
GO Technical Library

PenPofnt

PenPoint1M
API Reference

VOLUME II

GO CORPORATION

GO TECHNICAL LIBRARY

PenPoint Application Writing Guide provides a tutorial on writing PenPoint
applications, including many coding samples. This is the first book you should
read as a beginning PenPoint applications developer.

PenPoint Architectural Reference Volume I presents the concepts of the fun­
damental PenPoint classes. Read this book when you need to understand the
fundamental PenPoint subsystems, such as the class manager, application
framework, windows and graphics, and so on.

PenPoint Architectural Reference Volume II presents the concepts of the
supplemental PenPoint classes. You should read this book when you need
to understand the supplemental PenPoint subsystems, such as the text sub­
system, the file system, connectivity, and so on.

PenPoint API Reference Volume I provides a complete reference to the
fundamental PenPoint classes, messages, and data structures.

PenPoint API Reference Volume II provides a complete reference to the
supplemental PenPoint classes, messages, and data structures.

PenPoint User Interface Design Reference describes the elements of the
PenPoint Notebook User Interface, sets standards for using those elements,
and describes how PenPoint uses the elements. Read this book before
designing your application's user interface.

PenPoint Development Tools describes the environment for developing, de­
bugging, and testing PenPoint applications. You need this book when you
start to implement and test your first PenPoint application.

PenPotnf

PenPointlM

API Reference

GO CORPORATION

GO TECHNICAL LIBRARY

Addison-Wesley Publishing Company
Reading, Massachusetts + Menlo Park, California + New York
Don Mills, Ontario + Wokingham, England + Amsterdam
Bonn + Sydney + Singapore + Tokyo + Madrid + San Juan
Paris + Seoul + Milan + Mexico City + Taipei

VOLUME II

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book and Addison-Wesley was aware of a trademark
claim, the designations have been printed in initial capital letters.

The authors and publishers have taken care in preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for
incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

Copyright © 1991-92 GO Corporation. All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photo­
copying, recording, or otherwise, without prior written permission of the publisher. Printed in the United
States of America. Published simultaneously in Canada.

The following are trademarks of GO Corporation: GO, PenPoint, the PenPoint logo, the GO logo,
ImagePoint, GOWrite, NoteTaker, TableServer, EDA, MiniNote, and MiniText.

Words are checked against the 77,000 word Proximity/Merriam-Webster Linguibase, ©1983 Merriam
Webster. ©1983. All rights reserved, Proximity Technology, Inc. The spelling portion of this product is
based on spelling and thesaurus technology from Franklin Electronic publishers. All other products or
services mentioned in this document are identified by the trademarks or service marks of their respective
companies or organizations.

PenTOPS Copyright © 1990-1992, Sitka Corporation. All Rights Reserved.

W~vveUlly Dlsd~lm®r GO CORPORATION MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT
~r;@ limlt~ti~n ©r LIMITATION THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR

U~bmly PURPOSE AND NONINFRINGEMENT, REGARDING PENPOINT SOFIWARE OR ANYfHING ELSE.

u.~. G©v®rnm®nt
R®5tvide@ Rights

GO Corporation does not warrant, guarantee, or make any representations regarding the use or the
results of the use of the PenPoint software, other products, or documentation in terms of its correctness,
accuracy, reliability, currentness, or otherwise. The entire risk as to the results and performance of the
PenPoint software and documentation is assumed by you. The exclusion of implied warranties is not
permitted by some states. The above exclusion may not apply to you.

In no event will GO Corporation, its directors, officers, employees, or agents be liable to you for any
consequential, incidental, or indirect damages (including damages for loss of business profits, business
interruption, loss of business information, cost of procurement of substitute goods or technology, and the
like) arising out of the use or inability to use the documentation or defects therein even if GO Corporation
has been advised of the possibility of such damages, whether under theory of contract, tort (including
negligence), products liability, or otherwise. Because some states do not allow the exclusion or limitation
of liability for consequential or incidental damages, the above limitations may not apply to you. GO
Corporation's total liability to you from any cause whatsoever, and regardless of the form of the action
(whether in contract, tort [including negligence], product liability or otherwise), will be limited to $50.

The PenPoint documentation is provided with RESTRICTED RIGHTS. Use, duplication, or disclosure
by the U.S. Government is subject to restrictions as set forth in FAR 52.227-19 (Commercial Computer
Software-Restricted Rights) and DFAR 252.227-7013 (c) (1) (ii) (Rights in Technical Data and Computer
Software), as applicable. Manufacturer is GO Corporation, 919 East Hillsdale Boulevard, Suite 400, Foster
City, CA 94404.

ISBN 0-201-60863-4

123456789-AL-9695949392

First Printing, June 1992

Preface

The PenPoint API Reference provides reference information on the subsystems of
the PenPoint™ operating system. Volume I describes the functions and messages
that you use to manipulate classes and describes the fundamental classes used by
almost all PenPoint applications. Volume II describes the supplemental classes and
functions that provide many different capabilities to PenPoint applications. The
text in this volume was generated from the header files in \PENPOINT\SDK\INC.

Intended Audience
The PenPoint API Reference is written for people who are developing applications
and services for the PenPoint operating system. We assume that you are familiar
with the C language, understand the basic concepts of object-oriented
programming, and have read the PenPoint Application Writing Guide.

What's Here
The PenPoint API Reference is divided into several parts, which are split across two
volumes. Volume I contains these parts:

• Part 1: Class Manager describes the PenPoint class manager classes, which
supports object-oriented programming in PenPoint.

• Part 2: PenPoint Application Framework describes the PenPoint Application
Framework classes, which provides you the tools you use to allow your
application to run under the notebook metaphor.

• Part 3: Windows and Graphics describes ImagePoint classes and how
applications can control the screen (or other output devices).

• Part 4: UI Toolkit describes the PenPoint classes that implement many of the
common features required by the PenPoint user interface.

• Part 5: Input and Handwriting Translation describes the PenPoint input
system classes and classes that provide programmatic access to the
handwriting translation subsystems.

Volume II contains these parts:

• Part 6: Text Component describes the PenPoint classes that allow any
application to provide text editing and formatting capabilities to its users.

• Part 7: File System describes the PenPoint file system. classes.

• Part 8: System Services describes the function calls that applications can use
to access kernel functions, such as memory allocation, timer services, process
control, and so on.

vi PENPOINT API REFERENCE

• Part 9: Utility Classes describes a wide variety of classes that save application
writers from implementing fundamental things such as, list manipulation,
data transfer, and so on.

• Part 10: Connectivity describes the classes that applications can use to access
remote devices.

• Part 11: Resources describes the classes used to read, write, and create
PenPoint resource files.

• Part 12: Installation API describes the PenPoint classes that support installing
applicatibns, services, fonts, dictionaries, handwriting prototypes, and so on.

• Part 13: Writing PenPoint Services, describes classes used in writing an
installable service.

Other Sources of Inforlllation
As mentioned above, the PenPoint Application Writing Guide provides a tutorial
on writing PenPoint applications. The tutorial is illustrated with several sample
applications.

The PenPoint Development Tools describes how to run PenPoint on a PC, how to
debug programs, and how to use a number of tools to enhance or debug your
applications. This volume also contains a master index to the five volumes
included in the PenPoint SDK.

The PenPoint Architectural Reference groups the PenPoint classes into several
functional areas and describes how to use these classes. The PenPoint Architectural
Reference is divided into two volumes. The first volume describes the fundamental
classes that all application developers will use; the second volume describes
supplemental classes that application developers may, or may not, use.

To learn how to use PenPoint, you should refer to the PenPoint user documen­
tation. The user documentation is included with the PenPoint SDK, and is usually
packaged with a PenPoint computer. The user documentation consists of these
books:

• Getting Started with PenPoint, a primer on how to use PenPoint.

• Using PenPoint, a detailed book on how to use PenPoint to perform tasks and
procedures.

Type Slyles in This Book
To emphasize or distinguish particular words or text, we use different fonts.

r Computerese

We use fonts to distinguish two different forms of "computerese":

• C language keywords and preprocessor directives, such as switch,
case, idefine, iifdef, and so on.

• Functions, macros, class names, message names, constants, variables,
and structures defined by PenPoint, such as msgListAddltem, dsList,
stsBadParam, P _LIST _NEW, and so on.

Although all these PenPoint terms use the same font, you should note that
PenPoint has some fixed rules on the capitalization and spelling of messages,
functions, constants, and types. By the spelling and capitalization, you can
quickly identify the use of a PenPoint term.

• Classes begin with the letters "ds"; for example, dsList.

• Messages begin with the letters "msg"; for example, msgNew.

• Status values begin with the letters "sts"; for example, stsOK.

• Functions are mixed case with an initial upper case letter and trailing
parentheses; for example, OSMemAvailableO.

• Constants are mixed case with an initial lower case letter; for example,
wsClipChildren.

PREFACE
Type Styles in This Book

• Structures and types are all upper case (with underscores, when needed,
to increase comprehension); for example, U32 or LIST_NEW_ONLY.

Placeholders

Anything you do not have to type in exactly as printed is generally formatted in
italics. This includes C variables, suggested filenames in dialogs, and pseudocode
in file listings.

Other Text

The documentation uses italics for emphasis. When a Part uses a significant term,
it is usually emphasized the first time. If you aren't familiar with the term, you can
look it up in the glossary in the PenPoint Application Writing Guide or the index of
the book.

DOS filenames such as \\BOOT\PENPOINT\APP are in small capitals. PenPoint file
names can be upper and lower case, such as \My Disk\\Package Design Letter.

Book names such as PenPoint Application Writing Guide are in italics.

vii

~ Part 6 / Text NPITEM.H 261

TENCODE.H 3 NPSCR.H 269

TV_TAGS.H 7 NPTEXf.H 271

TXTDATA.H 9 ORDSET.H 273

TXTVIEW.H 31 QHELP.H 283

TXTXLIST.H 45 SEL.H 287

SPELL.H 299
~ Part 7 / File System 49 SPMGRH 303

FILETYPE.H 51 SR.H 305

FS.H 53 STROBJ.H 309

FSUTIL.H 75 TS.H 311

STREAM.H 79 UNDO.H 323
UUID.H 83 XFER.H 331

VOL.H 85
,,~ Part 10 / Connectivity

VOLGODIR.H 343
103

VSEARCH.H 115 ABMGRH 345
ADDRBOOKH 351

". Part 8 / System Services 119 ATALKH 365

CMPSTEXT.H 121 CNCTIONS.H 369

GOMATH.H 123 DIALENY.H 379
INTL.H 131 FLAP.H 391

OS.H 135 HSLINKH 393

OSHEAP.H 155 HSPKT.H 395

OSPRIY.H 165 INBXSVC.H 399

OSTYPES.H 171 IOBXSVC.H 409

SORT.H 175 LINKH 419

TIMER.H 177 MODEM.H 423
OBXSVC.H 437

~. Part 9 / Utility Classes 181 OPENSERY.H 449
BKSHELEH 183 PPORT.H 451
BROWSERH 185 SENDSERY.H 455
BYTARRAY.H 199 SERLINKH 459
BYTEBUEH 205 SIO.H 461
DSKVIEW.H 207 TP.H 469
EXPORT.H 215
GMARGIN.H 219

",. Part II / Resources 473

HASH.H 221 PREFS.H 475
IMPORT.H 229 RESCMPLR.H 485

LIST.H 233 RESFILE.H 489

NOTEPAPRH 241 RESUTIL.H 507

NPDATA.H 253 SETTINGS.H 509

'''' Part 12 / Installation API 511

APPIMGR.H 513

AUXNBMGR.H 517

CODEMGRH 525

DYNTABLE.H 529

FONTMGRH 533

HWXMGR.H 537

INIFILE.H 541

INSTALL.H 543

INSTLMGRH 545

INSTLSHT.H 563

PDICTMGR.H 567

SERVIMGRH 569

SYSTEM.H 573

Part 13 / Writing PenPoint
Services 579

HWXSERY.H 581

MILSERY.H 583

SERYCONEH 589

SERVICE.H 593

SERVMGR.H 609

SERVMISC.H 623

SYCTYPES.H 635

Part 14 / Miscellaneous 637

BATTERY.H 639

DYNARRAY.H 641

GOSEARCH.H 647

PDICT.H 649

POWER.H 653

POWERMGR.H 655

,,~ Index 657

Part 6 /
Text

TENCODE.H

This file contains the byte encodings used by clsText and clsTextView.

The byte encoding employed by the Text subsystem is based on the IBM-PC code page 850. However,

there are differences as noted by the constants below; the differences are peculiar to Text's interpretation

of bytes, they are not part of the interpretation used by the Imaging subsystem. This byte encoding
causes Text to use the font encoding sysDcEncodeHWX850 defined by sysfont.h.

In addition to the constants that define the byte encoding, classifications and routines that map from a

byte to a class are defined, similar to those classification routines provided by ctype.h. Use of these

routines should be carefully isolated as they will be replaced by a different package in the
"internationalized" version of PenPoint.

The functions described in this file are contained in TEXT.LIB.

*ifndef TENCODE INCLUDED
*define TENCODE_INCLUDED $Revision:
*ifndef GO_INCLUDED
*include <go.h>
*endif

Types and Constants
"Text encoding" abbreviates to "te".

Format effectors: recognized

*define teEmbeddedObject
*define teSpace
*define teTab
*define teNewLine
*define teNewPage
*define teNewParagraph
*define teUnrecognized

Format effectors: unrecognized

Ox13
Ox20
Ox09
OxOD
Oxoc
Ox14
Ox15

*define teBackSpace Ox08
*define teLineFeed OxOA
*define teVerticalTab OxOB

1. 205 $

II ASCII's DC3, 850's I I

II ASCII's CR, 850's music glyph
II ASCII's FF, 850's female glyph
II ASCII's DC4, 850's para glyph
II ASCII's NAK, 850's sect glyph

The classification package is designed to support multiple classification schemes. The type
TEXT_CHAR_TABLE represents the abstraction of a classification scheme; as such, a parameter of this
type is required by each of the classification routines. TXTCTYPE_DEF represents the default classification

scheme used by the Text subsystem. Thus, to see if a particular byte encodes a sentence ending character

in the default classification scheme, the client would call:

TEIsSentenceEnd(TXTCTYPE_DEF, aByte)

typedef U16 TEXT_CTYPE_FLAG, *P_TEXT_CTYPE_FLAG;
typedef P_TEXT_CTYPE_FLAG TEXT_CHAR_TABLE;
*define TXTCTYPE_DEF ((TEXT_CHAR_TABLE) (-lL))

4 PEN POINT API REFERENCE

Part 6 I Text

Exported Functions and Macros

TEIsSentenceEnd
Determines if' c' is a sentence-ending character.

Returns BOOLEAN.

BOOLEAN EXPORTED

Fundion Prototype TEIsSentenceEnd (
TEXT_CHAR_TABLE table,
CHAR c);

Comments Returns true if and only if' c' is a sentence-ending character.

TEIsLineBreak
Determines if' c' forces a line-break.

Returns BOOLEAN.

BOOLEAN EXPORTED

Fundion Prototype TEIsLineBreak (
TEXT_CHAR_TABLE table,
CHAR c);

Comments Returns true if and only if' c' forces a line-break.

TEIsBlank
Determines if'c' acts as a blank/space character.

Returns BOOLEAN.

BOOLEAN EXPORTED

Function Prototype TEIsBlank (
TEXT_CHAR_TABLE table,
CHAR c);

Comments More than one character may act as a blank/space for some purposes. For example, a non-breaking
blank!space; none is defined for the PenPoint Developers Release. Returns true if and only if'c' acts as a
blank! space character.

TEIsSpeciaiPunct
Determines if' c' is a "special" punctuation character.

Returns BOOLEAN.

BOOLEAN EXPORTED

Function Prototype TEIsSpecialPunct (
TEXT_CHAR_TABLE table,
CHAR c);

(omments Such characters end a word or sentence unless surrounded by alphanumerics. The period and commas in
numbers are the most obvious case. Special punctuation might also include the periods in something
like "Section II.A.i: The Rise and Fall of Punctuation". Since the surrounding context is not available to
this function, it simply indicates whether the character can function as special punctuation; the caller
must then examine the context to decide whether the character is actually special punctuation.

Returns true if and only if' c' is a "special" punctuation character.

TENCODE.H 5

Exported Functions and Macros

TEIsWord
Determines if' c' is part of a "normal" word. l
Returns BOOLEAN.

BOOLEAN EXPORTED

fundion Prototype TEl sWord (
TEXT_CHAR_TABLE table,
CHAR c);

Comments Returns true if and only if'c' is part of a "normal" word.

TV TAGS.M

This file contains dsTextView's well-known TAGs and associated constants.

The usage of well-known TAGS by clsTextView falls into these categories:

1) Quick Help identifiers

2) Option Sheet card and item (i.e., window) tags

3) Option Sheet card labels

4) User note identifiers

Most of dsTextView's Option Sheet components use the same tag for both the window tag and the

quick help tag. This causes category 1 above to be almost identical to category 2.

All of the Quick Help resources for dsTextView can be enumerated by finding all resources whose

.wkn.admin == resForQuickHelp (see qHelp.h) and Cls{.wkn.id) == Cls{cIsTextView).

*ifndef TV_TAGS_INCLUDED
*define TV_TAGS_INCLUDED

* *include <go.h>

* * *include <uid.h>

*

ifndef GO INCLUDED

endif
ifndef UID INCLUDED

endif

II Allocated clsTextView TAGs: 1-54, 94-95

Tags for Option Sheet
typedef enum TV_CARD_INDEX

tvCardChar = 0,
tvCardPara,
tvCardTabs,
tvCardView,
tvCardLength

TV_CARD_INDEX;

II TVMakeCardTag(TV_CARD_INDEX) => tag

II Pseudo-card index which gives * cards

Labels for Option sheet & cards. All Card Label strings are in a single resource: a string array with Resld

= tagTVOptResAdmin and indexed via TV_CARD_INDEX.

*define tagTVOptResAdmin MakeTag(clsTextView, 95)
typedef enum TV_CHAR_OPTION II TVMakeCharTag(TV_CHAR_OPTION) => tag

tvCharOptBold = 0,
tvCharOptFont,
tvCharOptltalic,
tvCharOptSize,
tvCharOptSizeOther,
tvCharOptSizeOtherVal,
tvCharOptSmallCaps,
tvCharOptStrike,
tvCharOptStyle,
tvCharOptUnderlineNormal,
tvCharOptUnderlineHeavy,
tvCharOptLength II Pseudo item which gives * char options

TV_CHAR_OPTION;

8 PENPOINT API REFERENCE
Part 6 I Text

typedef enum TV_PARA_OPTION II TVMakeParaTag(TV_PARA_OPTION) => tag
tvParaOptAfterSpacing = 0,
tvParaOptBeforeSpacing,
tvParaOptFirstLineOffset,
tvParaOptInterLineHeight,
tvParaOptJustification,
tvParaOptLeftMargin,
tvParaOptLineHeight,
tvParaOptRightMargin,
tvParaOpt1ength II Pseudo item which gives # para options

TV_PARA_OPTION;

typedef enum TV_VIEW_OPTION II TVMakeViewTag(TV_VIEW_OPTION) => tag
tvViewOptSpecial = 0,
tvViewOptMagnification,
tvViewOpt1ength II Pseudo item which gives # show options

TV_VIEW_OPTION;

The following macros combine all of the sub-ranges into a universal name space, suitable for both

win.tag and gwin.helpld. Note that the labels of options are not tagged, only the value fields; if the

labels must be tagged, use a new administered range so that it does not conflict with these helplds.

II tv_glbl.c performs runtime consistency checks.
#define TVMakeTag(tag) MakeTag(clsTextView, (tag))
#define tagTextView TVMakeTag(l)
#define tagTextViewOption TVMakeTag(2)
#define TVMakeCardTag(i) TVMakeTag(3+i)
#define TVMakeCharOptTag(i) TVMakeTag(10+i)
#define TVMakeParaOptTag(i) TVMakeTag(30+i)
#define tagQHTabStop TVMakeTag(42)
#define TVMakeViewOptTag(i) TVMakeTag(45+i)
#define TVMakeXXXTag(i) TVMakeTag(55+i)

Tags for Notes

II min 7
II min 21
II min 38
II min 43
II min 48

=> 3
=> 9
=> 4
=> 2
=> 7

spare Card
spare Char
spare Para
spare Tabs
spare View

A Note is a string displayed to the user when a Text View encounters difficulties processing a user action.
All of the Note strings are in a single resource: a string array with ResId =

resForStdMsgDialog(clsTextView) and indexed via the following ids.

#define tagTVNoteResAdmin MakeTag(clsTextView, 94)
II Allocated note ids - recycled: none; next: 121

"text view note" abbreviates to "tvn".

#define tvnHazardousSetting 11
#define tvnInvalidFieldValue 21
#define tvnTranslateOutOfMem 31
#define tvnTabsOverlap 41
#define tvnReadOnlyChars 51
#define tvnReadOnlyAttrs 61
#define tvnNotAnIP 71
#define tvnNotAComponent 81
#define tvnApplyWithoutSeln 91
#define tvnNegForUnsignedField 101

#define tvnNewParasAdded 111

II margins may overlap

II a negative number entered for an
II unsigned field in an option sheet

TXTDATA.H

This file contains the API definition for clsText.

clsText inherits from clsObject.

clsText is the Data Object for the Text subsystem. These objects hold characters, their attributes and

embedded objects.

The functions described in this file are contained in TEXT.LIB.

Road Map
Clients manipulating the character contents of the text Data might use:

• msgTextGet

• msg TextGetBuffer

• msg TextModify

Clients manipulating the attributes stored in textData might use:

• msg TextChangeAttrs

• msg TextClearAttrs

• msg TextGetAttrs

• msg TextlnitAttrs

• msg TextPrin tAttrs

• Textlni tCharAttrsO

• TextlnitCharMaskO

• TextlnitParaAttrsO

• TextlnitParaMaskO

• TextDeleteManyO

• TextlnsertOneO

Clients manipulating a textData's embedded objects might use:

• msg TextEmbedObject

• msg TextExtractO bject

• msg TextEnumEmbeddedObjects

Clients needing to work with words, sentences or paragraphs might use:

• msgTextSpan

• msgTextSpanType

10 PENPOINT API REFERENCE
Part 6 / Text

Clients needing to import or export text might use:

• msgTextRead

• msgTextWrite

Clients observing a textData might want to handle:

• msg TextAffected

• msg TextReplaced

Characters and Encodings

Text data objects hold bytes representing characters using the encoding specified in tencode.h. In
PenPoint 1.0, this encoding is derived from the IBM-pes code page 850, and uses one byte per

character. There are characters representing line, paragraph, and page breaks.

Characters are indexed starting from zero.

FormaHing Information

Text data objects also hold "formatting" or "attribute" information. The types of attributes stored are:

• character attributes such as font face, size and weight

• paragraph attributes such margins, first line offset, first line offset

• tab attributes for a paragraph

• embedded object info (specifically the embedded object's uid)

• link termination (specifically the destination information for marks)

Attributes "tile" ranges of characters. In other words, no character can have two different sets of

character attributes associated with it, although it can have both character and paragraph attributes. This
tiling is enforced by the textData.

Any character that does not have explicit character or paragraph attributes takes on the "default"

character or paragraph attributes of the data object. There are messages to inspect, enumerate, and
modifY all the attributes, including the defaults.

Relation to UI Classes

A textData only provides storage for characters and attributes. It does not provide any user interface
(UI). The UI is provided by an instance of dsTextView.

To assist the class providing the UI, the textData provides notifications whenever either the characters or
the attributes are modified.

Implementation Note

dsText is actually composed of three layers of classes. Clients need not be concerned by these layers, and

should not rely on their existence as they may disappear in future releases.

dsTextBlock (usually referred to as dsText) is a descendant of dsTextMarkStore, which in turn is a
descedant of dsTextChar.

#ifndef TXTDATA INCLUDED
#define TXTDATA INCLUDED $Revision: 1.224 $

TXTDATA.H "
Types and Constants: Atoms

#ifndef CLSMGR INCLUDED
#include <clsmgr.h>
#endif
#ifndef BYTARRAY INCLUDED
#include <bytarray.h> II For BYTE INDEX
#endif
#ifndef GEO INCLUDED
#include <geo.h> II Required by sysfont.h
#endif
#ifndef SYSFONT INCLUDED
#include <sysfont.h> II For SYSDC FONT ATTR
#endif

Types and Constants: Atoms
Atoms are used as parameters to many of textData messages. All valid atoms are defined below.

typedef U16 ATOM;
#define atomChar ((ATOM) 1)
#define atomWord ((ATOM) 2)
#define atomLine ((ATOM) 3)
#define atomSentence ((ATOM) 4)
#define atomPara ((ATOM) 5)
#define atomDivision ((ATOM) 6)
#define atomDoc ((ATOM) 7)
#define atomMisc ((ATOM) 8)
#define atomEmbedded ((ATOM) 9)
#define atomParaTabs ((ATOM) 10)
#define atomLink ((ATOM) 11)
#define atomWSDelimit ((ATOM)12)
#define atomClient1 ((ATOM)28)
#define atomClient2 ((ATOM) 29)
#define atomClient3 ((ATOM) 30)
#define atomClient4 ((ATOM) 31)
#define minValidAtom atomChar
#define maxValidAtom atomClient4

AtomGetName
Passes back a pointer to the string value of the atom.

Returns STATUS.

STATUS EXPORTED

FLmctit:m [»v©t©type AtomGetName (
ATOM
PP STRING

atom,
ppString) ;

Most clients and subclasses do not use this function. It is occasionally useful for debugging.

stsBadParam atom is out of the range of valid atoms

stsOK atom is within the valid range. *ppString may still be NULL if the atom falls into one of
the gaps.

12 PENPOINT API REFERENCE

Part 6 I Text

Types and Conslanls: Character Indices

Character Indices
typedef U32
typedef TEXT_INDEX *
tdefine maxTEXT_INDEX

TEXT_INDEX;
P_TEXT_INDEXi
maxU32

Some messages and functions which take a TEXT_INDEX as a parameter may use special values to
achieve certain effects. Each message and function description indicates which special values can be

used.

tdefine IpoTEXT_INDEX (maxTEXT_INDEX-maxU16)
tdefine lastTEXT INDEX (lpoTEXT_INDEX-1)
tdefine infTEXT_INDEX (maxTEXT_INDEX-1)
tdefine mInfTEXT_INDEX maxTEXT INDEX

"Magic" value for msgTextChangeAttrs, msgTextGetAttrs and msgTextInitAttrs.

tdefine textDefaultAttrs infTEXT INDEX

Types and Conslanls: Character AHributes
The prefixes flTA_fI and "ta" indicate that an identifier is related to "text attributes."

Use these in the alignBase field of a TA_CHAR_ATTRS.

typedef enum {
taNormalLineBase

} TA_ALIGN_BASEi

Character Attributes

= 0,

typedef struct TA CHAR ATTRS
U16 size;

U16 tacSpare
highlight
smallCaps
upperCase
strikeout
underlines

alignBase

SYSDC_FONT_SPEC font;
TA_CHAR_ATTRS, *P_TA_CHAR_ATTRS;

Character Attributes Mask.

8,
1,
1,
1,
1,
2,

2;

II Must fit in 2 bits

II Font size in twips. Not all
II values are available -- some are
II rounded down. Max of 160*20 twips.
II Reserved.

II As defined in sysfont.h. Must be
II 0, 1, or 2.
II Use a TA_ALIGN_BASE value. Only
II taNormalLineBase is implemented.

The highlight and encoding fields contain extra bits. These bits are automatically zero-ed by assigning a

legitimate values to the field.

typedef struct
U16

U16

tacSpare
highlight
size
smallCaps
upperCase
strikeout
underlines
alignBase
id
group

8,
2,
1,
1,
1,
1,
1,
1;
1,
1,

II Must fit in 32 bits
II Reserved. Should be set to O.
II true or false (and 1 spare bit)

II mask bit for attrs.font.id
II mask bit for attrs.font.attr.group

weight
aspect
italic
monospaced
encoding

1,
1,
1,
1,
10;

TXTDATA.H 13

Types and Constants: Tab Attributes

II mask bit for attrs.font.attr.weight
II mask bit for attrs.font.attr.aspect
II mask bit for attrs.font.attr.italic
II mask bit for attrs.font.attr.monospaced
II mask bit for attrs.font.attr.encoding
II true or, false (and 9 spare bits)

Types and Constants: Tab AHributes
Each paragraph can have up to TA_MAX_TABS tab stops. A paragraph without its own explicit tab stops

"inherits" the document's "default" tab stops.

Paragraphs that desire uniformly spaced tab stops can compactly define the stops by setting at least two

explicit stops and then setting repeatAtEnd to true. This has the effect of defining an unlimited number

of implicit stops, each of which follows the prior stop by the distance between the last two explicit stops.

NOTE: Even though each tab store has a type and leader, only the type taTabLeft and the leader

taLeadSpace are implemented.

typedef enum { II Must fit in 2 bits
taTabLeft 0,
taTabCenter 1, II Not Implemented
taTabRight 2, II Not Implemented
taTabDecimal 3 II Not Implemented

TA_TAB_TYPE;
typedef enum { II Must fit in 2 bits

taLeadSpace = 0,
taLeadDot = 1, II Not Implemented
taLeadDash = 2, II Not Implemented
taLeadUnderline = 3 II Not Implemented

TA _TAB_LEADER;

Tab Stop.

The type and leader fields contain extra bits. These bits are automatically zero-ed by assigning a

legitimate values to the field.

typedef struct TA TAB STOP
U16 X; II In twips
U8 type; II TA TAB TYPE (and 6 spare bits)
U8 leader; II TA TAB LEADER (and 6 spare bits)

TA TAB STOP, *p TA TAB_STOP; -

The maximum number of tab stops for a paragraph.

idefine TA_MAX_TABS 31

Tab Stops.

The count and repeatAtEnd fields contain extra bits. These bits are automatically zero-ed by assigning a

legitimate values to the field.

typedef struct TA_TABS {
U16 count

TA TAB STOP
repeatAtEnd
tabs[1];

8,

8;

II Number of tab stops, in the range
II O .. TA_MAX_TABS. (plus 3
II spare bits.)
II true or false (and 7 spare bits)
II Actually variable size array

14 PEN POINT API REFERENCE

Part 6 I Text

Another representation of tab stops.

typedef struct TA MANY TABS
. U16 count 8,

repeatAtEnd : 8;

II Number of tab stops, in the range
II O .. TA MAX TABS. (plus 3
II spare-bits.)
II true or false (and 7 spare bits)

TA TAB STOP tabs[TA_MAX_TABS1;
TA_MANY_TABS, *P_TA_MANY_TABS;

fdefine textNoTabs ((P_TA_MANY_TABS)l) II Not Implemented

Types and Constants: Paragraph AHributes
Use these in the alignment field of a TA_PARA_ATTRS.

typedef enum {
taParaLeft
taParaCenter
taParaRight
taParaSpare

TA_PARA_ALIGN;

Paragraph Attributes.

= 0,
= 1,
= 2,
= 3

II Must fit in 2 bits

II Reserved

All of the fields in TA_PARA_ATTRS that are linear measurements are in twips.

The alignment and justify fields contain extra bits. These bits are automatically zero-ed by assigning a

legitimate values to the field.

typedef struct TA PARA ATTRS
U16 alignment

justify

U16 lineHeight;

8,
: 8;

U16
U16

interLineHeight;
beforeSpacing;

U16
S16

afterSpacing;
firstLineOffset;

U16 leftMargin;
U16 rightMargin;

TA_PARA_ATTRS, *P_TA_PARA_ATTRS;

SpeciallineHeight value

II TA PARA ALIGN (and 6 spare bits)
II 0 or 1.-(Ox80 is used internally,
II so there are 6 spare bits.)
II The special value textUseMaxHeightOnLine
II causes the line height to be as high
II as the highest thing in the line.
II Don't use zero!

II Adds to previous paragraphs's
II afterSpacing

II Add to leftMargin to get the effective
II left margin for the first line of the
II paragraph.

fdefine textUseMaxHeightOnLine maxU16

Paragraph Attribute Mask

The lineHeight, interLine Height, beforeSpacing and afterSpacing fields contain extra bits. These bits
are automatically zero-ed by assigning a legitimate values to the field.

typedef struct { II Must fit in 32 bits
U16 alignment 1,

justify 1,
firstLineOffset 1,
leftMargin 1,
rightMargin 1,
lineHeight 3, II 0 or 1 (2 spare bits)
interLineHeight 8; II 0 or 1 (7 spare bits)

U16 beforeSpacing 8, II 0 or 1 (7 spare bits)
afterSpacing 8; II 0 or 1 (7 spare bits)

T~PARA_MASK, *P_TA_PARA_MASK;

TXTDATA.H

Types and Constants: Import/Export

Types and Constants: Embedding
typedef struct TEXT_EMBED_OBJECT

TEXT_INDEX first;
OBJECT toEmbed;
U8 clientFlags;
U8 action; II One of the values below (6 spare bits)

TEXT EMBED_OBJECT, *P_TEXT_EMBED_OBJECT;

Use these in the action field of a TEXT_EMBED_OBJECT.

*define textEmbedCopy 0 II For internal use only.
*define textEmbedFree 1 II For internal use only.
*define textEmbedInsert 2
*define textEmbedMove 3 II For internal use only.

The fields of this structure are described in the comments for msgTextEnumEmbeddedObjects.

typedef struct TEXT_ENUM_EMBEDDED {
TEXT INDEX first;
TEXT INDEX length;
U16 flags; I lOne of the values below
U16 maXi

U16 count;
P TEXT EMBED OBJECT pItemsi

TEXT_ENUM EMBEDDED, *P_TEXT_ENUM_EMBEDDED;

The prefix "tee" indicates that an identifier is related to "TEXT_ENUM_EMBEDDED."

Use these in the flags field of a TEXT_ENUM_EMBEDDED.

*define teeFloat

*define teeInline
*define teeDefault

flagO

flag1
(teeFloatlteeInline)

II Include floating embedded
II objects. (These will be
II children of theRootWindow.)
II Include embedded objects

Types and Constants: Import/Export
More information about the fields of this structure is in the comments for for msgTextRead.

The freeAfter and inputlsObject fields contain extra bits. These bits are automatically zero-ed by
assigning a legitimate values to the field.

typedef struct TEXT_READ
TEXT INDEX first;
P UNKNOWN input;
U16 embeddedAction: 2,

freeAfter: 6, II true or false (and 5 spare bits)
inputIsObject: 8; II true or false (and 7 spare bits)

TAG format;
TEXT_READ, *p _TEXT_READ;

More information about the fields of this structure is in the comments for for msgTextWrite.

15

The flags and outputlsObject fields contain extra bits. These bits are automatically zero-ed by assigning
legitimate values to the fields.

typedef struct TEXT_WRITE
TEXT INDEX first;
TEXT INDEX length;
P UNKNOWN output;
U16 flags;

TAG format;
U8 outputIsObject;

TEXT_WRITE, *P_TEXT_WRITE;

II One of the values below (and 13
II spare bits)

'6 PENPOINT API REFERENCE
Part 6 I Text

The prefix "tw" indicates that an identifier is related to "text write."

Use these in the flags field of a TEXT_WRITE. They are described in the comments for msgTextWrite.

fdefine twExtractEmbedded
fdefine twTempFile
fdefine twForUndo

flagO
flagl
flag3

Other Types and Constants
typedef OBJECT TEXT_DATA;

Resource ids

fdefine textResDefaultCharAttrs
fdefine textResDefaultParaAttrs
fdefine textResDefaultParaTabs

MakeWknResId(clsText, 1)
MakeWknResId(clsText, 2)
MakeWknResId(clsText, 3)

Public Functions and Macros

Utility Functions

TextDeleteMany
Deletes characters from a textData.

Returns STATUS.

STATUS EXPORTED

II Not Impl.
II Not Impl.

FlmdlOf1 Pn::;t<rlype TextDeleteMany (
const OBJECT
const TEXT INDEX
const TEXT INDEX

dataObj,
pos,
length);

II first character to delete
II number to delete

The return values are the same as those for msgTextModify.

TexdnsertOne
Inserts one character into a textData.

Returns STATUS.

STATUS EXPORTED

flmdiof) Prohyrype TextInsertOne (
const OBJECT
const TEXT INDEX
const CHAR

dataObj,
pos,
toInsert) ;

II position at which to insert
II character to insert

The return values are the same as those for msgTextModify.

TextFindNextParaTab
Passes back the next tab stop to the right of the passed-in stop.

Returns STATUS.

STATUS EXPORTED

tum:tiof) Prototype TextFindNextParaTab (
const P TA TABS
const P TA TAB STOP - - -
const P U16

p,
pTab,
pIndex) ;

TXTDATA.H 17

Public Functions and Macros

Comments Note that if p->repeatAtEnd is true, there are effectively an infinite number of tab stops.

stsNoMatch no tabs, or this is the last tab.

AHribute and Mask Initialization Routines

TexdnitCharAttrs
Initialzes a character attribute structure.

Returns nothing.

void EXPORTED

Function Prototype TextlnitCharAttrs (
P_TA_CHAR_ATTRS p);

Comments This function reads the default character attributes from the process's resource list (using the resource id
textResDefaultCharAttrs), or sets all values to 0 if the resource cannot be found.

See Also msgTextChangeAttrs

TextlnitCharMask
Initialzes a character attribute mask to all zeros.

Returns nothing.

void EXPORTED

Fundion Prototype TextlnitCharMask (
P TA CHAR MASK p);

See Also msg TextChangeAttrs

TexdnitParaAttrs
Initialzes a paragraph attribute structure to all zeros.

Returns nothing.

void EXPORTED

function Prototype TextlnitParaAttrs (
P_TA_PARA_ATTRS p);

See Also msg TextChangeAttrs

TextlnitParaMask
Initialzes a paragraph attribute mask to all zeros.

Returns nothing.

void EXPORTED

fundlon Pn;»tt;»type TextlnitParaMask (
P TA PARA MASK p);

See Also msg TextChangeAttrs

18 PENPOINT API REFERENCE

Part 6 / Text

Message Arguments
The prefix "TD_" indicates that an identifier is related to "text data."

The prefix "tdm" indicates that an identifier is related to "text data metrics."

typedef struct TD_METRICS {
U16 flags;
U16 spareBits;
P UNKNOWN spares[2];

TD_METRICS, *P_TD_METRICS;

II One of the values below
II Reserved.
II Reserved.

Use these in the flags field of a TD_METRICS.

#define tdrnCanUndo
#define tdmFileCharsOnOwn
#define tdrnReadOnly

flag8
flag1
flagO

II if on, textData supports undo
II Not Implemented
II characters cannot be modified

expectedSize is a hint about the expected number of characters in a textData. An accurate hint can
improve performance.

typedef struct TD_NEW_ONLY
TD METRICS metrics;
TEXT INDEX expectedSize;
U16 expectedTagCount; II Private. For internal use only.

TD_NEW_ONLY, *P_TD_NEW_ONLY;
typedef struct TD NEW

OBJECT NEW ONLY object;
TD NEW ONLY text;

TD_NEW, *P_TD_NEW;
typedef struct TEXT_BUFFER

TEXT_INDEX first;
TEXT INDEX length;
TEXT INDEX bufLen;

II In
II In
II In

P CHAR bUf; II In:Out via *buf
TEXT INDEX bufUsed; II Out

TEXT_BUFFER, *P_TEXT_BUFFER;
typedef enum { II Used as a SET

tdForward = 1,
tdBackward = 2

TEXT_DIRECTION;
typedef struct TEXT_SPAN

TEXT INDEX
TEXT INDEX
ATOM
TEXT DIRECTION
BOOLEAN
BOOLEAN
U16

U16

U8
U8
U32

TEXT_SPAN, *P_TEXT_SPAN;

first;
length;
type;
direction;
needPrefix;
needSuffix;
prefixLength;

suffixLength;

firstNormal;
lastNormal;
spares[4];

typedef struct TEXT SPAN AFFECTED
OBJECT sender;
U32 changeCount;
TEXT INDEX first;
TEXT INDEX length;

TEXT_SPAN_AFFECTED, *P_TEXT_SPAN_AFFECTED;

II In:Out
II In:Out
II In:Out (for msgTextSpanType)
II In
II In
II In
II Out: valid if and only if
II needPrefix is true
II Out: valid if and only if
II needSuffix.is true
II Out: 0 or 1 (7 spare bits)
II Out: 0 or 1 (7 spare bits)
II Reserved

TXTDATA.H 19
Messages Defined by Other Classes

typedef struct TEXT_REPLACED {
TEXT_SPAN_AFFECTED span;
TEXT_INDEX bytesTakenFromBuf;

TEXT_REPLACED, *P_TEXT_REPLACED;
typedef struct TEXT_AFFECTED {

TEXT SPAN AFFECTED span;
U16 remeasurei
P UNKNOWN spare;

TEXT_AFFECTED, *P_TEXT_AFFECTED;
typedef struct TEXT COUNTER CHANGED

OBJECT sender;
U32 changeCount;
U32 oldCount;

TEXT_COUNTER_CHANGED, *P_TEXT_COUNTER_CHANGED;
typedef struct TEXT_CHANGE_ATTRS {

ATOM tag;
TEXT INDEX first;
TEXT INDEX length;
P UNKNOWN pNewMask;
P UNKNOWN pNewValues;

TEXT_CHANGE_ATTRS, *P_TEXT_CHANGE_ATTRS;
typedef struct TEXT_GET_ATTRS {

ATOM tag;
TEXT INDEX first;
TEXT INDEX length; II Not defined.
P UNKNOWN pValues;

TEXT_GET_ATTRS, *P_TEXT_GET_ATTRS;

Messages Defined by Other Classes

msgNewDefaults
Initializes the NEW struct.

Takes P_TD_NEW, returns STATUS. Category: class message.

typedef struct TD_NEW
OBJECT NEW ONLY
TD NEW ONLY

TD_NEW, *P_TD_NEW;

object;
text;

In response to this message, dsText does the following:

pNew->object.cap 1= objCapCreate;
memset(&(pNew->text), 0, sizeof(pNew->text»;
pNew->text.expectedSize 5;
pNew->text.expectedTagCount = 5;

msgNew
Creates a new instance of dsText.

Takes P _TD_NEW, returns STATUS. Category: class message.

typedef struct TD_NEW
OBJECT NEW ONLY object;
TD NEW ONLY text;

20 PEN POINT API REFERENCE
Part 6 I Text

Messoge
Arg1JtTleftfs

msgTextChangeCount
Passes back (and optionally sets) the textData's changeCount.

Takes S32, returns S32.

tdefine msgTextChangeCount TCMakeMsg(O)

Each instance of dsText keeps a monotonically increasing count of the number of changes that have
been made to it (via msgTextModify). In response to this message, a textData passes back that count.
The counter's value is always greater than or equal to O.

If the value of pArgs is:

< 0 the counter's current value is returned and the counter is unchanged.

maxS32 the counter is incremented by one, and the new value returned.

>= 0 the counter is set to pArgs, and its previous value is returned.

In general, clients should only increment the counter, not decrement it.

msgTextGet
Returns 'the character in a textData at the specified position.

Takes TEXT_INDEX, returns STATUS.

tdefine msgTextGet TCMakeMsg(l)

stsEndOfData pArgs->first is too large

>= 0 the 8 bit character is returned as the low byte of the returned STATUS; the high 3 bytes are zero.

msgTextGetBuffer
Passes back a contiguous range of characters from a textData.

Takes P _TEXT_BUFFER, returns STATUS.

tdefine msgTextGetBuffer TCMakeMsg(5)

typedef struct TEXT_BUFFER
TEXT INDEX first; II In
TEXT INDEX length; II In
TEXT INDEX bufLen; II In
PCHAR bUf; II In:Out via *buf
TEXT INDEX bufUsed; II Out

TEXT_BUFFER, *P_TEXT_BUFFER;

Use this message to get the values of several characters at a time. This message is a high-performance
alternative to msgTextGet.

If pArgs->length > pArgs->bufLen, then up to bufLen characters are placed into pArgs->buf.

Upon return, pArgs->bufUsed is set to the count of characters read, even if there was a problem with the
request.

stsBadParam pArgs->length was 0 or pArgs->bufLen was 0 or pArgs->buf was pNull.

stsEndOfData pArgs->first is too large

< stsO K some other error occurred.

Messoge
Argui'nents

Mess1:lge
Argurnents

MeSS1:lg8

Arguments

TXTDATA.H 21
Messages Defined by Other Classes

msgT extGetMetrics
Passes back thetextData's metrics.

Takes P_TD_METRICS, returns STATUS.

#define msgTextGetMetrics TCMakeMsg(2)

typedef struct TD METRICS
U16 flagsi
U16 spareBitsi
P UNKNOWN spares[2]i

TD_METRICS, *P_TD_METRICS;

msgTextLength

II One of the values below
II Reserved.
II Reserved.

Returns the number of characters stored in the textData.

Takes nothing, returns TEXT_INDEX.

#define msgTextLength TCMakeMsg(3)

< stsOK some error occurred.

>= stsOK Cast the returned value to a TEXT_INDEX; that's the number of characters.

msgTextModify
Modifies the characters stored in the textData.

Takes P _TEXT_BUFFER, returns STATUS ..

#define msgTextModify TCMakeMsg(4)

typedef struct TEXT BUFFER
TEXT INDEX firsti II In
TEXT INDEX length; II In
TEXT INDEX bufLeni II In
P CHAR bufi II In:Out via *buf
TEXT INDEX bufUsedi II Out

TEXT_BUFFER, *P_TEXT_BUFFERi

Use this message to insert, delete or replace characters in a textData.

In response to this message, the textData replaces the characters in the range [pArgs->first ..

pArgs->first+pArgs->length) with the characters from pArgs->buf.

If pArgs->buf is pNull, the effect is a deletion. If pArgs->length is 0, the effect is an insertion. Otherwise
the effect is a replacement. If pArgs->first is inffEXT_INDEX, the current length minus pArgs->length
is substituted. If pArgs->length is maxTEXT _INDEX, strlen(pArgs->buf) is substituted.

stsReadOnly request refused because object is read only.

stsO K modification successful.

msgTextSetMetrics
Sets a textData's metrics.

Takes P_TD_METRICS, returns STATUS.

#define msgTextSetMetrics

typedef struct TD METRICS
U16 flags;
U16 spareBitsi
P UNKNOWN spares[2];

TD_METRICS, *P_TD_METRICS;

TCMakeMsg(6)

I lOne of the value's below
II Reserved.
II Reserved.

22 PEN POINT API REFERENCE

Part 6 / Text

Meuage

msgTextSpan
Determines the range corresponding to the requested span.

Takes P _TEXT_SPAN, returns STATUS ..

#define msgTextSpan TCMakeMsg(9)

typedef struct TEXT SPAN
TEXT INDEX first;
TEXT INDEX length;
ATOM type;
TEXT DIRECTION direction;
BOOLEAN needPrefix;
BOOLEAN needSuffix;
U16 prefixLength;

U16 suffixLength;

U8 firstNormal;
U8 lastNormal;
U32 spares[4];

TEXT_SPAN, *P_TEXT_SPAN;

II
II
II
II
II
II
II
II
II
II
II
II
II

In:Out
In:Out
In:Out (for msgTextSpanType)
In
In
In
Out: valid if and only if
needPrefix is true
Out: valid if and only if
needSuffix is true
Out: 0 or 1 (7 spare bits)
Out: 0 or 1 (7 spare bits)
Reserved

A span is a consecutive range of characters that share some common trait. Given a position and the

desired span type, this message returns the range of the span. For instance, a client can use this message

to ask a textData to find the bounds of the word containing a position.

Actually, this message can be used to find the start of one span and the end of another. If pArgs->length

is 1, then the start and end of the same span is returned.

If the client only needs only the beginning or the end of the span, then pArgs->direction should be set

to the needed end. This substantially improves performance.

Using this message, a textData can find the range of the following types of spans:

• atom WSDelimit: passes back a white-space delimited span

• atomWord: passes back a word span using the definitions in tencode.h

pArgs->type specifies the desired span's type.

pArgs->direction indicates whether the span should be searched for in preceding characters, succeeding

characters, or both.

It is often useful to know something about the characters immediately preceding or succeeding the span.

This information is returned if pArgs->needPrefix or pArgs->needSuffix (or both) are true. Upon return,

pAtgs->prefixLength andlor pArgs->suffixLength identifies the appropriate characters.

pArgs->firstNormal and pArgs->lastNormal indicate whether the corresponding portions of the span are

normal or abnormal characters for the span. For instance, for atomWord, an "a" is a normal character,

but an "!" is abnormal.

stsBadParam Neither the two directions in pArgs->direction was on.

Messoge
Arguments

Comments

Messuge

Arfjuments

msgTextSpanType
Determines the span type of the specified range.

Takes P_TEXT_SPAN, returns STATUS ..

fdefine msgTextSpanType TCMakeMsg(10)

typedef struct TEXT_SPAN
TEXT INDEX first;
TEXT INDEX length;
ATOM type;
TEXT DIRECTION direction;
BOOLEAN needPrefix;
BOOLEAN needSuffix;
U16 prefixLength;

U16 suffixLength;

U8 firstNormal;
U8 lastNormal;
U32 spares[4];

TEXT_SPAN, *P_TEXT_SPAN;

II
II
II
II
II
II
II
II
II
II
II
II
II

TXTDATA.H
Messages Defined by Other Classes

In:Out
In:Out
In:Out (for msgTextSpanType)
In
In
In
Out: valid if and only if·
needPrefix is true
Out: valid if and only"if
needSuffix is true
Out: 0 or 1 (7 spare bits)
Out: 0 or 1 (7 spare bits)
Reserved

In response to this message, a textData passes back the span type that corresponds to the range.

The same range often has several span types. For instance, all ranges have the span type atomChar. All

ranges that include a complete paragraph also have the span types atomChar, atomWord and

atomSentence. When the passed-in range has multiple span types, the largest span type is returned.

23

The span type ordering from smallest to largest is as follows. This is also the complete list of span types
returned in response to this message.

• atomChar

• atomWord

• atomSentence

• atomPara

• atomDoc

msgTextChangeAttrs
Changes the attributes of the specified range.

Takes P _TEXT_CHANGE_ATTRS, returns STATUS.

fdefine msgTextChangeAttrs TAMakeMsg(taVersion, 1)

typedef struct TEXT_CHANGE_ATTRS
ATOM tag;
TEXT INDEX first;
TEXT INDEX length;
P UNKNOWN pNewMask;
P UNKNOWN pNewValues;

TEXT_CHANGE_ATTRS, *P_TEXT_CHANGE_ATTRS;

Clients use this message to change the formatting attributes of characters in a textData. They can

manipulate three types of attributes:

• character attributes (indicated by atomChar)

• paragraph attributes (indicated by atomPara)

24 PENPOINT API REFERENCE
Part 6 I Text

• tab attributes (indicated byatomParaTabs)

The pArgs type for this message is P _TEXT_CHANGE_ATTRS. This structure has a tag, which must be
one of the three atoms mentioned above. The structure also has two P _UNKNOWN fields: pNewMask
and pNewValues. The true type of these two fields depends on the value of the tag.

tag

atomChar
atomPara
atomParaTabs

pNewValues type

P TA CHAR ATTRS - - -
P TA PARA ATTRS - - -
P TA MANY TABS - - -

pNewMask type

P TA CHAR MASK
P TA PARA MASK - - -
none; always null

The mask field allows the client to chang~ only some of the attributes. If the appropriate bit in the mask
if off, then the value of the attribute is not changed. To simplify initializing attribute and mask
structures, textData has a few utility messages and functions:

msgTextlnitAttrs The client must set the tag pArgs->first. In response to this message, a textData
initializes pNewValues to the values in effect at pArgs->first and sets all of the bits in the mask to
zero.

TextInitCharAttrs reads the default character attributes from the process's resource list (using the
resource id textResDefaultCharAttrs), or sets all values to 0 if the resource cannot be found.

TextInitCharMask Turns off all bits in the mask

TextInitParaAttrs Sets all values to o.
TextInitParaMask Turns off all bits in the mask

If pArgs-> first is the "magic value" textDefaultAttrs, the textData's default attributes are modified.

If pArgs-> tag is atomPara or atomParaTabs, then the passed-in range is automatically extended to
complete paragraph boundaries. (The resulting range is passed back in pArgs->first and pArgs->length
updated.)

stsBadParam Either pArgs->tag or the range was invalid. No attributes have changed.

< stsOK Some other error occurred. No attributes have changed.

msgTextClearAttrs
Clears all attributes of the specified type to the default values.

Takes ATOM, returns STATUS.

#define msgTextClearAttrs TBMakeMsg(5)

In response to this message, a textData clears all formatting for the specified type. This message is "all or
nothing" -- no mask or range can be specified.

The attributes have not changed the return value is < stsOK:

stsBadParam pArgs was invalid. No attributes have changed.

< stsOK Some other error occurred. No attributes have changed.

msgTextEmbedObject
Embeds an object at a specified position.

Takes P _TEXT_EM BED_OBJECT, returns STATUS.

#define msgTextEmbedObject TBMakeMsg(2)

MidiSC1g8

Avgul118nl's

Me5sug&

/\Y9;Hlt&i1h,

TXTDATA.H 25
Messages Defined by Other Classes

typedef struct TEXT_EMBED_OBJECT
TEXT INDEX first;
OBJECT toEmbed;
U8 clientFlags;
U8 action; II One of the values below (6 spare bits)

TEXT_EMBED_OBJECT, *P_TEXT_EMBED_OBJECT;

Each embedded object is represented by a character with the encoding value teEmbeddedObject. (See
tencode.h.)

In response to this message, the textData inserts the embedded object anchor character and
"remembers" the embedded object's id.

msg T extExtractO bject

Extracts the specified embedded object.

Takes OBJECT, returns STATUS.

#define msgTextExtractObject TBMakeMsg(4)

In response to this message, the textData "forgets" the specified embedded object. It also deletes the
associated embedded object anchor character.

Nothing is done to the object itself In particular, the client should probably msgWinExtract the object.

msg T extGetAttrs

Gets the attributes of the specified type.

Takes P _TEXT_GET_ATTRS, returns STATUS.

#define msgTextGetAttrs TAMakeMsg(taVersion, 2)

typedef struct TEXT_GET_ATTRS
ATOM tag;
TEXT INDEX first;
TEXT INDEX length; II Not defined.
P UNKNOWN pValues;

TEXT_GET_ATTRS, *P_TEXT_GET_ATTRS;

Clients can retrieve the attributes of a character in the textData using msgTextGetAttrs.

The client specifies the type of attributes it is interested in by filling in pArgs->tag. The client must set
pArgs->pValues to point to a structure with the "real" type of the attributes corresponding to the tag.
This "real" type is described in the comments for msgTextChangeAttrs.

The client also specifies the character whose attributes the client wants by specifying pArgs->first. If
pArgs->first is textDefaultAttrs then the default attribute values are returned.

stsBadParam pArgs->tag is not valid

stsEndOfData pArgs->first is too large

stsOK the attribute values have been copied into pArgs->pValues

msgT extlnitAttrs

Initialize the attributes and mask before a msgTextChangeAttrs.

Takes P _TEXT_CHANGE_ATTRS, returns STATUS.

#define msgTextInitAttrs TAMakeMsg(taVersion 3)

26 PENPOINT API REFERENCE

Part 6 / Text

M@ssoge

Argumetlfs

Messog@

;'\rgumen?s

Messoge

Arguments

typedef struct TEXT_CHANGE_ATTRS
ATOM tag;
TEXT INDEX first;
TEXT INDEX length;
P UNKNOWN pNewMask;
P UNKNOWN pNewValues;

TEXT_CHANGE_ATTRS, *P_TEXT_CHANGE_ATTRS;

The type of attributes is specified by pArgs->tag. pArgs->pNewValues and pArgs->pNewMask must be
set as appropriate to an invocation of msgTextChangeAttrs.

If pArgs->first is textDefaultAttrs, the default attributes are used to initialize pArgs->pNewValues.
Otherwise the attributes in effect at pArgs->first are used. All bits of pArgs->pNewMask are set to O.

stsBadParam Either pArgs->tag or the range was invalid.

< stsOK Some other error occurred. No change has been made to the attributes and mask.

msg TextChangeAttrs

msgTextPrintAttrs
Prints the values of an attribute set and a mask.

Takes P_TEXT_CHANGE_ATTRS, returns stsOK.

tifdef DEBUG
tdefine msgTextPrintAttrs
tendif

typedef struct TEXT CHANGE_ATTRS
ATOM tagi
TEXT INDEX first;
TEXT INDEX length;
P UNKNOWN pNewMaski
P UNKNOWN pNewValuesi

TAMakeMsg(taVersion, 4)

TEXT_CHANGE_ATTRS, *P_TEXT_CHANGE_ATTRSi

This message takes the same parameters as msgT extChangeAttrs and the pArgs must be filled in the
same way. In response to this message, a textData prints out a useful dump of the contents of pArgs.

Internal Use Only: If pArgs-> first is txtPrvAttrs, then pArgs->pNewValues must be in the internal
format.

msg TextChangeAttrs

msgTextRead
Inserts Ascii, R1F, etc. at the specified location.

Takes P_TEXT_READ, returns STATUS.

tdefine msgTextRead TBMakeMsg(O)

typedef struct TEXT_READ
TEXT INDEX first;
P UNKNOWN input;
U16 embeddedAction:

freeAfter:
inputIsObject:

TAG format;
TEXT_READ, *p _TEXT_READi

2,
6, II true
8; II true

or false
or false

The textData reads data and inserts the data into itself

(and 5 spare bits)
(and 7 spare bits)

Mess(l~e

Arguments

Comments

The fields of pArgs are:

TXTDATA.H

Messages Defined by Other Classes

first the read text is inserted into the textData starting at this position. After a successful return,
pArgs->first is position immediately after the inserted text.

27

input the input source. If pArgs->inputlsObject is true, this field must hold a FILE_HANDLE object. If
pArgs->inputlsObject is false, then this field must hold a P _FILE.

embeddedAction Client must set this to textEmbedlnsert. (Other values are for internal use only.)

freeAfter If true, then pArgs->input is freed after reading successfully.

inputlsObject describes the type of pArgs->input.

format one of the file types defined in filetype.h, or fileTypeUndefined. If the latter, the textData
object attempts to deduce the form at from the contents of the data found in pArgs->input.

The textData reads pArgs->input using the functions defined in stdio.h. Thus, if pArgs->inputlsObject
is true, pArgs->input must be an object which supports the stream protocol as used by stdio.

stsReadOnly request refused because object is read only.

stsNoMatch RTF error: first character of input is not II {" or format version> 1 or unrecognized font
name.

stsFailed StdioStreamBindO or fseekO failed.

stsBadParam pArgs->format is invalid.

stsFS... see <fs.h>.

stsOK request completed successfully; pArgs->first updated.

msgTextWrite
Outputs the specified span as one of Ascii, R1F, etc.

Takes P_TEXT_WRITE, returns STATUS.

#define msgTextWrite

typedef struct TEXT_WRITE
TEXT_INDEX first;
TEXT_INDEX length;
P_UNKNOWN output;
U16 flags;

TAG format;
U8 outputIsObject;

TEXT_WRITE, *P_TEXT_WRITE;

The fields of pArgs are:

TBMakeMsg(l)

II One of the values below (and 13
II spare bits)

first first character of range to be written

length length of range to be written

output if null, the textData creates a P _FILE and returns that handle. If non-null, then this field is
either an object or a P _FILE, depending on the value of outputlsObject.

flags described below

format one of the file types defined in filetype.h.

outputlsObject If output is non-null and outputlsObject is true, then output is an object. If output is
non-null and outputlsObject is false, then output is a P _FILE.

-------_ _--------

28 PEN POINT API R~FERENCE

Part 6 / Text

M0,$sQ~e

At'£jI\UnCt'ifS

Possible values for the flags field of a TEXT_WRITE are:

twExtractEmbedded embedded objects in the specified span are extracted from their parent window.

twTempFile if output is null, then a temporary file is created. (Developer's Note: If you're debugging

the behavior of msgTextWrite, you probably don't want to turn this flag on as your file will be

deleted before msgTextWrite returns.)

twForUndo add additional information needed for supporting UNDO.

stsBadParam pArgs->format is invalid.

stsFailed StdioStreamBindO failed.

stsFS... see <fs.h>.

stsOK request completed successfully.

msgTextEnumEmbeddedObjects
Enumerates the textData's embedded objects.

Takes P_TEXT_ENUM_EMBEDDED, returns STATUS.

fdefine msgTextEnumEmbeddedObjects

typedef struct TEXT_ENUM_EMBEDDED {
TEXT_INDEX first;
TEXT INDEX length;

TMMakeMsg(9)

U16 flags; II One of the values below
U16 max;
U16 count;
P_TEXT_EMBED_OBJECT pItems;

TEXT_ENUM_EMBEDDED, *P_TEXT_ENUM_EMBEDDED;

There are two ways of enumerating the embedded objects:

1) Get all the objects in one send. The textData allocates an array of TEXT_EM BED_OBJECT elemeius

and passes it back in pArgs->pltems. You must OSHeapBlockFreeO the array when you are done with it.

TEXT _ENUM_EMBEDDED is used as follows:

first position at which you want to start the enumeration. Use 0 to start at the beginning of the data.

length length of the range you want the enumeration to include. Use inffEXT _INDEX to go to the

end of the data.

flags Usually teeDefault. Use teeFloat to get only floating embedded objects. Use teeInline to get only

in-line embedded objects.

max Pass in o. The object passes back the number of items in the allocated block

count Pass in maxU16. The object passes back the number of items returned (same as max).

pltems Pass in pNull. The object passes back a pointer to the allocated block

2) Get the objects a few at a time. You repeatedly send msgTextEnumEmbeddedObjects re-using the
same TEXT_ENUM_EMBEDDED structure. When the message returns stsEndOIData, there are no more

objects in the enumeration. You should set the fields ofTEXT_ENUM_EMBEDDED only before the first

call. For successive calls you must not modify the fields.

first Same as Case 1.

length Same as Case 1.

flags Same as Case 1.

max number of objects the pltems block can hold.

TXTDATA.H
Notifications

count Pass in the same value as max. textData passes back the number of objects returned in block.

May be less than max for the last chunk, and is ° when no further objects are left to enumerate.

pltems pointer to a block that can hold at least max objects.

stsOK next chunk of objects has been enumerated

29

stsEndOfData no more objects to enumerate. Passed back count is be zero. If pltems was nil and max
was 0, then no block has been allocated.

Notifications

I\'\ess£lge
ATgurnents

Message

Arguments

msg T extAffected
Notifies observers that a range of text has been affected.

Takes P_TEXT_AFFECTED, returns STATUS ..

fdefine rnsgTextAffected

typedef struct TEXT_AFFECTED
TEXT SPAN AFFECTED span;

MsgNoError(TCMakeMsg(7))

U16 rerneasurei
P UNKNOWN spare;

TEXT~FECTED, *P_TEXT_AFFECTED;

This message informs observers that the attributes of the range have been modified.

msgTextCounterChanged
Notifies observers that textData's changeCount has been modified.

Takes P _TEXT_COUNTER_CHANGED, returns STATUS ..

fdefine rnsgTextCounterChanged MsgNoError(TCMakeMsg(11))

typedef struct TEXT_COUNTER_CHANGED
OBJECT sender;
U32 changeCount;
U32 oldCount;

TEXT_COUNTER~CHANGED, *P_TEXT_COUNTER_CHANGED;

The change Count is normally incremented by 1 as a result of handling msgTextModify. Observers here

about these changes via msgTextReplaced and msgTextAffected notification messages.

However, the changeCount can change in other ways. For instance, the changeCount is rolled back as

part of undoing certain operations. Also, clients andlor subclasses can explicitly set the change Count via

mag T extChangeCount.

Whenever the changeCount changes in some way OTHER than a single increment by 1,
msgTextCounterChanged is sent to the observers to allow them to synchronize any caches they keep

based on the changeCount.

msgTextReplaced
Notifies observers that a range of text was replaced via msgTextModify.

Takes P_TEXT_REPLACED, returns STATUS ..

fdefine rnsgTextReplaced MsgNoErr9r(TCMakeMsg(8))

30 PENPOINT API REFERENCE
Part 6 / Text

MessQge

Ar9umtmts
typedef struct TEXT_REPLACED {

TEXT SPAN AFFECTED span;
TEXT INDEX bytesTakenFromBuf;

TEXT_REPLACED, *P_TEXT_REPLACED;

IXIVIEW.M

This file contains the API definition for clsTextView and clsTextlP.

clsTextView inherits from clsView.

clsTextView implements the user interface of a text editor. It uses an instance of clsText (or one of its
subclasses) to hold its data.

clsTextIP inherits from clsIP.

clsTextIP is a specialization of clsIP used by a Text Views.

The functions described in this file are contained in TEXT.LIB.

Introduction
An instance of dsTextView (or textView) provides a user interface which presents text data to the user

and lets the user edit that data.

Every textView has an associated data object of clsText (or a subclass of dsText). This object is referred

to as textData.

Painting Model
A textView displays the textData as a series of non-overlapping, exhaustively tiling, horizontal display

lines. With the possible exception of space below the last line, there is no area between lines that does
not belong to any line. Characters are laid out left to right with lines running from top to bottom.

When first created, the textView positions the first line of textData at the top of itself. Subsequent user

or client actions (e.g. scrolling) can position some other line to the top of the window. However, the top
line is always completely visible unless the view is too small to allow this. The last visible line, in

contrast, may be clipped at the bottom.

Even though a textView is a descendant subclass of clsBorder, c1sTextView ignores all clsBorder
functionality relating to display of the view's background and border.

Deferred Repaint
A textView uses a "delayed repair" model in which several changes to the textData may be made before
the visible display lines are repainted. For certain operations (e.g. selection change), such a delay can be

misleading to the user and the individual operations provide a way to override the normal delay. If no

override is available within a message's arguments, msgTextViewRepair can be used.

Word Wrap

By default, a textView displays each line beginning at the left edge of its window and "word wraps" at

the right edge. That is, if a word would be clipped by the right edge of the window, it is instead placed at

the beginning of the next line. By modifying paragraph margin attributes the line can be adjusted to
have uninked margins in which no character is displayed.

32 PENPOINT API REFERENCE
Part 6 I Text

Word wrap can be turned off by setting the textView's style (see msgTextViewSetStyie). When off, a line
breaks only when a "hard break" character (such as teNewLine or teNewParagraph) is encountered. As a

result, a significant portion of many lines may be invisible to the user.

Embedded Obiects

Text IPs

Other objects can be embedded within a textView (see msgTextViewAddIP and msgTextViewEmbed).

(All embedded instances of some subclasses of clsEmbeddedWin.)

A textView handles an embedded object as if it is a "very large" character.

The textView's displayed lines are always as tall as the tallest character or embedded object in the line.

Therefore the presence of a large embedded object causes the containing line to be quite tall. (Not all
embedded objects are large. For instance, closed application icons and reference buttons are only slightly

larger than typical text.)

The baseline of the line containing embedded objects is determined, in part, by the embedded object's

response to msgWinGetBaseline. (See win.h.)

An instance of clsTextIP (or textIP) implements two special features that are useful to textViews.

The first is size management. An embedded textIP tracks the width of its parent window. When the

parent's width changes, an embedded textIP modifies its own width so that it fits within and completely
fills the parent window (in the horizontal direction).

The second is special filtering of text going from the IP into a textView. A textiP filters translated data

from its superclass (clsIP) before passing its data onto its client (typically a textView). Two kinds of

filtering are performed: paragraph break insertion and space correction. A textiP inserts paragraph

breaks based on how many blank lines there are between scribbles on an IP. textIP also filters out
unnecessary spaces between words and adds spaces after a sentence-ending character such as a period or

question-mark.

Limitations
textView is not WYSIWYG: although it will closely match font sizes and line breaks and spacing on a

printer, it is based on a "make the printer match the screen" model that has enough variability that

clients requiring WYSIWYG will find unacceptable (e.g., an overlaying mark-up layer).

textViews do not support multiple views of a single data object. Thus each textView is the unique view

for its textData object. This restriction is not checked by clsTextView.

Although TV_NEW_ONLY has a "dc" field, there are so many restrictions on its use in PenPoint 1.0 that

the field should always be left at the default value ofNil(OBJECT). In addition, changing the units or
scale used by the view-allocated "dc" is forbidden. This prevents "magnifying glass" and "pan in or out"

effects from being used with a textView.

tifndef TXTVIEW INCLUDED
tdefine TXTVIEW_INCLUDED $Revision: 1.214 $
tifndef
tinclude <txtData.h>
tendif

TXTDATA INCLUDED
II For TEXT_INDEX

TXTVIEW.H 33

Message Arguments

Types and Constants
typedef OBJECT TEXT_VIEW;

Message Arguments

Text View Style
The prefix "TV" indicates that an identifier is related to 'TextView."

The prefix "tvs" indicates that an identifier is related to "text view style."

typedef struct TV_STYLE {
U16 flags; II One of the values below
S8 magnification; II when tvsFormatForPrint is not on, this

II value (in points) is added to the

U8 showSpecial;

OBJECT printer;
TV_STYLE, *P_TV_STYLE;

II character font sizes.
II 0: show no special characters.
II 1: undefined -- do not use.
II 2: undefined -- do not use.
II 3: show all special characters.
II (6 spare bits)
II Not implemented. Should be null.

Use these flags in the flags field of TV_STYLE:

tvsEmbedOnlyComponents can only embed components. Cannot embed apps

tvsEmbedOnlyIPs can only embed subclasses of clsIP. Can embed no other objects.

tvsFormatForPrinter printer preview. style. magnification is ignored.

tvsQuietWarning don't display warning notes to user

tvsQuietError don't display error notes to user

tvsQuiet both tvsQuietWarning and tvsQuietError

tvsReadOnlyChars characters are read-only; user cannot add, remove or replace characters.

tvsReadOnlyAttrs attributes are read-only; user cannot change any attribute information.

tvsReadOnly both tvsReadOnlyChars and tvsReadOnlyAttrs

tvsWordW'rap break display line by wrapping words that don't fit at the right edge of the view.

*define tvsEmbedOnlyComponents
*define tvsEmbedOnlyIPs
*define tvsFormatForPrinter
*define tvsQuietWarning
*define tvsQuietError
*define tvsQuiet
*define tvsReadOnlyChars
*define tvsReadOnlyAttrs
*define tvsReadOnly
*define tvsWordWrap
*define tvsSpare1
*define tvsSpare2
*define tvsSpare3
*define tvsSpare4
*define tvsSpareS

flagO
(tvsEmbedOnlyComponentslflag1)
flag2
flag3
flag4
(tvsQuietWarningI tvsQuietError)
flagS
flag6
(tvsReadOnlyCharsltvsReadOnlyAttrs)
flag7
flag8 II Reserved
flag9
(flag10Iflag11Iflag12Iflag13)
flag14
flag1S

II
II
II
II

Reserved
Reserved
Reserved
Reserved

34 PENPOINT API REFERENCE
Part 6 / Text

Embedding
TV_EM BED_METRICS describes where and how to embed an object. The client either specifies the object
to embed, or sets the embedded field to Nil and lets the text view create a new object based on the flags

field. In the latter case, the UID of the newly created object is passed back in the embedded field.

typedef struct TV_EMBED_METRICS
TEXT INDEX pos; II In: embedded object is inserted

II just before this position.
U16
OBJECT

TV_EMBED_METRICS,

flags; II One of the values below
embedded; II In-Out: the UID of the embedded object
*P_TV_EMBED_METRICS;

Use these in the flags field of a TV _EMBED_METRICS.

fdefine tvEmbedAnnotate
fdefine tvEmbedFloat
fdefine tvEmbedReplace

flagO
flag1
flag2

II Not implemented
II Make the embeddee floating
II The IP's contents replace the
II character following the IP.

Use this in the flags field of a TV_EMBED_METRICS.

fdefine tvEmbedAddMargin flagS II Leave small between previous line
II and the IP.

Use these in the flags field of a TV_EMBED_METRICS when using the struct as the pArgs to
msgTextViewAddIP.

fdefine tvEmbedAtEnd
fdefine tvEmbedPara
fdefine tvEmbedOneChar
fdefine tvEmbedPreload

flag8 II IP should be last char of data.
flag9 II IP is a paragraph pad
flag10 II IP is only 1-char
flag11 II preload the selection into the IP

fdefine tvEmbedDisplayType (flag13Iflag14Iflag1S) II Obsolete.

Resolution
The prefix "tvr" indicates that an identifier is related to "text view resolve."

The values for the xRegion and yRegion fields of a TV_RESOLVE struct are illustrated here. The values
are of the form (xRegion, yRegion).

(-1,1) (0,1) (1,1)

---+--------------+---
I I
I Line's ink I

(-1,0) I (0,0) I (1,0)
I I

---+--------------+---
I I

(-1,-1) I (0,-1) I (1,-1)
I I

TXTVIEW.H

Message Arguments

The fields of this structure are described in more detail in the comments for rnsgTextViewResolveXY.

typedef struct TV_RESOLVE {
XY32 xy;
U16 flags;
TEXT INDEX pos;

TEXT INDEX lineStart;

S8 xRegion;
S8 yRegion;
TEXT INDEX selects;
XY32 offset;
P UNKNOWN spares[4];

TV_RESOLVE, *P_TV_RESOLVE;

II In:Out: Units are LWC
II One of the values below
II Out: Pos of char containing xy, or
II maxTEXT INDEX if no such char
II Out: Pos of first char on line
II containing xy, or maxTEXT INDEX
II if no line contains xy. -
II Out: Region x was in. See diagram.
II Out: Region y was in. See diagram.
II Out: Pos of char "selected" by xy
II Out: Offset to prev/next char's ink
II Reserved.

Use these flags in the flags field of TV_RESOLVE. Note that they are not completely orthogonal; in
particular, only one of [tvrSelFirst, tvrSelLPO and tvrBalance] should be enabled at once, similarly for
[tvrPrevChar and tvrNextChar].

tvrSelFirst causes TV_RESOLVE. selects to be <= TV_RESOLVE.pos (i.e., the "selected" character is at or

before the character "hit" by TV_RESOLVE.xy.)

tvrSelLPO causes TV_RESOLVE.selects to be >= TV_RESOLVE.pos (i.e., the "selected" character is after

the character "hit" by TV _RESOLVE.xy, unless the line contains only one character in which case

TV_RESOLVE.selects == TV_RESOLVE.pos,)

tvrBalance has the effect of tvrSelFirst or tvrSelLPO, depending on which edge of the character "hit"

by TV_RESOLVE.xy is closest to TV_RESOLVE.xy.x.

35

tvrSelWord causes the "selection" behavior specified by any of the previous three flags to occur for the

"word" containing the character "hit" by TV _RESOLVE.xy.x.

tvrPrevChar normally TV_RESOLVE.offset.x is 0 upon return. Enabling tvrPrevChar causes

TV _RESOLVE.offset.x to contain the amount that TV _RESOLVE.xy.x exceeds the x coordinate of the

lower-left corner of the character specified by TV_RESOLVE.pos (i.e., the distance past the previous

character's right edge).

tvrNextChar normally TV_RESOLVE.offset.x is 0 upon return. Enabling tvrNextChar causes

TV _REsoLVE.offset.x to contain the amount that TV _RESOLVE.xy.x falls short of the x coordinate of

the lower-right corner of the character specified by TV_RESOLVE.pos (i.e., the distance before the

next character's left edge).

tvrPastEOL normally a line contains only those character positions for the characters displayed on the

line. tvrPastEOL permits TV_RESOLVE.selects to return with the TEXT_INDEX of the first character

of the following line if the specified TV _RESOLVE.xy.x is to the right of the last character in the line.

tvrNLlfPastEOL when disabled, ifTV_RESOLVE.xy.x is to the right of the last character in a line with a

hard line break (e.g., teNewLine or teNewParagraph) and at least one other character,

TV _RESOLVE. selects specifies the character immediately before the hard line break. When enabled, if

tvrPast~OL is also enabled and would have caused TV _RESOLVE.selects to be after the hard line

break, tvrNLlfPastEOL will override and cause TV_RESOLVE.selects to specify the break character

instead.

tdefine tvrSelFirst
tdefine tvrSelLPO
tdefine tvrSelWord
tdefine tvrPrevChar
tdefine tvrNextChar
tdefine tvrBalance
tdefine tvrPastEOL
tdefine tvrNLIfPastEOL

flagO
flag1
flagS
flag2
flag3
flag4
flag6
flag7

36 PENPOINT API REFERENCE
Part 6 / Text

Selection

Scrolling

The prefix "tvs" indicates that an identifier is related to "text view select."

The fields of this structure are described in more detail in the comments for msgTextViewSetSelection.

typedef struct TV_SELECT {
TEXT_INDEX first;
TEXT INDEX length;
U16 flags;
ATOM level;

TV_SELECT, *P_TV_SELECT;

II lpoTEXT_INDEX means "clear selection"
II a results in an a length selection
II either a or wsSynchRepaint (see win.h)
II Obsolete. Don't use.

The prefix "ts" indicates that an identifier is related to "text view scroll."

typedef struct TV_SCROLL {
TEXT INDEX pos;
U32 flags;

TV_SCROLL, *P_TV_SCROLL;

II Position to scroll to
II One of the values below

Use these in the flags field of a TV_SCROLL.

tsAlignAtTop scroll so that pArgs->pos is "near the top." See tsAlignEdge.

tsAlignAtBottom scroll so that pArgs-> pos is "near the bottom." See tsAlignEdge.

tsAlignAtCenter scroll so that pArgs->pos is in the center displayed line

tsAlignEdge If set, and tsAlignAtTop or tsAlignAtBottom is set, this flag forces the line containing
pArgs->pos to be the exact edge. If this flag is off, and tsAlignAtTop tsAlignAtBottom is set, the
textView tries to leave an extra line or two between the line containing pArgs->pos and the view's

edge.

tslffinvisible If set, the textView scrolls only if pArgs->pos is not already visible. If not set, the
textView scrolls even if pArgs->pos is visible.

textNoScrollNotify By default, the scrollbar(s) for the view are notified (via a msgWinSend of

msgScrollbarUpdate) that they should update after a msgTextViewScroll. If this flag is set, the
notification is not sent.

tdefine tsAlignAtTop
tdefine tsAlignAtBottom
tdefine tsAlignAtCenter
tdefine tsAlignEdge
tdefine tsIffInvisible
tdefine textNoScrollNotify

OL
lL
2L
((U32)flag2)
((U32)flag3)
((U32)flag15)

Messages Defined by Other Classes

msgNewDefaults
Initializes the NEW structure.

Takes P _TV_NEW, returns STATUS. Category: class message.

Zeros out pNew->tv and sets:

tv. style. flags
tv.flags

= tvsWordWrap;
= tvFillWithIP;

TXTVIEW.H 37
Messages Defined by Other Classes

win. flags. style

win. flags. style
win. flags. input

view.createDataObject
gWin.helpld

msgNew

1= wsGrowBottom 1 wsSendFile 1
wsSendGeometry 1 wsCaptureGeometrYi

&= -(wsSendLayout 1 wsCaptureLayout)i
1= inputMoveDown 1 inputMoveDelta 1

inputHoldTimeout 1 inputOutProx 1

inputTip 1 inputEnter 1 inputExiti
= truei
= tagTextViewi

Creates a new instance of dsTextView.

Takes P _1V _NEW, returns STATUS. Category: class message.

If pArgs->view.createDataObject is true, then the textView creates a Text data object (dsText; see

txtdata.h) and sets the view's data object If pArgs->tv. dc is NULL the textView creates a DC for its
exclusive use.

msgGWinXList
Defined in gwin.h.

Takes P _XLIST, returns STATUS.

In response to this message, a text View typically performs some editing operation on its associated data
object. A textView can process both "vanilla" xlists as described in xlist.h or text-specific xlists as

txtxlist.h.

Here's how a textView responds to each xlist element:

xtBounds remembers the bounds of a gesture element

xtGesture processes the gesture

xtText inserts the text

xtObject embeds the object

xtCharAttrs modifies the character attributes of the specified characters

xtParaAttrs modifies the attributes of the specified paragraphs

xtTabs modifies the tabs of the specified paragraphs

xtCharPos sets the insertion point for text to the specified character position

Messages

Mess@ge
Arguments

msgTextViewAddIP
Adds an insertion pad to the textView.

Takes P_1V_EMBED_METRICS, returns STATUS.

#define msgTextViewAddIP

typedef struct TV_EMBED_METRICS
TEXT INDEX POSi

TVMakeMsg(O)

II In: embedded object is inserted
II just before this position.

U16 flagsi II One of the values below
OBJECT

TV_EMBED_METRICS,
embeddedi II In-Out: the UID of the embedded object
*P_TV_EMBED_METRICSi

The client must set all of the fields of pArgs as described in the discussion of1V_EMBED_METRICS.

38 PEN POINT API REFERENCE

Part 6 / Text

M®ss@ge
tb9um®nl'S

M®sS0ge
Ar9umeftts

msgTextViewCheck
A textView performs a self-consistency check.

Takes P _UNKNOWN, returns STATUS.

fdefine msgTextViewCheck TVMakeMsg(5)

This message is only available in the debugging version of text.dll. The only currently defined value for
pArgs is zero.

stsOK no problems detected

< stsO K problems detected

msgTextViewEmbed
Embeds an object in the textView. Makes associated changes in text data.

Takes P _TV_EMBED_METRICS, returns STATUS.

fdefine msgTextViewEmbed

typedef struct TV_EMBED_METRICS
TEXT INDEX pos;

TVMakeMsg(l)

II In: embedded object is inserted
II just before this position.

U16 flags; II One of the values below
OBJECT

TV_EMBED_METRICS,
embedded; II In-Out: the UID of the embedded object
*P_TV_EMBED_METRICS;

The client must set all of the fields of pArgs as described in the discussion of TV_EM BED_METRICS.

msgTextViewGetEmbedMetrics
Passes back the textView-specific metrics for an embedded object.

Takes P _TV_EMBED_METRICS, returns STATUS.

fdefine msgTextViewGetEmbedMetrics TVMakeMsg(2)

typedef struct TV_EMBED_METRICS
TEXT INDEX pos; II In: embedded object is inserted

II just before this position.
U16 flags; II One of the values below
OBJECT

TV_EMBED_METRICS,
embedded; II In-Out: the UID of the embedded object
*P_TV_EMBED_METRICS;

The client need only fill in pArgs->embedded.

msgTextViewRepair
Forces a delayed paint operation to take place immediately.

Takes pNull, returns stsOK.

fdefine msgTextViewRepair TVMakeMsg(3)

Use with caution, as overuse of this message significantly degrades performance.

msgTextViewResolveXY
Given an point in LWC space, passes back the character at (or near) the point.

Takes P _TV_RESOLVE, returns STATUS.

fdefine msgTextViewResolveXY TVMakeMsg(4)

Message
Arguments

Mess(ig@
Argum@nts

Message
Arguments

typedef struct TV_RESOLVE {
XY32 xy;
U16 flags;
TEXT INDEX pos;

TEXT INDEX lineStart;

S8 xRegion;
S8 yRegion;
TEXT INDEX selects;
XY32 offset;
P UNKNOWN spares[4];

TV_RESOLVE, *p _TV_RESOLVE;

II
II
II
II
II
II
II
II
II
II
II
II

TXTVIEW.H

Messages Defined by Other Classes

In:Out: Units are LWC
One of the values below
Out: Pos of char containing xy, or
maxTEXT INDEX if no such char
Out: Pos of first char on line
containing xy, or maxTEXT_INDEX
if no line contains xy.
Out: Region x was in. See diagram.
Out: Region y was in. See diagram.
Out: Pos of char "selected" by xy
Out: Offset to prev/next char's ink
Reserved.

39

pArgs->flags control exactly which character is "selected", and how much information is provided by the

message.

Clients can also use this message to "reverse resolve" as follows. If both pArgs->xy.x and pArgs->xy.y are

maxS32, then the textView sets pArgs->xy to the coordinates of the lower left corner of the character at
pArgs->pos.

Warning: The response to this message always updates pArgs->xy to reflect information about the line

either containing (or near) the original xy (or pos).

"LWC" is short for Local Window Coordinates. See win.h for more information.

stsBadParam if no line's y extents include pArgs->xy.y

stsNoMatch if a containing line exists but it has no character under pArgs->xy.x; of if reverse resolve of

a character not contained in any display line

msgTextViewScroll
Repositions displayed text within the textView.

Takes P _TV_SCROLL, returns stsOK.

#define msgTextViewScrol1

typedef struct TV_SCROLL (
TEXT INDEX pos;
U32 flags;

TV SCROLL, *P_TV_SCROLL;

TVMakeMsg(6)

II Position to scroll to
II One of the values below

The client must set the fields of pArgs as described in the discussion of TV_SCROLL.

msgTextViewGetStyle
Passes back a textView's style.

Takes P_TV_STYLE, returns stsOK.

#define msgTextViewGetStyle

typedef struct TV STYLE {
U16 flags;
S8 magnification;

U8 showSpecial;

OBJECT printer;
TV_STYLE, *P_TV_STYLE;

TVMakeMsg(8)

II One of the values below
II when tvsFormatForPrint is not on, this
II value (in points) is added to the
II character font sizes.
II 0: show no special characters.
II 1: undefined -- do not use.
II 2: undefined -- do not use.
II 3: show all special characters.
II (6 spare bits)
II Not implemented. Should be null.

40 PENPOINT API REFERENCE

Part 6 I Text

Me$$Cl~e

Ar~wmel1tS'

MeS'SClgo
Argvmo!1ts

msgT extViewSetSelection
Selects one or more characters displayed by the textView.

Takes P_TV_SELECT, returns stsOK.

tdefine msgTextViewSetSelection TVMakeMsg(9)

typedef struct TV SELECT {
TEXT INDEX - first;
TEXT INDEX length;
U16 flags;
ATOM level;

TV_SELECT, *P_TV_SELECT;

II IpoTEXT INDEX means "clear selection"
II 0 results in an 0 length selection
II either 0 or wsSynchRepaint (see win.h)
II Obsolete. Don't use.

The fields of pArgs are used as follows:

first The first character to select. The value IpoTEXT_INDEX means that cause the selection to be

cleared.

length Number of characters to select. The value 0 results in a zero-length I-Bean selection.

flags if this field is wsSynchRepaint (defined in win.h) the textView repaint immediately. Otherwise

this field must be zero.

While handling this message, the textView becomes the selection owner unless pArgs->first is
Ipo TEXT_INDEX, in which case the text view ensures that it is NOT the selection owner.

msgT extViewSetStyle
Sets a textView's style.

Takes P_TV_STYLE, returns stsOK.

tdefine msgTextViewSetStyle

typedef struct TV_STYLE {
U16 flags;
S8 magnification;

U8 showSpecial;

OBJECT printer;
TV_STYLE, *P_TV_STYLE;

TVMakeMsg(10)

II One of the values below
II when tvsFormatForPrint is not on, this
II value (in points) is added to the
II character font sizes.
II 0: show no special characters.
II 1: undefined -- do not use.
II 2: undefined -- do not use.
II 3: show all special characters.
II (6 spare bits)
II Not implemented. Should be null.

pArgs->printer should be set to Nil(OBJECT).

Definitions for msgNew
tifndef NO NEW
tifndef txtViewNewFields
tifndef
tinclude <view.h>
tendif

VIEW INCLUDED

See comment with msgNew and msgNewDefaults for more information.

typedef struct TV NEW ONLY
U16 flags; II One of the values below
OBJECT dc;
TV STYLE style;

TV_NEW_ONLY, *P_TV_NEW_ONLY;

TXTVIEW.H 41
Messages Defined by Other Classes

Use this in the flags field of a lV_NEW_ONLY.

tdefine tvFillWithIP
tdefine txtViewNewFields

viewNewFields
TV NEW ONLY

typedef struct TV NEW
txtViewNewFields

} TV_NEW, *P_TV_NEW;

Utility Functions

flagO

\
\
tv;

TextCreateT extScrollWin
Utility function that creates a textView (with a data object) placed inside a scroll window. (See swin.h.)

Returns Sf ATUS.

STATUS EXPORTED

function fyototype TextCreateTextScrollWin (
P TV NEW pNew,
P OBJECT scrollWin); II Out:

tendif II txtViewNewFields
tendif II NO_NEW

Clients often need a "vanilla" textView inside a vanilla scrollWin. This function does just that. Clients
can modify the created objects after the creation if this function doesn't do quite the right thing. Client
who need more control over the creation should probably create the objects manually.

The pNew parameter should be null or should point at an already initialized NEW struct. If it is null,
then the function creates a default instance of dsTextView.

Because the view is created with formatForPrinter FALSE, the scrollWin's expandChildWidth is set to
true. This causes the scrollWin to manage the width of the textView.

Here's a simplified indication of how the scrollWin is created:

ObjectCall(msgNewDefaults, clsScrollWin, &sn)
sn.scrollWin.clientWin = <the text view>
sn.scrollWin.style.vertScrollbar
sn.scrollWin.style.autoVertScrollbar
sn.scrollWin.style.expandChildWidth
sn.scrollWin.style.expandChildHeight
sn.scrollWin.style.contractChildWidth = true;

= true;
= false;
= true;
= true;

sn.scrollWin.style.contractChildHeight
sn.scrollWin.style.vertClient
sn.scrollWin.style.horizClient
sn.win.flags.input
sn.scrollWin.style.forward
if «creating on screen» {

= true;
= swClientWin;
= swClientScrollWin;
1= inputHoldTimeout;
= swForwardGesture;

sn.border.style.leftMargin = bsMarginMedium;
sn.border.style.rightMargin = bsMarginMedium;
sn.border.style.topMargin = bsMarginMedium;

else {
sn.border.style.leftMargin = bsMarginNone;
sn.border.style.rightMargin = bsMarginNone;
sn.border.style.topMargin = bsMarginNone;

ObjectCall(msgNew, clsScrollWin, &sn);
*scrollWin = sn.object.uid;

Warning: When printing, the scrollWin and textView are probably restored, not created anew.
Therefore the client needs to go in and set the scrollWin's margins to o.

42 PENPOINT API REFERENCE

Part 6 I Text

TextlP

M®sscg®

AV£10ments

typedef struct TEXTIP_METRICS {
U16 flags; II Reserved.

TEXTIP_METRICS, *P_TEXTIP_METRICS,
TEXT IP_NEW_ONLY, *P_TEXTIP_NEW_ONLY;

msgNewDefaults
Initializes the NEW struct.

Takes P _TEXTIP _NEW, returns STATUS. Category: class message.

In response to this message, dsTextIP does the following:

pArgs->win.flags.style

pArgs->ip.rows
pArgs->ip.lines

1= wsSendGeometry 1 wsSendFile
wsShrinkWrapHeight;

= 5;
= 5;

If the user input pad style preference is Boxed:

pArgs->ip.style.displayType
pArgs->ip.style.delayed

= ipsCharBox;
= 1;

If the user input pad style preference is Ruled:

pArgs->ip.style.displayType = ipsRuledLines;

If the user input pad style preference is RuledAndBoxed:

pArgs->ip.style.displayType
pArgs->ip.style.ruledToBoxed

msgNew
Creates a new instance of cIs TextlP.

= ipsRuledLines;
= true;

Takes P_TEXTIP_NEW, returns STATUS. Category: class message.

msg1rextI]>(;e~etrics

Passes back a textlP's metrics.

Takes P_TEXTIP_METRICS, returns stsOK.

fdefine msgTextIPGetMetrics MakeMsg(clsTextIP, 1)

typedef struct TEXTIP_METRICS
U16 flags; II Reserved.

TEXTIP_METRICS, *P_TEXTIP_METRICS,

Arguments

Message

Arguments

msg T extIPSetMetrics
Sets a textlP's metrics.

Takes P_TEXTIP_METRICS, returns stsOK.

#define msgTextIPSetMetrics MakeMsg(clsTextIP, 2)
#ifndef NO_NEW
#ifndef textIPNewFields
#ifndef INSERT INCLUDED
#include <insert.h>
#endif
#define textIPNewFields \

ipNewFields \
TEXTIP NEW ONLY textIP;

typedef struct TEXTIP_NEW
textIPNewFields

} TEXT IP_NEW, *P_TEXTIP_NEW;
#endif II textIPNewFields
#endif II NO_NEW

typedef struct TEXTIP_METRICS {
U16 flags; II Reserved.

TEXTIP_METRICS, *P_TEXTIP_METRICS,

TXTVIEW.H 43

TextlP

TXTXLIST.H

This file contains the Text subsystem additions to xlist (see xlist.h).

A Text View (see txtView.h) gathers input directly from the user via

keyboard input delivered by msgInputEvent, with Cls(pArgs->devCode) == Cls(clsKey);

low-level pen input also msgInputEvent, but Cls(clsPen);

gestures delivered by msgGWinXlist; and

insertion pads which provide data starting with msgIPDataAvailable.

The user input delivered to a Text View from an insertion pad is communicated via an xlist. As a result
of its processing of the xlist, the Text View modifies its associated data object. Each xlist moves through
the following stages: (I) it comes into being as a way for the hwx system to provide low-level
information about the user input to clsIP (see insert.h); (2) clsIP packages the low-level information
into medium-level information which is self-sent; (3) finally, clsTextlP re-interprets this information
and packages it into high-level information which requires concepts specific to the Text subsystem.
Thus, an xlist from a TextlP (see txtView.h) can contain one or more elements of the following
specialized types. For each type, the constraint on the structure of the information pointed to by the
pData field of the XLIST_ELEMENT is listed.

xtCharAttrs pData points to an XLIST_CHAR_ATTRS;

xtParaAttrs pData points to an XLIST_PARA_ATTRS;

xtTabs pData points to an XLIST_TABS;

xtCharPos pData is a TEXT_INDEX (cast to a P_UNKNOWN).

The types themselves are defined as part ofXTYPE in xlist.h; the data structures and their semantics are
defined below.

In general, an xlist is position-independent. However, the caller of msgGWinXlist often wants the
associated xlist to modify a Text View's data object beginning at a particular character index; an element
of type xtCharPos allows the caller to specify such an index.

To make it easier to maintain the position-independent property of an xlist, Text Views recognize
maxTEXT _INDEX (see txtData.h) as having a special meaning when used as the value of the first field
of the pData in an xlist element of type xtCharAttrs, xtParaAttrs and xtTabs (i.e., pData->first ==
maxTEXT_INDEX). If the pData->length is 0, a pData->first of maxTEXT_INDEX causes the xlist
processing code to remember the current index in the Text data object and to take no other action; if the
pData->length is non-zero, the pData->first of maxTEXT_INDEX causes the xlist processing code to
update pData->first with the previously remembered index. This allows the caller of msgGWinXlist to
generate an xlist with the following structure:

xtCharPos . to start processing at a particular index;

xtText one or more times, to add characters;

xtCharAttrs with first of maxTEXT_INDEX, length of 0;

xtText one or more times, to add more characters;

46 PENPOINT API REFERENCE
Part 6 / Text

xtCharAttrs with first of maxTEXT _INDEX, length not 0, thereby setting the character attributes for

exactly the bracketed characters.

#ifndef TXTXLIST_INCLUDED
#define TXTXLIST INCLUDED
#ifndef XLIST INCLUDED
#include <xlist.h>
#endif
#ifndef TXTDATA_INCLUDED
#include <txtData.h>
#endif

Upon encountering an xlist element of type xtCharAttrs, a Text View does a msgTextChangeAttrs to its

data object, making use of the fields of the P _XLIST_CHAR_ATTRS by mapping them to the

corresponding fields ofTEXT_CHANGE_ATTRS as follows:

tag forced to atomChar

first copied from first

length copied from length

pN ewMask set to &mask

pN ewValues set to &attrs

typedef struct
TEXT INDEX
TEXT INDEX

first;
length;

TA CHAR MASK mask;
TA CHAR ATTRS attrs;

XLIST_CHAR_ATTRS, *P_XLIST_CHAR_ATTRS;

Upon encountering an xlist element of type xtParaAttrs, a Text View does a msgTextChangeAttrs to its

data object, making use of the fields of the P _XLIST_PARA_ATTRS by mapping them to the

corresponding fields ofTEXT_CHANGE_ATTRS as follows:

tag forced to atomPara

first copied from first

length copied from length

pN ewMask set to &mask

pN ewValues set to &attrs

typedef struct
TEXT INDEX
TEXT INDEX

first;
length;

TA PARA MASK mask;
TA PARA ATTRS attrs;

XLIST_PARA_ATTRS, *P_XLIST_PARA_ATTRS;

Upon encountering an xlist element of type xtTabs, a Text View does a msgTextChangeAttrs to its data

object, making use of the fields of the P _XLIST_TABS by mapping them to the corresponding fields of

TEXT_CHANGE_ATTRS as follows:

tag forced to atomParaTabs

first copied from first

length copied from length

pNewMask set to NilO

pNewValues set to &tabs

typedef struct
TEXT INDEX first;
TEXT INDEX length;
TA_MANY_TABS tabs;

XLIST_TABS, *P_XLIST_TABS;

TXTXLlST.H 47

Part 7 /
File System

FILETYPE.H

This file defines common file types used for import and export between PenPoint and other operating
systems.

*ifndef FILETYPE_INCLUDED
*define FILETYPE_INCLUDED
*ifndef GO_INCLUDED
*include <go.h>
*endif
*ifndef UID_INCLUDED
*include <uid.h>
*endif

The following file types are common enough to merit a central registry. Contact GO Developer

Technical Support if you want to add a file type to the registry.

The file types are defined as tags; they are primarily intended to be stored as the value of the
fsAttrFileT ype file attribute. If a file is explicitly typed via this mechanism, applications can more easily
decide if they can import it.

*define fileTypeUndefined ((TAG)OL)

fileTypeASCII implies 8-bit bytes encoding the 7 -bit ASCII set defined by ANSI X3.64. Any byte with
value greater than Ox7F will be interpreted in a manner dependent on the subsystem involved; e.g.

clsText (and thus the MiniText application) will assume the bytes encode IBM-PC Code Page 850.

*define fileTypeASCII MakeTag(clsFileHandle, 0)

fileTypeASCIISoftLineBreaks is similar to fileTypeASCII. The difference is that in a line that has no

explicit new line or carriage return, a space is transformed into a line feed near the 72nd character.

*define fileTypeASCIISoftLineBreaks MakeTag(clsFileHandle, 1)

fileTypeRTF implies Microsoft Corporation's Rich Text Format (RTF).

#define fileTypeRTF MakeTag(clsFileHandle, 2)

fileTypeTIFF implies Aldus Corporation and Microsoft Corporation's Tag Image File Format (TIFF).

*define fileTypeTIFF MakeTag(clsFileHandle, 3)

fileTypePicSeg implies Go Corporation's Picture Segment format.

*define fileTypePicSeg MakeTag(clsFileHandle, 4)

------------ -------

FS.H

This file contains the API for clsDirHandle and clsFileHandle. The functions described in this file are
contained in PENPOINf.LIB.

clsFileSystem inherits from clsObject.

Provides file system support. theFileSystem is the only instance of clsFileSystem.

clsDirHandle inherits from clsObject.

Provides file system directory support. theBootVolume is a well known instance of clsDirHandle.
theSelectedV olume is a well known instance of clsDirHandle. theWorkingDir is a well known instance
of clsDirHandle.

clsFileHandle inherits from clsStream.

Provides file system file access support.

#ifndef FS_INCLUDED
#define FS INCLUDED

Debugging Flags
FileSystem Debugging Flag is '$', values are:

000 1 Debug info when fs cache layer calls volume layer

0200 Breaks into debugger before asking to insert disk

20000 Display list of known volumes when prompting for unmounted disk

Include file dependencies for this include file

#ifndef GO INCLUDED
#include <go.h>
#endif

#ifndef UID INCLUDED
#include <uid.h>
#endif
#ifndef CLSMGR INCLUDED
#include <clsmgr.h>
#endif
#ifndef UUID_INCLUDED
#include <uuid.h>
#endif

#ifndef STREAM INCLUDED
#include <stream.h>
#endif

Common abbreviations, terms:

FS File System

Node A file or a directory

Dir A directory

54 PEN POINT API REFERENCE

Part 7 / File System

Rules concerning the destination of file system messages:

All messages defined in this file are directed to their destination via ObjectCall, the file system does not

accept messages that are sent. All messages (with the exception of msgFSGetlnstaIledVolumes) of
clsFileSystem can be "sent" to either a file or a dir object. Messages of clsDirHandle can only be "sent"

to directory objects. Messages of clsFileHandle can only be "sent" to file objects.

Common #defines and Iypedefs
Defines

fdefine fsMaxPathLength 254 II Max path length

fdefine fsPathBufLength (fsMaxPathLength+l)
II (Excluding null terminator)
II Buffer size for max path
II Pathname separator fdefine fsSeparator

fdefine fsEscapeChar
fdefine fsUniqueSeparator
fdefine fsMaxHandles
fdefine fsMaxUnique
fdefine fsMaxReadWrite
fdefine fsMaxNestingLevel

FS AHribute Intrinsics

' \ \'
' I' , ,
255
255
Ox40000000
20

II Escape char (invalid in" paths)
II Char for unique name postfix
II Max handles on a single node
II Max tries to make name unique
II Max size for single read/write
II Max nesting for recursive ops

These are used to build file/directory attribute labels or to get component pieces from an attribute label.

A client can define their own attribute using one of the FSMakeXXXAttr intrinsics, specifYing a class

and a tag. The attribute type will allow for storage of a 32 bit value (Fix32), a 64 bit value (Fix64), a null
terminated string of any length up to 32K (Str), or a variable length value up to 32K (Var). The

messages msgFSGetAttr, msgFSSetAttr, msgFSReadDir, msgFSReadDirFull and msgFSTraverse use

file system attributes to represent the attribute label.

fdefine fsFixAttr o
fdefine fsFix64Attr 1
fdefine fsVarAttr 2
fdefine fsStrAttr 3

fdefine fsMaxAttrLength 255
fdefine FSMakeAttr(cls,t,f) \

MakeTagWithFlags(cls,t,f)
fdefine FSMakeFix32Attr(cls,t) FSMakeAttr (cls,t, fsFixAttr)
fdefine FSMakeFix64Attr(cls,t) FSMakeAttr(cls,t,fsFix64Attr)
fdefine FSMakeVarAttr(cls,t) FSMakeAttr(cls,t,fsVarAttr)
fdefine FSMakeStrAttr(cls,t) FSMakeAttr (cls,t, fsStrAttr)
fdefine FSAttr(attr) TagNum(attr)
fdefine FSAttrCIs(attr) ClsNum(attr)
fdefine FSAttrIsFix32 (attr) (TagFlags(attr) == fsFixAttr)

== fsFix64Attr)
fsVarAttr)

== fsStrAttr)

fdefine FSAttrIsFix64 (attr) (TagFlags(attr)
fdefine FSAttrIsVar(attr) (TagFlags(attr)
fdefine FSAttrIsStr(attr) (TagFlags(attr)

File System AHributes
These are the predefined attributes managed by the file system.

fdefine fsNullAttrLabel
fdefine fsAttrName
fdefine fsAttrFlags
fdefine fsAttrDateCreated
fdefine fsAttrDateModified
fdefine fsAttrFileSize

FSMakeFix32Attr(objNull,0)
FSMakeStrAttr(clsFileSystem,O)
FSMakeFix32Attr(clsFileSystem,0)
FSMakeFix32Attr(clsFileSystem,2)
FSMakeFix32Attr(clsFileSystem,3)
FSMakeFix32Attr(clsFileSystem,4)

FS.H 55
Common #defines and typedefs

#define fsAttrDirlndex
#define fsAttrOldDirlndex
#define fsAttrFileType

FSMakeFix64Attr(clsDirHandle, 0)
FSMakeFix64Attr(clsDirHandle, 1)
FSMakeFix32Attr(clsFileHandle, 0)

See msgFSGetAttr for an explanation when to use these constants.

#define fsAllocAttrLabelsBuffer ((P_FS_ATTR_LABEL)maxU32)
#define fsAllocAttrValuesBuffer ((P_UNKNOWN)maxU32)
#define fsAllocAttrSizesBuffer ((P_FS_ATTR_SIZE)maxU32)

Status Codes
Common return values:

There are a few status return values that are common to either all messages or to a group of messages

(i.e. messages that try to change the volume).

stsFSHandleInvalid The dirlfile object refers to a node that has been previously deleted.

stsFSVolDisconnected The volume is not connected.

stsFSVolFull The message cannot complete, due to insufficient space on the volume.

stsFSVolReadOnly The message cannot complete, because the volume is write protected.

Error Status Codes

#define stsFSVolDisconnected MakeStatus(clsFileSystem,O)
#define stsFSVolReadOnly MakeStatus(clsFileSystem,1)
#define stsFSVolFull MakeStatus(clsFileSystem,2)
#define stsFSNodeNotFound MakeStatus(clsFileSystem,3)
#define stsFSNodeReadOnly MakeStatus(clsFileSystem,4)
#define stsFSAccessDenied MakeStatus(clsFileSystem,5)
#define stsFSCircularMoveCopy MakeStatus(clsFileSystem,6)

#define stsFSVolBusy MakeStatus(clsFileSystem,7)
#define stsFSNodeBusy MakeStatus(clsFileSystem,8)
#define stsFSBadPath MakeStatus(clsFileSystem,9)
#define stsFSUniqueFailed MakeStatus(clsFileSystem,10)
#define stsFSDirFull MakeStatus (clsFileSystem, 11)
#define stsFSNodeExists MakeStatus (clsFileSystem, 12)
#define stsFSNotDir MakeStatus (clsFileSystem, 13)
#define stsFSNotFile MakeStatus (clsFileSystem, 14)
#define stsFSReadOnlyAttr MakeStatus(clsFileSystem,15)
#define stsFSBufTooSmall MakeStatus (clsFileSystem, 16)
#define stsFSNestingTooDeep MakeStatus (clsFileSystem, 17)
#define stsFSNoParent MakeStatus (clsFileSystem, 18)
#define stsFSUnchangeabl~ MakeStatus(clsFileSystem,19)
#define stsFSNotAncestor MakeStatus(clsFileSystem,20)
#define stsFSDirPositionLost MakeStatus(clsFileSystem,21)
#define stsFSHandlelnvalid MakeStatus(clsFileSystem,22)
#define stsFSDifferent MakeStatus(clsFileSystem,23)
#define stsFSTooManyHandles MakeStatus(clsFileSystem,24)
#define stsFSDirlndexExists MakeStatus(clsFileSystem,25)
#define stsFSDirlndexNotFound MakeStatus(clsFileSystem,26)
#define stsFSVolCorrupt MakeStatus(clsFileSystem,27)

Informational Status Codes

#define stsFSAttrBufTooSmall MakeWarning(clsFileSystem,l)

56 PENPOINT API REFERENCE
Part 7 / File System

Types
Locators are structures used to describe the location of a file or dir node. There are two types of locators:
explicit and implicit. An explicit locator is defined with FS_LOCA TOR which specifies both the starting
node (uid) and the path relative to the starting node (pPath). An implicit locator is made up of a

starting node (the object that receives a message) and the path relative to the starting node (pPath).

msgFSMove is a good example of a message that contains both types of locators. The receiver of
msgFSMove and move.pSourcePath defines the implicit location of the source of the move.
move.destLocator defines the explicit location of the dest of the move.

The uid field of a locator must be filled in and must be non-null. If no other choice can be decided

upon, theWorkingDir may be a good one. The uid field does not always have to be a dir handle object.
The uid can be a file handle object if the pPath field points to a path that begins with .. (parent), \ (root)

or \ \ (fully specified path including volume name).

The path field of locators (explicit and implicit) are relative to the node defined by the uid (or object

receiving the message) unless the path begins with a \ (root relative) or \\ (fully specified path).

typedef struct FS_LOCATOR {
OBJECT uid;
P STRING pPath; II Relative to node defined by uid

FS_LOCATOR, * P_FS_LOCATOR;

The file system interface never uses flat locators, but if it is more convenient to hold the entirety of the
locator in a linear structure using flat locators.

typedef struct FS_FLAT_LOCATOR {
OBJECT uid;
U8 path [fsPathBuf Length];

FS_FLAT_LOCATOR, * P_FS_FLAT_LOCATOR;
Enum16 (FS_NODE_FLAGS) {

fsNodeReadOnly
fsNodeHidden

};

fsNodeDir
fsNodeGoFormat
fsNodePenPointHidden

idefine validFSNodeFlags \

flagO,
flagl,
flag4,
flag8,
flag9

II Node is read-only.
II System hidden file.
II Directory or file?
II Node has non-native attrs
II Should this node be hidden from
II the user in Penpoint browsers?

(fsNodeReadOnly I fsNodeHidden I fsNodeDir I \
fsNodeGoFormat I fsNodePenPointHidden)

idefine readOnlyFSFlags (fsNodeDir I fsNodeGoFormat)

FS_NODE_FLAGS_ATTR is used to set or get the flags attribute stored with a file/dir node. When setting
the flags, only those flags with a one in the mask word will be affected. When getting flags, all flags are
returned and mask is set to all ones (as a convenience for set after get).

typedef struct FS_NODE_FLAGS_ATTR
FS_NODE_FLAGS flags;
U16 mask;

FS_NODE_FLAGS_ATTR, * P_FS_NODE_FLAGS_ATTR;
typedef U32 FS_DATE_TIME, * P_FS_DATE_TIME;
typedef U32 FS_FILE_SIZE, * P_FS_FILE_SIZE;
typedef U16 FS_ATTR_SIZE,
typedef U32 FS_ATTR LABEL,
Enum16 (FS_VOL_TYPE)

} ;

fsAnyVolType
fsVolTypeMemory
fsVolTypeDisk
fsVolTypeRemote

= 0,
= 0,
= 1,
= 2

* P_FS_ATTR_SIZE;
* P_FS_ATTR_LABEL;

II Match any vol type for msgNew

FS.H 57
Common #defines and typedefs

Enum16 (FS_VOL_FLAGS)
fsVolReadOnly
fsVolConnected
fsVolRemovableMedia
fsVolEjectableMedia
fsVolDirsIndexable
fsVolFormattable
fsVolDuplicatable

} ;

flagO,
flag1,
flag2,
flag3,
flag4,
flagS,
flag6

This information is returned by msgFSGetVolMetrics.

typedef struct FS_VOL_HEADER {
FS_VOL_TYPE type;
FS VOL FLAGS flags;
OBJECT rootDir;
OBJECT volObj;
U32 serialNum;
U32 created;
U16 optimalSize;
U32 totalBytes;
U32 freeBytes;
U32 commSpeed;
U8 pName [nameBufLength];
U8 alignSpare; II Word align following values
CLASS browserClass; II Class of browser to use for volume

U32
RES ID
U32
U32
U32
U32

nativeFS;
iconResId;
spare1;
spare2;
spare3;
spare4;

FS VOL HEADER, * P_FS_VOL_HEADER;

II If null, use system default

typedef FS_VOL_HEADER FS_VOL_METRICS, * P_FS_VOL_METRICS;

Enum16 (FS_EXIST) {
II Lower byte: what to do if the node exists

fsExistOpen
fsExistGenError
fsExistGenUnique
fsExistTruncate

0,
1,
2,
3,

II Upper byte: what to
fsNoExistCreate

do if the node
= MakeU16 (0,
= MakeU16 (0,

fsNoExistCreateUnique = MakeU16 (0,
fsNoExistGenError

doesn't exist
0) ,
1) ,

2) ,

II Default setting
fsExistDefault = fsExistOpen I fsNoExistCreate

} ;

Enum16 (FS_MOVE_COPY_EXIST) {
II What to do if the destination node exists

fsMoveCopyExistOverwrite
fsMoveCopyExistGenError
fsMoveCopyExistGenUnique
fsMoveCopyExistDelete

II Default setting
fsMoveCopyExistDefault

} ;

0,
1,
2,
3,

fsMoveCopyExistGenError

58 PENPOINT API REFERENCE

Part 7 I FiI~ System

Enum16 (FS_DIR_NEW_MODE)
II Delete directory at handle free time?

fsTempDir flagO,
II Is handle changeable?

fsUnchangeable flagl,
II Find node via its dir index?

fsUseDirIndex flag2,
II Disable prompts (insert disk, write protected, etc)
II fsDisablePrompts = flag4, (Defined in FS_FILE_NEW_MODE below)
II System owned dir handle - ring 0 only

fsSystemDir flag7,
II Default setting

fsDirNewDefaultMode 0 II permanent, changeable directory
} i

Enum16(FS FILE NEW MODE) {
II Lower-byte~ flags
II Delete file at handle free time?

fsTempFile flagO,
II Read/write intentions for this handle

fsReadOnly flag2,
II Memory mapped files accessibility

fsSharedMemoryMap = flag3,
II Disable prompts (insert disk, write protected, etc)

fsDisablePrompts = flag4,
II System owned file handle - ring 0 only

fsSystemFile = flag7,
II Upper byte: exclusivity requirements for other handles

fsNoExclusivity = MakeU16(0, 0),
fsDenyWriters = MakeU16 (0, 1),
fsExclusiveOnly = MakeU16 (0, 2),

II Default setting
fsFileNewDefaultMode= 0 II perm, readlwrite (noExclusivity)

} i

Enum16(FS_GET_PATH_MODE) {
II Get path relative to root, dir passed in, just name or vol and path

fsGetPathRoot 0,
fsGetPathRelative 1,
fsGetPathName 2,
fsGetPathAbsolute 3,

II Default setting
fsGetPathDefaultMode= fsGetPathRoot

}i

Enum16 (FS_MOVE_COPY_MODE)
II Use destination as container.

fsMoveCopyIntoDest flagO,
II Check but don't move or copy.

fsMoveCopyVerifyOnly flagl,
II Does source have live dir indexes.

fsMoveCopySourceArchived = flag2,
II Does dest have live dir indexes.

fsMoveCopyArchiveDest = flag3,
II Default setting

fsMoveCopyDefaultMode 0
} ;

Enum16(FS TRAVERSE MODE) {
II Call back on files?

fsCallBackOnFiles = flagO,
II Call back before stepping into directory?

fsCallBackPreDir = flag1,
II Call back after stepping into directory?

fsCallBackPostDir = flag2,
II Default setting

fsTraverseDefaultMode= fsCallBackOnFiles I fsCallBackPreDir
} ;

FS.H 59

Class File System Messages understood by dirHandles and fileHandles

Enum16 (FS_SEEK_MODE) {
II Relative to beginning of file, end of file, or Current Byte Position

fsSeekBeginning = 0,
fsSeekEnd = 1,
fsSeekCurrent = 2,

II Default setting
fsSeekDefaultMode = fsSeekBeginning

} ;

typedef OBJECT
typedef OBJECT

DIR_HANDLE, * P_DIR_HANDLE;
FILE_HANDLE, * P_FILE_HANDLE;

Class FileSystem Messages

COmmC!1fS

msgFSGetlnstalledVolumes
Returns list of all installed volumes.

Takes P _LIST, returns STATUS.

#define msgFSGetInstalledVolumes MakeMsg(clsFileSystem, 21)

This message can only be directed to the well known class theFileSystem. Each object in the list is a
directory handle object that references the root node of the volume. The list is passed back and is not
used as an input parameter. The caller must free the returned list when finished using it, but do not free
any of the objects in the list.

msgFSEjectMedia to eject media from a floppy drive.

msgFSGetVolMetrics to get more info about the volume

msgFSSame to compare root dir to a well-known dir handle

Class File System Messages understood by
dirHandles and lileHandles

msgNew
Creates a directory or file handle object on a new or existing dirlfile.

Takes P _FS_NEW, returns STATUS. Category: class message.

typedef struct FS_NEW_ONLY {
FS LOCATOR locator;
FS-VOL TYPE volType;
UUID dirIndex;
U16 mode;
FS EXIST
P UNKNOWN

exist;
pVolSpecific;

U32 sparel;
U32 spare2;
BOOLEAN alreadyExisted;

FS_NEW_ONLY, * P_FS_NEW_ONLY;
#define fsNewFields \

objectNewFields \
FS NEW ONLY fs;

typedef struct FS_NEW
fsNewFields

FS_NEW, * P_FS_NEW;

II location of the target directory
II hint for uninstalled fullpath vols
II used with fsUseDirIndex mode only
II options for opening file/dir handle
II action to take if exists or doesn't
II volume specific information
II Note: this is an in only parm
II for future use
II for future use
II Out: indicates if already exists

:e

l

60 PENPOINT API REFERENCE

Part 7 / File System

MG\ss01ge
AVSfumenTS

The fields you commonly set are:

pNew->fs.locator Location of the node

pNew->fs.mode Options for opening file/dir handle

pNew->fs.exist Action to take if the file/dir exists or doesn't exist

Accessing a directory using a dirIndex: Three pieces of information must be provided to open a
directory by dirIndex. The fsUseDirIndex flag must be set in new.fs.mode, a valid dirIndex must be
supplied in new.fs.dirIndex and the volume that the directory resides on must be identified. This can be
done by specifying some location on the.volume by filling in new.fs.locator. Either the uid can point to
the root or any other handle on the volume or the path can be an absolute path that identifies the
volume. See msgFSSetAttr on how to store a dir index with a directory so it can later be accessed by its
dir index.

Use FS_DIR_NEW_MODE for mode if new is for dir handle. Use FS_FILE_NEW_MODE for mode if new is
for file handle.

stsBadParam locator.uid is not a valid object.

stsFSAccessDenied Access cannot be granted because node is locked for exclusive access, read only
access or write only access.

stsFSBadPath 10cator.pPath is malformed or a specified dir node is in fact a file.

stsFSDirFulI There is no space in the dir for a new node.

stsFSDirIndexN otFound There is not a dirIndex for the dir node.

stsFSNodeBusy Node cannot be deleted/truncated because it is being access by another client.

stsFSNodeExists The requested node already exists.

stsFSNodeNotFound The root node does not exist.

stsFSNodeReadOnly Node cannot be deletedltruncated or read/write access has been denied because
the read only flag is set on the node.

stsFSNotDir A requested dir node already exists as a file.

stsFSNotFile A requested file node already exists as a dir.

stsFSTooManyHandles There are already fsMaxHandles on this node.

stsFSUniqueFailed fsMaxU nique variants of the name already exist.

FSNameValid

msgNewDefaults
Initializes the FS_NEW structure to default values.

Takes P _FS_NEW, returns STATUS. Category: class message.

typedef struct FS_NEW
fsNewFields

} FS_NEW, * P_FS_NEWi

Zeroes out pNew->fs and sets:

pNew->fs.locator.uid = theWorkingDiri
pNew->object.cap 1= objCapCalli

Return Value

Retuvn Value

FS.H 61

Class File System Messages understood by dirHandles and file Handles

msgDestroy
Destroys a directory or file handle.

Takes OBLKEY, returns STATUS.

This destroys the handle, NOT the actual node. An exception to this is if the fsTempFile/fsTempDir
flag was set in pNew->fs.mode when the handle was created.

stsFSNodeBusy Temporary node cannot be deleted because it is being access by another client.

stsFSNodeReadOnly Temporary node cannot be deleted because the read only flag is set on the node.

msgFSNull
Does nothing.

Takes void, returns STATUS.

#define msgFSNull MakeMsg(clsFileSystem, 20)

This message is used to time entering and exiting the file system.

msgFSGetVolMetrics
Returns metrics of the volume.

#define msgFSGetVolMetrics

typedef struct FS_GET_VOL_METRICS

MakeMsg(clsFileSystem, 22)

BOOLEAN, updateInfoi II have volume recompute values?
FS VOL METRICS volMetricsi II Out: the volume's metrics

FS_GET_VOL_METRICS, * P_FS_GET_VOL_METRICSi

stsFSVolDisconnected This will never be returned, even if the volume is disconnected. Instead test
fSVolConnected in voIMetrics.flags.

You must set updatelnfo to TRUE if you want the volMetrics.freeBytes field or the fsVolConnected
flag of the volMetrics.flags field to be updated before returning the vol metrics. Setting updatelnfo to
FALSE will make this request faster, but these fields may not be correct.

msgFSSetVolName
Changes the name of a volume.

Takes P_STRING, returns STATUS.

#define msgFSSetVolName MakeMsg(clsFileSystem, 36)

stsBadParam New vol name is invalid (checked by FSNameValid).

stsFSHandlelnvalid The dirlfile object refers to a node that has been previously deleted.

stsFSVolDisconnected The volume is not connected.

stsFSVolReadOnly The new volume name cannot be set, because the volume is write protected.

FSNameValid Mechanism to precheck validity of new volume name.

62 PEN POINT API REFERENCE

Part 7 / File System

msgFSNodeExists
Tests the existence of a file or directory node.

Takes P _FS_NODE_EXISTS, returns STATUS.

fdefine msgFSNodeExists

typedef struct FS_NODE_EXISTS
P_STRING pPath;
BOOLEAN isDir;

FS_NODE_EXISTS, * P_FS_NODE_EXISTS;

MakeMsg(clsFileSystem, 37)

II path to node that may exist
II Out: dir or file

The return parm isDir is useful in deciding whether the msgNew, to create a handle to the node, should
be sent to dsDirHandle or dsFileHandle. The parm pPath is relative to the object that receives this
message.

stsO K The node exists.

stsFSNodeNotFound The node does not exist.

msgFSGetHandleMode
Returns the "new" mode for the object's fs handle.

Takes P _UI6, returns STATUS.

fdefine msgFSGetHandleMode MakeMsg(clsFileSystem, 23)

Directory handles interpret the P _ U16 as a P _FS_FILE_NEW _MODE. File handles interpret the P _ U16 as a
P _FS_DIR_NEW _MODE.

msgFSSetHandleMode
Changes the" new" mode for the object's fs handle.

Takes P _FS_SET_HANDLE_MODE, returns STATUS.

fdefine msgFSSetHandleMode MakeMsg(clsFileSystem, 24)

typedef struct FS_SET_HANDLE_MODE
U16 mode; II value of mode flags to change
U16 mask; II which mode flags are to change

FS_SET_HANDLE_MODE, * P_FS_SET_HANDLE_MODE;

Directory handles interpret mode as a FS_FILE_NEW _MODE. File handles interpret mode as a
FS_DIR_NEW _MODE.

msgFSSame
Tests if another directory or file handle references the same node.

Takes OBJECT, returns STATUS.

fdefine msgFSSame MakeMsg(clsFileSystem, 25)

msgFSGetPath
Gets the path to (or name of) a directory or file handle node.

Takes P _FS_GET_PATH, returns STATUS.

fdefine msgFSGetPath MakeMsg(clsFileSystem, 26)

Arguments

Comments

Message
Arguments

FS.H 63
Class File System Messages understood by dirHandles and fileHandles

typedef struct FS_GET_PATH {
FS_GET_PATH_MODE mode;
DIR HANDLE dir;
U16 bufLength;
P STRING pPathBuf;

FS_GET_PATH, * P_FS_GET_PATH;

II options for get path operation
II In-Out: rel dir or root dir
II length of pPathBuf
II Out: user buffer for path

If mode is fsGetPathRoot or fsGetPathAbsolute the root dir handle is passed back in dir. If mode is
fsGetPathRelative the path passed back begins at the dir represent by dir and terminates at the node
represented by the recipient of this client.

stsFSBuff ooSmall User supplied pPathBuf is not large enough.

stsFSNotAncestor dir is not ancestor of recipient of msgFSGetPath.

msgFSGetAttr
Gets an attribute or attributes of a file or directory node.

Takes P _FS_GET_SET_ATTR, returns STATUS.

tdefine msgFSGetAttr

typedef struct FS_GET_SET_ATTR {
P STRING pPath;
U16 nurnAttrs;
P_FS_ATTR_LABEL pAttrLabels;
P UNKNOWN pAttrValues;
P_FS_ATTR_SIZE pAttrSizes;

FS_GET_SET_ATTR, * P_FS_GET_SET_ATTR;

MakeMsg(clsFileSystem, 27)

II path to node to get/set attrs
II number of attrs of interest
II In-Out: attr labels
II In-Out: attr values
II In-Out: attr sizes

Specify which attributes you wish returned via an array of attribute labels pointed to by pAttrLabels.
The number of attribute labels is specified by numAttrs. The values are passed back via an array of
values. If the nth value represents a string or variable attribute a pointer must be filled in for the
destination of the string/variable. If the nth value represents a Fix64 provide space for two consecutive
U32s. The sizes are passed back via an array of sizes.

If either the values are of no interest or the sizes are of no interest, set pAttrValues to pNull and/or set
pAttrSizes to pNull.

If you want all attributes of a node, but do not know what they may be set numAttrs to maxU16,
pAttrLabels to fsAllocA.ttrLabelsBuffer, and pAttrValues to fsAllocA.ttrValuesBuffer (or pNull if
unwanted) and pAttrSizes to fsAllocA.ttrSizesBuffer (or pNull if unwanted). Any buffers returned as a
result of fsAllocXXXBuffer must be freed with OSHeapBlockFree.

The parm pPath is relative to the object that receives this message.

msgFSSetAttr
Sets the attribute or attributes of a file or directory node.

Takes P _FS_GET_SET_ATTR, returns STATUS.

tdefine msgFSSetAttr

typedef struct FS_GET_SET_ATTR {
P STRING pPath;
U16 nurnAttrs;
P_FS_ATTR_LABEL pAttrLabels;
P UNKNOWN pAttrValues;
P FS ATTR SIZE pAttrSizes;

FS_GET_SET_ATTR, * P_FS_GET_SET_ATTR;

MakeMsg(clsFileSystem, 28)

II path to node to get/set attrs
II number of attrs of interest
II In-Out: attr labels
II In-Out: attr values
II In-Out: attr sizes

64 PENPOINT API REFERENCE
Pa rt 7 I File System

Arguments

Specify which attributes you wish to set via an array of attribute labels pointed to by pAttrLabels. The
number of attribute labels is specified by numAttrs. The values are specified via an array of values. If the
nth value represents a string or variable attribute supply the pointer to the string/variable. If the nth
value represents a Fix64 attribute two consecutive U32 values are expected. If there are no variable length
attributes, pAttrSizes can be set to pNull, because the size of Fix32, Fix64 and string attributes can be
inferred.

pAttrLabels, pAttrValues & pAttrSizes are inputs only for this message. The parm pPath is relative to
the object that receives this message.

The attr fsAttrDirIndex (dir indexes) can be set on directories to establish an alternate access to a
directory without having to specify the path to the directory. See msgNew above on how to access
directories with a dir index. Only directories that reside under the PenPoint tree (any directories below
the PenPoint directory on a given volume) can have dir index attributes. If another directory already has
the same dir index as the one given then a stsFSDirIndexExists error is returned.

NOTE: Most attributes (with the exception of dir index and old dir index attributes) can be stored with
either files or directories. The root of a volume is the exception. No attributes may be stored with the
root.

stsFSBadPath New name for name attr is invalid.

stsFSNotDir Dir index attr cannot be set on a file.

stsFSReadOnlyAttr File size cannot be set via set attr, use msgFSSetSize.

msgFSMove
Moves a node (and any children) to a new destination.

Takes P _FS_MOVE_COPY, returns STATUS.

#define msgFSMove

typedef struct FS_MOVE_COPY
P_STRING pSourcePath;
FS_LOCATOR destLocator;
FS_MOVE_COPY_MODE mode;
FS_MOVE_COPY_EXIST exist;
P STRING pNewDestName;
BOOLEAN alreadyExisted;
U32 spare;

FS_MOVE_COPY, * P_FS_MOVE_COPY;

MakeMsg(clsFileSystem, 29)

II path of source of move or copy
II locator to destination node
II options that affect move or copy
II action to take if exists or doesn't
II Out: See comment above
II Out: indicates if already exists

The destination file/ dir name of a move is derived as follows.

For "fsMoveCopyToDest" (the default): If non null path is provided then dest name is the leaf name of
the path and the path up to the leaf name determines the destination directory. If the path is null then
the name of the destination object is used as the dest name and the parent of the destination object is
used as the destination directory.

For fsMoveCopylntoDest: The entire destination uid and path are used for the destination directory.

And the destination name is taken from the source name.

The parm pSourcePath is relative to the object that receives this message.

NOTE: pNewDestName is not an in parameter. It is an output parameter that gives the (new, if
fsMoveCopyGenUnique was specified for exist) name of the copied node. Set pNewDestName to a
buffer if you want to know the name, set pNewDestName to pNull if you do not.

Me$5d~e

Argumzen'f$

FS.H 65

Class File System Messages understood by dirHandles and fileHandles

stsFSBadPath Path or parts of path are too large.

stsFSCircularMoveCopy Occurs when copying dir to an ancestor (parent).

msgFSMoveNotify, msgFSCopy

msgFSCopy
Copies a node (and any children) to a new destination.

Takes P _FS_MOVE_COPY, returns STATUS.

#define msgFSCopy

typedef struct FS_MOVE_COPY {
P STRING pSourcePath;
FS LOCATOR destLocator;
FS_MOVE_COPY_MODE mode;
FS_MOVE_COPY_EXIST exist;
P STRING pNewDestName;
BOOLEAN alreadyExisted;
U32 spare;

FS_MOVE_COPY, * P_FS_MOVE_COPY;

MakeMsg(clsFileSystem, 30)

II path of source of move or copy
II locator to destination node
II options that affect move or copy
II action to take if exists or doesn't
II Out: See comment above
II Out: indicates if already exists

The destination file/ dir of a copy is derived as follows.

For "fsMoveCopyTo" (the default): If non null path is provided then dest name is the leaf name of the
path and the path up to the leaf name determines the destination directory. If the path is null then the
name of the destination object is used as the dest name and the parent of the destination object is used
as the destination directory.

For fsMoveCopyInto: The entire destination uid and path are used for the destination directory. And
the destination name is taken from the source name.

The parm pSourcePath is relative to the object that receives this message.

NOTE: pNewDestName is not an in parameter. It is an output parameter that gives the (new, if
fsMoveCopyGenUnique was specified for exist) name of the copied node. Set pNewDestName to a
buffer if you want to know the name, set pNewDestName to pNull if you do not.

stsFSBadPath Path or parts of path are too large.

stsFSCircularMoveCopy Occurs when copying dir to an ancestor (parent).

msgFSCopyNotify, msgFSMove

msgFSMoveNotify
Same as msgFSMove with notification routine extensions.

Takes P _FS_MOVE_COPY_NOTIFY, returns SfATUS.

#define msgFSMoveNotify MakeMsg(clsFileSystem, 70)
II the time that the current event occurred

Enum16 (FS_NOTIFY_TIME) {
fsBeginOperation = 1,
fsBeforeOperation = 2,
fsDuringOperation = 3,
fsAfterOperation = 4,
fsEndOperation = 5

};

II beginning of whole operation
II before the sub operation
II during the sub operation
II after the sub operation
II end of the whole operation

66 PENPOINT API REFERENCE

Part 7 I File System

Message

Arguments

II the operation of the current event
Enum16 (FS NOTIFY OP) {

fsReadOperation = 1,
fsWriteOperation = 2,
fsCreateOperation 3,
fsVerifyOperation 4,
fsDeleteOperation 5

II read operation
II write operation
II create operation
II verify operation
II delete operation

} ;

II information required by the notification
typedef struct FS_NOTIFY_RTN_INFO {

routine

OBJECT source; II a handle to the current file
BOOLEAN moveOperation; II if move operation
BOOLEAN isADirectory; II if source is a directory
P_FS_GET SET_ATTR pFSGetSetAttr; II attributes for current file
FS NOTIFY TIME fsNotifyTime; II time context of notification
FS NOTIFY OP fsNotifyOp; II op context of notification
U32 bufferSize; II max size of operation buffer
U32 operationSize; II actual size of operation
U32 fileSize; II actual size of file
U32 spare1; II spare: unused
U32 spare2; I I spare: unused

FS NOTIFY_RTN_INFO, *P_FS_NOTIFY_RTN_INFO;
II the definition of the notification routine
typedef STATUS FunctionPtr (P_FS_NOTIFY_RTN) (P FS NOTIFY RTN INFO pFSNotifyRtnInfo,

P =:UNKNOWN pClientData);
II the information required for FSMove/CopyNotify
typedef struct FS_MOVE_COPY_NOTIFY {

P STRING pSourcePath; II path of source of move or copy
FS LOCATOR destLocator; II locator to destination node
FS MOVE COpy MODE mode; II options that affect move or copy - - -
FS MOVE COPY EXIST exist; II action to take if exists or doesn't - - -P STRING pNewDestName; II Out: See comment w/msgFSMove
BOOLEAN alreadyExisted; II Out: indicates if already exists
P UNKNOWN pNotifyRtn; II notification routine
P UNKNOWN pClientData; II client data to notification routine
P UNKNOWN pQuickSortRtn; II quicksort routine
U32 spare1; II spare: unused
U32 spare2; II spare: unused

FS MOVE _COPY_NOTIFY, * P_FS_MOVE_COPY_NOTIFY;

The parm pSourcePath is relative to the object that receives this message.

msgFSCopyNotify
Same as msgFSCopy with notification routine extensions.

Takes P_FS_MOVE_COPY_NOTIFY, returns STATUS.

*define msgFSCopyNotify MakeMsg(clsFileSystem, 71)

typedef struct FS_MOVE_COPY_NOTIFY {
P STRING pSourcePath; II path of source of move or copy
FS LOCATOR destLocator; II locator to destination node
FS_MOVE_COPY_MODE mode; II options that affect move or copy
FS_MOVE_COPY_EXIST exist; II action to take if exists or doesn't
P STRING pNewDestName; II Out: See comment w/msgFSMove
BOOLEAN alreadyExisted; II Out: indicates if already exists
P UNKNOWN pNotifyRtn; II notification routine
P UNKNOWN pClientData; II client data to notification routine
P UNKNOWN pQuickSortRtn; II quicksort routine
U32 spare1; II spare: unused
U32 spare2; II spare: unused

FS MOVE_COPY_NOTIFY, * P_FS_MOVE_COPY NOTIFY;

The parm pSourcePath is relative to the object that receives this message.

Comments

Arguments

FS.H 67
Class File System Messages understood by dirHandles and fileHandles

msgFSDelete
Deletes a node (and all of its children).

Takes P _STRING, returns STATUS.

*define msgFSDelete MakeMsg(clsFileSystem, 31)

The object of msgFSDelete is typically a dir handle, but it can also be a file handle, but the argument
passed must be set to pNull. After a node is deleted, its handle is marked corrupt (since it is no longer
valid). A dir handle object can be reused via msgFSSetTarget or destroyed via msgDestroy. A file handle
must be destroyed after the node is deleted. The argument (a path) is relative to the object that receives
this message.

stsFSVolDisconnected The volume is not connected.

stsFSVolReadOnly A node cannot be deleted, because the volume is write protected.

stsFSNodeReadOnly Node cannot be deleted because the read only flag is set on the node.

stsFSNodeBusy Node cannot be deleted because it is being access by another client.

msgFSForceDelete

msgFSFlush
Flushes any buffers and attributes associated with the file or directory.

Takes void, returns STATUS.

*define msgFSFlush MakeMsg(clsFileHandle, 20)

This can be used to guarantee that cached buffers are flushed to the disk and can also be used to flush
memory mapped files to disk.

msgFSMakeNative
Removes anything not supported by the native file system.

Takes P_FS_MAKE_NATlVE, returns STATUS.

*define msgFSMakeNative

typedef struct FS MAKE NATIVE
P STRING pPath;
P STRING pNewName;

FS_MAKE_NATIVE, * P_FS_~E_NATIVE;

MakeMsg(clsFileSystem, 32)

II path to node to make native
II Out: native name if changed

The parm pPath is relative to the object that receives this message.

msgFSEjectMedia
Ejects media from an ejectable, removable volume.

Takes void, returns STATUS.

*define msgFSEjectMedia MakeMsg(clsFileSystem, 34)

stsOK The volume media has been ejected.

stsFSVolDisconnected The volume media is already ejected.

stsRequestNotSupported The volume does not have ejectable media

68 PENPOINT API REFERENCE
Part 7 / File System

Arguments

Comments

msgFSForceDelete
Forcibly deletes a node (and all of its childen).

Takes P _STRING, returns STATUS.

tdefine msgFSForceDelete MakeMsg(clsFileSystem, 35)

WARNING. Normal restrictions do not apply. The node will still be deleted even if it is being accessed

via another handle or if it is marked read only. However, if the volume is not connected or is write
protected, the forced delete will still fail.

After a node is deleted, its handle is marked corrupt (since it is no longer valid). A dir handle object can

be reused via msgFSSetTarget or destroyed via msgDestroy. A file handle must be destroyed after the
node is deleted. The argument (a path) is relative to the object that receives this message.

msgFSDelete

msgFSV olSpecific
Sends a volume specific message via a dir or file handle.

Takes P _FS_VOL_SPECIFIC, returns STATUS.

tdefine msgFSVolSpecific

typedef struct FS_VOL_SPECIFIC
P_STRING pPath;
MESSAGE msg;
P UNKNOWN pArgs;

FS_VOL_SPECIFIC, * P_FS_VOL_SPECIFIC;

Volume specific errors.

msgFSChanged
Notifies observers of directory changes.

MakeMsg(clsFileSystem, 40)

II path of node to receive msg
II message to pass on to volume
II In-Out: message specific args

Takes P _FS_CHANGE_INFO, returns STATUS. Category: observer notification.

tdefine msgFSChanged

typedef struct FS_CHANGE_INFO
MESSAGE reason;
OBJECT observed;
U32 sparel;
U32 spare2;

FS_CHANGE_INFO, * P_FS_CHANGE_INFO;

MakeMsg(clsFileSystem, 50)

II fs message that caused the change
II observed dir whose content changed

These messages are the reason observers of a dir handle would be notified of a change and the
circumstances that the change happens:

msglnit A file or dir has been created.

msgFree A temp file or temp directory has been deleted.

msgFSDelete A file or directory has been deleted.

msgFSForceDelete A file or directory has been deleted.

msgFSMove A file or directory has been "fast" moved.

This notifies observers of directories (not files) when a file or dir within the directory changes. The

change reasons described below are changes to the directory or file node, not the handle referencing the
node.

FS.H 69

Class DirHandle Messages

msgFSV olChanged
Notifies observer of volume changes.

Takes P _FS_ VOL_CHANGE_INFO, returns STATUS. Category: observer notification.

#define msgFSVolChanged

Enum16(FS_VOL_CHANGE_FLAGS)
fsVolChangeWhilePrompting

} ;

typedef struct FS_VOL_CHANGE_INFO
MESSAGE reason;
OBJECT rootDir;
FS_VOL_CHANGE_FLAGS flags;
U16 spare1;
U32 spare2;

flagO

MakeMsg(clsFileSystem, 51)

II FS prompting caused change

II fs message that caused the change
II root dh of volume that changed
II more info related to reason

FS VOL_CHANGE_INFO, * P_FS_VOL_CHANGE_INFO;

These messages are the reason observers of theFileSystem would be notified of a volume addition,
removal or change of state. Note: msgFSSetVolName (defined above) is also a volume change reason.

#define msgFSInstallVol MakeMsg(clsFileSystem, 1)
#define msgFSRemoveVol MakeMsg(clsFileSystem, 2)
#define msgFSConnectVol MakeMsg(clsFileSystem, 3)
#define msgFSDisconnectVol MakeMsg(clsFileSystem, 4)

Observe the well known object, theFileSystem, if you want to receive this.

Class DirHandle Messages

MessG€1e
Ar9umenrs

AW€1lJmenrs

msgFSSetT arget
Changes the target directory to directory specified by locator.

Takes P_FS_LOCATOR, returns STATUS.

#define msgFSSetTarget MakeMsg(clsDirHandle, 20)

typedef struct FS LOCATOR
OBJECT uid;
P STRING pPath; II Relative to node defined by uid

FS_LOCATOR, * P_FS_LOCATOR;

Setting a dir handle object to a new target also resets the read dir pointer.

stsFSUnchangeable The recipient of this message has been "opened" with the fsUnchangeable flag set

in pNew->mode.

msgFSReadDir
Reads the next entry (its attributes) from a directory.

Takes P _FS_READ_DIR, returns STATUS.

#define msgFSReadDir MakeMsg(clsDirHandle, 21)

typedef struct FS_READ_DIR
struct FS READ DIR * pNext; II Out: only used w/msgFSReadDirFull
U16 numAttrs; II In-Out: attrs of interest
P FS ATTR LABEL pAttrLabels; - - - II In-Out: ptr to attr labels
P UNKNOWN pAttrValues; II In-Out: ptr to attr values
P FS ATTR SIZE pAttrSizes; II - - - In-Out: ptr to attr sizes

FS _READ _DIR, * P FS _READ_DIR; -

-------. -----------

70 PENPOINT API REFERENCE
Part 7 I File System

Argumorlts

SpecifY which attributes you wish returned via an array of attribute labels pointed to by pAttrLabels.
The number of attribute labels is specified by numAttrs. See msgFSGetAttr for a description on setting
pAttrValues and pAttrSizes.

msgFSReadDirReset
Resets the ReadDir position to the beginning.

Takes void, returns STATUS.

tdefine msgFSReadDirReset MakeMsg(clsDirHandle, 22)

This will direct msgFSReadDir to begin reading from the first entry in the directory. This has no effect
on msgFSReadDirFull. The default after creating a handle to a directory is to point to the first entry.

msgFSReadDirFull
Reads all the entries in a directory into a local buffer.

Takes P _FS_READ _DIR_FULL, returns STATUS.

tdefine msgFSReadDirFul1 MakeMsg(clsDirHandle, 23)

typedef struct FS_READ_DIR_FULL
U16 numAttrs; II num of labels in label array
P FS ATTR LABEL pAttrLabels; II attrs of interest to be read - - -
U32 numEntries; II Out: number of dir entries
U32 bufLength; II Out: length of pDirBuf
P FS READ DIR pDirBuf; II Out: points to first entry

FS_READ_DIR_FULL, * P_FS_READ_DI~FULL;

SpecifY which attributes you wish returned via an array of attribute labels pointed to by pAttrLabels.
The number of attribute labels is specified by numAttrs.

The returned data is a linked list of FS_READ _DIR entries, linked by the pNext field. The last link is
specified by a pLink == pNull.

The client must free the returned buffer pDirBuf, using OSHeapBlockFree. The buffer should not be
freed if it has a value of pNull, which will be the case if there are any errors or if numEntries is zero.

msgF~raverse

Traverse through the nodes of a tree starting with the target of this msg.

Takes P _FS_TRA VERSE, returns STATUS.

tdefine msgFSTraverse MakeMsg(clsDirHandle, 24)

Fundi;;)!''t Pr<lt<ltype typedef STATUS FunctionPtr (P _FS _TRAVERSE_CALL _BACK) (
OBJECT dir, II dir handle to current node
U16 level, II level in the hierarchy
P_FS_READ_DIR pNextEntry, II info about next entry
P UNKNOWN pClientData II the client's data

) ;

typedef struct FS_TRAVERSE
FS_TRAVERSE_MODE mode;
U16 numAttrs;
P_FS_ATTR_LABEL pAttrLabels;
P_FS_TRAVERSE_CALL_BACK pCallBackRtn;
P_UNKNOWN pClientData;
P UNKNOWN pQuickSortRtn;

FS_TRAVERSE, * P_FS_TRAVERSE;

II call back order and criteria
II num of labels in label array
II attr label array
II called for each dir & file
II passed to call back routine
II optional quick sort routine

Comments

FS.H 71

Class FileHandle Messages

This message traverses the file system tree beginning with the directory which is the recipient of this
message and traverses the node tree depth first. The client will be called back via pCallBackRtn at each
node depending on mode (see FS_TRAVERSE_MODE above). Optionally, the nodes at each directory level
can be sorted before being returned by specifying a quick sort routine via pQuickSortRtn (See quicksort
in sort.h).

Specify which attributes you wish returned via an array of attribute labels pointed to by pAttrLabels.
The number of attribute labels is specified by numAttrs. At a minimum, pAttrLabels must contain
fsAttrName and fsAttrFlags.

stsBadParam Did not specify fsAttrName/fsAttrFlags in labels.

stsFSUnchangeable The recipient of this message has been "opened" with the fsUnchangeable flag set
in pNew->mode. This is a common error if trying to traverse from the root dir (which is
unchangeable) provided by msgFSGetlnsta11edVolumes/msgFSGetVolMetrics. Create a handle to
the root and use that to traverse instead.

stsFSNestingT ooDeep Dir tree is deeper than fsMaxNestingLevellevels.

Prototype for the call back routine used by msgFSfraverseTree

Class .ileHandle Messages

Comments

msgStreamRead
Reads data from the file.

Takes P_STREAM_READ_WRITE, returns STATUS. Category: descendant responsibility.

The maximum number of bytes read with a single request is determined by fsMaxReadWrite.

stsBadParam Requesting more than fsMaxReadWrite bytes.

msgStreamRead in stream.h

msgStreamWrite
Writes data to the file.

Takes P_STREAM_READ_WRITE, returns STATUS. Category: descendant responsibility.

The maximum number of bytes writable with a single request is determined by fsMaxReadWrite. Note
that writes to a memory mapped file that cause the file to grow will result in a stsFSNodeBusy error.
Free the memory map file pointer before growing the file.

stsBadParam Requesting more than fsMaxReadWrite bytes.

stsFSNodeReadOnly This is a read only file.

stsFSVolFu11 The file could not be written - no space on volume.

stsFSNodeBusy The file is memory mapped and this write request would cause the file to be grown
beyond the memory mapped size.

msgStream Write in stream.h

:e

l

72 PENPOINT API REFERENCE
Part 7 / File System

nnsgStreannFlush
Flushes any buffers associated with the file.

Takes void, returns STATUS. Category: descendant responsibility.

msgStreamFlush in stream.h

nnsgStreannSeek
Seeks to new position within the file.

Takes P _STREAM_SEEK, returns STATUS. Category: descendant responsibility.

stsBadParam Seek mode is out of range.

msgStreamSeek in stream.h

nnsgFSSeek
Sets the value of the current byte position.

Takes P _FS_SEEK, returns STATUS.

#define msgFSSeek

typedef struct FS_SEEK
FS SEEK MODE
S32
U32
U32
BOOLEAN

FS_SEEK, * P_FS_SEEK;

mode;
offset;
curPos;
oldPos;
eof;

stsBadParam Seek mode is out of range.

nnsgFSGetSize
Gets the size of the file.

Takes P _FS_FILE_SIZE, returns STATUS.

#define msgFSGetSize

nnsgFSSetSize
Sets the size of the file.

Takes P _FS_SET_SIZE, returns STATUS.

#define msgFSSetSize

typedef struct FS_SET_SIZE {
FS FILE SIZE newSize;
FS FILE SIZE oldSize;

FS SET_SIZE, * P_FS_SET_SIZE;

MakeMsg(clsFileHandle, 21)

II seek from bof, cur pos, eof
II relative change from seek origin
II Out: cur byte pos after seek
II Out: cur byte pos before seek
II Out: Is new pos at end of file?

MakeMsg(clsFileHandle, 22)

MakeMsg(clsFileHandle, 23)

II new file size
II Out: prior file size

Note that a set size to a memory mapped file that causes the file to grow will result in a stsFSNodeBusy
error. Free the memory map file pointer before growing the file.

stsFSNodeReadOnly This is a read only file.

stsFSVolFull The file could not be grown - no space on volume.

stsFSNodeBusy The file is memory mapped and this set size request would cause the file to be grown
beyond the memory mapped size.

Comments

FS.H 73
Public Functions

msgFSMemoryMap
Associates the file with a directly accessible memory pointer.

Takes PP_MEM, returns STATUS.

*define msgFSMemoryMap MakeMsg(clsFileHandle, 24)

To get a memory mapped file pointer from shared memory, the file handle must be created with

pNew->fs.mode 1= fsSharedMemoryMap.

msgFSMemoryMapFree
Frees the memory map pointer currently associated with the file.

Takes void, returns STATUS.

*define msgFSMemoryMapFree MakeMsg(clsFileHandle, 25)

NOTE: Memory map pointers are freed for you at msgFree of a file handle.

msgFSMemoryMapSetSize
Sets the size of the file's memory map.

Takes SIZEOF, returns SfATUS.

*define msgFSMemoryMapSetSize MakeMsg(clsFileHandle, 26)

Determines the limit of a memory map for the file. The size can't be less than the file size, nor less than a

limit set by another client but can be larger. The memory map size must be set before memory mapping
the file.

stsFSNodeBusy The file is currently memory mapped.

msgFSMemoryMapGetSize
Gets the size of the file's memory map.

Takes P _SIZEOF, returns STATUS.

*define msgFSMemoryMapGetSize MakeMsg(clsFileHandle, 27)

Public Functions

FSNameValid
Checks a file/ dir name for validity.

Returns Sf ATUS.

function Prototype STATUS EXPORTED FSNameValid (

Return Value

P STRING pName
) ;

stsOK The node name is valid.

stsFailed The node name was invalid.

II name of file/dir to validate

Name is bad if it has no characters, is greater than 32 characters, has leading or trailing spaces, contains

the pathname delimeter char, contains the file system escape character, or is the name of self (.) or parent
(..).

FSUTIL.H

This file contains filesystem attribute helper procedures. The functions described in this file are
contained in SYSUTIL.LIB.

These procedures make it easier to deal with filesystem attributes. They also support list attributes;
variable attributes which maintains lists of 4-byte quanitities.

*ifndef FSUTIL_INCLUDED
*define FSUTIL_INCLUDED
*ifndef FS_INCLUDED
*include <fs.h>
*endif

GetNodeName
Gets the name attribute of a given filesystem node.

Returns STATUS.

STATUS EXPORTED GetNodeName(
OBJECT
P STRING

handle,
pName) ;

II File or dir handle.
II Out: name.

Use this function to easily get the name of a node.

GetAttr
Gets a single FIX32 attribute from a filesystem handle.

Returns STATUS.

fundion Prototype STATUS EXPORTED GetAttr (
FS ATTR LABEL
OBJECT
P U32

attrLabel,
handle,
pValue) ;

II Attribute label.
II File or dir handle.
II Out: attribute value.

This is only for FIX32 attributes when you have a handle onto the node; see GetSingleAttr for a more
general function.

GetSingleAttr
Gets a single FIX32, FIX64, or known-size STRING attribute.

Returns STATUS.

fundion Prototype STATUS EXPORTED GetSingleAttr (
FS_ATTR LABEL attrLabel,
OBJECT handle,
P STRING pPath,
P UNKNOWN pValue) ;

II In: Attribute label.
II In: handle of node.
II In: path of node.
II Out: attribute value.

76 PENPOINT API REFERENCE

Part 7 / File System

SetAttr
Sets a single FIX32 attribute on a filesystem handle.

Returns STATUS.

tlJm;tl@n PvOtOYy*,¥0 STATUS EXPORTED SetAttr (
FS ATTR LABEL
OBJECT

attrLabel,
handle,
value);

II Attribute label.
II File or dir handle.
II Attribute value. U32

This is only for FIX32 attributes when you have a handle onto the node; see SetSingleAttr for a more
general function.

SetSingleAttr
Sets a single FIX32, FIX64, or STRING attribute.

Returns STATUS.

rlJndion Prototype STATUS EXPORTED SetSingleAttr (
FS_ATTR LABEL attrLabel,
OBJECT handle,
P STRING pPath,
P UNKNOWN pValue);

GetListX

II In: Attribute label.
II In: handle of node.
II In: path of node.
II In: attribute value.

Gets a VAR attribute that is organized as a list of values.

Returns STATUS.

tUfidi©n Pr©t©ryp0 STATUS EXPORTED GetListX (
OBJECT handle,

pPath,
attrLabel,
ppList,
pSize) ;

II File or dir handle.

Furu:tkm Pr©torype

P STRING
FS ATTR LABEL
PP UNKNOWN
P U16

II Path relative to handle.
II Attribute label.
II Out: list.
II Out: size (in bytes) of list.

Allocates ppList from the process local stack. Caller must HeapBlockFree ppList when done adding,
removing, and putting the list.

PutListX
Updates a list attribute with a new list.

Returns STATUS.

STATUS EXPORTED PutListX(
OBJECT handle,
P STRING pPath,
FS ATTR LABEL attrLabel,
P UNKNOWN pList,
U16 size);

II File or dir handle.
II Path relative to handle.
II Attribute label.
II List.
II Size (in bytes) of list.

FSUTIL.H 77
Private

FindListltemX
Finds an element in a list.

Returns STATUS.

Fundion Prototype STATUS EXPORTED FindListItemX (

Comments

Return Value

P UNKNOWN pItem,
U16 itemSize,
P UNKNOWN pList,
U16 listSize,
P U16 pOffset) ;

II Data to search for.
II Size of data to search for.
II List.
II Size of list.
II Out: offset of found item.

The list must first be gotten via GetList. pOffset is ° based. The list array can be indexed with pOffset
to get the actual data. The comparison is done via a memcmp, so things must be EXACTLY the same.

stsN oMatch Item not found.

AddListltemX
Adds an item to the end of a list.

Returns STATUS.

fundiol1 Prototype STATUS EXPORTED AddListItemX (
P UNKNOWN pItem,
U16 itemSize,
PP UNKNOWN ppList,
P U16 pSize) ;

II Item to add.
II Size of item in bytes.
II In:Out List.
II In:Out size of list in bytes.

The list must first be gotten via GetList. The heap that the list uses is resized. pSize is updated to reflect
the new list size.

RemoveListltemX
Removes an item from a list, given an offset.

Returns STATUS.

fundion Prototype STATUS EXPORTED RemoveListItemX (

Comments

U16 offset,
U16 size,
PP UNKNOWN ppList,
P U16 pSize) ;

II Offset of item to remove.
II Size of item to remove.
II In:Out List.
II In:Out Size of list.

The list must first be gotten via GetList. The heap that the list uses is resized. If pSize == 1 (only 1 item

left) then *pSize is set to 0, but the list heap is not resized. offset is O-based.

Private
Below are the "old" attribute list functions. These are here for backwards compatabilityonly!

GetList
Gets a VAR attribute that is organized as a list of 4 byte values.

Returns STATUS.

fundion Prototype STATUS EXPORTED GetList (
OBJECT
P STRING
FS ATTR LABEL
PP OBJECT
P U16

handle,
pPath,
attrLabel,
ppList,
pCount) ;

II File or dir handle.
II Path relative to handle.
II Attribute label.
II Out: list.
II Out: number of elements.

78 PEN POINT API REFERENCE

Part 7 / File System

Allocates ppList from the process local stack. Caller must HeapBlockFree ppList when done adding,
removing, and putting the list.

PutList
Updates a list attribute with a new list.

Returns SfATUS.

Function ?roFOfy?>S STATUS EXPORTED PutList (
OBJECT
P STRING
FS ATTR·LABEL
P OBJECT
U16

FindListltem
Finds an element in a list.

Returns SfATUS.

handle,
pPath, .
attrLabel,
pList,
count) ;

Function Prototype STATUS EXPORTED FindListItem (
OBJECT item,
P OBJECT pList,
U16 count,
P U16 pIndex) ;

II File or dir handle.
II Path relative to handle.
II Attribute label.
II List.
II Number of elements.

II Data to search for.
II List.
II Number of elements in list.
II Out: index of found item.

The list must first be gotten via GetList. plndex is ° based. The list array can be indexed with plndex to
get the actual data.

stsNoMatch Item not found.

AddListltem
Adds an item to the end of a list.

Returns Sf ATUS.

STATUS EXPORTED AddListItern(
OBJECT
PP OBJECT
P U16

item,
ppList,
pCount) ;

II Item to add.
II In:Out List.
II In:Out number of elements in list.

The list must first be gotten via GetList. The heap that the list uses is resized. pCount is updated to
reflect the new list size.

RemoveListltem
Removes an item from a list, given an index.

Returns Sf ATUS.

Functkm ?roFofy?>s STATUS EXPORTED RemoveListItem (
U16 index,
PP OBJECT ppList,
P U16 pCount) ;

II Index of item to remove.
II In:Out List.
II In:Out Number of elements in list.

The list must first be gotten via GetList. The heap that the list uses is resized. If pCount == 1 (only 1

item left) then *pCount is set to 0, but the list heap is not resized. index is O-based.

STREAM.H

This file contains the API definition for dsStream.

clsStream inherits from clsObject.

clsStream is an abstract class -- it does not completely implement its own protocoL Subclasses of
clsStream must complete the implementation. clsFileHandle is an important subclass of clsStream (see

fs.h).

The functions described in this file are contained in PENPOINf.LIB.

#ifndef STREAM INCLUDED
#define STREAM_INCLUDED
#ifndef GO_INCLUDED
#include <go.h>
#endif
#ifndef UID_INCLUDED
#include <uid.h>
#endif
#ifndef OS TYPES_INCLUDED
#include <ostypes.h>
#endif
#ifndef CLSMGR_INCLUDED
*include <clsmgr.h>
#endif

Common #defines and Iypedefs
#define streamNewFields \

objectNewFields
typedef struct STREAM_NEW

streamNewFields
} STREAM_NEW, * P _STREAM_NEW;

Several types in this file contain "streamElements."

The streamElements fields are:

• numBytes: In: size of buffer

• pBuf: In: buffer

• count: Out: number of bytes transferred

*define streamElements \
U32 numBytes; \
P UNKNOWN pBuf; \
U32 count;

Status codes

*define stsTimeOutWithData MakeWarning(clsStream, 1)

stsStreamDisconnected status is returned by all stream calls when the service executing the stream

function is no longer in a connected state (A disconnectable service is clsMlLAsyncSIO).

Clients must not send other stream messages to the disconnected service.

80 PENPOINT API REFERENCE
Part 7 / File System

Penpoint can notify clients or clients may find services' connected states (see service.h and servmgr.h).

#define stsStreamDisconnected MakeStatus(clsStream, 1)

Messages

M(HiSQse

Arguments

ArsumcnfS

msgStreamRead
Reads data from stream.

Takes P _STREAM_READ_ WRITE, returns STATUS. Category: descendant responsibility.

#define msgStreamRead MakeMsg(clsStream,l)

typedef struct {
streamElements

} STREAM_READ_WRITE, * P_STREAM_READ_WRITE;

msgStreamRead reads data from the stream into pBu£ pBuf must point to a buffer which can hold at
least numBytes bytes. The number of bytes read is passed back in count.

If you try to read 0 bytes when at the end of the data stream stsOK is returned.

< stsOK No data read.

>= stsOK Count of bytes is non-zero.

stsEndOfData Count is zero and at the end of data.

msgStream Write
Writes data to stream.

Takes P _STREAM_READ_ WRITE, returns STATUS. Category: descendant responsibility.

#define msgStreamWrite

typedef struct {
streamElements

MakeMsg(clsStream,2)

} STREAM_READ _WRITE, * P _STREAM_READ _WRITE;

Writes numBytes from pBuf into the stream. Returns stsOK if all bytes are written.

msgStreamReadTimeOut
Reads data from stream with timeout.

Takes P_STREAM_READ_WRITE_TIMEOUT, returns STATUS. Category: descendant responsibility.

#define msgStreamReadTimeOut

typedef struct {
streamElements

MakeMsg(clsStream,3)

os MILLISECONDS timeOut; II In: milliseconds until timeout
STREAM_READ _WRITE_TIMEOUT, * P _ STREAM_READ _WRITE_TIMEOUT;

msgStreamReadTimeOut reads data from the stream into pBuf. pBuf must point to a buffer which can
hold least numBytes bytes. The number of bytes read is passed back in count.

When count is greater than zero the status returned is always greater than or equal to stsOK.

stsTimeOutWithData Count is greater than zero but less than numBytes because of a timeout.

stsTimeOut Count is zero and the timeout has expired.

stsEndOfData Count is zero and at the end of data.

MCS$¢l$1f}

Argun'Jents

msgStream WriteTimeOut
Writes to the stream with timeout.

STREAM.H 8'
Messages

Takes P_STREAM_READ_WRITE_TIMEOUT, returns STATUS. Category: descendant responsibility.

#define msgStreamWriteTimeOut

typedef struct {
streamElements

MakeMsg(clsStream,4)

os MILLISECONDS timeOut; II In: milliseconds until timeout
STREAM_READ _WRITE_TIMEOUT, * P _STREAM_READ _WRITE_TIMEOUT;

Writes numBytes from pBuf into the stream.

stsOK All bytes were written.

stsTimeOut Timeout has expired before all data written.

msgStreamFlush
The stream flushes any buffered data.

Takes pNull, returns STATUS. Category: descendant responsibility.

#define msgStreamFlush MakeMsg(clsStream,S)

clsStream's default response is to return stsMessageIgnored. Most subclasses override clsStream's
response.

stsOK Buffers were successfully emptied.

stsFailed Buffers do not empty after some timeout period.

msgStreamSeek
Sets the stream's Current Byte Position.

Takes P _STREAM_SEEK, returns STATUS.

#define msgStreamSeek MakeMsg(clsStream,6)

Enum16 (STREAM_SEEK_MODE)
II Relative to beginning of file, end of file, or Current Byte Position
streamSeekBeginning = 0,
streamSeekEnd 1,
streamSeekCurrent = 2,
II Default setting
streamSeekDefaultMode streamSeekBeginning

} ;

typedef struct STREAM_SEEK
STREAM_SEEK_MODE modei
S32 offset;
U32 curPos;
U32 oldPosi
BOOLEAN eof;

STREAM_SEEK, * P_STREAM_SEEK;

II
II relative change from seek origin
II Out: byte position after seek
II Out: byte position before seek
II Out: Is new pos at end of file?

clsStream's default response is to return stsMessageIgnored. Most subclasses override clsStream's
response.

82 PEN POINT API REFERENCE

Part 7 / File System

msgStreamBlockSize
Passes back the most efficient write block size for this stream.

Takes P _STREAM_BLO<:K_SIZE, returns STATUS. Category: descendant responsibility.

fdefine msgStreamBlockSize MakeMsg(clsStream,7)

typedef struct {
U32 blockSize; II out: preferred write block size

} STREAM_BLOCK_SIZE, * P_STREAM_BLOCK_SIZE;

clsStream's default response is to return a blockSize of 512. Most subclasses override clsStream's

response.

Functions
The P _UNKNOWN declarations for the following are assumed to be FILE*. Maintaining a clean

separation between ANSI and PenPoint header files prevents the use of the true type.

StdioStreamBind
Returns a stdio file pointer bound to a stream object.

Returns pointer to FILE.

ttmdlcm Prototype P UNKNOWN EXPORTED StdioStreamBind (
OBJECT obj);

StdioS tream Unbind
Frees the stdio file handle bound to a stream object.

Returns in t.

Function Prototype int EXPORTED StdioStreamUnbind (
P_UNKNOWN pFile);

StdioStreamToObject
Returns the stream object bound to a stdio file pointer.

Returns OBJECT.

FU!lH:.tion Prototype OBJECT EXPORTED StdioStreamToObject (
P UNKNOWN pFile);

UUID.H

This file contains the API for UUID routines. The functions described in this file are contained in

PENPOINT.LIB.

This file contains macros for creating and testing Nil and Invalid UUIDs, to compare two UUIDs for

equality, and to create a well known UUID and a function to create dynamic uuids.

UUID is an acronym for Universal Unique ID.

fifndef UUID INCLUDED
fdefine UUID INCLUDED

Include files

fifndef GO INCLUDED
finclude <go.h>
fendif

Common #defines and typedefs

Macros

Typedefs

For setting and testing for a Nil UUID

((uuid) .machine = (uuid) .id = OL) fdefine MakeNilUUID(uuid)
fdefine NilUUID(uuid) (((uuid) .machine == OL) && ((uuid) .id == OL))

For setting and testing for an invalid UUID

fdefine MakeInvalidUUID(uuid)
fdefine InvalidUUID(uuid)

((uuid) .id = (uuid) .machine = maxU32)
((uuid) .id == maxU32 && \

To compare two UUIDs for equality

fdefine SameUUIDs(a,b)

(uuid) .machine == maxU32)

(((a) .machine == (b) .machine) && \
((a) .id == (b) .id))

To set the fields of a well known uuid

fdefine MakeWknUUID(uuid,tag,i) \
((uuid) .machine = (tag), (uuid). id = (U32) (i))

typedef struct UUID {
U32 II Unique counting value
U32

id;
machine; II Unique machine identifier

UUID, *P_UUID;

-- ------.-... -.--~~~~---

84 PENPOINT API REFERENCE
Part 7 / File System

Public Functions

MakeDynUUID
Creates a dynamic UUID.

Returns nothing.

void EXPORTED MakeDynUUID
P_UUID pUUID

) ;

VOL.H

dsVolume inherits from dsObject.

Provides volume support.

Information in this file is useful if you are writing an installable volume. Also see volgodir.h for

additional information.

#ifndef VOL INCLUDED
#define VOL-INCLUDED

Include file dependencies

#ifndef GO INCLUDED
#include <go.h>
#endif
#ifndef OS INCLUDED
#include <os.h>
#endif
#ifndef CLSMGR INCLUDED
#include <clsmgr.h>
#endif
#ifndef FS INCLUDED
#include <fs.h>
#endif

Common #defines and typedefs

Defines
#define fsDirPosFirst
#define VOL METHOD

(U32)0
STATUS EXPORTED

Flag to direct VNCreate to create short directory names (See VNCreate)

#define fsShortDirName

Error status codes

#define stsNoMoreBuffers

Informational status codes

fsNodeReadOnly

MakeStatus(clsVolume, 1)

#define stsVolFormatIsTimeConsuming MakeWarning(clsVolume, 1)

Resource ids for volume icons

Defined with MakeWknResId (dsVolume, tag)

Stored in groups of 10 values:

Base value defines large icon,

+ 1 value defines smaller icon,

+2 thru +9 reserved for future.

#define tagVolHardDiskIcon
#define tagVolFloppyDiskIcon
#define tagVolRemotePCIcon
#define tagVolRemoteMacIcon

o II 1-9 define variants, see above
10 II 11-19 define variants, see above
20 II 21-29 define variants, see above
30 II 31-39 define variants, see above

86 PENPOINT API REFERENCE
Part 7 I File System

Types
typedef OBJECT VOLi

typedef P_FS_ATTR_SIZE *PP_FS_ATTR_SIZEi
typedef P_FS_ATTR_LABEL *PP_FS_ATTR_LABELi
typedef U32 FS_ATTR_VALUE, *P_FS_ATTR_VALUE, **PP_FS_ATTR_VALUEi
typedef U32 VOL_VNODE, *P_VOL_VNODEi
typedef struct DIR_ID_CACHE {

P MEM pBufi
U32 usedi
U32 freei

DIR_ID_CACHEi
typedef struct VOL_CACHE {

VOL VNODE vnodeNotKnowni
P MEM pRooti
DIR ID CACHE dirIdsi

II Sorted array of vol dir ids
II Number used, of allocated space
II Number free, of allocated space

II Used to fake volRAM
II Cache dir elem for root vnode
II Dir id cache

OS MILLISECONDS
OS MILLISECONDS
OS MILLISECONDS
OS MILLISECONDS

lastAccessi II Last access to cache layer

OS MILLISECONDS

U16

U16

U16

U16

U16

U16

U16

U16

P MEM
P MEM
P MEM
U32
U32
U8

U8
U16
U32

VOL_CACHE;

lastVolAccessi II Last access to volume
lastVolWrite; II Last write to volume
refreshRatei

flushRatei

numDirsi

numFilesi

openDirsi

openFiles;

refdDirsi

refdFilesi

maxOpenDirs;

maxOpenFiles;

II Check with volume this often
II to see if volume has changed
II since last vol access
II maxU32 implies unchangeable
II Flush cached dirty files
II after this much time has passed
II 0 implies flush immediately
II maxU32 implies no flushing
II Default is 2000 (2 secs)
II Total num of dirs in the cache
II Includes both open and closed
II Total num of files in the cache
II Includes both open and closed
II Num of dirs in the cache
II that are opened on the vol
II Num of files in the cache
II that are opened on the vol
II Num of opened dirs that have
II non-zero reference counts
II Num of opened files that have
II non-zero reference counts
II Max dirs that can be left open
II for caching purposes.
II 0 implies no dirs
II maxU16 implies as many as wanted
II Default is maxU16
II Max files that can be left open
II for caching purposes.
II 0 implies no files
II maxU16 implies as many as wanted
II Default is maxU16

pFirsti II First cache entry
pLasti II Last cache entry
pWritei II Write is to this cache entry
writePosi II Write at this position
writeAmti II Write for this amount
readDirFullInProgressi

spareU8;
spareU16;
spares[5];

II If non-zero then fully cached
II dirs will not be "purged".

Enum16 (VOL_CMN_FLAGS) {
vcVolIsOnBootDevice flagO,

vcVolIsDetachable flag1,

vcVolIsSwapVolume flag2
} ;

typedef struct VOL_COMMON
struct VOL_RTNS *pRtns;
OS_SEMA_ID fsSema;
OS SEMA ID
VOL CMN FLAGS
U16
OS HEAP ID
U16
U16
P MEM
U16
U16

volSema;
flags;
vnodeCount;
vnodeHeap;
spare1;
dhCount;
dhHead;
spare2;
fhCount;
fhHead;
cache;

II This volume is on the boot
II device (as defined by the MIL)
II but isn't necessarily THE boot
II volume.
II This volume is not removable
II but may be detachable.
II This is the swap volume.

P MEM
VOL CACHE
OBJECT
BOOLEAN
U16

dirIndexFile;
dirIndexFileVerified;
spare;

U32 spares [5];
VOL_COMMON;

typedef struct VOL INFO
struct VOL INFO *pNext;
FS VOL HEADER hdr;
VOL COMMON cmn;
II Volume specific volInfo struct goes here ...

VOL_INFO, *P_VOL_INFO, **PP_VOL_INFO;
Enum16 (VNODE_ACCESS) {
II Delete node at handle free time?

vnodeTemp flagO,
II Read/write intentions for this handle

vnodeReadOnly flag2,
II Upper byte: exclusivity requirements

vnodeNoExclusivity = MakeU16 (0, 0),
vnodeDenyWriters = MakeU16 (0, 1),
vnodeExclusiveOnly = MakeU16 (0, 2),

II Uncompress file at VNGet time?
vnodeUncompress flag14,

II Default
vnodeDefaultAccess o II perm, read/write, noExclusivity

} ;

#define vnodeIgnoreAccessInfo Ox8000
typedef struct VNODE_CMN_ATTRS {

FS_NODE_FLAGS nodeFlags;
FS DATE TIME nodeCreated;
FS DATE TIME nodeModified;

VNODE_CMN_ATTRS, *P_VNODE_CMN_ATTRS;
Enum16 (VNODE_ATTR_FLAGS) {

vnAttrNodeFlags flagO,
vnAttrNodeCreated flag1,
vnAttrNodeModified flag2,
vnAttrLabelsBuffer flag8,
vnAttrValuesBuffer flag9,
vnAttrSizesBuffer flag10

};

VOL.H 87

88 PENPOINT API REFERENCE

Part 7 / File System

Typedefs for functions supported by each
volume class

Volume related functions follow:

VolStatus
Has a volume check for readiness.

Returns STATUS.

Function Prototype typedef STATUS FunctionPtr (P _VOL_STATUS)
P VOL INFO pVolInfo,
P-BOOLEAN pChanged II In/Out: Has volume changed?

) ;
#define VolStatus(pVolInfo, pChanged) \

((pVolInfo)->cmn.pRtns->pVolStatus) \
(pVollnfp, pChanged)

Possible return status are stsOK, stsFSVolDisconnected, other errors. If status is okay, should indicate if

volume has changed.

VolSetVolName
Has a volume change its volume name.

Returns STATUS.

Function ProTOType typedef STATUS FunctionPtr(P_VOL_SET_VOL_NAME)
P_VOL_INFO pVolInfo,
P_STRING pName II New volume name

) ;
#define VolSetVolName(pVo~Info, pName) \

((pVolInfo)->cmn.pRtns->pVolSetVolName) \
(pVolInfo, pName)

VolUpdateVollnfo
Requests that a volume updates its user accessable volume info.

Returns STATUS.

typedef STATUS FunctionPtr(P VOL UPDATE VOL INFO) (
P_VOL_INFO pVollnfo- -II Vol Info

) ;
#define VolUpdateVolInfo(pVolInfo) \

((pVolInfo)->cmn.pRtns->pVolUpdateVolInfo) \
(pVolInfo)

VolSpecificMsg
Passes a volume specific message down to a volume.

Returns STATUS.

Ftmdloft ProTotype typedef STATUS FunctionPtr (P_VOL_SPECIFIC_MSG)
P VOL INFO pVolInfo,
VOL_vNODE vnode, II Handle of vnode
MESSAGE msg, I I Message
P UNKNOWN pArgs II In/Out: Arguments for message

) ;
#define VolSpecificMsg(pVolInfo, vnode, msg, pArgs) \

((pVolInfo)->cmn.pRtns->pVolSpecificMsg) \
(pVolInfo, vnode, msg, pArgs)

Common vnode access/release functions follow:

VNGet
Gets a vnode given pVolInfo, dirVNode and name of node in the directory.

Returns STATUS.

typedef STATUS Functionptr(P_VNODE_GET) (

) ;

P VOL_INFO pVolInfo, II
VOL VNODE dirVNode, II
P STRING
VNODE ACCESS
P UNKNOWN
P VOL VNODE

pName,
access,
pVolSpecific,
pVNode

II
II
II
II

Vol Info
VNode of parent directory
Name of node in directory
R/w access, exclusivity, etc
Vol specific info
Out: Returned vnode handle

#define VNGet(pVolInfo, dirVNode, pName, access, pVolSpecific, pVNode) \
((pVolInfo)->cmn.pRtns->pVNodeGet) \

(pVolInfo, dirVNode, pName, access, pVolSpecific, pVNode)

VNNextChild
Gets a vnode given pVolInfo, dirVNode and dir position in a directory.

Returns STATUS.

typedef STATUS Functionptr(P_VNODE_NEXT_CHILD)
P_VOL INFO pVolInfo, II Vol Info
VOL VNODE dirVNode, II VNode of parent directory
P U32 pDirPos, II In/Out: directory position data
VNODE ACCESS access, II R/w access, exclusivity, etc
P STRING pName, I lOut: Name of node
P VOL VNODE pVNode II Out: VNode handle

) ;

#define VNNextChild(pVolInfo, dirVNode, pDirPos, access, pName, pVNode) \
((pVolInfo)->cmn.pRtns->pVNodeNextChild) \

(pVolInfo, dirVNode, pDirPos, access, pName, pVNode)

VNGetByDirld
Gets the vnode of a directory (and its name) given its directory id.

Returns STATUS.

) ;

P VOL INFO
VOL VNODE
U32
P STRING
P VOL VNODE

pVolInfo,
dirVNode,
dirId,
pName,
pVNode

II Vol Info
II VNode of parent directory
II Dir id of directory
II Out: Name of node
II Out: Returned dir vnode handle.

#define VNGetByDirId(pVolInfo, dirVNode, dirld, pName, pVNode) \
((pVolInfo)->cmn.pRtns->pVNodeGetByDirId) \

(pVolInfo, dirVNode, dirId, pName, pVNode)

VOL.H 89

90 PENPOINT API REFERENCE
Part 7 / File System

VNDup
Increments the reference count on a vnode.

Returns STATUS.

Flmdl©!'1 Pw©t©tYP£t typedef STATUS FunctionPtr (P_VNODE_DUP) (
P_VOL_INFO pVolInfo, II Vol Info
VOL VNODE vnode, II The vnode being dupped
VNODE ACCESS access II R/W, exclusivity, etc.

) ;

#define VNDup(pVolInfo, vnode, acce~s) \
((pVolInfo)->crnn.pRtns->pVNodeDup) \

(pVolInfo, vnode, access)

VNRelease
Returns a vnode to the volume.

Returns STATUS.

FLtncl'Ion Proh')lyp£t typedef STATUS FunctionPtr (P _ VNODE _RELEASE) (
P_VOL INFO pVolInfo, II Vol Info
VOL VNODE vnode II The vnode being released

) ;
#define VNRelease(pVolInfo, vnode) \

((pVolInfo)->crnn.pRtns->pVNodeRelease) \
(pVolInfo, vnode)

Directory handle related functions follow:

VNCreate
Creates a new file or directory node in the given (directory) node.

Returns STATUS.

typedef STATUS Functionptr(P_VNODE_CREATE)

) ;

P VOL INFO pVolInfo,
VOL VNODE dirVNode,
P STRING
FS NODE FLAGS

pName,
type

II Handle of directory vnode
II Name of the new file
II File or directory?

#define VNCreate(pVolInfo, dirVNode, pName, type) \
((pVolInfo)->cmn.pRtns->pVNodeCreate) \
(pVolInfo, dirVNode, pName, type)

Note: the parameter type only uses the flag fsNodeDir to distinguish between directories and files and
the flag fsShortDirName to direct the volume to use a short name replacement for the directory name.
Directories are only shortened if they reside in the PenPoint tree. The flag fsShortDirName overlaps
fsNodeReadOnly, which is never used in conjunction with directories.

VNDelete
Deletes the given node.

Returns SfATUS.

typedef STATUS FunctionPtr(P_VNODE DELETE) (

) ;

P_VOL_INFO pVolInfo,
VOL VNODE
BOOLEAN

vnode,
visible

II VNode to delete
II At root of hierarchical delete?

#define VNDelete(pVolInfo, vnode, visible) \
((pVolInfo)->cmn.pRtns->pVNodeDelete) \

(pVolInfo, vnode, visible)

VNode may be returned differently to mark it as a vnode that points to a deleted vnode.

VNMove
Moves/renames a node (and any children) to a new node.

Returns Sf ATUS.

rundion ?rot<tl)';:tG typedef STATUS FunctionPtr (P _ VNODE MOVE) (
P_VOL_INFO pVolInfo,
VOL VNODE srcDirVNode, II Handle of dir node of source
VOL VNODE srcVNode, II Handle of source vnode of move
VOL VNODE dstDirVNode, II Handle of dir node of dest
P STRING pDstName II New name to give the node

) ;

#define VNMove(pVolInfo, srcDirVNode, srcVNode, dstDirVNode, pDstName) \
((pVolInfo)->cmn.pRtns->pVNodeMove) \

(pVolInfo, srcDirVNode, srcVNode, dstDirVNode, pDstName)

VNDirPosDeleteAdjust
Makes any necessary adjustment to the dirPos after a node has been deleted.

Returns Sf ATUS.

fundi©n frototY?0 typedef STATUS FunctionPtr (P _ VNODE DIR POS DEL ADJ) (
P_VOL INFO pVolInfo,
VOL VNODE dirVNode, I I Handle of directory vIlode
VOL VNODE vnode, II Handle of deleted vnode
P U32 pDirPos II Dir position data before delete

) ;

#define VNDirPosDeleteAdjust(pVolInfo, dirVNode, vnode, pDirPos) \
((pVolInfo)->cmn.pRtns->pVNodeDirPosDelAdj) \

(pVolInfo, dirVNode, vnode, pDirPos)

VNGetDirld
Gets a directory node's dir id, given the vnode.

Returns SfATUS.

tLmdiot1 ProlotypG typedef STATUS FunctionPtr (P _ VNODE GET DIR ID) (

) ;

P VOL INFO pVolInfo,
VOL VNODE
P U32

vnode,
pDirId

II Handle of vnode
II In/Out: dir id of dir node

#define VNGetDirId(pVolInfo, vnode, pDirId) \
((pVolInfo)->cmn.pRtns->pVNodeGetDirId) \

(pVolInfo, vnode, pDirId)

VOL.H 01

92 PEN POINT API REFERENCE
Part 7 I File System

File handle related functions follow:

VNRead
Transfers n bytes from position m in a file to a buffer.

Returns STATUS.

typedef STATUS Functionptr(P_VNODE_READ)
P_VOL_INFO pVolInfo,
VOL VNODE vnode,
U32 filePos,
U32 numBytes,
P U8 pReadBuffer,
P U32 pCount

) ;

II Handle of vnode
II Starting point of read
II Number of bytes to be read
II Destination of bytes read
II In/Out: Actual bytes read

fdefine VNRead(pVolInfo, vnode, filePos, numBytes, pReadBuffer, pCount) \
((pVolInfo)->cmn.pRtns->pVNodeRead) \

(pVollnfo, vnode, filePos, numBytes, pReadBuffer, pCount)

VNWrite
Transfers n bytes from a buffer to position m in a file.

Returns STATUS.

rtlndlt>n Prototype typedef STATUS FunctionPtr (P_VNODE_WRITE)
P_VOL_INFO pVolInfo,
VOL VNODE vnode, II Handle of vnode
U32 filePos, II Starting point of the write
U32 numBytes, II Number of bytes to write
P U8 pWriteBuffer, II Destination of bytes to write
P U32 pCount II In/Out: Actual bytes written

) ;

fdefine VNWrite(pVolInfo, vnode, filePos, nUmBytes, pWriteBuffer, pCount) \
((pVolInfo)->cmn.pRtns->pVNodeWrite) \

(pVolInfo, vnode, filePos, numBytes, pWriteBuffer, pCount)

VNGetSize
Gets a node's size given the vnode.

Returns STATUS.

ruodit>t1 ProTotype typedef STATUS FunctionPtr (P _ VNODE_ GET SIZE) (

) ;

P_VOL_INFO pVolInfo,
VOL VNODE
P FS FILE SIZE - - -

vnode,
pFileSize

II Handle of vnode
II In/Out: Node's size

fdefine VNGetSize(pVolInfo, vnode, pFileSize) \
((pVolInfo)->cmn.pRtns->pVNodeGetSize) \

(pVolInfo, vnode, pFileSize)

VNSetSize
Sets a node's size given the vnode and the new size.

Returns STATUS.

typedef STATUS FunctionPtr(P_VNODE_SET SIZE) (

) ;

P_VOL_INFO pVolInfo,
VOL VNODE
FS FILE SIZE

vnode,
fileSize

II Handle of vnode
II Node's new size

#define VNSetSize(pVolInfo, vnode, fileSize) \
((pVolInfo)->cmn.pRtns->pVNodeSetSize) \

(pVolInfo, vnode, fileSize)

This function could be used to either truncate or grow the file/resFile.

Attribute related functions follow:

VNGetName
Gets a node's name, given the vnode.

Returns STATUS.

;::lro+0+YI10 typedef STATUS FunctionPtr (P _ VNODE GET NAME) (
P VOL INFO pVolInfo,

II Handle of vnode VOL VNODE
P STRING

vnode,
pName II In/Out: name of node

) ;

#define VNGetName(pVolInfo, vnode, pName) \
((pVolInfo)->cmn.pRtns->pVNodeGetName) \

(pVolInfo, vnode, pName)

VNGetNumAttrs
Returns the number of non-standard attributes, given the vnode.

Returns STATUS.

Prototype typedef STATUS FunctionPtr (P _ VNODE GET _NUM _ATTRS)
P_VOL INFO pVolInfo,

II Handle of vnode VOL VNODE
P U16

vnode,
pNumAttrs II Out: num of attrs to get

) ;

#define VNGetNumAttrs(pVolInfo, vnode, pNumAttrs) \
((pVolInfo)->cmn.pRtns->pVNodeGetNumAttrs) \

(pVolInfo, vnode, pNumAttrs)

VNGetAttrlnfo
Returns a node's attributes, given the vnode.

Returns STATUS.

typedef STATUS FunctionPtr(P_VNODE_GET_ATTR_INFO) (
P VOL INFO pVolInfo,
VOL VNODE vnode, II Handle of vnode
U16 num, II Num of attrs to
VNODE ATTR FLAGS flgs, II Get which attrs
P VNODE CMN ATTRS - - pCmn, II Common attrs

get

P U8 pWhich, II Which user defined attrs
P FS ATTR LABEL pLbls, II In/Out: attribute labels

VOL.H 93

94 PENPOINT API REFERENCE

Part 7 / File System

P FS ATTR VALUE - - -
P FS ATTR SIZE - - -

) i

pVals,
pSizs

II In/Out: attribute values
II In/Out: attribute sizes

#define VNGetAttrInfo(pVoIInfo, vnode, num, fIgs, pCron, pWhich, pLbls, pVals, pSizs) \
((pVoIInfo)->cron.pRtns->pVNodeGetAttrInfo) \

(pVoIInfo, vnode, num, fIgs, pCron, pWhich, pLbls, pVals, pSizs)

Which common attributes and which arrays of the label/value/size arrays that need to be filled in are

defined by the flgs field. Which particular elements of each (label/value/size) array to be filled in is
defined by the pWhich byte array. If num is 0 or pWhich is null then no label/value/size array elements

should be filled in. If an element of pWhich is maxU8 then the corresponding label/value/size array

element should be filled in. If the data is' known and set then the p Which array element should be set to
1 after setting the values.

VNSetAttrInfo
Sets a node's attributes, given the vnode.

Returns Sf ATUS.

ttmd;@in pW(:$b3fYI~H3 typedef STATUS FunctionPtr (P _ VNODE _SET _ ATTR_ INFO) (
P_VOL_INFO pVolInfo,
VOL VNODE vnode, II Handle of vnode
U16 num, II Num of attrs to set
VNODE ATTR FLAGS fIgs, II Set which attrs
P VNODE CMN ATTRS pCmn, II Common attrs - --
P U8 pWhich, II Which user defined attrs
P FS ATTR LABEL pLbls, II In/Out: attribute labels - - -
P FS ATTR VALUE pVals, II In/Out: attribute values - - -
P FS ATTR SIZE pSizs II In/Out: attribute sizes - - -

) i

#define VNSetAttrInfo(pVoIInfo, vnode, num, fIgs, pCmn, pWhich, pLbls, pVals, pSizs) \
((pVoIInfo)->cron.pRtns->pVNodeSetAttrInfo) \

(pVoIInfo, vnode, num, fIgs, pCron, pWhich, pLbls, pVals, pSizs)

Which common attributes and which arrays of the label/value/size arrays that need to be stored are

defined by the flgs field. Which particular elements of each (label/value/size) array to be filled in is

defined by the pWhich byte array. If num is 0 or pWhich is null then no label/value/size array elements

should be stored. If an element of p Which is maxU8 then the corresponding label/value/size array
element should be stored. If the data is stored successfully then the p Which array element should be set
to 1.

VNMakeNative
Gets rid of all concepts not native to a file system (ie reslinfo fields) and return the native form name of
the file after being" stripped".

Returns Sf ATUS.

ttJf1dh:Wl PW@f@fy!00 typedef STATUS Functionptr(P_VNODE_MAKE_NATIVE)

) i

P_VOL_INFO pVolInfo,
VOL VNODE
P STRING

vnode,
pName

II Handle of vnode
II In/Out: Return buffer for native name

#define VNMakeNative(pVoIInfo, vnode, pName) \
((pVoIInfo)->cron.pRtns->pVNodeMakeNative) \

(pVoIInfo, vnode, pName)

Misc functions follow:

VNFlush
Flushes all buffers associated with this vnode.

Returns Sf ATUS.

Fundkm Prototype typedef STATUS FunctionPtr (P_VNODE_FLUSH)
P_VOL_INFO pVolInfo,
VOL VNODE vnode II Handle of vnode

) i

#define VNFlush(pVolInfo, vnode) \
((pVolInfo)->cmn.pRtns->pVNodeFlush) \

(pVolInfo, vnode)

DirldGetParent
Gets the dir id of the parent of a node (also identified by dir id).

Returns Sf ATUS.

FU0(;tkm Pmtotype typedef STATUS FunctionPtr(P_DIRID_GET_PARENT) (
P_VOL_INFO pVolInfo,
U32 node, II Node identified by dir id
P U32 pParent, II In/Out: dir id of parent
P BOOLEAN pParentIsRoot II In/Out: parent is root

) ;

#define DirIdGetParent(pVolInfo, node, pParent, pParentIsRoot) \
((pVolInfo)->cmn.pRtns->pDirIdGetParent) \

(pVolInfo, node, pParent, pParentIsRoot)

Debugging functions follow:

VNRefCount
Gets the volume's ref count for a vnode.

Returns Sf ATUS.

typedef STATUS FunctionPtr(P VNODE REF COUNT) (
P_VOL_INFO pVolIn fo, - - II Vol Info
VOL VNODE vnode, II The vnode to get info about
P U16 pRefCount II Out: Reference count on vnode

) i

#define VNRefCount(pVolInfo, vnode, pRefCount) \
((pVolInfo)->cmn.pRtns->pVNodeRefCount) \

(pVolInfo, vnode, pRefCount)

This is the definition for the table of volume routines:
typedef struct VOL_RTNS

II Vol General ...
P VOL STATUS
P VOL SET VOL NAME - - - -
P VOL UPDATE VOL INFO - - --
P VOL SPECIFIC MSG - - -II VNode Access ...
P VNODE GET - -
P VNODE NEXT CHILD
P VNODE GET BY DIR ID - - - - -
P VNODE DUP - -

pVolStatus;
pVolSetVolNamei
pVolUpdateVolInfoi
pVolSpecificMsgi

pVNodeGeti
pVNodeNextChild;
pVNodeGetByDirldi
pVNodeDuPi

VOL.H 95

96 PENPOINT API REFERENCE

Part 7 / File System

P VNODE_RELEASE pVNodeRelease;
II Directory Handle Related ...
P_VNODE_CREATE pVNodeCreate;
P_VNODE_DELETE pVNodeDelete;
P_VNODE_MOVE pVNodeMove;
P_VNODE_DIR_POS_DEL_ADJ pVNodeDirPosDelAdj;
P_VNODE_GET_DIR_ID pVNodeGetDirId;
II File Handle Related ...
P_VNODE_READ pVNodeRead;
P_VNODE_WRITE pVNodeWrite;
P_VNODE_GET_SIZE pVNodeGetSize;
P_VNODE_SET SIZE pVNodeSetSize;
I I Attributes ...
P VNODE GET NAME - --
P VNODE GET NUM ATTRS - - - -
P VNODE GET ATTR INFO - - - -
P VNODE SET ATTR INFO - - - -
P VNODE MAKE NATIVE

pVNodeGetName;
pVNodeGetNumAttrs;
pVNodeGetAttrInfo;
pVNodeSetAttrInfo;
pVNodeMakeNative; - -

II Misc ...
P VNODE FLUSH - -
P DIRID GET PARENT

pVNodeFlush;
pDirIdGetParent; - --

I I Debugging ...
P VNODE REF COUNT pVNodeRefCount; - --
I I Spares ...
P UNKNOWN
P UNKNOWN
P UNKNOWN

VOL_RTNS, *P_VOL_RTNS;

pSparel;
pSpare2;
pSpare3;

Class FileSyslem Messages

These messages are used by volume code

msgFSRegisterVolClass
Registers a volume class with the file system.

Takes P _FS_REGISTER_ VOL_CLASS, returns SfATUS.

#define msgFSRegisterVolClass MakeMsg(clsFileSystem, 0)

typedef struct FS_REGISTER_VOL_CLASS
CLASS volClass; II Vol class of volume
FS VOL TYPE volType; II Type of volume

FS_REGISTER_VOL_CLASS, *P_FS_REGISTER_VOL_CLASS;

msgFSlnstal,lVol
Creates a volume's root dir handle and register it with the file system.

Takes P _FS_INSTALL_ VOL, returns STATUS.

typedef struct FS_INSTALL_VOL {
OBJ_KEY key;
CLASS volClass;
VOL VNODE vnode;
P VOL INFO pVolInfo;

FS_INSTALL_VOL, *P_FS_INSTALL_VOL;

II Volume's key.
II Class of the volume.
II Root directory vnode.
II In/Out: Volume info block.

The volume should mark itself as connected and all observers of theFileSystem will be notified that a

volume has been installed. (Note: The message is defined in fs.h so observers can use it.)

#define msgFSlnstalN 01 MakeMsg(clsFileSystem, 1)

Comments

VOL.H 97

Class FileSystem Messages

msgFSRemoveVol
Removes a volume from the file system and destroy its root dir handle.

Takes P _FS_REMOVE_ VOL, returns STATUS.

typedef struct FS_REMOVE_VOL {
OBJ_KEY keYi
CLASS volClassi
P VOL INFO pVolInfoi

FS_REMOVE_VOL, *P_FS_REMOVE_VOLi

II Volume's key.
II Class of the volume.
II Volume info block.

Observers of theFileSystem will be notified of the change. (Note: The message is defined in fs.h so

observers can use it.)

#define msgFSRemoveVol MakeMsg(c1sFileSystem, 2)

msgFSConnectVol
Marks a volume as connected and notify observers of theFileSystem.

Takes P _FS_CONNECT_ VOL, returns STATUS.

typedef struct FS_CONNECT_VOL {
P_VOL_INFO pVolInfoi II Volume info block.

} FS_CONNECT_VOL, *P_FS_CONNECT_VOLi

(Note: The message is defined in fs.h so observers can use it.)

#define msgFSConnectVol MakeMsg(c1sFileSystem, 3)

msgFSDisconnectVol
Marks a volume as disconnected and notify observers of theFileSystem.

Takes P _FS_DISCONNECT_ VOL, returns STATUS.

typedef struct FS DISCONNECT VOL {
P_VOL_INFO - pvollnfoi II Volume info block.

} FS_DISCONNECT_VOL, *P_FS_DISCONNECT_VOLi

(Note: The message is defined in fs.h so observers can use it.)

#define msgFSDisconnectVol MakeMsg(clsFileSystem, 4)

msgFSV olList
Returns device list for given class and count of volumes of that class.

Takes P_FS_VOL_LIST, returns STATUS.

#define msgFSVolList

}i

fsAccessVolList
fSReleaseVolList
fsGetHeadOfVolList

0,
1,
2

typedef struct FS_VOL_LIST {
FS_VOL_LIST_ACCESS acceSSi
OBJECT volClassi
U16 volCounti
P VOL INFO pVolInfoi

FS_VOL_LIST, *P_FS_VOL_LISTi

MakeMsg(clsFileSystem, 5)

II Also returns head of list.

II See above.
II Class of the volumes.
II Out: Number of volumes.
II Out: First vol info block.

:e

l

98 PENPOINT API REFERENCE

Part 7 I File System

msgFSU nRegisterVolClass
UnRegisters a volume class from the file system.

Takes P _CLASS, returns STATUS.

fdefirie msgFSUnRegisterVolClass

msgFSV olIsBusy
Checks to see if a volume can be removed.

Takes P _FS_ VOL_INFO, returns STATUS:

fdefine msgFSVolIsBusy

MakeMsg(clsFileSystem, 6)

MakeMsg(clsFileSystem, 7)

If no user files/dirs are open and all caches have been written to the volume then the volume may be

removed. This method should only be called by the volume t~ be removed.

If the volume can be removed then stsOK is returned. If the volume can not be removed then

stsFSVoIBusy is returned.

msgFSExclVolAccess
Allows a volume class to obtain exclusive access to a volume and to release the exclusive access.

fdefine msgFSExclVolAccess

Enum16 (EXCL_VOL_ACCESS) {
xvaAcquireVolIfNotBusy
xvaReleaseVol

} ;

1,
2

typedef struct FS_EXCL_VOL_ACCESS
EXCL VOL ACCESS mode;
P VOL INFO pVolInfo;

MakeMsg(clsFileSystem, 8)

II Acquire volume if not accessed

FS_EXCL_VOL_ACCESS, *P_FS_EXCL_VOL_ACCESS;

This is used during the update volume list portions of volume classes. Volume classes should not try to

update a volume if it is busy.

If the volume was not busy and was acquired then stsOK is returned. If the volume was busy then a non

stsO K is returned.

Class Volume Messages

msgVolUpdateVolumes
Has the volume class update its list of volumes.

Takes P _ VOL_UPDATE_ VOLUMES, returns STATUS.

fdefine msgVolUpdateVolumes MakeMsg(clsVolume, 0)

Enum16(FS UPDATE VOLS MODE)
II An update should be done to all devices

fsUpdateAIIDevices = flagO,
II The update request is in response to a power down notification

fsUpdatePoweringDown = flagl,
II The update request is in response to a power up notification

fsUpdatePoweringUp = flag2,
II Update searching for a volume?

fsUpdateSearchingForVolume = flag3
} ;

VOL.H 99
Class Volume Messages Formatting

typedef struct VOL_UPDATE_VOLUMES {
FS_UPDATE_VOLS_MODE updateMode; II See above.
U32 spare1; II For future use.
U32 spare2; II For future use.

VOL_UPDATE_VOLUMES, *P_VOL_UPDATE_VOLUMES;

All volumes are sent this message every two seconds to give them a chance to do periodic volume
updating. If the user has requested a disk/volume that is not connected then volumes are sent this

message with the fsUpdateSearchingForVolume flag set. Volumes should not notify observers of volume
connections, diconnections etc if a search is in progress. The notification should be deferred until a later

update request is sent. If the user has triple tapped on the connections notebook, asking to update all

volumes, then volumes are sent this message with the fsUpdateAllDevices flag set.

Volume Specific Messages

msgVolEjectMedia
Has the volume eject its media.

Takes void, returns STATUS.

fdefine msgVolEjectMedia MakeMsg(clsVolume, 10)

Passed as a volume specific msg by the file system.

msgVollnvalidateCaches
Allows volumes to invalidate cache buffers at warm boot time.

Takes void, returns STATUS.

fdefine msgVollnvalidateCaches MakeMsg(clsVolume, 11)

Passed as a volume specific msg by the file system at power up time.

msgVolUpdateBootCode
Reads image of boot sector from mil.res and stores onto boot sector.

Takes void, returns STATUS.

fdefine msgVolUpdateBootCode MakeMsg(clsVolume, 12)

Passed as a volume specific msg by the installation utility.

Class Volume Messages FormaHing

msgVolFormatVolumelnit
This msg is sent to a volume to initiate a reformat of the volume.

Takes P _VOL_FORMAT _MEDIA_IN IT , returns Sf ATUS.

fdefine msgVolFormatVolumelnit MakeMsg(clsVolume, 20)

This initiates the format from the current owner of the block device. The volume object is destroyed

(although there is a possibility that the destroy will fail) and then the block device of that volume, the

volume offset on the block device and the volume size are returned. Call the volume class that is to

format the volume with the message msgVolFormatMediaInit passing it this information. It will return
a format id.

100 PENPOINT API REFERENCE

Part 7 / File System

Note that all other format related messages are sent to the class of the volume, because the volume will
no longer exist.

msgVolFormatMedialnit
Takes a block device object and returns a format id to be used with the other format messages.

Takes P _ VOL_FORMAT_MEDIA_INIT, returns STATUS.

*define msgVolFormatMediaInit MakeMsg(clsVolume, 21)

typedef struct VOL_FORMAT_MEDIA_INIT {
OBJECT blockDevice; II A block device
U32 volumeOffset; II Format device beginning here
U32 volumeSize; II Amount of device to be formatted
P UNKNOWN formatId; II Out: Format id

VOL_FORMAT_MEDIA_INIT, *P_VOL_FORMAT_MEDIA_INIT;

NOTE: volumeOffset should be zero and volumeSize should be zero if you wish to format the entire

device (vs a partition of the device).

msgVolMediaCapacities
Returns the possible format capacities for the device requesting format.

Takes P _ VOL_MEDIA_CAPACITIES, returns STATUS.

*define msgVolMediaCapacities MakeMsg(clsVolume, 22)

typedef struct VOL_MEDIA_CAPACITIES
P_UNKNOWN formatId; II Format id from format/reformat.
U16 maxCapacities; II Size of output capacities array.
U16 numCapacities; II Out: Actual number of capacities.
P U32 pCapacities; II In/Out: Capacities.

VOL_MEDIA_CAPACITIES, *P_VOL_MEDIA_CAPACITIES;

This messages is sent to the class of the volume.

msgVolFormatMediaSetup
Has the vol class set the media to be ready for a format and determines if the block device will require
format media (vs format track).

Takes P _VOL_FORMAT_MEDIA, returns STATUS.

*define msgVolFormatMediaSetup MakeMsg(clsVolume, 23)

typedef struct VOL_FORMAT_MEDIA
P_UNKNOWN formatId; II Format id from format/reformat.
U32 capacity; II Desired capacity to format for.
P STRING pName; II Name of re/formatted volume.
U16 percentDone; II Out: Progress report.

VOL_FORMAT_MEDIA, *P_VOL_FORMAT_MEDIA;

This messages is sent to the class of the volume.

msgVolFormatMediaBegin
Has the vol class begin the format of its media.

Takes P_VOL_FORMAT_MEDIA, returns STATUS.

*define msgVolFormatMediaBegin MakeMsg(clsVolume, 24)

Message
Arguments

Comments

Message
Arguments

Comments

VOL.H 101
Class Volume Messages Duplicating

typedef struct VOL_FORMAT_MEDIA {
P_UNKNOWN formatId; // Format id from format/reformat.
U32 capacity; // Desired capacity to format for.
P STRING pName; // Name of re/formatted volume.
U16 percentDone; // Out: Progress report.

VOL_FORMAT_MEDIA, *P_VOL_FORMAT_MEDIA;

This step may do a format media if format track is not supported by the block device and may partition
the media if it needs partitioning.

This messages is sent to the class of the volume.

msgVolFormatMediaCont
Has the vol class do a format of its media.

#define msgVolFormatMediaCont MakeMsg(clsVolume, 25)

typedef struct VOL_FORMAT_MEDIA
P_UNKNOWN formatId; // Format id from format/reformat.
U32 capacity; // Desired capacity to format for.
P STRING pName; // Name of re/formatted volume.
U16 percentDone; // Out: Progress report.

VOL_FORMAT_MEDIA, *P_VOL_FORMAT_MEDIA;

If format track is supported then this step will format the next track. If the media was formatted during
msgVolFormatMediaBegin then this will only do verifying of format. If percentDone is not 100, then
keep calling this until it is.

This messages is sent to the class of the volume.

msgVolCancelFormat
Has the vol class cancel the format.

Takes P _UNKNOWN, returns STATUS.

#define msgVolCancelFormat MakeMsg(clsVolume, 26)

This messages is sent to the class of the volume.

Class Volume Messages Duplicating

msgVolDuplicateVolume
This msg is sent to a volume to initiate a duplication of that volume.

Takes PP _UNKNOWN, returns STATUS.

*define msgvolDuplicateVolume MakeMsg(clsVolume, 30)

A duplicate block is then allocated and a duplicateid that can be used with the other duplicate messages
is returned. Note that the other messages are sent to the class of the volume.

msgVolDuplicateMedia
Has the volume class duplicate more of the disk.

Takes P _ VOL_DUPLICATE_MEDIA, returns STATUS.

#define msgVolDuplicateMedia MakeMsg(clsVolume, 31)

102 PENPOINT API REFERENCE
Part 7 / File System

tv1eSSt1tj%t

IU9,-",m%trtts

typedef struct VOL DUPLICATE MEDIA
P UNKNOWN duplicateIdi II Duplicate id from duplicate.
BOOLEAN sourceDiski II Is this source or destination?
U16 percentDonei II Out: Progress report.

VOL_DUPLICATE_MEDIA, *P_VOL_DUPLICATE_MEDIAi

If source is TRUE then data will be read from the source disk. If source is FALSE then data is written to
the destination disk. The value percentDone is updated to reflect how much of the duplication has been
completed. If percentDone is not 100, then keep calling this until it is.

msgVolDuplicateReady
Checks to see if the source/ dest disk of the duplicate is ready.

Takes P _ VOL_DUPLICA TE_MEDIA, returns STATUS.

#define msgVolDuplicateReady MakeMsg(clsVolume, 32)

typedef struct VOL_DUPLICATE_MEDIA
P_UNKNOWN duplicateIdi II Duplicate id from duplicate.
BOOLEAN sourceDisk; II Is this source or destination?
U16 percentDonei II Out: Progress report.

VOL_DUPLICATE_MEDIA, *P_VOL_DUPLICATE_MEDIAi

The return percentDone is unused.

msgVolCancelDuplication
Have the vol class cancel the duplication.

Takes P _UNKNOWN, returns STATUS.

#define msgVolCancelDuplication MakeMsg(clsVolume, 33)

YOLGODIR.H

This file contains declarations for the common part of godir volumes. Examples of these include

clsVolDisk and clsVolTOPS.

Information in this file is useful if you are trying to understand the format of PenPoint.dir files or if you

are writing an installable volume.

#ifndef VOLGODIR_INCLUDED
#define VOLGODIR_INCLUDED

Include file dependencies for this include file

#ifndef GO_INCLUDED
#include <go.h>
#endif
#ifndef OS_INCLUDED
#include <os.h>
#endif
#ifndef CLSMGR_INCLUDED
#include <clsmgr.h>
#endif
#ifndef FS_INCLUDED
#include <fs.h>
#endif
#ifndef VOL_INCLUDED
#include <vol.h>
#endif

Common #defines and typedefs
Defines

GO directory related defines

#define goNameIndex
#define goDirSearchFromFirst
#define goDirHeaderBufSize

Types

General types

o
OL
112 II Min space for 3 max names plus some.

Enumerated constants for searching for particular directory entries

Enum16 (GO_DIR_FINDTYPE)
gdF indEmpt y = 0,
gdFindNextName = 1,
gdFindNativeName = 2,
gdFindGoDirName = 3

} ;

104 PENPOINT API REFERENCE
Part 7 I File System

Note that this can also be treated as an array of U32, using the tag part of the associated fsAttr as the
index into the array, except flags and unused together form a special case of a U32!!!

typedef struct VOLGODIR_CMN_ATTRS
FS_NODE_FLAGS flags;
U16 unused; II Was sequence
FS DATE TIME dateCreated;
FS DATE TIME dateModified;
FS FILE SIZE fileSize;

VOLGODIR_CMN_ATTRS, *P_VOLGODIR_CMN_ATTRS;

GO directory related types

Each directory entry is identified as either erased (e) or full (f).

Enum16(GO_DI~ENTRY_TYPES) {
goDirUnusedEntry 'e' ,
goDirNodeEntry = 'f'

} ;

typedef struct GO_DIR_USER_ATTR
FS_ATTR_LABEL label; II file system attribute label.
U16 size; II size of value field.
U8 value; II a U32, string or var length attr.

GO_DIR_USER_ATTR, *P_GO_DIR_USER_ATTR;
typedef struct GO_DIR_ENTRY_HEADER {

U8 type; II 'e': erased or 'f' for file/dir.
U16 size; II Actual size on disk is modulo 32.

GO_DIR_ENTRY_HEADER, *P_GO_DIR_ENTRY_HEADER;

Go name is located at goDirEntry.buf, always the first entry. The define goNameIndex can be used to
index to the name. It is important that the size of GO_DIR_ENTRY is modulo 32.

typedef struct GO_DIR_ENTRY {
GO_DIR_ENTRY_HEADER hdr;
U16 numUserAttrs; II Number of user attributes.
U8 nativeNameIndex;11 Offset to native file name.
U8 rsrvdForLater; II UNUSED SPARE.
U8 userAttrsIndex; II Offset to first user attr.
FS NODE FLAGS flags;
U16 rsrvdForLater2; II WAS SEQUENCE
FS DATE TIME dateCreated;
U8 buf [goDirHeaderBufSize]; II Min space for names.

GO_DIR_ENTRY, *P_GO_DIR_ENTRY, **PP_GO_DIR_ENTRY;

VNode types

VNode related type declarations

Enum16 (VOLGODIR_VNODE_FLAGS) {
gdfPenPointDir = flag1, II This is a PenPoint.Dir file
gdfRootDir flag2,
gdfNodeCorrupt flag3,
gdfNodeModified flag4,
gdfHasGoDirParent flagS,
gdfHasGoDirSister = flag6,
gdfNoGoDirSister = flag7

} ;

typedef struct VOLGODIR_VNODE_COMMON
U16 ref Count;
U16
U32
VOLGODIR VNODE FLAGS - -
VOLGODIR CMN ATTRS

VOLGODIR_VNODE_COMMON;

numUserAttrs;
goDirPos;
flags;
attrs;

YOLGODIR.H 105

Common #defines and typedefs

typedef struct VOLGODIR_VNODE {
struct VOLGODIR_VNODE *pNext;
VOLGODIR VNODE COMMON cmn;

VOLGODIR_VNODE, *P_VOLGODIR_VNODE, **PP_VOLGODIR_VNODE;

Penpoint dir cache

typedef struct GO DIR CACHE
U32 size;
U32 base;
P_VOLGODIR_VNODE owner;
U8 buffer [512];

GO_DIR_CACHE, *P_GO_DIR_CACHE;

VolInfo types

II How much of data is valid?
II Position in penpoint dir.
II Cache for which dir.
II Fixed size buffer.

This is the instance data for a GO dir volume object

typedef struct VOLGODIR_INFO {
II Common volume info ...
struct VOLGODIR INFO *pNext;
FS VOL HEADER hdr;
VOL COMMON cmn;
II Pointer to the low level volumes routines ...
struct VOLGODIR_RTNS *pRtns;
II Head of the vnode chain ...
P VOLGODIR VNODE pFirstVNode;
1/ Buffer used by the GO DIR volume part - does not need to be inited ...
GO_DIR~ENTRY goDirEntry;
II GO DIR buffer & info ...
GO DIR CACHE goDirCache;
II-Beyond this point each volume will have their own info ...
II
II
II

VOLGODIR_INFO, *P_VOLGODIR_INFO;

Exported routine that returns pointer GoDirShell entrypoint table

FVrlcriciI1 PvotZtrYPB P _VOL _RTNS EXPORTED GoDirShellEntrypoint (void);

Typedefs for functions supported by each godir lower level volume

LVStatus
Has a volume check for readiness.

Returns Sf ATUS.

ifundlon PV1:tY1:t1ype typedef STATUS FunctionPtr (P _ LVOL STATUS) (
P_VOLGODIR_INFO pVolInfo,
P BOOLEAN pChanged II In/Out: Has volume changed?

) ;

*define LVStatus(pVolInfo, pChanged) \
((pVolInfo)->pRtns->pLVolStatus) \

(pVolInfo, pChanged)

Possible return status are stsOK, stsFSVolDisconnected, other errors. If status is okay, should indicate if
volume has changed.

106 PEN POINT API REFERENCE
Part 7 / File System

LVSetVolName
Requests for a volume to set/change its volume name.

Returns STATUS.

ttmd\{}tl Pr{}j'{}type typedef STATUS FunctionPtr (P_LVOL SET VOL NAME) (
P_VOLGODIR_INFO pVolInfo, 1/ Vol Info
P STRING pName II Vol name

) ;

fdefine LVSetVolName(pVolInfo, pName) \
((pVolInfo)->pRtns->pLVolSetVolName) \

(pVolInfo, pName)

LVUpdatelnfo
Requests for a volume to update its user access able volume info.

Returns STATUS.

FUf'I(:ti{}!) Pr©t©+ype typedef STATUS FunctionPtr (P _ LVOL _UPDATE INFO)
P_VOLGODIR_INFO pVolInfo II Vol Info

) ;

fdefine LVUpdateInfo(pVolInfo) \
((pVolInfo)->pRtns->pLVolUpdateInfo) \

(pVolInfo)

LVSpecificMsg
Passes a volume specific message down to a volume.

Returns STATUS.

Fundi!;}!) Prowof)'pe typedef STATUS FunctionPtr (P _ LVOL _SPECIFIC _ MSG)
P_VOLGODIR_INFO pVolInfo,
P_VOLGODIR_VNODE pVNode, II Handle of vnode
MESSAGE msg, II Message
P UNKNOWN pArgs II In/Out: Arguments for message

) ;
fdefine LVSpecificMsg(pVollnfo, pVNode, msg, pArgs) \

((pVolInfo)->pRtns->pLVolSpecificMsg) \
(pVolInfo, pVNode, msg, pArgs)

LVNGet
Gets a vnode given pVolInfo, dirVNode and name of node in the directory.

Returns STATUS.

tum:tl{}!1 Pn:'tj'!;}type typedef STATUS FunctionPtr (P_LVNODE_GET) (
P_VOLGODIR_INFO pVolInfo, II Vol Info
P VOLGODIR VNODE pDirVNode, II VNode of parent directory
P STRING pFileName, II Name of file node
P UNKNOWN pVolSpecific, II Vol specific info
PP_VOLGODIR_VNODE ppVNode II Out: Returned vnode handle

) ;

fdefine LVNGet(pVolInfo, pDirVNode, pFileName, pVolSpecific, ppVNode) \
((pVolInfo)->pRtns->pLVNodeGet) \

(pVolInfo, pDirVNode, pFileName, pVolSpecific, ppVNode)

VOLGODIR.H 107
Common #defines and typedefs

LVNGetAndOpenParent
Gets a vnode's parent given pVolInfo and a vnode and open it.

Returns STATUS.

P VOLGODIR INFO - - pVolInfo, II Vol Info
P VOLGODIR VNODE pVNode, II VNode to get parent of
PP VOLGODIR VNODE ppDirVNode, II Out: VNode handle of parent - -
P BOOLEAN pComplete II Out: Did the vnode already exist?

) ;

fdefine LVNGetAndOpenParent(pVolInfo, pVNode, ppDirVNode, pComplete) \
((pVolInfo)->pRtns->pLVNodeGetAndOpenParent) \

(pVolInfo, pVNode, ppDirVNode, pComplete)

LVNGetAndOpenByDirld
Gets a dir vnode given pVolInfo and the directory's dirIO.

Returns STATUS.

P VOLGODIR INFO pVolInfo, II Vol Info - -
P VOLGODIR VNODE pDirVNode, II VNode of parent of dir - -
U32 dirId, II Dir ID of vnode to get & open
PP VOLGODIR VNODE ppDirVNode, II Out: Returned vnode handle of dir
P BOOLEAN pComplete II Out: Did the vnode already exist?

) ;

fdefine LVNGetAndOpenByDirId(pVolInfo, pDirVNode, dirId, ppDirVNode, pComplete) \
((pVolInfo)->pRtns->pLVNodeGetAndOpenByDirId) \

(pVolInfo, pDirVNode, dirId, ppDirVNode, pComplete)

Note: pOirVNode could be null. If it isn't then it can be used.

LVNRelease
Releases a vnode.

Returns STATUS.

ttHidicm i'r©t©type typedef STATUS FunctionPtr (P _LVNODE _RELEASE)
P_VOLGODIR_INFO pVolInfo, II Vol Info
P_VOLGODIR_VNODE pVNode II VNode to release

) ;
fdefine LVNRelease(pVolInfo, pVNode) \

((pVolInfo)->pRtns->pLVNodeRelease) \
(pVolInfo, pVNode)

LVNOpen
Opens a vnode.

Returns STATUS.

typedef STATUS FunctionPtr(P LVNODE OPEN) (
P_VOLGODIR_INFO pVollnfo, - II Vol Info
P_VOLGODIR VNODE pVNode, II VNode to open
P STRING pName, I I Name of node
VNODE ACCESS access II R/W, exclusivity, etc.

) ;

fdefine LVNOpen(pVolInfo, pVNode, pName, access) \
((pVolInfo)->pRtns->pLVNodeOpen) \

(pVolInfo, pVNode, pName, access)

108 PENPOINT API REFERENCE
Part 7 / File System

LVNClose
Closes a vnode.

Returns STATUS.

Function Prototype typedef STATUS FunctionPtr (P _ LVNODE _CLOSE)
P VOLGODIR INFO pVolInfo, II Vol Info
P=VOLGODIR=VNODE pVNode II VNode to close

) ;
tdefine LVNClose(pVolInfo, pVNode) \

((pVolInfo)->pRtns->pLVNodeClose) \
(pVolInfo, pVNode)

LVNCreate
Creates a file or directory within the directory given.

Returns STATUS.

Function PrQl'otype typedef STATUS FunctionPtr (P _ LVNODE _CREATE)
P VOLGODIR INFO pVolInfo, II Vol Info
P=VOLGODIR=VNODE pDirVNode, II Directory where new node belongs
P STRING pName, I I Name of new file/dir
FS NODE FLAGS fileType II Create a dir or a file

) ;

tdefine LVNCreate(pVolInfo, pDirVNode, pName, fileType) \
((pVolInfo)->pRtns->pLVNodeCreate) \

(pVolInfo, pDirVNode, pName, fileType)

LVNDelete
Deletes a file system node; either a dir or a file node.

Returns STATUS.

Function Prototype typedef STATUS FunctionPtr (P _ LVNODE DELETE) (

FUl'u:tiQn Prototype

P_VOLGODIR_INFO pVolInfo, II Vol Info
P_VOLGODIR_VNODE pVNode, II VNode to release
BOOLEAN visible II At root of hierarchical delete?

) ;

tdefine LVNDelete(pVolInfo, pVNode, visible) \
((pVolInfo)->pRtns->pLVNodeDelete) \

(pVolInfo, pVNode, visible)

LVNMove
Moves a file or directory to a directory wi the new (old) name.

Returns STATUS.

typedef STATUS FunctionPtr(P_LVNODE MOVE) (
P VOLGODIR INFO pVolInfo, II Vol Info - -
P VOLGODIR VNODE pSrcDirVNode, II Dir of source - -
P VOLGODIR VNODE pSrcVNode, II Source node - -
P VOLGODIR VNODE pDstDirVNode, II Dir of dest - -

node

P STRING pDstName II Name to give the dest
) ;

node

tdefine LVNMove(pVolInfo, pSrcDirVNode, pSrcVNode, pDstDirVNode, pDstName) \
((pVolInfo)->pRtns->pLVNodeMove) \

(pVolInfo, pSrcDirVNode, pSrcVNode, pDstDirVNode, pDstName)

VOLGODIR.H 109

Common #defines and typedefs

LVNReadDir
Returns the next entry from the specified directory.

Returns STATUS.

runcticw, {?yt)h?type typedef STATUS FunctionPtr (P _ LVNODE READ DIR) (
P VOLGODIR INFO pVolInfo, II Vol Info
P_VOLGODIR_VNODE pDirVNode, II Directory to read from
P U32 pDirPos, II In/Out: Current position
P STRING pName II Out: Name of the node

) ;

*define LVNReadDir(pVolInfo, pDirVNode, pDirPos, pName) \
((pVolInfo)->pRtns->pLVNodeReadDir) \

(pVolInfo, pDirVNode, pDirPos, pName)

LVNDirPosDeleteAdjust
Makes any necessary adjustment to the dirPos after a node has been deleted.

Returns STATUS.

?,md;on Pn>?4lt}/pe typedef STATUS FunctionPtr (P _ LVNODE _DIR _POS _DEL ADJUST) (
P_VOLGODIR INFO pVolInfo,
P_VOLGODIR_VNODE dirVNode, II Handle of directory vnode
P VOLGODIR VNODE vnode, II Handle of deleted vnode
P U32 pDirPos II In/Out: Dir pos data before delete

) ;

*define LVNDirPosDeleteAdjust(pVolInfo, dirVNode, vnode, pDirPos) \
((pVolInfo)->pRtns->pLVNodeDirPosDelAdjust) \

(pVolInfo, dirVNode, vnode, pDirPos)

LVNGetDirld
Returns a well known constant dir id that represents this directory.

Returns STATUS.

FUindkm Prototype typedef STATUS FunctionPtr (P _ LVNODE GET DIR _ ID) (
P VOLGODIR_INFO pVolInfo, II Vol Info
P VOLGODIR VNODE pVNode, II Return dir id of this dir vnode
P U32 pDirId II In/Out: The directory's id

) ;

*define LVNGetDirId(pVolInfo, pVNode, pDirId) \
((pVolInfo)->pRtns->pLVNodeGetDirId) \

(pVolInfo, pVNode, pDirId)

LVNName
Returns the name a file system node.

Returns STATUS.

Function Pt'©tOtyP0 typedef STATUS FunctionPtr (P _ LVNODE _NAME) (
P VOLGODIR INFO pVolInfo, II Vol Info
P_VOLGODIR_VNODE pVNode, II VNode to get name of
P STRING pName II In/Out: Name

) ;

*define LVNName(pVolInfo, pVNode, pName) \
((pVolInfo)->pRtns->pLVNodeName) \

(pVolInfo, pVNode, pName)

110 PENPOINT API REFERENCE

Part 7 I File System

LVNGetNumAttrs
Returns the number of non-standard attributes, given the vnode.

Returns STATUS.

ftmdl©n Pr©r©type typedef STATUS FunctionPtr (P_LVNODE GET_NUM_ATTRS) (
P_VOLGODIR_INFO pVolInfo, II Vol Info
P_VOLGODIR_VNODE pVNode, II VNode of node to read from
P U16 pNumAttrs II Out: num of attrs to get

) ;

fdefine LVNGetNumAttrs(pVolInfo, p~ode, pNumAttrs) \
((pVolInfo)->pRtns->pLVNodeGetNumAttrs) \

(pVolInfo, pVNode, pNumAttrs)

LVNGetAttrInfo
Gets a node's attributes, given the vnode.

Returns STATUS.

fundi©n ?r©rC$ryp0~ typedef STATUS FunctionPtr (P _ LVNODE GET ATTR INFO) (
P_VOLGODIR INFO pVolInfo, II Vol Info
P_VOLGODIR_VNODE pVNode, II VNode of node to read from
U16 num, II Num of attrs to get
VNODE ATTR FLAGS fIgs, II Get which common attrs
P_VNODE_CMN_ATTRS pCmn, II Common attrs
P U8 pWhich, II Which user defined attrs
P_FS_ATTR_LABEL pLbls, II In/Out: attribute labels
P_FS_ATTR_VALUE pVals, II In/Out: attribute values
P_FS_ATTR_SIZE pSizs II In/Out: attribute sizes

) ;

fdefine LVNGetAttrInfo(pVolInfo, pVNode, num, fIgs, pCmn, pWhich, pLbls, pVals, pSizs) \
((pVolInfo)->pRtns->pLVNodeGetAttrInfo) \

(pVolInfo, pVNode, num, fIgs, pCmn, pWhich, pLbls, pVals, pSizs)

Which common attributes and which arrays of the label/value/size arrays that need to be filled in are
defined by the fIgs field. Which particular elements of each (label/value/size) array to be filled in is
defined by the pWhich byte array. If num is 0 or pWhich is null then no label/value/size array elements
should be filled in. If an element of pWhich is maxU8 then the corresponding label/value/size array
element should be filled in. If the data is known and set then the p Which array element should be set to
1 after setting the values.

LVNSetAttrlnfo
Sets a node's attributes, given the vnode.

Returns STATUS.

typedef STATUS FunctionPtr(P_LVNODE SET ATTR_INFO) (
P VOLGODIR INFO pVolInfo, II Vol Info - -
P VOLGODIR VNODE pVNode, II VNode of node to read from - -
U16 num, II Num of attrs to set
VNODE ATTR FLAGS fIgs, II Set which common attrs
PVNODE CMN ATTRS pCmn, II Common attrs - --
P U8 pWhich, II Which user defined attrs
P FS ATTR LABEL pLbls, II In/Out: attribute labels - - -
P FS ATTR VALUE pVals, II In/Out: attribute values - - -
P FS ATTR SIZE pSizs II In/Out: attribute sizes - - -

) ;

fdefine LVNSetAttrInfo(pVolInfo, pVNode, num, fIgs, pCmn, pWhich, pLbls, pVals, pSizs) \
((pVolInfo)->pRtns->pLVNodeSetAttrInfo) \

(pVolInfo, pVNode, num, fIgs, pCmn, pWhich, pLbls, pVals, pSizs)

Comments

VOLGODIR.H 111

Common #defines and typedefs

Which common attributes and which arrays of the label/value/size arrays that need to be stored are

defined by the flgs field. Which particular elements of each (label/value/size) array to be filled in is
defined by the pWhich byte array. If num is 0 or pWhich is null then no label/value/size array elements
should be stored. If an element of p Which is maxU8 then the corresponding label/value/size array

element should be stored. If the data is stored successfully then the p Which array element should be
set to 1.

LVNRead
Transfers n bytes from position m in a file to a buffer.

Returns STATUS.

typedef STATUS FunctionPtr(P LVNODE READ) (
P VOLGODIR INFO pVollnfo, - II Vol Info
P=VOLGODIR=VNODE pVNode, II VNode of node to read from
U32 filePos, II Starting point of read
U32 nUmBytes, II Number of bytes to be read
P U8 pReadBuffer, II Destination of bytes read
P U32 pCount II Out: Actual number of bytes read

) ;

#define LVNRead(pVolInfo, pVNode, filePos, nUmBytes, pReadBuffer, pCount) \
«pVolInfo)->pRtns->pLVNodeRead) \

(pVolInfo, pVNode, filePos, numBytes, pReadBuffer, pCount)

LVNWrite
Transfers n bytes from a buffer to position m in a file.

Returns STATUS.

fund!cJI1 ~rott}type typedef STATUS FunctionPtr (P _LVNODE _WRITE)
P VOLGODIR INFO pVolInfo, II Vol Info
P=VOLGODIR=VNODE pVNode, II VNode of node to write to
U32 filePos, II Starting point of the write
U32 numBytes, II Number of bytes to write
P U8 pWriteBuffer, II Destination of bytes to write
P U32 pCount II Out: Actual number of bytes written

) ;

#define LVNWrite(pVolInfo, pVNode, filePos, numBytes, pWriteBuffer, pCount) \
«pVolInfo)->pRtns->pLVNodeWrite) \

(pVolInfo, pVNode, filePos, numBytes, pWriteBuffer, pCount)

LVNGetSize
Returns the size of a file.

Returns STATUS.

fum:tiof1 ~rototype typedef STATUS FunctionPtr (P LVNODE GET SIZE) (
P VOLGODIR INFO pVollnfo, - -II Vol Info
P=VOLGODIR=VNODE pVNode, II VNode of node to change size of
P_FS_FILE_SIZE pSize II The size of the file

) ;

#define LVNGetSize(pVolInfo, pVNode, pSize) \
«pVolInfo)->pRtns->pLVNodeGetSize) \

(pVolInfo, pVNode, pSize)

.~-----.--.-----.--.----.--"

112 PENPOINT API REFERENCE

Part 7 / File System

LVNSetSize
Adjusts the size of a file.

Returns STATUS.

YtHfcti<ln Prototype typedef STATUS FunctionPtr(P_LVNODE_SET_SIZE) (
P VOLGODIR INFO pVolInfo, II Vol Info
P=VOLGODIR=VNODE pVNode, II VNode of node to change size of
FS FILE SIZEnewSize II The new size

) ;

#define LVNSetSize(pVolInfo, pVNode, newSize) \
((pVolInfo)->pRtns->pLVNodeSetSize) \

(pVolInfo, pVNode, newSize)

LVNFlush
Flushes a file.

Returns STATUS.

Fum:tknl PV<ltorype typedef STATUS FunctionPtr (P_LVNODE_FLUSH) (
P_VOLGODIR_INFO pVolInfo, II Vol Info
P_VOLGODI~VNODE pVNode II VNode of node to flush

) ;

#define LVNFlush(pVolInfo, pVNode) \
((pVolInfo)->pRtns->pLVNodeFlush) \

(pVolInfo, pVNode)

LVNativeName
Returns the native file system form of this name.

Returns BOOLEAN.

YVlnt:rion Prt-'iforype typedef BOOLEAN FunctionPtr (P _LV_NATIVE NAME) (
P_VOLGODIR_INFO pVolInfo, II Vol Info
P STRING pName II In/Out: Name

) ;

#define LVNativeName(pVolInfo, pName) \
((pVolInfo)->pRtns->pLVNativeName) \

(pVolInfo, pNarne)

A return of true implies that the name was not changed (was native), and a return of false implies that
the name was changed to be native.

LDirIdGetParent
Gets the dir id of the parent of a node (also identified by dir id).

Returns STATUS.

FVl!1ctiOtl PrOrf)typt,~ typedef STATUS FunctionPtr (P _ LDIRID GET PARENT) (
P_VOLGODIR_INFO pVolInfo, II Vol Info
U32 node, II Node identified by dir id
P U32 pParent, II In/Out: dir id of parent
P BOOLEAN pParentIsRoot II In/Out: parent is root

) ;

#define LDirIdGetParent(pVolInfo, node, pParent, pParentIsRoot) \
((pVolInfo)->pRtns->pLDirIdGetParent) \

(pVolInfo, node, pParent, pParentIsRoot)

VOLGODIR.H 113
Common #defines and typedefs

This is the definition for the table of volume routines
typedef struct VOLGODIR_RTNS

P LVOL STATUS
P LVOL SET VOL NAME - - - -
P LVOL UPDATE INFO - -
P LVOL SPECIFIC MSG - - -
P LVNODE GET - -
P LVNODE GET OPEN PARENT - - - -
P LVNODE GET OPEN BY DIR ID - - - -
P LVNODE RELEASE - -
P LVNODE OPEN - -
P LVNODE CLOSE - -
P LVNODE CREATE - -
P LVNODE DELETE
P LVNODE MOVE - -
P LVNODE READ DIR - --
P LVNODE DIR POS DEL ADJUST - - - - -
P LVNODE GET DIR ID - - - -
P LVNODE NAME - -
P LVNODE GET NUM ATTRS - - - -
P LVNODE GET ATTR INFO - - - -
P LVNODE SET ATTR INFO - - - -
P LVNODE READ - -
P LVNODE WRITE - -
P LVNODE GET SIZE - --
P LVNODE SET SIZE - -
P LVNODE FLUSH - -
P LV NATIVE NAME
P LDIRID GET PARENT - --

pLVolStatus;
pLVolSetVolName;
pLVolUpdateInfo;
pLVolSpecificMsg;
pLVNodeGet;
pLVNodeGetAndOpenParent;
pLVNodeGetAndOpenByDirId;
pLVNodeRelease;
pLVNodeOpen;
pLVNodeClose;
pLVNodeCreate;
pLVNodeDelete;
pLVNodeMove;
pLVNodeReadDir;
pLVNodeDirPosDelAdjust;
pLVNodeGetDirId;
pLVNodeName;
pLVNodeGetNumAttrs;
pLVNodeGetAttrInfo;
pLVNodeSetAttrInfo;
pLVNodeRead;
pLVNodeWrite;
pLVNodeGetSize;
pLVNodeSetSize;
pLVNodeFlush;
pLVNativeName;
pLDirIdGetParent;

YSEARCH.H

This file contains the API for clsVolSearch.

clsVolSearch inherits from clsObject.

Provides file system ui support, including formatting & duplicating disks. theVolSearcher is the only
instance of clsVolSearch.

The categories of functionality provided by theVolSearcher are:

- Reformatting/duplicating a volume:

These are sent from the disk viewer when a user selects the format or duplicate volume items from the

volume menu. The user is lead thru a series of system notes to get the information and for disk

swapping.

- Searching for a volume (because it doesn't exist or is write protected):

This is sent from the file system when a file system request internally returns a stsFSVolDisconnected or

stsFSVolReadOnly.

#ifndef VSEARCH INCLUDED
#define VSEARCH INCLUDED

Include file dependencies

#ifndef GO INCLUDED
#include <go.h>
#endif

#ifndef OSTYPES INCLUDED
#include <ostypes.h>
#endif

#ifndef CLSMGR INCLUDED
#include <clsmgr.h>
#endif

#ifndef FS INCLUDED
#include <fs.h>
#endif

Common #defines and typedefs
These defines and enums define the text for the notes displayed by the volSearcher. The resources are

stored in the system resource file.

Defines

Resource ids

#define vsResUIStrings MakeTag (clsVolSearch, 1)

116 PEN POINT API REFERENCE

Part 7 / File System

Types

Resource string numbers

Enum16 (VS_STRING_IDS) {
vsFindVolumeStrsBase 0,
vsFindGenVolumeStr 0,
vSFindDiskVolumeStr 1,
vsFindRemoteVolumeStr 2,
vsWriteProtectedVolumeStr 3,
vsCancelButtonStr 4,
vsContinueButtonStr 5,
vsPercentDoneStr 6',
vsFmtNoticeStr 7,
vsFmtChooseSizeStr 8,
vsFmtWarningStr 9,
vsFmtAskForNameStr 10,
vsFmtBlankNameErrStr 11,
vsFmtBadCharErrStr 12,
vsFmtInProgressStr 13,
vsDupInProgressStr 14,
vsDupInsertSrcDiskStr 15,
vsDupInsertDstDiskStr 16,
vsDupWriteProtectedStr 17,
vsDupReadingStr 18,
vsDupWritingStr 19,
vsFormattingMediaStr 20,

} ;

Messages

msgVSFormatVolume
Reformats an existing volume.

Takes P _ VS_FORMAT_ VOLUME, returns STATUS.

typedef struct VOL_FORMAT_VOLUME {
OBJECT volumeRootDir;
CHAR pVolumeName[nameBufLength];
U16 reserved: 13,

noWarning:1,
maxSize:1,
withName:1;

U32 reserved1;
U32 reserved2;

VOL_FORMAT_VOLUME, * P_VOL_FORMAT_VOLUME;

II Root dir of volume to format
II Suggested or actual name
II Reserved
II Do not warn about dangers
II Format to maximum possible size
II Name forced to be pVolumeName

*define msgVSFormatVolume MakeMsg(clsVolSearch, 5)

The volumeRootDir must be the actual root of the volume to be formatted and there cannot be any
other handles open on the volume or an error will be returned. pVolumeName will be the initial name
when the user is asked to provide a name or will be the name if the user is not asked to provide a name
(controlled by the withName flag). The warning message can be controlled with the noWarning flag.
And the choose a size interaction can be controlled with the maxSize flag.

stsRequestNotSupported The volume does not support formatting.

Comments

V5EARCH.H 117

Messages

msgVSDuplicateVolume
Copy an existing volume from one floppy disk to another floppy disk.

Takes dir/file handle of a volume, returns STATUS.

#define msgVSDuplicateVolume MakeMsg(clsVolSearch, 6)

stsRequestNotSupported The volume does not support duplicating.

msgVSFormatMedia
Formats unformatted media that does belong to any volume.

Takes block device object, returns STATUS.

#define msgVSFormatMedia MakeMsg(clsVolSearch, 7)

This message is sent by theBlockDeviceManager when it receives a block device reset all and in the

process discovers unformatted media on a device.

msgVSUpdateVolumes
Requests the VolSearcher to update all volumes.

Takes BOOLEAN, returns STATUS.

#define msgVSUpdateVolumes MakeMsg(clsVolSearch, 8)

This message requests the volSearcher to ask all volume classes to update their list of volumes. This may

result in volumes being installed, removed, connected or disconnected. Interested parties should become
observers of theFileSystem and look for msgFSVolChanged (see fs.h). The argument passed should be

true to update all volumes.

This message can only be sent via ObjectSendXXX.

msgVSFormatCompleteNotify
Notifies observers of theVolSearcher that a format has completed.

Takes BOOLEAN, returns STATUS.

#define msgVSFormatCompleteNotify MakeMsg(clsVolSearch, 20)

The argument passed to the observer indicates whether the format was successful or not. False would be

returned if there was an error or if the format was cancelled.

msgVSNameVolume
Prompts user to name an unlabelled volume and adds new name.

Takes root dir handle of volume, returns STATUS.

#define msgVSNameVolume MakeMsg(clsVolSearch, 9)

This message is used by volumes that have discovered unlabeled volumes. This message can only be sent

via ObjectPostXXX.

Part 8 /
System Services

CMPSTEXT.H

This file contains the API definition for the compose-text package.

This package is used to compose a text string that needs to have pieces inserted into it. The format of
the strings makes it easy to internationalize and localize the text.

The functions described in this file are contained in SYSUTIL.LIB.

Format Strings

The format strings contain literal text and format codes. A format code starts with 'A', has a sequence of
one or more digits in the middle, and a single letter at the end. The digits specify which argument to the
function to use and the letter indicates the type of the argument. For instance, format code "A2s"
indicates that the second argument should be inserted, and that the argument should be a string.

The following fills 'buffer' with the string "a B b A c":

SComposeText (&buffer, &size, heap, Ira "'2s b "'ls e", "A", "B");

The available argumen't types are:

• A: Literal' A' character. E. g. use "A A" to put a A in a string.

• s: String.

• r: Resource ID of a string resource.

• 1: Group number and indexed list resource ID for string list. This uses two arguments.

• d: U32 printed as a decimal number.

• x: U32 printed as a hexadecimal number.

• {: Singular/Plural word forms of the form" {islare}". When this argument type is used, the routine

examines the specified argument. If its value is 1, the first string is used. Otherwise the second string

is used.

The following code reads in a string from the TK group for a 'sample' project.

SComposeText(&buffer, &size, heap,
"The filled in string is "'11.", resGrpTK, sampleListResld);

As an example of the' {' format code, the following code generates the first string if numApples== 1 and
the second string if numApples==5.

SComposeText(&buffer, &size, heap,
"There "'l{islare} "'ld "'l{applelapples}.", numApples);

"There is 1 apple."
"There are 5 apples."

Memory Management

All of the procedures fill in a buffer with the generated string. There are two ways of supplying the
buffer memory.

• You can supply a buffer pointer and buffer length. Do this by passing the pointer as *ppString, the
length in *pLength, and a null heapld. If this technique is used, and the buffer is too small to hold

the results, an error status is returned.

122 PENPOINT API REFERENCE
Part 8 / System Services

• You can specify a heap from which memory will be allocated. Do this by passing in a valid heapld.
You are obligated to free the memory when finished.

#ifndef CMPSTEXT_INCLUDED
#define CMPSTEXT_INCLUDED
#ifndef GO_INCLUDED
#include <go.h>
#endif
#ifndef RESFILE_INCLUDED
#include <resfile.h>
#endif
#include <stdarg.h>

Common #defines and Typedefs
#define ComposeTextMaxArguments 20 II Maximum number of parameters

Functions

SComposeText
Composes a string from a format and arguments.

Returns SfATUS.

function Prototype STATUS CDECL SComposeText (
PP CHAR ppString,
P U32 pLength,
OS HEAP ID heap,
const P CHAR pFormat,

) i

Copy the format argument into the output string, doing the appropriate substitutions for the format
codes.

See the section "Memory Management" for information on what values to use for the first three
arguments.

VSComposeText
Composes a string from a format and a pointer to the argument list.

Returns Sf ATUS.

¥undi(,)!1 Prototype STATUS CDECL VSComposeText (
PP_CHAR ppString,
P U32 pLength,
OS HEAP ID heap,
const P CHAR pFormat,
va list argList

) i

This is the same as SComposeText except the arguments are passed as a pointer to a list.

See the section "Memory Management" for information on wh~t values to use for the first three
arguments.

GOMATH.H

This file contains the API definition for fixed point arithmetic. The functions described in this file are
contained in PENPOINf.LIB.

The API in this file is all function oriented.

*ifndef GOMATH_INCLUDED
*define GOMATH INCLUDED
*ifndef GO_INCLUDED
Unclude <go. h>
*endif

Math Operation Error Codes
*define stsUnderflow MakeStatus(clsGOMath, 1)
*define stsOverflow MakeStatus(clsGOMath, 2)
*define stsMathInvOp MakeStatus(clsGOMath, 3)
*define stsMathInvStrOp MakeStatus(clsGOMath, 4)
*define stsMathEqual MakeStatus(clsGOMath, 5)
*define stsMathFirstHigher MakeStatus(clsGOMath, 6)
*define stsMathFirstLower MakeStatus(clsGOMath, 7)
*define stsZeroDivide MakeStatus(clsGOMath, 8)
II The following two values are used by the runtime.lib as ERRNO values
*define stsMathDomain MakeStatus(clsGOMath, 9) II Argument too large
*define stsMathRange MakeStatus(clsGOMath, 10) II Result too large

Math Constants
*define GoFxO ((FIXED) OxOOOOOOOO) II 0.0
*define GoFxl ((FIXED) Ox00010000) II 1.0
*define GoFxMinus1 ((FIXED) OxffffOOOO) II -1.0

Fixed-point Function Prototypes

FxCmp
Compares two FIXED.

Returns S 16.

ftH'IdlOfl Pr©1©1ype S16 PASCAL FxCmp (FIXED a, FIXED b);

RehJrh \fel!ue -1 if a < h.

o if a = h.

1 if a> h.

124 PEN POINT API REFERENCE
Part 8 / System Services

FxAdd
Adds two FIXED numbers, producing a FIXED.

Returns Sf ATUS.

Fum:tion Pr©t©type STATUS PASCAL FxAdd (FIXED a, FIXED b, P _FIXED pC);

Return V(Jiue stsOverflow The integer part of the result overflows a 16-bit signed.

FxAddSC
Macro form of FxAdd with no overflow detection.

Returns FIXED.

fdefine FxAddSC C f1, _ f2) ((FIXED) (C f1) + C f2)))

FxSub
Subtracts two FIXED numbers, producing a FIXED.

Returns SfATUS.

Fund-ion Prototype STATUS PASCAL FxSub(FIXED a, FIXED b, P_FIXED pC);

Retum'V(Jlue stsOverflow The integer part of the result overflows a 16-bit signed.

FxSubSC
Macro form of FxSub with no overflow detection.

Returns FIXED.

fdefine FxSubSC Cf1, f2) ((FIXED) (Cf1) - Cf2)))

FxNegate
Negates a FIXED.

Returns FIXED.

fdefine FxNegate Cf) ((FIXED) (- Cf)))

FxMul
Multiplies two FIXED numbers, producing a FIXED.

Returns SfATUS.

F~mction Prototype STATUS PASCAL FxMul (FIXED a, FIXED b, P _FIXED pC);

Return \I(tioe stsOverflow The integer part of the result overflows a 16-bit signed.

FxMulSC
Multiplies two FIXED numbers returning the product.

Returns FIXED.

Function Prototype FIXED PASCAL FxMulSC (FIXED a, FIXED b);

Comments No overflow detection is performed.

GOMATH.H 125

Fixed-point Function Prototypes

FxMulInt
Multiplies a FIXED number by an 532, producing a FIXED.

Returns STATUS.

fUr1dll'J11 PrC)fotype STATUS PASCAL FxMulInt (FIXED a, S32 b, P_FIXED pC);

Return Vulue stsOverflow The integer part of the result overflows a 16-bit signed.

FxMulIntSC
Multiplies a FIXED number by an 532, returning the FIXED product.

Returns FIXED.

#define FxMulIntSC(_a,_b) ((FIXED) (_a*_b))

No overflow detection is performed.

FxMulInif oInt
Multiplies a FIXED number by an 532, producing a rounded 532 product.

Returns STATUS.

hmdion Prototype STATUS PASCAL FxMulIntToInt (FIXED a, S32 b, P_S32 pC);

~eFum Vo~ue stsOverflow The integer part of the result overflows a 32-bit signed.

FxMulInif oIntSC
Multiplies a FIXED number by an 532, returning a rounded 532 product.

Returns 532.

fwm:tion Prototype S32 PASCAL FxMulIntToIntSC (FIXED a, S32 b);

Comments No overflow detection is performed.

FxDiv
Divides two FIXED numbers, producing a FIXED quotient.

Returns STATUS.

Fundion Prototype STATUS PASCAL FxDiv (FIXED top, FIXED bottom, P _FIXED pC);

~erurr1 ,\f'olue stsOverflow The integer part of the result overflows a 16-bit signed.

stsZeroDivide The input divisor is zero.

FxDivSC
Divides two FIXED numbers, returning a FIXED quotient.

Returns FIXED.

fwndk}!1 Pr©totypz; FIXED PASCAL FxDivSC (FIXED top, FIXED bottom);

C©mments No overflow or zero-divide detection is performed.

126 PEN POINT API REFERENCE

Part 8 / System Services

FxDivlnts
Divides two 32-bit signed integers, producing a FIXED quotient.

Returns Sf ATUS.

Plmdk~fl Proh:lIType STATUS PASCAL FxDivInts (S32 top, S32 bottom, P_FIXED pC);

Rehml Value stsOverflow The integer part of the result overflows a 16-bit signed.

stsZeroDivide The input divisor is zero.

FxDivlntsSC
Divides two FIXED numbers, returning a FIXED quotient.

Returns FIXED.

Pltnclh:m Pr©tOlype FIXED PASCAL FxDivIntsSC (S32 top, S32 bottom);

(OlYmlents No overflow or zero-divide detection is performed.

FxDivIntToInt
Divides an 532 by a FIXED, producing a rounded 532 quotient.

Returns Sf ATUS.

Pum;;t1tm Prototype STATUS PASCAL FxDivIntToInt (S32 top, FIXED bottom, P_S32 pC);

Return Valise stsOverflow The integer part of the result overflows a 16-bit signed.

stsZeroDivide The input divisor is zero.

FxDivIntToIntSC
Divides an 532 by a FIXED, producing a rounded 532 quotient.

Returns 532.

Pundion Proh,?lyp® S32 PASCAL FxDivIntToIntSC (S32 top, FIXED bottom);

(omm®nfs No overflow or zero-divide detection is performed.

FxSin
Returns the sine of an integer angle in degrees.

Returns FIXED.

Ptmd;on Prof<tlyf$® FIXED PASCAL FxSin (S16 angle);

FxCos
Returns the cosine of an integer angle in degrees.

Returns FIXED.

Function Prototype FIXED PASCAL FxCos (S16 angle);

FxTan
Returns the tangent of an integer angle in degrees.

Returns FIXED.

functiClt) Pr{)t{)type FIXED PASCAL FxTan (S16 angle);

FxSinFx
Returns the sine of a FIXED angle in degrees.

Returns FIXED.

Ft.mdi{)!'t Prototype FIXED PASCAL FxSinFx (FIXED angle);

FxCosFx
Returns the cosine of a FIXED angle in degrees.

Returns FIXED.

Function Prototype FIXED PASCAL FxCosFx (FIXED angle);

FxTanFx
Returns the tangent of a FIXED angle in degrees.

Returns FIXED.

Fundion Prototype FIXED PASCAL FxTanFx (FIXED angle);

FxArcTanlnt
Returns an arctangent value as a FIXED angle.

Returns FIXED.

Function Prototype FIXED PASCAL FxArcTanInt (S32 top, S32 bottom);

GOMATH.H 127
Fixed-point Function Prototypes

C{)I1'H'11ents Computes a FIXED angle whose tangent is the value given by the quotient of the two signed 32-bit
integers, top / bottom. The value returned ranges from 0 to 359 degrees.

FxArcTanFx
Returns an arctangent value as a FIXED angle.

Returns FIXED.

function Prototype FIXED PASCAL FxArcTanFx (S32 top, S32 bottom);

Comments Computes a FIXED angle whose tangent is the value given by the quotient of the two signed 32-bit
numbers, top / bottom. The value returned ranges from 0 to 359 degrees.

FxAbs
Takes the absolute value of a FIXED.

Returns FIXED.

#define FxAbs(_f) (((_f)<O)?FxNegate(_f): (_f))

128 PENPOINT API REFERENCE

Part 8 / System Services

FxRoundTolnt
Rounds a FIXED number to a 32-bit signed integer.

Returns 532.

Function Pw©¥©typ0' S32 PASCAL FxRoundToInt (FIXED fx);

FxRoundTolntSC
Rounds a FIXED number to a 16-bit signed integer.

Returns 516.

*define FxRoundToIntSC Cf) (S16) ((Cf) +Ox8000) »16)

No overflow detection is performed.

FxChop
Returns the 16-bit signed integer part of a FIXED.

Returns 516.

*define FxChopCf) (S16) (Cf»>16)
*define FxChopSC Cf) (S16) ((_f) »16)

FxFraction
Returns the 16-bit fractional part of the absolute value a FIXED.

Returns U16.

*define FxFraction(_f) (U16) (FxAbs(_f))

FxInifoFx
Converts a 16-bit signed integer into a FIXED.

Returns FIXED.

*define FxIntToFx Ci) ((FIXED) (((S32) Ci)) «16))

FxMakeFixed
Makes a FIXED with an 516 (integer) and a UI16(fraction).

Returns FIXED.

FIXED PA5CAL FxMakeFixed(516 whole, U16 frac); (now in go.h)

FxBinToStr
Converts a FIXED format value into an ascii string in decimal.

Returns nothing.

Function Prototype void PASCAL FxBinToStr (
FIXED a,
P CHAR pStr,
U8 fracDigits,
U8 maxLen,
BOOLEAN showCornmas

Comments The string will have the format:

{-}xxxxx.xxxxx or {-}xx,xxx.xxxxx.

GOMATH.H 129
Fixed-point Function Prototypes

The number of digits to the left of the decimal point is the minimum number required, and the number
of digits to the right of the decimal point is specified in fracDigits. The last digit is rounded accurately.
If the string will not fit within maxLen bytes, then the string "*******" (maxLen-1 *'s) will be returned;
maxLen = 9+fracDigits is sufficient, although any higher number is also acceptable. If showCommas is
true, then commas will separate the thousands.

FxStrToBin
Converts a null-terminated ascii string to a FIXED.

Returns STATUS.

Function ~r@h>type STATUS PASCAL FxStrToBin (
P_CHAR pStr,

Comments

P_FIXED pC
) ;

The fractional portion will be rounded to fit within 16 bits.

stsOverflow The integer part of the result overflows a 16-bit signed.

stsMathlnvStrOp A character in the string does not represent a valid number. *pC is set to zero.

INTL.H

Definitions used while internationalizing code.

The main content of this file is macros that map the names of UNICODE string functions for
PENPOINT 2.0 to the 8-bit functions used currently. They are intended to be used with items of type
CHAR, which are 8-bit currently and will switch to 16-bit in 2.0. By using these macros code that deals
with strings will have a chance of working in 2.0 with only a recompile.

*ifndef INTL_INCLUDED
*define INTL_INCLUDED

UNICODE strings/characters
To define characters or strings in PENPOINT 1.0, use the "U_L" macro on them. This maps to the
original string, and thus does nothing. In 2.0 the define will be changed so that it inserts "L" in front of
the string. This will convert the character or string into a wide character or string to match the 2.0

definition of CHAR.

Here is some sample code to show its use. This code would compile and run under both 1.0 and 2.0, the
only difference would be the space allocated for each character (1 vs. 2 bytes).

CHAR cc;
P_CHAR pString;

pString = U_L("sample string");
cc = U_L('s');

if (cc == pString[O])
pString[O] = U_L('S');

*define U L(str) str II Does nothing in PENPOINT 1.0
II #defin~ U_L(str) L**str II Definition to be used in PENPOINT 2.0

Mapping of 1 6·bit string/character
functions for 1.0

For each of the sections below, it is necessary to include the base header file in order to use the macros
defined here.

These macros are intended to be used with variables of type CHAR. CHAR is currently U8, and will be
converted to UI6 in PENPOINT 2.0.

132 PEN POINT API REFERENCE

Part 8 / System Services

Extensions to STRING.H
#define Ustrcat strcat
#define Ustrncat strncat
#define Ustrcmp strcmp
#define Ustrncmp strncmp
#define Ustrcpy strcpy
#define Ustrncpy strncpy
#define Ustrlen strlen
#define Ustrdup strdup
#define Ustrrev strrev
#define Ustrset strset
#define Ustrnset strnset
#define Ustrchr strchr
#define Ustrrchr strrchr
#define Ustrspn strspn
#define Ustrcspn strcspn
#define Ustrpbrk strpbrk
#define Ustrstr strstr
#define Ustrtok strtok
#define Ustricmp stricmp

'strcmpi' the same as 'stricmp', we don't need U versions of both.

#define Ustrnicmp
#define Ustrlwr
#define Ustrupr
#define Umemcpy
#define Umemccpy
#define Umemchr
#define Umemcmp
#define Umemicmp
#define Umemmove
#define Umemset
#define Ustrerror

Extensions to CTYPE.H
#define Uisalpha
#define Uisalnum
#define Uisascii
#define Uiscntrl
#define Uisprint
#define Uisgraph
#define Uisdigit
#define Uisxdigit
#define Uislower
#define Uisupper
#define Uisspace
#define Uispunct
#define Utolower
#define Utoupper

Extensions to STDLIB.H
#define Uatoi
#define Uatol
#define Uitoa
#define Ultoa
#define Uutoa
#define Ustrtol
#define Uatof
#define Ustrtod
#define Ustrtoul

strnicmp
strlwr
strupr
memcpy
memccpy
memchr
memcmp
memicmp
memmove
memset
strerror

isalpha
isalnum
isascii
iscntrl
isprint
isgraph
isdigit
isxdigit
islower
isupper
isspace
ispunct
tolower
toupper

atoi
atol
itoa
Itoa
utoa
strtol
atof
strtod
strtoul

INTL.H 133

Mapping of 16-bit string/character functions for 1.0

This goes directly to its 2.0 definition because it does not make sense on an ascii text stream, and if the
current text is not ascii, then having it automatically convert to Unicode by recompile in 2.0 won't
work. It is included mostly to reserve the name, and let programers know that it will be available.

#define Uswab(s,d,n)

Extensions to STDIO.H
#define Ufopen
#define Usprintf
#define Uvsprintf
#define Usscanf
#define Uputc
#define Ufputc
#define Ugetc
#define Ufgetc
#define Uungetc
#define Ufdopen
#define Ufreopen
#define Uprintf
#define Ufprintf
#define Uvprintf
#define Uvfprintf
#define Uscanf
#define Ufscanf
#define Uvscanf
#define Uvfscanf
#define Uvsscanf
#define Ugetchar
#define Ufgetchar
#define Ugets
#define Ufgets
#define Uputchar
#define Ufputchar
#define Uputs
#define Ufputs
#define Uremove
#define Urename
#define Utmpnam

Extensions to FCNTL.H
#define Uopen
#define Usopen
#define Ucreat

Extensions to TIME.H
#define Uasctime
#define Uctime

Extensions to UNISTD.H
#define Urmdir
#define Uchdir
#define Ugetcwd

Extensions to DIRENT.H
#define Uopendir
#define Ureaddir

swab ((char *) s, (char *) d, n*2)

fopen
sprintf
vsprintf
sscanf
putc
fputc
getc
fgetc
ungetc
fdopen
freopen
printf
fprintf
vprintf
vfprintf
scanf
fscanf
vscanf
vfscanf
vsscanf
get char
fgetchar
gets
fgets
put char
fputchar
puts
fputs
remove
rename
tmpnam

open
sopen
creat

asctime
ctime

rmdir
chdir
getcwd

opendir
readdir

OS.H

This file contains the API for the PenPoint kernel. The functions described in this file are contained in
PENPOINT.LIB.

The PenPoint kernel provides support for tasking, memory management, inter-task communication and
timer services.

#ifndef os INCLUDED
#define OS-INCLUDED

Debugging Flags
PenPoint kernel flag is 'G', values are:

0001 User configuration (copy exes from boot to theSelectedVolume)

0002 Enter debugger on faults while scavenging

0004 Display memory sizes for each module loaded and run

0008 Display Stack grow/shrink messages

0010 Save page fault information in a memory buffer

0020 Run in the Ram only configuration

0100 Print various memmgr details

1000 see resfile.h

2000 see resfile.h

4000 see resfile.h

8000 see resfile.h

10000 Internal use only

20000 Call the MIL using the common entry point for full debugging

#ifndef GO INCLUDED
#include <go.h>
#endif
#ifndef OSTYPES INCLUDED
#include <ostypes.h>
#endif
#ifndef OSHEAP INCLUDED
#include <osheap.h>
#endif

Common #defines and typedefs
#define osPageSize (4*1024)

Defines for OS_ITMSG_INFO (mode field)

II To generate the mode, OR in OS TASK MODE with the defines below.
#define osITMsgNoCopy flag7 - II vs copy buffer
#define osITMsgFrontOfQ flag6 II vs end of queue
#define osITMsgDefaultMode 0 II Copy msg to end of msg queue

136 PENPOINT API REFERENCE
Part 8 / System Services

• Defines for setting priority

#define oSNumPriorities 51
#define osDefaultPriority 0

• Defines for region information

typedef U8 OS_REGION_ATTRS;
#define osRgnLocal flagO
#define osRgnHasAliases flag1
#define osRgnLocked flag2 II Not yet implemented!!
#define osRgnNotSwappable flag3
#define osRgnFrozen flag4 II Not yet implemented!!
#define osRgnlnSlowMem flag5
Enum16 (OS_REGION_TYPE)

} ;

osRgnData,
osRgnHeap,
osRgnStack,
osRgnMemMapFile,
osRgnCode

• Subtask function type

II data region
II heap region
II stack region
II memory mapped file region
II code region

typedef void FunctionPtr (P_OS_SUBTASK_ENTRY) (U32 arg)';
Enum16 (OS_SET_GET) {

osValuesSet = flagO, II Set the value(s) passed in
osValuesReturn = flag1, II return the value(s)
osValuesReturnAndSet = flagO I flag1 II return and set the value(s)

} ;

• Memory access attributes

Enum16 (OS_ACCESS) {
osReadAccess,
osReadWriteAccess,
osExecuteAccess,
osExecuteReadAccess

} ;

Enum16 (OS_SET_TlME_MODE)
osSetTime = flagO,
osSetDate = flag1,
osSetTimeZone = flag2,

II access rights of a page
II page allows read access only
II page allows read and write access
II page allows execute access only
II page allows execute and read access

II set the time
II set the date
II set only the time zone

osSetDateAndTime = osSetTimelosSetDate, II set both the date and time
II set date, time, and time zone
osSetAll = osSetTimelosSetDatelosSetTimeZone

} ;

• Display modes

Enum16 (OS_DISPLAY_MODE)
osConsole, II display mode is console
osGraphics II display mode is graphics

} ;

• Beep error tones

Enum16 (OS_ERROR_TYPE)

} ;

osWarning,
osFatal

• System wide memory information

typedef struct OS_MEM_INFO {
U32 taskMemAllocated; II amt of mem allocated by the task
U32 localTaskMemAllocated; II amt of local mem allocated by the task
U16 numAllocatedRgns; II # allocated regions by the task
U16 numAllocatedLocalRgns; II # local regions allocated
U32 taskMemResident; II amt of allocated mem in ram-this task

OS.H 137

U32 taskMemSwapped; II amt of allocated mem in swap file-this task
II system wide statistics
U32 systemRamSize; II total amt of memory in the system
U32 amtInMemoryPool; II amt of memory in the memory pool
U32 memFree; II amt of free ram
U32 memAllocated; II total amt of mem allocated by all
U16 numRgnsAllocated; II total # regions allocated by all
U16 numSharedRgnsAllocated; II # shared regions used by all
U32 pageSize; II system page size
II swap file statistics
U32 memNotSwappable; II amt of memory not swappable
U32 swapFileSize; II size of the swap file
U32 swapMediaFreePagesi II number of pages free on the swap media
II system wide allocated memory statistics (currently in ram)
U32 dataAllocatedi II amt of data allocated
U32 heapsAllocatedi II amt of heap space allocated
U32 stacksAllocatedi II amt of stack space allocated
U32 memMapFilesAllocated; II amt of mem map file space allocated
U32 codeAllocated; II amt of code space allocated
OS_MEM_INFO, * P_OS_MEM_INFO;

• Memory usage information

II Region info, per type of region (code, data, etc)
typedef struct OS_REGTYPE_INFO {

U32 allocated;
U32 swappable;
U32 nonSwappable;
U32 committed;

OS REGTYPE INFO, *P_OS_REGTYPE_INFO;

II Max size of the region
II swappable pages in memory
II non-swappable pages in memory
II committed pages

II Region info, per scope of region (local, shared, etc)
typedef struct OS_REGScOPE_INFO {

OS_REGTYPE_INFO code;
OS REGTYPE INFO data;
OS_REGTYPE_INFO heap;
OS_REGTYPE_INFO stack;
OS REGTYPE INFO memMapFile;

OS_REGScOPE_INFO, *P_OS_REGScOPE_INFO;
typedef struct OS_MEM_USE_INFO {

OS_REGScOPE_INFO local;
OS_REGScOPE_INFO shared;
OS REGS COPE INFO - -
OS REGScOPE INFO - -

multiOwner;
total;

U32 pageSize;
U32 systemRamSize;
U32 memFreei
U32 memAllocated;
U32 swapFileSize;

OS MEM USE_INFO, *P_OS_MEM_USE_INFO;

II Executable code
I I Data
II
II
II

Data used as heaps
Stack space
Memory-mapped files

II Owned by this task only, in local memory
II Owned by this task only, in shared memory
II Owned by this task and at least one other
II System-wide totals
II System page size
II total amt of memory in the system
II mem in the "free" list
II mem not in the "free" list
II size of the swap file

138 PENPOINT API REFERENCE
Part 8 / System Services

• Address information

typedef struct os ADDRESS_INFO { II Info for a given memory address
P MEM pRegionBase; II base of region
SIZEOF regionLength; II length of the region
OS ACCESS access; II access rights of the region
OS TASK ID owner; II owning task for this region
BOOLEAN userPriv; II TRUE - user region, FALSE - kernel
OS REGION ATTRS flags; II see defines above - -
SIZEOF residentSize; II amount of region that is resident
SIZEOF committedSize; II amount of region that is committed
OS REGION TYPE regionType; II type of region - -

OS_ADDRESS _INFO, * P_OS_ADDRESS_INFO;

• System configuration information

typedef struct OS_SYSTEM_INFO { II system configuration information
BOOLEAN mathProcessorPresent; II TRUE = present
OS_MILLISECONDS millisecondsPerSystick; II ms per clock tick

OS_SYSTEM_INFO, * P_OS_SYSTEM_INFO;

• Date and time information

II The time zone string is a POSIX format string. See the Watcom library
II reference for PenPoint, TZ environment variable set section for more info.
typedef struct OS_DATE_TIME {

U32 seconds; II seconds after the minute [0,61]
U32 minutes; II minutes after the hour [0,59]
U32 hours; II hours after midnight [0,23]
U32 day; II day of the month [1,31]
U32 month; II months since January [0,11]
U32 year; II years since 1900
U32 dayOfWeek; II days since Sunday [0,6]
U32 dayOfYear; II days since January 1 [0,365]
PCHAR pTimeZone; II time zone string (POSIX format)
OS DATE TIME, * P_OS_DATE_TIME;

• Loaded program information

typedef struct OS_PROG_INFO {
OS_PROG_HANDLE progHandle; II program identifying handle
CHAR name[32+1]; II module name (without the .exe)
U32 initHeapSize; II .exe-header initial heap allocation
U32 initStackSize; II .exe-header initial stack allocation
U16 initCS; II initial CS (selector, not segment#)
U32 initIPi II initial IP
U32 nRegions; II # of regions
U16 initDS; II initial DS
U16 isDLL :1, II a for .exes, 1 for DLLs

isUser :1, II 1 for user priv, a for system priv
rsvd :14; II reserved for future use.

U32 fixedSize; II read-only segments + initialization data
U32 sharedSize; II shared readlwrite segments
U32 privateSize; II private readlwrite segments
U32 nRequiredModules; II # modules this depends upon

OS_PROG_INFO, * P_OS_PROG_INFO;

• Interrupt information

II Note: OR in the flag osIntNumIsHardwareLevel if intNum is a hardware
II interrupt level (vs a MIL logical device id). The flag is defined
II in ostypes.h.
typedef struct OS_INTERRUPT_INFO

OS_INTERRUPT_ID intNum;
P_UNKNOWN pCode;
OS_INTERRUPT_INFO, * P_OS_INTERRUPT_INFO;

II struct used to set interrupts
II logical interrupt id
II ptr to interrupt routine

OS.H 139
Functions

• Module entrypoint types

Enum16 (OS_ENTRYPOINT_TYPE)
osEntryName,
osEntryOrdinal

} ;

• Message information

typedef struct OS_ITMSG_INFO
OS_ITMSG_FILTER filter;
P_MEM pITMsg;
SIZEOF length;
U32 token;
OS TASK ID taskId;
U16 mode;
OS_ITMSG_INFO;

• Fast serna struct

typedef struct os FAST SEMA
U16 count;

U16 nWaits;
OS TASK ID owner;
OS_FAST_SEMA, *P_OS_FAST_SEMA;

Functions

OSProgramlnstall

II entrypoint is named
II entrypoint is an ordinal

II inter-task message information
II filter of the message
II pointer to inter-task message buffer
II length of the message buffer
II user defined info field
II dest or sending task Id
II see defines for OS_ITMSG_INFO

II top bit for test and set
II bits 0-14 for recursive counting
II number of waiters

Installs a program into the loader database.

Returns STATUS.

tundion Pn,,"lI?«>lYp® STATUS EXPORTEDO OSProgramInstal1 (
P_CHAR pCommandLine, II dlc or exe name (and arguments)
P_CHAR pWorkingDir, II working dir of the program
P_OS_PROG_HANDLE pProgHandle, II Out: program handle
P_CHAR pBadName, II Out: If error, dll/exe that was bad
P_CHAR pBadRef II Out: If error, reference that was bad

) ;

If a dIe file is provided, all dlls in the file will also be loaded if not loaded already.

OSProgramInstall will not return until instance 0 of all loaded dlls and exe are completed. No message
dispatching will occur during this time. If communication to the calling task is required, use
IMProgramInstall (install.h, install.lib).

OSProgramDeinstall

stsOSBadDLCFormat DLe file is incorrectly formatted

stsOSBadExeFormat A D LL or EXE is invalid in the dIe file

stsOSProglnstallError Use debug version of PenPoint for more info

stsOSModuleN otFound Module name specified in dIe file is invalid

stsOSMissingDependency Import module in an exe or dll was not found

stsOSMisingEntryName Import name in an exe or dll was not found

stsOSMissingEntryOrdinal Import number in an exe or dll was not found

140 PENPOINT API REFERENCE
Part 8 I System Services

OSProgramDeinstall
Deinstalls a program already loaded into the loader database.

Returns STATUS.

Fundit)!,} Pr@f@type STATUS EXPORTEDO OSProgramDeinstall (
OS_PROG_HANDLE progHandle II program handle

) ;

This routine will terminate any dll task wrappers before deinstalling the code. If an exe is being
deintalled, all tasks must be terminated before calling this routine.

OSProgramInstall

stsOSlnvalidProgramHandle Program handle is incorrect

stsOSDependenciesExist Another program requires this dll or a task is using this module

OSProgramInstantiate
Creates an instance of a program.

Returns STATUS.

Fundl@Fi Pr@t@type STATUS EXPORTEDO OSProgramInstantiate (

(@mmeni's

OS PROG HANDLE progHandle, II program handle from install
P CHAR pCommandLine, II pathname + arguments
P=OS_TASK_ID pTaskId II Out: Task id of the new task

) ;

The newly created process will be set to the same priority as the caller.

stsBadParam Program handle is invalid

OSSubT askCreate
Creates a new execution thread in this context.

Returns STATUS.

Fundi@Fi Pr@t@type STATUS EXPORTEDO OSSubTaskCreate (
P_OS_SUBTASK_ENTRY pEntrypoint,
SIZEOF stackSize,

II Function entrypbint
II ignored.

U16 mustBeZero,
U32 arg,
P_OS_TASK_ID pTaskId

) ;

II reserved
II arg pa$sed to function
II Out: new task id

The entrypoint that starts the subtask must NOT return. To terminate the task, use OSTaskTerminate
(OSThisTask 0) as the last line in the routine. The newly created task will be set to the same priority as
the caller.

The initial stack size of the subtask will be set to 4096 bytes. The stackSize parameter will be ignored.
Stacks will automatically grow to accomodate a program's stack requirements.

OSfaskTerminate
Terminates a task.

Returns STATUS.

rl.mdi@ri ?r@t@type STATUS EXPORTEDO OSTaskTerminate (
OS_TASK_ID taskId,
OS TASK ERROR exit Code

) ;

II task to terminate
II reason for terminating exit code

OS.H 141

Functions

Callers to OSTaskTerminate will not return until the task has successfully terminated. Task termination

will cause the following events to occur:

1) if a process is terminated, all subtasks are first terminated

2) observers of theProcess will be notified (see clsmgr.h). The error code is provided with the

notification.

3) objects owned by the terminating task will be scavenged

4) a broadcast message will be sent to all tasks to notify them of the the task termination. The message

will be sent on the filter osTerminatedTaskFilter. This filter is by default off.

OSNextTerminatedTaskId
Notifies the caller of the tasks that have terminated.

Returns the next task that has terminated.

OS TASK ID EXPORTEDO OSNextTerminatedTaskld(
- P_oS_TASK_ERROR pExitCode II Out: exit code of terminating task

) ;

The broadcast message for task termination does not include the task identifier of the task that has
terminated. To find this out, this routine should be called to get the list of terminated tasks. When

osNullTaskId is returned, the list ends.

OSThisTask
Passes back the task identifier of the current running task.

Returns OS_TASK_ID.

tt.mdicn Pr©t©type os TASK ID EXPORTED OSThisTask (void) ;

osr askPrioritySet
Sets the priority of a task or a set of tasks.

Returns SfATUS.

rum:tI©n Prntctype STATUS EXPORTEDO OSTaskPrioritySet (
OS_TASK_ID taskld,

) ;

OS_TASK_MODE mode,
OS_PRIORITY_CLASS priorityClass,
U8 priority

II target task
II task mode
II new priority class
II new priority number

The task mode can be used to set the priority of just one task or all tasks in the process family.

OSTaskPriorityGet

OsraskPriori~et

Passes back the priority of a task.

Returns Sf ATUS.

tund;©n Pr©f©type STATUS EXPORTEDO OSTaskPriorityGet (
OS_TASK_ID taskld, II target task
P_OS_PRIORITY_CLASS pPriorityClass, II Out: task's priority class
P_U8 pPriority II Out: task's priority number

) ;

142 PENPOINT API REFERENCE

Part 8 / System Services

Both the priority class and the priority within that class are returned.

OSTaskPrioritySet

o SfaskDelay
Delays the current task for a specified period of time.

Returns STATUS.

Flmdicn1 Prototype void EXPORTEDO OSTaskDelay (
OS MILLISECONDS timeLimit II milliseconds to delay

) ;

When the machine is turned off, the delay time freezes until the system is turned back on again.
OSTaskDelay cannot be called from an interrupt subtask.

OSITMsgSend
Sends an inter-task message to a task or set of tasks.

Returns STATUS.

Fundion Prototype STATUS EXPORTEDO OSITMsgSend (
P_OS_ITMSG_INFO pITMsgInfo

) ;
II inter-task message info block

OSITMsgSend is used to send an inter-task message to 1) a single task, or 2) all tasks in a task family, or

3) all tasks in the system. The combination of the taskId and mode fields are used to accomplish this. If

broadcasting to all tasks, the taskId field is ignored.

An inter-task message is an array of bytes completely uninterpreted by the kernel stored in the pITMsg
field. If the inter-task message is short (up to U32), it can be stored in the token field for improved

performance. The length field is used to store the length of the inter-task message in pITMsg. If the
length field is 0, the pITMsg field is ignored and can be used for more information passing.

Inter-task messages are passed to the destination task in two ways: copy and alias. In copy mode, the

message is copied into a new buffer allocated in the context of the destination task. In alias mode, the

message is aliased into the destination task. Messages must be full regions when using alias mode.

Messages are normally inserted into the end of the destination message queue. However, it is possible to

specify that a message be inserted into the front of the message queue.

Inter-task messages will get delivered to tasks that have a filter mask set to allow messages of the sending

messages filter. If sending a message on multiple filters, the message will be delivered if anyone of the
filters are allowed by the receiving task. No error status is returned if the receiving task does not receive

the message due to its filter mask setting.

OSITMsgReceive

OSITMsgReceive
Receives a message from the task's message queue.

Returns STATUS.

Fundion Prototype STATUS EXPORTEDO OSITMsgRecei ve (
P_OS_ITMSG_INFO pITMsgInfo,
OS MILLISECONDS timeLimit

) ;

II In-Out: message info block
II amount of time to wait for message

OS.H 143
Functions

Comments Messages are received by specifying a filter or set of filters in the pITMsglnfo struct. Any message with a
filter that is in that set will match the receive request. The filter in the pITMsglnfo struct must always
be set on entry.

When a message is received that matches the input filter, the message is removed from the queue and
provided to the client.

OSITMsgSend

OSITMsgPeek
Gets the next message from the message queue without removing it.

Returns STATUS.

Fundion ~r@f@fy~e STATUS EXPORTEDO OSITMsgPeek (
P_OS_ITMSG_INFO pITMsgInfo,
OS_MILLISECONDS timeLimit,
P_OS_ITMSG_ID pITMsgId

II In-Out: message info block
II amount of time to wait for message
II In-Out: id of message received

Comments

) i

*pITMsgId of null peeks from the front of the queue. Use the previous message id to peek further into

the queue. The filter in the pITMsglnfo struct must always be set on entry.

OSITMsgFromId

OSITMsgFromld
Passes back the message associated with the message identifier.

Returns STATUS.

Fundion ~r@f@type STATUS EXPORTEDO OSITMsgFromId (
P_OS_ITMSG_INFO pITMsgInfo,
OS_ITMSG_ID itMsgId

II In-Out: message info block
II message id obtained from OSITMsgPeek

) i

The message identifier should be obtained by calling OSITMsgPeek.

OSITMsgPeek

OSITMsgQFlush
Flushes the message queue of all messages matching the message filter.

Returns STATUS.

Fundion ~r@f@fype STATUS EXPORTEDO OSITMsgQFlush (
OS_ITMSG_FILTER itMsgFilter

) i

II message filter of messages to flush

If a message has other filters set in addition to itMsgFilter, then the message will NOT be flushed.

OSITMsgFilterMask
Sets the filter mask for this task.

Returns the old filter mask.

Function Prototype OS_ITMSG_FILTER EXPORTEDO OSITMsgFilterMask (
OS_ITMSG_FILTER newITMsgFilter, II new filter mask for this task
BOOLEAN setNewFilter II if true, the new filter mask will be set

) i

144 PENPOINT API REFERENCE

Part 8 / System Services

Setting the mask bit to 1 indicate~ the message is allowed by this task; 0 otherwise. Any messages sent to
this task whose filter bits are off in the filter mask will be discarded.

If setNewFilter is FALSE, newITMsgFilter is ignored and only the old filter mask is returned.

OSITMsgSend

OSSemaCreate
Creates a semaphore.

Returns STATUS.

¥ttm:tk~!1 Pr<Jt<Jtype STATUS EXPORTEDO OSSemaCreate (
P_OS_SEMA_ID pSemal1 Out: new open semaphore

) ;

The semaphore will automatically be opened for the process.

OSSemaOpen

OSSemaOpen
Opens (accesses) an already existing semaphore.

Returns STATUS.

FttfH::tl<J!1 Pr<Jt<Jtype STATUS EXPORTEDO OSSemaOpen (
OS_SEMA_ID sema,
OS TASK ID task

) ;

II semaphore
II task wanting to share ownership of sema

Tasks should always open someone else's semaphore to guarantee that the semphore will be around even
if the original owner of the semaphore terminates.

OSSemaCreate

OSSemaDelete
Deletes a semaphore.

Returns STATUS.

r!'}f!dktrl Pr<Jt<Jtype STATUS EXPORTEDO OSSemaDelete (
OS_SEMA_ID semall the semaphore to delete

) ;

The semaphore will be removed from the system when all owners of the semaphore have deleted it.

OSSemaCreate

OSSemaRequest
Locks the counting semaphore (increments the count).

Returns STATUS.

STATUS EXPORTEDO OSSemaRequest(
OS_SEMA_ID sema,
OS MILLISECONDS timeLimit

) ;

II the semaphore to lock
II max time to wait if already locked

OSSemaRequest should be used in conjunction with OSSemaClear when using semaphores to protect
critical sections of code. OSSemaRequest/OSSemaClear implement a counting semaphore model which

RetumVoluc

OS.H 145
Functions

allows nesting of OSSemaRequest calls. Only after the same number of OSSemaClear calls will the next
waiting task enter the critical section. Up to 64K nestings are allowed.

If a task has obtained a semaphore via OSSemaRequest and subsequently dies, the semaphore will be
given to the next requestor and that requestor will be given the status stsOSSemaLockBroken.

stsOSSemaLockBroken Previous locker of semaphore died without clearing the semaphore

stsOSTimeOut The timelimit expired before obtaining the semaphore

OSSemaClear

OSSemaClear
Unlocks the counting semaphore (decrements the count).

Returns STATUS.

Fundi©11 Prototype STATUS EXPORTEOO OSSemaClear (
OS SEMA 10 serna II the semaphore to unlock

) ;

OSSemaClear should be used in conjunction with OSSemaRequest when using semaphores to protect
critical sections of code. OSSemaRequest/OSSemaClear implement a counting semaphore model which
allows nesting of OSSemaRequest calls. Only after the same number of OSSemaClear calls will the next
waiting task enter the critical section. Up to 64K nestings are allowed.

OSSemaRequest

OSSemaReset
Resets event semaphore (no matter what count).

Returns STATUS.

Fum:ti©n Prototype STATUS EXPORTEOO OSSemaReset (
OS_SEMA_1D serna II the semaphore to reset

) ;

OSSemaReset is used with OSSemaSet and OSSemaWait to support event handling. In this model, the
client waiting on the event should use OSSemaSet to set the semaphore to 1, and OSSemaWait to wait
until the semaphore has been reset to O. OSSemaReset will reset the semaphore to 0, thereby notifying
all tasks waiting on the event. OSSemaReset is normally used in interrupt tasks. The task that is
processing the event may actually have received more than one event and should process all events after
resetting the semaphore to avoid losing any events.

OSSemaSet

OSSemaSet
Sets the event semaphore to 1.

Returns STATUS.

Fundl©n Prototype STATUS EXPORTEOO OSSemaSet (
OS SEMA 10 serna II the semaphore to set

) ;

OSSemaSet is used with OSSemaWait and OSSemaReset to support event handling. In this model, the
client waiting on the event should use OSSemaSet to set the semaphore to 1, and OSSemaWait to wait

146 PENPOINT API REFERENCE

Part 8 / System Services

until the semaphore has been reset to 0. OSSemaReset will reset the semaphore to 0, thereby notifying
the task waiting on the event.

OSSemaReset

OSSemaWait
Waits for the event semaphore to be reset.

Returns Sf ATUS.

fUfH;tion Pr©t©fype STATUS EXPORTEDO OSSemaWai t (
OS_SEMA_ID sema,
OS MILLISECONDS timeLimit

) ;

II the semaphore to wait on
II max time to wait for the count to go to 0

OSSemaWait is used with OSSemaSet and OSSemaReset to support event handling. In this model, the

client waiting on the event should use OSSemaSet to set the semaphore to 1, and OSSema Wait to wait

until the semaphore has been reset to 0. OSSemaReset will reset the semaphore to 0, thereby notifying
the task waiting on the event.

stsOSSemaLockBroken Previous locker of semaphore died without clearing the semaphore

stsOSTimeOut The timelimit expired before obtaining the semaphore

OSSemaReset

OSFastSemaInit
Initialize fast serna.

Returns nothing ..

#define OSFastSemaInit (ySem) memset ((ySem), 0, s'izeof (OS_FAST_SEMA))

Fast semaphores provide a fast but unprotected semaphore model. Fast semaphores are simply memory

provided by the client as storage area for the state of the semaphore. This storage area must initially be
set to 0.

OSFastSemaRequest

OSFastSemaRequest
Fast version of serna request.

Returns Sf ATUS.

fund!<)r1 Pr©h>fype STATUS EXPORTED OSFastSemaRequest
P_OS_FAST_SEMA pSema

) ;

OSFastSemaRequest should be used in conjunction with OSFastSemaClear when using semaphores to

protect critical sections of code. OSFastSemaRequest/OSFastSemaClear implement a counting

semaphore model which allows nesting of OS FastSemaRequest calls. Only after the same number of

OSFastSemaClear calls will the next waiting task enter the critical section. Up to 64K nestings are
allowed.

Fast semaphores are fast by sacrificing protection. The semaphore structure passed into this routine is
modified in the same privilege level as the caller. Only if another task owns the semaphore will a
privilege level transition occur.

OS.H 147
Functions

There are a number of important limitations that a developer should understand about fast semaphores.

1) If a task owns a fast semaphore and then dies before releasing it, the

semaphore will not be released automatically by the system.

2) The fast semaphores should not be copied from one location to another.

The routines rely on the address of the semaphore structure being

the same.

OSFastSemaClear

OSFastSemaClear
Fast version of serna clear.

Returns STATUS.

Function ProTotype STATUS EXPORTED OSFastSemaClear
P_OS_FAST_SEMA pSema

) ;

OSFastSemaClear should be used in conjunction with OSFastSemaRequest when using semaphores to

protect critical sections of code. OSFastSemaRequest/OSFastSemaClear implement a counting
semaphore model which allows nesting of OSFastSemaRequest calls. Only after the same number of

OSFastSemaClear calls will the next waiting task enter the critical section. Up to 64K nestings are
allowed.

Fast semaphores are fast by sacrificing protection. The semaphore structure passed into this routine is
modified in the same privilege level as the caller. Only if another task is waiting on the semaphore will a

privilege level transition occur.

There are a number of important limitations that a developer should understand about fast semaphores.

1) If a task owns a fast semaphore and then dies before releasing it, the

semaphore will not be released automatically by the system.

2) The fast semaphores should not be copied from one location to another.

The routines rely on the address of the semaphore structure being

the same.

OSFastSemaRequest

OSGetTime
Returns local time.

Returns STATUS.

FUnd!{;:m Prototype STATUS EXPORTEDO OSGetTime (
SIZEOF structLength,
P_OS_DATE_TIME pDateTime

) ;

II size of the date/time struct
II Out: date, time and time zone information

If an error is returned, the time returned will be Jan 1, 1900.

148 PENPOINT API REFERENCE

Part a/System Services

OSSetTime
Sets the time or time zone.

Returns SfATUS.

Fundion Prototyp$ STATUS EXPORTEDO OSSetTime (
OS_SET_TIME_MODE setMode,
SIZEOF structLength,
P_OS_DATE_TIME pDateTime

) ;

OSProgramInfo

II which attributes to set
II size of the date/time struct
II date, time and time zone information

Returns information on the program from the loader.

Returns Sf ATUS.

Function Prototyt»® STATUS EXPORTEDO OSProgramInfo (
OS_PROG_HANDLE progHandle,
P_OS_PROG_INFO pInfo

) ;

II program handle given out by the loader
II Out: information buffer

OSProgramInfo will return information on the program handle passed in.no valid handle exists for that
number, then the routine will returnon the numerically smallest program handle just largerthe
number passed in. The program handle found will be put in theinformation buffer. If no valid
handle exists that islarger than progHandle, then Nil will be returned in thehandle field of the
information structure with stsOK beingfrom the function.

To iterate over all program handles in the system, simply start byOSProgramInfo with a progHandle of
o. This will return thesmallest program handle. On the next call, use thathandle + 1, and on and on
until the returned program handleO.

OSPowerUpTime
Passes back the number of milliseconds since the last reset.

Returns OS_MILLISECONDS.

Function Pwot0typ® OS_MILLISECONDS EXPORTEDO OSPowerUpTime (void) ;

ScreenOnlyStringPrint
Prints a string onto the console.

Returns nothing.

Fund!0t'1 Prot©tyt»e void EXPORTEDO ScreenOnlyStringPrint (
P_STRING pSt ring II string to print

) ;

This routine will not log output through the debug log. It will only display characters on the screen.

Debugger
Enters the debugger.

Returns nothing.

tifdef DEBUG
tdefine Debugger()

telse
tdefine Debugger()

tendif

OSDebugger ()

OS.H 149
Functions

Comments This macro will call the symbolic debugger (DB). If the symbolic debugger is not available the low-level
kernel debugger is called. In production code (i.e., compiled without IDDEBUG) this macro does
nothing.

OSDebugger
Enters the debugger, should only be called in special situations.

Returns nothing.

function Prototype void EXPORTED OSDebugger (void) ;

Comments Most clients should call Debugger NOT OSDebugger. OSDebugger is used in special situations were a

debugger needs to be called in production code. When a call to the production version of OSDebugger
is made, the debug flag IDDI0000 must be set to actually enter the debugger. If the debug flag is not set
the call is a N (]J .

NOTE: OSDebugger should only be called in exceptional cases, such as, page fault handling.

KeyPressed
Determines if a key is available.

Returns BOOLEAN.

function Prototype BOOLEAN EXPORTEDO KeyPressed (

Comments

P_U16 pCh II Out: the char if true is returned
) ;

This routine is provided for support of low level code below the input system.

The high byte of the key is the scan code.

TRUE if a key is available

FALSE if no key is available

KeyIn

KeyIn
Passes back the next key and the scan code from the keyboard.

Returns a keyboard character.

~undion Prototype U16 EXPORTEDO KeyIn (void);

Comments The KeyIn routine is provided for support of low level code below the input system.

The high byte of the key is the scan code.

See Also KeyPressed

OSDisplay
Changes the display to the console or the graphics screen.

Returns the old display mode.

Funetlon Prototype OS_DISPLAY _MODE EXPORTEDO OSDisplay (
OS_DISPLAY_MODE newDisplayMode

) ;
II set the display mode.

This call is only valid on single headed development systems. In all other configurations, the call does

nothing.

150 PEN POINT API REFERENCE

Part 8 / System Services

OSSetlnterrupt
Sets up an interrupt handler.

Returns STATUS.

flJm:yi@n Pr1Sf1St),pe STATUS EXPORTED OSSetInterrupt (
P_OS_INTERRUPT_INFO pIntInfo II In-Out: interrupt info

) ;

The old interrupt info is also returned. Callable only in ring O.

OSTimerAsyncSema
Reset a semaphore after time milliseconds.

Returns STATUS.

Flmd-i1Sn PrororYPG STATUS EXPORTEDO OSTimerAsyncSema (
OS_MILLISECONDS time,
OS_SEMA_ID serna,

II waiting period before serna reset
II semaphore to reset

CommGnrs

P_OS_HANDLE pTransactionHandle II Out: ptr to transaction handle
) ;

The transaction handle can be used to stop the request if desired.

OSTimerlntervalSema
Resets a semaphore after each time interval has elapsed.

Returns STATUS.

Function PrototypG STATUS EXPORTEDO OSTimerIntervalSema (
OS_MILLISECONDS timeInterval,
OS_SEMA_ID serna,

II time interval in milliseconds
II semaphore to reset

P_OS_HANDLE pTransactionHandle II Out: timer transaction handle
) ;

The transaction handle can be used to stop the request if desired.

OSTimerStop
Stops a timer request given its transaction handle.

Returns STATUS.

Flmdion ProtorYPG STATUS EXPORTEDO OSTimerStop (
OS HANDLE transactionHandle

) ;

OSTimerTransaction Valid
Checks to see if the timer transaction is valid.

Returns STATUS.

II transaction to stop

furn:t!@t! Prototype STATUS EXPORTEDO OSTimerTransactionValid (
OS HANDLE transactionHandle

) ;

OS.H 151
Functions

OSModuleLoad
Loads a module into the loader's database.

Returns Sr ATUS.

Fundkm Prototype STATUS EXPORTEDO OSModuleLoad (
P_CHAR moduleName,

) ;

P_CHAR pWorkingDir,
P_OS_PROG_HANDLE pProgHandle,
P _CHAR pBadMod,

P_CHAR pBadReference

II Module name or dlc name
II Working dir of the app
II Out: Program handle
II Out: If error, name of module that
II failed, buffer must be
II maxModNameLength+1 long
II Out: If error, ref name not understood
II buffer must be maxModNameLength+1 long

Comments If a dIe file is provided, all dlls in the file will also be loaded if not loaded already.

OSModuleLoad will not return until instance 0 of all loaded dlls are completed. No message
. dispatching will occur during this time. If communication to the calling task is required, use
IMModuleLoad (install.h, install.lib).

OSProgramInstall

OSEntrypointFind
Finds an entrypoint in a loaded module either by name or by ordinal.

Returns STATUS.

FI..mdi©n Prototype STATUS EXPORTEDO OSEntrypointFind (
OS_ENTRYPOINT_TYPE entryType,
P_STRING pName,

) ;

U16 ordinal,
OS_PROG_HANDLE progHandle,
PP_MEM ppEntrypoint

OSModuleLoad

OSProcessProgHandle

II name or ordinal
II name if entryType is name
II ordinal if entryType is ordinal
II Program handle
II Out: ptr to entrypoint address

Passes back the program handle for the process.

Returns the program instance number.

Fundlon Prototype U16 EXPORTEDO OSProcessProgHandle (
P_OS_PROG_HANDLE pProgHandle

) ;

o SEnvSearch

II Out: ptr to program handle

Searches the environment for the specified variable and returns its value.

Returns STATUS.

Fundkm Prototype STATUS EXPORTEDO OSEnvSearch (
P_STRING pVariable,
P_STRING outBuf,
SIZEOF bufLen

) ;

II variable name
II Out: Output buffer for variable value
II output buffer length

152 PEN POINT API REFERENCE

Part 8 / System Services

OSfaskNameSet
Sets a 4 character name for the given task.

Returns SfATUS.

STATUS EXPORTEOO OSTaskNameSet(
OS TASK 10 task1d,
PCHAR name

) i

OSThisApp

II task to name
II name of task

Passes back the application object stored with the current process.

Returns OBJECT.

Fi.$hdion Prototype OBJECT EXPORTEOO OSThisApp (void) ;

o SfaskApp
Passes back the application object for a given process.

Returns OBJECT.

Fundlon f»r©wofype OBJECT EXPORTEDO OSTaskApp (OS_TASK _10 task);

OSAppObjectPoke
Stores the application object for the current process.

Returns nothing.

Ftmdloft Prohstype void EXPORTEOO OSAppObjectPoke (
OBJECT object II current processes application object

);

o SPowerD own
Powers down the machine.

Returns nothing.

Fundlon Prototype void EXPORTEOO OSPowerOown (void);

o SErrorBeep
Outputs a tone based on the type of error encountered.

Returns nothing.

Fundlon f»rowofype void EXPORTEOO OSErrorBeep (
OS ERROR TYPE errorType II type of error

) ;

OSfone
Sends a tone for a given duration at the specified volume level.

Returns Sf ATUS.

STATUS EXPORTEDO OSTone(
U16
U16
U16

) ;

frequency,
duration,
volumeLevel

II in Hertz
II in milliseconds
II 0 for off; 1 for on

OS.H 153
Functions

OSThisWinDev
Passes back the windowing device for this application.

Returns OBJECT.

Functioh Prototype OBJECT EXPORTEDO OSThisWinDev (void) ;

o SWinDevPoke
Stores the windowing device for the specified process.

Returns nothing.

fundion Prototype void EXPORTEDO OSWinDevPoke (
OS TASK 1D process,
OBJECT winDev

II owner of application
II Window device object

) ;

OSf askProcess
Returns the process id for the task specified.

Returns OS_TASK_ID.

Fum:tion Prototype os TASK 1D EXPORTEDO OSTaskProcess (
OS TASK 1D task

) ;

If the task parameter is invalid, the routine will return osNullT askId.

OSf askInstallTerminate
Notifies tasks waiting on OSProgramInstall that the instance is finished.

Returns nothing ..

fundicm Prototype void EXPORTEDO OSTask1nstallTerminate (
BOOLEAN wait

) ;

If the parameter is set the TRUE, then the caller will go into an infinite wait state in order to keep the
task and it's allocated resources alive.

OSMemlnfo
Returns information on memory usage for a specified task.

Returns STATUS.

Functloh Prototype STATUS EXPORTEDO OSMem1nfo (
S1ZEOF memBufSize,
P_OS_MEM_1NFO pMem1nfo

) ;

OSMemUselnfo

II size of the info buffer (in bytes)
II Out: info buffer

Returns information on memory usage for a specified t~sk.

Returns STATUS.

function Prototype STATUS EXPORTEDO OSMemUse1nfo (
S1ZEOF memBufSize,
P_OS_MEM_USE_1NFO pMem1nfo

) ;

II size of the info buffer (in bytes)
II Out: info buffer

en
III
U

~

l

154 PENPOINT API REFERENCE

Part 8 I System Services

OSMemAvailable
Return amount of swappable memory available (to caution zone).

Returns STATUS.

FU!'H::tion Prototype STATUS EXPORTEDO OSMemAvailable (
P U32 pAvailable

) ;

OSSystemlnfo
Passes back information on the system configuration.

Returns STATUS.

Flmdion Prototype STATUS EXPORTED OSSystemInfo
SIZEOF bufSize,
P_OS_SYSTEM_INFO pSystemInfo

) ;

osPrintBufferRoutine
Function variable print routine.

Returns nothing ..

II size of the info buffer (in bytes)
II Out: info buffer

Function Prototype extern void FunctionPtr (osPrintBufferRoutine) (P _CHAR pStr, SIZEOF len);

(cmm(tnts All debug out (Debugf, DPrintf, printf, etc) flows through this function.

GSMEAP.M

This file describes the heap memory management routines.

Heaps are used to allocate local and shared memory efficiently.

The functions described in this file are contained in PENPOINf.LIB.

Introduction
Heaps allocate regions of virtual memory and manage the allocation and freeing of smaller blocks within

those regions.

Heaps have many different characteristics which are specified when the heap is created (see

OSHeapCreate). For example, heaps can be shared (i.e. put in the shared memory space) or local.

A heap is identified by a heap handle. PenPoint pre-defines two heap handles for each process, as

described below. OSHeapCreate also returns the handle of a new heap. Most heap routines take the

heap handle as a parameter to identify the heap.

Pre-defined Heaps
PenPoint pre-defines two heaps for every process. These heaps can be used without calling

OSHeapCreate.

osProcessHeapld is the handle for the pre-defined local heap in each process.

osProcessSharedHeapld is the handle for the shared heap. The shared heap behavior is the same as the

local heap except that the shared heap resides in shared memory. Blocks allocated from the shared heap

are accessible from any process.

Quick Start
Many clients call only the following functions, using one of the two pre-defined heaps.

• OSHeapBlockAlloc

• OSHeapBlockFree

Clients who need to create their own heaps also call the following functions:

• OSHeapCreate

• OSHeapDelete

Debugging Flags
Heap Manager debugging flag set is '*'. Defined flags are:

1: Validate heap before OSHeapBlockAlloc and before OSHeapBlockFree

2: Display message for each heap block allocate and free

4: Display message for each heap create and deletelO: Validate heap after OSHeapBlockAlloc and

after OSHeapBlockFree 20: Display messages about internal region operation (private)

'56 PENPOINT API REFERENCE
Part 8 I System Services

1000 Display messages about the internal workings (private)

8000 Enter the debugger after printing warnings.

Memory Overhead
A heap consists of the memory allocated by the client plus the structures needed by the heap manager
itself to maintain the heap. This section describes the overhead imposed by these structures.

A heap is constructed as a collection of REGIONS. The overhead for a region is 36 bytes. By default,
regions are 16Kb long; however, a request larger than ,-J 16K causes the creation of a special region whose
size is a multiple of 4K and large enough to handle the request.

Each region have any number of allocated blocks within it. The overhead of an allocated block (beyond
the size requested) is 4 bytes, plus 0-3 bytes as necessary to pad the whole block up the nearest 32-bit
boundary.

fifndef OS HEAP_INCLUDED
fdefine OSHEAP_INCLUDED
fifndef GO_INCLUDED

finclude <go.h>
fendif
fifndef OSTYPES INCLUDED

finclude <ostypes.h>
fendif

Common #defines and typedefs
Heap attributes for OSHeapCreate

Enum16 (OS_HEAP_MODE) {
osHeapLocal = 0, II heap is local to the owning process
osHeapShared = flagO, II heap is accessible by all processes

'osHeapReadWrite = 0, II heap is writable

} ;

osHeapReadOnly = flag1, II heap is only readable
osHeapOptSpace = 0, II heap is optimized for space
osHeapOptTime = flag2, II heap is optimized for speed
osHeapWaitForMem = 0, II wait for memory to become available
osHeapOutOfMemErrOK = flag3 II doesn't wait, returns out-of-memory error
II flags 5-10 reserved as supervisor flags

Heap information

typedef struct OS_HEAP BLOCK INFO {
SIZEOF numBlocks; II total number of blocks
SIZEOF totalSize; II total f bytes in all blocks
SIZEOF minSize; II f bytes in smallest block
SIZEOF maxSize; II f bytes in largest block

OS HEAP BLOCK INFO, * P_OS_HEAP_BLOCK_INFO;
typedef struct OS_HEAP_INFO { II info on a given heap

OS_HEAP_BLOCK_INFO alloc; II info for allocated blocks
OS_HEAP_BLOCK_INFO free; II info for free blocks
U32 numRegions; II f regions in heap
U32 committedSize; II f bytes committed
U32 decommittedSize;11 f bytes decommitted
U32 reservedSize; II f bytes reserved
U32 numOwners; II f tasks which have heap open
OS HEAP MODE heapMode; II Mode used in heap creation

OS_HEAP_INFO, * P OS HEAP_INFO;
fdefine OSTaskSharedHeapld(t) ((OS_HEAP_ID)OSTaskProcess(t))

OSHEAP.H 157

Functions

Functions

OSHeapCreate
Creates a heap.

Returns SfATUS.

STATUS EXPORTED OSHeapCreate(

) ;

OS HEAP MODE mode,
S1ZEOF
P OS HEAP 1D

size,
pHeap1d

II heap create mode
II initial region size
II Out: heap id

The size of the initial region allocated by the heap manager is a parameter to OSHeapCreate. If the
amount of memory required by the heap is more than the size of the initial region, the heap manager
allocates additional regions of 16K or the last request size, whichever is larger. An initial region size of 0
will default to 16K.

stsOSRequestTooBig The requested size is greater than maxS32.

stsOutOfMem The heap cannot be created because there is not enough memory available within the
system.

stsBadParam The mode parameter specified an illegal mode.

OSHeapDelete

OSHeapDelete
Deletes a heap. Frees all memory allocated by clients and by the heap manager.

Returns Sf ATUS.

Function PmrotypB STATUS EXPORTED OSHeapDelete (

i(eturn Vulue

See Als@

OS HEAP 1D heap1d II heap id of heap to delete
) ;

Even heap blocks that are still allocated are deleted.

If other tasks have opened the heap (using OSHeapOpen), the heap is not actually deleted until all tasks
that have opened the heap have closed it (using OSHeapClosed). Note that this routine is similar to

calling OSHeapClose with the current task.

stsOSlnvalidHeapld The heapld was invalid or inaccessible.

OSHeapCreate

OSHeapAllowError
Changes the" out of memory" behavior of heap block allocation.

Returns OS_HEAP _ID.

tdefine OSHeapAllowError(heap) \
((OS HEAP 1D) ((U32) (heap) losHeap1dOutOfMemErrOKBit))

tdefine osHeap1dOutOfMemErrOKBit flagO

Normally when a heap block is requested, the heap manager returns only when the memory is available.
Calling OSHeapAllowError changes the heap so that if the system has insufficient memory the heap
manager returns immediately with stsOutOfMem.

158 PENPOINT API REFERENCE

Part 8 / System Services

OSHeapClear
Clears a heap. Deletes all the allocated heap blocks but not the heap.

Returns STATUS.

Function Prototype STATUS EXPORTED OSHeapClear (
OS_HEAP_ID heapld

) ;
II heap id of heap to clear

stsOSHeapOpen Heap has multiple owners and cannot be cleared.

stsOSlnvalidHeapld The heapld was ihvalid or inaccessible.

OSHeapDelete

OSHeapBlockAlloc
Allocates a block within the heap.

Returns STATUS.

Fum:tion Prototype STATUS EXPORTED OSHeapBlockAlloc (
OS HEAP ID heapld, II heap id
SIZEOF - size, II size of block to allocate
PP UNKNOWN ppHeapBlock II Out: pointer to new heap block

) ;

The memory for the heap block is obtained from the list of regions in the heap. If a heap allocate

request is larger than the available space in the region, a new region is allocated for the request.

The newly allocated block is at least as large as the requested length. Sometimes, the heap manager

allocates a block larger than the requested size. Heap blocks are always allocated on 32-bit boundaries.

Heap blocks are allocated on behalf of the creator of the heap. Even if the allocate occurs in a different

task than the creator, the new memory is owned by the creator of the heap.

WARNING. This function expects a valid heap identifier. Using an invalid heap identifer can cause

unpredictable results (including a page fault). A heapld for a heap that has been deleted is considered to

be invalid.

OS HeapBlockFree

stsOSRequestTooBig The requested block size greater than maxS32.

stsOutOfMem The heap cannot grow any bigger because the system is out of memory.

stsOSlnvalidHeapld The heapld given is invalid.

stsOSHeaplntegrityError The heap has been corrupted (heap flag 1).

OSHeapBlockFree
Frees a heap block.

Returns STATUS.

function Prototype STATUS EXPORTED OSHeapBlockFree (
P_UNKNOWN pHeapBlock II pointer to heap block

) ;

WARNING. This function expects a valid heap block. Using an invalid heap block can cause

unpredictable results (including a page fault).

OSHEAP.H 159

Functions

OSHeapBlockAlloc

stsOSlnvalidHeapld The heapld given is invalid.

stsOSHeaplntegrityError The heap has been corrupted (heap flag 1) or heap block pointer is bad

(debug only).

stsBadParam The heap block pointer is bad (debug only).

OSHeapBlockResize
Resizes a heap block.

Returns Sf ATUS.

Function Prototype STATUS EXPORTED OSHeapBlockResize (
SIZEOF newSize, II new size to allocate
PP_UNKNOWN ppHeapBlock II Out: New pointer is returned here.

) ;

The heap block is resized to the new size. This may be slightly faster than allocating a new block and
copying the original block)s contents.

After the call the heap block may be identified with a new pointer value) which is returned in

*pp Heap Block.

The actual size of the new heap block may be slightly larger than the request.

WARNING. This function expects a valid heap block. Using an invalid heap block can cause

unpredictable results (including a page fault).

OSHeapld
Passes back the heap id from which a heap block has been allocated.

Returns OS_HEAP _ID.

fum::tion Prototype OS_HEAP _ ID EXPORTED OSHeapId (
P_UNKNOWN pHeapBlock II pointer to a heap block

) ;

WARNING. This function expects a valid heap block. Using an invalid heap block can cause

unpredictable results (including a page fault).

OSHeapBlockSize
Passes back the size of the heap block.

Returns Sf ATUS.

Function Prototype STATUS EXPORTED OSHeapBlockSize (

Comments

P_UNKNOWN pHeapBlock, II pointer to the heap block
P SIZEOF pSize II Out: size of the heap block

) ;

The size returned is the actual size of the heap block. This may be slightly larger than the requested size.

WARNING. This function expects a valid heap block. Using an invalid heap block can cause

unpredictable results (including a page fault).

OSHeapBlockAlloc

160 PENPOINT API REFERENCE

Part 8 / System Services

OSHeapPoke
Stores 32 bits of client info in the heap header.

Returns STATUS.

FlInction Prototyp~ STATUS EXPORTED OSHeapPoke (
OS_HEAP_ID heapId,
P UNKNOWN info

) ;

II heap id
II uninterpreted pointer stored in heap header

The client info is not interpreted by the heap manager.

There is only client info field per heap; if more than one call is made to OSHeapPoke, the most recent
caller determines the value stored.

WARNING. This function expects a valid heap identifier. Using an invalid heap identifer can cause
unpredictable results (including a page fault). An heapId for a heap that has been deleted is considered
to be invalid.

OSHeapPeek
Passes back the client info previously set via OSHeapPokeO.

Returns STATUS.

Function Prototype STATUS EXPORTED OSHeapPeek (
OS_HEAP_ID heapId,
PP_UNKNOWN pInfo

) ;

II heap id
II Out: pointer stored by OSHeapPoke

WARNING. This function expects a valid heap identifier. Using an invalid heap identifer can cause
unpredictable results (including a page fault). A heapId for a heap that has been deleted is considered to
be invalid.

OSHeaplnfo
Passes back information on a heap.

Returns STATUS.

Function Prototype STATUS EXPORTED OSHeapInfo (
OS_HEAP_ID heapId,
SIZEOF heapInfoSize,
P OS HEAP INFO pHeapInfo

) ;

II heap id
II size of heap info buffer
II Out: heap info buffer

stsOSInvalidHeapId The heapId was invalid or inaccessible.

stsOSHeapIntegrityError The heap has been corrupted. Under debug version additional info is
printed.

OSHeapOpen
Adds the specified task as an owner of the specified heap.

Returns STATUS.

FlInctlon Prototype STATUS EXPORTED OSHeapOpen (
OS_HEAP_ID heapId,
OS TASK ID taskId

) ;

II heap id
II task to add as an owner

OSHEAP.H 161

Functions

Heaps are owned by the task that creates them. When the task is destroyed the heap is automatically
destroyed. If one task wants to access another task's heap, the heap should be opened. Opening a heap is
not required, but if the task owning the heap is destroyed while the second task is accessing the heap, the
second task will fault.

Memory resources allocated in the heap are not actually destroyed until the last owner of the heap
deletes the heap. Note that if the heap is opened multiple times by the same owner, a corresponding
OSHeapClose or OSHeapDelete must occur for each before resources are deallocated.

The kernel automatically destroys heap resources when all of the owners of the heap have terminated.

The heap is automatically opened on the behalf of the creator during an OSHeapCreate.

stsOSlnvalidHeapld The heap must be a shared heap to be opened, the heapld was invalid or
inaccessible.

OSHeapCreate

OSHeapClose
Remove the specifed task as an owner of the specified heap.

Returns SfATUS.

fundion Pn:t1©?yf.'v;) STATUS EXPORTED OSHeapClose (
OS_HEAP_ID heapId,
OS TASK ID taskId

) ;

II heap id
II task to remove as an owner

When the heap has been closed by the last owner, the heap is automatically deleted.

stsOSlnvalidHeapld The heapld was invalid or inaccessible.

OSHeapClose

OSHeapEnumerate
Enumerates all the heaps in the given process.

Returns SfATUS.

ftJrldt©n Prototype typedef STATUS FunctionPtr (P _OS_HEAP _ENUMERATE)
OS HEAP_ID heapId, II next heap
OS HEAP MODE heapMode, II mode of heap
P UNKNOWN clientData II client data of OSHeapEnumerate

) ;

fumj'lon Prototype STATUS EXPORTED OSHeapEnumerate (
P_OS_HEAP_ENUMERATE pEnumProc,
P UNKNOWN clientData

) ;

II passed EnumProc on each call

For each heap in the current process, OSHeapEnumerate calls the supplied callback procedure. This

routine is supplied with a heapld and its mode.

OSHeapEnumerate continues until it has exhausted all the heaps in the current process or the callback
routine returns an error status. If the callback procedure returns an error status, processing is terminated
and the error status is returned to the caller of OSHeapEnumerate.

stsOSlnvalidHeapld The heapld was invalid or inaccessible.

OS HeapWalk

162 PEN POINT API REFERENCE
Part 8 / System Services

OSHeapWalk
Traverses the given heap.

Returns STATUS.

typedef struct OS_HEAP_WALK_INFO {
P_UNKNOWN pBlock; II address of heap block
U32 size; II size of block
BOOLEAN inUse; /1 true if the block is allocated
P UNKNOWN clientData; II set to the client data of OSHeapWalk
17 The following fields are only supported by a debugging version of
II PenPoint's kernel. Changing their value modifies the heap block.
BOOLEAN marked; II true if the block was marked w/OSHeapMark
OS_TASK_ID owner; 11'last task to allocate or free this block
P UNKNOWN caller; II address of the last OSHeapBlockAlloc/Free

OS HEAP WALK_INFO, * P_OS_HEAP_WALK_INFO;
typedef STATUS Functionptr(P_OS_HEAP_WALK) (P_OS_HEAP_WALK_INFO pInfo);

Function Profotyp;;, STATUS EXPORTED OSHeapWalk (

) ;

OS_HEAP_ID heapId,
P OS HEAP_WALK pWalkProc,
P UNKNOWN clientData

II heap to walk
II procedure to call for each heap block
II passed directly to pWalkProc

For each allocated block in the given heap, calls the supplied callback routine, providing the address and
size of the block. OSHeap Walk continues until it has exhausted all allocated blocks in the heap or the
callback routine returns an error status. If the callback procedure returns an error status, processing is

terminated and the error status is immediately returned to the caller of OS Heap Walk.

stsOSlnvalidHeapld The heapld was invalid or inaccessible.

OSHeapEnum.erate

OSHeapMark
Marks all the allocated blocks in given heap.

Returns STATUS.

Fundinn Pn:jfolype STATUS EXPORTED OSHeapMark (
OS_HEAP_ID heapId II heap to mark

) ;

Combining OSHeapMark with OSHeapWalk provides a simple means to track down storage leaks. For

example:

II Program is in a known state
OSHeapMark(myHeap);

II Lots of OSHeapBlockAlloc/Free calls
OSHeapBlockAlloc(myHeap, xx, &blk);
OSHeapBlockFree(blk);

II Program is back to the known state.
II Any unmarked heap blocks probably indictate a storage leak
OSHeapWalk(myHeap, MyHeapWalker)i

stsOSlnvalidHeapld The heapld was invalid or inaccessible.

OSHeapWalk

OSHEAP.H 163
Functions

OSHeapPrint
Prints debugging info about the given heap.

Returns Sf ATUS.

typedef enum OS_HEAP_PRINT_FLAGS
osHeapSuppressFree = flagO, II Don't print the free blocks
osHeapSuppressInUse = flagl, II Don't print the allocated blocks
osHeapSuppressMarked = flag2, II Don't print the marked blocks
osHeapSuppressUnmarked = flag3, II Don't print the unmarked blocks
osHeapSuppressSummary = flag4, II Don't print the heap summary
osHeapDisplayRegions = flagS, II Print regions in heap
osHeapPrintAll = 0, II Display summary and all blocks
osHeapPrintSummaryOnly II Display summary

osHeapSuppressFreeI osHeapSuppressInUseI
osHeapSuppressMarkedlosHeapSuppressUnmarked,

II Show blocks created since the last call to OSHeapMark
osHeapPrintActiveBlocks = osHeapSuppressFreelosHeapSuppressMarked

OS_HEAP_PRINT_FLAGSi
STATUS EXPORTED OSHeapPrint(OS_HEAP_ID heapId, OS_HEAP_PRINT_FLAGS suppress);

OSHeapPrint is only available in a debugging version of the PenPoint kernel. This request is not

supported in production versions of Penpoint.

OSHeapPrint assumes the heap is not corrupted; in other words, OSHeapPrint does not duplicate any

of the integrity tests done by OSHeaplnfo.

stsOSlnvalidHeapld The heapld was invalid or inaccessible.

Flags for OSHeapPrint

en
u

~

l

OSPRIY.H

This include file describes the prototypes for supervisor privilege PenPointroutines. The functions
described in this file are contained in PENPOINf.LIB.

#ifndef OSPRIV_INCLUDED
#define OSPRIV_INCLUDED
#ifndef OS_INCLUDED
#include <os.h>
#endif

Common #defines and typedefs
The following are heap modes for supervisor level clients

#define osHeapSupervisor flagS II heap memory access is limited to supervisor
#define osHeapNoSwap flag6 II heap memory is never swapped
#define osHeapSystem flag10 II heap is owned by the system not a process

Special heap defines for supervisor level clients

#define osGlobalHeapId ((OS_HEAP_ID) 10)

Physical address types

typedef U32
typedef OS_PHYS_ADDR *

Program region information

OS_PHYS_ADDR;
P_OS_PHYS_ADDR;

typedef struct OS_PROGRAM_REGION_INFO
P MEM base;
SIZEOF length;

II predefined heap for sys clients

II physical mem address

OS_PROGRAM_REGION_INFO, *P_OS_PROGRAM_REGION_INFO;

Functions

OSIntMask
Sets the interrupt mask for a given interrupt.

Returns STATUS.

ftmdio!1 Pnstotype STATUS EXPORTED OSIntMask (
OS_INTERRUPT_ID intNum,
P_BOOLEAN pEnable

) ;

II logical interrupt id
II In-Out: TRUE = enable, returns old mask

Note: OR in the flag osIntNumIsHardwareLevel if intNum is a hardware interrupt level (vs a MIL

logical device id). The flag is defined in ostypes.h.

Warning!!! Supervisor privilege only.

166 PENPOINT API REFERENCE

Part 8 / System Services

OSIntEOI
Send an EOI request to the interrupt controller device.

Returns Sf ATUS.

fwm:rlon Proto1yp~ STATUS EXPORTED OSIntEOI (
OS INTERRUPT ID intNum II MIL device id or hw interrupt level

C©mm~t1ts

- -
) ;

Note: OR in the flag osIntNumIsHardwareLevel if intNum is a hardware interrupt level (vs a MIL
logical device id). The flag is defined in ostypes.h.

Warning!!! Supervisor privilege only.

OSProgramRegionlnfo
Passes back region information for the debugger.

Returns SfATUS.

fwndlon PrZtfZtwypc STATUS EXPORTED OSProgramRegionInfo (
OS_PROG_HANDLE progHandle,
P U32 pNRegions,
P_OS_PROGRAM_REG I ON_INFO pRI

) ;

Warning!!! Supervisor privilege only.

OSSysSemaRequest
Requests access to a system semaphore.

Returns Sf ATUS.

II program handle
II Out: number of regions
II Out: region information

f\Hldlon PrZth'j1yp{~ STATUS EXPORTED OSSysSemaRequest

CZtmments

OS_SEMA_ID serna II the semaphore to lock
) ;

System semaphores are regular semaphores with a little more protection. If a task owns a system

semaphore, then that task cannot be terminated or suspended by another task until the system
semaphore is relinquished. With this feature, tasks can be sure that any system critical data structures

will be completely updated.

If the task terminates itself while it owns a system semaphore, then the next task that acquires the system
semaphore will get the warning stsOSSemaLockBroken.

OSSysSemaClear should be used to relinquish the system semaphore. The function OSSemaCreate is

used to create the system semaphore. Any semaphore can become a system semaphore simply by calling

this routine. System semaphores are only used for critical section management. Do NOT use system
semaphores for event handling.

Like regular semaphores, system semaphores are counting semaphores.

Warning!!! Supervisor privilege only.

stsOSSemaLockBroken Previous locker of semaphore died without dearing the semaphore

OSSemaCreate

OSPRIV.H 167

Functions

OSSysSemaClear
Releases access to the the system semaphore.

Returns STATUS.

Fund-iort Pr©t©type STATUS EXPORTED OSSysSemaClear
OS_SEMA_1D serna II the semaphore to unlock

) ;

Comments System semaphores are regular semaphores with a little more protection. If a task owns a system

semaphore, then that task cannot be terminated or suspended by another task until the system

semaphore is relinquished. With this feature, tasks can be sure that any system critical data structures
will be completely updated.

If the task terminates itself while it owns a system semaphore, then the next task that acquires the system

semaphore will get the warning stsOSSemaLockBroken.

OSSysSemaClear should be used to relinquish the system semaphore. The function OSSemaCreate is
used to create the system semaphore. Any semaphore can become a system semaphore simply by calling

OSSysSemaRequestl OSSysSemaClear. System semaphores are only used for critical section
management. Do NOT use system semaphores for event handling.

Like regular semaphores, system semaphores are counting semaphores.

Warning!!! Supervisor privilege only.

OSSysSemaRequest

OSSupervisorCall
Performs a privilege transition to supervisor privilege.

Returns U32.

*if defined(__ WATCOMC __) && defined(__ 386 __)
*pragma aux OSSupervisorCall parm [eax] [edx] [ecx] modify [gs];

fUlldloo Prelolype U32 __ far OSSupervisorCall (
P_UNKNOWN pFunction,
P UNKNOWN pStackParms,
U32 nStackParms

) ;

*endif

The function passed into the routine will be called by OSSupervisorCall in supervisor privilege. This
function will check to verify that the routine passed in is actually a supervisor level routine.

OSSupervisorCall will work correctly if called in supervisor level.

OSf askAddresslnfo
Passes back task and system memory information.

Returns STATUS.

fund-lor'! Prototype STATUS EXPORTED OSTaskAddress1nfo
P MEM pAddr,
OS TASK 1D owne·r,
S1ZEOF statBufSize,
P_OS_ADDRESS_1NFO pAddr1nfo

) ;

Warning!!! Supervisor privilege only.

II memory address
II owner of address
II size of info buffer (in bytes)
II Out: info buffer

168 PENPOINT API REFERENCE

Part 8 / System Services

Data structures used by OSResourcesAvailable
Enum16 (OS_RESOURCE_ZONE) {

osResourceZoneNormal,
osResourceZoneCaution,
osResourceZoneWarning,
osResourceZoneDanger,
oSResourceZoneCritical

} ;

#define numResourceZones 5
typedef struct OS_RESOURCE_AVAILABLE

OS_RESOURCE_ZONE current~onei

II Normal: plenty of resource
II Caution: resource is getting low
II Warning: resource is low
II Danger: resource is really low
II Critical: PenPoint will reboot

U32 resourceAvailablei
U32 zoneLimits[numResourceZones]i

OS_RESOURCE_AVAILABLE, *P_OS_RESOURCE_AVAILABLEi
typedef struct OS_RESOURCES_INFO {

OS RESOURCE_AVAILABLE swappableMemorYi
OS_RESOURCE_AVAILABLE nonSwappableMemorYi
OS_RESOURCE_AVAILABLE objectsi

OS RESOURCES INFO, *P_OS_RESOURCES_INFOi

OSResourcesAvailable
Returns info on the available resources in the system.

Returns STATUS.

STATUS EXPORTEDO OSResourcesAvailable
SIZEOF
P OS RESOURCES INFO

) i

OSMemMapA1loc

bufSize,
pInfo

II size of the info buffer (in bytes)
II Out: info buffer

Allocates linear memory for memory mapped hardware

Returns STATUS.

STATUS EXPORTED OSMemMapAlloc
U32 physAddr,
U32 length,
PP MEM ppMem

) i

II address of memory mapped area
II length of memory to allocate
II Out: return ptr to the memory

Creates a guard page after the memory. The memory is created with the attributes: read/write data,

system privilege, owned by system TId.

Note: the physical address passed in physAddr must be within the first 16MB of physical memory.

Warning!!! Supervisor privilege only.

OSMemMapFree
Frees memory which was allocated by OSMemMapAlloc

Returns STATUS.

Prol'otype STATUS EXPORTED OSMemMapFree
P MEM pMem II ptr to memory to free

) i

Warning!!! Supervisor privilege only.

Comments

OSDMAMemAlloc
Allocates linear memory that is DMA-able

Returns STATUS.

STATUS EXPORTED OSDMAMemAlloc

) ;

U32 length,
OS TASK 1D
PP MEM

owner,
ppMem

II length of memory to allocate
II owning task id.
II Out: return ptr to the memory

OSPRIV.H 169
Functions

Creates a guard page after the memory. The memory is created with the following attributes:

read/write access

supervisor privilege

Not swappable (every page locked).

All pages are mapped in and are physically contiguous in memory. For machines that have DMA
boundary conditions (e.g. can't cross 64k physical boundary), the memory allocated in this region is

guaranteed to honor those conditions. Memory will be allocated on system page size boundaries and all

allocations will be a minimum of the processor page size.

Warning!!! Supervisor privilege only.

OSDMAMennFree
Frees memory which was allocated by OSDMAMemAlioc

Returns STATUS.

STATUS EXPORTED OSDMAMemFree
P MEM pMem,
OS TASK 1D owner

) ;

Warning!!! Supervisor privilege only.

OSfaskMennInfo
Provides memory info for the system.

Returns STATUS.

II ptr to memory to free
II owning task id.

fUfv::1ion Prototype' STATUS EXPORTED OSTaskMem1nfo
OS TASK 1D task1d,
S1ZEOF memBufSize,
P_OS_MEM_1NFO pMem1nfo

) ;

Warning!!! Supervisor privilege only.

OSVirtToPhys

II info will be returned for task id
II size of the info buffer (in bytes)
II Out: info buffer

Translates a virtual address into a physical address.

Returns U32.

Fundion Prototype U32 EXPORTED OSVirtToPhys
P _UNKNOWN pMem

) ;
II virtual address

Warning!!! Supervisor privilege only.

170 PENPOINT API REFERENCE
Part 8 / System Services

OSMemLock
Locks pages in memory.

Returns Sf ATUS.

STATUS EXPORTED OSMemLock (

) ;

P MEM
SIZEOF

pMem,
length

II pointer to memory
II length in bytes of memory to lock

Locked pages will not be paged out of the system. If the page is paged out before this call, then the page
will be brought into memory and then locked.

A counter is maintained to keep track of multiple locks on a given page.

Warning!!! Supervisor privilege only.

OSMem Unlock
Unlocks pages in memory.

Returns SfATUS.

STATUS EXPORTED OSMemUnlock
P MEM pMem,
SIZEOF length

) ;

II pointer to memory
II length in bytes of memory to unlock

When the page is unlocked, it may be paged out by the memory manager.

A counter is maintained to keep track of multiple locks on a given page. When the counter goes to 0
then the page will be unlocked.

Warning!!! Supervisor privilege only.

OSTYPES.H

Module Description: This include file describes types for the Penpoint kernel.

#ifndef OSTYPES_INCLUDED
#define OSTYPES_INCLUDED
#ifndef GO INCLUDED
#include <go.h>
#endif

Defines
• Status values: errors

#define stsOSBadPointer
#define stsOSOutOfMem
#define stsOSNoMoreOwners
#define stsOSlnvalidPath
#define stsOSNoSemaExists
#define stsOSTimeOut
#define stsOSSemaReset
#define stsOSAliasesExist
#define stsOSInvalidOperationForTask
#define stsOSInvalidTaskld
#define stsOSTransactionInvalid
#define stsOSRequestTooBig
#define stsOSHeapIntegrityError
#define stsOSInvalidHeapId
#define stsOSSegmentDiscarded
#define stsOSFlashEraseFailure
#define stsOSFlashProgramFailure
#define stsOSBadExeFormat
#define stsOSInstallInternalError
#define stsOSMissingEntryName
#define stsOSMissingEntryOrdinal
#define stsOSInitiateInternalError
#define stsOSInitia~eStackOverflow
#define stsOSProglnstallError
#define stsOSTooManySelectors
#define stsOSTooManyInstances
#define stsOSDependenciesExist
#define stsOSTooManyRequireds
#define stsOSPathTooLong
#define stsOSModuleNotFound
#define stsOSBadDLCFormat
#define stsOSMissingDependency
#define stsOSInvalidProgramHandle
#define stsOSHeapOpen
#define stsOSHeapNotOpen

• Status values: warnings

#define stsOSSemaLockBroken

MakeStatus(clsOS, 1)
stsOutOfMem
MakeStatus(clsOS, 3)
MakeStatus(clsOS, 4)
MakeStatus(clsOS, 5)
MakeStatus(clsOS, 6)
MakeStatus(clsOS, 7)
MakeStatus(clsOS, 8)
MakeStatus(clsOS, 9)
MakeStatus(clsOS, 10)
MakeStatus(clsOS, 11)
MakeStatus(clsOS, 12)
MakeStatus(clsOS, 13)
MakeStatus(clsOS, 14)
MakeStatus(clsOS, 16)
MakeStatus(clsOS, 17)
MakeStatus(clsOS, 18)
MakeStatus(clsOS, 19)
MakeStatus(clsOS, 20)
MakeStatus(clsOS, 21)
MakeStatus(clsOS, 22)
MakeStatus(clsOS, 23)
MakeStatus(clsOS, 24)
MakeStatus(clsOS, 25)
MakeStatus(clsOS, 26)
MakeStatus(clsOS, 27)
MakeStatus(clsOS, 28)
MakeStatus(clsOS, 29)
MakeStatus(clsOS, 30)
MakeStatus(clsOS, 31)
MakeStatus(clsOS, 32)
MakeStatus(clsOS, 33)
MakeStatus(clsOS, 34)
MakeStatus(clsOS, 35)
MakeStatus(clsOS, 36)

MakeWarning(clsOS, 1)

'72 PENPOINT API REFERENCE
Part 8 / System Services

• Misc defines

#define osNullTaskld
#define osNullOpenSema
#define osInvalidHandle
#define osInfiniteTime
#define maxModNameLength

((OS_TASK_ID)NULL)
((OS_SEMA_ID) NULL)
((OS_HANDLE)NULL)
OxFFFFFFFF
32

• Well known heap ids

#define osInvalidHeapld
#define osProcessHeapld
#define osProcessSharedHeapld

((OS_HEAP_ID) 0)
((OS_HEAP_ID)&OSProcessHeapValue)
((OS_HEAP_ID)OSThisProcess(»

• Filters

#define osAnyITMessage OxFFFFFFFF
#define osStartupCommandLineFilter flagO
#define osCIsmgrSend flagO
#define osCIsmgrReply flag1
#define osMILFilter flag2
#define osAppSend flag3
#define osAppReply flag4
#define osTestManagerFilter flag5
#define osCIsmgrPost flag6
#define osInstallWaitingFilter flag30
#define osTerminatedTaskFilter flag31

NOTE: flag25 - flag29 reserved for users

#define userDefinedFilters
#define objSendFilter
#define objReplyFilter

(flag25 I flag26 I flag27 Iflag28 I flag29)
((OS_ITMSG_FILTER)osCIsmgrSend)
((OS_ITMSG_FILTER)osCIsmgrReply)

Used to treat the intNum field as a hardware interrupt level (vs a MIL logical device id) in the routines
OSSetInterrupt, OSIntMask and OSIntEOI.

#define osIntNumIsHardwareLevel

Typedefs
t ypedef P _UNKNOWN
typedef U32
typedef U16
typedef OS_HANDLE
typedef P_UNKNOWN
typedef OS_HANDLE
typedef U32
typedef U16
typedef U32
typedef U32
typedef P_MEM*
typedef OS_HANDLE*
typedef OS_TASK_ID*
typedef OS_SEMA_ID*
typedef OS_PROG_HANDLE*
typedef OS_ITMSG_ID*
typedef OS_ITMSG_FILTER*
typedef OS_TASK_ERROR*
typedef P_UNKNOWN
typedef enum OS_TASK_MODE

osThisTaskOnly,
osTaskFamily,
osAIITasks

flag15

P_MEM;
OS_HANDLE;
OS_TASK_ID;
OS_SEMA_ID;
OS_PROG_HANDLE;
OS_ITMSG_ID;
OS_ITMSG_FILTER;
OS_INTERRUPT_ID;
OS_MILLISECONDS;
OS_TASK_ERROR;
PP_MEM;
P_OS_HANDLE;
P_OS_TASK_ID;
P_OS_SEMA_ID;
P_OS_PROG_HANDLE;
P_OS_ITMSG_ID;
P_OS_ITMSG_FILTER;
P_OS_TASK_ERROR;

II Pointer to memory
II Handle to an object
II Task Id
II Open semaphore Id
II Loaded program handle
II message identifier
II Inter-task msg filter
II logical interrupt ID
II number of milliseconds

OS_HEAP_ID, * P_OS_HEAP_ID;

II "act" on this task only
II "act" on all tasks in the task family
II "act" on all tasks in the system

OS_TASK_MODE, * P_OS_TASK_MODE;

OSTYPES.H 173
Public Functions

typedef enum OS_PRIORITY_CLASS {

osDefaultClass, II use existing
osHighPriority, II the class is
osMedHighPriority, II the class is
osMedLowPriority, II the class is
osLowPriority II the class is
OS_PRIORITY_CLASS, * P _OS_PRIORITY_CLASSi

Public Functions

OSThisProcess
Passes back the task id of this tasks process.

Returns OS_TASK_ID.

function Prototype OS TASK ID EXPORTEDO OSThisProcess (void) i

class
"high priority"
"med high priority"
"med low priority"
"low priority"

Note: This function is defined here (instead of in os.h) to satisfy the definition for

osProcessSharedHeapld above.

sORT.H

Interfaces to sorting routines.

This file contains the API definition for the quicksort sorting algorithm.

NOTE: qsort can be found in stdlib.h

#ifndef SORT INCLUDED
#define SORT INCLUDED Version 1.0

Public Functions

quicksort
Sorts a linked list of records using the" quicksort" algorithm.

Returns pointer.

extern void ** quicksort (void **head, int (*comp) (void **, void **));

Usage:

struct record *head;
int comp (struct record *p, struct record *q);

head = quicksort (head, comp);

The routine "quicksort" takes an argument "head", which is a pointer to the first record of a linked list.
It also takes an argument "comp", which is the name of a user-supplied routine for comparing two list

records. The routine" comp" must take as its arguments a pointer to each of two list records, and must
return an integer, either (-1) if the first record is "smaller than" the second, (0) if the first record is

"equal to" the second, or (+1) if the first record is "larger than" the second.

After sorting, "quicksort" returns a pointer to the new first record of the linked list (i.e., the new "head"

of the list).

The structure of the linked list records is as follows. The first field of each list record must be the" next"
pointer. The actual data in the list records may be of variable size.

+------+ +------+ +------+ +------+ +------+
1 head 1---->1 next 1---->1 next 1---->1 next 1---->1 next 1---->pNull
+------+ +------+ +------+ +------+ +------+

1 data 1 1 data 1 data 1 data 1
1 1 1 1 1 1
1 1 +------+ 1 1
+------+ +------+

+------+

The "quicksort" algorithm is fast. However, it is recursive. When there are N records in the list, the

maximum recursion depth will average around (In N) calls. Each recursion puts about 30 bytes on

the stack.

TIMER.M

This file contains the API definition for clsTimer.

Notes:

"theTimer" is a well known object that provides timer and alarm support.

clsTimer inherits from clsObject.

#ifndef TIMER_INCLUDED
#define TIMER_INCLUDED

Include file dependencies for this include file

#ifndef GO_INCLUDED
#include <go.h>
#endif
#ifndef CLSMGR INCLUDED
#include <clsmgr.h>
#endif
#ifndef OS INCLUDED
#include <os.h>
#endif

Class Timer Messages

~sg1ri~erllegister

Registers a request for notification.

Takes P _TIMER_REGISTER_INFO, returns STATUS.

#define msgTimerRegister MakeMsg(clsTimer, 1)

typedef struct TIMER_REGISTER_INFO
OBJECT client; II client object to notify
OS MILLISECONDS time; II waiting period before msg is sent
P UNKNOWN clientData; II Uninterpreted client data
OS HANDLE transactionHandle; II Out: transaction handle
TIMER REGISTER_INFO, * P_TIMER_REGISTER_INFO;

Sent by the client to the timer object for notification after a specified time period has elapsed. At that
time, msgTimerNotify will be sent (via ObjectPost) to the client. See that message for details.

When the machine is turned off, the time period will stop counting down until the machine is turned
back on.

To stop the timeout message, use msgTimerStop.

The use of ObjectPost to send the msgTimerNotify message means that it will be synchronous with
input events.

stsBadObject The client field cannot be a local object.

178 PENPOINT API REFERENCE

Part 8 / System Services

nnsg1finnerltegisterl\sY11c
Registers a request for notification.

Takes P _TIMER_REGISTER_INFO, returns STATUS.

#define msgTimerRegisterAsync MakeMsg(clsTimer, 9)

typedef struct TIMER_REGISTER_INFO
OBJECT client; I I client object to notify
OS MILLISECONDS time; II waiting period before msg is sent
P UNKNOWN clientData; II Uninterpreted client data
OS_HANDLE transactionHandl~; II Out: transaction handle
TIMER_REGISTER_INFO, * P_TIMER_REGISTER_INFO;

Sent by the client to the timer object for notification after a specified time period has elapsed. At that
time, msgTimerNotify will be sent (via ObjectPostAsync) to the client. See that message for details.

When the machine is turned off, the time period will stop counting down until the machine is turned
back on.

To stop the timeout message, use msgTimerStop.

The use of ObjectPostAsync to send the msgTimerNotify message means that it will NOT be
synchronous with input events.

nnsg1finnerltegisterI>irect
Registers a request for notification.

Takes P _ TIMER_REGISTER_INFO, returns STATUS.

#define msgTimerRegisterDirect MakeMsg(clsTimer, 12)

typedef struct TIMER_REGISTER_INFO
OBJECT client; II client object to notify
OS MILLISECONDS time; II waiting period before msg is sent
P UNKNOWN clientData; II Uninterpreted client data
OS HANDLE transactionHandle; II Out: transaction handle
TIMER REGISTER_INFO, * P_TIMER_REGISTER_INFO;

Sent by the client to the timer object for notification after a specifi~d time period has elapsed. At that
time, msgTimerNotify will be sent (via ObjectPostDirect) to the client. See that message for details.

When the machine is turned off, the time period will stop counting down until the machine is turned
back on.

To stop the timeout message, use msgTimerStop.

The use of ObjectPostDirect to send the msgTimerNotify message means that it will NOT be
synchronous with input events.

nnsg 1finnerltegister Interval
Registers a request for interval notification.

Takes P _TIMER_INTERVAL_INFO, returns STATUS.

#define msgTimerRegisterInterval

typedef struct TIMER_INTERVAL_INFO

MakeMsg(clsTimer, 2)

OBJECT client; II client object to notify
OS MILLISECONDS interval; II waiting interval before msg is sent
P UNKNOWN clientData; II Uninterpreted client data
OS HANDLE transactionHandle; II ~ut: transaction handle
TIMER INTERVAL_INFO, * P_TIMER_INTERVAL_INFO;

TIMER.H 179

Class Timer Messages

Sent by the client to the timer for a notification message on a specified time interval. After each time

interval, msgTimerNotify will be posted (via ObjectPost) to the client.

When the machine is turned off, the time period will stop counting down until the machine is turned

back on.

To stop the interval messages, use msgTimerStop.

The use of ObjectPost to send the msgTimerNotify message means that it will be synchronous with
input events.

stsBadObject The client field cannot be a local object.

msgTimerStop
Stops a timer transaction.

Takes OS_HANDLE, returns STATUS.

#define msgTimerStop

msg TimerT ransaction Valid
Determines if a timer transaction is valid.

Takes OS_HANDLE, returns STATUS.

#define msgTimerTransactionValid

msgTimerNotify

MakeMsg(clsTimer, 11)

MakeMsg(clsTimer, 10)

Notifies the client that the timer request has elapsed.

Takes P _TIMER_NOTIFY, returns nothing. Category: advisory message.

#define msgTimerNotify MakeMsg(clsTimer, 3)

typedef struct TIMER_NOTIFY
P_UNKNOWN clientData;
OS_HANDLE transactionHandle;
TIMER_NOTIFY, * P_TIMER_NOTIFY;

II client data returned
II transaction handle

Sent by the timer object to the client.

msg TimerAlarmRegister
Registers a request for alarm notification.

Takes P _ TIMER_ALARM_INFO, returns STATUS.

#define msgTimerAlarmRegister

Enum16 (TIMER_ALARM_MODE)
timerAbsoluteDate,
timerEveryWeek,
timerEveryDay

} ;

typedef struct TIMER ALARM INFO
OBJECT client;

MakeMsg(clsTimer, 5)

II alarm only on specified date and time
II alarm when dayOfWeek, hours, minutes match
II alarm when hours and minutes match

OS DATE TIME
P UNKNOWN
OS HANDLE

alarmTime;
clientData;
transactionHandle;

II client object to notify
II alarm time
II Uninterpreted client data
II Out: transaction handle

TIMER ALARM MODE alarmMode;
TIMER_ALARM_INFO, * P_TIMER_ALARM_INFO;

----- -_ _--_. __ .. _-----

'80 PENPOINT API REFERENCE
Part 8 I System Services

Alarms differ from timer requests in that a time and date specifies when an alarm is to occur. The timer
will ObjectPost msgTimerAlarmNotify to the client when the alarm goes off. See that message for
details.

Alarms will alarm within a minute of the alarm time.

When the machine is turned off, the alarm is still active. An alarm will turn the machine on.

To stop the alarm, use the message msgTimerAlarmStop.

stsBadObject The client field cannot be a local object.

msgTimerAlarmStop
Stops a pending alarm request.

Takes OS_HANDLE, returns STATUS.

tdefine msgTimerAlarmStop

msgTimerAlarmNotify

MakeMsg(clsTimer, 6)

Notifies the client that the alarm request has elapsed.

Takes P _ALARM_NOTIFY, returns nothing. Category: advisory message.

tdefine msgTimerAlarmNotify

typedef struct ALARM_NOTIFY
P_UNKNOWN clientDatai
OS_HANDLE transactionHandlei
BOOLEAN alarmCausedPoweroni
ALARM_NOTIFY, * P_ALARM_NOTIFYi

Sent by the timer object to the client.

MakeMsg(clsTimer, 7)

II client data returned
II transaction handle
II power up occurred due to alarm

Part 9 /
Utility Classes

BKSHELF.H

This file contains the API definition for clsDVBookshelf.

clsDVBookshelf inherits from clsIcon Win.

It provides a view of bookshelves on external disks.

#ifndef BKSHELF_INCLUDED
#define BKSHELF INCLUDED
#ifndef APPWIN_INCLUDED
#include <appwin.h>
#endif II APPWIN_INCLUDED
#ifndef ICONWIN INCLUDED
#include <iconwin.h>
#endif II ICONWIN_INCLUDED

Common #defines and Iypedefs
typedef struct BOOKSHELF METRICS

U32 spare1; II Spare: reserved.
U32 spare2; II Spare: reserved.

BOOKSHELF_METRICS, *P_BOOKSHELF_METRICS;

msgNew
Creates a new bookshelf viewer.

Takes P_BOOKSHELF_NEW, returns STATUS. Category: class message.

typedef struct BOOKSHELF_NEW_ONLY
BOOKSHELF METRICS metrics; II Initial metrics setting.
OBJECT rootDH;
OBJECT win;

II Dir handle of volume for this bkshelf.
II Window for move/copy.

U32 reserved1;
U32 reserved2;

BOOKSHELF_NEW_ONLY, *P_BOOKSHELF_NEW_ONLY;
#define bookshelf NewFields \

iconWinNewFields \
BOOKSHELF NEW ONLY bookshelf;

typedef struct BOOKSHELF_NEW {
bookshelf NewFields

} BOOKSHELF_NEW, *P_BOOKSHELF_NEW;

msgBookshelfGetMetrics
Gets current metrics setting.

Takes P _BOOKSHELF_METRICS, returns STATUS.

#define msgBookshelfGetMetrics MakeMsg(clsDVBookshelf, 1)

typedef struct BOOKSHELF METRICS
U32 spare1; II Spare: reserved.
U32 spare2; II Spare: reserved.

BOOKSHELF_METRICS, *P_BOOKSHELF_METRICS;

~~------- .. ---~----

184 PENPOINT API REFERENCE
Part 9 I Utility Classes

msgBookshelfSetMetrics
Sets current metrics setting.

Takes P_BOOKSHELF_METRICS, returns STATUS.

fdefine msgBookshelfSetMetrics

typedef struct BOOKSHELF METRICS

MakeMsg(clsDVBookshelf, 2)

h'h?'ss0~e

Arguments U32 spare1; II Spare: reserved.
U32 spare2; II Spare: reserved.

BOOKSHELF_METRICS, *P_BOOKSHELF_METRICS;

Miscellaneous
II "_- Empty __ " label tag
fdefine tagBookshelfEmpty
fdefine hlpBKBookshelfEmpty

MakeTag(clsDVBookshelf, 1)
MakeTag(clsDVBookshelf, 100)

BROWSER.M

This file contains the API definition for clsBrowser.

clsBrowser inherits from clsScrollWin.

clsBrowser provides the UI for viewing and manipulating notebooks and disks.

clsBrowser provides both the Table Of Contents view of "live" data in the notebook and the Disk
Viewer view of" dead" data on disk. clsBrowser functions include displaying notebook and disk items,
navigating the notebook or file system hierarchy, move/copy of documents, export of notebook
documents to disk, import of files from disks into the notebook, deleting notebook and disk items, and
creating notebook and disk items.

clsBrowser is useful to applications that need to allow users to select sections or documents in the
notebook, or items from disk.

Some messages apply only to the TOC view or to the disk view. Disk View only messages are labeled
DskViewonly, TOC view only messages are labeled TOC only.

Many browser messages are sent to self allowing subclasses to modifY browser behavior.

Move/Copy Conventions

See embedwin.h for move/copy protocol.

When the source of a move/copy, the browser responds to msgXferGetList with:

XferName can xfer the name of the selection

XferF ullPathN arne can xfer the full path name of the selection

XferFlatLocator can xfer the flat locator of the selection

clsFileSystem can xfer as a file or directory

clsEmbeddedWin can xfer as "live" data notebook, section, or document

clsExport If source is TOC and export mode is in effect then do export instead of copy. (see export.h
for details)

If the destination is the disk and the xferList contains clsExport then do export instead of move/copy.

If not an export, and the xferList contains clsEmbeddedWin then let the embedded win superclass will
handle the move/copy.

If the destination is the TOC and source is not a clsEmbeddedWin then invoke the import code.

Otherwise, if the source is clsFileSystem do a file system move or copy.

#ifndef BROWSER INCLUDED
#define BROWSER INCLUDED
#ifndef GO INCLUDED
#include <go.h>
#endif

'86 PENPOINT API REFERENCE
Part 9 / Utility Classes

iifndef UID_INCLUDED
iinclude <uid.h>
iendif
iifndef CLSMGR INCLUDED
iinclude <clsrngr.h>
iendif
iifndef FRAME INCLUDED
iinclude <frarne.h>
iendif
iifndef FS INCLUDED
iinclude <fs.h>
iendif
iifndef RESFILE INCLUDED
iinclude <resfile.h>
iendif
iifndef SWIN INCLUDED
iinclude <swin.h>
iendif

Common #delines and typedels

Sort Types
Defines the order the browser will sort display items by.

Enurn16 (SORT_BY) {
browserSortByNarne 1,
browserSortBySize 2,
browserSortByDate 3,
browserSortByPage 4,
browserSortByType 5

} ;

These are tags for the icons used by clsBrowser

ide fine tagBrowserSrnallFilelcon
idefine tagBrowserBigFilelcon
idefine tagBrowserSrnallClosedDirlcon
idefine tagBrowserBigClosedDirlcon
idefine tagBrowserSrnallOpenDirlcon
idefine tagBrowserBigOpenDirlcon
idefine tagBrowserSrnallClosedSectlcon
ide fine tagBrowserBigClosedSectlcon
idefine tagBrowserSrnallOpenSectlcon
idefine tagBrowserBigOpenSectlcon
idefine tagBrowserSrnallDefaultDoclcon
idefine tagBrowserBigDefaultDoclcon

MakeTag(clsBrowser,l)
MakeTag(clsBrowser,2)
MakeTag(clsBrowser,3)
MakeTag(clsBrowser,4)
MakeTag(clsBrowser,5)
MakeTag(clsBrowser,6)
MakeTag(clsBrowser,7)
MakeTag(clsBrowser,8)
MakeTag(clsBrowser,9)
MakeTag(clsBrowser,10)
MakeTag(clsBrowser,ll)
MakeTag(clsBrowser,12)

These are the help ID's used for the various browser items.

idefine hlpBrowser MakeTag(clsBrowser,170) II Generic
idefine hlpBrowlcon MakeTag(clsBrowser,169) II TOC
idefine hlpBrowNarne MakeTag(clsBrowser,171) II TOC
idefine hlpBrowPage MakeTag(clsBrowser,172) II TOC
idefine hlpBrowType MakeTag(clsBrowser,173) II TOC
idefine hlpBrowDate MakeTag(clsBrowser,174) II TOC
:ftdefine hlpBrowTirne MakeTag(clsBrowser,175) II TOC
idefine hlpBrowSize MakeTag(clsBrowser,176) II TOC
idefine hlpBrowBookrnark MakeTag(clsBrowser,177) II TOC
idefine hlpBrowColurnn MakeTag(clsBrowser,178) II TOC

DskViewer help tags

TOC

idefine hlpBrowserDV MakeTag(clsBrowser,180) II Generic DSKVIEW

BROWSER.H 187
Common #defines and typedefs

tdefine hlpBrowNameDV
tdefine hlpBrowTypeDV
#define hlpBrowDateDV
#define hlpBrowTimeDV
tdefine hlpBrowSizeDV

MakeTag(clsBrowser,181)
MakeTag(clsBrowser,183)
MakeTag(clsBrowser,184)
MakeTag(clsBrowser,185)
MakeTag(clsBrowser,186)

Column Tag - identify columns for msgBrowserGesture

#define tagBrowNameColumn
#define tagBrowPageColumn
tdefine tagBrowTypeColumn
#define tagBrowDateColumn
tdefine tagBrowTimeColumn
tdefine tagBrowSizeColumn
tdefine tagBrowBookmarkColumn
tdefine tagBrowUserColumnO
tdefine tagBrowUserColumn1
tdefine tagBrowUserColumn2
tdefine tagBrowUserColumn3

MakeTag(clsBrowser,191)
MakeTag(clsBrowser,192)
MakeTag(clsBrowser,193)
MakeTag(clsBrowser,194)
MakeTag(clsBrowser,195)
MakeTag(clsBrowser,196)
MakeTag(clsBrowser,197)
MakeTag(clsBrowser,198)
MakeTag(clsBrowser,199)
MakeTag (clsBrowser, 200)
MakeTag(clsBrowser,201)

II DSKVlEW
II DSKVlEW
II DSKVlEW
II DSKVlEW
II DSKVlEW

Messages

Comments

Comments

msgNewDefaults:
Initializes the BROWSER_NEW structure to default values.

Takes P _BROWSER_NEW, returns STATUS. Category: class message.

Zeros out pNew->browser.

msgNew:
Creates a new browser object.

Takes P _BROWSER_NEW, returns STATUS. Category: class message.

typedef struct BROWSER NEW ONLY {
FS LOCATOR base; - - II Points to where the browser will display.

- II Note: This UlD must not be an absolute path!
OBJECT client; II UlD of client.
U16 tocView; II TRUE for TOC view, FALSE for disk view.
U8 spare[8];

BROWSER_NEW_ONLY, *P_BROWSER_NEW_ONLY;
tdefine browserNewFields \

scrollWinNewFields \
BROWSER NEW ONLY browser;

typedef struct BROWSER NEW {
browserNewFields -

} BROWSER_NEW, *P_BROWSER_NEW;

Creates a browser which will display the file system within the specified base directory. If the browser
will be looking at "live" notebook sections and documents set tocView to true; If the browser will be
looking at "dead" directories, files, or documents and sections on disk then set tocView to false.

msgBrowserCreateDir
Creates a directory at the selection.

Takes nothing, returns STATUS.

tdefine msgBrowserCreateDir MakeMsg(clsBrowser, 1)

If nothing is selected, this message creates a directory at the top level of the disk. DskView message only.
Usually sent from menu.

188 PEN POINT API REFERENCE

Part 9 I Utility Classes

msgBrowserByName
Sorts by name order.

Takes nothing, returns SfATUS.

fdefine msgBrowserByName MakeMsg(clsBrowser, 2)

Displays all displayed items sorted by name order. Usually sent from menu.

msgBrowserByType
Sorts by type order.

Takes nothing, returns SfATUS.

fdefine msgBrowserByType MakeMsg(clsBrowser, 40)

Displays all displayed items sorted by type order. Usually sent from menu.

msgBrowserBySize
Sorts by size order.

Takes nothing, returns SfATUS.

fdefine msgBrowserBySize MakeMsg(clsBrowser, 3)

Displays all displayed items sorted by size order. Usually sent from menu.

msgBrowserByDate
Sorts by date order.

Takes nothing, returns SfATUS.

fdefine msgBrowserByDate MakeMsg(clsBrowser, 4)

Displays all displayed items sorted by date order. Usually sent from menu.

msgB rows erExp and
Expands sections or direqories.

Takes nothing or P _FS_FLAT_LOCATOR, returns STATUS.

fdefine msgBrowserExpand MakeMsg(clsBrowser, 5)

If pArgs is P _FS_FLAT_LOCATOR, expands P_FS_FLAT_LOCATOR otherwise if pArgs is pNull and the

browser has the selection, the selection is expanded. Otherwise, every displayed dosed selection is

expanded.

msgBrowserCollapse
Collapses sections or directories.

Takes nothing or P_FS_FLAT_LOCATOR, returns STATUS.

fdefine msgBrowserCollapse MakeMsg(clsBrowser, 6)

If pArgs is P _FS_FLAT_LOCATOR, collapses P _FS_FLAT_LOCATOR otherwise if pArgs is pNull and the

browser has the selection, the selection is collapsed; otherwise, every open selection is collapsed.

BROWSER.H '89
Common #defines and typedefs

msgBrowserRefresh
Refreshes the disk image the browser is displaying.

Takes nothing, returns STATUS.

*define msgBrowserRefresh MakeMsg(clsBrowser, 15)

msgBrowserI>elete
Deletes selection if pNull or P_FS_FLAT_LOCATOR otherwise.

Takes nothing or P _FS_FLAT_LOCATOR, returns STATUS.

*define msgBrowserDelete

Sent to self to allow subclass to override.

msgBrowserRename
Renames browser items.

MakeMsg(clsBrowser, 22)

Takes nothing or P _FS_FLAT_LOCATOR, returns STATUS.

*define msgBrowserRename MakeMsg(clsBrowser, 23)

Pops up rename dialog box for the selection if pNull; otherwise the item pointed to by
P _FS_FLAT_LOCATOR is renamed. Sent to self to allow subclass to override.

msgBrowserCo nfirmI> elete
Sets a flag whether to confirm deletions within a browser.

Takes BOOLEAN, returns STATUS.

*define msgBrowserConfirmDelete

msgBrowserExport
Puts the selection into export mode.

Takes nothing, returns STATUS.

*define msgBrowserExport

MakeMsg(clsBrowser, 24)

MakeMsg(clsBrowser,118)

After this message is received by Toe the selected item is highlighted with the copy box. Then if
notebook item is dragged to the DiskViewer, it will be exported, not copied. The export mode is
cancelled when the selection is cancelled or the export completes. TOe only.

msgBrowserByPage
Sorts by page number.

Takes nothing, returns STATUS.

*define msgBrowserByPage

Toe only.

MakeMsg(clsBrowser, 25)

190 PENPOINT API REFERENCE

Part 9 / Utility Classes

msgBrowserWriteState
Writes the current browser expanded/collapsed state to a file.

Takes nothing, returns STATUS.

#define msgBrowserWriteState MakeMsg(clsBrowser, 26)

This message saves the name of each expanded section or directory to a disk file. By using
msgBrowserSetSaveFile clients or subclasses can set which file this information is stored in. By default

the state file ends up in the OSThisApp's directory in a file named BROWSTAT.

msgBrowserReadState
Reads the browser expanded/collapsed state from a disk file.

Takes nothing, returns STATUS.

#define msgBrowserReadState MakeMsg(clsBrowser, 27)

This message restores the state of the browser view of the notebook or file system. By using

msgBrowserSetSaveFile clients or subclasses can set which file this information is stored in. By default

the state file ends up in the OSThisApp's dir in a file named browstate.

msgBrowserSetSaveFile
Sets the file that the browser will save open/close state to.

Takes P_FS_LOCATOR, returns STATUS.

*define msgBrowserSetSaveFile MakeMsg(clsBrowser,148)

msgBrowser(;e~etrics

Gets browser metrics.

Takes P _BROWSER_METRICS, returns STATUS.

#define msgBrowserGetMetrics MakeMsg(clsBrowser, 28)

pv~. SubClass-definable Column Type
Defines attributes of the subclass definable browser columns. Subclasses can control up to
browUserColumns (4) columns.

User Columns are columns of checkboxes or text, that subclasses of clsBrowser can control. The subclass

can supply the header above the column and whether or not the boxes appear next to sections or
documents or both.

User columns are enabled by setting pMetrics->userColumn.showUserColumn.

The browser sends msgBrowserUserColumnQueryState to subclasses to determine the initial state of

the columns.

When a column is tapped, msgBrowserUserColumnChanged notifies subclasses that the checkbox has

toggled.

#define browDefaultColumns
#define browUserColumns

7 II Number of default columns.
4 II Maximum number of user columns.

Messt$ge

Arguments

Display justifications

Enum16 (BROW_JUSTIFY) {
browserLeftJustify = 0,
browserRightJustify = 1,
browserCenterJustify 2,
browserUserJustify = 3

} ;

User column type

Enum16 (USER_COLUMN_TYPE
browserButtonType = 0,
browserTextType 1,
browserUserType 2

) ;

typedef struct {
BROW JUSTIFY headerJustify;
BROW JUSTIFY columnJustify;

BROWSER.H 191
Common #defines and typedefs

II Left justification.
II Right justification.
II Center justification.
II Miscellaneous justification.

II Button user column.
II Text user column.
II User defined user column.

CHAR columnHeader[nameBufLength];

II Justification of header.
II Justification of column.
II Text for column.

BROWSER_DEF_COLUMN, *P_BROWSER_DEF_COLUMN;
typedef struct {

U16 showUserColumn : 1; II Must be set to TRUE for the
II following fields to apply.

U16 userColumnOnSections 1; II Show userColumn next to sections.
U16 userColumnOnDocs : 1; II Show userColumn next to documents.
USER COLUMN TYPE userColumnType; II Type of field if user column.
CHAR userColumnHeader[nameBufLength]; II Text of column header.
TAG helpTag; II Tag for quick help
CHAR checkedChar; II Character to show when checked.
CHAR uncheckedChar; II Character to show when unchecked.
BROW JUSTIFY headerJustify; II Justification of header.
BROW JUSTIFY columnJustify; II Justification of column.
U8 spare[4]; II Spare: reserved.

BROWSER COLUMN, *P_BROWSER_COLUMN;
typedef struct BROWSER_METRICS {

U16 showIcon 1;
U16 showType 1;
U16 showSize 1;
U16 showDate 1;
U16 showBookmark : 1;
U16 showHeader : 1;
U16 computeRecursiveSize 1;

U16 showIconButton 1;

II Show icons.
II Show type field.
II Show size field.
II Show date field.
II Show bookmark field. (TOC only)
II Show column header.
II Computes recursive size
II for directories.
II TOC does this by default.
II Show page turn buttons
II instead of icons. (TOC only)

SORT BY sortBy; II Field by which to sort items.
BROWSER COLUMN userColumn[browUserColumns]; II Subclass-definable columns
BROWSER DEF COLUMN defaultColumn[browDefaultColumns]; II Default columns
U8 spare[40]; II Spare: reserved.

BROWSER_METRICS, *P_BROWSER_METRICS;

msgBrowserSetMetrics
Sets browser metrics.

Takes P _BROWSER_METRICS, returns STATUS.

fdefine msgBrowserSetMetrics

typedef struct BROWSER METRICS
U16 showIcon 1;
U16 showType 1;
U16 showSize 1;

MakeMsg(clsBrowser, 29)

II Show icons.
II Show type field.
II Show size field.

192 PENPOINT API REFERENCE

Part 9 / Utility Classes

M®SSQ9®

Argurnenfs

U16
U16
U16
U16

U16

showDate : 1;
showBookmark : 1;
showHeader : 1;
computeRecursiveSize

showIconButton 1;

1;

II Show date field.
II Show bookmark field. (TOC only)
II Show column header.
II Computes recursive size
II for directories.
II TOC does this by default.
II Show page turn buttons
II instead of icons. (TOC only)

SORT BY sortBy; II Field by which to sort items.
BROWSER COLUMN userColumn[browUserColumns]; II Subclass-definable columns
BROWSER DEF COLUMN defaultColumn[browDefaultColumns]; II Default columns
U8 spare[40]; II Spare: reserved.

BROWSER_METRICS, *P_BROWSER_METRICS;

This message will cause a refresh if userColumn or recursive size become turned on.

msgBrowserUserColumnGetState
Does nothing.

Takes P_BROWSER_USER_COLUMN, returns STATUS.

#define msgBrowserUserColumnGetState MakeMsg(clsBrowser, 62)

II TRUE if this column has changed.
typedef struct

BOOLEAN
BOOLEAN
CHAR
BOOLEAN

changed;
state; II State of item check box.

BOOLEAN

text [nameBuf Length];
shown;

active;

BROWSER_COLUMN_STATE;

typedef struct {

II
II
II
II
II

Text of field for item.
TRUE if this column is shown.
Same as showUserColumn of METRICS.
TRUE if this column is active
for this browser item.

FS FLAT LOCATOR flat; II Locator of browser item.
BROWSER COLUMN STATE column[browUserColumns]; II Column information.
U8 spare [12] ; I I Spare: reserved.

BROWSER USER_COLUMN, *P_BROWSER_USER_COLUMN;

msgBrowserUserColumnSetState
Sets the user column states in the browser for columns that are marked changed.

Takes P _BROWSER_USER_COLUMN, returns STATUS.

#define msgBrowserUserColumnSetState MakeMsg(clsBrowser, 63)

typedef struct {
FS FLAT LOCATOR flat; II Locator of browser item.
BROWSER COLUMN STATE column[browUserColumns]; II Column information.
U8 spare [12] ; I I Spare: reserved.

BROWSER USER_COLUMN, *P_BROWSER_USER_COLUMN;

If the changed BOO LEAN is set, the user column state will be set. Does not generate a

msgBrowserUserColumnStateChanged. The entire BROWSER_USER_COLUMN structure must be

cleared before setting the fields that are changing.

msgBrowserUserColumnStateChanged
Notifies subclass when user checks a user column checkbox.

Takes P_BROWSER_USER_COLUMN, returns STATUS.

#define msgBrowserUserColumnStateChanged MakeMsg(clsBrowser, 68)

Mes5U£le
Arguments

Message

AV£lumenrs

BROW5ER.H 193
Common #defines and typedefs

typedef struct {
FS FLAT LOCATOR flat; II Locator of browser item.
BROWSER_COLUMN_STATE column[browUserColumns]; II Column information.
U8 spare [12] ; I I Spare: reserved.

BROWSER_USER_COLUMN, *P_BROWSER_USER_COLUMN;

The changed field is true for the column that was tapped.

msgBrowserUserColumnQueryState
Gets the user column state from subclass.

Takes P _BROWSER_USER_COLUMN, returns STATUS.

#define msgBrowserUserColumnQueryState MakeMsg(clsBrowser, 69)

typedef struct {
FS FLAT LOCATOR flat; II Locator of browser item.
BROWSER_COLUMN_STATE column[browUserColumns]; II Column information.
U8 spare [12] ; I I Spare: reserved.

BROWSER_USER_COLUMN, *P_BROWSER_USER_COLUMN;

This message is sent to self when the browser needs to know the user column states for a notebook item.
The FS_FLAT_LOCATOR points to the file system item the browser needs to know the state of. The

subclass should pass back the state or the text of each user column for the file system item.

msgBrowserShowlcon
Controls icon field display.

Takes BOOLEAN, returns STATUS.

#define msgBrowserShowIcon

msgBrowserShowButton
Controls button field display.

Takes BOO LEAN, returns STATUS.

#define msgBrowserShowButton

msgBrowserShowSize
Controls size field display.

Takes BOOLEAN, returns STATUS.

#define msgBrowserShowSize

msgBrowserShowDate
Controls date field display.

Takes BOOLEAN, returns STATUS.

#define msgBrowserShowDate

msgBrowserShowType
Controls type field display.

Takes BOOLEAN, returns STATUS.

#define msgBrowserShowType

MakeMsg(clsBrowser, 100)

MakeMsg(clsBrowser, 99)

MakeMsg(clsBrowser, 102)

MakeMsg(clsBrowser, 103)

MakeMsg(clsBrowser, 33)

194 PENPOINT API REFERENCE
Part 9 I Utility Classes

msgBrowserShowBookmark
Controls bookmark field display.

Takes BOOLEAN, returns STATUS.

fdefine msgBrowserShowBookmark

TOC only.

msgBrowserShowHeader
Controls column header display.

Takes BOOLEAN, returns STATUS.

fdefine msgBrowserShowHeader

msgBrowserGoto

MakeMsg(clsBrowser, 104)

MakeMsg(clsBrowser, 39)

Takes true to goto, false to bringto the selection.

Takes BOOLEAN, returns STATUS.

fdefine msgBrowserGoto MakeMsg(clsBrowser, 105)

TOC only. Used by menu.

msgBrowserGotoBringto
Takes P _BROWSER-:GOTO. If pFlat is pNull, applies to selection.

Takes P_BROWSER_GOTO, returns STATUS.

fdefine msgBrowserGotoBringto

typedef struct
BOOLEAN doGoto;

FS_FLAT_LOCATOR flat;
BROWSER_GOTO, *P_BROWSER_GOTO;

MakeMsg(clsBrowser, 134)

II TRUE - Goto document.
II FALSE - Bringto document.
II (Goto if bringto is disabled.)
II Document to goto-bringto

Sent to self to allow subclass to override. TOC only.

msgBrowserUndo
Does nothing yet ...

Takes nothing, returns STATUS.

fdefine msgBrowserUndo

msgBrowserSetSelection

MakeMsg(clsBrowser, 106)

Causes browser/TOC to select and display the given file system item.

Takes P_FS_FLAT_LOCATOR, returns STATUS.

fdefine msgBrowserSetSelection MakeMsg(clsBrowser,32)

As long as the locator points to an item within the browser's base directory subtree, the browser will

open directories and scroll the display as necessary to display the selected item.

BROWSER.H 195

Common #defines and typedefs

msgBrowserSetClient
Sets the target of the browser client messages.

Takes OBJECT, returns STATUS.

*define msgBrowserSetClient MakeMsg(clsBrowser, 108)

This message controls who gets the various browser client messages.

msgBrowserGetClient
Passes back the target of the browser client messages.

Takes P_OBJECT, returns STATUS.

*define msgBrowserGetClient MakeMsg(clsBrowser, 64)

msgBrowserGetBaseFlatLocator
Passes back the directory the browser is looking at.

Takes P _FS_FIAT_LOCATOR, returns STATUS.

*define msgBrowserGetBaseFlatLocator MakeMsg(clsBrowser, 65)

Passes back the root directory within which the browser is looking.

msgBrowserSelectionPath
Passes back the full path of the selection.

Takes P _BROWSER_PATH, returns STATUS.

*define msgBrowserSelectionPath MakeMsg(clsBrowser, 109)

typedef struct {
CHAR path[fsMaxPathLength];

} BROWSER_PATH, *P_BROWSER_PATH;

Also responds to msgXferGet with id XferFullPathName to get the selections path. Note: If possible use

msgBrowserSelection with flat locators to avoid duplicate volume name confusion.

msgBrowserSelection
Passes back the flat locator of the selection.

Takes P_FS_FIAT_LOCATOR, returns STATUS.

*define msgBrowserSelection MakeMsg(clsBrowser, 79)

Also responds to msgXferGet with id XferFlatLocator to get the selections path.

msgBrowserSelection UUID
Passes back the UUID of the selection.

Takes P_UUID, returns STATUS.

*define msgBrowserSelectionUUID MakeMsg(clsBrowser,117)

1ft
IU
1ft
1ft

lL

196 PENPOINT API REFERENCE

Part 9 / Utility Classes

msgBrowserSelectionDir
Passes back the flat locator of the directory the selection is i~.

Takes P _FS_FIAT_LOCATOR, returns STATUS.

#define msgBrowserSelectionDir MakeMsg(clsBrowser, 110)

msgBrowserSelectionName
Returns the name of the selection.

Takes P_CHAR, returns STATUS.

#define msgBrowserSelectionName MakeMsg(clsBrowser, 111)

Also responds to msgXferGet with id XferName to get the selections name

msgBrowserSelectionOn
Notifies client when a selection is made inside the browser.

Takes nothing, returns STATUS.

#define msgBrowserSelectionOn MakeMsg(clsBrowser,112)

msgBrowserSelectionOff
Notifies client when selection is yielded by the browser.

Takes nothing, returns STATUS.

#define msgBrowserSelectionOff MakeMsg(clsBrowser,113)

msgBrowserBookmark
Notifies client that the bookmark specified by locator has toggled.

Takes P _BROWSER_BOOKMARK, returns STATUS.

#define msgBrowserBookmark

typedef struct {
FS_LOCATOR lOCi

MakeMsg(clsBrowser,107)

} BROWSER_BOOKMARK, *P_BROWSER BOOKMARKi

msgBrowserCreateDoc
Creates a directory.

Takes P _BROWSER_CREA TE_DOC, returns STATUS.

#define msgBrowserCreateDoc MakeMsg(clsBrowser,152)

typedef struct
CLASS docClassi
P CHAR pNamei
BOOLEAN atSelectioni
XY32 XYi

BROWSER_CREATE_DOC, *P_BROWSER_CREATE_DOC;

The directory is created at the selection if there is one. If not, the directory is created at the top level
shown. DiskViewonly.

BROWSER.H 197

Common #defines and typedefs

msgBrowserGetBrowWin
Passes back the browser's internal display window.

Takes pObject, returns STATUS.

#define msgBrowserGetBrowWin MakeMsg(clsBrowser,149)

The browser's internal display window is the selected object for any selection based operations.

msgBrowserGesture
Sends to self gesture and which file it landed on.

Takes P _BROWSER_GESTURE, returns STATUS.

#define msgBrowserGesture MakeMsg(clsBrowser,59)

typedef struct {
MESSAGE
P FS FLAT LOCATOR - - -
P GWIN GESTURE
TAG

gesture;
pFlat;
pGest;
columnTag;

II
II
II
II
II

U32 info; I I
U32 spare[2]; II

BROWSER_GESTURE, *P_BROWSER_GESTURE;

Gesture that occurred.
Item on which to apply the gesture.
Original gesture struct.
Tag of column on which to apply the
o if not on a column.
Internal browser information.
Spare: reserved.

gesture.

Allows subclasses to respond to gestures targeted at browser items. If the status returned by the subclass

is >= stsOK the gesture will NOT be sent to browser superclass. So subclasses should ignore this message

or return stsOK to signify it has been handled.

aYTARRAY.H

This file contains the API definition for the ByteArray interface. The functions described in this file are

contained in MISC.UB.

A ByteArray implements a growing and shrinking array of bytes, indexed from 0 to

ByteArrayLengthO-l. A ByteArray grabs and releases memory as needed.

The ByteArray implementation is optimized for highly localized series of insertions and deletions.

#ifndef BYTARRAY INCLUDED
#define BYTARRAY_INCLUDED $Revision:

#ifndef CLSMGR_INCLUDED
#include <clsmgr.h>
#endif
#ifndef DEBUG INCLUDED
#include <debug.h>
#endif
#ifndef OS HEAP_INCLUDED
#include <osheap.h>
#endif

Types and Constants

1.17 $

typedef struct BYTE_ARRAY * P_BYTE_ARRAY;
#define stsBAMaxExceeded MakeStatus(clsMisc, 255)

typedef U32 BYTE_INDEX, * P_BYTE_INDEX;
#define SIZE_OF_BYTE_INDEX 4
#define maxBYTE INDEX maxU32

Private
typedef struct BYTE_ARRAY {

BYTE INDEX length;
BYTE INDEX bufferLength;
P U8 firstPart;
BYTE INDEX firstPartLength;
P U8 secondPart;
U16 mode;

BYTE_ARRAY;

ByteArrayGapLength
Returns the size of the byte array's gap.

Returns BYTE_INDEX.

II Number of bytes stored in buffer
II Number of bytes in buffer
II Beginning of the buffer
II Number of bytes in first part
II see comments above
II see comments above

#define ByteArrayGapLength(p) \
((p)->bufferLength - (p)->length)

200 PENPOINT API REFERENCE

Part 9 I Utility Classes

ByteArrayPrint
Prints the content of the byte array.

Returns void.

:fI:ifdef DEBUG
void EXPORTED

ft.mdlOI1 Prototype ByteArrayPrint (
P BYTE ARRAY
P STRING
int

:fI:endif II DEBUG

p,
charFmt,
charWidth) ;

Exported Functions and Macros

ByteArrayFindByte
Gets address of byte n from ByteArray p.

Returns P _us.
:fI:define ByteArrayFindByte(p,n) (\

(n) < (p)->firstPartLength \
? & ((p) ->firstPart [(n)]) \
: & ((p) ->secondPart [(n)]))

Warning 1: n is evaluated twice, so it should not be an expression with an auto-increment or decrement!

Warning 2: to be as fast as possible, ByteArrayFindByte does no error checking!

ByteArrayFindlndex
Determines the index from address addr of byte in ByteArray p.

Returns BYTE_INDEX.

:fI:define ByteArrayFindIndex(p,addr) (\
(addr) < &((p)->firstPart[(p)->firstPartLength]) \
? (BYTE_INDEX) (addr - (p)->firstPart) \
: (BYTE_INDEX) (addr - (p)->secondPart))

This is the inverse of ByteArrayFindByte.

Warnings from ByteArrayFindByte apply here also.

ByteArrayGetByte
Get byte n from ByteArray p

Returns U8.

:fI:define ByteArrayGetByte(p,n) \
((n) < (p)->firstPartLength \
? (p)->firstPart[(n)] \
: (p) ->secondPart [(n)])

Warnings from ByteArrayFindByte apply here also.

ByteArrayCreate
Creates a byte array.

Returns Sf ATUS.

STATUS EXPORTED

ByteArrayCreate(
P BYTE ARRAY *
U16
BYTE INDEX

pp,
mode,
length) ;

BYTARRAY.H 201
Exported Functions and Macros

Only the osHeapLocal/osHeapShared flags of mode are meaningful. The initial length doesn't matter
very much, since the byte array grows or shrinks as needed. However, iflength is approximately correct,
then early insertions will be quicker. If length<=O, a length of 1 is assumed.

Returns stsOK if able to create the byte array, in which case *pp will be the created byte array, otherwise
*pp will be Nil(p_BYTE_ARRAY).

The mode parameter is really of type OS_HEAP _MODE.

ByteArrayDestroy
Destroys a byte array.

Returns void.

void EXPORTED

Fundion Prototype ByteArrayDestroy (
P BYTE ARRAY p);

ByteArrayGetMany
Gets one or more characters from contiguous positions in the byte array.

Returns Sf ATUS.

STATUS EXPORTED

Fundiol1 Prototype ByteArrayGetMany (
P BYTE ARRAY p,
BYTE INDEX
P U8
BYTE INDEX

pos,
buf,
bufLen) ;

Retrieves up to bufLen characters in p from positions [pos .. MIN(pos+bufLen,ByteArr~yLength(p)).
Client should insure that buf!= Nil(p _us). Returns count of bytes placed in buf.

ByteArrayReplace
Replaces zero or more characters in the byte array.

Returns Sf ATUS.

STATUS EXPORTED

ru,H:tton Pv©totype ByteArrayReplace (
P BYTE ARRAY p,
BYTE INDEX
BYTE INDEX
P U8
BYTE INDEX

pos,
len,
buf,
bufLen) ;

202 PENPOINT API REFERENCE

Part 9 / Utility Classes

Replaces len characters in p at positions [pos .. pos+len) by bufLen characters from buf. Client should

insure that pos+len <= ByteArrayLength{p).

Returns:

stsOutoruem if no memory available, or

stsBadParam if range [posoopos+len) is invalid, or

stsBAMaxExceeded if the maximum ByteArray length is exceeded, or

number bytes taken from buf otherwise.

ByteArraylnsert
Inserts bufLen characters from buf into p at position pos.

Returns Sf ATUS.

tdefine ByteArrayInsert(p, pos, buf, bufLen) \
ByteArrayReplace ((p), (pos), 0, (buf), (bufLen))

This routine does no error checking. Client should insure that: pos <= ByteArrayLength{p).

See ByteArrayReplace for possible return values.

ByteArrayDelete
Delete n characters from p starting at pos.

Returns void.

tdefine ByteArrayDelete(p, pos, len) \
(void) ByteArrayReplace ((p), (pos), (len), Nil (P_U8), 0)

This routine does no error checking. Client should insure that: pos+len <= ByteArrayLength{p).

ByteArrayLength
Returns the number of bytes currently stored in the BYTE_ARRAY.

Returns BYTE_INDEX.

tdefine ByteArrayLength(p) ((p)->length)

ByteArrayHeapMode
Returns the heap mode the BYTE_ARRAY was created with.

Returns OS_HEAP _MODE.

tdefine ByteArrayHeapMode(p) ((p) ->mode)

ByteArrayReserve
Reserves space in byte array (without actually initializing it).

Returns Sf ATUS.

STATUS EXPORTED

rtH);::r!@fi PV@l'©fyP8: ByteArrayReserve (
P BYTE ARRAY
BYTE INDEX
BYTE INDEX

p,
pos,
len) ;

Comments

BYTARRAY.H 203

Exported Functions and Macros

Reserves len characters in p at position pos, but does not initialize them. (The gap is guaranteed to not
break the reserved range.) Client should insure that pos <= ByteArrayLength(p).

Returns:

stsOutOfMem if no memory available, or

stsBadParam if pos is invalid, or

stsBAMaxExceeded if the maximum ByteArray length is exceeded, or

stsOK otherwise.

ByteArrayWrite
Writes the content of the byte array to the specified file.

Returns STATUS.

STATUS EXPORTED

rum:t!on Prototype ByteArrayWri te (
P BYTE ARRAY
OBJECT

p,
file);

The file parameter must act like a FILE_HANDLE object.

ByteArrayRead
Reads previously saved content of a byte array from the specified file.

Returns STATUS.

STATUS EXPORTED

Function Prototype ByteArrayRead (
P BYTE ARRAY * pp,
OBJECT file,
OS HEAP MODE mode);

The file parameter must act like a FILE_HANDLE object.

BAFileW riteString
Debugging utility routine to write a string to a file.

Returns STATUS.

4tifdef DEBUG
STATUS EXPORTED

fum:t$on Prototype BAFileWriteString (

Comments

OBJECT file,
P_U8 str);

4tendif

Useful when initially writing filing code to insert helpful strings into the file and to then skip over the
strings when reading the file.

This routine takes an exception if it encounters an error. Also, it will only work with a string whose
length is MAX_STR_LENGTH or less.

The file parameter must act like a FILE_HANDLE object.

en
III
en
en

~

204 PENPOINT API REFERENCE
Part 9 I Utility Classes

BAFileReadString
Debugging utility routine to read a string from a file.

Returns Sf ATUS.

fifdef DEBUG
STATUS EXPORTED

Functi@n Pr©f©type BAFileReadString (
OBJECT file,
P_U8 str);

fendif

Useful when initially writing filing code to skip over strings written with BAFileWriteString.

This routine takes an exception if it encounters an error. Also, it will only work with a string whose
length is MAX_STR_LENGTH or less.

The file parameter must act like a FILE_HANDLE object.

BYTEBUF.H

This file contains the API definition for clsByteBuf.

clsByteBuf inherits from clsObject.

clsByteBuf provides a facility to store uninterpreted byte strings. Each object of clsByteBuf stores a
single buffer. This class provides convenient object filing of the buffer data. Storage for each object's
buffer is allocated out of the creator's shared process heap using OSHeapBlockAlloc.

Clients who want to store null terminated strings should use clsString (see strobj.h).

*ifndef BYTEBUF INCLUDED
*define BYTEBUF INCLUDED
*include <go.h>
*include <clsmgr.h>
typedef OBJECT BYTEBUF, *P_BYTEBUF;
typedef struct BYTEBUF_DATA {

U16 bufLen; II In/Out: Length (in bytes) of the pBuf buffer.
P U8 pBuf; II In/Out: Object buffer.

BYTEBUF_DATA, *P_BYTEBUF_DATA;

Class Messages

msgNew
Creates a new buffer object.

Takes P_BYTEBUF_NEW, returns STATUS. Category: class message.

typedef struct BYTEBUF_NEW_ONLY {
BOOLEAN allowObservers; II In: Send clsByteBuf observer messages

II to the object's observers?
BYTEBUF DATA data; II In/Out: Buffer data.

BYTEBUF_NEW_ONLY, *P_BYTEBUF_NEW_ONLY;

*define byteBufNewFields \
objectNewFields \
BYTEBUF NEW ONLY bytebuf;

typedef struct BYTEBUF_NEW {
byteBufNewFields

} BYTEBUF_NEW, *P_BYTEBUF_NEW;

This message allocates shared heap storage for the specified buffer.

allowObservers indicates whether the object will send the clsByteBuf observer messages (See

msgByteBufChanged). Only clsByteBuf messages are affected by this option. Adding and removing
observers is not affected by this option.

msgNewDefaults
Initializes the BYTEBUF_NEW structure to default values.

Takes P_BYTEBUF_NEW, returns STATUS. Category: class message.

206 PENPOINT API REFERENCE

Part 9 I Utility Classes

Messoge
Arguments

typedef struct BYTEBUF_NEW
byteBufNewFields

} BYTEBUF_NEW, *P_BYTEBUF_NEW;

Sets

pNew->bytebuf.allowObservers = truei
pNew->bytebuf.data.bufLen = Oi
pNew->bytebuf.data.pBuf = pNulli

allowObservers indicates whether the object will send the clsByteBuf observer messages. (See

msgByteBufChanged)

Obiec. Messages

MessoSje
Arguments

Messoge
Argurnent£

msgByteBufGetBuf
Passes back the object's buffer.

Takes P _BYTEBUF _DATA, returns STATUS.

fdefine msgByteBufGetBuf

typedef struct BYTEBUF_DATA {

MakeMsg(clsByteBuf, 1)

U16 bufLen; // In/Out: Length (in bytes) of the pBuf buffer.
P U8 pBuf; // In/Out: Object buffer.

BYTEBUF_DATA, *P_BYTEBUF_DATA;

The pointer passed back references the object's global storage. Clients must not modify or free this
storage.

msgByteBufSetBuf
Copies the specified buffer data into the object's buffer.

Takes P _BYTEBUF_DATA, returns STATUS.

fdefine msgByteBufSetBuf MakeMsg(clsByteBuf, 2)

typedef struct BYTEBUF __ DATA {
U16 bufLen; // In/Out: Length (in bytes) of the pBuf buffer.
P U8 pBuf; 1/ In/Out: Object buffer.

BYTEBUF_DATA, *P_BYTEBUF_DATA;

Previously retrieved bytebuf pointers will be invalid after this operation. Clients must call

msgByteBufGetBuf to retrieve a pointer to the valid object buffer.

Observer Messages

msgByteBufChanged
Sent to observers when the object data changes.

Takes OBJECT, returns nothing. Category: observer notification.

fdefine msgByteBufChanged MakeMsg(clsByteBuf, 3)

The message argument is the UID of th~ clsByteBuf object that changed.

This message is not sent if the creator did not specify allowObservers during msgNew.

DSKYIEW.H

This file contains the API definition for dsDiskViewWin.

dsDiskViewWin inherits from dsCustomLayout.

It is the view window for a multi-volume disk viewer.

Overview

The Disk Viewer also defines dsDVBrowBar, dsDVf abButton, dsDVlcon, and dsDVForward. These
are internal classes which must be well-known uids, since the Disk Viewer component is shared.

The Disk Viewer component implements the heart of the Disk Manager. It is consists of two panels: an
icon panel and a browser panel. Each known filesystem volume (connected and disconnected) is
represented by an icon in the icon window. Each open volume is represented by a browser card in the
browser panel. A browser card is a frame with a menu bar and control tab as decoration and an instance
of dsBrowser in the view (see browser.h for details).

The icon panel is only as big as it needs to be to fit the known volumes. The browser panel takes up the
rest of the space. The open browser cards equally divide up the browser panel.

Clients will typically put the Disk Viewer component inside of a frame. The frame must not be
shrink-wrapped; the Disk Viewer must be told what size it should be.

dsDiskViewWin understands the following dsBrowser's messages:

msgBrowserCreateDir

The browser messages that deal with the selection are sent to the browser which has the current
selection. Messages that do not deal with the selection or make sense if there is no selection are sent to
all browsers in the Disk Viewer.

The Disk Viewer client is made the client of all the open browsers. The client will get all the messages
that browsers send to their clients.

The Disk Viewer takes care of setting up browser state files in a directory off the current working
directory. The Disk Viewer ensures that the state files for each volume is unique; it handles duplicate
volume names.

The Disk Viewer understands msgSave and msgRestore. It will reopen volumes that were open when it
was saved, and restore as much volume state (which directories were expanded) as possible.

fifndef DSKVIEW INCLUDED
fdefine DSKVIEW INCLUDED
fifndef CLAYOUT INCLUDED
finclude <clayout.h>
fendif
fifndef BROWSER INCLUDED
finclude <browser.h>
fendif

208 PENPOINT API REFERENCE

Part 9 I Utility Classes

Common #defines and typedefs
Illegal volume name error.

#define stsDVIllegalVolumeName MakeStatus(clsDiskViewWin, 0)

Directory where state files go, relative to theWorkingDir.

#define pDVStateDir "diskViewState"

Trigger point for going over to 'K' size notation

#define dvKSizeUnit

Icon Panel Style
#define dvShowIcons
#define dvShowHelpText

#define dvShowClientWin

Icon Style

1024

o II Show icons.
1 II Show informative message about each

II view category.
2 II Client sets contents via

II msgDVSetIconPanel.

#define dvBigPictTitleUnder 0 II Big icon, title under picture.
#define dvBigPictTitleRight 1 II Big icon, title to right of picture.

II Small icon, title under picture. #define dvSmallPictTitleUnder 2
#define dvSmallPictTitleRight 3 II Small icon, title to right of picture.

Disk Viewer Style
typedef struct DV_STYLE {

U16 displayRamVolume: 1,

autoOpen 1,
enableBookshelf 1,
enableDirectoryView :
showVolumeMenu 1,
showEditMenu 1,
showViewMenu 1,
showOptionsMenu 1,
iconPanelStyle 3,
iconStyle 3,

unusedl
U16 sparel;
U16 spare2;

DV_STYLE, *P_DV_STYLE;

2;

II Display the RAM volume. Used for debugging.
II Disk Viewer app sets this if IDB0800 is on.
II If there is only one volume, open it.
II Should bookshelf viewing be enabled?

I,ll Should the directory view be enabled?
II Should the volume menu be shown?
II Should the edit menu be shown?
II Should the view menu be shown?
II Should the options menu be shown?
II What should be shown in the icon panel?
II Initial icon look, only used if
II iconPanelStyle == dvShowlcons.

Array Element For Volume Name Array
typedef struct NAME {

U8 pName[nameBufLength];
} NAME, *P_NAME;

typedef struct DV NEW ONLY
DV STYLE style;
P STRING pBasePath;

OBJECT

U16
P NAME
TAG

client;

numOpenVols;
pOpenVols;
displayType;

II Path offset for each volume;
II pNul1 for no offset.
II Client. Note: client is *not* saved at
II msgSave time. Client must restore with
II msgBrowserSetClient.
II Number of volumes to pre-open.
II Array of volume names.
II Default display type for new cards.

CLASS browserClass;

CLASS bookshelf Class;

U8 spare[24];
DV_NEW_ONLY, *P_DV_NEW_ONLY;

#define diskViewWinNewFields
customLayoutNewFields
DV NEW_ONLY diskViewWin;

typedef struct DV_NEW {
diskViewWinNewFields

} DV_NEW, *P_DV_NEW;

II Class of browser to mutate volume
II default browsers to. objNull says
II no mutation.
II Class of bookshelf viewer to mutate
II volume default bookshelf viewers.
II objNull says no mutation.
II Spare: reserved.

\
\

Messages

Message
Arguments

Message
Arguments

msgNew
Creates a new disk view window.

Takes P _DV_NEW, returns STATUS. Category: class message.

typedef struct DV_NEW {
diskViewWinNewFields

} DV_NEW, *P_DV_NEW;

msgNewDefaults
Initializes the DV _NEW structure to default values.

Takes P _DV _NEW, returns STATUS. Category: class message.

typedef struct DV_NEW {
diskViewWinNewFields

} DV_NEW, *P_DV_NEW;

Zeroes out diskViewWin and sets

diskViewWin.style.displayRamVolume = false;
diskViewWin.style.autoOpen = false;
diskViewWin.style.iconStyle = dvBigPictTitleUnder;
diskViewWin.style.enableBookshelf = true;
diskViewWin.style.enableDirectoryView = true;
diskViewWin.style.showVolumeMenu = true;
diskViewWin.style.showEditMenu = true;
diskViewWin.style.showViewMenu = true;
diskViewWin.style.showOptionsMenu = true;
diskViewWin.style.iconPanelStyle = dvShowIcons;
diskViewWin.numOpenVols = 0;
diskViewWin.displayType = tagDVViewBookshelf;
diskViewWin.browserClass = objNull;
diskViewWin.bookshelfClass = objNull;

msgD"(;etS~le
Gets current style setting.

Takes P _DV _STYLE, returns STATUS.

#define msgDVGetStyle MakeMsg(clsDiskViewWin, 1)

DSKVIEW.H 209

Messages

210 PENPOINT API REFERENCE

Part 9 / Utility Classes

MessQge

Arguments

Comments

typedef struct DV STYLE
U16 displayRamVolume: 1,

autoOpen 1,
enableBookshelf 1,
enableDirectoryView :
showVolumeMenu 1,
showEditMenu 1,
showViewMenu 1,
showOptionsMenu 1,
iconPanelStyle 3,
iconStyle 3,

unused1
U16 spare1;
U16 spare2;

DV_STYLE, *P_DV_STYLE;

msgDVSetStyle
Sets style setting.

2;

II Display the RAM volume. Used for debugging.
II Disk Viewer app sets this if IDB0800 is on.
II If there is only one volume, open it.
II Should bookshelf viewing be enabled?

1,1/ Should the directory view be enabled?
II Should the volume menu be shown?
II Should the edit menu be shown?
II Should the view menu be shown?
II Should the options menu be shown?
II What should be shown in the icon panel?
II Initial icon look, only used if
17 iconPanelStyle == dvShowIcons.

Takes P_DV_STYLE, returns STATUS.

#define msgDVSetStyle MakeMsg(clsDiskViewWin, 2)

typedef struct DV STYLE
U16 displayRamVolume: 1,

autoOpen 1,
enableBookshelf 1,
enableDirectoryView :
showVolumeMenu 1,
showEditMenu 1,
showViewMenu 1,
showOptionsMenu 1,
iconPanelStyle 3,
iconStyle 3,

unused1
U16 spare1;
U16 spare2;

DV_STYLE, *P_DV_STYLE;

msgDVGetBasePath

2;

Passes back the current base path.

Takes P _STRING, returns STATUS.

#define msgDVGetBasePath

II Display the RAM volume. Used for debugging.
II Disk Viewer app sets this if IDB0800 is on.
II If there is only one volume, open it.
II Should bookshelf viewing be enabled?

1,1/ Should the directory view be enabled?
II Should the volume menu be shown?
II Should the edit menu be shown?
1/ Should the view menu be shown?
II Should the options menu be shown?
II What should be shown in the icon panel?
II Initial icon look, only used if
II iconPanelStyle == dvShowIcons.

MakeMsg(clsDiskViewWin, 3)

The argument must point to a string buffer that is at least fsPathBufLength in size.

msgDVGetlconPanel
Passes back the current icon panel window.

Takes P_WIN, returns STATUS.

#define msgDVGetIconPanel MakeMsg(clsDiskViewWin, 4)

msgDVSetlconPanel
Sets the icon panel window.

Takes P_WIN, returns STATUS.

#define msgDVSetlconPanel

DSKVIEW.H 211

Private

MakeMsg(clsDiskViewWin, 5)

This message is only relevant if style.iconPane1Style is set to dvShowHelpText or dvShowClientWin.

msgDVGetOpen Vois
Passes back the names of all the currently open volumes.

Takes P_DV_GET_OPEN_VOLS, returns STATUS.

#define msgDVGetOpenVols MakeMsg(clsDiskViewWin, 7)

typedef struct DV_GET_OPEN_VOLS
U16 numOpenVolSi II Number of open volumes.
P NAME pOpenVolsi II Out: Array of volume names.

II must be OSHeapBlockFreed.
U8 spare[24]i

DV_GET_OPEN_VOLS, *P_DV_GET_OPEN_VOLSi

This message allocates a heap block on the process local stack (pOpenVols). THE CALLER MUST
FREE THIS BLOCK WHEN DONE.

If there are no open volumes then pOpenVols is set to pNull and nothing is allocated.

Private

msgDVSetOption Volume
Sets the current volume for our option sheet.

Takes OBJECT, returns STATUS.

#define msgDVSetOptionVolume MakeMsg(clsDiskViewWin, 8)

msgDVCardPopupChanged
Option card's quick installer popup button has changed.

Takes BOOLEAN, returns STATUS.

#define msgDVCardPopupChanged MakeMsg(clsDiskViewWin, 9)

msgDVOptionMenuNeed
Sent to the disk view client as notification that the option menu is being provided.

Takes nothing, returns STATUS.

#define msgDVOptionMenuNeed MakeMsg(clsDiskViewWin, 10)

msgDVOpen Volume
Opens the disk browser of the volume specified by the given name.

Takes P_CHAR, returns STATUS.

#define msgDVOpenVolume MakeMsg(clsDiskViewWin, 11)

212 PENPOINT API REFERENCE

Part 9 / Utility Classes

nnsgI>"C:lose"olunne
Closes the disk browser of the volume specified by the given name.

Takes P_CHAR, returns STATUS.

#define msgDVCloseVolume MakeMsg(clsDiskViewWin, 12)

nnsgI>"C:onnectTo" olunne
Connects a network volume specified in pArgs.

Takes P _CONNECTIONS_MENU_ITEM, returns STATUS.

#define msgDVConnectToVolume MakeMsg(clsDiskViewWin, 13)

Menu Messages
#define msgDVOpenClose MakeMsg(clsDVForward, 1)
#define msgDVDuplicate MakeMsg(clsDVForward, 2)
#define msgDVAddQuicklnstall MakeMsg(clsDVForward, 3)
#define msgDVRemoveQuicklnstall MakeMsg(clsDVForward, 4)
#define msgDVEjectRemember MakeMsg(clsDVForward, 5)
#define msgDVEjectForget MakeMsg(clsDVForward, 6)
#define msgDVFormat MakeMsg(clsDVForward, 7)
#define msgDVRename MakeMsg(clsDVForward, 10)
#define msgDVViewAll MakeMsg(clsDVForward, 20)
#define msgDVViewBookshelf MakeMsg(clsDVForward, 21)
#define msgDVDisplaylnstaller MakeMsg(clsDVForward, 22)
#define msgDVLayoutOptions MakeMsg(clsDVForward, 30)
#define msgDVDiskOptions MakeMsg(clsDVForward, 31)
#define msgDVOptionslcon MakeMsg(clsDVForward, 41)
#define msgDVOptionsType MakeMsg(clsDVForward, 42)
#define msgDVOptionsDate MakeMsg(clsDVForward, 43)
#define msgDVOptionsSize MakeMsg(clsDVForward, 44)
#define msgDVOptionsDirSize MakeMsg(clsDVForward, 45)
#define msgDVOptionsVersion MakeMsg(clsDVForward, 46)
#define msgDVOptionslnstall MakeMsg(clsDVForward, 47)

#define msgDVSortByName MakeMsg(clsDVForward, 50)
#define msgDVSortByDate MakeMsg(clsDVForward, 51)
#define msgDVSortBySize MakeMsg(clsDVForward, 52)
#define msgDVSortByType MakeMsg(clsDVForward, 53)
II Note: clsDVForward messages 100 and above are used internally.

Tags
#define tagDVVolumeMenu MakeTag(clsDiskViewWin, 1)
#define tagDVEdi tMenu MakeTag(clsDiskViewWin, 2)
#define tagDVViewMenu MakeTag(clsDiskViewWin, 3)
#define tagDVOptionsMenu MakeTag(clsDiskViewWin, 4)
#define tagDVTabButton MakeTag(clsDiskViewWin, 7)

#define tagDVOpenClose MakeTag(clsDiskViewWin, 10)
#define tagDVDuplicate MakeTag(clsDiskViewWin, 11)
#define tagDVEjectRemember MakeTag(clsDiskViewWin, 12)
#define tagDVEjectForget MakeTag(clsDiskViewWin, 13)
#define tagDVRefresh MakeTag(clsDiskViewWin, 14)
#define tagDVQuicklnstall MakeTag(clsDiskViewWin, 15)
#define tagDVFormat MakeTag(clsDiskViewWin, 16)
#define tagDVRename MakeTag(clsDiskViewWin, 17)
#define tagDVCreateDir MakeTag(clsDiskViewWin, 18)
#define tagDVViewChoice MakeTag(clsDiskViewWin, 20)

DSKVIEW.H 213
Tags

:fI:define tagDVViewAll MakeTag(clsDiskViewWin, 21)
:fI:define tagDVViewBookshelf MakeTag(clsDiskViewWin, 22)
:fI:define tagDVExpand MakeTag(clsDiskViewWin, 23)
:fI:define tagDVCollapse MakeTag(clsDiskViewWin, 24)
:fI:define tagDVLayoutOptionMenu MakeTag(clsDiskViewWin, 25)
:fI:define tagDVDiskOptionMenu MakeTag(clsDiskViewWin, 26)

:fI:define tagDVColumnLayoutOptions MakeTag(clsDiskViewWin, 30)
:fI:define tagDVBookshelfLayoutOptions MakeTag(clsDiskViewWin, 31)
:fI:define tagDVDisklconOptions MakeTag(clsDiskViewWin, 32)
:fI:define tagDVDiskOptions MakeTag(clsDiskViewWin, 33) en

III
en

:fI:define tagDVOptionslcon MakeTag(clsDiskViewWin, 40) en
~ :fI:define tagDVOptionsType MakeTag(clsDiskViewWin, 41)

~
:fI:define tagDVOptionsSize MakeTag(clsDiskViewWin, 42)
:fI:define tagDVOptionsDirSize MakeTag(clsDiskViewWin, 43)
:fI:define tagDVOptionsDate MakeTag(clsDiskViewWin, 44)
:fI:define tagDVOptionsVersion MakeTag(clsDiskViewWin, 45)
:fI:define tagDVOptionslnstall MakeTag(clsDiskViewWin, 46)

:fI:define tagDVSortByChoice MakeTag(clsDiskViewWin, 50)
:fI:define tagDVSortByName MakeTag(clsDiskViewWin, 51)
:fI:define tagDVSortByDate MakeTag(clsDiskViewWin, 52)
:fI:define tagDVSortBySize MakeTag(clsDiskViewWin, 53)
:fI:define tagDVSortByType MakeTag(clsDiskViewWin, 54)

:fI:define tagDVlconCard MakeTag(clsDiskViewWin, 60)
:fI:define tagDVlconLabel MakeTag(clsDiskViewWin, 61)
:fI:define tagDVlconChoice MakeTag(clsDiskViewWin, 62)
:fI:define tagDVlconBigPictTitleUnder MakeTag(clsDiskViewWin, 63)
:fI:define tagDVlconBigPictTitleRight MakeTag(clsDiskViewWin, 64)
:fI:define tagDVlconSmallPictTitleUnder MakeTag(clsDiskViewWin, 65)
:fI:define tagDVlconSmallPictTitleRight MakeTag(clsDiskViewWin, 66)
:fI:define tagDVDefaultBigBitmap MakeTag(clsDiskViewWin, 67)
:fI:define tagDVDe fault SmallBitmap MakeTag(clsDiskViewWin, 68)

:fI:define tagDVCardName MakeTag(clsDiskViewWin, 70)
:fI:define tagDVCardTotal MakeTag(clsDiskViewWin, 71)
:fI:define tagDVCardFree MakeTag(clsDiskViewWin, 72)
:fI:define tagDVCardReadOnly MakeTag(clsDiskViewWin, 73)
:fI:define tagDVCardPopupViewer MakeTag(clsDiskViewWin, 74)
:fI:define tagDVCardPopupYes MakeTag(clsDiskViewWin, 75)
:fI:define tagDVCardPopupNo MakeTag(clsDiskViewWin, 76)
:fI:define tagDVCardlnitialView MakeTag(clsDiskViewWin, 77)
:fI:define tagDVCardlnitialPopupChoice MakeTag(clsDiskViewWin, 78)
:fI:define tagDVBookshelfLayoutLabel MakeTag(clsDiskViewWin, 80)
:fI:define tagDVBookshelfLayoutChoice MakeTag(clsDiskViewWin, 81)

:fI:define hlpDVNoVolumesConnected MakeTag(clsDiskViewWin, 100)
:fI:define hlpDVSheetBackground MakeTag(clsDiskViewWin, 101)
:fI:define hlpDVlcon MakeTag(clsDiskViewWin, 102)
:fI:define hlpDVlconBackground MakeTag(clsDiskViewWin, 103)
:fI:define hlpDVTabButton MakeTag(clsDiskViewWin, 104)

:fI:define hlpDVVolumeMenu MakeTag(clsDiskViewWin, 110)
:fI:define hlpDVEditMenu MakeTag(clsDiskViewWin, 111)
:fI:define hlpDVViewMenu MakeTag(clsDiskViewWin, 112)
:fI:define hlpDVOptionsMenu MakeTag(clsDiskViewWin, 113)

:fI:define hlpDVClose MakeTag(clsDiskViewWin, 120)
:fI:define hlpDVDuplicate MakeTag(clsDiskViewWin, 121)
:fI:define hlpDVEjectRemember MakeTag(clsDiskViewWin, 122)
:fI:define hlpDVEjectForget MakeTag(clsDiskViewWin, 123)
:fI:define hlpDVRefresh MakeTag(clsDiskViewWin, 124)
:fI:define hlpDVQuicklnstall MakeTag(clsDiskViewWin, 125)
:fI:define hlpDVFormat MakeTag(clsDiskViewWin, 126)

214 PEN POINT API REFERENCE
Part 9 / Utility Classes

tdefine hlpDVMove MakeTag(clsDiskViewWin, 130)
tdefine hlpDVCopy MakeTag(clsDiskViewWin, 131)
tdefine hlpDVDelete MakeTag(clsDiskViewWin, 132)
tdefine hlpDVRename MakeTag(clsDiskViewWin, 133)
tdefine hlpDVCreateDir MakeTag(clsDiskViewWin, 134)

tdefine hlpDVViewAll MakeTag(clsDiskViewWin, 140)
tdefine hlpDVViewBookshelf MakeTag(clsDiskViewWin, 141)
tdefine hlpDVDisplayInstaller MakeTag(clsDiskViewWin, 142)
tdefine hlpDVExpand MakeTag(clsDiskViewWin, 143)
tdefine hlpDVCollapse MakeTag(clsDiskViewWin, 144)
tdefine hlpDVLayoutOptionMenu MakeTag(clsDiskViewWin, 145)
tdefine hlpDVDiskOptionMenu MakeTag(clsDiskViewWin, 146)
tdefine hlpDVDiskOptions tagDVDiskOptions
tdefine hlpDVDiskIconOptions tagDVDiskIconOptions
tdefine hlpDVColumnLayoutOptions tagDVColumnLayoutOptions
tdefine hlpDVBookshelfLayoutOptions tagDVBookshelfLayoutOptions
tdefine hlpDVOptionsColumnsLabel MakeTag(clsDiskViewWin, 150)

tdefine hlpDVOptionsIcon MakeTag(clsDiskViewWin, 160)
tdefine hlpDVOptionsType MakeTag(clsDiskViewWin, 161)
tdefine hlpDVOptionsDate MakeTag(clsDiskViewWin, 162)
tdefine hlpDVOptionsSize MakeTag(clsDiskViewWin, 163)
tdefine hlpDVOptionsDirSize MakeTag(clsDiskViewWin, 164)
tdefine hlpDVOptionsVersion MakeTag(clsDiskViewWin, 165)
tdefine hlpDVOptionsInstall MakeTag(clsDiskViewWin, 166)
tdefine hlpDVSortByChoice MakeTag(clsDiskViewWin, 170)
tdefine hlpDVSortByName MakeTag(clsDiskViewWin, 171)
tdefine hlpDVSortByDate MakeTag(clsDiskViewWin, 172)
tdefine hlpDVSortBySize MakeTag(clsDiskViewWin, 173)
tdefine hlpDVSortByType MakeTag(clsDiskViewWin, 174)
tdefine hlpDVDiskCardName MakeTag(clsDiskViewWin, 180)
tdefine hlpDVDiskCardTotalSpace MakeTag(clsDiskViewWin, 181)
tdefine hlpDVDiskCardFreeSpace MakeTag(clsDiskViewWin, 182)
tdefine hlpDVDiskCardReadOnly MakeTag(clsDiskViewWin, 183)
tdefine hlpDVDiskCardQuickInstaller MakeTag(clsDiskViewWin, 184)
tdefine hlpDVDiskCardInitialView MakeTag(clsDiskViewWin, 185)

tdefine hlpDVIconCardStyle MakeTag(clsDiskViewWin, 190)

II QH tags for the column headers in diskview
tdefine hlpDVNameColumn MakeTag(clsDiskViewWin, 191)
tdefine hlpDVTypeColumn MakeTag(clsDiskViewWin, 192)
tdefine hlpDVDateColumn MakeTag(clsDiskViewWin, 193)
tdefine hlpDVTimeColumn MakeTag(clsDiskViewWin, 194)
tdefine hlpDVSizeColumn Mak"eTag (clsDiskViewWin, 195)
tdefine hlpDVVersionColumn MakeTag(clsDiskViewWin, 196)
tdefine hlpDVInstallColumn MakeTag(clsDiskViewWin, 197)

EXPORT.H

This file contains the API definition for clsExport.

clsExport inherits from clsObject.

clsExport is the abstract class defining the API for exporting data to external disks.

The clsExportAPI provides a common mechanism for documents to translate themselves into foreign
file formats and place the file on external disks.

Overview
The export protocol is initiated from the move/copy protocol (see embedwin.h). All moves/copies from
the TOC to non-bookshelf views of the DiskViewer are implicitly exports.

More specifically, export happens after msgSelCopySelection reaches the DiskViewer, which is the
destination of the copy, and the source of the copy includes clsExport as an item in the list returned by
msgXferList. Anything moveable/copyable can potentially invoke export. (See xfer.h and sel.h for
information on PenPoint's move/copy protocol and selection management.)

The DiskViewer will send the source of the copy (the selection) msgExportGetFormats. The source
should pass back an array of possible export formats. From the information in msgExportGetFormats
clsApp generates the export dialog box. If the user selects the external export format and taps the
Move/Copy button, the export class sends msgExport to the appropriate translator specified in
msgExportGetFormats. If user selects the PenPoint format and taps the Move/Copy button, the
move/copy is equivalent to msgAppMgrMove/msgAppMgrCopy (see appmgr.h).

If the source of the export is in the TOC, the DiskViewer activates the source document and sends it
msgExportGetFormats.

How to Be an Exporting Application
Any application that wants to export must have its subclass of clsApp respond to msgExportGetFormats
and msgExport.

*ifndef EXPORT INCLUDED
*define EXPORT_INCLUDED
*ifndef GO INCLUDED
*include <go.h>
*endif
*ifndef UID INCLUDED
*include <uid.h>
*endif
*ifndef FS INCLUDED
*include <fs.h>
*endif

216 PENPOINT API REFERENCE
Part 9 I Utility Classes

COllllllon #defines and typedefs

Status codes
fdefine stsExportActivateSource
fdefine stsExportFailed
fdefine stsExportFailedUserNotified

Messages

msgExportGetFormats

MakeWarning(clsExport, 1)
MakeWarning(clsExport, 2)
MakeWarning(clsExport, 3)

Passes back the export format array from from the source of the export.

Takes P _EXPORT_LIST, returns STATUS. Category: client responsibility.

fdefine msgExportGetFormats

typedef struct
TAG document Type;

export Type;

MakeMsg(clsExport, 1)

II Source document type.
II Export destination type. TAG

OBJECT
CHAR

translator;
exportName[nameBufLength];

II Object which to send msgExport.
II Name of export type for

EXPORT_FORMAT, *P_EXPORT_FORMAT;
typedef struct {

P EXPORT FORMAT format; - -
U16 numEntries;

EXPORT_LIST, *P_EXPORT_LIST;

II display in dialog box.

II Array of formats, must be SHARED
II memory, freed by caller.
II Number of elements in format array.

The Disk Viewer sends this message to the selection.

The recipient should allocate global memory to hold the EXPORT_FORMAT array which is passed back

to the DiskViewer in the format field. The sender of msgExportGetFormats must free the memory.

If the source returns stsExportActivateSource, the DiskViewer will treat the source as an inactive
document (This is how the TOC behaves when it is the source of export). The source will be activated

using msgAppMgrActivate and the activated doc will be sent msgExportGetFormats.

msgExport
Initiates export by the translator.

Takes P _EXPORT_DOC, returns STATUS. Category: client responsibility.

fdefine msgExport MakeMsg(clsExport, 2)

typedef struct {
TAG

FS LOCATOR

FILE HANDLE

CHAR
TAG

export Type;

source;

destination;

path [fsPathBuf Length];
document Type;

U32 spare1;
U32 spare2;

EXPORT_DOC, *P_EXPORT_DOC;

II Corresponds to exportType from
II msgExportGetFormats EXPORT_FORMAT.
II Source document or null if
II source is not a document.
II Destination file handle.
II If you don't want to export to
II this file, use msgFSGetPath to
II retrieve the destination and
II destroy this file handle.
II Source path.
II Corresponds to document Type from
II msgExportGetFormats EXPORT_FORMAT.
II Spare: reserved
II Spare: reserved

Comments

Messttge

Arguments

EXPORT.H 217
Miscellaneous

This message is sent to the translator specified in EXPORT_FORMAT. The translator is passed an open file
handle to which the translator can write exported data or the translator can get the path of the file,
destroy the file and replace it with its own file structure.

If the export fails, it is the exporter's reponsibility for removing invalid and/or partial files created during
the failed export. The minimum the client should do is send msgFSDelete to pArgs->destination to
remove the file created for the exportation.

If the exporter wishes to put their custom dialog box to query the user for more information, the
exporter should do this in response to msgExport. If the custom dialog allows the user to cancel the
export operation, then the exporter should return stsExportFailedUserNotified which will cause
PenPoint to suppress any error of the aborted export.

msgExportName
Passes back a possibly modified destination name from the translator.

Takes P_EXPORT_FORMAT, returns STATUS.

tdefine msgExportName MakeMsg(clsExport, 3)

typedef struct
TAG
TAG
OBJECT
CHAR

document Type;
export Type;
translator;
exportName[nameBufLength];

EXPORT_FORMAT, *P_EXPORT_FORMATi

II Source document type.
II Export destination type.
II Object which to send msgExport.
II Name of export type for
II display in dialog box.

This message is sent to the translator specified in EXPORT_FORMATS whenever the user chooses a new
export type in the dialog box. When the translator receives the message, export name is set to the source
document name. The translator should set export name exportName should be set to the "correct"
destination file name. For instance the extension '.RTF' or '.WKS' may be appended to the name.

If the translator ignores this message the destination name will remain unchanged (so this message can
safely be ignored).

Miscellaneous

Help tags
These are help tags on various pieces of the standard export dialog box.

tdefine hlpExportSheet
tdefine hlpExportName
tdefine hlpExportNewName
tdefine hlpExportChoice

MakeTag(clsExport, 50)
MakeTag(clsExport, 51)
MakeTag(clsExport, 52)
MakeTag(clsExport, 53)

GMARGIN.H

This file contains the API definition for clsGestureMargin.

clsGestureMargin inherits from clsScrollWin.

clsGestureMargin adds a margin to the scroll win on the opposite side from the scroll bar. Gestures

made in the margin are forwarded to the client win.

clsGestureMargin is used in PenPoint by the MiniNote application. MiniNote uses the gesture margin
in lieu of a scroll win. When MiniNote is in writing mode, the margin is gray. In gesture mode, the

margin is white.

Gesture mode is intended to indicate a "safe" mode in which the 11 core gestures can be used. In ink
mode, some gestures do not work and be may interpreted as some other type of data (e.g. ink).

#ifndef GMARGIN INCLUDED
#define GMARGIN INCLUDED
#ifndef SWIN_INCLUDED
#include <swin.h>
#endif

Types and Constants
#define clsGestureMargin MakeGlobalWKN(2572,1)
#define clsGestureMarginInnerWin MakeGlobalWKN(2573,1)

typedef struct GESTURE MARGIN STYLE {
U16 gestureMargin 1, II gesture margin on/off

wideGestureMargin 1, II make the gesture margin wide
II (not implemented)
II mask out gestureMargin
II margin is gray for if in ink mode

maskGestureMargin 1,
inkMode 1,
reserved :12;

GESTURE_MARGIN_STYLE, *P_GESTURE_MARGIN_STYLE;

typedef struct {
GE STURE_MARGIN_S TYLE style;
S32 spares[4];

GESTURE_MARGIN_NEW_ONLY, *P_GESTURE_MARGIN_NEW_ONLY;

#define gestureMarginNewFields \
scrollWinNewFields \
GESTURE_MARGIN_NEW_ONLY gestureMargin;

typedef struct {
gestureMarginNewFields

} GESTURE_MARGIN_NEW, *P_GESTURE_MARGIN_NEWi

Messages

nns~esture~arginC;etS~le
Passes back the receiver's current style values.

Takes P _GESTURE_MARGIN_STYLE, returns STATUS.

#define msgGestureMarginGetStyle MakeMsg(clsGestureMargin, 1)

220 PEN POINT API REFERENCE
Part 9 I Utility Classes

Message
Argumellts

Mess©$ie
Arguments'

typedef struct GESTURE_MARGIN_STYLE {
U16 gestureMargin 1, II gesture margin onloff

wideGestureMargin 1, II make the gesture margin wide
II (not implemented)

maskGestureMargin 1, II mask out gestureMargin
inkMode 1, II margin is gray for if in ink mode
reserved :12;

GESTURE_MARGIN_STYLE, *P_GESTURE_MARGIN_STYLE;

msgGestureMarginSetStyle
Sets the receiver's style values.

Takes P _GESTURE_MARGIN_STYLE, returns STATUS.

#define msgGestureMarginSetStyle MakeMsg(clsGestureMargin, 2)

typedef struct GESTURE_MARGIN_STYLE
U16 gestureMargin 1, II gesture margin onloff

wideGestureMargin 1, II make the gesture margin wide
II (not implemented)

maskGestureMargin 1, II mask out gestureMargin
inkMode 1, II margin is gray for if in ink mode
reserved :12;

GESTURE_MARGIN_STYLE, *P_GESTURE_MARGIN_STYLE;

msgGestureMarginSetlnkMode
Sets margin to be either ink or gesture mode.

Takes BOOLEAN, returns STATUS.

#define msgGestureMarginSetlnkMode MakeMsg(clsGestureMargin, 3)

HASH.H

This package implements an "Open Addressing, Linear Probe" hash table.

The functions described in this file are contained in SYSUTIL.LIB.

Introduction
This package implements hash tables. Hash tables offer relatively fast key-based random access to data at
the expense of some memory. The performance improvement over linear searching is substantial.

The defaults supplied by this package are probably fine for most data. However, hash table performance
depends on both a good hash function and proper size parameters. If your data's keys are unevenly
distributed then consider writing your own hash function. Try to get the hash table's initial size close to
the number of expected entries divided by the fill percentage. You can vary the fill percentage to meet
your tradeoffs between space and time.

Creating a Hash Table
To create a hash table:

• Allocate space for the hash table (either on the stack or in a heap block)

• Call HashInitDefaultsO

• Optionally customize the HASH_INFO structure

• Call HashInitO

Examples
Here's some sample code based on a 32 bit key. (The package has built-in Hash and Compare functions
for 32 bit keys; see section "Hash and Compare Functions. ")

II Client data structure. (The structure must contain a key field,
II though it need not be named key and it need not be the first field.)
typedef struct (

U32 data;
U32 key;

YOUR_DATA, *P_YOUR_DATA;

P HASH INFO pHashInfo;
P YOUR DATA pMD;
U32 key;
II Create table.
OSHeapBlockAlloc(osProcessHeapld, sizeof(*pHashlnfo), &pHashlnfo);
HashInitDefaults(pHashlnfo);
II Optionally customize between calls to HashlnitDefaults() and
II Hashlnit(). For instance, if you have 16 bit keys, you
II might do the following:
II pHashlnfo->pHashFunction = HashFunction16;
II pHashlnfo->pHashCompare = HashCompare16;
Hashlnit(pHashInfo, offsetof(YOUR_DATA, key));

222 PENPOINT API REFERENCE
Part 9 I Utility Classes

II Add entry to hash table
OSHeapBlockAlloc(osProcessHeapId, SizeOf(YOUR_DATA) , &pMD);
pMD->key = 25; ,
pMD->data= someData;
HashAddEntry(pHashlnfo, pMD);

II Find entry in hash .table. Returns stsNoMatch if not found.
key = 25;
HashFindData(pHashInfo, &key, &pMD);
Debugf("Data for key %d is %d", key, pMD->data);

II Delete entry in hash table without freeing client data.
II Returns stsNoMatch if not found.
key = 25;
HashDeleteEntry(pHashInfo, &key, &pMD, false);
OSHeapBlockFree(pMD);

II Delete entry in hash table and free the client data.
II Returns stsNoMatch if not found.
key = 25;
HashDeleteEntry(pHashlnfo, &key, &pMD, true);

II Free hash table, and call OSHeapBlockFree() on all client data.
HashFree(pHashInfo, true);

OSHeapBlockFree(pHashInfo);

Enumerating Hash Table Entries
All of the entries in a hash table can be enumerated by examining the entries field of the HASH_INFO

structure. Empty entries are null. Note that there are numEntries slots, numFilled of which are
non-null.

P HASH INFO
P HASH ENTRY

pHashInfo;
pEntries;

pEntries = pHashInfo->entries;
for (i = 0; i < pHashInfo->numEntries; iff) {

if (pEntries[i] .pData) {
II Do something with entry

Hash and Compare Functions
The package includes good Hash and Compare functions for the following types of keys:

• 16 bit numbers

• 32 bit numbers

• 64 bit numbers

• null-terminated strings

Clients with other key types need to provide their own Hash and Compare functions. Sophisticated
clients may want to provide their own Hash and Compare functions even if they have keys with one of
the above types.

Replacement Hash and Compare functions should look like the following:

typedef struct
U8 major;
U16 minor;

MY_KEY, * P_MY_KEY;
typedef struct

MY KEY key;
P UNKNOWN pData;

MY_DATA, * P_MY_DATA;
U32 EXPORTED
MyKeyHashFunction(

P_HASH_KEY pKey)

P MY KEY pMyKey =
U32 hash;
hash = pMyKey->major
hash t= pMyKey->minor
return hash;

* 9551;
* 113;

BOOLEAN EXPORTED MyKeyHashCompare(
P_HASH_KEY pKey1,
P HASH KEY pKey2)

II 9551 is prime
II 113 is prime

P MY KEY pMyKey1 = (P_MY_KEY)pKey1;
P MY KEY pMyKey2 = (P_MY_KEY)pKey2;
return «pMyKey1->major == pMyKey2->major) AND

(pMyKey1->minor == pMyKey2->minor));

Space / Time TradeoH

HASH.H 223

The following table show the space / time tradeoff for a variety of percentFull values, normalized to

800/0. This table is a gross simplification. Among other things, it assumes well distributed keys.

full per- relative
cent age speed
--------- --------
10 2.8
20 2.7
30 2.5
40 2.3
50 2.0
60 1.7
70 1.4
80 1.0
90 .6
95 .3

*ifndef HASH_INCLUDED
*define HASH_INCLUDED
*include <string.h>
*ifndef GO_INCLUDED
*include <go.h>
*endif
*ifndef OSTYPES_INCLUDED
*include <ostypes.h>
*endif
*ifndef OSHEAP_INCLUDED
*include <osheap.h>
*endif
*include <stddef.h>

relative
memory use

8.0
4.0
2.7
2.0
1.6
1.3
1.2
1.0

.9

.8

'" UI

'" '"

lL

224 PENPOINT API REFERENCE

Part 9 I Utility Classes

Common· #defines and typedefs
Default values

#define minHashTableInitialSize 15
#define minHashTableExpandSize 16
#define hashTableMaxFillPct 80

Key and Data Pointer Types

typedef void * P_HASH_KEY;
typedef void * P_HASH_DATA;

Type for Hash function

Flmdiot» Prototype typedef U32 Functionptr (HASH_FUNCTION)
P_HASH_KEY pKey

) ;

II minimum initial size
II minimum expand increment
II expand when the table gets this
II percentage full.

Type for Compare function. Function should return true if pKeyl and pKey2 point to keys with
identical values.

fundion Prototype typedef BOOLEAN FunctionPtr (HASH_COMPARE) (
P HASH KEY pKey1,
P HASH KEY pKey2

) ;

A hash table entry.

typedef struct HASH_ENTRY
P HASH DATA pData; II Points to user data

} HASH_ENTRY, * P_HASH_ENTRY, ** PP_HASH_ENTRY;

The hash table itself Space for the table is allocated by the client. Space for the entries is allocated by
hash table functions and is freed via a call to HashFreeO.

The debugging version of the hash table gathers statistics.

typedef struct HASH_INFO {
U32 numEntries;

U32

U32
U32

U16
OS HEAP ID
P HASH ENTRY

numFilled;

expandNumber;
percentFull;

keyOffset;
heap;
entries;

II number of entries allocated.
II Should be prime!
II number of entries in use. Not
II too small or table will expand too
II often. Should be even.
II number of entries to expand by
II max percentage full at expand time.
II Performance falls off rapidly if
II table allowed to get much fuller
II than 80%.
II offset of key in P_HASH_DATA
II heap to expand into
II points to hash table array.
II Array can be indexed sequentially
II to find all the entries in the
II table. Empty slots are null.

HASH FUNCTION pHashFunction; II Hash function
HASH_COMPARE pHashCompare; II Compare function
II Statistics maintained for DEBUG version
U32 numProbes; II Counts number of hash probes
U32 numProbeMisses; II Counts number of probe retries
U32 numAdds; II Counts number of adds
U32 numDeletes; II Counts number of deletes

HASH_INFO, * P_HASH_INFO;

HASH.H 225
Common #defines and typedefs

Functions

HashFindData
Given a key, passes back a P _HASH_DATA.

Returns STATUS.

fundio" Prototype STATUS EXPORTED HashFindData
P HASH INFO pInfo,
P HASH KEY pKey,
P HASH DATA * ppData);

Return Volue stsNoMatch the key is not in the table. *ppData is undefined.

stsOK the key is in the table.

51%(, Also HashFindTableEntry

HashFindTableEntry
Given a key, passes back a pointer to client data.

Returns STATUS.

F~mdk$!,,! tJrororypf\ STATUS EXPORTED HashFindTableEntry
P_HASH_INFO pInfo,
P_HASH_KEY pKey,
PP HASH ENTRY ppEntry);

Return Vq~U© stsNoMatch the key is not in the table. *ppEntry is undefined.

stsOK the key is in the table.

See Also HashFindData

HashAddEntry
Adds an entry to a hash table.

Returns STATUS.

ftmdion tJrototype STATUS EXPORTED HashAddEntry
P_HASH_INFO pInfo,
P_HASH_DATA pData);

Comments The hash table expands if adding this entry causes the table to exceed the expand threshold.

Returi1 Volue stsFailed the key is already in the table

HashDeleteEntry
Deletes entry from hash table.

Returns STATUS.

[function tJrolotype STATUS EXPORTED HashDeleteEntry
P_HASH_INFO pInfo,
P HASH KEY pKey,
P HASH DATA * ppData,
BOOLEAN freeClientData);

Comnurnt$ If freeClientData is true then the client data is deallocated using ppData is undefined. Otherwise
*ppData contains the pointer to client data.

Freeing entries does not cause the table to shrink.

Return Value stsN oMatch the key is not in the table.

226 PENPOINT API REFERENCE

Part 9 / Utility Classes

HashlnitDefaults
Initializes hash table parameters.

Returns Sf ATUS.

twnd!@ft PV10t10type STATUS EXPORTED HashInitDefaults (
P_HASH_INFO pInfo);

(ormtMN1ts Warning: HashInitDefaultsO MUST be called before HashInit. See the section "Examples."

Default values:

memset(pInfo, 0, sizeof(HASH_INFO));
pInfo->numEntries = 31;
pInfo->expandNumber = 24;
pInfo->heap = osProcessHeapId;
pInfo->pHashFunction = HashFunction32;
pInfo->pHashCompare = HashCompare32;
pInfo->percentFull = 80;

Hashlnit
Causes the hash table to allocate internal tables.

Returns SfATUS.

Fundion Prototype STATUS EXPORTED HashIni t (
P HASH INFO pInfo,

II Default 32 bit key
II Default 32 bit key

U32 keyOffset); II offset of key in client data.

The client must call this function after calling HashInitDefaultsO and performing any optional
customization.

Example:

HashInitDefaults(pInfo);
Hashlnit(plnfo, offsetof(YOUR_DATA, key));

HashFree
Frees internal hash table memory. Optionally deallocates any remaining user data blocks.

Returns SfATUS.

ttJndion t*vototype STATUS EXPORTED HashFree (
P HASH INFO pInfo,
BOOLEAN freeAllEntries);

Comments If freeAlIEntries is true, then the hash table calls OSHeapBlockFreeO on each remaining piece of client

data.

If the client is going to call HashFreeO with freeAlIEntries false, the client must free all client data
beforehand.

Note that this function does NOT free the HASH_INFO structure. If the client allocated it before calling
HashInitO then the client should free the table after calling HashFreeO.

HASH.H 227

Built-in Hash and Compare Functions

Built-in Hash and Compare Functions
The functions in this section are useful default hash and compare functions for common key types. The
64 bit, 32 bit, and 16 bit functions work equally well for signed or unsigned values.

,.,.. 64 bit keys
function Prototype U32 EXPORTED HashFunction64 (P_HASH_KEY pKey);

BOOLEAN EXPORTED HashCompare64 (P_HASH_KEY pKeyl, P_HASH_KEY pKey2);

32 bit keys
Function Prototype U32 EXPORTED HashFunction32 (P_HASH_KEY pKey);

BOOLEAN EXPORTED HashCompare32 (P_HASH_KEY pKeyl, P_HASH_KEY pKey2);

16 bit keys
Function Prototype U32 EXPORTED HashFunction16 (P_HASH_KEY pKey);

BOOLEAN EXPORTED HashCompare16(P_HASH_KEY pKeyl, P_HASH_KEY pKey2);

String keys
Function Prototype U32 EXPORTED HashFunctionString (P _HASH_KEY pKey);

BOOLEAN EXPORTED HashCompareString(P_HASH_KEY pKeyl, P_HASH_KEY pKey2);

IMPORT.H

This file contains the API definition for dslmport.

dslmport inherits from dsObject.

clslmport is the abstract class defining the API for importing foreign files from external disks into
notebook documents.

Overview
The import protocol is triggered when the TOe receives msgSelMoveSelection or
msgSelCopySelection the TOe, and the source of the move/copy includes clsFileSystem as an item in
the list returned by msgXferList, then the Toe initiates the import protocol. (See xfer.h and sel.h for
information on PenPoint's move/copy protocol and selection management.)

The import protocol sends msglmportQuery, as a class message, to each installed application class to
determine the set of applications that can import the file.

Once every installed application has been queried, clsApp will put up an import dialog box. An instance
of the application is created on the destination and msglmport is sent. If the import succeeds, the
importer should return stsOK. If an error occurs and the user has not been notified of the failure, the
importer should return stslmportFailed. If an error occurs and the user has been notified, the importer
should return stslmportFailedU serN otified.

How to Be an Importing Application
Any application that wants to import must handle msglmportQuery and msglmport.

The import protocol sends msglmportQuery as a class message. (See clsmgr.h for more general
information about class messages.) For your app to receive a class message you must have an entry
something like this in your application class's method table:

MSG_INFO myAppMethods [] = {

msglmportQuery, "MyApplmportQuery" , objClassMessage,

o
} ;

The 'ImportQueryHandler' method can look at the contents or the name of the imported file to

determine if that file can be imported by the app. If the app can import the file, the
'ImportQueryHandler' method sets the pArgs->canImport boolean to true (the default is false) and
returns stsOK. The TOe will then add the application's name to the list of possible import destinations
for the import dialog.

*ifndef IMPORT INCLUDED
*define IMPORT-INCLUDED
*ifndef GO INCLUDED
*include <go.h>
*endif
*ifndef UID INCLUDED
*include <uId.h>
*endif
*ifndef FS INCLUDED
*include <fs.h>
*endif

230 PENPOINT API REFERENCE

Part 9 / Utility Classes

Common #defines and typedefs

Status codes
Importing applications should re stslmportFailedUserNotified if the importer detected an error during
the importation and notified the user of the error. This allows the importer to give a more detailed error

. message to the user.

#define stslmportFailed
#define stslmportFailedUserNotified
#define stsImportInvalidFormat

Messages

msglmportQuery

MakeStatus(clsImport, 1)
MakeStatus(clsImport, 2)
MakeStatus(clsImport, 3)

Queries each app class to see if it is capable of importing the file.

Takes P _IMPORT_QUERY, returns STATUS. Category: client responsibility.

#define msgImportQuery

typedef struct {
FILE HANDLE
TAG

file;
fileTypei

MakeMsg(clsImport,l)

II Open file handle to imported file.
II File type if it exists.

CHAR
BOOLEAN

fileName [nameBuf Length];
canImport;

II Source file name.
II Out: TRUE if app can import the file.
II Default setting on entry is false.

U16 suitabilityRating; II Out: 0 - lowest
II 50 - average (default)
II 100 - highest

U8 spare[64]; II Spare: reserved.
IMPORT_QUERY, *P_IMPORT_QUERY;

This message is sent by the browser to each application class. The applicatin should pass back
pArgs->canImport set to true if it can import the file. pArgs->suitabilityRating is the relative rating of
how suitable the application is to importing the file. This rating determines the ordering within the list
of applications in the import dialog box displayed by PenPoint.

msglmport
Initiates the import.

Takes P _IMPORT _DOC, returns STATUS. Category: client responsibility.

#define msgImport

typedef struct {
FILE_HANDLE file;
TAG fileType;
U8 fileName [nameBuf Length];
U32 sequence;
DIR HANDLE destHandle;

IMPORT_DOC, *P_IMPORT_DOCi

MakeMsg(clsImport,2)

II Open file handle to file.
II File type if exists.
II Source file name.
II Sequence number for dest.
II Dir har-dle to dest section.

This message is sent by dsApp to a newly created instance of the destination application. The
application should import the data from the file and return stsOK. If this message returns an error status
the newly created app instance will be deleted.

Miscellaneous

Help tags
These are help tags on various pieces of the standard export dialog box.

#define hlp Import Sheet
#define hlpImportName
#define hlplmportNewName
#define hlpImportChoice

MakeTag(clsImport~ 50)
MakeTag(clsImport, 51)
MakeTag(clsImport, 52)
MakeTag(clsImport, 53)

IMPORT.H 231

Miscellaneous

LIST.H

This file contains the API definition for dsList.

dsList inherits from dsObject.

Lists are a simple ordered collections of items.

#ifndef LIST_INCLUDED
#define LIST_INCLUDED
#ifndef CLSMGR INCLUDED
#include <clsmgr.h>
#endif

Common #defines and typedefs
typedef OBJECT LIST, *P_LIST;
typedef P_UNKNOWN LIST_ITEM, *P_LIST_ITEM;

LIST_ENTRY is used in many messages. In general, the fields are treated as follows:

• position. An item's location. Locations are zero-based. The first item is 0 and the last item is number
of items - 1. When used as an In parameter, position specifies the position of the item to operate on.
For adding operations, maxU16 means beyond the last item. For other operations, maxU16 means
the last item in the list. Values beyond the size of the list but less than maxU16 are not
recommended. When used as an Out parameter, position contains the actual position of the item.
maxU16 is never passed back even if passed in.

• item. When used as an In parameter, item identifies the item to operate on. If the same item added
to the list more than once, then all operations work only the first appearance of the item. When
used as an Out parameter, item contains the item operated on.

typedef struct LIST ENTRY
U16 position;
LIST_ITEM item;

LIST_ENTRY, *P_LIST_ENTRY;
typedef struct LIST NOTIFY {

MESSAGE msg;
P ARGS pArgs;
SIZEOF lenSend;
LIST_NOTIFY, * P_LIST_NOTIFYi

Status Codes
#define stsListFull
#define stsListEmpty

II In:
II In:
II In:

message to send/post
pArgs for message
length of pArgs

MakeStatus(clsList, 1)
MakeStatus(clsList, 2)

~~---'-------

234 PEN POINT API REFERENCE
Part 9 / Utility Classes

Messages Defined by Other Classes

MessClge
Arguments

msgNew
Creates a new empty list.

Takes P _LIST_NEW, returns STATUS. Category: class message.

typedef struct LIST_STYLE {
U16 reserved: 16;

} LIST_STYLE, * P_LIST_STYLE;

List filing behavior.

typedef enum LIST_FILE_MODE
listFileItemsAsData,
listFileItemsAsObjects,

listDoNotFileItems
LIST_FILE_MODE, *P_LIST_FILE_MODE;

typedef struct LIST_NEW_ONLY {
LIST_STYLE style;
LIST_FILE_MODE fileMode;
U32 reserved[4];

LIST_NEW_ONLY, *P_LIST_NEW_ONLY;
tdefine listNewFields \

objectNewFields \
LIST NEW ONLY list;

typedef struct LIST_NEW
listNewFields

} LIST_NEW, *P_LIST_NEW;

II File list items as U32 data.
II Treat list items as objects. Save
II them with msgResPutObject and restore
II them with msgResGetObject.
II Don't file list items.

II Reserved

If the heap specified in pArgs->object.heap is null, the process heap is used.

msgNewI>efaults
Initializes the LIST_NEW structure to default values.

Takes P _LIST_NEW, returns STATUS. Category: class message.

typedef struct LIST_NEW {
listNewFields

} LIST_NEW, *P_LIST_NEW;

Zeroes out pNew->list and sets:

pArgs->list.fileMode = listFileItemsAsObjects

msgSave
Defined in clsmgr.h

Takes P _OBLSAVE, returns STATUS.

In response to this message, the list saves itself Then, based on the list's fileMode, it may save the item

information. See the commentary with the type LIST_FILE_MODE for more information.

msgRestore
Defined in clsmgr.h

Takes P _OBLRESTORE, returns STATUS.

LlST.H 235
List Manipulation Messages

In response to this message, the list restores itself. Then, based on the list's fileMode, it may restore the
items information. See the commentary with the type LIST_FILE_MODE for more information.

List Manipulation Messages

Arguments

Message
Arguments

msgListFree
Frees a list according to mode.

Takes P_LIST_FREE, returns STATUS.

fdefine msgListFree

typedef enum LIST_FREE_MODE
listFreeItemsAsData,

listFreeItemsAsObjects,

MakeMsg(clsList, 1)

II Ignore the item's value. Simply destroy
II the list itself. Equivalent to sending
II msgDestroy to the list.
II Treat items as objects. Send each item
II msgDestroy Nil(key) before destroying
II the list itself. Any errors are ignored.

listDoNotFreeItems II Obsolete. Do not use.
LIST_FREE_MODE, *P_LIST_FREE_MODE;

typedef struct LIST_FREE {
OBJ _KEY key;
LIST_FREE_MODE mode;

LIST_FREE, *P_LIST_FREE;

II Key for freeing the list object.

In response to this message, the list destroys itself AND all of its items.

Use msgDestroy to destroy the list without affecting the list's items. For both messages, observers are
sent msgListNotifyEmpty.

msgListAddItem
Adds an item to the end of a list.

Takes LIST_ITEM, returns STATUS.

fdefine msgListAddItem

Observers are sent msgListNotifyAddition.

msgListAddItemAt
Adds an item to a list at pArgs->position.

Takes P_LIST_ENTRY, returns STATUS.

fdefine msgListAddItemAt

typedef struct LIST ENTRY
U16 position;
LIST ITEM item;

LIST_ENTRY, *P_LIST_ENTRY;

MakeMsg(clsList, 2)

MakeMsg(clsList, 10)

If the list is empty, pArgs->position is treated as if it were O. If pArgs->position is maxU16, the item is
inserted at the end of the list.

236 PENPOINT API REFERENCE
Part 9 I Utility Classes

Messoge
ArgvmertfS

MessQge
Argurnents

If necessary, list items move to make room for the new item.

Observers are sent msgListNotifyAddition.

stsOK item added. pArgs->position contains the actual position of the new item.

msgListRemoveltem
The list searches for pArgs in the list and removes the item if found.

Takes LIST_ITEM, returns STATUS.

fdefine msgListRemoveItem MakeMsg(clsList, 11)

If the argument is in the list more than once, only the first instance of it is removed.

Observers are sent msgListNotifyDeletion.

stsListEmpty the list was empty

stsNoMatch item was not found

msgListRemoveltemAt
Removes the item in the list at pArgs->position.

Takes P _LIST_ENTRY, returns STATUS.

fdefine msgListRemoveItemAt

typedef struct LIST ENTRY
U16 position;
LIST_ITEM item;

LIST_ENTRY, *P_LIST_ENTRY;

Observers are sent msgListNotifyDeletion.

stsListEmpty the list was empty

MakeMsg(clsList, 3)

stsOK item removed. pArgs->position contains the position of the removed item.

msgListReplaceltem
Replaces the item in the list at pArgs->position.

Takes P_L1ST_ENTRY, returns STATUS.

fdefine msgListReplaceItem MakeMsg(clsList, 4)

typedef struct LIST ENTRY
U16 position;
LIST ITEM item;

LIST_ENTRY, *P_LIST_ENTRY;

If pArgs->position is maxU16, the last item in the list is replaced.

Observers are sent msgListNotifyReplacement.

stsListEmpty the list was empty

stsOK item was replaced. pArgs->item contains the old item and pArgs->position contains its old
position.

Me55Qge
Arguments

Comments

Messog£,
Arguments

LlST.H 237
List Manipulation Messages

msgListGedtem
Gets the item in the list at pArgs->position.

Takes P_LIST_ENTRY, returns SfATUS.

*define msgListGetItem

typedef struct LIST ENTRY
U16 position;
LIST ITEM item;

LIST_ENTRY, *P_LIST_ENTRY;

MakeMsg(clsList, 5)

If pArgs->position is maxU16, the last item in the list is returned.

stsListEmpty the list was empty.

stsOK item found. pArgs->position contains the position of the item.

msgListFindltem
Searches for pArgs->item in the list.

Takes P _LIST_ENTRY, returns SfATUS.

*define msgListFindItem

typedef struct LIST ENTRY
U16 position;
LIST_ITEM item;

LIST_ENTRY, *P_LIST_ENTRY;

stsNoMatch item was not found.

MakeMsg(clsList, 6)

stsOK item was found. pArgs->position contains the position of the item.

msgListNumltems
Passes back the number of items in a list.

Takes P _UI6, returns STATUS.

*define msgListNumItems

msgListRemoveltems
Removes all of the items in a list.

Takes no arguments, returns STATUS.

*define msgListRemoveItems

The list's items are not affected in any way.

Observers are sent msgListNotifyEmpty.

msgListEnumltems
Enumerates the items in a list.

Takes P_LIST_ENUM, returns SfATUS.

*define msgListEnumItems

typedef struct LIST ENUM
U16 max;
U16 count;
P_LIST_ITEM pItems;
P_UNKNOWN pNext;

LIST_ENUM, * P_LIST_ENUM;

MakeMsg(clsList, 7)

MakeMsg(clsList, 8)

MakeMsg(clsList, 9)

238 PENPOINT API REFERENCE

Part 9 / Utility Classes

This copies successive items from the list into an array. There are two approaches a client can use:

1. Let the list do all the work in one call. The list allocates an array of items which is passed back in
pArgs->pItems. You must free this array when you are done with a call to OSHeapBlockFree.
LIST _ENUM Should be filled in as follows:

max On input, should be 0. On output, will be the the number of items in the allocated block.

count On input, should be maxU16. On output will be the same as max.

pltems On input, should be null. On output, will be the pointer to the allocated block.

pNext On input, should be null.

2. Go through the items, a chunk at a time. Repeatedly call msgListEnumltems with the same
LIST _ENUM structure and processes successive groups of items. The call that returns stsEndOfData
indicates that the enumeration is finished (there are no more items to process). LIST_ENUM is used as
follows:

max On input and output, the number of items your block can hold

count On input, the same as max. On output, will be the number of items returned in block. (This
will be less than max the last time through.)

pltems On input, a pointer to a block that can hold at least max items.

pNext On input for first call, should be null. Do not modify thereafter.

stsEndOfData There are no more items to enumerate (list may be empty). When stsEndOfData is
returned, pArgs->count is zero. If you passed in pltems as null and max as 0, the block may not
have been allocated. Check pltems for nil and free it if it isn't.

msgListGetHeap
Passes back the heap used by the list.

Takes P_OS_HEAP_ID, returns STATUS.

#define msgListGetHeap MakeMsg(clsList, 12)

.. Forwarding Messages

Messoge
Arguments

clsList responds to these messages by sending the specified message to each item in the list in turn.
clsList ignores the values returned by sending this message and always returns stsO K.

msgListCa11
Sends a message to each object in the list using ObjectCal1.

Takes P _LIST_NOTIFY, returns STATUS.

#define msgListCall

typedef struct LIST NOTIFY
MESSAGE msg;
P ARGS pArgs;
SIZEOF lenSend;
LIST_NOTIFY, * P_LIST_NOTIFY;

MakeMsg(clsList, 13)

II In:
II In:
II In:

message to send/post
pArgs for message
length of pArgs

Message
Arguments

Message
Argt.HlHHlts

LlST.H 239
Observer Notifications

msgListSend
Sends a message to each object in the list using ObjectSend.

Takes P _LIST_NOTIFY, returns STATUS.

tdefine msgListSend

typedef struct LIST NOTIFY
MESSAGE msg;
P ARGS pArgs;
SIZEOF lenSend;
LIST_NOTIFY, * P_LIST_NOTIFY;

msgListPost

MakeMsg(clsList, 14)

II In:
II In:
II In:

message to send/post
pArgs for message
length of pArgs

Sends a message to each object in the list using ObjectPost.

Takes P _LIST_NOTIFY, returns STATUS.

tdefine msgListPost

typedef struct LIST NOTIFY
MESSAGE msg;
P ARGS pArgsi
SIZEOF lenSend;
LIST_NOTIFY, * P_LIST_NOTIFY;

MakeMsg(clsList, 15)

II In:
II In:
II In:

message to send/post
pArgs for message
length of pArgs

Observer Notifications
A list uses msgPostObservers to deliver all of its notification messages. (See clsmgr.h for more
information.)

msgListNotifyAddition
Notifies observers that an item has been added to the list.

Takes P _LIST_NOTIFY_ADDITION, returns STATUS.

LIST NOTIFY ADDITION - -typedef struct
LIST list; II the affected list
LIST ITEM listItem; II the affected list item
U16 count; II new number of entries
U8 reserved[40) ;

LIST_NOTIFY_ADDITION, * P_LIST_NOTIFY_ADDITIONi
tdefine msgListNotifyAddition MakeMsg (clsList, 16)

msgListN otifyDeletion
Notifies observers that an item has been deleted from the list.

Takes P _LIST_NOTIFY_DELETION, returns STATUS.

typedef struct LIST_NOTIFY_DELETION (
LIST list; II the affected list
LIST ITEM listItemi II the affected list item
U16 count; II new number of entries
U8 reserved[40);

LIST_NOTIFY_DELETION, * ~_LIST_NOTIFY_DELETION;
tdefine msgListNotifyDeletion MakeMsg (clsList, 17)

240 PENPOINT API REFERENCE

Part 9 / Utility Classes

msgListNotifyReplacement
Notifies observers that an item in the list has been replaced.

Takes P _LIST_NOTIFY_REPLACEMENT, returns STATUS.

typedef struct LIST_NOTIFY_REPLACEMENT {
LIST list; I I the affected list
LIST ITEM newListItem; II the new list item
LIST ITEM oldListItem; /1 the replaced list item
U16 index; II index of replace item
U8 reserved[40];

LIST_NOTIFY_REPLACEMENT, * P_LIST_NOTIFY_REPLACEMENT;
*define msgListNotifyReplacement MakeMsg (clsList, 18)

msgListN otifyEmpty
Notifies observers that a list is now empty.

Takes P _LIST_NOTIFY_EMPTY, returns STATUS.

Arguments typedef struct LIST_NOTIFY_EMPTY {
LIST list; 1/ the affected list
U8 reserved[40];

LIST_NOTIFY_EMPTY, * P_LIST_NOTIFY_EMPTY;
*define msgListNotifyEmpty MakeMsg (clsList, 19)

NOTEPAPR.N

This file contains the API definition for clsNotePaper. clsNotePaper inherits from clsView.

NotePaper is the view class for PenPoint's ink-management or note-taking building block. Most of the
code for the MiniN ote application actually resides in the building block. Other classes of the building
block are clsNPData (the data class), clsNPltem (the generic data item), clsNPScribbleltem (the ink
data item), clsNPTextltem (the text data item), and clsGestureMargin (the subclass of clsScrollWin
that implements MiniNote's gesture margin).

NotePaper provides standard PenPoint functionality including embedding, undo, move/copy, import,
export, option sheets, and marks. (Supporting marks means that search and replace, spell, proof, and
reference buttons are all supported.)

NotePaper displays (and alters) the contents of an NPData object. For PenPoint 1.0, NotePaper keeps
all of the items in its data object in a coordinate system with (0,0) its upper-left corner. As a result, all
the items in the data object have a negative y coordinate. This means that as the NotePaper window
grows in width and height, its contents remain relative to the top-left corner of the page.

A sample applications (called npapp or "NotePaper App") demonstrating the use of the ink building
block is included in the SDK. The ink building block is distributed as part of the SDK as a distributed
DLL. The DLL and all resources used by the ink building block are included in the SDK in the
DLL\NOTEPAPR directory. The resources in that directory include:

notepaper.res: contains all resources used by NotePaper
paper.res: contains the 8 bitmaps representing paper styles
pen. res: contains the 4 bitmaps representing pen styles
strings.rc: contains the source for quick help, error text,

and undo strings
#ifndef NOTEPAPR INCLUDED
#define NOTEPAPR-INCLUDED
#ifndef VIEW INCLUDED
#include <view.h>
#endif
#ifndef SYSFONT INCLUDED
#include <sysfont.h>
#endif
#ifndef ITOGGLE INCLUDED
#include <itoggle.h>
#endif

Types and Constants
#define clsNotePaper MakeGlobalWKN(2567,1)

#define stsNotePaperNoHit
#define stsNotePaperTreatAsInk
Enum16 (NP_PAPER_STYLE) (

} ;

npPaperRuled
npPaperRuledLeftMargin
npPaperRuledCenterMargin
npPaperRuledLegalMargin
npPaperBlank
npPaperLeftMargin
npPaperCenterMargin
npPaperGrid

0,
1,

= 2,
= 7,

3,
4,
6,
5,

MakeWarning(clsNotePaper, 0)
MakeWarning(clsNotePaper, 1)

242 PENPOINT API REFERENCE
Part 9 I Utility Classes

typedef struct NOTE_NP_PAPER_STYLE
U16 bEditMode 1,

bAutoGrow 1,
bWidthOpts 1,
bHideTopRule 1,

bVirtualHeight 1,

reserved : 11;
U16 reservedl;

II writing/ink vs. gesture/edit mode
II auto grow height as user enters data?
II include page widths in option sheet
II don't paint the top ruling line for
II the npPaperRuledxxx paper style
II if set, NotePaper grows itself into
II a long thin window and responds to
II scroll win messages
II always set to 0

NOTE PAPER STYLE, *p NOTE PAPER STYLE; - - - - --.
typedef struct NOTE_PAPER_METRICS {

NOTE_PAPER_STYLE style;
SYSDC FONT SPEC paperFont;
NP_PAPER_STYLE paperStyle;
COORD16 lineSpacing;

II defines the font for the paper
II one of the NP PAPER STYLE values
II (in points) determines font size and
II vertical spacing

U8
NOTE_PAPER_METRICS,

penStyle; II use the NPPenStyle() macro
* P_NOTE_PAPER_METRICS;

NOTE: in NPPenStyle, color is one of: bsInkBlack, bsInkGrayXX, or bsInkWhite

NOTE: in NPPenStyle, weight is one of: 1 = bold, 0 = normal

#define NPPenStyle(color, weight) ((color & Ox7) I ((weight & Oxl) « 3»
#define NPPenColor(style) (style & Ox7)
#define NPPenWeight(style) ((style & Ox8) » 3)

The following definitions are included for convenience only.

#define npPenFineBlack
#define npPenFineGray
#define npPenBoldBlack
#define 'npPenBoldGray

NPPenStyle(bsInkBlack, 0)
NPPenStyle(bsInkGray50, 0)
NPPenStyle(bsInkBlack, 1)
NPPenStyle(bsInkGraySO, 1)

Messages
Next up: none; Recycle: 11-51 5358-101 103 106 120-127

msgNewDefaults
Initialize pArgs.

Takes P _NOTE_PAPER_NEW, returns STATUS.

typedef struct {
NOTE_PAPER_STYLE style;
NP_PAPE~STYLE paperStyle;
SYSDC FONT SPEC paperFont;
COORD16 lineSpacing;
U8 penStyle;
S32 spares[6];

II as in NOTE_PAPER_METRICS
II
II
II
II

as in NOTE PAPER METRICS - -
as in NOTE PAPER METRICS - -as in NOTE PAPER METRICS - -
as in NOTE PAPER METRICS - -

NOTE_PAPER_NEW_ONLY, *P_NOTE_PAPER_NEW_ONLY;
#define notePaperNewFields \

viewNewFields \
NOTE_PAPER_NEW_ONLY notePaper;

typedef struct {
notePaperNewFields

NOTE_PAPER_NEW, *P_NOTE_PAPER_NEW;

Comments

MesS(lge
Ar£1uments

NOTEPAPR.H 243

Zeroes out pArgs->notePaper and sets:

pArgs->notePaper.style.bEditMode
pArgs->notePaper.style.bAutoGrow
pArgs->notePaper.style.bWidthOpts
pArgs->notePaper.style.bHideTopRule
pArgs->notePaper.style.bVirtualHeight
pArgs->notePaper.paperStyle
pArgs->notePaper.paperFont
pArgs->notePaper.penStyle
pArgs->notePaper.lineSpacing
pArgs->view.createDataObject

false;
false;
false;
false;
false;

= npPaperRuled;
= current user font preference
= NPPenStyle(bsInkBlack, 1);
= 24; II 24 point
= true;

Various gWin and win flags are set and should only be modified by the fearless!

pArgs->gWin.style.gestureEnable = true;
pArgs->gWin.style.gestureForward= true;
pArgs->win.flags.input &= -input InkThrough;
pArgs->win.flags.input 1= inputInk;
pArgs->win.flags.style 1= wsSendGeometry;
pArgs->win.flags.style 1= wsGrowBottom;
pArgs->win.flags.style 1= wsGrowRight;
pArgs->win.flags.style 1= wsCaptureGeometry;

msgN otePaperGetMetrics
Passes back receiver's metrics.

#define msgNotePaperGetMetrics

typedef struct NOTE_PAPER_METRICS
NOTE_PAPER_STYLE style;

MakeMsg(clsNotePaper, 101)

Messages

SYSDC_FONT_SPEC paperFont;
NP_PAPER_STYLE paperStyle;

II defines the font for the paper
II one of the NP_PAPER_STYLE values

COORD16 lineSpacing; II (in points) determines font size and
II vertical spacing

U8
NOTE_PAPER_METRICS,

penStyle; II use the NPPenStyle() macro
* P_NOTE_PAPER_METRICS;

msgNotePaperGetDclnfo
Passes back the drawing contexts used by receiver.

Takes P _NOTE_PAPER_DC_INFO, returns STATUS.

#define msgNotePaperGetDcInfo MakeMsg(clsNotePaper, 4)

typedef struct
U32 units; II currently, msgDcUnitsTwips
OBJECT dc; I I transformed dc in "units"
OBJECT dcPen; II transformed dc in pen units
U32 reserved[4];

NOTE PAPER_DC_INFO, *P_NOTE_PAPER_DC_INFO;

msgNotePaperGetSelType
Passes back information about the types of items selected in receiver.

Takes P _NOTE_PAPER_SEL_ TYPE, returns STATUS.

#define msgNotePaperGetSelType MakeMsg(clsNotePaper, 116)

244 PENPOINT API REFERENCE
Part 9 I Utility Classes

Message

Arguments

typedef struct NOTE_PAPER_SEL_TYPE
BOOLEAN bScribble; II selection contains a scribble
BOOLEAN bTranslated; II selection contains untranslatable text
BOOLEAN bReserved1;
BOOLEAN bReserved2;

NOTE_PAPER_SEL_TYPE, * P_NOTE_PAPER_SEL_TYPE;

msgNotePaperSetEditMode
Sets receiver to either gesture/edit (true) or writing/ink (false) mode.

Takes BOOLEAN, returns STATUS.

idefine msgNotePaperSetEditMode MakeMsg(clsNotePaper, 102)

msgNotePaperSetPaperAndPen
Sets paperStyle, lineS pacing, pen Color, and pen Weight.

Takes P _NOTE_PAPER_METRICS, returns STATUS.

idefine msgNotePaperSetPaperAndPen MakeMsg(clsNotePaper, 104)

typedef struct NOTE_PAPER_METRICS {
NOTE_PAPER_STYLE style;
SYSDC FONT SPEC paperFont;
NP_PAPER_STYLE paperStyle;
COORD16 lineSpacing;

II defines the font for the paper
II one of the NP_PAPER_STYLE values
II (in points) determines font size and
II vertical spacing

U8
NOTE_PAPER_METRICS,

penStyle; II use the NPPenStyle() macro
* P_NOTE_PAPER_METRICS;

This message does not affect the pen style for selected items.

msgN otePaperSetPenStyle
Sets the pen style for selected items as well as the default for new items.

Takes U32, returns STATUS.

idefine msgNotePaperSetPenStyle MakeMsg(clsNotePaper, 109)

msgNotePaperGetPenStyle
Gets the pen style for selected items (or the default if nothing selected).

Takes U32, returns STATUS.

idefine msgNotePaperGetPenStyle MakeMsg(clsNotePaper, 112)

msgN otePaperSetStyle
Sets the receiver's style values.

Takes P _NOTE_PAPER_STYLE, returns STATUS.

idefine msgNotePaperSetStyle MakeMsg(clsNotePaper, 2)

Message
Arguments

MessQgc
ArgIJmcnts

NOTEPAPR.H 245
Messages

typedef struct NOTE NP PAPER STYLE {
U16 bEditMode - - 1, II writing/ink vs. gestureledit mode

bAutoGrow 1, II auto grow height as user enters data?
bWidthOpts 1, II include page widths in option sheet
bHideTopRule 1, II don't paint the top ruling line for

II the npPaperRuledxxx paper style
bVirtualHeight 1, II if set, NotePaper grows itself into

II a long thin window and respond~ to
II scroll win messages

reserved : 11; II always set to 0
U16 reserved1;

NOTE_PAPER_STYLE, *P_NOTE PAPER STYLE;

msgNotePaperGetStyle
Passes back the receiver's style values.

Takes P _NOTE_PAPER_STYLE, returns STATUS.

#define msgNotePaperGetStyle MakeMsg(clsNotePaper, 3)

typedef struct NOTE NP PAPER STYLE {
U16 bEditMode - - 1, II writing/ink vs. gestureledit mode

bAutoGrow 1, II auto grow height as user enters data?
bWidthOpts 1, II include page widths in option sheet
bHideTopRule 1, II don't paint the top ruling line for

II the npPaperRuledxxx paper style
bVirtualHeight 1, II if set, NotePaper grows itself into

II a long thin window and responds to
II scroll win messages

reserved : 11; II always set to 0
U16 reserved1;

NOTE_PAPER_STYLE, *P_NOTE_PAPER_STYLE;

msgNotePaperTranslate
Translates untranslated scribbles in the selection.

Takes P_NULL, returns STATUS.

#define msgNotePaperTranslate MakeMsg(clsNotePaper, 113.)

msgN otePaper Untranslate
Untranslates translated scribbles in the selection.

Takes P_NULL, returns STATUS.

#define msgNotePaperUntranslate MakeMsg(clsNotePaper, 114)

msgNotePaperEdit
Edits text and translates and edits scribbles in the selection.

Takes P _NULL, returns STATUS.

#define msgNotePaperEdit MakeMsg(clsNotePaper, 115)

msgNotePaperTidy
Tidies the selection by normalizing the spacing of items each line.

Takes P_NULL, returns STATUS.

#define msgNotePaperTidy MakeMsg(clsNotePaper, 105)

The inter-item spacing is determined by sending msgNPltemGetWordSpacing to each item to be
tidied.

246 PENPOINT API REFERENCE
Part 9 / Utility Classes

Comments

Comments

msgNotePaperCenter
Centers the entire selection.

Takes P _NULL, returns STATUS.

fdefine msgNotePaperCenter MakeMsg(clsNotePaper, 107)

The selection is centered on the page as a whole, not line by line.

msgNotePaperAlign
Aligns the selection according to pArgs.

Takes U32, returns STATUS.

fdefine msgNotePaperAlign
fdefine npAlignLeft 1
fdefine npAlignRight 2

MakeMsg(clsNotePaper, 108)

Alignment takes place relative to the bounding box of the selection.

msgNotePaperMerge
Joins scribbles and text in the selection.

Takes P _NULL, returns STATUS.

fdefine msgNotePaperMerge MakeMsg(clsNotePaper, 110)

Consecutive scribble items are combined into a single scribble item. Adjacent text items are combined
into a single text item. Any subclass of clsNPltem that can respond to msgNPltemCanJoin and
msgNPltemJoin can determine its own merging behavior.

msgN o tePaperSplit
Splits scribbles and text.

Takes P _NULL, returns STATUS.

fdefine msgNotePaperSplit MakeMsg(clsNotePaper, 111)

First msgNotePaperSplitAsWords is self-sent. If stsRequestDenied is returned, then
msgNotePaperSplitAsAtoms is self-sent.

msgNotePaperAddMenus
Modifies the passed in menu bar and appends standard NotePaper menus.

Takes OBJECT, returns STATUS.

fdefine msgNotePaperAddMenus MakeMsg(clsNotePaper, 117)

msgNotePaperAddModeCtrl
Adds the standard NotePaper mode icon to the passed in menu bar.

Takes OBJECT, returns STATUS.

fdefine msgNotePaperAddModeCtrl MakeMsg(clsNotePaper, 118)

Return Value

Return Value

msgN otePaperClear
Deletes all items in receiver.

Takes pNull, returns SfATUS.

#define msgNotePaperClear

msgNotePaperClearSel
Deletes all selected items in receiver.

Takes pNull, returns SfATUS.

#define msgNotePaperClearSel

msgN otePaperlnsertLine
Inserts a blank line above the selection.

Takes P _NULL, returns SfATUS.

MakeMsg(clsNotePaper, 119)

MakeMsg(clsNotePaper, 11)

#define msgNotePaperlnsertLine MakeMsg(clsNotePaper, 5)

msgNotePaperSelectRect
Selects items within rect in the receiver's data.

Takes P_RECT32, returns STATUS.

#define msgNotePaperSelectRect MakeMsg(clsNotePaper, 1)

stsNotePaperNoHit Returned if nothing selected.

msgN otePaperSelectLine
Selects items whose baselines intersect rect in the receiver's data.

Takes P _RECT32, returns STATUS.

#define msgNotePaperSelectLine MakeMsg(clsNotePaper, 6)

stsN otePaperN oHit Returned if nothing selected.

msgN otePaperDeselectLine
Deselects items whose baselines intersect fect in the receiver's data.

Takes P _RECT32, returns STATUS.

#define msgNotePaperDeselectLine MakeMsg(clsNotePaper, 7)

stsNotePaperNoHit Returned if nothing deselected.

msgN otePaper DeleteLine
Deletes items whose baselines intersect rect in the view's data.

Takes P _RECT32, returns STATUS.

#define msgNotePaperDeleteLine MakeMsg(clsNotePaper, 8)

stsN otePaperN oHit Returned if nothing deleted.

NOTEPAPR.H 247
Messages

248 PENPOINT API REFERENCE
Part 9 / Utility Classes

msgN otePaperScribble
Handles scribble (including creating and insert object into view's data).

Takes OBJECT, returns STATUS.

*define msgNotePaperScribble MakeMsg(clsNotePaper, 9)

The passed scribble's origin should be relative to the lower-left corner of the receiver.

msgGWinGesture
Self-sent to process the gesture.

Takes P_GWIN_GESTURE, returns STATUS.

*define msgGWinGesture MakeMsg(clsGWin, 2)

The standard behavior of this gesture is defined in gwin.h. In addition, subclasses can return

stsNotePaperTreatAslnk if they want the gesture to be treated as ink. In that case, an instance of
clsNPScribbleltem will be created from the gesture's strokes.

clsNotePaper's response to the various gestures is described in the MiniNote quick reference card. In

gesture mode, gesture can be made anywhere in the window. However, any unrecognized gesture of
more than two strokes will be treated as ink. In writing mode, most draw~ng is treated as ink (unless it is
drawn over the selection). However, the following gestures are allowed even in writing mode:

xgsScratchOut:
xgsPigtailVert:
xgs2Tap:
xgs3Tap:
xgsPlus:
xgsTapHold:
xgsCircleCrossOut:
xgsDblCircle:
xgsUpCaretDot:
xgsDblUpCaret:
xgsHorzCounterFlick:
xgsVertCounterFlick:

delete items
delete items
select item (if over an item)
select line
toggle item (if over an item)
begin area selection
undo
create reference button
insert date/time
embed stationery
toggle mode
toggle application borders

stsNotePaperTreatAslnk The gesture should be treated as ink.

gwin.h

msgAppSelectAll
Selects all items in the view.

Takes P_NULL, returns STATUS.

app.h

msgSelDelete
Deletes selected items in the view.

Takes P _NULL, returns STATUS.

Close the space that the selection occupies if an entire line or lines is selected and this message does is

not sent within a move/copy episode.

sel.h

NOTEPAPR.H 249

Quick help and window tags

msgOptionAddCards
Creates and adds the Pen and Paper option sheets.

Takes P _OPTION_TAG, returns STATUS.

This message is usually send to the NotePaper instance by the app framework if the instance holds the
selection, is the client win of the app's main win, or is the client win of a scroll win that is the app's main
win'. However, to force NotePaper's option sheets to appear in the "Option" menu in other
circumstances, this message should be forwarded to the NotePaper instance by the application if

pArgs->tag is tagAppDocOptSheet.

app.h.h

msglmportQuery
Indicates whether or not passed in file can be imported.

Takes P _IMPORT_QUERY, returns STATUS. Category: class message.

NotePaper will respond positively to this message if the first 50f the file are printable ASCII characters.

import.h

msglmport
Imports the passed in file.

Takes P_IMPORT_DOC, returns STATUS.

After the file is imported, receiver's length is grown to accommodateimported text. If receiver's width is

zero, it is grown to sixwide.

import.h

msgExportGetFormats
Passes back list of formats that can be exported.

Takes P_EXPORT_LIST, returns STATUS.

export.h

msgExport
Writes an ASCII version of receiver's data to the passed in file.

Takes P_EXPORT_DOC, returns STATUS.

A translated text version of each scribble item is written out.

export.h

Quick help and window tags
Tags used in the UI of NotePaper's option sheets, menus, and quick help.

Next up 37; Recycle: 2

Tag values 100-120 are reserved for pen and paper styles.

Tag values 200-255 are reserved for private window tags.

250 PEN POINT API REFERENCE
Part 9 I Utility Classes

Mode icons
Mode icons (tags from itoggle.h) The bitmaps corresponding to the two tags below are found in
theSystemResFile.

#define tagNotePaperWritelcon
#define tagNotePaperEditlcon

Quick help tag for mode icons

#define tagNotePaperModelcon

Windows

taglconToggleOff
taglconToggleOn

MakeTag(clsNotePaper, 1)

Quick help tags for the main view and for the gesture margin.

#define tagNotePaper
#define tagNotePaperMargin

Edit Menu
#define tagNotePaperTranslate
#define tagNotePaperEdit
#define tagNotePaperClear
#define tagNotePaperlnsertLine

~~ Pen Menu
#define tagPenMenu
#define tagPenFineBlack
#define tagPenBoldBlack
#define tagPenFineGray
#define tagPenBoldGray

Arrange Menu
#define tagArrangeMenu
#define tagNotePaperTidy
#define tagNotePaperCenter
#define tagNotePaperAlignLeft
#define tagNotePaperAlignRight
#define tagNotePaperMerge
#define tagNotePaperSplitAsWords
#define tagNotePaperSplit

Paper Option Card

MakeTag(clsNotePaper, 4)
MakeTag(clsNotePaper, 5)

MakeTag(clsNotePaper, 6)
MakeTag(clsNotePaper, 7)
MakeTag(clsNotePaper, 34)
MakeTag(clsNotePaper, 35)

MakeTag(clsNotePaper, 3)
MakeTag(clsNotePaper, 110)
MakeTag(clsNotePaper, 111)
MakeTag(clsNotePaper, 112)
MakeTag(clsNotePaper, 113)

MakeTag(clsNotePaper, 8)
MakeTag(clsNotePaper, 9)
MakeTag(clsNotePaper, 10)
MakeTag(clsNotePaper, 11)
MakeTag(clsNotePaper, 12)
MakeTag(clsNotePaper, 13)
MakeTag(clsNotePaper, 14)
MakeTag(clsNotePaper, 15)

NOTE: For TagPaperStyle(n), tag n is a value in the NP _PAPER_STYLE enumeration For
NPPaperStyleFromTag converts a tag to a paper style.

#define tagPaperCard MakeTag(clsNotePaper, 16)

#define tagPaperStyleLabel MakeTag(clsNotePaper, 17)
#define tagPaperStyle MakeTag(clsNotePaper, 18)
#define TagPaperStyle(n) MakeTag(clsNotePaper, 100 + n)
#define NPPaperStyleFromTag(t) (TagNum(t) - 100)
#define tagLineSpacingLabel MakeTag(clsNotePaper, 19)
#define tagLineSpacing MakeTag(clsNotePaper, 20)
#define tagLineOtherRuling MakeTag(clsNotePaper, 21)
#define tagLineOtherValue MakeTag(clsNotePaper, 22)

NOTEPAPR.H 251
Quick help and window tags

#define tagPaperWidthLabel
#define tagPaperWidth
#define tagPaperFitScreen
#define tagPaperFitPrinter
#define tagPaperOtherWidth
#define tagPaperOtherValue
#define tagPaperFontLabel
#define tagPaperFont

Pen Option Card

MakeTag(clsNotePaper, 23)
MakeTag(clsNotePaper, 24)
MakeTag(clsNotePaper, 25)
MakeTag(clsNotePaper, 26)
MakeTag(clsNotePaper, 27)
MakeTag(clsNotePaper, 28)
MakeTag(clsNotePaper, 29)
MakeTag(clsNotePaper, 30)

#define tagPenCard MakeTag(clsNotePaper, 31)
#define tagPenStyleLabel MakeTag(clsNotePaper, 32)
#define tagPenStyle MakeTag(clsNotePaper, 33)

tagPenFineBlack (same value as in the pen menu)

tagPenBoldBlack (same value as in the pen menu)

tagPenFineGray (same value as in the pen menu)

tagPenBoldGray (same value as in the pen menu)

Insertion Pad
#define tagNotePaperSkip

Standard Error Resource Tags
#define stsNotePaperPageWidth

Undo Resource Tags
#define tagNPUndoWriting
#define tagNPUndoDeletion

MakeTag(clsNotePaper, 36)

MakeStatus(clsNotePaper, 2)

MakeTag(clsNotePaper, 1)
MakeTag(clsNotePaper, 2)

NPDATA.H

This file contains the API definition for clsN PData.

clsNPData inherits from clsObject.

NPData is the data class of PenPoint's ink-management or note-taking building block. (See notepapr.h
for more information on the building block.) An NPData instance is a data base that manages items that
follow the clsNPltem protocol. (See npitem.h). Its API defines messages for inserting, deleting, and
enumerating the items it manages.

fifndef NPDATA_INCLUDED
fdefine NPDATA_INCLUDED
fifndef CLSMGR_INCLUDED
finclude <clsmgr.h>
fendif
finclude <geo.h>

Types and Constants
fdefine clsNPData MakeGlobalWKN(2568,1)

Messages
Next up: 39; Recycle: 4 5 6 7 15 20 33 34

msgN ewDefaults
Initialize pArgs.

Takes P_NP_DATA_NEW, returns STATUS.

typedef struct {
XY32 lineSpacing;
XY32 baseline;
BOOLEAN isSubData; II private to clsNPData
S32 spare1;
S32 spare2;

NP_DATA_NEW_ONLY, *P_NP_DATA_NEW_ONLY;
fdefine npDataNewFields \

objectNewFields \
NP_DATA_NEW_ONLY npData;

typedef struct {
npDataNewFields

} NP_DATA_NEW, *P_NP_DATA_NEW;

Zeroes out pArgs->npData and sets:

pArgs->npData.lineSpacing.x = 0;
pArgs->npData.lineSpacing.y = 360;

pArgs->npData.baseline.x = 0;
pArgs->npData.baseline.y = 360;

II 360 twips 18 points 1/4"

254 PENPOINT API REFERENCE

Part 9 / Utility Classes

Messages used to manipulate data

Argoments

msgNPDatalnsertltem
Add item to the data base.

Takes OBJECT, returns STATUS.

#define msgNPDataInsertItem MakeMsg(c1sNPData, 8)

msgNPDatalnsertltemFrom View
Add item to the data base.

Takes P _NP _DATA_ADDED_NP _ITEM_VIEW, returns STATUS.

#define msgNPDataInsertItemFromView MakeMsg(c1sNPData, 38)

typedef struct {
OBJECT item; II item that has been added
OBJECT view; II view that added the item

NP_DATA_ADDED_NP_ITEM_VIEW, *p NP DATA_ADDED_NP_ITEM_VIEWi

Observers will be notified of which view is responsible for the addition.

msgNPDataDeleteltem
Delete an item from the data base.

Takes OBJECT, returns STATUS.

#define msgNPDataDe1eteItem MakeMsg(c1sNPData, 9)

Returns stsFailed if item is not found.

msgNPDataMoveltem
Move an item within the data base.

Takes P _NP _DATA_XY, returns STATUS.

#define msgNPDataMoveItem MakeMsg(c1sNPData, 10)

typedef struct {
OBJECT item; II item to be moved
XY32 xy; II new position for item

NP_DATA_XY, *P_NP_DATA_XY;

msgNPDataMoveltems
Move all items below pArgs->y by pArgs->yDelta.

Takes P _MOVE_ITEMS, returns STATUS.

#define msgNPDataMoveItems

typedef struct {
COORD32 y;
COORD32 yDe1ta;

MOVE_ITEMS, *P_MOVE_ITEMSi

MakeMsg(c1sNPData, 1)

NPDATA.H 255

Messages used to enumerate over data

Messages used to enumerate over data

Argurnents

Messoge
Arguments

ENUM_ CALLBACK
This template describes the the callback function used in item enumeration.

Returns Sf ATUS.

typedef struct
OBJECT data;
OBJECT item;

II in - the data being enumerated over
II in - the item being enumerated

P UNKNOWN clientData; II in - the client supplied data (or pointer)
NP_DATA_ITEM, *P_NP_DATA_ITEM;

typedef STATUS FunctionPtr(P_ENUM_CALLBACK) (P_NP_DATA_ITEM pltem);

Your callback function takes a single parameter of type P _NP _DATA_ITEM. The clientData field is a copy
of that you passed into the enumeration message using the ENUM_ITEM or ENUM_RECT_ITEM

structures. During enumeration, you can add new items or delete the "current" item begin enumerated.
If you delete an item but want to keep using it, use must send it msgNPltemHold before deleting it and

msgNPltemRelease when you are done using it.

Some of the enumeration messages refer to bPaintOrder or "Reverse" order. Paint order refers to the

top-to-bottom, left-to-right ordering of items. Non-paint or reverse order is simply the opposite
ordering. Items are sorted first by line and then by their left edge. An item is considered to be on the line
closest to its baseline. The lines are "line spacing" apart starting from the top of the page. If no lines are

displayed to the user, it is possible that non-intuitive item ordering will result.

Return an error status from the callback to terminate the enumeration.

msgNPDataEnumOverlappedltems
Enumerates each item that overlaps the given rectangle.

Takes P_ENUM_RECT_ITEMS, returns STATUS.

#define msgNPDataEnumOverlappedltems MakeMsg(clsNPData, 2)

typedef struct {
P_ENUM_CALLBACK function; II in
RECT32 hitRect; II in
BOOLEAN bPaintOrder; II in
P UNKNOWN clientData; II in

ENUM_RECT_ITEMS, *P_ENUM_RECT_ITEMS;

msgNPDataEnumBaselineltems

callback function described above
enum items overlapping hitRect
enum in paint order?

Enumerates each item whose baseline overlaps the given rectangle.

Takes P _ENUM_RECT _ITEMS, returns STATUS.

#define msgNPDataEnumBaselineltems MakeMsg(clsNPData, 19)

typedef struct {
P_ENUM_CALLBACK function; II in
RECT32 hitRect; II in
BOOLEAN bPaintOrder; II in
P UNKNOWN clientData; II in

ENUM_RECT_ITEMS, *P_ENUM_RECT_ITEMS;

callback function described above
enum items overlapping hitRect
enum in paint order?

-~---.---~-----

256 PEN POINT API REFERENCE

Part 9 / Utility Classes

Messuge
Avgvm©t1f'S

M©ss;ug0

Argun1©rtfs

M0ssu9©
Ar9\IJm0rtfs;

msgNPDataEnumSelectedItems
Enumerates each item that is selected (in paint order).

Takes P_ENUM_ITEMS, returns STATUS.

tdefine msgNPDataEnumSelectedltems MakeMsg(clsNPData, 13)

typedef struct {
P_ENUM_CALLBACK function;
P UNKNOWN clientData;

ENUM_ITEMS, *P_ENUM_ITEMS;

II in -- callback function described above
II in

msgNPDataEnumSelectedItemsReverse
Enumerates each item that is selected (in reverse paint order).

Takes P_ENUM_ITEMS, returns STATUS.

tdefine msgNPDataEnumSelectedltemsReverse MakeMsg(clsNPData, 26)

typedef struct {
P_ENUM_CALLBACK function;
P UNKNOWN clientData;

ENUM_ITEMS, *P_ENUM_ITEMS;

msgNPDataEnumAllltems
Enumerates each item (in paint order).

Takes P _ENUM_ITEMS, returns STATUS.

II in -- callback function described above
II in

tdefine msgNPDataEnumAllltems MakeMsg(clsNPData, 14)

typedef struct {
P_ENUM_CALLBACK function;
P UNKNOWN clientData;

ENUM_ITEMS, *P_ENUM_ITEMS;

II in -- callback function described above
II in

msgNPDataEnumAllltemsReverse
Enumerates each item (in reverse paint order).

Takes P _ENUM_ITEMS, returns STATUS.

fdefine msgNPDataEnumAllltemsReverse MakeMsg(clsNPData, 27)

typedef struct {
P_ENUM_CALLBACK function;
P UNKNOWN clientData;

ENUM_ITEMS, *P_ENUM_ITEMS;

II in -- callback function described above
II in

msgNPDataSendEnumSelectedltems
Enumerates each selected item (in paint order).

Takes P_SEND_ENUM_ITEMS, returns STATUS.

tdefine msgNPDataSendEnumSelectedltems MakeMsg(clsNPData, 22)

typedef struct {
P_ENUM_CALLBACK function; II in -- callback function described above
U8 clientData[32]; II in/out

SEND_ENUM_ITEMS, *P_SEND_ENUM_ITEMS;

Comments

NPDATA.H 257
Messages used to access internal state

This message is the same as msgNPDataEnumSelectedltems, except that it it intended to be used in
conjunction with ObjectSend rather than ObjectCall. It is used to enumerate the items in a data object
that is not in the caller's process. Rather than a pointer to the client data being passed around, the client
data is put into an array that is passed around.

msgNPDataGetCurrendtem
Passes back the current item in the receiver.

Takes P_OBJECT, returns STATUS.

#define msgNPDataGetCurrentltem MakeMsg(clsNPData, 30)

msgNPDataGetNextltem
Increments the current item to the next item and sets *pArgs to it.

Takes P _OBJECT, returns STATUS.

#define msgNPDataGetNextltem MakeMsg(clsNPData, 31)

Set *pArgs to the current item before sending this message. If you set it to NULL, the first item will be
returned. The next time you call this message after you reach the last item, stsEndOfData will be

returned and *pArgs will be set to objNull.

Messages used to access internal state

msgNPDataItemCount
Passes back the count of items in receiver.

Takes P _U32, returns STATUS.

#define msgNPDataltemCount MakeMsg(clsNPData, 17)

msgNPDataSelectedCount
Passes back the count of selected items in receiver.

Takes P _U32, returns STATUS.

#define msgNPDataSelectedCount MakeMsg(clsNPData, 18)

msgNPDataSetBaseline
Sets the receiver's baseline (used for alignment).

Takes P _XY32, returns STATUS.

#define msgNPDataSetBaseline MakeMsg(clsNPData, 24)

msgNPDataGetBaseline
Gets the receiver's baseline (used for alignment).

Takes P _XY32, returns STATUS.

#define msgNPDataGetBaseline MakeMsg(clsNPData, 25)

258 PENPOINT API REFERENCE

Part 9 I Utility Classes

msgNPDataSetLineSpacing
Sets receiver's line spacing (used as the font size).

Takes P _XY32, returns STATUS.

fdefine msgNPDataSetLineSpaeing MakeMsg(elsNPData, 35)

msgNPDataGetLineSpacing
Gets receiver's line spacing (used as the font size).

Takes P _XY32, returns STATUS.

fdefine msgNPDataGetLineSpaeing MakeMsg(elsNPData, 36)

msgNPDataGetBounds
Passes back the bounding rectangle for all items in receiver.

Takes P _RECT32, returns STATUS.

fdefine msgNPDataGetBounds MakeMsg(elsNPData, 23)

msgNPDataGetSelBounds
Passes back the bounding rectangle for all selected items in receiver.

Takes P _RECT32, returns STATUS.

fdefine msgNPDataGetSelBounds MakeMsg(elsNPData, 32)

msgNPDataGetFontSpec
Passes back the receiver's font specification.

Takes P _SYSDC_FONT _SPEC, returns STATUS.

fdefine msgNPDataGetFontSpee

msgNPDataSetFontSpec
Sets the receiver's font specification.

MakeMsg(elsNPData, 28)

Takes P _SYSDC_FONT_SPEC, returns STATUS.

fdefine msgNPDataSetFontSpee MakeMsg(elsNPData, 29)

msgNPDataGetCachedDCs
Passes back DC's with normal and bold fonts at the given line spacing.

Takes P _NP _DATA_DC, returns STATUS.

fdefine msgNPDataGetCaehedDCs MakeMsg(elsNPData, 37)

typedef struet
OBJECT deNormal; II normal font de
OBJECT deBold; II bold font de

NP_DATA_DCS, *P_NP_DATA_DCS;

Used by items that want to measure text without the overhead of creating a DC. These DC's cannot be

used for drawing!!

NPDATA.H 259
Messages sent to observers

Messages sent to observers

Message
AW9vmerti's

msgNPDataAddedltem
Observers notified when item has been has been added or moved.

Takes P _NP _DATA_ADDED_ITEM, returns STATUS. Category: observer notification.

#define msgNPDataAddedItem MakeMsg(clsNPData, 11)

typedef struct {
OBJECT data; II the data that the item has been added to
OBJECT item; II item that has been added
OBJECT view; II view that added the item

NP_DATA_ADDED_ITEM, *P_NP_DATA_ADDED_ITEM;

msgNPDataItemChanged
Observers notified when item has been changed.

Takes P _NP _DATA_ITEM_CHANGED, returns STATUS. Category: observer notification.

#define msgNPDataItemChanged MakeMsg(clsNPData, 12)

typedef struct {
OBJECT data; II the data
OBJECT item; II item that has been changed
OBJECT view; II view that changed the item
RECT32 bounds; II maximum bounds affected by the change

NP_DATA_ITEM_CHANGED, *P_NP_DATA_ITEM_CHANGED;

Currently called when item is selected or deselected.

msgNPDataHeightChanged
Observers notified when receiver's height has been changed.

Takes P _NP _DATA_ITEM_CHANGED, returns STATUS. Category: observer notification.

#define msgNPDataHeightChanged MakeMsg(clsNPData, 21)

typedef struct {
OBJECT data; II the data
OBJECT item; II item that has been changed
OBJECT view; II view that changed the item
RECT32 bounds; II maximum bounds affected by the change

NP_DATA_ITEM_CHANGED, *P_NP_DATA_ITEM_CHANGED;

Currently called by msgNPDataMoveltems. The bounds.origin.y field of pArgs contains the delta in
the height of the data object.

msgNPDataItemEnumDone
Observers notified when an enumeration that deleted or moved items is complete.

Takes NULL, returns STATUS. Category: observer notification.

#define msgNPDataItemEnurnDone MakeMsg(clsNPData, 16)

When this message is received by an observer client, all deletions have been completed and all moved
items have been temporarily removed from the data object. Thus the client has the option of repainting
all remaining items at this time and then painting moved items as they are reinserted.

This message is handled by clsNotePaper and should not be handled by subclasses of dsNotePaper.

'" 1M

'" '"

lL

NPITEM.H

This file contains the API definition for clsNPltem.

clsNPltem inherits from clsObject.

NPltem is the item class for PenPoint's ink-management or note-taking building block. While instances
of clsNPltem are never created, (subclasses like clsNPScribbleltem and clsNPTexdtem are more
interesting), NPltem defines a protocol as well as doing much of the work for basic operations.

To add new item types to the ink building block, create a subclass of clsNPltem that implements the
messages defined below in the section: "Messages that are usually overridden by subclasses." Once this
new item is inserted into a clsNPData object it will show up in the clsNotePaper view that observes that
object. The new item will then behave like the other item in terms of basic operations like move, copy,
deletion, style changes, etc.

#ifndef NPITEM INCLUDED
#define NPITE~INCLUDED
#ifndef GEO INCLUDED
#include <geo.h>
#endif
#ifndef CLSMGR INCLUDED
#include <clsmgr.h>
#endif
#ifndef BORDER INCLUDED
#include <border.h>
#endif

Types and Constants
#define clsNPItem
#define stsNPItemNoSplit

MakeGlobalWKN(2569,1)
MakeWarning(clsNPItem, 0)

The NPData object "handles versioning for NPltem's and their subclasses. If the version of the object
being restored matches the runtime version, nothing special is done. However, if there is a difference, the
version number of the filed object is stamped as a U16 property onto the file using tagltemVersion as the
property's tag.

#define NP~ITEM_VERSION 1
#define tagItemVersion MakeTag(clsNPItem, 0)

Messages
Next up: 44; Recycle: 3

msgNewDefaults
Initialize pArgs.

Takes P _NP _ITEM_NEW, returns Sf ATUS.

typedef struct NP ITEM NEW ONLY
RECT32 bounds;-
XY16 baseline;
BOOLEAN selected;
U32 penStyle; II (Pen styles are defined in notepapr.h.)
S32 spare2;

NP_ITEM_NEW_ONLY, *P_NP_ITEM_NEW_ONLY;

262 PENPOINT API REFERENCE
Part 9 / Utility Classes

fdefine npltemNewFields \
objectNewFields \
NP_ITEM_NEW_ONLY item;

typedef struct NP_ITE~NEW {
npltemNewFields

} NP_ITEM_NEW, *P_NP_ITEM_NEW;

Zeroes out pArgs->npData and sets:

pArgs->item.penStyle = penFineBlack;

msgNPItemGetPenStyle
Get the pen style of an item. (Pen styles are defined in notepapr.h.)

Takes P _U32, returns STATUS.

fdefine msgNPltemGetPenStyle MakeMsg(clsNPltem, 35)

msgNPItemDelete
Delete item from its data.

Takes pNuIl, returns SfATUS.

fdefine msgNPltemDelete MakeMsg(clsNPltem, 11)

Deleting an item decrements its reference count and can cause the item to be destroyed. To prevent, call

msgNPltemHold before calling msgNPltemDelete. Then call msgNPltemRelease after working with

the item.

msgNPItemPaintBackground
Paints a gray background if the receiver is selected.

Takes P _NP _ITEM_DC, returns STATUS.

fdefine msgNPltemPaintBackground MakeMsg(clsNPltem, 41)

typedef struct
OBJECT dc; II DC to paint into
OBJECT dcPen; II equivalent DC in pen units

NP_ITEM_DC, *P_NP_ITEM_DC;

Subclasses should override this message if they want a different type of selection feedback.

msgNPItemSelect
Selects or deselects item.

Takes BOOLEAN, returns SfATUS.

fdefine msgNPltemSelect MakeMsg(clsNPlte~, 14)

msgNPItemSelected
Passes back item's selection status.

Takes P _BOOLEAN, returns STATUS.

fdefine msgNPltemSelected MakeMsg(clsNPltem, 15)

msgNPltemMove
Moves item to the indicated position.

Takes P _XY32 , returns STATUS.

#define msgNPltemMove MakeMsg(clsNPltem, 5)

msgNPltemDelta
Moves item by the indicated amount.

Takes P _XY32 , returns STATUS.

#define msgNPltemDelta MakeMsg(clsNPltem, 6)

msgNPltemGetViewRect
Passes back receiver's bounding rectangle.

Takes P _RECT32, returns STATUS.

#define msgNPItemGetViewRect MakeMsg(clsNPItem, 19)

msgNPltemHitRect
Returns stsOK if receiver's bounds overlaps pArgs.

Takes P _RECT32, returns STATUS.

#define msgNPItemHitRect

msgNPltemGetMetrics
Gets the item's metrics.

MakeMsg(clsNPItem, 9)

Takes P_NP_ITEM_METRICS, returns SfATUS.

#define msgNPItemGetMetrics MakeMsg(clsNPItem, 20)

typedef struct NP ITEM METRICS {
U8 selected: 1, II is item selected?

marked: 1, II is item marked (in the clsMark sense)?
reserved: 6;

U8 ref Count; II number external references to item

NPITEM.H 263

II (not generally interesting to subclasses)
XY16 baseline; II item's horizontal and vertical baseline

II (currently only the y value is used)
RECT32 bounds; II window relative bounds

II (with respect to its bounds' origin)
OBJECT data; II data object that item is in
OBJECT adjunct; II see msgNPItemSetAdjunct for more information
U32 penStyle; II item's pen style

NP_ITEM_METRICS, *P_NP_ITEM_METRICS;

msgNPltemSetBaseline
Sets receiver's baseline.

Takes P _XY32, returns STATUS.

#define msgNPItemSetBaseline MakeMsg(clsNPItem, 21)

264 PENPOINT API REFERENCE
Part 9 I Utility Classes

Comments

msgNPltemSetBounds
Sets receiver's bounds.

Takes P _RECT32, returns STATUS.

#define msgNPltemSetBounds

msgNPltemHold

MakeMsg(clsNPltem, 30)

Increments the reference count for the item.

Takes NULL, returns STATUS.

#define msgNPltemHold MakeMsg(clsNPltem, 22)

When the reference count for an item drops to zero, it is destroyed.

msgNPltemRelease
Decrements the reference count for the item.

Takes NULL, returns STATUS.

#define msgNPltemRelease MakeMsg(clsNPltem, 23)

When the reference count for an item drops to zero, it is destroyed.

msgNPltemAlignToBaseline
Moves item so that it align to passed in line spacing.

Takes P_XY32, returns STATUS.

#define msgNPltemAlignToBaseline MakeMsg(clsNPltem, 33)

The item should be aligned against the y-value of pArgs.

Messages that are usually overridden by
subclasses

Message
Arguments

msgNPltemPaint
Paints item using the passed in drawing contexts.

Takes P _NP _ITEM_DC, returns STATUS.

#define msgNPltemPaint MakeMsg(clsNPltem, 12)

typedef struct
OBJECT dc; II DC to paint into
OBJECT dcPen; II equivalent DC in pen units

NP_ITEM_DC, *P_NP_ITEM_DC;

msgNPltemSetPenStyle
Sets the item's pen style. (pen styles are defined in notepapr.h.)

Takes U32, returns STATUS.

#define msgNPltemSetPenStyle MakeMsg(clsNPltem, 34)

Comments

NPITEM.H 265
Messages that are usually overridden by subclasses

msgNPltemSetOrigin
Set receiver's origin.

Takes P _XY32 , returns STATUS.

*define msgNPltemSetOrigin MakeMsg(clsNPltem, 18)

msgNPltemScratchOut
Handles the scratch-out gesture on an item.

Takes P _RECT32, returns STATUS.

*define msgNPltemScratchOut MakeMsg(clsNPltem, 24)

Scribble items handle this message by deleting strokes that overlap pArgs. Other items simply delete
themselves.

msgNPltemSplitGesture
Handles the split gesture on an item.

Takes P _XY32 , returns STATUS.

*define msgNPltemSplitGesture MakeMsg(clsNPltem, 25)

The pArgs refers to the "hot point" for the gesture.

msgNPltemSplit
Split an item into its constituent items.

Takes NULL, returns STATUS.

*define msgNPltemSplit MakeMsg(clsNPltem, 26)

msgNPltemSplitAsWords
Splits receiver into words. Deletes receiver, inserts new items.

Takes NULL, returns STATUS.

*define msgNPltemSplitAsWords MakeMsg(clsNPltem, 16)

stsltemNoSplit Returned if nothing was split.

msgNPltemJoin
Joins receiver and OBJECT and deletes OBJECT.

Takes OBJECT, returns STATUS.

*define msgNPltemJoin MakeMsg(clsNPltem, 27)

msgNPltemTie
Joins OBJECT and receiver and deletes them. Inserts new object.

Takes OBJECT, returns STATUS.

*define msgNPltemTie MakeMsg(clsNPltem, 17)

266 PEN POINT API REFERENCE
Part 9 / Utility Classes

msgNPltemGetScribble
Pass back the item's scribble.

Takes P _OBJECT, returns STATUS.

fdefine msgNPltemGetScribble MakeMsg(clsNPltem, 4)

Subclasses that do not contain a scribble should not respond to this message.

msgNPltemGetString
Passes back the text string for the item.

Takes PP_STRING, returns STATUS.

fdefine msgNPltemGetString MakeMsg(clsNPltem, 38)

Subclasses that do not have a text representation should not respond to this message.

clsNPScribbleltem responds to this message by translating its scribble and returning the resulting string.

The sender of this message should either use the passed back string immediately or make a copy of it.

msgNPltemSetString
Sets the text string for the item.

Takes P _STRING, returns STATUS.

fdefine msgNPltemSetString MakeMsg(clsNPltem, 42)

Not all items can handle this message.

msgNPltemToText
Item converts itself to a text item, passes back text item.

Takes P_OBJECT, returns STATUS.

fdefine msgNPltemToText MakeMsg(clsNPltem, 7)

Receiver deletes itself from its data and inserts the text item. If pArgs is pNull, the text item is not
passed back.

msgNPltemToScribble
Item converts itself to a scribble item.

Takes P _ARGS, returns STATUS.

fdefine msgNPltemToScribble MakeMsg(clsNPltem, 36)

Receiver deletes itself from its data and inserts the scribble item.

msgNPltemHitRegion
Returns stsOK if receiver's path overlaps pArgs.

Takes P _RECT32, returns STATUS.

fdefine msgNPltemHitRegion MakeMsg(clsNPltem, 10)

Comments

NPITEM.H 267

Messages that are usually overridden by subclasses

msgNPltemCalcBaseline
Calculate and set receiver's baseline.

Takes P _XY32 , returns STATUS.

tdefine msgNPltemCalcBaseline MakeMsg(clsNPltem, 28)

The calculation is based on the line spacing specified by pArgs.

msgNPltemCalcBounds
Receiver calculates and sets its new bounds.

Takes OBJECT, returns SfATUS.

tdefine msgNPltemCalcBounds MakeMsg(clsNPltem, 37)

Usually send in response to the item's style changing. OBJECT is the data object in which the item will be
inserted. If the item is in a data object, pArgs can be pNull.

msgNPltemGetWordSpacing
Receiver passes back the size of its "space" character.

Takes P _UI6, returns STATUS.

tdefine msgNPltemGetWordSpacing MakeMsg(clsNPltem, 43)

This message is used by msgNotePaperTidy to determine the spacing of items.

msgNPltemCanBeTranslated
Receiver returns stsOK if it can be translated.

Takes pNull, returns SfATUS.

tdefine msgNPltemCanBeTranslated MakeMsg(clsNPltem, 13)

Translation occurs in response to msgNPltemToT ext.

msgNPltemCanBeUntranslated
Receiver returns stsOK if it can be untranslated.

Takes pNull, returns SfATUS.

tdefine msgNPltemCanBeUntranslated MakeMsg(clsNPltem, 31)

Untranslation occurs in response to msgNPltemToScribble.

NPSCR.H

This file contains the API definition for c1sNPScribbleItem.

c1sNPScribbleItem inherits from c1sNPltem.

NPScribbleItem is the ink class of PenPoint's ink-management or note-taking building block. (See
notepapr.h for more information on the building block.) NPScribbleItem overrides NPltem messages as
is appropriate. See npitem.h for details.

#ifndef NPSCR INCLUDED
#define NPSCR INCLUDED
#ifndef NPITEM INCLUDED
#include "npitem.h"
#endif

Types and Constants
#define clsNPScribbleItem MakeGlobalWKN(2570,1)

Messages

msgNewDefaults
Initialize pArgs. Zeros out pArgs->scribbleltem.

Takes P _NP _SCRIBBLE_ITEM_NEW, returns STATUS.

typedef struct NP_SCRIBBLE_ITEM_NEW_ONLY {
OBJECT scribble;
OBJECT data; II data that item will be associated with
S32 sparel;

NP_SCRIBBLE_ITEM_NEW_ONLY, *P_NP_SCRIBBLE_ITEM_NEW_ONLY;
#define npScribbleItemNewFields \
'npItemNewFields \

NP_SCRIBBLE_ITEM_NEW_ONLY scribbleItem;
typedef struct NP_SCRIBBLE_ITEM_NEW {

npScribbleItemNewFields
NP_SCRIBBLE_ITEM_NEW, *P_NP_SCRIBBLE_ITEM_NEW;

-------, .. _ .. _--_._----

NPTEXT.H

This file contains the API definition for clsNPTextltem.

clsNPT extltem inherits froom clsNPltem.

NPTextltem is the text class of PenPoint's ink-management or note-taking building block. (See
notepapr.h for more information on the building block.) NPTextltem overrides NPltem messages as is
appropriate. See npitem.h for details.

#ifndef NPTEXT INCLUDED
#define NPTEXT INCLUDED
#ifndef NPITEM_INCLUDED
#include "npitem.h"
#endif

Types and Conslanls
#define clsNPTextItem MakeGlobalWKN(2571,l)

Messages

msgNewDefaults
Initialize pArgs. Zeros out pArgs->textltem.

Takes P _NP _TEXT_ITEM_NEW, returns STATUS.

OBJECT
P STRING
OBJECT

text;
pString;
data;

S32 sparel;

II string object
II string if string object not given
II data that item will be associated with
II (item's size measured using data's DC)

NP TEXT_ITEM_NEW_ONLY, *P_NP_TEXT_ITEM_NEW_ONLY;
#define npTextItemNewFields \

npItemNewFields \
NP_TEXT_ITEM_NEW_ONLY textItem;

typedef struct NP_TEXT_ITEM_NEW {
npTextItemNewFields

NP_TEXT_ITEM_NEW, *P_NP_TEXT_ITEM_NEW;

ORDSET.H

This file contains the API definition for the OrderedSet interface. The functions described in this file are
contained in MISC.UB.

Overview

An OrderedSet implements a growable, ordered set of items. Each item has a key and associated data.
The ordered set knows about the structure of the key, but treats the data as uninterpreted bytes. The
items in an ordered set are homogeneous: there is only one size for the key, and another size for the data,
for all the items in the set.

Keys are unsigned quantities, treated as either non-negative integers or indirect access identifiers. The
client specifies:

• how keys are treated - direct or indirect;

• for indirect keys - access and comparison functions;

• whether duplicate keys are allowed;

• the key size - it must be 1, 2, or 4 bytes.

The data size (in bytes) is also specified by the client; it must be less than or equal to 1023.

The client provides an initial estimate of the number of items in the ordered set when the set is created;
the set will allocate more memory if the estimate proves to be too small.

Performance considerations

The implementation of OrderedSet builds on the ByteArray storage abstraction. This implies that either
the number of elements in the set is small enough that it is not a problem to use a linear array
representation for the set, or that the number of lookups dominates the number of insertions and
deletions.

Indirect Keys and Two Comparison Routines

Ordered sets with indirect keys have a funny property. If you want to search for a key that already exists
in the set, everything's just fine. But if you want to do something with a key that ISN'T in the set (e.g.
find out if the key is in the set), there is no indirect key to use. (This problem also arises when clients ask
ordered sets questions such as "What's the next entry with a key greater than this key k?")

To solve this problem, indirect-keyed ordered sets must be provided two comparison routines by the
creator. The first routine (passed as the compareKeyllndirect in a called to OrderedSetExtendO) is used
when the implementation needs to compare two keys that are both in the set. The second routine
(passed as compareKeylDirect in a call to OrderedSetExtendO) is used when the implementation needs
to compare two keys, only one of which is in the set.

Caution:

274 PENPOINT API REFERENCE
Part 9 I Utility Classes

If keys are indirect, OrderedSetFindMinMaxO, OrderedSetFindMaxMinO, and OrderedSetNextO
return the indirect key, not the value the key references.

Known Limitations
This package does not work correctly if the set has indirect keys and 0 (zero) is a legitimate key value.

fifndef ORDSET_INCLUDED
fdefine ORDSET_INCLUDED $Revision: 1.17 $

finclude <bytarray.h>
finclude <gosearch.h> II For ACCESS/COMPARE_FUNC

Private
Fl,mdion Pr<:t<:type typedef U32 (CDECL *READ _KEY _FUNC) (

P_ORDERED_SET p,
P UNKNOWN pKey) ;

typedef struct ORDERED_SET {
U16 indirectKeys 1;
U16 uniqueKeys 1;
U16 spare 2;
U16 sizeofKeyMinus1 2;
U16 sizeofData :10;
P BYTE ARRAY
ACCESS FUNC
COMPARE FUNC
COMPARE FUNC
P UNKNOWN
READ KEY FUNC

ORDERED_SET i

items;
access;
compareKey1Direct;
compareKey1Indirect;
context;
readKeYi

OrderedSetCountlnternai

II TRUE => no duplicate keys
II Always set to 0
II Number of bytes -1 a key needs
II Number of bytes data occupies
II Storage of actual items

II 1st arg to access() & compare()
II For internal use only!

Returns the number of items currently stored in the ORDERED_SET.

Returns BYTE_INDEX.

fdefine OrderedSetCountInternal(p) \
(ByteArrayLength(p->items) 10rderedSetSizeofItem(p))

High-performance version of OrderedSetCount, but subject to change if the implementation of ordered
sets changes.

Types and Constants
fdefine stsOrdSetDuplicateKey MakeStatus(clsMisc, 1)
fdefine findNextKeyInOS ((P_UNKNOWN)l)
fdefine findPreviousKeyInOS ((P_UNKNOWN)2)
typedef struct OS ITEM INFO {

U32 key;
P UNKNOWN data;
BOOLEAN isDuplicate;

OS_ITEM_INFO, *P_OS_ITEM_INFO;

ORDSET.H 275
Exported Functions a nd Macros

Exported Functions and Macros

o rderedSetPrint
In debugging version, prints the contents of the ordered set.

Returns void.

#ifdef DEBUG
void EXPORTED

Function Pvt:>totype OrderedSetPrint (
P_ORDERED_SET p);

#endif II DEBUG

Comments This function is undefined in the non-debugging version.

OrderedSetCreate
Creates an ordered set.

Returns STATUS.

STATUS EXPORTED

OrderedSetCreate(
P ORDERED SET - -
OS HEAP MODE
U8
U8
U32
BOOLEAN
BOOLEAN

* pp,
mode,
sizeofKey,
sizeofData,
initialCount,
uniqueKeys,
indirectKeys);

sizeofKeyand sizeofData specify the size in bytes of each item's key and data, respectively. The
initialCount is a hint; the ordered set will grow or shrink as needed. However, if initial Count is
approximately correct, performance will be better. If initialCount=O, 1 will be assumed. uniqueKeys
should be TRUE if client wants all keys in the set to be unique, FALSE otherwise. Only the
osHeapLocal / osHeapShared flags in mode are used.

Returns stsOK if able to create the set, in which case *pp will be the created set, otherwise *pp will be
Nil(p _ORDERED_SET).

OrderedSetSizeofKey
Returns the size of a key in bytes.

Returns U16.

#define OrderedSetSizeofKey(p) ((U16) ((p)->sizeofKeyMinus1 + 1))

OrderedSetSizeofltem
Returns the size of an item (key plus data) in bytes.

Returns U16.

#define OrderedSetSizeofItem(p) \
((U16) (OrderedSetSizeofKey(p) + (p)->sizeofData))

276 PENPOINT API REFERENCE

Part 9 / Utility Classes

OrderedSetHeapMode
Returns the heap mode with which the Ordered Set was created.

Returns OS_HEAP _MODE.

tdefine OrderedSetHeapMode(p) ByteArrayHeapMode((p)->items)

OrderedSetExtend
Modifies the functions and context of an ordered set with indirect keys.

Returns STATUS.

void EXPORTED

Ftmdl@n Prototype OrderedSetExtend (
P ORDERED SET p,
ACCESS FUNC
COMPARE FUNC
COMPARE FUNC
P UNKNOWN

access,
compareKeylDirect,
compareKeylIndirect,
context);

Specifies access and comparison functions for an ordered set with indirect keys, as well as a context for
those functions.

See gosearch.h's description ofbinarySearchO for more information about the behaviors and parameters
of the access and compare functions.

OrderedSetContext
Get the context passed to access and compare functions.

Returns P _UNKNOWN.

tdefine OrderedSetContext(-p) ((-p)->context)

OrderedSetModifyContext
Modify the context passed to access and compare functions.

Returns void.

tdefine OrderedSetModifyCont~xt(-p, _c) ((-p)->context (_c»

OrderedSetDefaultAccess
Can be used as the client-specified access routine in OrderedSetExtendO.

Rc:turns P _UNKNOWN.

P UNKNOWN CDECL

rom:tl@lk Prototype OrderedSetDefaultAccess (
const P_ORDERED_SET p,
const BYTE_INDEX index);

Comments In ordered sets with indirect keys the client must supply a routine that returns the address of the keys
that are passed into the client-supplied comparison routine. OrderedSetDefaultAccess computes the
address of the key in the ordered set representation, and so may be used by clients as the access routine
passed into OrderedSetExtendO.

ORDSET.H 277
Exported Functions and Macros

OrderedSetDestroy
Destroys an ORDERED_SET.

Returns void.

void EXPORTED

Fundion Prt>tt>type OrderedSetDestroy (
P_ORDERED_SET p);

OrderedSetlnsert
Inserts data with key into ordered set.

Returns STATUS.

STATUS EXPORTED

Function Prototype OrderedSetlnsert (
P ORDERED SET - -
U32
P UNKNOWN

p,
key,
data) ;

Copies sizeoIData bytes from the buffer pointed to by data. Returns:

stsOSOutOfMem if no memory available, or

stsOrdSetDuplicateKey if key is duplicate and unique keys required, or

stsOK otherwise.

If sizeofKey is less than 4 bytes, the least significant byte(s) of key are copied.

OrderedSetNthltem
Locates the n-th item in the ordered set (item indices begin with 0).

Returns P _UNKNOWN.

P UNKNOWN EXPORTED

Function Prototype OrderedSetNthltem (
P_ORDERED_SET p,
U32 n,
P_OS_ITEM_INFO info);

Returns a pointer to ordered set's copy of the data associated with the Nth item. This pointer is only
valid until the next calIon the same set.

Upon return, the following modifications have been made to the fields of info:

key key of nth item

isDuplicate is not set; use OrderedSetFindO if needed;

data duplicate of return value

OrderedSetltemlndex
Returns the index of an item

Returns BYTE_INDEX ..

#define OrderedSetltemlndex(p, pData) \
((ByteArrayFindlndex((p)->items, ((P_U8) (pData))) \
- OrderedSetSizeofKey(p)) / OrderedSetSizeofltem(p))

278 PENPOINT API REFERENCE
Part 9 / Utility Classes

OrderedSetFind
Locates the data for a specified key.

Returns P _UNKNOWN.

P UNKNOWN EXPORTED

function Prototype OrderedSetF ind (
P_ORDERED_SET p,
P_OS_ITEM_INFO info);

Comments Returns a pointer to ordered set's copy of the data associated with info->key. This pointer is only valid
until the next calion the same set. If the info->key is not in the set, the returned value is
Nil(p _UNKNOWN). If duplicate copies of the key exist in the set, an arbitrary item is found and its data
returned. All of the other items with the same key may be examined via use of OrderedSetNextO. Upon
return, the following modifications have been made to the fields of info:

isDuplicate 0 if key is unique in set, 1 otherwise

data duplicate of return value

OrderedSetFindMinMax
Locates the data for a key >= to specified key.

Returns P _UNKNOWN.

P UNKNOWN EXPORTED

FlJm:tkm Prototype OrderedSetFindMinMax (
P_ORDERED_SET p,
P_OS_ITEM_INFO info);

Comments Returns a pointer to ordered set's copy of the data associated with the minimum key in the ordered set

that is >= info->key. If info->key is in the ordered set, this routine is equivalent to OrderedSetFindO.
This pointer is only valid until the next calion the same set. Returns Nil(p _UNKNOWN) ifinfo->key has
no minmax in the set. If duplicate copies of the minmax key exist in the set, an arbitrary item is found
and its data returned. All of the other items with the same key may be retrieved with OrderedSetNextO.
Upon return, the following modifications have been made to the fields of info:

key minmax key

is Duplicate 0 if key is unique in set, 1 otherwise

data duplicate of return value

OrderedSetFindMaxMin
Locates the data for a key <= to specified key.

Returns P _UNKNOWN.

P UNKNOWN EXPORTED

FlJndi@n Prototype OrderedSetFindMaxMin (
P_ORDERED_SET p,
P_OS_ITEM_INFO info);

Comments Returns a pointer to ordered set's copy of the data associated with the maximum key in the ordered set
that is <= info->key. If info->key is in the ordered set, this routine is equivalent to OrderedSetFindO.
This pointer is only valid until the next calion the same set. Returns Nil(p _UNKNOWN) if info->key has
no maxmin in the set. If duplicate copies of the maxmin key exist in the set, an arbitrary item is found

ORDSET.H 279
Exported Functions and Macros

and its data returned. All of the other items with the same key may be retrieved with OrderedSetNextO.
Upon return, the following modifications have been made to the fields of info:

key maxmin key

isDuplicate 0 if key is unique in set, 1 otherwise

data duplicate of return value

OrderedSetNext
Enumerates the data for keys in the Ordered Set.

Returns P _UNKNOWN.

P UNKNOWN EXPORTED

OrderedSetNext(
P ORDERED SET -
P OS ITEM INFO - - -

p,
info) ;

Comments OrderedSetNextO's behavior depends on whether the set has unique keys or not. In both cases, the
enumeration is guaranteed to be complete provided no insertions or deletions are performed on the
set during the enumeration.

• IF THE SET HAS UNIQUE KEYS

OrderedSetNextO enumerates all of the keys in the set in order.

The first item in the enumeration can be found by either (1) by calling OrderedSetNthItemO with
an "N" of 0 or (2) calling OrderedSetNextO with info->data set to Nil and info->key set to the
lowest possible key value.

• IF THE SET DOES NOT HAVE UNIQUE KEYS

OrderedSetNextO enumerates all of the keys with the same value. The order of enumeration is
unspecified.

The first item with a known key can be found by either (1) by calling OrderedSetFind with
info->key set to the known key value and info->data set to Nil

• IN BOTH CASES

Further items are found by calling OrderedSetNextO with the same info struct until it returns Nil.
OrderedSetNextO returns a pointer to the set's copy of the data associated with key. This pointer is
only valid until the next call on the same set.

Returns

Nil(p _UNKNOWN) if specified key not in set or the enumeration is complete, or

pointer to set's copy of data or if key is in set or enumeration is incomplete.

Upon return, the following modifications have been made to the fields of info:

key:

isDuplicate:

data:

next key value, iff info->data had been one of the
three special values: Nil, next, prevo
o if key is unique in set,
1 otherwise
duplicate of returned value

280 PEN POINT API REFERENCE
Part 9 / Utility Classes

• FOR SETS WITH DIRECT, NON-DUPLICATE KEYS ONLY

If the set has direct keys, setting info->data to findNextKeylnOS (findPreviousKeyInOS),

OrderSetNextO can be used to enumerate all items in the set in order of increasing (decreasing) key
value. Such an enumeration (assuming non-unique keys) will have the structure:

info.key = 0;
info.data = Nil(P_UNKNOWN);
if ((firstData = OrderedSetNext(... » == Nil(P_UNKNOWN» {

info.data = findNextKeyInOS;

}

if ((firstData = OrderedSetNext(... » == Nil(P_UNKNOWN»
II handle empty set

II firstData and info now contain first item's information

II enumerate all keys
do {

II enumerate all data with the same key
while (OrderedSetNext(... » {

} ;

info.data = findNextKeyInOS;
until (!OrderedSetNext(... »;

OrderedSetEachltem
Helper macro to simplify the enumeration of an Ordered Set.

Returns P _UNKNOWN.

fdefine OrderedSetEachItem(-p, _item) \
for ((_item) .key = (U32)0, (_item) . data = Nil(P_UNKNOWN); \

OrderedSetNext((-p), &(_item» != Nil(P_UNKNOWN);)
II The condition IS the iteration step

This macro is only useful for sets with direct, non-duplicate keys!

The arguments to OrderedSetEachltemO are:

_p the ordered set to enumerate

_item an OS_ITEM_INFO containing the enumerated item's info

Code using these macros should look like: OS_ITEM_INFO scratch; OrderedSetEachltem(os, scratch) {

myPtr = (MY_PTR)scratch.data; ... }

OrderedSetDelete
Deletes specified item from the Ordered Set.

Returns STATUS.

STATUS EXPORTED

F!Jm::t!(>tl Pr(>t(>fype OrderedSetDelete (
P_ORDERED_SET p,
P_OS_ITEM_INFO info);

If duplicates are allowed, both info->key and info->data must be filled in by client; ifkeys are unique,

only info->key need be filled in.

ORDSET.H 28'
Exported Functions and Macros

Returns:

stsOK if item was found in set and deleted, or

stsNoMatch if item not found in set, or

STATUS < 0 if internal error during deletion.

OrderedSetCount
Returns the number of items currently stored in the ORDERED_SET.

Returns U32.

U32 EXPORTED

fondion Prototype OrderedSetCount (
P_ORDERED_SET p);

QHELP.H

This file contains the API definition for clsQuickHelp.

clsQuickHelp inherits from clsFrame.

clsQuickHelp provides an interface to the Quick Help Server.

theQuickHelp is a well-known instance of clsQuickHelp.

theQuickHelp provides system wide quick help, and is the only instance of clsQuickHelp in the system,
built at boot time. Clients should not create instances of this object, nor should they subclass this object.
This file defines an interface to display quick help text in the standard quick help window. Programmers
should rarely have to call ANY of the functions in this file, as default calling of quick help is provided by
default in clsGWin (see gwin.h). However, some applications may need to invoke quick help, or change
the quick help text, hence the public message to open quick help, and to show a quick help screen.

A quick help resource consists of a string array resource with each array item mapping to a single quick
help panel. This resource is identified by creating a List resource 10 from the administered portion of
the quick help 10 (MakeListResId(helpID, resGrpQhelp, 0» and the quick help group. The TAG

portion of the quick help 10 is used to index into the string array. Each quick help strings will have two
"parts". The first part will be the title and the second part will be the text. The tide will be separated
from the text by including two vertical line characters (II) following the title which will NOT be printed.

These resources, which are defined below, are put into the application resource files and displayed using
msgQuickHelpShow, which takes the resource 10. As mentioned, gWin defines a default behavior for
calling the object with this message. All application typically need to do is provide their gWin objects
(or subclasses) with helpld resources.

Quick help for an object is generally displayed in one of two ways. The first is when an object decides to
display quick help for itself. An example is gWin's response to the '?' gesture. gWin posts theQuickHelp
msgQuickHelpShow, which opens the quick help window and displays quick help for the object. The
second is when theQuickHelp window is open, and the system is in quick help mode. When the user
taps on objects on the screen, the object is sent msgQuickHelpHelpShow. The object will respond by
posting msgQuickHelpShow back to theQuickHelp. When the quick help window is dismissed, by
hitting closed or envoke help notebook, the object that received msgQuickHelpHelpShow will receive
msgQuickHelpHelpDone. This message will also be sent when tapping on successive objects while in

quick help mode. It will not be sent when quick help was initially brought up directly from the object
when it posted msgQuickHelpShow (such as the gWin response to the '?' gesture.

tifndef QHELP_INCLUDED
tdefine QHELP_INCLUDED
tifndef GO_INCLUDED
tinclude <go.h>
tendif
tifndef CLSMGR_INCLUDED
tinclude <clsmgr.h>
tendif
tifndef RESFILE INCLUDED
tinclude <resfile.h>
tendif

284 PENPOINT API REFERENCE
Part 9 / Utility Classes

Debugging Flags
Quick Help uses the debugging flag set 'q'. Defined flags are:

0001 General quick help debugging information

Types and Constants
These tags are used for defining three quick help screens: 1) the quick help intro screen that gives
directions on quick help, 2) the "No help available" screen, and 3) the help not found screen.

fdefine hlpQuickHelpSignOn MakeTag(clsQuickHelp, 1)
fdefine hlpQuickHelpNoHelp MakeTag(clsQuickHelp, 2)
fdefine hlpQuickHelpNotFound MakeTag(clsQuickHelp, 3)

Messages

msgQuickHelpShow
Displays the Quick Help associated with the resource ID.

Takes P _QUICK_DATA, returns STATUS.

fdefine msgQuickHelpShow MakeMsg(clsQuickHelp, 1)

typedef struct QUICK_DATA {
U32 helpld; II Help ID of the screen to show
OBJECT appUID; II UID of the application. Used to find resources

II of application specific help IDs.
U32 reserved; II Reserved for future use

QUICK_DATA, *P_QUICK_DATA;

Gets the quick help resource from either the system resource files or the application specific resource
files. If the quick help resource can't be found, will display the "Quick help not found" message in the
quick help screen. Typically called from gWin in order to display the help screen for a help gesture.
Would take the gWin heIpId and the application uid. Needs the application object in order to reference
the resource files of the application to find application specific help IDs. Typically not called directly by
applications, but called indirectly through gWin inheritence. Will call msgQuickHeIpOpen to open the
quick help window as necessary.

Typically called by objects in response to a ? gesture, or in response to msgQuickHeIpHeIpShow.

gwin.h

msgQuickHelpHelpShow
Sent to a window to display a quick help request.

Takes P _XY32 , returns STATUS.

fdefine msgQuickHelpHelpShow MakeMsg(clsQuickHelp, 7)

Sent from theQuickHeIp to a window when it is required to display its quick help. Typically the
window will respond by posting msgQuickHeIpShow. Sent as the user taps on various windows while
quick help is being displayed.

msgQuickHelpHelpDone

QHELP.H 285

Notification Messages

msgQuickHelpHelpDone
Sent to a window when quick help is no longer displayed.

Takes OBJECT, returns STATUS.

#define msgQuickHelpHelpDone MakeMsg(clsQuickHelp, 8)

Sent to the last object asked to display quick help via msgQuickHelpHelpShow when help is no longer
needed on said object. Can be sent because the user tapped somewhere else and a new object is about to
be sent msgQuickHelpHelpShow, quick help has been terminated by the user, or the help notebook has
been entered. Takes the new object receiving a msgQuickHelpHelpShow if because the user tapped
elsewhere, or null if quick help is being terminated or going to the help notebook. Note that this
message is only sent to object which previously received msgQuickHelpHelpShow, and not those
objects generating a help request by posting msgQuickHelpShow directly.

msgQuickHelpHelpShow

msgQuickHelpOpen
Forces the Quick Help window to appear.

Takes nothing, returns STATUS.

#define msgQuickHelpOpen MakeMsg(clsQuickHelp, 2)

Opens the quick help window on the screen. If the quick help window is already on the screen, will
simply return stsOK. The quick help window is a modal filter that will grab all input till closed via
msgQuickHelpClose. Self sent to when msgQuickHelpShow is posted. Also sent from the help
notebook icon to invoke quick help.

Notification Messages

msgQuickHelpOpened
Indicates that the quick help window has been opened.

Takes nothing, returns STATUS. Category: observer notification.

#define msgQuickHelpOpened MakeMsg(clsQuickHelp, 128)

Sent to observers of the quick help that the quick help window has been opened.

msgQuickHelpClosed
Indicates that the quick help window has been closed.

Takes nothing, returns STATUS. Category: observer notification.

#define msgQuickHelpClosed MakeMsg(clsQuickHelp, 129)

Sent to observers of theQuickHelp to indicate that the quick help window has been closed.

msgQuickHelplnvokedNB
Indicates that the notebook associated with quick help should be open.

Takes nothing, returns STATUS. Category: observer notification.

#define msgQuickHelpInvokedNB MakeMsg(clsQuickHelp, 130)

286 PENPOINT API REFERENCE
Part 9 / Utility Classes

Sent to observers when msgQuickHelplnvokeNB is recieved. The help note book is an observer, and

will bring itself up when this message is recieved.

SIL.H

This file contains the API for clsSelection.

clsSelection inherits from clsObject.

theSelectionManager provides management of the system-wide selection. theSelectionManager is the

one and only instance of clsSelection.

Introduction
Much of Pen Point's user interface is based on the "selection." The selection is often the center of the

user's attention. In general it is very easy for the user to set the selection -- it often just requires a tap.

The precise definition of the selection is application-specific. In text the selection is often a set of
characters. In a spreadsheet it might be a range of rows, columns, or cells. In a Table of Contents it

might be a set of documents. Typically, an application "highlights" the selection with a grey background,

handles, or some other graphic technique.

Because the selection corresponds to the center of the user's attention, many user interface operations are

based on the selection. Here are some examples:

• The selection is the source of Pen Point's move and copy operations.

• Typically, the selection is altered by Applying an Option Sheet.

• The selection often determines which menu items are enabled and which are disabled.

• The selection and keyboard input target are often linked together.

Programmatically, other objects can inquire about the selection, get information from the selection and

transfer data from the selection.

Road Map
Use the following to take ownership of the selection:

• msgSelSetOwner

• msgSelSetOwnerPreserve

• msgSelSelect (if object has clsEmbeddedWin in the object's ancestry)

Selection owners must be prepared to handle the following:

• msgSelDelete

• msgSelYield

• msgSelBeginCopy

• msgSelBeginMove

• msgControlProvideEnable (see section "Control Enabling")

288 PENPOINT API REFERENCE
Part 9 / Utility Classes

Use the following to inquire about the selection:

• msgSelOwner

• msgSelPrimaryOwner

• msgSelOwners

• msgSelIsSelected (if object has dsEmbeddedWin in the object's ancestry)

theSelectionManager sends the following notifications:

• msgSelChangedOwners

• msgSelPromotedOwner

Destinations of PenPoint's Move and Copy mechanism must handle the following:

• msgSel CopySelection

• msgSelMoveSelection

Move and Copy
sel.h defines several messages that are used to implement PenPoint's Move and Copy operations. These

messages are used in combination with PenPoint's data transfer messages which are defined in xfer.h.
(PenPoint data transfer does not always necessarily involve the selection, but when it does, the messages

described here are employed.)

. dsEmbeddedWin (see embedwin.h) provides the default response for several of the steps described

below.

Here's the typical "flow of control" for moving selected data:

• The source object handles the "Press" gesture (xgsPressHold in xgesture.h). The object might
receive this gesture if it is a gWin (see gwin.h).

• If the Press gesture is not over the selection, the object typically selects what is under the gesture.
"Selecting" includes either (1) self sending msgSelSelect or (2) sending msgSelSetOwner to

theSelectionManager, whichever is appropriate.

• Next the object self-sends msgSelBeginMove.

• msgSelBeginMove is received. Note that msgSelBeginMove is sent in other cases than the Press
gesture response. For instance, the standard application menu item "Move" (in the "Edit" menu)

results in the selection owner receiving msgSelBeginMove.

• In response to msgSelBeginMove, the receiver should self send msgEmbeddedWinBeginMove.
msgEmbeddedWinBeginMove takes, in its pArgs, the hot point of the gesture that kicks off the

move, and the bounds of the selection being moved.

• In response to msgEmbeddedWinBeginMove, embeddedWin creates the floating" move icon."
dsEmbeddedWin manages the icon.

• The icon takes over at this point and manages the process of moving the selection.

• When the icon is dropped on a destination, the icon sends msgMoveCopylconDone to the source.

• clsEmbeddedWin handles msgMoveCopylconDone and sends msgSelMoveSelection to the
destination.

SEL.H 289

• In response to msgSelMoveSelection, the destination object retrieves the selection owner from the
selection manager (using msgSelOwner) and engage in an xfer protocol with the selection. (The
xfer protocols are described in xfer.h) The data should be copied to the position contained in
msgSelMoveSelection's pArgs, which is a P _XY32.

• After the data has been copied from the selection owner, the destination should send msgSelDelete
to the selection owner.

• The destination object should select the data that it just absorbed.

The "flow of control" for copying selected data is very similar, with the following changes:

• The gesture that kicks off the protocol is "Tap-Press" (xgsTapHold in xgesture.h) rather than
Press-Hold.

• The source object self sends and handles msgSelBeginCopy rather than msgSelBeginMove. The
source object self sends msgEmbeddedWinBeginCopy rather than msgEmbeddedWinBeginMove.

• The destination receives msgSelCopySelection rather than msgSelMoveSelection.

• The destination object should not send msgSelDelete.

xfer.h.h

Two Selection Owners
Some objects need to own the selection, but they need to take in a fashion that (1) allows PenPoint to
restore the original selection and (2) allows client code to find the original selection. For example,
Option Sheets apply to a selection. But the various controls that appear within the option sheet might
need to own the selection as well. Both selections need to be maintained.

Therefore theSelectionManager actually manages two selection owners: a selection owner and a
preserved selection owner.

NOTE: The same object cannot be both the selection owner and preserved selection owner. See the
detailed comments with msgSelSetOwner and msgSelSetOwnerPreserve for details.

When an object needs to take the selection but allow the current selection to be restored, that object
should take the selection via msgSelSetOwnerPreserve, which "preserves" or "remembers" the original
selection. The preserved selection can be restored by sending msgSelOwnerPreserve with a pArgs of
pNull to theSelectionManager. Hence objects in option sheets take the selection via
msgSelSetOwnerPreserve.

Essentially all clients should operate on the selection owner. This includes move and copy operations.
The only client that should operate on the preserved selection owner, if one exists, is option sheets.

Control Enabling
Some controls, particularly menu items, should be disabled if there is no selection owner. And some
controls should be disabled based on application-specific details about the selection state.

For instance, the "Move," "Copy," and "Delete" menu items should not be enabled if there is no
selection owner. The "Move" menu item should be enabled if there is a selection and the selection owner
is not read-only. The "Delete" menu item should be enabled if there is a selection owner and the
contents of the selection are not empty.

To support this, clsControl allows control creators to specify that the control should send
msgControlProvideEnable to the selection owner to get the proper enable/disable state.

290 PENPOINT API REFERENCE

Part 9 / Utility Classes

Some standard application menus (SAMs) are set up to send msgControlProvideEnable to the selection
owner. See app.h for details.

Therefore all selection owners should handle msgControlProvideEnable.

Relationship of Selection to the Input Target
The input system's "Target" is the object to which keyboard events are sent. See input.h for more
information.

Because the selection is normally the center of the user's attention, it often makes sense for the same
object to own the selection and to be the input target. For instance, PenPoint's text component always
becomes the input target whenever it takes the selection and sets the input target to null when it yields
the selection.

There are, however, cases where it makes more sense to NOT link the selection and input target
together. For instance, some types of fields take the input target without taking the selection. The
decision is quite application-specific.

Implementing a correspondence between the input target and selection ownership is the client's
responsibility.

What to Do When the Selection Changes Within an Owner
Some parts of PenPoint's VI depend on knowing when the user's center of attention changes. For
instance, each time that an Option Sheet is notified that the selection has changed it checks to be sure
that the top card is still applicable.

Therefore, selection owners should set the selection to self EVERY TIME THE SELECTION
CHANGES within them, even if they are already the selection owner. This lets observers take any
appropriate action.

Only One Instance

There is one and only one instance of clsSelection, and that instance is the global well-known
theSelectionManager.

#ifndef SEL_INCLUDED
#define SEL_INCLUDED
#ifndef CLSMGR INCLUDED
#include <clsrngr.h>
#endif

Common #defines and typedefs

Status Codes

theSelectionManager returns stsSelYieldlnProgress when the selection manager is in the process of
sending msgSelYield and therefore can't respond to the message.

#define stsSelYieldInProgress MakeWarning(clsSelection,l)

Types

SEL.H 291
Messages Sent to theSelectionManager

preservedOwner is defined only if havePreservedOwner is true. It IS possible to have a null
preservedOwner.

typedef struct SEL_OWNERS {
OBJECT owner;
OBJECT preservedOwner;
BOOLEAN havePreservedOwner;

SEL_OWNERS, *P_SEL_OWNERS;

Messages Sent to theSelectionManager
II Next Up: 26, Recycled: 9, 14, 20

msgSelSetOwner
Sets the selection owner.

Takes OBJECT, returns STATUS.

tdefine msgSelSetOwner MakeMsg(clsSelection,2)

Send msgSelSetOwner to theSelectionManager to set the selection owner. theSelectionManager
responds in one of the following ways:

If pArgs is not a valid selection owner (because it can't be called from other objects or is not a global
object):

• theSelectionManager returns stsScope Violation.

If pArgs is null, theSelectionManager:

• sends msgSelYield to the current selection if it exists and sets the current selection to null.

• sends msgSelYield the current preserved selection if it exists and sets the current preserved selection
to null.

• sends msgSelChangedOwners to theSelectionManager's observers.

Otherwise, theSelectionManager:

• sends msgSelYield to the current preserved selection if it exists and is not equal to pArgs.
theSelectionManager then sets the preserved selection to null and stops observing the preserved
selection.

• sends msgSelYield to the current selection if it exists and is not equal to pArgs.

• sets the current selection to pArgs.

• adds itself as an observer of the new selection.

• sends msgSelChangedOwners to theSelectionManager's observers.

stsScopeViolation pArgs is not a valid selection owner.

msgSelYield

msgSelSetOwner Preserve
Sets the selection owner with the preserve option.

Takes OBJECT, returns STATUS.

tdefine msgSelSetOwnerPreserve MakeMsg(clsSelection,5)

292 PENPOINT API REFERENCE

Part 9 / Utility Classes

Send msgSelSetOwnerPreserve to theSelectionManager to set the selection owner while preserving the

current selection owner.

See the section "Two Selection Owners" for more information.

theSelectionManager's response to this message is similar to its response to msgSelSetOwner, with only

subtle differences.

If pArgs is null, and there is no preserved Owner:

• theSelectionManager simply returns stsOK.

If pArgs is null, and a preserved owner exists (even if it is null), theSelectionManager:

• sends msgSelYield to the current owner if it exists.

• sends msgSelPromote to the current preserved owner if non-null.

• sets the current owner to the current preserved owner if non-null.

• sets the current preserved owner to null.

• sets the value for SEL_OWNERS.havePreservedOwner to false.

• sends msgSelPromotedOwner to theSelectionManager's observers.

If pArgs is non-null but is not a valid selection owner (because it can't be called from other objects or is

not a global object):

• theSelectionManager returns stsScopeViolation.

If pArgs is a valid selection owner and there is a no preserved owner:

• sends msgSelDemote to the current owner.

• sets the current preserved owner to be the current owner.

• sets the current owner to be pArgs.

• adds itself as an observer of the new selection.

• sets the value for SEL_OWNERS.havePreservedOwner to true.

• sends msgSelChangedOwners to theSelectionManager's observers.

If pArgs is a valid selection owner and there is a preserved owner:

• sends msgSelYield to the current owner if it exists and is not the same as pArgs.

• sets the current owner to pArgs.

• adds itself as an observer of the new selection.

• sends msgSelChangedOwners to theSelectionManager's observers.

stsScopeViolation pArgs is not a valid selection owner.

msgSelYield

msgSelOwner
Passes back the selection owner.

Takes P_OBJECT, returns STATUS.

#define rnsgSelOwner MakeMsg(clsSelection,l)

Comments

Return Value

Return \faiue

Message
ArfJuments

SEL.H 293
Notifications Sent to theSelectionManager's Observers

theSelectionManager passes back the current selection owner. It does not pass back the preserved
selection owner.

stsSelYieldlnProgress theSelectionManager is currently sending msgSelYield.

msgSelPrimaryOwner
Passes back the primary selection owner.

Takes P_OBJECT, returns STATUS.

*define msgSelPrimaryOwner MakeMsg(clsSelection,7)

The "primary owner" is the selection owner which an option sheet applies to. If there is a preserved
selection owner, the primary owner is the preserved owner. Otherwise, the primary selection owner is
the current owner.

stsSelYieldlnProgress theSelectionManager is currently sending msgSelYield.

msgSelSetOwner

msgS el Owners
Passes back the selection and preserved owners.

Takes P _SEL_ OWNERS, returns STATUS.

*define msgSelOwners MakeMsg(clsSelection,4)

typedef struct SEL_OWNERS {
OBJECT owner;
OBJECT preservedOwner;
BOOLEAN havePreservedOwner;

SEL_OWNERS, *P_SEL_OWNERS;

stsSelYieldlnProgress theSelectionManager is currently sending msgSelYield.

msgSelSetOwner

Notifications Sent to theSelectionManager's
Observers

Message
Arguments

msgSelChangedOwners
Notifies observers when either of the selection owners changes.

Takes P _SEL_OWNERS, returns STATUS.

*define msgSelChangedOwners MakeMsg(clsSelection,6)

typedef struct SEL_OWNERS {
OBJECT owner;
OBJECT preservedOwner;
BOOLEAN havePreservedOwner;

SEL_OWNERS, *P_SEL_OWNERS;

theSelectionManager posts msgSelChangedOwners to its observers to inform the observers that the
selection owner and/or preserved owner has been set. (The notification is sent even if the new owner
is null.)

294 PENPOINT API REFERENCE

Part 9 / Utility Classes

M®1i£Q £i®

Argoments

theSelectionManager sends this notification even if the old owner and new owner are the same. Hence
if object A is the selection owner, and msgSelSetOwner is sent with object A, msgSelChangedOwners
IS sent to theSelectionManager's observers.

When a preserved selection owner is promoted back to the selection owner, msgSelPromotedOwner is
sent rather than msgSelChangedOwners.

Example of use: In response to this message, option sheets check the applicability of the top card.

msgSelSetOwner

msgSelPromotedOwner
Notifies observers when the preserved owner has been promoted back to the selection owner.

Takes P_SEL_OWNERS, returns STATUS.

#define rnsgSelPrornotedOwner MakeMsg(clsSelection,8)

typedef struct SEL_OWNERS {
OBJECT owner;
OBJECT preservedOwner;
BOOLEAN havePreservedOwner;

SEL_OWNERS, *P_SEL_OWNERS;

theSelectionManager posts msgSelPromotedOwner to its observers to inform the observers that
preserved selection owner has been promoted to the normal selection owner.

This happens as a result of theSelectionManager handling msgSelSetOwnerPreserve with a pArgs of
null.

msgSelSetOwnerPreserve

Messages Sent by theselectionManager to
Owners

msgSelYield
theSelectionManager requires the release of the selection.

Takes BOOLEAN, returns SfATUS.

#define rnsgSelYield MakeMsg(clsSelection,ll)

theSelectionManager sends this message to a selection owner to inform the object that it is no longer
the selection owner. pArgs is true if object is yielding the primary selection and false when the object is
yielding the preserved selection.

This message is not sent when an object takes the selection via msgSelSetOwner or
msgSelSetOwnerPreserve and it already is the selection, or already is the preserved selection. (However,
msgSelChangedOwners IS sent to theSelectionManager's observers.)

When handling this message, be careful about sending selection manager messages (such as
msgSelSetOwner) as deadlock can occur.

After sending msgSelYield, theSelectionManager removes itself as an observer of the object.

msgSelSetOwner

SEL.H 295

Embedded Window Messages

msgSelDemote
Informs the owner that it is becoming the preserved owner.

Takes nothing, returns SfATUS.

fdefine msgSelDemote MakeMsg(clsSelection,24)

theSelectionManager sends this message to a selection owner to tell the owner that it is becoming the

preserved owner. (This can happen when theSelectionManager receives msgSelSetOwnerPreserve.)

Receivers should not do anything in response to this message. (If for some reason receivers chose to

handle this message, be careful about sending selection manager messages (such as msgSelSetOwner) as
deadlock can occur.)

msgSelPromote

msgSelPromote
Informs the preserved owner that it is becoming the owner.

Takes nothing, returns SfATUS.

fdefine msgSelPromote MakeMsg(clsSelection,25)

theSelectionManager sends this message to a preserved selection owner to tell the owner that it is
becoming the normal selection owner. (This can happen when theSelectionManager receives

msgSelSetOwnerPreserve.)

Receivers should not do anything in response to this message. (If for some reason receivers chose to

handle this message, be careful about sending selection manager messages (such as msgSelSetOwner) as

deadlock can occur.)

msgSelSetOwner

Embedded Window Messages
Most subclasses of clsEmbeddedWin should use these messages. See embedwin.h for information about

how and why to use them.

The messages are defined here rather than in embedwin.h because they are abstract. Theoretically other

classes can respond to these messages to implement behavior analogous to that of embeddedWin

(although no other PenPoint system class does so).

msgSelSelect
Sets self to be the selection owner.

Takes nothing, returns SfATUS.

fdefine msgSelSelect MakeMsg(clsSelection,19)

See the section "Embedded Window Selection Messages" for more information.

Send this message to an object to have that object make itself be the selection owner or the preserved
selection owner.

Do not send this message to theSelectionManager.

msgSelSetOwner.h

296 PENPOINT API REFERENCE
Part 9 / Utility Classes

msgSelIsSelected
Returns TRUE if self is current selection owner.

Takes nothing, returns BOOLEAN.

#define msgSelIsSelected MakeMsg(clsSelection,21)

See the section "Embedded Window Selection Messages" for more information.

Send this message to an object to inquire if it is the selection owner.

Do not send this message to theSelectionManager.

true The object is the selection owner.

false The object is not the selection owner. (The object may be the preserved selection owner.)

embedwin.h

Abstract Messages for Selection Move
& Copy

msgSelBeginCopy
Initiate a copy operation.

Takes P _XY32, returns STATUS.

#define msgSelBeginCopy MakeMsg(clsSelection, 23)

See the section "Move and Copy" for information about when this message is sent and how it should be
handled.

pArgs will be null if this message is sent from a menu.

msgSelBeginMove
Initiates a move operation.

Takes P _XY32, returns STATUS.

#define msgSelBeginMove MakeMsg(clsSelection, 22)

See the section "Move and Copy" for information about when this message is sent and how it should be
handled.

pArgs will be null if this message is sent from a menu.

msgSelCopySelection
The receiver should copy the selection to self at (x, y).

Takes P _XY32, returns STATUS.

#define msgSelCopySelection MsgNoError(MakeMsg(clsSelection,16))

See the section "Move and Copy" for information about when this message is sent and how it should be
handled.

SEL.H 297
Abstract Messages For Linking Protocol

msgSelMoveSelection
The receiver should move the selection to self at (x, y).

Takes P _XY32 , returns STATUS.

tdefine msgSelMoveSelection MsgNoError(MakeMsg(clsSelection,15))

See the section "Move and Copy" for information about when this message is sent and how it should be
handled.

msgSelDelete
The selection owner should delete the selection.

Takes U32, returns STATUS.

tdefine msgSelDelete MakeMsg(clsSelection,3)
tdefine SelDeleteReselect 0 II Display a selection after delete
tdefine SelDeleteNoSelect 1 II Don't display a selection after delete

Clients wishing to delete the selection send msgSelDelete to the selection owner. Selection owners
should respond to this message by deleting the contents of the selection.

msgSelDelete is sent in two situations: (1) the user has hit the "Delete" menu item, or (2) an object has
received msgSelMoveSelection, has copied the data (see xfer.h), and now wants to delete the original
data.

See the section "Move and Copy" for information about how msgSelDelete is related to moving data.

pArgs must be one of SelDeleteReselect or SelDeleteNoSelect. This parameter is just a performance
enhancement. The sender of msgSelDelete should pass SelDeleteNoSelect if it plans on taking the
selection after the msgSelDelete, and SelDeleteReselect otherwise. The receiver of msgSelDelete can use
pArgs as an optimization, but it is not strictly necessary since theSelectionManager will send a
msgSelYield when the sender takes the selection. (The pArgs of msgSelDelete exist primarily for
historical reasons. The simplest thing to do is for the sender to pass SelDeleteReselect and for the
receiver to ignore pArgs.)

Abstract Messages For Linking Protocol

msgSelRememberSelection
The receiver should "remember" the selection and place the "remembrance" at (x, y).

Takes P _XY32 , returns STATUS.

tdefine msgSelRememberSelection MsgNoError(MakeMsg(clsSelection,17))

Most objects should not send or handle this message. It might be better defined as a clsEmbeddedWin
message.

msgSelRememberSelection is sent to an object to ask it to "remember" the selection. The response to
this message is highly object specific.

This message is not sent to the selection owner; it is sent to any object to ask it remember the selection.

An embeddedWin self sends this message in response to the "Create Reference Button" gesture
(xgsDblCircle in xgesture.h). In response, an embeddedWin creates a goto button at the specified (x,y).

embedwin.h

SPELL.H

Spelling Checking

proof.h, pdict.h

#ifndef SPELL INCLUDED
#define SPELL-INCLUDED

IDSOOO 1 Low-level debug messages; LOTS of output

IDS0002 mid-level debug messages
IDS0004 high-level debugs - general information

IDS8000 disable dictionary

#ifndef GO INCLUDED
#include <go.h>
#endif

Common Definitions
maxSpellList is the most bytes a list of spelling corrections can use.is the dictionary alphabet size

#define maxSpellList 128
#define maxSpellXlateChoices 30

Common typedefs
typedef struct SPELL LIST {

U16 count; - II Number of strings in the list
CHAR words[maxSpellList]; II List of concatenated strings

SPELL_LIST, * P_SPELL_LIST;
typedef struct SPELL XLATE {

U16 index; II Offset within bank
U8 bits; II Nibble and bank indicator
U8 character; II Out: Character at that location

SPELL_XLATE, *P_SPELL_XLATE;
typedef struct SPELL DICT LIST

P CHAR pName; - II name of dictionary (e.g. English)
P CHAR pPath; II path to dictionary (e.g. \\boot\dicts\webf77k)
U16 bankCount; II Number of 16K banks the lex is divided into
P_UNKNOWN pLangHeader;11 Pointer to language specific info

SPELL_DICT_LIST, *P_SPELL_DICT_LIST;

Definitions of different types of word capitalization

Enum16 (SPELL CASE) {
spellCommonCase,
spellProperCase,
spellUpperCase, II
spellSpecialCase,

II all letters are in lower case
II The First Letter Of Each Word Is Capitalized

ALL LETTERS ARE CAPITALIZED
II tHere IS a StRANge Mix of cAPitALizATion

} ;

typedef struct SPELL CASE CONTEXT {
SPELL CASE minCase; - II lowest case allowed for output dictionary words
SPELL CASE unkCase; II case for non-dictionary words
BOOLEAN sentence; II do end-of-sentence processing
BOOLEAN dictionary; II use the dictionary for capitalization info
BOOLEAN allCapsWriter; II user writes all caps only
BOOLEAN firstWord; II In/Out: This word is first in a sentence

SPELL_CASE_CONTEXT, * P_SPELL_CASE_CONTEXT;

300 PEN POINT API REFERENCE
Part 9 I Utility Classes

Functions

SpellDictSelect
Sets the active dictionary to the language specified.

Returns STATUS.

vl1nctkm Pt'ototy'pe STATUS EXPORTED SpellDictSelect (
S16 dictCode

) ;

dictCode is an index into spellDictList; -1 means deselect. Currently, onlyEnglish can be selected, and
its code is O.

SpellSetOptionsX
Turns the dictionary on or off.

Returns void.

void EXPORTED SpellSetOptionsX(BOOLEAN mode);

Pass it true to turn the dictionary on, false to turn it off.

SpellGetOptionsX
Returns current dictionary status.

Returns BOOLEAN.

BOOLEAN EXPORTED SpellGetOptionsX(void);

True means spelling is on; false means it's off.

SpellCheck
Checks if a word is in the dictionary or not.

Returns BOOLEAN.

BOOLEAN EXPORTED SpellCheck(P_CHAR pWord);

Argument may contain punctuation but should not contain spaces. Thisdesigned so higher-level
software can parse a line of text intotokens and pass those tokens (with no further) to this routine.

Spell Correct
Finds all the corrections for a word and adds them to a SPELL_LIST structure.

Returns STATUS.

Function P'r©totype STATUS EXPORTED SpellCorrect (
P_CHAR pWord,
P_SPELL_LIST pSpellList,
BOOLEAN phonetic

) ;

II Word to be corrected
II Out: List to add the word to

II Perform phonetic correction?

This also takes a space-delimited token, as described above, stripsthe punctuation, and puts it back on
the correction candidates. that the count field in the SPELL_LIST structure must beto zero, unless you
are deliberately adding to anlist. This routine avoids adding duplicates to theif it already had some
words in it.

SPELL.H 301
Functions

SpellCorrectWord
Finds the first correction for a word. Returns 0 if none found, else 1.

Returns U16.

fundion Prototype U16 EXPORTED SpellCorrectWord (
P_CHAR pWord, II Word to be corrected
P_CHAR pCorrectWord II Out: place to put the correction

) ;

The word is a space-delimited token, as described above. In this, "first" means "first in alphabetical
order," this routine issuitable for most applications.

SpellAddToDict
Add a word to thePersonalDictionary.

Returns STATUS.

Fundion ProTotype STATUS EXPORTED SpellAddToDict (
P_CHAR pWord

Comments

) ;

The prefered way to add words to the current personal dictionary. As usual, it takes space-delimited
tokens and strips off extraneous punctuation.

SpellAddToAnyDict
Add a word to anyone of the personal dictionaries.

Returns STATUS.

fundion ProTotype STATUS EXPORTED SpellAddToAnyDict (
OBJECT pDict,
P_CHAR pWord

) ;

The prefered way to add words to a personal dictionary other than the current one. It takes a pdict
object (clsPDict) that specifies the personal dictionary to add to, and space-delimited tokens. It strips off
extraneous punctuation.

SpellWordSetCase
Convert all-up per-case input into a reasonable mix of upper and lower case using dictionary information
and other lexical clues.

Returns STATUS.

Function Prototype STATUS EXPORTED SpellWordSetCase (
P _CHAR pWord,
P_SPELL_CASE_CONTEXT pSpellCaseContext

) ;

Call SpellWordSetCase the first time with pWord == pNull tothe context structure. Then pass it the
words to be(in order) with the same context structure each time. Iteach word in place. To modify
the default behavior, changeappropriate context parameters (see the definition of
the_CASE_CONTEXT structure).

DefaultsminCase: Spell Common Case unkCase: Spell Common Case sentence: true
dictionary: true allCapsWriter: false firstWord: true

302 PENPOINT API REFERENCE
Part 9 / Utility Classes

SpellLineSetCase
Convert all-upper-case input into a reasonable mix of upper and lower case using dictionary information

and other lexical dues.

Returns STATUS.

Fundlon Prototype STATUS EXPORTED SpellLineSetCase (
P_CHAR pLine,
P_SPELL_CASE_CONTEXT pSpellCaseContext

) ;

Identical to SpellW ordSetCase, except it expects the input to beline of text, which it splits into tokens as

required.

Miscellaneous
Address of the list of legal dictionaries

extern const SPELL DICT LIST spellDictList[];

SPMGR.H

This file contains the API for the Spell Manager Class and theSpellManager.

clsSpellManager inherits from clsObject.

theSpellManager is a well-known instance of clsSpellManager.

spell.h, pdict.h

tifndef SPMGR INCLUDED
tdefine SPMGR INCLUDED
tifndef CLSMGR_INCLUDED
tinclude <clsmgr.h>
tendif
tifndef WIN INCLUDED
tinclude <win.h>
tendif
tifndef XLATE_INCLUDED
tinclude <xlate.h>
tendif
tifndef GWIN_INCLUDED
tinclude <gwin.h>
tendif

Common typedefs
This structure is passed to theSpellManager when the user makes thegesture on a window.

typedef struct SP_MGR_GESTURE {
GWIN GESTURE gesture;

} SP_MGR_GESTURE, * P_SP_MGR_GESTURE;

Messages

Sent to Traversal Clients

msgSpMgrCreateContext
Piggybacked with msgTraverseCreate. *Ctx messages.

Takes VOID, returns STATUS.

tdefine msgSpMgrCreateContext

Initiates a spelling traversal.

msgSpMgrFindMisspelling

MakeMsg(clsSpellManager,l)

Asks the recipient to find the next misspelled word (using SpellCheckO on successive space-delimited

tokens).

Takes SP _MGR_DIALOG, returns STATUS.

tdefine msgSpMgrFindMisspelling

Piggybacked with msg T raverseFind.

MakeMsg(clsSpellManager,2)

304 PEN POINT API REFERENCE
Part 9 / Utility Classes

msgSpMgrCorrectMisspelling
Asks the recipient to. correct the misspelled word he previously found in response to a

msgSpMgrFindMisspelling message.

Takes SP _MGR_DIALOG, returns STATUS.

fdefine msgSpMgrCorrectMisspelling MakeMsg(clsSpellManager,3)

Piggybacked with msgTraverseApply. Correction is in the word field.

msgSpMgrAcceptMisspelling
Asks the recipient to accept the misspelled word he previously found in response to a
msgSpMgrFindMisspelling message.

Takes SP _MGR_DIALOG, returns STATUS.

fdefine msgSpMgrAcceptMisspelling MakeMsg(clsSpellManager,5)

Piggybacked with msgTraverseApply. Dialog Struct is copied.

Received From GWin

M8$$(lt$e

Arguments

msgSpMgrGesture
This causes theSpellManager to initiate a spell traversal from a gesture, as opposed to from a menu.

Takes P _SP _MGR_GESTURE, returns STATUS.

fdefine msgSpMgrGesture

typedef struct SP_MGR_GESTURE
GWIN_GESTURE gesture;

} SP_MGR_GESTURE, * P_SP_MGR_GESTURE;

MakeMsg(clsSpellManager,4)

When a user makes the spelling gesture on an embedded window, thesends msgSpMgrGesture to

theSpellManager with the_MGR_GESTURE structure filled in.

Miscellaneous

Quick Help Tags
fdefine SpMgrReplaceButtonTag
fdefine SpMgrIgnoreButtonTag
fdefine SpMgrCancelButtonTag
fdefine SpMgrlnsertionPadTag
fdefine SpMgrTKTableTag
fdefine SpMgrBackgroundTag
fdefine SpMgrClearButtonTag
fdefine SpMgrRememberButtonTag
fdefine SpMgrTitleBarTag
fdefine hlpSpMgrReplaceButton
fdefine hlpSpMgrIgnoreButton
fdefine hlpSpMgrCancelButton
fdefine hlpSpMgrlnsertionPad
fdefine hlpSpMgrTKTable
fdefine hlpSpMgrBackground
fdefine hlpSpMgrClearButton
fdefine hlpSpMgrRememberButton
fdefine hlpSpMgrTitleBar

MakeTag(clsSpellManager,l)
MakeTag(clsSpellManager,2)
MakeTag(clsSpellManager,3)
MakeTag(clsSpellManager,4)
MakeTag(clsSpellManager,5)
MakeTag(clsSpellManager,6)
MakeTag(clsSpellManager,7)
MakeTag(clsSpellManager,8)
MakeTag(clsSpellManager,9)
SpMgrReplaceButtonTag
SpMgrIgnoreButtonTag
SpMgrCancelButtonTag
SpMgrlnsertionPadTag
SpMgrTKTableTag
SpMgrBackgroundTag
SpMgrClearButtonTag
SpMgrRememberButtonTag
SpMgrTitleBarTag

II Different help tags for when this is proof instead of spell
fdefine hlpProoflnsertionPad MakeTag(clsSpellManager,lO)
fdefine hlpProofTKTable MakeTag(clsSpellManager,ll)

SR.M

clsSR inherits from clsObject.

clsSR is the class of theSearchManager. It defines a protocol which clients can respond to implement
Find and Replace. Clients of this protocol must respond to the "mark" protocol defined in mark.h.

Debugging Flags
The Find and Replace mechanism uses the debug flag RIOOOO.

#ifndef SR INCLUDED
#define SR=INCLUDED 1
#ifndef MARK INCLUDED
#include <mark.h>
#endif

Common #defines and typedefs
#define srBufSize 80
typedef struct SR_FLAGS {

BOOLEAN matchCase

} SR_FLAGS;

matchWord
keepOldCase
findFromEdge
onBigCard

typedef struct SR METRICS

1,
1,
1,
1,
1;

II case must match
II full word search
II replace with found case
II search from edge of doc
II display big card

CHAR findText[srBufSize];
CHAR replaceText[srBufSize];
MARK MSG FLAGS markFlags;
SR FLAGS searchFlags;

SR_METRICS, * P_SR_METRICS;

Statuses
The current match cannot! may not be replaced.

#define stsSRCannotReplace MakeStatus(clsSR, 1)

Messages Sent to Clients via clsMark

msgSRNextChars
Asks the client to move the token to the next group of characters.

Takes P _SR_NEXT_CHARS, returns STATUS.

#define msgSRNextChars

typedef struct SR_NEXT_CHARS
MARK_MSG_HEADER header;
U32 maxLen;
U32 len;
BOOLEAN blockStarti
BOOLEAN blockEndi

SR_NEXT_CHARS, * P_SR_NEXT_CHARS;

MakeMsg(clsSR, 1)

II In: maximum size the group can be
II Out: the size of the group
II Out: the group starts a block
II Out: the group ends a block

306 PENPOINT API REFERENCE

Part 9 I Utility Classes

Comments Important: your handler must have the following as its first statement. Replace "clsYourClassHere" with
the uid of your class. See markh.

MarkHandlerForClass(clsYourClassHere);

This group may be up to maxLen characters in size. The client sets the len parameter to the actual size
of the group, and if the group is the start and/or end of a block of character, sets the respective flags. A

. block is defined as a logically contiguous group of characters that can be searched.

Any non-text element usually delimits the end of a block If the element is an embedded window that
should be searched, the token should be set to point to the embedded window and stsMarkEnterChild
(see markh) should be returned. If the element is not a child, then it should be simply skipped and the
token moved to the next group of characters following it.

Example: If the following text is in the client's data, and msgSRNextChars is received with a maxLen of
5, the token would should refer to the blocks 1 through 4 in succession. blockStart should be true for
blocks 1 and 3 and blockEnd should be true for blocks 2 and 4. In this way, "SEN" and "MANTLE"
can be found, but "GERMAN" which spans some non-text object won't be mistakenly found.

M E SSE N G E R (non-text-thing) MAN T L E
I I I I I I
+----1----+---2---+----------------+----3----+4+

msgSRGetChars
The component passes back the characters from the location identified by the token.

Takes P _SR_GET_CHARS, returns STATUS.

#define msgSRGetChars

typedef struct SR_GET_CHARS
MARK MSG HEADER header;
U32 - - first;
U32 len;
U32 bufLen;
P CHAR pBuf;

SR_GET_CHARS, * P_SR_GET_CHARS;

MakeMsg(c!sSR, 2)

II In: character to start with
II In: the number of characters to return
II In: lengt~ of the buffer
II In: pointer to the buffer to fill

Important: your handler must have the following as its first statement. Replace "clsYourClassHere" with
the uid of your class. See markh.

MarkHandlerForClass(clsYourClassHere);

pArgs->first is token-relative and pArgs->len is the number of characters to return. Thus (0,2) requests
the first two characters, (1,1) requests the second character, and (3,0) requests no characters.

The string returned must be null-terminated. Note that if len is less than bufLen then this is always
possible without truncation. Otherwise, the number of characters returned should be one less than
bufLen and they should still be null terminated.

msgSRReplaceChars
Ask the component to replace some of the characters at the location identified by the token.

Takes P _SR_REPLACE_CHARS, returns STATUS.

#define msgSRReplaceChars

typedef struct SR REPLACE CHARS
MARK MSG HEADER header;

MakeMsg(clsSR, 3)

S32 - - first; II In: replacement starts here
U32 len; II In: ... and is this long
U32 bufLen; II In: repl. size in characters
P CHAR pBuf; II In: the buffer of the characters

SR REPLACE_CHARS, * P _ SR _REPLACE_CHARS;

Comments

SR.H 307
Messages to theSearchManager

Important: your handler must have the following as its first statement. Replace "clsYourClassHere" with

the uid of your class. See mark.h.

MarkHandlerForClass(clsYourClassHere);

pArgs->first is token-relative, and pArgs->len is the number of characters to replace. Thus (0,2) replaces

the first two characters, (1,1) replaces the second character, and (3,0) replaces no characters starting

between the third and fourth (thus effecting an insertion).

pArgs->first may be negative, indicating replacement of text BEFORE the current token (or large

indicating AFTER). However, in no case will pArgs->first go beyond the boundaries indicated by the

blockStart and blockEnd flags from previous calls to msgSRNextChars.

This message should only affect the token insofar as the replacement makes changes to the data the
token refers to. For example: if the token refers to the three characters "cat" and the replace messages

changes the substring "c" (0,1) into "womb", then the token should now refer to the six characters

"wombat".

msgSRPositionChars
Asks the component to reposition the token to some of the characters in the current group.

Takes P _SR_POSITION_CHARS, returns STATUS.

#define msgSRPositionChars

typedef struct SR_POSITION_CHARS
MARK_MSG_HEADER header;

MakeMsg(clsSR, 4)

S32 first; II In: new position starts here
U32 len; II In: ... and is this long

SR_POSITION_CHARS, * P_SR_POSITION_CHARS;

Important: your handler must have the following as its first statement. Replace "clsYourClassHere" with

the uid of your class. See mark.h.

MarkHandlerForClass(clsYourClassHere);

pArgs->first is token-relative, and pArgs->len is the number of characters to reposition to. Thus (0,2)

positions to the first two characters, (1,1) positions to the second character, and (3,0) positions to

between the third and fourth characters.

pArgs->first may be negative indicating positioning BEFORE the current token (or large indicating

AFTER). However, in no case will pArgs->first go beyond the boundaries indicated by the blockStart

and blockEnd flags from previous calls to msgSRNextChars.

Messages to theSearchManager
These messages are sent to theSearchManager by PenPoint's standard UI elements. Typical clients do

not send them.

msgSRInvokeSearch
Starts a Find & Replace option sheet.

Takes P _SR_INVOKE_SEARCH, returns STATUS.

#define msgSRInvokeSearch MakeMsg(clsSR, 10)

308 PENPOINT API REFERENCE
Part 9 / Utility Classes

Messttf0e
fo\rgtunenfs

typedef struct SR INVOKE_SEARCH {
OBJECT targeti II nil if fromGesture or fromSelection
BOOLEAN fromSelection

U16

fromGesture
doFind
findBackward
noUI

:1,
: 1,
: 1,
: 1,
: 1,
:1,
: 1i

II start from the selection
II start from the gesture given
II do an initial find
II direction for initial find
II don't open option sheet
II use the word at the gesture or selection
II use the flags in metrics

II the gesture if fromGesture GWIN GESTURE
SR METRICS
U32

useWord
useFlags
reservedi
gesturei
metricsi
reserved2i

II optional initial text and flags

SR_INVOKE_SEARCH, * P_SR_INVOKE_SEARCHi

The target of the search is the target argument. However if fromSelection is true then it is the selection;
or if from Gesture is true then it is from the gesture.

The user's last saved metrics are always used except that

• metrics.findText is used if it is not the empty string

• metrics.replaceText is used if it is not the empty string

• metrics.markFlags & metrics.searchFlags are used if pArgs->useFlags is true

If do Find is true, then an initial find is executed.

If noVI is true, then the option sheet isn't created. This is only useful in conjunction with doFind
(otherwise, nothing has happened!), the result being a "find next" operation.

If useWord is true, then the find text will be fetched from the target with msgSRGetChars.

msgSRRememberMetrics
Asks theSearchManager to remember the current settings of a Find & Replace option sheet

Takes P _SR_METRICS, returns STATUS.

#define msgSRRernemberMetrics MakeMsg(clsSR, 12)

typedef struct SR_METRICS {
CHAR findText[srBufSize]i
CHAR replaceText[srBufSize]i
MARK MSG FLAGS markFlagsi
SR FLAGS searchFlagsi

SR_METRICS, * P_SR_METRICSi

As a result, when theSearchManager option sheet next appears it will have the these settings.

STROBJ.H

This file contains the API definition for clsString.

clsString inherits from clsByteBuf.

clsString provides a facility to store null-terminated ASCII byte strings. Each object of clsString stores a
single string. This class provides convenient object filing of the string data. Storage for each object's

string is allocated out of the creator's shared process heap using OSHeapBlockAlloc.

Clients who want to store uninterpreted byte arrays should use clsByteBuf (see bytebuf.h).

clsString and clsByteBuf do not share messages. clsByteBuf messages cannot be sent to a clsString
object.

*ifndef STROBJ_INCLUDED
*define STROBJ INCLUDED
*include <go.h>
*include <clsmgr.h>
typedef OBJECT STROBJECT, *P_STROBJECT;

Class Messages

M~$s@~e

Ar~l"irrlents

msgNew
Creates a new string object.

Takes P_STROBJ_NEW_ONLY, returns STATUS. Category: class message.

typedef struct STROBJ_NEW_ONLY {
P_CHAR pString;

} STROBJ_NEW_ONLY, *P_STROBJ_NEW_ONLY;
*define strObjNewFields \

objectNewFields \
STROBJ NEW ONLY strobj;

typedef struct STROBJ_NEW {
strObjNewFields

} STROBJ_NEW, *P_STROBJ_NEW;

This message allocates shared heap storage for the specified string and copies the client string data into

it.

msgNewDefaults
Initializes the STROBLNEW structure to default values.

Takes P _STROBLNEW, returns STATUS. Category: class message.

typedef struct STROBJ_NEW {
strObjNewFields

} STROBJ_NEW, *P_STROBJ_NEW;

Sets

pNew->strobj.pString = pNull;

310 PENPOINT API REFERENCE
Part 9 / Utility Classes

Obiec. Messages

msgStrObjGetStr
Passes back the object's string.

Takes PP _CHAR, returns STATUS.

tdefine msgStrObjGetStr MakeMsg(clsString, 1)

The pointer passed back references the object's global storage. Clients must not modify or free this

storage.

msgStrObjSetStr
Copies the specified string data into the object's string buffer.

Takes P _CHAR, returns STATUS.

tdefine msgStrObjSetStr MakeMsg(clsString, 2)

Previously retrieved string pointers will be invalid after this operation. Clients must call

msgStrObjGetStr to retrieve a pointer to the valid object buffer.

Observer Messages

msgStrObjChanged
Sent to observers when the string object data changes.

Takes OBJECT, returns nothing. Category: observer notification.

tdefine msgStrObjChanged MakeMsg(clsString, 3)

The message argument is the UID of the clsString object that changed.

TS.H

This file contains the API definition for clsTable.

clsTable inherits from clsObject.

clsTable provides a general-purpose table mechanism with random and sequential access. The table
allows clients to create, destroy, modify, and access the table and its data using a row and column
metaphor. Data for the table is stored in a table file, whose lifetime can be independent to that of the
table object.

Tables are two dimensional arrays consisting of a fixed number of columns and a variable number of
rows. Each column can contain data of a single data type such as a U32, a variable length string, a fixed
sized byte field, date and time, etc.

The number of and types of these columns are defined when the table is created. Once that table has
been created, these parameters cannot be changed.

Clients access rows in the table using a TBL_ROW_POS data structure. The value for this row position is
returned to the client when a row is added to the table. All messages for manipulating data in the table
require this value to specify an individual row.

Clients address columns using their position in the TBL_COL_DESC array which the client provides in
the TBL_CRFATE data structure during msgNew.

The table is an observable object and clients choosing to be observers will receive notification when data
in the table changes or a row has been added to or removed from the table.

#ifndef TS INCLUDED
#define TS_INCLUDED
#include <clsmgr.h>
#include <fs.h>
#include <resfile.h>

Status Codes
Status values return by messages to clsTable.

#define st sTBLRefCountNot Zero
#define stsTBLColNameNotFound
#define stsTBLStrBufTooSmall
#define stsTBLBadNewFlags
#define stsTBLEndOfTable
#define stsTBLInvalidSortColValue
#define stsTBLCorruptedIndex
#define stsTBLColNotIndexed
#define stsTBLContainsIndexedCols

MakeStatus(
MakeStatus(
MakeStatus(
MakeStatus(
MakeStatus(
MakeStatus(
MakeStatus(
MakeStatus(
MakeStatus(

clsTable,
clsTable,
clsTable,
clsTable,
clsTable,
clsTable,
clsTable,
clsTable,
clsTable,

1)
2)
3)
4)
5)
7)
8)
9)
10)

-------~-----

312 PENPOINT API REFERENCE
Part 9 / Utility Classes

Common macros and typedefs
• Class Declaration

fdefine clsTable

• Object Declarations

typedef OBJECT TABLE;
typedef OBJECT TBLOBJ;
typedef TBLOBJ *P_TBLOBJ;

• Table Parameter Definitions

fdefine TBL MAXCOLNAMELEN
fdefine TBL MAXTBLNAMELEN
fdefine TBL MAXROWCOUNT

• Table Row Definitions

typedef RES_ID TBL_ROW_POS,
typedef U16 TBL_ROW_NUM,
typedef U16 TBL_ROW_COUNT,
typedef U16 TBL_ROW_LENGTH,
typedef S32 TBL_ROW_OFFSET,
typedef S16 TBL_REF_COUNT,

• Table Data Type Definitions

typedef P_U8
typedef P_UNKNOWN

• Column Index Declarations

typedef U16 TBL_COL_INX_TYPE,
typedef U16 TBL_COL_COUNT,
typedef U16 TBL_COL_LENGTH,
typedef U32 TBL_COL_OFFSET,

MakeWKN(2003,1,wknGlobal)

nameBufLength
nameBufLength
Ox2000 II 8192 entries

*P_TBL_ROW_POS;
*p _ TBL _ROW_NOM;
*P_TBL_ROW_COUNT;
*P_TBL_ROW_LENGTH;
*P_TBL_ROW_OFFSET;
*P_TBL_REF_COUNT;

II Absolute TS Row Key
II Position relative TS Row Key

P_ROW_BUFFER, *PP_ROW_BUFFER;
P_TBL_COL_DATA_HOLDER;

*P_TBL_COL_INX_TYPE;
*P_TBL_COL_COUNT;
*P_TBL_COL_LENGTH;
*P_TBL_COL_OFFSET;

• Column Descriptor Definitions

typedef enum TBL_TYPES {
tsChar = 0,
tsCaseChar = 1,
tsU16 = 2,
tsU32 3,
tsFP 4,
tsDate 5,
tsString 6,
tsCaseString 7,
tsByteArray 8,
tsUUID 9,
tsLastType = tsUUID

TBL_TYPES;

II
II
II
II
II
II
II
II
II
II

fixed length byte array of case sensitive chars
fixed length byte array of case insensitive chars
unsigned 16 bit integer
unsigned 32 bit integer
double precision floating point
date field (system compressed time format)
null-terminated variable length ascii string (case sensitive)
same as tsString but is case insensitive
variable length byte array, contained in unsigned chars
UUID struct.

typedef struct TBL COL DESC {
CHAR name[TBL_MAXCOLNAMELEN];
TBL TYPES type;
TBL COL LENGTH length;
TBL_COL_INX_TYPE repeatFactor;
TBL COL OFFSET offset;
BOOLEAN sorted;

TBL COL DESC, *P_TBL_COL_DESC;

• Variable Length Data Buffer Definition

typedef struct TBL STRING {

I I Column name
II Column type
II Column data length
II f of times to repeat the column
II Column offset in the row
II Is the column sorted?

U16 strLen; II In/Out:
U16 strMax; II In:
P CHAR pStr; II In:

length of string or byte array column data
length of string or byte array buffer
pointer to client buffer.

TBL_STRING, *P_TBL_STRING;

TS.H 313
Class Messages

Class Messages

Me5$(j~¢

Arguments

msgNew
Creates a new table object.

Takes P _TBL_NEW, returns STATUS. Category: class message.

typedef enum TBL_FREE_BEHAVE {
tsFreeNoDeleteFile 0, II Free only the object, not the file
tsFreeDeleteFile flagO, II Destroy the file when freed
tsFreeWhenNoClients flag1, II Free when t clients accessing is 0
tsFreeNoObservers flag2, II Free when t of observers is 0
tsFreeNoCompact flag3, II Don't compact the table when freed
tsFreeDefault tsFreeNoDeleteFile

TBL FREE BEHAVE, *P_TBL_FREE_BEHAVE;
typedef enum TBL_EXIST {

II Same values as FS_EXIST MODE
tsExistOpen
tsExistGenError
tsExistGenUnique
tsNoExistCreate
tsNoExistGenError
tsExistDefault

0, II Open an existing table
= 1, II Return error if table exists
= 2, II Create table with a unique name
= MakeU16(O,0), II Create a new table
= MakeU16(O,1), II Return error if no table exists
= tsExistOpen I tsNoExistCreate

TBL_EXIST, *P_TBL_EXIST;
typedef struct TBL_CREATE {

TBL_COL_COUNT colCount;
P_TBL_COL_DESC colDescAry;

TBL_CREATE, *P_TBL_CREATE;

II number of columns
II TBL COL DESC array

typedef struct TBL_NEW_ONLY {
CHAR name[TBL_MAXTBLNAMELEN]; II
FS LOCATOR locator; II
TBL EXIST exist; II
TBL CREATE create; II
TBL FREE BEHAVE freeBehavior; II
BOOLEAN createSemaphore; II

TBL_NEW_ONLY, *P_TBL_NEW_ONLY;
tdefine tableNewFields \

objectNewFields \
TBL NEW ONLY table;

typedef struct TBL_NEW
tableNewFields

} TBL_NEW, *P_TBL_NEW;

This message creates a new table file or opens an existing file.

Table name
Table file
Table exist behavior
Column specifications
Table free behavior
Provide semaphore?

The table name is an optional field. The locator and colDescAry fields must be valid and colCount
must be non zero or this message returns stsBadParam.

stsTBLBadNewFlags TBL_EXIST flags were invalid.

stsBadParam locator or colDescAry fields are invalid. colCount is O.

msgNewDefaults
Initializes the TBL_NEW structure to default values.

Takes P _ TBL_NEW, returns STATUS. Category: class message.

typedef struct TBL_NEW
tableNewFields

TBL_NEW, *P_TBL_NEW;

314 PENPOINT API REFERENCE

Part 9 / Utility Classes

Zeroes out pNew->table and sets:

pNew->table.name[O]
pNew->table.locator.uid
pNew->table.locator.pPath
pNew->table.exist
pNew->table.create.colCount
pNew->table.create.colDescAry
pNew->table.freeBehavior
pNew->table.createSemaphore

msgDestroy
Destroys an existing table object.

= '\0';
= objNull;
= pNull;
= tsExistDefault;
= 0;
= pNull;
= tsFreeDefault;
= false;

Takes OBLKEY, returns STATUS. Category: class message.

This message destroys the table object and frees the table files if the object was created with the
tsFreeDeleteFile flag specified.

The table file will not be destroyed regardless of whether tsFreeDeleteFile was specified if there are still
accessors to the table. Only the object will be freed.

sts TBLRefCountN otZero The number of accessors of the table is not zero. The table file will not be

destroyed.

Obiecl Messages

Table Row Addition and Deletion Messages

msgTBLAddRow
Adds a rowlrecord with no data to the table server object.

Takes P _ TBL_ROW _POS, returns STATUS.

#define msgTBLAddRow MakeMsg(clsTable, 1)

The row position (TBL_ROW _POS) for the new row is passed back. The row position is the key to access
data in the row or to delete the row.

msg TBLDeleteRow
Deletes the specified row.

Takes P _TBL_ROW_POS, returns STATUS.

#define msgTBLDeleteRow MakeMsg(clsTable, 5)

Rows are deleted from the table at the completion of this call. The row's TBL_ROW_POS is no longer

valid after the row has been deleted.

sts TBLEndOff able TBL_ROW _pas value was not found in the table.

TS.H 315
Object Messages

Table Data Messages

Message
Arguments

Arguments

Comments

msgTBLColGetData
Passes back the data for the specified row and column.

Takes P _TBL_COL_GET_SET_DATA, returns STATUS.

*define msgTBLColGetData MakeMsg(clsTable, 13)

typedef struct TBL_COL_GET_SET_DATA {
TBL_ROW_POS tblRowPOSi II In: Table row position
TBL_COL_INX_TYPE colNumberi II In: Column number
P_TBL_COL_DATA_HOLDER tblColDatai II Out: Column data

TBL_COL_GET_SET_DATA, *P_TBL_COL_GET_SET_DATA;

tblColData is of type P _ TBL_STRING if the column type is tsString, tsCaseString, or tsByteArray.

The client is responsible for allocating storage for the tblStr.pStr buffer. If the buffer is too small to

accomodate the requested data, the table will return stsTBLStrBuff ooSma11 and pass back the
truncated data and the actual length of the data in tbIStr.strLen.

stsTBLStrBuff ooSma11 Returned if column type is tsString, tsCaseString or tsByteArray and
tblStr.strMax is less than the actual data length. The data is truncated and the length is returned in
tbIStr.strLen.

stsTBLEndOff able TBL_ROW _POS value was not found in the table.

msgTBLColSetData
Sets the data for the specified row and column.

Takes P _TBL_COL_GET_SET_DATA, returns STATUS.

*define msgTBLColSetData MakeMsg(clsTable, 14)

typedef struct TBL_COL_GET_SET_DATA {
TBL_ROW_POS tblRowPOSi II In: Table row position
TBL_COL_INX_TYPE colNumberi II In: Column number
P_TBL_COL_DATA_HOLDER tblColDatai II Out: Column data

TBL_COL_GET_SET_DATA, *P_TBL_COL_GET_SET_DATAi

tblColData is of type P _ TBL_STRING if the column type is tsString, tsCaseString, or tsByteArray.
Clients are responsible for setting the strLen field of the TBL_STRING argument for all column types.

stsTBLEndOff able TBL_ROW _POS value was not found in the table.

msgTBLRowGetData
Gets the contents of an entire row.

Takes P_TBL_GET_SET_ROW, returns STATUS.

*define msgTBLRowGetData

typedef struct TBL_GET_SET_ROW {

MakeMsg(clsTable, 15)

TBL_ROW_POS tblRowPOSi II In: Which row
P UNKNOWN pRowDatai II Out: Row data

TBL_GET_SET_ROW, *P_TBL_GET_SET_ROWi

Not valid for tables containing variable length columns.

The client is responsible for providing storage for the pRowData buffer. The length of a table row can
be obtained using msg TBLGetRowLength.

316 PEN POINT API REFERENCE

Part 9 / Utility Classes

MessClge
Arguments

stsTBLEndOffable TBL_ROW _POS value was not found in the table.

stsTBLContainsIndexedCols Table contains variable length columns.

msg TBLGetRowLength

msgTBLRowSetData
Sets the contents of an entire row.

fdefine msgTBLRowSetData MakeMsg(clsTable, 16)

typedef struct TBL_GET_SET_ROW {
TBL_ROW_POS tblRowPos; II In: Which row
P UNKNOWN pRowData; II Out: Row data

TBL_GET_SET_ROW, *P_TBL_GET_SET_ROW;

Not valid for tables containing variable length columns.

stsTBLEndOffable TBL_ROW_POS value was not found in the table.

stsTBLContainslndexedCols Table contains variable length columns.

msg TBLGetRowLength

Table Information Messages

msgTBLGetlnfo
Gets the table header information.

Takes P_TBL_HEADER, returns STATUS.

fdefine msgTBLGetInfo

typedef struct TBL_HEADER

MakeMsg(clsTable, 10)

TBL COL COUNT colCount; II number of columns in table
CHAR - name[TBL MAXTBLNAMELEN];II non-file table reference
TBL ROW COUNT nRows; - II how many rows in table
TBL ROW LENGTH rowLength; II row buffer length
TBL ROW POS firstRow; II position of first row in table
TBL ROW POS currentRowi II position of current row in table
TBL ROW POS lastRowi II position of last row in table
TBL REF COUNT ref Count; II number of active clients.

TBL_HEADER, *P_TBL_HEADER, **PP_TBL_HEADERi

msg TBLGetCoICount",

msgTBLGetColCount
Gets the number of columns in the table.

fdefine msgTBLGetColCount MakeMsg(clsTable, 7)

msgTBLGetColDesc
Passes back the column description for the specified column.

Takes P _TBL_GET_COL_DESC, returns STATUS.

fdefine msgTBLGetColDesc MakeMsg(clsTable, 2)

Comments

Argvments

TS.H 317

Object Messages

typedef struct TBL_GET_COL_DESC {
TBL_COL_INX_TYPE colInx; II In: column number
TBL COL DESC colDesc; II Out: column decription

TBL_GET_COL_DESC, *P_TBL_GET_COL_DESC;

msgTBLGetRowCount
Gets the current number of rows in the table.

tdefine msgTBLGetRowCount MakeMsg(clsTable, 6)

msg TBLGetRowLength
Gets the length (in bytes) of the specified row.

Takes P_TBL_ROW_LENGTH, returns STATUS.

tdefine msgTBLGetRowLength MakeMsg(clsTable, 8)

The row length indicates the total width of all columns for each row in the table. This information is
useful when getting and setting row data.

msg TBLRowGetData

msgTBLGetState
Gets the current state of a specified row.

Takes P_TBL_GET_STATE, returns STATUS.

tdefine msgTBLGetState MakeMsg(clsTable, 11)

typedef enum TBL_STATE {
tsBegin 0, II rowPos is the first row
tsEnd = 1, II rowPos is the last row
tsPosition = 2 II rowPos is not first or last

TBL_STATE, *P_TBL_STATE;
typedef struct TBL GET STATE {

TBL_STATE tblState; II Out: State of the specified row
TBL_ROW_POS tblRowPos; II In: Row position of the specified row.

TBL_GET_STATE, *P_TBL_GET_STATE;

The state of a row in the table indicates its general positioning within the table.

stsTBLEndOffable TBL_ROW_POS value was not found in the table.

Table Access Messages

Comments

msgTBLBeginAccess
Initiates table access by a client on this table.

Takes P _TBL_BEGIN_ACCESS, returns STATUS.

tdefine msgTBLBeginAccess MakeMsg(clsTable, 17)

typedef struct TBL_BEGIN_ACCESS {
OBJECT sender; II In: sender's id IFF wants to be observer
TBL_ROW_LENGTH rowLength; II Out: Length of the first row

TBL_BEGIN_ACCESS, *P_TBL_BEGIN_ACCESS;

Passes back the row length of the first row. Adds the sender to the table's observer list.

318 PEN POINT API REFERENCE

Part 9 / Utility Classes

msg TBLEndAccess
Ends client access to the table.

Takes P_TBL_END_ACCESS, returns STATUS.

#define msgTBLEndAccess MakeMsg(clsTable, 18)

typedef struct TBL_END_ACCESS {
OBJECT sender; II In: Sender's uid

} TBL_END_ACCESS, *P_TBL_END_ACCESS;

Removes sender from the observer list.

msg TBLSemaCIear
Releases the table's semaphore.

Takes nothing, returns STATUS.

#define msgTBLSemaClear MakeMsg(clsTable, 23)

The next client currently waiting on the table semaphore will unblock when this messages completes.

msg TBLSemaRequest
Requests access to the table's semaphore.

Takes nothing, returns STATUS.

#define msgTBLSemaRequest MakeMsg(clsTable, 22)

Waits on the table semaphore if another client already has access. Provides exclusive access of the table

semaphore to the sender when it returns.

Semaphore access has no timeout.

Table Search Messages

msgTBLFindFirst
Finds the first record that meets the search specification.

Takes P _TBL_FIND_ROW, returns STATUS;.

#define msgTBLFindFirst MakeMsg(clsTable, 3)

typedef enum TBL_BOOL_OP
tsEql 0, II Match if operands are equal
tsEqual 1, II Match if operands are equal
tsLess 2, II Match if opndl < opnd2
tsGreater 3, II Match if opndl > opnd2
tsGreaterEqual 4, II Match if opndl <= opnd2
tsLessEqual 5, II Match if opndl >= opnd2
tsNotEqual 6, II Match if the operands do not match
tsSubstring 7, II Match if opndl is an exact substring of opnd2
tsStartsWith 8, II Match if opndl starts with opnd2
tsAlwaysTrue 9 II Match the first (or next) row

TBL_BOOL_OP, *P_TBL BOOL_OP;
typedef struct TBL_SEARCH_SPEC

TBL_COL_INX_TYPE colOperand; II In: Which column
TBL BOOL OP relOp; II In: Operation
P_TBL_COL_DATA_HOLDER pConstOperand; II In: Value to search against

TBL_SEARCH_SPEC, *P_TBL_SEARCH_SPEC;

MCStH::Jge
ArgUn1fmrS

TS.H 319
Object Messages

typedef struct TBL_FIND_ROW {
TBL ROW P~S rowPos;
TBL ROW NUM rowNum;
TBL_SEARCH_SPEC srchSpec;
TBL_COL_INX_TYPE sortCol;
P ROW BUFFER pRowBuffer;

TBL_FIND_ROW, *P_TBL_FIND_ROW;

II In:Out - current table position
II Out: indexed column row number
II In: search query
II In: which column sort to use (if any)
II In: pointer to client's buffer space

Passes back the TBL_ROW _POS and TBL_ROW _NUM of the row.

srchSpec. pConstOperand is of type P _ TBL_STRING if the column type is tsString, tsCaseString, or
tsByteArray. The length of the string/array used in the search is decal red in the strLen field of the
TBL_STRING struct. Clients are responsible for setting this field to the appropriate length for columns of
type tsString, tsCaseString, and tsByteArray.

srchSpec.pConstOperand is ignored if srchSpec.relOp is tsAlwaysTrue.

Currently, tsSubstring searches are always case sensitive regardless of the column type.

stsTBLEndOffable No data was found matching the search spec.

stsTBLlnvalidSortColValue sortCol is not a valid column value.

msgTBLFindNext
Find the next record following the specified TBL_ROW _POS that meets the search specification.

Takes P_TBL_FIND_ROW, returns STATUS.

*define msgTBLFindNext

typedef struct TBL_FIND_ROW
TBL ROW POS rowPos;
TBL ROW NUM
TBL SEARCH SPEC - -
TBL COL INX TYPE - - -

rowNum;
srchSpec;
sortCol;

P ROW BUFFER pRowBuffer;
TBL_FIND_ROW, *P_TBL_FIND_ROW;

MakeMsg(clsTable, 4)

II In:Out - current table position
II Out: indexed column row number
II In: search query
II In: which column sort to use (if any)
II In: pointer to client's buffer space

Passes back the TBL_ROW _POS and TBL_ROW _NUM of the row.

srchSpec.pConstOperand is of type P _TBL_STRING if the column type is tsString, tsCaseString, or
tsByteArray. The length of the string/array used in the search is decal red in the strLen field of the
TBL_STRING struct. Clients are responsible for setting this field to the appropriate length for columns of
type tsString, tsCaseString, and tsByteArray.

srchSpec.pConstOperand is ignored if srchSpec.relOp is tsAlwaysTrue.

If srchSpec.colOperand is an unsorted column, then the order of the rows searched is random.

stsTBLEndOffable No data was found matching the search spec, or rowPos is was not found in the

table.

stsTBLlnvalidSortColValue sortCol is not a valid column value.

Table Utility Messages

msgTBLFindColNum
Passes back the column number for the specifed column name.

Takes P _TBL_COL_NUM_FIND, returns SfATUS.

*define msgTBLFindColNum MakeMsg(clsTable, 12)

320 PEN POINT API REFERENCE

Part 9 / Utility Classes

Arguments

Comments

typedef struct TBL_COL_NUM_FIND
P CHAR name; II In: Column name
TBL_COL_INX_TYPE number; II Out: Column number

TBL_COL_NUM_FIND, *P_TBL_COL_NUM_FIND;

stsTBLColNameNotFound A column with the specified name does not exist.

msgTBLCompact
Compacts the table without closing it.

Takes nothing, returns STATUS.

#define msgTBLCompact MakeMsg(clsTable, 24)

This message allows clients to compact a table on demand. Compaction frees up any storage associated
with previously deleted rows and compacts the table to its minimum file size. Ordinarily, a table is
compacted automatically when the last client accessing the table closes it unless specifically prevented by
specifying tsFreeNoCompact during msgNew.

msgTBLRowNumToRowPos
Converts a TBL_ROW _NUM to its corresponding TBL_ROW _POS for the specified column.

Takes P_TBL_CONVERT_ROW_NUM, returns STATUS.

#define msgTBLRowNumToRowPos MakeMsg(clsTable, 28)

typedef struct TBL_CONVERT_ROW_NUM {
TBL_ROW_POS rowPos; II Out: - Table row pos.
TBL ROW NUM rowNum; II In: - Index row number.
TBL_COL_INX_TYPE colNum; II In: - Indexed (sorted) column number.

TBL_CONVERT_ROW_NUM, *P_TBL_CONVERT_ROW_NUM;

This message is defined only for sorted columns. Unsorted columns do not have a defined order.

stsTBLEndOffable rowNum is larger than the number of rows in the table.

·stsTBLColNotlndexed The specified column is not sorted.

Observer Messages

msgTBLRowAdded
Sent to observers indicating that a row has been added.

Takes P _TBL_ROW_POS, returns STATUS. Category: observer notification.

#define msgTBLRowAdded MakeMsg(clsTable, 19)

A pointer to the newly added TBL_ROW _POS is sent as an argument.

msgTBLRowDeleted
Sent to observers indicating that a row has been deleted.

Takes nothing, returns STATUS. Category: observer notification.

#define msgTBLRowDeleted MakeMsg(clsTable, 20)

TS.H 321

Observer Messages

msgTBLRowChanged
Sent to observers indicating that row data has been changed.

Takes P_TBL_ROW_POS, returns STATUS. Category: observer notification.

tdefine msgTBLRowChanged MakeMsg(clsTable, 21)

A pointer to the changed TBL_ROW _pos is sent as an argument.

~~==~~~---------------- ... __ _----

UNDO.H

This file contains the API definition for theUndoManager. theUndoManager is the wknProcessGlobal
instance of clsUndo.

clsU ndo inherits from clsList.

The functions described in this file are contained in MISC.UB.

Introduction

theUndoManager provides a centralized facility for managing undo information. theUndoManager
supports undo of user interface actions.

An undoable operation, or "undo transaction," is a collection of "undo items." Typically an undoable
operation is a small UI action (e.g. deleting some text).

When the user issues an "Undo" command the most recent undo transaction will be undone. A typical
scenario goes something like this:

• In response to some user interface action, a message handler begins an undo transaction with
msgUndoBegin and then sends messages which manipulate the application's data.

• As the data manipulation routines do their work, they add undo items to the undo transaction via
msgUndoAddItem.

• When the user interface handler regains control, the transaction is dosed with msgUndoEnd.

• At some later date, the transaction might be undone. theUndoManager undoes a transaction by
sending msgUndoltem to each item in the transaction (in the reverse order in which they were
added).

• If the transaction is not undone, but instead falls off the end of the undo transaction queue, then
the transaction is freed. (A transaction is also freed if the application is terminated.)
theUndoManager frees a transaction by sending msgUndoFreeltemData to each item in the
transaction. (But see the comments near the typedefUNDO_ITEM for some circumstances under
which theUndoManager doesn't send msgUndoFreeltemData but instead frees the item itself.)

Common Messages

Typical application code will send the following messages to theUndoManager:

• msgUndoBegin

• msgUndoEnd

• msgUndoAddItem

Typical application code will receive the following messages from theUndoManager:

• msgUndoI tern

• msgUndoFreeItemData

See the individual descriptions of each of these messages for more information.

324 PEN POINT API REFERENCE

Part 9 I Utility Classes

Debugging Flags
Undo's debugging flag set is 'U.' Defined flags are:

0001 Show messages sent to theUndoManager.

0002 Show clsUndo initialization.

0004 Show msgUndoAddItem.

0008 Show undoing a undo transaction.

0010 Show creating a undo transaction.

0020 Show destroying an undo transaction.

The Current Transaction
At any time, there is at most one current undo transaction open. The current undo transaction includes:

• a unique id of type UNDO_ID

• the OS_ TASK_ID of the task that issued the msgU ndoBegin that began the transaction

• a nesting count which is the number of msgUndoBegin's minus the number of msgUndoEnd:s.
(See the section "Nesting of msgUndoBegin and msgUndoEnd.")

• a heap with local scope from which clients can allocate space for undo information

• a list of undo items added to the transaction so far ..

The Undo Queue
theUndoManager maintains a queue of undo transactions. By default theUndoManager has a queue
length of 2, but an application can set the limit by sending msgUndoLimit to theUndoManager.

Your code should not depend on any particular queue size.

Nesting of msgUndoBegin and msgUndoEnd
In response to msgU ndoBegin, theU ndoManager opens a new transaction if there is no open
transaction; otherwise it simply increments a "nesting count." The nesting count is decremented when·
theU ndoManager receives msgU ndoEnd. When the count becomes zero, the transaction is closed.

This allows you to write code that doesn't know whether it there is an open transaction or not. If the
code wants to record undo information, it can simply send a msgUndoBegin / msgUndoEnd pair. If
there was no open transaction, the result is that one will be created. And if there is one open, then the
code's items will be added to that one.

It is vital that every msgUndoBegin have a matching msgUndoEnd!

To guard against erroneous code never terminating the current transaction, and thus having that
transaction slowly consume all of system memory, there is a bounds on the depth of nesting permitted.
(This bounds is approximately 1000.) If the bounds is exceeded, the open transaction is automatically
closed.

UNDO.H 325

Memory Management
Each undo item records the information necessary to undo and/or free itself.

Often this information has to be remembered in allocated memory or objects that must be freed once
the item can no longer be undone. For instance, an undoable operation might involve deleting an
object. However, you probably don't want to destroy the object until you're sure that the operation can't
be undone. But eventually that object has to be destroyed.

Normally theUndoManager will send msgUndoFreeltemData to the object stored in each UNDO_ITEM.

The handler should respond by freeing any resources associated with the item. Typically those resources
are pointed to by item.pData.

But there are five ways in which you and theUndoManager can cooperate so that theUndoManager can
free the resources for you.

• If uIDataIsHeapNode is set in item.flags, then item.pData must point to a heap block.
theUndoManager will free item.pData by calling OSHeapBlockFree{item.pData).

• If uIDataInUndoHeap is set in item.flags, then item.pData must point to heap block allocated
from the current transaction's heap. theUndoManager will free item.pdata when it destroys the
transactions's heap.

• If uIDatalsObject is set in item.flags, then item.pData must be an object UID. theUndoManager
will free item.pdata by calling ObjectSend(msgDestroy, item.pData, ...). (See the section "Freeing
Undone Items" for one reason NOT to use this variation.)

• If uIDataIsSimple is set in item.flags, then item.pData is treated as a 32 bit value. There is no need
for theUndoManager to do anything to free item.pData.

• If none of the above flags is set in item.flags, and item.dataSize is non-zero, then when the item is
added to the transaction (with msgUndoAddltem) theUndoManager copies item.dataSize bytes
from item.pData into a block allocated from the current transaction's heap. theUndoManager then
frees item.pData when it destroys the transactions's heap.

Freeing Undone Items
Even an item that has been undone will be freed. It might be automatically freed by theUndoManager,
as described in the section on Memory Management, or it might be freed by sending
msgUndoFreeltemData to item.object.

Often freeing an item's data is done the same way regardless of whether the item has been undone or
not. But there are cases where the difference is very important. Here's an example. Assume that the
undoable operation includes deleting an object. If the operation is undone, then the object is "put back"
into the application.

If the item IS undone, then the object should NOT be destroyed when the item is freed. But if the
operation IS NOT undone, then the object should be destroyed when the object is destroyed.

For items that need to free the item's data differently in these two cases, the fact that the item has been
undone should be recorded in the item when msgUndoltem is received. Then the code responding to
msgUndoFreeltemData can check this recorded value. (One convenient place to record this value is in
the item's ufClient flags.)

-~----~--~--- --------

326 PENPOINT API REFERENCE

Part 9 I Utility Classes

. Adding Items When No Transaction is Open
When theUndoManager is undoing a transaction, there is no current open transaction. But, as

described in the typical scenario above, data manipulation routines will attempt to add items anyhow.
Therefore it is CRITICAL that your code check the value returned from msgUndoAddltem and handle

it properly.

There are several ways to do this, but here's one convenient approach. (This approach works ONLY if

you DON'T use any of theUndoManager's memory management functionality.)

If you're not using the memory management facilities of theUndoManager, then you're most likely

allocating memory to hold the client data part of an undo item. That memory has been allocated before

calling msgUndoAddltem and must be freed if the msgUndoAddItem fails. Conveniently, an item's

client data can be freed by sending msgUndoFreeltemData to the object stored in item.object.

Simply define a utility routine that attempts to add an item, and which frees the item if adding fails.

Then always use that routine to add items. The routine will look something like:

if (ObjectCall(msgUndoAddltem, theUndoManager, pltem) < stsOK) {
return ObjCallWarn(msgUndoFreelternData, pltem->object, pltem);

else {
return stsOK;

Subclass Issues
A class and any number of its ancestors may contribute items to an undo transaction.

Thus, every msgUndoFreeItemData handler should first check that item. subclass is the expected value.

If it isn't, the message should be passed onto the ancestor. So a msgUndoFreeltemData handler should

look something like:

MsgHandlerWithTypes(RTltemUndoFreelternData, P_UNDO_ITEM, PP_DATA)
{

if (pArgs->subclass != clsRTltem) {
return ObjectCallAncestorCtx(ctx);

else {

Flushing the Undo Queue
There may be "points of no return" in an application's execution beyond which undoing previous

operations is impossible or non-sensical. (For instance, it may not be possible to undo operations if the

application's data files are saved via msgApp5ave.)

You should flush the queue when one of these "points of no return" is encountered. The queue can be

flushed by performing the following three steps: (1) get the current undo limit via msgUndoGetMetrics,

(2) send msgUndoLimit with a pArgs of 0 (which actually flushes the queue), and (3) ·send

msgUndoLimit, but this time with the limited returned by the previous call to msgUndoGetMetrics.

UNDO.H 327

Aborting a Transaction
Sometimes it is necessary to abort an operation part way through. (For instance, the user might not
confirm the operation.) If this happens, you should abort the then the undo transaction with
msgUndoAbort. See the comments on msgUndoAbort for more information.

*ifndef UNDO_INCLUDED
*define UNDO_INCLUDED
iifndef LIST INCLUDED
*include <list.h>
*endif

Types and Constants
typedef STATUS UNDO_ID; II A transaction's id.
*define stsUndoAbortingTransaction MakeStatus(clsUndo, 1)
*define stsUndoDataFreed
*define undoStateNil
ide fine undoStateBegun
*define undoStateUndoing
*define undoStateRedoing
*define undoStateAborting

Exported Functions
STATUS PASCAL
InitClsUndo(void);

Message Arguments

UNDO_ITEM
typedef struct UNDO_ITEM {

o
flagO
flag1
flag2
flag3

MakeWarning(clsUndo, 1)

II Not implemented

OBJECT object; II In: object that undoes/frees item
OBJECT subclass; II In: See "Subclass Issues" section
U16 flags; II In: See "Memory Management"
P UNKNOWN pData; II In: See "Memory Management"
SIZEOF dataSize; II In: See "Memory Management"

UNDO_ITEM, * P_UNDO_ITEM;

The following flags are used in the flags field of an UNDO_ITEM.

*define ufReserved
*define ufClient
*define ufDataType
idefine ufDataInUndoHeap
*define ufDataIsHeapNode
*define ufDataIsObject
*define ufDataIsSimple

Other Message Arguments

(OxffOO)
(flagO I flag1 I flag2 I flag3)
(flag4IflagSlflag6Iflag7IufReserved)
flag4
flagS
(flagS I flag4)
(flag6Iflag4)

typedef struct UNDO_METRICS

section
section
section

UNDO ID id; II In: Out Nil => get current
OS HEAP ID heapId; II Out
U16 state; II Out
U16 transactionCount; II Out
U16 itemCount; II Out
U32 limit; II Out
U32 resId; II Out
U32 info; II Reserved

UNDO_METRICS, *p _UNDO_METRICS;

328 PENPOINT API REFERENCE

Part 9 / Utility Classes

fdefine undoNewFields \
listNewFields \
UNDO NEW ONLY undo;

typedef struct UNDO_NEW_ONLY {
U32 reserved;
P UNKNOWN pReserved;
U32 maxTransactionsi

UNDO_NEW_ONLY, *P_UNDO_NEW_ONLY;
typedef struct UNDO_NEW {

undoNewFields
} UNDO_NEW, *P_UNDO_NEW;

II Reserved for expansion
II Reserved for expansion

Messages

Message
Arguments

Next: 11; recycled: none

msgUndoAbort
Aborts the current undo transaction.

Takes pNull, returns STATUS.

fdefine msgUndoAbort MakeMsg(clsUndo, 10)

The current transaction is flagged as being aborted. Until the transaction is closed, any attempted

msgUndoAddItem, msgUndoBegin, and msgUndoEnd (including the one that finally closes the

transaction) will fail and return stsUndoAbortingTransaction. Once the msgUndoEnd that closes the

transaction is received, any remaining undo items in the aborted transaction are freed.

msgUndoAddltem
Adds a new item to the current undo transaction if and enly if it is still open.

Takes P_UNDO_ITEM, returns STATUS.

fdefine msgUndoAddItem MakeMsg(clsUndo, 0)

typedef struct UNDO ITEM
OBJECT object;
OBJECT subclass;
U16 flags;
P UNKNOWN pData;
SIZEOF dataSize;

UNDO_ITEM, *P_UNDO_ITEMi

II In:
II In:
II In:
II In:
II In:

object that undoes/frees item
See "Subclass Issues" section
See "Memory Management" section
See "Memory Management" section
See "Memory Management" section

theUndoManager returns stsFailed if an open transaction does not exist. Any other error status indicates

that there are not enough resources available to add the item.

msgUndoBegin
Creates a new undo transaction if there is no current transaction, or increments the nesting count if

there is a current transaction.

Takes RES_ID, returns STATUS or UNDO_ID.

fdefine msgUndoBegin MakeMsg(clsUndo, 1)

See the "Nesting of msgU ndoBegin and msgU ndoEnd" section for information about how to send this

message.

Return Value

Message
Arguments

UNDO.H 329

Messages

stsFailed Nesting limit exceeded.

stsOK Returned status is actually the id of the new (or currently open) transaction. Cast it to type
UNDO_ID.

The RES_ID for a transaction is determined by the first msgUndoBegin with a non-null argument. The
string identified by the RES_ID of the current undo transaction is used as the string for the "Undo"
menu item. The RES_ID should specify a resGrpTK string resource list. (This is analogous to the quick
help strings that are found in the resGrpQHelp string resource list.)

msgU ndoCurrent
Undoes the most recent undo transaction.

Takes pNull, returns SfATUS.

*define msgUndoCurrent MakeMsg(clsUndo, 2)

msgUndoCurrent undoes the most recent transaction. If a transaction is currently open the transaction
is closed first, and then undone.

It is unusual for a client to send this message. The only real reason for sending this message is if some
piece of client code is implementing an alternative UI mechanism to invoke the undo mechanism.

msgUndoEnd
Decrements the nesting count of (and thus may end) the current transaction.

Takes pNull, returns SfATUS.

*define msgUndoEnd MakeMsg(clsUndo, 3)

See the "Nesting of msgUndoBegin and msgUndoEnd" section for information about how to send this
message.

stsFailed No open transaction.

msgU ndoGetMetrics
Passes back the metrics associated with an undo transaction.

Takes P_UNDO_METRICS, returns STATUS.

*define msgUndoGetMetrics MakeMsg(clsUndo, 4)

typedef struct UNDO_METRICS
UNDO ID idi II In:Out Nil => get current
OS HEAP ID heapId; II Out
U16 state; II Out
U16 transactionCount; II Out
U16 itemCount; II Out
U32 limit; II Out
U32 resId; II Out
U32 info; II Reserved

UNDO_METRICS, *p _UNDO_METRICS i

Only an pArgs->id of Nil(UNDO_ID) , representing the current undo transaction, is supported.

stsFailed The specified transaction does not exist or there is in sufficient memory available to
manipulate it.

..--.. - ---~~~-

330 PEN POINT API REFERENCE

Part 9 I Utility Classes

msgUndoLimit
Sets the maximum number of remembered undo transactions.

Takes U32, returns STATUS.

#define msgUndoLimit MakeMsg(clsUndo, 8)

The default undo limit is 2. If your application wants to support a longer undo history, send
msgUndoLimit to theUndoManager with the desired limit.

If there are more transactions in the queue than the new limit, the extra transactions will be freed.
Setting the limit to 0 flushes all transactions and effectively disables undo until the limit is set to some
non-zero value.

msgUndoLimit always returns stsOK.

msgU ndoRedo
Not implemented.

Takes pNull,returns STATUS.

#define msgUndoRedo MakeMsg(clsUndo, 5)

Not implemented. Do not send this message.

Clien. Messages

M0U0se
Arguments

M;$$S0se
Atgutl10nts

msgUndoltem
Sent to pArgs->object to have the item undone.

Takes P_UNDO_ITEM, returns STATUS.

#define msgUndoItem MakeMsg(clsUndo, 6)

typedef struct UNDO ITEM
OBJECT object; II In: object that undoes/frees item
OBJECT subclass; II In: See "Subclass Issues" section
U16 flags; II In: See "Memory Management" section
P UNKNOWN pData; II In: See "Memory Management" section
SIZEOF dataSize; II In: See "Memory Management" section

UNDO_ITEM, *p UNDO - ITEM;

Note that the item will be freed in a separate step later.

msgUndoFreeltemData
Sent to pArgs->object to have pArgs->pData freed.

Takes P_UNDO_ITEM, returns STATUS.

#define msgUndoFreeItemData MakeMsg(clsUndo, 7)

typedef struct UNDO_ITEM {
OBJECT object;
OBJECT subclass;
U16 flags;
P UNKNOWN pData;
SIZEOF dataSize;

UNDO_ITEM, * P_UNDO_ITEM;

II In:
II In:
II In:
II In:
II In:

object that undoes/frees item
See "Subclass Issues" section
See "Memory Management" section
See "Memory Management" section
See "Memory Management" section

See the "Memory Management," "Subclass Issues" and "Freeing Undone Items" sections for information
about how to respond to this message.

XFER.M

This file contains the API definition for clsXfer and clsXferList.

clsXfer inherits from clsStream.

clsXfer defines the mechanisms used for transferring data between objects.

clsXferList inherits from clsList.

clsXferList is used by the transfer mechanism.

Most clients of PenPoint's data transfer mechanism should use the procedural interfaces defined in this

file.

The functions described in this file are contained in XFER.LIB.

Introduction

Key Concepts
This file describes some of PenPoint's support for transferring data.

There are a few central concepts that underlie PenPoint's data transfer mechanism:

• Sender and Receiver. There are two sides to any data transfer. "Sender" refers to the object providing
the data and "Receiver" refers to the object receiving the data. These two objects can be in different

processes, or in the same process. They can even be the same object!

• Two Stages. Each PenPoint data transfer has two major stages. In the first stage the Sender and
Receiver engage in a simple protocol to determine if the data can be transferred, and if so what

"type" the data has. In the second stage, the data is actually transferred using a protocol that is

specific to the type agreed to during Stage 1.

• Data Transfer Types. A Sender and Receiver need to agree on a data transfer type that they both
understand. PenPoint defines several data transfer types and clients can define additional types. See

the section "Determining a Data Transfer Type" for more information.

• Data Transfer Protocol. Each data transfer type has an associated data transfer protocol. Once a
transfer type has been agreed upon, the Sender and Receiver engage in the type-specific protocol to

actually move the data. Note the same Data Transfer Protocol can be employed for multiple Data

Transfer Types, but that each Data Transfer Type uses one and only one protocol.

Roadmap
Typical Receivers use the following to determine the desired data transfer type.

• XferMatchO

Typical Senders respond to or use the following to provide a list of data transfer types.

• msgXferList

• XferAddIdsO

332 PENPOINT API REFERENCE
Part 9 / Utility Classes

Typical Senders and Receivers who use data transfer types that use one-shot protocols use the following:

• msgXferGet

Senders and Receivers who use data transfer types that use stream-based protocols use the following:

• msgXferStreamConnect

• msgXferStream Write

• msgXferStreamF reed

• XferStreamConnectO

• XferStreamAcceptO

Relationship between Data Transfer and PenPoint's UI
PenPoint's data transfer mechanism is intentionally independent of the user interface that might trigger
a data transfer. None of the interfaces defined in this file depend or define any part of a PenPoint
application's user interface.

However, the examples given in the commentary often use PenPoint's UI as an example of how a data

transfer might be started. The file sel.h describes PenPoint's Move and Copy operations in detail.

During a Move or Copy operation, the Sender object is the owner of the selection. The Receiver is the

object upon which the move/copy icon was dropped and which receives msgSelMoveSelection or
msgSelCopySelection as a result. The Receiver sends msgSelOwner to theSelectionManager to get the

Sender object and then engages in a data transfer with that object.

A Typical Scenario
A typical data transfer session goes something like this:

• The Receiver decides that it is the receiving end of a data transfer operation. (For instance, the
receiver might receive msgSelMoveSelection or msgSelCopySelection; see sel.h.)

• The Receiver figures out the UID of the Sender object. (For instance, in the case of
msgSelCopySelection or msgSelMoveSelection, the Sender object is the current selection owner,
which can retrieved by sending msgSelOwner to theSelectionManager.)

• The Receiver determines a mutually agreeable data transfer type using the utility routine XferMatch.
(See section "Determining a Common Data Transfer Type" for more detailed information about

XferMatch and alternatives.)

• The Sender and Receiver use the Data Transfer Protocol associated with the agreed-upon type to
actually transfer the data.

Data Transfer Types
A data transfer type is represented by a TAG.

Below is a list ofPenPoint's predefined data transfer types and the data transfer protocol associated with
each. (The protocols are described in the next section.)

xferString:
xferLongString:
xferName:
xferFullPathName:
xferRTF:

one-shot using XFER_FIXED_BUF
one-shot using XFER_BUF
one-shot using XFE~FIXED_BUF
one-shot using XFER_FIXED_BUF
stream

xferFlat~ocator: one-shot using XFER_FIXED_BUF
xferASCIIMetrics: one-shot using XFER_ASCII_METRICS
xferScribbleObject: one-shot using XFER_OBJECT
xferPicSegObject: one-shot using XFER_OBJECT

XFER.H 333
One Shot Protocols

In addition export.h and embedwin.h each define an additional data transfer type; see these files for
more information.

Determining a Common Data Transfer Type
The Sender and Receiver must agree on a data transfer type.

For instance, a note taking application might be willing to provide either xferScribbleObject or
xferLongString data. A text editor might be willing to consume xferString, xferLongString or xferRTF
data. Somehow the common data type (xferLongString) must be found and used.

In PenPoint's data transfer mechanism, the Receiver is ultimately responsible for determining the
mutually agreeable data transfer type.

Typical Receivers can use a simply utility function, XferMatch, to compute the data transfer type.
Typical Senders must respond to msgXferList and add data transfer types to the provided list with the
utility function XferAddIds.

(Most clients don't need to know about the inner workings ofXferMatch, but they are documented in
the section "Details ofXferMatch" for sophisticated clients or the merely curious.)

Data Transfer Protocols
Each data transfer type uses a specific data transfer protocol.

There are three types of protocols:

• one-shot protocols

• stream-based protocols

• client-defined protocols

One Shot Protocols
Several data transfer types use a "One-Shot" protocol to transfer data. The protocols are called
"one-shot" because all of the data can be transferred via a single message send.

In all one-shot transfers, the Receiver uses ObjectSendUpdate to send msgXferGet to the Sender.
(ObjectSendUpdate must be used because the Sender and Receiver might be in different processes.)

The type of the pArgs to msgXferGet depends on the data transfer type -- the specific types are
described in the section "Data Transfer Types." However, all legal pArgs to msgXferGet have one thing
in common -- their first field is a data transfer type. The Receiver must fill in at least this field before
sending msgXferGet so that the Sender can tell which data transfer type is being used.

The Sender responds to msgXferGet by filling in pArgs as necessary. Some one-shot protocols require
the Sender to allocate memory. (For instance, the xferLongString data transfer type requires that the
sender allocate memory for pArgs->pBuf field of an XFER_BUF.)

Some one-shot protocols require that Sender allocate memory. Any Sender-allocated memory must be
allocated using OSHeapBlockAlloc and osProcessSharedHeapld. The Receiver must free this memory
with OSHeapBlockFree.

334 PENPOINT API REFERENCE

Part 9 I Utility Classes

Stream-Based Protocols
Stream-based protocols make use of a specialized stream that is implemented by clsXferStream.
clsXferStream adds the ability for two streams to be linked through an internal "pipe."

Once a Receiver has decided to engage in a stream-based transfer (as described in the Section "A Typical

Scenario" earlier), the steps in stream-based protocol are as follows:

• The Receiver calls XferStreamConnect.

• XferStreamConnect creates the Receiver's stream and then sends msgXferStreamConnect to the

Sender.

• In response to msgXferStreamConnect, the Sender calls XferStreamAccept. Essentially all Senders
of stream-based protocols should pass self as the "Producer" parameter when they call

XferStreamAccept -- motivation and exceptions are described below.

• XferStreamAccept properly creates the Sender's stream.

• When control returns to it, the Receiver sends msgStreamReadData to its stream.

• As a result of the Receiver's msgStreamReadData, the Sender receives msgXferStream Write.

• In response to msgXferStreamWrite, the Sender writes data using msgStreamWriteData.
IMPORTANT NOTE: In order to avoid overflowing internal buffers, Senders should not write

huge chunks of data in a single call. Chunks than 64K won't work at all. Memory is used more
efficiently if chunk sizes don't exceed 10K, although things will work at any size up to 64K.

• The last two steps can be repeated any number of times. Eventually the Receiver gets stsEndOfData
returned when sending msgStreamReadData.

• The Receiver sends msgDestroy to its stream.

• As a result of the Receiver's msgDestroy, the Sender receives msgXferStreamFree.

• In response to msgXferStreamFree, the Sender sends msgDestroy to its stream.

The Sender must be prepared to handle msgXferStreamFreed at any time. (In addition to normal

termination, msgXferStreamFreed can indicate that the Receiver has died or otherwise has prematurely

destroyed its side of the pipe.)

~~ An Available Simplification
Some Senders may know that they can contain only a limited amount of data. Or they may find the
obligation to respond to msgXferStreamWrite multiple times and record how much data was actually

written each time to be unduly burdensome.

These Senders can pass objNull as the "Producer" parameter in their call ofXferStreamConnect. As a
result of doing this, msgXferStream Write will only be sent once, and in response these Senders should
write all of their data in a single chunk.

Client-Defined Protocols
Clients can define their own data transfer types. There is a wide range of possibilities. Clients can use

msgXferGet that use a new pArgs type. They can use streams but define structure on the data being
streamed. Or they define an entirely new transfer protocol.

XFER.H 335

Common #defines and typedefs

Other Information

Details of XferMatch

Most clients can simply use XferMatch without understanding how it works, but it's described here for
specialized clients or the curious.

• XferMatch creates an instance of clsXferList

• It then sends msgXferList to the passed-in Sender.

• The Sender responds to msgXferList by adding items to the xfer list by calling XferAddIds.

• XferMatch then scans the two lists (one passed in by the Receiver and one filled in by the Sender)
using the utility function XferListSearch.

• If no mutually acceptable data transfer type is found, XferMatch returns stsNoMatch. Otherwise
XferMatch returns stsOK and passes back the data transfer type in *pId.

• Just before returning, XferMatch destroys the xferList.

As an alternative to calling XferMatch, the Receiver could create the list, send msgXferList to the
Sender, and then search the list for the best match (perhaps by using XferListSearch).

Also, a sophisticated Sender can use msgListAddItem (rather than XferAddIds) to add the types to the
list.

Creating Instances of clsXfer and clsXferList
Normal clients of PenPoint's data transfer mechanism have no need to create instances of clsXfer and
clsXferList. Instances are created internally when using the data transfer functions.

tifndef XFER INCLUDED
tdefine XFER_INCLUDED
tifndef CLSMGR INCLUDED
tinclude <clsmgr.h>
tendif
tifndef STREAM INCLUDED
tinclude <stream.h>
tendif
tifndef STREAM INCLUDED
tinclude <list.h>
tendif

Common #defines and typedefs

Predefined Data Transfer Types
tdefine xferString MakeTag(clsXfer,
tdefine xferLongString MakeTag(clsXfer,
tdefine xferName MakeTag(clsXfer,
tdefine xferFullPathNarne MakeTag(clsXfer,
tdefine xferRTF MakeTag(clsXfer,
tdefine xferGoRTF MakeTag(clsXfer,
tdefine xferFlatLocator Make Tag (clsXfer,
tdefine xferASCIIMetrics MakeTag(clsXfer,
tdefine xferScribbleObject MakeTag(clsXfer,
tdefine xferPicSegObject MakeTag(clsXfer,

1) II XferGet (FixedBuf)
2) II XferGet (Buf)
3) II XferGet (FixedBuf)
4) II XferGet (FixedBuf)
5) II Stream
6) II Obsolete
7) II XferGet (FixedBuf)
10) II XferGet (AsciiMetrics)
11) II XferGet (Object)
12) II XferGet (Object)

336 PENPOINT API REFERENCE
Part 9 I Utility Classes

XferList
Normal clients need not create xferLists since the functions create and destroy xferLists as needed.

An xferList is a subclass of clsList that always allocates globally accessible memory for the list.

fdefine XFER_LIST_NEW LIST_NEW
fdefine P_XFER_LIST_NEW P_LIST_NEW

Messages

msgXferList
Ask Sender for its list of data transfer types.

Takes OBJECT, returns STATUS.

fdefine msgXferList MakeMsg(clsXfer, 1)

This message is sent to the Sender to have the Sender provide the list of data transfer types it can
provide.

The Sender can add types to the passed-in list using either msgListAddItem or XferListAddIds.

If the Sender has a preferred data transfer type, it should put this type at the beginning of the list. The
Sender can use clsList messages to change the ordering of the list (see list.h).

msgListAddItems

msgXferGet
Sent by a Receiver to get" one-shot" data transfer information.

Takes lots-of-things, returns STATUS.

fdefine msgXferGet MakeMsg(clsXfer, 8)

msgXferGet is sent by the Receiver to the stream to retrieve the data being transferred.

The type of this message's pArgs depends on the data transfer type being used. In all cases, the first field

of pArgs must be a data transfer type so that the Sender (when it receives this message) knows what type
of data to supply and what the true type of pArgs really is.

stsN oMatch specified data transfer type is inappropriate

Variable Size BuHer
This type is used as the pArgs of msgXferGet when the data transfer type is xferLongString. This type
might also be used for client-defined data transfers.

[The rest of this description is complicated by the reyersal of names. The Receiver side of the data
transfer operation sends msgXferGet and the the Sender side of the data transfer operation receives
msgXferGet.]

The Receiver (which sends msgXferGet) must set the "id" field to xferLongString. The Sender receives

msgXferGet and fills in the rest of the structure.

The Sender allocates the memory for pArgs->pBuf using OSHeapBlockAlloc from

osProcessSharedHeapld. The Receiver must free this data using OSHeapBlockFree.

XFER.H 337
Messages

When used for xferLongString, the "pBuf" field is a null-terminated string and the "len" field includes
the terminating null character. (In other words, upon return, pArgs->len must equal
(strlen{pArgs->pBuf) + 1).)

typedef struct XFER BUF {
TAG id;
U32 data;
U32 len;
P UNKNOWN pBuf;

Fixed Size BuHer

II In: Data transfer type
II Unused: future use
II Out: Length of data in pBuf
II Out: Buffer containing data
II Must be SHARED and freed by caller

This type is used as the pArgs of msgXferGet when the data transfer type is

• xferString

• xferName

• xferFullPathName

• xferFlatLocator

[The rest of this description is complicated by the reversal of names. The Receiver side of the data
transfer operation sends Q1sgXferGet and the the Sender side of the data transfer operation receives
msgXferGet.]

The Receiver (which sends msgXferGet) must set the "id" field to one of the data transfer types listed
above. The Sender receives msgXferGet and fills in the rest of the structure.

typedef struct XFER_FIXED_BUF
TAG id; I I In: Data transfer type
U32 data; II Unused. Reserved for future use
U32 len; II Out: Length of data in buf
U8 buf[300]; II Out: Buffer containing data

XFER_FIXED_BUF, *P_XFER_FIXED_BUF;

Obiect Transfer
This type is used as the pArgs of msgXferGet when the data transfer type is:

• xferScribbleObject

• xferPicSegObject.

[The rest of this description is complicated by the reversal of names. The Receiver side of the data
transfer operation sends msgXferGet and the the Sender side of the data transfer operation receives
msgXferGet.]

The Receiver (which sends msgXferGet) must set the "id" field to one of the data transfer types listed
above, and must set the "receiver" field to self (or some other object in the Receiver's task). The Sender
receives msgXferGet and fills in the rest of the structure.

The Sender makes a copy of the object using msgCopy and returns the uid of the object in pArgs->uid ..
When the Sender sends msgCopy, it should use pArgs->receiver as the value of msgCopy's
pArgs-> requestor.

typedef struct XFER OBJECT
TAG id;
OBJECT
OBJECT
CLASS
U32

XFER _OBJECT,

receiver;
uid;
objClass;
reserved[4];

* P _ XFER _OBJECT;

II In: Data transfer type
II In: Receiver
II Out: Uid of object
II Out: Class of object
II Reserved for future use

338 PENPOINTAPI REFERENCE

Part 9 / Utility Classes

ASCII Metrics
This type is used as the pArgs of msgXferGet when the data transfer type is xferASCIIMetrics.

[The rest of this description is complicated by the reversal of names. The Receiver side of the data

transfer operation sends msgXferGet and the the Sender side of the data transfer operation receives

msgXferGet.]

The Receiver (which sends msgXferGet) must set the "id" field to xferASCIIMetrics. The Sender
receives msgXferGet and fills in the rest of the structure.

"ASCII Metrics" include information about the character data that can be transferred from the Sender.

In some cases (e.g. PenPoint's text component) it describes the selected text.

(Essentially any Sender that can provide xferASCIIMetrics can also provide some type of character data

-- typically xferString, xferLongString or xferRTF.)

The "spare" field is always set to O. The "first" field is offset of the first selected character. The "length"

field is the number of characters in the selection. The "level" field describes which lexical unit the
selection "contains."

typedef struct XFER_ASCII_METRICS {
TAG id; II In: data transfer type.
U32 spare; I lOut: always 0
U32 first; II Out: character offset w.r.t. entire text

II maxU32 implies a bad request
U32 length; II Out: number of chars available to transfer
U16 level; II Out: 0: undefined or unknown, 1: chars,

II 2: words, 3: sentences, 4: paragraphs
XFER_ASCII_METRICS, *P_XFER_ASCII_METRICS;

Stream Specific Messages

msgXferStreamConnect
Sent to the Sender to ask it to link the Sender's and Receiver's pipe.

Takes XFER_CONNECT, returns STATUS.

*define msgXferStreamConnect MakeMsg(clsXfer, 2)

typedef struct XFER_CONNECT
TAG id; II In: Id Receiver sent to XferStreamConnect
OBJECT stream; II In: Stream created by Receiver
P UNKNOWN clientData; II In: clientData Receiver sent to

II XferStreamConnect
XFER_CONNECT, *P_XFER_CONNECT;

The Sender responds by calling XferStreamAccept to complete the connection.

In its call to XferStreamAccept, the Sender identifies the object that will generate the actual data, known
as the Producer. Essentially all Senders should pass self as the value of Producer.

See the section "Stream-Based Protocols" for more information.

msgXferStreamAuxData
Passes back auxiliary information associated with the pipe.

Takes PP _UNKNOWN, returns STATUS.

*define msgXferStreamAuxData MakeMsg(clsXfer, 4)

Comments

XFER.H 339
Stream Specific Messages

The Sender or Receiver can store auxiliary information with the pipe. using msgXferStreamSetAuxData
and retrieve that information with msgXferStreamAuxData.

This information can be used by either the Sender or Receiver to store private information or to or to
pass information across the pipe.

t
Warning: There is only one auxiliary data slot in the pipe. Only one of the Sender or Receiver should
write the data, although both can read it. Subclasses must be aware of their ancestor's behavior in this
regard.

msgXferStreamSetAuxData

nnsg)CferStreannSetA~ata

Stores arbitrary client data with the pipe.

Takes P _UNKNOWN, returns STATUS.

tdefine msgXferStreamSetAuxData MakeMsg(clsXfer, 5)

msgXferStreamAuxData

nnsg)CferStreann Write
Asks the Sender to write more data to the stream.

Takes STREAM, returns STATUS.

tdefine msgXferStreamWrite MakeMsg(clsXfer, 3)

The Sender responds by writing to its stream using msgStreamWrite.

The Sender may need access to its instance data to handle this message. The Sender can either
implement its own facility for mapping from the stream to the necessary instance data (perhaps using
properties; see clsmgr.h) or it can use msgXferStreamSetAuxData and msgXferStreamAuxData.

See the section "Stream-Based Protocols" for more information.

nnsg)CferStreannFreed
Sent to the Sender when the Receiver's side of the stream has been freed.

Takes STREAM, returns STATUS.

tdefine msgXferBtrearnFreed MakeMsg(clsXfer, 6)

The Sender handles this message by sending msgDestroy to the stream passed in as a parameter. This
means that both streams (and hence both ends of the "pipe") have been freed.

See the section "Stream-Based Protocols" for more information.

Public Functions

fUGttlcm Przt!@fype

XferMatch
The Receiver calls XferMatch to find a mutually acceptable data transfer type.

Returns STATUS.

STATUS EXPORTED
OBJECT
TAG
SIZEOF
P TAG

XferMatch(
Sender,
ids[],
idsLen,
pId);

II
II
II
II

In: Sender to find match with
In: Array of types the Receiver understands
In: Length of the ids[] array
Out: matching data type

340 PENPOINT API REFERENCE
Part 9 I Utility Classes

See the section "Determining a Common Data Transfer Type" for detailed. information.

stsNoMatch No common data transfer type could be found.

non-error The common data transfer type is passed back in *pld.

XferListSearch

XferListSearch
Searches two sets of data transfer types for a match.

Returns STATUS.

rurn:tlofi Prototype STATUS EXPORTED XferListSearch (
OBJECT listObject, II In: List object containing Sender types
TAG ids[], II In: Array of types the Receiver understands
SIZEOF idsLen, II In: Length of the ids[] array
P TAG pId)i II Out: Matching data type

(ommimts Most clients of the data transfer mechanism use XferMatch rather than calling this function.

XferListSearch scans the two sets of transfer types (one in listObject and one in the passed-in array) to
find the best match.

XferListSearch checks each item in listObject against each item in the array in order from 0 to n-l.
Hence if the array contains [tagA, tagB] and the list contains [tabB, tagA], tagA is returned. Objects
should put data types into the listObject or the array in order of most desired to least desired.

stsNoMatch No common data transfer type could be found.

non-error The common data transfer type is passed back in *pld.

XferMatch

XferAddlds
Adds data transfer types to listObject.

Returns STATUS.

rlmdion Prototype STATUS EXPORTED XferAddIds (
OBJECT listObject,
TAG ids[],
SIZEOF idsLen)i

Comments Typical Senders call this function while handling msgXferList.

XferAddlds adds each item in the array of data transfer types to the list by sending msgListAddItem to

listObject.

XFER.H 341
Stream Specific Functions

Stream Specific Functions

Comments

XferStreamConnect
A Receiver calls this function to create a stream connection to a Sender.

Returns SfATUS.

STATUS EXPORTED
OBJECT
TAG

P UNKNOWN

P OBJECT

XferStreamConnect(
owner, II In: Sender to connect stream to
id, II In: Desired data transfer type. (This is

II passed to Sender via msgXferStreamConnect.)
clientData, II In: clientData. (This is passed to Sender

II via msgXferStreamConnect.)
pStream); II Out: Stream to perform msgStreamRead on

See the section "Stream-Based Protocols" for more information.

XferStrear.nJ\ccept
Called by Sender in response to msgXferStreamConnect.

Returns Sf ATUS.

STATUS EXPORTED
OBJECT
U16
OBJECT
P OBJECT

XferStreamAccept(
connect, II In: pArgs->stream from msgXferStreamConnect
bufSize, II In: Size of transfer buffer (up to 64k)
Producer, II In: Object to receive msgXferStreamWrite
pStream); II Out: Stream for Sender side of the "pipe"

As part of the Sender's response to msgXferStreamConnect, the Sender calls XferStreamAccept to

properly create the Sender's side of the stream.

See the section "Stream-Based Protocols" for more information.

Part 10 /
Connectivity

-------- -- --

ABMGR.M

This file contains the API definition for theAddressBookMgr.

theAddressBookMgr is an instance of a private class. It is the only instance of that class in the system.

theAddressBookManager is a well known object that handles registration of and access to "system"

address books. Registered address books are primarily responsible for managing the storage and retrieval

of service specific addressing information.

Registered address books adhere to the protocol defined in addrbook.h. Information about its

functionality and use can be found there.

theAddressBookMgr provides the facility to help other applications to provide a VI for picking the

system address book. When an application wants to provide this pick list as an option card, it just needs

to pass on msgOptionAddCards before it calls its ancestor to theAddressBookMgr.
TheAddressBookMgr will do the rest.

#ifndef ABMGR_INCLUDED
#define ABMGR_INCLUDED
#include <uuid.h>
#include <go.h>
#define tagABMgrABList

Status Codes
#define stsABMgrAddrBookNotActive
#define stsABMgrAddrBookOpen
#define stsABMgrNoneActive

MakeTag(theAddressBookMgr, 1)

#define stsABMgrAddrBookNotRegistered
#define stsABMgrNoOpenAddrBook

MakeStatus(theAddressBookMgr, 1)
MakeStatus(theAddressBookMgr, 2)
MakeStatus(theAddressBookMgr, 3)
MakeStatus(theAddressBookMgr, 4)
MakeStatus(theAddressBookMgr, 5)

Common #defines and typedefs
Enum16 (AB_MGR_ID_TYPE)

abMgrApplication = 0,
abMgrObject = 1,
abMgrNone = 2,

} ;

typedef struct AB_MGR_ID {

II Client is an application
II Client is a service/data object
II abmgr internal use only

CHAR name [nameBuf Length]; II Name of the address book
AB_MGR_ID_TYPE type; I I Address book Object type
union {

OBJECT
UUID

value;

uid;
uuid;

AB_MGR_ID, *P_AB_MGR_ID;

II UID of the service/object
II UUID of the application working dir

--------- ... ~------, '---~===

346 PEN POINT API REFERENCE
Part 10 / Connectivity

Messages

Messf1ge
Argumt)nts

A4esst:lge
Arguments

msgABMgrRegister
Registers an application or a service as an address book instance.

Takes P_AB_MGR_ID, returns STATUS.

#define msgABMgrRegister MakeMsg(theAddressBookMgr, 1)

typedef struct AB_MGR_ID
CHAR name [nameBuf Length]; II Name of the address book
AB MGR ID TYPE type; II Address book object type
union {

OBJECT
UUID

value;

uidi
uuid;

AB_MGR_ID, *P_AB_MG~ID;

II UID of the service/object
II UUID of the application working dir

When an instance of an address book is registered with theAddressBookMgr, it can later be selected as
"the system address book".

Address books send this message to register themselves with theAddressBookMgr. Each instance of each

address book should be registered with theAddressBookMgr. If an address book application is a subclass
of clsAddrBookApplication(see addrbookh), then theAddressBookMgr automatically registers a newly

created instance of this class.

If an address book is an application, theAddressBookMgr. will automatically re-registers the app on
warm boot. If an address book is a service, however, it would have to re-register itself after a warm boot.

msgABMgrU nregister
Unregisters an application or a service as an address book instance.

Takes P _AB_MGR_ID, returns STATUS.

#define msgABMgrUnregister MakeMsg(theAddressBookMgr, 2)

typedef struct AB_MGR_ID {
CHAR name [nameBuf Length]; II Name of the address book
AB MGR ID TYPE type; II Address book object type
union {

OBJECT
UUID

value;

uid;
uuid;

AB_MGR_ID, *P_AB_MGR_ID;

II UID of the service/object
II UUID of the application working dir

Address book send this message to theAddressBookMgr to unregister themselves. This is usually done

when an application instance is deleted, or when a service is de-installed. If an address book application

is a subclass of dsAddrBookApplication(see addrbook.h), then theAddressBookMgr automatically

unregisters a deleted instance of this class.

msgABMgrOpen
Used by address book clients to begin access to address books.

Takes nothing, returns STATUS.

#define msgABMgrOpen MakeMsg(theAddressBookMgr, 3)

Comments

Me$$~ge

Arguments

ABMGR.H 347

Messages

Address book clients send msgABMgrOpen to theAddressBookMgr. If the system address book is an
application, then theAddressBookMgr activates the application. If the system address book is a service,
then theAddressBookMgr binds to the service(msgSMBind)

Clients must call msgABMgrClose when they're finished with the address book.

On warm boots, theAddressBookMgr requires that clients reopen the system address book.

msgABMgrClose
Used by address book clients to end access to address books.

Takes nothing, returns STATUS.

#define msgABMgrClose MakeMsg(theAddressBookMgr, 4)

typedef struct
BOOLEAN activated;
AB MGR 10 addressBook;

AB_MGR_LIST, *P~_MGR_LIST;

If the system address book is an application, then theAddressBookMgr deactivates the application. If
the system address book is a service, then theAddressBookMgr binds to the service(msgSMUnbind).

The address book is reference counted, so all msgABMgrOpen calls must be followed by an
msgABMgrClose.

msgABMgrList
Creates a list of currently registered address book in pArgs.

Takes P _LIST, returns STATUS.

#define msgABMgrList MakeMsg(theAddressBookMgr,5)

Every time msgABMgrList is called, a new list object is created. It is up to the client to call
msgListFree(not msgDestroy) to destroy the list and the items in the list. Set the free mode to
listFreeitemsAsData.

Each element of the list is a P _AB_MGR_L1ST.

msgABMgrActivate
Make a registered address book the system address book.

Takes P _AB_MGR_ID, returns STATUS.

#define msgABMgrActivate MakeMsg(theAddressBookMgr, 6)

typedef struct AB_MGR_IO
CHAR name [nameBuf Length]; II Name of the address book
AB MGR 10 TYPE type; II Address book object type
union {

OBJECT
UUIO

value;

uid;
uuid;

AB_MGR_IO, *P_AB_MGR_IO;

II UIO of the servicelobject
II UUIO of the application working dir

In the current implementation only one address book can be the system address book at a time. If there
is currently a system address book, that address book is deactivated first.

Clients that are applications set the type field to 'application' and set the value field to the UUID of
their application working directory. Clients that are services or data objects set the type field to 'object'
and set the value field to their object UID.

348 PENPOINT API REFERENCE

Part 10 I Connectivity

MesS(l9tf
Argwmtfllh.

Mtf$$C$ge

Ar9wmellts

stsABMgrAddrBookOpen The current system address book is currently open, therefore it can not be
deactivated

stsABMgrAddrBookNotRegistered The address book identified by pArgs is not a registered address
book.·

msgABMgrDeactivate
Deactivates the current system address book.

Takes P _AB_MGR..JD, returns STATUS.

fdefine msgABMgrDeactivate MakeMsg(theAddressBookMgr, 7)

typedef,struct AB_MGR_ID {
CHAR name [nameBuf Length]; // Name of the address book
AB MGR ID TYPE type; // Address book object type
union (

OBJECT
UUID

value;

uid;
uuid;

AB_MGR_ID, *P_AB_MGR_ID;

. / / UID of the service/object
// UUID of the application working dir

stsABMgrAddrBookOpen The current system address book is currently open, therefore it can not be
deactivated

msgABMgrlsActive
Indicates if the specified AB_MGR_ID is currently set.

Takes P _AB_MGR_ID, returns STATUS.

fdefine msgABMgrIsActive MakeMsg(theAddressBookMgr, 8)

typedef struct AB_MGR_ID
CHAR name [nameBuf Length]; // Name of the address book
AB MGR ID TYPE type; // Address book object type
union (

OBJECT
UUID

value;

uid;
uuid;

AB_MGR_ID, *P_AB_MGR_ID;

stsOK Specified id is activated.

// UID of the service/object
// UUID of the application working dir

stsABMgrNotActive Specified id is not activated, but something is active.

stsABMgrNoneActive No address book is currently active.

Observer Messages

msgABMgrChanged
Sent to observers of theAddressBookMgr when the system address book changes.

Takes P _AB_MGR-NOTIFY, returns STATUS.

fdefine msgABMgrChanged MakeMsg(clsAddressBook, 9)

Enum16 (AB_MGR_CHANGE_TYPE) {
abMgrRegister 0,
abMgrUnregister 1,
abMgrActivated 2,
abMgrDeactivated 3,
abMgrOpened 4,
abMgrClosed 5,

};

typedef struct {
AB~GR_CHANGE_TYPE type;
AB_MGR 10 addressBook;

AB_MGR_NOTIFY, *P_AB_MGR_NOTIFY;

ABMGR.H 349

Observer Messages

II an ab has been registered

pArgs->activated is set to TRUE if pArgs->addressBook is made the system address book, and to FALSE

if pArgs->addressBook has been deactivated as the system address book.

ADDRBOOK.H

clsAddressBook inherits from clsObject.

This header file defines the address book protocol.

The address book protocol defines what minimal set of information is to be kept by an address book
app or service, how information is to be stored, retrieved, queried by an address book client. Please refer
to abmgr.h for informatiori on address book manager.

All requests to access address book information is channeled through the address book manager. There
can be multiple address book clients at one time. Whether or not address book clients can access
information from more than 1 address book application/service simultaneously is completely up to the
implementation of the address book manager. The current implementation of theAddressBookMgr
provided by GO only allows access to one address book at a time.

Because theAddressBookMgr uses ObjectSend to relay messages to address books, pointers in pArgs in
any address book protocol messages should point to some shared memory space.

There are 3 major types of address information defined by the protocol:

• individual personal information(e.g.name, phone number, street address)

• service information(individual's fax phone number, email address, etc)

• distribution list information

All information is keptlretrieved in attribute-value form. The basic entity in an address book is an
"entry"; all information is presented relative to an entry. E.g. to access any information in an address
book, a "key" to an entry must be presented. Within an entry, a client can set/get entry related
information(name, street address, etc.). Service address information is also kept as part of an entry.
Because there can be multiple service addresses for each entry(e.g. an individual has 2 fax numbers and 1
email address), a service address is accessed through a "service id" or the name of the service.(e.g. service
name = "fax")

The Address Book Protocol specifies a minimum set of attributes and attribute types to be supported by
third party address book applicaitons or services. If a developer thinks that some addition attributes or
attribute types are common enough that they should be defined in the protocol, please contact GO
Corporation Developer Support.

#ifndef ADDRBOOK INCLUDED
#define ADDRBOOK INCLUDED
#ifndef GO INCLUDED
#include <go.h>
#endif
#ifndef UID_INCLUDED
#include <uid.h>
#endif
#ifndef CLSMGR INCLUDED
#include <clsmgr.h>
#endif
#ifndef DIALENV_INCLUDED
#include <dialenv.h>
#endif

-----_., ~-----'---~~~~=

352 PEN POINT API REFERENCE
Part 10 / Connectivity

COllllllon #defines and typedefs
All address book apps should be a sub-class of this app. Being a sub-class of c1sAddrBookApplication
frees an address book application from having to register, and unregister itself wI TheAddressBookMgr.

TheAddressBookMgr will notice when an instance of c1sAddrBookApplication has been
createdldestroyed, and will automatically registerlunregister the instance. Aside from providing this auto

registerationlunregisteration, c1sAddrBookApplication provides no other special behavior to its
sub-class.

#define clsAddrBookApplication MakeWKN(3284, 1, wknGlobal)

Pre-defined AHribute Types
#define abNumber
#define abString
#define abPhoneNumber
#define abOther

Pre-defined aHribute ids

MakeTag(clsAddressBook, 0)
MakeTag(clsAddressBook, 1)
MakeTag(clsAddressBook, 2)
MakeTag(clsAddressBook, 3)

II 32-bit number
II null-terminated string
II DIALENV TELEPHONE NUMBER
II some encoded byte array
II interpreted by address
II books simply as a byte
II stream

#define AddrBookGroupNameld MakeTag(clsAddressBook, 0)
#define AddrBookGivenNameld MakeTag(clsAddressBook, 1)
#define AddrBookSurNameld MakeTag(clsAddressBook, 2)
#define AddrBookHomePhoneld MakeTag(clsAddressBook, 3)
#define AddrBookBussPhoneld MakeTag(clsAddressBook, 4)
#define AddrBookCountryld MakeTag(clsAddressBook, 5)

II abString
II abString
II abString
II abPhoneNumber
II abPhoneNumber
II country in post
II addr,abString

#define AddrBookStateld MakeTag(clsAddressBook, 6) II state or prefe-
II cture, abString

#define AddrBookZipld MakeTag(clsAddressBook, 7) II zip, abString
#define AddrBookCityld MakeTag(clsAddressBook, 8) II city, abString
#define AddrBookDistrictld MakeTag(clsAddressBook, 9) II ku in Japanese

II addr, abString

AddrBookStreetId represents street, number, building and other addressing information, the character
\012(LF in ASCII) can be used to separate the different parts. E.g. a street address can be 2650 Durant
Avenue Deutsch Hall #406 In this case, the address should be stored in AddrBookStreetId as "2650

Durant Avenue\012Deutsch Hall #406"

#define AddrBookStreetld
#define AddrBookCompanyld

MakeTag(clsAddressBook, 10) II abString
MakeTag(clsAddressBook, 11) II company name,

II abString
#define AddrBookTitleld MakeTag(clsAddressBook, 18) II title of an

#define AddrBookPositionld MakeTag(clsAddressBook, 19)

#define AddrBookNickNameld MakeTag(clsAddressBook, 20)

#define AddrBookBussPhone2Id MakeTag(clsAddressBook,

#define AddrBookFaxld MakeTag(clsAddressBook, 22)

#define AddrBookSvcNameld MakeTag(clsAddressBook, 12)

II individual entry
II abString
II position of an
II individual entry
II abString
II nickname of an
II individual entry
II abString
21) II 2nd bussiness
II phone #
II abPhoneNumber
II fax # of an
II individual entry
II abPhoneNumber
II name of svc,
II abString

ADDRBOOK.H 353
Common #defines and typedefs

*define AddrBookSvcNoteId MakeTag(clsAddressBook, 13) II user defined
II svc nickname
II abString

*define AddrBookSvcShortId MakeTag(clsAddressBook, 14) II service short
II address

The following two special id's are used in specifying a query

*define AddrBookEntryKeyId MakeTag(clsAddressBook, 15)
*define AddrBookSvcIdId MakeTag(clsAddressBook, 16)

This is the type for address book transfer protocol. If an address book supports move/copy protocol,

then it should transfer an entry in a XFER_BUF structure, where XFER_BUF.pBuf is a pointer to

ADDR_BOOK_ENTRY structure.

*define AddrBookXferType MakeTag(clsAddressBook, 17)
*define AddrBookAll (maxU16)
*define AddrBookAllSvcSelectAttrs (maxU16-1)
*define AddrBookSelectSvcSelectAttrs (maxU16-2)
*define AddrBookSelectSvcAllAttrs JmaxU16-3)

If the client wants all attributes{either all entry attributes or all service attributes.), the address book

should return the attributes in some well-known order. The next batch of #define's specifies the order for

the common fields

*define AddrBookSurNameIndex 0
#define AddrBookGivenNameIndex 1
*define AddrBookHomePhoneIndex 2
*define AddrBookBussPhoneIndex 3
*define AddrBookCountryIndex 4
*define AddrBookStateIndex 5
#define AddrBookZipIndex 6
#define AddrBookCityIndex 7
*define AddrBookDistrictIndex 8
*define AddrBookStreetIndex 9
#define AddrBookCompanyIndex 10
*define AddrBookTitleIndex 11
*define AddrBookPositionIndex 12
*define AddrBookNickNameIndex 13
#define AddrBookBussPhone2Index 14
*define AddrBookFaxIndex 15
#define AddrBookSvcNameIndex 0
#define AddrBookSvcNoteIndex 1
*define AddrBookSvcShortIndex 2
typedef P_UNKNOWN ADDR BOOK_SERVICE_ID, *P_ADDR_BOOK_SERVICE_ID;
typedef TAG ADDR_BOOK_ATTR_ID, *P_ADDR_BOOK_ATTR_ID;
typedef TAG ADDR_BOOK_ATTR_TYPE, *P_ADDR_BOOK_ATTR_TYPE;
typedef U16 ADDR_BOOK_ATTR_LENGTH, *P_ADDR_BOOK_ATTR_LENGTH;
typedef P_UNKNOWN ADDR_BOOK_ATTR_VALUE, *P_ADDR_BOOK_ATTR_VALUE;
typedef P_UNKNOWN ADDR_BOOK_KEY, *P_ADDR_BOOK_KEY;
typedef CHAR ADDR_BOOK_ATTR_LABEL[nameBufLength];

ADDR_BOOK_ATTR.length is the length of ADDR_BOOK_ATTR.value. The following table lists what the

length field mean, given a certain attribute type:

Attr Type

abString
abNumber
abPhoneNumber
abOther

length

length of the string
SizeOf(U32)
SizeOf(DIALENV_TELEPHONE_NUMBER)
length of attribute in bytes

354 PENPOINT API REFERENCE
Part 10 I Connectivity

The following table lists what the value field should be, given a certain attribute type:

Attr Type

abStting
abNumber
abPhoneNumber
abOther

value

a ptr to actual storage of the str
the number itself
P DIALENV TELEPHONE NUMBER - -
a ptr to a byte array that
contains the attribute.

abString a ptr to actual storage of the str

abNumber the number itself

abPhoneNumber P _DIALENV _TELEPHONE_NUMBER

abOther a ptr to a byte array thatcontains the attribute.

typedef struct ADDR BOOK ATTR {
ADDR_BOOK_ATTR_ID - id;
ADDR_BOOK_ATTR_TYPE type;
ADDR_BOOK_ATTR_LENGTH length; II length of value, in bytes
ADDR BOOK_ATTR VALUE value;
ADDR_BOOK ATTR_LABEL label; II for display purpose

ADDR_BOOK_ATTR, *P_ADDR_BOOK_ATTR;
typedef struct ADDR BOOK ATTR DESC {

ADDR BOOK_ATTR ID - id;
ADDR_BOOK_ATTR_TYPE type;
ADDR_BOOK_ATTR_LABEL label; II for display purpose

ADDR BOOK ATTR_DESC, *P_ADDR_BOOK_ATTR_DESC;
typedef struct ADDR_BOOK_SERVICE (

ADDR BOOK SERVICE ID svcId;
U16 - - numAttrs;

II uniquely identify a svc inst

P ADDR_BOOK ATTR attrs;
ADDR_BOOK_SERVICE, *P_ADDR_BOOK_SERVICE;

Enum16 (ADDR BOOK ENTRY TYPE) {
ab I ndivldua 1- 0,
abGroup = 1,

} ;

*define abMaxSvcNameMatch 5

typedef struct ADDR BOOK SERVICE QUAL
U16 - - numAttrIds;
P_ADDR BOOK_ATTR_ID svcAttrIds;
U16 numSvcNames;
CHAR svcNames[abMaxSvcNameMatch] [nameBufLength];

ADDR_BOOK_SERVICE_QUAL, *P_ADDR_BOOK_SERVICE_QUAL;

.heap field is an in-parameter in msgAddrBookGet and msgAddrBookSearch, it is not applicable for
other msgs. A client should specify the heap id of the heap that it would like space allocated. Typically a
client would use OSTaskSharedHeapId(clientsTaskId). A client should not use osProcessSharedHeapld
or osProcessHeapId because they refer to different heaps in diffferent processes. It is very important that
clients free allocated space.

typedef struct ADDR_BOOK_ENTRY
os HEAP ID heap;

ADDR BOOK ENTRY TYPE - - -
ADDR BOOK KEY
U16 -
P ADDR BOOK ATTR
U16 -

type;
key;
numAttrs;
attrs;
numServices;

P_ADDR BOOK_SERVICE services;
ADDR BOOK SERVICE_QUAL svcQuali

ADDR_BOOK_ENTRY, *P_ADDR_BOOK_ENTRY;

II where should the address
II book alloc necessary space
II applicable only for
II msgAddrBookGet and
II msgAddrBookSearch

II Read only,abIndividual only
II abIndividual only
II service qualifier, for Get

ADDRBOOK. H 355
Messages

Status Codes

Error Status Values
#define stsAddrBookBufTooSmall
#define stsAddrBookEntryExists
#define stsAddrBookSvcDataExists
#define stsAddrBookEntryNotFound
#define stsAddrBookSvcNotFound
#define stsAddrBookBadKey
#define stsAddrBookUnknownType
#define stsAddrBook1nvalidAttr
#define stsAddrBookReadOnlyAttr
#define stsAddrBookDuplicateAttr1d

MakeStatus(clsAddressBook, 1)
MakeStatus(clsAddressBook, 2)
MakeStatus(clsAddressBook, 3)
MakeStatus(clsAddressBook, 4)
MakeStatus(clsAddressBook, 5)
MakeStatus(clsAddressBook, 6)
MakeStatus(clsAddressBook, 7)
MakeStatus(clsAddressBook, 8)
MakeStatus(clsAddressBook, 9)
MakeStatus(clsAddressBook, 10)

Non Error Status Values
#define stsAddrBookGroupEntry
#define stsAddrBookNotSupported

MakeWarning(clsAddressBook, 7)
MakeWarning(clsAddressBook, 8)

Messages

Mess©ge
Arguments

msgAddrBookGet
fills in the specified entry field data, given an address book key for the entry.

Takes P _ADDR_BOOK_ENTRY, returns STATUS.

#define msgAddrBookGet MakeMsg(clsAddressBook, 1)

typedef struct ADDR_BOOK_ENTRY
OS HEAP 1D heap;

ADDR BOOK ENTRY TYPE - -
ADDR BOOK KEY
U16
P ADDR BOOK ATTR - -
U16

type;
keYi
numAttrs;
attrs;
numServices;

P_ADDR_BOOK_SERV1CE services;
ADDR_BOOK_SERV1CE_QUAL svcQuali

ADDR_BOOK_ENTRY, *P_ADDR_BOOK_ENTRYi

II where should the address
II book alloc necessary space
II applicable only for
II msgAddrBookGet and
II msgAddrBookSearch

II Read only,ab1ndividual only
II ab1ndividual only
II service qualifier, for Get

If attribute type is abString and the client-provided space is not big enough, stsAddrBookBuff ooSmall
is returned, and as much information as there is room for is filled in(null-terminated). Similarly, if
attribute type is abOther, stsAddrBookBuff ooSmall is returned, and the client-provided buffer is filled
in(w/o null-termination).

Parameters:

pArgs->key In: specify from which entry to get info

pArgs-> type Out: type of the entry

pArgs->numAttrs In: number of elements in pArgs->attrs array. Each of pArgs->attrs.id specifies the
id of the attribute the client wants the address book to return. If the client sets this field to
AddrBookAll, then the address book will return all entry attributes(excluding services), and it will
allocate the necessary space. The client needs to deallocate the space. If the field is set to 0, then no
attributes are returned. Out: number of attributes returned

------- ----._----

356 PEN POINT API REFERENCE
Part 10 I Connectivity

MC$$©9C

Ar!$WIYHitl'1¥$

pArgs->attrs[x].id In: which attributes to get

pArgs->attrs[x].type Out: attribute type

pArgs->attrs[x].length Out: attribute length of each attr specified in entryAttrlds. See previous table
on attribute type-attribute length.

pArgs->attrs[x].value In: if this field is pNull, the address book will allocate space for the value. Out:
attribute value. see previous table on attribute value-attribute length.

pArgs->attrs[x].label Out: attribute label, for display.

pArgs->numServices In: number of elements in pArgs->services array The client should specify

AddrBookAlI here if it wants all services and all service attributes for each service. If it wants only
selective attributes from all services, then set numServices to AddrBookAlISvcSelectAttrs. If it wants

all attributes from selective services, then set numServices to AddrBookSelectSvcAllAttrs. Lastly, if

the client wants selective attrs from selective svcs, then set numServices to

AddrBookSelectSvcSelectAttrs.In all cases, the address book will allocate the necessary storage for all
info, which needs to be freed by the client. If the field is set to 0, then no service information is

returned Out: number of services returned.

pArgs->svcQual In: If numServices is AddrBookAlISvcSelectAttrs, or AddrBookSelectSvcSelectAttrs,

then numAttrids is the number of elements in the svcAttrlds array, and svcAttrlds contains the ids
of the attributes whose values should be retrieved. If numServices is AddrBookSelectSvcAllAttrs or

AddrBookSelectSvcSelectAttrs, then numSvcNames is the number of elements in the svcNames

array, and svcNames contains the names of services whose attribute values should be retrieved. For
any other values of numServices, this field is irrelevent.

pArgs->services Out: Allocated space if so requested.

pArgs->services[y].svcld In: For each services specifically requested (as opposed to using AddrBookAlI
or AddrBookAlISvcsSelectAttrs, and other such constants in pArgs->numServices), there needs to be
a svcld, telling the address book which service to return

pArgs->services[y].attrs:In/Out: analogous to pArgs->attrs

msgAddrBookSet
Sets the specified entry and service data.

Takes P _ADDR_BOOK_ENTRY, returns STATUS.

tdefine msgAddrBookSet

typedef struct ADDR_BOOK_ENTRY
OS HEAP ID heap;

ADDR BOOK ENTRY TYPE - - -
ADDR BOOK KEY
U16
P ADDR BOOK ATTR - -
U16

type;
key;
numAttrs;
attrs;
numServices;

P_ADDR_BOOK_SERVICE services;
ADDR_BOOK_SERVICE_QUAL svcQual;

ADDR_BOOK_ENTRY, *P_ADDR_BOOK_ENTRY;

MakeMsg(clsAddressBook, 2)

II where should the address
II book alloc necessary space
II applicable only for
II msgAddrBookGet and
II msgAddrBookSearch

II Read only,abIndividual only
II abIndividual only
II service qUalifier, for Get

Messoge
ArguMents

Parameters:

pArgs->key In: specify from which entry to get info

pArgs->numAttrs In: how many attributes in the entry to set

pArgs->attr[x].id In: which attributes to set

pArgs->attr[x].type NA: don't need to specify

ADDRBOOK.H 357
Messages

pArgs->attr[x] .length In: client-specified size of the correspond- ing entryAttrValue field. mandatory
for abOther, unnecessary for other types.

pArgs->attr[x].value In: attribute value. see previous table on attribute value-attribute length.

pArgs->numServices In: number of services to set. Set it to 0 if not setting any service info

pArgs->svcAttrlds NA: not applicable

pArgs->services[y].svcId In: service id of the service that set applies to

pArgs->services[y].attrs In: analogous to pArgs->attrs.

msgAddrBookAdd
Adds the specified entry and service data.

Takes P _ADDR_BOOK_ENTRY, returns STATUS.

tdefine msgAddrBookAdd

typedef struct ADDR_BOOK_ENTRY
OS HEAP ID heap;

ADDR BOOK ENTRY TYPE - - -ADDR BOOK KEY
U16 - -

P ADDR BOOK ATTR
U16 - -
P ADDR BOOK SERVICE - - -

type;
key;
numAttrs;
attrs;
numServices;
services;

ADDR~OOK_SERVICE_QUAL svcQual;
ADDR_BOOK_ENTRY, *P_ADDR_BOOK_ENTRY;

Parameters:

MakeMsg(clsAddressBook, 3)

/1 where should the address
II book alloc necessary space
II applicable only for
II msgAddrBookGet and
II msgAddrBookSearch

II Read only,abIndividual only
II abIndividual only
II service qualifier, for Get

pArgs->key In: If the msg is used to add a service addr then the client specifies the entry key of the
entry to which we add the service address. Out: if the msg is used to add an entry, then address
book fill this field wI the key of the entry just added

pArgs->numAttrs In: how many attributes in the entry to have specified initial values.

pArgs->attr[x].id In: which attributes to add. To add,a brand new individual entry, then at least
AddrBookGivenNameld or AddrBookSurNameld need tobe specified. To add a group entry,
AddrBookGroupNameld needs to be specified.

pArgs->attr[x]. type NA: don't need to specify

pArgs->attr[x] .1ength In: mandatory if attribute type is abOther

pArgs->attr[x] .value In: attribute value. see previous table on attribute value-attribute length.

pArgs->numServices In: number of services to set. Set it to 0 if not adding any service info

pArgs->svcAttrIds NA: not applicable

- --------._---_._.---- --------_.

358 PENPOINT API REFERENCE

Part 10 I Connectivity

Messoge
Arguments

pArgs->services[yJ.svcId Out service id of the service just added

pArgs->services[yJ.attrs In analogous to pArgs->attrs.

msgAddrBookDelete
Deletes the specified entry and service data.

Takes P _AD DR_BOO K_ENTRY, returns SfATUS.

#define msgAddrBookDelete

typedef struct ADDR_BOOK_ENTRY
OS HEAP ID heap;

ADDR BOOK ENTRY TYPE - - -
ADDR BOOK KEY
U16
P ADDR BOOK ATTR - - -
U16

type;
key;
numAttrs;
attrsi
numServices;

P_ADDR_BOOK_SERVICE services;
ADDR_BOOK_SERVICE_QUAL svcQual;

ADDR_BOOK_ENTRY, *P_ADDR_BOOK_ENTRY;

Parameters:

MakeMsg(clsAddressBook, 4)

II where should the address
II book alloc necessary space
II applicable only for
II msgAddrBookGet and
II msgAddrBookSearch

II Read ohly,ablndividual only
II ablndividual only
II service qualifier, for Get

pArgs->key In: entry id of the entry to be deleted. If deleting a service, then this field still needs to be
specified. Only the specified service is deleted.

pArgs->numServices In: number of services to delete. Set it to 9 if deleting the entire entry.

pArgs->services[xJ.svcId In Id's of the services to be deleted

All other fields in ADDR_BOOK_ENTRY structure are not applicable.

msgAddrBookSearch
Searches for the entry that matches the search spec.

Takes P_ADDR_BOOK_SEARCH, returns SfATUS.

#define msgAddrBookSearch MakeMsg(clsAddressBook, 5)

Enum16 (ADDR_BOOK_SEARCH_TYPE)
abSearchlndividuals 0,
abSearchGroups 1,

II Enumerate address book entries
II Enumerate groups

abSearchAII 2, II ERumerate all entries
} ;

Enum16 (ADDR_BOOK_SEARCH_DIR) {'
abEnumNext 0, II Search forward
abEnumPrevious = 1 II Search backwards

} ;

Enum16 (ADDR_BOOK_ATTR_OPS)
abAnd 0,
abOr = 1

} ;

ADDRBOOK.H 359

Enum16 (ADDR_BOOK_VALUE_OPS)

} ;

abEqual = 0,
abNotEqual = 1,
abGreater = 2,
abLess 3,
abGreaterEqual = 4,
abLessEqual = 5,
abMatchBeginning = 6,
abMatchEnd = 7,
abMatchPartial = 8,
abMaxValue = abMatchPartial

II string matching
II string matching
II string matching

Messages

If a client wants to specify a query that says "match an entry whose last name is "Smith" and whose zip

code is "94024", then the .query field in pArgs for msgAddrBookSearch would have 2 elements:

pArgsquery id length value valueOp attrOp

attr[O] AddrBookGivenNameId N/A Smith abEqual abAnd
attr[l] AddrBookZipId N/A 94024 abEqual N/A

Essentially, the attrOp field specifies the operator between attr[x] and attr[x+ 1]. valueOp specifies the

relationship between the attribute id and its specified value. e.g. (a == 1) AND (b == 2), the "=='''s are

valueOp, "AND" is an attrOp. By definition, pArgs->attrs[pArgs->numAttrs-1].attrOp does not need

to be specified.

typedef struct ADDR_BOOK_QUERY_ATTR
ADDR_BOOK_ATTR_ID id;
ADDR_BOOK_ATTR_LENGTH length;
ADDR_BOOK_VALUE_OPS valueOp;
ADDR_BOOK_ATTR_VALUE value;
ADDR_BOOK_ATTR_OPS attrOp;

ADDR_BOOK_QUERY_ATTR, *P_ADDR_BOOK_QUERY_ATTR;

typedef struct ADDR_BOOK_QUERY {
U16 numAttrs;
P_ADDR_BOOK_QUERY_ATTR attrs;

ADDR_BOOK_QUERY, *P_ADDR_BOOK_QUERY;

typedef struct ADDR_BOOK_SEARCH {
ADDR_BOOK_KEY key;
ADDR_BOOK_SEARCH_TYPE type;
U32 nth;

ADDR_BOOK_ATTR_ID sort;
ADDR_BOOK_SEARCH_DIR dir;
ADDR_BOOK_ENTRY_TYPE outType;

II In: Starting Pt. Out: Result
II In:
II
II
II
II

In: look for the nth entry meeting
the search criteria. nth = 1
if looking for the first entry
meeting the search criteria.

ADDR_BOOK_QUERY query; II In: what to look for, set query to
II pNull to enumerate

ADDR BOOK ENTRY result; II Out: result entry
ADDR_BOOK_SEARCH, *P_ADDR_BOOK_SEARCH;

pArgs->key is the pArgs->nth entry that matches the search spec, sorted by the attribute specified in

pArgs->sort, the entry is just before/after(depending on the value of pArgs->dir) of pArgs->key If key is

nil, the enumeration starts with the first element if abEnumNext is specified, and the last element if

abEnumPrevious is specified.

Parameters:

pArgs->key In Start point of the search Out:Resulting entry id of the match

pArgs->nth In Look for the nth enty meeting the search criteria

pArgs->sort In Attribute id of the attribute that the result should be sorted by

360 PENPOINT API REFERENCE
Part 10 / Connectivity

pArgs->dir In search backwards or forwards.

pArgs->outType Out:type of the matched entry

pArgs->query In an elaborate explanation is available below

pArgs->result In How each field is specified is the same as that for msgAddrBookGet. Except for the

key field, which will be filled in by msgAddrBookSearch Out:same as msgAddrBookGet

msgAddrBookGetServiceDesc
Gets the service address description from the address book.

Takes P _ADDR_BOOK_SERVICES, returns STATUS.

#define msgAddrBookGetServiceDesc
#define abServiceDescFields

MakeMsg(clsAddressBook, 9)
\

CHAR
U16
U16
P ADDR BOOK ATTR DESC - - - -

name [nameBuf Length];
maxPerEntry;
numAttrs;
attrs;

typedef struct ADDR_BOOK_SVC_DESC {
abServiceDescFields

} ADDR_BOOK_SVC_DESC, *P_ADDR_BOOK_SVC_DESC;
typedef struct ADDR_BOOK_SERVICES {

OS_HEAP_ID heap;
U16 numServices;
P_ADDR_BOOK_SVC_DESC services;

ADDR_BOOK_SERVICES, *P_ADDR_BOOK_SERVICES;

Parameters:

\
\
\
\

pArgs->numServices Out: number of installed services an array of ADDR_BOOK_SVC_DESC's is

allocated and should be freed by the caller.

stsOK

msgAddrBookEnumGroupMembers
Enumerates through the members in a group.

Takes P _ADDR_BOOK_ENUM_GROUP _MEMBER, returns STATUS.

#define msgAddrBookEnumGroupMembers MakeMsg(clsAddressBook, 6)

typedef struct ADDR_BOOK_ENUM_GROUP_MEMBER
ADDR_BOOK_KEY groupKey;
ADDR BOOK KEY startKey;
BOOLEAN recurse;
ADDR_BOOK_ATTR_ID sort;
U32 count;
P_ADDR_BOOK_KEY pKeys;

ADDR_BOOK_ENUM_GROUP_MEMBER, *P_ADDR_BOOK_ENUM_GROUP_MEMBER;

Parameters:

pArgs->groupKey In: key of the group

pArgs->startKey In: where to start the group enumeration. Use pNull to start from the beginning.

Out:last entry key returned in pArgs->pKeys. Client usually uses the out value to be the next in

value of the next msgAddrBookEnumGroupMembers call.

pArgs->recurse In: whether to recursively enumerate groups

Me$$~ge

Arguments

ADDRBOOK.H 361

Messages

pArgs->sort In: attr id of the field to sort the returned entry id by

pArgs->count In: number of entries to return, which is also the number of slots in the pKeys array. Use
AddrBookAll to get every member. In this case address book will allocate the necessary space, and
the client should free the space. Out:number of entries actually returned

pArgs->pKeys Out:keys of the members of pArgs-> gro up Key

msgAddrBookIsAMemberOf
Determines if an entry is a member of a group.

Takes P _ADDR_BOOK_IS_A_MEMBER_OF, returns STATUS.

#define msgAddrBookIsAMemberOf MakeMsg(clsAddressBook, 7)

typedef struct ADDR_BOOK~IS_A_MEMBER_OF
ADDR_BOOK_KEY groupKey;
ADDR BOOK KEY memberKey;
BOOLEAN recurse;

ADDR_BOOK_IS_A_MEMBER_OF, *P_ADDR_BOOK_IS_A_MEMBER_OF;

Parameters:

pArgs->groupKey In: key of the group

pArgs->memberKey In: potential member's key

pArgs->recurse In: whether to recursively test for membership

stsOK if pArgs->memberKey is a member of pArgs->groupKey.

stsNoMatch if pArgs->memberKey is not a member of pArgs->groupKey

msgAddrBookGetMetrics
Passes back the metrics for the address book.

Takes P _ADDR_BOOK_METRICS, returns STATUS.

#define msgAddrBookGetMetrics MakeMsg(clsAddressBook, 8)

typedef struct ADDR BOOK METRICS {
U32 nUmEntries; II Total number of entries
U32 numGroups; II Number of groups in the address book
U16 numServices; II Number of known services
U32 spare1;
U32 spare2;

ADDR_BOOK_METRICS, *P_ADDR_BOOK_METRICS;

msgAddrBookAddAttr
Adds a new attribute to active address books.

Takes P _ADDR_BOOK_ATTR, returns STATUS.

#define msgAddrBookAddAttr MakeMsg(clsAddressBook, 12)

typedef struct ADDR_BOOK_ATTR
ADDR_BOOK_ATTR_ID id;
ADDR_BOOK_ATTR_TYPE type;
ADDR_BOOK_ATTR_LENGTH length; II length of value, in bytes
ADDR_BOOK_ATTR_VALUE value;
ADDR_BOOK_ATTR_LABEL label; II for display purpose

ADDR_BOOK_ATTR, *P_ADDR_BOOK~TTR;

362 PENPOINT API REFERENCE
Part 10 / Connectivity

Comments

This operation will change the address book database schema. If the attribute is of type abNumber, the
value is initialized to be 0 for all existing address book entries. If the attribute is of type
abPhoneNumber, then the value is intialized to be o. If the attribute is of type abString or abOther, the
value is initialized to be 0 length byte array.

After an attribute is added to an address book, clients can then set the attribute value in subsequent
msgAddrBookSet's and get the attribute value in the subsequent msgAddrBookGet's. Failure to first
make an attribute known to an address book and then try to set or get the attribute value will cause
stsAddr BookInvaIidAttr to be returned.

Parameters:

pArgs->id In: the id(should be a tag) of the new attribute. It has to be different from all other attribute
ids in the same address book.

pArgs->type In: one of abNumber, abString, abOther, abPhoneNumber

pArgs->label In: a string, for display purpose. The address book will copy the string to its own storage.

stsRequestNotSupported if the address book does not allow dynamically changing its database schema.

stsAddrBookDuplicateAttrld There is another attribute in the address book wi the same id.

msgAddrBookCount
Finds the number of entries that match the search spec

Takes p _ADDR_BOO~COUNT, returns STATUS.

fdefine msgAddrBookCount

typedef struct ADDR_BOOK_COUNT
ADDR BOOK KEY key;
ADDR_BOOK_ATTR_ID sort;
ADDR_BOOK_SEARCH_DIR dir;
ADDR BOOK QUERY query;
U16 - - count;

ADDR_BOOK_COUNT, *P_ADDR_BOOK_COUNT;

Parameters:

MakeMsg(clsAddressBook, 13)

pArgs->key In where to stop counting, AddrBookAlI to count the entire database

pArgs->dir In whether to start counting from the beginning or the end of the address book.

pArgs->query In qualifier. See msgAddrBookSearch

Observer Messages

msgAddrBookEntryChanged
Sent to observers when an entry has been changed, added or deleted.

Takes P _ADDR_BOOK_ENTRY_CHANGE, returns STATUS.

fdefine msgAddrBookEntryChanged MakeMsg(clsAddressBook, 11)

ADDRBOOK.H 363

Observer Messages

Enum16 (ADDR BOOK CHANGE TYPE)
abServiceChanged - 0,
abServiceDeleted 1,
abServiceAdded 2,
abEntryAdded 3,
abEntryDeleted 4,
abEntryNameChanged 5,
abEntryChanged 6,
abServiceInstalled 7,
abServiceDeinstalled 8,

} ;

II svcs have been installed
II svcs have been deinstalled

typedef struct ADDR_BOOK_ENTRY_CHANGE
OBJECT addrBooki II Address book UID

II Type of change ADDR BOOK CHANGE TYPE - - -
ADDR BOOK KEY

ADDR BOOK SERVICE ID - - -

type;
entryKeYi II Internal address book key

II changed entry
svcIdi II service id, if applicable

*P_ADDR_BOOK_ENTRY_CHANGE;

of the

If pArgs-> type is abServiceChanged, abServiceDeleted, abServiceAdded, then the address book fills in
pArgs->svcId to be the id of the service address affected. pArgs->entryKey is filled in by the address

book except when pArgs->type is abServicelnstalled or abServiceDeinstalled. In that case, the address
book is notifying clients that some service has been installed or deinstalled, and the service

information returned by the previous msgAddrBookGetServiceDesc is no longer up-to-date.

ATALK.H

This file contains the API for elsATP.

elsA TP inherits from elsObject.

Provides remote access to stations using the AppleT alk protocol suite.

#ifndef ATALK INCLUDED
#define ATALK_INCLUDED

Common #delines and typedels
typedef U8 DDP_TYPE, * P_DDP_TYPE;
typedef U8 ATP_FLAGS;
typedef struct ATP ADDRESS

U16 network;
U8 node;
U8 socket;

ATP_ADDRESS, * P~TP_ADDRESS;
typedef struct USER_BYTES {

U8 ub1;
U8 ub2;
U8 ub3;
U8 ub4;

USER_BYTES, * P_USER_BYTES;
typedef struct ATP_OPTIONS {

DDP_TYPE ddpType;
ATP FLAGS flags;
U16 transactionID;

U32
U16
U8

interval;
retries;
numUserByteSets;

U8 reserved;
USER BYTES userBytes[8];

ATP_OPTIONS, * P_ATP_OPTIONS;

II ATP flags
#define ATP_XO_Flag
#define ATP_Checksum_Flag
#define ATP_ALONoResponse_Flag
typedef U8 NBP_NAME,
#define NBP NAME Size

Format for an NBP name is:

U8 objectNameLength;

99

II In: transaction id when sending a response
II Out: transaction id when receiving a request
II timeout value in milliseconds
II number of times to retry a request
II In: number of valid user byte sets to send
II Out: number of valid user byte sets received

Ox01
Ox02
Ox04

U8 objectName[objectNameLength];

U8 typeNameLength;
U8 typeName[typeNameLength];

U8 zoneNameLength;
U8 zoneName[zoneNameLength];

typedef U8 NBP_ENUMERATOR;

366 PENPOINT API REFERENCE

Part 10 / Connectivity

typedef struct NBP_TUPLE
ATP ADDRESS address;
NBP_ENUMERATOR enumerator;
NBP NAME name[NBP_NAME_Size];

NBP_TUPLE, * P_NBP_TUPLE;
typedef U8 ZONES_BUFFER, * P_ZONES_BUFFER;

Messages

msgNBPRegister
Registers a name with the network.

Takes P _NBP _REGISTER, returns STATUS.

#define msgNBPRegister MakeMsg(clsATP, 1)

typedef struct NBP_REGISTER {
P NBP NAME pName; II name to register

} NBP_REGISTER, * P_NBP_REGISTER;

msgNBPRemove
Removes a previously registered name from the network.

Takes P _NBP _REMOVE, returns STATUS.

#define msgNBPRemove MakeMsg(clsATP, 2)

typedef struct NBP REMOVE
P NBP NAME pName; II name to remove

} NBP _REMOVE, * P _ NBP _REMOVE;

msgNBPLookup
Looks up names registered with the network.

Takes P_NBP_LOOKUP, returns STATUS.

#define msgNBPLookup MakeMsg(clsATP, 3)

typedef struct NBP LOOKUP
P NBP NAME pNamei
P TP BUFFER pBuffer;
U16 length;
U16 nurnMatchesi

NBP_LOOKUP, * P NBP_LOOKUPi

msgNBPConfirm

II name spec to lookup
II ptr to buffer containing names found
II size of buffer in bytes
II In-Out: number of names wanted/found

Confirms the network address of a registered name.

Takes P _NBP _CONFIRM, returns STATUS.

#define msgNBPConfirm MakeMsg(clsATP, 4

typedef struct NBP CONFIRM
P NBP NAME pNamei
P TP ADDRESS pAddressi

NBP_CONFIRM, * P_NBP_CONFIRMi

II name to confirm address of
II ptr to address of name

MesSi%90

Argurnents

msgZIPGetZoneList
Obtains a list of zone names.

Takes P _ZIP _GETZONES, returns STATUS.

#define msgZIPGetZoneList MakeMsg(clsATP, 6)

ATALK.H 367

Messages

typedef struct ZIP_GETZONES
P ZONES BUFFER - -
U16

pBufferi
lengthi

II ptr to buffer to contain zone names
II size of buffer in bytes

U16
ZIP_GETZONES,

numZonesi
* P ZIP_GETZONESi

msgZIPGetMyZone
Obtains my zone name.

Takes P _ZIP _GETZONES, returns STATUS.

II Out: number of zones found

#define msgZIPGetMyZone MakeMsg(clsATP, 7)

typedef struct ZIP_GETZONES
P ZONES BUFFER
U16

pBufferi
length;

U16
ZIP_GETZONES,

numZonesi
* P ZIP_GETZONES;

msgA TPRespPktSize

II ptr to buffer to contain zone names
II size of buffer in bytes
II Out: number of zones found

Sets the maximum size of ATP response packets.

Takes P _ATP _RESPPKTSIZE, returns STATUS.

#define msgATPRespPktSize MakeMsg(clsATP, 8

typedef struct ATP RESPPKTSIZE
U16 size; II max size of response packets in bytes

ATP_RESPPKTSIZE, * P_ATP_RESPPKTSIZEi

CNCTIONS.H

This file contains the API definition for the interface between the connections notebook and a generic
service.

The connections notebook is, effectively, an option sheet. Because of this implementation choice, it is
important to understand the option sheet protocol and messages, as defined in OPTION.H. The
terminology chosen herein reflects the close association between the connections notebook and an
option sheet.

The two default views that one gets, for disks and printers, in the connections notebook are each option
sheets added as cards of the connections notebook option sheet. Other sheets or windows can be added
to the connections notebook.

The connections notebook observes the well-known list theConnections. If an item is added to the list,
the connections notebook calls that item with msgConnectionsAddSheet, with the P _ARGS being the
main option sheet in the connections notebook. By using msgOptionAddCard to the object passed in
the aforementioned call, a service can add a sheet or just a single window to the connections notebook.
Once these items have been added, all responsibility for the user interface and functionality rests solely
on the service.

Network disks and printers, however, are handled differently. There are already predefined windows for
these two items. A network file-sharing system, for example, would add itself to the well-known list
theVolumeServices. The connections notebook, which observes this list, would send the object on the
list a msgConnectionsStartConversation and a msgConnectionsSetConnectionsApp to pass along the
application context of the connections notebook from this time.

If the network file-sharing service were to remove itself from theVolumeServices, the connections
notebook would send msgConnectionsEndConveration to the object.

The object on the list is expected to be able to respond to the various connections messages. If it has
specified that it provides a UI, it will be asked for its network view when appropriate.

#ifndef CNCTIONS_INCLUDED
#define CNCTIONS_INCLUDED
#ifndef INSTLMGR INCLUDED
#include <instlmgr.h>
#endif

Common #defines and typedefs

Warnings

Statuses

#define stsConnectionsAlreadyConnected

#define stsConnectionsPasswordFailed
#define stsConnectionsServiceDeinstalling
#define stsConnectionsNotConnected

MakeWarning(clsConnections, 1)

MakeStatus(clsConnections, 1)
MakeStatus(clsConnections, 2)
MakeStatus(clsConnections, 3)

370 PEN POINT API REFERENCE

Part 10 / Connectivity

Typedefs
typedef struct CONNECTIONS MENU ITEM

P CHAR pName;
OBJECT netService;
P UNKNOWN netIdentifier;
U32 reserved[2];

CONNECTIONS MENU_ITEM, * P_CONNECTIONS_MENU_ITEM;
typedef struct CONNECTIONS ITEM {

struct CONNECTIONS ITEM *pNextConnectionsItem; /1 Next item
P UNKNOWN - pItemID; II Service defined identifer
- II for this item

TAG itemIconTag; I I Item's icon tag
TAG i temTag; I I Item tag
P CHAR name; I I Item name
P CHAR serverName; II Item's server's name
P CHAR location; II Item's location
P CHAR type; I I Item's type
BOOLEAN connected; I I Connected?
BOOLEAN autoConnect; II Auto-connect enabled?
BOOLEAN remember; II Remember (menu) enabled?
II fill in some more information here
P UNKNOWN itemSpecificData; II volume or printer stuff
U32 filler [4] ; I I reserved

CONNECTIONS_ITEM, * P_CONNECTIONS_ITEM, * * PP_CONNECTIONS_ITEM;

Messages

msgConnectionsSetState:
Sets the specified states in the service.

Takes P_CONNECTIONS_STATE, returns STATUS.

Enuml6 (CONNECTIONS_CONNECT_STATE) {
cnctManualConnections,
cnctAutoConnections,
cnctPromiscuousConnections

II Connect only when asked to
II Connect auto-connect items
II Connect to everything

};

Enuml6 (CONNECTIONS WARNINGS)
cnctWarningNone -
cnctWarningPermissionsFailure
cnctWarningOnConnection
cnctWarningOnUnconnection

} ;

Enuml6 (CONNECTIONS_PASSWORDS) {
cnctPasswordNone
cnctPasswordServer
cnctPasswordItem
cnctPasswordServerAndItem

} ;

Enuml6 (CONNECTIONS PERMISSIONS) {
cnctPermissionsReadWrite,
cnctPermissionsReadOnly

} ;

typedef struct CONNECTIONS_STATE

0,
flagO,
flagl,
flag2

0,
flagO,
flagl,
flag2

BOOLEAN attached;
CONNECT IONS_CONNECT_STATE connectMores;
CONNECTIONS WARNINGS connectWarning;

II No warnings
liOn permissions failure
liOn connection
liOn loss of connection

II Do not save passwords
II Save server passwords
II Save item passwords
II Save server and item
II passwords

II Connect Read/Write
II Connect Read only

II Attached
II How to attach

CONNECTIONS PASSWORDS connectPasswords;
II Level of warnings
II What passwords

CONNECTIONS PERMISSIONS connectPermissions;
U32 - reserved [4] ;

II What permissions

CONNECTIONS_STATE, * P_CONNECTIONS_STATE;
fdefine msgConnectionsSetState MakeMsg (clsConnections, 1)

MCSS(l9 C

J\'r'£julTlenfs

CNCTIONS.H 371
Common #defines and typedefs

msgConnectionsGetState:
Gets the specified states in the service.

Takes P _CONNECTIONS_STATE, returns STATUS.

#define msgConnectionsGetState MakeMsg clsConnections, 2)

typedef struct CONNECTIONS_STATE
BOOLEAN
CONNECTIONS CONNECT STATE
CONNECTIONS WARNINGS
CONNECTIONS PASSWORDS

attached;
connectMoresi
connectWarning;
connectPasswords;

II
II
1.1
II

Attached
How to attach
Level of warnings
What passwords

CONNECTIONS PERMISSIONS connectPermissions; II What permissions
U32 reserved[4];

CONNECTIONS_STATE, * P_CONNECTIONS_STATE;

msgConnectionsEnumerateltems:
Gets a list of the network items, per restrictions.

Takes P _CONNECTIONS_ENUMERATE, returns STATUS.

#define cnctAttribMatchLocation flagO
#define cnctAttribMatchServer flag1
#define cnctAttribMatchConnect flag2
#define cnctAttribMatchAutoConnect flag3
#define cnctAttribMatchMenu flag4

typedef struct ATTRIB {

II
II
II
II
II
II

Match on location
Match on server
Match on connected state
Match on auto-connect state
Match on menu
(remember) state

U32 flags; II various meanings -- complete match
II match at beginning, match at end
II connected, auto connect, remember

P CHAR restrictNamei II match this string
17 other possible characteristics -- type, characteristics, etc.
P UNKNOWN matchID; II restrict enumeration to this file

II server
TAG tag; II Tag to match against

ATTRIB, * P_ATTRIB;
#define cnctFlagLocationsOnly flagO
#define cnctFlagServersOnly flag1
#define cnctFlagOKFreeCIFields flag14
#define cnctFlagOKFreeCI flag15
typedef struct CONNECTIONS_ENUMERATE {

ATTRIB attributes;

II Look only at locations
II Look only at servers
II Free the CI fields
II Free the CI

U16 count; II in # of entries to return in list.
II out # of valid entries in list.

U16 nexti II in 0 to start at beginning
II OR previous out value to pick up
II where we left off.

P CONNECTIONS ITEM pEntrYi II in = pNull.
II out Link list of connections items.

U16 flags; II in = state flags to filter on.
II out = free state

CONNECTIONS_ENUMERATE, * P_CONNECTIONS_ENUMERATEi
#define msgConnectionsEnumerateItems MakeMsg (clsConnections, 3)

msgConnectionsEnumerateServers:
Gets a list of the network servers, per restrictions.

Takes P_CONNECTIONS_ENUMERATE, returns STATUS.

#define msgConnectionsEnumerateServers MakeMsg (clsConnections, 4)

~ :;
;:::

~

372 PENPOINT API REFERENCE

Part 10 / Connectivity

Me£s@ge
Arguments

MessGge
Arguments

typedef struct CONNECTIONS_ENUMERATE {
ATTRIB attributes;
U16 count; II in # of entries to return in list.

II out # of valid entries in list.
U16 next; II in 0 to start at beginning

II OR previous out value to pick up
II where we left off.

P CONNECTIONS ITEM pEntry; II in = pNull. - - II out = Link list of connections items.
U16 flags; II in = state flags to filter on.

II out = free state
CONNECTIONS_ENUMERATE, * P_CONNECTIONS_ENUMERATE;

Use CONNECTIONS_ITEM with restriction of cnctFlagServersOnly.

msgConnectionsEnumerateTags:
Gets a list of the known tags, per restrictions.

Takes P _CONNECTIONS_ENUMERATE, returns STATUS.

typedef struct CONNECTIONS_TAG {
TAG tag;

} CONNECTIONS_TAG, * P_CONNECTIONS_TAG;
#define msgConnectionsEnumerateTags MakeMsg (clsConnections, 5)

typedef struct CONNECTIONS ENUMERATE
ATTRIB attributes;
U16 count; II in # of entries to return in list.

II out # of valid entries in list.
U16 next; II in 0 to start at beginning

II OR previous out value to pick up
II where we left off.

P_CONNECTIONS_ITEM pEntry; II in = pNull.
II out = Link list of connections items.

U16 flags; II in = state flags to filter on.
II out = free state

CONNECTIONS_ENUMERATE, * P_CONNECTIONS_ENUMERATE;

msgConnectionsGetNetworkView:
Each service is required to provide a window, which will be a client of a scrollwin, which will be set as

the current (active) window when the network view is invoked. This window will be able to make use of
msgConnections calls to manipulate attachments, et al.

Takes P _WIN, returns STATUS.

#define msgConnectionsGetNetworkView MakeMsg (clsConnections, 6)

msgConnectionsCompareltems:
Compares two pltemID values to see if they refer to the same item.

Takes P _CONNECTIONS_COMPARE, returns STATUS.

typedef struct CONNECTIONS COMPARE {
P UNKNOWN item1; II First item
P UNKNOWN i tem2 ; I I Second item
BOOLEAN same; II Out: Are they the same?
U32 forPublicUse; II if anyone needs this

CONNECTIONS COMPARE, * P CONNECTIONS_COMPARE;
#define msgConnectionsCompareItems MakeMsg (clsConnections, 10)

CNCTIONS.H 373
Common #defines and typedefs

msgConnectionsT agltem:
Tags the indicated item.

Takes P _CONNECTIONS_TAG_ITEM, returns STATUS.

typedef struct CONNECTIONS TAG ITEM
TAG tag;
U32 flags;
P UNKNOWN netAddress;
U32 userInformation;

II Tag to set
II Type
II Item's address

CONNECTIONS TAG ITEM, * P_CONNECTIONS_TAG ITEM;
*define msgConnectionsTagItem MakeMsg (clsConnections, 11)

msgConnectionsGetServicelnfo:
Gets the service name and other information.

Takes P _CONNECTIONS_SERVICE_INFO, returns STATUS.

typedef struct CONNECTIONS_SERVICE_INFO {
CHAR serviceName[nameBufLength]; II Service name
U16 reserved: 15,

uiProvided:l; II User interface provided
U32 filler[2];

CONNECTIONS_SERVICE_INFO, * P_CONNECTIONS_SERVICE_INFO;
#define msgConnectionsGetServiceInfo MakeMsg (clsConnections, 12)

msgConnectionsGedtemlnfo:
Gets information for the specified item, specific to the service.

Takes P_UNKNOWN, returns STATUS.

#define msgConnectionsGetItemInfo MakeMsg (clsConnections, 13)

msgConnectionsSetConnectionsApp:
Passes the connections notebook app object to the service.

Takes OBJECT, returns STATUS.

*define msgConnectionsSetConnectionsApp MakeMsg (clsConnections, 14)

msgConnections Update:
Requests an update of the current network state.

Takes nothing, returns STATUS.

#define msgConnectionsUpdate MakeMsg (clsConnections, 15)

msgConnectionsExpandCollapse:
Requests an expand/collapse (depending on the argument) of the current view of the network.

Takes BOOLEAN, returns STATUS.

#define msgConnectionsExpandCollapse MakeMsg (clsCo~nections, 16)

374 PEN POINT API REFERENCE
Part 10 I Connectivity

MesSf1ge
Arguments

MeS.$og10

Ar~1u!l1ents

;\"css©gtJ

A1l!umen¥s

Messf1ge
Avguments

msgConnectionsConnecdtem:
Connect the specified item.

Takes P _CONNECTIONS_REQUEST, returns STATUS.

typedef struct CONNECTIONS_REQUEST
P UNKNOWN pItemID; II Item to connect
U32 response;

CONNECTIONS_REQUEST, * P_CONNECTIONS_REQUEST;
#define msgConnectionsConnectItem MakeMsg (clsConnections, 17)

msgConnectionsUnconnectItem:
Unconnect the specified item.

Takes P _CONNECTIONS_REQUEST, returns STATUS.

#define msgConnectionsUnconnectItem MakeMsg (clsConnections, 18)

typedef struct CONNECTIONS_REQUEST
P UNKNOWN pItemID; II Item to connect
U32 response;

CONNECTIONS_REQUEST, * P_CONNECTIONS_REQUEST;

msgConnectionsRememberItem:
Remember the specified item.

Takes P_CONNECTIONS_REQUEST, returns STATUS.

#define msgConnectionsRememberItem MakeMsg (clsConnections, 19)

typedef struct CONNECTIONS_REQUEST
P UNKNOWN pItemID; II Item to connect
U32 response;

CONNECTIONS_REQUEST, * P_CONNECTIONS_REQUEST;

msgConnectionsForgetItem:
Forget the specified item.

Takes P _CONNECTIONS_REQUEST, returns STATUS.

#define msgConnectionsForgetItem MakeMsg (clsConnections, 20)

typedef struct CONNECTIONS_REQUEST
P UNKNOWN pItemID; II Item to connect
U32 response;

CONNECTIONS_REQUEST, * P_CONNECTIONS_REQUEST;

msgConnectionsAutoConnecdtem:
Sets the auto connect state on for the specified item.

Takes P_CONNECTIONS_REQUEST, returns STATUS.

#define msgConnectionsAutoConnectItem MakeMsg (clsConnections, 21)

typedef struct CONNECTIONS_REQUEST
P UNKNOWN pItemID; II Item to connect
U32 response;

CONNECTIONS_REQUEST, * P_CONNECTIONS_REQUEST;

Mcs.$!$}jf'
Arg;,gncnts

CNCTIONS.H 375
Common #defines and typedefs

msgConnectionsU nAutoConnecdtem:
Sets the auto connect state off for the specified item.

Takes P _CONNECTIONS_REQUEST, returns STATUS.

#define msgConnectionsUnAutoConnectItem MakeMsg (clsConnections, 22)

typedef struct CONNECTIONS_REQUEST
P UNKNOWN pItemIDj II Item to connect
U32 response;

CONNECTIONS_REQUEST, * P_CONNECTIONS_REQUEST;

msgConnectionsAddSheet:
Permits items on the connections to add items to the contents.

Takes OBJECT, returns STATUS.

#define msgConnectionsAddSheet MakeMsg (clsConnections, 23)

msgConnectionsAddCards:
Sent to network views, when they are not the foremost view, to run the option protocol.

Takes P _OPTION_TAG, returns STATUS.

#define msgConnectionsAddCards MakeMsg (clsConnections, 24)

msgConnectionsSetSelection:
Sent by the connections notebook to the appropriate service, informing the service what the currently

selected item is.

Takes P_UNKNOWN, returns STATUS.

#define msgConnectionsSetSelection MakeMsg (clsConnections, 25)

msgConnectionsGeif opCard:
Sent by the connections notebook to the appropriate service, inquiring of that service what the

appropriate top card is to be.

Takes P _TAG, returns STATUS.

#define msgConnectionsGetTopCard MakeMsg (clsConnections, 26)

msgConnectionsStartConversation:
Sent by the Connections Notebook to the appropriate service, informing that service that the

Connections Notebook is planning on conversing with it. This message will be sent at first page turn

and at restore (of the Connections Notebook) time.

Takes nothing, returns STATUS.

#define msgConnectionsStartConversation MakeMsg (clsConnections, 27)

376 PENPOINT API REFERENCE
Part 10 / Connectivity

Mes$Uge
Arguments

msgConnectionsEndConversation:
. Sent by the Connections Notebook to the appropriate service, informing that service that the
Connections Notebook is stopping conversing with it. This message will be sent at save (of the
Connections Notebook) time.

Takes nothing, returns SfATUS.

#define msgConnectionsEndConversation MakeMsg (clsConnections, 28)

msgConnectionsIsParent:
Compares two pltemID values to see if item 1 is a parent of item2.

Takes P _CONNECTIONS_COMPARE, returns SfATUS.

#define msgConnectionsIsParent MakeMsg (clsConnections, 31)

typedef struct CONNECTIONS COMPARE {
P UNKNOWN item1;- II First item
P-UNKNOWN item2; II Second item
BOOLEAN same; II Out: Are they the same?
U32 forPublicUse; II if anyone needs this

CONNECTIONS_COMPARE, * P_CONNECTIONS_COMPARE;

Notification Messages

Mes$@ge
Arguments

msgConnectionsConnectedChanged:
Sent by the appropriate service, indicating when an item has been connected to or unconnected from.

Takes P _CONNECTIONS_NOTIFY, returns STATUS.

#define msgConnectionsConnectedChanged MakeMsg (clsConnections, 7)

typedef struct
OBJECT

CONNECTIONS NOTIFY

IM HANDLE
OBJECT
P UNKNOWN
U16

U16
CONNECTIONS_NOTIFY,

manager;
handle;
service;
pItemID;
reserved: 13,

II manager that sent notification
II handle to service
II service that sent notification
II pointer to affected item

server: 1, II Unused
uiProvided:1, II Unused
state:1; II connected or unconnected
notifyLength; II Length of notify info which follows

* P_CONNECTIONS_NOTIFY;

msgConnectionsAutoConnectChanged:
Sent by the appropriate service, indicating when an item has had the auto connect state set or turned off
for it.

Takes P _CONNECTIONS_NOTIFY, returns STATUS.

#define msgConnectionsAutoConnectChanged

typedef struct CONNECTIONS_NOTIFY

MakeMsg (clsConnections, 8)

OBJECT manager; II manager that sent notification
II handle to service IM HANDLE handle;

OBJECT
P UNKNOWN
U16

U16
CONNECTIONS_NOTIFY,

service;
pItemID;
reserved: 13,

II service that sent notification
II pointer to affected item

server:1, II Unused
uiProvided:1, II Unused
state:1; II connected or unconnected
notifyLength; II Length of notify info which follows

* P_CONNECTIONS_NOTIFY;

Message
Arguments

tv'\ess(tge
A,guments

Messdge
A,guments

CNCTIONS.H 377
Common #defines and typedefs

msgConnectionsRememberChanged:
Sent by the appropriate service, indicating when an item has had the remember state set or turned off
for it.

Takes P _CONNECTIONS_NOTIFY, returns STATUS.

#define msgConnectionsRememberChanged MakeMsg (clsConnections, 9)

typedef struct CONNECTIONS NOTIFY
OBJECT manager;
1M HANDLE handle;
OBJECT service;
P UNKNOWN pItemID;
U16 reserved: 13,

/1 manager that sent notification
II handle to service
II service that sent notification
II pointer to affected item

server: 1, II Unused
uiProvided:1, II Unused
state:1; II connected or unconnected

U16 notifyLength; II Length of notify info which follows
CONNECTIONS_NOTIFY, * P_CONNECTIONS_NOTIFY;

msgConnectionsltemChanged:
Sent by the appropriate service, indicating when an item has been noticed or lost.

Takes P _CONNECTIONS_NOTIFY, returns STATUS.

#define msgConnectionsItemChanged MakeMsg (clsConnections, 30)

typedef struct
OBJECT
1M HANDLE
OBJECT
P UNKNOWN
U16

CONNECTIONS NOTIFY
manager; II manager that sent notification
handle; II handle to service
servicei II service that sent notification
pItemIDi II pointer to affected item
reserved: 13,
server: 1, II Unused
uiProvided:1, II Unused
state:1; II connected or unconnected

U16 notifyLength; II Length of notify info which follows
CONNECTIONS_NOTIFY, * P_CONNECTIONS_NOTIFY;

msgConnectionsServiceChanged:
Sent by the appropriate service, indicating when it is available for use or unavailable.

Takes P_CONNECTIONS_NOTIFY, returns STATUS.

#define msgConnectionsServiceChanged MakeMsg (clsConnections, 32

typedef struct CONNECTIONS NOTIFY
OBJECT manager; II manager that sent notification

II handle to service 1M HANDLE handle;
OBJECT
P UNKNOWN
U16

service;
pItemID;
reserved: 13,

II service that sent notification
II pointer to affected item

server:1, II Unused
uiProvided:1, II Unused
state:1; II connected or unconnected

U16 notifyLength; II Length of notify info which follows
CONNECTIONS_NOTIFY, * P_CONNECTIONS_NOTIFYi

~--~-----.-.-,-.. ,--.-,-

\ \

DIALENV.H

This file contains the API for clsDialEnv, clsDialEnvOptCard, and clsDialEnvField.

clsDialEnv inherits from clsService.

clsDialEnv maintains telephone dialing related information pertinent to a specific geographic
location/ environment.

The intent of clsDialEnv is to relieve client data communication programs of having to replicate the
code for maintaining their own seperate telephone dialing-related data and logic. clsDialEnv is designed
to provide the "intelligence" and data needed for dialing fromlto a variety of environments (to/from
local in-house to/from international).

clsDialEnvOptCard inherits from clsCustomLayout.

clsDialEnvOptCard provides a default behavior of observing the dialing environment and refreshing
dialing environment option cards when the dialing environment changes.

clsDialEnvField inherits from clsField.

clsDialEnvField alters the a default behavior of ancestor clsField by specifying a character list template
for coercing its field input.

Dialing environments are a location type service and therefore managed by a service manager called
theLocations. Each instance of a dialing environment is identified by the name of a location to which
the dialing environment pertains (NOTE: for PenPoint 1.0 there is only a single location/dialing
environment). Objects wishing to communicate with a dialing environment do so by sending messages
to the current location service. The DID of the current location is obtained by querying theLocations
via standard install manager and service manager messages. The following block of code provides one
example of how a client might obtain dialing environment data.

OBJECT handleCurrentLoc,
theCurrentLocation;

SM_QUERY_LOCK lock;
SM_QUERY_UNLOCK unlock;
DlALENV_COUNTRY country;
lM_GET SET_NAME getName;
CHAR 10cationName[nameBufLength];

II
II Get the handle and UlD of the current location.
II Lock the current location to guarantee exclusive access to
II
II
II
II

location data.
Get the country code for the current location (from the dialing

environment for the current location).
Unlock the current location so that other clients may access it.

II Get the name of the current location.
II
ObjCaIIJmp(msglMGetCurrent, theLocations, &handleCurrentLoc, s, Problem);
lock.handle = unlock. handle = handleCurrentLoc;

380 PENPOINT API REFERENCE
Part 10 / Connectivity

ObjCallJmp(msgSMQueryLock, theLocations, &lock, s, Problem);
theCurrentLocation = lock. service;
ObjCallJmp(msgDialEnvGetCountry, theCurrentLocation, &country, s, Problem);
ObjectCall(msgSMQueryUnlock, theLocations, &unlock)i
getName.handle = handleCurrentLoc;
getName.pName = locationNamei
ObjCallJmp(msgIMGetName, theLocations, &getName, s, Problem);

For PenPoint 1.0 an application or service requiring dialing environment services should install the

dialing environment dll via a SERVICE.INI file.

**** Future Direction Ideas ****

In a future release of PenPoint, dialing environments will be subsumed by a location service. The

location service will manage all of the objects which provide location-dependent behavior to the

PenPoint environment/applications. Current plans are for the user to access location services via the

configuration notebook. Because dialing environments will be a constituent of a location service it won't

be necessary for a dialing environment to be included by an application's or service's SERVICE.INI file.

The location service will maintain the list of locations the user has created (GO may ship pre-configured

locations; however a user will be able to create and modify locations). A user will select a location by

name, and all of the unique properties regarding that location will take effect.

For each location there may be a dialing environment. Thus, whenever the user selects a new location, a

different dialing environment may take effect (it is possible that two different locations will share the

same dialing environment, or that a location doesn't have a dialing environment). When a user creates a

new location, the user will be given the opportunity to specify a dialing environment for the new

location, or to select one of the currently available dialing environments and bind it to the new location.

The dialing environment will be enhanced to provide clients with information regarding valid city/area

codes and dialing rules for specific countries. This information can be presented to the user for VI

pick-lists, used to coerce input to only valid combinations of codes, and to enforce the rules which

national telephone systems impose on computer software which interacts with the public telephone

system.

**** End of Future Direction Ideas ****

clsDialEnvOptCard provides a default behavior of observing the dialing environment and refreshing

dialing environment option cards when the dialing environment changes. A client needn't provide any

special code support to have such option cards track dialing environment changes. Note: A client

shouldn't insert a dialing environment option card into an option sheet or any window tree with a

modal filter (e.g. option sheet with a style modality set to either osModalApp or osModalSy~tem)~

The following block of code provides one example of creating a dialing environment option card.

II
II Create an option card for dialing environment settings.
II
STATUS
D1ALENV OPTCARD NEW
OBJECT
1M GET SET NAME
CHAR

s;
don;
handleCurrentLoc;
getNamei
locationName[nameBufLength];

II
II Get the handle and name of the current location. Create
II a dialing environment option card for the current location.
II
ObjCallRet(msgIMGetCurrent, theLocations, &handleCurrentLoc, S)i

getName.handle = handleCurrentLoci
getName.pName = locationNamei
ObjCallRet(msgIMGetName, theLocations, &getName, S)i

ObjCallRet(msgNewDefaults, clsDialEnvOptCard, &don, S)i
don. win. tag = tagDialEnvOptionCard;
strcpy(don.dialenvOptCard.dialEnv.name, locationName);
ObjCallRet(msgNew, clsDialEnvOptCard, &don, S)i

DIALENV.H 381

clsDialEnvField alters the a default behavior of ancestor clsField by specifying a character list template
for coercing its field input.

Defined within this header file.

• defines and typedefs for dial environment data. function prototypes. messages & status values.

#ifndef DIALENV INCLUDED
#define DIALENV INCLUDED
#ifndef GO INCLUDED
#include <go.h>
#endif
#ifndef CLSMGR_INCLUDED
#include <clsmgr.h>
#endif
#ifndef SERVICE INCLUDED
#include <service.h>
#endif
#ifndef CLAYOUT INCLUDED
#include <clayout.h>
#endif
#ifndef FIELD INCLUDED
#include <field.h>
#endif

Defines and typedefs
Class UIDs for:

clsDialEnv The dialing environment service.
clsDialEnvOptCard Dialing environment option cards.
clsDialEnvField Field for entering and coercing dialing codes/numbers.
theLocations Service manager for dialing environments.

#define clsDialEnv
#define clsDialEnvOptCard
#define clsDialEnvField
#define theLocations

Dialing Environment Quick Help.

MakeWKN(2576,1,wknGlobal)
MakeWKN(2577,1,wknGlobal)
MakeWKN(2578,1,wknGlobal)
MakeWKN(2579,1,wknGlobal)

• Quick help is stored in clsDialEnv resource list o.
• Each quick help entry is located by its index/positionwithin resource list o.
#define resListDialEnvQHelp
#define MakeDialEnvQHelpResId(x)
#define tagDialEnvOptCard
#define hlpDialEnvOptCard
#define tagDialEnvDialEnvTable
#define hlpDialEnvDialEnv

o
MakeIndexedResId(clsDialEnv,resListDialEnvQHelp,x)
MakeTag(clsDialEnv, 1)
MakeDialEnvQHelpResId(O)
MakeTag(clsDialEnv, 17)
MakeDialEnvQHelpResId(O)

382 PEN POINT API REFERENCE

Part 10 / Connectivity

tdefine tagDialEnvCurrentLocLabel MakeTag(clsDialEnv, 18)
tdefine tagDialEnvCurrentLocTable MakeTag(clsDialEnv, 19)
tdefine hlpDialEnvCurrentLoc MakeDialEnvQHelpResld(6)
tdefine tagDialEnvDialLabel MakeTag(clsDialEnv, 24)
tdefine tagDialEnvDial MakeTag(clsDialEnv, 25)
tdefine tagDialEnvDialTone MakeTag(clsDialEnv, 26)
tdefine tagDialEnvDialPulse MakeTag(clsDialEnv, 27)
tdefine hlpDialEnvDial MakeDialEnvQHelpResld(7)
tdefine tagDialEnvAreaCityLabel MakeTag(clsDialEnv, 32)
tdefine tagDialEnvAreaCity MakeTag(clsDialEnv, 33)
tdefine hlpDialEnvAreaCity MakeDialEnvQHelpResld(9)
tdefine tagDialEnvCountryLabel MakeTag(clsDialEnv, 40)
tdefine tagDialEnvCou~try MqkeTag(clsDialEnv, 41)
tdefine hlpDialEnvCountry MakeDialEnvQHelpResld(8)
tdefine tagDialEnvOutsideLineLabel MakeTag(clsDialEnv, 48)
tdefine tagDialEnvOutsideLine MakeTag(clsDialEnv, 49)
tdefine hlpDialEnvOutsideLine MakeDialEnvQHelpResld(l)
tdefine tagDialEnvLongDistLabel MakeTag(clsDialEnv, 56)
tdefine tagDialEnvLongDist MakeTag(clsDialEnv, 57)
tdefine hlpDialEnvLongDist MakeDialEnvQHelpResld(2)
tdefine tagDialEnvlntlAccessLabel MakeTag(clsDialEnv, 64)
tdefine tagDialEnvlntlAccess MakeTag(clsDialEnv, 65)
tdefine hlpDialEnvlntlAccess MakeDialEnvQHelpResld(3)
tdefine tagDialEnvSuffixLabel MakeTag(clsDialEnv, 72)
tdefine tagDialEnvSuffix MakeTag(clsDialEnv, 73)
tdefine hlpDialEnvSuffix MakeDialEnvQHelpResld(4)
tdefine tagDialEnvMacroCodesLabel MakeTag(clsDialEnv, 80)
tdefine tagDialEnvMacroCodes MakeTag(clsDialEnv, 81)
tdefine hlpDialEnvMacroCodes MakeDialEnvQHelpResld(5)
tdefine tagDialEnvSetCodes MakeTag(clsDialEnv, 82)
tdefine tagDialEnvMacroCodeALabel MakeTag(clsDialEnv, 83)
tdefine tagDialEnvMacroCodeA MakeTag(clsDialEnv, 84)
tdefine tagDialEnvMacroCodeBLabel MakeTag(clsDialEnv, 85)
tdefine tagDialEnvMacroCodeB MakeTag(clsDialEnv, 86)
tdefine tagDialEnvMacroCodeCLabel MakeTag(clsDialEnv, 87)
tdefine tagDialEnvMacroCodeC MakeTag(clsDialEnv, 88)
tdefine tagDialEnvMacroCodeDLabel MakeTag(clsDialEnv, 89)
tdefine tagDialEnvMacroCodeD MakeTag(clsDialEnv, 90)
tdefine tagDialEnvMacroCodesFrame MakeTag(clsDialEnv, 91)
tdefine deMaxMacroCodes 4

Exported function prototypes from dialenv.dll
None currently defined.

rr Message definitions
NOTE msg #1 is reserved for private use.

Observer Notification Messages

msgDialEnvChanged
Notification sent to observers to indicate a dialing environment change.

Takes OBJECT, returns STATUS. Category: observer notification.

tdefine msgDialEnvChanged MakeMsg(clsDialEnv, 2)

Comments

DIALENV.H 383
Action Messages

The pArgs indicates the object which initiated the change to the dialing environment. pArgs of objN ull
indicates that the dialing environment is being destroyed.

Observers which receive this message should refresh any local dialing environment information or view
of such information.

Error Return Values: N/A.

Action Messages

Comments

Mcss£tgc
Arguments

msgDialEnvGetCountry
Passes back the country code from the current dialing environment.

Takes P _DIALENV _COUNTRY, returns STATUS. Category: service action request.

#define msgDialEnvGetCountry MakeMsg(clsDialEnv, 3)

typedef struct DIALENV_COUNTRY
{

CHAR symbols[lenDialEnvCountry+l];
DIALENV_COUNTRY, *P_DIALENV_COUNTRY;

Error Return Values: none, always returns stsOK

msgDialEnvIsCountryNorthAmerican
Indicates whether or not the specified country code is North American.

Takes P _DIALENV _COUNTRY, returns STATUS. Category: service action request.

#define msgDialEnvIsCountryNorthAmerican MakeMsg(clsDialEnv, 6)

typedef struct DIALENV_COUNTRY
{

CHAR symbols[lenDialEnvCountry+l];
DIALENV_COUNTRY, *P_DIALENV_COUNTRY;

NOTES: This message is provided so a client may alter its UI and/or enforce editing rules unique to

North American phone numbers.

Returns stsOK if the specified country is North American, otherwise stsDialEnvNoMatch.

msgDialEnvGetEnvironment
Passes back the current dialing environment settings.

Takes P_DIALENV_ENVIRONMENT, returns STATUS. Category: service action request.

#define msgDialEnvGetEnvironment MakeMsg(clsDialEnv, 4)
typedef TAG DIALENV DIAL MODE;
#define deTone tagDialEnvDialTone
#define dePulse tagDialEnvDialPulse

typedef struct DIALENV_OUTSIDE_LINE
{

CHAR symbols[lenDialEnvOutsideLine+l];
DIALENV_OUTSIDE_LINE, *P_DIALENV_OUTSIDE_LINE;

typedef struct DIALENV_AREA_CITY
{

CHAR symbols[lenDialEnvAreaCity+l];

II Touch tone dialing.
II Pulse code dialing.

DIALENV_AREA_CITY, *P_DIALENV_AREA_CITY, **PP_DIALENV_AREA_CITY;

384 PENPOINT API REFERENCE

Part 10 I Connectivity

typedef struct DIALENV_INTL_ACCESS
{

CHAR symbols[lenDiaIEnvIntIAccess+l];
DIALENV_INTL_ACCESS, *P_DIALENV_INTL_ACCESS;

typedef struct DIALENV_LONG_DIST
{

CHAR symbols[lenDiaIEnvLongDist+l];
DIALENV_LONG_DIST, *P_DIALENV_LONG_DIST;

Symbols appended to a dialing string. Typicallyfor credit card billing/call accounting purposes.

typedef struct DIALENV_SUFFIX
{

CHAR symbols[lenDiaIEnvSuffix+l];
DIALENV_SUFFIX, *P_D IALENV_SUFF IX;

Multi-purpose codes for specifying credit card Is, accountbilling codes, or altering environment
dependent behavior. When a client requests to build a dial string, the symbols from a macro code get
expanded into the resultant dial string.

typedef struct DIALENV_MACRO_CODE
{

CHAR symbols[lenDiaIEnvMacroCode+l];
DIALENV_MACRO_CODE, *P_DIALENV_MACRO_CODE;

typedef struct DIALENV_ENVIRONMENT
{

DIALENV DIAL MODE dialMode; II Dial mode (tone/pulse).
DIALENV_OUTSIDE_LINE outsideLine; II Outside line/net access.
DIALENV AREA CITY areaCity; II Area/City call originates from.
DIALENV COUNTRY country; II Country call originates from.
DIALENV INTL ACCESS intlAccess; II International access code.
DIALENV LONG DIST longDist; II Long distance access code.
DIALENV SUFFIX suffix; II Suffix applied to dial strings.
DIALENV MACRO CODE macroCode[numDiaIEnvMacroCodes];11 Macro/expand codes.

DIALENV_ENVIRONMENT, *P_DIALENV_ENVIRONMENT;

Error Return Values: none, always returns stsOK.

Symbols prefixed to a dialing string to gainaccess to the general switched telephone network.

msgDialEnvBuildDialString
Construct a dial string based upon the current dialing environment.

Takes P_DIALENV_BUILD_DIALSTR, returns STATUS. Category: service action request.

#define msgDialEnvBuildDialString

typedef struct DIALENV_TELEPHONE_NUMBER
{

MakeMsg(clsDiaIEnv, 5)

CHAR country[lenDiaIEnvCountry+l]; II Cntry call originates from.
CHAR areaCity[lenDiaIEnvAreaCity+l]; II Area/City call origs from.
CHAR teleNumber[lenDiaIEnvTeleNumber+l]; II Destination telephone t.
CHAR postConnect[lenDiaIEnvPostConnect+l];IIPost connect destination

II network navigation code.
DIALENV_TELEPHONE_NUMBER, *P_DIALENV_TELEPHONE_NUMBER;

The resultant string of symbols a dialer sends to either clsModem,the phone network, or another server
which performs the dialing.

typedef struct DIALENV_DIAL_STRING
{

CHAR symbols[lenDiaIEnvDiaIString+l];
DIALENV_DIAL_STRING, *P_DIALENV_DIAL_STRING;

typedef struct DIALENV_BUILD_DIALSTR
{

DIALENV.H 385

Class Messages

P_DIALENV_TELEPHONE_NUMBER pTeleNumber; II In: Raw tele # to dial.
P_DIALENV_DIAL STRING pDialString; II Out: Resultant dial str.

D IALENV_BU I LD_D IALSTR, *P_D IALENV_BU I LD_D IALSTR;

NOTE: The order in which macro codes are processed is significant. All like macro codes are expanded

before the next macro code is expanded. Thus if expansion of macro code N results in symbols for a
subsequent macro code (e.g. N+l) to be inserted into the dial string, such symbols will be interpretted as
and expanded as macro codes.

Error Return Values: stsDialEnvDialStrT 00 Large

Class Messages

Mes$(;i~e

Awgwments

msgNew
Creates an instance of a dialing environment.

Takes P_DIALENV_NEW, returns STATUS. Category: class message.

typedef DIALENV_ENVIRONMENT DIALENV_NEW_ONLY, *P_DIALENV_NEW_ONLY;
#define dialenvNewFields \

serviceNewFields \
DIALENV NEW ONLY dialEnv;

typedef struct DIALENV NEW
{

dialenvNewFields
DIALENV_NEW, *P_DIALENV_NEW;

Error Return Values: percolated up from other classes, none from clsDialEnv.

msgNewDefaults
Initializes the DIALENV_NEW structure to default values.

Takes P_DIALENV_NEW, returns STATUS. Category: class message.

typedef struct DIALENV_NEW
{

dialenvNewFields
DIALENV_NEW, *P_DIALENV_NEW;

(©mmetlfS Sets:

pArgs->svc.style.waitForTarget
pArgs->svc.style.exclusiveOpen
pArgs->svc.style.autoOwnTarget
pArgs->svc.style.autoOpen
pArgs->svc.style.autoMsgPass
pArgs->svc.style.checkOwner false;
pArgs->svc.pManagerList = pManagerList; II theLocations
pArgs->svc.numManagers = 1;
memset(&(pArgs->dialEnv), 0, sizeof(pArgs->dialEnv»;
pArgs->dialEnv.dialMode = deTonei II Tone dialing.

II All remaining struct dialEnv
II fields are set to zero/null.

Error Return Values: percolated up from other classes, none from clsDialEnv.

386 PENPOINT API REFERENCE

Part 10 / Connectivity

msgDialEnvGetMacrolds
Passes back a string of symbols which identify dialing macro codes.

Takes P _DIALENV _MACRO_IDS, returns STATUS. Category: class message.

*define msgDialEnvGetMacrolds

typedef struct DIALENV_MACRO_IDS
{

CHAR symbols[numDialEnvMacroCodes+1];
DIALENV_MACRO_IDS, *P_DIALENV_MACRO_IDS;

MakeMsg(clsDialEnv, 6)

Error return values: percolated up from other classes, none from clsDialEnv.

clsDialEnv non-error status values

None currently defined

clsDialEnv error status values
The request sent to the dialing environment has been denied because the request isn't supported by this
dialing environment.

*define stsDialEnvRequestDenied MakeStatus(clsDialEnv, 1)

The request sent to the dialing environment specified an invalid country code.

*define stsDialEnvlnvalidCountry MakeStatus(clsDialEnv, 2)

The request sent to the dialing environment contained data which didn't match the specified
constraints.

*define stsDialEnvNoMatch MakeStatus(clsDialEnv, 3)

The dial string resulting from msgDialEnvBuildDialString is too large to be contained within struct
DIALENV _DIAL_STRING.

*define stsDialEnvDialStrTooLarge MakeStatus(clsDialEnv, 4)

Message definitions ••••
NOTE msg #1 reserved for private use.

Action Messages

msgDialEnvOptCardRefresh
Refreshes a dialing environment option card (self) with the current dialing environment settings.

Takes nothing, returns STATUS. Category: action request.

*define msgDialEnvOptCardRefresh MakeMsg(clsDialEnvOptCard, 2)

A client should send msgDialEnvOptCardRefresh to a dialing environment option card when it
receives msgOptionRefreshCard and the card tag matches that assigned to.the dialing environment
option card.

Error Return Values: percolated up from other classes, none from dsDialEnv.

Comments

DIALENV.H 387
Class Messages

msgDialEnvOptCardApply
Updates the dialing environment with current settings from a dialing environment option card (self).

Takes nothing, returns STATUS. Category: action request.

#define msgDialEnvOptCardApply MakeMsg(clsDialEnvOptCard, 3)

A client should send msgDialEnvOptCardApply to a dialing environment option card when it receives
msgOptionApplyCard and the card tag matches that assigned to the dialing environment option card.

Error Return Values: percolated up from other classes, none from clsDialEnv.

Class Messages

Comments

msgNew
Creates an instance of a dialing environment option card.

Takes P_DIALENV_OPTCARD_NEW, returns STATUS. Category: class message.

typedef struct LOCATION NAME
{

CHAR name [nameBuf Length]; II Name of a location.
LOCATION_NAME, *P_LOCATION_NAME;

II Name of a dialing environment.
typedef LOCATION_NAME DIALENV_NAME, *P_DIALENV_NAME;
typedef struct DIALENV_OPTCARD_NEW_ONLY
{

DIALENV NAME dialEnv; II Name of DialEnv supplying info.
U32 sparel; II unused (reserved).
U32 spare2; II unused (reserved).

DIALENV_OPTCARD~EW_ONLY, *P_DIALENV_OPTCARD_NEW_ONLY;
#define dialenvOptCardNewFields \

customLayoutNewFields \
DIALENV_OPTCARD_NEW_ONLY dialenvOptCard;

typedef struct DIALENV_OPTCARD_NEW
{

dialenvOptCardNewFields
DIALENV_OPTCARD_NEW, *P_DIALENV_OPTCARD_NEW;

A client may add the dialing environment option card to its stack of of option cards, and create it in
reponse to msgOptionProvideCard via this message. Clients may create multiple cards and insert them
into any window. The cards needn't be part of an option card stack.

NOTES: It is possible for one or more clients to create multiple dial environment option cards. Because
of this, dialing environment option cards observe the dialing environment. When the dialing
environment changes, all dialing environment cards get refreshed with current dialing environment
settings.

The requestor must fill in the pArgs->dialEnv with the name
of the location which will supply the option card with dialing
environment settings.

Error Return Values: percolated up from other classes, stsDialEnvOptCardBadEnvironment.

388 PEN POINT API REFERENCE
Part 10 I Connectivity

Me$$@ge
ArgsHl'lent$

msgN ewDefaults
Initializes the DIALENV_OPTCARD_NEW structure to default values.

Takes P_DIALENV_OPTCARD_NEW, returns STATUS. Category: class message.

typedef struct DIALENV_OPTCARD_NEW
{

dialenvOptCardNewFields
DIALENV_OPTCARD_NEW, *P_DIALENV_OPTCARD_NEW;

(cm,mefli'$ Sets:

memset(pArgs->dialenvOptCard.dialEnv.name, Nil(CHAR),
sizeof(pArgs->dialenvOptCard.dialEnv.name));

~~ clsDialEnvOptCard non-error status values
None currently defined

clsDialEnvOptCard error status values

An internal system error was encountered creating an instance of clsDialEnvOptCard.

fdefine stsDialEnvOptCardProblem MakeStatus(clsDialEnvOptCard, 1)

The arguments specified via msgNew to clsDialEnvOptCard didn't specify a dialing environment (from
which data for the option card is obtained).

fdefine stsDialEnvOptCardBadEnvironment MakeStatus(clsDialEnvOptCard, 2)

An internal system error was encountered unfiling clsDialEnvOptCard from a resource file.

fdefine stsDialEnvOptCardBadResFile MakeStatus(clsDialEnvOptCard, 3)

An internal system error was encountered when attempting to locate a window (containing option data)
withing a dialing environment option card.

fdefine stsDialEnvOptCardNoSuchOption MakeStatus(clsDialEnvOptCard, 4)

Message definitions

msgNew
Creates an instance of a dialing environment field.

Takes P_DIALENV_FIELD_NEW, returns STATUS. Category: class message.

fdefine dialenvFieldNewFields \
fieldNewFields

typedef struct DIALENV_FIELD_NEW.
{

dialenvFieldNewFields
DIALENV_FIELD_NEW, *P_DIALENV_FIELD_NEW;

clsDialEnvField logic within its msgInit method:

DIALENV_MACRO_IDS macroIds;
CHAR fieldCharList[20+numDialEnvMacroCodes+1];
XTM ARGS template;
P STRING fieldChars = "0123456789 () -, *f; !";

DIALENV.H 389

Class Messages

Messoge

Arguments

II
II If the client hasn't modified the default field template value,
II establish a template to coerce dialing environment field input.
II
II Query clsDialEnv to obtain the symbols identifying macro
II codes. Append them to base dialing type characters.
II
if (pArgs->field.xlate.pTemplate == pNul1 &&

pArgs->field.style.xlateType == fstXlateTemplate)

}

macroIds.symbols[O] = Nil(CHAR);
ObjCaIIWarn(msgDiaIEnvGetMacroIds, clsDialEnv, ¯oIds);
strcpy(fieldCharList, fieldChars);
strcat(fieldCharList, macroIds.symbols);
template.xtmType = xtmTypeCharList; II Char list type template.
template.xtmMode = xtmModeDefault; II No special template mode.
template.pXtmData = fieldCharList; II The character list.
pArgs->field.xlate.pTemplate = &template;

II Call our ancestor to create the object.
return ObjectCaIIAncestor(msg, self, pArgs, ctx);

Error Return Values: percolated up from other classes,

msgN ewDefaults
Initializes the DlALENV _FIELD_NEW structure to default values.

Takes P_DlALENV_FIELD_NEW, returns STATUS. Category: class message.

typedef struct DIALENV_FIELD_NEW
{

dialenvFieldNewFields
DIALENV_FIELD_NEW, *P_DIALENV_FIELD_NEW;

Comments Sets:

II
II Establish defaults for an instance of clsDialEnvField.
II
pArgs->field.style.veto
pArgs->field. style. noSpace
pArgs->field.style.upperCase
pArgs->field.style.xlateType
pArgs->field.xlate.pTemplate
pArgs->label.style.numCols
pArgs->label.style.numRows
pArgs->label.cols
pArgs->label.rows

= true;
fstXlateTemplate;
&template;

IsNumAbsolute;
12;
1;

= bsEdgeBottom; pArgs->border.style.edge
pArgs->border.style.topMargin
pArgs->border.style.bottomMargin= bsMarginMedium;
pArgs->border.style.borderInk = bsInkGray66;

FLAP.H

This file contains the API definition for clsFLAP

clsFLAP inherits from clsMILService

This mil service provides the interface between the ALAP mil device and the rest of Pen point. This

interface allows for the configuring of the ALAP mil device and for PenTops networking using the

ALAP mil device. The flap mil service will typically only be accessed by link level drivers since the mil

service is responsible for providing the lowest levels of the PenTops protocol stack.

This mil service responds to the messages defined in the link.h header file. Refer to link.h for message
defini tio ns.

You access this mil service by using the standard service access techniques. These techniques are

discribed in servmgr.h.

The flap mil service is a member of the 'theLinkHandlers' service manager.

*ifndef FLAP_INCLUDED
*define FLAP INCLUDED
*ifndef MIL_SERVICE_INCLUDED
*include <milserv.h>
*endif
*ifndef LINK_INCLUDED
*include <link.h>
*endif

msgNew
creates a new flap object.

Takes P_FLAP_NEW, returns STATUS.

*define flapNewFields \
milServiceNewFields \

typedef struct FLAP_NEW
flapNewFields

} FLAP_NEW, *P_FLAP_NEW;
STATUS EXPORTED ClsFLAPInit(void);

HSLINK.H

This file contains the definition and methods for clsALAPHighSpeed.

clsALAPHighSpeed inherits from clsLink (see link.h).

#ifndef HSLINK INCLUDED
#define HSLINK INCLUDED
#define alapHighSpeedNewFields serviceNewFields

typedef struct ALAP_HSLINK_NEW
{

alapHighSpeedNewFields
ALAP_HS L INK_NEW , *P_ALAP_HSLINK_NEW;

STATUS EXPORTED ClsALAPHSLinklnit(void);

HSPKT.H

This file contains the API definition for clsHighSpeedPacket.

clsHighSpeedPacket inherits from clsService.

Provides a high speed packet transfer API.

#ifndef HSPKT_INCLUDED
#define HSPKT INCLUDED
#ifndef GO INCLUDED
#include <go.h>
#endif
#ifndef MILSERV INCLUDED
#include <milserv.h>
#endif
#ifndef CLSMGR INCLUDED
#include <clsmgr.h>
#endif
#ifndef DVHSPKT INCLUDED
#include <dvhspkt.h>
#endif

Common #defines and typedefs
typedef struct HS PACKET METRICS - -
{

U16 version;
U16 status;
U32 asyncBaud;
U16 parConnectChar;

U16 parConnectAckChar;

U16 leadInChar;
U16 dataAckChar;

II
II
II
II
II
II
II
II
II
II
II
II
II

version number
current status
baud rate for asynch serial mode
connect character for connection
testing (parallel mode only!)
character to return upon reception
of parConnectChar (parallel mode
only!)
default lead in character
default acknowledgement character
(return upon reception of 1st data
byte or of packet lead in character
if one is defined).

MIL_HS_PACKET_DEVICE_TYPE deviceType; II device type (see dvhspkt.h)
HS_PACKET_METRICS, *P_HS_PACKET_METRICS;

typedef OBJECT HS_PACKET, *p HS PACKET;
#define stsHSPacketBusy MakeStatus(clsHighSpeedPacket, 1)

High Speed Packet Class Messages

msgHSPacketStatus
Returns the current status of the high speed packet device.

Takes P _HS_PACKET _STATUS, returns Sf ATUS.

#define msgHSPacketStatus
#define hsPktStsBusy

MakeMsg(clsHighSpeedPacket, 3)
flagO II status

396 PENPOINT API REFERENCE
Part 10 I Connectivity

Arguments

Messcge
Ar~ument$

typedef struct HS_PACKET_STATUS
{

U16 statusi
HS_PACKET_STATUS, *P_HS_PACKET_STATUSi

msgHSPacketSendPacket
Sends one packet through high speed packet device.

Takes P _HS_PACKET_SEND_PACKET, returns STATUS.

fdefine msgHSPacketSendPacket

typedef struct HS_PACKET_SEND_PACKET
{

MakeMsg(clsHighSpeedPacket, 9)

P UNKNOWN pBufi
U32 numBytesi
U16 firstBytei

HS_PACKET_SEND_PACKET, *P_HS_PACKET_SEND_PACKETi

IfleadInChar (in metrics) is zero, firstByte is used as lead in character. If both are zero, no lead in

character is sent.

msgHSPacketSetCharHandler
Installs character receive handler.

#define msgHSPacketSetCharHandler

typedef struct HS_PACKET_CHAR_HANDLER
{

P_HS_PACKET_RX_HANDLER pRxHandleri
U32 userDatai

MakeMsg(clsHighSpeedPacket,10)

U32 userData)i

HS_PACKET_CHAR_HANDLER, *P_HS_PACKET_CHAR_HANDLERi

HSPacket calls the user-defined function when a character is received. The called fucntion must collect

the provided character and return either true if the packet is complete, false otherwise.

userData in HS_PACKET_RX_HANDLER is the user-provided userData U32 in
HS_PACKET _CHAR_HANDLER.

IfleadInChar (in metrics) is zero, the first character received is contained in both the firstByte and the

receivedByte parameters to P _HS_PACKET _RX_HANDLERO.

The received character handler will not be installed if one already is. See

msgHSPacketFreeCharHandler.

The character handler is automatically freed when the service is dosed.

msgHSPacketFreeCharHandler
Deinstalls a previously installed character receive handler.

Takes P _HS_PACKET_CHAR_HANDLER, returns STATUS.

tdefine msgHSPacketFreeCharHandler

typedef struct HS_PACKET_CHAR_HANDLER
{

P_HS_PACKET_RX_HANDLER pRxHandleri
U32 userDatai

MakeMsg(clsHighSpeedPacket,ll)

HS_PACKET_CHAR_HANDLER, *P_HS_PACKET_CHAR_HANDLERi

HSPKT.H 397
Fu nction prototypes

msgHSPacketEnable
Starts the continuous function which tests for connection and make ourselves "visible" to others.

Takes nothing, returns STATUS.

fdefine msgHSPacketEnable

msgHSPacketDisable

MakeMsg(clsHighSpeedPacket, 12)

Stops the continuous function (started by msgHSPacketEnable) which tests for connection and become
"invisible" .

Takes nothing, returns STATUS.

fdefine msgHSPacketDisable

msgNew
Creates a new hspkt object.

Takes P_HS_PACKET_NEW, returns STATUS.

fdefine hspktNewFields \
milServiceNewFields

typedef struct HS_PACKET_NEW {
hspktNewFields

} HS_PACKET_NEW, *P_HS_PACKET_NEW;

Function prototypes
Fune;tion Prototype STATUS EXPORTED ClsHSPacketlnit (void) ;

MakeMsg(clsHighSpeedPacket, 13)

INBxsve.H
This file contains the API definition for clsINBXService.

clsINBXService inherits from clsIOBXService.

Provides default behavior for Inbox Services.

#ifndef INBXSVC INCLUDED
#define INBXSVC INCLUDED
#ifndef IOBXSVC INCLUDED
#include <iobxsvc.h>
#endif

Introduction
In PenPoint, input operations are handled by a special class of services known as the "inbox services."
While most input operations are triggered by an external event such as an incoming fax image from a
remote fax machine, some input operations may require that the PenPoint computer be one that

initiates the communication process. For example, a fax input service may wish to periodically "poll" a

"store-and-forward" facility in order to receive a fax image. Thus, an inbox service implements the
"deferred input" feature in PenPoint: This concept permits a user to specify input operations regardless

of the readiness of input devices. If the input device (e.g., a data/fax modem, a LAN connection, etc.) is

not available or not connected, the input process is deferred until the input device becomes ready.

Passive vs. Active Inbox Services

The simplest type of inbox services are. those who passively wait for an input event to happen. That is,
after the input operation is initiated by a remote agent such as a fax machine, the inbox service running

on a PenPoint computer detects the input event and then receives the incoming data stream. This type
of inbox services do not initiate an input operation by themselves. Typically, when such a service is

enabled by the user, it simply becomes the owner of the I/O device. A simple fax inbox service, for

example, becomes the owner of the fax modem and sets it up to start receiving fax images whenever a
phone call comes in. While the inbox service owns the I/O device, no other services can transmit or
receive data through the same device. (For more details on the notion of service ownership, see the

servic~ API in service.h.)

Some inbox services may want to actively" solicitate" input from a remote agent. For example, a service

that queries a remote database will have to establish the communication link between the PenPoint
computer and the remote database server. For this type of services, clsINBXService provides default

behaviors to manage the state of the I/O device (connected or disconnected), the permission to initiate

input operation (whether the service is enabled or disabled), as well as automatic polling behavior
similar to that of an outbox service. Thus, the user can "defer" the input operation until it becomes

possible to establish a communication link with a remote agent. See the API for clsOBXService for a
detailed discussion of the deferred input/output protocol. Note, however, that to enable such

outbox-like behavior, the polling flag must be turned on when the service is created. I.e., in
msgNewDefaults, you should set

pArgs->iobxsvc.in.autoPoll = true;

400 PENPOINT API REFERENCE

Part 10 / Connectivity

Inbox Documents

Normally, documents can be automatically created in an inbox section as the end result of an input
event. For example, a fax inbox section may create a document containing the fax images receieved in
the fax modem. Such documents are normal PenPoint documents. Their contents have nothing to do
with the input device or where the document came from.

Sometimes an inbox document contains not only data, but also some control information about the
input operation to be performed. For example, taking advantage of the "deferred input" feature, the user
may construct a specific query statement for an online database and put it into the appropriate inbox
section before the PenPoint machine is physically connected to the remote database. When the input
service becomes ready, the query statement is sent to the remote database, and the result is put into
either another document or the same document containing the query statements. This type of inbox
documents is very similar to the outbox document that controls the actual output operation. Again, for
more information about the deferred input/output protocol, see obxsvc.h.

Note that the deferred I/O protocol implemented by clsINBXService assumes that an input operation is
controlled by an inbox document: an assumption that may be too cumbersome and confusing for many
services. If such is the case, an in box service can simply store the input control information (e.g., a
database query statement) with the service itself. When the service receives
msgINBXSvcPolIDocuments, it simply handles the input operation directly and bypasses the rest of the
protocol.

Services that Handle Input and/or Output
clsINBXService deals only with input operations. For those services that want to handle output
operations or both input and output at the same time, two other classes, clsOBXService and
clsIOBXService, are provided by PenPoint. In fact, clsINBXService and clsOBXService are
implemented as a subclass (hence a subset) of clsIOBXService.

Class Messages

msgNewDefaults
Initializes the P _INBXSVC_NEW structure to default values.

Takes P _INBXSVC_NEW, returns STATUS. Category: class message.

typedef struct INBXSVC NEW ONLY {
OBJECT sectionClassi - II class of the inbox section

II This must be clsNBToc or a subclass of it.
U32 unusedli
U32 unused2i
U32 unused3 i

INBXSVC_NEW_ONLY, *P_INBXSVC NEW ONLYi
#define inbxServiceNewFields \

ioSvcNewFields \
INBXSVC NEW ONLY inbxsvci

typedef struct INBXSVC_NEW
inbxServiceNewFields

} INBXSVC_NEW, *P_INBXSVC_NEWi

Zeroes out pArgs->inbxsvc and sets ... >iobxsvc.in.autoPoll
clsNBToc;

= false;>inbxsvc.sectionClass

MeS1H'JSJ0

ArgIJM0nts

COMments

msgNew
Creates a new inbox service object.

Takes P _INBXSVC_NEW, returns STATUS. Category: class message.

typedef struct INBXSVC_NEW {
inbxServiceNewFields

} INBXSVC_NEW, *P_INBXSVC_NEW;

msgINBXSvcSwitchIcon
Toggles the inbox icon (to empty or filled) if neccessary.

Takes nothing, returns STATUS. Category: class message.

#define msgINBXSvcSwitchIcon msgIOBXSvcSwitchIcon

INBXSVC.H 401
Class Messages

Check the content of the inbox notebook. Show the "filled" icon if any document is found. Show the
"emtpy" icon otherwise.

msgINBXDocGetService
Gets the service name.

Takes P _INBX_DOC_GET_SERVICE, returns STATUS. Category: class message.

#define msgINBXDocGetService msgIOBXDocGetService

typedef struct INBX_DOC_GET_SERVICE
OBJECT document; II In: document uid
CHAR svcName[nameBufLength]; II Out: service name

INBX_DOC_GET_SERVICE, *P_INBX_DOC_GET_SERVICE;

Get the name of the service associated with an inbox document. If the document has not been placed

into an inbox section, stsFailed is returned.

Note that the document must be at the top level of an inbox section. That is, if the document is

embedded within another document, which is in an inbox section, stsFailed will be returned.

msgINBXDoclnlnbox
Checks if a document is in a section in the Inbox.

Takes P _INBX_DOC_IN_INBOX, returns STATUS. Category: class message.

#define msgINBXDocInInbox msgIOBXDocInIOBox

typedef struct INBX DOC IN INBOX
UUID uuid; II In: document uuid
CLASS svcClass; II In: service class to check for

INBX DOC_IN_INBOX, *P_INBX_DOC_IN_INBOX;

This message can be sent to clsINBXService to check if a PenPoint document represented by

pArgs->uuid is already in the input queue of an inbox service inheriting from pArgs->svcClass. stsOK is

returned if it is, stsFailed otherwise. If pArgs->svcClass is objNull, stsOK is returned if the document is

anywhere in the Inbox notebook.

~~-- .. -.. -~--------==~

402 PEN POINT API REFERENCE
Part 10 / Connectivity

Messages senl 10 an Inbox Service Inslance

Mos5Z1ge
Arguments

C©mrmmf$

msgINBXSvcMoveInDoc
Moves a document into the inbox section.

fdefine msgINBXSvcMoveInDoc msgIOBXSvcMoveInDoc

typedef struct INBXSVC_MOVE_COPY_DOC {
FS_LOCATOR source; II In: Location of source document.
U16 sequence; II In: Sequence number to move/copy

II in front of.
INBXSVC_MOVE_COPY_DOC, *P_INBXSVC_MOVE_COPY_DOC;

Superclass behavior is to move the document located at pArgs->source into the input queue associated
with the inbox service. For example, set pArgs->sequence to 1 to move the document to the top of the
queue. Set it to maxU16 to move the document to the bottom of the queue.

After the document is moved (or copied) to the input queue, it is considered to be in a state ready for
input, even though the service may not be connected at the time. Client should not alter the document
in any way once it has been moved to the input queue.

Subclasses can provide their own behavior if they wish. Remember to use the class message
msgINBXSvcSwitchlcon to change the inbox icon.

msgINBXSvcCopyInDoc
Copies a document into the Inbox section.

Takes P_INBXSVC_MOVE_COPY_DOC, returns STATUS.

fdefine msgINBXSvcCopyInDoc msgIOBXSvcCopyInDoc

typedef struct INBXSVC_MOVE_COPY_DOC {
FS_LOCATOR source; II In: Location of source document.
U16 sequence; II In: Sequence number to move/copy

II in front of.
INBXSVC_MOVE_COPY_DOC, *P_INBXSVC_MOVE_COPY_DOC;

Same as msgINBXSvcMoveInDoc, except that the document is copied to the input queue.

msgINBXSvcGeif empDir
Passes back a handle for a temporary directory.

Takes P_OBJECT, returns STATUS.

fdefine msgINBXSvcGetTempDir msgIOBXSvcGetTempDir

This message is provided for clients who may want ot prepare their input document before moving it
into the input queue. The handle of an "official" temporary directory is passed back and it can be used
as temporary storage for documents, data, etc. Clients are responsible for deleting temporary files when
they are done. The directory will be flushed after a warm boot.

msgINBXSvcPollDocuments
Polls all documents in an input queue and input those who are ready.

Takes nothing, returns STATUS.

fdefine msgINBXSvcPollDocuments msgIOBXSvcPollDocuments

Comments

INBXSVC.H 403

Messages Sent to an Inbox Service Instance

This message tells the inbox service to look through its input queue and send out the first document
ready for input. The service will first make sure that it is enabled and is connected to the designated
input port. If these conditions are met, it will then self-send msgINBXSvcNextDocument to locate the
next document ready for input.

If msgINBXSvcNextDocument returns stsOK, indicating that a document is ready for input, this
message proceeds to self-send msgINBXSvcLockDocument to lock the document, and finally
msgINBXSvcInputStart to initiate the input process.

If msgINBXSvcNextDocument returns stsINBXSvcDocReady, indicating that the section is not empty
but none of the documents are ready for input, this message self-sends
msgINBXSvcScheduleDocument to schedule the document passed back in pArgs at a later time.

Subclasses normally do not process this message.

msgINBXSvcNextDocument

msgINBXSvcN extDocument
Passes back the next document ready for input.

Takes P_INBXSVC_DOCUMENT, returns STATUS. Category: self-sent.

#define msgINBXSvcNextDocument

typedef struct INBXSVC DOCUMENT
OBJECT uidi
OBJECT diri
OBJECT docClassi
U16 sequence;
CHAR pName[nameBufLength]i
P UNKNOWN pDocData;

INBXSVC_DOCUMENT, *P_INBXSVC_DOCUMENT;

msgIOBXSvcNextDocument

II uid of the doc
II app dir of the doc
II class of the doc
II sequence of the doc
II name of this doc
II subclass's private data

Superclass behavior is to start from the top of the input queue and locate the first document ready for
input. If one is found, information about the document is passed back in pArgs. The same pArgs will be
passed to messages msgINBXSvcLockDocument and msgINBXSvclnputStart. By default, a document
is ready for input when it is closed. If the document is open, it will receive msgINBXDoclnputStartOK
and it should return stsOK to indicate that it is ready for input.

Subclasses can provide their own behavior if they wish. Return stsINBXSvcSectionEmpty to give the
superclass an opportunity to change the inbox icon from filled to empty.

stsOK A document is ready for input.

stsINBXSvcSectionEmpty The input queue is empty.

stsINBXSvcDocNotReady No document in the input queue is ready.

Service-Specific Error Returns.

msgINBXSvcPollDocuments

msgINBXSvcLockDocument
Locks the document in preparation for input.

Takes P _INBXSVC_DOCUMENT, returns STATUS. Category: self-sent.

#define msgINBXSvcLockDocument msgIOBXSvcLockDocument

404 PEN POINT API REFERENCE

Part 10 I Connectivity

Message
Arguments

ii/l,essDi i1 e
.fhtgunnt~nts

Nt*)S,SCi~Je
Arguments

typedef struct INBXSVC DOCUMENT
OBJECT uid;
OBJECT dir;
OBJECT docClass;
U16 sequence;
CHAR pName[nameBufLength];
P_UNKNOWN pDocData;

INBXSVC_DOCUMENT, *P_INBXSVC_DOCUMENT;

II uid of the doc
II app dir of the doc
II class of the doc
II
II
II

sequence of the doc
name of this doc
subclass's private data

This message is a place holder for subclasses that may require additional preparatory work to be
performed on a document before it is ready for input. For example, a document may have to be
"locked" so that it can not be opened during the input process. This message may be used for other
purposes as well. For example, an inbox service may decide to store a light-weight "shadow" document
(e.g., a report designator for a database application) in the input queue until it is chosen for input. The
service then handles this message by converting the shadow document to a real one (e.g., the actual
report).

The superclass behavior for this message is to stamp the document directory with the filesystem attribute
iobxsvcDocInputlnProgress. This stamp will prevent any gestures over the document from being
processed. This means that once a document is locked for input it can not be deleted, renamed, etc. via
gestures.

msgINBXSvcUnlockDocument

msgINBXSvcU nlockDocument
Unlocks a document that was previously locked.

Takes P _INBXSVC_DOCUMENT, returns STATUS. Category: self-sent.

#define msgINBXSvcUnlockDocument

typedef struct INBXSVC DOCUMENT
OBJECT uid;
OBJECT dir;
OBJECT docClass;
U16 sequence;
CHAR pName[nameBufLength];
P UNKNOWN pDocData;

INBXSVC_DOCUMENT, *P_INBXSVC_DOCUMENT;

msgIOBXSvcUnlockDocument

II uid of the doc
II app dir of the doc
II class of the doc
II
II
II

sequence of the doc
name of this doc
subclass's private data

This message is a place holder for subclasses that may require additional "cleanup" work to be
performed on a document before it is put back to the input queue.

The superclass behavior for this message is to remove the iobxsvcDocInputlnProgress stamp on the
document directory.

msgINBXSvcLockDocument

msgINBXSvcScheduleDocument
Schedules a document that is not ready for input

Takes P _INBXSVC_DOCUMENT, returns STATUS. Category: self-sent.

#define msgINBXSvcScheduleDocument

typedef struct
OBJECT
OBJECT
OBJECT
U16
CHAR

INBXSVC DOCUMENT
uid;
dir;
docClass;
sequence;
pName[nameBufLength];

P_UNKNOWN pDocData;
INBXSVC_DOCUMENT, *P_INBXSVC_DOCUMENT;

msgIOBXSvcScheduleDocument

II uid of the doc
II app dir of the doc
II class of the doc
II sequence of the doc
II name of this doc
II subclass's private data

Comments

Messuge
Arguments

Comments

INBXSVC.H 405
Messages Sent to an Inbox Service Instance

This message is sent when msgINBXSvcNextDocument locates a document in the input queue but the
document is not ready for input.

Subclasses should provide their own behavior. The default behavior is to release the ownership of the
target service (i.e., become disabled), with the expectation that the user must manually schedule the

document later on (by re-~nabling the section.)

msgINBXSvcNextDocument

msgINBXSvclnputStart
Starts the input process for a document in the input queue.

Takes P _INBXSVC_DOCUMENT, returns STATUS. Category: self-sent.

*define msgINBXSvclnputStart

typedef struct INBXSVC DOCUMENT
OBJECT uid;
OBJECT dir;
OBJECT docClass;
U16 sequence;
CHAR pName[nameBufLength];
P UNKNOWN pDocData;

INBXSVC_DOCUMENT, *P_INBXSVC_DOCUMENT;

msgIOBXSvcIOStart

II uid of the doc
II app dir of the doc
II class of the doc
II sequence of the doc
II name of this doc
II subclass's private data

Superclass behavior is to activate the inbox document if it isn't already active, and then send
msgINBXDoclnputStart to the document instance.

Subclasses can provide their own behavior if they wish.

msgINBXSvclnputCancel
Cancels the input process.

Takes nothing, returns STATUS.

*define msgINBXSvclnputCancel msgIOBXSvcIOCancel

This message is sent to the service when the caller wishes to cancel any input operation in progress. The
service responds to this message by sending msgINBXDoclnputCancel to an active inbox document.
After the document is cancelled, the service will post an error note to the user if there are other

documents waiting to be processed. The user then decides whether or not the service should proceed to
send the remaining documents.

Subclasses do not normally process this message.

msgINBXSvclnputClean Up
Cleans up after the current input is done.

Takes P _INBX_DOC_INPUT_DONE, returns STATUS. Category: self-post ..

*define msgINBXSvclnputCleanUp

Enum32 (INBX_DOC_EXIT_BEHAVIOR)
inbxDocExitDoNothing,
inbxDocExitDelete,
inbxDocExitMarkAsFailed,
inbxDocExitMarkAsCancelled

} ;

msgIOBXSvcIOCleanUp

406 PENPOINT API REFERENCE
Part 10 / Connectivity

typedef struct INBX_DOC_INPUT_DONE
INBX_DOC_EXIT_BEHAVIOR behavior; II exit behavior
P UNKNOWN pDocData; II Unused: document specific data

INBX_DOC_INPUT_DONE, *P_INBX_DOC_INPUT_DONE;

This message is posted to self as a result of the service receiving msgINBXDocInputDone, which is sent

by the inbox document when it finishes the input operation. The inbox document will be either deleted

or marked as specified in pArgs, and when everything is properly cleaned up the service will post
msgINBXSvcPollDocuments to self to see if anything else is waiting for input.

Subclasses do not normally process this message.

msgINBXDocInputDone

msgINBXSvcStateChanged
Tells observers that the service state just changed.

Takes OBJECT, returns STATUS. Category: observer notification ..

#define msgINBXSvcStateChanged msgIOBXSvcStateChanged

Informs observers that the state of a service has just changed. pArgs is the UID of the service.

msgINBXSvcQueryState
Passes back the state of the service.

Takes P_INBXSVC_QUERY_STATE, returns STATUS.

#define msgINBXSvcQueryState msgIOBXSvcQueryState

typedef struct
BOOLEAN
CHAR

enabled; II true if the service is enabled.
status [nameBuf Length]; II text describing the status of

II the service.
CHAR docName[nameBufLength]; II document being processed
P UNKNOWN pStateData; II subclass's private data

INBXSVC_QUERY_STATE, *P_INBXSVC_QUERY_STATE;

This message is typically used to query what state, the service instance is in.

msgINBXSvcGetEnabled
Gets the enabled state of the service.

Takes P_BOOLEAN, returns STATUS.

#define msgINBXSvcGetEnabled msgIOBXSvcGetEnabled

Subclasses can override this message and redefine the notion of" enabled." The default behavior of the

superclass is to equate "enabled" with the ownership of the target service (i.e., input device). That is, the
service is "enabled" when it owns the target service. By appending to or replacing the default behavior, a

subclass can define additional conditions which must be met before a service is considered enabled.

msgINBXSvcSetEnabled
Sets the enabled state of the service.

Takes BOOLEAN, returns STATUS.

#define msgINBXSvcSetEnabled msgIOBXSvcSetEnabled

Comments

INBXSVC.H 407
Inbox Document Messages

This message is sent to the service in response to service notification messages msgSvcOwnerAcquired
and msgSvcOwnerReleased. Subclasses can provide their own behavior and thereby redefine the notion
of" enabled" for the service. If they do, they must pass this message up to the ancestor so that observers
of the inbox service will be properly notified.

Inbox Docullleni Messages

Comments

Message
ArgumtmfS

msgINBXDoclnputStartOK
Asks the inbox document if it is OK to start the input process

Takes nothing, returns STATUS.

tdefine msgINBXDoclnputStartOK msgIOBXDocIOStartOK

When an inbox service finds an opened document in the inbox section, it sends this message to the
document instance, asking whether it's OK to start the input operation while the document remains
open. When the document receives this message, it should return stsOK to give the service permission
to begin the input process. An error status, including stsNotUnderstood, is taken to mean that the
document instance vetos the request and the service will not start the input process.

msgINBXDoclnputStart
Tells an inbox document to start the input process.

Takes nothing, returns STATUS.

tdefine msgINBXDoclnputStart msgIOBXDocIOStart

This message is sent by the inbox service to a document. The document should respond to this message
by starting the input process.

msgINBXDoclnputDone
Tells the inbox service that input is finished.

Takes P _INBX_DOC_INPUT_DONE, returns STATUS. Category: client responsibility.

tdefine msgINBXDoclnputDone msgIOBXDocIODone

typedef struct INBX_DOC_INPUT_DONE
INBX_DOC_EXIT_BEHAVIOR behavior; II exit behavior
P UNKNOWN pDocData; II Unused: document specific data

INBX_DOC_INPUT_DONE, *P_INBX_DOC_INPUT_DONE;

When the input process is finished, the inbox document in charge of the input should send this message

to the inbox service. This message must be sent even if the input process has been aborted. The pArgs
for this message tells the inbox service what to do with the inbox document. If inbxDocExitDelete is
specified, the document will be removed from the inbox. In all other cases the document will be
unlocked and left in the inbox. If either inbxDocExitMarkAsCancelled or inbxDocExitMarkAsFailed
are specified, the name of the document will be altered to provide visual indication for the user that the
input process has not completed successfully.

msgINBXDocGetService

408 PENPOINT API REFERENCE
Part 10 / Connectivity

msgINBXDoclnputCancel
Tells an inbox document to cancel the input process.

Takes nothing, returns STATUS.

tdefine msgINBXDoclnputCancel msgIOBXDbcIOCancel

This message is used by the inbox service to inform a document that it should cancel the input process.
The document should handle this message by terminating its input operation and then sending
msgINBXDoclnputDone to the service with pArgs->behavior set to inbxDocExistMarkAsCancelled.

msgINBXDocStatusChanged
Tells the inbox service that the document status is changed.

Takes P _INBX_DOC_STATUS_CHANGED, returns STATUS. Category: client responsibility.

tdefine msgINBXDocStatusChanged msgIOBXDocStatusChanged

typedef struct INBX_DOC_STATUS_CHANGED {
CHAR status [nameBuf Length]; II Text describing document state
P UNKNOWN pDocData; II Unused: document-specific data

INBX_DOC_STATUS_CHANGED, *P_INBX_DOC_STATUS_CHANGEDi

This message is sent by the inbox document to the service whenever its status has just changed. This
status is displayed on Status column for the inbox section, in the Inbox notebook.

IOBXSYC.H

This file contains the API definition for clsIOBXService.

clsIOBXService inherits from clsService.

tifndef IOBXSVC_INCLUDED
tdefine IOBXSVC_INCLUDED
tifndef CLSMGR_INCLUDED
tinclude <clsmgr.h>
tendif
tifndef GO_INCLUDED
tinclude <go.h>
tendif
tifndef SERVICE INCLUDED
tinclude <service.h>
tendif
tifndef AUXNBMGR INCLUDED
tinclude <auxnbmgr.h>
tendif

Introduction
clsIOBXService implements most of the behavior of its two subclasses: clsOBXService (Outbox service
class) and clsINBXService (Inbox service class). While its subclasses deal with either the system Inbox or

the system Outbox, clsIOBXService allows a service to access both the Inbox and the Outbox at the
same time. For details about the two subclasses of clsIOBXService, see inbxsvc.h and obxsvc.h.

Choosing the Appropriate Superclass for Your Service
An Outbox service is assigned a section in the system Outbox. Thus, if a service's primary function is to
send data out of a PenPoint computer, it should probably be a subclass of clsa BXService. A good

example for this type of services is a printer device driver. A very important behavior for an Outbox

service is to hold the output data until the physical device is available. This" deferred output" feature

allows any documents in an Outbox section to be sent only when the conditions are right for the output
operation to commerice. This is implemented as a series of messages associated with
msgIOBXSvcPollDocumens, which basically "polls" the Outbox section looking for documents to be

sent out. By default, all Outbox services inherit such auto polling behavior. (See the IOBXSVC_NEW

structure defined in this API for inhibiting this behavior.)

Similary, an Inbox service is associated with a section in the system Inbox and concerns itself with
transfering data into a PenPoint computer. For example, the device driver for an optical scanner should

probably be a subclass of clsINBXService. However, the notion of "deferred input" may not apply to

most types of Inbox services. Therefore an Inbox service by default does not "poll" the documents in its
Inbox section. When "deferred input" does make sense, as in the case of a stock quote service

periodically downloading the latest stock prices from a host computer, the auto polling behavior can be

easily enabled through the newArgs.

Some services may need to transfer data both into and out of the PenPoint computer. (E.g., an electronic
mail service.) There are several alternatives to deal with this situation. First, such services can still

410 PENPOINT API REFERENCE

Part 10 / Connectivity

subclass from either clsINBXService or clsOBXService and avoid the complexity of dealing with two
separte sections in the system Inbox and Outbox. Second, the input and output operations can be
divided into two services, one inheriting from clsINBXService and one inheriting from clsOBXService.
Third, the service can inherit directly from clsIOBXService and deal with both an Inbox section and an
Outbox section at the same time. Both sections will have the same name as the service itself, and
enabling one of them will automatically enable the other.

Common #defines and typedefs

Inbox/Outbox Service Status Codes
The inbox/outbox section associated with the service is empty. This status is returned by
msgIOBXSvcNextDocument.

#define stsIOBXSvcSectionEmpty MakeStatus(clsIOBXService, 101)

The outbox section associated with the service is not empty, but none of the document is ready for
output. This status is returned by msgIOBXSvcNextDocument.

#define stsIOBXSvcDocNotReady MakeStatus(clsIOBXService, 102)

Outbox Service Standard Dialog Codes
#define tagOBXSvcDocumentExists
#define tagOBXSvcOutputPending

MakeDialogTag(clsOBXService, 0)
MakeDialogTag(clsOBXService, 1)

Inbox Service Standard Dialog Codes
#define tagINBXSvcDocumentExists
#define tagINBXSvcInputPending

Filesystem AHributes

MakeDialogTag(clsINBXService, 0)
MakeDialogTag(clsINBXService, 1)

The state of a document in the inbox/outbox.

#define iobxsvcAttrDocState
Enum32 (IOBXSVC_ATTR_DOC_STATE)

iobxsvcDocNotScheduled

};

iobxsvcDocOutputInProgress
iobxsvcDocUserCancelled
iobxsvcDocError
iobxsvcDocInputInProgress
iobxsvcDocReserved5
iobxsvcDocReserved6
iobxsvcDocReserved7
iobxsvcDocReserved8
iobxsvcDocReserved9
iobxsvcDocReserved10
iobxsvcDocReserved11
iobxsvcDocReserved12
iobxsvcDocReserved13
iobxsvcDocReserved14
iobxsvcDocReserved15

FSMakeFix32Attr(clsIOBXService, 1)

0, II Document hasn't been scheduled
II Same as no attribute.

1, II Output started, not finished yet
2, II Cancelled by user
3, II Unable to finish due to errors
4, II Input started, not finished yet
5, II Reserved for future expansion
6, II Reserved for future expansion
7, II Reserved for future expansion
8, II Reserved for future expansion
9, II Reserved for future expansion
10, II Reserved for future expansion
11, II Reserved for future expansion
12, II Reserved for future expansion
13, II Reserved for future expansion
14, II Reserved for future expansion
15 II Reserved for future expansion

IOBXSVC.H 411
Class Messages

Class Messages

Arguments

Message
Arguments

msgNewDefaults
Initializes the P _I 0 BXSVC_N EW structure to default values.

Takes P _IOBXSVC_NEW, returns STATUS. Category: class message.

typedef struct IOBXSVC SECTION METRICS {
BOOLEAN autopoll; - II True if svc should poll documents when

II it's both enabled and connected.
CLASS sectionClass; II Section Class. Must be clsNBToc or

II a subclass of it, or objNull for none.
U32 reserved[2]; II Reserved.

IOBXSVC SECTION METRICS, *P_IOBXSVC_SECTION_METRICS;
typedef struct IOBXSVC_NEW_ONLY {

IOBXSVC_SECTION_METRICS in;
IOBXSVC_SECTION_METRICS out;

II Inbox section spec
II Outbox section spec

U32 reserved[3];
IOBXSVC_NEW_ONLY, *P_IOBXSVC_NEW_ONLY;

*define ioSvcNewFields \
serviceNewFields \
IOBXSVC NEW ONLY

typedef struct IOBXSVC_NEW
ioSvcNewFields

iobxsvc;

} IOBXSVC_NEW, *P_IOBXSVC_NEW;

Zeroes out pArgs->iobxsvc.

msgNew
Creates a new inbox/outbox service object.

Takes P _IOBXSVC_NEW, returns STATUS. Category: class message.

typedef struct IOBXSVC_NEW {
ioSvcNewFields

} IOBXSVC_NEW, *P_IOBXSVC_NEW;

msgIOBXSvcSwitchlcon
Toggles the inbox or outbox icon (to empty or filled) if neccessary.

Takes nothing, returns STATUS. Category: class message.

*define msgIOBXSvcSwitchIcon MakeMsg(clsIOBXService, 1)

Check the content of the inbox or outbox notebook. For outbox, show the "filled" icon if any document

is found. For inbox, show the "filled" icon if there is at least one document that has not been opened.

msgIOBXDocGetService
Gets the service name.

Takes P _IOBX_DOC_GET_SERVICE, returns STATUS. Category: class message.

*define msgIOBXDocGetService MakeMsg(clsIOBXService, 2)

typedef struct IOBX_DOC_GET_SERVICE
OBJECT document; II In: document uid
CHAR svcName[nameBufLength]i II Out: service name

IOBX DOC GET_SERVICE, *P_IOBX_DOC_GET_SERVICEi

412 PENPOINT API REFERENCE

Part 10 / Connectivity

Get the name of the service associated with an inbox/outbox document. If the document has not been
placed into an inbox/outbox section, stsFailed is returned.

Note that the document must be at the top level within an inbox/outbox section. That is, if the
document is embedded in another document, stsFailed will be returned even if its embeddor is within
an inbox/outbox section.

msgIOBXDoclnIOBox
Checks if a document is in a section in the Inbox/Outbox notebook.

Takes P _IOBX_DOC_IN_IOBOX, returns STATUS. Category: class message.

#define msgIOBXDocInIOBox MakeMsg(clsIOBXService, 3)

typedef struct IOBX_DOC_IN_IOBOX {
ANM_AUX_NOTEBOOK notebook; II In: Which notebook?
UUID uuid; II In: document uuid
CLASS svcClass; II In: service class to check for

IOBX DOC_IN_IOBOX, *p IOBX DOC_IN_IOBOX;

Messages Sent to an Outbox Service
Instance

msgIOBXSvcMovelnDoc
Moves a document into the outbox section.

Takes P _IOBXSVC_MOVE_COPY_DOC, returns STATUS.

#define msgIOBXSvcMoveInDoc MakeMsg(clsIOBXService, 4)

typedef struct IOBXSVC MOVE COpy DOC {
ANM_AUX_NOTEBOOK - notebook; II In: Which notebook?
FS LOCATOR source; II In: Location of source document.
U16 sequence; II In: Sequence number to move/copy

II in front of.
IOBXSVC MOVE_COPY_DOC, *P_IOBXSVC_MOVE_COPY_DOC;

Superclass behavior is to move the document located at pArgs->source into the input! output queue
associated with the inbox/outbox service. For example, set pArgs->sequence to 1 to move the document
to the top of the queue. Set it to maxU16 to move the document to the bottom of the queue.

After the document is moved (or copied) to the input/output queue, it is considered to be in a state
ready for input/output, even though the service may not be connected at the time. Client should not
alter the document in any way once it has been moved to the input/output queue.

Subclasses can provide their own behavior if they wish. Remember to use the class message
msgIOBXSvcSwitchIcon to change the inbox/outbox icon.

msgIOBXSvcCopylnDoc
Copies a document into the InboxiOutbox section.

Takes P _IOBXSVC_MOVE_COPY_DOC, returns STATUS.

#define msgIOBXSvcCopyInDoc MakeMsg(clsIOBXService, 5)

MessC$ge

Arguments

Comments

IOBXSVC.H 413

Messages Sent to an Outbox Service Instance

typedef struct IOBXSVC_MOVE_COPY_DOC {
ANM_AUX_NOTEBOOK notebook; II In: Which notebook?
FS LOCATOR source; II In: Location of source document.
U16 sequence; II In: Sequence number to move/copy

II in front of.
IOBXSVC_MOVE_COPY_DOC, *P_IOBXSVC_MOVE_COPY_DOC;

Same as msgIOBXSvcMoveInDoc, except that the document is copied to the input/output queue.

msgIOBXSvcGetTempDir
Passes back a handle for a temporary directory.

Takes P_OBJECT, returns STATUS.

#define msgIOBXSvcGetTempDir MakeMsg(clsIOBXService, 6)

This message is provided for clients who may want to prepare their input/output document before
moving it into the input/output queue. The handle of an "official" temporary directory is passed back
and it can be used as temporary storage for documents, data, etc. Clients are responsible for deleting
temporary files they created when done. This temporary directory will be flushed after a warm boot.

msgIOBXSvcPollDocuments
Polls all documents waiting for input/output.

Takes nothing, returns Sf ATUS.

#define msgIOBXSvcPollDocuments MakeMsg(clsIOBXService, 7)

This message tells the inbox/outbox service to look through its queue and initiate the input/output
process for the first document ready to do so. The service will first make sure that it is enabled and is
connected to the designated input! output port. If these conditions are met, it will then self-send
msgIOBXSvcNextDocument to locate the next document ready forrinput/output.

If msgIOBXSvcNextDocument returns stsOK, indicating that a document is ready, this message
proceeds to self-send msgIOBXSvcLockDocument to lock the document, and finally
msgIOBXSvcIOStart to initiate the input/output process.

If msgIOBXSvcNextDocument returns stsOBXSvcDocNotReady, indicating that the section is not
empty but none of the documents are ready for input/output, this message self-sends
msgIOBXSvcScheduleDocument to schedule the document passed back in pArgs at a later time.

Subclasses normally do not process this message.

msgIOBXSvcNextDocument

msgIOBXSvcNextDocument
Passes back the next document ready for input/output.

Takes P_IOBXSVC_DOCUMENT, returns STATUS. Category: self-sent.

#define msgIOBXSvcNextDocument

typedef struct IOBXSVC DOCUMENT
OBJECT uid;
OBJECT dir;
OBJECT docClass;
U16 sequence;
CHAR pName[nameBufLength];
P UNKNOWN pDocData;

IOBXSVC_DOCUMENT, *P_IOBXSVC_DOCUMENT;

MakeMsg(clsIOBXService, 8)

II uid of the doc
II app dir of the doc
II class of the doc
II sequence of the doc
II name of this doc
II subclass's private data

414 PENPOINT API REFERENCE

Part 10 / Connectivity

Superclass behavior is to start from the top of the queue and locate the first document ready for
input/ output. If one is found, information about the document is passed back in pArgs. The same
pArgs will be passed to messages msgIOBXSvcLockDocument and msgIOBXSvclOStart. By default, a
document is ready for input/output when it is closed. If the document is open, it will receive
msgIOBXDoclOStartOK and it should return stsOK to indicate that it is ready for input/output.

Subclasses can provide their own behavior if they wish. Return stsOBXSvcSectionEmpty to give the
superclass an opportunity to change the inbox/outbox icon from filled to empty. Or refresh the look of
the icon by sending msgIOBXSvcSwitchIcon to the service class.

stsOK A document is ready for input/output.

stsOBXSvcSectionEmpty The input!output queue is empty.

stsOBXSvcDocNotReady No document in the input/output queue is ready.

Service-Specific ~rror Returns.

msgIOBXSvcPollDocuments

msgI o BXSvcLo ckD ocument
Locks the document in preparation for input! output.

Takes P_IOBXSVC_DOCUMENT, returns STATUS. Category: self-sent.

#define msgIOBXSvcLockDocument

typedef struct IOBXSVC DOCUMENT
OBJECT uid;
OBJECT
OBJECT
U16
CHAR

dir;
docC!ass;
sequence;
pName[nameBufLength];

P UNKNOWN pDocData;
IOBXSVC_DOCUMENT, *P_IOBXSVC_DOCUMENT;

MakeMsg(c!sIOBXService, 9)

II uid of the doc
II app dir of the doc
II class of the doc
II sequence of the doc
II name of this doc
II subclass's private data

This message is a place holder for subclasses that may require additional preparatory work to be
performed on a document before it is ready for input!output. For example, a document may have to be
"locked" so that it can not be opened during the input/output process. This message may be used for
other purposes as well. For example, an inbox/outbox service may decide to store a light-weight
"shadow" document (e.g., a report designator for a database application) in the input!output queue
until it is chosen for input/output. The service then handles this message by converting the shadow
document to a real one (e.g., the actual report).

The superclass behavior for this message is to stamp the document directory with the filesystem attribute
iobxsvcDoclOlnProgress. This stamp will prevent any gestures over the document from being
processed. This means that once a document is locked for input! output it can not be deleted, renamed,
etc. via gestures.

msgIO BXSvcUnlockDocument

msgIOBXSvcUnlockDocument
Unlocks a document that was previously locked.

Takes P_IOBXSVC_DOCUMENT, returns STATUS. Category: self-sent.

#define msgIOBXSvcUn!ockDocument MakeMsg(c!sIOBXService, 10)

MessClge
Avgurm:mts

Message
ArgtJrnet~r5

MeSS(Jg0
AvgtJments

IOBXSVC.H 415

Messages Sent to an Out box Service Instance

typedef struct IOBXSVC DOCUMENT
OBJECT uid; II uid of the doc
OBJECT dir; II app dir of the doc
OBJECT docClass; II class of the doc
U16 sequence; II sequence of the doc
CHAR pName[nameBufLength]; II name of this doc
P UNKNOWN pDocData; II subclass's private data

IOBXSVC_DOCUMENT, *P_IOBXSVC_DOCUMENT;

This message is a place holder for subclasses that may require additional "cleanup" work to be

performed on a document before it is put back to the input/output queue.

The supeq::lass behavior for this message is to remove the iobxsvcDoclOlnProgress stamp on the

document directory.

msgIOBXSvcLockDocument

msgIOBXSvcScheduleDocument
Schedules a document that is not ready for input/output

Takes P _IOBXSVC_DOCUMENT, returns STATUS. Category: self-sent.

*define msgIOBXSvcScheduleDocument

typedef struct IOBXSVC DOCUMENT
OBJECT uid;
OBJECT dir;
OBJECT docClass;
U16 sequence;
CHAR pName[nameBufLength];
P UNKNOWN pDocData;

IOBXSVC_DOCUMENT, *P_IOBXSVC_DOCUMENT;

MakeMsg(clsIOBXService, 11)

II uid of the doc
II app dir of the doc
II class of the doc
II sequence of the doc
II name of this doc
II subclass's private data

This message is sent when msgIOBXSvcNextDocument locates a document in the input/output queue

but the document is not ready for input/output.

Subclasses should provide their own behavior. The default behavior is to release the ownership of the

target service (i.e., become disabled), with the expectation that the user must manually schedule the

document later on (by re-enabling the section.)

msgIOBXSvcNextDocument

msgIOBXSvcIOStart
Starts the input/output process for a document in the input/output queue.

Takes P _IOBXSVC_DOCUMENT, returns STATUS. Category: self-sent.

*define msgIOBXSvcIOStart

typedef struct IOBXSVC DOCUMENT
OBJECT uid;
OBJEC.T
OBJECT
U16
CHAR

dir;
docClass;
sequence;
pName[nameBufLength];

P UNKNOWN pDocData;
IOBXSVC_DOCUMENT, *P_IOBXSVC_DOCUMENT;

MakeMsg(clsIOBXService, 12)

II uid of the doc
II app dir of the doc
II class of the doc

. II sequence of the doc
II name of this doc
II subclass'S private data

Superclass behavior is to activate the inbox/outbox document if it isn't already active, and then send

msgIOBXDoclOStart to the document instance.

Subclasses can provide their own behavior if they wish.

-------_._._------

416 PENPOINT API REFERENCE

Part 10 I Connectivity

msgI 0 BXSvcI 0 Cancel
Cancels the input/output process.

Takes nothing, returns STATUS.

#define msgIOBXSvcIOCancel MakeMsg(clsIOBXService, 13)

This message is sent to the service when the caller wishes to cancel any input/output operation in
progress. The service responds to this message by sending msgIOBXDocOutuptCancel to an active
inbox/outbox document. After the document is cancelled, the service will post an error note to the user
if there are other documents waiting to be processed. The user then decides whether or not the service
should proceed to send the remaining documents.

Subclasses do not normally process this message.

msgIOBXSvcIOCleanUp
Cleans up after the current input/output is done.

Takes P _IOBX_DOC_OUTPUT_DONE, returns STATUS. Category: self-post ..

#define msgIOBXSvcIOCleanUp

iobxDocExitDoNothing 0,
iobxDocExitDelete 1,
iobxDocExitMarkAsFailed 2,
iobxDocExitMarkAsCancelled 3

} ;

MakeMsg(clsIOBXService, 14)

II What to do after a document
II is processed

typedef struct IOBX_DOC_OUTPUT_DONE
IOBX_DOC_EXIT_BEHAVIOR behavior; II exit behavior
P UNKNOWN pDocDatai II Unused: document specific data

IOBX_DOC_OUTPUT_DONE, *P_IOBX_DOC_OUTPUT_DONEi

This message is posted to self as a result of the service receiving msgIOBXDoclODone, which is sent by
the inbox/outbox document when it finishes the input/output operation. The inbox/outbox document
will be either deleted or marked as specified in pArgs, and when everything is properly cleaned up the
service will post msgIOBXSvcPollDocuments to self to see if anything else is waiting for input/output.

~ubclasses do not normally process this message.

msgIOBXDoclODone

msgIOBXSvcStateChanged
Tells observers that the service state just changed.

Takes OBJECT, returns STATUS. Category: observer notification ..

#define msgIOBXSvcStateChanged MakeMsg(clsIOBXService, 15)

Informs observers that the state of a service has just changed. pArgs is the UID of the service.

msgIOBXSvcQueryState
Passes back the state of the service.

Takes P _IOBXSVC_QUERY_STATE, returns STATUS.

#define msgIOBXSvcQueryState MakeMsg(clsIOBXService, 16)

IOBXSVC.H 417

Inbox/Outbox Document Messages

typedef struct
BOOLEAN enabled; II is the service enabled?
CHAR status [nameBuf Length]; II text describing the status of

II the service.
CHAR docName[nameBufLength]; II document being processed
P UNKNOWN pStateData; II subclass's private data

IOBXSVC QUERY STATE, *p IOBXSVC QUERY_STATE;

msgIOBXSvcGetEnabled
Gets the enabled state of the service.

Takes P_BOOLEAN, returns STATUS .

• define msgIOBXSvcGetEnab!ed MakeMsg(c!sIOBXService, 17)

Subclasses can override this message and redefine the notion of" enabled." The default behavior of the
superclass is to equate "enabled" with the ownership of the target service (i.e., input/output device).
That is, the service is "enabled" when it owns the target service. By appending to or replacing the default
behavior, a subclass can define additional conditions which must be met before a service is considered
enabled.

msgIOBXSvcSetEnabled
Sets the enabled state of the service.

Takes BOOLEAN, returns STATUS.

*define msgIOBXSvcSetEnab!ed MakeMsg(c!sIOBXService, 18)

This message is sent to the service in response to service notification messages msgSvcOwnerAcquired
and msgSvcOwnerReleased. Subclasses can provide their own behavior and thereby redefine the notion
of "enabled" for the service. If they do, they must pass this message up to the ancestor so that observers
of the inbox/outbox service will be properly notified.

Inbox/Outbox Document Messages

Comments

msgIOBXDocIOStartOK
Asks the inbox/outbox document if it is OK to start the input!output process

Takes nothing, returns STATUS .

• define msgIOBXDocIOStartOK MakeMsg(c!sIOBXService, 19)

When an inbox/outbox service finds an opened document in the inbox/outbox section, it sends this
message to the document instance, asking whether it's OK to start the input/output operation while the
document remains open. When the document receives this message, it should return stsOK to give the
service permission to begin the input/output process. An error status, including stsNotUnderstood, is
taken to mean that the document instance vetos the request and the service will not start the
input/ output process.

msgI OBXD ocI 0 Start
Tells an inbox/outbox document to start the input! output process.

Takes nothing, returns STATUS .

• define msgIOBXDocIOStart MakeMsg(c!sIOBXService, 20)

418 PENPOINT API REFERENCE

Part 10 / Connectivity

Mf?$$CI£jC

Argumcnts

Comments

This message is sent by the inbox/outbox service to a document. The document should respond to this
message by starting the input/output process.

msgIOBXDocIODone
Tells the inbox/outbox service that input/output is finished.

Takes P _IOBX_DOC_OUTPUT_DONE, returns STATUS. Category: client responsibility.

fdefine msgIOBXDocIODone MakeMsg(clsIOBXService, 21)

typedef struct IOBX_DOC_OUTPUT_DONE
IOBX_DOC_EXIT_BEHAVIOR behavior; II exit behavior
P UNKNOWN pDocData;11 Unused: document specific data

IOBX_DOC_OUTPUT_DONE, *P_IOBX_DOC_OUTPUT_DONEi

When the input/output process is finished, the inboxloutbox document in charge of the input/output
should send this message to the inbox/outbox service. This message must be sent even if the
input/output process has been aborted. The pArgs for this message tells the inbox/outbox service what
to do with the inbox/outbox document. If obxDocExitDeIete is specified, the document will be
removed from the inbox/outbox. In all other cases the document will be unlocked and left in the
inbox/outbox. If either obxDocExitMarkAsCancelled or obxDocExitMarkAsFailed are specified, the
name of the document will be altered to provide visual indication for the user that the input/output
process has not completed successfully.

msgIOBXDocGetService

msgIOBXDocIOCancel
Tells an inbox/outbox document to cancel the input/output process.

Takes nothing, returns STATUS.

fdefine msgIOBXDocIOCancel MakeMsg(clsIOBXService, 22)

This message is used by the inboxl outbox service to inform a document that it should cancel the
input/output process. The document should handle this message by terminating its input/output
operation and then sending msgIOBXDoclODone to the service with pArgs->behavior set to

obxDocExistMarkAsCancelled.

msgIOBXDocStatusChanged
Tells the inbox/outbox service that the document status is changed.

Takes P _IOBX_DOC_STATUS_CHANGED, returns STATUS. Category: client responsibility.

fdefine msgIOBXDocStatusChanged MakeMsg(clsIOBXService, 23)

typedef struct IOBX_DOC_STATUS_CHANGED {
CHAR status[nameBufLength]i II Text describing document state
P UNKNOWN pDocDatai II Unused: document-specific data

IOBX_DOC_STATUS_CHANGED, *P_IOBX_DOC_STATUS_CHANGEDi

This message is sent by the inbox/outbox document to the service whenever its status has just changed.
This status is displayed on Status column for the inbox/outbox section, in the Inbox/Outbox notebook.

LINK.H

Link layer API definition.

This file contains the interface definition for link layer protocols.

1. Link layer protocols must sub-class clsLink.

2. clsLink sub-classes clsService.

#ifndef LINK INCLUDED
#define LINK INCLUDED
typedef struct
{

U16
U8

ADDRESS, *P_ADDRESS;

addrSize; II size of address pointed to
addr[8]; II address

The PROTOCOL_ADDRESS structure contains all the addressing information needed below the transport

leveL Unspecified addresses have null pointers.

typedef struct {
} PROTOCOL_ADDRESS, * P_PROTOCOL_ADDRESS;

The PROTOCOL_INFO structures in the transmit and receive descriptors holds the following

information.

typedef struct
PROTOCOL ADDRESS
PROTOCOL ADDRESS

PROTOCOL_INFO;
#define sizeRxBuf 608
typedef struct RXBUFDESC

PROTOCOL INFO
} RX_DESC, *P_RX_DESC;
typedef struct {

U16
U8

BLOCK, *P_BLOCK;
#define lnkMaxBlocks 8
#define sizeTxImmedData 32
typedef struct {

PROTOCOL INFO
BLOCK
U8

TX_DESC, *P_TX_DESC;

srci
desti

info;

blockLeni
*pBlock;

info;
txBlockTab[lnkMaxBlocks];
immedData[sizeTxImmedData];

#define stsNoTxBuffer MakeStatus(clsLink, 1)
#define stsNoRxBuffer MakeStatus(clsLink, 2)
#define stsTxCollisionOrDefer MakeStatus(clsLink, 3)
#define stsTxTimeout MakeStatus(clsLink, 4)
II A power cycle has happened, the link should be closed and reinitialized
#define stsLinkPowerCycle MakeStatus(clsLink, 5)
II The link cable is not connected.
#define stsLinkNotConnected MakeStatus(clsLink, 6)
typedef U16 LINK_PROTOCOL_TYPEi

420 PENPOINT API REFERENCE

Part 10 / Connectivity

typedef enum
{

linkMulticast
linkBroadcast
linkPromiscuous
linkLoopback

flagO,
flag1,
flag2,
flag3

II multicast transmit and receive
II broadcast transmit and receive
II promiscuous receive mode
II loopback of transmit to receive

LINK_SERVICES;
typedef struct
{

U16 tableSize;
U8 linkAddress[2];

* P_BROADCAS T_ADDR , *P_MULTICAST_ADDR;
typedef struct
{

U16 tableSize;
U8 typeName [32];

U16 linkAddrLen;
U8 linkAddr[16];
U32 linkSpeed;
U16 maxDataSize;
U16 maxFrameSize;
U16 numBuffers;

device
LINK SERVICES linkServices;
ADDRESS broadcast;
P_MULTI CAST_ADDR pMulticastTable;
II add additional fields here

LINK_ATTRIBUTES, *P_LINK_ATTRIBUTESi
typedef enum
{

linkOperational,
linkHardwareFailure,
linkConfigurationFailure,
linkHardwareNotInstalled

LINK_OPERATING_STATUS;
typedef struct
{

LINK OPERATING STATUS linkStatus;

II
II
II
II
II
II
II
II
II

size of link Attributes table
ASCIIZ name of LINK type: LocalTalk, Ethernet
ASYNC, SDLC, etc.
length in bytes of link addresses
current link address of local station
link communication speed in bits per second
maximum amount of data that will fit in a link frame
maximum size of a link frame (including link header)
total number of available link buffers for this

II LINK services supported
II broadcast address

II pointer to multicast address table

II additional specific status info goes here
LINK_STATUS, *P_LINK_STATUS;

typedef void (EXPORTED * PF_PROTOCOL_HANDLER) (P_RX_DESC);

structure of the link header

#pragma pack(1)
typedef struct
{

U8
U8
U8

} LINK_HEADER,
#pragma pack ()

II byte boundary packing for protocol headers

destLinkAddr;
srcLinkAddr;
typeLink;
*p LINK HEADER;
1/ back to command line stuff

#define maxRxFrameSize sizeRxBuf
typedef struct TX_FRAME
{

struct TX FRAME
BOOLEAN
U16
U32

*

unsigned char
TX_FRAME, *P_TX_FRAME;

link;
sent;
length;
physAddr;
buf[maxRxFrameSize];

#define lnkMaxShortFrameSize 10

typedef struct SHORT_TX_FRAME
{

struct SHORT TX FRAME
BOOLEAN

* link;
sent;

U16 length;
U32
unsigned char

SHORT_TX_FRAME,

physAddr;
buf[lnkMaxShortFrarneSize];

*P_SHORT_TX_FRAME;

msgLINKInstallProtocol
Install a link layer protocol handler to receive frames.

Takes P _INSTALL_PROTOCOL, returns STATUS.

#define rnsgLINKInstallProtocol MakeMsg(clsLink, 1)

typedef struct INSTALL_PROTOCOL {
LINK_PROTOCOL_TYPE linkProtocolType;
PF_PROTOCOL_HANDLER pNewHandler;

INSTALL_PROTOCOL, * P_INSTALL_PROTOCOL;

msgLINKRemoveProtocol
Remove a link layer protocol handler.

Takes P _REMOVE_PROTOCOL, returns STATUS.

#define rnsgLINKRernoveProtocol MakeMsg(clsLink, 2)

typedef struct REMOVE_PROTOCOL{
LINK_PROTOCOL_TYPE linkProtocolType;

} REMOVE_PROTOCOL, * P_REMOVE_PROTOCOL;

msgLINKTransmit
Transmit a packet.

Takes P_LINK_TRANSMIT, returns STATUS.

#define rnsgLINKTransrnit MakeMsg(clsLink, 5)

typedef struct LINK_TRANSMIT {
P TX DESC pTD;

} LINK_TRANSMIT, * P_LINK_TRANSMIT;

msgLINKBufferReturn
Return receive buffer to the link layer.

Takes P_BUFFER_RETURN, returns STATUS.

#define rnsgLINKBufferReturn MakeMsg(clsLink, 6)

typedef struct BUFFER_RETURN
P RX DESC pRD;

} BUFFER_RETURN, * P _BUFFER_RETURN;

msgLINKAttributesGet
Obtain the link layer attributes.

Takes P _ATTRIBUTES_GET, returns STATUS.

#define rnsgLINKAttributesGet MakeMsg(clsLink, 7)

LlNK.H 421

422 PENPOINT API REFERENCE
Part 10 I Connectivity

typedef struct ATTRIBUTES_GET
P LINK ATTRIBUTES pAttributes;

} ATTRIBUTES_GET, * P_ATTRIBUTES_GET;

msgLINKStatusGet
Obtain the link layer statistics.

Takes P _STATUS_GET, returns STATUS.

tdefine msgLINKStatusGet MakeMsg(clsLink, 8)

typedef struct STATUS_GET
P LINK STATUS

} STATUS_GET, * P_STATUS_GET;

msgLINKAddressAcquire
Acquire the link layer address.

pStatus;

Takes P _ADDRESS_ACQUIRE, returns STATUS.

tdefine msgLINKAddressAcquire MakeMsg(clsLink, 9)

typedef struct ADDRESS_ACQUIRE
U16 linkAddrLen; II length in bytes of link addresses
U8 linkAddr[16]; II current link address of local station
BOOLEAN server; I I acquire a server address

ADDRESS_ACQUIRE, * P _ADDRESS_ACQUIRE;

MODEM.H

This file contains the API for clsModem.

clsModem inherits from clsService.

clsModem provides the interface a client uses to communicate via a modem. The modem service is
located, bound to, opened, and closed via standard PenPoint service messages.

The object which opens a modem service becomes its client. After opening a modem service, it is
recommened that a client explicitly reset the modem firmware, initialize the modem 110 port settings,
and then set the modem firmware to the desired state.

The modem firware is reset by sending msgModemReset to an open modem service. Refer to

msgModemReset below for a description of the state to which the modem firmware is reset.

A client obtains current modem 110 port settings by sending msgSioGetMetrics to a modem service.
110 port settings may be altered by sending msgSioSetMetrics to the modem service. These messages in
addition to msgSiolnit, msgSioBreakSend, msgSioControlInStatus, msgSiolnputBufferStatus, and
msgSiolnputBufferFlush are the only clsMlLAsyncSIODevice messages which clsModem handles.
Refer to file "sio.h" for a description of these messages.

After initializing the modem 110 port, a client may then send clsModem messages to initialize the
modem to a desired state. Such initialization may be accomplished via discrete messages, or via
msgSvcSetMetrics.

Upon successfully initializing a modem, the client may then establish a connection, transmit data and/or
receive data via the connection, and finally terminate the connection. Clients send clsStream messages
to read/write data fromlto the modem. Refer to file "stream.h" for a description of clsStream messages.

**** PLEASE NOTE ****
In a future release of PenPoint, the clsModem API will be augmented. Compatibility with the

clsModem API described herein shall be maintained for at least one release.

Defined within this header file for the clsModem API

Defines and Typedefs
"service.h", "stream.h".

fifndef MODEM INCLUDED
tdefine MODEM=INCLUDED
tifndef GO INCLUDED
finclude <go.h>
tendif
tifndef CLSMGR INCLUDED
tinclude <clsmgr.h>
tendif
tifndef SERVICE INCLUDED
finclude <service.h>
fendif
fifndef UID INCLUDED
finclude <uid.h>
tendif
tifndef DIALENV INCLUDED
finclude <dialenv.h>
tendif

424 PENPOINT API REFERENCE

Part 10 I Connectivity

Observer Notification Messages

msgModemActivity
Notification sent to observers signifying changes in modem activity.

Takes MODEM_ACTIVITY, returns N/A. Category: observer notification.

fdefine msgModemActivity

Enum32 (MODEM_ACTIVITY)
mdmOpened,
mcimResetting,
mdmDialing,
mdmAwaitingConnection,
mdmConnected,
mdmNegotiating,
mdmSending,
mdmReceiving,
mdmAnswering,
mdmHangingUp,
mdmDisconnected,
mdmClosed

} ;

MakeMsg(clsModem, 1)

II The current modem activity/state.
II Modem service has been opened for use. *
II Currently being reset.
II Dialing a phone number. *
II Awaiting a connection/answer.
II Connected with remote node. *
II Negotiating sessionllink parms.
II Sending data.
II Receiving data.
II Answering a call. *
II Terminating the connection. *
II Connection terminated. *
II Modem service has been closed. *
II * = required notifications.

NOTE: A modem service needn't implement all observer notifications listed below. Those marked with
an asterik are the required minimum.

Client Notification Messages

msgModemResponse
Provides the modem's response to a command.

Takes MODEM_RESPONSE_INFO, returns N I A. Category: client notification.

fdefine msgModemResponse

Enum32 (MODEM_RESPONSE) {
mdmResOK,
mcimResUnrecognized,
mdmResError,
mcimResNoCarrier,
mcimResNoDialTone,
mcimResPhoneBusy,
mdmResNoAnswer,
mdmResInvalidFrame,
mcimResCRCError,
mcimResRing,
mcimResConnect,
mcimResConnect300,
mdmResConnect600,
mdmResConnect1200,
mdmResConnect2400,
mcimResConnect4800,
mcimResConnect9600,
mcimResConnect19200,
mcimResConnectReserved01,
mcimResConnectReserved02,
mcimResConnectReserved03,
mcimResConnectMNP,
mcimResConnect12 0 OMNP ,
mdmResConnect2400MNP,
mdmResConnect1200LAPM,
mcimResConnect240 OLAPM,
mcimResConnectReserved04,
mcimResConnectReservedOS,

MakeMsg(clsModem, 2)

II Modem response indications.
II OK - command accepted.
II Error - Unrecognized response from modem.
II Error - Error response from modem.
II Error - No line carrier detected.
II Error - No phone dial tone detected.
II Error - Phone line busy signal detected.
II Error - No one answered at the other end.
II
II
II
II
II
II
II
II
II
II
II
II
Il
II
II
II
II
II
II
II
II

Error - Invalid frame detected.
Error - Cyclic redundancy check error.
Ring indication signal detected.
Connection established.
300 baud connection established.
600 baud connection established.
1200 baud connection established.
2400 baud connection established.
4800 baud connection established.
9600 baud connection established.
19200 baud connection established.
Reserved for future expansion.
Reserved for future expansion.
Reserved for future expansion.
MNP connection has been established.
1200 baud MNP connection established.
2400 baud MNP connection established.
1200 baud LAPM connection established.
2400 baud LAPM connection established.
Reserved for future expansion.
Reserved for future expansion.

mdrnResConnectReserved06 II Reserved for future expansion.
} ;

#define mdmSizeMaxResponse 63
typedef struct { II Modem response information.

U8 symbols[mdmSizeMaxResponse+l];11 Symbols comprising a response.
MODEM_RESPONSE response; II Response meaning as enumerated above.
U32 spare; II Reserved for future expansion.

MODEM_RESPONSE_INFO, *P_MODEM_RESPONSE_INFO;

MODEM.H 425

Provides the response to a previous modem request/command. msgModemReponse is only sent to the
modem service's client if the response behavior has been set to mdmResponseViaMessage (RE:
msgModemSetResponseBehavior).

If a desired response isn't available, then please contact GO Corporation to see that it gets added as a
standard modem response. Thank you.

NOTE: The modem service depends upon the order in which the responses are defined.

msgModemConnected
Notification sent to the client indicating the modem has connected with a remote node modem.

Takes nothing, returns N/A. Category: client notification.

*define msgModemConnected MakeMsg(clsModem, 3)

A client may obtain information regarding the connection via msgModemGetConnectionlnfo.

msgModemDisconnected
Notification sent to the client indicating that the current connection has been terminated.

Takes nothing, returns N/A. Category: client notification.

*define msgModemDisconnected MakeMsg(clsModem, 4)

msgModemRingDetected
Notification sent to the client indicating that a ring indication has been received from the modem.

Takes nothing, returns N/A. Category: client notification.

*define msgModemRingDetected MakeMsg(clsModem, 5)

msgModemTransmissionError
Notification sent to the client indicating that an error has been detected during transmission (sending or
receiving) of data.

Takes nothing, returns N/ A. Category: client notification.

*define msgModemTransmissionError MakeMsg(clsModem, 6)

This unsolicited message is typically sent as a result of detecting a data framing error, or other low-level
modem link protocol generated error condition.

msgModemErrorDetected
Notification sent to the client indicating that an unexpected error indication has been received from the
modem.

Takes nothing, returns N/A. Category: client notification.

*define msgModernErrorDetected MakeMsg(clsModem, 7)

426 PENPOINT API REFERENCE

Part 10 / Connectivity

Action Messages

Mess©ge
Argumetl?S

msgModemSetResponseBehavior
Set the modem response mode, and command-to-response time-out values.

Takes P _MODEM_RESPONSE_BEHAVIOR, returns STATUS. Category: modem service request.

fdefine msgModemSetResponseBehavior MakeMsg(clsModem, 16)

Enum32 (MODEM_RESPONSE_MODE)
mdmResponseViaStatus,
mdmResponseViaMessage,
mdmResponseTransparent

II Mode for conveying modem responses.
II Report via status (Default).
II Report via notification msgModemResponse.
II Don't intercept and process modem responses.

} ;

fdefine mdmDefaultCommandTimeout
fdefine mdmDefaultConnectTimeout

2500
30000

II 2 1/2 second command timeout.
II 30 second connect timeout.

typedef struct {
OS MILLISECONDS timeoutCommand;

OS MILLISECONDS timeoutConnect;

MODEM_TIMEOUT, *P_MODEM TIMEOUT;

II Command-to-response timeouts.
II Timeout for all commands
II
II
II
II

except connect requests
(default of 2 1/2 seconds).

Timeout for connect requests
(default of 30 seconds).

typedef struct { II Modem command-response handling behavior.
MODEM_RESPONSE_MODE mode; II Mode for coveying responses
MODEM TIMEOUT timeout; II Command-to-response timeouts.

MODEM_RESPONSE_BEHAVIOR, *P_MODEM_RESPONSE_BEHAVIOR;

Response mode mdmResponse ViaStatus causes the modem service to block and await a response from
the modem. If the modem doesn't return a response within the specified time-out duration, stsTimeOut
is returned.

Response mode mdmResponseViaMessage is useful for clients that wish to ObjectPostAsync their
modem service requests, and hence not block until completion (or timeout) of the request. Modem

responses are reported to the client via msgModemResponse.

Response mode mdmResponse Transparent disables the modem service response processing sub-system.
Modem command responses are left unaltered within the input data stream. The client assumes
responsibility for processing modem responses. All commands successfully sent to the modem return a
status of stsO K.

NOTE: Once a client switches to transparent mode (or sends modem register altering commands via
msgModemSendCommand) they are responsible for the integrity of clsModem. Therefore, it is the
client's responsibility to ensure that the clsModem (and the modem) are reset to a known state upon
switching from transparent mode to a different response mode.

msgModemGetResponseBehavior
Passes back the current modem response mode, and the current command-to-response time-out values.

Takes P _MODEM_RESPONSE_BEHAVIOR, returns STATUS. Category: modem service request.

fdefine msgModemGetResponseBehavior MakeMsg(clsModem, 17)

typedef struct { II Modem command-response handling behavior.
MODEM_RESPONSE_MODE mode; II Mode for coveying responses
MODEM TIMEOUT timeout; II Command-to-response timeouts.

MODEM_RESPONSE_BEHAVIOR, *P_MODEM_RESPONSE_BEHAVIOR;

Comments

MODEM.H 427

Action Messages

msgModemSendCommand
Sends a specified command to the modem.

Takes P_MODEM_SEND_COMMAND, returns STATUS. Category: modem service request.

tdefine msgModemSendCommand
tdefine mdmSizeMaxCommand

typedef struct
P U8 pCmdStr;

MakeMsg(clsModem, 18)
80 II Max' command size is 80 bytes.

II In: Ptr to command string
II (null terminated).

OS MILLISECONDS timeout; II In: Timeout for cmd response.
MODEM_RESPONSE_INFO responseInfo; II Out: The response to the cmd.

MODEM_SEND_COMMAND, *P_MODEM_SEND_COMMAND;

The timeout value specified within MODEM_SEND_COMMAND supersedes that specified via
msgModemSetResponseBehavior.

NOTE: Clients should only use msgModemSendCommand to perform modem actions unavailable via
the clsModem API described herein.

NOTE: Clients that send commands that alter modem registers are responsible for the integrity of
clsModem. Therefore, it is the client's responsibility to ensure that such commands will not adversely
affect clsModem.

msgModemGetConnectionlnfo
Passes back information about the current connection.

Takes P _MODEM_CONNECTION_INFO, returns STATUS. Category: modem service request.

tdefine msgModemGetConnectionInfo MakeMsg(clsModem, 19)

Enum32 (MODEM_CONNECTION) {
mdmConnectionNone,
mdmConnectionStandard,
mdmConnectionMNP,
mdmConnectionLAPM

} ;

Enum32 (MODEM_LINK_CONTROL)
mdmLinkControlMNPClass1 4
mdmLinkControlMNPClassS
mdmLinkControlMNPClass6
mdmLinkControlMNPClass7
mdmLinkControlV42

mdmLinkControlV42bis
} ;

II The type of connection established.
II None; Disconnected.
II Standard data.
II MNP.
I I LAPM.

II Link and error control protocols.
= flagO, II MNP Levels 1 through 4.
flag1, II MNP Level S data compression.
flag2, II MNP Level 6.
flag3, II MNP Level 7 data compression.
flag4, II Physical level error detection and

II correction (LAPM link control) .
flagS II V42 data compression.

typedef struct { II Information about a connection.
MODEM CONNECTION connection; II The type of connection.
MODEM LINK CONTROL linkControl;11 Link control in use, if any/known.
S32 baudRate; II Baud rate of connection.
U32 spare[2]; II Reserved for future expansion.

MODEM_CONNECTION_INFO, *P_MODEM_CONNECTION_INFO;

msgModemReset
Resets the modem firmware, I/O port, and service state.

Takes nothing, returns STATUS. Category: modem service request.

tdefine msgModemReset MakeMsg(clsModem, 20)

428 PENPOINT API REFERENCE

Part 10 / Connectivity

NOTE: The modem 110 port baud rate is reset to the highest supported data mode baud rate.
Therefore not all implementations will reset the baud rate to 2400. The client may elect to subseqently
change the baud rate for auto- baud detecting modems.

Reset 1/0 port state:

baud
line.dataBits
line.stopBits
line.parity
controlOut.rts
controlOut.dtr
flowChar.xonChar
flowChar.xoffChar

2400;
sioEightBits;
sioOneStopBit;
sioNoParity;

= true;
= true;
= Oxll;
= Ox13;

flowType.flowControl = sioNoFlowControl;

Reset modem firmware state:

Speaker control on until carrier detected (*).volume medium (*).detection enabled (*).detection enabled
(*).mode from dialing environment. disabled. on ring zero.character echo disabled. command result
codes.verbal result codes (words).carrier upon connect. code + (ASCII 43).termination code carriage
return (ASCII 13).

(*) or set as per current modem option card setting.

msgModemOflHook
Picks up the phone line.

Takes nothing, returns STATUS. Category: modem service request.

#define msgModemOffHook MakeMsg(clsModem, 21)

msgModemOnline
Forces the modem online into data mode.

Takes nothing, returns STATUS. Category: modem service request.

#define msgModemOnline MakeMsg(clsModem, .22)

msgModemSetDialType
Establishes the mode for dialing telephone numbers.

Takes MODEM_DIAL_MODE, returns STATUS. Category: modem service request.

#define msgModemSetDialType

mdmPulseDialing,
mdmTouchtoneDialing,
mdmDialStringDialing,

MakeMsg(clsModem, 23)

II Mode in which the modem is to dial.
II Perform pulse dialing.
II Peform touch-tone dialing.
II Client supplies the dialing mode
II embedded within the dialString.

mdmDialingEnvironmentDialing/1 If available, use the current dialing
II environment dialing mode, otherwise use
II current modem firmware dialing mode (Default).

} ;

Comments

MODEM.H 429

Action Messages

msgModemDial
Performs dialing and attempts to establish a connection.

Takes P _MODEM_DIAL, returns STATUS. Category: modem service request.

*define msgModemDial

typedef struct {
DIALENV_DIAL_STRING dialString;
U32 spare[2];

MODEM_DIAL, *P_MODEM_DIAL;

msgModemSetAutoAnswer

MakeMsg(clsModem, 24)

II Dialing and connection type.
II In: Phone number to dial.
II Reserved for future expansion.

Disables or enables the modem auto-answer feature.

Takes P_MODEM_SET_AUTO_ANSWER, returns STATUS. Category: modem service request.

*define msgModemSetAutoAnswer

Enum32 (MODEM_AUTO_ANSWER) {
mdrnAutoAnswerDisabled,
mdrnAutoAnswerEnabled

} ;

MakeMsg(clsModem, 25)

II Modem auto-answer capability.
II Disable auto-answer (Default).
II Enable auto-answer.

typedef struct { II Auto-answer settings.
MODEM AUTO ANSWER autoAnswer; II In: Enable/disable auto-answer.
S32 rings; II In: Number of rings before answer.

MODEM_SET_AUTO_ANSWER, *P_MODEM_SET_AUTO_ANSWER;

NOTE: For some modems a value of 0 for rings disables auto-answer.

msgModemSetAnswerMode
Filters the type of calls to answer and connection reporting.

Takes MODEM_ANSWER_MODE, returns STATUS. Category: modem service request.

*define msgModemSetAnswerMode

Enum32 (MODEM_ANSWER_MODE)
mdrnAnswerDataMode
mdrnAnswerFaxMode
mdrnAnswerVoiceMode

} ;

flagO,
flagl,
flag2

MakeMsg(clsModem, 26)

II Modem answer filter/mode.
II Answer in data mode.
II Answer in fax mode.
II Answer in voice mode.

NOTE: Not all modems are capable of discriminating between the type of incoming call.

msgModemAnswer
Immediately answers a telephone call.

Takes nothing, returns STATUS. Category: modem service request.

*define msgModemAnswer MakeMsg(clsModem, 27)

msgModemHangUp
Hang-ups and disconnects to terminate a connection.

Takes nothing, returns STATUS. Category: modem service request.

*define msgModemHangUp MakeMsg(clsModem, 28)

430 PENPOINT API REFERENCE

Part 10 / Connectivity

msgModemSetSignailingModes
Establishes/ restricts the modem to use specific signalling modes/standards.

Takes P _MODEM_SIGNALLING_MODES, returns STATUS. Category: modem service request.

*define msgModemSetSignallingModes MakeMsg(clsModem, 29)

Enum32 (MODEM_SIGNALLING_VOICEBAND) {

} ;

mdmVoiceBandBell103J flagO,
mdmVoiceBandBell212A flag1,
mdmVoiceBandV21 flag2,
mdmVoiceBandV22 flag3,

mdmVoiceBandV22bis

mdmVoiceBandV23
mdmVoiceBandV26

mdmVoiceBandV26bis
mdmVoiceBandV26ter .

mdmVoiceBandV27
mdmVoiceBandV27bis
mdmVoiceBandV27ter
mdmVoiceBandV29

mdmVoiceBandV32

mdmVoiceBandV33

flag4,

flag5,
flag6,

flag7,
flag8,

flag9,
flag10,
flag11,
flag12,

flag13,

flag14

Enum32 (MODEM_SIGNALLING_WIDEBAND)
mdmWideBandV35 flagO,

mdmWideBandV36 flag1,

mdmWideBandV37 flag2

} i

II Voice-band signalling standards.
II 300 BPS.
II 1200 BPS.
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II

300 BPS duplex modem on GSTN.
1200 BPS duplex modem on GSTN

or P-P leased two-wire circuits.
2400 BPS duplex modem on GSTN

or P-P two-wire leased circuits.
600/1200 BPS modem on GSTN.
2400 BPS modem on four-wire

leased circuits.
2400/1200 BPS modem on GSTN.
2400 BPS duplex modem on GSTN

or P-P two-wire leased circuits.
4800 BPS on leased circuits.
2400/4800 BPS on leased circuits.
4800/2400 BPS modem on GSTN.
9600 BPS FDX or HDX modem on

P-P four-wire leased circuits.
9600/4800 BPS duplex modem on

GSTN or leased circuits.
14400 BPS modem on P-P

four-wire leased circuits.

II Wide-band signalling standards.
II 48 KBPS data transmission on
II 60-108 KHz group band circuits.
II 48-72 KBPS sync data transmission
lion 60-108 KHz group band circuits.
II 72-168 KBPS sync data transmission
lion 60-108 KHz group band circuits.

typedef struct { II Modem modulationlsignalling modes.
MODEM_SIGNALLING_VOICEBAND voiceBand; II Voice band signalling.
MODEM_SIGNALLING_WIDEBAND wideBand; II Wide band signalling.

MODEM_SIGNALLING_MODES, *P_MODEM_SIGNALLING_MODESi

NOTE: Not all modems provide support for selecting signalling modes.

msgModemSetToneDetection
Enables or disables busy tone and/or dial tone detection.

Takes MODEM_TONE_DETECTION, returns STATUS. Category: modem service request.

*define msgModemSetToneDetection

Enum32 (MODEM_TONE_DETECTION)
mdmToneDetectDisable,
mdmToneDetectBusyOnly,
mdmToneDetectDialOnly,
mdmToneDetectBusyAndDial

};

MakeMsg(clsModem, 30)

II Busy and dial toneCarrier signal on/off.
II Detect neither busy tone or dial tone.
II Detect busy tone, but not dial tone.
II Detect dial tone, but not busy tone.
II Detect dial tone and busy tone (Default).

MODEM.H 431
Action Messages

msgModemSetSpeakerControl
Enables, disables and controls modem speaker behavior.

Takes MODEM_SPEAKER_CONTROL, returns STATUS. Category: modem service request.

#define msgModemSetSpeakerControl MakeMsg(clsModem, 31)

Enum32 (MODEM_SPEAKER_CONTROL) { II Specifies the modem speaker behavior.
mdmSpeakerOn, II Speaker is always on.
mdmSpeakerOff, II Speaker is always off.
mdmSpeakerOnConnectOff II Speaker on until carrier detected (Default).

} ;

msgModemSetSpeakerVolume
Sets the volume of the modem speaker.

Takes MODEM_SPEAKER_ VOLUME, returns STATUS. Category: modem service request.

#define msgModemSetSpeakerVolume

Enum32 (MODEM_SPEAKER_VOLUME)
mdmSpeakerVolumeWhisper,
mdmSpeakerVolumeLow,
mdmSpeakerVolumeMedium,
mdmSpeakerVolumeHigh

} ;

MakeMsg(clsModem, 32)

II Specifies the modem speaker volume.
II Lowest volume level.
II Low/reasonable volume level.
II Normal/average volume level (Default).
II Highest volume level.

NOTE: Not all modems are capable of adjusting modem speaker volume.

msgModemSetCommandState
Sets the modem into command mode.

Takes nothing, returns STATUS. Category: modem service request.

#define msgModemSetCommandState MakeMsg(clsModem, 33)

msgModemSetDuplex
Sets the duplex mode for inter-modem communications while on-line.

Takes MODElYCDUPLEX_MODE, returns STATUS. Category: modem service request.

#define msgModemSetDuplex

Enum32 (MODEM_DUPLEX_MODE)
mdmDuplexHalf,

mdmDuplexFull

} ;

MakeMsg(clsModem, 34)

II Indicates data transmission line duplex.
II Data transmitted in one direction at a
II time (the line must be turned around).
II Data can be transmitted in both
II directions simultaneously (Default).

NOTE: Not all modems are capable of setting the duplex once on-line.

msgModemSetMNPMode
Sets the MNP mode of operation.

Takes MODEM_MNP _MODE, returns STATUS. Category: modem service request.

#define msgModemSetMNPMode MakeMsg(clsModem, 35)

432 PENPOINT API REFERENCE

Part 10 / Connectivity

Enum32 (MODEM_MNP_MODE)
mdmMNPModeDirect,
mdmMNPModeReliable,

mdmMNPModeAutoReliable,

mdmMNPModeLAPM
} ;

II MNP mode in which modem is to operate.
II Disable MNP mode (default).
II Both modems must support MNP levels
II 1-4 (5 if enabled) before a connection
II can be made.
II Attempt to establish an MNP connection; if
II it fails establish a direct connection.
II LAPM connection.

NOTE: Not all modems provide MNP support.

msgModemSetMNPCompression
Sets MNP class 5 compression on or off.

Takes MODEM_MNP_COMPRESSION, returns STATUS. Category: modem service request.

#define msgModemSetMNPCompression MakeMsg(clsModem, 36)

Enum32 (MODEM_MNP_COMPRESSION) { II Type of compression to use in MNP mode.
mdmMNPCompressionOff, II Disable MNP level 5 compression (default).
mdmMNPCompressionOn II Enable MNP level 5 compression.

} ;

msgModemSetMNPBreakType
Specify how a break is handled in MNP mode.

Takes MODEM_MNP _BREAK_TYPE, returns STATUS. Category: modem service request.

#define msgModemSetMNPBreakType MakeMsg(clsModem, 37)

Enum32 (MODEM_MNP_BREAK_TYPE) { II How breaks are handled in MNP mode.

} ;

mdmMNPSendNoBreak, II Do not send break to remote modem.
mdmMNPEmptyBuffersThenBreak,11 Empty data buffers before sending break.
mdmMNPImmediatelySendBreak, II Send break when received (default).
mdmMNPSendBreakInSequence II Send break relative to data to be sent.

msgModemSetMNPFlowControl
Specify the flow control to use in MNP mode.

Takes MODEM_MNP _FLOW _CONTROL, returns STATUS. Category: modem service request.

#define msgModemSetMNPFlowControl MakeMsg(clsModem, 38)

Enum32 (MODEM_MNP_FLOW_CONTROL) {II Indicates the flow control for MNP mode.
mdmMNPFlowControlDisable, II No flow control used (default).
mdmMNPFlowControlXonXoff, II Use Xon/Xoff flow control.
mdmMNPFlowControlHardware II Use RTS/cTS flow control.

};

MODEM.H 433

Superclass Messages

Superclass Messages

Arguments

msgSvcGetMetrics
Passes back the current modem metrics.

Takes P _SVC_GET_SET_METRICS, returns STATUS. Category: superclass message.

typedef struct MODEM_METRICS {

MODEM DIAL MODE mdrnDialMode;
MODEM DUPLEX MODE mdrnDuplexMode; - -
MODEM SPEAKER CONTROL mdmSpeakerControl;
MODEM SPEAKER VOLUME mdmSpeakerVolume;
MODEM TONE DETECTION mdmToneDetection;
MODEM ANSWER MODE mdmAnswerMode; - -
MODEM AUTO ANSWER mdmAutoAnswer;
U32 mdmAutoAnswerRings;
MODEM MNP MODE mdmMNPModei
MODEM MNP COMPRESSION mdmMNPCompression;
MODEM MNP BREAK TYPE - - - mdmMNPBreakTypei
MODEM MNP FLOW CONTROL mdmMNPFlowControl; - - -

MODEM ~TRICS, *P_MODEM_METRICS;

The pMetrics field of SVC_GET_SET_METRICS is expected to point to a buffer capable of receiving
MODEM_METRICS as described below.

msgSvcSetMetrics
Sets current modem metrics, and re-initializes the modem with specified metrics.

Takes P _SVC_GET_SET_METRICS, returns STATUS. Category: superclass message.

The pMetrics field of SVC_GET_SET_METRICS is expected to point to a buffer containing

MODEM_METRICS as described above.

msgSvcCharactersticsRequested
Passes back the characteristics of the modem service.

Takes P _SVC_CHARACTERISTICS, returns STATUS. Category: superclass message.

#define mdmHWManufactureNameLength 15
#define mdmHWModelNameLength 15

typedef struct { II Modem hardware manufacturer.
CHAR name[mdmHWManufactureNameLength+1]; II Name of manufacturer.

} MODEM_HARDWARE_MANUFACTURER, *P_MODEM_HARDWARE_MANUFACTURER;
typedef struct { II Model of modem hardware.

CHAR name[mdmHWModelNameLength+1];11 Name of model.
} MODEM_HARDWARE_MODEL, *P_MODEM_HARDWARE_MODEL;
Enum32 (MODEM_HARDWARE_FEATURES) { II Modem hardware capabilities.

} ;

mdmHWCapAutoDial flagG, II Auto dialing.
mdmHWCapAutoAnswer flag1, II Auto answer.
mdmHWCapAutoBaudDetect flag2, II Auto baud detection.
mdmHWCapCallTypeDiscrimination = flag3, II Call type discrimination

II (Fax, Data, Voice).
mdmHWCapPhoneJackConnectDetect = flag4, II Phone jack connect and

II disconnect event reporting.
mdmHWCapRingSignalMachineWakeUp= flagS II Ring signal detection

II wakes up dormant machines.

>-....
:>
j:

~

434 PEN POINT API REFERENCE

Part 10 / Connectivity

typedef struct II Size of internal modem 1/0 buffers.
S32 sizelnputBuffer; II Input buffer size.
S32 sizeOutputBuffer; II Output buffer size.

MODEM_HARDWARE_BUFFERS, *p MODEM HARDWARE_BUFFERS;
Enum32 (MODEM_DCE_CONTROL)

mdmDCEControlAT = flagO
II Firmware DCE protocol/command sets.
II Hayes 'AT' commands.

} ;

typedef struct MODEM_CHARACTERISTICS { II Modem hw & sw characteristics.
MODEM_HARDWARE_MANUFACTURER hardwareManufacturer;
MODEM_HARDWARE_MODEL hardwareModeli
MODEM HARDWARE FEATURES hardwareFeature;
MODEM_HARDWARE_BUFFERS hardwareBuffer;
MODEM DCE CONTROL dceControl;
MODEM_SIGNALLING_MODES signallingMode;
MODEM LINK CONTROL linkControl;
U32 spare [4];

MODEM_CHARACTERISTICS, *P_MODEM_CHARACTERISTICS;

The pBuf field of SVC_CHARACTERISTICS is expected to point to a buffer capable of receiving
MODEM_CHARACTERISTICS as described below.

Implementors of dsModem services that wish to provide capabilities not described within
MODEM_CHARACTERISTICS should contact GO Corporation to ensure such dsModem enhancements
are standardized and noted within MODEM_CHARACTERISTICS. Thank you.

Class Messages

Mcu©t.10'
Avgurn%mts

msgNew
Creates a new instance of a modem service.

Takes P _MODEM_NEW, returns STATUS. Category: class message.

fdefine modemNewFields serviceNewFields

typedef struct MODEM_NEW
{

modemNewFields
MODEM_NEW, *P_MODEM_NEWi

Error Return Values: percolated up from other classes,

msgNewDefaults
Initializes the MODEM_NEW structure to default values.

Takes P _MODEM_NEW, returns STATUS. Category: class message.

typedef struct MODEM_NEW
{

modemNewFields
MODEM_NEW, *P_MODEM_NEW;

pArgs->svc.style.autoOption
pArgs->svc.style.exclusiveOpen
pArgs->svc.style.waitForTarget
pArgs->svc.pManagerList
pArgs->svc.numManagers
static OBJECT pManagerList[]
{

theModems
} ;

= true;
= false;
= pManagerList;

sizeof(pManagerList)/sizeof(OBJECT);

II clsModem is one of theModems.

MODEM.H 435

Superclass Messages

clsModem error status values
This modem service doesn't (or cannot) support the current request due to hardware or firmware

constraints.

#define stsModernNotSupported MakeStatus(clsModem, 1)

A request to the modem service contained a parameter that is invalid.

#define stsModemBadParameter MakeStatus(clsModem, 2)

The size of the buffer supplied to get/set modem service metrics or characteristics is incorrect.

#define stsModemBufferSizeError MakeStatus(clsModem, 3)

The modem service was unable to find and/or open its target service.

#define stsModemTargetError MakeStatus(clsModem, 4)

The modem service is not open. The current request requires that it be open.

#define stsModernNotOpen MakeStatus(clsModem, 5)

The modem has responded to a modem command with an error response.

#define stsModemErrorResponse MakeStatus(clsModem, 6)

The modem has responded to a modem command with a response that was unrecognized.

#define stsModemUnrecognizedResponse MakeStatus(clsModem, 7)

The modem responded with a notification of carrier loss after dialing, attempting to go online, or being

online.

#define stsModernNoCarrier MakeStatus(clsModem, 8)

The modem didn't detect a dial tone while dialing to establish a connection.

#define stsModernNoDialTone MakeStatus(clsModem, 9)

The modem didn't detect an answer tone after dialing to establish a connection.

#define stsModernNoAnswer MakeStatus(clsModem, 10)

The modem has been unable to successfully transmit a data frame to the remote node.

#define stsModemTransmitError MakeStatus(clsModem, 11)

The modem has been unable to successfully receive a data frame to the remote node.

#define stsModemReceiveError MakeStatus(clsModem, 12)

The modem has detected a cyclic redundancy check error within a data frame received from the remote

node.

#define stsModemCRCError MakeStatus(clsModem, 13)

The modem has detected a busy signal after dialing a telephone number.

#define stsModemLineBusy MakeStatus(clsModem, 14)

The modem service could not locate a window within one of its option cards. This is an internal error.

#define stsModernNoSuchWindow MakeStatus(clsModem, 255)

clsModem non-error status values

None currently defined

OBIsve.H

This file contains the API definition for clsOBXService.

clsOBXService inherits from clsIOBXService.

Provides default behavior for Outbox Services.

#ifndef OBXSVC_INCLUDED
#define OBXSVC INCLUDED
#ifndef IOBXSVC INCLUDED
#include <iobxsvc.h>
#endif

I. Introduction
In PenPoint, output operations are handled by a special class of services known as the" outbox services."
An outbox service implements the" deferred output" feature in PenPoint: This concept permits a user to

specify output operations regardless of the readiness of output devices. If the output device (e.g., a

printer, a phone plug, a LAN connection, etc.) is not available or not connected, documents waiting for
output will be placed into an "output queue" associated with the output service. (This output queue is a

special section in the system Outbox notebook.) Thus, the actual output process is deferred until the
output device becomes ready.

The Target of an Outbox Service
PenPoint expects that the PenPoint computer will not always be attached to most output devices.

Therefore, the output process for any PenPoint documents will be deferred until a connection is

established. The software controlling an input/output device is often implemented as an I/O service. In
most cases, an outbox service will make such an I/O service as its "target." (See service.h for more
information about target services in general.) Examples ofllO services include drivers for serial ports,

parallel ports, data and/or fax modems, and LAN servers. By making an I/O service its target, an outbox

service is notified whenever the physical output device becomes connected or disconnected. When an

outbox service is not actively sending out a document, the connection status of the device is displayed in
the "Status" column of the Outbox notebook Table of Contents.

Enabling and Disabling an Outbox Service
An outbox service must be "enabled" before its output process can begin. This enabled state is
represented by a checkbox in the "Enabled?" column of the Outbox notebook TOC. Typically, an

output device permits only exclusive access. If multiple outbox services are connected to the same output
device, only one can be enabled at a time. Enabling an outbox service causes it to become the "owner" of
its target service. The service remains "enabled" until either it is manually disabled by the user (i.e., by

unchecking the "Enabled?" box); or until it willingly releases ownership of the device so that another

service can become the new owner. For more details on the notion of service ownership, see the service
API in service.h.

438 PEN POINT API REFERENCE
Part 10 / Connectivity

The concept of enabling or disabling an outbox service also provides a convenient mechanism for the
user to manage an output device that can not automatically determine whether or not it becomes
connected or disconnected. Because the outbox service will not be informed when its target service is
connected or disconnected, its status will always remain "Connected" regardless of the connection status

of the physical device. Such services can be explicitly disabled to prevent documents from being sent to a
device that is not ready for output.

Managing the Output Process via the Outbox
Service Protocol

Each instance of an outbox service has a corresponding section in the system Outbox notebook. The
name of the service and the name of the section are the same. For example, the user may create two
instances of an outbox service class named "DotMatrix," say "Engineering Printer" and "Upstairs."

Each instance will have its own output queue, implemented as a section called "Engineering Printer"
and "Upstairs" in the outbox notebook. The primary function of an outbox service is to manage the
output queue for each service instance. This function is implemented by a standard outbox protocol
consisting of 8 inter-related messages, as summarized below:

The client of an outbox service first sends msgOBXSvcMoveInDoc or msgOBXSvcCopylnDoc to the

outbox service instance, telling it to add an existing PenPoint document to its output queue. Once a
document is added to the outbox, msgOBXSvcPollDocuments informs an outbox service that it should
check to see if conditions are right to start an output process. Other events may also cause the outbox
service to receive msgOBXSvcPollDocument. For example, an outbox service will self-send this message
when the service has just been enabled. If the service is enabled and the output device is connected, the
service sends msgOBXSvcNextDocument to self to locate the next document ready for output. If a
document exists in the output queue but is not ready for output, the service self-sends
msgOBXSvcScheduleDocument to reschedule output at a later time. If a document is ready for output,
the service will lock the document with msgOBXSvcLockDocument, and kick off the output process
with msgOBXSvcOutputStart. At the end of the output process, the document being sent will send
msgOBXDocOutputDone to the outbox service. Finally, if the output finished normally, the service
self-sends msgOBXSvcPollDocuments again to see if anything else is ready for output. If the output
didn't finish normally, the service self-sends msgOBXSvcUnlockDocument to restore the document to
its" pre-output" state.

Outbox Documents
The primary focus of an outbox service is to manage its output queue. An output queue is essentially a
collection of documents located in an outbox section. The primary focus of an outbox document is to
manage a single output job.

An outbox document can be any PenPoint document, i.e., an instance of an application inheriting from
clsApp. It can be created, opened, and closed just like a regular page in the notebook. An example of an
outbox document would be an "address envelope" for an electronic mail service.

An outbox document is also responsible for interacting with the outbox service and controlling the
output process, such as sending out an electronic mail message through a communication link. Thus, in
addition to responding to clsApp messages, an outbox document also understand the following
elsO BXService messages:

msgOBXDocOutputStartOK

For details see the description for each message.

OBXSVC.H 439
1. Introduction

Writing Your Own Outbox Service
clsOBXService is an abstract class. You should always create a subclass of it. This is because

clsOBXService only manages the output queue, it does not actually cause the output to happen.
Typically, your outbox service will inherit the output queue management behavior from clsOBXService,

and add any service-specific behaviors for the communication protocol or devices you need to handle.

The default behavior of the outbox service does not support sophisticated scheduling algorithms that
may be required by some services. However, it is not difficult to replace some default behaviors with new

ones. The messages you may want to handle on your own include:

msgOBXSvcMoveinDoc

For example, the default behavior of msgOBXSvcNextDocument treats the output queue as a simple,
Fist-In-First-Out queue. If this is not sufficient for the service you wish to develop, you can provide your

own behavior and pass back a document not on the top of the queue, or even a document not located in

the Outbox notebook if it makes sense for the service.

Another example would be msgOBXSvcLockDocument and msgOBXSvcUnlockDocument. Their

default behavior is to mark the document so that gestures over the document icon will not be recognized

while output is in progress. A msgOBXSvcUnlockDocument typically indicates that the output has

been aborted for some reason. You may wish to add to the default behavior, such as notifying your
observers that some error has just occurred.

For details see the description for each message.

Working with Existing Outbox Services
As explained before, all output operations should be performed through an outbox service in order to

take advantage of the "deferred output" feature ofPenPoint. An application or a service can "bypass" the

standard outbox protocol only if the output device is always present or is rarely detached from the
PenPoint computer.

The key to working with an existing outbox service is to conceptually break up the output process into
two distinct phases. The first phase is either adding an existing PenPoint document to the output queue,
or creating a special document of some sort in temporary storage and and then move it into the output

queue. The second phase is the actual output process, during which a device-specific data stream is sent

out via some communication link. clsOBXService provides a framework for managing the transition

from one phase to another.

The separation of these two phases of output operation has an additional benefit. In many cases, an

application developer can avoid writing a new outbox service in order to handle application-specific
output functions. It is often sufficient to handle only one of the two phases of the output operaton.

There are several options, as explained below:

One inexpensive solution is to have the application export the data into a format that is easier to output

under an existing outbox service. For example, a database document can generate a report as an ASCII

file or a word processor document and move it into a printer, fax or e-mail outbox section. Similarly, a

spreadsheet document can export its pie chart into a popular drawing program document and move it to
the outbox for output.

Another approach is to allow the database or spreadsheet document itself to be moved or copied into the

output queue. When the document receives msgOBXSvcOutputStart, it knows that the output device
is ready. It then proceeds to perform the output operation the old-fashioned way. This alternative may

be an attractive one if we wish to port an existing PC application to PenPoint. Such applications already

440 PENPOINT API REFERENCE
Part 10 / Connectivity

have sophisticated output capabilities, and we only need to ensure not to start the output process until
the device is ready. The obvious disadvantage of this approach is that it requires additional memory if we
have to make a copy of the document in order to put it into the outbox.

A third approach represents a compromise between the two. During the first phase of the output
operation, a "surrogate" document, rather than the real one, is copied into the output queue. This
surrogate document not only understands the outbox output protocol, but also knows how to
communicate with the original document. It is effectively a "pointer" back to the original document.
When the output process begins, the surrogate document communicates with the original one to cause
the device-specific data stream to be sent to the correct output port.

Services that Handle Input and/or Output

clsOBXService deals only with output operations. For those services that want to handle input
operations, a similar class clsINBXService is provided by PenPoint. If a service (e.g., an electronic mail
service) wants to handle both input and output, another abstract class, clsIOBXService, is provided.
clsIOBXService associates the service with both an input queue and an output queue. (The input queue
is a section in the system Inbox notebook.) The service, the inbox section, and the outbox section all
have the same name. In fact, clsOBXService is implemented as a subclass (hence a subset) of
clsIO BXService.

Class Messages

Mesz©ge
Arguments

msgNewDefaults
Initializes the P _OBXSVC_NEW structure to default values.

Takes P_OBXSVC_NEW, returns STATUS. Category: class message.

typedef struct OBXSVC_NEW_ONLY
OBJECT sectionClass; II class of the outbox section (for output queue)

II This must be clsNBToc or a subclass of it.
U32 unused1;
U32 unused2;
U32 unused3;

OBXSVC_NEW_ONLY, *P_OBXSVC_NEW ONLY;
#define obxServiceNewFields \

ioSvcNewFields \
OBXSVC NEW ONLY ObXSVCi

typedef struct OBXSVC_NEW {
obxServiceNewFields

} OBXSVC_NEW, *P_OBXSVC_NEW;

Zeroes out pArgs->obxsvc and sets ... >iobxsvc.out.autoPoll
clsNBToc;

msgNew
Creates a new outbox service object.

= true;>obxsvc.sectionClass

Takes P_OBXSVC_NEW, returns STATUS. Category: class message.

typedef struct OBXSVC_NEW {
obxServiceNewFields

OBXSVC_NEW, *P_OBXSVC_NEWi

Arguments

OBXSVC.H 441

Messages Sent to an Outbox Service Instance

msgOBXSvcSwitchlcon
Toggles the outbox icon (to empty or filled) if neccessary.

Takes nothing, returns STATUS. Category: class message.

#define msgOBXSvcSwitchlcon msgIOBXSvcSwitchlcon

Check the content of the outbox notebook. Show the" filled" icon if any document is found. Show the
"emtpy" icon otherwise.

msgOBXDocGetService
Gets the service name.

Takes P_OBX_DOC_GET_SERVICE, returns STATUS. Category: class message.

#define msgOBXDocGetService msgIOBXDocGetService

typedef struct OBX_DOC_GET_SERVICE {
OBJECT document; II In: document uid
CHAR svcName[nameBufLength]i II Out: service name

OBX_DOC_GET_SERVICE, *P_OBX_DOC_GET_SERVICE;

Get the name of the service associated with an outbox document. If the document has not been placed
into an outbox section, stsFailed is returned.

Note that the document must be at the top level of an outbox section. That is, if the document is
embedded within another document which is in an outbox section, stsFailed will be returned because
the document is not at the top level of an outbox section.

msgOBXDoclnOutbox
Checks if a document is in a section in the Outbox.

Takes P _OBX_DOC_IN_OUTBOX, returns STATUS. Category: class message.

#define msgOBXDoclnOutbox msgIOBXDoclnIOBox

typedef struct OBX_DOC_IN_OUTBOX
UUID uuid; II In: document uuid
CLASS svcClassi II In: service class to check for

OBX_DOC_IN_OUTBOX, *P_OBX_DOC_IN_OUTBOX;

This message can be sent to clsOBXService to check if a PenPoint document represented by
pArgs->uuid is already in the output queue of an outbox service inheriting from pArgs->svcClass. stsOK
is returned if it is, stsFailed otherwise. If pArgs->svcClass is objNull, stsOK is returned if the document
is anywhere in the Outbox notebook.

Messages Senl 10 an Oulbox Service
Inslance

msgO BXSvcMovelnD oc
Moves a document into the outbox section.

#define msgOBXSvcMovelnDoc msgIOBXSvcMovelnDoc

442 PENPOINT API REFERENCE
Part 10 / Connectivity

}v't®SSt1gc

Argvmcntti

typedef struct OBXSVC_MOVE_COPY_DOC
FS LOCATOR source; II In: Location of source document.
U16 sequence; II In: Sequence number to move/copy in

II front of.
OBXSVC_MOVE_COPY_DOC, *P_OBXSVC_MOVE_COPY_DOC;

Superclass behavior is to move the document located at pArgs->source into the output queue associated
with the outbox service. For example, set pArgs->sequence to 1 to move the document to the top of the
queue. Set it to maxU16 to move the document to the bottom of the queue.

After the document is moved (or copied) to the output queue, it is considered to be in a state ready for
output, even though the service may not be connected at the time. Client should not alter the document

in any way once it has been moved to the output queue.

Subclasses can provide their own behavior if they wish. Remember to use the class message
msgOBXSvcSwitchlcon to change the outbox icon.

msgOBXSvcCopylnDoc
Copies a document into the Outbox section.

Takes P_OBXSVC_MOVE_COPY_DOC, returns STATUS.

#define msgOBXSvcCopyInDoc msgIOBXSvcCopyInDoc

typedef struct OBXSVC_MOVE_COPY_DOC
FS_LOCATOR source; II In: Location of source document.
U16 sequence; II In: Sequence number to move/copy in

II front of.
OBXSVC_MOVE_COPY_DOC, *P_OBXSVC_MOVE_COPY_DOC;

Same as msgOBXSvcMovelnDoc, except that the document is copied to the output queue.

msgOBXSvcGetTempDir
Passes back a handle for a temporary directory.

Takes P_OBJECT, returns STATUS.

#define msgOBXSvcGetTempDir msgIOBXSvcGetTempDir

This message is provided for clients who may want ot prepare their output document before moving it
into the output queue. The handle of an "official" temporary directory is passed back and it can be used
as temporary storage for documents, data, etc. Clients are responsible for deleting temporary files when
they are done. The directory will be flushed after a warm boot.

msgO BXSvcPollD ocuments
Polls all documents in an output queue and output those who are ready.

Takes nothing, returns STATUS.

#define msgOBXSvcPollDocuments msgIOBXSvcPollDocuments

This message tells the outbox service to look through its output queue and send out the first document
ready for output. The service will first make sure that it is enabled and is connected to the designated
output port. If these conditions are met, it will then self-send msgOBXSvcNextDocument to locate the
next document ready for output.

If msgOBXSvcNextDocument returns stsOK, indicating that a document is ready for output, this
message proceeds to self-send msgOBXSvcLockDocument to lock the document, and finally
msgOBXSvcOutputStart to initiate the output process.

M®£sdge
Arguments

OBXSVC.H 443

Messages Sent to an Outbox Service Instance

If msgOBXSvcNextDocument returns stsOBXSvcDocReady, indicating that the section is not empty
but none of the documents are ready for output, this message self-sends
msgOBXSvcScheduleDocument to schedule the document passed back in pArgs at a later time.

Subclasses normally do not process this message.

m~gOBXSvcNextDocument

msgOBXSvcNextDocument
Passes back the next document ready for output.

Takes P _OBXSVC_DOCUMENT, returns STATUS. Category: self-sent.

#define msgOBXSvcNextDocument

typedef struct OBXSVC DOCUMENT
OBJECT uid;
OBJECT dir;
OBJECT docClass;
U16 sequence;
CHAR pName[nameBufLength];
P UNKNOWN pDocData;

OBXSVC_DOCUMENT, *P_OBXSVC_DOCUMENT;

msgIOBXSvcNextDocument

II uid of the doc
II app dir of the doc
II class of the doc
II sequence of the doc
II name of this doc
II subclass's private data

Superclass behavior is to start from the top of the output queue and locate the first document ready for
output. If one is found, information about the document is passed back in pArgs. The same pArgs will
be passed to messages msgO BXSvcLockDocument and msgO BXSvcOutputStart. By default, a
document is ready for output when it is closed. If the document is open, it will receive
msgOBXDocOutputStartOK and it should return stsOK to indicate that it is ready for output.

Subclasses can provide their own behavior if they wish. Return stsOBXSvcSectionEmpty to give the
superclass an opportunity to change the outbox icon from filled to empty.

stsOK A document is ready for output.

stsOBXSvcSectionEmpty The output queue is empty.

stsOBXSvcDocNotReady No document in the output queue is ready.

Service-Specific Error Returns.

msgO BXSvcPollDocuments

msgO BXSvcLockD ocument
Locks the document in preparation for output.

Takes P_OBXSVC_DOCUMENT, returns STATUS. Category: self-sent.

#define msgOBXSvcLockDocument

typedef struct OBXSVC DOCUMENT
OBJECT uid;
OBJECT dir;
OBJECT docClass;
U16 sequence;
CHAR pName[nameBufLength];
P UNKNOWN pDocData;

OBXSVC_DOCUMENT, *P_OBXSVC_DOCUMENT;

msgIOBXSvcLockDocument

II uid of the doc
II app dir of the doc
II class of the doc
II sequence of the doc
II name of this doc
II subclass's private data

This message is a place holder for subclasses that may require additional preparatory work to be
performed on a document before it is ready for output. For example, a document may have to be
"locked" so that it can not be opened during the output process. This message may be used for other

444 PENPOINT API REFERENCE
Part 10 I Connectivity

.l\'lesS!lge
AV9t.Jmellfs

Mess©ge
Avglnnel1ts

purposes as well. For example, an outbox service may decide to store a light-weight "shadow" document
(e.g., a report designator for a database application) in the output queue until it is chosen for output.
The service then handles this message by converting the shadow document to a real one (e.g., the actual
report).

The superclass behavior for this message is to stamp the document directory with the filesystem attribute
iobxsvcDocOutputlnProgress. This stamp will prevent any gestures over the document from being
processed. This means that once a document is locked for output it can not be deleted, renamed, etc. via
gestures.

msgOBXSvcUnlockDocument

msgOBXSvcUnlockDocument
Unlocks a document that was previously locked.

Takes P _OBXSVC_DOCUMENT, returns STATUS. Category: self-sent.

#define msgOBXSvcUnlockDocument

typedef struct OBXSVC DOCUMENT
OBJECT uid;
OBJECT dir;
OBJECT docClass;
U16 sequence;
CHAR pName[nameBufLength];
P_UNKNOWN pDocData;

OBXSVC_DOCUMENT, *P_OBXSVC_DOCUMENT;

msgIOBXSvcUnlockDocument

II uid of the doc
II app dir of the doc
II class of the doc
II sequence of the doc
II name of this doc
II subclass's private data

This message is a place holder for subclasses that may require additional "cleanup" work to be
performed on a document before it is put back to the output queue.

The superclass behavior for this message is to remove the iobxsvcDocOutputlnProgress stamp on the
document directory.

msgOBXSvcLockDocument

msgOBXSvcScheduleDocument
Schedules a document that is not ready for output

Takes P _OBXSVC_DOCUMENT, returns STATUS. Category: self-sent.

#define msgOBXSvcScheduleDocument

typedef struct OBXSVC DOCUMENT
OBJECT uid;
OBJECT dir;
OBJECT docClass;
U16 sequence;
CHAR pName[nameBufLength];
P_UNKNOWN pDocData;

OBXSVC_DOCUMENT, *P_OBXSVC_DOCUMENT;

msgIOBXSvcScheduleDocument

II uid of the doc
II app dir of the doc
II class of the doc
II sequence of the doc
II name of this doc
II subclass's private data

This message is sent when msgOBXSvcNextDocument locates a document in the output queue but the
document is not ready for output.

Subclasses should provide their own behavior. The default behavior is to release the ownership of the
target service (i.e., become disabled), with the expectation that the user must manually schedule the
document later on (by re-enabling the section.)

msgOBXSvcNextDocument

Message
Argitmenf5

OBXSVC.H 445

Messages Sent to an Outbox Service Instance

msgO BXSvcOutputStart
Starts the output process for a document in the output queue.

Takes P _OBXSVC_DOCUMENT, returns STATUS. Category: self-sent.

#define msgOBXSvcOutputStart

typedef struct OBXSVC DOCUMENT
OBJECT uidi
OBJECT diri
OBJECT docClassi
U16 sequencei
CHAR pName[nameBufLength]i
P_UNKNOWN pDocDatai

OBXSVC_DOCUMENT, *P_OBXSVC_DOCUMENTi

msgIOBXSvcIOStart

II uid of the doc
II app dir of the doc
II class of the doc
II sequence of the doc
II name of this doc
II subclass's private data

Superclass behavior is to activate the outbox document if it isn't already active, and then send
msgOBXDocOutputStart to the document instance.

Subclasses can provide their own behavior if they wish.

msgO BXSvcO utputCancel
Cancels the output process.

Takes nothing, returns STATUS.

#define msgOBXSvcOutputCancel msgIOBXSvcIOCancel

This message is sent to the service when the caller wishes to cancel any output operation in progress.
The service responds to this message by sending msgOBXDocOutuptCancel to an active outbox
document. After the document is cancelled, the service will post an error note to the user if there are

other documents waiting to be processed. The user then decides whether or not the service should

proceed to send the remaining documents.

Subclasses do not normally process this message.

msgOBXSvcOutputCleanUp
Cleans up after the current output is done.

Takes P_OBX_DOC_OUTPUT_DONE, returns STATUS. Category: self-post ..

#define msgOBXSvcOutputCleanUp

Enum32 (OBX_DOC_EXIT_BEHAVIOR)
obxDocExitDoNothing 0,
obxDocExitDelete 1,
obxDocExitMarkAsFailed 2,
obxDocExitMarkAsCancelled 3

} i

msgIOBXSvcIOCleanUp

typedef struct OBX_DOC_OUTPUT_DONE {
OBX_DOC_EXIT_BEHAVIOR behaviori II exit behavior
P UNKNOWN pDocData; II Unused: document specific data

OBX_DOC_OUTPUT_DONE, *P_OBX_DOC_OUTPUT_DONE;

This message is posted to self as a result of the service receiving msgO BXDocOutputDone, which is
sent by the outbox document when it finishes the output operation. The outbox document will be

either deleted or marked as specified in pArgs, and when everything is properly cleaned up the service

will post msgOBXSvcPollDocuments to self to see if anything else is waiting for output.

Subclasses do not normally process this message.

msgOBXDocOutputDone

446 PENPOINT API REFERENCE

Part 10 I Connectivity

msgOBXSvcStateChanged
Tells observers that the service state just changed.

Takes OBJECT, returns STATUS. Category: observer notification ..

tdefine msgOBXSvcStateChanged msgIOBXSvcStateChanged

Informs observers that the state of a service has just changed. pArgs is the UID of the service.

msgOBXSvcQueryState
Passes back the state of the service.

Takes P _OBXSVC_QUERY_STATE, returns STATUS.

tdefine msgOBXSvcQueryState msgIOBXSvcQueryState

typedef struct
BOOLEAN enabled; II true if the service is enabled.
CHAR status [nameBuf Length]; II text describing the status of

II the service.
CHAR docName[nameBufLength]; II document being processed
P UNKNOWN pStateData; II subclass's private data

OBXSVC QUERY_STATE, *P_OBXSVC_QUERY_STATE;

This message is typically used to query what state the service instance is in.

msgOBXSvcGetEnabled
Gets the enabled state of the service.

Takes P _BOOLEAN, returns STATUS.

tdefine msgOBXSvcGetEnabled msgIOBXSvcGetEnabled

Subclasses can override this message and redefine the notion of" enabled." The default behavior of the
superclass is to equate "enabled" with the ownership of the target service (i.e., output device). That is,

the service is "enabled" when it owns the target service. By appending to or replacing the default

behavior, a subclass can define additional conditions which must be met before a service is considered

enabled.

msgOBXSvcSetEnabled
Sets the enabled state of the service.

Takes BOOLEAN, returns STATUS.

tdefine msgOBXSvcSetEnabled msgIOBXSvcSetEnabled

This message is sent to the service in response to service notification messages msgSvcOwnerAcquired

and msgSvcOwnerReleased. Subclasses can provide their own behavior and thereby redefine the notion
of" enabled" for the service. If they do, they must pass this message up to the ancestor so that observers

of the outbox service will be properly notified.

OBXSVC.H 447

Outbox Document Messages

Outbox Document Messages

tv"iess©ge

A~t9U~nent5

msgOBXDocOutputStartOK
Asks the outbox document if it is OK to start the output process

Takes nothing, returns STATUS.

#define msgOBXDocOutputStartOK msgIOBXDocIOStartOK

When an outbox service finds an opened document in the outbox section, it sends this message to the

document instance, asking whether it's OK to start the output operation while the document remains

open. When the document receives this message, it should return stsO K to give the service permission
to begin the output process. An error status, including stsNotUnderstood, is taken to mean that the

document instance vetos the request and the service will not start the output process.
\

msgOBXDocOutputStart
Tells an outbox document to start the output process.

Takes nothing, returns STATUS.

#define msgOBXDocOutputStart msgIOBXDocIOStart

This message is sent by the outbox service to a document. The document should respond to this

message by starting the output process.

msgOBXDocOutputDone
Tells the outbox service that output is finished.

Takes P_OBX_DOC_OUTPUT_DONE, returns STATUS. Category: client responsibility.

#define msgOBXDocOutputDone msgIOBXDocIODone

typedef struct OBX_DOC_OUTPUT_DONE {
OBX DOC EXIT BEHAVIOR behavior; II exit behavior
P UNKNOWN pDocData; II Unused: document specific data

OBX_DOC_OUTPUT_DONE, *P_OBX_DOC_OUTPUT_DONE;

When the output process is finished, the outbox document in charge of the output should send this

message to the outbox service. This message must be sent even if the output process has been aborted.

The pArgs for this message tells the outbox service what to do with the outbox document. If
obxDocExitDelete is specified, the document will be removed from the outbox. In all other cases the
document will be unlocked and left in the outbox. If either obxDocExitMarkAsCancelled or

obxDocExitMarkAsFailed are specified, the name of the document will be altered to provide visual

indication for the user that the output process has not completed successfully.

msgOBXDocGetService

msgOBXDocOutputCancel
Tells an outbox document to cancel the output process.

Takes nothing, returns STATUS.

#define msgOBXDocOutputCancel msgIOBXDocIOCancel

448 PENPOINT API REFERENCE

Part 10 / Connectivity

This message is used by the outbox service to inform a document that it should cancel the output
process. The document should handle this message by terminating its output operation and then
sending msgOBXDocOutputDone to the service with pArgs->behavior set to
obxDocExistMarkAsCancelled.

msgOBXDocStatusChanged
Tells the outbox service that the document status is changed.

Takes P _OBX_DOC_STATUS_CHANGED, returns STATUS. Category: client responsibility.

#define msgOBXDocStatusChanged msgIOBXDocStatusChanged

typedef struct OBX_DOC_STATUS_CHANGED
CHAR status [nameBuf Length]; II Text describing document state
P_UNKNOWN pDocData; II Unused: document-specific data

OBX_DOC_STATUS_CHANGED, *P_OBX_DOC_STATUS_CHANGED;

This message is sent by the outbox document to the service whenever its status has just changed. This
status is displayed on Status column for the outbox section, in the Outbox notebook.

OPENSERV.H

This file contains the API definition for dsOpenServiceObject.

dsOpenServiceObject inherits from dsStream.

Provides default behavior for open service objects.

All open service object classes must be a subclass of dsOpenServiceObject. This superclass forwards all

dsService messages to the actual service instance. It also allows a subclass to easily get the service

instance that it is associated with.

#ifndef OPENSERV INCLUDED
#define OPENSERV_INCLUDED
#ifndef STREAM_INCLUDED
#include <stream.h>
#endif

Messages

msgNew
Creates a new service object.

Takes P _0 SO_NEW, returns STATUS. Category: class message.

typedef struct OSO NEW ONLY
OBJECT serviceInstancei

U32
U32
U32

unused1i
unused2i
unused3i

U32 unused4i

II This is filled in by
II clsService at open time.

OSO_NEW_ONLY, *P_OSO_NEW_ONLY, OSO_METRICS, *P_OSO_METRICSi
#define openServiceObjectNewFields \

streamNewFields \
OSO NEW ONLY openServiceObjecti

typedef struct OSO_NEW
openServiceObjectNewFields

} OSO_NEW, *P_OSO_NEWi

msgOSOGetServicelnstance
Returns the service instance that this object is associated with.

Takes P _OBJECT, returns STATUS.

#define msgOSOGetServiceInstance MakeMsg(clsOpenServiceObject, 1)

PPORT.H

This file contains the API definition for clsParalle1Port.

clsParallelPort inherits from clsMILService.

This mil service provides the interface between the parallel printer mil device and the rest of Penpoint.
This interface allows for the configuring of the parallel printer mil device and for printing using the

parallel printer mil device. The pport mil service will typically only be accessed by printer drivers since
they are responsible for rendering an image for printing.

You access this mil service by using the standard service access techniques. These techniques are
discribed in servmgr.h.

The pport mil service is a member of the 'theParallelDevices' and 'thePrinterDevices' service managers.

tifndef PPORT_INCLUDED
tdefine PPORT_INCLUDED
tifndef GO_INCLUDED
tinclude <go.h>
tendif
tifndef CLSMGR_INCLUDED
tinclude <clsmgr.h>
tendif
tifndef MIL SERVICE INCLUDED - -
tinclude <milserv.h>
tendif

Common #defines and typedefs
typedef OBJECT PPORT, *P_PPORT;
tdefine stsPPortBusy
tdefine stsPPortOutOfPaper
tdefine stsPPortOffLine
tdefine stsPPortNoPrinter
tdefine stsPPortPrinterErr
typedef struct PPORT METRICS
{

U16
U16
U16
U32

U32

version;
devFlags;
unitFlags;
initDelay;

interruptTimeOut;

MakeStatus(clsParallelPort, 1)
MakeStatus(clsParallelPort, 2)
MakeStatus(clsParallelPort, 3)
MakeStatus(clsParallelPort, 4)
MakeStatus(clsParallelPort, 5)

II version number of pport
II device flags (none defined)
II unit flags (see dvparall.h)
II time in microSeconds init signal
II is applied to printer
II the printer should be ready to accept
II another character within this time
II period (in milliseconds)

PPORT_METRICS, *P_PPORT_METRICS;

-------------------,

452 PENPOINT API REFERENCE
Part 10 / Connectivity

Parallel Port Class Messages

msgPPortStatus
returns the current hardware status of the printer.

Takes P _PPORT_STATUS, returns STATUS.

#define msgPPortStatus
#define pportStsBusy
#define pportStsAcknowledge
#define pportStsEndOfPaper
#define pportStsSelected
#define pportStsIOError
#define pportStsInterruptHappened

typedef struct PPORT_STATUS
{

U16 pportStatusi
PPORT_STATUS, *P_PPORT_STATUSi

MakeMsg(clsParallelPort, 3)
flag7 II printer is busy
flag6 II printer acknowledged char.
flagS II printer out of paper
flag4 II printer on line
flag3 II printer error occurred
flag2 II printer interrupt occurred

'pportStatus' is the contents of the parallel port status register.

msgPPortStatus
initializes the printer.

Takes P _NULL, returns STATUS.

#define msgPPortInitialize MakeMsg(clsParallelPort, 4)

The printer is initialized by asserting the control"Initialize" to the printer for initDelay microseconds.

msgPPortAutoLineFeedOn
inserts a line feed after each carriage return.

Takes P _NULL, returns STATUS.

#define msgPPortAutoLineFeedOn MakeMsg(clsParallelPort, 5)

The auto line feed signal to the printer is set active.

msgPPortAutoLineFeedOff
disables inserting a line feed after each carriage return.

Takes P _NULL, returns STATUS.

#define msgPPortAutoLineFeedOff MakeMsg(clsParallelPort, 6)

The auto line feed signal to the printer is set inactive.

msgPPortGetTimeDelays
gets the initialization and interrupt time out intervals.

Takes P_PPORT_TIME_DELAYS, returns STATUS.

#define msgPPortGetTimeDelays

typedef struct PPORT TIME DELAYS
{

MakeMsg(clsParallelPort, 7)

U32 initDelaYi II initialization delay
U32 interruptTimeOuti II interrupt time out

PPORT_TIME_DELAYS, *P_PPORT_TIME_DELAYSi

Mess(lge
Arguments

PPORT.H 453

Parallel Port Class Messages

The initialization time period is the time the initialization pulseasserted to the printer in microseconds.
The interrupt time outis the maximum time the printer will assert busy before beingto accept
another character in milliseconds.

msgPPortSetTimeDelays
sets the initialization and interrupt time out intervals.

Takes P_PPORT_TIME_DELAYS, returns STATUS.

#define msgPPortSetTimeDelays

typedef struct PPORT TIME DELAYS
{

MakeMsg(clsParallelPort, 8)

U32 initDelay; II initialization delay
U32 interruptTimeOut; II interrupt time out

PPORT TIME_DELAYS, *p PPORT_TIME_DELAYS;

Neither value can be zero. It's best to get the presentbefore changing the time intervals.

msgPPortCancelPrint
cancels the printing of the buffer currently being printed.

Takes P_NULL, returns STATUS.

#define msgPPortCancelPrint

msgNew
creates a new pport object.

Takes P _PPORT_NEW, returns STATUS.

#define pportNewFields \
milServiceNewFields

typedef struct PPORT_NEW
pportNewFields

} PPORT_NEW, *P_PPORT_NEW;

MakeMsg(clsParallelPort, 9)

STATUS EXPORTED ClsParallelPortInit(void);

SENDSERV.H

This file contains the class definition and methods for clsSendableService.

clsSendableService inherits from clsService.

Provides the API for the services which appear on the Document Send menu.

clsSendableService is an abstract superclass which defines the sendable services protocol. This protocol is
used by the Send Manager and the address book to interact with services on theSendableServices service
manager. All services on this list *must* implement this protocol.

#ifndef SENDSERV_INCLUDED
#define SENDSERV_INCLUDED
#ifndef ADDRBOOK_INCLUDED
#include
#endif

<addrbook.h>

Common #defines and typedefs
Data window fields are empty.

#define stsSendServAddrWinEmpty MakeWarning(clsSendableService, 1)

Messages

msgSendServCreateAddrWin
Converts address data into a window displaying the data.

Takes P_SEND_SERV_ADDR_WIN, returns STATUS.

#define msgSendServCreateAddrWin

typedef struct SEND_SERV_ADDR_WIN
U16 nurnAttrs;
P _ ADDR _BOOK _ AT.TR
P STRING
BOOLEAN
OBJECT

attrs;
addrSummary;
errNote;
win;

SEND_SERV_ADDR_WIN, *P_SEND_SERV_ADDR_WIN;

MakeMsg(clsSendableService, 1)

This message is sent to a sendable service by the address book. A sendable service should create a display
window(pArgs->win). The sendable service should wait for msgSendServFillAddrWin before it fills in
the fields in the window.

Parameters:

pArgs->numAttrs In: number of attributes in the attrs array.

pArgs->attrs In: an array of size pArgs->numAttrs. pArgs->attrs[x] .value contains what the sendable

service needs to display.

pArgs->win Out: sendable-service-created display window.

456 PEN POINT API REFERENCE

Part 10 / Connectivity

Mellsctge
Arguments

)\'l,,)Sllct£jl;'\
Argurnent£

Mellsctge
Arguments

msgSendServGetAddrSummary
given pArgs->attrs, set pArgs->addrSummary to be a displayable string that sums up the address.

Takes P_SEND_SERV_ADDR_WIN, returns STATUS.

#define msgSendServGetAddrSummary

typedef struct SEND SERV ADDR WIN
U16 - nUmAttrs;
P_ADDR_BOOK_ATTR attrs;
P STRING addrSummary;
BOOLEAN errNote;
OBJECT win;

SEND_SERV_ADDR_WIN, *P_SEND_SERV_ADDR_WIN;

Parameters:

MakeMsg(clsSendableService, 9)

pArgs->numAttrs In: number of attributes in the attrs array.

pArgs->attrs In: an array of size pArgs->numAttrs.

pArgs->addrSummary Out: a string that sums up the address information described in attribute-value
form in pArgs->attrs.

msgSendServFillAddrWin
Sendable service refreshes pArgs->win with information in pArgs->attrs.

Takes P_SEND_SERV_ADDR_WIN, returns STATUS.

#define msgSendServFillAddrWin

typedef struct SEND SERV ADDR WIN
U16 - nUmAttrs;
P_ADDR_BOOK_ATTR attrs;
P STRING addrSummary;
BOOLEAN errNote;
OBJECT win;

MakeMsg(clsSendableService, 8)

SEND_SERV_ADDR_WIN, *P_SEND_SERV_ADDR_WIN;

An address book sends a sendable service this message to refresh the window that contains information
described in pArgs->attrs.

Parameters:

pArgs->numAttrs In: number of attributes in the attrs array. If 0, then dear all fields.

pArgs->attrs In: an array of size pArgs->numAttrs. pArgs->attrs[x].value contains what the sendable
service needs to display.

pArgs->win In: uid of sendable-service-created display window.

msgSendServEncodeAddrWin
Converts a window which displays address data into data.

Takes P _SEND_SERV_ADDR_ WIN, returns STATUS.

#define msgSendServEncodeAddrWin MakeMsg(clsSendableService, 2)

typedef struct SEND SERV ADDR WIN
U16 - numAttrs;
P_ADDR_BOOK_ATTR attrs;
P STRING addrSummary;
BOOLEAN errNote;
OBJECT win;

SEND_S ERV_ADDR_W IN , *P_SEND_SERV_ADDR_WIN;

Comments

Arguments

Message
Arguments

Comments

SENDSERV.H 457

Messages

The service must convert the window into an array of attribute-values, as described in
ADDR_BOOK_SERVICE_DESC. Storage for this array should be created by the sendable service from a
global heap. The caller client is responsible for freeing this storage.

Parameters:

pArgs->numAttrs Out: Number of elements in the .attrs array

pArgs->attrs Out: fill in the values of each attribute.

pArgs->errNote In: if TRUE, then the service should display some kind of note on the screen when
error occurs during data collection and validation.

pArgs->win In: the window to get the data from. Presumably the sendable service created this window
in response to a previous msgSendServCreateAddrWin.

stsServiceData WinEmpty All data element fields are empty.

stsFailed Some error occurs during data collection and validation.

msgSendServEncodeAddrData
Converts serrvice-specific data into ASCII byte array.

Takes P_SEND_SERV_CONVERT_ADDR_DATA, returns STATUS.

*define msgSendServEncodeAddrData

typedef struct SEND SERV CONVERT ADDR DATA
P U8 - pBuf; / / In/Out:
U16 bufLen; // In/Out:
U16 numAttrs;
P_ADDR_BOOK_ATTR attrs;

MakeMsg(clsSendableService, 3)

Encoded addressing data
Length of pBuf

SEND_SERV_CONVERT_ADDR_DATA, *P_SEND_SERV_CONVERT_ADDR_DATA;

*** This message is obsolete ***

The service converts attributes in .attrs into ASCII. Storage for this array should be created by the
service from osProcessSharedHeapld. The caller is responsible for freeing this storage.

stsServiceDataWinEmpty All data element fields are empty.

msgSendServDecodeAddrData
Converts ASCII data into service-specific data.

Takes P_SEND_SERV_CONVERT_ADDR_DATA, returns STATUS.

*define msgSendServDecodeAddrData

typedef struct SEND_SERV CONVERT_ADDR_DATA
P U8 pBuf; // In/Out:
U16 bufLen; // In/Out:
U16 numAttrs;
P ADDR BOOK ATTR attrs;

MakeMsg(clsSendableService, 4)

Encoded addressing data
Length of pBuf

SEND_SERV_CONVERT_ADDR_DATA, *P_SEND SERV_CONVERT_ADDR DATA;

*** This message is obsolete ***

The resulting data is put into .attrs and update the attribute count in .numAttrs.

458 PEN POINT API REFERENCE

Part 10 / Connectivity

msgAppExecute
Displays a VI for obtaining addressing info and executing the send.

Takes P _APP _EXECUTE, returns STATUS.

This message is a standard clsApp message which is forwarded to the service the user has selected from
the standard "Send" menu. The service should create and display their VI for obtaining addressing

information from the user.

Declaration for the APP _EXECUTE data structure can be found in app.h

msgSendServGetAddrDesc
Responsibility of a sendable service to return its service attribute-value pairs that describe its service

address

Takes P _ADDR_BOOK_SVC_DESC, returns STATUS.

#define msgSendServGetAddrDesc MakeMsg(clsSendableService, 7)

An address book usually send this message to a sendable service as part of of initialization to find out the
service address description.

SERLINK.H

This file contains the definition and methods for clsALAPSerial

*ifndef SERLINK_INCLUDED
*define SERLINK_INCLUDED
ALAP_SERIAL_NEW_ONLY, *P_ALAP_SERIAL_NEW_ONLY;

#define alapSerialNewFields \
serviceNewFields \
ALAP_SERIAL_NEW_ONLY alapSerial;

ALAP SERIAL NEW, *p ALAP_SERIAL_NEW;
STATUS EXPORTED ClsSerLinkInit(void);

SIO.M

This file contains the API for clsMlLAsyncSIODevice.

clsMlLAsyncSIODevice inherits from clsStream.

Provides the serial port interface, see also stream.h for the stream messages.

#ifndef SIO INCLUDED
#define SIO INCLUDED
#include <go.h>
#include <clsmgr.h>
#include <milserv.h>

Common #defines and typedefs
MakeStatus(clsMILAsyncSIODevice, 1)

9600
#define stsSioPortInUse
#define milDefaultBaudRate
#define milDefaultXonChar
#define milDefaultXoffChar
#define milDefaultModemControl
#define milDefaultStopBits
#define milDefaultParityType
#define milDefaultWordLength
#define milDefaultXonTimeout
#define milDefaultLineToStop

typedef OBJECT SIO;
typedef SIO * P_SIOi
Enum16 (SIO_EVENT_MASK) {

} ;

sioEventCTS
sioEventDSR
sioEventDCD
sioEventRI
sioEventRxChar

sioEventRxBreak
sioEventTxBufferEmpty
sioEventRxError
sioAllEvents

Oxll
Ox13
milDataTerminalReady I milRequestToSend
milOneStopBit
milNoParity
milEightBitWord
(U32)30000
milRequestToSend

flagO,
flag1,
flag2,
flag3,
flag4,

flagS,
flag6,
flag?,
flagO I
I flagS

II CTS line has changed state
II DSR line has changed state
II DCD line has changed state
II RI line has changed state
II Rx buffer has become not empty.
II Note: The receive buffer must be
II empty for a received character
II to generate this event!
II Break condition has been received
II Tx buffer has become empty
II parity, framing, or overrun error

flag1 I flag2 I flag3 I flag4
I flag6 I flag7

Asynchronous 510 Class Messages

msgSioBaudSet
Sets the serial port baud rate.

Takes U32, returns STATUS.

#define msgSioBaudSet MakeMsg(clsMILAsyncSIODevice,4)

Maximum possible setting 115200. Actual baud rate = (115200/((U32)(115200/baudRate))) Default

setting 9600 baud

462 PENPOINT API REFERENCE

Part 10 I Connectivity

Atgmntmtrs

f4cgvmefttrs

msgSioLineControlSet
Sets serial port data bits per character, stop bits, and parity.

Takes P _SIO_LINE_CONTROL_SET, returns STATUS.

#define msgSioLineControlSet MakeMsg(clsMILAsyncSIODevice,5)

Enum16 (SIO_DATA_BITS)
sioSixBits = 6,
sioSevenBits 7,
sioEightBits = 8

} ;

Enum16 (SIO_STOP_BITS)
sioOneStopBit = 0,
sioOneAndAHalfStopBits 1,
sioTwoStopBits 2

} ;

Enum16 (SIO_PARITY)
sioNoParity = 0,
sioOddParity = 1,
sioEvenParity = 2

} ;

typedef struct (
SIO DATA BITS dataBits;
SIO STOP BITS stopBits;
SIO PARITY parity;

SIO LINE CONTROL_SET, *P_SIO_LINE_CONTROL SET;

Default setting 8 bits, 1 stop bit, no parity.

msgSioControlOutSet
Controls serial port output lines dtr and rts.

Takes P_SIO_CONTROL_OUT_SET, returns STATUS.

#define msgSioControlOutSet MakeMsg(clsMILAsyncSIODevice,6)

typedef struct
BOOLEAN dtr; II true activates, false deactivates
BOOLEAN rts; II true activates, false deactivates
BOOLEAN out1; II true activates, false deactivates
BOOLEAN out2; II true activates, false deactivates

SIO CONTROL OUT SET, *P_SIO_CONTROL_OUT_SET; - --
Default setting dtr active, rts active.

msgSioControllnStatus
Reads the current state of the serial port input control lines.

Takes P _SIO_CONTROL_IN_STATUS, returns STATUS.

#define msgSioControlInStatus MakeMsg(clsMILAsyncSIODevice,7)

typedef struct
BOOLEAN cts; II out - true = active (Clear To Send)
BOOLEAN dsr; II out - true = active (Data Set Ready)
BOOLEAN dcd; II out - true = active (Data Carrier Detect)
BOOLEAN ri; II out - true = active (Ring Indicator)

SIO CONTROL IN_STATUS, *p SIO_CONTROL_IN_STATUS; - - -
#define rlsd dcd

msgSioFlowControlCharSet
Defines serial port XONIXOFF flow control characters.

Takes P _SIO_FLOW_CONTROL_CHAR_SET, returns STATUS.

*define msgSioFlowControlCharSet MakeMsg(clsMILAsyncSIODevice,8)

typedef struct {
U8 xonChar; II xon character (default control-Q)
U8 xoffChar; II xoff character (default control-S)

SIO_FLOW_CONTROL_CHAR_SET, *P_SIO_FLOW_CONTROL_CHAR_SET;

Valid only if xon-xoff flow control is enabled.

Default xon character Oxll (control-q), default xoff character Oxl3 (control-s).

msgSioBreakSend
Sends a break for the specified duration.

Takes P _SIO_BREAK_SENO, returns STATUS.

*define msgSioBreakSend MakeMsg(clsMILAsyncSIODevice,ll)

typedef struct {
OS_MILLISECONDS milliseconds; II break duration

} SIO_BREAK_SEND, *P_SIO_BREAK_SEND;

SIO.H 463

Constant O's transmitted on the serial line for the specified duration. Typical duratio~s are around

200-400 milliseconds).

msgSioBreakStatus
Sends back the number of breaks received so far.

Takes P _SIO_BREAK_SfATUS, returns SfATUS.

*define msgSioBreakStatus MakeMsg(clsMILAsyncSIODevice,13)

typedef struct {
U32 breaksReceived; II out

} SIO_BREAK_STATUS, *P_SIO_BREAK_STATUS;

Also clears the internal break counter.

msgSioReceiveErrorsStatus
Sends back the number of receive errors and the number of dropped bytes (due to buffer overflows).

Takes P _SIO_RECElVE_ERRORS_STATUS, returns STATUS.

*define msgSioReceiveErrorsStatus MakeMsg(clsMILAsyncSIODevice,36)

typedef struct {
U32 droppedBytes; II out
U32 receiveErrors; II out

SIO_RECEIVE_ERRORS_STATUS, *P_SIO_RECEIVE_ERRORS_STATUS;

Also clears the internal counters.

464 PENPOINT API REFERENCE
Part 10 I Connectivity

msgSiolnputBufferStatus
Provides input buffer status.

Takes P _SIO_INPUT_BUFFER_STATUS, returns STATUS.

tdefine msgSiolnputBufferStatus MakeMsg(clsMlLAsyncSIODevice,16)

typedef struct {
U32 bufferCharSi II out, number of chars in buffer
S32 bufferRoomi II out, amount of empty room in buffer
BOOLEAN receiverFrozen; II out, is receive frozen?

SIO_INPUT_BUFFER_STATUS, * P_SIO_INPUT_BUFFER_STATUSi

Sends back the number of characters in the input buffer and the amount of empty room in the input
buffer.

msgSioOutputBufferStatus
Provides output buffer status.

Takes P _SIO _OUTPUT _BUFFER_STATUS, returns STATUS.

tdefine msgSioOutputBufferStatus MakeMsg(clsMlLAsyncSIODevice,17)

typedef struct {
U32 bufferCharsi II out, number of chars in buffer
S32 bufferRoomi II out, amount of empty room in buffer
BOOLEAN transmitterFrozeni II out, is transmit frozen?

SIO_OUTPUT_BUFFER_STATUS, * P_SIO_OUTPUT_BUFFER_STATUSi

Sends back the number of characters in the output buffer and the amount of empty room in the output
buffer.

msgSiolnputBufferFlush
Flushes the contents of the input buffer.

Takes pNull, returns STATUS.

tdefine msgSiolnputBufferFlush MakeMsg(clsMlLAsyncSIODevice,18)

msgSioOutputBufIerFlush
Flushes the contents of the output buffer.

Takes pNull, returns STATUS.

tdefine msgSioOutputBufferFlush MakeMsg(clsMILAsyncSIODevice,19)

msgSioFlowControlSet
Selects flow control type.

Takes P _SIO_FLOW_CONTROL_SET, returns STATUS.

tdefine msgSioFlowControlSet MakeMsg(clsMILAsyncSIODevice,20)

Enum16(SIO_FLOW_TYPE) {

}i

sioNoFlowControl Oxll,
sioXonXoffFlowControl Ox22,
sioHardwareFlowControl Ox44,
II To independently set receive and transmit flow control OR together
II one from each of the following two sets.
II i.e., .flowControl = sioRxXonXoff I sioTxHardwarei
II YOU MUST SET BOTH THE TX AND RX FLOW CONTROL!
II Transmit flow control
sioTxNone
sioTxXonXoff
sioTxHardware
II Receive flow control
sioRxNone
sioRxXonXoff
sioRxHardware

OxOl,
Ox02,
Ox04,

OxlO,
Ox20,
Ox40

typedef struct {
SIO FLOW TYPE flowControli

} SIO_FLOW_CONTROL_SET, *P_SIO_FLOW_CONTROL_SETi

SIO.H 465

Flow control types: no flow control, XON/XOFF flow control, or hardware flow control. Default:

XON/XOFF flow control.

msgSioEventStatus
Sends back current state of event word, and then clears the event word.

Takes P _SIO_EVENT_STATUS, returns STATUS.

#define msgSioEventStatus MakeMsg (clsMILAsyncSIODevice, 21)

typedef struct {
SIO_EVENT_MASK eventMaski II out

} SIO_EVENT_STATUS, *P_SIO_EVENT_STATUSi

Bit set indicates an event has occurred. Events do not have to be enabled for eventMask to be set.

msgSioEventSet
Enables event notification.

#define msgSioEventSet

typedef struct {
SIO EVENT MASK eventMaski
OBJECT clienti

MakeMsg(clsMILAsyncSIODevice,22)

II in, events to respond to
II object to inform when event happens

SIO EVENT SET, *P_SIO_EVENT_SETi

Bits set in the eventMask enable msgSioEventHappened to be sent to uid. Default: eventMask = 0, all
event notification disabled.

msgSioEventGet
Gets the current sio event setting.

Takes P _SIO_EVENT_SET, returns STATUS.

#define msgSioEventGet MakeMsg(clsMILAsyncSIODevice,29)

466 PEN POINT API REFERENCE

Part 10 / Connectivity

Message

.Argumenfs

typedef struct {
SIO EVENT MASK eventMask; II in, events to respond to
OBJECT client; II object to inform when event happens

SIO EVENT_SET, *P_SIO_EVENT_SET;

msgSioEventHappened
Notifies client of event occurance.

Takes P _SIO_EVENT_HAPPENED, returns STATUS.

#define msgSioEventHappened MakeMsg(clsMILAsyncSIODevice,23)

typedef struct {
SIO_EVENT_MASK eventMask; II out, bits set indicate event happened.
OBJECT selfi II object which generated message.

SIO EVENT_HAPPENED, *p SIO EVENT_HAPPENED;

Message sent to object to notify it of event occurrance. Possibly, more than one bit will be set in the

event mask (bits may be set from disabled events, although disabled events never cause this message to
be generated. Clears event mask.

msgSiolnit
Initializes the serial device to its default state.

Takes P_SIO_INIT, returns STATUS.

#define msgSioInit

typedef struct {
U32 inputSize;
U32 outputSize;

SIO_INIT, *p SIO_INIT;

msgSioGetMetrics
Sends back the sio metrics.

MakeMsg(clsMILAsyncSIODevice,26)

II size of the input buffer
II size of the output buffer

Takes P _SIO_METRICS, returns STATUS.

#define msgSioGetMetrics

typedef struct {
U32
SIO LINE CONTROL SET
SIO CONTROL OUT SET - --
SIO FLOW CONTROL CHAR SET - - --
SIO FLOW CONTROL SET - - -
II

MakeMsg(clsMILAsyncSIODevice,24)

baud;
line;
controlOut;
flowChari
flowType;

II out/in
II out/in
II out/in
II out/in
II out/in

II Changing the bufferSize fields causes reinitialization of serial
II chip!
SIO INIT
U8

msgSioSetMetrics
Sets the sio metrics.

bu:fferSize;
spare[12]i

II out/in

Takes P _SIO_METRICS, returns STATUS.

#define msgSioSetMetrics MakeMsg(clsMILAsyncSIODevice,25)

MessClge
I\rgwiYvmrs

typedef struct {
U32
SIO LINE CONTROL SET - - -
SIO CONTROL OUT SET - --
SIO FLOW CONTROL CHAR SET - - --
SIO FLOW CONTROL SET
II - - -

baud;
line;
controlOut;
flowChar;
flowType;

II out/in
II out/in
II out/in
II out/in
II out/in

II Changing the bufferSize fields causes reinitialization of serial
II chip!
SIO INIT
U8

bufferSize;
spare[12];

msgSioSetReplaceCharProc

II out/in

Replaces the built in receive character interrupt routine.

Takes P _SIO _REPLACE_CHAR, returns STATUS.

#define msgSioSetReplaceCharProc MakeMsg(clsMILAsyncSIODevice, 72)

typedef struct SIO_REPLACE_CHAR
{

U32 handle);

P_SIO_CHAR_HANDLER pRxHandler; II address of character handler
U32 handle; II user data (meaningless to

II clsMILAsyncSIO)
SIO REPLACE_CHAR, *P_SIO_REPLACE_CHAR;

SIO.H 467

This message calls the user defined function when a character is received. The procedure has the option
to filter the character or to return and have the character processed normally. The user defined fuction
returns a BOOLEAN indicating whether the function filtered the character or not.

msgNew
Creates a new clsMlLAsyncSIODevice object.

Takes P_SIO_NEW, returns STATUS.

typedef struct SIO_NEW
{

milServiceNewFields
SIO_NEW, *P_SIO_NEW;

Asynchronous 510 Option Card Tags
#define sioTagOptionCard MakeTag(clsMILAsyncSIODevice, 19) II Card tag
#define sioTagName MakeTag(clsMILAsyncSIODevice, 20)
#define sioTagBaud MakeTag(clsMILAsyncSIODevice, 21)
#define sioTagFlowControl MakeTag(clsMILAsyncSIODevice, 22)
#define sioTagParity MakeTag(clsMILAsyncSIODevice, 23)
#define sioTagDataBits MakeTag(clsMILAsyncSIODevice, 24)
#define sioTagStopBits MakeTag(clsMILAsyncSIODevice, 25)
#define sioTagBaud300 MakeTag(clsMILAsyncSIODevice, 40)
#define sioTagBaud600 MakeTag(clsMILAsyncSIODevice, 41)
#define sioTagBaud1200 MakeTag(clsMILAsyncSIODevice, 42)
#define sioTagBaud2400 MakeTag(clsMILAsyncSIODevice, 43)
#define sioTagBaud4800 MakeTag(clsMILAsyncSIODevice, 44)
#define sioTagBaud9600 MakeTag(clsMILAsyncSIODevice, 45)
#define sioTagBaud19200 MakeTag(clsMILAsyncSIODevice, 46)
#define sioTagBaud38400 MakeTag(clsMILAsyncSIODevice, 47)
#define sioTagBaud57600 MakeTag(clsMILAsyncSIODevice, 48)
#define sioTagBaudl15200 MakeTag(clsMILAsyncSIODevice, 49)

46. PENPOINT API REFERENCE

Part 10 I Connectivity

j:define sioTagFlowNone MakeTag(clsMILAsyncSIODevice, 55)
j:define sioTagFlowXonXoff MakeTag(clsMlLAsyncSIODevice, 56)
j:define sioTagFlowHardware MakeTag(clsMlLAsyncSIODevice, 57)
j:define sioTagParityNone MakeTag(clsMILAsyncSIODevice, 60)
j:define sioTagParityOdd MakeTag(clsMILAsyncSIODevice, 61)
j:define sioTagParityEven MakeTag(clsMlLAsyncSIODevice, 62)
j:define sioTagBits7 MakeTag(clsMlLAsyncSIODevice, 65)
j:define sioTagBits8 MakeTag(clsMILAsyncSIODevice, 66)
j:define sioTagStopBitsOne MakeTag(clsMILAsyncSIODevice, 70)
j:define sioTagStopBitsTwo MakeTag(clsMILAsyncSIODevice, 71)

Function prototypes
FiJndl©Ti Pr©t©type STATUS EXPORTED ClsSiolni t (void) ;

void EXPORTED SioSernaClear(P_UNKNOWN pHandle);

TP.H

This file contains the class definition and methods for clsTransport.

clsTransport inherits from clsOpenServiceObject.

Provides the API for replaceable transport layer network protocols.

#ifndef TP INCLUDED
#define TP INCLUDED
#ifndef OPENSERV INCLUDED
#include <openserv.h>
#endif

typedef UB
typedef UB
typedef UB
typedef UB

Service Types

Common typedefscodetypedef U8

TP_QUEUE_SIZEi
TP_ADDRESS, * P_TP_ADDRESS;
TP_OPTIONS, * P_TP_OPTIONS;
TP_BUFFER, * P_TP_BUFFERi

#define tpReliableService 1
#define tpDatagramService 2
#define tpTransactionService 3

msgNew
Creates a transport (socket) handle object.

Takes P _TP _NEW, returns STATUS.

typedef struct TP_NEW_ONLY {

TP _SERVICE;

TP SERVICE service; II service type
} TP_NEW_ONLY, *P_TP_NEW_ONLYi
typedef struct TP_NEW (

OSO NEW oso;
TP NEW ONLY tp;

TP NEW, * P TP_NEW;

msgDestroy
Destroys a transport handle object.

Takes OBLKEY, returns STATUS.

msgTPAccept
Accepts a connection request from a remote process.

Takes P_TP_ACCEPT, returns STATUS.

#define msgTPAccept MakeMsg(clsTransport, 1)

typedef struct TP_ACCEPT {
OBJECT newHandlei II Out: uid of transport handle
P TP ADDRESS pAddressi II ptr to protocol dependent address

TP_ACCEPT, *P_TP_ACCEPT;

470 PEN POINT API REFERENCE

Part 10 / Connectivity

msgTPBind
Binds a transport handle to a transport address.

Takes P _ TP _BIND, returns STATUS.

tdefine msgTPBind MakeMsg(clsTransport, 2)

typedef struct TP_BIND {
P_TP_ADDRESS pAddressi II ptr to protocol dependent address

} TP_BIND, *P_TP_BINDi

msgTPConnect
Establishes a connection with a remote process.

Takes P _ TP _CONNECT, returns STATUS.

tdefine msgTPConnect MakeMsg(clsTransport, 3)

typedef struct TP_CONNECT {
P TP ADDRESS pAddressi II ptr to protocol dependent address

} TP_CONNECT, *P_TP_CONNECTi

msgTPListen
Allocates space for a queue of incoming connection requests.

Takes P _TP _LISTEN, returns STATUS.

tdefine msgTPListen MakeMsg(clsTransport, 4)

typedef struct TP_LISTEN {
TP_QUEUE_SIZE queueSizei II max number of connection requests

} TP_LISTEN, *P_TP_LISTEN;

msgTPRecv
Receives a message.

Takes P _TP _RECV, returns STATUS.

tdefine msgTPRecv MakeMsg(clsTransport, 5

typedef struct TP_RECV {
P TP BUFFER pBufferi
U16 length;
U16 count;
P TP OPTIONS pOptionsi

TP RECV, *P_TP_RECV;

msg TPRecvFrom
Receives a datagram.

II ptr to receive data buffer
II size of receive buffer in bytes
II number of bytes received
II ptr to protocol dependent options

Takes P _TP _RECVFROM, returns STATUS.

tdefine msgTPRecvFrom MakeMsg(clsTransport, 6).

typedef struct TP_RECVFROM {
P_TP_BUFFER pBuffer;
U16 length;
U16 counti
P TP ADDRESS pAddressi
P TP OPTIONS pOptionsi

TP_RECVFROM, *P_TP_RECVFROMi

II ptr to receive data buffer
II size of receive buffer in bytes
II number of bytes received
II ptr to protocol dependent address
II ptr to protocol dependent options

Arguments

msgTPSend
Sends a message.

Takes P _TP _SEND, returns STATUS.

#define msgTPSend MakeMsg(clsTransport, 7)

typedef struct TP SEND {
P TP BUFFER pBuffer;
U16 count;

II ptr to send data buffer
II number of bytes to send

P TP OPTIONS pOptions; II ptr to protocol dependent options
TP SEND, *P_TP_SEND;

msgTPSendfo
Sends a datagram.

Takes P _TP _SENDTO, returns STATUS.

#define msgTPSendTo MakeMsg(clsTransport, 8)

typedef struct TP SENDTO {
P TP BUFFER pBuffer;
U16 count;

II ptr to send data buffer
II number of bytes to send

P TP OPTIONS pOptions;
P TP ADDRESS pAddress;

II ptr to protocol dependent options
II ptr to protocol dependent address

TP SENDTO, *P_TP_SENDTO;

msgTPSendRecvTo
Sends a request and waits for a response. For transaction service only.

Takes P _TP _SENDRECvrO, returns STATUS.

#define msgTPSendRecvTo MakeMsg(clsTransport, 9)

typedef struct TP SENDRECVTO {
P TP BUFFER pSendBuffer; II ptr to send data buffer
U16 sendCount; II number of bytes to send
P TP BUFFER pRecvBuffer; II ptr to receive data buffer
U16 recvLength; II size of receive buffer in bytes
U16 recvCounti II number of bytes received
P TP OPTIONS pOptionsi - II ptr to protocol dependent options
P TP ADDRESS pAddressi II ptr to protocol dependent address

TP_SENDRECVTO, *p _TP_SENDRECVTOi

Status Codes
#define stsTPnotSupported MakeStatus(clsTransport,l)
#define stsTPtooMany MakeStatus(clsTransport,2)
#define stsTPbadUser MakeStatus(clsTransport,3)
#define stsTPmaxUsers MakeStatus(clsTransport,4)
#define stsTPnoUser MakeStatus(clsTransport,5)
#define stsTPbadService MakeStatus(clsTransport,6)
#define stsTPnoSocket MakeStatus(clsTransport,7)
#define stsTPnoMemory MakeStatus(clsTransport,8)
#define stsTPlength MakeStatus(clsTransport,9)
#define stsTPnoTransaction MakeStatus(clsTransport,lO)
#define stsTPddpLength MakeStatus(clsTransport,ll)
#define stsTPnoBridge MakeStatus(clsTransport,12)
#define stsTPbadNetwork MakeStatus(clsTransport,13)
#define stsTPbadNode MakeStatus(clsTransport,14)
#define stsTPsocketInUse MakeStatus(clsTransport,15)
#define stsTPpending MakeStatus(clsTransport,16)

TP.H 471

472 PEN POINT API REFERENCE
Part 10 / Connectivity

#define stsTPddpQ
#define stsTPoverflow
#define stsTPbadParm
#define stsTPfailed
#define stsTPnameNotFound
#define stsTPnamelnUse
#define stsTPnewSocket
#define stsTPnoRoom
#define stsTPnoLink

MakeStatus(clsTransport,17)
MakeStatus (clsTransport, 18)
MakeStatus(clsTransport,19)
MakeStatus(clsTransport,20)
MakeStatus(clsTransport,21)
MakeStatus(clsTransport,22)
MakeStatus(clsTransport,23)
MakeStatus(clsTransport,24)
MakeStatus(clsTransport,25)

Part 11 /
Resources

PREFS.H

Next up: 28

This file contains the API definition for clsPreferences.

clsPreferences inherits from clsObject.

clsPreferences provides a shell to access system preferences.

theSystemPreferences is a well-known instance of clsPreferences. theSystemPreferences provides access

to read and write system wide preferences.

clsPreferences supports a set of preferences. Preferences are stored as resources in the "current" system
preferences resource file. An instance of clsPreferences, known as theSystemPreferences, is created at

boot time. This should be the only instance of clsPreferences in the system.

Preferences are named by well known resource id's (RES_ID's). This header file contains some predefined

preference id's to simplify things. When defining new preferences, use the class that originated the

preferences.

Clients can get and set preferences by accessing the well known object theSystemPreferences.

Preferences are stored in a resource file. Any request to read or write a preference will force a read or

write to a file. This minimizes the amount of space required to store preferences. theSystemPreferences

will respond to any resource file messaged defined in resfile.h and process them appropriately.

Remember, to read and write system preferences simply use the messages msgResReadData and
msgResWriteData (or msgResUpdateData). theSystemPreferences forwards the msg to the current
system preferences resource file.

As an example of reading a system preference:

U16 lineHeight;
RES_READ_DATA read;

read.resld = prLineHeight;
read. heap = 0;
read.pData = &lineHeight;
read.length = SizeOf(U16);
ObjectCall(msgResReadData, theSystemPreferences, &read);

An example of writing a system preference:

U16 lineHeight;
RES_WRITE_DATA write;

write.resld = prLineHeight;
write.pData = &lineHeight;
write.length = SizeOf(U16);
write.agent = resDefaultResAgent;
ObjectCall(msgResWriteData, theSystemPreferences, &write);

theSystemPreferences "knows" about certain preferences (listed in this file below) and performs

whatever interaction is required to activate the new preference. It also handles certain system wide
notification and actions when certain preferences change. For example, clsPreferences will cause the

system to be re-drawn and re-fonted when the system preference for the font changes.

476 PENPOINT API REFERENCE
Part 11 I Resources

dsPreferences will notify all observers when a preference has (potentially) changed. This will allow
various objects to observe theSystemPreferences, and react to the preference changes.

Whenever a number of preferences are being changed, clients may wish to send msgPrefsWritingMany,
followed by the preference writes, and then msgPrefsWritingDone. dsPreferences will use these

messages to delay any layout that may occur as a result of writing preferences that cause layout.

clsPreferences will also send these messages to observers, allowing them to delay expensive operations
until the preference changes are complete. As an example, when the preference set changes,

msgPrefsWritingMany, followed by msgPrefsPreferenceChanged for each preference, followed by
msgPrefs WritingDone is sent to the observers.

dsPreferences supports the concept of different sets of preferences. A set of preferences is stored in a
single resource file in a well-known preferences directory managed by theInstalledPreferences.

clsPreferences supports messages to change the current preference set to another one that is already filed.

In addition, dsPreferences allows a preference set to start "clean". When PenPoint first starts up (or

during a warm boot), theSystemPreferences will contain the set of preferences associated with the
"current" preference set managed by thelnstalledPreferences. If no current set exists,

theSystemPreferences will start with a "clean" preference set. When a preference set changes,

dsPreferences will notify the observers of the changed preferences. This is because dsPreferences is

notified via msgIMCurrentChanged from the install manager (see instlmgr.h).

To change the set of preference set programmatically, one must communicate with thelntallManager.

An example code fragment to change a preference set. See instlmgr.h for details:

IM_INSTALL install;
install.locator.uid = theBootVolume;
rn.fs.locator.pPath = n\\PenPoint\\prefs\\PREFERENCESET";
install.exist = imExistReactivate;
install.listAttrLabel = 0;
install.listHandle = 0;
ObjectCall(msgIMInstall, theInstalledPrefs, &install);
ObjectCall(msgIMSetCurrent, theInstalledPrefs, install.handle);

#ifndef PREFS INCLUDED
#define PREFS INCLUDED
#ifndef CLSMGR INCLUDED
#include <clsmgr.h>
#endif
#ifndef RESFILE INCLUDED
#include <resfile.h>
#endif
#ifndef SYSGRAF INCLUDED
#include <sysgraf.h>
#endif
#ifndef OS INCLUDED
#include <os.h>
#endif

Known Preferences in the System
The following are the predefined resource names, the data that reading and writing will return, and
some predefined return values for certain preferences.

System Font

prSystemFont is the resource id for the system font. Reads and writes of this id use a
P _PREF_SYSTEM_FONT. This resource will affect the returned value from PrefsSysFontlnfo.

PREFS.H 477
Known Preferences in the System

Changing this resource (via msgResWriteData) will cause the system to layout after notification of
observers, which is expensive. This is done by doing an ObjectPost of msgPrefsLayoutSystem to self. As
a result, c1sPreferences will compare this resource to the previous value to prevent layout and observer
notification if the write did not change the value.

*define tagPrSystemFont
*define prSystemFont

MakeWknResld(clsPreferences, 1)
tagPrSystemFont

Field Font

prUserFont is the resource id for the field (user) font. Reads and writes of this id use a
P _PREF_SYSTEM_FONT. This preference will affect the returned data from PrefsSysFontlnfo.

Changing this resource (via msgResWriteData) will cause the system to layout after notification of
observers, which is expensive. This is done by doing an ObjectPost of msgPrefsLayoutSystem to self. As
a result, clsPreferences will compare this resource to the previous value to prevent layout and observer
notification if the write did not change the value.

*define tagPrUserFont
*define prUserFont

MakeWknResld(clsPreferences, 2)
tagPrUserFont

This data structure is the what is read in and written when reading and writing when the resld is
prSystemFont or prUserFont. It contains a font specification, and a font scale to use.

typedef struct PREF_SYSTEM_FONT
SYSDC FONT SPEC spec; II Font spec
SCALE scale; II Scale: same for system and user font
PREF_SYSTEM_FONT, *P_PREF_SYSTEM_FONT;

Orientation

Bell

prOrientation is the resource id for the screen orientation. Reads and writes of this id use a a P _U8,

whose values are defined below.

Changing this resource (via msgResWriteData) will cause the system to layout after notification of
observers, which is expensive. This is done by doing an ObjectPost of msgPrefsLayoutSystem to self. As
a result, c1sPreferences will compare this resource to the previous value to prevent layout and observer
notification if the write did not change the value.

*define tagPrOrientation
*define prOrientation
*define prPortrait
*define prLandscape
*define prPortraitReversed
*define prLandscapeReversed

MakeWknResld(clsPreferences, 3)
tagPrOrientation

o II Portrait mode
1 II Landscape mode
2 II Portrait mode (rotated 180 degrees)
3 II Landscape mode (rotated 180 degrees)

prBell is the resource id for ringing the warning bell. It reads and writes a P _U8, whose values are defined
below. prBell is

*define tagPrBell
*define prBell
*define prBellOn
*define prBellOff

MakeWknResld(clsPreferences, 5)
tagPrBell
o II Ring the bell
1 II Don't ring the bell

478 PEN POINT API REFERENCE

Part 11 I Resources

. Writing Style

prWritingStyle is the resource id for the handwriting preference style. Reads and writes of this id use a
P _U8, whose values are defined below.

fdefine tagPrWritingStyle
fdefine tagPrPrintingStyle
fdefine prWritingStyle
fdefine prPrintingStyle
fdefine prMixedCase
fdefine prCapsOnly

Date Format

MakeWknResld(clsPreferences, 6)
MakeWknResld(clsPreferences, 6)
tagPrWritingStyle
tagPrPrintingStyle II old name
o II Mixed case writer
1 II All caps writer

prDateFormat is the resource id for the desired date format. Reads and writes use a P _U8, whose values
are defined below. This preference will affect the format of the string returned from PrefsDateT oString.

fdefine tagPrDateFormat
fdefine prDateFormat
#define prDateMDYFul1
fdefine prDateMDYAbbre
fdefine prDateMDYSlash
fdefine prDateMDYHyphe
fdefine prDateMDYDot
#define prDateDMYFull
fdefine prDateDMYAbbre
fdefine prDateDMYSlash
fdefine prDateDMYHyphe
fdefine prDateDMYDot

Gesture Timeout

MakeWknResld(clsPreferences, 7)
tagPrDateFormat
o II January 15, 1990
1 II Jan. 15, 1990
2 1/ 1/15/90
3 1/ 1-15-90
8 1/ 1.15.90
4 1/ 15 January 1990
5 1/ 15 Jan. 1990
6 // 15/1/90
7 1/ 15-1-90
9 // 15.1. 90

prGestureTimeout is the resource id for the gesture timeout, and is measured in 1I100's of a second.
Reads and writes of this id use a P _U16 whose meaning is 1I100's of a second.

fdefine tagPrGestureTimeout
fdefine prGestureTimeout

Line Height

MakeWknResld(clsPreferences, 9)
tagPrGestureTimeout

prLineHeight is the resource id for the ruled line writing line height in edit pads. Reads and writes of
this id use a P_UI6, whose meaning is 1I100th's of an inch. Changing this preference only affects newly
created ruled pads.

#define tagPrLineHeight
#define prLineHeight

Auto Suspend

MakeWknResld(clsPreferences, 10)
tagPrLineHeight

tagPrAutoSuspend is the resource id for auto suspend timeout. Reads and writes of this id use a P _UI6,

whose units are minutes. If the value is 0, the machine will not be auto suspended.

Machines that do not support auto suspend use the auto suspend preference for the auto shutdown
timeout.

fdefine tagPrAutoSuspend MakeWknResld(clsPreferences, 11)

PREFS.H 479
Known Preferences in the System

Auto Shutdown
tagPrAutoShutdown is the resource id for auto shutdown timeout. Reads and writes of this id use a
P _UI6, whose units are hundredths of hours. If the value is 0, the machine will not auto shutdown.

Machines that do not support auto suspend use the auto suspend timeout prefrence for auto shutdown.

#define tagPrAutoShutdown MakeWknResld(clsPreferences, 28)

Power Management
prPowerManagement is the resource id that indicates ifPenPoint should attempt to limit the
computer's power consumption by turning off inactive devices

#define tagPrPowerManagement
#define prPowerManagement

MakeWknResld(clsPreferences, 27)
tagPrPowerManagement

#define prPowerManagementOff
#define prPowerManagementOn

o II power management not attempted
1 II power management attempted

Floating Allowed
prDocFloating is the resource id that indicates if documents can be floated. Reads and writes of this id
use a P _U8, whose meaning is defined below.

#define tagPrDocFloating
#define prDocFloating
#define prDocFloatingOff
#define prDocFloatingOn

Zooming Allowed

MakeWknResld(clsPreferences, 12)
tagPrDocFloating

o II document floating not allowed
1 II document floating allowed

prDocZooming is the resource id that indicates if documents can be zoomed. Reads and writes of this id
use a P_U8, whose meaning is defined below.

#define tagPrDocZooming
#define prDocZooming
#define prDocZoomingOff
#define prDocZoomingOn

Left/Right Handed

MakeWknResld(clsPreferences, 13)
tagPrDocZooming

o II document zooming not allowed
1 II document zooming allowed

prHandPreference is the resource id that indicates a left handed or right handed user. Reads and writes
of this id use a P _U8, whose meaning is defined below.

Changing this resource (via msgResWriteData) will cause the system to layout after notification of
observers, which is expensive. This is done by doing an ObjectPost of msgPrefsLayoutSystem to self. As
a result, clsPreferences will compare this resource to the previous value to prevent layout and observer
notification if the write did not change the value.

#define tagPrHandPreference
#define prHandPreference
#define prLeftHanded
#define prRightHanded

Scroll Margins Style

MakeWknResld(clsPreferences, 14)
tagPrHandPreference

o II Left Handed writer
1 II Right Handed writer

prScrollMargins is the resource id that indicates a "full" vs. "light" scroll bars. Reads and writes of this
id use a P_U8, whose meaning is defined below.

480 PENPOINT API REFERENCE
Part II/Resources

Changing this resource (via msgResWriteData) will cause the system to layout after notification of

observers, which is expensive. This is done by doing an ObjectPost of msgPrefsLayoutSystem to self. As

a result, clsPreferences will compare this resource to the previous value to prevent layout and observer
notification if the write did not change the value.

#define tagPrScrollMargins
#define prScrollMargins
#define prScrollMarginsFull
#define prScrollMarginsLight

Character Box Width

o
1

MakeWknResId(clsPreferences, 26)
tagPrScrollMargins

prCharBoxWidth is the resource indicating the width of char boxes for boxed writing fields. Reads and
writes of this id use a P _U8, whose meaning is the width of the box in points. This preference only
affects newly created character boxes.

#define tagPrCharBoxWidth
#define prCharBoxWidth

Character Box Height

MakeWknResId(clsPreferences, 15)
tagPrCharBoxWidth

prCharBoxHeight is the resource id indicating the height of char boxes for boxed writing fields. Reads
and writes of this id use a P _U8, whose meaning is the height of the char box in points. This preference
only affects newly created character boxes.

#define tagPrCharBoxHeight
#define prCharBoxHeight

Hand Writing Timeout

MakeWknResId(clsPreferences, 16)
tagPrCharBoxHeight

prHWXTimeout is the resource id indicating the handwriting timeout. Reads and writes of this id use a
P_UI6 whose meaning is 11100's of a second.

#define tagPrHWXTirneout
#define prHWXTirneout

MakeWknResId(clsPreferences, 17)
tagPrHWXTimeout

Input Pad Style
prInputPadStyle is the resource id indicating the preferred style of handwriting pads. Reads and writes
of this id use a P _U8, whose meaning is defined below.

#define tagPrInputPadStyle
#define prInputPadStyle
#define prInputPadStyleBoxed
#define prInputPadStyleRuled

MakeWknResId(clsPreferences, 18)
tagPrInputPadStyle

o II Pad styles are boxed
1 II Pad styles are Ruled

#define prInputPadStyleRuledAndBoxed 2 II Pad styles are boxed-->ruled
#define prInputPadStyleSegmented o II Obsolete

Hold Timeout
prPenHoldTimeout is the resource id for the press hold timeout. Reads and writes of this id use a P _U16

whose meaning is 11100's of a second.

#define tagPrPenHoldTimeout
#define prPenHoldTirneout

MakeWknResId(clsPreferences, 19)
tagPrPenHoldTimeout

PREFS.H 481

Known Preferences in the System

Pen Cursor
prPenCursor is the resource id for whether the cursor is off or on. Reads and writes of this id use a P _us,
whose meaning is defined below.

#define tagPrPenCursor
#define prPenCursor
#define prPenCursorOff
#define prPenCursorOn

MakeWknResId(clsPreferences, 20)
tagPrPenCursor

o II Pen cursor should be off
1 II Pen cursor should be on

Time Format
prTimeFormat is the resource id for the preferred time format (military or civilian). Reads and writes of
this id use a P _us, whose meaning is defined below. This preference will affect the returned string from
PrefsTimeToString. '

#define tagPrTimeFormat
#define prTimeFormat
#define prTime12Hour
#define prTime24Hour

MakeWknResId(clsPreferences, 21)
tagPrTimeFormat

o II Display 12 hour times
1 II Display 24 hour times

Display Seconds

Time

prTimeSeconds is the resource id indicating if seconds should be displayed or not. Reads and writes of

this id use a P _us, whose meaning is defined below. This preference will affect the returned string from

Prefs Time ToString.

#define tagPrTimeSeconds
#define prTimeSeconds
#define prTimeSecondsDisplay
#define prTimeSecondsOff

MakeWknResId(clsPreferences, 22)
tagPrTimeSeconds

o II Display seconds in time
1 II Don't display seconds in time

prTime is the resource id for the system time. Reads and writes of this 1D use a P _PREF_TIME_INFO,

containing the current time information.

#define tagPrTime
#define prTime
typedef union PREF_TIME_MODE

OS_SET_TIME_MODE writeMode;
} PREF_TIME_MODE;
typedef struct PREF_TIME_INFO

PREF_TIME_MODE mode;
OS DATE TIME dateTime;

MakeWknResId(clsPreferences, 23)
tagPrTime

II In: which attributes to set (for write only)

II In: read or write mode
II In/Out: date and time information

PREF_TIME_INFO, *p PREF TIME_INFO;

Primary Input
prPrimaryInput is the resource id defining the primary input device. Reads and writes of this id use a

P _us, whose meaning is defined below.

#define tagPrPrimaryInput
#define prPrimaryInput
#define prPrimaryInputPen
#define prPrimaryInputKbd

MakeWknResId(clsPreferences, 24)
tagPrPrimaryInput

o II Primary input is with the pen
1 II Primary input is with a keyboard

482 PENPOINT API REFERENCE

Part 11 / Resources

Unrecognized Character
prUnrecCharacter is the resource id used for the unrecognized character glyph. Reads and writes of this

id use a P _U8, whose meaning is defined below.

fdefine tagPrUnrecCharacter
fdefine prUnrecCharacter

MakeWknResId(clsPreferences, 25)
tagPrUnrecCharacter

fdefine prUnrecCharacterQuestion
fdefine prUnrecCharacterUnder

o
1

Messages

Argmm:mt£

msgNew
Creates a new preferences object.

Takes P _PREPS_NEW, returns STATUS. Category: class message.

typedef struct PREFS_NEW_ONLY {
P CHAR pPrefSet; II Preference set name

} PREFS_NEW_ONLY, *P_PREFS_NEW_ONLY;
fdefine prefsNewFields \

objectNewFields \
PREFS NEW ONLY prefs;

typedef struct PREFS_NEW
prefsNewFields

} PREFS_NEW, *P_PREFS_NEW;

This message should not be called by clients. Creates a preferences object. If pPrefSet is pNull, the list
will start out empty. Otherwise, pPrefSet is expected to be an already installed file title in the preferences

directory.

msgPrefsPreferenceChanged
Sent to observers when a preference has changed.

Takes P _PREP_CHANGED, returns STATUS. Category: observer notification.

#define msgPrefsPreferenceChanged MsgNoError(MakeMsg(clsPreferences, 1))

typedef struct PREF_CHANGED {
OBJECT manager;
RES ID prefId;
PREF_CHANGED, *P_PREF_CHANGED;

II Sender of the notification (theSystemPreferences)
II resId of preference that changed

Sent to observers. Notifies observers that a given preference has changed. Notifies with the manager

(usually theSystemPreferences, as there are no other pre-defined instances of clsPreferences), and the

RES_ID of the preference that has changed.

msgPrefsLayoutSystem
Causes the system to re-Iayout and re-paint.

Takes NULL, returns STATUS.

fdefine msgPrefsLayoutSystem MakeMsg(clsPreferences, 5)

Causes the entire system to layout. If msgPrefSWritingMany has not been called, posted to self when

clsPreferences receives msgResWriteData and a new value has been written for prSystemFont,

prUserFont, prOrientation, prHandPreference, or prScrollMargins. If msgPrefsWritingMany has been

Cornments

Comments

PREFS.H 483
Public Functions

called, the layout will occur when msgPrefsWritingDone is called. Will be sent to observers when

immediately before a layout of the system occurs due to a preference change.

msgPrefs WritingMany

msgPrefsWritingMany
Indicates several preferences are to be written in succession.

Takes NULL, returns STATUS.

#define msgPrefsWritingMany MakeMsg(clsPreferences, 6)

Causes clsPreferences to delay the self-posting of msgPrefsLayoutSystem until it receives
msgPrefsWritingDone. Useful when writing several preference changes at o'nce, and the client does not

want the system laying out several times. If, after this message is received, a msgResWrite of

prSystemFont, prUserFont, prOrientation, prHandPreference, or prScrollMargins is received,

clsPreferences will self-post msgPrefsLayoutSystem when msgPrefsWritingDone is received. After
msgPrefs WritingDone is received, any other msgResW rite of these preferences will cause an immediate

layout unless this message is sent again. Will be sent to observers to allow them to be aware that several

preferences are being written.

msgPrefsWritingDone

msgPrefsWritingDone
Indicates completion of writing several preferences.

Takes NULL, returns STATUS.

#define msgPrefsWritingDone MakeMsg(clsPreferences, 7)

Causes the system to layout if necessary by self-posting msgPrefsLayoutSystem. You should send this

message in conjunction with msgPrefsWritingMany to indicate that writing of successive preferences is
complete. If a msgResWrite of prSystemFont, prUserFont, prOrientation, prHandPreference, or

prScrollMargins with a new value has been done, layout will occur at this time. Will be sent to observers

to indicate that a series of preferences writes have been completed.

msgPrefs WritingMany

Public Functions

PrefsSysFontlnfo
Passes back the system and user font information.

Returns void.

Arguments typedef struct PREF SYSTEM FONT INFO
U8 scale;
U16 sysFontId;
U16 userFontId;
PREF_SYSTEM_FONT_INFO, *P_PREF_SYSTEM_FONT_INFO;

function Prototype void EXPORTED PrefsSysFontInfo (
P_PREF_SYSTEM_FONT_INFO pFontInfo);

Comments This function can be used to read all font information stored in the preferences file at one time.
Equivalent functionality exists with msgResRead. This function is provided for convenience.

484 PEN POI NT API REFERENCE

Part 11 / Resources

PrefsDateToString
Returns a pointer to the string containing a formatted date.

Returns P _CHAR.

#define prefsMaxDate 19

rum:tlort Prototype P _ CHAR EXPORTED PrefsDateToString
P_OS_DATE_TlME pTime,
P _CHAR pStr);

Co/nmerd's This function will return a string containing the ASCII representation of the formatted date based on
the current user-preference for date. Puts the date into the string passed in. The longest possible string is
18 characters (19 including the terminating 0) given the CURRENT formats. If additional formats are
added, this may increase.

PrefsTimeToString
Returns a pointer to the string containing a formatted time.

Returns P _CHAR.

#define prefsMaxTime 11

0undlort Prototype P _CHAR EXPORTED PrefsTimeToString
P_OS_DATE_TlME pTime,
P_CHAR pStr);

Comments This function will return a string containing the ASCII representation of the time based on the current
user preferences for time. Puts the time into the string passed in, and returns the string pointer. The
longest possible string is 10 characters (11 including the terminating 0) given the current time formats.
If additional formats are added, this may increase.

RESCMPLR.H

This file contains definitions for input to the resource compiler.

The resource compiler is a program which runs under MS-DOS. In conjunction with your resource
compiler input and the C compiler it will create a PenPoint resource file.

NOTE: THIS IS A MSDOS INCLUDE FILE, DO NOT CHANGE IT TO BE PENPOINT

COMPATIBLE.

*ifndef RESCMPLR_INCLUDED
*define RESCMPLR_INCLUDED
*ifndef RESFILE_INCLUDED
*include <resfile.h>
*endif

Common #defines and typedefs

Types
Prototype for the client-supplied agent writing routine. If you wish to supply your own agent writing
routine then write a routine of type P _AGENT_TYPE and supply the address to the routine in the field
pAgentWriteProc of RC_INPUT. Your routine should write out (using fwrite to file) its representation of

the data described by pReslnput (and optionally also by pAgentData).

Fundi©n Pr©t©ty~e typedef void (PASCAL * P_AGENT_WRITE) (
P UNKNOWN file,
struct RC INPUT * pRes Input ,
P UNKNOWN pAgentData,
U32 spare!,
U32 spare2

) ;

11 DOS file handle
II Data described below
II Res Agent specific data
II For future
II For future

The resource compiler uses the information supplied by RC_INPUT to create resources. Typically only
the first four or five fields of RC_INPUT are used. At a minimum you should set resld, pData and

dataLen. You do not need to set dataLen if you set agent to resStringResAgent or
resStringArrayResAgent (the resource compiler will infer dataLen from pData). You should set agent if
you do not want the default resource data agent. You should set minSysVersion if it has a non-zero
value. You may set ob;ectData to true in the rare case that an object resource is being created by the
resource compiler. You should set pAgentWriteProc and optionally pAgentWriteData if you are
providing your own routine to write the resource data to the resource file.

typedef struct RC_INPUT {
RES ID resld;
P UNKNOWN pData;
U16 dataLen;
UID agent;
U16 minSysVersion;
U16 reserved;
BOOLEAN objectData;
P_AGENT_WRITE pAgentWriteProc;
P UNKNOWN pAgentWriteData;

RC_INPUT, *P_RC_INPUT, **PP_RC_INPUT;

II the resource ID
II points to data
II length of data
II usually resDefaultResAgent
II min sys version for resource

II usually false
II pNull, unless supplying routine
II usually pNull

486 PENPOINT API REFERENCE

Part 11 I Resources

If you use resTaggedStringArrayResAgent as the agent for a resource. Then the data must be a list of
RC_TAGGED _STRINGs. This is converted into a linear string array and the filed using the
resStringArrayResAgent agent.

idefine resTaggedStringArrayResAgent ((UID)MakeTag(clsResFile, Oxff))
typedef struct RC_TAGGED_STRING {

TAG tag;
P STRING pString;

RC_TAGGED_STRING, *P_RC_TAGGED_STRING;

,-~ Public variable

Example

reslnput is an exported variable that the resource compiler expects. Each element in the reslnput array is
a pointer to a structure describing the next resource. The list must be terminated with a null pointer.

extern P RC INPUT reslnput []; II Resource compiler input

Here is example input for rescmplr (or rc):

II Resource ids
idefine resldRfANumber
idefine resldRfAString
idefine resldRfAStringArray
idefine resldRfATaggedStringArray

idefine tagExampleErrorBogus
idefine tagExampleErrorWrong
idefine tagExampleErrorAgain

II A number.
static U16 aNumber 1;

II A string array.
static P CHAR errorTextData []

"This is bogus.",
"You got it wrong.",

MakeWknResld(clsExample, 1)
MakeWknResld(clsExample, 2)
MakeWknResld(clsExample, 3)
MakeWknResld (clsExample, .4)

MakeTag(clsExample, 0)
MakeTag(clsExample, 1)
MakeTag(clsExample, 2)

"I think you need to try again.",

pNull II Define end of string array.
} ;

II A tagged string array.
II This is equivalent to the above string array even thought the
II elements are in a different order.
static P_RC_TAGGED_STRING errorTextTaggedData [] = {

} ;

tagExampleErrorWrong,
tagExampleErrorAgain,
tagExampleErrorBogus,

pNull

"You got it wrong.",
"I think you need to try again.",
"This is bogus.",

II Res compiler input for aNumber.
static RC_INPUT aNumberRes = {

res IdRfANumber,
&aNumber,
sizeof(aNumber)

} ;

RESCMPLR.H 487
Common #defines and typedefs

II Res compiler input for aString.
static RC_INPUT aStringRes = {

resIdRfAString,

} ;

"Sample string",
0,
resStringResAgent

II Size inferred by res compiler.

II Res compiler input for aStringArray.
static RC_INPUT aStringArrayRes = {

resIdRfAStringArray,
errorTextData,
0, II Size inferred by res compiler.
resStringArrayResAgent

};

II Res compiler input for aTaggedStringArray.
static RC_INPUT aTaggedStringArrayRes = {

resldRfATaggedStringArray,
errorTextTaggedData,
0, II Size inferred by res compiler.
resTaggedStringArrayResAgent

} ;

II Input for resource compiler.
P RC INPUT resInput [] = {

&aNumberRes,

} ;

&aStringRes,
&aStringArrayRes,
&aTaggedStringArrayRes,
pNull

RESFILE.H

This file contains the API definition for clsResFile.

clsResFile inherits from clsFileHandle.

Provides resource and object filing support.

theSystemResFile is a well known instance of clsResFile.

clsResList inherits from clsList.

ResLists are lists of resource files that act like a single resource file for reading and searching (but not
writing).

theProcessResList is a process well known instance of clsResList.

A resource file maintains a collection of 'resources' each identified by a 'resource ID'. A resource is filed
data or a filed object. The types of data supported are: byte array, string, and array of strings. It is also
possible to create an 'agent' that reads and writes other kinds of data.

A resource ID is a 32 bit TAG used as a unique (per file) key to identify and select a desired resource.

Overview
Resource files are used in three general ways: filing & unfiling objects, reading theProcessResList for
configuration and customization information, and application specific data storage.

• The most common case of filing & unfiling objects is a page turn, which needs to save the state of a
running process on the disk, and restore the state of another process from the disk. This is done by
(un)filing the application framework, which (if everything is set up correctly) (un)files directly or
indirectly all the objects that make up the state of the process.

Filling of an object is initiated with msgResWriteObject which ends up sending msgSave to the
object. The save procedure uses msgStreamWrite (everything except objects) and msgResPutObject
(objects) to write out its instance data. Unfiling of the object is initiated with msgResReadObject
which sends msgRestore to the (newly created) object. The restore procedure uses msgStreamRead
and msgResGetObject to read its instance data back in.

• theProcessResList is used for several reasons: to allow text to be stored separately from the code, to
store pre-built UI objects, to allow applications to override system provided items, to provide a
central set of system wide preferences, etc. To do this it normally (inside an application) contains
four resource files: DOC.RES (specific to the document), AlP.RES (specific to the application), current
system preferences file, and PENPOINT.RES (system wide resource file). They are searched in the
order listed above. There are some utility functions to access theProcessResList, see RESUTIL.H for
more information on them.

• There are many other ways to use resource ·files, but they are application specific. If you think you
have a use for resource files, it is worth checking out, but do be careful, resource files are designed
and optimized for the first two uses, and do not work well for everything that it at first seems like
they should.

490 PENPOINT API REFERENCE

Part 11 / Resources

How a Resource ID is put together
The fields in a Resource ID:

TagNum (which resource object) = 8 bits

Flags (see below) = 2 bits

Admin (as usual) = 20 or 19 bits

Scope (as usual) = 1 or 2 bits

They are laid out this way:

Name: OltagNum IFI Admin+Scope
+-------+-------+-------+-------+

Size: 11 8 121 20+1 or 19+2

The flags are interpreted as follows:

o Well-Known Resource ID

1 Dynamic Resource ID

2 Well-Known List Resource ID

3 RESERVED

The Well-Knowns used here are the same ones used in other tags. This gives us three possible scopes:
global, process and local. Because resource files are not tied to a process context, there is no difference
between the global and process Well-Knowns. System and service classes should only use there own well

known. Applications can not only use the well knowns for there own classes, they can also use all local
well known values.

Well-Known Resource Ids (flag == 0) can be used to store any kind of resource.

The Dynamic Resource IDs (flag == 1) are used by the resource file in msgResPutObject to file nested

objects. It is also possible for other code to allocate them using msgResNextDynResId. They may be

used to file any kind of resource. We get 29 bits worth of Dynamic Resource IDs by combining the
tagN urn, admin and scope fields.

Well-Known List Resource IDs (flag == 2) must be used with list resources to allow the Indexed

Resource IDs (see below) to work. The only list resource defined by GO is the string array, but it is

possible to define others. The tagNum field is split into two fields for List Resource IDs.

The fields in a List Resource ID:

Group of lists = 6 bits

List in group = 2 bits

Flags (always set to Ox2) = 2 bits

Admin (as usual) = 20 or 19 bits

Scope (as usual) = 1 or 2 bits

They are laid out this way:

Name: 01 Grp ILI21 Admin+Scope
+-------+-------+-------+-------+

Size: 11 6 12121 20+1 or 19+2

The Groups are allocated as follows:

00 - IF AVAILABLE TO DEVELOPERS
TK Table Lists
Standard Message Lists
Quick Help Lists
3F RESERVED FOR GO

What an Indexed Resource ID is

RESFILE.H 491

Overview

Indexed Resource IDs are used to access list resources. They are NOT Resource IDs. Each must be
converted into the List Resource ID of the desired list plus an index into the list to fetch the desired
data.

The fields in a Indexed Resource ID:

TagNum (index into list) = 8 bits

Flags (which list) = 2 bits

Admin (as usual)

Scope (as usual)

= 20 or 19 bits

= 1 or 2 bits

They are laid out this way:

Name: OltagNum IFI Adrnin+Scope
+-------+-------+-------+-------+

Size: 11 8 121 20+1 or 19+2

You will note that this provides eight bits not provided by a List Resource ID (the index) and is missing
eight bits needed by it (the flags and group).

The eight bits of index allow each list to contain up to 256 items. Actually they can have more, but only
the first 256 can be accessed this way. Since there are four lists for each Well-Known, it is possible to
access up to 1,024 items per group per Well-Known.

We provide the missing bits as follows. Since we always map to a List Resource ID we know that the
flags will be set to Ox2. Which group to use is determined by which API it is used with. Thus, the
passing the same Indexed Resource ID to both Quick help and a TK table will result in different data
items being used.

Warnings to those going oH the beaten path.
The description above gives the standard way of allocating resource IDs. While there is special support
for using them this way, and some other parts of the system in fact require this usage, the resource file
itself does not care. The only time it puts a special interpretation on a resource ID is for
well-known-object resource IDs. They have the top (sign) bit set to one. These are automatically created
by the resource file, and to avoid trouble, should never be created by anything else.

Dynamic resource IDs are based off of a 29-bit count, and gaps are not reused. Because of this it is
possible to run out. While this will not happen in 'normal' use, it is possible for uses that seem
reasonable. So if you use them for anything other than normal object filing, or are repeatedly filing
objects, make sure you do not run into this.

492 PENPOINT API REFERENCE

Part 11 I Resources

When an object resource is deleted from a resource file, the other objects it filed are NOT deleted, and
there is no easy way of finding them to delete them. Because of this, repeatedly filing objects will result
in the file growing without bound unless you work very hard to prevent it.

Opening multiple handles on the same resource file has some limitations. It is possible to have as many
read-only handles as desired, as long as there are no writable handles. If there is a writable handle, no
other handles may be opened. This is do to a limitation of the current implementation. It maintains
index information into the file on a per handle basis. If writing was allowed with multiple handles open,
these tables would become invalid resulting in fatal errors of many kinds.

While it is possible to use a resource file as a kind of mini-database, it was not designed or optimized for
such a use. So, don't be surprised if you find it is not up to the task you would like to use it for.

ResFile Debugging Flags (Shared with Penpoint
kernel & fs)

ResFile flag is 'G', values are:

1-80 = Used by PenPoint Kernel (see os.h)

-800 = Used by File System (see fs.h)

1000 = Turns on debugging info for reading and writing resources.
= Turns on timing stats
= Turns on debugging info for intercepted Stream & FS messages.
=TBD

iifndef RESFILE_INCLUDED
idefine RESFILE_INCLUDED
iifndef UUID INCLUDED
iinclude <uuid.h>
iendif
iifndef CLSMGR INCLUDED
iinclude <clsrngr.h>
iendif
iifndef OSHEAP INCLUDED
iinclude <osheap.h>
iendif
iifndef LIST INCLUDED
iinclude <list.h>
iendif
iifndef FS_INCLUDED
iinclude <fs.h>
iendif

Common #defines and typedefs
These are used to define resource IDs, both well known (client-defined) and dynamic (See uuid.h for
comparison). Note that the count used for the dynamic resource ID's is managed internal to the
resource file, and no attempt should be made to create them elsewhere.

idefine resFlagsWkn
idefine resFlagsDyn
idefine resFlagsLists
idefine resFlagsSpare
idefine resFlagWknObj

OxO
Oxl
Ox2
Ox3
((RES_ID)Ox80000000)

RESFILE.H 493

Common #defines and typedefs

#define MakeWknResld(wkn,i) \
MakeTagWithFlags(wkn, i, resFlagsWkn)

#define MakeDynResld(count) \
MakeTagWithFlags(((U32) (count))»8, ((count)&OxFF), resFlagsDyn)

#define MakeListResld(wkn,grp,lst) \
MakeTagWithFlags(wkn, ((((U32) (grp))«2)+((lst)&Ox03)), resFlagsLists)

#define MakeWknObjResld(obj) ((RES_ID) (obj) I resFlagWknObj)

Extract the pieces from resource IDs.

#define ResWknObjResld(resld)
#define ResDynldCount(resld)
#define ResListGroup(resld)
#define ResListList(resld)

Tests on resource ID's

#define WknObjResld(resld) ((resld)
#define WknResld(resld) \

((OBJECT) ((resld) & -resFlagWknObj))
(WKNValue(resld)«8 I Tag(resld))
(Tag(resld) » 2)
(Tag (resld) & Ox3)

& resFlagWknObj)

(!WknObjResld(resld) && TagFlags(resld) != resFlagsDyn)
#define WknltemResld(resld) \

(!WknObjResId(resId) && TagFlags(resId) resFlagsWkn)
#define WknListResId(resId) \

(!WknObjResId(resld) && TagFlags(resld) resFlagsLists)
#define DynResld(resld) \

(!WknObjResld(resld) && TagFlags(resld) resFlagsDyn)

Constants

#define resNilResld

OBOLETE Resource IDs do NOT use.

#define residRfSystemVersion
#define residRfApplicationVersion

MakeWknResld(clsResFile, 1)
MakeWknResld(clsResFile, 2)

How to make a Indexed resource ID.

#define MakelndexedResld(wkn,list,index)\
MakeTagWithFlags(wkn,index,list)

The group identifiers used to convert from Indexed resource IDs to normal resource IDs. Values from

OxOO to OxlF are available for use by applications. Values from Ox20 to Ox3F are reserved to the system.

#define resGrpTK Ox20
#define resGrpStdMsg Ox21
#define resGrpQhelp Ox22

Predefined Resource Agents
These are used by both the resource compiler to define data resources and by msgRes WriteData to

dynamically write a resource.

II Don't use these definitions, use
#define resDefaultObjAgent
#define resDefaultDataAgent 4
#define resStringAgent 5
#define resStringArrayAgent 6

#define MakePrivateResAgent(x) \
((UID)MakeTag(clsResFile, x))

the derived values below
3 II Use resObjectResAgent
II Use resDataResAgent
II Use resStringResAgent
II Use resStringArrayResAgent

resource types II These are the pre-defined
#define resDefaultResAgent
#define resObjectResAgent
#define resDataResAgent
#define resStringResAgent
#define resStringArrayResAgent

objNull
MakePrivateResAgent(resDefaultObjAgent)
MakePrivateResAgent(resDefaultDataAgent)
MakePrivateResAgent(resStringAgent)
MakePrivateResAgent(resStringArrayAgent)

494 PENPOINT API REFERENCE

Part 11 / Resources

Status Codes

Types

#define stsResResourceNotFound MakeStatus(clsResFile, 1)
#define stsResNotDataResource MakeStatus(clsResFile, 2)
#define stsResNotObjectResource MakeStatus(clsResFile, 3)
#define stsResBufferTooSmal1 MakeStatus(clsResFile, 4)
#define stsResNotFullyRead MakeStatus(clsResFile, 5)
#define stsResGetNotFromRestore MakeStatus(clsResFile, 6)
#define stsResPutNotFromSave MakeStatus(clsResFile, 7)
II removed unused MakeStatus(clsResFile, 8)
#define stsResWriteObjDynamicClass MakeStatus(clsResFile, 9)
II removed unused MakeStatus(clsResFile, 10)
#define stsResCompactInReadOrWrite MakeStatus(clsResFile, 11)
#define stsResIncorrectFileType MakeStatus(clsResFile, 12)
#define stsResFileCorrupt MakeStatus(clsResFile, 13)
#define stsResResourceTooBig MakeStatus(clsResFile, 14)
#define stsResOutOfDynResIds MakeStatus(clsResFile, 15)

II Object types.
typedef OBJECT RES_FILE, *P_RES_FILE;
typedef OBJECT RES_LIST, *P_RES_LIST;

NOTE: That RES_ID is already defined in dsmgr.h because it is referenced by msgSave & msgRestore:

typedef TAG II Resource ID
II Modes used in msgNew to control the creation of the resource file.
Enum16(RES NEW MODE) {

} ;

II Will the file handle be shared? Also guarantees concurrence
resSharedResFile = flagO,
II Remove "deleted" fields on close
resCompactOnClose = flagl,
II Compact file when ratio of deleted to non-deleted reaches compactRatio.
resCompactAuto = flag2,
II Check to see that system version is new enough for resources.
resVerifyVersions = flag3,
II Allow unsafe opens, internal use only.
resUnsafeOpen = flag4,
II Default - No Concurrence, compact on close, verify versions.
resNewDefault = resCompactOnClose I resVerifyVersions

II Duplicate object checking flag for reading objects.
Enum16 (RES_READ_OBJ_MODE) {

resReadObjectOnce 0, II Should object resource be read once?
resReadObjectMany = 1 II Should object resource be read many times?

} ;

II Duplicate object checking flag for writing objects.
Enum16 (RES_WRITE_OBJ_MODE) {

} ;

resWriteObjectOnce
resWriteObjectMany

0,
= 1

II Should object resource be written once?
II Should object resource be written many?

II Mode used to control msgResEnumResources.
Enum16 (RES_ENUM_MODE) {

} ;

resEnumAII
resEnumByResIdClass
resEnumByObjectClass
resEnumByObjectUID
resEnumByAgent
resEnumNext
resEnumDefault

0, II Enumerate all resource entries?
1, II Enumerate by wkn resource ID admin field?
2, II Enumerate by object resource's class?
3, II Enumerate by object resource's uid?
4, II Enumerate by resource's agent?
flag14, II Or in to enumerate the next item.
resEnumAlI II Default - all resources.

RESFILE.H 495

Class ResFile Messages

II Internal flag used to enumerate across resource lists.
#define resEnurnNextFile Ox8000
II Indexed resource IDs.
typedef TAG IX_RES_IO, *P_IX_RES_IO;

Class ResFile Messages

Arguments

Message

Arguments

msgNew
Creates a resource file object.

Takes P _RES_FILE_NEW, returns STATUS. Category: class message.

typedef struct RES_FILE_NEW_ONLY {
RES NEW MODE mode;
U16 compactMinimum;
U16 compactRatio;
U32 spare1;
U32 spare2;

RES FILE NEW ONLY, *P_RES_FILE_NEW_ONLY;
#define resFileNewFields \

fsNewFields \
RES_FILE_NEW_ONLY resFile;

typedef struct RES_FILE_NEW {
resFileNewFields

} RES_FILE_NEW, *P_RES_FILE_NEW;

stslncompatibleVersion Filed data is incompatible with system.

stsReslncorrectFileType File is not a resource file.

stsResFileCorrupt Size or contents of the file are not valid.

stsFSAccessDenied Incompatible with existing handles(*)

(*) Note that there can be only one open handle to a writable resource file. The file mode is

automatically set to enforce this.

A resource file compacts itself at close time if the resCompactOnClose flag was set in
pN ew-> resFile.mode.

If the resCompactAuto flag is set in pArgs->res.mode then it compacts itself when a resource is written
or deleted, if the number of records is greater than compactMinimum and the number of deleted

records is greater than compactRatio percent of the records in the file.

For example, a value of 10 for compactMinimum and 50 for compactRatio implies that compaction
should happen whenever there are more than 10 resources in the resource file and 50% of them have

been marked as deleted.

msgNewDefaults
Initializes the RES_FILE_NEW structure to default values.

Takes P _RES_FILE_NEW, returns STATUS. Category: class message.

typedef struct RES_FILE_NEW {
resFileNewFields

} RES_FILE_NEW, *P_RES_FILE_NEW;

Zeroes out pArgs->resFile and sets mode = resNewDefault;.compactRatio = 33;.compactMinimum = 50;

496 PENPOINT API REFERENCE

Part 11 I Resources

msgResFindResource
Finds a resource in a resource file or a resource list.

Takes P _RES_FIND, returns STATUS.

tdefine msgResFindResource MakeMsg(clsResFile, 1)

typedef struct RES FIND
RES IO resId; II In: Resource to find
RES FILE file;
UIO agent;

II Out: File location of resource
II Out: Agent of the resource

U32 offset; II Out: Offset in file (Careful!)
U16 minSysVersion; II Out: Min sys vers for the resource
U16 reserved;

RES_FIND, *p RES_FIND;

*** This message is obsolete, you should use msgResGetlnfo instead.

This message may be used to determine if a resource exists and to get information about that resource.
You must use it before writing or deleting a resource if you do not know which resource file (out of a
resource list) contains the resource (Resource lists only act upon non-destructive messages).

stsBadParam resId is a nil resource ID.

stsResResourceNotFound No resource with the given resld exists.

msgResGetlnfo
Gets information on a resource in a resource file or a resource list.

Takes P _RES_INFO, returns STATUS.

tdefine msgResGetInfo MakeMsg(clsResFile, 17)

typedef struct RES INFO
RES IO
RES FILE
UIO
UIO
U32
U32
U16
U16

resId;
file;
agent;
objClass;
offset;
size;
minSysVersion;
reserved1;

U32 reserved;
RES_INFO, *p RES_INFO;

II
II
II
II
II
II
II

In: Resource to find
Out: File location of resource
Out: Agent of the resource
Out: Class of object (if is object)
Out: Offset in file (Careful!)
Out: Size in file (Careful!)
Out: Min sys vers for the resource

This message may be used to determine if a resource exists and to get information about that resource.
You must use it before writing or deleting a resource if you do not know which resource file (out of a

resource list) contains the resource (Resource lists only act upon non-destructive messages). This is an

improved version of msgResFindResource. It gives a more useful set of values for agent (as in exactly

what is in the file), and it returns the size of the resource in the file.

stsBadParam resId is a nil resource ID.

stsResResourceNotFound No resource with the given resld exists.

msgResReadData
Reads resource data from a resource file or resource list.

tdefine msgResReadOata MakeMsg(clsResFile, 2)

typedef struct RES_READ_DATA {
RES ID resld;
OS HEAP ID heap;
P UNKNOWN pData;
U32 length;
P UNKNOWN pAgentData;
U32 sparel;

RES_READ_DATA, *P_RES_READ_DATA;

RESFILE.H 497

Class ResFile Messages

II
II Nil if pData is user supplied buf
II 1/0: In: user buffer, Out: res data
II 1/0: In: user buf len, Out: res len
II Agent-specific data

This message requires a destination for the read data. There are two choices. You can specify a pointer
and a length for the data passed back (heap = null, pData = ptr, length = xx) or you can specify a valid
heap from which the resource file will allocate memory for the data (heap = heap ID, pData = doesn't
matter, length = doesn't matter). Typically if the size of the data is already known and it is small and
short lived, then the data is "allocated" on the stack. Otherwise, the data is allocated on behalf of a heap.

Some resources require additional data to identify the actual data to be passed back. For example, a
string arrays resource requires additional information (the index into the array) to find the string to pass
back. You specify an index in pAgentData (pAgentData = (p _UNKNOWN) index).

stsBadParam resId is a nil resource ID or reading a string from a string array resource and the index
specified in pAgentData is out of range.

stsResResourceNotFound No resource with the given resld exists.

stsResNotDataResource The found resource was an object resource.

stsResBufferTooSmall Supplied buffer isn't big enough to hold data.

msgResWriteData To write data to resource file.

msgResReadObject To read an object from a resource file.

msgResWriteData
Writes resource data to a file.

Takes P _RES_ WRITE_DATA, returns STATUS.

*define msgResWriteData

typedef struct RES_WRITE_DATA
RES ID resld;
P UNKNOWN pData;
U32 length;
UID agent;
P UNKNOWN pAgentData;
U32 sparel;

RES_WRITE_DATA, *P_RES_WRITE_DATA;

MakeMsg(clsResFile, 3)

II
II Data to be written
II Optional if agent can compute size
II Not used by msgResUpdateData
II Agent-specific data

This message writes data to the resource file. If the resource already exists it is marked as deleted and the
new data is written to the end of the file.

stsBadParam resId is a nil resource ID.

stsResResourceTooBig Tried to write resource bigger than resource file can handle (16Meg).

msgResReadData To read data from resource file.

msgResUpdateData To re-write data in a resource file.

msgResWriteObject To write an object to a resource file.

498 PEN POINT API REFERENCE

Part 11 I Resources

M()$$(]£j0

Arguments

msgResU p dateD ata
Updates existing data resource data.

Takes P _RES_WRITE_DATA, returns STATUS.

#define msgResUpdateData

typedef struct RES_WRITE_DATA
RES ID resld;
P UNKNOWN pData;
U32 length;
UID agent;
P UNKNOWN pAgentData;
U32 spare1;

RES_WRITE_DATA, *P_RES_WRITE_DATA;

MakeMsg(clsResFile, 4)

II
II Data to be written
II Optional if agent can compute size
II Not used by msgResUpdateData
II Agent-specific data

Use this message if you know that a resource already exists and is only being updated. The only
advantage of this message over msgWriteData is that you don't have to specify the agent.

stsBadParam resId is a nil resource ID.

stsResResourceNotFound No resource with the given resId exists.

stsResNotDataResource The found resource was an object resource.

stsResResourceTooBig Tried to write resource bigger than resource file can handle (16Meg).

msgResReadData To read data from resource file.

msgResWriteData To write data to a resource file.

msgResReadObject
Reads a resource object from a resource file or resource list.

Takes P _RES_READ_OBJECT, returns STATUS.

#define msgResReadObject

typedef struct RES_READ_OBJECT
RES_READ_OBJ_MODE mode;
RES ID resld;
OBJECT_NEW objectNew;
RE S_SAVE_RES TORE_FLAGS sysFlags;
U16 appFlags;
U32 spare1;

RES_READ_OBJECT, *P_RES_READ_OBJECTi

MakeMsg(clsResFile, 5)

II Duplicate checking mode
II
II Object passed back in new.uid
II Only for msgResReadObjectWithFlags
II Only for msgResReadObjectWithFlags

An object must be initialized before it can be read. You must send msgNewDefault to dsObject.

There are two modes that can be applied to reading an object resource, resReadObjectOnce and
resReadObjectMany.

Setting mode to resReadObjectOnce, passed back the object that is associated with the resource stored
in the resource file (per open). This guarantees that all filed references to a given object refer to the same
object. This is the mode to use if you are unfiling data in a msgRestore procedure. There are other uses
of it, but they can be very tricky, so make sure you read all of the documentation and understand it
thoroughly before you try to use this any place other than a msgSave procedure.

Setting mode to resReadObjectMany, passes back a new copy of the object without regard as to whether
the object has already been read in before or not. This guarantees that each reader gets his own unique
instance of the object. This is the mode to use if you are reading an object resource "tempJate" (the
normal case).

Argufnents

RESFILE.H 499

Class ResFile Messages

stsBadParam resld is a nil resource 10.

stsResResourceNotFound No resource with the given resld exists.

stsResNotObjectResource The found resource was a data resource.

stsResNotFullyRead The msgRestore routine did not read the same amount of data as the msgSave

wrote.

msgResWriteObject To write an object to a resource file.

msgResReadData Toread data from a resource file.

Pseudo code for reading an object resource:

#define sampleResId MakeWknResId(clsXXX, 17)
readObj.resId = sampleResId;
readObj.mode = resReadObjectMany;
ObjCallRet(msgNewDefaults, clsObject, &readObj.objectNew, status);
status = ObjCallWarn(msgResReadObject, file, &readObj);
object = readObj.objectNew.uid;

msgResWriteObject
Writes a resource object to a file.

Takes P _RES_ WRITE_OBJECT, returns STATUS.

#define msgResWriteObject MakeMsg(clsResFile, 6)

typedef struct RES_WRITE_OBJECT
RES_WRITE_OBJ_MODE mode;
RES ID resId;
OBJECT object;
RES_SAVE_RESTORE_FLAGS sysFlags;
U16 appFlags;
U32 spare1;

RES WRITE OBJECT, *P_RES_WRITE_OBJECT;

II Duplicate checking mode
II
II Object to write
II Only for msgResWriteObjectWithFlags
II Only for msgResWriteObjectWithFlags

There are two modes that can be applied to writing an object resource, resWriteObjectOnce and

resW riteObjectMany.

Setting mode to resWriteObjectOnce, will only write the object to the resource file once (per open).

This guarantees that all filed references to a given object refer to the same object. This is the mode is

used by msgResPutObject, and should be used by you if you bypass it and use msgResWriteObject
directly in a msgSave procedure. There are other uses of it, but they can be very tricky, so make sure you

read all of the documentation and understand it thoroughly before you try to use this any place other

than a msgSave procedure.

Setting mode to resWriteObjectMany, will write a new copy of the object to the resource file whether

the object has already been written before or not. This is the mode to use if you are writing an object
resource "template" (the normal case).

stsBadParam resld is a nil resource 10.

stsResWriteObjDynamicClass Class of object cannot be dynamic.

stsResResourceTooBig Tried to write resource bigger than resource file can handle (16Meg).

msgResReadObject To read an object from resource file.

msgResWriteData To write data to a resource file.

---....•... _-------

500 PEN POINT API REFERENCE

Part 11 / Resources

msgResGetObject
Reads the filed object resource from the current file position.

Takes P_OBJECT, returns STATUS.

fdefine msgResGetObject MakeMsg(clsResFile, 8)

This should only be called by routines responding to msgRestore. This message is provided as a
convenience. It eliminates the need for everyone to duplicate the same code and guarantees that the
parallel operation (msgResPutObject) will work.

stsResGetN otFromRestore This was sent in a context other than in response to a msgRestore.

This message is equivalent to this pseudo code:

STREAM_READ_WRITE fsRead;
RES READ OBJECT resRead;
STATUS status;
II Read the object's resource ID from the file.
fsRead.numBytes = SizeOf(resRead.resId);
fsRead.pBuf = &resRead.resId;
ObjCallRet(msgStreamRead, pArgs->file, &fsRead, status);
II Set up the read resource object request.
resRead.mode = resReadObjectOnce;
ObjCallRet(msgNewDefaults, clsObject, &resRead.new, status);
II Read the object if one was filed.
if (resRead.resId != resNilResId) {

ObjCallRet(msgResReadObject, pArgs->file, &resRead, status);

msgResPutObject
Writes the object as a filed object resource to the current file position.

Takes OBJECT, returns STATUS.

fdefine msgResPutObject MakeMsg(clsResFile, 9)

This should only be called by routines responding to msgSave. This message is provided as a
convenience. It eliminates the need for everyone to duplicate the same code and guarantees that the
parallel operation (msgResGetObject) is done in the correct order.

stsResPutNotFromSave This was sent in a context other than in response to a msgSave.

This message is equivalent to this pseudo code:

STREAM READ WRITE fsWrite;
RES WRITE OBJECT resWrite;
STATUS status;
if (object != Nil(OBJECT» {

II Assign an appropriate resource 1D to the object.
if (!ObjectIsDynamic(object» {

}

resWrite.resId = MakeWknObjResId(object);
else {

ObjCallRet (
msgResNextDynResId, pArgs->file, &resWrite.res1d, status

) ;

II Write the object.
resWrite.mode = resWriteObjectOnce;
resWrite.object = object;
ObjCallRet(msgResWriteObject, pArgs->file, &resWrite, sta~us);

MessC!ge
Ar!juments

Me5SC!ge
Ar!juments

RESFILE.H 501
Class ResFile Messages

else {
II No object.
resWrite.resId resNilResId;

II Write the object's resId.
fsWrite.numBytes = SizeOf(resWrite.resId);
fsWrite.pBuf = &resWrite.resId;
ObjCallRet(msgStreamWrite, pArgs->file, &fsWrite, status);

msgResReadObjectWithFlags
Reads a resource object, passing the supplied flags.

Takes P _RES_READ_OBJECT, returns STATUS.

*define msgResReadObjectWithFlags

typedef struct RES_READ_OBJECT {
RES_READ_OBJ_MODE mode;
RES_ID resId;
OBJECT_NEW objectNew;
RES SAVE RESTORE FLAGS sysFlags;
U16- - - appFlags;
U32 spare1;

RES_READ_OBJECT, *P_RES_READ_OBJECT;

MakeMsg(clsResFile, 15)

II Duplicate checking mode
II
II Object passed back in new.uid
II Only for msgResReadObjectWithFlags
II Only for msgResReadObjectWithFlags

This is identical to msgResReadObject except that it copies the flag values supplied into all msgRestore
calls done by this or any object reads that are done recursively from this.

The values for the sysFlags field are defined by GO and should be examined by any object that needs
special behavior for any of the defined cases (currently only on copy).

The values for the appFlags field are defined by an application writer. Great care must be used with
setting or testing these flags. If the flags from one application are used with a class of a second
application, disaster can result. E.g. set this field to 0 unless you are very sure you know what you are
doing.

stsBadParam resId is a nil resource ID.

stsResResourceNotFound No resource with the given resld exists.

stsResNotObjectResource The found resource was a data resource.

stsResNotFullyRead The msgRestore routine did not read the same amount of data as the msgSave
wrote.

msgResReadObject Normal message to read an object

msgResWriteObjectWithFlags The matching write call.

msgResWriteObjectWithFlags
Writes a resource object, passing the supplied flags.

Takes P_RES_WRITE_OBJECT, returns STATUS.

*define msgResWriteObjectWithFlags

typedef struct RES_WRITE_OBJECT
RES_WRITE OBJ_MODE mode;
RES ID resId;
OBJECT object;
RES SAVE RESTORE FLAGS sysFlags;
U16- - - appFlags;
U32 spare1;

RES_WRITE_OBJECT, *P_RES_WRITE_OBJECT;

MakeMsg(clsResFile, 16)

II Duplicate checking mode
II
II Object to write
II Only for msgResWriteObjectWithFlags
II Only for msgResWriteObjectWithFlags

------------------_._--------

502 PEN POINT API REFERENCE

Part 11 I Resources

This is identical to msgResWriteObject except that it copies the flag values supplied into all msgSave
calls done by this or any object writes that are done recursively from this.

The values for the sysFlags field are defined by GO and should be examined by any object that needs
special behavior for any of the defined cases (currently only on copy).

The values for the appFlags field are defined by an application writer. Great care must be used with
setting or testing these flags. If the flags from one application are used with a class of a second
application, disaster can result. E.g. set this field to 0 unless you are very sure you know what you are
doing.

stsBadParam resId is a nil resource ID.

stsResWriteObjDynamicClass Class of object cannot be dynamic.

stsResResourceTooBig Tried to write resource bigger than resource file can handle (16Meg).

msgResWriteObject Normal message to write an object.

msgResReadObjectWithFlags The matching Read call.

msgResDeleteResource
Deletes the resource identified by RES_ID.

Takes RES_ID, returns STATUS.

fdefine msgResDeleteResource MakeMsg(clsResFile, 10)

This marks the resource deleted in the resource file index. The space taken by the resource is reclaimed
whenever the resource file is compacted. Auto compaction may happen after a resource is deleted.

Note that this may NOT be called during msgSave or msgRestore. It will appear to work, but the read
or write will fail.

stsBadParam resId is a nil resource ID.

stsResResourceNotFound No resource with the given resld exists.

msgResCompact
Compacts the resource file.

Takes void, returns STATUS.

fdefine msgResCompact MakeMsg(clsResFile, 11)

This message removes all deleted entries from the file and frees any unused space that results. This can
be called automatically in a couple of ways. See msgNew for an explanation of them.

stsResCompactlnReadOrWrite Can not compact during read or write. This only happens if
msgCompact is sent during msgSave or msgRestore.

msgResFlush
Flushes the resource file index.

Takes void, returns STATUS.

fdefine msgResFlush MakeMsg(clsResFile, 12)

RESFILE.H 503
Class ResFile Messages

The resource file keeps track of all objects that have filed themselves in the resource file. It needs this
information to implement the resReadObjectOnce / resWriteObjectOnce behavior. If you wish to

override the resReadObjectOnce / resWriteObjectOnce behavior, then flush the resource file.

Clients rarely use this message. Instead, use the resReadObjectMany / resWriteObjectMany modes with
msgResReadObject / msgResWriteObject.

This also sends a msgFSFlush to the file. If all you want to do is flush the file then use msgFSFlush
instead of msgResFlush.

msgResReadObject To get info on read once / read many.

msgResWriteObject To get info on write once/ write many.

msgResEnumResources
Enumerates resources in a resource file or resource list.

Takes RES_ENUM, returns STATUS.

*define msgResEnumResources

typedef struct RES_ENUM {
U16 max;
U16 counti

RES ENUM MODE mode;
UID match;
P RES 1D pRes1d;
P RES FILE pResFile;

} RES_ENUM, *P_RES_ENUM;

MakeMsg(clsResFile, 13)

II size of pRes1d[] and pResFile[] arrays
II * to pass back in arrays
II if count> max then memory may be allocated
II Out: * of valid entries in arrays
II Enumerate based on what and first/next.
II key to match on (i.e. class; agent; etc)
II Out: ptr to array of resource IDs
II Out: ptr to array of resource file handles
II Note: if memory was alloc'd for previous 2
II fields, client should heap free the memory

This message will enumerate all resources of a given category (based on mode and match) in either a
single resource file or a resource list. The max and count fields behave as all other enum messages. This
passes back the resource IDs and files that contain the resources in the pResld and pResFile arrays.
Mode must always have resEnumNext clear the first time this is called and set subsequent times. Other
mode flags selectively filter what is being enumerated.

stsBadParam resEnumN ext was specified first time.

Here is some pseudo-code for enumerating:

*define resMaxEnums 12
STATUS status;
RES ENUM rEnum;
RES 1D enumReslds[resMaxEnums]i
RES FILE enumResFiles[resMaxEnums]i
II Enumerate only objects belonging to clsString of the resources.
rEnum.max resMaxEnums;
rEnum.count resMaxEnums;
rEnum.mode resEnumByObjectClass;
rEnum.match clsStringi
rEnum.pResld = enumResldsi
rEnum.pResFile = enumResFilesi
for (status = stsOKi status == stsOK;) {

status = ObjectCall(msgResEnumResources, resFile, &rEnum)i
for (index = 0; index < rEnum.count; index++) {

II Process the data, etc, etc

rEnum.mode l=resEnumNext;

504 PENPOINT API REFERENCE

Part 11 / Resources

nnsglles~extI>ynllesld

Allocates the next available dynamic resource ID.

Takes P _RES_ID, returns STATUS.

fdefine msgResNextDynResId MakeMsg(clsResFile, 14)

This message may be used to allocate the next dynamic resource ID available, so that the caller can write
dynamic items without using msgResPutObject. WARNING: dynamic IDs are based on a 29 bit
count, and the values are not recycled. If you run out of available counts, this will fail.

stsResOutOfDynReslds ran out of dynamic resIDs

ResFile Agent Message

nnsgllesAgent
Message sent by resource file to resource agent when forwarding messages.

Takes P _RES_AGENT, returns STATUS.

fdefine msgResAgent

typedef struct RES_AGENT
RES FILE file;
U32 length;
MESSAGE msg;
P UNKNOWN pArgs;
U16 sysVersion;
U16 spare;
U32 spare1;
U32 spare2;

RES_AGENT, *P_RES_AGENT;

MakeMsg(clsResFile, 20)

II File containing the resource
II Length of resource entry
II message passed on to agent
II In-Out: message specific args
II Min sys version if write

Messages forwarded are msgResReadData, msgResReadObject, msgResWriteData,
msgResUpdateData, msgResWriteObject and msgResUpdateObject.

For reads, current file pointer will be positioned at resource entry and length of the entry will be passed
in length field. For writes, current file pointer will be positioned where write should begin.

Class ResList Messages

nnsg~ew

Creates a resource file (search) list object.

Takes P _RES_LIST_NEW, returns STATUS. Category: class message.

typedef struct RES_LIST_NEW_ONLY
U16 resvd1;
U16 resvd2;

RES_LI ST_NEW_ONLY , *P_RES_LI ST_NEW_ONLY;
fdefine resListNewFields

listNewFields
RES LIST NEW ONLY - - -

\
\
resList;

typedef struct RES_LIST_NEW {
resListNewFields

RES_LIST_NEW, *P_RES_LIST_NEW;

Comments

RESFILE.H 505

Class ResList Messages

clsResList adds no additional msgNew parameters to clsList. There are no messages specific to
clsResList. It adds additional behavior.

msgResXxx
Non-destructive resource file messages.

Takes P _RES_XXX, returns STATUS.

Resource lists accept only non-destructive resource file messages (msgResReadData,

msgResReadObject, msgResReadObjectWithFlags, msgResGetObject, msgResFindResource and
msgResEnumResources) and forwards the message to each resource file in the list. Resource files that are

null are skipped and are not considered an error. The resource list stops forwarding the message when
either all resource files in the list have been exhausted or when one of them responds with a status
greater than or equal to stsOK.

Sending msgResEnumResource to a resource file list is special, because it forwards the message to all
resource files in the list until the list is exhausted. Thus the enumerated data is representative of the
entire resource list.

stsRequestNotSupported Msg was not read, find or enum.

stsListEmpty No valid resource files in the list.

stsXXX Return values from the resource file messages that are sent to the resource list.

RESUTIL.H

This file contains the API definition for the Resource Utility procedures. The functions described in this
file are contained in RESFILE.LIB.

#ifndef RESUTIL INCLUDED
#define RESUTIL INCLUDED
#ifndef RESFILE INCLUDED
#include <resfile.h>
#endif

Public functions

ResUtilLoadObject
Loads an object from theProcessResList.

Returns STATUS.

fwm:tktrl Pr©t©type STATUS EXPORTED ResUtilLoadObject (
RES ID resId, // the resource ID of the object
P OBJECT pObject // Out: the object

) ;

This is a short cut to using msgResReadObject to read on object in from theProcessResList.

Res U tilLoadString
Loads a string item from theProcessResList.

Returns STATUS.

ftmdi©n f~r©t©type STATUS EXPORTED ResUtilLoadString (
PP CHAR ppString, // In/Out: the pointer to the buffer/string
P U32 pLength, // In/Out: the length of the buffer/string
OS HEAP ID - heap, // Heap to allocate from.
RES ID resId // resId for a string

) ;

(£wnmenrs This is a short cut to using msgResReadData to read a string in from theProcessResList.

There are two ways of supplying space to load the string into. You can specify a pointer and a length for
the data passed back (heap = null, *ppString = ptr, *pLength = xx) or you can specify a valid heap from
which the resource file will allocate memory for the data (heap = heap ID, *ppString = doesn't matter,
pLength = null or *pLength = doesn't matter). Typically if the size of the data is already known and it is
small and short lived, then the data is "allocated" on the stack. Otherwise, the data is allocated on behalf
of a heap.

508 PENPOINT API REFERENCE

Part 11 / Resources

ResUtilLoadListString
Loads an item from a string list in the application resource list.

Returns STATUS.

FtH'1diztn Prototype STATUS EXPORTED ResUtilLoadListString (

) ;

PP CHAR
P U32
OS HEAP ID
U32
IX RES 1D

ppString,
pLength,
heap,
listGroup,
listResId

// In/Out: the pointer to the buffer/string
// In/Out: the length of the buffer/string
// Heap to allocate from.
// The list group to select from
// Indexed resId for a string

This is a short cut to using msgResReadData to read a single string form a string array that is in
theProcessResList.

Works just like ResUtilLoadString, except it uses the group and indexed resource ID to construct the
resource ID of a string list and the index into it.

SEnINGS.H

clsSettingsNB inherits from clsApp . .

This class defines the Settings Notebook.

There is only one instance of the Settings Notebook in the system, on the bookshelf.

The Settings Notebook is an option book. It contains a System Preferences sheet, an Installer sheet, and
a Status sheet.

The Preferences sheet contains a group of Preferences cards. These update the system preferences
resource file (penpoint.res).

The Installer sheet contains one card for each installation category (apps, preferences, services, etc). Each
category has an underlying install manager (see instlmgr.h). A card is automatically created when a new
install manager is created, and deleted when an in~tall manger is destroyed.

The Installer sheet allows a client to display a particular card and select an item within that card. Here's
example code which activates the Settings Notebook from the Bookshelf, turns it to the Installer sheet,
displays a particular card, selects an item within that card, and finally opens the Settings Notebook:

#include <auxnbmgr.h>
#include <instlsht.h>

ANM OPEN NOTEBOOK openNotebooki
APP METRICS ami
IUI_SELECT_ITEM selectltemi
OPTION CARD OCi

lUI SHOW CARD showCardi
STATUS Si

ObjectCall(msgBusySetState, theBusyManager, (P_ARGS) true)i
openNotebook.notebook = anmSettings;
openNotebook.activateOnly = truei
ObjCallRet(msgANMOpenNotebook, theAuxNotebookMgr, &openNotebook, S)i

ObjSendUpdateRet(msgAppGetMetrics, openNotebook.uid, &am, SizeOf(am), S)i

oc.tag = tagIUllnstallerSheeti
ObjSendUpdateRet(msgOptionShowCard, am.mainWin, &oc, SizeOf(oc), S)i

ObjSendUpdateRet(msgOptionGetTopCard, am.mainWin, &oc, SizeOf(oc), S)i

strcpy(showCard.pCardName, "Applications")i
ObjSendRet(msgIUIShowCard, oc.win, &showCard, SizeOf(showCard), S)i

strcpy(selectltem.pltemName, appMgrMetrics.name)i
ObjSendRet(msgIUISelectItem, oc.win, &selectltem, SizeOf(selectltem), S)i

openNotebook.notebook = anmSettingsi
openNotebook.activateOnly = falsei
ObjCallRet(msgANMOpenNotebook, theAuxNotebookMgr, &openNotebook, S)i

ObjectCall(msgBusySetState, theBusyManager, (P_ARGS) false)i

#ifndef SETTINGS INCLUDED
#define SETTINGS INCLUDED
#ifndef APPTAG INCLUDED
#include <apptag.h>
#endif

510 PENPOINT API REFERENCE
Part 11 / Resources

Common #defines and typedefs
#define tagSettingsPrefSheet
#define tagSettingslnstallerSheet
#define tagSettingsStatusSheet

MakeTag(clslnstallUISheet, 29)
MakeTag(clslnstallUISheet, 30)
MakeTag(clslnstallUISheet, 31)

#define tagSettingsNBPeripheralsOnlconResld
#define tagSettingsNBPeripheralsOnSmalllconResld

tagApplconBitmap
tagAppSmalllconBitmap

#define tagSettingsNBPeripheralsOffSmalllconResld \
MakeTag(clsSettingsNBAppWin, 1)

#define tagSettingsNBPeripheralsOfflconResld \
MakeTag(clsSettingsNBAppWin, 2)

#define tagSettingsPrefCmdBar

Error status codes
#define stsSettingsValueOutOfRange
#define stsSettingsFixedValueOutOfRange

MakeTag(clsSettingsNB, 100)

MakeStatus(clsSettingsNB, 1)
MakeStatus(clsSettingsNB, 2)

Part 12 /
Installation API

APPIMGR.H

This file contains the API definition for clsApplnstallMgr.

clsApplnstallMgr inherits from clsCodelnstallMgr.

Manages installation and deinstallation of applications.

There is a single instance of clsApplnstallMgr in the system; the well-known uid thelnstalledApps.

thelnstalledApps performs installation and deinstallation of applications and allows you to enumerate
all of the applications that are currently installed.

An application is a directory, usually located under \penpoint\app on a given filesystem volume. The
name of the directory is the name of the application. Within this directory is a .exe and zero or more
.dlls that make up the application. If a application includes .dlls there must also be a .dIc file which lists
all the .dlls and the .exe. The name of the .dIc file (or the name of the .exe file if there are no .dlls) must
be the same as the name of the application. If a application is called MAIL, for example, its .dIc file must
be named MAIL.DLe. You can use the Sf AMP.EXE utility to give an application an extended name. Be
sure to stamp the .dIc file as well.

There can also be a service.ini and app.ini file in the application's directory. These specify any additional
services and applications that should be installed when this application is installed. These services and
applications are deinstalled when the application is deinstalled. If one of these services or applications is

already installed it is reference counted, not installed again.

This directory also contains subdirectories which hold entries in the Help notebook (HELP), stationery
(STATNRy), tools (ACCESSRy), and any app-specific files that should be copied in when the app is
installed (MISC). The application's resource file, app.res, is also in this directory.

The application monitor is responsible for managing the installation of these items. When an app is
installed its code is loaded and app.res is copied in. The application monitor object is then created and
completes the installation. You can subclass the application monitor if you need control over the
installation process. See appmon.h for details.

An application is installed by sending msgIMlnstall to thelnstalledApps. Applications are installed
under user control from the Applications card of the Settings Notebook. \ \boot\penpoint\boot\app.ini
specifies applications that are automatically loaded when the system cold-boots.

Each installed application has an application directory in the RAM filesystem under \penpoint\sys\app.
For example, MAIL be in \penpoint\sys\app\MAIL. The application resource file and the MISC
directory are copied to this directory.

Each installed application is represented by a handle, in a fashion similar to other install managers (see
instlmgr.h). This handle is a directory handle onto the application's directory in the RAM filesystem.

NOTE: THE MESSAGES IN THIS CLASS ARE SENT TO THE MANAGER, NOT TO THE
HANDLES.

An application can be deinstalled. Deinstallation removes all traces of an application.

An application can be deinstalled even if there are running or filed instances of that application in the
machine. All running instances are shut down (saved, then terminated) when an application is removed.

514 PENPOINT API REFERENCE

Part 12 / Installation API

The application framework will use the Placeholder (MaskApp) class if it tries to start up document with

a missing application.

The following superclass messages are not understood by clsAppInstallMgr:

• msgIMGetCurrent

• msgIMSetCurrent

• msgIMSetName

• msgIMDup

The following notification messages are not sent by clsAppInstallMgr:

• msgIMN ameChanged

• msgIMCurrentChanged

• instlmgr.h

• appmon.h

#ifndef APPIMGR_INCLUDED
#define APPIMGR_INCLUDED
#ifndef CODEMGR_INCLUDED
#include <codemgr.h>
#endif

Common #defines and typedefs

msgNew
Creates a new application installation manager.

Takes P _AIM_NEW, returns STATUS. Category: class message.

typedef struct AIM_NEW {
installMgrNewFields

} AIM_NEW, *P_AIM_NEW;

There is only one instance of this class, theInstalledApps, in the system. Clients should never send
msgNew.

msgAIMGetMaskClass
Passes back the mask class.

Takes P_CLASS, returns STATUS.

#define msgAIMGetMaskClass MakeMsg(clsAppInstallMgr, 6)

The mask application class is used by the application framework when it tries to start up a document

with an unavailable application.

msgAIMSetMaskClass
Sets the mask class.

Takes CLASS, returns STATUS.

#define msgAIMSetMaskClass MakeMsg(clsAppInstallMgr, 7)

Comments

APPIMGR.H 515

Common #defines and typedefs

The mask application class is used by the application framework when it tries to start up a document

with an unavailable application.

This message can be sent at any time; however, the new mask class will only be used for subsequent
switches.

------------ - ---------

AUXNBMGR.H

This file contains the class definition and methods for clsAuxNotebookMgr.

clsAuxNotebookMgr inherits from clsObject.

Manages the system notebooks and documents on the bookshelf.

There is a single instance of clsAuxNotebookMgr in the system; the well-known uid
theAuxNotebookMgr.

The auxiliary notebook manager creates the following items on the bookshelf:

The Help NotebookSettings NotebookAccessories PalleteStationery NotebookKeyboard
InstanceConnections Notebook InstanceInbox NotebookOutbox Notebook

It provides access to those items that are guaranteed to always be on the bookshelf:

The Help NotebookSettings NotebookAccessories PalleteStationery Notebooklnbox NotebookOutbox
Notebook

It allows documents and sections to be created in the Notebooks it manages, and copies documents into
the Notebooks. It also provides several Stationery-specific functions.

theAuxNotebookMgr is usually not used by applications, other than to activate and open one of system
items on the bookshelf.

The document/section creation and copy facilities are used by application installation.

*ifndef AUXNBMGR_INCLUDED
*define AUXNBMGR_INCLUDED
*ifndef GEO_INCLUDED
*include <geo.h>
*endif
*ifndef FS_INCLUDED
*include <fs.h>
*endif

Common #defines and typedefs
Which bookshelf item? Used in most messages to theAuxNotebookMgr. Also used as part of the
definition of the well-known uuids for these items.

typedef enum ANM_AUX_NOTEBOOK
anmReserved

anmSettingsNotebook
anmHelpNotebook
anmStationeryNotebook
anmInboxNotebook
anmOutboxNotebook

0, II Never use this value! See
II anmAttrWhichAuxNB below.

1, II Settings Notebook.
3, II Help Notebook.
4, II Stationery Notebook.
5, II Inbox.
6, II Outbox.

anmAccessories 7, II Accessories Pallette.
ANM_AUX_NOTEBOOK, *P_ANM_AUX_NOTEBOOK;

Exist behavior for creating sections and docs.

518 PENPOINT API REFERENCE
Part 12 / Installation API

typedef enum ANM_EXIST_BEHAVIOR
anmExistGenError,
anmExistDoNothing,
anmExistTruncate,
anmExistGenUnique

ANM_EXI ST_BEHAVIOR , *P_ANM_EXIST_BEHAVIOR;

Should a section and/or a notebook entry be added to the stationery menu?

typedef struct STAT MENU STYLE
U16 section 2, II Add a section entry.

notebook : 2, II Add a notebook entry.
unused1 : 12; II reserved

STAT_MENU_STYLE, *P_STAT_MENU_STYLEi

Filesystem AHributes
Should a given piece of stationery be on the stationery menu?

tdefine anmAttrStationeryMenu FSMakeFix32Attr(clsAuxNotebookMgr, 1)
typedef enum ANM ATTR STATIONERY MENU {

anmNotOnMenu- - 0, -II Same as no attribute.
anmOnMenu = 1

ANM_ATTR_STATIONERY_MENU;

Should a stationery or tool document not be loaded at install time? This attribute is on the the
document on the external filesystem.

#define anmAttrNoLoad FSMakeFix32Attr(clsAuxNotebookMgr, 2)
typedef enum ANM_ATTR_NO_LOAD {

anmLoad 0, II Same as no attribute.
anmNoLoad = 1

ANM_ATTR_NO_LOAOi

Id tag; used to designate stationery or accessory documents.

#define anmAttrId FSMakeFix32Attr(clsAuxNotebookMgr, 3)

Attribute used to tell the difference between an auxiliary notebooks and a data notebooks. Backup
programs take note. Never backup an auxilary notebook!

#define anmAttrAuxNB FSMakeFix32Attr(clsAuxNotebookMgr, 4)
typedef enum ANM_ATTR_AUX_NB {

anmDataNB 0, II Same as no attribute.
anmAuxNB = 1

ANM_ATTR_AUX_NB;

Attribute used by clsNBToc to perform special behavior for each auxnb. This attribute is stamped on the
auxnb's Toe at initialization time. The attribute values are specified in the ANM_AUX_NOTEBOOK

enum. Note: ANM_AUX_NOTEBOOK must never have a 0 value; 0 indicates no anmAttrWhichAuxNB
attribute.

#define anmAttrWhichAuxNB FSMakeFix32Attr(clsAuxNotebookMgr, 5)

Used to get auto-expand behavior of stationery sections.

tdefine anmAttrExpandStationerySection FSMakeFix32Attr(clsAuxNotebookMgr, 6)

AUXNBMGR.H 519

Messages

msgNew
Creates a new auxiliary notebook manager.

Takes P_ANM_NEW, returns STATUS. Category: class message.

#define auxNotebookMgrNewFields
objectNewFields

typedef struct ANM_NEW {
auxNotebookMgrNewFields

} ANM_NEW, *P_ANM_NEW;

\

Messages

Note: this is done once and only once in the init routine of this dll to create theAuxNotebookMgr. This

message must never be called by anyone else!

msgANMCreateDoc
Create a document in one of the auxiliary notebooks.

Takes P_ANM_CREATE_DOC, returns STATUS.

#define msgANMCreateDoc MakeMsg(clsAuxNotebookMgr, 1)

typedef struct ANM_CREATE_DOC
ANM_AUX_NOTEBOOK notebook; II Which auxiliary notebook?

II Document class. CLASS
P STRING

P STRING
U32
P STRING
ANM EXIST BEHAVIOR - -

BOOLEAN

P FS FLAT LOCATOR - - -

docClass;
pPath; II Path to create doc in, relative to

II base of the aux notebook. pNull
II says to create at top level.

pName; II Name of doc.
sequence; II Sequence number to create in front of.
pBookmarkLabel; II pNull for no bookmark.
exist; II What to do if the doc existsldoesn't

II exist. Note: doc might exist due to
II warm boot.

putInMenu; II If type is stationery, should the doc
II initially be in the stationery menu?

pDestPath; II Out: Location of created doc.
II if pDestPath is pNull then nothing is
II returned.

U32 id; II Id to tag everything with. 0 is no tag.
ANM_CREATE_DOC, *P_ANM_CREATE_DOC;

msgANMCreateSect
Create a section in one of the auxiliary notebooks.

Takes P_ANM_CREATE_SECT, returns STATUS.

#define msgANMCreateSect MakeMsg(clsAuxNotebookMgr, 2)

typedef struct ANM_CREATE_SECT
ANM AUX_NOTEBOOK notebook; II Which auxiliary notebook?
CLASS
P STRING

P STRING
U32
P STRING
ANM EXIST BEHAVIOR - -

sectClass; II Section class.
pPath; II Path to create section in, relative to

II base of the aux notebook. pNull
II says to create at top level.

pName; II Name of section.
sequence; II Sequence number to create in front of.
pBookmarkLabel; II pNull for no bookmark.
exist; II What to do if the sect existsldoesn't

I I exist. Note: sect might exist due to

520 PENPOINT API REFERENCE
Part 12 / Installation API

Messcge
itdguments

II warm boot.
P_FS_FLAT_LOCATOR pDestPath; II Out: Location of created section.

II if pDestPath is pNull then nothing is
II returned.

U32 id; II Id to tag everything with. 0 is no tag.
ANM_CREATE_SECT, *P_ANM_CREATE_SECT;

nns~~ovelnI>oc

Move a document into an auxiliary notebook.

Takes P _ANM_MOVE_COPY_DOC, returns STATUS.

#define msgANMMoveInDoc MakeMsg(clsAuxNotebookMgr, 3)

typedef struct ANM_MOVE_COPY_DOC
ANM_AUX_NOTEBOOK notebook; II Which auxiliary notebook?

II Source document. FS LOCATOR
P STRING

CLASS
U32

source;
pPath; II Path to move/copy doc to, relative to

II base of the aux notebook. pNull
II says to create at top level.

defaultClass;11 Class to use if source isn't stamped.
sequence; II Sequence number to move/copy in front

II of.
P STRING pBookmarkLabel; II pNull for no bookmark.
ANM_EXIST_BEHAVIORexist; II What to do if the doc existsldoesn't

II exist. Note: doc might exist due to
II warm boot.

BOOLEAN forceInMenu;11 If this is stationery, override
II any local attribute and put it in
II the stationery menu.

P_FS_FLAT_LOCATOR pDestPath; II Out: Location of destination doc.
II if pDestPath is pNull then nothing is
II returned.

U32 id; II Id to tag everything with. 0 is no tag.
ANM MOVE COpy DOC, *P_ANM_MOVE_COPY_DOC;

nns~MCopylnI>oc

Copy a document into an auxiliary notebook.

Takes P_ANM_MOVE_COPY_DOC, returns STATUS.

#define msgANMCopyInDoc MakeMsg(clsAuxNotebookMgr, 4)

typedef struct ANM_MOVE_COPY_DOC
ANM_AUX_NOTEBOOK notebook; II Which auxiliary notebook?

II Source document. FS LOCATOR source;
P STRING pPath; II Path to move/copy doc to, relative to

II base of the aux notebook. pNull

CLASS
U32

P STRING
ANM EXIST BEHAVIOR - -

II says to create at top level.
defaultClass;11 Class to use if source isn't stamped.
sequence; II Sequence number to move/copy in front

II of.
pBookmarkLabel; II pNull for no bookmark.
exist; II What to do if the doc existsldoesn't

II exist. Note: doc might exist due to
II warm boot.

BOOLEAN forceInMenu;11 If this is stationery, override
II any local attribute and put it in
II the stationery menu.

P_FS_FLAT_LOCATOR pDestPath; II Out: Location of destination doc.
II if pDestPath is pNull then nothing is
II returned.

U32 id; II Id to tag everything with. 0 is no tag.
ANM MOVE_COPY_DOC, *p ANM MOVE_COPY_DOC;

Arguments

Comments

ArgumenTs

AUXNBMGR.H 521

~s~~I>elete
Delete a section or document in one of the auxiliary notebooks.

Takes P _ANM_DELETE, returns STATUS.

tdefine msgANMDelete

typedef struct ANM_DELETE
ANM_AUX NOTEBOOK notebook;
P STRING pPath;

ANM_DELETE, *P_ANM_DELETE;

~s~~I>eleteAll

MakeMsg(clsAuxNotebookMgr, 7)

II Which auxiliary notebook?
II Path of item to delete.

Delete all the nodes that are identified by 'id'.

Takes P _ANM_DELETE_ALL, returns STATUS.

tdefine msgANMDeleteAll MakeMsg(clsAuxNotebookMgr, 8)

typedef struct ANM_DELETE_ALL
ANM_AUX_NOTEBOOK notebook;
U32 id;

ANM_DELETE_ALL, *P_ANM_DELETE~LL;

II Which auxiliary notebook?
II Id.

If a node's id attribute or its app class is 'id' then delete it.

~s~~GetNotebookPath

Returns the base path of one of the auxiliary notebooks.

Takes P _ANM_GET_NOTEBOOK_PATH, returns STATUS.

tdefine msgANMGetNotebookPath MakeMsg(clsAuxNotebookMgr, 9)

typedef struct ANM GET NOTEBOOK PATH {
ANM AUX NOTEBOOK - notebook; II Which auxiliary notebook?
P FS FLAT LOCATOR pLocator; II Out: base location of notebook.

II pNull is returned if the
II notebook does not exist yet.

} ANM_GET_NOTEBOOK_PATH, *P_ANM_GET_NOTEBOOK_PATH;

Note: This will return a path to the table of contents of the notebook. See
msgANMGetNotebookUUID if you want the actual notebook itself.

~s~~GetNotebookUUII>

Returns the uuid of one of the auxiliary notebooks.

Takes P _ANM_GET_NOTEBOOK_UUID, returns STATUS.

tdefine msgANMGetNotebookUUID MakeMsg(clsAuxNotebookMgr, 10)

typedef struct ANM GET NOTEBOOK UUID {
ANM AUX NOTEBOOK - notebook; II Which auxiliary notebook?
UUID uuid; II Out: uuid of auxiliary notebook.

ANM_GET_NOTEBOOK_UUID, *P_ANM_GET_NOTEBOOK_UUID;

Messages

Note: This is the UUID of the actual notebook. Use msgANMGetNotebookPath to get to the table of

contents of the notebook.

a::
c(

z o
5

~

522 PEN POINT API REFERENCE

Part 12 / Installation API

msgANMOpenNotebook
Activate and optionally open an auxiliary notebook.

Takes P_ANM_OPEN_NOTEBOOK, returns STATUS.

#define msgANMOpenNotebook MakeMsg(clsAuxNotebookMgr, 11)

typedef struct ANM_OPEN_NOTEBOOK
ANM_AUX_NOTEBOOK notebook; II Which notebook.
BOOLEAN activateOnly; II Only activate; don't open
OBJECT uid; II Out: uid of activated or

II opened auxnb.

Private

msgANMPop UpStationeryMenu
Pop up the stationery menu at the specified location.

Takes P _ANM_POP _UP _MENU, returns STATUS.

#define msgANMPopUpStationeryMenu

typedef struct ANM_POP_UP_MENU {
XY32 hotSpot;

OBJECT destObj;

MakeMsg(clsAuxNotebookMgr, 5)

II Where to pop up menu. Coords are
II relative to destObj.
II Object to create stationery in front
II of.

STAT MENU STYLE style; II Menu style.
ANM_POP_UP_MENU, *P_ANM_POP_UP_MENU;

If the user hits one of the menu items create a stationery document in the destination object at the
hotSpot.

msgANMGetStationeryMenu
Passes back the stationery menu.

Takes P_ANM_GET_MENU, returns STATUS.

#define msgANMGetStationeryMenu

typedef struct ANM_GET_MENU {
XY32 hotSpot;

OBJECT destObj;

STAT MENU STYLE style;
OBJECT menu;

ANM_GET_MENU, *P_ANM_GET_MENU;

MakeMsg(clsAuxNotebookMgr, 6)

II Where to pop up menu. Coords are
II relative to destObj.
II Object to create stationery in front
II of.
II Menu style.
II Out: Stationery menu.

This message allows the app framework to add the stationery menu to an existing menu bar. When the
stationery menu is invoked, stationery is created in destObj at the hotSpot.

msgANMAddf oStationeryMenu
Add a stationery notebook doc to the stationery menu.

Takes P _ANM_MENU_ADD_REMOVE, returns STATUS.

#define msgANMAddToStationeryMenu MakeMsg(clsAuxNotebookMgr, 12)

Arguments

Message
Arguments

Arguments

AUXNBMGR.H 523
Private

typedef struct ANM_MENU_ADD_REMOVE {
UUID document; II Dir Index of document to remove.

} ANM_MENU_ADD_REMOVE, *P_ANM_MENU_ADD_REMOVE;

msgANMRemoveFromStationeryMenu
Remove a document from the stationery menu

Takes P _ANM_MENU_ADD_REMOVE, returns STATUS.

#define msgANMRemoveFromStationeryMenu MakeMsg(clsAuxNotebookMgr, 13)

typedef struct ANM MENU ADD REMOVE {
UUID - - - document; II Dir Index of document to remove.

} ANM _MENU_ADD _REMOVE, *P _ ANM _MENU_ADD _REMOVE;

msgANMStationeryMenuNameChanged
Informs the stationery menu that one of its documents has changed name.

Takes P_ANM_MENU_NAME_CHANGED, returns STATUS.

#define msgANMStationeryMenuNameChanged MakeMsg(clsAuxNotebookMgr, 17)

typedef struct ANM_MENU_NAME_CHANGED (
UUID document; II Dir Index of document whose name

II changed.
ANM MENU NAME_CHANGED, *P_ANM_MENU_NAME_CHANGED;

Obsolete

#define anmAttrPermanent FSMakeFix32Attr(clsAuxNotebookMgr, 0)
typedef enum ANM_ATTR_PERMANENT {

anmNotPermanent 0, II Same as no attribute.
anmPermanent = 1

ANM_ATTR_PERMANENT;
II Next available messsage number: 18

CODEMGR.H

This file contains the API definition for clsCodelnstallMgr.

clsCodelnstallMgr inherits from clslnstallMgr.

Manages installation and deinstallation of code: applications and services.

clsApplnstallMgr and clsServiceInstallMgr inherit from this class.

The following superclass messages are not understood by clsCodelnstallMgr:

• msgIMGetCurrent

• msgIMSetCurrent

• msgIMSet~ame

• msgIMDup

The following notification messages are not sent by clsCodelnstallMgr:

• msgIM~ ameChanged

• msgIMCurrentChanged

instlmgr.h

*ifndef CODEMGR INCLUDED
*define CODEMGR INCLUDED
*ifndef INSTLMGR INCLUDED
*include <instlmgr.h>
*endif

Common #defines and typedefs

Status Codes
An application or service's name can be a max of nameBufLength - 4 chars.

*define stsCIMNameTooLong MakeStatus(clsCodeInstallMgr, 0)

Filesystem AHribute Definitions
~ote: Most clients do not deal with attributes directly.

Application or service class

*define cimAttrClass

Application or service program handle

*define cimAttrProgHandle

FSMakeFix32Attr(clsCodeInstallMgr, 0)

FSMakeFix32Attr(clsCodeInstallMgr, 1)

Application or service program well-known name

*define cimAttrProgramName FSMakeStrAttr(clsCodeInstallMgr, 2)

526 PENPOINT API REFERENCE

Part 12 I Installation API

Should this app or service be seen in the installer? This determines whether the user can configure and
deinstall it.

fdefine cimAttrDeinstallable FSMakeFix32Attr(clsCodelnstallMgr, 4)
typedef enum CIM_ATTR_DEINSTALLABLE {

cimDeinstallable 0, II Same as no attribute
cimNotDeinstallable = 1

CIM_ATTR_DEINSTALLABLEi

Dependent application list

fdefine cimAttrAppList FSMakeVarAttr(clsCodelnstallMgr, 6)

Dependent services list

fdefine cimAttrServiceList FSMakeVarAttr(clsCodelnstallMgr, 7)

Common data structure used by msgCIMTerminateVetoed and msgCIMGetTerminateStatus.

typedef struct CIM_TERMINATE_VETOED {
1M_HANDLE handle;
OBJECT vetoer; II Object that vetoed the terminate.
STATUS status; II Veto status.

CIM_TERMINATE_VETOED, *P_CIM_TERMINATE_VETOED;

. Messages

msgCIM GetClassList
Passes back a list of the classes of the installed applications or services.

Takes P _LIST, returns STATUS.

fdefine msgCIMGetClassList l-1akeMsg (clsCodelnstallMgr, 1)

CAUTION: The caller must destroy the list object when it is finished using it.

msgIM GetList (instlmgr.h) Returns a list of handles.

msgCIMGetClass
Given a handle, passes back the class.

Takes P_CIM_GET_CLASS, returns STATUS.

fdefine msgCIMGetClass MakeMsg(clsCodelnstallMgr, 2)

typedef struct CIM GET CLASS
1M HANDLE handle; II Handle to get class on.
CLASS classld; II Out: class.

CIM_GET_CLASS, *P_CIM_GET_CLASS;

msgCIMFindClass
Returns the handle which references the specified class.

Takes P _CIM_FIND_CLASS, returns STATUS.

fdefine msgCIMFindClass MakeMsg(clsCodelnstallMgr, 3)

typedef struct elM FIND CLASS
CLASS classld; II Class to search for.
1M HANDLE handle; II Out: Resulting handle.

CIM_FIND_CLASS, *P_CIM_FIND_CLASS;

stsNoMatch No handle for this class was found.

MCSSC1g8

Arg~Jn10nt5

CODEMGR.H 527
Messages

msgCIMFindProgram
Finds a item's handle, given its program name.

Takes P_CIM_FIND_PROGRAM, returns STATUS.

#define msgCIMFindProgram MakeMsg(clsCodeInstallMgr, 22)

typedef struct CIM FIND PROGRAM
P STRING pName; II Program name to search for
IM HANDLE handle; II Out: Resulting handle

CIM_FIND_PROGRAM, * P_CIM_FIND_PROGRAM;

stsNoMatch Item not found.

msgCIMLoad
Installs code for the item specified.

Takes P _CIM_LOAD, returns STATUS. Category: descendant responsibility.

#define msgCIMLoad MakeMsg(clsCodeInstallMgr, 4)

typedef struct CIM_LOAD
IM HANDLE handlei II Handle of item to load.

} CIM_LOAD, *P_CIM_LOADi

This message is sent to subclasses to do the actual work of installing the item. The working directory is

set to the source. pArgs->handle references the deactivated item to load.

msgCIMTerminateOK
Is this item willing to be terminated?

Takes P_CIM_TERMINATE_OK, returns STATUS. Category: descendant responsibility.

#define msgCIMTerminateOK MakeMsg(clsCodeInstallMgr, 5)

typedef struct CIM TERMINATE OK {
IM HANDLE handle; II Item to ask.
OBJECT vetoer; II Out: Object which vetoed the terminate.

CIM TERMINATE OK, *P_CIM_TERMINATE_OK;

msgCIMTerminate
Unconditionally terminate this item.

Takes P _CIM_TERMINATE, returns STATUS. Category: descendant responsibility.

#define msgCIMTerminate

typedef struct CIM_TERMINATE
IM_HANDLE handle;

} CIM_TERMINATE, *P_CIM_TERMINATEi

msgCIMTerminate Vetoed
Somebody vetoed the termination sequence.

MakeMsg(clsCodeInstallMgr, 6)

Takes P _CIM_TERMINATE, returns STATUS. Category: descendant responsibility.

#define msgCIMTerminateVetoed MakeMsg(clsCodeInstallMgr, 7)

typedef struct CIM_TERMINATE {
IM HANDLE handlei

CIM_TERMINATE, *P_CIM_TERMINATEi

528 PENPOINT API REFERENCE

Part 12 I Installation API

Mes$@ge
Arguments

msgCIMGetTerminateStatus
Gets termination status of last item deinstalled.

Takes P _CIM_TERMINATE_ VETOED, returns STATUS.

#define msgC1MGetTerminateStatus MakeMsg(clsCode1nstallMgr, 8)

typedef struct C1M_TERM1NATE_VETOED
1M HANDLE handle;
OBJECT vetoer; II Object that vetoed the terminate.
STATUS status; II veto status.

C1M_TERM1NATE_VETOED, *P_CIM_TERM1NATE_VETOED;

If there was and error then pArgs->vetoer is the object which caused the error; an application instance in
the case of applications and a service instance in the case of services. pArgs->status is the termination
status.

DYNTABLE.H
This file contains the API definition for clsDynamicTableMgr.

clsDynamicTableMgr inherits from clsObject.

It allows a tk table to track the comings and goings of installable items.

Overview

tkTables (see tktable.h) are typically used to display static tables. However, there are times when clients
wish to build a tkTable that views a dynamic structure, such as the installed fonts or the currently
connected filesystem volumes. clsDynamicTableMgr allows a tk table to be dynamically updated as one
of these things changes. Specifically, clsDynamicTableMgr supports viewing the contents of an install
manager (see instlmgr.h) and filesystem volumes (see fs.h).

When the dynamic table manager is first created it generates a tkTable entry for each item in the
dynamic structure. The label of the tkTable entry is set to the name of the item. The tkTable entry is
tagged with the uid of the Install Manager handle or the uid of a volume's root directory handle.

If the specified Install Manager is theInstalledFonts and the entry class inherits from clsButton then the
short font id is also stored in'the entry's data field.

clsDynamicTKTableMgr also supports an optional write-in field that is added to the end of the tk table.

#ifndef DYNTABLE INCLUDED
#define DYNTABLE-INCLUDED
#ifndef CLSMGR INCLUDED
#include <clsmgr.h>
#endif
#ifndef FONT INSTALL INCLUDED
#include <fontmgr.h>-
#endif

Common #defines and Iypedefs
Object property tag for entries managed by this class.

#define propDTEntry MakeTag(clsDynamicTableMgr, 1)

Tag on the fill-in field button, if style.addFilllnField is true.

#define tagDTFillInField

Activated/Deactivated display styles

MakeTag(clsDynamicTableMgr, 2)

#define dtNoShowDeactivated 0 II Don't show any deactivated items.
II Show deactivated items same as #define dtShowDeactivated 1
II normal items.

#define dtShowDeactivatedAsInactive 2 II Show deactivated with
II bsLookInactive.

typedef struct DYN TABLE STYLE
U16 showDeactivated - 2,

autoDestroy 1,
ignoreRamVolume 1,
putFontIdInData 1,
addFillInField 1,

unused 10;
U16 spare1;

{
II How to deal with deactivated elements.
II Destroy self when tkTable is freed.
II Don't show the RAM filesystem volume.
II Put short font id in entry's data field.
II Add a blank write-in field. This is a
II text field inside of a button.

DYN_TABLE_STYLE, *p DYN TABLE_STYLE;

530 PENPOINT API REFERENCE

Part 12 / Installation API

typedef struct DYN_TABLE_NEW_ONLY
DYN_TABLE STYLE stylei
OBJECT installMgri

OBJECT

CLASS
P UNKNOWN

tkTablei

entryClassi
pNewArgsi

II
II
II
II
II
II
II
II

SIZEOF newArgsSizei II
FIM_PRUNE_CONTROL pruneControli II
U8 spare [24] i

Install Mgr, ie. theInstalledFonts.
can also be theFileSystem.
Table to manage. Must be updated
after msgRestore via
msgDynTableSetTable.
Class of tktable entries.
msgNewDefaulted newArgs for
entryClass.
Size of newArgs.
Prune control if theInstalledFonts.

DYN_TABLE~NEW_ONLY, *P_DYN_TABLE_NEW_ONLYi
#define dynTableNewFields \

objectNewFields \
DYN_TABLE_NEW_ONLY dynTablei

typedef struct DYN_TABLE_NEW {
dynTableNewFields

} DYN_TABLE_NEW, *P_DYN_TABLE_NEWi

Messages

Me$s{1~e

Arguments

M¢$s{1~e

Arguments

msgNew
Creates a new dynamic table manager.

Takes P_DYN_TABLE_NEW, returns STATUS. Category: class message.

typedef struct DYN_TABLE_NEW {
dynTableNewFields

} DYN_TABLE_NEW, *P_DYN_TABLE_NEWi

msgNewDefaults
Initializes the DYN_TABLE_NEW structure to default values.

Takes P_DYN_TABLE_NEW, returns STATUS. Category: class message.

typedef struct DYN_TABLE_NEW {
dynTableNewFields

} DYN_TABLE_NEW, *P_DYN_TABLE_NEWi

Sets

dynTable.style.showDeactivated = noShowDeactivatedi
dynTable.style.autoDestroy = truei
dynTable.style.ignoreRamVolume = truei
dynTable.style.putFontIdInData = truei
dynTable.style.addFillInField = falsei

msgDynTableGetTable
Gets the tkTable we are associated with.

Takes P_OBJECT, returns STATUS.

#define msgDynTableGetTable MakeMsg(clsDynamicTableMgr, 1)

msgDynTableSetTable
Sets our tk Table.

Takes OBJECT, returns SfATUS.

#define msgDynTableSetTable MakeMsg(clsDynamicTableMgr, 2)

DYNTABLE.H 531
Messages

This must be done whenever this object is restored. It is the client's responsiblity to relink the tkTable
with the dynamic table manager.

msgDynTableFindButton
Finds a button in the table which has the specified label.

Takes P _DYN_TABLE_FIND_BUTTON, returns STATUS.

#define msgDynTableFindButton MakeMsg(clsDynamicTableMgr, 3)

typedef struct DYN_TABLE_FIND_BUTTON {
P STRING pNamei II Label name of field to find.
OBJECT button; II Out: Found button.

DYN_TABLE_FIND_BUTTON, *P_DYN_TABLE_FIND_BUTTONi

stsN oMatch Label not found.

msgDyn TableSetFilllnField
Sets the fill-in field to a text string.

Takes P _STRING, returns STATUS.

#define msgDynTableSetFillInField MakeMsg(clsDynamicTableMgr, 4)

stsBadParam There is no fill-in field in the table.

~---------------"

FONTMGR.H

This file contains the API definition for dsFontlnstallMgr.

dsFontlnstallMgr inherits from dslnstallMgr.

It performs font installation and maintenance.

There is a single instance of dsFontlnstallMgr in the system; the well-known uid theInstalledFonts.

The font manager maintains the installed and deinstalled fonts on the system. The font manager differs
from a generic install manager in the area of font identification and the system font.

A font is a structured file. The system comes with several pre-defined font files that are loaded at cold
boot time.

Font files typically reside in the \penpoint\font directory on a given filesystem volume. This is not a
requirement, however.

Fonts are identified in four ways:

• a font file handle

• a short font ID

• a string font ID

• the name of a font file

Font file handles are open file handles on to the font files. Much of the install manager interface uses
these handles. A short font ID is a pre-defined, 16 bit value that identifies a specific font. It is a
compact, specific reference for a particular font. The window system API uses short font IDs. A string
font ID is a 4 character string version of a short font ID. The font file name is the user-visible name for
the font. Given a handle, you can get the font file name by sending msgIMGetName. Given a short
font ID, you can get the font file name by sending msgFIMGetNameFromld.

NOTE: THE MESSAGES IN THIS CLASS ARE SENT TO THE MANAGER, NOT TO THE
HANDLES.

A list of all the font handles in the system is available via superclass message msgIMGetList. A pruned
list of the fonts that is appropriate for end-user display is available via msgFIMGetlnstalledIDList.

The following messages are not understood by dsFontlnstallMgr:

• msgIMGetCurrent

• msgIMSetCurrent

• msgIMDup

The following notification messages are not sent by dsFontlnstallMgr:

• msgIMCurrentChanged

instlmgr.h

#ifndef FONTMGR INCLUDED
#define FONTMGR-INCLUDED
#ifndef INSTLMGR INCLUDED
#include <instlmgr.h>
#endif

534 PENPOINT API REFERENCE

Part 12 / Installation API

Common #defines and typedefs

Filesystem aHribute definitions
Note: Most clients do not deal with attributes directly.

Font ID

fdefine firnAttrId

Font ID definitions

typedef U16
typedef struct FIM_LONG_ID {

U8 pId[5];
} FIM_LONG_ID, *P_FIM_LONG_ID;

FSMakeStrAttr(clsFontInstallMgr, 0)

FIM_GET_SET_ID is used by msgFIMGetld and msgFIMSetld.

typedef struct FIM_GET_SET_ID {
IM_HANDLE handle;
FIM_SHORT_ID id;
FIM LONG ID longId;

FIM_GET_SET_ID, *P_FIM_GET_SET_ID;

II Font handle to get IDs on.
II Out: short version of ID.
II Out: long ID version.

Messages

MSS£Og0

Ar9umOlti'S

msgNew
Creates a new font install manager.

Takes P _FIM_NEW, returns STATUS. Category: class message.

typedef struct FIM_NEW {
installMgrNewFields

} FIM_NEW, *P_FIM_NEW;

There is only one instance of this class, theInstalledFonts, in the system. Clients should never send

msgNew.

msgNewDefaults
Initializes the FIM_NEWstructure to default values.

Takes P _FIM_NEW, returns STATUS. Category: class message.

typedef struct FIM_NEW {
installMgrNewFields

} FIM_NEW, *P_FIM_NEW;

Sets

installMgr.fileMode 1= fsReadOnly 1 fsSystemFile;

msgFIMGetld
Gets the short and long font IDs, given a handle.

Takes P _FIM_GET_SET_ID, returns STATUS.

fdefine msgFIMGetId MakeMsg(clsFontInstallMgr, 3)

Messu'0e
Arguments

Mes5ug0
ArgtMt1&mts

typedef struct FIM_GET_SET_ID {
1M_HANDLE handle;
FIM_SHORT_ID id;
FIM LONG ID longld;

FIM_GET_SET_ID, *P_FIM_GET_SET_ID;

msgFIMSetld
Set the font file's ID.

II Font handle to get IDs on.
II Out: short version of ID.
II Out: long ID version.

FONTMGR.H 535
Messages

Takes P _FIM_GET_SET_ID, returns STATUS.

*define msgFIMSetld MakeMsg(clsFontlnstallMgr, 4)

typedef struct FIM_GET_SET_ID
1M_HANDLE handle;
FIM_SHORT_ID id;
FIM LONG ID longld;

FIM_GET_SET_ID, *P_FIM_GET_SET_ID;

II Font handle to get IDs on.
II Out: short version of ID.
II Out: long ID version.

If the short version of the ID is 0 then the long version of the ID is used.

Note: A font ID is not normally changed. This message is here to allow a tool that edits font IDs to be
written.

msgFIMFindld
Finds a font handle given a short ID.

Takes P _FIM_FIND_ID, returns STATUS.

*define msgFIMFindld

typedef struct FIM_FIND_ID {
FIM_SHORT_ID id;
1M HANDLE handle;

FIM_FIND_ID, *P_FIM_FIND_ID;

stsNoMatch font handle not found.

msgFIMGetNameFromld
Passes back font name given an short ID.

MakeMsg(clsFontlnstallMgr, 5)

II ID, short form
II Out: resulting handle

Takes P _FIM_GET_NAME_FROM_ID, returns STATUS.

*define msgFIMGetNameFromld MakeMsg(clsFontlnstallMgr, 6)

typedef struct FIM_GET_NAME_FROM_ID
FIM_SHORT_ID id;
P STRING pName; II Out: name, max size is nameBufLength

FIM_GET_NAME_FROM_ID, *P_FIM_GET_NAME_FROM_ID;

stsNoMatch short ID not found.

msgIMGetName Gets the name given a handle.

msgFIMGetlnstalledldList
Passes back a list of the short IDs of all installed fonts.

Takes P _FIM_GET _INSTALLED _ID _LIST, returns STATUS.

*define msgFIMGetlnstalledldList MakeMsg(clsFontlnstallMgr, 7)

536 PENPOINT API REFERENCE

Part 12 / Installation API

typedef enum FIM_PRUNE_CONTROL
fimNoPruning = 0,
fimPruneDupFamilies = flagl,
fimPruneSymbolFonts = flag2

FIM_PRUNE_CONTROL, *P_FIM_PRUNE_CONTROL;
typedef struct FIM GET INSTALLED ID LIST {

FIM_PRUNE_CONTROL - prune; - - I I What sort of pruning should be done
OBJECT list; II Out: list

FIM_GET_INSTALLED ID LIST, *P_FIM_GET_INSTALLED_ID_LIST;

This list is pruned so that it is useable as a user pick list. For example, if both Helvetica and Helvetica

Bold are in the system, only Helvetica is on this list.

THE CALLER MUST DESTROY THE LIST OBJECT WHEN IT IS FINISHED USING IT.

msgIMGetList Gets a list of all handles.

HWXMGR.H

[his file contains the API definition for dsHWXProtolnstallMgr.

dsHWXProtolnstallMgr inherits from dsInstallMgr.

It performs handwriting prototype installation and maintenance.

There is a single instance of dsHWXProtolnstallMgr in the system; the well-known uid

theInstalledHWXProtos.

The hwxproto manager maintains the installed and deinstalled handwriting prototype sets on the
system, and their relation to the installable handwriting translation engines, which are kept on
theHWXEngines service manager. The hwxproto manager differs from a generic install manager in the

area of hwx engine identification and its tie-in with theHWXEngines service manager.

A handwriting prototype set is a directory which contains engine-specific information. Each installed
engine on the system must have at least one hwxproto set in theInstalledHWXProtos in order for it to

be used.

instlmgr.h

#ifndef HWXMGR INCLUDED
#define HWXMGR INCLUDED
#ifndef INSTLMGR INCLUDED
#include <instlmgr.h>
#endif

Common #defines and typedefs

Status Codes
The hwx engine for this prototype set is not available

#define stsHIMEngineUnavailable MakeStatus(clsHWXProtoInstallMgr, 0)

Can't change current hwx prototype; hwx engine is in use with it

#define stsHIMCurrentEngineInUse

No training for this handwriting set.

#define stsHIMNoTraining

No practice for this handwriting set.

#define stsHIMNoPractice

Filesystem attribute definitions
HWX Engine name

#define himAttrEngineName

MakeStatus(clsHWXProtoInstallMgr, 1)

MakeStatus(clsHWXProtoInstallMgr, 2)

MakeStatus(clsHWXProtoInstallMgr, 2)

FSMakeStrAttr(clsHWXProtoInstallMgr, 0)

538 PEN POINT API REFERENCE
Part 12 I Installation API

Is the engine for this hwxproto available?

#define himAttrEngineAvailable FSMakeFix32Attr(clsHWXProtoInstallMgr, 1)
typedef enum HIM_ATTR_ENGINE_AVAILABLE {

himEngineAvailable 0, II Same as no attribute
himEngineUnavailable = 1

HIM_ATTR_ENGINE_AVAILABLE;

HWX Training window class. This is stamped on the HWX Engine Service class directory.

#define himAttrTrainingWinClass FSMakeFix32Attr(clsHWXProtoInstallMgr, 3)

HWX Practice window class. This is stamped on the HWX Engine Service's class directory.

#define himAttrPracticeWinClass FSMakeFix32Attr(clsHWXProtoInstallMgr, 4)

Gesture Training window class. This is stamped on the Gesture Engine Service's class directory.

#define himAttrGestTrainingWinClass FSMakeFix32Attr(clsHWXProtoInstallMgr, 5)

Gesture Practice window class. This is stamped on the Gesture Engine Service's class directory.

#define himAttrGestPracticeWinClass FSMakeFix32Attr(clsHWXProtoInstallMgr, 6)

Popup Training and Practice tags
#define msgHIMPopUpTraining
#define msgHIMPopUpPractice
#define msgHIMPopUpGestureTraining
#define msgHIMPopUpGesturePractice
#define tagHIMPopUpTraining
#define tagHIMPopUpPractice
#define tagHIMPopUpGestureTraining
#define tagHIMPopUpGesturePractice
#define hlpHIMTrainingButton
#define hlpHIMPracticeButton
#define hlpHIMGestureTrainingButton
#define hlpHIMGesturePracticeButton

Messages

msgNew

MakeMsg(clsHWXProtoInstallMgr, 100)
MakeMsg(clsHWXProtoInstallMgr, 101)
MakeMsg(clsHWXProtoInstallMgr, 102)
MakeMsg(clsHWXProtoInstallMgr, 103)
MakeTag(clsHWXProtoInstallMgr, 1)
MakeTag(clsHWXProtoInstallMgr, 2)
MakeTag(clsHWXProtoInstallMgr, 3)
MakeTag(clsHWXProtoInstallMgr, 4)
MakeTag(clsHWXProtoInstallMgr, 100)
MakeTag(clsHWXProtoInstallMgr, 101)
MakeTag(clsHWXProtoInstallMgr, 102)
MakeTag(clsHWXProtoInstallMgr, 103)

Creates a new handwriting prototype install manager.

Takes P _HIM_NEW, returns STATUS. Category: class message.

typedef struct HIM_NEW {
installMgrNewFields

} HIM_NEW, *P_HIM_NEW;

There is only one instance of this class, thelnstalledHWXProtos, in the system. Clients should never

send msgN ew.

msgHIMGetEngine
Gets the name and availability of the engine associated with this hwxprot.

Takes P _HIM_GET_SET_ENGINE, returns STATUS.

#define msgHIMGetEngine MakeMsg(clsHWXProtoInstallMgr, 1)

Arguments

Comments

Messt1£]e

Ar9umenfs

HWXMGR.H 539

Messages

typedef struct HIM_GET_SET_ENGINE {
1M HANDLE handle; II hwxproto handle to get engine name of.
P STRING pEngineName;11 Out: Name. Must have at least

II nameBufLength bytes allocated.
BOOLEAN available; II Out: Is the engine available?

HIM_GET_SET_ENGINE, *P_HIM_GET_SET_ENGINE;

Engine names can be up to nameLength characters long.

msgHIMSetEngine
Set the hwxproto's engine name.

Takes P _HIM_GET_SET_ENGINE, returns STATUS.

#define msgHIMSetEngine MakeMsg(clsHWXProtoInstallMgr, 2)

typedef struct HIM GET SET_ENGINE {
1M HANDLE handle; II hwxproto handle to get engine name of.
P STRING pEngineName;11 Out: Name. Must have at least

II nameBufLength bytes allocated.
BOOLEAN available; II Out: Is the engine available?

HIM_GET_SET_ENGINE, *P_HIM_GET_SET_ENGINE;

Note: This message is rarely used. Typically, handwriting prototype sets have the engine attribute
stamped on them when they are created, and it is never changed.

msgHlMAvailabilityChanged
An hwx proto's engine availability has changed.

Takes P _HIM_AVAILABILITY_NOTIFY, returns STATUS. Category: observer notification.

#define msgHIMAvailabilityChanged MakeMsg(clsHWXProtoInstallMgr, 20)

typedef struct HIM_AVAILABILITY_NOTIFY
OBJECT manager; II manager that sent notification
1M HANDLE handle; II handle that changed
BOOLEAN available; II new engine availability state

HIM_AVAILABILITY_NOTIFY, *P_HIM_AVAILABILITY_NOTIFY;

;:
c(

z o
S

[

INIFILE.M

This file contains the API definition for clslniFileHandler.

clslniFileHandler inherits from clsObject.

Reads and processes a .ini file .

.ini files are used to ask the system to install multiple applications, services, or any installable entity. A

.ini file is an ASCII file that contains the path of each item to be installed on a seperate line. Examples

of .ini files include app.ini (applications) and service.ini (services).

To process a .ini file, simply create an instance of clslniFileHandler. The newArgs specify the location of
the .ini file. The .ini file will be completely processed as part of the msgNew. Free the ini file handler

immediately after creating it.

*ifndef INIFILE INCLUDED
*define INIFILE_INCLUDED
*ifndef CLSMGR_INCLUDED
*include <clsmgr.h>
*endif
*ifndef INSTLMGR_INCLUDED
*include <instlmgr.h>
*endif

Messages

msgNew
Creates a new ini file processor.

Takes P _INCFILE_NEW, returns STATUS. Category: class message.

typedef struct INI FILE STYLE
U16 deleteFileWhenDone 1,

returnInstallErrors 1,

spare 11;
} INI_FILE_STYLE, *P_INI FILE_STYLE;
typedef struct INI_FILE_NEW_ONLY {

INI_FILE STYLE style;
1M INSTALL EXIST - -

FS LOCATOR
OBJECT

exist;

locator;
manager;

II Delete file after processing it.
II Aborts the install and returns error
II status if true. Keeps going if false.
II unused (reserved)

II What to do if the item already
II exists.
II .ini file location.
II Install manager to send
II msgIMInstalls to.

FS ATTR LABEL
OBJECT

listAttrLabel;
listHandle;

II List attr; 0 if not needed.
II FS handle for list attr; objNull
II if not needed.

OBJECT relDir; II Relative dir for ini file paths.
U8 spare [8];

INI_FILE_NEW_ONLY, *P_INI_FILE_NEW_ONLY;
*define iniFileNewFields \

objectNewFields \
INI_FILE_NEW_ONLY iniFile;

~------.. -.. -.--------'

542 PENPOINT API REFERENCE

Part 12 / Installation API

M®$£~£Ie

Ar9ume~ts

typedef struct INI_FI~E_NEW
iniFileNewFields

} INI_FILE_NEW, *P_INI_FILE_NEW;

This message will return after the entire file has been processed. The file is processed by sending
msgIMlnstall to the specified install manager for each path in the .ini file.

pArgs->iniFile.listAttrLabel and pArgs->iniFile.listHandle are passed through to msgIMlnstall. See
instlmgr.h for details on msgIMlnstall.

msgNewDefaults
Initializes the INCFILE_NEW structure to default values.

Takes P _INCFILE_NEW, returns STATUS. Category: class message.

typedef struct INI_FILE_NEW {
iniFileNewFields

} INI_FILE_NEW, *P_INI_FILE_NEW;

Sets

iniFile.styIe.returnlnstaliErrors = true;

iniFile.style.deleteFileWhenDone = false;

iniFile.listAttrLabel = 0;

iniFile.listHandle = objN ulI;

iniFile.exist = imExistReactivate;

INSTALL.H

This file contains definitions for IMProgramInstall and IMModuleLoad. The functions described in this
file are contained in INSTALL.LIB.

APPLICATION DEVELOPERS MUST USE THESE FUNCTIONS INSTEAD OF
OSProgramInstall AND OSModuleLoad.

OSProgramInstall and OSModuleLoad do not dispatch messages, because they are Ring 0 routines. This
will cause the system to lock up if the code being loaded needs to send messages to the process that

installed it, as all applications and services do.

#ifndef INSTALL INCLUDED
#define INSTALL_INCLUDED

IMProgramlnstall
Low-level .exe installation routine.

Returns STATUS.

STATUS EXPORTED IMProgramInstall(

) ;

P STRING pPath, II WorkingDir relative path of

P STRING

P OS PROG HANDLE - - -
P STRING

P STRING

II .exe or .dlc file
pWorkingDir,11 WorkingDir relative path of where

II to set the WorkingDir of the
II instance O's process

pProgHandle,11 Out: program handle
pBadName, I I Out-: if error, dll/exe that was bad

pBadRef
II Buffer must be nameBufLength
II Out: If error, reference that was bad
II Buffer must be nameBufLength

IMModuleLoad
Low-level .dll installation routine.

Returns STATUS.

fum:tktn Prototype STATUS EXPORTED IMModuleLoad (

) ;

P STRING pPath, II WorkingDir relative path of
II .dll or .dlc file

P STRING

P OS PROG HANDLE - - -
P STRING

P STRING

pWorkingDir,11 WorkingDir relative path of where
II to set the WorkingDir of the
II DLLMain() process

pProgHandle,11 Out: program handle
pBadName, II Out: if error, dll that was bad

II Buffer must be nameBufLength
pBadRef II Out: If error, reference that was bad

II Buffer must be nameBufLength

I NSTLMGR.H

This file contains the class definition and methods for clslnstallMgr.

clslnstallMgr inherits from clsObject.

Provides the basic facilities for installing items.

NOTE: THE MESSAGES IN THIS CLASS ARE SENT TO THE INSTALL MANAGER, NOT TO
THE HANDLES.

clslnstallMgr provides almost everything needed to manage installable items. An installable item is
anything that can be installed and deinstalled on a Penpoint machine, such as fonts, applications,
services, handwriting prototype sets, etc. You create an instance of clslnstallMgr for each category of
installable item. Penpoint creates well-known install managers for the following categories at cold boot
time:

• theInstalledHWXProtos: Handwriting prototype sets

• theInstalledPrefs: Preference sets

• theInstalledPDicts: Personal dictionaries

In addition there are several well-known install managers that are created from subclasses of
clslnstallMgr:

• theInstalledApps: Applications (appimgr.h)

• theInstalledServices: Services (servimgr.h)

• theInstalledFonts: Fonts (fontmgr.h)

clslnstallMgr makes use of the filesystem to keep a database of the installed items. Each item is
represented by a file or directory handle. This is a big win for items which *are* files or directories; the
InstallMgr's handle is a handle onto the actual item. There is an extra level of indirection for items
which are not files. The item's ID (whatever that means for a particular type of item) is stored as an
attribute of the handle. An item's name is the name of that item's filesystem node. This means that items
on a given install manager must have unique names.

An install manager has a base directory in which it keeps its items' filesystem nodes. The createlnitial
style bit determines whether the install manager creates an initial set of item handles from whatever is in
this directory when the install manager is first created.

clslnstallMgr provides an API for installing new items and deinstalling existing items. An item is
installed from a location on an external filesystem.

An item can be deinstalled, which removes all traces of the item from the system.

The install manager maintains a bit which specifies if an item has changed. It is the client's responsibility
to maintain this bit by sending msgIMSetModified when it modifies an item. The install manager will
remember the time and date that the item was modified.

Install managers also maintains a "current" item, and provide an API for getting and setting the current
item. This is used by theInstalledHWXProtos, thelnstalledPrefs and thelnstalledPDicts to specify
which handwriting prototype set, preferences, or personal dictionary the system is actively using. A

546 PENPOINT API REFERENCE

Part 12 I Installation API

current item is optional; some install managers (thelnstalledApps, thelnstalledServices) do not make
use of a current item.

An item can be marked as being "in use". This means that the item cannot be deinstalled.The current
item is considered to be in use.

Each install manager can have a verifier object, which it queries whenever installation takes place. The

verifier object makes sure that the item being installed is valid for this install manager.

An InstallMgr sends notification to its observers whenever an item is installed, deinstalled, the current
item changed, etc. Subclasses of clslnstallMgr can turn notification generation on and off with

msgIMSetNotify. Notification is on by default.

A subset of the notification messages are also sent to any observers of an item's handle. This allows
clients who are only interested in a particular item to monitor just that item. The messages sent are:

• msgIMN ameChanged

• msgIMInUseChanged

• msgIMModifiedChanged

• msgIMDeinstalled

• msgIMCurrentChanged (sent to both old and new current handles)

Clients access installable managers via an ObjectCall interface. clslnstallMgr can accommodate

simultaneous access by multiple clients if the "shared" style bit is set true (the default). This causes it to

semaphore all of its operations. This semaphore is available to subclasses via msgIMGetSema, and
should be used to protect all subclass messages if multiple clients will be accommodated. clslnstallMgr
also sets objCapCall on by default.

There is a well-known, shared list object (see list. h) that is a list of all the install managers in the system.

This object is called thelnstallManagers. You can observe this list and get notification when an install
manager is added and removed. See msgListN otifyAddition and msgListN otifyDeIetion.

clsFontlnstallMgr, clsApplnstallMgr, and clsServiceMgr inherit from clslnstallMgr. See fontmgr.h,
appimgr.h and servmgr.h for these classes.

#ifndef INSTLMGR INCLUDED
#define INSTLMGR INCLUDED
#ifndef CLSMGR_INCLUDED
#include <clsmgr.h>
#endif
#ifndef FS_INCLUDED
#include <fs.h>
#endif
#ifndef LIST_INCLUDED
#include <list.h>
#endif
#ifndef TKTABLE_INCLUDED
#include <tktable.h>
#endif
#ifndef OPTION INCLUDED
#include <option.h>
#endif

INSTLMGR.H 547

Common #defines and typedefs

Common #defines and typedefs

Handle type
t ypede f OBJECT 1M_HANDLE, * P_1M_HANDLE;

Warning Codes
Some install manager request has been user cancelled

*define sts1MRequestCancelled

Quick Help Tags
*define appQH1nstallMgr
*define svcQH1nstallMgr
*define hwxQH1nstallMgr
*define gestQH1nstallMgr
*define dictQH1nstallMgr
*define fontsQH1nstallMgr
*define userPfleQH1nstallMgr

Status Codes

MakeWarning(cls1nstallMgr, 0)

MakeTag(cls1nstallU1Sheet, 32)
MakeTag(cls1nstallU1Sheet, 33)

MakeTag(cls1nstallU1Sheet, 34)
MakeTag(cls1nstallU1Sheet, 35)

MakeTag(cls1nstallU1Sheet, 36)
MakeTag(cls1nstallU1Sheet, 37)
MakeTag(cls1nstallU1Sheet, 38)

The item is current, so cannot be removed.

*define sts1MCurrent MakeStatus(cls1nstallMgr, 1)

An item to be installed failed verification.

*define sts1M1nvalid1tem MakeStatus(cls1nstallMgr, 2)

A new name cannot be created for this item.

*define sts1MUniqueNameFailed MakeStatus(cls1nstallMgr, 3)

The item is in use, so cannot be removed.

*define sts1M1nUse MakeStatus(cls1nstallMgr, 6)

The item to be installed is already installed.

*define sts1MAlready1nstalled

An invalid handle was passed in.

*define sts1MBadHandle

File System Attribute Definitions

MakeStatus(cls1nstallMgr, 8)

MakeStatus(cls1nstallMgr, 20)

Note: Most clients do not deal with attributes directly.

Node's home on an external volume. Absolute path.

This attribute is used only during installation.

*define imAttrHome FSMakeStrAttr(cls1nstallMgr, 0)

Is this node the current node? Use IM_ATTR_CURRENT values.

*define imAttrCurrent FSMakeFix32Attr(cls1nstallMgr, 2)
typedef enum 1M_ATTR_CURRENT {

imNotCurrent 0, II Same as no attribute
imCurrent = 1

1M_ATTR_CURRENT;

548 PENPOINT API REFERENCE

Part 12 I Installation API

Is this node in use? Use IM_ATTR_INUSE values.

#define irnAttrInUse
typedef enum IM_ATTR_INUSE

imNotInUse
imInUse

IM_ATTR_INUSEi

0,
= 1

FSMakeFix32Attr(clsInstallMgr, 3)

II Same as no attribute

Has this node been modified? Use IM_ATTR_MODIFIED values.

#define irnAttrModified FSMakeFix32Attr(clsInstallMgr, 4)
typedef enum IM_ATTR_MODIFIED {

imNotModified 0, II Same as no attribute
imModified = 1

IM_ATTR_MODIFIEDi

Ref count. When an item is installed the installer can choose to maintain a reference count if the item is

already installed.

#define irnAttrRefCount FSMakeFix32Attr(clsInstallMgr, 5)

Is this item on some other item's dependency list? Use IM_ATTR_DEPENDENT values.

#define irnAttrDependent FSMakeFix32Attr(clsInstallMgr, 7)
typedef enum IM_ATTR_DEPENDENT

imNotDependent 0, II Same as no attribute
imDependent = 1

IM_ATTR_DEPENDENTi

Is this item a system inviolate item? Use IM_ATTR_SYSTEM values.

#define irnAttrSystem
typedef enum IM_ATTR_SYSTEM {

imNotSystem
imSystemInviolate
imSystemNotRenameable

IM_ATTR_SYSTEMi

Version string

#define irnAttrVersion

FSMakeFix32Attr(clsInstallMgr, 8)

0, II Same as no attribute
flagO,
flagl

FSMakeStrAttr(clsAppInstallMgr, 3)

Debug Flags
#define installDebugFlag 'I'

Messages

msgNew
Creates a new install manager.

Takes P _1M_NEW, returns STATUS. Category: class message.

Argmnel1ts typedef struct IM STYLE
U16 shared 1, II Provide concurrency protection.

createInitial 1, II Create initial list of handles from
II contents of base directory.

autoSetCurrent 1, II Choose any item as the initial current
II setting if no one has current attr set.

copyOnInstall 1, II Copy nodes to manager's dir or create
II handles directly on Install locator.

addToGlobalList 1, II Add this instlmgr to theInstallManagers.
createIcon 1, II Create an icon for this install manager.
privatel 1, II Always set this to false.
duplicatable 1, II Items in this installmgr can be duplicated.

Mess@ge
Arguments

INSTLMGR.H 549

U16

usesVersions
reserved
sizeCol
hwxTypeCol
svcTypeCol
modifiedCol
currentCol
inUseCol

1,
7;
1,
1,
1,
1,
1,
1,
10;

II Items in this installmgr have versions.

II Show size column in Settings
II Show hwx engine type column.
II Show service type column.
II Show modified column.
II Show current column.
II Show inUse column.

NB card.

Messages

reservedl
U32 helpId;
U16 sparel;

II Help tag for installmgr's Settings NB card.

U16 spare2;
1M_STYLE, *P_IM_STYLE;

typedef struct IM_NEW_ONLY
1M_STYLE style;
FS DIR NEW_MODE dirModei II Default mode for dir handles.
FS FILE NEW MODE fileMode; II Default mode for file handles. - - -
FS LOCATOR locator; II Base directory. InstallMgr will

II create it if it doesn't exist.
P STRING pSingularNamei II Singular name of installer. Must be

P STRING

P STRING

OBJECT
OS HEAP ID

pName;

pInstallPath;

verifier;
heap;

II <= nameLength in size.
II Plural name of installer. Must be
II <= nameLength in size.
II Base path for installable items,
II (i.e. \penpoint\app).
II Verifier object. Can be null.
II Installmgr heap. Must be global.
II Can be osInvalidHeapIdi instlmgr
II will use global heap of the task

P TK TABLE ENTRY
II that this object is created in.

pSettingsMenu; II Additional controls for this
II installmgr's Settings NB card.

U32 settingsMenuSize;11 Size (in bytes) of pSettingsMenu.
U32 unusedl;
U32 unused2;
U32 unused3;
U32 unused4;

IM_NEW_ONLY, *P_IM_NEW_ONLY;
#define installMgrNewFields \

objectNewFields \
1M NEW ONLY installMgr;

typedef struct 1M_NEW
installMgrNewFields

} 1M_NEW, *P_IM_NEW;

The locator field specifies the directory where the managed items live. If this directory does not exist it
will be created.

msgNewDefaults
Initializes the 1M_NEW structure to default values.

Takes P _1M_NEW, returns STATUS. Category: class message.

typedef struct 1M_NEW {
installMgrNewFields

} 1M_NEW, *P_IM_NEW;

Clients do not normally change the defaults.

550 PEN POINT API REFERENCE
Part 12 I Installation API

M©s£Qge
Arguments

Zeroes out installMgr and sets

object.cap 1= objCapCalli
instaIIMgr.style.shared = truei
instaIIMgr.style.createlnitial = truei
instaIIMgr.style.updateOK = truei
instaIIMgr.style.copyOnInstall = true;
instaIIMgr.style.addToGlobaIList = truei
instaIIMgr.style.privatel = false;
instaIIMgr.style.duplicatable = false;
instaIIMgr.style.createIcon = true;
instaIIMgr.style.duplicatable = false;
instaIIMgr.style.usesVersions = false;
instaIIMgr.style.sizeCol = true;
installMgr.dirMode = fsUnchangeablei
installMgr.fileMode = fsSharedMemoryMapi
installMgr.plnstallPath = pNulli
installMgr.verifier = objNull;
installMgr.heap = osInvalidHeapId;
installMgr.pSettingsMenu = objNull;
installMgr.settingsMenuSize = 0;

msgDestroy
Frees the install manager.

Takes OBLKEY, returns STATUS.

Note: This message does not destroy the install manager's directory, nor any files/directories in that
directory.

msgDump
Prints out the items in the install manager and their state.

Takes OBJ_KEY, returns STATUS.

msgIMGetStyle
Passes back the current style settings.

Takes P _1M_STYLE, returns STATUS.

fdefine msgIMGetStyle

typedef struct 1M STYLE
U16 shared 1,

create Initial 1,

autoSetCurrent 1,

copyOnInstal1 1,

addToGlobalList 1,
createIcon 1,
privatel 1,
duplicatable 1,
usesVersions 1,
reserved 7;

U16 sizeCol 1,
hwxTypeCol 1,
svcTypeCol 1,
modifiedCol 1,
current Col 1,

II
II
II
II
II
II
II
II
II
II
II
II

II
II
II
II
II

MakeMsg(clsInstaIIMgr, 1)

Provide concurrency protection.
Create initial list of handles from

contents of base directory.
Choose any item as the initial current

setting if no one has current attr set.
Copy nodes to manager's dir or create

handles directly on Install locator.
Add this instlmgr to theInstallManagers.
Create an icon for this install manager.
Always set this to false.
Items in this installmgr can be duplicated.
Items in this installmgr have versions.

Show size column in Settings NB card.
Show hwx engine type column.
Show service type column.
Show modified column.
Show current column.

MeS50ge

ArglJments

INSTLMGR.H 551
Message.

inUseCol
reserved1

U32 helpId;
U16 spare1;
U16 spare2;

1, II Show inUse column.
10;

IM_STYLE, *P_IM_STYLE;

msgIMSetStyle
Sets the current style.

Takes P_IM_STYLE, returns STATUS.

*define msgIMSetStyle

typedef struct 1M_STYLE
U16 shared 1,

createInitial 1,

autoSetCurrent . 1,

copyOn1nstall 1,

addToGlobalList 1,
createIcon 1,
private1 1,
duplicatable 1,
usesVersions 1,
reserved 7;

U16 sizeCol 1,
hwxTypeCol 1,
svcTypeCol 1,
modifiedCol 1,
currentCol 1,
inUseCol 1,
reserved1 10;

U32 help1d;
U16 spare1;
U16 spare2;

1M_STYLE, *P_IM_STYLE;

II Help tag for installmgr'S Settings NB card.

MakeMsg(clsInstallMgr, 2)

II Provide concurrency protection,
II Create initial list of handles from
II contents of base directory.
II Choose any item as the initial current
II setting if no one has current attr set.
II Copy nodes to manager's dir or create
II handles directly on Install locator.
II Add this instlmgr to thelnstallManagers.
II Create an icon for this install manager.
II Always set this to false.
II Items in this installmgr can be duplicated.·
II Items in this installmgr have versions.

II Show size column in Settings NB card.
II Show hwx engine type column.
II Show service type column.
II Show modified column.
II Show current column.
II Show inUse column.

II Help tag for instal~mgr's Settings NB card.

msgIMGetlnstallerName
Passes back the install manager's name.

Takes P_STRING, returns STATUS.

*define msgIMGet1nstallerName MakeMsg(clsInstallMgr, 3)

pArgs must point to a nameBufLength buffer.

The install manager's name was set at msgNew time in installMgr->pName.

msgIMGetlnstallerSingularName
Passes back the install manager's singular name.

Takes P _STRING, returns STATUS.

*define msgIMGetInstallerSingularName

pArgs must point to a nameBufLength buffer.

MakeMsg(clslnstallMgr, 51)

The install manager's name was set at msgNew time in installMgr->pName.

552 PENPOINT API REFERENCE
Part 12 / Installation API

«()mments

(ommerti's

msgIMGetCurrent
Passes back the current item's handle.

Takes P _1M_HANDLE, returns STATUS.

tdefine msgIMGetCurrent

Passes back objNo1l if there is no current handle.

msgIMSetCurrent
Sets the current item.

Takes 1M_HANDLE, returns STATUS.

tdefine msgIMSetCurrent

MakeMsg(clslnstallMgr, 4)

MakeMsg(clslnstallMgr, 5)

The argument is the handle to be made current. It can be objN 011 to indicate that no handle is the
current one.

If the handle specified in the argument is already current then nothing is done (no observer message is
generated) .

Causes the install manager to notify observers with msgIMCurrentChanged.

msgIMSetlnUse
Changes an item's in use setting.

Takes P_IM_SET_INUSE, returns STATUS.

tdefine msgIMSetlnUse

typedef struct IM_SET_INUSE {
IM HANDLE handle;
BOOLEAN inUse;

IM_SET_INUSE, *P_IM_SET_INUSE;

MakeMsg(clslnstallMgr, 6)

II Handle of item to set inUse on.
II InUse value.

Setting inUse to true means that the item cannot be deinstalled.

Use msgIMGetState to query the value of this field.

Causes the install manager to notify observers with msgIMlnUseChanged.

msgIMSetModified
Changes an item's modified setting.

Takes P _IM_SET_MODIFIED, returns STATUS.

tdefine msgIMSetModified MakeMsg(clslnstallMgr, 7)

typedef struct IM SET MODIFIED
IM HANDLE handle; II Handle of item to set modified on.
BOOLEAN modified; II Modified value.

I~SET_MODIFIED, *P_IM_SET_MODIFIED;

Use msgIMGetState to query the value of this field.

Causes the install manager to notify observers with msgIMModifiedChanged.

Arguments

Message

Arguments

Comments

INSTLMGR.H 553

~sgI~{;et~anne

Get the name of a item.

#define msgIMGetName

typedef struct 1M GET_SET_NAME {
1M HANDLE handle;
P STRING pName;

MakeMsg(clsInstallMgr, 8)

II Handle of item to get/set name on.
II In: (Set) Out: (Get) name. This

Messages

II pointer must reference a nameBufLength
II size buffer.

} IM_GET_SET_NAME, *P_IM_GET_SET NAME;

~sgI~SetNanne

Sets the name of a item.

#define msgIMSetName

typedef struct 1M GET_SET_NAME {
1M HANDLE handle;
P STRING pName;

MakeMsg(clsInstallMgr, 9)

II Handle of item to get/set name on.
II In: (Set) Out: (Get) name. This
II pointer must reference a nameBufLength
II size buffer.

} IM_GET_SET_NAME, *P_IM_GET_SET NAME;

The name must be a legitimate file name and unique amoung all the items on this install manager.

Causes the install manager to notify observers with msgIMNameChanged.

stsFSNodeExists An item with this name already exists.

~sgIM{;etVersion

Get the version string for this item.

Takes P _IM_GET_ VERSION, returns SfATUS.

#define msgIMGetVersion

typedef struct 1M GET VERSION
1M HANDLE handle;
P STRING pVersion;

} IM_GET_VERSION, *P_IM_GET_VERSION;

MakeMsg(clsInstallMgr, 37)

II Handle of item to get version of.
II Out: Version string. Pointer must
II reference a nameBufLength
II size buffer.

Not all install managers have a version string. p Version is set to pN ull if there is no version.

~sgIM (;etList
Passes back a list of all the items on this install manager.

Takes P _LIST, returns STATUS.

#define msgIMGetList MakeMsg(clsInstallMgr, 14)

The memory for the list object is allocated out of the caller's local process heap.

CAUTION: Caller must destroy the list object when it is finished using it.

554 PENPOINT API REFERENCE

Part 12 / Installation API

nnsgI~(;etState

Gets the state of a item.

Takes P_IM_GET_STATE, returns STATUS.

tdefine msgIMGetState

typedef struct IM_GET_STATE {
IM HANDLE handle;
BOOLEAN
BOOLEAN
BOOLEAN

current;
reserved;
modified;

BOOLEAN inUse;
IM_GET_STATE, *P_IM_GET_STATE;

msgI~(;etSize

Returns the size of an item.

Takes P _1M_GET _SIZE, returns STATUS.

tdefine msgIMGetSize

typedef struct IM_GET_SIZE {
IM HANDLE handle;
U32 size;

IM_GET_SIZE, *P_IM_GET_SIZE;

msgI~Install

Installs a new item.

Takes P _1M_INSTALL, returns STATUS.

tdefine msgIMInstall

typedef enum IM_INSTALL_EXIST {

MakeMsg(clsInstallMgr, 16)

II Handle of item to get state on.
II Out: Is it the current item?
II Reserved.
II Out: Is it modified?
II Out: Is it in use?

MakeMsg(clsInstallMgr, 17)

II Handle of item to get size of.
II Out: size.

MakeMsg(clsInstallMgr, 18)

irnExistUpdate 0, II Copy new over existing.
irnExistReactivate 1, II Deactivate existing, then activate new.
irnExistGenError 2, II Return stsIMAlreadyInstalled.
irnExistGenUnique 3, II Generate a unique name for the new item.
irnExistIncRefCount 4 II Just increment ref count of existing item.

IM INSTALL EXIST, *P_I~INSTALL_EXIST;

typedef struct IM_INSTALL {
FS LOCATOR locator;

IM INSTALL EXIST
FS ATTR LABEL
OBJECT

exist;
listAttrLabel;
listHandle;

IM HANDLE handle;
IM_INSTALL, *P_IM_INSTALL;

II Location of item on external
II filesystem.
II What to do if item already exists.
II Attr list to add install handle to.
II filesystem handle to put attr on.
II Out: Handle of installed item.

The install manager derives the item's name from the filesystem location specified in pArgs->locator.

pArgs->exist controls what happens if an item of the same name as the item to be installed already exists.

pArgs->listAttrLabel and pArgs->listHandle are used to specify an attr list to which the install handle is

added. This is used to keep track of sub-apps and sub-services. Set these arguments to 0 if this should
not be done.

Causes the install manager to notify observers with msgIMlnstalled. The install manager also sends

msgIMModifiedChanged if the modified states changed due to the install.

Return Value

Arguments

INSTLMGR.H 555
Messages

stsIMlnvalid Item to be installed does not pass verification.

stslMAlreadylnstalled Item already installed and pArgs->exist == imExistGenError.

stsBadParam pArgs->exist is set to an invalid value.

msgIMDeinstall
Deinstalls an item.

Takes P _IM_DEINSTALL, returns SfATUS.

#define msgIMDeinstall

typedef struct IM_DEINSTALL
1M_HANDLE handle;

} IM_DEINSTALL, *P_IM_DEINSTALL;

MakeMsg(clsInstallMgr, 19)

II Item to delete.

All traces of the item are removed, including the item's handle.

stsIMlnUse Item is in use; cannot be deinstalled.

msgIMDup
Creates a new item that is a duplicate of an existing one.

Takes P_IM_DUP, returns SfATUS.

MakeMsg(clsInstallMgr, 23) #define msgIMDup

typedef struct 1M DUP
1M HANDLE
P_STRING

handle; II item to duplicate.
pName; II new name. If pNull then a unique name

II is generated.
1M HANDLE

IM_DUP, *P_IM_DUP;
newHandle; II Out: Handle to the new item.

Causes the install manager to notify observers with msgIMlnstalled.

stslMAlreadylnstalled An item with pArgs->name already exists.

msgIMFind
Finds a item's handle, given its name.

Takes P _1M_FIND, returns SfATUS.

#define msgIMFind

typedef struct 1M FIND
P STRING

1M_FIND, *P_IM_FIND;

pName;
handle;

stsN oMatch Item not found.

msgIMGetSema

MakeMsg(clsInstallMgr, 24)

II Resource name to search for
II Out: Resulting handle

Gets the concurrency protection semaphore.

Takes P_OS_FAST_SEMA, returns STATUS.

#define msgIMGetSema MakeMsg(clsInstallMgr, 25)

This message is for subclasses that need to do concurrency protection to their messages. Subclasses
should get this semaphore and aquire and release it at the beginning and end of their messages.
Subclasses should use this semaphore instead of creating one of their own in order to avoid race
conditions.

556 PEN POINT API REFERENCE

Part 12 / Installation API

Comments

Comments

msgIMGetDir
Passes back a directory handle on the install manager's directory.

Takes P _OBJECT, returns STATUS.

tdefine msgIMGetDir MakeMsg(clslnstallMgr, 26)

This dir handle is owned by the install manager; clients must not destroy it!

msgIMGednstallPath
Passes back the install base path.

Takes P _STRING, returns STATUS.

tdefine msgIMGetlnstallPath MakeMsg(clslnstallMgr, 27)

The install base path is an absolute path to the install manager's directory.

pArgs must point to an fsPathBufLength sized buffer.

msgIMGetVerifier
Passes back the current verifier object.

Takes P_OBJECT, returns STATUS.

tdefine msgIMGetVerifier MakeMsg(clslnstallMgr, 33)

This object is sent msgIMVerify whenever an item is attempted to be installed. The verifier should
return stsOK if the item is valid, stsFailed if it isn't.

msgIMSetVerifier
Sets the current verifier object.

Takes OBJECT, returns STATUS.

tdefine msgIMSetVerifier MakeMsg(clslnstallMgr, 34)

This object is sent msgIMVerify whenever an item is attempted to be installed. The verifier should
return stsOK if the item is valid, stsFailed if it isn't.

msgIMVeriry
Verify the validity of an item that is being installed.

Takes OBJECT, returns STATUS.

tdefine msgIMVerify MakeMsg(clslnstallMgr, 35)

This message is sent to an install manager's verifier object whenever an installation is attempted.

pArgs specifies the node being installed. It is either a file handle or a dir handle. The verifier object
should determine if the item to be installed is valid, and return stsOK if so, stsFailed if not.

msgIMExists
Verify the existance of an item that is being installed.

Takes P _1M_EXISTS, returns STATUS.

tdefine msglMExists MakeMsg(clslnstallMgr, 61)

Arguments

Comments

typedef struct 1M EXISTS
OBJECT source;
1M HANDLE handle;

1M_EXISTS, * P_IM_EXISTS;

INSTLMGR.H 557
UI Messages

II In: {FileIDir} handle of item to be installed.
II Out: Handle of item if found.

This message is self sent whenever an installation is attempted.

pArgs specifies the node being installed. It is either a file handle or a dir handle. The handler should

determine if the item to be installed already exists. Returns stsOK if the item is found; stsFailed
otherwise.

UI Messages

Comments

Arguments

msgIMUllnstall
Installs a new item with a user interface.

Takes P _IM_ UCINSTALL, returns Sf ATUS.

#define msgIMUIInstall

typedef struct 1M UI INSTALL
FS LOCATOR locator;

1M HANDLE handle;
IM_UI_INSTALL, *P_IM_UI_INSTALL;

MakeMsg(clsInstallMgr, 38)

II Location of item on external
II filesystem.
II Out: Handle of installed item.

Performs msgIMInstall, but lets the user decide exist behavior. Pops up a progress note which allows the

user to cancel the install. Informs the user of successful or unsucessful completion.

Returns msgIMlnstall statuses.

msgIMUIDeinstall
Deinstalls an item with a user interface.

Takes P_IM_UCDEINSTALL, returns STATUS.

#define msgIMUIDeinstall MakeMsg(clsInstallMgr, 58)

typedef struct IM_UI_DEINSTALL
1M_HANDLE handle; II Item to deinstall.

} IM_UI_DEINSTALL, *P_IM_UI_DEINSTALL;

Returns msgIMDeinstall statuses.

msgIMUIDup
Duplicates and item with a UI.

Takes P _IM_UCDUP, returns STATUS.

#define msgIMUIDup

typedef struct IM_UI_DUP {
1M HANDLE handle;
P STRING pName;

1M HANDLE newHandle;
IM_UI_DUP, *P_IM_UI_DUP;

Returns msgIMDup statuses.

MakeMsg(clsInstallMgr, 39)

II item to duplicate.
II new name. If pNull then a unique name
II is generated.
II Out: Handle to the new item.

a:
c(

z o
5

II

558 PENPOINT API REFERENCE

Part 12 / Installation API

Notification Messages

msgIMNameChanged
The name of a item has changed.

Takes P _1M_NOTIFY, returns STATUS. Category: observer notification.

fdefine msgIMNameChanged MakeMsg(clsInstallMgr, 40)

typedef struct 1M NOTIFY
OBJECT manager; II manager that sent notification.
1M HANDLE handle; II handle that changed.
U8 reserved[40];

1M NOTIFY, *P_IM_NOTIFY;

msgIMCurrentChanged
The current item has changed.

Takes P _IM_CURRENT_NOTIFY, returns STATUS. Category: observer notification.

fdefine msgIMCurrentChanged MakeMsg(clsInstallMgr, 42)

typedef struct 1M CURRENT NOTIFY
OBJECT manager; II manager that sent notification
1M HANDLE newHandle; II the new current handle
1M HANDLE oldHandle; II the previous current handle
U8 reserved[40];

IM_CURRENT_NOTIFY, *P_IM_CURRENT_NOTIFY;

msgIMln UseChanged
An item's inUse attribute has changed.

Takes P _IM_INUSE_NOTIFY, returns STATUS. Category: observer notification.

fdefine msgIMInUseChanged MakeMsg(clsInstallMgr, 43)

typedef struct 1M INUSE NOTIFY
OBJECT manager; I I manager that sent notification
1M HANDLE handle; II handle that changed
BOOLEAN inUse; II new inUse state
U8 reserved[40];

IM_INUSE_NOTIFY, *P_IM_INUSE_NOTIFY;

msgIMModifiedChanged
An item's modified attribute has changed.

Takes P _1M_MODIFIED_NOTIFY, returns STATUS. Category: observer notification.

fdefine msgIMModifiedChanged MakeMsg(clsInstallMgr, 44)

typedef struct 1M MODIFIED NOTIFY
OBJECT manager; II manager that sent notification
1M HANDLE handle; II handle that changed
BOOLEAN modified; II new modified state
U8 reserved[40];

IM_MODIFIED_NOTIFY, *P_IM_MODIFIED_NOTIFY;

MC$sogc
ArgtJments

(~{}mments

INSTLMGR.H 559

Private

msgIMlnstalled
A new item was installed.

Takes P _1M_NOTIFY, returns STATUS. Category: observer notification.

*define msgIMInstalled MakeMsg(clsInstallMgr, 45)

typedef struct 1M NOTIFY
OBJECT manager; II manager that sent notification.
1M HANDLE handle; II handle that changed.
U8 reserved[40];

1M_NOTIFY, *P_IM_NOTIFY;

msgIMDeinstalled
An item has been deinstalled.

Takes P _IM_DEINSTALL_NOTIFY, returns STATUS. Category: observer notification.

*define msgIMDeinstalled MakeMsg(clsInstallMgr, 46)

typedef struct IM_DEINSTALL_NOTIFY
OBJECT manager; II manager that sent notification.
1M HANDLE handle; II handle of item that was deinstalled.
U8 pName[nameBufLength]; II item name.
U8 pVersion[nameBufLength];11 item version.
U8 reserved[40];

IM_DEINSTALL_NOTIFY, *P_IM_DEINSTALL_NOTIFY;

Since the handle is no longer valid when this message is recieved, the pArgs includes all information
about the item.

Private

msgIMDeactivate
Deactivate an item.

Takes P_IM_DEACTIVATE, returns STATUS.

*define msgIMDeactivate

typedef struct 1M_DEACTIVATE

MakeMsg(clsInstallMgr, 20)

1M_HANDLE handle; II item to deactivate.
} 1M_DEACTIVATE, *P_IM_DEACTIVATE;

This removes everything but an empty filesytem node with attributes which represents the item. The
item's handle and attributes remain intact.

Returns

stsRequestNotSupported style.copyOnInstall is false. Install mgrs of this style don't support
deactivation.

msglMActivate
Activate an item by copying it in from disk.

Takes P _1M_ACTIVATE, returns STATUS.

*define msgIMActivate MakeMsg(clsInstallMgr, 21)

560 PENPOINT API REFERENCE
Part 12 / Installation API

typedef struct IM ACTIVATE
IM HANDLE handle;

} IM_ACTIVATE, *P_IM_ACTIVATE;
II Item to activate.

The install manager also sends msgIMModifiedChanged if the modified state changed due to the
activate.

stslMAlreadyActive Item is already active.

stsIMlnvalidltem There is nothing valid out on disk.

msgAppMgrGetMetrics
Returns generic icon for this installer.

Takes P _APP _MGR_METRICS, returns STATUS.

Install managers understand this message so they can present an icon for use by the disk manager. Install
managers look for their icons in the system resource file.

Only the iconBitmap, smallIconBitmap, and name fields of pArgs are filled in.

msglMAddCards
Asks the install manager to add option cards for the specified item.

Takes P _IM_ADD_CARDS, returns STATUS.

*define msgIMAddCards

typedef struct IM_ADD_CARDS
IM_HANDLE handle;
OPTION_TAG optionTag;

IM_ADD_CARDS, *P_IM_ADD_CARDS;

MakeMsg(clsInstallMgr, 56)

II Item to add cards for. Can be objNull.
II msgOptionAddCards argument.

The handle argument specifies the currently selected item. It may be objNull if there is no selection.

This message is a superset of msgOptionAddCards. The option Tag argument is exactly the same as that
for msgOptionAddCards.

msgIMSetNotify
Turns notification generation on or off.

Takes BOOLEAN, returns STATUS.

*define msgIMSetNotify

msgIMGetNotify
Returns notification generation state.

Takes P _BOOLEAN, returns STATUS.

*define msgIMGetNotify

msgIMRemoveHandle
Removes and frees a handle from our internal list.

Takes OBJECT, returns STATUS.

*define msgIMRemoveHandle

MakeMsg(clsInstallMgr, 28)

MakeMsg(clsInstallMgr, 29)

MakeMsg(clsInstallMgr, 30)

Comments

fl%r9!Jmeni's

INSTLMGR.H 561

msgIMRenameU ninstalledItem
Renames an item on disk.

Takes P _IM_RENAME_UNINSTALLED, returns STATUS.

#define msgIMRenameUninstalledltem MakeMsg(clslnstaIIMgr, 53)

typedef struct 1M_RENAME UNINSTALLED {
FS LOCATOR locator; II Location of item to rename. Must not

II be an absolute path!
P STRING pOldName; II Old name.
P STRING pNewName; II New name.

IM_RENAME_UNINSTALLED, *P_IM_RENAME_UNINSTALLED;

msgIMGetSettingsMenu
Sets a pointer to the tkTable entries for the Settings NB menu.

Takes PP_TK_TABLE_ENTRY, returns STATUS.

#define msgIMGetSettingsMenu MakeMsg(clslnstaIIMgr, 54)

pArgs must be the address of a P _ TK_ TABLE_ENTRY pointer.

msgIMGetltemlcon
Gets the icons for a given item.

Takes P _IM_GET_ITEM_ICON, returns STATUS.

#define msgIMGetltemlcon

typedef struct 1M GET ITEM ICON - - -
1M HANDLE handle; II
OBJECT iconBitmap; II
TAG iconTag; II
BOOLEAN iconlnSystemRes; II

II
OBJECT smalllconBitmap; II
TAG smalllconTag; II
BOOLEAN smalllconlnSystemRes;11

II
U32 reserved;

1M GET_ITEM_ICON, *P_IM_GET_ITEM ICON;

MakeMsg(clslnstaIIMgr, 57)

Handle of item.
Out: Icon bitmap.
Out: Icon's tag in resfile.
Out: Is this icon in system

resource file?
Out: Small icon bitmap.
Out: Icon's tag in resfile.
Out: Is this icon in system

resource file?

Private

I NSTLSHT.H

This file contains the API definition for clslnstallUISheet.

clsSettingsNB inherits from clsOption.

This class defines the Installer sheet in the Settings Notebook.

The Installer sheet contains one card for each installation category (apps, preferences, services, etc). Each

category has an underlying install manager (see instlmgr.h). A card is automatically created when a new

install manager is created, and deleted when an install manger is destroyed.

The Installer sheet allows a client to display a particular card and select an item within that card. Here's
example code which activates the Settings Notebook from the Bookshelf, turns it to the Installer sheet,

displays a particular card, selects an item within that card, and finally opens the Settings Notebook:

#include <auxnbmgr.h>
#include <instlsht.h>

ANM OPEN NOTEBOOK openNotebook;
APP METRICS am;
IUI_SELECT_ITEM selectItemi
OPTION CARD OCi

IUI SHOW CARD showCardi
STATUS Si

ObjectCall(msgBusySetState, theBusyManager, (P_ARGS) true)i
openNotebook.notebook = anmSettingsi
openNotebook.activateOnly = true;
ObjCallRet(msgANMOpenNotebook, theAuxNotebookMgr, &openNotebook, S)i

ObjSendUpdateRet(msgAppGetMetrics, openNotebook.uid, &am, SizeOf(am), S)i

oc.tag = tagSettingsInstallerSheeti
ObjSendUpdateRet(msgOptionShowCard, am.mainWin, &oc, SizeOf(oc), S)i

ObjSendUpdateRet(msgOptionGetTopCard, am.mainWin, &oc, SizeOf(oc), S)i

strcpy(showCard.pCardName, "Applications")i
ObjSendRet(msgIUIShowCard, oc.win, &showCard, SizeOf(showCard), S)i

strcpy(selectItem.pItemName, appMgrMetrics.name)i
ObjSendRet(msgIUISelectItem, oc.win, &selectItem, SizeOf(selectItem), S)i

openNotebook.notebook = anmSettingsi
openNotebook.activateOnly = falsei
ObjCallRet(msgANMOpenNotebook, theAuxNotebookMgr, &openNotebook, S)i

ObjectCall(msgBusySetState, theBusyManager, (P_ARGS) false)i

#ifndef INSTLSHT_INCLUDED
#define INSTLSHT_INCLUDED
#ifndef TKTABLE INCLUDED
#include <tktable.h>
#endif
#ifndef FS_INCLUDED
#include <fs.h>
#endif
#ifndef OPTION INCLUDED
#include <option.h>
#endif

564 PEN POINT API REFERENCE

Part 12 I Installation API

Messages

msgIUIShowCard
Show the specified Installer category card.

Takes P _IUeSHOW_CARD, returns STATUS.

fdefine msgIUIShowCard

typedef struct lUI SHOW CARD

MakeMsg(clslnstallUISheet, 1)

CHAR pCardName[nameBufLength]; II Card Name. These names
II correspond to installmgr
II names; ie. Applications,
II Services, Fonts. See
II instlmgr.h.

TAG itemTag; I I If name is of zero length
II use the tag

lUI_SHaW_CARD, * P_IUI_SHOW_CARD;

stsFailed The specified card was not found.

msgIUISelecdtem
Set the selection to an item on the current card.

Takes p_IUeSELECT_ITEM, returns STATUS.

fdefine msgIUISelectltem

typedef struct IUI_SELECT_ITEM {

MakeMsg(clslnstallUISheet, 2)

CHAR pltemName[nameBufLength]; II Name of item to select.
TAG itemTag; II If name is of zero length

II use the tag
IUI_SELECT_ITEM, * P_IUI_SELECT_ITEM;

stsFailed The specified item was not found.

msgIUI GetSelection UID
Gets the UID of the selection on the current card.

Takes P_UID, returns STATUS.

fdefine msgIUIGetSelectionUID

stsFailed There is no selection.

msgIUI GetSelectionName

MakeMsg(clslnstallUISheet, 5)

Gets the name of the selection on the current card.

Takes P_CHAR, returns STATUS.

fdefine msgIUIGetSelectionName

stsFailed There is no selection.

msgIUIGe~etrics

Get installUI metrics.

Takes p_IUeMETRICS, returns STATUS.

fdefine msgIUIGetMetrics

MakeMsg(clslnstallUISheet, 6)

MakeMsg(clslnstallUISheet, 3)

INSTLSHT.H 565
Messages

Arguments typedef struct lUI_METRICS {
OBJECT currentCard; II Card displayed.
CHAR pCurrentCardName[nameBufLength]; II Name of displayed

II card.
TAG currentCardTag; I I Tag of card.
CHAR spare[24];

lUI_METRICS, * P lUI_METRICS;

PDICTMGR.H

This file contains the API definition for clsPDictProtolnstallMgr.

clsPDictProtolnstallMgr inherits from clslnstallMgr.

It performs personal dictionary installation and maintenance.

instlmgr.h

#ifndef PDICTMGR INCLUDED
#define PDICTMGR INCLUDED
#ifndef INSTLMGR_INCLUDED
#include <instlmgr.h>
#endif

Common #defines and typedefs

Popup Editor messages and tags
#define msgPIMPopUpEditor
#define tagPIMPopUpEditor
#define hlpPIMEditorButton

MakeMsg(clsPDictInstallMgr, 100)
MakeTag(clsPDictlnstallMgr, 1)
MakeTag(clsPDictInstallMgr, 100)

Messages

msgNew
Creates a new personal dictionary install manager.

Takes P _PIM_NEW, returns STATUS. Category: class message.

typedef struct PIM_NEW {
installMgrNewFields

} PIM_NEW, *P_PIM_NEW;

There is only one instance of this class, thelnstalledPDicts, in the system. Clients should never send

msgNew.

------.----------,~--~~

5ERVIMGR.H

This file contains the API definition for clsServiceInstallMgr.

clsServiceInstallMgr inherits from clsCodeInstallMgr.

Manages installation and deinstallation of services.

There is a single instance of clsServiceInstallMgr in the system; the well-known uid

thelnstalledServices.

thelnstalledServices performs installation and deinstallation of services, allows you to enumerate all of
the services that are currently installed, and find out their classes.

See service.h for the messages that a service implementor needs. See servmgr.h for the messages that a

service client uses to find and open a particular service.

Services provide non-application functionality under PenPoint; typically some form of background
server or device driver. Examples of services include: device drivers, inbox/outbox transfer agents such as

fax and e-mail, network protocol stacks, and databases.

A service is a directory, usually located under \penpoint\service on a given filesystem volume. The name
of the directory is the name of the service. Within this directory are one or more .dlls that make up the
servIce.

If a service includes more than one .dll there must also be a .dIc file which lists all the .dlls. The name of

the .dIc file (or the name of the .dll file if there is only one .dll) must be the same as the name of the
service. If a service is called MAIL, for example, its ,.dIc file must be named MAIL.DLC. You can use the

SfAMP.EXE utility to give a service an extended name. Be sure to stamp the .dIc file as well.

A service can contain an init.dll. This .dll will be loaded, run, and unloaded during service loading. This

can be used to set up or modify the service's resource file programmatically. A handle to the service's
resource file is available to init.dll via msgSvcGetClassMetrics.

When a service is installed, a service directory is created in the RAM filesystem. All of the state for that

service lives in this directory.

A service can have an optional MIse directory. This is very similar to an application's MISe directory.
MIse is used to store static data files that are common to all service instances. The MISe directory will

be copied into the service directory when the service is installed. You can get to the MISe directory

from a service instance by getting class metrics, then specifying a path of "MISe" relative to the service's
directory.

A service can have a resource file, called service.res. This is similar to an application's app.res file. The

resource file is automatically copied to the service directory in RAM when the service is installed, and a

resource file handle is opened on it and stored in the service class metrics. This resource file should
contain the service's VI components and quick-help resources. Each service's resource file handle is

added to the well-known resList theServiceResList. Quick-help searches theServiceResList as part of its

normal operation. Note that theServiceResList is not callable; you must ObjectSend to it.

570 PEN POINT API REFERENCE
Part 12 / Installation API

There is an optional INST directory in a service directory, which contains saved service instance state
nodes. Pre-configured service instances will be created from the nodes in this directory when the service

is loaded (see service.h for details).

There can also be a service.ini and app.ini file in the service directory. These specify any additional
services and applications that should be installed when this service is installed. These services and

applications are deinstalled when the service is deinstalled. If one of these services or applications is
already installed it is reference counted, not installed again.

A service is installed by sending msgIMInstall to theInstalledServices. Services are installed under user

control from the Services card of the Settings Notebook, or via the pop-up quick installer (see

qckinstl.h). \ \boot\penpoint\boot\service.ini specifies services that are automatically loaded when the
system cold-boots.

Each installed service has a service directory in the RAM filesystem, under \penpoint\sys\service. For
example, service MAIL would have \penpoint\sys\service\mail. The instance state nodes for the service

are kept in a directory called INST, under this directory. If the service has preconfigured instances then
they are copied to the INST directory when the service is first installed.

Each installed service is represented by a handle, in a fashion similar to other install managers (see

instlmgr.h). This handle is a directory handle onto the service's directory in the RAM filesystem.

NOTE: THE MESSAGES IN THIS CLASS ARE SENT TO THE MANAGER, NOT TO THE

HANDLES.

A service can be deinstalled. Deinstallation removes all traces of a service and decrements the reference

count for any dependent services or applications. All service instances are removed from their service

managers and freed when a service is deinstalled.

Deinstallation only occurs if the main service and all dependent applications and services agree to

deinstall. A service or application can veto the deinstallation if it chooses. The default behavior for
services is to veto if any service instance is open (in use).

The following superclass messages are not understood by dsServiceInstallMgr:

• msgIMGetCurrent

• msgIMSetCurrent

• msgIMSetName

• msgIMDup

The following notification messages are not sent by dsServicelnstallMgr:

• msgIMN ameChanged

• msgIMCurrentChanged

NOTE: Each service must contain one and only one service class. Don't try and define more than one

service class in a single service.

instlmgr.h

#ifndef SERVIMGR INCLUDED
#define SERVIMGR=INCLUDED
#ifndef SERVICE_INCLUDED
#include <service.h>
#endif
#ifndef CODEMGR_INCLUDED
#include <codemgr.h>
#endif

Common #defines and typedefs

Well-known filenames

These are the files created by c1sServicelnstallMgr in a service's directory.

#define svcResFileName "service. res"

Messages

msgNew
Creates a new service installation manager.

Takes P _SIM_NEW, returns STATUS. Category: class message.

typedef struct SIM_NEW {
installMgrNewFields

} SIM_NEW, *P_SIM_NEW;

SERVIMGR.H 571
Messages

There is only one instance of this class, thelnstalledServices, in the system. Clients should never send

msgNew.

msgSIMGetMetrics
Gets the specified service class's metrics.

Takes P _SIM_GET_METRICS, returns STATUS.

#define msgSIMGetMetrics MakeMsg(clsServiceInstall~gr, 1)

typedef struct SIM GET METRICS
IM HANDLE handle; II Handle of service class to get metrics

lion.
SVC_CLASS_METRICS metrics; II Out: metrics.

SIM GET METRICS, *P_SIM_GET_METRICS;

See service.h for SVC_CLASS_METRICS.

SYSTEM.H

This file contains the API definition for dsSystem.

dsSystem inherits from clsObject.

Provides information about the system.

There is a single instance of clsSystem, theSystem. You send all clsSystem messages to theSystem.

theSystem manages PenPoint booting. If you need to know when PenPoint booting reaches a certain
stage or is complete then you can observe theSystem and recieve msgBootStateChanged. You can also
send msgSysGetBootState to find out what stage booting is currently at.

PenPoint Booting Sequence

Cold Boot

Kernel
System Dlls Loaded (boot.dlc)
System Apps Installed (sysapp.ini)
Initial App Installed
Bookshelf Created
Services Installed (service.ini)
Apps Installed (app.ini)
Run Initial App
Boot Complete

Warm Boot

Kernel
System Dll Upgrade
System Dlls reinitialized
Instance O's/DLLMain()s rerun
App Upgrade
Services Upgrade
Run Initial App
Boot Complete

This header file defines constants for all the interesting PenPoint filesystem locations that you might be
tempted to hard-code. Use these defines instead; for example, to set a string to the location where

PenPoint applications live, use:

strcpy(pFOO, sysBaseDir "\\" syslnstallableAppDir);

PenPoint defines "live" areas for documents on volumes. The live area is where the volume's bookshelf is.
Use msgSysGetLiveRoot to access the live area on a volume.

#ifndef SYSTEM INCLUDED
#define SYSTEM_INCLUDED
#ifndef APPDIR_INCLUDED
#include <appdir.h>
#endif
#ifndef APPMGR_INCLUDED
#include <appmgr.h>
#endif
#ifndef UUID INCLUDED
#include <uuid.h>
#endif

574 PENPOINT API REFERENCE
Part 12 I Installation API

System Debugging Flags
System debug flag is 'B', values are:

1 = Enable active doc cache tracing
2 = Install items from theSelectedVolume at warm boot
4 = Go into debugger when stdmsg functions are called
8 = Enable serial port option sheet testing
800 = Enable showing of the RAM (theSelectedVolume) Volume

Common #defines and typedefs
penpoint.res is invalid. This is checked during cold and warm boot.

tdefine stsSysInvalidSystemResFile

Penpoint base directory.

tdefine sysBaseDir

MakeStatus(clsSystem, 1)

"PENPOINT"

Filesystem locations off the base Penpoint directory.

tdefine sysInstallableFontDir
tdefine sysInstallablePrefDir
tdefine sysInstallableHWXProtDir
tdefine sysInstallableGestureDir
tdefine sysInstallablePDictDir
tdefine sysInstallableAppDir
tdefine sysInstallableServiceDir
tdefine sysBootDir
tdefine sysQuickInstall
tdefine sysRuntimeRootDir

Filesystem locations off the runtime root.

tdefine sysSysAppFile
tdefine sysAppFile
tdefine sysSysServiceFile
tdefine sysServiceFile
tdefine sysCopyFile
tdefine sysResFile
tdefine sysMILResFile
tdefine sysLiveRoot
tdefine sysLoaderDir

"FONT"
"PREFS"
"HWXPROT"
"GESTURE"
"PDICT"
"APP"
"SERVICE"
"BOOT"
"QINSTALL"
"SYS"

"SYSAPP.INI"
"APP.INI"
"SYSSERV. INI"
"SERVICE.INI"
"SYSCOPY.INI"
"PENPOINT.RES"
"MIL.RES"
"Bookshelf"
"LOADER"

Default initial app (in penpoint\boot\app).

tdefine sysDefaultInitialApp

Boot type.

typedef enum SYS_BOOT_TYPE
sysWarmBoot = 1,
sysColdBoot = 2

SYS_BOOT_TYPE, *P_SYS_BOOT_TYPEi

Boot progess.

typedef enum SYS_BOOT_PROGRESS
sysKernelComplete 1,
sysSystemDllsComplete 2,
sysSystemAppslnstalled 3,
syslnitialApplnstalled 4,
sysBookshelfltemsCreated 5,
sysServicesInstalled 6,
sysAppslnstalled 7,
syslnitialAppRunning 8,
sysBootComplete 9

"Bookshelf"

SYS_BOOT_PROGRESS, *P_SYS_BOOT_PROGRESSi

Boot state.

typedef struct SYS_BOOT_STATE {
BOOLEAN booted;
SYS BOOT PROGRESS progress;
SYS BOOT TYPE type;
CLASS initialAppClass;

SYS_BOOT_STATE, *P_SYS_BOOT_STATE;

SYSTEM.H 575
Messages

II Has booting totally completed?
II Where are we in the boot cycle?
II Boot type; warm or cold.
II Class of the initial app.

Messages

Comments

Me5S($ge
Arguments

C($mments

msgNew
Used by PenPoint to create well-known uid theSystem.

Takes P_SYS_NEW, returns STATUS. Category: class message.

typedef struct SYS_NEW_ONLY {
U32 unused1;
U32 unused2;
U32 unused3;
U32 unused4;

SYS~NEW_ONLY, *P_SYS_NEW_ONLY;
#define systemNewFields

objectNewFields
SYS NEW ONLY system;

typedef struct SYS_NEW
systemNewFields

} SYS_NEW, *P_SYS_NEW;

\
\

This message should never be called by anybody else.

msgSysGetBootState
What stage of booting is the system in?

Takes P_SYS_BOOT_STATE, returns STATUS.

#define msgSysGetBootState

typedef struct SYS_BOOT_STATE
BOOLEAN booted;
SYS BOOT PROGRESS progress;
SYS BOOT TYPE type;
CLASS initialAppClass;

SYS_BOOT_STATE, *P_SYS_BOOT_STATE;

MakeMsg(clsSystem, 1)

II Has booting totally completed?
II Where are we in the boot cycle?
II Boot type; warm or cold.
II Class of the initial app.

This message allows callers to determine the current state of system booting.

msgSysBootStateChanged Observer message sent at each stage.

msgSysGetRuntimeRoot
Returns a dir handle onto the root of the Penpoint runtime area.

Takes P_OBJECT, returns STATUS.

#define msgSysGetRuntimeRoot MakeMsg(clsSystem, 2)

Penpoint maintains all of its runtime information in one area of the filesystem on the" selected" volume

(theSelectedVolume). This message returns a directory handle onto the root of this area.

NOTE: Caller must free the handle when finished.

576 PENPOINT API REFERENCE
Part 12 / Installation API

msgSysGetLiveRoot
Returns an appDir handle onto the root of a volume's live document area.

Takes P _SYS_GET_LIVE_ROOT, returns Sf ATUS.

#define msgSysGetLiveRoot MakeMsg(clsSystem, 3)

typedef struct SYS_GET_LlVE_ROOT {
OBJECT volHandle; II Handle onto volume in question.
OBJECT liveRoot; II Out: appDir handle to live root on

II the volume.
SYS_GET_LlVE_ROOT, *P_SYS_GET_LlVE_ROOT;

Live Penpoint documents (those that can be activated) are stored within the live area of a volume. This

message returns the root of the live area for a given volume.

pArgs->voIHandle is a filesystem handle onto the volume in question. This handle can be on any

location of the volume. You can also use the root directory handle for a volume. Use theSelectedVolume
if you want to get the live area within the filesystem that Penpoint stores its on-machine documents in.

NOTE: Caller must free the pArgs->liveHandle when finished.

stsFSNodeNotFound No live root on this volume.

msgSysIsHandleLive
Determines if a filesystem handle is within the live document area.

Takes P_SYS_IS_HANDLE_LIVE, returns STATUS.

#define msgSysIsHandleLive MakeMsg(clsSystem, 4)

typedef struct SYS_IS_HANDLE_LlVE
OBJECT handle; II Handle onto the node in question.
BOOLEAN live; II Out: Is it in the live area?

SYS_IS_HANDLE_LIVE, *p SYS_IS_HANDLE_LIVE;

Penpoint maintains live documents within a particular point in the directory heirarchy of each volume.

This message determines whether a filesystem handle is within the live area of its volume.

stsFSNodeNotFound Nolive root on the handle's volume.

msgSysCreateLiveRoot
Create a new live root on a volume.

#define msgSysCreateLiveRoot

typedef struct SYS_CREATE_LlVE_ROOT {

MakeMsg(clsSystem, 5)

OBJECT volHandle; II Handle onto volume in question.
CLASS rootClass; II Class of app which should run on the

II live root directory.
SYS CREATE_LIVE_ROOT, *P_SYS_CREATE_LIVE_ROOT;

Penpoint maintains live documents within a particular point in the directory heirarchy of each volume.
This message creates a new live root on a volume if one doesn't already exist. If the live root already

exists it creates an instance of the app over whatever is there currently. Use msgSysGetLiveRoot if you

want to check for an existing live root.

SYSTEM.H 577
Messages

msgSysGetVersion
Returns the system version number.

Takes P_U16, returns STATUS.

#define msgSysGetVersion MakeMsg(clsSystem, 6)

This message allows callers to determine the current PenPoint system version number.

msgSysGetSecurityObject
Gets the current security object.

Takes P _OBJECT, returns STATUS.

#define msgSysGetSecurityObject

Returns objNull if there is no current security object.

msgSysSetSecurityObject
Sets the current security object.

Takes P _SYS_SET_SECURITY_OBJECT, returns STATUS.

#define msgSysSetSecurityObject

typedef struct SYS_SET_SECURITY_OBJECT {

MakeMsg(clsSystem, 31)

MakeMsg(clsSystem, 32)

OBJECT securityObjecti II New security object.
OBJ KEY oldKeYi II Object key for old security

II object.
SYS_SET_SECURITY_OBJECT, *P_SYS_SET_SECURITY_OBJECTi

If a security object already exists then it is destroyed, using the key specified in the arguments. If it

refuses to be destroyed then the new security object will not be set.

The security object will be sent msgSysPowerOn and msgSysPowerOffwhen the power goes on and

off. At shutdown, msgSysPowerOff is sent to the security object after msgSysPowerOff is sent to power

button observers and after msgAppSave is sent to applications. At power up, msgSysPowerOn is sent to

the security object before msgSysPowerOn is sent to power button observers.

msgSysPowerOn and msgSysPowerOff are sent when the machine is suspended/ resumed, or shutdown

and swap-booted. However, these messages are not sent when a warm-boot occurs. A warm-boot

destroys all processes and objects. The service· or application that owns the security object will be
restarted in the warm-boot case. Security objects must handle the warm-boot case. For example, if the

security object is created by the app monitor, the app monitor will receive msgApplnit when the

application is first installed and msgRestore on all warm-boots.

At power down, anything painted on the screen by the security object will not appear immediately, but
will appear on the screen when it is restored at power on time. If the security object wishes to display a
window on top of all other windows, it should observe the System for msgBootStateChanged to

determine when booting is complete.

At power on, the security object may choose to veto the powering on of the system by sending

msgPMSetPowerState to thePowerMgr to turn off power.

stsProtection Violation old security object refused to be destroyed.

578 PEN POINT API REFERENCE

Part 12 I Installation API

msgSysGetCorrectiveServiceLevel
Gets the corrective service level.

Takes P _STRING, returns STATUS.

#define msgSysGetCorrectiveServiceLevel MakeMsg(clsSystem, 33)

The corrective service level is a string of up to maxNameLength characters.

msgSysSetCorrectiveServiceLevel
Sets the corrective service level.

Takes P _STRING, returns STATUS.

#define msgSysSetCorrectiveServiceLevel MakeMsg(clsSystem, 34)

The corrective service level is a string of up to maxNameLength characters.

Notification Messages

Message

Ar9tHnents

msgSysBootStateChanged
The system has reached another stage of booting.

Takes P _SYS_BOOT _STATE, returns STATUS. Category: observer notification.

#define msgSysBootStateChanged

typedef struct SYS_BOOT_STATE {
BOOLEAN booted;
SYS BOOT PROGRESS progress;
SYS BOOT TYPE type;
CLASS initialAppClass;

SYS_BOOT_STATE, *P_SYS_BOOT_STATE;

MakeMsg(clsSystem, 10)

II Has booting totally completed?
II Where are we in the boot cycle?
II Boot type; warm or cold.
II Class of the initial app.

This message is sent to all observers of theSystem whenever another stage of booting is attained. If you

are just interested in whether the system has completed booting or not, look at the pArgs->booted

boolean.

Part 13 /
Writing PenPoint Services

-------_._-_ .. _--

HWXSERY.H

This file contains the API definition for clsHWXEngineService.

clsHWXEngineService inherits from clsService.

Provides default behavior for handwriting engine services.

#ifndef HWXSERV_INCLUDED
#define HWXSERV_INCLUDED
#ifndef SERVICE_INCLUDED
#include <service.h>
#endif

Messages

Arguments

Arguments

msgNew
Creates a new service object.

Takes P_HWX_SVC_NEW, returns STATUS. Category: class message.

typedef struct HWX_SVC_NEW_ONLY {
U32 unused1;
U32 unused2;
U32 unused3;
U32 unused4;

HWX_SVC_NEW_ONLY, *P_HWX_SVC_NEW_ONLY;
#define hwxServiceNewFields \

serviceNewFields \
HWX_SVC_NEW_ONLY hwxService;

typedef struct HWX_SVC_NEW
hwxServiceNewFields

} HWX_SVC_NEW, *P_HWX_SVC_NEW;

msgHWXSvcCurrentChanged
The current handwriting prototype set has changed.

Takes P _HWX_SVC_CURRENT_CHANGED, returns STATUS.

#define msgHWXSvcCurrentChanged MakeMsg(clsHWXEngineService, 1)

typedef struct HWX_SVC_CURRENT_CHANGED
OBJECT newHandle;
OBJECT oldHandlei

HWX_SVC_CURRENT_CHANGED, *P_HWX_SVC_CURRENT_CHANGED;

The user has switched to or from a handwriting prototype set that uses this engine. See hwxmgr.h and
instlmgr.h for details on handwriting prototype set management.

pArgs->newHandle and pArgs->oldHandle provide the handles of the new and old prototype sets.

objNull means that the new/former prototype set used some other engine.

------._------

MILSERY.N

This file contains the API definition for dsMILService. The functions described in this file are
contained in milserv.lib.

dsMILService inherits from dsService.

Provides default behavior for MIL services.

MIL services are PenPoint device drivers. They represent a MIL device, which represents a piece of
hardware. A MIL service sits between a MIL device and the rest of PenPoint.

A MIL service is typically composed of a Ring 0 part, which interfaces to the MIL, and a Ring 3 part,
which interfaces to the rest of PenPoint.

MIL service instances are created automatically by PenPoint. Never send msgNew to a MIL Service class

yourself! Each MIL device contains a deviceId, which is the class of the MIL service that should be
created for it. PenPoint scans the MIL at power-up time and whenever a MIL service installed, and

creates one MIL service for each unit of each device.

The MIL service writer can find out the logical id of the device it represents by self-sending

msgMILSvcGetDevice.

A MIL service can install a MIL extension if necessary. The new MIL device is installed into the MIL

when the MIL service is installed, and removed from the MIL when the MIL service is deinstalled. Use

the InstallMILDeviceO function in your DLLMainO to do this.

You must also let the service framework know about a service by sending msgSvcClasslnitService to

your service class in DLLMainO. Here's an example:

STATUS EXPORTED DLLMain(void)
{

SVC INIT SERVICE
STATUS

initServicei
Si

II Initalize classes.
StsRet(ClsMILServiceInit(), S)i

II Include if it is necessary to install MIL extensions.
InstallMILDevice(&deviceInfo)i
II Initialize service. This creates MIL service instances.
memset(initService.spare, 0, sizeof(initService.spare))i
initService.autoCreate = truei
initService.serviceType = Oi
initService.initServiceFlags = 0;
ObjCallRet(msgSvcClassInitService, clsTestService, &initService, S)i

return stsOKi
II DllMain

See project MILSVC for a template for creating MIL services.

#ifndef MIL_SERVICE_INCLUDED
#define MIL_SERVICE_INCLUDED
#ifndef GO INCLUDED
#include <go.h>
#endif

584 PENPOINT API REFERENCE
Part 13 / Writing Pen Point Services

*ifndef SERVICE_INCLUDED
*include <service.h>
*endif
*ifndef MIL INCLUDED
*include <mil.h>
*endif

Common #defines and typedefs
Did this service install MIL devices?

*define svcMILAttrlnstalledDevice FSMakeFix32Attr(clsMILService, 1)

The MIL device that this mil service is associated with.

typedef struct MIL_SVC_DEVICE {
TAG unitResourceTag;
UID conflictGroup;
U16 logicalld;
U16 unit;
U8 reserved[12];

} MIL_SVC_DEVICE, *P_MIL_SVC_DEVICEi

Functions

InstallMILDevice
Install a MIL device.

Returns STATUS.

Function Prototype STATUS EXPORTED InstallMILDevice (

II resource tag into mil.res
II conflict group mil svc is on
II mil device logical id to use
II mil device unit number to use

P_MIL_DEVICE_INFO pDevicelnfo, II Installable MIL device info.
U32 reserved1, I I Set this to 0
U32 reserved2) ; I I Set this to 0

Comments This routine should used to install one or more MIL devices. These devices will be automatically

deinstalled when the MIL service is deinstalled.

This routine *must* be called in the service's DLLMainO, after the classes are created but before

msgSvcClasslnitService is sent.

Class Messages

msgNew
Creates a new MIL service object.

Takes P _MIL_SVC_NEW, returns STATUS. Category: class message.

typedef struct MIL_SVC_NEW_ONLY {
MIL_SVC_DEVICE device;
U32 unused1 i
U32 unused2 i
U32 unused3 i
U32 unused4;

MIL_SVC_NEW_ONLY, *p MIL_SVC_NEW_ONLY;
*define milServiceNewFields \

serviceNewFields \
MIL_SVC_NEW_ONLY milSvci

Messf)ge

Ar!;1tlments

Comments

Comments

MILSERV.H 585

Class Messages

typedef struct MIL_SVC_NEW {
milServiceNewFields

} MIL_SVC_NEW, *P_MIL_SVC_NEW;

This message should never be sent by clients. PenPoint automatically creates all MIL service instances by
scanning the MIL.

msgNewDefaults
Initializes the MIL_SVC_NEW structure to default values.

Takes P _MIL_SVC_NEW, returns STATUS. Category: class message.

typedef struct MIL_SVC_NEW {
milServiceNewFields

} MIL_SVC_NEW, *P_MIL_SVC_NEW;

Sets

pArgs->svc.style.exclusiveOpen = true;

pArgs->svc.style.checkOwner = true;

Note pArgs->svc.style.connectStyle will be set automatically to

reflect underlying MIL device's auto-detection facilities. It will

be set to svcAutoDetect if milDevFlagDetachable is true,

svcNoAutoDetect if milDevFlagDetachable is false.
!

Note pArgs->milSvc.device will be set automatically from the "MIL.

msgSvcSetConnected
Sets connection state of self.

Takes P _SVC_GET_SET_CONNECTED, returns STATUS.

'p _SVC_GET_SET_CONNECTED' structure is defined in service.h.

This message is self-sent whenever a MIL service thinks that it's connection state has changed. This
message should be sent even when a mil service isn't sure if it is connected (due to possible interference
from other mil services in its conflict group).

If the mil service isn't in a conflict group then the message is sent to ancestor. If it is in a conflict group
then the following will occur:

if (pArgs->connected == true) {

1. msgCGPollConnected is sent to the conflict group manager.

2. The conflict group manager sends msgMILSvcAreYouConnected to allservices in the conflict group
(including the one that self-sent msgSvcSetConnected).

3. The conflict group manager decides which service really shouldbe connected and sends
msgMILSvcConnectionStateResolved to all services. This tells which service (if any) has been
chosen to be the connected one. MIL services should restart their connection detection logic if
nobody is currently connected.

4. Default behavior for msgMILSvcConnectionStateResolved is to sendmsgSvcSetConnected to
ancestor if a change of state is indicated. MIL services must *always* send
msgMILSvcConnectionStateResolved to ancestor.

586 PENPOINT API REFERENCE
Part 13 / Writing Pen Point Services

} else {

1. msgSvcSetConnected is sent to ancestor.

2. msgCGInformDisconnected is sent to the conflict group manager.

3. The conflict group manager sends msgMILSvcConnectionStateResolvedto all mil services except the

mil service that sent the msgSvcSetConnected message. MIL services should restart their connection

detection logic.

msgSMConnectedChanged (servmgr.h)

clsMILService Functionality Available to
Subclasses

Meut;)ge

Argmnertts

Message
Arguments

nnsg~IIJSvcC;etI>evice

Returns MIL device associated with this service.

Takes P _MIL_SVC_DEVICE, returns STATUS.

#define msgMlLSvcGetDevice

typedef struct MlL_SVC_DEVlCE
TAG unitResourceTag;
UlD conflictGroup;
U16 logicalld;
U16 unit;
U8 reserved[12];

} MlL_SVC_DEVlCE, *P_MlL_SVC_DEVlCE;

nnsg~IIJSvcSetDevice

Sets MIL device associated with this service.

Takes P_MIL_SVC_DEVICE, returns STATUS.

#define msgMlLSvcSetDevice

typedef struct MlL_SVC_DEVlCE
TAG unitResourceTag;
UlD conflictGroup;
U16 logicalld;
U16 unit;
U8 reserved[12];

} MlL_SVC_DEVlCE, *P_MlL_SVC_DEVlCE;

MakeMsg(clsMlLService, 1)

II resource tag into mil.res
II conflict group mi~ svc is on
II mil device logical id to use
II mil device unit number to use

MakeMsg(clsMlLService, 2)

II resource tag into mil.res
II conflict group mil svc is on
II mil device logical id to use
II mil device unit number to use

Note: This message is almost never used. Usually a MIL service is associated with the device that is set at
msgNew time, and never changed. This message is included for completeness and very special
circumstances.

nnsg~ILSvclnstalledMILDevice

Is this MIL service targeting an installed MIL device?

Takes pNull, returns STATUS.

#define msgMlLSvclnstalledMlLDevice

Returns stsOK if it is, stsFailed if it is not.

MakeMsg(clsMlLService, 3)

MILSERV.H 587

Descendant Responsibility Messages

msgMIlSvcAddToConflictManager
Add this service instance to a conflict group manager.

Takes P _MIL_SVC_ADD_TO_CONFLICT_MANAGER, returns STATUS.

#define msgMILSvcAddToConflictManager MakeMsg(clsMILService, 8)

typedef struct MIL_SVC_ADD_TO_CONFLICT_MANAGER {
OBJECT manager;

} MIL_SVC~D_TO_CONFLICT_MANAGER, *P_MIL_SVC_ADD_TO_CONFLICT_MANAGER;

Comments This message is used to add a MIL service to a conflict group 'manager.

Descendant Responsibility Messages

Comments

msgMIlSvcPowerOff
The power is about to be turned off.

Takes pNull, returns STATUS.

#define msgMILSvcPowerOff MakeMsg(clsMILService, 4)

This message is sent after all other power off messages are sent. MIL services must *not* observe the
power button to get power notification.

MIL services should save any hardware-specific state that must be restored when the power is applied.

msgMIlSvcPowerOn
The power has just come on.

Takes pNull, returns STATUS.

#define msgMILSvcPowerOn MakeMsg(clsMILService, 5)

This message is sent before all other power on messages are sent. MIL services must *not* observe the
power button to get power notification.

MIL services should restore any hardware-specific state that was saved when the power was
disconnected.

msgMIlSvcAreYouConnected
Do you think you are connected?

Takes P _MIL_SVC_ARE_YOU_CONNECTED, returns STATUS.

#define msgMILSvcAreYouConnected

} ;

msYes
msMaybe
msNo

0,
1,
2

MakeMsg(clsMILService, 6)

This message is sent to all members of a conflict group whenever any service thinks it has become

connected. It allows all members of the conflict group to participate in deciding who is really connected.

Default superclass behavior is to return msMaybe.

588 PENPOINT API REFERENCE
Part 13 / Writing Pen Point Services

msgMIlSvcConnectionStateResolved
Tells a MIL service who was chosen to be connected.

Takes UI6, returns STATUS.

fdefine msgMILSvcConnectionStateReso!ved MakeMsg(c!sMILService, 7)

The pArgs is the logical id of the service that was chosen to be connected. It is set to maxU16 if nobody
is connected.

Default superdass behavior is to send msgSvcSetConnected to ancestor if a change of state is indicated.

MIL services must always send msgMILSvcConnectionStateResolved to ancestor.

msgMIlSvcStartConnectionProcessing
It is ok to start connection processing.

Takes pNull, returns STATUS.

fdefine msgMILSvcStartConnectionProcessing \
MsgNoError(MakeMsg(c!sMILService, 9))

This message is sent after booting is complete. MIL services should not start their connection processing

until they receive this message.

SERVCONF.H

This file contains the API definition for clsMILConflictGroupMgr.

clsMILConflictGroupMgr inherits from clsServiceMgr.

Provides definition of conflict group managers.

A conflict group manager is automatically created for each conflict group in the MIL when one or more

MIL service instances are created for the MIL devices which are part of that conflict group. The uid of

the conflict group manager is that of the conflict group itself. In other words, if there is a conflict group

identified with the tag theMILConflictGroup4, then the conflict group manager will have a well-known
uid of MILConflictGroup4.

A conflict group manager is very much like a service manager. All of the MIL service instances that

represent devices in the conflict group are on the conflict group manager. Each service instance is also
made an observer of the conflict group manager.

The conflict group manager keeps track of which MIL service owns the conflict group. The owning

service is the only one that is permitted to actually use one of the devices in the conflict group.

#ifndef SERVCONF INCLUDED
#define SERVCONF INCLUDED
#ifndef SERVICE MANAGER INCLUDED - -
#include <servmgr.h>
#endif

Messages

Comments

msgNew
Creates a new conflict group manager.

Takes P _SM_NEW, returns STATUS. Category: class message.

This message should *never* be called by clients. Conflict group managers are automatically created.
The new args must always be the same as for a service manager.

msgCGGetOwner
Gets the current owner of the conflict group.

Takes P _CG_GET_OWNER, returns STATUS.

#define msgCGGetOwner

typedef struct CG GET OWNER
OBJECT owner;
U8 reserved[16];

CG_GET_OWNER, *P_CG_GET_OWNER;

MakeMsg(clsMILConflictGroupMgr, 1)

II Out: owner.

If no one owns the conflict group, 'objNull' will be returned in the owner field.

590 PEN POI NT API REFERENCE

Part 13 / Writing Pen Point Services

msgCGSetOwner
Sets a new conflict group owner.

Takes P_CG_SET_OWNER, returns STATUS.

#define rnsgCGSetOwner MakeMsg(clsMILConflictGroupMgr, 2)

typedef struct CG_SET_OWNER
OBJECT owner; II New owner.

} CG_SET_OWNER, *P_CG_SET_OWNER;

"owner" can be objNull to specify that this conflict group has no owner.

Old and new owners will recieve service messages which allow them to veto the ownership change and
informs them that the change has taken effect. The message sequence is as follows:

1. msgSvcOwnerAquireRequested is sent to the new owner. pArgs->ownedService is set to the conflict
group. The new owner can veto the owner change by returning a status of anything other than
stsOK or stsNotUnderstood. msgCGSetOwner returns with the abort status.

2. msgSvcOwnerReleaseRequested is sent to the old owner. pArgs->ownedService is set to the conflict
group. The old owner can can veto the owner change by returning a status of anything other than
stsOK or stsNotUnderstood. msgCGSetOwner returns with the abort status.

3. msgSvcOwnerReleased is sent to the old owner.

4. msgSvcOwnerAquired is sent to the new owner.

5. msgCGOwnerChanged is sent to all observers of this conflict group manager, includding all of the
service instances on this manager.

stsBadObject New owner is not an object.

stsBadAncestor New owner has invalid ancestor.

service.h, for definition of msgSvc ... messages.

msgCGPollConnected
Polls all the services in the conflict group to see who is connected.

Takes pNull, returns STATUS.

#define rnsgCGPollConnected MakeMsg(clsMILConflictGroupMgr, 3)

A conflict group manager recieves this message when any service within the conflict group thinks it
might be connected. The conflict group manager sends msgMILSvcAre You Connected to each service.
It then sends msgSvcConnectionStateResolved to each service, choosing one of the services as the
connected one.

msgCGlnformDisconnected
Tells all the services in the conflict group that a disconnect happened.

Takes pNull, returns STATUS.

#define rnsgCGlnforrnDisconnected MakeMsg(clsMILConflictGroupMgr, 4)

A conflict group manager recieves this message when the connected service within the conflict group
decides it is disconnected. The conflict group manager sends msgSvcConnectionStateResolved to each
service, specifying that nobody is connected.

SERVCONF.H 591
Tags

Notification Messages

Arguments

Tags

msgCGOwnerChanged
A conflict group's owner has changed.

Takes P_CG_OWNER_NOTIFY, returns STATUS. Category: observer notification.

*define msgCGOwnerChanged

typedef struct CG_OWNER_NOTIFY
OBJECT conflictGrouPi
OBJECT oldOwneri
OBJECT owneri

CG_OWNER_NOTIFY, *P_CG_OWNER_NOTIFYi

MakeMsg(clsMILConflictGroupMgr, 10)

II conflict group whose owner changed.
II old owner.
II new owner.

*define tagConflictChoice MakeTag(clsMILConflictGroupMgr, 1)

5ERVICE.M

This file contains the API definition for clsService.

clsService inherits from clsStream.

Provides default behavior for services.

Introduction
All non-application functionality under Penpoint is expressed as a service. If what you want to do does

not fit the application model (documents created via Stationery or Accessories, subclass of clsApp, etc)

then it should be a service. Some examples of services are: device drivers, inbox/outbox transfer agents

such as fax and e-mail, network protocol stacks, and device drivers.

Service instances are automatically organized onto service managers. A service manager represents a

category of service, such as Printers or Serial Devices. All of the service instances in a given category are

can be used interchangeably; that is, they all support the API that is required to be in that category.

Clients access service instances via service managers. See servmgr.h for details.

Each service instance has a text name, which is how it is uniquely identified. Clients use this name to

identify a service instance on a service manager. A service instance's name is specified at msgNew time.

Names must be unique for all services on the same service manager, and all services of the same class.

There are two exclusivity models for services: services that require exclusive access by a single client, and

services that allow multiple clients simultaneous access. Services provides default behavior for arbitrating

ownership of exclusive access services.

Multiple access services can either be shared (each client gets back the uid of the service when they open

the service) or multi-user (each client gets back a different object when they open the service).

Service instances can optionally maintain state. By default each service instance has a node in the

filesystem. clsService will automatically recreate service instances from their state files when PenPoint is

rebooted. Also, service instances can be saved and restored from external disks by moving their state

nodes on and off the machine.

A service instance can have an optional "target". A target is some other service instance. If a service has a

target, the service superclass takes care of remembering what the target points at. Typically, data flows

from one service instance to next, going down the target chain. Control information, such as when a

physical device is becomes connected, flows up the target chain.

A service is implemented as an installable DLL. Service instances are either created in the DLLMainO of

the service DLL, created dynamically after the service has been installed, or created from pre-configured

instance state nodes when the service is first installed. See servimgr.h for a description of how services are
installed and deinstalled, and how a service is organized on disk.

594 PENPOINT API REFERENCE
Part 13 / Writing Pen Point Services

Writing A Basic Service
A minimal service that does not save state or use a target must handle just one superclass message:
msgNewDefaults. There are four fields which need to be filled in:

pArgs->svc.style.exclusiveOpen - Is this an exclusive access service?>svc.style.openClass - Is this a

multi-user service?>svc.pManagerList - List of service managers to add to.>svc.numManagers
- Number of managers on the list.

Project BASICSVC is a template for a minimal service. Use it as a guide.

Writing a Service That Saves State
clsService maintains an open handle on a service's state node. By default the state node type is a file and

the open handle is an instance of clsFileHandle. Both of these things can be overridden in your

msgNewDefaults handler.

Services must decide for themselves when they need to update their state node. They should always
maintain enough state to be able to survive a reboot. There is no explicit Save/Res~ore messages for
services; A SERVICE MUST UPDATE ITS STATE NODE WHENEVER ITS STATE CHANGES.

When its time to save state, self-send msgSvcGetHandle to get your state node handle. Self-send
msgSvcSetModified when you complete updating state. These are the only messages that you will need

to use for this type of service.

Service instances will be automatically recreated when a warm boot occurs. The msgNew arguments to

clsService include the locator of the state node. Service instances must check to see if this node is
non-empty then a warm boot is happening, and the service must recreate itself from the state node.

State nodes can be copied out to disk, then reloaded the next time the service class is installed, or

reloaded one at time. clsService will automatically create a service instance for each state node at this

time using the same mechanism as warm boot recovery. There is no difference between warm boot
recovery and creation from a pre-configured state node copied in at installation time, as far as the service

is concerned.

Writing a Service That Has A Target
Services can also bind and open other services. In fact, this is such a common situation that clsService

provides lots of support for this. Each service can have a target, which refers to some other service.

When the service is first created the default behavior is to attempt to bind to the target. clsService will
automatically open the target when the service is opened if the auto Open style bit is true.

A service becomes a client of its target. All client observer notifications and ownership messages from a

service's target are sent to the service.

A service's target is usually set at msgNew time, and can be changed anytime after with

msgSvcSetTarget. msgSvcGetT arget gets a service instance's target.

Typically a service will open its target when a client opens it, using msgSvcOpenTarget.
msgSvcClose Target should be used to close the target.

Services also support the notion of being connected. Most hardware services can detect whether their

hardware is connected or disconnected. Each service has a state bit which says whether it is connected or

not. When the hardware changes connection state the service sends msgSVCSetConnected to itself,

which notifies everyone who is bound to that service.

SERVICE.H 50S
Introduction

Non-hardware services automatically change their connection state when their targets change
connection state. Thus, connection state propogates up from the hardware to all services that are bound

to that hardware.

A hardware service for a device that cannot auto-detect connection is always in the connected state.

Project TESTSVC provides a template for a service that deals with a target.

Advanced Features
Services that can provide both global and service instance option cards. A global option sheet sets

configuration information for the entire service. It is invoked when the user calls for options of a service
from the Service card of the Installer. Services can add additional cards to the global option sheet.

Service instance option sheets allow the user to set the configuration of particular instance. For example,

the serial service provides a card which allows the user to set baud rate, parity, etc. Services should

update their state node when the user applies a change to the option sheet. There is no default service
instance option card.

Services should respond to the standard option sheet protocol (msgOptionAddCards,

msgOptionRefreshCard, etc) if they wish to provide option cards. See option.h for details. The option

sheet messages are either sent as class messages for global options or normal instance messages for
instance options.

A service's configuration information can also be queried and set programmatically via
msgSvcGetMetrics and msgSvcSetMetrics. A service must be able to respond to these messages at any

time, and should update its state node when its metrics are changed. The Get/SetMetrics messages are
generic; they allow a client to save and restore metrics independently of the size or contents of the

metrics. This allows a client to have absolutely no knowledge of the internals of a service. The client can

ask the user to set configuration options, then save and restore these configuration options via the
generic Get/Set messages.

Service instances can have icons associated with them in the same fashion as documents. Create icons

using tagApplconBitmap and tagAppSmallIconBitmap and put them in the service resource file. This is

done in the same manner as applications.

Services and Tasking
A service, just like any other object, is owned by some task. However, all services must be callable from
outside the owning task (objCapCall is always true for service instances). Service authors must take this

into account. Services must either use explicitly-created global heaps or instance data; never store data in

a local heap or the shared process heap.

If the service is not exclusive access or multi-user, anyone who has the service open can call the service at
anytime, even while someone else is in the middle of another call. Use semaphores to protect access

where appropriate.

You must also make sure that the a service's owning task will remain active for the real lifetime of the

service. For instance, if a service is created via some transient user interface task such as a document or a
tool, then the service instance will become invalid when that tool is shut down.

An alternative to keeping the creating task around for the lifetime of the service instance is to use

msgObjectNew to create the service instance under another task. A very good task to create instances
under is the main task of the service. The service resource file handle is available for use with
msgObjectNew. Use msgSvcGetClassMetrics to get this handle (metrics.resFile). Send msgObjectNew

596 PENPOINT API REFERENCE
Part 13 / Writing PenPoint Services

to this handle. Note that msgObjectNew must be sent, not called. Remember, any pointers in the

msgObjectNew pArgs must be in global memory.

Recovering From Unexpected Client Termination
Service instances automatically detect if a client terminates unexpectedly; that is, if a client terminates
while it is bound to the service instance or owns it. msgSvcClientDestroyedEarly is sent to the service

instance when this condition is detected. Subclasses that maintain per-client state can handle this

message and perform cleanup. By default the service is closed and unbound from the terminating object.

Sample DLLMain Routine
You must let the service framework know about a service by sending msgSvcClassInitService to your

service class. Here's an example:

STATUS EXPORTED DLLMain(void)
{

SVC INIT SERVICE
STATUS

initService;
s;

StsRet(ClsTestServiceInit(), s);
memset (initService. spare, 0, sizeof(initService.spare»;
initService.autoCreate = true;
initService.serviceType = 0;
initService.initServiceFlags = 0;
ObjCallRet(msgSvcClassInitService, clsTestService, &initService, s);

return stsOK;

II DIIMain
#ifndef SERVICE INCLUDED
#define SERVICE INCLUDED
#ifndef STREAM INCLUDED
#include <stream.h>
#endif
#ifndef FS INCLUDED
#include <fs.h>
#endif

Common #defines and typedefs

Service Status Codes
An exclusive-open service is already open by someone else (msgSvcOpenRequested), or a service's target

is already open (msgSvcOpenTarget).

#define stsSvcAlreadyOpen MakeStatus(clsService, 1)

A service tried to open its target but the target manager field is null.

#define stsSvcNoTarget MakeStatus(clsService, 2)

A service tried to open its target but the target service doesn't exist or the target's service manager hasn't

shown up yet.

#define stsSvcTargetNotBound MakeStatus(clsService, 3)

An autoMsgPassing service tried to pass a message to its target, but the target was not open.

#define st~SvcTargetNotOpen MakeStatus(clsService, 4)

Target

SERVICE.H 597
Common #defines and typedefs

An attempt was made to change ownership, queryLock, or deinstall an open service.

#define stsSvcInUse MakeStatus(clsService, 5)

Someone who wasn't the owner of a checkOwner service tried to open it.

#define stsSvcNotOwner MakeStatus(clsService, 6)

Someone tried to open or queryLock a service that is queryLocked.

#define stsSvcLocked MakeStatus(clsService, 7)

Problem following the target chain during msgSvcAutoDetectingHardware.

#define stsSvcValidConnectStyleNotFound MakeStatus(clsService, 8)

A deinstallation is in process. No new clients can be accepted.

#define stsSvcDeinstallInProcess MakeStatus(clsService, 10)

A service of this name already exists and refuses to terminate.

#define stsSvcAlreadyExists MakeStatus(clsService, 11)

A service was created with style.waitForTarget set to false and the target wasn't found at msgNew or

msgSvcSetT arget time.

#define stsSvcTargetNotFound

A target references another service.

typedef struct SVC TARGET
OBJECT manager;

MakeStatus(clsService, 12)

U8 pName[nameBufLength];
U8 spare[12];

} SVC_TARGET, *p SVC_TARGET;

Service Class Metrics
Passed back by msgSvcGetClassMetrics. Also used in c1sServicelnsta11Mgr (servimgr.h) and

clsServiceMgr (servmgr.h).

SVC CLASS METRICS - -typedef struct
CLASS serviceClass; II The class of this service.
U8 pClassName[nameBufLength]i II Service class name.
U32 type; II See svctypes.h.
U8 pTypeName[nameBufLength]; II Service type name.
a S_PRaG_HAND LE
U32

progHandle; II Service dll program handle.
initServiceFlags;11 As specified in

OBJECT resFile;

OBJECT serviceDiri

II msgSvcClassInitService.
II Handle to service res file.
II Can be objNull if not
II full environment and
II service.res is empty.
II Dir handle to service global
II directory.

OBJECT privateServiceMgr;IIPrivate service mgr, if the

U32 reserved1;
U32 reserved2;
U32 reserved3;
U32 reserved4;
U32 reserved5;

SVC CLASS_METRICS, *P_SVC_CLASS_METRICS;

II svcCreatePrivateServiceMgr
II flag is set.

598 PENPOINT API REFERENCE
Part 13 / Writing Pen Point Services

. Auxiliary Messages
See servmisc.h for less commonly used (but important!) service messages

#ifndef SERVMISC_INCLUDED
#include <servmisc.h>
#endif

Creation Messages

msgSvcClasslnitService
Initializes the service class.

Takes P _SVC_INIT_SERVICE, returns STATUS. Category: class message.

#define msgSvcClassInitService MakeMsg(clsService, 56)

You must send this message to the service class immediately after it has been created.

initServiceFlags
Don't show this service in the installer. User can't configure or deinstall the service if this flag is set

#define svcNoShow ((U32) flagO)

Automatically pop up the global service option card the first time this service is installed.

#define svcPopupOptions ((U32) flag!)

Don't copy in the state files from the INST directory when the service is installed.

#define svcNoLoadInstances ((U32) flag2)

Create a private service manager for instances of this class. All instances of this class will automatically be
added to the private service manager. See SVC_CLASS_METRICS for uid pf the private service manager.

#define svcCreatePrivateServiceMgr ((U32) flag3)

Generate a complete process environment in the DLLMainO process. Right now this means creating
theProcessResList. Also, a service resource file handle will be created even if the service resource file is

empty. Note that a complete process environment takes up significant memory. Only turn this on if you

need it.

#define svcFullEnvironment ((U32) flag4)
typedef struct SVC INIT SERVICE

BOOLEAN autoCreatei II Create an instance for each state
II node at install and warm boot times.

U32 serviceType; II Global service type. See
II svctypes.h. Usually set to O.

U32 initServiceFlags; II Or-in InitService flags.
U8 spare [12] ;

SVC_INIT_SERVICE, *P SVC_INIT_SERVICE;

msgNew
Creates a new service object.

Takes P _SVC_NEW, returns STATUS. Category: class message.

Callers send msgNew to create a new service instance. The instance will add itself to one or more service
managers. Clients should access the service instance via the service manager API after msgNew.

SERVICE.H 599

Creation Messages

Superclass behavior includes associating the service with it's node in the filesystem, adding it to the

specified service managers, and attempting to bind to a target service. If style.waitForTarget is false and
the target isn't found then stsSvcTargetNotFound is returned.

The following parameters are usually set by the caller of msgN ew:

• pServiceN ame

• target

The following parameters are usually set by the subclass of clsService in msgNewDefaults (after the
ancestor call):

• style (including openClass)

• pManagerList

• numManagers

If a subclass wants to change the handleClass, fsNew, or fsNewExtra parameters it must also execute the
following in its msgNewDefaults method, after sending msgNewDefaults to ancestor:

pNew->svc.handleClass = myFSHandleClass;
ObjCaIIOK(msgNewDefaults, pNew->svc.handleClass, & (pNew->svc.fsNew), s);

Most services will not need to do this.

If a service with the same name as the new service already exists on any relevant service manager, the old

service will be destroyed and the new service will replace it. However, if any of the old services veto the

termination then the new service will not be created and an error status (stsSvcAlreadyExists) is
returned.

stsNoMatch Target not found and style.waitForTarget is false.

stsSvcAlreadyExists Service of this name already exists and can't be terminated.

stsBadParam Illegal target type.

style.connectStyle
#define
#define
#define
typedef

U16

svcAutoDetect 0
svcNoAutoDetect 1
svcFollowTarget 2
struct SVC STYLE {
waitForTarget 1,

exclusiveOpen 1,
reserved1 1,
autoOwnTarget 1,

autoOpen 1,

autoMsgPass 1,

checkOwner 1,

autoOption 1,

connect Style 2,
reserved2 6;

II Can auto-detect hardware connect/disconnect.
II Can't do har~ware auto-detect.
II Connect state follows target's connect state.

II OK if target doesn't exist; wait
II to show up.

for it

II Allow only one open or QueryLock
II Reserved.

at a time.

II Set this service to be the owner of its
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II

target when it receives
msgSvcChangeOwnerRequested.

Open/close our target when we are
opened/closed.

Forward all messages that are not
clsObject, clsService or clsOption
messages to target.

Only allow the owner to open us;
return stsNotOwner if opener is wrong.

Forward all option sheet messages to
target. If the target is exclusive open
and checkOwner, then only forward if
target is owned by this service instance.

Connect detect abilities.
Reserved.

600 PENPOINT API REFERENCE

lVhsss",ge
ArgVrt1fN1ts

Part 13 / Writing Pen Point Services

CLASS openClass; II Class used to create object returned from
II msgSMOpen. Can be objNull to return the
II service instance object itself.

U16 spare1;
U16 spare2;

SVC_STYLE, *P_SVC STYLE;
typedef struct SVC NEW ONLY

SVC TARGET

P STRING
SVC STYLE
CLASS
FS NEW

U32
P UID

target;

pServiceName;
style;
handleClass;
fsNew;

fsNewExtra[25];
pManagerList;

U16 numManagers;
U32 unused1;
U32 unused2;
U32 unused3;
U32 unused4;

SVC_NEW_ONLY, *p SVC_NEW_ONLY;
tdefine serviceNewFields \

streamNewFields \
SVC NEW ONLY svc;

typedef struct SVC_NEW
serviceNewFields

} SVC_NEW, *P_SVC_NEW;

msgNewDefaults

II Initial target. target.manager
II can be objNull for no target.
II Name of instance.
II Overall style.
II Class of service's node handle.
II NewArgs for handle, filled in
II at msgNewDefault time.
II Extra fsNew space.
II List of service managers that
II self should be added to.
II Number of uids in manager list.

Initializes the SVC_NEW structure to default values.

Takes P _SVC_NEW, returns STATUS. Category: class message.

typedef struct SVC_NEW
serviceNewFields

} SVC_NEW, *P_SVC_NEW;

Sets

object.cap 1= objCapCall; / / Client must not override this in msgNew

svc.target.manager = objNulI;

strcpy(pNew->svc.target.pName, 1111);

svc. pServiceName = pN ulI;

svc.style.waitForTarget = true;

svc.style.exclusiveOpen = false;

svc.style.autoOwnTarget = true;

svc.style.autoOpen = false;

svc.style.autoMsgPass = false;

svc.style.checkOwner = false;

svc.style.autoOption = false;

svc.style.connectStyle = svcFollow Target;

SERVICE.H 601
State File Messages

svc.style.openClass = objNull;

svc.handleClass = clsFileHandle;

ObjCallOK(msgNewDefaults, pNew->svc.handleClass, \&(svc.fsNew), s);

svc.fsN ew.fs.exist = fsExistOpen I fsN oExistCreate;

svc.pManagerList = pNull;

svc.numManagers = 0;

State File Messages

Mes$<:lge
Arguments

Comments

msgSvcGetHandle
Returns a handle to the service's state node.

Takes P_OBJECT, returns STATUS.

fdefine msgSvcGetHandle MakeMsg(clsService, 12)

Every service instance has an open handle to its state node. Use this message when you want to update

the contents of your state node.

NOTE: This handle must NOT be freed, closed, or changed.

msgSvcGetModified
Gets the modified state of this service.

fdefine msgSvcGetModified MakeMsg(clsService, 36)

typedef struct SVC_GET_SET_MODIFIED
BOOLEAN modified; II modified state

} SVC_GET_SET_MODIFIED, *P_SVC_GET_SET_MODIFIED;

msgSvcSetModified
Sets modified state of self.

Takes P_SVC_GET_SET_MODIFIED, returns STATUS.

fdefine msgSvcSetModified

typedef struct SVC_GET_SET_MODIFIED

MakeMsg(clsService, 20)

BOOLEAN modified; II modified state
} SVC_GET_SET_MODIFIED, *P_SVC_GET_SET_MODIFIED;

Service subclasses must send this message with pArgs->modified set to true whenever they change their
state file.

Propogates msgIMModifiedChanged to everyone who has bound to this service and is an observer of all

service managers that this service is on.

msgIMModifiedChanged (insdmgr.h)

602 PENPOINT API REFERENCE
Part 13 I Writing PenPoint Services

Targel Messages

See Also

Meu@ge
Arguments

msgSvcOpenTarget
Attain access to the target service for data transfer.

Takes P_SVC_OPEN_CLOSE_TARGET, returns STATUS.

#define msgSvcOpenTarget MakeMsg(clsService, 13)

typedef struct SVC_OPEN_CLOSE_TARGET {
P ARGS pArgs; II Open or close parameters.

} SVC_OPEN_CLOSE_TARGET, *P_SVC_OPEN_CLOSE_TARGET;

Backwards compatibility

typedef SVC_OPEN_CLOSE_TARGET SVC_OPEN_TARGET, *P_SVC_OPEN_TARGET;

This call should be made when the service is ready to actually transfer data to its target. It will cause
msgSMOpen to be sent to the target's service manager. The target service instance can refuse the
subsequent msgSvcOpenRequested request if it wants. The target service should be kept open for the
minimum time possible.

This message is sent automatically if newArgs. style. auto Open is true. Note that pArgs is set to pNull in
this case.

stsFailed target. type is not svcT ypeService.

stsSvcNoTarget target. manager is null.

stsSvcNotBound service is still waiting to bind to its target.

stsSvcAlreadyOpen target is already open.

errors from msgSMOpen

target service-specific errors

msgSMOpen (servmgr.h)

msgSvcCloseT arget
Give up data transfer access to the target service.

Takes P _SVC_OPEN_CLOSE_TARGET, returns STATUS.

#define msgSvcCloseTarget MakeMsg(clsService, 14)

typedef struct SVC_OPEN_CLOSE_TARGET
P_ARGS pArgs; II Open or close parameters.

} SVC_OPEN_CLOSE_TARGET, *P_SVC_OPEN_CLOSE_TARGET;

This will cause msgSMClose to be sent to the target's service manager, resulting in
msgSVCCloseRequested being sent to the target.

This message is sent automatically if newArgs.style.autoOpen is true. Note that pArgs is set to pNull in
this case.

stsFailed target. type is not svcT ypeService.

msgSMClose (servmgr.h)

Comments

SERVICE.H 603
Connection Messages

msgSvcGetTarget
Returns current target.

Takes P _SVC_GET_TARGET, returns STATUS.

#define msgSvcGetTarget

typedef struct SVC GET TARGET

MakeMsg(clsService, 15)

SVC TARGET target; II Out: target
OBJECT targetHandle; II Out: handle to target, if bound
OBJECT targetService;11 Out: target service, if open

SVC_GET_TARGET, *P_SVC_GET_TARGET;

target contains the target that was specified at msgNew time or by the last msgSvcSetTarget.

targetHandle contains the service manager handle onto our target if we have bound with the target, or
objNull if we haven't yet bound.

targetService is the actual service object if the target has been opened, objNull if it isn't open.

msgSvcSetT arget
Change our target.

Takes P _SVC_SET_TARGET, returns STATUS.

#define msgSvcSetTarget

typedef struct SVC_SET_TARGET
SVC TARGET target;

} SVC_SET_TARGET, *P_SVC_SET_TARGET;

MakeMsg(clsService, 16)

Closes the old target (if it is open), unbinds the old target (if it is bound) and attempts to bind with the

new target. style.waitForTarget specifies whether we will wait for the target to show up if it does not
exist.

Causes msgSvcT argetChanged to be sent.

stsNoMatch new target doesn't exist and style.waitForTarget is false.

Connection Messages

msgSvcGetConnected
Gets the connected state of this service.

#define msgSvcGetConnected MakeMsg(clsService, 19)

typedef struct SVC_GET_SET_CONNECTED
BOOLEAN connected; II connect state

} SVC_GET_SET_CONNECTED, *P_SVC_GET_SET_CONNECTED;

msgSvcSetConnected
Sets connection state of self.

#define msgSvcSetConnected MakeMsg(clsService, 35)

604 PENPOINT API REFERENCE

Message
Argumenfs

Part 13 I Writing Pen Point Services

typedef struct SVC_GET_SET_CONNECTED
BOOLEAN connected; II connect state

} SVC_GET_SET_CONNECTED, *P_SVC_GET_SET_CONNECTED;

This message should only be used by auto-detecting services that interface directly to hardware when

they have determined that their connection state has changed.

Propogates msgSMConnectedChanged to everyone who has bound to this service and is an observer of
all service managers that this service is on.

If a binding service's connectStyle is svcFollowTarget, then it's connected state will mirror that of its

target. This is will be the case for most services, and is how the connect state propogates up the target
links.

msgSM Connected Changed (servmgr.h)

Client Access Messages

Message
/\rgwmenfs

msgSvcBindRequested
Client asked to bind to this service.

Takes P _SVC_BIND, returns STATUS.

#define msgSvcBindRequested

typedef struct SVC BIND
OBJECT
OBJECT

SVC_BIND, *P_SVC_BIND;

caller;
manager;

MakeMsg(clsService, 2)

II Object making the request.
II Service manager the request is
II being made through.

A client sent msgSMBind to a service manager. The service can refuse the request by returning stsFailed.

The default superclass behavior is to return stsOK.

The service manager maintains a list of all the objects that have bound to this service instance. The caller
is added to this list if this message returns stsO K. This list is available via msgSvcGetBindList.

Subclasses usually let ancestor handle this message. This message must always be passed to ancestor.

msgSvcU nbindRequested
Client asked to unbind from this service.

Takes P _SVC_BIND, returns STATUS.

#define msgSvcUnbindRequested

typedef struct SVC BIND
OBJECT
OBJECT

SVC_BIND, *P_SVC_BIND;

caller;
manager;

MakeMsg(clsService, 3)

II Object making the request.
II Service manager the request is
II being made through.

A client sent msgSMUnbind to a service manager or a client who was bound to the service was

destroyed.

The service cannot veto this request. The caller is removed from the service instance's bind list before
this message is sent.

Subclasses usually let ancestor handle this message. This message must be passed to ancestor.

N\tJssag0
Argurnents

msgSvcOpenRequested
Client asked to open this service.

Takes P _SVC_OPEN_CLOSE, returns STATUS.

#define msgSvcOpenRequested

typedef struct SVC OPEN CLOSE
OBJECT caller;
OBJECT manager;

P ARGS pArgs;

OBJECT service;

SVC_OPEN_CLOSE, *P_SVC_OPEN_CLOSE;

SERVICE.H 605
Client Access Messages

MakeMsg(clsService, 4)

II Object making the request.
II Service manager the request is
II being made through.
II Service-specific open or close
II parameters.
II Out (msgSvcOpen): In (msgSvcClose):
II uid of open handle or service.

A client sent msgSMOpen to a service manager. The service instance can refuse the open request by

returning stsFailed.

The service manager maintains a list of all the objects that have opened this service instance. The caller

is added to this list if this message returns stsOK. This list is available via msgSvcGetOpenList.

The service instance is marked in use when one or more clients have it open. A service that has instances
that are in use cannot be deinstalled.

If the style.exdusiveOpen is true then only one client can have the service open at a time. If

style.checkOwner is true then the owner of the service is the only one that can open the service. Errors

are returned to the client if these conditions aren't true; see servmgr.h for details.

Subclasses usually do some processing, then pass this message to superclass. This message must be passed
to ancestor.

msgSvcOpenDefaultsRequested
Client wants open pArgs initialized.

Takes P_SVC_OPEN_CLOSE, returns STATUS.

#define msgSvcOpenDefaultsRequested

typedef struct SVC_OPEN_CLOSE {
OBJECT caller;
OBJECT manager;

P ARGS pArgs;

OBJECT service;

SVC_OPEN_CLOSE, *P_SVC_OPEN_CLOSE;

MakeMsg(clsService, 9)

II Object making the request.
II Service manager the request is
II being made through.
II Service-specific open or close
II parameters.
II Out (msgSvcOpen): In (msgSvcClose):
II uid of open handle or service.

A client sent msgSMOpenDefaults to a service manager.

msgSvcCloseRequested
Client asked to close this service.

#define msgSvcCloseRequested MakeMsg(clsService, 5)

606

MessQge

Ar~umerlts

PEN POINT API REFERENCE

Part 13 / Writing Pen Point Services

typedef struct SVC_OPEN_CLOSE {
OBJECT caller;
OBJECT manager;

P ARGS pArgs;

OBJECT service;

SVC_OPEN_CLOSE, *P_SVC OPEN_CLOSE;

II
II
II
II
II
II
II

Object making the request.
Service manager the request is

being made through.
Service-specific open or close

parameters.
Out (msgSvcOpen): In (msgSvcClose):

uid of open handle or service.

A client has send msgSMClosed to a service manager or a client who had the service open was

destroyed. The service cannot veto this request; it must perform any cleanup required at this time. The
caller is removed from the open list before this message is sent.

Subclasses usually do some processing, then pass this message to superclass. This message must be passed
to ancestor.

msgSvcQueryLockRequested
Client asked to QueryLock this service.

Takes pNull, returns STATUS.

fdefine msgSvcQueryLockRequested MakeMsg(clsService, 6)

A client has sent msgSMQueryLock to a service manager. QueryLocking a service lets the client get

access to the service without opening it. However, if style.exclusiveOpen is true then the QueryLock

counts as an open as far as allowing only one open at a time.

Subclasses usually let ancestor handle this message. This message must be passed to ancestor.

msgSvcQueryUnlockRequested
Client asked to QueryUnlock this service.

Takes pNull, returns STATUS.

fdefine msgSvcQueryUnlockRequested MakeMsg(clsService, 7)

A client has sent msgSMQueryUnlock to a service manager. This releases a previous QueryLock.

Subclasses usually let ancestor handle this message. This message must be passed to ancestor.

msgSvcCharactersticsRequested
Client asked to get characteristics of this service.

Takes P_SVC_CHARACTERISTICS, returns STATUS.

fdefine msgSvcCharacteristicsRequested MakeMsg(clsService, 54)

typedef struct SVC_CHARACTERISTICS {
OBJECT handle; II Handle of item to get characteristics of.
P UNKNOWN pBuf; II Out through Ptr: Characterisitics buffer.
U16 len; II In/Out: Buffer size. If 0 then the

II actual size is returned.
SVC_CHARACTERISTICS, *P_SVC_CHARACTERISTICS;

A client sent msgSMGetCharacteristics to a service manager. The service will return service-specific

characteristics via pArgs->pBuf. pArgs->len specifies the maximum size of the client's buffer. If

pArgs->len is 0 then the service should return the actual size of its characteristics in pArgs->len and not
pass back any data.

Tags

SERVICE.H 607
Tags

#define tagServiceClassOptionSheet
#define tagServiceFirstTime

MakeTag(clsService, 1)
MakeTag(clsService, 2)

II Next message up: 59
II Obsolete, here for backwards compatibility.

STATUS EXPORTED
P STRING
CLASS
BOOLEAN

U32

U32
U32
U32

InitService(
pReserved1, II Set this to pNull.
serviceClass,11 class id.
autoCreate, II Create an instance for each state

II node at install and warm boot times.
serviceType, II Global service type. See

II svctypes.h. Usually set to O.
initServiceFlags, II Or-in InitService flags.
reserved2, II Set this to 0
reserved3); II Set this to 0

SERYMGR.H

This file contains the API definition for clsServiceMgr.

clsServiceMgr inherits from clsInstallMgr.

Provides access to a category of PenPoint service instances.

Introduction
A service manager represents a category of services in PenPoint. Service managers have well-known ids so
they can be globally accessed. PenPoint creates several service managers by default. They are:

theModems Modems.

thePrinters Printers.

thePrinterDevices Devices that a printer can talk to.

theSendableServices All services that interface to the Send Manager. See sendserv.h.

theT ransportHandlers Transport level network protocol handlers.

theLinkHandlers Link level network protocol stacks.

theHWXEngines Installable handwriting engines.

theMILDevices All MIL services (device drivers).

theParallelDevices Parallel port devices.

theSerialDevices Serial port devices.

theHighSpeedPacketHandlers High performance packet drivers.

theOutboxServices All outbox services.

thelnboxServices All inbox services.

theDatabases All PIA databases.

Additional service managers can be created on the fly by third parties or by GO.

All of the service instances in a given category are on that service manager. All the instances on a service
manager support the same API, so they can be used interchangeably.

Each service instance on a service manager is identified with a unique string name. For example, there
might be three printers on thePrinters: "MyLaserJet", "MarketingPrinterl", and "LittleDotMatrix".

You can find a particular service instance or enumerate all the instances that are available. You can
observe a service manager and be informed when a new instance is added or an existing one goes away.

Once you know which service instance you want to use you must open it in order to gain access. This
returns the uid of the service. You can then send messages directly to the service object. You must close
the service instance after you are done using it.

610 PENPOINT API REFERENCE

Part 13 / Writing Pen Point Services

Basic Service Manager Usage
The simplest use of a service manager is to access a known service instance on the manager. Here's an

example:

SM ACCESS access;
SM RELEASE release;
access.pServiceName = "Service Instance Name";
access.caller = self;
ObjCallRet(msgSMAccess, aServiceManager, &access, s);
II access.service can now be sent messages.

II When you are done with the service, release it.
release.caller = self;
release. service = access.service;
release.handle = access.handle;
ObjCallRet(msgSMRelease, aServiceManager, &release, s);

Some service instances allow the client to specify pArgs. You must initialize the pArgs with
msgSMAccessDefaults for these. For example:

access.pServiceName = "Service Instance Name";
access.caller = self;
access.pArgs = &args;
ObjCallRet(msgSMAccessDefaults, aServiceManager, &access, s);
args. foo = ... ;
ObjCallRet(msgSMAccess, aServiceManager, &access, s);

~r' Advanced Service Manager Usage
Accessing a service instance is actually composed of several steps. msgSMAccess and msgSMRelease
performs all of them at once; more sophisticated users might find situations where they need to control
the intermediary steps themselves.

Each service instance has a 32 bit "handle" associated with it in addition to its name. This handle is a
convenient shorthand for referencing a service instance. Most service manager messages use handles.
Note that a handle is not a permanent id; it is dynamically generated when a service instance is first
added to a service manager, and regenerated whenever PenPoint is rebooted. Handles should never be
filed.

Enumerating all of the service instances on a service manager is done by getting a list of all the handles
and going through the list. For example, here's some code that gets all the names of all the service
instances on a manager list:

OBJECT list;
LIST ENTRY Ie;
1M_GET _SET_NAME getName;
ObjectCall(msgIMGetList, aServiceManager, &list);
ObjectCall(msgListNumItems, list, &n);
for (le.position = 0; le.position < n; le.position++)

ObjectCall(msgListGetItem, list, &le);
getName.handle = (OBJECT) Ie. item;
getName.pName = pName;
ObjectCall(msgIMGetName, aServiceManager, &getName);
II le.item is the handle, pName contains the name.

ObjCallWarn(msgDestroy, list, pNull);

If you know the name of a service, you can get its handle with msgIMFind:

find.pName = "Service Instance Name";
ObjectCall(msgIMFind, aServiceManager, &find);
serviceInstanceHandle = find. handle;

SERVMGR.H 611
Introduction

The next step in accessing a service instance is binding. Binding tells a service instance that you are

interested in it. After you have bound to a service you will get messages from that service telling you
about changes in its state, such as when it becomes connected or disconnected.

bind. handle = serviceInstanceHandle;
bind. caller = self;
ObjectCall(msgSMBind, aServiceManager, &bind);

Next you become the owner of the service instance. Ownership gives you the right to open the instance.
It is the mechanism used to ensure that only one client is using a exclusive access device (such as a serial

port) at a time. Some services are non-exclusive access (such as network devices). Setting owner is a
no-op for these.

The owner protocol informs the both the new and old owners that an ownership change is being
proposed. Either of them can veto the change. The service instance can also veto the change.

The owner of a service can be set to objNull to signify no owner. You should do this when you want to

give up ownership of a service instance.

Here is an example of requesting an owner change:

setOwner.owner = newOwner;
setOwner.handle = serviceInstanceHandle;
ObjectCall(msgSMSetOwner, aServiceManager, &setOwner);

Now you can open the service. An open request can optionally take pArgs. The format of the pArgs is

service-specific. However, all the service instances on a particular service manager have the same pArgs

format. The pArgs must be set to defaults with msgSMOpenDefaults.

A service that has open instances cannot be deinstalled. An open service instance cannot have its owner

changed. Here is an example of opening a service instance:

open. caller = self;
open.handle = serviceInstanceHandle;
open.pArgs = &openArgs;
ObjectCall(msgSMOpenDefaults, aServiceManager, &open);
ObjectCall(msgSMOpen, aServiceManager, &open);
II open. service contains the service object at this point

Clients should close a service instance when they have completed using it:

close.caller = self;
close.handle = serviceInstanceHandle;
close. service = open. service;
close.pArgs = pNull;
ObjectCall(msgSMClose, aServiceManager, &close);

Clients should unbind from a service instance when they are no longer interested in it.

unBind. handle = serviceInstanceHandle;
unBind. caller = self;
ObjectCall(msgSMUnbind, aServiceManager, &unBind);

612 PENPOINT API REFERENCE
Part 13 I Writing Pen Point Services

Additional Service Manager Functionality
Adding yourself as an observer of a service manager will cause all notification messages from the service
manager and all the service instances on the service manager to go to you. These messages include:

msgIMInstalled A new service has been added to the service manager.

msgIMDeinstalled A service has been removed from the service manager.

msgIMInUseChanged A service has been opened or closed.

msgIMModifiedChanged A service has modified its state node.

msgSMConnectedChanged A service has become connected or disconnected.

msgSM OwnerChanged The owner of a service has changed.

Plus, any service instance can send service-specific notification messages via msgSvcPropagateMsg (see

service.h). All observer messages include the handle of the service instance being affected and the uid of
the service manager.

Sometimes a client needs to access a service object without becoming the owner, or need to override the

open checks. This can be done, but it must be done with care. msgSMQueryLock and msgSMQuery

can be used to do this.

QueryLocking a service returns the service uid without opening it. However, the call will fail if the

service is exclusive-open and currently open. Also, a query lock will lock out other opens until the query

lock is released. msgSMQueryUnlock must be sent to release the query lock.

msgSMQuery is just like msgSMQueryLock, except no open check is made.

Service managers automatically clean up if an object that owns or opens a service instance terminates

before releaseing the service instance.

There is a well-known list object, theServiceManagers, that is a list of all the service managers in the
system. You can observe this list and get notification when a service manager is added and removed.

Creating New Service Managers
As stated above, PenPoint defines several default service managers. You can create additional service
managers if you desire.

Pen Point will automatically create a service manager if a service instance tries to add itself to a service

manager and the service manager doesn't exist. This allows services to be arbitrarily installed and
deinstalled without having to worry about who creates and frees the service manager.

#ifndef SERVMGR INCLUDED
#define SERVMGR_INCLUDED
#ifndef SERVICE INCLUDED
#include <service.h>
#endif
#ifndef INSTLMGR INCLUDED
#include <instlmgr.h>
#endif

SERVMGR.H 613
Core Messages

Core Messages

Mossogo
Argumortts

msgNew
Creates a new service manager.

Takes P _SM_NEW, returns SfATUS. Category: class message.

typedef struct 8M NEW ONLY
BOOLEAN autoDestroy;

BOOLEAN noChecks;

U32 unused2;
U32 unused3;
U32 unused4;

8M_NEW_ONLY, *P_8M_NEW_ONLY;
#define serviceManagerNewFields \

installMgrNewFields \
8M NEW ONLY sm;

typedef struct 8M_NEW {
serviceManagerNewFields

} 8M_NEW, *P_8M_NEW;

II Have the service manager be owned
II by a system process, and have it
II destroy itself when the number of
II service instances on it goes to O.
II Turn off error checking, client
II tracking and binding; a service
lion this list cannot be a target.
II This improves performance but
II is dangerous. Experts only!

Clients (other than those who are creating their own service managers) do not call this message. The
well-known service managers are created by the system at cold-boot time.

msgNewDefaults
Initializes the SM_NEW structure to default values.

Takes P _SM_NEW, returns SfATUS. Category: class message.

typedef struct 8M_NEW {
serviceManagerNewFields

} 8M_NEW, *P_8M_NEW;

Sets

installMgr.style.createlnitial = false;

installMgr.style.copyOnlnstall = false;

installMgr.style.addToGlobalList = false;

installMgr.style.createIcon = false;

sm. auto Destroy = false;

sm.noChecks = false;

msgDump
Prints out the services known by this service manager and their state.

Takes OBLKEY, returns STATUS.

dsServiceManager provides an elaborate response to msgDump. This is very useful for debugging
services!

614 PENPOINT API REFERENCE

t\'iesstil$e

Ar9UmerlfS

Part 13 / Writing Pen Point Services

msgSMAccess
Accesses a service instance, given its name.

Takes P _SM_ACCESS, returns STATUS.

tdefine msgSMAccess

typedef struct SM ACCESS
P STRING pServiceName; II
OBJECT caller; I I

P ARGS pArgs;

OBJECT handle;
OBJECT service;

SM_ACCESS, *P_SM_ACCESS;

II
II
II
II
II

MakeMsg(clsServiceMgr, 43)

Service name.
Object making this call,
typically self.

Use this if service requires pArgs.
Send msgSMAccessDefaults first.

Out: Service handle.
Out: Service instance.

This is a convenience message that performs the sequence most clients do to access a service.

This message performs a find, bind, setOwner, and open for the specified service.

Note: This message cannot be used when you want to provide pArgs to a service.

stsN oMatch Item not found.

stsSvcLocked Someone has this exclusive-open service query locked.

stsSvcNotOwner Someone else is the owner of this owner-checked service.

stsSvcAlreadyOpen Someone already has this exclusive-open service open.

Service-Specific Error Returns.

msgIMFind

msgSMAccessDefaults
Sets pArgs defaults for msgSMAccess.

Takes P _SM_ACCESS, returns STATUS.

tdefine msgSMAccessDefaults

typedef struct SM_ACCESS {
P STRING pServiceName; II
OBJECT caller; I I

P ARGS pArgs;

OBJECT handle;
OBJECT service;

SM_ACCESS, *P_SM_ACCESS;

II
II
II
II
II

MakeMsg(clsServiceMgr, 45)

Service name.
Object making this call,
typically self.

Use this if service requires pArgs.
Send msgSMAccessDefaults first.

Out: Service handle.
Out: Service instance.

This message should be used if the service you wish to access takes pArgs. This message sets up the
defaults for the pArgs.

stsN oMatch Item not found.

msgSMAccess

Arguments

SERVMGR.H 615
Core Messages

msgSMRelease
Releases a service instance.

Takes P _SM_RELEASE, returns STATUS.

#define msgSMRelease

typedef struct SM RELEASE
OBJECT caller;

OBJECT handle;
OBJECT service;

SM_RELEASE, *P_SM_RELEASE;

MakeMsg(clsServiceMgr, 44)

II Object making this call,
II typically self.
II Service handle.
II Service instance.

Call this message when you are finished using a service.

This is a convenience message that performs the sequence most clients do when they are finished with a
servlce.

This message performs a close, sets the owner to objNull, and unbinds.

stsFailed Service is not open by the caller.

Service-Specific Error Returns.

msgSMClose

msgSMBind
Binds to a service.

Takes P _SM_BIND, returns STATUS.

#define msgSMBind

typedef struct SM BIND
1M HANDLE handle;
OBJECT caller;

SM_BIND, *P_SM_BIND;

MakeMsg(clsServiceMgr, 1)

II Service handle to bind to.
II Object making this call.

The caller is made an observer of this service. Service manager notification messages will be sent to the
caller.

The caller is added to the bind list of the service instance.

Sends msgSvcBindRequested to the service being bound to. The service has the right to refuse the bind.
The service-specific error return that indicates a refusal is passed back to the client.

stsBadObject Caller is not an object.

stsBadAncestor Caller has invalid ancestor.

Service-Specific Error Returns.

msgSvcBindRequested (service. h) (service. h)

msgSMUnbind
Unbinds from a service.

Takes P _SM_BIND, returns STATUS.

#define msgSMUnbind MakeMsg(clsServiceMgr, 2)

616 PENPOINT API REFERENCE

Messo$je
Arguments

Part 13 / Writing PenPoint Services

typedef struct SM BIND
IM HANDLE handle;
OBJECT caller;

SM_BIND, *P_SM_BIND;

II Service handle to bind to.
II Object making this call.

This removes the caller as an observer of the handle and removes the caller from the service instance's
bind list.

Note: Clients must first close a service before unbinding from it.

The service manager will automatically send msgSMUnbind for all services that are bound to a client
when that client object is freed. This means that you must not send msgSMUnbind from your msgFree
routine; the object freed notification occurs before your msgFree routine is entered.

Sends msgSvcUnbindRequested to the service being unbound from.

stsFailed Service is not bound by the caller.

msgSMGetOwner
Gets the current owner of a service.

tdefine msgSMGetOwner

typedef struct SM GET OWNER
IM HANDLE handle;
OBJECT owner;

SM_GET_OWNER, *P_SM_GET_OWNER;

msgSMSetOwner
Sets a new service owner.

tdefine msgSMSetOwner

typedef struct SM SET OWNER
IM HANDLE handle;
OBJECT owner;

SM_SET_OWNER, *P_SM_SET_OWNER;

MakeMsg(clsServiceMgr, 31)

/1 Handle of item to get owner on.
/1 Out: current owner.

MakeMsg(clsServiceMgr, 11)

II Handle of item to set owner on.
II New owner.

Old and new owners (whether they are clients or other services) will recieve service messages which allow
them to veto the ownership change and informs them that the change has taken effect. The message
sequence is as follows:

1. msgSvcOwnerAquireRequested is sent to the new owner. The new owner can veto the owner
change by returning a status of anything other than stsOK or stsNotUnderstood. msgSMSetOwner
returns with the abort status.

2. msgSvcOwnerReleaseRequested is sent to the old owner. The old owner can veto the owner change
by returning a status of anything other than stsOK or stsNotUnderstood. If the old owner agrees to

the ownership change it must immediately close the service if it is open.

3. msgSvcChangeOwnerRequested is sent to the service. This informs the service that ownership is
going to be changed and allows it to veto. By default the services will veto the change if they are
open.

4. msgSvcOwnerReleased is sent to the old owner.

5. msgSvcOwnerAquired is sent to the new owner.

6. msgSMOwnerChanged is sent to everyone who is bound to the service or observing a service
manager that the service is on.

Return Value

Arguments

Mes:1i@ge
Arguments

stsBadObject New owner is not an object.

stsBadAncestor New owner has invalid ancestor.

stsSvcInUse Service is open.

service.h, for definition of msgSvc ... messages.

msgSMOpen
Opens a service, given its handle.

SERVMGR.H 617
Core Messages

Takes P _SM_OPEN_CLOSE, returns STATUS.

*define msgSMOpen MakeMsg(clsServiceMgr, 4)

typedef struct SM OPEN CLOSE
IM HANDLE handle;
OBJECT caller;
P ARGS pArgs;
OBJECT service;

SM_OPEN_CLOSE, *P_SM_OPEN_CLOSE;

II Handle of service to open.
II Object making this call.
II Service-specific open parameters.
II In: (SMClose) Out: (SMOpen) Service
II object.

Clients should do this only when they are ready to transfer data to the service, and should leave the
service open for as little time as possible.

A bind is automatically performed if the client is not yet bound.

The caller is added to the open list of the service instance.

Sends msgSvcOpenRequested to the service being opened. The service has the right to refuse the open.
The service-specific error return that indicates a refusal is passed back to the client.

stsBadObject Caller is not an object.

stsBadAncestor Caller has invalid ancestor.

stsSvcNotBound Caller is not bound to the service.

stsSvcLocked Someone has this exclusive-open service query locked.

stsSvcNotOwner Someone else is the owner of this owner-checked service.

stsSvcAlreadyOpen Someone already has this exclusive-open service open.

Service-Specific Error Returns

msgSMBind (service.h) (service. h) (service. h)

msgSMOpenDefaults
Initializes SMOpen pArgs to default value.

Takes P _SM_OPEN_CLOSE, returns STATUS.

*define msgSMOpenDefaults

typedef struct SM OPEN CLOSE
IM HANDLE handle;
OBJECT caller;
P ARGS pArgs;
OBJECT service;

SM_OPEN_CLOSE, *P_SM_OPEN_CLOSE;

msgSMOpen (service.h)

MakeMsg(clsServiceMgr, 34)

II Handle of service to open.
II Object making this call.
II Service-specific open parameters.
II In: (SMClose) Out: (SMOpen) Service
II object.

618 PENPOINT API REFERENCE

M0$$©~e

Av;umeWl¥s

Part 13 / Writing Pen Point Services

msgSMClose
Close an open service.

Takes P_SM_OPEN_CLOSE, returns SfATUS.

fdefine msgSMClose MakeMsg(clsServiceMgr, 5)

typedef struct SM OPEN CLOSE
IM HANDLE handle;
OBJECT caller;
P ARGS pArgs;
OBJECT service;

SM_OPEN_CLOSE, *P_SM_OPEN_CLOSE;

II Handle of service to open.
II Object making this call.
II Service-specific open parameters.
II In: (SMClose) Out: (SMOpen) Service
II object.

The caller is removed from the open list of the service insta~ce.

Clients should send msgSMClose as soon as they are finished actively transfering data. Clients *must*
first close a service before unbinding from it.

The service manager will automatically send msgSMClose for all services that are held open by a client
when that client object is freed. This means that you must not send msgSMClose from your msgFree

routine; the object freed notification occurs before your msgFree routine is entered.

Sends msgSvcCloseRequested to the service being opened.

stsFailed Service instance is not open by the caller.

msgSM~ue~Lock
Gets the uid of a service and locks out any opens.

Takes P _SM_QUERY_LOCK, returns STATUS.

fdefine msgSMQueryLock

typedef struct SM_QUERY_LOCK {
IM HANDLE handle;
OBJECT service;

SM_QUERY_LOCK, *P_SM_QUERY_LOCK;

MakeMsg(clsServiceMgr, 8)

II Handle of service instance to query.
II Out: Service object.

This message is similar to msgSMOpen, in that it returns a service object, given a handle. However, it is

not seen as an open by the service.

This message is meant for non-data transfer access to a service, for example, generating a service's option
card.

The sender of this message does *not* have to be the owner of the service.

This message will fail if the service instance is exclusive open and currently in use (open). If this message

succeeds then all opens will fail until msgSMQueryUnlock is sent.

This message will return the real uid of the service instance in the case of a multi-user service.

stsSvcLocked Service instance is already query locked.

stsSvcInUse Service instance is open.

Arguments

Mess(1Ige

Arguments

SERVMGR.H 619
Core Messages

msgSM QueryUnlo ck
Unlocks a service that was locked via msgSMQueryLock.

Takes P _SM_QUERY_UNLOCK, returns STATUS.

#define msgSMQueryUnlock MakeMsg(clsServiceMgr, 9)

typedef struct SM_QUERY_UNLOCK
1M_HANDLE handle; II Handle of service instance to unlock.

} SM_QUERY_UNLOCK, *P_SM_QUERY_UNLOCK;

msgSMQuery
Gets the uid of a service.

Takes P _SM_QUERY_LOCK, returns STATUS.

#define msgSMQuery

typedef struct SM_QUERY_LOCK

MakeMsg(clsServiceMgr, 33)

1M HANDLE handle;
OBJECT service;

II Handle of service instance to query.
II Out: Service object.

SM_QUERY_LOCK, *P_SM_QUERY_LOCK;

This message gets the uid of a service instance. It must be used very carefully. It bypasses all checking
mechanisms, so the caller can get into trouble if he subsequently sends messages to the service that are

not expected. Use msgSMQueryLock instead of msgSMQuery if at all possible.

msgSMGetCharacteristics
Gets the characteristics of the specified service instance.

Takes P_SM_GET_CHARACTERISTICS, returns STATUS.

#define msgSMGetCharacteristics MakeMsg(clsServiceMgr, 42)

typedef struct
1M HANDLE
P UNKNOWN
U16

SM GET CHARACTERISTICS
- - handle; II Handle of item to get characteristics of.

pBuf; II Out through Ptr: Characterisitics buffer.
len; II In/Out: Buffer size. If 0 then the

II actual size is returned.
SM_GET CHARACTERISTICS, *P_SM_GET_CHARACTERISTICS;

Characterstics are service-specific properties of a particular service. For example, modem services might

pass back whether Fax is supported, maximum baud rate, etc. All the services on a particular service

manager return the same characterstics set.

Callers should first send this message with pArgs->len set to o. This will return the size of the actual

characterisitics buffer. Callers should then allocate this space and make the call again with pArgs->len set

to this size. pArgs->len can be less than the actual size, in which case only the number of bytes specified

by pArgs->len is returned.

msgSMSave
Saves a service instance to a specified external location.

Takes P_SM_SAVE, returns STATUS.

#define msgSMSave MakeMsg(clsServiceMgr, 36)

620 PEN POINT API REFERENCE

Argurm:mts

Part 13 I Writing Pen Point Services

typedef struct SM SAVE
1M HANDLE
BOOLEAN
FS FLAT LOCATOR

SM_SAVE, *P_SM_SAVE;

handle;
reserved;
flat;

II Handle of service instance to save.
II Reserved.
II Location to save to.

The pArgs specify the parent directory that the service instance will save itself into. Note that the service

instance's current target is also saved. When the service instance is reloaded it will try and bind to this

target.

msgSvcClassLoadInstance load a service instance from arbitrarylocation on disk (service.h).

Auxiliary Messages

l\4©ssC!ge
Arguments

msgSMFindHandle
Finds a handle, given a service instance uid.

Takes P_SM_FIND_HANDLE, returns STATUS.

#define msgSMFindHandle MakeMsg(clsServiceMgr, 10)

typedef struct SM FIND HANDLE
OBJECT service;
1M HANDLE handle;

SM_FIND_H~~DLE, *P_SM_FIND_HANDLE;

II Service object to look for.
II Out: resulting handle.

This message allows you to find the handle of a service if you know its uid.

stsNoMatch Service not found on this service manager list.

msgSMSetOwnerNoVeto
Sets a new service owner without giving owners veto power.

Takes P _SM_SET_OWNER, returns STATUS.

#define msgSMSetOwnerNoVeto

typedef struct SM SET OWNER
1M HANDLE handle;
OBJECT owner;

SM_SET_OWNER, *P_SM_SET_OWNER;

MakeMsg(clsServiceMgr, 30)

II Handle of item to set owner on.
II New owner.

This message is the same as msgSMSetOwner, except the old owner and new owners do not get the

chance to veto. msgSvcReleaseRequest and msgSvcAquireRequest are not sent. This message does the

following:

1. The open status of the service is checked. If it is open (in use) the SetOwner fails, with a return

status of stsSvcInUse.

2. msgSvcChangeOwnerRequested is sent to the service. This informs the service that ownership is

going to be changed and allows it to veto the owner change by returning anything other than stsOK

or stsN otU nderstood. msgSMSetOwner returns with the abort status.

3. msgSMOwnerChanged is sent to everyone who is bound to the service or observing a service

manager that the service is on.

4. msgSvcOwnerReleased is sent to the old owner.

5. msgSvcOwnerAquired is sent to the new owner.

stsSvcInUse Service is open.

Comments

Arguments

msgSMGetState
Gets the state of a service.

Takes P _SM_GET_STATE, returns STATUS.

*define msgSMGetState

typedef struct SM GET_STATE {
1M HANDLE handle; II
BOOLEAN connected; II
OBJECT owner; I I
OBJECT owned; I I
U8 reserved[24];

SM_GET_STATE, *P_SM_GET_STATE;

In:
Out:
Out:
Out:

SERVMGR.H 621
Auxiliary Messages

MakeMsg(clsServiceMgr, 12)

Handle of service to get state on.
Is service connected?
My owner, if any.
The service that I own, if any.

This message provides service state. There is some additional state (in use, modified) that is gotten via

msgIMGetState. See insdmgr.h for details.

msgSM GetClassMetrics
Gets the service's class metrics.

*define msgSMGetClassMetrics

typedef struct SM_GET_CLASS_METRICS {

MakeMsg(clsServiceMgr, 13)

1M_HANDLE handle; II Handle of item to get class metrics on.
SVC_CLASS_METRICS metrics;

SM_GET_CLASS_METRICS, *P_SM_GET_CLASS_METRICS;

This message passes back information about the service class. See service.h for a definition of
SVC_ CLASS_METRICS.

msgIMDeinstall
Remove and free a service instance.

Takes P_IM_DEINSTALL, returns STATUS.

This will remove the specified service instance from all the service managers that it is on, destroy its state
file, and free it.

Note that a service is initially created by sending msgNew to the service class. Services automatically add
themselves to service manager. Do not use msgIMlnstall for this purpose; msgIMlnstall should

NEVER be used by clients.

Causes observer message msgIMDeinstalled to be propogated to all objects that are bound to the service

instance and to the service managers.

This message causes msgSvcDeinstallRequested to be sent to the service instance. The instance can veto
the deinstall at this point; if it does then the return value from msgIMDeinstall is the status that the

service instance used to veto the deinstall.

msgSvcDeinstallRequested

622 PENPOINT API REFERENCE

Part 13 / Writing Pen Point Services

Notification Messages

msgSMConnectedChanged
A service's connection state changed.

Takes P _SM_CONNECTED_NOTIFY, returns STATUS. Category: observer notification.

fdefine msgSMConnectedChanged MakeMsg(clsServiceMgr, 20)

typedef struct SM_CONNECTED_NOTIFY {
OBJECT manager; II manager that sent notification
IM HANDLE handle; II handle to service
BOOLEAN connected; II new connect state

SM_CONNECTED_NOTIFY, *P_SM_CONNECTED_NOTIFY;

msgSMOwnerChanged
A service's 9wner has changed.

Takes P _SM_OWNER_NOTIFY, returns STATUS. Category: observer notification.

fdefine msgSMOwnerChanged MakeMsg(clsServiceMgr, 21)

typedef struct SM OWNER NOTIFY
OBJECT manager; II manager that sent notification
IM HANDLE handle;. I I handle to service
OBJECT oldOwner; II old owner
OBJECT owner; II new owner

SM_OWNER_NOTIFY, *P_SM_OWNER_NOTIFY;

SERYMISC.H

This file contains additional API definitions for clsService.

clsService inherits from clsStream.

Provides default behavior for services.

This header file defines auxiliary clsService messages that are not used by the majority of service clients.

#ifndef'SERVMISC INCLUDED
#define SERVMISC INCLUDED

Owner Messages

msgSvcGetMyOwner
Gets the current owner of this service, if any.

Takes P_OBJECT, returns STATUS.

#define msgSvcGetMyOwner MakeMsg(clsService, 21)

Passes back objNull if there is no current owner.

msgSvcGetOwned
Passes back the item that this service owns.

Takes P_OBJECT, returns STATUS.

#define msgSvcGetOwned MakeMsg(clsService, 31)

This message is only valid for autoOwnTarget services (style.autoOwnTarget is true).

If this service has become the owner of its target then this message passes back the item that it owns;

otherwise it returns objNull.

msgSvcOwnerReleaseRequested
Is it OK to remove you as the owner of a service?

Takes P _SVC_OWNED _NOTIFY, returns STATUS.

#define msgSvcOwnerReleaseRequested

typedef struct SVC_OWNED_NOTIFY {
OBJECT ownedServicei II

OBJECT oldOwneri
OBJECT newOwner i
U8 reserved [16] i

SVC_OWNED_NOTIFY, *p SVC_OWNED_NOTIFYi

II
II
II
II

MakeMsg(clsService, 38)

The service or MIL conflict
group which will have its
owner changed.

The old owner.
The proposed new owner.

A client sent msgSMSetOwner to a service manager for a service you currently own. See
servmgr.h/msgSMSetOwner for details on the entire owner change message protocol.

,
624 PENPOINT API REFERENCE

Mes,soge

Argumerrts

MSS50g©
t\VgUtt'I©l1tS

Part 13 I Writing Pen Point Services

You can veto the ownership change by returning anything other than stsOK or stsNotUnderstood.

The service must not be in use for the owner change to occur. If you have the service open and want to

give up ownership, you should close the service when you receive this message.

This message must be passed to ancestor.

msgSvcOwnerAcquireRequested
Is it OK to make you the new owner of a service?

Takes P _SVC_OWNED_NOTIFY, returns STATUS.

tdefine msgSvcOwnerAcquireRequested

typedef struct SVC_OWNED_NOTIFY {
OBJECT ownedService; II

OBJECT oldOwner;
OBJECT newOwner;
U8 reserved[16];

SVC_OWNED_NOTIFY, *P_SVC_OWNED_NOTIFY;

II
II
II
II

MakeMsg(clsService, 39)

The service or MIL conflict
group which will have its
owner changed.

The old owner.
The proposed new owner.

A client sent msgSMSetOwner to a service manager, proposing that you be the new owner of a service.
See servmgr.h/msgSMSetOwner for details on the entire owner change message protocol.

You can veto the ownership change by returning anything other than stsOK or stsNotUnderstood.

This message must be passed to ancestor.

msgSvcOwnerAcquired
You are now the new owner of a service.

Takes P _SVC_OWNED_NOTIFY, returns STATUS.

tdefine msgSvcOwnerAcquired

typedef struct SVC_OWNED_NOTIFY
OBJECT ownedService; II

OBJECT oldOwner;
OBJECT newOwneri
U8 reserved[16];

SVC_OWNED_NOTIFY, *p SVC_OWNED_NOTIFYi

II
II
II
II

MakeMsg(clsService, 29)

The service or MIL conflict
group which will have its
owner changed.

The old owner.
The proposed new owner.

A client sent msgSMSetOwner to a service manager and requested that you become the new owner of

the service. This message signifies that you are the new owner of the service. See

servmgr.h/msgSMSetOwner for details on the entire owner change message protocol.

Any saved state that you have for the owned service should be restored (typically via msgSvcSetMetrics).

This message must be passed to ancestor.

msgSvcOwnerReleased
You are no longer the owner of a service.

Takes P _SVC_OWNED _NOTIFY, returns STATUS.

tdefine msgSvcOwnerReleased MakeMsg(clsService, 30)

MessCige
Argumen1s

Comments

Messof$e
Argtm1®nb:;

typedef struct SVC_OWNED_NOTIFY {
OBJECT ownedService; II

OBJECT oldOwner;
OBJECT newOwner;
U8 reserved [16] ;

SVC_OWNED_NOTIFY, *p SVC_OWNED_NOTIFY;

II
II
II
II

SERVMISC.H 625
Owner Messages

The service or MIL conflict
group which will have its
owner changed.

The old owner.
The proposed new owner.

A client s·ent msgSMSetOwner to a service manager for a service you currently own. This message
signifies that you are no longer the owner of the service. See servmgr.hl msgSMSetOwner for details on

the entire owner change The ownership change actually happens when you return from this message.

Any state for the owned state that you are interested in preserving should be gotten (typically via
msgSvcGetMetrics) and saved in your state file. You can manipulate the service as its owner until you

return from this message.

This message must be passed to ancestor.

msgSvcChangeOwnerRequested
Owner change request message.

Takes P _SVC_OWNED_NOTIFY, returns STATUS.

*define msgSvcChangeOwnerRequested

typedef struct SVC_OWNED_NOTIFY {
OBJECT ownedService; II

OBJECT oldOwner;
OBJECT newOwner;
U8 reserved [16] ;

SVC_OWNED_NOTIFY, *P SVC_OWNED_NOTIFY;

II
II
II
II

MakeMsg(clsService, 40)

The service or MIL conflict
group which will have its
owner changed.

The old owner.
The proposed new owner.

This message is sent to the service instance whose owner is being changed. The service instance can veto

the ownership change by returning anything other than stsOK or stsNotUnderstood.

This message must be passed to ancestor if the service does not want to veto the owner change.

Save Messages

COnUrNH'1fX

msgSvcSaveRequested
Client asked to save this instance to external media.

Takes P_FS_FlAT_LOCATOR, returns STATUS.

*define msgSvcSaveRequested MakeMsg(clsService, 34)

A client sent msgSMSave to a service manager.

Default superclass behavior is to save the state file and the current target only. Subclasses should ensure

that their state file is up to date if they wish to make use of this behavior. Alternatively, subclasses can

not pass this message to ancestor and perform whatever form of save they wish.

The pArgs references the parent directory in which this service instance should be saved. If a node with
the same name as the service instance already exists within this directory, default superclass behavior is to

overwrite the destination. Subclasses can perform other forms of behavior if the destination exists before

passing this message to ancestor.

This message does not have to be passed to ancestor.

626 PENPOINT API REFERENCE

Part 13 / Writing PenPoint Services

msgSvcClassLoadlnstance
Loads an instance state file from disk and creates a new instance.

Takes P _SVC_LOAD_INSTANCE, returns STATUS. Category: class message.

#define rnsgSvcClassLoadInstance MakeMsg(clsService, 47)

typedef struct SVC_LOAD_INSTANCE
FS LOCATOR source; II Source state file location ..

} SVC_LOAD_INSTANCE, *P_SVC_LOAD_INSTANCE;

This function copies the state node specified by pArgs->source into the INST directory of the service

and starts up an instance of the service on this state file. This is very similar to what happens when a

warm-boot occurs, or when state nodes are automatically loaded when a service is first installed.

If a service instance with the same name already exists, default behavior is to generate a unique name for
the new service instance.

Subclasses do not normally process this message, but can if they wish to change the exist behavior.

stsFSNodeNotFound source file not found.

msgSMSave

Class Metrics Messages

msgSvcGetClassMetrics
Gets metrics for the service class that controls this instance.

Takes P _SVC_CLASS_METRICS, returns STATUS.

#define rnsgSvcGetClassMetrics MakeMsg(clsService, 23)

Note: This message can also be sent directly to the service class.

Instance Metrics Messages

msgSvcGetMetrics
Passes back the current configuration metrics.

Takes P _SVC_GET_SET_METRICS, returns STATUS.

#define rnsgSvcGetMetrics

typedef struct SVC_GET_SET_METRICS
P UNKNOWN pMetrics;
U16 len;

MakeMsg(clsService, 32)

II Out through Ptr: Metrics buffer.
II In/Out: Metrics buffer size in
II bytes. If 0 then the actual
II size is returned.

} SVC_GET_SET_METRICS, *p SVC_GET_SET_METRICS;

Configuration metrics are service specific. This interface allows the caller to find out how large the
metrics set for a given service are.

The caller should first send msgSvcGetMetrics with pArgs->len set to 0 to get the actual size of the
metrics buffer. The caller should allocate a buffer of this size then send the message again.

Subclasses that have configuration metrics must handle this message.

Message
,4r9umenh;

SERVMISC.H 627
Instance Metrics Messages

msgSvcSetMetrics
Sets the configuration metrics.

Takes P _SVC_GET_SET_METRICS, returns STATUS.

#define msgSvcSetMetrics

typedef struct SVC_GET_SET_METRICS
P UNKNOWN pMetrics;
U16 len;

MakeMsg(clsService, 33)

II Out through Ptr: Metrics buffer.
II In/Out: Metrics buffer size in
II bytes. If 0 then the actual
II size is returned.

} SVC GET_SET_METRICS, *p SVC_GET_SET_METRICS;

Configuration metrics are service specific. The caller should set pArgs->len to the size that was returned

from msgSvcGetMetrics when the metrics were originally gotten. A caller should never try and

synthesize a metrics buffer; he should only pass back a buffer that was gottem from msgSvcGetMetrics.

Subclasses can determine the version of a configuration buffer from its size. Subclasses should make sure
that different versions of configuration information have different sizes.

Subclasses must update their state node when they handle this message.

Subclasses that have configuration metrics must handle this message.

Service Manager Messages

msgSvcAddToManager
Add this service instance to a service manager.

Takes P_SVC_ADD_TO_MANAGER, returns STATUS.

#define msgSvcAddToManager MakeMsg(clsService, 17)

typedef struct SVC_ADD_TO_MANAGER
OBJECT manager;

} SVC_ADD_TO_MANAGER, *P_SVC_ADD_TO_MANAGER;

This message allows a service to add itself to additional service managers after msgNew time.

This results in msgIMlnstalled being sent to observers of the service manager.

msgSvcllemoveFromManager
Removes this service instance from a service manager.

Takes P _SVC_REMOVE_FROM_MANAGER, returns STATUS.

#define msgSvcRemoveFromManager MakeMsg(clsService, 18)

typedef struct SVC_REMOVE_FROM_MANAGER
OBJECT manager; II Manager to remove self from

} SVC_REMOVE_FROM_MANAGER, *P_SVC_REMOVE_FROM_MANAGER;

This message allows a service to remove itself from a service manager it is currently on.

This results in msgIMDeinstalled being sent to observers of the service manager and any objects which
have bound to this service. It cleans up this service's bind list, removing anyone who bound via the

specified service manager.

Note: service managers automatically remove a service when the service class is deinstalled. There is no
need to do so explicitly.

stsNoMatch Service instance is not on the specified service manager.

628 PEN POINT API REFERENCE
Part 13 / Writing Pen Point Services

Client List Messages

M®5SU£j®

Argumc'tIl'S

M0SSCg0
Arguments

msgSvcGetBindList
Gets a list of all the callers that have bound to this service.

Takes P_SVC_GET_LIST, returns STATUS.

idefine msgSvcGetBindList

typedef struct SVC GET LIST
P OBJECT pList;

U16 count;
SVC_GET_LIST, *P_SVC_GET_LIST;

msgSvcGetOpenList

"MakeMsg(clsService, 26)

II Out: list, allocated from process heap.
II CLIENT MUST OSHeapBlockFree WHEN
II FINISHED!
II Out: number of elements in list

Gets a list of all the callers that have opened this service.

Takes P _SVC_GET_LIST, returns STATUS.

ide fine msgSvcGetOpenList

typedef struct SVC GET LIST
P OBJECT pList;

U16 count;
SVC GET LIST, *P_SVC_GET_LIST;

msgSvcGetOpenObjectList

msgSvcGetOpenObjectList

MakeMsg(clsService, 27)

II Out: list, allocated from process heap.
II CLIENT MUST OSHeapBlockFree WHEN
II FINISHED!
II Out: number of elements in list

Gets a list of the open objects which were returned for each open.

Takes P _SVC_GET_LIST, returns STATUS.

idefine msgSvcGetOpenObjectList

typedef struct SVC_GET_LIST (
P OBJECT pList;

U16 count;
SVC_GET_LIST, *P_SVC_GET_LIST;

MakeMsg(clsService, 49)

II Out: list, allocated from process heap.
II CLIENT MUST OSHeapBlockFree WHEN
II FINISHED!
II Out: number of elements in list

This list is ordered the same as the open list. The caller in openlist[i] was given the object in

openObjectList[i] .

msgSvcGetOpenList

msgSvcGetManagerList
Gets a list of all the service managers that this service is on.

Takes P _SVC_GET_LIST, returns STATUS.

idefine msgSvcGetManagerList MakeMsg(clsService, 28)

Messuge
Arguments

Mess£lge
Avgu!'Tlents

Mes$og*
Arguments

Messoge
Arguments

typedef struct SVC_GET_LIST {
P OBJECT pList;

U16 count;
SVC GET_LIST, *P_SVC_GET_LIST;

msgSvcGetManagerHandleList

SERVMISC.H 629
Client List Messages

II Out: list, allocated from process heap.
II CLIENT MUST OSHeapBlockFree WHEN
II FINISHED!
II Out: number of elements in list

msgSvcGetManagerHandleList
Gets a list of the svc mgr handles that this service is represented by.

Takes P_SVC_GET_LIST, returns STATUS.

#define msgSvcGetManagerHandleList

typedef struct SVC_GET_LIST {
P OBJECT pList;

U16 count;
SVC GET LIST, *P_SVC_GET_LIST;

MakeMsg(clsService, 50)

II Out: list, allocated from process heap.
II CLIENT MUST OSHeapBlockFree WHEN
II FINISHED!
II Out: number of elements in list

This list is ordered the same as the manager list. The handle in handleList[i] is this service's handle in

serviceManagerList[i] .

msgSvcGetManagerList

msgSvcGetDependentAppList
Gets a list of thelnstalledApps handles for all dependent apps.

Takes P _SVC_GET_LIST, returns STATUS.

#define msgSvcGetDependentAppList

typedef struct SVC_GET_LIST {
P OBJECT pList;

U16 count;
SVC_GET_LIST, *p SVC GET_LIST;

MakeMsg(clsService, 51)

II Out: list, allocated from process heap.
II CLIENT MUST OSHeapBlockFree WHEN
II FINISHED!
II Out: number of elements in list

msgSvcGetDependentServiceList
Gets a list of thelnstalledServices handles for all dependent services.

Takes P _SVC_GET_LIST, returns STATUS.

#define msgSvcGetDependentServiceList MakeMsg(clsService, 52)

typedef struct SVC_GET_LIST {
P OBJECT pList;

U16 count;
SVC GET_LIST, *p SVC GET_LIST;

II Out: list, allocated from process heap.
II CLIENT MUST OSHeapBlockFree WHEN
II FINISHED!
II Out: number of elements in list

630 PENPOINT API REFERENCE
Part 13 / Writing Pen Point Services

Deinstallation/Destruction Messages

msgSvcClassTerminateOK
Deinstalls the entire service.

Takes P _OBJECT, returns STATUS. Category: class message.

fdefine msgSvcClassTerminateOK MakeMsg(clsService, 43)

Deinstallation is a two-phase process. The first phase allows any of the services or apps being deinstalled

to cancel the entire deinstall. msgSvcClassTerminateOK is the veto phase. Returning anything other

than stsOK signifies a veto. If anyone vetos the deinstall then msgSvcClassTerminateVetoed is sent to
all services that were sent msgSvcClassTerminateOK. If nobody vetos the deinstall then
msgSvcClassTerminate is sent.

The pArgs to msgSvcClassTerminateOK is used to pass back the object which is responsible for the
veto.

Default superclass behavior is to send msgSvcDeinstallRequested to each instance of the service, and
veto the deinstallation if any service instance vetos the deinstallation. The uid of the instance that vetoed

the deinstall is passed back via the pArgs.

This approach allows multiple services and applications that are dependent on each other to be
deinstalled in a coherent fashion.

Subclasses can override this message if they wish.

msgSvcDeinstall

msgSvcClassT erminateVetoed
Deinstall process was vetoed.

Takes P _SVC_TERMINATE_VETOED, returns STATUS. Category: class message.

fdefine msgSvcClassTerminateVetoed MakeMsg(clsService, 45)

typedef struct SVC_TERMINATE_VETOED {
OBJECT vetoer; II Object that vetoed the deinstall.
STATUS status; II Veto status.

SVC_TERMINATE_VETOED, *P_SVC_TERMINATE_VETOED;

This message informs the service that the deinstallation sequence that started with

msgSvcClass T erminateO K has been vetoed by one of the services or applications that was part of the
deinstall.

pArgs->vetoer gives the uid of the object or class which vetoed the deinstall. pArgs->status gives the
return status of the veto.

Default superclass behavior is to send msgSvcDeinstallVetoed to each instance of the service. .

Subclasses can override this message if they wish.

msgSvcDeinstallVetoed

msgSvcClassT erminate
Terminate the service.

Takes pNull, returns STATUS. Category: class message.

fdefine msgSvcClassTerminate MakeMsg(clsService, 24)

Comments

SERVMISC.H 631
Deinstallation/Destruction Messages

Unconditionally terminate the service. All applications and services that are to be deinstalled have agreed
to the deinstallation.

Default superclass behavior is to send msgDestroy to each instance of the service.

Subclasses must pass this message to ancestor.

msgDestroy

msgSvcClientDestroyedEarly
An active client was destroyed.

Takes OBJECT, returns STATUS.

#define msgSvcClientDestroyedEarly MakeMsg(clsService, 48)

This message is sent to the service instance when a caller or service owner terminates unexpectedly. The

pArgs is the uid of the caller or owner.

Superclass behavior is to clean up the service instance by sending msgSMUnbind, msgSMClose and

msgSMSetOwner to self as appropriate.

Services that keep their own per-client information will need to process this message in order to clean up

their state.

This message must be passed to ancestor.

msgSvcDeinstallRequested
Client asked to destroy this service instance.

Takes pNull, returns STATUS.

#define msgSvcDeinstallRequested MakeMsg(clsService, 8)

A client has sent msgSMDeinstall to a service manager (to get rid of just this service instance), or the

entire service class is being deinstalled.

Deinstallation is a two phase process. All service instances that are going to be deinstalled are sent

msgSvcDeinstallRequested. Each service has the chance to veto the deinstall by returning an error

status. If all parties agree to the deinstall then msgFree is sent to each service instance. msgFree cannot
be vetoed. It causes the service to be removed from all service managers.

If anybody vetos the deinstall then msgSvcDeinstallVetoed is sent to each service that is part of the
deinstall process. Services should not accept any new clients while a deinstall is in process.

msgSvcDeinstallVetoed indicates that new clients can once again be accepted.

Default superclass behavior is to veto the de install if the service is in use (open). The superclass will also

handle new client rejection while a deinstall is in process if it gets this message.

This message must be passed to ancestor.

Note: A service might get msgSvcDeinstallRequested more than once for a given deinstallation

sequence.

msgSvcDeinstallVetoed
Deinstallation process was vetoed.

Takes P_SVC_DEINSTALL_VETOED, returns STATUS.

#define msgSvcDeinstallVetoed MakeMsg(clsService, 47)

--~~--------.. --~---

632 PEN POINT API REFERENCE

Part 13 I Writing Pen Point Services

typedef struct SVC_DEINSTALL_VETOED {
OBJECT vetoer; II Object that vetoed the deinstall.
STATUS status; II Veto status.

SVC_DEINSTALL_VETOED, *P_SVC_DEINSTALL_VETOED;

One of the objects or classes in the deinstall process decided to veto the deinstall.

Services can once again accept new clients.

This message must be passed to ancestor.

msgDestroy
Frees a service instance.

Takes OBJ_KEY, returns STATUS.

Subclasses should destroy all dynamic resources. Warning: Do not destroy any clsService resources, such

as the state node handle!

WARNING: Clients must NEVER send msgDestroy directly to a service instance; instead they should
send msgIMDeinstall to a service manager which the service instance is on.

Note that service manager message msgSMRemoveReference allows a service instance to be removed

from a single service manager without removing it from other service managers, or destroying the
instance. See servmgr.h for details on msgIMDeinstall and msgSMRemoveReference.

Miscellenous Messages

msgSvcGetStyle
Returns current style settings.

Takes P _SVC_STILE, returns STATUS.

idefine msgSvcGetStyle

msgSvcSetStyle
Changes style settings.

Takes P _SVC_STILE, returns STATUS.

idefine msgSvcSetStyle

msgSvcGetFunctions

MakeMsg(clsService, 10)

MakeMsg(clsService, 11)

Passes back a pointer to a table of function entry points.

Takes P _SVC_GET_FUNCTIONS, returns STATUS.

idefine msgSvcGetFunctions

typedef struct SVC GET FUNCTIONS
P UNKNOWN pFunctions;
U32 info;

SVC_GET_FUNCTIONS, *P_SVC_GET_FUNCTIONS;

MakeMsg(clsService, 1)

II Out: Pointer to function table.
II Out: service-specific info.

This is for services that cannot afford the overhead of being accessed via object calls. The format of this

pointer block is up to the subclass. Default superclass behavior is to set pFunctions to pNull, which
means this service doesn't provide a table.

Subclasses should handle this message if they wish to provide a function interface to their service.

Default superclass behavior is to set pArgs->pFunctions to pNull and pArgs->info to O.

Comments

SERVMISC.H 633
Deinstallation/Destruction Messages

msgSvcGetName
Gets the name of this service instance.

Takes P_SVC_GET_NAME, returns STATUS.

#define msgSvcGetName

typedef struct SVC GET NAME
P STRING pName;

msgSvcName Change d
The service's name has been changed.

Takes pNull, returns STATUS.

#define msgSvcNameChanged

MakeMsg(clsService, 22)

II Out: caller must allocate
II nameBufLength buffer here

MakeMsg(clsService, 55)

This message is self-sent to the service instance when its name is changed. This occurs when

msgIMSetName is sent to a service manager that this service is on.

The service is already set to the new name when this message is recieved. msgSvcGetN arne can be used

to get the new name.

This message is informational only. It does not have to be passed to ancestor.

msgSvcPropagateMsg
Propagates a service-specific message.

Takes P_SVC_PROPAGATE_MSG, returns STATUS.

#define msgSvcPropagateMsg
typedef struct SVC_PROPAGATE_MSG {

P ARGS pArgs;
SIZEOF pArgsSize;
MESSAGE msgi

SVC_PROPAGATE_MSG, *P_SVC_PROPAGATE_MSG;

MakeMsg(clsService, 25)

This message allows services to send their own informational messages to everyone who is bound to the
service and everyone who is an observer of any service manager that this service is on. This is similar to

what the system does wit~ messages like msgSMConnectedChanged.

The first two arguments of the pArgs of your notification message must be:

OBJECT manager; II manager that sent notification_HANDLE handle; I I handle to

serVIce

msgSvcPropagateNotify will fill these in with the correct service manager and handle for all of the

observers. For example:

typedef struct FOO_NOTIFY {
OBJECT manager i
OBJECT handle;

II svc manager that sent notification.
II handle to service.

FOO newFoo; II new foo.
FOO oldFoo; II old foo.
} FOO'NOTIFY, *p FOO NOTIFY;
FOO NOTIFY - fo(;Notify; SVC PROPAGATE MSG propagate;
propagate.pArqs = fooNotifYi propagate.pArqsSize = SizeOf(fooNotify);
ObjCaIIRet(msqSvcPropaqateMsq, self, &propagate, s);

propagate.msg = msqFoo;

634 PENPOINT API REFERENCE

Part 13 / Writing PenPoint Services

msgSvcAutoDetectingHardware
Is the hardware that this service ultimately talks to auto-detecting?

Takes P _BOOLEAN, returns STATUS.

#define msgSvcAutoDetectingHardware MakeMsg(clsService, 37)

This message is propogated to this service's target, then the target's target, etc. until it finds the service
which actually interfaces to hardware (has no target). The hardware interface service is then asked ifit
can auto detect connect/disconnect.

stsSvcValidConnectStyleNotFound target chain ended without reaching hardware service instance.

msgSvcClassPopUpOptionSheet
Creates an option sheet for the service's global options and pops it up.

Takes pNull, returns STATUS. Category: class message.

#define msgSvcClassPopUpOptionSheet MakeMsg(clsService, 57)

The option sheet is only displayed if this is the first time the service is installed.

Subclasses do not normally process this message.

msgSvcClassGetlnstallDir
Creates a directory handle on the service's installation directory.

Takes P _OBJECT, returns STATUS.

#define msgSvcClassGetInstallDir MakeMsg(clsService, 58)

The service class creates a clsDirHandle object which references the location on external media that the
service was installed from. If the external volume is not connected, the user is asked to attach it.

If this service was bundled with PenPoint then there is no valid external volume beyond installation
time. stsFailed is returned in this case.

NOTE: CALLER IS RESPONSIBLE FOR DESTROYING THE DIR HANDLE WHEN DONE.

stsOK The external volume is attached. The user tapped the Cancel button when promptedto attach
the external volume. The external volume cannot be determined becausethis application was
bundled with PenPoint.

Descendants: You normally do not handle this message.

Notification Messages

msgSvcT argetChanged
A service's target has changed.

Takes P _SVC_TARGET_CHANGE_NOTIFY, returns STATUS. Category: observer notification.

#define msgSvcTargetChanged MakeMsg(clsService, 53)

typedef struct SVC TARGET CHANGE NOTIFY
OBJECT - manager;- II svc manager that sent notification.
OBJECT handle; II handle to service.
SVC TARGET oldTarget; II old target.
SVC TARGET newTarget; II new target.

SVC_TARGET_CHANGE_NOTIFY, *P_SVC_TARGET_CHANGE_NOTIFY;

This message is broadcast to all service managers that this service is on.

SYCTYPES.H

This file contains the type tags for services. These tags are used to provide categories of service classes.

This allows VIs like the printer manager VI to decide what types are available.

#ifndef SVCTYPES_INCLUDED
#define SVCTYPES_INCLUDED
#ifndef GO INCLUDED
#include <go.h>
#endif
#define svcTypePrinter
#define svcTypeEMail

MakeTag(clsService, 1)
MakeTag(clsService, 2)

Pari 14 /
Miscellaneous

BAnERY.H

This file contains the API definition for clsMILPowerDevice.

clsMILPowerDevice inherits from clsService.

theBattery is a well-known instance of clsMILPowerDevice. theBattery provides access to the primary

battery of the computer.

theBatteries is a well-known instance of clsServiceManager. theBatteries is the service manager that
manages the instances of clsMILPowerDevice that represent the computer's batteries (including

theBattery) .

clsMILPowerDevice provides an object interface to the computer's power devices (i.e. batteries).

*ifndef BATTERY_INCLUDED
*define BATTERY_INCLUDED
*ifndef MILSERV_INCLUDED
*include <milserv.h>
*endif

Types and Constants
II battery flags
*define milRawVoltsSupported
*define milPercentLeftSupported
*define milSecondsLeftSupported
*define milSetLevelSupported

. Messages

msgBatteryGetMetrics
Passes back the battery's metrics.

Takes P _BATTERY_METRICS, returns STATUS.

*define msgBatteryGetMetrics

typedef struct BATTERY_METRICS
U16 batteryFlags;
U16 maxMillivolts;
U16 warnMillivolts;
U16 failMillivolts;
U16 currentMillivolts;
U16 percentOfBatteryLeft;
U16 maxSeconds;
U16 secondsOfBatteryLeft;

BATTERY_METRICS, * P_BATTERY_METRICS;

flagO
flag1
flag2
flag3

MakeMsg(clsMILPowerDevice, 1)

II flags defined above

640 PENPOINT API REFERENCE
Part 14 / Miscellaneous

msgBatterySetLevel
Sets the percentage of battery remaining.

Takes UI6, returns STATUS.

#define msgBatterySetLeve! MakeMsg(c!SMILPowerDevice, 2)

The MIL request milPowerSetBatteryLevel is sent to the MIL device unit represented by the receiver.

msgBatteryLow
Sent when a battery level is dangerously low.

Takes void, returns STATUS. Category: observer notification.

#define msgBatteryLow MakeMsg(c!SMILPowerDevice, 128)

msgBatteryCritical
Sent when a battery drops level below the shutdown level.·

Takes void, returns STATUS. Category: observer notification.

#define msgBatteryCritica! MakeMsg(c!SMILPowerDevice, 129)

DYNARRAY.H

This file contains the API definition for dynarray. Dynarrays provide a set of dynamic array routines.

The functions described in this file are contained in XLIST.LIB.

Implements a dynamic array of elements. Standard interface routines for indexing, inserting, deleting,
and other common operations are provided. This interface is primarily used internally to GO, and is
therefore tailored to meet internal needs.

A dynamic array is a simple data structure that contains some array information fields, and a pointer to a
block of memory. This block of memory is equal to pArray->entries * pArray->elementSize.

The number of entries is specified at initialization time in DynArrayNew, and can be changed via
DynArrayContract, or DynArrayExpand. These are implicitly called from DynArrayInsert and
DynArrayDelete when inserting an item into a list that does not have enough entries available, or when
deleting an item from the list. At any time, the value returned by DynArrayCount, or pArray->entries,
will be equal to the number of entries allocated in the array in pArray->pData. The size of the array in
pArray->pData will be equal to pArray->entries * pArray->elementSize.

The maximum index set in the array at any given time, independent of the number of entries in the
array, is referred to as maxCount. This is equal to the greatest array index number set via DynArraySet
or inserted via DynArrayInsert. It is also updated in DynArrayGetPtr, even if the user is getting the
pointer to a cleared data pointer that has not been set or inserted. DynArrayGetPtr is also used during
binary searches, and hence that function will modify maxCount if the binary search expands to empty
elements in the list. This is necessary because client functions can modify the contents of the element via
DynArrayGetPtr, because they have direct access to the data. Typical users of dynamic arrays will not call
DynArrayGetPtr in such a manner as to modify maxCount.

In summary, entries is the amount of space allocated by the array, and maxCount is the number of
elements set or inserted into the array.

When memory is allocated for entries in the array, via DynArrayInsert, DynArrayNew, or
DynArrayExpand, it is initialized to O.

#ifndef DYNARRAY INCLUDED
#define DYNARRAY INCLUDED
#ifndef GO_INCLUDED
#include <go.h>
#endif
#ifndef OSHEAP INCLUDED
#include <osheap.h>
#endif

642 PENPOINT API REFERENCE
Part 14 / Miscellaneous

Common #defines and typedefs

Dynamic Array
This data structure is the dynamic array data structure. A dynamic array created and manipulated is

simply a pointer to this data structure that is passed to the dynarray functions. Accessing the fields in
this data structure is possible, but care should be taken as changing their values could have drastic side
affects. This data structure is sometimes referred to as the array header.

typedef struct DYNARRAY {
OS_HEAP_ID heap; II heap used for allocations
U16 entries; II total * entries in the array
U16 elemSize; II size in bytes of individual elements
P_U8 pData; II pointer to the array of values
U16 maxCount; II Max index accessed in the array via

} DYNARRAY, *P_DYNARRAY;

Public Functions

DynArrayNew

II DynArraySet, DynArrayGetPtr, DynArrayBinSearch
II Updated when inserting, deleting, or contracting
II array.

Allocates a new dynamic array. Passes back the P _DYNARRAY header.

Returns STATUS.

fum:tion ?rototype STATUS DynArrayNew (
OS_HEAP_ID heap, II In: heap for memory allocation

II NULL=>osProcessHeapId
U16 elementSize, II In: size in bytes of each array element
U16 startSize, II In: initial array size in number of elements
U16 extraHeader, II In: additional bytes to allocate in the header
P_DYNARRAY *ppArray); II Out: pointer to the header pointer

(omments Allocates memory for the array header, the P _DYNARRAY that is passed to the dynarray functions.

Allocates memory for the initial elements in the array. Parameters include: the allocation heap to
perform memory allocations, the size of an individual element, the initial size of the array
(pArray->elements will the same as this value when this function returns), and any extra space to be

allocated in the P _DYNARRAY pointer. This space can be used by clients to store list-wide information or

flags. Passes back a pointer to the array data structure, P _DYNARRAY.

DynArrayFree
Destroys the dynamic array and frees memory used by the array.

Returns STATUS.

FtH'Idion Prototype STATUS DynArrayFree (
P_DYNARRAY pArray); II In: array header. Will be freed.

Ccwnments Will free all memory allocated by the array to store the header information and the elements. Does not

do anything with the entries in the array.

DynArrayExpand
Expands the array by the specified number of entries.

Returns STATUS.

Fundion Prototype STATUS DynArrayExpand (
P_DYNARRAY pArray,
U16 add);

II In: array header
II In: Number of elements to add

DYNARRAY.H 643
Public Functions

Expands the array by a number of entries, updating pArray->entries, the returned value of calling
DynArrayCount, and the reallocation of pArray->pData to be equal to pArray->entries *
pArray->elementSize. This function is called when calling DynArrayInsert to add space for one more
entry. It is also called in DynArraySet if the index is greater than the number of entries.

DynArraySet

DynArrayContract
Contracts the array by the number of entries.

Returns STATUS.

WlH1dlon Prototype STATUS DynArrayContract (
P_DYNARRAY pArray, II In: array header
U16 truncate); II In: Number of elements to free

Will contract the number of entries in the array, and free the memory associated with those entries. Will
resize the amount of memory allocated by the array pArray->pData to be pArray->entries *
pArray->elementSize. If the maxCount (return code of DynArrayCount) is greater than the new
number of entries allocated, maxCount will be adjusted. Called from DynArrayDelete to contract the
array when deleting items.

DynArrayDelete

DynArrayGet
Passes back the index'th element in the array.

Returns STATUS.

fundlon Prt>h::1type STATUS DynArrayGet (
P_DYNARRAY pArray,
U16 index,
P_UNKNOWN pData);

II In: array header
II In: element index
II Out: pointer to data buffer. Must be elementSize.

Will pass back the contents of the index'th element in the array. Will copy the memory of size
elementSize containing the data for the element into pData. It is the clients responsibility to ensure that
this data pointer is large enough.

DynArraySet
Sets the index'th item to the given value. Update maxCount.

Returns STATUS.

fundicm f:~rQtQtype STATUS DynArraySet (
P_DYNARRAY pArray,
U16 index,
P_UNKNOWN pData);

II In: array header
II In: element index
II In: pointer to data or NULL for zero fill

'" ::::»
o
1&.1

Z

~

644 PENPOINT API REFERENCE
Part 14 / Miscellaneous

Sets the contents of the index'th item to the given value. Will copy the contents of the pData pointer to
the memory for the index'th element in the array. It is the clients responsibility to ensure that pData is
correct. If index is greater than maxCount, it will update maxCount. If the index is greater than the
number of entries, the array is expanded via DynArrayExpand to be large enough. Called from
DynArrayInsert to set the value of the new index.

DynArrayInsert

DynArrayGetPtr
Passes back a pointer to the index'th element in the array.

Returns STATUS.

Fttvn:tlf:Hl Pn~)t©typ0 STATUS DynArrayGetPtr (
P_DYNARRAY pArray, II In: array header
U16 index, II In: element index
PP_UNKNOWN pData); II Out: pointer to data buffer

CommentJi Will pass back the direct pointer to the index'th element in the dynamic array. Care should be taken
when accessing this pointer, as it is memory that is allocated and managed by the array. Accessing the
data in this manner WILL cause the maxCount to be increased if maxCount < index. This function is
called during a binary search via DynArrayBinSearch. Hence that function could modifY maxCount.

See t\;s© DynArrayBinSearch

DynArraylnsert
Inserts a new element in the array.

Returns STATUS.

FUfn::Vlon Prcd'ovype STATUS DynArrayInsert (
P_DYNARRAY pArray,
U16 index,
P_UNKNOWN pData

) ;

II array header
II element index
II new data to insert or NULL

The new element is indexed by index. If the array is not big enough, will expand the atray appropriately.
Elements are copied from the index'th location to the next location.

DynArrayExpand

DynArrayDelete
Deletes the index'th element from the array.

Returns STATUS.

Funcvlon PVOVOty[:H0 STATUS DynArrayDelete (
P_DYNARRAY pArray,
U16 index

) ;

II array header
II element index to delete

Will delete the index'th element from the array. If index is > entries, will return stsOK and do nothing.
Will move all elements greater than the index down by one in the array. Will adjust m~Count if
necessary. Will call DynArrayContract with parameter of one.

DynArrayCount
Passes back the number of entries allocated in the array.

Returns STATUS.

fUrldkm Prototype STATUS DynArrayCount (
P_DYNARRAY pArray,
P_U16 pCount);

II In: array header
II Out: pointer to the count

DYNARRAY.H 645
Public Functions

Passes back the number of entries allocated in the array. This number is the amount of space allocated,
and not the number of items stored in the array. That value is returned by DynArrayMax.

DynArrayMax
Passes back the highest index stored.

Returns STATUS.

Fum;tk~n Pn.>totype STATUS DynArrayMax (
P_DYNARRAY pArray, II In: array header
P_U16 pMax); II Out: pointer to the max index

Comments Will return the highest index stored via DynArraySet or DynArrayGetPtr, plus one. This is the

"maxCount" field, and is used to indicate the highest array entry that has a valid value.

DynArrayElemSize
Passes back the size, in bytes, of each element.

Returns STATUS.

Fundion Pn:tf(:tfype STATUS DynArrayElemSize (
P_DYNARRAY pArray, II In: array header
P_U16 pSize); II Out: pointer to the size

Comments Passes back the size allocate in the array for each element. The pArray->pData size will be the value

passed back by this function * the value passed back by DynArrayCount.

DynArrayB inS earch
Performs a binary search on the array.

Returns STATUS.

typedef S16 FunctionPtr(P_BIN PROC) (P UNKNOWN, P UNKNOWN);

Arguments typedef struct DYNARRAY _SEARCH {
P_UNKNOWN pData; II In: Pointer to search data.
U16 start; II In: start index, Out: first occurrence
U16 stop; II In: end index, Out: last occurrence
P_BIN_PROC pCompare;11 In: routine to perform comparisons
S16 result; II Out: 0 if equal, -1 less, 1 greater

} DYNARRAY_SEARCH, *P_DYNARRAY_SEARCH;

fundlcm Prototype STATUS DynArrayBinSearch (
P_DYNARRAY pArray, II In: array header
P_DYNARRAY_SEARCH pSearch); II In: search data

Comments Performs a binary search on the array. Assumes that the array is "sorted" from lowest value to highest

value. Will access the value of data in the array via DynArrayGetPtr. Hence care should be taken when
using the data in the comparison callback routine.

stsNoMatch No matching data could be found within the range.

646 PENPOINT API REFERENCE

Part 14 I Miscellaneous

DynArrayGetPtr

P _BIN_PROC is the comparison routine callback. Will be called to test items. Called parameters

containing pointers to an element in the array, and a pointer to a test' element' to check for comparison.

Returns ° for equal, -1 for less, 1 for greater.

DYNARRAY_SEARCH is the parameter into the DynArrayBinSearch function. Takes the search data

pointer to locate, a starting index into the array to search, a stopping index into the array to search, and
a comparison callback function to test the data pointer against elements in the array. If result is 0, passes

back the starting and ending indices that match. If result is -1, the target data pointer was less than both

the starting and ending indices searched. Similarly, if result is 1, the target data pointer was greater than

both indices.

GOSIARCH.H

This file contains the API definition for GO's modified binary search. The function described in this file
is contained in MISC.UB.

The fundamental difference between this binary search and the search that is part of the standard
runtime is that if the search fails, this search indicates where a searched for element should have been
located, thereby aiding insertion of a new element.

#ifndef GO SEARCH_INCLUDED
#define GOSEARCH_INCLUDED $Revision: 1.6 $

#include <go.h>

ttmdlon Pro7©type typedef P_UNKNOWN (CDECL *ACCESS_FUNC) (
const P_UNKNOWN,
const U32);

tundkm Prototype typedef int

binarySearch

(CDECL *COMPARE_FUNC) (
const P_UNKNOWN,
const P_UNKNOWN,
const P _UNKNOWN) ;

#ifndef

#endif

II context
II index

II context
II key1
II key2

Performs a binary search for specified key within dataStructure.

Returns SfATUS.

function Prot©type STATUS EXPORTED binarySearch (
const P_UNKNOWN key,
const P_UNKNOWN dataStructure,
const U32 count,
COMPARE FUNC compare,
ACCESS FUNC
const U16
PP UNKNOWN
P U32

access,
itemSize,
pFoundOrInsert,
pIndex) ;

GO INCLUDED

binarySearch performs a binary search on a sorted, indexed data structure.

The caller provides an count of the number of items in the data structure, an access function that
translates an item index into an address for the item key, and a comparison function to compare a pair
of keys.

A detailed description of the parameters follows.

key key to search for.

dataStructure handle of data structure to search.

count number of items in data structure.

compare pointer to comparison function (see below).

access pointer to access function (see below). IfNi!, dataStructure is assumed to be the address of a
sorted, contiguous array of items (itemSize bytes long) with the item key at the start of each item.

648 PENPOINT API REFERENCE
Part 14 I Miscellaneous

itemSize size of item in bytes (only used if access is Nil).

pFoundOrInsert pointer to key (see below).

pIndex pointer to index (see below).

The access function is provided with the client provided dataStructure and a (zero origin) index. It is
responsible for returning the key for the indexed item. This key must be comprehensible to the
comparison function, but is otherwise uninterpreted by the search.

The comparison function is responsible for actually comparing two keys, and returning values as
follows.

< 0: when keyl < key2,
0: when keyl == key2,

> 0: when keyl > key2.

key! is always the key originally passed to binarySearch as a parameter. key2 is always a key generated
from dataStructure by the access function.

When binarySearch returns, *pFoundOrlnsert contains either:

the first occurrence of the desired key, if it was found; or
NULL, if the key was not found but was greater than the keys

of all the items in dataStructure; or
the first key larger than the desired key.

In addition, when binarySearch returns, *pIndex contains either count, if*pFoundOrInsert == NULL,
or the index used to access the key returned via *pFoundOrInsert.

The return value is:

stsO K if desired key located, or

stsN oMatch if desired key not located

PDICT.H

This file contains the Personal Dictionary Class API. This class contains methods that maintain an
ordered ASCII list of words and can produce a compressed list (called the template), which is specially
organized for use with handwriting translation software.

clsPDict inherits from clsObject.

thePersonalDictionary is a well known instance of clsPDict.

The word list maintained by thePersonalDictionary is used by default whenever spelling-assisted
handwriting translation is performed.

spell.h

#ifndef PDICT_INCLUDED
#define PDICT_INCLUDED
#ifndef FS_INCLUDED
#include <uuid.h>
#include <fs.h>
#endif
#ifndef INSTLMGR_INCLUDED
#include <instlmgr.h>
#endif

Common typedefs

Personal Dictionary Metrics

This structure is used in conjunction with msgPDictGetMetrics to get two very important parameters
of a personal dictionary: the number of words in it and a pointer to the compressed template. The word
count is useful for a variety of things, but the compressed template is valuable because it can be used
directly in the pT emplate field of a translator object (see xlate.h)

typedef struct PDICT_METRICS {
U16 wordCount; II number of words in the personal dictionary (RO)
P UNKNOWN pXTemplate; II pointer to compressed template

PDICT_METRICS, * P_PDICT_METRICS;

Personal Dictionary New Structs
typedef struct PDICT_NEW_ONLY {

1M HANDLE handle; II if objNull then use current pdict.
U32 spare;

PDICT_NEW_ONLY, * P_PDICT_NEW_ONLY;
typedef struct PDICT_NEW {

OBJECT_NEW_ONLY object;
PDICT_NEW_ONLY pdict;

PDICT_NEW, * P_PDICT_NEW;

650 PEN POINT API REFERENCE
Part 14 / Miscellaneous

Miscellaneous
This structure is used for converting a word index into a word and vice versa. (That is, for example, to
get word #5 from the PDict or to find out which word number in the PDict "PenPoint" is.)

typedef struct POICT_NUM_WORD
U16 number;
P CHAR pWord;

POICT_NOM_WORD, * P_POICT_NUM_WORD;

Messages

Message
Argt.HllenWS

Message
ArgumenTs

nnsgI>I>ictc;e~etrics

Gets a copy of the personal dictionary metrics structure.

Takes P _PDICT_METRICS, returns STATUS.

fdefine msgPOictGetMetrics MakeMsg(clsPOict,l)

typedef struct POICT METRICS {
U16 wordCount; II number of words in the personal dictionary (RO)
P UNKNOWN pXTemplate; II pointer to compressed template

POICT_METRICS, * P_POICT_METRICS;

This is mainly useful to find out how many words are in thedictionary.

nnsgI>I>ictEnunnerateWords
Fills a list of pointers to strings with pointers to all the words in the personal dictionary.

Takes PP _CHAR, returns STATUS.

fdefine msgPOictEnumerateWords MakeMsg(clsPOict,2)

The pArgs must be the address of the base of an array of pointers to filled in. This array must have an

entry for every word in thedictionary plus one for the final null (get the metrics toout how many
words are in the PDict. The words will be in ASCIIsequence, and because the pointers all point to

an internalstructure, no memory is allocated. N.B. you must treat thisas strictly read-only!

nnsgI>I>ictAddWord
Adds a word to the personal dictionary.

Takes P _PDICT _NUM_ WORD, returns STATUS.

fdefine msgPOictAddWord

typedef struct POICT_NUM_WORD
U16 number;
P CHAR pWord;

POICT_NOM_WORD, * P_POICT_NUM_WORD;

MakeMsg(clsPOict,3)

The routine SpellAddWordO, defined in spell.h, is a better way fordients to add words to the Personal
Dictionary, since it has aAPI, strips excess punctuation, checks for duplicates, etc.

msgPDictAddW"ord adds the string from the PDICT_NUM_ WORD structure, the zero-based offset of the
new word in the personal, and passes back that offset in the number component

ofPDICT_NUM_ WORD structure.

Although the ASCII representation of the Personal Dictionary isimmediately, the compressed template
is not rebuilt until thetime msgPDictUpdateTemplate is called. Handwriting Translationthis

automatically when it needs the template, but spelling does.

Messoge
Argurnenb

Messoge
Arguments

Mess0ge
Argui'l1ents

PDICT.H 651

Messages

msgPDictDeleteWord
Deletes a word from the personal dictionary.

Takes P_PDICT_NUM_WORD, returns STATUS.

*define msgPDictDeleteWord MakeMsg(clsPDict,4)

typedef struct PDICT NUM WORD
U16 number;
P CHAR pWord;

PDICT_NUM_WORD, * P_PDICT_NUM_WORD;

The reverse of msgPDictAddWord, this message removes the word frompersonal dictionary and passes
back the zero-based offset of thewhere it formerly was.

Like msgPDictAddW"ord, this only affects the ASCII representation ofPersonal Dictionary. The next

handwriting translation operationrebuild the template, but if you need it built before that (for, to

change the behavior of spelling), send.

msgPDictNumToWord
Locates a word in the personal dictionary by index number, passing back the word at that offset.

Takes P_PDICT_NUM_WORD, returns STATUS.

*define msgPDictNumToWord MakeMsg(clsPDict,5)

typedef struct PDICT_NUM_WORD
U16 number;
P CHAR pWord;

PDICT_NUM_WORD, * P_PDICT_NUM_WORD;

Words are indexed in ASCII collating sequence from zero.

msgPDictFindWord
Checks if a word is in the personal dictionary.

Takes P _CHAR, returns STATUS.

*define msgPDictFindWord MakeMsg(clsPDict,6)

stsOK means it was found; stsFailed means it was not.

msgPDictDeleteNum
Locates a word in the personal dictionary by index number and deletes the word at that offset.

Takes P_PDICT_NUM_WORD, returns STATUS.

*define msgPDictDeleteNum MakeMsg(clsPDict,7)

typedef struct PDICT_NUM_WORD
U16 number;
P CHAR pWord;

PDICT_NUM_WORD, * P_PDICT_NUM_WORD;

Words are indexed in ASCII collating sequence from zero. The numberthe word to delete is the number
field from the PDICT _NUM_ WORD; the actual word deleted is passed back in pW ord. (This

MUST set to point to something by the caller! Max size is+ 1. Setting pWord to Nil(p _CHAR) passes

nothing back.)

652 PEN POINT API REFERENCE

Part 14 / Miscellaneous

M(Hl$Ci~e

Ar£l!JmeitfS

msgPDictWordToNum
Given a word, computes its offset within the personal dictionary.

Takes P _PDICT_NUM_ WORD, returns STATUS.

#define rnsgPDictWordToNurn MakeMsg(clsPDict,8)

typedef struct PDICT NUM WORD
U16 number;
P CHAR pWord;

PDICT_NUM_WORD, * P_PDICT_NUM_WORD;

Words are counted from zero in ASCII collating sequence.

msgPDictUpdateTemplate
Recomputes the compressed template from the word list and updates the pointer.

Takes PP _UNKNOWN, returns STATUS.

#define rnsgPDictUpdateTernplate MakeMsg(clsPDict,9)

When the ASCII form of the personal dictionary i~ modified, thetemplate is not automatically
modified. Since compressionbe time consuming, this is deferred until it is absolutely. This routine is
called by Handwriting Translation at theof every translation.

If the curren! template is not out of date, this just copies old value intoargument.

Miscellaneous
Base of the template of thePersonalDictionary. Handwritingneeds to be able to get at this very quickly,

so it'sas an exported global variable to allow it to avoid the.

extern P_UNKNOWN PASCAL pPDictBase;

#define hlpPDAppBackground MakeTag(clsPDApp,l)

POWER.N

This file contains the API definition for class clsPowerButton.

clsPowerButton inherits from clsObject.

"thePowerButton" is a well known object that provides notification when the machine is turned off and
on.

#ifndef POWER_INCLUDED
#define POWER_INCLUDED
#ifndef GO INCLUDED
#include <go.h>
#endif
#ifndef CLSMGR INCLUDED
#include <clsmgr.h>
#endif

Messages

msgPBMachinePoweringUp
Notifies clients that the machine is powering up.

Takes nothing, returns nothing. Category: observer notification.

#define msgPBMachinePoweringUp MakeMsg(clsPowerButton, 1)

Sent by the system to observers of thePowerButton. Indicates that the machine is in the process of
powering up.

The system will not power up until all observers of the Power Button are notified. The system will wait
until the notification message has completed for each client.

msgPBMachinePoweringDown
Notifies clients that the machine is powering down.

Takes nothing, returns nothing. Category: observer notification.

#define msgPBMachinePoweringDown MakeMsg(clsPowerButton, 2)

Sent by the system to observers of thePowerButton. Indicates that the machine is in the process of
powering down.

Most applications do not need to observe the power button, since theSystem sends the appropriate
messages to all applications and services when the machine powers down.

The system will not power down until all observers of thePowerButton are notified. The ·system will
wait until the notification message has completed for each client.

POWERMGR.H

This file contains the API definition for class clsPowerMgr.

clsPowerMgr inherits from clsObject.

"thePowerMgr" is a well known object that provides system power management.

#ifndef POWERMGR_INCLUDED
#define POWERMGR INCLUDED
#ifndef GO_INCLUDED
#include <go.h>
#endif
#ifndef CLSMGR_INCLUDED
#include <clsmgr.h>
#endif

Common #defines and typedefs
typedef U16
typedef U16

PM_POWER_STATEi
PM_POWER_METRICS, *P_PM_POWER_METRICSi

Messages

msgPMSetPowerState
Sets the machine power state.

Takes PM_POWER_STATE, returns nothing.

#define msgPMSetPowerState
#define pmStandby flagO
#define pmPowerOff flag1
#define pmForceBoot flag2
#define pmQuickestPowerOnState

MakeMsg(clsPowerMgr, 1)
II power down to stand by state.
II power down to complete off.
II Force a cold boot on the machine

(pmStandby I pmPowerOff)
II quickest allowable power on state.

Initiates the powering down of the machine. The machine can be powered down in "standby" state (i.e.
RAM is maintained, but the rest of the system is shut down) or "complete off' state.

Powering down the machine will force all data to be saved to disk (if applicable) and will notify all
observers of the power button of this event (see power.h).

If the client is unfamiliar with the hardware configurations, use pmQuickestPowerOnState. This mode
will power down the machine to the state that will cause the machine to come up in the quickest
possible time.

pmForceBoot will force the machine to reset and cold boot the software. Caution: Under certain
configurations this may cause loss of datal!! Specifically, under a RAM only configuration, all the
contents of RAM will be lost.

656 PENPOINT API REFERENCE
Part 14 / Miscellaneous

msgPMGetPowerMetrics
Passes back the machine power information.

Takes P _PM_POWER_METRICS, returns STATUS.

#define msgPMGetPowerMetrics
#define pmStandbyPowerSupported
#define pmNoPowerSupported
#define pmStandbyButtonSupported
#define pmChargerConnectedSupported
#define pmldleStateSavesPower
#define pmChargerConnected
#define pmSomeDevicePoweredDown

MakeMsg(clsPowerMgr, 2)
flagO II only ram is alive
flagl II everything is off
flag2 II power button usage
flag3 II power connection
flag4 II idle = low power state?
flagS II is power connected?
flaglS II something is off

Passes back information on what power states are supported on this machine. The machine can support
either 1) standby or 2) power off or 3) both or 4) none. Setting none indicates that the software is

unable to change the power state of the machine.

This message also returns information on the charger and whether a standby button is supported.

msgPMDevicesPowerOn
Turns power on to all devices in the system.

Takes nothing, returns STATUS.

#define msgPMDevicesPowerOn MakeMsg(clsPowerMgr, 3)

msgPMDevicePoweringOn
Notifies observers that a device is powering up.

Takes U16, returns nothing. Category: observer notification.

#define msgPMDevicePoweringOn MakeMsg(clsPowerMgr, 4)

Sent by the system to observers of thePowerMgr. Indicates that a device (specified by MIL logical Id) is
powenng up.

msgPMDevicePoweringOff
Notifies observers that a device is powering down.

Takes U16, returns nothing. Category: observer notification.

#define msgPMDevicePoweringOff MakeMsg(clsPowerMgr, 5)

Sent by the system to observers of thePowerMgr. Indicates that a device (specified by MIL logical Id) is
powering off.

msgPMAllDevicesPoweredOn
Notifies observers that all devices have powered up.

Takes nothing, returns nothing. Category: observer notification.

#define msgPMAllDevicesPoweredOn MakeMsg(clsPowerMgr, 6)

Sent by the system to observers of thePowerMgr.

API 1 denotes PenPoint API Reference, Volume I

AB_MGR_CHANGE_TYPE, API2:349

AB_MGR_ID, API2:345-348

AB_MGR_ID_ TYPE, API2: 34 5

AB_MGR_LIST, API2:347

AB_MGR_NOTIFY, API2:349

Abs, API1:56

AcetateClear, API 1 :628

AcetateClear Disable, API 1 :628

AcetateClear Rect, APIl :629

AcetateCursor F reezePosition, API 1 :628

AcetateCursor Image, API 1 :628

AcetateCursor Request Visi ble, API 1 :627

AcetateCursor Thaw, APIl :627

AcetateCursor U pdateImage, APIl :628

AcetateCursorXY, API 1 :628

AcetateTransform, APIl:627

AddListItem, API2:78

AddListIternX, API2:77

ADDR_BOOK_ATTR, API2:354, API2:361

ADDR_BOOK_ATTR_DESC, API2:354

ADDR_BOOK_ATTR_OPS, API2:358

ADDR_BOOK_CHANGE_TYPE, API2:363

ADDR_BOOK_COUNT, API2:362

ADDR_BOOK_ENTRY, API2:354-358

ADDR_BOOK_ENTRY_CHANGE, API2:363

ADDR_BOOK_ENTRY_TYPE, API2:354

ADDR_BOOK_ENUM_GROUP _MEMBER,

API2:360

II

ADDR_BOOK_IS_A_MEMBER_OF, API2:361

ADDR_BOOK_METRICS, API2:361

ADDR_BOOK_QUERY, API2:359

ADDR_BOOK_QUERY_ATTR, API2:359

ADDR_BOOK_SEARCH, API2:359

ADDR_BOOK_SEARCH_DIR, API2:358

ADDR_BOOK_SEARCH_TYPE, API2:358

ADDR_BOOK_SERVICE, API2:354

ADDR_BOOK_SERVICE_QUAL, API2:354

ADDR_BOOK_SERVICES, API2:360

ADDR_BOOK_SVC_DESC, API2:360

ADDR_BOOK_ V ALUE_OPS, API2:359

ADDRESS, API2:419

ADDRESS_ACQUIRE, API2:422

AIM_NEW, API2:514

AIAP _HSLINK_NEW, API2:393

AIARM_NOTIFY, API2: 180

AM_METRICS, API 1: 130

API2 denotes PenPoint API Reference, Volume II

AM_ TERMINATE_VETOED, API 1: 135

ANIM_SPAPER_NEW, APIl:632-633

ANIM_SPAPER_NEW_ONLY, API1:632

ANIM_SPAPER_SCRIBBLE, API 1 :633-634

ANM~TTR_AUX_NB, API2:518

ANM~TTR_NO_LOAD, API2:518

ANM_ATTR_PERMANENT, API2: 523

ANM_ATTR_STATIONERY_MENU,

API2:518

ANM_AUX_NOTEBOOK, API2:517

ANM_ CREATE_DOC, API2: 519

ANM_ CREATE_SECT, API2: 519

ANM_DELETE, API2:521

ANM_DELETE_ALL, API2:521

ANM_EXIST _BEHAVIOR, API2:518

ANM_GET_MENU, API2:522

ANM_GET_NOTEBOOK_PATH, API2:521

ANM_GET_NOTEBOOK_UUID, API2:521

ANM_MENU_ADD_REMOVE, API2:523

ANM_MENU_NAME_CHANGED, API2:523

ANM_MOVE_COPY_DOC, API2:520

ANM_NEW, API2:519

ANM_OPEN_NOTEBOOK, API2:522

ANM_POP_UP_MENU, API2:522

APP_ACTIVATE_CHILD, APIl:89

APP _BORDER_METRICS, API 1 :97

APP _CHANGED, APIl: 108

APP_CHILD_CHANGED, APIl:106

APP_CREATED, APIl:106

APP _DELETED, API 1: 106

APP_DIR_ATTRS, API1:112

APP _DIR_FLAGS, APIl: 112

APP_DIR_GET_BOOKMARK, APIl:116

APP_DIR_GET_GLOBAL_SEQUENCE,

APIl:116

APP_DIR_GET_SET_ATTRS, API1:113

APP_DIR_GET_SET_FLAGS, APIl:113

APP_DIR_NEXT, API1:117

APP_DIR_SEQ_TO_NAME, API1:117

APP _DIR_SET _BOOKMARK, API 1: 116

APP_DI~UPDATE_CLASS, APIl:114

APP _DIR_ UPDATE_NUM_CHILDREN,

APIl:115

APP_DIR_UPDATE_SEQUENCE, API1:115

APP_DIR_UPDATE_UID, APIl:114-115

APP _DIR_ UPDATE_ UUID, API 1: 114

APP _EXECUTE, API 1: 104

APP _FIND_FLOATING_ WIN, API 1 :90

APP_FLAGS, API1:81

APP_FLOATED, API1:106

APP_GET_APP_WIN, APIl:94

APP _GET_EMBEDDED_ WIN, APIl :93

APP_GET_OPTION_SHEET, APIl:95

APP _LINK, API 1 :99-1 00

APP _METRICS, APIl :82, APIl :87

APP _MGR_ACTIVATE, API 1: 123

APP_MGR_CREATE, APIl:122

APP _MGR_DELETE, APIl: 124

APP _MGR_FLAGS, API 1: 120

APP _MGR_FS_MOVE_COPY, API 1: 124

APP _MGR_GET_RES_LIST, APIl: 126

APP_MGR_GET_ROOT, APIl:125

APP_MGR_METRICS, APIl:120, APIl:122

APP_MGR_MOVE_COPY, APIl:123-124

APP _MGR_MOVE_ COPY_STYLE, API 1: 123

APP_MGR_NEW, APIl:121

APP_MGR_RENAME, API1:125

APP_MOVED_COPIED, APIl:107

APP_NEW, APIl:83-84

APP_NEW_ONLY, APIl:83

APP_OPEN, APIl:86

APP_OPEN_CHILD, APIl:92

APP _OWNS_SELECTION, APIl :94

APP_SHOW_OPTION_SHEET, API1:96

APP _WIN_METRICS, API 1: 145

APP _WIN_NEW, API 1: 144

APP_WIN_NEW_ONLY, APIl:144

APP _WIN_STYLE, API 1: 144, API 1: 146

AppDebug, APIl :79

AppMain, API1:109

AppMonitorMain, API 1: 109

ASSERT, APIl:48

AtomGetName, API2: 11

ATP_ADDRESS, API2:365

ATP _OPTIONS, API2:365

ATP _RESPPKTSIZE, API2:367

ATTRIB, API2:371

ATTRIBUTES_GET, API2:422

BAFileReadString, API2:204

BAFile WriteString, API2:203

BATTERY_METRICS, API2:639

binarySearch, API2:647

658 INDEX

BITMAP_NEW, API 1 :226

BITMAP _NEW_ONLY, APIl :226

BITMAP_PIX_CHANGE, APll:227

BITMAP_STYLE, API 1 :225

BLOCK, AP12:419

BOOKSHELF_METRICS, API2: 183-184

BOOKSHELF_NEW, API2: 183

BOOKSHELF_NEW_ONLY, AP12: 183

BOOLEAN, APIl:56

BORDER_BACKGROUND, API 1 :340

BORDER_NEW, APIl :331

BORDER_NEW_ONLY, APIl:331

BORDER_STYLE, APIl:330,
APll:332-334, APll:337

BORDER_UNITS, APll:336

BorderInk, APIl :328

BorderU nits, API 1 :329

BorderUnitsCustom, APIl:329

BorderU nitsMult, API 1 :329

BROW JUSTIFY, AP12: 191

BROWSE~BOOKMARK, AP12: 196

BROWSE~COLUMN, AP12:191

BROWSER_COLUMN_STATE, AP12:192

BROWSER_ CREATE_DOC, API2: 196

BROWSER_DEF_COLUMN, AP12:191

BROWSER_GESTURE, API2: 197

BROWSER_GOTO, AP12:194

BROWSER_METRICS, API2: 191

BROWSER_NEW, API2: 187

BROWSER_NEW _ONLY, API2: 187

BROWSER_PATH, AP12:195

BROWSER_USE~COLUMN, API2:192-193

BUFFER_RETURN, AP12:421

BUTTON_NEW, API 1 :349

BUTTON_NEW_ONLY, APIl:348

BUTTON_NOTIFY, APIl:348, APIl:353

BUTTON_STYLE, APIl :348, APIl :350

BYTE_ARRAY, API2: 199

ByteArrayCreate, API2:20 1

ByteArrayDelete, AP12:202

ByteArrayDestroy, AP12:20 1

ByteArrayFindByte, AP12:200

ByteArrayFindIndex, AP12:200

ByteArrayGapLength, API2: 199

ByteArrayGetByte, AP12:200

ByteArrayGetMany, AP12:20 1

ByteArrayHeapMode, AP12:202

ByteArrayInsert, AP12:202

ByteArrayLength, AP12:202

ByteArrayPrint, AP12:200

ByteArrayRead, AP12:203

ByteArrayReplace, AP12:20 1

ByteArrayReserve, AP12:202

ByteArrayWrite, AP12:203

BYTEBUF _DATA, API2:205-206

BYTEBUF _NEW, API2:205-206

BYTEBUF _NEW_ONLY, AP12:205

CcittDecode31, APIl :230

CcittEncode31, API 1 :230

CG_GET_OWNER, AP12:589

CG_OWNER_NOTIFY, AP12:591

CG_SET_OWNER, AP12:590

CHARACTER_MEMORY, APIl:744

CHOICE_MGR_NEW, APIl:357

CHOICE_MGR_NEW _ONLY, API 1 :357

CHOICE_NEW, ApIl:359-360

CHOICE_NEW_ONLY, APIl:359

CHOICE_STYLE, APIl:359-360

CIM_ATTR_DEINSTALLABLE, AP12:526

CIM_FIND_CLASS, AP12:526

CIM_FIND_PROGRAM, AP12:527

CIM_GET_CLASS, AP12:526

CIM_LOAD, AP12:527

CIM_TERMINATE, AP12:527

CIM_TERMINATE_OK, AP12:527

CIM_TERMINATE_ VETOED, API2:526,
AP12:528

ClAlign, APIl:366

CLASS_INFO, APll:36

CLASS_NEW, API 1:6

CLASS_NEW _ONLY, APIl:6

CIChildEdge, API 1 :366

CIConstraint, APIl :366

ClExtend, API 1 :366

CLOSE_BOX_NEW, APll:371

CLOSE_BOX_NEW_ONLY, APIl:371

CLOSE_BOX_STYLE, APIl:371-372

CIRelWinEdge, API 1 :366

CLS_SYM_MSG, APIl:7

CLS_SYM_OB], APIl:7

CLS_SYM_STS, APll:7

ClsClearStatistics, APll:37

ClsDumpStatistics, APll:37

ClsMsg ToString, API 1 :33

ClsNum, APIl:9

ClsObjToString, APIl:33

ClsSetStatistics, APIl:37

ClsStatistics, APIl:37

ClsString ToMsg, APIl :34

ClsStringToObj, APIl:34

ClsStringToSts, APIl:34

ClsStringToTag, APll:34

ClsStsToString, APIl:32

ClsSymbolsInit, API 1 :34

ClsTagToString, APIl:33

COMMAND_BAR_NEW, APIl:373

COMMAND_BAR_NEW_ONLY, APIl:373

COMMAND_B~STYLE, APIl:373-374

CONNECTIONS_COMPARE, API2:372,
AP12:376

CONNECTIONS_CONNECT_STATE,
AP12:370

CONNECTIONS_ENUMERATE,
API2:371-372

CONNECTIONS_ITEM, AP12:370

CONNECTIONS_MENU_ITEM, AP12:370

CONNECTIONS_NOTIFY, API2:376-377

CONNECTIONS_PASSWORDS, API2:370

CONNECTIONS_PERMISSIONS, AP12:370

CONNECTIONS_REQUEST, API2:374-375

CONNECTIONS_SERVICE_INFO, AP12:373

CONNECTIONS_STATE, API2:370-371

CONNECTIONS_TAG, AP12:372

CONNECTIONS_TAG_ITEM, AP12:373

CONNECTIONS_WARNINGS, AP12:370

CONTROL_ENABLE, API 1:379

CONTROL_NEW, APIl:376

CONTROL_NEW_ONLY, APll:376

CONTROL_PROVIDE_ENABLE, API 1 :381

CONTROL_STRING, APIl:376

CONTROL_STYLE, APIl:375, APIl:377

Coordl6from32, APll:234

Coord32To 16, API 1 :234

CORKBOARD_WIN_NEW, APIl: 150

CORKBOARD_WIN_NEW_ONLY, APIl:149

COUNTE~ACTION, APIl:386

COUNTER_NEW, APIl :384

COUNTER_NEW _ONLY, API 1 :383

COUNTE~NOTIFY, API 1 :386

COUNTER_STYLE, API 1 :383-384

CSTM_LAYOUT_CHILD_SPEC, APIl:366,
API 1 :368-369

CSTM_LAYOUT _CONSTRAINT,APIl :365

CSTM_LAYOUT_DIMENSION, APIl:366

CSTM_LAYOUT_METRICS, APIl:365,
APll:367

CSTM_LAYOUT_NEW, APIl:367

CSTM_LAYOUT _SPEC, API 1 :366

CSTM_LAYOUT_STYLE, APll:365,
APIl:368

CstmLayoutSpeclnit, APIl :368

CURRENT_STD_PEN_DATA, APll:708

DATE_FIELD _NEW, APIl: 5 86

DATE_FIELD_NEW_ONLY, APIl:586

DATE_FIELD _STYLE, API 1: 58 5-586

Dbg, APIl:48

DbgFlag, API1:48

DbgFlagGet, APIl:50

DbgFlagSet, APIl :49

Debugf, APIl :49

Debugger, API2: 148

DECODE31, APIl :229

DIALENV _AREA_CITY, API2:383

DIALENV_BUILD_DIALSTR, API2:385

DIALENV _COUNTRY, API2:383

DIALENV _DIAL_STRING, API2:384

DIALENV _ENVIRONMENT, API2:384

DIALENV _FIELD _NEW, API2:388-389

DIALENV _INTL_ACCESS, API2:384

DIALENV _LONG_DIST, API2:384

DIALENV _MACRO_CODE, AP12:384

DIALENV _MACRO_IDS, API2:386

DIALENV_NEW, AP12:385

DIALENV_OPTCARD_NEW, API2:387-388

DIALENV _OPTCARD _NEW_ONLY,

API2:387

DIALENV _OUTSIDE_LINE, API2:383

DIALENV _SUFFIX, AP12:384

DIALENV _TELEPHONE_NUMBER,
API2:384

DIR_ID_CACHE, AP12:86

DirIdGetParent, AP12:95

DPrintf, APIl:49

DumpRect, API1:239

DV_GET_OPEN_VOLS, AP12:211

DV _NEW, API2:209

DV_NEW_ONLY, API2:208

DV _STYLE, API2:208, API2:21 0

DYN_ TABLE_FINO_BUTTON, AP12: 531

DYN_TABLE_NEW, API2:530

DYN_TABLE_NEW_ONLY, AP12:530

DYN_TABLE_STYLE, API2:529

DYNARRAY, AP12:642

DYNARRAY_SEARCH, API2:645

DynArrayBinSearch, API2:645

DynArrayContract, API2:643

DynArrayCount, API2:645

DynArrayDelete, AP12:644

DynArrayElemSize, AP12:645

DynArrayExpand, API2:643

DynArrayFree, AP12:642

DynArrayGet, AP12:643

DynArrayGetPtr, AP12:644

DynArraylnsert, API2:644

DynArrayMax, AP12:645

DynArrayNew, AP12:642

DynArraySet, AP12:643

DynResld, AP12:493

EMBEDDED_ WIN_BEGIN_MOVE_COPY,

APIl:161

EMBEDDED_WIN_GET_DEST, APIl:164

EMBEDDED_WIN_INSERT _CHILD,

APIl:165

EMBEDDED_WIN_METRICS, APIl: 174

EMBEDDED_ WIN_MOVE_COPY,

API1:162-163

EMBEDDED_ WIN_MOVE_COPY_OK,

APIl:163

EMBEDDED_WIN_NEW, API 1: 174

EMBEDDED_WIN_NEW_ONLY, APIl:174

EMBEDDED_ WIN_PROVIDE_ICON,

APIl:162

EMBEDDED_WIN_SHOW _CHILD,

APIl :166

EMBEDDED_WIN_STYLE, APIl: 173

EMBEDDEE_PRINT _INFO, API 1 :205

ENCODE31, APIl:229

ENUM_CALLBACK, AP12:255

ENUM_ITEMS, API2:256

ENUM_RECT_ITEMS, AP12:255

Enum16, APIl:55

Enum32, APIl:55

Even, APIl:56

EXCL_ VOL_ACCESS, AP12:98

EXPORT_DOC, API2:216

EXPORT_FORMAT, API2:216-217

EXPORT_LIST, API2:216

FIELD_ACTIVATE_POPUP, APIl:395

FIELD_CREATE_POPUP, APIl:396

FIELD_NEW, APIl:392

FIELD_NEW_ONLY, APIl:392

FIELD_NOTIFY, APIl:391, APIl:399

FIELD_STYLE, APIl:391, APIl:393

FIELD_XLATE, APIl:392

FIM_FIND_ID, API2:535

FIM_GET_INSTALLED_ID_LIST, API2:536

FIM_GET_NAME_FROM_ID, AP12:535

FIM_GET_SET_ID, API2:534-535

FIM_LONG_ID, API2:534

INDEX 659

FIM_NEW, API2:534

FlM_PRUNE_CONTROL, API2:536

FindListItem, AP12:78

FindListIternX, AP12:77

FIXED_FIELD_NEW, APIl :588

FlXED_FlELD_NEW_ONLY, APIl:588

FIXED_FIELD_STYLE, APIl:587-588

FlagClr, APIl:56

FlagOff, APIl:56

flagOn, API1:56

FlagSet, APIl :56

FLAP_NEW, API2:391

FONTLB_NEW, API 1 :401-402

FONTLB_NEW_ONLY, APIl:401

FONTLB_STYLE, API 1 :401-402

FRAME_NEW, API 1 :406-407

FRAME_NEW_ONLY, APIl:406

FRAME_STYLE, API1:405, API1:408-409

FRAME_ZOOM, APIl:405, APIl:413

FS_CHANGE_INFO, AP12:68

FS_CONNECT_VOL, AP12:97

FS_DIR_NEW_MODE, API2:58

FS_DISCONNECT _VOL, API2:97

FS_EXCL_ VOL_ACCESS, API2:98

FS_EXIST, API2:57

FS_FILE_NEW _MODE, API2: 58

FS_FLAT_LOCATOR, API2:56

FS_GET_PATH, AP12:63

FS_GET_PATH_MODE, AP12:58

FS_GET_SET_ATTR, AP12:63

FS_GET_ VOL_METRICS, API2:61

FS_INSTALL_ VOL, AP12:96

FS_LOCATOR, API2:56, API2:69

FS_MAKE_NATIVE, API2:67

FS_MOVE_COPY, API2:64-65

FS_MOVE_COPY_EXIST, AP12:57

FS_MOVE_COPY_MODE, API2:58

FS_MOVE_COPY_NOTIFY, AP12:66

FS_NEW, API2:59-60

FS_NEW_ONLY, API2:59

FS_NODE_EXISTS, API2:62

FS_NODE_FLAGS, API2:56

FS_NODE_FLAGS_ATTR, AP12:56

FS_NOTIFY_OP, API2:66

FS_NOTIFY_RTN_INFO, API2:66

FS_NOTIFY_TIME, API2:65

FS_READ_DIR, AP12:69

FS_READ_DIR_FULL, AP12:70

FS_REGISTER_ VOL_CLASS, AP12:96

FS_REMOVE_ VOL, API2:97

660 INDEX

FS_SEEK, API2:72

FS_SEEK_MODE, AP12:59

FS_SET _HANDLE_MODE, AP12:62

FS_SET_SIZE, AP12:72

FS_TRAVERSE, API2:70

FS_ TRAVERSE_MODE, AP12:58

FS_UPDATE_ VOLS_MODE, AP12:98

FS_ VOL_CHANGE_FLAGS, AP12:69

FS_ VOL_CHANGE_INFO, AP12:69

FS_ VOL_FLAGS, AP12:57

FS_ VOL_HEADER, AP12:57

FS_ VOL_LIST, AP12:97

FS_ VOL_LIST_ACCESS, AP12:97

FS_ VOL_SPECIFIC, AP12:68

FS_ VOL_TYPE, AP12:56

FSAttr, AP12:54

FSAttrCIs, AP12:54

FSAttrIsFix32, AP12:54

FSAttrIsFix64, AP12:54

FSAttrIsStr, AP12:54

FSAttrIsVar, AP12:54

FSMakeAttr, AP12:54

FSMakeFix32Attr, AP12:54

FSMakeFix64Attr, AP12:54

FSMakeStrAttr, AP12:54

FSMakeVarAttr, AP12:54

FSNameValid, AP12:73

FxAbs, API2: 127

FxAdd, API2: 124

FxAddSC, API2: 124

FxArc T anFx, API2: 127

FxArcTanInt, AP12:127

FxBinToStr, AP12: 128

FxChop, AP12:128

FxChopSC, API2: 128

FxCmp, API2: 123

FxCos, AP12: 126

FxCosFx, AP12:127

FxDiv, AP12:125

FxDivInts, API2: 126

FxDivIntsSC, AP12:126

FxDivIntToInt, AP12:126

FxDivIntToIntSC, AP12:126

FxDivSC, API2: 125

FxF raction, AP12: 128

FxIntToFx, AP12:128

FxMakeFixed, AP12:128

FxMul, API2: 124

FxMulInt, API2: 125

FxMulIntSC, API2:125

FxMulIntToInt, AP12:125

FxMulIntToIntSC, AP12:125

FxMuISC, AP12: 124

FxN egate, API2: 124

FxRoundT oInt, API2: 128

FxRoundT oIntSC, API2: 128

FxSin, AP12:126

FxSinFx, AP12:127

FxStrToBin, AP12: 129

FxSub, AP12: 124

FxSubSC, API2: 124

FxTan, AP12:127

FxTanFx, AP12:127

GESTURE_MARGIN_NEW, AP12:219

GESTURE_MARGIN_NEW _ONLY, AP12:219

GESTURE_MARGIN_STYLE, API2:219-220

GetAttr, AP12:75

GetList, AP12: 77

GetListX, API2: 76

GetNodeName, AP12:75

GetSingleAttr, AP12:75

GO_DIR_CACHE, AP12:105

GO _Dn~_ENTRY, API2: 104

GO_DIICENTRY_HEADER, AP12:104

GO _DIICENTRY_ TYPES, API2: 104

GO_DIR_FINDTYPE, AP12:103

GO_DIR_USER_ATTR, API2: 104

GOTO_BUTTON_GET_LABEL, APIl:177

GOTO_BUTTON_NEW, APIl:175

GOTO_BUTTON_NEW _ONLY, APIl: 175

GRAB_BOX_INFO, APl1:418-419

GRAB_BOX_NEW, APIl :418

GRAB_BOX_NEW_ONLY, APIl:418

GRAB_BOX_STYLE, APIl:417-419

GrabBoxIntersect, API 1 :420

GrabBoxLoc T o Rect, APIl :420

GrabBoxPaint, API 1 :420

GWlN_GESTURE, APIl:642, APIl:644,
APIl:646-648, APIl:650-651

GWlN_NEW, APIl :642

GWlN_NEW_ONLY, APIl:642

GWlN_STYLE, API 1 :641, API 1 :643

HASH_ENTRY, AP12:224

HASH_INFO, AP12:224

HashAddEntry, AP12:225

HashDeleteEntry, AP12:225'

HashFindData, API2:225

HashFindTableEntry, AP12:225

HashFree, AP12:226

HashInit, AP12:226

HashInitDefaults, AP12:226

HighU16, APIl:56

HighU8, APIl :56

HIM_ATTR_ENGINE_AVAILABLE, AP12:538

HIM_AVAILABILITY_NOTIFY, AP12:539

HIM_GET_SET_ENGINE, AP12:539

HIM_NEW, API2:538

HS_PACKET_CHAR_HANDLER, AP12:396

HS_PACKET_METRICS, AP12:395

HS_PACKET_NEW, AP12:397

HS_PACKET_SEND_PACKET, AP12:396

HS_PACKET_STATUS, AP12:396

HWCUSTOM_NEW, APIl:655-656

HWCUSTOM_NEW_ONLY, APIl:655

HWLETTEICNEW, APIl:657-658

HWLETTER_NEW _ONLY, APIl :657

HWX_SVC_CURRENT_CHANGED,
AP12:581

HWX_SVC_NEW, API2:581

HWX_SVC_NEW _ONLY, API2:581

ICON_CHOICE_NEW, APIl :423

ICON_CHOICE_NEW_ONLY, APIl:423

ICON_CHOICE_STYLE, API 1 :423

ICON_COPY_PlXELS, API 1 :429

ICON_NEW, API 1 :426

ICON_NEW_ONLY, APIl:426

ICON_PROVlDE_BITMAP, API 1 :428

ICON_SAMPLE_BIAS, API 1 :429

ICON_STYLE, APIl:425, APIl:427

ICON_TABLE_NEW, APIl :431

ICON_TABLE_NEW_ONLY, APl1:431

ICON_ TABLE_STYLE, APIl :431

ICON_ TOGGLE_NEW, API 1 :433-434

ICON_TOGGLE_NEW_ONLY, APIl:433

ICON_TOGGLE_STYLE, API 1 :433-434

ICON_ WIN_METRICS, API 1: 181

ICON_WIN_NEW, APIl:180

ICON_WlN_NEW_ONLY, APIl:180

ICON_ WIN_STYLE, API 1: 179, API 1: 181

IDataDeref, APl1:9

IDataPtr, APIl:9

1M_ACTIVATE, AP12:560

IM_ADD_CARDS, AP12:560

IM_ATTR_CURRENT, AP12:547

IM_ATTR_DEPENDENT, AP12:548

IM_ATTICINUSE, AP12:548

IM_ATTR_MODIFIED, API2:548

IM_ATTR_SYSTEM, API2:548

IM_CURRENT_NOTIFY, API2:558

1M_DEACTIVATE, API2:559

IM_DEINSTALL, AP12:555

IM_DEINSTALL_NOTIFY, AP12:559

IM_DUP, API2:555

1M_EXISTS, API2:557

1M_FIND, API2:555

IM_GET_ITEM_ICON, API2:561

1M_GET _SET_NAME, API2: 5 5 3

IM_GET_SIZE, API2:554

IM_GET_STATE, AP12:554

IM_GET_ VERSION, API2:553

1M_INSTALL, AP12:554

1M_INSTALL_EXIST, AP12:554

IM_INUSE_NOTIFY, API2:558

1M_MODIFIED_NOTIFY, AP12:558

1M_NEW, API2:549

1M_NEW _ONLY, AP12:549

1M_NOTIFY, API2:558-559

IM_RENAME_UNINSTALLED, API2:561

IM_SET_INUSE, API2:552

IM_SET_MODIFIED, API2:552

1M_STYLE, API2:548, API2:550-551

IM_UCDEINSTALL, API2:557

IM_UCDUP, API2:557

IM_UCINSTALL, API2:557

IMModuleLoad, API2:543

IMPORT_DOC, AP12:230

IMPORT_QUERY, API2:230

IMProgramInstall, API2: 543

INBX_DOC_EXIT _BEHAVIOR, AP12:405

INBX_DOC_GET_SERVICE, API2:401

INBX_DOC_IN_INBOX, API2:40 1

INBX_DOC_INPUT _DONE, API2:406-407

INBX_DOC_STATUS_CHANGED, AP12:408

INBXSVC_DOCUMENT, API2:403-405

INBXSVC_MOVE_COPY_DOC, API2:402

INBXSVC_NEW, API2:400-401

INBXSVC_NEW _ONLY, AP12:400

INBXSVC_QUERY_STATE, AP12:406

INCFILE_NEW, API2:542

INCFILE_NEW_ONLY, API2:541

INCFILE_STYLE, API2: 541

INPUT_EVENT, API 1 :666

INPUT_MODAL_DATA, APIl:669

InputEventlnsert, APII :668

InputFilterAdd, APll:667

InputF ilter Remove, API 1 :668

InputGetGrab, APII :669

InputGetTarget, APIl:668

InputSetGrab, API 1 :669

InputSetTarget, APll:668

InRange, APIl:56

INSTALL_PROTOCOL, API2:421

InstallMILDevice, API2: 5 84

INTEGER_FIELD_NEW, ApIl:589-590

INTEGER_FIELD_NEW_ONLY, APIl:589

INTEGER_FIELD_STYLE, APIl:589-590

InvalidUUID, AP12:83

IOBX_DOC_EXIT _BEHAVIOR, AP12:416

IOBX_DOC_GET_SERVICE, API2:411

IOBX_DOC_IN_IOBOX, AP12:412

IOBX_DOC_OUTPUT _DONE, API2:416,
AP12:418

IOBX_DOC_STATUS_CHANGED, AP12:418

IOBXSVC_ATTR_DOC_STATE, API2:410

IOBXSVC_DOCUMENT, API2:413-415

IOBXSVC_MOVE_COPY_DOC,
API2:412-413

IOBXSVC_NEW, API2:411

IOBXSVC_NEW_ONLY, API2:411

IOBXSVC_QUERY_STATE, API2:417

IOBXSVC_SECTION_METRICS, AP12:411

IP _NEW, API 1 :677-678

IP_NEW_ONLY, APIl:677

IP _STRING, APII :684

IP _STYLE, APII :676, APII :679

IP_XLATE, APIl:677

IP_XLATE_DATA, APIl:683

IUCMETRICS, API2:565

IUCSELECT_ITEM, AP12:564

IUI_SHOW_CARD, AP12:564

_Illi QUii £ am

KEY_DATA, APIl:691

KEY_MULTI, APIl:691

KEYBOARD_NEW, APIl:694

KEYBOARD_NEW_ONLY, APIl:694

KEYBOARD_RET, APIl:694

KEYCAP_GET_DC, APIl:699

KEYCAP _HILITE, API 1 :699

KEYCAP _INFO, APII :698-699

KEYCAP _NEW, APII :698

KEYCAP_NEW_ONLY, APIl:698

KEYCAP_SCAN, APIl:698

KEYCAP_TABLE, APll:697

KeyIn, API2: 149

KeyPressed, API2: 149

KEYSTATE, APIl:701

II

INDEX 661

KEYSTATE_CODES, APIl:702

KEYSTATE_SCANS, APIl:702

KeyStateConvert, API 1 :702

KeyStateDisplay, APIl:702

KeyStateFindScan, APII :702

KeyStateProcess, APIl:701

KeyStateReturn, APIl: 702

KeyStateSetup, APIl:701

LABEL_ALIGN, APIl:446

LABEL_BOX_METRICS, APIl:445

LABEL_NEW, APll:440

LABEL_NEW_ONLY, APIl:439

LABEL_RECT, APIl:446

LABEL_RESOLVE, APll:446

LABEL_STYLE, APll:439-441

LDirldGetParent, API2: 112

LINK_ATTRIBUTES, API2:420

LINK_HEADER, AP12:420

LINK_OPERATING_STATUS, API2:420

LINK_SERVICES, API2:420

LINK_STATUS, API2:420

LINK_TRANSMIT, API2:421

LIST_BOX_DATA_FREE_MODE, APIl:452

LIST_BOX_ENTRY, APIl:452,
APIl:454-459

LIST_BOX_ENTRY_ENUM, APll:452,

APIl:456

LIST_BOX_ENTRY_STATE, APIl:452

LIST_BOX_METRICS, APIl:452-453

LIST_BOX_NEW, APIl:453

LIST_BOX]OSITION_XY, APIl:452,
APIl:457

LIST _BOX_STYLE, APll:4 51

LIST_ENTRY, API2:233, API2:235-237

LIST_ENUM, API2:237

LIST_FILE_MODE, AP12:234

LIST_FREE, API2:235

LIST_FREE_MODE, API2:235

LIST_NEW, API2:234

LIST_NEW_ONLY, AP12:234

LIST_NOTIFY, API2:233, API2:238-239

LIST_NOTIFY_ADDITION, API2:239

LIST _NOTIFY_DELETION, API2:239

LIST _NOTIFY_EMPTY, API2:240

LIST _NOTIFY_REPLACEMENT, API2:240

LIST_STYLE, AP12:234

LOCATION_NAME, AP12:387

LowU16, APIl:56

LowU8, APIl:56

662 INDEX

L VN ativeN arne, AP12: 112

LVNClose, AP12:108

LVNCreate, AP12:108

L VNDelete, AP12: 1 08

LVNDirPosDeleteAdjust, AP12:109

L VNFlush, API2: 112

LVNGet, AP12:106

L VN GetAndOpenByDirld, API2: 107

LVNGetAndOpenParent, AP12:107

L VNGetAttrlnfo, API2: 11 0

LVNGetDirld, AP12:109

L VN GetN umAttrs, API2: 110

L VNGetSize, API2: 111

LVNMove, AP12:108

L VNN arne, API2: 109

L VNOpen, AP12: 1 07

L VNRead, API2: 111

LVNReadDir, AP12:109

L VNRelease, API2: 107

L VNSetAttrlnfo, AP12: 110

L VNSetSize, API2: 112

LVNWrite, AP12:111

LVSetVolNarne, API2: 106

L VSpecificMsg, AP12: 106

L VStatus, API2: 105

L VU pdateInfo, API2: 1 06

MakeDialEnvQHelpResld, AP12:381

MakeDialogTag, APIl:550

MakeDynResld, AP12:493

MakeDynUUID, AP12:84

MakeGlobalWKN, APIl:57

MakeIndexedResld, AP12:493

MakeInvalidUUID, AP12:83

MakeListResld, AP12:493

MakeMsg, APll:9

MakeNilUUID, AP12:83

MakePrivateResAgent, AP12:493

MakePrivateWKN, APIl:57

MakeProcessGlobalWKN, APll:57

MakeStatus, API 1 :59

MakeTag, APIl:58

MakeTagWithFlags, APll:58

MakeU16, APIl:56

MakeU32, APIl:56

MakeWarning, APll:59

MakeWKN,APll:57

MakeWknObjResld, AP12:493

MakeWknResld, AP12:493

MakeWknUUID, AP12:83

MARK_COMPARE_TOKENS, APIl:193

MARK_COMPONENT, APIl:186,
APll: 191, APll: 194

MARK_GET _CHILD, API 1: 196

MARK_ GOTO, API 1: 192

MARK_MESSAGE, API 1: 187-190,
APll:196-198

MARK_MSG_HEADER, API 1: 187

MARK_NEW, APIl:188

MARK_NEW_ONLY, APIl:188

MARK_POSITION_CHILD, APIl:195

MARK_POSITION_EDGE, API 1: 195

MARK_POSITION_GESTURE, APll:196

MARK_POSITION_SELECTION, APll:196

MARK_POSITION_TOKEN, APIl:195

MARK_SEND, APll:190

MARK_SHOW_TARGET, APIl:197

MARICTOKEN, APIl:186, APIl:192-193,
APIl:198

MarkHandler ForClass, API 1: 187

MAT, APIl:234

MatCreate, API 1 :236

MatDurnp, APIl :239

MatIdentity, API 1 :236

MatInvert, APll:237

MatMultiply, APIl:237

MatRotate, APll:237

MatScale, APll:237

MatTransforrnRECT32, APIl:239

MatTranslate, APIl:237

MatWHTransforrnl6, APIl:238

MatWHTransforrn32, APIl:238

MatXYTransforrnl6, APIl:238

MatXYTransforrn32, APIl:238

Max, APIl :56

MENU_BUTTON_NEW, APIl :464

MENU_BUTTON_NEW_ONLY, APIl:464

MENU_BUTTON_PROVIDE_MENU,
APll:463, API 1:468-469

MENU_BUTTON_SHOW_MENU, APll:467

MENU_BUTTON_STYLE, APIl:463,
APIl:465

MENU_NEW, APIl:475-476

MENU_NEW _ONLY, APII :475

MEI'4U_STYLE, APIl:475, APIl:477

MIL_SVC_ADD_TO_CONFLlCT_MANAGER,
AP12:587

MIL_SVC_ARE_YOU_CONNECTED,
AP12:587

MIL_SVC_DEVICE, API2:584, AP12:586

MIL_SVC_NEW, API2:585

MIL_SVC_NEW_ONLY, AP12:584

Min, APIl:56

MODAL_FILTER_METRICS, API 1 :482

MODAL_FILTE~NEW, APll:482

MODEM_ACTIVITY, AP12:424

MODEM_ANSWER_MODE, AP12:429

MODEM_AUTO_ANSWER, AP12:429

MODEM_CHARACTERISTICS, AP12:434

MODEM_CONNECTION, AP12:427

MODEM_CONNECTION_INFO, AP12:427

MODEM~DCE_CONTROL, AP12:434

MODEM_DIAL, AP12:429

MODEM_DIAL_MODE, API2:428

MODEM_DUPLEX_MODE, AP12:431

MODEM_HARDWARE_BUFFERS, AP12:434

MODEM_HARDW ARE_FEATURES,
AP12:433

MODEM_HARDWARE_MANUFACTURER,
AP12:433

MODEM_HARDW ARE_MODEL, AP12:433

MODEM_LINK_CONTROL, AP12:427

MODEM_METRICS, AP12:433

MODEM_MNP _BREAK_TYPE, API2:432

MODEM_MNP _COMPRESSION, AP12:432

MODEM_MNP _FLOW_CONTROL,
API2:432

MODEM_MNP _MODE, AP12:432

MODEM_NEW, AP12:434

MODEM_RESPONSE, AP12:424

MODEM_RESPONSE_BEHA VIOR, AP12:426

MODEM_RESPONSE_INFO, AP12:425

MODEM_RESPONSE_MODE,API2:426

MODEM_SEND_COMMAND, API2:427

MODEM_SET _AUTO_ANSWER, AP12:429

MODEM_SIGNALLING_MODES, AP12:430

MODEM_SIGNALLING_VOICEBAND,
AP12:430

MODEM_SIGNALLlNG_ WID EBAN D,
AP12:430

MODEM_SPEAKE~CONTROL, AP12:431

MODEM_SPEAKE~ VOLUME, API2:431

MODEM_TIMEOUT, API2:426

MODEM_TONE_DETECTION, API2:430

MOVE_COPY_ICON_DONE, APll:473

MOVE_COPY_ICON_NEW, APIl:472

MOVE_COPY_ICON_NEW_ONLY, APIl:471

MOVE_ COPY_ICON_STYLE, API 1 :471-473

MOVE_ITEMS, AP12:254

MSG_HANDLER_FLAGS, API 1 :36

MSG_INFO, APIl :36

MSG_NOT_UNDERSTOOD, APll:25

rnsgABMgrActivate, API2:347

msgABMgrChanged, API2:348

msgABMgrClose, API2:347

msgABMgrDeactivate, API2:348

msgABMgrlsActive, API2:348

msgABMgrList, API2:347

msgABMgrOpen, API2:346

msgABMgr Register, API2:346

msgABMgr U nregister, API2:346

msgAdded, APIl:25

msgAdded, API 1 :781

msgAddObserver, APIl :23

msgAddObserverAt, API 1 :23

msgAddrBookAdd, API2:357

msgAddrBookAddAttr, API2:361

msgAddrBookCount, API2:362

msgAddrBookDelete, API2:358

msgAddrBookEntryChanged, API2:362

msgAddrBookEnumGroupMembers,
API2:360

msgAddrBookGet, API2:355

msgAddr BookGetMetrics, API2:361

msgAddr BookGetServiceDesc, API2:360

msgAddrBookIsAMemberOf, API2:361

msgAddrBookSearch, API2:358

msgAddrBookSet, API2:356

msgAIMGetMaskClass, API2:514

msgAIMSetMaskClass, API2: 514

msgAM GetlnstallD ir, API 1: 131

msgAM GetMetrics, API 1: 130

msgAMLoadAuxNotebooks, APIl:133

msgAMLoadFormatConverters, API 1: 133

msgAMLoadHelp, APIl:132

msgAMLoadlnitD 11, API 1: 131

msgAMLoadMisc, API 1: 131

msgAMLoadOptionalDlls, API 1: 133

msgAMLoadStationery, API 1: 131

msgAMPopupOptions, API 1: 132

msgAMRemoveHelp, API 1: 132

msgAMRemoveStationery, API1: 132

msgAMT erminate, API 1: 134

msgAMT erminateO K, API 1: 134

msgAMT erminate Vetoed, API 1: 135

msgAMU nloadFormatConverters,
APIl:133

msgAMU nloadOptionalDlls, API 1: 134

msgAncestor, APIl:18

msgAncestorlsA, API 1: 18

msgAniimSPaperDone, APIl:635

msgAnimSPaperGetDelay, API 1 :634

msgAnimSPaperGetlnterstroke, API 1 :634

msgAnimSPaperGetLine, API 1 :634

msgAnimSPaperGetScale, API 1 :635

msgAnimSPaper ReadScribble, API 1 :633

msgAnimSPaperSetDelay, API 1 :634

msgAnimSPaperSetlnterstroke, API 1 :634

msgAnimSPaperSetLine, API 1 :634

msgAnimSPaperSetScale, APIl:635

msgAnimSPaperW riteScribble, APIl :634

msgANMAddT oStationeryMenu,
API2:522

msgANMCopylnDoc, API2:520

msgANM Create Doc, API2: 519

msgANM Create Sect, API2: 519

msgANMDelete, API2: 521

msgANMDeleteAll, API2: 521

msgANMGetNotebookPath, API2:521

msgANMGetNotebookUUID, API2:521

msgANMGetStationeryMenu, API2:522

msgANMMovelnDoc, API2:520

msgANMOpenNotebook, API2:522

msgANMPopUpStationeryMenu,
API2:522

msgANMRemoveFromStationeryMenu,
API2:523

msgANMStationeryMenuN ameChanged,
API2:523

msgAppAbout, API1:102

msgAppActivate, API 1 :84

msgAppActivateChild, API 1: 89

msgAppActivateChildren, API 1 :89

msgAppActivateCorkMargin Children,
APIl:89

msgAppAddCards, API1:96

msgAppAddFloatingWin, API 1 :90

msgAppApplyEmbeddeeProps, API 1 :97

msgAppChanged, API 1: 108

msgAppChildChanged, API 1: 1 06

msgAppClose, APIl:87, APIl:130

msgAppCloseChild, API 1 :92

msgAppCloseChildren, API 1 :92

msgAppClosed, API 1: 105

msgAppCloseTo, API1:94

msgAppCopied, API 1: 107

msgAppCopySel, API1: 102

msgAppCreateClient Win, API 1: 1 00

msgAppCreated, API 1: 106

msgAppCreateLink, API 1 :99

msgAppCreateMenuBar, API 1: 100

msgAppDelnstalled, API 1: 1 08

msgAppDelete, API1:89

msgAppDeleted, API 1: 106

msgAppDeleteLink, API 1: 100

INDEX 663

msgAppDeleteSel, API 1: 103

msgAppDirGetAttrs, API 1: 113

msgAppDirGetBookmark, API 1: 116

msgAppDirGetClass, API 1: 114

msgApp DirGetDirectN umChildren,
APIl:117

msgAppDirGetFlags, APIl: 113

msgAppDirGetGlobalSequence, APIl: 116

msgAppDirGetNext, API1: 117

msgAppDirGetN extlnit, API 1: 116

msgAppDirGetN umChildren, API 1: 115

msgAppDirGetSequence, API 1: 115

msgApp DirGet T otaiN umChildren,
APIl:118

msgAppDirGetUID, APIl:114

msgAppDirGetUUID, APIl:114

msgAppDirReset, API1:117

msgAppDirSeqToName, APIl:117

msgApp D irSetAttrs, API 1: 113

msgAppDirSetBookmark, API 1: 116

msgAppDirSetClass, APIl: 114

msgAppDirSetFlags, APIl:113

msgAppDirSetNumChildren, APIl:115

msgAppDirSetSequence, APIl: 115

msgAppDirSetUID, APIl: 115

msgAppDirSetUUID, APIl:114

msgAppDispatch, APIl:88

msgAppExecute, APIl: 104, API2:458

msgAppExecuteGesture, API 1: 1 04

msgAppExport, API 1: 101

msgAppFindFloatingWin, APIl:90

msgAppFloated, API 1: 1 06

msgAppGetApp Win, API 1 :93

msgAppGetBorderMetrics, API 1 :97

msgAppGetDocOptionSheetClient,
API1:96

msgAppGetEmbeddedWin, API 1 :93

msgAppGetEmbeddor, APIl:93

msgAppGetLink, API 1: 100

msgAppGetMetrics, API 1: 87

msgAppGetName, APIl:88

msgAppGetOptionSheet, API 1 :95

msgAppGetRoot, API 1 :90

msgApp Help, API 1: 102

msgAppHide, API 1 :95

msgApplmport, API1: 101

msgApplnit, APIl:85, APIl:129

msgApplnstalled, API 1: 108

msgApplnvokeManager, API 1: 1 04

msgAppIsPageLevel, API 1 :99

msgAppMgrActivate, API 1: 123

664 INDEX

msgAppMgrCopy, APIl:123

msgAppMgrCreate, API 1: 122

msgAppMgrDelete, API 1: 124

msgAppMgrDumpSubtree, APIl:126

msgAppMgrFSCopy, APIl:124

msgAppMgr FSMove, API 1 : 124

msgAppMgrGetMetrics, API 1: 122,
API2:560

msgAppMgrGetResList, API 1: 126

msgAppMgrGetRoot, API 1: 125

msgAppMgrMove, API 1: 123

msgAppMgrRename, API 1: 125

msgAppMgrRenumber, API 1: 126

msgAppMgrRevert, API 1: 126

msgAppMgrSetIconBitmap, APIl:125

msgAppMgrSetSmallIconBitmap,
APIl:125

msgAppMgrShutdown, APIl:125

msgAppMoved, API 1: 107

msgAppMoveSel, API 1: 102

msgAppOpen, APIl:86, APIl:129

msgAppOpenChild, API 1 :92

msgAppOpenChildren, API 1 :92

msgAppOpened, APIl:105

msgAppOpenTo, APIl:94

msgAppOwnsSelection, APII :94

msgAppPrint, API 1: 101

msgAppPrin tSetu p, API 1: 101

msgAppProvideMain Win, API 1: 99

msgAppRemoveFloatingWin, APIl:90

msgAppRename, APIl :88

msgAppRestore, APIl:85, APIl:129

msgAppRestoreFrom, APIl:85

msgAppRevert, API 1 :99

msgAppSave, APIl:85

msgAppSaveChild, API 1: 86

msgAppSaveChildren, APIl:86

msgAppSaveTo, APIl:86

msgAppSearch, API 1: 103

msgAppSel Changed, API 1: 105

msgAppSelectAlI, API 1: 103

msgAppSelectAlI, API2:248

msgAppSelOptions, API 1: 103

msgAppSend, API 1: 101

msgAppSetBorderStyle, API 1 :98

msgAppSetChildAppParent Win, API 1 :87

msgAppSetControls, APIl :97

msgAppSetCopyable, API 1 :91

msgAppSetCorkMargin, API 1 :98

msgAppSetDeletable, API 1 :91

msgAppSetFloatingRect, API 1 :95

msgAppSetHotMode, API 1 :91

msgAppSetMain Win, API 1 :87

msgAppSetMenuLine, APIl :98 .

msgAppSetMovable, API 1 :91

msgAppSetN arne, API 1 :88

msgAppSetOpenRect, APIl :95

msgAppSetParent, APII :90

msgAppSetPrintControls, API 1 :97

msgAppSetReadOnly, APIl:91

msgAppSetSaveOn Terminate, API 1: 105

msgAppSetScrollBars, API 1 :98

msgAppSet TitleLine, API 1 :98

msgAppShowOptionSheet, API 1 :96

msgAppSpell, API 1: 1 04

msgAppTerminate, APIl:91

msgApp TerminateConditionChanged,
APIl: 105

msgAppTerminateOK, APIl:93

msgAppUndo, APIl:102

msgAppWinClose, APIl:146

msgApp WinCreateIcon, API 1: 147

msgApp WinDelete, API 1: 147

msgApp WinDestroylcon, API 1: 147

msgAppWinEditName, APIl:147

msgApp Win GetMetrics, API 1: 145

msgAppWinGetState, APIl:145

msgAppWinGetStyle, APIl:145

msgAppWinOpen, APIl:146

msgApp WinSetlconBitmap, API 1: 146

msgApp WinSetLabel, API 1: 146

msgApp WinSetSmallIconBitmap,
APIl:146

msgApp WinSetState, API 1: 145

msgApp WinSetStyle, API 1: 146

msgAppWinSetUUID, APIl: 147

msgApp WinStyleChanged, API 1: 147

msgA TPRespPktSize, API2:367

msgBatteryCritical, API2:640

msgBatteryGetMetrics, API2:639

msgBatteryLow, API2:640

msgBatterySetLevel, API2:640

msgBitmapCachelmageDefaults,
APIl:227

msgBitmapChange, API 1 :228

msgBitmapFill, APIl :227

msgBitmapGetMetrics, API 1 :226

msgBitmaplnvert, APIl :227

msgBitmapLighten, API 1 :227

msgBitmapMaskChange, API 1 :228

msgBitmapPixChange, API 1 :227

msgBitmapSetMetrics, API 1 :226

msgBitmapSetSize, API 1 :227

msgBookshelfGetMetrics, API2: 183

msgBookshelfSetMetrics, API2: 184

msgBorderConvertUnits, APIl:336

msgBorder Flash, APIl :340

msgBorderGetBackgroundRG B,
APIl:336

msgBorderGetBorderRect, API 1 :337

msgBorderGetDirty, APIl:335, APIl:382

msgBorderGetForegroundRGB,
APIl:336, APIl:353

msgBorderGetInnerRect, API 1 :338

msgBorderGetLook, APIl:334

msgBorderGetMarginRect, API 1 :338

msgBorderGetOuterOffsets, API 1 :339

msgBorderGetOuterSize, API 1 :338

msgBorderGetOuterSizes, API 1 :339

msgBorderGetPreview, APIl :335

msgBorderGetSelected, APIl :335

msgBorderGetStyle, API 1 :332

msgBorderInkToRGB, APIl:336

msgBorderInsetToBorderRect, APIl:338

msgBorderInsetTolnnerRect, APIl:338

msgBorderInset ToMarginRect, APIl :338

msgBorderPaint, APIl:339

msgBorderPaintForeground, APIl:340,
APIl:448

msgBorderPropagateVisuals, APIl:335

msgBorderProvideBackground, API 1 :340

msgBorderProvideDeltaWin, APIl:339

msgBorderRGBTolnk, APIl:336

msgBorderSetDirty, APIl:335, APIl:382

msgBorderSetLook, API 1 :334

msgBorderSetPreview, APIl :334

msgBorderSetSelected, APIl:335

msgBorderSetStyle, API 1 :332

msgBorderSetStyleNoDirty, API 1 :333

msgBorderSetVisuals, APIl:337

msgBorderTop, APIl:340

msgBorderXOR, APIl:339

msgBrowserBookmark, API2: 196

msgBrowserByDate, API2: 188

msgBrowserByName, API2:188

msgBrowserByPage, API2: 189

msgBrowserBySize, API2: 188

msgBrowserByType, API2: 188

msgBrowserCollapse, API2: 188

msgBrowserConfirmDelete, API2: 189

msgBrowserCreateDir, API2: 187

msgBrowserCreateDoc, API2: 196

msgBrowserDelete, API2: 189

msgBrowserExpand, API2: 188

msgBrowserExport, API2: 189

msgBrowserGesture, API2: 197

msgBrowserGetBaseFlatLocator, API2: 195

msgBrowserGetBrowWin, API2: 197

msgBrowserGetClient, API2: 195

msgBrowserGetMetrics, API2: 190

msgBrowserGoto, API2: 194

msgBrowserGotoBringto, API2: 194

msgBrowserReadState, API2: 190

msgBrowserRefresh, API2: 189

msgBrowserRename, API2: 189

msgBrowserSelection, API2: 195

msgBrowserSelectionDir, API2: 196

msgBrowserSelectionName, API2: 196

msgBrowserSelectionOff, API2: 196

msgBrowserSelectionOn, API2: 196

msgBrowserSelectionPath, API2: 195

msgBrowserSelectionUUID, API2: 195

msgBrowserSetClient, API2: 195

msgBrowserSetMetrics, API2: 191

msgBrowserSetSaveFile, API2: 190

msgBrowserSetSelection, API2: 194

msgBrowserShowBookmark, API2: 194

msgBrowserShowButton, API2: 193

msgBrowserShowDate, API2: 193

msgBrowserShowHeader, API2: 194

msgBrowserShowlcon, API2: 193

msgBrowserShowSize, API2: 193

msgBrowserShowType, API2:193

msgBrowser Undo, API2: 194

msgBrowserU serColumn GetState,
API2:192

msgBrowserUserColumnQueryState,
API2:193

msgBrowserU serColumnSetState,
API2:192

msgBrowserUserColumnStateChanged,
API2:192

msgBrowserWriteState, API2: 190

msgBusyDisplay, APII :345

msgBusyGetSize, API 1 :346

msgBusylnhibit, API1:346

msgBusySetDefaultXY, API 1 :346

msgBusySetXY, API 1 :346

msgButtonAcceptPreview, API 1 :352

msgButtonBeginPreview, APIl:352

msgButtonButtonShowFeedback,
APIl:351

msgButtonCancelPreview, APIl:352

msgButtonDone, APII :352

msgButtonGetData, API 1 :351

msgButtonGetMetrics, API 1 :350

msgButtonGetMsg, API1:351

msgButtonGetStyle, API 1 :350

msgButtonNotify, API 1 :353

msgButtonNotifyManager, APII :353

msgButtonRepeatPreview, API 1 :352

msgButtonSetData, API 1 :351

msgButtonSetMetrics, APIl:3 50

msgButtonSetMsg, API1:3 51

msgButtonSetNoNotify, APIl:351

msgButtonSetStyle, APII :350

msgButtonShowFeedback, API1:435

msgButtonUpdatePreview, APIl:352

msgByteBufChanged, API2:206

msgByteBufGetBuf, API2:206

msgByteBufSetBuf, API2:206

msgCan, API 1 : 17

msgCGGetOwner, API2:589

msgCGlnformDisconnected, API2:590

msgCGOwnerChanged, API2:591

msgCGPollConnected, API2:590

msgCGSetOwner, API2:590

msgChanged, API1:25

msgChoiceGetStyle, API 1 :360

msgChoiceMgrGetOnButton, APIl:358,
APIl:541

msgChoiceMgrSetNoNotify, APII :358

msgChoiceMgrSetOnButton, API 1 :358,
APIl:542

msgChoiceSetNoNotify, APIl:361

msgChoiceSetStyle, API 1 :360

msgCIMFindClass, API2:526

msgCIMFindProgram, API2:527

msgCIMGetClass, API2:526

msgCIM GetClassList, API2: 5 26

msgCIMGetTerminateStatus, API2:528

msgCIMLoad, API2:527

msgCIMT erminate, API2:527

msgCIMT erminateO K, API2: 527

msgCIMT erminate Vetoed, API2: 527

msgClass, API 1: 18

msgCloseBoxGetStyle, APIl:3 72

msgCloseBoxSetStyle, API1:3 72

msgCommandBarGetStyle, APIl:374

msgCommandBarSetStyle, API 1 :374

msgConnectionsAddCards, API2:375

msgConnectionsAddSheet, API2:375

msgConnectionsAutoConnectChanged,
API2:376

INDEX 665

msgConnectionsAutoConnectl tern,
API2:374

msgConnectionsComparel terns, API2:372

msgConnectionsConnectedChanged,
API2:376

msgConnectionsConnectltem, API2:3 74

msgConnectionsEndConversation,
API2:376

msgConnectionsEn umeratel terns,
API2:371

msgConnectionsEnumerateServers,
API2:371

msgConnectionsEnumerate Tags,
API2:372

msgConnectionsExpandCollapse,
API2:373

msgConnectionsForgetltem, API2:3 74

msgConnectionsGetltemlnfo, API2:373

msgConnectionsGetN etwork View,
API2:372

msgConnectionsGetServicelnfo, API2:373

msgConnectionsGetState, API2:371

msgConnectionsGet T opCard, API2:375

msgConnectionsIsParent, API2:3 7 6

msgConnectionsltemChanged, API2:377

msgConnectionsRememberChanged,
API2:377

msgConnectionsRemember I tern,
API2:374

msgConnectionsServiceChanged,
API2:377

msgConnectionsSetConnectionsApp,
API2:373

msgConnectionsSetSelection, API2:375

msgConnectionsSetState, API2:370

msgConnectionsStartConversation,
API2:375

msgConnectionsTagltem, API2:373

msgConnections U nAutoConnectl tern,
API2:375

msgConnections U nconnectl tern,
API2:374

msgConnections Update, API2: 373

msgContentsButtonGoto, APIl:511

msgControlAcceptPreview, APIl:354,
APIl:380, APIl:536

msgControlBeginPreview, APIl:354,
APIl:380, APIl:520, APIl:536

msgControlCancelPreview, API 1 :354,
APIl:380, APIl:537

msgControlEnable, APIl:378, APIl:609

msgControlGetClient, APII :378,
APIl:520, APIl:599

666 INDEX

msgControlGetDirty, APIl:362,
APIl:378, APIl:600, APIl:622

msgControlGetEnable, API 1 :362,
APIl :378, APIl :622

msgControlGetMetrics, APIl :377

msgControlGetStyle, APIl:377

msgControlGetValue, APIl :355,
APIl:362, APIl:379, APIl:519,
API1:528, APIl:587,
APIl:589-590, APIl:623

msgControlProvideEnable, API 1 :381

msgControlRepeatPreview, API 1 :354,
APIl:380, APIl:537

msgControlSetClient, APIl:378,
API1:470, APIl:520, APIl:600

msgControlSetDirty, API 1 :362,
APIl:378, APIl:400, APIl:449,
API1:520, APIl:587, API1:589,
APIl:591-592, APIl:600,
APIl:623

msgControlSetEnable, API 1 :362,
APIl:378, APIl:623

msgControlSetMetrics, APIl :377,
APIl:449, APIl:520

msgControlSetStyle, APIl :377, APIl :449,
APIl:520

msgControlSetValue, APIl:354,
APIl:362, APIl:379, API1:520,
APIl:529, APIl:587,
APII :589-590, APII :623

msgControlU pdatePreview, APII :354,
APIl:380

msgCopy, API 1 : 14

msgCopyRestore, API 1: 14

msgCounterGetClient, API 1 :385

msgCounterGetLabel, API 1 :386

msgCounterGetS tyle, API 1 :384

msgCounterGetTotal, APIl:385

msgCounterGetValue, APIl:385

msgCounterGoto, APII :386

msgCounterIncr, APIl :385

msgCounterNotifY, APIl:386

msgCounterSetClient, APIl:385

msgCounterSetStyle, APIl :384

msgCounterSetTotal, APIl:385

msgCounterSetValue, APIl:385

msgCreated, API 1: 11

msgCstmLayoutGetChildSpec, APIl:369,
API1:415, APIl:545

msgCstmLayoutGetMetrics, API 1 :367

msgCstmLayoutGetStyle, API 1 :367

msgCstmLayoutRemoveChildSpec,
APIl:369

msgCstmLayoutSetChildSpec, API 1 :368

msgCstmLayoutSetMetrics, API 1 :367

msgCstmLayoutSetStyle, API 1 :368

msgDateFieldGetStyle, API 1 :586

msgDateFieldGetValue, APIl:587

msgDateFieldSetStyle, API 1 :586

msgDateFieldSetValue, API 1 :587

msgDcAccumulateBounds, API 1 :273

msgDcAlignPattern, API 1 :267

msgDcCacheImage, API 1 :278

msgDcClipClear, APIl:272

msgDcClipN ull, API 1 :272

msgDcClipRect, API 1 :272

msgDcCopylmage, API 1 :279

msgDcCopyPixels, API 1 :283

msgDcDirtyAccumulation, API 1 :273

msgDcDrawArcRays, API 1 :274

msgDcDrawBezier, API 1 :274

msgDcDrawChordRays, API 1 :276

msgDcDrawEllipse, API 1 :275

msgDcDrawlmage, APII :276

msgDcDrawlmageMask, API 1 :278

msgDcDrawPageTurn, APIl:282

msgDcDrawPixels, APIl:283

msgDcDrawPolygon, APII :275

msgDcDrawPolyline, API 1 :274

msgDcDrawRectangle, APIl:275

msgDcDrawSectorRays, APIl:276

msgDcDraw Text, API 1 :280

msgDcDraw TextDebug, API 1 :281

msgDcDraw T extRun, APIl :281

msgDcFillWindow, APIl :276

msgDcGetBackgroundRGB, API 1 :264

msgDcGetBounds, API 1 :273

msgDcGetCharMetrics, API 1 :281

msgDcGetFillPat, API 1 :266

msgDcGetFontMetrics, APIl:282

msgDcGetFontWidths, APIl:282

msgDcGetForegroundRGB, APIl:264

msgDcGetLine, API 1 :262

msgDcGetLinePat, API 1 :266

msgDcGetMatrix, API 1 :271

msgDcGetMatrixLUC, APIl:271

msgDcGetMode, API 1 :261

msgDcGetPixel, APII :275

msgDcGetWindow, APIl:259

msgDcHitTest, APIl:272

msgDcHoldLine, API 1 :263

msgDddentity, API 1 :269

msgDcIdentityFont, API 1 :280

msgDcInitialize, APIl :259

msgDcInvertColors, API 1 :264

msgDcLUCtoL WC_RECT32, API 1 :271

msgDcLUCtoL WC_SIZE32, API 1 :270

msgDcLUCtoL WC_XY32, API 1 :270

msgDcL WCtoLUC_RECT32, API 1 :270

msgDcL WCtoLUC_SIZE32, API 1 :270

msgDcL WCtoLUC_XY32, API 1 :270

msgDcMatchRGB, APIl:264

msgDcMeasureText, APIl:280

msgDcMeasure TextRun, API 1 :281

msgDcMixPattern, API 1 :266

msgDcMixRGB, APIl:265

msgDcOpenFont, API 1 :280

msgDcPlaneMask, API 1 :262

msgDcPlaneNormal, APIl:261

msgDcPlanePen, API 1 :261

msgDcPop, API 1 :260

msgDcPopFont, API 1 :260

msgDcPreloadT ext, API 1 :281

msgDcPush, API 1 :259

msgDcPushFont, APIl:260

msgDcRotate, API 1 :269

msgDcScale, API 1 :269

msgDcScaleFont, APIl :280

msgDcScale World, API 1 :269

msgDcScreenShot, API 1 :283

msgDcSetBackgroundColor, API 1 :265

msgDcSetBackgroundRGB, APIl:264

msgDcSetF illPat, API 1 :266

msgDcSetForegroundColor, APIl:265

msgDcSetForegroundRGB, APIl:264

msgDcSetLine, API 1 :262

msgDcSetLinePat, API 1 :265

msgDcSetLine Thickness, API 1 :262

msgDcSetMatrixLUC, APIl:271

msgDcSetMode, API 1 :260

msgDcSetPixel, APIl:275

msgDcSetPreMultiply, API 1 :261

msgDcSetRop, API 1 :261

msgDcSetWindow, APIl:258

msgDc Translate, APII :269

msgDcUnitsDevice, API1:268

msgDcUnitsLayout, APIl:268

msgDcU nitsMetric, API 1 :267

msgDcUnitsMil, APIl:267

msgDcU nitsOut, API 1 :268

msgDcUnitsPen, APIl:267

msgDcU nitsPoints, API 1 :267

msgDcU nitsRules, API 1 :268

msgDcUnitsTwips, APIl:267

msgDcUnitsWorld, APIl:268

msgDestroy, API 1: 11

msgDestroy, API2:61, API2:314,
API2:469, API2:550, API2:632

msgDialEnvBuildDialString, API2:384

msgDialEnvChanged, API2:382

msgDialEnvGetCountry, API2:383

msgDialEnvGetEnvironment, API2:383

msgDialEnvGetMacrolds, API2:386

msgDialEnvIsCountryNorthAmerican,
API2:383

msgDialEnvOptCardApply, API2:387

msgDialEnvOptCardRefresh, API2:386

msgDisable, API 1: 17

msgDrwCtxGetWindow, API1:284,
APIl:323

msgDrwCtxSetWindow, API 1 :284,
APIl:323

msgDump, API 1: 14

msgDuplicateLock, API 1: 19

msgDVCardPopupChanged, API2:211

msgDVClose Volume, API2:212

msgDVConnectTo Volume, API2:212

msgDVGetBasePath, API2:21 0

msgDVGetIconPanel, API2:21 0

msgDVGetOpen Vols, API2:211

msgDVGetStyle, API2:209

msgDVOpen Volume, API2:211

msgDVOptionMenuNeed, API2:211

msgDVSetIconPanel, API2:211

msgDVSetOption Volume, API2:211

msgDVSetStyle, API2:21 0

msgDynTableFindButton, API2:531

msgDynTableGetTable, API2:530

msgDynTableSetFillInField, API2:531

msgDynTableSetTable, API2:531

msgEmbeddedWinBeginCopy, APIl:161

msgEmbeddedWinBeginMove, API 1: 161

msgEmbeddedWinCopy, API 1: 163

msgEmbeddedWinDestroy, API 1: 167

msgEmbeddedWinExtractChild,
APIl: 165

msgEmbeddedWinForwardedGetDest,
APIl:164

msgEmbeddedWinGetDest, API 1: 150,
APIl:164

msgEmbeddedWinGetMark, API1:448

msgEmbeddedWinGetMetrics, API 1: 160

msgEmbeddedWin GetPen Offset,
APIl:163

msgEmbeddedWinGetPrintInfo,
APIl:167

msgEmbeddedWinGetStyle, API 1: 161

msgEmbeddedWinlnsertChild, API 1: 165

msgEmbeddedWinMove, API 1 : 162

msgEmbeddedWinMoveCopyOK,
APIl:163

msgEmbeddedWinPosition Child,
APIl:165

msgEmbeddedWinProvideIcon, API 1: 162

msgEmbeddedWinSetStyle, API 1: 161

msgEmbeddedWinSetUUID, API1:167

msgEmbeddedWinShowChild,
APIl:166, APIl:571

msgEnable, API 1: 17

msgEnumObservers, API 1 :24

MsgEqual, API1:9

msgException, API 1: 15

msgExport, API2:216, API2:249

msgExportGetFormats, API2:216,
API2:249

msgExportName, API2:217

msgFieldAcceptPopUp, API1:396

msgFieldActivatePopUp, APIl:395

msgFieldCancelPopUp, APIl:396

msgFieldClear, API1:397

msgFieldCreatePop U p, APIl :396

msgFieldCreate Translator, APIl :398

msgFieldFormat, API 1 :399

msgFieldGetCursorPosition, API 1 :395

msgFieldGetDelayScribble, API 1 :397

msgFieldGetMaxLen, API 1 :394

msgFieldGetStyle, API 1 :393

msgFieldGetXlate, API 1 :394

msgF ieldKeyboardActivate, API 1: 397

msgFieldModified, API 1 :397

msgFieldNotifYlnvalid, API1:399

msgFieldPostValidate, APIl :399

msgF ieldPre Valida te, API 1: 398

msgFieldReadOnly, API 1 :397

msgFieldSetCursorPosition, API 1 :395

msgFieldSetDelayScribble, API 1 :397

msgFieldSetMaxLen, API 1 :395

msgFieldSetStyle, API 1 :393

msgFieldSetXlate, API 1 :394

msgFieldTranslateDelayed, API 1 :396

msgFieldValidate, API 1 :398

msgFieldValidateEdit, API 1 :398

msgFIMFindld, API2:535

msgFIMGetId, API2:534

msgFIM GetInstalledldList, API2: 535

msgFIM GetN ameF romld, API2: 535

msgFIMSetId, API2:535

msgFixedFieldGetStyle, API1:588

msgFixedFieldSetStyle, API 1 :588

INDEX 667

msgFontListBoxGetStyle, API 1 :402

msgF rameClose, API 1 :412

msgFrameClosed, API1:414

msgF rameDelete, API 1 :411

msgFrameDestroyMenuBar, API 1 :41 0

msgF rameFloat, API 1 :412

msgFrameFloated, API 1 :414

msgFrameGetAltVisuals, APIl:410

msgF rameGetClient, APIl :41 0

msgF rameGetClient Win, API 1 :409

msgF rameGetMenuBar, API 1 :409

msgFrameGetMetrics, API 1 :408

msgF rameGetN ormalVisuals, API 1 :411

msgFrameGetStyle, API 1 :408

msgFrameIsZoomed, API1:411

msgF rameMoveEnable, API 1 :411

msgFrameResizeEnable, API 1 :411

msgF rameSelect, API 1 :413

msgF rameSelectO K, API 1 :413

msgF rameSetAl t Visuals, API 1 :41 0

msgF rameSetClient, API 1 :41 0

msgF rameSetClient Win, API 1 :409

msgF rameSetMen uBar, API 1 :410

msgFrameSetMetrics, API 1 :408

msgF rameSetN ormalVisuals, APIl :411

msgF rameSetStyle, API 1 :409

msgFrameSetTitle, APIl:410

msgFrameShowSelected, API1:411

msgFrameTopped, APIl:414

msgFrameZoom, APIl:412

msgF rameZoomed, APIl :413

msgFrameZoomOK, APIl:413

msgFree, APIl:740, APIl:764

msgF reeing, API 1: 12

msgFreeOK, API1: 11, APIl:84

msgFreePending, APIl:12, APIl:221

msgF reeSub T ask, API 1 : 16

msgFSChanged, API2:68

msgFSConnectVol, API2:97

msgFSCopy, API2:65

msgFSCopyNotifY, API2:66

msgFSDelete, API2:67

msgFSDisconnectVol, API2:97

msgFSEjectMedia, API2:67

msgFSExclVolAccess, API2:98

msgFSFlush, API2:67

msgFSForceDelete, API2:68

msgFSGetAttr, API2:63

msgFSGetHandleMode, API2:62

msgFSGetlnstalledVolumes, API2: 59

668 INDEX

rnsgFSGetPath, API2:62

rnsgFSGetSize, API2:72

rnsgFSGetVolMetrics, API2:61

rnsgFSlnstallVol, API2:96

rnsgFSMakeNative, API2:67

rnsgFSMernoryMap, API2:73

rnsgFSMernoryMapFree, API2:73

rnsgFSMernoryMapGerSize, API2:73

rnsgFSMernoryMapSetSize, API2: 73

rnsgFSMove, API2:64

rnsgFSMoveNotify, API2:65

rnsgFSNodeExists, API2:62

rnsgFSNull, API2:61

rnsgFSReadDir, API2:69

rnsgFSReadDirFull, API2:70

rnsgFSReadDirReset, API2:70

rnsgFSRegisterVolClass, API2:96

rnsgFSRernoveVol, API2:97

rnsgFSSarne, API2:62

rnsgFSSeek, API2:72

rnsgFSSetAttr, API2:63

rnsgFSSetHandleMode, API2:62

rnsgFSSetSize, API2:72

rnsgFSSetTarget, API2:69

rnsgFSSetVolNarne, API2:61

rnsgFSTraverse, API2:70

rnsgFSUnRegisterVolClass, API2:98

rnsgFSVolChanged, API2:69

rnsgFSVolIsBusy, API2:98

rnsgFSVolList, API2:97

rnsgFSVolSpecific, API2:68

rnsgGestureMarginGetStyle, API2:219

rnsgGestureMarginSetInkMode, API2:220

rnsgGestureMarginSetS tyle, API2: 220

rnsgGetObserver, APIl :25

rnsgGotoButtonDeleteLink, API 1: 176

rnsgGotoButtonEditLabel, API 1: 176

rnsgGotoButtonGetLabel, API 1: 177

rnsgGotoButtonGetMark, API 1: 176

rnsgGotoButtonGotoLink, APIl: 176

rnsgGotoButtonLink ToSelection,
APIl:176

rnsgGotoButtonPressed, APIl: 177

rnsgGotoButtonRePosition, API 1: 177

rnsgGotoButtonResetLabel, API 1: 177

rnsgGrabBoxGetMetrics, API 1 :419

rnsgGrabBoxGetStyle, API 1 :418

rnsgGrabBoxSetMetrics, API 1 :419

rnsgG rabBoxSetS tyle, API 1 :419

rnsgGrabBoxShow, APIl :419

rnsgGWinAbort, API 1 :382, API 1 :646

rnsgGWinBadGesture, API 1 :648

rnsgGWinBadKey, APIl :650

rnsgGWinCornplete, API 1 :536, API 1 :645

rnsgGWinForwardedGesture, APIl:569,
APIl:576, APIl:648

rnsgGWinForwardedGesture, API 1 :414

rnsgGWinForwardedKey, API 1 :650,
APIl:686

rnsgGWinForwardGesture, APIl:647

rnsgGWinForwardKey, API 1 :649

rnsgGWinGesture, API 1 :646

rnsgGWinGestureDone, APIl:382,
API1:651

rnsgGWinGetHelpld, API 1 :644

rnsgGWinGetStyle, APIl:643

rnsgGWinGetTranslator, APIl:644

rnsgGWinHelp, APIl:648

rnsgGWinIsCornplete, APIl:650

rnsgGWinKey, API 1 :649

rnsgGWinSetHelpld, API 1 :643

rnsgGWinSetS tyle, API 1 :643

rnsgGWinSetTranslator, APIl:644

rnsgGWinStroke, API 1 :645

rnsgGWin TransforrnGesture, APII :644

rnsgGWin T ransforrnXList, API 1 :645

rnsgGWinTranslator, APIl:645

rnsgGWinXList, APIl:570, APIl:646

rnsgGWinXList, API2:37

MsgHandler, APIl:8

MsgHandlerArg Type, API 1 :9

MsgHandlerPrirnitive, APIl:9

MsgHandlerRingCHelper, APIl:9

MsgHandlerWithTypes, APIl:9

rnsgHeap, APIl: 16

rnsgHlMAvailabilityChanged, API2:539

rnsgHIM GetEngine, API2: 538

rnsgHIMSetEngine, API2:539

rnsgHSPacketDisable, API2:397

rnsgHSPacketEnable, API2:397

rnsgHSPacketF reeCharHandler, API2:396

rnsgHSPacketSendPacket, API2:396

rnsgHSPacketSetCharHandler, API2:396

rnsgHSPacketStatus, API2:395

rnsgHWXSvcCurrentChanged, API2:581

rnsgIconCopyPixels, API 1 :429

rnsgIconF reeCache, API 1 :428

rnsgIconGetActualPictureSize, API 1 :428

rnsgIconGetPictureSize, API 1 :427

rnsgIconGetRects, API 1 :428

rnsgIconGetStyle, APIl :427

rnsgIconProvideBitrnap, API 1: 170,
API 1 :428, API 1 :435

rnsgIconSarnpleBias, API 1 :429

rnsgIconSetPictureSize, API 1 :427

rnsgIconSetStyle, API 1 :427

rnsglconToggleGetOfffag, APIl:435

rnsgIcon T oggleGetOn Tag, API 1 :434

rnsgIcon ToggleGetStyle, API 1 :434

rnsgIconToggleSetOfITag, APIl :435

rnsgIcon ToggleSetOn Tag, API 1 :435

rnsgIcon ToggleSetStyle, API 1 :434

rnsgIcon WinGetMetrics, API 1: 181

rnsgIcon WinGetStyle, API 1: 181

rnsgIcon WinSetStyle, API 1: 181

rnsglMActivate, API2:559

rnsglMAddCards, API2:560

rnsgIMCurrentChanged, API2:558

rnsgIMDeactivate, API2:559

rnsgIMDeinstall, API2: 5 55, API2:621

rnsgIMDeinstalled, APIl :403, API2:559

rnsgIMDup, API2:555

rnsgIMExists, API2:556

rnsgIMFind, API2:555

rnsgIMGetCurrent, API2:552

rnsgIMGetDir, API2:556

rnsgIMGetInstallerNarne, API2:551

rnsgIM GetInstallerSingularN arne,
API2:551

rnsgIM GetInstallPath, API2: 5 56

rnsgIMGetIternIcon, API2:561

rnsgIMGetList, API2:553

rnsgIMGetNarne, API2:553

rnsgIMGetNotify, API2:560

rnsgIMGetSerna, API2:555

rnsgIMGetSettingsMenu, API2:561

rnsgIMGetSize, API2:554

rnsgIMGetState, API2:554

rnsgIMGetStyle, API2:550

rnsgIMGetVerifier, API2:556

rnsgIMGetVersion, API2:553

rnsgIMlnstall, API2:554

rnsgIMlnstalled, APIl:403, API2:559

rnsgIMlnUseChanged, API2:558

rnsgIMModifiedChanged, API2:558

rnsgIMNarneChanged, API2:558 ,

rnsglrnport, APIl: 130, API2:230, API2:249

rnsglrnportQuery, APIl:130, API2:230,
API2:249

rnsgIMRernoveHandle, API2: 560

rnsgIMRenarne U ninstalledItern, API2:561

rnsgIMSetCurrent, API2:552

msgIMSetlnUse, API2:552

msgIMSetModified, API2:552

msgIMSetName, API2:553

msgIMSetNotify, API2:560

msgIMSetStyle, API2:551

msgIMSetVerifier, API2:556

msgIMUIDeinstall, API2:557

msgIMUIDup, API2:557

msgIMUIInstall, API2: 557

msgIMVerify, API2:556

msgINBXDocGetService, API2:40 1

msgINBXDoclnlnbox, API2:40 1

msgINBXDoclnputCancel, API2:408

msgINBXDoclnputDone, API2:407

msgINBXDoclnputStart, API2:407

msgINBXDoclnputStartOK, API2:407

msgINBXDocStatusChanged, API2:408

msgINBXSvcCopyInDoc, API2:402

msgINBXSvcGetEnabled, API2:406

msgINBXSvcGetTempDir, API2:402

msgINBXSvclnputCancel, API2:405

msgINBXSvclnputClean U p, API2:405

msgINBXSvclnputStart, API2:405

msgINBXSvcLockDocument, API2:403

msgINBXSvcMovelnDoc, API2:402

msgINBXSvcN extDocument, API2:403

msgINBXSvcPollDocuments, API2:402

msgINBXSvcQueryState, API2:406

msgINBXSvcScheduleDocument,
API2:404

msgINBXSvcSetEnabled, API2:406

msgINBXSvcStateChanged, API2:406

msgINBXSvcSwitchlcon, API2:40 1

msgINBXSvc U nlockDocument, API2:404

msgInit, API 1: 11

msgInputActivityTimer, APIl:670

msglnputEvent, APIl:341, API1:381,
API1:421, API1:473, APIl:478,
API1:483, API1:535, APIl:620,
API1:652, APIl:666, APIl:729

msgInputGrabPopped, API 1 :667

msgInputGrabPushed, API 1 :667

msgInputModalEnd, API 1 :669

msgInputModalStart, API 1 :669

msgInputTargetActivated, API 1 :667,
API1:686

msgInputTargetDeactivated, APIl :667

msgInteger F ieldGetS tyle, APIl: 590

msgIn teger F ieldSetS tyle, API 1: 590

msgIOBXDocGetService, API2:411

msgIOBXDoclnIOBox, API2:412

msgIOBXDoclOCancel, API2:418

msgIOBXDoclODone, API2:418

msgIOBXDoclOStart, API2:417

msgIOBXDoclOStartOK, API2:417

msgIOBXDocStatusChanged, API2:418

msgI 0 BXSvcCopy In Doc, API2:412

msgIOBXSvcGetEnabled, API2:417

msgIOBXSvcGetTempDir, API2:413

msgIOBXSvclOCancel, API2:416

msgIOBXSvclOCleanUp, API2:416

msgIOBXSvclOStart, API2:415

msgI 0 BXSvcLockDocument, API2:414

msgIOBXSvcMoveInDoc, API2:412

msgI 0 BXSvcN extDocument, API2:413

msgI 0 BXSvcPollDocuments, API2:413

msgIOBXSvcQueryState, API2:416

msgI 0 BXSvcScheduleDocument,
API2:415

msgIOBXSvcSetEnabled, API2:417

msgIOBXSvcStateChanged, API2:416

msgIOBXSvcSwitchlcon, API2:411

msgIOBXSvcUnlockDocument,
API2:414

msgIPCancelled, API 1 :400, API 1 :682

msgIPClear, API 1 :682

msgIPCopied, API 1 :682

msgIPDataAvailable, API 1 :400, API 1 :683

msgIPGetClient, API 1 :680

msgIPGetStyle, API 1 :679

msgIPGetTranslator, APIl:680

msgIPGetXlateData, API 1 :683

msgIPGetXlateString, API 1 :684

msgIPSetClient, API 1 :681

msgIPSetString, APIl :681

msgIPSetStyle, APIl:679

msgIPSetTranslator, APIl:680

msgIPTranslate, APIl:681

msgIPTransmogrified, API 1 :683

msgIsA, API 1 : 18

msgIUIGetMetrics, API2:564

msgIUI GetSelectionN ame, API2: 564

msgIUIGetSelectionUID, API2:564

msgIUISelectl tern, API2: 564

msgIUIShowCard, API2:564

msgKeyboardReturn, API 1 :694

msgKeyBreak, API 1 :694

msgKeyCapBreak, API 1 :699

msgKeyCapGetDc, API 1 :699

msgKeyCapHilite, API 1 :699

msgKeyCapMake, API 1 :699

msgKeyCapPaintCap, API 1 :698

msgKeyCapRedisplay, API 1 :699

INDEX 669

msgKeyCapScan, API 1 :698

msgKeyChar, APIl:695

msgKeyMake, API 1 :694

msgKeyMulti, APIl :695

msgLabeWign, API 1 :446

msgLabelBindStringId, API 1 :443

msgLabelGetBoxMetrics, APIl:445

msgLabelGetCols, API 1 :444

msgLabelGetCustomGlyph, APIl:445

msgLabelGetFontSpec, APIl:443

msgLabel GetRects, API 1 :446

msgLabelGetRows, API 1 :444

msgLabel GetScale, API 1 :444

msgLabel GetString, API 1 :441

msgLabelGetStringld, API1:442

msgLabelGetStyle, APIl:440

msgLabelGetUnicode, APIl:442

msgLabelGetWin, APIl:443

msgLabelProvideBoxSize, API 1 :447

msgLabelProvideInsPt, API 1 :446

msgLabelResolveXY, API 1 :446

msgLabelSetCols, API 1 :445

msgLabelSetCustomGlyph, API 1 :445

msgLabelSetFontSpec, API 1 :443

msgLabelSetRows, API 1 :444

msgLabelSetScale, API 1 :444

msgLabelSetString, API 1 :442

msgLabelSetStringId, API 1 :442

msgLabelSetStyle, API 1 :441

msgLabelSetU nicode, API 1 :442

msgLabelSetWin, APIl:443

msgLINKAddressAcquire, API2:422

msgLINKAttributesGet, API2:421

msgLINKBufferReturn, API2:421

msgLINKInstallProtocol, API2:421

msgLINKRemoveProtocol, API2:421

msgLINKStatusGet, API2:422

msgLINKT ransmit, API2:421

msgListAddltem, API2:235

msgListAddI temAt, API2:235

msgListBoxAppendEntry, APIl :454,
APIl:559

msgListBoxDestroyEntry, APIl :458

msgListBoxEntryGesture, API 1 :459

msgListBoxEntry Is Visible, APIl:4 5 7

msgListBoxEnum, API 1 :456

msgListBoxF indEntry, APIl:4 56

msgListBoxGetEntry, APIl:455

msgListBoxGetMetrics, APIl:4 5 3

msgListBoxlnsertEntry, API 1 :454,
APIl:559

670 INDEX

msgListBoxMakeEntryVisible, API 1 :457

msgListBoxProvideEntry, API 1 :458,
APIl:558

msgListBoxRemoveEntry, API 1 :455,
APIl:559

msgListBoxSetEntry, APIl:455, APIl:559

msgListBoxSetMetrics, APIl:4 5 3

msgListBoxXYT oPosition, API 1 :457

msgListCall, API2:238

msgListEnumItems, API2:237

msgListFindItem, API2:237

msgListFree, API2:235

msgListGetHeap, API2:238

msgListGetltem, API2:237

msgListNotifyAddition, API2:239

msgListN otifyDeletion, API2:239

msgListN o tifyEmpty, API2:240

msgListN otifyReplacement, API2:240

msgListNumItems, API2:237

msgListPost, API2:239

msgListRemoveltem, API2:236

msgListRemovel temAt, API2:236

msgListRemovel terns, API2:237

msgListReplaceltem, API2:236

msgListSend, API2:239

msgMarkCompareMarks, API 1 : 191

msgMarkCompareTokens, APIl:193

msgMarkCopyMark, API 1: 192

msgMarkCreate Token, API 1: 192

msgMarkDelete Token, API 1 : 193

msgMarkDeliver, API 1: 188

msgMarkDeliverN ext, API 1: 190

msgMarkDeliverPos, API 1: 189

msgMarkEnterChild, API 1: 197

msgMarkEnterLevel, API 1: 198

msgMarkEnterParent, APIl: 198

msgMarkGetChild, API 1: 196

msgMarkGetComponen t, API 1: 191

msgMarkGetDataAncestor, API 1: 193

msgMarkGetParent, API 1: 194

msgMarkGetToken, APIl:198

msgMarkGet UUIDs, API 1: 194

msgMarkGotoMark, API 1: 192

msgMarkN extChild, API 1: 196

msgMarkPositionAtChild, APIl:195

msgMarkPositionAtEdge, API 1: 195

msgMarkPositionAtGesture, API 1: 196

msgMarkPositionAtSelection, API 1: 196

msgMarkPositionAtToken, APIl:195

msgMarkSelect Target, API 1: 197

msgMarkSend, API 1: 190

msgMarkSetComponent, APIl:191

msgMarkShow Target, API 1: 197

msgMark ValidateComponent, API 1: 194

msgMenuAdjustSections, APII :478

msgMenuButtonExtractMenu, API 1 :467

msgMenuButtonGetMenu, APIl:466

msgMenuButtonGetStyle, API 1 :465

msgMenuButtonInsertMenu, API 1 :466

msgMenuButtonMenuDone, API 1 :469

msgMenuButtonPlaceMenu, API 1 :468,
APIl:521

msgMenuButtonProvideMenu, API 1 :468

msgMenuButtonProvide Width,
APIl:466, APIl:520

msgMenuButtonSetMenu, API 1 :466

msgMenuButtonSetStyle, API 1 :465

msgMenuButtonShowMenu, API 1 :467

msgMenuDone, APIl:477

msgMenuGetStyle, APIl:477

msgMenuSetStyle, APIl:477

msgMenuShow, APIl:477

msgMILSvcAddToConflictManager,
API2:587

msgMILSvcAre YouConnected, API2: 587

msgMILSvcConnectionStateResolved,
API2:588

msgMILSvcGetDevice, API2:586

msgMILSvclnstalledMILDevice,
API2:586

msgMILSvcPowerOff, API2:587

msgMILSvcPowerOn, API2:587

msgMILSvcSetDevice, API2:586

msgMILSvcStartConnectionProcessing,
API2:588

msgModalFilterActivate, API 1 :483

msgModalFilterDeactivate, API 1 :483

msgModalFilterDismiss Win, API 1 :483,
APIl:489

msgModalFilterGetFlags, API 1 :482

msgModalFilterSetFlags, APII :482

msgModemActivity, API2:424

msgModemAnswer, API2:429

msgModemConnected, API2:425

msgModemDial, API2:429

msgModemDisconnected, API2:425

msgModemErrorDetected, API2:425

msgModemGetConnectionInfo, API2:427

msgModemGetResponseBehavior,
API2:426

msgModemHangUp, API2:429

msgModemOffHook, API2:428

msgModemOnline, API2:428

msgModemReset, API2:427

msgModemResponse, API2:424

msgModemRingDetected, API2:425

msgModemSendCommand, API2:427

msgModemSetAnswerMode, API2:429

msgModemSetAutoAnswer, API2:429

msgModemSetCommandState, API2:431

msgModemSetDialType, API2:428

msgModemSetDuplex, API2:431

msgModemSetMNPBreakType, API2:432

msgModemSetMNPCompression,
API2:432

msgModemSetMNPFlowControl,
API2:432

msgModemSetMNPMode, API2:431

msgModemSetResponseBehavior,
API2:426

msgModemSetSignallingModes, API2:430

msgModemSetSpeakerControl, API2:431

msgModemSetSpeakerVolume, API2:431

msgModemSet T oneDetection, API2:430

msgModemTransmissionError, API2:425

msgMoveCopyIconCancel, APIl: 170,
APIl:473

msgMoveCopyIconDone, API 1: 170,
APIl:473

msgMoveCopyIconGetStyle, API 1:472

msgMoveCopyIconSetStyle, API 1 :473

msgMutate, API 1 :23

msgNBPConfirm, API2:366

msgNBPLookup, API2:366

msgNBPRegister, API2:366

msgNBPRemove, API2:366

msgNewArgsSize, APIl:19

msgNewDefaults, APIl:736, APIl:739,
APIl:763, APIl:770, APIl:779,
APIl:785

msgNewWithDefaults, APIl: 11

MsgNoError, APIl:9

msgN oteCancel, API 1 :488

msgNoteDone, APIl:488

msgNoteGetMetrics, APIl:487

msgNotePaperAddMenus, API2:246

msgN otePaperAddModeCtrl, API2:246

msgNotePaperAlign, API2:246

msgNotePaperCenter, API2:246

msgN otePaperClear, API2:247

msgNotePaperClearSel, API2:247

msgNotePaperDeleteLine, API2:247

msgNotePaperDeselectLine, API2:247

msgN otePaperEdit, API2:245

msgN otePaperGetDcInfo, API2:243

msgN otePaperGetMetrics, API2: 243

msgNotePaperGetPenStyle, API2:244

msgNotePaperGetSelType, API2:243

msgNotePaperGetStyle, API2:245

msgNotePaperInsertLine, API2:247

msgNotePaperMerge, API2:246

msgN otePaperScribble, API2:248

msgNotePaperSelectLine, API2:247

msgNotePaperSelectRect, API2:247

msgN otePaperSetEditMode, API2:244

msgN otePaperSetPaperAndPen, API2:244

msgNotePaperSetPenStyle, API2:244

msgNotePaperSetStyle, API2:244

msgNotePaperSplit, API2:246

msgNotePaperTidy, API2:245

msgN otePaper Translate, API2:245

msgNotePaperUntranslate, API2:245

msgNoteSetMetrics, APII :487

msgNoteShow, APIl:487

msgN otifJObservers, API 1 :24

msgNotUnderstood, APIl:25

msgNPDataAddedltem, API2:259

msgNPDataDeletel tern, API2:254

msgNPDataEnumAllItems, API2:256

msgNPDataEnumAllItemsReverse,
API2:256

msgNPDataEnumBaselineltems,
API2:255

msgNPDataEnumOverlappedltems,
API2:255

msgNPDataEnumSelectedltems,
API2:256

msgNPDataEnumSelectedI temsReverse,
API2:256

msgNPDataGetBaseline, API2:257

msgNPDataGetBounds, API2:258

msgNPDataGetCachedDCs, API2:258

msgNPDataGetCurrentltem, API2:257

msgNPDataGetFontSpec, API2:258

msgNPDataGetLineSpacing, API2:258

msgNPDataGetNextltem, API2:257

msgNPDataGetSelBounds, API2:258

msgNPDataHeightChanged, API2:259

msgNPDatalnsertltem, API2:254

msgNPDatalnsertltemFrom View,
API2:254

msgNPDataltemChanged, API2:259

msgNPDataltemCount, API2:257

msgNPDataltemEnumDone, API2:259

msgNPDataMoveltem, API2:254

msgNPDataMoveltems, API2:254

msgNPDataSelectedCount, API2:257

msgNPDataSendEnumSelectedI terns,
API2:256

msgNPDataSetBaseline, API2: 2 5 7

msgNPDataSetFontSpec, API2:258

msgNPDataSetLineSpacing, API2:258

msgNPltemAlign ToBaseline, API2:264

msgNPI temCalcBaseline, API2:267

msgNPltemCalcBounds, API2:267

msgNPltemCanBeTranslated, API2:267

msgNPI temCanBe U ntranslated,
API2:267

msgNPltemDelete, API2:262

msgNPltemDelta, API2:263

msgNPltemGetMetrics, API2:263

msgNPltemGetPenStyle, API2:262

msgNPltemGetScribble, API2:266

msgNPltemGetString, API2:266

msgNPltemGetViewRect, API2:263

msgNPltemGetWordSpacing, API2:267

msgNPltemHitRect, API2:263

msgNPltemHitRegion, API2:266

msgNPltemHold, API2:264

msgNPltemJ oin, API2:265

msgNPltemMove, API2:263

msgNPltemPaint, API2:264

msgNPltemPaintBackground, API2:262

msgNPltemRelease, API2:264

msgNPltemScratchOut, API2:265

msgNPltemSelect, API2:262

msgNPltemSelected, API2:262

msgNPltemSetBaseline, API2:263

msgNPltemSetBounds, API2:264

msgNPltemSetOrigin, API2:265

msgNPltemSetPenStyle, API2:264

msgNPltemSetString, API2:266

msgNPltemSplit, API2:265

msgNPltemSplitAs Words, API2:265

msgNPltemSplitGesture, API2:265

msgNPltemTie, API2:265

msgNPltem ToScribble, API2:266

msgNPI tern ToT ext, API2:266

msgN ull, API 1: 10

MsgNum, API1:9

msgN umObservers, APII :25

msgObjectAncestorIsA, APII :21

msgObjectClass, API 1 :21

msgObjectlsA, API 1 :20

msgObjectNew, API1:22

msgObjectOwner, APII :21

msgObjectValid, APIl:21

msgObjectVersion, API1:22

INDEX 671

msgOBXDocGetService, API2:441

msgOBXDoclnOutbox, API2:441

msgOBXDocOutputCancel, API2:447

msgOBXDocOutputDone, API2:447

msgOBXDocOutputStart, API2:447

msgOBXDocOutputStartOK, API2:447

msgOBXDocStatusChanged, API2:448

msgOBXSvcCopylnDoc, API2:442

msgO BXSvcGetEnabled, API2:446

msgOBXSvcGetTempDir, API2:442

msgOBXSvcLockDocument, API2:443

msgOBXSvcMovelnDoc, API2:441

msgOBXSvcNextDocument, API2:443

msgOBXSvcOutputCancel, API2:445

msgOBXSvcOutputCleanUp, API2:445

msgOBXSvcOutputStart, API2:445

msgOBXSvcPollDocuments, API2:442

msgOBXSvcQueryState, API2:446

msgO BXSvcScheduleDocument,
API2:444

msgO BXSvcSetEnabled, API2:446

msgOBXSvcStateChanged, API2:446

msgOBXSvcSwitchlcon, API2:441

msgOBXSvcUnlockDocument, API2:444

msgOptionAddAndlnsertCard, API 1: 500

msgOptionAddCard, API 1 :498

msgOptionAddCards, API 1: 51 0, API2:249

msgOptionAddFirstCard, API 1 :499

msgOptionAddLastCard, API 1 :499

msgOptionApplicable, API 1: 503

msgOptionApplicableCard, API 1: 508

msgOptionApply, APII :503

msgOptionApplyAndClose, API 1: 503

msgOptionApplyCard, API 1: 507

msgOptionBookProvideContents,
APIl:511

msgOptionCardMenuDone, API1:505

msgOptionClean, API 1: 504

msgOptionCleanCard, APII :508

msgOptionClose, APIl:504

msgOption Closed, API 1: 51 0

msgOptionCreateSheet, API 1 :51 0

msgOptionDirty, APII :504

msgOptionDirtyCard, API 1: 508

msgOptionEnumCards, API 1 :497

msgOptionExtractCard, API 1: 50 1

msgOptionGetCard, APIl:495

msgOptionGetCardAndName, API1:496

msgOptionGetCardMenu, API1:504

msgOptionGetCards, API1:502

msgOptionGetNeedCards, API 1 :495

672 INDEX

msgOptionGetStyle, APII :494

msgOptionGetTopCard, APIl:496

msgOptionProvideCardDirty, API 1 : 506

msgOptionProvideCardWin, API 1 :505

msgOptionProvide TopCard, API 1 :506

msgOptionRefresh, API 1 :503

msgOptionRefreshCard, API 1 :507

msgOptionRemoveCard, API 1 :500

msgOptionRetireCard, API 1 :509

msgOptionSetCard, API 1 :498

msgOptionSetN eedCards, API 1 :495

msgOptionSetStyle, APIl:495

msgOptionShowCard, APIl:501

msgOptionShowCardAndSheet, API 1 :502

msgOptionShowSheet, APIl:505

msgOptionShow T opCard, API 1: 502

msgOption ToggleDirty, API 1 :504

msgOptionUpdateCard, APIl:509

msgOSOGetServicelnstance, APi2:449

msgOwner, APIl:19

msgPageNumGet, APIl:516

msgPageNumGetStyle, API1:516

msgPageNumlncr, APIl:516

msgPageN umSet, API 1: 516

msgPageNumSetStyle, APIl:516

msgPBMachinePoweringDown, API2:653

msgPBMachinePoweringU p, API2:6 5 3

msgPDictAddWord, API2:650

msgPDictDeleteNum, API2:651

msgPDictDeleteWord, API2:651

msgPDictEnumerate Words, API2:650

msgPDictFindWord, API2:651

msgPDictGetMetrics, API2:650

msgPDictNumToWord, API2:651

msgPDictU pdate Template, API2:652

msgPDictWordToNum, API2:652

msgPenMetrics, API 1: 709

msgPicSegAddGrafic, APIl:247

msgPicSegChangeOrder, API 1 :250

msgPicSegCopy, APIl:252

msgPicSegDelete, API 1 :249

msgPicSegDelta, API 1 :249

msgPicSegDrawGrafic, APIl:247

msgPicSegDrawGraficIndex, API 1 :247

msgPicSegDrawGraficList, API 1 :247

msgPicSegDrawObject, API 1 :246

msgPicSegDrawSpline, API 1 :246

msgPicSegErase, API 1 :249

msgPicSegGetCount, API 1 :250

msgPicSegGetCurrent, API 1 :250

msgPicSegGetFlags, API 1 :248

msgPicSegGetGrafic, APII :249

msgPicSegGetMetrics, API 1 :248

msgPicSegHitT est, API 1 :248

msgPicSegMakelnvisible, API 1 :250

msgPicSegMake Visible, API 1 :250

msgPicSegPaint, API 1 :246

msgPicSegPaintObject, API 1 :247,
APIl:288, APIl:714

msgPicSegRemove, API1 :249

msgPicSegScaleU nits, API 1 :251

msgPicSegSetCurrent, API 1 :249

msgPicSegSetFlags, API 1 :248

msgPicSegSetMetrics, API 1 :248

msgPicSegSizeof, API 1 :250

msgPicSeg Transform, API 1 :251

msgPixDevGetMetrics, API 1 :322

msgPMAlIDevicesPoweredOn, API2:656

msgPMDevicePoweringOff, API2:656

msgPMDevicePoweringOn, API2:656

msgPMDevicesPowerOn, API2:656

msgPMGetPowerMetrics, API2:656

msgPMSetPowerState, API2:655

msgPopupChoiceGetChoice, API 1 : 518

msgPopupChoiceGetStyle, APII :518

msgPopupChoiceSetStyle, API 1: 518

msgPostObservers, API 1 :24

msgPPortAutoLineFeedOff, API2:452

msgPPortAutoLineFeedOn, API2:452

msgPPortCancelPrint, API2:453

msgPPortGetTimeDelays, API2:452

msgPPortSet TimeDelays, API2:453

msgPPortStatus, API2:452

msgPrefsLayoutSystem, API2:482

msgPrefsPreferenceChanged, API2:482

msgPrefs WritingDone, API2:483

msgPrefs WritingMany, API2:483

msgPrFrameExpand, APII :20 1

msgPrF rameSend, API 1 :200

msgPrFrameSetup, APIl:200

msgPrintApp, API 1 :208

msgPrintEmbeddeeAction, API 1 :209

msgPrintExamineEmbeddee, API 1 :21 0

msgPrintGetMetrics, API 1 :207

msgPrintGetPrintableArea, API 1 :211

msgPrintGetProtocols, API 1 :209

msgPrintLayoutPage, API 1 :207

msgPrintPaperArea, API 1 :208

msgPrintSetMetrics, API 1 :208

msgPrintSetPrintableArea, API 1':21 0

msgPrintStartPage, API 1 :206

msgPrLayoutGetMetrics, API 1 :214

msgPrLayoutN extPage, API 1 :214

msgPrLayoutSetMetrics, API 1 :214

msgPrMarginSetMetrics, API 1 :215

msgPrnBeginPage, API 1: 154

msgPrnEndDoc, API 1: 154

msgPrnEnumModels, API 1: 155

msgPrnGetLptFontMetrics, API 1: 156

msgPrnGetMetrics, API 1: 153

msgPrnGetModel, APIl: 155

msgPrnGetPaperConfig, API 1: 153

msgPrnLptTextOut, APIl:156

msgPrnMoveTo, APIl:155

msgPrnSetCopyCount, APIl: 154

msgPrnSetPaperConfig, API 1: 153

msgPrnSetRotation, API 1: 154

msgPrnShowPage, API 1: 154

msgPrnStartDoc, API 1: 154

msgProgressGetFilled, APIl:527

msgProgressGetMetrics, APII :526

msgProgressGetStyle, API 1 :525

msgProgressGetUnfilled, APIl:527

msgProgressGetVislnfo, APIl:528

msgProgressProvideLabel, API 1 :528

msgProgressSetFilled, APIl:527

msgProgressSetMetrics, API 1 :527

msgProgressSetStyle, APIl:526

msgProgressSet Unfilled, API 1 : 528

msgProp, API 1 :20

msgQuickHelpClosed, API2:285

msgQuickHelpHelpDone, API2:285

msgQuickHelpHelpShow, API 1 :653

msgQuickHelpHelpShow, API2:284

msgQuickHelplnvokedNB, API2:285

msgQuickHelpOpen, API2:285

msgQuickHelpOpened, API2:285

msgQuickHelpShow, API2:284

msgRCAppCancelGotoDoc, APIl:218

msgRCAppExecuteGotoDoc, API 1 :218

msgRCAppGotoContents, API 1 :218

msgRCAppGotoDoc, APIl:218

msgRCAppNextDoc, APIl:217

msgRCAppPrevDoc, APII :217

msgRemoved, API 1 :25

msgRemoved, APII :782

msgRemoveObserver, APIl:24

msgResAgent, API2:504

msgResCompact, API2:502

msgResDeleteResource,API2:502

msgResEnumResources, API2:503

msgResFindResource, API2:496

msgResFlush, API2:502

msgResGetInfo, API2:496

msgResGetObject, API2:500

msgResNextDynResld, API2:504

msgResPutObject, API2:500

msgResReadData, API2:496

msgResReadObject, API2:498

msgResReadObjectWithFlags, API2:501

msgRestore, API 1: 13

msgRestoreInstance, API 1: 12

msgRestoreMsg Table, API 1: 13

msgResUpdateData, API2:498

msgResWriteData, API2:497

msgRes WriteObject, API2:499

msgResWriteObjectWithFlags, API2:501

msgResXxx, API2:505

msgSave, API 1: 13

msgScavenge, API 1: 16

msgScavenged, API 1 : 16

msgScrAddedStroke, APIl:718

msgScrAddedStroke, APIl:782

msgScrAddStroke, APIl:714

msgScrCat, API 1: 715

msgScrClear, API 1 : 716

msgScrComplete, API 1: 716

msgScrCompleted, API 1: 717, API 1: 783

msgScrCount, APIl:714

msgScrDeleteStroke, APIl:715

msgScr DeleteS trokeArea, APIl: 715

msgScrGetBase, API 1 : 714

msgScrGetBounds, API 1: 714

msgScrHit, APIl:717

msgScrollbarGetStyle, APIl:533

msgScrollbar HorizScroll, API 1: 534,
APIl:570

msgScrollbarProvideHorizlnfo, APII :534,
APIl:571

msgScrollbarProvideVertInfo, APII :534,
APIl:570

msgScrollbarSetStyle, API 1: 533

msgScrollbarUpdate, APIl:533

msgScrollbarVertScroll, APIl:533,
APIl:570

msgScrollWinAddClientWin, APIl:565

msgScrollWinAlign, API 1: 567

msgScrollWinCheckScrollbars, API 1 :567

msgScrollWinGetClientWin, API 1 :565

msgScrollWinGetDefaultDelta, APIl: 567

msgScrollWin GetHorizScrollbar,
APIl:566

msgScrollWinGetInnerWin, API 1 :566

msgScrollWinGetMetrics, APIl:564

msgScrollWinGetStyle, APIl:563

msgScrollWinGetVertScrollbar, API 1: 566

msgScrollWinProvideDelta, APIl:343,
APIl:566

msgScrollWinProvideSize, API 1 :566

msgScrollWinRefreshSize, API 1: 567

msgScrollWinRemoveClient Win,
APIl:565

msgScrollWinSetMetrics, APII :565

msgScrollWinSetStyle, API 1: 564

msgScrollWinShowClientWin, API 1 :565

msgScrRemovedStroke, APIl:718,
APIl:782

msgScr Render, API 1: 716

msgScrSetBase, API 1 : 714

msgScrStrokePtr, APIl:716

msgSelBeginCopy, APIl: 170, APII :730,
API2:296

msgSelBeginMove, APIl:169, APIl:730,
API2:296

msgSelChangedOwners, APIl:474,
API2:293

msgSelChoiceMgrAcquireSel, API 1: 542

msgSelChoiceMgrGetClient, API 1: 541

msgSelChoiceMgrGetId, API 1: 541

msgSelChoiceMgrNullCurrent, APII :541

msgSelChoiceMgrNullSel, APIl:542

msgSelChoiceMgrSetClient, API 1 :541

msgSelChoiceMgrSetId, API 1 :541

msgSelCopySelection, APIl:168,
APIl:730, API2:296

msgSelDelete, APIl: 169, APII :730,
API2:248, API2:297

msgSelDemote, API2:295

msgSelIsSelected, API 1: 169, API2:296

msgSelMoveSelection, API 1: 168,
APIl:730, API2:297

msgSelOwner, API2:292

msgSelOwners, API2:293

msgSelPrimaryOwner, API2:293

msgSelPromote, APIl:169, API2:295

msgSelPromotedOwner, API2:294

msgSelRememberSelection, API 1: 168,
API2:297

msgSelSelect, API 1: 169, API 1 : 342,
API2:295

msgSelSetOwner, API2:291

msgSelSetOwnerPreserve, API2:291

msgSelYield, APIl: 169, APIl:342,
API2:294

msgSendServCreateAddrWin, API2:455

msgSendServDecodeAddrData, API2:457

INDEX 673

msgSendServEncodeAddr Data, API2:4 5 7

msgSendServEncodeAddrWin, API2:456

msgSendServFillAddrWin, API2:456

msgSendServGetAddrDesc, API2:458

msgSendServGetAddrSummary, API2:456

msgSetLock, API 1 : 18

msgSetOwner, APIl:19, APIl:685,
APIl:728

msgSetProp, API 1 :20

msgShadowGetBorderWin, API 1: 544

msgShadowGetShadowWin, API 1 :545

msgShadowGetStyle, API 1: 544

msgShadowSetBorder Win, API 1: 54 5

msgShadowSetStyle, API 1: 544

msgSIMGetMetrics, API2:571

msgSioBaudSet, API2:461

msgSioBreakSend, API2:463

msgSioBreakStatus, API2:463

msgSioControlInStatus, API2:462

msgSioControlOutSet, API2:462

msgSioEventGet, API2:465

msgSioEventHappened, API2:466

msgSioEventSet, API2:465

msgSioEventStatus, API2:465

msgSioFlowControlCharSet, API2:463

msgSioFlowControlSet, API2:464

msgSioGetMetrics, API2:466

msgSiolnit, API2:466

msgSiolnputBufferFlush, API2:464

msgSiolnputBufferStatus, API2:464

msgSioLineControlSet, API2:462

msgSioOutputBufferFlush, API2:464 [
msgSioOutputBufferStatus, API2:464

msgSioReceiveErrorsStatus, API2:463 _i
msgSioSetMetrics, API2:466

msgSioSetReplaceChar Proc, API2:467

msgSMAccess, API2:614

msgSMAccessDefaults, API2:614

msgSMBind, API2:615

msgSMClose, API2:618

msgSMConnectedChanged, API2:622

msgSMFindHandle, API2:620

msgSMGetCharacteristics, API2:619

msgSMGetClassMetrics, API2:621

msgSMGetOwner, API2:616

msgSMGetState, API2:621

msgSMOpen, API2:617

msgSMOpenDefaults, API2:617

msgSMOwnerChanged, API2:622

msgSMQuery, API2:619

msgSMQueryLock, API2:618

674 INDEX

msgSM QueryU nlock, API2:619

msgSMRelease, API2:615

msgSMSave, API2:619

msgSMSetOwner, API2:616

msgSMSetOwnerNoVeto, API2:620

\ msgSMUnbind, API2:615

msgSPaperAbort, API 1 : 726

msgSPaperAddStroke, APII :725

msgSPaperClear, API 1: 725

msgSPaperComplete, APII :726

msgSPaperDeleteStrokes, APII :726

msgSPaperGetCellMetrics, API 1 : 724

msgSPaperGetFlags, API 1 : 723

msgSPaperGetScribble, APII :723

msgSPaperGetSizes, API 1: 724

msgSPaperGetTranslator, APII :723

msgSPaperGetXlateData, API 1: 727

msgSPaperGetXlateDataAndStrokes,
APIl:727

msgSPaperLocate, API 1 :725

msgSPaperSetCellMetrics, API 1 : 724

msgSPaperSetFlags, API 1 : 723

msgSPaperSetScribble, API 1: 724

msgSPaperSetSizes, APIl:725

msgSPaperSetTranslator, API 1 :723

msgSPaperXlateCompleted, API 1 :685,
APIl:726

msgSpMgrAcceptMisspelling, API2:304

msgSpMgrCorrectMisspelling, API2:304

msgSpMgrCreateContext, API2:303

msgSpMgrFindMisspelling, API2:303

msgSpMgrGesture, API2:304

msgSRGetChars, API2:306

msgSRInvokeSearch, API2:307

msgSRNextChars, API2:305

msgSRPositionChars, API2:307

msgSRRememberMetrics, API2:308

msgSRReplaceChars, API2:306

msgStreamBlockSize, API2:82

msgStreamFlush, API2: 72, API2:81

msgStreamRead, API2:71, API2:80

msgStreamReadTimeOut, API2:80

msgStreamSeek, API2:72, API2:81

msgStreamWrite, API2:71, API2:80

msgStream Write TimeOut, API2:81

msgStrListBoxGetDirty, APII :556

msgStrListBoxGetStyle, APIl:556

msgStrListBoxGetValue, API1:403,
APIl:557

msgStrListBoxNotify, APIl:558

msgStrListBoxProvideString, API 1 :403,
APIl:557

msgStrListBoxSetDirty, APIl:556

msgStrListBoxSetValue, APIl:403,
APIl:557

msgStrObjChanged, API2:31 0

msgStrObjGetStr, API2:310

msgStrObjSetStr, API2:310

msgSvcAddT oManager, API2:627

msgSvcAutoDetectingHardware,
API2:634

msgSvcBindRequested, API2:604

msgSvcChangeOwnerRequested,
API2:625

msgSvcCharactersticsRequested,
API2:433, API2:606

msgSvcClassGetlnstallDir, API2:634

msgSvcClassInitService, API2:598

msgSvcClassLoadInstance, API2:626

msgSvcClassPop U pOptionSheet,
API2:634

msgSvcClassTerminate, API2:630

msgSvcClassTerminateOK, API2:630

msgSvcClass Terminate Vetoed, API2:630

msgSvcClientDestroyedEarly, API2:631

msgSvcCloseRequested, API2:605

msgSvcClose Target, API2:602

msgSvcDeinstallRequested, API2:631

msgSvcDeinstallVetoed, API2:631

msgSvcGetBindList, API2:628

msgSvcGetClassMetrics, API2:626

msgSvcGetConnected, API2:603

msgSvcGetDependentAppList, API2:629

msgSvcGetDependentServiceList,
API2:629

msgSvcGetFunctions, API2:632

msgSvcGetHandle, API2:60 1

msgSvcGetManager HandleList, API2:629

msgSvcGetManagerList, API2:628

msgSvcGetMetrics, API2:433, API2:626

msgSvcGetModified, API2:60 1

msgSvcGetMyOwner, API2:623

msgSvcGetName, API2:633

msgSvcGetOpenList, API2:628

msgSvcGetOpenObjectList, API2:628

msgSvcGetOwned, API2:623

msgSvcGetStyle, API2:632

msgSvcGetTarget, API2:603

msgSvcN ameChanged, API2:633

msgSvcOpenDefaultsRequested, API2:605

msgSvcOpenRequested, API2:605

msgSvcOpen Target, API2:602

msgSvcOwnerAcquired, API2:624

msgSvcOwnerAcquireRequested,
API2:624

msgSvcOwnerReleased, API2:624

msgSvcOwnerReleaseRequested,
API2:623

msgSvcPropagateMsg, API2:633

msgSvcQueryLockRequested, API2:606

msgSvcQueryU nlockRequested, API2:606

msgSvcRemoveF romManager, API2:627

msgSvcSaveRequested, API2:625

msgSvcSetConnected, API2:585, API2:603

msgSvcSetMetrics, API2:433, API2:627

msgSvcSetModified, API2:60 1

msgSvcSetStyle, API2:632

msgSvcSetTarget, API2:603

msgSvc TargetChanged, API2:634

msgSvcUnbindRequested, API2:604

msgSysBootStateChanged, API2:578

msgSysCreateLiveRoot, API2:576

msgSysGetBootState, API2:575

msgS ysGetCorrectiveServiceLevel,
API2:578

msgSysGetLiveRoot, API2:576

msgSysGetRuntimeRoot, API2:575

msgSysGetSecurityObject, API2:577

msgSysGetVersion, API2:577

msgSysIsHandleLive, API2:576

msgS ysSetCorrectiveServiceLevel,
API2:578

msgSysSetSecurityObject, API2:577

msgTabBarGetStyle, API1:574

msgTabBarSetStyle, API1:575

msgTabButtonGetFlags, API1:582

msgTabButtonGetMetrics, API1:582

msgTabButtonSetFlags, API1:582

msgTabButtonSetMetrics, APIl:582

msg Task Terminated, API 1: 16

msg TBLAddRow, API2:314

msg TBLBeginAccess, API2:317

msg TBLCoiGetData, API2:315

msg TBLColSetData, API2:315

msg TBLCompact, API2:320

msg TBLDeleteRow, API2:314

msg TBLEndAccess, API2:318

msgTBLFindColNum, API2:319

msgTBLFindFirst, API2:318

msgTBLFindNext, API2:319

msg TBLGetColCount, API2:316

msg TBLGetCoiDesc, API2:316

msg TBLGetlnfo, API2:316

msgTBLGetRowCount, API2:317

msgTBLGetRowLength, API2:317

msgTBLGetState, API2:317

msgTblLayoutAdjustSections, API 1 :606

msgTblLayoutComputeGrid, API 1 :606

msgTblLayoutComputeGridXY,
API1:607

msgTblLayoutFreeGrid, API1:607

msgTblLayoutGetMetrics, API 1 :604

msgTblLayoutGetStyle, API1:604

msg TblLayoutSetMetrics, API 1 :604

msgTblLayoutSetStyle, APII :605

msgTblLayoutXYTolndex, APIl:605

msgTBLRowAdded, API2:320

msgTBLRowChanged, API2:321

msg TBLRowDeleted, API2:320

msg TBLRowGetData, API2:315

msgTBLRowNumToRowPos, API2:320

msgTBLRowSetData, API2:316

msgTBLSemaClear, API2:318

msgTBLSemaRequest, API2:318

msgTextAffected, API2:29

msgTextChangeAttrs, API2:23

msg T extChangeCount, API2:20

msg TextClearAttrs, API2:24

msgTextCounterChanged, API2:29

msg TextEmbedObject, API2:24

msg T extEnumEmbeddedObjects,
API2:28

msg TextExtractObject, API2:25

msgTextFieldGetStyle, APIl:591

msgTextFieldSetStyle, APIl:592

msg TextGet, API2: 20

msgTextGetAttrs, API2:25

msgTextGetBuffer, API2:20

msg T extGetMetrics, API2:21

msgTextlnitAttrs, API2:25

msg T extIPGetMetrics, API2:42

msg TextIPSetMetrics, API2:43

msgTextLength, API2:21

msg T extModify, API2:21

msgTextPrintAttrs, API2:26

msgTextRead, API2:26

msgTextReplaced, API2:29

msg T extSetMetrics, API2:21

msg T extSpan, API2:22

msg TextSpan Type, API2:23

msg T extViewAddIP, API2: 37

msgTextViewCheck, API2:38

msgTextViewEmbed, API2:38

msg T extViewGetEmbedMetrics, API2:38

msg TextViewGetStyle, API2:39

msgTextViewRepair, API2:38

msgTextViewResolveXY, API2:38

msgTextViewScroll, API2:39

msgTextViewSetSelection, API2:40

msgTextViewSetStyle, API2:40

msgTextWrite, API2:27

msgTiffGetMetrics, API 1 :288

msgTiffGetRow, APIl:292

msgTiffGetSizeMils, APIl:290

msgTiffGetSizeMM, API 1 :290

msgTiffSave, APIl:290

msgTiffSetGroup3Defaults, APIl:291

msgTiffSetMetrics, APIl :289

msg TimerAlarmNotify, API2: 180

msgTimerAlarmRegister, API2: 179

msgTimerAlarmStop, API2: 180

msgTimerNotify, APIl:342, APIl:490

msgTimerNotify, API2: 179

msgTimerRegister, API2: 177

msgTimerRegisterAsync, API2: 178

msgTimerRegisterDirect, API2: 178

msgTimerRegisterInterval, API2: 178

msg TimerStop, API2: 179

msg TimerTransaction Valid, API2: 179

msgTitleBarGetStyle, APIl:580

msgTitleBarSetStyle, APIl:580

msgTkTableAddAsFirst, APIl:362,
APIl:577, APIl:597

msgTkTableAddAsLast, APIl:362,
APIl:577, APIl:598

msgTkTableAddAsSibling, APIl:363,
APIl:577, APIl:598

msgTkTableAddAt, APIl:363, APIl:578,
APIl:598

msg Tk T ableChildDefaults, API 1 :363,
APIl:374, APIl:424, APIl:432,
APIl:478, APIl:576, APIl:597,
APIl:622

msgTkTableGetClient, APIl:596

msgTkTableGetManager, APIl:596

msgTkTableGetMetrics, APIl:597

msgTkTableGetStyle, APIl:596

msgTkTableInit, APIl:598

msgTkTableRemove, APIl:363,
APIl :578, APIl :598

msg Tk T ableSetClient, API 1: 596

msgTkTableSetManager, APIl:596

msgTkTableSetMetrics, APIl:597

msgTkTableSetStyle, APIl:596

msg TP Accept, API2:469

msgTPBind, API2:470

msg TPConnect, API2:470

INDEX 675

msgTPListen, API2:470

msgTPRecv, API2:470

msgTPRecvFrom, API2:470

msgTPSend, API2:471

msgTPSendRecvTo, API2:471

msgTPSendTo, API2:471

msg Trace, API 1: 22

msgTrackConstrain, APIl:619

msgTrackDone, APIl:342, APIl:421,
APIl:474, APIl:537, APIl:617,
APIl:687

msg TrackGetMetrics, API 1 :616

msg TrackGetStyle, API 1 :615

msgTrackHide, APIl:620

msg T rackProvideMetrics, API 1: 170,
APIl:415, APIl:474, APIl:618,
APIl:686, APIl:731

msgTrackSetMetrics, APIl:616

msg T rackSetStyle, APIl :615

msgTrackShow, APIl:619

msg TrackStart, API 1 :617

msgTrackUpdate, APIl:618, APIl:687

msgUndoAbort, API2:328

msgUndoAddItem, API2:328

msgUndoBegin, API2:328

msgUndoCurrent, API2:329

msgUndoEnd, API2:329

msgUndoFreeItemData, API2:330

msgUndoGetMetrics, API2:329

msgUndoItem, API2:330

msgUndoLimit, API2:330

msgUndoRedo, API2:330

msgU nlocks, API 1: 19

msgVersion, APIl:19

msgViewGetDataObject, API 1 :221

msgViewSetDataObject, API 1 :221

msgVolCancelDuplication, API2: 1 02

msgVolCancelFormat, API2:101

msgVolDuplicateMedia, API2: 101

msgVolDuplicateReady, API2: 1 02

msg V olDuplicate Volume, API2: 101

msgVolEjectMedia, API2:99

msgVolFormatMediaBegin, API2:100

msg V olF ormatMediaCon t, API2: 101

msgVolFormatMedialnit, API2: 100

msgVolFormatMediaSetup, API2: 1 00

msgVolFormatVolumeInit, API2:99

msgVolInvalidateCaches, API2:99

msgVolMediaCapacities, API2: 100

msgVolUpdateBootCode, API2:99

msgVolUpdateVolumes, API2:98

msgVSDuplicateVolume, API2: 117

676 INDEX

msgVSFormatCompleteNotify, API2: 117

msgVSFormatMedia, API2: 117

msgVSFormatVolume, API2:116

msgVSN arne Vol ume, API2: 117

msgVSUpdateVolumes, API2: 117

msgWinBeginPaint, API 1 :284-285,
APIl:310

msgWinBeginRepaint, APIl:284,
APIl:310

msgWinCleanRect, APIl:311

msgWinCopyRect, APIl:285, APIl:311

msgWinDelta, APIl:285, APIl:301

msgWinDeltaOK, APIl:315

msgWinDevBindPixelmap, API 1 :286,
APIl:322

msgWinDevBindPrinter, APIl:321

msgWinDevBindScreen, APIl:321

msgWinDevGetRootWindow, APIl:321

msgWinDevPrintPage, APII :323

msgWinDevSetOrientation, API 1 :322

msg WinDevSizePixelmap, API 1 :286,
APIl:322

msgWinDirtyRect, APIl:284, APIl:310

msgWinDumpTree, APIl:318

msgWinEndPaint, APIl:310

msgWinEndRepaint, APII :31 0

msgWinEnum, APIl:312

msg WinExtract, API 1 :300

msg WinExtracted, APII :316

msg WinExtractO K, APII :315

msgWinFindAncestorTag, APII :309

msgWinFindTag, APII :309

msgWinFreeOK, API1:316

msgWinGetBaseline, APIl:304,
APIl:448, APIl:459, APIl:530,
APIl:609

msgWinGetDesiredSize, APII :304

msgWinGetEnv, APIl:318

msgWinGetFlags, APII :306

msgWinGetMetrics, APIl:285, APIl:306

msgWinGetPopup, APII :308

msgWinGetTag, APIl:307

msgWinHitDetect, APIl:285, APIl:319

msgWinInsert, APIl:299

msg Win Inserted, APII :316

msgWinInsertOK, APII :314

msgWinInsertSibling, API 1 :300

msgWinIsDescendant, APIl:308

msgWinIsVisible, APIl:307

msg WinLayout, API 1 :302

msgWinLayoutSelf, APII :303, APII :370,
APIl:447, APIl:469, APIl:489,
APIl :529, APII :535, APII :568,
APIl :575, APIl :608, APIl :729

msgWinMoved, APIl:316

msgWinOrphaned, APIl:314

msgWinRepaint, APII :314, APIl :343,
APIl :448, APIl :529, APIl :535,
APIl:545, APIl:729

msgWinSend, APIl:305

msgWinSetFlags, APIl:306, API1:415,
APIl:545, APIl:568

msgWinSetLayoutDirty, APIl:305

msg WinSetLayoutDirtyRecursive,
APIl:305

msgWinSetPaintable, APIl:310

msgWinSetPopup, API 1 :309

msgWinSetTag, APIl:307, APIl:430

msgWinSetVisible, APIl:309

msgWinSized, APIl:317, APIl:729

msgWinSort, APIl:317

msgWinStartPage, APIl:317, APIl:459,
APIl:685

msgWinTransformBounds, APII :285,
APIl:312

msgWinUpdate, APIl :311

msgWin VisibilityChanged, API 1 :316

msgXferGet, API 1: 731

msgXferGet, API2:336

msgXferList, API 1: 168, API 1 :731

msgXferList, API2:336

msgXferStreamAuxData, API2:338

msgXferStream Connect, API2:338

msgXferStreamFreed, API2:339

msgXferStreamSetAuxData, API2:339

msgXferStream Write, API2:339

msgXGestureComplete, APIl:736

msgXIateCharConstrainsGet, API 1: 743

msgXIateCharConstrainsSet, API 1: 743

msgXIateCharMemoryGet, API 1: 744

msgXIateCharMemorySet, API 1: 744

msgXIateComplete, API 1: 746

msgXlateCompleted, API 1 :653, API 1: 728

msgXIateCompleted, API 1: 747

msgXlateData, APIl:746, APIl:770

msgXIateFlagsClear, API 1: 743

msgXIateGetFlags, API 1: 743

msgXlateGetHistory Template, API 1 : 745

msgXIateGetXlateCaseMetrics, API 1 : 745

msgXIateMetricsGet, API 1: 741

msgXIateMetricsSet, API 1: 740

msgXIateModeGet, API 1: 740

msgXIateModeSet, API 1: 740

msgXIateSetFlags, API 1: 742

msgXIateSetHistory Template, API 1: 746

msgXIateSetXlateCaseMetrics, API 1 : 745

msgXIateStringSet, API 1: 741

msgXIate T emplateGet, API 1 : 744

msgXIate T emplateSet, API 1 : 744

msgXShapeRecognize, APIl: 765

msgXShapeShapeCompatible, API 1: 7 66

msgXShapeShapeEvaluate, APIl:767

msgXShapeShapeLearn, APIl: 767

msgXShapeStrokePreview, API 1 : 764

msgXTeachCompleted, APIl:771

msgXTeachEvaluationGet, APIl:770

msgXT eachExecute, API 1: 770

msgXT eachSetld, API 1: 770

msgXT eachSet Target, API 1: 770

msgXT extComplete, API 1 : 780

msgXT extGetXList, API 1: 780

msgXTextModLine, APIl:780

msgXTextNewLine, APIl:780

msgXTextWordList, APIl:780

msgXtractComplete, API 1: 783

msgXtractGetScribble, API 1 : 782

msgXtractStrokesClear, APIl:782

msgXWordComplete, APIl:785

msgZIPGetM y Zone, API2:367

msgZIPGetZoneList, API2:367 -NAME, API2:208

NBP _CONFIRM, API2:366

NBP _LOOKUP, API2:366

NBP _REGISTER, API2:366

NBP _REMOVE, API2:366

NBP _TUPLE, API2:366

Nil, APIl:53

NilUUID, API2:83

NOTE_METRICS, APIl:485, APIl:487

NOTE_NEW, API 1 :486-487

NOTE_NEW _ONLY, API 1 :486

NOTE_P APER_DC_INFO, API2:243

NOTE_PAPER_METRICS, API2:242-244

NOTE_PAPER_NEW, API2:242

NOTE_PAPER_NEW _ONLY, API2:242

NOTE_P APER...SEL_ TYPE, API2:244

NOTE_PAPER...STYLE, API2:242, API2:245

NOTE_RES_ID, APII :486

NP_DATA_ADDED_ITEM, API2:259

NP _DATA_ADDED_NP _ITEM_VIEW,
API2:254

NP _DATA_DCS, API2: 2 5 8

NP _DATA_ITEM, API2:255

NP_DATA_ITEM_CHANGED, API2:259

NP_DATA_NEW, API2:253

NP_DATA-NEW_ONLY, API2:253

NP_DATA_XY, API2:254

NP _ITEM_DC, API2:262, API2:264

NP _ITEM_METRICS, API2:263

NP_ITEM_NEW, API2:262

NP_ITEM_NEW_ONLY, API2:261

NP _PAPER_STYLE, API2:241

NP _SCRIBBLE_ITEM_NEW, API2:269

NP _SCRIBBLE_ITEM_NEW _ONLY, API2:269

NP_TEXT_ITEM_NEW, API2:271

NP_TEXT_ITEM_NEW_ONLY, API2:271

NPPaperStyleFromTag, API2:250

NPPenColor, API2:242

NPPenStyle, API2:242

NPPen Weight, API2:242

OBLANCESTOR_IS_A, APIl:21

OBLCAPABILITY, APIl:5, APIl:17

OBLCAPABILITY_SET, APIl:7, APIl:17

OBLCLASS, APIl:21

OBLCOPY, APIl:14

OBLCOPY_RESTORE, APIl:14

OBLDISPATCH_INFO, APIl:35

OBLENUM_OBSERVERS, APIl :24

OBLEXCEPTION, APIl:15-16

OBLFS_LOCATOR, APIl:14

OBLIS_A, APIl:20

OBLLOCK_SET, APIl:18

!l!lffilIT

OBLMUTATE, APIl :23

OBLNOTIFY_OBSERVERS, APIl:7, APIl:24

OBLOBSERVER_POS, APIl:7, APIl:23,
APIl:25

OBLOWNER, APIl:7; APIl:19, APIl:21

OBLPROP, APIl:7, APIl:20

OBLRESTORE, APIl:8, APIl:12-13

OBLSAVE, APIl:8, APIl:13

OBLSTATISTICS, APIl:37

OBLSUBTASK_FREE, API 1: 16

ObjCallAncestorChk, APIl:38

ObjCallAncestorCtxJ mp, API 1 :38

ObjCallAncestorCtxOK, APIl :38

ObjCallAncestorCtxRet, API 1 :38

ObjCallAncestorCtxWarn, APIl:44-45

ObjCallAncestorFailed, APIl:38

ObjCallAncestor J mp, API 1 :38

ObjCallAncestorOK, APIl:38

ObjCallAncestorRet, APIl:38

ObjCallAncestorWarn, APIl:44-45

ObjCallChk, API1:38

ObjCallFailed, API 1 :38

ObjCallJmp, APIl:38

ObjCallNoDebugWarn, APIl:44-45

ObjCallOK, APIl:38

ObjCallRet, API 1 :38

ObjCallWarn, APIl:44-45

OBJECT_NEW_ONLY, APIl:6

ObjectCall, API 1 :26

ObjectCallAncestor, API1:26

ObjectCallAncestorCtx, API 1 :26

ObjectCallAncestorCtx Warning, API 1 :40

ObjectCallAncestor Warning, API 1 :40

ObjectCallNoDebug, APIl:37

ObjectCallNoDebugWarning, APIl:40

ObjectCallWarning, API 1 :40

ObjectlnfoString, API 1 :33

o bj ectlsDynamic, API 1: 10

ObjectlsGlobal, API 1: 1 0

ObjectlsGlobalWKN, API 1: 10

ObjectlsLocal, API 1: 10

ObjectlsPrivateWKN, APIl: 10

ObjectlsProcessGlobalWKN, APIl: 10

ObjectlsWellKnown, APIl:10

ObjectlsWKN, APIl:I0

ObjectMsgAlter, APIl:36

ObjectMsgDispatch, APIl:35

ObjectMsgDispatchlnfo, APIl:35

ObjectMsgExtract, APIl:36

ObjectMsgLoop, APIl:35

ObjectOwner, APIl:32

ObjectPeek, API 1 :31

ObjectPoke, API 1 :31

ObjectPost, API 1 :28

ObjectPostAsync, API 1 :29

ObjectPostAsyncTask, APIl :29

ObjectPostAsyncTaskWarning, APIl:43

ObjectPostAsyncWarning, APIl:42

ObjectPostDirect, API 1 :30

ObjectPostDirectTask, APIl:30

ObjectPostDirect Task Warning, API 1 :43

ObjectPostDirectWarning, APIl:42

ObjectPostTask, APIl:29

ObjectPostTaskWarning, APIl:43

ObjectPostU32, API 1 :29

ObjectPostWarning, APIl:42

ObjectRead, APIl :31

ObjectSend, APIl:27

ObjectSendTask, APIl:27

ObjectSendTaskWarning, APIl:41

INDEX 677

ObjectSendU32, API 1 :27

ObjectSendU pdate, API 1 :27

ObjectSendUpdateTask, APIl:28

ObjectSendU pdateTaskWarning, API 1 :42

ObjectSendUpdateWarning, APIl:41

ObjectSendWarning, API 1 :41

ObjectValid, APIl:32

ObjectWarning, APIl :43

ObjectWrite, APIl:30

ObjectW ritePartial, API 1 :31

ObjPostAsyncJmp, APIl:39

ObjPostAsyncOK, API 1 :39

ObjPostAsyncRet, API 1 :39

ObjPostAsyncTaskWarn, APIl:44-45

ObjPostAsyncWarn, APIl:44-45

ObjPostDirectJ mp, API 1 :39

ObjPostDirectOK, APIl :39

ObjPostDirectRet, APIl:39

ObjPostDirectTaskWarn, APIl:44-45

ObjPostDirectWarn, APIl:44-45

ObjPostJmp, APIl:39

ObjPostOK, APIl:39

ObjPostRet, API 1 :39

ObjPostTaskWarn, APIl:44-45

ObjPostU32Jmp, APIl:39

ObjPostU320K, APIl :39

ObjPostU32Ret, APIl:39

ObjPostU32Warn, APIl:44-45

ObjPostWarn, APIl:44-45

ObjSendJmp, APIl:38

ObjSendOK, APIl:38

ObjSendRet, API 1 :38

ObjSendTaskJmp, APIl:39

ObjSendTaskOK, APIl:39

ObjSendTaskRet, APIl:38

ObjSendTaskWarn, APIl:44-45

ObjSendU32Jmp, APIl:39

ObjSendU320K, APIl:39

ObjSendU32Ret, API 1 :39

ObjSendU32Warn, APIl:44-45

ObjSendUpdateJmp, APIl:38

ObjSendUpdateOK, APIl:38

ObjSendUpdateRet, APIl:38

ObjSendUpdateTaskJmp, APIl:39

ObjSendUpdateTaskOK, APIl:39

ObjSendUpdateTaskRet, APIl:39

ObjSendUpdateTaskWarn, APIl:44-45

ObjSendUpdateWarn, APIl:44-45

ObjSendWarn, APIl:44-45

OBX_DOC_EXIT _BEHAVIOR, API2:445

OBX_DOC_GET_SERVICE, API2:441

678 INDEX

OBX_DOC_IN_OUTBOX, AP12:441

OBX_DOC_OUTPUT_DONE, API2:445,
AP12:447

OBX_DOC_STATUS_CHANGED, AP12:448

OBXSVC_DOCUMENT, API2:443-445

OBXSVC_MOVE_COPY_DOC, AP12:442

OBXSVC_NEW, AP12:440

OBXSVC_NEW_ONLY, AP12:440

OBXSVC_QUERY_STATE, AP12:446

Odd, APIl:56

OPTION_CARD, APIl :493, APIl :495-496,
APIl:498-501, APIl:505-509

OPTION_ENUM, APIl :497

OPTION_NEW, API 1 :493

OPTION_NEW _ONLY, APIl :493

OPTION_STYLE, API 1 :492, API 1 :494-495

OPTION_TABLE_NEW, APIl :513

OPTION_TABLE_NEW_ONLY, APIl:513

OPTION_TABLE_STYLE, APIl :513

OPTION_TAG, APIl:493, APIl:505,
ApIl:510-511

ORDERED_SET, AP12:274

OrderedSetContext, AP12:276

OrderedSetCount, AP12:281

OrderedSetCountlnternal, AP12:274

OrderedSetCreate, AP12:275

OrderedSetDefaultAccess, AP12:276

OrderedSetDelete, AP12:280

OrderedSetDestroy, AP12:277

OrderedSetEachl tern, AP12:280

OrderedSetExtend, AP12:276

OrderedSetFind, AP12:278

OrderedSetFindMaxMin, AP12:278

OrderedSetFindMinMax, AP12:278

OrderedSetHeapMode, AP12:276

OrderedSetlnsert, API2:277

OrderedSetltemlndex, AP12:277

OrderedSetModifyContext, API2:276

OrderedSetN ext, AP12:279

OrderedSetNthltem, AP12:277

OrderedSetPrint, AP12:275

OrderedSetSizeofI tern, AP12:275

OrderedSetSizeofKey, AP12:275

OS_ACCESS, AP12:136

OS_ADDRESS_INFO, AP12: 138

OS_DATE_TIME, API2: 138

OS_DISPLAY_MODE, API2: 136

OS_ENTRYPOINT_TYPE, API2:139

OS_ERROR_TYPE, AP12: 136

OS_FAST_SEMA, AP12:139

OS_HEAP _BLOCK_INFO, API2: 156

OS_HEAP _INFO, API2: 156

OS_HEAP _MODE, API2: 156

OS_HEAP _PRINT_FLAGS, API2: 163

OS_HEAP_WALK_INFO, AP12:162

OS_INTERRUPT _INFO, API2: 138

OS_ITEM_INFO, AP12:274

OS_ITMSG_INFO, AP12:139

OS_MEM_INFO, API2: 137

OS_MEM_USE_INFO, API2: 137

OS_PRIORITY_CLASS, API2: 173

OS_PROG_INFO, AP12: 138

OS_PROGRAM_REGION_INFO, API2: 165

OS_REGION_TYPE, AP12:136

OS_REGSCOPE_INFO, API2: 137

OS_REGTYPE_INFO, API2: 137

OS_RESOURCE_AVAlLABLE, AP12: 168

OS_RESOURCE_ZONE, API2: 168

OS_RESOURCES_INFO, API2: 168

OS_SET_GET, API2: 136

OS_SET_TIME_MODE, API2:136

OS_SYSTEM_INFO, API2: 138

OS_TASK_MODE, API2: 172

OSAppObjectPoke, API2: 152

OSDebugger, API2: 149

OSDisplay, API2: 149

OSD MAMemAlloc, API2: 169

OSDMAMemFree, AP12:169

OSEntrypointFind, API2: 151

OSEnvSearch, API2: 151

OSErrorBeep, API2: 152

OSFastSemaClear, API2: 147

OSFastSemalnit, AP12:146

OSFastSemaRequest, API2: 146

OSGetTime, AP12:147

OSHeapAllowError, API2: 157

OSHeapBlockAlloc, API2: 158

OSHeapBlockF ree, API2: 158

OSHeapBlockResize, API2: 159

OSHeapBlockSize, API2: 159

OSHeapClear, AP12: 158

OSHeapClose, AP12:161

OSHeapCreate, API2: 157

OSHeapDelete, API2: 157

OSHeapEnumerate, AP12: 161

OSHeapld, API2: 159

OSHeaplnfo, API2: 160

OSHeapMark, API2: 162

OSHeapOpen, API2: 160

OSHeapPeek, AP12:160

OSHeapPoke, API2: 160

OSHeapPrint, API2: 163

OSHeap Walk, API2: 162

OSlntEOI, AP12:166

OSlntMask, API2:165

OSITMsgFilterMask, API2: 143

OSITMsgF romld, API2: 143

OSITMsgPeek, AP12: 143

OSITMsgQFlush, API2: 143

OSITMsgReceive, API2: 142

OSITMsgSend, AP12:142

OSMemAvailable, API2: 154

OSMemlnfo, API2: 153

OSMemLock, API2: 170

OSMemMapAlloc, API2: 168

OSMemMapF ree, API2: 168

OSMemUnlock, API2: 170

OSMemUselnfo, API2: 153

OSModuleLoad, AP12: 151

OSN ext T erminatedTaskld, API2: 141

OSO_NEW, AP12:449

OSO_NEW _ONLY, API2:449

OSPowerDown, API2: 152

OSPowerUpTime, AP12:148

osPrintBufferRoutine, API2: 154

OSProcessProgHandle, API2: 151

OSProgramDeinstall, API2: 140

OSProgramlnfo, API2: 148

OSProgramlnstall, AP12: 139

OSProgramlnstantiate, API2: 140

OSProgramRegionlnfo, API2: 166

OSResourcesAvailable, API2: 168

OSSemaClear, API2: 145

OSSemaCreate, AP12: 144

OSSemaDelete, AP12: 144

OSSemaOpen, API2: 144

OSSemaRequest, API2: 144

OSSemaReset, API2: 145

OSSemaSet, AP12: 145

OS Serna Wait, API2: 146

OSSetlnterrupt, API2: 150

OSSet Time, API2: 148

OSSub TaskCreate, API2: 140

OSS upervisorCall, API2: 167

OSSysSemaClear, API2: 167

OSSysSemaRequest, API2: 166

OSSystemlnfo, API2: 154

OSTaskAddresslnfo, API2: 167

OSTaskApp, AP12:152

OSTaskDelay, AP12:142

OSTasklnstallTerminate, API2: 153

OSTaskMemInfo, API2: 169

OSTaskNameSet, API2:152

OST askPriorityGet, API2: 141

OSTaskPrioritySet, API2: 141

OSTaskProcess, API2:153

OSTaskSharedHeapId, API2: 156

OST ask Terminate, API2: 140

OSThisApp, API2: 152

OSThisProcess, API2: 173

OSThis Task, API2: 141

OSThisWinDev, API2:153

OSTimerAsyncSema, API2: 150

OSTimerIntervalSema, API2: 150

OSTimerStop, API2: 150

OSTimer Transaction Valid, API2: 150

OSTone, API2:152

OSVirtToPhys, API2:169

OSWinDevPoke, API2:153

OutRange, API1:56

*p _BROADCAST _AD DR, API2:420

PAGE_NUM_NEW, APIl:515

PAGE_NUM_NEW_ONLY, APIl:515

PAGE_NUM_STYLE, API 1: 515-516

PAPER_CONFIG, API1:152-153

PDICT _METRICS, API2:649-650

PDICT_NEW, API2:649

PDICT_NEW_ONLY, API2:649

PDICT_NUM_WORD, API2:650-652

PEN_DATA, API1:708

PEN_METRICS, API1:708-709

PEN_STROKE, APIl:708

PEN_TIP_STATE_TYPE, API1:707

PenCurrentStandardData, API1:710

PenExpander, APIl:709

PenStrokeRetrace, APIl:709

PenStrokeUnpackl6, APIl:710

PenStrokeUnpack32, APIl:710

PIC_SEG_ARC_RAYS, APIl:244

PIC_SEG_ELLIPSE, API 1 :243

PIC_SEG_FONT _STYLE, API 1 :242

PIC_SEG_GRAFIC, APIl:242, APIl:247,
APIl:249-250

PIC_SEG_HIT_LIST, APIl:248

PIC_SEG_LIST, APIl:247

PIC_SEG_NEW, APIl:245

PIC_SEG_NEW_ONLY, APIl:244

PIC_SEG_OBJECT, APIl:244, APIl:246

PIC_SEG]AINT, APIl:242

PIC_SEG]AINT_OBJECT, APIl:247

PIC_SEG_PLINE_ TYPE, API 1 :242

PIC_SEG_POLYGON, APIl:243

PIC_SEG_POLYLINE, APIl:243

PIC_SEG_RECT, APIl:243

PIC_SEG_SPLINE, API1:243, APIl:246

PIC_SEG_TEXT, APIl:243

PIM_NEW, API2:567

PIX_DEV_METRICS, APIl:322

PIX_DEV_ORIENT, APIl:322

POINT, APIl:738

POPUP_CHOICE_NEW, APIl:517-518

POPUP_CHOICE_NEW_ONLY, APIl:517

POPUP_CHOICE_STYLE, APIl:517-518

PPORT_METRICS, API2:451

PPORT_NEW, API2:453

PPORT_STATUS, API2:452

PPORT_TIME_DELAYS, API2:452-453

PREF _CHANGED, API2:482

PREF _SYSTEM_FONT, API2:477

PREF _SYSTEM_FONT _INFO, API2:483

PREF _TIME_INFO, API2:481

PREF_TIME_MODE, API2:481

PREFS_NEW, API2:482

PREFS_NEW _ONLY, API2:482

PrefsDate T oString, API2:484

PrefsSysFontInfo, API2:483

PrefsTimeToString, API2:484

PRFRAME_EXPAND, API 1 :20 1

PRFRAME_NEW, API 1: 199-200

PRFRAME_SEND, API 1 :200

PRINT_AREA, API 1 :209

PRINT_DATA, APIl:208

PRINT _EMBEDDEE_ACTION, API 1 :206,
APIl:209-210

PRINT_HFDATA, APIl:204

PRINT_MARGINS, API 1 :204

PRINT_METRICS, APIl:205, API1:207-208

PRINT_PAGE, APll:206-207

PRINT_PROTOCOLS, API 1 :209

PRINT_SETUP, API 1 :204

PRINTABLE_AREA, APIl:210-211

PRLAYOUT_METRICS, APIl:213-214

PRLAYOUT_NEW, APIl:213

PRLAYOUT_NEW_ONLY, APIl:213

PRLAYOUT_PAGE, APIl:214

PRMARGIN_METRICS, APIl :215

PRMARGIN_NEW, API 1 :215

PRMARGIN_NEW_ONLY, APIl:215

PRN_ENUM_MODELS, APIl: 155

PRN_FS_HDR, API 1: 152

PRN_METRICS, APIl:153

PRN_MODEL, APIl:155

INDEX 679

PRN_NEW, APIl:152

PRN_NEW_ONLY, APIl:152

PRN_TEXTOUT, APIl:156

PROGRESS_METRICS, API 1: 524,
APIl :526-527

PROGRESS_NEW, APIl :525

PROGRESS_NEW_ONLY, APIl:524

PROGRESS_PROVIDE_LABEL, API 1 :528

PROGRESS_REGION, APIl:524,
APIl:527-528

PROGRESS_STYLE, APIl:524, APIl:526

PROGRESS_VIS_INFO, API 1: 528

PROTOCOL_ADDRESS, API2:419

PROTOCOL_INFO, AP12:419

PutList, AP12:78

PutListX, API2:76

QUICK_DATA, AP12:284

quicksort, API2: 175

_____ .. ,.lIIIIB

RATIONAL, APIl:289

RC_INPUT, AP12:485

RC_TAGGED_STRING, AP12:486

RCAPP _GOTO_DOC, APIl :218

RECTI6, APIl:234

Rectl6Empty, APIl:236

Rect16Intersect, APIl :235

Rectl6To32, APIl:234

RECT32, APll:233

Rect32Empty, APIl :236

Rect3 2EnclosesRecd 2, API 1 : 23 5

Recd2Intersect, APIl :235

Recd 2sIn tersect, API 1 : 23 5

Rect32Tol6, APIl:234

RectInit, API 1 :234

RectRight, API 1 :234

Rect Top, APIl :234

REMOVE_PROTOCOL, AP12:421

RemoveListItem, API2:78

RemoveListIternX, AP12:77

RES_AGENT, API2:504

RES_ENUM, AP12:503

RES_ENUM_MODE, API2:494

RES_FILE_NEW, AP12:495

RES_FILE_NEW_ONLY, AP12:495

RES_FIND, API2:496

RES_INFO, API2:496

RES_LIST_NEW, AP12:504

RES_LIST_NEW_ONLY, AP12:504

RES_NEW _MODE, AP12:494

680 INDEX

RES_READ_DATA, API2:497

RES_READ_OBLMODE, API2:494

RES_READ_OBJECT, API2:498, API2:501

RES_SAVE_RESTORE_FLAGS, APIl:8

RES_WRITE_DATA, API2:497-498

RES_ WRITE_OBJ_MODE, API2:494

RES_WRITE_OBJECT, API2:499, API2:501

ResDynldCount, API2:493

resForStdMsgDialog, API 1 :550

resForStdMsgError, APIl:550

ResListGroup, API2:493

ResListList, API2:493

ResUtilLoadListString, API2:508

ResUtilLoadObject, API2:507

ResUtilLoadString, API2:507

ResWknObjResld, API2:493

ReverseBits, API 1 :292

RX_DESC, API2:419

SameUUIDs, API2:83

SCALE, API1:233

SComposeText, API2:122

SCR_ADD_STROKE, APIl:714

SCR_ADDED_STROKE, APIl:718

SCR_DELETE_STROKE_AREA, API1:715

SCR_HIT, APIl:717

SCR_NEW, API1:713

SCR_NEW_ONLY, API1:713

SCR_REMOVED_STROKE, API1:718

SCR_RENDER, APII :717

SCR_STROKE_PTR, API1:716

ScreenOnlyStringPrint, API2: 148

SCROLL_ WIN_ALIGN, API 1 :567

SCROLL_ WIN_DELTA, API 1: 562,

APIl:566-567

SCROLL_ WIN_METRICS, API 1: 562,

API1:565

SCROLL_ WIN_NEW, API 1: 563

SCROLL_WlN_SIZE, API1:566

SCROLL_WlN_STYLE, APIl:561,

API1:563-564

SCROLLBAR_ACTION, API 1 :531

SCROLLBAR_NEW, API1:532

SCROLLBAR_NEW_ONLY, APIl:532

SCROLLBAR_PROVIDE, API1:532,

APIl:534

SCROLLBAR_SCROLL, API 1 :532-534

SCROLLBAR_STYLE, APIl:531, API1:533

SEL_CHOICE_MGR_INFO, APII :540,
API1:542

SEL_CHOICE_MGR_NEW, APIl:540-541

SEL_CHOICE_MGR_NEW_ONLY, API1:540
...

SEL_OWNERS, API2:291, API2:293-294

. SEND_ENUM_ITEMS, API2:256

SEND_SERV_ADDR-WIN, API2:455-456

SEND_SERV_CONVERT_ADDR-DATA,
API2:457

SEND_TYPE, API1:35

SetAttr, API2:76

SetSingleAttr, API2:76

SHADOW_NEW, APIl:543-544

SHADOW_NEW_ONLY, API1:543

SHADOW_STYLE, API 1: 543-544

SHORT _ TICFRAME, API2:421

SIM_GET_METRICS, API2:571

SIM_NEW, API2:571

SIO_BREAK_SEND, API2:463

SIO_BREAK_STATUS, API2:463

SIO_CONTROL_IN_STATUS, API2:462

SIO_CONTROL_OUT_SET, API2:462

SIO_DATA_BITS, API2:462

SIO_EVENT_HAPPENED, API2:466

SIO_EVENT_MASK, API2:461

SIO_EVENT_SET, API2:465-466

SIO_EVENT_STATUS, API2:465

SIO_FLOW _CONTROL_CHAR_SET,

API2:463

SIO_FLOW_CONTROL_SET, API2:465

SIO_FLOW_TYPE, API2:465

SIO_INIT, API2:466

SIO_INPUT_BUFFER_STATUS, API2:464

SIO_LINE_CONTROL_SET, API2:462

SIO_METRICS, API2:466-467

SIO_NEW, API2:467

SIO_OUTPUT_BUFFER_STATUS, API2:464

SIO_PARITY, API2:462

SIO_RECEIVE_ERRORS_STATUS, API2:463

SIO_REPLACE_CHAR, API2:467

SIO_STOP _BITS, API2:462

SIZE16, API1:233

SIZE32, API1:233

SizeOf, APIl:56

SM_ACCESS, API2:614

SM_BIND, API2:615-616

SM_CONNECTED_NOTIFY, API2:622

SM_FIND_HANDLE, API2:620

SM_GET_CHARACTERISTICS, API2:619

SM_ GET _CLASS_METRICS, API2:621

SM_GET_OWNER, API2:616

SM_GET_STATE, API2:621

SM_NEW, API2:613

SM_NEW_ONLY, API2:613

SM_OPEN_CLOSE, API2:617-618

SM_OWNER-NOTIFY, API2:622

SM_QUERY_LOCK, API2:618-619

SM_QUERY_UNLOCK, API2:619

SM_RELEASE, API2:615

SM_SAVE, API2:620

SM_SET_OWNER, API2:616, API2:620

SORT_BY, API2: 186

SP _MGR_GESTURE, API2:303-304

SP_TOKEN, API1:552

SPAPER_CELL_METRICS, APIl :724

SPAPER_LOCATE, APII :725

SPAPER_NEW, API1:722

SPAPER-NEW_ONLY, API1:722

SPAPER_XDATA, APIl:727

SPELL_CASE, API2:299

SPELL_CASE_CONTEXT, API2:299

SPELL_DICT_LIST, API2:299

SPELL_LIST, API2:299

SPELL_XLATE, API2:299

SpellAddToAnyDict, API2:30 1

SpellAddToDict, API2:30 1

Spell Check, API2:300

SpellCorrect, API2:300

SpellCorrectWord, API2:301

SpellDictSelect, API2:300

SpellGetOptionsX, API2:300

SpellLineSetCase, API2:302

SpellSetOptionsX, API2:300

SpellWordSetCase, API2:301

SR_FLAGS, API2:305

SR_ GET_CHARS, API2:306

SR_INVOKE_SEARCH, API2:308

SR_METRICS, API2:305, API2:308

SR_NEXT_CHARS, API2:305

SR_POSITION_CHARS, API2:307

S~REPLACE_CHARS, API2:306

STAT _MENU_STYLE, API2: 518

STATUS_GET, API2:422

StdError, APIl:551

StdErrorRes, API1:553

StdioStreamBind, API2:82

StdioStream ToObject, API2:82

StdioStreamUnbind, API2:82

StdMsg, APIl:551

StdMsgCustom, API1:553

StdMsgRes, APIl:553

StdProgressDown, APIl:552

StdProgressUp, APIl:552

StdSystemError, APIl:551

StdUnknownError, APIl:550

STREAM_BLOCK_SIZE, API2:82

STREAM_NEW, API2:79

STREAM_READ_ WRITE, API2:80

STREAM_READ _WRITE_TIMEOUT,
API2:80-81

STREAM_SEEK, API2:81

STREAM_SEEK_MODE, API2:81

STRLB_NEW, APIl:556

STRLB_NEW_ONLY, APIl:555

STRLB_PROVIDE, APIl:557

STRLB_STYLE, API 1: 5 5 5-556

STROBLNEW, API2:309

STROBLNEW _ONLY, API2:309

Sts, APIl :59

StsChk, APIl:59

StsFailed, APIl :59

StsJmp, APIl:59

StsOK, APIl:59

StsPrint, APIl :59

StsRet, API1:59

StsWarn, APIl:59

SVC_ADD_TO_MANAGER, API2:627

SVC_BIND, API2:604

SVC_CHARACTERISTICS, API2:606

SVC_CLASS_METRICS, API2:597

SVC_DEINSTALL_ VETOED, API2:632

SVC_GET _FUNCTIONS, API2:632

SVC_GET_L1ST, API2:628-629

SVC_ GET_NAME, API2:633

SVC_GET _SET_CONNECTED,

API2:603-604

SVC_GET_SET_METRICS, API2:626-627

SVC_GET_SET_MODIFIED, API2:601

SVC_GET_TARGET, API2:603

SVC_INIT_SERVICE, API2:598

SVC_LOAD_INSTANCE, API2:626

SVC_NEW, API2:600

SVC_NEW _ONLY, API2:600

SVC_ OPEN_CLOSE, API2:605-606

SVC_OPEN_CLOSE_TARGET, API2:602

SVC_OWNED_NOTIFY, API2:623-625

SVC_REMOVE_FROM_MANAGER, API2:627

SVC_SET_TARGET, API2:603

SVC_STYLE, API2:599

SVC_TARGET, API2:597

SVC_ TARGET _CHANGE_NOTIFY, API2:634

SVC_TERMINATE_ VETOED, API2:630

SYS_BOOT_PROGRESS, API2:574

SYS_BOOT_STATE, API2:575, API2:578

SYS_BOOT_TYPE, API2:574

SYS_ CREATE_LIVE_ROOT, API2: 576

SYS_GET_L1VE_ROOT, API2:576

SYS_IS_HANDLE_L1VE, API2:576

SYS_NEW, API2:575

SYS_NEW_ONLY, API2:575

SYS_SET_SECURITY_OBJECT, API2:577

SYSDC_ARC_RAYS, APIl :274, APIl :276

SYSDC_CACHE_IMAGE, API 1 :278

SYSDC_CAP, APIl:262

SYSDC_CHAR_METRICS, APIl:255

SYSDC_COPY_IMAGE, APIl :279

SYSDC_EXTENTS16, APIl:255

SYSDC_FONT_ATTR, API1:254

SYSDC_FONT _METRICS, API 1 :254

SYSDC_FONT _SPEC, API 1 :254

SYSDC_FONT_STATE, API1:260

SYSDC_FONT_WIDTHS, API1:254

SYSDC_IMAGLFLAGS, API 1 :277

SYSDC_IMAGE_INFO, API1:277-278

SYSDCJOIN, APIl:262

SYSDC_L1NE, API 1 :262

SYSDC_MIX_PAT, APIl:266

SYSDC_MIX_RGB, APIl :265

SYSDC_MODE, API 1 :260

SYSDC_NEW, APIl:258

SYSDC_NEW_ONLY, APIl:258

SYSDC_PAGE_TURN, APIl:282

SYSDC_PIXEL, APIl:275

SYSDC_PIXELS, API 1 :283

SYSDC_POLYGON, APIl:274-275

SYSDC_RGB, API 1 :263

SYSDC_ROP, API 1 :261

SYSDC_SCREEN_SHOT, APIl :283

SYSDC_STATE, APIl:259-260

SYSDC_TEXT_OUTPUT, APIl:255

SysDcFontld, API 1 :279

SysDcFontString, API 1 :280 -TA_ALIGN_BASE, API2: 12

TA_CHAR_ATTRS, API2:12

TA_CHAR_MASK, API2: 12

TA_MANY_TABS, API2:14

TA_PARA_ALIGN, API2:14

TA_PARA_ATTRS, API2:14

TA_PARA_MASK, API2:14

TA_TAB_LEADER, API2: 13

TA_TAB_STOP, API2:13

TA_TAB_TYPE, API2:13

T A_TABS, API2: 13

TAB_BAR_NEW, APIl:574

INDEX 68'

TAB_BAR_NEW_ONLY, APIl:574

TAB_BAR_STYLE, APIl:573, APIl:575

TAB_BUTTON_METRICS, APIl:581-582

TAB_BUTTON_NEW, APIl:581-582

TAB_BUTTON_NEW_ONLY, APIl:581

Tag, APIl:58

TagAdmin, API1:58

TagAndFlags, APIl:58

TagFlags, API1:58

TagNum, APIl:58

T agPaperStyle, API2:250

TBL_BEGIN_ACCESS, API2:317

TBL_BOOL_OP, API2:318

TBL_COL_DESC, API2:312

TBL_COL_GET_SET_DATA, API2:315

TBLCOL_NUM_FIND, API2:320

TBL_CONVERT_ROW_NUM, API2:320

TBL_CREATE, API2:313

TBL_END _ACCESS, API2:318

TBL_EXIST, API2:313

TBL_FIND_ROW, API2:319

TBL_FREE_BEHAVE, API2:313

TBL_GET_COL_DESC, API2:317

TBL_GET _SET_ROW, API2:315-316

TBL_GET_STATE, API2:317

TBL_HEADER, API2:316

TBLLAYOUT_CONSTRAINT, APIl:602

TBL_LAYOUT_COUNT, APIl:603

TBL_LAYOUT_GRID, APIl:606-607

TBL_LAYOUT_GRID_VALUE, APIl:606

TBL_LAYOUT _INDEX, API 1 :605

TBL_LAYOUT _METRICS, API 1 :603-604

TBL_LAYOUT_NEW, API1:603

TBLLAYOUT_SIZE, APIl:603

TBL_LAYOUT_STYLE, API1:602, API1:605

TBL_NEW, API2:313

TBL_NEW_ONLY, API2:313

TBL_SEARCH_SPEC, API2:318

TBL_STATE, API2:317

TBL_STRING, API2:312

TBL_ TYPES, API2:312

TO_METRICS, API2:18, API2:21

TO_NEW, API2:18-19

TD_NEW_ONLY, API2:18

TEACH_DATA, APIl:770

TEACH_STATUS, API1:769

TEIsBlank, API2:4

TEIsLineBreak, API2:4

TEIsSentenceEnd, API2:4

TEIsSpecialPunct, API2:4

TEIsWord, API2:5

682 INDEX

TEXT_AFFECTED, API2:19, API2:29

TEXT...;BUFFER, API2:18, API2:20-21

TEXT_CHANGE_ATTRS, API2:19, API2:23,
API2:26

TEXT_COUNTER_CHANGED, API2: 19,
API2:29

TEXT_DIRECTION, API2: 18

TEXT_EMBED_OB]ECT, API2:15, API2:25

TEXT_ENUM_EMBEDDED, API2: 15,
API2:28

TEXT_FIELD_NEW, APIl:591

TEXT_FIELD_NEW_ONLY, APIl:591

TEXT_FIELD_STYLE, APIl:591-592

TEXT_GET_ATTRS, API2:19, API2:25

TEXT_READ, API2:15, API2:26

TEXT_REPLACED, API2:19, API2:30

TEXT_SPAN, API2:18,API2:22-23

TEXT_SPAN_AFFECTED, API2:18

TEXT_WRITE, API2:15, API2:27

T extCreate TextScrollWin, API2:41

T extDeleteMany, API2: 16

TextFindNextParaTab, API2: 16

TextInitCharAttrs, API2: 17

TextInitCharMask, API2: 17

TextInitParaAttrs, API2: 17

TextInitParaMask, API2:17

TextInsertOne, API2: 16

TEXTIP _METRICS, API2:42-43

TEXTIP _NEW, API2:43

TIFF_METRICS, API 1 :289

TIFF_NEW, API 1 :288

TIFF _NEW_ONLY, APIl :287

TIFF_SAVE, APIl:291-292

TIFF _SAVE_STYLE, API 1 :290

TIFF_STYLE, API 1 :287

TILE_LOCATOR, APIl :293

TilePopUp, APIl:293

TIMER_ALARM_INFO, API2: 179

TIMER_ALARM_MODE, API2: 179

TIMER_INTERVAL_INFO, API2: 178

TIMER_NOTIFY, API2: 179

TIMER_REGISTE~INFO, API2: 177-178

TITLE_BA~NEW, APIl:579

TITLE_B~NEW_ONLY, APIl:579

TITLE_BAR_STYLE, APIl:579-580

TK_TABLE_ADD_AT, APIl:598

TK_TABLE_ADD_SIBLlNG, APIl:598

T~TABLE_ENTRY, APIl:594

TK_TABLE_INIT, APIl:598

TK_TABLE_METRICS, APIl:597

TK_TABLE_NEW, APIl:595

TK_TABLE_NEW_ONLY, API1:594

TK_TABLE_STYLE, API1:593, API1:596

TkTableFillArrayWithFonts, APIl :599

TkTableFreeArray, APIl:599

TIConstraint, API 1 :603

TOGGLE_ TABLE_NEW, API 1 :621

TOGGLE_TABLE_NEW_ONLY, API1:621

TP _ACCEPT, API2:469

TP _BIND, API2:470

TP _CONNECT, API2:470

TP _LISTEN, API2:470

TP _NEW, API2:469

TP _NEW_ONLY, API2:469

TP _RECV, API2:470

TP _RECVFROM, API2:470

TP _SEND, API2:471

TP_SENDRECVTO, API2:471

TP_SENDTO, API2:471

TRACK_METRICS, APIl:612,
APIl:616-620

TRACK_NEW, API 1 :612, API 1 :615

TRACK_STYLE, APll:612, APll:615-616

TV_CARD_INDEX, API2:7

TV_CHAR_OPTION, API2:7

TV_EMBED_METRICS, API2:34,

API2:37-38

TV_NEW, API2:41

TV_NEW_ONLY, API2:40

TV_PARA_OPTION, API2:8

TV_RESOLVE, API2:35, API2:39

TV_SCROLL, API2:36, API2:39

TV_SELECT, API2:36, API2:40

TV_STYLE, API2:33, API2:39-40

TV_VIEW_OPTION, API2:8

TVMakeCardTag, API2:8

TVMakeCharOpt Tag, API2:8

TVMakeParaOptTag, API2:8

TVMakeTag, API2:8

TVMake ViewOpt Tag, API2:8

TVMakeXXXTag, API2:8

TX_DESC, API2:419

TX_FRAME, API2:420

U_L, API2:131

UNDO_ITEM, API2:327-328, API2:330

UNDO_METRICS, API2:327, API2:329

UNDO_NEW, API2:328

UNDO_NEW_ONLY, API2:328

USER_BYTES, API2:365

USER_ COLUMN_TYPE, API2: 191

Uswab, API2: 133

UUID, API2:83

VIEW_NEW, APIl:219-220

VIEW_NEW_ONLY, API1:219

VNCreate, API2:90

VNDelete, API2:91

VNDirPosDeleteAdjust, API2:91

VNDup, API2:90

VNFlush, API2:95

VNGet, API2:89

VNGetAttrInfo, API2:93-94

VNGetByDirId, API2:89

VNGetDirId, API2:91

VNGetName, API2:93

VNGetNumAttrs, API2:93

VNGetSize, API2:92

VNMakeN ative, API2:94

VNMove, API2:91

VNNextChild, API2:89

VNODE_ACCESS, API2:87

VNODE_ATTR_FLAGS, API2:87

VNODE_CMN_ATTRS, API2:87

VNRead, API2:92

VNRefCount, API2:95

VNRelease, API2:90

VNSetAttrInfo, API2:94

VNSetSize, API2:93

VNWrite, API2:92

VOLCACHE, API2:86

VOLCMN_FLAGS, API2:87

VOLCOMMON, API2:87

VOL_DUPLICATE_MEDIA, API2:102

VOL_FORMAT_MEDIA, API2:100-101

VOL_FORMAT _MEDIA_INIT, API2: 100

VOL_FORMAT_VOLUME, API2:116

VOL_INFO, API2:87

VOL_MEDIA_ CAPACITIES, API2: 100

VOL_RTNS, API2:95

VOL_UP DATE_ VOLUMES, API2:99

VOLGODIR_CMN_ATTRS, API2:104

VOLGODIR_INFO, API2: 105

VOLGODIR_RTNS, API2: 113

VOLGODIR_ VNODE, API2: 105

VOLGODIR_ VNODE_COMMON, API2: 1 04

VOLGODIR_ VNODE_FLAGS, API2: 1 04

VolSetVolName, API2:88

VolSpecificMsg, API2:88

VolStatus, API2:88

VolUpdateVolInfo, API2:88

VS_STRING_IDS, API2: 116

VSCompose Text, API2: 122

J&W t

WIN_COPY_FLAGS, API 1 :311

WIN_COPY_RECT, APIl:311

WIN_DEV_NEW, APIl:321

WIN_DEV_NEW_ONLY, APIl:321

WIN_DEV _PIXELMAP, API 1 :322

WIN_ENUM, APIl:312

WIN_ENUM_FLAGS, API 1 :312

WIN_ENV, APIl:318

WIN_FLAGS, API 1 :297

WIN_METRICS, API 1 :298-304,
APIl:306-309, APIl:312,
APIl:315, APIl:317, APIl:319

WIN_NEW, API 1 :298-299

WIN_OPTIONS, APIl :297

WIN_RESTORE_ENV, APIl:318

WIN_SAVE_ENV, APIl:318

WIN_SEND, API 1 :305

WIN_SEND_FLAGS, APIl:305

WIN_SORT, APIl:318

WinEach Child, API 1 :313

WinEndEachChild, API 1 :314

WinShrinkWrap, APIl:297

WinShrinkWrapHeight, APIl:297

WinShrinkWrapWidth, APIl:297

WKNAdmin, API 1: 57

WknItemResld, API2:493

WknListResld, API2:493

WknObjResld, API2:493

WknResld, API2:493

WKNScope, APIl:58

WKNValue, APIl:57

WKNVer, APIl:57

WORD_ENTRY, APIl:746

WORD _LIST, API 1: 746

44

X2GESTURE, APIl:758

X2STRING, APIl:758

XFER_ASCII_METRICS, API2:338

XFER_BUF, API2:337

XFER_CONNECT, API2:338

XFER_FIXED_BUF, API2:337

XFER_OBJECT, API2:337

XferAddlds, API2:340

XferListSearch, API2:340

XferMatch, API2:339

XferStreamAccept, API2:341

XferStreamConnect, API2:341

XLATE_BDATA, APIl:746

XLATE_CASE_FIELD, APIl:739

XLATE_CASE_METRICS, APIl:739,
APIl:745

XLATE_CASE_TYPE, APIl :738

XLATE_CASE_WRITER, APIl:738

XLATE_DATA, APIl:746

XLATE_GDATA, APIl:735

XLATE_METRICS, APIl:738, APIl:740-741

XLATE_MODE, APIl:740

XLATE_NEW, APIl:739

XLATE_NEW _ONLY, API 1 :739

XLATE_STRING, APIl:741

XLIST_CHAR_ATTRS, API2:46

XLIST _ELEMENT, API 1: 7 5 2

XLIST_METRICS, APIl:754

XLIST _PARA_ATTRS, API2:46

XLIST_TABS, API2:47

XList2Gesture, APIl:757

XList2String, APIl:758

XList2StringLength, APIl :758

XList2Text, APIl:749

XListAlloc, API 1: 7 5 6

XListDelete, API 1: 7 5 5

XListDump, APIl:759

XListDumpSetup, APIl:759

XListDup, APIl :757

XListDupElement, APIl:757

XListFree, APIl:753

XListFreeData, APIl:756

XListGet, APIl:756

XListGetFlags, APIl:754

XListGetPtr, APIl :756

XListlndex, API 1: 7 55

XListlnsert, API 1 :754

XListMetrics, APIl:754

XListNew, APIl:753

XListSet, API 1: 755

XListSetFlags, API 1: 7 54

XList Traverse, API 1: 7 5 5

XS_ASCICMATCH, APIl:762

XS_DIRECTION, APIl:762

XS_GESTURE_MATCH, APIl:762

XS_LD_MATCH, APIl :762

XS_MATCH_TYPE, APIl:762

XS_OCTAGON, APIl:762

XS_RESOURCE_ TYPE, API 1: 7 61

XS_STROKE, APIl:763

XSDeltaDirection, APIl:762

INDEX 683

XSDeltaDirectionAdd, APIl:762

XSHAPE_COMPATIBLE, APIl:766

XSHAPE_NEW, APIl:763

XSHAPE_NEW_ONLY, APIl:763

XSHAPE_RECOGNIZE, APIl :765

XSHAPE_STROKE_PREVIEW, API 1 :764

XSNextDirectionCCW, APIl :762

XSNextDirectionCW, APIl:762

XSOppositeDirection, API 1: 7 62

XTEACH_DATA, APIl:769

XTEMPLA TE_ GESTURE_LIST, API 1 : 775

XTEMPLA TE_METRICS, API 1 : 77 4

XTEMPLATE_MODE, APIl:774

XTEMPLA TE_ TRIE_HEADER, API 1: 77 4

XTEMPLATE_TYPE, APIl:773

XT emplateAddW ord, API 1: 777

XT emplateCheckGesture, API 1: 777

XTemplateCheckWord, APIl:776

XT emplateCompile, API 1: 774

XT emplateDelete Word, API 1: 777

XTemplateFree, APIl:776

XT emplateGetMetrics, API 1 : 77 6

XT emplateSetMode, API 1: 776

XTemplateWordListSort, API1:776

XTempltlnit, APIl:777

XTEXT_ WORD, APIl:779

XTM_ARGS, API1:774

XTYPE, APIl:752

XY16, APIl:233

XYl6ToPenStroke, APIl:710

XY32, API 1 :233

XY32inRect32, API 1 :236

ZIP _GETZONES, API2:367

Your comments on our software documentation are important to us. Is this manual

useful to you? Does it meet your needs? If not, how can we make it better? Is there

something we're doing right and you want to see more of?

Make a copy of this form and let us know how you feel. You can also send us marked

up pages. Along with your comments, please specify the name of the book and the page

numbers of any specific comments.

Please indicate your previous programming experience:

D MS-DOS D Minicomputer

D Macintosh

D Mainframe

D None D Other _________ _

Please rate your answers to the following questions on a scale of 1 to 5:

i 2 3 .if
P()or Average

How useful was this book? D D D D D
Was information easy to find? D D D D D
Was the organization clear? D D D D D
Was the book technically accurate? D D 0 0 0
Were topics covered in enough detail? 0 0 0 0 0

Additional comments:

Your name and address:

Name

Company

Address __ __

City _________________________ State _______ _

Mail this form to:

Team Manager, Developer Documentation
GO Corporation
919 E. Hillsdale Blvd., Suite 400
Foster City, CA 94404-2128

Or fax it to: (415) 345-9833

Zip _______ _

Package Design Letter

OccI¥nent Edit Opions View Insett Case

Can)'OJ ciesigl a liWttwei~t, recyclable, 8 02. i­
plastic botrle that wm ' tbteak under mo:ietate
impact7I ' 11 be travellingnextweek.ootyoo
can fax me suggested JXopasals at213j
SSS-Sti33.
V SuggestDn

So..-• .f<..''1 I;kt ~,,; \

CLu
I'---------.J I
~~~-----.--------~ 

9 780201 608632 
ISBN 0-201-60863-4 

60863 


