

Application Note 1

3.8 SETUP WINDOW

Performance Analysis setup Alt(P)
Module Name Bank Address Range Entry Exit

Trigger X ((J((J((J((J - ((J((J((J((J 1((J((J((J 1((J((J((J

Loop 1 X ((J((J((J((J - ((J((J((J((J 1((J((J((J 1((J14

Loop 2 X ((J((J((J((J - ((J((J((J((J 1((J14 1((J((J((J

Loop 3 X ((J((J((J((J - ((J((J((J((J l((J((JA 1((J16

Range All X 1((J((J((J - 1((J1D ((J((J((J((J ((J((J((J((J

Module 6 X ((J((J((J((J - ((J((J((J((J ((J((J((J((J ((J((J((J((J

Module 7 X ((J((J((J((J - ((J((J((J((J ((J((J((J((J ((J((J((J((J

Module 8 X ((J((J((J((J - ((J((J((J((J ((J((J((J((J ((J((J((J((J

Recorder Mode = Rerun set number of times
Number of Reruns = ((J((J1

Record Time = ((J((J((J1((J x 1ms
Coverage mode = Establish new coverage
Trigger = On Module
Cumulative = Yes
Symbol Name =

The SETUP window is used to define the parameters used
collection of data by the PAC hardware. There are
fields that must be defined before the PAC system will
properly. Each of those fields is explained in the
sections.

3.1 Module Name Fields

in the
several

function
following

This field is used to define a name for the address range or
entry and exit points on which the analysis will be performed.
This name can be a symbolic name referring to a particular block
of code such as "GET_INPUT" or any other name that is
descriptive of the code in that particular module. Up to 8
modules can be named.

44
Release Notes SourceGate Vl.43

Application Note 1

3.2 Address-Range Fields

The address-range fields are used to define the range of
addresses whereby if the processor accesses an address
within this range it will be recorded for processing in the
Profile and Coverage windows. The first address field in the
range is always smaller than the second field. The range
specified can be any length for timing analysis in the profile
window, but must be limited to 64K for code coverage analysis.
Any hexadecimal digits (0-F) are allowable characters for these
fields.

NOTE: If the code makes a large number of accesses to a
particular range, the analyzer buffer may fill up rapidly,
causing an overflow to occur. If this occurs it will be
necessary to reduce the Record Time, reduce the Number of
Reruns, or change the Range definition to correct this.

3.3 Entry-Exit Fields

The entry-exit fields are used to define address entry and
exit points for analysis. Unlike the address-range, the entry
exit definition requires the code to execute both the entry and
the exit address to qualify as an valid execution. For example,
if the entry address is set to 1100H and the exit address is
set to 120EH, the code MUST execute address 1100H and then, at
some point later, it MUST execute address 120EH to qualify
as an execution in this module. If no entries are made in
the address-range fields then the code may execute addresses
anywhere in the current 64K block after executing the entry
point and before executing the exit point and the entire
path of execution will be timed and profiled.

3.4 Combined Address-Range and Entry-Exit Fields

A module may be defined with both an address Range and an
Entry and Exit point. Under these conditions, executions will
be counted only if the code enters the specified Range at
the specified Entry point and exits the range at the
specified Exit point. Likewise the timer will start when the
Entry point is executed and run only during the time that code
is executing within the specified range and stop when the Exit

45
Release Notes SourceGate Vl.43

Application Note 1

point is executed. For example, if the Range is set to 1000H
to 1300H, the Entry point ~s set to 1100H, and the Exit point is
set to 120EH, then, for an execution to be counted, the code
must enter the Range (1000H to 1300H) at address 1100H and exit
at address 120EH. If the code goes outside the defined Range
after executing the Entry address, the timer will stop
until the code re-enters the range and will continue until the
Exit address is executed unless the code goes outside the
Range again.

3.5 Recorder Mode Field

The Recorder Mode determines how the Performance Analysis will be
run. The available options are:

Rerun Set Number of Times: This option runs, updates the screen,
then reruns again and contin~es to do this for the number of
times specified by the user.

Free Run (continuously): The free run option will run, update the
screen, and run again continuously until stopped by the user.

3.6 Number of Reruns Field

This field determines the number of reruns executed if the "Rerun
Set Number of Times" option is selected above.

3.7 Record Time Field

The Record Time determines how long the Performance Analysis will
be run for each pass and is specified in milliseconds. The
maximum record time is 99.99 seconds. The user should be careful
not to specify too long of a record time because this can
cause a buffer overflow condition as described in Section
3.2.

3.8 Coverage Mode Field

This field determines how the analysis will be displayed. The
options are:

Establish New Coverage - All existing analysis will be written
over by the new analysis being run.

Append Current Coverage - The existing analysis will be saved and
the new coverage will be added to it.

46
Release Notes SourceGate Vl.43

Application Note 1

3.9 Trigger Field

The Trigger field can be set to Automatic or On Module. In the
automatic mode, the analyzer will begin to collect data
immediately after pressing the <cr> in the profile window. The
analyzer will continue to run for the length of time specified in
the 'Record Time Field.'

In the On Module mode, the analyzer will not start until the
setup conditions are met for the module selected as the trigger
module. For example if the 2nd module is selected as the trigger
module and it is setup for an Address Range of 1999H to 1199H,
then the analyzer will trigger or start on the first execution of
an address in this range. If the trigger module is set for
an Entry-Exit point, then the analyzer will trigger when
either the Entry or Exit point is executed on the trigger
module. The trigger module is selected through the Profile
window as explained in Section 4.9.

NOTE: A good way to insure that the analyzer will trigger at the
desired point is to define a module with both the Entry and
Exit points set to the same address and then use this module as
the trigger. For example, if a module has been defined with an
Entry point of 1199H and an Exit point of 1259H, and it is
necessary to know exactly how long this routine will take to
execute, the analyzer must trigger when it executes address
1199H and stop when it executes address 1259H. If a second
module is defined with an Entry point of 1199H and an Exit point
of 1199H, and this module is used as the trigger, then the
analyzer will always start when address 1199H is executed.

3.18 Cumulative Field

The Cumulative field works in conjunction with the Number of
Reruns field. If the Cumulative field is set to YES, the number
of executions shown in the Profile window will accumulate for
all the reruns. If this field is set to NO, the analyzer will
reset and collect new data on each of the reruns. For example,
assume the number of reruns is set to 3 and the Cumulative
option is set to YES. If a module has 29 executions on the
first run, 19 on the second, and 21 on the third, then the
number in the execution column will be 69. If the Cumulative
option is set to NO, the execution column will show 29 on the
first run, reset, show 19 on the second, reset, and show 21 on

47
Release Notes SourceGate V1.43

Application Note 1

the third. In the same manner the percentage and time
information will either be based on the accumulated data for all
reruns or just the current run. The Total Record Time field
will also depend on the Cumulative field setting. If it is set to
YES then the Total Record Time will be the Record Time
multiplied by the Number of Reruns (both set in the Setuup
Window). If Cumulative is set to NO then the Total Record time
will also reset for each rerun and show only the time for that
particular run.

3.11 Symbol Name Field

The symbol name field allows the use of symbol names instead of
hex values for the Address-Range and Entry-Exit fields. When
the cursor is positioned in any of the Address Range or Entry
Exit fields the user can enter a ':' and the cursor will move to
the Symbol Name field where a symbol name is entered. When the
symbol is entered, the address of that symbol will then appear
in the address field where the ':' was entered.

48
Release Notes SourceGate V1.43

Application Note 1

4 ." PROFILE WINDOW

Performance Profile
Press return to start

Module Names Executions Max time Avg Time Min Time

Module 1 0 0. 000J.1s 0. 000J.1s 0. 000J.1s
0.000 %

Module 2 0 0. 000J.1s 0. 000J.1s 0. 000J.1s
".000 %

Module 3 0 0. 000J.1s 0. 000J.1s 0. 000J.1s
0.000 %

Module 4 0 0. 000J.1s 0. 000J.1s 0. 000J.1s
0.000 %

Module 5 0 0. 000J.1s 0. 000J.1s 0. 000J.1s
0.000 %

Module 6 0 0. 000J.1s 0. 000TJs 0. 000TJs
0.000 %

Module 7 0 0.000TJs 0. 000TJs 0. 000TJs
0.000 %

Module 8 0 0.000TJs 0. 000J.1s 0. 000J.1s
0.000 %

Reruns Requested = 005 Record Time = 0. 000TJs
Reruns Executed = 0 Total Record Time = 0. 000TJs

Timer Resolution = 001 x 100 ns

The Profile window displays the module name, percent of time that
was spent in each module, number of executions for each module,
along with max, min, and average time spent in each module. The
user may move the highlight bar to any of the 8 modules to select
the one that will be used as the trigger if the 'On Module'
trigger mode is selected. The various fields that are displayed
in the profile window are defined in this section.

4.1 Reruns Requested and Record Time Fields

These values were defined in the Setup window.

4.2 Reruns Executed Field

The is the actual number of runs that have been executed.

49
Release Notes SourceGate Vl.43

Application Note 1

4.3 Total Record T~e Field

This field shows the cummulative record time for all reruns
executed. The user should pay close attention to this field. If
the Total Record Time does not equal the Number of Reruns
multiplied by the Record Time, then there has been a buffer
overflow and the displayed data MAY be in error.

4.4 T~er Resolution Field

This field shows the resolution of the timer used by the
Performance Analyzer and the time tag field of the trace buffer.

NOTE: The percentage fields and histograms shown in the profile
window indicate the percent of total execution time spent within
each module. These percentages will depend on the way the
module is defined and the code execution path. The percentages
displayed will rarely, if ever, add up to 100% for several
reasons. Some modules may overlap in that code may begin in one
module and jump to another one and depending on how the modules
are defined, timing and execution information may be collected
for both modules. For instance, assume a module is defined with
an Entry point of 1100H and an Exit point of 1300H with no Range
specified. If the code enters this module at 1100H and runs for
25 microseconds, then jumps to location 1420H in another module
and runs for 10 microseconds, then comes back into the original
module for 5 microseconds before hitting the exit address,
the timer will record 40 microseconds for this module. The 10
microseconds spent in the other module will also be recorded as
time spent in that module. While the correct information is
collected and displayed for each module, it may not be what the
user is expecting. The use of a Range definition along with the
Entry-Exit points on this module would have prevented the 10
microseconds spent in the other module from being recorded.
The user should give careful thought to module definition and
examine the results very closely to avoid drawing the wrong
conclusions.

The Min, Max, and Avg times spent in each module should also be
carefully interpreted. The numbers simply mean that the code
made at least one pass through this module at the minimum time,
at least one pass at the maximum time, (obviously a longer path)
and the Avg number indicates the average time spent in the
module. As pointed out in Sections 3.2 and 3.3, the way in which
the time data is collected depends on how the modules are
defined.

For more information on module definition and interpretation of
results, see section 9.0 "A Sample Session".

58
Release Notes SourceGate Vl.43

Application Note 1

5." COVERAGE WINDOW

Performance Coverage Profile
Module Names Percentage of code covered

Module 1 lfZJfZJ.fZJfZJ%
Module 2 66.67%
Module 3 fZJ.fZJfZJ% Range Not Defined
Module 4 fZJ.fZJfZJ% Range Not Defined
Module 5 fZJ.fZJfZJ% Range Not Defined
Module 6 fZJ.fZJfZJ% Range Not Defined
Module 7 fZJ.fZJfZJ% Range Not Defined
Module 8 fZJ.fZJfZJ% Range Not Defined

The Coverage Window displays the module names and the
histograms which represent the percentage of code that was
covered in each module that has an Address-Range defined. A
module that does not have an Address-Range defined will display
the message "Range Not Defined".

NOTE: Coverage analysis is performed only for those modules that
have an Address-Range defined and are 64K or less in size.

51
Release Notes SourceGate V1.43

Application Note 1

6 ." EXTENDED COVERAGE WINDOW

Performance Extended Coverage
B = Beginning __ E = End __ F = Find __

COVERED NOT COVERED
1019
101A
101B
101C
101D

101E
101F
1020
1021
1022
1023

The Extended Coverage window can be displayed for each module by
moving the cursor to highlight the desired module and pressing
<cr>. The Extended Coverage window will then display the covered
and not covered addresses for the selected module.

The following commands may be used while in the Extended Coverage
window:

C - Use this command to locate covered addresses. If only
noncovered addresses appear when the Extended coverage
window is opened, this command will quickly locate any
covered addresses not currently visible.

N - This command is used in the same way as the 'c' command to
locate Noncovered addresses.

B - Used to move to the beginning of the listing.

E - Used to move to the end of the listing.

F - To find a particular address enter 'F' then press <cr>, you
will then be asked to enter the hex address you wish to
find.

52
Release Notes SourceGate Vl.43

Application Note 1

7.8 COMMAND WINDOW

r----------------- Command Window Alt(C)
rs
9

Selecting the Command window will allow the user to issue
standard emulator commands such as reset, go, stop, etc. The
Command window option is available here as a convenience to
avoid having to exit the Performance window to issue
commands then re-enter to run the analysis.

53
Release Notes SourceGate Vl.43

Application Rote 1

8.8 EXIT WIRDOW

r------------------- Performance Menu ------------------~

setup
Profile •••••••••••••
Coverage ••••••••••••
Command •••••••••••••

Define Performance Specification
Display Module timing Specification
Display percent of Module's Covered

Performance Command Window i II
~E_X_i_t __ [_N_O __] __ ._._._._._._._._._._E_X_1_·t __ p_e_r_f_o_rm __ a_n_c_e __ An __ a_ly_s_1_·s __________ ~ ~~S

The Exit window is used to exit the Performance Analysis mode.
To exit properly, move the cursor to highlight the Exit option
and press <cr>. A small window will appear with the 'YES-NO'
option. Press <cr> again and then use the up and down arrows to
select YES and press <cr> again. At this point SourceGate will
exit to the "Home" window list.

NOTE: When the performance analyzer is running, the display in
the profile window may appear to update slowly which may seem
to be inconsistent with an analysis time of a few
milliseconds. However, while the data is actually collected in
real time by the analyzer, the software must make several
calculations on the collected data before displaying it on the
screen. It is these calculations and display updating that make
the analysis appear to be slower than real time.

54
Release Rotes SourceGate Vl.43

Application Rote 1

9.1 A SAMPLE SESSIOR

The best way to illustrate the powerful capabilities of the HMI
Performance Analysis System is to program the analyzer for a
typical application and then examine the results. This sample
session is based on a program written for the Motorola MC-6899
microprocessor. The code was purposely made very simple so that
the reader can easily see the actual path the code will take,
which will make it easier to understand the results the
analyzer produces. The analyzer will then be programed with
various setup configurations and the results examined. The
purpose of this exercise will be to illustrate not only how to
setup the analyzer, but how to obtain the most useful results
from the system.

9.1 THE PROGRAM

The following is a listing of the code that will be used in this
sample session:

ADDRESS CODE CO:MMENTS

I
1999 LDA t1399 Load hardware stack pointer.
1994 LDU t12S9 Load user stack pointer.
1997 LDA t12 Load A Register with 12H.
1999 STA 1291 Store A to address 1291.
199C LDA t9S Load A Register with SH.

MAIN-1 199E ADDA t19 Add 19H to A Register.
1919 STA 1299 Store A to address 1298.

L 1913 LDA 1281 Load A from address 1281.
1916 EORA 1299 Exclusive OR A & address 1288.
1919 PSHU A PUSH A Register on stack.
191B BSR 1926 BRANCH TO SUBROUTINE @ 1926.

r- 191D PULU A PULL A Register from stack.
MAIN-2 191F DECA Decrement A Register.

1929 STA 1299 Store A to address 1298.
L- 1923 JMP 1998 Jump back to beginning.

I
1926 LDB t18 Load B Register with 18H.
1928 DECB Decrement B Register.
1929 CMPB t99 Compare B Register with 8.
192B PUSU B PUSH B Register on stack.

LOOP 192D BEQ 1934 Branch if Equal to 1834.
192F PULU B PULL B Register from stack.

L 1931 JMP 1928 If not Equal, Decrement again.
1934 RTS Return from Subroutine to

191D.

NOTE: The RESET VECTOR for the MC6889 must be set for 1989H
for this program to run properly.

55
Release Notes SourceGate V1.43

Application Note 1

The program has been divided into three sections or modules
called MAIN 1, MAIN 2, and LOOP. In an actual application these
modules might represent sections of code that the user might need
to have specific timing or execution information about. In our
example, MAIN-1 refers to a section of straight in-line code
which Branches to a subroutine at the end. The module called LOOP
refers to the subroutine and MAIN-2 represents the remainder of
the program.

An examination of the listing and comments reveals that the code
executes from address 1~~~ to address 1~1B then branches to a
subroutine at address 1~26. This subroutine is a simple loop that
executes 16 (1~H) times then returns to address 1~1D. The code
then runs through address 1~23 where it jumps back to the
beginning and starts over.

We will assume the user has a critical timing problem and
needs to know how long it takes to execute each of the modules.
There are a number of ways that the Performance Analyzer may be
set up to record data and it is very important that the user
understand the differences in order to properly interpret the
results. In the following sections we will look at the 3 basic
ways to set up this problem and examine the results for each
case.

9.2 SETUP NUMBER 1

RANGE ONLY

Performance Analysis setup Alt(P)
Module Name Bank Address Range Entry Exit

Trigger X 0000 - 0000 1000 1000
Main-1 X 1000 - 101C 0000 0000
Loop X 1026 - 1034 0000 0000
Main-2 X 1010 - 1025 0000 0000
Stack Area X 1200 - 1300 0000 0000
All Memory X 1000 - 1300 0000 0000

X 0000 - 0000 0000 0000
X 0000 - 0000 0000 0000

Recorder Mode = Rerun set number of times
Number of Reruns = 001
Record Time = 00008 x 1ms
Coverage mode = Establish new coverage
Trigger = On Module
Cumulative = Yes
Symbol Name =

FIG. 1

56
Release Notes SourceGate Vl.43

Application Note 1

In the first set up we will use address ranges only to define the
modules to be tested. Figure 1 shows the setup window and the
entries made for a range only analysis. Notice that the
beginning and ending addresses for each module have been entered.
Since the last instructions in modules MAIN-1 and MAIN-2 are
multiple byte instructions, the ending address entered is the
address of the last byte of those instructions. The user may also
notice that several other modules have been defined. These
modules are explained below.

TRIGGER MODULE - Because the emulator must be running when the
Perfomance Analyzer is started, it is impossible to know where in
memory the processor is running when the analysis is begun. If
the analyzer is set for automatic triggering the PAC system will
begin gathering data as soon as it is started. Since this could
be in the middle of a module that must be timed accurately, it is
possible to get incorrect data. Ideally we would like to control
exactly where the analyzer starts in order to get the most useful
data. We can accomplish this by using the "On Module" trigger
mode and setting up a module with both the Entry and Exit point
set to the same address. (This address should be the address we
want to start the analyzer on.) In the example used here we have
set the "Trigger Module" to address 10fcHJ which is the beginning
of the program. With this setup it does not matter where the
processor is running, the analyzer will not start collecting data
until address 1000 is accessed.

STACK AREA - This module refers to the area of memory used by the
the user and hardware stacks. This will show how much time is
spent in stack operations.

ALL MEMORY - This module includes the complete range of addresses
that the sample program should execute if it runs properly. If
this module ever indicates less than 100 percent it means that
there has been an address outside the expected range accessed.
(The program is in the weeds.)

With the setup complete the user then opens the Profile Window by
pressing "HOME" then highlighting "PROFILE" and pressing
<return>. At this point the emulator must be started. To do this
press "HOME" again and highlight "COMMAND". Type "RS" to reset
the emulator and then type "G" to start emulation. Now press
"Cntrl-PageUp" to return to the Profile Window and press <return>
again to start the analyzer.

57
Release Notes SourceGate Vl.43

Application Note 1

When the analyzer stops the Profile Window display will look like
Fig. 2:

RANGE ONLY

Performance Profile
Press return to start Use arrows for trigger on/off

Module Names Executions Max time Avg Time Min Time

Trigger 37 f(J.f(Jf(Jf(JJ.lS f(J.f(Jf(Jf(JJ.lS f(J.f(Jf(Jf(JJ.lS
f(J.f(Jf(Jf(J %

Main-1 228 6.5f(Jf(JJ.ls 2.9f(Jf(JJ.ls 1.5f(Jf(JJ.ls
8.265 %-

Loop 1233 6.f(Jf(Jf(JJ.ls 4.5f(Jf(JJ.ls 1.f(Jf(Jf(JJ.ls
69.355 %

Main-2 111 3.f(Jf(Jf(JJ.ls 2.3f(Jf(JJ.ls 2.f(Jf(Jf(JJ.ls
3.191 % • stack Area 1496 1.5f(Jf(JJ.ls f(J.9f(Jf(JJ.ls f(J.5f(Jf(JJ.ls

16.83f(J %
All Memory 1 8.f(Jf(Jf(JJ.ls 8.f(Jf(Jf(JJ.ls 8.f(Jf(Jf(JJ.ls
1f(Jf(J.f(Jf(Jf(J %

f(J f(J.f(Jf(Jf(Jms f(J.f(Jf(Jf(Jms f(J.f(Jf(Jf(Jms
f(J.f(Jf(Jf(J %

f(J f(J.f(Jf(Jf(JJ.lS f(J.f(Jf(Jf(JJ.lS f(J.f(Jf(Jf(JJ.lS
f(J.f(Jf(Jf(J %

Reruns Requested = f(Jf(J1 Record Time = 8.f(Jf(Jf(Jms
Reruns Executed = 1 Total Record Time = 8.f(Jf(Jf(Jms

Timer Resolution = f(Jf(J1 x 1f(Jf(J ns

FIG. 2

If we examine Fig. 2 we see that the trigger point occured 38
times. (The count shows 37, because the first trigger is not
counted.) This means that the program started from address 1999
38 times. We also see that module MAIN-1 was entered 228 times
and the average time spent in that module or range was 2.9 micro
seconds. Likewise the LOOP module was entered 1233 times with an
average time of 4.5 microseconds and MAIN-2 was entered 111 times
and had an average time of 2.3 microseconds per entry. If the
user stops here he might assume that these times represent the
average execution times for these modules, however, this is not
the case.

58
Release Notes SourceGate Vl.43

Application Note 1

It is obvious that since all three of these modules run exactly
the same each time, the execution time should always be very
close to the same. Since the Min, Max and Avg times displayed in
Fig. 2 vary widely, it is evident that they do not represent the
full execution time of the module. In fact, by definition, the
Range only setup will start timing when the processor enters the
specified range and stop when it leaves. Therefore, if we examine
the MAIN 1 module we see that it enters the range a total of 6
times during execution and the times shown in Fig. 2 represent
the Min, Max, and Avg times spent in the range and NOT the Min,
Max, and Avg times required to execute the entire module. All
three of the defined modules have instructions that access
memory locations outside their range. The STA, LDA 1201, PSHU,
PULU and EORA instructions all do memory accesses outside the
module range. Since these accesses take processor time, they
should be counted as part of the execution time for that
particular module. We need a set up that will measure not only
the time spent in the range, but any time spent outside the range
during execution of that particular module.

F============== Performance Coverage Profile ==============~
Module Names Percentage of code covered

Trigger 0.00% Range Not Defined
Main-1 100.00%
Loop 100.00%
Main-2 100.00%
Stack Area 2.72% ..
All Memory 1.93%
Module 7 0.00% Range Not Defined
Module 8 0.00% Range Not Defined

FIG. 3

Fig. 3 shows the code coverage window for the Range only setup.
As expected, the 3 modules we are interested in show 100%
coverage. However, if this were not the case, we could highlight
a particular module and press <return> to get the extended
coverage window. This would show the actual addresses that were
covered and the ones not covered. This would be useful in
finding sections of code that never get executed.

59
Release Notes SourceGate Vl.43

Application Note 1

9.3 SETUP NUMBER 2

BOTH RANGE AND ENTRY-EXIT

Performance Analysis setup Alt(P)
Module Name Bank Address Range Entry Exit

Trigger X 0000 - 0000 1000 1000
Main-1 1000 - 101C 1000 101C
Loop X 1026 - 1034 1026 1034
Main-2 X 1010 - 1025 1010 1025
Stack Area X 1200 - 1300 0000 0000
All Memory X 1000 - 1300 0000 0000

X 0000 - 0000 0000 0000
X 0000 - 0000 0000 0000

Recorder Mode = Rerun set number of times
Number of Reruns = 0((J1
Record Time = 00010 x 1ms
Coverage mode = Establish new coverage
Trigger = On Module
Cumulative = Yes
Symbol Name =

FIG. 4

In the second setup we have added a definition for the Entry and
Exit points for each of the 3 modules of interest as shown in
Fig. 4. This type of setup will cause the timer to start when
the Entry address is accessed and stop when the Exit address is
accessed. Referring to the procedure used with setup I, the user
should now reset and restart the emulator. After returning to
the Profile Window, the analyzer should be started by pressing

68
Release Notes SourceGate Vl.43

Application Note 1

<return>.
Fig. 5:

When the analyzer stops the display should look like

BOTH RANGE AND ENTRY-EXIT

Performance Profile
Press return to start Use arrows for trigger on/off

Module Names Executions Max time Avg Time Min Time

Trigger 37 0. 000,.,s 0. 000,.,s 0. 000,.,s
0.000 %

Main-1 38 17. 500,.,s 17. 400,.,s 17. 000,.,s
8.265 %-

Loop 37 149. 000,.,s 148. 900,.,s 148. 600,.,s
68.865 %

Main-2 37 6. 500,.,s 6. 500,.,s 6. 500,.,s
3.006 % • Stack Area 1496 1. 500,.,s 0. 900,.,s 0. 500,.,s

16.830 %
All Memory 1 8. 000,.,s 8. 000,.,s 8. 000,.,s
100.000 %

0 0.000ms 0. 000ms 0. 000ms
0.000 %

0 0. 000,.,s 0. 000,.,s 0. 000,.,s
0.000 %

Reruns Requested = 001 Record Time = 8.000ms
Reruns Executed = 1 Total Record Time = 8.000ms

Timer Resolution = 001 x 100 ns

FIG. 5

The user will immediately notice that this display is vastly
different than the one shown in Fig. 2. The number of executions
for MAIN 1,MAIN 2, and LOOP are considerably less than for the
previous setup. Also the t~es shown are much greater than for
the Range only setup. Since the Trigger number tells us that the
program starts 38 t~es (remember the first trigger is not
counted), the user can see that the program ran through MAIN-l 38
t~es, MAIN-2 37 t~es and LOOP 37 t~es before the 8 ms record
time ran out.

61
Release Notes SourceGate Vl.43

Application Hote 1

Looking at the execution times we can see that the Min, Max and
Avg times are very close to each other which could lead us to
believe that they now represent the true execution times of the
modules. However, referring to Section 3.4 of the Performance
Analysis Description, we see that with this setup, the timer
does start when the entry address is accessed and stops when the
exit address is accessed. However, the timer also stops when the
processor accesses addresses outside the range specified and
restarts when the range is reentered. Therefore since we have
already determined that each of the modules accesses addresses
outside their code range, we can see that these times are still
not representative of the total execution time for the modules.

9.4 SETUP NUMBER 3

ENTRY-EXIT ONLY

Performance Analysis setup Alt(P)
Module Name Bank Address Range Entry Exit

Trigger X ((J((J((J((J - ((J((J((J((J 1((J((J((J 1((J((J((J

Main-1 X ((Jf?Jf?Jf?J - f?Jf?Jf?Jf?J 1f?Jf?Jf?J 1f?J1C
Loop X f?Jf?Jf?Jf?J - f?Jf?Jf?Jf?J 1f?J26 1f?J34
Main-2 X f?Jf?Jf?Jf?J - f?Jf?Jf?Jf?J 1f?J1D 1f?J25
Stack Area X 12f?Jf?J - 13f?Jf?J f?Jf?Jf?Jf?J f?Jf?Jf?Jf?J
All Memory X 1f?Jf?Jf?J - 13f?Jf?J ((Jf?J((J((J f?Jf?Jf?Jf?J

X f?Jf?Jf?Jf?J - f?Jf?Jf?Jf?J f?Jf?Jf?Jf?J f?Jf?Jf?Jf?J
X f?Jf?Jf?Jf?J - f?Jf?Jf?Jf?J f?Jf?Jf?Jf?J f?Jf?Jf?Jf?J

Recorder Mode = Rerun set number of times
Number of Reruns = f?Jf?J1
Record Time = f?Jf?Jf?J1f?J x 1ms
Coverage mode = Establish new coverage
Trigger = On Module
Cumulative = Yes
Symbol Name =

FIG. 6

In setup number 3 we have specified only the Entry-Exit points
for each of the 3 modules of interest. Referring to Section 3.3
of the PAC Description, we see that this type of setup will give
us timing information that starts when the Entry address is
accessed and stops ONLY when the Exit address is accessed,
regardless of where in memory the processor runs. This should
give us the kind of timing information we need for these modules.
We now rerun the analyzer as before which produces the display
shown in Fig. 7.

62
Release Hotes SourceGate Vl.43

Application Rote 1

ENTRY-EXIT

Performance Profile
Press return to start Use arrows for trigger on/off

Module Names Executions Max time Avg Time Min Time

Trigger 37 ra.rararaJ,lS ra.rararaJ,lS
ra.rarara %

Main-1 38 2ra.raflJflJJ,lS 19.9flJflJJ,ls
9.452 %-

Loop 37 18flJ.flJflJflJJ,lS 179.9flJflJJ,ls
83.2flJ3 %

Main-2 37 7.5raraJ,ls 7.5flJflJJ,ls
3.469 % • Stack Area 1496 1.5flJflJJ,ls flJ.9flJflJJ,ls

16.83flJ %

All Memory 1 8.flJflJflJJ,ls 8.flJflJflJJ,ls
1flJflJ.flJflJflJ %

flJ flJ.flJflJflJms flJ.flJflJflJms
flJ.flJflJflJ %

ra flJ.flJflJraJ,lS flJ.rararaJ,lS
flJ.raflJflJ %

Reruns Requested = flJflJ1 Record Time =
Reruns Executed = 1 Total Record Time =

Timer Resolution =

FIG. 7

From this display we can see that, as expected,
executions for each module has stayed the same
however the execution times have again changed.
are evidence that the analyzer is now timing the
time for each module including the time spent
memory locations outside the code range.

ra.rararaJ,lS

19.4flJflJJ,ls

179.9flJflJJ,ls

7.5raflJJ,ls

flJ.5flJflJJ,ls

8.flJflJflJJ,ls

flJ.flJflJflJms

ra.rararaJ,lS

8.flJflJflJms
8.flJflJflJms

rara1 x 1flJra ns

the number of
as in Setup 2,
The longer times
total execution
accessing other

We can now see that the LOOP module, which appeared to take only
about 4.5 microseconds to execute in Setup 1, actually takes 180
microseconds and over 83% of the processor time. In a piece of
code as simple as this example, the user can easily see that the
LOOP module would take the most execution time because it is
running 16 times for every single pass of the program. Keep in
mind that the purpose of making this example simple was to make
it easier to interpret the results of the analyzer. In real
applications the PAC system can give the user information about
very complex programs that cannot be analyzed by simple
inspection.

63
Release Rotes SourceGate Vl.43

Application Note 1

9.5 CONCLUSION

In order to obtain useful information from the PAC system the
user MUST understand how it gathers and processes execution
data. As we have seen in this sample session, it depends on the
type of information that the user needs as to how the system
should be setup. In our example, we were interested in module
execution times and the Entry-Exit Only setup was the method
needed to produce accurate results. However, this does not mean
that this is the best method to use in all cases. The user
should study the PAC Description and FULLY understand its
operation to determine the proper method to use in obtaining the
kind of information needed. The user is incouraged to experiment
with the PAC system using different combinations of setup
parameters to see how they affect the results.

64
Release Notes SourceGate Vl.43

