
[1 r= .. ' . '.-. ..,. _n.' ---,
~[========--== - - '---,. -------',
[. _.. -'._' _. - . -' I

CP-6
DELTA
REFERENCE
MANUAL

[
c~= .-,' .. -.. -'-.'. ' .. _-..... -,

I
r:::=
[

SUBJECT

CP-6

DELTA REFERENCE MANUAL

Description of the DELTA, Debugger for Programs Produced by
Non-interpretive Language Processors

SOFTWARE SUPPORTED

DELTA COO on Operating System COO.

ORDER NUMBER

CE39-03 March 1985

Honeywell

PREFACE

This manual is a reference document for DELTA, the Honeywel I CP-6 universal debugger.
DELTA is the debugger used for al I programs produced by non-interpretive language
processors (those that produce code which is LINKed and stored).

This reference describes in encyclopedic fashion the language elements, commands and
features of DELTA. It is intended for use by:

o The experienced system programmer.

o The application programmer who is already fami liar with DELTA. It is assumed that
this reader has read the DELTA appendix contained in the appropriate programming
language manual (e.g., the CP-6 COBOL or FORTRAN Programmer Guide .or the CP-6 RPG
Reference Manual).

The Los Angeles Development Center (L.A.D.C.) of Honeywell Information Systems Inc. has
developed Computer Aided Publications (CAP). CAP is an advanced document processing
system providing automatic table of contents, automatic indexing, format control,
integrated text and graphics, and other features. This manual is a product of CP-6 CAP.

Readers of this document may report errors or suggest changes through a STAR on the CP-6
STARLOG system. Prompt response is made to any STAR against a CP-6 manual, and changes
wi I I be incorporated into subsequent releases and/or revisions of the manuals.

The information in this pUblication is believed to be accurate in al I respects.
Honeywel I Information Systems cannot assume responsibility for any consequences
resulting from unauthorized use thereof. The information contained herein is subject to
change. New editions of this publication may be issued to incorporate such changes.

The information and specifications in this document are subject to change without notice. This
document contains information about Honeywell products or services that may not be available
outside the United States. Consqlt your Honeywell Marketing Representative.

©Honeywell Information Systems Inc., 1985 File No.: 1 W13, 1 W23

i i PREFACE

CE39-03

CE39-03

Table of Contents

Sect ion 1. Int roduct ion
External Debugging
Languages Supported
Capabilities Summary

Debugging Mode
ANLZ Mode
RUM Mode

Summary of Commands
Stored Commands .

Conditional Execution
Attached Commands
Immediate Commands
Toggle Commands
Invoking DELTA•...

Initiating A Program with DELTA Associated
Post Association of DELTA
No Run Unit Associated .
Programmed Association of DELTA
Communications with DELTA

Section 2. Prerequisite Information
Symbolic Addressing

Resolving A Symbolic Reference
Symbolic Location Names

Scalars
Structures
Elementary Item
Ar ray
Pointer
Variable

Symbolic Position Names
Node
External Compi Ie Unit
Internal Program Unit
Entry Name ..••....
Statement Label
Statement Number
SUbstatement
Offset
Format For Position .•.

Symbolic Address Qualification
Pointer Qualified References ..
Descriptor Qual ified References

Section 3. Housekeeping Commands
Input/Output Control Commands

ECHO Command . • . •
PROMPT Command •
READ Command
OUTPUT Command
COpy Command
EOM Command
SYNTAX Command •.. .

Addressing and Symbol Control Commands
SCHEMA Command
USE NODE Command
ALTERNATE VARIABLES Command

CE39-03 Table of Contents

1-1
1-1
1-2
1-2
1-2
1-3
1-3
1-3
1-6
1-7
1-8
1-8
1-8
1-15
1-16
1-16
1-17
1-17
1-17
2-1
2-1
2-1
2-1
2-1
2-1
2-2
2-2
2-2
2-2
2-2
2-2
2-2
2-3
2-3
2-3
2-3
2-3
2-3
2-3
2-4
2-5
2-6
3-1
3-1
3-2
3-2
3-2
3-3
3-4

.3-5
3-5
3-7
3-7
3-8
3-9

iii

FORMAT Command
DEFINE Command
RANGE Command
REPORT Command

Stored Command Management Commands
KILL/SHOW Command
SILENT/UNSILENT Command
ACTIVE/INACTIVE Command
UPDATE Closed Form Command
UPDATE Open Form Command
SAVE Command
DO Command

Fault and Trap Control Commands
KEEP/TRAP/IGNORE Command
ON EXIT/ON ABORT Command

Miscellaneous Housekeeping Commands
BYPASS Command
PROTECT Command
SAD Command

Se6tion 4. Execution Control
Procedure Breakpoint Commands

AT Command
ON NODE. ON NODES Commands
ON CALL. ON CALLS Commands

Data Breakpoint Command
" WHEN Command

Transfer of Control Commands
GO Command
BREAK Command
GOTRAP Command

Procedure Stepping Commands
STEP Command
STEP BY Command
STEP ONE CALL Command
GOSTEP Command
GOTRAPSTEP Command . .

Special Purpose Execution Commands
XCON Command
EXIT Command
ALIB Command
UNSHARE Command

Section 5. Execution Tracing
TRACE Command
HISTORY Command
PLUGH Command

Section 6. Memory Display and Modification
Variable Oriented Commands

DISPLAY Command
LET Command:

Word Oriented Commands
EVALUATE Command
MODIFY Open Form Command
End-of-Message Characters (EOM)
MODIFY Closed Form Command
DUMP Command
FIND Command
STORE Command
PMD Command ...•....

Section 7. Mode Control Commands
RUM Command
ANLZ Command

Section 8. Miscellaneous Commands
UNFID Command
XEQ Command
LIST Command
HELP Command

iv Table of Contents

."

3-10
3-11
3-12
3-12
3-14
3-14
3-17
3-17
3-18
3-18
3-19
3-19
3-20
3-20
3-23
3-23
3-24
3-24
3-24
4-1
4-1
4-2
4-3
4-4
4-5
4-5
4-7
4-7
4-8
4-8
4-9
"4-9
4-10
4-11
4-11
4-12
4-12
4-12
4-13
4-13
4-14
5-1
5-1
5-2
5-3
6-1
6-1
6-1
6-4
6-5
6-6
6-7
6-8
6-11
6-12
6-13
6-16
6-16
7-1
7-1
7-2
8-1
a.:-1
8-1
8-2
8-2

CE39-03

END/QUIT Commands
Section 9. Debugging FEP Programs

Debugging Forms Programs
Associating DELTA at Program Invocation
TP Station Debug Command
DEBUG Command
Post-associating DELTA

Debugging DCB-Connected FEP Programs
Post Association of DELTA

Debugging a Specified SYSID on a Specified FEP
DEBUG Command

WAIT Command
STOP Command
USE Command
Defaults when Debugging FEP Programs
Existing Command Changes
Distinguished Names

System Areas
Appendix A. Distinguished Names

Program Visible Descriptors
XDELTA and ANLZ Only
RUM Mode Only
System Areas
Command Work Areas
Patching Symbols

Appendix B. Assembler Instruction Formats for Patching

Tables:

Table 1-1.
Table 1-2.
Table 1-3.
Table 1-4.
Table 1-5.
Table 1-6.
Table 1-7.
Table 2-1.
Table 3-1.
Table 3-2.
Table 3-3.
Table 3-4.
Table 5-1.
Table 6-1.

CE39-03

DELTA Commands
Housekeeping Commands .. .
Execution Control Commands.
Execution Tracing Commands.
Memory Display and Modification Commands.
Mode Control Commands
Miscellaneous Commands
Summary of Symbolic Qualification .. .
Format Specifiers
Keywords Used with KILL and SHOW
Exceptional Condition Types By Category
FEP Exceptional Condition Types.
TRACE Transfer Types
EOM Characters and Sub-commands

Table of Contents

8-3
9-1
9-1
9-1
9-1
9-2
9-2
9-3
9-3
9-4
9-4
9-4
9-5
9-5
9-6
9-6
9-6
9-7
A-1
A-1
A-2
A-3
A-3
A-3
A-4
B-1

1-3
1-8
1-11
1-13
1-13
1-14
1-15
2-4
3-10
3-14
3-21
3-21
5-2
6-8

v

About this Manual

The contents of this manual are grouped into the following nine sections and two
appendixes.

Section 1. Introduction

o Introduces DELTA. and the repertoire of DELTA commands.

Section 2. Prerequisite Information

o Defines DELTA-specific terms and describes the conventions used in the syntax of
DELTA commands.

Section 3 Through 8

o Each section explains one of the six functional use categories and its commands.

Section 9

o Explains how to debug programs running in the FEP.

Appendix A. DELTA Distinguished Names

o Identifies and explains the hardware or system oriented entities that have been
assigned names which may be in the syntactical components of several of DELTA's
commands.

Appendix B. Assembler Instruction Formats for Patching

o Identifies and explains the exceptions to the, standard GMAP6 instruction format for
1-word instructions.

vi i About this Manual CE39-03

Notation Conventions

Notation conventions used in format specifications and examples throughout this manual
are listed below.

Notation Conventions Table

Notation Description

Lower-case Letters

Lower-case letters indicate that the element is a variable. to be
replaced with the desired value.

CAPITAL LETTERS

Brackets

Braces

CE39-03

Capital letters indicate a literal. to be entered as shown.

An element inside brackets is optional. If elements are stacked
vertically within brackets. the elements may be omitted or one of them
may be entered. The brackets may be elongated to contain the stack of
elements. or may be represented by vertically-stacked printed
brackets. For example. the notation

[DISK]
[TAPE]

means that the user may omit this entry, or may enter DISK. or may
enter TAPE. When used to enclose keywords. brackets signify that the
bracketed portion may be omitted. or truncated at any point. For
example. the notation K[EY] means that the user may enter K. KE, or
KEY.

Elements stacked inside a pair of braces identify a required choice.

means that either a value for id or the
word ALL must be entered.

Alternatively. the vertical OR bar is used to separate the choices,
. thus: I idlALLI

Notation Conventions ix

x

Notation Conventions Table (cant.)

Notation Description

Horizontal Ellipsis

The horizontal ellipsis indicates that a previous bracketed element
may be repeated, or that elements have been omitted.

attachment[;attachment] ... means that one or more
attachments may be entered, with a semicolon inserted
between each attachment.

Numbers/Special Characters

Numbers that are not part of a parameter name, special symbols, and
punctuation marks other than brackets, braces and underlines appear as
shown 'in output messages and must be entered as shown when input.

\f means that a format specifier (f) must be
preceded by a \ character.

Notation Conventions CE39-03

Section 1

In trod nction

DELTA is the Universal Debugger for CP-6 programs. It is a special shared processor
that, when invoked by a user, adds a system level dimension to the user's domain. This
dimension includes levels of logic with a precise understanding of the programming,
object, and machine languages. When invoked on behalf of a user, DELTA assumes both the
user's identity and privilege levels.

DELTA is driven by a set of English-I ike statements col led commands. These commands may
be presented to DELTA directly through an interactive terminal or interspersed with IBEX
commands in a batch job stream. In either case, DELTA translates the commands into the
language of that execution level which is capable of carrying them out. Using DELTA,
the user may:

o Conduct debugging sessions in the interactive or botch modes.

o Apply permanent patches to a run unit.

o Obtain current or post-mortem dumps of portions of a run unit.

o Examine the executing monitor.

o Examine any executing domain of the system.

External Debugging
DELTA is an external debugger. It does not increase the size of the executing run unit.
Although it is associated with the run unit, it is completely independent of it. This
is possible because:

1. A standard CP-6 language processor:

o Outputs a compi Ie unit containing processing instructions, data definitions and
linkage declarations.

o Outputs a highly encoded information map col led a debug schema which defines the
symbol ic names given to al I internal procedure labels, data names and external
linkage names. The encoded schema defines the size, attributes and hierarchical
shapes of 01 I data names and any name scoping rules which apply either to block
structured compi Ie units or those which define variables in local, global or
common sets. If the language processor permits nesting of subordinate procedure
constructs (internal procedures), their hierarchical shapes are also encoded
i~to the schema. The schema is stored along with the compi Ie unit in a common
f i Ie.

2. The LINK processor:

o Links the individual compile units into the run unit, updates the debug schema
from each compi Ie unit to reflect the actual assignment of addresses, and writes
all of the debug schema into the run unit file along with the program image.

3. The mon ito r:

o Relays to DELTA any trap or fault occurring during execution of the run unit.

CE39-03 External Debugging 1-1

o Relays to DELTA any exceptional condition which the run unit is not programmed
to handle.

4. DELTA:

o Uses the debug schema to resolve symbolic references.

o Acts as an interface between the user, the run unit, and the monitor.

Languages Supported
DELTA may be used to debug programs produced by:

o COBOL/COBOL-E

o FORTRAN

o PL-6

o RPGII

o GMAP6

o FPL

o Any language processor that produces code acceptable to the CP-6 LINK processor with
or without debug schema information.

Program units produced by any of these language processors may be freely mixed, linked
into a single run unit, and debugged under DELTA.

Capabil iti~s Summary
DELTA may be executed in three major modes of operation. These are:

1. The Debugging Mode

2. The ANLZ Mode

3. The RUM (Run Unit Modification) Mode

Debugging Mode
DELTA allows debugging at the level of complexity that best suits the user's needs: at
the source language level or at the machine language level.

Debugging at the source language level is accomplished using the terms and constructs of
the language in which a particular program unit was written. Debugging at the machine
language level is accomplished by using assembler mnemonics and special symbols. These
two levels are not mutually exclusive; they may be used simultaneously. During a
debugging session, program entities can be referred to using the terminology of either
or both levels.

The fol lowing is a summary of the major capabilities.provided by the debugging mode of
DELTA. During a debugging session the user may:

o Refer to the elements of the run unit as named in the source program. Using these
names, the user may display and modify these program elements before, during and
after program execution.

o Determine the memory addresses of symbolic procedure and data names.

1-2 Debugging Mode CE39-03

o Trace and record the flow of control of the executing run unit at several levels:
on al I entry points, on specified entry points, on al I transfer points, or on
specific locations. A history mode may be set such that trace information is saved
for examination at a later time.

o Cause the flow of control to be conditionally or unconditionally altered based upon
observation of the run unit in execution. Program execution may be interrupted at
any time (using the break key) to al low interaction with DELTA.

o Search both procedure and data space for the occurrence of specific bit patterns
within words of memory. A search may optionally be conducted under control of a
mask and selective substitution may be performed under mask.

o Obtain snapshot or post-mortem dumps. Snapshot dumps may be taken at any time
during a debugging session. Post-mortem dumps may be conditionally or
unconditionally obtained by placing the proper command in the IBEX command stream
for jobs executed in the batch mode in either the test or production environment.
It is also possible for a run unit to associate DELTA programmatically within the
exceptional condition handling routines, and to specify activities to' be carried out
by DELTA.

ANLZ Mode
The ANLZ mode of DELTA may be invoked only by those users who have been granted
sufficient privi lege by the System Manager. The ANLZ mode, when invoked. extends the
visibility of DELTA to the internals of the CP-6 monitor itself. The user may observe
the running monitor in execution. modify its data and procedure and. in general. perform
any DELTA function which does not slow or halt system operation.

RUM Mode
By invoking the RUM mode of DELTA the user may:

o Permanently patch both the procedure and data of a run unit, primarily using the
assembly instruction mnemonics.

o Modify certain of the control information in the run unit's HEAD record.

o Cause DELTA to provide a listing of al I permanent patches.

Summary of Commands
Table 1-1 lists the entire repertoire of DELTA commands under the appropriate functional
categories and sub-categories.

Housekeeping

CE39-03

Input/Output Control:

COPY
ECHO
E~
OUTPUT
PR~PT
READ
REPORT
SYNTAX

Table 1-1. DELTA Commands

Summary of Commands 1-3

Table 1-1. DELTA Commands (cont.)

Fault and TRAP Control:

IGNORE
KEEP
ON ABORT
ON EXIT
TRAP

Addressing and Symbol Control:

ALTERNATE VAR
BYPASS
DEFINE
FORMAT
RANGE
SCHEMA
USE

Stored Command Management:

ACTIVE/INACTIVE
DO
KILL
SAVE
SHOW
SILENT/UNSILENT
UPDATE

Execution Control

1-4

Procedure Breakpoint:

AT
ON CALL(S)
ON NODE(S)

Data Breakpoint:

WHEN

Transfer of Control:

ALIB
BREAK
EXIT
GO
GO TRAP
UNSHARE
XCON

Procedure Stepping:

GO STEP
GO TRAP STEP
STEP

Summary of Commands CE39-03

Tab I e 1-1. DELTA Commands (cont.)

Execution Tracing

HISTORY
PLUGH
TRACE

Memory Display and Modification

Variable Oriented Commands:

DISPLAY
LET

Word Oriented Commands:

DUMP
EVALUATE
FIND
MODIFY
STORE

Post Mortem Dump:

PMD

Mode Control

ANLZ
RUM

Mi sce I I aneous

END
HELP
LIST
PROTECT
QUIT
SAD
UNFID
XEQ

A complete I ist of DELTA's commands with acceptable minimal abbreviations can be found
in Tables 1-2 through 1-7.

During a debugging session, the user may exercise almost total control over the
execution of his run unit through the AT, ON, and WHEN commands. These three commands
which are referred to as breakpoint commands are described in Section 4. The remainder
of the commands in DELTA's repertoire are complements to these three commands.

The commands issued to DELTA are acted upon at different times. Some are executed
immediately; others are stored for subsequent execution based upon some specific
occurrence, and some are executed in conjunction with those which have been stored.
DELTA commands can assume one or more of the fol lowing attributes:

CE39-03 Summary of Commands 1-5

1. Stored

2. Attached

3. Immediate

4. Toggled

Stored Commands
Stored commands are those which instruct DELTA to perform an action at some later time
based upon the arrival of the Instruction Counter at a specific location or upon the
occurrence of some specific event (the AT. ON. and WHEN commands primari Iy). When
issued. these commands are assigned an identification number (id) either by the user or
by DELTA (if the user does not), which is included in DELTA's report each time the
command is activated. Stored commands may have other'commands attached to them which
are to be executed whenever the stored command is activated.
General Syntax

A stored command and its attachments are issued in the form:

rid] [stored command][;attachment][;attachment] ... <CR>

The command line ends with a carriage return or end-of-record.

Commands can be continued onto a new line if the previous I ine ends with a semicolon and
the new line begins with an attachment.

Example:

10 AT READ-MASTER;DISPLAY NETPAY.GROSSPAY.DEDUCTIONS <RET>

The example includes the fol lowing elements:

1. The stored command AT READ-MASTER was assigned an id of 10 by the user. If a stored
command with the same id already exists. it wi II be replaced.

2. The single DISPLAY attachment will display three items (variables) within the user's
run unit: NETPAY. GROSSPAY. and DEDUCTIONS.

3. The semicolon (;)is used to separate attachments.

In the above example. the programmer directs DELTA to set a breakpoint at the location
"READ-MASTER" in the run unit. When the Instruction Counter reaches this location.
DELTA will report the breakpoint at the user's terminal and then display the requested
variables. If the programmer does not wish to interact with DELTA fol lowing the
display. the command should be written:

10 AT READ-MASTER;DISPLAY NETPAY.GROSSPAY.DEDUCTIONS;GO

With the command written in this form. DELTA wil I not stop after performing the display
but wil I cause the run unit to resume execution as though the breakpoint had not
occurred.

1-6 Stored Commands CE39-03

ConditionaL Execution
Format:

IF var logical_operator cons

Parameters:

var is any position or location reference. Position and location references are
described in Section 2.

logical_operator

EQ
>< <> NE
< LT
> GT
<= =< LE
>= => GE

is any of the fol lowing:

equal
not equal
less than
greater than
less than or equal
greater than or equal

cons is any literal: octal. decimal. bit or character.

Description:

AI I stored commands may be formed to specify varying levels of conditional execution by
using IF conditional. The IF conditional must be used as part of another command.

The value described by var is compared with the constant value. If the logical relation
is true. then the stored command is reported and its attachments executed (if the
condition was on a stored command). or the attachment is executed (if the condition was
on an attachment).

Specification of an IF condition is al lowed on almost al I DELTA commands. Specific
instances where the IF is not al lowed are noted in the description of the commands.

Taking into account the IF condition. the complete specification of stored commands is:

[id] stored_command [IF var logical_operator cons]

[;attachment [IF var logical_operator cons]

[;attachment [IF var logical_operator cons]] ••.]

Rules:

1. The operators =. >=. <=. etc .• cannot be entered from an online terminal unless
"KILL EOM" has been specified.

Example:

20 AT ROUTINE10 IF NET_PAY EQ 0; DISPLAY DEDUCTIONS;
DUMP PAY_RECORD.20; GO

In this example. IF specifies conditional execution. When the ROUTINE10 breakpoint is
reached. NETPAY wil I be examined to determine if its value is zero. If its value is not
zero. DELTA will not report to the user that ROUTINE10 has been reached nor will any of
the attachments be executed.

CE39-03 Conditional Execution 1-7

Attached Commands
Most DELTA commands may be issued as attachments to any stored commands. The exceptions
are STEP. XEQ. and al I stored commands.

Immediate Commands
A command (other than a stored command) assumes the immediate attribute whenever it is
issued in-I ine. In the interactive mode this occurs whenever DELTA has iss4ed its
prompt character. In the batch mode this occurs whenever DELTA reads a command.

Example:

In this context. DISPLAY is being used in an immediate way.

Toggle Commands
Certain of the commands in the housekeeping category set toggles within DELTA. These
toggles may be reset by the KILL command. Those commands which set toggles are
identified in Table 1-2 which is a functional summary of housekeeping commands. Tables
1-3 through 1-7 are functional summaries of the remaining five categories of DELTA
commands. In these tables the brackets [] are used to indicate the minimum
abbreviations al lowed for each command.

Table 1-2. Housekeeping Commands

Command Function

AC[TIVE]IIN[ACTIVE]

Activates or deactivates a single or a range of stored commands.

A[LTERNATE] V[ARIABLES]

BY[PASS]

C[OPY]

1-8

Specifies alternate debug schema to be searched when an unqualified
variable reference is not satisfied by searching the current schema.

Bypasses assembler program units during stepping. This command sets a
toggle within DELTA.

Causes DELTA output to be copied on the user terminal when the
specified destination for output is other than the user terminal. This
command sets a toggle within DELTA.

Toggle Commands CE39-03

Command

DE[FINE]

DO

EC[HO]

EO[M]

FO[RMAT]

Table 1-2. Housekeeping Commands (cont.)

Function

Associates a value or location with a symbol.

Executes the attachments to a stored command or a group of commands
identified by the SAVE command.

Causes input to be echoed to an output device when DELTA input is from
a device other than an on-line terminal. This command sets a toggle
within DELTA.

Set or reset special activation (end of message) character set. This
command sets a toggle within DELTA.

Specifies default format for MODIFY and EVALUATE display output.

KE[EP] I TRAP I IG[NORE]

K[ILL]

O[N] A[BORT]

O[N] E[XIT]

CE39-03

Direct DELTA's handling of asynchronous events and other exceptional
conditions.

Deactivates a toggle or removes a stored command or a range of stored
commands.

Specifies activities to occur upon abort.

Specifies activities to occur upon normal exit.

Toggle Commands 1-9

Command

OU[TPUT]

PRO[MPT]

RA[NGE]

R[EAD]

REP[ORT]

SAlVE]

SC[HEMA]

SH[OW]

Table 1-2. Housekeeping Commands (cont.)

Function

Specify destination for DELTA output.

Sets the DELTA prompt character (default is ».

Specify range of offsets from defined symbol to be used f~r position
reporting.

Causes DELTA to read other than the normal input stream.

Directs DELTA's formatting of position reporting.

Stores and remembers a single or a range of stored commands.

Activates or deactivates schema usage or sets "current" schema. This
command sets a toggle within DELTA.

Displays the status of toggled options, keyword options or a single or
range of stored commands and attachments.

SI[LENT]IUN[SILENT]

SY[NTAX]

1-10

Activates or deactivates the reporting of a single or a range of
stored commands.

AI lows specification of FORTRAN, COBOL, or PL-6 input syntax.

Toggle Commands CE39-03

Command

UP[DATE]

U[SE] N[ODE]

Command

ALI [B]

A[T]

B[REAK]

EX[IT]

G[O]

G[e] S[TEP]

CE39-03

Table 1-2. Housekeeping Commands (cont.)

Function

Updates stored commands or attachments of stored commands.

Activates schema(s) associated with a specific overlay node.

Table 1-3. Execution Control Commands

Function

Specifies return/altreturn from M$ALIB cal I to DELTA.

Sets an instruction breakpoint.

Passes control to user interrupt routine.

Exits from a run unit invoked by M$LINK and returns to the linking
program, or continues an M$LDTRC or M$SAVE.

Proceeds with program execution.

Goes to a specified location and executes one step.

Toggle Commands 1-11

Table 1-3. Execution Control Commands (cont.)

Command Function

G[O] T[RAP]

Passes control to user's event handling routine when DELTA has been
entered for an exceptional or asynchronous event.

G[O] T[RAP] ST[EP]

Same as GOTRAP except that one step is executed.

O[N] CrALL]

Sets breakpoints on a specific procedure cal I.

O[N] [X] C[AllS]

Sets breakpoints on all procedure cal Is. If X is specified, sets
breakpoints only on external procedure cal Is.

O[N] N[ODE]

Sets a breakpoint on a specific overlay.

O[N] N[ODES]

Sets breakpoints on 01 I overlays.

S[TEP]

Steps by statement or instruction.

UNSH[ARE]

Unshares an autoshared program and/or library so the user can have
execution control.

W[HEN]

Sets a data breakpoint.

XC[ON]

Passes control to the user's exit control procedure simulating an exit
condition.

1-12 Toggle Commands CE39-03

Table 1-4. Execution Tracing Commands

Command Function

H[ISTORY]

Displays contents of history buffer (fil led by TRACE).

PL[UGH]

(Acronym for "Procedure List Used to Get Here"). Traces back through
the automatic stack and I ists the return addresses leading to the
ar r i va I at the current procedure point.

T[RACE] T[RANSFERS]

Traces all transfer instructions.

T[RACE] [X] C[ALLS]

Command

D[ISPLAY]

DU[MP]

E[VALUATE]

CE39-03

Traces entry to al I procedures. If X is speci f i ed. trace entry to
external procedures only.

Table 1-5. Memory Display and Modification Commands

Function

Displays the value of a variable or the contents of an address.

Dumps a specified range of memory in octal or hexadecimal format.
Optionally al lows no suppression of duplicate lines. Optionally
provides ASCII translation.

Evaluates an expression and reports its value in a specified format.
Reports the address of a program entity by segment and offset.

Toggle Commands 1-13

Table 1-5. Memory Displa~ and Modification Commands (cont.)

Command function

F[IND]

Searches memory under mask and o~tional Iy substitutes under mask.

L[ET]

Changes the value of a variable or the contents of an address.

M[ODIFY]

Displays the contents of an address and optionally replaces it with
new contents.

PMD

Dumps specified portions of a program which terminates abnormally.

STO[RE]

Modifies a range of memory. Optionally performs the modification
under mask.

Table 1-S. Mode Control Commands

Command function

AN[LZ]

Associates the schemas for the CP-S Monitor, or associates the schema
from the specified file, and sets DELTA's domain of reference to that
of the runn i ng mon i tor, a specified system dump file, or the running
program.

RU[M]

Invokes the Run Unit Modification mode, optionally specifying the
number of buffers to use for faster I/O (up to 10, default is 5) .

1-14 Toggle Commands CE39-03

Table 1-7. Miscellaneous Commands

Command Function

EN[D] or O[UIT]

Uncond i tiona I I Y exits to the command processor.

HELP

Provides HELP via the HELP faci lity.

LI [ST]

Lists changes made during Run Unit Modification.

PROT[ECT]

Sets Protect mode (disal lows LET. MODIFY store).

SAD

Special Access Descriptor allows addressing through a Monitor
descriptor for pr iv i I eged users.

UNF[ID]

Performs M$UNFID on specified DCB.

X[EO]

Executes a GMAP6 assembler instruction.

Invoking DELTA
DELTA can be invoked by entry of any of the fol lowing commands:

IS[TART] fid U[NDER] DELTA
to start a program with DELTA associated.

I I DELTA
to associate DELTA with a running program at any time. or after
a program aborts.

I DELTA
to use DELTA in calculator mode (i.e .• no program associated).

IPMD
to perform post-mortem dumps.

CE39-03 Invoking DELTA 1..;..15

as explained in the following subsection.

DELTA may be entered at three times during the life of a program: as it starts
execution, during execution and after a program aborts. DELTA may also be cal led in
stand-alone mode, and at run-time by a user program via the M$ALIB monitor service. The
methods of invocation and uses are discussed below.

Initiating A Program with DELTA Associated
Most debugging sessions are begun by starting the program to be debugged under DELTA.
This is accomplished in two ways, both are commands in IBEX.

IS[TART] fid U[NDER] [DELTA]

This command brings a run unit named fid into memory and prepares it for execution.
DELTA is entered with the user program ready to run. DELTA prints the current value of
the instruction counter, the program start address. For example:

ISTART COBOLRU UNDER DELTA

DELTA B03 HERE IC = PROG:0 [ENTRY]

This method can be used online and in batch. The user may now use any of the DELTA
commands, or just say GO to begin execution. IC is the instruction counter and
indicates the address that is about to be executed.

If the user's program reads the invocation I ine from B$JIT.CCBUF or depends on IBEX to
impl icitly set DCBs, the start command should not be used. Instead the IBEX command U
may be used. The U implies the words UNDER DELTA on the next command I ine. For
example:

IU
IMYCOMP.ME ON OUFILE,LP (LS,OU)
DELTA B03 HERE IC = MAIN:0 [ENTRY]

In this case, the invocation I ine that is placed in B$JIT.CCBUF wi I I be the same as if
DELTA were not associated.

Post Association of DELTA
DELTA may be associated with a running program at any time. This is useful when a
program appears to be looping or is in a bad or unexpected state, and the user wants to
interrupt execution and see what the IC value is, or look at program variables. To
associate DELTA after the program has started, the user types CTRL Y. IBEX prompts with
a double bang (II). The user types DELTA to associate DELTA with the interrupted
program. When DELTA is associated, if the program is autoshared, the user should use
the UNSHARE command if any modification of procedure (including breakpoints) is to be
done. For example:

IMYPROG.

The program does not prompt as expected; a loop is suspected. The user enters
<CTRL><Y>.

I I DELTA
DELTA B03 HERE IC = INITVALS:54, •. 3 [ASSIGNMENT]

This method is only available online.

When a user program aborts. IBEX holds the image of the run unit in memory. The user
can associate DELTA with the image by typing DELTA immediately after the abort message.
For example:

1-16 Post Association of DELTA CE39-03

IMYPROG.
memory fault

lDELTA

(IBEX reports program abort due to
memory fault)

DELTA B03 HERE IC = SUBPR06:73 ••. 5 [INPUT/OUTPUT]

DELTA reports the IC value at the time of the fault. Any DELTA command can be issued.
and the program can be continued by the GO command.

No Run Unit Associated
DELTA can be entered alone. i.e .• with no program associated. This is sometimes
referred to as calculator mode. DELTA is usually used to evaluate expressions when
entered in stand-alone mode. although smal I programs in GMAP6 instruction format may be
entered. For example:

lDELTA
>DELTA B03 HERE - NO RU ASSOCIATED
>EV 250 +.13\U
= 261
>.101\C
='A •
>M .30 LDO 43.DL
>M .31 0
>GO .30

IPR fault 0 .31/0
>0 $O\U

$0=43

The procedure space avai lable to the user when DELTA is in the stand-alone mode extends
from location .20 to location .2000; locations .0 to .17 are reserved for use by DELTA.
KILL EOM is the default in stand-alone mode. To enable it. the user can use the EOM
command.

Programmed Association of DELTA
DELTA may also be associated by a running program via the M$ALIB monitor service cal I.
Using this service a command may be passed to DELTA for execution. This is useful to an
exceptional condition handl ing routine in a production program. If. for example. the
program has entered the XCON routine due to bad data in an input buffer. a DUMP command
may be passed to DELTA to print the offending buffer.

Communications with DELTA
DELTA uses the prompt character '>' when it is waiting for the user to enter a command
at the terminal. AI I commands should be ended with the <RETURN> key on the keyboard.

AI I commands. except for the open form of the MODIFY command. wil I error if ended with
<LINEFEED>. When <LINEFEED> is used with the open form of the MODIFY command. the next
memory cel I wil I be opened for modification.

By default. DELTA uses a special End-of-Message (EOM) character set. These are
characters which terminate the mode and activate DELTA. The complete list of DELTA EOM
characters includes T. <LINEFEED>. <TAB>. <RETURN>. [. I.]. I. /. and =. Most of the
special EOM characters are used only when debugging at the assembly or machine language
level. However.] and I. which have the same effect. are a shorthand for the STEP
command and are very convenient for stepping through a program. In order to enter any
of these characters without activation to DELTA. for instance in a character string
constant for the LET command. DELTA's special activation set must be turned off. This
is done with KILL EOM command. The EOM command turns the special activation set back
on. KILL EOM is the default for stand-alone mode.

CE39-03 Communications with DELTA 1-17

If a symbol nome is used that matches one of DELTA's special names, contains a period
and is not a PL-6 structure nome, contains a colon, or begins with on ., the symbol name
must be specified by enclosing it in quotes followed by on "5". For example:

'$JIT'S
, . LABEL '5

If DELTA is already associated, depressing the break key wil I couse the running program
to be interrupted. DELTA wi I I report the current IC position and prompt for input.

1-18 Communications with DELTA CE39-03

Section 2

Prerequisite Information

Symbol ic Addressing
A data name. statement label. statement number or any symbolic name assigned by using
the DEFINE command during a debugging session may be used as a symbolic memory
reference. When a symbolic memory reference is made. DELTA determines the actual memory
addresses associated with the symbol. The rules governing the formation of symbolic
names differ among the various programming languages. The symbolic name "X" could be an
external procedure name in PL-6. a file name in COBOL or an element of an array in
FORTRAN. For this reason. language processors place symbols which refer to data
addresses (data names) and those which refer to procedure addresses (statement labels,
statement numbers) in different tables within the schema, DELTA must therefore
determine which of these tables is to be searched when resolving a symbolic reference
into a memory address.

Resolving A Symbolic Reference

There are two classes of symbolic references:

1. A LOCATION REFERENCE refers to a memory address which contains data.

2. A POSITION REFERENCE refers to a memory address that contains an executable
instruction.

DELTA does not require any special user effort to distinguish these references. In some
cases, however, it is necessary to override DELTA's assumptions about a particular
symbolic reference. This is explained in the commentary on those commands where it
appl ies.

Symbofic Location Names

The fol lowing paragraphs will name and describe data entities as they are known to
DELTA. These names wil I be used throughout the remainder of this manual.

Scalars
A scalar is a single item of data, an element.

Structures
A structure is a hierarchical set of names that refers to an aggregate of data items
that may have different attributes. The various members of the structure may be further
identified through the assignment of member names. There are two kinds of structures:
major and subordinate.

A major structure exist's at the highest level of the data hierarchy. It is known as a
Level 1 structure to DELTA and is not viewed as being dependent or related to any other
data construct.

CE39-03 Structures 2-1

A subordinate structure exists at some lower level of the data hierarchy (meaning some
level number greater than 1) and is always contained within some structure with a level
number less than its own.

Elementary Item
An elementary item exists at the lowest level of the data hferarchy.

Array
An array is a contiguous. named series of data constructs al I ~f which have identical
sizes and characteristics. Because each data construct has the same name. they must be
referred to by their position within the array for unique reference. DELTA recognizes
al I forms of arrays exactly as they are declared by each of the CP-6 language
processors. The rules that govern subscripting and/or indexing in the language through
which the array was declared are recognized and honored by DELTA in any symbolic
location reference.

Pointer
A pointer is a location reference construct used to specify a particular address in
memory. There are several kinds of pointers. They wi II be discussed in later
paragraphs in the context to which they apply.

Variable
A variable is the name used in any general reference to al I of the data entities named
above. Wherever a distinction in their treatment by DELTA is important. they wi I I be
referred to by their proper names.

Symbolic Position Names

The fol lowing paragraphs name and describe procedure entities whose names may be used in
symbolic position references. They also identify those whose names may be used to
qualify both position and location references.

Node
A node is an element in an overlay structure. A node name is the highest level
qualifier that can be used in an address reference. Node applies only to overlaid
programs.

External Compile Unit
An external compile unit (ECU) is the unit of compi lation or assembly -- the input to
the LINK processor. An ECU name may be used to qualify both position and location
r~ferences. Note that the ECU name is that name defined within the procedure code and
not the name given to the object unit file in which it is stored.

2-2 External Compi Ie Unit CE39-03

Internal Program Unit
An internal program unit (IPU) is a logical block within an external compi Ie unit which
limits the scope of both procedure names and data names. An IPU name may be used to
qualify both position and location references.

Entry Name
An entry name is an externally known procedure location within an external compile unit.
There are primary entry names and secondary entry names. A primary entry name is one
which names an external compile unit. Both may be used to qualify position and location
references.

Statement LabeL
A statement label names a position within an ECU or IPU that may be used as the target
of a transfer of program flow.

Statement Number
A statement number is that number assigned by a language processor to each statement
that it translates into object code. DELTA recognizes statement numbers as valid,
symbolic position references.

Substatement
A substatement is a division of a statement.

Offset
An offset is the octal or word offset from the specified statement/substatement. When a
substatement is not specified, an offset must be preceded by two commas.

Format For Position
Position is used in the AT, GO, and GOSTEP commands and sometimes in the MODIFY command.
The format for position can be one of the fol lowing:

o [ECU]:statement number,substatement,offset

For the AT, GO, and GOSTEP commands, if ECU is omitted, the colon is optional. For
the MODIFY command, the colon is required. The offset may be specified in octal or
decimal. For example.

: 10,1 , .1

o ECUi:INTERNAL ENTRY, ... 1:label, sUbstatement. offset.

Label must be fully qualified by all INTERNAL ENTRIES necessary.

CE39-03 Format For Position 2-3

Example:

PROGNAME:PROCA:PROCB:LABEL1

o ECU + offset

PROGX+.54

o octal address

The octal address must be preceded by a period to be octal .

. 2004

Note:

1. 2004 wi I I be interpreted as:

a. statement 2004 if used with an AT, GO, or GOSTEP command

b. decimal location 2004 (octal location .3724) if used with any other command.

Symbolic Address Qualification

The fol lowing six levels of qualification may be required by DELTA to accurately resolve
a memory reference:

1. Domain (XDELTA only)

2. Node name (overlaid program only)

3. External compi Ie unit name (ECUNAME)

4. Internal program unit name (IPUNAME)

5. Major structure name (MS)

6. Subordinate structure name (SS)

Most qualification levels are summarized in Table 2-1.

Table 2-1. Summary of Symbolic Qualification

IQua I i fer How specified Example Default to: •
INODE NAME Use Command USE NODE ABLE Current Node
I
IECU Name of ECU ECUNAME: Current ECU
I
IIPU Name of IPU IPUNAME: Current IPU

IMS ··1 Name of MS MSNAME. No Default

Iss Name of SS MSNAME . SSNAME No Default

• For convenience DELTA recognizes what are termed the current node, current
external compile unit, and current internal program unit. They are determined by
the contents of the Instruction Counter at the time that the symbolic reference is
resolved. Note that position references are implied by a colon (:).

2-4 Symbolic Address Qualification CE39;...03

Table 2-1. Summary of Symbolic Qualification (cont.)

•• DELTA requires that al I symbol ic references to structures of a data hierarchy be
qualified with the name of each structure to which it is subordinate (e.g., to
qual ify to the level of an elementary item within a three-level structure:
MSNAME.SSNAME.VARIABLE).

Note that multiple levels of structure qualification are both al lowed and required
to whatever level the elementary item is embedded:

MSNAME.SSNAME.SSNAME.SSNAME.VARIABLE

LEVELS -> 2 3 4 5

Pointer Qualified References

A pointer qualified reference has the form:

pointer -> variable

where pointer is a memory word which contains the address (in pointer format) of an
entity in memory.

variable is a based structure, array or scalar (based variable).

If the based variable was declared with an implicit pointer, DELTA is aware of the
relationship between the pointer and the based variable and will automatically use the
implied pointer in resolving memory references. The implied association may be
overridden, however, by explicit pointer specification.

Assume that ARRAY 1 is an array of one dimension. It is a based variable with an implied
pointer cal led ARRAYPTR. Then:

Command

DISPLAY ARRAY 1 (3)

DISPLAY ARRAYPTR->ARRAY1(3)

DISPLAY BAS EPTR->ARRAY1 (3)

Explanation

Display the third element of the array
using ARRAYPTR to determine the address
of the array (implicit qualification).

Same. Qualification was unnecessary.

Display the third element of the array.
Use "BASEPTR" to determine the address
of the array (expl icit qual ification).

Multiple pointers may be used in a pointer qualified reference.

Example:

DISPLAY BASEPTR1->BASEPTR2->ARRAYPTR->ARRAY (3)

In this example:

1. BASEPTR1 contains the address of BASEPTR2.

2. BASEPTR2 contains the address of ARRAYPTR.

3. ARRAYPTR contains the address of ARRAY.

CE39-03 Pointer Qualified References 2-5

Notes:

1. Every pointer in a pointer qualified reference must be in pointer format.

Descriptor Qualified References

AI I descriptors which are visible to a run unit may also be used to qualify memory
references. Each of these descriptors is known to DELTA by a distinguished name and may
be used as a pointer in much the same manner as a pointer variable or constant. All of
the distinguished names known to DELTA are detai led in Appendix A. The more common ones
are I isted below.

Distinguished
Descriptor
Name Refers To:

$LS0 or $ISR Instruction Segment

$LS1 or $JIT Job Information Table (JIT)

$LS3 Read Only Segment

$LS4 or $DS1 Automatic Segment

$LS5 or $DS2 Common Segment

$LS6 or $DS3 Dynamic Data Segment 3

$LS7 or $DS4 Dynamic Data Segment 4

$LS8 or $DS5 Dynamic Data Segment 5

$LS9 or $DS6 Dynamic Data Segment 6

$LS10 or $DS7 Dynamic Data Segment 7

$LS11 or $DS8 Dynamic Data Segment 8

$LS12 Null Segment

Whenever descriptor qualification is used, the distinguished name of the descriptor must
be the leftmost qualifier in the memory reference.

Example:

Command

DISPLAY $ LS5->ARRAY 1 (3)

DISPLAY $ LS5->4->ARRAY1 (3)

2-6

Meaning

Display the third element
of ARRAY1. The base address
of the common segment is also
the base address of ARRAY1.

Display the third element of
ARRAY1. Use word 4 in the
common segment to determine
the address of ARRAY1.

Descriptor Qualified References CE39-03

DISPLAY $LS2->0->NEXT->MS.SS.ITEM Use word zero of the segment
described by Linkage Segment
Descriptor #2 to determine the
address 'of the based pointer
col led NEXT. Use NEXT to
determine the address of the
Major Structure called MS.
Display the elementary item
col led ITEM contained within
the Subordinate Structure SS.

CE39-03 Descriptor Qual ified References 2-7

Section 3

Housekeeping Commands

The commands discussed under this heading are those which influence the behavior of the
DELTA processor itself. Their purpose is to provide the greatest possible flexibility
in specifying the manner in which to communicate with DELTA, how DELTA is to communicate
with the user, how DELTA is to interact with a run unit and how DELTA is to deal with
both predictable and unpredictable events which occur during the execution of a run
uni t.

AI I of the commands in this category affect the way in which DELTA behaves. Some set
toggle switches which DELTA examines to determine whether or not a given activity is
enabled or disabled. Others override certain default assumptions which are
automatically established when DELTA is invoked. The default toggle settings and the
default assumptions are those which are normally specified by the user. It is therefore
quite probable that a debugging session can be conducted without using any of the
commands in this section.

Housekeeping commands are divided into the following categories:

o Input/Output control commands

o Addressing and symbol control commands

o Stored command management commands

o Fault and trap control commands

o Miscellaneous housekeeping commands

Input/Output Control Commands
The Input/Output control commands include the fol lowing:

ECHO, PROMPT, READ, OUTPUT, COPY, EOM, SYNTAX

Input/output control commands allow the user to specify alternatives to the default
assumptions for the following questions:

1. From where are DELTA's commands to be READ?

2. Where are DELTA's diagnostics, messages and displays to be written?

3. Should commands read from other than the primary input stream be "echoed" on the
output stream?

4. In an interactive session, if the output stream has been directed away from the
interactive terminal should DELTA's output also be written to the terminal?

5. What prompt character do you wish DELTA to use?

6. How are symbols, expressions, and structure references specified to DELTA?

CE39-03 Input/Output Control Commands 3-1

ECHO Command

Format:

EC[HO]

Description:

The user may specify that DELTA is to read its commands from some source other than the
default stream (see the READ command). The ECHO command 01 lows the user to see these
commands at the interactive terminal. When ECHO is in effect, 01 I input read by DELTA
from other than the interactive terminal is written to the M$DO DCB.

Usage Notes:

1. ECHO is a toggle command. It is reset by the command:

KILL ECHO

2. ECHO is the initial default.

PROMPT Command

Format:

PRO[MPT] char_string

Parameters:

char_string is the desired prompt character string, from 1 to 28 characters. If all
numeric characters or any non-alphanumeric are used, the entire string must be enclosed
in quotes.

Description:

This command allows the user to change DELTA's prompt character (» to another character
or string of characters.

READ Command

Format:

R[EAD] [fid[,rec]]

Parameters:

fid may be any valid CP-6 file identifier (fid). See the discussion on fids in the
Programmer Reference Manual (CE40). Specifying the fid ME resets the input to the
default command stream. When fid is a CP-6 managed file, the specification of a
starting record number is al lowed.

rec can be either a record sequence number or, if the file is an EDIT compatible,
keyed file, an EDIT line number. Specification of an EDIT line number must always
contain a decimal point with the exception of record number zero (0) which is assumed to
be edit line number 0.000.

3-2 READ Command CE39-03

Description:

Unless directed otherwise, DELTA reads from the normal program command stream. This is
the interactive terminal during on-line sessions, the input job command stream when in
batch, or the file of command input specified by the IBEX XEQ command in either
situation. The DCB used by DELTA for reading its input is M$DELTA, one of the reserved
system DCBs. A user program cannot affect this DCB; however, a user can direct DELTA's
input stream prior to entry to DELTA through the IBEX SET command. Once DELTA is in
control, DELTA's input stream may be re-directed by use of the READ command.

Example:

Directive Explanation

READ MYFILENAME Read from the file MYFILENAME starting with
the first record.

READ DPIJRC/JEFFILE,5 Read from the file JEFFILE contained on
IJRC beginning with the fifth record.

READ EFILE,6. Read from the EDIT compatible file EFILE
beginning with line number 6.000.

READ ME Read from the default command input stream.

Usage Notes:

1. Upon reaching end-of-file or upon the occurrence of any unusual condition whi Ie
reading, DELTA resets its input to the default command stream.

2. Operationally, the READ command acts as a SET command on DELTA's input DCB. It does
not cause the initigtion of any read operations; it simply alters the source of
input for the next time that DELTA reads a command.

3. When an EDIT key is specified but is found not to exist, DELTA begins reading at the
fol lowing record.

4. If fid is not specified, DELTA defaults to READ UC.

OUTPUT Command

Format:

OU[TPUT] [[ONITOIOVERIINTO] fid]

Parameters:

[ONITOIOVERIINTO]
the fid.

determines the disposition of an existing fi Ie of the same name as

f i dis a va lid f i lei den t i fie r.

Description:

DELTA'S output is always written through the M$DO DCB. The default destination differs
depending upon whether the session is conducted on-line or off-line. The default
destination for an on-line session is the user's terminal; for a batch session it is the
line printer at the user's workstation of origin. The OUTPUT command overrides these
defaults.

CE39-03 OUTPUT Command 3-3

Example:

Command

OUTPUT ON MYFILENAME

OUTPUT OVER MYFILENAME

OUTPUT INTO MYFILENAME

Usage Notes:

Explanation

Write DELTA output on a new file
called MYFILENAME.

Overwrite the old file cal led MYFILENAME with
DELTA output.

Extend the old fi Ie called MYFILENAME
with DELTA output.

1. The ON or TO option wil I cause an error if the fid references a fi Ie which already
exists. The OVER option wi I I cause the file to be overwritten if the fid references
a fi Ie which already exists. The INTO option wil I cause the file to be extended if
the fid references a file which already exists. In all cases, if the fid references
a fi Ie and the file does not exist, it will be created. If none of ON/TO/OVER/INTO
are specified, the default is ON.

2. DELTA does not exercise complete control over the M$DO DCB. The connection of the
DCB may be changed by:

o Using the IBEX SET command.

o Using the M$OPEN or M$CLOSE monitor service in the program
being debugged.

3. If the run unit being debugged also routes data through the M$DO DCB, DELTA's output
wil I be intermingled with it. Should the run unit CLOSE the DCB, it wil I be
implicitly reopened by the next write from DELTA using whatever parameters that
remain.

4. If the run unit being debugged explicity OPENs the M$DO DCB, it must be able to
handle the ALTRET condition "DCB is already open", since DELTA wil I have opened the
M$DO DCB to write its greeting message when DELTA is first associated.

COpy Command

Format:

C[Opy]

Description:

DELTA's output is normally routed to the interactive terminal during an on-line session.
The interactive user who has routed DELTA output to some other destination (e.g., a fid
so that a copy of the session is maintained) may also wish to use the COPY command to
see DELTA's output at the interactive terminal. By using COPY in conjunction with
OUTPUT, the user directs DELTA's output to two places.

Example:

These examples of input/output control commands assume an on-I ine session.

3-4

Command

OUTPUT ON LP

ECHO

Explanation

Direct DELTA's output to the line printer.

Write any input not received from the
default command stream to the M$DO DCB (in
this example, to the line printer).

COpy Command CE39-03

READ MYFI LE

COPY

READ MYOTHERFILE

Usage Notes:

Read the next commands from the fi Ie
cal led MYFILE. (Commands wi I I be
echoed on the line printer).

Direct DELTA's output to two places.

Read the next commands from the fi Ie
cal led MYOTHERFILE. (These commands
wi I I now be written both to the line
printer and the interactive terminal).

1. COpy is a toggle command. It is reset by the command:

KILL COPY

2. KILL COPY is the initial default.

EOM Command

Format:

EO[M]

Description:

The EOM (end of message) command activates a special character set which signals end of
message when using the MODIFY command and during program stepping. The EOM character
set is shown in Table 6-1 which also shows sub-commands which may be used in place of
the EOM characters.

Cross Reference:

See also the STEP and EVALUATE commands.

Usage Notes:

The EOM character set may be disabled with the KILL EOM command. The default is EOM
unless you are in stand-alone mode.

SYNTAX Command

Format:

SY[NTAX] [compi ler]

Parameters:

compi I er is one of the following:

F[ORTRAN]
FP[L]

P L6]
C!OBOL]

R PG]
G MAP]
PL1

CE39-03 SYNTAX Command 3-5

Description:

The SYNTAX command tel Is DELTA how symbols, expressions, and structure references are
specified.

The initial default of SYNTAX is the compiler that produced the main program of the run
unit being debugged. If compi ler is omitted, the initial default compi ler wi I I be used.
As far as DELTA is concerned PL6, RPG, GMAP6 and PL1 are identical and COBOL and FPL are
identical; thus, three types of distinct SYNTAX can actually be specified: SYNTAX PL6,
SYNTAX COBOL, and SYNTAX FORTRAN.

The character set for symbols in each SYNTAX specification is identical to the character
set al lowed in the language defrnition. The major difference between SYNTAX COBOL and
SYNTAX PL6 is that the embedded dash or minus sign (-) is al lowed in SYNTAX COBOL. This
difference gives rise to the difference in expressions in SYNTAX COBOL and SYNTAX PL6.
In SYNTAX PL6, the expression operators (-,+,.,~,»,«) must separate the expression
elements (symbols, constants, etc.) with no separating blanks. Conversely, in SYNTAX
COBOL the expression operations must be separated from the expression elements by
leading and trai ling blanks.

In SYNTAX PL6, structure items are separated by periods, in order of major level
identifier fol lowed by minor level identifiers. A SYNTAX PL6 structure reference must
be fully qualified.

In SYNTAX COBOL, structure items are separated by the keywords IN or OF. The major
level structure item is specified last, as is natural in the COBOL language. A COBOL
structure reference may take one of three forms. In the first type of reference, only
one identifier is specified. The reference wi I I be satisfied by the first variable name
that matches the given identifier, regardless of actual structure level. In the second
type of reference, two identifiers are specified. The major structure name must be the
second identifier specified. In the third type of reference, any number of identifiers
may be specified. The reference must be fully qualified by specifying all low level
references and the major structure name must be the last identifier specified.

The SYNTAX command also tel Is DELTA how to interpret decimal constants for the LET
command. For SYNTAX PL6, .octal-digit-string is considered to be a right justified
octal constant. For SYNTAX FORTRAN, .decimal-digit-string is considered to be a
floating point (real) constant. For SYNTAX COBOL, .decimal-digit-string is considered
to be a fixed point decimal constant. (See the LET command for more information about
constants.)

Example:

SYNTAX COBOL
DISPLAY 0 IN A
SYNTAX PL6
DISPLAY A.B.C.D
SYNTAX FORTRAN
LET REAL 3E21

Usage Notes:

1. When SYNTAX COBOL is in effect, it is possible to specify a non-fully qualified
reference that DELTA considers valid, but that the COBOL compi ler wi II consider
ambiguous. The ambiguous reference which DELTA finds is undefined.

2. The SYNTAX command is likely to be useful only when a run unit consists of object
units produced by different compilers.

3. The SYNTAX option of the SHOW command displays the current setting of the SYNTAX
mode.

SYNTAX Command CE39-03

Addressing and Symbol Control Commands
The addressing and symbol control commands include the fol lowing:

SCHEMA, USE NODE, ALTERNATE VARIABLES, FORMAT, DEFINE, RANGE, REPORT.

The commands in this category al low the user to address every area of memory in a user
domain accessible to a run unit. Certain of the commands exist as debugging
conveniences designed to make the task of communicating with DELTA as easy as possible.
The DEFINE command for example, assigns symbol ic names to areas of memory which were not
symbol ical Iy defined during the compi lation or assembly process. It rei ieves the user
of the responsibility of having to remember memory addresses which may become important
during a debugging session.

The SCHEMA and ALTERNATE VARIABLE commands are used to influence DELTA's default
assumptions concerning unqual ified, symbol ic references within run units that contain
more than one external compile unit (ECU).

The USE command has two purposes:

1. To specify to DELTA which node of an overlay program is to be assumed as the
starting point for future symbolic references.

2. To specify to XDELTA the domain of reference to be used.

The REPORT command specifies the way that position references are reported by DELTA.

SCHEMA Command

Format:

SC[HEMA] [positionlfid]

Parameters:

position may be any position reference. If position is omitted, general schema usage
is reactivated with the defaults in effect as described above.

f i dis a va lid f i lei dent i fie r.

Description:

This command is used:

1. To reactivate schema usage that has been deactivated by the SCHEMA option of the
KILL command.

2. To specify the current schema for al I nonqualified position or location references.

There is always some default in effect regarding the current schema unless general
schema usage has been deactivated by the SCHEMA option of the KILL command. These are:

1. In the debug mode, the current schema is the one associated with the ECU indicated
by the contents of the Instruction Counter (IC).

2. In the RUM mode, the current schema is the one associated with the ECU which
contains the start address of the run unit.

CE39-03 SCHEMA Command· ~7

Example:

Di rect i ve

SCHEMA

SCHEMA PROBNAME:556

Cross Reference:

Explanation

Reactivate general schema usage and default
to the current schema as per IC.

Consider the schema associated with PROBNAME:556
the current schema.

See the ALTERNATE VARIABLES command.

USE NODE Command

Format:

U[SE] IN[ODE] nodenamel
I [CURRENT] I

Parameters:

nodename specifies the name of an overlay node. When CURRENT is specified the
schemata for the overlay nodes currently in memory are re-established.

Description:

The USE command is used to specify the name of a program overlay when running in the
debug or RUM mode of DELTA.

When the command is issued. the schemata associated with the overlay node and its
backward path are activated so that symbolic references may be made using symbols
defined within the overlay schemata.

Special Considerations:

The USE NODE command sets breakpoints at procedure positions within overlay nodes that
are not in memory. This command prevents waiting for those operations until the overlay
node is loaded into memory. DELTA does not. however. prevent an attempt to modify a
location by using a symbolic location reference in either the LET or MODIFY command. If
the overlay node named in the USE NODE command is not actually in memory. the contents
of memory which that symbol would occupy if it were in memory wil I be changed and no
warning would be issued by DELTA. To modify a location in a overlay node not in memory.
the ON NODE command is used to cause a breakpoint when the overlay node is loaded. See
the Usage Notes for more information.

Example:

Assume that the target run unit consists of five ECU's in the fol lowing tree structure:

3-8

. ~ -ECUB-ECUC

I NDABLE I-ECUA-

~ -ECUD-ECUE

USE NODE Command CE39-03

where

NDABLE is a node containing an external compile unit ECUA.

NDBAKER is a node containing ECUB and ECUC.

NDDOG is a node containing ECUD and ECUE.

Upon initial entry to DELTA. the user wishes to establish breakpoints at statement
number 50 in ECUB. statement number 100 in ECUE. and statement number 50 in ECUA.

Command

AT 50

USE NODE NDBAKER

AT ECUB:50

USE NODE NDDOG

AT ECUE: 100

Usage Notes:

Explanation

Having entered DELTA. the root node (NDABLE)
is in memory and ECUA is impl icit; therefore.
no qualification was necessary.

NDBAKER is the node name for the set of ECU's
ECUB and ECUC.

Qual ification is required to distinguish
statement number 50 in ECUB from statement
number 50 in ECUC and ECUA.

This specifies the node containing ECUE.

ECUE is used to qual ify the desired statement
number.

1. When USE NODE is used in the RUM mode. the overlay is made to look as if it is in
memory. i. e .• instructions and data are brought in as wei I as schema. Any
modifications made whi Ie USE NODE is in effect wi I I be made to the location in the
named overlay node. and not to the root node.

2. The USE NODE command is not al lowed for FEP programs.

AL TERNA TE VARIABLES Command

Format:

A[LTERNATE] V[ARIABLES] position

Parameters:

position may be expressed as either a primary or secondary entry name.

Description:

This command is used to specify an alternate schema to be searched by DELTA whenever a
search for a location (variable) reference is not satisfied within the current schema.

The command can be used to great benefit during debugging sessions whose target run
units are composed of two or more ECU·s. Through use of this command. references to
both global and based variables may be made without ECU qualification.

CE39-03 ALTERNATE VARIABLES Command 3-9

Example:

Command Explanation

ALTERNATE VARIABLES ENTRYNAME Search the schema associated with
ENTRYNAME whenever a search
within the current schema has fai led.

Usage Notes:

1. The ALTERNATE VARIABLES schema is always searched as a last resort when DELTA tries
to satisfy a variable reference (MODIFY, LET, DISPLAY, FIND, STORE, DUMP commands).

2. For COBOL and FORTRAN programs, the initial default for position is the ECU that
contains the run unit's start address. For al I other programs, the initial default
position is the entry name B_DELTA_D.

Cross Reference:

See the SCH8MA command (position option).

FORMAT Command

Format:

FOR [MAT] IM[ODIFY] I \f
IE[VALUATE]I

Parameters:

is one of the specifiers in Table 3-1.

Table 3-1. Format Specifiers

Specifier

A[R]

B[IT]

C[HAR]

D[ESCR]

EB[CDIC]

E[PTR]

F[LOAT]

I [NSTR]

3-10

Meaning

Display left 24 bits of a
word as word-char-bit.

Display in binary format.

Cha racte r.

Descri ptor.

EBCDIC Character

Displays left half of word
as ENTDEF+.offset[:stmntll

Floating point binary.
Single precision for
36-bit items, double
precision for 72-bit
items.

Assembly language
instruction.

Example

.35-2-5

'010110100'B

'ABCD'

.46000,BO=.75777-3,
FL=. 643,WSR=7 ,TY=0

'694E'

PROGB+.374 :27

5. 789604E+76

LDQ .1,DL

FORMAT Command CE39-03

J[DE]

O[CTAL]

P[TR]

R[EL]

REM[EMBER]

S[BIN]

T[IME]

U[BIN]

V[ECTOR]

X

X1

Z[ERO]

Description:

Table 3-1. Format Specifiers (cont.)

JIT Dot ERR. Displays
error message for the
value stored in JIT.ERR.

Octal digits with leading
zeroes suppressed.

Pointer. word-char-bit,
segid.

Relative. Primary ENTDEF+
offset[,:stmntH, substmnt,
offset] or SYMDEF + offset.

Remember.

Signed binary (decimal).

Convert UTS to display
format.

Unsigned binary (decimal).

Vector.

Hexadecimal.

Pseudo-hexadecimal.
Leading bit of each byte
ignored.

Displays a word value in
Octal with leading zeroes.

FMN-M00113-0
Fi Ie does not exist

.1024

. 35-2-7,$LS0

PROGA+.6 :12".1(LOOP)

TEST: 6(LABEL) [ASSIGNMENT] (+.4)

-357

13:52:36.82 06/25/79

357

. 6245-0-0,$LS0,BD=. 14-2,
FL=.777,TY=NORMAL SHRINK

'F100CS40D'X

'F0F8F6F4'X

.000000001024

The FORMAT command establishes the default display for the EVALUATE and MODIFY commands.
The normal display format for these commands is octal with leading zeros suppressed.

DEFINE Command

Format:

DE[FINE] symbol expression

Parameters:

symbol is a symbol name up to 30 characters in length.

expression is any address expression which results in a value. Overflow is ignored,
and only the least significant 36 bits of the value are saved.

CE39-03 DEFINE Command 3-11

Description:

The DEFINE command associates a symbolic name with a value, al lowing the symbol to be
used whenever the associated value is desired. This is particularly useful for defining
addresses in programs that do not have debug schema.

Example:

DEFINE HEP .14136
DEFINE HEPMORE HEP+.201

Usage Notes:

·1. A DEFINED symbol may be removed with the DEF option of the KILL command.

2. DEFINE cannot be used to define replacement names for ENTDEFs. An ENTDEF (primary
entry definition, secondary entry definition, ECU name) is a special entity which
has schema associated. A symbol name defined with DEFINE has no associated schema.
Therefore, whi Ie:

MODIFY VERYLONGENTRYNAME:23
and

DEF VLEN VERYLONGENTRYNAME

are meaningful, MODIFY VLEN:23 is not.

RANGE Command

Format:

RA[NGE] value

Parameters:

value is any octal or decimal I iteral. The default is .7777.

Description:

Sets the maximum position range DELTA wi I I use when determining whether to print a
location as an octal location, or as the closest of a user DEF + offset or SYMDEF +
offset.

Example:

DEF A .30
RANGE .40

When modifying location .70, DELTA will write A+.40, but modifying location.71 results
in .71.

REPORT Command

Format:

REP[ORT] [compiler] [info]

3-12 REPORT Command CE39-03

Parameters:

compi I er is one of the following:

P LS] GIMAP]

FORTRAN]
FP[L]
C[OBOL]
PL1
R[PG]

If compi ler is omitted. the info field appl ies to al I compi lers.

info is one of the fol lowing:

A[LL]
D[EFAULT]

or any combination of O[FFSET. L[INE]. or T[YPE]. separated by commas. If info is
omitted. the info field is treated as DEFAULT.

A complete position report consists of the fol lowing fields:

Primary +.offset :Iine# (Iabel).substmnt# •. offset [TYPE] /GMAPS instruction
ENTDEF \ /\ "--A /

Field 2 3

Display of fields 1 and 4 is enabled by specifying OFFSET.

Display of field 2 is enabled by specifying LINE.

Display of field 3 is enabled by specifying TYPE.

4

Field 4 is available only when the report is generated as the result of a STEP command.

Description:

The REPORT command controls the manner in which DELTA displays position references.
DELTA normally displays position reference information based upon what compi ler produced
the object unit from which the current position is being displayed.

Example:

REPORT ALL
REPORT PLS OFFSET. LINE
REPORT COBOL ALL

Usage Notes:

1. Schema is required for the REPORT command to have any effect. If schema has been
KILLed. or if the object unit that contains the position reference being displayed
by DELTA does not have any debug schema associated with it. the REPORT wil I be
identical to REPORT GMAP. i.e .•

def +.offset (label)

where def is the closest primary ENTDEF; or if there are no ENTDEFs less than or
equal to the position. def is a user defined symbol (subject to RANGE).

label is an exact matching secondary ENTDEF or SYMDEF.

2. The initial defaults for REPORT as a function of compi ler type may be displayed by
using the REPORT option of the SHOW command when DELTA is first entered.

CE39-03 REPORT Command ~13

Stored Command Management Commands
The stored command management commands include the fol lowing:

KILL/SHOW, SILENT/UNSI LENT , ACTIVE/INACTIVE, UPDATE, SAVE, DO

This category of housekeeping commands allows the user to exercise control over and
remain cognizant of up to 99 stored commands and to set and reset the status of those
toggle options Getailed throughout this section.

Within this category are commands which control the "noise level" at a terminal
(SILENT/UNSILENT). Breakpoints which are serving a useful purpose but whose reporting
is no longer necessary may be si lenced.

Breakpoints which have been entered but are not useful in a given debugging situation
may be temporarily inactivated and then activated again at a later time without having
to re-enter them (ACTIVE, INACTIVE).

Commands which are to be executed often may be saved as though they were attached to
breakpoint commands and directly invoked whenever necessary (SAVE).

The KILL command revokes actions which have been taken previously and the SHOW command
displays both the status of toggles and the text of stored commands.

KILL/SHOW Command

Format:

IK[ILL]t
ISH[OW] lid[-id] I

id [TO id]
keyword

Parameters:

id is the identification of a stored command.

keyword is one of the keywords in Table 3-2.

Keyword

AL[L]

A[LTERNATE]
V[ARIABLES]

AN[LZ]

A[TS]

B[YPASS]

C[OPY]

3-14

Table 3-2. Keywords Used with KILL and SHOW

Meaning with Kil I

Remove all stored
commands.

Discontinue use of
alternate variables.

Return to debug mode.

Remove al I AT breakpoints
and their attachments.

Do not bypass step
reporting in assembler
modules.

Discontinue COPYing.

Meaning with Show

Display status of al I
stored commands, toggle
options, and modes.

Show status of toggle and'
schema name if any.

Show status of toggle.

Display al I AT breakpoints
and their attachments.

Show status of toggle.

Show status of toggle.

KILL/SHOW Command CE39-03

Keyword

D[EF]

DEFS

DEL[TA]

EC[HO]

E[OM]

F[ORMAT]

I [GNORE]

K[EEP]

O[N] A[BORT]

O[N] C[ALLS]

O[N] E[XIT]

O[N] N[ODES]

P[ROTECT]

R[ANGE]

RE[PORT]

RU[M]

SAD

SA[VES]

CE39-03

Table 3-2. Keywords Used with KILL and SHOW (cont.)

Meaning with Kil I

Remove a specific named
DEFINED symbo I .

Remove 01 I DEFINED symbols.

Causes DELTA to be
disassociated from the
current run unit being
debugged.

Discontinue ECHOing.

Deactivate the EOM
character set.

Set display formats for
MODIFY and EVAL back to
initial defaults.

Not appl icable.

Not applicable.

Remove ON ABORT
breakpoint and its
attachments.

Remove all ON CALL(S)
commands and their
attachments.

Remove ON EXIT breakpoint
and its attachments.

Remove 01 I ON NODE(S)
commands and their
attachments.

Discontinue PROTECT mode.

Not applicable.

Not applicable.

Return to debug mode.

Not applicable.

Remove 01 I SAVE commands
and their attachments.

Meaning with Show

Not appl icable.

Display all defined
symbols.

Not appl icable.

Show status of toggle.

Show status of toggle.

Display current default
formats for MODIFY and
EVAL.

Display which exceptional
condition groups and/or
names are being ignored.

Display which exceptional
conditions wi I I be
intercepted and reported
by DELTA.

Display ON ABORT breakpoint
and its attachments.

Display 01 I ON CALL(S)
commands and their
attachments.

Display ON EXIT breakpoint
and its attachments.

Display all ON NODE(S)
commands ~nd their
attachments.

Display PROTECT mode.

Display value of range
specification for relation
position reporting.

Display reporting mode
for position reporting.

Show status of toggle.

Display special access
descriptor number.

Display 01 I SAVE commands
and their attachments.

KILL/S~OW Command 3-15

Keyword

SC[HEMA]

S[TEP]

SY[NTAX]

T[RACE]

TRAP

W[HENS]

FEP Keywords:

DEL[TA] fp rg-res

FP[RGS]

fprg-res

Description:

Table 3-2. Keywords Used with KILL and SHOW (cont.)

Meaning with Kil I

Discontinue schema usage.

Default to step by
statement.

Not app I i cab Ie.

Discontinue tracing.

Not applicable.

Remove a I I WHEN
breakpoints and
their attachments.

Causes DELTA to be
disassociated from the
specified FEP program.

Not Applicable.

Not Applicable

Meaning with Show

Display the position which
defines the current schema,
as set by the instruction
counter or the SCHEMA
command.

Show status of STEP mode.

Display which input
syntax DELTA is currently
accepting.

Display al I TRACE
commands.

Display which exceptional
conditions wi I I be passed
to the trap handler in the
target run unit.

Display al I W~EN
breakpoints and their
a tt a c hme n t s .

Not applicable

Displays the state
of all existing FEP
programs being debugged.

Display the state
of the specified FEP
program.

The KILL command is used either to change the status of a toggle or to cancel a
previously entered command.

The SHOW command is used to display the status of a toggle, classes of commands and
attachments, and the current disposition of exceptional conditions.

3-16 KILL/SHOW Command CE39-03

SILENT IUNSILENT Command

Format:

ISI[LENT] f
IUN[SILENT] I
Description:

id [-id]
[TO id]

These commands control the reporting of active breakpoints. They silence redundant
reporting once the user determines that a breakpoint or a range of breakpoints is
achieving the desired results.

Example:

Command

SILENT 10-15

UNSILENT 10-15

SILENT 7

Usage Notes:

Explanation

Silence the reporting of the
breakpoints in the range
specified.

Resume reporting of the
breakpoints in the specified
range.

Silence stored command number 7.

1. SILENT may also be specified as an option of the AT command in the fol lowing manner:

rid] ATS ROUTINE10[;attachment] ...

AI I attachments to a silent breakpoint function normally except MODIFY. The display
of the old contents of the modified location is inhibited.

ACTIVEIINACTIVE Command

Format:

IAC[TIVE] f
IIN[ACTIVE]1

Description:

id [-id]
[TO id]

These commands set stored commands to either an active or inactive status. An active
breakpoint is one which is still in effect. An inactive breakpoint is one which is no
longer in effect. An inactive breakpoint is remembered by DELTA. however. and wi I I
stil I maintain its identification number.

Example:

Command

ACTIVE 10-15

INACTIVE 10-15

CE39-03

Explanation

Set the specified range of inactive
breakpoints to an active status.

Set the specified range of active
breakpoints to an inactive status.

ACTIVE/INACTIVE Command 3-17

Usage Notes:

1. INACTIVE may also be specified as part of the AT command in the fol lowing manner:

[id] ATI ROUTINE10[;attachment] ...

Attachments to an inactive breakpoint wi I I not function until the breakpoint is
activated again, since an inactive breakpoint is never hit.

UPDA TE Closed Form Command

Format:

UP[DATE] id[,m] text

Parameters:

id is the identification of a stored command.

m is the attachment number.

text is the text to replace attachment m of stored command id.

Description:

The UPDATE command replaces attachment m of the specified stored command with
replacement text. Attachment zero is the stored command. If attachment m does not
exist an error message is given. If m is not specified, the replacement text is added
as an attachment to the end of the specified stored command. If attachment m is
replaced with al I blanks, attachment m is deleted.

Example:

Command

UPDATE 1,2 01 ALPHA

UPDATE 3 PLUGH

Explanation

Replace the second attachment of stored
command 1 with the text '01 ALPHA'

Add the text 'PLUGH' as an attachment to
the end of stored command 3.

UPDATE 2,0 AT PROG:100 Replace stored command 2 with the text
, AT PROG: 100 '

UPDA TE Open Form Command

Format:

UP[DATE] [A] id[-id]
or

UP[DATE] id,m

Parameters:

id is the identification of a stored command.

A indicates that UPDATEing is to be done an attachment at a time.

m is the attachment number.

3-18 UPDATE Open Form Command CE39-03

Description:

The first format displays stored commands id to id. stopping at the end of each to al low
modification of the stored command. If A is specified. for stored commands id to id. an
attachment at a time wil I be printed. stopping at the end of each attachment to al low
modification. Entering linefeed causes the next attachment or stored command to be
displayed stopping at the end to allow modification. Entering t causes the previous
attachment or stored command to be displayed stopping at the end to al low modification.
A carriage return ends updating on the current stored command. If a stored command is
greater than 256 characters in length and A was not specified. a message wil I be given
and the stored command wil I be updated one attachment at a time.

The second format. wi II print attachment m of stored command id. stopping at the end to
al low modification of that attachment.

Example:

Command

UPDATE 1-4

UPDATEA 5-10

UPDATE 3.2

SAVE Command

Format:

Explanation

Prints the stored commands in the
range specified stopping at the end of
each to al low modification.

The stored commands in the range
specified are printed an attachment at
a time stopping at the end of each
attachment to al low modification.

Prints the second attachment of stored
command 3 stopping at the end to al low
modification of that attachment.

rid] SA[VE];attachment[;attachment]

Description:

This command is a keystroke saver. It saves attachable commands as though they were
attached to a breakpoint. The SAVEed attachments may then be executed by referring to
their id in a DO command.

DO Command

Format:

DO id

Parameters:

id is the identifier of any stored command.

CE39-03 DO Command 3-19

Description:

The DO command performs the attachments to any stored command. This includes
attachments saved with the SAVE command'and the atfachments to any breakpoint command
whether active or inactive.

Usage Notes:

1. The DO command is itself attachable, and allows an IF specification. This allows
very complex, and possibly recursive, chains of attachments. The user must take
care to avoid recursions which wil I never exit. The BREAK key can be used to stop
an endless attachment loop.

Fault and Trap Control Commands
The fault and trap control commands include the fol lowing:

KEEP/TRAP/IGNORE, ON EXIT/ON ABORT

One of the functions of DELTA is to capture all faults, traps, asynchronous entries,
normal exits, and abnormal exits which might occur during execution of your program.
These are collectively referred to as exceptional conditions (ECs) by DELTA.

The action taken by DELTA when an EC occurs is control led in part by the commands
described in this category. The user has the choice of having DELTA report the type and
position of the EC (KEEP), ignore the EC (IGNORE), or pass the EC to a handler in the
user's program (TRAP). The user may also specif~ a I ist of attachments to be executed
when an exit condition occurs (ON EXIT, ON ABORT).

KEEP ITRAP IIGNORE'"'Command

Format:

KE[EP]
TRAP
IG[NORE]

AL[L]
N[ONE]
category[,category]
typeL , type] ...
HIOSTj AL[L]
HOST N[ONE]
HOST type[,type]
fprg-res Al[L]
fprg-res N[ONE]
fprg-res type[,type] ...

Parameters:

ALL specifies all categories and types are to be added to this list.

NONE specifies all categories and types are to be removed from this
list.

category specifies a category to add to this list.
(Categories are in Table 3-3.
AI I types in a category may be placed on a list
by using the category name.)

type specifies a type to add to this list.
(Types are listed in Table 3-3.
FEP exceptional condition types are listed in Table 3-4.)

3-20 KEEP/TRAP/IGNORE Command CE39-03

FEP Parameters:

Host specifies the host program

fprg-res specifies a particular FEP program. This is the value
the user specified for the RES on the M$OPEN of the FEP program.

CATEGORY

MO[NITOR]

AR[ITHMETIC]

PR[OGRMt.4ED]

ER[ROR]

EC TYPE

EV[ENT]

B[REAK]

X[CON]

M[CL] (Bad MeL,

T[RAP]

CE39-03

Table 3-3. Exceptional Condition Types By Category

EC TYPE

T[IMERj
EV[ENT

APPLICABLE
MONITOR SVC

B[REAK
X[CON]
PM[ME] (Bad PMME', no ALTRET)

OV[ERFLOW]
DI[VIDE_CHECK] (Divide check)

MM[E]
DE[RAI L]
F[AULT_TAG]

ME[MORY]
CO[MMAND]
L[OCKUP]
I[PR] (II legal Procedure)
SEG (Missing Segment)
PA[GE] (Missing Page)
SEC_1 (Security 1)
SEC_2 (Security 2)

M$STIMER
M$EVENT
M$INT
M$XCON
M$TRAP

M$TRAP
M$TRAP

M$TRAP
M$TRAP
M$TRAP

M$TRAP
M$TRAP
M$TRAP
M$TRAP
M$TRAP
M$TRAP
M$TRAP
M$TRAP

Table 3-4. FEP Exceptional Condition

APPLICABLE
MONITOR SERVICE

M$EVENT

M$INT

M$XCON

no ALTRET) M$TRAP

M$TRAP

KEEP/TRAP/IGNORE Command

Types

3-21

Description:

KEEP/TRAP/IGNORE are used to build a I ist of EC types which will be handled in one of
three ways.

If an EC type is on the KEEP list when an EC of that type occurs, it is reported, along
with the current position. If an EC is on the TRAP list when an EC of that type occurs,
it wi I I be passed to the user program's handler for that EC type. If an EC is on the
IGNORE I ist when an EC of that type occurs, the program IC is adjusted to avoid
re-occurrence of the EC and control returns to the program at the new position.

To remove an EC type from one list, the user specifies that it is to be placed on some
other list. To remove all EC types from a list, the user specifies NONE for that list.
Any EC types that were on a NONEed list are placed on the KEEP list.

Usage Notes:

1. Use of a category name implies al I types in that category. Types and categories may
be mixed freely on a line, e.g., TRAP MONITOR, DIVIDE.

2. If, at the time of an occurrence of an EC on the TRAP list, a program does not have
a val id handler for that EC, an error message wi I I be issued. DELTA wi I I continue
as if that EC had been on the KEEP list.

3. Precedence is given to ON EXIT/ON ABORT for the XCON EC.

4. When there are rEP programs associated, the commands have the fol lowing meanings:

KEEP ALL report everything on al I programs - Host and rEP.

KEEP HOST ALL report everything on the Host program.

KEEP fprg-res ALL report everyting on the specified rEP program.

KEEP HOST EVENT report event exceptional conditions on the Host program.

TRAP ALL passes exceptional conditions on al I programs to the program's trap
handler - this does not include the start of rEP programs.

TRAP HOST ALL passes exceptional conditions on the Host program to the Host
program's trap handler.

TRAP fprg-res ALL passes exceptional conditions on the specified rEP program
to the specified rEP program's trap handler.

TRAP fprg-res MeL only pass MeL exceptional conditions for the specified rEP
program to the specified rEP program's trap handler.

IGNORE ALL reports no exceptional conditions on al I programs.

IGNORE HOST ALL reports no exceptional conditions on the Host program.

IGNORE fprg-res ALL reports no exceptional conditions on the specified FEP
program.

IGNORE HOST BREAK reports no BREAK type exceptional conditions on the Host
program.

3-22 KEEP/TRAP/IGNORE Command CE39-03

ON EXIT ION ABORT Command

Format:

[~,dd] 00[NN] A[BORT] [condition][;attachment] .. .
[] [] E[XIT] [condition][;attachment] .. .

Description:

These commands are primarily intended for use by the noninteractive user (batch mode or
online !XEQ) who wishes to specify an action to be taken when his program aborts or
exits unexpectedly. ON EXIT specifies a list of attachments to execute when an EXIT
condition is encountered, ON ABORT specifies a list of attachments to execute on an
abort condition.

An EXIT condition can be caused by M$EXIT, M$SAVE, and M$LDTRC. An abort condition can
be caused by MERR, MXXX or a monitor abort for limit exceeded.

Example:

ON ABORT;DU $TCB->0,64;Q

When an abort occurs, dump the top TCB frame, and then exit DELTA.

Usage Notes:

1. ON ABORT and ON EXIT are stored commands. They can be displayed and kil led using
SHOW id and KILL id.

2. ON ABORT and ON EXIT take precedence over KEEP/TRAP/IGNORE, i. e., even though TRAP
XCON was specified. the attachments for ON ABORT or ON EXIT wil I be executed if an
XCON EC (Exceptional Condition) occurs. If the user wishes to pass control to an
XC ON handler in his program after the attachments are executed, he attaches a GOTRAP
command.

3. ON ABORT is not allowed for FEP programs.

Miscellaneous Housekeeping Commands
The miscellaneous housekeeping commands include the fol lowing:

BYPASS, PROTECT, SAD

This category of commands provides additional facilities that do not easily fal I into
any of the other categories of housekeeping commands. Commands are provided to:

1. Control stepping through GMAP6 modules.

2. Avoid inadvertent modification to memory locations.

3. Allow access via descriptors from the monitor's linkage segment.

CE39-03 Miscellaneous Housekeeping Commands 3-23

BYPASS Command

Format:

BY[PASS]

Description:

This command is used to specify that DELTA is to skip step reporting while stepping
assembly language program units. This is useful for PL-6 ECU's which call assembly
language routines. When BYPASS is specified, al I subsequent STEPs wi I I not stop in
assembly language modules, but wil I stop at the first instructio~/statement after
exiting from the bypassed module. BYPASS is the default unless the start address is in
an assembly language routine; then the default is KILL BYPASS.

Usage Notes:

1. BYPASS is a toggle. It is reset with the BYPASS option of the KILL command.

PROTECT Command

Format:

PROT[ECT]

Description:

This command is used to specify that DELTA is n21 to modify memory locations as
specified by the MODIFY. LET. FIND. or STORE commands. The command is most often used
when the interactive form of the MODIFY command is used to examine a run unit image in
RUM mode. or when the running monitor is being examined in ANLZ mode. and the user
wishes to insure that a typing error wi I I not cause a memory location to be changed
inadvertently. KILL PROTECT is the default.

Usage Notes:

1. PROTECT is a toggle. It is reset with the PROTECT option of the KILL command.

SAD Command

Format:

SAD n

Parameters:

n is a decimal or octal number.

Description:

This command specifies which descriptor from the monitor's linkage segment is to be
associated with the special symbol $SAD. (See the Monitor Services Reference Manual
(CE33) M$SAD description for more information regarding special access descriptors.)

3-24 SAD Command CE39-03

Usage Notes:

1. The SAD option of the SHOW command is used to display the currently associated
descriptor number.

2. The SAD command is not al lowed for FEP programs.

CE39-03 SAD Command 3-25

Section 4

Execution Control

This set of commands al lows the user to specify that DELTA is to assume control of an
executing run unit at any of the following times:

o When control passes to a procedure position (AT).

o When an elementary item or location is modified (WHEN).

o When the BREAK key is depressed.

o When one program unit CALLS another program unit (ON CALL).

o When an overlay node is loaded (ON NODE).

o When an exceptional condition occurs. (See the discussion on Fault and Trap Control
Commands in Section 3.)

Once DELTA has assumed control and issued its prompt character, the user may then
specify that execution is to resume at the same location; specify whether or not to
proceed with execution by instruction or by statement; or issue any command in DELTA's
repertoire.

Execution Control commands are divided into the following categories:

o Procedure breakpoint commands

o Data breakpoint command

o Transfer of control commands

o Procedure stepping commands

o Special purpose execution commands

Procedure Breakpoint Commands
Procedure breakpoint commands include the fol lowing:

AT, ON NODE/ON NODES, ON CALL/ON CALLS.

A procedure breakpoint occurs on the arrival of the Instruction Counter (IC) at a
designated position (AT, ON CALL); on the general occurrence of CALLS (ON CALLS); or on
the loading of an overlay node (ON NODE, ON NODES).

CE39-03 Procedure Breakpoint Commands 4-1

AT Command

Format:

[id] A[T][I][S] position [In] [condition] [;attachment] ...

Parameters:

id is a decimal number from 1 to 99 which identifies the AT command.

indicates that the breakpoint is to be inactive (see the INACTIVE command).

S indicates that the breakpoint is to be si lent (see the SILENT command).

In specifies the number of times to BYPASS the breakpoint with a true CONDITION
before al lowing it to be executed.

condition is an IF attachment.

Description:

The AT command conditionally or unconditonally interrupts execution at a specific
position in the logical flow of a run unit.

Example:

Command

AT P: 100

AT P:100;DISPLAY X;GO

10 AT P:100 IF X EO 0;DISPLAY Y

AT :7 #6; LET A 1; GO

AT :10 IF A GT 20;

LET B 0 IF C > 10;

LET B 1 IF C LE 10;

GO THERE IF B EO 1; GO

. Explanation

Sets a breakpoint at statement number
100 in ECU P.

At P:100 the value of X is printed and
execution is resumed.

The AT command has an id of 10. At
P:100 if X equals 0, the value of Y is
printed and DELTA reads its next
command. If X is not equal to 0,
execution resumes without
interruption.

Conditional execution is specified
by using a bypass count (16). The
breakpoint will be bypassed six
times, then reported and executed
on the seventh time.

Multiple levels of conditionality are
specified using the IF conditional.
Both the reporting of this breakpoint
and the execution of its attachments
are dependent upon the truth of the
first IF conditional.
When the first condition is true, the
breakpoint is reported and the
attachments are examined. The
The attachments are executed only when
their associated IF condition is true.

The previous example translates to the following pseudo code:

4-2 AT Command CE39-03

10: IF A > 20
11: THEN DO:
12: IF C > 10 THEN B = 0:
13: IF C <= 10 THEN B = 1:
14: IF B = 1 THEN GOTO THERE;
15: END:

Usage Notes:

1. When both BYPASS and IF are specified. the bypass count is decremented only when the
IF condition is true. The breakpoint wil I be reported on occurrence n+1 of the true
condition.

2. When the INACTIVE or SILENT options are specified. no space character is al lowed
between the AT and the option (e.g .• ATS or AS means AT. SILENT).

3. AI I executable statements and static data are located in the Instruction Segment of
a run unit. The AT command should always specify the address of an executable
instruction. Because of the way that position may be specifed (symbols. octal
addresses. decimal addresses. expressions). DELTA cannot guarantee that this
requirement is met. DELTA places a breakpoint at the position to which the
expression is resolved. Should this position not be an executable instruction. then
the breakpoint will not occur and it is possible that the placement of the
breakpoint may alter a word of data within the run unit. Should this happen. the
results wil I be unpredictable. Special care should be exercised to avoid setting a
breakpoint in the arguments of a cal ling sequence which are often intermingled with
the executable instructions. Specification of a breakpoint using a program
statement number or label will always perform correctly.

4. To continue execution from the point of interruption. use the GO command with no
position specified. If you use GO position where position is the current IC. i.e .•
where the breakpoint occurred. the breakpoint will immediately re-occur. Any other
execution resuming command can be used (that is. STEP. GOSTEP. XCON. BREAK. or GO
position where position is not the current IC).

5. The same position may not be used in two different ATs at the same time; i.e .•

3 AT 10;DISPLAY A;GO
4 AT 10;DISPLAY B;GO

is not val id.

ON NODE, ON NODES Commands

Format:

General Form:

lid] O[N] N[ODES] [condition][; attachment] ...

Specific Form:

lid] O[N] N[ODE] name [condition][: attachment] ...

CE39-03 ON NODE. ON NODES Commands 4-3

Parameters:

id is a decimal number from 1 to 99.

condition is an IF conditional which must be true for the breakpoint to occur.

name is the name of an overlay node.

Description:

The ON NODE command conditionally interrupts execution when an overlay is loaded.

Usage Notes:

1. When the general and a specific form of the command are active, they are mutually
exclusive. The specific form is not activated unless the named overlay is loaded.
The general form is not activated when any overlay named in a specific form of the
command is loaded.

2. Only one general form is permitted. but many specific forms may be active.

3. The breakpoint occurs on the M$OLAY monitor service and $IC points to the
instruction immediately after the CLIMB instruction.

4. The ON NODE(S) command is not al lowed for FEP programs.

ON CALL, ON CALLS Commands

Format:

General Form:

rid] O[N] [X] C[ALLS] [condition][;attachment] ...

Specific Form:

rid] O[N] C[ALL] name [condition][;attachment] ...

Parameters:

id is a decimal number from 1 to 99.

X specifies breakpoints on external procedure calls only.

condition is an IF conditional which must be true before the breakpoint is to occur.

name is the name of a program unit.

Description:

The ON CALL command al lows the user to conditionally interrupt execution prior to entry
of a CALLed program unit.

Usage Notes:

1. When the general and a specific form of the command are active, they are mutually
exclusive. The specific form is not activated unless the named program unit is
CALLed. The general form is not activated when any program unit named in a specific
form of the command is cal led.

2. Only one general form is permitted. but many specific forms may be active.

3. The breakpoint occurs before execution of the first instruction of the called
program unit. The $IC points to the first instruction of the called program unit.

4-4 ON CALL. ON CALLS Commands CE39-03

Data Breakpoint Command
WHEN is the data breakpoint command.

A data breakpoint occurs when the value of a variable changes during the execution of
the program. DELTA can be told to stop when any change is made to the variable, or only
when the new value fits a given relation with the specified constant.

WHEN Command

Format:

[id] W[HEN] item [relation constant] [In]
[condition][; attachment[; attachment] ...]

Parameters:

id is a decimal number from 1 to 99.

item is an elementary item, structure or substructure, or single element of an array.
A range of array subscripts may not be specified. The complete specification for item
can be found in the section cal led Memory Display and Modification.

relation any of the relations legal in the IF attachment described earlier ,e.g., =.
>. <. GT. lE, etc.

constant any of the literal constants known to DELTA, e.g .• 7. 'ABCD·. 2.2, ·0·B •
. 134. etc.

In specifies the number of times to bypass the breakpoint with a true condition
before al lowing it to be executed.

condition an IF attachment.

Description:

This stored command causes data breakpoints to occur when the value of a named variable
or structure changes.

Example:

In the examples in this subsection. assume the following program section is defined:

DCl 1 lEN_REC STATIC.
2 NAME.

3 IN CHAR (12).
3 FN CHAR (10).
3 MI CHAR (1).

2 SSN CHAR(9):

Command Explanation

WHEN SSN Halt execution when the value of SSN changes
from the value it had when the command was
first issued. Both of the fol lowing statements
could cause the example data breakpoint 'to be
hit:

CE39-03

SSN = · ':
lEN_REC = IN_REC:

WHEN Command 4-5

WHEN FN EQ ••••

WHEN SSN='999999999';
DISPLAY NAME;GO

Usage Notes:

Halt execution when the value of FN is changed
to ••••. Note that if FN is equal to •••• when
the command is issued. the data breakpoint
wi I I not be hit until FN is changed to
something other than ••••• and then back to
This example shows that attachments can be made
to WHEN in the same manner as the AT command.
The IF conditional may also be used.

1. If more than one data breakpoint variable is changed at the same time. only the
breakpoint with the smal lest 10 is considered to be hit. For example. consider the
fol lowing two breakpoints. using the structure defined above:

4 WHEN NAME
5 WHEN SSN

The statement MOVE SPACE TO LEN_REC would cause only breakpoint 4 to be hit. and not
5. even though the value of SSN may have changed. If NAME was already equal to
space. but SSN was not. breakpoint 5 would be hit in this example. since the value
of NAME did not change.

2. Whi Ie duplicate positions are not legal for multiple AT commands. duplicate
variables may be specified for WHEN. e.g .•

WHEN A>10
WHEN A<4

can exist together. If two or more data breakpoints are hit at the same time
(overlapping conditions or data). only the first (smallest id) wi II be honored.

3. If a variable is used as a subscript for on array. the ~ of the variable
subscript is stored in the WHEN command, and not the variable. For example. assume
the value of A is 7. WHEN ARRAY(A) is stored as WHEN ARRAY(7) by DELTA.

4. Data breakpoints are very costly in terms of computer resources. They wi I I greatly
increase the execution time of the program. more so than any other DELTA command.
DELTA works with the CP-6 monitor to watch the variables in the program change in
value. The smal lest area of memory that can be watched is a page (that is 1.024
words) of memory. This means that if WHEN A is specified. DELTA is notified anytime
anything on the page or pages containing A is modified. DELTA then checks to see if
the value of A has changed. If 01 I of the variables in the program are stored in
the same page of memory. DELTA is entered every time any variable is modified. or
just about every statement.

Always try to localize the area of the program that is to monitor a variable. For
example. assume you. the user. are only interested in changes made to A between
statements 100 and 150. The fol lowing method can be used to reduce the amount of
overhead used by DELTA.

>10 WHEN A Defines the breakpoint assigned with a
number of 10.

>INACTIVE 10 Turns it off.

>ATS 100; ACTIVE 10;GO Silently turns it on at 100.

>ATS 150; INACTIVE 10;GO Si lently turns it off at 150.

AT is much less costly than having a data breakpoint in effect all the time. After
the WHEN has served its purpose. KILL it.

S. The WHEN command is not 01 lowed for FEP programs.

WHEN Command CE39-03

Transfer of Control Commands
The transfer of control commands include the fol lowing:

GO. BREAK, GOTRAP.

The commands in this category al low the user to conditionally or unconditionally alter
the flow of program control.

GO Command

Format:

G[O] AL[L] IPosition l
H[OST] [position]
fprg-res [position]

Parameters:

position will cause execution to resume at the specified position. If not specified.
position is assumed to be the current value of $IC.

FEP Parameters:

ALL causes program execution to resume at the current position for al I programs
Host and FEP.

HOST causes program execution to resume either at the current position or at a
specified position for the Host program.

fprg-res causes program execution to resume either at the current position or at a
specified position for the specified FEP program.

Description:

This command is used to resume program execution either at the current position or at a
specified position.

Example:

Command

GO 100

GO ECUB: 100

AT 100;DISPLAY X; GO

AT 100 IF A > B ;DISPLAY X;
GO 200 IF A EQ 40; GO

CE39-03

Explanation

Resume execution at statement number 100 of
the current ECU.

Resume execution of the statement labeled
READ_REC in the current ECU.

Resume execution at statement number 100
of ECUB.

When control reaches statement 100 of the
current ECU. display X and continue
execution.

When control reaches statement number 100
of the current ECU. if A is greater than B.
then display X and continue execution at
200 if A is equal to 40 or at 100 if A is
not equal to 40.

GO Command 4-7

Usage Notes:

1. Users of higher level language processors are warned that some language compilers
generate optimized code. This means that some statements are combined by the
compiler. and cannot be executed out of order if the proper results are to be
obtained. For example:

19: B = 6
20: A = B+5+D
21: C = B+5+E

The compiler might compute the value of B+5 in statement 20 and save it in a
register of temporary storage location. For statement 21. the value of B+5 is
fetched from the saved cell. and used in the equation. B+5 is not recomputed. This
saves time and reduces the amount of code produced. However. if a breakpoint is
placed at 20. and a GO 21 is performed. statement 20 is never executed. The value
B+5 is never computed and a possibly wrong answer wi I I be produced by statement 21.

This example is simple, but shows that the GO [position] command should be used with
care in code produced by optimizing compi lers. In general, at least for PL-6,
FORTRAN and COBOL. it is safe to "GO label" (paragraph name for COBOL). The
compiler is expecting multiple entry paths to that statement, and wi I I not generate
code that rei ies on previous statements.

BREAK Command

Format:

B[REAK]

Description:

The BREAK command causes control to be given to the break handler (declared in an M$INT
monitor service call). A BREAK frame is placed on the user Task Control Block (TCB)
before giving control to the break handler.

Usage Notes:

1. The BREAK command should not be confused with the break key. Depressing the break
key at any time during a debugging session gives contr~1 to DELTA unless the user
has specified TRAP BREAK. If TRAP BREAK has been specified. DELTA gives control to
the break handler without reporting the break. To direct a break to DELTA even
though TRAP BREAK has been specified, the user enters CTRL Y, then DELTA. This wil I
simulate a break that DELTA wil I not pass to the break handler.

GOTRAP Command

Format:

G[O]T[RAP]
I
Position 1
H[OST] [position]
fprg-res [position]

4-8 GOTRAP Command CE39-03

Parameters:

position wi I I cause execution to resume at the specified position.

FEP Parameters:

HOST causes control to be transfered to the Host program's exceptional conditions
routine for the condition that caused entry to DELTA.

fprg-res causes control to be transferred to the specified FEP program's exceptional
condition routine for the condition that caused entry to DELTA.

Description:

This command transfers control to the exceptional condition routine for the condition
that caused entry to DELTA. (This command is used to enter the TRAP routine and the
EVENT routine.)

Usage Notes:

1. When the command is issued, the information about the exceptional condition is moved
into place in the TCB. If position is specified, the Instruction Counter (IC) value
in the TCB is set to reflect that position. Execution resumes at the handler for
the exceptional condition that caused entry to DELTA.

2. For FEP programs:

If position is specified, the Instruction Counter (IC) value in the TSA is set to
reflect that position. Execution resumes at the specified handler for the
exceptional condition that caused the specified FEP program's entry to DELTA.

Procedure Stepping Commands
The procedure stepping commands include the following:

STEP, GOSTEP, GOTRAPSTEP.

The commands in this category al low continued execution one unit at a time. Possible
unit sizes are INSTRUCTION, SUBSTATEMENT. STATEMENT. and PARAGRAPH. ONE CALL is a
special case unit.

STEP Command

Format:

S[TEP] [n]

Parameters:

n is an octal or decimal constant specifying the number of steps to be taken. If n
is omitted, one step is taken. The right bracket (]) may be used in place of STEP. The
STEP command format then becomes] or n].

CE39-03 STEP Command 4-9

Description:

The STEP command causes execution to proceed for a given number of steps.

Example:

Command

STEP 5

STEP BY Command

Format:

S[TEP] B[Y] mode

Parameters:

Explanation

Take 5 steps (instructions or statements. depending
on the context in which the command is used).

mode is one of the fol lowing:

Mode

I [NSTRUCTION]

SU[BSTATEMENT]

ST[ATEMENT]

P[ARAGRAPH]

Description:

Explanation

A machine level instruction.

A substatement as defined by the compiler.
A substatement is usually defined as a single
statement in a multiple statement I ine; that
is. a single source code line in which more
than one statement appears.

A source statement. (The default step mode
is STATEMENT.)

A COBOL PARAGRAPH. or the next source line
containing a label in non-COBOl ECUs.

The STEP BY command sets a new step mode (unit size). and then steps once.

Example:

Command

SBI

SBST

Usage Notes:

Explanation

Step one instruction and set the step mode to
INSTRUCTION. ~.

Step to the beginning of the next statement.
and set the step mode to STATEMENT.

1. Use SHOW STEP to display the current step mode.

4-10 STEP BY Command CE39-03

STEP ONE CALL Command

Format:

S[TEP] O[NE] CrALL]

Description:

This command temporarily overrides the current step mode without setting a new one.
STEP O[NE] C[AllJ is used only when the current user program statement is a CAll
statement. Execution will next stop at the statement immediately following the CAll
statement. or at the AlTRET statement. if the cal led routine AlTRETURNs. The current
mode is unchanged.

Example:

Command

SOC

Usage Notes:

Explanation

DELTA will halt execution when the CAlled
routine RETURNS or AlTRETURNs.

The

1. This command is used to continue stepping in the current routine. without stepping
through a called routine.

GOSTEP Command

Format:

G[O]S[TEP] ~~[~~iio[position] 1
tfprg-res [position]

Parameters:

position wi II cause execution to resume at the specified position.

FEP Parameters:

HOST wi II cause execution to resume at the current position or specified position in
the Host program.

fprg-res wi II cause execution to resume at the current position or at the specified
position in the specified FEP program.

Description:

This command performs the GO function but. at the same time. directs that a single step
(instruction or statement) be performed.

Usage Notes:

1. One step will be performed at position. This command is equivalent to:

CE39-03

lET $IC position
STEP

GOSTEP Command 4-11

GOTRAPSTEP Command

Format:

G[O]T[RAP]ST[EP] H[OST] [position] IPosition l
fprg-res [position]

Pa ramete rs,,:

position wi I I cause execution to resume at the specified position.

FEP Parameters:

HOST wi I I cause execution to resume at the current position or the specified position
in the Host program.

fprg-res wi I I cause execution to resume at the current position or the specified
position in the specified FEP program ..

Description:

This command performs the same function as the GOTRAP command except that the stop level
of operation ,is plac.ed into effect.

Usage Notes:

1. One step is performed from the beginning of the exceptional conditJon .handler for
the condition which caused entry to DELTA. If position is specified. the IC value
in the TCB frame for the exceptional condition is set to reflect that position.

2. For FEP programs:

If position is specified. the IC value in the TSA frame for the exceptional
condition is set to reflect that position.

Special Purpose Execution Commands'
The special purpose execution commands include the fol lowing:

XCON. EXLT. ALIB. UNSHARE.

The commands in this category allow interaction with the monitor service cal Is M$XCON.
M$SAVE. M$LDTRC. M$LINK. M$ALIB. and M$UNSHARE·. (Knowledge of the appropriate areas of
the Monitor Services Reference Manual (CE33). especially the section on Exception
Condition Processing. is assumed in the following discussion.)

XCON Command

Format:

XC[ON]

4-12 XCON Command CE39-03

Description:

This command simulates an exit control condition. that is. a condition wh.i·ch·willcause'·
entry to the routine specified in an M$XCONmonitor service cal I. It is most useful in
avoiding the one condition where having DELTA associated with a run un~t will cau~e·
different results.

Assume a run unit has an exit control (M$XCON). but not a trap control (M$TRAP) routine.
When the program runs without DELTA. any error or abort condition'will cause direct
entry to the exit control routine. However. when the program runs under the control of
DELTA. these condi,tions are caught and held by DELTA. and 'reported to the- user. In this
case. the GOT RAP command wi I I not work: DELiA checks to ensur~ that the program has a
trap routine for the error or abort condition. The XCON command must be used to give
control·to the exit control routine.

The XCON command may also be used to give control to an exit control routine for exit
conditions such as M$EXIT. M$ERR. M$XXX. and M$SAVE or M$LDTRC. In these'cases.GOTRAP
will work. since DELTA treats the exit control routine specified by M$XCON as a trap
control routine for exit conditions. The TRAP XCON command wi I I also work for exit
conditions. for the same reason. .

EXIT Command

Format:
",

EX[IT]

Description:

DELTA checks to ensure that the user does not force an exit condition while the run unit
is already in exit control, as this will cause the 'program to be run down. and control'
to return to IBEX. This feature makes it difficult for a user to terminate a debug
session unintentionally. However. there are three conditions which requir~ an exit from
exit control to continue debugging: M$SAVE. M$LDTRC. and exit from anM$LINKed-to
program. The EXIT command is used to continue an M$SAVE or M$LDTRC after the final exit
from exit control. In an M$LINKed-to program. EXIT is used within the exit control
routine. or after the first exit if the program has no exit control routine.

Usage Notes:

1. The EXIT command is not al lowed for FEP programs.

ALiB Command

Format:

ALI[B] iR[ETURN] f [. K[EEP]]
iA[LTRETURN]J

Parameters:

RETURN causes a RETURN to the M$ALIB call.

ALTRETURN causes an ALTRETURN to the M$ALIB cal I.

KEEP overrides the DLIB option on the M$ALIB cal I. forcing DLIB=NO and directs DELTA
to detect faults. etc.

CE39-33 ALI B Command 4-13

Description:

The ALIB command causes a RETURN. or an ALTRETURN if DELTA is entered from the M$ALIB
monitor service call. The GO command may also be used. except if DELTA has been placed
in the ANLZ or RUM mode.

Usage Notes:

1. The KEEP option is not legal when M$ALIB is issued from the ASL domain.

2. If the RETURN=YES option is used. an ALIB RETURN is performed by DELTA after the
command specified by the CMD option is performed.

3. If the M$ALIB call does not specify ALTRET. ALIB ALTRETURN is equivalent to ALIB
RETURN.

4. The ALIB command is not allowed for FEP programs.

UN SHARE Command

Format:

UNSHARE I~I~~RAM]]
LIBRARY]]

Parameters:

ALL specifies both the program and library. PROGRAM is the default.

Description:

The UNSHARE command causes the program and/or library of an autoshared run unit to be
unshared via the M$UNSHARE monitor service call.

4-14 UNSHARE Command CE39-03

Section 5

Execution Tracing

The commands in this category cause the flow of control within a run unit to be recorded
and displayed upon command. A HISTORY mode may be set such that trace information is
saved for examination at a later time. Tracing may be conducted at several levels:

0 On all entry points

0 On specific entry points

0 On a specific entry point

0 On all transfer points

0 On specific locations

DELTA maintains a circular history buffer in which data pertaining to each incident
causing a change in the flow of control is stored.

The commands described in this section are discussed in the following order:

TRACE
HISTORY
PLUGH

TRACE Command

Formot:

T(RACE] I(X] C(ALLS][S] [prefix]
transfer-type[S]
O[N]
OF[F]

Parameters:

X specifies that only external calls are to be traced.

prefix specifies that only calls to procedures whose name begins with the character
string defined by prefix are to be traced.

OFF turns current TRACE mode off.

ON turns current TRACE mode on.

S specifies tracing is to be silent. i.e .• entries are to be made to the history
buffer. but are not displayed. They may be displayed later with the HISTORY command.

CE39-03 TRACE Command 5-1

Table 5-1. TRACE Transfer Types

Transfer Type Description
-,

T[RANSFERS]

Traces a I I TSX instructions.

S[TATEM~NTS]
~

Traces branches to the first i I1st ruc,t ion of a statement.

P[ARAGRAPHS]

Traces branches to the first instruction of a COBOL paragraph.

Description:

The TRACE command is used to invoke the maintenance of a'history buffer by DELTA. The
contents of the buffer are dependent upon the type or types of trace specified by 'the
various options of the commands.

Example:

Command Explanation

TRACE X CALLS Trace cal Is to al I external procedures.

TRACE CALLSS Trace all cal Is, silently.

TRACE CALLS S Trace all cal Is to procedures whose names
begin with S.

TRACE TRANSFERS Trace all TSX (transfer) instructions.

AT FMN$OPNF:100;TRACE CALLS;GO When control is received at FMN$OPNF:100,
activate the TRACE CALL mode and p~oceed.

Usage Notes:

1. SHOW TRACE displays the current TRACE mode, and KILL TRACE is used to remove the
current TRACE mode.

HISTORY Command

Format:

H[ISTORY] [n [M[ORE]]}
[C[LEAR]]

HISTORY Command CE39-03

Parameters:

n is a decimal integer which specifies the number of history entries to be displayed.
If n is not specified, al I entries, or remaining entries, wi.1 I be displayed.

MORE is a keyword which specifies that the display is to cqntinue from the last entry
displayed.

CLEAR removes al I entries from the buffer.·

De sc rip t ion:

When one of the TRACE modes is active, DELTA maintains a I is·t of the trace reports' in·
the history buffer. The history 'buffer can hold 100 entries;· and is ci rcular, meaning
the 101st entry will replace the first entry; the second is replaced by the 102nd entry.
The buffer is also last-in, first-out, meaning that the latest (most recent) bu~fer .
entry is the first to be displayed. Thus, HISTORY show~ a backwards·flo~ of coritrol.

Example:

Command

HISTORY 3

H3M

Explanation

Display three history buffer entries starting
with the latest entry.

Display the next three history buffer entries.

Example of TRACE and HISTORY:

>TRACE CALLS
>G
A: 3<CALLED> B: 1
B:15<CALLED> C:1
C:120<CALLED> G:1
BREAK 0 G:27 (User hits break)
>HISTORY 2
C:120<CALLED> G:1
B: 15<CALLED> C: 1
>HISTORY 5 MORE
A:3<CALLED> B:1
No more history
>

Usage Notes:

1. The HISTORY command is used in conjunction with the TRACE command. If the command
is issued before one of the TRACE commands has been entered, the history buffer will
contain no entries.

2. The history buffer is cleared (reset to null) whenever a KILL TRACE command is
issued.

PLUGH Command

Format:

PL[UGH] [location]

CE39-03 PLUGH Command 5-3

Parameters:

Locat i on may be:

o an octal or decimal literal

o on address expression (location reference or position reference)

o a symbolic nome

Description:

The PLUGH (Procedure List Used to Get Here) command displays the chain of procedure
calls which led to the arrival of the Instruction Counter at the current point. The
chain links are displayed on a last-in, first-out basis. DELTA's source for the
procedure list is the user's automatic stack. A line is displayed which identifies the
CALL statement which caused the entry to each currently active procedure. If location
is specified, DELTA uses the location as the base of the automatic stock.

Example:

Assume

Assume

3 ECU's, which col I each other in this order:

Y2 calls ROOM
ROOM co I I s WALL
WALL cal Is BUILDING

>GO
IPR FAULT 0 BUILDING:15".1
>PLUGH

WALL: 93/TSX1 BUILDING:3

ROOM: 70/TSX1 WALL:1
Y2:31/TSX1 ROOM:2

Z co II s X
X calls A

>REPORT 0
>PLUGH

X+.262/TSX1 A(+.60)
Z+.360/TSX1 X(+.32)

(0 program bug is hit.)

(PLUGH shows how the program
arrived at BUILDING from Y2.)

Z/TSX0! X66_ARET+.1036 (X66_MAUTO)(+.4)
Bottom Frome

Usage Notes:

1. The command is useful only in those run units with activation stack frames.

2. If the REPORT command is issued with the OFFSET option before doing a PLUGH, the
PLUGH command will display the offset into the user's automatic stack for each
procedure. If the offsets are not preceded by a "+", the offsets are actual
addresses of static parameter blocks.

3. A system call to an asynchronous entry wit I be indicated as a Bottom Frome.

5-4 PLUGH Command CE39-03

Section 6

Memory Display and Modification

The commands in this category display and change the contents of both memory and program
visible registers. The specification of an area of memory is subject to the rules
detailed in Section 2. The specification of a program visible register is made using
the appropriate DELTA distinguished name as listed in Appendix A.

The memory display and modification commands are divided into the fol lowing categories:

o Variable oriented commands

o Word oriented commands

Variable Oriented Cowmands
The variable oriented commands include the fol lowing:

DISPLAY. LET

The DISPLAY and LET commands are convenient means of displaying and modifying program
variables. When the debug schema is available to DELTA. the user need not be concerned
with specifying any of the attributes of the symbolic name referenced by either of these
commands. Although DISPLAY and LET are intended for use with variable names. no
restriction exists concerning the use of address expressions.

DISPLA Y Command

Format:

D[ISPLAY] item[\f][. item[\f] ...]

Parameters:

item may be:

o A scalar variable

o A major structure

o A qual ified subordinate structure

o A qual ified elementary item

o An array

o A subscripted element of an array

o A subscripted range of an array

o Any general location reference (address expression)

o Any general position reference

o A DELTA distinguished name

CE39-03 DISPLAY Command 6-1

f is one of the format specifiers from Table 3-1 (see the FORMAT command). In
general, specification of a format for variables is not necessary since each variable is
described in the debug schema al lowing DELTA to display it in the correct form. General
address expression items are displayed in octal by default, while general position
references are displayed in instruction format. The default display mode for any item
may be overridden by use of the desired format specifier.

Description:

The DISPLAY command is used to display an area of memory or a program visible register.

The DISPLAY command displays program variables by name. The user need have no knowledge
of their location or internal representation. DISPLAY handles simple variables,
structured variables, arrays and al I of the storage classifications used by the
supported languages. These are static, automatic, parameters (both in automatic stack
frames and in static storage) and based for PL-6; Fi Ie Section, Linkage Section and
Working Storage Section in COBOL; and all FORTRAN variables including subroutine
parameters. The allowable forms of reference are as varied as the different data types.
The PL-6 pointer variables in a pointer qualified reference may be part of a structure
and may be subscripted. Subscripts themselves may be pointer qualified and/or
subscripted.

Example:

Command

DISPLAY HAROLD

DISPLAY JOHN(2)

DISPLAY JEFF(HAROLD)

DISPLAY PVAR->BASEDITEM

DISPLAY SPVAR(3)->BASEDITEM

DISPLAY SPVAR(PVAR->BASEDITEM)->
OTHERBASE(PVAR->NEWVAL)->MYBASEDVAL

DISPLAY ALPHA.BETA.GAMMA

Explanation

Simple elementary variable.

Subscripted variable, using
literal subscript.

Subscripted variable using
elementary variable for the
subscripted value. Note: A
variable used for a subscript
must be a signed or unsigned
integer (PL-6, FORTRAN, COBOL)
or a packed or unpacked decimal
number which represents an
integer value (COBOL).

Pointer qualified variable.

Pointer qualified variable using
subscripted pointer variable.

General pointer qualified
subscripted reference.

Structure qualified item. Note:
All levels of a structure must
be specified.

A subset of an array may be displayed by specifying a range of subscripts for one of its
dimensions. A range is specified by two subscript values separated by a colon (:). If
a subscript or subscript range is not specified for an array item, the entire array will
be displayed. For example:

6-2

DISPLAY VECTOR(FIRST:LAST)

DISPLAY MATRIX(3:LASTITEM,THISROW)

DISPLAY VECTOR

DISPLAY Command CE39-03

Usage Notes:

1. PL-S based variables declared with implicit pointers may be displayed without
specifying the implied pointer, or explicit pointer qualification may be given to
override the default implication.

2. While a variable to be displayed may have a range of subscripts specified, a
subscripted pointer used in a pointer qualified reference may not. That is:

DISPLAY PTR(2)->VAR.X

DISPLAY PTR(2:5)->VAR.X

is al lowed

is not al lowed.

3. To DISPLAY a variable not described (referenced) in the current program unit
requires procedure qualification in order to indicate to DELTA where the schema
describing the item may be found. Procedure qualification is specified by giving
the external program unit name of the EPU containing the variable fol lowed by a
colon (:). For example:

DISPLAY SUBPROGRAM1:XVAR

DISPLAY MAIN:LOOPCOUNT

In PL-S, which has internally nested procedures (IPU), a variable which is local to
an IPU must be qualified by the EPU and al I levels of IPU to that containing the
variable.

Assume an external PL-S procedure cal led EXPROC with internal procedure LOCPROC
which, in turn, contains the procedure to ALPHA. To display a variable DATES which
is local to ALPHA when the program counter is not currently within ALPHA, the
reference is:

DISPLAY EXPROC:LOCPROC:ALPHA:DATE

4. Only one procedure qualification specification is al lowed for each item to be
displayed. This means that al I pointers and subscript variables in a general
variable reference must be in the same procedure. For exceptions to this rule see
the discussion of the ALTERNATE VARIABLES command in Section 3.

5. The DISPLAY command also al lows the display of addressed locations of memory and the
program-visible registers. In pointer qual ified references it is allowable to use
general address expressions for specifying the pointer location together with a
based variable name for the item to be displayed. The DELTA distinguished names for
the program visible registers are listed in Appendix A. For example:

DISPLAY .400

DISPLAY .41235->GORGO.PUUDLY

DISPLAY $LS1->B$JIT.UNAME

DISPLAY $X1,$Q

S. General address expressions are further discussed later in this section under Word
Oriented Commands.

CE39-03 DISPLAY Command

LET Command:

Format:

L[ET] item constant

Parameters:

item may be as described under DISPLAY.

constant is any meaningful literal in the current syntax (as specified by the
currently specified SYNTAX option. (See the SYNTAX command in Section 3.)

Description:

The LET command is used to modify the contents of an area of memory or a program visible
register.

Some literals are al lowed and mean the same regardless of the current syntax. They are:

0 bit string '0010101'B up to 72 bits - left justified

0 octal bit string '123'0 up to 24 octal digits - left justified

0 octal va I ue 0 '123' up to 12 octal digits - right justified

0 hex value X'AB29' up to 9 hex digits - right justified

0 character string 'ABC' up to 63 characters - left justified
or 'ABC'C or C'ABC'

o a pointer literal of the form:

octal word offset [-char offset[-bit offset]].segid

where segid is of the form:

$LSn. $ASn. or $PSn (n is a decimal number)

For example:

.123.$LS0

.212-0-4.$LS4

Numeric literals are treated differently depending on the SYNTAX option which is in
effect. This al lows numbers to be specified in the form which is natural to the
language being debugged.

When SYNTAX FORTRAN is in effect. integer and real values may be specified. Integer to
real. and real to integer conversion is performed as necessary when the format of a
numeric value conflicts with the variable data type. Real value constants are specified
the same as for the FORTRAN INPUT statement except that blanks are not al lowed. For
example:

4.5 •. 2. 0.13E-8. 2012. 6

When SYNTAX COBOL is in effect. integer (COMP-6) and decimal (COMP) values may be
specified. Truncation or scaling takes place as necessary to match the input value with
the scal ing specified for the variable~ The user is not required to distinguish between
integer and non-integer values.

When neither SYNTAX COBOL nor SYNTAX FORTRAN is in effect. the period (.) is used to
denote octal values. right justified in 36 bits. Numbers not preceded by a period are
assumed to be binary integers. For example:

6-4 LET Command: CE39-03

3,4,1269
.4, .123
1.3
.129

decimal specification of binary integer
octal specification of binary integer
not legal
not legal

Variable references for the LET command are exactly the same as for the DISPLAY command.

A blank is required between item and literal. This blank is interpreted as the equal
sign (=). The use of the sign in place of the blank is allowed if DELTA's
end-of-message activation set is turned off with the KILL EOM command.
Usage Notes:

1. If the I iteral is a character string (e.g., 'ANDERSON'). then the variable must be a
character string, or any item whose length in bits is 0 modulo 9 (an integral number
of bytes). The character string constant can be up to 63 characters and is stored
in the variable left-justified with truncation or blank-fi lied on the right as
necessary to match the defined size of the variable.

2. If the literal is a pointer literal, the variable must be a pointer or any item
whose size is 36 bits.

3. If the constant is a bit string or octal bit string, it is stored without regard to
variable type, left-justified with truncation or zero-filled on the right as
necessary to match the defined size of the item.

4. If the literal is an octal or decimal value, it is treated as a 36-bit constant and
can be stored in any 36-bit variable or in any integer variable regardless of size,
right-justified with truncation or zero-fi I led on the left as necessary to match the
size of the variable.

5. When specifying item with an expression (e.g., simple octal addresses) or any
variable or SYMDEF name with an offset expression, the location to which the
expression resolves is treated as a 36-bit variable.

Cross Reference:

See the SYNTAX command.

Word Oriented Commands
The word oriented commands include the following:

EVALUATE, MODIFY, DUMP, FIND, STORE, PMD

These commands search, display, and modify memory. The user refers to memory locations
as 36-bit words, that is, as a memory cel I. The MODIFY command always refers to a
single cel I, while the DUMP, FIND and STORE commands may reference a single cel I or a
contiguous range of cel Is. EVALUATE is used to evaluate the address of a variable or
general address expression and to perform miscellaneous arithmetic conversions.

DELTA al lows considerable latitude in the methods by which the desired cel I or cel Is may
be designated. These are:

o Any octal or decimal literal.

o Any val id position or location reference.

o Any general variable reference. Note, however, that inasmuch as program variables
are not necessarily word oriented, DELTA evaluates a general variable reference to
the address of the word containing the start of the referenced variable. This means
that if THREESIT is a bit string variable of length 3 bits, starting with bit 10 of
cel I .2000, any reference to THREESIT with a word oriented command such as MODIFY
wil I cause the entire 36-bit contents of cell .2000 to be displayed and/or modified.

CE39-03 Word Oriented Commands 6-5

EVALUATE Command

Format:

E[VALUATE] expression[\f]

Parameters:

expression may be:

o A symbolic name (e.g .• EVALUATE SYMBOL).

o A symbolic name plus offset (EVALUATE SYMBOL+.10).

o Simple octal or decimal addresses (EVALUATE 1329\0).

o Simple address expressions with plus (+). minus(-). shift left «<). and shift right
(»). (EVALUATE .60630»2+3).

o Simple pointer-qualified expressions using SYMDEFS or ENTDEFS even when schema usage
is disabled. (EVALUATE BJIT->.12).

o All forms of pointer and descriptor qualified references as discussed in Section 2.

(EVALUATE $LS2->MYSTRUCT.NEXT->MS.SS.ITEM).

o Any expression that can be resolved and expressed within a 36-bit word. This
includes:

Binary values (signed or unsigned). Bit strings up to 36 bits. Character
strings up to 4. 9-bit bytes. GMAP6 assembler instructions.

o If a format is specified. it does not change the default format for the MODIFY
command. f is one of the format specifiers from Table 3-1.

Description:

This command is used to:

o Perform simple arithmetic.

o Reduce an address expression to its simplest form.

o Obtain an address expression for use in some word oriented command.

o Relate memory addresses to symbolic locations and positions within a run unit.

o Convert between numbering systems.

Example:

6-6 .

Command

EVALUATE 35+. 13\U
= 46

EVALUATE .40«18
= .40000000

EVALUATE $LS5->MYSTRUCT.NEXT->MS
.3712

Explanation

Do arithmetic with mixed
numbering systems.

Perform logical arithmetic.

Reduce this expression to
its simplest form.

EVALUATE Command CE39-03

EVALUATE .2011\R
= PROG3+.5 :12(LOOP)

EVALUATE PROG3
= .2004

EVALUATE J
= $LS4->.7

EVALUATE LOa P3DEF+.12,X3,PR2
.200422236113

Usage Notes:

To what part of my run unit
does word .2011 (of the IS)
relate?

Display the octal offset of
PROG3 within the IS.

What expression may I use to
address the symbol J which is
not contained within the IS?

What is the octa I representat ion
of this symbol ic GMAP6
instruction?

1. There is no operator precedence; operations are performed left to right.

2. Default format for output of EVALUATE is octal unless changed by the FORMAT EVALUATE
command.

3. Format specification is ignored if the resultant address is not in the Instruction
Segment (IS), that is, cannot be expressed as a value. When this occurs, the output
is always segid->octal offset (e.g., $LS6->.1236).

4. The E~A (activation) character '=' can be used in place of EVALUATE. The format is:

expression[\f]=

For example:

35+. 13\U=46 (The 46 is supplied by DELTA).

Cross Reference:

See the FORMAT command.

MODIFY Open Form Command

Format:

M[ODIFY] location[\f][/]

Parameters:

location may be:

o an octal or decimal literal

o an address expression (location reference or position reference).

o a symbolic name.

f may be any valid format specifier.

/ is the activation form of MODIFY and is allowed if KILL EOM has not been specified.

CE39-03 MODIFY Open Form Command 6-7

Description:

When the open form of MODIFY is used, DELTA first displays the address of the cell to be
modified fol lowed by its current contents and then prompts for the value to which the
cel I is to be modified. The prompt character (» is preceded by the letter M (M» which
indicates that DELTA is in the modify-active mode. This means that:

o The indicated address is open for modification.

o DELTA expects either:

A new value to be placed in the open cel I and the cel I to be closed.

A new value to be placed in the open cel I, the open cel I to be closed and
another cel I to be displayed and opened for modification as specified by one of
the EOM characters or MODIFY sub-commands. See End-of-Message Characters (EOM).

The open cel I to be closed without modification.

End-of-Message Characters (EOM)

Several special EOM characters (in addition to /) apply to the open form of the MODIFY
command. If the EOM activation character set has been disabled with the KILL EOM
command, a special set of sub-commands is provided to indicate the same activity. The
EOM activation characters along with their substitute sub-commands are shown in Table
6-1.

Character

Li nefeed

Up Arrow

Left Bracket
Left Brace

Tab Character

6-8

Table 6-1. EOM Characters and Sub-Commands

Sub-Command

N[EXT]

P[REV]

O[PEN]

As t e r i s k (.)

Action Indicated

Open next memory cel I for modify. Cel I
wi I I be opened and displayed as if it has
been addressed directly with a MODIFY
command.

Open previous cel I for modify.
The cell preceding the current cel I wil I
be opened and displayed as if it has
been addressed directly with a
MODIFY command.

Re-open and re-display the
last cell addressed by a MODIFY
command. DELTA remembers the address of
the last cel I (if any) referenced in a
MODIFY command.

Indirect addressing.
Display and open for modification the
cel I specified by the contents
of the currently open cel I.
The interpretation of the
address contained within the
cel I is dependent upon the format of
the current display. If the
current display is in pointer
format, then the "segid" portion
of the pointer is used to determine
the appropriate segment,
and the word offset portion of
the pointer determines the

End-of-Message Characters (EOM) CE39-03

Table 6-1. EOM Characters and Sub-Commands (cont.)

Character

[\f]/

None

None

None

FEP EOM Characters:

None

None

None

None

CE39-03

I Sub-Command I Acti on I nd i cated

None

.L[\f]

.R[\f]

.P[\f]

offset within the segment. If the
current display is in relative
format, then the right half (the
least significant eighteen bits)
of the currently open cel I is
assumed to specify an address
in the instruction segment. If the
current display is in other
than pointer format, then the
left half (the most significant
eighteen bits) of the
currently open cel I is assumed
to specify an address in the
instruction segment.

Same as • except do not open the cal I for
modification. Optionally a format
specifier may be used.

Treat left 18 bits as an address
regardless of displayed format.
Optionally a format specifier
may be used.

Same as .L except that the right half (the
least significant eighteen bits) of the
currently open cel I is assumed to
specify an address in the instruction
segment. Optionally a format specifier
may be used.

Treat contents of the currently
open cel I as a pointer regardless of the
format in which it was displayed. Take
same action as for the tab EOM character
or the. sub-command. Optionally a
format specifier may be used.

Inval id for FEP programs.

Invalid for FEP programs.

Treats the contents of the
current Iy open cell (2 w.ords) as a
pointer. Take the same action as
for the tab EOM character or the
• subcommand. Optionally a
format specifier may be used.

Treats the contents of the
currently open cel I (1 word) as a
16 bit address. Take the same action
as for the tab EOM character or the
• subcommand. Optionally a format
specifier may be used.

End-of-Message Characters (EOM) 6-9

Character

Tab Character

Usage Notes:

Table 6-1. EOM Characters and Sub-Commands (cont.)

Sub-Command

Asterisk (.)

Action Indicated

Indirect Addressing.
Display and open for modification
the cel I(s) starting at the
address specified by the contents
of the currently open cel I(s). The
interpretation of the address
contained within the cel I(s) is
dependent upon the format of the
current display. If the current
display is in instruction format,
pointer format or relative format,
the least significant 20 bits of
the current Iy open ce II (2 words)
is assumed to specify an address.
If the current display is in octal,
unsigned integer, signed integer,
bit, or hex format, the contents of
the current Iy open cell (1 word)
is assumed to specify an address.
Other formats wil I be errored.

1. When in the modify-active mode, the sub-command NEXT, PREV, OPEN, and any of their
abbreviations may be classified by program symbols with the same spel ling. When in
doubt about a possible conflict, the user can use the activation character or leave
the modify-active mode (return key) before issuing any of these sub-commands.

2. AI I of the MODIFY sub-commands may be issued as major commands in which case their
action is based on the last MODIFY command issued.

3. New values for the open cel I can be expressed as octal or decimal numbers, simple
expressions, address expressions, or instructions in mnemonic form. When the new
value is specified followed by a carrioge return, the value is stored in the
currently open cell, and DELTA leaves the modify-active mode. For example:

>MODIFY CPA+.265\I
CPA+.265/ LDPO 3"PR2 M>TRA CPA+.324
>MODIFY $OS1->.101
$LS4->.101 / .236 M>$L+.40000

If, however, the specifications of the new value is fol lowed by one of the
characters N, <LF>, p, I, t, 0, ., or <TAB>, then the new value is stored in the
currently open cell and action is taken according to the descriptions in Table 6-1.

4. These characters may optionally be preceded by a format specification indicating the
desired format to be used for the requested display. These characters, with the
optional format specification, may be entered either fol lowing or in lieu of the new
value for the currently open cel I. When specified in lieu of any new value, the
currently open cell is not modified. For example:

Command

>MODI FY .1023
.1023 / .501 M>$L+.4000 L

. 1023 / .4501 M><LF>

6-10

Explanation

Add .4000 to current cell
and re-display it .

Display the next cell.

End-of-Message Characters (EOM) CE39-03

, ,

.1024 / .777777777742 M>\S[

. 1024 / -30 M>

>MODIFY .2415
.2415 / .5006001 M> <TAB>

.5 / .0 M>.2415\P/

. 2415 / . 5-0-0 ,$LS1 M> <TAB>
$LS1->.5/ .120 M>

Re-display in signed binary
(decimal) .

Display indirect through
current cell.

Try it again, this time as
a po i nte r .

... then go indirect.

Although the addresses used in the above examples have been simply expressed, the
MODIFY command wil I accept any address specification that can be resolved to a
segment and word offset within that segment. When an address is specified by using
variable names, al I the qualification rules that apply to the DISPLAY or LET command
also apply to MODIFY. However, unl ike DISPLAY or LET, only the word address portion
of the variable information is used. For example, the MODIFY command wi I I accept a
PL-6 variable that is defined as an automatic variable in the current auto frame of
type BIT(1); but when displayed the whole word containing the BIT(l) variable will
be printed and the address wi II be printed as a word offset in the segment
containing the automatic stack for the current process. For example:

>DISPLAY BITVAR
BITVAR = '1'S
>MODIFY BITVAR
$LS4->.106/ .4000012623100 M>

When specifying addresses in the run unit's procedu~e (position reference) when
using the debug schema information (statement numbers, internal entry names, and
statement levels) it is necessary to precede the address specification with a colon.
This causes the address to be interpreted exactly as described for the AT and GO
commands. For example:

>MODIFY 258
.410 / .104213 M>

>MODIFY :258
FMN$OPNF+.32 :258 / LDP4 0"PR0 M>

MODIFY Closed Form Command

Format:

(treated as decimal word
offset in IS)

(treated as statement 258
in the current external
procedure)

M[ODIFY] location[\f] newcontents [(expected old contents)]

Parameters:

location and are the same as in the open form of MODIFY.

newcontents is on expression that can be evaluated or is a GMAP6 instruction.

expected old contents must be enclosed in parentheses () and the left parenthesis
must be preceded by a blank. The value can be any expression that can be evaluated or a
GMAP6 instruction.

CE39-03 MODIFY Closed Form Command 6-11

Description:

The closed or patching form can be issued either directly or can be attached to a stored
command. The difference in this form is that both the address and the new value are
specified and the modify-active mode is not entered.

Optionally. a display format can be specified and the expected old value of the
addressed location can be specified. The format specifier is used to change the default
format for the display of the modified cell. The default format is octal unless the
location is in the run unit's procedure space or the new value is specified in mnemonic
instruction form, in which case both the previous contents and the new contents are
displayed in instruction format. When the specified expected value does not match the
previous contents, DELTA treats the command as an interactive MODIFY, displaying the
addressed location and prompting for a new value.

Example:

>M MYLOC+.510 TRA CPA+.210
MYLOC+.510/ TRA CPA+.210 (LDP0 0 •• PR2)

>M MYLOC+.510 TRA CPA+.210 (LDP0.,PR3)
(LDP2 0"PR3) EXPECTED VALUE NOT FOUND
MYLOC+.510/ LDP0 0.,PR2 M>

>M MYLOC+.510\O TRA CPA+.510

DUMP Command

Format:

The previous contents
are displayed in
parentheses.

Bad expected value.

DELTA prompts for a
new value.

Use of format
specifier.

DU[MP][A][L] location[.word count][\f] ~g~ER fidj [·title']
tINTO

Parameters:

A indicates that ASCII translation is desired.

L indicates nonsuppresion of dupl icate lines is desired.

location may be any form of location or position reference.

word count defines the number of cells (beginning at location) to be dumped. If word
count is omitted. cel Is beginning from location to the end of the memory segment are
dumped. If missing pages are encountered. they are reported and the dump continues at
the next page. Word count may be an expression.

f designates octal '0' or hexadecimal 'X' format for the dump. f may also be ·C'. in
which case DUMP becomes the equivalent of DUMPA.

fid may be any valid CP-6 file identification.

'title' is any character string to be printed at the top of the dump.

6-12 DUMP Command CE39-03

Description:

The DUMP command dumps a range of memory. The user may optionally specify that:

o Each cell be dumped in either octal or hexadecimal format.

o The dump output be directed to a destination other than the one currently assigned
for DELTA's output.

o A title line be printed at the top of the dump.

o The width of the dump output be divided in half such that:

the left half is printed in the" specified format (octal or hexadecimal)

the right half contains the interpretation of al I printable characters in ASCII.

o Duplicate lines not be suppressed.

Usage Notes:

1. When fid is specified. the run unit must have a reserved DCB slot to be used by
DELTA for the duration of the DUMP command. Absence of the fid option specifies
that DELTA wi I I output the dump through the normal output DCB M$DO. ON wi I I cause
an error if the file referenced by fid already exists. OVER wi II overwrite an
existing file. INTO wil I extend an existing fi Ie or create a new one if none exists.

2. If fid is LPOWSN. the CP-6 system will release the symbiont file to be printed as
soon as the dump is complete; a PRINT command to IBEX is then not needed.

3. The form DUMP 10cation\C is equivalent to DUMPA location. With both forms the dump
is octal with ASCII translation.

4. To stop a lengthy DUMP printout. depress the break key.

5. If location is preceded by a It:". then a sUbstatement and offset must be specified
before specifying a word count. For example:

DUMP :100.1 •. 0. word count
DUMP :100 ••. 0.word count

FIND Command

Format:

F[IND][N[OT]] pattern1 [F[ROM] range] [U[NDER] mask1]
[S[UB] pattern2] [U[NDER] mask2]

Parameters:

NOT specifies a search for cells whose contents are NOT equal to pattern1.

pattern1.pattern2 may be specified in any form that can be resolved by DELTA into a
36-bit pattern. This includes:

o Octal or decimal literals. These are converted to their binary equivalents
(right-justified with zero-fi II).

o Bit string literals. These are left-justified with zero-fill when necessary.

o Character string literals. These are truncated to four characters. blank-filled on
the right if necessary.

o Octal string literal. These are left-justified with zero-fil I where necessary.
Truncation to a 36-bit value is also performed when necessary.

CE39-03 FIND Command 6-13

o GMAP6 assembler instruction expression. Single word instructions only.

mask1.mask2
instruction.

may be any of the above literal types. but may not be a GMAP6

range is expressed in the form:

location[.word count]

where location may be any valid position or location reference.

word count defines the number of cel Is to be searched. If omitted. al I cel Is
from location to the end of the memory segment are searched.

Description:

The FIND command searches a specified range of cells for a specified 36-bit pattern. and
reports the address of every cell within the range in which the pattern was found. The
user may optionally specify a secondary pattern with which DELTA is to replace every
occurrence of the pattern being sought. Both the search and the sUbstitution may be
conducted under mask. If the search is conducted under mask. the contents of each cel I
in the range is logically ANDcd with the search mask in a work cel I to select those bits
which are to be considered in the comparison. The search pattern is also masked in the
same way. The work cel I is then compared with the masked search pattern. When the
comparison proves equal. then:

o If substitution is indicated and a sUbstitution mask is not present. DELTA replaces
the contents of the entire cel I with the secondary pattern. and reports the
location/position.

o If substitution is indicated and a sUbstitution mask is present. DELTA selects those
bits from the secondary pattern which have corresponding bits set in the
substitution mask. inserts them into the cel I. and then reports the
location/position.

o If substitution is not specified the position/location is reported along with the
ce II' s contents.

DELTA then continues the search until the end of the range is reached.

Usage Notes:

1. To stop a lengthy FIND press the break key. DELTA wil I print out the address of the
next eel I to be compared. and stop. There is no way to continue the search without
issuing another FIND command.

2. The FIND command is not allowed for FEP programs.

Special Considerations:

Two of the syntax components of the FIND command are associated with certain of DELTA's
distinguished names. These assume a default value when DELTA is invoked which can be
changed in two different ways:

o Impl icitly specified as a syntax component in the FIND command.

o When referenced by its distinguished name in a MODIFY or LET command.

SYNTAX DISTINGUISHED
COMPONENT NAME DEFAULT VALUE

range $FRANGE Entire instruction segment (only
modifiable syntactically)

mask1 $FMASK .777777777777 (-1)

6-14 FIND Command CE39-03

The SUB pattern and mask are not remembered by DELTA and must be specified each time you
issue the FIND command and desire substitution to take place. For example:

PATTERN EXPLANATION

FIND .7 FIND an octal literal (binary 7).

FIND 'ABCD' FIND a character string literal.

FIND TRA :HERE FIND a GMAP6 assembler instruction which is a
transfer to the statement label HERE in the
current compile unit.

FIND TSX1 HERB FIND a GMAP6 assembler instruction which is a
transfer and set index to the oxternal entry
name HERB.

FIND NOT 0 Find cells which do not contain zero.

RANGE EXPLANATION

FROM HERE,50 50 words, beginning with the data cel I named HERE.

FROM 0 Entire Instruction Segment (IS).

FROM $LS4->0 Entire Automatic Stack ($LS4, $OS1).

FROM $TCB->0.66 Top TCB frame (66 words long).

FROM MYPROG:20 •. 30 30 octal words from statement 20 in MYPROG.

FROM .50 •. 20 20 octal words beginning at location .50 in the
Instruction Segment ($LS0).

FIND under default mask and report only:

FIND -1 FROM TABLE. 100

FIND under mask and report only:

FIND TRA 0 FROM MAINLINE,1000 UNDER .777000

The command is to find al I TRA instructions within the range.

Mask is: .000000777000

TRA op code is: xxxxxx710xxx

The 0 in TRA is necessary even though it does not enter into the comparison. TRA is
a GMAP6 instruction; TRA alone is a symbol name.

FIND under default mask and substitute:

FIND TRA :HERE SUB TRA :THERE

This command causes DELTA to replace al I branches to HERE with branches to THERE within
the default range.

FIND under mask and substitute under mask:

FIND '4'0 FROM WORD_TABLE,S0 UNDER .7e0000000000
SUB '5'0 UNDER .700e000e0e0e

CE39-e3 FIND Command 6-15

This command causes DELTA to find each word in the first 50 words of WORD_TABLE which
contain a 4 in its high-order octal digit and replaces only that digit with a 5. '4'0
and '5'0 are expressed as octal literals which are left-justified.

STORE Command

Format:

STO[RE] pattern [F[ROM] range] [U[NDER] mask]

Parameters:

pattern may be specified in any form that can be resolved into a 36-bit pattern.
This includes:

o Octal or decimal I iterals. These are converted to their binary equivalents
(right-justified with zero-fi II).

o Bit string literals. These are left-justified with zero-fill when necessary.

o Character string literals. These may not exceed four characters. They are
converted by DELTA into their binary equivalents (left-justified with space-fil I
where necessary).

o Octal string literals. These are left-justified with zero-fill where necessary.

o Any GMAP6 assembler instruction expression (Single word instructions only).

range is as described under the FIND command. The default is the entire instruction
segment.

mask may be any of the above literals, but may not be a GMAP6 instruction. If mask
is specified, DELTA selects those bits from the pattern which have corresponding bits
set in the mask and inserts them into the cel I. The default is .7777777777777 (-1).

Description:

The STORE command modifies every cel I in a specified range of cel Is. The contents of
the cel I may be completely replaced or replacement may be on a bit-by-bit basis under
control of a mask.

Usage Notes:

1. The range for STORE is remembered in the same location as the range for FIND
($FRANGE).

2. The STORE command is not al lowed for FEP programs.

PMD Command

Format:

PMD optionlist

6-16 PMD Command CE39-03

Parameters:

optionlist is any list of the followi~g keywords:

AU[TO] Auto segment (OSl)

CO[MMON] Common segment (OS2)

DA[TA] Data pages within Instruction Segment

DC[BS] All DCBs

OS All data segments

DS1 through DS8 Data segments 1 through 8

D[YNAMIC]D[ATA] Dynamic data pages within Instruction Segment

IS Entire Instruction Segment

JI[T] User JIT

PL[UGH] Causes same action as the PLUGH command.

PR[OCEDURE] Procedure pages within Instruction Segment

RO[SEG] Entire Read-only segment

TC[B] Task control block (TCB stack)

Description:

The PMD command causes 01 I or selected portions of a user's entire program image to be
dumped. Options 01 low for general selections of what areas to dump.

Usage Notes:

1. The PMD command is not 01 lowed for FEP programs.

CE39-03 PMD Command 6-17

Section 7

Mode Control Commands

The commands discussed under this heading are those used to instruct DELTA to change
from the normal debug mode to one of two other modes: RUM and ANLZ. RUM mode is used
for applying permanent patches to a run unit file. ANLZ mode is used for examining the
running monitor or a system dump file and requires special system privileges.

RUM Command

Format:

Parameters:

fid is the file identification of the run unit file.

NUTS overrides the requirement for creation UTS (Universal Time Stamps) to match. If
neither NUTS nor UTS=value is specified. NUTS is assumed. If the run unit is in the
system account :SYS. IN must be specified.

UTS=value specifies an octal digit string of the form mm/dd/yy hh:mm:ss.ss which must
match the creation UTS as given to the run unit by the linker. If neither NUTS nor
UTS=value is specified, NUTS is assumed. If the run unit is in the system account :SYS.
IN must be specified.

INPUT specifies to DELTA that the run unit file is to be opened in the input mode;
therefore, the run unit may only be examined. (If a file is busy or the user does not
have write permission to it. the fi Ie is opened in INPUT mode.) If neither NUTS nor
UTS=value is specified. NUTS is assumed. If the run unit is in the system account :SYS.
IN must be specified.

COpy creates a new copy of the run unit file with the same name. This is handy if
the file is already open and the user wishes to modify the run unit without affecting
the user of the current generation of the run unit.

TEST specifies that patches made are not to be permanently applied to the run unit.
The run unit wi I I be opened in the input mode.

BUFFERS=n specifies the number of buffers for DELTA to use. This speeds up I/O.
Maximum is 10. Default is 5.

CE39-03 RUM Command 7-1

Description:

RUM command causes DELTA to access a run unit fi Ie instead of memory for accesses made
by the MODIFY, FIND, STORE. and DUMP commands. In this manner the programmer can
examine and change (apply permanent patches to) the run unit. Patches made with the
MODIFY, FIND. and STORE commands are recorded in the run unit file and may be displayed
at any time with the LIST command. The DISPLAY and LET commands cannot be used in this
mode.

While in RUM mode the patch symbols 0.00. I. and II can be used (if patch space has
been included in the run unit) and addresses for these symbols wil I be permanently
updated in the run unit for future use. Patch space may be defined in a run unit by
including the fi Ie B_PATCH from the :LIBRARY account in the object file I ist or using
IPATCH and DPATCH options on the !LINK command when linking the run unit. The special
symbols $SA and $PRIV may be modified to change the start address and privi lege flags
associated with the run unit. The special pointer symbol $HEAD may be used to address
any offset within the head record of the run unit.

Usage Notes:

1. When EOM mode is in effect the = and / will activate. Substitution of blanks for
the = and / in the UTS option is acceptable to DELTA.

ANLZ Command

Format:

AN[LZl ~=UNNING ['SChemafid1j
tdumpfid

Parameters:

o specifies the running program.

RUNNING specifies the running monitor.

dumpfid is the identification of the dumpfile. If this parameter is omitted, the
running monitor is used.

schemafid
assumed.

Description:

is the identification of the schema file. If omitted, M:MDN.:SYS is

The ANLZ command causes DELTA to access the running monitor or a dump or schema file
instead of memory. The command selects the dump file that is to be processed and a fi Ie
from which to take the schema.

7-2 ANLZ Command CE39-03

Section 8

Miscellaneous Commands

The following commands, which do not fal I into any previous classification are described
in this section:

UNFID
XEQ
LIST
HELP
END/QUIT

UNFID Command

Format:

UNF[ID]

Parameters:

idcbll I
idcbnamel

dcb# is the number of the DCB as assigned by the linker specified as a decimal or an
octal value. (Examples: 10 and .12)

dcbname is a DCB name such as M$SI.

Description:

The UNFID command performs the M$UNFID monitor service on the specified DCB and prints
the results.

Example:

>UNF M$UC
DCB #3 M$UC UC# (OPEN, UPDATE, TERMINAL)

XEQ Command

Format:

X[EQ] instruction

Parameters:

instruction must be specified as a GMAP6 instruction mnemonic. X0 through X7 may be
used in the tag field to denote indexing. AI I tag mnemonics are reco~nized, and in
addition the tag field may be specified as a decimal number (0-7 only) to indicate
indexing with X0-X7, or the tag field may be given in octal in which case it wil I be
used as given. The PR field may be specified mnemonically with PR0 through PR7 or with
the decimal numbers 0 through 7.

CE39-03 XEQ Command 8-1

Description:

The XEQ command causes the immediate execution of a single word machine instruction.
XEQ is not allowed on certain types of ihstructions'such as transfers.

Usage Notes:

1. The XEQ command is not allowed for FEP programs.

LIST Command

Format:

LI [ST]

Description:

The LIST command will list all changes made to a run unit in RUM mode. The LIST command
may be issued while DELTA is in either RUM mode or debug mode.

HELP Command

Format:

iHIHELPI [(processor)][TOPICS][keywordl][-][keyword2]

Parameters:

processor specifies a program or processor that has an associated helpfi Ie in the
form HELP:processor:[.[account][.password]]. The default is the processor currently
under control.

TOPICS specifies that only a list of available topics (message names) is required.
The range of topics is determined by keyword1 or keyword2.

keyword1 specifies the name of the message to be printed.

keyword2 if a range is specified (by including a dash "_"). keyword2 is the upper
limit of the range. If a range is not specified. keyword2 is a submessage. or category
within a message.

Description:

HELP prints information.

HELP messages have levels. Once the initial level has been printed. typing a question
mark prints the next level. usually containing greater detail. Typing two question
marks prints the entire message.

Any standard HELP file (even those for other processors) can be accessed with the HELP
command.

Example:

HELP (DELTA) RUM

8-2 HELP Command CE39-03

Usage Notes:

1. The standard CP-6 HELP facil ity is used by DELTA so the user can get help on any
other CP-6 processor by entering:

HELP (processor) [TOPICS] [keyword1] [-] [keyword2]

END/QUIT Commands

Format:

iEN[D] I [fprg-res]
iQ[UIT]1

FEP Parameters:

fprg-res will cause the specified FEP program to be terminated.

Description:

The commands EN[D] and Q[UIT] cause the current DELTA session to be terminated. and
returns the user to his command processor (IBEX).

CE39-03 END/QUIT Commands 8-3

Section 9

Debugging FEP Programs

This section'dJscusses debuggingF;Ep.programs with DELTA;. Included are thefol,lowing:::

o New commands pertaining just to debugging FEP programs - (DEBUG. USE. WAIT. STOP)"

o Changes in defa~lts when,deb~ggingFEp,programs.,

o Changes to existing commands - FEP program debugging specific options.

o Spe6i~1 Di~tinguished Names"for debugging FEP programs.,

Debugging Forms Programs
, .

When de~ugijing a for~s piogram. two te~minals are required. One termina) is logged;on
as a station that runs the FPL program; the other is a timesharing terminal that runs
DELTA.

DELTA may be invoked prior to orduring Forms.Program.execution.AII debuggingses,sions
begin by starting the F6rms at a TP stati6ri. Then DELTA is invoked fro~ a separate'
timesharing terminal. As soon as DELTA is activated. it takes control of Forms,Program
execution.

Associating DEL T A at Program Invocation

Associating DELTA at program invocation requires ent'ry of special command's·afthe TP
station and the timesharing terminal.

TP Station DebLtg Comm~d
Format:

DEBUG name

Description:

The DEBUG commal1d- instead of the ,BEGIN ,command~j sente red:,at. th~ TP station to invoke
·theForms~rogram(or"debugging., ·'A~.a resul t,of ')thiscommand~ the Forms Program' is
loaded, but does not begin execution.

At a separate timesharing terminal, the user invokes DELTA and DELTA responds with a
prompt. The user then enters the DEBUG command to associate DELTA with the station and
comgroup that invoked the Forms Program for debugging.

CE.39-03 TP ;Stat iO,n Debug,:Command 9,-.1

DEBUG Command

Format:

DEB[UG] station tATI icomgroupfidl
iONI iTP/tpacct I

Parameters:

station is a character string of eight characters or less that defines the station
name of the terminal running the Forms Program to be debugged. If slationis all
numeric, it must be entered in quote 5trings.

comgroupfid is a comgroup fid of the form CG[Upsn]/name.acct or of the form CG[Hpsn]
name.acct. 'name' identifies the comgroup through which the FPL program is
communicating.

tpacct is a character string of eight characters or less that names the account in
which the particular instance of TP is being run.

Description:

This command associates DELTA with the TP station. The user can then enter DELTA
commands, including GO to start execution of the Forms Program.

Example:

At STATION1 on the instance of TP called PAYROLL, the user enters:

DEBUG PAY

At the timesharing terminal the user enters:

!DELTA
DELTA C00 HERE - NO RU ASSOCIATED
>DEBUG STATION1 AT TP/PAYROLL

In this example, the Forms Program called PAY is loaded and halts. Then DELTA is
invoked to debug the Forms Program operating on behalf of STATION1 on the PAYROLL
instance of TP (i.e., PAY).

Post-associating DELTA

After a Forms Program has been invoked via the BEGIN command. the user can associate
DELTA. At a timesharing terminal. the user invokes DELTA and enters the DEBUG command
as shown above. DELTA assumes control over the execution of the Forms Program, the user
may then enter DELTA commands.

Usage Notes:

1. If a second DEBUG command is entered before the user QUITS or ENDS the first program
being debugged, DELTA will do a KILL DELTA on the first program and then set up for
debugging t~e second specified program.

9-2 Post-associating DELTA CE39-03

Debugging DCB-Connected FEP Progra~s
DC~connectcd FEP programs are started via an M$SETFP monitor service call done in a
program running on the Host. In order to debug DCB-connected FEP programs, the user
just starts the Host program under DELTA.

lU
lHOSTRU.

or

lSTART HOSTRU UNDER DELTA

This associates DELTA with the Host program and with any FEP programs started via an
M$SETFP monitor service cal I by the Host program. DELTA wil I identify which program the
user is deal ing with by preceding the prompt ('>') with the value the user specified for
RES on the M$OPEN of the FEP program.

Example

IU
I HOSTRU.
DELTA C00 HERE IC=TEST:1 [PROC]
>G

Explanation

User does GO to host
program so M$SETFP can
happen.

HOST PROGRAM STOPPED IC=TEST:4956 [MONITOR CALL]
(UC05) IC=A:1 [PROC]
FPGR STARTED VIA M$SETFP
UC05> User gets control when

FEP program (UC05) gets
slarted - user can enter
DELTA commands for this
FEP program, i.e., set
breakpoints, GO, etc.

Post Association of DELTA

To associate DELTA with a Host program and the FEP programs started by the Host program
via an M$SETFP monitor service cal I, the user types CTRL Y. IBEX prompts with a double
bang (I!). The user types DELTA to associate DELTA with the interupted Host program and
the FEP programs associated with the Host program. Any FEP programs which have been
started by the Host program wil I be reported to the user. When DELTA is associated, if
the host program or any FEP program is autoshared, the user should use the UNSHARE
command if any modification of procedure (including breakpoints) is to be done.

Examples

I HOSTRU.

! !DELTA

Explanation

Program does not prompt as expected;
a loop is suspected. The user enters
<CTRLXY>.

DELTA C00 HERE IO=TEST:5053".3 [ASSIGNMENT]
(UC05) IC=A:10 [ASSIGNMENT]
>

CE39-03 Post Association of DELTA 9-3

Debugging a Specified SYSID on a SpecifledfEP
DELTAm"ay be associated witha F"EP program' (F"PRG) by specify'ing the sy'sid and fepna~e'of'
the prog'ram on the DEBUG, command'.

DEBUG Command

F"ormat:

DEB[UG] sysid I~~I fepname

Parameters:

sysid' is thedecimalsysid of the desTred F"EP program'todebug.

fepname is a character string of eight characters or less that identifies the F"EP in
which the program to debug ist~nning:

Description:

This command associates DELTA with the F"EP program id~nfijie~ by its s~sid and the F"EP
in wh i ch it is runn i ng. :' The use'r can then ente r DELTA commands. inc I ud i ng GO to sta rt
execut i on of the F"EP'program'> ' ,"

Example:

At a timesharing terminal the user enters

lDELTA
DELTA C0e HER~ -NO RU'ASSOCIATED
>DEBUG 21 ATF"EP12

DELTA is associated 'with th~ FEP ·pro~ram in F"EP12 that is sysid 21.

Usage Notes:

1. If a second DEBUG command is entered before the user QUITs orENDs.··the firsf-' program'
being debugged. DELTA will do a KILL DELTA on the first program before setting up
fo'r debugging the'secon,d sl>~cified program.

WAIT Command
F"ormat:

WAr IT]

Description:

The WAIT command causes DELTA tO'waitfor the next event from an FEP program-i .e .•
hitting a breakpoint. trap. etc. This command is e~~ecially useful after the user has
done a GO to one or two FEP programs. does not want the Host program to continue
execution. and wants to wait for the next breakpoint or trap in one of the exocutinb FEP
programs.

9-4 WAIT' Command CE39.;..e3

STOP,: Command

Format:

STOP iA[LL] f
ifprg-resf

Parameters:

ALL specifies al I FEP pro~~~ms.

fprg-res specifies a particular FEP program. This is the value the user specified
for RES on the M$OPEN of the FEP program.

Descr i pt i on:,
't'.,

The STOP command w:i II cause the speCified FEP program(s) to bein'terrupted'.' 'DELTA will
report the location at which any FEP programs were internipfe'dto 'the user and promp't
for commands.

Example:

>STOP ALL
(UC05) IC=A:10 ••. 3 [ASSIGNMENT]
(UC10) IC=B:310 ••. 4 [CALL] > - ,

User can now enter DELTA 'commands:

USE Command
Format:

U[SE] ifprg-resf
IH[OST] f

Parameters:

, "

fprg-res specifies a particular FEP p~ogram~ T~is ~s the v~lue the user specified
for RES on the M$OPEN of,the FEP program." '

HOST specifies t~j ho~t pr~g~am.

Description:

The USE command is used to specify a particular program the user wants to examine. If
th~, spec if i ed FEP prog ram is runn i ng. ,i t wi II be stopped fo r t he use r to exam i ne it.

Example:

, >USE UC05

>USE HOST

CE39~3 .

Exp I anat ion::

This sp~cifies,the FEP program
id~~tified b~ UC05.

This specifies the host program ..

... ; ~.

USE Command'" 9-5

Usage Notes:

1. When a USE command is done by the user, DELTA wi I I remember the state of the program
being USEd and if another USE command is done without GOing the first program, the
first program will be returned to its original state.

Defaults when Debugging FEP Programs
o A number preceded by a period is a hexadecimal number when debugging FEP programs

(it is an octal number when debugging Host programs).

o A maximum of 20 breakpoints are allowed for a single FEP program.

Existing Command Changes
Several of the existing DELTA commands have new options which pertain to debugging FEP
programs. Below is a I ist of the commands and a summary of the new options. For more
detail, see the desired command.

Command New Options

GO fprg-res - GO a specific FEP program
ALL - GO ALL FEP programs
HOST - GO the host program

QUIT fprg-res - QUIT a specific FEP program

KEEP/TRAP/IGNORE fprg-res - identifies a specific FEP program
ALL - identifies ALL FEP programs
HOST - identifies the Host program

KILL DELTA fprg-res - disassociates DELTA from the
specified FEP program

SHOW FPRG's - shows state of al I FPRGs - if

MODIFY

Distinguished Names

stopped, shows current IC

fprg-res - shows state of a specific FEP
program

M[ODIFY] D[OUBLE] [W[ORO] - Modify two'
words - specifically
tells DELTA you want
to modify two words.

DELTA recognizes many distinguished names related to FPRGs as syntactical components of
DELTA's commands. These names are listed below.

Included are the machine registers visible to programming and usage and default formats
for display. D, L, M, and P indicate DISPLAY, LET, MODIFY, and POINTER usage
respectively. When one of these is used in a pointer qualified reference, it must be
the leftmost name in the expression.

DEFAULT
N~E REFERS TO: USAGE FORMAT

$B1 to $B7 Corresponding 16-bit Base Register P,D,L,M Hex
$R1 to $R7 Corresponding 16-bit General D,L,M Hex

$M1 to $M7
Register
Corresponding 8-bit Mode Control D,L,M Hex
Register

9-6 Distinguished Names CE39-03

$T Stock address Register ~16 bits~ D.L Hex
$S System Status Register 16 bits D.L Hex
$ Address associated with a trap D.L Hex

$IV
(20 bits)
Contents of $B3 at the time of a D.L Hex

$Z
trap (16 bits)
Z-word-miscellaneous information 0 Hex
relative to a trap (16 bits)

$ASV Address Space Vector - the bose 0 Hex
of on ... PU image in memory (20
bits)

SCI CIP Indicator Register (8 bits) D.L.'" Hex
$IND Indicator Register (8 bits) D.L.M Hex
$IC or $P Instruction Counter (20 bits) D.L.'" Relative
$ISR1 to $ISR7 Instruction Segment P.D Descriptor
$AUTO Auto Segment P.D Pointer
$DS1 to $DS4 Corresponding LCP6 Data Segment P.D Descriptor

descriptor

System Areas

This group of distinguished names are used exclusively as pointers to various system
areas.

NAME REFERS TO:

$ROSEG Read-QnI y-Segment

$RDBR Remote descriptor array

$TSA Trap Save Area

$DCBn Refers to DCB In

CE39-03 System Areas 9-7

'- ~ "

" '

" ,."; ~ .,

Appendix A

Distinguished Names

DELTA recognizes many distinguished names as syntactical components of DELTA's commands.
These names are listed below.

Included are the machine registers visible to programming, and usage and default formats
for display. D, L, and M indicate DISPLAY, LET, and MODIfY, respectively.

DEFAULT
NAME REFERS TO: USAGE FORMAT

$A Bi ts 0 to 35 of Accumulator (AQ) D,L,M Octal

$AU Bi ts 0 to 17 of Accumulator D,L,M Octal

$AL Bi ts 18 to 35 of Accumulator D,L,M Octal

$Q Bi ts 36 to 71 of Accumulator D,L,M Octal

$QU Bi ts 36 to 53 of Accumulator D,L,M Octal

$QL Bi ts 54 to 71 of Accumulator D,L,M Octal

$E Exponent Register (8 bits) D,L,M Octal

$EA Exponent and A Registers D Floating Point
Single Precision

$EAQ Exponent, A, and Q Registers D Floating Point
Double Precision

$IND Indicator Register (18 bits) D,L,M Octal

$X0 to Corresponding l8-bit Index D,L,M Relative
$X7 Registers

$IC Instruction Counter (18 Bi ts) D,L,M Relative

Program Visible Descriptors
These distinguished names are used to refer to descriptors either in machine registers
or in defined positions in segments. P, D, and M indicate POINTER, DISPLAY, and MODIFY
usage, respectively. When one of these names is used in a pointer qualified reference,
it must be the leftmost name in the expression.

NAME

$SSR

$ISR

$ASR

CE39-03

REFERS TO: USAGE

Safe Store Register (When used as P,D
a pointer $SSR points to the
user's safe store frame as
placed on DELTA's TCB.

Instruction Segment Register P,D

Argument Segment Register D

Program Visible Descriptors

DEFAULT
FORMAT

Descriptor

Descriptor

Descriptor

A-l

$LSR Linkage Segment Register 0 Descriptor

$PSR Parameter Segment Register 0 Descriptor

$LS0 to Descriptor n in Linkage P,D Descriptor
$LSn Segment

$AS0 to Descriptor n in Argument P,D Descriptor
$ASn Segment

$PS0 to Descriptor n in Parameter P,D Descriptor
$PSn Segment

$DS1 to Corresponding CP-6 Data Segment P,D Descriptor
$DS8 Descriptor (DS1 = LS4, etc.)

$DR0 to Corresponding Operand P,D Descriptor
$DR7 Descriptor Register

$PR0 to Corresponding Pointer P,D,M Descriptor
$PR7 Registers (DRn, SEGIDn, ARn)

$AR0 to Corresponding Address D,M Addr Register (AR)
$AR7 Registers

XDELTA and ANLZ Only
With the exception of $SSR, the distinguished names in this group are addressable only
by XDELTA and the ANLZ mode of DELTA.

NAME

$WSR0 to
$WSR7

$WSQ0 to
$WSQn

$SSR

$REAL

$VIRT

$RVB

$USD

$HJIT

$CGn

A-2

USAGE

Refers to the corresponding Working Space Register. May be
used in DISPLAY, MODIFY, and LET commands. The default
display format is in decimal.

Refers to word n of the Working Space Page Table Directory
(WSPTD). May be used in the DISPLAY command.

Refers to the Safe Store Register for the current domain
(see USE command). May be used as a pointer or may be
displayed (descriptor).

May only be used as a pointer to address real memory.

May only be used as a pointer to address virtual memory.

Refers to the Recovery Buffer. May only be used as a
pointer (ANLZ fi Ie mode only).

Refers to the User Directory. (ANLZ file mode only). May
only be used as a pointer.

Refers to the Housekeeping Job Information Table for the
current domain. May only be used as a pointer.

Refers to nth Communications Group area of system dump file.
May only be used as a pointer. (ANLZ file mode only).

XDELTA and ANLZ Only CE39-03

RUM Mode Only
The distinguished names in this group are addressable by the RUM mode of DELTA.

NAME USAGE

$SA Refers to start address in head record.

$PRIV Refers to privilege bits in head record.

$HEAD May be used as a pointer to any offset in the head record.

System Areas
This group of distinguished names are used exclusively as pointers to various system
areas.

NAME

$TCB

$JIT

$PARMn

$DCBn

REFERS TO:

Top Frame of the Task Control Block

Job Information Table

Parameter In of PL-6 External Procedure ($PR2->n+2)

Refers to DCB In

Command Work Areas
This group of distinguishod names refers to various work areas used by certain commands.

NAME

$1

$0

$L

$FRANGE

$~SK

CE39-03

USAGE

Refers to the position indicated by the current Instruction
Counter. $1 may be used in a MODIFY Expression (e.g .•
~IDDIFY $1+3).

Refers to the last word of memory that was modified.
Only the ~~DIFY command (along with N. P. and .)
changes the value of $0.

Refers to the last value displayed by DELTA as a result of
a MODIFY type command.

Refers to the range specification of the FIND/STORE
displayed. It may only be displayed.

Refers to the Find Mask (mask1) in the FIND command.

Command· Work Areas A-3

Patching Symbols
This group of distinguished names refers to various work areas which are managed by
DELTA when the RUM Mode is invoked.

N~E

o

00

II
$RI

$NA

$REMO

$REMI

USAGE

Refers to the next word in the procedure patch space.

Refers to the next even word in the procedure patch
space.

Refers to the next word in the data patch space.

Refers to the next even word in the data patch space.

Replaced Instruction. Refers to the contents of the lost
modified memory word not contained within either the data
or procedure patch space.

Next Address. Refers to the address of the word of
memory immediately fol lowing $RI.

Used to DISPLAY the remaining amount of Procedure patch
space.

Used to DISPLAY the remaining amount of Data patch
space.

These symbols may also be used in the debug mode to make temporary patches to the run
unit image in memory.

A-4 Patching Symbols CE39-03

Appendix B

Assembler Instruction Formats for Patching

This set of Assembler Instruction Formats is used for patching in RUM or DEBUG modes.

DELTA handles the standard GMAP6 instruction format for 1-word instructions except for
the following:

o The ZERO op code has the following format:

ZERO any DELTA position or location reference. octal constant.

The ZERO op code specifies the contents of a word of memory. The evaluated position
or location reference is placed in the left half of the word and the octal constant
is placed in the right half. If the position or location reference is preceded by a
":". a substatement and offset must be specified before specifying the octal
constant. For example:

ZERO :100.1 •. 1 •. 1000
ZERO :100 •••. 1000

o The PTR op code has the fol lowing format:

PTR any DELTA position or location reference. octal constant.

The PTR op code specifies the contents of a word of memory in pointer format. The
only segids which may be specified are .6000-.60FF. The octal constant specifies
00-FF of the segid. The evaluated position or location reference is placed in the
left half of the word. It is not possible to specify a character or bit offset.

o A "!" after the op code causes DELTA to set the inhibit bit in the generated
instruction word. For example:

LOA! .4010.DL

Multiword instructions must be specified to DELTA in octal. No mnemonic form is
available for the instruction word or the descriptors. When DELTA prints a multiword
instruction. the octal value of the instruction word is preceded by the op code
mnemonic.

The fol lowing multiword instruction:

MLR FILL='040'0
ADSC9 2.QL.PR1
ADSC9 TEXT

must be entered to DELTA as:

.40000100506

. 100002000010

.1000010

and wil I be printed out by DELTA as:

MLR .40000100506
. 10000200010
.1000010

CE39-03 Assembler Instruction Formats for Patching B-1

Note: The descriptor words may be printed in octal or some single instruction format.
The user must specify \0 format to force printing of the descriptor in octal.

For code that is the subject of XEC or XED, or that is generated dynamically, it is
advantageous to keep DELTA away from it, i.e., do not use AT, STEP, XEQ, TRACE TRANSFER
in such code, unless the user knows how DELTA wil I modify the code to do these commands.

Assembler Instruction Formats for Patching CE39-03

Index

A

B

C

ACTIVE/INACTIVE command - 1-8 3-17
addressing and symbol control commands - 3-1 3-7 3-7
ALIB command - 1-11 4-13
ALL keyword - 3-14
ALTERNATE VARIABLES command - 1-8 3-9
ALTERNATE VARIABLES keyword - 3-14
ANLZ command - 1-14 7-2
ANLZ keyword - 3-14
ANLZ Mode - 1-3
Array - 2-2
AR specifier - 3-10
Associating DELTA at Program Invocation - 9-1
Asterik. EOM sub-command - 6-9
AT - 4-1
ATS keyword - 3-14
Attached Commands - 1-8
attachments - 1-7
AT command - 1-11 4-2

BIT specifier - 3-10
BREAK command - 1-11 4-8
break key - 1-3 1-18
BYPASS - 3-23
BYPASS command - 1-8 3-24
BYPASS keyword - 3-14

Capabilities Summary - 1-2
CHAR specifier - 3-10
commands - 1-1
command stream - 3-2
Command Work Areas - A-3
Command Work Areas distinguished names - A-3
Communications with DELTA - 1-17
compi Ie units - 1-1
Conditional Execution - 1-7
COPY command - 1-8 3-4
COPY keyword - 3-14

CE39-03 Index 1

o

E

2

data addresses - 2-1
Data Breakpoint Command - 4-5
data names - 2-1
Debugging a Specified SYSID on a Specified FEP - 9-4
Debugging DCB-Connected FEP Programs - 9-3
Debugging Forms Programs - 9-1
Debugging mode - 1-2 1-2
DEBUG Command - 9-2 9-4
Debug mode - B-1
debug schema - 1-1
defaults - 3-1
Defaults when Debugging FEP Programs - 9-6
DEFINE command - 1-9 2-1 3-11
DEF keyword - 3-15 3-15
DELTA invoking - 1-15
DELTA keyword - 3-15
DELTA Overview - 1-1
Descriptor Qualified References - 2-6
DESCR specifier - 3-10
DISPLAY command - 1-13 6-1
distinguished names - 2-6 9-6 A-1
DO command - 1-9 3-19
dumping - 6-12 6-17
DUMP command - 1-13 6-12

ECHO command - 1-9 3-2
ECHO keyword - 3-15
ECs - 3-20
ECU - 2-2
EDIT - 3-3
EDIT file - 3-3
Elementary Item - 2-2
End-of-Message Characters (EOM) - 6-8
END/QUIT command - 8-1
END/QUIT Commands - 8-3
END command - 1-15
Entry Name - 2-3
EOM - 1-17
EOM character - 1-17
EOM characters - 3-5 6-8
EOM command - 1-9 3-5
EOM commands - 3-5
EOM keyword - 3-15
EPTR specifier - 3-10
EVALUATE command - 1-13 6-6
exceptional conditions - 3-16
execution control - 4-1
execution control commands - 4-1
Execution tracing commands - 5-1
Existing Command Changes - 9-6
EXIT command - 1-11 4-13
External Compi Ie Unit - 2-2
External Debugging - 1-1

Index CE39-03

F

G

H

J

K

faults - 3-20
Fault and Trap Control Commands - 3-20
fids - 3-2
FIND command - 1-14 6-13
FLOAT specifier - 3-10
FORMAT command - 1-9 3-10
Format For Position - 2-3
FORMAT keyword - 3-15
Format specifiers - 3-10

GMAP6 - B-1
GOSTEP - 4-9
GOSTEP Command - 4-11
GOTRAPSTEP - 4-9
GOTRAPSTEP command - 1-12 4-12
GOTRAP Command - 4-8
GO command - 1-11 4-7
GO STEP command - 1-11
GO TRAP command - 1-12

HELP command - 1-15 8-1 8-2
HISTORY command - 1-13 5-2
Housekeeping Commands - 3-1 3-23

IBEX commands - 1-16
identification number - 1-6
IF conditional - 1-7
IGNORE command - 1-9 3-20
IGNORE keyword - 3-15
Immediate Commands - 1-8
INACTIVE command - 3-17
Initiating A Program with DELTA Associated - 1-16
Input/Output Control Commands - 3-1
input stream - 3-3
instructions, multiword - B-1
INSTR specifier - 3-10
Internal Program Unit - 2-3
interrupt - 1-3
Invoking DELTA - 1-15
IPU - 2-3
items, elementary - 2-2

JOE specifier - 3-11

KEEP/TRAP/IGNORE Command - 3-20
KEEP/TRAP/IGNORE commands - 1-9
KEEP keyword - 3-15
keywords used with KILL/SHOW - 3-16
KILL/SHOW Command - 3-14
KILL/SHOW keywords - 3-16
KILL command - 1-9
KILL EOM command - 1-17

CE39-03 Index 3

L

N

o

4

Languages Supported - 1-2
Left bracket. EOM character - 6-8
LET command - 1-14
LET Command: - 6-4
Linefeed. EOM character - 6-8
LIST command - 1-15 8-1 8-2
location reference - 2-1
logical operator - 1-7

M$ALIB - 1-16 4-12
M$ERR - 3-23
M$EXIT - 3-23
M$LDTRC - 3-23 4-12
M$LINK - 4-12
M$SAD - 3-24
M$SAVE - 3-23 4-12
M$UNSHARE - 4-12
M$XCON - 4-12
M$XXX - 3-23
ME - 3-3
memory - 6-1
memory display and modification command - 6-1
Miscellaneous Commands - 8-1
Miscellaneous Housekeeping Commands - 3-23 3-23
modes - 1-2
Mode Control Commands - 7-1
modification - 6-5
MODIFY Closed Form Command - 6-11
MODIFY command - 1-14
MODIFY Open Form Command - 6-7
mon i tor - 1-1
multiword instructions - B-1

NEXT. sub-command - 6-8
Node - 2-2
nodes - 3-8
No Run Unit Associated - 1-17

OCTAL specifier - 3-11
Offset - 2-3
ON ABORT - 3-23
ON ABORT command - 1-9 3-23
ON ABORT keyword - 3-15
ON CALL - 4-1
ON CALL. ON CALLS Commands - 4-4
ON CALLS - 4-1
ON CALLS keyword - 3-15
ON CALL command - 1-12
ON EXIT - 3-23
ON EXIT/ON ABORT Command - 3-23
ON EXIT command - 1-9
ON EXIT keyword - 3-15
ON NODE - 4-1
ON NODE. ON NODES Commands - 4-3
ON NODES - 4-1
ON NODES command - 1-12
ON NODES keyword - 3-15

Index CE39-03

P

Q

R

S

ON NODE command - 1-12
ON X CALLS command - 1-12
OPEN. EOM sub-command - 6-8
OUTPUT command - 1-10 3-3
output destinations - 3-3

PARAGRAPHS. transfer type - 5-2
Patching - B-1
Patching Symbols - A-4
Patching Symbols distinguished names - A-4
PLUGH command - 1-13 5-3 '
PMD command - 1-14 6-16
Pointer - 2-2 2-5
Pointer Qualified References - 2-5
position reference - 2-1
Post-associating DELTA - 9-2
Post Association of DELTA - 1-16 9-3
PREV. EOM sub-command - 6-8
procedure address - 2-1
procedure breakpoints - 4-2
Procedure Breakpoint Commands - 4-1 4-1
Procedure Stepping Commands - 4-9
Processor - 1-1
Programmed Association of DELTA - 1-17
Program Visible Descriptors - A-1 A-1
prompt character - 1-17 3-2
PROMPT command - 1-10 3-2
PROTECT - 1-15 3-23
PROTECT Command - 3-24
PROTECT keyword - 3-15
PTR specifier - 3-11

QUIT command - 1-15 8-1 8-3

RANGE command - 1-10 3-12
RANGE keyword - 3-15
READ command - 1-10 3-2
REL specifier - 3-11
REPORT command - 1-10 3-12
REPORT keyword - 3-15
Resolving A Symbolic Reference - 2-1
RUM command - 1-14 7-1
RUM keyword - 3-15
RUM mode - 1-2 1-3 B-1
RUM Mode Only - A-3
Rum Mode Only distinguished names - A-3
run uni t - 1-1

SAD - 3-23
SAD command - 1-15 3-24
SAD keyword - 3-15
SAVES keyword - 3-15
SAVE command - 1-10 3-19
SBIN specifier - 3-11
Scalars - 2-1
schema. debug - 3-7
SCHEMA command - 1-10 3-7
SCH~ keyword - 3-16

CE39-03 Index 5

T

6

SET - 3-3
SET command (IBEX) - 3-3
SHOW command - 1-10 3-14
SHOW keywords - 3-16
SILENT/UNSILENT Command - 3-17
SILENT/UNSILENT commands - 1-10
Special Purpose Execution Commands - 4-12
START - 1-16
STATEMENTS, transfer type - 5-2
Statement Lobel - 2-3
statement labels - 2-1
Statement Number - 2-3
statement numbers - 2-1
STEP - 4-9
STEP BY Command - 4-10
STEP command - 1-12 4-9
STEP keyword - 3-16
step mode - 4-10
STEP ONE CALL Command - 4-11
STOP Command - 9-5
Stored Commands - 1-6
stored command management - 3-14
Stored Command Management Commands - 3-14
STORE command - 1-14 6-16
Structures - 2-1 3-6
Substatement - 2-3
Summary of Commands - 1-3
Symbolic Addressing - 2-1
symbolic address qualification - 2-2 2-4
Symbolic Location Names - 2-1
symbolic names - 2-1
Symbolic Position Names - 2-2
symbolic reference - 2-1
SYNTAX command - 1-10 3-5
SYNTAX keyword - 3-16
System Areas - 9-7 A-3
SYSTEM AREAS distinguished names - A-3

Tab Character, EOM character - 6-9
TIME specifier - 3-11
Toggle Commands - 1-8
toggle switches - 3-1
TP Station Debug Command - 9-1
TRACE Command - 5-1
TRACE keyword - 3-16
TRACE TRANSFERS command - 1-13
TRACE X CALLS command - 1~13
TRANSFERS, transfer type - 5-2
Transfer of Control Commands - 4-7
traps - 1-2 3-20
TRAP command 1-9 3-20 3-20
TRAP keywoid - 3-15

Index CE39-03

U

v

W

x

Z

UBIN specifier - 3-11
UNFID command - 1-15 8-1 8-1
UNSHARE command - 1-12 4-14
UNSILENT command - 1-10
UPDATE Closed Form Command - 3-18
UPDATE command - 1-11
UPDATE Open Form Command - 3-18
Up Arrow, EOM character - 6-8
USE Command - 9-5
USE NODE command - 1-11 3-8
U command - 1-16

Variable - 2-2 2-5
Variable Oriented Commands - 6-1
VECTOR specifier - 3-11

WAIT Command - 9-4
WHENS keyword - 3-16
WHEN command - 1-12 4-5
Word Oriented Commands - 6-5

XC ON command - 1-12 4-12
XDELTA and ANLZ Only - A-2
XEQ command - 1-15 8-1 8-1
X specifier - 3-11

ZERO specifier - 3-11

CE39-03 Index 7

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

TITLE CP-6
DELTA REFERENCE MANUAL

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be investigated by appropriate technical personnel
and action will be taken as required. Receipt of all forms will be
acknowledged; however, if you require a detailed reply, check here. D

FROM: NAME --
TIT L E __ __

C OMP A NY ---------------------.
ADDRESS __ _

ORDER No·1 CE39-03

DATE 0 I MARCH 1985

DATE

PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service will not deliver stapled forms

\\\\\

BUSINESS REPLY MAil
FIRST CLASS PERMIT NO. 39531 WALTHAM, MA02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATIONS, MS486

Honeywell

G

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

oW· -
Hi

At ...
s (B.A'

F .au 8·'fI

me

Together, we can find the answers.

Honeywell
Honeywell Information Systems

U.S.A.: 200 Smith St., MS 486, Waltnam, MA 02154
Canada: 155 Gordon Baker Rd., Willowdale, ON M2H 3N7

U.K.: Great West Rd., Brentford, Middlesex TW8 9DH Italy: 32 Via Pirelli, 20124 Milano
Mexico: Avenida Nuevo Leon 250, Mexico 11, D.F. Japan: 2-2 Kanda Jimbo-cho, Chiyoda-ku, Tokyo

Australia: 124 Walker St., North Sydney, N.S.W. 2060 S.E. Asia: Mandarin Plaza, Tsimshatsui East, HK

41934, 5C185, Printed in U.S.A. CE39-03

