys for these
inserted records. BY tells 6Edit how to generate new record keys based on
the existing record keys of records in the block. The default is $BY.

Block Expressions

CE70-02 5-7

Block Options

Evaluation of Block Operands
The result of the evaluation of a block operand has three components:

o A new 'location" for the file pointer.

o A "value," which is always the data in the file at the new location of the
file pointer.

o A "signal" -- "success" or "failure" -- indicating whether or not 6Edit
succeeded in evaluating the block operand.

Signals

A block operand yields a "signal.'” The signal indicates the success or
failure of the evaluation of the block operand.

The evaluation of a block operand (as modified by any block options specified
with it) fails in these four cases:

o An absotute operand specifies a block which is located completely outside
the boundaries of the current enclosing block. For example, if the
enclosing block is records 50 through 100 of a file, a record key operand

specifying record 200 will fail when evaluated.

o A pattern-string operand fails when evaluated if 6Edit cannot find a match
for the pattern string inside the boundaries of the current enclosing
block.

o] A repeated block has already been evaluated the specified number of times.

o The starting range for evaluation of the next instance of a repeated block
is outside the boundaries of the enclosing block.

Failure in evaluating a block operand is not considered an error. It is
usually a perfectly normal occurrence, and controls evaluation of the block
expression. For example, to replace all appearances of a string in a file
with another string, you specify a repeated block to COPY OVER all matches of
a pattern string. This repeated block causes the command which includes it
(the COPY OVER command) to be repeated for each match of the pattern string.
Wwhen 6Edit cannot find any more pattern string matches, evaluation of the
pattern-string block operand fails, thus terminating processing of the
command. This failure is intended, and is not an error.

Block Expressions
5-8 CE70-02

Signals

Block Expression Components

This subsection describes in detail the components of a block expression.

General Form of Block Expressions

General Form:

[enclosing_block] [REPEAT] SELECT [movement]
{THRUIADJUST} [movement] [{THRUIADJUST} [movement]]...
[[REPEAT] SELECT [movement]
{THRU1ADJUST} [movement] [{THRUIADJUST} [movement]]...]...

Parameters:
enclosing_block is any block expression. An "enclosing_block' may be
omitted; if it is, the current edit block is used as the enclosing block for

the expression.

REPEAT SELECT serves two purposes: it may be used to enclose block
expressions, and/or to specify a repeated block.

movement is a "movement expression': a list of block operands, possibly
modified by evaluation options. A '"movement expression’ moves the file
pointer to a new location.

THRU tells 6Edit that the next movement (movement expression) moves the
file pointer to the end of the block being specified.

ADJUST tells 6Edit that the next movement (movement expression) moves the
file pointer to the opposite end of the block being specified.

Description:

As described earlier, block expressions specify three things: the enclosing
block, the beginning point of the block, and the ending point of the block.

The first SELECT clause is needed only when "enclosing_block" is given, or
when the SELECT clause specifies a repeated block.

Each "SELECT ... {THRUIADJUST} ... {THRUIADJUST} ..." group specifies the

beginning and ending points of a block; each such group except the last
specifies the enclosing block for the next SELECT group.

Block Expressions
CE70-02 5-9

General Form of Block Expressions

Note that all components of a block expression are optional, but at least one
component must be given.

SELECT Clause

Syntax:

[REPEAT] SE[LECT] block_expression
Parameters:

block_expression must not include absolute block operands. Only relative
block operands may be included in "block_expression."

Description:

The SELECT clause is used for either or both of two purposes: to specify
repeated blocks, and/or to enclose blocks.

If REPEAT is given, then block_expression is a repeated block (see below).

Repeated Blocks

To specify a repeated block, precede the block expression with a REPEAT SELECT
clause.

Including a repeated block expression in a command causes the entire command
to be repeated until the end of the enclosing block is reached. On each
repetition of the command, the block expression evaluates to successive
blocks.

6Edit continuously evaluates repeated block expressions. On the first
evaluation, the file pointer starts at its current location. The
block_expression should contain movement expressions which move the file
pointer through the enclosing block, first to the beginning, and then to the
end of the block being specified.

On successive evaluations, the file pointer starts at the end of the block
specified by this block_expression on the previous evaluation. The
block_expression then moves the ftile pointer (relative to the end of the
previously-found block) first to the beginning, and then to the end of the
next block for block_expression.

Block E*pressions
5-10 CE70-02

SELECT Clause

Example:

Assume you want to replace whatever appears between the words ''the Piercy "
and " we sold", with the word "novel'. That is, the following strings in the

tile will be changed to ''the Piercy novel we sold':

the Piercy book we sold
the Piercy picture we sold
the Piercy novella on urban renewal we sold

However, the string 'the Atwood book we sold" does not change.

To do this, specify a repeated block, searching for the given patterns to find
-the start and the end of the block to be replaced:

COPY STRING 'novel' OVER REPEAT SELECT EO 'the Piercy ' THRU BO ' we sold'

contains a REPEAT SELECT clause. This causes the COPY OVER command to be
repeated as long as the block expression following SELECT can find a block in
the file. The block expression is:

EO 'the Piercy ' THRU BO ' we sold'

specifying two patterns to be searched for. The block found by this block
expression begins at the end of (EQ) the next string in the file matching the
first pattern, and ends at the beginning of (BO) the next string in the file
matching the second pattern. When these two patterns are found, all data
between them is replaced with the string ‘novel'.

After each replacement, 6Edit repeats the pattern search (because REPEAT was
specified). Starting from the end of the found block (in this example, the
beginning of " we sold'"), 6Edit searches again for the first pattern (''the
Piercy "). 1If it finds a match, 6Edit searches for the second pattern, and if
it finds a match for that pattern, another replacement is made. Then, 6Edit
repeats the evaluation of the block expression, searching for the first
pattern again.

This repetition continues until the end of the file (or other enclosing block)
is reached in one of the pattern searches.

Block Expressions
CE70-02 5-11

SELECT Clause

Enclosed Blocks

An "enclosed block'" is one which is entirely contained within another block.
The outer block is called the "enclosing block'; the enclosed block is the
block being specified, which is lLocated entirely inside the enclosing block.

To specify an enclosed block, follow the specification of the enclosing block
with the SELECT clause, followed by the specification of the enclosed block.
(If the edit block is the enclosing block, then the SELECT clause is not
necessary, uniess a repeated block is desired.)

Enclosed blocks are useful when you want to Limit the movement of the file
pointer to some block smaller than the edit block. The edit block always
Limits atl file pointer movement.

Example:

Assume you want to insert a string of characters '"xxx" at the beginning of
every record between records 10.0 and 50.0, inclusive. To do this, you type
the following commands.

COPY STRING '"xxx'
AFTER 10 THRU 50 REPEAT SELECT RECORD SELECT BO RECORD

The first command, COPY STRING 'xxx', sets up the source block for the copy
operation.

The AFTER command contains a complex block expression, including both enclosed
blocks and repeated blocks:

10 THRU 50

First, the encltosing block is specified: the block comprising records 10.0
through 50.0 inclusive in the current edit block.

REPEAT SELECT RECORD

is a repeated block expression, specifying a block for every record between
10.0 through 50.0. A repeated block specification evaluates to several
blocks; these blocks are enclosed within the enclosing block. In this case,
the enclosing block is 10.0 through 50.0; the enclosed blocks will be each
whole record which appears in the enclosing block.

Block Expressions
5-12 CE70-02

SELECT Clause

SELECT BO RECORD

specifies an enclosed block: an empty block at the start of each record.
Note that each block specified in the previous step becomes the enclosing
block for this step.

Movement Expressions

Syntax:

[block_options] block_operand ...

Description:

A "movement expression' is a sequence of block operands, optionally modified
by block options. These tell 6Edit how to move the file pointer through the
current enclosing block.

In jits simplest form, a movement expression is a List of block operands. 1In
front of each block operand, you can give block options to be applied to that
operand.

Example:

20.3 BACKWARD SKIP 30 RECORDS POSITION 18

Three block operands compose this movement expression: the record key '20.3",
"RECORDS'", and '"POSITION 18". The "RECORDS" operand is modified by two block
options: "BACKWARD'" and "SKIP 30".

This expression causes 6Edit to move the file pointer to record 20.3, then

back up 30 records in the file, and finally move the file pointer to position
18 of that record.

THRU Clause

Syntax:

{TH[RUJITH[ROUGH]} [movement_expression]

Block Expressions
CE70-02 5-13

THRU (Clause

Parameters:

movement_expression is a movement expression.

Description:

THRU tells 6Edit that "movement_expression' specifies the ending location of
the block being specified. Whenever THRU is seen, the current file pointer
location becomes the beginning of the block being specified.

If "movement_expression' is omitted, the block being specified becomes an
empty block (containing zero data characters) located at the current file
pointer location. If "movement_expression" is included, it should move the
file pointer to the desired ending location for the block being specified.
Example:

DE 20.1

deletes the entire record 20.1.

DE 20.1 THRU 25

deletes all records between and inciuding 20.1 and 25.

5 THRU

specifies a block beginning and ending at the start of record 5.0. This is an
empty block.

THRU 6

specifies a block beginning at the current file pointer location, and ending
at the start of record 6.0.

ADJUST Clause

Syntax:

AD[JUST] [movement_expression]

Block Expressions
5-14 CE70-02

ADJUST Clause

Parameters:

movement_expression is a movement expression.

Description:

ADJUST allows you to change either boundary location of the block being
specified. It tells 6Edit that "movement_expression' specifies the location
of the boundary opposite to the one currently being specified.

The following example illustrates a command sequence, using the ADJUST clause.

The vertical format suggests successive returns to the command window after
each function.

Block Expressions
CE70-02 5-15

ADJUST Clause

(LRSS

Records in file INVENTORY:

40
41
42

48
49

Commands in command window:

41 moves the cursor to the beginning of record 41.

TH begins block selection.

48 selected block is 41 TH 48; cursor is at the beginning of
record 49.

ADJUST moves the cursor back to the beginning of record 41;

it does not change the selected block.

BA SK 1 RE moves the cursor to beginning of record 40. The selected
block is now beginning of 40 thru end of 48.

ADJUST moves the cursor back to the end of the selected block:
beginning of 49.

DE THAT deletes beginning of 40 thru end of 48.

Figure 5-1. Using the ADJUST Clause

ADJUST is most useful after a THRU clause. When 6Edit sees the THRU clause,
its movement expression moves the file pointer to the end of the block being
specified. When the first ADJUST following THRU is given, 6Edit remembers the
current file pointer location as the ending location of the block being
specified, and moves the file pointer to the beginning location of the block.
The movement expression following this first ADJUST then changes the beginning
location of the block, by moving the file pointer (from its initial location
at the beginning of the block) to a new beginning location.

Block Expressions
5-16 CE70-02

ADJUST Clause

The second ADJUST after THRU acts similarly. 6Edit remembers the current file
pointer lLocation as the beginning location of the block, and moves the file
pointer to the ending location of the block; the movement expression following
the ADJUST changes the ending location of the block.

Each successive ADJUST repeats this process. 0dd-numbered ADJUSTs after THRU
(i.e., the first, third, fifth, etc.) change the beginning location of the
block being specified; even-numbered ADJUSTs after a THRU change the ending
location of the block being specified.

At any time in a block expression, you can use THRU. This clause renders the
current file pointer location the beginning location of the block being

specified; the movement expression following THRU always modifies the ending
tocation of the block.

Movement Expression Components

The following paragraphs describe in detail the block operands and options
used in movement expressions.
ALL OF Option

Syntax:

{AL[L] OFIAO0} block_operand

Parameters:
block_operand may be any absolute or relative block operand, possibly
modified by other block options (only one of the three "point" options -- ALL

OF , BEGINNING OF, and END OF -- may be used with a block_operand).
Description:

ALL OF tells 6Edit to move the file pointer to either the beginning or the end
of "block_operand,' depending on the context:

0 In the first movement expression of a SELECT clause or in an ADJUST
clause, this construct will move the file pointer to the beginning of
block_operand.

o] In the last operand of a THRU clause, this construct will move the file
pointer to the end of block_operand.

Block Expressions
CE70-02 5-17

A

L1
ALL

OF Option

Example:
DELETE A0 5 THRU AO 6

deletes the records between record 5.0 and 6.0, including atl of records 5.0
and 6.0.

BACKWARD Option

Syntax:

BA[CKWARD] relative_block

Parameters:

relative_block must be a relative block operand.
Description:

BACKWARD tells 6Edit in which direction in the file to move the file pointer
when searching for a relative block operand.

Relative_block must be a record, position, or pattern-string operand; 6Edit
moves the file pointer backward accordingly.

Examples:

BACKWARD SKIP 8 RECORDS

moves the file pointer backward in the file, skipping over 8 records.
BACKWARD SKIP 28 POSITIONS

moves the file pointer backward in the file, skipping over 28 positions
(characters in records).

BACKWARD 'abc'

moves the file pointer backward in the file, searching for the string 'abc' in
the file.

Block Expressions
5-18 CE70-02

BACKWARD Option

BEGINNING OF Option

Syntax:

{BE[GINNING] OFIBO} block_operand

Parameters:
block_operand may be any absolute or relative block operand, possibly
modified by other block options (only one of the three 'point" options -- ALL

OF, BEGINNING OF, and END OF -- may be used with a block_operand).
Description:

BEGINNING OF tells 6Edit to move the file pointer to the beginning of
block_operand. For instance, if block_operand was a block comprising three
records, BEGINNING OF tells 6Edit to move the file pointer to the first
character of the first of the three records.

Example:

DELETE BO 5 THRU BO 6

deletes the records between record 5.0 and 6.0, including record 5.0.
However , record 6.0 will not be affected.

BY Option

Syntax:

block_expression BY edit_key

Parameters:

edit_key is a CP-6 edit key, that is, a string of 1 to 8 digits; if a

decimal point is included in the string, there may be 0 toc 3 digits to the
right of the decimal point.

Block Expressions
CE70-02 5-19

BY Option

Description:

BY specifies a value to be used when 6Edit generates new record keys for a
keyed file.

BY may be included in block expressions which specify destination block
operands only; this only includes the operands of the AFTER and OVER commands.

I1f block_expression resides in an edit-keyed file and 6Edit must insert new
records in that file, 6Edit must generate new record keys for the new records.
6Edit does this by adding the value of edit_key to the record key of the last
existing record in front of the lLocation in the file into which 6Edit is
inserting records. Therefore, for edit-keyed files, edit_key must evaluate to
a numer ic operand whose value is between 0 and 99999.999, inclusive. If the
generated key is greater than or equal to an existing key in the file, then
6Edit discontinues the operation, and displays an error message.

Example:

CO FILE ACCTS_PAYABLE 1 TH 50 AF FILE ACCTS_RECEIVABLE 1024 BY .1

If the BY option is not specified with a block operand, the current value of
$BY is used as the record key increment.

CO FILE =1 OVER NEW FILE %2 BY 1
If the BY option is used for a block expression that also creates a new edit

block as in the example above, that key increment value overrides the value in
the $BY predefined name for the rest of the Life of that edit block.

END OF Option

Syntax:

{EN[D] OFIEC]} block_cperand

Parameters:

block_operand may be any absolute or relative block operand, possibly

modified by other block options (only one of the three "point" options -- ALL
OF , BEGINNING OF, and END OF -- may be used with a block_operand).

Block Expressions
5-20 CE70-02

END OF Option

Description:
END OF tells 6Edit to move the file pointer to the end of block_operand. For
instance, if block_operand was a block comprising three records, END OF tells

6Edit to move the file pointer to the first character of the record following
the three-record block.

FILE Block Operand

Syntax:

[{ NE[W] } { ST[RINGIKEY 3}]

[{ oL[p] } { SE[QUENTIAL] }] FI[LE] fid

[{ AN[Y] } { ED[ITIKEY }]

Parameters:

fid is a CP-6 file identifier and must refer to a file.

Description:

The FILE operand specifies a certain file to be the enclosing block for the
rest of the block expression.

NEW tells 6Edit that fid must specify a file that does not exist. 6Edit will
create the file as an edit-keyed file. S$FILETYPE specifies the value to use
for the type attribute of the new file.

OLD tells 6Edit that fid must specify a file which currently exists.

ANY tells 6Edit to create the specified file if it does not already exist.
STRINGKEY tells 6Edit that the file to be created or modified must have keys,
and that the keys are presumed to be textual names. Insertion of new records
is permitted only if the key of the new record is explicitly specified.

Record keys are specified using the KEY option.

SEQUENTIAL tells 6Edit that the file to be created or modified must be
unkeyed. Records may be added or deleted only at the end of the file. Record
keys are sequential record numbers starting at 1.

EDITKEY tells 6Edit that the file to be created or modified must have standard
(3-byte) edit keys. Records may be inserted or deleted anywhere. Record keys
must evaluate to 3-place decimal numbers up to 99999.999.

The FILE block operand may not be modified by the following block options:

Block Expressions
CE70-02 5-21

FILE Block Operand

SKIP

FORWARD

BACKWARD
The default "point" option for the FILE block operand is ALL OF, regardless of
the current value of $PCINT. To begin editing a file at its end, use two
commands: EDIT FILE fid; EO CURR .
Example:
COPY REPEAT SELECT SKIP 2 'The Z? we sold' AFTER ANY FILE SALES
creates the file SALES if it does not already exist, then searches forward in
the current edit block for matches of the pattern "The 7?7 we sotd'", and copies
every other such match to the end of the SALES file starting with the second

match. After searching to the end of the current edit block, 6Edit displays
the SALES file in the editing window.

FORWARD Option

Syntax:

FO[RWARD] relative_block

Parameters:

relative_block must be a relative block operand.
Description:

FORWARD tells 6Edit in which direction in the file to move the file pointer
when searching for a relative block operand.

Relative_block must be a record, position, or pattern-string operand; 6Edit

moves the file pointer forward in the file (toward the end ot the file)
accordingly.

Block Expressions
5-22 CE70-02

FORWARD Option

Names as Block Operands

Syntax:
tocation_name
Parameters:

location_name is a name. It may be either a predefined name ($LEFTOVER,
$NOT_COPIED, HERE, THAT, or CURRENT), or a name you created whose value has
previously been set with the LOCATION command.

Description:

A location_name can be used as an absolute block operand. This operand
specifies a block which you specified and named earlier (or a block predefined
by 6Edit itself).

If location_name is the first operand of a block expression, then the file to
which the name refers becomes the enclosing block for the rest of the block
expression. If location_name is not the first operand of a block expression,
then it must refer to the same file as the enclosing block for the block
expression.

If the first block operand in a block expression is not one of the following
block operands, then the edit block is used as the enclosing block for the
rest of the block expression:

PREVIOUS

NEXT

FILE

STRING
Location_name

The Location_name operand may not be modified by the following block options:
SKIP
FORWARD
BACKWARD

The default "point'" option for the names as block operands is ALL OF.

Block Expressions
CE70-02 5-23

Names as Block Operands

Special location_names

Several predefined names are reserved as special location_names. They can be
used in block expressions just Like any other location_name, however, their
value is determined by 6Edit (you cannot explicitly assign a value to these
names). As for all other names, they may be entered in either upper-, mixed-,
or lower-case.

CURRENT

The CURRENT predefined name always specifies the current edit block. The edit
block is set by the EDIT command, the NEXT and PREVIOUS block operands, and
implicitly whenever the enclosing block for a block expression is in a
different file than the current edit block. The name CURRENT can be
abbreviated to CURR.

THAT

The THAT predefined name always specities the current selected block. The
selected block is the block of data operated upon by the most recent editing
command.

HERE

The HERE predefined name always specifies an empty block. This block is
located at the current file pointer Location.

SLEFTOVER

The $LEFTOVER predefined name contains some portion of a single record of the
source data that does not fit into the destination block on a copy operation.
Once you have corrected the problem that caused the incomplete copy, you may

use $SLEFTOVER as the source for another copy operation.

$NOT_COPIED

The $NOT_COPIED predefined name contains the lLocation of some portion of the
source data that does not fit into the destination block on a copy operation.
Once you have corrected the problem that caused the incomplete copy, you may
use $NOT_COPIED (which is a location name but does not hold the actual data)
to perform another copy operation.

Block Expressions
5-24 CE70-02

Names as Block Operands

Examples:
BO CURRENT

moves the file pointer to the beginning of the current edit block (usually to
the beginning of the file being edited).

COPY THAT AFTER EO CURRENT

contains two special lLocation_names as block operands: "THAT" and "CURRENT".
Assuming the user has just selected a block, this COPY command copies that
selected block to the end of the current edit block (usually to the end of the
file being edited).

COPY L AFTER HERE

contains two names as block operands: "L'" and "HERE'". '"L'" is assumed to be a
name created by the user with the LOCATION command, so that it names the
location of a block (either in the current file or in any other file). This

COPY command copies the block at location "L" to the current file pointer
(cursor) position. :

Pattern-String Block Operand

Syntax:
{ PA[TTERN] string_expression | 'string' }
Parameters:

string_expression is a string expression which may be empty, (i.e., have no
characters in its value). It specifies the pattern to search for in the file.

string is a quoted string of characters which may be empty (i.e., "'). It
specifies the pattern to search for in the file. If a quote character is to
be included in string as part of the pattern to search for, then it must
appear twice (e.g. 'don''t' searches for the word 'don't').

Description:

The pattern-string block operand finds a match for a pattern string
(string_expression) in the enclosing btock. The file pointer is moved to the
matching data.

The search for a match is bounded by the enclosing block for the block

expression. If a match is not found within the enclosing block, then 6Edit
will not move the file pointer from its starting location.

Block Expressions
CE70-02 5-25

Pattern-String Block Operand

The search for a match of the pattern string ignores record boundaries in the
enclosing block up to the Limit specified by the $MATCH_LIMIT predefined name.

The $CASE predefined name tells 6Edit how to treat alphabetic characters while
searching for a match of the pattern string. If the current value of $CASE is
ON (or any number >= 1), then file data characters are compared directly with
characters from the pattern string. If the current value of $CASE is OFF (or
any number <= 0), then lower-case alphabetic characters in both the file data
characters and the pattern string are treated as though they were upper-case.

The only difference between the two forms of this block operand (use of string
expression vs. 'string') is that the string_expression form allows you to
combine strings using the concatenate operator, and/or use EQUALS-names to
specify the pattern to search for. The 'string' form is easier to type,
however, and can be used when the facilities of string expressions (see
Section 4, String Expressions) are not needed.

The default "point", "direction', and "skip" options for the pattern-string
operand are $POINT, S$DIRECTION, and $SKIP, respectively. SKIP 0 tests for a
match at the current cursor location. SKIP 1 moves forward/backward one
position before beginning the search.

Syntax of the Pattern String

The string_expression designates the pattern string. It tells 6Edit how to
identify a '"match" in the enclosing block.

Most characters in the pattern string specify values which must appear in
identical form and identical order in the enclosing btock in order to yield a
"match.' For instance, if you say:

abc

then the only match possible is a string of three characters in the enclosing
block, whose values are the lowercase ASCII characters a, b, anc ¢, in that
order. An exception to this "exact match'" rule is made if the $CASE
predefined name is OFF when the pattern search is made. (See Appendix A,
Predefined Names.)

The pattern string is specified by a string expression. This allows
non-displayable character values to be included in the string (using the
$CONTROL-Value function).

Several of the $CONTROL functions have special meaning when they appear in the

pattern string. Also, some additional $CONTROL functions are supported only
when they appear in pattern strings, these are called "pattern functions."

Block Expressions
5-26 CE70-02

Pattern-String Block Operand

$CONTROL-Beginning of Match Pattern Function
Function Identifier: B

This pattern function should appear only once in a pattern string. It
specifies what point in the matching file data is to be considered the
beginning of the match. 1If $CONTROL-Beginning of Match is not included in a
pattern string, the first character of the matching file data is considered
the beginning of the match.

For example, assuming the $CONTROL character is percent (Z):
COPY STRING 'memo' OVER REPEAT SELECT PATTERN 'my /Breport'

searches for the string 'my report' in the file. However, the beginning of
the match is the '"r" of 'report'": the block found and replaced by this
command will be the word ''report’, but only if it appears after the word "my

$CONTROL-End of Match Pattern Function
Function Identifier: E

This pattern function should appear only once in a pattern string. It
specifies what point in the matching file data is to be considered the end of
the match. If $CONTROL-End of Match is not included in a pattern string, the
character immediately following the matching file data is considered the end
of the match.

For example, assuming the $CONTROL character is percent (7%):

CO STRING 'memo' OVER REPEAT SELECT PATTERN 'reportZEs from this office'
searches for the string 'reports from this office' in the file. However, the
end of the match is the "s" of '"reports': the block replaced by this command

will be the word "report', but only if it appears before the string 's from
this office’.

Block Expressions
CE70-02 5-27

$SCONTROL-Quest ion Pattern Function
Function Identifier: 7?7 (question mark).
No parameters may be included in the $CONTROL-Question function.

The $CONTROL-Question function specifies that a sequence of any number of
characters in the enclosing block (including 0) is considered a match.

For example, consider the following pattern string, assuming the $CONTROL
character is the percent symbol (%).

abcdeZ?fghijkl
This pattern string matches the following strings in the enclosing block:

abcde1234fghijkl
abcde'tfghijkl
abcdefghijkl
abcde fghijkl

Muitiple instances of the $CONTROL-Question function are permitted. For
example,

COPY STRING 'fromZW(2)anyZW(1)to' OVER 'toZ?anyZ?from'

substitutes the COPY string for the OVER string for each string that matches
the pattern of the OVER string, retaining the portions of the pattern string
represent by 7Z7?s. Up to 10 instances of ZW are permitted in a COPY or MOVE
string; any number of 7%?s are permitted in the pattern string.

SCONTROL-Value Function in the Pattern String

Function Identitier: V

If the $CONTROL-Value function appears in the pattern string, it may include

one or two parameters. Assuming the $CONTROL character is the percent symbol

(Z):

o} 'ZV()' - If no parameters are included, a character in the enclosing block
whose ASCII code is zero is considered a match. This is identical to
#V(0).

0 'ZV(m)' - 1f one parameter is included, it must be a decimal number; a

character in the enclosing block whose ASCII code equals the number is
considered a match.

Block Expressions
5-28 CE70-02

Pattern-String Block Operand

o} 'ZV(m,)' - 1f one parameter is included, it must be a decimal number. 1If
a comma follows it, a character in the enclosing block whose ASCII code
equals or is greater than the number is considered a match.

o] '7V(m,n)' - If two parameters are included, they must be decimal numbers.
The first specifies a minimum value, the second a maximum value. A
character in the enclosing block whose ASCII code is between the two
values, or equal to either, is considered a match.

o 'Zv(,n)' - If the second parameter is included but not the first, it must
be a decimal number, and it must be preceded by a comma. A character in
the enclosing block whose ASCII code is less than or equal to the number
is considered a match. For example:

DELETE REPEAT SELECT 'ZV(,31)'
Searches forward in the file for ASCII control characters, and deletes any
it finds. The ASCII control characters have decimal codes in the range 0

to 31. The pattern '%ZV(,31)' matches any single character whose ASCII
decimal code is in that range.

BCONTROL-Wi Idcard Pattern Function

Function Identifier: W

The $CONTROL-Wildcard function is similar to the $CONTROL-Question function
(%7), except that it allows restrictions on the length of the string.
Assuming the $CONTROL character is the percent symbol (%), the wildcard
function is used in the following form:

ZW{min,_ max)

The min and max parameters are the minimum and maximum Llengths, respectively,
of the wildcard string and are always numbers which represent character
positions. Both parameters or a single parameter may be included.

#W is most logically used between two specific strings. For example:

DISPLAY 'fromZW(4,10)any'’

finds the next occurrence of ''from" followed by "any" at least 4 positions
later, but not more than 10 positions later in the enclosing block.

DISPLAY 'fromZW(4,)any'
finds the next occurrence of "from" followed by "any' at least four positions

later in the enclosing block, with no restriction on the maximum number of
positions within the block.

Block Expressions
CE70-02 5-29

Pattern-String Block Operand

DISPLAY 'fromZW(,10)any’

finds the next occurrence of "from"” followed by '‘any' not more than 10
positions later in the enclosing bilock. There is no restriction here on the
minimum number of positions after which "any' should follow "from".

POSITION Block Operand

Syntax:

PO[SITION[S]] [number]
' [NU[MBER] string_expression]

Parameters:

number is a decimal number between 1 and 2048, inclusive.
string_expression is a string expression. It must evaluate to a number

between 1 and 2048, inclusive.

Description:

This block operand actualiy has two forms, with different effects.
Skipping Over Existing Positions

The first form of the position operand moves the file pointer over existing
positions in records:

PO[SITION[S]]

moves the file pointer forward or backward in the current Edit Block some
number of positions. The SKIP block option is used to specify the number of
positions to move; if no SKIP option is used, 6Edit will move the file pointer
by the number of positions in the $SKIP predefined name.

This form of the position operand only specifies existing positions in
records; it wilt not extend a record. This means the following:

o] If the file pointer is at the beginning of a record when a BACKWARD

POSITION expression is given, it moves to the end-of-record boundary of
the previous record in the enclosing block.

Block Expressions
5-30 CE70-02

POSITION Block Operand

o] If the tile pointer is in the last position of a record when a FORWARD
POSITION expression is given, it moves to the end-of-record boundary of
that record. From the end-of-record boundary of a record, this form of
the position block operand moves the file pointer either (for BACKWARD) to
the last position of that record, or (for FORWARD) to the first position
of the next record.

Moving To a Specific Position In a Record

The second form of the position operand includes a position number:
PO[SITION] { number | NU[MBER] string_expression }

moves the file pointer to the specified position in the current record. 1If

the current record is too short, it is lengthened (the value of the $PAD

predefined name is appended to the record repeatedly until the record is long
enough).

The position to move to can be specified either as a number, or as a string
expression. Position numbers range from 1 to 2048. To move the file pointer
to the first position of a record, use "POSITION 1".

The second form of the position operand may not be modified by the following
block options:

SKIP
FORWARD
BACKWARD

The default "point'" option for the second form of the position operand is
SPOINT.

Examples:

SKIP 5 POSITIONS

moves the file pointer forward five positions. If this moves the file pointer
beyond the end of the current record, then the file pointer moves to the
beginning of the next record, and continues movement from there.

BACKWARD SKIP 3 POSITIONS

moves the file pointer backward five positions. If the file pointer starts
out less than five positions from the beginning of the record, it moves to the

end of the previous record and continues movement from there.

POSITION 28

Block Expressions
CE70-02 5-31

POSITION Block Operand

moves the file pointer to position 28 of the current record. 1If the current
record is shorter than 28 characters long, it is extended to 28 characters,
using the value of the $PAD predefined name (usually a space character) to
extend the record.

POSITION NUMBER MYTAB .MINUS. 8

subtracts 8 from the current value of the user-created name MYTAB, and uses

the result as the position number in the current record to move the file
pointer to. If the current record is too short, it is extended.

PROTECT Option

Syntax:

[DONT] PR[OTECT] block_expression

Parameters:

block_expression must begin with a FILE block operand.

Description:

When not preceded by DONT, PROTECT tells 6Edit that its block_expression is to
be protected from any changes. The block_expression may not be altered or
deleted, and no new records may be added.

DONT PROTECT tells 6Edit to allow modification of the block.

wWhen specifying the edit block in the EDIT command, giving the PROTECT option
to the block expression will essentially provide read-only access to the file
as long as that file is the current edit block.

If an attempt is made to alter a PROTECTed block, 6Edit will reject the

attempt and issue a beep at the terminal to inform the user of the attempted
violation.

Block Expressions
5-32 CE70-02

PROTECT Option

RECORD Block Operand

Syntax:

RE[CORD[S]]

Description:

RECORD is a relative block operand. It specifies a block whose starting point
is POSITION 1 of a record and whose ending point is POSITION 1 of the next
record (i.e., the end-of-record boundary is included in the block).

When searching for this operand, the search for the starting point of the
RECORD aims in the direction specified by any FORWARD or BACKWARD options for
this operand; however, once the starting point is found, RECORD always
specifies the record from that starting point forward to the end-of-record
boundary, including that end-of-record boundary.

The default '"point', '"direction', and "skip' options for the record operand
are $POINT, $DIRECTION, and $SKIP, respectively. SKIP O specifies the entire
record that the cursor is positioned in. SKIP 1 specifies the next/previous
(forward/backward) record.

Examples:

SKIP 20 RECORDS

moves the file pointer forward in the file, skipping over 20 records.

DELETE RECORD

deletes the entire record in which the file pointer currently lies.

COPY RECORD AFTER L

copies the record in which the file pointer currently lies to the location
named '"L", where "L'" is assumed to be a name created by the user with the
LOCATION command.

Block Expressions
CE70-02 5-33

RECORD Biock Operand

Record Keys as Block Operands

Syntax:

{ numeric_key | KEY string_expression }

Parameters:

numer ic_key is either:

o A string of 1 to 9 digits; a decimal point (period) may appear in the
string such that there are 0-3 digits to the right of the decimal point
and not more than 5 to the left.

o] A string of 1 to 9 digits with no decimal point for sequential files.

string_expression specifies the key to be used for a string-keyed file.

Description:

A record key may be used as an absolt

sotl pe
pointer to the specified record in th g

-

1f an edit-keyed file is being used, numeric_key must be a number between 0
and 99999.999; a decimal point (period) may appear in the string, with 0 to 3
digits to the right of the decimal point. The numeric_key is interpreted as
the actual record key of the record which is the block operand represented by
numer ic_key. Note that this record key need not actually exist in the file;
if the specified record does not exist, then numeric_key represents an empty
block at the specified record key. In any case, the record key must be within
the range of record keys of the current enclosing block.

If a non-keyed (consecutive) file is being used, numeric_key must be a string
of 1 to 9 digits with no decimal point. It is interpreted as the record
number within the file of the record which is the block operand represented by
numer ic_key. The record number must be within the range of record numbers of
the current enclosing block.

The record key operand may not be modified by the following block options:
SKIP
FORWARD
BACKWARD

The detault "point' option for the record key operand is $POINT.

Block Expressions
5-34 CE70-02

Record Keys as Block Operands

Examples:

48

moves the file pointer to the record with key "48", when using an edit-keyed
file. In a consecutive or unit-record file, specifying a numeric key moves
the file pointer to the 48th record in the file.

COPY 52.1 AFTER HERE

copies the record with key '52.1" to the current file pointer (cursor)
location. This command can only be used in an edit-keyed file, because the
record key contains a decimal point.

COPY ST 'NEW RECORDZR' AFTER KEY 'HELLO'

creates a new record at "HELLO" in a string-keyed file.

SKIP Option

Syntax:
SK[IP] number relative_block
Parameters:

number is a string expression. It must evaluate to a number which is
greater than or equal to zero.

relative_block must be a relative block operand.
Description:

The SKIP option tells 6Edit to repeat the relative movement specified by
relative_block some number of times. The number parameter specifies the
"repeat count."

Remember , movement of the file pointer is Limited to the bounds of the
enclosing block. If you specify SKIP 10 RECORDS, but fewer than ten records
remain in the enclosing block, the file pointer moves only to the end of the
enclosing block.

I1f the repeat count evaluates to zero, then 6Edit assumes that the current
location of the file pointer lLies within the bounds of the destination block.
For example, if the file pointer is currentiy at position 10 of a record, then
END OF SKIP O RECORDS moves it to the end of that same record.

Block Expressions
CE70-02 5-35

SKIP Option

Example:
SKIP 10 RECORDS

6Edit moves the file pointer 10 records.

STRING Block Operand

Syntax:

ST[RING] string_expression

Parameters:

string_expression is any string expression. It may include
$CONTROL-Record, $CONTROL-Value, $CONTROL-Wildcard, and $CONTROL-Question
functions.

Description:

Any string specified as a string expression can be included in a block
expression as a block operand.

The string value of the string expression is treated as a file; it becomes the
enclosing block for the rest of the block expression.

The STRING operand must stand alone; you may not select a block within the
vatue of the string expression, using the usual block operands. The string is
usually treated just lLike a one-record consecutive file; however, by including
the $CONTROL-Record function in the string expression, you can create a
multi-record file.

Example:

COPY STRING 'novels and literary criticism' OVER REPEAT SELECT 'books'

searches forward in the file for any matches of the pattern 'books', and
replaces them with the string "novels and literary criticism".

COPY STRING 'Z%W(2) %?' OVER '%? %?'

switches the current word in the file with the next one.

Block Expressions
5-36 CE70-02

STRING Block Operand

When used in a string block operand, the $CONTROL-Wildcard function must have
exactly one parameter whose value is greater than zero. When the operand is
eventually used by an AFTER or OVER command, the $CONTROL-Wildcard function is
replaced by the string that matched a $CONTROL-Question or $CONTROL-Wildcard
function in a pattern string for the command. The parameter specifies which
particular $CONTROL-Question or $CONTROL-Wildcard function in the pattern is
to be substituted, counting from the beginning of the pattern string at one.
For example, a $CONTROL-Wildcard function with a parameter value of 3 would be
replaced by the string that matched the second occurrence of "7?'" in the
pattern string "beginZ?mid1ZW(5,10)mid2%?end". 1If the parameter exceeds the
number of wildcard strings in the pattern, the function is ignored.

The $CONTROL-Question function, which permits no parameters, can also be used
‘in a string block operand, and is exactly equivalent to a $CONTROL-Wildcard
function with a parameter value of one.

A maximum of ten combined $CONTROL-Wildcard and $CONTROL-Question functions
may be used in any string block operand.

Block. Expressions
CE70-02 5-37

STRING Block Operand

Appendix A

Predefined Names

This appendix Lists all the names predefined in 6Edit, and describes their
values.

Using Predefined Names

Predefined names serve several purposes:

(o]

They provide a shorthand notation for certain commonly-used values. Some
of these values are constants, and some are changed by 6Edit internally.

They allow you to give 6Edit certain operating values, and allow you to
request that 6Edit perform certain functions. This method of telling
6Edit what to do is used onlty for those functions which do not change
often. Thus, 6Edit equips you to control many small details.

You refer to these names by using 6Edit's substitution facility. You use most
predefined names just Like user-defined names.

Predefined names differ from user-defined names in two respects:

(o}

You cannot assign values to some of the predefined names in the usual way,
that is, with the assignment commands. Of those predefined names which
cannot be assigned a value with the assignment commands, some have
constant values, and 6Edit assigns new values to others internally.

0f the predefined names to which you can assign a value with the
assignment commands, most can only be assigned values by specific
assignment commands. This is because different assignment commands assign
different types of values to names. The legal assignment command for each
predefined name is listed in the names' descriptions below. 1If you try to
use the wrong command to assign a value to a particular name, 6Edit will
reject the command.

Table A-1 classifies the names predefined in 6Edit.

Predefined Names

CE70-02 A-1

Table A-1.

Predefined Name Classifications

Category Names

Constant Values Provided by 6Edit

ANY BO oLD
AO DONT_PROTECT ON
BACKWARD EO PROTECT
BIN10 FORWARD STRING
BINHLF NEW
BIN521 OFF

Values Set by 6Edit
$CONTEXT $RECORDS_INSERTED $FILERECORDS
$MATCHES $SITES SFILETYPE
$RECORDS_DELETED $FILEORG

* $FILETYPE can also be used to set the

being edited.

file type of files

Location Names Set By 6Edi

$LEFTOVER
$NOT_COPIED
CURRENT

t

THAT
HERE

Terminal Control

$AUTOTAB
$END_MARK
$EZ_APPEND
SHSALL
$HSCROLL

$HSCROLL_MARGIN
$INSERT
$INTRO_1
$INTRO_2
SRECORDWRAP

$SCROLL
STEXTEDIT
$VSCROLL
$VSCROLL_MARGIN
$WORDWRAP

A-2

Predefined Names

Using Predefined Names

CE70-02

Table A-1. Predefined Name Classifications (cont)

Category Names

Session Control

$INITIALIZE $RESTORE

Window Controtl

$COMMAND $MIN_COMMAND $WI_BORDER
$MAX_COMMAND $SCREEN SWI_PERCENT

Record Control

$BY $MIN_RECORD $STRIP_BLANKS
$KEY_GENERATION $PAD
$MAX_RECORD $REKEY

Block Expression Defaults

$DIRECTION $POINT $SKIP
SEXIST $PROTECT

Pattern Searching

$CASE
SMATCH_LIMIT

Lexical Characters

$COMMENT
$CONTROL

Predefined Names
CE70-02

Using Predefined Names

Predef ined

The follow

Names

ing table describes the 6Edit predefined names.

Table A-2. Predefined Names

Name

Assignment Command and Description

$AUTOTAB

EQUALS a number between 0 and 254, inclusive.

The number assigned to this name designates the ''autotab
position." A value greater than 1 implements automatic tabbing.
Henceforth, the system always begins new records at the autotab
position. To discontinue automatic tabbing, set $AUTOTAB to 0O or
1. Initially, $SAUTOTAB i§_set to 0.

Note that you can also use "Escape Tab'" to control automatic
tabbing. Move the cursor to the desired autotab position, and
type <ESC> <TAB>. To discontinue tabbing, move the curscr to the
beginning of the record, and type <ESC> <TAB>. If STEXTEDIT is
set to ON, then any attempt to move into a record (old or new) in
a position to the Left of the autotab causes an autotab.

$BY

EQUALS an edit key from 0 to 65.534.

The number assigned to this name is the default key increment for
new records. The default is 10.0. $BY is set and displayed as an
edit key. An edit key is a valid component of a string
expression, but cannot be combined with other component values.

$CASE

EQUALS ON or OFF.

This name tells 6Edit how to handle alphabetic case in pattern
comparison. If $CASE equals ON, then data bytes must equal
pattern bytes to be considered a match. I1f $CASE equals OFF, then
data bytes must either equal pattern bytes, or if alphabetic,
equal the pattern byte when converted to the opposite case, to be
considered a match. Initially, $CASE is set ON.

A-4

Predefined Names
CE70-02

Table A-2. Predefined Names (cont)

Name

Assignment Command and Description

$COMMAND

EQUALS ON or OFF.

This name controls which window 6Edit reads. If $COMMAND EQUALS
OFF (the initial setting), 6Edit reads from the editing window.
If $COMMAND EQUALS ON, 6Edit reads from the command window.

If you want to type several commands in succession, setting
$COMMAND to ON ahead of time eliminates repeatedly telling 6Edit
to move the cursor to the command window. When you finish typing
the series of commands, set $COMMAND to OFF. 6Edit then resumes
its normal operation.

$COMMENT

EQUALS one or two characters.

The character assigned to this name is used to mark the beginning
of commentary in command lines. When this character appears in a
command line but outside of a Literal string, 6Edit ignores
characters up to the next appearance of the $COMMENT value, or up
to the end of the command Line. Characters between the $COMMENT
value are assumed to be commentary (arbitrary text meaningful only
to you, not to 6Edit). Initially, the value of $COMMENT is the
guotation mark character (").

See Section 1, Overview of 6Edit, for restrictions on the
character assigned to $COMMENT and a description of the $COMMENT
character's function.

SCONTEXT

(You cannot assign a value directly.)
This variable is a read-only value that returns the fid of the
file used as the 6Edit context file.

CE70-02

Predef ined Names
A-5

Table A-2. Predefined Names (cont)

Assignment Command and Description

EQUALS one or two characters.

Use the character(s) assigned to this name for certain control
functions. If you wish to include the character itself in command
lines or string literals, you must enter it twice in succession.
You can effectively disable all $CONTROL functions by assigning an
empty string to $CONTROL. Initially, the value of $CONTROL is the
percent character (%).

See Section 1, Overview of 6Edit, for restrictions on the
character assigned to $CONTROL and for a description of the
$CONTROL character's function.

$DIRECTION

EQUALS FORWARD or BACKWARD.

This name specifies the default direction in the file in which
pattern searching and the SKIP option in block expressions are to
proceed. The initial value is FORWARD.

$END_MARK

EQUALS a character string.

The string assigned to this name defines a line of text to be
displayed at end-of-file in the editing window. The initial value
is a blank string (no display). The maximum length of the string
is 80 characters. Any characters can be used; 0 characters or all
blanks turns off an existing display. For example:

$END_MARK EQ 'File Ends Here'
defines ''File Ends Here'" as the end-of-file marker.
$END_MARK EQ "'

resets the marker to blank.

Predefined Names
CE70-02

Table A-2. Predefined Names (cont)

Name Assignment Command and Description

$SEXIST

EQUALS OLD, NEW, or ANY.

This name controls the default existence specification for files.
$EXIST can be set to suit your particular usage of 6Edit. For
example, if most of your usage of 6Edit is to build new files,
setting $EXIST to NEW allows you to open a file with EDIT FILE
filename instead of EDIT NEW FILE filename. Conversely, if most
of the files you edit already exist, you could set $EXIST to OLD
(which is the default value). If you work with an equal number of
existing and new files, setting $EXIST to ANY eliminates the need
for either the OLD or NEW keyword with EDIT FILE.

$EZ_APPEND

EQUALS ON or OFF.

This name controls what is needed to extend (insert a blank Lline
at the end of) a file in the editing window. When $EZ_APPEND is
set to ON, any attempt (such as a carriage return) to position the
cursor to column 1 of the Line below the last record in the file
will extend the file. When this feature is OFF, the last record
in the file must not be empty for the file to be extended. The
default is OFF.

$FILEORG

(You cannot assign a value directly.)

This variable is a read-only value that returns the file
organization of the file currently being edited (corresponding to
the CURR location variable).

SFILERECORDS

(You cannot assign a value directly.)

This variable is a read-only value that returns the number of
records in the file currently being edited (corresponding to the
CURR location variable).

Predefined Names
CE70-02 A-7

Table A-2. Predefined Names (cont)

Name

Assignment Command and Description

SFILETYP

E

EQUALS a 2-character string.

The characters assigned to this name are used to change the file
type for the current file, if it is changeable, and to set the
default for any NEW FILEs created thereafter. (The current file
js the file being edited {corresponding to the CURR Location
variable].) This variable may also be used to return the file
type of the file currently being edited. Note that the default
for NEW FILEs may not be the same as the value displayed by

SHOW S$FILETYPE, since that command always displays the current
file's type. DELETE WINDOW can be used to obtain access to the
default value or to set the default without changing the current
file.

SHSALL

EQUALS ON or OFF.

This name controls how Lines are to be scrolled when horizontal
scrolling is in effect. When $HSALL is ON, all the lines of a
screen editing window are scrollted when a horizontal shift occurs.
A value of OFF specifies to scroll only the record containing the
cursor. The default is OFF.

$HSCROLL

EQUALS a number between 0 and half the screen width, inclusive.
The number assigned to this name specifies how many columns to
scroll the editing window when trying to move the cursor into a
horizontal scrolling margin. Initially, $HSCROLL is O.

If SHSCROLL is greater than 0, that is, if horizontal scrolling is
enabled, 6Edit scrolls the the editing window horizontally so that
the character on which the cursor lLies is at the center of the
editing window.

A-8

Predefined Names

CE70-02

Table A-2. Predefined Names (cont)

Name Assignment Command and Description

$HSCROLL_MARGIN

EQUALS a number between 0 and half the screen width, inclusive.
The number assigned to this name specifies the number of columns
in the horizontal scrolling margins. A designated number of
columns represents these margins at the right and left of the
editing window.

Initially, $HSCROLL_MARGIN is set to 0; there are no horizontal
scrolling margins, and horizontal scrolling is disabled. Setting
$HSCROLL_MARGIN to a particular number of columns forces t he
window to scroll horizontally when the cursor reaches the
designated column, for example the fourth column from the left or
right edge of the screen when $HSCROLL_MARGIN is set to 4.

SINITIALIZE

EQUALS a string expression consisting of 6Edit commands separated
by the $CONTROL-record function.

The commands assigned to this name are interpreted immediately
following restoration of the context file at startup, thus
allowing "active'" commands such as SHOW or IBEX commands to be
included in saved context files. Note that any $CONTROL-functions
in the commands other than those that separate the commands must
use the $CONTROL-literal function to express the $CONTROL
identifier (e.g., the command SHOW STRING 'ZV(33)A' would be
specified for use in SINITIALIZE as °'SH STRING ''ZZV(33)A'''.

At startup, until the first editing command is given, 6Edit
remains in serial mode ($SCREEN EQ 0), using the window set in
M$6E (the default is ME, which uses UCO1). So, until the first
editing command that needs to build an editing window, any
operations that affect the building of windows will continue to
have an effect when the windows are finally built. For example,
$INITIALIZE can be used to move the IBEX window to the bottom of
the screen by setting it to

''LDEV UC98,POSITION=BOTTOM, WL=1ZR!'ADJUST M$6E UCO1’

The second command (!ADJUST M$6E UCO1) tells 6Edit to use all the
rest of the screen for editing, instead of its default, which is
"all-but-the-top-Line'.

Predefined Names
CE70-02 A-9

Table A-2. Predefined Names (cont)

Name Assignment Command and Description

$INSERT

EQUALS ON or OFF.

This name controls the insertion mode. Initially, the insertion
mode is disabled by its initial setting ($SINSERT EQUALS OFF). 1In
this case, the characters typed replace the characters beneath the
cursor, unless the cursor is at the end of the "insertion window"
established with the Escape > or Escape J functions. When the
insertion mode is enabled ($INSERT EQUALS ON), characters typed
are always inserted at the cursor location; they never replace
characters at the cursor.

Note that the insertion mode is also enabled with the Escape '
function, and disabled with either the Escape M or Escape 0
function.

$INTRO_1

EQUALS one or two tokens. The first may be a $KEY function. The
second, it present, must be a character.

The characters assigned to this name represent the primary
introducer for KEYIN names (IMP functions). Initially, 6Edit uses
the escape character <gESC> as the primary introducer.

$INTRO_2

EQUALS one or two tokens. The first may be a $KEY function. The
second, if present, must be a character.

The characters assigned to this name represent the secondary
introducer for KEYIN names (IMP functions). Initially, 6Edit
assumes noc secondary introducer. If your KEYIN names use a
secondary introducer, you must tell 6Edit (by setting $INTRO_2)
before you use the KEYIN command.

Predefined Names

A-10 CE70-02

Table A-2. Predefined Names (cont)

Name

Assignment Command and Description

$KEY_GENERATION

EQUALS BIN10, BINHLF, BIN521, or STRING.

This name specifies how the FEP is to generate keys for new
records inserted by means other than 6Edit's COPY or MOVE
commands. If $KEY_GENERATION is set to BIN10 (the default), the
key increment is divided by 10 repeatedly to find a usable
increment. For the 6Edit default key increment of 10, inserted
records would be separated by one of 10.000, 1.000, .100, .010, or
.001 whichever works first. 1If $KEY_GENERATION is set to BINHLF,
the key increment is halved repeatedly. For the key increment of
10, the inserted records would be separated by 10.000, 5.000,
2.500, 1.250, .625, etc. I1f SKEY_GENERATION is set to BIN521, the
key increment is divided by 5, 2.5, and 2, and is then repeated.
For the key increment of 10, the inserted records would be
separated by 10.000, 5.000, 2.000, 1.000, .500, .200, .100, etc.
If $KEY_GENERATION is set to STRING, insertion of new records is
not permitted. STRING overrides any specification for
string-keyed files.

In general, the BIN10 default may permit inserting a larger number
of records in the same spot than would BINHLF or BIN521. Those
values may be useful for inserting one or two records at a time
and will tend to have a more even distribution of key numbers, but
with more fractional keys.

SLEFTOVER

(You cannot assign value directly.)

Whenever the source data for a ccpy operation does not fit into
the destination block and $REKEY does not permit automatic
rekeying, some portion of a single record of the source data may
be saved as the value of the SLEFTOVER name. (6Edit does this
internally when such an error occurs.) 6Edit tells you that it
has stored some of the source data in $LEFTOVER. Once you have
corrected the original problem, you may use S$LEFTOVER as the
source for another copy operation.

When such an error occurs, either $LEFTOVER or $NOT_COPIED, or
both, may be set. 1If $LEFTOVER is set, the data contained therein
no Longer remains in the file. If $NOT_COPIED is set, it simply
refers to the location of the data that remains in the file.

CE70-02

Predefined Names

Table A-2. Predefined Names (cont)

Name

Assignment Command and Description

SMATCH_LIMIT

EQUALS a number.

The value assigned to this name specifies the maximum number of
records which the match of a pattern expression can span.
Initially, the value of $MATCH_LIMIT is 1; the entire pattern
expression must match data residing in, at most, one record. If,
for example, you were to set $SMATCH_LIMIT to three, then all
pattern expressions may match up to a three record span anywhere
in the enclosing block.

SMATCH_LIMIT Limits any $CONTROL pattern-match function except
$CONTROL-Record; $MATCH_LIMIT applies independently to each
pattern substring between any $CONTROL-Record functions.

When $MATCH_LIMIT is greater than 1, adjacent strings may match
the pattern even if the strings span a record boundary. For
instance, if the pattern is 'reports from this office" and the
file contains these strings split between two reccrds:

then the occurrence in the file is considered a match, even though
the pattern string contains a blank between "from'" and '"the",
while the occurrence in the file contains only a record boundary
there.

For example, consider the following pattern string:
‘abc’?det’
1f, when this is evaluated:

$MATCH_LIMIT = 1 - Both 'abc" and "def'" must be found in the same
record for a match to be found.

$SMATCH_LIMIT = 5 - '"abc'" must match in one record or two adjacent
ones, and ''def' must match in one record or two adjacent ones;

however, there may be up to three records between the '"a' record
and the "f'" record, so that the entire match spans five records.

A-12

Predefined Names

CE70-02

Table A-2. Predefined Names (cont)

Name

Assignment Command and Description

SMATCHES

(You cannot assign value directly.)

After each pattern search, 6Edit assigns a value to $MATCHES.

This value represents the number of matches found for patterns in
this evaluation of the block expression. Note that if a block
expression contains more than one pattern operand, the value
assigned to $MATCHES will be the sum of the matches found for both
patterns.

$MAX_COMMAND

EQUALS a number.

This name tells 6Edit how large to expand the command window when
it displays messages (i.e. error or HELP messages). The number
assigned to this name is the number of Lines on the terminal
screen of the largest command window. The minimum value is 1; the
maximum value is the height (in Lines) of your terminal screen.
Initially, $MAX_COMMAND is set to approximately half the height of
the terminal screen.

$MAX_RECORD

EQUALS a number between 0 and 2048, inclusive.

The value of this name is the maximum length, in bytes, of records
written to files in 6Edit. If you change a record, and its length
is greater than $MAX_RECORD, 6Edit truncates bytes from the end of
the record so that it is $MAX_RECORD bytes long. Initially,
$MAX_RECORD is set to 2048.

$MIN_COMMAND

EQUALS a number.

This name tells 6Edit how small to diminish the size of the
command window when you type commands, or when you are editing in
the editing window. The number assigned to this name is the
number of lines in the smallest command window. The minimum value
is 0; the maximum value is the height (in lines) of your terminal
screen. Initially, $MIN_COMMAND is set to 2.

CE70-02

Predefined Names

Table A-2. Predefined Names (cont)

Name

Assignment Command and Description

$MIN_RECORD

Equals a number between 0 and 2048, inclusive.

The value of this name is the minimum length, in bytes, of records
written to files by 6Edit. If you change a record, and its length
is less than $MIN _RECORD, 6Edit appends the value of the $PAD name
to the record repeatedly, until it is $SMIN_RECORD bytes Long.
Initially, $MIN_RECORD is set to 1. 1In this case, all records
will be at least 1 byte long.

$NOT_COPIED

(You cannot assign value directly.)

When the source data for a copy operation does not fit into the
destination block, the Location of some portion of the source data
may be saved as the $NOT_COPIED name. (6Edit does this internally
when such an error occurs.) $NOT_COPIED is a location name; it
does not hold the actual data, but rather remembers the location
of that part of the source block that was not copied to the
destination due to error. 6Edit tells you when it has saved the
locations of some of the source data in $NOT_COPIED. Once you
correct the original problem, you may use $NOT_COPIED as the
source for another copy operation.

When such an error occurs, either $LEFTOVER or $NOT_COPIED, or
both, may be set. If $LEFTOVER is set, the data contained therein
no tonger remains in the file. If $NOT_COPIED is set, it simply
refers to the location of the data that remains in the file.

$PAD
EQUALS a character string.
The value of this name is used to "pad" records which are shorter
than the minimum specified by $MIN_RECORD. The minimum length of
the value of $PAD is 1; the maximum length is 100. Initially,
$PAD is set to a single space character.
Predefined Names
A-14 CE70-02

Table A-2. Predefined Names (cont)

Name Assignment Command and Description

$SPOINT

EQUALS A0, BO, or EO

This name specifies the default file position option for block
expressions. AO (ALL OF, the default) causes the entire block to
be selected. For example, a SELECT clause may move the cursor to
the beginning of the block; END OF THAT would move it to the other
end. BO (BEGINNING OF) causes only the beginning of the block to
be selected; EO (END OF) causes only the end of the block to be
selected.

Note: $POINT must not be set to EO for commands such as SHOW
which select records by key, since EO RE is actually the beginning
of the record following the desired one.

$PROTECT

EQUALS PROTECT or DONT_PROTECT

This name controls the default protect status for files. $PROTECT
can be set to suit your particular usage of 6Edit. For example,
if you usually just read files without updating them (and want
them protected), setting $PROTECT to PROTECT allows you to open a
file with EDIT FILE filename instead of EDIT PROTECT FILE
filename. Conversely, if you usually update files rather than
just read them, setting $PROTECT to DONT_PROTECT (the default)
allows you to open a file with EDIT FILE filename instead of EDIT
DONT PROTECT FILE filename.

$RECORDS_DELETED

(You cannot assign value directly.)

After each DELETE, OVER, or MOVE command, 6Edit assigns a value to
$RECORDS_DELETED. This value represents the number of records
deleted from the file by the command. Note that only entire
records are counted; if only a portion of a record is deleted, it
witl not be included in the $RECORDS_DELETED value.

Predefined Names
CE70-02 A-15

Table A-2. Predefined Names (cont)

Name Assignment Command and Description

SRECORDS_INSERTED

(You cannot assign value directly.)

Following each AFTER or OVER command, 6Edit assigns a value to
$RECORDS_INSERTED. This vatue represents the number of new
records inserted into the file by the command.

SRECORDWRAP

EQUALS ON or OFF.

This name controls the record wrap mode. Initially, the record
wrap mode is disabled ($SRECORDWRAP EQUALS OFF). In this case, any
attempt to move the cursor beyond the ends of a record is ignored.
when the record wrap mode is enabled (SRECORDWRAP EQUALS ON), the
actions of following input editing functions are modified when the
cursor is in the editing window.

<ESC> <D> or <(CNTL-H>

(BS)

I1f the cursor is at the first position of a record, it will
move to just beyond the last position of the previous
record.

<ESC> <C> or <CNTL-R>
(bC2)
If the cursor is beyond the end of a record, it will move
to the first position of the next record.
<ESC> <V>
The search for the character typed after the <V> is not

Limited to the current record; however, it is lLimited to
the records currently displayed in the editing window.

<CNTL-W>
(ETB)

Moves to the next or previous word in the record or, if
necessary, in the next or previous record.

Predefined Names
A-16 CE70-02

Table A-2. Predefined Names (cont)

Name

Assignment Command and Description

$REKEY

EQUALS a number between 0 and 1000.

The value of this name controls automatic rekeying of the file.

If $REKEY is set to zero, 6Edit never automatically rekeys the
file. 1If SREKEY is greater than zero, 6Edit tries to rekey as
small a range up to its value in first the forward direction and
then backwards as will permit the rekeyed records plus the
inserted ones to be separated by the current increment value (from
a BY clause in the command, or the $BY predefined name). If
neither direction is successful, the entire file is rekeyed
instead. (No attempt is made to find a combination of forward and
backward records.) Sometimes, if the number of records involved
is small, a smaller increment is used. The initial value is 100.

$RESTORE

EQUALS a character string.

The string assigned to this name is an IBEX command. The IBEX
command should not begin with an exclamation character (!). When
6Edit exits, the current value of $RESTORE is passed to IBEX to
execute. Usually, this IBEX command causes your normal terminal
environment to be restored. IBEX commands used frequently are the
IMP command, to process an IMP source or object file, and the XEQ
command, to perform several functions. If $RESTORE has no value
assigned to it, (e.g., $RESTORE EQUALS ''), then no such action is
taken when 6Edit exits.

$SCREEN

EQUALS ON, OFF, or an integer.

This name controts the size of the editing screen. Setting
$SCREEN to O (OFF) requests serial editing by removing from the
screen all editing windows. At startup, 6Edit sets $SCREEN OFF if
the user is operating in batch mode or if the user's terminal
profile indicates that screen editing is impossible. For an
online CRT user running with $SCREEN OFF, setting $SCREEN to ON
(or 1) restores the terminal to screen editing with editing
windows in the same proportions as before. The size of the IBEX
window can be increased (from 1 line) by setting $SCREEN.

CE70-02

Predefined Names
A-17

Table A-2. Predefined Names (cont)

Name Assignment Command and Description
See Section 2, Serial Editing, for more information. If screen
editing is not possible, $SCREEN may only be set to 0.

$SCROLL
EQUALS ON or OFF.
This name controls scrolling in the command window. The default
is ON. With scrolling on, consecutive entries in the command
window are scrolled upward. With scrolling off, the asterisk (%)
prompt remains at the top of the command window; consecutive
entries are cleared when they reach the editing lLine. OFF is
particularlty useful on terminals where scrolling windows that do
not extend to the bottom of the screen are awkward.

$SITES
(You cannot assign value directly.)
After each command, 6Edit assigns a value to $SITES. This value
represents the number of blocks found during evaluation of the
command. If the command did not include the REPEAT keyword, the
$SITES will be set to either 0 or 1; only if REPEAT is used will
$SITES be greater than 1.

$SKIP

EQUALS a number from 0 to 131071.

This name specifies the number of times to repeat some relative
movement of the file pointer within the specified block. The
value assigned to $SKIP is used if no SKIP option is present in
the PATTERN, POSITION, or RECORD block operands. The default is
zero.

Predef ined Names

CE70-02

Table A-2. Predefined Names (cont)

Name Assignment Command and Description

$STRIP_BLANKS

EQUALS ON or OFF.

This name controls the stripping of trailing blanks from records
written by 6Edit. 1f you change a record and $STRIP_BLANKS is set
to ON, any space characters at the end of the record (which are
not followed by any non-space characters) are removed from the
record. Initially, $STRIP_BLANKS is set ON.

STEXTEDIT

EQUALS ON or OFF.

This name controls the spacing between words when joining or
splitting text lines. With $TEXTEDIT ON, a blank space is
automatically added between words (the last word of the first line
and the first word of the next Line) when joining two lines. When
splitting a Line at the blank space before a word, the blank is
automatically removed so that the new (next) line starts with the
word, not the blank. The default is OFF.

$VSCROLL

EQUALS a number between 0 and the length of the screen, inclusive.
The number assigned to this name specifies how many Lines to
scrolt the editing window when trying to move the cursor into a
vertical scrolling margin.

When you reset $VSCROLL to 0O, 6Edit scrolls the editing window so
that the record in which the cursor lies is at the center of the
editing window. Initiatly, $VSCROLL is set to 0.

$VSCROLL_MARGIN

EQUALS a number between O and half the length of the screen,
inclusive.
The number assigned to this name specifies the number of Llines in

Predefined Names
CE70-02 A-19

Table A-2. Predefined Names (cont)

Name Assignment Command and Description

the vertical scrolling margins. A designated number of lines
represents these margins at the top and bottom of the editing
window. When you try to move the cursor into one of these
margins, the window scrolls in the opposite direction; the cursor
will not remain in the vertical scrolling margin.

Setting $VSCROLL_MARGIN to a particular number of Lines forces the
window to scroll when the cursor reaches the designated lLine, for
example the sixth Line from the top or the bottom when
$VSCROLL_MARGIN is set to 6. Initially, $VSCROLL_MARGIN is set to
approximately 257 of the height of the editing window.

$WI_BORDER

EQUALS any single character.

This name specifies the character used for the border that divides
the command and editing windows. The hyphen (-) is the default.
$WI_BORDER should be used in a context file, or set before any
editing commands are used in a 6Edit session. If set to a null
string (''), no border is used. This is useful with SMIN_COMMAN
EQ@ 0, which then altlows the entire screen to be used for editing.
(If a PC is being used, this also lets the PC Terminal Facility
save lLines that scroll off the top in its history buffer.)

$WI_PERCENT

EQUALS a number from 1 to 99.

The value assigned to this name is used in creation of windows.
Rather than specifying the size of the new window to create, this
name specifies the percentage of space remaining in the old
window. For example, to create three even-sized windows in a
21-line editing space using the LINES option, "NE WI;NE WI LI
14;NE WI L1 7" would be used (presuming that no editing windows
existed previously). Using the PERCENT option, '"NE WI;NE WI 67;NE
W1 33" would be used; but using the defaults, '"$WI_PERCENT EQ
33;NE WI;NE WI;NE WI" would suffice. The default for $WI_PERCENT
is 50.

Predefined Names
A-20 CE70-02

Table A-2. Predefined Names (cont)

Name

Assignment Command and Description

$WORDWRAP

EQUALS a number between 0 and 254, inclusive.
The number assigned to this name specifies the right margin for
the "wordwrap mode." A value greater than 11 implements the

wordwrap mode. The wordwrap mode removes a word which crosses the

right margin from its original record, and replaces it at the
beginning of a newly-inserted record. To discontinue the wordwr
mode, set $WORDWRAP to any value between 0 and 11.

Note that you can also use the Escape ~ function to control the

ap

wordwrap mode. Move the cursor to the intended right margin, and

type <ESC> <”>, To discontinue this wordwrap mode, repeat this
sequence, positioning the cursor at the beginning of the record.

The wordwrap mode allows you to enter textual material without

concern with line length. As you type the text, 6Edit only allows

you to type as far as the right margin. When you cross that
margin, the system automatically begins a new record. If a word
crosses the right margin, it moves that word to the new record
also. You may thus type without ever touching the Return key.
Initially, the $WORDWRAP mode is disabled.

ANY

(You cannot assign value.)
This is a predefined constant; the value is always 3.

AO

(You cannot assign value.)
This is a predefined constant; the value is always 1.

BACKWARD

(You cannot assign value.)
This is a predefined constant; the value is always 2.

CE70-02

Predefined Names

A-21

Table A-2. Predefined Names (cont)

Name Assignment Command and Description

BIN10

(You cannot assign value.)
This is a predefined constant; the value is always 4.

BINHLF

(You cannot assign value.)

This is a predefined constant; the value is always 5.
BINS521

(You cannot assign value.)

This is a predefined constant; the value is always 6.
BO

(You cannot assign value.)

This is a predefined constant; the value is always 2.
CURRENT

(You cannot assign value directly.)

This name points to the current edit block. You set it using the
EDIT command, and use it when block expressions specify no
explicit enclosing block. You can use CURRENT to refer to the
entire edit block for movement, data selection, etc. (See Section
5, Block Expressions in 6Edit.) 6Edit accepts the "CURR"
abbreviation.

DONT_PROTECT

(You cannot assign value.)
This is a predefined constant; the value is always 2.

Predefined Names
A-22 CE70-02

Table A-2. Predefined Names (cont)

Name Assignment Command and Description
EO

(You cannot assign value.)

This is a predefined constant; the value is always 3.
FORWARD

(You cannot assign value.)

This is a predefined constant; the value is always 1.
HERE

(You cannot assign value directly.)

HERE points to the current location of 6Edit's file pointer.

6Edit updates the value of HERE automatically after performing

each editing command.
NEW

(You cannot assign value.)

This is a predefined constant; the value is always 1.
OFF

(You cannot assign value.)

This is a predefined constant; the value is always O.
OLD

(You cannot assign value.)

This is a predefined constant; the value is always 2.

CE70-02

Predefined Names

Table A-2. Predefined Names (cont)

Name Assignment Command and Description

ON
(You cannot assign value.)
This is a predefined constant; the value is always 1.

PROTECT
(You cannot assign value.)
This is a predefined constant; the value is always 1.

STRING
(You cannot assign value.)
This is a predefined constant; the value is always 7.

THAT
(You cannot assign value directly.)
This name points to the current selected block, the block operated
on by the last editing command. 6Edit updates the value of this
name automatically after each editing command. 1If the last
editing command deleted its operand, THAT points to the empty
block where the deleted operand resided. This empty block can
then be used as the destination of a new insertion replacing the
deleted operand.

Predefined Names
A-24 CE70-02

Appendix B

Predefined String Functions

This appendix lLists the string functions supported by 6Edit and their
descriptions. (See Section 4, String Expressions, for more information on
string expressions.)

Table B-1. String Functions

Name Description

$ABS(expression)
Returns the absolute value of the expression. The expression must
be numeric.

$ACCT

Returns the account portion of the current Logon.

$CMDVAR(command_var iable_name)

Returns the value of a command variable defined in IBEX with !'LET,
which is compatible with the variables defined in 6Edit with
EQUALS. $CMDVAR(command_var iabte_name) allows access to the

" values of variables defined in IBEX just as %command_var iable_name

is used in IBEX.

$CNTL(expression)

Returns the expression string as though the control key had been
depressed. For example, $CNTL('[W') is equivalent to
<ESC>| I<CNTL-W>.

CE70-02

Predefined String Functions
B-1

Table B-1. String Functions (cont)

Name Description

$DATE
Returns the date in the form YYMMDD. An optional parameter
TYPE="type' may be supplied. The 'type' expression may be EXT,
ANS, or LOCAL. For example:
'OUTPUT $DATE (TYPE='ANS')
841203
'OQUTPUT $DATE (TYPE='EXT')
DEC 03 '84
'OUTPUT $DATE (TYPE='LOCAL"')
12/03/84

$DAY
Returns SUN, MON, TUE, WED, THU, FRI, or SAT.

$DIR
Returns the current directory account.

SEOF
Returns 1 if an end-of-file has been encountered on MSUC. Returns
0 otherwise.

$FID_ASN(expression)
Expression is evaluated to a string that is treated as a file
name. $FID_ASN performs a call to M$FID, but does not try to OPEN
the FID. If the M$FID call was successful, the assignment type
(ASN) is returned. Examples are FILE, DEVICE, and COMGROUP. If
the file does not exist or cannot be accessed, then an error
message is displayed, and the command is aborted.

B-2

Predetined St