€9,

PenPoint” Application Programmatic Interface
Volume 11

PenPoint

PenPoint’
APl Reference

VOLUME 11

GO CORPORATION

GO TECHNICAL LIBRARY

..................

PenPoint Application Writing Guide provides a tutorial on writing PenPoint

applications, including many coding samples. This is the first book you should

read as a beginning PenPoint applications developer.

PenPoint Architectural Reference Volume I presents the concepts of the fun-
damental PenPoint classes. Read this book when you need to understand the
fundamental PenPoint subsystems, such as the class manager, application
framework, windows and graphics, and so on.

PenPoint Architectural Reference Volume II presents the concepts of the
supplemental PenPoint classes. You should read this book when you need
to understand the supplemental PenPoint subsystems, such as the text sub-
system, the file system, connectivity, and so on.

PenPoint API Reference Volume I provides a complete reference to the
fundamental PenPoint classes, messages, and data structures.

PenPoint API Reference Volume II provides a complete reference to the
supplemental PenPoint classes, messages, and data structures.

PenPoint User Interface Design Reference describes the elements of the
PenPoint Notebook User Interface, sets standards for using those elements,
and describes how PenPoint uses the elements. Read this book before
designing your application’s user interface.

PenPoint Development Tools describes the environment for developing, de-
bugging, and testing PenPoint applications. You need this book when you
start to implement and test your first PenPoint application.

PenPoint

PenPoint”
APl Reference

VOLUME 11

GO CORPORATION

GO TECHNICAL LIBRARY

Addison-Wesley Publishing Company

Reading, Massachusetts ® Menlo Park, California ¢ New York
Don Mills, Ontario ¢ Wokingham, England ¢ Amsterdam
Bonn e Sydney ¢ Singapore & Tokyo ¢ Madrid & San Juan
Paris ¢ Seoul ¢ Milan & Mexico City & Taipei

teelest

W 3 o ¥
and Limitotion of
Licehility

U.8. Government
Restricted Rights

3¢

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book and Addison-Wesley was aware of a trademark
claim, the designations have been printed in initial capital letters.

The authors and publishers have taken care in preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for
incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

Copyright ©1991-92 GO Corporation. All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without prior written permission of the publisher. Printed in the United
States of America. Published simultaneously in Canada.

The following are trademarks of GO Corporation: GO, PenPoint, the PenPoint logo, the GO logo,
ImagePoint, GOWrite, NoteTaker, TableServer, EDA, MiniNote, and MiniText.

Words are checked against the 77,000 word Proximity/Merriam-Webster Linguibase, ©1983 Merriam
Webster. ©1983. All rights reserved, Proximity Technology, Inc. The spelling portion of this product is
based on spelling and thesaurus technology from Franklin Electronic publishers. All other products or
services mentioned in this document are identified by the trademarks or service marks of their respective
companies or organizations.

PenTOPS Copyright © 1990-1992, Sitka Corporation. All Rights Reserved.

GO CORPORATION MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT
LIMITATION THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT, REGARDING PENPOINT SOFTWARE OR ANYTHING ELSE.

GO Corporation does not warrant, guarantee, or make any representations regarding the use or the
results of the use of the PenPoint software, other products, or documentation in terms of its correctness,
accuracy, reliability, currentness, or otherwise. The entire risk as to the results and performance of the
PenPoint software and documentation is assumed by you. The exclusion of implied warranties is not
permitted by some states. The above exclusion may not apply to you.

In no event will GO Corporation, its directors, officers, employees, or agents be liable to you for any
consequential, incidental, or indirect damages (including damages for loss of business profits, business
interruption, loss of business information, cost of procurement of substitute goods or technology, and the
like) arising out of the use or inability to use the documentation or defects therein even if GO Corporation
has been advised of the possibility of such damages, whether under theory of contract, tort (including
negligence), products liability, or otherwise. Because some states do not allow the exclusion or limitation
of liability for consequential or incidental damages, the above limitations may not apply to you. GO
Corporation’s total liability to you from any cause whatsoever, and regardless of the form of the action
(whether in contract, tort [including negligence], product liability or otherwise), will be limited to $50.

The PenPoint documentation is provided with RESTRICTED RIGHTS. Use, duplication, or disclosure

by the U.S. Government is subject to restrictions as set forth in FAR 52.227-19 (Commercial Computer
Software—Restricted Rights) and DFAR 252.227-7013 (c) (1) (ii) (Rights in Technical Data and Computer
Software), as applicable. Manufacturer is GO Corporation, 919 East Hillsdale Boulevard, Suite 400, Foster
City, CA 94404.

ISBN 0-201-60863—4
123456789-AL-9695949392
First Printing, June 1992

~ PENPOINT API REFERENCE / VOL Il

PREFACE

The PenPoint API Reference provides reference information on the subsystems of
the PenPoint™ operating system. Volume I describes the functions and messages
that you use to manipulate classes and describes the fundamental classes used by
almost all PenPoint applications. Volume II describes the supplemental classes and
functions that provide many different capabilities to PenPoint applications. The
text in this volume was generated from the header files in \PENPOINT\SDK\INC.

Intended Avudience

The PenPoint API Reference is written for people who are developing applications
and services for the PenPoint operating system. We assume that you are familiar
with the C language, understand the basic concepts of object-oriented
programming, and have read the PenPoint Application Writing Guide.

"What's Here

The PenPoint API Reference is divided into several parts, which are split across two
volumes. Volume I contains these parts:

& Tart 1: Class Manager describes the PenPoint class manager classes, which
supports object-oriented programming in PenPoint.

& Part 2: PenPoint Application Framework describes the PenPoint Application
Framework classes, which provides you the tools you use to allow your
application to run under the notebook metaphor.

* Part 3: Windows and Graphics describes ImagePoint classes and how
applications can control the screen (or other output devices).

& Part 4: Ul Toolkit describes the PenPoint classes that implement many of the
common features required by the PenPoint user interface.

& Part 5: Input and Handwriting Translation describes the PenPoint input
system classes and classes that provide programmatic access to the
handwriting translation subsystems.

Volume II contains these parts:

¢ Puart 6: Text Component describes the PenPoint classes that allow any
application to provide text editing and formatting capabilities to its users.

& lart 7: File System describes the PenPoint file system. classes.

® Part 8: System Services describes the function calls that applications can use
to access kernel functions, such as memory allocation, timer services, process
control, and so on.

vi PENPOINT APl REFERENCE

® Part 9: Utility Classes describes a wide variety of classes that save application
writers from implementing fundamental things such as, list manipulation,
data transfer, and so on.

& Part 10: Connectivity describes the classes that applications can use to access
remote devices.

& Part 11: Resources describes the classes used to read, write, and create
PenPoint resource files.

® Part 12: Installation API describes the PenPoint classes that support installing
applications, services, fonts, dictionaries, handwriting prototypes, and so on.

® Part 13: Writing PenPoint Services, describes classes used in writing an
installable service.

As mentioned above, the PenPoint Application Writing Guide provides a tutorial
on writing PenPoint applications. The tutorial is illustrated with several sample
applications.

The PenPoint Development Tools describes how to run PenPoint on a PC, how to
debug programs, and how to use a number of tools to enhance or debug your

applications. This volume also contains a master index to the five volumes
included in the PenPoint SDK.

The PenPoint Architectural Reference groups the PenPoint classes into several
functional areas and describes how to use these classes. The PenPoint Architectural
Reference is divided into two volumes. The first volume describes the fundamental
classes that all application developers will use; the second volume describes
supplemental classes that application developers may, or may not, use.

To learn how to use PenPoint, you should refer to the PenPoint user documen-
tation. The user documentation is included with the PenPoint SDK, and is usually
packaged with a PenPoint computer. The user documentation consists of these

books:

& Getting Started with PenPoint, a primer on how to use PenPoint.

® Using PenPoint, a detailed book on how to use PenPoint to perform tasks and
procedures.

PREFACE vii
Type Styles in This Book

¥ Type Styles in This Book

To emphasize or distinguish particular words or text, we use different fonts.

f» Computerese
We use fonts to distinguish two different forms of “computerese”:

¢ C language keywords and preprocessor directives, such as switch,
case, #define, #ifdef, and so on.

¢ Functions, macros, class names, message names, constants, variables,
and structures defined by PenPoint, such as msgListAddItem, clsList,
stsBadParam, P_LIST_NEW, and so on.

Although all these PenPoint terms use the same font, you should note that
PenPoint has some fixed rules on the capitalization and spelling of messages,
functions, constants, and types. By the spelling and capitalization, you can
quickly identify the use of a PenPoint term.

¢ Classes begin with the letters “cls”; for example, clsList.
Messages begin with the letters “msg”; for example, msgNew.
¢ Status values begin with the letters “sts”; for example, stsOK.

¢ Functions are mixed case with an initial upper case letter and trailing

parentheses; for example, OSMemAuvailable().

¢ Constants are mixed case with an initial lower case letter; for example,

wsClipChildren.

¢ Structures and types are all upper case (with underscores, when needed,
to increase comprehension); for example, U32 or LIST_NEW_ONLY.

% Placeholders

Anything you do 7ot have to type in exactly as printed is generally formatted in
italics. This includes C variables, suggested filenames in dialogs, and pseudocode
in file listings.

% Other Text

The documentation uses izalics for emphasis. When a Part uses a significant term,
it is usually emphasized the first time. If you aren’t familiar with the term, you can
look it up in the glossary in the PenPoint Application Writing Guide or the index of
the book.

DOS filenames such as \BOOT\PENPOINT\APP are in small capitals. PenPoint file
names can be upper and lower case, such as \My Disk\\Package Design Letter.

Book names such as PenPoint Application Writing Guide are in italics.

¥ Part 6 / Text

TENCODE.H
TV_TAGS.H
TXTDATA.H
TXTVIEW.H
TXTXLIST.H

¥ Part 7 / File System

FILETYPE.H
FS.H
FSUTIL.H
STREAM.H
UUID.H
VOL.H
VOLGODIR.H
VSEARCH.H

” Part 8 / System Services

CMPSTEXT.H
GOMATH.H
INTL.H

OS.H
OSHEAPH
OSPRIV.H
OSTYPES.H
SORT.H
TIMER.H

7 Part 9 / Utility Classes

BKSHELEH
BROWSER.H
BYTARRAY.H
BYTEBUEH
DSKVIEW.H
EXPORT.H
GMARGIN.H
HASH.H
IMPORT.H
LISTH
NOTEPAPR.H
NPDATA.H

e

o N W

31
45

49

51
53
75
79
83
85
103
115

119

121
123
131
135
155
165
171
175
177

181

183
185
199
205
207
215
219
221
229
233
241
253

v

NPITEM.H
NPSCR.H
NPTEXT.H
ORDSET.H
QHELPH
SEL.H
SPELL.H
SPMGR.H
SR.H
STROBJ.H
TS.H
UNDO.H
XFER.H

Part 10 / Connectivity

ABMGR.H
ADDRBOOK.H
ATALK.H
CNCTIONS.H
DIALENV.H
FLAP.H
HSLINK.H
HSPKT.H
INBXSVC.H
IOBXSVC.H
LINK.H
MODEM.H
OBXSVC.H
OPENSERV.H
PPORT.H
SENDSERV.H
SERLINK.H
SIO.H

TPH

Part 11 / Resources

PREFS.H
RESCMPLR.H
RESFILE.H
RESUTIL.H
SETTINGS.H

261
269
271
273
283
287
299
303
305
309
311
323
331

343

345
351
365
369
379
391
393
395
399
409
419
423
437
449
451
455
459
461
469

473

475
485
489
507
509

° 9

¥ Part 12 / Installation API 511
APPIMGR.H 513
AUXNBMGR.H 517
CODEMGR.H 525
DYNTABLE.H 529
FONTMGR.H 533
HWXMGR.H 537
INIFILE.H 541
INSTALL.H ' _ 543
INSTLMGR.H 545
INSTLSHT.H 563
PDICTMGR.H 567
SERVIMGR.H 569
SYSTEM.H 573

7 Part 13 / Writing PenPoint

Services 579
HWXSERV.H 581
MILSERV.H 583
SERVCONEH 589
SERVICE.H 593
SERVMGR.H 609
SERVMISC.H 623
SVCTYPES.H 635
¥ Part 14 / Miscellaneous 637
BATTERY.H 639
DYNARRAY.H 641
GOSEARCH.H 647
PDICT.H 649
POWER.H 653
POWERMGR.H 655

¥ Index 657

PENPOINT APl REFERENCE / VOL 11 :

Part 6 /
Text

TENCODE.H

This file contains the byte encodings used by clsText and clsTextView.

The byte encoding employed by the Text subsystem is based on the IBM-PC code page 850. However,
there are differences as noted by the constants below; the differences are peculiar to Text’s interpretation
of bytes, they are not part of the interpretation used by the Imaging subsystem. This byte encoding
causes Text to use the font encoding sysDcEncodeHWX850 defined by sysfont.h.

In addition to the constants that define the byte encoding, classifications and routines that map from a
byte to a class are defined, similar to those classification routines provided by ctype.h. Use of these
routines should be carefully isolated as they will be replaced by a different package in the
"internationalized” version of PenPoint.

The functions described in this file are contained in TEXT.LIB.

#ifndef TENCODE INCLUDED
#define TENCODE INCLUDED $Revision: 1.205 $

#ifndef GO_INCLUDED
#include <go.h>
#endif

Types and Constants

"Text encoding” abbreviates to "te".

Format effectors: recognized

#define teEmbeddedObject 0x13 // ASCII's DC3, 850’'s !!

tdefine teSpace 0x20

#define teTab 0x09

#define teNewLine 0x0D // ASCII's CR, 850’s music glyph
#define teNewPage 0x0C // ASCII’s FF, 850’s female glyph
#define teNewParagraph 0x14 // ASCII's DC4, 850’s para glyph
#define teUnrecognized 0x15 // RASCII's NAK, 850’s sect glyph

Format effectors: unrecognized

#define teBackSpace 0x08
$define teLlineFeed 0x0A
#define teVerticalTab 0x0B

The classification package is designed to support multiple classification schemes. The type
TEXT_CHAR_TABLE represents the abstraction of a classification scheme; as such, a parameter of this
type is required by each of the classification routines. TXTCTYPE_DEF represents the default classification
scheme used by the Text subsystem. Thus, to see if a particular byte encodes a sentence ending character
in the default classification scheme, the client would call:

TEIsSentenceEnd(TXTCTYPE_DEF, aByte)

typedef Ul6 TEXT CTYPE FLAG, *P_TEXT CTYPE FLAG;
typedef P_TEXT CTYPE FLAG TEXT CHAR TABLE;
#define TXTCTYPE DEF ((TEXT CHAR TABLE) (-1L))

4 PENPOINT API REFERENCE
Part 6 / Text

y Exported Functions and Macros

Function Profolype

Comments

TEIsSentenceEnd

Determines if 'c’ is a sentence-ending character.
Returns BOOLEAN.

BOOLEAN EXPORTED

TEIsSentenceEnd (
TEXT_CHAR TABLE table,
CHAR c)i

Returns true if and only if ’c’ is a sentence-ending character.

Function Protolype

Comments

TEIsLineBreak

Determines if ’c’ forces a line-break.
Returns BOOLEAN.
BOOLEAN EXPORTED

TEIsLineBreak (
TEXT CHAR TABLE table,
CHAR c)i

Returns true if and only if ’c’ forces a line-break.

Function Prototype

Commaents

TEIsBlank
Determines if 'c’ acts as a blank/space character.
Returns BOOLEAN.
BOOLEAN EXPORTED
TEIsBlank ()
TEXT_CHAR TABLE table,
CHAR c)i

More than one character may act as a blank/space for some purposes. For example, a non-breaking
blank/space; none is defined for the PenPoint Developers Release. Returns true if and only if ’c’ acts as a
blank/space character.

Function Prototype

Comments

TEIsSpecialPunct

Determines if ’c’ is a "special” punctuation character.

Returns BOOLEAN.
BOOLEAN EXPORTED

TEIsSpecialPunct (

TEXT CHAR TABLE table,

CHAR c);
Such characters end a word or sentence unless surrounded by alphanumerics. The period and commas in
numbers are the most obvious case. Special punctuation might also include the periods in something
like "Section I1.A.i: The Rise and Fall of Punctuation”. Since the surrounding context is not available to
this function, it simply indicates whether the character can function as special punctuation; the caller
must then examine the context to decide whether the character is actually special punctuation.

Returns true if and only if ’c’ is a "special” punctuation character.

TENCODE.H
Exported Functions and Macros

Function Prototype

Comments

TEIsWord

Determines if ’c’ is part of a "normal" word.

Returns BOOLEAN.
BOOLEAN EXPORTED

TEIsWord (
TEXT_CHAR_TABLE table,
CHAR c);

Returns true if and only if °’C’ is part of a "normal” word.

6 / TEXT

PENPOINT AP! REFERBNCE / VOI. II

PART 6 / 'I‘EX'I'

TV_TAGS.H

This file contains clsTextView’s well-known TAGs and associated constants.
The usage of well-known TAGS by clsTextView falls into these categories:
1) Quick Help identifiers

2) Option Sheet card and item (i.e., window) tags

3) Option Sheet card labels

4) User note identifiers

Most of clsTextView’s Option Sheet components use the same tag for both the window tag and the
quick help tag. This causes category 1 above to be almost identical to category 2.

All of the Quick Help resources for clsTextView can be enumerated by finding all resources whose
.wkn.admin == resForQuickHelp (see qHelp.h) and Cls(.wkn.id) == Cls(clsTextView).

#ifndef TV_TAGS_INCLUDED
#define TV_TAGS_INCLUDED

ifndef GO_INCLUDED
#include <go.h>

endif

ifndef UID_INCLUDED
#include <uid.h>

endif

// Allocated clsTextView TAGs: 1-54, 94-95

% Tags for Option Sheet

typedef enum TV_CARD INDEX (// TVMakeCardTag(TV_CARD INDEX) => tag
tvCardChar = 0,
tvCardPara,
tvCardTabs,
tvCardView,
tvCardLength // Pseudo-card index which gives # cards
} TV_CARD INDEX;

Labels for Option sheet & cards. All Card Label strings are in a single resource: a string array with Resld
= tagTVOptResAdmin and indexed via TV_CARD_INDEX.

#define tagTVOptResAdmin MakeTag (clsTextView, 95)

typedef enum TV_CHAR OPTION { // TVMakeCharTag(TV_CHAR OPTION) => tag

tvCharOptBold = 0,

tvCharOptFont,

tvCharOptItalic,

tvCharOptSize,

tvCharQOptSizeOther,

tvCharOptSizeOtherVal,

tvCharOptSmallCaps,

tvCharOptStrike,

tvCharOptStyle,

tvCharOptUnderlineNormal,

tvCharOptUnderlineHeavy,

tvCharOptLength // Pseudo item which gives # char options
} TV_CHAR OPTION;

8 PENPOINT API REFERENCE
Part 6 / Text

typedef enum TV_PARA OPTION { // TVMakeParaTag (TV_PARA OPTION) => tag

tvParaOptAfterSpacing = 0,

tvParaOptBeforeSpacing,

tvParaOptFirstLineOffset,

tvParaOptInterLineHeight,

tvParaOptJustification,

tvParaOptLeftMargin,

tvParaOptLineHeight,

- tvParaOptRightMargin,

tvParaOptLength // Pseudo item which gives # para options
} TV_PARA OPTION;
typedef enum TV_VIEW OPTION { // TVMakeViewTag(TV_VIEW_OPTION) => tag

tvViewOptSpecial = 0,

tvViewOptMagnification,

tvViewOptLength // Pseudo item which gives # show options
} TV_VIEW OPTION;

The following macros combine all of the sub-ranges into a universal name space, suitable for both
win.tag and gwin.helpld. Note that the labels of options are not tagged, only the value fields; if the
labels must be tagged, use a new administered range so that it does not conflict with these helplds.

// tv_glbl.c performs runtime consistency checks.
#define TVMakeTag (tag) MakeTag (clsTextView, (tag))
#define tagTextView TVMakeTag (1)
#define tagTextViewOption TVMakeTag(2)
#define TVMakeCardTag (i) TVMakeTag (3+1)
#define TVMakeCharOptTag(i) TVMakeTag(10+i) // min 7
#define TVMakeParaOptTag(i) TVMakeTag(30+i) // min 21
#define tagQHTabStop TVMakeTag(42) // min 38
#define TVMakeViewOptTag (i) TVMakeTag(45+i) // min 43
#define TVMakeXXXTag (i) TVMakeTag(55+i) // min 48

fl
\'

spare Card
spare Char
spare Para
spare Tabs
spare View

I
v

o
vV v
~N N O W

il
v

’» Tags for Notes

A Note is a string displayed to the user when a Text View encounters difficulties processing a user action.
All of the Note strings are in a single resource: a string array with Resld =

resForStdMsgDialog(clsTextView) and indexed via the following ids.

#define tagTVNoteResAdmin MakeTag(clsTextView, 94)
// Allocated note ids - recycled: none; next: 12L

"text view note" abbreviates to "tvn".

#define tvnHazardousSetting 1L // margins may overlap
#define tvnInvalidFieldValue 2L
#define tvnTranslateOutOfMem 3L

#define tvnTabsOverlap 4L
#define tvnReadOnlyChars 5L
#define tvnReadOnlyAttrs 6L
#define tvnNotAnIP 7L
#define tvnNotAComponent 8L
#define tvnApplyWithoutSeln 9L
#define tvnNegForUnsignedField 10L . // a negative number entered for an

// unsigned field in an option sheet
#define tvnNewParasAdded 11L

PENPO!NT API REF_ERENCE / VOI. ll
PART 6 / TEXT

TXTDATA.H

This file contains the API definition for clsText.
clsText inherits from clsObject.

cl§Text is the Data Object for the Text subsystem. These objects hold characters, their attributes and
embedded objects.

The functions described in this file are contained in TEXT.LIB.

%> Road Map
Clients manipulating the character contents of the textData might use:
¢ msgTlextGet
¢ msgTextGetBuffer
¢ msgTextModify
Clients manipulating the attributes stored in textData might use:
msgTextChangeAttrs
msg TextClearAttrs
msg TextGetAttrs
msg TextlnitAttrs
msg TextPrintAttrs
TextInitCharAttrs()
TextInitCharMask()
TextlnitParaAttrs()
TextInitParéMask()
TextDeleteMany()
TextInsertOne()

* ¢ 6 6 ¢ 6 6 O o o o

Clients manipulating a textData’s embedded objects might use:

¢ msgTextEmbedObject

¢ msgTextExtractObject

¢ msgTextEnumEmbeddedObjects ‘

Clients needing to work with words, sentences or paragraphs might use:
¢ msgTextSpan

¢ msgTextSpanType

10 PENPOINT API REFERENCE
Part 6 / Text

Clients needing to import or export text might use:
¢ msgTlextRead

¢ msgTextWrite

Clients observing a textData might want to handle:
¢ msglextAffected

¢ msgTextReplaced

¥» Characters and Encodings

Text data objects hold bytes representing characters using the encoding specified in tencode.h. In
PenPoint 1.0, this encoding is derived from the IBM-PC’s code page 850, and uses one byte per
character. There are characters representing line, paragraph, and page breaks.

Characters are indexed starting from zero.

% Formatting Information
Text data objects also hold "formatting" or "attribute” information. The types of attributes stored are:
¢ character attributes such as font face, size and weight
¢ paragraph attributes such margins, first line offset, first line offset
¢ tab attributes for a paragraph
¢ embedded object info (specifically the embedded object’s uid)
¢ link termination (specifically the destination information for marks)

Attributes "tile" ranges of characters. In other words, no character can have two different sets of
character attributes associated with it, although it can have both character and paragraph attributes. This
tiling is enforced by the textData.

Any character that does not have explicit character or paragraph attributes takes on the "default”
character or paragraph attributes of the data object. There are messages to inspect, enumerate, and
modify all the attributes, including the defaults.

% Relation to Ul Classes

A textData only provides storage for characters and attributes. It does not provide any user interface

(UD. The Ul is provided by an instance of clsTextView.

To assist the class providing the UI, the textData provides notifications whenever either the characters or
the attributes are modified.

P Implementation Note

clsText is actually composed of three layers of classes. Clients need not be concerned by these layers, and
should not rely on their existence as they may disappear in future releases.

clsTextBlock (usually referred to as clsText) is a descendant of clsTextMarkStore, which in turn is a
descedant of clsTextChar.

#ifndef TXTDATA INCLUDED
#define TXTDATA INCLUDED $Revision: 1.224 $

TXTDATA.H 11
Types and Constants: Atoms

#ifndef CLSMGR_INCLUDED

#include <clsmgr.h>

#endif

#ifndef BYTARRAY INCLUDED

$include <bytarray.h> // For BYTE INDEX
$endif

tifndef GEQ_INCLUDED

#include <geo.h> // Required by sysfont.h
#endif

#$ifndef SYSFONT INCLUDED

#include <sysfont.h> // For SYSDC FONT ATTR
#endif

6 / TEXT

"Types and Constants: Atoms

Atoms are used as parameters to many of textData messages. All valid atoms are defined below.

typedef Ul6 ATOM;

#define atomChar ((ATOM) 1)
tdefine atomWord ((ATOM) 2)
#define atomLine ((ATOM) 3)
#define atomSentence ((ATOM) 4)
tdefine atomPara ((ATOM) 5)
#define atomDivision ((ATOM) 6)
#define atomDoc ((ATOM) 7)
#define atomMisc ((ATOM) 8)

#define atomEmbedded ((ATOM) 9)
#define atomParaTabs ((ATOM) 10)

Function Prototype

Comments

Return Valve

#define atomLink ((ATOM) 11)
#define atomWSDelimit ((ATOM) 12)
$define atomClientl ((ATOM) 28)
#define atomClient2 ((ATOM) 29)
$define atomClient3 ((ATOM) 30)
$define atomClient4 ((ATOM) 31)
$define minValidAtom atomChar
#define maxValidAtom atomClient4
AtomGetName

Passes back a pointer to the string value of the atom.
Returns STATUS.
STATUS EXPORTED

AtomGetName (
ATOM atom,
PP_STRING ppString);

Most clients and subclasses do not use this function. It is occasionally useful for debugging.
stsBadParam atom is out of the range of valid atoms

stsOK atom is within the valid range. *ppString may still be NULL if the atom falls into one of
the gaps.

12 PENPOINT API REFERENCE
Part 6 / Text

P Types and Constants: Character Indices

% Character Indices

typedef U32 TEXT_ INDEX;
typedef TEXT INDEX * P_TEXT INDEX;
#define maxTEXT_INDEX maxU32

Some messages and functions which take a TEXT_INDEX as a parameter may use special values to
achieve certain effects. Each message and function description indicates which special values can be
used.

#define 1poTEXT INDEX (maxTEXT INDEX-maxU16)

#define lastTEXT INDEX (lpoTEXT INDEX-1)

#define infTEXT INDEX (maxTEXT INDEX-1)
#define mInfTEXT INDEX maxTEXT INDEX

"Magic" value for msgTextChangeAttrs, msglextGetAttrs and msgTextInitAttrs.
#define textDefaultAttrs infTEXT INDEX

Types and Constants: Character AHributes

The prefixes "TA_" and "ta" indicate that an identifier is related to "text attributes."

Use these in the alignBase field of a TA_CHAR_ATTRS.

typedef enum { // Must fit in 2 bits
taNormalLineBase = 0,
} TA ALIGN BASE;
Character Attributes
typedef struct TA CHAR ATTRS {
Ulé size; // Font size in twips. Not all
// values are available -- some are

// rounded down. Max of 160*20 twips.

Ulé6 tacSpare 8, // Reserved.
highlight 1,
smallCaps 1,
upperCase 1,
strikeout 1,
underlines 2, // As defined in sysfont.h. Must be
// 0, 1, or 2.
alignBase : 2; // Use a TA ALIGN BASE value. Only

// taNormalLineBase is implemented.
SYSDC_FONT SPEC font;
} TA CHAR ATTRS, *P_TA CHAR ATTRS;

Character Attributes Mask.

The highlight and encoding fields contain extra bits. These bits are automatically zero-ed by assigning a
legitimate values to the field.

typedef struct { // Must fit in 32 bits

Ulé tacSpare : 8, // Reserved. Should be set to 0.
highlight : 2, // true or false (and 1 spare bit)
size 2 1,
smallCaps 0 1,
upperCase : 1,
strikeout : 1,
underlines : 1,
alignBase : 1;

Ulée id : 1, // mask bit for attrs.font.id
group : 1, // mask bit for attrs.font.attr.group

TXTDATA.H 13
Types and Constants: Tab Attributes

weight ¢ 1, // mask bit for attrs.font.attr.weight
aspect : 1, // mask bit for attrs.font.attr.aspect
italic : 1, // mask bit for attrs.font.attr.italic
monospaced : 1, // mask bit for attrs.font.attr.monospaced
encoding : 10; // mask bit for attrs.font.attr.encoding

// true or false (and 9 spare bits)
} TA CHAR MASK, *P_TA CHAR MASK;

Types and Constants: Tab Afiributes

Each paragraph can have up to TA_MAX_TABS tab stops. A paragraph without its own explicit tab stops
"inherits" the document’s "default" tab stops.

Paragraphs that desire uniformly spaced tab stops can compactly define the stops by setting at least two
explicit stops and then setting repeatAtEnd to true. This has the effect of defining an unlimited number
of implicit stops, each of which follows the prior stop by the distance between the last two explicit stops.

NOTE: Even though each tab store has a type and leader, only the type taTabLeft and the leader
taLeadSpace are implemented.

typedef enum { // Must fit in 2 bits
taTabLeft =0,
taTabCenter =1, // Not Implemented
taTabRight = 2, // Not Implemented
taTabDecimal =3 // Not Implemented

} TA_TAB TYPE; ’

typedef enum { // Must fit in 2 bits
talLeadSpace 0,
taleadDot =1, // Not Implemented
taLeadDash = 2, // Not Implemented
taLeadUnderline = 3 // Not Implemented

} TA_TAB LEADER;

Tab Stop.

The type and leader fields contain extra bits. These bits are automatically zero-ed by assigning a
legitimate values to the field.

typedef struct TA TAB STOP {

Ulé X; // In twips
U8 type; // TA TAB TYPE (and 6 spare bits)
U8 leader; // TA TAB LEADER (and 6 spare bits)

} TA_TAB STOP, *P_TA TAB_STOP;

The maximum number of tab stops for a paragraph.
#define TA MAX TABS 31

Tab Stops.

The count and repeatAtEnd fields contain extra bits. These bits are automatically zero-ed by assigning a
legitimate values to the field.

typedef struct TA TABS {
Ulie count : 8, // Number of tab stops, in the range
// 0..TA MAX TABS. (plus 3
// spare bits.)
repeatAtEnd : 8; // true or false (and 7 spare bits)
TA TAB_STOP tabs[1]; // Actually variable size array
} TA TABS, *P_TA TABS;

6 / TEXT

14 PENPOINT APl REFERENCE
Part 6 / Text

Another representation of tab stops.

typedef struct TA MANY TABS { _
Uleé count : 8, // Number of tab stops, in the range
// 0..TA MAX TABS. (plus 3
// spare bits.)
repeatAtEnd : 8; // true or false (and 7 spare bits)
TA TAB STOP tabs[TA_MAX TABS];
} TA MANY TABS, *P_TA MANY TABS;
#define textNoTabs ((P_TA_MANY TABS)1) // Not Implemented

Types and Constants: Paragraph Atiributes

Use these in the alignment field of a TA_PARA_ATTRS.

typedef enum { // Must fit in 2 bits
taParaleft =0,
taParaCenter =1,
taParaRight = 2,
taParaSpare =3 // Reserved

} TA PARA ALIGN;
Paragraph Attributes.
All of the fields in TA_PARA_ATTRS that are linear measurements are in twips.

The alignment and justify fields contain extra bits. These bits are automatically zero-ed by assigning a
legitimate values to the field.

typedef struct TA PARA ATTRS {

Ulé alignment : 8, // TA PARA ALIGN (and 6 spare bits)
justify : 8; // 0 or 1. (0x80 is used internally,
// so there are 6 spare bits.)
Uleé lineHeight; // The special value textUseMaxHeightOnLine

// causes the line height to be as high
// as the highest thing in the line.
// Don’t use zero!

Ulé interLineHeight;
Ule beforeSpacing; // Adds to previous paragraphs’s
// afterSpacing
Ule afterSpacing;
S16 firstLineOffset; // Add to leftMargin to get the effective
// left margin for the first line of the
// paragraph.
Ule leftMargin;
Ulé rightMargin;
} TA PARA ATTRS, *P_TA PARA ATTRS;
Special lineHeight value

#define textUseMaxHeightOnLine maxU1l6

Paragraph Attribute Mask

The lineHeight, interLineHeight, beforeSpacing and afterSpacing ficlds contain extra bits. These bits
are automatically zero-ed by assigning a legitimate values to the field.

typedef struct { // Must fit in 32 bits
Ulé alignment 0 1,
Justify : 1,
firstLineOffset 1,
leftMargin : 1,
rightMargin 1,
lineHeight 1 3, // 0 or 1 (2 spare bits)
interLineHeight 8; // 0 or 1 (7 spare bits)
Ule beforeSpacing : 8, // 0 or 1 (7 spare bits)
afterSpacing : 8; // 0 or 1 (7 spare bits)

} TA PARA MASK, *P_TA PARA MASK;

TXTDATA.H
Types and Constants: Import/Export

Types and Constants: Embedding

typedef struct TEXT EMBED OBJECT {
TEXT_INDEX first;

OBJECT toEmbed;
U8 clientFlags;
us action; // One of the values below (6 spare bits)

} TEXT EMBED OBJECT, *P_TEXT EMBED OBJECT;
Use these in the action field of a TEXT_EMBED_OBJECT.

#define textEmbedCopy 0 // For internal use only.
#define textEmbedFree 1 // For internal use only.
#define textEmbedInsert 2

#define textEmbedMove 3 // For internal use only.

The fields of this structure are described in the comments for msgl'extEnumEmbeddedObjects.

typedef struct TEXT ENUM EMBEDDED {

TEXT INDEX first;

TEXT INDEX length;

Ule flags; // One ofthe values below
Ulé max;

Ule count;

P_TEXT EMBED OBJECT pltems;

} TEXT_ENUM EMBEDDED, *P_TEXT ENUM EMBEDDED;
The prefix "tee” indicates that an identifier is related to "TEXT_ENUM_EMBEDDED."

Use these in the flags field of a TEXT_ENUM_EMBEDDED.

#define teeFloat flag0 // Include floating embedded
// objects. (These will be
// children of theRootWindow.)
#define teelnline flagl // Include embedded objects
#define teeDefault (teeFloat|teelnline)

Types and Constants: Import/Export

More information about the fields of this structure is in the comments for for msgTextRead.

The freeAfter and inputlsObject fields contain extra bits. These bits are automatically zero-ed by
assigning a legitimate values to the field.
typedef struct TEXT READ {

TEXT INDEX first;
P_UNKNOWN input;

Ulé embeddedAction: 2,
freeAfter: 6, // true or false (and 5 spare bits)
inputIsObject: 8; // true or false (and 7 spare bits)
TAG format;

} TEXT READ, *P_TEXT READ;

More information about the fields of this structure is in the comments for for msgTextW'rite.

The flags and outputlsObject fields contain extra bits. These bits are automatically zero-ed by assigning

legitimate values to the fields.

typedef struct TEXT WRITE {
TEXT_INDEX first;
TEXT_INDEX length;
P_UNKNOWN output;
Ulé flags; // One of the values below (and 13
// spare bits)
TAG format;
us outputIsObject;
} TEXT_WRITE, *P_TEXT WRITE;

6 / TEXT

16 PENPOINT APl REFERENCE
Part 6 / Text

The prefix "tw" indicates that an identifier is related to "text write."

Use these in the flags field of a TEXT_WRITE. They are described in the comments for msgTextWrite.

#define twExtractEmbedded flag0
#define twTempFile flagl
#define twForUndo flag3

'Other Types and Constants

typedef OBJECT TEXT DATA;
Resource ids

#define textResDefaultCharAttrs MakeWknResId(clsText, 1)

#define textResDefaultParaAttrs MakeWknResId (clsText, 2) // Not Impl.
#define textResDefaultParaTabs MakeWknResId (clsText, 3) // Not Impl.

Public Functions and Macros

¥ Utility Functions

Function Prototype

Comments

TextDeleteMany

Deletes characters from a textData.

Returns STATUS.
STATUS EXPORTED

TextDeleteMany (
const OBJECT dataObj,
const TEXT INDEX pos, // first character to delete
const TEXT_ INDEX length); // number to delete

The return values are the same as those for msgI'extModify.

Function Prototype

Comments

TextInsertOne

Inserts one character into a textData.
Returns STATUS.

STATUS EXPORTED

TextInsertOne (
const OBJECT dataObj,
const TEXT INDEX pos, // position at which to insert
const CHAR toInsert); // character to insert

The return values are the same as those for msgl'extModify.

Function Profotype

TextFindNextParaTab
Passes back the next tab stop to the right of the passed-in stop.

Returns STATUS.
STATUS EXPORTED

TextFindNextParaTab (
const P_TA TABS P,
const P_TA TAB STOP pTab,

const P_Ul6 pIndex);

TXTDATA.H 17
Public Functions and Macros

Comments Note that if p->repeatAtEnd is true, there are effectively an infinite number of tab stops.

Return Yalue stsNoMatch no tabs, or this is the last tab.

P Atiribute and Mask Initialization Routines

TextInitCharAttrs

Initialzes a character attribute structure.
Returns nothing.
void EXPORTED

Function Prototype TextInitCharAttrs(
P_TA CHAR ATTRS p);

Comments This function reads the default character attributes from the process’s resource list (using the resource id
textResDefaultCharAttrs), or sets all values to 0 if the resource cannot be found.

See Also msgTextChangeAttrs

TextInitCharMask

Initialzes a character attribute mask to all zeros.
Returns nothing.
void EXPORTED

Function Prototype TextInitCharMask (
P_TA CHAR MASK p);

See Also msgTextChangeAttrs

TextlnitParaAttrs

Initialzes a paragraph attribute structure to all zeros.
Returns nothing,
void EXPORTED

Function Prototype TextInitParaAttrs(
P_TA PARA ATTRS p);

See Also msgTextChangeAttrs

TextInitParaMask

Initialzes a paragraph attribute mask to all zeros.
Returns nothing.

void EXPORTED

Funiction Prototype TextInitParaMask (
P TA PARA MASK p);

See Also msgTextChangeAttrs

6 / TEXT

18 PENPOINT API REFERENCE
Part 6 / Text

7 Message Arguments
’ The prefix "TD_" indicates that an identifier is related to "text data.”

The prefix "tdm" indicates that an identifier is related to "text data metrics.”

typedef struct TD_METRICS {

Ule flags; // One of the values below
Ul6 spareBits; // Reserved.
P_UNKNOWN spares[2]; // Reserved.

} TD METRICS, *P_TD METRICS;
Use these in the flags field of a TD_METRICS.

#define tdmCanUndo flag8 // if on, textData supports undo
#define tdmFileCharsOnOwn flagl // Not Implemented
tdefine tdmReadOnly flag0 // characters cannot be modified

expectedSize is a hint about the expected number of characters in a textData. An accurate hint can
improve performance.

typedef struct TD NEW_ONLY {
TD_METRICS metrics;
TEXT INDEX expectedSize;
Ulé6 expectedTagCount; // Private. For internal use only.
} TD_NEW_ONLY, *P_TD NEW ONLY;
typedef struct TD_NEW {
OBJECT NEW_ONLY object;
TD_NEW_ONLY text;
} TD_NEW, *P_TD NEW;
typedef struct TEXT BUFFER {

TEXT INDEX first; // In
TEXT INDEX length; // In
TEXT INDEX bufLen; : // In
P_CHAR buf; // In:Out via *buf
TEXT INDEX bufUsed; // Out

} TEXT_BUFFER, *P_TEXT BUFFER;

typedef enum { // Used as a SET
tdForward = 1,

tdBackward = 2
} TEXT DIRECTION;

typedef struct TEXT_ SPAN ({

TEXT INDEX first; // In:Out

TEXT_INDEX length; // In:Out

ATOM type; // In:Out (for msgTextSpanType)

TEXT DIRECTION direction; // In

BOOLEAN needPrefix; // In

BOOLEAN needSuffix; // In

Ul6 prefixLength; // Out: valid if and only if
// needPrefix is true

Ul6 suffixLength; // Out: valid if and only if
// needSuffix is true

U8 firstNormal; // Out: 0 or 1 (7 spare bits)

U8 lastNormal; // Out: 0 or 1 (7 spare bits)

U32 spares[4]; // Reserved

} TEXT SPAN, *P_TEXT_SPAN;
typedef struct TEXT SPAN AFFECTED {
OBJECT sender;
U32 changeCount;
TEXT INDEX first;
TEXT INDEX length;
} TEXT SPAN AFFECTED, *P_TEXT_ SPAN AFFECTED;

TXTDATA.H

Messages Defined by Other Classes

typedef struct TEXT REPLACED {
TEXT SPAN AFFECTED span;
TEXT_INDEX bytesTakenFromBuf;
} TEXT_REPLACED, *P_TEXT_REPLACED;
typedef struct TEXT AFFECTED {
TEXT SPAN AFFECTED span;
Ule remeasure;
P_UNKNOWN spare;
} TEXT_AFFECTED, *P_TEXT AFFECTED;

typedef struct TEXT COUNTER CHANGED {

OBJECT sender;
U32 changeCount;
U32 oldCount;

} TEXT COUNTER CHANGED, *P_TEXT COUNTER CHANGED;
typedef struct TEXT CHANGE ATTRS {

ATOM tag;
TEXT_INDEX first;
TEXT_ INDEX length;
P_UNKNOWN pNewMask;
P_UNKNOWN pNewValues;

} TEXT CHANGE ATTRS, *P_TEXT CHANGE ATTRS;
typedef struct TEXT GET ATTRS (

ATOM tag;

TEXT_INDEX first;

TEXT_INDEX length; // Not defined.
P_UNKNOWN pValues;

} TEXT_GET ATTRS, *P_TEXT GET_ATTRS;

Messages Defined by Other Classes

Message
Arguments

Conpwants

msgNewDefaults
Initializes the NEW struct.

Takes P_TD_NEW, returns STATUS. Category: class message.

typedef struct TD NEW {
OBJECT_NEW_ONLY object;
TD_NEW_ONLY text;

} TD_NEW, *P_TD NEW;

In response to this message, clsText does the following:

pNew->object.cap |= objCapCreate;
memset (& (pNew->text), 0, sizeof (pNew->text));

Mossage
Arguments

pNew->text .expectedSize = 5;
pNew->text .expectedTagCount =5;
msgNew

Creates a new instance of clsText.
Takes P_TD_NEW, returns STATUS. Category: class message.

typedef struct TD_NEW {
OBJECT_NEW ONLY object;
TD_NEW_ONLY text;

} TD_NEW, *P_TD NEW;

6 / TEXT

PENPOINT APl REFERENCE
Part 6 / Text

Conments

msgTextChangeCount
Passes back (and optionally sets) the textData’s changeCount.

Takes $32, returns S32.
#define msgTextChangeCount TCMakeMsg(0)

Each instance of clsText keeps a monotonically increasing count of the number of changes that have
been made to it (via msgTextModify). In response to this message, a textData passes back that count.
The counter’s value is always greater than or equal to 0.

If the value of pArgs is:

<0 the counter’s current value is returned and the counter is unchanged.
maxS32 the counter is incremented by one, and the new value returned.
>=0 the counter is set to pArgs, and its previous value is returned.

In general, clients should only increment the counter, not decrement it.

Retorn Vealue

msgTextGet

Returns the character in a textData at the specified position.

Takes TEXT_INDEX, returns STATUS.

#define msgTextGet TCMakeMsg (1)

stsEndOfData pArgs->first is too large

>=0 the 8 bit character is returned as the low byte of the returned STATUS; the high 3 bytes are zero.

Message
Arguments

Lomunents

Return Yolue

msgTextGetBuffer

Passes back a contiguous range of characters from a textData.

Takes P_TEXT_BUFFER, returns STATUS.

#define msgTextGetBuffer TCMakeMsg (5)
typedef struct TEXT BUFFER {
TEXT INDEX first; ' // In
TEXT_INDEX length; // In
TEXT INDEX buflLen; // In
P_CHAR buf; : // In:Out via *buf
TEXT_INDEX bufUsed; // Out

} TEXT BUFFER, *P_TEXT BUFFER;

Use this message to get the values of several characters at a time. This message is a high-performance
alternative to msgTextGet.

If pArgs->length > pArgs->buflen, then up to bufLen characters are placed into pArgs->buf.

Upon return, pArgs->bufUsed is set to the count of characters read, even if there was a problem with the
request.

stsBadParam pArgs->length was 0 or pArgs->buflen was 0 or pArgs->buf was pNull.
stsEndOfData pArgs->first is too large

< stsOK some other error occurred.

TXTDATA.H 21
Messages Defined by Other Classes

Message
Arguments

msgTextGetMetrics

Passes back the textData’s metrics.

6 / TEXT

Takes P_TD_METRICS, returns STATUS.

#define msgTextGetMetrics TCMakeMsg (2)

typedef struct TD_METRICS {
Ul6 flags; // One of the values below
Ulé spareBits; // Reserved.
P_UNKNOWN spares([2]; // Reserved.

} TD_METRICS, *P_TD METRICS;

Return Value

msgTextLength

Returns the number of characters stored in the textData.
Takes nothing, returns TEXT_INDEX.

#define msgTextLength TCMakeMsg (3)

< stsOK some error occurred.

>= stsOK Cast the returned value to a TEXT_INDEX; that’s the number of characters.

Message
Arguments

LComments

Return Value

msgTextModify

Modifies the characters stored in the textData.

Takes P_TEXT_BUFFER, returns STATUS..

#define msgTextModify TCMakeMsg (4)
typedef struct TEXT BUFFER {
TEXT INDEX first; // In
TEXT_INDEX length; // In
TEXT INDEX buflen; // In
P_CHAR buf; // In:Out via *buf
TEXT_INDEX bufUsed; // Out

} TEXT_BUFFER, *P_TEXT_BUFFER;
Use this message to insert, delete or replace characters in a textData.

In response to this message, the textData replaces the characters in the range [pArgs->first ..
pArgs->first+pArgs->length) with the characters from pArgs->buf.

If pArgs->buf is pNull, the effect is a deletion. If pArgs->length is 0, the effect is an insertion. Otherwise
the effect is a replacement. If pArgs->first is infTEXT_INDEX, the current length minus pArgs->length
is substituted. If pArgs->length is maxTEXT_INDEX, strlen(pArgs->buf) is substituted.

stsReadOnly request refused because object is read only.

stsOK modification successful.

Message
Arguments

msgTextSetMetrics

Sets a textData’s metrics.

Takes P_TD_METRICS, returns STATUS.

#define msgTextSetMetrics TCMakeMsg (6)

typedef struct TD_METRICS {)
Ulé flags; // One of the values below
Ul6 spareBits; // Reserved.
P_UNKNOWN spares[2]; // Reserved.

} TD_METRICS, *P_TD METRICS;

PENPOINT API REFERENCE
Part 6 / Text

Messuge
Argumaents

Camments

Return Value

msgTextSpan

Determines the range corresponding to the requested span.

Takes P_TEXT_SPAN, returns STATUS..

#define msgTextSpan TCMakeMsg (9)
typedef struct TEXT SPAN {
TEXT INDEX first; // In:Out
TEXT_ INDEX length; // In:0ut
ATOM type; // In:0ut (for msgTextSpanType)
TEXT_DIRECTION direction; // In
BOOLEAN needPrefix; // In
BOOLEAN needSuffix; // In
Ulé6 prefixLength; // Out: valid if and only if
// needPrefix is true
Ul6 suffixLength; // Out: valid if and only if
// needSuffix is true
Us firstNormal; // Out: 0 or 1 (7 spare bits)
U8 lastNormal; // Out: 0 or 1 (7 spare bits)
U32 spares[4]; // Reserved

} TEXT SPAN, *P_TEXT SPAN;

A span is a consecutive range of characters that share some common trait. Given a position and the
desired span type, this message returns the range of the span. For instance, a client can use this message
to ask a textData to find the bounds of the word containing a position.

Actually, this message can be used to find the start of one span and the end of another. If pArgs->length
is 1, then the start and end of the same span is returned.

If the client only needs only the beginning or the end of the span, then pArgs->direction should be set
to the needed end. This substantially improves performance.

Using this message, a textData can find the range of the following types of spans:
¢ atomWSDelimit: passes back a white-space delimited span

¢ atomWord: passes back a word span using the definitions in tencode.h
pArgs->type specifies the desired span’s type.

pArgs->direction indicates whether the span should be searched for in preceding characters, succeeding
characters, or both.

It is often useful to know something about the characters immediately preceding or succeeding the span.
This information is returned if pArgs->needPrefix or pArgs->needSuffix (or both) are true. Upon return,
pAigs->prefixLength and/or pArgs->suffixLength identifies the appropriate characters.

pArgs->firstNormal and pArgs->lastNormal indicate whether the corresponding portions of the span are

normal or abnormal characters for the span. For instance, for atomWord, an "a" is a normal character,

but an ™" is abnormal.

stsBadParam Neither the two directions in pArgs->direction was on.

TXTDATA.H 23
Messages Defined by Other Classes

Message
Arguments

Comments

msgTlextSpanType

Determines the span type of the specified range.

6 / TEXT

Takes P_TEXT_SPAN, returns STATUS..

#define msgTextSpanType TCMakeMsg (10)
typedef struct TEXT SPAN {
TEXT_INDEX first; // In:Out
TEXT_INDEX length; // In:Out
ATOM type; // In:Out (for msgTextSpanType)
TEXT DIRECTION direction; // In
BOOLEAN needPrefix; // In
BOOLEAN needSuffix; // In
Uleé prefixlength; // Out: valid if and only if.
// needPrefix is true
Ule suffixLength; // Out: valid if and only if
// needSuffix is true
U8 firstNormal; // Out: 0 or 1 (7 spare bits)
Us lastNormal; // Out: 0 or 1 (7 spare bits)
U32 spares[4]; // Reserved

} TEXT SPAN, *P_TEXT SPAN;
In response to this message, a textData passes back the span type that corresponds to the range.

The same range often has several span types. For instance, all ranges have the span type atomChar. All
ranges that include a complete paragraph also have the span types atomChar, atomWord and
atomSentence. When the passed-in range has multiple span types, the largest span type is returned.

The span type ordering from smallest to largest is as follows. This is also the complete list of span types
returned in response to this message.

¢ atomChar
atomWord
atomSentence

atomPara

* & o o

atomDoc

Message
Arguments

Commenis

msgTextChangeAttrs

Changes the attributes of the specified range.

Takes P_TEXT_CHANGE ATTRS, returns STATUS.
#define msgTextChangeAttrs TAMakeMsg (taVersion, 1)

typedef struct TEXT CHANGE ATTRS {
ATOM tag;
TEXT_ INDEX first;
TEXT_INDEX length;
P_UNKNOWN pNewMask;
P_UNKNOWN pNewValues;
} TEXT CHANGE ATTRS, *P_TEXT CHANGE ATTRS;

Clients use this message to change the formatting attributes of characters in a textData. They can
manipulate three types of attributes:

character attributes (indicated by atomChar)

¢ paragraph attributes (indicated by atomPara)

24

Return YValues

PENPOINT APl REFERENCE
Part 6 / Text

® tab attributes (indicated by atomParaTabs)

The pArgs type for this message is P_TEXT_CHANGE_ATTRS. This structure has a tag, which must be
one of the three atoms mentioned above. The structure also has two P_UNKNOWN fields: pNewMask
and pNewValues. The true type of these two fields depends on the value of the tag.

tag pNewValues type pNewMask type
atomChar P_TA CHAR ATTRS P_TA CHAR MASK
atomPara P_TA PARA ATTRS P_TA PARA MASK
atomParaTabs P_TA MANY TABS none; always null

The mask field allows the client to change only some of the attributes. If the appropriate bit in the mask
if off, then the value of the attribute is not changed. To simplify initializing attribute and mask
structures, textData has a few utility messages and functions:

msgTextInitAttrs The client must set the tag pArgs->first. In response to this message, a textData
initializes pNewValues to the values in effect at pArgs->first and sets all of the bits in the mask to
zero.

TextInitCharAttrs reads the default character attributes from the process’s resource list (using the
resource id textResDefaultCharAttrs), or sets all values to 0 if the resource cannot be found.

TextInitCharMask Turns off all bits in the mask

TextInitParaAttrs Sets all values to 0.

TextInitParaMask Turns off all bits in the mask

If pArgs->first is the "magic value" textDefaultAttrs, the textData’s default attributes are modified.

If pArgs->tag is atomPara or atomParaTabs, then the passed-in range is automatically extended to
complete paragraph boundaries. (The resulting range is passed back in pArgs->first and pArgs->length
updated.)

stsBadParam Either pArgs->tag or the range was invalid. No attributes have changed.

< stsOK Some other error occurred. No attributes have changed.

Comments

Return Volue

msgTextClearAttrs
Clears all attributes of the specified type to the default values.

Takes ATOM, returns STATUS.
#define msgTextClearAttrs TBMakeMsg (5)

In response to this message, a textData clears all formatting for the specified type. This message is "all or
nothing" -- no mask or range can be specified.

The attributes have not changed the return value is < stsOK:
stsBadParam pArgs was invalid. No attributes have changed.

< stsOK Some other error occurred. No attributes have changed.

msgTextEmbedObject

Embeds an object at a specified position.

Takes P_TEXT_EMBED_OBJECT, returns STATUS.
#define msgTextEmbedObject TBMakeMsg (2)

Massage
Arguments

Comments

TXTDATA.H 25
Messages Defined by Other Classes

typedef struct TEXT EMBED OBJECT { X
TEXT INDEX first; -
OBJECT toEmbed; °
U8 clientFlags;

U8 action; // One of the values below (6 spare bits)

} TEXT EMBED OBJECT, *P_TEXT EMBED OBJECT;

Each embedded object is represented by a character with the encoding value tetEmbeddedObject. (See
tencode.h.)

In response to this message, the textData inserts the embedded object anchor character and
"remembers” the embedded object’s id.

Lomments

msgTlextExtractObject

Extracts the specified embedded object.

Takes OBJECT, returns STATUS.

#define msgTextExtractObject TBMakeMsg (4)

In response to this message, the textData "forgets" the specified embedded object. It also deletes the
associated embedded object anchor character.

Nothing is done to the object itself. In particular, the client should probably msgWinExtract the object.

Messuge
Arguments

Commeants

Return Volue

msgTextGetAttrs
Gets the attributes of the specified type.

Takes P_TEXT GET_ATTRS, returns STATUS.

#define msgTextGetAttrs TAMakeMsg (taVersion, 2)
typedef struct TEXT GET_ATTRS {
ATOM tag;
TEXT_INDEX first;
TEXT INDEX length; // Not defined.
P_UNKNOWN pValues;

} TEXT GET ATTRS, *P_TEXT GET ATTRS;
Clients can retrieve the attributes of a character in the textData using msgTextGetAttrs.

The client specifies the type of attributes it is interested in by filling in pArgs->tag. The client must set
pArgs->pValues to point to a structure with the "real” type of the attributes corresponding to the tag.
This "real” type is described in the comments for msgI'extChangeAttrs.

The client also specifies the character whose attributes the client wants by specifying pArgs->first. If
pArgs->first is textDefaultAttrs then the default attribute values are returned.

stsBadParam pArgs->tag is not valid
stsEndOfData pArgs->first is too large
stsOK the attribute values have been copied into pArgs->pValues

msgTextlnitAttrs
Initialize the attributes and mask before a msgTextChangeAttrs.

Takes P_TEXT_CHANGE_ATTRS, returns STATUS.
#define msgTextInitAttrs TAMakeMsg (taVersion 3)

26 PENPOINT API REFERENCE
Part 6 / Text

Message typedef struct TEXT CHANGE ATTRS ({
Arguments ATOM - taa;
TEXT_INDEX first;
TEXT INDEX length;
P_UNKNOWN pNewMask;
P_UNKNOWN pNewValues;

} TEXT_CHANGE_ATTRS, *P_TEXT CHANGE_ATTRS;

Comments The type of attributes is specified by pArgs->tag. pArgs->pNewValues and pArgs->pNewMask must be
set as appropriate to an invocation of msgTextChangeAttrs.

If pArgs->first is textDefaultAttrs, the default attributes are used to initialize pArgs->pNewValues.
Otherwise the attributes in effect at pArgs->first are used. All bits of pArgs->pNewMask are set to 0.

Return Value stsBadParam Either pArgs->tag or the range was invalid.
< stsOK Some other error occurred. No change has been made to the attributes and mask.

See Also msgTextChangeAttrs

msgTextPrintAttrs

Prints the values of an attribute set and a mask.

Takes P_TEXT_CHANGE_ATTRS, returns stsOK.
#ifdef DEBUG

#define msgTextPrintAttrs TAMakeMsg (taVersion, 4)
#endif
Message typedef struct TEXT CHANGE ATTRS {
Arguments ATOM - tag;
TEXT INDEX first;
TEXT INDEX length;
P_UNKNOWN pNewMask;
P_UNKNOWN pNewValues;

} TEXT CHANGE ATTRS, *P_TEXT CHANGE ATTRS;

Comments This message takes the same parameters as msgl'extChangeAttrs and the pArgs must be filled in the
same way. In response to this message, a textData prints out a useful dump of the contents of pArgs.

Internal Use Only: If pArgs->first is txtPrvAttrs, then pArgs->pNewValues must be in the internal
format.

See Alse msgTextChangeAttrs

msgTextRead

Inserts Ascii, RTF, etc. at the specified location.

Takes P_TEXT_READ, returns STATUS.

#define msgTextRead TBMakeMsg (0)
Message typedef struct TEXT READ {
Arguments TEXT_INDEX first;
P_UNKNOWN input;
Ul6 embeddedAction: 2, .
freeAfter: 6, // true or false (and 5 spare bits)
inputIsObject: 8; // true or false (and 7 spare bits)
TAG format;

} TEXT READ, *P_TEXT READ; ‘

Comments The textData reads data and inserts the data into itself.

Return Value

TXTDATA.H 27

Messages Defined by Other Classes

The fields of pArgs are:

first the read text is inserted into the textData starting at this position. After a successful return,
pArgs->first is position immediately after the inserted text.

input the input source. If pArgs->inputlsObject is true, this field must hold a FILE_HANDLE object. If
pArgs->inputlsObject is false, then this field must hold a P_FILE.

embeddedAction Client must set this to textEmbedInsert. (Other values are for internal use only.)
freeAfter If true, then pArgs->input is freed after reading successfully.
inputlsObject describes the type of pArgs->input.

format one of the file types defined in filetype.h, or fileT'ypeUndefined. If the latter, the textData
object attempts to deduce the form at from the contents of the data found in pArgs->input.

The textData reads pArgs->input using the functions defined in stdio.h. Thus, if pArgs->inputlsObject
is true, pArgs->input must be an object which supports the stream protocol as used by stdio.

stsReadOnly request refused because object is read only.

stsNoMatch RTF error: first character of input is not "{" or format version > 1 or unrecognized font
name. '

stsFailed StdioStreamBind() or fseek() failed.
stsBadParam pArgs->format is invalid.
stsFS... see <fs.h>.

stsOK request completed successfully; pArgs->first updated.

Message
Srguments

Comments

msgTextWrite

Outputs the specified span as one of Ascii, RTF, etc.
Takes P_TEXT_WRITE, returns STATUS.

#define msgTextWrite TBMakeMsg (1)

typedef struct TEXT WRITE (
TEXT INDEX first;
TEXT INDEX length;
P_UNKNOWN output;
Ulé flags; // One of the values below (and 13
// spare bits)
TAG format; i
Us outputIsObject;
} TEXT_WRITE, *P_TEXT WRITE;

The fields of pArgs are:
first first character of range to be written
length length of range to be written

output if null, the textData creates a P_FILE and returns that handle. If non-null, then this field is
cither an object or a P_FILE, depending on the value of outputlsObject.

flags described below
format one of the file types defined in filetype.h.

outputlsObject If output is non-null and outputIsObject is true, then output is an object. If output is
non-null and outputlsObject is false, then output is a P_FILE.

6 / TEXT

28

Return Volue

PENPOINT API REFERENCE
Part 6 / Text

Possible values for the flags field of a TEXT_WRITE are:
twExtractEmbedded embedded objects in the specified span are extracted from their parent window.

twTempFile if output is null, then a temporary file is created. (Developer’s Note: If you’re debugging
the behavior of msgl'extWrite, you probably don’t want to turn this flag on as your file will be
deleted before msgTextWrite returns.)

twForUndo add additional information needed for supporting UNDO.
stsBadParam pArgs->format is invalid.

stsFailed StdioStreamBind() failed.

stsFS... see <fs.h>.

stsOK request completed successfully.

Message
Arguments

Comments

msgTextEnumEmbeddedObjects

Enumerates the textData’s embedded objects.

Takes P_TEXT ENUM_EMBEDDED, returns STATUS.

#define msgTextEnumEmbeddedObjects TMMakeMsg (9)
typedef struct TEXT ENUM EMBEDDED {
TEXT INDEX first;
TEXT INDEX length;
Ule ' flags; // One ofthe values below
Ul6 max;
Ul6 count;
P_TEXT EMBED OBJECT pltems;

) TEXT ENUM EMBEDDED, *P_TEXT ENUM EMBEDDED;
There are two ways of enumerating the embedded objects:

1) Get all the objects in one send. The textData allocates an array of TEXT_EMBED_OBJECT clements
and passes it back in pArgs->pltems. You must OSHeapBlockFree() the array when you are done with it.
TEXT_ENUM_EMBEDDED is used as follows:

first position at which you want to start the enumeration. Use 0 to start at the beginning of the data.

length length of the range you want the enumeration to include. Use inf TEXT_INDEX to go to the
end of the data.

flags Usually teeDefault. Use teeFloat to get only floating embedded objects. Use teelnline to get only
in-line embedded objects.

max Pass in 0. The object passes back the number of items in the allocated block
count Pass in maxU16. The object passes back the number of items returned (same as max).
pltems Pass in pNull. The object passes back a pointer to the allocated block

2) Get the objects a few at a time. You repeatedly send msgl'extEnumEmbeddedObjects re-using the
same TEXT_ENUM_EMBEDDED structure. When the message returns stsEndOfData, there are no more
objects in the enumeration. You should set the fields of TEXT_ENUM_EMBEDDED only before the first
call. For successive calls you must not modify the fields.

first Same as Case 1.
length Same as Case 1.
flags Same as Case 1.

Return Yalue

TXTDATA.H 29
Notifications

max number of objects the pItems block can hold.

count Pass in the same value as max. textData passes back the number of objects returned in block.
May be less than max for the last chunk, and is 0 when no further objects are left to enumerate.

pltems pointer to a block that can hold at least max objects.
stsOK next chunk of objects has been enumerated

stsEndOfData no more objects to enumerate. Passed back count is be zero. If pItems was nil and max
was 0, then no block has been allocated.

Message
Arguments

Comments

msgTextAffected

Notifies observers that a range of text has been affected.

Takes P_TEXT_AFFECTED, returns STATUS..
tdefine msgTextAffected MsgNoError (TCMakeMsg (7))

typedef struct TEXT_AFFECTED {
TEXT_SPAN_AFFECTED span;
Ul6 remeasure;
P_UNKNOWN spare;

} TEXT AFFECTED, *P_TEXT AFFECTED;

This message informs observers that the attributes of the range have been modified.

Maessuge
Arguments

Commenis

msgTextCounterChanged

Notifies observers that textData’s changeCount has been modified.

Takes P_TEXT_COUNTER_CHANGED, returns STATUS..
#define msgTextCounterChanged MsgNoError (TCMakeMsg(11))

typedef struct TEXT COUNTER CHANGED ({
OBJECT sender;
U32 changeCount;
U32 oldCount;
} TEXT_COUNTER -CHANGED, *P_TEXT COUNTER CHANGED;
The changeCount is normally incremented by 1 as a result of handling msgT'extModify. Observers here

about these changes via msgTextReplaced and msgTextAffected notification messages.

However, the changeCount can change in other ways. For instance, the changeCount is rolled back as
part of undoing certain operations. Also, clients and/or subclasses can explicitly set the changeCount via

magTextChangeCount.

Whenever the changeCount changes in some way OTHER than a single increment by 1,
msgTextCounterChanged is sent to the observers to allow them to synchronize any caches they keep
based on the changeCount.

msgTextReplaced

Notifies observers that a range of text was replaced via msgTextModify.

Takes P_TEXT_REPLACED, returns STATUS..

#define msgTextReplaced MsgNoError (TCMakeMsg (8))

6 / TEXT

30 PENPOINT APl REFERENCE
Part 6 / Text

Message typedef struct TEXT REPLACED {

Arguments TEXT SPAN AFFECTED span;
TEXT INDEX bytesTakenFromBuf;

} TEXT REPLACED, *P_TEXT REPLACED;

PENPOINT API REFERENCE / VOL 11

PARTYT 6 / TEXT

TXTVIEW.H

This file contains the API definition for clsTextView and clsTextIP.
clsTextView inherits from clsView.

clsTextView implements the user interface of a text editor. It uses an instance of clsText (or one of its
subclasses) to hold its data.

clsTextIP inherits from clsIP. ’
clsTextIP is a specialization of cIsIP used by a Text Views.

The functions described in this file are contained in TEXT.LIB.

% Introduction

An instance of clsTextView (or textView) provides a user interface which presents text data to the user
and lets the user edit that data.

Every textView has an associated data object of clsText (or a subclass of clsText). This object is referred
to as textData.

" Painting Model

A textView displays the textData as a series of non-overlapping, exhaustively tiling, horizontal display
lines. With the possible exception of space below the last line, there is no area between lines that does
not belong to any line. Characters are laid out left to right with lines running from top to bottom.

When first created, the textView positions the first line of textData at the top of itself. Subsequent user
or client actions (e.g. scrolling) can position some other line to the top of the window. However, the top
line is always completely visible unless the view is too small to allow this. The last visible line, in
contrast, may be clipped at the bottom.

Even though a textView is a descendant subclass of clsBorder, clsTextView ignores all clsBorder
functionality relating to display of the view’s background and border.

% Deferred Repaint

A textView uses a "delayed repair” model in which several changes to the textData may be made before
the visible display lines are repainted. For certain operations (e.g. selection change), such a delay can be
misleading to the user and the individual operations provide a way to override the normal delay. If no
override is available within a message’s arguments, msgTextViewRepair can be used.

% Word Wrap

By default, a textView displays each line beginning at the left edge of its window and "word wraps" at
the right edge. That is, if a word would be clipped by the right edge of the window, it is instead placed at
the beginning of the next line. By modifying paragraph margin attributes the line can be adjusted to
have uninked margins in which no character is displayed.

32 PENPOINT APl REFERENCE
Part 6 / Text

Word wrap can be turned off by setting the textView’s style (see msgTextViewSetStyle). When off; a line
breaks only when a "hard break” character (such as teNewLine or teNewParagraph) is encountered. As a
result, a significant portion of many lines may be invisible to the user.

¥ Embedded Objects

V> Text IPs

Other objects can be embedded within a textView (sec msgTextViewAddIP and msgTextViewEmbed).
(All embedded instances of some subclasses of clsEmbeddedWin.)

A textView handles an embedded object as if it is a "very large" character.

The textView’s displayed lines are always as tall as the tallest character or embedded object in the line.
Therefore the presence of a large embedded object causes the containing line to be quite tall. (Not all
embedded objects are large. For instance, closed application icons and reference buttons are only slightly
larger than typical text.)

The baseline of the line containing embedded objects is determined, in part, by the embedded object’s
response to msgWinGetBaseline. (See win.h.)

‘An instance of clsTextIP (or textIP) implements two special features that are useful to textViews.

The first is size management. An embedded textIP tracks the width of its parent window. When the
parent’s width changes, an embedded textIP modifies its own width so that it fits within and completely
fills the parent window (in the horizontal direction).

The second is special filtering of text going from the IP into a textView. A textIP filters translated data
from its superclass (cIsIP) before passing its data onto its client (typically a textView). Two kinds of
filtering are performed: paragraph break insertion and space correction. A textIP inserts paragraph
breaks based on how many blank lines there are between scribbles on an IP. textIP also filters out
unnecessary spaces between words and adds spaces after a sentence-ending character such as a period or
question-mark.

% Limitations

textView is not WYSIWYG: although it will closely match font sizes and line breaks and spacing on a
printer, it is based on a "make the printer match the screen” model that has enough variability that
clients requiring WYSIWYG will find unacceptable (e.g., an overlaying mark-up layer).

textViews do not support multiple views of a single data object. Thus each textView is the unique view
for its textData object. This restriction is not checked by clsTextView.

Although TV_NEW_ONLY has a "dc" field, there are so many restrictions on its use in PenPoint 1.0 that
the field should always be left at the default value of Nil(OBJECT). In addition, changing the units or
scale used by the view-allocated "dc" is forbidden. This prevents "magnifying glass” and "pan in or out”
effects from being used with a textView.

#ifndef TXTVIEW INCLUDED

#define TXTVIEW INCLUDED $Revision: 1.214 3§

#ifndef TXTDATA INCLUDED
#include <txtData.h> // For TEXT_ INDEX
#endif

TXTVIEW.H
Message Arguments

Types and Constants

typedef OBJECT TEXT VIEW;
P Message Arguments

% Text View Style
The prefix "TV" indicates that an identifier is related to "TextView."

The prefix "tvs" indicates that an identifier is related to "text view style."

typedef struct TV_STYLE {
Ule flags; // One of the values below
S8 magnification; // when tvsFormatForPrint is not on, this
// value (in points) is added to the
// character font sizes.
U8 showSpecial; // 0: show no special characters.
// 1: undefined -- do not use.
// 2: undefined -- do not use.
// 3: show all special characters.
// (6 spare bits)
OBJECT printer; // Not implemented. Should be null.
} TV_STYLE, *P_TV_STYLE;

Use these flags in the flags field of TV_STYLE:

tvsEmbedOnlyComponents can only embed components. Cannot embed apps
tvsEmbedOnlyIPs can only embed subclasses of clsIP. Can embed no other objects.
tvsFormatForPrinter printer preview. style.magnification is ignored.

tvsQuietWarning don’t display warning notes to user

tvsQuietError don'’t display error notes to user

tvsQuiet both tvsQuietWarning and tvsQuietError

tvsReadOnlyChars characters are read-only; user cannot add, remove or replace characters.
tvsReadOnlyAttrs attributes are read-only; user cannot change any attribute information.
tvsReadOnly both tvsReadOnlyChars and tvsReadOnlyAttrs

tvsWordWrap break display line by wrapping words that don’t fit at the right edge of the view.
#define tvsEmbedOnlyComponents flag0

#define tvsEmbedOnlyIPs (tvsEmbedOnlyComponents|flagl)

#define tvsFormatForPrinter flag2

#define tvsQuietWarning flag3

#define tvsQuietError flag4

#define tvsQuiet (tvsQuietWarning|tvsQuietError)

#define tvsReadOnlyChars flag5

#define tvsReadOnlyAttrs flag6

#define tvsReadOnly (tvsReadOnlyChars|tvsReadOnlyAttrs)

#define tvsWordWrap flag?

#define tvsSparel flag8 // Reserved
#define tvsSpare2 flag9 // Reserved
#define tvsSpare3 (flagl0|flagll|flagi2|flagl3) // Reserved
#define tvsSpare4 flagl4 // Reserved

#define tvsSpare5 flagl5 i // Reserved

6 / TEXT

34 PENPOINT API REFERENCE
Part 6 / Text

¥ Embedding

TV_EMBED_METRICS describes where and how to embed an object. The client either specifies the object
to embed, or sets the embedded field to Nil and lets the text view create a new object based on the flags
field. In the latter case, the UID of the newly created object is passed back in the embedded field.

typedef struct TV_EMBED METRICS {

TEXT_INDEX pos; // In: embedded object is inserted
// just before this position.
Ulé flags; // One of the values below
OBJECT embedded; // In-Out: the UID of the embedded object

} TV_EMBED METRICS, *P_TV_EMBED METRICS;
Use these in the flags field of a TV_EMBED_METRICS.

#define tvEmbedAnnotate flag0 // Not implemented
#define tvEmbedFloat flagl // Make the embeddee floating
#define tvEmbedReplace flag2 // The IP's contents replace the

// character following the IP.

Use this in the flags field of a TV_EMBED_METRICS.

t#define tvEmbedAddMargin flags // Leave small between previous line
// and the IP.

Use these in the flags field of a TV_EMBED_METRICS when using the struct as the pArgs to

msgTextViewAddIP.

#define tvEmbedAtEnd flag8 // IP should be last char of data.
#define tvEmbedPara flag9 // IP is a paragraph pad

t#define tvEmbedOneChar flagl0 // IP is only 1-char

#define tvEmbedPreload flagll // preload the selection into the IP

#define tvEmbedDisplayType (flagl3|flagld4|flagl5) // Obsolete.

*
% Resolution
The prefix "tvr" indicates that an identifier is related to "text view resolve.”

The values for the xRegion and yRegion fields of a TV_RESOLVE struct are illustrated here. The values
are of the form (xRegion, yRegion).

| |
| |
Y e
I |
| Line’s ink |
(-1,0) | (0,0) I (1,0)
| |
.._._+ ______________ +__._
I I
(-1,-1) | (0,-1) I (1,-1)
| |

TXTVIEW.H 35
Message Arguments

The fields of this structure are described in more detail in the comments for msglextViewResolveXY. X
=
typedef struct TV_RESOLVE { ~
XY32 xy; // In:Out: Units are LWC ©
Ul6 flags; // One of the values below
TEXT _INDEX pos; // Out: Pos of char containing xy, or
// maxTEXT INDEX if no such char
TEXT_INDEX lineStart; // Out: Pos of first char on line

// containing xy, or maxTEXT INDEX
// if no line contains xy.

S8 xRegion; // Out: Region x was in. See diagram.
S8 yRegion; // Out: Region y was in. See diagram.
TEXT INDEX selects; // Out: Pos of char "selected" by xy
XY32 offset; // Out: Offset to prev/next char’s ink
P UNKNOWN spares[4]; // Reserved.

} TV_RESOLVE, *P_TV_RESOLVE;

Use these flags in the flags field of TV_RESOLVE. Note that they are not completely orthogonal; in
particular, only one of [tvrSelFirst, tvrSelLPO and tvrBalance] should be enabled at once, similarly for
[tvtPrevChar and tveNextChar].

tvrSelFirst causes TV_RESOLVE.selects to be <= TV_RESOLVE.pos (i.e., the "selected” character is at or
before the character "hit" by TV_RESOLVE.xy.)

tvrSelLPO causes TV_RESOLVE.selects to be >= TV_RESOLVE.pos (i.e., the "selected” character is after
the character "hit" by TV_RESOLVE.xy, unless the line contains only one character in which case
TV_RESOLVE.selects == TV_RESOLVE.pos,)

tvrBalance has the effect of tvrSelFirst or tvtSelLPO, depending on which edge of the character "hit"
by TV_RESOLVE.xy is closest to TV_RESOLVE.xy.x.

tvrSelWord causes the "selection” behavior specified by any of the previous three flags to occur for the
"word" containing the character "hit" by TV_RESOLVE.xy.x.

tvrPrevChar normally TV_RESOLVE.offset.x is 0 upon return. Enabling tvrPrevChar causes
TV_RESOLVE.offset.x to contain the amount that TV_RESOLVE.xy.x exceeds the x coordinate of the
lower-left corner of the character specified by TV_RESOLVE.pos (i.e., the distance past the previous
character’s right edge).

tvtNextChar normally TV_RESOLVE.offset.x is O upon return. Enabling tveNextChar causes
TV_RESOLVE.offset.x to contain the amount that TV_RESOLVE.xy.x falls short of the x coordinate of
the lower-right corner of the character specified by TV_RESOLVE.pos (i.e., the distance before the
next character’s left edge).

tvriPastEOL normally a line contains only those character positions for the characters displayed on the
line. tviPastEOL permits TV_RESOLVE.selects to return with the TEXT_INDEX of the first character
of the following line if the specified TV_RESOLVE.xy.x is to the right of the last character in the line.

tviNLIfPastEOL when disabled, if TV_RESOLVE.xy.x is to the right of the last character in a line with a
hard line break (e.g., teNewLine or tetNewParagraph) and at least one other character,
TV_RESOLVE.selects specifies the character immediately before the hard line break. When enabled, if
tvrPastEOL is also enabled and would have caused TV_RESOLVE.selects to be after the hard line
break, tveNLIfPastEOL will override and cause TV_RESOLVE.selects to specify the break character

instead.
#define tvrSelFirst flag0
#define tvrSelLPO flagl
$define tvrSelWord flagb
#define tvrPrevChar flag2
#define tvrNextChar flag3
t#define tvrBalance flag4
#define tvrPastEOL flagé

#define tvrNLIfPastEOL flag7

36 PENPOINT API REFERENCE
Part 6 / Text

P Selection

¥s Scrolling

The prefix "tvs" indicates that an identifier is related to "text view select."

The fields of this structure are described in more detail in the comments for msgl'extViewSetSelection.

typedef struct TV_SELECT {

TEXT INDEX first; // 1poTEXT INDEX means "clear selection"
TEXT INDEX length; // 0 results in an 0 length selection
Ule flags; // either 0 or wsSynchRepaint (see win.h)
ATOM level; // Obsolete. Don’t use.

} TV_SELECT, *P_TV_SELECT;

The prefix "ts" indicates that an identifier is related to "text view scroll."

typedef struct TV_SCROLL {
TEXT_INDEX pos; // Position to scroll to
U32 flags; // One of the values below
} TV_SCROLL, *P_TV_SCROLL;

Use these in the flags field of a TV_SCROLL.

tsAlignAtTop scroll so that pArgs->pos is "near the top." See tsAlignEdge.
tsAlignAtBottom scroll so that pArgs->pos is "near the bottom." See tsAlignEdge.
tsAlignAtCenter scroll so that pArgs->pos is in the center displayed line

tsAlignEdge If set, and tsAlignAtTop or tsAlignAtBottom is set, this flag forces the line containing
pArgs->pos to be the exact edge. If this flag is off, and tsAlignA¢T'op tsAlignAtBottom is sct, the
textView tries to leave an extra line or two between the line containing pArgs->pos and the view’s
edge.

tsIffInvisible If set, the textView scrolls only if pArgs->pos is not already visible. If not set, the

textView scrolls even if pArgs->pos is visible.

textNoScrollNotify By default, the scrollbar(s) for the view are notified (via 2 msgWinSend of
msgScrollbarUpdate) that they should update after a msgTextViewScroll. If this flag is set, the

notification is not sent.

#define tsAlignAtTop 0L
#define tsAlignAtBottom 1L
#define tsAlignAtCenter 2L
#define tsAlignEdge ((U32) flag2)
#define tsIfflnvisible ((U32) flag3l)

#define textNoScrollNotify ((U32)£flagl5)

P Messages Defined by Other Classes

Comments

msgNewDefaults

Initializes the NEW structure.
Takes P_TV_NEW, returns STATUS. Category: class message.

Zeros out pNew->tv and sets:

tv.style.flags
tv.flags

tvsWordWrap;
tvFillWithIP;

TXTVIEW.H 37
Messages Defined by Other Classes

win. flags.style |= wsGrowBottom | wsSendFile | ">E
wsSendGeometry | wsCaptureGeometry; =

~

o

win.flags.style &= ~(wsSendLayout | wsCapturelayout);

win.flags.input |= inputMoveDown | inputMoveDelta |
inputHoldTimeout | inputOutProx |
inputTip | inputEnter | inputExit;

true;

tagTextView;

view.createDataObject
gWin.helpld

Comments

msgNew
Creates a new instance of clsTextView.
Takes P_TV_NEW, returns STATUS. Category: class message.

If pArgs->view.createDataObject is true, then the textView creates a Text data object (clsText; see
txtdata.h) and sets the view’s data object If pArgs->tv.dc is NULL the textView creates a DC for its
exclusive use.

Comments

msgGWinXList
Defined in gwin.h.

Takes P_XLIST, returns STATUS.

In response to this message, a textView typically performs some editing operation on its associated data
object. A textView can process both "vanilla" xlists as described in xlist.h or text-specific xlists as
xxlist.h.

Here’s how a textView responds to each xlist element:

xtBounds remembers the bounds of a gesture element

xtGesture processes the gesture

xtText inserts the text

xtObject embeds the object

xtCharAttrs modifies the character attributes of the specified characters
xtParaAttrs modifies the attributes of the specified paragraphs

xtTabs modifies the tabs of the specified paragraphs

xtCharPos sets the insertion point for text to the specified character position

Message
Arguments

Comments

msgTextViewAddIP

Adds an insertion pad to the textView.

Takes P_TV_EMBED_METRICS, returns STATUS.

#define msgTextViewAddIP TVMakeMsg (0)
typedef struct TV_EMBED METRICS {
TEXT_ INDEX pos; // In: embedded object is inserted
// just before this position.
Ul6 flags; // One of the values below
OBJECT embedded; // In-Out: the UID of the embedded object

} TV_EMBED METRICS, *P TV EMBED METRICS;
The client must set all of the fields of pArgs as described in the discussion of TV_EMBED_METRICS.

38

PENPOINT APl REFERENCE
Part 6 / Text

Conunents

Return Value

msgTextViewCheck

A textView performs a self-consistency check.

Takes P_UNKNOWN, returns STATUS.
#define msgTextViewCheck TVMakeMsg (5)

This message is only available in the debugging version of text.dll. The only currently defined value for
PArgs is zero.

stsOK no problems detected

< stsOK problems detected

msgTextViewEmbed

Embeds an object in the textView. Makes associated changes in text data.

Takes P_TV_EMBED_METRICS, returns STATUS.

#define msgTextViewEmbed TVMakeMsg (1)
Message typedef struct TV EMBED METRICS {
Arguments TEXT_INDEX pos; // In: embedded object is inserted
// just before this position.
Ulé flags; // One of the values below
OBJECT embedded; // In-Out: the UID of the embedded object
} TV_EMBED METRICS, *P_TV_EMBED METRICS;
Comments The client must set all of the fields of pArgs as described in the discussion of TV_EMBED_METRICS.
msgTextViewGetEmbedMetrics
Passes back the textView-specific metrics for an embedded object.
Takes P_TV_EMBED_METRICS, returns STATUS.
#define msgTextViewGetEmbedMetrics TVMakeMsg (2)
Meassage typedef struct TV_EMBED METRICS {
Arguments TEXT INDEX pos; // In: embedded object is inserted
// just before this position.
Ul6 flags; // One of the values below
OBJECT embedded; // In-Out: the UID of the embedded object
} TV_EMBED METRICS, *P_TV_EMBED METRICS;
Comments The client need only fill in pArgs->embedded.
msgTextViewRepair
Forces a delayed paint operation to take place immediately.
Takes pNull, returns stsOK.
#define msgTextViewRepair TVMakeMsg (3)
Comments

Use with caution, as overuse of this message significantly degrades performance.

msgTextViewResolveXY

Given an point in LIWC space, passes back the character at (or near) the point.
Takes P_TV_RESOLVE, returns STATUS.

#define msgTextViewResolveXY TVMakeMsg (4)

Messoage
Arguments

Comments

Return Value

TXTVIEW.H 39
Messages Defined by Other Classes

typedef struct TV _RESOLVE {

XY32 XYi // In:Out: Units are LWC

Ulé flags; // One of the values below

TEXT_INDEX pos; // Out: Pos of char containing xy, or
// maxTEXT INDEX if no such char

TEXT_INDEX lineStart; // Out: Pos of first char on line

// containing Xy, or maxTEXT INDEX
// if no line contains xy.

S8 xRegion; // Out: Region x was in. See diagram.
S8 yRegion; // Out: Region y was in. See diagram.
TEXT_INDEX selects; // Out: Pos of char "selected" by xy
XY32 offset; // Out: Offset to prev/next char’s ink
P_UNKNOWN spares[4]; // Reserved.

} TV_RESOLVE, *P_TV_RESOLVE;

pArgs->flags control exactly which character is "selected”, and how much information is provided by the
message.

Clients can also use this message to "reverse resolve” as follows. If both pArgs->xy.x and pArgs->xy.y are
maxS32, then the textView sets pArgs->xy to the coordinates of the lower left corner of the character at
pArgs->pos.

Warning: The response to this message always updates pArgs->xy to reflect information about the line
either containing (or near) the original xy (or pos).

"IWC" is short for Local Window Coordinates. See win.h for more information.
stsBadParam if no line’s y extents include pArgs->xy.y

stsNoMatch if a containing line exists but it has no character under pArgs->xy.x; of if reverse resolve of
a character not contained in any display line

msgTextViewScroll

Repositions displayed text within the textView.

Takes P_TV_SCROLL, returns stsOK.

#define msgTextViewScroll TVMakeMsg (6)
Messuge typedef struct TV_SCROLL {
Arguments TEXT INDEX pos; // Position to scroll to
U32 flags; // One of the values below
} TV_SCROLL, *P_TV_SCROLL;
Comments The client must set the fields of pArgs as described in the discussion of TV_SCROLL.
msgTextViewGetStyle
Passes back a textView’s style.
Takes P_TV_STYLE, returns stsOK.
#define msgTextViewGetStyle TVMakeMsg (8)
Message typedef struct TV_STYLE {
Arguments Ulé6 flags; // One of the values below
S8 magnification; // when tvsFormatForPrint is not on, this

// value (in points) is added to the
// character font sizes.

of:] showSpecial; // 0: show no special characters.
// 1: undefined -- do not use.
// 2: undefined -- do not use.
// 3: show all special characters.
// (6 spare bits)

OBJECT printer; // Not implemented. Should be null.

} TV_STYLE, *P TV STYLE;

6 / TEXT

40 PENPOINT APl REFERENCE
Part 6 / Text

msglextViewSetSelection

Selects one or more characters displayed by the textView.
Takes P_TV_SELECT, returns stsOK.

#define msgTextViewSetSelection TVMakeMsg (9)

Message typedef struct TV_SELECT {

Arguments TEXT _INDEX first; // 1poTEXT INDEX means "clear selection”
TEXT_INDEX length; // 0 results in an 0 length selection
Ulé flags; // either 0 or wsSynchRepaint (see win.h)
ATOM level; // Obsolete. Don’t use.

} TV_SELECT, *P_TV_SELECT;
Comments The fields of pArgs are used as follows:
first The first character to select. The value IpoTEXT_INDEX means that cause the selection to be

cleared.
length Number of characters to select. The value 0 results in a zero-length I-Bean selection.

flags if this field is wsSynchRepaint (defined in win.h) the textView repaint immediately. Otherwise
this field must be zero.

While handling this message, the textView becomes the selection owner unless pArgs->first is
lpoTEXT _INDEX, in which case the text view ensures that it is NOT the selection owner.

msgTextViewSetStyle

Sets a textView’s style.

Takes P_TV_STYLE, returns stsOK.

#define msgTextViewSetStyle TVMakeMsg (10)
Message typedef struct TV_STYLE {
Arguments Ulé6 flags; // One of the values below
S8 magnification; // when tvsFormatForPrint is not on, this

// value (in points) is added to the
// character font sizes.

U8 showSpecial; // 0: show no special characters.
// 1: undefined -- do not use.
// 2: undefined -- do not use.
// 3: show all special characters.
// (6 spare bits)

OBJECT printer; // Not implemented. Should be null.

} TV_STYLE, *P TV STYLE;

Comments pArgs->printer should be set to Nil(OBJECT).

Definitions for msgNew

#ifndef NO_NEW ’
tifndef txtViewNewFields

#ifndef VI EW_INCLUDED
#include <view.h>
#endif

See comment with msgNew and msgNewDefaults for more information.

typedef struct TV_NEW ONLY {

Ule flags; // One of the values below
OBJECT dc;
TV_STYLE style;

} TV_NEW ONLY, *P_TV_NEW _ONLY;

TXTVIEW.H a1
Messages Defined by Other Classes

Use this in the flags field of a TV_ZNEW_ONLY.

#define tvFillWithIP flag0
#define txtViewNewFields \

viewNewFields \

TV_NEW_ONLY tv;
typedef struct TV_NEW {

txtViewNewFields

} TV_NEW, *P_TV NEW;

7 Utility Functions

Funchion Prototype

Comments

TextCreateT extScrollWin

Utility function that creates a textView (with a data object) placed inside a scroll window. (See swin.h.)

Returns STATUS.
STATUS EXPORTED

TextCreateTextScrollWin (
P_TV_NEW pNew,
P_OBJECT scrollWin); // Out:
#endif // txtViewNewFields
#endif // NO_NEW
Clients often need a "vanilla" textView inside a vanilla scrollWin. This function does just that. Clients
can modify the created objects after the creation if this function doesn’t do quite the right thing. Client

who need more control over the creation should probably create the objects manually.

The pNew parameter should be null or should point at an already initialized NEW struct. If it is null,
then the function creates a default instance of clsTextView.

Because the view is created with formatForPrinter FALSE, the scrollWin’s expandChildWidth is set to
true. This causes the scrollWin to manage the width of the textView.

Here’s a simplified indication of how the scrollWin is created:

ObjectCall (msgNewDefaults, clsScrollWin, &sn)
sn.scrollWin.clientWin = <the text view>
sn.scrollWin.style.vertScrollbar true;
sn.scrollWin.style.autoVertScrollbar false;
sn.scrollWin.style.expandChildWidth = true;

sn.scrollWin.style.expandChildHeight = true;
sn.scrollWin.style.contractChildWidth = true;
sn.scrollWin.style.contractChildHeight = true;

sn.scrollWin.style.vertClient = swClientWin;

sn.scrollWin.style.horizClient = swClientScrollWin;
sn.win.flags.input |= inputHoldTimeout;
sn.scrollWin.style. forward = swForwardGesture;

if (<creating on screen>) {
sn.border.style.leftMargin = bsMarginMedium;
sn.border.style.rightMargin = bsMarginMedium;
sn.border. style.topMargin = bsMarginMedium;

} else {
sn.border.style.leftMargin = bsMarginNone;
sn.border.style.rightMargin = bsMarginNone;
sn.border.style.topMargin = bsMarginNone;

}

ObjectCall (msgNew, clsScrollWin, &sn);

*scrollWin = sn.object.uid;

Warning: When printing, the scrollWin and textView are probably restored, not created anew.
Therefore the client needs to go in and set the scrollWin’s margins to 0.

6 / TEXT

42 PENPOINT API REFERENCE
Part 6 / Text

7 TextlP

typedef struct TEXTIP_METRICS {
Ulé flags; // Reserved.
} TEXTIP_METRICS, *P_TEXTIP METRICS,
TEXTIP NEW ONLY, *P_TEXTIP NEW ONLY;

msgNewDefaults

Initializes the NEW struct.

Takes P_TEXTIP_NEW, returns STATUS. Category: class message.

Comments In response to this message, clsTextIP does the following;
PArgs->win.flags.style |= wsSendGeometry | wsSendFile |
wsShrinkWrapHeight;
PArgs->ip.rows =5;
pPArgs->ip.lines =5;

If the user input pad style preference is Boxed:

pPArgs->ip.style.displayType ipsCharBox;
pArgs->ip.style.delayed =1;

If the user input pad style preference is Ruled:
pArgs->ip.style.displayType = ipsRuledLines;
If the user input pad style preference is Ruled AndBoxed:

pArgs->ip.style.displayType
PArgs->ip.style.ruledToBoxed

ipsRuledLines;
true;

msgNew
Creates a new instance of clsTextIP.

Takes P_TEXTIP_NEW;, returns STATUS. Category: class message.

msgTextIPGetMetrics

Passes back a textIP’s metrics.

Takes P_TEXTIP_METRICS, returns stsQOK.

#define msgTextIPGetMetrics MakeMsg(clsTextIP, 1)
Message typedef struct TEXTIP_METRICS {
Arguments ’ Ulé flags; // Reserved.

} TEXTIP METRICS, *P_TEXTIP METRICS,

TXTVIEW.H
TextIP

43

Arguments

Message
Arguments

msgTextIPSetMetrics
Sets a textIP’s metrics.
Takes P_TEXTIP_METRICS, returns stsOK.

#define msgTextIPSetMetrics
#ifndef NO_NEW
#ifndef textIPNewFields

MakeMsg (clsTextIP, 2)

#ifndef INSERT_INCLUDED
#include <insert.h>
#endif
#define textIPNewFields \
ipNewFields \
TEXTIP_NEW_ONLY textIP;

typedef struct TEXTIP NEW (
textIPNewFields
} TEXTIP_NEW, *P_TEXTIP_NEW;

#endif // textIPNewFields
#endif // NO_NEW

typedef struct TEXTIP METRICS {
Ul6 flags; // Reserved.
) TEXTIP_METRICS, *P_TEXTIP_METRICS,

6 / TEXT

" PENPOINT API REFERENCE / VOL 11

PART 6 / TEXT

TXTXLIST.H

This file contains the Text subsystem additions to xlist (see xlist.h).

A Text View (see xtView.h) gathers input directly from the user via

keyboard input delivered by msginputEvent, with Cls(pArgs->devCode) == Cls(clsKey);
low-level pen input also msglnputEvent, but Cls(clsPen);

gestures delivered by msgGWinXlist; and

insertion pads which provide data starting with msgIPDataAvailable.

The user input delivered to a Text View from an insertion pad is communicated via an xlist. As a result
of its processing of the xlist, the Text View modifies its associated data object. Each xlist moves through
the following stages: (1) it comes into being as a way for the hwx system to provide low-level
information about the user input to clsIP (see insert.h); (2) clIsIP packages the low-level information
into medium-level information which is self-sent; (3) finally, clsTextIP re-interprets this information
and packages it into high-level information which requires concepts specific to the Text subsystem.
Thus, an xlist from a TextIP (see xtView.h) can contain one or more elements of the following
specialized types. For each type, the constraint on the structure of the information pointed to by the
pData field of the XLIST_ELEMENT is listed.

xtCharAttrs pData points to an XLIST_CHAR_ATTRS;
xtParaAttrs pData points to an XLIST " PARA_ATTRS;

xtTabs pData points to an XLIST_TABS;

xtCharPos pData is a TEXT_INDEX (cast to a P_UNKNOWN).

The types themselves are defined as part of XTYPE in xlist.h; the data structures and their semantics are
defined below.

In general, an xlist is position-independent. However, the caller of msgGWinXlist often wants the
associated xlist to modify a Text View’s data object beginning at a particular character index; an element
of type xtCharPos allows the caller to specify such an index.

To make it easier to maintain the position-independent property of an xlist, Text Views recognize
maxTEXT_INDEX (see txtData.h) as having a special meaning when used as the value of the first field
of the pData in an xlist element of type xtCharAttrs, xtParaAttrs and xtT'abs (i.e., pData->first ==
maxTEXT_INDEX). If the pData->length is 0, a pData->first of maxTEXT_INDEX causes the xlist
processing code to remember the current index in the Text data object and to take no other action; if the
pData->length is non-zero, the pData->first of maxTEXT_INDEX causes the xlist processing code to
update pData->first with the previously remembered index. This allows the caller of msgGWinXlist to
generate an xlist with the following structure:

xtCharPos to start processing at a particular index;
xtText one or more times, to add characters;

xtCharAttrs with first of maxTEXT_INDEX, length of 0;

xtText one or more times, to add more characters;

PENPOINT API REFERENCE
Part 6 / Text

xtCharAttrs with first of maxTEXT_INDEX, length not 0, thereby setting the character attributes for
exactly the bracketed characters.

#ifndef TXTXLIST INCLUDED

#define TXTXLIST INCLUDED

#ifndef XLIST INCLUDED
#include <xlist.h>
#endif

#ifndef TXTDATA INCLUDED
#include <txtData.h>
#endif

Upon encountering an xlist element of type xtCharAttrs, a Text View does a msgT'extChangeAttrs to its
data object, making use of the fields of the P_XLIST_CHAR_ATTRS by mapping them to the
corresponding fields of TEXT_CHANGE_ATTRS as follows:

tag forced to atomChar
first copied from first
length copied from length
pNewMask st to &mask

pNewValues set to &attrs

typedef struct {
TEXT INDEX first;
TEXT INDEX length;
TA_CHAR MASK mask;
TA_CHAR ATTRS attrs;
} XLIST CHAR ATTRS, *P_XLIST CHAR ATTRS;
Upon encountering an xlist element of type xtParaAttrs, a Text View does a msgT'extChangeAttrs to its
data object, making use of the fields of the P_XLIST_PARA_ATTRS by mapping them to the

corresponding fields of TEXT_CHANGE_ATTRS as follows:
tag forced to atomPara

first copied from first

length copied from length

pNewMask set to &mask

pNewValues set to &attrs

typedef struct {
TEXT_ INDEX first;
TEXT_INDEX length;
TA_PARA MASK mask;
TA PARA ATTRS attrs;
} XLIST_PARA_ATTRS, *P_XLIST PARA ATTRS;
Upon encountering an xlist element of type xtT'abs, a Text View does a msgl'extChangeAttrs to its data
object, making use of the fields of the P_XLIST_TABS by mapping them to the corresponding fields of

TEXT_CHANGE_ATTRS as follows:
tag forced to atomParaTabs
first copied from first

length copied from length
pNewMask set to Nil()

pNewValues set to &tabs

typedef struct {
TEXT_INDEX first;
TEXT INDEX length;
TA _MANY TABS tabs;

} XLIST TABS, *P_XLIST_TABS;

TXTXLIST.H

a7

6 / TEXT

Part 7 /
File System

~ PENPOINT API REFERENCE / VOL Il

PART 7 / FILE SYSTEM

FILETYPE.H

This file defines common file types used for import and export between PenPoint and other operating
systems.

#ifndef FILETYPE INCLUDED
#define FILETYPE INCLUDED

#ifndef GO_INCLUDED
#include <go.h>
#endif

#ifndef UID_INCLUDED
#include <uid.h>
tendif

The following file types are common enough to merit a central registry. Contact GO Developer
Technical Support if you want to add a file type to the registry.

The file types are defined as tags; they are primarily intended to be stored as the value of the
fsAturFileéType file attribute. If a file is explicitly typed via this mechanism, applications can more easily
decide if they can import it.

#define fileTypeUndefined ((TAG) OL)

fileTypeASCII implies 8-bit bytes encoding the 7-bit ASCII set defined by ANSI X3.64. Any byte with
value greater than 0x7F will be interpreted in a manner dependent on the subsystem involved; e.g.
clsText (and thus the MiniText application) will assume the bytes encode IBM-PC Code Page 850.
#define fileTypeASCII MakeTag (clsFileHandle, 0)
fileTypeASCIISoftLineBreaks is similar to filéT'ypeASCII. The difference is that in a line that has no

explicit new line or carriage return, a space is transformed into a line feed near the 72nd character.

#define fileTypeASCIISoftLineBreaks MakeTag (clsFileHandle, 1)
fileTypeRTF implies Microsoft Corporation’s Rich Text Format (RTF).
#define fileTypeRTF MakeTag (clsFileHandle, 2)

fileTypeTIFF implies Aldus Corporation and Microsoft Corporation’s Tag Image File Format (TTFF).
#define fileTypeTIFF MakeTag (clsFileHandle, 3)
fileTypePicSeg implies Go Corporation’s Picture Segment format.

#define fileTypePicSeg MakeTag (clsFileHandle, 4)

PENPOINT APl REFERENCE / VOL II

PART 7 / FILE SYSTEM

This file contains the API for clsDirHandle and clsFileHandle. The functions described in this file are
contained in PENPOINT LIB.

clsFileSystem inherits from clsObject.
Provides file system support. theFileSystem is the only instance of clsFileSystem.
clsDirHandle inherits from clsObject.

Provides file system directory support. theBootVolume is a well known instance of clsDirHandle.
theSelectedVolume is a well known instance of clsDirHandle. theWorkingDir is a well known instance
of clsDirHandle.

clsFileHandle inherits from clsStream.

Provides file system file access support.

#ifndef FS_INCLUDED
#define FS_INCLUDED

¥» Debugging Flags
FileSystem Debugging Flag is ’$’, values are:
0001 Debug info when fs cache layer calls volume layer
0200 Breaks into debugger before asking to insert disk
20000 Display list of known volumes when prompting for unmounted disk

Include file dependencies for this include file

#ifndef GO_INCLUDED
#include <go.h>

$endif

#ifndef UID_INCLUDED
#include <uid.h>

#endif

#ifndef CLSMGR_INCLUDED
#include <clsmgr.h>
$endif

$ifndef UUID_INCLUDED
#include <uuid.h>
#endif

#ifndef STREAM_INCLUDED
#include <stream.h>
#endif

Common abbreviations, terms:
ES File System

Node A file or a directory
Dir A directory

54 PENPOINT APl REFERENCE
Part 7 / File System

Rules concerning the destination of file system messages:

All messages defined in this file are directed to their destination via ObjectCall, the file system does not
accept messages that are sent. All messages (with the exception of msgFSGetInstalledVolumes) of
cIsFileSystem can be "sent" to either a file or a dir object. Messages of clsDirHandle can only be "sent”
to directory objects. Messages of clsFileHandle can only be "sent" to file objects.

Common #defines and typedefs

Defines

#define fsMaxPathLength 254 // Max path length
// (Excluding null terminator)
#define fsPathBuflength (fsMaxPathLength+l) // Buffer size for max path

#define fsSeparator "\\/ // Pathname separator

#define fsEscapeChar ’|' // Escape char (invalid in' paths)
#define fsUniqueSeparator o // Char for unique name postfix
#define fsMaxHandles 255 // Max handles on a single node
$define fsMaxUnique 255 // Max tries to make name unique
#define fsMaxReadWrite , 0x40000000 // Max size for single read/write
#define fsMaxNestingLevel 20 // Max nesting for recursive ops

> FS Attribute Intrinsics

These are used to build file/directory attribute labels or to get component pieces from an attribute label.

A dient can define their own attribute using one of the FSMakeXXXAttr intrinsics, specifying a class
and a tag. The attribute type will allow for storage of a 32 bit value (Fix32), a 64 bit value (Fix64), a null
terminated string of any length up to 32K (Str), or a variable length value up to 32K (Var). The
messages msgFSGetAttr, msgFSSetAttr, msgFSReadDir, msgFSReadDirFull and msgFSTraverse use
file system attributes to represent the attribute label.

#define fsFixAttr 0
#define fsFix64Attr 1
#define fsVarAttr 2
#define fsStrAttr 3
#define fsMaxAttrLength 255
f#define FSMakeAttr(cls,t, f) \

MakeTagWithFlags (cls, t,)
#define FSMakeFix32Attr(cls,t) FSMakeAttr(cls,t,fsFixAttr)
#define FSMakeFix64Attr(cls,t) FSMakeAttr(cls,t,fsFix64Attr)
#define FSMakeVarAttr(cls,t) FSMakeAttr (cls, t, fsVarAttr)
#define FSMakeStrAttr(cls,t) FSMakeAttr (cls,t, fsStrAttr)

#define FSAttr(attr) . TagNum(attr)

#define FSAttrCls (attr) ClsNum(attr)

#define FSAttrIsFix32(attr) (TagFlags (attr) == fsFixAttr)
#define FSAttrIsFix64 (attr) (TagFlags (attr) == fsFix64Attr)
#define FSAttrIsVar(attr) (TagFlags (attr) == fsVarAttr)

#define FSAttrIsStr(attr) (TagFlags (attr) == fsStrAttr)

¥ File System Attributes

These are the predefined attributes managed by the file system.

#define fsNullAttrLabel FSMakeFix32Attr (objNull, 0)
#define fsAttrName FSMakeStrAttr(clsFileSystem,0)
#define fsAttrFlags FSMakeFix32Attr (clsFileSystem, 0)
#define fsAttrDateCreated FSMakeFix32Attr (clsFileSystem, 2)
#define fsAttrDateModified FSMakeFix32Attr (clsFileSystem, 3)

#define fsAttrFileSize FSMakeFix32Attr (clsFileSystem, 4)

FS.H 55
Common #defines and typedefs

#define fsAttrDirIndex
#define fsAttrOldDirIndex

#define fsAttrFileType

FSMakeFix64Attr{(clsDirHandle, 0)
FSMakeFix64Attr (clsDirHandle, 1)

FSMakeFix32Attr (clsFileHandle, 0)
See msgFSGetAttr for an explanation when to use these constants.

#define fsAllocAttrLabelsBuffer ((P_FS ATTR LABEL)maxU32)
#define fsAllocAttrValuesBuffer ((P_UNKNOWN)maxU32)
#define fsAllocAttrSizesBuffer ((P_FS_ATTR SIZE)maxU032)

7 / FILE SYSTEM

% Status Codes
Common return values:

There are a few status return values that are common to either all messages or to a group of messages
(i.e. messages that try to change the volume).

stsFSHandlelnvalid The dir/file object refers to a node that has been previously deleted.
stsFSVolDisconnected The volume is not connected.

stsFSVolFull The message cannot complete, due to insufficient space on the volume.
stsFSVolReadOnly The message cannot complete, because the volume is write protected.

Error Status Codes

#define stsFSVolDisconnected MakeStatus(clsFileSystem,0)
#define stsFSVolReadOnly MakeStatus (clsFileSystem, 1)
#define stsFSVolFull MakeStatus (clsFileSystem, 2)
#define stsFSNodeNotFound MakeStatus (clsFileSystem, 3)
#define stsFSNodeReadOnly MakeStatus (clsFileSystem, 4)
#define stsFSAccessDenied MakeStatus (clsFileSystem, 5)
#define stsFSCircularMoveCopy MakeStatus(clsFileSystem, 6)
#define stsFSVolBusy MakeStatus(clsFileSystem, 7)
#define stsFSNodeBusy MakeStatus (clsFileSystem, 8)
#define stsFSBadPath MakeStatus (clsFileSystem, 9)
#define stsFSUniqueFailed MakeStatus (clsFileSystem, 10)
#define stsFSDirFull MakeStatus (clsFileSystem, 11)
#define stsFSNodeExists MakeStatus (clsFileSystem,12)
#define stsFSNotDir MakeStatus (clsFileSystem, 13)
#define stsFSNotFile MakeStatus (clsFileSystem, 14)
#define stsFSReadOnlyAttr MakeStatus (clsFileSystem, 15)
#define stsFSBufTooSmall MakeStatus (clsFileSystem, 16)
#define stsFSNestingTooDeep MakeStatus (clsFileSystem, 17)
#define stsFSNoParent MakeStatus (clsFileSystem, 18)
#define stsFSUnchangeable MakeStatus (clsFileSystem, 19)
#define stsFSNotAncestor MakeStatus (clsFileSystem, 20)
#define stsFSDirPositionLost MakeStatus(clsFileSystem,21)
#define stsFSHandleInvalid MakeStatus (clsFileSystem, 22)
#define stsFSDifferent MakeStatus (clsFileSystem, 23)
#define stsFSTooManyHandles MakeStatus (clsFileSystem, 24)
#define stsFSDirIndexExists MakeStatus (clsFileSystem, 25)
#define stsFSDirIndexNotFound MakeStatus (clsFileSystem,26)
#define stsFSVolCorrupt MakeStatus (clsFileSystem, 27)

Informational Status Codes

#define

stsFSAttrBufTooSmall

MakeWarning(clsFileSystem, 1)

% Types

PENPOINT API REFERENCE
Part 7 / File System

Locators are structures used to describe the location of a file or dir node. There are two types of locators:
explicit and implicit. An explicit locator is defined with FS_LOCATOR which specifies both the starting
node (uid) and the path relative to the starting node (pPath). An implicit locator is made up of a
starting node (the object that receives a message) and the path relative to the starting node (pPath).
msgFSMove is a good example of a message that contains both types of locators. The receiver of
msgFSMove and move.pSourcePath defines the implicit location of the source of the move.
move.destLocator defines the explicit location of the dest of the move.

The uid field of a locator must be filled in and must be non-null. If no other choice can be decided
upon, theWorkingDir may be a good one. The uid field does not always have to be a dir handle object.
The uid can be a file handle object if the pPath field points to a path that begins with .. (parent), \ (root)
or \\ (fully specified path including volume name).

The path field of locators (explicit and implicit) are relative to the node defined by the uid (or object
receiving the message) unless the path begins with a \ (root relative) or \\ (fully specified path).
typedef struct FS_LOCATOR {

OBJECT uid;

P_STRING pPath; // Relative to node defined by uid
} FS_LOCATOR, * P_FS_LOCATOR; |
The file system interface never uses flat locators, but if it is more convenient to hold the entirety of the
locator in a linear structure using flat locators.
typedef struct FS_FLAT LOCATOR {

OBJECT uid;

U8 path[fsPathBufLength];
} FS_FLAT LOCATOR, * P_FS_FLAT LOCATOR;

Enumlé6 (FS_NODE FLAGS) {

fsNodeReadOnly = flag0, // Node is read-only.

fsNodeHidden = flagl, // System hidden file.

fsNodeDir = flag4, // Directory or file?
fsNodeGoFormat = flag8, // Node has non-native attrs
fsNodePenPointHidden = flag9 // Should this node be hidden from

// the user in Penpoint browsers?
}i
#define validFSNodeFlags \
(fsNodeReadOnly | fsNodeHidden | fsNodeDir | \
fsNodeGoFormat | fsNodePenPointHidden)

#define readOnlyFSFlags (fsNodeDir | fsNodeGoFormat)

FS_NODE_FLAGS_ATTR is used to set or get the flags attribute stored with a file/dir node. When setting
the flags, only those flags with a one in the mask word will be affected. When getting flags, all flags are
returned and mask is set to all ones (as a convenience for set after get).

typedef struct FS_NODE FLAGS ATTR {

FS NODE_FLAGS flags;

Ulé6 mask;
} FS_NODE FLAGS ATTR, * P_FS NODE_FLAGS_ATTR;
typedef U32 FS_DATE TIME, * P_FS DATE TIME;
typedef U32 FS_FILE_SIZE, * P_FS FILE SIZE;
typedef U16 FS_ATTR SIZE, * P_FS ATTR SIZE;
typedef U32 FS_ATTR LABEL, * P_FS ATTR LABEL;
Enuml6 (FS_VOL TYPE) {

fsAnyVolType =0, // Match any vol type for msgNew

£sVolTypeMemory =0,

fsVolTypeDisk =1,

f£sVolTypeRemote =2
}i

Enuml6 (FS_VOL_FLAGS) {
fsVolReadOnly
fsVolConnected
fsVolRemovableMedia
fsVolEjectableMedia
fsVolDirsIndexable
fsVolFormattable
fsVolDuplicatable

}i

FS.H
Common #defines and typedefs

= flag0,
flagl,
flag2,
flag3,
flag4,
flags,
= flagé6

This information is returned by msgFSGetVolMetrics.

typedef struct FS_VOL_HEADER {

FS_VOL_TYPE
FS_VOL FLAGS
OBJECT
OBJECT

U32

U32

Ul6

U32

U32

U32

U8

U8

CLASS

U32
RES_ID
U32
U32
U32
U32

type;

flags;

rootDir;

volObj;

serialNum;

created;

optimalSize;

totalBytes;

freeBytes;

commSpeed;

pName [nameBufLength];

alignSpare; // Word align following values

browserClass; // Class of browser to use for volume
// If null, use system default

nativeFs;

iconReslId;

sparel;

spare?2;

spare3;

spareé;

} FS_VOL_HEADER, * P_FS VOL HEADER;

typedef FS_VOL_HEADER

Enuml6 (FS_EXIST) {
// Lower byte: what to

FS_VOL METRICS, * P_FS VOL METRICS;

do if the node exists

fsExistOpen =0,
fsExistGenError 1,
fsExistGenUnique =2,
fsExistTruncate = 3,

// Upper byte: what to do if the node doesn’t exist
fsNoExistCreate = MakeU16(0, 0),
fsNoExistGenError = MakeUl6 (0, 1),
fsNoExistCreateUnique = MakeU1l6(0, 2),

// Default setting
fsExistDefault
b

= fsExistOpen | fsNoExistCreate

Enuml6 (FS_MOVE COPY EXIST) {
// What to do if the destination node exists

fsMoveCopyExistOverwrite =0,
fsMoveCopyExistGenError =1,
fsMoveCopyExistGenUnique =2,
fsMoveCopyExistDelete = 3,

// Default setting

fsMoveCopyExistDefault = fsMoveCopyExistGenError

}i

57

7 / FILE SYSTEM

PENPOINT API REFERENCE
Part 7 / File System

Enuml6 (FS_DIR_NEW_MODE) ({
// Delete directory at handle free time?

fsTempDir = flag0,
// Is handle changeable?
fsUnchangeable = flagl,
// Find node via its dir index?
fsUseDirIndex = flag2,
// Disable prompts (insert disk, write protected, etc)
// fsDisablePrompts = flag4, (Defined in FS_FILE NEW MODE below)
// System owned dir handle - ring 0 only
fsSystemDir = flag7,

// Default setting
fsDirNewDefaultMode = 0 // permanent, changeable directory
bi
Enuml6 (FS_FILE_NEW MODE) {
// Lower byte: flags
// Delete file at handle free time?

fsTempFile = flag0,

// Read/write intentions for this handle
fsReadOnly = flag2,

// Memory mapped files accessibility
fsSharedMemoryMap = flag3,

// Disable prompts (insert disk, write protected, etc)
fsDisablePrompts = flag4,

// System owned file handle - ring 0 only
fsSystemFile = flag7,

// Upper byte: exclusivity requirements for other handles
fsNoExclusivity = MakeUl6(0, 0),
fsDenyWriters = MakeUl6(0, 1),
fsExclusiveOnly = MakeUl6 (0, 2),

// Default setting
fsFileNewDefaultMode= 0 // perm, read/write (noExclusivity)
}i
Enuml6 (FS_GET PATH_MODE) {
// Get path relative to root, dir passed in, just name or vol and path

fsGetPathRoot = 0,
fsGetPathRelative =1,
fsGetPathName =2,
fsGetPathAbsolute = 3,

// Default setting
fsGetPathDefaultMode= fsGetPathRoot
}i
Enuml6 (FS_MOVE_COPY MODE) {
// Use destination as container.

fsMoveCopyIntoDest = flag0,
// Check but don’t move or copy.
fsMoveCopyVerifyOnly = flagl,
// Does source have live dir indexes.
fsMoveCopySourceArchived = flag2,
// Does dest have live dir indexes.
fsMoveCopyArchiveDest = flag3,
// Default setting
fsMoveCopyDefaultMode = 0

}i
Enuml6 (FS_TRAVERSE MODE) {
// Call back on files?
fsCallBackOnFiles = flag0,
// Call back before stepping into directory?
fsCallBackPreDir = flagl,
// Call back after stepping into directory?
fsCallBackPostDir = flag2,
// Default setting
fsTraverseDefaultMode= fsCallBackOnFiles | fsCallBackPreDir
}i

FS.H 59

Class File System Messages understood by dirHandles and fileHandles

Enuml6 (FS_SEEK MODE) {
// Relative to beginning of file, end of file, or Current Byte Position

fsSeekBeginning =0,
fsSeekEnd =1,
fsSeekCurrent = 2,
// Default setting
fsSeekDefaultMode = fsSeekBeginning
}i
typedef OBJECT DIR HANDLE, * P_DIR HANDLE;
typedef OBJECT FILE HANDLE, * P_FILE_HANDLE;

Class FileSystem Messages

Comments

See Also

msgFSGetlnstalledVolumes

Returns list of all installed volumes.

Takes P_LIST, returns STATUS.

#define msgFSGetInstalledVolumes MakeMsg (clsFileSystem, 21)

This message can only be directed to the well known class theFileSystem. Each object in the list is a
directory handle object that references the root node of the volume. The list is passed back and is not
used as an input parameter. The caller must free the returned list when finished using it, but do not free
any of the objects in the list.

msgFSEjectMedia to eject media from a floppy drive.
msgFSGetVolMetrics to get more info about the volume

msgFSSame to compare root dir to a well-known dir handle

Class File System Messages understood by

dirHandles and fileHandles

Arguments

msgNew
Creates a directory or file handle object on a new or existing dir/file.

Takes P_FS_NEW, returns STATUS. Category: class message.

typedef struct FS_NEW ONLY {

FS_LOCATOR locator; // location of the target directory
FS_VOL_TYPE volType; // hint for uninstalled fullpath vols
UuID dirIndex; // used with fsUseDirIndex mode only
Ule mode; // options for opening file/dir handle
FS_EXIST exist; // action to take if exists or doesn’'t
P_UNKNOWN pVolSpecific; // volume specific information
_ // Note: this is an in only parm

U32 sparel; // for future use
U32 spare2; // for future use
BOOLEAN alreadyExisted; // Out: indicates if already exists

} FS_NEW ONLY, * P _FS NEW ONLY;

#define fsNewFields \
objectNewFields \
FS_NEW_ONLY fs;

typedef struct FS_NEW {
fsNewFields

} FS_NEW, * P_FS_NEW;

7 / FILE SYSTEM

60

Comments

Return Volue

PENPOINT APl REFERENCE
Part 7 / File System

The fields you commonly set are:

pNew->fs.locator Location of the node

pNew->fs.mode Options for opening file/dir handle
pNew->fs.exist Action to take if the file/dir exists or doesn’t exist

Accessing a directory using a dirIndex: Three pieces of information must be provided to open a
directory by dirIndex. The fsUseDirIndex flag must be set in new.fs.mode, a valid dirIndex must be
supplied in new.fs.dirIndex and the volume that the directory resides on must be identified. This can be
done by specifying some location on the.volume by filling in new.fs.locator. Either the uid can point to
the root or any other handle on the volume or the path can be an absolute path that identifies the
volume. See msgFSSetAttr on how to store a dir index with a directory so it can later be accessed by its
dir index.

Use FS_DIR_NEW_MODE for mode if new is for dir handle. Use FS_FILE_ NEW_MODE for mode if new is
for file handle.

stsBadParam locator.uid is not a valid object.

stsFSAccessDenied Access cannot be granted because node is locked for exclusive access, read only
access or write only access.

stsFSBadPath locator.pPath is malformed or a specified dir node is in fact a file.

stsFSDirFull There is no space in the dir for a new node.

stsFSDirIndexNotFound There is not a dirIndex for the dir node.

stsFSNodeBusy Node cannot be deleted/truncated because it is being access by another client.
stsFSNodeExists The requested node already exists.

stsFSNodeNotFound The root node does not exist.

stsFSNodeReadOnly Node cannot be deleted/truncated or read/write access has been denied because
the read only flag is set on the node.

stsFSNotDir A requested dir node already exists as a file.
stsESNotFile A requested file node already exists as a dir.
stsFSTooManyHandles There are already fsMaxHandles on this node.

stsFSUniqueFailed fsMaxUnique variants of the name already exist.

Swe Also FSNameValid
msgNewDefaults
Initializes the FS_NEW structure to default values.
Takes P_FS_NEW, returns STATUS. Category: class message.
Message typedef struct FS_NEW {
Arguments fsNewFields
} FS_NEW, * P_FS_NEW;
Comments Zeroes out pNew->fs and sets:

pNew->fs.locator.uid = theWorkingDir;
pNew->object.cap |= objCapCall;

FS.H 61
Class File System Messages understood by dirHandles and fileHandles

msgDestroy
Destroys a directory or file handle.

Takes OBJ_KEY, returns STATUS.

Comments This destroys the handle, NOT the actual node. An exception to this is if the fsTempFile/fsTempDir

flag was set in pNew->fs.mode when the handle was created.
Return Value stsFSNodeBusy Temporary node cannot be deleted because it is being access by another client.

stsFSNodeReadOnly Temporary node cannot be deleted because the read only flag is set on the node.

msgFSNull
Does nothing.
Takes void, returns STATUS.

$define msgFSNull MakeMsg (clsFileSystem, 20)
This message is used to time entering and exiting the file system.

msgFSGetVolMetrics

Returns metrics of the volume.

Takes P_FS_GET_VOL_METRICS, returns STATUS.

#define msgFSGetVolMetrics MakeMsg (clsFileSystem, 22)
Arguments typedef struct FS_GET VOL METRICS {
BOOLEAN updateInfo; // have volume recompute values?
FS_VOL_METRICS volMetrics; // Out: the volume’s metrics

} FS_GET VOL METRICS, * P_FS_GET VOL METRICS;

Return Value stsESVolDisconnected This will never be returned, even if the volume is disconnected. Instead test
fsVolConnected in volMetrics.flags.

You must set updatelnfo to TRUE if you want the volMetrics.freeBytes field or the fsVolConnected
flag of the volMetrics.flags field to be updated before returning the vol metrics. Setting updatelnfo to
FALSE will make this request faster, but these fields may not be correct.

msgFSSetVolName

Changes the name of a volume.
Takes P_STRING, returns STATUS.
#define msgFSSetVolName MakeMsg(clsFileSystem, 36)
Return Valve stsBadParam New vol name is invalid (checked by FSNameValid).
stsFSHandlelnvalid The dir/file object refers to a node that has been previously deleted.
stsFSVolDisconnected The volume is not connected.
stsFSVolReadOnly The new volume name cannot be set, because the volume is write protected.

See Also FSNameValid Mechanism to precheck validity of new volume name.

7 / FILE SYSTEM

62 PENPOINT API REFERENCE
Part 7 / File System

msgFSNodeExists

Tests the existence of a file or directory node.

Takes P_FS_NODE_EXISTS, returns STATUS.

#define msgFSNodeExists MakeMsg (clsFileSystem, 37)

Arguments typedef struct FS_NODE EXISTS {

P_STRING pPath; // path to node that may exist
BOOLEAN isDir; // Out: dir or file
} FS_NODE EXISTS, * P_FS NODE_EXISTS;

Comments The return parm isDir is useful in deciding whether the msgNew, to create a handle to the node, should
be sent to clsDirHandle or clsFileHandle. The parm pPath is relative to the object that receives this
message.

Return Value stsOK The node exists.

stsFSNodeNotFound The node does not exist.

msgFSGetHandleMode

Returns the "new" mode for the object’s fs handle.

Takes P_U16, returns STATUS.

#define msgFSGetHandleMode MakeMsg (clsFileSystem, 23)

Comments Directory handles interpret the P_U16 as a P_FS_FILE_ NEW_MODE. File handles interpret the P_U16 as a
P_FS_DIR_NEW_MODE.

msgFSSetHandleMode

Changes the "new" mode for the object’s fs handle.

Takes P_FS_SET_HANDLE_MODE, returns STATUS.

#define msgFSSetHandleMode MakeMsg (clsFileSystem, 24)
Arguments typedef struct FS_SET HANDLE MODE {
Ulé mode; // value of mode flags to change
Ule mask; // which mode flags are to change

} FS_SET HANDLE MODE, * P_FS SET HANDLE_ MODE;

Comments Directory handles interpret mode as a FS_FILE_NEW_MODE. File handles interpret mode as a
FS_DIR_NEW_MODE.

msgFSSame

Tests if another directory or file handle references the same node.

Takes OBJECT, returns STATUS.
#define msgFSSame MakeMsg (clsFileSystem, 25)

msgFSGetPath

Gets the path to (or name of) a directory or file handle node.

Takes P_FS_GET_PATH, returns STATUS.

#define msgFSGetPath MakeMsg (clsFileSystem, 26)

Arguments

Comments

Returmn Yalue

FS.H
Class File System Messages understood by dirHandles and fileHandles

typedef struct FS_GET PATH {

FS_GET_PATH MODE mode; // options for get path operation
DIR_HANDLE dir; // In-Out: rel dir or root dir
Ule bufLength; // length of pPathBuf

P_STRING pPathBuf; // Out: user buffer for path

} FS_GET_PATH, * P_FS_GET PATH;

If mode is fsGetPathRoot or fsGetPathAbsolute the root dir handle is passed back in dir. If mode is
fsGetPathRelative the path passed back begins at the dir represent by dir and terminates at the node
represented by the recipient of this client.

stsFSBufT'ooSmall User supplied pPathBuf is not large enough.

stsFSNotAncestor dir is not ancestor of recipient of msgFSGetPath.

63

msgFSGetAttr

Gets an attribute or attributes of a file or directory node.

Takes P_FS_GET_SET _ATTR, returns STATUS.

#define msgFSGetAttr MakeMsg(clsFileSystem, 27)

Arguments typedef struct FS_GET SET ATTR {

P_STRING pPath; // path to node to get/set attrs
Ule numAttrs; // number of attrs of interest
P_FS ATTR LABEL pAttrLabels; // In-Out: attr labels
P_UNKNOWN pAttrValues; // In-Out: attr values
P_FS ATTR SIZE pAttrSizes; // In-Out: attr sizes

} FS_GET SET ATTR, * P_FS_GET SET ATTR;

Comments Specify which attributes you wish returned via an array of attribute labels pointed to by pAttrLabels.
The number of attribute labels is specified by numAttrs. The values are passed back via an array of
values. If the nth value represents a string or variable attribute a pointer must be filled in for the
destination of the string/variable. If the nth value represents a Fix64 provide space for two consecutive
U32s. The sizes are passed back via an array of sizes.

If either the values are of no interest or the sizes are of no interest, set pAtttValues to pNull and/or set
pAttrSizes to pNull.
If you want all attributes of a node, but do not know what they may be set numAttrs to maxU16,
pAttrLabels to fsAllocAttrLabelsBuffer, and pAtuValues to fsAllocAttrValuesBuffer (or pNull if
unwanted) and pAttrSizes to fsAllocAttrSizesBuffer (or pNull if unwanted). Any buffers returned as a
result of fsAllocXXXBuffer must be freed with OSHeapBlockFree.
The parm pPath is relative to the object that receives this message.
msgFSSetAttr
Sets the attribute or attributes of a file or directory node.
Takes P_FS_GET_SET_ATTR, returns STATUS.
#define msgFSSetAttr MakeMsg (clsFileSystem, 28)
Message typedef struct FS_GET_SET_ATTR {
Arguments P_STRING pPath; // path to node to get/set attrs
Ulé numAttrs; // number of attrs of interest
P_FS ATTR LABEL pAttrLabels; // In-Out: attr labels
P_UNKNOWN pAttrValues; // In-Out: attr values
P_FS_ATTR_SIZE pAttrSizes; // In-Out: attr sizes

} FS_GET_SET ATTR, * P_FS GET_ SET ATTR;

7 / FILE SYSTEM

Lomments

Return Value

PENPOINT API REFERENCE
Part 7 / File System

Specify which attributes you wish to set via an array of attribute labels pointed to by pAttrLabels. The
number of attribute labels is specified by numAttrs. The values are specified via an array of values. If the
nth value represents a string or variable attribute supply the pointer to the string/variable. If the nth
value represents a Fix64 attribute two consecutive U32 values are expected. If there are no variable length
attributes, pAttrSizes can be set to pNull, because the size of Fix32, Fix64 and string attributes can be
inferred.

pAttrLabels, pAttrValues & pAttrSizes are inputs only for this message. The parm pPath is relative to
the object that receives this message.

The attr fsAttrDirIndex (dir indexes) can be set on directories to establish an alternate access to a
directory without having to specify the path to the directory. See msgNew above on how to access
directories with a dir index. Only directories that reside under the PenPoint tree (any directories below
the PenPoint directory on a given volume) can have dir index attributes. If another directory already has
the same dir index as the one given then a stsFSDirIndexExists etror is returned.

NOTE: Most attributes (with the exception of dir index and old dir index attributes) can be stored with
either files or directories. The root of a volume is the exception. No attributes may be stored with the
root.

stsFSBadPath New name for name attr is invalid.
stsFSNotDir Dir index attr cannot be set on a file.

stsFSReadOnlyAttr File size cannot be set via set attr, use msgFSSetSize.

Argumends

Comments

msgFSMove

Moves a node (and any children) to a new destination.

Takes P_FS_MOVE_COPY, returns STATUS.

#define msgFSMove - MakeMsg(clsFileSystem, 29)

typedef struct FS MOVE_COPY {
P_STRING pSourcePath; // path of source of move or copy
FS_LOCATOR destLocator; // locator to destination node
FS_MOVE_COPY MODE mode; // options that affect move or copy
FS_MOVE_COPY_EXIST exist; // action to take if exists or doesn’t
P_STRING pNewDestName; // Out: See comment above
BOOLEAN alreadyExisted; // Out: indicates if already exists
U32 . spare;

} FS_MOVE COPY, * P_FS MOVE COPY;

The destination file/dir name of a move is derived as follows.

For "fsMoveCopyToDest" (the default): If non null path is provided then dest name is the leaf name of
the path and the path up to the leaf name determines the destination directory. If the path is null then

the name of the destination object is used as the dest name and the parent of the destination object is
used as the destination directory.

For fsMoveCopylntoDest: The entire destination uid and path are used for the destination directory.

And the destination name is taken from the source name.
The parm pSourcePath is relative to the object that receives this message.

NOTE: pNewDestName is not an in parameter. It is an output parameter that gives the (new, if
fsMoveCopyGenUnique was specified for exist) name of the copied node. Set pNewDestName to a
buffer if you want to know the name, set pNewDestName to pNull if you do not.

Return Value

FS.H 65
Class File System Messages understood by dirHandles and fileHandles

stsFSBadPath Path or parts of path are too large.

stsESCirculatMoveCopy Occurs when copying dir to an ancestor (parent).

See Also msgFSMoveNotify, msgFSCopy
msgFSCopy
Copies a node (and any children) to a new destination.
Takes P_FS_MOVE_COPY, returns STATUS.
#define msgFSCopy MakeMsg (clsFileSystem, 30)
Messoage typedef struct FS_MOVE COPY {
Arguments P_STRING pSourcePath; // path of source of move or copy
FS_LOCATOR destLocator; // locator to destination node
FS MOVE COPY MODE mode; // options that affect move or copy
FS_MOVE_COPY EXIST exist; // action to take if exists or doesn’t
P_STRING pNewDestName; // Out: See comment above
BOOLEAN alreadyExisted; // Out: indicates if already exists
U32 spare;

Lormmants

Retorn Value

} FS_MOVE_COPY, * P_FS MOVE COPY;
The destination file/dir of a copy is derived as follows.

For "fsMoveCopyTo" (the default): If non null path is provided then dest name is the leaf name of the
path and the path up to the leaf name determines the destination directory. If the path is null then the
name of the destination object is used as the dest name and the parent of the destination object is used
as the destination directory.

For fsMoveCopylnto: The entire destination uid and path are used for the destination directory. And
the destination name is taken from the source name.

The parm pSourcePath is relative to the object that receives this message.

NOTE: pNewDestName is not an in parameter. It is an output parameter that gives the (new, if
fsMoveCopyGenUnique was specified for exist) name of the copied node. Set pNewDestName to a
buffer if you want to know the name, set pNewDestName to pNull if you do not.

stsFSBadPath Path or parts of path are too large.

stsFSCircularMoveCopy Occurs when copying dir to an ancestor (parent).

See Also msgFSCopyNotify, msgFSMove
msgFSMoveNotify
Same as msgFSMove with notification routine extensions.
Takes P_FS_MOVE_COPY_NOTIFY, returns STATUS.
#define msgFSMoveNotify MakeMsg (clsFileSystem, 70)
// the time that the current event occurred
Argumenis Enuml6é (FS_NOTIFY TIME) {

fsBeginOperation = 1, // beginning of whole operation
fsBeforeOperation = 2, // before the sub operation
fsDuringOperation = 3, // during the sub operation
fsAfterOperation = 4, // after the sub operation

fsEndOperation = 5 // end of the whole operation

}i

7 / FILE SYSTEM

66 PENPOINT APl REFERENCE
Part 7 / File System

// the operation of the current event

Enuml6 (FS_NOTIFY OP) {
fsReadOperation = 1, // read operation
fsWriteOperation = 2 // write operation

7
fsCreateOperation = 3, // create operation
fsVerifyOperation = 4, // verify operation
fsDeleteOperation = 5 // delete operation

}i
// information required by the notification routine
typedef struct FS_NOTIFY RTN_INFO {

OBJECT source; // a handle to the current file
BOOLEAN moveOperation; // if move operation

BOOLEAN isADirectory; // if source is a directory
P_FS_GET SET ATTR pFSGetSetAttr; // attributes for current file
FS_NOTIFY TIME fsNotifyTime; // time context of notification
FS_NOTIFY OP fsNotifyOp; // op context of notification
U32 bufferSize; // max size of operation buffer
U32 operationSize; // actual size of operation

U32 fileSize; // actual size of file

U32 sparel; // spare: unused

U32 spare2; // spare: unused

} FS_NOTIFY_ RTN INFO, *P_FS_NOTIFY_RTN_INFO;

// the definition of the notification routine

typedef STATUS FunctionPtr (P_FS_NOTIFY RTN) (P_FS_NOTIFY RTN INFO pFSNotifyRtnInfo,
P_UNKNOWN pClientData);

// the information required for FSMove/CopyNotify

typedef struct FS_MOVE_COPY NOTIFY {

P_STRING pSourcePath; // path of source of move or copy
FS_LOCATOR destLocator; // locator to destination node
FS MOVE_COPY MODE mode; // options that affect move or copy
FS_MOVE COPY EXIST exist; // action to take if exists or doesn’t
P_STRING pNewDestName; // Out: See comment w/msgFSMove
BOOLEAN alreadyExisted; // Out: indicates if already exists
P_UNKNOWN pNotifyRtn; // notification routine
P_UNKNOWN pClientData; // client data to notification routine
P_UNKNOWN pQuickSortRtn; // quicksort routine
U32 sparel; // spare: unused
U32 spare2; // spare: unused

} FS_MOVE_COPY NOTIFY, * P_FS_MOVE COPY NOTIFY;

Comments The parm pSourcePath is relative to the object that receives this message.
msgFSCopyNotify

Same as msgFSCopy with notification routine extensions.

Takes P_FS_MOVE_COPY_NOTIFY, returns STATUS.

#define msgFSCopyNotify MakeMsg(clsFileSystem, 71)

Message typedef struct FS_MOVE_COPY NOTIFY {

Arguments P_STRING pSourcePath; // path of source of move or copy
FS_LOCATOR destLocator; // locator to destination node
FS_MOVE_COPY MODE mode; // options that affect move or copy
FS_MOVE_COPY EXIST exist; // action to take if exists or doesn’t
P_STRING pNewDestName; // Out: See comment w/msgFSMove
BOOLEAN alreadyExisted; // Out: indicates if already exists
P_UNKNOWN pNotifyRtn; // notification routine
P_UNKNOWN pClientData; // client data to notification routine
P_UNKNOWN pQuickSortRtn; // quicksort routine
U32 sparel; // spare: unused
U32 spare2; // spare: unused

} FS_MOVE COPY NOTIFY, * P_FS MOVE COPY NOTIFY;

Comments The parm pSourcePath is relative to the object that receives this message.

FS.H 67
Class File System Messages understood by dirHandles and fileHandles

Comments

Return Value

msgFSDelete
Deletes a node (and all of its children).

Takes P_STRING, returns STATUS.
t#define msgFSDelete MakeMsg (clsFileSystem, 31)

The object of msgFSDelete is typically a dir handle, but it can also be a file handle, but the argument
passed must be set to pNull. After a node is deleted, its handle is marked corrupt (since it is no longer
valid). A dir handle object can be reused via msgFSSetTarget or destroyed via msgDestroy. A file handle
must be destroyed after the node is deleted. The argument (a path) is relative to the object that receives
this message.

stsFSVolDisconnected The volume is not connected.
stsFSVolReadOnly A node cannot be deleted, because the volume is write protected.
stsFSNodeReadOnly Node cannot be deleted because the read only flag is set on the node.

stsFSNodeBusy Node cannot be deleted because it is being access by another client.

See Alse msgFSForceDelete
msgFSFlush
Flushes any buffers and attributes associated with the file or directory.
Takes void, returns STATUS.
#define msgFSFlush MakeMsg(clsFileHandle, 20)
Comments This can be used to guarantee that cached buffers are flushed to the disk and can also be used to flush
memory mapped files to disk.
msgFSMakeNative
Removes anything not supported by the native file system.
Takes P_FS_MAKE_NATIVE, returns STATUS.
#define msgFSMakeNative MakeMsg(clsFileSystem, 32)
Arguments typedef struct FS_MAKE NATIVE {
P_STRING pPath; // path to node to make native
P_STRING pNewName; // Out: native name if changed
} FS_MAKE NATIVE, * P_FS MAKE NATIVE;
Comments The parm pPath is relative to the object that receives this message.

Return Value

msgFSEjectMedia

Ejects media from an ejectable, removable volume.

Takes void, returns STATUS.

#define msgFSEjectMedia MakeMsg (clsFileSystem, 34)
stsOK The volume media has been ejected.

stsFSVolDisconnected The volume media is already ejected.

stsRequestNotSupported The volume does not have ejectable media

7 / FILE SYSTEM

PENPOINT APl REFERENCE
Part 7 / File System

msgFSForceDelete
Forcibly deletes a node (and all of its childen).

Takes P_STRING, returns STATUS.

#define msgFSForceDelete MakeMsg (clsFileSystem, 35)

Comments WARNING. Normal restrictions do not apply. The node will still be deleted even if it is being accessed
via another handle or if it is marked read only. However, if the volume is not connected or is write
protected, the forced delete will still fail.

After a node is deleted, its handle is marked corrupt (since it is no longer valid). A dir handle object can
be reused via msgFSSetTarget or destroyed via msgDestroy. A file handle must be destroyed after the
node is deleted. The argument (a path) is relative to the object that receives this message.

See Also mngSDelete
msgFSVolSpecific
Sends a volume specific message via a dir or file handle.

Takes P_FS_VOL_SPECIFIC, returns STATUS.
#define msgFSVolSpecific MakeMsg (clsFileSystem, 40)

Arguments typedef struct FS_VOL_SPECIFIC {

P_STRING pPath; // path of node to receive msg
MESSAGE msqg; // message to pass on to volume
P_UNKNOWN pArgs; // In-Out: message specific args

Return Vaolue

} FS_VOL_SPECIFIC, * P_FS_VOL_SPECIFIC;

Volume specific errors.

Arguments

Comments

msgFSChanged

Notifies observers of directory changes.

Takes P_FS_CHANGE_INFO, returns STATUS. Category: observer notification.

#define msgFSChanged MakeMsg (clsFileSystem, 50)

typedef struct FS_CHANGE INFO {
MESSAGE reason; // fs message that caused the change
OBJECT observed; // observed dir whose content changed
U32 sparel;
U32 spare2;

} FS_CHANGE_INFO, * P_FS_CHANGE_INFO;

These messages are the reason observers of a dir handle would be notified of a change and the
circumstances that the change happens:

msglnit A file or dir has been created.

msgFree A temp file or temp directory has been deleted.
msgFSDelete A file or directory has been deleted.
msgFSForceDelete A file or directory has been deleted.
msgFSMove A file or directory has been "fast” moved.

This notifies observers of directories (not files) when a file or dir within the directory changes. The
change reasons described below are changes to the directory or file node, not the handle referencing the
node.

FS.H 69
Class DirHandle Messages

Arguments

msgFSVolChanged

Notifies observer of volume changes.
Takes P_FS_VOL_CHANGE_INFO, returns STATUS. Category: observer notification.
#define msgFSVolChanged MakeMsg(clsFileSystem, 51)

Enuml6 (FS_VOL_CHANGE FLAGS) {

fsVolChangeWhilePrompting = flag0 // FS prompting caused change
}i
typedef struct FS_VOL CHANGE INFO (

MESSAGE reason; // fs message that caused the change
OBJECT rootDir; // root dh of volume that changed
FS_VOL CHANGE FLAGS flags; // more info related to reason

Ule sparel;

U32 spare2;

} FS_VOL_CHANGE_INFO, * P_FS VOL CHANGE_INFO;

These messages are the reason observers of theFileSystem would be notified of a volume addition,
removal or change of state. Note: msgFSSetVolName (defined above) is also a volume change reason.

#define msgFSInstallVol MakeMsg (clsFileSystem, 1)
#define msgFSRemoveVol MakeMsg (clsFileSystem, 2)
#define msgFSConnectVol MakeMsg (clsFileSystem, 3)
#define msgFSDisconnectVol MakeMsg(clsFileSystem, 4)

Observe the well known object, theFileSystem, if you want to receive this.

Class DirHandle Messages

Message
Arguments

Comments

Return Yalue

msgFSSetlarget

Changes the target directory to directory specified by locator.

Takes P_FS_LOCATOR, returns STATUS.

#define msgFSSetTarget MakeMsg (clsDirHandle, 20)
typedef struct FS_LOCATOR {

OBJECT uid;

P_STRING pPath; // Relative to node defined by uid

} FS_LOCATOR, * P_FS_LOCATOR;
Setting a dir handle object to a new target also resets the read dir pointer.

stsFSUnchangeable The recipient of this message has been "opened” with the fsUnchangeable flag set
in pNew->mode.

Arguments

msgFSReadDir

Reads the next entry (its attributes) from a directory.

Takes P_FS_READ_DIR, returns STATUS.

#define msgFSReadDir ‘ MakeMsg (clsDirHandle, 21)

typedef struct FS_READ DIR (
struct FS_READ DIR * pNext; // Out: only used w/msgFSReadDirFull
Ul6 numAttrs; // In-Out: attrs of interest
P _FS ATTR LABEL pAttrLabels; // In-Out: ptr to attr labels
P_UNKNOWN pAttrValues; // In-Out: ptr to attr values
P_FS ATTR SIZE pAttrSizes; // In-Out: ptr to attr sizes

} FS_READ DIR, * P_FS READ DIR;

7 / FILE SYSTEM

70 PENPOINT API REFERENCE
Part 7 / File System

Comments Specify which attributes you wish returned via an array of attribute labels pointed to by pAttrLabels.
The number of attribute labels is specified by numAttrs. See msgFSGetAttr for a description on setting
pAttrValues and pAttrSizes.
msgFSReadDirReset
Resets the ReadDir position to the beginning.

Takes void, returns STATUS.
#define msgFSReadDirReset MakeMsg (clsDirHandle, 22)

Comments This will direct msgFSReadDir to begin reading from the first entry in the directory. This has no effect
on msgFSReadDirFull. The default after creating a handle to a directory is to point to the first entry.
msgFSReadDirFull
Reads all the entries in a directory into a local buffer.

Takes P_FS_READ_DIR_FULL, returns STATUS.
#define msgFSReadDirFull MakeMsg (clsDirHandle, 23)
Arguments typedef struct FS_READ DIR FULL {
Ulé numAttrs; // num of labels in label array
P_FS_ATTR_LABEL pAttrLabels; // attrs of interest to be read
U32 numEntries; // Out: number of dir entries
U32 bufLength; // Out: length of pDirBuf
P_FS_READ DIR pDirBuf; // Out: points to first entry
} FS_READ DIR FULL, * P_FS READ DIR FULL;
Comments Specify which attributes you wish returned via an array of attribute labels pointed to by pAttrLabels.

The number of attribute labels is specified by numAttrs.

The returned data is a linked list of FS_READ_DIR entries, linked by the pNext field. The last link is
specified by a pLink == pNull.

The client must free the returned buffer pDirBuf, using OSHeapBlockFree. The buffer should not be
freed if it has a value of pNull, which will be the case if there are any errors or if numEntries is zero.

Function Prototype

msgFSTraverse

Traverse through the nodes of a tree starting with the target of this msg.

Takes P_FS_TRAVERSE, returns STATUS.

#define msgFSTraverse MakeMsg (clsDirHandle, 24)
typedef STATUS FunctionPtr(P_FS_TRAVERSE CALL BACK) (
OBJECT dir, // dir handle to current node
Ule level, // level in the hierarchy
P_FS_READ DIR pNextEntry, // info about next entry
P_UNKNOWN pClientData // the client’s data

)i
typedef struct FS_TRAVERSE {

FS_TRAVERSE_MODE mode; // call back order and criteria
Ul6 numAttrs; // num of labels in label array
P_FS_ATTR_LABEL pAttrLabels; // attr label array
P_FS_TRAVERSE_CALL BACK pCallBackRtn; // called for each dir & file
P_UNKNOWN pClientData; // passed to call back routine
P_UNKNOWN pQuickSortRtn; // optional quick sort routine

} FS_TRAVERSE, * P_FS_TRAVERSE;

Comments

Return Value

FS.H 71
Class FileHandle Messages

This message traverses the file system tree beginning with the directory which is the recipient of this
message and traverses the node tree depth first. The client will be called back via pCallBackRtn at each
node depending on mode (see FS_TRAVERSE_MODE above). Optionally, the nodes at each directory level
can be sorted before being returned by specifying a quick sort routine via pQuickSortRtn (See quicksort
in sort.h).

Specify which attributes you wish returned via an array of attribute labels pointed to by pAttrLabels.
The number of attribute labels is specified by numAttrs. At a minimum, pAttrLabels must contain
fsAttrName and fsAttrFlags.

stsBadParam Did not specify fsAttrName/fsAttrFlags in labels.

stsFSUnchangeable The recipient of this message has been "opened” with the fsUnchangeable flag set
in pNew->mode. This is a common error if trying to traverse from the root dir (which is
unchangeable) provided by msgFSGetInstalledVolumes/msgFSGetVolMetrics. Create a handle to

the root and use that to traverse instead.

stsFSNestingT'ooDeep Dir tree is deeper than fsMaxNestingLevel levels.

Prototype for the call back routine used by msgFSTraverseTree

Class FileHandle Messages

Comments

Return Value

msgStreamRead
Reads data from the file.

Takes P_STREAM_READ_WRITE, returns STATUS. Category: descendant responsibility.
The maximum number of bytes read with a single request is determined by fsMaxReadWrite.
stsBadParam Requesting more than fsMaxReadWrite bytes.

See Also msgStreamRead in stream.h
msgStreamWrite
Writes data to the file.
Takes P_STREAM_READ_WRITE, returns STATUS. Category: descendant responsibility.
Comments The maximum number of bytes writable with a single request is determined by fsMaxReadWrite. Note

Return Value

See Also

that writes to a memory mapped file that cause the file to grow will result in a stsFSNodeBusy error.
Free the memory map file pointer before growing the file.

stsBadParam Requesting more than fsMaxReadWrite bytes.
stsFSNodeReadOnly This is a read only file.
stsFSVolFull The file could not be written - no space on volume.

stsFSNodeBusy The file is memory mapped and this write request would cause the file to be grown
beyond the memory mapped size.

msgStreamWrite in stream.h

7 / FILE SYSTEM

72 PENPOINT API REFERENCE
Part 7 / File System

msgStreamFlush

Flushes any buffers associated with the file.
Takes void, returns STATUS. Category: descendant responsibility.

See Also msgStreamFlush in stream.h

msgStreamSeek

Secks to new position within the file.

Takes P_STREAM_SEEK, returns STATUS. Category: descendant responsibility.

Return Value stsBadParam Seck mode is out of range.
See Also msgStreamSeek in stream.h
msgFSSeek

Sets the value of the current byte position.

Takes P_FS_SEEK, returns STATUS.

#define msgFSSeek MakeMsg (clsFileHandle, 21)
Arguments typedef struct FS_SEEK {
FS_SEEK_MODE mode; // seek from bof, cur pos, eof
S32 offset; // relative change from seek origin
U32 curPos; // Out: cur byte pos after seek
U32 oldPos; // Out: cur byte pos before seek
BOOLEAN eof; // Out: Is new pos at end of file?
} FS_SEEK, * P _FS SEEK;
Retumn Value stsBadParam Seek mode is out of range.
msgFSGetSize
Gets the size of the file.
Takes P_FS_FILE_SIZE, returns STATUS.
#define msgFSGetSize MakeMsg(clsFileHandle, 22)
msgFSSetSize

Sets the size of the file.

Takes P_FS_SET_SIZE, returns STATUS.

#define msgFSSetSize MakeMsg (clsFileHandle, 23)
Arguments typedef struct FS_SET SIZE {
FS_FILE SIZE newSize; // new file size
FS_FILE SIZE oldSize; // Out: prior file size

} FS_SET SIZE, * P_FS SET SIZE;

Comments Note that a set size to a memory mapped file that causes the file to grow will result in a stsFSNodeBusy
error. Free the memory map file pointer before growing the file.

Return Value stsFSNodeReadOnly This is a read only file.
stsFSVolFull The file could not be grown - no space on volume.

stsFSNodeBusy The file is memory mapped and this set size request would cause the file to be grown
beyond the memory mapped size.

FS.H 73
Public Functions

msgFSMemoryMap

Associates the file with a directly accessible memory pointer.

Takes PP_MEM, returns STATUS.

#define msgFSMemoryMap MakeMsg (clsFileHandle, 24)
Comments To get a memory mapped file pointer from shared memory, the file handle must be created with
pNew->fs.mode |= fsSharedMemoryMap.
msgFSMemoryMapFree
Frees the memory map pointer currently associated with the file.
Takes void, returns STATUS.
#define msgFSMemoryMapFree MakeMsg (clsFileHandle, 25)
Comments NOTE: Memory map pointers are freed for you at msgFree of a file handle.
msgFSMemoryMapSetSize
Sets the size of the file’s memory map.
Takes SIZEOF, returns STATUS.
#define msgFSMemoryMapSetSize MakeMsg (clsFileHandle, 26)
Comments Determines the limit of a memory map for the file. The size can’t be less than the file size, nor less than a

Return Value

limit set by another client but can be larger. The memory map size must be set before memory mapping

the file.
stsFSNodeBusy The file is currently memory mapped.

msgFSMemoryMapGetSize
Gets the size of the file’s memory map.

Takes P_SIZEOF, returns STATUS.
#define msgFSMemoryMapGetSize MakeMsg (clsFileHandle, 27)

7 Public Functions

Function Prototype

Return Value

FSNameValid
Checks a file/dir name for validity.

Returns STATUS.

STATUS EXPORTED FSNameValid (
P_STRING pName // name of file/dir to validate
)i

stsOK The node name is valid.
stsFailed The node name was invalid.

Name is bad if it has no characters, is greater than 32 characters, has leading or trailing spaces, contains
the pathname delimeter char, contains the file system escape character, or is the name of self (.) or parent

().

7 / FILE SYSTEM

PENPOINT API R!FER.‘N, E / VOL 11

PAR‘I 7 / FILE SYSI‘EM

FSUTIL.H

This file contains filesystem attribute helper procedures. The functions described in this file are
contained in SYSUTIL.LIB.

These procedures make it easier to deal with filesystem attributes. They also support list attributes;
variable attributes which maintains lists of 4-byte quanitities.

#ifndef FSUTIL_ INCLUDED

#define FSUTIL INCLUDED

#ifndef FS_INCLUDED
#include <fs.h>
t$endif

Funchion Prototype

Commenis

GetNodeName
Gets the name attribute of a given filesystem node.

Returns STATUS.

STATUS EXPORTED GetNodeName (
OBJECT handle, // File or dir handle.
P_STRING pName) ; // Out: name.

Use this function to easily get the name of a node.

Furction Prototype

LCommaents

GetAttr

Gets a single FIX32 attribute from a filesystem handle.

Returns STATUS.

STATUS EXPORTED GetAttr(
FS_ATTR LABEL attrLabel, // Attribute label.
OBJECT handle, // File or dir handle.
P_U32 pValue); // Out: attribute value.

This is only for FIX32 attributes when you have a handle onto the node; see GetSingleAttr for a more
general function.

Function Prototype

GetSingleAttr

Gets a single FIX32, FIX64, or known-size STRING attribute.

Returns STATUS.

STATUS EXPORTED GetSingleAttr(
FS_ATTR LABEL attrlabel, // In: Attribute label.
OBJECT handle, // In: handle of node.
P_STRING pPath, // In: path of node.

P_UNKNOWN pValue); // Out: attribute value.

76 PENPOINT API REFERENCE
Part 7 / File System

Fusnction Prototype

Comments

SetAttr

Sets a single FIX32 attribute on a filesystem handle.

Returns STATUS.

STATUS EXPORTED SetAttr(
FS_ATTR_LABEL attrLabel, // Attribute label.
OBJECT handle, // File or dir handle.
U32 value); // Attribute value.

This is only for FIX32 attributes when you have a handle onto the node; see SetSingleAttr for a more
general function.

SetSingleAttr

Sets a single FIX32, FIX64, or STRING attribute.

Returns STATUS.

Funcion Prototype STATUS EXPORTED SetSingleAttr (

FS_ATTR_LABEL attrLabel, // In: Attribute label.
OBJECT handle, // In: handle of node.
P_STRING pPath, // In: path of node.
P_UNKNOWN pValue); // In: attribute value.

GetListX

Function Prototype

Lomvunants

Gets a VAR attribute that is organized as a list of values.
Returns STATUS. ‘

STATUS EXPORTED GetListX(

OBJECT handle, // File or dir handle.

P_STRING pPath, // Path relative to handle.
FS_ATTR_LABEL attrLabel, // Attribute label.

PP_UNKNOWN pplList, // Oout: list.

P_Ul6 pSize); // Out: size (in bytes) of list.

Allocates ppList from the process local stack. Caller must HeapBlockFree ppList when done adding,
removing, and putting the list.

Function Prototype

PutListX

Updates a list attribute with a new list.

Returns STATUS.

STATUS EXPORTED PutListX(
OBJECT handle, // File or dir handle.
P_STRING pPath, // Path relative to handle.
FS_ATTR LABEL attrLabel, // Attribute label.
P_UNKNOWN plist, // List.

Ul6 size); // 8ize (in bytes) of list.

FSUTIL.H 77
Private

Function Prototype

Comments

Return Yalue

FindListItemX

Finds an element in a list.

Returns STATUS.

STATUS EXPORTED FindListItemX (
P_UNKNOWN pltem,
Ul6 itemSize,
P_UNKNOWN plist,
Ulé listSize,
P _Ul6 pOffset);

// Data to search for.

// Size of data to search for.
// List.

// Size of list.

// Out: offset of found item.

The list must first be gotten via GetList. pOffset is 0 based. The list array can be indexed with pOffset
to get the actual data. The comparison is done via a memcmp, so things must be EXACTLY the same.

stsNoMatch Item not found.

Funcrion Profotype

Lomments

AddListItemX

Adds an item to the end of a list.

Returns STATUS.

STATUS EXPORTED AddListItemX(
P_UNKNOWN pltem,
Ule itemSize,
PP_UNKNOWN pplist,
P_Ul6 pSize);

// Item to add.

// Size of item in bytes.

// In:Out List.

// In:0ut size of list in bytes.

The list must first be gotten via GetList. The heap that the list uses is resized. pSize is updated to reflect

the new list size.

Function Prototype

Comments

RemoveListItemX
Removes an item from a list, given an offset.
Returns STATUS.
STATUS EXPORTED RemovelListItemX (
Uleé offset,
- Ule size,
PP_UNKNOWN ppList,
P_U16 pSize);

// Offset of item to remove.
// Size of item to remove.
// In:Out List.

// In:Out Size of list.

The list must first be gotten via GetList. The heap that the list uses is resized. If pSize == 1 (only 1 item
left) then *pSize is set to 0, but the list heap is not resized. offset is 0-based.

¥ Private

Below are the "old" attribute list functions. These are here for backwards compatability only!

Function Protolype

GetList

Gets a VAR attribute that is organized as a list of 4 byte values.

Returns STATUS.

STATUS EXPORTED GetList (

OBJECT handle,
P_STRING pPath,
FS_ATTR LABEL attrLabel,
PP_OBJECT pplist,
P_Ul6 pCount);

// File or dir handle.

// Path relative to handle.
// Attribute label.

// Out: list.

// Out: number of elements.

7 / FILE SYSTEM

78 PENPOINT APl REFERENCE
Part 7 / File System

Comments

Allocates ppList from the process local stack. Caller must HeapBlockFree ppList when done adding,
removing, and putting the list.

PutList

Updates a list attribute with a new list.

Returns STATUS.

Function Prototype STATUS EXPORTED PutList (

OBJECT handle, // File or dir handle.
P_STRING pPath, . // Path relative to handle.
FS_ATTR LABEL attrLabel, // Attribute label.
P_OBJECT plist, . // List.
Ulé count) ; // Number of elements.

FindListItem ‘

Funciion Profolype

Comunents

Return Yalue

Finds an element in a list.
Returns STATUS.

STATUS EXPORTED FindListItem(

OBJECT item, // Data to search for.
P_OBJECT pList, // List.

Ulé count, // Number of elements in list.
P _Ul6 pIndex); // Out: index of found item.

The list must first be gotten via GetList. pIndex is 0 based. The list array can be indexed with pIndex to
get the actual data.

stsNoMatch Item not found.

Function Profotype

Commends

AddListltem
Adds an item to the end of a list.
Returns STATUS.
STATUS EXPORTED AddListItem(
OBJECT item, // Item to add.
PP_OBJECT ppList, // In:Out List.
P_U16 pCount); // In:Out number of elements in list.

The list must first be gotten via GetList. The heap that the list uses is resized. pCount is updated to
reflect the new list size.

Funciion Prototype

Comments

RemoveListltem

Removes an item from a list, given an index.

Returns STATUS.

STATUS EXPORTED RemoveListItem(
Ulé index, // Index of item to remove.
PP_OBJECT ppList, // In:Out List.
P_Ul6 pCount) ; // In:Out Number of elements in list.

The list must first be gotten via GetList. The heap that the list uses is resized. If pCount == 1 (only 1
item left) then *pCount is set to 0, but the list heap is not resized. index is 0-based.

 PENPOINT API REFERENCE / VOL 11

"PART 7 / FILE SYSTEM

STREAM.H

This file contains the API definition for clsStream.
clsStream inherits from clsObject.

clsStream is an abstract class - it does not completely implement its own protocol. Subclasses of
clsStream must complete the implementation. clsFileHandle is an important subclass of clsStream (see

fs.h).

The functions described in this file are contained in PENPOINT.LIB.

#$ifndef STREAM INCLUDED
#define STREAM INCLUDED

#ifndef GO_INCLUDED
#include <go.h>
#endif

$ifndef UID_ INCLUDED
#include <uid.h>
fendif

#ifndef OSTYPES_ INCLUDED
#include <ostypes.h>
#endif

$ifndef CLSMGR_INCLUDED
#include <clsmgr.h>
#endif

"Common #defines and typedefs

#define streamNewFields \
objectNewFields

typedef struct STREAM NEW {
streamNewFields
} STREAM NEW, * P_STREAM NEW;

Several types in this file contain "streamElements.”
The streamFElements fields are:

¢ numBytes: In: size of buffer

¢ pBufi In: buffer

e count: Out: number of bytes transferred

#define streamElements \
U32 numBytes; \
P_UNKNOWN pBuf; \
U32 count;

Status codes
#define stsTimeOutWithData MakeWarning (clsStream, 1)

stsStreamDisconnected status is returned by all stream calls when the service executing the stream
function is no longer in a connected state (A disconnectable service is clsMILAsyncSIO).

Clients must not send other stream messages to the disconnected service.

80 PENPOINT APl REFERENCE
Part 7 / File System

Penpoint can notify clients or clients may find services’ connected states (see service.h and servmgr.h).

#define stsStreamDisconnected MakeStatus (clsStream, 1)

P Messages

msgStreamRead

Reads data from stream.

Takes P_STREAM_READ_WRITE, returns STATUS. Category: descendant responsibility.
#define msgStreamRead MakeMsg (clsStream, 1)

Arguments typedef struct {
: streamElements
} STREAM READ WRITE, * P_STREAM READ WRITE;

Comments msgStreamRead reads data from the stream into pBuf. pBuf must point to a buffer which can hold at
least numBytes bytes. The number of bytes read is passed back in count.

If you try to read 0 bytes when at the end of the data stream stsOK is returned.
Return Value < stsOK No data read.
>= stsOK Count of bytes is non-zero.

stsEndOfData Count is zero and at the end of data.

msgStreamWrite

Writes data to stream.

Takes P_STREAM_READ_WRITE, returns STATUS. Category: descendant responsibility.

#define msgStreamWrite ~ MakeMsg(clsStream, 2)

Message typedef struct {

Arguments streamElements
} STREAM READ WRITE, * P_STREAM READ WRITE;

Comments Writes numBytes from pBuf into the stream. Returns stsOK if all bytes are written.
msgStreamReadTimeOut

Reads data from stream with timeout.

Takes P_STREAM_READ_WRITE_TIMEOUT, returns STATUS. Category: descendant responsibility.

#define msgStreamReadTimeOut MakeMsg (clsStream, 3)
Arguments typedef struct {
streamElements
0S_MILLISECONDS timeOut; // In: milliseconds until timeout

} STREAM READ WRITE_TIMEQUT, * P_STREAM READ WRITE TIMEOUT;

‘Comments msgStreamReadTimeOut reads data from the stream into pBuf. pBuf must point to a buffer which can
hold least numBytes bytes. The number of bytes read is passed back in count.

When count is greater than zero the status returned is always greater than or equal to stsOK.
Return Value stsTimeOutWithData Count is greater than zero but less than numBytes because of a timeout.
stsTimeOut Count is zero and the timeout has expired.

stsEndOfData Count is zero and at the end of data.

STREAM.H 81
Messages

Message
Arguments

Comments

Return Value

msgStreamWriteTimeOut

Writes to the stream with timeout.

Takes P_STREAM_READ_WRITE_TIMEOUT, returns STATUS. Category: descendant responsibility.

#define msgStreamWriteTimeOut MakeMsg(clsStream, 4)
typedef struct {
streamElements
0S_MILLISECONDS timeOut; // In: milliseconds until timeout

} STREAM READ WRITE TIMEOUT, * P_STREAM READ WRITE TIMEOUT;
Writes numBytes from pBuf into the stream.
stsOK All bytes were written.

stsTimeOut Timeout has expired before all data written.

Comments

Return Volue

msgStreamFlush
The stream flushes any buffered data.

Takes pNull, returns STATUS. Category: descendant responsibility.
#define msgStreamFlush MakeMsg (clsStream, 5)

clsStream’s default response is to return stsMessagelgnored. Most subclasses override clsStream’s
response.

stsOK Buffers were successfully emptied.

stsFailed Buffers do not empty after some timeout period.

Arguments

Comments

msgStreamSeek

Sets the stream’s Current Byte Position.

Takes P_STREAM_SEEK, returns STATUS.

#define msgStreamSeek MakeMsg (clsStream, 6)

Enuml6 (STREAM SEEK MODE) ({
// Relative to beginning of file, end of file, or Current Byte Position

streamSeekBeginning =0,

streamSeekEnd =1,
streamSeekCurrent = 2,

// Default setting

streamSeekDefaultMode = streamSeekBeginning

}i
typedef struct STREAM SEEK {

STREAM SEEK MODE mode; 1/

$32 offset; // relative change from seek origin
U32 curPos; // Out: byte position after seek
U32 oldpPos; // Out: byte position before seek
BOOLEAN eof; // Out: Is new pos at end of file?

} STREAM SEEK, * P_STREAM SEEK;

clsStream’s default response is to return stsMessagelgnored. Most subclasses override clsStream’s
response.

7 / FILE SYSTEM

82 PENPOINT AP| REFERENCE
Part 7 / File System

Arguments

Lemimaents

msgStreamBlockSize

Passes back the most efficient write block size for this scream.

Takes P_STREAM_BLOCK_SIZE, returns STATUS. Category: descendant responsibility.
#define msgStreamBlockSize MakeMsg (clsStream, 7)

typedef struct {
U32 blockSize; // out: preferred write block size
} STREAM BLOCK SIZE, * P_STREAM BLOCK SIZE;
clsStream’s default response is to return a blockSize of 512. Most subclasses override clsStream’s
response.

The P_UNKNOWN declarations for the following are assumed to be FILE*. Maintaining a clean
separation between ANSI and PenPoint header files prevents the use of the true type.

Funciion Pratoltype

StdioStreamBind

Returns a stdio file pointer bound to a stream object.
Returns pointer to FILE.

P_UNKNOWN EXPORTED StdioStreamBind (
OBJECT obj);

Function Prototype

StdioStreamUnbind

Frees the stdio file handle bound to a stream object.
Returns int.

int EXPORTED StdioStreamUnbind (
P_UNKNOWN pFile);

Function Prototype

StdioStreamToObject

Returns the stream object bound to a stdio file pointer.
Returns OBJECT.

OBJECT EXPORTED StdioStreamToObject (
P_UNKNOWN pFile);

 PENPOINT APl REFERENCE / VOL 11

PART 7 / FILE SYSTEM

This file contains the API for UUID routines. The functions described in this file are contained in
PENPOINT.LIB.

This file contains macros for creating and testing Nil and Invalid UUIDs, to compare two UUIDs for
equality, and to create a well known UUID and a function to create dynamic uuids.
UUID is an acronym for Universal Unique ID.

#ifndef UUID_INCLUDED
#define UUID_INCLUDED

Include files

#ifndef GO_INCLUDED
#include <go.h>
#endif

Common #defines and typedefs

P> Macros
For setting and testing for a Nil UUID
#define MakeNilUUID (uuid) ((auid) .machine = (uuid).id = OL)
#define NilUUID{uuid) (((uuid) .machine == 0L) && ((uuid).id == OL))
For setting and testing for an invalid UUID
#$define MakeInvalidUUID (uuid) ((uuid) .id = (uuid) .machine = maxU32)
#define InvalidUUID (uuid) ({uuid) .id == maxU32 && \
(uuid) .machine == maxU32)
To compare two UUIDs for equality
#define SameUUIDs (a,b) (((a) .machine == (b).machine) && \
((a) .id == (b).id))
To set the fields of a well known uuid
#define MakeWknUUID (uuid,tag,i) \
((uuid) .machine = (tag), (uuid).id = (U32) (1))
% Typedefs
typedef struct UUID { i
U32 id; // Unique counting value
U32 machine; // Unique machine identifier

} UUID, *P_UUID;

84 PENPOINT API REFERENCE
Part 7 / File System

» Public Functions

MakeDynUUID
Creates a dynamic UUID.

Returns nothing.

Function Prototype void EXPORTED MakeDynUUID (
P_UUID pUUID
)i

"PENPOINT APl REFERENCE / VOL Il

PART 7 / FILE SYSTEM

VOL.H

clsVolume inherits from clsObject.
Provides volume support.

Information in this file is useful if you are writing an installable volume. Also see volgodir.h for
additional information.

#ifndef VOL_INCLUDED
#define VOL_INCLUDED

Include file dependencies

$ifndef GO_INCLUDED
#include <go.h>
#endif

#ifndef OS_INCLUDED
#include <os.h>
#endif

#ifndef CLSMGR_INCLUDED
#include <clsmgr.h>
#endif

#ifndef FS_INCLUDED
#include <fs.h>
#endif

5 Common #defines and typedefs

¥ Defines

t#define fsDirPosFirst (U32)0
#define VOL_METHOD STATUS EXPORTED

Flag to direct VNCreate to create short directory names (See VNCreate)
#define fsShortDirName fsNodeReadOnly

Error status codes

#define stsNoMoreBuffers MakeStatus (clsVolume, 1)
Informational status codes

#define stsVolFormatIsTimeConsuming MakeWarning(clsVolume, 1)
Resource ids for volume icons

Defined with MakeWknResId (clsVolume, tag)

Stored in groups of 10 values:

Base value defines large icon,

+1 value defines smaller icon,

+2 thru +9 reserved for future.

#define tagVolHardDiskIcon 0 // 1-9 define variants, see above
#define tagVolFloppyDiskIcon 10 // 11-19 define variants, see above
#define tagVolRemotePCIcon 20 // 21-29 define variants, see above

#define tagVolRemoteMacIcon 30 // 31-39 define variants, see above

86

¥ Types

PENPOINT APl REFERENCE

Part 7 / File System

typedef OBJECT VOL;

typedef P_FS_ATTR SIZE

P_MEM
U32
U32

} DIR_ID CACHE;

*PP_FS ATTR SIZE;
typedef P_FS_ATTR LABEL *PP_FS ATTR LABEL;
typedef U32 FS_ATTR VALUE, *P_FS ATTR VALUE, **PP_FS ATTR VALUE;

typedef U32 VOL_VNODE, *P_VOL_VNODE;
typedef struct DIR ID CACHE {

pBuf;
used;
free;

typedef struct VOL CACHE {

VOL_VNODE
P_MEM
DIR ID CACHE
0S_MILLISECONDS
0S_MILLISECONDS
0S_MILLISECONDS
0S_MILLISECONDS

0S_MILLISECONDS

Ulé
Ulé6
Ulé
Ul6
Uleé
Ulé6

Ulé

Ul6

P_MEM
P_MEM
P_MEM
U32
U32
U8

U8
Ulé
U32
} VOL_CACHE;

vnodeNotKnown;
pRoot;

dirlIds;
lastAccess;
lastVolAccess;
lastVolWrite;
refreshRate;

flushRate;

numDirs;
numFiles;
openDirs;
openFiles;
refdDirs;
refdFiles;

maxOpenDirs;

maxOpenFiles;

pFirst;
plast;
pWrite;
writePos;
writeAmt;

//

Sorted array of vol dir ids
Number used, of allocated space
Number free, of allocated space

Used to fake volRAM

Cache dir elem for root vnode
Dir id cache

Last access to cache layer

Last access to volume

Last write to volume

Check with volume this often
to see if volume has changed
since last vol access

maxU32 implies unchangeable
Flush cached dirty files

after this much time has passed
0 implies flush immediately
maxU32 implies no flushing
Default is 2000 (2 secs)

Total num of dirs in the cache
Includes both open and closed
Total num of files in the cache
Includes both open and closed
Num of dirs in the cache

that are opened on the vol

Num of files in the cache

that are opened on the vol

Num of opened dirs that have
non-zero reference counts

Num of opened files that have
non-zero reference counts

Max dirs that can be left open
for caching purposes.

0 implies no dirs

maxUl6 implies as many as wanted
Default is maxUl6

Max files that can be left open
for caching purposes.

0 implies no files

maxUl6 implies as many as wanted
Default is maxUl6

First cache entry

Last cache entry

Write is to this cache entry
Write at this position

Write for this amount

readDirFullInProgress; :

spareU8;
spareUlé6;
spares[5];

//
//

If non-zero then fully cached
dirs will not be "purged".

Enuml6 (VOL_CMN_FLAGS) {

vcVolIsOnBootDevice = flag0, // This volume is on the boot
// device (as defined by the MIL)
// but isn’t necessarily THE boot
// volume.
vcVolIsDetachable = flagl, // This volume is not removable
// but may be detachable.
vcVolIsSwapVolume = flag2 // This is the swap volume.
}i
typedef struct VOL _COMMON {
struct VOL_RTNS *pRtns;
OS_SEMA_ID fsSema;
OS_SEMA ID volSema;
VOL CMN FLAGS flags;
Ulé6 vnodeCount;
OS_HEAP_ID vnodeHeap;
Ulé sparel;
Ulé dhCount;
P_MEM dhHead;
Ulé spare2;
Ulé fhCount;
P_MEM fhHead;
VOL_CACHE cache;
OBJECT dirIndexFile;
BOOLEAN dirIndexFileVerified;
Ulé spare;
U32 spares[5];
} VOL_COMMON;

typedef struct VOL_INFO {

struct VOL_INFO *pNext;

FS_VOL_HEADER hdr;

VOL_COMMON cmn;

// Volume specific volInfo struct goes here...
} VOL_INFO, *P_VOL INFO, **PP_VOL_INFO;
EnumlG(VNODE_ACCESS) {
// Delete node at handle free time?

vnodeTemp = flag0,
// Read/write intentions for this handle
vnodeReadOnly = flag2,

// Upper byte: exclusivity requirements
vnodeNoExclusivity = MakeUl6(0, 0),
vnodeDenyWriters MakeU16 (0, 1),
vnodeExclusiveOnly = MakeUl6(0, 2),

// Uncompress file at VNGet time?

vnodeUncompress = flagl4,
// Default
vnodeDefaultAccess = 0 // perm, read/write, noExclusivity

}i
#define vnodeIgnoreAccessInfo 0x8000
typedef struct VNODE CMN ATTRS {

FS NODE_FLAGS nodeFlags;
FS_DATE TIME nodeCreated;
FS DATE TIME nodeModified;

} VNODE_CMN ATTRS, *P_VNODE_CMN ATTRS;
Enuml6 (VNODE_ATTR FLAGS) {

vnAttrNodeFlags = flag0,
vnAttrNodeCreated = flagl,
vnAttrNodeModified = flag2,
vnAttrLabelsBuffer = flag8,
vnAttrValuesBuffer = flag9,
vnAttrSizesBuffer = flagl0

VOL.H

87

7 / FILE SYSTEM

88 PENPOINT APl REFERENCE
Part 7 / File System

7 Typedefs for functions supported by each
volume class

% Volume related functions follow:

Funciion Profolype

Comments

VolStatus
Has a volume check for readiness.
Returns STATUS.
typedef STATUS FunctionPtr (P_VOL_STATUS) (
P_VOL_INFO pVollInfo,
P_BOOLEAN pChanged // In/Out: Has volume changed?

)i
#define VolStatus(pVolInfo, pChanged) \
((pVolInfo)->cmn.pRtns->pVolStatus) \
(pVolInfo, pChanged)

Possible return status are stsOK, stsFSVolDisconnected, other errors. If status is okay, should indicate if
volume has changed.

Funciion Protolype

VolSetVolName

Has a volume change its volume name.

Returns STATUS.

typedef STATUS FunctionPtr(P_VOL_SET VOL NAME) (
P_VOL_INFO pVolInfo,
P_STRING pName // New volume name

)i
#define VolSetVolName (pVolInfo, pName) \
((pVolInfo) ->cmn.pRtns->pVolSetVolName) \
(pVolInfo, pName)

Function Prototype

VolUpdateVollnfo

Requests that a volume updates its user accessable volume info.

Returns STATUS.

typedef STATUS FunctionPtr (P_VOL UPDATE VOL INFO) (
P_VOL_INFO pVolInfo // Vol Info
)i
#define VolUpdateVolInfo(pVolInfo) \
((pVolInfo) ->cmn.pRtns->pVolUpdateVolInfo) \
(pVolInfo)

Function Profotype

VolSpecificMsg

Passes a volume specific message down to a volume.
Returns STATUS.

typedef STATUS FunctionPtr(P_VOL_SPECIFIC MSG) (

P_VOL_INFO pVolinfo,

VOL_VNODE vnode, // Handle of vnode

MESSAGE msg, // Message .
P_UNKNOWN pArgs // In/Out: Arguments for message

)i
#define VolSpecificMsg(pVolInfo, vnode, msg, pArgs) \
((pVolInfo)->cmn.pRtns->pVolSpecificMsg) \
(pVolInfo, vnode, msg, pArgs)

VOL.H

7> Common vnode access/release functions follow:

VNGet

Gets a vnode given pVollnfo, dirVNode and name of node in the directory.
Returns STATUS.

funaion Prototype typedef STATUS FunctionPtr (P_VNODE GET) (

P_VOL_INFO pVollnfo, // Vol Info

VOL_VNODE dirVNode, // VNode of parent directory
P_STRING pName, // Name of node in directory
VNODE_ACCESS access, // R/W access, exclusivity, etc
P_UNKNOWN pVolSpecific, // Vol specific info
P_VOL_VNODE pVNode // Out: Returned vnode handle

);
#define VNGet (pVolInfo, dirVNode, pName, access, pVolSpecific, pVNode) \
((pVolInfo)->cmn.pRtns->pVNodeGet) \
(pVolInfo, dirVNode, pName, access, pVolSpecific, pVNode)

7 / FILE SYSTEM

VNNextChild

Gets a vnode given pVollnfo, dirVNode and dir position in a directory.
Returns STATUS.

Function Prototype typedef STATUS FunctionPtr(P_VNODE NEXT CHILD) (

P_VOL_INFO pVollInfo, // Vol Info

VOL_VNODE dirVNode, // VNode of parent directory

P_U32 » pDirPos, // In/Out: directory position data
VNODE_ACCESS access, // R/W access, exclusivity, etc
P_STRING pName, // Out: Name of node

P_VOL_VNODE pVNode // Out: VNode handle

)i
#define VNNextChild(pVolInfo, dirVNode, pDirPos, access, pName, pVNode) \
({pVolInfo)->cmn.pRtns->pVNodeNextChild) \
(pVolInfo, dirVNode, pDirPos, access, pName, pVNode)

VNGetByDirld

Gets the vnode of a directory (and its name) given its directory id.

Returns STATUS.

Functen Protetype typedef STATUS FunctionPtr(P_VNODE GET BY DIR ID} (

P_VOL_INFO pVollnfo, // Vol Info
VOL_VNODE dirVNode, // VNode of parent directory
U32 dirld, // Dir id of directory
P_STRING pName, // Out: Name of node
P_VOL_VNODE pVNode // Out: Returned dir vnode handle.

)i ,
#define VNGetByDirId(pVolInfo, dirVNode, dirId, pName, pVNode) \
((pVolInfo) ->cmn.pRtns->pVNodeGetByDirId) \
(pVolInfo, dirVNode, dirId, pName, pVNode)

90 PENPOINT AP| REFERENCE
Part 7 / File System

Function Prototype

VNDup

Increments the reference count on a vnode.

Returns STATUS.

typedef STATUS FunctionPtr (P_VNODE DUP) (
P_VOL_INFO pVoliInfo, // Vol Info
VOL_VNODE vnode, // The vnode being dupped
VNODE_ACCESS access // R/W, exclusivity, etc.

)i
#define VNDup(pVolInfo, vnode, access) \
((pVolInfo) ->cmn.pRtns->pVNodeDup) \
(pVolInfo, vnode, access)

Funchion Prototype

VNRelease
Returns a vnode to the volume.
Returns STATUS.
typedef STATUS FunctionPtr (P_VNODE_RELEASE) {
P_VOL_INFO pVollnfo, // Vol Info
VOL_VNODE vnode // The vnode being released

);
#define VNRelease (pVolInfo, vnode) \
((pVolInfo) ->cmn.pRtns->pVNodeRelease) \
(pVolInfo, vnode)

% Directory handle related functions follow:

Function Prototype

Lommaends

VNCreate

Creates a new file or directory node in the given (directory) node.
Returns STATUS.

typedef STATUS FunctionPtr(P_VNODE CREATE) (

P_VOL_INFO pvVolinfo,

VOL_VNODE dirVNode, // Handle of directory vnode
P_STRING pName, // Name of the new file
FS_NODE_FLAGS type // File or directory?

)i
#define VNCreate(pVolInfo, dirVNode, pName, type) \

((pvolInfo)->cmn.pRtns->pVNodeCreate) \

(pVolInfo, dirVNode, pName, type)
Note: the parameter type only uses the flag fsNodeDir to distinguish between directories and files and
the flag fsShortDirName to direct the volume to use a short name replacement for the directory name.
Directories are only shortened if they reside in the PenPoint tree. The flag fsShortDirfName overlaps
fsNodeReadOnly, which is never used in conjunction with directories.

VOL.H

Function Prototype

Cowmenis

VNDelete
Deletes the given node.
Returns STATUS.
typedef STATUS FunctionPtr(P_VNODE DELETE) (
P_VOL_INFO pVolinfo,
VOL_VNODE vnode, // VNode to delete
BOOLEAN visible // At root of hierarchical delete?

):
#define VNDelete(pVolInfo, vnode, visible) \
((pVolInfo)->cmn.pRtns->pVNodeDelete) \
(pVolInfo, vnode, visible)

VNode may be returned differently to mark it as a vnode that points to a deleted vnode.

Function Protolyps

VNMove

Moves/renames a node (and any children) to a new node.

Returns STATUS.

typedef STATUS FunctionPtr(P_VNODE MOVE) (
P_VOL_INFO pVolinfo,
VOL_VNODE srcDirVNode, // Handle of dir node of source
VOL_VNODE srcVNode, // Handle of source vnode of move
VOL_VNODE dstDirVNode, // Handle of dir node of dest
P_STRING pDstName // New name to give the node

)i
#define VNMove (pVolInfo, srcDirVNode, srcVNode, dstDirVNode, pDstName) \
((pVoliInfo)->cmn.pRtns->pVNodeMove) \
(pVolInfo, srcDirVNode, srcVNode, dstDirVNode, pDstName)

Function Prototype

VNDirPosDeleteAdjust
Makes any necessary adjustment to the dirPos after a node has been deleted.
Returns STATUS.
typedef STATUS FunctionPtr (P_VNODE DIR POS DEL ADJ) (
P_VOL_INFO pvolinfo,
VOL_VNODE dirVNode, // Handle of directory vnode
VOL_VNODE vnode, // Handle of deleted vnode
P_U32 pDirPos // Dir position data before delete

)i
#define VNDirPosDeleteAdjust (pVolInfo, dirVNode, vnode, pDirPos) \
((pVolInfo)->cmn.pRtns->pVNodeDirPosDelAds) \
(pVolInfo, dirVNode, vnode, pDirPos)

Function Prototype

VNGetDirld
Gets a directory node’s dir id, given the vnode.
Returns STATUS.
typedef STATUS FunctionPtr (P_VNODE GET DIR ID) (
P_VOL_INFO pVollnfo,
VOL_VNODE vnode, // Handle of vnode
P_U32 pDirId // In/Out: dir id of dir node

)i
#define VNGetDirId(pVolInfo, vnode, pDirId) \
((pVolInfo) ->cmn.pRtns->pVNodeGetDirId) \
(pVolInfo, vnode, pDirId)

7 / FILE SYSTEM

o2 PENPOINT APl REFERENCE
Part 7 / File System

% File handle related functions follow:

Function Prototype

VNRead

Transfers n bytes from position m in a file to a buffer.

Returns STATUS.

typedef STATUS FunctionPtr (P_VNODE_READ) (
P_VOL_INFO pvolinfo,
VOL_VNODE vnode, // Handle of vnode
U32 filePos, // Starting point of read
U32 numBytes, // Number of bytes to be read
P_U8 pReadBuffer, // Destination of bytes read
P_U32 pCount // In/Out: Actual bytes read

)i _
$#define VNRead(pVolInfo, vnode, filePos, numBytes, pReadBuffer, pCount) \
((pVolInfo) ~>cmn.pRtns->pVNodeRead) \
(pVolInfo, vnode, filePos, numBytes, pReadBuffer, pCount)

Funchion Prototype

VNWrite

Transfers n bytes from a buffer to position m in a file.

Returns STATUS.

typedef STATUS FunctionPtr (P_VNODE WRITE) (
P_VOL_INFO pVolinfo,
VOL_VNODE vnode, // Handle of vnode
U32 filePos, // Starting point of the write
U32 numBytes, // Number of bytes to write
P U8 pWriteBuffer, // Destination of bytes to write
P_U32 pCount // In/Out: Actual bytes written

)i
#define VNWrite(pVolInfo, vnode, filePos, numBytes, pWriteBuffer, pCount) \
({pVolInfo)->cmn.pRtns->pVNodeWrite) \
(pVolInfo, vnode, filePos, numBytes, pWriteBuffer, pCount)

Funciion Prototype

VNGetSize

Gets a node’s size given the vnode.

Returns STATUS.

typedef STATUS FunctionPtr(P_VNODE GET_ SIZE) (
P_VOL_INFO pVollnfo,
VOL_VNODE vnode, // Handle of vnode
P_FS FILE_SIZE pFileSize // In/Out: Node's size

)i
#define VNGetSize(pVolInfo, vnode, pFileSize) \
((pVolInfo)->cmn.pRtns->pVNodeGetSize) \
(pVolInfo, vnode, pFileSize)

VOL.H

93

VINSetSize
Sets a node’s size given the vnode and the new size.
Returns STATUS.
Function Prototype typedef STATUS FunctionPtr(P_VNODE_SET SIZE) (
P_VOL_INFO pVolinfo,
VOL_VNODE vnode, // Handle of vnode
FS_FILE SIZE fileSize // Node’s new size

)i
#define VNSetSize(pVolInfo, vnode, fileSize) \
((pVolInfo) ->cmn.pRtns->pVNodeSetSize) \
(pVolInfo, vnode, fileSize)

Comments This function could be used to either truncate or grow the file/resFile.

"% Aftribute related functions follow:

VNGetName

Gets a node’s name, given the vnode.
Returns STATUS.

Functien Frototype typedef STATUS FunctionPtr (P_VNODE _GET NAME) (

P_VOL_INFO pVolInfo,
VOL_VNODE vnode, // Handle of vnode
P_STRING pName // In/Out: name of node

)i
#define VNGetName (pVolInfo, vnode, pName) \
((pVolInfo) ->cmn.pRtns->pVNodeGetName) \
(pVolInfo, wvnode, pName)

VNGetNumAttrs
Returns the number of non-standard attributes, given the vnode.
Returns STATUS.
Funetion Prototype typedef STATUS FunctionPtr (P_VNODE_GET NUM ATTRS) (
P_VOL_INFO pVolInfo,
VOL_VNODE vnode, // Handle of vnode
P_Ulé pNumAttrs // Out: num of attrs to get

)i
#define VNGetNumAttrs(pVolInfo, vnode, pNumAttrs) \
((pVolInfo) ->cmn.pRtns->pVNodeGetNumAttrs) \
(pVolInfo, vnode, pNumAttrs)

VNGetAttrInfo

Returns a node’s attributes, given the vnode.

Returns STATUS.

Fynetion Prototype typedef STATUS FunctionPtr (P_VNODE_GET ATTR INFO) (

P_VOL_INFO pVollnfo,
VOL_VNODE vnode, // Handle of vnode
Ul6 num, // Num of attrs to get
VNODE_ATTR FLAGS flgs, // Get which attrs
P_VNODE_CMN ATTRS pCmn, // Common attrs
P_U8 pWhich, // Which user defined attrs

P_FS_ATTR LABEL pLbls, // In/Qut: attribute labels

7 / FILE SYSTEM

(-2 PENPOINT API REFERENCE
Part 7 / File System

Ceonrprants

P_FS_ATTR VALUE pvals, // In/Out: attribute values

P_FS_ATTR SIZE pSizs // In/Out: attribute sizes
)i
#define VNGetAttrInfo (pVolInfo, vnode, num, flgs, pCmn, pWhich, pLbls, pVals, pSizs) \

((pVolInfo) ->cmn.pRtns->pVNodeGetAttrInfo) \

(pVolinfo, vnode, num, flgs, pCmn, pWhich, pLbls, pVals, pSizs)

Which common attributes and which arrays of the label/value/size arrays that need to be filled in are
defined by the flgs field. Which particular elements of each (label/value/size) array to be filled in is
defined by the pWhich byte array. If num is 0 or pWhich is null then no label/value/size array elements
should be filled in. If an element of pWhich is maxU8 then the corresponding label/value/size array
element should be filled in. If the data is known and set then the pWhich array element should be set to
1 after setting the values.

Farnction Prototype

Lornends

VNSetAttrIlnfo

Sets a node’s attributes, given the vnode.
Returns STATUS.

typedef STATUS FunctionPtr(P_VNODE SET ATTR INFO) (

P_VOL_INFO pVollnfo,

VOL_VNODE vnode, // Handle of vnode

Ule num, // Num of attrs to set
VNODE_ATTR FLAGS flgs, // Set which attrs
P_VNODE_CMN_ATTRS pCmn, // Common attrs

p_U8 pWhich, // Which user defined attrs
P_FS ATTR LABEL plbls, // In/Out: attribute labels
P_FS_ATTR VALUE pVals, // In/Out: attribute values
P_FS_ATTR SIZE pSizs // In/Out: attribute sizes

)i
#define VNSetAttrInfo(pVolInfo, vnode, num, flgs, pCmn, pWhich, pLbls, pVals, pSizs) \

((pVolInfo) ->cmn.pRtns->pVNodeSetAttrInfo) \

(pVolinfo, vnode, num, flgs, pCmn, pWhich, pLbls, pVals, pSizs)

Which common attributes and which arrays of the label/value/size arrays that need to be stored are
defined by the flgs field. Which particular elements of each (label/value/size) array to be filled in is
defined by the pWhich byte array. If num is 0 or pWhich is null then no label/value/size array elements
should be stored. If an element of pWhich is maxU8 then the corresponding label/value/size array
element should be stored. If the data is stored successfully then the pWhich array element should be set
to 1.

Function Protolype

VNMakeNative

Gets rid of all concepts not native to a file system (ie res/info fields) and return the native form name of
the file after being "stripped”.

Returns STATUS.

typedef STATUS FunctionPtr(P_VNODE MAKE NATIVE) (

P_VOL_INFO pVollInfo,
VOL_VNODE vnode, // Handle of vnode
P_STRING pName // In/Out: Return buffer for native name

)i
#define VNMakeNative (pVolInfo, vnode, pName) \
((pVolInfo) ->cmn.pRtns->pVNodeMakeNative) \
(pVolinfo, vnode, pName)

VOL.H

% Misc functions follow:

Funciion Prototyge

VNFlush

Flushes all buffers associated with this vnode.
Returns STATUS.

typedef STATUS FunctionPtr (P_VNODE FLUSH) (
P_VOL _INFO pVoliInfo,
VOL_VNODE vnode // Handle of vnode
)i
#define VNFlush(pVolInfo, vnode) \
((pvolInfo)->cmn.pRtns->pVNodeFlush) \
(pVolInfo, vnode)

Funetion Prototype

DirldGetParent
Gets the dir id of the parent of a node (also identified by dir id).

Returns STATUS.

typedef STATUS FunctionPtr(P_DIRID GET PARENT) (

P_VOL INFO pVolinfo,

U32 node, // Node identified by dir id
P _U32 pParent, // In/Out: dir id of parent
P_BOOLEAN pParentIsRoot // In/Out: parent is root

)i
#define DirIdGetParent (pVolInfo, node, pParent, pParentIsRoot) \
((pVolInfo)->cmn.pRtns->pDirldGetParent) \
(pVolInfo, node, pParent, pParentIsRoot)

% Debugging functions follow:

Funclion Profotype

VNRefCount

Gets the volume’s ref count for a vnode.

Returns STATUS.

typedef STATUS FunctionPtr(P_VNODE REF COUNT) (
P_VOL_INFO pVollInfo, // Vol Info
VOL_VNODE vnode, // The vnode to get info about
P Ulé "~ pRefCount // Out: Reference count on vnode

)i
#define VNRefCount (pvVolInfo, vnode, pRefCount) \
((pVolInfo) ->cmn.pRtns->pVNodeRefCount) \
(pVolInfo, vnode, pRefCount)

¥» This is the definition for the table of volume routines:

typedef struct VOL RTNS {
// Vol General...

P_VOL_STATUS pVolStatus;
P_VOL_SET_VOL_NAME pVolSetVolName;
P_VOL UPDATE VOL_INFO pVolUpdateVolInfo;
P_VOL_SPECIFIC_MSG pVolSpecificMsg;
// VNode Access...

P_VNODE_GET pVNodeGet ;
P_VNODE_NEXT CHILD pVNodeNextChild;

P_VNODE GET BY DIR ID pVNodeGetByDirld;
P_VNODE_DUP pVNodeDup;

7 / FILE SYSTEM

96 PENPOINT APl REFERENCE
Part 7 / File System

P_VNODE_RELEASE pVNodeRelease;
// Directory Handle Related...

P_VNODE CREATE pVNodeCreate;
P_VNODE_DELETE pVNodeDelete;
P_VNODE_MOVE pVNodeMove;
P_VNODE DIR POS DEL ADJ pVNodeDirPosDelAdj;
P_VNODE_GET DIR ID pVNodeGetDirld;
// File Handle Related...

P_VNODE_READ pVNodeRead;
P_VNODE_WRITE pVNodeWrite;
P_VNODE GET_SIZE pVNodeGetSize;
P_VNODE_SET SIZE pVNodeSetSize;
// Attributes...

P_VNODE_GET NAME PVNodeGetName;

P_VNODE GET NUM ATTRS pVNodeGetNumAttrs;
P_VNODE GET ATTR INFO pVNodeGetAttrInfo;
P_VNODE_SET ATTR INFO pVNodeSetAttrInfo;

P_VNODE MAKE NATIVE pVNodeMakeNative;
// Misc...

P_VNODE_FLUSH pVNodeFlush;
P_DIRID GET_ PARENT pDirIdGetParent;
// Debugging...

P_VNODE_REF_COUNT pVNodeRefCount ;
// Spares...

P_UNKNOWN pSparel;
P_UNKNOWN pSpare2;
P_UNKNOWN pSpare3;

} VOL RTINS, *P_VOL_RTNS;

Class FileSystem Messages

7> These messages are used by volume code

msgFSRegisterVolClass

Registers a volume class with the file system.

Takes P_FS_REGISTER_VOL_CLASS, returns STATUS.

#define msgFSRegisterVolClass MakeMsg (clsFileSystem, 0)
Arguments typedef struct FS_REGISTER VOL CLASS {
CLASS volClass; // Vol class of volume
FS_VOL_TYPE volType; // Type of volume

} FS_REGISTER VOL CLASS, *P_FS REGISTER VOL CLASS;

msgFSInstallVol

Creates a volume’s root dir handle and register it with the file system.

Takes P_FS_INSTALL_VOL, returns STATUS.

Arguments typedef struct FS_INSTALL VOL {
OBJ_KEY key; // Volume’s key.
CLASS volClass; // Class of the volume.
VOL_VNODE vnode; // Root directory vnode.

P_VOL_INFO pVollInfo; // In/Out: Volume info block.
} FS_INSTALL VOL, *P_FS INSTALL VOL; :

Comments The volume should mark itself as connected and all observers of theFileSystem will be notified that a
volume has been installed. (Note: The message is defined in fs.h so observers can use it.)

#define msgFSInstallVol MakeMsg(clsFileSystem, 1)

|

VOL.H 97
Class FileSystem Messages

msgFSRemoveVol

Removes a volume from the file system and destroy its root dir handle.

Takes P_FS_REMOVE_VOL, returns STATUS.

Argumenis typedef struct FS_REMOVE VOL {
OBJ_KEY key; // Volume’s key.
CLASS volClass; // Class of the volume.
P_VOL_INFO pVoliInfo; // Volume info block.
} FS_REMOVE VOL, *P_FS REMOVE VOL;
Comments Observers of theFileSystem will be notified of the change. (Note: The message is defined in fs.h so
observers can use it.)
#define msgFSRemoveVol MakeMsg(clsFileSystem, 2)
msgFSConnectVol
Marks a volume as connected and notify observers of theFileSystem.
Takes P_FS_CONNECT_VOL, returns STATUS.
Arguments typedef struct FS_CONNECT VOL {
P_VOL_INFO pVolInfo; // Volume info block.
} FS_CONNECT VOL, *P_FS_CONNECT VOL;
Comments (Note: The message is defined in fs.h so observers can use it.)
#define msgFSConnectVol MakeMsg(clsFileSystem, 3)
msgFSDisconnectVol
Marks a volume as disconnected and notify observers of theFileSystem.
Takes P_FS_DISCONNECT_VOL, returns STATUS.
Arguments typedef struct FS_DISCONNECT VOL {
P_VOL_INFO pVolInfo; // Volume info block.
} FS_DISCONNECT VOL, *P_FS DISCONNECT VOL;
Comments (Note: The message is defined in fs.h so observers can use it.)
#define msgFSDisconnectVol MakeMsg(clsFileSystem, 4)
msgFSVolList
Returns device list for given class and count of volumes of that class.
Takes P_FS_VOL_LIST, returns STATUS.
#define msgFSVollist MakeMsg (clsFileSystem, 5)
Arguments Enum16 (FS_VOL LIST ACCESS) {
fsAccessVolList =0, // Also returns head of list.
fsReleaseVolList =1,
fsGetHeadOfVolList = 2

}i
typedef struct FS_VOL_LIST {

FS_VOL LIST ACCESS access; // See above.

OBJECT volClass; // Class of the volumes.

Ulé volCount; // Out: Number of volumes.
P_VOL_INFO pVolinfo; // Out: First vol info block.

} FS_VOL_LIST, *P_FS VOL_LIST;

7 / FILE SYSTEM

98 PENPOINT API kEFERENCE
Part 7 / File System

msgFSUnRegisterVolClass

UnRegisters a volume class from the file system.

Takes P_CLASS, returns STATUS.
#define msgFSUnRegisterVolClass MakeMsg (clsFileSystem, 6)

msgFSVollsBusy

Checks to see if a volume can be removed.
Takes P_FS_VOL_INFO, returns STATUS.
#define msgFSVolIsBusy MakeMsg(clsFileSystem, 7)

Comments If no user files/dirs are open and all caches have been written to the volume then the volume may be
removed. This method should only be called by the volume to be removed.

If the volume can be removed then stsOK is returned. If the volume can not be removed then
stsFSVolBusy is returned.

msgFSExclVolAccess

Allows a volume class to obtain exclusive access to a volume and to release the exclusive access.

Takes P_FS_EXCL_VOL_ACCESS, returns STATUS.

#define msgFSExclVolAccess MakeMsg (clsFileSystem, 8)
Arguments Enuml6 (EXCL_VOL ACCESS) {
xvaAcquireVolIfNotBusy = 1, // Acquire volume if not accessed
xvaReleaseVol =2

Vi
typedef struct FS_EXCL VOL_ACCESS {
EXCL_VOL_ACCESS mode;
P_VOL_INFO pvolInfo;
} FS_EXCL VOL_ACCESS, *P_FS_EXCL VOL_ACCESS;
Caomments This is used during the update volume list portions of volume classes. Volume classes should not try to

update a volume if it is busy.

If the volume was not busy and was acquired then stsOK is returned. If the volume was busy then a non
stsOK is returned.

Class Volume Messages

msgVolUpdateVolumes

Has the volume class update its list of volumes.

Takes P_VOL_UPDATE_VOLUMES, returns STATUS.

#define msgVolUpdateVolumes MakeMsg (clsVolume, 0)
Arguments Enuml6 (FS_UPDATE VOLS MODE) {

// Bn update should be done to all devices
fsUpdateAllDevices = flag0,

// The update request is in response to a power down notification ‘
fsUpdatePoweringDown = flagl, \

// The update request is in response to a power up notification
fsUpdatePoweringUp = flag2,

// Update searching for a volume?
fsUpdateSearchingForVolume = flag3
i ;

Comments

VOL.H 99
Class Volume Messages Formatting

typedef struct VOL_UPDATE VOLUMES ({

FS_UPDATE VOLS_MODE updateMode; // See above.
U32 sparel; // For future use.
U32 spare2; // For future use.

} VOL UPDATE VOLUMES, *P_VOL UPDATE VOLUMES;

All volumes are sent this message every two seconds to give them a chance to do periodic volume
updating. If the user has requested a disk/volume that is not connected then volumes are sent this
message with the fsUpdateSearchingForVolume flag set. Volumes should not notify observers of volume
connections, diconnections etc if a search is in progress. The notification should be deferred until a later
update request is sent. If the user has triple tapped on the connections notebook, asking to update all
volumes, then volumes are sent this message with the fsUpdateAllDevices flag set.

7 Volume Specific Messages

msgVolEjectMedia

Has the volume eject its media.

Takes void, returns STATUS.

#define msgVolEjectMedia MakeMsg {clsVolume, 10)
Comments Passed as a volume specific msg by the file system.

msgVollnvalidateCaches

Allows volumes to invalidate cache buffers at warm boot time.

Takes void, returns STATUS.

#define msgVolInvalidateCaches MakeMsg (clsVolume, 11)
Comments Passed as a volume specific msg by the file system at power up time.

msgVolUpdateBootCode

Reads image of boot sector from mil.res and stores onto boot sector.

‘Takes void, returns STATUS.

#define msgVolUpdateBootCode MakeMsg (clsVolume, 12)
Comments Passed as a volume specific msg by the installation utility.

Class Volume Messages Formatting

Comments

msgVolFormatVolumelnit

This msg is sent to a volume to initiate a reformat of the volume.

Takes P_VOL_FORMAT_MEDIA_INIT, returns STATUS.
#define msgVolFormatVolumeInit MakeMsg (clsVolume, 20)

This initiates the format from the current owner of the block device. The volume object is destroyed
(although there is a possibility that the destroy will fail) and then the block device of that volume, the
volume offset on the block device and the volume size are returned. Call the volume class that is to
format the volume with the message msgVolFormatMedialnit passing it this information. It will return
a format id.

7 / FILE SYSTEM

100 PENPOINT API REFERENCE
Part 7 / File System

Note that all other format related messages are sent to the class of the volume, because the volume will
no longer exist.

msgVolFormatMedialnit

Takes a block device object and returns a format id to be used with the other format messages.

Takes P_VOL_FORMAT_MEDIA_INIT, returns STATUS.

tdefine msgVolFormatMedialInit MakeMsg (clsVolume, 21)
Arguments typedef struct VOL FORMAT MEDIA INIT {
OBJECT blockDevice; // A block device
U32 volumeOffset; // Format device beginning here
U32 volumeSize; // Amount of device to be formatted
P_UNKNOWN formatId; // Out: Format id

} VOL_FORMAT MEDIA INIT, *P_VOL FORMAT MEDIA INIT;

Comments NOTE: volumeOffset should be zero and volumeSize should be zero if you wish to format the entire
device (vs a partition of the device).

msgVolMediaCapacities

Returns the possible format capacities for the device requesting format.

Takes P_VOL_MEDIA_CAPACITIES, returns STATUS.

#define msgVolMediaCapacities MakeMsg (clsVolume, 22)
Arguments typedef struct VOL MEDIA CAPACITIES {
P_UNKNOWN formatId; // Format id from format/reformat.
Ul6 maxCapacities; // Size of output capacities array.
Ule numCapacities; // Out: Actual number of capacities.
P_U32 pCapacities; // In/Out: Capacities.

} VOL_MEDIA CAPACITIES, *P VOL MEDIA CAPACITIES;

Comments This messages is sent to the class of the volume.

msgVolFormatMediaSetup

Has the vol class set the media to be ready for a format and determines if the block device will require
format media (vs format track).

Takes P_VOL_FORMAT_MEDIA, returns STATUS.

t#define msgVolFormatMediaSetup MakeMsg (clsVolume, 23)
Argurnents typedef struct VOL FORMAT MEDIA {
P_UNKNOWN formatId; // Format id from format/reformat.
U32 capacity; // Desired capacity to format for.
P_STRING pName; // Name of re/formatted volume.
Ulé percentDone; // Out: Progress report.

} VOL_FORMAT MEDIA, *P_VOL FORMAT MEDIA;

3
b4

Comments This messages is sent to the class of the volume.

msgVolFormatMediaBegin

Has the vol class begin the format of its media.

Takes P_VOL_FORMAT_MEDIA, returns STATUS.
#define msgVolFormatMediaBegin MakeMsg (clsVolume, 24)

VOL.H 101
Class Volume Messages Duplicating

Messoge typedef struct VOL FORMAT MEDIA ({
Arguments P_UNKNOWN formatld; // Format id from format/reformat.
U32 capacity; // Desired capacity to format for.
P_STRING pName; // Name of re/formatted volume.
Ul6 percentDone; // Out: Progress report.
} VOL_FORMAT MEDIA, *P_VOL FORMAT MEDIA;
Comments This step may do a format media if format track is not supported by the block device and may partition
the media if it needs partitioning.
This messages is sent to the class of the volume.
msgVolFormatMediaCont
Has the vol class do a format of its media.
Takes P_VOL_FORMAT_MEDIA, returns STATUS.
#define msgVolFormatMediaCont MakeMsg (clsVolume, 25)
Messuge typedef struct VOL FORMAT MEDIA {
Arguments P_UNKNOWN formatld; // Format id from format/reformat.
U32 capacity; // Desired capacity to format for.
P_STRING pName; // Name of re/formatted volume.
Ul6 percentDone; // Out: Progress report.
} VOL FORMAT MEDIA, *P_VOL_FORMAT MEDIA;

Comments If format track is supported then this step will format the next track. If the media was formatted during
msgVolFormatMediaBegin then this will only do verifying of format. If percentDone is not 100, then
keep calling this until it is.

This messages is sent to the class of the volume.
msgVolCancelFormat

Has the vol class cancel the format.

Takes P_UNKNOWN, returns STATUS.

#define msgVolCancelFormat MakeMsg (clsVolume, 26)

Comments This messages is sent to the class of the volume.

7 Class Volume Messages Duplicating

Commenis

msgVolDuplicateVolume

This msg is sent to a volume to initiate a duplication of that volume.
Takes PP_UNKNOWN, returns STATUS.

#define msgVolDuplicateVolume MakeMsg (clsVolume, 30)

A duplicate block is then allocated and a duplicateld that can be used with the other duplicate messages
is returned. Note that the other messages are sent to the class of the volume.

msgVolDuplicateMedia

Has the volume class duplicate more of the disk.

Takes P_VOL_DUPLICATE_MEDIA, returns STATUS.
#define msgVolDuplicateMedia MakeMsg (clsVolume, 31)

7 / FILE SYSTEM

102 PENPOINT API REFERENCE
Part 7 / File System

Arguments typedef struct VOL DUPLICATE MEDIA {

P_UNKNOWN duplicateld; // Duplicate id from duplicate.
BOOLEAN sourceDisk; // Is this source or destination?
Ul6 percentDone; // Out: Progress report.

} VOL_DUPLICATE MEDIA, *P_VOL_DUPLICATE_MEDIA;

Comments If source is TRUE then data will be read from the source disk. If source is FALSE then data is written to
the destination disk. The value percentDone is updated to reflect how much of the duplication has been
completed. If percentDone is not 100, then keep calling this until it is.
msgVolDuplicateReady
Checks to see if the source/dest disk of the duplicate is ready.

Takes P_VOL_DUPLICATE_MEDIA, returns STATUS.
#define msgVolDuplicateReady MakeMsg (clsVolume, 32)
Message typedef struct VOL DUPLICATE_MEDIA {
Arguments P_UNKNOWN duplicateId; // Duplicate id from duplicate.
BOOLEAN sourceDisk; // Is this source or destination?
Ule percentDone; // Out: Progress report.
} VOL DUPLICATE MEDIA, *P_VOL DUPLICATE MEDIA;
Comments The return percentDone is unused.

msgVolCancelDuplication

Have the vol class cancel the duplication.

Takes P_UNKNOWN, returns STATUS.

#define msgVolCancelDuplication MakeMsg (clsVolume, 33)

o

PENPOINT APl REFERENCE / VOL Il

_PART 7 / FILE SYSTEM

VOLGODIR.H

This file contains declarations for the common part of godir volumes. Examples of these include

clsVolDisk and clsVolTOPS.

Information in this file is useful if you are trying to understand the format of PenPoint.dir files or if you
are writing an installable volume. '

$ifndef VOLGODIR_ INCLUDED
$define VOLGODIR_INCLUDED

Include file dependencies for this include file

$ifndef GO_INCLUDED
#include <go.h>
#endif

$ifndef OS_INCLUDED
#include <os.h>
#endif

#ifndef CLSMGR_INCLUDED
$include <clsmgr.h>
#endif

#ifndef FS_INCLUDED
#include <fs.h>
#endif

#ifndef VOL_INCLUDED
$include <vol.h>
$endif

Common #defines and typedefs
Defines
GO directory related defines

#$define goNameIndex 0
#define goDirSearchFromFirst oL
#define goDirHeaderBufSize 112 // Min space for 3 max names plus some.

Types
General types

Enumerated constants for searching for particular directory entries

EnumlG(GO_DIR_FINDTYPE) {

gdFindEmpty =0,
gdFindNextName =1,
gdFindNativeName =2,

gdFindGoDirName 3

}i

104 PENPOINT APl REFERENCE
Part 7 / File System

Note that this can also be treated as an array of U32, using the tag part of the associated fsAttr as the
index into the array, except flags and unused together form a special case of a U32!!!

typedef struct VOLGODIR CMN_ATTRS {

FS_NODE_FLAGS flags;

ule unused; // Was sequence
FS DATE TIME dateCreated;

FS_DATE TIME dateModified;

FS_FILE SIZE fileSize;

} VOLGODIR_CMN_ATTRS, *P_VOLGODIR_CMN_ATTRS;

GO directory related types

Each directory entry is identified as either erased (e) or full (f).

Enuml6 (GO_DIR ENTRY TYPES) {
goDirUnusedEntry = 'e’,
goDirNodeEntry = £’

bi

typedef struct GO_DIR USER ATTR {

FS_ATTR LABEL label; // file system attribute label.
Ul6 size; // size of value field.
Us value; // a U32, string or var length attr.

} GO DIR USER ATTR, *P_GO DIR USER ATTR;
typedef struct GO DIR ENTRY HEADER {
U8 type; // 'e': erased or 'f' for file/dir.
Ulé size; // Actual size on disk is modulo 32.
} GO_DIR ENTRY HEADER, *P_GO_DIR_ENTRY HEADER;
Go name is located at goDirEntry.buf, always the first entry. The define goNamelndex can be used to
index to the name. It is important that the size of GO_DIR_ENTRY is modulo 32.

typedef struct GO_DIR_ENTRY {
GO_DIR_ENTRY HEADER hdr;

Ul6 numUserAttrs; // Number of user attributes.

U8 nativeNameIndex;// Offset to native file name.

U8 rsrvdForLater; // UNUSED SPARE.

Us userAttrsIndex; // Offset to first user attr.
FS_NODE_FLAGS flags; .

Ul6 rsrvdForLater2; // WAS SEQUENCE

FS_DATE TIME dateCreated;

us buf [goDirHeaderBufSize]; // Min space for names.

} GO_DIR ENTRY, *P_GO_DIR ENTRY, **PP_GO DIR_ENTRY;
VNode types

VNode related type declarations
Enuml6 (VOLGODIR_VNODE_FLAGS) {

gdfPenPointDir = flagl, // This is a PenPoint.Dir file
gdfRootDir = flag2,
gdfNodeCorrupt = flag3,
gdfNodeModified = flag4,
gdfHasGoDirParent = flag5,
gdfHasGoDirSister = flagé,
gdfNoGoDirSister = flag7

}i
typedef struct VOLGODIR VNODE_COMMON {

Ule6 refCount;

Ul6 numUserAttrs;
U32 goDirPos;
VOLGODIR_VNODE FLAGS flags;
VOLGODIR CMN ATTRS attrs;

} VOLGODIR_VNODE COMMON;

Funciion Prototype

VOLGODIR.H
Common #defines and typedefs

typedef struct VOLGODIR VNODE {
struct VOLGODIR VNODE *pNext;
VOLGODIR_VNODE COMMON cmn;
} VOLGODIR VNODE, *P_VOLGODIR VNODE, **PP_VOLGODIR VNODE;

Penpoint dir cache

typedef struct GO_DIR CACHE {

U32 size; // How much of data is valid?
U32 base; // Position in penpoint dir.
P_VOLGODIR VNODE owner; // Cache for which dir.

U8 buffer [512]; // Fixed size buffer.

} GO_DIR CACHE, *P_GO DIR CACHE;
Vollnfo types

This is the instance data for a GO dir volume object

typedef struct VOLGODIR_INFO {
// Common volume info...
struct VOLGODIR INFO *pNext;
FS_VOL_HEADER hdr;
VOL_COMMON cmn;
// Pointer to the low level volumes routines...
struct VOLGODIR RTINS *pRtns;
// Head of the vnode chain...

P_VOLGODIR VNODE pFirstVNode;

// Buffer used by the GO DIR volume part - does not need to be inited...
GO_DIR_ENTRY goDirEntry;

// GO DIR buffer & info...

GO_DIR CACHE goDirCache;

// Beyond this point each volume will have their own info...

//

//

//

} VOLGODIR_INFO, *P_VOLGODIR INFO;
Exported routine that returns pointer GoDirShell entrypoint table
P_VOL _RTNS EXPORTED GoDirShellEntrypoint (void);

Typedefs for functions supported by each godir lower level volume

Funetion Prototype

Comments

LVStatus
Has a volume check for readiness.
Returns STATUS.
typedef STATUS FunctionPtr (P_LVOL_STATUS) (
P_VOLGODIR INFO pVolInfo,
P_BOOLEAN pChanged // In/Out: Has volume changed?

)i
#define LVStatus(pVolInfo, pChanged) \
((pVolInfo) ->pRtns->pLVolStatus) \
(pVolinfo, pChanged)

Possible return status are stsOK, stsFSVolDisconnected, other errors. If status is okay, should indicate if

volume has changed.

7 / FILE SYSTEM

106 PENPOINT APl REFERENCE
Part 7 / File System

Function Prototype

LVSetVolName

Requests for a volume to set/change its volume name.
Returns STATUS.

typedef STATUS FunctionPtr(P_LVOL_SET VOL NAME) (
P_VOLGODIR_INFO pVvollInfo, // Vol Info
P_STRING pName // Vol name
)i
#define LVSetVolName(pVolInfo, pName) \
({pVolInfo)->pRtns->pLVolSetVolName) \
(pVolInfo, pName)

Funetion Prototype

LVUpdatelnfo

Requests for a volume to update its user accessable volume info.
Returns STATUS.

typedef STATUS FunctionPtr(P_LVOL_UPDATE_INFO) (
P_VOLGODIR_INFO pvolInfo // Vol Info
)i
#define LVUpdateInfo (pVolInfo) \
((pVolInfo)->pRtns->pLVolUpdatelInfo) \
(pVolInfo)

Funchion Protolype

LVSpecificMsg

Passes a volume specific message down to a volume.
Returns STATUS.

typedef STATUS FunctionPtr (P_LVOL_SPECIFIC_MSG) (
P_VOLGODIR INFO pVollnfo,

P_VOLGODIR_VNODE pVNode, // Handle of vnode
MESSAGE msg, // Message
P_UNKNOWN pArgs // In/Out: Arguments for message

)i
$#define LVSpecificMsg(pVolInfo, pVNode, msg, pArgs) \
((pVolInfo) ->pRtns->pLVolSpecificMsg) \
(pVolInfo, pVNode, msg, pArgs)

Function Prototype

LVNGet '

Gets a vnode given pVollnfo, dirVNode and name of node in the directory.

Returns STATUS.

typedef STATUS FunctionPtr (P_LVNODE GET) (
P_VOLGODIR_INFO pVolInfo, // Vol Info
P_VOLGODIR_VNODE pDirVNode, // VNode of parent directory
P_STRING pFileName, // Name of file node
P_UNKNOWN pVolSpecific, // Vol specific info
PP_VOLGODIR VNODE ppVNode // Out: Returned vnode handle

);
#define LVNGet (pVolInfo, pDirVNode, pFileName, pVolSpecific, ppVNode) \
((pVolInfo) ->pRtns->pLVNodeGet) \
(pVolInfo, pDirVNode, pFileName, pVolSpecific, ppVNode)

VOLGODIR.H
Common #defines and typedefs

107

Funchion Prototype

LVNGetAndOpenParent

Gets a vnode’s parent given pVollnfo and a vnode and open it.

Returns STATUS.

typedef STATUS FunctionPtr (P_LVNODE GET OPEN_PARENT) (
P_VOLGODIR_ INFO pvollnfo, /! Vol Info
P_VOLGODIR_VNODE pVNode, // VNode to get parent of
PP_VOLGODIR VNODE ppDirVNode, // Out: VNode handle of parent
P_BOOLEAN pComplete // Out: Did the vnode already exist?

);
#define LVNGetAndOpenParent (pVolInfo, pVNode, ppDirVNode, pComplete) \
((pVoliInfo) ->pRtns->pLVNodeGetAndOpenParent) \
(pVolInfo, pVNode, ppDirVNode, pComplete)

Function Prototype

Cosmants

LVNGetAndOpenByDirld
Gets a dir vnode given pVollnfo and the directory’s dirID.

Returns STATUS.

typedef STATUS FunctionPtr (P_LVNODE_GET OPEN_BY DIR ID) (

P_VOLGODIR INFO pVollnfo, // Vol Info

P_VOLGODIR VNODE pDirVNode, // VNode of parent of dir

U32 dirld, // Dir ID of vnode to get & open
PP_VOLGODIR VNODE ppDirVNode, // Out: Returned vnode handle of dir
P_BOOLEAN pComplete // Out: Did the vnode already exist?

)i
#define LVNGetAndOpenByDirId(pVolInfo, pDirVNode, dirId, ppDirVNode, pComplete) \
((pVolinfo) ->pRtns->pLVNodeGetAndOpenByDirId) \
(pVolInfo, pDirVNode, dirId, ppDirVNode, pComplete)

Note: pDirVNode could be null. If it isn’t then it can be used.

Function Pratotype

LVNRelease

Releases a vnode.
Returns STATUS.

typedef STATUS FunctionPtr (P_LVNODE_RELEASE) (
P_VOLGODIR_INFO pVollnfo, // Vol Info
P_VOLGODIR_VNODE pVNode // VNode to release
)i
#define LVNRelease(pVolInfo, pVNode) \
((pVolInfo) ->pRtns->pLVNodeRelease) \
(pVolInfo, pVNode)

Function Protetype

LVNOpen

Opens a vnode.
Returns STATUS.

typedef STATUS FunctionPtr(P_LVNODE OPEN) (

P_VOLGODIR_INFO pVollInfo, // Vol Info

P_VOLGODIR VNODE pVNode, // VNode to open
P_STRING pName, // Name of node
VNODE_ACCESS access // R/W, exclusivity, etc.

)i
#define LVNOpen(pVolInfo, pVNode, pName, access) \
((pVolInfo)->pRtns->pLVNodeOpen) \
(pVolInfo, pVNode, pName, access)

7 / FILE SYSTEM

108 PENPOINT APl REFERENCE
Part 7 / File System

Function Prototype

LVNClose

Closes a vnode.

Returns STATUS.

typedef STATUS FunctionPtr (P_LVNODE CLOSE) (
P_VOLGODIR_INFO pVolInfo, // Vol Info
P_VOLGODIR _VNODE pVNode // VNode to close

)i
#define LVNClose(pVolInfo, pVNode) \
((pvolInfo) ->pRtns->pLVNodeClose) \
(pVolInfo, pVNode)

Function Prototype

LVNCreate
Creates a file or directory within the directory given.
Returns STATUS.
typedef STATUS FunctionPtr (P_LVNODE_CREATE)} (
P_VOLGODIR_INFO pVollnfo, // Vol Info
P_VOLGODIR_VNODE pDirVNode, // Directory where new node belongs
P_STRING pName, // Name of new file/dir
FS_NODE FLAGS fileType // Create a dir or a file

)i .
#define LVNCreate(pVolInfo, pDirVNode, pName, fileType) \
((pVolInfo) ->pRtns->pLVNodeCreate) \
(pVolInfo, pDirVNode, pName, fileType)

Funciion Profotype

LVNDelete
Deletes a file system node; either a dir or a file node.
Returns STATUS.
typedef STATUS FunctionPtr (P_LVNODE DELETE) (
P_VOLGODIR_INFO pVolInfo, // Vol Info
P_VOLGODIR_VNODE pVNode, // VNode to release
BOOLEAN visible // At root of hierarchical delete?

)i
#define LVNDelete(pVolInfo, pVNode, visible) \
({pVolInfo) ->pRtns->pLVNodeDelete) \
(pVolInfo, pVNode, visible)

Function Prototype

LVNMove
Moves a file or directory to a directory w/ the new (old) name.
Returns STATUS.
typedef STATUS FunctionPtr (P_LVNODE MOVE) (
P_VOLGODIR_INFO pVolInfo, // Vol Info
P_VOLGODIR VNODE pSrcDirVNode, // Dir of source node
P_VOLGODIR_VNODE pSrcVNode, // Source node
P_VOLGODIR VNODE pDstDirVNode, // Dir of dest
P_STRING pDstName // Name to give the dest node

)i
#define LVNMove (pVolInfo, pSrcDirVNode, pSrcVNode, pDstDirVNode, pDstName) \
((pVolInfo)->pRtns->pLVNodeMove) \
(pVolInfo, pSrcDirVNode, pSrcVNode, pDstDirVNode, pDstName)

VOLGODIR.H
Common #defines and typedefs

109

Funchon Prototype

LVNReadDir

Returns the next entry from the specified directory.

Returns STATUS.

typedef STATUS FunctionPtr(P_LVNODE READ DIR) (
P_VOLGODIR_INFO pVolInfo, // Vol Info
P_VOLGODIR VNODE pDirVNode, // Directory to read from
P _U32 pDirPos, // In/Out: Current position
P_STRING pName // Out: Name of the node

)i
#define LVNReadDir (pVolInfo, pDirVNode, pDirPos, pName) \
({pVolInfo)->pRtns->pLVNodeReadDir) \
(pVolInfo, pDirVNode, pDirPos, pName)

Function Prototype

LVNDirPosDeleteAdjust

Makes any necessary adjustment to the dirPos after a node has been deleted.
Returns STATUS.

typedef STATUS FunctionPtr(P_LVNODE_DIR POS DEL ADJUST) (

P_VOLGODIR_INFO pVolInfo,

P_VOLGODIR_VNODE dirVNode, // Handle of directory vnode
P_VOLGODIR VNODE vnode, // Handle of deleted vnode

P_U32 pDirPos // In/Out: Dir pos data before delete

)i
#define LVNDirPosDeleteAdjust (pVolInfo, dirVNode, vnode, pDirPos) \
((pVolInfo) ->pRtns->pLVNodeDirPosDelAdjust) \
(pVolInfo, dirVNode, vnode, pDirPos)

Funciion Prototype

LVNGetDirld

Returns a well known constant dir id that represents this directory.
Returns STATUS.

typedef STATUS FunctionPtr(P_LVNODE_GET DIR ID) (

P_VOLGODIR INFO pvollnfo, // Vol Info
P_VOLGODIR VNODE pVNode, // Return dir id of this dir vnode
P_U32 pDirId // In/Out: The directory’s id

)i '
#define LVNGetDirId(pVolInfo, pVNode, pDirld) \
((pVolInfo) ->pRtns->pLVNodeGetDirId) \
(pVolInfo, pVNode, pDirlId)

Function Prototype

LVNName

Returns the name a file system node.
Returns STATUS.

typedef STATUS FunctionPtr(P_LVNODE NAME) (

P_VOLGODIR_INFO pvolinfo, // Vol Info
P_VOLGODIR VNODE pVNode, // VNode to get name of
P_STRING pName // In/Out: Name

)i
#define LVNName (pVolInfo, pVNode, pName) \
((pVolInfo) ->pRtns->pLVNodeName) \
(pVolInfo, pVNode, pName)

7 / FILE SYSTEM

110 PENPOINT APl REFERENCE
Part 7 / File System

LVNGetNumAttrs

Returns the number of non-standard attributes, given the vnode.

Returns STATUS.

Function Prototype typedef STATUS FunctionPtr (P_LVNODE GET NUM ATTRS) (

P_VOLGODIR_INFO pVollnfo, // Vol Info
P_VOLGODIR VNODE pVNode, // VNode of node to read from
P_Ul6 pNumAttrs // Out: num of attrs to get

)i
#define LVNGetNumAttrs(pVolInfo, pVNode, pNumAttrs) \
((pVolInfo)->pRtns->pLVNodeGetNumAttrs) \
(pVolInfo, pVNode, pNumAttrs)

LVNGetAttrInfo

Gets a node’s attributes, given the vnode.

Returns STATUS.

Funciion Prototype typedef STATUS FunctionPtr (P_LVNODE GET ATTR INFO) (

P_VOLGODIR INFO pVolInfo, // Vol Info
P_VOLGODIR VNODE pVNode, // VNode of node to read from
Ule num, // Num of attrs to get
VNODE_ATTR FLAGS flgs, // Get which common attrs
P_VNODE CMN ATTRS pCmn, // Common attrs
P_U8 pWhich, // Which user defined attrs
P_FS_ATTR_LABEL plbls, // In/Out: attribute labels
P_FS_ATTR VALUE pvals, // In/Out: attribute values
P_FS_ATTR SIZE pSizs // In/Out: attribute sizes

;éefine LVNGetAttrInfo (pVolInfo, pVNode, num, flgs, pCmn, pWhich, pLbls, pVals, pSizs) \
((pVolInfo)->pRtns->pLVNodeGetAttrInfo) \
(pVolInfo, pVNode, num, flgs, pCmn, pWhich, pLbls, pVals, pSizs)

Comments Which common attributes and which arrays of the label/value/size arrays that need to be filled in are
defined by the flgs field. Which particular elements of each (label/value/size) array to be filled in is
defined by the pWhich byte array. If num is 0 or pWhich is null then no label/value/size array elements
should be filled in. If an element of pWhich is maxU8 then the corresponding label/value/size array
element should be filled in. If the data is known and set then the pWhich array element should be set to
1 after setting the values.

LVNSetAttrInfo
Sets a node’s attributes, given the vnode.
Returns STATUS.

Funciion Prototype typedef STATUS FunctionPtr (P_LVNODE SET ATTR_INFO) (
P_VOLGODIR_INFO pVolInfo, // Vol Info
P_VOLGODIR_VNODE pVNode, // VNode of node to read from
Uleé num, // Num of attrs to set
VNODE_ATTR_FLAGS flgs, // Set which common attrs
P_VNODE_CMN ATTRS pCmn, // Common attrs
P U8 pWhich, // Which user defined attrs
P_FS ATTR LABEL plbls, // In/Out: attribute labels
P_FS ATTR VALUE pvals, // In/Out: attribute values
P_FS ATTR SIZE pSizs // In/Out: attribute sizes

)i
#define LVNSetAttrInfo(pVolInfo, pVNode, num, flgs, pCmn, pWhich, pLbls, pVals, pSizs) \
((pVolInfo) ->pRtns->pLVNodeSetAttrInfo) \
(pVolInfo, pVNode, num, flgs, pCmn, pWhich, pLbls, pVals, pSizs)

Comments

VOLGODIR.H 111

Common #defines and typedefs
Which common attributes and which arrays of the label/value/size arrays that need to be stored are
defined by the flgs field. Which particular elements of each (label/value/size) array to be filled in is
defined by the pWhich byte array. If num is 0 or pWhich is null then no label/value/size array elements
should be stored. If an element of pWhich is maxU8 then the corresponding label/value/size array
element should be stored. If the data is stored successfully then the pWhich array element should be
setto 1.

Function Prototype

LVNRead

Transfers n bytes from position m in a file to a buffer.
Returns STATUS.

typedef STATUS FunctionPtr (P_LVNODE_READ) (

P_VOLGODIR_INFO pVollnfo, // Vol Info

P_VOLGODIR_VNODE pVNode, // VNode of node to read from

U32 filePos, // Starting point of read

U32 numBytes, // Number of bytes to be read

P_U8 pReadBuffer, // Destination of bytes read

P U32 pCount // Out: Actual number of bytes read

)i
#define LVNRead(pVolInfo, pVNode, filePos, numBytes, pReadBuffer, pCount) \
((pVolInfo)->pRtns->pLVNodeRead) \
(pVolInfo, pVNode, filePos, numBytes, pReadBuffer, pCount)

Funciion Prototype

LVNWrite
Transfers n bytes from a buffer to position m in a file.
Returns STATUS.
typedef STATUS FunctionPtr(P_LVNODE WRITE) (
P_VOLGODIR_INFO pVollnfo, // Vol Info
P_VOLGODIR_VNODE pVNode, // VNode of node to write to
U32 filePos, // Starting point of the write
U32 numBytes, // Number of bytes to write
P_U8 pWriteBuffer, // Destination of bytes to write
P_U32 pCount // Out: Actual number of bytes written

)i
#define LVNWrite(pVolInfo, pVNode, filePos, numBytes, pWriteBuffer, pCount) \
((pvVolInfo) ->pRtns->pLVNodeWrite) \
(pvolInfo, pVNode, filePos, numBytes, pWriteBuffer, pCount)

Funciion Prototype

LVNGetSize

Returns the size of a file.
Returns STATUS.

typedef STATUS FunctionPtr (P_LVNODE_GET_SIZE) (

P_VOLGODIR_INFO pVollInfo, // Vol Info
P_VOLGODIR_VNODE pVNode, // VNode of node to change size of
P_FS FILE SIZE pSize // The size of the file

)i
#define LVNGetSize (pVolInfo, pVNode, pSize) \
((pVolInfo)->pRtns->pLVNodeGetSize) \
(pVolInfo, pVNode, pSize)

7 / FILE SYSTEM

112 PENPOINT APl REFERENCE
Part 7 / File System

LVNSetSize
Adjusts the size of a file.
Returns STATUS.
Function Protetype typedef STATUS FunctionPtr (P_LVNODE SET SIZE) (
P_VOLGODIR_INFO pVollInfo, // Vol Info :
P_VOLGODIR VNODE pVNode, // VNode of node to change size of
FS_FILE SIZE "newSize // The new size

)i
#define LVNSetSize(pVolInfo, pVNode, newSize) \
((pVolInfo)->pRtns->pLVNodeSetSize) \
(pVolInfo, pVNode, newSize)

LVNFlush
Flushes a file.

Returns STATUS.

Function Profotype typedef STATUS FunctionPtr (P_LVNODE FLUSH) (
P_VOLGODIR_INFO pVolInfo, // Vol Info
P_VOLGODIR_VNODE pVNode // VNode of node to flush
)i
#define LVNFlush(pVolInfo, pVNode) \
((pVolInfo)->pRtns->pLVNodeFlush) \
(pVolInfo, pVNode)

LVNativeName
Returns the native file system form of this name.
Returns BOOLEAN.
Funetion Prototype typedef BOOLEAN FunctionPtr(P_LV NATIVE NAME) (
P_VOLGODIR INFO pVollInfo, // Vol Info

P_STRING pName // In/Out: Name
)i ’
#define LVNativeName (pVolInfo, pName) \
((pvolInfo)->pRtns->pLVNativeName) \
(pvolInfo, pName)

Comments A return of true implies that the name was not changed (was native), and a return of false implies that
the name was changed to be native.

LDirldGetParent
Gets the dir id of the parent of a node (also identified by dir id).
Returns STATUS.

Function Prototype typedef STATUS FunctionPtr (P_LDIRID_GET PARENT) (

P_VOLGODIR_INFO pVollnfo, // Vol Info

U32 node, // Node identified by dir id
P_U32 pParent, // In/Out: dir id of parent
P_BOOLEAN pParentIsRoot // In/Out: parent is root

)i
#define LDirIdGetParent (pVolInfo, node, pParent, pParentIsRoot) \
((pVolInfo) ->pRtns->pLDirIdGetParent) \
(pVolInfo, node, pParent, pParentIsRoot)

typedef struct VOLGODIR RTINS {
P_LVOL_STATUS
P_LVOL SET VOL_NAME
P_LVOL UPDATE INFO
P_LVOL_SPECIFIC_MSG
P_LVNODE GET
P_LVNODE_GET OPEN_PARENT
P_LVNODE GET OPEN BY DIR ID
P_LVNODE_RELEASE
P_LVNODE_OPEN
P_LVNODE_CLOSE
P_LVNODE_CREATE
P_LVNODE DELETE
P_LVNODE_MOVE
P_LVNODE READ DIR
P_LVNODE_DIR POS DEL_ADJUST
P_LVNODE GET DIR ID
P_LVNODE_NAME
P_LVNODE_GET_ NUM ATTRS
P_LVNODE_GET ATTR INFO
P_LVNODE_SET ATTR_INFO
P_LVNODE_READ
P_LVNODE_WRITE
P_LVNODE_GET_SIZE
P_LVNODE_SET SIZE
P_LVNODE_FLUSH
P_LV_NATIVE_ NAME
P_LDIRID GET PARENT

} VOLGODIR RTNS, *P_VOLGODIR RINS;

VOLGODIR.H
Common #defines and typedefs

% This is the definition for the table of volume routines

pLVolStatus;
pLVolSetVolName;
pLVolUpdateInfo;
pLVolSpecificMsg;
pLVNodeGet ;
pLVNodeGetAndOpenParent;
pLVNodeGetAndOpenByDirId;
pLVNodeRelease;
pLVNodeOpen;
pLVNodeClose;
pLVNodeCreate;
pLVNodeDelete;
pLVNodeMove;
pLVNodeReadDir;
pLVNodeDirPosDelAdjust;
pLVNodeGetDirId;
pLVNodeName;
pLVNodeGetNumAttrs;
pLVNodeGetAttrInfo;
pLVNodeSetAttrInfo;
pLVNodeRead;
pLVNodeWrite;
pLVNodeGetSize;
pLVNodeSetSize;
pLVNodeFlush;
pLVNativeName;
plLDirIdGetParent;

7 / FILE SYSTEM

PENPOINT API REFERENCE / VOL II

PARY 7 / FILE SYSTEM

VSEARCH.H

This file contains the API for clsVolSearch.
clsVolSearch inherits from clsObject.

Provides file system ui support, including formatting & duplicating disks. theVolSearcher is the only
instance of clsVolSearch.

The categories of functionality provided by theVolSearcher are:
- Reformatting/duplicating a volume:

These are sent from the disk viewer when a user selects the format or duplicate volume items from the
volume menu. The user is lead thru a series of system notes to get the information and for disk

swapping.
- Searching for a volume (because it doesn’t exist or is write protected):

This is sent from the file system when a file system request internally returns a stsFSVolDisconnected or
stsFSVolReadOnly.

#ifndef VSEARCH INCLUDED
#define VSEARCH INCLUDED

Include file dependencies

#ifndef GO_INCLUDED
#include <go.h>
#endif

#ifndef OSTYPES_INCLUDED
#include <ostypes.h>
#endif

#ifndef CLSMGR_INCLUDED
#include <clsmgr.h>
fendif

#ifndef FS_INCLUDED
#$include <fs.h>
#endif

Common #defines and typedefs

These defines and enums define the text for the notes displayed by the volSearcher. The resources are
stored in the system resource file.

Defines

Resource ids

#define vsResUIStrings MakeTag (clsVolSearch, 1)

116 PENPOINT API REFERENCE
Part 7 / File System

Types
Resource string numbers

Enuml6 (VS_STRING_IDS) {

vsFindVolumeStrsBase = 0,
vsFindGenVolumeStr =0,
vsFindDiskVolumeStr 1,
vsFindRemoteVolumeStr = 2,
vsWriteProtectedvolumeStr = 3,
vsCancelButtonStr = 4,
vsContinueButtonStr =5,
vsPercentDoneStr = 6,
vsFmtNoticeStr =1,
vsFmtChooseSizeStr = 8,
vsFmtWarningStr =9,
vsFmtAskForNameStr = 10,
vsFmtBlankNameErrStr = 11,
vsFmtBadCharErrStr =12,
vsFmtInProgressStr = 13,
vsDupInProgressStr = 14,
vsDupInsertSrcDiskStr = 15,
vsDupInsertDstDiskStr = 16,
vsDupWriteProtectedStr = 17,
vsDupReadingStr = 18,
vsDupWritingStr =19,
vsFormattingMediaStr = 20,
}i
Messages
msgVSFormatVolume

Reformats an existing volume.

Takes P_VS_FORMAT_VOLUME, returns STATUS.

Argurrents typedef struct VOL FORMAT VOLUME {
OBJECT volumeRootDir; // Root dir of volume to format
CHAR pVolumeName [nameBufLength]; // Suggested or actual name
Ulé reserved:13, // Reserved
noWarning:1, // Do not warn about dangers
maxSize:1, // Format to maximum possible size
withName:1; // Name forced to be pVolumeName
U32 reservedl;
U32 reserved2;
} VOL_FORMAT VOLUME, * P_VOL FORMAT VOLUME;
#define msgVSFormatVolume MakeMsg (clsVolSearch, 5)
Comments The volumeRootDir must be the actual root of the volume to be formatted and there cannot be any

other handles open on the volume or an error will be returned. pVolumeName will be the initial name
when the user is asked to provide a name or will be the name if the user is not asked to provide a name
(controlled by the withName flag). The warning message can be controlled with the noWarning flag.
And the choose a size interaction can be controlled with the maxSize flag.

Return Value stsRequestNotSupported The volume does not support formatting.

VSEARCH.H 117
Messages

Heturn Valde

msgVSDuplicateVolume

Copy an existing volume from one floppy disk to another floppy disk.
Takes dir/file handle of a volume, returns STATUS.

#define msgVSDuplicateVolume MakeMsg (clsVolSearch, 6)

stsRequestNotSupported The volume does not support duplicating.

Comments

msgVSFormatMedia

Formats unformatted media that does belong to any volume.

Takes block device object, returns STATUS.

$define msgVSFormatMedia MakeMsqg (clsVolSearch, 7)

This message is sent by theBlockDeviceManager when it receives a block device reset all and in the
process discovers unformatted media on a device.

Comments

msgVSUpdateVolumes

Requests theVolSearcher to update all volumes.

Takes BOOLEAN, returns STATUS.

#define msgVSUpdateVolumes MakeMsg (clsVolSearch, 8)

This message requests the volSearcher to ask all volume classes to update their list of volumes. This may
result in volumes being installed, removed, connected or disconnected. Interested parties should become
observers of theFileSystem and look for msgFSVolChanged (see fs.h). The argument passed should be

true to update all volumes.

This message can only be sent via ObjectSendXXX.

Comments

msgVSFormatCompleteNotify

Notifies observers of theVolSearcher that a format has completed.

Takes BOOLEAN, returns STATUS.

#define msgVSFormatCompleteNotify MakeMsg (clsVolSearch, 20)

The argument passed to the observer indicates whether the format was successful or not. False would be
returned if there was an error or if the format was cancelled.

Comments

msgVSNameVolume

Prompts user to name an unlabelled volume and adds new name.
Takes root dir handle of volume, returns STATUS. i
#define msgVSNameVolume MakeMsg (clsVolSearch, 9)

This message is used by volumes that have discovered unlabeled volumes. This message can only be sent
via ObjectPostXXX.

7 / FILE SYSTEM

PENPOINT API REFERENCE / VoL 11 . e

Part 8 /
System Services

PENPOINT API REF'b

PAR'!' 8 / SYS'I‘EM SERVICES

CMPSTEXT.H

This file contains the API definition for the compose-text package.

This package is used to compose a text string that needs to have pieces inserted into it. The format of
the strings makes it easy to internationalize and localize the text.

The functions described in this file are contained in SYSUTIL.LIB.

’» Format Strings

The format strings contain literal text and format codes. A format code starts with *A’, has a sequence of
one or more digits in the middle, and a single letter at the end. The digits specify which argument to the
function to use and the letter indicates the type of the argument. For instance, format code "A2s"
indicates that the second argument should be inserted, and that the argument should be a string.

The following fills ’buffer’ with the string "aB b A ¢™:
SComposeText (&buffer, &size, heap, "a *2s b *1s c", "A", "B");

The available argumedt types are:

¢ A Literal *A’ character. E.g. use "A" to put a A in a string,

L 2

s: String.

r: Resource ID of a string resource.

l: Group number and indexed list resource ID for string list. This uses two arguments.
d: U32 printed as a decimal number.

x: U32 printed as a hexadecimal number.

* 6 ¢ ¢ o

{: Singular/Plural word forms of the form "{islare}". When this argument type is used, the routine
examines the specified argument. If its value is 1, the first string is used. Otherwise the second string
is used.

The following code reads in a string from the TK group for a sample’ project.

SComposeText (¢buffer, &size, heap,
"The filled in string is *11.", resGrpTK, samplelListResId);
As an example of the ’{’ format code, the following code generates the first string if numApples==1 and
the second string if numApples==5.

SComposeText (¢buffer, &size, heap,
"There “l{islare} 7~1d “1{applelapples}.", numApples);

"There is 1 apple.”
"There are 5 apples."

> Memory Management

All of the procedures fill in a buffer with the generated string. There are two ways of supplying the
buffer memory.

¢ You can supply a buffer pointer and buffer length. Do this by passing the pointer as *ppString, the
length in *pLength, and a null heapld. If this technique is used, and the buffer is too small to hold

the results, an error status is returned.

122 PENPOINT API REFERENCE
Part 8 / System Services

¢ You can specify a heap from which memory will be allocated. Do this by passing in a valid heapld.
You are obligated to free the memory when finished.

#ifndef CMPSTEXT INCLUDED

#define CMPSTEXT INCLUDED

#ifndef GO_INCLUDED
#include <go.h>

#endif

#ifndef RESF ILE _INCLUDED
#include <resfile.h>
#endif

#include <stdarg.h>

Common #defines and Typedefs

#define ComposeTextMaxArguments 20 // Maximum number of parameters
(]
Functions

SComposeText

Composes a string from a format and arguments.

Returns STATUS.

Function Protetype STATUS CDECL SComposeText (

PP_CHAR ppString,
P_U32 pLength,
OS_HEAP_ID heap,

const P_CHAR pFormat,

)i

Comments Copy the format argument into the output string, doing the appropriate substitutions for the format
codes.

See the section "Memory Management" for information on what values to use for the first three
arguments.

VSComposel'ext

Composes a string from a format and a pointer to the argument list.
Returns STATUS.

Fynetion Protetype STATUS CDECL VSComposeText (

PP_CHAR ppString,
P_U32 plength,
0S_HEAP_ID heap,
const P_CHAR pFormat,
va_list argList
)i
Comments This is the same as SComposeText except the arguments are passed as a pointer to a list.

See the section "Memory Management" for information on what values to use for the first three
arguments.

"PENPOINT API REFERENCE / VOL 11

PART 8 / SYSTEM SERVICES

GOMATH.H

This file contains the AP definition for fixed point arithmetic. The functions described in this file are
contained in PENPOINT.LIB.

The API in this file is all function oriented.

#ifndef GOMATH INCLUDED
#define GOMATH INCLUDED
#ifndef GO_INCLUDED
#include <go.h>

#endif

Math Operation Error Codes

#define stsUnderflow MakeStatus (clsGOMath, 1)
#define stsOverflow MakeStatus (clsGOMath, 2)
#define stsMathInvOp MakeStatus (c1sGOMath, 3)
#define stsMathInvStrOp MakeStatus (clsGOMath, 4)
#define stsMathEqual MakeStatus (clsGOMath, 5)

#define stsMathFirstHigher MakeStatus(clsGOMath, 6)
#define stsMathFirstLower MakeStatus(clsGOMath, 7)

#define stsZeroDivide MakeStatus (c1sGOMath, 8)

// The following two values are used by the runtime.lib as ERRNO values
tdefine stsMathDomain MakeStatus (clsGOMath, 9) // Argument too large
#define stsMathRange MakeStatus (clsGOMath, 10) // Result too large

#define GoFx0 ((FIXED) 0x00000000) // 0.0
#define GoFxl ((FIXED) 0x00010000) // 1.0
#define GoFxMinusl ((FIXED) Oxffff0000) // -1.0

Fixed-point Function Prototypes

Function Prototype

Return Volue

FxCmp
Compares two FIXED.

Returns S16.

S16 PASCAL FxCmp (FIXED a, FIXED b);
-1 ifa<b.

0 ifa=b.

1 ifa>b.

124 PENPOINT APl REFERENCE
Part 8 / System Services

Function Prototype

HReturn Yalue

FxAdd
Adds two FIXED numbers, producing a FIXED.

Returns STATUS.

STATUS PASCAL FxAdd(FIXED a, FIXED b, P_FIXED pC);

stsOverflow The integer part of the result overflows a 16-bit signed.

FxAddSC

Macro form of FxAdd with no overflow detection.

Returns FIXED.
#define FxAddSC(_f1, £2) ((FIXED) ((_f1) + (_£2)))

Function Prototype

Return Yealue

FxSub
Subtracts two FIXED numbers, producing a FIXED.

Returns STATUS.

STATUS PASCAL FxSub(FIXED a, FIXED b, P_FIXED pC);

stsOverflow The integer part of the result overflows a 16-bit signed.

FxSubSC

Macro form of FxSub with no overflow detection.

Returns FIXED.
#define FxSubSC(_f£1, £2) ((FIXED) ((_£1) - (_£2)))

FxNegate
Negates a FIXED.

Returns FIXED.
#define FxNegate(f) ((FIXED) (-(_£)))

Function Prototype

Return Volue

FxMul .
Multiplies two FIXED numbers, producing a FIXED.

Returns STATUS.

STATUS PASCAL FxMul (FIXED a, FIXED b, P_FIXED pC);

stsOverflow The integer part of the result overflows a 16-bit signed.

Function Profotype

Comments

FxMulSC

Multiplies two FIXED numbers returning the product.
Returns FIXED.
FIXED PASCAL FxMulSC(FIXED a, FIXED b);

No overflow detection is performed.

GOMATH.H
Fixed-point Function Prototypes

125

Function Protolype

Return Volue

FxMullnt
Multiplies a FIXED number by an $32, producing a FIXED.

Returns STATUS.

STATUS PASCAL FxMulInt (FIXED a, S32 b, P_FIXED pC);

stsOverflow The integer part of the result overflows a 16-bit signed.

Comments

FxMullntSC
Multiplies a FIXED number by an S32, returning the FIXED product.

Returns FIXED.
#define FxMulIntSC(_a,_b) ((FIXED) (_a* b))

No overflow detection is performed.

Funciion Prototype

Return Yaolue

FxMullntT'olnt
Multiplies a FIXED number by an $32, producing a rounded S32 product.

Returns STATUS.
STATUS PASCAL FxMulIntToInt (FIXED a, S32 b, P_S32 pC)

stsOverflow The integer part of the result overflows a 32-bit signed.

Function Profotype

Comuments

FxMullntI'oIntSC
Multiplies a FIXED number by an $32, returning a rounded S32 product.

Returns S32.
S$32 PASCAL FxMulIntToIntSC(FIXED a, S32 b),;

No overflow detection is performed.

Funcrion Prototype

Return Yalue

FxDiv

Divides two FIXED numbers, producing a FIXED quotient.
Returns STATUS.

STATUS PASCAL FxDiv(FIXED top, FIXED bottom, P_FIXED pC);
stsOverflow The integer part of the result overflows a 16-bit signed.

stsZeroDivide The input divisor is zero.

Function Prototype

Comments

FxDivSC
Divides two FIXED numbers, returning a FIXED quotient.

Returns FIXED.
FIXED PASCAL FxDivSC(FIXED top, FIXED bottom),

No overflow or zero-divide detection is performed.

8 / SYSTEM SERVICES

126 PENPOINT API REFERENCE
Part 8 / System Services

Funetion Prototype

Return Volue

FxDivInts

Divides two 32-bit signed integers, producing a FIXED quotient.
Returns STATUS.)
STATUS PASCAL FxDivInts(S32 top, S32 bottom, P_FIXED pC);
stsOverflow The integer part of the result overflows a 16-bit signed.

stsZeroDivide The input divisor is zero.

Funetion Prototype

Ceomments

FxDivIntsSC
Divides two FIXED numbers, returning a FIXED quotient.

Returns FIXED.

FIXED PASCAL FxDivIntsSC(S32 top, S32 bottom);

No overflow or zero-divide detection is performed.

Function Prototype

Return Volue

FxDivIntTolnt |
Divides an §32 by a FIXED, producing a rounded S32 quotient.

Returns STATUS.
STATUS PASCAL FxDivIntToInt ($32 top, FIXED bottom, P_S32 pC);
stsOverflow The integer part of the result overflows a 16-bit signed.

stsZeroDivide The input divisor is zero.

Function Prototype

Camments

FxDivIntToIntSC
Divides an $32 by a FIXED, producing a rounded S32 quotient.

Returns S32.

S$32 PASCAL FxDivIntToIntSC(S32 top, FIXED bottom);

No overflow or zero-divide detection is performed.

Function Prototype

FxSin

Returns the sine of an integer angle in degrees.
Returns FIXED.

FIXED PASCAL FxSin(S16 angle);

Fumction Profolype

FxCos

Returns the cosine of an integer angle in degrees.
Returns FIXED.

FIXED PASCAL FxCos(S16 angle);

GOMATH.H
Fixed-point Function Prototypes

127

Function Rrototype

FxTan

Returns the tangent of an integer angle in degrees.
Returns FIXED.

FIXED PASCAL FxTan(S16 angle);

Function Prototype

FxSinFx
Returns the sine of a FIXED angle in degrees.

Returns FIXED.

FIXED PASCAL FxSinFx(FIXED angle);

Function Profotype

FxCosFx

Returns the cosine of a FIXED angle in degrees.
Returns FIXED.

FIXED PASCAL FxCosFx (FIXED angle);

Funciion Prototype

FxTanFx
Returns the tangent of a FIXED angle in degrees.

Returns FIXED.

FIXED PASCAL FxTanFx (FIXED angle);

Function Protoiype

Commenis

FxArcTanlnt

Returns an arctangent value as a FIXED angle.
Returns FIXED.

FIXED PASCAL FxArcTanInt (S32 top, S$32 bottom);

Computes a FIXED angle whose tangent is the value given by the quotient of the two signed 32-bit

integers, top / bottom. The value returned ranges from 0 to 359 degrees.

Function Prototype

Comments

FxArcT'anFx

Returns an arctangent value as a FIXED angle.
Returns FIXED.

FIXED PASCAL FxArcTanFx(S32 top, S32 bottom);

Computes a FIXED angle whose tangent is the value given by the quotient of the two signed 32-bit

numbers, top / bottom. The value returned ranges from 0 to 359 degrees.

FxAbs
Takes the absolute value of a FIXED.

Returns FIXED.
#define FxAbs(_f) (((_£f)<0)?FxNegate(_f):(_£))

8 / SYSTEM SERVICES

128 PENPOINT APl REFERENCE
Part 8 / System Services

FxRoundTolnt
Rounds a FIXED number to a 32-bit signed integer.

Returns S32.

Function Prototype 532 PASCAL FxRoundToInt (FIXED fx);

FxRoundTolntSC

Rounds a FIXED number to a 16-bit signed integer.

Returns S16.

#define FxRoundToIntSC(_f) (S16) (((_£)+0x8000)>>16)
Comments No overflow detection is performed.

FxChop

Returns the 16-bit signed integer part of a FIXED.

Returns S16.

#define FxChop{_f) (S16) ((_£)>>16)
#define FxChopSC(_£f) (S16) ((_f)>>16)

FxFraction ,

Returns the 16-bit fractional part of the absolute value a FIXED.
Returns U16.

#define FxFraction(_f) (U16) (FxAbs(_f))

FxIntI'oFx
Converts a 16-bit signed integer into a FIXED.

Returns FIXED.
#define FxIntToFx(i) ((FIXED) (((S32) (_1))<<16))

FxMakeFixed
Makes a FIXED with an S16 (integer) and a U116(fraction).

Returns FIXED.
FIXED PASCAL FxMakeFixed(S16 whole, U16 frac); (now in go.h)

FxBinToStr

Converts a FIXED format value into an ascii string in decimal.
Returns nothing.

Function Prototype void PASCAL FxBinToStr (

FIXED a,

P_CHAR pStr,

U8 fracDigits,
U8 maxLen,

BOOLEAN showCommas

Comments

GOMATH.H 129
Fixed-point Function Prototypes

The string will have the format:
{-hooxxxxxxx or {-fxxxoxxoxxxx.

The number of digits to the left of the decimal point is the minimum number required, and the number
of digits to the right of the decimal point is specified in fracDigits. The last digit is rounded accurately.
If the string will not fit within maxLen bytes, then the string "*******" (maxLen-1 ¥s) will be returned;
maxLen = 9+fracDigits is sufficient, although any higher number is also acceptable. If showCommas is
true, then commas will separate the thousands.

Function Prototype

Comments

Beturn Yalue

FxStrToBin

Converts a null-terminated ascii string to a FIXED.
Returns STATUS.
STATUS PASCAL FxStrToBin (

P CHAR pStr,

P_FIXED pC
)i

The fractional portion will be rounded to fit within 16 bits.
stsOverflow The integer part of the result overflows a 16-bit signed.

stsMathInvStrOp A character in the string does not represent a valid number. *pC is set to zero.

8 / SYSTEM SERVICES

PENPOINT APl REFERENCE / VOL |1

PART 8 / SYSTEM SERVICES

/

INTL.H

Definitions used while internationalizing code.

The main content of this file is macros that map the names of UNICODE string functions for
PENPOINT 2.0 to the 8-bit functions used currently. They are intended to be used with items of type
CHAR, which are 8-bit currently and will switch to 16-bit in 2.0. By using these macros code that deals
with strings will have a chance of working in 2.0 with only a recompile.

#ifndef INTL_INCLUDED
#define INTL INCLUDED

"UNICODE strings/characters

To define characters or strings in PENPOINT 1.0, use the "U_L" macro on them. This maps to the
original string, and thus does nothing. In 2.0 the define will be changed so that it inserts "L" in front of
the string. This will convert the character or string into a wide character or string to match the 2.0

definition of CHAR.

Here is some sample code to show its use. This code would compile and run under both 1.0 and 2.0, the
only difference would be the space allocated for each character (1 vs. 2 bytes).

CHAR ce;
P_CHAR pString;

pString
cc

U _L("sample string");
U_L('s");

if (cc == pString[0])

pString[0] = U _L('S");
#define U_L(str) str // Does nothing in PENPOINT 1.0
// #define U_L(str) L##str // Definition to be used in PENPOINT 2.0

7 Mapping of 16-bit string/character
functions for 1.0

For each of the sections below, it is necessary to include the base header file in order to use the macros

defined here.

These macros are intended to be used with variables of type CHAR. CHAR is currently U8, and will be
converted to U16 in PENPOINT 2.0.

132 PENPOINT API REFERENCE
Part 8 / System Services

% Extensions to STRING.H

#define Ustrcat strcat
#define Ustrncat strncat
#define Ustrcmp strcmp
$#define Ustrncmp strncmp
#define Ustrcpy strcpy
#define Ustrncpy strncpy
#define Ustrlen strlen
#define Ustrdup strdup
#define Ustrrev strrev
#define Ustrset strset
#define Ustrnset strnset
#define Ustrchr strchr
#define Ustrrchr strrchr
#define Ustrspn strspn
#define Ustrcspn strespn
#define Ustrpbrk strpbrk
#define Ustrstr strstr
#define Ustrtok strtok
#define Ustricmp stricmp

strempi’ the same as ’stricmp’, we don’t need U versions of both.

#define Ustrnicmp strnicmp
#define Ustrlwr strlwr
#define Ustrupr strupr
#define Umemcpy memcpy
#define Umemccpy memccpy
#define Umemchr ‘ memchr
#define Umemcmp memcmp
#define Umemicmp memicmp
#define Umemmove memmove
#define Umemset memset
#define Ustrerror strerror

% Extensions to CTYPE.H

#define Uisalpha isalpha
#define Uisalnum isalnum
#define Uisascii isascii
#define Uiscntrl iscntrl
#define Uisprint isprint
#define Uisgraph isgraph
#define Uisdigit isdigit
#define Uisxdigit isxdigit
#define Uislower islower
#define Uisupper isupper
#define Uisspace isspace
#define Uispunct ispunct
#define Utolower tolower
#define Utoupper toupper

%> Extensions to STDLIB.H

#define Uatoi atoi
#define Uatol atol
#define Uitoa itoa
#define Ultoa 1ltoa
#define Uutoa utoa
#define Ustrtol strtol
#define Uatof atof
#define Ustrtod strtod

#define Ustrtoul strtoul

INTL.H 133
Mapping of 16-bit string/character functions for 1.0

This goes directly to its 2.0 definition because it does not make sense on an ascii text stream, and if the
current text is not ascii, then having it automatically convert to Unicode by recompile in 2.0 won't
work. It is included mostly to reserve the name, and let programers know that it will be available.

#define Uswab(s,d, n)

P> Extensions to STDIO.H

swab((char *)s, (char *)d, n*2)

#define Ufopen fopen
#define Usprintf sprintf
#define Uvsprintf vsprintf
#define Usscanf sscanf
#define Uputc putc
#define Ufputc fputc
#define Ugetc getc
t#define Ufgetc fgetc
#define Uungetc ungetc
#define Ufdopen fdopen
#define Ufreopen freopen
#define Uprintf printf
#define Ufprintf fprintf
#define Uvprintf vprintf
#define Uvfprintf viprintf
#define Uscanf scanf
#define Ufscanf fscanf
#define Uvscanf vscanf
#define Uvfscanf viscanf
#define Uvsscanf vsscanf
#define Ugetchar getchar
#define Ufgetchar fgetchar
#define Ugets gets
#define Ufgets fgets
#define Uputchar putchar
#define Ufputchar fputchar
#define Uputs puts
#define Ufputs fputs
#define Uremove remove
#define Urename rename
$define Utmpnam tmpnam
Py Extensions to FCNTL.H
#define Uopen open
#define Usopen sopen
t#define Ucreat creat
’» Extensions to TIME.H
#define Uasctime asctime
#define Uctime ctime
’» Extensions to UNISTD.H
#define Urmdir rmdir
#define Uchdir chdir
#define Ugetcwd getcwd
¥ Extensions to DIRENT.H
#define Uopendir opendir
#define Ureaddir readdir

8 / SYSTEM SERVICES

PENPOINT API REFERENCE / VOL |1l

PART 8 / SYSTEM SERVICES

OS.H

This file contains the API for the PenPoint kernel. The functions described in this file are contained in
PENPOINT.LIB.

The PenPoint kernel provides support for tasking, memory management, inter-task communication and
timer services.

#ifndef 0OS_INCLUDED
#define OS_INCLUDED
"> Debugging Flags
PenPoint kernel flag is ’G’, values are:
0001 User configuration (copy exes from boot to theSelectedVolume)
0002 Enter debugger on faults while scavenging
0004 Display memory sizes for each module loaded and run
0008 Display Stack grow/shrink messages
0010 Save page fault information in a memory buffer
0020 Run in the Ram only configuration
0100 Print various memmgr details
1000 see resfile.h
2000 see resfile.h
4000 see resfile.h
8000 sece resfile.h
10000 Internal use only

20000 Call the MIL using the common entry point for full debugging

#ifndef GO_INCLUDED
#include <go.h>

#endif

#ifndef OSTYPES INCLUDED
#include <ostypes.h>
#endif

#ifndef OSHEAP INCLUDED
#include <osheap.h>
#endif

Common #defines and typedefs

#define osPageSize (4%1024)
Defines for OS_ITMSG_INFO (mode field)

// To generate the mode, OR in OS_TASK MODE with the defines below.
#define osITMsgNoCopy flag7 // vs copy buffer

$define o0sITMsgFrontOfQ flagé // vs end of queue

#define osITMsgDefaultMode 0 // Copy msg to end of msg queue

136 PENPOINT APl REFERENCE
Part 8 / System Services

¢ Defines for setting priority

#define osNumPriorities 51
#define osDefaultPriority 0

¢ Defines for region information

typedef U8 0S_REGION_ATTRS;

#define osRgnlocal flag0

#define osRgnHasAliases flagl

#define osRgnLocked flag2 // Not yet implemented!!

#define osRgnNotSwappable flag3

#define osRgnFrozen flagd // Not yet implemented!!

#define osRgnInSlowMem flag5

Enuml6 (OS_REGION_TYPE) {
osRgnData, // data region
osRgnHeap, // heap region
osRgnStack, // stack region
osRgnMemMapFile, // memory mapped file region
osRgnCode // code region

i
¢ Subtask function type

typedef void FunctionPtr (P_OS_SUBTASK_ENTRY) (U32 arg);

Enuml6(0S_SET GET) {
osValuesSet = flag0, // Set the value(s) passed in
osValuesReturn = flagl, // return the value(s)
osValuesReturnAndSet = flag0 | flagl // return and set the value(s)

b

¢ Memory access attributes

Enuml6 (OS_ACCESS) { // access rights of a page
osReadAccess, // page allows read access only
osReadWriteAccess, // page allows read and write access
osExecuteAccess, // page allows execute access only
osExecuteReadAccess // page allows execute and read access

}i
Enuml6 (OS_SET TIME MODE) {

osSetTime = flag0, // set the time
osSetDate = flagl, // set the date
osSetTimeZone = flag2, // set only the time zone

osSetDateAndTime = osSetTime|osSetDate, // set both the date and time
// set date, time, and time zone
osSetAll = osSetTime|osSetDate|osSetTimeZone

}i

¢ Display modes

Enuml6 (OS_DISPLAY MODE) {
osConsole, // display mode is console
osGraphics // display mode is graphics
}i
¢ Beep error tones
Enuml6 (OS_ERROR_TYPE) ({
osWarning, :

osFatal
}:

¢ System wide memory information

typedef struct 0S_MEM INFO {

032
U32
Ul6
Ul6
U32
U32
// system
U32
U032
U32
U032
Ul6
Ul6
U32

taskMemAllocated;
localTaskMemAllocated;
numAllocatedRgns;
numAllocatedLocalRgns;
taskMemResident;
taskMemSwapped;

wide statistics
systemRamSize;

amt InMemoryPool;
memFree;

memAllocated;
numRgnsAllocated;
numSharedRgnsAllocated;
pageSize;

// swap file statistics

U32
U32
U32
// system
U32
U32
U32
U32
U32

OS.H

amt of mem allocated by the task

amt of local mem allocated by the task

allocated regions by the task

local regions allocated

amt of allocated mem in ram-this task

amt of allocated mem in swap file-this task

total amt of memory in the system
amt of memory in the memory pool
amt of free ram

total amt of mem allocated by all
total # regions allocated by all
shared regions used by all
system page size

amt of memory not swappable
size of the swap file
number of pages free on the swap media

wide allocated memory statistics (currently in ram)

memNot Swappable; //
swapFileSize; //
swapMediaFreePages; //
dataAllocated; //
heapsAllocated; //
stacksAllocated; //
memMapFilesAllocated; //
codeAllocated; //

} OS_MEM INFO, * P_OS_MEM INFO;

¢ Memory usage information

// Region info, per type of region
typedef struct 0S_REGTYPE INFO {

U32
U32
U32
U32

allocated;
swappable;

nonSwappable;

committed;

} OS_REGTYPE_INFO, *P_OS_REGTYPE_INFO;

// Region info, per scope of region (local, shared, etc)
typedef struct OS_REGSCOPE_INFO {

0S_REGTYPE INFO
0S_REGTYPE_INFO
0S_REGTYPE_INFO
0S_REGTYPE_INFO
0S_REGTYPE_INFO
} OS_REGSCOPE_INFO, *P_OS_REGSCOPE_INFO;

code;

data;

heap;
stack;
memMapFile;

typedef struct OS_MEM USE INFO {

0S_REGSCOPE_INFO
0S_REGSCOPE_INFO
0S_REGSCOPE_INFO
0S_REGSCOPE_INFO

U32
U32
U32
U32
U32

local;
shared;
multiOwner;
total;
pageSize;

systemRamSize;

memFree;

memAllocated;
swapFileSize;

} OS_MEM USE_INFO, *P_OS_MEM USE_INFO;

of data allocated

of heap space allocated

of stack space allocated

of mem map file space allocated
of code space allocated

amt
amt
amt
amt
amt

(code, data, etc)

// Max size of the region

// swappable pages in memory

// non-swappable pages in memory
// committed pages

// Executable code

// Data

// Data used as heaps
// Stack space

// Memory-mapped files

// Owned by this task only, in local memory
// Owned by this task only, in shared memory
// Owned by this task and at least one other
// System-wide totals

// System page size

// total amt of memory in the system

// mem in the "free" list

// mem not in the "free" list

// size of the swap file

137

8 / SYSTEM SERVICES

138 PENPOINT APl REFERENCE
Part 8 / System Services

¢ Address information

typedef struct OS_ADDRESS_INFO { // Info for a given memory address
P_MEM pRegionBase; // base of region
SIZEOF regionLength; // length of the region
0S_ACCESS access; // access rights of the region
0S_TASK_ID owner; // owning task for this region
BOOLEAN userPriv; // TRUE - user region, FALSE - kernel
0S_REGION ATTRS flags; // see defines above
SIZEOF residentSize; // amount of region that is resident
SIZEOF committedSize; // amount of region that is committed

OS_REGION TYPE regionType; . // type of region
} 0OS_ADDRESS_INFO, * P_OS_ADDRESS_INFO;

¢ System configuration information

typedef struct OS_SYSTEM_ INFO { // system configuration information
BOOLEAN mathProcessorPresent; // TRUE = present ‘
0S_MILLISECONDS millisecondsPerSystick; // ms per clock tick

} OS_SYSTEM INFO, * P_OS_SYSTEM_INFO;

¢ Date and time information

// The time zone string is a POSIX format string. See the Watcom library
// reference for PenPoint, TZ environment variable set section for more info.
typedef struct OS_DATE_TIME {

U32 seconds; // seconds after the minute -- [0,61]
U32 minutes; // minutes after the hour -- [0,59]
U32 hours; // hours after midnight -- [0,23]
U32 day; // day of the month -- [1,31]
U32 month; // months since January -- [0,11]
U32 year; // years since 1900

U32 dayOfWeek; // days since Sunday -~ [0,6]
U32 dayOfYear; // days since January 1 -- [0,365]
P_CHAR pTimeZone; // time zone string (POSIX format)

} OS_DATE TIME, * P_OS_DATE_TIME;
¢ Loaded program information

typedef struct 0S_PROG_INFO {
0S_PROG_HANDLE progHandle; // program identifying handle
CHAR name[32+1]; // module name (without the .exe)

U32 initHeapSize; // .exe-header initial heap allocation
U32 initStackSize; // .exe-header initial stack allocation
Ul6 initCS; // initial CS (selector, not segment#)
U32 initIP; // initial IP
U32 nRegions; // # of regions
Ul6 initDS; // initial DS
Ul6 isDLL i1, // 0 for .exes, 1 for DLLs
isUser 11, // 1 for user priv, 0 for system priv
rsvd :14; // reserved for future use.
U32 fixedSize; // read-only segments + initialization data
U32 sharedSize; // shared read/write segments
U32 privateSize; // private read/write segments
U32 nRequiredModules; // # modules this depends upon

} 0S_PROG_INFO, * P_OS_PROG_INFO;
¢ Interrupt information

// Note: OR in the flag osIntNumIsHardwarelLevel if intNum is a hardware
// interrupt level (vs a MIL logical device id). The flag is defined
// in ostypes.h.

typedef struct OS_INTERRUPT INFO ({ // struct used to set interrupts
OS_INTERRUPT ID intNum; // logical interrupt id
P_UNKNOWN pCode; // ptr to interrupt routine

} OS_INTERRUPT INFO, * P_OS_INTERRUPT INFO;

@

OS.H 139
Functions

¢ Module entrypoint types

Enuml6 (0S_ENTRYPOINT TYPE) {
osEntryName, // entrypoint is named
osEntryOrdinal // entrypoint is an ordinal
}i

¢ Message information

typedef struct OS_ITMSG_INFO { // inter-task message information
OS_ITMSG_FILTER filter; // filter of the message
P_MEM pITMsg; // pointer to inter-task message buffer
SIZEOF length; // length of the message buffer
U32 token; // user defined info field
0S_TASK_ID taskId; // dest or sending task Id
Ulé mode; // see defines for 0S_ITMSG_INFO

} 0S_ITMSG_INFO;
¢ Fast sema struct

typedef struct OS_FAST SEMA {

Ule count; // top bit for test and set

// bits 0-14 for recursive counting
Uleé nWaits; // number of waiters
0S_TASK_ID owner;

} OS_FAST SEMA, *P_OS FAST SEMA;

[3
Functions
OSProgramInstall
Installs a program into the loader database.
Returns STATUS.
Function Prototype STATUS EXPORTEDO OSProgramInstall (
P_CHAR pCommandLine, // dic or exe name (and arguments)
P_CHAR pWorkingDir, // working dir of the program
P_OS_PROG_HANDLE pProgHandle, // Out: program handle
P_CHAR pBadName, // Out: If error, dll/exe that was bad
P_CHAR pBadRef // Out: If error, reference that was bad
)i
Comments If a dlc file is provided, all dlls in the file will also be loaded if not loaded already.

OSProgramInstall will not return uhtil instance 0 of all loaded dlls and exe are completed. No message

dispatching will occur during this time. If communication to the calling task is required, use
IMProgramlnstall (install.h, install.lib).

See Also OSProgramDeinstall

Return Value stsOSBadDLCFormat DLC file is incorrectly formatted
stsOSBadExeFormat A DLL or EXE is invalid in the dlc file
stsOSProglnstallError Use debug version of PenPoint for more info
stsOSModuleNotFound Module name specified in dlc file is invalid
stsOSMissingDependency Import module in an exe or dll was not found
stsOSMisingEntryName Import name in an exe or dll was not found

stsOSMissingEntryOrdinal Import number in an exe or dll was not found

8 / SYSTEM SERVICES

140 PENPOINT API REFERENCE
Part 8 / System Services

Function Profolype

LComments

See Also

Return Vaolue

OSProgramDeinstall
Deinstalls a program already loaded into the loader database.
Returns STATUS.

STATUS EXPORTEDO OSProgramDeinstall (
0S_PROG_HANDLE progHandle // program handle
)i

This routine will terminate any dll task wrappers before deinstalling the code. If an exe is being
deintalled, all tasks must be terminated before calling this routine.

OSProgramInstall
stsOSInvalidProgramHandle Program handle is incorrect

stsOSDependenciesExist Another program requires this dll or a task is using this module

Function Prototype

Commenis

Return Value

OSProgramlInstantiate

Creates an instance of a program.

Returns STATUS.

STATUS EXPORTEDQ OSProgramInstantiate(,
0S_PROG_HANDLE progHandle, // program handle from install
P_CHAR pCommandLine, // pathname + arguments

P_OS TASK_ID pTaskId // Out: Task id of the new task
)i .

The newly created process will be set to the same priority as the caller.

stsBadParam Program handle is invalid

Funchion Profetype

Comments

OSSubTaskCreate

Creates a new execution thread in this context.

Returns STATUS.

STATUS EXPORTED) OSSubTaskCreate (.
P_OS_SUBTASK_ENTRY pEntrypoint, // Function entrypoint
SIZEOF stackSize, // ignored.

Ul16 mustBeZero, // reserved
U32 argq, // arg passed to function
P_OS_TASK_ID pTaskId // Out: new task id

)i
The entrypoint that starts the subtask must NOT return. To terminate the task, use OSTaskTerminate

(OSThisTask ()) as the last line in the routine. The newly created task will be set to the same priority as
the caller. '

The initial stack size of the subtask will be set to 4096 bytes. The stackSize parameter will be ignored.
Stacks will automatically grow to accomodate a program’s stack requirements.

Funclion Prototype

OSTaskTerminate

Terminates a task.
Returns STATUS.

STATUS EXPORTEDO OSTaskTerminate (

O0S_TASK_ID taskId, // task to terminate

OS_TASK ERROR exitCode // reason for terminating exit code
)i

Comments

OS.H 141
Functions

Callers to OSTaskTerminate will not return until the task has successfully terminated. Task termination
will cause the following events to occur:

1) if a process is terminated, all subtasks are first terminated

2) observers of theProcess will be notified (see clsmgr.h). The error code is provided with the
notification.

3) objects owned by the terminating task will be scavenged

4) abroadcast message will be sent to all tasks to notify them of the the task termination. The message
will be sent on the filter osTerminated TaskFilter. This filter is by default off.

Function Prototype

Commants

OSNextTerminated TaskId

Notifies the caller of the tasks that have terminated.
Returns the next task that has terminated.

O0S_TASK ID EXPORTEDO OSNextTerminatedTaskId(
P_0S_TASK ERROR pExitCode // Out: exit code of terminating task
)i
The broadcast message for task termination does not include the task identifier of the task that has

terminated. To find this out, this routine should be called to get the list of terminated tasks. When
osNullTaskld is returned, the list ends.

Function Prototyps

OSThisTask

Passes back the task identifier of the current running task.
Returns OS_TASK_ID.

0S_TASK_ID EXPORTED OSThisTask (void);

Function Protolype

Comments

See Also

OSTaskPrioritySet

Sets the priority of a task or a set of tasks.

Returns STATUS.

STATUS EXPORTEDQ OSTaskPrioritySet (
0S_TASK ID taskId, // target task
0S_TASK_MODE mode, // task mode
0S_PRIORITY CLASS priorityClass, // new priority class
U8 priority // new priority number

)i
The task mode can be used to set the priority of just one task or all tasks in the process family.

OSTaskPriorityGet

Function Prototype

OSTaskPriorityGet
Passes back the priority of a task.

Returns STATUS.

STATUS EXPORTED(OSTaskPriorityGet (
0S_TASK ID taskId, // target task
P_0S PRIORITY CLASS pPriorityClass, // Out: task’s priority class
P_U8 pPriority // Out: task'’s priority number
)i

8 / SYSTEM SERVICES

142 PENPOINT APl REFERENCE
Part 8 / System Services

Comments Both the priority class and the priority within that class are returned.
See Also OSTaskPrioritySet
OSTaskDelay

Funciion Protolype

Comments

Delays the current task for a specified period of time.
Returns STATUS.

void EXPORTEDO OSTaskDelay (
0S_MILLISECONDS timeLimit // milliseconds to delay
)i
When the machine is turned off, the delay time freezes until the system is turned back on again.
OSTaskDelay cannot be called from an interrupt subtask.

Fanciion Profotype

Comments

See Also

OSITMsgSend

Sends an inter-task message to a task or set of tasks.
Returns STATUS.

STATUS EXPORTED(Q OSITMsgSend (

P_0OS_ITMSG_INFO pITMsgInfo // inter-task message info block
)i
OSITMsgSend is used to send an inter-task message to 1) a single task, or 2) all tasks in a task family, or
3) all tasks in the system. The combination of the taskld and mode fields are used to accomplish this. If
broadcasting to all tasks, the taskId field is ignored.

An inter-task message is an array of bytes completely uninterpreted by the kernel stored in the pITMsg
field. If the inter-task message is short (up to U32), it can be stored in the token field for improved
performance. The length field is used to store the length of the inter-task message in pITMsg. If the
length field is 0, the pITMsg field is ignored and can be used for more information passing.

Inter-task messages are passed to the destination task in two ways: copy and alias. In copy mode, the
message is copied into a new buffer allocated in the context of the destination task. In alias mode, the
message is aliased into the destination task. Messages must be full regions when using alias mode.

Messages are normally inserted into the end of the destination message queue. However, it is possible to
specify that a message be inserted into the front of the message queue.

Inter-task messages will get delivered to tasks that have a filter mask set to allow messages of the sending
messages filter. If sending a message on multiple filters, the message will be delivered if any one of the
filters are allowed by the receiving task. No error status is returned if the receiving task does not receive
the message due to its filter mask setting.

OSITMsgReceive

Funclion Profotype

OSITMsgReceive

Receives a message from the task’s message queue.
Returns STATUS.

STATUS EXPORTED(O OSITMsgReceive (
P_OS_ITMSG_INFO pITMsglInfo, // In-Out: message info block
OS_MILLISECONDS timeLimit // amount of time to wait for message
)i

Comments

See Also

OS.H
Functions

143

Messages are received by specifying a filter or set of filters in the pfITMsglnfo struct. Any message with a
filter that is in that set will match the receive request. The filter in the pITMsglnfo struct must always
be set on entry.

When a message is received that matches the input filter, the message is removed from the queue and
provided to the client.

OSITMsgSend

Function Prototype

OSITMsgPeek

Gets the next message from the message queue without removing it.
Returns STATUS.

STATUS EXPORTED0 OSITMsgPeek (
P_OS_ITMSG_INFO pITMsgInfo,
0S_MILLISECONDS timeLimit,
P_0OS_ITMSG_ID pITMsgId

// In-Out: message info block

// amount of time to wait for message
// In-Out: id of message received

)i

Comments *pITMsgld of null peeks from the front of the queue. Use the previous message id to peek further into
the queue. The filter in the pITMsglnfo struct must always be set on entry.

See Also OSITMsgFromld
OSITMsgFromid

Function Prototype

Passes back the message associated with the message identifier.
Returns STATUS.

STATUS EXPORTED0 OSITMsgFromId (
P_0S_ITMSG_INFO pITMsgInfo,
0S_ITMSG_ID itMsgId

// In-Out: message info block
// message id obtained from OSITMsgPeek
)i

Comments The message identifier should be obtained by calling OSITMsgPeek.
See Also OSITMSgPCCk
OSITMsgQFlush

Function Prototype

Comments

Flushes the message queue of all messages matching the message filter.
Returns STATUS.

STATUS EXPORTEDO OSITMsgQFlush (
0S_ITMSG_FILTER itMsgFilter // message filter of messages to flush

)i

If a message has other filters set in addition to itMsgFilter, then the message will NOT be flushed.

Furction Prototype

OSITMsgFilterMask

Sets the filter mask for this task.
Returns the old filter mask.

05_ITMSG_FILTER EXPORTEDO OSITMsgFilterMask (
0S_ITMSG_FILTER newITMsgFilter, // new filter mask for this task
BOOLEAN setNewFilter // if true, the new filter mask will be set
)i ‘

8 / SYSTEM SERVICES

144

PENPOINT API REFERENCE

Part 8 / System Services

Conuments

See Also

Setting the mask bit to 1 indicates the message is allowed by this task; 0 otherwise. Any messages sent to
this task whose filter bits are off in the filter mask will be discarded.

If setNewFilter is FALSE, newI TMsgFilter is ignored and only the old filter mask is returned.
OSITMsgSend

Function Prototype

OSSemaCreate
Creates a semaphore.

Returns STATUS.

STATUS EXPORTED0O OSSemaCreate (
P_OS_SEMA ID pSema // Out: new open semaphore
)i

Comments The semaphore will automatically be opened for the process.
See Also OSSemaOpen
OSSemaOpen

Function Prototype

“Opens (accesses) an already existing semaphore.

Returns STATUS.

STATUS EXPORTEDO OSSemaOpen (
OS_SEMA ID sema,
OS_TASK_ID task

// semaphore
// task wanting to share ownership of sema
)i

Comments Tasks should always open someone else’s semaphore to guarantee that the semphore will be around even
if the original owner of the semaphore terminates.

See Also OSSemaCreate
OSSemaDelete

Funciion Prololype

LComments

See Also

Deletes a semaphore.
Returns STATUS.

STATUS EXPORTEDO OSSemaDelete (
0S_SEMA ID sema // the semaphore to delete
)i

The semaphore will be removed from the system when all owners of the semaphore have deleted it.

OSSemaCreate

Function Profotype

Contments

OSSemaRequest

Locks the counting semaphore (increments the count).
Returns STATUS.

STATUS EXPORTED(O OSSemaRequest (
OS_SEMA_ID sema,
0S_MILLISECONDS timeLimit

// the semaphore to lock

// max time to wait if already locked

)i

OSSemaRequest should be used in conjunction with OSSemaClear when using semaphores to protect
critical sections of code. OSSemaRequest/OSSemaClear implement a counting semaphore model which

Return Value

See Also

OS.H 145
Functions

allows nesting of OSSemaRequest calls. Only after the same number of OSSemaClear calls will the next
waiting task enter the critical section. Up to 64K nestings are allowed.

If a task has obtained a semaphore via OSSemaRequest and subsequently dies, the semaphore will be
given to the next requestor and that requestor will be given the status stsOSSemaLockBroken.

stsOSSemaLockBroken Previous locker of semaphore died without clearing the semaphore
stsOSTimeOut The timelimit expired before obtaining the semaphore

OSSemaClear

Funchion Prototype

Comments

See Also

OSSemaClear

Unlocks the counting semaphore (decrements the count).
Returns STATUS.

STATUS EXPORTEDO OSSemaClear (

OS_SEMA ID sema // the semaphore to unlock
)i
OSSemaClear should be used in conjunction with OSSemaRequest when using semaphores to protect
critical sections of code. OSSemaRequest/OSSemaClear implement a counting semaphore model which
allows nesting of OSSemaRequest calls. Only after the same number of OSSemaClear calls will the next
waiting task enter the critical section. Up to 64K nestings are allowed.

OSSemaRequest

Function Prototype

Comments

See Also

OSSemaReset

Resets event semaphore (no matter what count).
Returns STATUS.

STATUS EXPORTEDO OSSemaReset (

0S_SEMA ID sema // the semaphore to reset
)i
OSSemaReset is used with OSSemaSet and OSSemaWait to support event handling. In this model, the
client waiting on the event should use OSSemaSet to set the semaphore to 1, and OSSemaWait to wait
until the semaphore has been reset to 0. OSSemaReset will reset the semaphore to 0, thereby notifying
all tasks waiting on the event. OSSemaReset is normally used in interrupt tasks. The task that is
processing the event may actually have received more than one event and should process all events after
resetting the semaphore to avoid losing any events.

OSSemaSet

Function Prototype

Comments

OSSemaSet

Sets the event semaphore to 1.
Returns STATUS.

STATUS EXPORTEDO OSSemaSet (
OS_SEMA_ID sema // the semaphore to set
)i
OSSemaSet is used with OSSemaWait and OSSemaReset to support event handling. In this model, the
client waiting on the event should use OSSemaSet to set the semaphore to 1, and OSSemaWait to wait

8 / SYSTEM SERVICES

146 PENPOINT API REFERENCE
Part 8 / System Services

See Alse

until the semaphore has been reset to 0. OSSemaReset will reset the semaphore to 0, thereby notifying
the task waiting on the event.

OSSemaReset

Function Profolype

Comments

Return Valus

OSSemaWait

Waits for the event semaphore to be reset.
Returns STATUS.

STATUS EXPORTEDO OSSemaWait (

OS_SEMA ID sema, // the semaphore to wait on

OS_MILLISECONDS timeLimit // max time to wait for the count to go to 0
)i :
OSSemaWait is used with OSSemaSet and OSSemaReset to support event handling. In this model, the
client waiting on the event should use OSSemaSet to set the semaphore to 1, and OSSemaWait to wait
until the semaphore has been reset to 0. OSSemaReset will reset the semaphore to 0, thereby notifying

the task waiting on the event.

stsOSSemaLockBroken Previous locker of semaphore died without clearing the semaphore
stsOSTimeOut The timelimit expired before obtaining the semaphore

OSSemaReset

Comments

See Also

OSFastSemalnit

Initialize fast sema.

Returns nothing..

#define OSFastSemaInit (_pSem) memset ((_pSem), O, sizeof (0OS_FAST SEMA))

Fast semaphores provide a fast but unprotected semaphore model. Fast semaphores are simply memory
provided by the client as storage area for the state of the semaphore. This storage area must initially be
set to 0.

OSFastSemaRequest

Function Prototype

Comments

OSFastSemaRequest

Fast version of sema request.
Returns STATUS.

STATUS EXPORTED OSFastSemaRequest (

P_0S FAST SEMA pSema
)i :
OSFastSemaRequest should be used in conjunction with OSFastSemaClear when using semaphores to
protect critical sections of code. OSFastSemaRequest/OSFastSemaClear implement a counting
semaphore model which allows nesting of OSFastSemaRequest calls. Only after the same number of

OSFastSemaClear calls will the next waiting task enter the critical section. Up to 64K nestings are
allowed.

Fast semaphores are fast by sacrificing protection. The semaphore structure passed into this routine is
modified in the same privilege level as the caller. Only if another task owns the semaphore will a
privilege level transition occur.

See Also

OS.H 147
Functions

There are a number of important limitations that a developer should understand about fast semaphores.
1) If a task owns a fast semaphore and then dies before releasing it, the

semaphore will not be released automatically by the system.

2) The fast semaphores should not be copied from one location to another.

The routines rely on the address of the semaphore structure being

the same.

OSFastSemaClear

Function Prototype

Comments

See Alse

OSFastSemaClear

Fast version of sema clear.
Returns STATUS.

STATUS EXPORTED OSFastSemaClear (
P_OS_FAST SEMA pSema
):

OSFastSemaClear should be used in conjunction with OSFastSemaRequest when using semaphores to
protect critical sections of code. OSFastSemaRequest/OSFastSemaClear implement a counting
semaphore model which allows nesting of OSFastSemaRequest calls. Only after the same number of
OSPFastSemaClear calls will the next waiting task enter the critical section. Up to 64K nestings are
allowed.

Fast semaphores are fast by sacrificing protection. The semaphore structure passed into this routine is
modified in the same privilege level as the caller. Only if another task is waiting on the semaphore will a
privilege level transition occur.

There are a number of important limitations that a developer should understand about fast semaphores.
1) If a task owns a fast semaphore and then dies before releasing it, the

semaphore will not be released automatically by the system.

2) The fast semaphores should not be copied from one location to another.

The routines rely on the address of the semaphore structure being

the same.

OSFastSemaRequest

Function Prototype

Comments

OSGetTime

Returns local time.
Returns STATUS.

STATUS EXPORTEDO OSGetTime (

SIZEOF structLength, // size of the date/time struct

P_OS DATE TIME pDateTime // Out: date, time and time zone information
)i

If an error is returned, the time returned will be Jan 1, 1900.

8 / SYSTEM SERVICES

148 PENPOINT APl REFERENCE
Part 8 / System Services

Function Prototype

OSSetTime

Sets the time or time zone.
Returns STATUS.

STATUS EXPORTEDO 0SSetTime (

0S_SET TIME MODE setMode, // which attributes to set

SIZEOF structLength, // size of the date/time struct

P_OS DATE TIME pDateTime // date, time and time zone information
)i

Function Prototype

OSProgramlInfo

Returns information on the program from the loader.
Returns STATUS.

STATUS EXPORTEDO OSProgramInfo (
0S_PROG_HANDLE progHandle, // program handle given out by the loader
P_OS_PROG_INFO pInfo // out: information buffer

)i

OSProgramInfo will return information on the program handle passed in.no valid handle exists for that
number, then the routine will recurnon the numerically smallest program handle just largerthe
number passed in. The program handle found will be put in theinformation buffer. If no valid
handle exists that islarger than progHandle, then Nil will be returned in thehandle field of the

information structure with stsOK beingfrom the function.

To iterate over all program handles in the system, simply start byOSProgramInfo with a progHandle of
0. This will return thesmallest program handle. On the next call, use thathandle + 1, and on and on
until the returned program handle0.

Function Profotype

OSPowerUpTime

Passes back the number of milliseconds since the last reset.
Returns OS_MILLISECONDS.

0S_MILLISECONDS EXPORTEDO OSPowerUpTime (void);

Funciion Prototype

LComments

ScreenOnlyStringPrint

Prints a string onto the console.
Returns nothing.

void EXPORTEDO ScreenOnlyStringPrint (:
P_STRING pString // string to print
)i

This routine will not log output through the debug log. It will only display characters on the screen.

Debugger
Enters the debugger.

Returns nothing.

t#ifdef DEBUG

#define Debugger () OSDebugger ()
felse

#define Debugger ()
#endif

Comments

OS.H 149
Functions

This macro will call the symbolic debugger (DB). If the symbolic debugger is not available the low-level
kernel debugger is called. In production code (i.e., compiled without /DDEBUG) this macro does
nothing.

Function Prototype

Commaeants

OSDebugger

Enters the debugger, should only be called in special situations.

Returns nothing.

8 / SYSTEM SERVICES

void EXPORTED OSDebugger (void);

Most clients should call Debugger NOT OSDebugger. OSDebugger is used in special situations were a
debugger needs to be called in production code. When a call to the production version of OSDebugger
is made, the debug flag /DD 10000 must be set to actually enter the debugger. If the debug flag is not set
the call is a NOP.

NOTE: OSDebugger should only be called in exceptional cases, such as, page fault handling.

Function Prototype

Comments

Return Yalue

See Also

KeyPressed

Determines if a key is available.
Returns BOOLEAN.

BOOLEAN EXPORTED(O KeyPressed (
P_Ul6 pCh // Out: the char if true is returned
)i

This routine is provided for support of low level code below the input system.
The high byte of the key is the scan code.

TRUE if a key is available

FALSE if no key is available

Keyln

Funciion Prototype

Keyln
Passes back the next key and the scan code from the keyboard.

Returns a keyboard character.

Ul6 EXPORTEDQ KeyIn(void);

Comments The Keyln routine is provided for support of low level code below the input system.
The high byte of the key is the scan code.

See Also KeyPressed
OSDisplay

Function Prototype

Comments

Changes the display to the console or the graphics screen.
Returns the old display mode.

OS_DISPLAY MODE EXPORTEDO OSDisplay (
0S_DISPLAY MODE newDisplayMode // set the display mode.
)
This call is only valid on single headed development systems. In all other configurations, the call does
nothing.

150 PENPOINT APl REFERENCE
Part 8 / System Services

Funetion Prototype

Comments

OSSetlnterrupt

Sets up an interrupt handler.
Returns STATUS.

STATUS EXPORTED 0SSetInterrupt (
P_OS_INTERRUPT INFO pIntInfo // In-Out: interrupt info
)i

The old interrupt info is also returned. Callable only in ring 0.

Function Prototype

Comments

OSTimerAsyncSema

Reset a semaphore after time milliseconds.
Returns STATUS.

STATUS EXPORTEDO OSTimerAsyncSema (
OS_MILLISECONDS time, // waiting period before sema reset
0S_SEMA ID sema, - // semaphore to reset
P_0S_HANDLE pTransactionHandle // Out: ptr to transaction handle
)i

The transaction handle can be used to stop the request if desired.

funciion Profolype

Comments

OSTimerlIntervalSema

Resets a semaphore after each time interval has elapsed.
Returns STATUS.

STATUS EXPORTED(Q OSTimerIntervalSema (

0S_MILLISECONDS timelnterval, // time interval in milliseconds
0S_SEMA ID sema, // semaphore to reset
P_OS_HANDLE pTransactionHandle // Out: timer transaction handle

)Yi

The transaction handle can be used to stop the request if desired.

Function Profotype

OSTimerStop
Stops a timer request given its transaction handle.

Returns STATUS.

STATUS EXPORTEDO OSTimerStop (
0S_HANDLE transactionHandle // transaction to stop
)i

Function Prototype

OSTimerTransactionValid
Checks to see if the timer transaction is valid.

Returns STATUS.

STATUS EXPORTED(O OSTimerTransactionValid (
0S_HANDLE transactionHandle
)i

OS.H

Functions

Function Prototype

OSModuleLoad

Loads a module into the loader’s database.
Returns STATUS.

STATUS EXPORTEDO OSModuleload (

P_CHAR moduleName, // Module name or dlc name

P_CHAR pWorkingDir, // Working dir of the app

P_0S PROG_HANDLE pProgHandle, // Out: Program handle

P_CHAR pBadMod, // Out: If error, name of module that

// failed, buffer must be
// maxModNamelLength+l long

P_CHAR pBadReference // Out: If error, ref name not understood
// buffer must be maxModNamelength+l long

)i

Function Prototype

Comments If a dlc file is provided, all dlls in the file will also be loaded if not loaded already.
OSModuleLoad will not return until instance 0 of all loaded dlls are completed. No message
_dispatching will occur during this time. If communication to the calling task is required, use
IMModulelLoad (install.h, install.lib).
See Also OSProgramlInstall
OSEntrypointFind
Finds an entrypoint in a loaded module either by name or by ordinal.
Returns STATUS.
Function Prototype STATUS EXPORTEDO OSEntrypointFind (
0S_ENTRYPOINT TYPE entryType, // name or ordinal
P_STRING pName, // name if entryType is name
Ul6 ordinal, // ordinal if entryType is ordinal
0S_PROG_HANDLE progHandle, // Program handle
PP_MEM ppEntrypoint // Out: ptr to entrypoint address
)i
See Also OSModuleLoad
OSProcessProgHandle

Passes back the program handle for the process.
Returns the program instance number.

Ul6 EXPORTED(OSProcessProgHandle (
P_0S PROG_HANDLE pProgHandle // Out: ptr to program handle
)i

Function Profotype

OSEnvSearch

Searches the environment for the specified variable and returns its value.
Returns STATUS.

STATUS EXPORTEDQO OSEnvSearch (
P_STRING pVariable, // variable name
P_STRING outBuf, // Out: Output buffer for variable value
SIZEQF bufLen // output buffer length

)i

8 / SYSTEM SERVICES

152 PENPOINT APl REFERENCE
Part 8 / System Services

OSTaskNameSet

Sets a 4 character name for the given task.

Returns STATUS.

Function Prototype STATUS EXPORTED(O OSTaskNameSet (

0S_TASK_ID taskId, // task to name
P_CHAR name // name of task

)i

OSThisApp

Passes back the application object stored with the current process.
Returns OBJECT.

Function Prototype OBJECT EXPORTEDO OSThisApp (void);

OSTaskApp

Passes back the application object for a given process.
Returns OBJECT.

fynction Prototype OBJECT EXPORTEDO OSTaskApp (0S_TASK_ID task);

OSAppObjectPoke
Stores the application object for the current process.
Returns nothing.

Function Prototype void EXPORTEDO OSAppObjectPoke (
OBJECT object // current processes application object
)i

OSPowerDown

Powers down the machine.
Returns nothing.

Function Protetype void EXPORTEDO OSPowerDown (void);

OSErrorBeep

Outputs a tone based on the type of error encountered.
Returns nothing,

Function Profofype vold EXPORTEDO OSErrorBeep (

OS_ERROR _TYPE errorType // type of error
)i
OSTone
Sends a tone for a given duration at the specified volume level.
Returns STATUS.
Function Prototype STATUS EXPORTEDO OSTone (
Ulé frequency, // in Hertz
Ul6 duration, // in milliseconds

Ule volumeLevel // 0 for off; 1 for on
)i

OS.H 153
Functions

Function Prototype

OSThisWinDev

Passes back the windowing device for this application.
Returns OBJECT.

OBJECT EXPORTED(O OSThisWinDev (void);

Function Prototype

OSWinDevPoke

Stores the windowing device for the specified process.
Returns nothing.

void EXPORTEDO OSWinDevPoke (-
0S_TASK ID process, // owner of application

Function Protadype

Comments

OBJECT winDev // Window device object
)i
OSTaskProcess

Returns the process id for the task specified.
Returns OS_TASK_ID.

0S_TASK_ID EXPORTEDO OSTaskProcess (
0S_TASK ID task

)i

If the task parameter is invalid, the routine will return osNullTaskId.

Function Prototype

Comments

OST askInstallTerminate

Notifies tasks waiting on OSProgramInstall that the instance is finished.
Returns nothing..

void EXPORTEDO OSTaskInstallTerminate (
BOOLEAN wait
)i
If the parameter is set the TRUE, then the caller will go into an infinite wait state in order to keep the
task and it’s allocated resources alive.

OSMemlInfo

Returns information on memory usage for a specified task.

Returns STATUS.

FuncHon Protetype STATUS EXPORTED(Q OSMemInfo (

SIZEOF memBufSize, // size of the info buffer (in bytes)
P_OS_MEM INFO pMemInfo // Out: info buffer

)i

OSMemUselnfo

Function Prototype

Returns information on memory usage for a specified task.
Returns STATUS.

STATUS EXPORTEDO OSMemUseInfo (
SIZEOF memBufSize, // size of the info buffer (in bytes)
P_0S MEM USE INFO pMemInfo // Out: info buffer

)i

8 / SYSTEM SERVICES

154 PENPOINT APl REFERENCE
Part 8 / System Services

OSMemAvailable
Return amount of swappable memory available (to caution zone).
Returns STATUS.
Function Prototype STATUS EXPORTEDO OSMemAvailable (
P _U32 pAvailable
)i
OSSystemInfo
Passes back information on the system configuration.
Returns STATUS.
Function Prototype STATUS EXPORTED OSSystemInfo (
SIZEOF i bufSize, // size of the info buffer (in bytes)
P_0OS_SYSTEM INFO pSystemInfo // Out: info buffer
)i
osPrintBufferRoutine

Function variable print routine.
Returns nothing..
Function Prototype extern void FunctionPtr(osPrintBufferRoutine) (P_CHAR pStr, SIZEOF len);

Comments All debug out (Debugf, DPrintf, printf, etc) flows through this function.

 PENPOINT API REFERENCE / VOL I

PART 8 / SYSTEM SERVICES

OSHEAP.H

This file describes the heap memory management routines.
Heaps are used to allocate local and shared memory efficiently.

The functions described in this file are contained in PENPOINT.LIB.

¥ Introduction

Heaps allocate regions of virtual memory and manage the allocation and freeing of smaller blocks within
those regions.

Heaps have many different characteristics which are specified when the heap is created (see
OSHeapCreate). For example, heaps can be shared (i.e. put in the shared memory space) or local.

A heap is identified by a heap handle. PenPoint pre-defines two heap handles for each process, as
described below. OSHeapCreate also returns the handle of a new heap. Most heap routines take the
heap handle as a parameter to identify the heap.

% Pre-defined Heaps

PenPoint pre-defines two heaps for every process. These heaps can be used without calling
OSHeapCreate.

osProcessHeapld is the handle for the pre-defined local heap in each process.

osProcessSharedHeapld is the handle for the shared heap. The shared heap behavior is the same as the
local heap except that the shared heap resides in shared memory. Blocks allocated from the shared heap
are accessible from any process.

" Quick Start
Many clients call only the following functions, using one of the two pre-defined heaps.
¢ OSHeapBlockAlloc
¢ OSHeapBlockFree
Clients who need to create their own heaps also call the following functions:
¢ OSHeapCireate |
¢ OSHeapDelete

"> Debugging Flags
Heap Manager debugging flag set is ™. Defined flags are:
1: Validate heap before OSHeapBlockAlloc and before OSHeapBlockFree
2: Display message for each heap block allocate and free

4: Display message for each heap create and delete10: Validate heap after OSHeapBlockAlloc and
after OSHeapBlockFree 20: Display messages about internal region operation (private)

156 PENPOINT APl REFERENCE
Part 8 / System Services

1000 Display messages about the internal workings (private)

8000 Enter the debugger after printing warnings.

7% Memory Overhead

A heap consists of the memory allocated by the client plus the structures needed by the heap manager
itself to maintain the heap. This section describes the overhead imposed by these structures.

A heap is constructed as a collection of REGIONS. The overhead for a region is 36 bytes. By default,
regions are 16Kb long; however, a request larger than ~16K causes the creation of a special region whose
size is a multiple of 4K and large enough to handle the request.

Each region have any number of allocated blocks within it. The overhead of an allocated block (beyond
the size requested) is 4 bytes, plus 0-3 bytes as necessary to pad the whole block up the nearest 32-bit
boundary.

#ifndef OSHEAP_ INCLUDED

#define OSHEAP_INCLUDED

#ifndef GO_INCLUDED
#include <go.h>

#endif

#ifndef OSTYPES INCLUDED
#include <ostypes.h>

#endif

Common #defines and typedefs
Heap attributes for OSHeapCreate

Enum16 (0S_HEAP MODE) {

osHeapLocal = 0, // heap is local to the owning process
osHeapShared = flag0, // heap is accessible by all processes
" osHeapReadWrite = 0, // heap is writable

osHeapReadOnly = flagl, // heap is only readable
osHeapOptSpace = 0, // heap is optimized for space
osHeapOptTime = flag2, // heap is optimized for speed
osHeapWaitForMem = 0, // wait for memory to become available

osHeapOutOfMemErrOK = flag3 // doesn’t wait, returns out-of-memory error
// flags 5-10 reserved as supervisor flags
}i

Heap information

typedef struct OS_HEAP BLOCK INFO {

SIZEQF numBlocks; // total number of blocks
SIZEQF totalSize; // total # bytes in all blocks
SIZEOF minSize; // # bytes in smallest block
SIZEOF maxSize; // # bytes in largest block
} OS_HEAP BLOCK INFO, * P _OS HEAP BLOCK INFO;
typedef struct OS_HEAP INFO { // info on a given heap
OS_HEAP_BLOCK INFO alloc; // info for allocated blocks
OS_HEAP BLOCK_INFO free; // info for free blocks
U32 numRegions; // # regions in heap
U32 committedSize; // # bytes committed
U32 decommittedSize;// # bytes decommitted
U32 reservedSize; // # bytes reserved
U32 numOwners; // # tasks which have heap open
OS_HEAP_ MODE heapMode; // Mode used in heap creation

} OS_HEAP INFO, * P_OS HEAP INFO;

#define OSTaskSharedHeaplId(t)

((0S_HEAP_ID)OSTaskProcess (t))

OSHEAP.H 157
Functions

[]
¥ Functions
OSHeapCreate
Creates a heap.
Returns STATUS.
Function Prototype STATUS EXPORTED OSHeapCreate (
OS_HEAP MODE mode, // heap create mode
SIZEOF size, // initial region size
P_OS_HEAP ID pHeapId // Out: heap id

Comments

Return Value

See Also

)i
The size of the initial region allocated by the heap manager is a parameter to OSHeapCreate. If the
amount of memory required by the heap is more than the size of the initial region, the heap manager

allocates additional regions of 16K or the last request size, whichever is larger. An initial region size of 0

will default to 16K.
stsOSRequestTooBig The requested size is greater than maxS32.

stsOutOfMem The heap cannot be created because there is not enough memory available within the
system.

stsBadParam The mode parameter specified an illegal mode.

OSHeapDelete

Funciion Prototype

Conments

Return Volue

OSHeapDelete

Deletes a heap. Frees all memory allocated by clients and by the heap manager.
Returns STATUS.

STATUS EXPORTED OSHeapDelete (
O0S_HEAP ID heapld // heap id of heap to delete
)i ’

Even heap blocks that are still allocated are deleted.

If other tasks have opened the heap (using OSHeapOpen), the heap is not actually deleted until all tasks
that have opened the heap have closed it (using OSHeapClosed). Note that this routine is similar to
calling OSHeapClose with the current task.

stsOSInvalidHeapld The heapld was invalid or inaccessible.

See Also OSHeapCireate
OSHeapAllowError
Changes the "out of memory" behavior of heap block allocation.
Returns OS_HEAP_ID.
#define OSHeapAllowError (heap) \
((OS_HEAP 1ID) ((U32) (heap) |osHeapIdOutOfMemErrOKBit))
#define osHeapIdOutOfMemErrOKBit flag0
Comments Normally when a heap block is requested, the heap manager returns only when the memory is available.

Calling OSHeapAllowError changes the heap so that if the system has insufficient memory the heap
manager returns immediately with stsOutOfMem.

8 / SYSTEM SERVICES

158 PENPOINT APl REFERENCE
Part 8 / System Services

Function Prototype

Return Volue

See Also

OSHeapClear
Clears a heap. Deletes all the allocated heap blocks but not the heap.
Returns STATUS.

STATUS EXPORTED OSHeapClear (
OS_HEAP_ID heapId // heap id of heap to clear
)i

stsOSHeapOpen Heap has multiple owners and cannot be cleared.
stsOSInvalidHeapld The heapld was invalid or inaccessible.
OSHeapDelete

Function Prototype

Conments

See Slso

Return Value

OSHeapBlockAlloc
Allocates a block within the heap.

Returns STATUS.

STATUS EXPORTED OSHeapBlockAlloc (

OS_HEAP ID heapld, // heap id
SIZEOF size, // size of block to allocate
PP_UNKNOWN ppHeapBlock // Out: pointer to new heap block

)i

The memory for the heap block is obtained from the list of regions in the heap. If a heap allocate
request is larger than the available space in the region, a new region is allocated for the request.

The newly allocated block is at least as large as the requested length. Sometimes, the heap manager
allocates a block larger than the requested size. Heap blocks are always allocated on 32-bit boundaries.

Heap blocks are allocated on behalf of the creator of the heap. Even if the allocate occurs in a different
task than the creator, the new memory is owned by the creator of the heap.

WARNING. This function expects a valid heap identifier. Using an invalid heap identifer can cause
unpredictable results (including a page fault). A heapld for a heap that has been deleted is considered to
be invalid.

OSHeapBlockFree

stsOSRequestTooBig The requested block size greater than maxS32.

stsOutOfMem The heap cannot grow any bigger because the system is out of memory.
stsOSInvalidHeapld The heapld given is invalid.

stsOSHeaplntegrityError The heap has been corrupted (heap flag 1).

Funciion Prototype

Lonmments

OSHeapBlockFree
Frees a heap block.

Returns STATUS.

STATUS EXPORTED OSHeapBlockFree (
P_UNKNOWN pHeapBlock // pointer to heap block
)i
WARNING. This function expects a valid heap block. Using an invalid heap block can cause
unpredictable results (including a page fault).

See Also

Return Yalue

OSHEAP.H
Functions

OSHeapBlockAlloc
stsOSInvalidHeapld The heapld given is invalid.

stsOSHeaplntegrityError The heap has been corrupted (heap flag 1) or heap block pointer is bad
(debug only).

stsBadParam The heap block pointer is bad (debug only).

159

Funetion Protolype

Commends

OSHeapBlockResize
Resizes a heap block.

Returns STATUS.

STATUS EXPORTED OSHeapBlockResize(

SIZEOF newSize, // new size to allocate

PP_UNKNOWN ppHeapBlock // Out: New pointer is returned here.
)i

The heap block is resized to the new size. This may be slightly faster than allocating a new block and

copying the original block’s contents.

After the call the heap block may be identified with a new pointer value, which is returned in
*ppHeapBlock.

The actual size of the new heap block may be slightly larger than the request.

WARNING. This function expects a valid heap block. Using an invalid heap block can cause
unpredictable results (including a page fault).

Function Prototype

Commenis

OSHeapld
Passes back the heap id from which a heap block has been allocated.

Returns OS_HEAP_ID.

OS_HEAP ID EXPORTED OSHeapld(
P_UNKNOWN pHeapBlock // pointer to a heap block
)i
WARNING. This function expects a valid heap block. Using an invalid heap block can cause
unpredictable results (including a page fault).

Function Prototype

Comments

See Also

OSHeapBlockSize
Passes back the size of the heap block.

Returns STATUS.

STATUS EXPORTED OSHeapBlockSize (
P_UNKNOWN pHeapBlock, // pointer to the heap block
P_SIZEOF pSize // Out: size of the heap block
) s

The size returned is the actual size of the heap block. This may be slightly larger than the requested size.

WARNING. This function expects a valid heap block. Using an invalid heap block can cause
unpredictable results (including a page fault).

OSHeapBlockAlloc

8 / SYSTEM SERVICES

160 PENPOINT APl REFERENCE
Part 8 / System Services

Function Prototype

Comments

OSHeapPoke

Stores 32 bits of client info in the heap header.
Returns STATUS.

STATUS EXPORTED OSHeapPoke (

0S_HEAP_ID heapld, // heap id

P_UNKNOWN info // uninterpreted pointer stored in heap header
)i

The client info is not interpreted by the heap manager.

There is only client info field per heap; if more than one call is made to OSHeapPoke, the most recent
caller determines the value stored.

WARNING. This function expects a valid heap identifier. Using an invalid heap identifer can cause
unpredictable results (including a page fault). An heapld for a heap that has been deleted is considered
to be invalid.

Funciion Prototype

Commments

OSHeapPeek |
Passes back the client info previously set via OSHeapPoke().
Returns STATUS.
STATUS EXPORTED OSHeapPeek (
0S_HEAP_ID heapld, // heap id
PP_UNKNOWN pInfo // Out: pointer stored by OSHeapPoke

)i
WARNING. This function expects a valid heap identifier. Using an invalid heap identifer can cause

unpredictable results (including a page fault). A heapld for a heap that has been deleted is considered to
be invalid.

Function Protolype

Return Value

OSHeaplnfo

Passes back information on a heap.
Returns STATUS.

STATUS EXPORTED OSHeapInfo (

0S_HEAP_ID heapId, // heap id
SIZEQF heapInfoSize, // size of heap info buffer
P_OS_HEAP INFO pHeapInfo // Out: heap info buffer

)i
stsOSInvalidHeapld The heapld was invalid or inaccessible.

stsOSHeaplntegrityError The heap has been corrupted. Under debug version additional info is
printed.

Function Prototype

OSHeapOpen
Adds the specified task as an owner of the specified heap.

Returns STATUS.

STATUS EXPORTED OSHeapOpen (' !
OS_HEAP_ID heapld, // heap id
OS_TASK_ID taskId ‘ // task to add as an owner ‘
)i |

Comments

Return Yalue

OSHEAP.H
Functions

161

Heaps are owned by the task that creates them. When the task is destroyed the heap is automatically
destroyed. If one task wants to access another task’s heap, the heap should be opened. Opening a heap is
not required, but if the task owning the heap is destroyed while the second task is accessing the heap, the
second task will fault.

Memory resources allocated in the heap are not actually destroyed until the last owner of the heap
deletes the heap. Note that if the heap is opened multiple times by the same owner, a corresponding
OSHeapClose or OSHeapDelete must occur for each before resources are deallocated.

The kernel automatically destroys heap resources when all of the owners of the heap have terminated.

8 / SYSTEM SERVICES

The heap is automatically opened on the behalf of the creator during an OSHeapCireate.
stsOSInvalidHeapId The heap must be a shared heap to be opened, the heapld was invalid or

inaccessible.

OSHeapCreate

Function Prototype

Comments
Return Yalue

Soe Alse

OSHeapClose
Remove the specifed task as an owner of the specified heap.
Returns STATUS.

STATUS EXPORTED OSHeapClose (
0S_HEAP_ID heapld,
OS_TASK_ID taskId

// heap id
// task to remove as an owner
)i

When the heap has been closed by the last owner, the heap is automatically deleted.

stsOSInvalidHeapld The heapld was invalid or inaccessible.
OSHeapClose

Function Prototype

Function Prototype

Comments

Return Volue

See Also

OSHeapEnumerate

Enumerates all the heaps in the given process.
Returns STATUS.

typedef STATUS FunctionPtr(P_OS HEAP ENUMERATE) (

OS_HEAP_ID heapId, // next heap
0S_HEAP MODE heapMode, // mode of heap
P_UNKNOWN clientData // client data of OSHeapEnumerate

)i

STATUS EXPORTED OSHeapEnumerate (
P_0OS_HEAP ENUMERATE pEnumProc,

P_UNKNOWN clientData // passed EnumProc on each call

)i
For each heap in the current process, OSHeapEnumerate calls the supplied callback procedure. This
routine is supplied with a heapld and its mode.

OSHeapEnumerate continues until it has exhausted all the heaps in the current process or the callback
routine returns an error status. If the callback procedure returns an error status, processing is terminated
and the error status is returned to the caller of OSHeapEnumerate.

stsOSInvalidHeapld The heapld was invalid or inaccessible.
OSHeapWalk

162 PENPOINT API REFERENCE
Part 8 / System Services

OSHeapWalk

Traverses the given heap.

Returns STATUS.

Arguments typedef struct OS_HEAP_WALK INFO {

P_UNKNOWN pBlock; // address of heap block
U32 size; // size of block
BOOLEAN inUse; // true if the block is allocated
P_UNKNOWN clientData; // set to the client data of OSHeapWalk

// The following fields are only supported by a debugging version of
// PenPoint’s kernel. Changing their value modifies the heap block.

BOOLEAN marked; // true if the block was marked w/OSHeapMark
OS_TASK_ID owner; // last task to allocate or free this block
P_UNKNOWN caller; // address of the last OSHeapBlockAlloc/Free

} 0S_HEAP WALK INFO, * P_OS HEAP WALK INFO;
typedef STATUS FunctionPtr (P_OS HEAP WALK) (P_OS HEAP WALK INFO pInfo);

Funciion Prototype STATUS EXPORTED OSHeapWalk (

OS_HEAP_ID - heapId, // heap to walk
P_OS_HEAP WALK pWalkProc, // procedure to call for each heap block
P_UNKNOWN clientData // passed directly to pWalkProc
)i
Comments For each allocated block in the given heap, calls the supplied callback routine, providing the address and

size of the block. OSHeapWalk continues until it has exhausted all allocated blocks in the heap or the
callback routine returns an error status. If the callback procedure returns an error status, processing is
terminated and the error status is immediately returned to the caller of OSHeapWalk.

Return Value stsOSInvalidHeapld The heapld was invalid or inaccessible.
See Also OSHeapEnumerate
OSHeapMark

Marks all the allocated blocks in given heap.
Returns STATUS.

Funciion Prototype STATUS EXPORTED OSHeapMark (

OS_HEAP_ID heapId // heap to mark
)i
Comments Combining OSHeapMark with OSHeapWalk provides a simple means to track down storage leaks. For
example:

// Program is in a known state
OSHeapMark (myHeap) ;

// Lots of OSHeapBlockAlloc/Free calls
OSHeapBlockAlloc (myHeap, xx, &blk);
OSHeapBlockFree (blk) ;

// Program is back to the known state.
// Any unmarked heap blocks probably indictate a storage leak
OSHeapWalk (myHeap, MyHeapWalker);

Return Value stsOSInvalidHeapld The heapld was invalid or inaccessible.
See Also OS_HeapWalk

OSHEAP.H

Functions

163

Arguments

Camments

Return Yolue

OSHeapPrint

Prints debugging info about the given heap.

Returns STATUS.

typedef enum OS_HEAP PRINT FLAGS {
osHeapSuppressFree = flag0,
osHeapSuppressInUse = flagl,
osHeapSuppressMarked = flag2,
osHeapSuppressUnmarked = flag3,
osHeapSuppressSummary = flag4,
osHeapDisplayRegions = flag5,
osHeapPrintAll = 0,

osHeapPrintSummaryOnly =

//

Don’t print the free blocks
Don’t print the allocated blocks
Don’t print the marked blocks
Don’t print the unmarked blocks
Don’t print the heap summary
Print regions in heap

Display summary and all blocks
Display summary

osHeapSuppressFree | osHeapSuppressInUse|
osHeapSuppressMarked|osHeapSuppressUnmarked,
// Show blocks created since the last call to OSHeapMark
osHeapPrintActiveBlocks = osHeapSuppressFree|osHeapSuppressMarked

} OS_HEAP PRINT FLAGS;

STATUS EXPORTED OSHeapPrint (OS_HEAP_ID heapld, OS_HEAP PRINT FLAGS suppress);

OSHeapPrint is only available in a debugging version of the PenPoint kernel. This request is not

supported in production versions of Penpoint.

OSHeapPrint assumes the heap is not corrupted; in other words, OSHeapPrint does not duplicate any

of the integrity tests done by OSHeaplnfo.

stsOSInvalidHeapld The heapld was invalid or inaccessible.

Flags for OSHeapPrint

8 / SYSTEM SERVICES

PENPOINT APl REFERENCE / VOL Il

"PART 8 / SYSTEM SERVICES

OSPRIV.H

This include file describes the prototypes for supervisor privilege PenPoint routines. The functions
described in this file are contained in PENPOINT.LIB.

#ifndef OSPRIV_INCLUDED
#define OSPRIV_INCLUDED
#ifndef OS_INCLUDED
#include <os.h>

#endif

Common #defines and typedefs

The following are heap modes for supervisor level clients

#define osHeapSupervisor flag5 // heap memory access is limited to supervisor
#define osHeapNoSwap flagéb // heap memory is never swapped
#define osHeapSystem flagl0 // heap is owned by the system not a process

Special heap defines for supervisor level clients

#define osGlobalHeapId ((OS_HEAP ID)10) // predefined heap for sys clients
Physical address types

typedef U32 0S_PHYS ADDR; // physical mem address
typedef OS PHYS ADDR * P_OS_PHYS_ADDR;

Program region information

typedef struct OS_PROGRAM REGION INFO {
P_MEM base;
SIZEQF length;
} OS_PROGRAM REGION INFO, *P_0S_PROGRAM REGION INFO;

Function Prototype

Comunents

OSIntMask

Sets the interrupt mask for a given interrupt.
Returns STATUS.

STATUS EXPORTED OSIntMask (
0S_INTERRUPT ID intNum, // logical interrupt id
P_BOOLEAN pEnable // In-Out: TRUE = enable, returns old mask

)i
Note: OR in the flag osIntNumIsHardwareLevel if intNum is a hardware interrupt level (vs a MIL
logical device id). The flag is defined in ostypes.h.

Warning!!! Supervisor privilege only.

166 PENPOINT API REFERENCE
Part 8 / System Services

Function Prototype

Comments

OSIntEOI

Send an EOI request to the interrupt controller device.
Returns STATUS.

STATUS EXPORTED OSIntEOI (
OS_INTERRUPT ID intNum // MIL device id or hw interrupt level
)i

Note: OR in the flag osIntNumIsHardwareLevel if intNum is a hardware interrupt level (vs a MIL
logical device id). The flag is defined in ostypes.h.

Warning!!!' Supervisor privilege only.

Function Prototype

Larments

OSProgramRegionInfo

Passes back region information for the debugger.
Returns STATUS.

STATUS EXPORTED OSProgramRegionInfo (

0S_PROG_HANDLE progHandle, // program handle
P_U32 pNRegions, // Out: number of regions
P_OS_PROGRAM REGION_INFO PRI // Out: region information

);

Warning!!!' Supervisor privilege only.

Function Prototype

Comments

Return Volue

See Alss

OSSysSemaRequest

Requests access to a system semaphore.
Returns STATUS.

STATUS EXPORTED OSSysSemaRequest (
0S_SEMA ID sema // the semaphore to lock

)i

System semaphores are regular semaphores with a little more protection. If a task owns a system
semaphore, then that task cannot be terminated or suspended by another task until the system
semaphore is relinquished. With this feature, tasks can be sure that any system critical data structures
will be completely updated.

If the task terminates itself while it owns a system semaphore, then the next task that acquires the system
semaphore will get the warning stsOSSemaLockBroken.

OSSysSemaClear should be used to relinquish the system semaphore. The function OSSemaCreate is
used to create the system semaphore. Any semaphore can become a system semaphore simply by calling
this routine. System semaphores are only used for critical section management. Do NOT use system
semaphores for event handling.

Like regular semaphores, system semaphores are counting semaphores.
Warning!!!' Supervisor privilege only.
stsOSSemaLockBroken Previous locker of semaphore died without clearing the semaphore

OSSemaCreate

OSPRIV.H - 167
Functions

Function Protolype

OSSysSemaClear

Releases access to the the system semaphore.
Returns STATUS.

STATUS EXPORTED OSSysSemaClear (
OS_SEMA_ID sema // the semaphore to unlock
)i

Comments System semaphores are regular semaphores with a little more protection. If a task owns a system
semaphore, then that task cannot be terminated or suspended by another task until the system
semaphore is relinquished. With this feature, tasks can be sure that any system critical data structures
will be completely updated.

If the task terminates itself while it owns a system semaphore, then the next task that acquires the system
semaphore will get the warning stsOSSemaLockBroken.

OSSysSemaClear should be used to relinquish the system semaphore. The function OSSemaCreate is
used to create the system semaphore. Any semaphore can become a system semaphore simply by calling
OSSysSemaRequest/ OSSysSemaClear. System semaphores are only used for critical section
management. Do NOT use system semaphores for event handling.

Like regular semaphores, system semaphores are counting semaphores.

Warning!!! Supervisor privilege only.

See Also OSSysSemaRequest
OSSupervisorCall

Funclion Profotyps

Comments

Performs a privilege transition to supervisor privilege.

Returns U32.

#if defined(_ WATCOMC) && defined(_ 386_)
#pragma aux OSSupervisorCall parm [eax] [edx] [ecx] modify [gs];

U32 _ far 0SSupervisorCall (
P_UNKNOWN pFunction,
P_UNKNOWN pStackParms,
U32 nStackParms

)i

#endif

The function passed into the routine will be called by OSSupervisorCall in supervisor privilege. This
function will check to verify that the routine passed in is actually a supervisor level routine.

OSSupervisorCall will work correctly if called in supervisor level.

Function Profotype

Comments

OSTaskAddressInfo

Passes back task and system memory information.

Returns STATUS.
STATUS EXPORTED OSTaskAddressInfo (
P_MEM pAddr, // memory address
0S_TASK_ID owner, // owner of address
SIZEOF statBufSize, // size of info buffer (in bytes)
P_OS_ADDRESS INFO pAddrInfo // Out: info buffer

)i

Warning!!! Supervisor privilege only.

8 / SYSTEM SERVICES

168 PENPOINT APl REFERENCE
Part 8 / System Services

" Data structures used by OSResourcesAvailable

Enuml6 (OS_RESOURCE_ZONE) {

osResourceZoneNormal, // Normal: plenty of resource
osResourceZoneCaution, // Caution: resource is getting low
osResourceZoneWarning, // Warning: resource is low
osResourceZoneDanger, // Danger: resource is really low
osResourceZoneCritical // Critical: PenPoint will reboot
}i
#define numResourceZones 5
typedef struct 0S_RESOURCE AVAILABLE {
OS_RESOURCE_ZONE currentZone;
U32 resourceAvailable;
U32 zonelLimits [numResourceZones];

} OS_RESOURCE AVAILABLE, *P_OS_RESOURCE_AVAILABLE;

typedef struct OS_RESOURCES_INFO {
OS_RESOURCE_AVAILABLE swappableMemory;
OS_RESOURCE_AVAILABLE nonSwappableMemory;
0S_RESOURCE_AVAILABLE objects;

} OS_RESOURCES_INFO, *P_OS RESOURCES INFO;

OSResourcesAvailable

Returns info on the available resources in the system.

Returns STATUS.

Funetion Prototype STATUS EXPORTEDO OSResourcesAvailable (

SIZEOF bufSize, // size of the info buffer (in bytes)
P_0S_RESOURCES_INFO pInfo // Out: info buffer

)i

OSMemMapAlloc

Function Protolype

Lenvments

Allocates linear memory for memory mapped hardware
Returns STATUS.

STATUS EXPORTED OSMemMapAlloc (

U32 physAddr, // address of memory mapped area
U32 length, // length of memory to allocate
PP_MEM ppMem // Out: return ptr to the memory

)i
Creates a guard page after the memory. The memory is created with the attributes: read/write data,
system privilege, owned by systemTId.

Note: the physical address passed in physAddr must be within the first 16MB of physical memory.

Warning!!! Supervisor privilege only.

Funchion Protolype

Cormmends

OSMemMapFree
Frees memory which was allocated by OSMemMapAlloc

Returns STATUS.

STATUS EXPORTED OSMemMapFree (
P_MEM pMem // ptr to memory to free
)i

Warning!!! Supervisor privilege only.

OSPRIV.H 169

Functions

Function Prototype

Comments

OSDMAMemAlloc

Allocates linear memory that is DMA-able

Returns STATUS.

STATUS EXPORTED OSDMAMemAlloc (
U32 length, // length of memory to allocate
0S_TASK_ID owner, // owning task id.
PP_MEM ppMem // Out: return ptr to the memory

)i

Creates a guard page after the memory. The memory is created with the following attributes:
read/write access

supervisor privilege

Not swappable (every page locked).

All pages are mapped in and are physically contiguous in memory. For machines that have DMA
boundary conditions (e.g. can’t cross 64k physical boundary), the memory allocated in this region is
guaranteed to honor those conditions. Memory will be allocated on system page size boundaries and all
allocations will be a minimum of the processor page size.

Warning!!! Supervisor privilege only.

Funciion Protolype

Comments

OSDMAMemFree v

Frees memory which was allocated by OSDMAMemAlloc

Returns STATUS.

STATUS EXPORTED OSDMAMemFree (
P_MEM pMem, // ptr to memory to free
0S_TASK_ID owner // owning task id.

)i
Warning!!!' Supervisor privilege only.

Funciion Prototyps

Cormmeants

OSTaskMemlInfo

Provides memory info for the system.
Returns STATUS.

STATUS EXPORTED OSTaskMemInfo (

0S_TASK_ID taskid, // info will be returned for task id
SIZEOF memBufSize, // size of the info buffer (in bytes)
P_OS_MEM INFO pMemInfo // Out: info buffer

)i

Warning!!! Supervisor privilege only.

Funciion Prototyps

Lomments

OSVirtToPhys

Translates a virtual address into a physical address.
Returns U32.

U32 EXPORTED OSVirtToPhys (
P_UNKNOWN pMem : // virtual address
)i

Warning!!! Supervisor privilege only.

8 / SYSTEM SERVICES

170 PENPOINT API REFERENCE
Part 8 / System Services

OSMemLock

Locks pages in memory.
~ Returns STATUS.

Fupction Prototype STATUS EXPORTED OSMemLock (

P_MEM pMenm, // pointer to memory
SIZEQOF length // length in bytes of memory to lock
)i
Comments Locked pages will not be paged out of the system. If the page is paged out before this call, then the page

will be brought into memory and then locked.
A counter is maintained to keep track of multiple locks on a given page.

Warning!!! Supervisor privilege only.

OSMemUnlock

Unlocks pages in memory.
Returns STATUS.

Function Profotype STATUS EXPORTED OSMemUnlock (

P_MEM pMen, // pointer to memory
SIZEOF length // length in bytes of memory to unlock
)i
Comments When the page is unlocked, it may be paged out by the memory manager.

A counter is maintained to keep track of multiple locks on a given page. When the counter goes to 0

then the page will be unlocked.

Warning!!! Supervisor privilege only.

PENPOINT API REFERENCE»/ VOL 11

PART 8 / SYSTEM SERVICES

OSTYPES.H

Module Description: This include file describes types for the Penpoint kernel.

#ifndef
#define

#ifndef

OSTYPES_INCLUDED
OSTYPES_INCLUDED

GO_INCLUDED

#include <go.h>

#endif

¢ Status values: errors

#define stsOSBadPointer MakeStatus (c1s0S, 1)
#define stsOSOutOfMem stsOutOfMem

#define stsOSNoMoreOwners MakeStatus (c1s0S, 3)
#define stsOSInvalidPath MakeStatus (cls0S, 4)
#define stsOSNoSemaExists MakeStatus (¢c1s0S, 5)
#define stsOSTimeOut MakeStatus (c1sOS, 6)
#define stsOSSemaReset MakeStatus (c1s0S, 7)
#define stsOSAliasesExist MakeStatus (c1s0S, 8)
#define stsOSInvalidOperationForTask MakeStatus (c1s0S, 9)
#define stsOSInvalidTaskId MakeStatus (c1s0S, 10)
#define stsOSTransactionInvalid MakeStatus (c1s0S, 11)
#define stsOSRequestTooBig MakeStatus (cl1s0S, 12)
#define stsOSHeapIntegrityError MakeStatus (cls0S, 13)
#define stsOSInvalidHeapIld MakeStatus (cls0S, 14)
#define stsOSSegmentDiscarded MakeStatus (c1s0S, 16)
#define stsOSFlashEraseFailure MakeStatus (cls0S, 17)
#define stsOSFlashProgramFailure MakeStatus (cls0S, 18)
#define stsOSBadExeFormat MakeStatus (cls0S, 19)
#define stsOSInstalllnternalError MakeStatus (c1s0S, 20)
#define stsOSMissingEntryName MakeStatus (cls0S, 21)
#define stsOSMissingEntryOrdinal MakeStatus (cls0S, 22)
#define stsOSInitiatelInternalError MakeStatus (cls0S, 23)
#define stsOSInitiateStackOverflow MakeStatus (cls0S, 24)
#define stsOSProgInstallError MakeStatus (clsOS, 25)
#define stsOSTooManySelectors MakeStatus (c1sOS, 26)
#define stsOSTooManyInstances MakeStatus (c1s0S, 27)
#define stsOSDependenciesExist MakeStatus (cls0S, 28)
#define stsOSTooManyRequireds MakeStatus (cls0S, 29)
#define stsOSPathTooLong MakeStatus (cls0S, 30)
f#define stsOSModuleNotFound MakeStatus (c1s0S, 31)
#define stsOSBadDLCFormat MakeStatus (c1s0S, 32)
#define stsOSMissingDependency MakeStatus (cls0S, 33)
#define stsOSInvalidProgramHandle MakeStatus (cls0S, 34)
#define stsOSHeapOpen MakeStatus (cls0S, 35)
#define stsOSHeapNotOpen MakeStatus (c1s0S, 36)

¢ Status values: warnings

#define

stsOSSemaLockBroken

MakeWarning (c1s0S,

1)

172 PENPOINT APl REFERENCE
Part 8 / System Services

¢ Misc defines

#define osNullTaskId ((OS_TASK _ID)NULL)

#define osNullOpenSema ((OS_SEMA ID)NULL)

#define osInvalidHandle ((0S_HANDLE) NULL)

#define osInfiniteTime OXFFFFFFEF

#define maxModNameLength 32

¢ Well known heap ids

#define osInvalidHeapId ((OS_HEAP_ID)0)

#define osProcessHeapId ((0S_HEAP_ID) &0SProcessHeapValue)
#define osProcessSharedHeapIld ((OS_HEAP_ID)OSThisProcess())

¢ Filters

#define osAnyITMessage OXFFFFFFFF

#define osStartupCommandLineFilter flag0

#define osClsmgrSend flag0

#define osClsmgrReply flagl

#define osMILFilter flag2

t#define osAppSend flag3

#define osAppReply flag4

#define osTestManagerFilter flag5s

#define osClsmgrPost flagé6

#define osInstallWaitingFilter flag30

#define osTerminatedTaskFilter flag3l

NOTE: flag25 - flag29 reserved for users

tdefine userDefinedFilters (flag25|£flag26]|flag27|flag28|flag29)
#define objSendFilter ((0S_ITMSG_FILTER) osClsmgrSend)
tdefine objReplyFilter ((0S_ITMSG_FILTER)osClsmgrReply)

Used to treat the intNum field as a hardware interrupt level (vs a MIL logical device id) in the routines
OSSetInterrupt, OSIntMask and OSIntEOL

#define osIntNumIsHardwareLevel flagl5

Typedefs

typedef P_UNKNOWN P_MEM; // Pointer to memory
typedef U32 0S_HANDLE; // Handle to an object
typedef Ul6 0S_TASK_ID; // Task Id
typedef OS_HANDLE 0S_SEMA_ID; // Open semaphore Id
typedef P_UNKNOWN 0S_PROG_HANDLE; // Loaded program handle
typedef OS_HANDLE 0S_ITMSG_ID; // message identifier
typedef U32 0S_ITMSG FILTER; // Inter-task msg filter
typedef Ul6 0S_INTERRUPT_ID; // logical interrupt ID
typedef U32 0S_MILLISECONDS; // number of milliseconds
typedef U32 OS_TASK_ERROR;
typedef P_MEM* PP_MEM;
typedef OS_HANDLE* P_OS_HANDLE;
typedef OS_TASK_ID* P_OS_TASK_ID;
typedef OS_SEMA ID* P_0S_SEMA_ID;
typedef OS_PROG_HANDLE* ~ P_0S_PROG_HANDLE;
typedef OS_ITMSG_ID* P_0S_ITMSG_ID;
typedef 0S_I TMSG_FILTER* P_0S_ITMSG FILTER;
typedef 0S_TASK ERROR* P_OS_TASK_ERROR;
typedef P_UNKNOWN OS_HEAP_ID, * P_OS_HEAP ID;
typedef enum OS_TASK MODE ({
osThisTaskOnly, // "act" on this task only
osTaskFamily, // "act" on all tasks in the task family
osAllTasks // "act" on all tasks in the system

} OS_TASK MODE, * P_OS_TASK_MODE;

OSTYPES.H 173
Public Functions

typedef enum OS_PRIORITY CLASS {

osDefaultClass, // use existing class
osHighPriority, // the class is "high priority"
osMedHighPriority, // the class is "med high priority"
osMedLowPriority, // the class is "med low priority"
osLowPriority // the class is "low priority"

} OS_PRIORITY CIASS, * P_OS_PRIORITY CLASS;
typedef struct OS_ITMSG INFO* P_0S_ITMSG_INFO;

Public Functions

Function Prototype

Somments

OSThisProcess

Passes back the task id of this tasks process.
Returns OS_TASK_ID.
0S_TASK_ID EXPORTED(0 OSThisProcess (void);

Note: This function is defined here (instead of in 0s.h) to satisfy the definition for
osProcessSharedHeapld above.

8 / SYSTEM SERVICES

PENPOINT APl REFERENCE / VOL II

PART 8 / SYSTEM SERVICES

SORT.H

Interfaces to sorting routines.
This file contains the API definition for the quicksort sorting algorithm.

NOTE: gsort can be found in stdlib.h

#ifndef SORT INCLUDED
#define SORT_INCLUDED Version 1.0

Lormments

quicksort

Sorts a linked list of records using the "quicksort" algorithm.

Returns pointer.

extern void ** quicksort(void **head, int (*comp) (void **, void **));
Usage:

struct record *head;
int comp (struct record *p, struct record *q);

head = quicksort (head, comp);

The routine "quicksort" takes an argument "head", which is a pointer to the first record of a linked list.
It also takes an argument "comp”, which is the name of a user-supplied routine for comparing two list
records. The routine "comp" must take as its arguments a pointer to each of two list records, and must
return an integer, either (-1) if the first record is "smaller than" the second, (0) if the first record is
"equal to" the second, or (+1) if the first record is "larger than" the second.

After sorting, "quicksort" returns a pointer to the new first record of the linked list (i.., the new "head"

of the list).

The structure of the linked list records is as follows. The first field of each list record must be the "next"
pointer. The actual data in the list records may be of varjable size.

- + et + o= + mmm—= + - +
| head |---->| next |---->| next |---->| next |---->| next |---->pNull
- + et + 4o + i + oo - +

| data | | data | | data | | data |

[[|- I [| I |

P oeeea | o= + | | | ...

tommmm + | | tommmmm +

$ommm o +

The "quicksort" algorithm is fast. However, it is recursive. When there are N records in the list, the
maximum recursion depth will average around (In N) calls. Each recursion puts about 30 bytes on
the stack.

PENPOINT API REFERENCE /

PART 8 / SYSTEM SERVICES

TIMER.H

This file contains the API definition for clsTimer.
Notes:
"theTimer" is a well known object that provides timer and alarm support.

clsTimer inherits from clsObject.

#ifndef TIMER INCLUDED
#define TIMER INCLUDED

Include file dependencies for this include file

#ifndef GO INCLUDED
#include <go.h>

#endif

#ifndef CLSMGR_INCLUDED
#include <clsmgr.h>
#endif

#ifndef 0OS_INCLUDED
#include <os.h>

#endif

"Class Timer Messages

Argumaents

Comments

Return Value

msgTimerRegister

Registers a request for notification.

Takes P_TIMER_REGISTER_INFO, returns STATUS.

#define msgTimerRegister MakeMsg (clsTimer, 1)

typedef struct TIMER REGISTER INFO {

OBJECT client; // client object to notify
OS_MILLISECONDS time; // waiting period before msg is sent
P_UNKNOWN clientData; // Uninterpreted client data
0S_HANDLE transactionHandle; // Out: transaction handle

} TIMER REGISTER INFO, * P_TIMER REGISTER INFO;

Sent by the client to the timer object for notification after a specified time period has elapsed. At that
time, msgTimerNotify will be sent (via ObjectPost) to the client. See that message for details.

When the machine is turned off, the time period will stop counting down until the machine is turned
back on.

To stop the timeout message, use msgTimerStop.

The use of ObjectPost to send the msgTimerNotify message means that it will be synchronous with
input events.

stsBadObject The client field cannot be a local object.

178 PENPOINT API REFERENCE
Part 8 / System Services

msgTimerRegisterAsync
Registers a request for notification.

Takes P_TIMER_REGISTER_INFO, returns STATUS.

#define msgTimerRegisterAsync MakeMsg(clsTimer, 9)
Message typedef struct TIMER REGISTER_INFO {
Arguments OBJECT client; // client object to notify
0S_MILLISECONDS time; // waiting period before msg is sent
P_UNKNOWN clientData; // Uninterpreted client data
0S_HANDLE transactionHandle; // Out: transaction handle

} TIMER REGISTER INFO, * P_TIMER REGISTER INFO;

Comments Sent by the client to the timer object for notification after a specified time period has elapsed. At that
time, msgTimerNotify will be sent (via ObjectPostAsync) to the client. See that message for details.

When the machine is turned off, the time period will stop counting down until the machine is turned
back on.

To stop the timeout message, use msgT'imerStop.

The use of ObjectPostAsync to send the msgTimerNotify message means that it will NOT be

synchronous with input events.

msgTimerRegisterDirect

Registers a request for notification.

Takes P_TIMER_REGISTER_INFO, returns STATUS.

#define msgTimerRegisterDirect MakeMsg (clsTimer, 12)
Maossage typedef struct TIMER REGISTER INFO {
Arguments OBJECT client; // client object to notify
0S_MILLISECONDS time; // waiting period before msg is sent
P_UNKNOWN clientData; // Uninterpreted client data
0S_HANDLE transactionHandle; // Out: transaction handle

} TIMER REGISTER_INFO, * P_TIMER REGISTER INFO;

Comments Sent by the client to the timer object for notification after a specified time period has elapsed. At that
time, msgTimerNotify will be sent (via ObjectPostDirect) to the client. See that message for details.

When the machine is turned off, the time period will stop counting down until the machine is turned
back on.

To stop the timeout message, use msgTimerStop.

The use of ObjectPostDirect to send the msgTimerNotify message means that it will NOT be
synchronous with input events.

msgTimerRegisterInterval

Registers a request for interval notification.

Takes P_TIMER_INTERVAL_INFO, returns STATUS.

#define msgTimerRegisterInterval MakeMsg (clsTimer, 2)
Arguments typedef struct TIMER INTERVAL INFO {
OBJECT client; // client object to notify
OS_MILLISECONDS interval; // waiting interval before msg is sent
P_UNKNOWN clientData; // Uninterpreted client data
0S_HANDLE transactionHandle; // Qut: transaction handle

} TIﬁER__INTERVAL_INFO, * P_TIMER INTERVAL_INFO;

TIMER.H 179
Class Timer Messages

Comments Sent by the client to the timer for a notification message on a specified time interval. After each time
interval, msgTimerNotify will be posted (via ObjectPost) to the client.

When the machine is turned off, the time period will stop counting down until the machine is turned
back on.

To stop the interval messages, use msgTimerStop.

The use of ObjectPost to send the msgTimerNotify message means that it will be synchronous with
input events.

Return Value stsBadObject The client field cannot be a local object.

msgTimerStop

Stops a timer transaction.

Takes OS_HANDLE, returns STATUS.

#define msgTimerStop MakeMsg(clsTimer, 11)

msgTimerTransactionValid

Determines if a timer transaction is valid.

Takes OS_HANDLE, returns STATUS.

#define msgTimerTransactionValid MakeMsg(clsTimer, 10)

msgTimerNotify

Notifies the client that the timer request has elapsed.

Takes P_TIMER_NOTIFY, returns nothing. Category: advisory message.

#define msgTimerNotify MakeMsg (clsTimer, 3)
Arguments typedef struct TIMER NOTIFY {
P_UNKNOWN clientData; // client data returned
0S_HANDLE transactionHandle; // transaction handle

} TIMER NOTIFY, * P_TIMER NOTIFY;

Comments Sent by the timer object to the client.

msgTimerAlarmRegister

Registers a request for alarm notification.

Takes P_TIMER_ALARM_INFO, returns STATUS.

#define msgTimerAlarmRegister MakeMsg(clsTimer, 5)
Arguments Enuml6 (TIMER ALARM MODE) {
timerAbsoluteDate, // alarm only on specified date and time
timerEveryWeek, // alarm when dayOfWeek, hours, minutes match
timerEveryDay // alarm when hours and minutes match

}i
typedef struct TIMER ALARM INFO {

OBJECT client; // client object to notify
0S_DATE_TIME alarmTime; // alarm time

P_UNKNOWN clientData; // Uninterpreted client data
0S_HANDLE transactionHandle; // Out: transaction handle

TIMER ALARM MODE alarmMode;
} TIMER ALARM INFO, * P_TIMER ALARM INFO;

8 / SYSTEM SERVICES

180 PENPOINT APl REFERENCE
Part 8 / System Services

Comments Alarms differ from timer requests in that a time and date specifies when an alarm is to occur. The timer
will ObjectPost msgTimerAlarmNotify to the client when the alarm goes off. See that message for
details.

Alarms will alarm within a minute of the alarm time.
When the machine is turned off, the alarm is still active. An alarm will turn the machine on.
To stop the alarm, use the message msgTimerAlarmStop.

Return Value stsBadObject The client field cannot be a local object.

msgTimerAlarmStop
Stops a pending alarm request.
Takes OS_HANDLE, returns STATUS.

#define msgTimerAlarmStop MakeMsg (clsTimer, 6)

msgTimerAlarmNotify

Notifies the client that the alarm request has elapsed.

Takes P_ALARM_NOTIFY, returns nothing. Category: advisory message.

#define msgTimerAlarmNotify MakeMsg (clsTimer, 7)
Arguments typedef struct ALARM NOTIFY {
P_UNKNOWN clientData; // client data returned
OS_HANDLE transactionHandle; // transaction handle
BOOLEAN alarmCausedPoweron; // power up occurred due to alarm

} ALARM NOTIFY, * P_ALARM NOTIFY;

Comments Sent by the timer object to the client.

. Part 9 /
Utility Classes

PENPOINT APl REFERENCE / VOL 11

PART 9 / UTILITY CLASSES

BKSHELF.H

This file contains the API definition for clsDVBookshelf.
cIsDVBookshelf inherits from clsIconWin.

It provides a view of bookshelves on external disks.

#ifndef BKSHELF_ INCLUDED
#define BKSHELF _INCLUDED
#ifndef APPWIN_INCLUDED
#include <appwin.h>

#endif // APPWIN INCLUDED
#ifndef ICONWIN_ INCLUDED
#include <iconwin.h>
#endif // ICONWIN_INCLUDED

Common #defines and typedefs

typedef struct BOOKSHELF METRICS {
U32 sparel; // Spare: reserved.
U32 spare2; // Spare: reserved.
} BOOKSHELF_METRICS, *P_BOOKSHELF METRICS;

msgNew
Creates a new bookshelf viewer.

Takes P_BOOKSHELF_NEW, returns STATUS. Category: class message.

Arguments typedef struct BOOKSHELF NEW ONLY {
BOOKSHELF METRICS metrics; // Initial metrics setting.
OBJECT rootDH; // Dir handle of volume for this bkshelf.
OBJECT win; // Window for move/copy.
U32 reservedl;
U32 reserved?;

} BOOKSHELF NEW ONLY, *P_BOOKSHELF NEW ONLY;
#define bookshelfNewFields \

iconWinNewFields \

BOOKSHELF_NEW_ONLY bookshelf;
typedef struct BOOKSHELF _NEW {

bookshelfNewFields

} BOOKSHELF NEW, *P_BOOKSHELF NEW;

msgBookshelfGetMetrics

Gets current metrics setting.

Takes P_BOOKSHELF_METRICS, returns STATUS.

#define msgBookshelfGetMetrics MakeMsg (clsDVBookshelf, 1)
Message typedef struct BOOKSHELF METRICS ({
Arguments U32 sparel; // Spare: reserved.
U32 spare2; // Spare: reserved.

} BOOKSHELF METRICS, *P_BOOKSHELF_METRICS;

184 PENPOINT APl REFERENCE
Part 9 / Utility Classes

msgBookshelfSetMetrics

Sets current metrics setting.

Takes P_BOOKSHELF_METRICS, returns STATUS.

#define msgBookshelfSetMetrics MakeMsg (c1lsDVBookshelf, 2)
Message typedef struct BOOKSHELF METRICS {
Arguments U32 sparel; // Spare: reserved.
U32 spare2; // Spare: reserved.

} BOOKSHELF METRICS, *P_BOOKSHELF METRICS;

[]
Miscellaneous
// "-- Empty --" label tag
#define tagBookshelfEmpty MakeTag (clsDVBookshelf, 1)

#define hlpBKBookshelfEmpty MakeTag (c1sDVBookshelf, 100)

BROWSER.H

This file contains the API definition for clsBrowser.
clsBrowser inherits from clsScrollWin.
clsBrowser provides the Ul for viewing and manipulating notebooks and disks.

clsBrowser provides both the Table Of Contents view of "live" data in the notebook and the Disk
Viewer view of "dead" data on disk. clsBrowser functions include displaying notebook and disk items,
navigating the notebook or file system hierarchy, move/copy of documents, export of notebook
documents to disk, import of files from disks into the notebook, deleting notebook and disk items, and
creating notebook and disk items.

clsBrowser is useful to applications that need to allow users to select sections or documents in the
notebook, or items from disk.

Some messages apply only to the TOC view or to the disk view. Disk View only messages are labeled
DskView only, TOC view only messages are labeled TOC only.

Many browser messages are sent to self allowing subclasses to modify browser behavior.

% Move/Copy Conventions

See embedwin.h for move/copy protocol.

When the source of a move/copy, the browser responds to msgXferGetList with:
XferName can xfer the name of the selection

XferFullPathName can xfer the full path name of the selection

XferFlatLocator can xfer the flat locator of the selection

clsFileSystem can xfer as a file or directory

clsEmbeddedWin can xfer as "live" data notebook, section, or document

clsExport If source is TOC and export mode is in effect then do export instead of copy. (see export.h

for details)
If the destination is the disk and the xferList contains clsExport then do export instead of move/copy.

If not an export, and the xferList contains clsEmbeddedWin then let the embedded win superclass will
handle the move/copy.

If the destination is the TOC and source is not a clsEmbeddedWin then invoke the import code.

Otherwise, if the source is clsFileSystem do a file system move or copy.

#ifndef BROWSER_INCLUDED
#define BROWSER_INCLUDED
#ifndef GO_INCLUDED
#include <go.h>

tendif

186 PENPOINT APl REFERENCE
Part 9 / Utility Classes

#ifndef UID_INCLUDED
#include <uid.h>

#endif

#ifndef CLSMGR_INCLUDED
#include <clsmgr.h>
#endif

#ifndef FRAME INCLUDED
#include <frame.h>
#endif

#ifndef FS_INCLUDED
#include <fs.h>

#endif

#ifndef RESFILE INCLUDED
#include <resfile.h>
#endif

#ifndef SWIN_ INCLUDED
#include <swin.h>
#endif

‘Common #defines and typedefs

¥» Sort Types

Defines the order the browser will sort display items by.

Enuml6é (SORT BY) {

browserSortByName = 1,
browserSortBySize = 2,
browserSortByDate = 3,
browserSortByPage = 4,
browserSortByType = 5

}i

These are tags for the icons used by clsBrowser

#define tagBrowserSmallFilelIcon MakeTag (clsBrowser, 1)
#define tagBrowserBigFilelcon MakeTag (clsBrowser, 2)
#define tagBrowserSmallClosedDirIcon MakeTag (clsBrowser, 3)
#define tagBrowserBigClosedDirIcon MakeTag (clsBrowser, 4)
#define tagBrowserSmallOpenDirIcon MakeTag (clsBrowser, 5)
#define tagBrowserBigOpenDirIcon MakeTag (clsBrowser, 6)
#define tagBrowserSmallClosedSectIcon MakeTag (clsBrowser, 7)
#define tagBrowserBigClosedSectIcon MakeTag (clsBrowser, 8)
#define tagBrowserSmallOpenSectIcon MakeTag (clsBrowser, 9)
#define tagBrowserBigOpenSectIcon MakeTag (clsBrowser, 10)
$define tagBrowserSmallDefaultDocIcon MakeTag (clsBrowser,11)
#define tagBrowserBigDefaultDocIcon MakeTag (clsBrowser, 12)

These are the help ID’s used for the various browser items.

#define hlpBrowser MakeTag (clsBrowser,170) // Generic TOC
#define hlpBrowIcon MakeTag (clsBrowser, 169) // TOC
#define hlpBrowName MakeTag (clsBrowser,171) // TOC
#define hlpBrowPage MakeTag (clsBrowser, 172) // TOC
#define hlpBrowType MakeTag (clsBrowser,173) // TOC
#define hlpBrowDate MakeTag (clsBrowser, 174) // TOC
#define hlpBrowTime MakeTag (clsBrowser,175) // TOC
#define hlpBrowSize MakeTag (clsBrowser,176) // TOC
#define hlpBrowBookmark MakeTag (clsBrowser,177) // TOC
#define hlpBrowColumn MakeTag (clsBrowser,178) // TOC
DskViewer help tags

#define hlpBrowserDV MakeTag (clsBrowser,180) // Generic DSKVIEW

#define hlpBrowNameDV
#define hlpBrowTypeDV
#define hlpBrowDateDV
#define hlpBrowTimeDV
#define hlpBrowSizeDV

BROWSER.H

Common #defines and typedefs

MakeTag (clsBrowser, 181)
MakeTag (clsBrowser, 183)
MakeTag (clsBrowser, 184)
MakeTag (clsBrowser, 185)
MakeTag (c1sBrowser, 186)

Column Tag - identify columns for msgBrowserGesture

#define tagBrowNameColumn
#define tagBrowPageColumn
#define tagBrowTypeColumn
#define tagBrowDateColumn
#define tagBrowTimeColumn
#define tagBrowSizeColumn
#define tagBrowBookmarkColumn
#define tagBrowUserColumn0
#define tagBrowUserColumnl
#define tagBrowUserColumn2
#define- tagBrowUserColumn3

7 Messages

MakeTag (clsBrowser, 191)
MakeTag (clsBrowser, 192)
MakeTag (c1lsBrowser, 193)
MakeTag (clsBrowser, 194)
MakeTag (clsBrowser, 195)
MakeTag (clsBrowser, 196)
MakeTag (clsBrowser, 197)
MakeTag (clsBrowser, 198)
MakeTag (clsBrowser, 199)
MakeTag (clsBrowser, 200)
MakeTag (c1lsBrowser, 201)

// DSKVIEW
// DSKVIEW
// DSKVIEW
// DSKVIEW
// DSKVIEW

187

Comments

msgNewDefaults:

Initializes the BROWSER_NEW structure to default values.

Takes P_BROWSER_NEW, returns STATUS. Category: class message.

Zeros out pNew->browser.

Arguments

Comments

msgNew:

Creates a new browser object.

Takes P_BROWSER_NEW, returns STATUS. Category: class message.

typedef struct BROWSER NEW_ONLY {

FS_LOCATOR base;

OBJECT client;
Ulé tocView;
Us spare[8]

// Points to where the browser will display.

// Note: This UID must not be an absolute path!
// UID of client.

// TRUE for TOC view, FALSE for disk view.

’

} BROWSER NEW_ONLY, *P BROWSER NEW_ONLY;

#define
scrollWinNewFields
BROWSER_NEW_ONLY

browserNewFields

browser;

typedef struct BROWSER NEW {

browserNewFields

} BROWSER_NEW, *P_BROWSER NEW;

Creates a browser which will display the file system within the specified base directory. If the browser
will be looking at "live" notebook sections and documents set tocView to true; If the browser will be
looking at "dead" directories, files, or documents and sections on disk then set tocView to false.

\
\

Comments

msgBrowserCreateDir

Creates a directory at the selection.

Takes nothing, returns STATUS.

#define msgBrowserCreateDif

MakeMsg (clsBrowser, 1)

If nothing is selected, this message creates a directory at the top level of the disk. DskView message only.

Usually sent from menu.

9 / UTILITY CLASSES

PENPOINT API REFERENCE
Part 9 / Utility Classes

msgBrowserByName

Sorts by name order.

Takes nothing, returns STATUS.

#define msgBrowserByName MakeMsg (clsBrowser, 2)

Comments Displays all displayed items sorted by name order. Usually sent from menu.
msgBrowserByType
Sorts by type order.

Takes nothing, returns STATUS.
#define msgBrowserByType MakeMsg (clsBrowser, 40)

Comments Displays all displayed items sorted by type order. Usually sent from menu.
msgBrowserBySize
Sorts by size order.

Takes nothing, returns STATUS.
#define msgBrowserBySize MakeMsg (clsBrowser, 3)

Comments Displays all displayed items sorted by size order. Usually sent from menu.
msgBrowserByDate
Sorts by date order.

Takes nothing, returns STATUS.
t#define msgBrowserByDate MakeMsg (clsBrowser, 4)

Comments Displays all displayed items sorted by date order. Usually sent from menu.
msgBrowserExpand
Expands sections or directories.

Takes nothing or P_FS_FLAT_LOCATOR, returns STATUS.
#define msgBrowserExpand MakeMsg (clsBrowser, 5)

Comments If pArgs is P_FS_FLAT_LOCATOR, expands P_FS_FLAT_LOCATOR otherwise if pArgs is pNull and the
browser has the selection, the selection is expanded. Otherwise, every displayed closed selection is
expanded.
msgBrowserCollapse
Collapses sections or directories.

Takes nothing or P_FS_FLAT_LOCATOR, returns STATUS.
#define msgBrowserCollapse MakeMsg(clsBrowser, 6)
Comments If pArgs is P_FS_FLAT_LOCATOR, collapses P_FS_FLAT_LOCATOR otherwise if pArgs is pNull and the

browser has the selection, the selection is collapsed; otherwise, every open selection is collapsed.

BROWSER.H
Common #defines and typedefs

msgBrowserRefresh
Refreshes the disk image the browser is displaying.

Takes nothing, returns STATUS.

#define msgBrowserRefresh MakeMsg (clsBrowser, 15)

msgBrowserDelete
Deletes selection if pNull or P_FS_FLAT_LOCATOR otherwise.

Takes nothing or P_FS_FLAT_LOCATOR, returns STATUS.

#define msgBrowserDelete MakeMsg(clsBrowser, 22)

Comments Sent to self to allow subclass to override.
msgBrowserRename
Renames browser items.

Takes nothing or P_FS_FLAT_LOCATOR, returns STATUS.
t#define msgBrowserRename MakeMsg (clsBrowser, 23)

Comments Pops up rename dialog box for the selection if pNull; otherwise the item pointed to by
P_FS_FLAT_LOCATOR is renamed. Sent to self to allow subclass to override.
msgBrowserConfirmDelete
Sets a flag whether to confirm deletions within a browser.

Takes BOOLEAN, returns STATUS.

tdefine msgBrowserConfirmDelete MakeMsg (clsBrowser, 24)
msgBrowserExport

Puts the selection into export mode.

Takes nothing, returns STATUS.

#define msgBrowserExport MakeMsg (clsBrowser,118)

Comments After this message is received by TOC the selected item is highlighted with the copy box. Then if
notebook item is dragged to the DiskViewer, it will be exported, not copied. The export mode is
cancelled when the selection is cancelled or the export completes. TOC only.
msgBrowserByPage
Sorts by page number.

Takes nothing, returns STATUS.
t#define msgBrowserByPage MakeMsg(clsBrowser, 25)
Comments TOC only.

9 / UTILITY CLASSES

190 PENPOINT APl REFERENCE
Part 9 / Utility Classes

msgBrowserWriteState

Writes the current browser expanded/collapsed state to a file.
Takes nothing, returns STATUS.

#define msgBrowserWriteState MakeMsg (clsBrowser, 26)

Comments This message saves the name of each expanded section or directory to a disk file. By using
msgBrowserSetSaveFile clients or subclasses can set which file this information is stored in. By default

the state file ends up in the OSThisApp’s directory in a file named BROWSTAT.

msgBrowserReadState

Reads the browser expanded/collapsed state from a disk file.

Takes nothing, returns STATUS.

#define msgBrowserReadState MakeMsg (clsBrowser, 27)

Comments This message restores the state of the browser view of the notebook or file system. By using
msgBrowserSetSaveFile clients or subclasses can set which file this information is stored in. By default

the state file ends up in the OSThisApp’s dir in a file named browstate.

msgBrowserSetSaveFile
Sets the file that the browser will save open/close state to.

Takes P_FS_LOCATOR, returns STATUS.

#define msgBrowserSetSaveFile MakeMsg (clsBrowser, 148)

msgBrowserGetMetrics
Gets browser metrics.
Takes P_BROWSER_METRICS, returns STATUS.

#define msgBrowserGetMetrics MakeMsg (clsBrowser, 28)

’% SubClass-definable Column Type

Defines attributes of the subclass definable browser columns. Subclasses can control up to
browUserColumns (4) columns.

User Columns are columns of checkboxes or text, that subclasses of clsBrowser can control. The subclass
can supply the header above the column and whether or not the boxes appear next to sections or
documents or both.

User columns are enabled by setting pMetrics->userColumn.showUserColumn.

The browser sends msgBrowserUserColumnQueryState to subclasses to determine the initial state of
the columns.

When a column is tapped, msgBrowserUserColumnChanged notifies subclasses that the checkbox has
toggled.

#define browDefaultColumns 7 // Number of default columns.
#define browUserColumns 4 // Maximum number of user columns.

Display justifications

Enumlé (BROW_JUSTIFY) {
browserLeftJustify = 0

BROWSER.H 191
Common #defines and typedefs

// Left justification.

!
browserRightJustify = 1, // Right justification.
browserCenterJustify = 2, // Center justification.
browserUserJustify = 3 // Miscellaneous justification.

}i

User column type

}i

(2]

Enumlé (USER_COLUMN_TYPE) { @
browserButtonType = 0, // Button user column. <
browserTextType = 1, // Text user column. v
browserUserType = 2 // User defined user column. E

5

~

o

typedef struct {

BROW_JUSTIFY headerJustify; // Justification of header.
BROW_JUSTIFY columnJustify; // Justification of column.
CHAR columnHeader [nameBuflengthl; // Text for column.

.} BROWSER DEF_COLUMN, *P_BROWSER DEF_COLUMN;

typedef struct {

Ul6 showUserColumn : 1; // Must be set to TRUE for the

// following fields to apply.
Ul6 userColumnOnSections : 1; // Show userColumn next to sections.
Ule userColumnOnDocs : 1; // Show userColumn next to documents.
USER_COLUMN_TYPE userColumnType; // Type of field if user column.
CHAR userColumnHeader [nameBufLength]; // Text of column header.
TAG helpTag; // Tag for quick help
CHAR checkedChar; // Character to show when checked.
CHAR uncheckedChar; // Character to show when unchecked.
BROW_JUSTIFY headerJustify; // Justification of header.
BROW_JUSTIFY columnJustify; // Justification of column.

U8 spare[4];
} BROWSER_COLUMN, *P BROWSER COLUMN;

typedef struct BROWSER _METRICS {

Ule showIcon : 1;

Uleé showType : 1;

Ule6 showSize : 1;

Ule showDate : 1;

Uleé showBookmark : 1;

Ul6 showHeader : 1;

Ule computeRecursiveSize : 1;
Ule showIconButton : 1;
SORT_BY sortBy;

BROWSER_COLUMN

// Spare: reserved.

// Show icons.

// Show type field.

// Show size field.

// Show date field.

// Show bookmark field. (TOC only)
// Show column header.

// Computes recursive size

// for directories.

// TOC does this by default.

// Show page turn buttons

// instead of icons. (TOC only)
// Field by which to sort items.

userColumn [browUserColumns]; // Subclass-definable columns

BROWSER_DEF_COLUMN defaultColumn[browDefaultColumns]; // Default columns

U8 spare[40];
} BROWSER_METRICS, *P_BROWSER_METRICS;

// Spare: reserved.

Message
Arguments

msgBrowserSetMetrics
Sets browser metrics.

Takes P BROWSER_METRICS, returns STATUS.
#define msgBrowserSetMetrics

typedef struct BROWSER METRICS {
Ul6 showIcon : 1;
Ulé6 showType : 1;
Uleé showSize : 1;

MakeMsg (clsBrowser, 29)

// Show icons.
// Show type field.
// Show size field.

192 PENPOINT APl REFERENCE
Part 9 / Utility Classes

Ule showDate : 1; // Show date field.

Ul6 showBookmark : 1; // Show bookmark field. (TOC only)
Ule6 showHeader : 1; // Show column header.

Ulé computeRecursiveSize : 1; // Computes recursive size

// for directories.
// TOC does this by default.

Ule showIconButton : 1; // Show page turn buttons

// instead of icons. (TOC only)
SORT_BY sortBy; // Field by which to sort items.
BROWSER_COLUMN userColumn [browUserColumns]; // Subclass-definable columns
BROWSER_DEF_COLUMN defaultColumn[browDefaultColumns]; // Default columns
U8 spare{40]; // Spare: reserved.

} BROWSER METRICS, *P_BROWSER METRICS;

Comments This message will cause a refresh if userColumn or recursive size become turned on.

msgBrowserUserColumnGetState

Does nothing.

Takes P_BROWSER_USER_COLUMN, returns STATUS.

t#define msgBrowserUserColumnGetState MakeMsg (clsBrowser, 62)
Arguments typedef struct {
BOOLEAN changed; // TRUE if this column has changed.
BOOLEAN state; // State of item check box.
CHAR text [nameBuflength}; // Text of field for item.
BOOLEAN shown; // TRUE if this column is shown.
// Same as showUserColumn of METRICS.
BOOLEAN active; // TRUE if this column is active

// for this browser item.
} BROWSER_COLUMN_STATE;

typedef struct {

FS_FLAT_ LOCATOR flat; // Locator of browser item.
BROWSER COLUMN_STATE column [browUserColumns]; // Column information.
U8 spare[12]; // Spare: reserved.

} BROWSER USER COLUMN, *P_BROWSER USER_COLUMN;

msgBrowserUserColumnSetState

Sets the user column states in the browser for columns that are marked changed.

Takes P_BROWSER_USER_COLUMN, returns STATUS.

#define msgBrowserUserColumnSetState MakeMsg (clsBrowser, 63)
Massage typedef struct {
Arguments FS_FLAT LOCATOR flat; // Locator of browser item.
BROWSER COLUMN STATE column[browUserColumns]; // Column information.
U8 spare[12]; // Spare: reserved.

} BROWSER USER COLUMN, *P_BROWSER USER COLUMN;

Comments If the changed BOOLEAN is set, the user column state will be set. Does not generate a
msgBrowserUserColumnStateChanged. The entire BROWSER_USER_COLUMN structure must be
cleared before setting the fields that are changing.

msgBrowserUserColumnStateChanged

Notifies subclass when user checks a user column checkbox.

Takes P_BROWSER_USER_COLUMN, returns STATUS.

#define msgBrowserUserColumnStateChanged MakeMsg (clsBrowser, 68)

BROWSER.H 193
Common #defines and typedefs

Message typedef struct {
Arguments FS_FLAT LOCATOR flat; // Locator of browser item.
BROWSER_COLUMN_STATE column[browUserColumns]; // Column information.
U8 spare[12]; // Spare: reserved.
} BROWSER USER COLUMN, *P_BROWSER USER_COLUMN;
Comments The changed field is true for the column that was tapped.
msgBrowserUserColumnQueryState
Gets the user column state from subclass.
Takes P_BROWSER_USER_COLUMN, returns STATUS.
#define msgBrowserUserColumnQueryState MakeMsg (clsBrowser, 69)
Message typedef struct {
Arguments FS_FLAT LOCATOR flat; // Locator of browser item.
BROWSER_COLUMN_STATE column[browUserColumns]; // Column information.
U8 spare[12]; // Spare: reserved.
} BROWSER USER COLUMN, *P BROWSER USER COLUMN;
Comments This message is sent to self when the browser needs to know the user column states for a notebook item.

The FS_FLAT_LOCATOR points to the file system item the browser needs to know the state of. The
subclass should pass back the state or the text of each user column for the file system item.

msgBrowserShowlcon
Controls icon field display.

Takes BOOLEAN, returns STATUS.

#define msgBrowserShowIcon MakeMsg (clsBrowser, 100)

msgBrowserShowButton
Controls button field display.

Takes BOOLEAN, returns STATUS.

#define msgBrowserShowButton MakeMsg (clsBrowser, 99)

msgBrowserShowSize
Controls size field display.

Takes BOOLEAN, returns STATUS.

#define msgBrowserShowSize MakeMsg (clsBrowser, 102)

msgBrowserShowDate
Controls date field display.
Takes BOOLEAN, returns STATUS.

#define msgBrowserShowDate MakeMsg (c1sBrowser, 103)

msgBrowserShowType
Controls type field display.
Takes BOOLEAN, returns STATUS.

#define msgBrowserShowType MakeMsg (clsBrowser, 33)

9 / UTILITY CLASSES

194 PENPOINT APl REFERENCE
Part 9 / Utility Classes

msgBrowserShowBookmark

Controls bookmark field display.

Takes BOOLEAN, returns STATUS.

#define msgBrowserShowBookmark MakeMsg (clsBrowser, 104)

Comments TOC only.

msgBrowserShowHeader

Controls column header display.

Takes BOOLEAN, returns STATUS.

#define msgBrowserShowHeader MakeMsg (clsBrowser, 39)

msgBrowserGoto

Takes true to goto, false to bringto the selection.

Takes BOOLEAN, returns STATUS.

#define msgBrowserGoto MakeMsg (clsBrowser, 105)

Comments TOC only. Used by menu.

msgBrowserGotoBringto
Takes P_BROWSER_GOTO. If pFlat is pNull, applies to selection.

Takes P_BROWSER_GOTO, returns STATUS.

#define msgBrowserGotoBringto MakeMsg (clsBrowser, 134)
Arguments typedef struct {
BOOLEAN doGoto; // TRUE - Goto document.

// FALSE - Bringto document.
// (Goto if bringto is disabled.)
FS_FLAT LOCATOR flat; // Document to goto-bringto . -
} BROWSER GOTO, *P_BROWSER GOTO;

Comments Sent to self to allow subclass to override. TOC only.

msgBrowserUndo

Does nothing yet...

Takes nothing, returns STATUS.

#define msgBrowserUndo MakeMsg(clsBrowser, 106)

msgBrowserSetSelection

Causes browser/TOC to select and display the given file system item.
Takes P_FS_FLAT_LOCATOR, returns STATUS.

#define msgBrowserSetSelection MakeMsg (clsBrowser, 32)

Comments As long as the locator points to an item within the browser’s base directory subtree, the browser will
open directories and scroll the display as necessary to display the selected item.

BROWSER.H 195
Common #defines and typedefs

Comments

msgBrowserSetClient

Sets the target of the browser client messages.

Takes OBJECT, returns STATUS.

#define msgBrowserSetClient MakeMsg (clsBrowser, 108)

This message controls who gets the various browser client messages.

msgBrowserGetClient

Passes back the target of the browser client messages.

Takes P_OBJECT, returns STATUS.

#define msgBrowserGetClient MakeMsg (clsBrowser, 64)

Commenis

msgBrowserGetBaseFlatLocator

Passes back the directory the browser is looking at.

Takes P_FS_FLAT_LOCATOR, returns STATUS.

#define msgBrowserGetBaseFlatLocator MakeMsg (clsBrowser, 65)

Passes back the root directory within which the browser is looking.

Arguments

msgBrowserSelectionPath

Passes back the full path of the selection.

Takes P_BROWSER_PATH, returns STATUS.

#define msgBrowserSelectionPath MakeMsg (clsBrowser, 109)

typedef struct {
CHAR path[fsMaxPathLength];
} BROWSER PATH, *P_BROWSER PATH;

Comments Also responds to msgXferGet with id XferFullPathName to get the selections path. Note: If possible use
msgBrowserSelection with flat locators to avoid duplicate volume name confusion.
msgBrowserSelection
Passes back the flat locator of the selection.

Takes P_FS_FLAT_LOCATOR, returns STATUS.
#define msgBrowserSelection MakeMsg (clsBrowser, 79)
Comments Also responds to msgXferGet with id XferFlatLocator to get the selections path.

msgBrowserSelectionUUID
Passes back the UUID of the selection.

Takes P_UUID, returns STATUS.

#define msgBrowserSelectionUUID MakeMsg (clsBrowser, 117)

9 / UTILITY CLASSES

196 PENPOINT AP| REFERENCE
Part 9 / Utility Classes

msgBrowserSelectionDir

Passes back the flat locator of the directory the selection is in.

Takes P_FS_FLAT LOCATOR, returns STATUS.

#define msgBrowserSelectionDir MakeMsg(clsBrowser, 110)

msgBrowserSelectionName

Returns the name of the selection.

Takes P_CHAR, returns STATUS.

#define msgBrowserSelectionName MakeMsg (clsBrowser, 111)

Camments Also responds to msgXferGet with id XferName to get the selections name

msgBrowserSelectionOn

Notifies client when a selection is made inside the browser.

Takes nothing, returns STATUS.

#define msgBrowserSelectionOn MakeMsg(clsBrowser,112)

msgBrowserSelectionOff

Notifies client when selection is yielded by the browser.

Takes nothing, returns STATUS.

#define msgBrowserSelectionOff MakeMsg(clsBrowser,113)

msgBrowserBookmark

Notifies client that the bookmark specified by locator has toggled.
Takes P_BROWSER_BOOKMARK, returns STATUS.

#define msgBrowserBookmark MakeMsg (clsBrowser, 107)

Arguments typedef struct {
FS_LOCATOR loc;
} BROWSER_BOOKMARK, *P BROWSER_BOOKMARK;

msgBrowserCreateDoc

Creates a directory.

Takes P_BROWSER_CREATE_DOC, returns STATUS.

#define msgBrowserCreateDoc MakeMsg (clsBrowser, 152)
Argumenty typedef struct {
CLASS docClass;
P_CHAR pName;
BOOLEAN atSelection;
XY32 Xy;

} BROWSER CREATE_DOC, *P_BROWSER CREATE_DOC;

Comments The directory is created at the selection if there is one. If not, the directory is created at the top level
shown. DiskView only.

BROWSER.H
Common #defines and typedefs

197

msgBrowserGetBrowWin

Passes back the browser’s internal display window.

Takes pObject, returns STATUS.

#define msgBrowserGetBrowWin MakeMsg (clsBrowser, 149)

Comments The browser’s internal display window is the selected object for any selection based operations.
msgBrowserGesture
Sends to self gesture and which file it landed on.
Takes P_BROWSER_GESTURE, returns STATUS.
#define msgBrowserGesture MakeMsg (clsBrowser, 59)
Arguments typedef struct {
MESSAGE gesture; // Gesture that occurred.
P_FS_FLAT LOCATOR pFlat; // Item on which to apply the gesture.
P_GWIN_GESTURE pGest; // Original gesture struct.
TAG columnTag; // Tag of column on which to apply the gesture.
// 0 if not on a column.
U32 info; // Internal browser information.
U32 spare[2]; // Spare: reserved.
} BROWSER GESTURE, *P_BROWSER GESTURE;
Comments Allows subclasses to respond to gestures targeted at browser items. If the status returned by the subclass

is >= stsOK the gesture will NOT be sent to browser superclass. So subclasses should ignore this message
or return stsOK to signify it has been handled.

9 / UTILITY CLASSES

PENPOINT APl REFERENCE / VOL 11
PART 9 / UTILITY CLASSES

BYTARRAY.H

This file contains the API definition for the ByteArray interface. The functions described in this file are
contained in MISC.LIB.

A ByteArray implements a growing and shrinking array of bytes, indexed from 0 to
ByteArrayLength()-1. A ByteArray grabs and releases memory as needed.

The ByteArray implementation is optimized for highly localized series of insertions and deletions.

$ifndef BYTARRAY INCLUDED
#$define BYTARRAY INCLUDED $Revision: 1.17 $

$ifndef CLSMGR_INCLUDED
#$include <clsmgr.h>
#endif

$ifndef DEBUG_INCLUDED
#include <debug.h>
#endif

$ifndef OSHEAP_ INCLUDED
#include <osheap.h>
#endif

Types and Constanis

typedef struct BYTE_ARRAY * P_BYTE ARRAY;
#define stsBAMaxExceeded MakeStatus (clsMisc, 255)

typedef U32 BYTE INDEX, * P_BYTE INDEX;
#define SIZE OF BYTE INDEX 4

#define maxBYTE_INDEX maxU32

p []
Private
typedef struct BYTE_ARRAY {
BYTE INDEX length; // Number of bytes stored in buffer
BYTE INDEX bufferLength; // Number of bytes in buffer
P U8 firstPart; // Beginning of the buffer
BYTE INDEX firstPartLength; // Number of bytes in first part
P_U8 secondPart; // see comments above
Ulé mode; // see comments above

} BYTE_ARRAY;

ByteArrayGapLength
Returns the size of the byte array’s gap.
Returns BYTE_INDEX.

#define ByteArrayGapLength(p) \
((p) ->bufferlLength - (p) ->length)

200 PENPOINT API REFERENCE
Part 9 / Utility Classes

ByteArrayPrint
Prints the content of the byte array.
Returns void.

#ifdef DEBUG
void EXPORTED

Function Prototype ByteArrayPrint (
P_BYTE ARRAY P/
P_STRING charFmt,
int charWidth) ;

#endif // DEBUG

Exported Functions and Macros

ByteArrayFindByte
Gets address of byte n from ByteArray p.
Returns P_US.

$define ByteArrayFindByte(p,n) (\
(n) < (p)->firstPartlength \
? &((p)->firstPart[(n)]) \
: &((p)->secondPart[(n)]))

Comments Warning 1: n is evaluated twice, so it should not be an expression with an auto-increment or decrement!

Warning 2: to be as fast as possible, ByteArrayFindByte does no error checking!

ByteArrayFindIndex
Determines the index from address addr of byte in ByteArray p.
Returns BYTE_INDEX.

#define ByteArrayFindIndex(p,addr) (\
(addr) < &((p)->firstPart[(p)->firstPartLength]) \
? (BYTE_INDEX) (addr - (p)->firstPart) \
: (BYTE_INDEX) (addr - (p)->secondPart))

Comments This is the inverse of ByteArrayFindByrte.
Warnings from ByteArrayFindByte apply here also.

ByteArrayGetByte
Get byte n from ByteArray p
Returns U8.

#define ByteArrayGetByte(p,n) \
((n) < (p)->firstPartLength \

? (p)->firstPart[(n}] \

(p) ->secondPart [(n)])

Comments Warnings from ByteArrayF iﬁdByte apply here also.

BYTARRAY.H 201
Exported Functions and Macros

Function Profotype

Commants

ByteArrayCreate
Creates a byte array.
Returns STATUS.
STATUS EXPORTED

ByteArrayCreate (
P_BYTE_ARRAY * pp,
Ulé mode,
BYTE_INDEX length);

Only the osHeapLocal/osHeapShared flags of mode are meaningful. The initial length doesn’t matter
very much, since the byte array grows or shrinks as needed. However, if length is approximately correct,
then early insertions will be quicker. If length<=0, a length of 1 is assumed.

Returns stsOK if able to create the byte array, in which case *pp will be the created byte array, otherwise
*pp will be Nil(P_BYTE_ARRAY).

The mode parameter is really of type OS_HEAP_MODE.

Function Frototype

ByteArrayDestroy
Destroys a byte array.
Returns void.

void EXPORTED

ByteArrayDestroy (
P_BYTE ARRAY p)i

Function Profotype

Comments

ByteArrayGetMany

Gets one or more characters from contiguous positions in the byte array.

Returns STATUS.
STATUS EXPORTED

ByteArrayGetMany (
P_BYTE ARRAY P
BYTE INDEX pos,
P_U8 buf,
BYTE_INDEX buflen) ;

Retrieves up to bufLen characters in p from positions [pos.. MIN(pos+bufLen,ByteArrayLength(p)).
Client should insure that buf != Nil(P_U8). Returns count of bytes placed in buf.

Function Prototype

ByteArrayReplace

Replaces zero or more characters in the byte array.
Returns STATUS.

STATUS EXPORTED

ByteArrayReplace (
P _BYTE ARRAY P,
BYTE INDEX pos,
BYTE INDEX len,
P_U8 buf,

BYTE INDEX buflen);

9 / UTILITY CLASSES

202 PENPOINT APl REFERENCE
Part 9 / Utility Classes

Comments Replaces len characters in p at positions [pos..pos+len) by bufLen characters from buf. Client should
insure that pos+len <= ByteArrayLength(p).

Returns:

stsOutOfMem if no memory available, or

stsBadParam if range [pos..pos+len) is invalid, or
stsBAMaxExceeded if the maximum ByteArray length is exceeded, or

number bytes taken from buf otherwise.

ByteArraylnsert

Inserts bufLen characters from buf into p at position pos.
Returns STATUS.

#define ByteArrayInsert (p, pos, buf, buflen) \

ByteArrayReplace((p), (pos), 0, (buf), (buflen))
Commenis This routine does no error checking. Client should insure that: pos <= ByteArrayLength(p).

See ByteArrayReplace for possible return values.

ByteArrayDelete
Delete n characters from p starting at pos.
Returns void.

#define ByteArrayDelete(p, pos, len) \
(void) ByteArrayReplace((p), (pos), (len), Nil(P_U8), 0)

Comments This routine does no error checking. Client should insure that: pos+len <= ByteArrayLength(p).

ByteArrayLength
Returns the number of bytes currently stored in the BYTE_ARRAY.

Returns BYTE_INDEX.
#define ByteArrayLength(p) ((p)->length)

ByteArrayHeapMode

Returns the heap mode the BYTE_ARRAY was created with.

Returns OS_HEAP_MODE.

#define ByteArrayHeapMode (p) ((p)->mode)

ByteArrayReserve

Reserves space in byte array (without actually initializing it).
Returns STATUS.

STATUS EXPORTED

Function Pretotype ByteArrayReserve(
P_BYTE_ARRAY o
BYTE INDEX pos,
BYTE_INDEX len);

Comments

BYTARRAY.H 203
Exported Functions and Macros

Reserves len characters in p at position pos, but does not initialize them. (The gap is guaranteed to not
break the reserved range.) Client should insure that pos <= ByteArrayLength(p).

Returns:

stsOutOfMem if no memory available, or

stsBadParam if pos is invalid, or

stsBAMaxExceeded if the maximum ByteArray length is exceeded, or

stsOK otherwise.

Funetion Prototype

Lommants

ByteArrayWrite

Writes the content of the byte array to the specified file.
Returns STATUS.

STATUS EXPORTED

ByteArrayWrite (
P _BYTE ARRAY p,
OBJECT file);

The file parameter must act like a FILE_HANDLE object.

Function Protolype

Connments

ByteArrayRead

Reads previously saved content of a byte array from the specified file.

Returns STATUS.
STATUS EXPORTED

ByteArrayRead (
P_BYTE ARRAY * pp,
OBJECT file,

0S HEAP MODE mode) ;
The file parameter must act like a FILE_HANDLE object.

FurcHon Protolype

Comments

BAFileWriteString
Debugging utility routine to write a string to a file.
Returns STATUS.

$ifdef DEBUG
STATUS EXPORTED

BAFileWriteString({
OBJECT file,
P_U8 str);

#endif

Useful when initially writing filing code to insert helpful strings into the file and to then skip over the
strings when reading the file.

This routine takes an exception if it encounters an error. Also, it will only work with a string whose
length is MAX_STR_LENGTH or less.

The file parameter must act like a FILE_HANDLE object.

9 / UTILITY CLASSES

204 PENPOINT API REFERENCE
Part 9 / Utility Classes

BAFileReadString
Debugging utility routine to read a string from a file.
Returns STATUS.

#ifdef DEBUG
STATUS EXPORTED

Function Prototype BAFileReadString(

OBJECT file,
pP_U8 str);
#endif
Comments Useful when initially writing filing code to skip over strings written with BAFileWriteString.

This routine takes an exception if it encounters an error. Also, it will only work with a string whose
length is MAX_STR_LENGTH or less.

The file parameter must act like a FILE_HANDLE object.

PENPOINT APl REFERENCE / VOL 1

PART 9 / UTILITY CLASSES

BYTEBUF.H

This file contains the API definition for clsByteBuf.
clsByteBuf inherits from clsObject.

clsByteBuf provides a facility to store uninterpreted byte strings. Each object of clsByteBuf stores a
single buffer. This class provides convenient object filing of the buffer data. Storage for each object’s
buffer is allocated out of the creator’s shared process heap using OSHeapBlockAlloc.

Clients who want to store null terminated strings should use clsString (see strobj.h).

#ifndef BYTEBUF_ INCLUDED

#define BYTEBUF _INCLUDED

#include <go.h>

#include <clsmgr.h>

typedef OBJECT BYTEBUF, *P_BYTEBUF;

typedef struct BYTEBUF_DATA {
Ule buflen; // In/Out: Length (in bytes) of the pBuf buffer.
P U8 pBuf; // In/Out: Object buffer.

} BYTEBUF_DATA, *P BYTEBUF DATA;

Class Message$

Srguments

Comments

msgNew

Creates a new buffer object.
Takes P_BYTEBUF_NEW, returns STATUS. Category: class message.

typedef struct BYTEBUF NEW_ONLY {

BOOLEAN allowObservers; // In: Send clsByteBuf observer messages
// to the object’s observers?
BYTEBUF_DATA data; // In/Out: Buffer data.
} BYTEBUF_NEW ONLY, *P_BYTEBUF_NEW ONLY;
#define byteBufNewFields \
objectNewFields \

BYTEBUF_NEW_ONLY bytebuf;

typedef struct BYTEBUF_NEW {
byteBufNewFields
} BYTEBUF_NEW, *P_BYTEBUF NEW;

This message allocates shared heap storage for the specified buffer.

allowObservers indicates whether the object will send the clsByteBuf observer messages (See
msgByteBufChanged). Only clsByteBuf messages are affected by this option. Adding and removing
observers is not affected by this option.

msgNewDefaults
Initializes the BYTEBUF NEW structure to default values.

Takes P_BYTEBUF_NEW, returns STATUS. Category: class message.

206 PENPOINT API REFERENCE
Part 9 / Utility Classes

Message typedef struct BYTEBUF NEW {
Arguments byteBufNewFields
} BYTEBUF NEW, *P_BYTEBUF NEW;
Comments Sets
pNew->bytebuf.allowObservers = true;
pNew->bytebuf.data.bufLen = 0;

pNew->bytebuf.data.pBuf pNull;

allowObservers indicates whether the object will send the clsByteBuf observer messages. (See
msgByteBufChanged)

msgByteBufGetBuf
Passes back the object’s buffer.

Takes P_BYTEBUF_DATA, returns STATUS.

#define msgByteBufGetBuf MakeMsg (clsByteBuf, 1)
Message typedef struct BYTEBUF DATA {
Arguments Uleé buflen; // In/Out: Length (in bytes) of the pBuf buffer.
P_U8 pBuf; // In/Out: Object buffer.
} BYTEBUF_DATA, *P_BYTEBUF DATA;
Comments The pointer passed back references the object’s global storage. Clients must not modify or free this
storage.
msgByteBufSetBuf

Copies the specified buffer data into the object’s buffer.

Takes P_BYTEBUF_DATA, returns STATUS.

#define msgByteBufSetBuf MakeMsg (clsByteBuf, 2)
Message typedef struct BYTEBUF_DATA {
Arguments Ule buflen; // In/Out: Length (in bytes) of the pBuf buffer.
P U8 pBuf; // In/Out: Object buffer.

} BYTEBUF _DATA, *P_BYTEBUF DATA;

Commients Previously retrieved bytebuf pointers will be invalid after this operation. Clients must call
msgByteBufGetBuf to retrieve a pointer to the valid object buffer.

Observer Messages

msgByteBufChanged

Sent to observers when the object data changes.

Takes OBJECT, returns nothing. Category: observer notification.
#define msgByteBufChanged MakeMsg (clsByteBuf, 3)
Comments The message argument is the UID of the clsByteBuf object that changed.

This message is not sent if the creator did not specify allowObservers during msgNew.

~ _PENPOINT APl REFERENCE / VOL I1

PART 9 / UTILITY CLASSES

DSKVIEW.H

This file contains the API definition for clsDiskViewWin.
csDiskViewWin inherits from clsCustomLayout.

It is the view window for a multi-volume disk viewer.

P> Overview
The Disk Viewer also defines clsDVBrowBar, clsDVIabButton, clsDVIcon, and clsDVForward. These

are internal classes which must be well-known uids, since the Disk Viewer component is shared.

The Disk Viewer component implements the heart of the Disk Manager. It is consists of two panels: an
icon panel and a browser panel. Each known filesystem volume (connected and disconnected) is
represented by an icon in the icon window. Each open volume is represented by a browser card in the
browser panel. A browser card is a frame with a menu bar and control tab as decoration and an instance
of cIsBrowser in the view (see browser.h for details).

The icon panel is only as big as it needs to be to fit the known volumes. The browser panel takes up the
rest of the space. The open browser cards equally divide up the browser panel.

Clients will typically put the Disk Viewer component inside of a frame. The frame must not be
shrink-wrapped; the Disk Viewer must be told what size it should be.

clsDiskViewWin understands the following clsBrowser’s messages:
msgBrowserCreateDir

The browser messages that deal with the selection are sent to the browser which has the current
selection. Messages that do not deal with the selection or make sense if there is no selection are sent to
all browsers in the Disk Viewer.

The Disk Viewer client is made the client of all the open browsers. The client will get all the messages
that browsers send to their clients.

The Disk Viewer takes care of setting up browser state files in a directory off the current working
directory. The Disk Viewer ensures that the state files for each volume is unique; it handles duplicate
volume names.

The Disk Viewer understands msgSave and msgRestore. It will reopen volumes that were open when it
was saved, and restore as much volume state (which directories were expanded) as possible.

#ifndef DSKVIEW_INCLUDED
#define DSKVIEW_INCLUDED
#ifndef CLAYOUT INCLUDED
#include <clayout.h>
#endif

#ifndef BROWSER INCLUDED
#include <browser.h>
#endif

208 PENPOINT API REFERENCE
Part 9 / Utility Classes

Common #defines and typedefs

Illegal volume name error.

#define stsDVIllegalVolumeName MakeStatus (clsDiskViewWin, 0)
Directory where state files go, relative to theWorkingDir.

#define pDVStateDir "diskViewState"

Trigger point for going over to K’ size notation

#define dvKSizeUnit 1024

’# Icon Panel Style

#define dvShowlcons 0 // Show icons.

#define dvShowHelpText 1 // Show informative message about each
// view category.

t#define dvShowClientWin 2 // Client sets contents via

// msgDVSetIconPanel.

’» lcon Style

#define dvBigPictTitleUnder 0 // Big icon, title under picture.
$define dvBigPictTitleRight 1 // Big icon, title to right of picture.
#define dvSmallPictTitleUnder 2 // Small icon, title under picture.
#$define dvSmallPictTitleRight 3 // Small icon, title to right of picture.
% Disk Viewer Style
typedef struct DV_STYLE {
Ul6 displayRamVolume: 1, // Display the RAM volume. Used for debugging.
// Disk Viewer app sets this if /DB0800 is on.
autoOpen . 1, // If there is only one volume, open it.
enableBookshelf : 1, // Should bookshelf viewing be enabled?

enableDirectoryView : 1,// Should the directory view be enabled?

showVolumeMenu 1, // Should the volume menu be shown?
showEditMenu 1, // Should the edit menu be shown?
showViewMenu 1, // Should the view menu be shown?
showOptionsMenu : 1, // Should the options menu be shown?
iconPanelStyle 3, // What should be shown in the icon panel?
iconStyle 3, // Initial icon look, only used if
// iconPanelStyle == dvShowIcons.

unusedl : 2;

Ulé sparel;

Ul6 spare2;

} DV_STYLE, *P_DV_STYLE;

% Array Element For Volume Name Array

typedef struct NAME {
U8 pName [nameBufLength];
} NAME, *P_NAME;
typedef struct DV_NEW ONLY {
DV_STYLE style;

P_STRING pBasePath; // Path offset for each volume;
// pNull for no offset.
OBJECT client; // Client. Note: client is *not* saved at

// msgSave time. Client must restore with
) // msgBrowserSetClient.
Ulé numOpenVols; // Number of volumes to pre-open.
P_NAME pOpenVols; // Array of volume names.
TAG displayType; // Default display type for new cards.

DSKVIEW.H 209
Messages

CLASS browserClass; // Class of browser to mutate volume
// default browsers to. objNull says
// no mutation.
CLASS bookshelfClass; // Class of bookshelf viewer to mutate
// volume default bookshelf viewers.
// objNull says no mutation.
U8 spare[24]; // Spare: reserved.
} DV_NEW ONLY, *P_DV_NEW ONLY;
#define diskViewWinNewFields \
customLayoutNewFields \
DV_NEW_ONLY diskViewWin;

typedef struct DV _NEW {
diskViewWinNewFields
} DV_NEW, *P_DV_NENW;

msgNew
Creates a new disk view window.
Takes P_DV_NEW, returns STATUS. Category: class message.

Message typedef struct DV_NEW {
Arguments diskViewWinNewFields
} DV_NEW, *P_DV_NEW;

msgNewDefaults

Initializes the DV_NEW structure to default values.
Takes P_DV_NEW, returns STATUS. Category: class message.

Message typedef struct DV_NEW {
Arguments diskViewWinNewFields
} DV_NEW, *P DV _NEW;

Comments Zeroes out diskViewWin and sets

diskViewWin.style.displayRamVolume = false;
diskViewWin.style.autoOpen = false;
diskViewWin.style.iconStyle = dvBigPictTitleUnder;
diskViewWin.style.enableBookshelf = true;
diskViewWin.style.enableDirectoryView = true;
diskViewWin.style.showVolumeMenu = true;
diskViewWin.style.showEditMenu = true;
diskViewWin.style.showViewMenu = true;
diskViewWin.style.showOptionsMenu = true;
diskViewWin.style.iconPanelStyle = dvShowIcons;
diskViewWin.numOpenVols = 0;
diskViewWin.displayType = tagDVViewBookshelf;
diskViewWin.browserClass = objNull;
diskViewWin.bookshelfClass = objNull;

msgDVGetStyle

Gets current style setting.

Takes P_DV_STYLE, returns STATUS.

#define msgDVGetStyle MakeMsg (clsDiskViewWin, 1)

9 / UTILITY CLASSES

PENPOINT APl REFERENCE
Part 9 / Utility Classes

Message typedef struct DV_STYLE {
Arguments Ul6 displayRamVolume: 1, // Display the RAM volume. Used for debugging.
// Disk Viewer app sets this if /DB0800 is on.
autoOpen .1, // If there is only one volume, open it.
enableBookshelf : 1, // Should bookshelf viewing be enabled?
enableDirectoryView : 1,// Should the directory view be enabled?
showVolumeMenu 1, // Should the volume menu be shown?
showEditMenu 1, // Should the edit menu be shown?
showViewMenu 1, // Should the view menu be shown?
showOptionsMenu : 1, // Should the options menu be shown?
iconPanelStyle 3, // What should be shown in the icon panel?
iconStyle 3, // Initial icon look, only used if
/] iconPanelStyle == dvShowIcons.
unusedl : 0 2;
Ul6 sparel;
Ulé spare2;
} DV_STYLE, *P_DV_STYLE;
msgDVSetStyle
Sets style setting.
Takes P_DV_STYLE, returns STATUS.
#define msgDVSetStyle MakeMsg (clsDiskViewWin, 2)
Messuge typedef struct DV_STYLE {
Arguments Ul6é displayRamVolume: 1, // Display the RAM volume. Used for debugging.
// Disk Viewer app sets this if /DB0800 is on.
autoOpen HE // 1f there is only one volume, open it.
enableBookshelf : 1, // Should bookshelf viewing be enabled?
enableDirectoryView : 1,// Should the directory view be enabled?
showVolumeMenu : 1, // Should the volume menu be shown?
showEditMenu 1, // Should the edit menu be shown?
showViewMenu 1, // Should the view menu be shown?
showOptionsMenu : 1, // Should the options menu be shown?
iconPanelStyle 3, // What should be shown in the icon panel?
iconStyle 3, // Initial icon look, only used if
// iconPanelStyle == dvShowIcons.
unusedl :2;
Ulé sparel;
Ul6 spare2;
} DV_STYLE, *P_DV_STYLE;
msgDVGetBasePath
Passes back the current base path.
Takes P_STRING, returns STATUS.
#define msgDVGetBasePath MakeMsg (clsDiskViewWin, 3)
Comments The argument must point to a string buffer that is at least fsPathBufLength in size.

msgDVGetlconPanel

Passes back the current icon panel window.

Takes P_WIN, returns STATUS.

#define msgDVGetIconPanel MakeMsg (clsDiskViewWin, 4)

DSKVIEW.H 211
Private

Lomments

msgDVSetIconPanel

Sets the icon panel window.

Takes P_WIN, returns STATUS.

#define msgDVSetIconPanel MakeMsg (clsDiskViewWin, 5)

This message is only relevant if style.iconPanelStyle is set to dvShowHelpText or dvShowClientWin.

Arguments

Commaents

msgDVGetOpenVols

Passes back the names of all the currently open volumes.

Takes P_DV_GET_OPEN_VOLS, returns STATUS.
#define msgDVGetOpenvVols MakeMsg (clsDiskViewWin, 7)

typedef struct DV_GET OPEN VOLS {
Ulé numOpenVols; // Number of open volumes.
P_NAME pOpenVols; // Out: Array of volume names.
: // must be OSHeapBlockFreed.
U8 spare[24];
} DV_GET_OPEN VOLS, *P_DV GET OPEN VOLS;

" This message allocates a heap block on the process local stack (pOpenVols). THE CALLER MUST

FREE THIS BLOCK WHEN DONE.

If there are no open volumes then pOpenVols is set to pNull and nothing is allocated.

Private

msgDVSetOptionVolume

Sets the current volume for our option sheet.

Takes OBJECT, returns STATUS.
#define msgDVSetOptionVolume MakeMsg (clsDiskViewWin, 8)

msgDVCardPopupChanged

Option card’s quick installer popup button has changed.

Takes BOOLEAN, returns STATUS.
#define msgDVCardPopupChanged MakeMsg (clsDiskViewWin, 9)

msgDVOptionMenuNeed

Sent to the disk view client as notification that the option menu is being provided.

Takes nothing, returns STATUS.
#define msgDVOptionMenuNeed MakeMsg (clsDiskViewWin, 10)

msgDVOpenVolume

Opens the disk browser of the volume specified by the given name.

Takes P_CHAR, returns STATUS.

#define msgDVOpenVolume MakeMsg (clsDiskViewWin, 11)

9 / UTILITY CLASSES

212

PENPOINT APl REFERENCE
Part 9 / Utility Classes

msgDVCloseVolume

Closes the disk browser of the volume specified by the given name.

Takes P_CHAR, returns STATUS.

#define msgDVCloseVolume MakeMsg (clsDiskViewWin, 12)
msgDVConnectToVolume

Connects a network volume specified in pArgs.

Takes P_CONNECTIONS_MENU_ITEM, returns STATUS.

#define msgDVConnectToVolume MakeMsg (clsDiskViewWin, 13)

Tags

#define msgDVOpenClose MakeMsg (clsDVForward, 1)

#define msgDVDuplicate MakeMsg (clsDVForward, 2)

#define msgDVAddQuickInstall MakeMsg (clsDVForward, 3)

#define msgDVRemoveQuickInstall MakeMsg (clsDVForward, 4)

#define msgDVEjectRemember MakeMsg (clsDVForward, 5)

#define msgDVEjectForget MakeMsg (clsDVForward, 6)

#define msgDVFormat MakeMsg (clsDVForward, 7)

#define msgDVRename MakeMsg (clsDVForward, 10)
#define msgDVViewAll MakeMsg (clsDVForward, 20)
#define msgDVViewBookshelf MakeMsg (clsDVForward, 21)
#define msgDVDisplayInstaller MakeMsg (clsDVForward, 22)
#define msgDVLayoutOptions MakeMsg (clsDVForward, 30)
#define msgDVDiskOptions MakeMsg (clsDVForward, 31)
#define msgDVOptionsIcon MakeMsg (clsDVForward, 41)
#define msgDVOptionsType MakeMsg (clsDVForward, 42)
#define msgDVOptionsDate MakeMsg (clsDVForward, 43)
#define msgDVOptionsSize MakeMsg (clsDVForward, 44)
#define msgDVOptionsDirSize MakeMsg (clsDVForward, 45)
#define msgDVOptionsVersion MakeMsg (clsDVForward, 46)
#define msgDVOptionsInstall MakeMsg (clsDVForward, 47)
#define msgDVSortByName MakeMsg(clsDVForward, 50)
#define msgDVSortByDate MakeMsq (c1lsDVForward, 51)
#define msgDVSortBySize MakeMsg (clsDVForward, 52)
#define msgDVSortByType MakeMsg (clsDVForward, 53)
// Note: clsDVForward messages 100 and above are used internally.

#define tagDVVolumeMenu MakeTag(clsDiskViewWin, 1)
#define tagDVEditMenu MakeTag (clsDiskViewWin, 2)
#define tagDVViewMenu MakeTag(clsDiskViewWin, 3)
t#define tagDVOptionsMenu MakeTag (clsDiskViewWin, 4)
t#define tagDVTabButton MakeTag(clsDiskViewWin, 7)
f#define tagDVOpenClose MakeTag (clsDiskViewWin, 10)
#define tagDVDuplicate MakeTag (clsDiskViewWin, 11)
#define tagDVEjectRemember MakeTag(clsDiskViewWin, 12)
#define tagDVEjectForget MakeTag(clsDiskViewWin, 13)
$define tagDVRefresh MakeTag (clsDiskViewWin, 14)
$define tagDVQuickInstall MakeTag (clsDiskViewWin, 15)
#define tagDVFormat MakeTag (clsDiskViewWin, 16)
#define tagDVRename MakeTag (clsDiskViewWin, 17)

#define tagDVCreateDir
#define tagDVViewChoice

MakeTag (clsDiskViewWin, 18)
MakeTag (clsDiskViewWin, 20)

#define
#define
#define
#define

#define
#define

#define
#define
#define
#define

#define
#define
#define
#define
#define
#define
#define

#define
#define
#define
#define
#define

#define
#define
#define
#define
#define
#define
#define
#define
#define

#define
#define
#define
#define
#define
#define
#define
#define
#define

#define
#define

#define
#define
#define
#define
#define

#define
#define
#define
#define

#define
#define
#define
#define
#define
#define
#define

tagDVViewAll
tagbVViewBookshelf
tagDVExpand
tagDVCollapse

tagDVLayoutOptionMenu
tagDVDiskOptionMenu

tagDVColumnLayoutOptions
tagDVBookshelfLayoutOptions
tagDVDiskIconOptions
tagDVDiskOptions
tagDVOptionsIcon
tagDVOptionsType
tagDVOptionsSize
tagDVOptionsDirSize
tagDVOptionsDate
tagDVOptionsVersion
tagDVOptionsInstall

tagDVSortByChoice
tagDVSortByName
tagDVSortByDate
tagDVSortBySize
tagDVSortByType

tagDVIconCard
tagDVIconLabel
tagDVIconChoice
tagDVIconBigPictTitleUndexr
tagDVIconBigPictTitleRight
tagDVIconSmallPictTitleUnder
tagDVIconSmallPictTitleRight
tagDVDefaultBigBitmap
tagDVDefaultSmallBitmap

tagDVCardName
tagDVCardTotal
tagDVCardFree
tagDVCardReadOnly
tagDVCardPopupViewer
tagDVCardPopupYes
tagDVCardPopupNo
tagDVCardInitialView
tagDVCardInitialPopupChoice

tagDVBookshelfLayoutLabel
tagDVBookshelfLayoutChoice

hlpDVNoVolumesConnected
hlpDVSheetBackground
hlpDVIcon
hlpDVIconBackground
hlpDVTabButton

hlpDVVolumeMenu
hlpDVEditMenu
hlpDVViewMenu
hlpDVOptionsMenu

hlpDVClose
hlpDVDuplicate
h1pDVEjectRemember
hlpDVEjectForget
hlpDVRefresh
hlpDVQuickInstall
hlpDVFormat

MakeTag (clsDiskViewWin,
MakeTag (clsDiskViewWin,
MakeTag (clsDiskViewWin,
MakeTag (clsDiskViewWin,

MakeTag (clsDiskViewWin,
MakeTag (clsDiskViewWin,

MakeTag (clsDiskViewWin,
MakeTag (clsDiskViewWin,
MakeTag (clsDiskViewWin,
MakeTag (clsDiskViewWin,

MakeTag (clsDiskViewWin,
MakeTag (clsDiskViewWin,
MakeTag (clsDiskViewWin,
MakeTag (clsDiskViewWin,
MakeTag (clsDiskViewWin,
MakeTag (clsDiskViewWin,
MakeTag (clsDiskViewWin,

MakeTag (clsDiskViewWin,
MakeTag (clsDiskViewWin,
MakeTag (clsDiskViewWin,
MakeTag (clsDiskViewWin,
MakeTag (clsDiskViewWin,

MakeTag(clsDiskViewWin,
MakeTag (clsDiskViewWin,
MakeTag (clsDiskViewWin,
MakeTag (clsDiskViewWin,
MakeTag (clsDiskViewWin,
MakeTag (clsDiskViewWin,
MakeTag (clsDiskViewWin,
MakeTag (clsDiskViewWin,
MakeTag (clsDiskViewWin,

MakeTag (clsDiskViewWin,
MakeTag (clsDiskViewWin,
MakeTag (clsDiskViewWin,
MakeTag (clsDiskViewWin,
MakeTag (clsDiskViewWin,
MakeTag (clsDiskViewWin,
MakeTag (clsDiskViewWin,
MakeTag (clsDiskViewWin,
MakeTag (clsDiskViewWin,

MakeTag (clsDiskViewWin,
MakeTag (clsDiskViewWin,

MakeTag (clsDiskViewWin,
MakeTag (clsDiskViewWin,
MakeTag (clsDiskViewWin,
MakeTag (clsDiskViewWin,
MakeTag (clsDiskViewWin,

MakeTag (clsDiskViewWin,
MakeTag (clsDiskViewWin,
MakeTag (clsDiskViewWin,
MakeTag (clsDiskViewWin,

MakeTag (clsDiskViewWin,
MakeTag (clsDiskViewWin,
MakeTag (clsDiskViewWin,
MakeTag (clsDiskViewWin,
MakeTag (clsDiskViewWin,
MakeTag (clsDiskViewWin,
MakeTag (clsDiskViewWin,

21)
22)
23)
24)

25)
26)

30)
31)
32)
33)

40)
41)
42)
43)
44)
45)
46)

50)
51)
52)
53)
54)

60)
61)
62)
63)
64)
65)
66)
67)
68)
70)
71)
72)
73)
74)
75)
76)
77)
78)
80)
81)
100)
101)
102)
103)
104)
110)
111)
112)
113)

120)
121)
122)
123)
124)
125)
126)

DSKVIEW.H
Tags

213

9 / UTILITY CLASSES

214

PENPOINT API REFERENCE
Part 9 / Utility Classes

#define
#define
#define
#define
#define

#define
#define
#define
#define
#define
#define
#define

#define
#define
#define
#define

#define

#define
#define
#define
#define
#define
#define
#define

#define
#define
#define
#define
#define

#define
#define
#define
#define
#define
#define

#define

hlpDVMove
h1lpDVCopy
hlpDVDelete
hlpDVRename
hlpDVCreateDir

hlpDVViewAll
hlpDVViewBookshelf
hlpDVDisplayInstaller
hlpDVExpand
hlpDVCollapse
hlpDVLayoutOptionMenu
h1lpDVDiskOptionMenu
hlpDVDiskOptions
hlpDVDiskIconOptions
hlpDVColumnLayoutOptions

hlpDVBookshelfLayoutOptions

hlpDVOptionsColumnsLabel

hlpDVOptionsIcon
h1pDVOptionsType
hlpDVOptionsDate
hlpDVOptionsSize
hlpDVOptionsDirSize
h1lpDVOptionsVersion
hlpDVOptionsInstall

hlpDVSortByChoice
hlpDVSortByName
hlpDVSortByDate
hlpDVSortBySize
hlpDVSortByType
hlpDVDiskCardName
hlpDVDiskCardTotalSpace
hlpDVDiskCardFreeSpace
hlpDVDiskCardReadOnly

hlpDVDiskCardQuickInstaller

hlpDVDiskCardInitialView
hlpDVIconCardStyle

MakeTag(clsDiskViewWin, 130)
MakeTag (clsDiskViewWin, 131)
MakeTag (clsDiskViewWin, 132)
MakeTag (clsDiskViewWin, 133)
MakeTag (clsDiskViewWin, 134)

MakeTag (clsDiskViewWin, 140)
MakeTag (clsDiskViewWin, 141)
MakeTag (clsDiskViewWin, 142)
MakeTag (clsDiskViewWin, 143)
MakeTag (clsDiskViewWin, 144)

MakeTag (clsDiskViewWin, 145)
MakeTag (clsDiskViewWin, 146)
tagDVDiskOptions
tagDVDiskIconOptions
tagDVColumnLayoutOptions
tagDVBookshelfLayoutOptions

MakeTag (clsDiskViewWin, 150)

MakeTag (clsDiskViewWin, 160)
MakeTag (clsDiskViewWin, 161)
MakeTag(clsDiskViewWin, 162)
MakeTag (clsDiskViewWin, 163)
MakeTag (clsDiskViewWin, 164)
MakeTag (clsDiskViewWin, 165)
MakeTag (clsDiskViewWin, 166)

MakeTag (clsDiskViewWin, 170)
MakeTag(clsDiskViewWin, 171)
MakeTag (clsDiskViewWin, 172)
MakeTag (clsDiskViewWin, 173)
MakeTag(clsDiskViewWin, 174)

MakeTag (clsDiskViewWin, 180)
MakeTag (clsDiskViewWin, 181)
MakeTag(clsDiskViewWin, 182)
MakeTag{clsDiskViewWin, 183)
MakeTag(clsDiskViewWin, 184)
MakeTag (clsDiskViewWin, 185)

MakeTag (clsDiskViewWin, 190)

// QH tags for the column headers in diskview

#define
#define
#define
#define
#define
#define
#define

hlpDVNameColumn
hlpDVTypeColumn
hlpDVDateColumn
hlpDVTimeColumn
hlpDVSizeColumn
hlpDVVersionColumn
hlpDVInstallColumn

MakeTag (clsDiskViewWin, 191)
MakeTag(clsDiskViewWin, 192)
MakeTag (clsDiskViewWin, 193)
MakeTag (clsDiskViewWin, 194)
MakeTag (clsDiskViewWin, 195)
MakeTag (clsDiskViewWin, 196)
MakeTag (clsDiskViewWin, 197)

PENPOINT APl REFERENCE / VOL 11

PART 9 / UTILITY CLASSES

EXPORT.H

This file contains the API definition for clsExport.
clsExport inherits from clsObject.
clsExport is the abstract class defining the API for exporting data to external disks.

The clsExport API provides a common mechanism for documents to translate themselves into foreign
file formats and place the file on external disks.

P> Overview
The export protocol is initiated from the move/copy protocol (see embedwin.h). All moves/copies from
the TOC to non-bookshelf views of the DiskViewer are implicitly exports.

More specifically, export happens after msgSelCopySelection reaches the DiskViewer, which is the
destination of the copy, and the source of the copy includes clsExport as an item in the list returned by
msgXferList. Anything moveable/copyable can potentially invoke export.(See xfer.h and sel.h for
information on PenPoint’s move/copy protocol and selection management.)

The DiskViewer will send the source of the copy (the selection) msgExportGetFormats. The source
should pass back an array of possible export formats. From the information in msgExportGetFormats
clsApp generates the export dialog box. If the user selects the external export format and taps the
Move/Copy button, the export class sends msgExport to the appropriate translator specified in
msgExportGetFormats. If user selects the PenPoint format and taps the Move/Copy button, the

~ move/copy is equivalent to msgAppMgrMove/msgAppMgrCopy (see appmgr.h).

If the source of the export is in the TOC, the DiskViewer activates the source document and sends it
msgExportGetFormats.

%> How to Be an Exporting Application

Any application that wants to export must have its subclass of clsApp respond to msgExportGetFormats
and msgExport.

#ifndef EXPORT INCLUDED
#define EXPORT_INCLUDED
#ifndef GO_INCLUDED
#include <go.h>

tendif

#ifndef UID_INCLUDED
#include <uid.h>

#endif

#ifndef FS_INCLUDED
#include <fs.h>

#endif

216

PENPOINT API REFERENCE
Part 9 / Utility Classes

7” Common #defines and typedefs

Py Status codes

#define stsExportActivateSource MakeWarning (clsExport, 1)
#define stsExportFailed MakeWarning (clsExport, 2)
#define stsExportFailedUserNotified MakeWarning (clsExport, 3)

7V Messages

msgExportGetFormats

Passes back the export format array from from the source of the export.

Takes P_EXPORT_LIST, returns STATUS. Category: client responsibility.

f#define msgExportGetFormats MakeMsg (clsExport, 1)
Arguments typedef struct {
TAG documentType; // Source document type.
TAG exportType; // Export destination type.
OBJECT translator; // Object which to send msgExport.
CHAR exportName [nameBuflength]; // Name of export type for
// display in dialog box.
} EXPORT FORMAT, *P_EXPORT_FORMAT;
typedef struct {
P_EXPORT_FORMAT format; // Array of formats, must be SHARED
// memory, freed by caller.
Ulé numEntries; // Number of elements in format array.
} EXPORT_LIST, *P_EXPORT LIST;
Comments The DiskViewer sends this message to the selection.
The recipient should allocate global memory to hold the EXPORT_FORMAT array which is passed back
to the DiskViewer in the format field. The sender of msgExportGetFormats must free the memory.
If the source returns stsExportActivateSource, the DiskViewer will treat the source as an inactive
document (This is how the TOC behaves when it is the source of export). The source will be activated
using msgAppMgrActivate and the activated doc will be sent msgExportGetFormats.
msgExport
Initiates export by the translator.
Takes P_EXPORT_DOC, returns STATUS. Category: client responsibility.
#define msgExport MakeMsg (clsExport, 2)
Arguments typedef struct {
TAG exportType; // Corresponds to exportType from
// msgExportGetFormats EXPORT FORMAT.
FS_LOCATOR source; // Source document or null if
// source is not a document.
FILE_HANDLE destination; // Destination file handle.

// If you don’t want to export to
// this file, use msgFSGetPath to
// retrieve the destination and
// destroy this file handle.

CHAR path[fsPathBufLength]; // Source path.

TAG documentType; // Corresponds to documentType from
// msgExportGetFormats EXPORT FORMAT.

U32 sparel; // Spare: reserved

U32 spare2; // Spare: reserved

} EXPORT DOC, *P_EXPORT DOC;

Comments

EXPORT.H 217
Miscellaneous

This message is sent to the translator specified in EXPORT_FORMAT. The translator is passed an open file
handle to which the translator can write exported data or the translator can get the path of the file,
destroy the file and replace it with its own file structure.

If the export fails, it is the exporter’s reponsibility for removing invalid and/or partial files created during
the failed export. The minimum the client should do is send msgFSDelete to pArgs->destination to
remove the file created for the exportation.

If the exporter wishes to put their custom dialog box to query the user for more information, the
exporter should do this in response to msgExport. If the custom dialog allows the user to cancel the
export operation, then the exporter should return stsExportFailedUserNotified which will cause
PenPoint to suppress any error of the aborted export.

Mossuge
Arguments

Comments

msgExportName
Passes back a possibly modified destination name from the translator.

Takes P_EXPORT_FORMAT, returns STATUS.

tdefine msgExportName MakeMsg (clsExport, 3)

typedef struct {

TAG documentType; // Source document type.

TAG exportType; // Export destination type.

OBJECT translator; // Object which to send msgExport.

CHAR exportName [nameBufLength]; // Name of export type for

// display in dialog box.

} EXPORT FORMAT, *P_EXPORT FORMAT;
This message is sent to the translator specified in EXPORT_FORMATS whenever the user chooses a new
export type in the dialog box. When the translator receives the message, export name is set to the source
document name. The translator should set export name exportName should be set to the "correct”

destination file name. For instance the extension .RTF 6r " WKS’ may be appended to the name.

If the translator ignores this message the destination name will remain unchanged (so this message can
safely be ignored).

7 Miscellaneous

’» Help tags

These are help tags on various pieces of the standard export dialog box.

#define hlpExportSheet MakeTag (clsExport, 50)
#define hlpExportName MakeTag (clsExport, 51)
#define hlpExportNewName MakeTag (clsExport, 52)
#define hlpExportChoice MakeTag (clsExport, 53)

9 / UTILITY CLASSES

PENPOINT API REFERENCE / VOL Il

PART 9 / UTILITY CLASSES

GMARGIN.H

This file contains the API definition for clsGestureMargin.
clsGestureMargin inherits from clsScrollWin.

clsGestureMargin adds a margin to the scroll win on the opposite side from the scroll bar. Gestures
made in the margin are forwarded to the client win.

clsGestureMargin is used in PenPoint by the MiniNote application. MiniNote uses the gesture margin
in lieu of a scroll win. When MiniNote is in writing mode, the margin is gray. In gesture mode, the
margin is white.

Gesture mode is intended to indicate a "safe" mode in which the 11 core gestures can be used. In ink
mode, some gestures do not work and be may interpreted as some other type of data (e.g. ink).

#ifndef GMARGIN__INCLUDED
#define GMARGIN_ INCLUDED
#ifndef SWIN_INCLUDED
$include <swin.h>

#endif

Types and Constanis

#define clsGestureMargin MakeGlobalWKN (2572,1)
#define clsGestureMarginInnerWin MakeGlobalWKN(2573,1)

typedef struct GESTURE_MARGIN_STYLE {

Ul6 gestureMargin : 1, // gesture margin on/off
wideGestureMargin : 1, // make the gesture margin wide
// (not implemented)
maskGestureMargin : 1, // mask out gestureMargin
inkMode W // margin is gray for if in ink mode
reserved :12;

} GESTURE_MARGIN STYLE, *P_GESTURE_MARGIN_STYLE;

typedef struct {
GESTURE_MARGIN STYLE style;
S32 spares[4];
} GESTURE_MARGIN_ NEW_ONLY, *P_GESTURE_MARGIN NEW_ONLY;

#define gestureMarginNewFields \
scrollWinNewFields \
GESTURE_MARGIN_NEW_ONLY gestureMargin;

typedef struct {
gestureMarginNewFields
} GESTURE MARGIN_NEW, *P_GESTURE_MARGIN_NEW;

msgGestureMarginGetStyle

Passes back the receiver’s current style values.

Takes P_GESTURE_MARGIN_STYLE, returns STATUS.

#define msgGestureMarginGetStyle MakeMsg (clsGestureMargin, 1)

220 PENPOINT APl REFERENCE
Part 9 / Utility Classes

Message typedef struct GESTURE MARGIN STYLE {
Arguments Ul6 gestureMargin : 1, // gesture margin on/off
wideGestureMargin : 1, // make the gesture margin wide
// (not implemented)
maskGestureMargin : 1, // mask out gestureMargin
inkMode : 1, // margin is gray for if in ink mode
reserved :12;

} GESTURE_MARGIN STYLE, *P_GESTURE MARGIN STYLE;

msgGestureMarginSetStyle

Sets the receiver’s style values.

Takes P_GESTURE_MARGIN_STYLE, returns STATUS.
#define msgGestureMarginSetStyle MakeMsg (clsGestureMargin, 2)

Message typedef struct GESTURE MARGIN STYLE {
Arguments’ Ul6 gestureMargin : 1, // gesture margin on/off
wideGestureMargin : 1, // make the gesture margin wide
// (not implemented)
maskGestureMargin : 1, // mask out gestureMargin
inkMode : 1, // margin is gray for if in ink mode
reserved :12;

} GESTURE_MARGIN_STYLE, *P_GESTURE MARGIN STYLE;

msgGestureMarginSetInkMode

Sets margin to be either ink or gesture mode.

Takes BOOLEAN, returns STATUS.
#define msgGestureMarginSetInkMode MakeMsg(clsGestureMargin, 3)

PENPOINT API REFERENCE / VOL Il

PART 9 / UTILITY CLASSES

HASH.H

This package implements an "Open Addressing, Linear Probe" hash table.

The functions described in this file are contained in SYSUTIL.LIB.

% Introduction

This package implements hash tables. Hash tables offer relatively fast key-based random access to data at
the expense of some memory. The performance improvement over linear searching is substantial.

The defaults supplied by this package are probably fine for most data. However, hash table performance
depends on both a good hash function and proper size parameters. If your data’s keys are unevenly
distributed then consider writing your own hash function. Try to get the hash table’s initial size close to
the number of expected entries divided by the fill percentage. You can vary the fill percentage to meet
your tradeoffs between space and time.

¥» Creating a Hash Table
To create a hash table:

¢ Allocate space for the hash table (either on the stack or in a heap block)
Call HashInitDefaults()

L
¢ Optionally customize the HASH_INFO structure
¢ Call Hashlnit()

%> Examples

Here’s some sample code based on a 32 bit key. (The package has built-in Hash and Compare functions
for 32 bit keys; see section "Hash and Compare Functions.")

// Client data structure. (The structure must contain a key field,
// though it need not be named key and it need not be the first field.)
typedef struct {
032 data;
U32 key;
} YOUR DATA, *P_YOUR DATA;

{

P_HASH_INFO pHashInfo;
P_YOUR DATA pMD;
U32 key;

// Create table.

OSHeapBlockAlloc (osProcessHeapId, sizeof (*pHashInfo), &pHashInfo);
HashInitDefaults (pHashInfo);

// Optionally customize between calls to HashInitDefaults() and
// HashInit(). For instance, if you have 16 bit keys, you

// might do the following:

// pHashInfo->pHashFunction = HashFunctionl6;

// pHashInfo->pHashCompare = HashComparel6;

HashInit (pHashInfo, offsetof (YOUR DATA, key));

222 PENPOINT API REFERENCE
Part 9 / Utility Classes

// Add entry to hash table

OSHeapBlockAlloc (osProcessHeapId, SizeOf (YOUR DATA), &pMD);
pMD->key = 25;

pMD->data = someData;

HashAddEntry (pHashInfo, pMD);

// Find entry in hash table. Returns stsNoMatch if not found.
key = 25;

HashFindData (pHashInfo, &key, &pMD);

Debugf ("Data for key %d is %d", key, pMD->data);

// Delete entry in hash table without freeing client data.
// Returns stsNoMatch if not found.

key = 25;

HashDeleteEntry (pHashInfo, &key, &pMD, false);
OSHeapBlockFree (pMD) ;

// Delete entry in hash table and free the client data.
// Returns stsNoMatch if not found.

key = 25;

HashDeleteEntry (pHashInfo, &key, &pMD, true);

// Free hash table, and call OSHeapBlockFree() on all client data.
HashFree (pHashInfo, true);

OSHeapBlockFree (pHashInfo);

P> Enumerating Hash Table Entries

All of the entries in a hash table can be enumerated by examining the entries field of the HASH_INFO
structure. Empty entries are null. Note that there are numEntries slots, numFilled of which are
non-null.

P_HASH INFO pHashInfo;
P_HASH ENTRY pEntries;

pEntries = pHashInfo->entries;
for (i = 0; i < pHashInfo->numEntries; i++) {
if (pEntries[i].pData) {
// Do something with entry
}

¥ Hash and Compare Functions
The package includes good Hash and Compare functions for the following types of keys:
¢ 16 bit numbers
¢ 32 bit numbers
¢ 64 bit numbers
¢ null-terminated strings

Clients with other key types need to provide their own Hash and Compare functions. Sophisticated
clients may want to provide their own Hash and Compare functions even if they have keys with one of
the above types.

Replacement Hash and Compare functions should look like the following:

typedef struct {
U8 major;
Ul6 minor;
} MY_KEY, * P MY KEY;
typedef struct {
MY KEY key;
P_UNKNOWN pData;
} MY DATA, * P_MY DATA;
U32 EXPORTED
MyKeyHashFunction (
P_HASH KEY pKey)
{
P_MY KEY pMyKey = (P_MY KEY)pKey;

U32 hash;
hash = pMyKey->major * 9551; // 9551 is prime
hash += pMyKey->minor * 113; // 113 is prime

return hash;

} .

BOOLEAN EXPORTED MyKeyHashCompare (
P_HASH KEY pKeyl,
P_HASH KEY pKey?2)

P_MY KEY pMyKeyl (P_MY KEY)pKeyl;

P_MY KEY pMyKey2 = (P_MY KEY)pKey2;

return ((pMyKeyl->major == pMyKey2->major) AND
(pMyKeyl->minor == pMyKey2->minor));

}

% Space / Time Tradeoff

The following table show the space / time tradeoff for a variety of percentFull values, normalized to

HASH.H

80%. This table is a gross simplification. Among other things, it assumes well distributed keys.

full per- relative relative
centage speed memory use
10 2.8 8.0

20 2.7 4.0

30 2.5 2.7

40 2.3 2.0

50 2.0 1.6

60 1.7 1.3

70 1.4 1.2

80 1.0 1.0

90 .6 .9

95 .3 .8

$ifndef HASH_INCLUDED
#define HASH INCLUDED
#include <string.h>
#ifndef GO_INCLUDED
#include <go.h>

#endif

#ifndef OSTYPES_ INCLUDED
#include <ostypes.h>
#endif

#ifndef OSHEAP INCLUDED
#include <osheap.h>
#endif

#include <stddef.h>

223

9 / UTILITY CLASSES

224 PENPOINT APl REFERENCE
Part 9 / Utility Classes

Funciion Profolype

Function Profotype

Common #defines and typedefs

Default values

#define minHashTableInitialSize 15 // minimum initial size

#define minHashTableExpandSize 16 // minimum expand increment
#define hashTableMaxFillPct 80 // expand when the table gets this

// percentage full.
Key and Data Pointer Types

typedef void * P_HASH KEY;
typedef void * P_HASH DATA,;

Type for Hash function

typedef U32 FunctionPtr (HASH FUNCTION) (
P_HASH KEY pKey
)i

Type for Compare function. Function should return true if pKeyl and pKey2 point to keys with
identical values.

typedef BOOLEAN FunctionPtr (HASH COMPARE) (

P_HASH KEY pKeyl,
P_HASH KEY pKey?2
)i
A hash table entry.
typedef struct HASH ENTRY {
P_HASH DATA pData; // Points to user data

} HASH_ENTRY, * P_HASH ENTRY, ** PP HASH ENTRY;

The hash table itself. Space for the table is allocated by the client. Space for the entries is allocated by

hash table functions and is freed via a call to HashFree().

The debugging version of the hash table gathers statistics.
typedef struct HASH _INFO {

U32 numEntries; // number of entries allocated.
// Should be prime!
U32 numFilled; // number of entries in use. Not

// too small or table will expand too
// often. Should be even.

U32 expandNumber; // number of entries to expand by

U32 percentFull; // max percentage full at expand time.
// Performance falls off rapidly if
// table allowed to get much fuller

// than 80%.
Ul6 keyOffset; // offset of key in P_HASH DATA
OS_HEAP_ID heap; // heap to expand into
P_HASH_ENTRY entries; // points to hash table array.

// Array can be indexed sequentially
// to find all the entries in the
// table. Empty slots are null.

HASH FUNCTION pHashFunction; // Hash function

HASH COMPARE pHashCompare; // Compare function

// Statistics maintained for DEBUG version

U32 numProbes; // Counts number of hash probes
U32 numProbeMisses; // Counts number of probe retries
U32 numAdds; // Counts number of adds

U32 numDeletes; // Counts number of deletes

} HASH_INFO, * P_HASH INFO;

HASH.H
Common #defines and typedefs

225

Funciion Prototype

Return Value

See Also

HashFindData
Given a key, passes back a P_HASH_DATA.
Returns STATUS.

STATUS EXPORTED HashFindData (

P_HASH INFO pInfo,
P_HASH KEY pKey,
P_HASH DATA * ppData);

stsNoMatch the key is not in the table. *ppData is undefined.
stsOK the key is in the table.
HashFindTableEntry

Function Prototype

Return Yeolus

Soe Also

HashFindTableEntry

Given a key, passes back a pointer to client data.
Returns STATUS.

STATUS EXPORTED HashFindTableEntry (

P_HASH_INFO pInfo,
P_HASH KEY pKey,
PP_HASH ENTRY ppEntry);

stsNoMatch the key is not in the table. *ppEntry is undefined.
stsOK the key is in the table.
HashFindData

Function Prototype

Comments

Return Value

HashAddEntry
Adds an entry to a hash table.
Returns STATUS.

STATUS EXPORTED HashAddEntry (
P_HASH INFO pInfo,
P_HASH DATA pData) ;

The hash table expands if adding this entry causes the table to exceed the expand threshold.
stsFailed the key is already in the table

Function Prototype

Cowiments

Returs Value

HashDeleteEntry
Deletes entry from hash table.
Returns STATUS.
STATUS EXPORTED HashDeleteEntry (
P_HASH INFO pInfo,
P_HASH KEY PKey,
P_HASH DATA * ppData,
BOOLEAN freeClientData) ;

If freeClientData is true then the client data is deallocated using ppData is undefined. Otherwise

*ppData contains the pointer to client data.
Freeing entries does not cause the table to shrink.

stsNoMatch the key is not in the table.

9 / UTILITY CLASSES

226 PENPOINT APl REFERENCE
Part 9 / Utility Classes

Furnetion Prototype

Comments

HashInitDefaults

Initializes hash table parameters.
Returns STATUS.

STATUS EXPORTED HashInitDefaults(
P_HASH INFO pInfo);

Warning: HashInitDefaults() MUST be called before Hashlnit. See the section "Examples."

Default values:

memset (pInfo, 0, sizeof (HASH_ INFO));

pInfo->numEntries = 31;

pInfo->expandNumber = 24;

pInfo->heap osProcessHeapId;

pInfo->pHashFunction HashFunction32; // Default 32 bit key
pInfo->pHashCompare HashCompare32; // Default 32 bit key
pInfo->percentFull = 80,

Function Prototype

Comments

HashlInit

Causes the hash table to allocate internal tables.
Returns STATUS.

STATUS EXPORTED HashInit (

P_HASH INFO pInfo,

U32 keyOffset); // offset of key in client data.
The client must call this function after calling HashInitDefaults() and performing any optional
customization.

Example:

HashInitDefaults (pInfo);
HashlInit (pInfo, offsetof (YOUR DATA, key));

Function Prototype

Comments

HashFree

Frees internal hash table memory. Optionally deallocates any remaining user data blocks.
Returns STATUS.

STATUS EXPORTED HashFree (

P_HASH_INFO pInfo,

BOOLEAN freeAllEntries);
If freeAllEntries is true, then the hash table calls OSHeapBlockFree() on each remaining piece of client
data.

If the client is going to call HashFree() with freeAllEntries false, the client must free all client data
beforehand.

Note that this function does NOT free the HASH_INFO structure. If the client allocated it before calling
HashInit() then the client should free the table after calling HashFree().

HASH.H 227
Built-in Hash and Compare Functions

7’ Built-in Hash and Compare Functions

The functions in this section are useful default hash and compare functions for common key types. The
64 bit, 32 bit, and 16 bit functions work equally well for signed or unsigned values.

% 64 bit keys

Function Prototype U32 EXPORTED HashFunction64 (P_HASH KEY pKey);
BOOLEAN EXPORTED HashCompare64 (P_HASH KEY pKeyl, P_HASH KEY pKey2);

% 32 bit keys

Function Prototype 032 EXPORTED HashFunction32(P_HASH KEY pKey);
BOOLEAN EXPORTED HashCompare32(P_HASH KEY pKeyl, P_HASH KEY pKey2);

% 16 bit keys

Function Prototype U032 EXPORTED HashFunctionl6 (P_HASH _KEY pKey);
BOOLEAN EXPORTED HashComparel6(P_HASH KEY pKeyl, P_HASH KEY pKey2);

% String keys

Function Protetype U32 EXPORTED HashFunctionString(P_HASH_KEY pKey);
BOOLEAN EXPORTED HashCompareString(P_HASH KEY pKeyl, P_HASH KEY pKey2);

9 / UTILITY CLASSES

PIENPOINT APl REFERENCE / VOL 11

PART 9 / UTILITY CLASSES

IMPORT.H

This file contains the API definition for clsImport.
clsImport inherits from clsObject.

clsImport is the abstract class defining the API for importing foreign files from external disks into
notebook documents.

¥» Overview

The import protocol is triggered when the TOC receives msgSelMoveSelection or
msgSelCopySelection the TOC, and the source of the move/copy includes clsFileSystem as an item in
the list returned by msgXferList, then the TOC initiates the import protocol. (See xfer.h and sel.h for
information on PenPoint’s move/copy protocol and selection management.)

The import protocol sends msglmportQuery, as a class message, to each installed application class to
determine the set of applications that can import the file.

Once every installed application has been queried, clsApp will put up an import dialog box. An instance
of the application is created on the destination and msglmport is sent. If the import succeeds, the
importer should return stsOK. If an error occurs and the user has not been notified of the failure, the
importer should return stsimportFailed. If an error occurs and the user has been notified, the importer
should return stsImportFailedUserNotified.

’» How to Be an Importing Application
Any application that wants to import must handle msgImportQuery and msgImport.

The import protocol sends msgImportQuery as a class message. (See clsmgr.h for more general
information about class messages.) For your app to receive a class message you must have an entry
something like this in your application class’s method table:

MSG_INFO myAppMethods [] = {
msgImportQuery, "MyAppImportQuery", objClassMessage,

0

}i
The ImportQueryHandler’ method can look at the contents or the name of the imported file to
determine if that file can be imported by the app. If the app can import the file, the
‘ImportQueryHandler’ method sets the pArgs->canImport boolean to true (the default is false) and
returns stsOK. The TOC will then add the application’s name to the list of possible import destinations
for the import dialog.
#ifndef IMPORT INCLUDED
#define IMPORT INCLUDED

#ifndef GO_INCLUDED
#include <go.h>
#endif

$ifndef UID_ INCLUDED
#include <uid.h>
#endif

#ifndef FS_INCLUDED
#include <fs.h>
$endif

230 PENPOINT API! REFERENCE
Part 9 / Utility Classes

Common #defines and typedefs

¥ Status codes

Importing applications should re stsimportFailedUserNotified if the importer detected an error during
the importation and notified the user of the error. This allows the importer to give a more detailed error
" message to the user.

#define stsImportFailed MakeStatus (clsImport, 1)

#define stsImportFailedUserNotified MakeStatus (clsImport, 2)

#define stsImportInvalidFormat MakeStatus (clsImport, 3)
Messages

msgImportQuery

Queries each app class to see if it is capable of importing the file.

Takes P_IMPORT_QUERY, returns STATUS. Category: client responsibility.

#define msgImportQuery MakeMsg (clsImport, 1)
Argumends typedef struct {

FILE_HANDLE file; // Open file handle to imported file.

TAG fileType; // File type if it exists.

CHAR fileName [nameBufLength]; // Source file name.

BOOLEAN canImport; // Out: TRUE if app can import the file.
// Default setting on entry is false.

Ul6 suitabilityRating; // Out: 0 - lowest
// 50 - average (default)
// 100 - highest

U8 spare[64]; // Spare: reserved.

} IMPORT QUERY, *P_IMPORT QUERY;

Comments This message is sent by the browser to each application class. The applicatin should pass back
pArgs->canImport set to true if it can import the file. pArgs->suitabilityRating is the relative rating of
how suitable the application is to importing the file. This rating determines the ordering within the list
of applications in the import dialog box displayed by PenPoint.

msglmport
Initiates the import.

Takes P_IMPORT_DOC, returns STATUS. Category: client responsibility.

#define msgImport MakeMsg (clsImport,2)
Arguments typedef struct {
FILE HANDLE file; // Open file handle to file.
TAG fileType; : // File type if exists.
f:] fileName [nameBufLength]; // Source file name.
U32 sequence; // Sequence number for dest.
DIR HANDLE destHandle; // Dir hardle to dest section.

} IMPORT DOC, *P_IMPORT DOC;

Comments This message is sent by clsApp to a newly created instance of the destination application. The
application should import the data from the file and return stsOK. If this message returns an error status
the newly created app instance will be deleted.

¥ Miscellaneous

¥ Help tags

These are help tags on various pieces of the standard export dialog box.

#define hlpImportSheet MakeTag {clsImport, 50)
#define hlpImportName MakeTag (clsImport, 51)
#define hlpImportNewName MakeTag (clsImport, 52)
#define hlpImportChoice MakeTag (clsImport, 53)

IMPORT.H
Miscellaneous

231

9 / UTILITY CLASSES

PENPOINT APl REFERENCE / VOL

PART 9 / UTILITY CLASSES

LIST.H

This file contains the API definition for clsList.
cIsList inherits from clsObject.

Lists are a simple ordered collections of items.
#ifndef LIST INCLUDED
#define LIST_ INCLUDED

#ifndef CLSMGR INCLUDED
#include <clsmgr.h>
#endif

Common #defines and typedefs

typedef OBJECT LIST, *P_LIST;
typedef P_UNKNOWN LIST ITEM, *P LIST ITEM;

LIST_ENTRY is used in many messages. In general, the fields are treated as follows:

position. An item’s location. Locations are zero-based. The first item is 0 and the last item is number
of items - 1. When used as an In parameter, position specifies the position of the item to operate on.
For adding operations, maxU16 means beyond the last item. For other operations, maxU16 means
the last item in the list. Values beyond the size of the list but less than maxU16 are not
recommended. When used as an Out parameter, position contains the actual position of the item.
maxU16 is never passed back even if passed in.

¢ item. When used as an In parameter, item identifies the item to operate on. If the same item added
to the list more than once, then all operations work only the first appearance of the item. When
used as an Out parameter, item contains the item operated on.

typedef struct LIST ENTRY (
Ulé position;

LIST_ITEM item;
} LIST_ENTRY, *P_LIST ENTRY;

typedef struct LIST NOTIFY {

MESSAGE msg; // In: message to send/post
P_ARGS pArgs; // In: pArgs for message
SIZEOF lenSend; // In: length of pArgs

} LIST_NOTIFY, * P_LIST NOTIFY;

Status Codes

#define stsListFull MakeStatus (clsList, 1)
#define stsListEmpty MakeStatus (clsList, 2)

234 PENPOINT API REFERENCE
Part 9 / Utility Classes

P Messages Defined by Oihei- Classes

msgNew

Creates a new empty list.
Takes P_LIST_NEW, returns STATUS. Category: class message.

Argumenis typedef struct LIST STYLE {
Ulé reserved:16;
} LIST STYLE, * P_LIST STYLE;

List filing behavior.

typedef enum LIST FILE MODE {
listFileItemsAsData, // File list items as U32 data.
listFileItemsAsObjects, // Treat list items as objects. Save
// them with msgResPutObject and restore
// them with msgResGetObject.
listDoNotFileItems // Don’t file list items.
} LIST FILE MODE, *P_LIST FILE_MODE;

typedef struct LIST NEW ONLY {

LIST STYLE style;
LIST F ILE MODE fileMode;
U32 reserved[4]; // Reserved

} LIST_NEW ONLY, *P_LIST NEW_ONLY;

#define listNewFields \
objectNewFields \
LIST_NEW_ONLY 1

typedef struct LIST NEW {
listNewFields
} LIST_NEW, *P_LIST NEW;

Comments If the heap specified in pArgs->object.heap is null, the process heap is used.

msgNewDefaults

Initializes the LIST_NEW structure to default values.
Takes P_LIST_NEW, returns STATUS. Category: class message.

Message typedef struct LIST NEW {
Argumenis listNewFields
} LIST NEW, *P_LIST NEW;

Comments Zeroes out pNew->list and sets:

pArgs->list.fileMode = listFileItemsAsObjects

msgSave
Defined in clsmgrh
Takes P_OBJ_SAVE, returns STATUS.

Comments In response to this message, the list saves itself. Then, based on the list’s fileMode, it may save the item
information. See the commentary with the type LIST_FILE_MODE for more information.

LIST.H 235
List Manipulation Messages

Comments

msgRestore
Defined in clsmgr.h

Takes P_OBJ_RESTORE, returns STATUS.

In response to this message, the list restores itself. Then, based on the list’s fileMode, it may restore the
items information. See the commentary with the type LIST_FILE_MODE for more information.

List Manipulation Messages

msgListFree

Frees a list according to mode.

Takes P_LIST_FREE, returns STATUS.

#define msqglistFree MakeMsg(clsList, 1)
Brguments typedef enum LIST FREE MODE {
listFreeItemsAsData, // Ignore the item’s value. Simply destroy
// the list itself. Equivalent to sending
// msgDestroy to the list.
listFreeltemsAsObjects, // Treat items as objects. Send each item
// msgDestroy Nil (key) before destroying
// the list itself. Any errors are ignored.
listDoNotFreeItems // Obsolete. Do not use.
} LIST_FREE MODE, *P_LIST FREE MODE;
typedef struct LIST FREE {
OBJ_KEY key; // Key for freeing the list object.
LIST FREE MODE mode;
} LIST FREE, *P_LIST FREE;
Comments In response to this message, the list destroys itself AND all of its items.
Use msgDestroy to destroy the list without affecting the list’s items. For both messages, observers are
sent msgListNotifyEmpty.
msgListAddItem
Adds an item to the end of a list.
Takes LIST_ITEM, returns STATUS.
#define msgListAddItem MakeMsg (clsList, 2)
Comments Observers are sent msgListNotifyAddition.
msgListAddItemAt
Adds an item to a list at pArgs->position.
Takes P_LIST_ENTRY, returns STATUS.
#define msgListAddItemAt MakeMsg (clsList, 10)
Messoge typedef struct LIST ENTRY {
Arguments Ulé position;
LIST ITEM item;
} LIST ENTRY, *P_LIST ENTRY;
Comments If the list is empty, pArgs->position is treated as if it were 0. If pArgs->position is maxU16, the item is

inserted at the end of the list.

9 / UTILITY CLASSES

236

Return Value

PENPOINT API REFERENCE
Part 9 / Utility Classes

If necessary, list items move to make room for the new item.
Observers are sent msgListNotifyAddition.

stsOK item added. pArgs->position contains the actual position of the new item.

Comments

Return Yolue

msgListRemoveltem

The list searches for pArgs in the list and removes the item if found.

Takes LIST_ITEM, returns STATUS.

#define msgListRemoveltem i MakeMsg (clsList, 11)

If the argument is in the list more than once, only the first instance of it is removed.
Observers are sent msgListNotifyDeletion.

stsListEmpty the list was empty

stsNoMatch item was not found

Messoge
Arguments

Lomments

Return Value

msgListRemoveltemAt

Removes the item in the list at pArgs->position.

Takes P_LIST_ENTRY, returns STATUS.

#define msgListRemoveltemAt MakeMsg (clsList, 3)

typedef struct LIST ENTRY {
Ule position;
LIST ITEM item;

} LIST ENTRY, *P_LIST ENTRY;

Observers are sent msgListNotifyDeletion.
stsListEmpty the list was empty

stsOK item removed. pArgs->position contains the position of the removed item.

Message
Arguments

Comments

RBeturmn Yolue

msgListReplaceltem

Replaces the item in the list at pArgs->position.

Takes P_LIST_ENTRY, returns STATUS.

#define msglListReplaceIltem MakeMsg (clsList, 4)

typedef struct LIST ENTRY {
Ule position;
LIST ITEM item;

} LIST ENTRY, *P_LIST ENTRY;

If pArgs->position is maxU186, the last item in the list is replaced.
Observers are sent msgListNotifyReplacement.
stsListEmpty the list was empty

stsOK item was replaced. pArgs->item contains the old item and pArgs->position contains its old
position.

LIST.H
List Manipulation Messages

237

Message
Arguments

Lomunents

Return Value

msgListGetltem

Gets the item in the list at pArgs->position.

Takes P_LIST_ENTRY, returns STATUS.

#define msgListGetItem MakeMsg (clslist, 5)

typedef struct LIST ENTRY {
Ule position;
LIST_ITEM item;

} LIST_ENTRY, *P_LIST ENTRY;

If pArgs->position is maxU16, the last item in the list is returned.
stsListEmpty the list was empty.

stsOK item found. pArgs->position contains the position of the item.

Messoge
Arguments

Return Yalue

msgListFindItem

Searches for pArgs->item in the list.

Takes P_LIST_ENTRY, returns STATUS.

#define msgListFindItem MakeMsg (clsList, 6)

typedef struct LIST ENTRY {
Ulé position;
LIST ITEM item;

} LIST ENTRY, *P LIST ENTRY;

stsNoMatch item was not found.

stsOK item was found. pArgs->position contains the position of the item.

msgListNumltems

Passes back the number of items in a list.

Takes P_U16, returns STATUS.
#define msgListNumItems MakeMsg (clsList, 7)

Commernts

msgListRemoveltems

Removes all of the items in a list.

Takes no arguments, returns STATUS.
#define msgListRemoveltems MakeMsg (clsList, 8)

The list’s items are not affected in any way.

Observers are sent msgListNotifyEmpty.

Arguments

msgListEnumltems

Enumerates the items in a list.

Takes P_LIST_ENUM, returns STATUS.
#define msgListEnumItems MakeMsg (clsList, 9)

typedef struct LIST ENUM {
Ul6 max;
Ul6 count;
P_LIST ITEM pltems;
P_UNKNOWN pNext;

} LIST ENUM, * P_LIST ENUM;

n
w
N
E
o
>
[
=
=
=2
~
o

238 PENPOINT APl REFERENCE
Part 9 / Utility Classes

Cantments

Return Value

This copies successive items from the list into an array. There are two approaches a client can use:

1. Let the list do all the work in one call. The list allocates an array of items which is passed back in
pArgs->pltems. You must free this array when you are done with a call to OSHeapBlockFree.
LIST_ENUM Should be filled in as follows:

max On input, should be 0. On output, will be the the number of items in the allocated block.
count On input, should be maxU16. On output will be the same as max.

pltems On input, should be null. On output, will be the pointer to the allocated block.

pNext On input, should be null.

2. Go through the items, a chunk at a time. Repeatedly call msgListEnumlItems with the same
LIST_ENUM structure and processes successive groups of items. The call that returns stsEndOfData
indicates that the enumeration is finished (there are no more items to process). LIST_ENUM is used as
follows:

max On input and output, the number of items your block can hold

count On input, the same as max. On output, will be the number of items returned in block. (This
will be less than max the last time through.)

pltems On input, a pointer to a block that can hold at least max items.
pNext On input for first call, should be null. Do not modify thereafter.

stsEndOfData There are no more items to enumerate (list may be empty). When stsEndOfData is
returned, pArgs->count is zero. If you passed in pItems as null and max as 0, the block may not
have been allocated. Check pItems for nil and free it if it isn’t.

msgListGetHeap

Passes back the heap used by the list.

Takes P_OS_HEAP_ID, returns STATUS.

#define msgListGetHeap MakeMsg (clsList, 12)

clsList responds to these messages by sending the specified message to each item in the list in turn.
clsList ignores the values returned by sending this message and always returns stsOK.

Message
Brguments

msgListCall

Sends a message to each object in the list using ObjectCall.

Takes P_LIST_NOTIFY, returns STATUS.

#define msgListCall MakeMsg(clsList, 13)
typedef struct LIST NOTIFY {
MESSAGE msg; // In: message to send/post
P_ARGS pPArgs; // In: pArgs for message
SIZEOF lenSend; // In: length of pArgs

} LIST NOTIFY, * P_LIST_NOTIFY;

LIST.H 239
Observer Notifications

msgListSend
Sends a message to each object in the list using ObjectSend.
Takes P_LIST_NOTIFY, returns STATUS.

#define msgListSend MakeMsg (clsList, 14)

Message typedef struct LIST NOTIFY {
Arguments MESSAGE msg; // In: message to send/post
P_ARGS pArgs; // In: pArgs for message
SIZEOF lenSend; // In: length of pArgs
} LIST NOTIFY, * P_LIST NOTIFY;
msgListPost
Sends a message to each object in the list using ObjectPost.
Takes P_LIST_NOTIFY, returns STATUS.
#define msglistPost MakeMsg(clsList, 15)
Message typedef struct LIST NOTIFY {
Arguments MESSAGE msg; // In: message to send/post
P_ARGS pArgs; // In: pArgs for message
SIZEOF lenSend; // In: length of pArgs

} LIST NOTIFY, * P_LIST NOTIFY;

” Observer Notifications

A list uses msgPostObservers to deliver all of its notification messages. (See clsmgr.h for more
information.)

Arguments

msgListNotifyAddition
Notifies observers that an item has been added to the list.

Takes P_LIST_NOTIFY_ADDITION, returns STATUS.

typedef struct LIST NOTIFY ADDITION {
LIST list; // the affected list
LIST_ITEM listItem; // the affected list item
Ule count; // new number of entries
U8 reserved[40];

} LIST_NOTIFY ADDITION, * P_LIST NOTIFY ADDITION;

#define msglListNotifyAddition MakeMsg (clsList, 16)

Arguments

msgListNotifyDeletion

Notifies observers that an item has been deleted from the list.
Takes P_LIST_NOTIFY_DELETION, returns STATUS.

typedef struct LIST NOTIFY DELETION {

LIST list; // the affected list

LIST ITEM listItem; // the affected list item
Ule count; // new number of entries
Us reserved[40];

} LIST NOTIFY DELETION, * P_LIST NOTIFY DELETION;
#define msgListNotifyDeletion MakeMsg (clsList, 17)

9 / UTILITY CLASSES

240 PENPOINT APl REFERENCE
Part 9 / Utility Classes

msgListNotifyReplacement

Notifies observers that an item in the list has been replaced.

Takes P_LIST NOTIFY_REPLACEMENT, returns STATUS.

Arguments typedef struct LIST NOTIFY REPLACEMENT {
LIST list; // the affected list
LIST ITEM newListItem; // the new list item
LIST ITEM oldListItem; // the replaced list item
Ulé index; // index of replace item
1] reserved[40];
} LIST NOTIFY REPLACEMENT, * P_LIST NOTIFY REPLACEMENT;
#define msgListNotifyReplacement MakeMsg (clsList, 18)
msgListNotifyEmpty

Notifies observers that a list is now empty.

Takes P_LIST_NOTIFY_EMPTY, returns STATUS.

Arguments typedef struct LIST NOTIFY EMPTY {
LIST list; // the affected list
U8 reserved[40];

} LIST NOTIFY EMPTY, * P_LIST NOTIFY EMPTY;
#define msgListNotifyEmpty MakeMsg (clsList, 19)

PENPOINT APl REFERENCE / VOL II

PARY 9 / UTILITY CLASSES

NOTEPAPR.H

This file contains the API definition for clsNotePaper. clsNotePaper inherits from clsView.

NotePaper is the view class for PenPoint’s ink-management or note-taking building block. Most of the
code for the MiniNote application actually resides in the building block. Other classes of the building
block are cIsNPData (the data class), clsNPItem (the generic data item), clsNPScribbleltem (the ink
data item), clsNPTextItem (the text data item), and clsGestureMargin (the subclass of clsScrollWin
that implements MiniNote’s gesture margin).

NotePaper provides standard PenPoint functionality including embedding, undo, move/copy, import,
export, option sheets, and marks. (Supporting marks means that search and replace, spell, proof, and
reference buttons are all supported.)

NotePaper displays (and alters) the contents of an NPData object. For PenPoint 1.0, NotePaper keeps
all of the items in its data object in a coordinate system with (0,0) its upper-left corner. As a result, all
the items in the data object have a negative y coordinate. This means that as the NotePaper window
grows in width and height, its contents remain relative to the top-left corner of the page.

A sample applications (called npapp or "NotePaper App") demonstrating the use of the ink building
block is included in the SDK. The ink building block is distributed as part of the SDK as a distributed
DLL. The DLL and all resources used by the ink building block are included in the SDK in the
DLIANOTEPAPR directory. The resources in that directory include:

notepaper.res: contains all resources used by NotePaper
paper.res: contains the 8 bitmaps representing paper styles
pen.res: contains the 4 bitmaps representing pen styles
strings.rc: contains the source for quick help, error text,

and undo strings

#ifndef NOTEPAPR INCLUDED
#define NOTEPAPR INCLUDED

#ifndef VIEW_INCLUDED
#include <view.h>

#endif

#ifndef SYSFONT INCLUDED
#include <sysfont.h>
#endif

#ifndef ITOGGLE_INCLUDED
#include <itoggle.h>
#endif

Types and Constants

#define clsNotePaper MakeGlobalWKN (2567,1)
#define stsNotePaperNoHit MakeWarning (clsNotePaper, 0)
#define stsNotePaperTreatAsInk MakeWarning (clsNotePaper, 1)
Enuml6 (NP_PAPER STYLE) {

npPaperRuled = 0,

npPaperRuledLeftMargin =1,

npPaperRuledCenterMargin =2,

npPaperRuledlegalMargin =1,

npPaperBlank = 3,

npPaperLeftMargin = 4,

npPaperCenterMargin = 6,

npPaperGrid =5,

}i

242 PENPOINT API REFERENCE
Part 9 / Utility Classes

typedef struct NOTE_NP PAPER STYLE {

Ulé bEditMode : 1, // writing/ink vs. gesture/edit mode
bAutoGrow : 1, // auto grow height as user enters data?
bWidthOpts : 1, // include page widths in option sheet
bHideTopRule : 1, // don’t paint the top ruling line for

// the npPaperRuledxxx paper style
bvirtualHeight : 1, // if set, NotePaper grows itself into
// a long thin window and responds to
// scroll win messages
reserved : 11; // always set to 0
Ulé reservedl;
} NOTE_PAPER STYLE, *P_NOTE_PAPER_.STYLE;

typedef struct NOTE_PAPER METRICS {
NOTE_PAPER_STYLE style;

SYSDC_FONT_SPEC paperFont; // defines the font for the paper

NP_PAPER_STYLE paperStyle; // one of the NP_PAPER STYLE values

COORD16 lineSpacing; // (in points) determines font size and
// vertical spacing

U8 penStyle; // use the NPPenStyle() macro

} NOTE_PAPER METRICS, * P_NOTE PAPER METRICS;
NOTE: in NPPenStyle, color is one of: bsInkBlack, bsInkGrayXX, or bsinkWhite
NOTE: in NPPenStyle, weight is one of: 1 = bold, 0 = normal

#define NPPenStyle(color, weight) ((color & 0x7) | ((weight & 0x1) << 3))
#define NPPenColor (style) (style & 0x7)
#define NPPenWeight (style) ((style & 0x8) >> 3)

The following definitions are included for convenience only.

#define npPenFineBlack NPPenStyle (bsInkBlack, 0)

#define npPenFineGray NPPenStyle (bsInkGray50, 0)

#define npPenBoldBlack NPPenStyle (bsInkBlack, 1)

#define npPenBoldGray NPPenStyle (bsInkGray50, 1)
Messages

Next up: none; Recycle: 11-51 53 58-101 103 106 120-127

msgNewDefaults

Initialize pArgs.

Takes P_NOTE_PAPER_NEW, returns STATUS.

Argumaents typedef struct {

NOTE_PAPER_STYLE style; // as in NOTE PAPER METRICS
NP_PAPER_STYLE paperStyle; // as in NOTE_PAPER METRICS
SYSDC_FONT_SPEC paperFont ; // as in NOTE_PAPER METRICS
COORD16 lineSpacing; // as in NOTE PAPER METRICS
U8 penStyle; // as in NOTE_PAPER METRICS
532 spares[6];

} NOTE PAPER NEW ONLY, *P_NOTE_PAPER NEW ONLY;

t#define notePaperNewFields \
viewNewFields \

NOTE_PAPER NEW_ONLY notePaper;
typedef struct {

notePaperNewFields
} NOTE_PAPER NEW, *P_NOTE PAPER NEW;

NOTEPAPR.H 243
Messages
Comments Zeroes out pArgs->notePaper and sets:
pArgs->notePaper.style.bEditMode = false;
pArgs->notePaper.style.bAutoGrow = false;
PArgs->notePaper.style.bWidthOpts = false; .
pArgs->notePaper.style.bHideTopRule = false;
pArgs->notePaper.style.bVirtualHeight = false;
pArgs->notePaper.paperStyle = npPaperRuled;
pArgs->notePaper.paperFont = current user font preference
pPArgs->notePaper.penStyle = NPPenStyle (bsInkBlack, 1);
pArgs->notePaper.lineSpacing = 24; // 24 point
pArgs->view.createDataObject = true;

Various gWin and win flags are set and should only be modified by the fearless!
pArgs->gWin.style.gestureEnable = true;
pArgs->gWin.style.gestureForward= true;
pArgs->win.flags.input &= ~inputInkThrough;
pArgs->win.flags.input |= inputlnk;
pArgs->win.flags.style |= wsSendGeometry;
pArgs->win.flags.style |= wsGrowBottom;
pArgs->win.flags.style |= wsGrowRight;
pArgs->win.flags.style |= wsCaptureGeometry;

msgNotePaperGetMetrics

Passes back receiver’s metrics.

Takes P_NOTE_PAPER_METRICS, returns STATUS.

#define msgNotePaperGetMetrics MakeMsg (clsNotePaper, 101)

Message typedef struct NOTE PAPER METRICS ({
Arguments NOTE_PAPER STYLE style;
SYSDC_FONT_SPEC paperFont; // defines the font for the paper
NP_PAPER STYLE paperStyle; // one of the NP_PAPER STYLE values
COORD16 lineSpacing; // (in points) determines font size and
// vertical spacing
U8 penStyle; // use the NPPenStyle() macro

} NOTE PAPER METRICS, * P_NOTE_PAPER METRICS;

msgNotePaperGetDcInfo

Passes back the drawing contexts used by receiver.

Takes P_NOTE_PAPER_DC_INFO, returns STATUS.

#define msgNotePaperGetDcInfo MakeMsg (clsNotePaper, 4)

Arguments typedef struct {
U32 units; // currently, msgDcUnitsTwips
OBJECT dc; // transformed dc in "units"
OBJECT dcPen; // transformed dc in pen units
U32 reserved[4];

} NOTE PAPER DC_INFO, *P NOTE PAPER DC_INFO;

msgNotePaperGetSel Type

Passes back information about the types of items selected in receiver.

Takes P_NOTE_PAPER_SEL_TYPE, returns STATUS.
#define msgNotePaperGetSelType MakeMsg (clsNotePaper, 116)

9 / UTILITY CLASSES

244 PENPOINT API REFERENCE
Part 9 / Utility Classes

Arguments typedef struct NOTE PAPER SEL TYPE { :
BOOLEAN bScribble; // selection contains a scribble
BOOLEAN bTranslated; // selection contains untranslatable text

BOOLEAN bReservedl;
BOOLEAN bReserved2;
} NOTE PAPER SEL TYPE, * P_NOTE_PAPER SEL TYPE;

msgNotePaperSetEditMode

Sets receiver to either gesture/edit (true) or writing/ink (false) mode.

Takes BOOLEAN, returns STATUS.
#define msgNotePaperSetEditMode MakeMsg (c1lsNotePaper, 102)

msgNotePaperSetPaperAndPen
Sets paperStyle, lineSpacing, penColor, and penWeight.

Takes P_NOTE_PAPER_METRICS, returns STATUS.
#define msgNotePaperSetPaperAndPen MakeMsg(clsNotePaper, 104)

Message typedef struct NOTE PAPER METRICS {
Arguments NOTE_PAPER STYLE style;
SYSDC_FONT_ SPEC paperFont; // defines the font for the paper
NP_PAPER_STYLE paperStyle; // one of the NP_PAPER STYLE values
COORD16 lineSpacing; // (in points) determines font size and
// vertical spacing
U8 ' penStyle; // use the NPPenStyle() macro

} NOTE_PAPER_METRICS, * P_NOTE_PAPER METRICS;

Comments This message does not affect the pen style for selected items.

msgNotePaperSetPenStyle

Sets the pen style for selected items as well as the default for new items.

. Takes U32, returns STATUS.
#define msgNotePaperSetPenStyle MakeMsg (clsNotePaper, 109)

msgNotePaperGetPenStyle

Gets the pen style for selected items (or the default if nothing selected).

Takes U32, returns STATUS.
#define msgNotePaperGetPenStyle MakeMsg (clsNotePaper, 112)

msgNotePaperSetStyle

Sets the receiver’s style values.

Takes P_NOTE_PAPER_STYLE, returns STATUS.
#define msgNotePaperSetStyle MakeMsg (clsNotePaper, 2)

NOTEPAPR.H 245
Messages

Messoge typedef struct NOTE NP PAPER STYLE {

Arguments Ulé bEditMode : 1, // writing/ink vs. gesture/edit mode
bAutoGrow : 1, // auto grow height as user enters data?
bWidthOpts : 1, // include page widths in option sheet
bHideTopRule 1, // don’t paint the top ruling line for

// the npPaperRuledxxx paper style
bvirtualHeight : 1, // if set, NotePaper grows itself into
// a long thin window and responds to
// scroll win messages
reserved : 11; // always set to 0
Ule reservedl;
} NOTE_PAPER STYLE, *P_NOTE PAPER STYLE;
msgNotePaperGetStyle
Passes back the receiver’s style values.
Takes P_NOTE_PAPER_STYLE, returns STATUS.
#define msgNotePaperGetStyle MakeMsg (clsNotePaper, 3)

Message typedef struct NOTE NP_PAPER STYLE ({

Argumenis Ul6 bEditMode : 1, // writing/ink vs. gesture/edit mode
bAutoGrow HE // auto grow height as user enters data?
bWidthOpts : 1, // include page widths in option sheet
bHideTopRule 1, // don’t paint the top ruling line for

// the npPaperRuledxxx paper style
bvirtualHeight : 1, // if set, NotePaper grows itself into
// a long thin window and responds to
// scroll win messages
reserved ¢ 11; // always set to 0
Ule reservedl;

} NOTE PAPER STYLE, *P_NOTE PAPER STYLE;

msgNotePaperTranslate

Translates untranslated scribbles in the selection.

Takes P_NULL, returns STATUS.

#define msgNotePaperTranslate MakeMsg (clsNotePaper, 113)

msgNotePaperUntranslate

Untranslates translated scribbles in the selection.

Takes P_NULL, returns STATUS.

#define msgNotePaperUntranslate MakeMsg (clsNotePaper, 114)

msgNotePaperEdit

Edits text and translates and edits scribbles in the selection.

Takes P_NULL, returns STATUS.

$define msgNotePaperEdit MakeMsg (clsNotePaper, 115)

msgNotePaperTidy

Tidies the selection by normalizing the spacing of items each line.

Takes P_NULL, returns STATUS.

#define msgNotePaperTidy MakeMsg (clsNotePaper, 105)

Comments The inter-item spacing is determined by sending msgNPItemGetWordSpacing to each item to be

tidied.

9 / UTILITY CLASSES

246

PENPOINT APl REFERENCE
Part 9 / Utility Classes

msgNotePaperCenter

Centers the entire selection.

Takes P_NULL, returns STATUS.

#define msgNotePaperCenter MakeMsg (clsNotePaper, 107)

Comments The selection is centered on the page as a whole, not line by line.
msgNotePaperAlign
Aligns the selection according to pArgs.

Takes U32, returns STATUS.

#define msgNotePaperAlign MakeMsg (clsNotePaper, 108)
#define npAlignLeft 1

#define npAlignRight 2

Camments Alignment takes place relative to the bounding box of the selection.
msgNotePaperMerge
Joins scribbles and text in the selection.

Takes P_NULL, returns STATUS.
#define msgNotePaperMerge MakeMsg (clsNotePaper, 110)

Comments Consecutive scribble items are combined into a single scribble item. Adjacent text items are combined
into a single text item. Any subclass of clsNPItem that can respond to msgNPItemCan]om and
msgNPItemJoin can determine its own merging behavior.
msgNotePaperSplit
Splits scribbles and text.

Takes P_NULL, returns STATUS.
#define msgNotePaperSplit MakeMsg (clsNotePaper, 111)
Comments First msgNotePaperSplitAsWords is self-sent. If stsRequestDenied is returned, then

msgNotePaperSplitAsAtoms is self-sent.

msgNotePaperAddMenus

Modifies the passed in menu bar and appends standard NotePaper menus.

Takes OBJECT, returns STATUS.
#define msgNotePaperAddMenus MakeMsg (clsNotePaper, 117)

msgNotePaperAddModeCitrl

Adds the standard NotePaper mode icon to the passed in menu bar.

Takes OBJECT, returns STATUS.
#define msgNotePaperAddModeCtrl MakeMsg (clsNotePaper, 118)

NOTEPAPR.H 247
Messages

msgNotePaperClear

Deletes all items in receiver.

Takes pNull, returns STATUS.
#define msgNotePaperClear MakeMsg (clsNotePaper, 119)

msgNotePaperClearSel

Deletes all selected items in receiver.

Takes pNull, returns STATUS.
#define msgNotePaperClearSel MakeMsg (clsNotePaper, 11)

msgNotePaperInsertLine

Inserts a blank line above the selection.

Takes P_NULL, returns STATUS.

$define msgNotePaperInsertline MakeMsqg(clsNotePaper, 5)

Return Value

msgNotePaperSelectRect

Selects items within rect in the receiver’s data.

Takes P_RECT32, returns STATUS.

#define msgNotePaperSelectRect MakeMsg (clsNotePaper, 1)

stsNotePaperNoHit Returned if nothing selected.

Return Volve

msgNotePaperSelectLine

Selects items whose baselines intersect rect in the receiver’s data.
Takes P_RECT32, returns STATUS.

#define msgNotePaperSelectLine MakeMsg (clsNotePaper, 6)

stsNotePaperNoHit Returned if nothing selected.

Beturn Vaolue

msgNotePaperDeselectLine

Deselects items whose baselines intersect rect in the receiver’s darta.
Takes P_RECT32, returns STATUS.
#define msgNotePaperDeselectLine MakeMsg (clsNotePaper, 7)

stsNotePaperNoHit Returned if nothing deselected.

Return Yalue

msgNotePaperDeleteLine

Deletes items whose baselines intersect rect in the view’s data.

Takes P_RECT32, returns STATUS.

#define msgNotePaperDeleteLine MakeMsg (clsNotePaper, 8)

stsNotePaperNoHit Returned if nothing deleted.

9 / UTILITY CLASSES

248

PEN

POINT APl REFERENCE

Part 9 / Utility Classes

msgNotePaperScribble

Handles scribble (including creating and insert object into view’s data).

Takes OBJECT, returns STATUS.
#define msgNotePaperScribble MakeMsg (clsNotePaper, 9)

Comments The passed scribble’s origin should be relative to the lower-left corner of the receiver.
msgGWinGesture
Self-sent to process the gesture.
Takes P_GWIN_GESTURE, returns STATUS.
#define msgGWinGesture MakeMsg (clsGWin, 2)
Comments The standard behavior of this gesture is defined in gwin.h. In addition, subclasses can return

Retum Value

Sas Alse

stsNotePaperT'reatAslnk if they want the gesture to be treated as ink. In that case, an instance of
cIsNPScribbleltem will be created from the gesture’s strokes.

clsNotePaper’s response to the various gestures is described in the MiniNote quick reference card. In
gesture mode, gesture can be made anywhere in the window. However, any unrecognized gesture of
more than two strokes will be treated as ink. In writing mode, most drawing is treated as ink (unless it is
drawn over the selection). However, the following gestures are allowed even in writing mode:

xgsScratchOut : delete items

xgsPigtailvVert: delete items

xgs2Tap: select item (if over an item)
xgs3Tap: select line

xgsPlus: toggle item (if over an item)
xgsTapHold: begin area selection
xgsCircleCrossOut: undo

xgsDblCircle: create reference button
xgsUpCaretDot : insert date/time
xgsDblUpCaret : embed stationery
xgsHorzCounterFlick: toggle mode
xgsVertCounterFlick: toggle application borders

stsNotePaperTreatAsInk The gesture should be treated as ink.
gwin.h

Sae Also

msgAppSelectAll

Selects all items in the view.

Takes P_NULL, returns STATUS.

app.h

Comments

See Also

msgSelDelete

Deletes selected items in the view.
Takes P_NULL, returns STATUS.

Close the space that the selection occupies if an entire line or lines is selected and this message does is
not sent within a move/copy episode.

sel.h

NOTEPAPR.H 249
Quick help and window tags

msgOptionAddCards

Creates and adds the Pen and Paper option sheets.
Takes P_OPTION_TAG, returns STATUS.

This message is usually send to the NotePaper instance by the app framework if the instance holds the
selection, is the client win of the app’s main win, or is the client win of a scroll win that is the app’s main
win. However, to force NotePaper’s option sheets to appear in the "Option" menu in other
circumstances, this message should be forwarded to the NotePaper instance by the application if
pArgs->tag is tagAppDocOptSheet.

See Also app.h.h

msglmportQuery

Indicates whether or not passed in file can be imported.

Takes P_IMPORT_QUERY, returns STATUS. Category: class message.

NotePaper will respond positively to this message if the first Sof the file are printable ASCII characters.
See Also import.h

msglmport

Imports the passed in file.

Takes P_IMPORT_DOC, returns STATUS.

After the file is imported, receiver’s length is grown to accommodateimported text. If receiver’s width is

zero, it is grown to sixwide. '

See Also import.h

msgExportGetFormats

Passes back list of formats that can be exported.

Takes P_EXPORT_LIST, returns STATUS.
See Also export.h

msgExport

Writes an ASCII version of receiver’s data to the passed in file.

Takes P_EXPORT_DOC, returns STATUS.

A translated text version of each scribble item is written out.
Sea Also CXpOl‘t.h

Quick help and window tags

Tags used in the Ul of NotePaper’s option sheets, menus, and quick help.
Nextup 37; Recycle: 2
Tag values 100-120 are reserved for pen and paper styles.

Tag values 200-255 are reserved for private window tags.

9 / UTILITY CLASSES

250 PENPOINT APl REFERENCE
Part 9 / Utility Classes

P> Mode icons

Mode icons (tags from itoggle.h) The bitmaps corresponding to the two tags below are found in

theSystemResFile.

#define tagNotePaperWritelIcon
#define tagNotePaperEditIcon

Quick help tag for mode icons
#define tagNotePaperModelcon

¥ Windows

tagIconToggleOff
tagIconToggleOn

MakeTag (clsNotePaper,

Quick help tags for the main view and for the gesture margin.

#define tagNotePaper
#define tagNotePaperMargin

¥» Edit Menu

#define tagNotePaperTranslate
#define tagNotePaperEdit
#define tagNotePaperClear
#define tagNotePaperInsertLine

% Pen Menu

#define tagPenMenu

#define tagPenFineBlack
#define tagPenBoldBlack
#define tagPenFineGray
#define tagPenBoldGray

¥» Arrange Menu

#define tagArrangeMenu

#define tagNotePaperTidy

#define tagNotePaperCenter
t#define tagNotePaperAlignleft
#define tagNotePaperAlignRight
#define tagNotePaperMerge
#define tagNotePaperSplitAsWords
#define tagNotePaperSplit

"> Paper Option Card

NOTE: For TagPaperStyle(n), tag n is a value in the NP_PAPER_STYLE enumeration For

MakeTag (clsNotePaper,
MakeTag (clsNotePaper,

MakeTag (clsNotePaper,
MakeTag (clsNotePaper,
MakeTag (clsNotePaper,
MakeTag (clsNotePaper,

MakeTag (clsNotePaper,
MakeTag (clsNotePaper,
MakeTag (clsNotePaper,
MakeTag (clsNotePaper,
MakeTag (clsNotePaper,

MakeTag (clsNotePaper,
MakeTag (clsNotePaper,
MakeTag (clsNotePaper,
MakeTag (clsNotePaper,
MakeTag (clsNotePaper,
MakeTag (clsNotePaper,
MakeTag (clsNotePaper,
MakeTag (clsNotePaper,

NPPaperStyleFromTag converts a tag to a paper style.

#define tagPaperCard

#define tagPaperStylelabel
#define tagPaperStyle

#define TagPaperStyle(n)
#define NPPaperStyleFromTag (t)
#define tagLineSpacingLabel
#define tagLineSpacing
#define tagLineOtherRuling
#define tagLineOtherValue

MakeTag(clsNotePaper,

MakeTag (clsNotePaper,
MakeTag (clsNotePaper,
MakeTag (clsNotePaper,
(TagNum(t) - 100)

MakeTag (clsNotePaper,
MakeTag (clsNotePaper,
MakeTag (clsNotePaper,
MakeTag (clsNotePaper,

1)

4)

6)
7)
34)
35)

3)

110)
111)
112)
113)

8)

9)

10)
11)
12)
13)
14)
15)

16)

17)
18)
100 + n)

19)
20)
21)
22)

$#define
#define
#define
#define
#define
#define

#define
#define

tagPaperWidthLabel
tagPaperWidth
tagPaperFitScreen
tagPaperFitPrinter
tagPaperOtherWidth
tagPaperOtherValue

tagPaperFontLabel
tagPaperFont

#» Pen Option Card

#define

#define
#define

tagPenCard

tagPenStyleLabel
tagPenStyle

NOTEPAPR.H

Quick help and window tags

MakeTag (clsNotePaper,
MakeTag (clsNotePaper,
MakeTag (clsNotePaper,
MakeTag (clsNotePaper,
MakeTag (clsNotePaper,
MakeTag (clsNotePaper,

MakeTag (clsNotePaper,
MakeTag(clsNotePaper,

MakeTag (clsNotePaper,

MakeTag (clsNotePaper,
MakeTag (clsNotePaper,

tagPenFineBlack (same value as in the pen menu)

tagPenBoldBlack (same value as in the pen menu)

tagPenFineGray (same value as in the pen menu)

tagPenBoldGray (same value as in the pen menu)

%> Insertion Pad
#define

% Standard Error Resource Tags
#define stsNotePaperPageWidth

tagNotePapersSkip

"» Undo Resource Tags

#define
#define

tagNPUndoWriting
tagNPUndoDeletion

MakeTag (clsNotePaper,

23)
24)
25)
26)
27)
28)
29)
30)

31)

32)
33)

36)

MakeStatus (clsNotePaper,

MakeTag (clsNotePaper,
MakeTag (clsNotePaper,

1)
2)

2)

251

9 / UTILITY CLASSES

PENPOINT API REFERENCE / VOL Il

PART 9 / UTILITY CLASSES

NPDATA.H

This file contains the API definition for clsN PData.
cIsNPData inherits from clsObject.

NPData is the data class of PenPoint’s ink-management or note-taking building block. (See notepapr.h
for more information on the building block.) An NPData instance is a data base that manages items that
follow the clsNPItem protocol. (See npitem.h). Its API defines messages for inserting, deleting, and
enumerating the items it manages.

#ifndef NPDATA INCLUDED

#define NPDATA INCLUDED

#ifndef CLSMGR_INCLUDED
#include <clsmgr.h>
#endif

#include <geo.h>

"Types and Constants

#define clsNPData MakeGlobalWKN (2568, 1)

Next up: 39; Recycle: 4567 1520 33 34

Arguments

Lomments

msgNewDefaults
Initialize pArgs.
Takes P_NP_DATA_NEW, returns STATUS.

typedef struct {
XY32 lineSpacing;
XY32 baseline;
BOOLEAN isSubData; // private to clsNPData

532 sparel;
s32 spare2;
} NP_DATA NEW ONLY, *P_NP DATA NEW_ONLY;
#define npDataNewFields \
objectNewFields \

NP_DATA NEW ONLY npData;

typedef struct {
npDataNewFields
} NP_DATA NEW, *P_NP_DATA NEW;

Zeroes out pArgs->npData and sets:

pArgs->npData.lineSpacing.x
pArgs->npData.lineSpacing.y

0;
360; // 360 twips = 18 points = 1/4"

pArgs->npData.baseline.x = 0;
pArgs->npData.baseline.y = 360;

254 PENPOINT APl REFERENCE
Part 9 / Utility Classes

?” Messages used to manipulate data

msgNPDatalnsertltem

Add item to the data base.

Takes OBJECT, returns STATUS.
#define msgNPDataInsertItem MakeMsg(clsNPData, 8)

msgNPDatalnsertltemFromView

Add item to the data base.

Takes P_NP_DATA_ADDED_NP_ITEM_VIEW, returns STATUS.
#define msgNPDataInsertItemFromView MakeMsg(clsNPData, 38)

Arguments typedef struct {
OBJECT item; // item that has been added
OBJECT view; // view that added the item
} NP_DATA ADDED NP_ITEM VIEW, *P_NP_DATA ADDED NP_ITEM VIEW;

Comments Observers will be notified of which view is responsible for the addition.

msgNPDataDeleteltem

Delete an item from the data base.

Takes OBJECT, returns STATUS.

#define msgNPDataDeleteItem MakeMsg(clsNPData, 9)

Comments Returns stsFailed if item is not found.

msgNPDataMoveltem

Move an item within the data base.

Takes P_NP_DATA_XY, returns STATUS.
#define msgNPDataMovelItem MakeMsg(clsNPData, 10)

Arguments typedef struct {
OBJECT item; // item to be moved
XY32 Xy; // new position for item

} NP_DATA XY, *P NP DATA XY;

‘msgNPDataMoveltems

Move all items below pArgs->y by pArgs->yDelta.

Takes P_MOVE_ITEMS, returns STATUS.

#define msgNPDataMoveltems MakeMsg (clsNPData, 1)

Arguments typedef struct {
COORD32 y;
COORD32 yDelta;
} MOVE_ITEMS, *P_MOVE_ITEMS;

NPDATA.H 255
Messages used to enumerate over data

Messages used to enumerate over data

Brgurments

ENUM_CALLBACK

This template describes the the callback function used in item enumeration.
Returns STATUS.

typedef struct {

OBJECT data; // in - the data being enumerated over
OBJECT item; // in - the item being enumerated
P_UNKNOWN clientData; // in - the client supplied data (or pointer)

} NP_DATA ITEM, *P NP DATA ITEM;
typedef STATUS FunctionPtr (P_ENUM CALLBACK) (P NP DATA ITEM pItem);

Comments Your callback function takes a single parameter of type P_NP_DATA_ITEM. The clientData field is a copy
of that you passed into the enumeration message using the ENUM_ITEM or ENUM_RECT_ITEM'
structures. During enumeration, you can add new items or delete the "current” item begin enumerated.
If you delete an item but want to keep using it, use must send it msgNPItemHold before deleting it and
msgNPItemRelease when you are done using it.

Some of the enumeration messages refer to bPaintOrder or "Reverse" order. Paint order refers to the
top-to-bottom, left-to-right ordering of items. Non-paint or reverse order is simply the opposite
ordering. Items are sorted first by line and then by their left edge. An item is considered to be on the line
closest to its baseline. The lines are "line spacing” apart starting from the top of the page. If no lines are
displayed to the user, it is possible that non-intuitive item ordering will result.
Return an error status from the callback to terminate the enumeration.
msgNPDataEnumOverlappedItems
Enumerates each item that overlaps the given rectangle.
Takes P_ENUM_RECT_ITEMS, returns STATUS.
#define msgNPDataEnumOverlappedItems MakeMsg(clsNPData, 2)
Arguments typedef struct {
P_ENUM CALLBACK function; // in -- callback function described above
RECT32 hitRect; // in -- enum items overlapping hitRect
BOOLEAN bPaintOrder; // in -- enum in paint order?
P_UNKNOWN clientData; // in
} ENUM RECT ITEMS, *P_ENUM RECT ITEMS;
msgNPDataEnumBaselineltems _
Enumerates each item whose baseline overlaps the given rectangle.
Takes P._ ENUM_RECT_ITEMS, returns STATUS.
#define msgNPDataEnumBaselineltems MakeMsg(clsNPData, 19)
Message typedef struct {
Arguments P_ENUM CALLBACK function; // in -- callback function described above
RECT32 hitRect; // in -- enum items overlapping hitRect
BOOLEAN bPaintOrder; // in -- enum in paint order?
P_UNKNOWN clientData; // in

} ENUM RECT ITEMS, *P_ENUM RECT ITEMS;

9 / UTILITY CLASSES

256 PENPOINT API REFERENCE
Part 9 / Utility Classes

msgNPDataEnumSelectedItems

Enumerates each item that is selected (in paint order).

Takes P_ENUM_ITEMS, returns STATUS.

#define msgNPDataEnumSelectedItems MakeMsg(clsNPData, 13)

Arguments typedef struct {
P_ENUM CALLBACK function; // in -- callback function described above
P_UNKNOWN clientData; // in

} ENUM_ITEMS, *P_ENUM ITEMS;

msgNPDataEnumSelectedItemsReverse

Enumerates each item that is selected (in reverse paint order).

Takes P_ENUM_ITEMS, returns STATUS.
#define msgNPDataEnumSelectedItemsReverse MakeMsg(clsNPData, 26)

Messuge typedef struct {
Arguments P_ENUM _CALLBACK function; // in -- callback function described above
P_UNKNOWN clientData; // in

} ENUM_ITEMS, *P_ENUM ITEMS;

msgNPDataEnumAllltems
Enumerates each item (in paint order).
Takes P_ENUM_ITEMS, returns STATUS.
~ #define msgNPDataEnumAllItems MakeMsg(clsNPData, 14)

Massage typedef struct {
Argumenis P_ENUM CALLBACK function; // in -- callback function described above
P_UNKNOWN clientData; // in

} ENUM_ITEMS, *P_ENUM_ITEMS;

msgNPDataEnumAllltemsReverse

Enumerates each item (in reverse paint order).

Takes P_ENUM_ITEMS, returns STATUS.

#define msgNPDataEnumAllItemsReverse MakeMsg(clsNPData, 27)

Message typedef struct ({
Argumenty P_ENUM CALLBACK function; // in -- callback function described above
P_UNKNOWN clientData; // in

} ENUM_ITEMS, *P_ENUM ITEMS;

msgNPDataSendEnumSelectedItems

Enumerates each selected item (in paint order).

Takes P_SEND_ENUM_ITEMS, returns STATUS.

#define msgNPDataSendEnumSelectedItems MakeMsg(clsNPData, 22)

Arguments typedef struct {)
P_ENUM CALLBACK function; // in -- callback function described above
U8 clientData[32]; // in/out

} SEND_ENUM_ITEMS, *P_SEND_ENUM_ITEMS;

Comments

NPDATA.H 257
Messages used to access internal state
This message is the same as msgNPDataEnumSelectedItems, except that it it intended to be used in
conjunction with ObjectSend rather than ObjectCall. It is used to enumerate the items in a data object
that is not in the caller’s process. Rather than a pointer to the client data being passed around, the client
data is put into an array that is passed around.

msgNPDataGetCurrentltem

Passes back the current item in the receiver.

Takes P_OBJECT, returns STATUS.

#define msgNPDataGetCurrentItem MakeMsg (clsNPData, 30)

LComments

msgNPDataGetNextltem
Increments the current item to the next item and sets *pArgs to it.
Takes P_OBJECT, returns STATUS.
#define msgNPDataGetNextItem MakeMsg(clsNPData, 31)

Set *pArgs to the current item before sending this message. If you set it to NULL, the first item will be
returned. The next time you call this message after you reach the last item, stsEndOfData will be
returned and *pArgs will be set to objNull.

msgNPDataltemCount

Passes back the count of items in receiver.

Takes P_U32, returns STATUS.

#define msgNPDataItemCount MakeMsg(clsNPData, 17)

msgNPDataSelectedCount
Passes back the count of selected items in receiver.
Takes P_U32, returns STATUS.

#define msgNPDataSelectedCount MakeMsg(clsNPData, 18)

msgNPDataSetBaseline
Sets the receiver’s baseline (used for alignment).
Takes P_XY32, returns STATUS.

#define msgNPDataSetBaseline MakeMsg (clsNPData, 24)

msgNPDataGetBaseline

Gets the receiver’s baseline (used for alignment).

Takes P_XY32, returns STATUS.

#define msgNPDataGetBaseline MakeMsg (clsNPData, 25)

9 / UTILITY CLASSES

PENPOINT APl REFERENCE
Part 9 / Utility Classes

msgNPDataSetLineSpacing

Sets receiver’s line spacing (used as the font size).

Takes P_XY32, returns STATUS. '

#define msgNPDataSetLineSpacing MakeMsg (clsNPData, 35)

msgNPDataGetLineSpacing

Gets receiver’s line spacing (used as the font size).

Takes P_XY32, returns STATUS.
#define msgNPDataGetLineSpacing MakeMsg (clsNPData, 36)

msgNPDataGetBounds

Passes back the bounding rectangle for all items in receiver.
Takes P_RECT32, returns STATUS.

#define msgNPDataGetBounds MakeMsg (clsNPData, 23)

msgNPDataGetSelBounds

Passes back the bounding rectangle for all selected items in receiver.
Takes P_RECT32, returns STATUS.

#define msgNPDataGetSelBounds MakeMsg (c1lsNPData, 32)

msgNPDataGetFontSpec

Passes back the receiver’s font specification.

Takes P_SYSDC_FONT_SPEC, returns STATUS.
#define msgNPDataGetFontSpec MakeMsg (clsNPData, 28)

msgNPDataSetFontSpec

Sets the receiver’s font specification.

Takes P_SYSDC_FONT_SPEC, returns STATUS.
#define msgNPDataSetFontSpec MakeMsg (clsNPData, 29)

Arguments

Conuments

msgNPDataGetCachedDCs

Passes back DC’s with normal and bold fonts at the given line spacing.

Takes P_NP_DATA_DC, returns STATUS.

#define msgNPDataGetCachedDCs MakeMsg(clsNPData, 37)
typedef struct {

OBJECT dcNormal; // normal font dc

OBJECT dcBold; // bold font dc

} NP_DATA DCS, *P_NP DATA DCS;

Used by items that want to measure text without the overhead of creating a DC. These DC’s cannot be
used for drawing!!

NPDATA.H 259
Messages sent to observers

P Messages sent to observers

Arguments

msgNPDataAddedItem

Observers notified when item has been has been added or moved.

Takes P_NP_DATA_ADDED_ITEM, returns STATUS. Category: observer notification.
#define msgNPDataAddedItem MakeMsg(clsNPData, 11)

typedef struct {
OBJECT data; // the data that the item has been added to
OBJECT item; // item that has been added
OBJECT view; // view that added the item

) NP_DATA ADDED_ITEM, *P_NP_DATA ADDED ITEM;

Arguments

Comments

msgNPDataltemChanged

Observers notified when item has been changed.

Takes P_NP_DATA_ITEM_CHANGED, returns STATUS. Category: observer notification.
$define msgNPDatalItemChanged MakeMsg (clsNPData, 12)

typedef struct {

OBJECT data; // the data

OBJECT item; // item that has been changed

OBJECT view; // view that changed the item

RECT32 bounds; // maximum bounds affected by the change
} NP_DATA ITEM CHANGED, *P NP _DATA ITEM CHANGED;

Currently called when item is selected or deselected.

fessoge
Arguments

Comments

msgNPDataHeightChanged

- Observers notified when receiver’s height has been changed.

Takes P_NP_DATA_ITEM_CHANGED, returns STATUS. Category: observer notification.
#define msgNPDataHeightChanged MakeMsg(clsNPData, 21)

typedef struct {

OBJECT data; // the data

OBJECT item; // item that has been changed

OBJECT view; // view that changed the item

RECT32 bounds; // maximum bounds affected by the change
} NP_DATA ITEM CHANGED, *P_NP DATA ITEM CHANGED;

Currently called by msgNPDataMoveltems. The bounds.origin.y field of pArgs contains the delta in
the height of the data object.

Comments

msgNPDataltemEnumDone

Observers notified when an enumeration that deleted or moved items is complete.
Takes NULL, returns STATUS. Category: observer notification.

#define msgNPDataltemEnumDone MakeMsg (clsNPData, 16)

When this message is received by an observer client, all deletions have been completed and all moved
items have been temporarily removed from the data object. Thus the client has the option of repainting
all remaining items at this time and then painting moved items as they are reinserted.

This message is handled by clsNotePaper and should not be handled by subclasses of clsNotePaper.

9 / UTILITY CLASSES

PENPOINT API REFERENCE / VOL 11

PART 9 / UTILITY CLASSES

NPITEM.H

This file contains the API definition for clsNPItem.
cIsNPItem inherits from clsObject.

NPItem is the item class for PenPoint’s ink-management or note-taking building block. While instances
of cIsNPItem are never created, (subclasses like clsNPScribbleItem and clsNPTextltem are more
interesting), NPItem defines a protocol as well as doing much of the work for basic operations.

To add new item types to the ink building block, create a subclass of clsNPItem that implements the
messages defined below in the section: "Messages that are usually overridden by subclasses." Once this
new item is inserted into a clsNPData object it will show up in the clsNotePaper view that observes that
object. The new item will then behave like the other item in terms of basic operations like move, copy,
deletion, style changes, etc.

#ifndef NPITEM INCLUDED

#define NPITEM INCLUDED

#ifndef GEO_INCLUDED
#include <geo.h>

fendif

#ifndef CLSMGR_INCLUDED
#include <clsmgr.h>
#endif

#ifndef BORDER INCLUDED
#include <border.h>
$endif

7 Types and Constants

#define clsNPItem - MakeGlobalWKN (2569, 1)
#define stsNPItemNoSplit MakeWarning (c1sNPItem, 0)

The NPData object handles versioning for NPItem’s and their subclasses. If the version of the object
being restored matches the runtime version, nothing special is done. However, if there is a difference, the
version number of the filed object is stamped as a U16 property onto the file using tagltemVersion as the
property’s tag.

#define NP_ITEM VERSION 1

#define tagItemVersion MakeTag(clsNPItem, 0)

Messages
Next up: 44; Recycle: 3

msgNewDefaults

Initialize pArgs.

Takes P_NP_ITEM_NEW, returns STATUS.

Arguments typedef struct NP_ITEM NEW ONLY {

RECT32 bounds;
XY16 baseline;
BOOLEAN selected;
u32 penStyle; // (Pen styles are defined in notepapr.h.)
532 spare2;

} NP_ITEM NEW ONLY, *P NP_ITEM NEW ONLY;

262

Lommaents

PENPOINT APl REFERENCE
Part 9 / Utility Classes

#define npItemNewFields \
objectNewFields \
NP_ITEM NEW_ONLY item;

typedef struct NP_ITEM NEW {
npItemNewFields

} NP_ITEM NEW, *P_NP_ITEM NEW;

Zeroes out pArgs->npData and sets:

pArgs->item.penStyle = penFineBlack;

msgNPItemGetPenStyle

Get the pen style of an item. (Pen styles are defined in notepapr.h.)
Takes P_U32, returns STATUS.

#define msgNPItemGetPenStyle MakeMsg (c1sNPItem, 35)

Comments

msgNPItemDelete

Delete item from its data.

Takes pNull, returns STATUS.

#define msgNPItemDelete MakeMsg(clsNPItem, 11)

Deleting an item decrements its reference count and can cause the item to be destroyed. To prevent, call
msgNPItemHold before calling msgNPItemDelete. Then call msgNPItemRelease after working with
the item.

Arguments

Commients

msgNPItemPaintBackground

Paints a gray background if the receiver is selected.

Takes P_NP_ITEM_DC, returns STATUS.

#define msgNPItemPaintBackground MakeMsg(clsNPItem, 41)

typedef struct {

OBUJECT dc; // DC to paint into

OBJECT dcPen; // equivalent DC in pen units
} NP_ITEM DC, *P_NP_ITEM DC;

Subclasses should override this message if they want a different type of selection feedback.

msgNPItemSelect

Selects or deselects item.

Takes BOOLEAN, returns STATUS.
#define msgNPItemSelect MakeMsg(clsNPItem, 14)

msgNPItemSelected

Passes back item’s selection status.

Takes P_BOOLEAN, returns STATUS.

#define msgNPItemSelected MakeMsg(clsNPItem, 15)

NPITEM.H 263
msgNPItemMove
Moves item to the indicated position.
Takes P_XY32, returns STATUS.
#define msgNPItemMove MakeMsg(clsNPItem, 5)
msgNPItemDelta
Moves item by the indicated amount.
Takes P_XY32, returns STATUS.
#define msgNPItemDelta MakeMsg(clsNPItem, 6)
msgNPItemGetViewRect
Passes back receiver’s bounding rectangle.
Takes P_RECT32, returns STATUS.
#define msgNPItemGetViewRect MakeMsg (clsNPItem, 19)
msgNPItemHitRect
Returns stsOK if receiver’s bounds overlaps pArgs.
Takes P_RECT32, returns STATUS.
#define msgNPItemHitRect MakeMsg (clsNPItem, 9)
msgNPItemGetMetrics
Gets the item’s metrics.
Takes P_NP_ITEM_METRICS, returns STATUS.
#define msgNPItemGetMetrics MakeMsg(clsNPItem, 20)
Arguments typedef struct NP_ITEM METRICS {
U8 selected: 1, // is item selected?
marked: 1, // is item marked (in the clsMark sense)?
reserved: 6;
U8 refCount; // number external references to item
// (not generally interesting to subclasses)
XY16 baseline; // item’s horizontal and vertical baseline
// (currently only the y value is used)
RECT32 bounds; // window relative bounds
// (with respect to its bounds’ origin)
OBJECT data; // data object that item is in
OBJECT adjunct; // see msgNPItemSetAdjunct for more information
U32 penStyle; // item’s pen style

} NP_ITEM METRICS, *P NP_ITEM METRICS;

msgNPItemSetBaseline

Sets receiver’s baseline.

Takes P_XY32, returns STATUS.

#define msgNPItemSetBaseline MakeMsg(clsNPItem, 21)

9 / UTILITY CLASSES

264

PENPOINT API REFERENCE
Part 9 / Utility Classes

msgNPItemSetBounds

Sets receiver’s bounds.

Takes P_RECT32, returns STATUS.
#define msgNPItemSetBounds MakeMsg (clsNPItem, 30)

Comments

msgNPItemHold

Increments the reference count for the item.

Takes NULL, returns STATUS.

#define msgNPItemHold MakeMsg(clsNPItem, 22)

When the reference count for an item drops to zero, it is destroyed.

Comments

msgNPItemRelease

Decrements the reference count for the item.
Takes NULL, returns STATUS.
#define msgNPItemRelease MakeMsg (clsNPItem, 23)

When the reference count for an item drops to zero, it is destroyed.

Comments

msgNPItemAlignToBaseline

Moves item so that it align to passed in line spacing.

Takes P_XY32, returns STATUS.

#define msgNPItemAlignToBaseline MakeMsg (clsNPItem, 33)

The item should be aligned against the y-value of pArgs.

P Messages that are usually overridden by
subclasses

Message
Arguments

msgNPItemPaint

Paints item using the passed in drawing contexts.
Takes P_NP_ITEM_DC, returns STATUS.

#define msgNPItemPaint MakeMsg(clsNPItem, 12)

typedef struct {

OBJECT dc; // DC to paint into

OBJECT dcPen; // equivalent DC in pen units
} NP_ITEM DC, *P_NP_ITEM DC;

msgNPItemSetPenStyle

Sets the item’s pen style. (Pen styles are defined in notepapr.h.)

Takes U32, returns STATUS.
#define msgNPItemSetPenStyle MakeMsg(clsNPItem, 34)

NPITEM.H
Messages that are usually overridden by subclasses

265

msgNPItemSetOrigin

Set receiver’s origin.

Takes P_XY32, returns STATUS.

#define msgNPItemSetOrigin MakeMsg(clsNPItem, 18)

Comments

msgNPItemScratchOut

Handles the scratch-out gesture on an item.

Takes P_RECT32, returns STATUS.

#define msgNPItemScratchOut MakeMsg(clsNPItem, 24)

Scribble items handle this message by deleting strokes that overlap pArgs. Other items simply delete
themselves.

Comments

msgNPItemSplitGesture

Handles the split gesture on an item.

Takes P_XY32, returns STATUS.

#define msgNPItemSplitGesture MakeMsg(clsNPItem, 25)

The pArgs refers to the "hot point” for the gesture.

msgNPItemSplit

Split an item into its constituent items.

Takes NULL, returns STATUS.

Return Yolve

#define msgNPItemSplit MakeMsg (clsNPItem, 26)
msgNPItemSplitAsWords

Splits receiver into words. Deletes receiver, inserts new items.
Takes NULL, returns STATUS.
#define msgNPItemSplitAsWords MakeMsg(clsNPItem, 16)

stsltemNoSplit Returned if nothing was split.

msgNPItemJoin

Joins receiver and OBJECT and deletes OBJECT.

Takes OBJECT, returns STATUS.

#define msgNPItemJoin MakeMsg (clsNPItem, 27)

msgNPItemTie

Joins OBJECT and receiver and deletes them. Inserts new object.
Takes OBJECT, returns ST. ATUS.

#define msgNPItemTie MakeMsg (clsNPItem, 17)

9 / UTILITY CLASSES

266 PENPOINT API REFERENCE
Part 9 / Utility Classes

msgNPItemGetScribble

Pass back the item’s scribble.

Takes P_OBJECT, returns STATUS.

#define msgNPItemGetScribble MakeMsg(clsNPItem, 4)
Comments Subclasses that do not contain a scribble should not respond to this message.
msgNPItemGetString

Passes back the text string for the item.

Takes PP_STRING, returns STATUS.
#define msgNPItemGetString MakeMsg (clsNPItem, 38)

Comments Subclasses that do not have a text representation should not respond to this message.
clsNPScribbleltem responds to this message by translating its scribble and returning the resulting string.

The sender of this message should either use the passed back string immediately or make a copy of it.

msgNPItemSetString

Sets the text string for the item.

Takes P_STRING, returns STATUS.

#define msgNPItemSetString * MakeMsg(clsNPItem, 42)
Comments Not all items can handle this message.
msgNPItemTol'ext

Item converts itself to a text item, passes back text item.
Takes P_OBJECT, returns STATUS.
#define msgNPItemToText MakeMsg (c1lsNPItem, 7)

Comments Receiver deletes itself from its data and inserts the text item. If pArgs is pNull, the text item is not

passed back.

msgNPItemToScribble

Item converts itself to a scribble item.
Takes P_ARGS, returns STATUS.
#define msgNPItemToScribble MakeMsg(clsNPItem, 36)

Comments Receiver deletes itself from its data and inserts the scribble item.

msgNPItemHitRegion

Returns stsOK if receiver’s path overlaps pArgs.

Takes P_RECT32, returns STATUS.

#define msgNPItemHitRegion MakeMsg(clsNPItem, 10)

NPITEM.H 267
Messages that are vsuvally overridden by subclasses

Comments

msgNPItemCalcBaseline

Calculate and set receiver’s baseline.

Takes P_XY32, returns STATUS.

#define msgNPItemCalcBaseline MakeMsg(clsNPItem, 28)

The calculation is based on the line spacing specified by pArgs.

Comments

msgNPItemCalcBounds

Receiver calculates and sets its new bounds.

Takes OBJECT, returns STATUS.

#define msgNPItemCalcBounds MakeMsg(clsNPItem, 37)

Usually send in response to the item’s style changing. OBJECT is the data object in which the item will be
inserted. If the item is in a data object, pArgs can be pNull.

Comments

msgNPItemGetWordSpacing

Receiver passes back the size of its "space” character.

Takes P_U16, returns STATUS.

#define msgNPItemGetWordSpacing MakeMsg(clsNPItem, 43)

This message is used by msgNotePaperTidy to determine the spacing of items.

Comments

msgNPItemCanBeTranslated

Receiver returns stsOK if it can be translated.

Takes pNull, returns STATUS.

#define msgNPItemCanBeTranslated MakeMsg (clsNPItem, 13)

Translation occuts in response to msgNPItemToT'ext.

Comments

msgNPItemCanBeUntranslated

Receiver returns stsOK if it can be untranslated.

Takes pNull, returns STATUS.

#define msgNPItemCanBeUntranslated MakeMsg(clsNPItem, 31)

Untranslation occurs in response to msgNPItemToScribble.

9 / UTILITY CLASSES

PENPOINT API REFERENCE / VOL 11

PART 9 / UTILITY CLASSES

NPSCR.H

This file contains the API definition for cIsNPScribbleltem.
cIsNPScribbleltem inherits from cIsNPItem.

NPScribbleltem is the ink class of PenPoint’s ink-management or note-taking building block. (See
notepapr.h for more information on the building block.) NPScribbleltem overrides NPItem messages as
is appropriate. See npitem.h for details.

#ifndef NPSCR_INCLUDED

#define NPSCR_INCLUDED

#ifndef NPITEM INCLUDED
#include "npitem.h"
fendif

Types and Constants

#define clsNPScribbleltem MakeGlobalWKN (2570, 1)

msgNewDefaults
Initialize pArgs. Zeros out pArgs->scribbleltem.

Takes P_NP_SCRIBBLE_ITEM_NEW, returns STATUS.

Arguments typedef struct NP_SCRIBBLE_ ITEM NEW ONLY {
OBJECT scribble;
OBJECT data; // data that item will be associated with
532 sparel;
} NP_SCRIBBLE ITEM NEW ONLY, *P_NP_SCRIBBLE_ ITEM NEW ONLY;
#define npScribbleltemNewFields \
" npItemNewFields \

NP_SCRIBBLE_ITEM NEW ONLY scribbleItem;

typedef struct NP_SCRIBBLE_ITEM NEW {
npScribbleItemNewFields

} NP_SCRIBBLE ITEM NEW, *P_NP_SCRIBBLE ITEM NEW;

PENPOINT APl REFERENCE / VOL 11

PART 9 / UTILITY CLASSES

NPTEXT.H

This file contains the API definition for clsNPTextItem.

cIsNPTextItem inherits from clsNPItem.

NPTextltem is the text class of PenPoint’s ink-management or note-taking building block. (See
notepapr.h for more information on the building block.) NPTextItem overrides NPItem messages as is
appropriate. See npitem.h for details.

#ifndef NPTEXT INCLUDED

#define NPTEXT INCLUDED

#ifndef NPI TEM INCLUDED
#include "npitem.h"
#endif

Types and Constants

#define clsNPTextItem MakeGlobalWKN (2571, 1)

Arguments

msgNewDefaults
Initialize pArgs. Zeros out pArgs->textltem.
Takes P_NP_TEXT_ITEM_NEW, returns STATUS.

typedef struct NP_TEXT ITEM NEW ONLY ({

OBJECT text; // string object
P_STRING pString; // string if string object not given
OBJECT data; // data that item will be associated with
// (item’s size measured using data’s DC)

532 sparel;

} NP_TEXT ITEM NEW ONLY, *P NP TEXT ITEM NEW ONLY;

#define npTextItemNewFields \
npltemNewFields \

NP_TEXT ITEM NEW ONLY textItem;

typedef struct NP_TEXT ITEM NEW {
npTextItemNewFields
} NP_TEXT ITEM NEW, *P NP TEXT ITEM NEW;

PENPOINT APl REFERENCE / VOL 11

PART 9 / UTILITY CLASSES

ORDSET.H

This file contains the API definition for the OrderedSet interface. The functions described in this file are
contained in MISC.LIB.

P» Overview

An OrderedSet implements a growable, ordered set of items. Each item has a key and associated data.
The ordered set knows about the structure of the key, but treats the data as uninterpreted bytes. The
items in an ordered set are homogeneous: there is only one size for the key, and another size for the data,
for all the items in the set.

Keys are unsigned quantities, treated as either non-negative integers or indirect access identifiers. The
client specifies:

¢ how keys are treated - direct or indirect;

¢ for indirect keys - access and comparison functions;

¢ whether duplicate keys are allowed;

® the key size - it must be 1, 2, or 4 bytes.

The data size (in bytes) is also specified by the client; it must be less than or equal to 1023.

The client provides an initial estimate of the number of items in the ordered set when the set is created;
the set will allocate more memory if the estimate proves to be too small.

% Performance considerations

The implementation of OrderedSet builds on the ByteArray storage abstraction. This implies that either
the number of elements in the set is small enough that it is not a problem to use a linear array
representation for the set, or that the number of lookups dominates the number of insertions and
deletions.

% Indirect Keys and Two Comparison Routines

Ordered sets with indirect keys have a funny property. If you want to search for a key that already exists
in the set, everything’s just fine. But if you want to do something with a key that ISN’T in the set (e.g.
find out if the key is in the set), there is no indirect key to use. (This problem also arises when clients ask
ordered sets questions such as "What's the next entry with a key greater than this key k?")

To solve this problem, indirect-keyed ordered sets must be provided two comparison routines by the
creator. The first routine (passed as the compareKey1Indirect in a called to OrderedSetExtend()) is used
when the implementation needs to compare two keys that are both in the set. The second routine
(passed as compareKey1Direct in a call to OrderedSetExtend()) is used when the implementation needs
to compare two keys, only one of which is in the set.

Caution:

274 PENPOINT API REFERENCE
Part 9 / Utility Classes

If keys are indirect, OrderedSetFindMinMax(), OrderedSetFindMaxMin(), and OrderedSetNext()
return the indirect key, not the value the key references.

¥» Known Limitations

This package does not work correctly if the set has indirect keys and 0 (zero) is a legitimate key value.

#ifndef ORDSET INCLUDED
#define ORDSET INCLUDED $Revision: 1.17 §

#include <bytarray.h>
#include <gosearch.h> // For ACCESS/COMPARE_FUNC

Private

Function Prototype typedef U32 (CDECL *READ_KEY FUNC) (
P_ORDERED_SET = p,

P_UNKNOWN pKey) ;
typedef struct ORDERED_SET {
Ule indirectKeys HIN .
Ul6 uniqueKeys : 1; // TRUE => no duplicate keys
Ule spare T 2; // Always set to 0
Uleé sizeofKeyMinusl : 2; // Number of bytes -1 a key needs
Ulé6 sizeofData :10; // Number of bytes data occupies
P_BYTE_ARRAY items; // Storage of actual items
ACCESS_FUNC access;

COMPARE FUNC compareKeylDirect;
COMPARE_FUNC compareKeylIndirect;
P_UNKNOWN context; // 1st arg to access() & compare ()
READ KEY FUNC readKey; // For internal use only!'
} ORDERED_ SET;

OrderedSetCountlnternal
Returns the number of items currently stored in the ORDERED_SET.
Returns BYTE_INDEX.

#define OrderedSetCountInternal (p) \
(ByteArrayLength (p->items) / OrderedSetSizeofItem(p))
Comments High-performance version of OrderedSetCount, but subject to change if the implementation of ordered
sets changes.

Types and Constants

#define stsOrdSetDuplicateKey MakeStatus(clsMisc, 1)

#define findNextKeyInOS ((P_UNKNOWN) 1)
#define findPreviousKeyInOS ((P_UNKNOWN) 2)

typedef struct OS_ITEM INFO {

u32 key;
P_UNKNOWN data;
BOOLEAN isDuplicate;

} OS_ITEM INFO, *P_OS_ITEM INFO;

ORDSET.H 275
Exported Functions and Macros

P Exported Functions and Macros

Function Prototype

Comments

OrderedSetPrint

In debugging version, prints the contents of the ordered set.

Returns void.

#ifdef DEBUG
void EXPORTED

OrderedSetPrint (
P _ORDERED SET p);

#endif // DEBUG

This function is undefined in the non-debugging version.

9 / UTILITY CLASSES

Function Prototype

Comments

OrderedSetCreate
Creates an ordered set.
Returns STATUS.

STATUS EXPORTED

OrderedSetCreate (
P_ORDERED_SET * pp,
OS_HEAP_ MODE mode,

U8 sizeofKey,

U8 sizeofData,
U32 initialCount,
BOOLEAN uniqueKeys,
BOOLEAN indirectKeys);

sizeofKey and sizeofData specify the size in bytes of each item’s key and data, respectively. The
initial Count is a hint; the ordered set will grow or shrink as needed. However, if initialCount is
approximately correct, performance will be better. If initial Count=0, 1 will be assumed. uniqueKeys
should be TRUE if client wants all keys in the set to be unique, FALSE otherwise. Only the
osHeapLocal / osHeapShared flags in mode are used.

Returns stsOK if able to create the set, in which case *pp will be the created set, otherwise *pp will be
Nil(P_ORDERED_SET).

OrderedSetSizeofKey

Returns the size of a key in bytes.

Returns U1eé.
#define OrderedSetSizeofKey(p) ((U16) ((p)->sizeofKeyMinusl + 1))

OrderedSetSizeofltem
Returns the size of an item (key plus data) in bytes.
Returns Ule. |

#define OrderedSetSizeofItem(p) \ ,
((U16) (OrderedSetSizeofKey (p) + (p)->sizeofData))

276 PENPOINT API REFERENCE
Part 9 / Utility Classes

OrderedSetHeapMode
Returns the heap mode with which the Ordered Set was created.

Returns OS_HEAP_MODE.
#define OrderedSetHeapMode (p) ByteArrayHeapMode ((p)->items)

OrderedSetExtend

Modifies the functions and context of an ordered set with indirect keys.

Returns STATUS.
void EXPORTED

Function Prototype OrderedSetExtend (
P_ORDERED SET p,
ACCESS_FUNC access,
COMPARE_FUNC compareKeylDirect,
COMPARE_FUNC compareKeylIndirect,
P_UNKNOWN context);

Comments Specifies access and comparison functions for an ordered set with indirect keys, as well as a context for
those functions.

See gosearch.h’s description of binarySearch() for more information about the behaviors and parameters
of the access and compare functions.

OrderedSetContext

Get the context passed to access and compare functions.

Returns P_UNKNOWN.
#define OrderedSetContext(_p) ((_p)->context)

OrderedSetModifyContext

Modify the context passed to access and compare functions.

Returns void.

#define OrderedSetModifyContext(_p, _c) ((_p)->context = (_c))

OrderedSetDefaultAccess

Can be used as the client-specified access routine in OrderedSetExtend ().

Re;tums P_UNKNOWN.
P__UNKNOWN CDECL

Function Prototype OrderedSetDefaultAccess (
const P_ORDERED SET p,
const BYTE_INDEX index);

Comments In ordered sets with indirect keys the client must supply a routine that returns the address of the keys
that are passed into the client-supplied comparison routine. OrderedSetDefaultAccess computes the
address of the key in the ordered set representation, and so may be used by clients as the access routine
passed into OrderedSetExtend().

ORDSET.H
Exported Functions and Macros

277

Function Prototype

OrderedSetDestroy

Destroys an ORDERED_SET.

Returns void.

void EXPORTED

OrderedSetDestroy (
P_ORDERED SET p);

Function Prototype

Cormmenis

OrderedSetInsert

Inserts data with key into ordered set.

Returns STATUS.
STATUS EXPORTED

OrderedSetInsert (
P_ORDERED SET p,
U32 key,
P_UNKNOWN data);

Copies sizeofData bytes from the buffer pointed to by data. Returns:

stsOSOutOfMem if no memory available, or

stsOrdSetDuplicateKey if key is duplicate and unique keys required, or

stsOK otherwise.

If sizeofKey is less than 4 bytes, the least significant byte(s) of key are copied.

Furction Prototype

Commenis

OrderedSetNthItem

Locates the n-th item in the ordered set (item indices begin with 0).

Returns P_UNKNOWN.
P_UNKNOWN EXPORTED

OrderedSetNthItem (
P_ORDERED SET p,
U32 n,

P_0S_ITEM INFO info);

Returns a pointer to ordered set’s copy of the data associated with the Nth item. This pointer is only
valid until the next call on the same set.

Upon return, the following modifications have been made to the fields of info:

key key of nth item

isDuplicate is not set; use OrderedSetFind() if needed;

data duplicate of return value

OrderedSetItemIndex

Returns the index of an item

Returns BYTE_INDEX..

#define OrderedSetItemIndex(p, pData) \

((ByteArrayFindIndex ((p)->items, ((P_U8) (pData))) \
- OrderedSetSizeofKey(p)) / OrderedSetSizeofItem(p))

9 / UTILITY CLASSES

278 PENPOINT APl REFERENCE
Part 9 / Utility Classes

Function Protolype

Comments

OrderedSetFind

Locates the data for a specified key.
Returns P_UNKNOWN.
P_UNKNOWN EXPORTED

OrderedSetFind(

P _ORDERED SET p,

P_0S_ITEM INFO info);
Returns a pointer to ordered set’s copy of the data associated with info->key. This pointer is only valid
until the next call on the same set. If the info->key is not in the set, the returned value is
Nil(P_UNKNOWN). If duplicate copies of the key exist in the set, an arbitrary item is found and its data
returned. All of the other items with the same key may be examined via use of OrderedSetNext(). Upon
return, the following modifications have been made to the fields of info:

isDuplicate 0 if key is unique in set, 1 otherwise

data duplicate of return value

Funciion Prototype

Comments

OrderedSetFindMinMax

Locates the data for a key >= to specified key.

Returns P_UNKNOWN.
P_UNKNOWN EXPORTED

OrderedSetFindMinMax (

P_ORDERED_SET p,

P 0S ITEM INFO info);
Returns a pointer to ordered set’s copy of the data associated with the minimum key in the ordered set
that is >= info->key. If info->key is in the ordered set, this routine is equivalent to OrderedSetFind().
This pointer is only valid until the next call on the same set. Returns Nil(P_UNKNOWN) if info->key has
no minmax in the set. If duplicate copies of the minmax key exist in the set, an arbitrary item is found
and its data returned. All of the other items with the same key may be retrieved with OrderedSetNext().
Upon return, the following modifications have been made to the fields of info:

key minmax key
isDuplicate 0 if key is unique in set, 1 otherwise

data duplicate of return value

Function Prototype

Commaents

OrderedSetFindMaxMin

Locates the data for a key <= to specified key.

Returns P_UNKNOWN.
P_UNKNOWN EXPORTED

OrderedSetFindMaxMin (

P_ORDERED SET p,

P_0S_ITEM INFO info);
Returns a pointer to ordered set’s copy of the data associated with the maximum key in the ordered set
that is <= info->key. If info->key is in the ordered set, this routine is equivalent to OrderedSetFind().
This pointer is only valid until the next call on the same set. Returns Nil(P_UNKNOWN) if info->key has
no maxmin in the set. If duplicate copies of the maxmin key exist in the set, an arbitrary item is found

ORDSET.H 279
Exported Functions and Macros

and its data returned. All of the other items with the same key may be retrieved with OrderedSetNext().
Upon return, the following modifications have been made to the fields of info:

key maxmin key
isDuplicate 0 if key is unique in set, 1 otherwise

data duplicate of return value

Function Prototype

Comments

OrderedSetNext

Enumerates the data for keys in the Ordered Set.
Returns P_UNKNOWN.

P_UNKNOWN EXPORTED

OrderedSetNext (
P_ORDERED SET p,
P_OS_ITEM INFO info);

OrderedSetNext()’s behavior depends on whether the set has unique keys or not. In both cases, the
enumeration is guaranteed to be complete provided no insertions or deletions are performed on the
set during the enumeration.

¢ IF THE SET HAS UNIQUE KEYS
OrderedSetNext() enumerates all of the keys in the set in order.

The first item in the enumeration can be found by either (1) by calling OrderedSetNthItem() with
an "N" of 0 or (2) calling OrderedSetNext() with info->data set to Nil and info->key set to the
lowest possible key value.

¢ JFTHE SET DOES NOT HAVE UNIQUE KEYS

OrderedSetNext() enumerates all of the keys with the same value. The order of enumeration is
unspecified.

The first item with a known key can be found by either (1) by calling OrderedSetFind with
info->key set to the known key value and info->data set to Nil

¢ IN BOTH CASES

Further items are found by calling OrderedSetNext() with the same info struct until it returns Nil.
OrderedSetNext() returns a pointer to the set’s copy of the data associated with key. This pointer is
only valid until the next call on the same set.

Returns
Nil(P_UNKNOWN) if specified key not in set or the enumeration is complete, or
pointer to set’s copy of data or if key is in set or enumeration is incomplete.

Upon return, the following modifications have been made to the fields of info:

key: next key value, iff info->data had been one of the
three special values: Nil, next, prev.
isDuplicate: 0 if key is unique in set,

1 otherwise
data: duplicate of returned value

9 / UTILITY CLASSES

280 PENPOINT API REFERENCE
Part 9 / Utility Classes

¢ FOR SETS WITH DIRECT, NON-DUPLICATE KEYS ONLY

If the set has direct keys, setting info->data to findNextKeyInOS (findPreviousKeyInOS),
OrderSetNext() can be used to enumerate all items in the set in order of increasing (decreasing) key
value. Such an enumeration (assuming non-unique keys) will have the structure:

info.key = 0;
info.data = Nil (P_UNKNOWN) ; :
if ((firstData = OrderedSetNext(...)) == Nil(P_UNKNOWN)) {
info.data = findNextKeyInOS;
if ((firstData = OrderedSetNext(...)) == Nil (P_UNKNOWN)) {
// handle empty set

}
}
// firstData and info now contain first item’s information

// enumerate all keys

do {
// enumerate all data with the same key
while (OrderedSetNext(...)) {

}i
info.data = findNextKeyInOS;
} until ('OrderedSetNext(...));

Lomments

OrderedSetEachItem
Helper macro to simplify the enumeration of an Ordered Set.
Returns P_UNKNOWN.

#define OrderedSetEachItem(_p, _item) \
for ((_item).key = (U32)0, (_item).data = Nil(P_UNKNOWN); \
OrderedSetNext ((_p), &(_item)) != Nil(P_UNKNOWN) ;)
// The condition IS the iteration step

This macro is only useful for sets with direct, non-duplicate keys!
The arguments to OrderedSetEachltem() are:

_p the ordered set to enumerate

_item an OS_ITEM_INFO containing the enumerated item’s info

Code using these macros should look like: OS_ITEM_INFO scratch; OrderedSetEachltem(os, scratch) {
myPtr = (MY_PTR)scratch.data; ... }

Function Prototype

Comments

OrderedSetDelete

Deletes specified item from the Ordered Set.
Returns STATUS.
STATUS EXPORTED

OrderedSetDelete (

P _ORDERED SET p,

P_OS_ITEM_INFO info);
If duplicates are allowed, both info->key and info->data must be filled in by client; if keys are unique,
only info->key need be filled in.

ORDSET.H
Exported Functions and Macros

Returns:
stsOK if item was found in set and deleted, or
stsNoMatch if item not found in set, or

STATUS < 0 if internal error during deletion.

281

Function Prototype

OrderedSetCount

Returns the number of items currently stored in the ORDERED_SET.
Returns U32.

U32 EXPORTED

OrderedSetCount (
P ORDERED SET ©p);

9 / UTILITY CLASSES

PENPOINT API REFERENCE / VOL Il

PART 9 / UTILITY CLASSES

QHELP.H

This file contains the API definition for clsQuickHelp.
clsQuickHelp inherits from clsFrame.

clsQuickHelp provides an interface to the Quick Help Server.
theQuickHelp is a well-known instance of clsQuickHelp.

theQuickHelp provides system wide quick help, and is the only instance of clsQuickHelp in the system,
built at boot time. Clients should not create instances of this object, nor should they subclass this object.
This file defines an interface to display quick help text in the standard quick help window. Programmers
should rarely have to call ANY of the functions in this file, as default calling of quick help is provided by
default in cIsGWin (see gwin.h). However, some applications may need to invoke quick help, or change
the quick help text, hence the public message to open quick help, and to show a quick help screen.

A quick help resource consists of a string array resource with each array item mapping to a single quick
help panel. This resource is identified by creating a List resource ID from the administered portion of
the quick help ID (MakeListResld(helpID, resGrpQhelp, 0)) and the quick help group. The TAG
portion of the quick help ID is used to index into the string array. Each quick help strings will have two
"parts”. The first part will be the title and the second part will be the text. The title will be separated
from the text by including two vertical line characters (11) following the title which will NOT be printed.

These resources, which are defined below, are put into the application resource files and displayed using
msgQuickHelpShow, which takes the resource ID. As mentioned, gWin defines a default behavior for
calling the object with this message. All application typically need to do is provide their gWin objects
(or subclasses) with helpId resources.

Quick help for an object is generally displayed in one of two ways. The first is when an object decides to
display quick help for itself. An example is gWin’s response to the 2’ gesture. gWin posts theQuickHelp
msgQuickHelpShow, which opens the quick help window and displays quick help for the object. The
second is when theQuickHelp window is open, and the system is in quick help mode. When the user
taps on objects on the screen, the object is sent msgQuickHelpHelpShow. The object will respond by
posting msgQuickHelpShow back to theQuickHelp. When the quick help window is dismissed, by
hitting closed or envoke help notebook, the object that received msgQuickHelpHelpShow will receive
msgQuickHelpHelpDone. This message will also be sent when tapping on successive objects while in
quick help mode. It will not be sent when quick help was initially brought up directly from the object
when it posted msgQuickHelpShow (such as the gWin response to the 2’ gesture.

#ifndef QHELP INCLUDED

#define QHELP_ INCLUDED

$ifndef GO_INCLUDED
#include <go.h>

#endif

#ifndef CLSMGR_INCLUDED
#include <clsmgr.h>
#endif

#ifndef RESFILE_INCLUDED
#include <resfile.h>
#endif

284 PENPOINT APl REFERENCE
Part 9 / Utility Classes

"> Debugging Flags
Quick Help uses the debugging flag set ’q’. Defined flags are:
0001 General quick help debugging information

"Types and Constants

These tags are used for defining three quick help screens: 1) the quick help intro screen that gives
directions on quick help, 2) the "No help available" screen, and 3) the help not found screen.

#define hlpQuickHelpSignOn MakeTag(clsQuickHelp, 1)

#define hlpQuickHelpNoHelp MakeTag (clsQuickHelp, 2)

#define hlpQuickHelpNotFound MakeTag (clsQuickHelp, 3)
Messages

msgQuickHelpShow

Displays the Quick Help associated with the resource ID.

Takes P_QUICK_DATA, returns STATUS.
#define msgQuickHelpShow MakeMsg (clsQuickHelp, 1)

Arguments typedef struct QUICK_DATA { .
U32 helpId; // Help ID of the screen to show
OBJECT appUID; // UID of the application. Used to find resources
// of application specific help IDs. v
U32 reserved; // Reserved for future use
} QUICK DATA, *P_QUICK DATA;

Commients Gets the quick help resource from either the system resource files or the application specific resource
files. If the quick help resource can’t be found, will display the "Quick help not found" message in the
quick help screen. Typically called from gWin in order to display the help screen for a help gesture.
Would take the gWin helpld and the application uid. Needs the application object in order to reference
the resource files of the application to find application specific help IDs. Typically not called directly by
applications, but called indirectly through gWin inheritence. Will call msgQuickHelpOpen to open the

quick help window as necessary.
Typically called by objects in response to a ? gesture, or in response to msgQuickHelpHelpShow.

Sev Also gwin.h

msgQuickHelpHelpShow

Sent to a window to display a quick help request.

Takes P_XY32, returns STATUS.

#define msgQuickHelpHelpShow MakeMsg (clsQuickHelp, 7)

Comments Sent from theQuickHelp to a window when it is required to display its quick help. Typically the
window will respond by posting msgQuickHelpShow. Sent as the user taps on various windows while
quick help is being displayed.

See Also msgQuickHelpHelpDone

QHELP.H 285
Notification Messages

Lomments

$ee Also

msgQuickHelpHelpDone

Sent to a window when quick help is no longer displayed.

Takes OBJECT, returns STATUS.
#define msgQuickHelpHelpDone MakeMsg (clsQuickHelp, 8)

Sent to the last object asked to display quick help via msgQuickHelpHelpShow when help is no longer
needed on said object. Can be sent because the user tapped somewhere else and a new object is about to
be sent msgQuickHelpHelpShow, quick help has been terminated by the user, or the help notebook has
been entered. Takes the new object receiving a msgQuickHelpHelpShow if because the user tapped
elsewhere, or null if quick help is being terminated or going to the help notebook. Note that this
message is only sent to object which previously received msgQuickHelpHelpShow, and not those
objects generating a help request by posting msgQuickHelpShow directly.

msgQuickHelpHelpShow

Comments

msgQuickHelpOpen

Forces the Quick Help window to appear.

Takes nothing, returns STATUS.

#define msgQuickHelpOpen MakeMsg (clsQuickHelp, 2)

Opens the quick help window on the screen. If the quick help window is already on the screen, will
simply return stsOK. The quick help window is a modal filter that will grab all input till closed via
msgQuickHelpClose. Self sent to when msgQuickHelpShow is posted. Also sent from the help
notebook icon to invoke quick help. :

msgQuickHelpOpened
Indicates that the quick help window has been opened.

Takes nothing, returns STATUS. Category: observer notification.

#define msgQuickHelpOpened MakeMsg(clsQuickHelp, 128)
Comments Sent to observers of the quick help that the quick help window has been opened.
msgQuickHelpClosed
Indicates that the quick help window has been closed.
Takes nothing, returns STATUS. Category: observer notification.
#define msgQuickHelpClosed MakeMsg (clsQuickHelp, 129)
Comments Sent to observers of theQuickHelp to indicate that the quick help window has been closed.

msgQuickHelpInvokedNB

Indicates that the notebook associated with quick help should be open.

Takes nothing, returns STATUS. Category: observer notification.
#define msgQuickHelpInvokedNB MakeMsg (clsQuickHelp, 130)

9 / UTILITY CLASSES

286 PENPOINT API REFERENCE
Part 9 / Utility Classes

Comments Sent to observers when msgQuickHelpInvokeNB is recieved. The help note book is an observer, and
will bring itself up when this message is recieved.

PENPOINT APl REFERENCE / VOL 11

PART 9 / UTILITY CLASSES

SEL.H

-§¢

This file contains the API for clsSelection.
clsSelection inherits from clsObject.

theSelectionManager provides management of the system-wide selection. theSelectionManager is the
one and only instance of clsSelection.

’% Introduction

Much of PenPoint’s user interface is based on the "selection.” The selection is often the center of the
user’s attention. In general it is very easy for the user to set the selection -- it often just requires a tap.

The precise definition of the selection is application-specific. In text the selection is often a set of
characters. In a spreadsheet it might be a range of rows, columns, or cells. In a Table of Contents it
might be a set of documents. Typically, an application "highlights" the selection with a grey background,
handles, or some other graphic technique.

Because the selection corresponds to the center of the user’s attention, many user interface operations are
based on the selection. Here are some examples:

¢ The selection is the source of PenPoint’s move and copy operations.

¢ Typically, the selection is altered by Applying an Option Sheet.

¢ The selection often determines which menu items are enabled and which are disabled.
The selection and keyboard input target are often linked together.

Programmatically, other objects can inquire about the selection, get information from the selection and
transfer data from the selection.

% Road Map
Use the following to take ownership of the selection:
¢ msgSelSetOwner
¢ msgSelSetOwnerPreserve
¢ msgSelSelect (if object has clsEmbeddedWin in the object’s ancestry)
Selection owners must be prepared to handle the following:
¢ msgSelDelete
msgSelYield
msgSelBeginCopy
msgSelBeginMove

* & o o

msgControlProvideEnable (see section "Control Enabling")

288 PENPOINT API REFERENCE
Part 9 / Utility Classes

Use the following to inquire about the selection:

¢ msgSelOwner

¢ msgSelPrimaryOwner

¢ msgSelOwners

¢ msgSellsSelected (if object has clsEmbeddedWin in the object’s ancestry)
theSelectionManager sends the following notifications:

¢ msgSelChangedOwners

¢ msgSelPromotedOwner

Destinations of PenPoint’s Move and Copy mechanism must handle the following:
¢ msgSelCopySelection

¢ msgSelMoveSelection

Move and Copy

sel.h defines several messages that are used to implement PenPoint’s Move and Copy operations. These
messages are used in combination with PenPoint’s data transfer messages which are defined in xfer.h.
(PenPoint data transfer does not always necessarily involve the selection, but when it does, the messages
described here are employed.)

" clsEmbeddedWin (seec embedwin.h) provides the default response for several of the steps described
below.

Here’s the typical "flow of control” for moving selected data:

¢ The source object handles the "Press" gesture (xgsPressHold in xgesture.h). The object might
receive this gesture if it is a gWin (see gwin.h).

® If the Press gesture is not over the selection, the object typically selects what is under the gesture.
"Selecting” includes either (1) self sending msgSelSelect or (2) sending msgSelSetOwner to
theSelectionManager, whichever is appropriate.

¢ Next the object self-sends msgSelBeginMove.

¢ msgSelBeginMove is received. Note that msgSelBeginMove is sent in other cases than the Press
gesture response. For instance, the standard application menu item "Move" (in the "Edit" menu)
results in the selection owner receiving msgSelBeginMove.

¢ In response to msgSelBeginMove, the receiver should self send msgEmbeddedWinBeginMove.
msgEmbeddedWinBeginMove takes, in its pArgs, the hot point of the gesture that kicks off the
move, and the bounds of the selection being moved.

¢ In response to msgEmbeddedWinBeginMove, embeddedWin creates the floating "move icon."
clsEmbeddedWin manages the icon.

¢ The icon takes over at this point and manages the process of moving the selection.
¢ When the icon is dropped on a destination, the icon sends msgMoveCopylconDone to the source.

¢ csEmbeddedWin handles msgMoveCopylconDone and sends msgSelMoveSelection to the
destination.

SEL.H 289

¢ In response to msgSelMoveSelection, the destination object retrieves the selection owner from the
selection manager (using msgSelOwner) and engage in an xfer protocol with the selection. (The
xfer protocols are described in xfer.h) The data should be copied to the position contained in
msgSelMoveSelection’s pArgs, which is a P_xY32.

® After the data has been copied from the selection owner, the destination should send msgSelDelete
to the selection owner.

¢ The destination object should select the data that it just absorbed.
The "flow of control" for copying selected data is very similar, with the following changes:

¢ The gesture that kicks off the protocol is "Tap-Press" (xgsTapHold in xgesture.h) rather than
Press-Hold.

¢ The source object self sends and handles msgSelBeginCopy rather than msgSelBeginMove. The
source object self sends msgEmbeddedWinBeginCopy rather than msgEmbeddedWinBeginMove.

The destination receives msgSelCopySelection rather than msgSelMoveSelection.
¢ The destination object should not send msgSelDelete.

See Also xfer.h.h

"> Two Selection Owners

Some objects need to own the selection, but they need to take in a fashion that (1) allows PenPoint to
restore the original selection and (2) allows client code to find the original selection. For example,
Option Sheets apply to a selection. But the various controls that appear within the option sheet might
need to own the selection as well. Both selections need to be maintained.

Therefore theSelectionManager actually manages two selection owners: a selection owner and a
g y
preserved selection owner.

NOTE: The same object cannot be both the selection owner and preserved selection owner. See the
detailed comments with msgSelSetOwner and msgSelSetOwnerPreserve for details.

When an object needs to take the selection but allow the current selection to be restored, that object
should take the selection via msgSelSetOwnerPreserve, which "preserves” or "remembers” the original
selection. The preserved selection can be restored by sending msgSelOwnerPreserve with a pArgs of
pNull to theSelectionManager. Hence objects in option sheets take the selection via
msgSelSetOwnerPreserve.

Essentially all clients should operate on the selection owner. This includes move and copy operations.
The only client that should operate on the preserved selection owner, if one exists, is option sheets.

% Control Enabling

Some controls, particularly menu items, should be disabled if there is no selection owner. And some
controls should be disabled based on application-specific details about the selection state.

For instance, the "Move," "Copy," and "Delete” menu items should not be enabled if there is no

PY;
selection owner. The "Move" menu item should be enabled if there is a selection and the selection owner
is not read-only. The "Delete” menu item should be enabled if there is a selection owner and the
contents of the selection are not empty.

To support this, clsControl allows control creators to specify that the control should send
msgControlProvideEnable to the selection owner to get the proper enable/disable state.

9 / UTILITY CLASSES

290 PENPOINT APl REFERENCE
Part 9 / Utility Classes

Some standard application menus (SAMs) are set up to send msgControlProvideEnable to the selection
owner. See app.h for details.

Therefore all selection owners should handle msgControlProvideEnable.

% Relationship of Selection to the Input Target

The input system’s "Target" is the object to which keyboard events are sent. See input.h for more
information.

Because the selection is normally the center of the user’s attention, it often makes sense for the same
object to own the selection and to be the input target. For instance, PenPoint’s text component always
becomes the input target whenever it takes the selection and sets the input target to null when it yields
the selection.

There are, however, cases where it makes more sense to NOT link the selection and input target
together. For instance, some types of fields take the input target without taking the selection. The
decision is quite application-specific.

Implementing a correspondence between the input target and selection ownership is the client’s
responsibility.

7> What to Do When the Selection Changes Within an Owner

Some parts of PenPoint’s UI depend on knowing when the user’s center of attention changes. For
instance, each time that an Option Sheet is notified that the selection has changed it checks to be sure
that the top card is still applicable.

Therefore, selection owners should set the selection to self EVERY TIME THE SELECTION
CHANGES within them, even if they are already the selection owner. This lets observers take any
appropriate action.

7> Only One Instance

There is one and only one instance of clsSelection, and that instance is the global well-known
theSelectionManager.
#ifndef SEL_INCLUDED
#define SEL INCLUDED

#ifndef CLSMGR_INCLUDED
#include <clsmgr.h>
#endif

Common #defines and typedefs

¥ Status Codes

theSelectionManager returns stsSelYieldInProgress when the selection manager is in the process of
sending msgSelYield and therefore can’t respond to the message.

#define stsSelYieldInProgress MakeWarning (clsSelection, 1)

% Types

SEL.H 291
Messages Sent to theSelectionManager

preservedOwner is defined only if havePreservedOwner is true. It IS possible to have a null
preservedOwner.

typedef struct SEL_OWNERS {

OBJECT owner;
OBJECT preservedOwner;
BOOLEAN havePreservedOwner;

} SEL_OWNERS, *P_SEL OWNERS;

P Messages Sent to theSelectionManager

// Next Up: 26, Recycled: 9, 14, 20

Comments

Baturn Yalue

See Also

msgSelSetOwner

Sets the selection owner.

Takes OBJECT, returns STATUS.
#define msgSelSetOwner MakeMsg(clsSelection,2)

Send msgSelSetOwner to theSelectionManager to set the selection owner. theSelectionManager
responds in one of the following ways:

If pArgs is not a valid selection owner (because it can’t be called from other objects or is not a global
object):

¢ theSelectionManager returns stsScopeViolation.
If pArgs is null, theSelectionManager:
¢ sends msgSelYield to the current selection if it exists and sets the current selection to null.

¢ sends msgSelYield the current preserved selection if it exists and sets the current preserved selection
to null.

¢ sends msgSelChangedOwners to theSelectionManager’s observers.
Otherwise, theSelectionManager:

¢ sends msgSelYield to the current preserved selection if it exists and is not equal to pArgs.
theSelectionManager then sets the preserved selection to null and stops observing the preserved
selection.

sends msgSelYield to the current selection if it exists and is not equal to pArgs.
sets the current selection to pArgs.

adds itself as an observer of the new selection.

* 6 o o

sends msgSelChangedOwners to theSelectionManager’s observers.
stsScopeViolation pArgs is not a valid selection owner.

msgSelYield

msgSelSetOwnerPreserve

Sets the selection owner with the preserve option.

Takes OBJECT, returns STATUS.

#define msgSelSetOwnerPreserve MakeMsg(clsSelection,5)

9 / UTILITY CLASSES

292 PENPOINT APl REFERENCE
Part 9 / Utility Classes

Comments Send msgSelSetOwnerPreserve to theSelectionManager to set the selection owner while preserving the
current selection owner.

See the section "Two Selection Owners" for more information.

theSelectionManager’s response to this message is similar to its response to msgSelSetOwner, with only
subtle differences.

If pArgs is null, and there is no preservedOwner:

* theSelectionManager simply returns stsOK.

If pArgs is null, and a preserved owner exists (even if it is null), theSelectionManager:
¢ sends msgSelYield to the current owner if it exists.

* sends msgSelPromote to the current preserved owner if non-null.

¢ sets the current owner to the current preserved owner if non-null.

¢ sets the current preserved owner to null.

® sets the value for SEL_OWNERS.havePreservedOwner to false.

¢ sends msgSelPromotedOwner to theSelectionManager’s observers.

If pArgs is non-null but is not a valid selection owner (because it can’t be called from other objects or is
not a global object):

¢ theSelectionManager returns stsScopeViolation.

If pArgs is a valid selection owner and there is a no preserved owner:

¢ sends msgSelDemote to the current owner.

® sets the current preserved owner to be the current owner.

® sets the current owner to be pArgs.

¢ adds itself as an observer of the new selection.

® sets the value for SEL_OWNERS.havePrese‘rvedOwner to true.

¢ sends msgSelChangedOwners to theSelectionManager’s observers.

If pArgs is a valid selection owner and there is a preserved owner:

L 4

sends msgSelYield to the current owner if it exists and is not the same as pArgs.
sets the current owner to pArgs.

¢ adds itself as an observer of the new selection.

L 4

sends msgSelChangedOwners to theSelectionManager’s observers.

Return Value stsScopeViolation pArgs is not a valid selection owner.
See Also msgSelYield
msgSelOwner

Passes back the selection owner.

Takes P_OBJECT, returns STATUS.
#define msgSelOwner MakeMsg(clsSelection, 1)

Comments

Return Volue

SEL.H
Notifications Sent to theSelectionManager’s Observers

theSelectionManager passes back the current selection owner. It does not pass back the preserved
selection owner.

stsSelYieldInProgress theSelectionManager is currently sending msgSelYield.

293

Lomments

Return Volus

See Also

msgSelPrimaryOwner

Passes back the primary selection owner.

Takes P_OBJECT, returns STATUS.

#define msgSelPrimaryOwner MakeMsg(clsSelection,7)

The "primary owner" is the selection owner which an option sheet applies to. If there is a preserved
selection owner, the primary owner is the preserved owner. Otherwise, the primary selection owner is
the current owner.

stsSelYieldInProgress theSelectionManager is currently sending msgSelYield.

msgSelSetOwner

Message
Arguments

Return Yalue

$ee Also

msgSelOwners

Passes back the selection and preserved owners.
Takes P_SEL_OWNERS, returns STATUS.

#define msgSelOwners MakeMsg (clsSelection, 4)

typedef struct SEL_OWNERS {
OBJECT owner;
OBJECT preservedOwner;
BOOLEAN havePreservedOwner;
} SEL_OWNERS, *P_SEL_OWNERS;

stsSelYieldInProgress theSelectionManager is currently sending msgSelYield.

msgSelSetOwner

Notifications Sent to I'heSevleciionManager's

Observers

Magsage
Arguments

Comments

msgSelChangedOwners

Notifies observers when either of the selection owners changes.

Takes P_SEL_OWNERS, returns STATUS.
#define msgSelChangedOwners MakeMsg(clsSelection, 6)

typedef struct SEL OWNERS {

OBJECT owner;
OBJECT preservedOwner;
BOOLEAN havePreservedOwner;

} SEL OWNERS, *P_SEL OWNERS;

theSelectionManager posts msgSelChangedOwners to its observers to inform the observers that the
selection owner and/or preserved owner has been set. (The notification is sent even if the new owner
is null.)

"
[
(7]
n
g
o
E
-l
=]
~
o

294 PENPOINT API REFERENCE
Part 9 / Utility Classes

 theSelectionManager sends this notification even if the old owner and new owner are the same. Hence
if object A is the selection owner, and msgSelSetOwner is sent with object A, msgSelChangedOwners
IS sent to theSelectionManager’s observers.

When a preserved selection owner is promoted back to the selection owner, msgSelPromotedOwner is
sent rather than msgSelChangedOwners.

Example of use: In response to this message, option sheets check the applicability of the top card.

See Also msgSelSetOwner

msgSelPromotedOwner

Notifies observers when the preserved owner has been promoted back to the selection owner.

Takes P_SEL_OWNERS, returns STATUS.

#define msgSelPromotedOwner MakeMsg(clsSelection, 8)

Message typedef struct SEL_OWNERS {
Arguments OBJECT owner;
OBJECT preservedOwner;
BOOLEAN havePreservedOwner;

} SEL_OWNERS, *P_SEL_OWNERS;

Comments theSelectionManager posts msgSelPromotedOwner to its observers to inform the observers that
preserved selection owner has been promoted to the normal selection owner.

This happens as a result of theSelectionManager handling msgSelSetOwnerPreserve with a pArgs of
null.

See Also msgSelSetOwnerPreserve

Messages Sent by theSelectionManager to
Owners

msgSelYield

theSelectionManager requires the release of the selection.

Takes BOOLEAN, returns STATUS.
#define msgSelYield MakeMsg(clsSelection,11)

Comments theSelectionManager sends this message to a selection owner to inform the object that it is no longer
the selection owner. pArgs is true if object is yielding the primary selection and false when the object is
yielding the preserved selection.

This message is not sent when an object takes the selection via msgSelSetOwner or
msgSelSetOwnerPreserve and it already is the selection, or already is the preserved selection. (However,
msgSelChangedOwners IS sent to theSelectionManager’s observers.)

When handling this message, be careful about sending selection manager messages (such as
msgSelSetOwner) as deadlock can occur.

After sending msgSelYield, theSelectionManager removes itself as an observer of the object.

See Also msgSelSetOwner

SEL.H 295
Embedded Window Messages

Lomments

See Also

msgSelDemote

Informs the owner that it is becoming the preserved owner.
Takes nothing, returns STATUS.

#define msgSelDemote MakeMsg (clsSelection, 24)

theSelectionManager sends this message to a selection owner to tell the owner that it is becoming the
preserved owner. (This can happen when theSelectionManager receives msgSelSetOwnerPreserve.)

Receivers should not do anything in response to this message. (If for some reason receivers chose to
handle this message, be careful about sending selection manager messages (such as msgSelSetOwner) as
deadlock can occur.)

msgSelPromote

Lomments

See Also

msgSelPromote

Informs the preserved owner that it is becoming the owner.
Takes nothing, returns STATUS.

#define msgSelPromote MakeMsg(clsSelection, 25)

theSelectionManager sends this message to a preserved selection owner to tell the owner that it is
becoming the normal selection owner. (This can happen when theSelectionManager receives
msgSelSetOwnerPreserve.)

Receivers should not do anything in response to this message. (If for some reason receivers chose to
handle this message, be careful about sending selection manager messages (such as msgSelSetOwner) as
deadlock can occur.)

msgSelSetOwner

Embedded Window Messages

Most subclasses of clsEmbeddedWin should use these messages. See embedwin.h for information about
how and why to use them.

The messages are defined here rather than in embedwin.h because they are abstract. Theoretically other
classes can respond to these messages to implement behavior analogous to that of embeddedWin
(although no other PenPoint system class does so).

Comments

Soe Also

msgSelSelect

Sets self to be the selection owner.

Takes nothing, returns STATUS.
#define msgSelSelect MakeMsg (clsSelection, 19)
See the section "Embedded Window Selection Messages” for more information.

Send this message to an object to have that object make itself be the selection owner or the preserved
selection owner.

Do not send this message to theSelectionManager.

msgSelSetOwner.h

9 / UTILITY CLASSES

296 PENPOINT API REFERENCE
Part 9 / Utility Classes

msgSelIsSelected

Returns TRUE if self is current selection owner.
Takes nothing, returns BOOLEAN.
#define msgSellsSelected MakeMsg (clsSelection, 21)
Comments See the section "Embedded Window Selection Messages" for more information.
Send this message to an object to inquire if it is the selection owner.
Do not send this message to theSelectionManager.
Return Value true The object is the selection owner.
false The object is not the selection owner. (The object may be the preserved selection owner.)

See Also embedwin.h

Abstract Messages for Selection Move
& Copy

msgSelBeginCopy

Initiate a copy operation.

Takes P_XY32, returns STATUS.

#define msgSelBeginCopy MakeMsg (clsSelection, 23)
Commients See the section "Move and Copy” for information about when this message is sent and how it should be
handled.

pArgs will be null if this message is sent from a menu.

msgSelBeginMove

Initiates a move operation.

Takes P_XY32, returns STATUS.

#define msgSelBeginMove MakeMsg (clsSelection, 22)
Comments See the section "Move and Copy" for information about when this message is sent and how it should be
handled. ‘

pArgs will be null if this message is sent from a menu.

msgSelCopySelection

The receiver should copy the selection to self at (x, y).

Takes P_XY32, returns STATUS.

#define msgSelCopySelection MsgNoError (MakeMsg(clsSelection,16))

Comments See the section "Move and Copy" for information about when this message is sent and how it should be

handled.

SEL.H 297
Abstract Messages For Linking Protocol

msgSelMoveSelection

The receiver should move the selection to self at (x, y).

Takes P_XY32, returns STATUS.
#define msgSelMoveSelection MsgNoError (MakeMsg(clsSelection, 15))

Comments See the section "Move and Copy" for information about when this message is sent and how it should be
handled.
msgSelDelete
The selection owner should delete the selection.
Takes U32, returns STATUS.
#define msgSelDelete MakeMsg (clsSelection, 3)
#define SelDeleteReselect 0 // Display a selection after delete
#define SelDeleteNoSelect 1 // Don’t display a selection after delete
Comments Clients wishing to delete the selection send msgSelDelete to the selection owner. Selection owners

should respond to this message by deleting the contents of the selection.

msgSelDelete is sent in two situations: (1) the user has hit the "Delete” menu item, or (2) an object has
received msgSelMoveSelection, has copied the data (see xfer.h), and now wants to delete the original
data.

See the section "Move and Copy" for information about how msgSelDelete is related to moving data.

pArgs must be one of SelDeleteReselect or SelDeleteNoSelect. This parameter is just a performance
enhancement. The sender of msgSelDelete should pass SelDeleteNoSelect if it plans on taking the
selection after the msgSelDelete, and SelDeleteReselect otherwise. The receiver of msgSelDelete can use
pArgs as an optimization, but it is not strictly necessary since theSelectionManager will send a
msgSelYield when the sender takes the selection. (The pArgs of msgSelDelete exist primarily for
historical reasons. The simplest thing to do is for the sender to pass SelDeleteReselect and for the
receiver to ignore pArgs.)

7 Abstract Messages For Linking Protocol

Commenis

See Also

msgSelRememberSelection

The receiver should "remember” the selection and place the "remembrance” at (x, y).
Takes P_XY32, returns STATUS.

#define msgSelRememberSelection MsgNoError (MakeMsg(clsSelection,17))

Most objects should not send or handle this message. It might be better defined as a clsEmbeddedWin
message.

msgSelRememberSelection is sent to an object to ask it to "remember" the selection. The response to
this message is highly object specific.

This message is not sent to the selection owner; it is sent to any object to ask it remember the selection.

An embeddedWin self sends this message in response to the "Create Reference Button" gesture
(xgsDblCircle in xgesture.h). In response, an embeddedWin creates a goto button at the specified (x,y).

embedwin.h

9 / UTILITY CLASSES

PENPOINT API REFERENCE / VOL II

PART © / UTILITY CLASSES

SPELL.H

Spelling Checking
See Also proof.h, pdict.h

#ifndef SPELL_INCLUDED
#define SPELL_INCLUDED

/DS0001 Low-level debug messages; LOTS of output
/DS0002 mid-level debug messages

/DS0004 high-level debugs - general information
/DS8000 disable dictionary

$ifndef GO_INCLUDED
#include <go.h>
#endif

Common Definitions

maxSpellList is the most bytes a list of spelling corrections can use.is the dictionary alphabet size

#define maxSpellList 128
#define maxSpellXlateChoices 30

Common typedefs

typedef struct SPELL_LIST {

Ul6 count; // Number of strings in the list

CHAR words [maxSpellList]; // List of concatenated strings
} SPELL LIST, * P_SPELL_LIST;

typedef struct SPELL_XLATE {

Ul6 index; // Offset within bank
U8 bits; // Nibble and bank indicator
U8 character; // Out: Character at that location

} SPELL XLATE, *P_SPELL_XLATE;
typedef struct SPELL DICT_LIST {

P_CHAR pName; // name of dictionary (e.g. English)
P_CHAR pPath; // path to dictionary (e.g. \\boot\dicts\web£f77k)
Ul6 bankCount; // Number of 16K banks the lex is divided into

P_UNKNOWN pLangHeader; // Pointer to language specific info
} SPELL DICT LIST, *P_SPELL DICT LIST;

Definitions of different types of word capitalization

Enuml6 (SPELL_CASE) {
spellCommonCase, // all letters are in lower case
spellProperCase, // The First Letter Of Each Word Is Capitalized
spellUpperCase, // ALL LETTERS ARE CAPITALIZED
spellSpecialCase, // tHere IS a StRANge Mix of cAPitALizATion

}i

typedef struct SPELL CASE_CONTEXT {

SPELL_CASE minCase; // lowest case allowed for output dictionary words
SPELL_CASE unkCase; // case for non-dictionary words

BOOLEAN sentence; // do end-of-sentence processing

BOOLEAN dictionary; // use the dictionary for capitalization info
BOOLEAN allCapsWriter; // user writes all caps only

BOOLEAN firstWord; // In/Out: This word is first in a sentence

} SPELL CASE CONTEXT, * P_SPELL CASE_CONTEXT;

300 PENPOINT APl REFERENCE
Part 9 / Utility Classes

Funciion Profotype

SpellDictSelect

Sets the active dictionary to the language specified.
Returns STATUS.

STATUS EXPORTED SpellDictSelect (
S16 dictCode

)i

dictCode is an index into spellDictList; -1 means deselect. Currently, onlyEnglish can be selected, and
its code is 0.

SpellSetOptionsX
Turns the dictionary on or off.
Returns void.

void EXPORTED SpellSetOptionsX (BOOLEAN mode);
Pass it true to turn the dictionary on, false to turn it off.

SpellGetOptionsX

Returns current dictionary status.

Returns BOOLEAN.

BOOLEAN EXPORTED SpellGetOptionsX(void);

True means spelling is on; false means it’s off.

SpellCheck

Checks if a word is in the dictionary or not.

Returns BOOLEAN.

BOOLEAN EXPORTED SpellCheck (P_CHAR pWord);
Argument may contain punctuation but should not contain spaces. Thisdesigned so higher-level
software can parse a line of text intotokens and pass those tokens (with no further) to this routine.

Funchon Protolype

SpellCorrect

Finds all the corrections for a word and adds them to a SPELL_LIST structure.
Returns STATUS.

STATUS EXPORTED SpellCorrect (

P_CHAR pWord, // Word to be corrected
P_SPELL_LIST pSpelllist, // Out: List to add the word to
BOOLEAN phonetic // Perform phonetic correction?

)i

This also takes a space-delimited token, as described above, stripsthe punctuation, and puts it back on
the correction candidates.that the count field in the SPELL_LIST structure must beto zero, unless you
are deliberately adding to anlist. This routine avoids adding duplicates to theif it already had some
words in it.

SPELL.H 301
Functions

Function Prototype

SpellCorrectWord

Finds the first correction for a word. Returns O if none found, else 1.
Returns U16.

Ul6 EXPORTED SpellCorrectWord(
P_CHAR pWord, // Word to be corrected
P_CHAR pCorrectWord // Out: place to put the correction

)i

The word is a space-delimited token, as described above. In this, "first" means "first in alphaberical
order," this routine issuitable for most applications.

Function Protolype

Comments

SpellAddToDict
Add a word to thePersonalDictionary.

Returns STATUS.

STATUS EXPORTED SpellAddToDict (
P_CHAR pWord
)i
The prefered way to add words to the current personal dictionary. As usual, it takes space-delimited
tokens and strips off extraneous punctuation.

Funztion Prototype

Conments

SpellAddToAnyDict

Add a word to any one of the personal dictionaries.
Returns STATUS.

STATUS EXPORTED SpellAddToAnyDict (

OBJECT pDict,

P_CHAR pWord
)i
The prefered way to add words to a personal dictionary other than the current one. It takes a pdict
object (cIsPDict) that specifies the personal dictionary to add to, and space-delimited tokens. It strips off
extraneous punctuation.

Function Prototype

SpellWordSetCase

Convert all-upper-case input into a reasonable mix of upper and lower case using dictionary information
and other lexical clues.

Returns STATUS.

STATUS EXPORTED SpellWordSetCase(
P_CHAR pWord,
P_SPELL CASE_CONTEXT pSpellCaseContext

)i

Call SpellWordSetCase the first time with pWord == pNull tothe context structure. Then pass it the
words to be(in order) with the same context structure each time. Iteach word in place. To modify
the default behavior, changeappropriate context parameters (see the definition of

the_ CASE_CONTEXT structure).

DefaultsminCase: SpellCommonCase unkCase: ~ SpellCommonCase sentence: true
dictionary: true allCapsWriter: false firstWord: true

9 / UTILITY CLASSES

302 PENPOINT APl REFERENCE
Part 9 / Utility Classes

SpellLineSetCase

Convert all-upper-case input into a reasonable mix of upper and lower case using dictionary information
and other lexical clues.

Returns STATUS.

Function Proteltype STATUS EXPORTED SpelllineSetCase (
P _CHAR pLine,
P_SPELL_CASE_CONTEXT pSpellCaseContext
)i
Identical to SpellWordSetCase, except it expects the input to beline of text, which it splits into tokens as
required.

Miscellaneous
Address of the list of legal dictionaries

extern const SPELL DICT LIST spellDictListl[];

PENPOINT API REFERENCE / VOL |11

PART 9 / UTILITY CLASSES

SPMGR.H

See Also

This file contains the API for the Spell Manager Class and theSpellManager.
clsSpellManager inherits from clsObject.
theSpellManager is a well-known instance of clsSpellManager.

spell.h, pdict.h

#ifndef SPMGR INCLUDED
#define SPMGR _INCLUDED
#ifndef CLSMGR_INCLUDED
#include <clsmgr.h>
#endif

#ifndef WIN_ INCLUDED
#include <win.h>
#endif

$ifndef XLATE INCLUDED
$include <xlate.h>
#endif

#ifndef GWIN_ INCLUDED
#include <gwin.h>
#endif

Common typedefs

This structure is passed to theSpellManager when the user makes thegesture on a window.

typedef struct SP_MGR GESTURE {
GWIN_GESTURE gesture;
} SP_MGR GESTURE, * P_SP_MGR GESTURE;

Sent to Traversal Clients

msgSpMgrCreateContext
Piggybacked with msgTraverseCreate.*Ctx messages.
Takes VOID, returns STATUS.

#define msgSpMgrCreateContext MakeMsg (clsSpellManager, 1)
Initiates a spelling traversal.

msgSpMgrFindMisspelling
Asks the recipient to find the next misspelled word (using SpellCheck() on successive space-delimited
tokens).

Takes SP_MGR_DIALOG, returns STATUS.

#define msgSpMgrFindMisspelling MakeMsg (clsSpellManager, 2)
Piggybacked with msgTraverseFind.

304 PENPOINT API REFERENCE
Part 9 / Utility Classes

msgSpMgrCorrectMisspelling

Asks the recipient to correct the misspelled word he previously found in response to a
msgSpMgrFindMisspelling message.

Takes SP_MGR_DIALOG, returns STATUS.

#define msgSpMgrCorrectMisspelling MakeMsg (clsSpellManager, 3)
Piggybacked with msgTraverseApply. Correction is in the word field.

msgSpMgrAcceptMisspelling

Asks the recipient to accept the misspelled word he previously found in response to a
msgSpMgrFindMisspelling message.

Takes SP_MGR_DIALOG, returns STATUS.

#define msgSpMgrAcceptMisspelling MakeMsg (clsSpellManager, 5)
Piggybacked with msgTraverseApply. Dialog Struct is copied.

’» Received From GWin

msgSpMgrGesture
This causes theSpellManager to initiate a spell traversal from a gesture, as opposed to from a menu.

Takes P_SP_MGR_GESTURE, returns STATUS.

#define msgSpMgrGesture MakeMsg (clsSpellManager, 4)
Message typedef struct SP_MGR GESTURE {
Arguments GWIN_GESTURE gesture;

} SP_MGR_GESTURE, * P_SP_MGR_GESTURE;

When a user makes the spelling gesture on an embedded window, thesends msgSpMgrGesture to
theSpellManager with the_MGR_GESTURE structure filled in.

% Quick Help Tags

#define SpMgrReplaceButtonTag MakeTag(clsSpellManager,1)
#define SpMgrIgnoreButtonTag MakeTag (clsSpellManager, 2)
#define SpMgrCancelButtonTag MakeTag (clsSpellManager, 3)
#define SpMgrInsertionPadTag MakeTag (clsSpellManager, 4)

#define SpMgrTKTableTag MakeTag (c1sSpellManager, 5)
#define SpMgrBackgroundTag MakeTag (clsSpellManager, 6)
#define SpMgrClearButtonTag MakeTag (c1sSpellManager, 7)
#define SpMgrRememberButtonTag MakeTag(clsSpellManager, 8)
#define SpMgrTitleBarTag MakeTag (clsSpellManager, 9)

#define hlpSpMgrReplaceButton SpMgrReplaceButtonTag
#define hlpSpMgrIgnoreButton SpMgrIgnoreButtonTag
#define hlpSpMgrCancelButton SpMgrCancelButtonTag
#define hlpSpMgrinsertionPad SpMgrInsertionPadTag

$#define hlpSpMgrTKTable SpMgrTKTableTag
#define hlpSpMgrBackground SpMgrBackgroundTag
#define hlpSpMgrClearButton SpMgrClearButtonTag
#define hlpSpMgrRememberButton SpMgrRememberButtonTag
#define hlpSpMgrTitleBar SpMgrTitleBarTag

// Different help tags for when this is proof instead of spell
#define hlpProofInsertionPad MakeTag (clsSpellManager, 10)
#define hlpProofTKTable MakeTag (clsSpellManager,11)

PENPOINT APl REFERENCE / VOL 11

PART 9 / UTILITY CLASSES

cIsSR inherits from clsObject.

cIsSR is the class of theSearchManager. It defines a protocol which clients can respond to implement
Find and Replace. Clients of this protocol must respond to the "mark" protocol defined in mark.h.

%> Debugging Flags
The Find and Replace mechanism uses the debug flag R10000.
#ifndef SR_INCLUDED

#define SR_INCLUDED 1

#ifndef MARK INCLUDED
#include <mark.h>
#endif

Common #defines and typedefs

$define srBufSize 80
typedef struct SR _FLAGS {

BOOLEAN matchCase : 1, // case must match
matchWord i 1, // full word search
keepOldCase : 1, // replace with found case
findFromEdge .1, // search from edge of doc
onBigCard : 1 // display big card

} SR _FLAGS;
typedef struct SR_METRICS {

CHAR findText [srBufSize]l;

CHAR replaceText [srBufSize];

MARK MSG_FLAGS markFlags;

SR FLAGS searchFlags;

} SR_METRICS, * P_SR METRICS;

The current match cannot/may not be replaced.

#define stsSRCannotReplace MakeStatus (clsSR, 1)

Messages Sent to Clients via cisMark

msgSRNextChars

Asks the client to move the token to the next group of characters.

Takes P_SR_NEXT_CHARS, returns STATUS.

#define msgSRNextChars MakeMsg(clsSR, 1)
Arguments typedef struct SR NEXT CHARS {
MARK MSG_HEADER header;
U32 maxLen; // In: maximum size the group can be
U32 “len; // Out: the size of the group
BOOLEAN blockStart; // Out: the group starts a block
BOOLEAN blockEnd; // Out: the group ends a block

} SR_NEXT CHARS, * P_SR NEXT CHARS;

306

Comments

PENPOINT AP! REFERENCE
Part 9 / Utility Classes

~ Important: your handler must have the following as its first statement. Replace "clsYourClassHere" with

the uid of your class. See mark.h.
MarkHandlerForClass (clsYourClassHere) ;

This group may be up to maxLen characters in size. The client sets the len parameter to the actual size
of the group, and if the group is the start and/or end of a block of character, sets the respective flags. A

" block is defined as a logically contiguous group of characters that can be searched.

Any non-text element usually delimits the end of a block. If the element is an embedded window that
should be searched, the token should be set to point to the embedded window and stsMarkEnterChild
(see mark.h) should be returned. If the element is not a child, then it should be simply skipped and the
token moved to the next group of characters following it.

Example: If the following text is in the client’s data, and msgSRNextChars is received with a maxLen of
5, the token would should refer to the blocks 1 through 4 in succession. blockStart should be true for

blocks 1 and 3 and blockEnd should be true for blocks 2 and 4. In this way, "SEN" and "MANTLE"
can be found, but "GERMAN" which spans some non-text object won’t be mistakenly found.

MESSENGER (non-text-thing) MANTLE

Arguments

Comments

msgSRGetChars

The component passes back the characters from the location identified by the token.

Takes P_SR_GET_CHARS, returns STATUS.
#define msgSRGetChars MakeMsg(clsSR, 2)

typedef struct SR_GET CHARS {
MARK MSG_HEADER header; .
U32 first; // In: character to start with
U32 len; // In: the number of characters to return
U32 buflen; // In: length of the buffer
P_CHAR pBuf; // In: pointer to the buffer to fill
} SR GET CHARS, * P_SR GET CHARS;
Important: your handler must have the following as its first statement. Replace "clsYourClassHere" with
the uid of your class. See mark.h.

MarkHandlerForClass (clsYourClassHere) ;

pArgs->first is token-relative and pArgs->len is the number of characters to return. Thus (0,2) requests
the first two characters, (1,1) requests the second character, and (3,0) requests no characters.

The string returned must be null-terminated. Note that if len is less than bufLen then this is always
possible without truncation. Otherwise, the number of characters returned should be one less than
bufLen and they should still be null terminated. :

Arguments

msgSRReplaceChars

Ask the component to replace some of the characters at the location identified by the token.
Takes P_SR_REPLACE_CHARS, returns STATUS.

#define msgSRReplaceChars MakeMsg(clsSR, 3)

typedef struct SR _REPLACE CHARS {
MARK MSG_] HEADER header;

s32 first; // In: replacement starts here

U32 len; // In: ...and is this long

U32 buflen; // In: repl. size in characters
P_CHAR pBuf; // In: the buffer of the characters

} SR _REPLACE_CHARS, * P_SR REPLACE CHARS;

Comments

SR.H 307
Messages to theSearchManager

Important: your handler must have the following as its first statement. Replace "clsYourClassHere" with
the uid of your class. See mark.h.

MarkHandlerForClass (clsYourClassHere) ;

pArgs->first is token-relative, and pArgs->len is the number of characters to replace. Thus (0,2) replaces
the first two characters, (1,1) replaces the second character, and (3,0) replaces no characters starting
between the third and fourth (thus effecting an insertion).

pArgs->first may be negative, indicating replacement of text BEFORE the current token (or large
indicating AFTER). However, in no case will pArgs->first go beyond the boundaries indicated by the
blockStart and blockEnd flags from previous calls to msgSRNextChars.

This message should only affect the token insofar as the replacement makes changes to the data the
token refers to. For example: if the token refers to the three characters "cat” and the replace messages
changes the substring "c" (0,1) into "womb", then the token should now refer to the six characters
"wombat".

Arguments

Comments

msgSRPositionChars

Asks the component to reposition the token to some of the characters in the current group.

Takes P_SR_POSITION_CHARS, returns STATUS.
#define msgSRPositionChars MakeMsg (clsSR, 4)

typedef struct SR POSITION_CHARS {
MARK MSG_HEADER header;
S32 first; // In: new position starts here
U32 len; // In: ...and is this long
} SR POSITION CHARS, * P_SR POSITION CHARS;
Important: your handler must have the following as its first statement. Replace "clsYourClassHere" with

the uid of your class. See mark.h.

MarkHandlerForClass (clsYourClassHere);

pArgs->first is token-relative, and pArgs->len is the number of characters to reposition to. Thus (0,2)
positions to the first two characters, (1,1) positions to the second character, and (3,0) positions to
between the third and fourth characters.

pArgs->first may be negative indicating positioning BEFORE the current token (or large indicating
AFTER). However, in no case will pArgs->first go beyond the boundaries indicated by the blockStart
and blockEnd flags from previous calls to msgSRNextChars.

These messages are sent to theSearchManager by PenPoint’s standard Ul elements. Typical clients do
not send them.

msgSRInvokeSearch

Starts a Find & Replace option sheet.

Takes P_SR_INVOKE_SEARCH, returns STATUS.

#define msgSRInvokeSearch MakeMsg (clsSR, 10)

9 / UTILITY CLASSES

308

PENPOINT API REFERENCE
Part 9 / Utility Classes

Arguments typedef struct SR_INVOKE_SEARCH {
OBJECT target; // nil if fromGesture or fromSelection
BOOLEAN fromSelection :1, // start from the selection
fromGesture :1, // start from the gesture given
doFind :1, // do an initial find
findBackward :1, // direction for initial find
noUI :1, // don't open option sheet
useWord :1, // use the word at the gesture or selection
useFlags :1; // use the flags in metrics
Ulé reserved;
GWIN_GESTURE gesture; // the gesture if fromGesture
SR_METRICS metrics; // optional initial text and flags
U32 reserved?;
} SR_INVOKE SEARCH, * P_SR_INVOKE_ SEARCH;
Comments The target of the search is the target argument. However if fromSelection is true then it is the selection;
or if fromGesture is true then it is from the gesture.
The user’s last saved metrics are always used except that
¢ metrics.findText is used if it is not the empty string
¢ metrics.replaceText is used if it is not the empty string
¢ metrics.markFlags & metrics.searchFlags are used if pArgs->useFlags is true
If doFind is true, then an initial find is executed.
If noUl is true, then the option sheet isn’t created. This is only useful in conjunction with doFind
(otherwise, nothing has happened!), the result being a "find next" operation.
If useWord is true, then the find text will be fetched from the target with msgSRGetChars.
msgSRRememberMetrics
Asks theSearchManager to remember the current settings of a Find & Replace option sheet
Takes P_SR_METRICS, returns STATUS.
#define msgSRRememberMetrics MakeMsg(clsSR, 12)
Massage typedef struct SR _METRICS {
Arguments CHAR findText [srBufSize];
CHAR replaceText [srBufSize];
MARK MSG_FLAGS markFlags;
SR_FLAGS searchFlags;

Camments

} SR METRICS, * P_SR METRICS;

As a result, when theSearchManager option sheet next appears it will have the these settings.

PENPOINT API REFERENCE / VOL 11

PART 9 / UTILITY CLASSES

STROBIJ.H

This file contains the API definition for clsString.
clsString inherits from clsByteBuf.

clsString provides a facility to store null-terminated ASCII byte strings. Each object of clsString stores a
single string. This class provides convenient object filing of the string data. Storage for each object’s
string is allocated out of the creator’s shared process heap using OSHeapBlockAlloc.

Clients who want to store uninterpreted byte arrays should use clsByteBuf (see bytebuf.h).

clsString and clsByteBuf do not share messages. clsByteBuf messages cannot be sent to a clsString
object.

#ifndef STROBJ_INCLUDED

#define STROBJ_INCLUDED

#include <go.h>
#include <clsmgr.h>

typedef OBJECT STROBJECT, *P_STROBJECT;

Class Messages

Argumaents

Comments

msgNew

Creates a new string object.

Takes P_STROBJ_NEW_ONLY, returns STATUS. Category: class message.
typedef struct STROBJ NEW ONLY {

P_CHAR pString;
} STROBJ_NEW_ONLY, *P_STROBJ_ NEW_ONLY;

#define strObjNewFields \
objectNewFields A
STROBJ_NEW_ONLY strobj;

typedef struct STROBJ NEW {
strObjNewFields

} STROBJ_NEW, *P_STROBJ_ NEW;

This message allocates shared heap storage for the specified string and copies the client string data into
it.

Message
Arguments

Comments

msgNewDefaults
Initializes the STROBJ_NEW structure to default values.

Takes P_STROBJ_NEW, returns STATUS. Category: class message.

typedef struct STROBJ NEW ({
strObjNewFields
} STROBJ_NEW, *P_STROBJ_NEW;

Sets

pNew->strobj.pString = pNull;

310 PENPOINT API REFERENCE
Part 9 / Utility Classes

msgStrObjGetStr

Passes back the object’s string.

Takes PP_CHAR, returns STATUS.

tdefine msgStrObjGetStr MakeMsg (clsString, 1)

Comments The pointer passed back references the object’s global storage. Clients must not modify or free this
storage.
msgStrObjSetStr

Copies the specified string data into the object’s string buffer.
Takes P_CHAR, returns STATUS.
#define msgStrObjSetStr MakeMsg (clsString, 2)

Comments Previously retrieved string pointers will be invalid after this operation. Clients must call
msgStrObjGetStr to retrieve a pointer to the valid object buffer.

Observer Messages

msgStrObjChanged
Sent to observers when the string object data changes.

Takes OBJECT, returns nothing. Category: observer notification.
#define msgStrObjChanged MakeMsg(clsString, 3)

Comments The message argument is the UID of the clsString object that changed.

PENPOINT API REFERENCE / Vél 11

PART 9 / UTILITY CLASSES

TS.H

This file contains the API definition for clsTable.
clsTable inherits from clsObject.

cIsTable provides a general-purpose table mechanism with random and sequential access. The table
allows clients to create, destroy, modify, and access the table and its data using a row and column
metaphor. Data for the table is stored in a table file, whose lifetime can be independent to that of the
table object.

Tables are two dimensional arrays consisting of a fixed number of columns and a variable number of
rows. Each column can contain data of a single data type such as a U32, a variable length string, a fixed

sized byte field, date and time, etc.

The number of and types of these columns are defined when the table is created. Once that table has
been created, these parameters cannot be changed.

Clients access rows in the table using a TBL_ROW_POS data structure. The value for this row position is
returned to the client when a row is added to the table. All messages for manipulating data in the table
require this value to specify an individual row.

Clients address columns using their position in the TBL_COL_DESC array which the client provides in
the TBL_CRFATE data structure during msgNew.

The table is an observable object and clients choosing to be observers will receive notification when data
in the table changes or a row has been added to or removed from the table.

#ifndef TS_INCLUDED

#define TS_INCLUDED

#include <clsmgr.h>
#include <fs.h>
#include <resfile.h>

Status Codes

Status values return by messages to clsTable.

#define stsTBLRefCountNotZero MakeStatus(clsTable, 1)
#define stsTBLColNameNotFound MakeStatus(clsTable, 2)
#define stsTBLStrBufTooSmall MakeStatus(clsTable, 3)
#define stsTBLBadNewFlags MakeStatus(clsTable, 4)
#define stsTBLEndOfTable MakeStatus(clsTable, 5)
#define stsTBLInvalidSortColValue MakeStatus(clsTable, 7)
#define stsTBLCorruptedIndex MakeStatus(clsTable, 8)
#define stsTBLColNotIndexed MakeStatus(clsTable, 9)
#define stsTBLContainsIndexedCols MakeStatus(clsTable, 10)

312 PENPOINT API REFERENCE
Part 9 / Utility Classes

Common macros uvn'cl typedefs

¢ (Class Declaration

#define clsTable MakeWKN (2003, 1, wknGlobal)
¢ Object Declarations

typedef OBJECT TABLE;
typedef OBJECT TBLOBJ;
typedef TBLOBJ *P_TBLOBJ;

¢ Table Parameter Definitions

#define TBL_ MAXCOLNAMELEN nameBufLength

#define TBL MAXTBLNAMELEN nameBufLength

#define TBL_MAXROWCOUNT 0x2000 // 8192 entries

¢ Table Row Definitions

typedef RES ID TBL ROW POS, *P_TBL_ROW_POS; // Rbsolute TS Row Key
typedef Ul6 TBL_ROW_NUM, *P_TBL ROW_NUM; // Position relative TS Row Key
typedef Ul6 TBL_ROW_COUNT, *P_TBL_ROW_COUNT;

typedef Ul6 TBL_ROW_LENGTH, *P_TBL_ROW_LENGTH;

typedef S32 TBL _ROW_OFFSET, *P_TBL ROW_OFFSET;

typedef S16 TBL_REF_COUNT, *P_TBL REF COUNT;

¢ Table Data Type Definitions

typedef P_US8 P_ROW _BUFFER, *PP_ROW BUFFER;

typedef P_UNKNOWN P_TBL_COL_DATA HOLDER;

¢ Column Index Declarations

typedef U16 TBL COL INX_TYPE, *P_TBL_COL_INX TYPE;

typedef U16 TBL_COL COUNT, *P_TBL_COL_COUNT;
typedef Ul6 TBL_COL_LENGTH, *P_TBL_COL_LENGTH;
typedef U32 TBL_COL_OFFSET, *P_TBL_COL_OFFSET;

¢ Column Descriptor Definitions

typedef enum TBL_TYPES {

tsChar = 0, // fixed length byte array of case sensitive chars
tsCaseChar =1, // fixed length byte array of case insensitive chars
tsU16 2, // unsigned 16 bit integer
tsU32 = 3, // unsigned 32 bit integer
tsFP = 4, // double precision floating point
tsDate =5, // date field (system compressed time format)
tsString = 6, // null-terminated variable length ascii string (case sensitive)
tsCaseString =7, // same as tsString but is case insensitive
tsByteArray = 8, // variable length byte array, contained in unsigned chars
tsUUID =9, // UUID struct.
tsLastType = tsUUID
} TBL_TYPES;
typedef struct TBL COL DESC {
CHAR name [TBL_MAXCOLNAMELEN] ; // Column name
TBL_TYPES type; // Column type
TBL_COL_LENGTH length; // Column data length
TBL_COL_INX TYPE repeatFactor; // # of times to repeat the column
TBL_COL_OFFSET offset; // Column offset in the row
BOOLEAN sorted; // Is the column sorted?

} TBL_COL DESC, *P_TBL_COL_DESC;
¢ Variable Length Data Buffer Definition
typedef struct TBL_STRING {

Uule strlLen; // In/Out: length of string or byte array column data -
Ule strMax; // In: length of string or byte array buffer
P CHAR pStr; // In: pointer to client buffer.

} TBL_STRING, *P_TBL_STRING;

TS.H 313
Class Messages

7" Class Messages

Argumenis

Comments

Return Volue

msgNew

Creates a new table object.
Takes P_TBL_NEW, returns STATUS. Category: class message.

typedef enum TBL FREE BEHAVE ({

tsFreeNoDeleteFile =0, // Free only the object, not the file
tsFreeDeleteFile = flag0, // Destroy the file when freed
tsFreeWhenNoClients = flagl, // Free when # clients accessing is 0
tsFreeNoObservers = flag2, // Free when # of observers is 0
tsFreeNoCompact = flag3, // Don’t compact the table when freed
tsFreeDefault = tsFreeNoDeleteFile

} TBL FREE BEHAVE, *P_TBL FREE BEHAVE;

typedef enum TBL_EXIST {
// Same values as FS_EXIST MODE

tsExistOpen =0, // Open an existing table
tsExistGenError =1, // Return error if table exists
tsExistGenUnique = 2, // Create table with a unique name
tsNoExistCreate = MakeUl6(0,0), // Create a new table
tsNoExistGenError = MakeU16(0,1), // Return error if no table exists
tsExistDefault = tsExistOpen | tsNoExistCreate

} TBL_EXIST, *P_TBL EXIST;
typedef struct TBL CREATE {
TBL COL_COUNT colCount; // number of columns
P _TBL COL DESC colDescAry; // TBL_COL DESC array
} TBL_CREATE, *P_TBL CREATE;

typedef struct TBL NEW ONLY {

CHAR name [TBL MAXTBLNAMELEN]; // Table name
FS_LOCATOR locator; // Table file
TBL_EXIST exist; // Table exist behavior
TBL_CREATE create; // Column specifications
TBL_FREE_BEHAVE freeBehavior; // Table free behavior
BOOLEAN createSemaphore; // Provide semaphore?

} TBL NEW ONLY, *P_TBL NEW ONLY;

#define tableNewFields \
objectNewFields \

TBL_NEW ONLY table;

typedef struct TBL NEW {
tableNewFields
} TBL NEW, *P_TBL NEW;

This message creates a new table file or opens an existing file.

The table name is an optional field. The locator and colDescAry fields must be valid and colCount

must be non zero or this message returns stsBadParam.
stsTBLBadNewFlags TBL_EXIST flags were invalid.

stsBadParam locator or colDescAry fields are invalid. colCount is 0.

Message
Argumentis

msgNewDefaults

Initializes the TBL_NEW structure to default values.
Takes P_TBL_NEW, returns STATUS. Category: class message.

typedef struct TBL NEW {
tableNewFields
} TBL_NEW, *P_TBL_NEW;

9 / UTILITY CLASSES

314 PENPOINT AP! REFERENCE
Part 9 / Utility Classes

Camments Zeroes out pNew->table and sets:
pNew->table.name[0] = "\0’;
pNew->table.locator.uid = objNull;
pNew->table.locator.pPath = pNull;
pNew->table.exist = tsExistDefault;
pNew->table.create.colCount =0;
pNew->table.create.colDescAry = pNull;
pNew->table. freeBehavior = tsFreeDefault;
pNew->table.createSemaphore = false;

msgDestroy

Destroys an existing table object.
Takes OBJ_KEY, returns STATUS. Category: class message.

Comments This message destroys the table object and frees the table files if the object was created with the
tsFreeDeleteFile flag specified.

The table file will not be destroyed regardless of whether tsFreeDeleteFile was specified if there are still
accessors to the table. Only the object will be freed.

Return Volue stsTBLRefCountNotZero The number of accessors of the table is not zero. The table file will not be
destroyed.

Object Messages

’» Table Row Addition and Deletion Messages

msgTBLAddRow

Adds a row/record with no data to the table server object.
Takes P_TBL_ROW_POS, returns STATUS.

#define msgTBLAddRow MakeMsg (clsTable, 1)

Comments The row position (TBL_ROW_POS) for the new row is passed back. The row position is the key to access
data in the row or to delete the row.

msgTBLDeleteRow

Deletes the specified row.

Takes P_TBL_ROW_POS, returns STATUS.
#define msgTBLDeleteRow MakeMsg (clsTable, 5)

Comments Rows are deleted from the table at the completion of this call. The row’s TBL_ROW_POS is no longer
valid after the row has been deleted.

Return Volue stsTBLEndOfTable TBL_ROW_POS value was not found in the table.

TS.H 315

Object Messages

¥ Table Data Messages

Arguments

Comments

Return Volue

msgTBLColGetData

Passes back the data for the specified row and column.

Takes P_TBL_COL_GET_SET_DATA, returns STATUS.

#define msgTBLColGetData MakeMsg (clsTable, 13)

typedef struct TBL COL_GET SET DATA {
TBL_ROW_POS tblRowPos; // In: Table row position
TBL_COL_INX TYPE colNumber; // In: Column number
P_TBL COL DATA HOLDER tblColData; // Out: Column data

} TBL COL GET SET DATA, *P_TBL COL_GET SET DATA;
tblColData is of type P_TBL_STRING if the column type is tsString, tsCaseString, or tsByteArray.

The client is responsible for allocating storage for the tbIStr.pStr buffer. If the buffer is too small to
accomodate the requested data, the table will return stsTBLStrBufT'ooSmall and pass back the
truncated data and the actual length of the data in tblStr.strLen.

stsTBLStrBufT'ooSmall Returned if column type is tsString, tsCaseString or tsByteArray and
tblStr.strMax is less than the actual data length. The data is truncated and the length is returned in
tblStr.strLen.

stsTBLEndOfT'able TBL_ROW_POS value was not found in the table.

Messoge
Arguments

Comments

Return Value

msgTBLColSetData

Sets the data for the specified row and column.

Takes P_TBL_COL_GET_SET_DATA, returns STATUS. ,
#define msgTBLColSetData MakeMsg (clsTable, 14)

typedef struct TBL COL GET SET DATA {
TBL_ROW_POS tblRowPos; // In: Table row position
TBL COL INX_TYPE colNumber; // In: Column number
P_TBL_COL DATA HOLDER tblColData; // Out: Column data

} TBL_COL_GET SET DATA, *P_TBL COL_GET SET DATA;

tblColData is of type P_TBL_STRING if the column type is tsString, tsCaseString, or tsByteArray.
Clients are responsible for setting the strLen field of the TBL_STRING argument for all column types.

stsTBLEndOfT'able TBL_ROW_POS value was not found in the table.

Arvguments

Comments

msgTBLRowGetData

Gets the contents of an entire row.

Takes P_TBL_GET_SET_ROW, returns STATUS.

#define msgTBLRowGetData MakeMsg (clsTable, 15)
typedef struct TBL GET SET ROW {

TBL_ROW_POS tblRowPos; // In: Which row

P_UNKNOWN pRowData; // Out: Row data

} TBL_GET SET ROW, *P_TBL GET SET ROW;
Not valid for tables containing variable length columns.

The client is responsible for providing storage for the pRowData buffer. The length of a table row can
be obtained using msgTBLGetRowLength.

9 / UTILITY CLASSES

316

Refurn Yolue

PENPOINT APl REFERENCE
Part 9 / Utility Classes

stsTBLEndOfTable TBL_ROW_POS value was not found in the table.

stsTBLContainsIndexedCols Table contains variable length columns.

See Also msg TBLGetRowLength
msgTBLRowSetData
Sets the contents of an entire row.
Takes P_TBL_GET_SET_ROW, returns STATUS.
#define msgTBLRowSetData MakeMsg(clsTable, 16)
Message typedef struct TBL GET SET ROW {
Arguments TBL_ROW_POS tblRowPos; // In: Which row
P_UNKNOWN pRowData; // Out: Row data
} TBL_GET SET ROW, *P_TBL GET_SET ROW;
Comments Not valid for tables containing variable length columns.

Return Value

See Also

stsTBLEndOfTable TBL_ROW _POS value was not found in the table.
stsTBLContainsIndexedCols Table contains variable length columns.
msgTBLGetRowLength

¥» Table Information Messages

msgTBLGetlnfo

Gets the table header information.

Takes P_TBL_HEADER, returns STATUS.

#define msgTBLGetInfo MakeMsg(clsTable, 10)
Arguments typedef struct TBL_HEADER {
TBL_COL_COUNT colCount; // number of columns in table
CHAR name [TBL. _MAXTBLNAMELEN];// non-file table reference
TBL_ROW_COUNT nRows; // how many rows in table
TBL_ROW_LENGTH rowLength; // row buffer length
TBL_ROW_POS firstRow; // position of first row in table
TBL_ROW_POS currentRow; // position of current row in table
TBL_ROW_POS lastRow; // position of last row in table
TBL_REF COUNT refCount; // number of active clients.
} TBL_HEADER, *P TBL HEADER, **PP_TBL HEADER;
Sme Also msgI'BLGetColCount,,,
msgTBLGetColCount

Gets the number of columns in the table.

Takes P_TBL_COL_COUNT, returns STATUS.
#define msgTBLGetColCount MakeMsg(clsTable, 7)

msgTBLGetColDesc

Passes back the column description for the specified column.
Takes P_TBL_GET_COL_DESC, returns STATUS.

#define msgTBLGetColDesc MakeMsg (clsTable, 2)

TS.H 317
Object Messages

Arguments typedef struct TBL GET_COL_DESC {
TBL_COL_INX TYPE collnx; // In: column number
TBL_COL_DESC colDesc; // Out: column decription
) TBL GET COL DESC, *P TBL GET COL DESC;
msgTBLGetRowCount
Gets the current number of rows in the table.
Takes P_TBL_ROW_COUNT, returns STATUS.
#define msgTBLGetRowCount MakeMsg (clsTable, 6)
msgTBLGetRowLength
Gets the length (in bytes) of the specified row.
Takes P_TBL_ROW_LENGTH, returns STATUS.
#define msgTBLGetRowLength MakeMsg(clsTable, 8)
Comments The row length indicates the total width of all columns for each row in the table. This information is
useful when getting and setting row data.
See Also mngBLRowGetData
msgTBLGetState
Gets the current state of a specified row.
Takes P_TBL_GET_STATE, returns STATUS.
#define msgTBLGetState MakeMsg(clsTable, 11)
Arguments typedef enum TBL STATE {
tsBegin = 0, // rowPos is the first row
tsEnd =1, // rowPos is the last row
tsPosition = 2 // rowPos is not first or last
} TBL_STATE, *P_TBL_ STATE;
typedef struct TBL GET STATE ({
TBL_STATE tblState; // Out: State of the specified row
TBL_ROW_POS tblRowPos; // In: Row position of the specified row.
} TBL_GET STATE, *P_TBL GET STATE;
Comments The state of a row in the table indicates its general positioning within the table.

Boturn Yalue

stsTBLEndOfTable TBIL_ROW_POS value was not found in the table.

7> Table Access Messages

Arguments

Comments

msgTBLBeginAccess

Initiates table access by a client on this table.

Takes P_TBL_BEGIN_ACCESS, returns STATUS.

#define msgTBLBeginAccess MakeMsg(clsTable, 17)

typedef struct TBL_BEGIN ACCESS {
OBJECT sender; // In: sender’s id IFF wants to be observer
TBL ROW LENGTH rowlength; // Out: Length of the first row

} TBL BEGIN ACCESS, *P_TBL BEGIN ACCESS;

Passes back the row length of the first row. Adds the sender to the table’s observer list.

9 / UTILITY CLASSES

318 PENPOINT APl REFERENCE
Part 9 / Utility Classes

msgTBLEndAccess

Ends client access to the table.

Takes P_TBL_END_ACCESS, returns STATUS.

#define msgTBLEndAccess MakeMsg(clsTable, 18)

Arguments typedef struct TBL END ACCESS {
OBJECT sender; // In: Sender’s uid
} TBL END ACCESS, *P_TBL END ACCESS;

Comments Removes sender from the observer list.

msgTBLSemaClear

Releases the table’s semaphore.

Takes nothing, returns STATUS.

#define msgTBLSemaClear MakeMsg{clsTable, 23)
Comments The next client currently waiting on the table semaphore will unblock when this messages completes.
msgIBLSemaRequest

Requests access to the table’s semaphore.

Takes nothing, returns STATUS.
#define msgTBLSemaRequest MakeMsg(clsTable, 22)

Comments Waits on the table semaphore if another client already has access. Provides exclusive access of the table
semaphore to the sender when it returns.

Semaphore access has no timeout.

> Table Search Messages

msgTBLFindFirst

Finds the first record that meets the search specification.

Takes P_TBL_FIND_ROW, returns STATUS;.

#define msqTBLFindFirst MakeMsg (clsTable, 3)

Arguments typedef enum TBL BOOL_OP {
tsEql =0, // Match if operands are equal
tsEqual 1, // Match if operands are equal
tsLess =2, // Match if opndl < opnd2
tsGreater =3, // Match if opndl > opnd2
tsGreaterEqual = 4, // Match if opndl <= opnd2
tsLessEqual =5, // Match if opndl >= opnd2
tsNotEqual = 6, // Match if the operands do not match
tsSubstring =17, // Match if opndl is an exact substring of opnd2
tsStartsWith = 8, // Match if opndl starts with opnd2
tsAlwaysTrue =9 // Match the first (or next) row

} TBL_BOOL OP, *P_TBL_BOOL OP;
typedef struct TBL_SEARCH SPEC {

TBL_COL_INX TYPE colOperand; // In: Which column
TBL_BOOL_OP relOp; // In: Operation
P_TBL_COL DATA HOLDER pConstOperand; // In: Value to search against

} TBL SEARCH SPEC, *P_TBL SEARCH SPEC;

Comments

Return Value

TS.H 319
Object Messages

typedef struct TBL_FIND_ROW {

TBL ROW_POS rowPos; // In:Out - current table position
TBL_ROW_NUM rowNum; // Out: indexed column row number

TBL SEARCH SPEC srchSpec; // In: search query

TBL_COL_INX TYPE sortCol; // In: which column sort to use (if any)
P_ROW_BUFFER pRowBuffer; // In: pointer to client’s buffer space

} TBL FIND ROW, *P_TBL FIND ROW;
Passes back the TBL_ROW_POS and TBL_ROW_NUM of the row.

srchSpec.pConstOperand is of type P_TBL_STRING if the column type is tsString, tsCaseString, or
tsByteArray. The length of the string/array used in the search is decalred in the strLen field of the
TBL_STRING struct. Clients are responsible for setting this field to the appropriate length for columns of
type tsString, tsCaseString, and tsByteArray.

srchSpec.pConstOperand is ignored if srchSpec.relOp is tsAlwaysI'rue.
Currently, tsSubstring searches are always case sensitive regardless of the column type.
stsTBLEndOfTable No data was found matching the search spec.

stsTBLInvalidSortColValue sortCol is not a valid column value.

Message
HArguments

Commsnts

Roturs Value

msgTBLFindNext

Find the next record following the specified TBL_ROW_POS that meets the search specification.

Takes P_TBL_FIND_ROW, returns STATUS.

#define msgTBLFindNext MakeMsg(clsTable, 4)

typedef struct TBL_FIND ROW {
TBL_ROW_POS rowPos; // In:Out - current table position
TBL_ROW_NUM rowNum; // Out: indexed column row number
TBL_SEARCH_SPEC srchSpec; // In: search query
TBL_COL_INX TYPE sortCol; // In: which column sort to use (if any)
P_ROW_BUFFER pRowBuffer; // In: pointer to client’s buffer space

} TBL FIND ROW, *P_TBL FIND ROW;
Passes back the TBL ROW_POS and TBL_ ROW_NUM of the row.

srchSpec.pConstOperand is of type P_TBL_STRING if the column type is tsString, tsCaseString, or
tsByteArray. The length of the string/array used in the search is decalred in the strLen field of the
TBL_STRING struct. Clients are responsible for setting this field to the appropriate length for columns of
type tsString, tsCaseString, and tsByteArray.

srchSpec.pConstOperand is ignored if srchSpec.relOp is tsAlwaysT rue.
If srchSpec.colOperand is an unsorted column, then the order of the rows searched is random.

stsTBLEndOfTable No data was found matching the search spec, or rowPos is was not found in the
table.

stsTBLInvalidSortColValue sortCol is not a valid column value.

"> Table Utility Messages

msgTBLFindColNum

Passes back the column number for the specifed column name.
Takes P_TBL_COL_NUM_FIND, returns STATUS.

#define msgTBLFindColNum MakeMsg (clsTable, 12)

9 / UTILITY CLASSES

320

Arguments

Return Valve

PENPOINT API REFERENCE
Part 9 / Utility Classes

typedef struct TBL_COL NUM FIND {
P_CHAR name; // In: Column name
TBL COL_INX TYPE number; // Out: Column number
} TBL COL_NUM FIND, *P TBL COL NUM FIND;

stsTBLColNameNotFound A column with the specified name does not exist.

Commants

msgTBLCompact

Compacts the table without closing it.

Takes nothing, returns STATUS.

#define msgTBLCompact MakeMsg (clsTable, 24)

This message allows clients to compact a table on demand. Compaction frees up any storage associated
with previously deleted rows and compacts the table to its minimum file size. Ordinarily, a table is
compacted automatically when the last client accessing the table closes it unless specifically prevented by
specifying tsFreeNoCompact during msgNew.

Arguments

Comments

Return Valus

msgIBLRowNumI'oRowPos

Converts a TBL_ROW_NUM to its corresponding TBL_ROW_POS for the specified column.
Takes P_TBL_CONVERT_ROW_NUM, returns STATUS.

#define msgTBLRowNumToRowPos MakeMsg (clsTable, 28)

typedef struct TBL_CONVERT ROW NUM {

TBL_ROW_POS rowPos; // Out: - Table row pos.

TBL_ROW_NUM rowNum; // In: - Index row number.

TBL_COL_INX TYPE colNum; // In: - Indexed (sorted) column number.
} TBL_CONVERT_ROW_NUM, *P_TBL_CONVERT ROW_NUM;

This message is defined only for sorted columns. Unsorted columns do not have a defined order.

stsTBLEndOfT'able rowNum is larger than the number of rows in the table.

stsTBLColNotIndexed The specified column is not sorted.

7 Observer Messages

Comments

msgTBLRowAdded

Sent to observers indicating that a row has been added.
Takes P_TBL_ROW_POS, returns STATUS. Category: observer notification.
#define msgTBLRowAdded MakeMsg(clsTable, 19)

A pointer to the newly added TBL_ROW_POS is sent as an argument.

msgTBLRowDeleted

Sent to observers indicating that a row has been deleted.

Takes nothing, returns STATUS. Category: observer notification.
#define mngBLRowDeleted MakeMsg (clsTable, 20)

TS.H 321
Observer Messages

Comments

msgTBLRowChanged

Sent to observers indicating that row data has been changed.

Takes P_TBL_ROW_POS, returns STATUS. Category: observer notification.
#define msgTBLRowChanged MakeMsg(clsTable, 21)

A pointer to the changed TBL_ROW_POS is sent as an argument.

9 / UTILITY CLASSES

PENPOINT API REFERE

 PART 9 / UTILITY (

This file contains the API definition for theUndoManager. theUndoManager is the wknProcessGlobal
instance of clsUndo.

clsUndo inherits from clsList.

The functions described in this file are contained in MISC.LIB.

% Introduction

theUndoManager provides a centralized facility for managing undo information. theUndoManager
supports undo of user interface actions.

An undoable operation, or "undo transaction," is a collection of "undo items." Typically an undoable
operation is a small UI action (e.g. deleting some text).

When the user issues an "Undo" command the most recent undo transaction will be undone. A typical
scenario goes something like this:

¢ In response to some user interface action, a message handler begins an undo transaction with
msgUndoBegin and then sends messages which manipulate the application’s data.

¢ As the data manipulation routines do their work, they add undo items to the undo transaction via

msgUndoAddItem.
¢ When the user interface handler regains control, the transaction is closed with msgUndoEnd.

¢ At some later date, the transaction might be undone. theUndoManager undoes a transaction by
sending msgUndoltem to each item in the transaction (in the reverse order in which they were

added).

¢ If the transaction is not undone, but instead falls off the end of the undo transaction queue, then
the transaction is freed. (A transaction is also freed if the application is terminated.)
theUndoManager frees a transaction by sending msgUndoFreeltemData to each item in the
transaction. (But see the comments near the typedef UNDO_ITEM for some circumstances under
which theUndoManager doesn’t send msgUndoFreeltemData but instead frees the item itself.)

%» Common Messages
Typical application code will send the following messages to theUndoManager:
¢ msgUndoBegin
¢ msgUndoEnd
¢ msgUndoAddItem
Typical application code will receive the following messages from theUndoManager:
¢ msgUndoltem
¢ msgUndoFreeltemData

See the individual descriptions of each of these messages for more information.

324 PENPOINT API REFERENCE
Part 9 / Utility Classes

¥ Debugging Flags
Undo’s debugging flag set is "U.” Defined flags are:
0001 Show messages sent to theUndoManager.
0002 Show clsUndo initialization.
0004 Show msgUndoAddItem.
0008 Shéw undoing a undo transaction.
0010 Show creating a undo transaction.

0020 Show destroying an undo transaction.

% The Current Transaction
At any time, there is at most one current undo transaction open. The current undo transaction includes:
¢ aunique id of type UNDO_ID
¢ the OS_TASK_ID of the task that issued the msgUndoBegin that began the transaction

anesting count which is the number of msgUndoBegin’s minus the number of msgUndoEnd’s.
(See the section "Nesting of msgUndoBegin and msgUndoEnd.")

¢ a2 heap with local scope from which clients can allocate space for undo information

¢ 2 list of undo items added to the transaction so far..

¥ The Undo Queue

theUndoManager maintains a queue of undo transactions. By default theUndoManager has a queue
length of 2, but an application can set the limit by sending msgUndoLimit to theUndoManager.

Your code should not depend on any particular queue size.

’% Nesting of ningndoBegin and msgUndoEnd

In response to msgUndoBegin, theUndoManager opens a new transaction if there is no open

!) g g

transaction; otherwise it simply increments a "nesting count.” The nesting count is decremented when-
theUndoManager receives msgUndoEnd. When the count becomes zero, the transaction is closed.

This allows you to write code that doesn’t know whether it there is an open transaction or not. If the
code wants to record undo information, it can simply send a msgUndoBegin / msgUndoEnd pair. If
there was no open transaction, the result is that one will be created. And if there is one open, then the
code’s items will be added to that one.

It is vital that every msgUndoBegin have a matching msgUndoEnd!

To guard against erroneous code never terminating the current transaction, and thus having that
transaction slowly consume all of system memory, there is 2 bounds on the depth of nesting permitted.
(This bounds is approximately 1000.) If the bounds is exceeded, the open transaction is automatically
closed.

UNDO.H 325

’» Memory Management
Each undo item records the information necessary to undo and/or free itself.

Often this information has to be remembered in allocated memory or objects that must be freed once
the item can no longer be undone. For instance, an undoable operation might involve deleting an
object. However, you probably don’t want to destroy the object until you're sure that the operation can’t
be undone. But eventually that object has to be destroyed.

Normally theUndoManager will send msgUndoFreeltemData to the object stored in each UNDO_ITEM.
The handler should respond by freeing any resources associated with the item. Typically those resources
are pointed to by item.pData.

But there are five ways in which you and theUndoManager can cooperate so that theUndoManager can
free the resources for you.

¢ If ufDatalsHeapNode is set in item.flags, then item.pData must point to a heap block.
theUndoManager will free item.pData by calling OSHeapBlockFree(item.pData).

¢ If ufDatalnUndoHeap is set in item.flags, then item.pData must point to heap block allocated
from the current transaction’s heap. theUndoManager will free item.pdata when it destroys the
transactions’s heap.

¢ If ufDatalsObject is set in item.flags, then item.pData must be an object UID. theUndoManager
will free item.pdata by calling ObjectSend(msgDestroy, item.pData, ...). (See the section "Freeing
Undone Items" for one reason NOT to use this variation.)

¢ If ufDatalsSimple is set in item.flags, then item.pData is treated as a 32 bit value. There is no need
for theUndoManager to do anything to free item.pData.

¢ If none of the above flags is set in item.flags, and item.dataSize is non-zero, then when the item is
added to the transaction (with msgUndoAddItem) theUndoManager copies item.dataSize bytes
from item.pData into a block allocated from the current transaction’s heap. theUndoManager then
frees item.pData when it destroys the transactions’s heap.

% Freeing Undone ltems

Even an item that has been undone will be freed. It might be automatically freed by theUndoManager,
as described in the section on Memory Management, or it might be freed by sending
msgUndoFreeltemData to item.object.

Often freeing an item’s data is done the same way regardless of whether the item has been undone or
not. But there are cases where the difference is very important. Here’s an example. Assume that the
undoable operation includes deleting an object. If the operation is undone, then the object is "put back”
into the application.

If the item IS undone, then the object should NOT be destroyed when the item is freed. But if the
operation IS NOT undone, then the object should be destroyed when the object is destroyed.

For items that need to free the item’s data differently in these two cases, the fact that the item has been
undone should be recorded in the item when msgUndoeltem is received. Then the code responding to
msgUndoFreeltemData can check this recorded value. (One convenient place to record this value is in

the item’s ufClient flags.)

9 / UTILITY CLASSES

326 PENPOINT APl REFERENCE
Part 9 / Utility Classes

%> Adding Items When No Transaction is Open

When theUndoManager is undoing a transaction, there is no current open transaction. But, as
described in the typical scenario above, data manipulation routines will attempt to add items anyhow.
Therefore it is CRITICAL that your code check the value returned from msgUndoAddItem and handle
it properly.

There are several ways to do this, but here’s one convenient approach. (This approach works ONLY if
you DON’T use any of theUndoManager’s memory management functionality.)

If you’re not using the memory management facilities of theUndoManager, then you're most likely
allocating memory to hold the client data part of an undo item. That memory has been allocated before
calling msgUndoAddItem and must be freed if the msgUndoAddItem fails. Conveniently, an item’s
client data can be freed by sending msgUndoFreeltemData to the object stored in item.object.

Simply define a utility routine that attempts to add an item, and which frees the item if adding fails.
Then always use that routine to add items. The routine will look something like:
if (ObjectCall (msgUndoAddItem, theUndoManager, pItem) < stsOK) {
return ObjCallWarn(msgUndoFreeltemData, pItem->object, pItem);
} else {
return stsOK;

}

%> Subclass Issues
A class and any number of its ancestors may contribute items to an undo transaction.

Thus, every msgUndoFreeltemData handler should first check that item.subclass is the expected value.
If it isn’t, the message should be passed onto the ancestor. So a msgUndoFreeltemData handler should
look something like:

MsgHandlerWithTypes (RTItemUndoFreeItemData, P_UNDO ITEM, PP_DATA)
{
if (pArgs->subclass != clsRTItem) {
return ObjectCallAncestorCtx(ctx);
} else {

)

’» Flushing the Undo Queue

There may be "points of no return" in an application’s execution beyond which undoing previous
operations is impossible or non-sensical. (For instance, it may not be possible to undo operations if the
application’s data files are saved via msgAppSave.)

You should flush the queue when one of these "points of no return” is encountered. The queue can be
flushed by performing the following three steps: (1) get the current undo limit via msgUndoGetMetrics,
(2) send msgUndoLimit with a pArgs of 0 (which actually flushes the queue), and (3) send
msgUndoLimit, but this time with the limited returned by the previous call to msgUndoGetMetrics.

¥ Aborting a Transaction

UNDO.H 327

Sometimes it is necessary to abort an operation part way through. (For instance, the user might not

confirm the operation.) If this happens, you should abort the then the undo transaction with
msgUndoAbort. See the comments on msgUndoAbort for more information.

#$ifndef
$#define

#ifndef

UNDO_INCLUDED
UNDO_INCLUDED

LIST_INCLUDED

#include <list.h>

#endif

typedef
#define
#define
#define
$define
#define
#define
#define

"Types and Constants

STATUS UNDO_ID; // A transaction’s id.
stsUndoAbortingTransaction MakeStatus(clsUndo, 1)
stsUndoDataFreed MakeWarning(clsUndo, 1)
undoStateNil 0

undoStateBegun flag0

undoStateUndoing flagl

undoStateRedoing flag2 // Not implemented

undoStateAborting flag3

Exported Functions

STATUS PASCAL
InitClsUndo (void) ;

% UNDO_ITEM
typedef struct UNDO_ITEM {
OBJECT object; // In:
OBJECT subclass; // In:
Ulé flags; // In:
P_UNKNOWN pData; // In:
SIZEOF dataSize; // In:

Message Arguments

} UNDO_ITEM, *P UNDO_ITEM;

object that undoes/frees item
See "Subclass Issues" section
See "Memory Management" section
See "Memory Management" section
See "Memory Management" section

The following flags are used in the flags field of an UNDO_ITEM.

#define
#define
#define
#define
#define
#define
#define

ufReserved (0x££00)

ufClient (flag0|flagl|flag2|£flag3)
ufDataType (flag4|flag5|flag6lflag7|ufReserved)
ufDataInUndoHeap flag4

ufDataIsHeapNode flagb
ufDatalsObject (flag5|flag4)
ufDataIsSimple (flag61£flag4)

¥ Other Message Arguments

typedef struct UNDO_METRICS {
UNDO_ID id;
0S_HEAP_ID heapld;
Ul6 state;
Ul6 transactionCount;
Ule itemCount;
U32 limit;
U32 resld;
U32 info;

} UNDO METRICS, *P_UNDO_METRICS;

// In:Out Nil => get current
// Out

// out

// out

// Out

// out

// out

// Reserved

9 / UTILITY CLASSES

328 PENPOINT APl REFERENCE
Part 9 / Utility Classes

#define undoNewFields \
listNewFields \
UNDO_NEW_ONLY undo;

typedef struct UNDO NEW _ONLY {

U32 reserved; // Reserved for expansion
P_UNKNOWN pReserved; // Reserved for expansion
U32 maxTransactions;

} UNDO_NEW_ONLY, *P_UNDO_NEW_ONLY;

typedef struct UNDO_NEW {
undoNewFields
} UNDO_NEW, *P_UNDO_NEW;

P Messages

Next: 11; recycled: none

msgUndoAbort

Aborts the current undo transaction.

Takes pNull, returns STATUS.

#define msgUndoAbort MakeMsg (clsUndo, 10)

Comments The current transaction is flagged as being aborted. Until the transaction is closed, any attempted
msgUndoAddItem, msgUndoBegin, and msgUndoEnd (including the one that finally closes the
transaction) will fail and return stsUndoAbortingTransaction. Once the msgUndoEnd that closes the
transaction is received, any remaining undo items in the aborted transaction are freed.
msgUndoAddItem
Adds a new item to the current undo transaction if and enly if it is still open.

Takes P_UNDO_ITEM, returns STATUS.
#define msgUndoAddItem MakeMsg (clsUndo, 0)
Message typedef struct UNDO_ITEM {
Arguments OBJECT object; // In: object that undoes/frees item
OBJECT subclass; // In: See "Subclass Issues" section
Ulé6 flags; // In: See "Memory Management" section
P_UNKNOWN pData; // In: See "Memory Management" section
SIZEQF dataSize; // In: See "Memory Management" section
} UNDO_ITEM, *P UNDO_ITEM;

Comments theUndoManager returns stsFailed if an open transaction does not exist. Any other error status indicates
that there are not enough resources available to add the item.
msgUndoBegin
Creates a new undo transaction if there is no current transaction, or increments the nesting count if
there is a current transaction.

Takes RES_ID, returns STATUS or UNDO_ID.
#define msgUndoBegin MakeMsg (c1lsUndo, 1)
Comments See the "Nesting of msgUndoBegin and msgUndoEnd" section for information about how to send this

message.

Return Volue

UNDO.H 329
Messages

stsFailed Nesting limit exceeded.

stsOK Returned status is actually the id of the new (or currently open) transaction. Cast it to type
UNDO_ID.)

The RES_ID for a transaction is determined by the first msgUndoBegin with a non-null argument. The
string identified by the RES_ID of the current undo transaction is used as the string for the "Undo"
menu item. The RES_ID should specify a resGrpTK string resource list. (This is analogous to the quick
help strings that are found in the resGrpQHelp string resource list.)

Commuants

msgUndoCurrent

Undoes the most recent undo transaction.

Takes pNull, returns STATUS.

f#define msgUndoCurrent MakeMsg (clsUndo, 2)

msgUndoCurrent undoes the most recent transaction. If a transaction is currently open the transaction
is closed first, and then undone.

It is unusual for a client to send this message. The only real reason for sending this message is if some
piece of client code is implementing an alternative UI mechanism to invoke the undo mechanism.

Comments

Return Volue

msgUndoEnd

Decrements the nesting count of (and thus may end) the current transaction.
Takes pNull, returns STATUS.

#define msgUndoEnd MakeMsg (clsUndo, 3)

See the "Nesting of msgUndoBegin and msgUndoEnd" section for information about how to send this
message.

stsFailed No open transaction.

Message
Arguments

Lomuments

Return Volue

msgUndoGetMetrics

Passes back the metrics associated with an undo transaction.

Takes P_UNDO_METRICS, returns STATUS.

#define msgUndoGetMetrics MakeMsg (clsUndo, 4)
typedef struct UNDO_METRICS {
UNDO_ID id; // In:Out Nil => get current
0S_HEAP ID heapId; // Out
Ulé state; // Out
Ulé transactionCount; // Out
Ulé itemCount; // Out
U32 limit; // Out
U32 resId; // out
U32 info; // Reserved

} UNDO_METRICS, *P_UNDO_METRICS;
Only an pArgs->id of Nil(UNDO_ID), representing the current undo transaction, is supported.

stsFailed The specified transaction does not exist or there is in sufficient memory available to
manipulate it.

9 / UTILITY CLASSES

330 PENPOINT API REFERENCE
Part 9 / Utility Classes

msgUndoLimit

Sets the maximum number of remembered undo transactions.
Takes U32, returns STATUS.

#define msgUndoLimit MakeMsg (clsUndo, 8)

Comments The default undo limit is 2. If your application wants to support a longer undo history, send
msgUndoLimit to theUndoManager with the desired limit.

If there are more transactions in the queue than the new limit, the extra transactions will be freed.
Setting the limit to 0 flushes all transactions and effectively disables undo until the limit is set to some
non-zero value.

msgUndoLimit always returns stsOK.

msgUndoRedo

Not implemented.

Takes pNull, returns STATUS.

#define msgUndoRedo MakeMsg (c1lsUndo, 5)

Comments Not implemented. Do not send this message.

msgUndoltem

Sent to pArgs->object to have the item undone.

Takes P_UNDO_ITEM, returns STATUS.

#define msgUndoItem MakeMsg (clsUndo, 6)
Message typedef struct UNDO_ITEM {
Arguments - OBJECT object; // In: object that undoes/frees item
OBJECT subclass; // In: See "Subclass Issues" section
Uleé flags; // In: See "Memory Management" section
P_UNKNOWN pbata; // In: See "Memory Management" section
SIZEOF dataSize; // In: See "Memory Management" section
} UNDO_ITEM, *P_UNDO_ITEM;
Comments Note that the item will be freed in a separate step later.
msgUndoFreeltemData

Sent to pArgs->object to have pArgs->pData freed.

Takes P_UNDO_ITEM, returns STATUS.

#define msgUndoFreeItemData MakeMsg (c1lsUndo, 7)
Message typedef struct UNDO_ITEM {
Arguments OBJECT object; // In: object that undoes/frees item
OBJECT subclass; // In: See "Subclass Issues" section
Ule flags; // In: See "Memory Management" section
P_UNKNOWN pData; // In: See "Memory Management" section
SIZEOF dataSize; // In: See "Memory Management" section

} UNDO_ITEM, *P_UNDO_ITEM;

Comments See the "Memory Management,” "Subclass Issues” and "Freeing Undone Items" sections for information
about how to respond to this message. ‘

PENPOINT API REFERENCE / VOL 11

PART 9 / UTILITY CLASSES

XFER.H

This file contains the API definition for clsXfer and clsXferList.

clsXfer inherits from clsStream.

clsXfer defines the mechanisms used for transferring data between objects.
clsXferList inherits from clsList.

clsXferList is used by the transfer mechanism.

Most clients of PenPoint’s data transfer mechanism should use the procedural interfaces defined in this

file.

The functions described in this file are contained in XFER.LIB.

7 Introduction

¥ Key Concepts
This file describes some of PenPoint’s support for transferring data.
There are a few central concepts that underlie PenPoint’s data transfer mechanism:

¢ Sender and Receiver. There are two sides to any data transfer. "Sender" refers to the object providing
the data and "Receiver” refers to the object receiving the data. These two objects can be in different
processes, or in the same process. They can even be the same object! '

¢ Two Stages. Each PenPoint data transfer has two major stages. In the first stage the Sender and
Receiver engage in a simple protocol to determine if the data can be transferred, and if so what
"type" the data has. In the second stage, the data is actually transferred using a protocol that is
specific to the type agreed to during Stage 1.

¢ Data Transfer Types. A Sender and Receiver need to agree on a data transfer type that they both
understand. PenPoint defines several data transfer types and clients can define additional types. See
the section "Determining a Data Transfer Type" for more information.

¢ Data Transfer Protocol. Each data transfer type has an associated data transfer protocol. Once a
transfer type has been agreed upon, the Sender and Receiver engage in the type-specific protocol to
actually move the data. Note the same Data Transfer Protocol can be employed for multiple Data
Transfer Types, but that each Data Transfer Type uses one and only one protocol.

¥ Roadmap
Typical Receivers use the following to determine the desired data transfer type.
¢ XferMatch()
Typical Senders respond to or use the following to provide a list of data transfer types.
¢ msgXferList
¢ XferAddIds()

332 PENPOINT APl REFERENCE
Part 9 / Utility Classes

Typical Senders and Receivers who use data transfer types that use one-shot protocols use the following:
¢ msgXferGet

Senders and Receivers who use data transfer types that use stream-based protocols use the following:

¢ msgXferStreamConnect

msgXferStreamWrite

msgXferStreamFreed

XferStreamConnect()

XferStreamAccept()

* 6 o o

’% Relationship between Data Transfer and PenPoint’s Ul

PenPoint’s data transfer mechanism is intentionally independent of the user interface that might trigger
a data transfer. None of the interfaces defined in this file depend or define any part of a PenPoint
application’s user interface.

However, the examples given in the commentary often use PenPoint’s Ul as an example of how a data
transfer might be started. The file sel.h describes PenPoint’s Move and Copy operations in detail.

During a Move or Copy operation, the Sender object is the owner of the selection. The Receiver is the
object upon which the move/copy icon was dropped and which receives msgSelMoveSelection or
msgSelCopySelection as a result. The Receiver sends msgSelOwner to theSelectionManager to get the
Sender object and then engages in a data transfer with that object.

?» A Typical Scenario
A typical data transfer session goes something like this:

¢ The Receiver decides that it is the receiving end of a data transfer operation. (For instance, the
receiver might receive msgSelMoveSelection or msgSelCopySelection; see sel.h.)

¢ The Receiver figures out the UID of the Sender object. (For instance, in the case of
msgSelCopySelection or msgSelMoveSelection, the Sender object is the current selection owner,
which can retrieved by sending msgSelOwner to theSelectionManager.)

¢ The Receiver determines a mutually agreeable data transfer type using the utility routine XferMatch.
(See section "Determining a Common Data Transfer Type" for more detailed information about
XferMatch and alternatives.)

¢ The Sender and Receiver use the Data Transfer Protocol associated with the agreed-upon type to
actually transfer the data.

Data Transfer Types

A data transfer type is represented by a TAG.

Below is a list of PenPoint’s predefined data transfer types and the data transfer protocol associated with
each. (The protocols are described in the next section.)

-: xferString: one-shot using XFER FIXED BUF
-: xferLongString: one-shot using XFER_BUF
-: xferName: one-shot using XFER FIXED_ BUF

-: xferFullPathName: one-shot using XFER _FIXED BUF
-: xferRTF: stream

XFER.H 333
One Shot Protocols

-: xferFlatlocator: one-shot using XFER FIXED BUF

-: xferASCIIMetrics: one-shot using XFER ASCII_METRICS
-: xferScribbleObject: one-shot using XFER OBJECT

-: xferPicSegObject: one-shot using XFER OBJECT

In addition export.h and embedwin.h each define an additional data transfer type; see these files for
more information.

¥ Determining a Common Data Transfer Type
The Sender and Receiver must agree on a data transfer type.

For instance, a note taking application might be willing to provide either xferScribbleObject or
xferLongString data. A text editor might be willing to consume xferString, xferLongString or xferRTF
data. Somehow the common data type (xferLongString) must be found and used.

In PenPoint’s data transfer mechanism, the Receiver is ultimately responsible for determining the
mutually agreeable data transfer type.

Typical Receivers can use a simply utility function, XferMatch, to compute the data transfer type.
Typical Senders must respond to msgXferList and add data transfer types to the provided list with the
utility function XferAddlds.

(Most clients don’t need to know about the inner workings of XferMatch, but they are documented in
the section "Details of XferMatch” for sophisticated clients or the merely curious.)

Data Transfer Protocols

Each data transfer type uses a specific data transfer protocol.

There are three types of protocols:
¢ one-shot protocols
¢ stream-based protocols

¢ (lient-defined protocols

7 One Shot Protocols

Several data transfer types use a "One-Shot" protocol to transfer data. The protocols are called
"one-shot" because all of the data can be transferred via a single message send.

In all one-shot transfers, the Receiver uses ObjectSendUpdate to send msgXferGet to the Sender.
(ObjectSendUpdate must be used because the Sender and Receiver might be in different processes.)

The type of the pArgs to msgXferGet depends on the data transfer type -- the specific types are
described in the section "Data Transfer Types." However, all legal pArgs to msgXferGet have one thing
in common -- their first field is a data transfer type. The Receiver must fill in at least this field before
sending msgXferGet so that the Sender can tell which data transfer type is being used.

The Sender responds to msgXferGet by filling in pArgs as necessary. Some one-shot protocols require
the Sender to allocate memory. (For instance, the xferLongString data transfer type requires that the
sender allocate memory for pArgs->pBuf field of an XFER_BUF.)

Some one-shot protocols require that Sender allocate memory. Any Sender-allocated memory must be
allocated using OSHeapBlockAlloc and osProcessSharedHeapld. The Receiver must free this memory
with OSHeapBlockFree.

9 / UTILITY CLASSES

334 PENPOINT APl REFERENCE
Part 9 / Utility Classes

Stream-based protocols make use of a specialized stream that is implemented by clsXferStream.
clsXferStream adds the ability for two streams to be linked through an internal "pipe."

Once a Receiver has decided to engage in a stream-based transfer (as described in the Section "A Typical
Scenario” earlier), the steps in stream-based protocol are as follows:

¢ The Receiver calls XferStreamConnect.

¢ XferSureamConnect creates the Receiver’s stream and then sends msgXferStreamConnect to the
Sender.

¢ In response to msgXferStreamConnect, the Sender calls XferStreamAccept. Essentially all Senders
of stream-based protocols should pass self as the "Producer” parameter when they call
XferStreamAccept -- motivation and exceptions are described below.

XferStreamAccept properly creates the Sender’s stream.
When control returns to it, the Receiver sends msgStreamReadData to its stream.

As a result of the Receiver’s msgStreamReadData, the Sender receives msgXferStreamWrite.

* & o o

In response to msgXferStreamWerite, the Sender writes data using msgStreamWriteData.
IMPORTANT NOTE: In order to avoid overflowing internal buffers, Senders should not write
huge chunks of data in a single call. Chunks than 64K won'’t work at all. Memory is used more
efficiently if chunk sizes don’t exceed 10K, although things will work at any size up to 64K.

¢ The last two steps can be repeated any number of times. Eventually the Receiver gets stsEndOfData
returned when sending msgStreamReadData.

¢ The Receiver sends msgDestroy to its stream.
¢ Asa result of the Receiver’s msgDestroy, the Sender receives msgXferStreamFree.
¢ In response to msgXferStreamFree, the Sender sends msgDestroy to its stream.

The Sender must be prepared to handle msgXferStreamFreed at any time. (In addition to normal
termination, msgXferStreamFreed can indicate that the Receiver has died or otherwise has prematurely
destroyed its side of the pipe.)

% An Available Simplification

Some Senders may know that they can contain only a limited amount of data. Or they may find the
obligation to respond to msgXferStreamWrite multiple times and record how much data was actually
written each time to be unduly burdensome.

These Senders can pass objNull as the "Producer” parameter in their call of XferStreamConnect. As a
result of doing this, msgXferStreamWrite will only be sent once, and in response these Senders should
write all of their data in a single chunk.

Client-Defined Protocols

Clients can define their own data transfer types. There is a wide range of possibilities. Clients can use
msgXferGet that use a new pArgs type. They can use streams but define structure on the data being
streamed. Or they define an entirely new transfer protocol.

XFER.H 335
Common #defines and typedefs

Other Information

% Details of XferMatch

Most clients can simply use XferMatch without understanding how it works, but it’s described here for
specialized clients or the curious.

¢ XferMatch creates an instance of clsXferList

¢ It then sends msgXferList to the passed-in Sender. '

¢ The Sender responds to msgXferList by adding items to the xfer list by calling XferAddIds.
L 2

XferMatch then scans the two lists (one passed in by the Receiver and one filled in by the Sender)
using the utility function XferListSearch.

¢ If no mutually acceptable data transfer type is found, XferMatch returns stsNoMatch. Otherwise
XferMatch returns stsOK and passes back the data transfer type in *pld.

* Just before returning, XferMatch destroys the xferList.

As an alternative to calling XferMatch, the Receiver could create the list, send msgXferList to the
Sender, and then search the list for the best match (perhaps by using XferListSearch).

Also, a sophisticated Sender can use msgListAddItem (rather than XferAddIds) to add the types to the
list.

% Creating Instances of clsXfer and clsXferList

Normal clients of PenPoint’s data transfer mechanism have no need to create instances of clsXfer and
clsXferList. Instances are created internally when using the data transfer functions.

#ifndef XFER INCLUDED
#define XFER INCLUDED
#ifndef CLSMGR_INCLUDED
#include <clsmgr.h>
#endif

$ifndef STREAM INCLUDED
#include <stream.h>
$endif

#ifndef STREAM__INCLUDED
#include <list.h>
#endif

Common #defines and typedefs

" Predefined Data Transfer Types

#define xferString MakeTag (clsXfer, 1) // XferGet (FixedBuf)
#define xferLongString MakeTag (clsXfer, 2) // XferGet (Buf)

#define xferName MakeTag (clsXfer, 3) // XferGet (FixedBuf)
#define xferFullPathName MakeTag (clsXfer, 4) // XferGet (FixedBuf)
#define xferRTF MakeTag (clsXfer, 5) // Stream

#define xferGoRTF MakeTag (clsXfer, 6) // Obsolete

#define xferFlatLocator MakeTag (clsXfer, 7) // XferGet (FixedBuf)
#define xferASCIIMetrics MakeTag (clsXfer, 10) // XferGet (AsciiMetrics)

#define xferScribbleObject MakeTag(clsXfer, 11) // XferGet (Object)
#define xferPicSegObject MakeTag (clsXfer, 12) // XferGet (Object)

9 / UTILITY CLASSES

336 PENPOINT API! REFERENCE
Part 9 / Utility Classes

% XferList
Normal clients need not create xferLists since the functions create and destroy xferLists as needed.

An xferList is a subclass of clsList that always allocates globally accessible memory for the list.

$define XFER LIST NEW LIST NEW
#define P_XFER LIST NEW P_LIST NEW

7 Messages

msgXferList

Ask Sender for its list of data transfer types.
Takes OBJECT, returns STATUS.,

#define msgXferList MakeMsg(clsXfer, 1)

Comments This message is sent to the Sender to have the Sender provide the list of data transfer types it can
provide. '

The Sender can add types to the passed-in list using either msgListAddItem or XferListAddIds.

If the Sender has a preferred data transfer type, it should put this type at the beginning of the list. The
Sender can use clsList messages to change the ordering of the list (see list.h).

See Also msgListAddItems

msgXferGet
Sent by a Receiver to get "one-shot" data transfer information.
Takes lots-of-things, returns STATUS.
#define msgXferGet MakeMsg(clsXfer, 8)
Comments msgXferGet is sent by the Receiver to the stream to retrieve the data being transferred.

The type of this message’s pArgs depends on the data transfer type being used. In all cases, the first field
of pArgs must be a data transfer type so that the Sender (when it receives this message) knows what type
of data to supply and what the true type of pArgs really is.

Refurn Value stsNoMatch specified data transfer type is inappropriate

%> Variable Size Buffer

This type is used as the pArgs of msgXferGet when the data transfer type is xferLongString. This type
might also be used for client-defined data transfers.

[The rest of this description is complicated by the reversal of names. The Receiver side of the data
transfer operation sends msgXferGet and the the Sender side of the data transfer operation receives

msgXferGet.]

The Receiver (which sends msgXferGet) must set the "id" field to xferLongString. The Sender receives
msgXferGet and fills in the rest of the structure.

The Sender allocates the memory for pArgs->pBuf using OSHeapBlockAlloc from
osProcessSharedHeapld. The Receiver must free this data using OSHeapBlockFree.

XFER.H 337
Messages

When used for xferLongString, the "pBuf" field is a null-terminated string and the "len" field includes
the terminating null character. (In other words, upon return, pArgs->len must equal
(strlen(pArgs->pBuf) + 1).)

typedef struct XFER BUF {

TAG id; // In: Data transfer type

U32 data; // Unused: future use

U32 len; // Out: Length of data in pBuf
P_UNKNOWN pBuf; // Out: Buffer containing data

// Must be SHARED and freed by caller
} XFER BUF, *P_XFER BUF;

% Fixed Size Buffer
This type is used as the pArgs of msgXferGet when the data transfer type is

xferString

<

¢ xferName
¢ xferFullPathName
L 2

xferFlatLocator

[The rest of this description is complicated by the reversal of names. The Receiver side of the data
transfer operation sends msgXferGet and the the Sender side of the data transfer operation receives

msgXferGet.]

The Receiver (which sends msgXferGet) must set the "id" field to one of the data transfer types listed
above. The Sender receives msgXferGet and fills in the rest of the structure.

typedef struct XFER FIXED BUF {

TAG id; // In: Data transfer type

U32 data; // Unused. Reserved for future use
U32 len; // Out: Length of data in buf

U8 buf[300]; // Out: Buffer containing data

} XFER FIXED BUF, *P_XFER FIXED BUF;

" Object Transfer
This type is used as the pArgs of msgXferGet when the data transfer type is:
¢ xferScribbleObject
¢ xferPicSegObject.

[The rest of this description is complicated by the reversal of names. The Receiver side of the data
transfer operation sends msgXferGet and the the Sender side of the data transfer operation receives

msgXferGet.]

The Receiver (which sends msgXferGet) must set the "id" field to one of the data transfer types listed
above, and must set the "receiver” field to self (or some other object in the Receiver’s task). The Sender
receives msgXferGet and fills in the rest of the structure.

The Sender makes a copy of the object using msgCopy and returns the uid of the object in pArgs->uid.-
When the Sender sends msgCopy, it should use pArgs->receiver as the value of msgCopy’s
pArgs->requestor. '

typedef struct XFER OBJECT {

TAG id; // In: Data transfer type
OBJECT receiver; // In: Receiver

OBJECT uid; // Out: Uid of object
CLASS objClass; // Out: Class of object
U32 reserved[4]; // Reserved for future use

} XFER OBJECT, * P_XFER OBJECT;

9 / UTILITY CLASSES

338 PENPOINT APl REFERENCE
Part 9 / Utility Classes

7% ASCII Metrics
This type is used as the pArgs of msgXferGet when the data transfer type is xferASCIIMetrics.

[The rest of this description is complicated by the reversal of names. The Receiver side of the data
transfer operation sends msgXferGet and the the Sender side of the data transfer operation receives

msgXferGet.]
The Receiver (which sends msgXferGet) must set the "id" field to xferASCIIMetrics. The Sender

receives msgXferGet and fills in the rest of the structure.

"ASCII Metrics" include information about the character data that can be transferred from the Sender.
In some cases (e.g. PenPoint’s text component) it describes the selected text.

(Essentially any Sender that can provide xferASCIIMetrics can also provide some type of character data
-- typically xferString, xferLongString or xferRTE)

The "spare” field is always set to 0. The "first" field is offset of the first selected character. The "length"
field is the number of characters in the selection. The "level” field describes which lexical unit the
selection "contains."

typedef struct XFER ASCII_METRICS {

TAG id; // In: data transfer type.
U32 spare; // out: always 0
U32 first; // Out: character offset w.r.t. entire text
// maxU32 implies a bad request
U32 length; // Out: number of chars available to transfer
Ulée level; // Out: 0: undefined or unknown, 1: chars,
// 2: words, 3: sentences, 4: paragraphs

} XFER ASCII_METRICS, *P_XFER ASCII_METRICS;

msgXferStreamConnect

Sent to the Sender to ask it to link the Sender’s and Receiver’s pipe.

Takes XFER_CONNECT, returns STATUS.

#define msgXferStreamConnect MakeMsg (clsXfer, 2)

Arguments typedef struct XFER CONNECT {
TAG id; // In: Id Receiver sent to XferStreamConnect
OBJECT stream; // In: Stream created by Receiver
P_UNKNOWN clientData; // In: clientData Receiver sent to

// XferStreamConnect
} XFER_CONNECT, *P_XFER CONNECT;

Comments The Sender responds by calling XferStreamAccept to complete the connection.

In its call to XferStreamAccept, the Sender identifies the object that will generate the actual data, known
as the Producer. Essentially all Senders should pass self as the value of Producer.

See the section "Stream-Based Protocols” for more information.

msgXferStreamAuxData

Passes back auxiliary information associated with the pipe.

Takes PP_UNKNOWN, returns STATUS.
#define msgXferStreamAuxData MakeMsg (clsXfer, 4)

Comments

See Also

XFER.H 339
Stream Specific Messages
The Sender or Receiver can store auxiliary information with the pipe. using msgXferStreamSetAuxData
and retrieve that information with msgXferStreamAuxData.

This information can be used by either the Sender or Receiver to store private information or to or to
pass information across the pipe.

i
Warning: There is only one auxiliary data slot in the pipe. Only one of the Sender or Receiver should
write the data, although both can read it. Subclasses must be aware of their ancestor’s behavior in this

regard.
msgXferStreamSetAuxData

Soe Also

msgXferStreamSetAuxData

Stores arbitrary client data with the pipe.

Takes P_UNKNOWN, returns STATUS.

#define msgXferStreamSetAuxData MakeMsg(clsXfer, 5)
msgXferStreamAuxData

Comments

msgXferStreamWrite

Asks the Sender to write more data to the stream.

Takes STREAM, returns STATUS.

#define msgXferStreamWrite MakeMsg(clsXfer, 3)

The Sender responds by writing to its stream using msgStreamWrite.

The Sender may need access to its instance data to handle this message. The Sender can either
implement its own facility for mapping from the stream to the necessary instance data (perhaps using
properties; see clsmgr.h) or it can use msgXferStreamSetAuxData and msgXferStreamAuxData.

See the section "Stream-Based Protocols” for more information.

Commenis

msgXferStreamFreed

Sent to the Sender when the Receiver’s side of the stream has been freed.

Takes STREAM, returns STATUS.
#define msgXferStreamFreed MakeMsg(clsXfer, 6)

The Sender handles this message by sending msgDestroy to the stream passed in as a parameter. This
means that both streams (and hence both ends of the "pipe") have been freed.

See the section "Stream-Based Protocols” for more information.

Function Prototype

XferMatch
The Receiver calls XferMatch to find a mutually acceptable data transfer type.
Returns STATUS.
STATUS EXPORTED XferMatch (
OBJECT Sender, // In: Sender to find match with
TAG - idsil, // In: Array of types the Receiver understands
SIZEOF idsLen, // In: Length of the ids[] array

P_TAG pld); // Out: matching data type

9 / UTILITY CLASSES

340 PENPOINT AP| REFERENCE
Part 9 / Utility Classes

Comments

Return Yalue

See the section "Determining a Common Data Transfer Type" for detailed. information.
stsNoMatch No common data transfer type could be found.

non-error The common data transfer type is passed back in *pld.

$ee Also XferListSearch
XferListSearch
Searches two sets of data transfer types for a match.
Returns STATUS.
Function Prototype STATUS EXPORTED XferListSearch(
OBJECT listObject, // In: List object containing Sender types
TAG ids[], // In: Array of types the Receiver understands
SIZEOF idsLen, // In: Length of the ids[] array
P_TAG pld); // Out: Matching data type

Comments

Return Yalue

See Also

Most clients of the data transfer mechanism use XferMatch rather than calling this function.

XferListSearch scans the two sets of transfer types (one in listObject and one in the passed-in array) to

find the best match.

XferListSearch checks each item in listObject against each item in the array in order from 0 to n-1.
Hence if the array contains [tagA, tagB] and the list contains [tabB, tagA], tagA is returned. Objects
should put data types into the listObject or the array in order of most desired to least desired.

stsNoMatch No common data transfer type could be found.
non-error The common data transfer type is passed back in *pld.

XferMatch

Fonchion Prototype

LComments

XferAddIds
Adds data transfer types to listObject.

Returns STATUS.

STATUS EXPORTED XferAddIds (
OBJECT listObject,
TAG ids[],
SI1ZEOF idsLen);

Typical Senders call this function while handling msgXferList.

XferAddlds adds each item in the array of data transfer types to the list by sending msgListAddItem to
listObject. \

XFER.H 341
Stream Specific Functions

XferStreamConnect

A Recetver calls this function to create a stream connection to a Sender.
Returns STATUS.

Function Prototype STATUS EXPORTED XferStreamConnect (
OBJECT owner, // In: Sender to connect stream to
TAG id, // In: Desired data transfer type. (This is
// passed to Sender via msgXferStreamConnect.)
P _UNKNOWN clientData, // In: clientData. (This is passed to Sender
// via msgXferStreamConnect.)
P_OBJECT pStream); // Out: Stream to perform msgStreamRead on

Conunents See the section "Stream-Based Protocols” for more information.

XferStreamAccept

Called by Sender in response to msgXferStreamConnect.
Returns STATUS.

funetion Prototype STATUS EXPORTED XferStreamAccept (

OBJECT connect, // In: pArgs->stream from msgXferStreamConnect
Ule bufSize, // In: Size of transfer buffer (up to 64k)
OBJECT Producer, // In: Object to receive msgXferStreamWrite

P_OBJECT pStream); // Out: Stream for Sender side of the "pipe"

Comments As part of the Sender’s response to msgXferStreamConnect, the Sender calls XferStreamAccept to
properly create the Sender’s side of the stream.

See the section "Stream-Based Protocols” for more information.

r9 / UTILITY CLASSES

. PENPOINT API REFERENCE / VOL I

Connectivity

_PENPOINT API REFERENCE / VOL Il

PART 10 / CONNECTIVITY

ABMGR.H

This file contains the API definition for theAddressBookMgr.
theAddressBookMgr is an instance of a private class. It is the only instance of that class in the system.

theAddressBookManager is a well known object that handles registration of and access to "system”
address books. Registered address books are primarily responsible for managing the storage and retrieval
of service specific addressing information.

Registered address books adhere to the protocol defined in addrbook.h. Information about its
functionality and use can be found there.

theAddressBookMgr provides the facility to help other applications to provide a Ul for picking the
system address book. When an application wants to provide this pick list as an option card, it just needs
to pass on msgOptionAddCards before it calls its ancestor to theAddressBookMgr.
TheAddressBookMgr will do the rest.

#ifndef ABMGR INCLUDED

#define ABMGR_ INCLUDED

#include <uuid.h>
#include <go.h>

t#define tagABMgrABList MakeTag (theAddressBookMgr, 1)

‘Status Codes

#define stsABMgrAddrBookNotActive MakeStatus (theAddressBookMgr, 1)
#define stsABMgrAddrBookOpen MakeStatus (theAddressBookMgr, 2)
#define stsABMgrNoneActive MakeStatus (theAddressBookMgr, 3)
#define stsABMgrAddrBookNotRegistered MakeStatus(theAddressBookMgr, 4)
#define stsABMgrNoOpenAddrBook MakeStatus (theAddressBookMgr, 5)

Common #defines and typedefs
Enumlé (AB MGR ID TYPE) ({

abMgrApplication =0, // Client is an application
abMgrObject =1, // Client is a service/data object
abMgrNone =2, // abmgr internal use only

b
typedef struct AB_MGR ID {

CHAR name [nameBufLength]; // Name of the address book
AB MGR ID TYPE type; // BAddress book object type
union { :
OBJECT uid; // UID of the service/object
UUID uuid; // UUID of the application working dir
} value;

} AB MGR ID, *P_AB MGR ID;

346

PENPOINT APl REFERENCE
Part 10 / Connectivity

msgABMgrRegister
Registers an application or a service as an address book instance.

Takes P_AB_MGR_ID, returns STATUS.

#define msgABMgrRegister MakeMsg (theAddressBookMgr, 1)
Message typedef struct AB_MGR ID {
Arguments CHAR name [nameBufLength]; // Name of the address book
AB MGR ID TYPE type; // Address book object type
union {
OBJECT uid; // UID of the service/object
UuID uuid; // UUID of the application working dir
} value;
} AB_MGR_ID, *P_AB MGR_ID;
Comments When an instance of an address book is registered with theAddressBookMgr, it can later be selected as
"the system address book".
Address books send this message to register themselves with theAddressBookMgr. Each instance of each
address book should be registered with theAddressBookMgr. If an address book application is a subclass
of clsAddrBookApplication(see addrbook.h), then theAddressBookMgr automatically registers a newly
created instance of this class.
If an address book is an application, theAddressBookMgr will automatically re-registers the app on
warm boot. If an address book is a service, however, it would have to re-register itself after a warm boot.
msgABMgrUnregister
Unregisters an application or a service as an address book instance.
Takes P_AB_MGR_ID, returns STATUS.
#define msgABMgrUnregister MakeMsg (theAddressBookMgr, 2)
Message typedef struct AB_MGR_ID {
Arguments CHAR name [nameBufLength]; // Name of the address book
AB MGR ID TYPE type; // Address book object type
union {
OBJECT uid; // UID of the service/object
UUID uuid; // UUID of the application working dir
} value;
} AB_MGR ID, *P AB MGR ID;
Comments Address book send this message to theAddressBookMgr to unregister themselves. This is usually done

when an application instance is deleted, or when a service is de-installed. If an address book application
is a subclass of clsAddrBookApplication(see addrbook.h), then theAddressBookMgr automatically
unregisters a deleted instance of this class.

msgABMgrOpen

Used by address book clients to begin access to address books.

Takes nothing, returns STATUS.
#define msgABMgrOpen MakeMsg (theAddressBookMgr, 3)

ABMGR.H 347
Messages

Comments Address book clients send msgABMgrOpen to theAddressBookMgr. If the system address book is an
application, then theAddressBookMgr activates the application. If the system address book is a service,
then theAddressBookMgr binds to the service(msgSMBind)

Clients must call msgABMgrClose when they’re finished with the address book.
On warm boots, theAddressBookMgr requires that clients reopen the system address book.
msgABMgrClose
Used by address book clients to end access to address books.
Takes nothing, returns STATUS.
#define msgABMgrClose MakeMsg (theAddressBookMgr, 4)
Arguments typedef struct {
BOOLEAN activated;
AB MGR ID addressBook;
} AB MGR LIST, *P AB MGR LIST;

Commaents If the system address book is an application, then theAddressBookMgr deactivates the application. If
the system address book is a service, then theAddressBookMgr binds to the service(msgSMUnbind).
The address book is reference counted, so all msgABMgrOpen calls must be followed by an
msgABMgrClose.
msgABMgrList
Creates a list of currently registered address book in pArgs.

Takes P_LIST, returns STATUS.
#define msgABMgrList MakeMsg (theAddressBookMgr, 5)

Comments Every time msgABMgrList is called, a new list object is created. It is up to the client to call
msgListFree(not msgDestroy) to destroy the list and the items in the list. Set the free mode to
listFreeltemsAsData.

Each element of the list is a P_AB_MGR_LIST.
msgABMgrActivate
Make a registered address book the system address book.
Takes P_AB_MGR_ID, returns STATUS.
#define msgABMgrActivate MakeMsg (theAddressBookMgr, 6)
Message typedef struct AB MGR ID {
Arguments CHAR name [nameBufLength]; // Name of the address book
AB MGR ID TYPE type; // Address book object type
union {
OBJECT uid; // UID of the service/object
UuID uuid; // UUID of the application working dir
} value;
} AB MGR ID, *P_AB MGR ID;
Comments In the current implementation only one address book can be the system address book at a time. If there

is currently a system address book, that address book is deactivated first.

Clients that are applications set the type field to "application’ and set the value field to the UUID of
their application working directory. Clients that are services or data objects set the type field to ’object’
and set the value field to their object UID.

10 / CONNECTIVITY

348 PENPOINT API REFERENCE
Part 10 / Connectivity

Return Value stsABMgrAddrBookOpen The current system address book is currently open, therefore it can not be
deactivated

stsABMgrAddrBookNotRegistered The address book identified by pArgs is not a registered address
book.’

msgABMgrDeactivate

Deactivates the current system address book.

Takes P_AB_MGR_ID, returns STATUS.

#define msgABMgrDeactivate MakeMsg (theAddressBookMgr, 7)
Message typedef struct AB_MGR_ID {
Arguments CHAR name [nameBuflLength]; // Name of the address book
AB_MGR_ID TYPE type; // Address book object type
union { :
OBJECT uid; ~// UID of the service/object
UUID uuid; // UUID of the application working dir
} value;
} AB_MGR ID, *P_AB MGR_ID;
Return Value stsABMgrAddrBookOpen The current system address book is currently open, therefore it can not be
deactivated
msgABMgrlsActive

Indicates if the specified AB_LMGR_ID is currently set.

Takes P_AB_MGR_ID, returns STATUS.

#define msgABMgrIsActive MakeMsg (theAddressBookMgr, 8)
Message typedef struct AB_MGR ID { .
Avguments CHAR name [nameBufLength]; // Name of the address book
AB MGR ID TYPE type; // Address book object type
union {
OBJECT uid; // UID of the service/object
UuUID uuid; // UUID of the application working dir
} value;

} AB MGR_ID, *P_AB_MGR_ID;
Return Value stsOK Specified id is activated.
stsABMgrNotActive Specified id is not activated, but something is active.

stsABMgrNoneActive No address book is currently active.

Observer Messages

msgABMgrChanged

Sent to observers of theAddressBookMgr when the system address book changes.
Takes P_AB_MGR_NOTIFY, returns STATUS.

#define msgABMgrChanged MakeMsg (clsAddressBook, 9)

Arguments

Camments

ABMGR.H 349
Observer Messages

Enuml6 (AB_MGR CHANGE TYPE) {
abMgrRegister =0, // an ab has been registered
abMgrUnregister
abMgrActivated
abMgrDeactivated
abMgrOpened
abMgrClosed

It
g W R o

’

’

, o

]

]

’
Vi
typedef struct {
AB MGR CHANGE TYPE type;
AB MGR ID addressBook;
} AB_MGR NOTIFY, *P_AB MGR NOTIFY;

pArgs->activated is set to TRUE if pArgs->addressBook is made the system address book, and to FALSE
if pArgs->addressBook has been deactivated as the system address book.

10 / CONNECTIVITY

i

SR

PENPOINT API REFERENCE / VO!. ll

PART 10 / CONNECTIVI‘I’Y

ADDRBOOK.H

clsAddressBook inherits from clsObject.
This header file defines the address book protocol.

The address book protocol defines what minimal set of information is to be kept by an address book
app or service, how information is to be stored, retrieved, queried by an address book client. Please refer
to abmgr.h for information on address book manager.

All requests to access address book information is channeled through the address book manager. There
can be multiple address book clients at one time. Whether or not address book clients can access
information from more than 1 address book application/service simultaneously is completely up to the
implementation of the address book manager. The current implementation of theAddressBookMgr
provided by GO only allows access to one address book at a time.

Because theAddressBookMgr uses ObjectSend to relay messages to address books, pointers in pArgs in
any address book protocol messages should point to some shared memory space.

There are 3 major types of address information defined by the protocol:

¢ individual personal information(e.g.name, phone number, street address)
¢ service information(individual’s fax phone number, email address, etc)

¢ distribution list information

All information is kept/retrieved in attribute-value form. The basic entity in an address book is an
"entry"; all information is presented relative to an entry. E.g. to access any information in an address
book, a "key" to an entry must be presented. Within an entry, a client can set/get entry related
information(name, street address, etc.). Service address information is also kept as part of an entry.
Because there can be multiple service addresses for each entry(e.g. an individual has 2 fax numbers and 1
email address), a service address is accessed through a "service id" or the name of the service.(e.g. service
name = "fax")

The Address Book Protocol specifies a minimum set of attributes and attribute types to be supported by
third party address book applicaitons or services. If a developer thinks that some addition attributes or
attribute types are common enough that they should be defined in the protocol, please contact GO
Corporation Developer Support.

#ifndef ADDRBOOK_INCLUDED
#define ADDRBOOK_INCLUDED
#ifndef GO_INCLUDED
#include <go.h>

#endif

#ifndef UID_INCLUDED
#include <uid.h>

#endif

#ifndef CLSMGR_INCLUDED
#include <clsmgr.h>
#endif

#ifndef D IALENV_INCLUDED
#include <dialenv.h>
#endif

352 PENPOINT API REFERENCE
Part 10 / Connectivity J

7 Common #defines and typedefs

All address book apps should be a sub-class of this app. Being a sub-class of clsAddrBookApplication
frees an address book application from having to register, and unregister itself w/ TheAddressBookMgr.
TheAddressBookMgr will notice when an instance of clsAddrBookApplication has been
created/destroyed, and will automatically register/unregister the instance. Aside from providing this auto
registeration/unregisteration, clsAddrBookApplication provides no other special behavior to its
sub-class.

#define clsAddrBookApplication MakeWKN (3284, 1, wknGlobal)

% Pre-defined Atiribute Types

#define abNumber MakeTag (clsAddressBook, 0) // 32-bit number

#define abString MakeTag (clsAddressBook, 1) // null-terminated string
#define abPhoneNumber MakeTag(clsAddressBook, 2) // DIALENV_TELEPHONE_NUMBER
#define abOther MakeTag (clsAddressBook, 3) // some encoded byte array

// interpreted by address
// books simply as a byte
// stream

P> Pre-defined attribute ids

#define AddrBookGroupNameId MakeTag(clsAddressBook, 0) // abString
#define AddrBookGivenNameId MakeTag(clsAddressBook, 1) // abString
#define AddrBookSurNameId MakeTag(clsAddressBook, 2) // abString
#define AddrBookHomePhonelId MakeTag(clsAddressBook, 3) // abPhoneNumber
#define AddrBookBussPhoneId MakeTag(clsAddressBook, 4) // abPhoneNumber
#define AddrBookCountryId MakeTag(clsAddressBook, 5) // country in post
// addr,abString

#define AddrBookStateId MakeTag (clsAddressBook, 6) // state or prefe-
// cture, abString

#define AddrBookZipId MakeTag (clsAddressBook, 7) // zip, abString

#define AddrBookCityId MakeTag (clsAddressBook, 8) // city , abString

#define AddrBookDistrictId MakeTag(clsAddressBook, 9) // ku in Japanese
// addr, abString

AddrBookStreetld represents street, number, building and other addressing information, the character
\012(LF in ASCII) can be used to separate the different parts. E.g. a street address can be 2650 Durant
Avenue Deutsch Hall #406 In this case, the address should be stored in AddrBookStreetld as "2650
Durant Avenue\012Deutsch Hall #406"

#define AddrBookStreetlId MakeTag (clsAddressBook, 10) // abString

#define AddrBookCompanyId MakeTag(clsAddressBook, 11) // company name,
// abString

#define AddrBookTitleId MakeTag (c1sAddressBook, 18) // title of an
// individual entry
// abString

#define AddrBookPositionId MakeTag(clsAddressBook, 19) // position of an
// individual entry
// abString

t#define AddrBookNickNameId MakeTag(clsAddressBook, 20) // nickname of an
// individual entry
// abString

#define AddrBookBussPhone2Id MakeTag (clsAddressBook, 21) // 2nd bussiness
// phone #
// abPhoneNumber

#define AddrBookFaxId MakeTag (clsAddressBook, 22) // fax # of an
// individual entry
// abPhoneNumber

#define AddrBookSvcNameId MakeTag (clsAddressBook, 12) // name of svc,
// abString

ADDRBOOK.H 353
Common #defines and typedefs

#define AddrBookSvcNoteId MakeTag(clsAddressBook, 13) // user defined
// svc nickname
// abString

#define AddrBookSvcShortId MakeTag(clsAddressBook, 14) // service short
// address

The following two special id’s are used in specifying a query

#define AddrBookEntryKeyId MakeTag(clsAddressBook, 15)
#define AddrBookSvcIdId MakeTag (clsAddressBook, 16)

This is the type for address book transfer protocol. If an address book supports move/copy protocol,
then it should transfer an entry in a XFER_BUF structure, where XFER_BUF.pBuf is a pointer to
ADDR_BOOK_ENTRY structure.

#define AddrBookXferType MakeTag (clsAddressBook, 17)

#define AddrBookAll (maxU16)

#define AddrBookAllSvcSelectAttrs (maxU16-1)
#define AddrBookSelectSvcSelectAttrs (maxU16-2)
#define AddrBookSelectSvcAllAttrs (maxU16-3)

If the client wants all attributes(either all entry attributes or all service attributes.), the address book
should return the attributes in some well-known order. The next batch of #define’s specifies the order for
the common fields

#define AddrBookSurNameIndex 0

#define AddrBookGivenNameIndex 1

#define AddrBookHomePhoneIndex 2

#define AddrBookBussPhonelIndex 3

#define AddrBookCountryIndex 4

#define AddrBookStateIndex 5

#define AddrBookZipIndex 6

#define AddrBookCityIndex 7

#$define AddrBookDistrictIndex 8

#define AddrBookStreetIndex 9

#define AddrBookCompanyIndex 10

#define AddrBookTitleIndex 11

#define AddrBookPositionIndex 12

#define AddrBookNickNameIndex 13

#define AddrBookBussPhone2Index 14

#define AddrBookFaxIndex 15

#define AddrBookSvcNameIndex 0

#define AddrBookSvcNoteIndex 1

#define AddrBookSvcShortIndex 2

typedef P_UNKNOWN ADDR BOOK SERVICE ID, *P_ADDR BOOK_SERVICE_ID;
typedef TAG ADDR_BOOK_ATTR_ID, *P ADDR BOOK_ATTR_ID;
typedef TAG ADDR_BOOK_ATTR_TYPE, *p ADDR BOOK ATTR TYPE;
typedef Ul6 ADDR_BOOK_ATTR_LENGTH, *P_ADDR BOOK_ATTR LENGTH;
typedef P_UNKNOWN ADDR BOOK ATTR VALUE, *P_ADDR_BOOK ATTR VALUE;
typedef P_UNKNOWN ADDR_BOOK KEY, *P_ADDR BOOK_KEY;

typedef CHAR ADDR BOOK ATTR LABEL[nameBufLength];

ADDR_BOOK_ATTR.length is the length of ADDR_BOOK_ATTR.value. The following table lists what the
length field mean, given a certain attribute type:

Attr Type length

abString length of the string

abNumber SizeOf (U32)

abPhoneNumber SizeOf (DIALENV_TELEPHONE_NUMBER)

abOther length of attribute in bytes

10 / CONNECTIVITY

354 PENPOINT APl REFERENCE
Part 10 / Connectivity

The following table lists what the value field should be, given a certain attribute type:

Attr Type v value

abString a ptr to actual storage of the str
abNumber the number itself

abPhoneNumber P _DIALENV_TELEPHONE NUMBER
abOther a ptr to a byte array that

contains the attribute.

abString a ptr to actual storage of the str
abNumber the number itself
abPhoneNumber P_DIALENV_TELEPHONE_NUMBER

abOther a ptr to a byte array thatcontains the attribute.
typedef struct ADDR BOOK_ATTR {

ADDR_BOOK_ATTR_. D id;

ADDR_BOOK_ATTR_TYPE type;

ADDR BOOK_ATTR LENGTH length; // length of value, in bytes
ADDR_BOOK ATTR VALUE value;

ADDR BOOK ATTR LABEL label; // for display purpose

} ADDR BOOK ATTR, *P ADDR BOOK ATTR;
typedef struct ADDR BOOK ATTR DESC {

ADDR BOOK_ATTR . D id,
ADDR BOOK ATTR TYPE type;
ADDR | BOOK ATTR LABEL label; // for display purpose

} ADDR BOOK ATTR DESC, *P_ADDR BOOK_ATTR DESC;
typedef struct ADDR BOOK_SERVICE {

ADDR BOOK _ SERVICE ID svcld; // uniquely identify a svc inst
Ule numAttrs;
P_ADDR BOOK ATTR attrs;

} ADDR BOOK SERVICE, *P_ADDR BOOK_SERVICE;
Enuml6 (ADDR_BOOK_ENTRY TYPE) {

abIndividual =0,
abGroup =1,
}i
#define abMaxSvcNameMatch 5
typedef struct ADDR BOOK_SERVICE QUAL {
Ule numAttrIds;
P_ADDR BOOK ATTR ID svcAttrlds;
Ulé6 numSvcNames;
CHAR svcNames [abMaxSvcNameMatch] [nameBuflLength];

} ADDR_BOOK SERVICE QUAL, *P_ADDR BOOK_SERVICE QUAL;

.heap field is an in-parameter in msgAddrBookGet and msgAddrBookSearch, it is not applicable for
other msgs. A client should specify the heap id of the heap that it would like space allocated. Typically a
client would use OSTaskSharedHeapld(clientsTaskId). A client should not use osProcessSharedHeapld
or osProcessHeapld because they refer to different heaps in diffferent processes. It is very important that
clients free allocated space.

typedef struct ADDR BOOK ENTRY {
OS_HEAP_ID heap; // where should the address
// book alloc necessary space
// applicable only for
// msgAddrBookGet and
// msgAddrBookSearch

ADDR BOOK_ENTRY TYPE type;

ADDR_BOOK_KEY key;

Ulé6 numAttrs;

P_ADDR_BOOK_ATTR attrs;

Uleé numServices; // Read only,abIndividual only
P_ADDR BOOK_SERVICE services; // abIndividual only

ADDR BOOK SERVICE QUAL svcQual; // service qualifier, for Get

} ADDR BOOK_ENTRY, *P_ADDR BOOK_ENTRY;

ADDRBOOK.H 3ss
Messages
Status Codes
% Error Status Values
#define stsAddrBookBufTooSmall MakeStatus (clsAddressBook, 1)
#define stsAddrBookEntryExists MakeStatus (clsAddressBook, 2)
#define stsAddrBookSvcDataExists MakeStatus (clsAddressBook, 3)
#define stsAddrBookEntryNotFound MakeStatus (clsAddressBook, 4)
#define stsAddrBookSvcNotFound MakeStatus (clsAddressBook, 5)
t#define stsAddrBookBadKey MakeStatus (clsAddressBook, 6)
#define stsAddrBookUnknownType MakeStatus (clsAddressBook, 7)
#define stsAddrBookInvalidAttr MakeStatus (clsAddressBook, 8)
$define stsAddrBookReadOnlyAttr MakeStatus (clsAddressBook, 9)
#define stsAddrBookDuplicateAttrId MakeStatus (clsAddressBook, 10)
% Non Error Status Values
#define stsAddrBookGroupEntry MakeWarning (clsAddressBook, 7)
#define stsAddrBookNotSupported MakeWarning (clsAddressBook, 8)
Messages
msgAddrBookGet
fills in the specified entry field data, given an address book key for the entry.
Takes P_ADDR_BOOK_ENTRY, returns STATUS.
tdefine msgAddrBookGet MakeMsg (clsAddressBook, 1)
Message typedef struct ADDR BOOK ENTRY {
Arguments 0S_HEAP ID heap; // where should the address
// book alloc necessary space
// applicable only for
// msgAddrBookGet and
// msgAddrBookSearch
ADDR BOOK ENTRY TYPE type;
ADDR_BOOK_KEY key;
Uleé numAttrs;
P_ADDR BOOK_ATTR attrs;
Uleé numServices; // Read only,abIndividual only
P_ADDR BOOK_SERVICE services; // abIndividual only
ADDR_BOOK_SERVICE_QUAL svcQual; // service qualifier, for Get
} ADDR BOOK_ENTRY, *P_ADDR BOOK_ENTRY;
Comments If attribute type is abString and the client-provided space is not big enough, stsAddrBookBufT 0oSmall

is returned, and as much information as there is room for is filled in(null-terminated). Similarly, if

attribute type is abOther, stsAddrBookBufT'ooSmall is returned, and the client-provided buffer is filled

in(w/o null-termination).

Parameters:

pArgs->key In: specify from which entry to get info

pArgs->type Out: type of the entry

pArgs->numAttrs In: number of elements in pArgs->attrs array. Each of pArgs->attrs.id specifies the
id of the attribute the client wants the address book to return. If the client sets this field to
AddrBookAll, then the address book will return all entry attributes(excluding services), and it will
allocate the necessary space. The client needs to deallocate the space. If the field is set to 0, then no

attributes are returned. Out: number of attributes returned

10 / CONNECTIVITY

356

PENPOINT API REFERENCE
Part 10 / Connectivity

pArgs->attrs[x].id In: which attributes to get
pArgs->attrs[x].type Out: attribute type

pArgs->aturs[x].length Out: aturibute length of each attr specified in entryAttrlds. See previous table
on attribute type-attribute length.

pArgs->attrs[x].value In: if this field is pNull, the address book will allocate space for the value. Out:

attribute value. see previous table on attribute value-attribute length.
pArgs->attrs[x].label Out: attribute label, for display.

pArgs->numServices In: number of elements in pArgs->services array The client should specify
AddrBookAll here if it wants all services and all service attributes for each service. If it wants only
selective attributes from all services, then set numServices to AddrBookAllSvcSelectAttrs. If it wants
all attributes from selective services, then set numServices to AddrBookSelectSvcAllAters. Lastly, if
the client wants selective attrs from selective svcs, then set numServices to
AddrBookSelectSvcSelectAttrs.In all cases, the address book will allocate the necessary storage for all
info, which needs to be freed by the client. If the field is set to 0, then no service information is
returned Out: number of services returned.

pArgs->svcQual In: If numServices is AddrBookAllSvcSelectAttrs, or AddrBookSelectSvcSelectAttrs,
then numAttrlds is the number of elements in the svcAttrlds array, and svcAttrlds contains the ids
of the attributes whose values should be retrieved. If numServices is AddrBookSelectSvcAllAttrs or
AddrBookSelectSvcSelectAttrs,then numSvcNames is the number of elements in the svcNames
array, and svcNames contains the names of services whose attribute values should be retrieved. For
any other values of numServices, this field is irrelevent.

pArgs->services Out: Allocated space if so requested.

pArgs->services[yl.svcld In: For each services specifically requested (as opposed to using AddrBookAll
or AddrBookAllSvesSelectAttrs, and other such constants in pArgs->numServices), there needs to be
a svcld, telling the address book which service to return

pArgs->services[y].attrs:In/Out: analogous to pArgs->attrs

Message
Arguments

msgAddrBookSet

Sets the specified entry and service data .

Takes P_ADDR_BOOK_ENTRY, returns STATUS.
#define msgAddrBookSet MakeMsqg (c1sAddressBook, 2)

typedef struct ADDR BOOK ENTRY {
OS_HEAP_ID . heap; // where should the address
// book alloc necessary space
// applicable only for
// msgAddrBookGet and
// msgAddrBookSearch

ADDR_BOOK_ENTRY_TYPE type;

ADDR BOOK_KEY key;

Ulé numAttrs;

P_ADDR BOOK ATTR attrs;

uleé numServices; // Read only,abIndividual only
P_ADDR BOOK_SERVICE services; // abIndividual only
ADDR_BOOK_SERVICE QUAL svcQual; // service qualifier, for Get

} ADDR_BOOK_ENTRY, *P_ADDR BOOK_ENTRY;

ADDRBOOK.H 357

Messages
Comments Parameters:
pArgs->key In: specify from which entry to get info
pArgs->numAttrs In: how many attributes in the entry to set
pArgs->attr[x].id In: which attributes to set
pArgs->attr(x].type NA: don’t need to specify
pArgs->attr(x].length In: client-specified size of the correspond- ing entryAtttValue field. mandatory
for abOther, unnecessary for other types.
pArgs->attr[x].value In: attribute value. see previous table on attribute value-attribute length.
pArgs->numServices In: number of services to set. Set it to 0 if not setting any service info
pArgs->svcAttrlds NA: not applicable
pArgs->services[y].svcld In: service id of the service that set applies to
pArgs->services[y].attrs In: analogous to pArgs->attrs.
msgAddrBookAdd
Adds the specified entry and service data.
Takes P_ADDR_BOOK_ENTRY, returns STATUS.
#define msgAddrBookAdd MakeMsg (clsAddressBook, 3)
Message typedef struct ADDR BOOK ENTRY {
Arguments 0S_HEAP ID heap; // where should the address
// book alloc necessary space
// applicable only for
// msgAddrBookGet and
// msgAddrBookSearch
ADDR BOOK_ENTRY TYPE type;
ADDR_BOOK_KEY key;
Ule numAttrs;
P _ADDR BOOK_ATTR attrs;
Ule numServices; // Read only,abIndividual only
P_ADDR _BOOK_SERVICE '~ services; // abIndividual only
ADDR BOOK_ SERVICE QUAL svcQual; // service qualifier, for Get
} ADDR BOOK ENTRY, *P_ADDR BOOK ENTRY;
Comments Parameters:

pArgs->key In: If the msg is used to add a service addr then the client specifies the entry key of the
entry to which we add the service address. Out: if the msg is used to add an entry, then address

book fill this field w/ the key of the entry just added
pArgs->numAttrs In: how many attributes in the entry to have specified initial values.

pArgs->attr(x].id In: which attributes to add. To add a brand new individual entry, then at least
AddrBookGivenNameld or AddrBookSurNameld need to be specified. To add a group entry,
AddrBookGroupNameld needs to be specified.

pArgs->attr[x].type NA: don’t need to specify

pArgs->attr[x].length In: mandatory if attribute type is abOther

pArgs->attr[x].value In: attribute value. see previous table on attribute value-attribute length.
pArgs->numServices In: number of services to set. Set it to 0 if not adding any service info

pArgs->svcAttrlds NA: not applicable

10 / CONNECTIVITY

358

PENPOINT APl REFERENCE
Part 10 / Connectivity

pArgs->services[y]l.svcld Out service id of the service just added

pArgs->services[yl.attrs In analogous to pArgs->attrs.

msgAddrBookDelete

Deletes the specified entry and service data .

Takes P_ADDR_BOOK_ENTRY, returns STATUS.

#define msgAddrBookDelete MakeMsg (clsAddressBook, 4)
Message typedef struct ADDR BOOK ENTRY {
Arguments OS_HEAP_ID heap; // where should the address
// book alloc necessary space
// applicable only for
// msgAddrBookGet and
// msgAddrBookSearch
ADDR_BOOK_ENTRY_ TYPE type;
ADDR_BOOK_KEY key;
Ulé numAttrs;
P_ADDR_BOOK_ATTR attrs;
Ul6 numServices; // Read only,abIndividual only
P_ADDR_BOOK_SERVICE services; // abIndividual only
ADDR _BOOK_SERVICE QUAL svcQual; // service qualifier, for Get
} ADDR_BOOK_ENTRY, *P_ADDR BOOK_ENTRY;
Comments Parameters:
pArgs->key In: entry id of the entry to be deleted. If deleting a service, then this field still needs to be
specified. Only the specified service is deleted.
pArgs->numServices In: number of services to delete. Set it to 0 if deleting the entire entry.
pArgs->services[x].sveld In Id’s of the services to be deleted
All other fields in ADDR_BOOK_ENTRY structure are not applicable.
msgAddrBookSearch
Searches for the entry that matches the search spec.
Takes P_ADDR_BOOK_SEARCH, returns STATUS.
#define msgAddrBookSearch MakeMsg (clsAddressBook, 5)
Arguments Enuml6 (ADDR_BOOK_SEARCH TYPE) {
abSearchIndividuals = 0, // Enumerate address book entries
abSearchGroups =1, // Enumerate groups
abSearchAll = 2, // Enumerate all entries

}i

Enuml6 (ADDR_BOOK_SEARCH DIR) {
abEnumNext = 0, // Search forward
abEnumPrevious =1 // Search backwards

-}

Enuml6 (ADDR_BOOK ATTR OPS) {
abAnd =0,
abOr =1

}:

Comments

ADDRBOOK.H 359

Messages

Enuml6 (ADDR_BOOK VALUE OPS) {

abEqual = 6,
abNotEqual 1,
abGreater = 2,
abLess = 3,
abGreaterEqual = 4,
abLessEqual =5,
abMatchBeginning = 6, // string matching
abMatchEnd =1, // string matching
abMatchPartial = 8, // string matching

abMaxValue = abMatchPartial
Y

If a client wants to specify a query that says "match an entry whose last name is "Smith" and whose zip
code is "94024", then the .query field in pArgs for msgAddrBookSearch would have 2 elements:

pArgsquery id length wvalue valueOp attrOp
attr([0] AddrBookGivenNameId N/A Smith abEqual abAnd
attr[1] AddrBookZipId N/A 94024 abEqual N/A

Essentially, the attrOp field specifies the operator between attr[x] and attr[x+1]. valueOp specifies the
relationship between the attribute id and its specified value. e.g. (a == 1) AND (b == 2), the "=='
valueOp, "AND" is an attrOp. By definition, pArgs->attrs[pArgs->numAttrs-1].aterOp does not need
to be specified.

AR
§ are

typedef struct ADDR BOOK QUERY ATTR {

ADDR_BOOK_ATTR_ID id;

ADDR BOOK ATTR_LENGTH length;
ADDR_BOOK_VALUE_OPS valueOp;
ADDR BOOK_ATTR VALUE value;
ADDR_BOOK_ATTR OPS attrop;

} ADDR_BOOK_QUERY_ATTR, *P_ADDR_BOOK_QUERY ATTR;
typedef struct ADDR BOOK QUERY (
Ulé6 numAttrs;
P_ADDR BOOK_QUERY ATTR attrs;
} ADDR_BOOK_QUERY, *P_ADDR BOOK_QUERY;

typedef struct ADDR BOOK SEARCH {

ADDR_BOOK_KEY key; // In: Starting Pt. Out: Result

ADDR_BOOK_SEARCH TYPE type; // In:

U32 nth; // In: look for the nth entry meeting
!/ the search criteria. nth =1
// if looking for the first entry
// meeting the search criteria.

ADDR_BOOK_ATTR ID sort;

ADDR BOOK_SEARCH DIR dir;
ADDR _BOOK_ENTRY TYPE outType;

ADDR _BOOK_QUERY query; // In: what to look for, set query to
// pNull to enumerate
ADDR_BOOK_ENTRY result; // Out: result entry

} ADDR_BOOK SEARCH, *P_ADDR BOOK_ SEARCH;

pArgs->key is the pArgs->nth entry that matches the search spec, sorted by the attribute specified in
pArgs->sort, the entry is just before/after(depending on the value of pArgs->dir) of pArgs->key If key is
nil, the enumeration starts with the first element if abEnumNext is specified, and the last element if
abEnumPrevious is specified.

Parameters:
pArgs->key In Start point of the search Out:Resulting entry id of the match
pArgs->nth In Look for the nth enty meeting the search criteria

pArgs->sort In Attribute id of the attribute that the result should be sorted by

10 / CONNECTIVITY

360 PENPOINT API REFERENCE
Part 10 / Connectivity

pArgs->dir In search backwards or forwards.
pArgs->outType Out:type of the matched entry
pArgs->query In an elaborate explanation is available below

pArgs->result In How each field is specified is the same as that for msgAddrBookGet. Except for the
key field, which will be filled in by msgAddrBookSearch Out:same as msgAddrBookGet

msgAddrBookGetServiceDesc

Gets the service address description from the address book.

Takes P_ADDR_BOOK_SERVICES, returns STATUS.

#define msgAddrBookGetServiceDesc MakeMsg (clsAddressBook, 9)
#define abServiceDescFields \
CHAR name [nameBufLength]; \
Ul6 maxPerEntry; \
Uleé numAttrs; . \
P_ADDR BOOK ATTR DESC attrs; \
Arguments typedef struct ADDR BOOK_SVC _DESC {
abServiceDescFields

} ADDR_BOOK_SVC_DESC, *P_ADDR BOOK_SVC DESC;

typedef struct ADDR BOOK SERVICES {
OS_HEAP ID heap;
Ule numServices;
P_ADDR_BOOK_SVC_DESC services;

} ADDR BOOK_SERVICES, *P_ADDR BOOK_SERVICES;

Comments Parameters:

pArgs->numServices Out: number of installed services an array of ADDR_BOOK_SVC_DESC'’s is
allocated and should be freed by the caller.

Return Valdue stsOK

msgAddrBookEnumGroupMembers

Enumerates through the members in a group.

Takes P_ADDR_BOOK_ENUM_GROUP_MEMBER, returns STATUS.

#define msgAddrBookEnumGroupMembers MakeMsg (clsAddressBook, 6)
Arguments typedef struct ADDR BOOK ENUM GROUP_MEMBER {
ADDR BOOK_KEY groupKey;
ADDR_BOOK_KEY startKey;
BOOLEAN recurse;
ADDR_BOOK_ATTR_ID sort;
U32 count;
P_ADDR_BOOK_KEY pKeys;

} ADDR _BOOK_ENUM GROUP_MEMBER, *P_ADDR BOOK_ENUM GROUP_MEMBER;
Comments Parameters:
pArgs->groupKey In: key of the group

pArgs->startKey In: where to start the group enumeration. Use pNull to start from the beginning.
Out:last entry key returned in pArgs->pKeys. Client usually uses the out value to be the next in
value of the next msgAddrBookEnumGroupMembers call.

pArgs->recurse In: whether to recursively enumerate groups

ADDRBOOK.H 361
Messages

pArgs->sort In: attr id of the field to sort the returned entry id by

pArgs->count In: number of entries to return, which is also the number of slots in the pKeys array. Use
AddrBookAll to get every member. In this case address book will allocate the necessary space, and
the client should free the space. Out:number of entries actually returned

pArgs->pKeys Outkeys of the members of pArgs->groupKey

Arguments

Comunants

Return Value

msgAddrBookIsAMemberOf

Determines if an entry is a2 member of a group.

Takes P_ADDR_BOOK_IS_A_MEMBER_OF, returns STATUS.

#define msgAddrBookIsAMemberOf MakeMsg (c1sAddressBook, 7)
typedef struct ADDR BOOK.IS A MEMBER OF {

ADDR BOOK_KEY groupKey;

ADDR BOOK_KEY memberKey;

BOOLEAN recurse;

} ADDR BOOK IS A MEMBER OF, *P_ADDR BOOK IS A MEMBER OF;
Parameters:

pArgs->groupKey In: key of the group

pArgs->memberKey In: potential member’s key

pArgs->recurse In: whether to recursively test for membership

stsOK if pArgs->memberKey is a member of pArgs->groupKey.
stsNoMatch if pArgs->memberKey is not a member of pArgs->groupKey

Arguments

msgAddrBookGetMetrics

Passes back the metrics for the address book.

Takes P_ADDR_BOOK_METRICS, returns STATUS.
#define msgAddrBookGetMetrics MakeMsg (clsAddressBook, 8)

typedef struct ADDR BOOK METRICS {
U32 numEntries; // Total number of entries
U32 numGroups; // Number of groups in the address book
Ule © numServices; // Number of known services
U32 sparel;
U32 spare2;
} ADDR BOOK_METRICS, *P_ADDR BOOK METRICS;

Message
Arguments

msgAddrBookAddAttr

Adds a new attribute to active address books.

Takes P_ADDR_BOOK_ATTR, returns STATUS.
#define msgAddrBookAddAttr MakeMsg (clsAddressBook, 12)

typedef struct ADDR BOOK ATTR {
ADDR BOOK ATTR_ID id;
ADDR BOOK_ATTR TYPE type;
ADDR BOOK ATTR LENGTH length; // length of value, in bytes
ADDR BOOK ATTR VALUE value;
ADDR_BOOK ATTR LABEL label; // for display purpose
} ADDR BOOK_ATTR, *P_ADDR BOOK ATTR;

10 / CONNECTIVITY

362 PENPOINT API REFERENCE
Part 10 / Connectivity

Comments This operation will change the address book database schema. If the attribute is of type abNumber, the
value is initialized to be 0 for all existing address book entries. If the attribute is of type
abPhoneNumber, then the value is intialized to be 0. If the attribute is of type abString or abOther, the
value is initialized to be 0 length byte array.

After an attribute is added to an address book, clients can then set the attribute value in subsequent
msgAddrBookSet’s and get the attribute value in the subsequent msgAddrBookGet’s. Failure to first
make an attribute known to an address book and then try to set or get the attribute value will cause
stsAddrBookInvalidAttr to be returned.

Parameters:

pArgs->id In: the id(should be a tag) of the new attribute. It has to be different from all other attribute
ids in the same address book.

pArgs->type In: one of abNumber, abString, abOther, abPhoneNumber
pArgs->label In: a string, for display purpose. The address book will copy the string to its own storage.
Return Value stsRequestNotSupported if the address book does not allow dynamically changing its database schema.

stsAddrBookDuplicateAttrId There is another attribute in the address book w/ the same id.

msgAddrBookCount

Finds the number of entries that match the search spec

Takes P_ADDR_BOOK_COUNT, returns STATUS.

#define msgAddrBookCount MakeMsg (clsAddressBook, 13)
Argumenis typedef struct ADDR_BOOK_COUNT {
ADDR_BOOK_KEY key;
ADDR_BOOK_ATTR_ID sort;
ADDR _BOOK_SEARCH DIR dir;
ADDR_BOOK_QUERY query;
Ule count;

} ADDR BOOK_COUNT, *P_ADDR_BOOK_COUNT;
Comments Parameters:

pArgs->key In where to stop counting, AddrBookAll to count the entire database

pArgs->dir In whether to start counting from the beginning or the end of the address book.

pArgs->query In qualifier. See msgAddrBookSearch

Observer Messages

msgAddrBookEntryChanged

Sent to observers when an entry has been changed, added or deleted.

Takes P_ADDR_BOOK_ENTRY_CHANGE, returns STATUS.
#define msgAddrBookEntryChanged MakeMsg (clsAddressBook, 11)

Arguments

Comments

ADDRBOOK.H 363
Observer Messages

Enuml6 (ADDR _BOOK CHANGE TYPE) {

abServiceChanged =0,

abServiceDeleted =1,

abServiceAdded = 2,

abEntryAdded = 3,

abEntryDeleted =4,

abEntryNameChanged =5,

abEntryChanged = 6,

abServicelInstalled =1, // svcs have been installed
abServiceDeinstalled = 8, // sves have been deinstalled

}i
typedef struct ADDR BOOK ENTRY CHANGE ({

OBJECT addrBook; // Address book UID

ADDR BOOK CHANGE TYPE type; /! Type of change

ADDR BOOK KEY entryKey; // Internal address book key of the
// changed entry

ADDR BOOK SERVICE_ID sveld; // service id, if applicable

} ADDR BOOK_ENTRY CHANGE, *P_ADDR BOOK ENTRY CHANGE;

If pArgs->type is abServiceChanged, abServiceDeleted, abServiceAdded, then the ad