
GO Teehnical Library 

PenPofnt 



PenPoinlIM 

API Reference 
VOLUME I . 



GO CORPORATION 

GO TECHNICAL LIBRARY 

PenPoint Application Writing Guide provides a tutorial on writing PenPoint 
applications, including many coding samples. This is the first book you should 
read as a beginning PenPoint applications developer. 

PenPoint Architectural Reference Volume I presents the concepts of the fun-
d In n' 1 T\ 1 1 • 1 1 1 1 1 , 1 

amental reOrOlnt Classes. J:\.eaa tfilS DOOK wnen you need to understand the 
fundamental PenPoint subsystems, such as the class manager, application 
framework, windows and graphics, and so on. 

PenPoint Architectural Reference Volume II presents the concepts of the 
supplemental PenPoint classes. You should read this book when you need 
to understand the supplemental PenPoint subsystems, such as the text sub­
system, the file system, connectivity, and so on. 

PenPoint API Reference Volume I provides a complete reference to the 
fundamental PenPoint classes, messages, and data structures. 

PenPoint API Reference Volume II provides a complete reference to the 
supplemental PenPoint classes, messages, and data structures. 

PenPoint User Interface Design Reference describes the elements of the 
PenPoint Notebook User Interface, sets standards for using those elements, 
and describes how PenPoint uses the elements. Read this book before 
designing your application's user interface. 

PenPoint Development Tools describes the environment for developing, de­
bugging, and testing PenPoint applications. You need this book when you 
start to implement and test your first PenPoint application. 



PenPo1nf 

PenPointlM 

API Reference 

GO CORPORATION 

GO TECHNICAL LIBRARY 

Addison-Wesley Publishing Company 
Reading, Massachusetts + Menlo Park, California + New York 
Don Mills, Ontario + Wokingham, England + Amsterdam 
Bonn + Sydney + Singapore + Tokyo + Madrid + Sanjuan 
Paris + Seoul + Milan + Mexico City + Taipei 

VOLUME I 



Many of the designations used by manufacturers and sellers to distinguish their products are claimed as 
trademarks. Where those designations appear in this book and Addison-Wesley was aware of a trademark 
claim, the designations have been printed in initial capital letters. 

The authors and publishers have taken care in preparation of this book, but make no expressed or implied 
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for 
incidental or consequential damages in connection with or arising out of the use of the information or 
programs contained herein. 

Copyright © 1991-92 GO Corporation. All rights reserved. No part of this publication may be reproduced, 
stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photo­
copying, recording, or otherwise, without prior written permission of the publisher. Printed in the United 
States of America. Published simultaneously in Canada. 

The following are trademarks of GO Corporation: GO, PenPoint, the PenPoint logo, the GO logo, 
ImagePoint, GOWrite, NoteTaker, TableServer, EDA, MiniNote, and MiniText. 

Words are checked against the 77,000 word Proximity/Merriam-Webster Linguibase, ©1983 Merriam 
Webster. ©1983. All rights reserved, Proximity Technology, Inc. The spelling portion of this product is 
based on spelling and thesaurus technology from Franklin Electronic publishers. All other products or 
services mentioned in this document are identified by the trademarks or service marks of their respective 
companies or organizations. 

PenTOPS Copyright © 1990-1992, Sitka Corporation. All Rights Reserved. 

W~rrcmty Djsd~im~r GO CORPORATION MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT 
~nd l.imit~ti~n o.f LIMITATION THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR 

PURPOSE AND NONINFRINGEMENT, REGARDINGPENPOINT SOFTWARE OR ANYTHING ELSE. 

U.S. Government 
Restricted Rights 

GO Corporation does not warrant, guarantee, or make any representations regarding the use or the 
results of the use of the PenPoint software, other products, or documentation in terms of its correctness, 
accuracy, reliability, currentness, or otherwise. The entire risk as to the results and performance of the 
PenPoint software and documentation is assumed 'by you. The exclusion of implied warranties is not 
permitted by some states. The above exclusion may not apply to you. 

In no event will GO Corporation, its directors, officers, employees, or agents be liable to you for any 
consequential, incidental, or indirect damages (including damages for loss of business profits, business 
interruption, loss of business information, cost of procurement of substitute goods or technology, and the 
like) arising out of the use or inability to use the documentation or defects therein even if GO Corporation 
has been advised of the possibility of such damages, whether under theory of contract, tort (including 
negligence), products liability, or otherwise. Because some states do not allow the exclusion or limitation 
of liability for consequential or incidental damages, the above limitations may not apply to you. GO 
Corporation's total liability to you from any cause whatsoever, and regardless of the form of the action 
(whether in contract, tort [including negligence], product liability or otherwise), will be limited to $50. 

The PenPoint documentation is provided with RESTRICTED RIGHTS. Use, duplication, or disclosure 
by the U.S. Government is subject to restrictions as set forth in FAR 52.227-19 (Commercial Computer 
Software-Restricted Rights) and DFAR 252.227-7013 (c) (1) (ii) (Rights in Technical Data and Computer 
Software), as applicable. Manufacturer is GO Corporation, 919 East Hillsdale Boulevard, Suite 400, Foster 
City, CA 94404. 

ISBN 0-201-60862-6 

123456789-AL-9695949392 

First Printing, June 1992 



Preface 

The PenPoint API Reference provides reference information on the subsystems of 
the PenPoint™ operating system. Volume I describes the functions and messages 
that you use to manipulate classes and describes the fundamental classes used by 
almost all PenPoint applications. Volume II describes the supplemental classes and 
functions that provide many different capabilities to PenPoint applications. The 
text in this volume was generated from the header files in \PENPOINT\SDK\INC. 

Intended Audience 
The PenPoint API Reference is written for people who are developing applications 
and services for the PenPoint operating system. We assume that you are familiar 
with the C language, understand the basic concepts of object-oriented 
programming, and have read the PenPoint Application Writing Guide. 

What's Here 
The PenPoint API Reference is divided into several parts, which are split across two 
volumes. Volume I contains these parts: 

• Part 1: Class Manager describes the PenPoint class manager classes, which 
supports object-oriented programming in PenPoint. 

• Part 2: PenPoint Application Framework describes the PenPoint Application 
Framework classes, which provides you the tools you use to allow your 
application to run under the notebook metaphor. 

• Part 3: Windows and Graphics describes ImagePoint classes and how 
applications can control the screen (or other output devices). 

• Part 4: UI Toolkit describes the PenPoint classes that implement many of the 
common features required by the PenPoint user interface. 

• Part 5: Input and Handwriting Translation describes the PenPoint input 
system classes and classes that provide programmatic access to the 
handwriting translation subsystems. 

Volume II contains these parts: 

• Part 6: Text Component describes the PenPoint classes that allow any 
application to provide text editing and formatting capabilities to its users. 

• Part 7: File System describes the PenPoint file system classes. 

• Part 8: System Services describes the function calls that applications can use 
to access kernel functions, such as memory allocation, timer services, process 
control, and so on. 



vi PEN POINT API REFERENCE 

• Part 9: Utility Classes describes a wide variety of classes that save application 
writers from implementing fundamental things such as, list manipulation, 
data transfer, and so on. 

• Part 10: Connectivity describes the classes that applications can use to access 
remote devices. 

• Part 11: Resources describes the classes used to read, write, and create 
PenPoint resource files. 

• Part 12: Installation API describes the PenPoint classes that support installing 
applications, services, fonts, dictionaries, handwriting prototypes, and so on. 

• Part 13: Writing PenPoint Services, describes classes used in writing an 
installable service. 

Other Sources of Information 
As mentioned above, the PenPoint Application Writing Guide provides a tutorial 
on writing PenPoint applications. The tutorial is illustrated with several sample 
applications. 

The PenPoint Development Tools describes how to run PenPoint on a PC, how to 
debug programs, and how to use a number of tools to enhance or debug your 
applications. This volume also contains a Master Index to the five volumes 
included in the PenPoint SDK. 

The PenPoint Architectural Reference groups the PenPoint classes into several 
functional areas and describes how to use these classes. The PenPoint Architectural 
Reference is divided into two volumes. The first volume describes the fundamental 
classes that all application developers will use; the second volume describes 
supplemental classes that application developers may, or may not, use. 

To learn how to use PenPoint, you should refer to the PenPoint user documen­
tation. The user documentation is included with the PenPoint SDK, and is usually 
packaged with a PenPoint computer. The user documentation consists of these 
books: 

• Getting Started with PenPoint, a primer on how to use PenPoint 

• Using PenPoint, a detailed book on how to use PenPoint to perform tasks and 
procedures. 



".. Type Slyles In This Book 
To emphasize or distinguish particular words or text, we use different fonts. 

".. Computerese 
We use fonts to distinguish two different forms of "computerese": 

• C language keywords and preprocessor directives, such as switch, 
case, idefine, iifdef, and so on. 

• Functions, macros, class names, message names, constants, variables, 
and structures defined by PenPoint, such as msgListAddltem, clsList, 
stsBadParam, P _LIST _NEW, and so on. 

Although all these PenPoint terms use the same font, you should note that 
PenPoint has some fixed rules on the capitalization and spelling of messages, 
functions, constants, and types. By the spelling and capitalization, you can 
quickly identify the use of a PenPoint term. 

• Classes begin with the letters" cis"; for example, clsList. 

• Messages begin with the letters "msg"; for example, msgNew. 

• Status values begin with the letters "sts"; for example, stsOK. 

• Functions are mixed case with an initial upper case letter and trailing 
parentheses; for example, OSMemAvailableO. 

• Constants are mixed case with an initial lower case letter; for example, 
wsClipChildren. 

PREFACE 

Type Styles in This Book 

• Structures and types are all upper case (with underscores, when needed, 
to increase comprehension); for example, U32 or LIST_NEW_ONLY. 

Placeholders 

Anything you do not have to type in exactly as printed is generally formatted in 
italics. This includes C variables, suggested filenames in dialogs, and pseudocode 
in file listings. 

Other Text 

The documentation uses italics for emphasis. When a Part uses a significant term, 
it is usually emphasized the first time. If you aren't familiar with the term, you can 
look it up in the Glossary in the PenPoint Application Writing Guide or the index 
of the book. 

DOS filenames such as \\BOOT\PENPOINT\APP are in small capitals. PenPoint file 
names can be upper and lower case, such as \My Disk\\Package Design Letter. 

Book names such as PenPoint Application Writing Guide are in italics. 

vii 



,. Part 1 / Class Manager CHMGRH 357 

CLSMGRH 3 CHOICE.H 359 

DEBUG.H 47 CLAYOUT.H 359 

GO.H 53 CLOSEBOX.H 371 

MAIN.H 61 CMDBARH 373 

UID.H 63 CONTROL.H 375 
COUNTER.H 383 

,. Part 2 / PenPoint Application FIELD.H 389 
Framework 77 FONTLBOX.H 401 
APP.H 79 FRAME.H 405 
APPDIRH 111 GRABBOX.H 417 
APPMGRH 119 ICHOICE.H 423 
APPMON.H 127 ICON.H 425 
APPTAG.H 137 ITABLE.H 431 
APPWIN.H 143 ITOGGLE.H 433 
CBWIN.H 149 LABEL.H 437 
CLSPRN.H 151 LISTBOX.H 451 
EMBEDWIN.H 157 MANAGERH 461 
EWNEW.H 173 MBUTTON.H 463 
GOTO.H 175 MCICON.H 471 
ICONWIN.H 179 MENU.H 475 
MARK.H 183 MFILTERH 481 
PRFRAME.H 199 NOTE.H 485 
PRINT.H 203 OPTION.H 491 
PRLAYOUT.H 213 OP1'TABLE.H 513 
PRMARGIN.H 215 PAGENUM.H 515 
RCAPP.H 217 POPUPCH.H 517 
VIEW.H 219 PROGRESS.H 523 

J'" Part 3 / Windows and Graphics 
SBAR.H 531 

223 
SELCHMGRH 539 

BITMAP.H 225 SHADOW.H 543 
CCITT.H 229 STDMSG.H 547 
GEO.H 233 STRLBOX.H 555 
PICSEG.H 241 SWIN.H 561 
SYSFONT.H 253 TABBAR.H 573 
SYSGRAEH 257 TBAR.H 579 
TIFEH 287 TBUTTON.H 581 
TILE.H 293 TKFIELD.H 585 
WIN.H 295 TKTABLE.H 593 

Part 4 / UI Toolkit 325 TLAYOUT.H 601 

TRACK.H 611 
BORDER.H 327 

TTABLE.H 621 
BUSY.H 345 
BUTTON.H 347 



". Part 5 / Input anel Hanelwrltlng 
translation 625 

ACETATE.H 627 

ANIMSP.H 631 

GWlN.H 637 

HWCUSTOM.H 655 

HWLETTER.H 657 

INPUT.H 659 

INSERT.H 671 

KEY.H 689 

KEYBOARD.H 693 

KEYCAP.H 697 

KEYSTATE.H 701 

PEN.H 703 

SCRIBBLE.H 711 

SPAPER.H 719 

XGESTURE.H 733 

XLATE.H 737 

XLFILTER.H 749 

XLIST.H 751 

XSHAPE.H 761 

XTEACH.H 769 

XTEMPLT.H 773 

XTEXT.H 779 

XTRACT.H 781 

XWORD.H 785 

Inelex 787 





Partl/ 
Class Manager 





CLIMGR.M 

The Class Manager supports object-oriented programming. 

clsObject inherits from null. 

clsObject is the root of the Object System. It defines the basic capabilities of all objects. 

clsClass inherits from clsObject. 

clsClass is the root of all classes. clsClass provides class creation capabilities. 

#ifndef CLSMGR_INCLUDED 
#define CLSMGR_INCLUDED 

". Overview 
This file defines all the subroutines and messages that implement Object-oriented programing under 
PenPoint. The most important of these are: 

• ObjectCallO and related routines, especially the Debugging Routines 

• MsgHandlerO and related macros 

• MakeMsgO macro 

• clsClass, CLASS_NEW _DEFAULTS, etc. 

• clsObject, OBJECT_NEW_DEFAULTS, etc. 

• msgNew, msgNewDefaults, msglnit, msgDestroy, msgFree, msgSave, msgRestore 

Look at the functions starting with ClsStsToString too. 

This is one of PenPoint's key header files. Developers should browse through this file and be familiar 
with its contents. Other key header files are go.h, app.h, and win.h. 

To fully understand what's going on here, you should read the Class Manager section of the PenPoint 
Architecture Reference. 

Guidelines 
Normally you should call your ancestor before processing a message. Possible exceptions include: 

• messages that are defined by your class. Obviously, these shouldn't go to your ancestor at all. 

• messages that you want to explicitly override. Depending on whether you want to override the 
message some of the time or all the time. 

• msgFreeOK, msgFreeing, msgFree should use objCallAncestorAfter. 

• protocols that requires the subclass to act on the message before the ancestor receives it. 



4 PENPOINT API REFERENCE 
Part 1 I Class Manager 

",. Debugging Flags 
The ClsMgr debugging flag set is 'C'. Defined values are: 

000001 Show calls to ObjectCallO. 

000002 Show calls to ObjectCallAncestorO. 

000004 Show calls to ObjectSendO. 

000008 Show calls to ObjectPostO. 

000010 Show indirect calls (class messages) for traced objects. 

000020 Show object new and free calls. 

000040 Show observer related actions: add, remove, notify and post. 

000080 Show messages as they are dispatched. 

000100 Show objects as they are saved and restored. 

000200 Gather ObjectCall depth statistics. 

000400 Show objects as they are scavenged at task termination. 

000800 Enter DebuggerO, ifbad object is passed to ObjectCallO. 

001000 Show calls to ObjectCallAncestorO for traced objects. 

002000 Enable detailed messages from ObjectValidO. These messages are not necessarily errors if the 
client code handles stsBadObject. Because null objects are common they are not reported under 
C2000. 

004000 Enable miscellaneous error/warning messages: Bad newStruct, Message not understood, WKN 
already exists, WKN replaced (warning). 

008000 Enter the debugger after printing a warning. 

Temporary flags: 

010000 Fills the stack w/FO's before calling a method. This is us"eful for catching uninitialized variables. 

020000 Show calls to extended ObjectCallO and ObjectCallAncestorO. 

Implementor Flags: 

100000 Show all clsmgr statuses, legitimate errors are included. 

tifndef GO_INCLUDED 
tinclude <go.h> 

tendif 
tifndef OSTYPES_INCLUDED 

tinclude <ostypes.h> 
tendif 
tifndef UID_INCLUDED 

tinclude <uid.h> 
fendif 



,.,. Status Values 
#define stsBadObject 
#define stsBadAncestor 
#define stsBadContext 
#define stsProtectionViolation 
#define stsScopeViolation 
#define stsTaskTerrninated 
#define stsSizeLimit 
#define stsBadPropTag 
#define stsNewStructError 
#define stsClassHasReferences 
#define stsNotUnderstood 
#define stsVetoed 
#define stsWellKnownExists 
#define stsBadMethodTable 

,.,. Non-Error Status Values 

MakeStatus(clsObject, 2) 
MakeStatus(clsObject, 4) 
MakeStatus(clsObject, 6) 
MakeStatus(clsObject, 8) 
MakeStatus(clsObject, 10) 
MakeStatus(clsObject, 12) 
MakeStatus(clsObject, 14) 
MakeStatus(clsObject, 16) 
MakeStatus(clsObject, 18) 
MakeStatus(clsObject, 20) 
MakeStatus(clsObject, 22) 
MakeStatus(clsObject, 26) 
MakeStatus(clsObject, 28) 
MakeStatus(clsObject, 30) 

CLSMGR.H 
Object Capabilities 

II (.asm) 

I I (. asm) 

stsMessageIgnored is equal to stsRequestForward for historical reasons. MakeWarning is used to force 
the entry into the symbols DB. 

#define stsMessageIgnored 
#define stsAlreadyAdded 
#define stsAlreadyRemoved 
#define stsSendTaskInvalid 
#define stsWellKnownReplaced 
#define stsTraceOn 
#define stsTraceOff 

,.,. Obiect Capabilities 
#ifndef M_I86 
Enum32 (OBJ_CAPABILITY) 
{ 

objCapOwner flag1, 
objCapFree flag2, 
objCapSend flag3, 
objCapObservable flag4, 
objCapInherit flag6, 
objCapScavenge flag7, 
objCapCreate flag8, 
objCapProp flag9, 
objCapMutate = flag10, 
objCapCall = flag1S, 
objCapCreateNotify = flag16, 
objCapUnprotected = flag17, 
objCapNonSwappable = flag18 

} ; 

#else 
typedef U32 OBJ_CAPABILITY; 
#endif 

MakeWarning(clsGO, 2) 
MakeWarning(clsObject, 2) 
MakeWarning(clsObject, 3) 
MakeWarning(clsObject, 4) 
MakeWarning(clsObject, 6) 
MakeWarning(clsObject, 7) 
MakeWarning(clsObject, 8) 

II 32 bit compiler 

II default for: OBJECT CLASS 
II ----------------------------
II TRUE FALSE 
II TRUE FALSE 
II TRUE FALSE 
II TRUE TRUE 
II n/a TRUE 
II enable only: n/a FALSE 
II FALSE FALSE 
II TRUE TRUE 
II TRUE TRUE 
II FALSE TRUE 
II create only: FALSE FALSE 
II create only: n/a FALSE 
II create only: FALSE FALSE 

II 16 bit compiler 

5 



6 PENPOINT API REFERENCE 
Part 1 / Class Manager 

Types Derived Directly from Base Types 
OBJECT, TAG, STATUS, etc. are defined in <go.h> 

typedef OBJECT 
typedef TAG 
t ypedef P _UNKNOWN 
typedef P_UNKNOWN 
typedef P_UNKNOWN 
typedef U32 
fdefine objWKNKey 
typedef const U32 

CLASS, *P_CLASS; 
MESSAGE, *P_MESS~GE; 

P_ARGS, *PP_ARGS; 
CONTEXT, *P_CONTEXT; 
P_IDATA, *PP_IDATA; 
OBJ_KEY, *P_OBJ_KEY; 
((OBJ_KEY) 0) 
*P_MSG, **PP_MSG; II message table 

Constants and Types Derived from Structs 
NewArgs used to create an object. 

typedef struct OBJECT_NEW 
U32 newStructVersion; II Out: [msgNewDefaults] Validate msgNew 

II In: [msgNew] Valid version 
OBJ KEY 
OBJECT 

OBJ CAPABILITY 
CLASS 

OS HEAP ID 

key; 
uid; 

cap; 
objClass; 

heap; 

U32 spare1; 
U32 spare2; 
OBJECT_NEW_ONLY, OBJECT_NEW, * 

II In: [msgNew] Lock for the object 
II In: [msgNew] Well-known uid 
II Out: ~msgNew] Dynamic or Well-known uid 
II In: [msgNew] Initial capabilities 
II Out: [msgNewDefaults] Set to self 
II In: [msgObjectNew] Class of instance 
II In: [msg*] Used by toolkit components 
II Out: [msgNewDefaults] Heap to use for 
II additional storage. If capCal1 then 
II OSProcessSharedHeap else OSProcessHeap 
II Unused (reserved) 
II Unused (reserved) 

P _OBJECT_NEW _ONLY, * P _OBJECT_NEW; 

New defaults fields for subclassing OBJECT. 

fdefine objectNewFields 

Fields for initializing a class. 

typedef struct CLASS NEW ONLY 
P MSG pMsg; 
CLASS ancestor; 
SIZEOF size; 

SIZEOF newArgsSize; 

II 
II 
II 
II 
II 
II 

In: Can be pNul1 for abstract class 
In: Ancestor to inherit behavior from 
In: Size of instance data, can be 0 

(see comment below) 
In: Size of XX_NEW struct, can be 0 

Value limited to U16 
U32 spare1; II Unused (reserved) 
CLASS_NEW_ONLY, * P_CLASS_NEW_ONLYi 

Limits on instance data size: 

Instance data for any class is limited to 64K bytes. Instance data for an entire objects is limited to 64K of 

protected data. Unprotected instance data is limited to 64K bytes per class but there is no limit for the 

object. 

New defaults fields for sub classing CLASS. 

fdefine classNewFields objectNewFields 

NewArgs used to create a class. 

typedef struct CLASS_NEW { 
classNewFields 
CLASS_NEW, * P_CLASS_NEWi 

CLASS NEW ONLY cIs; 



Enable/Disable capabilities 

typedef struct OBJ_CAPABILITY_SET 

CLSMGR.H 

Constants and Types Derived from Structs 

OBJ CAPABILITY cap; // In: Capabilities to enable/disable 
OBJ KEY key; // In: Unlocks object, e.g., objWKNKey 
OBJ_CAPABILITY_SET, * P_OBJ_CAPABILITY_SET; 

Set/Get owner 

typedef struct OBJ_OWNER { 
OS TASK ID task; // In: [msgSetOwner] New owner 

OBJECT object; 
// Out: [msgObjectOwner] Current owner 
// In: [msgObjectOwner] Source object 

OBJ KEY key; // In: [msgSetOwner] If required by caps 
OBJ _OWNER, * P _ OBJ _OWNER; 

Set/Get properties 

typedef struct OBJ PROP 
TAG propId; 
P IDATA pData; 

SIZEOF length; 

OBJ KEY key; 
OBJ_PROP, * P_OBJ_PROP; 

Add/ Get observers 

typedef struct OBJ_OBSERVER_POS 

// In: 
// In: 
// In: 
// In: 
// Out: 
// In: 
// In: 

[msgProp] Name of property 
[msgProp] Pointer to data 
[msgSetProp] Data to copy to prop 
[msgProp] t of bytes to copy 
[msgProp] Length of data in bytes 
[msgSetProp] t of bytes to write 
[msgSetProp] If required by cap 

OBJECT observer; // In: [msgAddObserverAt] New observer 
// Out: [msgGetObserver] Observer at pos 

U16 position; // In: Position in observer list 
OBJ_OBSERVER_POS, * P_OBJ_OBSERVER_POS; 

Notify observers 

typedef struct OBJ_NOTIFY_OBSERVERS { 
MESSAGE msg; // In: Message to send/post observers 
P ARGS pArgs; // In: Args for message 
SIZEOF lenSend; // In: Length of Args 
OBJ_NOTIFY_OBSERVERS, * P_OBJ_NOTIFY_OBSERVERS; 

Buffer to hold symbol string. Used with ClsStsToString, etc. 

fdefine clsSymBufSize 80 
typedef char P_CLS_SYMBUF[clsSymBufSize]; 

Array entry for OBJECT in the symbols database. 

typedef struct CLS SYM OBJ 
OBJECT obj; 
P STRING name; 
CLS_SYM_OBJ, *P_CLS_SYM_OBJ, * *PP_CLS_SYM_OBJ; 

Array entry for message in symbols database. 

typedef struct CLS SYM MSG 
MESSAGE msg; 
P STRING name; 
CLS~SYM_MSG, *P_CLS_SYM_MSG, * *PP_CLS_SYM_MSG; 

Array entry for STATUS in symbols database. 

typedef struct CLS SYM STS 
STATUS sts; 
P STRING name; 
CLS_SYM_STS, *P_CLS_SYM_STS, * *PP_CLS_SYM_STS; 

7 



8 PENPOINT API REFERENCE 
Part 1 / Class Manager 

Types Required for msgSave and 
msgRestore 

Resouce IDs 

typedef TAG 

System flags for save and restore. 

Enum16 (RES_SAVE_RESTORE_FLAGS) 
resDoingCopy = flagO 

} ; 

typedef struct OBJ_SAVE { 
OBJECT file; 
RES ID reaId; 
OBJECT root; 
P UNKNOWN pEnv; 
U16 minSysVersion; 
U16 minAppVersion; 
RES_SAVE_RESTORE_FLAGS sysFlags; 
U16 appFlags; 
P UNKNOWN pFile; 
U32 spare1; 
U32 spare2; 
OBJ_SAVE, * P_OBJ_SAVE; 

typedef struct OBJ_RESTORE { 
OBJECT_NEW object; 
OBJECT file; 
RES ID resId; 
OBJECT root; 
P UNKNOWN pEnv; 
U16 sysVersion; 
U16 appVersion; 
RES_SAVE_RESTORE_FLAGS sysFlags; 
U16 appFlags; 
P UNKNOWN pFile; 
U32 spare1; 
U32 spare2; 
OBJ _RESTORE, * P _ OBJ _RESTORE; 

Method Definition Macros 
Definition of a pointer to a method. 

fifdef __ HIGHC __ 

II Resource ID 

II Creating a copy of object 

II In: File to save object to 
II In: Resource Id of root-level object 
II In: Uid of root-level object 
II In: Environment to be saved 
II In/Out: Min acceptable system version 
II In/Out: Min acceptable app version 
II In: System flags 
II In: App flags 
II In: StdIO FILE* bound to file above 
II Unused (reserved) 
II Unused (reserved) 

II In: New defaults for restored object 
II In: File to restore object from 
II In: Resource Id of root-level object 
II In: Uid of root-level object 
II In: Saved environment 
II In: Sys version number of filed data 
II In: App version number of filed data 
II In: System flags 
II In: App flags 
II In: StdIO FILE* bound to file above 
II Unused (reserved) 
II Unused (reserved) 

Fundi@n Pr@totyp® typedef CDECL STATUS (* P_MSG_HANDLER) 
felse 

Fundi<>n Prototyp® typedef STATUS (CDECL * P_MSG_HANDLER) 
fendif 

MESSAGE mag, 
OBJECT self, 
P ARGS pArgs, 
CONTEXT ctx, 
P IDATA pData 

) ; 

Definition of a method. 

fdefine MSG_HANDLER STATUS CDECL 

Shorthand used to declare a method. 

fdefine MsgHandler(fn) MSG_HANDLER MsgHandlerPrimitive(fn, P_ARGS, P_IDATA) 



CLSMGR.H 9 
Message Macros 

Shorthand used to declare a method with pArgs cast to appropriate type. Note: pArgsType must be a 
pointer type. 

tdefine MsgHandlerArgType(fn, pArgsType) \ 
MSG_HANDLER MsgHandlerPrimitive(fn, pArgsType, P_IDATA) 

Shorthand used to declare a method with casts for pArgs and instance data. Note: pArgsType and 
plnstData must be pointer types. 

tdefine MsgHandlerWithTypes(fn, pArgsType, plnstData) \ 
MSG_HANDLER MsgHandlerPrimitive(fn, pArgsType, plnstData) 

Shorthand used to declare a method. Very fast and very dangerous. DS is NOT loaded. Don't use 
strings, local functions, statics, etc. 

tdefine MsgHandlerRingCHelper(fn) \ 
STATUS CDECL MsgHandlerPrimitive(fn, P_ARGS, P_IDATA) 

Shorthand used to declare a method. 

tdefine MsgHandlerPrimitive(fn, pArgsType, plnstData) fn(\ 
canst MESSAGE msg, \ 
canst OBJECT self, \ 
canst pArgsType pArgs, \ 
canst CONTEXT ctx, \ 
canst plnstData pData) 

Cast pData to the appropriate type. 

tdefine IDataPtr(pData, type) ((type*)pData) 

Copy protected instance data block into local storage. 

tdefine IDataDeref(pData, type) (*(type*)pData) 

Shorthand used to ignored any unused parameters in a method. 

tdefine MsgHandlerParametersNaWarning \ 
Unused(msg)i Unused(self)i Unused(pArgS)i Unused(ctX)i Unused (pData) 

Message Macros 
message numbers are between 0 and 254, inclusive. Message number 255 

tdefine MakeMsg(wkn,msg) MakeTag(wkn,msg) 

Extract the message portion of a message. 

tdefine MsgNum(msg) TagNum(msg) 

The WKNValue unique represents a class. 

tdefine ClsNum(msg) WKNValue(msg) 

Messages defined with MsgNoErrorO will not generate a msgNotUnderstood error if they reach 
clsObject. Instead, stsMessageIgnored is returned. 

tdefine MsgNaError(msg) 
tdefine msgNaErrarFlag 

((msg) ImsgNoErrarFlag) 
(lL«21) 

Messages that are handled as class messages have this flag added to the message value. 

tdefine msgClassMessageFlag (lL«22) 

Compare two messages for equality. 

tdefine MsgEqual(m1,m2) (m1==m2) 



10 PEN POINT API REFERENCE 
Part 1 / Class Manager 

Obiec. Scope Macros 
(Well-Known and Dynamic) 

tdefine ObjectIsDynamic (0) ( (U32) (0) &objDynamicFlag) 
tdefine ObjectIsWellKnown(o) (!ObjectIsDynamic(o)) 
tdefine ObjectIsWKN(o) Object I sWellKnown (0) 

tdefine ObjectIsGlobal(o) (ObjectIsDynamic(o) I IObjectIsGlobalWKN(o)) 
tdefine ObjectIsLocal(o) (!ObjectIsGlobal(o)) 
tdefine ObjectIsGlobalWKN(o) (ObjectIsWKN(o) && WKNScope(o)==wknGlobal) 
tdefine ObjectIsProcessGlobalWKN(o) \ 

(ObjectIsWKN(o) && WKNScope(o)==wknProcessGlobal) 
tdefine ObjectIsPrivateWKN(o) (ObjectIsWKN(o) && WKNScope(o)==wknPrivate) 

All dynamic objects have this bit set in their UID. 

tdefine objDynamicFlag Ox800000 

" Messages 
II Recycle: 
II Next available: 120 

msgNull 
Not a real message, just a place holder. 

Takes pNull, returns STATUS. 

tdefine msgNull MakeMsg(objNull, 0) 

msgNewDefaults 
Initializes new struct to default values. 

Takes new struct for object being created, returns STATUS. Category: class message. 

tdefine msgNewDefaults MakeMsg(clsObject, 2) 

msgNew 
Creates an object and sends msglnit to the new object. 

Takes new struct for object being created, returns STATUS. Category: class message. 

tdefine msgNew MakeMsg(clsObject, 4) 

Developers normally send this message to class objects in order to create instances but they do NOT 
write code that handles msgNew. The class manager does some processing on msgNew internally and 
finally sends msglnit, which developers DO need to handle. 

stsNewStructError The new struct was not properly initialized, it was used more than once, or it was 
overwritten. 

stsBadParam Format of well-known UID was invalid. 

stsWellKnownExists Well-known UID has already been created with a different key. 

stsOSOutOflvlem Too many objects have been created or system memory is exhausted. 

stsProtectionViolation (clsClass) objCaplnherit is disabled. 

stsSizeLimit (clsClass) More than the maximum amount of instance data has been requested. 

stsBadAncestor (clsClass) Ancestor is not a class. 



Comments 

Comments 

Comments 

Comments 

Comments 

msgNewWithDefaults 
Creates an object with default values. 

Takes new struct for object being created, returns SfATUS. Category: class message. 

#define msgNewWithDefaults MakeMsg(clsObject, 5) 

CLSMGR.H 
Messages 

Self sends msgNewDefaults followed by msgNew. Useful when changes to the new struct are NOT 
required. 

msglnit 
Sent to the object immediately after it is created. 

Takes new struct for object being created, returns SfATUS. 

#define msglnit MakeMsg(clsObject, 6) 

When msglnit reach clsObject the capabilities and the key in the newArgs are set for the object. This 
means that, unlike most messages, developers must call their ancestor AFTER processing this one. 

msgCreated 
Sent to the object after it is fully created, i.e., after msglnit. 

Takes new struct for object being created, returns SfATUS. 

#define msgCreated MsgNoError(MakeMsg(clsObject, 46» 

This message is only sent if objCapCreateNotify is enabled. 

msgDestroy 
Destroys the object. 

Takes OBJ_KEY, returns STATUS. 

#define msgDestroy MakeMsg(clsObject, 28) 

When msgDestroy is sent to the object, clsObject sends msgFreeOK, m~gFreeing and msgFree to self. 
msgFreePending is sent to the observers. Only clsObject should handle msgDestroy. (That is, like 
msgNew, developers send msgDestroy but never handle it.) 

stsProtectionViolation objCapFree is disabled and the key does not open the object. 

stsClassHasReferences (clsClass) Instances of the class object still exists. Only returned when the 

object being destroyed is a class. 

msgFreeOK 
Sent as the first of three messages to destroy the object. 

Takes OBLKEY, returns STATUS. 

#define msgFreeOK MsgNoError(MakeMsg(clsObject, 14» 

11 

There is no point in handling this message unless you have some reason to refuse to be freed, in which 
case return stsVetoed. Note that if the process that owns the object or the class of the object is destroyed, 
the object will be destroyed too, regardless of what it does with msgFreeOK. This is mainly useful for 

immortal system objects. 

msgDestroy 



12 PENPOINT API REFERENCE 
Part 1 / Class Manager 

Return Value 

Comments 

Message 
Arguments 

stsClassHasReferences (clsClass) Instances of the class object still exists. Only returned when the 

object being destroyed is a class. 

msgFreeing 
Sent as the second of three messages to destroy the object. 

Takes OBJ_KEY, returns STATUS. 

idefine msgFreeing MsgNoError (MakeMsg (clsObject, 90)) 

Most developers never handle this message either. If an object is part of a tangled web of other objects, 

all of which are supposed to be freed whenver any of them is freed, it's possible to get a loop where two 

objects respond to msgFree by trying to free each other. The first object that receives msgFreeing should 
extract itself from any other object that might try to free it. When it receives msgFree, it can then safely 

send msgDestroy to those other objects. 

msgDestroy 

msgFree 
Sent as the last of three messages to destroy the object. 

Takes OBLKEY, returns STATUS. 

idefine msgFree MakeMsg(clsObject, 8) 

msgFree must succeed and error status should never be returned. Any validation should be done during 
msgFreeOK. (Like msglnit, developers handle this message but never send it.) 

msgDestroy 

msgFreePending 
Sent to observers immediately before the object is freed. 

Takes OBJECT, returns STATUS. Category: observer notification. 

idefine msgFreePending MsgNoError (MakeMsg (clsObject, 70)) 

If an observer cares about the final state of the object, this is the last opportunity to send it a message. 

msgDestroy 

msgRestorelnstance 
Creates and restores an object from an object file. 

Takes P _OBJ_RESTORE, returns STATUS. 

idefine msgRestoreInstance MakeMsg(clsObject, 80) 

typedef struct OBJ_RESTORE { 
OBJECT NEW object; II In: New defaults for restored object 
OBJECT file; II In: File to restore object from 
RES ID resId; II In: Resource Id of root-level object 
OBJECT root; II In: Uid of root-level object 
P UNKNOWN pEnv; II In: Saved environment 
U16 sysVersion; II In: Sys version number of filed data 
U16 appVersion; II In: App version number of filed data 
RES_SAVE_RESTORE_FLAGS sysFlags; II In: System flags 
U16 appFlags; II In: App flags 
P UNKNOWN pFile; II In: StdIO FILE* bound to file above 
U32 spare1; II Unused (reserved) 
U32 spare2; II Unused (reserved) 
OBJ_RE S TORE , * P _ OBJ _RESTORE; 



Comments 

Return Value 

Message 
Arguments 

Comments 

Message 
Arguments 

Comments 

CLSMGR.H 
Messages 

Creates an instance of the class and sends the new object msgRestore. If the new object is a class, 

msgRestoreMsgTable is sent after msgRestore. 

stsRequestNotSupported Instances of dsClass cannot be restored. 

msgRestore 
Creates and restores an object from an object file. 

Takes P_OBLRESTORE, returns STATUS. 

idefine msgRestore MakeMsg(clsObject, 10) 

typedef struct OBJ_RESTORE { 
OBJECT NEW object; II In: New defaults for restored object 
OBJECT file; II In: File to restore object from 
RES ID resId; II In: Resource Id of root-level object 
OBJECT root; II In: Uid of root-level object 
P UNKNOWN pEnv; II In: Saved environment 
U16 sysVersion; II In: Sys version number of filed data 
U16 appVersion; II In: App version number of filed data 
RES_SAVE_RESTORE_FLAGS sysFlags; II In: System flags 
U16 appFlags; II In: App flags 
P UNKNOWN pFile; II In: StdIO FILE* bound to file above 
U32 spare1; II Unused (reserved) 
U32 spare2; II Unused (reserved) 
OBJ_RESTORE, * P_OBJ_RESTORE; 

13 

After a new object has been created with msgRestorelnstance it is sent msgRestore. The object reads its 

instance data from the object file. 

msgRestoreMsgTable 
Returns the message table for the class. 

Takes PP _MSG, returns STATUS. 

idefine msgRestoreMsgTable MakeMsg(clsObject, 116) 

Because the address of a message table is dynamic the ancestor of the class must provide the message 

table address when the class is restored. The ancestor can store extra information needed to find the 
message table in the instance data or as a saved property. 

msgSave 
Causes the object to file itself in an object file. 

Takes P_OBLSAVE, returns STATUS. 

idefine msgSave MakeMsg(clsObject, 12) 

typedef struct OBJ_SAVE { 
OBJECT file; II In: File to save object to 
RES ID resId; II In: Resource Id of root-level object 
OBJECT root; II In: Uid of root-level object 
P UNKNOWN pEnv; II In: Environment to be saved 
U16 minSysVersion; II In/Out: Min acceptable system version 
U16' minAppVersion; II In/Out: Min acceptable app version 
RES_SAVE_RESTORE_FLAGS sysFlags; II In: System flags 
U16 appFlags; II In: App flags 
P UNKNOWN pFile; II In: StdIO FILE* bound to file above 
U32 spare1; II Unused (reserved) 
U32 spare2; II Unused (reserved) 
OBJ_SAVE, * P _OBJ_SAVE; 

dsObject files the capabilities of the object and any property that has tag flag! set. For example: 



14 PENPOINT API REFERENCE 
Part 1 I Class Manager 

Return Value 

Arguments 

Comments 

Arguments 

Comments 

idefine MY_PROP MakeTagWithFlags(clsFoo,tagNum,l) 

stsRequestNotSupported (clsClass) Classes not do file. 

msgCopy 
Passes back a copy of the object. 

Takes P _OBJ_COPY, returns SfATUS. 

idefine msgCopy MakeMsg(clsObject, 54) 

typedef struct OBJ_COPY { 
OBJECT requestor; 
OBJECT object; 
U32 reserved[4]; 

OBJ_COPY, * P_OBJ_COPY; 

II In: Object to receive msgCopyRestore 
II Out: UID of copied object 
II Reserved. 

This message will pass back a copy of the object receiving the message. This object will be created by 
opening a temporary resource file, sending msgSave to the object, and then sending msgCopyRestore to 
the passed in requestor object. It will then close and destroy the temporary file. Note that the requestor 
object could be in a different task from the object receiving this message. In this situation, the copy of 

the object will exist in new task. 

stsFailed Could not open temporary resource file. 

msgCopyRestore 

msgCopyRestore 
Restores the passed in object. 

Takes P _OBJ_COPY_RESTORE, returns SfATUS. 

idefine msgCopyRestore MakeMsg(clsObject, 56) 
II This struct is copied from fs.h 

typedef struct OBJ FS LOCATOR 
OBJECT - uId; 
P_STRING pPath; 

OBJ_FS_LOCATOR; 
typedef struct OBJ_COPY_RESTORE 

OBJ FS LOCATOR locator; II In: File locator that the object 
RES ID resId; II In: Resource id of filed object 
OBJECT object; II Out: Uid of object to return 
U32 reserved[4]; II Reserved. 

OBJ_COPY_RESTORE, * P_OBJ_COPY_RESTORE; 

is in 

This mess~ge is sent to the object with an object resource Id, and a file locator (a resource file). This will 
result in msgRestore being sent to the appropriate object to read in the resource object. Sent to the 

requestor object when performing a msgCopy. 

msgCopy 

msgDump 
Causes each ancestor to print interesting debugging information. 

Takes S32, returns STATUS. 

idefine msgDump MakeMsg(clsObject, 52) 

Each class should implement a msgHandler for msgDump. The msgHandler should print out 
interesting information for the object. 



Arguments 

The parameter to msgDump is used to determine how much information to print. 

Suggested values for pArgs: 

o Implementer's choice. Print whatever information is most useful. 

1 Terse. One line only. 

CLSMGR.H 
Messages 

15 

-1 Terse including embedded objects. One line of information plus one line for each embedded object, 
e.g., a menu would display information about each menu item. 

maxS32 Verbose. All possible information about the object. 

minS32 Verbose including embedded objects. The maximum amount of information. 

other All other values are implementation dependent. 

If the value of the parameter is in between two defined values the action should be based on the smaller 
value. 

Suggested format: 

"msgOump(yourClassName): yourOebuggingInformation" 

clsObject defines pArgs as: 

o The object's capabilities and internal address. 

1 Same as O. 

2 Same as 1 plus owner, number of observers, number of properties, the size of instance data and size 

of property list. maxS32: Same as 2 plus hex dump of instance data. 

-1 Same as 0 plus msgDump to observers. ([Not implemented]) 

-2 Same as -1 plus owner, number of observers, number of properties, the size of instance data. ([Not 

implemented]) 

minS32 Same as -2 plus hex dump of instance data. ([Not implemented]) 

clsClass defines pArgs as: 

o The class capabilities, size of data for instances, the number of instances and subclasses of the class. 

1 Same as O. 

2 Same as 1 plus ancestor and newArgs size. 

maxS32 Same as 2. ([Not implemented]) 

msgException 
Sent to observers of theProcess, an object within each process, when an exception occurs within that 

process. 

Takes P _OBJ_EXCEPTION, returns STATUS. Category: observer notification. 

tdefine msgException MsgNoError(MakeMsg(clsObject, 100)) 

typedef struct OBJ EXCEPTION { 
OS_TASK_ERROR - errorCode; 
OS TASK IO task; 
U32 - spare; 

OBJ_EXCEPTION, *P_OBJ_EXCEPTION; 

II In: Type of exception 
II In: Task that received the exception 
II Unused (reserved) 

If a subtask is being terminated only objects owned by the subtask are notified. 



16 PENPOINT API REFERENCE 
Part 1 I Class Manager 

MeSH»o~e 

Arguments 

msgT ask Terminated 
Sent to observers of theProcess, an object within each process, after the task is terminated. 

Takes P _OBLEXCEPTION, returns STATUS. Category: observer notification. 

#define msgTaskTerminated MsgNoError (MakeMsg (clsObject, 112)) 

typedef struct OBJ_EXCEPTION { 
OS_TASK_ERROR errorCode; 
OS_TASK_ID task; 
U32 spare; 

OBJ_EXCEPTION, *P_OBJ_EXCEPTION; 

msgScavenge 

II In: Type of exception 
II In: Task that received the exception 
II Unused (reserved) 

Sent to the object when a class has objCapScavenge set and the object's task is being terminated by 

request or because of an error. 

Takes OS_TASK_ERROR, returns STATUS. Category: descendant responsibility. 

#define msgScavenge MsgNoError(MakeMsg(clsObject, 102)) 

This message will only be executed by class that set objCapScavenge. Do not pass this message to your 

ancestor. 

msgScavenged 
Sent to the observers AFTER the object has been scavenged. 

Takes OS_TASK_ERROR, returns STATUS. Category: observer notification. 

#define msgScavenged MsgNoError(MakeMsg(clsObject, 104)) 

msgFreeSubTask 
Sent to theProcess to free a sub task. 

Takes P _SUBTASK_FREE, returns SfATUS. 

#define msgFreeSubTask MsgNoError(MakeMsg(clsObject, 104)) 

typedef struct OBJ_SUBTASK_FREE 
OS_TASK_ID task; II In: Task to be terminated 
OS TASK ERROR exitCode; II In: Exit code for task termination 
OBJ_SUBTASK_FREE, * P_OBJ_SUBTASK_FREE; 

Useful for delayed termination when message is posted to theProcess. 

stsOSlnvalidOperationForTask Task was not a subtask of this process. 

msgHeap 
Returns the preferred heap to use when allocating storage for this object. 

Takes P_OS_HEAP_ID, returns STATUS. 

#define msgHeap MakeMsg(clsObject, 96) 



Message 
Argurnents 

Comments 

Return Value 

Message 
ArgUll1ents 

Return Value 

MessuSje 
Arguments 

~eturn Value 

msgCan 
Checks the object's capabilities. 

Takes OBJ_CAPABILITY, returns STATUS. 

#define msgCan MakeMsg(clsObject, 36) 

Enum32 (OBJ_CAPABILITY) 
( 

II default for: OBJECT CLASS 
II ----------------------------

} ; 

objCapOwner flag1, 
objCapFree flag2, 
objCapSend flag3, 
objCapObservable flag4, 
objCapInherit flag6, 
objCapScavenge flag7, 
objCapCreate = flag8, 
objCapProp flag9, 
objCapMutate = flag10, 
objCapCall = flag1S, 
objCapCreateNotify = flag16, 
objCapUnprotected = flag17, 
objCapNonSwappable = flag18 

II 
II 
II 
II 
II 
II enable only: 
II 
II 
II 
II 
II create only: 
II create only: 
II create only: 

TRUE FALSE 
TRUE FALSE 
TRUE FALSE 
TRUE TRUE 
n/a TRUE 
n/a FALSE 
FALSE FALSE 
TRUE TRUE 
TRUE TRUE 
FALSE TRUE 
FALSE FALSE 
n/a FALSE 
FALSE FALSE 

If the capabilities in the parameter are all enabled, msgCan returns stsOK otherwise 
stsProtection Violation is returned. 

stsProtection Violation Capability disabled. 

msgDisable 
Disables some or all of the object's capabilities. 

Takes P _OBLCAPABILITY_SET, returns STATUS. 

#define msgDisable MakeMsg(clsObject, 16) 

typedef struct OBJ_CAPABILITY_SET 
OBJ CAPABILITY cap; II In: Capabilities to enable/disable 
OBJ KEY key; II In: Unlocks object, e.g., objWKNKey 
OBJ_CAPABILITY_SET, * P_OBJ_CAPABILITY_SET; 

stsProtection Violation Key does not open the object. 

msgEnable 
Enables some or all of the object's capabilities. 

Takes P _OBLCAPABILITY_SET, returns STATUS. 

#define msgEnable MakeMsg(clsObject, 18) 

typedef struct OBJ_CAPABILITY_SET 
OBJ CAPABILITY cap; II In: Capabilities to enable/disable 
OBJ KEY key; II In: Unlocks object, e.g., objWKNKey 
OBJ_CAPABILITY_SET, * P_OBJ_CAPABILITY_SET; 

stsProtection Violation Key does not open the object. 

CLSMGR.H 

Messages 
17 



'8 PEN POINT API REFERENCE 
Part 1 I Class Manager 

msglsA 
Tests if the object's class inherits from the class. 

Takes CLASS, returns STATUS. 

fdefine msgIsA MakeMsg(clsObject, 30) 

stsOK Class is an ancestor of the object's class. 

stsBadAncestor Class is not an ancestor of the object's class. 

msgAncestorlsA 
Tests if self inherits from the class. 

Takes CLASS, returns STATUS. 

fdefine msgAncestorIsA MakeMsg(clsObject, 32) 

This is a clsClass message and can only be sent to a class. Consider using msglsA if the object is not a 
class. 

stsO K Class parameter is an ancestor. 

stsBadObject Class parameter is not an object. 

stsBadAncestor Class parameter is not an ancestor. 

msgClass 
Passes back the class of the object. 

Takes P _CLASS, returns SfATUS. 

fdefine msgClass MakeMsg(clsObject, 34) 

msgAncestor 
Passes back the ancestor of the class. 

Takes P_CLASS, returns SfATUS. 

fdefine msgAncestor MakeMsg(clsObject, 20) 

This is a clsClass message and can only be sent to a class. Consider using msgClass if the object is not a 
class. 

msgSetLock 
Sets or changes the key of the object. 

Takes OBJ_LOCK_SET, returns STATUS. 

fdefine msgSetLock MakeMsg(clsObject, 106) 

typedef struct OBJ_LOCK_SET 
OBJ _ KEY oldKey i 
OBJ KEY newKeYi 
OBJ_LOCK_SET, * P_OBJ_LOCK_SETi 

II In: Required to set lock 
II In: New key, if successful 

stsProtection Violation Old key does not open the object. 



Return Value 

Return Value 

Return V(1lue 

Message 
ArgumenTs 

Return Value 

msgUnlocks 
Tests if a key will unlock the object. 

Takes OBLKEY, returns STATUS. 

fdefine msgUnlocks MakeMsg(clsObject, 38) 

stsProtection Violation Key does not open the object. 

msgDuplicateLock 
Locks the pArgs object with the same key as object. 

Takes OBJECT, returns STATUS. 

fdefine msgDuplicateLock MakeMsg(clsObject, 40) 

stsBadObject Parameter is not an object. 

msgVersion 
Returns the version of the object. 

Takes pNull, returns STATUS. 

fdefine msgVersion MakeMsg(clsObject, 82) 

stsScopeViolation Object was dynamic, request is nonsense. 

msg~evvJ\rgsSize 

Returns the size of the new struct required to create an instance of this class. 

Takes pNull, returns STATUS. 

fdefine msgNewArgsSize MakeMsg(clsObject, 92) 

This is a clsClass message and can only be sent to a class. 

msgOvvner 
Passes back the task that owns this object. 

Takes P_OS_TASK_ID, returns STATUS. 

fdefine msgOwner MakeMsg(clsObject, 22) 

msgSetOvvner 
Changes the owner task. 

Takes P_OBLOWNER, returns STATUS. 

fdefine msgSetOwner MakeMsg(clsObject, 24) 

typedef struct OBJ_OWNER { 
OS ·TASK ID task; 

OBJECT object; 

II In: [msgSetOwner] New owner 
II Out: [msgObjectOwner] Current owner 
II In: [msgObjectOwner] Source object 

CLSMGR.H 
Messages 

OBJ KEY key; II In: [msgSetOwner] If required by caps 
OBJ_OWNER, * P_OBJ_OWNER; 

stsProtection Violation Key does not open the object. 

'0 



20 PENPOINT API REFERENCE 
Part 1 / Class Manager 

MeSSU1j0 

Arf]L!menfS 

Message 

APfjlmlent5 

(omments 

msgProp 
Passes back the value of a property for the object. 

Takes P_OBLPROP, returns STATUS. 

tdefine msgProp MakeMsg(clsObject, 108) 

typedef struct OBJ_PROP { 
TAG propId; II In: [msgProp] Name of property 
P IDATA pData; II In: [msgProp] Pointer to data 

II In: [msgSetProp] Data to copy to prop 
SIZEOF length; II In: [msgProp] t of bytes to copy 

II Out: [msgProp] Length of data in bytes 
II In: [msgSetProp] t of bytes to write 

OBJ KEY key; II In: [msgSetProp] If required by cap 
OBJ_PROP, * P_OBJ_PROP; 

stsBadPropTag Tag value was not in the proper range. 

msgSetProp 
Sets a property on the object. 

Takes P_OBJ_PROP, returns STATUS. 

tdefine msgSetProp MakeMsg(clsObject, 110) 

typedef struct OBJ_PROP { 
TAG propId; 
P IDATA pData; 

SIZEOF length; 

OBJ KEY key; 
OBJ_PROP, * P_OBJ_PROP; 

II In: 
II 
II 
II 
II 
II 
II 

In: 
In: 
In: 
Out: 
In: 
In: 

[msgProp] Name of property 
[msgProp] Pointer to data 
[msgSetProp] Data to copy to prop 
[msgProp] t of bytes to copy 
[msgProp] Length of data in bytes 
[msgSetProp] t of bytes to write 
[msgSetProp] If required by cap 

dsObject files any property that has tag flag 1 turned on. For example: 

tdefine MY_PROP MakeTagWithFlags(clsFoo,tagNum,l) 

stsBadPropTag Tag value was not in the proper range. 

stsProtection Violation Key does not open the object. 

,..,.. msgObiectXXX 

. Arguments 

These msgObjectXXX messages can be used with ObjectCallO to get information about all objects, 
regardless of their task. Functionally they are equivalent to msgXXX, when applicable. 

msgObjectlsA 
Using the object and the class in the pArgs. Tests if the object's class inherits from the class. 

Takes P _OBJ_IS_A, returns STATUS. 

tdefine msgObjectIsA MakeMsg(clsObject, 84) 

typedef struct OBJ IS A { 
OBJECT - object; II In: Source object 
CLASS objClass; II In: Ancestor of source object's class 
OBJ_IS_A, * P_OBJ_IS_A; 

stsBadObject Parameter is not an object. 

stsBadAncestor Class is not an ancestor of the object's class. 



Arguments 

Comments 

Return Value 

Argunu:mts 

Messoge 
Arguments 

Return Yolue 

Return VCllue 

msgObjectAncestorlsA 
Tests if the descendant class inherits from the ancestor. 

Takes P _OBLANCESTOR_IS_A, returns STATUS. 

tdefine msgObjectAncestorIsA MakeMsg(clsObject, 86) 

typedef struct OBJ_ANCESTOR_IS_A 
CLASS descendant; II In: Source class (always a class) 
CLASS ancestor; II In: Ancestor of the descendant 
OBJ_ANCESTOR_IS_A, * P_OBJ_ANCESTOR_IS_A; 

This is a clsClass message and can only be sent to a class. 

stsBadObject One of the parameters is not a class. 

stsBadAncestor Ancestor parameter is not an ancestor. 

msgObjectClass 
Passes back the class for the object in pArgs. 

Takes P _OBLCLASS, returns STATUS. 

tdefine msgObjectClass MakeMsg(clsObject, 88) 

typedef struct OBJ_CLASS { 
OBJECT object; II In: Source object 
CLASS objClass; II Out: Class of source object 
OBJ_CLASS, * P_OBJ_CLASS; 

stsBadObject Object or class parameters are not objects. 

msgObject()~er 

Passes back the owning task for the object in pArgs. 

Takes P_OBLOWNER, returns STATUS. 

tdefine msgObjectOwner MakeMsg(clsObject, 26) 

typedef struct OBJ_OWNER { 
OS_TASK_ID task; 

OBJECT object; 

II In: [msgSetOwner] New owner 
II Out: [msgObjectOwner] Current owner 
II In: [msgObjectOwner] Source object 

CLSMGR.H 
Messages 

OBJ_KEY key; II In: [msgSetOwner] If required by caps 
OBJ_OWNER, * P_OBJ_OWNER; 

stsBadObject Parameter is not an object. 

msgObject\falid 
Tests that the object in pArgs exists. 

Takes OBJECT, returns STATUS. 

tdefine msgObjectValid MakeMsg(clsObject, 42) 

stsBadObject Parameter is not an object. 

stsBadAncestor Invalid ancestor. 

2' 



22 PENPOINT API REFERENCE 
Part 1 I Class Manager 

msgObjectVersion 
Returns the version of the object in pArgs. 

Takes OBJECT, returns STATUS. 

fdefine msgObjectVersion MakeMsg(clsObject, 44) 

stsBadObject Parameter is not an object. 

stsScopeViolation Parameter was dynamic, request is nonsense. 

msgObject~evv 

Creates a new object in the same context as the object that receives this message. 

Takes newArgs, returns STATUS. 

fdefine msgObjectNew MakeMsg(clsObject, 98) 

stsProtection Violation objCapCreate is disabled. 

stsScopeViolation Must be executed in the owner task of the receiving object. 

msgTrace 
Turn tracing on for classes and objects. Return value is stsTraceOn if tracing was on and stsTraceOff if 
tracing was off. 

Takes TAG, returns STATUS. 

fdefine msgTrace MakeMsg(clsObject, 48) 
fdefine objTraceOn (P_ARGS)stsTraceOn 
fdefine objTraceOff (P_ARGS)stsTraceOff 

When tracing is turned on for the object, every ObjectCallO to the object causes a 3-line message to be 
printed. The format of the output is: 

C> Trace ObjectCall: @ cls="ancestor name" 
C> object="object name" 
C> msg="message name", pArgs="address", pData="address" 

task="task" 
depth="D" 

On return from the ObjectCallO a 2-line message is printed. The format of the output is: 

C> Trace ObjectCall: returns="status value" 
C> object="object name" 

task="task" 
depth="D/C" 

where task is the task id in hex, depth is the number of recursive dispatch loops. All names are printed 
symbolically when symbols are available. 

ObjectCallAncestorO calls are traced for objects if tracing is on for the object and the debug flag 
IDC 1 000 is set. 

When tracing is turned on for a class, the class is traced as an object. In addition, all 
ObjectCallAncestorO calls that pass through the class are traced. 



Arguments 

Comments 

Message 
Arguments 

msgMutate 
Changes the ancestor of the object to be the newAncestor class. 

Takes P_OBJ_MUTATE, returns STATUS. 

#define msgMutate MakeMsg(c!sObject, 46) 

typedef struct OBJ_MUTATE { 
CLASS newClassi II In: 
OBJ KEY keYi II In: 
OBJ_MUTATE, * P_OBJ_MUTATEi 

Object's new class 
If required by caps 

CLSMGR.H 
Messages 

23 

The total size of the instance data for the new and old ancestors must be equal, this is the sum for all the 
ancestors up to clsObject. This message is NOT intended for general use. Use it when the behavior of 
an existing object needs to be overridden. 

stsBadAncestor The new Ancestor class is not a valid class. 

stsSizeLimit The sizes of new and old instance data don't match. 

msgAddObserver 
Adds an observer to the end of the objeCt's observer list. 

Takes OBJECT, returns STATUS. 

#define msgAddObserver MakeMsg(c!sObject, 58) 

stsBadObject Parameter is not an object. 

stsProtection Violation objCapObservable is disabled. 

stsScopeViolation Observer is local and has a different owner than the observed object or the observed 
object is callable. 

stsAlreadyAdded The same observer has been added twice. This is only a warning, the observers are ref 
counted. Two adds require two removes. 

msgAddObserverAt 
Adds an observer at the specified position in the observer list. 

Takes P _OBLOBSERVER_POS, returns STATUS. 

#define msgAddObserverAt MakeMsg(clsObject, 78) 

typedef struct OBJ_OBSERVER_POS 
OBJECT observer; II In: [msgAddObserverAt] New observer 

II Out: [msgGetObserver] Observer at pos 
U16 position; II In: Position in observer list 
OBJ_OBSERVER_POS, * P_OBJ_OBSERVER_POS; 

stsBadObject Parameter is not an object. 

stsProtection Violation objCapObservable is disabled. 

stsScopeViolation Observer is local and has a different owner than the observed object or the observed 
object is callable. 

stsAlreadyAdded The same observer has been added twice. This is only a warning, the observers are ref 
counted. Two adds require two removes. 



24 PENPOINT API REFERENCE 
Part 1 / Class Manager 

MessQse 
Arguments 

MesSQ9€: 
Arguments 

Arguments 

Return Value 

msgRemoveObserver 
Removes an observer from the object's observer list. 

Takes OBJECT, returns STATUS. 

tdefine msgRemoveObserver MakeMsg(clsObject, 60) 

msgRemoved is sent to the observer after it is removed. 

stsProtection Violation objCapObservable disabled. 

stsAlreadyRemoved Observer was not on the list. 

msgNotifyObservers 
Sends a message to the observers. 

Takes P _OBJ_NOTIFY_OBSERVERS, returns STATUS. 

tdefine msgNotifyObservers MakeMsg(clsObject, 62) 

typedef struct OBJ_NOTIFY_OBSERVERS { 
MESSAGE msg; II In: Message to send/post observers 
P ARGS pArgs; II In: Args for message 
SIZEOF lenSend; II In: Length of Args 
OBJ_NOTIFY_OBSERVERS, * P_OBJ_NOTIFY_OBSERVERS; 

Any observer that returns stsBadObject is removed from the observer list. 

msgPostObservers 
Posts a message to the observers. 

Takes P _OBJ_NOTIFY_OBSERVERS, returns STATUS. 

tdefine msgPostObservers MakeMsg(clsObject, 94) 

typedef struct OBJ_NOTIFY_OBSERVERS { 
MESSAGE msg; II In: Message to send/post observers 
P ARGS pArgs; II In: Args for message 
SIZEOF lenSend; II In: Length of Args 
OBJ_NOTIFY_OBSERVERS, * P_OBJ_NOTIFY_OBSERVERS; 

Any observer that returns stsBadObject is removed from the observer list. 

msgEnumObservers 
Passes back the observer list. 

Takes P _OBJ_ENUM_OBSERVERS, returns STATUS. 

tdefine msgEnumObservers MakeMsg(clsObject, 64) 

typedef struct OBJ ENUM OBSERVERS { 
U16 - max; II In: Size of pObservers[] 

count; II In: t to pass back in pObservers[]. 
II If count> max memory may be allocated 
II Out: t of valid entries in pObservers[] 

P OBJECT pObservers; II In: ptr to array 
II Out: If memory was allocated 
II client should free the memory 

U16 next; II In: Set to 0 for the first call 
II Out: Next available entry 

OBJ_ENUM_OBSERVERS, * P_OBJ_ENUM_OBSERVERS; 

stsEndOfData The size of the array is greater than or equal to the number of observer. 



Messoge 
Arguments 

Comments 

Arguments 

~s~et()bserver 

Passes back the observer at the specified position in the observer list. 

Takes P _OBLOBSFRVER_POS, returns STATUS. 

tdefine msgGetObserver MakeMsg(clsObject, 74) 

typedef struct OBJ_OBSERVER_POS 

CLSMGR.H 
Messages 

OBJECT observer; II In: [msgAddObserverAt] New observer 
II Out: [msgGetObserver] Observer at pos 

U16 position; II In: Position in observer list 
OBJ_OBSERVER_POS, * P_OBJ_OBSERVER_POS; 

objN 011 is returned if the position is not in the observer list. 

~sgNu~()bservers 

Passes back the number of observers for this object. 

Takes P _Ui6, returns STATUS. 

tdefine msgNumObservers MakeMsg(clsObject, 72) 

~sgAdded 

Sent to the observer when it is added to an object's observer list. 

Takes OBJECT, returns STATUS. Category: observer notification. 

tdefine msgAdded MsgNoError(MakeMsg(clsObject, 66» 

~sgRe~oved 

Sent to the observer when it is removed from an object's observer list. 

Takes OBJECT, returns STATUS. Category: observer notification. 

tdefine msgRemoved MsgNoError(MakeMsg(clsObject, 68» 

~sgChanged 
Generic message that can be used to notify observers that a change has occurred. 

Takes OBJECT, returns STATUS. Category: observer notification. 

tdefine msgChanged MsgNoError(MakeMsg(clsObject, 76» 

~sgNotU nderstood 
Sent by clsObject when an unrecognized message is received. 

Takes P _MSG_NOT_UNDERSTOOD, returns STATUS. 

tdefine msgNotUnderstood MakeMsg(clsObject, 50) 

typedef struct MSG_NOT_UNDERSTOOD 
MESSAGE msg; II In: Message not understood 
P ARGS pArgs; I I In: Args of message 
MSG_NOT_UNDERSTOOD, * P_MSG_NOT_UNDERSTOOD; 

stsNotUnderstood Always returned by clsObject when this message reaches clsObject. 

2S 



26 PENPOINT API REFERENCE 
Part 1 I Class Manager 

Message wild cards 
Used to define a class wild card and as a table wild card. 

tdefine objWildCard -1 

Wild card for clsObject. 

tdefine clsObjWildCard 

Wild card for clsClass. 

tdefine clsClsWildCard 

MakeMsg(clsObject, objWildCard) 

MakeMsg(clsClass, objWildCard) 

Functions 

ObjectCall 
Maps the message to the object's method (MsgHandler) and calls it with pArgs. 

Returns STATUS. 

Fttndkm Prototype STATUS EXPORTED ObjectCall ( 
MESSAGE msg, 
OBJECT object, 
P ARGS pArgs 

) ; 

stsBadObject Object was invalid. 

stsScopeViolation Object owned by a different task and does not have objCapCall set. 

ObjectCallAncestorCtx 
Calls the next ancestor in the class chain. 

Returns STATUS. 

Fl.mdion Prototype STATUS EXPORTED ObjectCallAncestorCtx ( 

Return Value 

CONTEXT ctx 
) ; 

Developers usually can avoid calling this expliCitly by specifying objCallAncestorBefore or (for a few 
messages) objCallAncestorAfter in the method table. Occasionally, you need to call your ancestor in the 
middle of things, and this is the call you do it with. 

ObjectCallAncestor 

stsBadContext if ctx parameter is bad. 

ObjectCallAncestor 
Calls the ancestor with the parameters supplied. 

Returns STATUS. 

Function Prototype STATUS EXPORTED ObjectCallAncestor ( 

Comments 

Return Value 

MESSAGE msg, 
OBJECT self, 
P_ARGS pArgs, 
CONTEXT ctx 

) ; 

In general you should use ObjectCallAncestorCtxO. 

stsBadContext if ctx parameter is bad. 



ObjectSend 
Generalized version of ObjectCallO that works across tasks boundaries. 

Returns STATUS. 

CLSMGR.H 
Functions 

27 

Fundio!'! Prototype STATUS EXPORTED ObjectSend ( 

Return Value 

MESSAGE msg, 
OBJECT object, 
P ARGS pArgs, II In only: Not updated 
SIZEOF lenArgs 

) ; 

The pArgs block is copied into the address space of the task that owns the object and an ObjectCallO is 

executed in that task's context. IflenArgs equals 0, pArgs block is not copied and the pointer is passed 

directly. In this case, pArgs must point to global storage. 

While the current task is waiting for ObjectSendO to return, the task will continue to dispatch messages 

sent to objects owned by the task. This allows sending to an object in another task, which in turns sends 

to an object owned by the current task, without deadlock. 

stsProtection Violation objCapSend is disabled. 

stsSendTasldnvalid Object's owning task is invalid. 

stsTaskTerminated While waiting for a reply the object's task died. 

ObjectSendUpdate 
Same as ObjectSendO, additionally the pArgs block is copied back to the current task. 

Returns STATUS. 

function Prototype STATUS EXPORTED ObjectSendUpdate ( 
MESSAGE msg, 
OBJECT object, 
P ARGS pArgs, I I In/Out: Updated 
SIZEOF lenArgs 

) ; 

ObjectSendU32 
Same as ObjectSendO without the length arg, lenArgs = 0. 

Returns STATUS. 

Function Prototype STATUS EXPORTED ObjectSendU32 ( 
MESSAGE msg, 
OBJECT object, 
P ARGS pArgs II In only: Not updated 

) ; 

ObjectSendTask 
Same as ObjectSendO except the task is specified explicitly. 

Returns STATUS. 

function Prototype STATUS EXPORTED ObjectSendTask ( 
MESSAGE msg, 
OBJECT object, 
P ARGS pArgs, II In only: Not updated 
SIZEOF lenArgs, 
OS TASK ID task 

) ; 



28 PEN POINT API REFERENCE 
Part 1 / Class Manager 

(omments For experts only: Use this routine with care, the task of the object is ignored. ObjectSendTaskO allows 
sending to well-known process-globals from outside the process, such as, theProcess. You might use this 
to communicate with theUndoManager in an embedded application. 

ObjectSendUpdateTask 
Same as ObjectSendfaskO, additionally the pArgs are updated. 

Returns STATUS. 

Fwrg';tion F'rototype STATUS EXPORTED ObjectSendUpdateTask ( 
MESSAGE msg, 
OBJECT object, 
P ARGS pArgs, II In/Out: Updated 
SIZEOF lenArgs, 
OS TASK ID task 

) i 

Comments Experts only, use this routine with care. 

ObjectPost 
Posts a message to the object via the system input queue. 

Returns STATUS. 

Fundion Prototype STATUS EXPORTED ObjectPost ( 
MESSAGE msg, 
OBJECT object, 
P ARGS pArgs, 
SIZEOF lenArgs 

) i 

ObjectPostO is similar to ObjectSendO but the message delivery is deferred and the current task 
continues to run. Because the current task does not wait, it is not possible to return a status value or 
pArgs. 

The most common use of ObjectPostO is to delay the effect of a msgDestroy. For example, if a button 
sends you a message when it is pressed, and you want to destroy the button at that point, you cannot use 
ObjectCallO to send msgDestroy to it until after you have returned from processing the message the 
button sent. If you ObjectPostO the msgDestroy, this guarantees the button won't receive it until you 
have returned. 

ObjectPostO is synchronized with respect to the input system. A posted message is placed in the system 
input queue. When the message reaches the head of the queue it is sent to the object in the context of 
the task that owns the object. A posted message is typically dispatched by a task's top-level dispatch loop. 
If the task is already processing a message or waiting for a reply to a sent message the posted message is 
queued. The one exception is when the input system is running system modal, in this case the posted 
messages are delivered to any dispatch loop. Dispatch loops are created whenever an ObjectSendO is 
waiting for a reply. The side effect is that any task that is running concurrently may receive a posted 
message at any time. 



ObjectPostU32 
Same as ObjectPostO without the length arg, lenArgs = O. 

Returns STATUS. 

Function Prototype STATUS EXPORTED ObjectPostU32 ( 
MESSAGE msg, 
OBJECT object, 
P ARGS pArgs 

) ; 

ObjectPostTask 
Same as ObjectPostO except the task is specified explicitly. 

Returns STATUS. 

Fundion Prototype STATUS EXPORTED ObjectPostTask ( 
MESSAGE msg, 
OBJECT object, 
P ARGS pArgs, 
SIZEOF lenArgs, 
OS TASK 1D task 

) ; 

CLSMGR.H 
Functions 

Comments For experts only: Use this routine with care, the owning task of the object is ignored. ObjectPostTaskO 

allows posting to WKN process-globals from outside the process, such as, theProcess. 

ObjectPostAsync 
Similar to ObjectPostO but not synchronized with the input system. 

Returns STATUS. 

Function Prototype STATUS EXPORTED ObjectPostAsync ( 
MESSAGE msg, 
OBJECT object, 
P ARGS pArgs, 
SIZEOF lenArgs 

) ; 

Comments This call causes concurrency and all the difficulties associated with it. 

29 

One of these difficulties, described in detail under ObjectPost, is the handling of posted messages when 
the input system is running system modal. 

ObjectPostAsyncTask 
Same as ObjectPostAsyncO except the task is specified explicitly. 

Returns STATUS. 

fundion Prototype STATUS EXPORTED ObjectPostAsyncTask ( 
MESSAGE msg, 
OBJECT object, 
P ARGS pArgs, 
SIZEOF lenArgs, 
OS TASK 1D task 

) ; 

Comments This call causes concurrency and all the difficulties associated with it. 



30 PEN POINT API REFERENCE 

Part 1 / Class Manager 

For experts only: Use this routine with care, the owning task of the object is ignored. 

ObjectPostAsyncTaskO allows posting to WKN process-globals from outside the process, such as, 

theProcess. 

ObjectPostDirect 
Similar to ObjectPostAsyncO but can be dispatched by any dispatch loop. 

Returns STATUS. 

riJl1d!@!'1 Pr@h$type STATUS EXPORTED ObjectPostDirect ( 
MESSAGE msg, 
OBJECT object, 
P ARGS pArgs, 
SIZEOF lenArgs 

) ; 

This call causes concurrency and all the difficulties associated with it. 

One of these difficulties, described in detail under ObjectPost, is the handling of posted messages when 

the input system is running system modal. 

ObjectPostDirectTask 
Same as ObjectPostDirectO except the task is specified explicitly. 

Returns STATUS. 

Fundi@t1 Pr©t©type STATUS EXPORTED ObjectPostDirectTask ( 
MESSAGE msg, 
OBJECT object, 
P ARGS pArgs, 
SIZEOF lenArgs, 
OS TASK ID task 

) ; 

This call causes concurrency and all the difficulties associated with it. 

For experts only: Use this routine with care, the owning task of the object is ignored. 

ObjectPostDirect TaskO allows posting to WKN process-globals from outside the process, such as, 
theProcess. 

ObjectWrite 
Writes the instance data for self in a protected area. 

Returns STATUS. 

rund!@rt Pmf@fype STATUS EXPORTEDO ObjectWrite ( 

) ; 

OBJECT self, 
CONTEXT 
P UNKNOWN 

ctx, 
pData 

stsBadContext Invalid context. 



Fundion Prototype 

Return Volue 

ObjectWritePartial 
Updates part of the instance data for self in a protected area. 

Returns STATUS. 

STATUS EXPORTEDO 
OBJECT 
CONTEXT 

) ; 

P UNKNOWN 
SIZEOF 
SIZEOF 

ObjectWritePartial( 
self, 
ctx, 
pData, 
offset, 
length 

stsBadContext Invalid context. 

ObjectRead 
Copies the instance data from protected storage into pBuf. 

Returns STATUS. 

Fundion Prototype STATUS EXPORTED ObjectRead ( 
OBJECT self, 
CONTEXT ctx, 
P UNKNOWN pBuf 

) ; 

CLSMGR.H 
Functions 

Cemments The pData pointer passed into the MsgHandler is a faster way to read the protected data. 

Comments 

ObjectPoke 
Writes the object's instance data. 

Returns STATUS. 

STATUS EXPORTEDO 
OBJECT 
P MSG 
OBJ KEY 
P UNKNOWN 

) ; 

ObjectPoke( 
object, 
classMsgTable, 
key, 
pBuf 

II Address of the class's table 
II Key for the class 

Copies pBuf into the instance data block for the class specified. 

stsBadAncestor ClassMsgTable did not correspond to an ancestor. 

stsProtection Violation Key does not open the object. 

ObjectPeek 
Reads the object's instance data. 

Returns STATUS. 

Fundioi1 Prei'otype STATUS EXPORTED ObjectPeek ( 

Comments 

OBJECT object, 
P~MSG classMsgTable, 
OBJ KEY key, 
P_uNKNOWN pBuf 

) ; 

Copies the instance data block for the class specified into pBuf. 

stsBadAncestor ClassMsgTable did not correspond to an ancestor. 

stsProtection Violation Key does not open the object. 

31 



32 PENPOINT API REFERENCE 
Part 1 I Class Manager 

ObjectOwner 
Returns the object's owner. 

Returns SfATUS. 

Function Prototype OS_TASK _ ID EXPORTED Ob jectOwner ( 
OBJECT object 

) ; 

ObjectVaiid 
Returns stsO K if the object is validate, otherwise an error is returned. 

Returns SfATUS. 

Fundion Prototype STATUS EXPORTED Object Valid ( 
OBJECT object 

) ; 

Default MsgHandlers 
Default MsgHandler that always returns stsOK. 

Function Prototype MsgHandler (StsQKMsgHandler); 

Default MsgHandler that always returns stsFailed. 

Function Prototype MsgHandler (StsFailedMsgHandler) ; 

Default MsgHandler that always returns stsReqN otSupported. 

fundion Prototype MsgHandler (StsReqNotSupportedMsgHandler) ; 

Default MsgHandler that always returns stsNotYedmplemented. 

Function Prototype MsgHandler (StsNotYetImplemented) ; 

Default MsgHandler that always returns stsMessageIgnored. 

Fundion Prototype MsgHandler (StsMessageIgnoredMsgHandler) ; 

Functions for Generating Symbolic Names 
These routines are very useful for debugging. It is MUCH more useful to be able to print 
"stsBadParameter" instead of some 32-bit hex number. 

CIsStsToString 
Takes a STATUS and returns its symbolic name or [wkn=num:sts=num]. 

Returns P _STRING. 

Function Prototype P _STRING EXPORTED ClsStsToString ( 
STATUS sts, 

Comments 

P_STRING pStr 
) ; 

Returns either an internal pointer to a symbolic name or the pArgs buffer. If a symbolic name is not 
found, a string [wkn=num:sts=num] is constructed in the pArgs buffer. 

Symbolic names are added via ClsMgrSymbolsInitO. 



ClsMsgT oString 

CLSMGR.H 
Functions for Generating Symbolic Names 

Takes a message and returns its symbolic name or [wkn=num:msg=num]. 

Returns P _STRING. 

fundlon Pr<:»t<:»type P _STRING EXPORTED ClsMsgToString ( 
MESSAGE msg, 
P_STR~G pStr 

) ; 

Returns either an internal pointer to a symbolic name or the pArgs buffer. If a symbolic name is not 
found, a string [wkn=num:msg=num] is constructed in the pArgs buffer. 

Symbolic names are added via ClsMgrSymbolsInitO. 

ClsTagToString 
Takes a message and returns its symbolic name or [wkn=num:tag=num]. 

Returns P _STRING. 

function Prot<:»type P _STRING EXPORTED ClsTagToString ( 
TAG tag, 
P STRING pStr 

) ; 

Returns either an internal pointer to a symbolic name or the pArgs buffer. If a symbolic name is not 
found, a string [wkn=num:tag=num] is constructed in the pArgs buffer. 

Currently, TAGs and MSGs are kept in the same list. If a TAG and MSG have the same value then first 
one found will be displayed. This may change in the future. 

Symbolic names are added via ClsMgrSymbolsInitO. 

CIs 0 bjfoString 
Takes an OBJECT and returns its symbolic name or [type:num:num]. 

Returns P _STRING. 

Fundicm ProtoType P_STRING EXPORTED ClsObjToString( 

Comments 

OBJECT object, 
P_STRING pStr 

) ; 

Returns either an internal pointer to a symbolic name or the pArgs buffer. If a symbolic name is not 
found, a string [type=num:num] is constructed in the pArgs buffer. 

Symbolic names are added via ClsMgrSymbolsInitO. 

ObjectlnfoString 
Takes an OBJECT and returns its symbolic name and additional information. 

Returns P _STRING. 

P STRING EXPORTED ObjectInfoString( 
- OBJECT object, 

P_STRING pStr 
) ; 

Formats is the first if the name is found, and the second if not: 

name (cls=name or [type=num:num]) 
[type=num:num] (cls=name or [type=num:num]) 

33 



34 PENPOINT API REFERENCE 
Part 1 / Class Manager 

stsBadObject Parameter is not an object. 

CIsString ToSts 
Takes a symbolic name as a string and returns the corresponding STATUS. 

Returns STATUS. 

Fundl()o Prototype STATUS EXPORTED ClsStringToSts ( 
P STRING sts 

) ; 

CIsString ToMsg 
Takes a symbolic name as a string and returns the corresponding message. 

Returns MESSAGE. 

Fundkm Prototype MESSAGE EXPORTED ClsStringToMsg ( 
P STRING msg 

) ; 

CIsString ToT ag 
Takes a symbolic name as a string and returns the corresponding tag. 

Returns TAG. 

Fundio;o Prototype MESSAGE EXPORTED ClsStringToTag ( 
P_STRING tag 

) ; 

Currently, TAGs and MSGs are kept in the same list. If a TAG and MSG have the same value then first 
one found will be displayed. This may change in the future. 

CIsStringToObj 
Takes a symbolic name as a string and returns the corresponding OBJECT. 

Returns OBjECT. 

Fum';ti()o Prototype OBJECT EXPORTED ClsStringToObj ( 
P_STRING object 

) ; 

CIsSymbolslnit 
Adds three' arrays of symbolic names (OBJECT, MSG, STATUS) to the database. 

Returns STATUS. 

Fundi()o Prototype STATUS EXPORTEDO ClsSymbolsIni t ( 
P STRING type, 
P_CLS_SYM_OBJ objSymbols, 
P_CLS_SYM_MSG msgSymbols, 
P_CLS_SYM_STS stsSymbols 

) ; 

Each group of arrays is labelled with a tag. If two groups have the same tag, the last group to be added 
replaces the earlier group. The arrays must be in shared, user visible memory. 

stsBadParam symbols were not in shared, user visible memory 



Low-Level Task Dispatch Routines 

ObjectMsgLoop 
Receives and dispatches object messages forever. 

Returns STATUS. 

tdefine ObjectMsgLoop() ObjectMsgDispatch(pNull) 

CLSMGR.H 
Low-Level Task Dispatch Routines 

3S 

If you create a sub-task with OSSubTaskCreate(), and you want that subtask to be able to receive 

messages, then you have to make it call this routine. ObjectMsgLoopO never returns. It just sits there 

waiting for messages generated by input events or sent from other processes and calling the appropriate 
local message handler for each one in turn. Even if you never use this directly, knowing that it exists 

makes it much easier to understand the difference between ObjectCall, ObjectPost, and ObjectSend. 

stsBadParam Bad ITMSG_INFO parameter. 

ObjectMsgDispatch 
Dispatches object message received by OSITMsgReceiveO. 

Returns STATUS. 

Function Prototype STATUS EXPORTED ObjectMsgDispatch(P_OS_ITMSG_INFO pITMsg); 

Return Vclue stsBadParam Bad ITMSG_INFO parameter. ITMsg type must be one of osClsmgrSend or 

osClsmgrPost. 

ObjectMsgDispatchlnfo 
Passes back information on the current ObjectMsgDispatch frame. 

Returns STATUS. 

Function Prototype STATUS EXPORTED ObjectMsgDispatchInfo ( 
P_OS_ITMSG_INFO pInfo, II Out: ITMSG_INFO for requested frame 
P_U32 pLevel II In/Out: requested frame 

II In: requested dispatch frame, 
II maxU32 = current, 1 = top level 
II Out: actual level of dispatch frame. 

) ; 

Enum32 (SEND_TYPE) 
{ 

II (.asm) 

} ; 

objSendNoUpdate = flagO, 
objSendUpdate = flagl, 
objPostAsync = flag2, 
objPostDirect = flag3, 
objSendMax = flaglO 

Used by ObjectMsgExtractO and ObjectmsgAlterO. All fields are out parameters for ObjectMsgExtract 

and in parameters of ObjectMsgAlter. The token field is currently not used and not settable by 

Object~sgAlter. 

typedef struct OBJ_DISPATCH_INFO 
MESSAGE msg; 
OBJECT object; 
P ARGS pArgs; 
U32 length; 
U32 token; 
SEND TYPE type; 
OBJ_DI SPATCH_INFO, *P_OBJ_DISPATCH_INFO; 



36 PENPOINT API REFERENCE 
Part 1 I Class Manager 

Return \ledue stsBadParam Bad ITMSG_INFO parameter. 

stsFailed Not inside a dispatch loop or invalid frame number 

()bjec~sg~ract 

Extracts the interesting ObjectSend fields from the ITMsg packet. 

Returns SfATUS. 

Fundion Prototype STATUS EXPORTED ObjectMsgExtract ( 
P_OS_ITMSG_INFO pITMsg, 
P_OBJ_DISPATCH_INFO pInfo 

) ; 

stsBadParam Bad ITMSG_INFO parameter. 

()bjec~sgAJter 

Alters the ObjectSend fields of the ITMsg packet. 

Returns SfATUS. 

Function Prototype STATUS EXPORTED ObjectMsgAlter ( 
P_OS_ITMSG_INFO pITMsg, 
P_OBJ_DISPATCH_INFO pInfo 

) ; 

These structs are used by the method compiler, outside of Penpoint. 

Enurnl6(MSG_HANDLER_FLAGS) 
objCallAncestorBefore 
objCallAncestorAfter 

} ; 

objDerefIData 
objInheritMethod 
objClassMessage 
objSaveSpace 
objSaveTime 

typedef struct MSG_INFO 
MESSAGE msg; 

= flagO, 
= flagl, 
= flag2, 
= flag3, 
= flag4, 
= flagS, 
= flag6 

P U8 functionName; 
MSG_HANDLER_FLAGS flags; 

MSG_INFO, * P_MSG_INFO; 
typedef struct CLASS_INFO { 

P_U8 tableName; 
P MSG INFO msgTable; 
U32 flags; 

CLASS_INFO, * P_CLASS_INFO; 

stsBadParam Bad ITMSG_INFO parameter. 

II Call ancestor before this handler 
II Call ancestor after this handler 
II No-op 
II No-op 
II Handle messages sent to a class 
II Optimize for space 
II Optimize for time 

II name to use for compiled table 
II message table to compile 
II no flags, must be set to zero 



Debugging Support 

ObjectCallNoDebug 

CLSMGR.H 
Debugging Support 

Same as ObjectCallO but prevents tracing (i.e., no debug output for IDCI) 

Returns STATUS. 

Fundion Prototype STATUS EXPORTED ObjectCallNoDebug ( 
MESSAGE msg, 
OBJECT object, 
P ARGS pArgs 

) ; 

fdefine objMaxCallsDepth 10 
typedef struct OBJ_STATISTICS { 

U32 numObjReads; 
U32 numObjWrites; 
U32 numObjPeeks; 
U32 numObjPokes; 
U32 numObjCalls; 
U32 numObjSends; 
U32 numObjPosts; 
U32 depthObjCalls[objMaxCallsDepth]; 
U32 numObjMaxDepth; 

OBJ_STATISTICS, *P_OBJ_STATISTICS; 

ClsClearStatistics 
Zeros the statistics gathering counters. 

Returns STATUS. 

function Prototype STATUS EXPORTED ClsClearStatistics (void) ; 

ClsD ump Statistics 
Prints the current value of the statistics. 

Returns STATUS. 

Fundion Pr©t©type STATUS EXPORTED ClsDumpStatistics (void) ; 

ClsStatistics 
Passes back the current value of the statistics in stats parameter. 

Returns STATUS. 

function Pvot@type STATUS EXPORTED ClsStatistics (P_OBJ_STATISTICS stats); 

ClsSetStatistics 
Resets the value of the statistics to stats parameter. 

Returns STATUS. 

Fundi@n Pr©t©type STATUS EXPORTED ClsSetStatistics (P_OBJ_STATISTICS stats); 

37 

Comments By calling ClsStatisticsO at the beginning of a routine and ClsSetStatisticsO at the end selected routines 

can be exempted from statistics gathering. 



38 PENPOINT API REFERENCE 
Part 1 / Class Manager 

Debugging Macros 
The debugging macros are short-hand for a call to the appropriate function followed by a conditional 
test and action. All the message passing functions have macros that: return if there is an error (Ret), 
jump to a label on an error amp) and test for an error and return the value (OK). ObjectCall and 
ObjectCallAncestor have two additional macros, Failed and Chk. 

Standard GO error recovery is done by using the RetO form as long as there's nothing to dean up and 
then using the JmpO form to jump to a label at the bottom of the routine that knows how to dean up. 
Note that both RetO and JmpO forms use WarnO forms of their respective calls, so any sts < stsOK 
generates an error message if DEBUG is set. 

ObjectCall 

tdefine ObjCallRet(m,o,p,s) \ 
if (((s) = ObjCallWarn(m,o,p)) < stsOK) return Si else 

tdefine ObjCallJmp(m,o,p,s,x) \ 
if (((s) = ObjCallWarn(m,o,p)) < stsOK) goto Xi else 

tdefine ObjCallOK(m,o,p,s) ((s = ObjCallWarn(m,o,p)) >= stsOK) 
tdefine ObjCallFailed(m,o,p,s) ((s = ObjCallWarn(m,o,p)) < stsOK) 
tdefine ObjCallChk(m,o,p,s) ((s = ObjectCall(m,o,p)) < stsOK) 

ObjectCallAncestor 

tdefine ObjCallAncestorRet(m,o,p,c,s) \ 
if (((s) = ObjCallAncestorWarn(m,o,p,c)) < stsOK) return Si else 

tdefine ObjCallAncestorJmp(m,o,p,c,s,x) \ 
if (((s) = ObjCallAncestorWarn(m,o,p,c)) < stsOK) goto Xi else 

tdefine ObjCallAncestorOK(m,o,p,c,s) \ 
((s = ObjCallAncestorWarn(m,o,p,c)) >= stsOK) 

tdefine ObjCallAncestorFailed(m,o,p,c,s) \ 
((s = ObjCallAncestorWarn(m,o,p,c)) < stsOK) 

tdefine ObjCallAncestorChk(m,o,p,c,s) \ 
((s = ObjectCallAncestor(m,o,p,c)) < stsOK) 

tdefine ObjCallAncestorCtxRet(c,s) \ 
if (((s) = ObjCallAncestorCtxWarn(c)) < stsOK) return Si else 

tdefine ObjCallAncestorCtxJmp(c,s,x) \ 
if (((s) = ObjCallAncestorCtxWarn(c) < stsOK) goto Xi else 

tdefine ObjCallAncestorCtxOK(c,s) \ 
((s = ObjCallAncestorCtxWarn(c)) >= stsOK) 

ObjectSend 

tdefine ObjSendRet(m,o,p,l,s) \ 
if (((s) = ObjSendWarn(m,o,p,l)) < stsOK) return Si else 

tdefine ObjSendJmp(m,o,p,l,s,x) \ 
if (((s) = ObjSendWarn(m,o,p,l)) < stsOK) goto Xi else 

tdefine ObjSendOK(m,o,p,l,s) ((s = ObjSendWarn(m,o,p,l)) >= stsOK) 

ObjectSendU pdate 

tdefine ObjSendUpdateRet(m,o,p,l,s) \ 
if (((s) = ObjSendUpdateWarn(m,o,p,l)) < stsOK) return Si else 

tdefine ObjSendUpdateJmp(m,o,p,l,s,x) \ 
if (((s) = ObjSendUpdateWarn(m,o,p,l)) < stsOK) goto Xi else 

tdefine ObjSendUpdateOK(m,o,p,l,s) ((s = ObjSendUpdateWarn(m,o,p,l)) >=stsOK) 

ObjectSendf ask 

tdefine ObjSendTaskRet(m,o,p,l,t,s) \ 
if (((s) = ObjSendTaskWarn(m,o,p,l,t)) < stsOK) return Si else 



tdefine ObjSendTaskJmp(m,o,p,l,t,s,x) \ 
if (((s) = ObjSendTaskWarn(m,o,p,l,t)) < stsOK) goto Xi else 

CLSMGR.H 
Debugging Macros 

tdefine ObjSendTaskOK(m,o,p,l,t,s) ((s = ObjSendTaskWarn(m,o,p,l,t)) >= stsOK) 

ObjectSendUpdateTask 

tdefine ObjSendUpdateTaskRet(m,o,p,l,t,s) \ 
if (((s) = ObjSendUpdateTaskWarn(m,o,p,l,t)) < stsOK) return Si else 

tdefine ObjSendUpdateTaskJmp(m,o,p,l,t,s,x) \ 
if (((s) = ObjSendUpdateTaskWarn(m,o,p,l,t)) < stsOK) goto Xi else 

tdefine ObjSendUpdateTaskOK(m,o,p,l,t,s) \ 
((s = ObjSendUpdateTaskWarn(m,o,p,l,t)) >= stsOK) 

ObjectSendU32 

tdefine ObjSendU32Ret(m,o,p,s) \ 
if (((s) = ObjSendU32Warn(m,o,p)) < stsOK) return Si else 

tdefine ObjSendU32Jmp(m,o,p,s,x) \ 
if (((s) = ObjSendU32Warn(m,o,p)) < stsOK) goto Xi else 

tdefine ObjSendU320K(m,o,p,s) ((s = ObjSendU32Warn(m,o,p)) >= stsOK) 

ObjectPost 

tdefine ObjPostRet(m,o,p,l,s) \ 
if (((s) = ObjPostWarn(m,o,p,l)) < stsOK) return Si else 

tdefine ObjPostJmp(m,o,p,l,s,x) \ 
if (((s) = ObjPostWarn(m,o,p,l)) < stsOK) goto Xi else 

tdefine ObjPostOK(m,o,p,l,s) ((s = ObjPostWarn(m,o,p,l)) >= stsOK) 

ObjectPostAsync 

tdefine ObjPostAsyncRet(m,o,p,l,s) \ 
if (((s) = ObjPostAsyncWarn(m,o,p,l)) < stsOK) return Si else 

tdefine ObjPostAsyncJmp(m,o,p,l,s,x) \ 
if (((s) = ObjPostAsyncWarn(m,o,p,l)) < stsOK) goto Xi else 

tdefine ObjPostAsyncOK(m,o,p,l,s) ((s = ObjPostAsyncWarn(m,o,p,l)) >= stsOK) 

ObjectPostDirect 

tdefine ObjPostDirectRet(m,o,p,l,s) \ 
if (((s) = ObjPostDirectWarn(m,o,p,l)) < stsOK) return Si else 

tdefine ObjPostDirectJmp(m,o,p,l,s,x) \ 
if (((s) = ObjPostDirectWarn(m,o,p,l)) < stsOK) goto Xi else 

tdefine ObjPostDirectOK(m,o,p,l,s) ((s = ObjPostDirectWarn(m,o,p,l)) >= stsOK) 

ObjectPostU32 

tdefine ObjPostU32Ret(m,o,p,s) \ 
if (((s) = ObjPostU32Warn(m,o,p)) < stsOK) return Si else 

tdefine ObjPostU32Jmp(m,o,p,s,x) \ 
if (((s) = ObjPostU32Warn(m,o,p)) < stsOK) goto Xi else 

tdefine ObjPostU320K(m,o,p,s) ((s = ObjPostU32Warn(m,o,p)) >= stsOK) 

39 



40 PENPOINT API REFERENCE 
Part 1 I Class Manager 

Debugging Helper Functions 
(with /DDEBUG) 

fif defined DEBUG I I defined CLSMGR_COMPILE 

ObjectCallWarning 
Same as ObjectCallO, additionally prints a debugging message if status less than stsOK. 

Returns STATUS. 

Fundh:m PrQtQty~le STATUS EXPORTED ObjectCallWarning ( 
MESSAGE msg, 
OBJECT object, 
P ARGS pArgs, 
P STRING fn, 
U16 In 

) ; 

In general, ObjCalIW arn macro should be used to call this routine. 

ObjectCallNoDebugWarning 
Same as ObjectCallNoDebugO, additionally prints a debugging message if status less than stsOK. 

Returns STATUS. 

fundlon Prototype STATUS EXPORTED ObjectCallNoDebugWarning ( 
MESSAGE msg, 
OBJECT object, 
P ARGS pArgs, 
P STRING fn, 
U16 In 

) ; 

In general, ObjCallNoDebugWarn macro should be used to call this routine. 

ObjectCallAncestorCtxWarning 
Same as ObjectCallAncestorCtxO, additionally prints a debugging message if status less than stsOK. 

Returns STATUS. 

rlJl1dion Prototype STATUS EXPORTED ObjectCallAncestorCtxWarning ( 
CONTEXT ctx, 
P STRING fn, 
U16 In 

) ; 

In general, ObjCallAncestorCtxWarn macro should be used. 

ObjectCallAncestorWarning 
Same as ObjectCallAncestorO, additionally prints a debugging message if status less than stsOK. 

Returns STATUS. 

flJndion Prototype STATUS EXPORTED ObjectCallAncestorWarning ( 
MESSAGE msg, 
OBJECT object, 
P ARGS pArgs, 
CONTEXT ctx, 
P STRING fn, 
U16 In 

) ; 



Comments In general, ObjCallAncestorWarn macro should be used. 

ObjectSendWarning 

CLSMGR.H 
Debugging Helper Functions 

Same as ObjectSend(), additionally prints a debugging message if status less than stsOK. 

Returns STATUS. 

fundion Prototype STATUS EXPORTED ObjectSendWarning ( 
MESSAGE msg, 
OBJECT object, 
P ARGS pArgs, 
SIZEOF lenArgs, 
P STRING fn, 
U16 In 

) ; 

Comments In general, ObjectSendWarn macro should be used. 

ObjectSendUpdateWarning 
Same as ObjectSendUpdate(), additionally prints a debugging message if status less than stsOK. 

Returns STATUS. 

function Prototype STATUS EXPORTED ObjectSendUpdateWarning ( 
MESSAGE msg, 
OBJECT object, 
P ARGS pArgs, 
SIZEOF lenArgs, 
P STRING fn, 
U16 In 

) ; 

Comments In general, ObjectSendUpdateWarn macro should be used. 

ObjectSendTaskWarning 
Same as ObjectSendTask(), additionally prints a debugging message if status less than stsOK. 

Returns STATUS. 

fundion Prototype STATUS EXPORTED ObjectSendTaskWarning ( 
MESSAGE msg, 
OBJECT object, 
P ARGS pArgs, 
SIZEOF lenArgs, 
OS TASK ID task, 
P STRING fn, 
U16 In 

) ; 

Comments In general, ObjectSendTaskWarn macro should be used. 

41 



42 PENPOINT API REFERENCE 
Part 1 / Class Manager 

ObjectSendUpdateTaskWarning 
Same as ObjectSendUpdateTaskO, additionally prints a debugging message if status less than stsOK. 

Returns SfATUS. 

Fundkm ?w©t©Wype STATUS EXPORTED ObjectSendUpdateTaskWarning ( 

(omments 

MESSAGE rnsg, 
OBJECT object, 
P ARGS pArgs, 
SIZEOF IenArgs, 
OS TASK ID task, 
P STRING fn, 
U16 In 

) ; 

In general, ObjectSendUpdateTaskWarn macro should be used. 

ObjectPostWarning 
Same as ObjectPostO, additionally prints a debugging message if status less than stsOK. 

Returns Sf ATUS. 

Fundlon ?n,t©Wype STATUS EXPORTED ObjectPostWarning ( 
MESSAGE rnsg, 
OBJECT object, 
P ARGS pArgs, 
SIZEOF IenArgs, 
P STRING fn, 
U16 In 

) ; 

In general, ObjectPostWarn macro should be used. 

ObjectPostAsyncWarning 
Same as ObjectPostAsyncO, additionally prints a debugging message if status less than stsOK. 

Returns SfATUS. 

Fundi©n ?W©f©type STATUS EXPORTED ObjectPostAsyncWarning ( 
MESSAGE rnsg, 
OBJECT object, 
P ARGS pArgs, 
SIZEOF IenArgs, 
P STRING fn, 
U16 In 

) ; 

In general, ObjectPostAsyncWarn macro should be used. 

ObjectPostDirectWarning 
Same as ObjectPostDirectO, additionally prints a debugging message if status less than stsOK. 

Returns SfATUS. 

Fundion ?r©t©Wype . STATUS EXPORTED ObjectPostDirectWarning ( 
MESSAGE rnsg, 
OBJECT object, 
P ARGS pArgs, 
SIZEOF IenArgs, 
P STRING fn, 
U16 In 

) ; 

In general, ObjectPostDirectWarn macro should be used. 



ObjectPostTaskWarning 

CLSMGR.H 
Debugging Helper Functions 

Same as ObjectPostTaskO, additionally prints a debugging message if status less than stsOK. 

Returns Sf ATUS. 

Function Prototype STATUS EXPORTED ObjectPostTaskWarning ( 
MESSAGE msg, 
OBJECT object, 
P ARGS pArgs, 
SIZEOF lenArgs, 
OS TASK ID task, 
P STRING fn, 
U16 In 

) ; 

In general, ObjectPostTaskWarn macro should be used. 

ObjectPostAsyncT askWarning 
Same as ObjectPostAsyncTaskO, additionally prints a debugging message if status less than stsOK 

Returns SfATUS. 

Fundion Prototype STATUS EXPORTED ObjectPostAsyncTaskWarning ( 
MESSAGE msg, 
OBJECT object, 
P ARGS pArgs, 
SIZEOF lenArgs, 
OS TASK ID task, 
P STRING fn, 
U16 In 

) ; 

In general, ObjectPostAsyncTaskWarn macro should be used. 

ObjectPostDirectTaskWarning 
Same as ObjectPostDirectTaskO, additionally prints a debugging message if status less than stsOK. 

Returns SfATUS. 

Function Prototype STATUS EXPORTED ObjectPostDirectTaskWarning ( 
MESSAGE msg, 
OBJECT object, 
P ARGS pArgs, 
SIZEOF lenArgs, 
OS TASK ID task, 
P STRING fn, 
U16 In 

) ; 

In general, ObjectPostDirectTaskWarn macro should be used. 

ObjectWarning 
Prints object warning message. Low-level routine. 

Returns nothing. 

43 



44 PEN POINT API REFERENCE 
Part 1 / Class Manager 

fUr!di()11 Pw()f()fype void EXPORTED ObjectWarning ( 
P STRING label, 
MESSAGE msg, 
OBJECT object, 
P ARGS pArgs, 
STATUS sts, 
P STRING fn, 
U16 In 

) ; 

Debugging Helper Macros (with jDDEBUG) 
Conditional macros. Under IDDEBUG generates indirect calls via debugging functions, without 
IDDEBUG generates direct calls. 

The only difference between the WarnO form and the plain form of these calls is that WarnO prints an 
error message if sts < stsOK AND the module was compiled for DEBUG. Use of the WarnO form is 

strongly encouraged. 

ObjectCall 

fdefine ObjCaIIWarn(m,o,p) ObjectCaIIWarning(m,o,p, __ FILE __ , __ LINE __ ) 
fdefine ObjCaIINoDebugWarn(m,o,p) \ 

ObjectCaIINoDebugWarning(m,o,p, FILE __ , __ LINE __ ) 
fdefine ObjCaIIAncestorCtxWarn(c) \--

ObjectCaIIAncestorCtxWarning(c, __ FILE __ , __ LINE __ ) 
fdefine ObjCaIIAncestorWarn(m,o,p,c) \ 

ObjectCaIIAncestorWarning(m,o,p,c, __ FILE __ , __ LINE __ ) 

ObjectSend 

fdefine ObjSendWarn(m,o,p,l) ObjectSendWarning(m,o,p,I, __ FILE __ , __ LINE __ ) 
fdefine ObjSendUpdateWarn(m,o,p,l) \ 

ObjectSendUpdateWarning(m,o,p,I, __ FILE __ , __ LINE __ ) 
fdefine ObjSendTaskWarn(m,o,p,l,t) \ 

ObjectSendTaskWarning(m,o,p,l,t, FILE , LINE ) 
fdefine ObjSendupdateTaskWarn(m,o,p,~t) \-- -- --

ObjectSendUpdateTaskwarning(m,o,p,l,t, __ FILE __ , __ LINE __ ) 
fdefine ObjSendU32Warn(m,o,p) ObjectSendWarning(m,o,p,OL, __ FILE __ , __ LINE __ ) 

ObjectPost 

fdefine ObjPostWarn(m,o,p,l) ObjectPostWarning(m,o,p,I, __ FILE __ , __ LINE __ ) 
fdefine ObjPostAsyncWarn(m,o,p,l) \ 

ObjectPostAsyncWarning(m,o,p,I, __ FILE __ , __ LINE __ ) 
fdefine ObjPostDirectWarn(m,o,p,l) \ 

ObjectPostDirectWarning(m,o,p,I, __ FILE __ , __ LINE __ ) 
fdefine ObjPostTaskWarn(m,o,p,l,t) \ 

ObjectPostTaskWarning(m,o,p,l,t, FILE , LINE ) 
fdefine ObjPostAsyncTaskWarn(m,o,p,I~) \ -- -- --

ObjectPostAsyncTaskWarning(m,o,p,l,t, FILE , LINE ) 
fdefine ObjPostDirectTaskWarn(m,o,p,l,t) ~ -- -- --

ObjectPostDirectTaskWarning(m,o,p,l,t, __ FILE __ , __ LINE __ ) 
fdefine ObjPostU32Warn(m,o,p) ObjectPostWarning(m,o,p,OL, __ FILE __ , __ LINE __ ) 

felse II DEBUG 



J"" Debugging Helper Macros 
(without /DDEBUG) 

ObjectCall 

'define ObjCallWarn(m,o,p) ObjectCall(m,o,p) 
fdefine ObjCallNoDebugWarn(m,o,p) ObjectCall(m,o,p) 

CLSMGR.H 
Debugging Helper Macros 

'define ObjCallAncestorCtxWarn(c) ObjectCallAncestorCtx(c) 
tdefine ObjCallAncestorWarn(m,o,p,c) ObjectCallAncestor(m,o,p,c) 

ObjectSend 

fdefine ObjSendWarn(m,o,p,l) ObjectSend(m,o,p,l) 
idefine ObjSendUpdateWarn(m,o,p,l) ObjectSendUpdate(m,o,p,l) 
fdefine ObjSendTaskWarn(m,o,p,l,t) ObjectSendTask(m,o,p,l,t) 
fdefine ObjSendUpdateTaskWarn(m,o,p,l,t) ObjectSendUpdateTask(m,o,p,l,t) 
fdefine ObjSendU32Warn(m,o,p) ObjectSendU32 (m,o,p) 

ObjectPost 

fdefine ObjPostWarn(m,o,p,l) ObjectPost(m,o,p,l) 
fdefine ObjPostAsyncWarn(m,o,p,l) ObjectPostAsync(m,o,p,l) 
fdefine ObjPostDirectWarn(m,o,p,l) ObjectPostDirect(m,o,p,l) 
fdefine ObjPostTaskWarn(m,o,p,l,t) ObjectPostTask(m,o,p,l,t) 
fdefine ObjPostAsyncTaskWarn(m,o,p,l,t) ObjectPostAsyncTask(m,o,p,l,t) 
fdefine ObjPostDirectTaskWarn(m,o,p,l,t) ObjectPostDirectTask(m,o,p,l,t) 
fdefine ObjPostU32Warn(m,o,p) ObjectPost(m,o,p,OL) 
fendif II DEBUG 
fendif 

4S 





DEBUG.H 

This file contains the definitions of some of PenPoint's debugging support. 

The functions described in this file are contained in PENPOINf.LIB. 

Introduction. 
This file contains the definitions of some of PenPoint's debugging support. 

One of the most important characteristics of this package is that many of the macros compile into 
nothing unless the pre-processor variable DEBUG is defined during compilation. 

Debugging Flags. 
As part of its debugging support, PenPoint includes a collection of debugging flags which allow 
developers to control the runtime behavior of their programs. 

For convenience, the debugging flags are broken into "sets" of 32 one bit flags. In PenPoint 1.0, there 
are 255 sets; future versions of Pen Point may have more sets. Some sets are reserved for use by PenPoint 
itself; all other sets are available for use by other developers. The allocation of sets is documented 
elsewhere in this file. 

SeHing and Examining Debug Flags. 
The debugging flags can be set via the DebugSet environment variable in PenPoint's environ.ini file. The 
debugging flags can also be set with the "fs" command in the MiniDebugger and DB. (The debugging 
flags can be examined with the "fl" command.) Both the environ.ini file and the PenPoint debuggers 
allow the flag sets to be identified with either a or an 8 bit hexadecimal number. See the PenPoint 
developer's documentation for more information. 

Example. 
The debugging output in the following fragment appears only if the code was compiled with DEBUG 

defined and the debug flag is on. 

As illustrated in this example, most debugging code should surrounded by some sort of conditional 

compilation that causes the debugging code to "disappear" when compiled appropriately. 

if (someCondition) { 
DbgFlag(Ox80, Oxi, Debugf("someCondition is TRUE");) 

else { 
DbgFlag(Ox80, Oxi, Debugf("someCondition is FALSE");) 

Here's an example of setting debugging flags in PenPoint's environ.ini file: 

DebugSet=/DD8000 /DB800 



48 PEN POI NT API REFERENCE 
Part 1 / Class Manager 

iifndef DEBUG_INCLUDED 
idefine DEBUG_INCLUDED 
iifndef GO_INCLUDED 
iinclude <go.h> 
iendif 

Exported Macros 

Comments 

DbgFlag 
Executes an expression under control of a debug flag IF the source is compiled with DEBUG defined. 

Returns void .. 

iifdef DEBUG 
idefine DbgFlag(f,v,e) if (DbgFlagGet(f, v)) e 
ielse 
idefine DbgFlag(f,v,e) 
4f:endif 

The DbgFlagO macro is used to execute an expression if (1) the source module was compiled with 
DEBUG defined and (2) if the appropriate debugging flag is turned on at runtime. 

Dbg 
Used to control the compile-time inclusion of debugging code. 

Returns void .. 

iifdef DEBUG 
4f:define Dbg(x) x 
4f:else 
idefine Dbg(x) 
iendif 

The DbgO macro is used to comment out code when the DEBUG flags is undefined. For example, the 
following code is present if the source file is compiled with DEBUG defined but "disappears" if 
DEB UG is not defined. 

Dbg(Debugf("Only shows up in DEBUG vers;i.on");) 

ASSERT 
Used to verify that some runtime condition is true. 

Returns void .. 

iifdef DEBUG 
idefine ASSERT (cond, str) «void) (! (cond) ? \ 

ielse 

(Debugf("==> ERROR, File: %s, Line: %d ==> %s\n", \ 
__ FILE __ , __ LINE __ , str)),l: 0)) 

4f:define ASSERT(cond, str) 
4f:endif 

The ASSERTO macro is used to test for conditions and print out a warning if the condition is violated. 
The code "disappears" if the module is compiled without DEBUG being defined. 

assert.h 



DEBUG.H 
Exported Functions 

49 

Exported Functions 

C:cmmenrs 

Debugf 
Prints a formatted string on the debug output device, followed by a newline. 

Returns void. 

void CDECL 
Debugf(char* str, ... ); 

Debugf is very similar to the standard C runtime library function printfO except that (1) Debugf directs 
it output to PenPoint's debug output device and (2) Debugf prints a newline at the end of its output. 

Unless surrounded by something DbgO or DbgFlagO, Debugf does not disappear, even if compiled 
without DEBUG defined. 

Use DPrintf to avoid having the trailing newline printed. 

DPrintf 

DPrintf 
Prints a formatted string on the debug output device. 

Returns void. 

void CDECL 
DPrintf(char* str, ... ); 

DPrintf is very similar to the standard C runtime library function printfO except that DPrintf directs it 

output to PenPoint's debug output device. 

Unless surrounded by something DbgO or DbgFlagO, DPrintf does not disappear, even if compiled 
without DEBUG defined. 

Debugf 

DbgFlagSet 
Sets the specified flag set to the value of the new flags. 

Returns void. 

void EXPORTED 

Fundion Prt>1t>1ype DbgFlagSet ( 
U16 set, 
U32 flags); 

set flag set selector in the range 0 .. 255, inclusive. (Defined as a U16 to allow for possible future 
expansion. ) 

flags new values for the flag set. 

h is unusual for a program to call this function; most developers should set the value of debugging flags 
using the techniques described in the introduction of this file rather than executing this function. 

Unless surrounded by something DbgO or DbgFlagO, DbgFlagSet does not disappear, even if compiled 
without DEBUG defined. 



50 PENPOINT API REFERENCE 
Part 1 I Class Manager 

DbgFlagGet 
Returns the state of the indicated flag set ANDed with the flags mask. 

Returns void. 

U32 EXPORTED 

fUfu:ti()n Pr()t()type DbgFlagGet ( 
U16 set, 
U32 flags); 

set flag set selector in the range 0 .. 255, inclusive. (Defined as a U16 to allow for possible future 
expansion. ) 

flags flags mask 

Unless surrounded by something DbgO or DbgFlagO, DbgFlagGet does not disappear, even if compiled 
without DEBUG defined. 

Debugging Flag Set Allocations 
Not to be used by anyone (interferes with parsing process) : 

Oxoo 
Ox09 
OxOA 
OxOD 
Ox1A 
Ox20 

Reserved for use outside of GO: 
Lower case alphabet, except f, h, i, s, and z. 
Ox30 Ox39 digits 
Ox80 .. OxBF half of the upper range 

Reserved for use by GO 
, f' 

'h' 
, i' 
'q' 
, s' 
, z' 
everything else 

Here are the allocations within GO's range. See other header files for 
more information on the interpretation of these flags. Most flags only 
have effect if you load the debug versions of DLLs. 

'f': GO Application Developer's Course 

'h': Hwxtool and Insertion Pads 

'q': Quick Help 

, s': Hwxtool 

, Z': Xlate 

'A': Misc. system use. 

A0001: Print loader information while loading 

'B': System 



B0001: Turns uuid cache tracing on 

DEBUG.H 
Debugging Flag Set Allocations 

B0002: Enables OEM app/service installation after warm-boot This 
should only be turned on for tablet hardware; never on the 
SOK! 

B0800: Enables theSelectedVolume disk viewing in Connections 

'C': ClsMgr 

'0': Oebug system 

disables all OebugStr output 
disables StringPrint output 
disables System Log output 

00001: 
00002: 
00004: 
00008: 
00010: 
00020: 
08000: 

disables System Log Non Error output 
disables System Log App Error output 
disables System Log System Error output 

010000: 
020000: 
040000: 
080000000: 

writes output to PENPOINT.LOG, file flushed every n chars 
based on the environment variable OebugLogFlushCount. 
disables mini-debugger in production version of Penpoint 
disables memory statistics gestures (M,N,T) on Bookshelf 
disables AC entering the mini-debugger 
allows logging to log file even if in file system code 
(This may cause deadlocks and is for internal use only) . 

'E': Environment flags 

'F': Application Oeveloper's Course 

'G': Kernel 

'H': Service and Service Manager 

H0001: 
H0002: 
H8000: 

turns on message tracing in clsService 
turns on message tracing in clsServiceMgr 
run sanity test in service.dll 

'I': Installers (see instlmgr.h) 

, J': Notebook 

'K': UI Toolkit 

'L': PicSegs and TIFF images 

L0001: dumps the TIFF image tags. 

'M': misc. lib 

MOO01: tracing in OrderedSetOelete 
MOO02: tracing in OrderedSetFindMinMax & MaxMin 
MOO04: tracing in OrderedSetInsertn 
MOO08: tracing in OrderedSetSearch 
M0100: write/read debug header&trailer when filing ByteArray 

, N': MiniText 

'0': Outbox (obxserv and oboxsect) 

00001: enable automatic activate of outbox Notebook 

, P': Printing 

'Q': text.dll 

'R': Application Framework 

51 



52 PENPOINT API REFERENCE 
Part 1 I Class Manager 

'S': Spelling, Proof, and XTemplate systems 

SOOOl: 
S0002: 
S0004: 
S0010: 
S0020: 

low-level Spell/Proof debugs 
medium-level Spell/Proof debugs 
high-level Spell/Proof debugs 
XTemplate display inputs 
XTemplate display outputs 

'T': text .dll 

'U': undo.dll 

'V': text .dll 

'W': Window system 

, X': xfer .lib 

'Y' : TOPS 

, Z' : Handwriting 

'@' : Bookshelf 

'=' : MiniNote/NotePaper 

'tt' : GWin 

, ! ' : Test Manager 

, $' : File System 

'%' : UI Toolkit 

, *' : Heap Manager 

OxCO: Fax Project 

OxC1: Input 

OxC2: VKey 

OxC3: System Log trace flag 

OxC4: 2.0 tools 

OxFO: Memory Tests // Internal use only 

OxF1: Memory Tests // Internal use only 

OxFF: C Runtime Library 



GO.H 

This file contains PenPoint's standard #defines, types and intrinsics. Essentially all PenPoint source files 
must include this file. 

The functions described in this file are contained in PENPOINT.LIB. 

tifndef GO_INCLUDED 
tdefine GO_INCLUDED 

Standard Definitions 
Static Declarations 

Functions declared STATIC (rather than static) will, when compiled with DEBUG defined, appear in 

map files. 

tifndef DEBUG 
tdefine STATIC 

telse 
tdefine STATIC 

tendif 

static 

Function Scope Definitions 

• LOCAL: Scope is module wide 

• GLOBAL: Scope is subsystem wide 

• EXPORTED: Scope is ring wide (either ringO OR ring3) 

• EXPORTEDO: Scope is system wide. For public ringO functions. 

• RINGCHELPER: Scope is system wide. For private ringO functions. 

tdefine LOCAL 
tdefine GLOBAL 
tdefine EXPORTED 
tdefine EXPORTEDO 
tdefine RINGCHELPER 

Null values 

tifndef M_I86 
tdefine NULL 0 

telae 
tdefine NULL OL 

tendif 
tdefine null 
tdefine pNull 
tdefine ppNull 
tdefine Nil (type) 

Boolean operators 

tdefine AND 
tdefine OR 
tdefine NOT 
tdefine MOD 

STATIC PASCAL 
PASCAL 
PASCAL 
PASCAL 
PASCAL 

II 32 bit compiler 

II 16 bit compiler 

o 
((P_UNKNOWN) 0) 
( (PP _UNKNOWN) 0) 
((type) 0) 

&& 
II 

% 



54 PENPOINT API REFERENCE 

Part 1 I Class Manager 

Bit flags. 

These flags can be used with FlagOn, FlagOff, FlagSet, and FlagClr. 

:jj:define flagO (OxOOOl) 
:jj:define flagl (OxOOO2) 
:jj:define flag2 (OxOOO4) 
:jj:define flag3 (OxOOO8) 
:jj:define flag4 (OxOOlO) 
:jj:define flag5 (OxOO20) 
:jj:define flag6 (OxOO40) 
:jj:define flag7 (OxOO80) 
:jj:define flag8 (OxOlOO) 
:jj:define flag9 (Ox0200) 
:jj:define flaglO (Ox0400) 
:jj:define flagll (Ox0800) 
:jj:define flagl2 (OxlOOO) 
:jj:define flagl3 (Ox2000) 
:jj:define flagl4 (Ox4000) 
:jj:define flagl5 (Ox8000) 
:jj:define flagl6 (OxOOOlOOOOL) 
:jj:define flagl7 (OxOOO20000L) 
:jj:define flagl8 (OxOOO40000L) 
:jj:define flagl9 (OxOOO80000L) 
:jj:define flag20 (OxOOlOOOOOL) 
:jj:define flag2l (OxOO200000L) 
:jj:define flag22 (OxOO400000L) 
:jj:define flag23 (OxOO800000L) 
:jj:define flag24 (OxOlOOOOOOL) 
:jj:define flag25 (Ox02000000L) 
:jj:define flag26 (Ox04000000L) 
:jj:define flag27 (Ox08000000L) 
:jj:define flag28 (OxlOOOOOOOL) 
:jj:define flag29 (Ox20000000L) 
:jj:define flag30 (Ox40000000L) 
:jj:define flag31 (Ox80000000L) 

Limits 

:jj:define maxU8 ((U8)OxFF) 
:jj:define minS8 ((S8)Ox80) 
:jj:define maxS8 ((S8)Ox7F) 
:jj:define maxUl6 ((Ul6)OxFFFF) 
:jj:define minSl6 ((Sl6)Ox8000) 
:jj:define maxSl6 ((S16)Ox7FFF) 
:jj:define maxU32 ((U32)OxFFFFFFFF) 
:jj:define minS32 ((S32)Ox80000000) 
:jj:define maxS32 ((S32)Ox7FFFFFFF) 

Name limits 

:jj:define maxNameLength 32 
:jj:define nameBufLength (maxNameLength+l) 

Enums 

Different compilers allocate different amounts of space for an enum. To avoid portability problems, use 
the Enum 16 and Enum32 macros. They guarantee that the enum is 16 bits or 32 bits, respectively. 

Example: 

Enuml6(PRlMARY_COLOR) 
red, 
green, 
blue 



#define Enum16(name) typedef S16 name, * P_##name; enum name 
#define Enum32 (name) typedef S32 name, * P_##name; enum name 

Calling Conventions 

#if defined __ WATCOMC __ 
#define PASCAL --pascal 
#define CDECL cdecl 
#define Unused(x) (void) (x) 
#define FunctionPtr(fn) (PASCAL * fn) 
#define CFunctionPtr(fn) (CDECL * fn) 
#if defined __ 386 __ 
#pragma aux pascal "'''' parm routine [] \ 

value struct float struct caller [eax] modify [eax ecx edx gs]; 
#pragma aux cdecl "_*" parm caller []\ 

value struct float struct caller [eax] modify [eax ecx edx gs]; 
#endif 

#elif defined __ HIGHC __ 
#define PASCAL CC( REVERSE PARMSI CALLEE POPS STACK) 
#define CDECL /1 Default for the compile~ -
#define Unused(x) 
#define FunctionPtr(fn) PASCAL (* fn) 
#define CFunctionPtr(fn) CDECL (* fn) 

#else 
#define PASCAL pascal 
#define CDECL cdecl 
#define Unused(x) (void) (x) 
#define FunctionPtr(fn) (* PASCAL fn) 
#define CFunctionPtr(fn) (* CDECL fn) 

#endif 

Typedefs 
Unsigned integers 

typedef unsigned char 
typedef unsigned short 
#ifndef M_I86 
typedef unsigned int 

#else 
typedef unsigned long 

#endif 

Signed integers 

typedef signed char 
typedef signed short 
#ifndef M I86 
typedef signed int 

#else 
typedef signed long 

#endif 

U8, * P_U8, ** PP_U8; 
U16, * P U16, ** PP U16; 
II 32 bit compiler 
U32, * P_U32, ** PP_U32; 
II 16 bit compiler 
U32, * P_U32, ** PP_U32; 

S8, * P_S8, ** PP_S8; 
S16, * P_S16, ** PP S16; 
II 32 bit compiler 
S32, * P_S32, ** PP_S32; 
II 16 bit compiler 
S32, * P_S32, ** PP_S32; 

II 8-bit unsigned 
II 16-bit unsigned 

II 32-bit unsigned 

II 32-bit unsigned 

II 8-bit signed 
II 16-bit signed 

II 32-bit signed 

II 32-bit signed 

GO.H 
Typedefs 

Wide characters. In PenPoint LO these are 8 bit values. In PenPoint 2.0 and forward they are 16 bit 
values. 

typedef U8 
typedef P_U8 
typedef P_CHAR* 

8 bit Characters 

typedef U8 
typedef P_U8 
typedef P_CHAR8* 

CHAR; 
P_CHAR; 
PP_CHAR; 

CHAR8; II These are guaranteed to stay 8-bit 
P_CHAR8; 
PP_CHAR8; 

55 



56 PENPOINT API REFERENCE 
Part 1 / Class Manager 

16 bit Characters 

typedef U16 
typedef P_U16 
typedef P_CHAR16* 

Strings 

typedef us 
typedef P_US 
typedef P_STRING* 

CHAR16; II These are guaranteed to stay 16-bit 
P_CHAR16; 
PP_CHAR16; 

STRING; 
P_STRING; 
PP_STRING; 

SIZEOF is the type returned by the SizeO£ It is guaranteed to be 32 bits. 

typedef U32 SIZEOF, * P_SIZEOF; 

Pointer to an opaque entity 

typedef void* 
typedef P_UNKNOWN* 

P_UNKNOWN; 
PP_UNKNOWN; 

Generic pointer to procedure 

typedef P_UNKNOWN FunctionPtr(P_PROC) (); 

True/False values 

Enum16 (BOOLEAN) 

} ; 

Intrinsics 

FALSE = 0, 
TRUE = 1, 
False = 0, 
True = 1, 
false = 0, 
true = 1 

#define Abs(v) 
#define Max(a,b) 
#define Min(a,b) 
#define Odd (v) 
#define Even(v) 
#define LowU16(dw) 
#define HighU16(dw) 
#define LowUS(w) 
#define HighUS(w) 
#define MakeU16 (lb,hb) 
#define MakeU32 (lw,hw) 
#define FlagOn(f,v) 
#define FlagOff(f,v) 
#define FlagSet(f,v) 
#define FlagClr(f,v) 

((v)<O? (- (v)) : (v)) 
((a»(b)? (a): (b)) 
( (a) < (b) ? (a) : (b) ) 
((v) &1) 
(!Odd(v) ) 
( (U16) (U32) (dw) ) 
( (U16) ( (U32) (dw) »16) ) 
((US) (w)) 
( (US) ( (U16) (w) »S) ) 
( ( (U16) (hb) «S) I (U16) (lb) ) 
(( (U32) (hw)«16) I (U32) (lw)) 
(! FlagOff (f, v) ) 
(! ((v) &(f))) 
((v) I (f)) 
((v) & ( ... (f))) 

#define Out Range (v,l, h) ((v) < (1) II (v) > (h)) 
#define InRange (v,l, h) ((v) >= (1) && (v) <= (h)) 
#define SizeOf(t) ((SIZEOF)sizeof(t)) 



Commonly Used Class Manager Types 

GO.H 
Well-known UID Macros 

A variable of type OBJECT identifies an object. The type UID is interchangeable with OBJECT. 

A variable of type TAG identifies one of the following: 

• Tag 

• Message 

• Error status (values less than 0) 

• Warning status (values greater than or equal to 0) 

Well-known UID Structure 
A UID is constructed as: 

• Version: 7 bits 

• Admin: 20 or 19 bits 

• Scope: 1 or 2 bits 

• Layout: 

00000000001111111111222222222233 
01234567890123456789012345678901 

Name: OlVer 1 01 Acimin+Scope 
+-------+-------+-------+-------+ 

Size: 11 7 1 31 20+1 or 19+2 

typedef P_UNKNOWN UlD, * P_UlDi 
typedef UlD OBJECT, * P_OBJECT, ** PP_OBJECT; 

Well-known UID Macros 
Create a well-known UID 

#define MakeWKN(admin,version, scope) \ 
((UlD) ((U32) (Ox7F&(version»«24 1 (U32) (acimin) «1+ (scope&l) 1 scope» 

Create a well-known UID 

#define MakeGlobalWKN(acimin,version) 

Create a process-global well-known UID 

MakeWKN(acimin,version,wknGlobal) 

#define MakeProcessGlobalWKN(acimin,version) \ 
MakeWKN(admin,version,wknProcessGlobal) 

Create a private well-known UID 

#define MakePrivateWKN(admin,version) MakeWKN(acimin,version,wknPrivate) 

Extract the admin number plus the scope information 

#define WKNValue(wkn) (Ox1FFFFF&(U32)wkn) 

Extract the admin number 

#define WKNAdmin(wkn) (WKNValue(wkn»>1+((U32)wkn&1» 

Extract the version number 

#define WKNVer(wkn) ((U32) (wkn) »24) 

57 



58 PEN POINT API REFERENCE 
Part 1 / Class Manager 

Extract the scope 

tdefine WKNScope(wkn) 

Magic constants 

((U32) (wkn)&-((U32) (wkn)&1)&3) 

tdefine wknGlobal 0 
tdefine wknProcessGlobal 1 
tdefine wknPrivate 3 

Tag Structure 
Tags are created using a well-known Administered value and a tag number in the range 0-255. 

• X: 1 bit. 0 for tag or Warning Status; 1 for an Error Status. 

• 
• 
• 
• 
• 

TagNum: 8 bits 

Flags: 2 bits 

Admin: 20 or 19 bits 

Scope: 1 or 2 bits 

Layout: 

00000000001111111111222222222233 
01234567890123456789012345678901 

Name: X I tagNum I F I Admin+Scope 
+-------+-------+-------+-------+ 

Size: 11 8 121 20+1 or 19+2 

typedef S32 
typedef S32 

Tag Macros 
Create a tag 

TAG; * P_TAG; 
STATUS, * P_STATUS; 

II Tags are always positive 

tdefine MakeTag(wkn,tagNum) (((TAG) (tagNum)&OxFF)«23IWKNValue(wkn)) 

Create a tag with flags 

tdefine MakeTagWithFlags (wkn, i, f) (MakeTag (wkn, i) I ( (U32) (f) &3) «21) 

Extract the tag num 

tdefine TagNum(tag) ((U32) (tag) «1»24) 
tdefine Tag (tag) TagNum (tag) 

Extract the tag num and flags together 

tdefine TagAndFlags(tag) ((U32) (tag) «1»22) 

Extract only the tag flags 

tdefine TagFlags(tag) 

Extract the tag admin 

(TagAndFlags (tag) &3) 

tdefine TagAdmin(tag) WKNAdmin(tag) 



Status Macros 
Create an error status 

GO.H 
Status Printing Macros 

tdefine MakeStatus (wkn, sts) ((STATUS) (Ox80000000IMakeTag(wkn,sts))) 

Create a warning status 

tdefine MakeWarning(wkn,sts) ((STATUS)MakeTag(wkn,sts)) 

Extract the status num from a STATUS 

tdefine Sts (sts) 

Debugging Macros 
tdefine StsRet(se,s) 
tdefine StsJmp(se,s,x) 
tdefine StsOK(se,s) 
tdefine StsFailed(se,s) 
tdefine StsChk(se,s) 

Tag(sts) 

if (((s) = StsWarn(se)) < stsOK) return Si else 
if (((s) = StsWarn(se)) < stsOK) goto Xi else 
(((s) = StsWarn(se)) >= stsOK) 
(((s) = StsWarn(se)) < stsOK) 
( ((s) = (se)) < stsOK) 

Status Printing Macros 

StsWarn 
Prints status warning message. 

Returns nothing. 

tif defined DEBUG I I defined CLSMGR_COMPILE 
tdefine StsWarn(se) StsWarning(se, FILE __ , __ LINE __ ) 
telse II if not DEBUG 
tdefine StsWarn(se) (se) 
tendif II DEBUG 

59 

When DEBUG is defined during compilation, the StsWarn macro prints a status warning message if the 
status is less than stsOK (an error). When DEBUG is not defined during compilation, StsWarn simply 
evaluates its expression. 

StsPrint 

StsPrint 
Prints status warning message. 

Returns nothing. 

tif defined DEBUG I I defined CLSMGR _COMPILE 
tdefine StsPrint(s) StatusWarning(s, __ FILE __ , __ LINE __ ) 
telse II if not DEBUG 
tdefine StsPrint(s) 
tendif II DEBUG 

When DEBUG is defined during compilation, the StsPrint macro prints a status warning message 
regardless of the value of the status. When DEBUG is not defined during compilation, StsPrint does 
nothing. 

StsWarn 



60 PENPOINT API REFERENCE 
Part 1 I Class Manager 

Status Values 
II Next up: 11 

Classes used to create generic status values (see uid.h) 

fdefine elsGO 
fdefine elsOS 
fdefine elsGOMath 

MakeWKN(14,1,wknGlobal) 
MakeWKN(16,1,wknGlobal) 
MakeWKN(162,1,wknGlobal) 

Values 

fdefine stsBadParam MakeStatus(elsGO, 
fdefine stsNoMateh MakeStatus(elsGO, 
fdefine stsEndOfData MakeStatus(elsGO, 
fdefine stsFailed MakeStatus(elsGO, 
fdefine stsTimeOut MakeStatus(elsGO, 
fdefine stsRequestNotSupported MakeStatus(elsGO, 
fdefine stsReadOnly MakeStatus(elsGO, 
fdefine stsIneompatibleVersion MakeStatus(elsGO, 
fdefine stsNotYetImplemented MakeStatus(elsGO, 
fdefine stsOutOfMem MakeStatus(elsGO, 

Non-Error Status Values 
II Next up: 4 
fdefine stsOK 
fdefine stsRequestDenied 
fdefine stsRequestForward 
fdefine stsTruneatedData 

GO Math Support 

MakeWarning(O, 0) 
MakeWarning(elsGO, 1) 
MakeWarning(elsGO, 2) 
MakeWarning(elsGO, 3) 

1) 
2) 
3) 
4) 
5) 
6) 
7) 
8) 
9) 
10) 

II also stsMessageIgnored 

Conceptually these declarations should be in gomath.h. They are defined here instead to ease the load 

on the compiler symbol tables. 

typedef S32 
typedef FIXED* 
FIXED PASCAL 

FIXED; 
P_FIXED; 
FxMakeFixed(S16 whole, U16 frae); 



MAIN.H 

Prototype for mainO. 

#ifndef MAIN_INCLUDED 
#define MAIN_INCLUDED 
#ifndef GO_INCLUDED 

#include <go.h> 
#endif 

Standard main() 
Function Pr©t©typ® U32 CDECL main (S32 argc, CHAR* argv [], U32 instance); 





UID.H 

This contains well-known uids for PenPoint. 

#ifndef UID INCLUDED 
#define UID INCLUDED 

Available for Testing (wknGlobals) 
#define wknGDTa 
#define wknGDTb 
#define wknGDTc 
#define wknGDTd 
#define wknGDTe 
#define wknGDTf 
#define wknGDTg 
#define wknGDTh 
#define wknGDTi 
#define wknGDTj 
#define wknGDTk 

MakeWKN(3,1,wknGlobal) 
MakeWKN(4,1,wknGlobal) 
MakeWKN(5,1,wknGlobal) 
MakeWKN(6,1,wknGlobal) 
MakeWKN(7,1,wknGlobal) 
MakeWKN(8,1,wknGlobal) 
MakeWKN(9,1,wknGlobal) 
MakeWKN(32,1,wknGlobal) 
MakeWKN(45,1,wknGlobal) 
MakeWKN(47,1,wknGlobal) 
MakeWKN(73,1,wknGlobal) 

Available for Testing (wknProcessGlobals) 
#define wknLDTa 
#define wknLDTb 
#define wknLDTc 
#define wknLDTd 
#define wknLDTe 
#define wknLDTf 
#define wknLDTg 

Well-known Obiects 
#define objNull 
#define clsProcess 
#define clsObject 
#define clsClass 
#define theProcess 
#define clsGO 
#define clsOS 
#define clsGOMath 
#define clsMisc 
#define clsSystem 
#define the System 
#define clsInitTask 
#define theSystemInitTask 
#define theThirdPartyInitTask 
#define theBookshelf 
#define theSystemResFile 
#define theMILResFile 
#define theDesktop 

MakeWKN(3,1,wknProcessGlobal) 
MakeWKN(4,1,wknProcessGlobal) 
MakeWKN(5,1,wknProcessGlobal) 
MakeWKN(6,1,wknProcessGlobal) 
MakeWKN(7,1,wknProcessGlobal) 
MakeWKN(8,1,wknProcessGlobal) 
MakeWKN(9,1,wknProcessGlobal) 

MakeWKN(O,O,O) 
MakeWKN(O,l,wknGlobal) 
MakeWKN(l,l,wknGlobal) 
MakeWKN(2,1,wknGlobal) 
MakeWKN(O,l,wknProcessGlobal) 
MakeWKN(14,1,wknGlobal) 
MakeWKN(16,1,wknGlobal) 
MakeWKN(162,1,wknGlobal) 
MakeWKN(112,1,wknGlobal) 
MakeWKN(174,1,wknGlobal) 
MakeWKN(174,1,wknGlobal) 
MakeWKN(433,1,wknGlobal) 
MakeWKN(431,1,wknGlobal) 
MakeWKN(432,1,wknGlobal) 
MakeWKN(127,1,wknGlobal) 
MakeWKN(172,1,wknGlobal) 
MakeWKN(414,1,wknGlobal) 
MakeWKN(127,1,wknGlobal) II obsolete 



64 PEN POINT API REFERENCE 

Part 1 / Class Manager 

Application Framework 
#define clsApp MakeWKN(13,l,wknGlobal) 
#define clsAppMgr MakeWKN(69,l,wknGlobal) 
#define clsAppDir MakeWKN(157,l,wknGlobal) 
#define clsAppWin MakeWKN(159,l,wknGlobal) 
#define clsAppWinlcon MakeWKN(153,l,wknGlobal) 
#define clsContainerApp MakeWKN(121,l,wknGlobal) 
#define clsRootContainerApp MakeWKN(218,l,wknGlobal) 
#define clsList MakeWKN(lO,l,wknGlobal) 
#define clsView MakeWKN(15,l,wknGlobal) 
#define clsEmbeddedWin MakeWKN(ll,l,wknGlobal) 
#define clslconWin MakeWKN(8O,l,wknGlobal) 
#define clsGotoButton MakeWKN(183,l,wknGlobal) 
#define clsPowerButtonUI MakeWKN(458,l,wknGlobal) 
#define clsCorkBoardWin MakeWKN(148,l,wknGlobal) 
#define clsMemoryCop MakeWKN(443,l,wknGlobal) 
#define theMemoryCop MakeWKN(457,l,wknGlobal) 

Bookshelf 
#define clsBSApp MakeWKN(168,l,wknGlobal) II PenPoint internal 
#define clsBSMainWin MakeWKN(167,l,wknGlobal) II PenPoint internal 
#define clsBSWin MakeWKN(359,l,wknGlobal) II PenPoint internal 
#define clsBSZTWin MakeWKN(164,l,wknGlobal) II PenPoint internal 

Notebook 
#define clsNBApp MakeWKN(44,l,wknGlobal) 
#define clsNBToc MakeWKN(136,l,wknGlobal) 
#define clsSectApp MakeWKN(145,l,wknGlobal) 
#define clsNBFrame MakeWKN(92,l,wknGlobal) II PenPoint internal 
#define clsBookmark MakeWKN(184,l,wknGlobal) II PenPoint internal 
#define clsPageControl MakeWKN(156,l,wknGlobal) II PenPoint internal 
#define clsPageWin MakeWKN(161,l,wknGlobal) II PenPoint internal 
#define clsSectMenu MakeWKN(226,l,wknGlobal) II PenPoint internal 
#define clsNBSApp MakeWKN(284,l,wknGlobal) II PenPoint internal 
#define clsNBSMenu MakeWKN(83,l,wknGlobal) II PenPoint internal 

Input 
#define thelnputManager MakeWKN(17,l,wknGlobal) 
#define clslnput MakeWKN(17,l,wknGlobal) 
#define thePen MakeWKN(18,l,wknGlobal) 
#define clsPen MakeWKN(18,l,wknGlobal) 
#define theKeyboard MakeWKN(19,l,wknGlobal) 
#define clsKey MakeWKN(19,l,wknGlobal) 
#define clsAcetateAlign MakeWKN(90,l,wknGlobal) 

HwxTools 
#define clsScribble MakeWKN(20,l,wknGlobal) 
#define clsSPaper MakeWKN(21,l,wknGlobal) 
#define clsIP MakeWKN(77,l,wknGlobal) 
#define clsIPButton MakeWKN(79,l,wknGlobal) 
#define clsGWin MakeWKN(219,l,wknGlobal) 
#define clsField MakeWKN(22,l,wknGlobal) 



Virtual Keyboard 
#define clsKeyCap 
#define clsKeyboard 
#define theVirtualKeyboard 
#define clsVKeyApp 
#define clsVKeyWin 

". The System Log Application 
#define theSystemLog 
#define clsSystemLog 
#define clsSysLogApp 
#define clsTextOut 

Quick Help 

Printing 

BaHery 

HWX 

#define theQuickHelpManager 
#ifndef NO_GRANDFATHER 
#define theQuickHelp 
#endif 
#define clsQuickHelp 
#define clsQHWin 

#define clsPrFrame 
#define clsPrint 
#define thePrintManager 
#define clsPrMgr 
#define clsPrintManager 
#define clsPrMargin 
#define clsPrLayout 

#define theBatteries 
#define theBattery 

#define clsXlate 
#define clsXtract 
#define clsXText 
#define clsXWord 
#define clsXGesture 
#define clsXNurnber 
#define clsXGeometric 
#define theHWXProtos 
#define clsHWXProto 
#define clsXTeach 
#define clsXShape 
#define clsGOShape 
#defi~e clsGOShapeService 
#define clsCTShape 
#define clsCTShapeService 

MakeWKN(96,1,wknGlobal) 
MakeWKN(97,1,wknGlobal) 
MakeWKN(199,1,wknGlobal) 
MakeWKN(198,1,wknGlobal) 
MakeWKN(132,1,wknGlobal) 

MakeWKN(46,1,wknGlobal) 
MakeWKN(78,1,wknGlobal) 
MakeWKN(330,1,wknGlobal) 
MakeWKN(39,1,wknGlobal) II PenPoint internal 

MakeWKN(85,1,wknGlobal) 

theQuickHelpManager 

MakeWKN(85,1,wknGlobal) 
MakeWKN(154,1,wknGlobal) 

MakeWKN(279,1,wknGlobal) 
MakeWKN(280,1,wknGlobal) 
MakeWKN(281,1,wknGlobal) 
MakeWKN(281,1,wknGlobal) 
MakeWKN(379,1,wknGlobal) 
MakeWKN(283,1,wknGlobal) 
MakeWKN(397,1,wknGlobal) 

MakeWKN(354,1,wknGlobal) 
MakeWKN(282,1,wknGlobal) 

MakeWKN(23,1,wknGlobal) 
MakeWKN(98,1,wknGlobal) 
MakeWKN(99,1,wknGlobal) 
MakeWKN(101,1,wknGlobal) 
MakeWKN(102,1,wknGlobal) 
MakeWKN(103,1,wknGlobal) 
MakeWKN(104,1,wknGlobal) 
MakeWKN(105,1,wknGlobal) 
MakeWKN(105,1,wknGlobal) 
MakeWKN(100,1,wknGlobal) 
MakeWKN(251,1,wknGlobal) 
MakeWKN(252,1,wknGlobal) 
MakeWKN(253,1,wknGlobal) 
MakeWKN(254,1,wknGlobal) 
MakeWKN(255,1,wknGlobal) 

UID.H 65 



66 PENPOINT API REFERENCE 
Part 1 / Class Manager 

File System, etc 
fdefine theFileSystem 
fdefine clsFileSystem 
fdefine clsDirHandle 
fdefine clsFileHandle 
fdefine theVolSearcher 
fdefine clsVolSearch 
fdefine clsVolume 
4f:define clsVolRAM 
fdefine clsVolMSDisk 
fdefine clsVolTOPS 
fdefine theBlockDeviceManager 
fdefine clsBlockDeviceManager 
fdefine clsBlockDevice 
fdefine theSCSIDriver 
fdefine clsSCSI 
fdefine clsSCSISenseCodes 
fdefine clsATBiosDisk 
fdefine clsResFile 
fdefine clsResList 
fdefine theProcessResList 
fdefine theBootVolume 
fdefine theSelectedVolume 
fdefine theWorkingDir 

MakeWKN(62,1,wknGlobal) 
MakeWKN(62,1,wknGlobal) 
MakeWKN(28,1,wknGlobal) 
MakeWKN(29,1,wknGlobal) 
MakeWKN(143,1,wknGlobal) 
MakeWKN(143,1,wknGlobal) 
MakeWKN(30,1,wknGlobal) 
MakeWKN(49,1,wknGlobal) 
MakeWKN (61, 1,wknGlobal) 
MakeWKN(120,1,wknGlobal) 
MakeWKN(412,1,wknGlobal) 
MakeWKN(412,1,wknGlobal) 
MakeWKN(413,1,wknGlobal) 
MakeWKN(31,1,wknGlobal) 
MakeWKN(31,1,wknGlobal) 
MakeWKN(299,1,wknGlobal) 
MakeWKN(302,1,wknGlobal) 
MakeWKN(285,1,wknGlobal) 
MakeWKN(286,1,wknGlobal) 
MakeWKN(12,1,wknProcessGlobal) 
MakeWKN(138,1,wknGlobal) 
MakeWKN(125,1,wknGlobal) 
MakeWKN(lO,l,wknProcessGlobal) 

fdefine clsFileHandleAppendOnly MakeWKN(494,1,wknGlobal) 

Disk Viewer 
fdefine clsDiskViewWin 
fdefine clsDisklnstaller 
fdefine clsDVBookshelf 
fdefine clsDiskViewApp 
fdefine clsDVBrowBar 
fdefine clsDVTabButton 
fdefine clsDVlcon 
fdefine clsDVForward 
fdefine clsDVBrowser 
fdefine clsDVlconWin 
fdefine clsDynamicTableMgr 

Configuration Notebook 
fdefine clsConfigurationApp 
fdefine theConfigurationBook 

SeHings NB 
fdefine clsSettingsNB 
fdefine clsSettingsNBAppWin 
4f:define clslnstallUISheet 
fdefine clslnstallUICard 
fdefine clslnstallUIButton 
fdefine clslnstallUIBrowser 
fdefine clsQuicklnstallUI 

MakeWKN(384,1,wknGlobal) 
MakeWKN(385,1,wknGlobal) 
MakeWKN(188,1,wknGlobal) 
MakeWKN(243,1,wknGlobal) 
MakeWKN(141,1,wknGlobal) 
MakeWKN(134,1,wknGlobal) 
MakeWKN(137,1,wknGlobal) 
MakeWKN(140,1,wknGlobal) 
MakeWKN(171,1,wknGlobal) 
MakeWKN(144,1,wknGlobal) 
MakeWKN(128,1,wknGlobal) 

MakeWKN(197,1,wknGlobal) 
MakeWKN(206,1,wknGlobal) 

MakeWKN(239,1,wknGlobal) 
MakeWKN(150,1,wknGlobal) 
MakeWKN(117,1,wknGlobal) 
MakeWKN(256,1,wknGlobal) 
MakeWKN(209,1,wknGlobal) 
MakeWKN(387,1,wknGlobal) 
MakeWKN(142,1,wknGlobal) 

II 
II 
II 
II 
II 
II 
II 

II 

II 
II 
II 
II 

Penpoint 
PenPoint 
PenPoint 
PenPoint 
PenPoint 
PenPoint 
PenPoint 

PenPoint 

PenPoint 
PenPoint 
PenPoint 
PenPoint 

internal 
internal 
internal 
internal 
internal 
internal 
internal 

internal 

internal 
internal 
internal 
internal 



".. Install Manager classes 
#define clsInstallMgr 
#define clsCodeInstallMgr 
#define clsAppInstallMgr 
#define clsFontInstallMgr 
#define clsHWXProtoInstallMgr 
#define clsPDictInstallMgr 
#define clsUpgradeApp 
#define clsUpgradeAppMonitor 

MakeWKN(249,1,wknGlobal) 
MakeWKN(193,1,wknGlobal) 
MakeWKN(260,1,wknGlobal) 
MakeWKN(268,1,wknGlobal) 
MakeWKN(177,1,wknGlobal) 
MakeWKN(428,1,wknGlobal) 
MakeWKN(291,1,wknGlobal) 
MakeWKN(292,1,wknGlobal) 

Install Manager well-known instances 
#define theInstallManagers 
#define theInstalledHWXProtos 
#define theInstalledGestures 
#define theInstalledApps 
#define theInstalledPDicts 
#define theInstalledPrefs 
#define theInstalledServices 
#define theInstalledFonts 

Application Monitor 
#define clsAppMonitor 

".. Auxilliary Notebook Manager 
#define clsAuxNotebookMgr 
#define theAuxNotebookMgr 
#define clsIniFileHandler 
#define clsStationeryMenu 
#define theStationeryMenu 

Auxilliary Notebooks 
#define clsHelpNB 
#define clsStationeryNB 
#define clsStationeryBrowWin 
#define clsInboxNB 
#define clsOutboxNB 

Accessory PalieHe 
#define clsAccessoryPallette 
#define clsAccessoryWin 
#define clsAccessoryAppWin 

Service Classes 
#define clsService 
#define clsMILService 
#define clsServiceMgr 
#define clsServiceInstallMgr 
#define clsPrintSpoolSvc 
#define clsSendableService 
#define clsHWXEngineService 
#define clsOpenServiceObject 
#define clsMILConflictGroupMgr 
#define theServiceResList 
#define theServiceManagers 

MakeWKN(236,1,wknGlobal) 
MakeWKN(250,1,wknGlobal) 
MakeWKN(409,1,wknGlobal) 
MakeWKN(208,1,wknGlobal) 
MakeWKN(331,1,wknGlobal) 
MakeWKN(332,1,wknGlobal) 
MakeWKN(288,1,wknGlobal) 
MakeWKN(211,1,wknGlobal) 

MakeWKN(278,1,wknGlobal) 

MakeWKN(314,1,wknGlobal) 
MakeWKN(313,1,wknGlobal) 
MakeWKN(398,1,wknGlobal) 
MakeWKN(93,1,wknGlobal) 
MakeWKN(93,1,wknGlobal) 

II PenPoint internal 
II PenPoint internal 

MakeWKN(335,1,wknGlobal) 
MakeWKN(333,1,wknGlobal) 
MakeWKN(160,1,wknGlobal) II PenPoint internal 
MakeWKN(388,1,wknGlobal) 
MakeWKN(389,1,wknGlobal) 

MakeWKN(391,1,wknGlobal) 
MakeWKN(396,1,wknGlobal) 
MakeWKN(440,1,wknGlobal) 

MakeWKN(349,1,wknGlobal) 
MakeWKN(434,1,wknGlobal) 
MakeWKN(350,1,wknGlobal) 
MakeWKN(240,1,wknGlobal) 
MakeWKN(363,1,wknGlobal) 
MakeWKN(169,1,wknGlobal) 
MakeWKN(180,1,wknGlobal) 
MakeWKN(176,1,wknGlobal) 
MakeWKN(415,1,wknGlobal) 
MakeWKN(189,1,wknGlobal) 
MakeWKN(237,1,wknGlobal) 

UID.H 67 



68 PENPOINT API REFERENCE 
Part 1 / Class Manager 

Service Managers 
tdefine theMILDevices MakeWKN(383,1,wknGIobal) 
tdefine theParaIIeIDevices MakeWKN(152,1,wknGIobal) 
tdefine theAppIeTaIkDevices MakeWKN(308,1,wknGIobal) 
tdefine theSeriaIDevices MakeWKN(309,1,wknGIobal) 
tdefine thePrinterDevices MakeWKN(310,1,wknGIobal) 
tdefine thePrinters MakeWKN(210,1,wknGIobal) 
tdefine theSendabIeServices MakeWKN(24,1,wknGIobal) 
tdefine theTransportHandlers MakeWKN(25,1,wknGIobal) 
tdefine theLinkHandIers MakeWKN (26, 1,wknGIobal) 
tdefine theHWXEngines MakeWKN(175,1,wknGIobal) 
tdefine theModems MakeWKN(194,1,wknGIobal) 
tdefine theHighSpeedPacketHandIers MakeWKN(439,1,wknGIobal) 
tdefine theFaxIOServices MakeWKN(217,1,wknGIobal) 

Service Sample Code 
tdefine cIsBasicService 
tdefine cIs Test Service 
tdefine cIsTestOpenObject 
tdefine cIsTestMILService 

Modem Component 
tdefine cIsModem 

Parallel Port Component 
tdefine cIsParaIIeIPort 

Text Component 
tdefine cIsText 
tdefine cIsTextView 
tdefine cIsTextChar 
tdefine cIsTextMarkStore 
tdefine cIsTextBIock 
tdefine cIsTextIP 

Undo Manager 
tdefine cIsUndo 
tdefine theUndoCoordinater 
tdefine theUndoManager 

Windows and Graphics 
tdefine cIsDrwCtx 
tdefine cIsSysDrwCtx 
tdefine cIsPixDev 
tdefine cIslmgDev 
tdefine cIsWinDev 
tdefine cIsWin 
tdefine theScreen 
tdefine theRootWindow 
tdefine cIsBitmap 
tdefine cIsPicSeg 
tdefine cIsTiff 

MakeWKN(460,1,wknGIobal) 
MakeWKN(186,1,wknGIobal) 
MakeWKN(207,1,wknGIobal) 
MakeWKN(459,1,wknGIobal) 

MakeWKN(151,1,wknGIobal) 

MakeWKN(196,1,wknGIobal) 

MakeWKN(35,1,wknGIobal) 
MakeWKN(36,1,wknGIobal) 
MakeWKN(33,1,wknGIobal) 
MakeWKN(34,1,wknGIobal) 
cIsText 
MakeWKN(355,1,wknGIobal) 

MakeWKN(235,1,wknGIobal) 
MakeWKN(126,1,wknGIobal) 
MakeWKN(ll,l,wknProcessGlobal) 

MakeWKN(37,1,wknGIobal) 
MakeWKN(38,1,wknGIobal) 
MakeWKN(40,1,wknGIobal) 
MakeWKN(41,1,wknGIobal) 
MakeWKN(42,1,wknGIobal) 
MakeWKN(43,1,wknGIobal) 
MakeWKN(50,1,wknGIobal) 
MakeWKN(67,1,wknGIobal) 
MakeWKN(378,1,wknGIobal) 
MakeWKN(82,1,wknGIobal) 
MakeWKN(66,1,wknGIobal) 



UID.H 69 II:1II 

". Layout and Tracking ~ tdefine clsBorder MakeWKN(135,l,wknGlobal) 
tdefine clsLayout MakeWKN(53,l,wknGlobal) 
tdefine clsTableLayout MakeWKN(55,l,wknGlobal) 
tdefine clsCustomLayout MakeWKN(54,l,wknGlobal) 
tdefine clsTrack MakeWKN(12,l,wknGlobal) 

". Toolkit 
tdefine clsImageWin MakeWKN(182,l,wknGlobal) 
tdefine clsFrame MakeWKN(56,l,wknGlobal) 
tdefine clsFrameBorder MakeWKN(337,l,wknGlobal) 
tdefine clsScrollWin MakeWKN(155,l,wknGlobal) 
tdefine clsScrollWinInnerWin MakeWKN(338,l,wknGlobal) 
tdefine clsControl MakeWKN(48,l,wknGlobal) 
tdefine clsCloseBox MakeWKN(71,l,wknGlobal) 
tdefine clsGrabBox MakeWKN(266,l,wknGlobal) 
tdefine clsScrollbar MakeWKN(58,l,wknGlobal) 
tdefine clsLabel MakeWKN(75,l,wknGlobal) 
tdefine clsButton MakeWKN(52,l,wknGlobal) 
tdefine clsMenuButton MakeWKN(72,l,wknGlobal) 
tdefine clsContentsButton MakeWKN(192,l,wknGlobal) 
tdefine clsIcon MakeWKN(360,l,wknGlobal) 
tdefine clsIconToggle MakeWKN(124,l,wknGlobal) 
tdefine clsMoveCopyIcon MakeWKN(361,l,wknGlobal) 
tdefine clsTitleBar MakeWKN(163,l,wknGlobal) 
tdefine clsTkTable MakeWKN(68,l,wknGlobal) 
tdefine clsOptionTable MakeWKN(298,l,wknGlobal) 
tdefine clsContentsTable MakeWKN(190,l,wknGlobal) 
tdefine clsMenu MakeWKN(57,l,wknGlobal) 
tdefine clsShadow MakeWKN(181,l,wknGlobal) 
tdefine clsPageNum MakeWKN(74,l,wknGlobal) 
tdefine clsTabBar MakeWKN(70,l,wknGlobal) 
tdefine clsTabButton MakeWKN(60,l,wknGlobal) 
tdefine clsOption MakeWKN(224,l,wknGlobal) 
tdefine clsOptionBook MakeWKN(191,l,wknGlobal) 
tdefine clsCommandBar MakeWKN(228,l,wknGlobal) 
tdefine clsCounter MakeWKN(llO,l,wknGlobal) 

TKComp 
tdefine clsChoice MakeWKN(59,l,wknGlobal) 
tdefine clsPopupChoice MakeWKN(297,l,wknGlobal) 
tdefine clsToggleTable MakeWKN(76,l,wknGlobal) 
tdefine clsIconChoice MakeWKN(320,l,wknGlobal) 
tdefine clsIconTable MakeWKN(321,l,wknGlobal) 
tdefine clsListBox MakeWKN(94,l,wknGlobal) 
tdefine clsListBoxDisplay MakeWKN(275,l,wknGlobal) 
tdefine clsManager MakeWKN(244,l,wknGlobal) 
tdefine clsChoiceMgr MakeWKN(241,l,wknGlobal) 
tdefine clsSelChoiceMgr MakeWKN(246,1,wknGlobal) 
tdefine clsTextField MakeWKN(95,1,wknGlobal) 
tdefine clsIntegerField MakeWKN(294,1,wknGlobal) 
tdefine clsFixedField MakeWKN(295,1,wknGlobal) 
tdefirie clsDateField MakeWKN(296,l,wknGlobal) 
tdefine theBusyManager MakeWKN(242,1,wknGlobal) 
tdefine clsBusy MakeWKN(242,1,wknGlobal) 
tdefine clsModalFilter MakeWKN(311,l,wknGlobal) 
tdefine clsNote MakeWKN(312,1,wknGlobal) 
tdefine clsNoteBorder MakeWKN(195,l,wknGlobal) 
tdefine clsStringListBox MakeWKN(343,1,wknGlobal) 
tdefine clsFontListBox MakeWKN(344,l,wknGlobal) 
tdefine clsProgressBar MakeWKN(187,1,wknGlobal) 



70 PENPOINT API REFERENCE 
Part 1 / Class Manager 

Import/Export 

Browser 

#define cIs Import 
#define clsExport 
#define theExportManager 
#define clsExportManager 

#define clsBrowser 
#define clsBrowWin 
#define clsBrowApp 
#define clsBrowFrame 
#define clsBrowMenu 
#define clsBrowExport 
#define clsBrQwImport 
#define clsBrowRename 
#define clsLuke 

Communications 
#define clsStream 
#define clsSccSio 
#define clsLSio 
#define clsSioUI 
#define clsFLAP 
#define clsALAPSerial 
#define clsIconCache 
#define theIconCache 
#define clsWSio 
#define clsSioTest 

Fax Send/Receive Page Service 
#define clsFaxIOSvc 

Search and Replace 

Traverse 

#define clsSR 
#define clsSF 
#define theSearchManager 

#define clsMark 

Textedit Application 
#define clsTexteditApp 
#define clsTexteditAppMonitor 

Networking 
#define cIs Transport 
#define clsLink 
#define clsHighSpeedPacket 
#define clsALAPHighSpeed 
#define clsATP 
#define clsATPHandle 
#define theATPDriver 
#define clsSoftTalk 

MakeWKN(289,1,wknGlobal) 
MakeWKN(290,1,wknGlobal) 
MakeWKN(84,1,wknGlobal) 
MakeWKN(106,1,wknGlobal) 

MakeWKN(87,1,wknGlobal) 
MakeWKN(I7"8,1,wknGlobal) 
MakeWKN(179,1,wknGlobal) 
MakeWKN(221,1,wknGlobal) 
MakeWKN(261,1,wknGlobal) 
MakeWKN(300,1,wknGlobal) 
MakeWKN(303,1,wknGlobal) 
MakeWKN(326,1,wknGlobal) 
MakeWKN(222,1,wknGlobal) II PenPoint internal 

MakeWKN(64,1,wknGlobal) 
MakeWKN(351,1,wknGlobal) 
MakeWKN(381,1,wknGlobal) 
MakeWKN(122,1,wknGlobal) 
MakeWKN(392,1,wknGlobal) 
MakeWKN(393,1,wknGlobal) 
MakeWKN(107,1,wknGlobal) 
MakeWKN(442,1,wknGlobal) 
MakeWKN(123,l,wknGlobal) 
MakeWKN(158,1,wknGlobal) 

MakeWKN(271,1,wknGlobal) 

MakeWKN(293,1,wknGlobal) 
MakeWKN(382,1,wknGlobal) II search frame 
MakeWKN(27,1,wknGlobal) 

MakeWKN(257,1,wknGlobal) 

MakeWKN(356,1,wknGlobal) 
MakeWKN(357,1,wknGlobal) 

MakeWKN(88,1,wknGlobal) 
MakeWKN(394,1,wknGlobal) 
MakeWKN(438,1,wknGlobal) 
MakeWKN(417,1,wknGlobal) 
MakeWKN(89,1,wknGlobal) 
MakeWKN(318,1,wknGlobal) 
MakeWKN(319,1,wknGlobal) 
MakeWKN(119,1,wknGlobal) 



fdefine theSoftTalkDriver 
fdefine clsTopsMounter 
fdefine theTopsMounter 
fdefine theTopsService 
fdefine clsTOPS 
fdefine theTopsVolurnes 
fdefine theTopsPrinters 
fdefine theRernoteServices 

Selection and Data Transfer 

Timer 

fdefine theSelectionManager 
fdefine clsSelection 
fdefine clsXfer 
fdefine clsXferList 
fdefine clsPipe 

fdefine theTirner 
fdefine clsTirner 

Preferences 
fdefine theSysternPreferences 
fdefine clsPreferences 
fdefine clsPrefApp 
fdefine clsPrefSheet 

Power Management 
fdefine clsPowerButton 
fdefine thePowerButton 
fdefine clsPowerMgr 
fdefine thePowerMgr 

MakeWKN(86,1,wknGlobal) 
MakeWKN(116,1,wknGlobal) 
MakeWKN(118,1,wknGlobal) 
MakeWKN(345,1,wknGlobal) 
MakeWKN(400,1,wknGlobal) 
MakeWKN(401,1,wknGlobal) 
MakeWKN(402,1,wknGlobal) 
MakeWKN(403,1,wknGlobal) 

MakeWKN(lll,l,wknGlobal) 
MakeWKN(lll,l,wknGlobal) 
MakeWKN(139,1,wknGlobal) 
MakeWKN(322,1,wknGlobal) 
MakeWKN(63,1,wknGlobal) II PenPoint internal 

MakeWKN(109,1,wknGlobal) 
MakeWKN(109,1,wknGlobal) 

MakeWKN(324,1,wknGlobal) 
MakeWKN(323,1,wknGlobal) 
MakeWKN(115,1,wknGlobal) 
MakeWKN(216,1,wknGlobal) 

MakeWKN(348,1,wknGlobal) 
MakeWKN(348,1,wknGlobal) 
MakeWKN(416,1,wknGlobal) 
MakeWKN(416,1,wknGlobal) 

Send and Address Book Managers 
#define clsAddressBook 
fdefine theAddressBookMgr 
fdefine theSendManager 

Spell Manager 

MakeWKN(346,1,wknGlobal) 
MakeWKN(342,1,wknGlobal) 
MakeWKN(341,1,wknGlobal) 

fdefine theSpellManager MakeWKN(380,1,wknGlobal) 
fdefine clsSpellManager MakeWKN(200,1,wknGlobal) 
fdefine clsSpellField MakeWKN(386,1,wknGlobal) 
fdefine theProcessSpellManager MakeWKN(2,1,wknProcessGlobal) 

Personal Dictionary 
fdefine clsPDict 
fdefine thePersonalDictionary 
fdefine clsPDApp 
fdefine clsPDUI 

MakeWKN(328,1,wknGlobal) 
MakeWKN(329,1,wknGlobal) 
MakeWKN(336,1,wknGlobal) II obsolete 
MakeWKN(336,1,wknGlobal) II Replaces clsPDApp 

UID.H 



72 PENPOINT API REFERENCE 
Part 1 / Class Manager 

Printer Drivers 
#define clsPrn 
#define clsBndPrn 
#define clsEpson 
#define clsPcl 
#define clsPscript 
#define clsFaxPrn 
#define clsPrnUI 
#define clsRemora 

Handwriting Customization 
#define clsHWCustomFrame 
#define clsPlatoHomeWin 
#define clsPlato26Win 
#define clsPlato26WinKbd 
#define clsPlatoCustomStat 
#define clsPlatoBox 

LeHer & Gesture Practice 
#define clsHWLetterFrame 
#define clsHWLetterWin 
#define clsHWLetterKbd 
#define clsHWLetterBkgr 
#define clsHWGestFrame 
#define clsHWGestWin 
#define clsHWGestPracWin 

Animator 
#define clsAnimSPaper 
#define clsAnimSysDc 

Inbox / Outbox /Wrapper 
#define clsOutboxSectApp 
#define clsOBXService 
#define clsOBXWin 
#define clsIOBXService 
#define clsOBXWrapperApp 
#define clsPrintWrapperApp 
#define clsPrnInstlApp 
#define clsINBXSectApp 
#define clsINBXService 
#define clsINBXWin 
#define clsTPSPSvc 
#define clsTPrnMgr 
#define theTopsPSPManager 
#define clsOBXBrowWin 
#define clsINBOXBrowWin 
#define clsIOBXStatusWin 
#define theOutboxServices 
#define theInboxServices 

MakeWKN(201,1,wknGlobal) 
MakeWKN(202,1,wknGlobal) 
MakeWKN(203,1,wknGlobal) 
MakeWKN(204,1,wknGlobal) 
MakeWKN(205,1,wknGlobal) 
MakeWKN(245,1,wknGlobal) 
MakeWKN(91,1,wknGlobal) 
MakeWKN(364,1,wknGlobal) 

MakeWKN(316,1,wknGlobal) 
MakeWKN(347,1,wknGlobal) 
MakeWKN(334,1,wknGlobal) 
MakeWKN(339,1,wknGlobal) 
MakeWKN(362,1,wknGlobal) 
MakeWKN(232,1,wknGlobal) 

MakeWKN(146,1,wknGlobal) 
MakeWKN(170,1,wknGlobal) 
MakeWKN(390,1,wknGlobal) 
MakeWKN(404,1,wknGlobal) 
MakeWKN(147,1,wknGlobal) 
MakeWKN(410,1,wknGlobal) 
MakeWKN(411,1,wknGlobal) 

MakeWKN(234,1,wknGlobal) 
MakeWKN( 81,1,wknGlobal) 

MakeWKN(272,1,wknGlobal) 
MakeWKN(352,1,wknGlobal) 
MakeWKN(399,1,wknGlobal) 
MakeWKN(353,1,wknGlobal) 
MakeWKN(273,1,wknGlobal) 
MakeWKN(274,1,wknGlobal) 
MakeWKN(395,1,wknGlobal) 
MakeWKN(113,1,wknGlobal) 
MakeWKN(114,1,wknGlobal) 
MakeWKN(133,1,wknGlobal) 
MakeWKN(129,1,wknGlobal) 
MakeWKN(130,1,wknGlobal) 
MakeWKN(131,1,wknGlobal) 
MakeWKN(149,1,wknGlobal) 
MakeWKN(173,1,wknGlobal) 
MakeWKN(212,1,wknGlobal) 
MakeWKN(429,1,wknGlobal) 
MakeWKN(430,1,wknGlobal) 



Mask App 
#define clsMaskApp 
#define clsMaskAppMonitor 

Clock App 
#define clsClockApp 
#define clsClockLabel 
#define clsClockWin 

MakeWKN(327,1,wknGlobal) 
MakeWKN(325,1,wknGlobal) 

MakeWKN(165,1,wknGlobal) 
MakeWKN(220,1,wknGlobal) 
MakeWKN(223,1,wknGlobal) 

Note Icon Window (used in Clock App) 
#define clsNotelconWin MakeWKN(166,1,wknGlobal) 

Miscellaneous 
#define clsString 
#define clsByteBuf 

MakeWKN(108,1,wknGlobal) 
MakeWKN(185,1,wknGlobal) 

Test Support 

The MIL 

#define clsTestNB 

#define theMIL 
#define theMILMachineType 
#define theMILUnitTag 

MakeWKN(65,1,wknGlobal) 

MakeWKN(213, 1, wknGlobal) 
MakeWKN(215, 1, wknGlobal) 
MakeWKN(227, 1, wknGlobal) 

MIL device ids, and the classes of the MIL services for these devices. 

#define clsMILBaseDevice MakeWKN(214, 1, wknGlobal) 
#define clsMILlnitDevice MakeWKN (229, 1, wknGlobal) 
#define clsMILPowerDevice MakeWKN (230, 1, wknGlobal) 
#define clsMILTimerDevice MakeWKN(231, 1, wknGlobal) 
#define clsMILRealTimeClockDevice MakeWKN(233, 1, wknGlobal) 
#define clsMILlnterruptDevice MakeWKN(238, 1, wknGlobal) 
#define clsMILScreenDevice MakeWKN(247, 1, wknGlobal) 
#define clsMILStylusDevice MakeWKN(248, 1, wknGlobal) 
#define clsMILNMIDevice MakeWKN(258, 1, wknGlobal) 
#define clsMILSoundDevice MakeWKN (259, 1, wknGlobal) 
#define clsMILKeyboardDevice MakeWKN(262, 1, wknGlobal) 
#define clsMILAsyncSIODevice MakeWKN(263, 1, wknGlobal) 
#define clsMILParallelPortDevice MakeWKN (264, 1, wknGlobal) 
#define clsMlLAppleLAPDevice MakeWKN(265, 1, wknGlobal) 
#define clsMILNVMemDevice MakeWKN(267, 1, wknGlobal) 
#define clsMILSCSIDevice MakeWKN (269, 1, wknGlobal) 
#define clsMILFlashDevice MakeWKN(270, 1, wknGlobal) 
#define clsMILCompressionDevice MakeWKN(276, 1, wknGlobal) 
#define clsMILDebugDevice MakeWKN (277, 1, wknGlobal) 
#define clsMILBlockDevice MakeWKN(287, 1, wknGlobal) 
#define clsMILFDiskDevice MakeWKN(301, 1, wknGlobal) 
#define clsMILDisketteDevice MakeWKN (304, 1, wknGlobal) 
#define clsMILFlashDiskDevice MakeWKN (305, 1, wknGlobal) 
#define clsMILMemoryCardDevice MakeWKN(306, 1, wknGlobal) 
#define clsMILHSPacketDevice MakeWKN (435, 1, wknGlobal) 

UID.H 

These device Ids may be used for temporary testing of new device types. Code using these device types 

SHOULD NEVER BE RELEASED. 

#define clsMILTest1Device 
#define clsMILTest2Device 
#define clsMILTest3Device 

MakeWKN(307, 1, wknGlobal) 
MakeWKN(315, 1, wknGlobal) 
MakeWKN(317, 1, wknGlobal) 

73 



74 PENPOINT API REFERENCE 
Part 1 / Class Manager 

Predefined conflict group uids. 

:fI:define theMILConflictGroup1 MakeWKN(418, 1, wknGlobal) 
:fI:define theMILConflictGroup2 MakeWKN (419, 1, wknGlobal) 
:fI:define theMILConflictGroup3 MakeWKN(420, 1, wknGlobal) 
:fI:define theMILConflictGroup4 MakeWKN (421, 1, wknGlobal) 
:fI:define theMILConflictGroup5 MakeWKN(422, 1, wknGlobal) 
:fI:define theMILConflictGroup6 MakeWKN(423, 1, wknGlobal) 
:fI:define theMILConflictGroup7 MakeWKN (424, 1, wknGlobal) 
:fI:define theMILConflictGroup8 MakeWKN(425, 1, wknGlobal) 
:fI:define theMILConflictGroup9 MakeWKN (426, 1, wknGlobal) 
:fI:defin~ theMILConflictGroup10 MakeWKN (427, 1, wknGlobal) 

The Connections Notebook 
:fI:define clsConnectionsUI MakeWKN ( 365, 1, wknGlobal 
:fI:define clsCNBSheet MakeWKN ( 366, 1, wknGlobal 
:fI:define clsConnections MakeWKN ( 367, 1, wknGlobal 
:fI:define clsPrinterView MakeWKN ( 368, 1, wknGlobal 
:fI:define clsPrinterViewCV MakeWKN ( 495, 1, wknGlobal 
:fI:define clsColumnView MakeWKN ( 369, 1, wknGlobal 
:fI:define theConnections MakeWKN ( 370, 1, wknGlobal 
:fI:define theVolurneServices MakeWKN ( 371, 1, wknGlobal 
:fI:define thePrinterServices MakeWKN ( 372, 1, wknGlobal 
:fI:define theConnectionsMenu MakeWKN ( 441, 1, wknGlobal 
:fI:define clsNetView MakeWKN ( ~73, 1, wknGlobal 
:fI:define clsNetVolumeView MakeWKN ( 374, 1, wknGlobal 
:fI:define clsNetPrinterView MakeWKN ( 375, 1, wknGlobal 
:fI:define clsTOPSUI MakeWKN ( 376, 1, wknGlobal 
:fI:define clsConnectionsUIAppW~n MakeWKN ( 377, 1, wknGlobal 

The Databases World 
:fI:define theDatabases MakeWKN 405, 1, wknGlobal 
:fI:define clsDbService MakeWKN 406, 1, wknGlobal 
:fI:define clsDBConnections MakeWKN 407, 1, wknGlobal 
:fI:define clsDatabasesView MakeWKN 408, 1, wknGlobal 
:fI:define clsDatabasesViewCV MakeWKN 496, 1, wknGlobal 
:fI:define clsTechGnosis MakeWKN 437, 1, wknGlobal 

The Hard Disk Installer 
:fI:define clsHardinst MakeWKN 225, 1, wknGlobal 
:fI:define theHardinst MakeWKN 436, 1, wknGlobal 

The Symbolic Debugger 
:fI:define theDebugger MakeWKN 358, 1, wknGlobal 
:fI:define clsDebugger MakeWKN 358, 1, wknGlobal 

The ASP/ AFP & AppleTalk Related Defines 
:fI:define clsASP MakeWKN(444,1,wknGlobal) 
:fI:define clsASPClient MakeWKN(445,1,wknGlobal) 
.:fI:define clsASPServer MakeWKN(446,1,wknGlobal) 
:fI:define clsASPServerSessionHandler MakeWKN(447,1,wknGlobal) 
:fI:define clsVolAFP MakeWKN(448,1,wknGlobal) 
:fI:define clsAFP MakeWKN(449,1,wknGlobal) 
:fI:define clsAfpMounter MakeWKN(450,1,wknGlobal) 
:fI:define theAfpMounter MakeWKN(451,1,wknGlobal) 



UID.H 75 

#define theSessionHandlers MakeWKN(452,1,wknGlobal) 
#define clsASPClientService MakeWKN(453,1,wknGlobal) 
#define clsASPServerService MakeWKN(454,1,wknGlobal) 

#define theAfpService MakeWKN(455,1,wknGlobal) 
#define theAfpVolumes MakeWKN(456,1,wknGlobal) 
#define clsAFPUI MakeWKN(493,1,wknGlobal) 

#define clsPcTest MakeWKN(497, 1, wknGlobal 
#define thePcTest MakeWKN(498, 1, wknGlobal 
#define thePublicFileTypes MakeWKN (499, 1, wknGlobal ) 





Part2/ 
PenPoint Application 

Framework 





APP.H 

This file contains the API definition for clsApp. The functions described in this file are contained in 
APP.LIB. 

clsApp inherits from clsObject. 

Provides the standard behavior for a PenPoint application. 

Introduction 

PenPoint applications rely on clsApp to create and display their main window, save state, terminate the 
application instance, and so on. Every application developer needs to create a descendant of clsApp and 
have the descendant handle a few important messages. See clsTemplateApp in 
\penpoint\sdk\sample\templtap for an example of those messages an application typically must handle. 

When the user turns to a document in the notebook, the PenPoint Application Framework creates an 
application instance to manage that document. Throughout this header file and the rest of our 
documentation, we use the term "document" t9 refer to an instance of an application class. 

tifndef APP INCLUDED 
*define APP INCLUDED 
tifndef FS_INCLUDED 
tinclude <fs.h> 
tendif 

Common #defines and typedefs 
typedef OBJECT APP, *P_APP; 
tdefine AppDebug(v, e) DbgFlag('R', v, e) 

Well-known Filenames 

The Application Framework looks for information and stores document data in a series of well-known 
filenames. One of these is: 

• appResFileName, the application's resource file for its icons, quick help, user interface strings, and 
so on. 

Each document in the Notebook has its own directory, containing a collection of files for the 
document's data and subdirectories for any embedded documents. These are: 

• appDocStateFileN arne, the resource file for any objects that the document saves. In general, this is 
caied the document's resource file 

• appDocResFileName, a resource file for preferences, including print metrics (once they are changed 
from the defaults) and comments that the user wrote in the "Comments" option sheet 

• appDocLinkFileName, the document's saved Reference Buttons and descriptors for what they are 
linked to 



80 PENPOINT API REFERENCE 
Part 2 / PenPoint Application Framework 

• appActiveDocLinkFileName, a working document of newly created (but not yet saved) Reference 
Buttons 

• appCorkboardDirName, the name of the subdirectory for documents embedded on the document's 
corkboard 

• subdirectories for any other embedded documents. 

#define appResFileName 
#define appDocStateFileName 
#define appDocResFileName 
#define appDocLinkFileName 
#define appActiveDocLinkFileName 
#define appCorkboardDirName 

Status Codes 

"APP.RES" 
"DOCSTATE.RES" 
"DOC.RES" 
"DOC.LNK" 
"ACTDOC.LNK" 
"CORKBD" 

These are the status codes returned by clsApp. 

#define stsAppRefused 
#define stsAppMoveRCAppToCApp 
#define stsAppMoveCAppTolnvalid 
#define stsAppCopyRCAppToCApp 
#define stsAppCopyCAppTolnvalid 
#define stsAppNotMovable 
#define stsAppNotCopyable 
#d~fine stsAppNotDeletable 
#define"stsAppDuplicateName 
#define stsAppBadName 
#define stsAppNotFound 
#define stsAppOpened 
#define stsAppNoSelection 
#define stsAppSelRequestNotSupported 
#define stsAppOutOfMemory 
#define stsAppCrashed 
#define stsAppOpenFailedSupressError 
#define stsAppErrorStartingDoc 
#define stsAppErrorEmbedPrintApply 
#define stsAppErrorLeftPrintMargin 
#define stsAppErrorRightPrintMargin 
#define stsAppErrorTopPrintMargin 
#define stsAppErrorBottomPrintMargin 
#define stsAppErrorHeaderPrintMargin 
#define stsAppErrorFooterPrintMargin 

Document States 

MakeStatus(clsApp, 1) 
MakeStatus(clsApp, 2) 
MakeStatus(clsApp, 3) 
MakeStatus(clsApp, 13) 
MakeStatus(clsApp, 14) 
MakeStatus(clsApp, 4) 
MakeStatus(clsApp, 5) 
MakeStatus(clsApp, 6) 
MakeStatus(clsApp, 7) 
MakeStatus(clsApp, 17) 
MakeStatus(clsApp, 8) 
MakeStatus(clsApp, 9) 
MakeStatus(clsApp, 10) 
MakeStatus(clsApp, 11) 
MakeStatus(clsApp, 15) 
MakeStatus(clsApp,.16) 
MakeStatus(clsApp, 18) 
MakeStatus(clsApp, 19) 
MakeStatus(clsApp, 20) 
MakeStatus(clsApp, 21) 
MakeStatus(clsApp, 22) 
MakeStatus(clsApp, 23) 
MakeStatus(clsApp, 24) 
MakeStatus(clsApp, 25) 
MakeStatus(clsApp, 26) 

A document can be in one of three states. When the user opens a document, its state becomes 
appOpened. Once the user closes it, the document's state can be either appTerminated or appActivated. 

There are conditions when, after the user closes a document, the document's objects needs to stay 
around (and not be freed). Such conditions include when the document's access speed is set to 
accelerated (a.k.a., "hot mode") and when the document owns the selection. If a document is closed but 
needs to stay active, its state is set to appActivated. If there is no reason to keep a !ocument around after 
it has been closed, its state becomes appTerminated (and the document is freed soon thereafter). 

You can specify additional conditions for keeping a closed document active by handling 
msgAppTerminateOK. See the description of this message for further details. 

#define appTerminated 0 II closed doc, on its way to being freed 
#define appActivated 1 II closed doc, with a reason to stay active 
#define appOpened 2 II opened doc 



APP.H 81 
Common #defines and typedefs 

"... App toggle 
These are toggles used as parameters to various messages. 

#define appOff 0 
#define appOn 1 
#define appToggle 2 

Printing Flags 
The Application Framework uses these flags when opening a document to print it and its embedded 
documents. The typical application developer does not need to use these flags. However, if you open 
your own embedded documents, you should never pass on appPrintingTopLevel to them (even if you 
were opened with appPrintingTopLevel set). 

#define appPrinting ((U16)flagO) 
#define appPrintingTopLevel ((U16)flag1) 

App Flags 
This structure defines the application flags. They include the state of the document (see Document 
States above) and other common booleans. This structure is used in APP _METRICS and by 
APP_DIR_FLAGS (defined in appdir.h). 

typedef struct APP_FLAGS 
U16 state 2; II Document state. 
U16 hotMode 1; II True = app is in hot mode. 
U16 floating 1; II True = app is floating. 
U16 printing 1; II True = app is printing. 
U16 topLevel 1; II True = app is printing as top level. 
U16 reserved1 10; II Reserved. 
U16 reserved2 16; II Reserved. 

APP_FLAGS, *P_APP_FLAGS; 

App Metrics 
This structure defines the public instance data for clsApp. You get a copy of this structure when you 
send msgAppGetMetrics to an application object. The fields of APP _METRICS are as follows: 

uuid: The document's uuid. It is stamped as an attribute on the document directory (see appdir.h). You 
can pass a document's uuid to clsDirHandle or dsAppDir in msgNew to create a handle to the 
document directory. 

dir: An instance of dsAppDir. It is the handle to the filesystem directory for a document. 

parent: An instance of dsApp. A document's parent is the document that activated it (see appmgr.h­
msgAppMgrActivate). If the user opens a document from the Notebook, the Notebook is the parent. If 
the opened document is embedded within another document, its parent is the embeddor. 

children: An instance of dsObject. This represents a list of the documents that this document activated. 
There is often a one-to-one correspondence between a document's children and its embedded 
documents. 

mainWin: The document's main window. If this field is objNull when a document receives 
msgApplnit, the document self sends msgAppProvideMain Win to create one. 

floatingWins: An instance of dsList. It is the list of subordinate windows that are floating above a 
document (e.g., option sheets). See msgAppAddFloatingWin and msgAppRemoveFloatingWin for 
more info. 



82 PEN POINT API REFERENCE 

Part 2 / PenPoint Application Framework 

childAppParentWin: The preferred parent window for embedded documents. 

resList: An instance of clsResList. It is list of clsResFile objects. The default list consists of (1) a 
document resource file, (2) an application resource file, (3) a preference resource file, and (4) the system 
resource file. See resfile.h for more details. 

resFile: The document's resource file (the same one as in the resList). 

flags: Various flags for the document. See the discussion of APP _FLAGS given above. 

typedef struct APP_METRICS 
UUID uuidi 
OBJECT diri 
OBJECT parenti 
OBJECT childreni 
OBJECT 
OBJECT 
OBJECT 
OBJECT 

mainWini 
floatingWinsi 
childAppParentWini 
resListi 

OBJECT resFilei 
U32 reserved[2]i 
APP FLAGS flagsi 

APP_METRICS, *P_APP_METRICSi 

Enabling and Disabling SAMs 

II App uuid. 
II App directory. 
II Parent app. 
II Child apps observe this object. 
II App main window. 
II List of floating windows. 
II Root of child app window tree. 
II Resource file list. 
II Document resource file. 
II Reserved. 
II Flags. 

In its handler for msgAppCreateMenuBar,.clsApp creates several menus and menu items that are part of 
PenPoint's standard user interface. These menus and items are known collectively as PenPoint's Standard 
Application Menus," or "SAMs" for short. The SAMs are identified by tags in apptag.h and are 
described in the PenPoint User Interface Design ~eference. 

In many cases, descendants of clsApp should be involved in deciding when the SAM menu items should 
be enabled or disabled. Sometimes a descendant should completely remove an item from the SAM. 

To enable and disable the SAM items, clsApp handles msgControlProvideEnable (see control.h for a 
description this message). Specifically, clsApp: 

• Always enables: 

tagAppMenuPrintSetup 
tagAppMenuAbout 
tagAppMenuCheckpoint 
tagAppMenuRevert 
tagAppMenuSearch 
tagAppMenuSpell 

• Enables this if theUndoManager has transactions to undo (see undo.h): 

tagAppMenuUndo 

• Asks the appropriate mananger to enable or disable: 

tagAppMenuPrint 
tagAppMenuSend 

• Always disables: 

tagAppMenuSelectAll 
any unrecognized tag 

Here are some examples of how descendants might want to modify the SAMs or respond to 
msgControlProvideEnable: 

• Most applications should support all of the features in the SAMs. (That's why they're part of 
PenPoint's standard UI.) But for a variety of reasons, some applications won't support some 



APP.H 83 
Messages 

standard PenPoint features. These applications should remove the menu item from the SAMs in 
their handler for msgAppCreateMenuBar. (See msgAppCreateMenuBar below.) Menu items that 
might not be supported include: 

tagAppMenuPrintSetup 
tagAppMenuSearch 
tagAppMenuSpell 
tagAppMenuUndo 
tagAppMenuPrint 
tagAppMenuSend 

• Applications should handle msgControlProvideEnable and return false if there's no data in the 
application, true otherwise, for: 

tagAppMenuSelectAll 

Selection owners should respond to msgControlProvideEnable for tagAppMenuMove, 
tagAppMenuCopy and tagAppMenuDelete. Here are some notes on the proper response. 

• If there is no data selected, then all three items should be disabled. 

• If the application data is read-only, Move and Delete should be disabled. 

• In most other cases, the item should be enabled. 

Messages 

Arguments 

msgNew 
Creates and initializes a new document. 

Takes P _APP _NEW, returns STATUS. Category: class message. 

typedef struct APP_NEW_ONLY 
FS_LOCATOR locator; 
OBJECT winDev; 
BOOLEAN appMonitor; 
U16 reserved1; 
U32 reserved2[4]; 

APP_NEW_ONLY, *P_APP_NEW_ONLY; 
#define appNewFields \ 

objectNewFields \ 
APP NEW ONLY app; 

typedef struct APP_NEW 
appNewFields 

} APP_NEW, *P_APP_NEW; 

II Document's location in the filesystem. 
II Window device. 
II True if app monitor instance. 
II Reserved. 
II Reserved. 

clsApp initializes the new document's instance data to default values. 

You should never send msgNew directly to clsApp or its descendants. Sending msgNew is not sufficient 
to create a viable document. The document must have its own process and directory, which msgNew 
does not create. To create a viable document, send msgAppMgrCreate (or msgAppMgrCopy) followed 
by msgAppMgrActivate to the app's application manager. (Remember that the application manager's 

uid is the well-known uid for the application class.) 

Descendants: You should never handle msgNew directly. Instead, handle msglnit by initializing your 
instance data. The ancestor must be called before your msgInit handler. 



84 PENPOINT API REFERENCE 

Messoge 

Ar~uments 

Part 2 I PenPoint Application Framework 

msgNewDefaults 
Initializes an APP _NEW structure to default values. 

Takes P _APP _NEW, returns STATUS. Category: class message. 

typedef struct APP_NEW 
appNewFields 

} APP_NEW, *P_APP_NEWi 

Zeroes out pArgs->app. 

Descendants: You should handle msgNewDefaults by initializing your _NEW structure to default 
values. The ancestor must be called before your handler. 

msgFree 
Destroys a document. 

Takes nothing, returns STATUS. 

The document frees its instance data, its children, its main window, and any option sheets it has created. 
Its final step is to kill its process, which means that flow of control never returns from this message 
handler. 

Descendants: You should handle msgFree by destroying all objects and resources you have created. The 
ancestor must be called after your handler. 

msgFreeOK 
Checks to see if a document and its children are willing to be freed. 

Takes nothing, returns STATUS. 

This message is self sent as a result of msgDestroy being sent to th'e document. 

A document can be freed ifit can be terminated (see above description of Document States). To 
determine if it can be terminated, the document self sends msgAppTerminateOK; if this message 
returns stsOK, the document then sends msgFreeOK to each active child document (those on the 
metrics.children list). If all of the children return stsOK, then the document can be terminated. 

Descendants: You normally do not handle this message. Instead, handle msgAppTerminateOK. 

stsOK If the document can be terminated. 

stsAppRefused If the document should not be terminated. 

msgAppActivate 
Activates a document and its children. 

Takes nothing, returns STATUS. 

#define msgAppActivate MakeMsg(clsApp, 1) 

This message prepares an application to receive such requests as becoming available to the user 
(msgAppOpen) and searching for some data (msgAppSearch). 

Descendants: You normally do not handle this message. 



Comments 

Comments 

Comments 

Comments 

APP.H 85 
Messages 

msgApplnit 
Creates a document's default data file and main window. 

Takes DIR_HANDLE, returns STATUS. 

#define msgApplnit MakeMsg(clsApp, 2) 

This message is sent the first time a document is activated. It performs one-time initializations. 

If the main window is objNull, the document creates the main window by self sending 
msgAppProvideMainWin. If childAppParentWin is objNull, the document sets it to be the main 

window. The document also sets the main window title by self sending msgAppGetName, followed by 
msgAppSetName. 

Descendants: You should handle this message by performing one-time initializations. This typically 
means creating any stateful objects that will be filed. The ancestor should be called before your handler. 

msgAppRestore 
Restores a document from its saved instance data. 

Takes nothing, returns STATUS. 

#define msgAppRestore MakeMsg(clsApp, 3) 

The document opens its resource file (appDocStateFileName), reads its instance data, and closes the 
file. When it receives msgRestore, the document reads its main window from the file. 

Descendants: You normally do not handle this message. Instead, you should handle msgRestore (which 
is sent as a result of this message). 

msgAppRestoreFrom 
Restores a document from a specified directory. 

Takes DIR_HANDLE, returns STATUS. 

#define msgAppRestoreFrom MakeMsg(clsApp, 4) 

This message is just like msgAppRestore, except the document opens the resource file 
(appDocStateFileName) located in DIR_HANDLE. 

Descendants: You normally do not handle this message. Instead, you should handle msgRestore (which 
is sent as a result of this message). 

msgAppSave 
Saves a document to its working directory. 

Takes nothing, returns STATUS. 

#define msgAppSave MakeMsg(clsApp, 5) 

The document self sends msgAppSaveChildren to save its children. Next, the document opens its 
resource file (appDocStateFileName), writes its instance data, and closes the file. The document also 
saves its link file. When it receives msgSave, the document writes its main window to the file. 

Descendants: You normally do not handle this message. Instead, you should handle msgSave to save 

your instance data. 



86 PENPOINT API REFERENCE 
Part 2 / PenPoint Application Framework 

msgAppSaveTo 
Saves a document to a specified directory. 

Takes DIR_HANDLE, returns STATUS. 

fdefine msgAppSaveTo MakeMsg(clsApp, 6) 

This message is just like msgAppSave, except the document opens the resource file 
(appDocStateFileName) located in DIR_HANDLE. 

Descendants: You normally do not handle this message. Instead, you should handle msgSave to save 
your instance data. 

msgAppSaveChildren 
Saves a document's children. 

Takes nothing, returns STATUS. 

fdefine msgAppSaveChildren MakeMsg(clsApp, 7) 

The document self sends msgAppSaveChild to save each child document. 

Descendants: You normally do not handle this message. 

msgAppSaveChild 
Saves the specified child document. 

Takes APp, returns STATUS. 

fdefine msgAppSaveChild MakeMsg(clsApp, 97) 

The document sends msgAppSave to APP. 

Descendants: You normally do not handle this message. 

msgAppOpen 
Opens a document's main window. 

Takes P_APP_OPEN, returns STATUS. 

fdefine msgAppOpen 

typedef struct APP_OPEN 
OBJECT parentWin; 
OBJECT childAppParentWin; 
U16 printing; 

APP_OPEN, *P_APP_OPEN; 

MakeMsg(clsApp, 8) 

II Document's parent window. 
II out: Parent window for child apps. 
II in: See printing flags. 

If the document's main window has not been sized, the document sets it to the default size. It also 
updates the 'parentWin' and 'childAppParentWin' fields in the application metrics. The document then 
sets its state to appOpened and self sends msgAppOpenChildren to open its child documents. 

This message is sent to the document when it is to be made available to the user for direct interaction. 

Descendants: You should handle this message by creating any non-stateful objects that are necessary to 
display the document's UI. You should also fill in 'childAppParent Win' - normally with the document's 
client window. 



Comments 

Messog® 
Arguments 

APP.H 87 
Messages 

You typically create the menu bar in response to this message. Self send msgAppCreateMenuBar to 

create the menu bar, and then send msgFrameSetMetrics to your main window to insert the menu bar 
in the window. 

If you can't open the document, you should return stsFailed. However, if you have already displayed an 
error message to the user, then return stsAppOpenFailedSupressError. 

The ancestor should be called after your handler. 

msgAppClose 
Closes a document's main window. 

Takes nothing, returns SfATUS. 

tdefine msgAppClose MakeMsg(clsApp, 9) 

The document extracts its main window from the window tree. It then sets the 'parentWin' field in the 
application metrics to objN ull and sets its state to appActivated. To dose its children, it self sends 
msgAppCloseChildren. 

Descendants: You should handle this message by destroying any objects that you created in 
msgAppOpen. If you created the menu bar in your msgAppOpen handler, then you should send 
msgFrameDestroyMenuBar to your main window. The ancestor should be called before your handler. 

This message is not an indication to terminate the document; it may be followed by other requests for 
services such as searching or re-opening. 

msgAppSetMain Win 
Specifies a document's main window. 

Takes WIN, returns STATUS. 

tdefine msgAppSetMainWin MakeMsg(clsApp, 10) 

The document updates its metrics.main Win field to point to pArgs. It does not destroy the existing 
mainWin. 

Descendants: You normally do not handle this message. 

msgAppSetChildAppParentWin 
Specifies the window that is used as the parent window for child documents. 

Takes WIN, returns STATUS. 

tdefine msgAppSetChildAppParentWin MakeMsg(clsApp, 11) 

Descendants: You normally do not handle this message. 

msgAppGetMetrics 
Passes back a copy of the application metrics. 

Takes P _APP _METRICS, returns STATUS. 

tdefine msgAppGetMetrics 

typedef struct APP_METRICS 
UUID uuid; 
OBJECT dir; 
OBJECT parent; 

MakeMsg(clsApp, 12) 

I lApp uuid. 
II App directory. 
II Parent app. 



88 PENPOINT API REFERENCE 

Comments 

Comments 

Comments 

Comments 

Part 2 / PenPoint Application Framework . 

OBJECT 
OBJECT 
OBJECT 
OBJECT 
OBJECT 
OBJECT 
U32 
APP FLAGS 

APP_METRICS, 

children; 
mainWin; 
floatingWins; 
childAppParentWin; 
resList; 
resFile; 
reserved[2]; 
flags; 

*p _ APP _METRICS; 

II Child apps observe this object. 
II App main window. 
II List of floating windows. 
II Root of child app window tree. 
II Resource file list. 
II Document resource file. 
II Reserved. 
II Flags. 

Descendants: You normally do not handle this message. 

msgAppDispatch 
Starts message dispatching. 

Takes nothing, returns STATUS. 

*define msgAppDispatch MakeMsg(clsApp, 13) 

Descendants: You normally do not handle this message. 

msgAppRename 
Renames a document. 

Takes P_STRING, returns STATUS. 

*define msgAppRename MakeMsg(clsApp, 14) 

After msgAppRenarne is sent to the document, the Application Framework sends msgAppSetNarne to 
change the document's window title. 

Descendants: You normally do not handle this message. Instead, you might want to handle 

msgAppSetN arne. 

msgAppSetN ame 
Specifies a document's displayed name (in its main window title). 

Takes P _STRING, returns STATUS. 

*define msgAppSetName MakeMsg(clsApp, 15) 

This message does not actually rename the document; it only sets the title of the document's main 
window. This message is sent to a document after it receives msgAppRenarne, which does rehame the 

document. 

Descendants: You can handle this message by changing or adding to the string passed in. The ancestor 
will take the new string and display it in the document's title. The ancestor must be called after your 
handler. 

msgAppGetName 
Passes back a document's name. 

Takes P _STRING, returns STATUS. 

*define msgAppGetName MakeMsg(clsApp, 16) 

The document passes back its name {not its main window's title}. Note that P _STRING must be 
naineBufLength long. 

Descendants: You normally do not handle this message. 



APP.H 89 
Messages 

msgAppDelete 
Deletes a document from the system. 

Takes nothing, returns STATUS. 

#define msgAppDelete MakeMsg(clsApp, 17) 

The document deletes its appWin from its embeddor and sends msgAppMgrDelete to the document's 
class. 

Descendants: You normally do not handle this message. 

stsAppRefused If metrics.flags.deletable is false. 

msgAppActivateChildren 
Activates a document's embedded documents. 

Takes nothing, returns STATUS. 

#define msgAppActivateChildren MakeMsg(clsApp, 18) 

The document first activates the embedded documents that are stored in subdirectories of metrics.dir by 
self sending msgAppActivateChild for each child. It then self sends 
msgAppActivateCorkMarginChildren to activate the embedded documents that appear in the cork 
margm. 

Descendants: You normally do not handle this message. 

msgAppActivateCorkMarginChildren 
Activates embedded documents that are in a document's cork margin. 

Takes nothing, returns STATUS. 

#define msgAppActivateCorkMarginChildren MakeMsg(clsApp, 96) 

The document self sends msgAppActivateChild for each embedded document in the cork margin. 

Descendants: You normally do not handle this message. 

msgAppActivateChild 
Instantiates and activates an embedded document. 

Takes P _APP _ACTNATE_CHILD, returns STATUS. 

#define msgAppActivateChild MakeMsg(clsApp, 19) 

typedef struct APP ACTIVATE CHILD 
P_STRING ppath; - II Path of child relative to self. 
APP uid; II out: Child app uid~ 

APP_ACTIVATE_CHILD, *P_APP_ACTIVATE_CHILD; 

This message sends msgAppMgrActivate to activate the specified embedded document. 

Descendants: You normally do not handle this message. 

stsAppRefused If the child appDir.attrs.flags.disabled is true (see appdir.h). 



90 PENPOINT API REFERENCE 

Comments 

Part 2 / PenPoint Application Framework 

msgAppAddFloatingWin 
Adds a window to a document's list of floating windows. 

Takes WIN, returns STATUS. 

tdefine msgAppAddFloatingWin MakeMsg(clsApp, 20) 

Descendants: You normally do not handle this message. 

msgAppRemoveFloatingWin 
Removes a window from a document's list of floating windows. 

Takes WIN, returns STATUS. 

tdefine msgAppRemoveFloatingWin MakeMsg(clsApp, 21) 

Descendants: You normally do not handle this message. 

msgAppFindFloatingWin 
Finds the floating window on a document's list of floating windows that matches the specified tag. 

Takes P _APP _FIND_FLOATING_WIN, returns STATUS. 

tdefine msgAppFindFloatingWin MakeMsg(clsApp, 22) 

typedef struct APP FIND FLOATING WIN { 
TAG tag; -II in: tag to find. 
OBJECT win; II out: matching window, or objNull if not found. 

APP_FIND_FLOATING_WIN, * P_AP P_F IND_FLOAT ING_WIN; 

Descendants: You normally do not handle this message. 

stsOK If the floating window is found 

stsN oMatch If the floating window cannot be found 

msgAppGetRoot 
Passes back a document's root document (which is typically the Notebook). 

Takes P _APP, returns STATUS. 

tdefine msgAppGetRoot MakeMsg(clsApp, 23) 

Descendants: You normally do not handle this message. 

msgAppSetParent 
Specifies a document's parent document. 

Takes APp, returns STATUS. 

tdefine msgAppSetParent MakeMsg(clsApp, 24) 

Descendants: You normally do not handle this message. 



Comments 

Comments 

msgAppSetHotMode 
Turns hot mode on or off for a document. 

Takes BOOLEAN, returns STATUS. 

idefine msgAppSetHotMode MakeMsg(clsApp, 25) 

Descendants: You normally do not handle this message. 

msgAppSetReadOnly 
Specifies a docuement's read only flag. 

Takes BOOLEAN, returns STATUS. 

idefine msgAppSetReadOnly MakeMsg(clsApp, 26) 

Descendants: You normally do not handle this message. 

msgAppSetDeletable 
Specifies a document's deletable flag. 

Takes BOOLEAN, returns STATUS. 

idefine msgAppSetDeletable MakeMsg(clsApp, 27) 

Descendants: You normally do not handle this message. 

msgAppSetMovable 
Specifies a document's movable flag. Not implemented. 

Takes BOOLEAN, returns STATUS. 

tdefine msgAppSetMovable MakeMsg(clsApp, 28) 

msgAppD irS etFlags 

msgAppSetCopyable 
Specifies a document's copyable flag. Not implemented. 

Takes BOOLEAN, returns STATUS. 

idefine msgAppSetCopyable 

msgAppDirSetFlags 

msgAppTerminate 
Terminates a document. 

Takes BOOLEAN, returns STATUS. 

idefine msgAppTerminate 

MakeMsg(clsApp, 29) 

MakeMsg(clsApp, 30) 

APP.H 91 
Messages 

If true is passed in, the document is given the chance to veto the termination. It does this by self sending 
msgFreeOK to see if it is okay to free the document. If it is okay, the document saves itself by self 

sending msgAppSave, and then frees itself by self sending msgDestroy. 

If false is passed in, the document is not given the chance to veto. The document terminates itself and all 

of its children unconditionally. 



92 PENPOINT API REFERENCE 
Part 2 I Pen Point Application Framework 

Descendants: You normally do not handle this message. This message is a request, not a command, to 
terminate. It may be sent ANY number of times while a document is active. If you need to free objects 
when a document is terminated, you should handle msgFree. Furthermore, if you want to add 
conditions under which a document should not be terminated, handle msgAppTerminateOK. 

msgAppOpenChildren 
Opens all of the documents on a document's metrics.children list. 

Takes BOOLEAN, returns STATUS. 

fdefine msgAppOpenChildren MakeMsg(clsApp, 31) 

If false is passed in, the document opens its child documents on screen by self sending 
msgAppOpenChild for each child. 

If true is passed in, it opens its child documents.for printing as embedded documents. 

Descendants: You normally do not handle this message. 

msgAppOpenChild 
Opens a specific child of a document. 

Takes APP _OPEN_CHILD, returns STATUS. 

fdefine msgAppOpenChild 

typedef struct APP_OPEN_CHILD 

MakeMsg(clsApp, 32) 

OBJECT app; II Document to open. 
U16 printing; II See printing flags. 

APP_OPEN_CHILD, *P_APP_OPEN_CHILD; 

Opens the specified child document by creating a window for it and then sending it msgAppOpen. 

Descendants: You normally do not handle this message. 

msgAppCloseChildren 
Closes a document's children. 

Takes nothing, returns STATUS. 

fdefine msgAppCloseChildren MakeMsg(clsApp, 89) 

The document self sends msgAppCloseChild for each of its child documents. 

Descendants: You normally do not handle this message. 

msgAppCloseChild 
Closes a specific child of a document. 

Takes APp, returns STATUS. 

fdefine msgAppCloseChild MakeMsg(clsApp, 90) 

The document closes the specified child document by sending it msgAppClose. 

Descendants: You normally do not handle this message. 



Comments 

Comments 

APP.H 93 
Messages 

msgAppGetEmbeddor 
Passes back a document's direct parent in the file system heirarchy. 

Takes P _APP, returns STATUS. 

tdefine msgAppGetEmbeddor MakeMsg(clsApp, 33) 

The document finds its direct parent in the filesystem and passes back a pointer to it in P _APP. If the 
parent is not active, P _APP is set to null. 

Descendants: You normally do not handle this message. 

msgApp1rerminate()1( 
Checks if a document is willing to terminate. 

Takes nothing, returns STATUS. 

tdefine msgAppTerminateOK MakeMsg(clsApp, 34) 

The document self sends this message as a result of msgAppTerminate(true). The document refuses if: 
(1) the document is opened, (2) the document is in hot mode, or (3) the document or any object in the 
document owns the selection. 

Descendants: You should handle this message if you have your own conditions under which to veto 
document termination. Typically you call the ancestor first. If the ancestor returns stsAppRefused, then 
you also return this value. However, if your ancestor returns stsOK, you check for your veto conditions 
and return either stsOK or stsAppRefused. 

stsOK If the document can be terminated. 

stsAppRefused If the document should not be terminated. 

msgAppGetEmbeddedWin 
Finds the specified clsEmbeddedWin object within a document. 

Takes P ~PP _GET_EMBEDDED _WIN, returns STATUS. 

tdefine msgAppGetEmbeddedWin MakeMsg(clsApp, 35) 

typedef struct APP_GET_EMBEDDED_WIN 
UUID uuid; II in: embedded win's uuid. 
OBJECT win; II out: embedded win. Set to objNull if no match. 

APP_GET_EMBEDDED_WIN, *P_APP_GET_EMBEDDED_WIN; 

The document recursively enumerates its children, searching for a clsEmbeddedWin object with a 
matching embeddedWmMetrics.uuid (see embedwin.h). 

Descendants: You should handle this message only if you are managing embedded windows that are not 
in the main window's window tree. Typically you call the ancestor first. If the ancestor passes back a 
non-null win, then you don't need to do anything. However, if the ancestor passes back objNull for the 
win, you should check for a clsEmbeddedWin with a matching uuid. 

msgAppGetApp Win 
Finds a clsApp Win object within a document. 

Takes P_APP_GET_APP_WIN, returns STATUS. 

tdefine msgAppGetAppWin MakeMsg(clsApp, 36) 



94 PENPOINT API REFERENCE 
Part 2 / PenPoint Application Framework 

typedef struct APP_GET_APP_WIN { 
UUID uuid; II in: app win's uuid. 
OBJECT win; II out: app win. Set to objNull if no match. 

APP_GET_APP_WIN, *P_APP_GET_APP_WIN; 

The document recursively enumerates its children, searching for a clsApp Win object with a matching 
app WinMetrics.app UUID (see appwin.h). 

Descendants: You should handle this message only if you are managing embedded windows that are not 
in the main window's window tree. Typically you call the ancestor first. If the ancestor passes back a 
non-null win, then you don't need to do anything. However, if the ancestor passes back objNull for the 

win, you should check for a clsApp Win with a matching uuid. 

msgAppOwnsSelection 
Tests if any object in a document owns the selection. 

Takes P_APP_OWNS_SELECTION, returns STATUS. 

tdefine msgAppOwnsSelection MakeMsg(clsApp, 37) 

typedef struct APP OWNS SELECTION { 
BOOLEAN checkChildren; II in: check child documents, too? 
BOOLEAN ownSelection; II out: true if doc(s) own the selection. 

APP_OWNS_SELECTION, *P_APP_OWNS_SELECTION; 

The document sets ownS election to true if the selection belongs to itself or one of its children (if 
checkChildren is true). 

Descendants: You normally do not handle this message. 

msgAppOpenTo 
Opens a document to a specific state. 

Takes U32, returns STATUS. 

tdefine msgAppOpenTo MakeMsg(clsApp, 38) 
II States to pass to msgAppOpenTo 
tdefine appOpenToNormal 0 II Open a doc in place. 
tdefine appOpenToFloating 1 II Open a doc to floating. 
tdefine appOpenToNextState 2 II Goto next state. Not Implemented. 

If appOpenToNormal is passed in, the document sends msgAppOpenChild to its parent to open itself. 
If appOpenT oFloating is passed in, the document self sends msgAppFloat to open itself. 

Descendants: You normally do not handle this message. 

msgAppCloseTo 
Closes a document to a specific state. 

Takes U32, returns STATUS. 

tdefine msgAppCloseTo MakeMsg(clsApp, 39) 
II States to pass to msgAppCloseTo 
tdefine appCloseToNormal 0 II Close to icon. 
tdefine appCloseToNextState 1 II Close to next state. 

Short description: you probably don't need to worry about this message. 

Long description: When the user taps on an embedded document icon, the document opens. If the user 
then double taps on the embedded document's title bar, the embedded document floats above its parent 
(allowing the user to resize it, without changing the layout of the parent). When the user closes the 



Comments 

Arguments 

APP.H 95 
Messages 

floating document, it "closes" to its next state (i.e., open, but not floating). Closing it again closes the 
embedded document down to its icon. 

When the user closes an embedded document, the Application Framework sends the document 
msgAppCloseTo, passing it appCloseToNextState. However, the Application Framework needs a 
mechanism to close an embedded document all the way down to its icon (e.g., when the user closes the 
parent document). In such cases, the Application Framework sends msgAppCloseTo to the document, 
passing appCloseT oNormal. 

Descendants: You normally do not handle this message. 

msgAppHide 
Hides an open document. 

Takes nothing, returns STATUS. 

#define msgAppHide MakeMsg(clsApp, 40) 

This message is used to get a document and all its associated windows off the screen as quickly as 
possible. It is usually followed (via ObjectPost) by msgAppClose, which is a heavier-weight message. 

The document (1) sends msgWinExtract to all windows in metrics.floatingWins, (2) sends 
msgWinExtract to metrics.mainWin, and (3) recursively sends msgAppHide to all documents on 

metrics.children. 

Descendants: You should handle this message if you have visible windows that are not children of the 
main window or in the floating window list. The ancestor should be called after your handler. 

msgAppSetFloatingRect 
Specifies a document's floating size and position. 

Takes P _RECT32, returns STATUS. 

#define msgAppSetFloatingRect MakeMsg(clsApp, 41) 

Descendants: You normally do not handle this message. 

msgAppSetOpenRect 
Specifies a document's open size and position. 

Takes P_RECT32, returns STATUS. 

#define msgAppSetOpenRect MakeMsg(clsApp, 42) 

Descendants: You normally do not handle this message. 

msgAppGetOptionSheet 
Passes back the requested option sheet of a document. 

Takes P _APP _GET_OPTION_SHEET, returns STATUS. 

#define msgAppGetOptionSheet MakeMsg(clsApp, 91) 

typedef struct APP GET OPTION SHEET { 
TAG sheetTag; - II in~ tag of option sheet. 
OBJECT sheet; II out: sheet uid. 

APP_GET_OPTION_SHEET, *P_APP_GET_OPTION_SHEET; 



96 PENPOINT API REFERENCE 
Part 2 / PenPoint Application Framework 

If the requested option sheet has already been created, the document just passes back its uid. 
Otherwise, it creates the sheet by self sending msgOptionCreateSheet. If the requested sheetTag is 
not tagAppDocOptSheet, the document self sends msgOptionAddCards to let descendants add option 
cards to the newly created sheet. 

Descendants: You normally do not handle this message. If you want to add other cards to the 
document's option sheets, you can handle msgAppAddCards. 

msgAppGetDocOptionSheetClient 
Passes back the client for a document's option sheets. 

Takes P _OBJECT, returns STATUS. 

#define msgAppGetDocOptionSheetClient MakeMsg(clsApp, 93) 

The document passes back its main window's client window. 

Descendants: You normally do not handle this message. 

msgAppAddCards 
Adds cards to the specified option sheet of a document. 

Takes P _OPTION_TAG, returns STATUS. 

#define msgAppAddCards MakeMsg(clsApp, 100) 

If the specified sheet is tagAppAboutOptSheet, the document adds the "About Document" and "About 
Application" option cards to the sheet. If the sheet is tagAppDocOptSheet, the document adds the 
"Controls," "Access" and "Comments" cards. If the sheet is tagAppPrintSetupOptSheet, the document 
adds the "Print Layout" card. 

Descendants: You tend not to handle this message. However, you can handle it if you want to add cards 
to any of the document's option sheets. 

msgAppShowOptionSheet 
Shows or hides a document's option sheet. 

Takes P_APP_SHOW_OPTION_SHEET, returns STATUS. 

#define msgAppShowOptionSheet MakeMsg(clsApp, 92) 

typedef struct APP SHOW OPTION SHEET { 
TAG sheetTag; II-In: Option sheet tag. 
TAG cardTag; II In: Option card tag to initially show, or 

II null to show the top card. 
BOOLEAN show; II In: true = show, false = hide. 
OBJECT sheet; II Out: option sheet. 

APP_SHOW_OPTION_SHEET, *P_APP_SHOW_OPTION_SHEET; 

The Application Framework sends this message to show (or hide) any of a document's option sheets. It 
is sent when, for example, the user picks any of the option cards from the SAMs or draws the check 
gesture on a document's title, over a selection, or over an embedded document icon. 

If show is true, the document self sends msgAppGetOptionSheet to get the requested option sheet. To 
display the sheet, the document sends msgOptionGetCards and msgOptionShowCardAndSheet to the 
sheet. 

If show is false, the document self sends msgAppFindFloatingWin and msgAppRemoveFloatingWin to 
find and then hide the requested option sheet. 

Descendants: You normally do not handle this message. 



Comments 

Arguments 

Comments 

Comments 

Comments 

msgAppApplyEmbeddeeProps 
Applies Embedded Printing option card values to first level embeddees. 

Takes OBJECT, returns STATUS. 

fdefine msgAppApplyEmbeddeeProps MakeMsg(clsApp, 98) 

Descendants: You normally do not handle this message. 

msgAppGetBorderMetrics 
Passes back a document's border metrics. 

Takes p ~pp _BORDER_METRICS, returns STATUS. 

fdefine msgAppGetBorderMetrics 
// Border styles 

MakeMsg(clsApp, 94) 

fdefine appBorderNone 0 
fdefine appBorderSingle 1 
fdefine appBorderDouble 2 
fdefine appBorderDashed 3 

typedef struct APP_BORDER_METRICS 
U16 controls 1; // Out: true/false. 
U16 titleLine 1; // Out: true/false. 
U16 menuLine 1; // Out: true/false. 
U16 corkMargin 1; // Out: true/false. 
U16 scrollMargins 1; // Out: true/false. 
U16 borderStyle 4; // Out: Border style. 
U16 reserved 7; 

APP_BORDER_METRICS, *P_APP_BORDER_METRICS; 

Descendants: You normally do not handle this message. 

msgAppSetControls 
Turns a document's controls on or off. 

Takes U32, returns STATUS. 

fdefine msgAppSetControls MakeMsg(clsApp, 47) 

APP.H 97 
Messages 

If appOff is passed in, the document turns its controls off. If appOn is passed in, the controls are turned 
on. If appToggle is passed in, the document will toggle the state of the controls. 

Descendants: You normally do not handle this message. 

msgAppSetPrintControls 
Turns a document's screen decorations off for printing. 

Takes BOOLEAN, returns STATUS. 

fdefine msgAppSetPrintControls MakeMsg(clsApp, 99) 

The document turns its controls off so that it can be printed. It leaves user-set borders on only if the 

docurilentis printing itself as an embedded document (pArgs = false). 

Descendants: You normally do not handle this message. 



98 PENPOINT API REFERENCE 
Part 2 / PenPoint Application Framework 

msgAppSetTideLine 
Turns a document's title line on or off. 

Takes U32, returns STATUS. 

fdefine msgAppSetTitleLine MakeMsg(clsApp, 44) 

If appOff is passed in, the document hides its title line. If appOn is passed in, the title line is displayed. 
If app Toggle is passed in, the document toggles whether the title line is displayed. 

Descendants: You normally do not handle this message. 

msgAppSetMenuLine 
Turns a document's menu bar on or off. 

Takes U32, returns STATUS. 

fdefine msgAppSetMenuLine MakeMsg(clsApp, 45) 

If appOff is passed in, the document hides its menu bar. If appOn is passed in, the menu bar is 

displayed. If app Toggle is passed in, the document toggles whether the menu bar is displayed. 

Descendants: You normally do not handle this message. 

msgAppSetCorkMargin 
Turns a document's cork margin on or off 

Takes U32, returns STATUS. 

fdefine msgAppSetCorkMargin MakeMsg(clsApp, 48) 

If appOff is passed in, the document hides its cork margin. If appOn is passed in, the cork margin is 

created (ifit doesn't exist) and displayed. If appToggle is passed in, the document toggles whether the' 
cork margin is displayed. 

Descendants: You normally do not handle this message. 

msgAppSetScrollBars 
Turns a document's scroll bars on or off. 

Takes U32, returns STATUS. 

fdefine msgAppSetScrollBars MakeMsg(clsApp, 46) 

If appOff is passed in, the document hides its scroll bars. If appOn is passed in, the scroll bars are 

displayed. If app Toggle is passed in, the document toggles whether the scroll bars are displayed. 

Descendants: You normally do not handle this message. 

msgAppSetBorderStyle 
Specifies the border style. 

Takes U32, returns STATUS. 

fdefine msgAppSetBorderStyle MakeMsg(clsApp, 95) 

The possible values for pArgs are listed above in msgAppGetBorderMetrics. 

Descendants: You normally do not handle this message. 



Comments 

Comments 

Return Value 

Comments 

APP.H 99 
Messages 

msgAppRevert 
Reverts to the filed copy of a document. 

Takes BOOLEAN, returns STATUS. 

#define msgAppRevert MakeMsg(clsApp, 49) 

The document reverts to its previously saved state. If true is passed in, the document displays a note, 
asking the user to confirm the action first. If false is passed in, the document just does the action. 

Descendants: If you do not support revert, you should handle this message by returning stsAppRefused. 
On the other hand, if you support revert but you manage your own data files or use memory mapped 
files, then it may be necessary to handle this message by appropriately undoing all data modifications 
since the last save. The ancestor should be called before your handler. 

msgAppIsPageLevel 
Asks a document if it shows up as a page in the Notebook (as opposed to being embedded). 

Takes nothing, returns STATUS. 

#define msgAppIsPageLevel MakeMsg(clsApp, 50) 

Descendants: You normally do not handle this message. 

stsOK If the document is page-level (i.e., its embeddor inherits from dsContainerApp or 

dsRootContainerApp) . 

stsNoMatch If the document is not page-level. 

msgAppProvideMain Win 
Asks a document to provide its main window. 

Takes P _OBJECT, returns STATUS. 

#define msgAppProvideMainWin MakeMsg(clsApp, 51) 

This message is sent during msgAppInit. If pArgs points to objNull, the document creates a default 
frame of type dsFrame and passes the frame's uid back in pArgs. 

Descendants: You should handle this message if you want to replace the default dsFrarne main window. 
In such cases, you tend not to call the ancestor. 

msgAppCreateClientWin 

msgAppCreateLink 
Creates a link from a document to another document. 

Takes P _APP _LINK, returns STATUS. 

#define msgAppCreateLink MakeMsg(clsApp, 52) 

typedef struct APP LINK { 
UUID appUUID; II UUID of the document that is linked to. 
U32 link; II Link handle. 

} APP_LINK, *P_APP_LINK; 

The uuid of the document to link to is passed in. The document passes back a link handle, which is 
used by msgAppGetLink to retrieve the document. The document stores the uuid in its 

appDocLinkFileN arne file. 

Descendants: You normally do not handle this message. 



100 PEN POINT API REFERENCE 

Messtlge 
ArgumenTs 

Message 
Arguments 

Part 2 / PenPoint Application Framework 

msgAppDeleteLink 
Deletes the specified link handle. 

Takes P _APP _LINK, returns STATUS. 

#define msgAppDeleteLink 

typedef struct APP_LINK { 

MakeMsg(clsApp, 53) 

UUID appUUID; II UUID of the document that is linked to. 
U32 link; II Link handle. 

APP_LINK, *P_APP_L1NKi 

Descendants: You normally do not handle this message. 

msgAppGetLink 
Passes back a document's UUID for the specified link handle. 

Takes P _APP _LINK, returns STATUS. 

#define msgAppGetLink MakeMsg(clsApp, 54) 

typedef struct APP_LINK { 
UUID appUUIDi II UUID of the document that is linked to. 
U32 link; II Link handle. 

APP_LINK, *P_APP_LINK; 

Descendants: You normally do not handle this message. 

Standard Application Menu Messages 

msgAppCreateMenuBar 
Creates the standard application menu bar. 

Takes P_OBJECT, returns STATUS. 

#define msgAppCreateMenuBar MakeMsg(clsApp, 55) 

Descendants: You should handle this message by creating the document's menu bar. If pArgs is non-null 
when the ancestor is called, clsApp will pre-pend the Document, Edit, and Option menus to the 
provided menu bar. So you should call the ancestor after you make the menu bar. After the ancestor 
returns, you can fix up the Document and Edit menus to remove any buttons that you don't support or 
to add any new buttons. 

See the earlier description "Enabling and Disabling SAMs" for more details. 

msgAppCreateClientWin 
Creates a document's client window. 

Takes P _OBJECT, returns STATUS. 

#define msgAppCreateClientWin MakeMsg(clsApp, 56) 

The document creates a default client window of class clsEmbeddedWin and passes back its uid. 

The Application Framework does not send this message by default. Instead, you should self se'nd it at 
the appropriate time (typically during msgApplnit, since the client window is usually stateful). 

Descendants: You should handle this message by creating your application- specific client window. In 
such cases, you tend not to call your ancestor. 



Comments 

Comments 

Comments 

Comments 

APP.H '10'1 

Standard Application Menu Messages 

msgAppSend 
Sends a document. 

Takes OBJECT, returns STATUS. 

fdefine rnsgAppSend MakeMsg (clsApp, 57) 

When the user taps on a button in the Send menu, the SAMs send this message to the document, 
passing in theSendManager. The document then self sends msgApplnvokeManager, passing on 
theSendManager. 

Descendants: You normally do not handle this message. 

msgAppPrint 
Prints a document. 

Takes OBJECT, returns STATUS. 

fdefine rnsgAppPrint MakeMsg(clsApp, 58) 

When the user issues the Print command (either by tapping on the Print button in the SAMs or by 
drawing the print gesture on the document's title line), the Application Framework sends this message to 
the document, passing it thePrintManager. The document then self sends msgApplnvokeManager, 
passing on thePrintManager. 

Descendants: You normally do not handle this message. 

msgAppPrintSetup 
Displays a document's print setup option sheet. 

Takes nothing, returns STATUS. 

fdefine rnsgAppPrintSetup MakeMsg(clsApp, 59) 

When the user taps on Print Setup, the SAMs send this message to the document. The document self 
sends msgAppOptionShowOptionSheet, passing it tagAppPrintSetupOptSheet. 

Descendants: You normally do not handle this message. 

msgApplmport 
Obsolete message. Not implemented. 

Takes nothing, returns STATUS. 

fdefine rnsgApplrnport 

msglmport 

msgAppExport 
Prepa~es to export a document as a file. 

Takes OBJECT, returns STATUS. 

fdefine rnsgAppExport 

MakeMsg(clsApp, 60) 

MakeMsg(clsApp, 61) 

The document self sends msgApplnvokeManager, passing on pArgs. 

Descendants: You normally do not handle this message. 



102 PENPOINT API REFERENCE 
Part 2 / PenPoint Application Framework 

msgAppAbout 
Displays a document's "About" option sheet. 

Takes nothing, returns SfATUS. 

fdefine msgAppAbout MakeMsg(clsApp, 62) 

When the user taps on About, the SAMs send this message to the document. The document self sends 
msgAppOptionShowSheet, passing it tagAppAboutOptSheet. 

Descendants: You normally do not handle this message. Instead, you should handle 
msgOptionAddCards by adding more cards to the About option sheet. Likewise, you should handle 
msgOptionProvideCard by modifying or adding specific controls to the standard About cards. 

msgAppHelp 
Shows help for the application. Not implemented - Reserved. 

Takes nothing, returns SfATUS. 

fdefine msgAppHelp MakeMsg(clsApp, 63) 

Descendants: You should not handle this message. Instead, you can provide help via resource files (see 
the Tic-Tac-Toe sample application for an example). 

msgAppUndo 
Undoes the previous operation on a document. 

Takes nothing, returns SfATUS. 

fdefine msgAppUndo MakeMsg(clsApp, 64) 

The document sends msgUndoCurrent to theUndoManager. 

Descendants: You normally do not handle this message. Instead, see UNDO.H for information on how to 
undo your application's commands. 

msgAppMoveSel 
Prepares to move a document's selection. 

Takes nothing, returns SfATUS. 

fdefine msgAppMoveSel MakeMsg(clsApp, 65) 

When the user issues the Move command (either by tapping on Move in the SAMs or by press-holding 
on a selection in the document), the Application Framework sends this message to the document. The 
document finds its selected object (by sending msgSelOwner to theSelectionManager) and then sends it 
msgSelBeginMove. 

Descendants: You normally do not handle this message. 

msgAppCopySel 
Prepares to copy the document's selection. 

Takes nothing, returns SfATUS. 

fdefine msgAppCopySel MakeMsg(clsApp, 66) 



Comments 

Comments 

Comments 

Comments 

Comments 

APP.H 103 
Standard Application Menu Messages 

When the user issues the Copy command (either by tapping on Copy in the SAMs or by 
tap-press-holding on a selection in the document), the Application Framework sends this message to the 
document. The document finds its selected object (by sending msgSelOwner to theSelectionManager) 
and then sends it msgSelBeginCopy. 

Descendants: You normally do not handle this message. 

msgAppDeleteSel 
Deletes a document's selection. 

Takes nothing, returns STATUS. 

tdefine msgAppDeleteSel MakeMsg(clsApp, 67) 

When the user issues the Delete command (either by tapping on Delete in the SAMs or by drawing the 
delete gesture, the Application Framework sends this message to the document. The document gets its 
selected object (by sending msgSelOwner to theSelectionManager) and then sends it msgSelDelete. 

Descendants: You normally do not handle this message. 

msgAppSelOptions 
Prepares to display the options for a document's selection. Obsolete. 

Takes nothing, returns STATUS. 

tdefine msgAppSelOptions MakeMsg(clsApp, 68) 

Descendants: You should not handle this message. 

msgAppSelectAll 
Selects all of the objects in a document. 

Takes nothing, returns STATUS. Category: descendant responsibility. 

tdefine msgAppSelectAll MakeMsg(clsApp, 69) 

When the user taps on Select All in the Standard Application Menu, the document self sends this 
message. 

clsApp does not do anything in its message handler for this message. 

Descendants: You should handle this message and select everything in the document. You tend not to 

call the ancestor. 

msgAppSearch 
Searches a document for a string. 

Takes OBJECT, returns STATUS. 

tdefine msgAppSearch MakeMsg(clsApp, 70) 

When the user issues the Find command (either by tapping on Find in SAMs or by drawing the find 
gesture on the document's title line), the Application Framework sends this message to the document, 
passing it theSeachManager. In response, the document self sends msgApplnvokeManager, passing on 
theSearchManager. 

Descendants: You normally do not handle this message. 



104 PENPOINT API REFERENCE 

Comments 

Part 2 / PenPoint Application Framework 

msgAppSpell 
Prepares to check a document's spelling. 

Takes OBJECT, returns STATUS. 

*define msgAppSpell MakeMsg(clsApp, 71) 

When the user issues the Spell command (either by tapping on Spell in SAMs or by drawing the spell 
gesture on the document's title line), the Application Framework sends this message to the document, 
passing it theSpellManager. In response, the document self sends msgApplnvokeManager, passing on 

theSpellManager. 

Descendants: You normally do not handle this message. 

msgApplnvokeManager 
Routes a message to a manager. 

Takes OBJECT, returns STATUS. 

*define msgAppInvokeManager MakeMsg(clsApp, 72) 

To route a standard application menu message to the object that provides the behavior, the document 
self sends msgApplnvokeManager. The argument to the message is the well-known UID of the manager 
that performs the operation. When the document receives msgApplnvokeManager, it sends 

msgAppExecute to the manager object. 

Descendants: You normally do not handle this message. 

msgAppExecute 
Sent to the manager to execute the manager's behavior on a document. 

Takes P _APP _EXECUTE, returns STATUS. 

*define msgAppExecute MakeMsg(clsApp, 73) 

typedef struct APP EXECUTE 
OBJECT app; - II Requesting document. 
OBJECT sel; II Selected object. 
U32 count; II Number of_uuids. 
UUID uuid[l]; II UUIDs of documents to operate on. 

APP_EXECUTE, *P_APP_EXECUTE; 

The document sends msgAppExecute to a manager when it receives msgApplnvoke manager. The 
manager performs some operation on the document or documents specified in the pArgs, such as 

printing, searching, or spell checking. 

Descendants: You normally do not handle this message. 

msgAppExecuteGesture 
Invokes the default gesture behavior for a document's tide line. 

Takes P_GWIN_GESTURE, returns STATUS. 

*define msgAppExecuteGesture MakeMsg(clsApp, 74) 

Descendants: You normally do not handle this message. However, if you want to handle a tide line 
gesture differently than the default, you should handle this message. You tend not to call the ancestor. 



APP.H 105 
Notification messages 

msgAppSetSaveOnTerminate 
Tells a document to save itself before terminating. 

Takes BOOLEAN, returns STATUS. 

#define msgAppSetSaveOnTerminate MakeMsg(clsApp, 75) 

If msgAppSetSaveOnTerminate has been sent before msgAppTerminate, the document will be sent 
msgAppSave even if it refuses to terminate. Normally, if a document vetos msgAppTerminate, it is not 
sent msgAppSave. 

Descendants: You normally do not handle this message. 

Notification messages 

Comments 

msgAppTerminateConditionChanged 
Try to terminate a document; sent when a terminate condition changed. 

Takes nothing, returns STATUS. 

#define msgAppTerminateConditionChanged MakeMsg(clsApp, 76) 

In response to this message, the document self sends msgAppTerminate(true). 

This message is self sent when a terminate condition has changed. For example, the document might 
have given up its selection and can now be terminated. 

Descendants: You normally do not handle this message. Instead, see msgAppTerminateOK. 

msgAppSelChanged 
Sent to a document when something in it becomes selected or deselected. 

Takes BOOLEAN, returns STATUS. 

#define msgAppSelChanged MakeMsg(clsApp, 77) 

pArgs is true when the document (or one of its embedded documents) gains the selection. pArgs is false 
when the selection leaves the document. 

The document self sends msgAppTerminateConditionChanged when it no longer has the selection. 

Descendants: You normally do not handle this message. 

msgAppOpened 
Sent to observers of a document when the document is opened. 

Takes APP _OPENED, returns STATUS. Category: observer notification. 

#define msgAppOpened MsgNoError(MakeMsg(clsApp, 78)) 

pArgs->child is the uid of the document that has been opened. 

msgAppClosed 
Sent to observers of a document when the document is closed. 

Takes APP _CLOSED, returns STATUS. Category: observer notification. 

#define msgAppClosed MsgNoError(MakeMsg(clsApp, 79)) 

pArgs->child is the uid of the document that has been closed. 



106 PENPOINT API REFERENCE 

Arguments 

Comments 

Arguments 

Part 2 / PenPoint Application Framework 

msgAppChildChanged 
Sent to observers of a document when a child document is opened or dosed. 

Takes P _APP _CHILD_CHANGED, returns STATUS. Category: observer notification. 

tdefine msgAppChildChanged MsgNoError(MakeMsg(clsApp, 80» 

typedef struct APP CHILD CHANGED ( 
OBJECT pa;ent; - II Parent of doc that changed. 
OBJECT child; II Doc that changed. 
UUID uuid; II UUID of doc that changed. 
MESSAGE change; II msgAppOpened or msgAppClosed. 
U32 reserved[4]i II Reserved. 

APP_CHI LD_CHANGED, *P_APP_CHILD_CHANGED, 
APP_OPENED, *P_APP_OPENED, 
APP_CLOSED, *P_APP_CLOSEDi 

This message is sent to observers of a document in response to msgAppOpened and msgAppClosed. 

msgAppFloated 
Sent to observers when a document is floated or un-floated. 

Takes P _APP _FLOATED, returns STATUS. Category: observer notification. 

tdefine msgAppFloated MsgNoError(MakeMsg(clsApp, 81» 

typedef struct APP_FLOATED ( 
OBJECT appi II Document that is floated or un-floated. 
BOOLEAN floatUp; II true=document is floated. 

APP_FLOATED, *P_APP_FLOATEDi 

msgAppCreated 
Sent to observers of clsApp when a document is created. 

Takes P _APP _CREATED, returns STATUS. Category: observer notification. 

tdefine msgAppCreated 

typedef struct APP_CREATED 
OBJECT rootContainer; 
UUID rootContainerUUID; 
UUID uuid; 
U32 reserved[4]; 

APP_CREATED, *P_APP_CREATED; 

msgAppDeleted 

MsgNoError (MakeMsg (clsApp, 82» 

II Root container uid. 
II Root container uuid. 
II Created doc's uuid. 
II Reserved. 

Sent to observers of clsApp when a document is deleted. 

Takes P _APP _DELETED, returns STATUS. Category: observer notification. 

tdefine msgAppDeleted 

typedef struct APP_DELETED 
OBJECT rootContainer; 
UUID rootContainerUUIDi 
OBJECT app; 
UUID uuid; 
U32 reserved[4]; 

APP_DELETED, *P_APP_DELETED; 

MsgNoError(MakeMsg(clsApp, 83» 

II Root container uid. 
II Root container uuid. 
II Deleted document. objNull if inactive. 
II Deleted document's uuid. 
II Reserved. 



Arguments 

Comments 

Messilge 
Arguments 

APP.H 107 
Notification messages 

msgAppMoved 
Sent to observers of dsApp when a document is moved. 

Takes P _APP _MOVED_COPIED, returns STATUS. Category: observer notification. 

tdefine msgAppMoved MsgNoError(MakeMsg(clsApp, 84)) 
// Move/copy values for moveCopyInfo argument 
tdefine appMovedCopiedInto 0 // doc moved/copied to this root container 
tdefine appMovedCopiedOutOf 1 // doc moved/copied from this root container 
tdefine appMovedCopiedWithin 2 // doc moved/copied within this root container 

typedef struct APP MOVED COPIED 
OBJECT rootContainer; // Root container uid. 
UUID rootContainerUUID; // Root container uuid. 
OBJECT app; // Moved/copied doc. objNull if inactive. 
UUID uuid; // Moved/copied document's uuid. 
U32 moveCopyInfo; // Type of move/copy. 
U32 reserved[4]; // Reserved. 

APP MOVED_COPIED, *P_APP_MOVED_COPIED; 

When a document is moved, the Application Framework notifies the observers of dsApp that a 

document has moved either a) within a root container, or b) out of one root container and into another. 

(It may help you to remember that root containers are typically notebooks.) 

To notify the observers, the Application Framework creates a list containing the document that is being 
moved and each of its embedded documents. If the document is being moved within the root container, 

then for each of the documents in the list, the Application Framework sends msgAppMoved to the 

. observers of clsApp, specifying appMovedCopiedWithin. If the document is being moved from one 

container to another, the Application Framework sends msgAppMoved twice for each document, once 

specifying appMovedCopiedOutOf and once specifying msgMovedCopiedInto. 

msgAppChanged 

msgAppCopied 
Sent to observers of dsApp when a document is copied. 

Takes P_APP_MOVED_COPIED, returns STATUS. Category: observer notification. 

tdefine msgAppCopied MsgNoError(MakeMsg(clsApp, 85)) 

typedef struct APP MOVED COPIED { 
OBJECT rootContainer; // Root container uid. 
UUID rootContainerUUID; // Root container uuid. 
OBJECT app; // Moved/copied doc. objNull if inactive. 
UUID uuid; // Moved/copied document's uuid. 
U32 moveCopyInfo; // Type of move/copy. 
U32 reserved[4]; // Reserved. 

APP MOVED_COPIED, *P_APP_MOVED_COPIED; 

When a document is copied, the Application Framework notifies the observers of dsApp that a 

document has been copied either a) within a root container, or b) from one root container into another. 

(It may help you to remember that root containers are typically notebooks.) 

To notify the observers, the Application Framework creates a list containing the document that is being 

copied and each of its embedded documents. If the document is being copied within the root container, 

then for each of the documents in the list, the Application Framework sends msgAppCopied to the 

observers of clsApp, specifying appMovedCopiedWithin. If the document is being copied from one 

container to another, the Application Framework sends msgAppCopied twice for each document, once 

specifying appMovedCopiedOutOf and once specifying msgMovedCopiedlnto. 

msgAppChanged 



108 PENPOINT API REFERENCE 

Comments 

Comments 

Part 2 / Pen Point Application Framework 

msgAppChanged 
Sent to observers of dsApp when a document has changed. 

Takes P_APP _CHANGED, returns STATUS. Category: observer notification. 

idefine msgAppChanged MsgNoError(MakeMsg(clsApp, 86)) 
II State of a doc's bookmark (which is interpreted in the NUl as a tab) 
idefine appBookmarkOn 1 
idefine appBookmarkOff 2 

typedef struct APP_CHANGED 
OBJECT rootContainer; 
UUID rootContainerUUID; 
UUID 
OBJECT 
U16 

U16 
U16 
U16 
U16 
U16 
U16 
U16 
U16 

U32 

uuid; 
uid; 
global Sequence 

name 
bookmark 
create 
deleted 
move 
copy 
reserved1 
moveCopylnfo; 

reserved2[4]; 
APP _CHANGED, *P _ APP _CHANGED; 

1; 

1; 
2; 
1; 
1; 
1; 
1; 
8; 

II In: Root container uid. 
II In: Root container uuid. 
II In: The uuid of the changed document. 
II In: objNull if changed doc was not active. 
II In: true if doc's container (i.e., 
II notebook) needs to be renumbered. 
II In: true if doc's name changed 
II In: new bookmark state, if changed 
II In: true if doc is new 
II In: true if doc was deleted 
II In: true if doc was moved 
II In: true if doc was copied 

II In: if doc was moved or copied, this 
II is set to move/copy value described 
II in msgAppMoved. 

This message is sent to observers of dsApp when a document has changed in some way (e.g., the 

document has moved, has a new name, has been created, and so on). 

When a document is moved or copied, this message is sent to observers of dsApp. However, it is not 

sent for all of the document's embedded documents (thereby making it different from msgAppMoved 
and msgAppCopied). 

msgAppMoved 

msgApplnsta11ed 
Sent to observers of dsApp when an application is installed. 

Takes CLASS, returns STATUS. Category: observer notification. 

idefine msgApplnstalled MsgNoError (MakeMsg (clsApp, 87)) 

pArgs is th.e class of the application just installed. 

msgAppDelnsta11ed 
Sent to observers of dsApp when an application is deinstalled. 

Takes CLASS, returns STATUS. Category: observer notification. 

idefine msgAppDelnstalled MsqNoError(MakeMsq(clsApp, 88)) 

pArgs is the class of the application just deinstalled. 



APP.H 109 
Public Functions 

Public Functions 

AppMain 
Creates a document instance and starts dispatching messages to it. 

Returns nothing. 

Fundi~n Pr~t~type STATUS EXPORTED AppMain (void) ; 

Comments All developers should call AppMain from their main routine whenever processCount is greater than o. 

AppMonitorMain 
Creates an app monitor instance and handles installing the application. 

Returns nothing. 

Fundi~n Pr~t~type STATUS EXPORTED AppMoni torMain (OBJECT, OBJECT); 

Comments All developers should call AppMonitorMain from their main routine when processCount is equal to o. 
You specify the well-known uid of your application class and the well-known uid of your app monitor 
class. If you do not have an app monitor class, simply specify objNull for the second parameter. 





APPDIR.H 

This file contains the API definition for clsAppDir. 

clsAppDir inherits from clsDirHandle. 

Provides management for document directories. 

"AppDir" stands for Application Directory Handle. 

Introduction 
Application directory nodes represent documents in the document hierarchy. Application directories are 
where documents store their resource files and any other files they use. Attributes on application 
directories specify useful information about each document. 

clsAppDir is used to manage the various file system attributes associated with a document in PenPoint. 
It includes definitions of these attributes and messages to manage them. clsAppDir also provides support 
for enumerating embedded documents via the filesystem. This is similar to the file system's FSReadDir 
facilities, but clsAppDir filters out all files and directories that are not documents. 

A document can find its application directory by self sending msgAppGetMetrics. The application 
directory's uid will be passed back in the dir field of the APP _METRICS structure. See app.h for more 
information. 

Application directories are created automatically for documents during AppInit time by the Application 
Framework. Application classes generally should never create or destroy application directories 
themselves. 

#ifndef APPDIR INCLUDED 
#define APPDIR_INCLUDED 
#ifndef APP_INCLUDED 
#include <app.h> 
#endif 

Common #defines and typedefs 

File System AHributes 
These attributes are stamped on every document directory. 

#define appAttrClass 
#define appAttrSequence 
#define appAttrNumChildren 
#define appAttrFlags 
#define appAttrBookmark 
#define appAttrAuthor 
#define appAttrComments 
#define appAttrClassName 
#define appAttrGlobalSequence 

FSMakeFix32Attr(clsAppDir, 1) 
FSMakeFix32Attr(clsAppDir, 4) 
FSMakeFix32Attr(clsAppDir, 3) 
FSMakeFix64Attr(clsAppDir, 6) 
FSMakeStrAttr(clsAppDir, 9) 
FSMakeStrAttr(clsAppDir, 10) 
FSMakeStrAttr(clsAppDir, 11) 
FSMakeStrAttr(clsAppDir, 12) 
FSMakeFix32Attr(clsAppDir, 4) 



112 PENPOINT API REFERENCE 
Part 2 I PenPoint Application Framework 

Application Directory Flags 
This structure defines the application directory flags. They are stamped on a document directory with 
appAttrFlags. This structure is used in the flags field of APP _DIR_ATTRS. 

typedef struct APP_DIR_FLAGS { 
U16 application 1; II true = this is an application. 
U16 newlnstance 1; II true = new app instance. 
U16 disabled 1; II true = app is disabled, don't activate. 
U16 bookmark 1; II true = app has a tab 
U16 readOnly 1; II True = app is read only. 
U16 deletable 1; II true = app can be deleted. 
U16 movable 1; II true = app can be moved. 
U16 copyable 1; II true = app can be copied. 
U16 reserved1 8; II Reserved. 
U16 reserved2 16; II Reserved. 
U16 reserved3 16; II Reserved. 
U16 reserved4 16; II Reserved. 

APP_DIR_FLAGS, *P_APP_DIR_FLAGS; 

Application Directory AHributes Structure 
. This· structure is used to specify and pass back the directory attributes in one chunk. 

• appClass The document's application class (sub-class of clsApp). 

• uuid The document's uuid. Can be used in msgNew to clsDirHandle or clsAppDir to open a 
handle on a document directory. 

• sequence The I-based position of a document within its embeddor. If the document is in a 
notebook, this is the document's position within its section. 

• numChildren The total number of embedded children. 

typedef structAPP_DIR_ATTRS { 
CLASS appClass; 
UUID uuid; 
U32 sequence; 
U32 numChildren; 
APP DIR FLAGS flags; 

APP_DIR_ATTRS, *P_APP_DIR_ATTRS; 

Messages 

msgNew 
Creates a new AppDir. 

II Application class. 
II Application uuid. 
II Local sequence number. 
II Number of child apps (recursive). 
II Flags. 

Takes P _FS_NEW, returns STATUS. Category: class message. 

See fs.h for the FS_NEW structure definition. 

clsAppDir has no method for msgNewDefaults. See fs.h for a description of clsDirHandle's handler for 
msgNewDefaults. 



Arguments 

Message 
Argument's 

Message 
Arguments 

APPDIR.H 113 
Messages 

msgAppDirGetAttrs 
Passes back a document's application directory attributes. 

Takes P _APP _DIR_GET_SET_ATTRS, returns STATUS. 

tdefine msgAppDirGetAttrs MakeMsg(clsAppDir, 1) 

typedef struct APP DIR GET SET ATTRS 
P_STRING - pP~thi- II-in: Path relative to target directory. 
APP DIR ATTRS attrs; II in/out: Application directory attributes. 

APP_DIR_GET_SET_ATTRS, *P_APP_DIR_GET_SET_ATTRS; 

If you are interested in only one of the attributes, use the individual msgAppDirGet ... messages 
described below. They're generally faster. 

msgAppDirSetAttrs 
Specifies a document's application directory attributes. 

Takes P _APP _DIR_GET_SET_ATTRS, returns STATUS. 

tdefine msgAppDirSetAttrs MakeMsg(clsAppDir, 2) 

typedef struct APP_DIR_GET_SET_ATTRS { 
P_STRING pPath; II in: Path relative to target directory. 
APP_DIR~TTRS attrs; II in/out: Application directory attributes. 

APP_DIR_GET_SET_ATTRS, *P_APP_DIR_GET_SET_ATTRS; 

If you are interested in only one of the attributes, use the individual msgAppDirSet ... messages 
described below. They're generally faster. 

msgAppDirGetFlags 
Passes back a document's application directory flags. 

Takes P _APP _DIR_GET_SET_FLAGS, returns STATUS. 

tdefine msgAppDirGetFlags MakeMsg(clsAppDir, 3) 

typedef struct APP DIR GET SET FLAGS 
P_STRING - pP~th;- II-in: Path relative to target directory. 
APP DIR FLAGS flags; II in/out: Application directory control flags. 

APP_DIR_GET_SET_FLAGS, *P~P_DIR_GET_SET_FLAGS; 

msgAppDirSetFlags 
Specifies a document's application directory flags. 

Takes P_APP_DIR_GET_SET_FLAGS, returns STATUS. 

tdefine msgAppDirSetFlags MakeMsg(clsAppDir, 4) 

typedef struct APP_DIR_GET_SET_FLAGS { 
P_STRING pPath; II in: Path relative to target directory. 
APP_DIR_FLAGS flags; II in/out: Application directory control flags. 

APP_DIR_GET_SET_FLAGS, *P_APP_DIR_GET_SET_FLAGS; 



114 PENPOINT API REFERENCE 

M0$Stlge 

At"~~PJmerds 

MeS$C1g0 

Arguments 

Part 2 I PenPoint Application Framework 

msgAppDirGetClass 
Passes back a document's application class. 

Takes P _APP _DIR_UPDATE_CLASS, returns STATUS. 

#define msgAppDirGetClass MakeMsg(clsAppDir, 5) 

typedef struct APP DIR UPDATE CLASS { 
P_STRING" ppath;- 17 in: Path relative to target directory. 
CLASS appClass; II in/out: Application directory class. 

APP_DIR_UPDATE_CLASS, *P_APP_DIR_UPDATE_CLASS; 

msgAppDirSetClass 
Specifies a document's application class. 

Takes P _APP _DIR_UPDATE_CLASS, returns STATUS. 

#define msgAppDirSetClass MakeMsg(clsAppDir, 6) 

typedef struct APP_DIR_UPDATE_CLASS { 
P_STRING pPath; II in: Path relative to target directory. 
CLASS appClass; II in/out: Application directory class. 

APP_DIR_UPDATE_CLASS, *P_APP_DIR_UPDATE_CLASSi 

msgAppDirGetUUID 
Passes back an application directory's uuid. 

Takes P _APP _DIICUPDATE_UUID, returns STATUS. 

#define msgAppDirGetUUID MakeMsg(clsAppDir, 7) 

typedef struct APP_DIR_UPDATE_UUID { 
P STRING pPath; II in: Path relative to target directory. 
UUID uuid; II in/out: Application directory uuid. 

APP_DIR_UPDATE_UUID, *P_APP_DIR_UPDATE_UUID; 

msgAppDirSetUUID 
Specifies an application directory's uuid. 

Takes P_APP_DIR_UPDATE_UUID, returns STATUS. 

#define msgAppDirSetUUID MakeMsg(clsAppDir, 8) 

typedef struct APP_DIR_UPDATE_UUlD { 
P_STRING pPath; II in: Path relative to target directory. 
UUID uuid; II in/out: Application directory uuid. 

APP_DIR_UPDATE_UUID, *P_APP_DlR_UPDATE_UUID; 

msgAppDirGetUID 
Passes back an application directory's uid. 

Takes P _APP _DIR_UPDATE_UID, returns STATUS. 

#define msgAppDirGetUID MakeMsg(clsAppDir, 9) 

typedef struct APP_DIR_UPDATE_UID { 
P STRING pPath; II in: Path relative to target directory. 
UlD uid; II in/out: App directory uid. 

APP_DIR_UPDATE_UID, *P_APP_DIR_UPDATE_UID; 



Message 
Arguments 

Arguments 

Comments 

Mess(lge 
Arguments 

Comments 

Arguments 

Message 
Arguments 

APPDIR.H 115 
Messages 

msgAppDirSetUID 
Specifies an application directory's uid. 

Takes P _APP _DIR_UPDATE_UID, returns SfATUS. 

fdefine msgAppDirSetUID MakeMsg(clsAppDir, 10) 

typedef struct APP DIR UPDATE UID { 
P STRING pPath;- // in: Path relative to target directory. 
UlD uid; // in/out: App directory uid. 

APP_DIR_UPDATE_UID, *P_APP_DIR_UPDATE_UID; 

msgAppDirGetSequence 
Passes back an application directory's sequence number. 

Takes P _APP _DIR_UPDATE_SEQ, returns SfATUS. 

fdefine msgAppDirGetSequence MakeMsg(clsAppDir, 11) 

typedef struct APP DIR UPDATE SEQUENCE { 
P STRING pPath;- /7 in: Path relative to target directory. 
U32 sequence; // in/out: Application directory sequence. 

APP_DIR_UPDATE_SEQUENCE, *P_APP_DIR_UPDATE_SEQUENCE; 

If the document is in a notebook, the sequence number is a I-based position within the section. 

msgAppDirSetSequence 
Specifies an application directory's sequence number. 

Takes P _APP _DIR_UPDATE_SEQUENCE, returns STATUS. 

fdefine msgAppDirSetSequence MakeMsg(clsAppDir, 12) 

typedef struct APP DIR UPDATE SEQUENCE { 
P STRING pPath;- /7 in: Path relative to target directory. 
U32 sequence; // in/out: Application directory sequence. 

} APP_DIR_UPDATE_SEQUENCE, *P_APP_DIR_UPDATE_SEQUENCE; 

If the document is in a notebook, the sequence number is a I-based position ~ithin the section. 

msgAppDirGetNumChildren 
Passes back the total number of embedded children of a document. 

Takes P _APP _DIR_UPDATE_NUM_CHILDREN, returns SfATUS. 

fdefine msgAppDirGetNumChildren MakeMsg(clsAppDir, 22) 

typedef struct APP DIR UPDATE NUM CHILDREN { 
P STRING pPath;- - /7 in: Path relative to target directory. 
U32 numChildren; // in/out: App directory attr numchildren. 

APP_DI R_UPDATE_NUM_CHI LDREN, *P_APP_D I R_UPDATE_NUM_CH I LDREN; 

msgAppDirSetNumChildren 
Specifies the total number of embedded children of a document. 

Takes P _APP _DIR_UPDATE_NUM_CHILDREN, returns SfATUS. 

fdefine msgAppDirSetNumChildren MakeMsg(clsAppDir, 23) 

typedef struct APP DIR UPDATE NUM CHILDREN { 
P STRING pPath;- - /7 in: Path relative to target directory. 
U32 numChildren; // in/out: App directory attr numchildren. 

APP_DI~UPDATE_NUM_CHILDREN, *P_APP_DIR_UPDATE_NUM_CHILDREN; 



116 PENPOINT API REFERENCE 
Part 2 I PenPoint Application Framework 

msgAppDirGetGlobalSequence 
Passes back an application directory's global sequence number. 

Takes P _APP _DIR_GET_GLOBAL_SEQUENCE, returns SfATUS. 

tdefine msgAppDirGetGlobalSequence MakeMsg(clsAppDir, 21) 

typedef struct APP DIR GET GLOBAL SEQUENCE { 
P_STRING pPath;- - 1/ in: Path relative to target directory. 
U32 globalSequence; II in/out: App directory global sequence. 

APP_DIR_GET_GLOBAL_SEQUENCE, *P_APP_DIR_GET_GLOBAL_SEQUENCE; 

The global sequence number is the I-based position of a document within its clsRootContainerApp 
embeddor (i.e., the document's page number in the notebook). 

msgAppDirGetBookmark 
Passes back an document's application tab. 

Takes P _APP _DIR_GET_BOOKMARK, returns STATUS. 

tdefine msgAppDirGetBookmark MakeMsg(clsAppDir, 13) 

typedef struct APP_DIR_GET_BOOKMARK 
P_STRING pPath; II in: Path relative to target directory. 
char label [nameBuf Length]; II out: tab label. 

APP_DIR_GET_BOOKMARK, *P_APP_DIR_GET_BOOKMARK; 

If the application directory has no tab (appDirFlags.bookmark==false), msgAppDirGetBookmark will 
return stsOK and pArgs->label will be unchanged. For this reason it is recommended that you drop a 
null byte into pArgs->label[O] before calling msgAppDirGetBookmark. Then, if the application 
directory has no tab, you will get back a null string. 

msgAppDirSetBookmark 
Specifies a document's application tab. 

Takes P _APP _DIR_SET_BOOKMARK, returns STATUS. 

tdefine msgAppDirSetBookmark MakeMsg(clsAppDir, 14) 

typedef struct APP_DIR_SET_BOOKMARK 
BOOLEAN on; II in: Turn bookmark on or off. 
P STRING pPath; II in: Path relative to target directory. 
char label [nameBuf Length]; II in/out: tab label. 

APP_DIR_SET_BOOKMARK, *P_APP_DIR_SET_BOOKMARK; 

clsAppDir sends msgAppChanged to observers of clsApp as a result of this message. See app.h for a 

description of ms~ppChanged. 

Iflabel[O] is NULL, clsAppDir uses the default label, which is the name of the document. 

msgAppDirGetNextlnit 
Initializes an APP _DIR_NEXT structure. 

Takes P _APP _DIR_NEXT, returns STATUS. 

tdefine msgAppDirGetNextInit MakeMsg(clsAppDir, 15) 

Send this message to an application directory to prepare it for an ensuing msgAppDirGetNext loop. 



Arguments 

Comments 

Message 
Arguments 

Comments 

Arguments 

msgAppDirGetNext 
Passes back the attributes of the next application directory. 

Takes P _APP _DI R_N EXT, returns STATUS. 

#define msgAppDirGetNext 

typedef struct APP_DIR_NEXT 
APP_DIR_ATTRS attrsi 
P_STRING pName; 
U32 fsFlags; 
P UNKNOWN pFirst; 
P UNKNOWN pNext; 
P UNKNOWN handle; 

APP_DIR_NEXT, *P_APP_DIR_NEXT; 

II out: 
II out: 
II out: 
II out: 
II out: 
II out: 

MakeMsg(clsAppDir, 16) 

attrs for next child. 
name of next child. 
fs flags for next child 
first app dir to examine 
next app dir to examine 
current app dir 

APPDIR.H 117 
Messages 

(see fs.h) 

Send this message to an application directory in a loop to get the appDirAttrs for each embedded 

document (not recursive), ordered by sequence number. 

You generally do not change the values in the APP _DIR_NEXT structure between calls to 

msgAppDirGetNext. Doing so jeopardizes the traversal of the embedded documents. 

msgAppDirReset 
Frees resources after a series of msgAppDirGetNext messages. 

Takes P _APP _DIR_NEXT, returns STATUS. 

#define msgAppDirReset MakeMsg(clsAppDir, 17) 

typedef struct APP_DIR_NEXT 
APP DIR ATTRS attrs; II out: attrs for next child. 
P STRING pName; II out: name of next child. 
U32 fsFlags; II out: fs flags for next child (see fs.h) 
P UNKNOWN pFirst; II out: first app dir to examine 
P UNKNOWN pNext; II out: next app dir to examine 
P UNKNOWN handlei II out: current app dir 

APP_DIR_NEXT, *P_APP_DIR_NEXT; 

You must send this message to the application directory after the msgAppDirGetNext loop has 
completed. Failing to do so can cause internally allocated memory not to be deallocated. 

msgAppDirSeqToName 
Passes back the name of the embedded document with a specified sequence number. 

Takes P _APP _DIR_SEQ...TO_NAME, returns STATUS. 

#define msgAppDirSeqToName MakeMsg(clsAppDir, 18) 

typedef struct APP DIR SEQ TO NAME 
U32 se~ence; - - II in: Sequence number. 
P STRING pNamei II out: Buffer for name. 

II Must be nameBufLength long. 
APP_DIR_SEQ_TO_NAME, *P_APP_DIR_SEQ_TO_NAME; 

msgAppDirGetDirectNumChildren 
Passes back the number of directly embedded documents (not recursive). 

Takes P_U32, returns STATUS. 

#define msgAppDirGetDirectNumChildren MakeMsg(clsAppDir, 19) 



"8 PENPOINT API REFERENCE 
Part 2 I Pen Point Application Framework 

msgAppDirGetTotalNumChildren 
Passes back the total number of embedded documents (recursive). 

Takes P _U32, returns STATUS. 

#define msgAppDirGetTotalNumChildren MakeMsg(clsAppDir, 20) 



APPMGR.H 

This file contains the API definition for clsAppMgr. 

clsAppMgr inherits from clsClass. 

Provides support for application classes and document management. 

"AppMgr" stands for Application Manager. 

Introduction 
When you create a new application class (i.e., install an application), rather than sending msgNew to 
clsClass you send msgNew to clsAppMgr. This allows you to specify properties of the application class, 
and also to specify in advance some default properties of the documents (i.e., instances) of the 
application class. 

There is one instance of clsAppMgr for each installed application class. This object is given the 
well-known uid of the application class. The application manager class implements document 
management messages and stores information about the installed application class in its instance data. 

#ifndef APPMGR_INCLUDED 
#define APPMGR_INCLUDED 
#include <fs.h> 
#include <geo.h> 

Common #defines and typedefs 
typedef OBJECT APPMGR, *P_APPMGRi 

AppMgr Flags 
Various settings for the installed application class. 

stationery: If true, an instance of the application will be placed in the Stationery Notebook when the 
application is installed. The instance will have default parameters. You can also create customized 
stationery instances using the STATNRY subdirectory. See appmon.h for more details. 

accessory: If true, an instance of the application will be placed in the Accessories Palette. The instance 
will have default parameters. You can also create customized accessories instances using the ACESSRY 
subdirectory. See appmon.h for more details. 

hotMode: If true, instances of the application are created in hot mode by default. Note that you can 
change a document's hot mode flag at msglnit time (or at any other time) using msgAppSetHotMode. 
See app.h for more details. 

allowEmbedding: If true, instances of the application allow child applications to be embedded within 
them. This parameter cannot be modified on a per-document basis. 

confirmDelete: If true, PenPoint will ask for user confirmation before deleting any instance of the 
application. This parameter cannot be modified on a per-document basis. 

deinstallable: If false, users will be prevented from deinstalling the application class. 



120 PENPOINT API REFERENCE 
Part 2 I PenPoint Application Framework 

systemApp: If true, users will not see the application on the list of choices for importing documents. 

lowMemoryApp: If false, users will be prevented from activating instances of the application when the 
system is low on memory. 

fullEnvironment: If true, instance 0 of the application will have a full environment, including a 

resource list and floating window list. If false, these two items are destroyed, saving memory. In general, 
if your application does no processing in instance 0 (i.e., it simply calls AppMonitorMainO), you should 
set fullEnvironment to false to save unneeded memory. 

typedef struct APP MGR FLAGS 
U16 stationery 1; 
U16 accessory 1; 
U16 hotMode 1; 
U16 allowEmbedding 1; 
U16 confirmDelete 1; 
U16 deinstallable 1; 
U16 systemApp 1; 
U16 lowMemoryApp 1; 
U16 fullEnvironment 1; 
U16 reserved1 7; 
U16 reserved2 16; 

APP _ MGR _FLAGS, *P_APP_MGR_FLAGS; 

",. AppMgr Metrics and NEW Structure 

II Put in stationery notebook. 
II Put in accessory palette. 
II Create docs in hot mode. 
II Allow child embedded apps. 
II Confirm document deletes. 
II App class deinstallable. 
II Disable imports into this app. 
II Allow activation under low memory. 
II Initialize instance 0 environment. 
II Reserved. 
II Reserved. 

Public instance data for an installed application class. Also the new structure for creating a new installed 
application class. 

typedef struct APP MGR METRICS { 
II All fields are passed back from msgAppMgrGetMetrics. 
II For msgNew: in=specified, out=passed back, 

diri 
na=not applicable (don't care). 

OBJECT 
OBJECT 
OBJECT 
OBJECT 
OBJECT 
OBJECT 
RECT32 

char 
char 
char 
char 

appMonitori 
resFilei 
iconBitmapi 
smalllconBitmapi 
appWinClassi 
defaultRecti 

name[nameBufLength]i 
version[nameBufLength]i 
company[nameBufLength]i 
defaultDocName[nameBufLength]i 

P STRING copyrighti 
OS_PROG_HANDLE programHandlei 
U32 reserved[4]i 
APP MGR FLAGS flagsi 

APP MGR_METRICS, *P_APP_MGR_METRICS, 
APP_MGR_NEW_ONLY, *P_APP_MGR_NEW_ONLYi 

msgNew 
Install a new application class. 

II na: App monitor dir. 
II na: App monitor object. 
II na: App res file. 
II na: Icon bitmap. 
II na: Small icon bitmap. 
II in: always clsAppWin. 
II in: Default rectangle 
I I (in points) . 
II na: Application name. 
II na: Version. 
II in: Company name. 
II in/out: Default 
II document name. 
II in: Copyright notice. 
II out: Program handle. 
II na: Reserved. 
II in: Described above. 

Takes P _APP _MGR_NEW, returns STATUS. Category: class message. 

*define appMgrNewFields 
classNewFields 
APP_MGR_NEW_ONLY 

\ 
\ 
appMgri 



Ar£!uments 

MO$SCi£!e 
Arguments 

APPMGR.H 121 
Common #defines and typedefs 

typedef struct APP_MGR_NEW { 
appMgrNewFields 

} APP_MGR_NEW, *P_APP_MGR_NEW; 

The fields you commonly set are: 

pArgs->object.uid your application class's uid 

pArgs->cls.pMsg your application class's method table 

pArgs->cls.ancestor your application class's ancestor (usually clsApp) 

pArgs->cls.size size of a document's instance data 

pArgs->cls.newArgsSize size of the _NEW struct for the app class 

pArgs->appMgr.defaultRect rectangle to open doc to when floating 

pArgs->appMgr.company your company's name 

pArgs->appMgr.defaultDocName name of new documents of this application 

pArgs->appMgr.copyright copyright notice 

pArgs->appMgr.flags (see description of flags above) 

clsAppMgr objects cannot be locked, so clsAppMgr forces pArgs->object.key to o. 

msgNewDefaults 
Initializes APP _MGR_NEW structure to default values. 

Takes P _APP _MGR_NEW, returns STATUS. Category: class message. 

typedef struct APP_MGR_NEW { 
appMgrNewFields 

} APP_MGR_NEW, *P_APP~GR_NEW; 

Zeroes out pArgs->appMgr and sets 

pArgs->object.cap 1= objCapCall objCapSend 1 objCapScavenge; 

pArgs->appMgr.flags.stationery = true; 
pArgs->appMgr.flags.accessory = false; 
pArgs->appMgr.flags.allowEmbedding = true; 
pArgs->appMgr.flags.confirmDelete = true; 
pArgs->appMgr.flags.deinstallable = true; 
pArgs->appMgr. flags. systernApp false; 
pArgs->appMgr.flags.hotMode false; 
pArgs->appMgr.appWinClass clsAppWin; 

// Default rect: 300 x 300 points, centered in theRootWindow 
WIN_METRICS wm; 
ObjCallRet(rnsgWinGetMetrics, theRootWindow, &wm, s); 
pArgs->appMgr.defaultRect.size.w 300; 
pArgs->appMgr.defaultRect.size.h 300; 
pArgs->appMgr.defaultRect.origin.x = (wm.bounds.size.w/2) -

(pArgs->appMgr.defaultRect.size.w/2); 
pArgs->appMgr.defaultRect.origin.y = (wm.bounds.size.h/2) -

(pArgs->appMgr.defaultRect.size.h/2); 



122 PEN POINT API REFERENCE 

Mes$t1~e 

Ar;~p,Hnerlt$ 

Part 2 / PenPoint Application Framework 

msgAppMgrGetMetrics 
Passes back the AppMgr metrics. 

Takes P _APP _MGR_METRICS, returns STATUS. Category: class message. 

#define msgAppMgrGetMetrics MakeMsg(clsAppMgr, 1) 

typedef struct APP MGR METRICS { 
II All fields are passed back from msgAppMgrGetMetrics. 
II For msgNew: in=specified, out=passed back, 

dir; 
na=not applicable (don't care) . 

OBJECT 
OBJECT 
OBJECT 
OBJECT 
OBJECT 
OBJECT 
RECT32 

char 
char 
char 
char 

P_STRING 
OS PROG HANDLE 
U32 
APP MGR FLAGS 

APP_MGR_METRICS, 

appMonitor; 
resFile; 
iconBitmap; 
smalllconBitmap; 
appWinClass; 
defaultRect; 

name [nameBuf Length]; 
version [nameBuf Length]; 
company [nameBuf Length]; 
defaultDocName[nameBufLength]; 

copyright; 
programHandle; 
reserved [4] ; 
flags; 

*P_APP_MGR_METRICS, 

msgAppMgrCreate 
Creates a directory entry for a new document. 

Takes P _APP _MGR_CREATE, returns STATUS. 

II na: App monitor dir. 
II na: App monitor object. 
II na: App res file. 
II na: Icon bitmap. 
II na: Small icon bitmap. 
II in: always clsAppWin. 
II in: Default rectangle 
I I (in points) . 
II na: Application name. 
II na: Version. 
II in: Company name. 
II in/out: Default 
II document name. 
II in: Copyright notice. 
II out: Program handle. 
II na: Reserved. 
II in: Described above. 

#define msgAppMgrCreate MakeMsg(clsAppMgr, 2) 

typedef struct APP_MGR_CREATE 
FS LOCATOR locator; II Parent doc. uid must be of clsAppDir. 
P STRING pName; II in/out: Name of new app. 
U32 sequence; II Sequence of new app in parent app. 
BOOLEAN renumber; II true=update global sequence is. 
U32 reserved[2]; II reserved. 

APP_MGR_CREATE, *P_APP_MGR_CREATE; 

This message transitions a document from the Non-Existent state to the Created state. 

clsAppMgr creates a new file system directory entry for the new document, using the name im pName. 
clsAppMgr also stamps the new directory with the application's class. 

If pName is pNull, clsAppMgr creates a unique name, based on the application name. If pName is not 
pNull, it points to a client-allocated buffer that must be nameBufLength bytes long. 

After msgAppMgrCreate, the document will appear in the appropriate table of contents or icon 
window. But the application instance itself will not be created until msgAppMgrActivate, which 
transitions the document from the Created state to the Activated state. 

stsFSNodeNotFound Invalid pArgs->locator 



Comments 

Arguments 

Comments 

APPMGR.H 123 
Common #defines and typedefs 

msgAppMgrActivate 
Activates a document. 

Takes P _APP _MGR_ACTIVATE, returns STATUS. 

#define msgAppMgrActivate 

typedef struct APP MGR ACTIVATE 

MakeMsg(clsAppMgr, 3) 

OBJECT wi~Dev7 II Window device to activate app on. 
FS LOCATOR locator; II Location of doc to activate. 
OBJECT parent; II Parent doc uid. 
OBJECT uid; II out: activated doc uid. 

APP_MGR_ACTIVATE, *P_APP_MGR ACTIVATE; 
#define stsAppMgrLowMemNoActivate MakeStatus(clsAppMgr, 3) 

This message transitions a document from the Created or Dormant state to the Activated state. 

clsAppMgr creates a new process for the document, and a new instance of the application class in the 
new process. The Application Framework will then send the new application instance msgApplnit if the 
document was in the Created state, or msgAppRestore if the document was in the Dormant state. 

stsAppMgrLowMemNoActivate Document could not be activated due to low memory conditions. 

stsFSNodeNotFound Invalid pArgs->locator. 

msgAppMgrMove 
Moves a document to a new location. 

#define msgAppMgrMove MakeMsg(clsAppMgr, 4) 

typedef struct APP MGR MOVE COpy STYLE 
U16 showConfirm - - 1;- II show confirmation UI 
U16 showProgress 1; II show progress ur 
U16 reserved 14; II reserved. 
U16 reserved2 16; II reserved. 

APP_MGR_MOVE_COPY_STYLE, *P_APP_MGR_MOVE_COPY_STYLE; 
typedef struct APP_MGR_MOVE_COPY { 

FS LOCATOR locator; II Source document location. 
OBJECT source; II Source object. 
OBJECT dest; II Destination object. 
XY32 xy; II x,y location in dest object. 
CHAR name[nameBufLength];11 in:out New doc name; 
BOOLEAN renumber; II true=update global sequence is. 
APP_MGR_MOVE_COPY_STYLE style; II Move/copy style. 
OBJECT appWin; II out: move/copied appwin. 

APP_MGR_MOVE_COPY, *P_APP_MGR_MOVE_COPY; 

clsAppMgr will display the appropriate VI to show the progress of any time-consuming moves. 

If the move fails due to low memory, user cancellation, etc., msgAppMgrMove will nevertheless return a 
value >= stsOK. The user will have been notified of the condition via standard error messaging facilities. 

msgAppMgrCopy 
Copies a document to a new location. 

Takes P _APP _MGR_MOVE_COPY, returns STATUS. 

#define msgAppMgrCopy MakeMsg(clsAppMgr, 5) 



'24 PENPOINTAPI REFERENCE 

Message 
ArS1umenrs 

MessoS1e 
Ar-guments 

Part 2 / PenPoint Application Framework 

typedef struct APP_MGR_MOVE_COPY ( 
FS_LOCATOR locator; II Source document location. 
OBJECT source; II Source object. 
OBJECT dest; II Destination object. 
XY32 xy; II x,y location in dest object. 
CHAR name[nameBufLength];11 in:out New doc name; 
BOOLEAN renumber; II true=update global sequence *s. 
APP_MGR_MOVE_COPY_STYLE style; II Move/copy style. 
OBJECT appWin; II out: move/copied appwin. 

APP_MGR_MOVE_COPY, *P_APP_MGR_MOVE_COPY; 

dsAppMgr will display the appropriate UI to show the progress of any time-consuming copies. 

If the copy fails due to low memory, user cancellation, etc., msgAppMgrCopy will nevertheless return a 
value >= stsOK. The user will have been notified of the condition via standard error messaging facilities. 

msgAppMgrFSMove 
Low-level move message used internally by msgAppMgrMove. 

Takes P _APP _MGR_FS_MOVE_COPY, returns STATUS. Category: internal use only. 

*define msgAppMgrFSMove MakeMsg(clsAppMgr, 17) 

typedef struct APP_MGR_FS_MOVE_COPY 
FS LOCATOR source; II Source doc location. 
FS LOCATOR dest; II Location of new parent doc. 
U32 sequence; II Sequence of new doc in parent doc. 
CHAR name[nameBufLength];11 in/out: Name of new doc. 
U32 reserved[2]; II reserved. 

APP_MGR_FS_MOVE_COPY, *P_APP_MGR_FS_MOVE_COPY; 

msgAppMgrFSCopy 
Low-level copy message used internally by msgAppMgrCopy. 

Takes P _APP _MGR_FS_MOVE_COPY, returns STATUS. Category: internal use only. 

*define msgAppMgrFSCopy MakeMsg(clsAppMgr, 18) 

typedef struct APP_MGR_FS_MOVE_COPY 
FS LOCATOR source; II Source doc location. 
FS LOCATOR dest; II Location of new parent doc. 
U32 sequence; II Sequence of new doc in parent doc. 
CHAR name[nameBufLength];11 in/out: Name of new doc. 
U32 reserved[2]; II reserved. 

APP MGR FS MOVE_COPY, *P_APP_MGR_FS_MOVE_COPY; 

msgAppMgrDelete 
Deletes a document. 

Takes P _APP _MGR_DELETE, returns STATUS. 

*define msgAppMgrDelete 

typedef struct APP_MGR_DELETE 

MakeMsg(clsAppMgr, 6) 

FS_LOCATOR locator; II Document to delete. 
BOOLEAN renumber; II true=update global sequence *s. 
U32 reserved[2]; II reserved. 

APP_MGR_DELETE, *P_APP_MGR_DELETE; 

This message transitions a document from the Created or Dormant state to the Non-Existent state. The 
document is deleted along with all of its directory nodes, embedded documents, document processes, 
and so on. 



Arguments 

APPMGR.H '125 
Common #defines and typedefs 

msgAppMgrRename 
Renames a document. 

Takes P _APP _MGR_RENAME, returns STATUS. 

#define msgAppMgrRename MakeMsg(clsAppMgr, 7) 

typedef struct APP_MGR_RENAME 
FS_LOCATOR locator; II Location of app to rename. 
P STRING pName; II in/out: New app name. 
U32 reserved[2]; II reserved. 

APP _ MGR _RENAME, *P _ APP _ MGR _RENAME; 

pName must point to a buffer nameBufLength long. 

stsAppBadName Invalid new name. 

stsAppDuplicateName Name already in use. 

msgAppMgrShutdown 
Unconditionally shuts down an application instance and all children. 

Takes P_FS_LOCATOR, returns STATUS. 

#define msgAppMgrShutdown MakeMsg(clsAppMgr, 8) 

This message transitions a document from the Activated or Opened state to the Dormant state. The 
document is not given the opportunity to veto the shutdown. The document is sent msgAppSave before 
the shutdown, so it can file its data. 

msgAppMgrGetRoot 
Passes back the root application (clsRootContainerApp) of a tree of applications. 

Takes P_APP_MGR_GET_ROOT, returns STATUS. 

#define msgAppMgrGetRoot 

typedef struct APP_MGR_GET_ROOT 
FS LOCATOR locator; 
char path [fsPathBuf Length]; 
UUID uuid; 
OBJECT app; 
U32 reserved[2]; 

APP_MGR_GET_ROOT, *P_APP_MGR_GET_ROOT; 

msgAppMgrSetlconBitmap 
Specifies the large application icon bitmap. 

Takes OBJECT, returns STATUS. 

#define msgAppMgrSetIconBitmap 

msgAppMgrSetSmalllconBitmap 
Specifies the small application icon bitmap. 

Takes OBJECT, returns STATUS. 

#define msgAppMgrSetSmallIconBitmap 

MakeMsg(clsAppMgr, 9) 

II Location of app. 
II out: Path to root. 
II out: Root uuidi 
II out: Root app. objNull if inactive. 
II reserved. 

MakeMsg(clsAppMgr, 10) 

MakeMsg(clsAppMgr, 11) 



126 PENPOINT API REFERENCE 
Part 2 I Pen Point Application Framework 

msgAppMgrRevert 
Reverts a document to its most recently filed copy. 

Takes P _FS_LOCATOR, returns STATUS. 

#define msgAppMgrRevert 

msgAppMgrRenumber 
Renumbers an application heirarchy. 

Takes P_FS_LOCATOR, returns STATUS. 

#define msgAppMgrRenumber 

MakeMsg(clsAppMgr, 12) 

MakeMsg(clsAppMgr, 13) 

The FS_LOCA TOR must be a locator for a clsRootContainerApp. 

msgAppMgrDumpSubtree 
Dumps the attributes of a subtree of documents. 

Takes P _FS_LOCA TOR, returns STATUS. 

#define msgAppMgrDumpSubtree MakeMsg(clsAppMgr, 14) 

The information is output to the debug window or device. The dumped fields for each node are: 

• document name 

• UUID (low 32 bits followed by high 32 bits) 

• old UUID (low 32 bits followed by high 32 bits) 

• application class 

• number of children 

• sequence number 

msgAppMgrGetResList 
Creates a resource list, given an application UUID. 

Takes P_APP_MGR_GET_RES_LlST, returns STATUS. 

#define msgAppMgrGetResList MakeMsg(clsAppMgr, 15) 

typedef struct APP MGR GET RES LIST { 
UUID appuuID; - II-App uuid. 
OBJECT resList; II in/out: resource file list. 

APP_MGR_GET_RES_LIST, *P_APP_MGR_GET_RES_LIST; 

The resource list will contain the document resource file, the application resource file, the preference 
resource file, and the system resource file. resList should be set to objNull or a well-known uid. 



APPMON.H 

This file contains the API definition for clsAppMonitor. 

clsAppMonitor inherits from clsApp. 

Provides the standard behavior for an application's monitor object. 

You create an application monitor when you call AppMonitorMain from your main routine, when 
processCount is zero. An application monitor drives application installation and helps with 
deinstallation. It also controls displaying global application options, maintaining global state, and 
importing files. 

You should subclass clsAppMonitor if your application needs to do a more sophisticated installation 
(such as installing shared dictionaries or data files), to support file import, to set and save global 
application configurations, and to provide file converters. See the section below on Subclassing. 

clsAppMonitor's Lifecycle 
Every application has a single instance of its application monitor class alive as long as the application is 
installed. The app monitor object is owned by the application's process Count 0 process. Clients can get 
the uid of the app monitor object by sending msgAppMgrGetMetrics to an application's class. 

clsAppMonitor is a descendant of clsApp. It makes use of the standard Application Framework lifecycle 
messages to perform some of its functions: 

msgApplnit Install the application. 

msgAppRestore Reinitialize the application after a warm-boot. 

msgAppOpenTo Display global application option sheet. 

msgAppCloseTo Take down global application option sheet. 

Note: msgAppTerminate must *never* be sent directly to the app monitor. Use msgAMTerminateOK 
and msgAMTerminate instead. 

Application Installation 
Application installation is performed as follows: 

1. Somebody sends msgIMlnstall to thelnsta11edApps. thelnstalledApps creates an application 
directory in the selected volume under \penpoint\sys\app, copies the application's resource file into 
the application directory, and installs the application's code. See appimgr.h for details. 

2. When the code is installed, the operating system creates the application's first process (process Count 
= 0) and begins execution of the mainO routine. The application installs its classes and calls 
AppMonitorMainO. AppMonitorMain never returns; it creates the app monitor object and goes 
into an object dispatch loop (see clsmgr.h). 

3. The Application Framework sends msgApplnit to the app monitor. This initiates the app monitor's 
installation sequence. 



128 PENPOINT API REFERENCE 
Part 2 I Pen Point Application Framework 

4. The app monitor self sends msgAMLoadlnitDll. This causes an optional initialization .dll to be run 
and then be unloaded. 

5. The app monitor self sends msgAMPopupOptions. If a descendant wants to pop up the app 
monitor global option sheet, it must handle this message and set pArgs to true, then pass it on to its 
ancestor. This will cause the option sheet protocol (msgOptionAddCards, etc) to be Sent to the app 
monitor. 

6. The app monitor self sends msgAMLoadMisc. This causes any files that the application has in the 
MISC directory to be copied into the app directory in the selected volume. 

7. The app monitor self sends msgLoadAuxNotebooks, which causes msgLoadStationery and 
msgLoadHelp to be sent to self. msgLoadStationery causes all the stationery and accessory 
templates that do not have an anmAttrNoLoad attribute on them to be loaded into the machine. 
Stationery is stored in the STATNRY directory; Accessories are stored in the ACESSRY directory. 
msgLoadHelp causes all Help Notebook documents and templates that do not have the 
anmAttrNoLoad attribute set to be loaded int~ the Help Notebook. 

8. The app monitor self sends msgAMLoadFormatConverters and msgAMLoadOptionalDlls. These 
messages are currently not implemented by clsAppMonitor; descendants can deal with them if 
desired. There might be default superclass behavior in the future. 

Stationery, Accessory, and Help Documents 
Stationery and Accessory documents can either be saved document instances (typically copied out to a 
distribution disk with the Connections Notebook), or plain directories containing files that the 
application knows about. 

Help documents can be directories containing ASCII or RTF files, or PenPoint documents. 

These items must be located in the application's installation directory in subdirectories called 
STATNRY, ACCESSRY, and HELP. 

Subclassing clsAppMonitor 
The app monitor is an excellent place to add global application control and syncronization functions, 
since it is always around and easily accessable. For instance, if an application wants its documents to 
access some application-specific shared data (such as a list of worldwide telephone country codes), the 
app monitor for the application could manage this data and provide an API to access it. 

Applications can have a global application option sheet automatically displayed when the application is 
installed by. handling msgAMPopupOptions. A special resource is written into the application's resource 
file after this occurs, inhibiting subsequent popups if the resource file is copied to the application's 
installation directory. clsAppMon does not provide any default cards; you must provide at least one if 
you handle msgAMPopupOptions. 

If you display a user interface from your app monitor you will probably have to turn on the 
fullEnvironment app manager flag when you create your main application class. If this flag is false then 
the app monitor will run in a stripped down process environment. This saves a substantial amount of 
memory, but does not have process-local resources such as theProcessResList. 

If you subclass clsAppMonitor, you must specify your descendant's class name when you call 
AppMonitorMain. The first parameter to this routine is the global well-known name of your application 
class. The second is the global well-known name of your descendant of clsAppMonitor. If you do not 



APPMON.H 129 
Application Framework Messages 

subclass clsAppMonitor, pass objNull for the second parameter. The AppMonitorMain routine will 
know to create a default application monitor. 

#ifndef APPMON_INCLUDED 
#define APPMON_INCLUDED 
#ifndef FS_INCLUDED 
#include <fs.h> 
#endif 
#ifndef OPTION_INCLUDED 
#include <option.h> 
#endif 

Common #defines and typedefs 
This attribute represents the last modified date that a piece of stationery had when it was installed on 
the machine. 

#define amAttrDateTimeLoaded FSMakeFix32Attr(clsAppMonitor, 2) 

Application Framework Messages 

Comments 

msgApplnit 
Installs the application. 

Takes DIR_HANDLE, returns STATUS. 

This message is sent once and only once by the system, when the application is first installed from disk. 

The app monitor initializes its instance data, runs the installation protocol (msgAMLoadlnitDLL, 
msgAMLoadStationery, msgAMLoadMisc, etc), adds this application to system lists, and signals the 
installation process to continue running. 

Descendants: You can handle this message to perform any first-time initialization. The ancestor must be 
called before your handler. 

msgAppRestore 
Reinitializes the application after a warm-boot. 

Takes nothing, returns STATUS. 

This message is sent by the system when a warm-boot occurs. The app monitor initializes its instance 

data and signals the system warm-boot process to proceed. 

Descendants: You can handle this message and perform any first-time initialization. The ancestor must 
be called before your handler. 

msgAppOpen 
Displays the global configuration option sheet. 

Takes P_APP_OPEN, returns STATUS. 

This message is self-sent by msgAMPopupOptions. It can also be sent by anyone else. 

The app monitor displays the application configuration option sheet (tagAppDocOptSheet). 

Descendants: You normally do not handle this message. To provide an option sheet, see 
msgAMPopupOptions. 



130 PENPOINT API REFERENCE 
Part 2 / Pen Point Application Framework 

msgAppClose 
Removes the global configuration option sheet. 

Takes nothing, returns STATUS. 

This message is self-sent by msgAMPopupOptions. It can also be sent by anyone else. 

Descendants: You normally do not handle this message. 

Import Messages 

msglmportQuery 
Determines if a file can be imported by the application. 

Takes P_IMPORT_QUERY, returns STATUS. 

The app monitor forwards msgImportQuery to its class as a class message. If it isn't handled there, the 
app monitor sends back "No" to all import requests. In the future there will be support to run through 
any of the file translators that the application has loaded. 

Descendants: You normally do not handle this message. 

import.h 

msglmport 
Imports a file. 

Takes P_IMPORT_DOC, returns STATUS. 

The app monitor first creates a new document object and activates it. It then forwards msgImport to 
the document. Next, it sends msgAppMgrShutdown to both save the document and shut it down. 

Descendants: You normally do not handle this message. 

import.h 

App Monitor Messages 

ms~(;e~etrics 

Gets the app monitor's metrics. 

Takes P _AM_METRICS, returns STATUS. 

:/f:define msgAMGetMetrics MakeMsg(clsAppMonitor, 1) 

typedef struct AM_METRICS 
CLASS appClass; II Main application class. 
OBJECT handle; II This app's handle in theInstalledApps. 
U32 unused2; 
U32 unused3; 
U32 unused4; 
U16 unused; 

AM_METRICS, *P_AM_METRICS; 

Descendants: You normally do not handle this message. 



Comments 

Return Value 

Comments 

Return Value 

Comments 

Return Value 

APPMON.H 131 
App Monitor Messages 

nns~C;etIllsta11I>ir 

Creates a directory handle on the application's installation directory. 

Takes P _OBJECT, returns STATUS. 

*define msgAMGetlnstallDir MakeMsg(clsAppMonitor, 2) 

The app monitor creates a clsDirHandle object which references the location on external media that the 
application was installed from. If the external volume is not connected, the user is asked to attach it. 

If this application was bundled with PenPoint then there is no valid external volume beyond installation 
time. stsFailed is returned in this case. 

NOTE: CALLER IS RESPONSIBLE FOR DESTROYING THE DIR HANDLE WHEN DONE. 

stsOK The external volume is attached. The user tapped the Cancel button when 
promptedto attach the external volume. The external volume cannot be determined 
because this application was bundled with PenPoint. 

Descendants: You normally do not handle this message. 

nns~LoadIllitI>ll 
Loads, runs, and unloads an optional dll initialization routine. 

Takes OBJECT, returns STATUS. 

*define msgAMLoadlnitDll MakeMsg(clsAppMonitor, 4) 

The app monitor looks for an init.dll file in the application's directory (which is specified in pArgs). If it 
is found, the DllMain routine for this dll is run. The dll is then unloaded. 

Descendants: You normally do not handle this message. 

stsOK Either the dll initialization was not found or it was found andrun successfully. 

nns~LoadMisc 
Load the application's miscellaneous files. 

Takes nothing, returns STATUS. 

*define msgAMLoadMisc MakeMsg(clsAppMonitor, 5) 

If a directory called MISC exists, the app monitor copies this directory into the in-memory application 
directory. 

Descendants: You normally do not handle this message. However, you can create the MISC directory 
and place in it files that all of your documents need to use. For example, your documents may need to 
reference a file that contains all of the postallzip codes for a country. 

stsOK Either the MISC directory was not found or wasfound and copied successfully. 

nns~LoadStatiollery 
Loads stationery and accessory templates. 

Takes nothing, returns STATUS. 

*define msgAMLoadStationery MakeMsg(clsAppMonitor, 6) 



132 PENPOINT API REFERENCE 

Comments 

Part 2 / PenPoint Application Framework 

The app monitor looks for stationery in a directory named STATNRYand accessories in a directory 
named ACCESSRY in the app's directory. It copies any templates that are not marked with the noLoad 
attribute from these directories to the Stationery and Accessories notebooks. 

A template isa subdirectory with a either a complete, saved document or any kind of file that the 
application can read. 

If appMgrMetrics.flags.stationery is true, the app monitor creates a default piece of stationery (an 
empty document of its application type). Similarly, if appMgrMetrics.flags.accessory is true, the app 
monitor places an empty document in the Accessories notebook. 

Descendants: You normally do not handle this message. 

msgAMRemoveStationery 
Removes all the stationery and accessory templates for this application. 

Takes nothing, returns SfATUS. 

#define msgAMRemoveStationery MakeMsg(clsAppMonitor, 7) 

The app monitor removes the stationery notebook section for this application, which removes the 
stationery loaded in msgAMLoadStationery and any user- defined stationery. It then removes all of this 
application's documents from the Accessories notebook (thereby removing templates loaded in 
msgAMLoadStationery and any documents that the user placed there). 

Descendants: You normally do not handle this message. 

msgAMLoadHelp 
Loads the application's help into the Help Notebook. 

Takes nothing, returns SfATUS. 

#define msgAMLoadHelp MakeMsg(clsAppMonitor, 8) 

The app monitor looks for a HELP subdirectory in the application's directory. If HELP exists, the app 
monitor copies all of the help templates that are not marked with the noLoad attribute to the Help 
Notebook. Help templates can be directories with ASCII, RTF or saved MiniText documents in them. 

Descendants: You normally do not handle this message. 

msgAMRemoveHelp 
Removes all Help Notebook items for this application. 

Takes nothing, returns SfATUS. 

#define msgAMRemoveHelp MakeMsg(clsAppMonitor, 9) 

The app monitor removes all of this application's items from the Help Notebook. 

Descendants: You normally do not handle this message. 

msgAMPopupOptions 
Pops up a global option sheet the first time the app is installed. 

Takes P _BOOLEAN, returns STATUS. 

#define msgAMPopupOptions MakeMsg(clsAppMonitor, 17) 



Comments 

Comments 

Comments 

Comments 

Comments 

APPMON.H 133 
App Monitor Messages 

If pArgs is false, the app monitor does not do anything. If it is true, the app monitor pops up the global 
option sheet, then writes a resource in the application's resource file which inhibits subsequent popups. 

Descendants: If you want to allow the user to configure (or check the configuration of) the application 
as it is being installed, you need to handle this message. In your handler, you should set pArgs to true 
and then call the ancestor. You also need to create an option sheet resource with a tag of 
tagAppDocOptSheet (in your application's msgAppAddCards handler). 

You can have the option sheet to always pop up (even after the first time the user installs the application) 
by not calling the ancestor and popping up the option sheet yourself with: 

ObjCalIRet(msgAppOpenTo, self, (P_ARGS) appOpenToFloating, s); 

msgAMLoadAuxNotebooks 
Loads items into auxilliary notebooks. 

Takes nothing, returns STATUS. 

*define msgAMLoadAuxNotebooks MakeMsg(clsAppMonitor, 14) 

The app monitor self sends msgAMLoadStationery and msgAmLoadHelp to load the application's 

stationery, accessory, and help templates. 

Descendants: You normally do not handle this message. 

msgAMLoadFormatConverters 
Loads file format converter .dlls. 

Takes nothing, returns STATUS. 

*define msgAMLoadFormatConverters MakeMsg(clsAppMonitor, 10) 

Currently, the app monitor does not do anything in response to this message. It will do something in the 
future. 

Descendants: You normally do not handle this message. 

msgAMUnloadFormatConverters 
Unloads file format converter .dlls. 

Takes nothing, returns STATUS. 

*define msgAMUnloadFormatConverters MakeMsg(clsAppMonitor, 11) 

Currently, the app monitor does not do anything in response to this message. It will do something in the 

future. 

Descendants: You normally do not handle this message. 

msgAMLoadOptionalDlls 
Loads an application's optional .dlls. 

Takes nothing, returns STATUS. 

*define msgAMLoadOptionalDlls MakeMsg(clsAppMonitor, 12) 

Currently, the app monitor does not do anything in response to this message. It will do something in the 
future. 

Descendants: You normally do not handle this message. 



134 PENPOINT API REFERENCE 
Part 2 I Pen Point Application Framework 

msgAMUnloadOptionalDlls 
Unloads an application's optional .dlls. 

Takes nothing, returns STATUS. 

#define msgAMUnloadOptionalDlls MakeMsg(clsAppMonitor, 13) 

Currently, the app monitor does not do anything in response to this message. It will do something in the 
future. 

Descendants: You normally do not handle this message. 

msgAMTerminateOK 
Asks if this application is willing to terminate. 

Takes P_OBJECT, returns STATUS. 

#define msgAMTerminateOK MakeMsg(clsAppMonitor, 20) 

Deinstallation is a two phase process. All applications and services that are to be deinstalled together get 
the chance to veto. This message is sent to an application monitor to see if it wishes to veto. 

By default, the app monitor unconditionally terminates all of its application's instances. To do so, it 
sends msgAppMgrShutdown to its application class for each of its active documents. 

Descendants: If you want to be given the chance to terminate the application, you should handle this 
message. In your handler, if you decide that you want to terminate, you simply pass the message on to 
your ancestor. 

You can veto the termination by returning anything other than stsOK and by not passing the message 
on to your ancestor. If you veto, you must set pArgs to the uid of the object that was responsible for the 
veto, which is typically self. 

msgAMTerminate 

msgAMTerminate 
Terminates this application. 

Takes nothing, returns STATUS. 

#define msgAMTerminate MakeMsg(clsAppMonitor, 21) 

Deinstallation is a two phase process. All applications and services that are to deinstalled together get the 
chance to veto. This message is sent to an application monitor after everyone has agreed to the 
deinstallation. 

This message unconditionally terminates the application in the final phase of deinstallation. The app 
monitor self sends msgAMRemoveStationery and msgAMRemoveHelp, and then calls 
OSTaskTerminate to kill the application's processCount 0 task. 

Descendants: You should handle this message to remove anything you have loaded. The ancestor must 
be called after your handler. 

msgAMTerminateOK 



Arguments 

Tags 

APPMON.H 135 
Tags 

msgAMTerminate Vetoed 
Sent when the application termination sequence is vetoed. 

Takes P _AM_TERMINATE_VETOED, returns STATUS. 

fdefine msgAMTerminateVetoed MakeMsg(clsAppMonitor, 22) 

typedef struct AM_TERMINATE_VETOED { 
OBJECT vetoer; II Object or class that vetoed the deinstallation. 
STATUS status; II Veto status. 

AM_TERMINATE_VETOED, *P_AM_TERMINATE_VETOED; 

When one of the applications or services that are deinstalled together vetoes termination, the 
Application Framework sends this message to those applications and services. 

pArgs->vetoer gives the uid of the object or class that vetoed the deinstallation. pArgs->status gives the 
return status of the veto. The app monitor does not do anything in response to this message. 

Descendants: You can handle this message if you wish. If you handled msgTerminateOK, and changed 
anything because you thought you were about to be terminated, you should handle this message to 
change things back to the way they were. 

msgAMTerminateOK 

fdefine tagAMFirstTime MakeTag(clsAppMonitor, 2) 





APPTAG.H 

This file contains constant tags used by the Application Framework. 

There are three kinds of tags in this file: 

• Resource tags 

• Window tags 

• Quick help tags 

Resource tags are used to construct resource identifiers (resIO's) that identify well-known resources in 

the system resource file. Developers can use these tags to read a copy of any of these resources from their 
document's resList (see app.h and resfile.h). 

Window tags are used as arguments to msgWinFindTag to locate well-known windows. For example, all 
the standard application menus (SAMS) are tagged so they can be programatically located and changed 
or removed by an application. 

Quick help tags are used for two purposes: (1) to construct the resource identifier used to read a 

quick-help string from the document's resList, and (2) stored in clsGWin as the quick-help tag (see 
gwin.h). 

All the resource ids in this file are constructed by (see resfile.h): 

MakeWknResId(resId, appResId, tag); 

To write an object resource: 

write.resId = tagAppObject; 
write.mode = resWriteObjectOnce; 
write. object = objectToWrite; 
ObjCallRet(msgResWriteObject, file, &write, s); 

To read an object resource: 

ObjectCall(msgNewDefaults, clsObject, &read.new); 
read.resId = tagAppObject; 
read. mode = resReadObjectOnce; 
ObjCallRet(msgResReadObject, resList, &read, s); 
newObject = read.new.uid; 

#ifndef APPTAG INCLUDED 
#define APPTAG INCLUDED 

Resource Tags 

clsApp Resource Identifiers 
Used to construct Application Framework resID's (see above). 

#define appResId 
II next: 194 

MakeTag(clsApp, 1) 



13. PENPOINT API REFERENCE 
Part 2 I PenPoint Application Framework 

Tags used by StdMsg. 

fdefine tagAppDeleteRequest MakeDialogTag(clsAppMgr, 0) 
fdefine tagAppDeleteSectRequest MakeDialogTag(clsAppMgr, 1) 
fdefine tagAppRevertRequest MakeDialogTag(clsAppMgr, 2) 
fdefine tagAppSystemShutdownRequest MakeDialogTag(clsAppMgr, 3) 
fdefine tagAppSystemSoftShutdownRequest MakeDialogTag(clsAppMgr, 4) 

Miscellaneous tags. 

fdefine tagAppObject MakeTag(clsApp, 138) 
fdefine tagAppClass MakeTag(clsApp, 118) 
fdefine tagAppQHAppClass MakeTag(clsApp, 155) 
fdefine tagAppTitleBar MakeTag(clsApp, 119) 
fdefine tagAppMovelconMarquee MakeTag(clsApp, 135) 
fdefine tagAppCopylconMarquee MakeTag(clsApp, 136) 
fdefine tagAppPrintMetrics MakeTag(clsApp, 139) 
fdefine tagAppMenulmport MakeTag(clsApp, 148) 
fdefin~ tagAppMenuExport MakeTag(clsApp, 149) 

These identify each item in the SAMS menu bar. 

fdefine tagAppMenuBar MakeTag(clsApp, 1) 
fdefine tagAppMenuDocument MakeTag(clsApp, 2) 
fdefine tagAppMenuEdit MakeTag(clsApp, 3) 
fdefine tagAppMenuOptions MakeTag(clsApp, 4) 
fdefine tagAppMenuCreate MakeTag(clsApp, 156) 

These identify each item in the Document menu. 

fdefine tagAppMenuCheckpoint MakeTag(clsApp, 5) 
fdefine tagAppMenuRevert MakeTag(clsApp, 6) 
fdefine tagAppMenuPrint MakeTag(clsApp, 7) 
fdefine tagAppMenuPrintSetup MakeTag(clsApp, 8) 
fdefine tagAppMenuSend MakeTag(clsApp, 9) 
fdefine tagAppMenuAbout MakeTag(clsApp, 10) 

These identify each item in the Edit menu. 

fdefine tagAppMenuUndo MakeTag(clsApp, 11) 
fdefine tagAppMenuSelectAll MakeTag(clsApp, 12) 
fdefine tagAppMenuMove MakeTag(clsApp, 13) 
fdefine tagAppMenuCopy MakeTag(clsApp, 14) 
fdefine tagAppMenuDelete MakeTag(clsApp, 124) 
fdefine tagAppMenuSearch MakeTag(clsApp, 125) 
fdefine tagAppMenuSpell MakeTag(clsApp, 126) 

These identify SAMS option sheets. 

fdefine tagAppAboutOptSheet MakeTag(clsApp, 120) 
fdefine tagAppDocOptSheet MakeTag(clsApp, 121) 
fdefine tagAppPrintSetupOptSheet MakeTag(clsApp, 122) 
fdefine tagApplconOptSheet MakeTag(clsApp, 123) 

These identify each card in the Document option sheet. 

fdefine tagAppOptControlsCard MakeTag(clsApp, 142) 
fdefine tagAppOptAccessCard MakeTag(clsApp, 143) 
fdefine tagAppOptCommentsCard MakeTag(clsApp, 144) 
fdefine tagAppOptlconCard MakeTag(clsApp, 147) 
fdefine tagAppOptGotoButtonCard MakeTag(clsApp, 154) 
fdefine tagAppOptlconWinCard MakeTag(clsApp, 172) 

These identify each card in the About option sheet. 

fdefine tagAppOptlnfoCard MakeTag(clsApp, 140) 
fdefine tagAppOptAboutCard MakeTag(clsApp, 141) 



APPTAG.H 139 
Resource Tags 

~ 

These identify each card in the Print Setup option sheet. ali: 
0 

#define tagAppOptPrintCard MakeTag(clsApp, 145) 
~ 
loll 

#define tagAppOptHeadersCard MakeTag(clsApp, 146) 

~ 
#define tagAppOptErnbeddeeCard MakeTag(clsApp, 173) 

These identify each item in the Borders & Controls card. 

#define tagAppOptCtrls MakeTag(clsApp, 127) 
#define tagAppOptCtrlsLabel MakeTag(clsApp, 128) 
#define tagAppOptCtrlsOn MakeTag(clsApp, 129) 
#define tagAppOptCtrlsOff MakeTag(clsApp, 130) 
#define tagAppOptCtrlStyle MakeTag(clsApp, 131) 
#define tagAppOptCtrlStyleLabel MakeTag(clsApp, 132) 
#define tagAppOptCtrlTitleBar MakeTag(clsApp, 133) 
#define tagAppOptCtrlMenuBar MakeTag(clsApp, 134) 
#define tagAppOptCtrlScrollBars MakeTag(clsApp, 26) 
#define tagAppOptCtrlCorkMargin MakeTag(clsApp, 27) 
#define tagAppOptBorderStyle MakeTag(clsApp, 157) 
#define tagAppOptBorderStyleLabel MakeTag(clsApp, 158) 
#define tagAppOptBorderSingle MakeTag(clsApp, 159) 
#define tagAppOptBorderDouble MakeTag(clsApp, 162) 
#define tagAppOptBorderDashed MakeTag(clsApp, 161) 
#define tagAppOptBorderNone MakeTag(clsApp, 160) 

These identify each item in the Access card. 

#define tagAppOptDelete MakeTag(clsApp, 28) 
#define tagAppOptDeleteLabel MakeTag(clsApp, 29) 
#define tagAppOptDeleteOn MakeTag(clsApp, 30) 
#define tagAppOptDeleteOff MakeTag(clsApp, 31) 
#define tagAppOptReadOnly MakeTag(clsApp, 32) 
#define tagAppOptReadOnlyLabel MakeTag(clsApp, 33) 
#define tagAppOptReadOnlyOn MakeTag(clsApp, 34) 
#define tagAppOptReadOnlyOff MakeTag(clsApp, 35) 
#define tagAppOptHotMode MakeTag(clsApp, 36) 
#define tagAppOptHotModeLabel MakeTag(clsApp, 37) 
#define tagAppOptHotModeOn MakeTag(clsApp, 38) 
#define tagAppOptHotModeOff MakeTag(clsApp, 39) 

These identify each item in the Comments card. 

#define t agAppOpt Comment sTable MakeTag(clsApp, 191) 
#define tagAppOptTitle MakeTag(clsApp, 40) 
#define tagAppOptTitleLabel MakeTag(clsApp, 41) 
#define tagAppOptAuthor MakeTag(clsApp, 42) 
#define tagAppOptAuthorLabel MakeTag(clsApp, 43) 
#define tagAppOptComments MakeTag(clsApp, 44) 
#define tagAppOptCommentsSWin MakeTag(clsApp, 190) 
#define tagAppOptCommentsLabel MakeTag(clsApp, 45) 

These identify each item in the About/Document card. 

#define tagAppOptCreated MakeTag(clsApp, 46) 
#define tagAppOptCreatedLabel MakeTag(clsApp, 47) 
#define tagAppOptModified MakeTag(clsApp, 48) 
#define tagAppOptModifiedLabel MakeTag(clsApp, 49) 
#define tagAppOptFiledSize MakeTag(clsApp, 50) 
#define tagAppOptFiledSizeLabel MakeTag(clsApp, 51) 
#defihe tagAppOptActiveSize MakeTag(clsApp, 52) 
#define tagAppOptActiveSizeLabel MakeTag(clsApp, 53) 

These identify each item in the About/Application card. 

#define tagAppOptApp MakeTag(clsApp, 54) 
#define tagAppOptAppLabel MakeTag(clsApp, 55) 
#define tagAppOptVersion MakeTag(clsApp, 56) 
#define tagAppOptVersionLabel MakeTag(clsApp, 57) 



140 PEN POINT API REFERENCE 
Part 2 / Pen Point Application Framework 

fdefine tagAppOptCompany MakeTag(clsApp, 58) 
fdefine tagAppOptCompanyLabel MakeTag(clsApp, 59) 
fdefine tagAppOptCopyright MakeTag(clsApp, 60) 
fdefine tagAppOptCopyrightLabel MakeTag(clsApp, 61) 
fdefine tagAppOptlcon MakeTag(clsApp, 62) 
fdefine tagAppOptlconLabel MakeTag(clsApp, 63) 
fdefine tagAppOptlconSmall MakeTag(clsApp, 64) 
fdefine tagAppOptlconSmallLabel MakeTag(clsApp, 65) 

These identify each item in the Icon Window Layout card. 

fdefine tagApplconWinLayout 
fdefine tagApplconWinLayoutLabel 
fdefine tagApplconWinTToB 
fdefine tagApplconWinBToT 
fdefine tagApplconWinUnconstrained 
fdefine tagApplconWinStyle 
fdefine tagApplconWinSty"IeLabel 
fdefine tagApplconWinKeepSame 
fdefine tagApplconWinOpenlnPlace 

These identify each item in the Print Setup cards. 

fdefine tagAppPaperSize 
fdefine tagAppPaperSizeLabel 
fdefine tagAppPaperWidth 
fdefine tagAppPaperHeight 
fdefine tagAppTopMargin 
fdefine tagAppTopMarginLabel 
fdefine tagAppBottomMargin 
fdefine tagAppBottomMarginLabel 
fdefine tagAppLeftMargin 
fdefine tagAppLeftMarginLabel 
fdefine tagAppRightMargin 
fdefine tagAppRightMarginLabel 
fdefine tagAppLeftHeader 
fdefine tagAppLeftHeaderLabel 
fdefine tagAppCenterHeader 
fdefine tagAppCenterHeaderLabel 
fdefine tagAppRightHeader 
fdefine tagAppRightHeaderLabel 
fdefine tagAppLeftFooter 
fdefine tagAppLeftFooterLabel 
fdefine tagAppCenterFooter 
fdefine tagAppCenterFooterLabel 
fdefine tagAppRightFooter 
fdefine tagAppRightFooterLabel 
fdefine tagAppEmbedVisible 
fdefine tagAppEmbedVisibleLabel 
fdefine tagAppOrientation 
fdefine tagAppOrientationLabel 
fdefine tagAppHeaderMargin 
fdefine tagAppHeaderMarginLabel 
fdefine tagAppFooterMargin 
fdefine tagAppFooterMarginLabel 
fdefine tagAppHeaderFont 
fdefine tagAppHeaderFontLabel 
fdefine tagAppHeaderSize 
fdefine tagAppHeaderSizeLabel 
fdefine tagAppFirstPage 
fdefine tagAppFirstPageLabel 
fdefine tagAppOtherLabel 
fdefine tagAppEmbedLoc 
fdefine tagAppEmbedLocLabel 
fdefine tagAppEmbedApplyTo 
fdefine tagAppHeaderMarginOtherButton 

MakeTag(clsApp, 163) 
MakeTag(clsApp, 164) 
MakeTag(clsApp, 165) 
MakeTag(clsApp, 166) 
MakeTag(clsApp, 167) 
MakeTag(clsApp, 168) 
MakeTag(clsApp, 169) 
MakeTag(clsApp, 170) 
MakeTag(clsApp, 171) 

MakeTag(clsApp, 66) 
MakeTag(clsApp, 67) 
MakeTag(clsApp, 68) 
MakeTag(clsApp, 69) 
MakeTag(clsApp, 70) 
MakeTag(clsApp, 71) 
MakeTag(clsApp, 72) 
MakeTag(clsApp, 73) 
MakeTag(clsApp, 74) 
MakeTag(clsApp, 75) 
MakeTag(clsApp, 76) 
MakeTag(clsApp, 77) 
MakeTag(clsApp, 78) 
MakeTag(clsApp, 79) 
MakeTag(clsApp, 80) 
MakeTag(clsApp, 81) 
MakeTag(clsApp, 82) 
MakeTag(clsApp, 83) 
MakeTag(clsApp, 84) 
MakeTag(clsApp, 85) 
MakeTag(clsApp, 86) 
MakeTag(clsApp, 87) 
MakeTag(clsApp, 88) 
MakeTag(clsApp, 89) 
MakeTag(clsApp, 90) 
MakeTag(clsApp, 91) 
MakeTag(clsApp, 92) 
MakeTag(clsApp, 93) 
MakeTag(clsApp, 94) 
MakeTag(clsApp, 95) 
MakeTag(clsApp, 96) 
MakeTag(clsApp, 97) 
MakeTag(clsApp, 98) 
MakeTag(clsApp, 99) 
MakeTag(clsApp, 100) 
MakeTag(clsApp, 101) 
MakeTag(clsApp, 102) 
MakeTag(clsApp, 103) 
MakeTag(clsApp, 104) 
MakeTag(clsApp, 174) 
MakeTag(clsApp, 175) 
MakeTag(clsApp, 176) 
MakeTag(clsApp, 177) 



#define tagAppHeaderMarginOtherField 
#define tagAppFooterMarginOtherButton 
#define tagAppFooterMarginOtherField 
#define tagAppTopMarginOtherButton 
#define tagAppTopMarginOtherField 
#define tagAppBottomMarginOtherButton 
#define tagAppBottomMarginOtherField 
#define tagAppLeftMarginOtherButton 
#define tagAppLeftMarginOtherField 
#define tagAppRightMarginOtherButton 
#define tagAppRightMarginOtherField 
#define tagAppEmbedApplyToLabel 

These identify each item in the Icon option card. 

#define tagApplconTitle 
#define tagApplconTitleLabel 
#define tagApplconOpen 
#define tagApplconOpenLabel 
#define tagApplconOpenlnPlace 
#define tagApplconOpenFloating 
#define tagApplconType 
#define tagApplconTypeLabel 
#define tagApplconTypePictAndTitle 
#defi~e tagApplconTypePictOnly 
#define tagApplconTypeSmallPictAndTitle 
#define tagApplconTypeSmlPictOverTitle 
#define tagApplconTypeSmallPictOnly 

These identify each item in the Goto Button option card. 

#define tagAppGotoButtonTitle 
#define tagAppGotoButtonTitleLabel 
#define tagAppGotoButtonTargetDoc 
#define tagAppGotoButtonTargetDocLabel 
#define tagAppGotoButtonBorderLabel 
#define tagAppGotoButtonBorder 
#define tagAppGotoButtonSquare 
#define tagAppGotoButtonRound 
#define tagAppGotoButtonHRound 
#define tagAppGotoButtonNone 

These identify various bitmaps. 

#define tagApplconBitmap 
#define tagAppSmalllconBitmap 
#define tagAppDefaultDoclconBitmap 
#define tagAppDefaultDocSmalllconBitmap 
#define tagAppMovelconBitmap 
#define tagAppCopylconBitmap 
#define tagAppLinklconBitmap 
#define tagAppClosedFolderBitmap 
#define tagAppClosedFolderSmBitmap 
#define tagAppOpenFolderBitmap 
#define tagAppOpenFolderSmBitmap 

APPTAG.H 141 
Resource Tags 

MakeTag(clsApp, 178) 
MakeTag(clsApp, 179) 
MakeTag(clsApp, 180) 
MakeTag(clsApp, 181) 
MakeTag(clsApp, 182) 
MakeTag(clsApp, 183) 
MakeTag(clsApp, 184) 
MakeTag(clsApp, 185) 
MakeTag(clsApp, 186) 
MakeTag(clsApp, 187) 
MakeTag(clsApp, 188) 
MakeTag(clsApp, 192) 

MakeTag(clsApp, 105) 
MakeTag(clsApp, 106) 
MakeTag(clsApp, 107) 
MakeTag(clsApp, 108) 
MakeTag(clsApp, 109) 
MakeTag(clsApp, 110) 
MakeTag(clsApp, 111) 
MakeTag(clsApp, 112) 
MakeTag(clsApp, 113) 
MakeTag(clsApp, 114) 
MakeTag(clsApp, 115) 
MakeTag(clsApp, 116) 
MakeTag(clsApp, 117) 

MakeTag(clsApp, 150) 
MakeTag(clsApp, 151) 
MakeTag(clsApp, 152) 
MakeTag(clsApp, 153) 
MakeTag(clsApp, 154) 
MakeTag(clsApp, 155) 
MakeTag(clsApp, 156) 
MakeTag(clsApp, 157) 
MakeTag(clsApp, 158) 
MakeTag(clsApp, 159) 

MakeTag(clsApp, 15) 
MakeTag(clsApp, 16) 
MakeTag(clsApp, 17) 
MakeTag(clsApp, 18) 
MakeTag(clsApp, 19) 
MakeTag(clsApp, 20) 
MakeTag(clsApp, 21) 
MakeTag(clsApp, 22) 
MakeTag(clsApp, 23) 
MakeTag(clsApp, 24) 
MakeTag(clsApp, 25) 

Tags used during the creation of a document to get default values for some fields from the application 
resource file. 

#define tagAppMgrDefaultDocName 
#define tagAppMgrDisplayedAppName 

MakeTag(clsApp, 189) 
MakeTag(clsApp, 193) 





APPWIN.H 

This file contains the API definition for clsApp Win. 

clsApp Win inherits from clsCustomLayout. 

Provides support for embedded applications. 

"AppWin" stands for Application Window. 

Introduction 
clsApp Win is an embedded window that manages an embedded document. It shrink-wraps around a 
clslcon object to display an icon to the user, like those on the bookshelf or embedded in a document. 

When an icon with style awOpenlnPlace is tapped, the application window destroys the icon and opens 
the associated document into itself The application window then shrink-wraps around the document's 
main window. 

Application Windows live in the process space and are filed with the embeddor document. 

An application window reads its icon bitmap from metrics.resList of OSThisAppO in response to 
msglconProvideBitmap (see icon.h). It uses the following resID (see apptag.h): 

MakeWknResIdX (read. resId, appResId, tagAppIconBitmap); 

This bitmap is usually found in the app.res file of the application class for the associated document. The 
document can override this bitmap by filing a resource with the above resld into its doc.res file. 

App Wins can also store their own private bitmaps. Use msgApp WinSetlconBitmap to give an 
application window a bitmap. This bitmap object will be filed by the application window. If an 
application window has its own bitmap object, it will not read from the resList. 

fifndef APPWIN INCLUDED 
fdefine APPWIN_INCLUDED 
fifndef CLAYOUT INCLUDED 
finclude <clayout.h> 
fendif 

COllllllon #defines and typedefs 

Application Window States 
These are the valid states for an application window. 

fdefine awClosed 0 
fdefine awOpenedFloating 1 
fdefine awOpenedInPlace 2 
fdefine awOpenedInPlaceFloating 3 



144 PENPOINT API REFERENCE 
Part 2 / Pen Point Application Framework 

Application Window Open Styles 
These are the valid styles for directing an application window how to open. 

*define awOpenlnPlace 
*define awOpenFloating 

o 
1 

Application Window Icon Types 
These are the valid icon types. 

*define awPictAndTitle 0 
*define awPictOnly 1 
*define awSmallPictAndTitle 2 
*define awSmallPictOnly 3 
*define awSmallPictOverTitle 4 

Application Window Style Structure 
This structure defines the various application window styles. 

typedef struct APP_WIN_STYLE 
U16 open 2; II Open style. 
U16 type 4; II Icon type. 
U16 openStyleLock 1; II True = cannot change open style. 
U16 private1 1; II Reserved. 
U16 private2 1; II Reserved. 
U16 reserved 7; II Reserved. 

APP_WIN_STYLE, *P_APP_WIN_STYLE; 

Messages 

Me5£©ge 
Argumerlts 

msgNew 
Creates a new Application Window. 

Takes P _APP _WIN_NEW, returns STATUS. Category: class message. 

typedef struct APP_WIN_NEW_ONLY 
UUID appUUIDi 
APP WIN STYLE style; 
U16 state; 
char label [nameBuf Length]; 
U32 reserved[4]; 

APP_WIN_NEW_ONLY, *P_APP_WIN_NEW_ONLY; 
*define appWinNewFields 

customLayoutNewFields 
APP WIN NEW ONLY - - -

typedef struct APP_WIN_NEW 
appWinNewFields 

} APP_WIN_NEW, *P_APP_WIN_NEW; 

msgNewDefaults 

\ 
\ 
appWin; 

II App uuid. 
II Application Window style. 
II Application Window state. 
II Icon label. 
II Reserved. 

Initializes the APP _WIN_NEW structure to default values. 

Takes P _APP _WIN_NEW, returns STATUS. Category: class message. 

typedef struct APP_WIN_NEW { 
appWinNewFields 

APP_WIN_NEW, *P_APP_WIN_NEW; 



Comments 

Zeroes out pArgs->appWin and sets 

pArgs->win. flags. style 

pArgs->win.flags.input 
pArgs->embeddedWin.style.embeddee 
pArgs->embeddedWin.style.moveable 
pArgs->embeddedWin.style.copyable 
pArgs->border.style.previewAlter 
pArgs->border.style.selectedAlter 
pArgs->appWin.style.open 
pArgs->appWin.style.type 
pArgs->appWin.state 

msgAppWinGetMetrics 
Passes back an application window's metrics. 

1= wsCaptureGeometry 
1 wsSendGeometry 
1 wsShrinkWrapWidth 
1 wsShrinkWrapHeight; 

1 = i,nputHoldTimeout; 
= true; 
= true; 
= true; 
= bsAlterNone; 
= bsAlterNone; 
= awOpenlnPlace; 
= awSmallPictAndTitle; 
= awClosed; 

Takes P _APP _WIN_METRICS, returns STATUS. 

fdefine msgAppWinGetMetrics MakeMsg(clsAppWin, 1) 

typedef struct APP_WIN_METRICS 
UUIO appUUIO; II Application uuid. 
OBJECT icon; II Application Window 
OBJECT iconBitmap; II Icon bitmap. 
OBJECT smalllconBitmap; II Small icon bitmap. 
OBJECT appClass; II Application class. 
APP WIN STYLE style; II Application Window 
U16 state; II Application Window 
char label [nameBuf Length]; II Icon label. 
U32 reserved[4]; II Reserved. 

APP_WIN_METRICS, *P_APP_WIN_METRICS; 

msgApp WinGetState 
Passes back an application window's state. 

Takes P _UI6, returns STATUS. 

fdefine msgAppWinGetState MakeMsg(clsAppWin, 2) 

Possible values are described in Application Window States, above. 

msgApp WinSetState 
Specifies an application window's state. 

Takes U16, returns STATUS. 

fdefine msgAppWinSetState MakeMsg(clsAppWin, 3) 

Possible values are described in Application Window States, above. 

msgAppWinGetStyle 
Passes back an application window's style. 

Takes P _APP _WIN_STYLE, returns STATUS. 

fdefine msgAppWinGetStyle MakeMsg(clsAppWin, 4) 

icon. 

style. 
state. 

APPWIN.H 145 
Messages 



146 PENPOINT API REFERENCE 

Me$S©g0 
At'gtJm0nfS 

M0Ss©g0 
Avg!Jm0rtts 

Part 2 / PenPoint Application Framework 

typedef struct APP_WIN_STYLE 
U16 open 2; II Open style. 
U16 type 4; II Icon type. 
U16 openStyleLock 1; II True = cannot change open style. 
U16 privatel 1; II Reserved. 
U16 private2 1; II Reserved. 
U16 reserved 7; II Reserved. 

APP_WIN_STYLE, *P_APP_WIN_STYLE; 

msgApp WinSetStyle 
Specifies an application window's style. 

Takes APP _WIN_STYLE, returns STATUS. 

fdefine msgAppWinSetStyle MakeMsg(clsAppWin, 5) 

typedef struct APP_WIN_STYLE 
U16 open 2; II 
U16 type 4; II 
U16 openStyleLock 1; II 
U16 privatel 1; II 
U16 private2 1; II 
U16 reserved 7; II 

APP_WIN_STYLE, *P_APP_WIN_STYLE; 

msgApp WinS etLab el 
Specifies an application window's label. 

Takes P _STRING, returns STATUS. 

fdefine msgAppWinSetLabel 

msgApp WinSedconBitmap 

Open style. 
Icon type. 
True = cannot change open style. 
Reserved. 
Reserved. 
Reserved. 

MakeMsg(clsAppWin, 6) 

Specifies an application window's large icon bitmap. 

Takes BITMAP, returns STATUS. 

fdefine msgAppWinSetIconBitmap MakeMsg(clsAppWin, 7) 

msgApp WinSetSmalllconBitmap 
Specifies an application window's small icon bitmap. 

Takes BITMAP, returns STATUS. 

fdefine msgAppWinSetSmallIconBitmap MakeMsg(clsAppWin, 8) 

msgApp WinOpen 
Opens the document associated with an application window. 

Takes nothing, returns STATUS. 

fdefine msgAppWinOpen MakeMsg(clsAppWin, 9) 

msgAppWinClose 
Closes the document associated with an application window. 

Takes nothing, returns STATUS. 

fdefine msgAppWinClose MakeMsg(clsAppWin, 10) 



Comments 

APPWIN.H 147 
Messages 

msgApp WinDelete 
Deletes an application window. 

Takes BOOLEAN, returns STATUS. 

#define msgAppWinDelete MakeMsg(clsAppWin, 11) 

If pArgs is true, msgApp WinDelete also deletes the associated document. If pArgs is false, 
msgApp Win Delete does not delete the document. 

msgApp WinSetUUID 
Specifies the UUID of the document to which an application window is linked. 

Takes P_UUID, returns STATUS. 

#define msgAppWinSetUUID 

msgAppWinCreatelcon 
Creates an application window's icon. 

Takes P _UUID, returns STATUS. 

#define msgAppWinCreateIcon 

msgApp WinDestroylcon 
Destroys an application window's icon. 

Takes P_UUID, returns STATUS. 

#define msgAppWinDestroyIcon 

msgApp WinStyleChanged 

MakeMsg(clsAppWin, 12) 

MakeMsg(clsAppWin, 13) 

MakeMsg(clsAppWin, 14) 

Notification that an application window style changed. 

Takes OBJECT, returns STATUS. 

#define msgAppWinStyleChanged MakeMsg(clsAppWin, 15) 

Application windows send this message to their observers whenever they receive msgApp WinSetStyle. 
Note that application icon option cards will send msgApp WinSetStyle to application windows 

whenever they cause the application window's icon style to change. 

msgApp WinEditName 
Pops up an edit pad to allow the user to rename the document associated with an application window. 

Takes nothing, returns STATUS. 

#define msgAppWinEditName MakeMsg(clsAppWin, 16) 





caWIN.M 

This file contains the API definition for clsCorkBoardWin. 

clsCorkBoardWin inherits from clslcon Win. 

"cbwin" stands for Cork Board Window. 

". Introduction 
A cork board window is an icon window associated with a document. The cork board window puts 
embedded documents in a subdirectory of the document. This frees the document's application from 
having to manage the embedded windows and documents in the cork board window. The PenPoint 
Application Framework uses clsCorkBoardWin to implement the "cork margin" that all documents 

have by default. 

Clients should rarely (if ever) need to create cork board windows themselves since the Application 
Framework has a clean UI and API for enabling the cork margin. clsApp creates a cork board window as 
the command bar of the document's main window (assuming the main window is a frame). 

• app.h for messages to enable the cork margin of an application. 

=ltifndef CBWIN INCLUDED 
=ltdefine CBWIN_INCLUDED 
=ltifndef ICONWIN INCLUDED 
=ltinclude <iconwin.h> 
:/tendif 

Common #defines and typedefs 

Quick Help Tags 
=ltdefine qhCorkBoardWin MakeTag(clsCorkBoardWin, 1) 

Messages 

msgNew 
Creates a cork board window. 

Takes P_CORKBOARD_WIN_NEW, returns STATUS. Category: class message. 

typedef struct CORKBOARD_WIN_NEW_ONLY 
U32 reserved1[4]i 
U16 reserved2:16i 

CORKBOARD_WIN_NEW_ONLY, *P_CORKBOARD_WIN_NEW_ONLYi 
=ltdefine corkboardWinNewFields \ 

iconWinNewFields \ 
CORKBOARD_WI N_NEW_ONLY corkboardWini 



150 PENPOINT API REFERENCE 

Mess(]ge 

Arguments 

Part 2 / Pen Point Application Framework 

typedef struct CORKBOARD_WIN_NEW { 
corkboardWinNewFields 

} CORKBOARD_WIN_NEW, *P_CORKBOARD_WIN_NEW; 

msgNewDefaults 
Initializes the CORKBOARD_WIN_NEW structure to default values. 

Takes P_CORKBOARD_WIN_NEW, returns SfATUS. Category: class message. 

typedef struct CORKBOARD_WIN_NEW { 
corkboardWinNewFields 

} CORKBOARD_WIN_NEW, *P_CORKBOARD_WIN_NEW; 

Zeroes out pArgs->corkboardWin and sets: 

pArgs->win.flags.style 
pArgs->win.flags.style 
pArgs->ernbeddedWin.style.quickMove 
pArgs->border.style.topMargin 
pArgs->border.style.bottomMargin 
pArgs->border.style.leftMargin 
pArgs->border.style.rightMargin 
pArgs->iconWin.style.iconType 
pArgs->iconWin.style.propagatelconType 
pArgs->iconWin.style.allowOpenlnPlace 
pArgs->iconWin.style.constrainedLayout 

1= wsShrinkWrapWidth; 
1= wsShrinkWrapHeight; 
= false; 
= bsMarginSmall; 
= bsMarginSmall; 
= bsMarginSmall; 
= bsMarginSmall; 
= awSmallPictAndTitle; 
= true; 
= false; 
= true; 

Messages from other classes 

msgEmbeddedWinGetDest 
Passes back the destination for embedded win move or copy. 

Takes P _EMBEDDED_ WIN_GET_DEST, returns STATUS. 

clsCorkBoardWin responds by forcing the embedded document to be put in the embedding document's 
cork board subdirectory (appCorkboardDirName), creating this directory if it does not exist. 

app.h definition of appCorkboardDirName string. 



CLSPRN.H 

This file contains the app-Ievel API for clsPrn. 

clsPrn inherits from clsOBXService. 

Very few developers would or should deal with instances of clsPrn. Its clients would be those writing 
print-wrapper applications or printer drivers. Both kinds of clients would need far more information 

than what could be described in a header file. 

WARNING: the clsPrn API is likely to change in the future. 

Much more functionality is in clsPrn but things not documented here are GO-internal. 

fifndef CLSPRN INCLUDED 
fdefine CLSPRN INCLUDED 
fifndef OSHEAP INCLUDED 
finclude <osheap.h> 
fendif 
fifndef CLSMGR_INCLUDED 
finclude <clsmgr.h> 
fendif 
fifndef OBXSVC INCLUDED 
finclude <obxsvc.h> 
fendif 
fifndef GEO INCLUDED 
finclude <geo.h> 
fendif 
fpragma pack(l) 

Common #defines and typedefs 

Popular paper types 
fdefine prnPaperLetter 0 
fdefine prnPaperLegal 1 
fdefine prnPaperExec 2 
fdefine prnPaperA4 3 
fdefine prnPaperCom10 4 
fdefine prnPaperMonarc 5 
fdefine prnPaperC5 6 
fdefine prnPaperDL 7 
fdefine prnPaperB5 8 
fdefine prnPaperLetterSmall 9 
fdefine prnPaperA4Small 10 
fdefine prnPaperTypeMax 10 
fdefine prnPaperUserDefined Oxffff 

II all printers 
II Pcl, Postscript 
II Pcl 
II Pcl, Postscript 
II Pcl 
II Pcl 
II Pcl 
II Pcl 
II Postscript 
II Postscript 
II Postscript 



152 PENPOINT API REFERENCE 
Part 2 / PenPoint Application Framework 

Paper metrics 
typedef struct PAPER CONFIG II Paper configuration 

U16 type; II out: one of paper--- above 
U16 width, height; II out: paper dimensions in mm 
U16 landScape; II out: 
U16 nCopies; II out: t of copies to print 

PAPER_CONFIG, *P_PAPER_CONFIG; 

Common header for all printer obiects in its FS node 
typedef struct PRN FS HDR { 

U16 ma}orVersion, 
minorVersion; 

PAPER CONFIG paper; 
U32 - portMetricsFPos; 
U16 portMetricsSz; 

PRN_FS_HDR, *P_PRN_FS_HDR; 

Error Messages 
tdefine stsPrnStreamError 
tdefine stsPrnNoStream 
tdefine stsPrnUserAbort 
tdefine stsPrnFntError 

Dialog Messages 

II versioning 

MakeStatus(clsPrn,1) 
MakeStatus(clsPrn,2) 
MakeStatus(clsPrn,3) 
MakeStatus(clsPrn,4) 

tdefine tagPrnManualFeedDialog MakeDialogTag(clsPrn, 0) 

Quick Help Id's 
tdefine tagQhPrnOptions 
tdefine tagQhPrnModel 
tdefine tagQhPrnPort 
II Epson driver specific 
tdefine tagQhEpModelSheet 
tdefine tagQhEpModelList 
tdefine tagQhEpPaperFeed 

II Pcl driver specific 
tdefine tagQhPclModelSheet 
tdefine tagQhPclModelList 
tdefine tagQhPclPaperFeed 
tdefine tagQhPclBinding 

msgNew 

MakeTag(clsPrn, 12) 
MakeTag(clsPrn, 13) 
MakeTag(clsPrn, 14) 

MakeTag(clsEpson, 10) 
MakeTag(clsEpson, 11) 
MakeTag(clsEpson, 15) 

MakeTag(clsPcl, 10) 
MakeTag(clsPcl, 11) 
MakeTag(clsPcl, 15) 
MakeTag(clsPcl, 16) 

Creates a new printer object under the auspices of clsService. 

Takes P _PRN_NEW, returns STATUS. Category: class message. 

typedef struct PRN_NEW_ONLY { 
U16 model; 
U16 fsNodeIsNew; 
U16 filedDataSz; 
P_PRN_FS_HDR pFileData; 

PRN_NEW_ONLY, *P_PRN_NEW_ONLY; 
tdefine prnNewFields \ 

obxServiceNewFields \ 
PRN_NEW_ONLY prn; 

typedef struct PRN NEW 
prnNewFields -

PRN_NEW, *P_PRN_NEW; 

II in: 
II out: 
II in: 
II in: 

model of printer (subclass defined) 
first instantiation of object 
t of bytes to read/write from/to fs node 
pointer to read/write filed data 



CLSPRN.H 153 
Device and Page Controls 

Device and Page Controls 

Messdge 
At'1)un,ents: 

~'4lie5 tH,'l9(S 

Arguments: 

msgPrnGetPaperConfig 
Get the currently selected paper type, metrics and orientation. 

Takes P _PAPER_CONFIG, returns STATUS. Category: class message. 

*define msgPrnGetPaperConfig 

typedef struct PAPER CONFIG 
U16 type; 
U16 width, height; 
U16 landScape; 
U16 nCopies; 

PAPER_CONFIG, *P_PAPER_CONFIG; 

msgPrnSetPaperConfig 

MakeMsg(clsPrn,2) 

II Paper configuration 
II out: one of paper--- above 
II out: paper dimensions in mm 
II out: 
II out: * of copies to print 

Set the currently selected paper type, metrics and orientation. 

Takes P _PAPER_CONFIG, returns STATUS. Category: class message. 

*define msgPrnSetPaperConfig 

typedef struct PAPER CONFIG 
U16 type; 
U16 width, height; 
U16 landScape; 
U16 nCopies; 

PAPER_CONFIG, *P_PAPER_CONFIG; 

msgPrnGetMetrics 
Query a printer's device metrics. 

MakeMsg(clsPrn,3) 

II Paper configuration 
II out: one of paper--- above 
II out: paper dimensions in mm 
II out: 
II out: * of copies to print 

Takes P _PRN_METRICS, returns STATUS. Category: descendant responsibility. 

*define msgPrnGetMetrics MakeMsg(clsPrn,12) 

typedef struct PRN_METRICS 
U8 prnType; II out: printer type (prnType---) 
U8 cap; II out: capability bits 
II minimum scan line count for a band buffer (if one is needed). 
II for dot matrix printers, this should be the pin size (8 or 24) 
U16 minBandSz; 
U32 devPPMX, II out: pixel densities: 

devPPMYi II out: unit is pixels/meter 
U16 nPlanes; II out: Number of planes of the device 
II Number of colors of the device (note: this number does not 
II necessarily equal (1 « devPlanes) because of half toning 
U16 nColorsi II out: 
II currently selected paper metrics in pixels 
U16 width, height; II out: printable area size 
U16 left, right, top, bottom;11 out: unprintable margins 

PRN_METRICS, *P_PRN_METRICS; 

II PRN_METRICS.prnType 
*define prnTypeBm 0 II dot matrix printers 
*define prnTypePcl 1 II HP laserjets 
*define prnTypePscript 2 II Postscript 

II PRN_METRICS.cap 
*define prnDLBitmap Ox80 II can download bitmap font 
*define prnDLOutline Ox40 II can download outline font 
*define prnAutoRotate Ox20 II can print in rotated mode 
*define prnAutoCopies Ox10 II can print multiple copies of a page 



'54 PEN POINT API REFERENCE 
Part 2 I PenPoint Application Framework 

fdefine prnDuplexPrint 
fdefine prnSubbandable 

msgPrnStartDoc 

Ox08 II can do double-sided printing 
Ox04 II can create bandding region of a 

II portion of a page (relevant to a 
II banding printer only 

Prepare to start a new document. 

Takes nothing, returns STATUS. Category: descendant responsibility. 

fdefine msgPrnStartDoc MakeMsg(clsPrn,13) 

msgPrnEndDoc 
End the currently printing document. 

Takes nothing, returns STATUS. Category: descendant responsibility. 

fdefine msgPrnEndDoc 

msgPrnBeginPage 
Prepare to start a new page. 

MakeMsg(clsPrn,14) 

Takes nothing, returns STATUS. Category: descendant responsibility. 

fdefine msgPrnBeginPage 

msgPrnShowPage 
Output the current page. 

MakeMsg(clsPrn,15) 

Takes optional UI6, returns STATUS. Category: descendant responsibility. 

fdefine msgPrnShowPage 
fdefine prnNextSide 0 

fdefine prnFrontSide 1 
fdefine prnBackSide 2 

MakeMsg(clsPrn,16) 
II if current side is front, print at back 

II if current side is back, print at front 
II msgPrnStartDoc always set the next side 
II to be the front side. 

II print on the front side 
II print on the back side 

P _ARGS is ignored if the printer can only do single-sided printing. P _ARGS is a number specifying page 
duplexing for printers that can do double-sided printing. 

msgPrnSetCopyCount 
Set the copy count. 

Takes U32, returns STATUS. Category: descendant responsibility. 

fdefine msgPrnSetCopyCount MakeMsg(clsPrn,17) 

Valid only for devices with prnAutoCopies set in the metrics spec (msgPrnGetMetrics). 

msgPrnSetRotation 
Tell device to operate in 0 or 90 degree mode. 

Takes BOOLEAN, returns STATUS. Category: descendant responsibility. 

fdefine msgPrnSetRotation MakeMsg(clsPrn,18) 

Note: Change rotation only at the beginning of a new page. 



Message 
AV10umenfs 

CLSPRN.H 155 

Line Printer Mode Support 

For printers with the prnAutoRotate capability, sending this message in the middle of page formatting 
will cause undefined behavior of the printer. The co-ordinate system of the device will be rotated 
automatically. 

For printers withOUT the prnAutoRotate capability, this message will only affect the metrics returned 
by the msgPrnGetMetrics call. The co-ordinate system of the device remains unaffected. 

msgPrnStartDoc will always put the device back into the non-rotated mode. 

msgPrnEnumModels 
Enumerate the models that this class supports. 

Takes P _PRN_ENUM_MODELS, returns STATUS. Category: class message. 

#define msgPrnEnumModels MakeMsg(clsPrn, 22) 

typedef struct { 
U16 model; II Out: model id (class defined) 
RES ID iconResldNormal; II Out: resld of model's normal icon 
RES ID iconResldSmall; II Out: resld of model's small icon 
CHAR name[nameBufLength];11 Out: name of model 

PRN_MODEL, *P_PRN_MODEL; 
typedef struct { 

U16 max, 
count; 

P PRN MODEL pModel; 

U16 next; 

msgPrnGetModel 
Passes back the receiver's model. 

II in = size of pModel[] array 
II in = # to return in array 
II if count> max then memory may be allocated 
II out = # of valid entries in array 
II in = ptr to array 
II out = if memory was allocated 
II client should free the memory 
II in = 0 to start at beginning 
II OR previous out value to pick up 
II where we left off 

Takes P _PRN_MODEL, returns STATUS. 

#define msgPrnGetModel MakeMsg(clsPrn, 23) 

typedef struct { 

U16 model; II Out: model id (class defined) 
RES ID iconResldNormal; II Out: resld of model's normal icon 
RES ID iconResldSmall; II Out: resld of model's small icon 
CHAR name[nameBufLength];11 Out: name of model 

PRN_MODEL, *P _PRN _MODEL i 

Line Printer Mode Support 

msgPrnMoveTo 
Move the printer's' cursor' to the specified point. 

Takes P _XY32, returns STATUS. Category: descendant responsibility. 

#define msgPrnMoveTo MakeMsg(clsPrn,19) 



156 PENPOINT API REFERENCE 
Part 2 / PenPoint Application Framework 

msgPrnGetLptFontMetrics 
Get the metrics/information of a given harware font. 

Takes P _PRN_TEXTOUT, returns STATUS. Category: descendant responsibility. 

tdefine msgPrnGetLptFontMetrics MakeMsg(clsPrn,20) 

msgPrnLptTextOut 
Output a line of text starting from where the printer was 'msgPrnMoveTo' last. 

Takes P _PRN_TEXTOUT, returns STATUS. Category: descendant responsibility. 

tdefine msgPrnLptTextOut 

typedef struct PRN_TEXTOUT 
U16 nChars; 
P CHAR pStr; 

MakeMsg(clsPrn,21) 

II in: number of characters to output 
II in: where the string is. Output will 
II be terminated if a NULL is encountered, 
II regardless of nChars. 

II additional font 
U16 fontSz; 
U16 width, height; 

attributes subject to printer's capabilities 
II in: big, medium or small 
II out: character metrics in pixels 

II transformable attributes: 
II in: (msgPrnLptTextOut) specifies requested font attributes 

II BOOLEAN underline, bold, italic; 
U16 underline, bold, italic; 
II out: (msgPrnGetFontMetrics) tell client what the selected 
II font is capable of 

II BOOLEAN canUnderline, canBold, canltalic; 
U16 canUnderline, canBold, canltalic; 

} PRN_TEXTOUT, *P_PRN_TEXTOUT; 
tdefine prnLPTSmal1 0 I I fontSz 'field above 
tdefine prnLPTMedium 1 
tdefine prnLPTBig 2 
*pragma pack ( ) 



EMBEDWIN.H 

This file contains the API definition for clsEmbeddedWin. 

clsEmbeddedWin inherits from clsGWin. 

Embedded windows provide default functionality for embedding windows, move/copy, selection 
ownership and input target interaction. 

Other Important Files 
ewnew.h contains the API definition for creating embeddedWins. Of particular interest there are 
definitions for: 

• embedded window style (EMBEDDED_WIN_STYLE) 

• embedded window metrics (EMBEDDED_WIN_METRICS) 

• new structs (EMBEDDED_WlN_NEW_ONLY, EMBEDDED_WIN_NEW) 

• selection types (ewSelect ... ) 

• move/ copy modes 

Road Map 
Typical subclasses self send: 

• msgEmbeddedWinBeginMove 

• msgEmbeddedWinBeginCopy 

• several messages defined in xfer.h and sel.h 

Typical subclasses handle: 

• several messages defined in xfer.h and sel.h 

Subclasses that support traversal (see mark.h) probably handle: 

• msgEmbeddedWinShowChild 

Subclasses that manage child windows as part of their data (e.g. text editors) probably handle: 

• msgEmbeddedWinInsertChild 

• msgEmbeddedWinExtractChild 

• msgEmbeddedWinPositionChild 

Subclasses that file information other than instance data (e.g. reference buttons) probably handle: 

• msgEmbeddedWinDestroy 

• msgEmbeddedWinGetDest 

• msgEmbeddedWinForwardedGetDest 



'58 PENPOINT API REFERENCE 
Part 2 / PenPoint Application Framework 

Subclasses that implement sophisticated printing behavior probably handle: 

• msgEmbeddedWinGetPrintlnfo 

Embedding 
When an embeddedWin has style.embeddor true, it can embed all embeddedWins with style.embeddee 

true. It can also have embeddedWins moved or copied into it. Examples of embeddors are (1) cork 

margins, (2) bookshelves, and (3) the main window of most applications. An embeddedWin with 

style.embeddor true also responds to the "link" gesture (xgsDblCircle in xgesture.h) by creating a goto 

button in the window. 

When an embeddedWin has style.embeddee true, the embeddedWin can be embedded, moved and 

copied. Examples of embeddees are (1) icons for an application (2) appWins around an application's 

frame (see appwin.h) and (3) goto buttons (see goto.h). 

Move/Copy Behavior 
The header files sel.h and xfer.h describe PenPoint's move/copy mechanism. You need to understand 

PenPoint's general move/copy mechanism before you'll be able to understand embeddedWin's specific 

use of it. 

clsEmbeddedWin defines a data transfer type, xferEmbeddedWin, and a corresponding data transfer 

protocol. These can be used to move and copy embeddedWins. 

Unlike most PenPoint data transfer protocols, the xferEmbeddedWin protocol is primarily a "push" 

protocol-- the destination sends a message to the source instructing the source to move/copy itself into 

the destination. 

If the source and destination agree to move data using xferEmbeddedWin, the following steps are taken. 

(This discussion assumes that the destination's style.quickMove is true; see section "Move 

Optimizations" for more information.) 

• The destination embeddedWin sends msgEmbeddedWinMove to the source embeddedWin to 

have the source move itself into the destination at pArgs->xy. 

• In response, the source self sends msgEmbeddedWinMoveCopyOK. If the resulting moveOK is 

false, the source returns stsEWSelRefusedMove. 

• If the destination's parent window is the same as selfs parent window, then the source 

embeddedWin "moves" itself by sending msgEmbeddedWinPositionChild to the destination. 

• If self and the destination are in the same process, then the source embeddedWin "moves" itself by 

sending msgEmbeddedWinExtractChild to its parent, and then sending 

msgEmbeddedWinlnsertChild to the destination. 

• If self and the destination are in different processes, then the source embeddedWin "moves" itself 

by (1) using msgCopy to create a copy of itself that is owned by the destination's process, and (2) 

sending msgEmbeddedWinlnsertChild to the destination. Finally the original source 

embeddedWin posts msgEmbeddedWinDestroy to itself. 

Copying data goes through the following steps: 

• The destination embeddedWin sends msgEmbeddedWinCopy to the source embeddedWin to 

have the source copy itself into the destination at pArgs->xy. 



EMBEDWIN.H '159 

• In response, the source self sends msgEmbeddedWinMoveCopyOK. If the resulting copyOK is 
false, the source returns stsEWSelRefusedCopy. 

• The source embeddedWin "copies" itself by (1) using msgCopy to create a copy of itself that is 
owned by the destination's process, and (2) sending msgEmbeddedWinlnsertChild to the 
destination. 

Selection Interaction 
The header file sel.h describes PenPoint's selection mechanism. You need to understand PenPoint's 
general selection mechanism before you can understand embeddedWin's specific use of it. 

clsEmbeddedWin provides default selection management for itself and its subclasses. 

Some objects should take selection ownership via msgSelSetOwner and some should take ownership via 
msgSelSetOwnerPreserve. (See sel.h for complete information, but here's one example: objects in 
pop-up dialog boxes, such as option sheets, should typically take ownership via 
msgSelSetOwnerPreserve. ) 

Rather than having each subclass or instance compute which way to take the selection,embeddedWin 
creators can given an embeddedWin a style.selection value which tells the embeddedWin which 
message to use to take selection ownership. 

Subclasses of clsEmbeddedWin should self send msgSelSelect to take selection ownership rather than 
sending msgSelSetOwner or msgSelSetOwnerPreserve directly to theSelectionManager. 

In response to msgSelSelect, an embeddedWin does the following: 

• If style.selection is ewSelect, the embeddedWin sends msgSelSetOwner to theSelectionManager 
with self as the value of pArgs. 

• If style. selection is ewSelectPreserve, the embeddedWin sends msgSelSetOwnerPreserve to 
theSelectionManager with self as the value of pArgs. 

• If style. selection is ewSelectUknown (the default), the embeddedWin searches up the window 
hierarchy looking for the first window that (1) is an embedded Win and (2) has a style. selection 
other than ewSelectUnknown. The value of that window's style. selection is used. If no ancestor sets 
this bit, or no ancestor is an embeddedWin, the embeddedWin takes the selection via 
msgSelSetOwner. 

In addition to selection ownership message, an embeddedWin provides default responses to several 
other messages defined in sel.h. Details of each response are described with the specific messages later in 
this file. 

Input Target Interaction 
One of Pen Point's VI guidelines is that, in most cases, the selection owner should also be the input 
target. The input target receives keyboard events from the input system. (See sel.h and input.h for more 
information. ) 

While PenPoint as a whole does not enforce a link between selection ownership and the input target, 
clsEmbeddedWin does. As part of its response to msgSelSelect and msgSelPromote, an embeddedWin 
makes itself the input target. 



160 PENPOINT API REFERENCE 

Part 2 / PenPoint Application Framework 

Enabling Move/Copy of the Entire Window 
If you want an entire embeddedWin to be moveable or copyable as a window, then you should set 

style. moveable and style.copyable to true. Also, you should turn on the inputHoldTimeout flag of the 
window's input flags. 

pArgs->win.flags.input 1= inputHoldTimeout; 

Move Optimizations 
By default, an embeddedWin's style.quickMove is true, and the section "Move/Copy Behavior" 

correctly describes what happens during a move. But a client or subclass can set style.quickMove false, 
and thereby defeat the "same parent" and "same process" optimizations. 

#ifndef EMBEDWIN INCLUDED 
#define EMBEDWIN INCLUDED 
#ifndef EMBEDWIN NEW INCLUDED 
#include <ewnew.h> 
#endif 
#ifndef FS INCLUDED 
#include <fs.h> 
#endif 
#ifndef PRINT_INCLUDED 
#include <print.h> 
#endif 

Common #defines and typedefs 

Status Codes 
#define stsEWNoSelection 
#define stsEWSelRefusedMove 
#define stsEWSelRefusedCopy 
#define stsEWSelRefusedLink 
#define stsEWUnrecognizedFormat 
#define stsEWMoveToInvalidLocation 
#define stsEWCopyToInvalidLocation 
#define stsEWNotEmbeddee 
#define stsEWRefusedDelete 

MakeStatus(clsEmbeddedWin, 1) 
MakeStatus(clsEmbeddedWin, 2) 
MakeStatus(clsEmbeddedWin, 3) 
MakeStatus(clsEmbeddedWin, 4) 
MakeStatus(clsEmbeddedWin, 5) 
MakeStatus(clsEmbeddedWin, 6) 
MakeStatus(clsEmbeddedWin, 7) 
MakeStatus(clsEmbeddedWin, 8) 
MakeStatus(clsEmbeddedWin, 9) 

xferEmbeddedWin is the data transfer type clsEmbeddedWin uses to move or copy embeddedWins. 

#define xferEmbeddedWin 

Messages 

msgEmbeddedWinGetMetrics 
Passes back an embeddedWin's metrics. 

MakeTag(clsEmbeddedWin, 1) 

Takes P _EMBEDDED_ WIN_METRICS, returns STATUS. 

#define msgEmbeddedWinGetMetrics MakeMsg(clsEmbeddedWin, 1) 

pArgs->uuid is set if and only if style.embeddee is true. 

See ewnew.h for the definition ofp_EMBEDDED_WIN_METRICS. 



Comments 

EMBEDWIN.H 161 

Move/Copy Protocol Messages 

msgEmbeddedWinGetStyle 
Passes back an embeddedWin's style. 

Takes P _EMBEDDED_WIN_STYLE, returns STATUS. 

*define msgEmbeddedWinGetStyle MakeMsg(clsEmbeddedWin, 2) 

See ewnew.h for the definition ofp_EMBEDDED_WIN_STYLE. 

msgEmbeddedWinSetStyle 
Specifies an embeddedWin's style. 

Takes P _EMBEDDED_WIN_STYLE, returns STATUS. 

*define msgEmbeddedWinSetStyle MakeMsg(clsEmbeddedWin, 3) 

If pArgs->embeddee is true and the embeddedWin's uuid is nil, a uuid is created for the window. 

Clients must not alter the value of style.moveCopyMode. 

See ewnew.h for the definition of P _EMBEDDED_WIN_STYLE. 

Move/Copy Protocol Messages 

Meu@ge 

Arguments 

msgEmbeddedWinBeginMove 
Places an embeddedWin in move mode. 

Takes P _EMBEDDED_ WIN_BEGIN_MOVE_COPY, returns STATUS. 

*define msgEmbeddedWinBeginMove MakeMsg(clsEmbeddedWin, 4) 

typedef struct EMBEDDED_WIN_BEGIN_MOVE_COPY { 
XY32 xy; II x,y in source to begin move/copy. 
RECT32 bounds; II Bounding box of area to move/copy. 
U32 reserved[4]; II Reserved. 

EMBEDDED_WIN_BEGIN_MOVE_COPY, *P_EMBEDDED_WIN_BEGIN_MOVE_COPY; 

An embeddedWin self sends this message to get itself into move mode. This message is usually self sent 

by an embeddedWin as part of the response to msgSelBeginMove if style. moveable is set. 

clsEmbeddedWin responds by creating a move icon (an instance of clsMoveCopylcon). If 

pArgs->bounds is a visible rectangle, the move icon is created with an image of what's displayed in the 

pArgs->bounds rectangle in the embeddedWin. Otherwise a default move icon is displayed centered at 

pArgs->xy. The client of the icon is self. Also style.moveCopyMode becomes ewMoveMode. 

stsRequestDenied The window is already in either ewMoveMode or ewCopyMode 

msgSelBeginMove 

msgEmbeddedWinBeginCopy 
Places an embeddedWin in copy mode. 

Takes P _EMBEDDED_ WIN_BEGIN_MOVE_COPY, returns STATUS. 

*define msgEmbeddedWinBeginCopy MakeMsg(clsErnbeddedWin, 5) 

typedef struct EMBEDDED_WIN_BEGIN_MOVE_COPY{ 
XY32 xy; II x,y in source to begin move/copy. 
RECT32 bounds; II Bounding box of area to move/copy. 
U32 reserved[4]; II Reserved. 

EMBEDDED_WIN_BEGIN_MOVE_COPY, *P_EMBEDDED_WIN_BEGIN_MOVE_COPY; 



162 PENPOINT API REFERENCE 
Part 2 I Pen Point Application Framework 

An embeddedWin self sends this message to get itself into copy mode. This message is usually self sent 

by an embeddedWin as part of the response to msgSelBeginCopy if style.copyable is set. 

clsEmbeddedWin responds by creating a copy icon (an instance of clsMoveCopylcon) .. If 
pArgs->bounds is a visible rectangle, the copy icon is created with an image of what's displayed in the 
pArgs->bounds rectangle in the embeddedWin. Otherwise a default copy icon is displayed centered at 
pArgs->xy. The client of the icon is self Also style.moveCopyMode becomes ewCopyMode. 

stsRequestDenied The window is already in either ewMoveMode or ewCopyMode. 

msgSelBeginCopy 

msgEmbeddedWinMove 
Moves an embeddedWin to the destination. 

#define msgEmbeddedWinMove MakeMsg(clsEmbeddedWin, 6) 

typedef structEMBEDDED_WIN_MOVE_COPY 
XY32 xy; II x,y location in dest. 
OBJECT dest; II Destination object. 
TAG format; II Data transfer format. Must be 

II xferEmbeddedWin. 
OBJECT uid; II out: moved/copied object. 
U32 reserved[2]; II Reserved. 

EMBEDDED_WIN_MOVE_COPY, *P_EMBEDDED_WIN_MOVE_COPY; 

A destination embeddedWin sends this message to a source embeddedWin to have the source 
embeddedWin move itself to the destination. 

See the section "Move/Copy Behavior" for more information. 

stsEWSelRefusedMove The send of msgEmbeddedWinMoveCopyOK returned FALSE for moveOK. 

stsEWMoveTolnvalidLocation window could not be moved to pArgs->dest. 

msgEmbeddedWinProvidelcon 
Asks an embeddedWin to provide the move/copy icon. 

Takes P _EMBEDDED_ WIN_PROVIDE_ICON, returns STATUS. 

#define msgEmbeddedWinProvidelcon MakeMsg(clsEmbeddedWin, 23) 

MESSAGE 
XY32 
RECT32 

msg; 
xy; 
bounds; 

II msgEmbeddedWinMove or msgEmbeddedWinCopy. 
II x,y in source to begin move/copy. 
II Bounding box of area to move/copy. 

OBJECT icon; II out: the icon. 
U32 reserved[4]; II Reserved. 

EMBEDDED_WIN_PROVIDE_ICON, *P_EMBEDDED_WIN_PROVIDE_ICON; 

An embeddedWin's default response is as follows: 

• if pArgs->obounds.size.w and pArgs->bounds.size.h are both greater than zero, then a marquee style 
icon is created using a "snapshot" of the screen image contained in pArgs->bounds. 

• Otherwise, a default move or copy icon is created. 



MessCige 
Arguments 

Arguments 

EMBEDWIN.H 163 
Move/Copy Protocol Messages 

msgEmbeddedWinCopy 
Copies an embeddedWin to the destination. 

Takes P _EMBEDDED_ WIN_MOVE_COPY, returns STATUS. 

#define msgErnbeddedWinCopy MakeMsg(clsErnbeddedWin, 7) 

typedef struct EMBEDDED_WIN_MOVE_COPY 
XY32 xy; II x,y location in dest. 
OBJECT dest; II Destination object. 
TAG format; II Data transfer format. Must be 

II xferErnbeddedWin. 
OBJECT uid; II out: moved/copied object. 
U32 reserved[2]; II Reserved. 

EMBEDDED_WIN_MOVE_COPY, *P_EMBEDDED_WIN_MOVE_COPY; 

A destination embeddedWin sends this message to a source embeddedWin to have the source 

embeddedWin copy itself to the destination. 

See the section "Move/Copy Behavior" for more information. 

stsEWSelRefusedCopy The. send of msgEmbeddedWinMoveCopyOK returned FALSE for copyOK. 

stsEWCopyT oInvaiidLocation window could not be copied to pArgs->dest. 

msgEmbeddedWinMoveCopyOK 
Asks whether it is OK to move or copy an embeddedWin to a destination. 

Takes P _EMBEDDED_ WIN_MOVE_COPY_OK, returns STATUS. 

#define msgErnbeddedWinMoveCopyOK MakeMsg(clsEmbeddedWin, 8) 

typedef struct EMBEDDED WIN MOVE COPY OK { 
BOOLEAN - -moveOK; 17 out: true if ok to move. 
BOOLEAN copyOK; II out: true if ok to copy. 
EMBEDDED_WIN_MOVE_COPY target; II move/copy struct. 

EMBEDDED_WIN_MOVE_COPY_OK, *P_EMBEDDED_WIN_MOVE_COPY_OK; 

A source embeddedWin self sends this message to check that it is OK to move or copy itself to the 
destination. The default response to this message is to fill in pArgs->moveOK with style. moveable and 
pArgs->copyOK with style.copyable. 

See the section "Move/Copy Behavior" for more information. 

stsEWUnrecognizedFormat target. format was not xferEmbeddedWin. 

stsEWNotEmbeddee embeddedWin is not an embeddee. 

msgEmbeddedWinMove 

msgEmbeddedWinGetPenOffset 
Passes back the pen offset during move or copy. 

Takes P _XY32, returns STATUS. 

#define msgEmbeddedWinGetPenOffset MakeMsg(clsErnbeddedWin, 9) 

This message allows the destination of a move or copy to determine the actual pen position relative to 

the lower-left hand corner of the move/copy icon. 

When the user lifts the pen, msgSelBeginMove passes the x,y position of the icon, not the pen. 



164 PENPOINT API REFERENCE 

(orrnm:'iors 

Mii.'%soSjii.' 

Awg!Jmii.'ots 

Part 2 / PenPoint Application Framework 

msgEmbeddedWinGetDest 
Get the destination for embeddedWin move or copy. 

Takes P _EMBEDDED_ WIN_GET_DEST, returns STATUS. 

tdefine msgEmbeddedWinGetDest 
tdefine ewPropCopyDest 

MakeMsg(clsEmbeddedWin, 10) 
MakeTag(clsEmbeddedWin, 1) II Private. 

typedef struct EMBEDDED_WIN_GET_DEST 
XY32 xy; II x,y location in self. 
FS LOCATOR locator; II out: Destination parent app. 
U16 sequence; II out: Sequence in parent. 
char path [fsPathBuf Length]; II Path buffer for locator. 
OBJECT source; II Object to be moved/copied. 
U32 reserved[3]; II Reserved. 

EMBEDDED_WIN_GET_DEST, *P_EMBEDDED_WIN_GET_DEST; 

Some source embeddedWins move or copy more than themselves in response to 
msgEmbeddedWinMove or msgEmbeddedWinCopy. Some also transfer filed information. (For 
instance, reference buttons have to move filed information about the destination of the button.) The 
source sends msgEmbeddedWinGetDest to the destination to get the file system location that the 
destination wants the source to use for this filed information. 

An embeddedWin's default response is to (1) set pArgs->locator to OSThisAppO's locator, (2) set 
pArgs->sequence to 1, and (3) set pArgs->path to the empty string. Then if style.embedForward is true, 
msgEmbeddedWinForwardedGetDest is sent to selfs parent window. 

Corkboard Windows (clsCorkBoardWin; see cbwin.h) are an example of a class that that has a 
non-default response to this message. When an embeddedWin is copied to a cork margin, it may 
represent a ,document, and the source is likely to copy not only the window but also the document files 
to the destination. The cork margin cannot allow the source to copy these files into the directory of the 
cork margin's containing application since then the files would look like they're in the parent application 
-- the wrong place! So in response to msgEmbeddedWinGetDest, a corkboard window appends an 
extra directory level to is ancestor's response to msgEmbeddedWinGetDest. 

msgEmbeddedWinForwardedGetDest 
Get the destination for embeddedWin move or copy. 

Takes P_EMBEDDED_WIN_GET_DEST, returns STATUS. 

tdefine msgEmbeddedWinForwardedGetDest MakeMsg(clsEmbeddedWin, 22) 

typedef struct EMBEDDED_WIN_GET_DEST 
XY32 xy; II x,y location in self. 
FS LOCATOR locator; II out: Destination parent app. 
U16 sequence; II out: Sequence in parent. 
char path [fsPathBuf Length]; II Path buffer for locator. 
OBJECT source; II Object to be moved/copied. 
U32 reserved[3]; II Reserved. 

EMBEDDED_WIN_GET_DEST, *P_EMBEDDED_WIN_GET_DEST; 

If a child embeddedWin's style.embedForward is true, then the child sends 
msgEmbeddedWinForwardedGetDest to the parent to allow the parent to override all or part of the 
child's response to msgEmbeddedWinGetDest. 

An embeddedWin's default response to this message is identical to the default response to 
msgEmbeddedWinGetDest. 



Arguments 

Comments 

Comments 

EMBEDWIN.H 165 
Move/Copy Protocol Messages 

msgEmbeddedWinlnsertChild 
Asks an embeddedWin to insert a child window. 

Takes P _EMBEDDED_ WIN_INSERT_CHILD, returns STATUS. 

*define msgEmbeddedWinInsertChild MakeMsg(clsEmbeddedWin, 11) 

typedef struct EMBEDDED WIN INSERT CHILD 
XY32 XYi //-x,y location in destination. 
OBJECT wini // Window to insert/extract/position. 
OBJECT sourcei // Requestor. 
U32 reserved[4]i // Reserved. 

EMBEDDED WIN INSERT CHILD, *p EMBEDDED WIN INSERT CHILD, 
EMBEDDED=WIN=EXTRACT_CHILD, *P_EMBEDDED_WIN_EXTRACT_CHILD, 
EMBEDDED_WIN_POSITION_CHILD, *P_EMBEDDED_WIN_POSITION_CHILDi 

c1sEmbeddedWin's default response is as follows; this is illustrated in the sample code below. 

• send msgEmbeddedWinGetPenOffset to pArgs->source 

• offset pArgs->xy by the value passed back by msgEmbeddedWinGetPenOffset 

• send msgWinlnsert to pArgs->win with self as the parent. 

XY32 XYi 
WIN METRICS wmi 
ObjSendUpdateRet(msgEmbeddedWinGetPenOffset, pArgs->source, &xy, 

SizeOf(xY))i 
ObjSendUpdateRet(msgWinGetMetrics, pArgs->win, &wm, SizeOf(wm), S)i 
wm.bounds.origin.x = pArgs->xy.x - xy.Xi 
wm.bounds.origin.y = pArgs->xy.y - XY.Yi 
ObjSendRet(msgWinDelta, pArgs->win, &wm, SizeOf(wm), S)i 
wm.options = wsPOSTOPi 
wm.parent = selfi 
ObjSendRet(msgWinInsert, pArgs->win, &wm, SizeOf(wm), S)i 

This message may be sent during a move/copy operation; see the section "Move/Copy Behavior" for 
more information. 

msgEmbeddedWinExtractChild 
Asks an embeddedWin to extract a child window. 

Takes P _EMBEDDED_ WIN_EXTRACT_CHILD, returns STATUS. 

*define msgEmbeddedWinExtractChild MakeMsg(clsEmbeddedWin, 12) 

c1sEmbeddedWin's default response is to ObjectSend msgWinExtract to pArgs->win. 

This message may be sent during a move/copy operation; see the section "Move/Copy Behavior" for 
more information. 

msgEmbeddedWinPositionChild 
Asks an embeddedWin to reposition a child window. 

Takes P_EMBEDDED_WIN_POSITION_CHILD, returns STATUS. 

*define msgEmbeddedWinPositionChild MakeMsg(clsEmbeddedWin, 13) 

c1sEmbeddedWin's default response is as follows; this is illustrated in the sample code below. 

• send msgEmbeddedWinGetPenOffset to pArgs->source 

• offset pArgs->xy by the value passed back by msgEmbeddedWinGetPenOffset 

• self send msgWinDelta. 



166 PENPOINT API REFERENCE 

Part 2 / Pen Point Application Framework 

XY32 xy; 
WIN_METRICS wm; 
ObjSendUpdateRet(msgEmbeddedWinGetPenOffset, pArgs->source, &xy, 

SizeOf (xy) , s); 
ObjSendUpdateRet(msgWinGetMetrics, pArgs->win, &wm, SizeOf(wm), s); 
wm.bounds.origin.x = pArgs->xy.x - xy.x; 
wm.bounds.origin.y = pArgs->xy.y - xy.y; 
ObjSendRet(msgWinDelta, pArgs->win, &wm, SizeOf(wm), s); 

This message may be sent during a move/copy operation; see the section "Move/Copy Behavior" for 

more information. 

Linking Related Messages 

msgEmbeddedWinShowChild 
Display a given area of an embeddedWin to the user 

Takes P_EMBEDDED_WIN_SHOW_CHILD, returns SfATUS. 

fdefine msgEmbeddedWinShowChild 

WIN child; 
UUID childUUID; 
RECT32 area; 

MakeMsg(clsEmbeddedWin, 14) 

II the child directly below 
II its UUID 
II area.to show 

WIN areaWin; 
EMBEDDED_WIN_SHOW_CHILD, 

II window that the area is relative to 
* P_EMBEDDED_WIN_SHOW_CHILD; 

Clients send this message to ask an embeddedWin to show the rectangle pArgs->area to the user, 

scrolling if necessary. 

Note that pArgs->area is relative to pArgs->area Win. Therefore handling this message may involve 

transforming pArgs->area to be relative to self This can be accomplished as follows: 

WIN_METRICS wm; 
wm.bounds = pArgs->area; 
wm.parent = self; 
ObjCallJmp(msgWinTransformBounds, pArgs->areaWin, &wm, s, Error); 

In many cases, subclasses need do nothing; clsScrollWin's response to this message takes care of it all. 

However, if a subclass does its own scrolling, manages embeddees (for example, by not having them 

inserted when off-screen) or uses something other than window coordinates to scroll a scroll window, 

then it needs to respond to this message in the following manner: 

• ensure that child is inserted and delta'd to the correct place (possibly scrolling it into view if needed) 

• transform the rect to the child (remember: it may be in some nested window) 

• scroll as needed to get that rect into view. 

• call ancestor. 

clsEmbeddedWin's default response is to set pArgs->child to self, set pArgs->childUUID to self's UUID 

and ObjectSend the message to its parent. 



EMBEDWIN.H 167 
Messages Defined in clsmgr.h 

Other Messages 

Comments 

Comments 

msgEmbeddedWinSetUUID 
Specifies an embeddedWin's uuid. 

Takes P _UUID, returns STATUS. 

tdefine msgEmbeddedWinSetUUID MakeMsg(clsEmbeddedWin, 19) 

Gives an embeddedWin a VUID, if style.embeddee is true. 

msgEmbeddedWinDestroy 
Permanently destroys an embeddedWin. 

Takes OBJ_KEY, returns STATUS. 

tdefine msgEmbeddedWinDestroy MakeMsg(clsEmbeddedWin, 20) 

This message is sent to an embeddedWin in response to msgSelDelete, or as the last step of 
msgEmbeddedWinMove. This message is different from msgDestroy in that this message is sent when 
the embeddedWin is being permanently destroyed and will never be restored. (msgDestroy is sent when 
the embeddedWin is being destroyed but may be restored later.) 

Any subclasses that file data to maintain information as part of their embedding behavior should free 
that data in response to this message. They should not free that data in response to msgDestroy. 

clsEmbeddedWin's default response is as follows: 

• if style.deleteable is false, return stsEWRefusedDelete. 

• Send msgEmbeddedWinDestroy to any child embeddedWins that are in the same task. 

• Self send msgDestroy. 

msgEmbeddedWinGetPrindnfo 
Passes back an embeddedWin's print information. 

Takes P _EMBEDDEE_PRINT_INFO, returns STATUS. 

tdefine msgEmbeddedWinGetPrintlnfo MakeMsg(clsEmbeddedWin, 21) 

This message gives subclasses an opportunity to support more advanced printing of embeddedWins. 

clsEmbeddedWin's default response is to set all fields in *pArgs to O. 

Messages Defined in clslllgr.h 

msgFree 
Defined in clsmgr.h. 

Takes OBJ_KEY, returns STATUS. 

msgSave 
Defined in clsmgr.h. 

Takes P_OBJ_SAVE, returns STATUS. 

clsEmbeddedWin saves the embeddedWin's style and VUID. 



168 PENPOINT API REFERENCE 
Part 2 / PenPoint Application FrameworK 

msgRestore 
Defined in clsmgr.h. 

Takes P _OBJ_RESTORE, returns STATUS. 

clsEmbeddedWin restores the embeddedWin's style and UUID. 

Messages Defined in xfer.h and sel.h 

Comments 

Comments 

msgXferList 
Defined in xfer.h. 

Takes OBJECT, returns STATUS. 

This message is sent to an object to ask it to provide the list of data transfer types it can provide. 

clsEmbeddedWin's default response is to add the transfer type xferEmbeddedWin to the end of the list. 

msgSelMoveSelection 
Defined in sel.h. 

Takes P _XY32 , returns STATUS. 

This message is sent to an object to ask it to move the selection to itself 

See the section "Move/Copy Behavior" for more information. 

stsRequestForward embeddedWin is not an embeddor. 

stsEWSelRefusedMove destination embeddedWin refused the move. 

stsEWNoSelection No selection exists in the system. 

msgSelCopySelection 
Defined in sel.h. 

Takes P _XY32, returns STATUS. 

This message is sent to an object to ask it to copy the selection to itself. 

See the section "Move/Copy Behavior" for more information. 

stsRequestForward embeddedWin is not an embeddor. 

stsEWSelRefusedCopy destination embeddedWin refused the copy. 

stsEWNoSelection No selection exists in the system. 

msgSelRememberSelection 
Defined in sel.h. 

Takes P _XY32, returns STATUS. 

Self sent by an emheddedWin in response to the Circle-Tap gesture. 

clsEmbeddedWin's default response is to 

• create a reference button 

• insert the button by self sending msgEmbeddedWinlnsertChild. 



Comment's 

Comments 

Comments 

Comments 

EMBEDWIN.H 169 

Messages Defined in xfer.h and sel.h 

stsRequestForward The window is not an embeddor. 

stsEWNoSelection No selection exists. 

msgSelSelect 
Defined in seLh. 

Takes nothing, returns STATUS. 

See the section "Selection Interaction" for a description of an embeddedWin's response to msgSelSelect. 

msgSelPromote 
Defined in seLh. 

Takes nothing, returns STATUS. 

clsEmbeddedWin's default response is to become the input target by calling InputSetTarget (see 
input. h) with self as the target. 

msgSelYield 
Defined in seLh. 

Takes BOOLEAN, returns STATUS. 

clsEmbeddedWin's default response is to return stsOK. 

msgSelIsSelected 
Defined in seLh. 

Takes nothing, returns BOOLEAN. 

stsOK self is the selection owner. 

other self is not the selection owner. (Note that self may be the preserved selection owner.) 

msgSelDelete 
Defined in seL h. 

Takes U32, returns STATUS. 

See seLh for a complete description of when this message is sent. Typically, an embeddedWin receives 
this message because the destination of the move is deleting the source. 

embeddedWin's default response is to self send msgEmbeddedWinDestroy. 

msgSelBeginMove 
Defined in sel.h. c 

Takes nothing, returns STATUS. 

See seLh for a complete description of when this message is sent. 

clsEmbeddedWin's default response is to self send msgEmbeddedWinMove. 

stsRequestDenied the embeddedWin is already in move or copy mode. 



170 PENPOINT API REFERENCE 
Part 2 I PenPoint Application Framework 

msgSelBeginCopy 
Defined in sel.h. 

Takes nothing, returns STATUS. 

See sel.h for a complete description of when this message is sent. 

clsEmbeddedWin's default response is to self send msgEmbeddedWinCopy. 

stsRequestDenied the embeddedWin is already in move or copy mode. 

Other Messages 

msgIconProvideBitmap 
Defined in icon.h. 

Takes P _ICON_PROVIDE_BITMAP, returns STATUS. 

An embeddedWin receives this message from a move/copy icon (since the embeddedWin is the icon's 
client.) 

clsEmbeddedWin's default response is to forward the message to OSThisAppO. 

msgMoveCopyIconDone 
Defined in mcicon.h. 

Takes OBJECT, returns STATUS. 

An embeddedWin receives this message when a move/copy icon completes. (The move/copy icon 
completes when it dropped on some destination window.) 

clsEmbeddedWin's default response is to send msgSeIMoveSelection or msgSelCopySelection (as 
appropriate) to the destination window. 

msgMoveCopyIconCancel 
Defined in mcicon.h. 

Takes OBJECT, returns STATUS. 

An embeddedWin receives this message when a move/copy icon is canceled. clsEmbeddedWin's default 
response is to take itself out of move/copy mode (by setting self's style.moveCopyMode to 
ewMoveCopyModeOff). 

msgTrackProvideMetrics 
Defined in track.h. 

Takes P_TRACK_METRICS, returns STATUS. 

An embeddedWin receives this message from the move/copy icon's tracker. (The tracker can be 
recognized as the move/copy icon's tracker because pArgs->tag will be tagMoveCopylconTrack.) 

Subclasses can handle this message by repositioning the tracker (and therefore the move/copy icon) 
relative to the pen. This is done by modifying pArgs->initRect. Typically you do not call the ancestor in 
such cases. For instance, PenPoint's text component "jumps" the icon so that the pen is at the vertical 
center of the left edge of the icon by using code similar to the following: 



MsgHandlerArgType(SomeViewTrackProvideMetrics, P_TRACK_METRICS) 
{ 

if (pArgs->tag == tagMoveCopylconTrack) { 
pArgs->initRect.origin = pArgs->origXY; 
pArgs->initRect.origin.y -= pArgs->initRect.size.h/2; 
return stsOK; 

else { 
return ObjectCallAncestorCtx(ctx); 

EMBEDWIN.H 171 
Other Messages 





EWNEW.H 

This file contains the API definition for creating embedded windows. 

See embedwin.h for information. Essentially all of the documentation is in embedwin.h. 

#ifndef EWNEW INCLUDED 
*define EWNEW INCLUDED 
#ifndef GWIN_INCLUDED 
#include <gwin.h> 
#endif 
*ifndef UUID INCLUDED 
*include <uuid.h> 
#endif 

Common #defines and typedefs 

EmbeddedWin Selection Types 
Use one of these values in an embeddedWin's style.selection. 

See the section "Selection Interaction" in embedwin.h for a description of each of these values. 

#define ewSelectUnknown 

#define ewSelect 
#define ewSelectPreserve 

Move/Copy Modes 

o II take selection based on parent 
II embeddedWin's style.selection 

1 II take selection via msgSelSetOwner 
2 II take selection via 

II msgSelSetOwnerPreserve 

These are the possible values for style.moveCopyMode. The mode is set while an embeddedWin is 
involved in a move/copy. Clients and subclasses must NOT alter the value of this field. 

#define ewMoveCopyModeOff 0 
*define ewMoveMode 1 
*define ewCopyMode 2 

Embedded Window Style 
typedef struct EMBEDDED WIN STYLE { 

U16 embeddor - :-1; II Allow embedding. Causes response to 
II msgGWinGesture, msgEmbeddedWinMove, 
II and msgEmbeddedWinCopy. See section 
II "Embedding." 

U16 embeddee 1; II Can be embedded. Causes embeddedWin to 
II generate UUID. See section "Embedding." 

U16 selection 2; II Selection style. Most clients use 
II ewSelectUnknown. See section "Selection 
II Interaction." 

U16 moveable 1; II embeddedWin is moveable. Responds 
II to msgSelBeginMove by self sending 
II msgEmbeddedWinBeginMove. 

U16 copyable 1; II embeddedWin is copyable. Responds 
II to msgSelBeginCopy by self sending 



174 PENPOINT API REFERENCE 
Part 2 I Pen Point Application Framework 

II msgErnbbeddedWinBeginCopy. 
U16 moveCopyMode 2; II Current move/copy mode. Clients must not 

II set this field. 
U16 deletable 1; II Destroy in response to msgEWDestroy? 
U16 moveCopyContainer 1; II Private 
U16 ernbedForward 1; II See comments with msgErnbeddedWinGetDest 

II and msgErnbeddedWinForwardedGetDest. 
U16 quickMove 1; II Use optimizations when moving windows 

II within a common parent or within a common 
II process. True by default. See section 
II "Move Optimizations." 
II msgErnbeddedWinExtract/InsertChild. 

U16 reserved : 4; II Reserved for future use. 
U16 reserved2 : 16; II Reserved for future use. 

EMBEDDED_WIN_STYLE, *P_EMBEDDED_WIN_STYLE; 

Embedded Window Metrics 

Comments 

Mess@£je 

Arguments 

Passed back from msgEmbeddedWinGetMetrics. 

typedef struct EMBEDDED_WIN_METRICS 
UUID uuid; II Defined if style.ernbeddee is true. 
EMBEDDED WIN STYLE style; 

EMBEDDED_WIN_METRICS, *P_EMBEDDED_WIN_METRICS; 

msgNew 
Creates a new emheddedWin object. 

Takes P _EMBEDDED_ WIN_NEW, returns STATUS. Category: class message. 

typedef struct EMBEDDED_WIN_NEW_ONLY 
UUID uuid; 
EMBEDDED_WIN_STYLE style; 
U32 reserved[4]; 

EMBEDDED_WIN_NEW_ONLY, *P_EMBEDDED_WIN_NEW_ONLY; 
#define ernbeddedWinNewFields \ 

gWinNewFields \ 
EMBEDDED_WIN_NEW_ONLY ernbeddedWin; 

typedef struct EMBEDDED_WIN_NEW { 
ernbeddedWinNewFields 

} EMBEDDED_WIN_NEW, *P_EMBEDDED_WIN_NEW; 

If style.embeddor is true, ohjCapCreate is set in object. cap. If the passed in uuid is nil, and the object is 
an embeddee, a uuid is created. 

msgN ewDefaults 
Initializes the EMBEDDED_WIN_NEW structure to default values. 

Takes P _EMBEDDED_WIN_NEW, returns STATUS. Category: class message. 

typedef struct EMBEDDED_WIN_NEW { 
ernbeddedWinNewFields 

} EMBEDDED_WIN_NEW, *P_EMBEDDED_WIN_NEW; 

Zeros out pNew->embeddedWin and then executes the following: 

win.flags.style 1= wsSendFile 
MakeNilUUID(pArgs->ernbeddedWin.uuid); 
pArgs->ernbeddedWin.style.deletable = true; 
pArgs->ernbeddedWin.style.quickMove = true; 



GOTO.H 

MCSS©9® 

Ar9IJmcnts 

This file contains the API definition for clsGotoButton. 

clsGotoButton inherits from clsButton. 

Provides links to other documents. 

A Goto Button is a Button associated with a Mark object. When the Goto Button is tapped, the data 
pointed to by the Mark are brought into view. Note that Goto Buttons are called Reference Buttons in 
the PenPoint User Interface. 

fifndef GOTO_INCLUDED 
fdefine GOTO INCLUDED 
fifndef BUTTON_INCLUDED 
finclude <button.h> 
fendif 
fifndef MARK_INCLUDED 
finclude <mark.h> 
fendif 
typedef OBJECT GOTO_BUTTON, *P_GOTO_BUTTON; 
fdefine qhGotoButton MakeTag(clsGotoButton, 1) 

msgNew 
Creates a new Goto Button object. 

Takes P _ GOTO_BUTTON_NEW, returns STATUS. Category: class message. 

typedef struct GOTO_BUTTON_NEW_ONLY { 
MARK mark; II the mark of the button, or objNull 
MARK NEW markNew; II New structure used to create a mark 
U32 reserved[2]; II Reserved. 

GOTO_BUTTON_NEW_ONLY, *P_GOTO_BUTTON_NEW_ONLY; 
fdefine gotoButtonNewFields \ 

buttonNewFields \ 
GOTO_BUTTON_NEW_ONLY gotoButton; 

typedef struct GOTO_BUTTON_NEW 
gotoButtonNewFields 

} GOTO_BUTTON_NEW, *P_GOTO_BUTTON_NEW; 

You can pass in the exact mark object that you want the Goto Button to use, or simply set up the 
markNew structure and let the Goto Button create its own mark. 

msgNewDefaults 
Initializes a GOTO_BUTTON_NEW structure. 

Takes P_GOTO_BUTTON_NEW, returns STATUS. Category: class message. 

typedef struct GOTO_BUTTON_NEW { 
gotoButtonNewFields 

GOTO_BUTTON_NEW, *P_GOTO_BUTTON_NEW; 



176 PEN POINT API REFERENCE 
Part 2 I PenPoint Application Framework 

clsGoto sets up the structure so that the Goto Button will create its own mark for the selection. The 
mark will be document relative because of the setting of the markForSelection and markDocRelative 
flags in the markNew structure. 

Zeroes out pArgs~>gotoButton and sets 

pArgs->win.flags.input 
pArgs->gWin.helpld 
pArgs->embeddedWin.style.embeddee 
pArgs->embeddedWin.style.moveable 
pArgs->embeddedWin.style.copyable 
pArgs->embeddedWin. style. selection 
pArgs->label.scale 

1= inputHoldTimeout; 
= qhGotoButton; 
= true; 
= true; 
= true; 

ewSelect; 
= lsScaleMedium; 

ObjectCall(msgNewDefaults, clsMark, &(pArgs->gotoButton.markNew)); 
pArgs->gotoButton.markNew.mark.flags 1= markForSelection 

1 markDocRelative 
1 markRelaxActivate; 

msgGotoButtonGetMark 
Passes back the mark object being used by a Goto Button. 

Takes P _MARK, returns STATUS. Category: class message. 

fdefine msgGotoButtonGetMark MakeMsg(clsGotoButton, 1) 

msgGotoButtonGotoLink 
Jumps to the mark being used by a Goto Button. 

Takes BOOLEAN, returns STATUS. 

fdefine msgGotoButtonGotoLink MakeMsg(clsGotoButton, 3) 

If pArgs is true, turn to the document; if pArgs is false, float the document. 

msgGotoButtonDeleteLink 
Deletes a Goto Button link. 

Takes nothing, returns STATUS. 

fdefine msgGotoButtonDeleteLink 

msgGotoButtonLinkT oSelection 
Links a Goto Button to the selection. 

Takes nothing, returns STATUS. 

fdefine msgGotoButtonLinkToSelection 

msgGotoButtonEditLabel 
Allows the user to edit a Goto Button's label. 

Takes nothing, returns STATUS. 

fdefine msgGotoButtonEditLabel 

MakeMsg(clsGotoButton, 4) 

MakeMsg(clsGotoButton, 5) 

MakeMsg(clsGotoButton, 7) 



msgGotoButtonPressed 
Sent to observers when a Goto Button has been executed. 

Takes OBJECT, returns STATUS. 

idefine msgGotoButtonPressed 

pArgs is the button that was pressed. 

msgGotoButtonResetLabel 

MakeMsg(clsGotoButton, 6) 

Causes a Goto Button to reset its label based on the thing it points to. 

Takes nothing, returns STATUS. 

idefine msgGotoButtonResetLabel MakeMsg(clsGotoButton, 2) 

GOTO.H 177 

This message is self sent at object new time, and generally should never be resent as it destroys any 
editing the user has done. 

msgGotoButtonGetLabel 
Sent to the component containing the marked selection when the Goto Button's label is reset. 

Takes P _GOTO _BUTTON_GET _LABEL, returns STATUS. 

idefine msgGotoButtonGetLabel MakeMsg(clsGotoButton, 8) 

typedef struct GOTO_BUTTON_GET_LABEL 
MARK_MSG_HEADER header; 
U32 bufLen; 
P CHAR pBuf; 

GOTO_BUTTON_GET_LABEL, * P_GOTO_BUTTON_GET_LABEL; 

Components that support Goto Buttons should fill in the buffer (*pBuf) with the label to use. If you 
don't support this message, then clsGoto will try msgSRGetChars to get the characters pointed to by the 
mark. 

msgGotoButtonRePosition 
Sent to the component conataining the mark to request possible re-positioning for the Goto Button .. 

Takes P _MARK_MESSAGE, returns STATUS. 

idefine msgGotoButtonRePosition MakeMsg(clsGotoButton, 9) 

This message is sent when a component wants the Goto Button to end up pointing at a child and not 
itself. To do this the component returns stsMarkEnterChild to this message, and then the Goto Button 
will send msgMarkGetChild to re-position the mark at the child (but not actually enter it). Most clients 
that support Goto Buttons ignore this message. 





ICONWIN.H 

This file contains the API definition for clslcon Win. 

clslconWin inherits from clsTkTable. 

Icon windows are windows that contain a number of embedded windows. 

Icon windows can manage their children icons to give them uniform appearance and layout. Icon 
windows can also force their icons to open floating, and they can deny the ability of users to set icon 
options. Examples of icon window subclasses are the Bookshelf, Accessories, and the Cork Margin. 

#ifndef ICONWIN_INCLUDED 
#define ICONWIN_INCLUDED 

#ifndef TKTABLE_INCLUDED 
#include <tktable.h> 

#endif 

Common #defines and typedefs 

Icon Window Style 
This structure defines the various icon window styles. The fields are as follows: 

• iconType What appearance to give the icons. The values for this field are defined in 
appwin.h, and are things like awPictAndTide (large icon over label), awPictOnly (large icon), 
awSmallPictAndTide (small icon to the left of a label), awSmallPictOnly (small icon), and 

awSmallPictOverTide (small icon over label). 

• propagatelconType If this field is true, all icons in the icon window are forced to have the same 
iconType. If the user changes one icon's iconType, all icons in the icon window will change to 
match. 

• allowOpenInPlace If this field is true, documents will be able to open inside the icon window. If 
false, documents will always open floating. 

• constrainedLayout If this field is true, the icon window will arrange icons into neat rows and 
columns. An icon dragged to a new location in the icon window will be "snapped" into place. If this 

field is false, icons are left where they're dropped. 

• showOptions If this field is true, users may make the check gesture over an icon in the icon 
window to bring up the icon option sheet. If it is false, the check gesture will be rejected. 

typedef struct ICON_WIN_STYLE { 
U16 iconType 4; II Use AppWin icon types (see appwin.h). 
U16 propagatelconType 1; II True = all icons in win are same type. 
U16 allowOpenlnPlace 1; II False= always open floating. 
U16 constrainedLayout 1; II True = line up icons in rows & columns. 
U16 showOptions 1; II True = allow option sheet display. 
U16 reserved 8; II Reserved. 

ICON_WIN~STYLE, *P_ICON_WIN_STYLE; 



'80 PENPOINT API REFERENCE 
Part 2 / PenPoint Application Framework 

Messages 

Mess@ge 
ArgMmeftfS 

msgNew 
Creates a new icon window. 

Takes P _ICON_ WIN_NEW, returns STATUS. Category: class message. 

typedef struct ICON_WIN_NEW_ONLY 
ICON_WIN_STYLE style; 
U32 reserved[4]; 

ICON_WIN_NEW_ONLY, *P_ICON_WIN_NEW_ONLY; 
#define iconWinNewFields \ 

tkTableNewFields \ 
ICON_WIN_NEW_ONLY iconWin; 

typedef struct ICON_WIN_NEW 
iconWinNewFields 

} ICON_WIN_NEW, *P_ICON_WIN_NEW; 

msgN ewDefaults 
Initializes the ICON_WIN_NEW structure to default values. 

Takes P_ICON_WIN_NEW, returns STATUS. Category: class message. 

typedef struct ICON_WIN_NEW { 
iconWinNewFields 

} ICON_WIN_NEW, *P_ICON_WIN_NEW; 

Zeroes out pArgs->icon Win and sets 

pArgs->win.flags.style 
pArgs->win. flags. style 
pArgs->win.flags.style 
pArgs->win.flags.style 
pArgs->win.flags.style 
pArgs->gWin.style.grabDown 
pArgs->embeddedWin.style.embeddor 
pArgs->tableLayout.style.tblXAlignment 
pArgs->tableLayout.style.tblYAlignment 
pArgs->tableLayout.style.childXAlignment 
pArgs->tableLayout.style.childYAlignment 
pArgs->tableLayout.style.growChildWidth 
pArgs->tableLayout.style.growChildHeight 
pArgs->tableLayout.style.placement 
pArgs->tableLayout.style.senseOrientation 
pArgs->tableLayout.style.reverseX 
pArgs~>tableLayout.style.reverseY 

pArgs->tableLayout.numRows.constraint 
pArgs->tableLayout.numCols.constraint 
pArgs->tableLayout.rowHeight.constraint 
pArgs->tableLayout.rowHeight.gap 
pArgs->tableLayout.colWidth.constraint 
pArgs->tableLayout.colWidth.gap 
pArgs->iconWin.style.iconType 
pArgs->iconWin.style.propagateIconType 
pArgs->iconWin.style.allowOpenInPlace 
pArgs->iconWin.style.constrainedLayout 

&= ~wsShrinkWrapWidth; 
&= ~wsShrinkWrapHeight; 
1= wsCaptureGeometry; 
1= wsClipChildren; 
1= wsHeightFromWidth; 
= false; 
= true; 
= tlAlignLeft; 
= tlAlignBottom; 
= tlAlignCenter; 
= tlAlignCenter; 
= false; 
= false; 
= tlPlaceRowMajor; 
= false; 
= false; 
= true; 
= tlInfinite; 
= tlMaxFiti 
= tlGroupMaxi 
= 2i 
= tlGroupMaxi 

3; 
awSmallPictAndTitlei 
falsei 
false; 

= true; 

If the environment variable "ICONWIN.SHOWOPTIONS" is set, 

pArgs-> icon Win.style.showOptions is set to true, otherwise false. 



Comments 

Message 
Arguments 

Message 
Arguments 

ICONWIN.H '8' 

msglcon WinGetMetrics 
Passes back an icon window's metrics. 

#define msgIconWinGetMetrics 

typedef struct ICON_WIN_METRICS 
ICON_WIN_STYLE style; 
U32 reserved[4]; 

ICON_WIN_METRICS, *P_ICON_WIN_METRICS; 

Messages 

MakeMsg(clsIconWin, 1) 

Since the icon window metrics structure currently contains no information other than the icon window 
style, use msglcon WinGetStyle instead of this message. 

msglcon WinGetStyle 
Passes back an icon window's style. 

Takes P _ICON_WIN_STYLE, returns STATUS. 

#define msgIconWinGetStyle 

typedef struct ICON_WIN_STYLE 

MakeMsg(clsIconWin, 2) 

U16 iconType 4; II Use AppWin icon types (see appwin.h). 
U16 propagateIconType 1; II True = all icons in win are same type. 
U16 allowOpenInPlace 1; II False= always open floating. 
U16 constrainedLayout 1; II True = line up icons in rows & columns. 
U16 showOptions 1; II True = allow option sheet display. 
U16 reserved 8; II Reserved. 

ICON_WIN_STYLE, *P_ICON WIN STYLE; 

msglcon WinSetStyle 
Specifies an icon window's style. 

Takes P _ICON_WIN_STYLE, returns STATUS. 

#define msgIconWinSetStyle 

typedef struct ICON_WIN_STYLE 

MakeMsg(clsIconWin, 3) 

U16 iconType 4; II Use AppWin icon types (see appwin.h). 
U16 propagateIconType 1; II True = all icons in win are same type. 
U16 allowOpenInPlace 1; II False= always open floating. 
U16 constrainedLayout 1; II True = line up icons in rows & columns. 
U16 showOptions 1; II True = allow option sheet display. 
U16 reserved 8; II Reserved. 

ICON_WIN_STYLE, *P_ICON_WIN_STYLE; 





MARK.N 

dsMark 

dsMark inherits from dsObject. 

dsMark provides a path to interact with data in other, possibly nested, components. It is used by Goto 
Buttons, Search/Replace, and Spell. 

goto.h, sr.h 

Overview 
PenPoint allows parts of the system, such as search and replace, spell checking and reference buttons, to 
operate and refer to data in any document or nested embedded documents. This generic reference to 
data is done with clsMark. In order for dsMark to work, applications must support the client side of 
dsMark's protocol and the client side of the various system protocols (which are described elsewhere, 
specifically in sr.h and goto.h). 

What follows describes in more detail how dsMark relates to the rest of PenPoint. You may wish to skip 
ahead to the Example and/or Quick Start sections and refer back to here later. 

In PenPoint, the data that make up a document are held in one or more 'components'. Typically these 

components are descendants of dsEmbeddedWin. Alternatively, your descendant of dsApp might hold 
all the data. In either case the individual pieces of data (individual words in a text component, shapes in 
a drawing component, etc.) are only accessible via the component object. No other object knows how 
the data is actually stored and the data are not usually accessible as objects outside the component. 

There are times, however, when these individual data items need to be manipulated from outside of your 
application. Goto buttons, for example, allow a user to create a link to such a data item, and later turn 
back to it. Search & Replace, which is driven by a PenPoint supplied manager, needs to access successive 
pieces of text in both your application and doc4ments embedded within you. 

An instance of dsMark, (from now on, simply' a mark' ,) is a reference to a data item in a component. 
We call this data item the 'target' as it is this data item that a Goto button or Search is really interested 

in, not the component that contains it. The object that uses the mark is called the 'holder' of the mark. 
A mark may be persistent or temporary. In the former case, once established a mark will remain valid 

across document shut-downs and re-boots. In the latter, the mark is valid only so long as the component 
remains active. 

In order to support marks a component must create a mapping between the two U32s, or 'token', that a 
mark holds and its data items. For example, a data base might use this to hold a record number. 
Remember that the mark might persist beyond a single operation. Therefore, a text editor would NOT 
use these U32s to be a character position. This is because if a mark is created for a word, and then text is 
deleted before the word, the desired action is for the mark to still refer to the word which has now 
moved in character position. Remember: once a mark has been created for a piece of data, there is no 
way for the component to update the token it has given for it. 



184 PENPOINT API REFERENCE 
Part 2 / PenPoint Application Framework 

An Example 
The process of using a mark is best illustrated by the Search & Replace mechanism in PenPoint: 

Search/Replace, Spelling, etc. use the mark mechanism to traverse the contents of applications. All 
applications that allow themselves to be searched, spelled or printed support the component half of this 
protocol. Implementors of new functionality similar to Search/Replace, Spell, or Print must implement 
the driver half of the protocol. 

When the user selects Find from the Edit menu, the Search Manager responds by displaying an option 
sheet and by creating a mark which initially points to the document the user is working in. 

As the user requests find and replace operations, the Search Manager calls the mark with 
msgMarkDeliver with arguments specifying the clsSR messages it wants sent to the component. In turn, 
the mark sends those messages, along with its own messages to the component and, if requested, each 
nested component. It is these messages that a client must implement. (The clsMark messages are 
described in this file, the clsSR messages are in sr.h.) 

After the component performs the request find and/or replace, the status is passed back all the way to 
the Search Manager which lets the user know. Note that the messages to hilite and select the found text 
are also passed from the Search Manager to the component this way. 

Quick Start 

How to be a Client that\ Supports Marks 
1) You must decide how to refer to the data items in the component via tokens. There are several 
considerations: How will you treat marks that survive save & restore? How will the mark be affected by 
edit operations? What is the ordering of data items (even if the data items have no intrinsic ordering, 
you will still need a way to enumerate over them in some serial order)? Do you inherit markable data 
from your ancestor that you don't take care of. 

2) Support the basic messages: 

• msgMarkCreateT oken 

• msgMarkDeleteT oken (if necessary) 

• msgMarkGetDataAncestor 

3) For a component that can be traversed, support the following. These are typically very easy to 

implement, and all markable components should support them. 

• . msgMarkPositionAtEdge 

• msgMarkPositionAtToken 

• msgMarkCompareTokens 

4) If the component has a graphical view of the data, support the following. This allow Goto Buttons to 

work (first three messages) and the Search & Replace and Spell gestures to work (last message). 

• msgMarkShow Target 

• msgMarkSelectT arget (if it can hold the selection) 

• msgMarkPositionAtSelection (if it can hold the selection) 

• msgMarkPositionAtGesture (if it can target gestures to data) 



MARK.H 185 
Quick Start 

5) If the component has any text as data, support the following. These support the text side of both 
Search & Replace and Spell. They are also used by reference buttons. See sr.h for a description of these 
messages. 

• msgSRNextChars 

• msgSRGetChars 

• msgSRPositionChars 

• msgSRReplaceChars (if replacement is possible) 

6) If your component manages its own embedees, support: 

• msgMarkPositionAtChild 

• msgMarkNextChild 

• msgMarkGetChild 

7) If you component is not a descendant of dsEmbeddedWin or dsApp then it must support the 
following messages: 

• msgMarkGetParent 

• msgMarkGetUUIDs 

How to be a Driver that Uses Marks 
1) Send msgNewDefaults and msgNew to clsMark. This creates the initial mark and sets up the 
component for the mark. 

2) Send the appropriate msgMarkPosition ... message. This sets the mark at the place where you want it. 
You are free to define new kinds of positioning messages, so long the components you work with 
support them. As a back-up, you should always be prepared to deal with stsMsgNotUnderstood as a 
response from a message sent to a component. In that case, do the default action (try 
msgMarkPositionAtEdge) . 

3) If you need to manipulate the mark, send messages via msgMarkDeliver, msgMarkDeliverPos, 
and/or msgMarkDeliverNext. These will instruct the component to take the appropriate action on the 
target and the mark. Again, be prepared to deal with stsMsgNotUnderstood. Try to use standardized 
messages, such as msgSRNextChars, when your specific ones fail. Remember: an embedded document 
may not know the protocol the enclosing document does and vice versa. 

4) You can file and unfile the mark as you would with any other object. The mark will remain connected 
to the target. Note that once a mark has been filed it is now permanent; this will likely consume 

resources at the component that has the target. 

5) Send msgDestroy to the mark when you are done with it. 

#ifndef MARK INCLUDED 
#define MARK_INCLUDED 1 
#ifndef GO_INCLUDED 
#include <go.h> 
#endif 
#ifndef UUID_INCLUDED 
#include <uuid.h> 
#endif 
#ifndef GWIN_INCLUDED 
#include <gwin.h> 
#endif 



186 PENPOINT API REFERENCE 
Part 2 I PenPoint Application Framework 

Statuses 
4tdefine stsMarkNoUUIDs MakeStatus(clsMark, 1) 
4tdefine stsMarkRedirectMark MakeStatus(clsMark, 2) 
4tdefine stsMarkNoWin MakeStatus(clsMark, 3) 
4tdefine stsMarkNoComponent MakeStatus(clsMark, 4) 
4tdefine stsMarkComponentsDiffer MakeWarning(clsMark, 10) 
4tdefine stsMarkTokensEqual MakeWarning(clsMark, 11) 
4tdefine stsMarkTokenAfter MakeWarning(clsMark, 12) 
4tdefine stsMarkTokenBefore MakeWarning(clsMark, 13) 
4tdefine stsMarkEnterChild MakeWatning(clsMark, 20) 
4tdefine stsMarkRetry MakeWarning(clsMark, 21) 
4tdefine stsMarkSkipChild MakeWarning(clsMark, 22) 
4tdefine stsMarkNotActive MakeWarning(clsMark, 23) 

Common #defines and Types 
typedef OBJECT MARK, * P _MARK; 
typedef struct MARK_TOKEN { 

CLASS classLevel; 
U32 index; 

II which class level is the data at 
II index to the data item 

U32 index2; II secondary index if needed 
MARK_TOKEN, * P _MARK_TOKEN; 

typedef struct MARK COMPONENT 
UUID appUUlD; 
UUlD compUUlD; 
UlD compUlD; 

MARK_COMPONENT, * P_MARK_COMPONENT; 

MARK_FLAGS 

These flags are used when creating a mark. They indicate what kind of mark is to be created. 

markDocRelative makes the mark save its component reference relative to OSThisApp. This means 
that if the mark is saved, and both the document that contains the mark and the document it refers 
to are copied in a single operation, the new set will refer to within itself correctly. This is what goto 
buttons do. 

markForSelection automatically positions the mark at the selection, including finding out who the 
selection holding component is. If you set this, then you don't need to set any other fields in the 
new struct. 

markAlwaysDelete once a mark has been saved, it remembers that it can never delete the token 
because it has no idea how many copies of the file it was saved in have been made. This flag forces 
marks to always delete the token no matter what. If you manage the reference of this mark and you 
can guarantee that what ever happens to the saved mark happens to the component it refers to, then 
set this flag. 

markRelaxActivate this keeps a mark from activating the component on entering and exiting. If the 
component isn't active on entering, it will be skipped if possible or it will be referred to in its 
entirety. If the component is not active 'On exiting, then it will miss the delete token message. Note 
that this can cause resource leaks at the expense of keeping the VI snappy. This takes precedence 
over markAlwaysDelete. 

typedef U32 MARK_FLAGS, * P_MARK_FLAGS; 
4tdefine markDocRelative 
4tdefine markForSelection 
4tdefine markAlwaysDelete 
4tdefine markRelaxActivate 
typedef U16 MARK_MS G_F LAGS , 

flag1 II if saved, document relative 
flag2 II make mark for the selection 
flag3 II if you manage the destination 
flag4 II don't always activate 
* P_MARK_MSG_FLAGS; 



MARK.H '87 
Common #defines and Types 

These flags are only valid with msgMarkDeliverPos & msgMarkDeliverNext 

*define markMsgNormal 0 II standard message send 
*define markMsgTry 1 II one in a sequence of possible messages 
*define markMsgLastTry 2 II last in a sequence of messages 
*define markMsgMode 3 II '&' with flags to extract flag field 

These flags are only valid with msgMarkDeliverNext 

flag8 
o 
flag9 

II direction of movement is reversed 
II enter no children 
II enter all children 

*define markBackward 
*define markEnterNone 
*define markEnterAll 
*define markEnterOpen 
*define markEnterMode 

flag10 
(flag9Iflag10) 

II 
II 
II 
II 

enter only open children 
'&' with flags to extract Enter 
field 

*define markExitUp flag11 
II default flag settings: 
*define markDefaultMsgFlags 
*define markDefaultPosMsgFlags 
*define markDefaultNextMsgFlags 

(markMsgNormal I markEnterOpen 

at end, move up to parents 

o 
markMsgNormal 
\ 

I markExitUp) 

MARK_MSG_HEADER must be the start of the argument structure for any message delivered via 
msgMarkDeliver, msgMarkDeliverPos, or msgMarkDeliverNext. It allows clsMark to insert the token 
information into the message arguments to indicate which part of the component is to be operated on. 

typedef struct MARK_MSG_HEADER { 
MARK TOKEN token; II Supplied by mark: the token 
MESSAGE msg; II In: the message to send 
SIZEOF lenArgs; II In: length of the whole structure 
MARK MSG FLAGS flags; II In: flags as appropriate 

MARK _ MSG _HEADER, * P _MARK _ MSG _HEADER; 
typedef struct MARK_MESSAGE { 

MARK_MSG_HEADER header; 
} MARK_MESSAGE, * P_MARK_MESSAGE; 
typedef U16 MARK_LOCATION; 
*define markLocWhole 0 
*define markLocBeginning 1 
#define markLocEnd 2 

The following location codes are only valid for msgMarkPositionAtGesture These may be or'd together 
and in with the above codes ... 

*define markLocWholeWord flag4 
#define markLocUseSelection flagS 

II use the whole word under the gesture 
II use the selection if the gesture was 
II over it 

Important: all message handlers for messages sent via msgMarkDeliver, msgMarkDeliverPos, or 
msgMarkDeliverNext, must have the following as its first statement. Replace "clsYourClassHere" with 
the uid of your class. 

MarkHandlerForClass(clsYourClassHere); 
#define MarkHandlerForClass(cls) \ 

if (WKNValue(((P_MARK_TOKEN)pArgs)->classLevel) != WKNValue(cls)) \ 
return ObjectCallAncestor(msg, self, pArgs, ctx); 



188 PENPOINT API REFERENCE 
Part 2 / Pen Point Application Framework 

Messages 

Arguments 

M@$s©g@ 
Ar£jum@rtts 

M@$s©ge 
Af9!Jmertts 

msgNew 
Creates a new mark, initialized to the given component (if any). 

Takes P _MARK_NEW, returns STATUS. Category: class message. 

typedef struct MARK_NEW_ONLY { 
MARK_FLAGS flags; 
MARK_COMPONENT component; 
U16 reserved[2]; 

MARK_NEW_ONLY, * P_MARK_NEW_ONLY; 
fdefine markNewFields \ 

objectNewFields \ 
MARK NEW ONLY mark; 

typedef struct MARK_NEW { 
markNewFields 

} MARK_NEW, * P_MARK_NEW; 

The fields you might typically set are pArgs->markflags: or in markForSelection to refer to the 
selection object, or in markDocRelative if you ever plan on saving the mark object 
pArgs->markcomponent.compUID: the object to refer to (not needed if you set markForSelection 
above) 

msgNewDefaults 
Initializes the MARK_NEW structure to default values. 

Takes P _MARK_NEW, returns STATUS. Category: class message. 

typedef struct MARK_NEW { 
markNewFields 

} MARK_NEW, * P_MARK_NEW; 

Zeroes out pNew->mark Specifically, this includes: 

MakeNilUUID(pArgs->mark.component.appUUID); 
MakeNilUUID(pArgs->mark.component.compUUID); 
pArgs->mark.component.compUID = objNull; 

msgMarkDeliver 
Delivers a message to the target that does not move the token. 

Takes P _MARK_MESSAGE, returns STATUS. 

fdefine msgMarkDeliver MakeMsg(clsMark, 1) 

typedef struct MARK_MESSAGE 
MARK_MSG_HEADER header; 

} MARK_MESSAGE, * P_MARK_MESSAGE; 

The message in pArgs->header.msg is sent to the component after the mark fills in the token field. Note 
that the pArgs for the sent message are the same as the pArgs that are passed in to msgMarkDeliver. 
Various messages that are sent to components have extra fields tacked on to this structure. Therefore, all 
messages delivered with msgMarkDeliver MUST have a pArgs structure that starts with same fields as 
MARK_DELIVER. Furthermore, the lenArgs field must be set to the size of the WHOLE structure. 



M0S$~ge 

Argvrnents 

Comments 

MARK.H 189 

Messages 

msgMarkDeliverPos 
Delivers a message to the target that moves the token but does not change the component. 

Takes P _MARK_MESSAGE, returns STATUS. 

#define msgMarkDeliverPos MakeMsg(clsMark, 2) 

typedef struct MARK_MESSAGE 
MARK_MSG_HEADER header; 

} MARK_MESSAGE, * P_MARK_MESSAGE; 

This is just like msgMarkDeliver, only it is used to deliver a message that will potentially reposition the 
mark elsewhere in the component. It is chiefly used with the msgMarkPosition ... messages. 

The additional flags argument is used to determine how the holder wants to interpret the response from 
the client. Normally you use markMsgNormal, which automatically deals with certain client response 
codes that the holder doesn't need to be aware of. 

For example, if a holder wants to use msgMarkPositionAtEdge the code would be: 

MARK POSITION EDGE edgeArgs; 

edgeArgs.msg = msgMarkPositionAtEdge; 
edgeArgs.lenArgs = SizeOf(MARK_POSITION_EDGE); 
edgeArgs.flags = markMsgNormal; 
edgeArgs.location = markLocBeginning; 
ObjCallRet(msgMarkDeliverPos, aMark, &edgeArgs); 

However, if the holder wishes to try a different positioning message if the first one fails, then the holder 
must use the flag setting markMsgTry on all except the last message which uses markMsgLastTry. 
Furthermore, these must be in a while loop and repeated if stsMarkRetry is ever returned. 

For example, if a holder would like to use the (hypothetical) message msgPositionAtVowel, and if that 
fails use msgPositionAtLetter, and if that fails try msgPositionAtCharacter; then it the code would be: 

p~s VOWEL 
P~S LETTER 
P~S CHAR 
STATUS 
while (true) 

posVowel; 
posLetter; 
posChar; 
S; 

posVowel.msg = msgPositionAtVowel; 
posVowel.lenArgs = SizeOf(POS_VOWEL); 
posVowel.flags = markMsgTry; 
posVowel. ... II other arguments 
s = ObjectCall(msgMarkDeliverPos, aMark, &posVowel); 
if (s == stsMarkRetry) continue; 
if (s != stsMsgNotUnderstood) break; II some error occurred 
posLetter.msg = msgPositionAtLetter; 
posLetter.lenArgs = SizeOf(POS_LETTER); 
posLetter.flags = markMsgTry; 
posLetter. '" II other arguments 
s = ObjectCall(msgMarkDeliverPos, aMark, &posLetter); 
if (s == stsMarkRetry) continue; 
if (s != stsMsgNotUnderstood) break; II some error occurred 
posChar.msg = msgPositionAtCharacter; 
posChar.lenArgs = SizeOf(POS_CHAR); 
posChar.flags = markMsgLastTry; 
posChar. ... II other arguments 
s = ObjectCall(msgMarkDeliverPos, aMark, &posChar); 
if (s == stsMarkRetry) continue; 
if (s != stsMsgNotUnderstood) break; II some error occurred 
lido what you do if none were understood 



190 PENPOINT API REFERENCE 

MeS$\QgB 

ArSlU!'YhehfS 

Part 2 / PenPoint Application Framework 

While this code is a little complicated, it allows the holder to deal with a variety of components that 
may know different messages. The while loop and stsMarkRetry are necessary for the handling of 
inherited component data and behavior. (Specifically, while the mark takes care of most of the chore of 
moving from level to level in a components class hierarchy, only the holder knows the sequence of 
messages to try at each level, so the stsMarkRetry acts as a sentinel to the holder to retry the full 
sequence again.) 

msgMarkDeliverNext 
Delivers a message to the target that moves the token and sometimes (but not always) changes the 
component. 

Takes P _MARK_MESSAGE, returns STATUS. 

tdefine msgMarkDeliverNext MakeMsg(clsMark, 3) 

typedef struct MARK_MESSAGE 
MARK_MSG_HEADER header; 

} MARK_MESSAGE, * P_MARK_MESSAGE; 

This is the same as msgMarkDeliverPos, only it is used when the repositioning of the token may result 
moving to a new component. This may happen in messages like msgSRNextChars where the next string 
to search is in an embedded component. 

The flags field is used the same way as in msgMarkDeliverPos. The flags field also carries some 
additional flags: These indicate which direction the movement is in, and what to do about embedded 
components and what to do at the end of a component. 

All components that respond to messages sent via msgMarkDeliverNext are responsible for two things: 

_. They must check the markBackward flag to determine the direction of motion. 

If they encounter a child window as the next item, regardless of what the message is looking for, 
then the token needs to be set to refer to that child and stsMarkEnterChild needs to be returned. 

msgMarkSend 
Sends a message to a component with no further processing. 

Takes P_MARK_SEND, returns STATUS. 

fdefine msgMarkSend 

typedef struct MARK_SEND 
MESSAGE msg; 
P ARGS pArgs; 
SIZEOF lenArgs; 

MARK_SEND, * P_MARK_SEND; 

MakeMsg(clsMark, 9) 

II the message to send 
II pointer to the arguments 
II length of those arguments 

Sends a message to the component. Note that this allows you to send any arbitrary message. However, 
unlike the msgMarkDeliver messages, msgMarkSend doesn't copy the token value of the mark into the 
argument structure passed to the component. Hence, no indication of what the target is goes with the 
message. This is rarely what you want. 

The rule is: any message designed to be used with marks should use one of the msgMarkDeliver forms. 
Any message NOT designed to work with marks (and thus has no specific target) should use 
msgMarkSend. 



Message 
Arguments 

Message 
Arguments 

Comments 

MARK.H 191 
Messages 

msgMarkSetComponent 
Sets the mark to refer to the given component. 

Takes P_MARK_COMPONENT, returns STATUS. 

#define msgMarkSetComponent MakeMsg(clsMark, 4) 

typedef struct MARK_COMPONENT 
UUlD appUUlDi 
UUlD compUUlDi 
UlD compUlDi 

MARK_COMPONENT, * P_MARK_COMPONENTi 

You set the fields of the MARK_COMPONENT one of three ways (zeroing the unused fields): 

• Set pArgs->compUID to refer to a specific component object 

• Set pArgs->appUUID to refer to an application object by UUID 

• Set pArgs->appUUID and pArgs->compUUID to refer to a component in an application by 
UUIDs 

This will delete the previous mark, if necessary and send a msgMarkCreateToken to the new 
component. 

To make the mark point at nothing, pass it a pointer to an all-zero structure; do NOT pass it a null 
pointer! 

msgMarkGetComponent 
Returns the UUID of the app the contains the token and the UUID and UID of the component that 
contain the token. 

Takes P_MARK_COMPONENT, returns STATUS. 

#define msgMarkGetComponent MakeMsg(clsMark, 5) 

typedef struct MARK_COMPONENT 
UUlD appUUlDi 
UUlD compUUlDi 
UlD compUIDi 

MARK_COMPONENT, * P_MARK_COMPONENTi 

If the app is not open, then pArgs->compUID will be objNull. If the target is in the app object, then 
pArgs->compUUID will be zeros. 

msgMarkCompareMarks 
Determines if two marks refer to the same component, and, if so, what order their targets are in. 

Takes MARK, returns STATUS. 

#define msgMarkCompareMarks MakeMsg(clsMark, 6) 

stsMarkTokensEqual the targets of the marks are the same 

stsMarkTokenAfter the target of the receiver is after the argument 

stsMarkTokenBefore the target of the receiver is before the argument 



192 PENPOINT API REFERENCE 
Part 2 I Pen Point Application Framework 

msgMarkCopyMark 
Creates a new mark, identical to this mark. 

Takes P_MARK, ~eturns STATUS. 

#define msgMarkCopyMark MakeMsg(clsMark, 7) 

Because marks can't easily reverse direction across components, it's sometimes desirable to save the 
original position. Since the duplicate mark is independent of the original, it doesn't move when the 
original does. 

msgMarkGotoMark 
Causes a mark to be selected and displayed to the user. 

Takes P _MARK_GOTO, returns STATUS. 

#define msgMarkGotoMark 

typedef struct MARK_GOTO 
BOOLEAN noSelect 1, 

noDi splay 1, 
turnTo 1, 
bringTo 1, 
reserved 12; 

MARK_GOTO, * P_MARK_GOTO; 

MakeMsg(clsMark, 8) 

Ilinhibits the selection of the target 
Ilinhibits the display of the target 
Ilif closed, will do a turn to 
Ilif closed, will do a bring to 

By default, the target is selected and scrolled on screen, provided the document is on screen. Optionally, 
the document can be activated and either turned to or floated on screen. 

Messages Senl 10 Componenls 

MCS$Cigc 

At9unients 

Important: message handlers for the first three messages (msgMarkCreate Token, 
msgMarkDeleteToken, and msgMarkCompareTokens) must have the following as its first statement. 
Replace "clsYourClassHere" with the uid of your class. 

MarkHandlerForClass(clsYourClassHere); 

msgMarkCreateToken 
Instructs a component to create a token for its data items, and start the token pointing at before all data 
items. 

Takes P _MARK_TOKEN, returns STATUS. 

#define msgMarkCreateToken MakeMsg(clsMark, 40) 

typedef struct MARK_TOKEN { 
CLASS classLevel; II which class level is the data at 
U32 index; II index to the data item 
U32 index2; II secondary index if needed 

MARK_TOKEN, * P_MARK_TOKEN; 

You can only forget about the token associated with a mark when a corresponding 
msgMarkDeleteToken is received, or the target data is deleted. In the later case you must be careful 
never to generate that token again as there still might be outstanding tokens for it. 



MeS5(1ge 
Argurmmts 

MARK.H 193 
Messages Sent to Components 

msgMarkDeleteToken 
Tells a component that the given token will no longer be in use. 

Takes P_MARK_TOKEN, returns STATUS. 

fdefine msgMarkDeleteToken 

typedef struct MARK_TOKEN { 
CLASS classLevel; 
U32 indexi 
U32 index2i 

MARK_TOKEN, * P_MARK_TOKENi 

See msgMarkCreate Token. 

msgMarkCompareTokens 

MakeMsg(clsMark, 41) 

II which class level is the data at 
II index to the data item 
II secondary index if needed 

Asks a component to compare the ordering of two tokens. 

Takes P_MARK_COMPARE_TOKENS, returns STATUS. 

fdefine msgMarkCompareTokens MakeMsg(clsMark, 42) 

typedef struct MARK_COMPARE_TOKENS 
MARK_TOKEN firstTokeni 
MARK_TOKEN secondTokeni 

MARK_COMPARE_TOKENS, * P_MARK_COMPARE_TOKENS; 

stsMarkTokensEqual the two tokens point to the same place 

stsMarkTokenAfter the first token comes after the second 

stsMarkTokenBefore the first token comes before the second 

msgMarkGetDataAncestor 
Asks for the next higher superclass that contains traversable data. 

Takes P _CLASS, returns STATUS. 

fdefine msgMarkGetDataAncestor MakeMsg(clsMark, 46) 

Asks a component what the next ancestor the argument inherits data from. The component's response 
should is based on what the argument is. Assuming the class of the component is dsMyThing: 

objNull respond with dsMyThing 

dsMyThing respond with the next class dsMyThing gets data from, typically dsEmbeddedWin or 
objNull (if none). 

otherwise call the ancestor 

Example 

if (*pArgs == objNull) 
else if (*pArgs == clsMyThing) 
else 
return stsOKi 

*pArgs = clsMyThing; 
*pArgs = clsEmbeddedWini 
ObjCallAncestorCtxRet(ctx); 

If your code doesn't inherit data then you'll do the following: 

if 
else 

(*pArgs == objNull) 

return StsOKi 

*pArgs clsMyThingi 
*pArgs = objNull; 



194 PENPOINT API REFERENCE 

t\~e$$©~e 

Aq;:lJmerits 

0;\es£12g e 
Arguments 

Mess©ge 
Arguments 

Part 2 / PenPoint Application Framework 

msgMarkGetParent 
Asks a component to set the argument to its parent (embedding) component. 

Takes P_MARK_COMPONENT, returns STATUS. 

tdefine msgMarkGetParent MakeMsg(clsMark, 43) 

typedef struct MARK_COMPONENT 
UUlD appUUlDi 
UUlD compUUlDi 
UlD compUlDi 

MARK_COMPONENT, * P_MARK_COMPONENTi 

Either the UID or the UUIDs should be filled in, mark will take care of the rest. If the component is 
descended from clsEmbeddedWin or clsApp, it already inherits the correct response and 
implementation is necessary. 

msgMarkGetUUIDs 
Asks a component to set the argument to its own app and component UUIDs if it can. 

Takes P_MARK_COMPONENT, returns STATUS. 

tdefine msgMarkGetUUlDs MakeMsg(clsMark, 45) 

typedef struct MARK_COMPONENT 
UUlD appUUlDi 
UUlD compUUlDi 
UlD compUlDi 

MARK_COMPONENT, * P_MARK_COMPONENTi 

If it can't it should return stsMarkNoUUIDs. If your component is a descendant of clsApp or 
clsEmbeddedWin then you inherit the correct implementation. 

msgMarkValidateComponent 
Asks a component to verify that it is okay to traverse it. 

Takes P_MARK_COMPONENT, returns STATUS. 

tde,fine msgMarkValidateComponent MakeMsg(clsMark, 44) 

typedefstruct MARK_COMPONENT 
UUlD appUUlDi 
UUlD compUUlDi 
UlD compUlDi 

MARK_COMPONENT, * P_MARK_COMPONENTi 

This message is sent to objects before a mark refers to them. This gives an object a chance to point the 
mark at a different object as the component. Typically, a driver might create a mark with the selection 
holder as the component. However, the selection holder might not be the desired component for a mark 
(the selection could be a data object, but the mark component should be the app object). Mark sends 
this message to the proposed component. The proposed component then can either not implement the 
message (or return stsOK) or set the argument to another component object and return 
stsMarkRedirectMark. In the first case the proposed component becomes the used component, in the 
second the returned component becomes the new proposed component. 



MARK.H 195 
Messages Sent to Components via msgMarkDeliver 

Messages Sent to Components via 
msgMarkDeliver 

Arguments 

Comments 

Comments 

Note: AB these are defined in dsMark, these messages may be sent to the mark directly without using 

msgMarkDeliver, msgMarkDeliverPos, or msgMarkDeliverNext (with mode = markMsgNormal) as 
appropriate. AB usual, the mark and token fields will be filled in by the mark, and then the message 
passed on. 

In addition special processing will be done for some of the messages which would NOT be done if the 
message was sent via standard delivery messages. This processing is noted for those messages under the 
heading: 'If sent directly to mark' 

Important: all message handlers for these messages must have the following as its first statement. 
Replace "dsYourClassHere" with the uid of your class. 

MarkHandlerForClass(clsYourClassHere); 

msgMarkPositionAtEdge 
Asks a component to reposition the token to one end or the other of the data. 

Takes P _MARK_POSITION_EDGE, returns STATUS. 

*define msgMarkPositionAtEdge MakeMsg(clsMark, 80) 

typedef struct MARK POSITION EDGE { 
MARK MSG HEADER-header; -
MARK-LOCATION location; II either markLocBeginning or markLocEnd 

} MARK_POSITION_EDGE, * P_MARK_POSITION_EDGE; 

msgMarkPositionAif oken 
ABks a component to reposition the token to the same position as another token for the same 
component. 

Takes P_MARK_POSITION_TOKEN, returns STATUS. 

*define msgMarkPositionAtToken MakeMsg(clsMark, 81) 

typedef structMARK POSITION TOKEN 
MARK MSG HEADER-header; -
MARK- - otherMark; II In; the other mark 
MARK_TOKEN otherToken; II In: the token to copy 

MARK_POSITION_TOKEN, * P_MARK_POSITION_TOKEN; 

If sent directly to mark: you only need to fill in the otherMark field, the mark will take care of the rest 
& will check to see that both marks point at the same component. Since you'd have no idea what the 
other Token is, this is the only sensible way to send this message (via msgMarkDeliver won't work). 

msgMarkPositionAtChild 
ABks a component to reposition the token to the given child component which is given as a UUID/UID 
pair. 

Takes P _MARK_POSITION_CHILD, returns STATUS. 

*define msgMarkPositionAtChild MakeMsg(clsMark, 82) 

typedef struct MARK_POSITION_CHILD { 
MARK MSG HEADER header; 
MARK=COMPONENT child; II In: the child to position to; 

} MARK_POSITION_CHILD, * P_MARK_POSITION_CHILD; 

The UID may be null if it is unknown, but the UUID will always be valid. 



196 PENPOINT API REFERENCE 

Message 

ArS'lllmeni's 

Part 2 / PenPoint Application Framework 

msgMarkPositionAtGesture 
Asks a component to reposition the token at the given gesture. 

Takes P _MARK_POSITION_GESTURE, returns STATUS. 

fdefine rnsgMarkPositionAtGesture 

typedef struct MARK_POSITION_GESTURE 
MARK_MSG_HEADER header; 
GWIN GESTURE gesture; 
MARK_LOCATION location; 

MakeMsg(clsMark, 83) 

MARK_POSITION_GESTURE, * P_MARK_POSITION_GESTURE; 

The location parameter indicates how to position relative to the gesture. Note that there are a variety of 
location codes that might be or'd together. 

msgMarkPositionAtSelection 
Asks a component to reposition the token to the selection, which it presumably owns. 

Takes P _MARK_POSITION_SELECTION, returns STATUS. 

fdefine rnsgMarkPositionAtSelection MakeMsg(clsMark, 85) 

typedef struct MARK_POSITION_SELECTION 
MARK_MSG_HEADER header; 
MARK LOCATION location; 

MARK_POSITION_SELECTION, * P_MARK_POSITION_SELECTION; 

If the component doesn't own the selection, then return stsFailed. 

msgMarkNextChild 
Requests the component to move the token to the next child. 

Takes P _MARK_MESSAGE, returns STATUS. 

fdefine rnsgMarkNextChild MakeMsg(clsMark, 86) 

typedef struct MARK_MESSAGE 
MARK_MSG_HEADER header; 

} MARK_MESSAGE, * P_MARK_MESSAGE; 

If a child is found and the token moved to it, return stsMarkEnterChild, not stsO K. If return, the mark 
is likely (but may not) send msgMarkGetChild to find out who the child actually is. 

msgMarkGetChild 
Requests the component to fill in the component at the current token. 

Takes P_MARK_GET_CHILD, returns STATUS. 

fdefine rnsgMarkGetChild 

typedef struct MARK_GET_CHILD 
MARK_MSG_HEADER header; 

MakeMsg(clsMark, 90) 

MARK_COMPONENT child; IIOut: ,fill in uid or uuids 
BOOLEAN childIsDoc; IIOut: is the child is a document? 
BOOLEAN childIsOpen; IIOut: is the child open? 

MARK_GET_CHILD, * P_MARK_GET_CHILD; 

This is sent because, presumable, the response to some other move message was stsMarkEnterChild. If 
the token doesn't point at a child, return stsFailed. 



Mess()ge 
Arguments 

MARK.H 197 
Messages Sent Internally 

pArgs->childIsDoc should set true if the child is an embedded document. If the child is just an 
embedded component that is to be considered part of the receiving component, then set this field false. 
This field is used by clsMark to determine if it should apply the markEnterMode bits that control 
entering embedded documents (they don't control entering embedded components, this is always done.) 

If pArgs->childIsDoc is set true, then childIsOpen must be set to reflect the "open" status of the 

embedded doc. 

If your component is managing its own embedees, typically your component will only deal with the 
embedded instances of clsApp Win. These are components that are part of your component: you should 
set pArgs->childIsDoc to false (pArgs->childIsOpen doesn't matter in this case). When the appWin is 
entered, it will handle the proper reporting of the embedded document. (clsAppWin sets 
pArgs->childIsDoc to true and pArgs->childIsOpen appropriately.) 

msgMarkS electTarget 
Requests the component to select the target data item. 

Takes P _MARK_MESSAGE, returns STATUS. 

*define msgMarkSelectTarget 

typedef struct MARK_MESSAGE 
MARK MSG HEADER header; 

MakeMsg(clsMark, 89) 

} MARK_MESSAGE, * P_MARK_MESSAGE; 

msgMarkShowTarget 
Request the component to return the window that contains the graphical view of the target. 

Takes P MARK SHOW TARGET, returns STATUS. 
*define-msgMarkShoWTarget MakeMsg(clsMark, 88) 

typedef struct MARK SHOW TARGET 
MARK_MSG_HEADER-header; 
WIN win; 
RECT32 recti 

MARK_SHaW_TARGET, * P_MARK_SHOW_TARGET; 

The rectangle returned is the area within the window that encloses the target. 

Some components may not have a viewable ,representations of the target, in which case they can return 
stsMarkNo Win, or simply not implement this message. Other components may have a graphical view 
only part of the time. In this case, it should ensure that the target has a graphical representation, 
otherwise return stsMarkNoWin if the target isn't right now. 

Note that this message requests that the target be scrolled into view. That should be done by sending 
msgEmbeddedWinShowChild to the win showing the target (usually the win that is returned in 

pArgs->win). 

Messages Sent Internally 

msgMarkEnterChild 
Sent when a component requests the mark to enter a child (usually via returning stsMarkEnterChild to 
a message send with msgMarkDeliverNext). 

Takes P _MARK_MESSAGE, returns STATUS. 

*define msgMarkEnterChild MakeMsg(clsMark, 120) 



198 PENPOINT API REFERENCE 

Mcs50ge 
Ar!)ument£ 

McssC!gc 
A(g~uncrtts 

Comments 

MCS509c 
Arguments 

Me$$~9Et 

Ar!)umcnts 

Part 2 / Pen Point Application Framework 

typedef struct MARK_MESSAGE { 
MARK_MSG_HEADER header; 

} MARK_MESSAGE, * P_MARK_MESSAGE; 

This message sends msgMarkGetChild to the component to get the child at the token and then enters 
the child if appropriate. 

msgMarkEnterLevel 
Sent when a component requests the mark to bump up a level in its class chain, or when a position or 
next message fails and the mark tries the next class level. 

Takes P _MARK_MESSAGE, returns STATUS. 

idefine msgMarkEnterLevel 

typedef struct MARK_MESSAGE 
MARK_MSG_HEADER header; 

MakeMsg(clsMark, 121) 

} MARK_MESSAGE, * P_MARK_MESSAGE; 

This message sends msgMarkGetDataAncestor to the component and resets the token. 

msgMarkEnterParent 
Sent when a component runs out of data altogether and the mark needs to move on (and up). 

Takes P _MARK_MESSAGE, returns STATUS. 

idefine msgMarkEnterParent 

typedef struct MARK_MESSAGE 
MARK_MSG_HEADER header; 

MakeMsg(clsMark, 122) 

} MARK_MESSAGE, * P_MARK_MESSAGE; 

This message may send msgMarkGetParent to the component to find out who the parent is. 

msgMarkGetToken 
Sent from one mark to another to get the other's toke~. 

Takes P_MARK_TOKEN, returns SfATUS. 

idefine msgMarkGetToken 

typedef struct MARK TOKEN 
CLASS classLevel; 
U32 index; 
U32 index2; 

MARK_TOKEN, * P _MARK_TOKEN; 

MakeMsg(clsMark, 123) 

II which class level is the data at 
II index to the data item 
II secondary index if needed 

This is not intended to be used by clients of mark. 



PRFRAME.H 

This file contains the API for clsPrintFrame. 

clsPrFrame inherits from clsCustomLayout. 

Provides the page outline during printing. 

1f:ifndef PRFRAME INCLUDED 
1f:define PRFRAME INCLUDED 
1f:ifndef GO INCLUDED 
1f:include <go.h> 
1f:endif 
1f:ifndef UID INCLUDED 
1f:include <uid.h> 
1f:endif 
1f:ifndef PRINT INCLUDED 
1f:include <print.h> 
1f:endif 

Common #defines and typedefs 

Window Tags for Child Windows 
1f:define tagPrFrameLeftHeader 
1f:define tagPrFrameCenterHeader 
1f:define tagPrFrameRightHeader 
1f:define tagPrFrameLeftFooter 
1f:define tagPrFrameCenterFooter 
1f:define tagPrFrameRightFooter 
1f:define tagPrFrameMarginWin 
1f:ifndef NO NEW 
1f:ifndef prFrameNewFields 
1f:include <clayout.h> 

Messages 

msgNewDefaults 

MakeTag(clsPrFrame, 255) 
MakeTag(clsPrFrame, 254) 
MakeTag(clsPrFrame, 253) 
MakeTag(clsPrFrame, 252) 
MakeTag(clsPrFrame, 251) 
MakeTag(clsPrFrame, 250) 
MakeTag(clsPrFrame, 249) 

Initializes the PRFRAME_NEW_ONLY structure to default values. 

Takes P _PRFRAME_NEW, returns STATUS. Category: class message. 

typedef PRINT SETUP PRFRAME NEW ONLY, *P_PRFRAME_NEW_ONLYi 
1f:define prFrameNewFields - - \ 

customLayoutNewFields \ 
PRFRAME_NEW_ONLY prFramei 

typedef struct PRFRAME_NEW { 
prFrameNewFields 

PRFRAME_NEW, *P_PRFRAME_NEWi 



200 PENPOINT API REFERENCE 

Mess(l5je 
Ar9uments 

Comments 

Mess(l5je 
Ar9u!'nents 

Part 2 / PenPoint Application Framework 

msgNewDefaults 
Initializes the default new arguments. 

Takes P _PRFRAME_NEW, returns STATUS. Category: class message. 

typedef struct PRFRAME_NEW { 
prFrameNewFields 

PRFRAME_NEW, *P_PRFRAME_NEW; 

no header or footer text 

headerMargin.top = 500 Mils 

headerMargin.left = 750 Mils 

headerMargin.right = 750 Mils 
headerMargin.bottom = 0 Mils 

footerMargin.top = 0 Mils 

footerMargin.left = 750 Mils 

footerMargin.right = 750 Mils 
footerMargin.bottom = 500 Mils 

mainMargin.top = 750 Mils 

mainMargin.left = 750 Mils 
mainMargin.right = 750 Mils 

mainMargin.bottom = 750 Mils 

msgNew 
Creates a new print frame object. 

Takes P _PRFRAME_NEW, returns STATUS. Category: class message. 

#endif 
#endif 

typedef struct PRFRAME_NEW { 
prFrameNewFields 

} PRFRAME_NEW, *P_PRFRAME_NEW; 

msgPrFrameSend 
Sends the tagged window the message. 

Takes P _PRFRAME_SEND, returns STATUS. 

typedef struct PRFRAME_SEND { 
U32 tag; II window tag 
MESSAGE msg; II message to send 
P_ARGS pArgs; II arguments to pass 
SIZEOF lenSend; II argument length 

PRFRAME_SEND, *P_PRFRAME_SEND; 
#define msgPrFrarneSend MakeMsg(clsPrFrame, 1) 

msgPrFrameSetup 
Sets the print frame values/fields to the setup information. 

Takes P_PRINT_SETUP, returns STATUS. 

#define msgPrFrarneSetup MakeMsg(clsPrFrame, 2) 



msgPrFrameExpand 
Expand any abbreviated labels for the current pagel date/ doc name. 

Takes P _PRFRAME_EXPAND, returns STATUS. 

typedef struct PRFRAME_EXPAND 
char page[nameBufLength]i II printing page number (pg.) 
char date[nameBufLength]i II date string (dt.) 
char name[nameBufLength]i II doc name (nm.) 
char reserved[nameBufLength]i 

PRFRAME_EXPAND, *P_PRFRAME_EXPANDi 
#define msgPrFrameExpand MakeMsg(clsPrFrame, 3) 

PRFRAME.H 201 
Messages 





PRINT.H 

This file contains the API for clsPrint. 

clsPrint inherits from clsApp. 

Provides a wrapper to guide PenPoint documents through the printing process. 

To print a document, the Application Framework creates a wrapper document (an instance of clsPrint) 
that embeds the document to be printed in itself. To print the document, the wrapper first opens the 
document to the printer (rather than to the screen). The wrapper then uses and instance of clsPrLayout 

to send printing-related messages to the document and any of its embedded documents. 

Developers: You should not subclass clsPrint. However, to support printing, your application needs to 

handle many of the messages defined by clsPrint. 

Pagination 
There are two basic styles of pagination: flow and nonflow. The printing wrapper sends 
msgPrintGetProtocols to a document to ask it what style of pagination it supports. 

For more information on pagination, please refer to the chapter on Printing in the PenPoint 

Architectural Reference. 

Option Cards for Printing 
The Application Framework provides a Print Setup option sheet, which allows the user to change 
margins and the running headers and footers that are printed with a document. 

If your application has other printing options that you want the user to change, you should add your 
option cards to the Print Setup sheet. To do so, your application should handle msgAppAddCards and 

should add your cards when the tag passed in is tagAppPrintSetupOptSheet. 

*ifndef PRINT_INCLUDED 
*define PRINT INCLUDED 
*ifndef UUID_INCLUDED 
*include <uuid.h> 
*endif 
*ifndef CLSMGR_INCLUDED 
*include <clsmgr.h> 
*endif 
*ifndef GEO INCLUDED 
*include <geo.h> 
*endif 
*ifndef SYSFONT_INCLUDED 
*include <sysfont.h> 
*endif 
*ifndef WIN_INCLUDED 
*include <win.h> 
*endif 
*ifndef EMBEDWIN INCLUDED 
*include <embedwin.h> 
*endif 



204 PENPOINT API REFERENCE 
Part 2 / PenPoint Application Framework 

Common #defines and typedefs 

Status Codes 
#define stsPrintErrorCheckPrinter MakeStatus(clsPrint, 1) 

Print Option Sheet Tags 
#define tagPrJobDialog 
#define tagPrOption 
#define tagPrPrinterLabel 
#define tagPrEnabledLabel 
#define tagPrPaperSizeLabel 
#define tagPrPagesLabel 
#define tagPrStartingPageLabel 
#define tagPrPrinter 
#define tagPrStatus 
#define tagPrEnabledOn 
#define tagPrEnabledOff 
#define tagPrPages 
#define tagPrPagesAll 
#define tagPrPagesRange 
#define tagPrPagesFrom 
#define tagPrPagesTo 
#define tagPrPaperSize 
#define tagPrPaperWidth 
#define tagPrPaperHeight 
#define tagPrStartingPage 

Print Margins 

MakeTag(clsPrint, 255) 
MakeTag(clsPrint, 254) 
MakeTag(clsPrint, 253) 
MakeTag(clsPrint, 252) 
MakeTag(clsPrint, 251) 
MakeTag(clsPrint, 250) 
MakeTag(clsPrint, 249) 
MakeTag(clsPrint, 128) 
MakeTag(clsPrint, 140) 
MakeTag(clsPrint, 141) 
MakeTag(clsPrint, 142) 
MakeTag(clsPrint, 129) 
MakeTag(clsPrint, 160) 
MakeTag(clsPrint, 161) 
MakeTag(clsPrint, 162) 
MakeTag(clsPrint, 163) 
MakeTag(clsPrint, 131) 
MakeTag(clsPrint, 174) 
MakeTag(clsPrint, 175) 
MakeTag(clsPrint, 132) 

TIlls structure contains the margin ofISets (in Mils) me1Sured from the top, bottom, left, and right edges of the paper. 

typedef struct PRINT MARGINS { 
S32 top; 
S32 bottom; 
S32 left; 
S32 right; 

PRINT_MARGINS, *P_PRINT MARGINS; 

Header and Footer Strings 

II offset for top margin 
II offset for bottom margin 
II offset for left margin 
II offset for right margin 

This structure contains the strings for either a header or a footer. 

typedef struct PRINT_HFDATA { 
U8 reserved; 
char leftData[nameBufLength]; 
char centerData[nameBufLength]; 
char rightData[nameBufLength]; 

PRINT_HFDATA, *P_PRINT_HFDATA; 

Print Setup 

II reserved - must be 0 
II string on left side 
II string in center 
II string on right side 

This structure contains setup information for printing. 

typedef struct PRINT_SETUP { 
OBJECT frame; 
PRINT MARGINS mainMargins; 
PRINT MARGINS headerMargins; 
PRINT MARGINS footerMargins; 
PRINT HFDATA headerInfo; 
PRINT_HFDATA footerInfo; 
SYSDC FONT SPEC fontSpec; 
U16 - - fontSize; 

PRINT_SETUP, *P_PRINT_SETUP; 

II reserved 
II print margins for the document 
II print margins for the header 
II print margins for the footer 
II strings to display in the header 
II strings to display in the footer 
II header/footer font data 
II header/footer font size, in points 



PRINT.H 205 
Common #defines and typedefs 

Embeddee Print Info 
Users can decide: 

• to not print an embedded document; 

• to print the visible portion of an embedded document in the place in the parent document where it 
is embedded; 

• to print the entire embedded document at the end of the parent. 

This structure contains information for printing embedded documents. Note: expandlnPlace and 
printBorders are not currently implemented. 

typedef struct EMBEDDEE_PRINT_INFO 
U16 expandInPlace 1; II TRUE to print entire contents in place 
U16 expandAtEnd 1; II TRUE to print entire contents at end 

II FALSE to print visible portion in place 
U16 invisible 
U16 printBorders 
U16 reserved 

1; II TRUE to not print 
1; II TRUE to show borders around the window 
12; II reserved 

U16 reserved2 16; II reserved 
EMBEDDEE_PRINT_INFO, *P_EMBEDDEE_PRINT_INFO; 

Spool mode values 
Note: Spooling is not implemented. 

fdefine prModeCopy 0 
fdefine prModeLock 1 

Print Metrics 

II to copy the doc for spooling 
II to lock the doc for spooling 

This structure defines the public instance data that clsPrint maintains for a document. You get a copy of 
this structure when you send msgPrintGetMetrics to a document. 

typedef struct PRINT METRICS 
U32 reservedl; 
U16 pageRangeStart; 
U16 pageRangeEnd; 
U16 startingPage; 
U16 copies; 
U16 collating: 
U16 orientation: 

2; 
2; 

U16 pageAII: 1; 
U16 spoolMode: 2 ; 
U16 firstPageHeader:l; 
U16 reserved2: 8; 
U8 paperSizeType; 
SIZE32 paperSize; 
PRINT_SETUP firstPageSetup; 
PRINT_SETUP pageSetup; 

II reserved 
II start page f (not used if pageAII is TRUE) 
II end page f (not used if pageAII is TRUE) 
II starting page f (to be printed on pages) 
II not used 
II 
II 
II 
II 
II 
II 
II 
II 
II 

not used 
either prOrientPortraitNormal or 
pdOrientLandscapeNormal (see win.h) 
TRUE to print all pages 
see spool mode values 
TRUE to enable first page headers 
reserved 
Popular paper type (see clsPrn.h) 
Size of paper in Mils 

II not used 

char printer [nameBuf Length]; 
II page setup information 
II name of printer to use 

EMBEDDEE_PRINT_INFO embedding; 
U32 reservedData[6]; 

PRINT_METRICS, *P_PRINT_METRICS; 

Print Embeddee Action 

II how to print embedded documents 
II reserved 

This structure is used by msgPrintEmbeddeeAction and msgPrintExamineEmbeddee to pass 
information about the child being processed. 



206 PENPOINT API REFERENCE 
Part 2 / Pen Point Application Framework 

typedef struct PRINT_EMBEDDEE_ACTION 
WIN embeddedWini II embedded win to act on 
U16 actioni II proposed embeddee action flag 
EMBED DEE PRINT_INFO embedPrintInfoi II embeddee print properties 
U32 reserved[3]i II reserved 

PRINT_EMBEDDEE_ACTION, *P_PRINT_EMBEDDEE_ACTIONi 

Embeddee Action Flags 
fdefine prEmbedActionAsIs 0 
fdefine prEmbedActionExpandInPlace 1 
fdefine prEmbedActionExtract 2 

II visible part printed in place (default) 
II not supported 
II invisible or moved to endi either 
II way, child removed from parent 

Print Page 
This structure is used by msgPrintStartPage and msgPrintLayoutPage to pass information about what 
page needs to be printed next. 

typedef struct PRINT_PAGE { 
U16 pageNumberi 
U16 displayPageNumberi 
U16 logicalPageNumberi 
OBJECT jobUIDi 
OBJECT appLayoutUIDi 
U32' reserved [3] i 

PRINT_PAGE, *P_PRINT_PAGEi 

II In: fpages printed when this one is done 
II In: page number to display on page 
II In: ftimes msgPrintStartPage has been sent 
II In: print layout driver object 
II Out: obj to receive msgPrintEmbeddeeAction 
II reserved 

~~ssages 

M0SSQg0 

Arguments 

msgPrintStartPage 
Advance the document to its next logical page. 

Takes P _PRINT_PAGE, returns STATUS. 

fdefine msgPrintStartPage MakeMsg(clsPrint, 1) 

typedef struct PRINT PAGE 
U16 pageNumberi II In: fpages printed when this one is done 
U16 displayPageNumberi II In: page number to display on page 
U16 logicalPageNumberi II In: ftimes msgPrintStartPage has been sent 
OBJECT jobUIDi II In: print layout driver object 
OBJECT appLayoutUIDi II Out: obj to receive msgPrintEmbeddeeAction 
U32 reserved[3]i II reserved 

PRINT_PAGE, *P_PRINT_PAGEi 

This message is sent to a document as a signal to initialize its internal pagination data to a new page. 
When the document has no more pages to print it should return stsEndOfData in response to this 
message. Note: the document does not return stsEndOfData when it paginates its last page; it waits 
until the next time this message is sent (when it has no data left to paginate). If the document does have 
more pages to print, the following happens: 

• the document receives msgPrintGetProtocols, 

• the main Win of document receives msgWinLayout at least once 

• the document receives msgPrintLayoutPage 



Me5S<lge 

AVSloments 

Message 
Arguments 

PRINT.H 207 
Messages 

If appLayoutUID is objNull, the print layout driver will send any messages regarding embeddee actions 
(msgPrintEmbeddeeAction) to the document; otherwise it will send them to the appLayoutUID 
object set by the document in this structure. 

Developers: Your application should handle this message to support pagination. 

msgPrintLayoutPage 
Document lays out its logical page. 

Takes P_PRINT_PAGE, returns STATUS. 

fdefine msgPrintLayoutPage MakeMsg(clsPrint, 12) 

typedef struct PRINT_PAGE { 
U16 pageNumber; II In: fpages printed when this one is done 
U16 displayPageNumber; II In: page number to display on page 
U16 logicalPageNumber; II In: ftimes msgPrintStartPage has been sent 
OBJECT jobUID; II In: print layout driver object 
OBJECT appLayoutUID; II Out: obj to receive msgPrintEmbeddeeAction 
U32 reserved[3] ; II reserved 

PRINT_PAGE, *P_PRINT_PAGE; 

The wrapper sends this message to the document after it sends msgPrintStartPage and 
msgPrintGetProtocols. This message can be thought of as a substitute for msgWinLayout. However, 
unlike msgWinLayout, it is sent only once per page. 

Developers: Your application should handle this message to support pagination. 

msgPrintGetMetrics 
Gets the application's print metrics. 

Takes P_PRINT_METRICS, returns STATUS. 

fdefine msgPrintGetMetrics 

typedef struct PRINT METRICS 
U32 reserved1; 
U16 pageRangeStart; 
U16 pageRangeEnd; 
U16 startingPage; 
U16 copies; 
U16 collating: 
U16 orientation: 

2; 
2; 

U16 pageAII: 1; 
U16 spoolMode: 2; 
U16 firstPageHeader:1; 
U16 reserved2: 8; 
U8 paperSizeType; 
SIZE32 paperSize; 
PRINT_SETUP firstPageSetup; 
PRINT_SETUP pageSetup; 

MakeMsg(clsPrint, 2) 

II reserved 
II start page f (not used if pageAII is TRUE) 
II end page f (not used if pageAII is TRUE) 
II starting page f (to be printed on pages) 
II not used 
II 
II 
II 
II 
II 
II 
II 
II 
II 

not used 
either prOrientPortraitNormal or 
pdOrientLandscapeNormal (see win.h) 
TRUE to print all pages 
see spool mode values 
TRUE to enable first page headers 
reserved 
Popular paper type (see clsPrn.h) 
Size of paper in Mils 

II not used 

char printer [nameBuf Length]; 
II page setup information 
II name of printer to use 

EMBEDDEE_PRINT_INFO embedding; 
U32 reservedData[6]; 

PRINT_METRICS, *P_PRINT_METRICS; 

II how to print embedded documents 
II reserved 

You can send this message to OSThisAppO to get the current application's print metrics. During 
printing you can send this message to the jobUID (given in the pArgs of msgPrintStartPage) to get 
EFFECTIVE print metrics. EFFECTIVE print metrics are those from the original top-level document 

-------------------



208 PENPOINT API REFERENCE 

M0S50£j0' 

Argurnettl'S 

Part 2 / PenPoint Application Framework 

in this print job. Deferred embedded documents print with effective margins, headers and footers, and 
orientation; the values in their own print metrics are ignored. 

Developers: Your application does not need to handle this message. 

msgPrintSetMetrics 
Sets the application's print metrics. 

Takes P_PRINT_METRICS, returns STATUS. 

tdefine msgPrintSetMetrics 

typedef struct PRINT METRICS 
U32 reservedl; 
U16 pageRangeStart; 
U16 pageRangeEnd; 
U16 startingPage; 
U16 copies; 
U16 collating: 
U16 orientation: 

2; 
2; 

U16 pageAII: 1; 
U16 spoolMode : 2 ; 
U16 firstPageHeader:l; 
U16 reserved2: 8; 
U8 paperSizeType; 
SIZE32 paperSize; 
PRINT_SETUP firstPageSetup; 
PRINT_SETUP pageSetupi 

MakeMsg(clsPrint, 3) 

II reserved 
II start page t (not used if pageAII is TRUE) 
II end page t (not used if pageAII is TRUE) 
II starting page f (to be printed on pages) 
II not used 
II 
II 
II 
II 
II 
II 
II 
II 
II 

not used 
either prOrientPortraitNormal or 
pdOrientLandscapeNorrnal (see win.h) 
TRUE to print all pages 
see spool mode values 
TRUE to enable first page headers 
reserved 
Popular paper type (see clsPrn.h) 
Size of paper in Mils 

II not used 

char printer [nameBuf Length]; 
II page setup information 
II name of printer to use 

EMBEDDEE_PRINT_INFO embedding; 
U32 reservedData[6]; 

PRINT_METRICS, *P_PRINT_METRICS; 

II how to print embedded documents 
II reserved 

You can send this message to OSThisAppO to set the current application's print metrics. 

Developers: Your application does not need to handle this message. 

msgPrintApp 
Prints a document. 

Takes P_PRINT_DATA, returns STATUS .. 

fdefine msgPrintApp 

typedef struct PRINT_DATA 
OBJECT appUID; 
UUID appUUIDi 
U32 reserved[2]; 

PRINT_DATA, *P_PRINT_DATA; 

MakeMsg(clsPrint, 4) 

II In: UID if this is the active app 
II In: application UUID 
II reserved 

This message prints the document. If you want to invoke printing, you send this message to 

thePrintManager, using ObjectSend or ObjectPost. 

Developers: Your application does not need to handle this message. 

msgPrintPaperArea 
Passes back the width and height of the printing area on the paper. 

Takes P_PRINT_AREA, returns STATUS .. 

tdefine msgPrintPaperArea MakeMsg(clsPrint, 7) 



(omments 

PRINT.H 209 
Messages 

typedef struct PRINT_AREA { 
P_PRINT_METRICS pMetricsi 
SIZE32 areai 

PRINT_AREA, *P_PRINT_AREAi 

II In: pNull or metrics for computation 
II Out: size of print area, in Mils. 

thePrintManager returns the size of the printing area on a sheet of paper, adjusted to take into account 
margin values and interpreted relative to the orientation. Thus, thePrintManager swaps the computed 
width and height values if the page orientation is landscape vs portrait. 

The size of the printing area is in Mils. It does not account for printer hardware limitations, i.e., the 
"unprintable area" on a page. 

You can send this message to thePrintManager at any time to get the the current document's printing 
area. You can either pass in the metrics from which to compute the area or set pMetrics = pNull. If 
pMetrics is pNull, thePrintManager will obtain the print metrics from theProcessResList. 

Developers: Your application does not need to handle this message. 

msgPrintGetProtocols 
Gets the pagination and embeddee printing protocols for the document. 

Takes P _PRINT_PROTOCOLS, returns STATUS. 

*define msgPrintGetProtocols MakeMsg(clsPrint, 9) 

typedef struct PRINT_PROTOCOLS { 
U16 paginationMethodi II Out: paginationMethod value 
U16 embeddeeSearchi II Out: embeddeeSearch value 

PRINT_PROTOCOLS, *P_PRINT_PROTOCOLSi 

The wrapper sends this message to the document after each msgPrintStartPage. 

Developers: Your application needs to handle this message and pass back the pagination method (see 
"paginationMethod Values" below) and the embeddee searching method (see "embeddeeSearch 
Values"). 

paginationMethod Values 
*define prPaginationTile 1 
*define prPaginationFlow 2 
*define prPaginationScale 3 

II tile pagination style 
II flow pagination style 
II scale pagination style 

embeddeeSearch Values 

MeSS0ge 
Arguments 

*define prEmbeddeeSearchByPrintJob 1 

*define prEmbeddeeSearchByApp 2 

msgPrintEmbeddeeAction 

II print layout driver finds children 
II for the application 
II app finds children while paginating 

Asks the document for permission to perform an action on an embeddee. 

Takes P _PRINT_EMBEDDEE_ACTION, returns STATUS. 

*define msgPrintEmbeddeeAction MakeMsg(clsPrint, 10) 

typedef struct PRINT_EMBEDDEE_ACTION 
WIN embeddedWini II embedded win to act on 
U16 actioni II proposed embeddee action flag 
EMBEDDEE PRINT_INFO embedPrintInfoi II embeddee print properties 
U32 reserved[3]; II reserved 

PRINT_EMBEDDEE_ACTION, *P_PRINT_EMBEDDEE_ACTIONi 



210 PENPOINT API REFERENCE 

Comments 

Message 

Arguments 

Arguments 

Part 2 / PenPoint Application Framework 

The wrapper sends this message to the (top-level) document being printed; it requests permission to 
perform an action on an embeddee. 

Developers: You should handle this message and return stsOK for yes, stsRequestDenied for no. 

In parameters: 

embeddedWin embedded win to act on 

action proposed embeddee action 

embedPrintlnfo embeddee print properties 

msgPrintExamineEmbeddee 
Sent to the print layout driver to interpret an embedded window's print properties. 

Takes P _PRINT_EMBEDDEE_ACTION, returns STATUS. 

#define msgPrintExamineEmbeddee MakeMsg(clsPrint, 11) 

typedef struct PRINT_EMBEDDEE_ACTION 
WIN embeddedWini II embedded win to act on 
U16 action; II proposed embeddee action flag 
EMBEDDEE PRINT_INFO embedPrintInfo; II embeddee print properties 
U32 reserved[3]; II reserved 

PRINT_EMBEDDEE_ACTION, *P_PRINT_EMBEDDEE_ACTION; 

Documents that are being printed (or their layout objects) can send this message to the wrapper. It tells 
the print layout driver to interpret the embedded win's print properties and propose an action via 
msgPrintEmbeddeeAction. msgPrintEmbeddeeAction is sent subsequently even if no action is 
necessary. 

In parameters: 

embeddedWin embedded win to examine 

Out parameters: 

action proposed embeddee action 

embedPrintlnfo embeddee print properties 

Developers: You do not need to handle this message. 

msgPrintSetPrintableArea 
Sent to the printJob to adjust margins for the "unprintable area". 

Takes PRINTABLE_AREA, returns STATUS. 

#define msgPrintSetPrintableArea MakeMsg(clsPrint, 13) 
#define prAdjustActualForUnprintable flagO II make sure actual margins 

typedef struct PRINTABLE_AREA { 
U16 flags; 
PRINT MARGINS printMetricsMargins; 
PRINT MARGINS unprintableMarginsi 
PRINT MARGINS actualMargins; 

PRINTABLE_AREA, *P_PRINTABLE_AREA; 

II account for hardware limits 

II user-set margins 
II hardware limitations 
II actual margins used by print 
II layout driver 

A (top-level) document can send this to the printJob during printing as a request to adjust margins to 
account for printer hardware limitations (i.e., an unprintable area on the page). It affects only the 
current page. You typically first send msgPrintGetPrintableArea to get the margins that the print Job is 



Mess@9@ 
Argum@nts 

(omm@nfs 

PRINT.H 211 
Messages 

currently using. Then you can set the flags argument to prAdjustActualForUnprintable, and send the 
structure on to this message. 

Automatic tiling by the printJob always adjusts the user-set (print metrics) margins to account for the 
unprintable area on the page. 

Typically graphics (non-flow) applications will desire this type of adjustment, while word processing 
(flow) apps won't since it may cause data reformatting. Sometimes, as with text, it is more user-friendly 
not to adjust (and let the data get dipped) so that the source of the problem is obvious to the user. Auto 
adjustment may induce unwanted visual changes and obscure their source. 

Developers: You do not need to handle this message. 

msgPrintGetPrintableArea 
Sent to the print job during printing to request margin information. 

Takes PRINTABLE_AREA, returns STATUS. 

#define msgPrintGetPrintableArea MakeMsg(clsPrint, 14) 

typedef struct PRINTABLE_AREA { 
U16 flags; 
PRINT MARGINS printMetricsMargins; 
PRINT MARGINS unprintableMargins; 
PRINT MARGINS actualMargins; 

PRINTABLE_AREA, *P_PRINTABLE_AREA; 

Flags are ignored. 

II user-set margins 
II hardware limitations 
II actual margins used by print 
II layout driver 

Developers: You do not need to handle this message. 





PRLAYOUT.H 

This file contains the API definition for c1sPrLayout. 

c1sPrLayout inherits from c1s0bject. 

A prLayout object makes a document paginate. 

A print layout object guides the top-level document through the pagination process and assists it in 

implementing its embeddees' print properties. 

#ifndef PRLAYOUT_INCLUDED 
#define PRLAYOUT INCLUDED 
#ifndef GO INCLUDED 
#include <go.h> 
#endif 
#ifndef UID INCLUDED 
#include <uid.h> 
#endif 
#ifndef PRINT INCLUDED 
#include <print.h> 
#endif 

Common #defines and typedefs 
typedef struct PRLAYOUT METRICS { 

OBJECT topLevelAppi II 
OBJECT currentAppi II 

OBJECT prFramei 
OBJECT winDevi 
OBJECT printJobi 
U32 reservedi 

II 
II 
II 
II 

outermost document printed 
current document being printed 
as top-level 
instance of clsPrFrame 
printer is bound to this window device 
"owner" of this object 

PRLAYOUT_METRICS, *P_PRLAYOUT_METRICSi 

Messages 

msgNew 
Create a new object. 

Takes P_PRLAYOUT_NEW, returns STATUS. 

typedef struct PRLAYOUT NEW ONLY 
OBJECT topLevelApPi 
OBJECT prFramei 
OBJECT winDevi 
OBJECT printJobi 
U32 reservedi 

PRLAYOUT_NEW_ONLY, *P_PRLAYOUT_NEW_ONLYi 

#define prLayoutNewFields \ 
objectNewFields \ 
PRLAYOUT NEW ONLY prLayouti 

typedef struct PRLAYOUT_NEW { 
prLayoutNewFields 

PRLAYOUT_NEW, *P_PRLAYOUT_NEWi 



214 PENPOINT API REFERENCE 

M0S$og0 
Argum0nts 

M0uuge 
ArgurtHH1lfS 

Part 2 / PenPoint Application Framework 

msgPrLayoutGetMetrics 
Get PrLayout metrics. 

Takes P_PRLAYOUT_METRICS, returns STATUS. 

#define msgPrLayoutGetMetrics 

typedef struct PRLAYOUT METRICS ( 
OBJECT topLevelApPi II 
OBJECT currentAppi II 

OBJECT prFramei 
OBJECT winDevi 
OBJECT printJobi 
U32 reservedi 

II 
II 
II 
II 

MakeMsg(clsPrLayout, 1) 

outermost document printed 
current document being printed 
as top-level 
instance of clsPrFrame 
printer is bound to this window device 
"owner" of this object 

PRLAYOUT_METRICS, *P_PRLAYOUT_METRICSi 

msgPrLayoutSetMetrics 
Set PrLayout metrics. 

Takes P _PRLAYOUT _METRICS, returns STATUS. 

#define msgPrLayoutSetMetrics MakeMsg(clsPrLayout, 2) 

typedef struct PRLAYOUT METRICS ( 
OBJECT topLevelApPi II 
OBJECT currentAppi II 

II 
II 
II 
II 

outermost document printed 
current document being printed 
as top-level 

OBJECT prFramei instance of clsPrFrame 
OBJECT winDev; 
OBJECT printJob; 

printer is bound to this window device 
"owner" of this object 

U32 reserved; 
PRLAYOUT_METRICS, *P_PRLAYOUT_METRICSi 

msgPrLayoutNextPage 
Get next page. 

Takes PRLAYOUT_PAGE, returns STATUS. 

#define msgPrLayoutNextPage 

typedef struct PRLAYOUT_PAGE 
U16 pageNumber; II In: 
U16 displayPageNumberi II In: 
U16 logicalPageNumberi II Out: 
OBJECT currentAppi II Out: 
BOOLEAN appChanged; II Out: 

PRLAYOUT_PAGE, *P_PRLAYOUT_PAGE; 

MakeMsg(clsPrLayout, 3) 

paper sheets 
number displayed on page 
num times msgPrintStartPage sent 
top level app supplying current page 
true if first page from currentApp 

Uses print protocol messages defined in print.h to get the next page from the document being printed. 



PRMARGIN.H 

This file contains the API for clsPrMargin. 

clsPrMargin inherits from clsWin. 

Provides clipping of children. 

tifndef PRMARGIN INCLUDED 
tdefine PRMARGIN_INCLUDED 
tifndef GO_INCLUDED 
tinclude <go.h> 
tendif 
tifndef UID INCLUDED 
tinclude <uid.h> 
tendif 
tifndef CLSMGR INCLUDED 
tinclude <clsmgr.h> 
tendif 
tifndef CLAYOUT_INCLUDED 
tinclude <clayout.h> 
tendif 

Common #defines and typedefs 

msgNew 
Create a new object. 

Takes P _PRMARGIN_NEW, returns STATUS. 

typedef struct PRMARGIN_NEW_ONLY { 
OBJECT client; II object to adjust layout 

} PRMARGIN_NEW_ONLY, *P_PRMARGIN_NEW_ONLY; 
tdefine prMarginNewFields \ 

customLayoutNewFields \ 
PRMARGIN NEW ONLY prMargin; 

typedef struct PRMARGIN_NEW { 
prMarginNewFields 

} PRMARGIN_NEW, *P_PRMARGIN_NEW; 

The prmargin object handles msgCstmLayoutGetChildSpec and then sends it on to the client for 
adjustment of default layout behavior. 

msgPrMarginSetMetrics 
Set the prMargin metrics. 

Takes P _PRMARGIN_METRICS, returns STATUS. 

typedef struct PRMARGIN_METRICS { 
OBJECT client; 

} PRMARGIN_METRICS, *P_PRMARGIN_METRICS; 
tdefine msgPrMarginSetMetrics MakeMsg(clsPrMargin, 1) 





RCAPP.H 

This file contains the API definition for dsRootContainerApp. 

dsRootContainerApp inherits from dsApp. 

Abstract class for root containers. 

This class defines the API for all root container applications. Root containers are expected to respond to 
this API as part of their implementation. 

PenPoint includes one implementation of a root container: the notebook. The messages defined in this 
class allow programatic control of a root container application. 

To get the uid of the root container of interest use msgAppGetRoot (see app.h) or msgAppMgrGetRoot 

(see appmgr.h). 

#ifndef RCAPP_INCLUDED 
#define RCAPP_INCLUDED 
#include <clsmgr.h> 
#include <uuid.h> 

Common #defines and typedefs 
typedef OBJECT RCAPP, *P_RCAPPi 

Messages 

Sequential Access Messages 
The next four messages provide sequential access to documents within the target root container. 

msgRCAppN extDoc 
Increments a root container's internal pointer to the next document. 

Takes nothing, returns STATUS. 

#define msgRCAppNextDoc MakeMsg(clsRootContainerApp, 1) 

This message is sent to a root container to cause it to move to the next page. This message does not 

actually cause the page turn to occur. After one or more msgRCAppNextDoc, you must send 
msgRCAppExecuteGotoDoc to actually force the page turn to happen. 

msgRCAppPrevDoc 
Decrements a root container's internal pointer to the previous document. 

Takes nothing, returns STATUS. 

#define msgRCAppPrevDoc MakeMsg(clsRootContainerApp, 2) 



218 PEN POINT API REFERENCE 

Part 2 IPenPoint Application Framework 

This message is sent to a root container to cause it to move to the previous page. This message does not 
actually cause the page turn to occur. After one or more msgRCAppPrevDoc, you must send 
msgRCAppExecuteGotoDoc to actually force the page turn to happen. 

msgRCAppExecuteGotoDoc 
Turns a root container to the page pointed to by its internal pointer. 

Takes nothing, returns STATUS. 

#define msgRCAppExecuteGotoDoc MakeMsg(clsRootContainerApp, 3) 

Send this message after a series of msgRCAppNextDoc or msgRCAppPrevDoc calls to force the page 
turn to happen. 

msgRCAppCancelGotoDoc 
Resets a root container's internal pointer to the current document. 

Takes P _UUID, returns STATUS. 

#define msgRCAppCancelGotoDoc MakeMsg(clsRootContainerApp, 4) 

Send this message after a series of msgRCAppN extDoc or msgRCAppPrevDoc calls to cancel the calls 
reset the root contaner's internal pointer to the current page. 

Random Access Messages 

(omments 

The next two messages provide random access to documents within the target root container. 

msgRCAppGotoContents 
Turns a root container to its contents page. 

Takes nothing, returns STATUS. 

#define msgRCAppGotoContents MakeMsg(clsRootContainerApp, 5) 

Send this message to a root container to force it to turn to its table of contents. 

msgRCAppGotoDoc 
Turns a root container to a document, or floats the document over the current page. 

Takes P _RCAPP _GOTO_DOC, returns STATUS. 

#define msgRCAppGotoDoc MakeMsg(clsRootContainerApp, 6) 

typedef struct RCAPP_GOTO_DOC 
BOOLEAN gotoDoc; 
UUID docUUID; 
UUID reserved1; 
U32 reserved2[2); 
char reserved3[nameBufLength); 
U32 reserved4[4); 

RCAPP_GOTO_DOC, *P_RCAPP_GOTO_DOCi 

II True=turn to, False=float. 
II UUID of target document. 
II Reserved. 
II Reserved. 
II Reserved. 
I I Rese~ved. 

Send this message to a root container to turn to or float a document. The specified document must be 
within the root container. 



VIEW.H 

This file contains the API definition for dsView. 

dsView inherits from dsCustomLayout. 

dsView is an abstract class that defines an association between a data object and a view onto that data. 

Since dsView is an abstract class it should never be directly instantiated. 

#ifndef VIEW INCLUDED 
#define VIEW_INCLUDED 
#ifndef CLAYOUT_INCLUDED 
#include <clayout.h> 
#endif 

Common #defines and typedefs 
typedef OBJECT VIEW, *P_VIEW; 

Messages 

msgNew 
Creates a new view. 

Takes P _VIEW _NEW, returns STATUS. Category: class message. 

typedef struct VIEW_NEW_ONLY { 
OBJECT dataObject; II Data object to view. 
BOOLEAN createDataObject; II Auto-create data object? 

VIEW_NEW_ONLY, *P_VIEW_NEW_ONLY; 
#define viewNewFields \ 

customLayoutNewFields \ 
VIEW NEW ONLY view; 

typedef struct VIEW_NEW { 
viewNewFields 

} VIEW_NEW, *P_VIEW_NEW; 

If pArgs->view.dataObject is non-null, the new view object becomes an observer of the data object. 

dsView does not act on the value of pArgs->view.createDataObject. It is up to descendants of dsView 
to act on this field, typically by creating a new data object if the field is true. This behavior may not be 
appropriate of all descendants, however. 

Descendants: You should never handle msgNew directly. Instead, handle msglnit by initializing your 
instance data. The ancestor must be called before your msglnit handler. 

msgNewDefaults 
Initializes the VIEW_NEW structure to default values. 

Takes P _VIEW _NEW, returns STATUS. Category: class message. 



220 PENPOINT API REFERENCE 

Message 

Arguments 

Part 2 / Pen Point Application Framework 

typedef struct VIEW_NEW { 
viewNewFields 

} VIEW_NEW, *P_VIEW_NEW; 

In response to this message, cis View does the following: 

pArgs->embeddedWin.style.embeddor 
pArgs->embeddedWin.style.embeddee 
pArgs->view.dataObject 
pArgs->view.createDataObject-

= true; 
= true; 
= objNull; 
= false; 

Descendants: You should handle msgNewDefaults by initializing your _NEW structure to default 

values. The ancestor must be called before your handler. 

msgFree 
Defined in clsmgr.h. 

Takes OBLKEY, returns STATUS. 

In addition to standard msgFree behavior, the view removes itself as an observer of its data object. It 
does NOT send msgFree to the data object. 

Descendants: You should handle msgFree by destroying all objects and resources you have created. It 
may be appropriate for you to destroy the data object if your view is the only observer of it. The ancestor 
must be called after your handler. 

msgSave 
Defined in clsmgr.h. 

Takes P _OBLSAVE, returns STATUS. 

In response to this message, the view sends msgResPutObject to pArgs->file with the data object as the 

value of pArgs. In effect, this means that saving the view also saves the data object. (If the data object is 
null, this writes the "null object" id into the resource file.) 

Descendants: You should handle msgSave by saving your instance data. The ancestor must be called 

before your handler. 

msgRestore 
Defined in clsmgr.h. 

Takes P_OBJ_RESTORE, returns STATUS. 

In response to this message, the view sends msgResGetObject to pArgs->file. In effect, this means that 

restoring the view also restores the data object. (If the data object was null when the view was saved, the 

data object is null after msgRestore is handled.) 

If the restored data object is non-null, the view becomes an observer of the data object. 

Descendants: You should handle msgSave by restoring your instance data. The ancestor must be called 

before your handler. 



Cz:trnments 

msgF reePending 
Defined in clsmgr.h. 

Takes OBJECT, returns STATUS. 

VIEW.H 221 

Messages 

If the object being freed is the view's data object, the view sets its data object to objNull. 

Descendants: If you maintain instance data on the data object, you may need to handle this message by 
updating your instance data to reflect the impending destruction of the data object. The ancestor should 

be called before your handler. It is recommended, however, that your view not keep any information on 

the data object, thus maintaining a strict view/data separation. In such cases, you will not need to handle 

msgFreePending. 

msgViewSetDataObject 
Specifies a view's data object. 

Takes OBJECT, returns STATUS. 

#define msgViewSetDataObject MakeMsg(clsView, 1) 

If the current data object is non-null, the view removes itself as an observer of the current data object. 

It then sets the current data object to pArgs and, if the new data object is non-null, becomes an observer 
of it. 

Descendants: If you maintain instance data on the data object, you may need to handle this message by 

updating your instance data to reflect the changed data object. The ancestor may be called before or 
after your handler. It is recommended, however, that your view not keep any information on the data 

object, thus maintaining a strict view/data separation. In such cases, you will not need to handle 

msgViewSetDataObject. 

msgViewGetDataObject 
Passes back a view's current data object 

Takes P_OBjECT, returns STATUS. 

#define msgViewGetDataObject MakeMsg(clsView, 2) 

Descendants: You do not normally handle this message. 





Pari 3 / 
Winclovls and Graphics 





BITMAP.H 

This file contains the API for clsBitmap. 

clsBitmap inherits from clsObject. 

Support class for clsIcon (see icon.h). Serves as data object for the Bitmap Editor. Based on cached 
images (see sysgra£h). 

clsBitmap takes a sampled image description, and optionally a mask, and a hotspot. It will file this 
description. It also provides messages to modify the bitmap appearance. The Bitmap Editor treats 
bitmaps as data objects. It creates a bitmap, files it, and will export it as resource file. This resource file 

can be processed further by SDK utility programs (see resappnd). 

A bitmap will prepare an argument structure for use by msgDcCacheImage so that the sampled image 

data in the bitmap can be converted to a cached image for quick rendering. See 
msgBitmapCacheImageDefaults. 

*ifndef BITMAP INCLUDED 
*define BITMAP_INCLUDED 
*ifndef SYSGRAF INCLUDED 
*include <sysgraf.h> 
*endif 

Typedefs, #defines, and Status Values 
*define bitmapResId 
*define bmEncodeNone 
*define bmEncodeRunLength 
*define bmEncode1BPS 
*define bmEncode2BPS 
*define bmEncode4BPS 
*define bmEncode8BPS 
*define bmEncode16BPS 
*define bmEncode24BPS 
*define bmMono 
*define bmColorMap 
*define bmDirectColor 
typedef struct BITMAP_STYLE 
{ 

U16 pixEncoding 4, 
maskEncoding 4, 
colorEncoding 3, 
version 5; 

BITMAP_STYLE, *P_BITMAP_STYLE; 

MakeTag(clsBitmap, 1) 

o II no data 
1 II run length encoded 
2 II 1 bit per sample 
3 II 2 bits per sample 
4 II 4 bits per sample 
5 II 8 bits per sample 
6 II unused (reserved) 
7 II unused (reserved) 
o II default 
1 
2 

II Not Working (reserved) 
II Not Working (reserved) 

II currently 0 



226 PENPOINT API REFERENCE 
Part 3 I Windows and Graphics 

Messages 

M®££O!;!0 

~r!%\Jm0rtt$ 

msgNew 
Creates a bitmap. 

Takes P _BITMAP _NEW, returns STATUS. Category: class message. 

typedef struct BITMAP_NEW_ONLY 
{ 

BITMAP STYLE style; II overall style 
SIZE16 size; 
P U8 pPixels; 

II # of source samples 
II actual samples 

P U8 pMask; 
XY16 hotSpot; 

II mask (must be bmEncode1BPS) or pNull 
II lower-left corner relative hot spot 

U32 spare1; 
U32 spare2; 
BITMAP_NEW_ONLY, *P_BITMAP_NEW ONLY, 
BITMAP_METRICS, *P_BITMAP_METRICS; 

#define bitMapNewFields \ 
objectNewFields \ 
BITMAP_NEW_ONLY bitmap; 

typedef struct BITMAP_NEW 
{ 

bitMapNewFields 
BITMAP_NEW, *P_BITMAP_NEW; 

msgNewDefaults 
Initializes the BITMAP_NEW structure to default values. 

Takes P _BITMAP _NEW,returns STATUS. Category: class message. 

typedef struct BITMAP_NEW 
{ 

bitMapNewFields 
BITMAP_NEW, *P_BITMAP_NEW; 

bitmap.style.pixEncoding = bmEncode8BPS; 
bitmap.style.maskEncoding = bmEncode1BPS; 
bitmap.style.colorEncoding = brnMono; 
bitmap. style. version 0; 
bitmap.size.w = 0; 
bitmap.size.h = 0; 
bitmap.pPixels = pNull; 
bitmap.pMask = pNull; 
bitmap.hotSpot.x 0; 
bitmap.hotSpot.y = 0; 

msgBitmapGetMetrics 
Gets bitmap metrics. 

Takes P _BITMAP _GET_METRICS, returns STATUS. 

#define msgBitmapGetMetrics 

msgBitmapSetMetrics 
Sets bitmap metrics. 

Takes P _BITMAP _METRICS, returns STATUS. 

#define msgBitmapSetMetrics 

MakeMsg(clsBitmap, 0) 

MakeMsg(clsBitmap, 1) 



BITMAP.H 227 
Messages sent to observers 

msgBitmapSetSize 
Sets bitmap size, resizing heap block if necessary. 

Takes P _SIZE16, returns STATUS. 

#define rnsgBitrnapSetSize 

msgBitmapInvert 
Inverts the colors of the bitmap. 

Takes nothing, returns STATUS. 

#define rnsgBitrnapInvert 

msgBitmapLighten 
Lightens the colors of the bitmap by 1/4. 

Takes nothing, returns STATUS. 

#define rnsgBitrnapLighten 

msgBitmapFill 

MakeMsg(clsBitrnap, 2) 

MakeMsg(clsBitrnap, 3) 

MakeMsg(clsBitrnap, 4) 

Fills bitmap pixels with RGB value leaving mask alone. 

Takes RGB value, returns STATUS. 

fdefine rnsgBitrnapFill MakeMsg(clsBitrnap, 6) 

msgBitmapCacheImageDefaults 
Prepares argument structure for msgDcCacheImage. 

Takes P _SYSDC_CACHE_IMAGE, returns STATUS. 

fdefine rnsgBitrnapCacheIrnageDefaults MakeMsg(clsBitrnap, 43) 

After sending this message to the bitmap, pArgs is ready to be sent to a DC via using 
msgDcCacheImage (see sysgraf.h). 

Messages sent to observers 

msgBitmapPixChange 
Sent to observing objects if a pixel is dirty. 

Takes P _BITMAP _PDCCHANGE, returns STATUS. Category: observer notification. 

fdefine rnsgBitrnapPixChange 

typedef struct BITMAP_PIX_CHANGE 
{ 

XY16 pix; 
OBJECT sourceObject; 

MsgNoError(MakeMsg(clsBitrnap, 5)) 

P_BITMAP_METRICS pBitrnap; 
BITMAP_PIX_CHANGE, *P_BITMAP_PIX_CHANGE; 



228 PENPOINT API REFERENCE 

Part 3 / Windows and Graphics 

msgBitmapChange 
Sent to observing objects ifbitmap has changed. 

Takes nothing, returns STATUS. Category: observer notification. 

tdefine msgBitmapChange MsgNoError(MakeMsg(clsBitmap, 10)) 

msgBitmapMaskChange 
Sent to observing objects if bitmap's mask has changed. 

Takes nothing, returns STATUS. Category: observer notification. 

tdefine msgBitmapMaskChange MsgNoError(MakeMsg(clsBitmap, 11)) 



CCln.M 

CCITT Fax Group 3, one-dimensional data encoding and decoding routines. The functions described 
in this file are contained within CCITI.LIB. 

#ifndef CCITT INCLUDED 
#define CCITT INCLUDED 
typedef struct ENCODE31 
{ 

U16 
BOOLEAN 

P U8 

BOOLEAN 

BOOLEAN 

P U8 

U16 

P U8 
U16 

U16 

pixCnt; 
photoNegative; 

pScanLine; 

writeEol; 

writeRtc; 

pOutBuf; 

inBitPos; 

pOutLast; 
byteUsed; 

outBitPos; 

ENCODE31, *P_ENCODE31; 
#define ccittDecodeToPacked 
#define ccittDecodeToRunLen 
#define ccittDecodeToGroup3_1D 
typedef struct DECODE31 
{ 

S16 
S16 
BOOLEAN 

BOOLEAN 

BOOLEAN 

P U8 

U16 

S16 
P U8 

format; 
pixCnt; 
readEolRtc; 

photoNegative; 

newLine; 

pInBuf; 

inBitPos; 

inBufSz; 
pOutBuf; 

II Structure for use by function CcittEncode31 

II In: 
II In: 
II 
II 
II In: 
II 
II 
II In: 
II 
II In: 
II 
II In: 
II 
II 
II 
II In: 
II 
II Out: 
II Out: 
II 
II out: 
II 

How many pixels in the scanline. 
Input bitmap's palette: 
true: 0 = white, 1 = black. 
false: 1 = white, 0 = black. 
Scanline data to encode. 
Note: A scanline must be 

a multiple of words. 
EOL code is to be written at 
the beginning of the scanline. 
6 EOLs are to be written at 
the end of the scan line. 
Starting byte at which to put data. 
The buffer size must accomodate a 
worst case encoding for one scanline. 
2*pixCnt, +2 wIEOL, +9 w/RTC. 
Bit # in pOutBuf to start encoding 
Bit 0 = MSB, Bit 7 = LSB 
Last byte where data was put 
Number of bytes used for encoding, 
including the last partial byte. 
Bit # in pOutLast where last bit 
was put + 1. 

o II Decode to Packed bitmap. 
1 II Decode to sample image operator Run-Length. 
2 II Decode to Group 3 I-Dimension fax encoding. 
II Structure for use by fuction CcittDecode31 

II in: ccittDecodeToPacked,RunLen, or Group3_1D. 
II in: How many pixels comprise a scanline. 
II in: EOL or RTC string is to be read 
II at the end of each scanline. 
II in: Output palette: 
II true: 0 = white, 1 = black 
II false: 1 = white, 0 = black. 
II in/out: Must be set to true at the 
II start of each scanline and left 
II alone for remainder of scanline. 
II in: Input buffer: 
II Starting byte of data to decode. 
II in: Bit # in pInBuf to start decoding. 
II Bit 0 = MSB, Bit 7 = LSB 
II in: # of data bytes within input buffer. 
II in: Output buffer: 
II This field should be initialized once 
II at the beginning of each scanline and 
II left alone for the rest of the line. 
II The size of the output buffer must 



230 PENPOINT API REFERENCE 
Part 3 / Windows and Graphics 

II 
II 
II 
II 

S16 decodedSz; II 
II 

BOOLEAN done; II 
BOOLEAN rtcRead; II 
P U8 pInLast; II 

II 
S16 lastBitPos; II 

II 
S16 outBitPos; II 

II 
BOOLEAN curIsO; II 
S16 nDecoded; II 
S16 nEolRead; II 
BOOLEAN resyncToNextEol;11 
S16 adjacentZeros; II 

DECODE31, *p _DECODE31; 

CcittEncode31 

accomodate for the worst case decoding 
pixCnt for decodeToRunLength, 
2* ((pixCnt+15)/16) for ccittDecodeToPacked, 
((9*pixCnt)/16)+2 for ccittDecodeToGroup3_1D. 

out: The number of bytes of decoded output 
placed into *pOutBuf. 

out: A complete scanline has been decoded. 
out: RTC detected (6 consecutive EOLs). 
out: Points to last data byte within 

*pInBuf that was decoded. 
out: Next bit # within *pInLast byte 

that will be decoded. 
private: Bit # within pOutBuf at which next 

bit of decoded data will be placed. 
private: Last run was zero bits/pixels. 
private: # of scanline pixels decoded. 
private: # of EOLs read with scanline. 
private: Resync to next EOL - data error. 
private: Consecutive zero bit run count. 

Encode one scanline of a packed bitmap into fax group 3 T.4 1-D format. 

Returns nothing. 

Function F*rototype void EXPORTED CcittEncode31 
P_ENCODE31 pEncode ); 

CcittDecode31 
Decode one scanline worth of fax group 3 T.4 1-D image data. 

Returns BOOLEAN. 

Fum;tion ?rotoF)'pe BOOLEAN EXPORTED CcittDecode31 
P_DECODE31 pDecode ); 

Output can be either the packed bitmap format, sampled imageoperatorlength encoded format, or 
Group 3 1 dimensional image format without. Function returns true if successful, false if the input 
datanot valid fax data. The interface to this function is such thatcalls may be needed to decode a 
complete scanline. As such,states are kept in the interface structure. Fields labeledprivate are not to 
be molested by the caller. 

Example of decoding a TIFF CCITT/3 image (where there is no EOL or RTCand the number of 
scanlines is known a priori, using a decodedof our run length format: 

decode. format 
decode.pixCnt 
decode.readEolRtc 

for (all scanlines) 
{ 

ccittDecodeToRunLen; 
1024; 
false; 

decode.inBitPos = 0; 
decode.pOutBuf = whatever; 
decode.pInBuf = whatever; 
decode.inBufSz = whatever; 
decode.newLine = true; 

while (true) 
{ 

if (!CcittDecode31(&decode)) 



break; II the input data is screwed up. 
if (decode.done) 

break; I I done decoding current scanline. 

II Supply new bits for next call. Note that there may be 
II partial bits left undecoded within the last decoded byte. 
II The next call to decode must start with any undecoded bits. 
I If you buffer the source bits, then copy all undecoded bits 
II into the new buffer. The pInLast and lastBitPos fields tell 
II you the amount left undecoded. 

decode.pInBuf = pInLast; II Or your new buffer. 

CCITT.H 

decode.inBufSz whatever; 
decode.inBitPos = decode.lastBitPos; 

II * of bytes wlin buffer. 
II Assuming that you copy 
II .*decode.pInLast to new 
II buffer. 

II Done decoding a scanline. 

231 

Example of decoding a raw fax input where there is EOLs and RTCand the number of scanlines is not 
known a priori, using aformat of packed bit output: 

decode. format 
decode.inBitPos 
decode.pInBuf 
decode.inBufSz 
decode.readEolRtc 
decode.rtcRead 

= ccittDecodeToPacked; 
= 0; 
= whatever; 
= whatever; 

true; 
= false; 

while (!decode.rtcRead) 
{ 

decode.newLine = true; 
decode.pOutBuf = whatever; 
decode.pixCnt = whatever; II * of pixels of packed data 

II *pOutBuf can accomodate. 
while (true) 
{ 

if (!CcittDecode31(&decode)) 
break; II ------ the input data is screwed up. 

if (decode. done) 
break; II ------ done decoding current scanline. 

II Supply new bits for next call. Note that there may be 
II partial bits left undecoded within the last decoded byte. 
II The next call to decode must start with any undecoded bits. 
I If you buffer the source bits, then copy all undecoded bits 
II into the new buffer. The pInLast and lastBitPos fields tell 
II you the amount left undecoded. 

decode.pInBuf = pInLast; 
decode.inBufSz = whatever; 
decode.inBitPos = decode.lastBitPos; 

II Done decoding a scanline. 

II Or your new buffer. 
II * of bytes wlin buffer. 
II Assuming that you copy 
II *decode.pInLast to new 
II buffer. 





GIO.H 

This file contains the API definition for PenPoint's geometry pllckage. The package provides points, 

rectangles, matrices, etc., and is used by the graphics and windowing software. 

Typical application software will only need the types defined in this file and not need to use the 

functions. 

The functions described in this file are contained in WIN.LIB. 

*ifndef GEO INCLUDED 
*define GEO INCLUDED 
*ifndef GO INCLUDED 
*include <go.h> 
*endif 

Typedefs, #defines, and Status Values 
typedef S32 COORD32i 
typedef S16 COORD16i 
typedef S16 ANGLEi 
typedef struct 
{ 

FIXED x, 
Yi 

SCALE, * P_SCALEi 
typedef struct 
{ 

COORD32 x, 
Yi 

XY32, * P_XY32i 
typedef struct 
{ 

COORD32 w, 
hi 

SIZE32, * P_SIZE32i 
typedef struct 
{ 

XY32 origini 
SIZE32 sizei 
RECT32, * P_RECT32i 

typedef struct 
{ 

COORD16 x, 
Yi 

XY16, * P_XY16i 
typedef struct 
{ 

COORD16 w, 
hi 

SIZE16, * P_SIZE16i 

// Foley/VanDam counter clockwise angles 



234 PENPOINT API REFERENCE 
Part 3 I Windows and Graphics 

typedef struct 
{ 

XY16 origin; 
SIZE16 size; 
RECT16, * P_RECT16; 

Type MAT represents a 3x3 matrix; however m13, m23 and m33 are constant and so they are not 
stored. 

mll m12 
m2l m22 
m3l m32 

sX a 
a sY 
tX tY 

typedef struct 
( 

FIXED mll, 
m12, 
m2l, 
m22; 

S32 m3l, 
m32; 

MAT, * P_MAT; 

m13 
m23 
m33 

0 
0 
1 

Enum16 (GEO_MAT_MULT) {geoPreMultiply,geoPostMultiply}; 

Handy macros 
#define Coord32To16(c) ((c>O)?(COORD16)Min(c,maxS16): (COORD16)Max(c,minS16» 
#define Coord16from32(c) Coord32To16 (c) 
#define RectInit(r, _x, _y, _w, _h) \ 

{ (r)->origin.x = (_x); (r)->origin.y = (_y); \ 
(r)->size.w = Cw); (r)->size.h = Ch); } 

#define RectRight(r) ((r)->origin.x + (r)->size.w) 
#define RectTop(r) ((r)->origin.y + (r)->size.h) 

Functions 

Rectl6fo32 
Take a RECT16 and produce a RECT32. 

Returns nothing. 

FUl"!di@rt i»r@t@t),pe void EXPORTED Rect16To32 
P_RECT32 p32, II Out 
P_RECT16 p16 II In 

) ; 

Rect32To16 
Take a RECT32 and produce a RECT16 with rounding. 

Returns nothing. 

FWll"ldi@fl i»r@t@type void EXPORTED Rect32To16 
P_RECT16 p16, II Out 
P_RECT32 p32 II In 

) ; 

Each 32-bit number is rounded to 16-bits using Coord31f 016. 



GEO.H 235 
Functions 

Rect32Intersect 
Take two RECT32's and produce their intersection. 

Returns BOOLEAN. 

Ft.mctkm Prototype BOOLEAN EXPORTED Rect32Intersect 
P_RECT32 pA, II In 
P_RECT32 pB, II In 
P_RECT32 pRet II Out: the intersection 

) ; 

Comments Returns whether the two rectangles intersect. When TRUE, the rectangle returned will always have 
positive width and height, even though either of the parameter rectangles may have negative width or 
height. 

Rect32sIntersect 
Test if two RECT32's intersect. 

Returns BOOLEAN. 

function Pr@Ttliype BOOLEAN EXPORTED Rect32sIntersect 
P_RECT32 pA, II In 
P_RECT32 pB II In 

) ; 

Either of the parameter rectangles may have negative width or height. 

Rect32EnciosesRect32 
Test if a RECT32 encloses another RECT32. 

Returns BOOLEAN. 

Funcri@n Prototype BOOLEAN EXPORTED Rect32EnclosesRect32 
P_RECT32 pA, II In 
P_RECT32 pB II In 

) ; 

Returns true if rect A completely encloses rect B. Either of the parameter rectangles may have negative 
width or height. 

Rect16Intersect 
Take two RECT16's and produce their intersection. 

Returns BOOLEAN. 

Fund!@rl ProTotype BOOLEAN EXPORTED Rect16Intersect 
P_RECT16 pA, II In 
P_RECT16 pB, II In 
P_RECT16 pRet II Out: the intersection 

) ; 

Returns whether the two rectangles intersect. When TRUE, the rectangle returned will always have 
positive width and height, even though either of the parameter rectangles may have negative width or 
height. 



236 PEN POINT API REFERENCE 
Part 3 I Windows and Graphics 

XY32inRect32 
Test if an XY32 point is inside a RECT32. 

Returns BOOLEAN. 

FUfH;ti()n Prototype BOOLEAN EXPORTED XY32inRect32 
P RECT32 pRect, II In 
P-XY32 pXY II In 

) ; 

Rect32Empty 
Test if a RECT32 has a width or height that is zero. 

Returns BOOLEAN. 

rum:t!on F'n",totype BOOLEAN EXPORTED Rect32Empty 
P_RECT32 pRect II In 

) ; 

Also, if pRect is pNull then this function returns true. 

Rect16Empty 
Test if a RECT16 has a width or height that is zero. 

Returns BOOLEAN. 

Function Prohltype BOOLEAN EXPORTED Rect16Empty 
P_RECT16 pRect II In 

) ; 

Also, if pRect is pNull then this function returns true. 

MatCreate 
Create a MAT given a translate, rotate, and scale. 

Returns nothing. 

void EXPORTED MatCreate ( 
P MAT pMat, II Out 
COORD32 tX, II In 
COORD32 tY, II In 
ANGLE angle, II In 
FIXED sX, II In 
FIXED sY II In 

) ; 

pMat is set to identity. Then the three transformation are post-multiplied in the order (1) translate, (2) 
rotate, and (3) scale. 

Matldentity 
Set a MAT to the identity matrix. 

Returns nothing. 

rundion F'rototype void EXPORTED MatIdentity 
P_MAT II Out 

) ; 



MatRotate 
Rotate a MAT. 

Returns nothing. 

fun«:ticm Prototype void EXPORTED MatRotate 
GEO MAT MULT order, 
P MAT pMat, 
ANGLE angle 

) ; 

MatTranslate 
Translate a MAT. 

Returns nothing. 

Function Pvetetype void EXPORTED MatTranslate 
GEO MAT MULT order, 
P MAT pMat, 
P XY32 xy 

) ; 

MatScale 
Scale a MAT. 

Returns nothing. 

fund!{)w; Prtltotype void EXPORTED MatScale 
GEO MAT MULT order, 
P MAT pMat, 
P SCALE scale 

) ; 

Matlnvert 
Invert a MAT. 

Returns nothing. 

Function Pmtetype void EXPORTED Mat Invert ( 

II In: {geoPreMultiply,geoPostMultiply} 
II In-Out: 
II In: 0-359 degrees 

II In: {geoPreMultiply,geoPostMultiply} 
II In-Out: 
II In: 

II In: {geoPreMultiply,geoPostMultiply} 
II In-Out: 
II In: 

P MAT pDest, II Out: 
P MAT pSource II In: 

) ; 

pSource is inverted and placed in pDest. pSource and pDest can be the same matrix. 

MatMultiply 
Multiply two MAT's. 

Returns nothing. 

void EXPORTED MatMultiply 

) ; 

GEO MAT MULT order, 
P MAT 
P MAT 
P MAT 

answer, 
left, 
right 

II In: {geoPreMultiply,geoPostMultiply} 
II Out 
II In 
II In 

GEO.H 237 
Functions 

If order is geoPreMultiply, then answer = right * left. If order is geoPostMultiply, then answer = left * 
right; 



238 PENPOINT API REFERENCE 
Part 3 I Windows and Graphics 

MatXYTransform16 
Transform a XY32 producing a XY16 result. 

Returns nothing. 

Fum:tk~fi Prototyp0 void EXPORTED MatXYTransform16 
P MAT pMat, II In 
P XY32 pSource, II In 
P XY16 pDest II Out 

) ; 

Each 32-bit number is rounded to 16-bits using Coord31I'o16. 

MatXYTransform32 
Transform a XY32 producing a XY32 result. 

Returns nothing. 

F",mdl©n Prototyp0 void EXPORTED MatXYTransform32 
P_MAT pMat, II In 
P_XY32 pSource, II In 
P_XY32 pDest II Out 

) ; 

MatWHTransform16 
Transform a SIZE32 producing a SIZE 16 result. 

Returns nothing. 

rLPI{'tion Prototype void EXPORTED MatWHTransform16 
P_MAT pMat, II In 
P_SIZE32 pSource, II In 
P SIZE16 pDest II Out 

) ; 

This transformation is similar to MatXYTransform16 except the translation components of the matrix 
are ignored and the values returned are always positive. 

Each 32-bit number is rounded to 16-bits using Coord31I' 016. 

MatWHTransform32 
Transform a SIZE32 producing a SIZE32 result. 

Returns nothing. 

FUl1d;©n Prototyp0 void EXPORTED MatWHTransform32 
P_MAT pMat, II In 
P_SIZE32 pSource, II In 
P_SIZE32 pDest II Out 

) ; 

This transformation is similar to MatXYTransform32 except the translation components of the matrix 
are ignored and the values returned are always positive. 



GEO.H 239 
Special Functions 

MatTransformRECT32 
Transform a RECT32. 

Returns nothing. 

fundk:H'1 Pvototyp<t void EXPORTED MatTransforrnRECT32 
P~T pMat, II In 
P_RECT32 pSource II In-Out 

) ; 

Debugging Functions 

MatDump 
Prints the fields of a matrix. 

Returns nothing. 

EXPORTED Mat Dump (P_MAT pm); 

This function may not work unless the debugging version of win.dll is being used. 

DumpRect 
Prints the fields of a rectangle. 

Returns nothing. 

fundion Pvototype void EXPORTED DumpRect (P _ RECT32 pRect); 

Comments This function may not work unless the debugging version of win.dll is being used. 

Special Functions 
WARNING: The functions in this section (MatXTransform16, MatYTransform16, 
MatWTransform16, and MatHTransform16) work only in a limited set of cases: NO translation, NO 
rotation, and they perform NO rounding and thus can overflow the 16 bit result. 

These functions should not normally be used by application software. 

function Prototype COORD16 EXPORTED MatXTransform16 (P_MAT pi, COORD16 x); 

COORD16 EXPORTED MatYTransform16 (P_MAT pi, COORD16 y); 
COORD16 EXPORTED MatWTransform16 (P_MAT pi, COORD16 w); 
COORD16 EXPORTED MatHTransform16 (P_MAT pi, COORD16 h); 





PICSEG.M 

This file contains the API definition for clsPicSeg (Picture Segments). 

clsPicSeg inherits from clsSysDrwCtx. 

clsPicSeg provides a database and storage for drawing primitives. 

A Picture Segment creates a display list from the stream of messages defined by drawing context. The 

graphic elements in a PicSeg are called grafics. The display list can repaint to the same window or store 

the grafics and later repaint it to another window. It also provides a move/copy transfer type for grafics. 

The Picture Segment stores the following shapes as defined by clsSysDrwCtx: rectangle, ellipse, Bezier, 
polyline, polygon, sector rays, arc rays, chord rays, text. In addition, it defines a spline, and object types 

as an enhancement to the drawing context. It doesn't store images or raster operations such as CopyRect 

and XOR. Raster operations like XOR, AND, dynamic and fast modes defined by the drawing context 
apply to the whole display list. Similarly, transformations scale, translate, rotate and units apply to the 

PicSeg before drawing the list. The PicSeg stores the grafics in Logical Unit Coordinates as defined by 

the drawing context. 

PicSeg's provide display query messages allowing changes to grafic shapes it stores. The grafics in a 
picture segment are ordered; it keeps track of the current grafic. You can retrieve, alter, reorder, and 

delete individual grafics. 

Common uses of PicSeg's: 

PicSeg's generally used as the Data Object of a View (clsView). A drawing View (like clsGrafPaper) 

translates the input strokes into grafics and draws them to the PicSeg, treating the PicSeg just like a 
Drawing Context. When the View gets msgWinRepaint it sends msgPicSegPaint to the PicSeg. 

The PicSeg's file data as an Object so they can be used as resources. A Drawing View could file many 
PicSegs with different resource ids to the same file. Latter a display View could look up the different 

PicSegs in the resource file and display them. 

PicSeg's are used to Move/Copy grafic data between Views. The transfer (xfer) mechanism uses an 

intermedate global PicSeg for grafics. 

:/tifndef PICSEG_INCLUDED 
:/tdefine PICSEG INCLUDED 
:/tifndef SYSGRAF INCLUDED 
:/tinclude <sysgraf.h> 
:/tendif 

Common #defines and typedefs 

Data Collection and Drawing Modes 
The PicSeg flags deterimine what to do with a draw messages. By default a message like 

msgDcDrawRectangle causes the PicSeg to store the rectangle in the display list and draw it on the 
window set by msgDcSetWindow. The following flags can prevent one or both of these thing from 

happening (picseg.flags). 



242 PEN POINT API REFERENCE 
Part 3 I Windows and Graphics 

OpCodes 

*define picSegAdd 
*define picSegDraw 
*define picSegSendDestroy 

flagO 
flag1 
flag2 

lion if PicSeg should add grafics. 
lion if PicSeg should draw grafics 
lion ObjectCall(msgDestroy, ... ) 
II to an object grafic when it is 
II deleted from the PicSeg or if the 
II PicSeg is freed. 

The first grafic in the display list is o. The last can be set by using msgPicSegSetCurrent with 

picSeg TopGrafic or asking for the current number of grafics and then setting the current grafic. 

*define picSegTopGrafic Ox7FFFFFFF II theoretical maximum number of grafics 

Each grafic in the PicSeg is given an OpCode that idenifies what type of data is stored in the pData 
member ofPIC_SEG_GRAFIC. 

typedef U16 OP_CODEi 
typedef P_U16 P_OP_CODEi 

*define opCodeMaskInvisible Ox1000 
II grafic.pData 

*define opCodePolyline 100 II PIC SEG POLYLINE 
*define opCodeRectangle 101 II PIC SEG RECT 
*define opCodeEllipse 102 II PIC SEG ELLIPSE 
*define opCodePolygon 103 II PIC SEG POLYGON 
:/tdefine opCodeSpline 104 II PIC SEG SPLINE 
*define opCodeArcRays 105 II PIC SEG ARC RAYS 
*define opCodeSectorRays 106 II PIC SEG ARC RAYS - - -
*define opCodeChordRays 107 II PIC SEG ARC RAYS - -
*define opCodeText 55 II PIC SEG TEXT 
*define opCodeObject 150 II PIC SEG OBJECT 

The basic grafic used with msgPicSegGetGrafic. The pData allocated in the a heap and must be freed 

by creator of the PicSeg. 

typedef struct 
OP CODE opCodei 
P UNKNOWN pDatai 

}PIC_SEG_GRAFIC, * P_PIC_SEG_GRAFICi 

II the type of grafic stored in pData 
II pointer to the grafic data 

Every grafic provides the basic painting attributes. 

typedef struct { 
SYSDC PATTERN linePat, 

fillPati 
SYSDC RGB foregroundRGB, 

backgroundRGBi 
U16 lineThicknessi 

PIC_SEG_PAINT, * P_PIC_SEG_PAINTi 

II the line pattern 
II the fill pattern 
II the foreground color 
II the background color 
II the line width 

The polyline, polygon, and spline grafics provide line attributes. 

typedef struct 
U8 joini 
U8 capi 
U8 miterLimiti 
U8 sparei 

PIC_SEG_PLINE_TYPE, * P_PIC_SEG_PLINE_TY~Ei 
Text style attributes. 

typedef struct PIC_SEG_FONT_STYLE{ 
U16 alignChr 3, 

underline 2, 
strikeout 2, 
spare 9i 

PIC_SEG_FONT_STYLE, P_PIC_SEG_FONT_STYLEi 

II see sysDcAlignChr??? 
I I 0, 1, 2 
I I 0, 1 
II spare - default 0 



PICSEG.H 243 
Common #defines and typedefs 

The grafic.pData provided with grafic.opCode == opCodeText. 

typedef struct PIC_SEG_TEXT{ 
PIC_SEG PAINT paint; 
RECT32 rectangle; 
SYSDC FONT SPEC font Spec; 
PIC_SEG_FONT_STYLE style; 
SIZE16 size; 
XY32 cp; 
U16 length; 
U8 text[l]; 

PIC_SEG_TEXT, * P PIC_SEG_TEXT; 

II unique font 

II size of text 
II text position 
II length of text 
II null terminated text 

The grafic.pData provided with grafic.opCode == opCodeEllipse. 

typedef struct { 
PIC SEG PAINT paint; 
RECT32 ellipse; 

PIC_SEG_ELLIPSE, * P_PIC_SEG_ELLIPSE; 

The grafic.pData provided with grafic.opCode == opCodeRectangle. 

typedef struct { 
PIC SEG PAINT 
RECT32 
S16 

paint; 
rectangle; 
radius; 

PIC_SEG_RECT, * P_PIC_SEG_RECT; 

II The rectangle radius 
II 0 for square corners. 

The grafic.pData provided with grafic.opCode == opCodePolyline. The pData is of variable size 
depending on the number of points (pData->count). For Example, the third point is pData->points[3]. 
The size of pData is: (sizeof(PIC_SEG_POLYLINE) + sizeof(XY32) * ((pData->count)-l)). 

typedef struct { 
PIC SEG PAINT paint; 
PIC SEG PLINE TYPE type; 
U16 count; II number of points 
XY32 points[l]; II variable number of points 

PIC_SEG_POLYLINE, * P_PIC_SEG_POLYLINE; 

The grafic.pData provided with grafic.opCode == opCodePolygon. The pData is of varible size 
depending on the number of points (pData->count). For Example, the third point is pData->points[3]. 
The size of pData is: (sizeof(PIC_SEG_POLYGON) + sizeof(XY32) * ((pData->count)-l)). 

typedef struct { 
PIC SEG PAINT paint; 
PIC SEG PLINE TYPE type; 
U16 count; II number of points 
XY32 points[l]; II variable number of points 

PIC_SEG_POLYGON, * P_PIC_SEG_POLYGON; 

The grafic.pData provided with grafic.opCode == opCodeSpline. A spline is a continuous number of 
four point Bezier curves. The first Bezier is defined by the first four points in pData->points. The 
second Bezier starts at pData->points[3]. The count minus one is a multiple of three. 
msgDcDrawBezier stores as a spline. The pData is of varible size depending on the number of points 
(pData->count). For Example, the third point is pData->points[3]. The size of pData is: 
(sizeof(PIC_SEG_SPLINE) + sizeof(XY32) * ((pData->count)-l)). 

typedef struct { 
PIC SEG PAINT paint; 
PIC SEG PLINE TYPE type; 
U16 count; II number of points 
XY32 points[l]; II variable number of points 

PIC_SEG_SPLINE, * P_PIC_SEG_SPLINEi 



244 PENPOINT API REFERENCE 
Part 3 I Windows and Graphics 

The grafic.pData provided with grafic.opCode == opCodeArcRays, opCodeChordRays, or 
opCodeSectorRays. 

typedef struct { 
PIC SEG PAINT paint; 
RECT32 bounds; 
XY32 rays[2]; 

PIC_SEG_ARC_RAYS, * P_PIC_SEG_ARC_RAYS; 

The grafic.pData provided with grafic.opCode == opCodeObject. 

typedef struct { 
PIC SEG PAINT paint; 
RECT32 rectangle; 
OBJECT object; 

PIC_SEG_OBJECT, * P_PIC_SEG_OBJECT; 
*define maxPolylineSize ((OxFFFF I sizeof(XY32)) 
typedef struct PIC_SEG_METRICS { 

U16 flags; 
MESSAGE units; 
S32 numberGrafics; 
S32 currentGrafic; 
SYSDC PATTERN fillPat; 
SYSDC PATTERN 
SYSDC RGB 
SYSDC RGB 
SYSDC LINE 
SYSDC PATTERN 

linePat; 
foregroundRGB; 
backgroundRGB; 
line; 
clearFillPat; 

SYSDC PATTERN clearLinePat; 
SYSDC RGB clearForegroundRGB; 
SYSDC RGB clearBackgroundRGB; 
SYSDC FONT SPEC fontSpec; 
SIZE16 fontSize; 
PIC SEG FONT STYLE fontStyle; 
S32-'- - reserved[5]; 
S32 spare[8]; 

PIC_SEG_NEW_ONLY, PIC_SEG_METRICS, 
*P_PIC_SEG_NEW_ONLY, *P_PIC_SEG_METRICS; 

Messages 

msgDump 
Dumps a PicSeg. Debug version only! 

Takes S32, returns STATUS. Category: class message. 

II information only 
II information only 
II information only 
II attributes of the next 
II drawn grafic 

II clear 

II font stuff 

II reserved 

pArgs == 0 everything and dc. pArgs == 1 PicSeg and metrics and does not Dump ancestor. pArgs == 2 
PicSeg metrics only and does not Dump ancestor. pArgs == 3 PicSeg database only and does not Dump 
ancestor. 

msgNew 
Creates a new PicSeg. 

Takes P _PIC_SEG_NEW, returns STATUS. Category: class message. 

*define picSegNewFields \ 
sysdcNewFields \ 
PIC_SEG_NEW_ONLY picSeg; 



tVtcssCige 

ArgUltlcnts 

typedef struct PIC_SEG_NEW { 
picSegNewFields 

} PIC_SEG_NEW, *P_PIC_SEG_NEW; 

msgNewDefaults 
Initializes a PIC_SEG_NEW structure to default values. 

Takes P _PIC_SEG_NEW, returns STATUS. Category: class message. 

typedef struct PIC_SEG_NEW { 
picSegNewFields 

} PIC_SEG_NEW, *P_PIC_SEG_NEW; 

Defaults: 

picSeg.flags = picSegDraw I picSegAdd I picSegSendDestroy 
picSeg.units = msgDcUnitsPoints 
picSeg.currentGrafic = -1 
picSeg.fillPat = sysDcPatBackground 
picSeg.linePat = sysDcPatForeground 
picSeg.backgroundRGB.all SysDcGrayRGB(255) 
picSeg.foregroundRGB.all = SysDcGrayRGB(O) 

picSeg.line.cap = 0 
picSeg.line.join = 0 
picSeg.line.miterLimit = 10 
picSeg.line.radius = 0 
picSeg.line.thickness = 1 

picSeg.clearFillPat = sysDcPatNil 
picSeg.clearLinePat = sysDcPatNil 
picSeg.clearForegroundRGB SysDcGrayRGB(255) 
picSeg.clearBackgroundRGB = SysDcGrayRGB(O) 

picSeg.fontSpec.id = Nil 
picSeg.fontSpec.attr.group = sysDcGroupDefault 
picSeg.fontSpec.attr.weight sysDcWeightNormal 
picSeg.fontSpec.attr.aspect = sysDcAspectNormal 
picSeg.fontSpec.attr.italic = false 
picSeg.fontSpec.attr.monospaced = false 
picSeg.fontSpec.attr.encoding = sysDcEncodeHWX850 

picSeg.fontSize.w = 1 
picSeg.fontSize.h = 1 
picSeg.fontStyle.alignChr 
picSeg.fontStyle.underline 
picSeg.fontStyle.strikeout 
picSeg.fontStyle.spare = 0 

msgRestore 

= 0 
sysDcAlignChrBaseline 

= 0 

Restores the PicSeg metrics and grafics and sets the DC state. 

Takes P _OBLRESTORE, returns STATUS. Category: class message. 

PICSEG.H 245 
Messages 

The Restore doesn't connect the PicSeg to a window. Before using the PicSeg it must be set to a window 

with msgDcSetWindow. 



246 PENPOINT API REFERENCE 
Part 3 / Windows and Graphics 

msgSave 
Saves the PicSeg metrics and grafics and the DC units and LUC matrix. 

Takes P_OBJ_SAVE, returns STATUS. Category: class message. 

The Save doesn't save the window connected to the PicSeg. 

Drawing Messages 

Mess©ge 
Arguments 

Mess©ge 
Arguments 

Messages of clsSysDrwCtx used by clsPicSeg: All of the following messages draw the shape and add it as 

a grafic to end of the of the PicSeg display list, provided the add and draw flags are turned on. 

msgDcDrawEllipse, msgDcDrawRectangle, msgDcDrawPolyline, msgDcDrawPolygon, 
msgDcDrawSectorRays, msgDcDrawArcRays, msgDcDrawChordRays, msgDcDrawBezier, 
msgDcDrawText 

PicSeg text defaults: spaceChar, spaceExtra, otherExtra 

All of the following messages change the DC and also the PicSeg state. PicSeg converts the x,y font scale 
to 16 bits dc units. 

msgDcSetForegroundRGB, msgDcSetBackgroundRGB, msgDcSetLinePat, msgDcSetFillPat, 
msgDcSetLine, msgDcSetLine Thickness, msgDcOpenFont msgDcScaleFont, msgDcIdentityFont, 
msgDcUnits ... 

msgPicSegPaint 
Paints the grafics in the PicSeg. 

Takes pNull, returns STATUS. 

fdefine msgPicSegPaint MakeMsg(clsPicSeg, 7) 

Object Call either msgWinBeginPaint or msgWinBeginRepaint before using this message. 

msgPicSegDrawSpline 
Adds and draws the grafic to the end of the display list. 

Takes P _PIC_SEG_SPLINE, returns STATUS. 

fdefine msgPicSegDrawSpline MakeMsg(clsPicSeg, 104) 

typedef struct ( 
PIC SEG PAINT paint; 
PIC SEG PLINE TYPE type; 
U16- - - count; II number of points 
XY32 points[l]; II variable number of points 

PIC_SEG_SPLINE, * P_PIC_SEG_SPLINE; 

msgPicSegDrawObject 
Adds and draws an object to the PicSeg display list. 

Takes P_PIC_SEG_OBJECT, returns STATUS. 

fdefine msgPicSegDrawObject 

typedef struct { 
PIC SEG PAINT 
RECT32 -
OBJECT 

PIC_SEG_OBJECT, 

paint; 
rectangle; 
object; 

* P_PIC_SEG_OBJECT; 

MakeMsg(clsPicSeg, 121) 



MessQge 

Arguments 

MessQge 
Arguments 

PICSEG.H 247 
Drawing Messages 

msgPicSegPaintObject 
Sent by the PicSeg to objects in its database so they can draw themselves. 

Takes P _PIC_SEG_PAINT_OBJECT, returns STATUS. 

#define msgPicSegPaintObject 

typedef struct { 
PIC SEG PAINT 
RECT32 -
OBJECT 
OBJECT 
S32 

paint; 
rectangle; 
object; 
picSeg; 
reserved [6] ; 

MakeMsg(clsPicSeg, 46) 

* P_PIC_SEG_PAINT_OBJECT; 

msgPicSegDrawGrafic 
Draws a grafic from the PicSeg. 

Takes P _PIC_SEG_GRAFIC, returns STATUS. 

#define msgPicSegDrawGrafic 

typedef struct { 
OP CODE opCode; 
P UNKNOWN pData; 

}PIC_SEG_GRAFIC, * P_PIC_SEG_GRAFIC; 

MakeMsg(clsPicSeg, 10) 

II the type of grafic stored in pData 
II pointer to the grafic data 

The grafic opCode must be set to one of the opCode's defined by PicSeg's. Can be used for Hit Test on a 

specific grafic. Never adds the grafic to the PicSeg. Responds to flags picSegDraw. 

msgPicSegDrawGraficlndex 
Sets the current grafic to index and draws it. 

Takes S32 index, returns STATUS. 

#define msgPicSegDrawGraficIndex 

Can be used for HitTest on a specific grafic. 

msgPicSegDrawGraficList 
Draws all the grafics indexed by the list. 

Takes P_PIC_SEG_LIST, returns STATUS. 

#define msgPicSegDrawGraficList 

typedef struct { 

MakeMsg(clsPicSeg, 11) 

MakeMsg(clsPicSeg, 8) 

S32 count; II number of grafic in list to draw 
P S32 pIndex; II pointer to the list of grafics 

}PIC_SEG_LIST, * P_PIC_SEG_LIST; 

msgPicSegAddGrafic 
Adds a grafic to the PicSeg and Draws the grafic. 

Takes P _PIC_SEG_GRAFIC, returns STATUS. 

#define msgPicSegAddGrafic 

typedef struct { 
OP CODE opCode; 
P UNKNOWN pData; 

}PIC_SEG_GRAFIC, * P_PIC_SEG_GRAFIC; 

MakeMsg(clsPicSeg, 9) 

II the type of grafic stored in pData 
II pointer to the grafic data 



248 PENPOINT API REFERENCE 
Part 3 I Windows and Graphics 

The grafic opCode must be set to one of the opCode's defined by PicSeg's. Responds to flags picSegAdd 
and picSegDraw. 

msgPicSegGetMetrics 
Passes back the metrics of the PicSeg. 

Takes P _PIC_SEG_METRICS, returns STATUS. 

#define msgPicSegGetMetrics 

msgPicSegSetMetrics 
Sets the metrics of the PicSeg. 

Takes P _PIC_SEG_METRICS, returns STATUS. 

#define msgPicSegSetMetrics 

You cannot set picseg.numberGrafics. 

msgPicSegSetFlags 
Sets the PicSeg flags. 

Takes S32, returns STATUS. 

#define msgPicSegSetFlags 

msgPicSegGetFlags 
Gets the PicSeg flags. 

Takes P _S32, returns STATUS. 

#define msgPicSegGetFlags 

MakeMsg(clsPicSeg, 3) 

MakeMsg(clsPicSeg, 4) 

MakeMsg(clsPicSeg, 5) 

MakeMsg(clsPicSeg, 6) 

Hit Test 

Comments 

msgPicSegHit Test 
Performs a hit test on the PicSeg, passing back a single grafic index. 

Takes P _PIC_SEG_HIT_LIST, returns STATUS. 

#define msgPicSegHitTest MakeMsg(clsPicSeg, 23) 

typedef struct 
RECT32 recti II rectangle for the hit test 
S32 index; II in start grafic - out end grafic 

PIC_SEG_HIT_LIST, * P_PIC_SEG_HIT_LIST; 

index - in: First grafic to start hit test hit stops at grafic O. Use picSegTopGrafic for starting at the 
top most grafic. out: The grafic hit if status is stsDcHitOn or stsDcHitln. Otherwise O. 

STATUS return: 

stsDcHitOn if the line intersects the hit rectangle 

stsDcHitln if the rectangle is inside a closed figure 

stsDcHitOut if there was no hit 

msgWinBeginPaint must be sent to the window first. msgWinEndPaint must be sent to the 
window after. 



PICSEG.H 249 
Editing the PicSeg Display List 

Editing the PieSeg Display List 

Messuge 
Arguments 

Messuge 
Argurnents 

msgPicSegErase 
Deletes all grafics. 

Takes nothing, returns STATUS. 

fdefine msgPicSegErase 

msgPicSegDelete 

MakeMsg(clsPicSeg, 24) 

Deletes a grafic, takes a grafic Index. Sends msgDestroy to objects in the PicSeg. 

Takes S32, returns STATUS. 

fdefine msgPicSegDelete MakeMsg(clsPicSeg, 26) 

msgPicSegRemove 
Deletes a grafic, takes a grafic Index. Does not send msgDestroy to objects in the PicSeg. 

Takes S32, returns STATUS. 

fdefine msgPicSegRemove 

msgPicSegDelta 
Changes the current grafic. 

Takes P _PIC_SEG_GRAFIC, returns STATUS. 

fdefine msgPicSegDelta 

typedef struct 
OP CODE opCode; 
P UNKNOWN pData; 

}PIC_SEG_GRAFIC, * P_PIC_SEG_GRAFICi 

msgPicSegGetGrafic 
Gets the current grafic. 

Takes P _PIC_SEG_GRAFIC, returns STATUS. 

fdefine msgPicSegGetGrafic 

typedef struct 
OP CODE opCodei 
P UNKNOWN pDatai 

}PIC_SEG_GRAFIC, * P_PIC_SEG_GRAFICi 

Data must be freed by caller. 

msgPicSegSetCurrent 
Sets the current grafic index. 

Takes S32, returns STATUS. 

fdefine msgPicSegSetCurrent 

MakeMsg(clsPicSeg, 45) 

MakeMsg(clsPicSeg, 27) 

II the type of grafic stored in pData 
II pointer to the grafic data 

MakeMsg(clsPicSeg, 28) 

II the type of grafic stored in pData 
II pointer to the grafic data 

MakeMsg(clsPicSeg, 30) 

Specifying picSegTopGrafic sets the current grafic to the last grafic in the list. 



250 PENPOINT API REFERENCE 

Comments 

Comments 

Message 
Arguments 

Part 3 I Windows and Graphics 

msgPicSegGetCurrent 
Gets the index of the current graftc. 

Takes P _S32, returns STATUS. 

tdefine msgPicSegGetCurrent 

msgPicSegGetCount 
Gets the number of graftcs in the PicSeg. 

Takes P _S32, returns STATUS. 

tdefine msgPicSegGetCount 

msgPicSegMakelnvisible 
Makes the given graftc invisible. 

Takes S32, returns STATUS. 

tdefine msgPicSegMakeInvisib!e 

MakeMsg(c!sPicSeg, 31) 

MakeMsg(c!sPicSeg, 32) 

MakeMsg(c!sPicSeg, 33) 

Changes the graftcs opCode by oring in opCodeMaskInvisible. 

msgPicSegMake Visible 
Makes the given graftc visible. 

Takes S32, returns STATUS. 

tdefine msgPicSegMakeVisible MakeMsg(clsPicSeg, 34) 

Changes the graftcs opCode by masking out opCodeMaskInvisible. 

msgPicSegChangeOrder 
Changes the order of the graftcs in the display, Moving the current graftc to the given index. 

Takes S32, returns STATUS. 

tdefine msgPicSegChangeOrder MakeMsg(clsPicSeg, 35) 

If the given index is less than the current index, then the graftcs in between shift forward. 

If the given index is greater than the current index, then the graftcs in between shift backward. 

msgPicS~gSizeof 

Returns the size of the (PIC_SEG_GRAFIC}.pData in bytes. 

Takes P _PIC_SEG_GRAFIC, returns S32. 

tdefine msgPicSegSizeof 

typedef struct { 
OP_CODE opCode; 
P_UNKNOWN pData; 

}PIC_SEG_GRAFIC, * P_PIC_SEG_~RAFIC; 

MakeMsg(clsPicSeg, 39) 

II the type of grafic stored in pData 
II pointer to the grafic data 



PICSEG.H 251 
Messages Used For Move Copy 

Messages Used For Move Copy 

Comments 

You can move and copy grafics in picture segments using the selection manager XFER mechanism type 
xferPicSegObject. The PicSeg is a data object and only helps define the method. The PicSeg itself does 
not have the selection. Usually the View, using the PicSeg as its data object, responds to move and copy 
messages. The selected View puts xferPicSegObject on the list when it receives msgXferList. With a 
match the receiving View creates a global heap PicSeg and sets up the XFER_OBJECT: 

XFER OBJECT 
OBJECT 
MAT 

xferObject; 
picSeg; 
matrix; 

memset(&xferObject, 0, sizeof(XFER_OBJECT)); 
xferObject.id = xferPicSegObject; 
xferObject.receiver = self; 

StsJmp(ObjectSendUpdate(msgXferGet, sel, &xferObject,\ 
(U32)sizeof(XFER_OBJECT)), sts, error); 

xferPicSeg = xferObject.uid; 
ObjectCall(msgDcSetWindow, xferPicSeg, (P_ARGS)self); 
ObjectCall(msgPicSegScaleUnits, xferPicSeg, (P_ARGS)psMetrics.units); 
matrix.m31 = pTip->x - bounds.origin.x; 
matrix.m32 = pTip->y - bounds.origin.y; 
Matldentity(matrix); 
ObjectCall(msgPicSegTransform, xferPicSeg, &matrix); 
ObjectCall(msgPicSegCopy, picSeg, (P_ARGS)xferPicSeg); 
ObjectCall(msgDestroy, xferPicSeg, pNull); 

The receiving View then ObjectSends msgXferGet to the selection. The selected View takes 
msgXferGet sets the xfer PicSeg's metrics to its own and puts the selected grafics into the global PicSeg. 
The receiving View must rebind the xfer PicSeg to a window using msgDcSetWindow. Then transform 
the xfer PicSeg with msgPicSegScaleUnits and msgPicSegTransform. The xferPicSeg is copied into the 
receiving View's PicSeg with msgPicSegCopy. The global PicSeg is then freed by the receiving View. 

#define tagPicSeg MakeTag(clsPicSeg,O) 

msgPicSegScaleU nits 
Scales all coordinates in the PicSeg from the old units to the new units, then sets the units of the PicSeg 
to the new units. 

Takes MESSAGE, returns STATUS. 

#define msgPicSegScaleUnits MakeMsg(clsPicSeg, 36) 

Valid arguments: msgDcUnitsMetric, msgDcUnitsMil, msgDcUnitsPoints, msgDcUnitsTwips, 
msgDcUnitsPen, msgDcUnitsPen, msgDcUnitsDevice, msgDcUnitsLayout. 

Invalid arguments: msgDcUnitsWorld. 

msgPicSegTransform 
Transforms all coordinates in the PicSeg database with the provided matrix. 

Takes MAT, returns SfATUS. 

#define msgPicSegTransform MakeMsg(clsPicSeg, 37) 

Doesn't change line thickness, text size and rect radius. Thus this message is best used for Rotation and 
Translation only. 



252 PEN POINT API REFERENCE 
Part 3 / Windows and Graphics 

msgPicSegCopy 
Copies the contents of the specified PicSeg to self. 

Takes OBJECT, returns STATUS. 

fdefine msgPicSegCopy MakeMsg(clsPicSeg, 38) 

Takes no account for units, scale, rotate and translate differences. 



SYSFONT.H 

This file provides font related definitions used by sysgraf.h. 

Overview 
This file defines the values you give Sysgraf if you want to set the font parameters. See sysgraf.h, starting 

with msgSysDcFontld. 

*ifndef SYSFONT INCLUDED 
*define SYSFONT_INCLUDED 

Font AHributes 
*define sysDcGroupDefault 0 II also "system" font 
*define sysDcGroupUserInput 1 
*define sysDcGroupVenetian 2 

*define sysDcGroupOldStyle 3 
*define sysDcGroupTransitional 4 

*define sysDcGroupModernRoman 5 
*define sysDcGroupEgyptian 6 
*define sysDcGroupSansSerif 7 

*define sysDcGroupDisplayRoman 8 
*define sysDcGroupScript 9 
*define sysDcGroupGraphic 10 
*define sysDcGroupTypewriter 11 

*define sysDcSoftwareDefined 15 II subclass must draw glyphs 

*define sysDcWeightLight 0 
*define sysDcWeightNormal 1 
*define sysDcWeightBold 2 

*define sysDcWeightExtraBold 3 

*define sysDcAspectCondensed 0 
*define sysDcAspectNormal 1 
*define sysDcAspectExtended 2 

*define sysDcEncodeLinear 0 
*define sysDcEncodeAdobeStandard 1 
*define sysDcEncodeAdobeSymbol 2 
*define sysDcEncodeIBM850 3 

II not implemented 
II MiniText and MiniNote expect this 

*define sysDcEncodeGoSystem 4 

*define sysDcEncodeHWX850 5 
*define sysDcEncodeUnicode 6 

*define sysDcAlignChrTop 0 
*define sysDcAlignChrCenter 1 
*define sysDcAlignChrBaseline 2 

*define sysDcAlignChrDescender 3 

- -----~~--~-.~.-~ .. ------~. ----



254 PENPOINT API REFERENCE 
Part 3 / Windows and Graphics 

Font Specification 
To open a font a SYSDC_FONT_SPEC is used. This is a 32 bit number which may be interesting to file as 
a compact representation of a particular font specification (family, styles, etc., size is another matter). 

It consists of two major fields, an "id", which is a 16-bit number that identifies a family, like Times 
Roman, or Futura. 

This number can be derived from a four-byte string like "TRSS" using the function SysDcFontld 
(defined in sysgraf.h). However, it is better to query the system as to the list of currently available fonts. 
Support for this exists in tktable.h (see TkTableFillArrayWithFonts) and fontlbox.h (see 
clsFontListBox) . 

The second field contains attributes like boldness, italic, etc. Also, it contains a field called group. The 

group is a redundant encoding of information in the id. If the id, which identifies a specific font or font 
family, is not available, the group is used to locate a font with similar characteristics. 

Another interesting field is encoding. This field serves to identify the" character set" of the bytes passed 
to msgDcDrawText. 

Thus, if you file this 32-bit number along with a string of text the following will hold true: 

1 The" interpretation" of the characters in the string is noted. 

2 The "font family" is noted 

3 If the "font family" is not available the next time the string is diplayed (perhaps on a different 
machine), then an acceptable substitute can be found. 

typedef struct 
{ 

U16 group 
weight 
aspect 
italic 

4, II use sysDcGroup .. . 
2, II use sysDcWeight .. . 
2, II use sysDcAspect .. . 
1, II use TRUE for italic 

monospaced 1, II use TRUE for monospaced 
encoding 6; II use sysDcEncode ... 

SYSDC_FONT_ATTR, * P_SYSDC_FONT_ATTR; 
typedef struct 
{ 

U16 id; I I for now 0 binds to "default" font 
SYSDC FONT ATTR attr; 
SYSDC_FONT_SPEC, * P_SYSDC_FONT_SPEC; 

typedef struct 
{ 

SYSDC FONT SPEC 
CHAR 
COORD16 

SIZE16 
COORD16 

spec; 
name[80]; 
spaceWidth, 
underThickness, 
underPos, 
xPos, 
ascenderPos, 
descenderPos; 
em; 
maxY, 

II actual 

II usually a small negative number 

II usually a small negative number 

minY; 
SYSDC_FONT_METRICS, * P_SYSDC_FONT_METRICS; 

typedef struct 
{ 

COORD16 widths[256]; II per spec.encoding 
SYSDC_FONT_WIDTHS, * P_SYSDC_FONT_WIDTHS; 



typedef struct 
{ 

U16 
U16 
U16 
PCHAR 
U16 
XY32 
COORD32 
U16 
COORD16 

alignChr; 
underline; 
strikeout; 
pText; 

II use sysDcAlignChr ... 
II use 0,1, or 2 
II use 0 or 1 

lenText; II in (and out for measure) 
cp; II in and out, where to place string 
stop; II used by msgDcMeasureText 
spaceChar; II code for space, usually 32 
spaceExtra, II added to width of space 
otherExtra; II added to width of every char 

SYSDC_TEXT_OUTPUT, * P_SYSDC_TEXT_OUTPUT; 
typedef struct 
{ 

XY16 min, 
max; 

COORD16 width; 
SYSDC_EXTENTS16 , * P_SYSDC_EXTENTS16; 

typedef struct 
{ 

P_SYSDC_EXTENTS16 pExtents; 
P CHAR pText; 
U16 len; 
SYSDC_CHAR_METRICS, * P_SYSDC_CHAR_METRICS; 

SYSFONT.H 255 
Font Specification 

----.. ----------~~~ 





SYSGRAF.H 

This file provides the API for clsSysDrwCtx. 

clsSysDrwCtx inherits from clsDrwCtx, an abstract class. 

Defines the fundamental drawing services. An instance of clsSysDrwCtx, often called a "DC", is an 
object that is used to draw onto windows. After a DC is created, it is bound to a window (see 

msgDcSetWindow). After this step, drawing messages sent to the DC will result in drawing onto the 
bound window. While a DC may remain bound to a window forever, such drawing messages are only 
effective inside an "update episode" bracketed by msgWinBeginRepaint and msgWinEndRepaint. 

There are a number of other DC messages that do not have to be sent inside an "update episode"; for 
instance msgDcLWCtoLUC_XY32. However, many of these messages implicitly require device or 
window metrics to produce the correct results. Thus, as a rule, a DC should be bound to a window 
before it is used. 

Terminology: 

DU4 -- Device Units, 4th Quadrant. A 4th quadrant coordinate system; device space, device units. This 
is used internally, but not seen by application software. 

LWC -- Logical Window Coordinates. A 1st quadrant coordinate system. The lower-left-hand corner of 
the window is 0,0. The units are device pixels. 

LUC -- Logical Unit Coordinates. A 1st quadrant coordinate system provided by the DC. The default 
units can be a real-world measure like points or mils; and they can be translated, rotated and scaled. 

A number of font-related data structures are defined in sysfont.h. 

#ifndef SYSGRAF_INCLUDED 
#define SYSGRAF_INCLUDED 
#ifndef GO INCLUDED 
#include <go.h> 
#endif 
#ifndef CLSMGR_INCLUDED 
#include <clsmgr.h> 
#endif 
#ifndef GEO_INCLUDED 
#include <geo.h> 
#endif 
#ifndef WIN INCLUDED 
#include <win.h> 
#endif 
#ifndef SYSFONT_INCLUDED 
#include <sysfont.h> 
#endif 



258 PEN POINT API REFERENCE 
Part 3 / Windows and Graphics 

Overview 

MeSSctt}e 
Arguments 

Sysgraf (aka clsSysDrawCtx aka ImagePoint) is the lowest level drawing interface PenPoint provides 
above the bit level. The division of labor here is that Windows worry about parceling out screen 

real-estate while Sysgraf worries about drawing on the screen. If you want to draw things in a window, 
you create a drawing context (an instance of clsSysDrawCtx), bind it to the window you want to draw 

in (by sending msgDcSetWindow to the drawing context), and send messages to the drawing context. 

If you plan to use a drawing context to render text, you should understand the use of 

msgDcMeasureT ext, which lets you determine how large a piece of text will be before you actually draw 

it. It is also important to know that although sysgraf allows you to set many different parameters, 
including font, rotation, line thickness, etc. you may only change these between drawing calls. That is, if 
you want to render plain text, a word in italics, and more plain text, you need to send three separate 

msgDcDrawText messages, changing to italics after the first one and back to normal after the second. 

If you plan to use sysGraf at all, it will be well worth your while to browse all the messages below. 

II Message numbers available: 7, 8, 9, 34, 35, 36, 37, 38; next up: 110 

msgNew 
Creates a system drawing context. 

Takes P _SYSDC_NEW, returns STATUS. Category: class message. 

typedef struct SYSDC_NEW_ONLY { 
U32 reserved; 

} SYSDC_NEW_ONLY, *P_SYSDC_NEW_ONLY; 
#define sysdcNewFields \ 

objectNewFields \ 
SYSDC NEW ONLY sysDc; 

typedef struct 
{ 

sysdcNewFields 
SYSDC_NEW, * P_SYSDC_NEW; 

msgNewDefaults 
Initializes the SYSDC_NEW structure to default values. 

Takes P _SYSDC_NEW, returns STATUS. Category: class message. 

typedef struct 
{ 

sysdcNewFields 
SYSDC_NEW, * P_SYSDC_NEW; 

sysDc.reserved = 0; 

Binding 10 a Window 

msgDcSetWindow 
Binds a window to the receiver and returns the previously bound window. 

Takes WIN, returns WIN. 

#define msgDcSetWindow msgDrwCtxSetWindow 



Comments 

SYSGRAF.H 259 
Graphic State Control 

All output through the DC will now appear on this window. A DC must be bound to a window before 
most messages will work. 

msgDcGetWindow 
Gets the window to which the drawing context is bound. 

Takes pNull, returns WIN. 

#define msgDcGetWindow msgDrwCtxGetWindow 

". Graphic Siale Conlrol 

Comments 

Arguments 

Comments 

msgDclnitialize 
Sets graphics state to initial values. 

Takes pNull, returns stsOK. 

#define msgDclnitialize MakeMsg(clsSysDrwCtx, 50) 

The initial values are: 

units in (LUC) = msgDcUnitsPoints 
units out = msgDcUnitsDevice 
matrix = identity, 1st quadrant 
premultiply = FALSE 
clipping = none, except to window 
raster op sysDcRopCopy 
drawing mode = sysDcDrawNormal I sysDcHoldDetail 
plane mask = see msgDcPlaneNormal 
line.cap = sysDcCapButt 
line. join = sysDcJoinMiter 
line. thickness 1 unit (point) 
line.miterLimit = 10 
line. radius = 0 
foreground color = sysDcRGBBlack 
background color = sysDcRGBWhite 
fill pattern = sysDcPatBackground 
fill mode = even/odd (see sysDcWindingFill) 
line pattern = sysDcPatForeground 
logical font = default font, size is 1 unit (point) 

msgDcPush 
Gets the graphics state and stores it. 

Takes P _SYSDC_STATE, returns stsOK. 

#define msgDcPush 

typedef struct 
{ 

U8 state[448]; 
SYSDC_STATE, * P_SYSDC_STATE; 

MakeMsg(clsSysDrwCtx, 31) 

While the names msgDcPush/msgDcPop imply a stack-like use for these messages (as is their intended 

application); this is not a requirement. There is no stack internal to the DC. State is copied in and out of 
the argument buffer. 

One application is to pre-stage frequently needed combinations of state (fonts, colors, etc.) in an array of 
these buffers; and then pop them into a single DC as needed. This is more memory efficient than having 

several DC's, and nearly as fast. 



260 PENPOINT API REFERENCE 

Messoge 
Arguments 

Messoge 
Ar9uments 

Part 3 / Windows and Graphics 

SYSDC_SfATE is an opaque data type. There is no value in examining the bytes therein. It can be stored 
temporarily; but, it should not be filed, as it may change from release to release of the software. 

msgDcPop 
Sets the graphics state from one saved by msgDcPush. 

Takes P_SYSDC_STATE, returns stsOK. 

#define msgDcPop 

typedef struct 
{ 

U8 state[448]; 
SYSDC_STATE, * P_SYSDC STATE; 

msgDcPushFont 
Gets the font state and stores it. 

#define msgDcPushFont 

typedef struct 
{ 

U8 state [256] ; 

MakeMsg(clsSysDrwCtx, 32) 

MakeMsg(clsSysDrwCtx, 51) 

SYSDC_FONT_STATE, * P_SYSDC_FONT_STATE; 

The same comments made under msgDcPush apply to msgDcPushFont. 

msgDcPopFont 
Sets the font state from one saved by msgDcPushFont. 

Takes P _SYSDC_FONT_SfATE, returns stsOK. 

#define msgDcPopFont 

typedef struct 
{ 

U8 state[256]; 

MakeMsg(clsSysDrwCtx, 52) 

SYSDC_FONT_STATE, * P_SYSDC_FONT_STATE; 

msgDcSetMode 
Sets the drawing mode and returns the old SYSDC_MODE. 

Takes SYSDC_MODE, returns SYSDC_MODE. 

#define msgDcSetMode 

Enum16 (SYSDC_MODE) 
{ 

} i 

sysDcDrawNormal 
sysDcDrawFast 
sysDcDrawDynamic 
sysDcHoldDetail 
sysDcWindingFill 
sysDcHitTest 
sysDcAccumulate 
sysDcHoldLine 
sysDcPreMultiply 

0, 
flagO, 
flag1, 
flag2, 
flag3, 
flag4, 
flag?, 
flagS, 
flag6 

MakeMsg(clsSysDrwCtx, 2) 

II draw faster with gross loss of fidelity 
II sets up XOR style drawing 
II keeps lines from vanishing 

II must set with msgDcHitTest 
II must set with msgDcAccumulateBounds 
II must set with msgDcHoldLine 
II can set with msgDcSetPreMultiply 



Comments 

Arguments 

Comments 

msgDcGetMode 
Gets the drawing mode. 

Takes pNull, returns SYSDC_MODE. 

#define msgDcGetMode MakeMsg(clsSysDrwCtx, 65) 

msgDcSetPreMultiply 
Sets the pre-multiply state and returns the old state. 

Takes BOOLEAN, returns BOOLEAN. 

#define msgDcSetPreMultiply MakeMsg(clsSysDrwCtx, 96) 

SYSGRAF.H 261 
Graphic State Control 

This affects the matrix arithmetic implicit in msgDcScale, msgDcRotate and msgDcTranslate. The 
default mode is post-multiply. The default for PostScript is pre-multiply; so when borrowing algorithms 
from PostScript sources this could be useful. 

msgDcSetRop 
Sets the raster op and returns the old rop. 

Takes SYSDC_ROP, returns SYSDC_ROP. 

#define msgDcSetRop 

Enum16 (SYSDC_ROP) 
{ 

} ; 

sysDcRopCOPY, 
sysDcRopAND, 
sysDcRopOR, 
sysDcRopXOR, 
sysDcRopNCOPY, 
sysDcRopNAND, 
sysDcRopNOR, 
sysDcRopNXOR 

MakeMsg(clsSysDrwCtx, 1) 

Note that there are not many good reasons to be using this message; the results are rather device 
dependent. If you need to draw with an XOR raster op, use msgDcSetMode to set the 
sysDcDrawDynamic flag instead. 

msgDcPlaneNormal 
Sets the plane mask to the normal plane(s), returning the old mask. 

Takes nothing, returns SYSDC_PLANE_MASK. 

#define msgDcPlaneNormal 
typedef U16 SYSDC_PLANE_MASK; 

msgDcPlanePen 

MakeMsg(clsSysDrwCtx, 41) 

Sets the plane mask to the plane(s) for pen ink, returning the old mask. 

Takes nothing, returns SYSDC_PLANE_MASK. 

#define msgDcPlanePen MakeMsg(clsSysDrwCtx, 42) 

In most situations it is better to use dsTrack to draw on the pen plane(s). See track.h. 



262 PENPOINT API REFERENCE 

Comments 

Comments 

Part 3 I Windows and Graphics 

msgDcPlaneMask 
Sets an arbitrary plane mask, returning the old mask. 

Takes SYSDC_PLANE_MASK, returns SYSDC_PLANE_MASK. 

tdefine msgDcPlaneMask MakeMsg(clsSysDrwCtx, 43) 

This interface is NOT RECOMMENDED for application software. It is inherently non-portable. 

msgDcGetLine 
Gets all line attributes if pArgs is P _SYSDC_LINE. Returns line thickness. 

Takes P _SYSDC_LINE, returns COORD16. 

tdefine msgDcGetLine MakeMsg(clsSysDrwCtx, 62) 

If P _SYSDC_LINE is pNull then only line thickness is returned. 

msgDcSetLine 
Sets all line attributes. Returns old line thickness. 

Takes P_SYSDC_LINE, returns COORD16. 

tdefine msgDcSetLine 

Enum16 (SYSDC_CAP) 
{sysDcCapSquare = 0, 

sysDcCapButt = 1, 
sysDcCapRound = 2, 

} ; 

Enum16 (SYSDC_JOIN) 
{sysDcJoinMiter = 0, 

sysDcJoinBevel = 1, 
sysDcJoinRound = 2, 

} ; 

typedef struct 
{ 

SYSDC CAP cap; 
SYSDC JOIN 
COORD16 
U16 
S16 

join; 
thickness; 
miterLimit; 
radius; 

} SYSDC_LINE, * P_SYSDC_LINE; 
tdefine sysDcRadiusAuto 

MakeMsg(clsSysDrwCtx, 4) 

II Choose + number, 10 recommended. 
II For rounded corner rectangles 
II use + number or sysDcRadiusAuto. 
II For square corner rectangles use O. 
II This number is in LUC. 

(-1) 

Both line thickness and the radius value for creating rounded corner rectangles are in LUC. 

msgDcSetLine Thickness 
Sets line thickness to new value; returns old line thickness. 

Takes COORD16, returns COORD16. 

tdefine msgDcSetLineThickness MakeMsg(clsSysDrwCtx, 79) 

This is the best message for quickly changing line thickness and restoring it back. 



Comments 

SYSGRAF.H 263 
Device Independent Color 

msgDcHoldLine 
Turns hold line thickness mode on/off; returns old hold mode. 

Takes BOOLEAN, returns BOOLEAN. 

#define msgDcHoldLine MakeMsg(clsSysDrwCtx, 63) 

msgDcHoldLine(TRUE) causes the current line thickness to be made immune from the effects of 
scaling (msgDcScale, msgDcUnitsXXXX). msgDcHoldLine(FALSE) will cancel hold mode. 

msgDcSetLine/Thickness messages will cause the line thickness to change, but having changed, it will 
still be immune from the effects of scaling until hold mode is canceled. 

The DC must be bound to a window when this message is sent. 

Device Independent Color 
#define sysDcRGBTransparent 
#define sysDcRGBBlack 
#define sysDcRGBGray66 
#define sysDcRGBGray33 
#define sysDcRGBWhite 
typedef union 
{ 

U32 all; 
struct 
{ 

U8 red, 
green, 
blue, 
transparency; 
rgb; 

SYSDC_RGB, * P_SYSDC_RGB; 
#define SysDcGrayRGB(v) 

((U32)0) 
(SysDcGrayRGB(O)) 
(SysDcGrayRGB(85)) 
(SysDcGrayRGB(170)) 
(SysDcGrayRGB(255)) 

MakeU32(MakeU16(v,v),MakeU16(v,255)) 

These messages set and get the foreground and background colors by RGB specification. The "set" 
messages take an RGB specification (cast to a U32) and return stsOK. 

The "get" messages store the current value into a U32 (or SYSDC_RGB) pointed to by pArgs. 

The structure SYSDC_RGB is a union of the four r-g-b-t fields and a U32. This allows RGB values to be 
compared easily as U32 values. The transparency byte should always be 255 for opaque color. It can be 0 
when setting the background color to transparent (in which case the red, green, blue values are not 
examined). Intermediate transparency values are not supported. 

The macro SysDcGrayRGB takes a value between 0 .. 255 and returns a U32 with the r-g-b bytes set to 
the value, and the transparency byte set to 255. The value 0 can be used for a pure transparent RGB. 

The set messages find the dosest matching color to the RG B specification; they do not create new 
colors. To create new colors see msgDcMixRGB (which is not implemented yet). 

Unlike the palette oriented messages (msgDcSetForegroundColor, msgDcSetBackgroundColor) colors 
set using these RG B messages are portable across a variety of devices and are automatically retranslated 
when the DC is connected to a different device. 



264 PENPOINT API REFERENCE 
Part 3 / Windows and Graphics 

msgDcSetForegroundRGB 
Sets foreground color using an RGB specification. 

Takes V32, returns stsOK. 

fdefine msgDcSetForegroundRGB MakeMsg(clsSysDrwCtx, 75) 

When using this interface, see the constants sysDcRGB ... for the standard colors. 

msgDcSetBackgroundRGB 
Sets background color using an RGB specification. 

Takes V32, returns stsOK. 

fdefine msgDcSetBackgroundRGB MakeMsg(clsSysDrwCtx, 76) 

When using this interface, see the constants sysDcRGB ... for the standard colors. 

msgDclnvertColors 
Swaps foreground and background colors. 

Takes pNull, returns stsOK. 

fdefine msgDcInvertColors 

msgDcGetForegroundRGB 
Returns foreground RGB value. 

MakeMsg(clsSysDrwCtx, 64) 

Takes P _V32 or P _SYSDC_RGB, returns stsOK. 

fdefine msgDcGetForegroundRGB 

msgDcGetBackgroundRGB 
Returns background RGB value. 

MakeMsg(clsSysDrwCtx, 77) 

Takes P _V32 or P ...,SYSDC_RGB, returns stsOK. 

fdefine msgDcGetBackgroundRGB MakeMsg(clsSysDrwCtx, 78) 

Device Dependent Color 
typedef U16 SYSDC_COLOR; 
fdefine sysDcInkTransparent 
fdefine sysDcInkBlack 
fdefine sysDcInkGray66 
fdefine sysDcInkGray33 
fdefine sysDcInkWhite 

msgDcMatchRGB 

((SYSDC_COLOR)Ox8000) 
((SYSDC_COLOR)OxOOOO) 
((SYSDC_COLOR)Ox0001) 
((SYSDC_COLOR)Ox0002) 
((SYSDC_COLOR)Ox0003) 

Returns palette entry that best matches an RGB. 

Takes V32, returns SYSDC_COLOR. 

fdefine msgDcMatchRGB MakeMsg(clsSysDrwCtx, 10) 

This interface is NOT RECOMMENDED for application software. Set colors directly using the 
msgDcSetForegroundRGB and msgDcSetBackgroundRGB messages. 



Comments 

Comments 

Comments 

SYSGRAF.H 265 
Device Dependent Color 

msgDcSetForegroundColor 
Sets foreground color using a hardware palette index, returning old color. 

Takes SYSDC_COLOR, returns SYSDC_COLOR. 

tdefine msgDcSetForegroundColor MakeMsg(clsSysDrwCtx, 5) 

This interface is NOT RECOMMENDED for application software. Use msgDcSetForegroundRGB 
instead of this message. 

When using this interface, see the constants sysDcInk. .. for predefined palette index values. 

msgDcSetBackgroundColor 
Sets background color using a hardware palette index, returning old color. 

Takes SYSDC_COLOR, returns SYSDC_COLOR. 

tdefine msgDcSetBackgroundColor MakeMsg(clsSysDrwCtx, 6) 

This interface is NOT RECOMMENDED for application software. Use msgDcSetBackgroundRGB 
instead of this message. 

When using this interface, see the constants sysDcInk ... for predefined palette index values. 

msgDcMixRGB 
Programs a palette slot to a specific RGB. 

Takes P _SYSDC_MDCRGB, returns STATUS. 

tdefine msgDcMixRGB 

typedef struct 

MakeMsg(clsSysDrwCtx, 80) 

{ 

SYSDC COLOR slot; 
SYSDC RGB spec; 
SYSDC_MIX_RGB, * P_SYSDC_MIX_RGB; 

*** NOT IMPLEMENTED YET *** 

This interface is NOT RECOMMENDED for application software. The type SYSDC_MIX_RGB is 
defined now to support msgWinDevMixRGB. 

msgDcSetLinePat 
Sets the line pattern; returns old value. 

Takes SYSDC_PATTERN, returns SYSDC_PATTERN. 

tdefine msgDcSetLinePat 
typedef U16 SYSDC_PATTERN; 

MakeMsg(clsSysDrwCtx, 11) 

tdefine sysDcPat75 ((SYSDC_PATTERN)l) II 75% fgnd 25% bgnd 
tdefine sysDcPat50 ((SYSDC_PATTERN)2) II 50% fgnd 50% bgnd 
tdefine sysDcPat25 ((SYSDC_PATTERN)3) II 25% fgnd 75% bgnd 
tdefine sysDcPat12 ((SYSDC_PATTERN)4) II 12% fgnd 88% bgnd 
tdefine sysDcPat6 ((SYSDC_PATTERN)5) II 6% fgnd 94% bgnd 
tdefine sysDcPat3 ((SYSDC_PATTERN)6) II 3% fgnd 97% bgnd 
tdefine sysDcPat2 ((SYSDC_PATTERN)7) II 2% fgnd 98% bgnd 
tdefine sysDePatLD50 ((SYSDC_PATTERN)8) II darkest left diagonal 
tdefine sysDcPatLD37 ((SYSDC_PATTERN)9) II left diagonal 
tdefine sysDcPatLD25 ((SYSDC_PATTERN)10) II left diagonal 
tdefine sysDcPatLD12 ((SYSDC_PATTERN)ll) II lightest left diagonal 
tdefine sysDcPatRD50 ((SYSDC_PATTERN)12) II darkest right diagonal 



266 PENPOINT API REFERENCE 
Part 3 I Windows and Graphics 

fdefine sysDcPatRD37 ((SYSDC_PATTERN)13) II right diagonal 
fdefine sysDcPatRD25 ((SYSDC_PATTERN) 14) II right diagonal 
fdefine sysDcPatRD12 ((SYSDC_PATTERN)15) II lightest right diagonal 
fdefine sysDcPatBackground ((SYSDC_PATTERN)O) II 0% fgnd 100% bgnd 
fdefine sysDcPatForeground ((SYSDC_PATTERN)OxFFF1) II 100% fgnd 0% bgnd 
fdefine sysDcPatNil ((SYSDC_PATTERN)OxFFFO) II 0% fgnd 0% bgnd 
fdefine sysDcPatRandom ((SYSDC_PATTERN)OxFFF2) II debugging aid 

The line pattern is used to draw lines around the edge of geometric figures when the line thickness 
is> O. 

When using this interface, see the constants sysDcPat ... for predefined patterns. 

msgDcSetFillPat 
Sets the fill pattern; returns old value. 

Takes SYSDC_PATTERN, returns SYSDC_PATTERN. 

fdefine msgDcSetFillPat MakeMsg(clsSysDrwCtx, 12) 

The fill pattern is used to draw the interior of closed geometric figures. 

When using this interface, see the constants sysDcPat ... for predefined patterns. sysDcPatRandom is 
unique for each window. 

msgDcGetLinePat 
Gets the line pattern. 

Takes pNull, returns SYSDC_PATTERN. 

fdefine msgDcGetLinePat 

*** NOT IMPLEMENTED YET *** 

msgDcGetFillPat 
Gets the fill pattern. 

Takes pNull, returns SYSDC_PATTERN. 

fdefine msgDcGetFillPat 

*** NOT IMPLEMENTED YET *** 

msgDc~nupattern 

Mixes a custom pattern. 

MakeMsg(clsSysDrwCtx, 13) 

MakeMsg(clsSysDrwCtx, 14) 

Takes P_SYSDC_MIX_PAT, returns STATUS. 

fdefine msgDcMixPattern 

typedef struct 
{ 

SYSDC PATTERN slot; 
U8 pattern[8]; 
SYSDC_MIX_PAT, * P_SYSDC_MIX_PAT; 

*** NOT IMPLEMENTED YET *** 

MakeMsg(clsSysDrwCtx, 15) 



Comments 

SYSGRAF.H 267 
LUC Space Transformations 

msgDcA1ignPattern 
Sets the pattern alignment in LUC. 

Takes P _XY32, returns STATUS. 

#define msgDcAlignPattern MakeMsg(clsSysDrwCtx, 16) 

Can be used to keep pattern tiling aligned to a particular point in LUC when pixels are moved 
(msgWinCopyRect or wsGrow* flags). This is most commonly used to preserve pattern alignment 
during "scrolling" when parts of an image are copied pixels, and parts are newly painted pixels. 

The default alignment is 0,0 in LUC. If the image is scrolled by msgDcTranslate then this message may 
not be necessary, as the alignment point will move in device space too. 

If P _XY32 is pN ull, default alignment is set to 0,0. 

LUC Space Transformations 

msgDcU nitsMetric 
Sets input units to 0.01 mm. 

Takes pNull, returns stsOK. 

#define msgDcUnitsMetric 

msgDcUnitsMil 
Sets input units to 0.001 inch. 

Takes pNull, returns stsOK. 

#define msgDcUnitsMil 

msgDcUnitsPoints 

MakeMsg(clsSysDrwCtx, 17) 

MakeMsg(clsSysDrwCtx, 18) 

Sets input units to points (1/72 of an inch). 

Takes pNull, returns stsOK. 

#define msgDcUnitsPoints 

msgDcUnitsTwips 
Sets input units to 1/20 of a point. 

Takes pNull, returns stsOK. 

#define msgDcUnitsTwips 

msgDcUnitsPen 
Sets input units to pen sample units. 

Takes pNull, returns stsOK. 

#define msgDcUnitsPen 

MakeMsg(clsSysDrwCtx, 19) 

MakeMsg(clsSysDrwCtx, 20) 

MakeMsg(clsSysDrwCtx, 71) 



268 PENPOINT API REFERENCE 

Comments 

Part 3 / Windows and Graphics 

msgDcU nitsLayout 
Sets input units to VI toolkit layout units. 

Takes pNull, returns stsOK. 

#define msgDcUnitsLayout MakeMsg(clsSysDrwCtx, 85) 

Note that the scale this implicitly computes is a function of the current system font size. However, if the 
system font size changes after this message is sent, the scale is not "reliably" reevaluated (because of 
caching it mayor may not be reevaluated). Thus, you may need to observe theSystemPreferences. For a 
small performance cost you can just send this message prior to each operation that is affected by unit 

scaling. 

msgDcUnitsRules 
Sets input units to the 'rules' associated with the system font. 

Takes pNull, returns stsOK. 

#define msgDcUnitsRules MakeMsg(clsSysDrwCtx, 3) 

A 'rule' is 1/20 of the thickness of a line that aesthetically matches the weight of the system font, as 
specified by the font designer. Typically this will be the thickness of a single underline, and so a rule 
would be 1/20 of an underline. 

Note that the scale this implicitly computes is a function of the current system font size. However, if the 
system font size changes after this message is sent, the scale is not" reliably" reevaluated (because of 
caching it mayor may not be reevaluated). Thus, you may need to observe theSystemPreferences. For a 
small performance cost you can just send this message prior to each operation that is affected by unit 
scaling. 

msgDcUnitsDevice 
Sets input units to device pixels. 

Takes pNull, returns stsOK. 

#define msgDcUnitsDevice 

msgDcUnitsWorld 

MakeMsg(clsSysDrwCtx, 21) 

Sets input units to an arbitrary number of device pixels. 

Takes pNull, returns stsOK. 

#define msgDcUnitsWorld 

msgDcScaie World 

msgDcUnitsOut 

MakeMsg(clsSysDrwCtx, 25) 

Sets output units produced by transformation of input units. 

Takes MESSAGE, returns stsOK. 

#define msgDcUnitsOut 

Takes one of: 

msgDcVnitsMetric 

MakeMsg(clsSysDrwCtx, 70) 



Commonts 

((lmments 

SYSGRAF.H 269 
LUC Space Transformations 

In general, this message should not be used. Reverse transformations, from device units to other units 
can be made by using the msgDcLUCtoL WC ... messages. 

This interface can be used to change from one logical unit system to another. Since most such 
transformations are known in advance this is generally useless; however, transformation to and from pen 
units to a known unit system is the real purpose of this interface. For instance, pen units to mils can be 
used to store pen units in a device independent form. Pen units can thus remain device dependent. 

This interface cannot change a graphic device unit into a device independent unit. To do this, units IN 
must be the chosen target unit (e.g. points), units OUT must be device, and the reverse transformation, 
msgDcLUCtoLWC must be used. 

msgDcldentity 
Sets LUC matrix to identity. 

Takes pNull, returns stsOK. 

tdefine msgDcldentity 

msgDcldentityFont 

msgDcRotate 
Rotates LUC matrix. 

Takes ANGLE, returns stsOK. 

*define msgDcRotate 

msgDcScale 
Scales LUC matrix. 

Takes P_SCALE, returns stsOK. 

tdefine msgDcScale 

MakeMsg(clsSysDrwCtx, 22) 

MakeMsg(clsSysDrwCtx, 23) 

MakeMsg(clsSysDrwCtx, 26) 

If P _SCALE is pN ull then operation is same as msgDcldentity. 

msgDcScaleWorld 
Creates a world scale of window width/height. 

Takes P_SIZE32, returns stsOK. 

*define msgDcScaleWorld MakeMsg(clsSysDrwCtx, 61) 

The window width/height is divided into SIZE32 width/height units. If the window is not physically 
square on the graphic device then the scale will not be uniform in x and y. 

This message scales the LUC matrix. Typically, this matrix must be reset to identity (msgDcldentity), 
and this message must be resent, whenever the window changes size (see msgWinSized for help). 

The DC must be bound to a window when it receives this message. 

msgDcT ranslate 
Translates LUC matrix. 

Takes P _XY32, returns stsOK. 

*define msgDcTranslate MakeMsg(clsSysDrwCtx, 24) 



270 PENPOINT API REFERENCE 
Part 3 I Windows and Graphics 

Coordinate Conversion 

Commenb 

These messages convert coordinates from LUC to LWC, or LWC to LUC. The DC must be bound to a 

window before it receives these messages. 

msgD~ WCtoLUC_XY32 
Transforms a point from window (device) space to logical space. 

Takes P _XY32 , returns stsOK. 

fdefine msgDcLWCtoLUC_XY32 

The DC transforms by: 

MakeMsg(clsSysDrwCtx, 27) 

LWC --> fractional LUC --> round to nearest integer LUC 

msgDcLUCtoL WC_XY32 
Transforms a point from logical space to window (device) space. 

Takes P _XY32 , returns stsOK. 

fdefine msgDcLUCtoLWC_XY32 

The DC transforms by: 

MakeMsg(clsSysDrwCtx, 39) 

LUC --> fractional LWC --> round to nearest integer LWC 

msgD~ WCtoLUC_SIZE32 
Transforms a size from window (device) space to logical space. 

Takes P _SIZE32, returns stsOK. 

fdefine msgDcLWCtoLUC_SIZE32 

The DC transforms by: 

MakeMsg(clsSysDrwCtx, 44) 

LWC --> fractional LUC --> round to nearest integer LUC --> AbsO 

msgDcLUCtoL WC_SIZE32 
Transforms a size from logical space to window (device) space. 

Takes P _SIZE32, returns stsOK. 

fdefine msgDcLUCtoLWC_SIZE32 

The DC transforms by: 

MakeMsg(clsSysDrwCtx, 45) 

LUC --> fractional LWC --> round to nearest integer LWC --> AbsO 

msgD~ WCtoLUC_RECT32 
Transforms a rectangle from window (device) space to logical space. 

Takes P_RECT32, returns stsOK. 

fdefine msgDcLWCtoLUC_RECT32 

The DC transforms by: 

MakeMsg(clsSysDrwCtx, 46) 

1) converting the rectangle's origin and opposite corner (x+w, y+h) 

into fractional LUe, 



2) rounding each point to the nearest integer coordinate, and 

3) using those coordinates to determine a rectangle (whose width and 

height may be positive or negative). 

msgDcLUCtoL WC_RECT32 
Transforms a rectangle from logical space to window (device) space. 

Takes P _RECT32, returns stsOK. 

*define msgDcLUCtoLWC_RECT32 

The DC transforms by: 

MakeMsg(clsSysDrwCtx, 47) 

1) converting the rectangle's origin and opposite corner (x+w, y+h) 

into fractional LWC, 

2) rounding each point to the nearest integer coordinate, and 

3) using those coordinates to determine a rectangle (whose width and 

height may be positive or negative). 

msgDcGetMatrix 
Returns the LWC matrix. 

Takes P_MAT, returns stsOK. 

*define msgDcGetMatrix MakeMsg(clsSysDrwCtx, 40) 

SYSGRAF.H 271 
Coordinate Conversion 

The DC must be bound to a window when this message is sent. This matrix transforms LUC to LWC 
(first quadrant, but device dependent units) coordinates. These coordinates are suitable for positioning 

windows. 

msgDcGetMatrixLUC 
Returns the LUC matrix. 

Takes P _MAT, returns stsO K. 

*define msgDcGetMatrixLUC MakeMsg(clsSysDrwCtx, 87) 

This matrix combines transformations to LUC space. It is identity unless msgDcScale, msgDcRotate, 

msgDcTranslate, msgDcScaleWorld, or msgDcSetMatrixLUC have been previously sent. 

The default for these combinations is post-multiplication. See message msgDcSetPreMultiply for more 

on this subject. 

msgDcSetMatrixLUC 
Replaces the LUC matrix. 

Takes P _MAT, returns stsO K. 

*define msgDcSetMatrixLUC MakeMsg(clsSysDrwCtx, 88) 



272 PENPOINT API REFERENCE 
Part 3 I Windows and Graphics 

Clipping 

msgDcClipRect 
Sets or dears dip rectangle. 

Takes P_RECT32 or pNull, returns stsOK. 

fdefine msgDcClipRect MakeMsg(clsSysDrwCtx, 28) 

Ifp_RECT32 is pNull then operation is same as msgDcClipClear. 

msgDcClipClear 
Returns dipping to entire window. 

Takes pNull, returns stsOK. 

fdefine msgDcClipClear 

msgDcClipNull 

MakeMsg(clsSysDrwCtx, 29) 

Suspends all dipping (except to raw device). 

Takes pNull, returns stsOK. 

fdefine msgDcClipNull MakeMsg(clsSysDrwCtx, 30) 

The pen handler uses this to dribble ink anywhere on-screen (in the pen plane(s) only). 

This interface is NOT RECOMMENDED for application software. It will protection fault if the caller 
does not have hardware privilege. 

Hit Detection 

msgDcHitTest 
Turns hit testing on/off. 

Takes P _RECT32 or pNull, returns stsOK. 

fdefine msgDcHitTest MakeMsg(clsSysDrwCtx, 66) 

To turn hit testing on supply a rectangle to test against. To turn hit testing off send pNull. 

In general, drawing messages (msgDcDraw ... ) will return one of the status values stsDcHit ... ifhit 
testing is on: 

stsDcHitOn if the line intersects the hit rectangleif the rectangle is inside a dosed figureif there was no 
hit 

The following drawing messages implement hit testing: 

msgDcDrawPolyline 

Bounds Accumulation 
A region is available to accumulate the bounding rectangles of drawing operations. 
msgDcAccumulateBounds(p~ull) dears this region to empty and turns on accumulation. At this point, 
as in hit testing, drawing operations will not be output; rather, their bounding rectangles will be added 
to the accumulation. At any time the accumulation can be retrieved by using msgDcGetBounds. It can 



SYSGRAF.H 273 
Bounds Accumulation 

be retrieved with another call to msgDcAccumulateBounds(P _RECT32); which will both retrieve it, and 
turn off accumulation so normal drawing can resume. 

Normally, bounds are accumulated for the purpose of repainting part of a window. 
msgDcDirtyAccumulation can be used to add the accumulation directly to the dirty region of the 
current window. This is more efficient than getting the bounds rectangle and then sending 
msgWinDirtyRect. 

Bounds accumulation occurs in DU4 space; while the bounds rectangle is returned in LUC, it always 
represents a rectangle in DU4. Thus, drawing which is clipped because of windowing, or because it falls 
off the edges of the device, is not accumulated. 

The bounds accumulation region itself is not part of the logical state, although the flag that determines 
whether drawing operations accumulate or draw is part of the logical state. Thus, while calls to push and 
pop the state may turn accumulation on or off, there are not separate copies of the accumulation region 
itself in the state. 

Bounds accumulation and hit testing cannot be performed at the same time. If, through program error, 
both modes are enabled, bounds accumulation will take priority. 

Neither bounds accumulation or hit testing should be used during repainting initiated by the window 
manager sending msgWinRepaint. Rather, they should be used within a msgWinBeginPaint 
msgWinEndPaint bracket. 

msgDcAccumulateBounds 
Starts or stops bounds accumulation; retrieve bounds. 

Takes P _RECT or pNull, returns stsOK. 

fdefine msgDcAccumulateBounds MakeMsg(clsSysDrwCtx, 81) 

If pArgs is pNull, clears current accumulation and turns accumulation on. If pArgs is P _RECT32, returns 
accumulated bounds, and turns bounds accumulation off. 

The DC computes the LUC rectangle so that it: 

1) mathematically includes all of the accumulated pixels, and 

2) has non-negative width and height. 

msgDcDirtyAccumulation 
Marks accumulation dirty; turns accumulation off; retrieves bounds. 

Takes P _RECT32 or pNull, returns stsOK. 

fdefine msgDcDirtyAccumulation MakeMsg(clsSysDrwCtx, 82) 

Adds current bounds accumulation directly to the dirty region of the current window; then clears 
current bounds accumulation and turns accumulation off. If pArgs is P _RECT32, returns accumulated 
bounds as in msgDcAccumulateBounds. 

msgDcGetBounds 
Retrieves curre~t accumulation bounds rectangle. 

Takes P _RECT32, returns stsOK. 

fdefine msgDcGetBounds MakeMsg(clsSysDrwCtx, 83) 



274 PENPOINT API REFERENCE 
Part 3 I Windows and Graphics 

typedef struct 
{ 

U16 count; II number of points in points array 
P XY32 points; II pointer to array of at least 2 points 
SYSDC_POLYGON , * P_SYSDC_POLYGON , 
SYSDC_POLYLINE, * P_SYSDC_POLYLINE; 

typedef struct 
{ 

RECT32 bounds; 
XY32 rays[2]; 
SYSDC_ARC_RAYS, * P_SYSDC_ARC_RAYS; 

Does not dear accumulation or turn accumulation off. The DC computes the LUC rectangle as in 
msgDcAccumulateBounds. 

Open Figures 

Messoge 
th9uments 

msgDcDrawPolyline 
Draws a line; needs at least 2 points. Returns either hit test or stsOK. 

Takes P _SYSDC_POLYLINE, returns STATUS. 

tdefine msgDcDrawPolyline 

stsDcHitOn 

msgDcDrawBezier 

MakeMsg(clsSysDrwCtx,100) 

Draws a Bezier curve; needs exactly 4 points. 

Takes P _XY32 (array of 4), returns STATUS. 

tdefine msgDcDrawBezier 

Returns either hit test or stsOK. 

stsDcHitOn 

msgDcDrawArcRays 

MakeMsg(clsSysDrwCtx,104) 

Draws an arc using the two rays method. Returns either hit test or stsOK. 

Takes P _SYSDC_ARC_RAYS, returns STATUS. 

tdefine msgDcDrawArcRays 

typedef struct 
{ 

RECT32 bounds; 
XY32 rays[2]; 

MakeMsg(clsSysDrwCtx,10S) 

SYSDC_ARC_RAYS, * P_SYSDC_ARC_RAYS; 

stsDcHitOn 



SYSGRAF.H 275 
Closed Figures 

Closed Figures 

Comments 

Cornments 

Return Value 

Message 
Arguments 

Return Value 

msgDcSetPixel 
Sets a pixel with a value. 

Takes P _SYSDC_PIXEL, returns STATUS. 

*define msgDcSetPixel MakeMsg(clsSysDrwCtx,108) 

If rgb is true, the color is interpreted as an RGB value; if not, color.all will be interpreted as a 
SYSDC_COLOR (a hardware palette index). If rgb is used then the transparency byte must be 255 
(opaque) or the drawing will not take place. 

msgDcGetPixel 
Gets a pixel value. 

Takes P_SYSDC_PIXEL, returns STATUS. 

*define msgDcGetPixel 

typedef struct 
{ 

BOOLEAN rgb; 
SYSDC_RGB color; 
XY32 xy; 
SYSDC_PIXEL, * P_SYSDC_PIXEL; 

MakeMsg(clsSysDrwCtx,109) 

If rgb is TRUE the color is returned as an RGB value; if not color.all will be a small number which 
should be interpreted as a SYSDC_COLOR (a hardware palette index). If rgb is used the transparency byte 
will always be returned as 255 (opaque). 

msgDcDrawRectangle 
Draws a rectangle. Returns either hit test or stsOK. 

Takes P _RECT32, returns STATUS. 

*define msgDcDrawRectangle 

stsDcHitOn 

msgDcDrawEllipse 

MakeMsg (clsSysDrwCtx, 101) 

Draws an ellipse. Returns either hit test or stsOK 

Takes P _RECT32, returns STATUS. 

*define msgDcDrawEllipse 

stsDcHitOn 

msgDcD rawPolygon 

MakeMsg(clsSysDrwCtx,102) 

Draws a polygon. Returns either hit test or stsOK. 

Takes P_SYSDC_POLYGON, returns STATUS. 

*define msgDcDrawPolygon 

typedef struct 
( 

MakeMsg(clsSysDrwCtx,103) 

U16 count; II number of points in points array 
P_XY32 points; II pointer to array of at least 2 points 
SYSDC_POLYGON , * P_SYSDC_POLYGON , 

stsDcHitOn 



276 PENPOINT API REFERENCE 

Me$$a~e 

Ar~umef'lts 

Comments 

Me$sa~e 

Ar~umel1ts 

Part 3 / Windows and Graphics 

nmsgI> cI>ravvS ectorltays 
Draws a sector (pie wedge) using the two rays method. 

Takes P _SYSDC_ARC_RAYS, returns STATUS. 

tdefine msgDcDrawSectorRays 

typedef struct 
( 

RECT32 bounds; 
XY32 rays[2]; 

MakeMsg(clsSysDrwCtx,106) 

SYSDC_ARC_RAYS, * P_SYSDC_ARC_RAYS; 

Returns either hit test or stsOK. 

stsDcHitOn 

nmsgI>cI>ravvChordltays 
Draws a chord using the two rays method. Returns either hit test or stsO K. 

Takes P _SYSDC_ARC_RAYS, returns STATUS. 

tdefine msgDcDrawChordRays 

typedef struct 
( 

RECT32 bounds; 
XY32 rays[2]; 

MakeMsg(clsSysDrwCtx,107) 

SYSDC_ARC_RAYS, * P_SYSDC_ARC_RAYS; 

stsDcHitOn 

nmsgI>cFillWindovv 
Frames window with a line and fills the window. 

Takes pNull, returns stsOK. 

tdefine msgDcFillWindow MakeMsg(clsSysDrwCtx, 33) 

Draws a rectangle exactly the size of the window. All line, fill and color attributes apply. 

When drawing a rectangle, the first pixel of line thickness is painted "inside" the rectangle, the second 
"outside", and it alternates from there. Therefore, lines> 1 pixel thick will have 1/2 their thickness fall 
outside the window when using this message. If that drawing is dipped (as it normally is) the line will 
appear 1/2 as thick as one would expect. 

Sampled Image Processing 

nmsgI>cI>ravvlmage 
Draws an image from sampled image data. The image will be scaled, rotated, translated, according to the 
current state. 

tdefine msgDcDrawImage 
tdefine msgDcGetSrcRow 

MakeMsg(clsSysDrwCtx, 48) 
MakeMsg(clsSysDrwCtx, 49) 



SYSGRAF.H 277 
Sampled Image Processing 

Enum16 (SYSDC_IMAGE_FLAGS) 
{ 

0, 
flagO, 
flag1, 
flag2, 
flag3, 

II fast but poor fidelity 
II use this for most image data 
II use this for color image data 

II run length encoded 

(flag2I flag3), 
flag4, 

II 1 bit per sample 
II 2 bits per sample 
II 4 bits per sample 
II 8 bits per sample 

II callBack is a P_SYSDC_GETROW 
callBack is a OBJECT 
dstRect not provided 

function 

sysDcImageNoFilter 
sysDcImageLoFilter 
sysDcImageHiFilter 
sysDcImageRunLength 
sysDcImage1BPS 
sysDcImage2BPS 
sysDcImage4BPS 
sysDcImage8BPS 
sysDcImageCallBack 
sysDcImageCallObject 
sysDcImageFillWindow 
sysDcImagePolarityFalse = 

0, 
flag8, 
flag9, 
flag10, 
flag11 

II 
II 
II 
II 

paint '0' wi background color 
else paint '1' wi foreground color 

} i 

typedef struct SYSDC_IMAGE_INFO * P_SYSDC_IMAGE_INFOi 
typedef BOOLEAN FunctionPtr(P_SYSDC_GETROW) (P_SYSDC_IMAGE_INFO pCtX)i 
typedef struct SYSDC_IMAGE_INFO 
{ 

RECT32 
SIZE16 
SYSDC IMAGE FLAGS - -
union 

P SYSDC GETROW - -
OBJECT 

P UNKNOWN 
P UNKNOWN 
P UNKNOWN 
SYSDC_IMAGE_INFO; 

dstRecti 
srcSizei 
flags; 

function; 
object; 
callBack; 
pBuffer; 
pClientDatai 
reserved[3]; 

II destination size and position 
II * of source samp~es 

This message is similar to the PostScript image operator. Sample data, in the form of numbers ranging 
from O .. max are interpreted as grey values. 0 is black and max is white. The value of max is determined 
by the size of the input numbers, which can be 1, 2, 4 or 8 bits. 

Because the sample data may be large, in a file, or incrementally decompressed, this message can work 

with a callback strategy. The callback can be either a function (flag sysDclmageCallBack), or an object 
(flag sysDcImageCallObject) to which msgDcGetSrcRow is sent. In both cases the argument is the 
same pointer to a SYSDC_IMAGE_INFO that is the argument to msgDcDrawlmage itself. To support 
client context during the callback, the field pClientData is provided, for the callback to use as necessary. 

The source sample data width and height is described by srcSize. The rectangle at the destination, which 
will be filled by the image, is dstRect; or optionally, the flag sysDcImageFillWindow can be used to fill 
the entire window. 

During the callback, pBuffer will point to a buffer that needs to be filled with srcSize.w samples. If 
pBuffer is pNull, it means the operator is skipping a row (because of clipping perhaps). Thus, no 
samples need to be provided, but the context must be "advanced" to skip the row. If anything goes 
wrong, the callback can return FALSE (for a function), or a bad status code (for an object) to terminate 
the drawing. 

If callback is not used at all, then pBuffer should be set by the caller to point to all of the sample data at 
the outset. 

The result of the drawing is that dstRect is filled with an image. Since dstRect is in LUC space, its size 
and location is the same as if it were drawn with msgDcDrawRectangle. 



278 PEN POINT API REFERENCE 

Mes$tlge 
Arguments 

Part 3 I Windows and Graphics 

Before using this interface to display "tiff" images, investigate clsTiff {tiff h) for a much higher level 
service. 

stsDcHitOn 

msgD cD rawImageM ask 
Draws a mask from sampled image data. Similar to msgDcDrawlmage. 

Takes P _SYSDC_lMAGE_INFO, returns STATUS. 

fdefine msgDcDrawImageMask MakeMsg(clsSysDrwCtx, 97) 

typedef struct SYSDC_IMAGE_INFO 
{ 

RECT32 dstRect; 
SIZE16 srcSize; 

II destination size and position 
II f of source samples 

SYSDC_IMAGE_FLAGS flags; 
union 

P_SYSDC_GETROW function; 
OBJECT object; 

callBack; 
P UNKNOWN pBuffer; 
P UNKNOWN pClientData; 
P UNKNOWN reserved[3]; 
SYSDC_IMAGE_INFO; 

This message is similar to the PostScript imagemask operator and msgDcDrawlmage. The input 
parameters are the same as for msgDcDrawlmage with the addition of one flag, 
sysDcImagePolarityFalse, which would normally not be set (TRUE). However, the results of this 
message are visually different than msgDcDrawlmage. 

msgDcDrawlmage reduces the input data to grey values and paints an opaque parallelogram. The values 
of the current foreground and background colors have no effect on the behavior of msgDcDrawlmage. 

msgDcDrawlmageMask reduces the input data to the values '0' and' 1'. The default behavior is for the 
'1' values to be painted with the current foreground color; the '0' values are not painted at all. 

This behavior can be reversed by setting the sysDcImagePolarityFalse flag. In this case the '0' values are 
painted with the current background color and the' l' values are not painted. 

stsDcHitOn 

msgDcCachelmage 
Passes back a cached image in pCache, given a sampled image and an optional mask. 

Takes P _SYSDC_CACHE_lMAGE, returns STATUS. 

fdefine msgDcCacheImage MakeMsg(clsSysDrwCtx, 91) 

typedef struct 
{ 

SYSDC IMAGE INFO -
BOOLEAN 
XY16 
P UNKNOWN 
SYSDC CACHE_IMAGE, 

image[2]; II in 
hasMask; II in 
hotSpot; II in 

[0] is image, [1] is mask 
if this is true 

pCache; II out = cache (segment) 
* P_SYSDC_CACHE_IMAGE; 

A "cached image" is a segment of memory (pCache) that contains the device-dependent (pixelmap) 
representation of a sampled image (see msgDcDrawlmage), and optionally a mask. 

This operator is intended to be used for cursors and icons. It currently does not work on printer devices. 



Arguments 

Comments 

Fonts 

SYSGRAF.H 279 
Fonts 

Once cached, the image can be drawn (with hotspot adjustment) using msgDcCopylmage. 

Because of its device dependent representation, a cached image becomes obsolete when the device 
rotation changes (landscape vs. portrait). Thus, you may need to observe theSystemPreferences and· 
rebuild the cache when appropriate. When you are finished with the cached image you should free it 
with OSHeapBlockFree. 

msgDcCopylmage 
Copies a cached image to the bound window. 

Takes P _SYSDC_COPY_lMAGE, returns STATUS. 

fdefine msgDcCopyImage 

typedef struct 
{ 

MakeMsg(clsSysDrwCtx, 92) 

XY32 XYi II in = destination location 
P UNKNOWN pCache i I I in 
SYSDC_COPY_IMAGE, * P_SYSDC_COPY_IMAGEi 

The image is copied, such that the hotspot aligns on xy. 

Some of the data structures used in the font interface are declared in sysfont.h. 

All font metric information is currently computed in LUC space. However, because all the relevant 
numbers, except for scaling, are integers, significant round-off error can occur. For instance, at 10 or 12 
points, a small feature, like x-height, will be a very small number. If LUC is relatively coarse, the error 
may be significant. The same holds true for the quality of inter-character spacing. Each character within 
a string of text output is positioned in LUC space, and the positioning will be no more accurate than the 
granularity of LUC. In general, the use ofTWIPS units, or even finer units, is recommended ifhigh 
quality text at small point sizes is required. Note that this may change in the future--read on. 

While this approach produces less than perfect results on screen, it does have the benefit of maintaining 
very close correspondence between screen and printer; such that the same code can be used for both 
with no significant variance. In general, each character will be positioned to within one LUC unit or one 
device pixel (whichever is larger), of accuracy. 

In future versions, the text measurement messages may change so that they advance character by 
character in an internal coordinate space that doesn't match LUC. This would allow accurate 
intercharacter spacing regardless of the granularity of LUC. 

SysDcFondd 
Takes a 4 byte string font description and returns a 16-bit font id number. 

Returns U16. 

U16 EXPORTED SysDcFontId(P_CHAR 
) ; 

II In: a string like "HESS" 



280 PENPOINT API REFERENC~ 
Part 3 / Windows and Graphics 

SysDcFontString 
Takes a 16-bit font id number and passes back a 4 char string. 

Returns void. 

void EXPORTED SysDcFontString(U16, II In: a font id number 
P CHAR II Out: a string like "HE55" 

) ; 

The string buffer should be at least 5 bytes long. 

msgDcOpenFont 
Opens a font. 

Takes P_SYSDC_FONT_SPEC or pNulI, returns stsOK. 

idefine msgDcOpenFont MakeMsg(clsSysDrwCtx, 53) 

Specifying pNuli will open default font. 

msgDcScaleFont 
Scales font matrix. 

Takes P _SCALE or pNulI, returns stsOK. 

ide fine msgDcScaleFont MakeMsg(clsSysDrwCtx, 54) 

If argument is pN ull then behavior is same as msgDcIdentityFont. The default size of a newly opened 
font is 1 unit (LUC). Use this message to scale to the desired size. 

Note that this scaling is cumulative (multiplicative). A scale of 10,10 followed by a scale of 12,12 will 
result in a scale of 120,120. When "switching to absolute sizes" a msgDcIdentityFont will usually be 

-needed. 

Note also that font scale is affected by the overall scale established by the msgDcUnits ... messages, and 
msgDcScale. 

msgDcldentityFont 
Sets font matrix scale to default of 1 unit (LUC). 

Takes pNull, returns stsOK. 

idefine msgDcIdentityFont MakeMsg(clsSysDrwCtx, 72) 

msgDcD r3JV1rext 
Draws text in the current font. 

idefine msgDcDrawText MakeMsg(clsSysDrwCtx, 55) 

vnsgD~easure1rext 

Computes size of text and advances pArgs->cp accordingly. 

Takes P_SYSDC_TEXT_OUTPUT, returns stsOK. 

ide fine msgDcMeasureText MakeMsg(clsSysDrwCtx, 57) 



Comments 

Comments 

Comments 

Comments 

Comments 

SYSGRAF.H 28' 
Fonts 

Measuring stops when stop is exceeded. Stop will normally be a "right margin". This is used to measure 
out lines of text from a large buffer. Upon return lenText will be the number of characters that "fit". 
This information can then be used to break and justify lines. 

To simply measure an entire string, set cp.x = 0 and stop = maxS32; upon return cp.x will be the length 
of the string in LUC. 

During measuring, other parameters, like spaceExtra and otherExtra are significant. 

~sgI>cI>r~1rextll~ 

Like msgDcDrawText, except run spacing applies. 

Takes P _SYSDC_ TEXT _OUTPUT, returns stsO K. 

*define msgDcDrawTextRun MakeMsg(clsSysDrwCtx, 73) 

Run spacing is important when spaceExtra and otherExtra contain non-zero values; especially when 
underlining. For instance, if otherExtra is 10, then 10 units will be added after the last character when 
using run spacing. It would not be added when using the normal DrawText message. This affects the 
cp.x value returned, and is visually significant when underlining or strikethrough are performed (the 10 
units would have the lines or not). It will also affect the result when centering or right-justifying text. 

~sgI>cMeasure1rextll~ 

Like msgDcMeasureText, except run spacing applies. 

Takes P _SYSDC_ TEXT_OUTPUT, returns stsO K. 

*define msgDcMeasureTextRun MakeMsg(clsSysDrwCtx, 74) 

See comments about "run spacing" under msgDcDrawTextRun. 

~sgI>cI>r~1r extI>ebug 
Like msgDcDrawText, except text is drawn with debugging lines around each char. 

Takes P _SYSDC_TEXT_OUTPUT, returns stsOK. 

*define msgDcDrawTextDebug MakeMsg(clsSysDrwCtx, 56) 

This function may not work unless the debugging version of win.dll is being used. 

~sgI>cPreload1rext 

Preloads pT ext into cache. 

Takes P _SYSDC_ TEXT_OUTPUT, returns stsO K. 

*define msgDcPreloadText MakeMsg(clsSysDrwCtx, 58) 

If pArgs is pNull or pArgs->pText is pNull a default set is preloaded. 

This message causes the characters to be rasterized into the font cache so that during a subsequent 
msgDcDrawText there are no hesitations during a cache miss. This is not normally necessary, but might 
be useful in a "slide show" application. 

~sgI>cGetCharMetrics 

Gets char metrics information for a string. 

Takes P _SYSDC_CHAR_METRICS, returns stsOK. 

*define msgDcGetCharMetrics MakeMsg(clsSysDrwCtx, 84) 



282 PENPOINT API REFERENCE 
Part 3 / Windows and Graphics 

These character metrics are more precise in some ways than those returned by msgDcGetFontMetrics. 
For instance, the width of a character is a purely logical value. The character image may extend past its 
width to the right, and may extend to the left past its "left edge". Similarly, some characters will extend 
above the "ascender" line or below the "descender" lines (which are just imaginary lines that guide the 
letterforms in general). 

For each character in the string, the information returned is the minimum and maximum x and y 
coordinates found in that glyph, as if the glyph were drawn at 0,0. There are no "string semantics" to 
the "string" (x is not accumulating left to right); rather, this is similar to a "width table" except values for 
a specific string only are returned. 

See the caveat below for msgDcGetFontWidths. 

msgDcGetFontMetrics 
Gets the font metrics for the current font. 

Takes P _SYSDC_FONT_METRICS, returns stsOK. 

#define msgDcGetFontMetrics MakeMsg(clsSysDrwCtx, 59) 

msgDcGetFontWidths 
Gets the font width table of the current font. 

Takes P _SYSDC_FONT _WIDTHS, returns stsOK. 

#define msgDcGetFontWidths MakeMsg(clsSysDrwCtx, 60) 

This width table is an array of255 COORD 16 values. Try to use the msgDcMeasureText interface 
instead; as width tables become less practical as character sets get larger and larger (e.g., Kanji). 

Another important reason to use msgDcMeasureText instead is that the measureText/drawText 
interfaces may change in the future to advance character by character in an internal coordinate space 
that doesn't match LUC. This would allow accurate intercharacter spacing regardless of the granularity 
of LUC. In short, we do not guarantee that merely adding up widths obtained by 
msgDcGetFontWidths would match the results of using msgDcMeasureText. msgficMeasureText 
always represents the correct behavior, while msgDcGetFontWidths should be thought of as an 
approximation. 

Special Messages 

msgDcDra1VP~1rurn 

Draws a page turn effect over the bound window. 

Takes P_SYSDC_PAGE_TURN, returns stsOK. 

#define msgDcDrawPageTurn 

typedef struct 
{ 

P RECT32 pBounds; 
U16 fxNo, 

iterations; 
BOOLEAN fxFwd, 

landscape; 

MakeMsg(clsSysDrwCtx, 86) 

II may be pNull for entire window 
II must be 0 

SYSDC_PAGE_TURN, * P_SYSDC_PAGE_TURN; 



CommenTS 

Mess©ge 
Arguments 

msgDcCopyPixels 
Copies pixels from srcWindow to the bound window. 

Takes P _SYSDC_PIXELS, returns stsOK. 

#define msgDcCopyPixels 

typedef struct 
{ 

MakeMsg(clsSysDrwCtx, 89) 

OBJECT srcWindowi II in=on a clslmgDev 
P RECT32 pBoundsi II in=may be pNull for entire window 
XY32 XYi II in=destination location 
BOOLEAN dstDirtYi II in= 
SYSDC_PIXELS, * P_SYSDC_PIXELSi 

SYSGRAF.H 283 
Special Messages 

The rectangle pBounds on srcWindow is copied to the destination (bound) window at location xy. If 
dstDirty is TRUE, "dirty" pixels from the srcWindow cause the corresponding pixels on the destination 
window to be marked dirty (however, the dirty pixels ARE copied anyway). 

The srcWindow must be on an "image device". See clslmgDev. 

stsTruncatedData source rectangle not entirely on the window device; some dest pixels not affected. 

msgDcDrawPixels 
Draws foreground and background colors in the bound window's pixels using srcWindow's pixel values 
as a stencil. 

Takes P_SYSDC_PIXELS, returns stsOK. 

#define msgDcDrawPixels 

typedef struct 
{ 

MakeMsg(clsSysDrwCtx, 90) 

OBJECT srcWindowi II in=on a clslmgDev 
P RECT32 pBoundsi II in=may be pNull for entire window 
XY32 XYi II in=destination location 
BOOLEAN dstDirtYi II in= 
SYSDC_PIXELS, * P_SYSDC_PIXELSi 

Like msgDcCopyPixels except the source clslmgDev window must be only 1 plane and the dstDirty 
processing is not performed. 

'1' pixels from the source are drawn with the foreground color, and '0' pixels with the background color. 

stsTruncatedData source rectangle not entirely on the window device; some dest pixels not affected. 

msgDcScreenShot 
Captures a screen image to a "tiff' file. 

Takes P _SYSDC_SCREEN_SHOT, returns stsO K 

#define msgDcScreenShot 

typedef struct 
{ 

P_RECT32 pBoundsi 
P_CHAR pFileNamei 

MakeMsg(clsSysDrwCtx, 67) 

SYSDC_SCREEN_SHOT, * P_SYSDC_SCREEN_SHOTi 

pBounds can be a rectangle that is off the window and those pixels will be captured too (actually, 
wraparound will occur); no clipping is implied by the window, only the relative positioning of pBounds. 



284 PENPOINT API REFERENCE 
Part 3 I Windows and Graphics 

If pBoundsis pNull the whole window will be captured. IfLUC are rotated non-modulo 90 degrees an 
upright rectangle bounding pBounds will be captured. 

If you are just capturing screen shots for documentation, try using the SShot utility application first. 

Messages from other classes 

msgDrwCtxSetWindow 
Binds a window to the receiver and returns the previously bound window. 

Takes WIN, returns WIN. 

All output through the DC will now appear on this window. A DC must be bound to a window before 
most messages will work. 

msgDrwCtxGetWindow 
Gets the window to which the drawing context is bound. 

Takes pNull, returns WIN. 

msgWinDirtyRect 
Marks all or part of a window dirty. 

Takes P _RECT32 or pNull, returns STATUS. 

Ifp _ARGS is not null, the DC will transform the rectangle into LWC and pass the message on to the 
DC's bound window. The DC computes the LWC rectangle in the same manner as 
msgDcAccumulateBounds, i.e. so that it: 

1) mathematically includes the entire LUC rectangle, and 

2) has non-negative width and height. 

If the P _ARGS is null, the DC will just pass the message on to the DC's bound window. 

msgWinBeginPaint 
Sets up window for painting on its visible region. 

Takes P _RECT32 or pNull, returns STATUS. 

The P _ARGS is handled the same as in msgWinDirtyRect. 

msgWinBeginRepaint 
Sets up window for painting on "dirty" region. 

Takes P _RECT32 or pNull, returns STATUS. 

The DC will pass the message on to the DC's bound window and then, if P _ARGS is not null, transform 
the out parameter rectangle from LWC to LUC. The DC computes the rectangle so that it: 

1) mathematically includes the entire LUC rectangle, and 

2) has width and height >= 1. 



Comments 

Comments 

SYSGRAF. H 285 
Messages from other classes 

msgWinBeginPaint 
Sets up window for painting on its visible region. 

Takes P _RECT32 or pNull, returns STATUS. 

The P _ARGS is handled the same as in msgWinBeginRepaint. 

msgWinDelta 
Moves and/or resizes a window. pArgs->bounds should be the newly desired bounds (size AND 
position). 

Takes P_WIN_METRICS, returns STATUS. 

The DC will transform pArgs->bounds into LWC and pass the message on to the DC's bound window. 
The DC transforms: 

the in parameter bounds in the same manner as msgDcLUCtoL WC_RECT32, and 

the out parameter bounds in the same manner as msgDcLWCtoLUC_RECT32. 

msgWinTransformBounds 
Transforms bounds from receiver's to another window's LWC. 

Takes P_WIN_METRICS, returns STATUS. 

The P _ARGS is handled the same as in msgWinDelta. 

msgWinHitDetect 
Locates the window "under" a point. 

Takes P _WIN_METRICS, returns STATUS. 

The DC will pass the message on to the DC's bound window. The bounds passed along to the window 
will be a copy of pArgs->bounds that the DC has transformed into LWC as in 
msgDcLUCtoLWC_RECT32. 

msgWinGetMetrics 
Gets full window metrics. 

Takes P _WIN_METRICS, returns STATUS. 

The DC will pass the message on to the DC's bound window, and then return a pArgs->bounds that is 
transformed as in msgDcLWCtoLUC_RECT32. 

msgWinCopyRect 
Copies pixels within a window. 

Takes P_WIN_COPY_RECT, returns STATUS. 

The DC will first transform the pArgs->srcRect from LUC to LWC as in msgWinDelta. The DC will 
then transform pArgs->xy: 

if wsCopyRelative is set, as in msgDcLUCtoLWC_SIZE32 

if wsCopyRelative is cleared, as in msgDcLUCtoL WC_XY32. 



286 PENPOINT API REFERENCE 
Part 3 / Windows and Graphics 

The DC will then pass the message on to the DC's bound window. 

Drawing contexts respond to every other clsWin message by just forwarding the message on to its 
bound window. The P _ARGS are not touched by the DC. 

msgWinDevBindPixelmap 
Binds window device to a pixelmap. 

Takes P_WIN_DEV_PIXELMAP, returns STATUS. 

The DC will pass the message on to pArgs->device. The pArgs->size passed along to the device will be a 
copy of pArgs->size that the DC has transformed into LWC by: 

1) setting up a local rectangle of x=O, y=O, w=pArgs->size.w, 

h=pArgs->size.h 

2) transforming this rectangle into LWC as in msgWinDirtyRect 

(using the transformation matrix of the DC), and 

3) setting the copied size to the resulting rectangle's size. 

The DC will also change the pArgs->device passed along to be the device on which the DC's bound 
window was created. 

msgWinDevSizePixelmap 
Computes the amount of memory needed for a single plane. 

Takes P_WIN_DEV_PIXELMAP, returns STATUS. 

#endif II SYSGRAF_INCLUDED 

The P _ARGS is handled the same as in msgWinDevBindPixelmap. 

Drawing contexts respond to every other clsWinDev message by just forwarding the message on to its 
bound window. Note that clsWin's response to clsWinDev messages is to just call ancestor (except for 
messages sent to the root window on the device, which get passed on to the device). 

The P _ARGS are not touched by the DC. 



TIFF.M 

This file contains the API definition for clsTiff (Tagged Image File Format). 

clsTiff inherits from clsObject. 

clsTiff provides decoding and display of TIFF file to a window. 

clsTiff remembers a pathname to a TIFF file; the file must be in the same location on redisplay. TIFF 

objects are not windows; they take a drawing context to repaint. 

clsTiff provides display of the black and white grey scale formats. It decodes compression types for 
packed data (type 1); Group3 (FAX) horizontial encoding (types 2 and 3); Pack Bits run-length (type 

32773). Samples per pixel are limited to 1, 2, 4, or 8. TIFF images must be grey scale; it does not 

support colormap or direct color (RGB) images. It supports tags for photometric interpretion, fill order, 

orientation, dot size, Intel & Motorola byte order. 

Common uses of clsTiff: 

clsTiff can be the data object for a clsView object. It is used by the Fax Viewer in this way to display fax 

images. 

*ifndef TIFF INCLUDED 
*define TIFF=INCLUDED 
*ifndef PICSEG INCLUDED 
*include "picseg.h" 
*endif 

Messages 

msgNewDefaults 
Initializes a TIFF_NEW structure to default values. 

Takes P_TIFF_NEW, returns STATUS. Category: class message. 

defaults: tiff.pName = pNull; tiff.imageFlags = sysDcImageFillWindow; tiff. rectangle = zeros; 

msgNew 
Creates a new TIFF object, and optionaly opens its associated file. 

Takes P_TIFF_NEW, returns STATUS. Category: class message. 

typedef struct TIFF STYLE 
U16 save : 1~ II false if reading and display; true for saving 

spare1 : 15; 
U16 spare2 : 16; 

} TIFF_STYLE, * P_TIFF_STYLE; 
typedef struct { 

P_U8 
SYSDC IMAGE FLAGS 

pName; 
im,ageFlags; 
rectangle; RECT32 -

TIFF STYLE 
S32 -

style; 
spare [3]; 

* P_TIFF_NEW_ONLY; 

II a pointer pathname of the file 
II sysDcImageXXFilter and sysDcImageFillWindow 
II display size of the tiff image in LUC 



288 PENPOINT API REFERENCE 
Part 3 / Windows and Graphics 

tdefine tiff NewFields \ 
objectNewFields \ 
TIFF NEW ONLY tiff; 

typedef struct TIFF_NEW { 
tiff NewFields 

} TIFF_NEW, *P_TIFF_NEW; 

If imageFlags has the sysDcImageFillWindow flag set, msgNew will pass back the size of the image in 
mils in the rectangle member of the TIFF_NEW struct. 

Status Codes for msgNew 
stsTiflNumStrips returned if the number of strips is bad. 

stsTiffStripByteCount returned if the number of strip byte counts does not match the image length. 

stsTiffStripOffsets returned if there are no strip offsets. 

stsTiffimageTooLarge returned if the image is too large to display (32000 pixels by 32000 pixels). 

stsTiflByteCountZero returned the a byte count is zero. 

stsTiflBadName returned if pName is bad or pNull. 

stsFSNodeNotFound returned the TIFF file is not found. 

and status errors form OSHeapBlockAllocO 

tdefine stsTiffNumStrips 
tdefine stsTiffStripByteCount 
tdefine stsTiffStripOffsets 
tdefine stsTiffImageTooLarge 
tdefine stsTiffByteCountZero 
tdefine stsTiffBadFormatId 
tdefine stsTiffBadName 

MakeStatus(clsTiff,0) 
MakeStatus(clsTiff,l) 
MakeStatus(clsTiff,2) 
MakeStatus(clsTiff,3) 
MakeStatus(clsTiff,4) 
MakeStatus(clsTiff,5) 
MakeStatus(clsTiff,6) 

clsPicSeg messages used by clsTiH 

msgPicSegPaintObject 
Paints the Tiff to the drawing context object provided. 

Takes P _PIC_SEG_PAINT_OBJECT, returns STATUS. 

Object Call either msgWinBeginPaint or msgWinBeginRepaint before using this message. A clsPicSeg 
object will send this message to any Tiff object in its display list. If the rectangle in 
P _PIC_SEG_PAINT_OBJECT is all zeros then the whole window is filled with the image. 

clsTiH Messages 

msg1rifF(;e~etrics 

Passes back the metrics of the Tiff. 

Takes P_TIFF_METRICS, returns STATUS. 

tdefine msgTiffGetMetrics MakeMsg(clsTiff, 1) 



TIFF.H 289 
clsTiff Messages 

nnsg1ri£f.Set1v.[etrics 
Sets the metrics of the Tiff 

Takes P _TIFF_METRICS, returns STATUS. 

#define msgTiffSetMetrics MakeMsg(clsTiff, 2) 

", Orientation defines 
Valid values for metrics.orientation 

#define tiffOrientTopLeft 1 
#define tiffOrientTopRight 2 
#define tiffOrientBottomRight 3 
#define tiffOrientBottomLeft 4 
#define tiffOrientLeftTop 5 
#define tiffOrientRightTop 6 
#define tiffOrientRightBottom 7 
#define tiffOrientLeftBottom 8 

II 1st 
II 1st 
II 1st 
II 1st 
II 1st 
II 1st 
II 1st 
II 1st 

row top; 1st column left 
row top; 1st column right 
row bottom; 1st column right 
row bottom; 1st column left 
row left; 1st column top 
row right; 1st column top 
row right; 1st column bottom 
row left; 1st column bottom 

Compression types 

Rational 

Metrics 

Valid values for metrics.compression 

1 II 
2 II only horiz. encoding 

#define tiffCompPackedData 
#define tiffCompGroup3 
#define tiffCompFax 
#define tiffCompPackBits 

3 
32773 

II only horiz. encoding w/EOL 
II Mac pack bits run-length 

The ratio of two longs (num / dem). 

typedef struct { 
U32 num; 
U32 dem; 

RATIONAL, * P_RATIONAL; 

The data read from the file tags. 

typedef struct { 
P_U8 pFileName; 
RECT32 rectangle; 

II the path for the file 
II the display rect 
II(zero width and height fills the window) 

SYSDC IMAGE FLAGS imageFlags; 
U32 ne;SubfileType; II the tiff data read from the file 
U16 SubfileType; II 1 the only supported value 
U32 width; II number of pixels in the x dimension 
U32 length; II number of pixels in the y dimension 
U16 bitsPerSample; II number of bits per sample 1, 2, 4 or 8 
U16 compression; II the image compression type 
U16 photometricInterpretation;11 0 - 0 black; highest value white 

U16 

P S8 
P S8 
P S8 
P S8 
P S32 

fillOrder; 

pDocumentName; 
pImageDescription; 
pMake; 
pModel; 
pStripOffsets; 

II 1 - highest value black; 0 white 
II bit order of image bytes 
II 1 - MSB first; 2 - LSB first 
II pointer to a string in a heap or pNull 
II pointer to a string in a heap or pNull 
II pointer to a string in a heap or pNull 
II pointer to a string in a heap or pNull 
II pointer to an array of file locations 



290 PENPOINT API REFERENCE 

Arguments 

Part 3 I Windows and Graphics 

U16 orientation; II see orient tdefines for values 
U16 samplesPerPixel; II number of samples per pixel 
S32 rowsPerStrip; II number of scanlines per strip 
P S32 pStripByteCounts; II array of byte counts in each strip 
RATIONAL xResolution; II x number of samples per resolution unit 
RATIONAL yResolution; II y number of samples per resolution unit 
U16 planarConfiguration;11 1 the only supported value 
P S8 pPageName; l/ pointer to a string in a heap or pNul1 
RATIONAL xPositioni II current x position (UNUSED) 
RATIONAL yPosition; II current y position (UNUSED) 
U32 group30ptions; II only works if 0 
U16 resolutionUnit; II 1 for inches; 2 for milimeters 
U16 pageNumber; II page number for the image 
P_S8 pSoftwarei II pointer to a string in a heap or pNull 
P S8 pDataTime; II pointer to a string in a heap or pNul1 
P S8 pArtist; II pointer to a string in a heap or pNul1 
P S8 pHostComputer; II pointer to a string in a heap or pNul1 
P U16 pColorMap; II pointer to an array in a heap or pNul1 

TIFF_METRICS, * P_TIFF_METRICS; 

msg TiffGetSizeMils 
Provides the actual size of the TIFF image in MILS (1 /1000 inch). 

Takes P _SIZE32, returns STATUS. 

tdefine msgTiffGetSizeMils MakeMsg(clsTiff, 3) 

msgTiffGetSizeMM 
Provides the actual size of the TIFF image in milimeters. 

Takes P _SIZE32, returns STATUS. 

tdefine msgTiffGetSizeMM 

msgTiffSave 
Saves a TIFF file. 

Takes P_TIFF_SAVE, returns STATUS. 

MakeMsg(clsTiff, 4) 

tdefine msgTiffSave MakeMsg (clsTiff, 5) 
II Format of Input image (style.inputDataFormat) 
II The stored data type is provided in the tiff metrics. 
II Curently the only conversion of image compression is 
II from tiffSaveRunLength to tiffCompGroup3. The data provided for other 
II compression types is writen directly to the file with no conversion. 
tdefine tiffSavePackedData 1 II NOT WORKING 
tdefine tiffSavePackedBits 2 II NOT WORKING 
tdefine tiffSaveRunLength 3 II can only be use for a Group 3 Fax file 
tdefine tiffSaveGroup3 4 II NOT WORKING 
II How the image data is provided (style.provideData) 
tdefine tiff CallBack 1 II use tiff Save.callback. function () to get row 
tdefine tiffCallObject 2 II not working 
tdefine tiff Provided 3 II all the data is in pBuffer (NOT WORKING) 

typedef struct TIFF_SAVE_STYLE { 
U16 inputDataFormat 4, II the compression of the input image data 

provideData 3, 
convert 1, lion if the input data is to be converted 

II to metrics.comrnpresson (NOT WORKING) 
spare1 8; 

U16 spare2 16; 
}TIFF_SAVE_STYLE, * P_TIFF_SAVE_STYLE; 



Comments 

TIFF.H 291 
clsTiff Messages 

typedef struct TIFF_SAVE * P_TIFF_SAVE; 
typedef STATUS Functionptr(P_TIFF_GETROW) (P_TIFF_SAVE pTiffSave); 
typedef struct TIFF_SAVE { 

TIFF SAVE STYLE style; 
union { 

P_TIFF_GETROW 
OBJECT 

} 
U32 

P U8 
P UNKNOWN 

TIFF_SAVE; 

function; 
object; 
callBack; 
bufferCount; 

pBuffer; 
pClientData; 

II ObjectCall with msgTiffGetRow 

II number of bytes in pBuffer 
II if 0 its assumed there is no 
II more data and metrics.length 
II will be changed 
II provided by the client 
II clients own data 

The TIFF object must be created with the save style (tiff.style.save = truej). The metrics of the TIFF 
must first be set. The default metrics are: 

metrics.newSubfileType = 1; 
metrics.SubfileType = 1; 
metrics.width = 0; 
metrics.length = 0; 
metrics.bitsPerSample = 1; 
metrics.compression = 1; 
metrics.photometricInterpretation = 0; 
metrics.fillOrder = 1; 
metrics.pDocumentName = pNull; 
metrics.pImageDescription = pNull; 
metrics.pMake = pNull; 
metrics.pModel = pNull; 

metrics.samplesPerPixel = 1; 
metrics.orientation = tiffOrientTopLeft; 
metrics.pStripOffsets = pNull; 
metrics.pStripByteCounts = pNull; 
metrics.rowsPerStrip = OL; 

metrics.xResolution.num = OL; 
m~trics.xResolution.dem = OL; 
metrics.yResolution.num = OL; 
metrics.yResolution.dem = OL; 
metrics.planarConfiguration = 1; 
metrics.pPageName = pNull; 
metrics.group30ptions = OL; 
metrics.resolutionUnit = 2; 
metrics.pageNumber = 0; 
metrics.pSoftware = pNull; 
metrics.pDataTime = pNull; 
metrics.pArtist = pNull; 
metrics.pHostComputer = pNull; 
metrics.pColorMap = pNull; 

II the resolution must be set 

All pointers should be alloced on a heap with OSHeapBlockAllocO. It will save any strings and arrays 

that are not pNull. Strip offsets and strip byte counts are calculated while the image is being saved. 

msgTiffSetGroup3Defaults 
Sets the TIFF metrics to the Group3 compression type 2 defaults. 

Takes P_TIFF_SAVE, returns STATUS. 

#define msgTiffSetGroup3Defaults MakeMsg(clsTiff, 6) 



292 PENPOINT API REFERENCE 

Message 

Ar9uments 

Part 3 / Windows and Graphics 

typedef struct TIFF_SAVE { 
TIFF_SAVE_STYLE style; 
union { 

} 

U32 

P U8 

P TIFF GETROW 
OBJECT 

P UNKNOWN 
TIFF_SAVE; 

function; 
object; 
callBack; 
bufferCount; 

pBuffer; 
pClientData; 

II ObjectCall with msgTiffGetRow 

II number of bytes in pBuffer 
II if 0 its assumed there is no 
II more data and metrics.length 
II will be changed 
II provided by the client 
II clients own data 

Takes 0 for low resoution and 1 for high resolution. 

msg TiffGetRow 
Sent client of the TIFF_SAVE to get the next row of the image. 

Takes V32, returns STATUS. 

fdefine msgTiffGetRow MakeMsg(clsTiff, 7) 

ReverseBits 
Reverses the bit ordering in each byte in an array of bytes. 

Returns void. 

Function PU)f@type void EXPORTED ReverseBits ( 
P_U8 pBuf, II the bytes to reverse 
S32 nBytes II the nuber of bytes to reverse 

) ; 



TILE.H 

Interface to the pop-up tiling routine. 

The functions described in this file are contained in MISC.UB. 

#ifndef TILE_INCLUDED 
#define TILE_INCLUDED 
#ifndef GO INCLUDED 

.#include <go.h> 
#endif 
#ifndef GEO INCLUDED 
#include <geo.h> 
#endif 
typedef enum { 

tileAbove, 
tileBelow, 
tileLeft, 
tileRight 

II above the target 
II below the target 
II to the left of the target 
II to the right of the target 

TILE_LOCATOR; 

TilePopUp 
Center a rectangle under (over/to the left/right of) another rectangle but staying inside the bounds of a 
third rectangle. 

Returns STATUS. 

flHu:tkm Prototype STATUS PASCAL TilePopUp ( 
TILE_LOCATOR preferred, 
P_RECT32 pPop, 

) ; 

P_RECT32 pTarget, 
P_RECT32 pWorld 

II preferred location 
II In-Out rect to be manipulated 
II anchor rect 
II surrounding rect, base for pop & target 
II use pNull for theRootWindow 

This routine makes it easy to position pop-up windows next to existingor screen regions. pPop->origin 
is set to the best position tothat rectangle. For example, if you want to center a popup windowa 
selected word but stay inside theRootWindow, you'd set preferredtileBelow, pPop->size to the size 
of the new window, pTarget to thecontaining the selection, and pWorld to pNull. If a window 
of size can be centered below pTarget, TilePopVp will return theto insert it at. If it won't fit below, 
but it will fit above,will give THAT position. If it will fit below, but not centered, will sacrifice 
centering to keep it all on screen. 

All rects are assumed to be relative to the same origin. You stillto actually position and insert the actual 
window; this justyou where to put it. 





WIN.H 

This file provides the API's for dsWin, dsWinDev. Two abstract classes, clsDrwCtx. and clsPixDev are 
also defined, but they are not used directly by application-level clients. 

dsDrwCtx. inherits from dsObject. 

Defines the minimal behavior for a drawing context. 

dsPixDev inherits from dsObject. 

Defines the minimal behavior for a pixel map graphics device. 

dsWinDev inherits from dsPixDev. 

Provides devices of dsPixDev that can have windows on them. 

clsImgDev inherits from clsWinDev. 

Provides window devices whose pixels are accessible in memory. 

clsWin inherits from clsObject. 

Provides windows onto clsWinDev objects. 

theScreen is a well-known instance of dsWinDev. It is the main display surface for PenPoint. 

theRootWindow is a well-known instance of clsWin. It is the root of the window tree on theScreen. 

Terminology: 

DU4 -- Device Units, 4th Quadrant. A 4th quadrant coordinate system; device space, device units. This 
is used internally, but not seen by application software. 

LWC -- Logical Window Coordinates. A 1st quadrant coordinate system. The lower-left-hand corner of 
the window is 0,0. The units are device pixels. These are the coordinates in which windowing operations 
are specified and input is delivered. 

LUC -- Logical Unit Coordinates. The nature of the coordinate system is determined by a drawing 
context. Such coordinates are always relative to the window. Some drawing contexts will implement 
window messages that takes LWC coordinates and transform them so that window operations can occur 
in LUC space. See sysgraf.h for details. 

Debugging Flags 
The clsWin debugging flag is 'W'. Defined values are: 

flagO (OxOOOl) window layout 

flag 1 (Ox0002) window layout 

flag2 (Ox0004) flash interesting regions during damage 

flag3 (Ox0008) bitmap caching 

flag4 (OxOO 1 0) window filing 

flag5 (Ox0020) font cache char ops 

flag6 (Ox0040) font cache char ops 

flag7 (Ox0080) matrixlrectangle math 



296 PENPOINT API REFERENCE 
Part 3 / Windows and Graphics 

flag8 (OxO 1 00) layout timing 

flag9 (Ox0200) font cache macro ops 

flagl0 (Ox0400) msgWinDumpTree outputs input flags 

flag 1 1 (Ox0800) Measure/Draw text 

flag12 (OxlOOO) window printing/dipping 

flag13 (Ox2000) unused 

flag14 (Ox4000) unused 

flag15 (Ox8000) window bitblt coordinates 

#ifndef WIN INCLUDED 
#define WIN:INCLUDED 
#ifndef GO INCLUDED 
#include <go.h> 
#endif 
#ifndef CLSMGR INCLUDED 
#include <clsmgr.h> 
#endif 
#ifndef GEO INCLUDED 
#include <geo.h> 
#endif 

Typedefs, #defines, and Status Values 
#define stsWinConstraint MakeStatus(clsWin, 1) 
#define stsWinHasParent MakeStatus(clsWin, 3) 
#define stsWinParentBad MakeStatus(clsWin, 4) 
#define stsWinBad MakeStatus(clsWin, 5) 
#define stsWinlnfiniteLayout MakeStatus(clsWin, 6) 
#define stsWinNoEnv MakeStatus(clsWin, 7) 
#define stsWinIsChild MakeWarning(clsWin, 8) 
#define stsWinIsDescendant MakeWarning(clsWin, 9) 
#define stsPixDevBad MakeStatus(clsPixDev, 1) 
#define stsPixDevOutOfRegions MakeStatus(clsPixDev, 2) 
#define stsWinDevBad 
#define stsWinDevFull 
#define stsWinDevCachedHit 
typedef WIN * P WIN; 

* P-DRW CTX; typedef DRW_CTX 
* P-PIX-DEV; typedef PIX_DEY 
* P:WIN:DEV; typedef WIN_DEV 

typedef IMG_DEV * P_IMG_DEV; 

Window style flags 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 

wsClipChildren 
wsClipSiblings 
wsParentClip 
wsSaveUnder 
wsGrowTop 
wsGrowBottom 
wsGrowLeft 
wsGrowRight 
wsCaptureGeometry 
wsSendGeometry 
wsSendOrphaned 

MakeStatus(clsWinDev, 1) 
MakeStatus(clsWinDev, 2) 
MakeStatus(clsWinDev, 3) 

( (U32) flagO) 
( (U32) flag1) 
((U32)flag2) 
((U32)flag3) 
((U32)flag4) 
((U32)flag5) 
((U32) flag6) 
((U32)flag7) 
((U32)flag8) 
( (U32) flag9) 
((U32)flag10) 

II Don't draw on my children 
II Don't draw on my siblings 
II Borrow my parent's vis rgn 
II Try to save pixels on insert 
II Pixels move to bottom on resize 
II Pixels move to top on resize 
II Pixels move to right on resize 
II Pixels move to left on resize 
II I capture m,s,i,e of children 
II Send me delta,ins,ext advice 
II Send msgOrphaned not msgFree 



WIN.H 297 
Window style flags 

tdefine wsSynchRepaint ((U32)flagl2) II ObjectCall to repaint 
tdefine wsTransparent ((U32)flagl3) II I am transparent 
tdefine wsVisible ((U32)flagl4) II I am visible 
tdefine wsPaintable ( (U32) flagl5) II I can be painted 
tdefine wsSendFile ( (U32) flagl6) II I should be filed 

tdefine wsShrinkWrapWidth ((U32)flagl7) II I shrink to fit children 
tdefine wsShrinkWrapHeight ((U32)flagl8) II I shrink to fit children 
tdefine wsLayoutDirty ( (U32) flagl9) II My layout is dirty 
#define wsCaptureLayout ((U32)flag20) II I'm dirty if children delta, 

II extract, insert, or 
II child wsVisible changes 

#define wsSendLayout ( (U32) flag2l) II I'm dirty if I change size or 
II wsShrinkWrapWidth/Height or 
II wsMaskWrapWidth/Height changes 

tdefine wsHeightFromWidth ((U32)flag22) II height is computed from width 
tdefine wsWidthFromHeight ((U32) flag24) II width is computed from height 
tdefine wsFilelnline 
tdefine wsFileNoBounds 
tdefine wsFileLayoutDirty 
tdefine wsMaskWrapWidth 
tdefine wsMaskWrapHeight 
tdefine wsDefault 

typedef struct 
{ 

U32 input, 
style; 

WIN_FLAGS, * P_WIN_FLAGS; 

( (U32) flag23) II file without object header 
( (U32) flag26) II don't file the bounds 
((U32) flag27) II always dirty layout bit on 
((U32)flag28) II mask out wsShrinkWrapWidth 
( (U32) flag29) II mask out wsShrinkWrapHeight 

(wsClipChildren I \ 

) 

wsClipSiblings I \ 
wSPaintable I \ 
wsCaptureLayout I \ 
wsSendLayout I \ 
wsLayoutDirty I \ 
wsVisible \ 

II see input.h 
II see ws* flags above 

II part of WIN_METRICS 
tdefine WinShrinkWrapWidth(style) 

(! ((style) & wsMaskWrapWidth) 
\ 

&& ((style) & wsShrinkWrapWidth)) 

tdefine WinShrinkWrapHeight(style) \ , 
(! ((style) & wsMaskWrapHeight) && ((style) & wsShrinkWrapHeight)) 

tdefine WinShrinkWrap(style) \ 
(WinShrinkWrapWidth(style) I I WinShrinkWrapHeight(style)) 

restore 

You can use these WinShrinkW rap macros are test if a window has shrink-wrap-width or 
shirnk-wrap-height enabled. If wsMaskWrap Width/Height is on, the shrink wrapping will be off in 
that dimension. clsGrabBox will turn on wsMaskW rap Width/Height if the user resizes a window and 
changes the width/height. clsFrame will clear the wsMaskWrap Width/Height bits and re-layout when 
the user tripple-taps on the title bar. 

Enum16(WIN_OPTIONS) 
{ wsPosTop = 0, 

wsPosBottom = flagO, II In: to msgWinlnsert ... 
wsPoslnFront = wsPosTop, 
wsPoslnBack = wsPosBottom, 
wsWinMoved flag9, II Out: from msgWinDelta 
wsWinSized flaglO, II Out: from msgWinDelta 
wsParentMoved flag12, II Out: from msgWinDelta 
wsParentSized flagl3, II Out: from msgWinDelta 
wsLayoutResize flagll, II In: to msgWinLayout ... 
wsLayoutMinPaint flagl4, II In: to msgWinLayout ... 
wsLayoutNoCache flag8, II Out: from msgWinLayoutSelf 
wsLayoutDefault = wsLayoutResize II In: to msgWinLayout ... 

} ; 



298 PENPOINT API REFERENCE 
Part 3 / Windows and Graphics 

typedef struct 
{ 

WIN 

RECT32 
WIN DEV 
WIN FLAGS 
TAG 
WIN_OPTIONS 
WIN_METRICS, 

parent, 
child; 
bounds; 
device; 
flags; 
tag; 
options; 
* P_WIN_METRICS; 

A P _WIN_METRICS is the argument to most of the messages defined by clsWin. However, for most of 
these messages, not all of the fields are used. In the discussion of each message below, fields which are 
not mentioned are not used; and they don't have to be initialized before sending the message. This is not 
to say that these "unused" fields are not modified during the call; they will be during the processing of 
some messages. 

". Me •• age. Sen. '0 a Window 

MessQ$je 

Ar£!uments 

msgNew 
Creates a window. 

Takes P _WIN_METRICS, returns STATUS. Category: class message. 

typedef WIN_METRICS WIN_NEW_ONLY, * P_WIN_NEW_ONLY; 
*define winNewFields \ 

objectNewFields \ 
WIN NEW ONLY win; 

typedef struct WIN_NEW 
{ 

winNewFields 
WIN_NEW, *P_WIN_NEW; 

typedef struct 
{ 

WIN 

RECT32 
WIN DEV 
WIN_FLAGS 
TAG 
WIN_OPTIONS 
WIN_METRICS, 

parent, 
child; 
bounds; 
device; 
flags; 
tag; 
options; 
* P_WIN_METRICS; 

If pArgs->parent is not objNull, clsWin will create the window on the spceified parent's window device. 
Note that the new window will not be inserted as a child of the specified parent. You must send 
msgWinInsert to the new window after creating it to insert it into its parent. 

If pArgs->parent is objNull, the window will be created on pArgs->device. If pArgs-> device is objNull, 
cis Win will create the window on OSThis WinDevO. 

Returns 

stsWinParentBad if pArgs->parent is not objNull or a valid window 

stsWinDevBad if pArgs-> device is not objNull or a valid window device 

stsWinDevFull if the window device window array can't be grown 

msgWinInsert 



Mess~ge 

Arguments 

Mess(]ge 
ArgumenTs 

WIN.H 299 
Messages Sent to a Window 

msgNewDefaults 
Initializes the WIN_NEW structure to default values. 

Takes P _WIN_NEW, returns STATUS. Category: class message. 

typedef struct WIN_NEW 
{ 

winNewFields 
WIN_NEW, *P_WIN_NEW; 

object. cap 1= objCapCall; 
win.parent = objNull; 
win.child = objNull; 
win. device = objNull; 
win.flags.style = wsDefaulti 
win. flags. input = 0; 
win.tag = 0; 
win. options = wsPosTop; 
win.bounds.origin.x = 0; 
win.bounds.origin.y = 0; 
win.bounds.size.w 0; 
win.bounds.size.h 0; 

msgWinlnsert 
Inserts or changes z-order of a window. 

Takes P _WIN_METRICS, returns STATUS. 

#define msgWinInsert 

typedef struct 
{ 

WIN 

RECT32 
WIN DEV 
WIN FLAGS 

parent, 
child; 
bounds; 
device; 
flags; 

TAG tag; 
WIN OPTIONS options; 
WIN_METRICS, * P_WIN_METRICS; 

MakeMsg(clsWin, 1) 

You send this message to the child that you want to insert or change z-order. 

In parameters are: 

pArgs->parent 
pArgs->options 

= child's new parent or objNull; 
= either wsPosTop or wsPosBottom; 

If pArgs->parent is not objNull or selfs current parent, clsWin will insert self as a child of the specified 
parent. If pArgs->options has wsPosTop on, self will be inserted as the top-most child; if wsPosBottom 
is on, self will be inserted as the bottom-most child. 

If pArgs->parent is objNull or self's current parent, clsWin will change the z-order of self according to 
pArgs->options. If pArgs->options has wsPosTop on, self will be altered in z-space to be the top-most 
child; if wsPosBottom is on, self will be altered to be the bottom-most child. If the z-order of self is 
changed, wsWinMoved will be or-ed into pArgs->options as an out parameter. 

If the receiver's parent has wsCaptureLayout on, wsLayoutDirty will be set on the receiver's parent. 

Returns 

stsWinParentBad if pArgs->parent is not objNull or a valid windowon the same window device 
as self 



300 PEN POINT API REFERENCE 

See Also 

Message 
Arguments 

Comments 

Part 3 / Windows and Graphics 

stsWinHasParent if self already has a parent and pArgs->parent is not either objNull or self's current 

parent 

msgWinInsertSibling 

msgWinInsertSibling 
Inserts or changes z-order of a window (relative to a sibling). 

Takes P _WIN_METRICS, returns STATUS. 

*define msgWinInsertSibling 

typedef struct 
{ 

WIN parent, 
child; 

RECT32 bounds; 
WIN DEV device; 
WIN FLAGS flags; 
TAG tag; 
WIN OPTIONS options; 
WIN_METRICS, * P_WIN_METRICS; 

MakeMsg(clsWin, 2) 

You send this message to the child that you want to insert or change z-order. This message is similar to 
msgWinlnsert, except pArgs->parent should be the intended sibling of the receiver. 

In parameters are: 

pArgs->parent 
pArgs'->options 

= receiver's new sibling 
= either wsPosTop or wsPosBottomi 

cIsWin will insert self as a sibling of the specified sibling. If pArgs->options has wsPosTop on, self will 
be inserted as in front of pArgs->parent; if wsPosBottom is on, self will be inserted behind 

pArgs-> parent. 

If pArgs->parent is already self's sibling, clsWin will change the z-order of self according to 
pArgs->options. If pArgs->options has wsPosTop on, self will be altered in z-space to be in front of 
pArgs->parent; if wsPosBottom is on, self will be altered to be behind pArgs->parent. If the z-order of 
selfis changed, wsWinMoved will be or-ed into pArgs->options as an out parameter. 

If the receiver's parent has wsCaptureLayout on, wsLayoutDirty will be set on the receiver's parent. 

Returns 

stsWinParentBad if pArgs->parent is not a valid windowon the same window device as self 

stsWinHasParent if self already has a parent and pArgs->parent isnot a sibling of self 

msgWinlnsert 

msgWinExtract 
Extracts a window from its parent. 

Takes P _WIN_METRICS or pNull, returns STATUS. 

*define msgWinExtract MakeMsg(clsWin, 3) 

If a P _WIN_METRICS is passed instead of pNull the same information returned by msgWinGetMetrics 
is returned in the WIN_METRICS structure. This will include the parent field BEFORE the extract is 
performed. If the window is already extracted, sts WinParentBad is returned, and any passed 
WIN_METRICS field is unmodified. 

If the receiver's parent has wsCaptureLayout on, wsLayoutDirty will be set on the receiver's parent. 



MessCige 

Arguments 

WIN.H 301 

Messages Sent to a Window 

msgWinDelta 
Moves and/or resizes a window. pArgs->bounds should be the newly desired bounds (size AND 
position). 

Takes P _WIN_METRICS, returns STATUS. 

fdefine msgWinDelta 

typedef struct 
{ 

WIN 

RECT32 
WIN DEV 
WIN FLAGS 
TAG 
WIN OPTIONS 
WIN_METRICS, 

parent, 
child; 
bounds; 
device; 
flags; 
tag; 
options; 
* P_WIN_METRICS; 

MakeMsg(clsWin, 4) 

If the receiver is involved in a layout episode (msgWinLayout is being processed in the receiver's 
window tree), the new bounds will be remembered for use at the end of the layout episode. If the new 
bounds has a new width or height, and a cached desired size is being remembered for the receiver, the 
desired size will be discarded if either of the following is true: 

• the new bounds has a new width and the receiver has wsHeightFrom Width on or does not have 
wsShrinkWrapWidth on 

• the new bounds has a new height and the receiver has wsWidthFromHeight on or does not have 
wsShrinkWrapHeight 

If the receiver is involved in a layout episode this is all that is done and stsOK is returned. 

If the receiver's parent has wsCaptureGeometry on, the parent will be sent msgWinDeltaOK. If the 
parent responds with anything other than stsOK, that status will be returned and nothing else is done. 
Otherwise, the (possibly modified) bounds returned by the parent will be used. If the parent modified 
the proposed child origin, wsParentMoved will be or-ed into pArgs->options as an out parameter. If the 
parent modified the proposed child size, wsParentSized will be or-ed into pArgs->options as an out 
parameter. 

If the receiver is visible and paintable (wsVisible and wsPaintable are on for the receiver and all of its 
ancestors), valid portions of the receiver's window may be copied to their new location to avoid damage 
and repaint of those portions. 

If the receiver has any of the grow bits on (wsGrowBottom/Top/Left/Right), the appropriate grow 
semantics will be applied to determine how to move the receiver's children and what portions of the 
receiver's window to damage for subsequent repaint. 

If pArgs->bounds is a new bounds and the receiver's parent has wsCaptureLayout on, wsLayoutDirty 
will be set on the receiver's parent. 

If pArgs->bounds.size is a new size and the receiver has wsSendLayout on, wsLayoutDirty will be set on 
the receiver. 

Subclasses that want to know when their position or size has changed should not expect that 
msgWinDelta is the only way for this to happen. If you need to know this information, you should turn 
on wsSendGeometry and catch msgWinMoved or msgWinSized. clsWin may change a window's 
bounds without sending msgWinDelta to the window. 



302 PENPOINT API REFERENCE 

Message 
Arguments 

Comments 

Part 3 I Windows and Graphics 

msgWinLayout 
Tells a window sub-tree to layout. 

Takes P _WIN_METRICS, returns STATUS. 

idefine msgWinLayout MakeMsg(clsWin, 41) 

typedef struct 
( 

WIN 

RECT32 
WIN DEV 
WIN FLAGS 
TAG 
WIN OPTIONS 
WIN_METRICS, 

parent, 
child; 
bounds; 
device; 
flags; 
tag; 
options; 
* P_WIN_METRICS; 

You should send msgWinLayout to a window after you have altered the window in such a way that its 
bounds or its descendants bounds must be recomputed. 

For example, if you create an instance of clsTableLayout (a subclass that lays out its children in rows and 
columns) and insert children into it, you must send msgWinLayout to the table layout window to force 
it to "layout" itself and its children. 

After msgWinLayout has been sent, every window in the receiver's tree will be positioned and sized as 
required. You can then use msgWinlnsert to insert the root of the tree on the display and allow the 
windows to paint. 

In parameters: 

bounds 

options 

= new final bounds for receiver if wsLayoutResize is not 
on in pArgs->options 

= wsLayoutDefault, 0, or any combination of wsLayoutResize, 
wsLayoutMinPaint 

Subclasses must not catch msgWinLayout. clsWin will respond by beginning a "layout episode" during 

which the windows in the receiver's tree will be layed out. 

The algorithm for a layout episode is as follows: 

for the receiver and each of its descendants 
If the window has wsLayoutDirty on 

If the bounds of the window have been fixed by a previous 
msgWinDelta during the layout episode 

send the window msgWinLayoutSelf with the following 
WIN_METRICS parameters: 

bounds.size = current bounds.size; 
options = 0; 

Otherwise, 
send the window msgWinLayoutSelf with the following 
WIN_METRICS parameters: 

options = wsLayoutResize; 

copy back WIN_METRICS.bounds.size as the new size for the 
window. 

If the window's parent has wsLayoutDirty on, switch to the 
window's parent and continue down the tree from there. 

After the entire tree has been traversed, traverse the tree again and 
process wsCaptureGeometry and wsSendGeometry requests as follows: 



Message 
ArgttlTlcnts 

WIN.H 303 
Messages Sent to a Window 

For each window 
If the origin or size has changed 

If the window's parent has wsCaptureGeometry on 
send msgWinDeltaOK to the window's parent; 

If the window has wsSendGeometry on 
send msgWinMoved and/or msgWinSized to the window. 

After the geometry notifications have been done, apply all of the new 
bounds for each window in the tree as in msgWinDelta. 

If wsLayoutResize is NOT set in pArgs->options, then you must set pArgs->bounds to the new 
rectangle that the receiver must fit into -- it will lay out accordingly; otherwise the receiver will lay out to 

its desired size. 

If wsLayoutMinPaint is not on, window damage will not be computed during the layout episode -- all 
of the windows in the window tree will be damaged and repaint after the layout episode. This will result 
in faster layout, at the expense of some (possibly) unneccessary repaints. If wsLayoutMinPaint is on, the 
true damaged area will be computed. This may take longer, but will result in the minimal amount of 
repaint after the layout episode. 

In general this message should not be handled by subclasses. However, it results in the sending of 
msgWinLayoutSe1f, which does need to be handled by subclasses. 

Returns 

stsWinInfiniteLayout the layout episode does not appear to terminate 

msgWinLayoutSe1f 

msgWinLayoutSelf 
Tells a window to layout its children (sent during layout). 

Takes P_WIN_METRICS, returns STATUS. 

*define msgWinLayoutSelf 

typedef struct 
{ 

WIN parent, 
child; 

RECT32 bounds; 
WIN DEV device; 
WIN FLAGS flags; 
TAG tag; 
WIN OPTIONS options; 
WIN_METRICS, * P_WIN_METRICS; 

MakeMsg(clsWin, 42) 

This message is sent by clsWin during a layout episode. It can be handled by knowledgeable window 
classes. 

When sent, pArgs->bounds.size contains the present size. If pArgs->options is 0 then the window 
cannot change pArgs->bounds.size, it must layout its children, as best it can, within those bounds. If 
pArgs->option is wsLayoutResize then it may change pArgs->bounds.size to its desired size. 

After pArgs->bounds.size is determined, the window should msgWinDelta each child to its final 
position and size. 

In order to determine its desired size and layout, a window may need to send msgWinGetDesiredSize to 
some, or all, of its children first. 



304 PENPOINT API REFERENCE 

Messoge 
Ar~oment5 

Mes$oge 
Ar90ments 

Comments 

Part 3 I Windows and Graphics 

clsWin responds to msgWinLayoutSelfby doing nothing and returning the current window size in 

pArgs->bounds.size if wsLayoutResize is on in pArgs->options. 

msgWinLayout 

msgWinGetDesiredSize 
Gets the desired size of a window (sent during layout). 

Takes P _WIN_METRICS, returns STATUS. 

tdefine msgWinGetDesiredSize 

typedef struct 
{ 

WIN 

RECT32 

parent, 
child; 
bounds; 

WIN DEV device; 
WIN FLAGS flags; 
TAG tag; 
WIN OPTIONS options; 
WIN_METRICS, * P_WIN_METRICS; 

MakeMsg(clsWin, 

This message should not be handled by a subclass. 

43) 

If the receiver is not in a layout episode, dsWin responds by returning the receiver's current bounds. 

Otherwise, if the desired size has already been computed (cached) for the receiver, that value will be 

returned. 

Otherwise, msgWinLayoutSelf will be self-sent with the following WIN_METRICS parameters: 

options = wsLayoutResize; 

Subclasses should catch msgWinLayoutSelf, layout to their desired size and return the desired size in 
WIN_METRICS. bounds. size. The computed desired size will be remembered in the window's cache for 

future use and will be passed back in pArgs->bounds.size. 

msgWinLayout 

msgWinGetBaseline 
Gets the desired x,y alignment of a window. 

Takes P_WIN_METRICS, returns STATUS. 

tdefine msgWinGetBaseline 
tdefine w~NoXBaseline ((U16)flagO) 
tdefine wsNoYBaseline ((U16)flagl) 

typedef struct 
{ 

WIN 

RECT32 
WIN DEV 
WIN FLAGS 
TAG 
WIN OPTIONS 
WIN_METRICS, 

parent, 
child; 
bounds; 
device; 
flags; 
tag; 
options; 
* P_WIN_METRICS; 

MakeMsg(clsWin, 46) 

Subclasses can set pArgs->bounds.origin to reflect the window's desired baseline position. clsWin will set 
both x and y to 0,0. 



C<>mments 

WIN.H 305 
Messages Sent to a Window 

pArgs->bounds.size should contain the size of the window. This is useful for windows whose alignment 
is a function of window size (like centered). 

If the receiver does not have either an x or y baseline, wsNoXBaseline and/or wsNoYBaseline can be 

or-ed into pArgs->options as an out parameter. 

clsWin will always set pArgs->options to wsNoXBaseline I wsNoYBaseline (i.e. the default is the 
window has no x or y baseline). 

msgWinSetLayoutDirty 
Turns wsLayoutDirty bit on or off, returns previous value. 

Takes BOOLEAN, returns BOOLEAN. 

fdefine msgWinSetLayoutDirty MakeMsg(clsWin, 44) 

If the window has a cached desired size, and wsLayoutDirty comes on, the desired size will be discarded. 

msgWinSetLayoutDirtyRecursive 
Turns wsLayoutDirty bit on for every window in subtree. 

Takes BOOLEAN, returns nothing. 

fdefine msgWinSetLayoutDirtyRecursive 

msgWinSend 
Sends a message up a window ancestry chain. 

Takes P _WIN_SEND, returns STATUS. 

fdefine msgWinSend 

Enum16 (WIN_SEND_FLAGS) 
{ wsSendDefault 

MakeMsg(clsWin, 

MakeMsg(clsWin, 

45) 

36) 

wsSendlntraProcess 
}; 

0, 
flagO, II stop at process transition 

typedef struct 
{ 

U32 lenSend; 

WIN SEND FLAGS flags; 
MESSAGE msg; 
P UNKNOWN data [1] ; 
II clients can put 
II more data here 
II if needed 
WIN_SEND, * P_WIN_SEND; 

II length of message, 
II SizeOf(WIN_SEND) minimum 
II 
II the "message" 
II an argument to the message 

The receiver may reply to the message or forward the message up the window parent chain. clsWin will 
forward the message to the parent using ObjectSendU pdate. If the message reaches the root window 

stsMessageIgnored is returned. If the wsSendlntraProcess flag is true the message will not be 

propagated past a process transition (based on the owner of the window object); in this case 
stsMessageIgnored may also be returned. 

lenS end must be at least SizeOf(WIN_SEND) but may be larger to move more data to a window owned 

by another process. A single unit of data, data[Ol is defined in WIN_SEND as a convenience. The message 

a window receives when msgWinSend is forwarded is msgWinSend, NOT msg. The field msg is 
provided so the receiving client can properly interpret the purpose of the msgWinSend. 



306 PEN POINT API REFERENCE 

M6S$@96 
Ar~lJmenf$ 

M6S$@~e 

ArglJments 

Me$S@g6 
Ar9umen1S 

Part 3 / Windows and Graphics 

msgWinGetMetrics 
Gets full window metrics. 

Takes P_WIN_METRICS, returns SfATUS. 

#define msgWinGetMetrics 

typedef struct 
{ 

WIN 

RECT32 
WIN DEV 
WIN FLAGS 

parent, 
child; 
bounds; 
device; 
flags; 

TAG tag; 
WIN OPTIONS options; 
WIN_METRICS, * P_WIN_METRICS; 

MakeMsg(clsWin, 5) 

pArgs->parent passes back the receiver's parent pArgs->child passes back self pArgs->bounds passes back 

size and parent relative position pArgs->device passes back self's device pArgs->flags passes back self's 

window and input flags pArgs->tag passes back selfs tag 

msgWinGetFlags 
Like msgWinGetMetrics but passes back flags only. 

Takes P _WIN_METRICS, returns SfATUS. 

#define msgWinGetFlags 

typedef struct 
{ 

WIN 

RECT32 

parent, 
child; 
bounds; 

WIN DEV device; 
WIN FLAGS flags; 
TAG tag; 
WIN OPTIONS options; 
WIN_METRICS, * P_WIN_METRICS; 

MakeMsg(clsWin, 

pArgs->flags passes back self's window and input flags. 

msgWinSetFlags 
Sets the window flags. 

Takes P_WIN_METRICS, returns SfATUS. 

#define msgWinSetFlags 

typedef struct 
{ 

WIN 

RECT32 
WIN DEV 
WIN FLAGS 

parent, 
child; 
bounds; 
device; 
flags; 

TAG tag; 
WIN OPTIONS options; 
WIN_METRICS, * P_WIN_METRICS; 

MakeMsg(clsWin, 

pArgs->flags should be set to the new window and input flags. 

6) 

7) 



Message 
Arguments 

Messoge 
ArglJments 

WIN.H 307 
Messages Sent to a Window 

If wsVisible is changed and the receiver's parent has wsCaptureLayout on, wsLayoutDirty will be set on 
the receiver's parent. 

If the new flags result in a new value for WinShrinkWrapO (e.g. wsShrinkWrapWidth changes) and the 
receiver has wsSendLayout on, wsLayoutDirty will be set on the receiver. 

msgWinGetTag 
Like msgWinGetMetrics but passes back tag only. 

Takes P _WIN_METRICS, returns stsOK. 

#define msgWinGetTag 

typedef struct 
{ 

WIN parent, 
child; 

RECT32 bounds; 
WIN DEV device; 
WIN FLAGS flags; 
TAG tag; 
WIN OPTIONS options; 
WIN_METRICS, * P_WIN_METRICS; 

pArgs->tag passes back self's tag. 

msgWinSetTag 
Sets the window tag. 

Takes P _WIN_METRICS, returns STATUS. 

#define msgWinSetTag 

typedef struct 
{ 

WIN 

RECT32 
WIN DEV 
WIN FLAGS 
TAG 
WIN OPTIONS 
WIN_METRICS, 

parent, 
child; 
bounds; 
device; 
flags; 
tag; 
options; 
* P_WIN_METRICS; 

MakeMsg(clsWin, 

MakeMsg(clsWin, 

pArgs->tag should be set to the new window tag. 

msgWinIs Visible 
Returns stsOK if the receiver and all its ancestors have wsVisible on. 

Takes nothing, returns STATUS. 

#define msgWinIsVisible MakeMsg(clsWin, 

37) 

38) 

40) 

clsWin will traverse the parent chain of the receiver until the parent is objNull or the root window of 
the receiver's device. If the receiver or any of its ancestors have wsVisible off in their window flags, 

stsFailed is returned. Otherwise, if the final ancestor is the root window on the receiver's device, stsOK 

is returned. 



308 PENPOINT API REFERENCE 

Me$$©~e 

Arguments 

Message 
Arguments 

Part 3 I Windows and Graphics 

msgWinIsDescendant 
Checks if pArgs->child is a descendant of the receiver. 

Takes P _WIN_METRICS, returns STATUS. 

tdefine msgWinIsDescendant 

typedef struct 
{ 

WIN 

RECT32 

parent, 
child; 
bounds; 

WIN DEV device; 
WIN FLAGS flags; 
TAG tag; 
WIN OPTIONS options; 
WIN_METRICS, * P_WIN_METRICS; 

MakeMsg(clsWin, 59) 

In parameters child: child to look for options: 0 for direct children, wsEnumRecursive for 
recursive or-in wsEnumSelf to include self in the search 

dsWin will check the receiver's children and return stsWinIsChild if pArgs->child is one of them. 

If pArgs->options has wsEnumRecursive on, the search will continue down the window tree until 
pArgs->child is found or all of the receiver's descendants have been examined. If no match is found, 
stsN oMatch is returned. 

If pArgs->child is self and wsEnumSelfis on in pArgs->options, stsWmIsChild is returned; otherwise 
stsN oMatch is returned. 

Returns Value 

stsWinIsChild if pArgs-> child is self or a direct child 

stsWinIsDescendant if pArgs->child is a descendant 

stsNoMatch if pArgs->child is not a descendant 

msgWinGetPopup 
Gets the popup window. 

Takes P_WIN_METRICS, returns stsOK. 

tdefine msgWinGetPopup 

typedef struct 
{ 

WIN 

RECT32 
WIN DEV 
WIN FLAGS 

parent, 
child; 
bounds; 
device; 
flags; 

TAG tag; 
WIN OPTIONS options; 
WIN_METRICS, * P_WIN_METRICS; 

pArgs->child passes back self's popup window. 

MakeMsg(clsWin, 53) 

The popup window is traversed during msgWinFindTag only. See msgWinFindTag for more details. 



Message 
ArguI11ents 

WIN.H 309 
Messages Sent to a Window 

msgWinSetPopup 
Sets a popup window. 

Takes P _WIN_METRICS, returns STATUS. 

#define msgWinSetPopup 

typedef struct 
{ 

WIN parent, 
child; 

RECT32 bounds; 
WIN DEV device; 
WIN FLAGS flags; 
TAG tag; 
WIN OPTIONS options; 
WIN_METRICS, * P_WIN_METRICS; 

MakeMsg(clsWin, 

pArgs->child should be set to the popup window. 

54) 

The popup window is traversed during msgWinFindTag only. See msgWinFindTag for more details. 

One example of popup window use is in clsMenuButton. A menu button will set its popup window to 
be its menu. This allows you to use msgWinFindTag on a menu bar and find a menu button in one of 
the popup menus. 

msgWinFindAncestorTag 
Searches for a match on argument tag. Returns match or objNull. 

Takes U32, returns OBJECT. 

#define msgWinFindAncestorTag MakeMsg(clsWin, 49) 

The search is up the ancestor chain; the first match found is returned. If no match is found, objN ull is 
returned. 

msgWinFindfag 
Searches for a match on argument tag. Returns match or objNull. 

Takes U32, returns OBJECT. 

#define msgWinFindTag MakeMsg(clsWin, 39) 

The search is breadth first; but, it starts with the first child of the window, not the window itself. The 
first match found is returned. If no match is found, objN ull is returned. Trees rooted at popup windows 
(set with msgWinSetPopup) are traversed too. The traversal order is siblings first, then children, then 
popups. 

msgWinSetVisible 
Turns window visibility bit on or off, returns previous value. 

Takes BOOLEAN, returns BOOLEAN. 

#define msgWinSetVisible MakeMsg(clsWin, 8) 

If visibility is changed and the receiver's parent has wsCaptureLayout on, wsLayoutDirty will be set on 
the receiver's parent. 



310 PENPOINT API REFERENCE 
Part 3 / Windows and Graphics 

msgWinSetPaintable 
Turns window paintability bit on or off, returns previous value. 

Takes BOOLEAN, returns BOOLEAN. 

#define msgWinSetPaintab!e MakeMsg(c!sWin, 9) 

msgWinBeginRepaint 
Sets up window for painting on "dirty" region. 

Takes P_RECT32 or pNull, returns STATUS. 

#define msgWinBeginRepaint MakeMsg(clsWin, 10) 

A BeginRepaint/EndRepaint pair bracket an update episode for a window. They should be sent ONLY 
in response to the receipt of msgWinRepaint. If pArgs is not pNull a rectangle describing the bounds of 
the dirty region is passed back. 

msgWinEndRepaint 
Tells window system that repainting has ended for this window. 

Takes nothing, returns STATUS. 

#define msgWinEndRepaint MakeMsg(c!sWin, 11) 

msgWinBeginPaint 
Sets up window for painting on its visible region. 

Takes P_RECT32 or pNull, returns STATUS. 

#define msgWinBeginPaint MakeMsg(c!sWin, 12) 

A BeginPaint/EndPaint pair can be used to paint on a window at anytime, even if it is not dirty. If pArgs 

is not pNull a rectangle describing the bounds of the visible region is passed back. 

msgWinEndPaint 
Tells window system that painting has ended for this window. 

Takes nothing, returns STATUS. 

#define msgWinEndPaint 

msgWinDirtyRect 
Marks all or part of a window dirty. 

Takes P _RECT32 or pNull, returns STATUS. 

#define msgWinDirtyRect 

MakeMsg(clsWin, 13) 

MakeMsg(c!sWin, 14) 

If pNull is passed the entire window is marked dirty. If the dirty part is visible, the window will 
eventually receive msgWinRepaint as a side effect of this message. 



Comments 

Comments 

Comments 

WIN.H 311 
Messages Sent to a Window 

msgWinUpdate 
Forces a window to repaint now, provided that it needs repainting. 

Takes nothing, returns STATUS. 

fdefine msgWinUpdate MakeMsg(clsWin, 35) 

The window and all its descendants that need painting are sent msgWinRepaint. However, only 
windows owned by the current subtask are processed. 

msgWinCleanRect 
Marks all or part of a window clean. 

Takes P_RECT32 or pNull, returns STATUS. 

fdefine msgWinCleanRect MakeMsg(clsWin, 15) 

If pNull is passed the entire window is marked clean. In general it is not a good idea to mark a window 
clean. Window activity is asynchronous and application software has no way of knowing if the window 
is really clean. 

msgWinCopyRect 
Copies pixels within a window. 

Takes P_W1N_COPY_RECT, returns STATUS. 

fdefine msgWinCopyRect 

Enum16 (WIN_COPY_FLAGS) 
{ wsCopyNormal 0, 

} i 

wsPlanePen flagO, 
wsPlaneMask flag1, 
wsSrcNotDirty flag2, 
wsDstNotDirty flag3, 
wsChildrenStay = flag4, 
wsCopyRelative = flagS, 

typedef struct 
{ 

RECT32 srcRecti 
XY32 XYi 

WIN COpy FLAGS flagsi 
U16 planeMaski 

MakeMsg(clsWin, 16) 

II normal copy of normal planes 
II do pen plane(s) too 
II use planeMask 
II don't mark source dirty 
II don't mark dirty dst pixels dirty 

II xy is a delta on srcRect.origin 

II rectangle in LWC 
II new location in LWC 

WIN_COPY_RECT, * P_WIN_COPY_RECTi 

In general, pixels which are dirty, invisble, or just off the edge of the window, are not copied. Rather, at 
the destination it is recognized that they did not get copied, and they are marked dirty instead. Also, it is 
assumed that pixels at the source need to be repainted. (This behavior is controlled by the two flags 
wsSrcNotDirty and wsDstNotDirty). 

The intent of this message is that it be used as an accelerator; to move potentially good pixels to a new 
location. It should be sent OUTSIDE of an update episode. Then, areas that require repainting will be 
marked dirty and handled by the next update episode. 

If, by mistake, this message is sent inside an update episode it will probably not copy any pixels, because 
it will assume that all the pixels that are currently being updated are dirty. 



312 PEN POINT API REFERENCE 

Message 
Arguments 

Part 3 / Windows and Graphics 

The use of wsCopyNormal is recommended to copy the normal planes and skip the pen plane(s). More 
precise control over which planes are copied is available with the use of flags wsCopyNormal, 
wsPlanePen and wsPlaneMask (in conjunction with the planeMask field). 

If wsChildrenStay is not in in pArgs->flags and the receiver has children in the area being copied, the 
children will be moved also. Note that even if the receiver has wsCaptureGeometry on, the receiver will 
not be sent msgWinDeltaOK when the children are moved. However, each child that has 
wsSendGeometry on and is moved will be sent msgWinMoved. 

msgWinTransformBounds 
Transforms bounds from receiver's to another window's LWC. 

Takes P_WIN_METRICS, returns STATUS. 

*define msgWinTransformBounds 

typedef struct 
{ 

WIN 

RECT32 
WIN DEV 
WIN FLAGS 

parent, 
child; 
bounds; 
device; 
flags; 

TAG tag; 
WIN OPTIONS options; 
WIN_METRICS, * P_WIN_METRICS; 

MakeMsg(clsWin, 18) 

Set the pArgs->parent to a window or use objNull for the receiver's actual parent. pArgs->bounds in the 
receiver's LWC are transformed into the equivalent bounds in the parent's LWC. 

msgWinEnum 
Enumerate a window's children. 

Takes P _ WIN_ENUM, returns STATUS. 

*define msgWinEnum 

Enum16(WIN ENUM FLAGS) 
{ wsEnumChIldren 

wsEnumSelf 
wsEnumRecursive 
wsEnumFlags 
wsEnumBreadthFirst 
wsEnumSendFile 

wsEnumMetrics 
} ; 

typedef struct 
{ 

0, 
flagO, 
flag1, 
flag2, 
flag3, 
flag4, 

flagS 

U16 max, 
count; 

P WIN 
P WIN FLAGS 

U16 

pWin; 
pFlags; 

next; 

WIN ENUM_FLAGS flags; 
WIN_ENUM, * P_WIN_ENUM; 

MakeMsg(clsWin, 

II enum children only 
II enum self too 

33) 

II enum children of children ... 
II return flags too 
II 
II enum only windows with 
II wsSendFile == TRUE 
II return WIN_METRICS 

II in = size of pWin[] and pFlags[] arrays 
II in = * to return in arrays 
II if count' > max then memory may be allocated 
II out = * of valid entries in arrays 

II in = ptr to arrays 
II out = if memory was allocated 
II client should free the memory 
II in = 0 to start at beginning 
II OR previous out value to pick up 
II where we left off 
II in = see options 



Comments 

WIN.H 313 
Messages Sent to a Window 

Here is some sample code for enumerating the direct children of a window: 

WIN_ENUM e; 
WIN w[10); 
U16 i; 
e.max 
e.count 
e.pWin 
e.flags 
e.next 

= 10; II e.pWin is an array of 10 WINs 
= maxU16; 
= w; 

II" allocate as much storage as needed 
II put windows in w array 

= wsEnumChildren; 
= 0; 

II return only direct children 
II start from the first child 

s = ObjectCall(msgWinEnum,parent,&e); 
II stsEndOfData means we got them all 
if (s == stsEndOfData) 

s = stsOK; 
II e.count is the actual number of children 
for (i = 0; i < e.count; i++) { 

child = e.pWin[i); 
II put code that does something with 
II child here 

II free any allocated storage 
if (e.pWin != w) 

StsWarn(OSHeapBlockFree(e.pWin)); 

If you want to retrieve all of the window metrics for each window, turn on wsEnumMetrics in 
pArgs->flags and set pArgs->pWin to an array of WIN_METRICS structs. 

Returns 

stsEndOfData if all of the descendants have been returned 

WinEachChild 

WinEachChild 
Helper macro for enumerating the direct children of a window 

Returns nothing. 

fdefine WinEachChild(parent, child, s) \ 
{ \ 

WIN_ENUM _e; \ 
WIN _w[10); \ 
U16 _i; \ 

\ 
e.max = 10; \ 
e.count = maxU16; \ 

_e.pWin = _Wi \ 

_e. flags = wsEnumChildren; \ 
e.next = 0; \ 

\ 
s = ObjectCall(msgWinEnum,parent,&~e); \ 

\ 
if (s == stsEndOfData) \ 

s = stsOK; \ 
\ 

for (_i = 0; _i < _e.count; _i++) \ 
{ \ 

child = e.pWin[ i); 
II put code that-does something with 
II child here 

You can use WinEachChild to retrieve the direct children of a window. 

WinEndEachChild 



314 PENPOINT API REFERENCE 
Part 3 / Windows and Graphics 

WinEndEachChild 
Ending helper macro for most common window enumeration idiom. 

Returns nothing. 

#define WinEndEachChild 
} 1* for *1 
if (_e.pWin != (P_WIN)_w) 

OSHeapBlockFree( e.pWin)i 
} II end scope -

WinEachChild and WinEndEachChild 

\ 
\ 
\ 
\ 

Use WinEachChild(parent,child,status) to start a for loop enumeration of the children of parent. The 
variable child will be set for each child. Close the enumeration with WinEndEachChild. Here is an 
example; notice that semicolons are NOT used. 

WinEachChild(p,c,s)/ / send a message to c / / break if necessary 
/ / s is set here 

The code placed between these macros becomes the body of a for loop. If it is necessary to exit the loop 
early, use a break statement, not a return or goto, so that WinEndEachChild is reached. If an error in 
the enum occurs, the for loop will not be executed, and the status value will be set. 

msgWinRepaint 
Tells a window to repaint itself 

Takes nothing, returns STATUS. Category: descendant responsibility. 

#define msgWinRepaint MakeMsg(clsWin, 21) 

Windows only receive this if the wsPaintable flag is true. This message is sent by the window system 
during an update episode. It should NOT be sent by the application. 

If you want a window to be updated immediately (synchronously), use msgWinUpdate. 

Upon receipt of this message, applications should NOT perform other windowing operations that are 
visually significant (msgWinDelta, msgWinlnsert, msgWinExtract, etc.). When this message is 
received; it is too late. The only thing that should happen is repainting. 

msgWinBeginRepaint 

msgWinOrphaned 
Tells a window its parent has been freed. 

Takes nothing, returns STATUS. Category: advisory message. 

#define msgWinOrphaned MakeMsg(clsWin, 22) 

Windows only receive this if the wsSendOrphaned flag is true. 

msgWinlnsertOK 
Informs a potential parent of a pending child insertion. 

Takes P_WIN_METRICS, returns STATUS. Category: advisory message. 

#define msgWinlnsertOK MakeMsg(clsWin, 23) 



Messuge 
Arguments 

Comments 

Messuge 
Arguments 

Comments 

Mess(Jge 

Arguments 

Comments 

WIN.H 315 
Messages Sent to a Window 

typedef struct 
( 

WIN 

RECT32 
WIN DEV 
WIN FLAGS 

parent, 
child; 
bounds; 
device; 
flags; 

TAG tag; 
WIN OPTIONS options; 
WIN_METRICS, * P_WIN_METRICS; 

pArgs->child is the window that is being inserted; pArgs->bounds is its bounds, which the parent can 
modifY. If receiver does not return stsOK the insertion will be denied. 

Windows only receive this if wsCaptureGeometry in flags is true. 

msgWinExtractOK 
Informs parent of a pending child extraction. 

Takes P_WIN_METRICS, returns STATUS. Category: advisory message. 

idefine msgWinExtractOK 

typedef struct 
{ 

WIN 

RECT32 
WIN DEV 
WIN FLAGS 
TAG 
WIN OPTIONS 
WIN_METRICS, 

parent, 
child; 
bounds; 
device; 
flags; 
tag; 
options; 
* P_WIN_METRICS; 

MakeMsg(clsWin, 24) 

pArgs->child is the window that is being extracted. If receiver does not return stsOK the extraction will 
be denied. 

Windows only receive this if wsCaptureGeometry in flags is true. 

msgWinDeltaOK 
Informs parent of a pending <;.:hange in a child window's size or position. 

Takes P_WIN_METRICS, returns STATUS. Category: advisory message. 

idefine msgWinDeltaOK 

typedef struct 
( 

WIN 

RECT32 
WIN DEV 
WIN FLAGS 
TAG 
WIN OPTIONS 
WIN_METRICS, 

parent, 
child; 
bounds; 
device; 
flags; 
tag; 
options; 
* P_WIN_METRICS; 

MakeMsg(clsWin, 25) 

pArgs are the arguments to msgWinDelta. If receiver does not return stsOK the delta will be denied. 

Windows only receive this if wsCaptureGeometry in flags is true. 



316 PEN POINT API REFERENCE 

(©mments 

Part 3 / Windows and Graphics 

~sg~irUPree()1( 

Informs parent of the pending destruction of a child window. 

Takes WIN, returns STATUS. Category: advisory message. 

idefine msgWinFreeOK MakeMsg(clsWin, 

Windows only receive this if wsCaptureGeometry in flags is true. 

~sgWinlnserted 

Advises window that it has been inserted. 

Takes WIN, returns STATUS. Category: advisory message. 

#define msgWinInserted MakeMsg(clsWin, 

26) 

27) 

pArgs is the window that actually was inserted, it may be self or an ancestor. If it is an ancestor, the 

window is being inserted indirectly, as part of a sub-tree insertion. 

Windows only receive this if wsSendGeometry in flags is true. 

~sg~inJExtracted 

Advises window that it has been extracted. 

Takes WIN, returns STATUS. Category: advisory message. 

#define msgWinExtracted MakeMsg(clsWin, 28) 

pArgs is the window that actually was extracted, it may he self or an ancestor. If it is an ancestor, the 

window is being extracted indirectly, as part of a sub-tree extraction. 

Windows only receive this if wsSendGeometry in flags is true. 

~sg~in VisibilityChanged 
Advises window that its visibility may have changed. 

Takes WIN, returns STATUS. Category: advisory message. 

#define msgWinVisibilityChanged MakeMsg(clsWin, 60) 

pArgs is the window that actually was changed, it may be self or an ancestor. Ifit is an ancestor, the 

window is being made visible or invisible indirectly, as part of a sub-tree insertion or extraction. 

Note that if pArgs is an ancestor, the ancestor's visibility change may not have changed self's visibility. 

Use msgWinIsVisible to determine self's current visibility. 

Windows only receive this if wsSendGeometry in flags is true. 

msgWinIs Visible 

~sgWinMoved 

Advises window that it, or an ancestor, has moved. 

, Takes P _WIN_METRICS, returns STATUS. Category: advisory message. 

#define msgWinMoved MakeMsg(clsWin, 29) 



Message 
Arguments 

Comments 

Message 
Ar9uments 

Comments 

Comments 

WIN.H 3'7 
Messages Sent to a Window 

typedef struct 
{ 

WIN 

RECT32 
WIN DEV 
WIN FLAGS 
TAG 
WIN OPTIONS 
WIN_METRICS, 

parent, 
child; 
bounds; 
device; 
flags; 
tag; 
options; 
* P_WIN_METRICS; 

Windows only receive this if wsSendGeometry in flags is true. pArgs->bounds.origin is the previous 

position. pArgs->child is the window that actually moved, it may be self or an ancestor. If it is an 
ancestor, the window is being moved indirectly, as part of a sub-tree move. 

msgWinSized 
Advises window that it, or an ancestor, has changed size. 

Takes P _WIN_METRICS, returns SfATUS. Category: advisory message. 

tdefine msgWinSized 

typedef struct 
{ 

WIN 

RECT32 
WIN DEV 
WIN FLAGS 
TAG 
WIN OPTIONS 
WIN_METRICS, 

parent, 
child; 
bounds; 
device; 
flags; 
tag; 
options; 
* P_WIN_METRICS; 

MakeMsg(clsWin, 30) 

Windows only receive this if wsSendGeometry in flags is true. pArgs->bounds.size is the previous size. 
pArgs->child is the window that actually changed size, it may be self or an ancestor. If it is an ancestor, 

the window did not actually change size, the ancestor did. 

msgWinStartPage 
Advises window that it is on a printer, and printing is about to commence. 

Takes pNull, returns SfATUS. Category: advisory message. 

tdefine msgWinStartPage MakeMsg(clsWin, 48) 

clsWin does nothing and returns stsOK in response to this message. 

This message is sent before a page is about to be printed. The window may want to set a state variable 

used to change the way the window paints on a printer. 

msgWinSort 
Sorts a window's children into a back to front order determined by a client supplied comparison 

function. 

tdefine msgWinSort MakeMsg(clsWin, 52) 



318 PEN POINT API REFERENCE 

Comments 

Comments 

Comments 

Part 3 I Windows and Graphics 

typedef struct 
( 

) ; 

P_W I N_S ORT_P ROC pSortProc; 
P UNKNOWN pClientData; 

II In: comparison callback 
II In: parameter to callback 

BOOLEAN changed; II Out: did sort cause change in order 
WIN_SORT, *P_WIN_SORT; 

The client must create a function of the profile P _ WIN_SORT_PROC that takes two windows (A,B) and 
returns -1 if A < B, 0 if A == B, and +1 if A> B. The comparison will normally be based on information· 
retrieved from the windows (for instance, msgLabelGetString). 

msgWinGetEnv 
Gets the current window environment. 

#define msgWinGetEnv 

typedef struct WIN ENV 
( 

U8 scale; 
U16 sysFontId, 

userFontId; 
SIZE32 ppm; 
WIN_ENV, *P_WIN_ENV; 

typedef struct WIN_SAVE_ENV 
( 

MakeMsg(clsWin, 

II system font scale 
II system font 
II user font 
II device pixels per meter 

WIN ENV env; II environment being saved 
U32 spare1; 
U32 spare2; 
WIN_SAVE_ENV, *P_WIN_SAVE_ENV; 

typedef struct WIN_RESTORE_ENV 
( 

WIN ENV env; II the saved environment 
BOOLEAN scaleChanged, 

47) 

sysFontIdChanged, II these are true if the current 
userFontIdChanged, II environment has changed from 
ppmWChanged, II the saved environment. 
ppmHChanged; 

U32 spare1; 
U32 spare2; 
WIN_RESTORE_ENV, *P_WIN_RESTORE_ENV; 

The window environment is information filed with the root of each filed tree of windows. 

This message would not normally be used by application software. 

msgWinDumpTree 
In lieu of msgDump. Dumps a dense subset of information for the window and all it's children 

recursively. 

Takes pNull, returns SfATUS. 

#define msgWinDumpTree MakeMsg(clsWin, 51) 

Debug IDW 2 causes the input flags to be printed, otherwise the window flags are printed. 

This function may not work unless the debugging version of win.dll is being used. 



Message 
Arguments 

Comments 

tpsgWinHitDetect 
Uocates the window "under" a point. 

Takes P _WIN_METRICS, returns STATUS. 

tdefine msgWinHitDetect 

typedef struct 
{ 

WIN parent, 
child; 

RECT32 bounds; 
WIN DEV device; 
WIN FLAGS flags; 
TAG tag; 
WIN OPTIONS options; 
WIN_METRICS, * P_WIN_METRICS; 

WIN.H 319 
Messages from other classes 

MakeMsg(clsWin, 58) 

pArgs->bounds.origin is a point relative to the receiver. The window tree, starting with the root window, 
is searched for a window underneath this point, The result is returned in pArgs->child. 

If the search is NOT successful, pArgs->child will be objNull. 

Messages frolll other classes 

msgSave 
Causes an object to file itself in an object file. 

Takes P_OBJ_SAVE, returns STATUS. 

dsWin will save its instance data and file each direct child that has wsSendFile on. 

If pArgs->root is self, dsWin will file the window environment along with its instance data. The 
window environment is retrieved by self-sending msgWinGetEnv. If pArgs->pEnv is not pNull, the 
current environment info (WIN_SAVE_ENV) will be copied to the storage provided (pArgs->pEnv should 
either be pNull or a P_WIN_SAVE_ENV). Subclasses of dsWin can make use of pArgs->pEnv to look at 
the environment under which the window is being saved. The filed window environment will be used 
during msgRestore to adjust the window bounds and/or dirty the window layout if the restore 
environment is not the same as the saved environment. 

If wsFileNoBounds is on in selfs window style flags, the current bounds will not be filed. This will save 
space in the filed window. 

If selfs desired size has been computed (via msgWinGetDesiredSize during msgWinLayout 
processing), the desired size will be filed. 

For each child of self that has wsSendFile on, dsWin will do the following: 

If wsFileInline is on in the child's window style flags, the class of the 
child window will be filed, and then the child will be sent msgSave with 
the following OBJ_SAVE parameters: 

all fields as in *pArgs, 
objSave = pointer to current save environment 

This will file the child "inline" without the usual resource file object 
header. This will save storage, but the child will not have its own 
resId and can only be restored by restoring its parent. 



320 PENPOINT API REFERENCE 

See Also 

Comments 

Part 3 / Windows and Graphics 

If wsFileInline is not on in the child's window style flags, the child 
window will be filed by sending msgResPutObject to pArgs->file with the 
child's uid as pArgs. 

Returns 

stsWmNoEnv if pArgs->root != self and pArgs->pEnv is pNull 

msgRestore 

msgRestore 
Creates and restores an object from an object file. 

Takes P _OBJ_RESTORE, returns STATUS. 

clsWin will restore its instance data from pArgs->file. Each filed child window will also be restored. The 
window will be created on the window device returned from OSThis WinDevO. 

If the window environment was filed when the window was saved, the window environment will be 
restored and copied to pArgs->pEnv if it is not pNull (pArgs->pEnv must be either pNull or 
P _ WIN_RESTORE_ENV). The current window environment will be retrieved using msgWinGetEnv and 
compared to the filed window environment. 

If wsFileNoBounds is on in self's window style flags, the bounds will be set to (0, 0, 0, 0) and the 
window will be marked as layout-dirty (wsLayoutDirty will be or-ed into the window's style flags). 
Otherwise, the filed bounds will be restored and adjusted to compensate for differences in the 
save/restore-time device resolution and orientation. 

clsWin will or-in wsLayoutDirty into the window's style flags if any of the following are true (in this 
context "changed" means that the current window environment values do not match the window 
environment filed with the window tree): 

wsFileLayoutDirty is on in the window's style flagssystem font or system font scale has changeduser font 
has changedpixels-per-meter in x or y have changed 

Each child that was filed will be restored as follows: 

If wsFileInline was on in the child's window style flags, the child's 
class will be read in from pArgs->file and msgRestoreInstance will be 
sent to the classs with the following OBJ_RESTORE parameters: 

all fields as in *pArgs 
object = msgNewDefaults to clsObject 
object.key = pArgs->object.keYi 
object.cap = pArgs->object.capi 
object.heap = pArgs->object.heapi 

If wsFileInline was not on in the child's window style flags, the child's 
resId will be read in from pArgs->file and the child will be restored 
by sending msgResReadObject to pArgs->file with the following 
RES_READ_OBJECT parameters: 

mode 
objectNew 

= resReadObjectOncei 
= same as object in wsFileInline case above 

After all of the children have been restored, they will be inserted into the restored parent. Note that the 
wsCaptureGeometry and wsSendGeometry protocol is not used for these inserts (e.g. the parent will 
not be sent msgWinlnsertOK, even if the parent has wsCaptureGeometry on). 

msgSave 



WIN.H 321 
Messages Sent to a Window Device 

Messages Sen. '0 a Window Device 

Arguments 

Mess@ge 
AI"9uments 

AB a rule applications should not send these messages to theScreen. They would be used if the 

application creates image devices. 

msgNew 
Creates a windowing device. 

Takes P_WIN_DEV_NEW, returns STATUS. Category: class message. 

typedef struct 
{ 

U16 initialWindows; II default window slots to allocate 
WIN_DEV_NEW_ONLY, * P_WIN_DEV_NEW_ONLY; 

typedef struct 
{ 

OBJECT NEW object; 
WIN_DEV_NEW_ONLY winDev; 
WIN_DEV_NEW, * P_WIN_DEV_NEW, 
IMG_DEV_NEW, * P_IMG_DEV_NEW; 

msgNewDefaults 
Initializes the WIN_DEV_NEW structure to default values. 

Takes P _ WIN_DEV _NEW, returns STATUS. Category: class message. 

typedef struct 
{ 

OBJECT NEW object; 
WIN_DEV_NEW_ONLY winDev; 
WIN_DEV_NEW, * P_WIN_DEV_NEW, 

win.Dev.initialWindows = 100; 

msgWinDevGetRootWindow 
Passes back root window for receiver. 

Takes P_OBJECT, returns STATUS. 

fdefine msgWinDevGetRootWindow 

msgWinDevBindScreen 
Binds window device to a screen. 

Takes P_CHAR, returns STATUS. 

~define msgWinDevBindScreen 

msgWinDevBindPrinter 
Binds window device to an object of clsPrn. 

Takes OBJECT, returns STATUS. 

fdefine msgWinDevBindPrinter 

MakeMsg(clsWinDev,10) 

MakeMsg(clsWinDev, 6) 

MakeMsg(clsWinDev, 7) 



322 PENPOINT API REFERENCE 

(omments 

Part 3 I Windows and Graphics 

msgWmDevBindPixelmap 
Binds window device to a pixelmap. 

Takes P_WIN_DEV_PIXELMAP, returns SfATUS. 

fdefine msgWinDevBindPixelmap MakeMsg(clsWinDev,11) 

Note that you should not file the memory allocated by msgWinDevBindPixelmap, since the memory is 
device-dependant and you may be restored on a different screen device or system processor. 

msgWinDevSizePixelmap 
Computes the amount of memory needed for a single plane. 

Takes P_WIN_DEV_PIXELMAP, returns SfATUS. 

fdefine msgWinDevSizePixelmap 

typedef struct 
{ 

MakeMsg(clsWinDev, 12) 

OBJECT device; I I in = device to be "compatible" with 
SIZE32 size; II in = w,h of device to allocate 
U16 planeCount; II in = f planes to allocate 
SIZEOF planeSize; II out = amount of memory for one plane 
PP UNKNOWN pPlanes; II in = plane memory 
WIN_DEV_PIXELMAP, * P_WIN_DEV_PIXELMAP; 

msgWinDevSetOrientation 
Changes orientation of a window device. 

Takes PIX_DEV_ORIENT, returns SfATUS. 

fdefine msgWinDevSetOrientation 

Enum16 (PIX_DEV_ORIENT) 
{ 

} ; 

pdUL 
pdUR 
pdLR 
pdLL 
pdOrientLandscapeNormal 
pdOrientPortraitNormal 
pdOrientLandscapeReverse 
pdOrientPortraitReverse 

0, 
1, 
2, 
3, 

= pdLL, 
= pdUL, 
= pdUR, 
= pdLR 

msgPixDevGetMetrics 
Gets metrics of a pixelmap device. 

Takes P _PIX_DEV_METRICS, returns nothing. 

fdefine msgPixDevGetMetrics 

typedef struct 
{ 

SIZE32 

U16 
U16 
U16 
U16 
U16 
U16 

size, 
ppm; 
planes; 
planeMask; 
planeNormalCount; 
planeNormalMask; 
planePenCount; 
planePenMask; 

MakeMsg(clsWinDev, 8) 

II not supported on printers 
II not supported on printers 

MakeMsg(clsPixDev, 1) 

II size of device in DU4 
II pixel per meter in DU4 
II f of planes total 
II mask representing all planes 
II f of normal (not pen) planes 
II mask for the normal planes 
II f of pen planes 
II mask for the pen planes 



WIN.H 323 
Menages sent to a drawing context 

PIX DEV ORIENT 
P UNKNOWN 

orient; 
devPhysical, 
devLogical; 

U16 mode; 
OBJECT prn; 
PP UNKNOWN ppDryRunRgn; 
PIX_DEV_METRICS, * P_PIX_DEV_METRICS; 

msgWinDevPrintPage 
Repaints and outputs a page. 

Takes nothing, returns STATUS. 

idefine msgWinDevPrintPage 

II pdUL, pdLR, etc. 
II handles to physical and 
II'logical device drivers 
II private flags, see pix ... 
II printer (or objNull) 

MakeMsg(clsWinDev, 9) 

".. Messages sent to a drawing context 

msgDrwCtxSetWindow 
Binds a drawing context to a window, returns old window. 

Takes WIN, returns WIN. 

idefine msgDrwCtxSetWindow MakeMsg(clsDrwCtx, 3) 

msgDrwCtxGetWindow 
Returns the window to which a drawing context is bound. 

Takes nothing, returns WIN. 

idefine msgDrwCtxGetWindow 
iendif II WIN_INCLUDED 

MakeMsg(clsDrwCtx, 4) 





Part4/ 
Toolkit 





BORDER.M 

This file contains the API for clsBorder. 

clsBorder inherits from clsEmbeddedWin. 

clsBorder supports drawing borders, backgrounds and shadows. Support is also provided for resize, drag 
and top window management. 

iifndef BORDER INCLUDED 
idefine BORDER=INCLUDED 

iifndef WIN INCLUDED 
iinclude <win.h> 

iendif 
iifndef EWNEW INCLUDED 

iinclude <ewnew.h> 
iendif 
iifndef INPUT INCLUDED 

iinclude <input.h> 
iendif 

Common #defines and typedefs 
idefine hlpBorderResizeBottom 
idefine hlpBorderResizeCorner 
ide fine hlpBorderResizeRight 
typedef OBJECT BORDER; 

Edge Styles 
idefine bsEdgeNone 
idefine bsEdgeLeft 
idefine bsEdgeRight 
idefine bsEdgeTop 
idefine bsEdgeBottom 
II Borders on all edges 
idefine bsEdgeAII 

Join Styles 
idefine bsJoinSquare 
idefine bsJoinRound 
idefine bsJoinEllipse 
II 

Line Styles 
idefine bsLineSingle 
idefine bsLineDouble 
idefine bsLineMarquee 
idefine bsLineDashed 
idefine bsLineDoubleMarquee 
idefine bsLineDoubleDashed 
II 
II 
II 

MakeTag(clsBorder, 1) 
MakeTag(clsBorder, 2) 
MakeTag(clsBorder, 3) 

o 
flagO 
flagl 
flag2 
flag3 

II no borders 
II border on the left 
II border on the right 
II border on the top 
II border on the bottom 

(bsEdgeLeft I bsEdgeRight I \ 
bsEdgeTop I bsEdgeBottom) 

o II right-angle rectangle 
1 II round corner rectangle 
2 II ellipse instead of rectangle 
3 II unused (reserved) 

o II solid ink 
1 II ink-white-ink lines 
2 II flowing dashed lines 
3 II dashed lines 
4 II double flowing dashed lines 
5 II double dashed lines 
6 II unused (reserved) 

II unused (reserved) 
15 II unused (reserved) 



328 PENPOINT API REFERENCE 
Part 4 I UI Toolkit 

Edge and Background Colors 
tdefine bslnkTransparent 0 II no ink 
tdefine bslnkBlack 1 II black 
tdefine bslnkGray75 2 II 75% gray 
tdefine bslnkGray66 3 II 66% gray 
tdefine bslnkGray50 4 II 50% gray 
tdefine bslnkGray33 5 II 33% gray 
tdefine bslnkGray25 6 II 25% gray 
tdefine bslnkWhite 7 II white 
tdefine bslnkAsIs 8 II use appropriate dc value 
tdefine bSlnkRGB 9 II use custom RGB value 
tdefine bslnkBackground 10 II use the background ink 
II 11 II unused (reserved) 
II II unused (reserved) 
II 31 II unused (reserved) 

bsInkExclusive can be or' ed into any ink to indicate that the specified ink should only be used if the 
window exclusively paints its pixels. If the window is transparent or shares clipping with its parent, 
bsInkTransparent will be used (i.e. nothing will be painted). 

tdefine bSlnkExclusive flag4 

BorderInk extracts the base ink from a border ink 

tdefine Borderlnk(ink) ((ink) & OxF) 

Shadow Styles: drawn on the bottom and right 

Units 

tdefine bsShadowNone 
tdefine bsShadowThinGray 
tdefine bsShadowThickGray 
tdefine bsShadowThinBlack 
tdefine bsShadowThickBlack 
tdefine bsShadowThinWhite 
tdefine bsShadowThickWhite 
tdefine bsShadowCustom 
II 
II 
II 

tdefine bsUnitsLayout 
tdefine bsUnitsDevice 
tdefine bsUnitsTwips 
tdefine bSUnitsPoints 

tdefinebsUnitsRules 
tdefine bSUnitsLines 

tdefine bsUnitsMetric 
tdefine bsUnitsMil 
tdefine bsUnitsFitWindow 

tdefine bsUnitsFitWindowProper 

II 
II 
II 

0 II no shadow 
1 II one line gray 
2 II two line gray 
3 II one line black 
4 II two line black 
5 II one line white 
6 II two line white 
7 II use shadowThickness and shadowlnk 
8 II unused (reserved) 

II unused (reserved) 
15 II unused (reserved) 

o II values are in layout units 
1 II values are in device units 
2 II values are in twips 
BorderUnitsCustom(bsUnits20x, bsUnitsTwips) 

II values are in points = 20 x twips 
3 II values are in rules 
BorderUnitsCustom(bsUnits20x, bsUnitsRules) 

II values are in lines = 20 x rules 
4 II values are in .01 rom 
5 II values are in .001 inch 
6 II values not specified --

II compute to fit window 
7 II values not specified --

II compute to fit window w/proper 
II aspect ratio 

8 II unused (reserved) 
II unused (reserved) 

15 II unused (reserved) 



BORDER.H 329 
Common #defines and typedefs 

"" Units Multiplier 
These values can be used with BorderUnitsCustomO to produce new units e.g. 
BorderUnitsCustom(bsUnits20x, bsUnitsTwips) indicates units are 20 x twips 

fdefine bsUnitslx 0 II lx 
fdefine bsUnits20x 1 II 20x 
fdefine bsUnitslOOx 2 II lOOx 
fdefine bsUnitslOOOx 3 II lOOOx 
fdefine BorderUnitsCustom(mult, units) ( (mult « 4) 1 (units) ) 

macros to extract base units and multiplier values 

fdefine BorderUnits(units) 
fdefine BorderUnitsMult(units) 

Common Margin Values 
fdefine bsMarginNone 
fdefine bsMarginSmall 
fdefine bsMarginMedium 
fdefine bsMarginLarge 

Resize Handles 
fdefine bsResizeNone 
fdefine bsResizeCorner 
fdefine bsResizeBottom 
fdefine bsResizeRight 
fdefine bsResizeAll 

Drag Styles 
fdefine bsDragNone 
fdefine bsDragHoldDown 
fdefine bsDragDown 
fdefine bsDragMoveDown 

Top Styles 
fdefine bsTopNone 
fdefine bsTopUp 
fdefine bsTopDrag 
II 

Shadow Gap Styles 
fdefine bsGapNone 
fdefine bsGapWhite 
fdefine bsGapTransparent 
II 

Look Styles 
fdefine bsLookActive 
fdefine bsLooklnactive 
II 
II 

((units) & OxOF) 
((units) » 4) 

o II no inner margin 
1 II 1 unit 
2 II 2 units 
8 II 8 units 

o II no resize handles 
flagO II lower-right corner 
flagl II center-bottom 
flag2 II center-right 
(bsResizeCorner 1 bsResizeBottom 1\ 
bsResizeRight) 

o 
1 
2 
3 

o 
1 
2 
3 

o 
1 
2 
3 

o 
1 
2 
3 

II no drag 
II drag on penHoldDown 
II drag on penDown 
II drag on penMoveDown beyond range 

II never top the window 
II top on penUp 
II top after drag 
II unused (reserved) 

II no shadow gap 
II cleared to white 
II unpainted 
II unused (reserved) 

II usually black foreground color 
II usually gray66 foreground color 
II unused (reserved) 
II unused (reserved) 



330 PENPOINT API REFERENCE 
Part 4 / UI Toolkit 

Alter Styles for preview and selected 
tdefine bsAlterNone 
tdefine bsAlterBackground 
tdefine bsAlterBorders 

o 
1 
2 
3 

II don't alter anything 
II alter the background ink 
II alter the border ink 

II II unused (reserved) 
typedef struct BORDER_STYLE 

U16 edge 4, 
top 2, 
drag 2, 
resize 5, 
maskBorders 1, 
getDeltaWin 1, 
spare1 1; 

U16 leftMargin 8, 
rightMargin 8; 

U16 bottomMargin 8, 
topMargin 8; 

U16 borderlnk 6, 
backgroundlnk 6, 
previewAlter 2, 
selectedAlter 2; 

U16 marginlnk 6, 
marginUnits 6, 
preview 1, 
selected 1, 
look 2; 

U16 shadow 4, 
shadowGap 2, 
shadowThickness 8, 
spare4 2; 

U16 shadowlnk 6, 
lineStyle 4, 
spareS 6; 

U16 lineUnits 6, 
lineThickness 8, 
join 2; 

U16 propagateVisuals: 1, 
notifyVisuals 1, 
spare3 14; 

BORDER_STYLE, *P_BORDER_STYLE; 

Default BORDER_STYLE: 

edge = bsEdgeNone 

II edges to border 
II top style (e.g. bsTopUp) 
II drag style (e.g bsDragDown) 
II resize handles (e.g. bsResizeCornerI bsResizeBottom) 
II mask out edge, shadow, resize 
II use msgBorderProvideDeltaWin 
II unused (reserved) 
II margin in marginUnits 
I I " 
I I " 
II 
II edge line color 
II background fill color 
II what to alter when previewing 
II what to alter when selected 
II ink for margin area (not implemented) 
II units for left, right, bottom, top margins 
II true/false 
II true/false 
II active/inactive 
II type of shadow 
II type of shadow gap 
II custom shadow thickness, in lineUnits 
II unused (reserved) 
II custom shadow ink 
II edge line style (e.g. bsLineSingle) 
II unused (reserved) 
II units for lineThickness and shadowThickness 
II line thickness, in lineUnits 
II how edges join together 
II propagate changes in visuals to children 
II send msgBorderSetVisuals to observers 
II unused (reserved) 

join 
lineStyle 
marginUnits 
resize 
move 

= bsJoinSquare 
= bsLineSingle 
= bsUnitsLayout 
= bsResizeNone 
= bsDragNone 

top 
leftMargin 
rightMargin 
bottomMargin 
topMargin 
look 
preview 
selected 

= bsTopNone 
= bsMarginNone 
= bsMarginNone 
= bsMarginNone 
= bsMarginNone 
= bsLookActive 

propagateVisuals= 
notifyVisuals 
getDeltaWin 
maskBorders 

false 
false 
false 
false 
false 
false 

borderlnk 
backgroundlnk 
marginlnk 

= bslnkBlack 
= bslnkWhite 
= bslnkBackground 



Arguments 

Message 
Arguments 

BORDER.H 331 
Common #defines and typedefs 

shadow = bsShadowNone 
shadowGap = bsGapWhite 
shadowInk = bsInkBlack 
shadowThickness = 1 
lineUnits = bsUnitsLines 
lineThickness = 1 
previewAlter = bsAlterNone 
selectedAlter = bsAlterNone 

Input event flags returned in INPUT_EVENT. flags indicates event was used to movelresize 

fdefine evBorderTaken evFlagO 

Tags used by resize or drag tracks. These will be the tags in TRACK_METRICS of 

msg TrackProvideMetrics and msg TrackDone. 

fdefine tagBorderResize 
fdefine tagBorderDrag 

MakeTag(clsBorder, 4) 
MakeTag(clsBorder, 5) 

msgNew 
Creates a border window. 

Takes P _BORDER_NEW, returns STATUS. Category: class message. 

typedef struct BORDER_NEW_ONLY { 
BORDER_STYLE style; II overall style 
U32 sparel; II unused (reserved) 
U32 spare2; II unused (reserved) 

BORDER_NEW_ONLY, BORDER_METRICS, 
*P_BORDER_NEW_ONLY, *P_BORDER_METRICS; 

fdefine borderNewFields \ 
embeddedWinNewFields \ 
BORDER NEW ONLY border; 

typedef struct { 
borderNewFields 

} BORDER_NEW, *P_BORDER_NEW; 

If pArgs->border.style.maskBorders is true, style. resize is treated as though it is bsResizeNone, style.edge 

is treated as though it is bsEdgeNone, and style. shadow is treated as though it is bsShadowNone. 

If pArgs->style.resize is not bsResizeNone, pArgs->win.flags.input is altered to enable events needed for 

reslzmg. 

If pArgs-> style. drag is not bsDragNone, pArgs->win.flags.input is altered to enable events needed for 

draging. 

If pArgs-> style. top is not bsTopNone, pArgs->win.flags.input is altered to enable events needed for 

topping. 

msgNewDefaults 
Initializes the BORDER_NEW structure to default values. 

Takes P _BORDER_NEW, returns STATUS. Category: class message. 

typedef struct { 
borderNewFields 

} BORDER_NEW, *P_BORDER_NEW; 

Zeroes out pNew->border and sets ... 

pArgs->win.flags.style 1= wsSendFile; 



332 PENPOINT API REFERENCE 
Part 4 I UI Toolkit 

Message 
Arguments 

pArgs->border.style.shadowlnk 
pArgs->border.style.borderlnk 
pArgs->border.style.marginlnk 
pArgs->border.style.backgroundlnk 
pArgs->border.style.lineUnits 
pArgs->border.style.lineThickness 
pArgs->border. style. shadowThickness 
pArgs->border.style.shadowGap 

= bslnkBlack; 
= bslnkBlack; 
= bslnkBackground; 
= bslnkWhite; 
= bsUnitsLines; 
= 1; 
= 1; 
= bsGapWhite; 

pArgs->border.style.previewAlter 
pArgs->border.style.selectedAlter 

= bsAlterNone; 
= bsAlterNone; 

msgBorderGetStyle 
Passes back the current style values. 

Takes P_BORDER_STYLE, returns STATUS. 

fdefine msgBorderGetStyle 

typedef struct BORDER STYLE 
U16 edge 4, 

top 2, 
drag 2, 
resize 5, 
maskBorders 1, 
getDeltaWin 1, 
sparel 1; 

U16 leftMargin 8, 
rightMargin 8; 

U16 bottomMargin 8, 
topMargin 8; 

U16 borderlnk 6, 
backgroundlnk 6, 
previewAlter 2, 
selectedAlter 2; 

U16 marginlnk 6, 
marginUnits 6, 
preview 1, 
selected 1, 
look 2; 

U16 shadow 4, 
shadowGap 2, 
shadowThickness 8, 
spare4 2; 

U16 shadowlnk 6, 
lineStyle 4, 
spareS 6; 

U16 lineUnits 6, 
lineThickness 8, 
join 2; 

U16 propagateVisuals: 1, 
notifyVisuals 1, 
spare3 14; 

BORDER_STYLE, *P_BORDER_STYLE; 

msgBorderSetStyle 
Sets all of the style values. 

MakeMsg(clsBorder, 1) 

II edges to border 
II top style (e.g. bsTopUp) 
II drag style (e.g bsDragDown) 
II resize handles (e.g. bsResizeCornerI bsResizeBottom) 
II mask out edge, shadow, resize 
II use msgBorderProvideDeltaWin 
II unused (reserved) 
II margin in marginUnits 
II 
II 
II 
II edge line color 
II background fill color 
II what to alter when previewing 
II what to alter when selected 
II ink for margin area (not implemented) 
II units for left, right, bottom, top margins 
II true/false 
II true/false 
II active/inactive 
II type of shadow 
II type of shadow gap 
II custom shadow thickness, in lineUnits 
II unused (reserved) 
II custom shadow ink 
II edge line style (e.g. bsLineSingle) 
II unused (reserved) 
II units for lineThickness and shadowThickness 
II line thickness, in lineUnits 
II how edges join together 
II propagate changes in visuals to children 
II send msgBorderSetVisuals to observers 
II unused (reserved) 

Takes P _BORDER_STYLE, returns STATUS. 

fdefine msgBorderSetStyle MakeMsg(clsBorder, 2) 



Message 
Arguments 

BORDER.H 333 
Common #defines and typedefs 

typedef struct BORDER_STYLE { 
U16 edge 4, II edges to border 

top 2, II top style (e.g. bsTopUp) 
drag 2, II drag style (e.g bsDragDown) 
resize 5, II resize handles (e.g. bsResizeCornerlbsResizeBottom) 
maskBorders 1, II mask out edge, shadow, resize 
getDeltaWin 1, II use msgBorderProvideDeltaWin 
sparel 1; II unused (reserved) 

U16 leftMargin 8, II margin in marginUnits 
rightMargin 8; II 

U16 bottomMargin 8, II 
topMargin 8; I I " 

U16 borderInk 6, II edge line color 
backgroundInk 6, II background fill color 
previewAlter 2, II what to alter when previewing 
selectedAlter 2; II what to alter when selected 

U16 margin Ink 6, II ink for margin area (not implemented) 
marginUnits 6, II units for left, right, bottom, top margins 
preview 1, II truelfalse 
selected 1, II truelfalse 
look 2; II active/inactive 

U16 shadow 4, II type of shadow 
shadowGap 2, II type of shadow gap 
shadowThickness 8, II custom shadow thickness, in lineUnits 
spare4 2; II unused (reserved) 

U16 shadowInk 6, II custom shadow ink 
lineStyle 4, II edge line style (e.g. bsLineSingle) 
spare5 6; II unused (reserved) 

U16 lineUnits 6, II units for lineThickness and shadowThickness 
lineThickness 8, II line thickness, in lineUnits 
join 2; II how edges join together 

U16 propagateVisuals: 1, II propagate changes in visuals to children 
notifyVisuals 1, II send msgBorderSetVisuals to observers 
spare3 14; II unused (reserved) 

BORDER_STYLE, *P_BORDER_STYLE; 

Self-sends msgWinDirtyRect(pNull) if painting styles change. If only the edge painting style changes, 

self-sends msgWinDirtyRect with pArgs specifying the rectangle around each border. 

Self-sends msgWinSetLayoutDirty(true), if new style results in new layout. 

If style.propagateVisuals is true, and propagateVisuals or any of the visual styles (look, backgroundInk, 

preview Alter, selectedAlter, preview, or selected) change, msgBorderSetVisuals(pArgs) is sent to each 

child of self. 

If style. notify Visuals is true and notify Visuals or any of the visual styles change, msgNotifyObservers is 

self-sent with the following OBLNOTIFY_OBSERVERS parameters: 

msg = msgBorderSetVisuals; 

pArgs = pointer to new style struct; 

lenS end = SizeOf(BORDER_STYLE); 

msgBorderSetStyleNoDirty 
Sets all of the style values. 

Takes P_BORDER_STYLE, returns STATUS. 

fdefine msgBorderSetStyleNoDirty MakeMsg(clsBorder, 26) 



334 

Messoge 
AwglJmeflTs 

PENPOINT API REFERENCE 
Part 4 I UI Toolkit 

typedef struct BORDER_STYLE { 
U16 edge 4, 

top 2, 
drag 2, 
resize 5, 
maskBorders 1, 
getDeltaWin 1, 
spare1 1; 

U16 leftMargin 8, 
rightMargin 8; 

U16 bottornMargin 8, 
topMargin 8; 

U16 borderInk 6, 
backgroundInk 6, 
previewAlter 2, 
selectedAlter 2; 

U16 marginInk 6, 
marginUnits 6, 
preview 1, 
selected 1, 
look 2; 

U16 shadow 4, 
shadowGap 2, 
shadowThickness 8, 
spare4 2; 

U16 shadowInk 6, 
lineStyle 4, 
spareS 6; 

U16 lineUnits 6, 
lineThickness 8, 
join 2; 

U16 propagateVisuals: 1, 
notifY-Visuals 1, 
spare3 14; 

BORDER_STYLE, *P_BORDER_STYLE; 

II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 

edges to border 
top style (e.g. bsTopUp) 
drag styie (e.g bsDragDown) 
resize handles (e.g. bsResizeCornerI bsResizeBottom) 
mask out edge, shadow, resize 
use msgBorderProvideDeltaWin 
unused (reserved) 
margin in marginUnits 

edge line color 
background fill color 
what to alter when previewing 
what to alter when selected 
ink for margin area (not implemented) 
units for left, right, bottom, top margins 
true/false 
true/false 
active/inactive 
type of shadow 
type of shadow gap 
custom shadow thickness, in lineUnits 
unused (reserved) 
custom shadow ink 
edge line style (e.g. bsLineSingle) 
unused (reserved) 
units for lineThickness and shadowThickness 
line thickness, in lineUnits 
how edges join together 
propagate changes in visuals to children 
send msgBorderSetVisuals to observers 
unused (reserved) 

This message is the same as msgBorderSetStyle, except msgWinDirtyRect or msgWinSetLayoutDirty 

will not be self-sent, even if they new style parameters require repaint or relayout. 

msgBorderGetLook 
Passes back value of style.look. 

Takes P_UI6, returns STATUS. 

#define msgBorderGetLook 

msgBorderSetLook 

MakeMsg(clsBorder, 13) 

Sets style.look as in msgBorderSetStyle. 

Takes U16 (bsLook. .. ), returns STATUS. 

#define msgBorderSetLook MakeMsg(clsBorder, 12) 

msgBorderSetPreview 
Sets style. preview as in msgBorderSetStyle. 

Takes BOOLEAN, returns STATUS. 

#define msgBorderSetPreview MakeMsg(clsBorder, 8) 



BORDER.H 335 
Common #defines and typedefs 

msgBorderGetPreview 
Passes back value of style. preview. 

Takes P_BOOLEAN, returns STATUS. 

#define msgBorderGetPreview 

msgBorderSetSelected 

MakeMsg(clsBorder, 9) 

Sets style. selected as in msgBorderSetStyle. 

Takes BOOLEAN, returns STATUS. 

#define msgBorderSetSelected 

msgBorderGetSelected 
Passes back value of style.selected. 

Takes P _BOOLEAN, returns STATUS. 

#define msgBorderGetSelected 

MakeMsg(clsBorder, 16) 

MakeMsg(clsBorder, 17) 

msgBorderPropagate Visuals 
Propagates visuals to children. 

Takes nothing, returns STATUS. 

#define msgBorderPropagateVisuals MakeMsg(clsBorder, 15) 

Sends msgBorderSetVisuals(&style), where style is selfs current style, to each child. 

msgBorderSetDirty 
Sends msgBorderSetDirty(pArgs) to each child. 

Takes BOOLEAN, returns STATUS. 

#define msgBorderSetDirty MsgNoError(MakeMsg(clsBorder, 37)) 

clsBorder will pass this message along to each of its children. Child windows can alter their visuals to 

display a clean/dirty look. For example, clsControl will self-send msgControISetDirty(pArgs) when 

receiving this message. 

msgBorderGetDirty 
Passes back true if any child responds to msgBorderGetDirty with true; otherwise passes back false. 

Takes P_BOOLEAN, returns STATUS. 

#define msgBorderGetDirty MsgNoError (MakeMsg (clsBorder, 38)) 

clsBorder will pass this message along to each of its children. The first child that responds with true will 

result in an answer of true. If no children are dirty, or there are no children, false will be returned. 

This message can be used to check the overall dirty/clean visual state of a tree of border windows. 

clsControl will respond by passing back the value of visual dirty bit, style. dirty. 



336 PENPOINT API REFERENCE 
Part 4 / UI Toolkit 

msgBorderGetForegroundRGB 
Passes back foreground RGB to use given current visuals. 

Takes P _SYSDC_RGB, returns STATUS. 

fdefine msgBorderGetForegroundRGB MakeMsg(clsBorder, 27) 

Subclasses should use this message to determine the correct foreground color to use. For example, 
clsLabel will self-send msgBorderGetForegroundRGB in its response to msgWinRepaint to make sure 
and get the correct foreground color. 

msgBorderGetBackgroundRGB 
Passes back background RGB to use given current visuals. 

Takes P _SYSDC_RGB, returns STATUS. 

fdefine msgBorderGetBackgroundRGB MakeMsg(clsBorder, 28) 

msgBorderlnkToRGB 
Maps ink value (bslnkGray66, etc.) to RGB. 

Takes P _SYSDC_RGB, returns STATUS. 

fdefine msgBorderInkToRGB MakeMsg(clsBorder, 29) 

For example, bslnkGray66 maps to sysDcRGBGray66. 

msgBorderRGBTolnk 
Maps RGB value to ink (bslnkGray66, etc). 

Takes P _SYSDC_RGB, returns STATUS. 

fdefine msgBorderRGBToInk MakeMsg(clsBorder, 30) 

For example, sysDCRGBGray66 maps to bslnkGray66. 

If pArgs has no matching ink value, bslnk Transparent is passed back. 

msgBorderConvertUnits 
catagory: class or instance message Converts values from one unit to another. 

Takes P _BORDER_UNITS, returns STATUS. 

fdefine msgBorderConvertUnits MakeMsg(clsBorder, 39) 

typedef struct BORDER_UNITS { 
WIN win; II in: window on target device 
U16 fromUnits; II in: units for initial size.w/h 
U16 toUnits; II in: units for final size.w/h 
SIZE32 size; II in/out: initial/converted value 
U32 spare; II unused (reserved) 

BORDER_UNITS, *P_BORDER_UNITS; 

This message can be sent to clsBorder or an instance of clsBorder. clsBorder will convert pArgs->size 
from pArgs->fromUnits to pArgs->toUnits. IfbsUnitsDevice is specified, pArgs->win should be set to a 
window on the corresponding device. 



Message 
Argurnclits 

BORDER.H 337 
Common #defines and typedefs 

msgBorderSetVisuals 
Sets only the visual fields from pArgs. 

Takes P _BORDER_STYLE, returns STATUS. 

#define msgBorderSetVisuals 

typedef struct BORDER STYLE 
U16 edge 4, 

top 2, 
drag 2, 
resize 5, 
maskBorders 1, 
getDeltaWin 1, 
spare1 1; 

U16 leftMargin 8, 
rightMargin 8; 

U16 bottomMargin 8, 
topMargin 8; 

U16 borderlnk 6, 
backgroundlnk .. 6, 
previewAlter 2, 
selectedAlter 2; 

U16 marginlnk 6, 
marginUnits 6, 
preview 1, 
selected 1, 
look 2; 

U16 shadow 4, 
shadowGap 2, 
shadowThickness 8, 
spare4 2; 

U16 shadowlnk 6, 
lineStyle 4, 
spare5 6; 

U16 lineUnits 6, 
lineThickness 8, 
join 2; 

U16 propagateVisuals: 1, 
notifyVisuals 1, 
spare3 14; 

BORDER_STYLE, *P_BORDER_STYLE; 

MakeMsg(clsBorder, 22) 

II edges to border 
II top style (e.g. bsTopUp) 
II drag style (e.g bsDragDown) 
II resize handles (e.g. bsResizeCornerlbsResizeBottom) 
II mask out edge, shadow, resize 
II use msgBorderProvideDeltaWin 
II unused (reserved) 
II margin in marginUnits 
II 
II 
II 
II edge line color 
II background fill color 
II what to alter when previewing 
II what to alter when selected 
II ink for margin area (not implemented) 
II units for left, right, bottom, top margins 
II true/false 
II true/false 
II active/inactive 
II type of shadow 
II type of shadow gap 
II custom shadow thickness, in lineUnits 
II unused (reserved) 
II custom shadow ink 
II edge line style (e.g. bsLineSingle) 
II unused (reserved) 
II units for lineThickness and shadowThickness 
II line thickness, in lineUnits 
II how edges join together 
II propagate changes in visuals to children 
II send msgBorderSetVisuals to observers 
II unused (reserved) 

Sets style.look, style. preview, and style. selected from pArgs as in msgBorderSetStyle. 

If style.backgroundInk is not currently bslnkTransparent, sets style.backgroundlnk from pArgs as in 
msgBorderSetStyle. 

msgBorderGetBorderRect 
Passes back the rect on the border. 

Takes P _RECT32, returns STATUS. 

#define msgBorderGetBorderRect MakeMsg(clsBorder, 3) 

The first pixel of this rect is on the border. This is the rectangle on which the border edges will be 
drawn, which is outside the inner margin. pArgs is in device units. 



338 PENPOINT API REFERENCE 
Part 4 / UI Toolkit 

msgBorderlnsetToBorderRect 
Assumes given reet is window bounds, insets to border reet as in msgBorderGetBorderRect. 

Takes P _RECT32, returns STATUS. 

#define msgBorderlnsetToBorderRect MakeMsg(clsBorder, 7) 

You ean send this message to determine where the border reet would be with the given bounds. 

clsBorder will self-send this message during msgWinRepaint to determine the reet on whieh the border 

edges should be drawn. 

pArgs should be in device units. 

msgBorderGetlnnerRect 
Passes baek the reet after the inner margin. 

Takes P_RECT32, returns STATUS. 

#define msgBorderGetlnnerRect MakeMsg(clsBorder, 4) 

The first pixel of this reet is inside the shadow, border edges and margin area. This is the outer-most 

usable area. pArgs is in deviee units. Subclasses should use this message to determine the area available to 
draw in after clsBorder has drawn all the shadows and borders. 

msgBorderlnsetTolnnerRect 
Assumes given reet is window bounds, insets to inner reet as in msgBorderGetlnnerReet. 

Takes P_RECT32, returns STATUS. 

#define msgBorderlnsetTolnnerRect MakeMsg(clsBorder, 18) 

msgBorderGetMarginRect 
Passes baek the reet after the border. 

Takes P _RECT32, returns STATUS. 

#define msgBorderGetMarginRect MakeMsg(clsBorder, 31) 

The first pixel of this reet is the start of the margin area. pArgs is in device units. 

msgBorderlnsetToMarginRect 
Assumes given reet is window bounds, insets to margin reet as in msgBorderGetMarginRect. 

Takes P _RECT32, returns STATUS. 

#define msgBorderlnsetToMarginRect MakeMsg(clsBorder, 35) 

msgBorderGetOuterSize 
Passes baek the sum of the border, margin and shadow sizes for width and height. 

Takes P _SIZE32, returns STATUS. 

#define msgBorderGetOuterSize MakeMsg(clsBorder, 5) 

Values are in deviee units. Subclasses ean use this message to determine the spaee needed for the border 
area. For example, clsLabel will use this number to eompute its total shrink-wrap size. 



Comments 

Comments 

BORDER.H 339 
Common #defines and typedefs 

msgBorderGetOuterSizes 
Passes back the breakdown of the outer size requirements. 

Takes P _RECT32, returns STATUS. 

#define msgBorderGet011terSizes MakeMsg(clsBorder, 36) 

OuterSizes are insets from outer edge to inner recto Note that this is not a true rectangle, each field (x, y, 
w, h) is a distance from the outer edge. The sum x+w is equivalent to the OuterSize w, the sum y+h is 

equivalent to the OuterSize h. Values are in device units. 

msgBorderGetOuterOffsets 
Passes back the distance from the outer edge to the border rect in each dimension. 

Takes P _RECT32, returns STATUS. 

#define msgBorderGetOuterOffsets MakeMsg(clsBorder, 25) 

OuterOffsets are insets from outer edge to inner recto Note that this is not a true rectangle, each field (x, 

y, w, h) is a distance from the outer edge. 

Values are in device units. 

This message may be sub classed to return the visual outer offsets. For example, clsFrame will return the 

outer offsets to the frame border window. 

msgBorderXOR 
Sets the raster-op to XOR and paints the background. 

Takes U16, returns STATUS. 

#define msgBorderXOR MakeMsg(clsBorder, 33) 

The U16 passed in is used as backgroundlnk. Using pArgs of bslnkWhite yields a true XOR, 

bslnkGray66 gives a graying effect. 

msgBorderPaint 
Paints the border, background, shadow, etc. using msgWinBeginPaint. 

Takes VOID, returns STATUS. 

#define msgBorderPaint MakeMsg(clsBorder, 34) 

msgBorderXOR 

msgBorderProvideDelta Win 
catagory: ancestor window responsibility Receiver must provide window to be dragged, resized or 

topped. 

Takes P_WIN, returns STATUS. 

#define msgBorderProvideDeltaWin MakeMsg(clsBorder, 23) 

clsBorder will respond by self-sending msgWinSend with the following WIN_SEND parameters: 

ws.flags = wsSendDefault; 
ws.lenSend = SizeOf(WIN_SEND); 
ws.msg = msgBorderProvideDeltaWin; 
ws.data[O] = objNull; 



340 PENPOINT API REFERENCE 
Part 4 I UI Toolkit 

Comments 

Comments 

*pArgs will be set to ws.data[O]. 

This message is used by clsBorder if style.getDelta Win is true to determine which window to 

drag/ resize/ top. 

msgWinSend 

msgBorderProvideBackground 
catagory: subclass responsibility Receiver must provide rect and ink for drawing background. 

Takes P _BORDER_BACKGROUND, returns STATUS. 

typedef struct BORDER BACKGROUND { 
RECT32 rect;- II in/out: background rect to fill 
U16 ink; II in/out: ink to fill with (e.g. bslnkWhite) 
U16 borderlnk; II in/out: ink to draw border with (e.g. bslnkBlack) 
U32 spare; II unused (reserved) 

BORDER_BACKGROUND, *P_BORDER_BACKGROUND; 

fdefine msgBorderProvideBackground MakeMsg(clsBorder, 24) 

Self-sent during msgWinRepaint if style. preview or style. selected is true. pArgs defaults to current 

border rect, background and border inks. 

A subclass can catch this message and change any of the parameters. For example, clsMenuButton will 

alter the background rect if the menu button has a top or bottom border on, to back away previewing 

feedback from the border edge. 

msgBorderPaintForeground 
catagory: subclass window responsibility Receiver must paint the foreground, if any. 

Takes YOID, returns STATUS. 

fdefine msgBorderPaintForeground MakeMsg(clsBorder, 32) 

clsBorder never sends this message. A subclass may send this message to force an ancestor class (e.g. 

clsLabel) to paint the foreground. 

clsBorder responds by doing nothing and returning stsOK. 

msgBorderPaint 

msgBorderFlash 
Flashes self's window by drawing a thick border and erasing it. 

Takes YOID, returns STATUS. 

fdefine msgBorderFlash MakeMsg(clsBorder, 40) 

clsBorder will flash a border around selfs window. This is used by msgBorderTop to hilight a window 

that is already on top. 

msgBorderTop 

msgBorderTop 
Tops the border window with optional UI feedback and/or bottoming. 

Takes U32, returns STATUS. 

fdefine bsTopFlash 
fdefine bsTopBottom 
fdefine msgBorderTop 

«U32)flagO) II msgBorderFlash if already on top 
«U32)flag1) II send to bottom if already on top 
MakeMsg(clsBorder, 41) 



Comments 

See Also 

BORDER.H 341 
Messages from other classes 

If self is not already on top of its siblings, clsBorder will bring self to top. 

If pArgs has bsTopFlash on and self is already on top, clsBorder will self-send msgBorderFlash to flash a 
border around self. 

If pArgs has bsTopBottom on and self is already on top, clsBorder will re-insert self at the "bottom". 
The bottom is defined as the first child of the main Win of theDesktop. If theDesktop does not exist, or 
it has no main Win, self is placed at the bottom of its sibling stack. If self is not a sibling of the main Win 
of theDesktop, nothing is done. 

msgBorderFlash 

". Messages from other classes 

Comments 

Comments 

msgWinSend 
Sends a message up a window ancestry chain. 

Takes WIN_SEND, returns STATUS. 

If pArgs->msg is msgBorderProvideDeltaWin and style.getDeltaWin is true, clsBorder will set 
pArgs->data[O] to self and return stsOK. This will result in self being the window that is 
dragged/ resized/ topped. 

msglnputEvent 
Notification of an input event. 

Takes P_INPUT_EVENT, returns STATUS. 

clsBorder will respond to input events that trigger dragging, resizing, or topping. 

If pArgs->devCode is msgPenHoldTimeout and style. drag is bsDragHoldDown, or pArgs->devCode is 
msgPenDown and style. drag is bsDragDown, or pArgs->devCode is msgPenMoveDown and style. drag 
is bsDragMoveDown and the pen has moved beyond a small threshold since the last msgPenDown, the 

following is done: 

msgGWinAbort(pNull) is self-sent to terminate any gesture in progress. 

If style.getDelta Win is true, msgBorderProvideDelta Win is self-sentmsgWinSend to determine the 

window to be dragged. Otherwise, is used as the window to be dragged. 

msgTrackProvideMetrics is sent to the window to be dragged with_METRICS parameters as follows: 

msgNewDefaults is sent to clsTrack to initialize a TRACK_METRICS 

struct and then: 

style.startThickness = tsThicknessDouble; 
win = parent of window to be dragged; 
client = self; 
clientData = window to be dragged; 
initRect = bounds of window to be dragged; 
constrainRect.size = size of window to be dragged; 
keepRect = rect around grabbed point; 
tag = tagBorderDrag; 

An instance of clsTrack is created and started via msgTrackStart. 

If pArgs->devCode is msgPenUp and style. top is bsTopUp and gWin.style.gestureEnable is false, a 
window to be topped is determined as in the window to be dragged above, and 



342 PENPOINT API REFERENCE 
Part 4 / UI Toolkit 

Comments 

Comments 

msgBorderTop{bsTopBottom) is sent to the window to bring it to top (or take it to bottom if already 
on top). 

If pArgs->devCode is one of msgPenlnProxUp, msgPenEnterUp, or msgPenMoveUp, and style. resize is 
not bsResizeNone, and pArgs->xy is in one of the resize handle areas, the following is done: 

msgGWinAbort{pNull) is self-sent to terminate any gesture in progress. 

A window to be resized is determined as in the window to be dragged above,an instance of clsGrabBox 
is created with this window as its client.grabBox is sent msgGrabBoxShow{true) to start the resize 
feedback. 

If a drag or resize is done, pArgs->flags will have evBorderTaken turned on to indicate that clsBorder 
"took" the event. 

msgTrackDone 
Sent by a tracker when it's done. 

Takes P _TRACK_METRICS, returns STATUS. Category: client notification. 

If pArgs-> tag is not tagBorderDrag, nothing is done and the message is passed to ancestor. 

Otherwise, clsBorder assumes pArgs->clientData is a window to be dragged and sends msgWinDelta to 
this window to change its origin to one based on pArgs->rect.origin. 

If style. top is bsTopDrag, the window to be dragged is also topped (brought to front) by sending it 
msgBorderTop{Q). 

msgTimerNotify 
Notifies the client that the timer request has elapsed. 

Takes P _TIMER_NOTIFY, returns nothing. Category: advisory message. 

If selfs line Style is bsLineMarquee or bsLineDoubleMarquee, clsBorder will animate the marquee and 
set the timer again. 

msgSelSelect 
Sets self to be the selection. 

Takes nothing, returns SIATUS. 

clsBorder responds by self-sending msgBorderSetSelected{true). 

msgSelYield 
The Selection Manager requires the release of the selection. 

Takes BOOLEAN, returns SfATUS. 

clsBorder responds by self-sending msgBorderSetSelected{false). 

msgGWinGesture: 
Called to process the gesture. 

Takes P_GWIN_GESTURE, returns STATUS. 



Comments 

BORDER.H 343 
Messages from other classes 

If pArgs->msg is xgsl Tap and style.top is bsTopUp, a window to be topped is determined and topped as 
in response to the input event msgPenUp. 

If pArgs->msg is xgsQuestion and style. resize is not bsResizeNone and pArgs->hotPoint falls over one 
of the resize handle areas, quick help for the resize handle is shown. 

msglnputEvent 

msgWinRepaint 
Tells a window to repaint itself. 

Takes nothing, returns SfATUS. Category: descendant responsibility. 

clsBorder responds by painting the background, shadow, resize handles, and border edges. 

msgBorderInsetToBorderRect will be self-sent with a default of the current window bounds to allow the 
subclass to alter the rect on which the border will be drawn. 

If style. preview or style. selected are true, msgBorderProvideBackground is self-sent with the following 
BORDER_BACKGROUND parameters: 

rect = rectangle on which the border will be drawn, in device units; 

ink = backgroundlnk to be used; 

The resulting rect and ink are used during painting. 

If any of the specified inks have bslnkExclusive or-ed in, and the border window does not exclusively 
paint the pixels in its window, bslnkTransparent will be used. The test for a window exclusively painting 
the pixels in its window is as follow~: 

define selfStyle to be self's window style flags 
define parent Style to be parent's window style flags 

if (selfStyle & wsTransparent) 
return false; 

if (selfStyle & (wsClipSiblings I wsClipChildren)) 
return true; 

if (! (selfStyle & wsParentClip)) 
return true; 

if (parent Style & wsTransparent) 
return true; 

if (parent Style & wsClipChildren) 
return true; 

return false; 

If any of the specified inks are bslnkTransparent, nothing will be painted for that feature (e.g. 
backgroundlnk ofbslnkTransparent results in no paint on the background). 

msgScrollWinProvideDelta 
Self-sent when scrollWin.style.getDelta is set to true so that descendant or client can normalize the 
scroll if desired. 

Takes P_SCROLL_WIN_DFLTA, returns SfATUS. Category: descendant/client responsibility. 



344 PENPOINT API REFERENCE 
Part 4 I UI Toolkit 

Comments clsBorder responds by computing a new origin based on pArgs->action and normalizing to prevent 
scrolling into part of a row or column. 

clsBorder will enumerate the leaf-level children and try to compute the row/column structure from the 
placement of the children. 

Normalization will occur in the direction of the scroll. For example, if the scroll action is moving 
upward (e.g sbLineUp), normalization will occur at the top of the view. 



BUSY.H 

This file contains the API for clsBusy and theBusyManager. 

clsBusy inherits from clsObject. 

theBusyManager is typically the only instance of clsBusy. theBusyManager puts up and takes down a 

visual indication that the system is busy. 

Debugging Flags 
The clsBusy debugging flag is 'K'. Defined values are: 

flagO (OxOOOl) general busy on/offlinhibit 

flaglO (Ox0400) never put up the busy UI 

*ifndef BUSY INCLUDED 
*define BUSY_INCLUDED 

*include <clsmgr.h> 

msgBusyDisplay 
Requests a change in the state of the busy UI. 

Takes U32, returns STATUS. 

*ifndef CLSMGR INCLUDED 

*endif 

*define msgBusyDisplay MakeMsg(clsBusy, 9) 
*define busyOff 0 II turn the busy UI off 
*define busyOn 1 II turn the busy UI on 
II these can be or-ed into busyOn or busyOff 
*define busyNoRefCount flagl II don't increment/decrement the ref count 
*define busyNoDelay flag2 II don't wait for timer to display 

You send this message to theBusyManager. 

theBusyManager maintains a reference count. Requests ofhusyOn increment the count, and requests of 

busyOff decrement the count. theBusyManager will put up the UI when the count goes from 0 to 1, 

and take the UI down when the count goes from 1 to O. 

If pArgs is busyOn I busyNoRefCount, and the reference count is already 1 or greater (i.e. the busy UI 

is already being displayed), nothing is done. 

If pArgs is busyOn I busyNoDelay, the busy UI will be displayed immediately, skipping the usual delay 

time. 

If pArgs is busyOff I busyNoRefCount, the reference count is set to 0 and the busy UI is taken down. 

The busy UI will be displayed (i.e. hot spot at) the last xy specified via msgBusySetXY. If this is 

(minS32, minS32), the xy specified via msgBusySetDefaultXY will be used. 

When the busy UI is taken down, the xy for the next display of the busy UI is set to (minS32, minS32). 

msgBusyInhibit 



346 PENPOINT API REFERENCE 
Part 4 I UI Toolkit 

Comments 

See Also 

Comments 

Comments 

Comments 

msgBusylnhibit 
Inhibits/allows display of the busy UI. 

Takes BOOLEAN, returns STATUS. 

tdefine msqBusylnhibit MakeMsq(clsBusy, 10) 

You send this message to theBusyManager. 

theBusyManager maintains an inhibit reference count. Requests of TRUE increment the count, and 
requests ofPALSE decrement the count. theBusyManager will take down the UI when the count goes 
from 0 to 1, and allow subsequent displays of the busy UI (via msgBusyDisplay{busyOn)) when the 

count is zero. 

You can use msgBusyInhibit to prevent the busy UI from being displayed, even if requested by other 

parts of the system. 

msgBusyDisplay 

msgBusySetXY 
Specifies the position for the busy UI the next time it is shown. 

Takes P _XY32, returns STATUS. 

tdefine msqBusySetXy MakeMsq(clsBusy, 11) 

You send this message to theBusyManager. The UI will be centered at pArgs the next time 
msgBusyDisplay{busyOn) is sent. 

pArgs should be in root window space. 

If the busy UI is currently being shown, this message is ignored. 

msgBusySetDefaultXY 
Specifies the default position for the b,usy UI the next time it is shown. 

Takes P_XY32, returns STATUS. 

tdefine msqBusySetDefaultXY MakeMsq(clsBusy, 12) 

The input system sends this message to theBusyManager when an input event has not been processed 
within the default time limit. The UI will be centered at pArgs the next time msgBusyDisplay{busyOn) 

is sent, if msgBusySetXY has not been used to specify a position. 

pArgs should be in root window space. 

msgBusyGetSize 
Passes back the size of the busy UI. 

Takes P _SIZE32, returns STATUS. 

tdefine msqBusyGetSize MakeMsq(clsBusy, 3) 

theBusyManager will set *pArgs to the size of the default UI. 



aunON.H 

This file contains the API definition for clsButton. 

clsButton inherits from clsLabel. 

Buttons are labels, but with input behavior. Buttons also have a state value: on or off Buttons notify 
their client when certain input events occur. clsButton make extensive use of its ancestors display 

capabilities, particularly clsBorder and clsLabel. 

fifndef BUTTON INCLUDED 
fdefine BUTTON_INCLUDED 

fifndef LABEL_INCLUDED 
finclude <label.h> 

fendif 

Common #defines and typedefs 
typedef OBJECT BUTTON; 

Contact Styles 
Use one of these values in button's style.contact. 

fdefine bsContactMomentary 
fdefine bsContactToggle 
fdefine bsContactLockOn 
II 

Feedback Styles 

o II push-on, release-off 
1 II push-on, push-off 
2 II push-on, stays on 
3 II unused (reserved) 

Use one of these values in button's style.feedback. 

fdefine bsFeedbacklnvert 
fdefine bsFeedbackDecorate 
fdefine bsFeedbackNone 
fdefine bSFeedback3D 
fdefine bsFeedbackBox 
II 
II 
II 

pArgs Styles 

o II invert on/off 
1 II use onDecoration/offDecoration 
2 II no feedback 
3 1/ 3D shadow effect 
4 II boxed outline 
5 II unused (reserved) 

II unused (reserved) 
7 II unused (reserved) 

Use one of these values in button's style. pArgs. 

fdefine bsPargsData 0 II pArgs is data 
fdefine bSPargsValue 1 II pArgs is current value 
fdefine bsPargsUID 2 II pArgs is button's UID 
I I 3 I I unused (reserved) 



348 PENPOINT API REFERENCE 
Part 4 I UI Toolkit 

Manager Styles 
Use one of these values in button's style. manager. 

o II no manager #define bsManagerNone 
#define bsManagerParent 
#define bsManagerClient 
II 

1 II parent is the manager 
2 II client is the manager 
3 II unused (reserved) 

typedef struct BUTTON STYLE 
U16 contact 2, II push behavior 

feedback 4, II invert, decorate, etc. 
notifyDetail 1, II notify manager of BeginPreview etc. 
notifyWithMsg 1, II send specified msg & data 
on 1, II button state: true == on 
manager 2, II button manager style 
pArgs 2, II which pArgs to send with msg 
half Height 1, II half-height borders 
spare1 2; II unused (reserved) 

U16 onDecoration 5, II label decoration when 
off Decoration 5, II label decoration when 
spare 6; II unused (reserved) 

BUTTON_STYLE, *P_BUTTON_STYLE; 

Default BUTTON_STYLE: 

contact 
feedback 

= bsContactMomentary 
= bsFeedbackInvert 

onDecoration IsDecorationNone 
off Decoration = IsDecorationNone 
notifyDetail = false 
notifyWithMsg = true 
pArgs = bsPargsData 
on = false 
half Height = false 

typedef struct BUTTON NOTIFY 
OBJECT button; 1/ uid of sender 
MESSAGE msg; II defined message or some other data 

on (see label. h) 
off (see label.h) 

U32 data; II pArgs for message or some other data 
MESSAGE detail; II msgButtonBeginPreview, etc. 
U32 spare; II unused (reserved) 

BUTTON_NOTIFY, *P_BUTTON_NOTIFY; 

".M ••• ag •• 

Argun'lents 

msgNew 
Creates a button window. 

Takes P _BUTTON_NEW, returns STATUS. Category: class message. 

typedef struct BUTTON_NEW_ONLY 
BUTTON_STYLE style; 
MESSAGE 
U32 
U16 

U16 

msg; 
data; 
onCustomGlyph; 

offCustomGlyph; 

U32 spare; 

II overall style 
II message to send or other data 
II pArgs for msg or other data 
II glyph to use for 
II IsDecorationCustomLeft/Right 
II glyph to use for 
II IsDecorationCustomLeft/Right 
II unused (reserved) 

BUTTON_NEW_ONLY, BUTTON_METRICS, 
*P_BUTTON_NEW_ONLY, *P_BUTTON_METRICS; 

#define buttonNewFields \ 
labelNewFields \ 



Mcssuge 
Arguments 

BUTTON NEW ONLY button; 
typedef struct BUTTON_NEW { 

buttonNewFields 
} BUTTON_NEW, *P_BUTTON_NEWi 

The rest of this description uses the following abbreviations: 

on = pArgs->button.style.on; 
pButton &pArgs->button.style; 
pBorder = &pArgs->border.style, 
pLabel = &pArgs->label.style, 

If pButton->feedback is bsFeedbackInvert, sets 

pBorder->preview = on; 

If pButton-> feedback is bsFeedback3D, sets 

pBorder->join 
pBorder->previewAlter 
pBorder->edge 
pBorder->shadowGap 
pBorder->preview 

= bsJoinSquare; 
= bsAlterNone; 
= bsEdgeTop 1 bsEdgeLeft; 
= bsGapNone; 

on; 
if (on) { 

pBorder->borderlnk 
pBorder->backgroundlnk 
pBorder->shadow 

else { 
pBorder->borderlnk 
pBorder->backgroundlnk 
pBorder->shadow 

= bslnkBlack; 
= bslnkGray66; 
= bsShadowThinWhitei 

= bslnkWhite; 
= bslnkGray33; 
= bsShadowThinGray; 

If pButton->feedback is bsFeedbackDecorate, sets 

pLabel->decoration = on ? 
pArgs->button.style.onDecoration 
pArgs->button.style.offDecoration; 

msgNewDefaults 
Initializes the BUTTON_NEW structure to default values. 

Takes P _BUTTON_NEW, returns STATUS. Category: class message. 

typedef struct BUTTON_NEW { 
buttonNewFields 

} BUTTON_NEW, *P_BUTTON_NEW; 

Zeroes out pArgs->button and sets: 

pArgs->win.flags.input 1= inputTip 1 inputEnter 1 inputExit; 
pArgs->win.flags.style 1= wsFilelnline; 

pArgs->border.style.edge = bsEdgeAll; 
pArgs->border.style.join = bsJoinSquare; 
pArgs->border.style.shadow = bsShadowThinBlack; 
pArgs->border.style.borderlnk = bslnkGray66; 

pArgs->control.style.previewEnable = true; 

pArgs->label.style.xAlignment 
pArgs->label.style.yAlignment 

lsAlignCenter; 
lsAlignCenter; 

pArgs->button.style.notifyWithMsg = true; 

BUTTON.H 349 
Messages 



350 PENPOINT API REFERENCE 
Part 4 / UI Toolkit 

(omments 

MessCige 
Arguments 

Message 
Arguments 

msgButtonGetMetrics 
Passes back the current metrics. 

Takes P _BUTTON_METRICS, returns STATUS. 

tdefine msgButtonGetMetrics 

msgButtonSetMetrics 
Sets the metrics. 

MakeMsg(clsButton, 1) 

Takes P _BUTTON_METRICS, returns STATUS. 

tdefine msgButtonSetMetrics MakeMsg(clsButton, 2) 

If style.on changes, the button does the following: 

• If style.contact != bsContactMomentary, self-sends msgControlSetDirty, true. 

• Self-sends msgButtonNotifyManager with msg = msgButtonDone. 

• Self-sends msgButtonNotify with detail of msgButtonAcceptPreview. This results in either 
msgButtonNotify or a client-specified message to the client. Alters border and label styles to reflect 
the new" on" value (see msgNew description). 

Changes to style.feedback and style.on/offDecoration result in appropriate changes to the Border and 
Label styles. 

msgButtonGetStyle 
Passes back the current style values. 

Takes P _BUTTON_STYLE, returns STATUS. 

tdefine msgButtonGetStyle 

typedef struct BUTTON_STYLE 
U16 contact 2, 

feedback 4, 
notifyDetail 1, 
notifyWithMsg 1, 
on 1, 
manager 2, 
pArgs 2, 
half Height 1, 
sparel 2; 

U16 onDecoration 5, 
off Decoration 5, 
spare 6; 

BUTTON_STYLE, *P_BUTTON_STYLE; 

msgButtonSetStyle 
Sets the style values. 

MakeMsg(clsButton, 3) 

II push behavior 
II invert, decorate, etc. 
II notify manager of BeginPreview etc. 
II send specified msg & data 
II button state: true == on 
II button manager style 
II which pArgs to send with msg 
II half-height borders 
II unused (reserved) 
II label decoration when on (see label.h) 
II label decoration when off (see label.h) 
II unused (reserved) 

Takes P _BUTTON_STYLE, returns STATUS. 

tdefine msgButtonSetStyle 

typedef struct BUTTON_STYLE 
U16 contact 2, 

feedback 4, 
notifyDetail 1, 
notifyWithMsg 1, 

MakeMsg(clsButton, 4) 

II push behavior 
II invert, decorate, etc. 
II notify manager of BeginPreview etc. 
II send specified msg & data 



Comments 

Comments 

Comments 

on 1, II button state: true == on 
manager 2, II button manager style 
pArgs 2, II which pArgs to send with msg 
half Height 1, II half-height borders 
spare1 2; II unused (reserved) 

U16 onDecoration 5, II label decoration when on (see label.h) 
off Decoration 5, II label decoration when off (see label.h) 
spare 6; II unused (reserved) 

BUTTON_STYLE, . *p _BUTTON_STYLE; 

Reacts to changes in style.on and other style values as in msgButtonSetMetrics. 

msgButtonGetMsg 
Passes back metrics.msg. 

Takes P _MESSAGE, returns STATUS. 

idefine msgButtonGetMsg 

msgButtonSetMsg 
Sets metrics.msg. 

Takes MESSAGE, returns STATUS. 

idefine msgButtonSetMsg 

msgButtonGetData 
Passes back metrics.data. 

Takes P _U32, returns STATUS. 

idefine msgButtonGetData 

msgButtonSetData 
Sets metrics.data. 

Takes U32, returns STATUS. 

idefine msgButtonSetData 

msgButtonSetNoNotify 

MakeMsg(clsButton, 5) 

MakeMsg(clsButton, 6) 

MakeMsg(clsButton, 7) 

MakeMsg(clsButton, 8) 

Sets the value of the button (i.e. style.on) without notifying. 

Takes BOOLEAN, returns STATUS. 

idefine msgButtonSetNoNotify MakeMsg(clsButton, 17) 

BUTTON.H 351 
Messages 

pArgs must be true or false. The button's manager and client are not notified. Alters border and label 
styles to reflect new on value (see msgNew description). 

msgButtonButtonShowFeedback 
Shows the feedback for an on/off button if pArgs is true/false. 

Takes BOOLEAN, returns STATUS. Category: self-sent. 

idefine msgButtonShowFeedback MakeMsg(clsButton, 19) 

This message is self-sent by clsButton to change the on/off feedback shown to the user. For example, 
when a button with a contact style ofbsContactToggle is pressed and msgControlBeginPreview is 



352 P,ENPOINT API REFERENCE 
Part 4 I UI Toolkit 

received, clsButton self-sends msgButtonShowFeedback(!style.on) to show the user what will happen 
when the pen is lifted. 

Subclasses can handle the message and show the appropriate feedback for the new state. 

Messages Sen. '0 BuHon's Manager 

msgButtonDone 
Sent via msgWinSend to the manager when button receives msgControlAcceptPreview. 

Takes UID, returns STATUS. Category: manager notification. 

#define msgButtonDone MakeMsg(clsButton, 16) 

msgButtonBeginPreview 
Sent via msgWinSend to the manager when button receives msgControlBeginPreview. 

Takes UID, returns STATUS. Category: manager notification. 

#define msgButtonBeginPreview MakeMsg(clsButton, 9) 

Only sent if style.notifyDetail is true. 

msgButtonU pdatePreview 
Sent via msgWinSend to the manager when button receives msgControlUpdatePreview. 

Takes UID, returns STATUS. Category: manager notification. 

#define msgButtonUpdatePreview 

Only sent if style.notifyDetail is true. 

msgButtonRepeatPreview 

MakeMsg(clsButton, 10) 

Sent via msgWinSend to the manager when button receives msgControlRepeatPreview. 

Takes UID, returns STATUS. Category: manager notification. 

#define msgButtonRepeatPreview 

Only sent if style.notifyDetail is true. 

msgButtonCancelPreview 

MakeMsg(clsButton, 11) 

Sent via msgWinSend to the manager when button receives msgControlCancelPreview. 

Takes UID, returns STATUS. Category: manager notification. 

*define msgButtonCancelPreview MakeMsg(clsButton, 12) 

Only sent if style.notifyDetail is true. 

msgButtonAcceptPreview 
Sent via msgWinSend to the manager when button receives msgControlAcceptPreview. 

Takes UID, returns STATUS. Category: manager notification. 

#define msgButtonAcceptPreview 

Only sent if style.notifyDetail is true. 

MakeMsg(clsButton, 13) 



Message 
Argurnents 

Message 
Arguments 

BUTTON.H 353 
Messages Defined by Other Classes 

msgButtonNotifyManager 
Sent to self when button wants to notify its manager. 

Takes P _BUTTON_NOTIFY, returns STATUS. Category: self-sent. 

#define msgButtonNotifyManager MakeMsg(clsButton, 18) 

typedef struct BUTTON_NOTIFY { 
OBJECT button; II uid of sender 
MESSAGE msg; II defined message or some other data 
U32 data; II pArgs for message or some other data 
MESSAGE detail; II msgButtonBeginPreview, etc. 
U32 spare; II unused (reserved) 

BUTTON_NOTIFY, *P_BUTTON_NOTIFY; 

A button responds to this by sending msgWinSend with the following WIN_SEND parameters to its 
manager: 

flags = wsSendDefault; 
lenS end = SizeOf(WIN_SEND); 
msg = pArgs->msg; 
data[O] = pArgs->data; 

msgButtonNotify 
Sent to self when button wants to notify its client. 

Takes P _BUTTON_NOTIFY, returns STATUS. Category: client notification. 

#define msgButtonNotify MakeMsg(clsButton, 14) 

typedef struct BUTTON_NOTIFY 
OBJECT button; II uid of sender 
MESSAGE msg; II defined message or some other data 
U32 data; II pArgs for message or some other data 
MESSAGE detail; II msgButtonBeginPreview, etc. 
U32 spare; II unused (reserved) 

BUTTON_NOTIFY, *P_BUTTON_NOTIFY; 

If style.notifyWithMessage is true, pArgs->msg is sent to the button's client with the pArgs of 
pArgs->data or as specified by style.pArgs. 

Otherwise, msgButtonNotify is sent to the button's client with the following BUTTON_NOTIFY 

parameters: 

button = self; 
msg = pArgs->msg; 
data = pArgs->data; 
detail = pArgs->detail; 

Messages Defined by Other Classes 

msgBorderGetForegroundRGB 
Passes back foreground RGB to use given current visuals. 

Takes P _SYSDC_RGB, returns STATUS. 

If style.feedback is bsFeedback3D and border.style.look is bsLookInactive, passes back 
sysDcRGBGray66. Otherwise, calls ancestor. 



354 PENPOINT API REFERENCE 
Part 4 / UI Toolkit 

msgControlBeginPreview 
Self-sent when msgPenDown is received. 

Takes P _EVENT, returns STATUS. Category: self-sent. 

Button computes new on value according to style.feedback (e.g. bsContactToggle results in on = 

!style.on) . 

Alters border and label styles to reflect new on value and self-sends msgWinUpdate to repaint 

immediately. style.on is not changed. 

If style.contact is not bsContactMomentary, self sends msgControlSetDirty, true. 

If style.notifyDetail is true, self-sends msgButtonNotifyManager, which results in msgWinSend to the 

manager. Also, if control.style.previewRepeat is true, self-sends msgButtonNotify which results in client 

notification. 

msgControlUpdatePreview 
Self-sent when msgPenMoveDown is received. 

Takes P _EVENT, returns STATUS. Category: self-sent. 

If style.notifyDetail is true, notifies manager and client as in msgControlBeginPreview. 

msgControlRepeatPreview 
Self-sent if style.repeatPreview is true. Initial delay is 600ms, then immediate repeat until msgPenUp. 

Takes P _EVENT, returns STATUS. Category: self-sent. 

If style.notifyDetail is true, notifies manager and client as in msgControlBeginPreview. 

msgControlCattcelPreview 
Self-sent when control.style.previewGrab is false and msgPenExitDown is received. 

Takes P _EVENT, returns STATUS. Category: self-sent. 

Clients or subclasses can send this to a control to cancel existing preview. 

Alters border and label styles to reflect current style.on value and self-sends msgWinUpdate to repaint 

immediately. This undoes the visual effects of msgControlBeginPreview. 

If style.notifyDetail is true, notifies manager and client as in msgControlBeginPreview. 

msgControlAcceptPreview 
Self-sent when msgPenUp is received. 

Takes P _EVENT, returns STATUS. Category: self-sent. 

If gestures are enabled this message is not sent until msgGWinGesture is received with xgsl Tap. 

Self-sends msgControlSetValue with on value computed as in msgControlBeginPreview. 

msgControlSetValue 
Sets style.on. 

Takes S32, returns STATUS. 



Comments 

BUTTON.H 355 
Me .. age. Defined by Other Cla .. e. 

Updates visuals to reflect new on value as in msgButtonSetMetrics. 

Self-sends msgButtonNotifyManager with the following BUTTON_NOTIFY parameters (this results in 

msgWmSend to the manager): 

button = self; 
msg = msgButtonDone; 
data = self; 

Self-sends msgButtonNotify with the following BUTTON_NOTIFY parameters (this results in client 

notification) : 

button 
msg 
data 
detail 

self; 
= metrics.msg; 
= metrics.data; 
= msgButtonAcceptPreviewi 

msgControlGetValue 
Passes back the style. on. 

Takes P _S32, returns SfATUS. 





eMMGR.M 

This file contains the API for dsChoiceMgr. 

dsChoiceMgr inherits from dsManager. 

Choice managers serve as tkTable managers in tables of buttons. 

A choice manager, when plugged in as the manager of a tkTable of buttons, responds to the 
msgWinSend's generated by the buttons and makes the entire group perform as a choice. 

",. Debugging Flags 
The dsChoiceMgr debugging flag is 'K'. Defined values are: 

flagO (OxOOOl) general info 

tifndef CHMGR_INCLUDED 
tdefine CHMGR_INCLUDED 

tifndef MANAGER_INCLUDED 
tinclude <manager.h> 

tendif 

".. COllllllon #defines and typedefs 

Arguments 

MessQlge 
Arguments 

(omments 

typedef OBJECT 

msgNew 
Creates a choice manager. 

Takes P _CHOICE_MGR_NEW, returns STATUS. Category: class message. 

typedef struct CHOICE_MGR_NEW_ONLY { 
U32 spare; II unused (reserved) 

} CHOICE_MGR_NEW_ONLY, *P_CHOICE_MGR_NEW_ONLY; 
tdefine choiceMgrNewFields \ 

managerNewFields \ 
CHOICE_MGR_NEW_ONLY choiceMgr; 

typedef struct CHOICE_MGR_NEW { 
choiceMgrNewFields 

} CHOICE_MGR_NEW, *P_CHOICE_MGR_NEW; 

msgNewDefaults 
Initializes the CHOICE_MGR_NEW structure to default values. 

Takes P_CHOICE_MGR_NEW, returns STATUS. Category: class message. 

typedef struct CHOICE_MGR_NEW { 
choiceMgrNewFields 

} CHOICE~GR_NEW, *P_CHOICE_MGR~NEW; 

clsChoiceManager has no instance data of its own. 



358 PEN POINT API REFERENCE 
Part 4 / UI Toolkit 

msgChoiceMgrGetOnButton 
Gets the current on button. Passes back objNull if no button is on. 

Takes' P _UID, returns STATUS. 

tdefine rnsgChoiceMgrGetOnButton 

msgChoiceMgrSetOnButton 
Sets the current on button. 

Takes UID, returns STATUS. 

tdefine rnsgChoiceMgrSetOnButton 

MakeMsg(clsChoiceMgr, 1) 

MakeMsg(clsChoiceMgr, 2) 

Since the choiceMgr will use msgControlSetValue to turn the button on, that button's normal 
notification protocol will be invoked. 

All buttons are turned off if message argument is objN ull. 

msgChoiceMgrSetNoNotify 
Like msgChoiceMgrSetOnButton, but no notifications are generated. 

Takes UID, returns STATUS. 

tdefine rnsgChoiceMgrSetNoNotify MakeMsg(clsChoiceMgr, 3) 

Messages frolll Other Classes 

msgWinSend 
Sends a message up a window ancestry chain. 

Takes P _WIN_SEND, returns STATUS. 

dsChoiceMgr responds when pArgs->msg is msgButtonBeginPreview, msgButtonCancelPreview, or 
msgButtonDone. If pArgs->Insg is anything else, dsChoiceMgr just returns stsManagerContinue. 

For these three messages, dsChoiceMgr will make the set of entry windows act as a group. 

stsManagerContinue dsChoiceMgr always returns this so that the caller will continue to propagate the 
msgWinSend. 



CHOICE.H 

This file contains the API for clsChoice. 

clsChoice inherits from dsTkTable. 

Choices are tkTables of buttons that act as exclusive choices. 

Note that msgNewDefaults to dsChoice results in a prototypical new struct whose values describe a 
button of contact style bsContactLockOn. This is correct for choices that always have one button on, 
but this won't work if you want a choice that can have 0 or 1 buttons on. In this case, making each 
button child have a contact style of bsContactToggle will achieve the desired effect. Here is the 
appropriate code. 

ObjCallWarn(MsgNewDefaults, clsChoice, &choiceNew); 
choiceNew.tkTable.pButtonNew->button.style.contact = bsContactToggle; 
ObjCallRet(msgNew, clsChoice, &choiceNew, s); 

See the documentation for msgTkTableChildDefaults below. 

#ifndef CHOICE_INCLUDED 
#define CHOICE INCLUDED 

#include <tktable.h> 

Common #delines and typedels 
typedef OBJECT CHOICE; 
typedef struct CHOICE STYLE { 

U16 spare; II unused (reserved) 
} CHOICE_STYLE, *P_CHOICE_STYLE; 

#ifndef TKTABLE_INCLUDED 

#endif 

Informational return status returned by msgControlGetValue if choice has no value 

#define stsChoiceNoValue MakeWarning(clsChoice, 1) 

msgNew 
Creates a choice (and its nested button windows). 

Takes P _CHOICE_NEW, returns STATUS. Category: class message. 

typedef struct CHOICE_NEW_ONLY { 
CHOICE STYLE style; II overall style 
U32 value; II tag of on button 
U32 spare; II unused (reserved) 

CHOICE_NEW_ONLY, *P_CHOICE_NEW_ONLY; 
#define choiceNewFields \ 

tkTableNewFields \ 
CHOICE NEW ONLY choice; 

typedef struct CHOICE_NEW { 
choiceNewFields 

CHOICE_NEW, *P_CHOICE_NEW; 



360 PENPOINT API REFERENCE 
Part 4 I UI Toolkit 

Comments 

Message 
Arguments 

Comments 

Will create a default instance of clsChoiceMgr if the incoming pArgs->tkTable.manager is null. The uid 
of the created manager will be an out parameter. 

After the manager has been set up, clsChoice will use msgControlGetValue to find the button that is 
'on', and then send msgChoiceMgrSetNoNotify to the manager to tell the manager which button is 
, , 
on. 

msgNewDefaults 
Initializes the CHOICE_NEW structure to default values. 

Takes P _CHOICE_NEW, returns STATUS. Category: class message. 

typedef struct CHOICE_NEW { 
choiceNewFields 

} CHOICE_NEW, *P_CHOICE_NEW; 

Sets up tkTable.pButtonNew to create buttons by default. Zeroes out pNew.choice and sets: 

pArgs->gWin.style.gestureEnable = false; 

pArgs->tableLayout.style.growChildHeight = false; 
pArgs->tableLayout.style.growChildWidth = true; 

pArgs->tableLayout.numCols.constraint = tlAbsolute; 
pArgs->tableLayout.numCols.value = 1; 

pArgs->tableLayout.numRows.constraint = tlInfinite; 

pArgs->tableLayout.coIWidth.constraint = tlChildrenMax; 
pArgs->tableLayout.coIWidth.gap = 0; 

pArgs->tableLayout.rowHeight.constraint = tlGroupMax; 
pArgs->tableLayout.rowHeight.gap = 0; 

pArgs->tkTable.manager = objNull; 

".-Inslance Messages 

Message 
Arguments 

Message 
Arguments 

msgChoiceGetStyle 
Gets the style of the receiver. 

Takes P _CHOICE_STYLE, returns STATUS. 

#define msgChoiceGetStyle MakeMsg(clsChoice, 1) 

typedef struct CHOICE STYLE { 
U16 spare; II un~sed (reserved) 

} CHOICE_STYLE, *P_CHOICE_STYLE; 

msgChoiceSetStyle 
Sets the style of the receiver. 

Takes P _CHOICE_STYLE, returns STATUS. 

#define msgChoiceSetStyle MakeMsg(clsChoice, 2) 

typedef struct CHOICE STYLE 
U16 spare; II un~sed (reserved) 

CHOICE_STYLE, *P_CHOICE_STYLE; 



CHOICE.H 361 
Messages from Other Classes 

msgChoiceSetNoN otify 
Like msgControlSetValue (see below), but without button notifications. 

Takes TAG, returns STATUS. 

fdefine msgChoiceSetNoNotify MakeMsg(clsChoice, 3) 

Comments Using this message avoids button notifications being sent out to their clients. 

Messages fro ... Other Classes 

Comments 

Comments 

msgFree 
Sent as the last of three msgs to destroy an object. 

Takes OBJ_KEY, returns STATUS. 

If the choice had created its own TK_TABLE_NEW_ONLY.manager at msgNew time, the manager will be 

sent msgDestroy. 

msgRestore 
Creates and restores an object from an object file. 

Takes P_OBLRESTORE, returns STATUS. 

clsChoice responds by restoring its instance data. If the choice had created its own 

TK_T ABLE_NEW _ONLY. manager at msgN ew time, a new one is created from dsChoiceMgr. 

msgSave 
Causes an object to file itself in an object file. 

Takes P_OBJ_SAVE, returns STATUS. 

clsChoice responds by filing away its instance data. It will remember whether dsChoice created its own 

TK_TABLE_NEW_ONLY.manager at msgNew time. 

msgWinSend 
Sends a message up a window ancestry chain. 

Takes P _WIN_SEND, returns STATUS. 

dsChoice responds when pArgs->msg is msgButtonBeginPreview or msgButtonDone by using 
msgControISetDirty(true) to mark its children as dirty. This is done as follows: 

clsChoice calls its ancestor and remembers the returned status. It then tests whether pArgs->msg is 
msgButtonDone. If so, then if one of the child buttons is currently previewing, dsChoice just returns 
the saved status (because it was when the previewing started that the choice marked its children as dirty). 
If, however, the msg is msgButtonDone and no button is previewing, the choice will go ahead and mark 
its children dirty (this case can happen if a child button is changing value programmatically and so isn't 
previewing), then return stsManagerContinue. 

If the pArgs->msg is msgButtonBeginPreview, the choice will mark its children dirty and then return 
stsManagerContinue. 

If the pArgs->msg is anything else, clsChoice will return the status saved from the call to its ancestor. 

stsManagerContinue tell the caller to continue to propagate the msgWinSend 



362 PENPOINT API REFERENCE 
Part 4 / UI Toolkit 

Comments 

Comments 

Comments 

(omments 

msgControlGetDirty 
Sets *pArgs true if any child control is dirty, false otherwise. 

Takes P _BOOLEAN, returns STATUS. 

msgControlGetEnable 
Sets *pArgs true if any child control is enabled, false otherwise. 

Takes P _BOOLEAN, returns STATUS. 

msgControlGetValue 
Gets the tag of the child button that is currently on. 

Takes P_TAG, returns STATUS. 

Returns stsChoiceNoValue if no child button is on. 

msgControlSetDirty 
Forwards this message and pArgs on to each child control in the choice. 

Takes BOOLEAN, returns STATUS. 

msgControlSetEnable 
Forwards this message and pArgs on to each child control in the choice. 

Takes BOOLEAN, returns STATUS. 

msgControlSetValue 
Turns on the child button having the passed tag. 

Takes TAG, returns STATUS. 

If another child button was on, it is turned off. 

msgTkTableAddAsFirst 
Adds specified window as the first child in the table. 

Takes WIN, returns STATUS. 

clsChoice first calls its ancestor, then gets its manager via msgTkTableGetManager. If it has no 
manager, clsChoice returns stsOK. Otherwise, clsChoice gets the BUTTON_STYlE. on value of the new 
button and, if that is true, uses msgChoiceMgrSetOnButton to change the choice's' on' button to the 
one just added. 

msgTkTableAddAsLast 
Adds specified window as the last child in the table. 

Takes WIN, returns STATUS. 

clsChoice first calls its ancestor, then gets its manager via msgTkTableGetManager. If it has no 
manager, clsChoice returns stsOK. Otherwise, clsChoice gets the BUTTON_STYlE. on value of the new 
button and, if that is true, uses msgChoiceMgrSetOnButton to change the choice's' on' button to the 
one just added. 



Comments 

CHOICE.H 363 
Messages from Other Classes 

msgTkTableAddAsSibling 
Inserts specified window in front of or behind an existing child. 

Takes P _TK_TABLE_ADD_SIBLlNG, returns STATUS. 

clsChoice first calls its ancestor, then gets its manager via msgTkTableGetManager. If it has no 
manager, clsChoice returns stsOK. Otherwise, clsChoice gets the BUTTON_STYlE. on value of the new 
button and, if that is true, uses msgChoiceMgrSetOnButton to change the choice's' on' button to the 
one just added. 

msgTkTableAddAt 
Inserts specified window table at specified index. 

Takes P_TK_TABLE_ADD_AT, returns STATUS. 

clsChoice first calls its ancestor, then gets its manager via msgTkTableGetManager. If it has no 
manager, clsChoice returns stsOK. Otherwise, clsChoice gets the BUTTON_STYlE. on value of the new 
button and, if that is true, uses msgChoiceMgrSetOnButton to change the choice's' on' button to the 
one just added. 

msgTkTableRemove 
Extracts pArgs from the table. 

Takes WIN, returns STATUS. 

clsChoice first calls its ancestor, then gets its manager via msgTkTableGetManager. If it has no 
manager, clsChoice returns stsOK Otherwise, clsChoice checks to see if the button being removed is 
the one that is currently 'on' (by sending msgChoiceMgrGetOnButton to its manager). If so, the choice 
will either set the manager's' on' button to the first remaining child (if the button's 
BUTTON_STYlE. contact is bsContactLockOn), or to null (if no children remain or the button's 
BUTTON_STYlE. contact is anything else). Put simply, the choice repairs its state according to whether 
the choice is always exactly one value, or can have no value. 

msgTkTableChildDefaults 
Sets the defaults in P _ARGS for a common child. 

Takes P _UNKNOWN, returns STATUS. 

This can be sent to either an instance of clsChoice or to clsChoice itself. Here is the response for either 
case: 

if <pArgs->object.class inherits from clsGWin> 
pArgs->gWin.style.gestureEnable = false; 

if <pArgs->object.class inherits from clsBorder> 
pArgs->border.style.edge = bsEdgeNone; 
pArgs->border.style.topMargin = 1; 
pArgs->border.style.bottomMargin = 1; 

if <pArgs->object.class inherits from clsLabel> 
pArgs->label.style.xAlignment = lsAlignLeft; 



364 PENPOINT API REFERENCE 
Part 4 I UI Toolkit 

if <pArgs->object.class inherits from clsButton> { 
pArgs->button.style.notifyDetail = true; 
pArgs->button.style.contact = bsContactLockOn; 
pArgs->button.style.feedback = bsFeedbackDecorate; 
pArgs->button.style.offDecoration = 

lsDecorationExclusiveOff; 
pArgs->button.style.onDecoration 

lsDecorationExclusiveOn; 



CLAYOUT.H 
This file contains the API definition for clsCustomLayout. clsCustomLayout inherits from clsBorder. 

Provides container windows which position and size their child windows according to complex 
constraints you specify for each child. 

clsT ableLayout 

Debugging Flags 
The clsCustomLayout debugging flag is 'W'. Defined values are: 

flagl (Ox0002) msgWinLayoutSelf info 

You can also set the '0/0' flag to: 

flag8 (OxO 1 00) layout timing 

tifndef CLAYOUT INCLUDED 
tdefine CLAYOUT-INCLUDED 

tifndef BORDER_INCLUDED 
tinclude <border.h> 

tendif 
tifndef _STRING_H_INCLUDED 

#include <string.h> 
tendif 

Common #defines and typedefs 
typedef OBJECT CSTM_LAYOUTi 
typedef struct CSTM LAYOUT STYLE 

U16 limitToRootWin : 1i II limit bounds to stay within theRootWindow 
U16 spare : 15; II unused (reserved) 

CSTM_LAYOUT_STYLE, *P_CSTM_LAYOUT_STYLE; 

limitToRootWin = false 
typedef struct CSTM LAYOUT METRICS 

CSTM LAYOUT STYLE style; II overall style 
U32 - - spare1; II unused (reserved) 
U32 spare2; II unused (reserved) 

CSTM_LAYOUT_METRICS, *P_CSTM_LAYOUT_METRICS; 

Constraints for Custom layout. For each of these, relWin of pNull and relWinTag of zero maps to 
parent. 

Enum16(CSTM LAYOUT CONSTRAINT) 
II for X, y, width, height 

} ; 

clAsIs = 0, II x, y: leave unchanged; w, h: use desired size 
clAbsolute = 1, II use absolute value specified in spec 
II for x, y, width, height: all relative to relWin 
clBefore = 2, II clBefore clMinEdge is one pixel less than 

clSameAs 
clAfter 

clPctOf 

3, 
4, 

5 

II the border recti clBefore clMaxEdge is 
lion the border inner rect 
II same as relWin 
II clAfter clMaxEdge is one pixel after max edge 
II clAfter clMinEdge is on the border inner rect 
II value * relWin I 100 



366 PENPOINT API REFERENCE 
Part 4 I UI Toolkit 

possible edge specifications 

tdefine clMinEdge 0 
tdefine clCenterEdge 1 
tdefine clMaxEdge 2 
tdefine clBaselineEdge 3 

II x: left edge, y: bottom edge 
II x, y: mid point 
II x: right edge, y: top edge 
II x: horiz. baseline, y: vertical baseline 

macro for defining an x or y constraint to align two edges 

tdefine ClAlign(childEdge, constraint, relWinEdge) \ 
( ((childEdge) « 6) I ((relWinEdge) «4) I (constraint) 

macro for defining a w or h constraint to extend to an edge 

tdefine ClExtend(constraint, relWinEdge) \ 
ClAlign (clMaxEdge, constraint, relWinEdg,e) 

can be or' ed into any constraint (except clAsIs or clAbsolute) to refer to opposite dimension. 

tdefine clOpposite flag8 

can be or' ed into any constraint to compute new value as Max(as-is value, constraint-computed value) 
useful for children which need to be at least their desired size, but can be bigger (e.g. extend to parent's 
edge) 

tdefine clAtLeastAsIs flag9 

can be or' ed into any constraint to compute new value as specified constraint or clAsIs if the custom 
layout window has wsShrinkWrap Width/Height on. This allows a child to be shrink wrapped around if 
the custom layout window is computing its own size; or, for example, have the child's width extend to 
the edge of the parent if the parent is forced to a bigger size. 

tdefine clAsIsIfShrinkWrap flag10 

can be or' ed into width or height constraint to exclude a child's width or height from the shrink-wrap 

computation. This is useful for children which align to parent's max edge and overlap other children. 

tdefine clShrinkWrapExclude flag11 

macros to extract the parts of a constraint 

tdefine ClChildEdge(c) (((c) » 6) & Ox3) 
tdefine ClRelWinEdge(c) (((c) » 4) & Ox3) 
tdefine ClConstraint(c) ((c) & Ox7) 
typedef struct CSTM_LAYOUT_DIMENSION { 

CSTM_LAYOUT_CONSTRAINT constraint; 
S32 value; II offset or absolute value 
WIN relWin; II relative window 
U32 relWinTag; II tag of relative window 
U16 valueUnits 6, II units for value (e.g. bsUnitsLayout) 

spare1 10; II unused (reserved) 
U32 spare; I I unused (reserved) 

CSTM_LAYOUT_DIMENSION, *P_CSTM_LAYOUT_DIMENSION; 
typedef struct CSTM_LAYOUT_SPEC { 

CSTM_LAYOUT_DIMENSION x, y, w, h; 
} CSTM_LAYOUT_SPEC, *P_CSTM_LAYOUT_SPEC; 
typedef struct CSTM_LAYOUT_CHILD_SPEC { 

WIN child; 
CSTM_LAYOUT_SPEC metrics; 
BOOLEAN parentShrinkWrapWidth; 
BOOLEAN parentShrinkWrapHeight; 
U32 spare; II unused (reserved) 

CSTM_LAYOUT_CHILD_SPEC, *P_CSTM_LAYOUT_CHILD_SPEC; 



Mess@ge 
Ar9uments 

Mess@ge 
Arguments 

Message 
Arguments 

Comments 

CLAYOUT.H 367 

msgNew 
Creates a custom layout window. 

Takes P_CSTM_LAYOUT_NEW, returns STATUS. Category: class message. 

typedef CSTM LAYOUT METRICS CSTM LAYOUT NEW ONLY, *P_CSTM_LAYOUT_NEW_ONLYi 
#define customLayoutNewFields - \ - -

borderNewFields \ 
CSTM_LAYOUT_NEW_ONLY customLayouti 

typedef struct CSTM_LAYOUT_NEW { 
customLayoutNewFields 

} CSTM_LAYOUT_NEW, *P_CSTM_LAYOUT_NEWi 

msgNewDefaults 
Initializes the CSTM_LAYOUT_NEW structure to default values. 

Takes P_CSTM_LAYOUT_NEW, returns STATUS. Category: class message. 

typedef struct CSTM_LAYOUT_NEW { 
customLayoutNewFields 

} CSTM_LAYOUT_NEW, *P_CSTM_LAYOUT_NEWi 

Zeroes out pNew->customLayout. 

msgCstmLayoutGetMetrics 
Passes back the current metrics. 

Takes P_CSTM_LAYOUT_METRICS, returns STATUS. 

#define msgCstmLayoutGetMetrics MakeMsg(clsCustomLayout, 1) 

typedef struct CSTM_LAYOUT_METRICS 
CSTM_LAYOUT_STYLE style; II overall style 
U32 spare1; II unused (reserved) 
U32 spare2; II unused (reserved) 

CSTM_LAYOUT_METRICS, *P_CSTM_LAYOUT_METRICS; 

msgCstmLayoutSetMetrics 
Sets the current metrics. 

Takes P_CSTM_LAYOUT_METRICS, returns STATUS. 

#define msgCstmLayoutSetMetrics MakeMsg(clsCustomLayout, 2) 

typedef struct CSTM LAYOUT METRICS 
CSTM LAYOUT STYLE style; II overall style 
U32 - - spare1; II unused (reserved) 
U32 spare2; II unused (reserved) 

CSTM_LAYOUT_METRICS, *P_CSTM_LAYOUT_METRICS; 

If style.limitToRootWin is changed, msgWinSetLayoutDirty(true) will be self-sent. 

msgCstmLayoutGetStyle 
Passes back current style values. 

Takes P _CSTM_LAYOUT_STYLE, returns SfATUS. 

#define msgCstmLayoutGetStyle MakeMsg(clsCustomLayout, 5) 



368 PENPOINT API REFERENCE 
Part 4 / UI Toolkit 

MeSSClse 
Arsumenrs 

Mess@ge 

Arsumenb 

MeSSClse 
Arguments 

typedef struct CSTM_LAYOUT_STYLE 
U16 limitToRootWin : 1; II limit bounds to stay within theRootWindow 
U16 spare : 15; II unused (reserved) 

CSTM_LAYOUT_STYLE, *P_CSTM_LAYOUT_STYLE; 

msgCstmLayoutSetStyle 
Sets style values. 

Takes P _CSTM_LAYOUT_STYLE, returns STATUS. 

tdefine msgCstmLayoutSetStyle MakeMsg(clsCustomLayout, 6) 

If style.limitToRootWin is changed, msgWinSetLayoutDirty{ true) will be self-sent. 

CstmLayoutSpeclnit 
Zeros the P_CSTM_LAYOUT_SPEC. 

Returns VOID. 

tdefine CstmLayoutSpecInit(lm) memset((lm), 0, sizeof(CSTM_LAYOUT_SPEC)) 

typedef struct CSTM_LAYOUT_STYLE 
U16 limitToRootWin : 1; II limit bounds to stay within theRootWindow 
U16 spare : 15; II unused (reserved) 

CSTM LAYOUT_STYLE, *P_CSTM_LAYOUT_STYLE; 

This is equivalent to the following: 

x, y, w, h constraint = clAsIs 

You should use CustmLayoutSpecInit to initialize the layout spec that you pass in to 

msgCstmLayoutSetChildSpec. For example: 

CstmLayoutSpecInit(&cs.metrics); 
cs.child = child; 
cs.metrics.x.constraint = ClAlign(clMinEdge, clSameAs, clMinEdge); 
cs.metrics.y.constraint = ClAlign(clMinEdge, clSameAs, clMinEdge); 
ObjCallRet(msgCstmLayoutSetChildSpec, clayout, &cs, s); 

msgCstmLayoutSetChildSpec 
Sets layout spec for given child. 

Takes P _ CSTM_LAYOUT _CHILD _SPEC, returns STATUS. 

tdefine msgCstmLayoutSetChildSpec MakeMsg(clsCustomLayout, 3) 

typedef struct CSTM_LAYOUT_CHILD_SPEC 
WIN child; 
CSTM_LAYOUT_SPEC metrics; 
BOOLEAN parentShrinkWrapWidth; 
BOOLEAN parentShrinkWrapHeight; 
U32 spare; I I unused (reserved) 

CSTM_LAYOUT CHILD_SPEC, *P_CSTM_LAYOUT_CHILD_SPEC; 

Storage will be allocated for the spec. The child spcecification will be used in response to 
msgCstmLayoutGetChildSpec, which is self-sent during msgWinLayoutSelf. 

clsCustomLayout will self-send msgWinSetLayoutDirty{true). 

CstmLayoutS pecInit 



Mess@ge 

ArglJments 

CLAYOUT.H 369 
Messages from other classes 

msgCstmLayoutRemoveChildSpec 
Removes the spec for the specified child (pArgs). 

Takes WIN, returns STATUS. 

#define msgCstmLayoutRemoveChildSpec MakeMsg(clsCustomLayout, 7) 

If a child is extracted or destroyed, and msgCstmLayoutSetChildSpec was used to set the child layout 

constraints, you must use this message to remove the child layout constraints. 

msgCstmLayoutSetChildSpec 

msgCstmLayoutGetChildSpec 
Passes back the current spec for the specified child. 

Takes P _CSTM_LAYOUT_CHILD_SPEC, returns STATUS. Category: self-sent, subclass responsibility. 

#define msgCstmLayoutGetChildSpec 
#define stsCstmLayoutBadRelWin 
#define stsCstmLayoutBadRelWinTag 
#define stsCstmLayoutLoop 
#define stsCstmLayoutBadConstraint 

MakeMsg(clsCustomLayout, 4) 
MakeStatus(clsCustomLayout, 1) 
MakeStatus(clsCustomLayout, 4) 
MakeStatus(clsCustomLayout, 2) 
MakeStatus(clsCustomLayout, 3) 

typedef struct CSTM_LAYOUT_CHILD_SPEC { 
WIN child; 
CSTM_LAYOUT_SPEC metrics; 
BOOLEAN parentShrinkWrapWidth; 
BOOLEAN parentShrinkWrapHeight; 
U32 spare; II unused (reserved) 

CSTM_LAYOUT_CHILD_SPEC, *P_CSTM_LAYOUT_CHILD_SPEC; 

Self-sent during msgWinLayout to retrieve the current spec from subclasses. clsCustomLayout responds 

by returning the stored spec, or an initialized spec (CstmLayoutSpednitO) if none is found. 

Subclasses can catch this message, look at pArgs->child and return the layout constraints for known 

children. 

If pArgs->relWin is not objN ull, this uid will be used as the relative window. Otherwise, if 

pArgs->reIWinTag will be used to find the relative window (i.e. relWinTag should be the window tag of 
the relative window). The relative window must be objNull (in which case the parent is used) or a 

sibling of pArgs-> child. 

status values 

". Messages from other classes 

Comments 

msgSave 
Causes an object to file itself in an object file. 

Takes P_OBLSAVE, returns STATUS. 

clsCustomLayout will save the constraints for each child that has wsSendFile on in its 

WIN_METRICS.flags.style. If a child's constraint specifies a relWin that does not file, the relWin will be 

filed as objN ull. 



370 PENPOINT API REFERENCE 
Part 4 I UI Toolkit 

msgRestore 
Creates and restores an object from an object file. 

Takes P_OBJ_RESTORE, returns STATUS. 

clsCustomLayout will restore the constraints for each child that was filed. 

clsCustomLayout will self-send msgWinSetLayoutDirty(true) if the system font or system font scale 
changed since the table was filed. pArgs->pEnv is cast to a P _ WIN_RESTORE_ENV and must be a valid 

window environment pointer. 

msgWinLayoutSelf 
Tell a window to layout its children (sent during layout). 

Takes P _WIN_METRICS, returns STATUS. 

clsCustomLayout responds by laying out its children. For each child, the following is done: 

• msgCstmLayoutGetChildSpec is self-sent with the following CSTM_LAYOUT_CHILD_SPEC 
parameters: 

child = child to be layed out; 
metrics = result of CstmLayoutSpeclnit(); 
parentShrinkWrapWidth = true if self can shrink wrap width; 
parentShrinkWrapWidth = true if self can shrink wrap height; 

Self can shrink wrap width/height if pArgs->options has wsLayoutResizeon and selfs 
WinShrink Wrap Width/Height(WIN_METRICS.flags.style) is true. 

The passed-back pArgs will be used as the child's layout spec. 

• msgBorderGetOuterOffsets is sent to the child with a default pArgs (RECT32) of (1, 1, 1, 1). The 
outer offsets are used to define "after min edge" or "before max edge" constraints. 

• The x, y, w, h of the child is computed based on its constraints. If the either w or h constraints are 
clAsIs, msgWinGetDesiredSize is sent to the child to determine its desired size. 

If pArgs->options has wsLayoutResize on and selfhas shrink wrap width/height on, the bounding box 
around the layed out children will be computed and passed back in pArgs->bounds.size. If 
style.limitToRootWin is true, and selfhas no parent or selfs parent is theRootWindow, the computed 

size will be limited to insure that self will fit on theRootWindow and selfs origin may be altered (via 
msgWinDelta) to insure the window is fully on screen. 

stsCstmLayoutBadRelWin The relWin specified for a child spec was not the uid of a sibling window. 

stsCstmLayoutBadRelWinTag The relWinTag specified for a child spec was not the tag of a sibling 
window. 

stsCstmLayoutLoop The specified set of child constraints results in a circular layout loop. For 

example, child Xs width clSameAs child B's width and child B's width clSameAs child Xs width. 

stsCstmLayoutBadConstraint A constraint specified for a child is not a valid value. 



CLOSEBOX.H 

This file contains the API definition for clsCloseBox. 

clsCloseBox inherits from clsMenuButton. 

Close boxes are frame decorations that let you close the frame. Close boxes paint as a triangle in the 
upper-left hand corner. 

tifndef CLOSEBOX_INCLUDED 
tdefine CLOSEBOX_INCLUDED 

tifndef MBUTTON_INCLUDED 
tinclude <rnbutton.h> 

tendif 

". Common #defines and typedefs 
tdefine hlpCloseBoxGeneral 
typedef OBJECT CLOSE_BOX; 

MakeTag(clsCloseBox, 1) 

typedef struct CLOSE BOX STYLE { 
U16 spare 7 16; II unused (reserved) 

} CLOSE_BOX_STYLE, *P_CLOSE_BOX_STYLE; 

". Messages 

Arguments 

MessagE! 
Arguments 

Comments 

msgNew 
Creates a close box window. 

Takes P _CLOSE_BOX_NEW, returns STATUS. Category: class message. 

typedef struct CLOSE_BOX_NEW_ONLY { 
CLOSE_BOX_STYLE style; 
U32 spare; II unused (reserved) 

CLOSE_BOX_NEW_ONLY, *P_CLOSE_BOX_NEW_ONLY; 
tdefine closeBoxNewFields \ 

\ menuButtonNewFields 
CLOSE BOX NEW ONLY closeBox; - - -

typedef struct'CLOSE_BOX_NEW { 
closeBoxNewFields 

} CLOSE_BOX_NEW, *P_CLOSE_BOX_NEW; 

msgNewDefaults 
Initializes the CLOSE_BOX_NEW structure to default values. 

Takes P _CLOSE_BOX_NEW, returns STATUS. Category: class message. 

typedef struct CLOSE_BOX_NEW { 
closeBoxNewFields 

} CLOSE_BOX_NEW, *P_CLOSE_BOX_NEW; 

Zeroes out pArgs->closeBox and sets 

pArgs->win.flags.style &= N(U32) (wsShrinkWrapWidth I wsShrinkWrapHeight); 



372 PENPOINT API REFERENCE 
Part 4 / UI Toolkit 

Mess@se 
Arguments 

MessQge 
ArSMmenfs 

pArgs->gWin.style.gestureEnable = false; 
pArgs->gWin.helpld = hlpCloseBoxGeneral; 

pArgs->border.style.edge = bsEdgeBottom; 
pArgs->border.style.shadow = bsShadowNone; 
pArgs->border.style.join = bsJoinSquare; 
pArgs->border.style.leftMargin = bsMarginNone; 
pArgs->border.style.rightMargin = bsMarginNone; 
pArgs->border.style.bottomMargin = bsMarginNone; 
pArgs->border.style.topMargin = bsMarginNone; 

pArgs->button.style.feedback = bsFeedbackNone; 

msgCloseBoxGetStyle 
Passes back the current style values. 

Takes P _ CLOSE_BOX_STYLE, returns STATUS . 

• define msgCloseBoxGetStyle MakeMsg(clsCloseBox, 1) 

typedef struct CLOSE_BOX_STYLE 
U16 spare : 16; II unused (reserved) 

} CLOSE_BOX_STYLE, *P_CLOSE_BOX_STYLEi 

msgCloseBoxSetStyle 
Sets the style values. 

Takes P_CLOSE_BOX_STYLE, returns STATUS . 

• define msgCloseBoxSetStyle MakeMsg(clsCloseBox, 2) 

typedef struct CLOSE_BOX_STYLE 
U16 spare : 16; II unused (reserved) 

CLOSE_BOX_STYLE, *P_CLOSE_BOX_STYLE; 



CMDBAR.H 

This file contains the API definition for c1sCommandBar. 

c1sCommandBar inherits from c1sTkTable. 

Command bars are tkTables of buttons used in option sheets and frames. 

*ifndef CMDBAR_INCLUDED 
*define CMDBAR_INCLUDED 

*ifndef TKTABLE_INCLUDED 
*include <tktable.h> 

Common #defines and typedefs 
typedef OBJECT COMMAND_BAR; 
typedef struct COMMAND BAR STYLE { 

U16 spare - : 16; II unused (reserved) 
} COMMAND_BAR_STYLE, *P_COMMAND_BAR_STYLE; 

". Messages 

Arguments 

Message 
Arg!.mtents 

Comments 

msgNew 
Creates a command bar window. 

Takes P_COMMAND_BAR_NEW, returns STATUS. Category: class message. 

typedef struct COMMAND_BAR_NEW_ONLY { 
COMMAND BAR STYLE style; II overall style 
U32 spare; II unused (reserved) 

COMMAND_BAR_NEW_ONLY, *P_COMMAND_BAR_NEW_ONLY; 
*define commandBarNewFields \ 

tkTableNewFields \ 
COMMAND_BAR_NEW_ONLY commandBar; 

typedef struct COMMAND_BAR_NEW 
commandBarNewFields 

} COMMAND_BAR_NEW, *P_COMMAND_BAR_NEW; 

msgN ewDefaults 
Initializes the COMMAND_BAR_NEW structure to default values. 

Takes P_COMMAND_BAR_NEW, returns STATUS. Category: class message. 

typedef struct COMMAND_BAR_NEW { 
commandBarNewFields 

} COMMAND_BAR_NEW, *P_COMMAND_BAR_NEW; 

Sets 

pArgs->gWin.style.gestureEnable = false; 

pArgs->border.style.backgroundlnk = bslnkGray33; 



374 PENPOINT API REFERENCE 
Part 4 I UI Toolkit 

Meuotje 
ArS1JmenfS 

Messose 
Artjuments 

pArgs->border.style.topMargin = bsMarginMedium; 
pArgs->border.style.bottomMargin = bsMarginMedium; 
pArgs->border.style.leftMargin = bsMarginSmall; 
pArgs->border.style.rightMargin = bsMarginSmall; 

pArgs->tableLayout.style.tblXAlignment = tlAlignCenter; 
pArgs->tableLayout.style.tblYAlignment = tlAlignCenter; 
pArgs->tableLayout.style.childXAlignment = tlAlignCenter; 
pArgs->tableLayout.style.childYAlignment = tlAlignCenter; 
pArgs->tableLayout.style.growChild~idth = false; 
pArgs->tableLayout.style.growChildHeight = true; 

pArgs->tableLayout.numCols.constraint = tlInfinite; 
pArgs->tableLayout.numRows.constraint = tlAbsolute; 
pArgs->tableLayout.numRows.value = 1; 
pArgs->tableLayout.colWidth.constraint = tlGroupMax; 
pArgs->tableLayout.colWidth.gap = defaultColGap; 
pArgs->tableLayout.rowHeight.constraint = tlChildrenMax; 
pArgs->tableLayout.rowHeight.gap = 0; 

Alters pArgs->tkTable.pButtonNew as in msgTkTableChildDefaults. 

msgCommandBarGetStyle 
Passes back the current style values. 

Takes P_COMMAND_BAR_STYLE, returns STATUS. 

#define msgCommandBarGetStyle MakeMsg(clsCommandBar, 1) 

typedef struct COMMAND_BAR_STYLE { 
U16 spare : 16; II unused (reserved) 

} COMMAND_BAR_STYLE, *P_COMMAND_BAR_STYLE; 

msgCommandBarSetStyle 
Sets the style values. 

Takes P _COMMAND_BAR_STYLE, returns STATUS. 

#define msgCommandBarSetStyle MakeMsg(clsCommandBar, 2) 

typedef struct COMMAND_BAR_STYLE { 
U16 spare : 16; II unused (reserved) 

} COMMAND_BAR_STYLE, *P_COMMAND_BAR_STYLE; 

Messages from Other Classes 

msgTkTableChildDefaults 
Sets the defaults in pArgs for a common child. 

Takes P _UNKNOWN, returns STATUS. 

dsCommandBar sets up defaults for each child as follows: 

If the child is a descendant of dsGWin, then 

pArgs->gWin.style.gestureEnable = false; 

If the child is a descendant of dsButton, then 

pArgs->button.style.feedback = bsFeedback3D; 



CONTROL.H 

This file contains the API definition for clsControl. 

clsControl inherits from clsBorder. 

clsControl implements the previewing and client notification behavior of several VI components. 
clsControl is an abstract class -- it is never "instantiated directly. 

Debugging Flags 
The clsControl debugging flag is '%'. Defined values are: 

flag8 (OxO 1 00) msgControlEnable info 

#ifndef CONTROL INCLUDED 
#define CONTROL INCLUDED 

#ifndef BORDER_INCLUDED 
#include <border.h> 

Common #defines and typedefs 
typedef OBJECT CONTROL; 

Dynamic Enable Styles 
Vse one of these values in control's style.dynamicEnable. 

#define csDynamicNone 0 II no dynamic determination of "enabled" 
#define csDynamicClient 1 
#define csDynamicObject 2 
#define csDynamicPargs 3 

II send msgControlProvideEnable to client 
II send msgControlProvideEnable to "object" 
II set "enabled" from pArgs 

typedef struct CONTROL STYLE { 
U16 enable 1, II 

previewGrab 1, II 
previewRepeat 1, II 
previewing 1, II 
dirty 1, II 
previewEnable 1, II 
showDirty 1, II 
dynamicEnable 2, II 
private1 1, II 
spare 6; II 

CONTROL_STYLE, *P_CONTROL_STYLE; 

Default CONTROL_STYLE: 

enable 
previewGrab 
previewRepeat 
previewing 
dirty 
previewEnable 
showDirty 

= true 
= true 
= false 
= false 
= false 
= false 
= true 

if enabled, a control responds to input 
grab input when previews start 
previews repeat on time-out 
msgControlBeginPreview has been sent out 
dirty status 
self-send msgControlBeginPreview, etc. 
visuals reflect dirty state 
how "enable" value is determined 
reserved 
unused (reserved) 



376 PENPOINT API REFERENCE 
Part 4 / UI Toolkit 

Comments 

Message 
Arguments 

Comments 

Comments 

typedef struct CONTROL STRING 
P CHAR pStrinq; 
U16 len; 
U32 spare; II unused (reserved) 

CONTROL_STRING, *P_CONTROL_STRING; 

Advisory return values for subclasses 

fdefine stsControlCancelPreview 
fdefine stsControlCancelRepeat 

msgNew 
Creates a control window. 

MakeWarninq(clsControl, 13) 
MakeWarninq(clsControl, 1) 

Takes P _CONTROL_NEW, returns STATUS. Category: class message. 

typedef struct CONTROL_NEW_ONLY { 
CONTROL_STYLE style; II overall style 
OBJECT client; II client to notify 
U32 spare; II unused (reserved) 

CONTROL_NEW_ONLY, CONTROL_METRICS, 
*P_CONTROL_NEW_ONLY, *P_CONTROL_METRICS; 

fdefine controlNewFields \ 
borderNewFields \ 
CONTROL NEW ONLY control; 

typedef struct CONTROL_NEW 
controlNewFields 

} CONTROL_NEW, *P_CONTROL_NEW; 

Note that setting pArgs->control.style.enable to false does not result in pArgs->border.style.look set to 
bsLookInactive. If you change style.enable after msgNew (via msgControlSetStyle or 

msgControISetEnable), the border.style.look will be changed to match. 

msgNewDefaults 
Initializes the CONTROL_NEW structure to default values. 

Takes P _CONTROL_NEW, returns STATUS. Category: class message. 

typedef struct CONTROL_NEW { 
controlNewFields 

} CONTROL_NEW, *P_CONTROL_NEWi 

Zeroes pArgs->control and sets 

pArqs->win.flaqs.style 1= wsFileInline; 

pArqs->border.style.previewAlter = bsAlterBackqround; 
pArqs->border.style.selectedAlter = bsAlterBackqround; 

pArqs->control.style.enable = true; 
pArqs->control;style.showDirty = true; 

msgSave 
Causes an object to file itself in an object file. 

Takes P _OBl_SA VE, returns STATUS. 

If the client of the control is OSThisAppO, this is remembered and reinstated in msgRestore. In any 

case, the client is not saved. 



Comments 

msgRestore 
Creates and restores an object from an object file. 

Takes P _OBJ_RESTORE, returns STATUS. 

CONTROL.H 377 
Common #defines and typedefs 

clsControl restores the instance from the file. If the client of the control was OSThisAppO when filed, 
the client is set to OSThisAppO, otherwise objNull. 

". Messages Clients Send to Controls 

Messoge 
Arguments 

Messoge 
Arguments 

msgControlGetMetrics 
Passes back the current metrics. 

Takes P_CONTROL_METRICS, returns STATUS. 

fdefine msgControlGetMetrics 

msgControlSetMetrics 
Sets the metrics. 

MakeMsg(clsControl, 1) 

Takes P _CONTROL_METRICS, returns STATUS. 

fdefine msgControlSetMetrics MakeMsg(clsControl, 2) 

msgControlGetStyle 
Passes back the current style values. 

Takes P_CONTROL_STYLE, returns STATUS. 

fdefine msgControlGetStyle MakeMsg(clsControl, 3) 

typedef struct CONTROL STYLE 
U16 enable - 1, II if enabled, a control responds to input 

previewGrab 1, II grab input when previews start 
previewRepeat 1, II previews repeat on time-out 
previewing 1, II msgControlBeginPreview has been sent out 
dirty 1, II dirty status 
previewEnable 1, II self-send msgControlBeginPreview, etc. 
showDirty 1, II visuals reflect dirty state 
dynamicEnable 2, II how "enable" value is determined 
private1 1, II reserved 
spare 6; II unused (reserved) 

CONTROL_STYLE, *P_CONTROL_STYLE; 

msgControlSetStyle 
Sets the style values. 

Takes P _CONTROL_STYLE, returns STATUS. 

fdefine msgControlSetStyle MakeMsg(clsControl, 4) 

typedef struct CONTROL_STYLE 
U16 enable 1, II if enabled, a control responds to 

previewGrab 1, II grab input when previews start 
previewRepeat 1, II previews repeat on time-out 

input 

previewing 1, II msgControlBeginPreview has been sent out 
dirty 1, II dirty status 
previewEnable 1, II self-send msgControlBeginPreview, etc. 
showDirty 1, II visuals reflect dirty state 
dynamicEnable 2, II how "enable" value is determined 
private1 1, II reserved 
spare 6; II unused (reserved) 

CONTROL_STYLE, *p _CONTROL_STYLE; 



378 PENPOINT API REFERENCE 
Part 4 / UI Toolkit 

Comments 

Comments 

If style.enable changes, the control does the following: 

• self-sends msgBorderSetLook, with pArgs ofbsLookActive if style. enable is true, bsLookInactive 
otherwise. 

• self-sends msgControlCancelPreview, pNull if style. enable is false. 

msgControlGetClient 
Passes back metrics.client. 

Takes P _UID, returns STATUS. 

#define msgControlGetClient 

msgControlSetClient 
Sets metrics.client. 

Takes DID, returns STATUS. 

#define msgControlSetClient 

msgControlGetDirty 

MakeMsg(clsControl, 5) 

MakeMsg(clsControl, 6) 

Passes back true if the control has been altered since dirty was set false. 

Takes P _BOOLEAN, returns STATUS. 

#define msgControlGetDirty MakeMsg(clsControl, 15) 

msgControlSetDirty 
Sets style.dirty. 

Takes BOOLEAN, returns STATUS. 

#define msgControlSetDirty MakeMsg(clsControl, 16) 

msgControlGetEnable 
Passes back style.enable. 

Takes P_BOOLEAN, returns STATUS. 

#define msgControlGetEnable MakeMsg(clsControl, 17) 

msgControlSetEnable 
Sets style.enable. 

Takes BOOLEAN, returns STATUS. 

#define msgControlSetEnable MakeMsg(clsControl, 18) 

Responds to changes in style.enable as in msgControlSetStyle. 

msgControlEnable 
The control re-evaluates whether it is enabled.; 

Takes P _CONTROL_ENABLE, returns STATUS. 

#define msgControlEnable MakeMsg(clsControl, 19) 



Comments 

CONTROL.H 379 
Subclass Responsibility Messages 

typedef struct CONTROL_ENABLE { 
WIN root; II In: originator 
OBJECT object; II In: object for msgControlProvideEnable 
BOOLEAN enable; II In: value to use iff csDynamicPargs 
U32 spare; II reserved (unused) 

CONTROL_ENABLE, *P_CONTROL_ENABLE; 

This is commonly used with menu buttons that need to be enabled/disabled according to some 
constraints known to the sender. For example, clsMenuButton sends msgControlEnable to its menu 
before showing the menu, which results in each control in the menu receiving msgControlEnable with 
appropriate parameters. See msgMenuButtonShowMenu (mbutton.h) for sample usage. 

clsControl responds to msgControlEnable as follows: 

• If style.dynamicEnable is csDynamicNone, simply returns stsOK. 

• If style.dynamicEnable is csDynamicPargs, style.enable is set to pArgs->enable. 

• If style.dynamicEnable is csDynamicClient and metrics.client is objNull, does not change enable 
and returns stsO K. 

• If style.dynamicEnable is csDynamicObject and pArgs->object is objNull, sets style. enable to false 
(as in msgControlSetEnable) and returns stsO K. 

The cases that remain are style.dynamicEnable of csDynamicClient or csDynamicObject, and a 
non-null object. 

• If the object is not owned by OSThisProcessO, sets style.enable to false (as in 
msgControlSetEnable) and returns stsOK. Otherwise, s.ends msgControlProvideEnable with the 
following CONTROL_PROVIDE_ENABLE parameters: 

root = pArgs->root; 
control = self; 
tag = self's WIN_METRICS.tag; 
enable = current value of style.enable; 

• If the object responds to msgControlProvideEnable with stsNotUnderstood, sets style.enable to 
true (as in msgControlSetEnable) and returns stsOK. Otherwise, sets style. enable to 

CONTROL_PROVIDE_ENABLE.enable (as in msgControlSetEnable) and returns stsOK. 

msgControlProvideEnable 

Subclass Responsibility Messages 

msgControlGetValue 
Passes back the current "value" of the control. 

Takes P _S32 , returns STATUS. 

fdefine msgControlGetValue MakeMsg(clsControl, 7) 

In response to this message clsControl returns stsNotUnderstood. 

msgControlSetValue 
Sets the current "value" of the control. 

Takes S32 ,returns STATUS. 

fdefine msgControlSetValue MakeMsg(clsControl, 8) 

In response to this message clsControl returns stsNotUnderstood. 



380 PENPOINT API REFERENCE 
Part 4 I UI Toolkit 

Messages Conlrols Send 10 Self 

Comments 

Comments 

Comments 

Comments 

msgControlBeginPreview 
Self-sent when msgPenDown is received. 

Takes P _INPUT_EVENT, returns STATUS. Category: self-sent. 

idefine msgControlBeginPreview MakeMsg(clsControl, 10) 

clsControl responds with stsOK. pArgs is pNull if the preview is not caused by an input event. 

msgControlUpdatePreview 
Self-sent when msgPenMoveDown is received. 

Takes P _INPUT_EVENT, returns STATUS. Category: self-sent. 

idefine msgControlUpdatePreview MakeMsg(clsControl, 11) 

clsControl responds with stsOK. pArgs is pNull if the preview is not caused by an input event. 

msgControlRepeatPreview 
Self-sent if style.repeatPreview is true. Initial delay is 600ms, then immediate repeat until msgPenUp. 

Takes P _INPUT_EVENT, returns STATUS. Category: self-sent. 

idefine msgControlRepeatPreview 

clsControl responds with stsOK. 

MakeMsg(clsControl, 12) 

Subclasses can return stsControlCancelRepeat to prevent the next msgControlRepeatPreview. 

pArgs is pNull if the preview is not caused by an input event. 

msgControlCancelPreview 
Self-sent when style.previewGrab is false and msgPenExitDown is received. Clients or subclasses can 
send this to a control to cancel existing preview. 

Takes P _INPUT_EVENT, returns STATUS. Category: self-sent. 

idefine msgControlCancelPreview 

Sets style. previewing to false. 

MakeMsg(clsControl, 13) 

pArgs is pNull if the preview is not caused by an input event. 

msgControlAcceptPreview 
Self-sent when msgPenUp is received. 

Takes P _INPUT_EVENT, returns STATUS. Category: self-sent. 

idefine msgControlAcceptPreview MakeMsg(clsControl, 14) 

If gestures are enabled this message is not sent until msgGWinGesture is received with xgsl Tap. 

clsControl responds with stsOK. 

pArgs is pNull if the preview is not caused by an input event. 



CONTROL.H 381 
Messages Defined by Other Classes 

". Messages Controls Send to Client 

Arguments 

msgControlProvideEnable 
Sent out to client or "object" during processing of msgControlEnable. 

Takes P _CONTROL_PROVIDE_ENABLE, returns STATUS. 

fdefine msgControlProvideEnable MakeMsg(clsControl, 20) 

typedef struct CONTROL_PROVIDE_ENABLE { 
WIN root; 
CONTROL control; 
TAG tag; 
BOOLEAN enable; 
U32 spare; 

CONTROL_PROVIDE_ENABLE, 

II In: originator 
II In: sending control 
II In: tag of sending control 
II In/Out: enabled value for control 
II unused (reserved) 

*P_CONTROL_PROVIDE_ENABLE; 

Messages Defined by Other Classes 

Comments 

msglnputEvent 
Notification of an input event. 

Takes P_INPUT_EVENT, returns STATUS. 

clsControl first calls ancestor, then responds as follows. (In each of these cases, see below for status 
return value.) 

• If pArgs-> flags has evBorderTaken set (see border.h), assumes clsBorder used the event and returns 
status. 

• If style. enable is false, or style.previewEnable is false, or the event is not a pen event, returns status 
returned by ancestor. 

• If pArgs->devCode is msgPenDown, self-sends msgControlBeginPreview passing along pArgs. If 
return status is stsControlCanceiPreview, returns status. If style.previewRepeat is true, and return 

status is not stsControlCancelRepeat, the control repeats preview after 600ms delay. Sets 
style. previewing to true. 

• If pArgs->devCode is msgPenMoveDown, self-sends msgControlUpdatePreview passing along 
pArgs. If return status is stsControlCancelPreview, sets style. previewing to false and returns status. 

• If pArgs->devCode is msgPenUp, checks GWIN_STYLE.gestureEnable. If true, does nothing and 
returns status. Otherwise, self-sends msgControlAcceptPreview passing along pArgs and returns 

stslnput Terminate. 

• If pArgs->devCode is msgPenExitDown and style.previewGrab is true or style. previewing is false or 
GWIN_STYLE.gestureEnable is true, does nothing and returns status. Otherwise, self-sends 

msgControlCancelPreview passing along pArgs and returns stslnputTerminate. 

clsControl returns stslnputGrabTerminate ifno error was encountered and style.previewing and 

style.previewGrab are true after processing the input event. Otherwise, the status returned by 

ObjectCallAncestorO is returned. 



382 PENPOINT API REFERENCE 
Part 4 / UI Toolkit 

Comments 

Comments 

msgGWinGesture 
Called to process the gesture. 

Takes P _GWIN_GESTURE, returns STATUS. 

If ObjectCallAncestorO returns stsOK, clsControl self-sends msgControlCancelPreviewand returns 
stsOK. 

If pArgs->msg is xgsl Tap and style.previewEnable is true, self-sends msgControlAcceptPreviewand 
returns stsO K. 

All other gestures result in msgGWinForwardedGesture to the control client, followed by 
msgControlCancelPreview to self. 

msgGWinAbort 
Clears the translation state of the GWin. 

Takes void, returns STATUS. 

clsControl responds to this by self-sending msgControlCancelPreview if the receiver is currently 
previewing. 

msgGWinGestureDone 
Sent to signal the end of a gesture. 

Takes P _GWIN_GESTURE, returns STATUS. Category: self-sent. 

clsControl responds to this by self-sending msgControlCancelPreview if the receiver is currently 
previewing. 

msgBorderGetDirty 
Passes back true if any child responds to msgBorderGetDirty with true; otherwise passes back false. 

Takes P_BOOLEAN, returns STATUS. 

clsControl responds by self-sending msgControlGetDirty. If the control is dirty, true is passed back. 
Otherwise, this message is passed on to clsControl's ancestor. clsBorder will respond by passing back 
true if any child of this control is dirty. 

msgBorderSetDirty 
Sends msgBorderSetDirty(pArgs) to each child. 

Takes BOOLEAN, returns STATUS. 

clsControl will call ancestor (to allow clsBorder to dirty any children), then self-send 
msgControISetDirty(pArgs) . 



COUNTER.M 

This file contains the API definition for clsCounter. 

clsCounter inherits from clsT ableLayout. 

Counters are general components which display a current count and provide up/down arrows for the 
user to alter the count. 

Counters are used as notebook frame decorations to provide up/down arrows to move between pages. 

#ifndef COUNTER_INCLUDED 
#define COUNTER INCLUDED 

#ifndef TLAYOUT INCLUDED 
#include <tlayout.h> 

#endif 

Common #defines and typedefs 
#define tagCounterDecArrow 
#define tagCounterLabel 
#define tagCounterIncArrow 
#define hlpCounterDecArrow 
#define hlpCounterLabel 
#define hlpCounterIncArrow 
typedef OBJECT COUNTER; 

MakeTag(clsCounter, 1) 
MakeTag(clsCounter, 2) 
MakeTag(clsCounter, 3) 
tagCounterDecArrow 
tagCounterLabel 
tagCounterIncArrow 

Show Style 
#define 
#define 
#define 
typedef 

U16 

csShowCount o II show "count" only (e.g. "24") 
csShowCountSlashTotal 1 II show "count/total" (e.g. "1/24") 
csShowCountOfTotal 2 II show "count of total" (e.g. "1 of 24") 
struct COUNTER_STYLE { 
numCols 4, II number of columns for shrink-wrap 
show : 3, II what to show 
spare : 9; II unused (reserved) 

COUNTER_STYLE, *P_COUNTER_STYLE; 

Messages 

Arguments 

msgNew 
Creates a counter window. 

Takes P _COUNTER_NEW, returns STATUS. Category: class message. 

typedef struct COUNTER_NEW_ONLY 
COUNTER STYLE 
OBJECT 
S32 
S32 
U32 
U32 

COUNTER_NEW_ONLY, 

style; 
client; II client to notify 
value; II initial count 
total; II total to display 
spare1; II unused (reserved) 
spare2; II unused (reserved) 
*P_COUNTER_NEW_ONLY; 



384 PEN POINT API REFERENCE 
Part 4 I UI Toolkit 

MeSS0ge 
Ar9uments 

Comments 

Messoge 
Arguments 

Messoge 
Arguments 

tdefine counterNewFields 
tableLayoutNewFields 
COUNTER NEW ONLY 

typedef struct COUNTER_NEW 
counterNewFields 

\ 
\ 
counter; 

} COUNTER_NEW, *P_COUNTER_NEW; 

msgNewDefaults 
Initializes the COUNTER_NEW structure to default values. 

Takes P _COUNTER_NEW, returns STATUS. Category: class message. 

typedef struct COUNTER_NEW { 
counterNewFields 

} COUNTER_NEW, *P_COUNTER_NEW; 

Zeroes out pArgs->counter and sets 

pArgs->border.style.leftMargin 
pArgs->border.style.rightMargin 
pArgs->border.style.bottomMargin 
pArgs->border.style.topMargin 

= bsMarginNone; 
= bsMarginNone; 
= bsMarginSmall; 
= bsMarginMedium; 

pArgs->tableLayout.style.growChildWidth 
pArgs->tableLayout.style.growChildHeight 

pArgs->counter.style.numCols = 1; 

Default COUNTER_STYLE: 

numCols 
show 

1 
csShowCount 

msgCounterGetStyle 
Passes back the current style values. 

Takes P _COUNTER_STYLE, returns STATUS. 

false; 
false; 

tdefine msgCounterGetStyle MakeMsg(clsCounter, 1) 

typedef struct COUNTER STYLE { 
U16 numCols 4, II number of columns for shrink-wrap 

show : 3, II what to show 
spare : 9; II unused (reserved) 

COUNTER_STYLE, *P_COUNTER_STYLE; 

msgCounterSetStyle 
Sets the style values. 

Takes P _COUNTER_STYLE, returns STATUS. 

tdefine msgCounterSetStyle MakeMsg(clsCounter, 2) 

typedef struct COUNTER_STYLE { 
U16 numCols 4, II number of columns for shrink-wrap 

show : 3, II what to show 
spare : 9; II unused (reserved) 

COUNTER_STYLE, *P_COUNTER_STYLE; 

If style.numCols requires the counter to be wider, clsCounter will self-send msgWinLayout to relayout. 



Comments 

msgCounterGetClient 
Passes back the current counter client. 

Takes P_OBJECT, returns STATUS. 

*define msgCounterGetClient 

msgCounterSetClient 
Sets the client. 

Takes OBJECT, returns STATUS. 

*define msgCounterSetClient 

msgCounterGetValue 
Passes back the current count value. 

Takes P _S32, returns STATUS . 

. *define msgCounterGetValue 

msgCounterSetValue 
Sets the current counter value. 

Takes S32, returns STATUS. 

MakeMsg(clsCounter, 7) 

MakeMsg(clsCounter, 8) 

MakeMsg(clsCounter, 3) 

*define msgCounterSetValue MakeMsg(clsCounter, 4) 

COUNTER.H 385 
Messages 

If the new value requires the counter to be wider, clsCounter will self-send msgWinLayout to relayout. 

msgCounterGetTotal 
Passes back the current total value. 

Takes P _S32, returns STATUS. 

*define msgCounterGetTotal 

msgCounterSeif otal 
Sets the current total value. 

Takes S32, returns STATUS. 

*define msgCounterSetTotal 

MakeMsg(clsCounter, 11) 

MakeMsg(clsCounter, 12) 

If the new total value requires the counter to be wider, clsCounter will self-send msgWinLayout to 
relayout. 

msgCounterlncr 
Increments the current counter value by adding in pArgs. 

Takes S32, returns STATUS. 

*define msgCounterlncr MakeMsg(clsCounter, 5) 

If the new value requires the counter to be wider, dsCounter will self-send msgWinLayout to relayout. 



386 PENPOINT API REFERENCE 

Part 4 / UI Toolkit 

msgCounterGoto 
Sends msgCounterNotify to the counter's client to alter the counter's value. 

Takes S32, returns STATUS. 

*define msgCounterGoto MakeMsg(clsCounter, 9) 

clsCounter will send msgCounterNotify to the counter's client with the following COUNTER_NOTIFY 
parameters: 

self; counter 
initValue 
action 
value 

current counter value; 
csActionAccept; 

= pArgs; 

The client can alter the value parameter to goto a different value, if desired. 

A common use for this message is to create a menu with individual menu buttons representing 
particular counter values, and set the (msg, data) pair for each menu button to be (msgCounterGoto, 
desired value) and set the menu button's client to be the counter. 

msgCounterGetLabel 
Passes back the counter label window uid. 

Takes P _WIN, returns STATUS. 

*define msgCounterGetLabel MakeMsg(clsCounter, 10) 

The label is an instance of clsMenuButton, and can be given a menu by setting the 
CONTROL_STYLE.previewEnable to true and using msgMenuButtonSetMenu. 

Messages Counters Send to Clients 

Ar~urn$nt$ 

msgCounterNotify 
Sent to the client when an arrow repeats, finishes or cancels. 

Takes P _COUNTER_NOTIFY, returns STATUS. Category: client notification. 

*define msgCounterNotify MakeMsg(clsCounter, 6) 

Enum16 (COUNTER_ACTION) 
csActionIncrement 0, II increment the counter 
csActionDecrement 1, II decrement the counter 
csActionCancel 2, II cancel the incrementldecrement 
csActionAccept = 3, II accept the incrementldecrement 

} ; 

typedef struct COUNTER NOTIFY 
OBJECT counter; II in: counter calling out 
S32 initValue; II in: initial value before repeat 
COUNTER ACTION action; II in: what happened 
S32 value; II in/out: current value 
S32 total; II in: current total value 
U32 spare1; II unused (reserved) 
U32 spare2; II unused (reserved) 

COUNTER_NOTIFY, *P_COUNTER_NOTIFY; 

If the user presses or continues to hold down on the decrement arrow, pArgs->action will be set to 
csActionDecrement. 



COUNTER.H 387 
Messages Counters Send to Clients 

If the user presses or continues to hold down on the increment arrow, pArgs->action will be set to 
csActionIncrement. 

If the user pen's-up over either arrow, pArgs->action will be set to csActionAccept. 

If the user drags out of either arrow, pArgs->action will be set to csActionCancel. 

For any action, pArgs->value will be the current value of the counter and pArgs->initValue will be the 
initial value of the counter when the first csActionIncrement/Decrement was sent out. 

Clients should change pArgs->value to the new desired value. Note that clsCounter does not change the 
value of the counter, other than copying back pArgs->value. 

If pArgs->value is not changed by the client, the value of the counter will not be changed. This allows 
clients to use msgCounterIncr or msgCounterSetValue to alter the value during msgCounterNotify. 





FIELD.H 

This file contains the API definition for clsField 

clsField inherits from clsLabel. 

Implements the UI component to edit, validate and display string data. 

Fields implement the basic UI component to edit simple strings of text. The user-interface for fields has 
been optimized for simple short one row strings of text, although they will function for multiple lines. 
All display information for translated fields is handled in clsLabel. Typically the label layout is fixed, and 
shrink wrap will be turned off in the label. OtherWise the field size will change as the value of the string 
changes, and lead to strange results and behavior. There are three basic User-Interfaces supported 
through the API to edit fields. These are defined in field.style.editType. 

Fields with editType of fstlnline support direct writing, appending, and a number of gestural editing 
operations, including bringing up an IP. Fields with editType of fstPopUp will only allow editing 
through an IP. Fields with editType of fstOverWrite make the field combed and allow over-writing on 
individual characters. These fields have very precise stroke targetting due to the character box 
constraints. This, in combination with only allowing three editing gestures (insert space, delete range, 
and delete character) allows for highly accurate handwriting and gesture recognition and for quick 
correction of mistakes. The down side of this style of field is that a specific UI look is implied. 

To further increase recognition accuracy, fields require a translator for both inline editing and in the IP. 
Translators have a rich API to provide various types of contextual information. This greatly increases 
translation accuracy. See msgNew, msgFieldGetXlate, msgFieldSetXlate, msgFieldCreateTranslator. 

Fields can also be run in delayed mode. Delayed fields allow the user to write into an empty field, and 
not translate the strokes on pen out of proximity. Delayed fields are translated when 
msgFieldTranslateDelayed is sent to the field. See msgFieldfranslateDelayed, 
msgFieldSetDelayScribble, and msgFieldGetDelayScribble for more information. 

Fields will replace newLines with spaces, and will strip trailing spaces when their value is retrieved. The 
value should be set via msgLabelSetString and retrieved via msgLabelGetString. 

Messages from clslnput, messages from clsGWin (other then msgGWinGesture), ,messages from 
clsWin, messages from clsLabel, messages from clsSelection, messages from clsXfer, messages from 
xlate, and messages from clsTracker should NOT be overridden by subclasses of clsField. 

Finally, fields provide simple hooks to allow clients or subclasses to perform various validation according 
to a common protocol. See msgFieldValidate for details. 

*ifndef FIELD INCLUDED 
*define FIELD-INCLUDED 

*ifndef GO_INCLUDED 
*include <go.h> 

*endif 
*ifndef LABEL_INCLUDED 

*include <label.h> 
*endif 
*ifndef XTEMPLT_INCLUDED 

*include <xtemplt.h> 
*endif 

II Next Up: 31 Recycled: 28 



390 PEN POINT API REFERENCE 
Part 4 / UI Toolkit 

COllllllon #defines and typedefs 
typedef OBJECT FIELD; 

Field Editing Types 
These define the types of edit User-Interface the field provides, defining the behavior of the field. These 
are used for style.editType. 

#define fstInline 
#define fstPopUp 
#define fstOverWrite 

Insertion Pad Types 

1 
2 
3 

II Direct editing on field, or through IP 
II Editing only through an IP 
II Editing in combed overwrite field 

These define the type of Insertion Pad that will be created in msgFieldCreatePopUp when the type 
parameter is fipReplaceAll. Note: A call to msgFieldCreatePopUp when the type parameter is fipInsert 
will look at the system preferences to determine the type ofIP. These are used for style.popUpType. 

II#define fstEditBox 1 II Obsolete 
#define fstCharBox 2 II The pop-up is an ipsCharBox IP 
#define fstCharBoxButtons 2 II Obsolete 

Character Box Memory 
For fstOverWrite fields, this defines the number of characters that should be used sent to the translator 
via msgXlateCharMemorySet. This causes the translator to cycle through choices and not return the 
same character from a translation. These are use for style.boxMemory. 

#define fstBoxMemoryZero 
#define fstBoxMemoryOne 
#define fstBoxMemoryFour 

o II Box memory is zero characters 
1 II Box memory is one character 
2 II Box Memory is four characters 

Selection/Input Target 
These define the interaction the field should have with both the selection manager and the input target 
when: 

- msgFieldKeyboardActivate is called 

- the pen is interacting with the field 

- msgFieldTranslateDelayed is called 

- the field is the recipient of a move/ GOpy operation 

These are used for style.focusStyle. 

#define fstInputSelection 1 
#define fstInput 2 
#define fstNone 3 

Upper Case Writer Rules 

II Field takes selection and input target 
II Field takes input target only 
II Field takes neither selection nor target 

These define the capitalization heuristic rules used by the field translator. These rules do not apply when 
the translator is provided by the client of the field, or the writer is not an all-caps writer. These are used 
for style.capOutput. 

#define fstCapAsIs 1 
#define fstCapFirstWord 2 
#define fstCapAllWords 3 
#define fstCapAll 4 



FIELD.H 391 

Common #defines and typedefs 

Translator Type 
These define the type of translator given to and maintained by the field, and affects the parameters to 
msgFieldGetTranslator and msgFieldSetTranslator, the interaction with msgFieldCreateTranslator, 
and msgNew. See these messages for more information. These are used for style.xlateType. 

#define fstXlateObject 0 
#define fstXlateTemplate 1 

Field Style Structure 
The field style structure defines the overall behavior of the field. Information on the v~rious flags can be 
found elsewhere. For information on focusStyle, capOutPut, popUpType, editType, xlateType, delayed 
and boxMemory, see above. 

For information on noSpace and veto, see msgFieldCreateTranslator. 

typedef struct FIELD STYLE 
U16 focusStyle: 2, 

capOutput: 3, 
popUpType : 3, 
editType: 2, 
xlateType: 1, 
clientValidate: 1, 
clientPreValidate: 1, 
clientPostValidate: 1, 
clientNotifyInvalid: 1, 
clientNotifyReadOnly: 1; 

U16 clientNotifyModified: 1, 
validatePending: 1, 
delayed: 1, 

upperCase: 1, 
noSpace: 1, 
privateDatal: 1, 
veto: 1, 
privateData2: 1, 
boxMemory: 2, 
dataMoveable: 1, 
dataCopyable: 1, 
reserved: 5; 

} FIELD_STYLE, *P_FIELD_STYLE; 

Popup Editing Types 

II How field does selection and target 
II Upper case writer cap rules for xlate 
II Insertion pad style for fipReplaceAll 
II Type of editing in field 
II O=xlate object, l=xtemplate 
II client performs validation 
II Notify client before validation 
II Notify client after successful valid 
II Notify client when invalid 
II Notify client when attempt to modify 
II readonly field 
II Notify client when field modified 
II Field not valid since last modification 
II Delayed translation field. Capture 
II strokes till msgFieldTranslateDelayed 
II Field and IP forced to upper case 
II Turn on no space in fld created xlate 
II Internal use only 
II Turn on veto in fld created xlate 
II Internal use only 
II Enable box memory in field and IP 

II Reserved for future use 

These defines are parameters in msgFieldCreatePopUp and msgFieldActivatePopUp. They specify what 
type of edit operation should be performed by this pop-up. Internally, an edit gesture (circle) in an 
fstlnline field or pen input into fstPopUp field will call these messages with fipReplaceAlI. An insert 
caret in an fstlnline field will call with fipInsert. 

#define fipReplaceAll 0 
#define fipInsert 1 
#define fipReplaceRange 2 

Validation data structure 

II The IP displays/edits the field value 
II The IP inserts new text at the insertion pt 
II Unimplemented 

This data structure is used as a parameter to msgFieldValidateEdit, and msgFieldNotifyInvalid to 
capture all validation information. 

typedef struct 
MESSAGE failureMessage; II Reason validation failed 
OBJECT field; II Field to validate 

FIELD_NOTIFY, *P_FIELD_NOTIFY; 



392 PEN POINT API REFERENCE 
Part 4 / UI Toolkit 

Messages 

Arguments 

Comments 

Message 
Arguments 

msgNew 
Creates and initializes a new instance of clsField. 

Takes P _FIELD_NEW, returns STATUS. Category: class message. 

typedef union FIELD_XLATE { 
OBJECT translator; 
P_XTM_ARGS pTemplate; 

FI,ELD_XLATE, *P_FIELD_XLATE; 
typedef struct FIELD NEW ONLY { 

FIELD STYLE style; - II field style, see above 
FIELD-XLATE xlate; II xlate object or template 
U16 - maxLen; II maximum field string length. 0 means no limit 
U32 reserved; II reserved for future use, must be 0 

FIELD_NEW_ONLY, *P_FIELD_NEW_ONLY; 
#define fieldNewFields \ 

labelNewFields \ 
FIELD NEW ONLY field; 

typedef struct FIELD_NEW { 
fieldNewFields 

} FIELD_NEW, *P_FIELD_NEW; 

Will force the label.style to IsBoxTicks for fields of e~itType fstOverWrite. Overwrite fields must have 
label style of Is Box Ticks. Will force gWin.style.gestureEnable to TRUE. Extreme care should be taken 

if changing either of these. The xlate parameter in conjunction with style.xlateType specifies the type of 
translator the field uses. If xlateType is 0, and pNew->field.xlate.translator does not equal objNull, the 

translator will be used for all translations in the field and in the IP, and destroyed when the field is 

destroyed. If xlateType is 1, pNew->field.xlate.pTemplate is used to create, allocate, and compile a 
template. It will also be freed when the field is destroyed. A translator will be created and destroyed as 

needed via msgFieldCreateTranslator from this compiled template. msgFieldCreateTrans will also be 

used when xlateType is 0 and pNew->field.xlate.translator is objNull. 

msgFieldSetXlate 

msgN ewDefaults 
Initializes the FIELD_NEW structure to default values. 

Takes P _FIELD_NEW, returns STATUS. Category: class message. 

typedef struct FIELD_NEW { 
fieldNewFields 

} FIELD_NEW, *P_FIELD_NEW; 

Initializes the default values. Care should be taken when changing the default values of parent classes. 

Examples are win.flags.input, or gwin.style. 

Zeros out pNew->field and sets 

fld.field.style.dataMoveable = true; 
fld.field.style.dataCopyable = true; 
fld.field.style.focusStyle = fstInputSelection; 
fld.field.style.capOutput = fstCapAsIs; 
fld.field.style.editType = fstInline; 
fld.field.style.popUpType = fstCharBoxButtons; 
fld.field.style.xlateType = fstXlateObject; 
fld.field.style.boxMemory = fstBoxMemoryFour; 
fld.field.maxLen = 64; 



Messoge 

Ar90ments 

Message 

Ar90ments 

FIELD.H 393 
Messages 

fld.border.style.edge = bsEdgeBottom; 
fld.gwin.style.firstEnter = TRUE; 
fld.gwin.style.askOtherWin = TRUE; 
fld.gwin.style.otherWinSaysYes = TRUE; 
fld.win.flags.input = inputTip I inputStroke 

inputOutProx I inputInkl inputEnter 
inputHoldTimeout I inputLRContinue I 
inputAutoTerm I input Timeout I inputHWTimeout; 

msgFieldGetStyle 
Passes back the style value held by the field. 

Takes P_FIELD_STYLE, returns STATUS. 

tdefine msgFieldGetStyle MakeMsg(clsField, 1) 

typedef struct FIELD STYLE 
U16 focusStyle: 2, II How field does selection and target 

capOutput: 3, II Upper case writer cap rules for xlate 
popUpType: 3, 
editType: 2, 
xlateType: 1, 
clientValidate: 1, 
clientPreValidate: 
clientPostValidate: 
clientNotifyInvalid: 
clientNotifyReadOnly: 

U16 clientNotifyModified: 
validatePending: 
delayed: 

upperCase: 
noSpace: 
privateData1: 
veto: 
privateData2: 
boxMemory: 
dataMoveable: 
dataCopyable: 
reserved: 

} FIELD_STYLE, *P_FIELD_STYLE; 

msgFieldSetStyle 
Sets the style of the field. 

1, 
1, 
1, 
1; 

1, 
1, 
1, 

1, 
1, 
1, 
1, 
1, 
2, 
1, 
1, 
5; 

Takes P_FIELD_STYLE, returns STATUS. 

tdefine msgFieldSetStyle 

typedef struct FIELD STYLE 
U16 focusStyle: 2, 

capOutput: 3, 
popUpType: 3, 
editType: 2, 
xlateType: 1, 
clientValidate: 1, 
clientPreValidate: 1, 
clientPostValidate: 1, 
clientNotifyInvalid: 1, 
clientNotifyReadOnly: 1; 

U16 clientNotifyModified: 1, 

II Insertion pad style for fipReplaceAll 
II Type of editing in field 
II O=xlate object, l=xtemplate 
II client performs validation 
II Notify client before validation 
II Notify client after successful valid 
II Notify client when invalid 
II Notify client when attempt to modify 
II readonly field 
II Notify client when field modified 
II Field not valid since last modification 
II Delayed translation field. Capture 
II strokes till msgFieldTranslateDelayed 
II Field and IP forced to upper case 
II Turn on no space in fld created xlate 
II Internal use only 
II Turn on veto in fld created xlate 
II Internal use only 
II Enable box memory in field and IP 

II Reserved for future use 

MakeMsg(clsField, 2) 

/1 How field does selection and target 
II Upper case writer cap rules for xlate 
II Insertion pad style for fipReplaceAll 
II Type of editing in field 
II O=xlate object, l=xtemplate 
II client performs validation 
II Notify client before validation 
II Notify client after successful valid 
II Notify client when invalid 
II Notify client when attempt to modify 
II readonly field 
II Notify client when field modified 

------------------



394 PENPOINT API REFERENCE 
Part 4 / UI Toolkit 

Comments 

Comments 

Comments 

validatePending: 1, 
delayed: 1, 

upperCase: 1, 
nOSpace: 1, 
privateDatal: 1, 
veto: 1, 
privateData2: 1, 
boxMemory: 2, 
dataMoveable: 1, 
dataCopyable: 1, 
reserved: 5; 

FIELD_STYLE, *P_FIELD_STYLE; 

II Field not valid since last modification 
II Delayed translation field. Capture 
II strokes till msgFieldTranslateDelayed 
II Field and IP forced to upper case 
II Turn on no space in fld created xlate 
II Internal use only 
II Turn on veto in fld created xlate 
II Internal use only 
II Enable box memory in field and IP 

II Reserved for future use 

If the field is active, will return stsFailed. Setting or clearing the delayed flag will cause changes in 

wm.flags necessary to implement delayed fields. Setting the editType to fstOverWrite will set 

label.style.displayType to IsBoxTicks. Will cancel any current delayed translation taking place and 

remove the scribbles in the field. 

stsFailed The field is currently being edited. This is either through the pen, or a pop up IP. 

msgFieldGetXlate 
Passes back the translator information for the field. 

Takes P_UNKNOWN, returns STATUS. 

fdefine msgFieldGetXlate MakeMsg(clsField, 3) 

If xlateType is 0, the parameter is assumed to be a P _OBJECT and the translator object id is returned. 

Otherwise the parameter is assumed to be a P_UNKNOWN and the COMPILED template is returned. 

xtemplate.h.h 

msgFieldSetXlate 
Specifies the translator information for the field. 

Takes P _UNKNOWN, returns STATUS. 

fdefine msgFieldSetXlate MakeMsg(clsField, 4) 

If xlateType is 0, the argument is assumed to be P _OBJECT being a translator. The old translator is not 

destroyed. IfxlateType is 1, the argument is assumed to be an uncompiled template (P_XTM_ARGS). The 

field code will compile the template and use it to create a translator. Any old compiled template will not 

be freed, and must be done so by a call to XTemplateFreeO by the client. Calling on a delayed field will 

cancel the delayed field, destroying any scribbles captured by the field. 

stsFailed The field is currently being edited with the pen, or through an IP. 

msgFieldCreateT ranslator .h.h 

msgFieldGetMaxLen 
Passes back the maximum length allowed for input in the field. 

Takes P_U16, returns STATUS. 

fdefine msgFieldGetMaxLen MakeMsg(clsField, 5) 



FIELD.H 395 

Insertion Pad Messages 

msgFieldSetMaxLen 
Sets the Maximum length for input in the field. 

Takes P_UI6, returns STATUS. 

tdefine msgFieldSetMaxLen MakeMsg(clsField, 6) 

Sets the limit for the number of characters that are allowed in a field. If maxLen is 0, the maxLen is 
assumed to be a maxU16. However, it is not recommended that fields of that size be created. If the value 
is less than the old value, the value displayed in the field will be truncated to the new value during the 
next edit. 

msgFieldSetCursorPosition 
I Sets the cursor position of the keyboard insertion point in the field. 

Takes P _UI6, returns STATUS. 

tdefine msgFieldSetCursorPosition MakeMsg(clsField, 7) 

The cursor position will not be displayed unless the field has the input target. As a performance 
optimization, this message is not self-sent to set the cursor position. 

msgFieldGetCursorPosition 
Passes the current keyboard insertion cursor position in the field. 

Takes P _UI6, returns STATUS. 

tdefine msgFieldGetCursorPosition MakeMsg(clsField, 8) 

If no cursor position has been set, ° is returned. As a performance optimization, this message is not 
self-sent to inquire cursor position. 

Insertion Pad Messages 

msgFieldActivatePopUp 
Called to cause an Insertion pad to be brought up for the field. 

Takes P_FIELD_ACTNATE_POPUP, returns STATUS. 

tdefine msgFieldActivatePopUp MakeMsg(clsField, 18) 

typedef struct 
U16 type; 
P RECT32 pRect; 
U32 reserved; 

FIELD_ACTIVATE_POPUP, * P_FIELD_ACTIVATE_POPUP; 

If msgFieldAetivate has not been called (due to pen input into the field) it will be called. Will bring the 
up the IP at the passed in pReet location. If NULL, the IP will be centered over the field. The type of IP 
will be passed to msgFieldCreatePop UP. Will return stsFailed if the pop-up is not valid given the type 
and state of the field. For example, an fiplnsert on a filled to maxLen field will return stsFailed. 

stsFailed A popup up could not be created given the state of the field. 



396 PENPOINT API REFERENCE 
Part 4 / UI Toolkit 

msgFieldAcceptPopUp 
Causes the Insertion pad to be accepted. 

Takes void, returns STATUS. 

#define msgFieldAcceptPopUp MakeMsg(clsField, 19) 

Called when the user collapses the insertion pad by hitting the OK button or accepts the IP. Can be 
called programatically as well. 

msgFieldCancelPopU p 
Cancels the edit in the pop-up insertion pad. 

Takes void, returns STATUS. 

#define msgFieldCancelPopUp MakeMsg(clsField, 20) 

Causes the old value to be preserved unchanged. Called when the user hits the cancel button or cancels 
the IP. Can be called programatically as well. 

msgFieldCreatePopUp 
Creates and passes back the insertion pad when the pop up is invoked. 

Takes P _FIELD_CREATE_POPUP, returns STATUS. 

#define msgFieldCreatePopUp 

typedef struct { 
U16 type; 
OBJECT ip; 
U32 reserved; 

MakeMsg(clsField, 27) 

FIELD_CREATE_POPUP, * P_FIELD_CREATE_POPUP; 

Will create the insertion pad for use in the field. If type is fipReplaceAll, will look at style.popUpType 
to determine the type of IP to create. If type is fipInsert, will look at the system preferences for writing 
style and create the appropriate type of Insertion pad. Will return stsFailed if the type is fipInsert and 
the field data length is equal to maxLen. 

stsFailed The pop-up could not be created for the field. 

Delayed Field Messages 

msgFieldTranslateDelayed 
Translates a field with delayed captured strokes. 

Takes NULL, returns STATUS. 

#define msgFieldTranslateDelayed MakeMsg(clsField, 25) 

Causes translation to occur for a field that has style. delayed and has captured strokes pending 
translation. Returns stsMessageIgnored if style.delayed is not set, or if there is no pending translation. 

stsMessageIgnore The field did not have a delayed scribble to translate. 



Return Value 

Return Value 

FIELD.H 397 
Miscellaneous Messages 

msgFieldGetDelayScribble 
Returns the delayed scribble for delayed fields. 

Takes P_OBJECT, returns STATUS. 

idefine msgFieldGetDelayScribble MakeMsg(clsField, 26) 

stsMessageIgnore The field did not have a delayed scribble to translate. Either not a delayed field or no 
scribbles in the field. 

msgFieldSetDelayScribble 
Puts the field in delayed mode with the given scribble. 

Takes P_OBJECT, returns STATUS. 

idefine msgFieldSetDelayScribble MakeMsg(clsField, 30) 

stsFailed The field is currently being edited. This is either through the pen, an IP, or the field contains 
delayed strokes in delayed mode. Undefined behavior if called on a field with delayed scribbles. 

Miscellaneous Messages 

Comments 

Comments 

msgFieldClear 
Clears the value of the field. 

Takes NULL, returns STATUS. 

idefine msgFieldClear MakeMsg(clsField, 29) 

Clears the delay scribble if one exists, otherwise clears the value of the field. 

msgFieldReadOnly 
Self called when an attempt is made to modify a read only field. 

Takes self, returns STATUS. 

idefine msgFieldReadOnly MakeMsg(clsField, 21) 

Will send msgFieldReadOnly to control.client if c1ientNotifyReadOnly is set. it exists. 

msgFieldModified 
Self called when a a field is modified. 

Takes self, returns STATUS. 

idefine msgFieldModified MakeMsg(clsField, 22) 

If the control.dirty bit is clear and the c1ientNotifyModified bit is set, will send msgFieldModified to 
control.client. Will set the control.dirty bit. It is the clients responsibility to clear this bit. Will also set 
the validatePending bit. This bit is cleared after successful validation. 

msgFieldKeyboardActivate 
Activates field for keyboard use. 

Takes void, returns STATUS. 

idefine msgFieldKeyboardActivate MakeMsg(clsField, 23) 



398 PENPOINT API REFERENCE 
Part 4 I UI Toolkit 

Called by client whenever the field is activated for use with the keyboard. Primarily useful for item 

managers that are dealing with keyboard navigation between fields. 

msgFieldCreateT ranslator 
Self called to create a translator. Passes back the translator. 

Takes P_OBJECT, returns STATUS. 

idefine msgFieldCreateTranslator MakeMsg(clsField, 15) 

Used to create the translator based on the compiled template. Called when xlate.xlateType = 1 or when 

xlate.xlateType = 0 and xlate.translator = NULL to create the translator. Will create the translator and 

respect the style.noSpace, style.veto, and style.capOutput settings (for all caps writers). This translator 
will be destroyed when msgFieldDeactivate is called. 

Validation Messages 

msgFieldValidate 
Peforms the validation protocall for a field. 

Takes void, returns STATUS. 

idefine msgFieldValidate MakeMsg(clsField, 9) 

Forces validation of a field. Called when the field loses the input target and validatePending is TRUE. 

Also called when translation is completed in a previouisly empty field. Returns non-error status for 
failed validation, or stsO K for a valid field. 

• calls msgFieldPreValidate on client if field.style.clientPreValidate 

• calls msgFieldValidateEdit on client or on self, depending on style.clientValidate 

• calls msgFieldN otifyInvalid if msgFieldV alidateEdit returns > stsO K 

• calls msgFieldPostValidate on client if field.style.clientPostValidate and msgFieldValidateEdit 

returns stsO K 

• calls msgFieldFormat to format the field if msgFieldValidateEdit returns stsO K. 

• sets the validatePending bit to 0 

msgFieldValidateEdit 

msgFieldPreValidate 
Called on client if the field.style.clientPreValidate is set before validation. 

Takes self, returns STATUS. 

idefine msgFieldPreValidate MakeMsg(clsField, 10) 

Called on the control.client if clientPreValidate is set before validation. Allows clients to pre-process the 

value of a field before validation occurs. 

msgFieldValidateEdit 
Self call to perform validation on the field. 

Takes P_FIELD_NOTIFY, returns STATUS. 

idefine msgFieldValidateEdit MakeMsg(clsField, 11) 



MessClge 
Arguments 

Comments 

Message 
Arguments 

Comments 

Comments 

Comments 

FIELD.H 399 
Messages from other classes 

typedef struct 
MESSAGE failureMessage; II Reason validation failed 
OBJECT field; II Field to validate 

FIELD_NOTIFY, *P_FIELD_NOTIFY; 

Called on self if client Validate is false, or on the client if clientValidate is set. Returns stsOK when 
successful. Puts a failure message in the failureMessage field ofp _FIELD_NOTIFY if not successful, and 

returns a non-error return code. Default returns stsOK. 

msgFieldNotifylnvalid 
Called to notify a field was invalid. 

Takes P_FIELD_NOTIFY, returns SfATUS. 

*define msgFieldNotifyInvalid MakeMsg(clsField, 12) 

typedef struct 
MESSAGE failureMessage; II Reason validation failed 
OBJECT field; II Field to validate 

FIELD_NOTIFY, *P_FIELD_NOTIFY; 

Called on client if fld. field. style. notifylnvalid bit is set and the msgFieldValidateEdit returns a > stsOK 

return code. Allows clients to post a failure message for validation. 

msgFieldPostValidate 
Self call to perform post-validation processing. 

Takes self, returns STATUS. 

*define msgFieldPostValidate MakeMsg(clsField, 13) 

Called on client if field. style. clientPostV alidate is set. Only called if msgFieldValidateEdit returns 

stsOK. Allows client to perform post validation processing. 

msgFieldFormat 
Self call to perform formatting. 

Takes void, returns STATUS. 

*define msgFieldFormat MakeMsg(clsField, 14) 

Self called after validation to perform any formatted the field requires to display itself correctly. Intended 

to be overridden by clients to support field formatting. Only called when msgFieldValidateEdit returns 
stsOK. 

Messages from other classes 

msgFree 
Defined in object.h. 

Takes OBLKEY, returns STATUS. 

Deactivates the field if necessary. Will free the translator if xlateType is 0 and a translator was handed to 

the field. Will free the compiled template if xlateType is 1. Inherits ancestor behavior. 

object.h 



400 PENPOINT API REFERENCE 
Part 4 I UI Toolkit 

Comment's 

msgSave 
Defined in object.h. 

Takes P_OBJ_SAVE, returns STATUS. 

Inherits ancestor behavior first and then stores in the resource file all information about the current state 
of the field, including the translator or template information or the delayed strokes the field contains. 
Fields will not save any information about a current editing operation (through a pop-up, keyboard, or 
pen) in effect. 

object.h 

msgRestore 
Defined in object.h. 

Takes P _OBJ_RESTORE, returns STATUS. 

Inherits ancestor information and restores all information about the field including translator 
information or the delayed strokes the field contains. 

msgSave.h 

msgIPDataAvailable 
Defined in insert.h. 

Takes OBJECT, returns STATUS. 

Sent to the field from an insertion pad when there is data to retrieve from the pop-up pad. Depending 
on the operation that brought up the pad (an insert or edit gesture), will either insert the text from the 
pad at the current insertion point, or replace the value of the field with the IP value. Will destroy the 
pop-up pad created. 

insert.h 

msgIPCancelled 
Defined in insert.h. 

Takes OBJECT, returns STATUS. 

Sent to the field when the insertion pad has been canceled. Will destroy the pad and any changes to the 
text in the pad are ignored. 

insert.h 

msgControlSetDirty 
Defined in control.h. 

Takes BOOLEAN, returns STATUS. 

Inherits behavior from superclass. Will clear all character box memory stored for an overwrite field, 
allowing characters to be returned immediatly from the translator. 

control.h 



FONTLBOX.H 

This file contains the API for clsFontListBox. 

clsFontListBox inherits from clsStringListBox. 

Provides a listbox that is based on the list of currently installed fonts. 

#ifndef FONT'LBOX_INCLUDED 
#define FONTLBOX_INCLUDED 

#ifndef STRLBOX_INCLUDED 
#include <strlbox.h> 

#endif 

". Common #defines and typedefs 
typedef struct 

U16 prune: 16; II FIM_PRONE_CONTROL (see fontmgr.h) 
U16 spare: 16; II reserved 

FONTLB_STYLE, *P_FONTLB_STYLE; 

Default FONTLB_STYLE: 

prune = fimNoPruning (see fontmgr.h) 

msgNew 
Creates a font list box window. 

Takes P _FONTLB_NEW, returns STATUS. Category: class message. 

typedef struct { 
FONTLB STYLE style; II overall style 
U32 spare; II reserved 

FONTLB_NEW_ONLY, *P_FONTLB_NEW_ONLY; 
#define fontListBoxNewFields \ 

stringListBoxNewFields \ 
FONTLB NEW ONLY fontListBox; 

typedef struct { 
fontListBoxNewFields 

} FONTLB_NEW, *P_FONTLB_NEW; 

In response to msgNew, clsFontListBox will set pArgs->listBox.nEntries to zero and then call ancestor. 
It will then use msgFIMGetlnstalledIdList to get the list of fonts currently installed in the system. For 
each font, clsFontListBox will add an entry using msgListBoxInsertEntry that has 'freeEntry' set to 

IbFreeDataDefault and 'data' set to the 1M_HANDLE of the font. 

As a last step, the new listBox instance will be added as an observer of thelnstalledFonts. 

We recommend that clients set pArgs->listBox.style.filing = IbFileMin to avoid unexpected results after 
a font listBox has been restored. See the documentation for msgRestore below. 

msgFIMGetlnstalledIdList obtain the short IDs of all installed fonts. 



402 PENPOINT API REFERENCE 
Part 4 / UI Tool~it 

f¥les£091J: 
J\rt;JtJ!1'JrJ-nfs 

tVie$st:~ge 

%\rt;Jwl1fWtfS 

msgNewDefaults 
Initializes the FONTLB_NEW structure to default values. 

Takes P _FONTLB_NEW, returns STATUS. Category: class message. 

typedef struct { 
fontListBoxNewFields 

} FONT LB_NEW , *P_FONTLB_NEW; 

Zeroes out pArgs->fontListBox and sets: 

pArgs->stringListBox.style.role = slbRoleChoice01; 

msgFontListBoxGetStyle 
Gets the style of a font listbox. 

Takes P _FONTLB_STYLE, returns STATUS. 

#define msgFontListBoxGetStyle 

typedef struct 

MakeMsg(clsFontListBox, 1) 

U16 prune: 16; II FIM_PRUNE_CONTROL (see fontmgr.h) 
U16 spare: 16; II reserved 

FONTLB_STYLE, *P_FONTLB_STYLE; 

Messages from Other Classes 

msgFree 
Sent as the last of three msgs to destroy an object. 

Takes OBLKEY, returns STATUS. 

The receiver will remove itself as an observer of theInstalledFonts. 

msgRestore 
Creates and restores an object from an object file. 

Takes P _OBLRESTORE, returns STATUS. 

clsFontListBox responds by restoring its style values and resynchronizing its entries with respect to the 

list of installed fonts, as is done in msgNew. The restored instance is added as an observer of 
theInstalledF onts. 

Note that this new information may differ from that which had been used the last time the listBox was 

saved, because the list of fonts installed in the system may have changed. Depending on how dsListBox 
filed its entry data, this may lead to odd behavior. The best approach is to use a LIST_BOX_STYLE.filing 

of IbFileMin so that dsListBox won't file any entry information or windows. Because after msgRestore 

the value obtained via msgStrListBoxGetValue may no longer match any entry, clients should use 

msgStrListBoxSetValue to change the value to a short ID from the new list of installed fonts. 

msgSave 
Causes an object to file itself in an object file. 

Takes P _OBJ_SAVE, returns STATUS. 

dsFontListBox responds by writing out its style values. 



Comments 

Comments 

Comments 

Return 'Value 

Comments 

COll1ments 

FONTLBOX.H 403 
Messages from Other Classes 

msgStrListBoxGetValue 
Passes back the value of a string listbox. 

Takes P _U32, returns STATUS. 

c1sFontListBox responds by calling ancestor, converting the resulting 1M_HANDLE *pArgs into the 
FIM_SHORT_ID via msgFIMGetld, and setting *pArgs to this short id. 

msgStrListBoxSetValue 
Sets the value of a string listbox whose role is one of slbRoleChoice*. 

Takes U32, returns STATUS. 

c1sFontListBox responds by converting the incoming pArgs from a FIM_SHORT _ID into the 
1M_HANDLE for the font (msgFIMFindId) and then calling ancestor with this new pArgs. 

msgStrListBoxProvideString 
This message requests the client (or subclass) to provide a string. 

Takes P _STRLB_PROVIDE, returns STATUS. Category: self-sent/client responsibility. 

c1sFontListBox first checks whether pArgs->position is >= the number of fonts described by its cached 
information. If so, c1sFontListBox returns stsFailed. 

Otherwise, c1sFontListBox fills out pArgs->pString with the font name (obtained by using 
msgIMGetName and the 1M_HANDLE pArgs->data) and returns stsOK. 

stsFailed pArgs->position >= number of fonts 

msgIMlnstalled 
A new item was installed. 

Takes P _1M_NOTIFY, returns STATUS. Category: observer notification. 

clsFontListBox responds by resynchronizing its entries with respect to the list of installed fonts, as is 
done in msgNew. 

msgIMDeinstalled 
An item has been deinstalled. 

Takes P _IM_DEINSTALL_NOTIFY, returns STATUS. Category: observer notification. 

c1sFontListBox responds by resynchronizing its entries with respect to the list of installed fonts, as is 
done in msgNew. 





FRAME.H 

This file contains the API definition for clsFrame. 

clsFrame inherits from clsShadow. 

Frames support a single client window, surrounded by a host of optional "decorations" -- title bar, menu 

bar, close box, tab bar, command bar, etc. 

#ifndef FRAME INCLUDED 
#define FRAME=INCLUDED 

#ifndef SHADOW INCLUDED 
#include <shadow.h> 

#endif 

Comm~n #defines and typedefs 
typedef OBJECT FRAME; 
typedef struct FRAME_STYLE { 

U16 titleBar 1, II show/don't show decoration 
menuBar 1, II " 
closeBox 1, II 
cmdBar 1, II " 
tabBar 1, II " 
pageNum 1, II " 
zoomable 1, II true => zoom is allowed 
clipBoard 1, II true => look like a clip board 
maskTitleLine 1, II mask out the closeBox, titleBar, pageNum 
maskMenuLine 1, II mask out the menuBar 
maskAll 1, II mask out title, menu and cmd lines 
maskCmdLine 
useAltVisuals 
spare1 

U16 spare2 
FRAME_STYLE, *p FRAME 

Default FRAME_STYLE: 

titleBar 
menuBar 
closeBox 
cmdBar 
tabBar 
pageNum 
zoomable 
clipBoard 
maskTitleLine 
maskMenuLine 
maskAll 
useAltVisuals 

-

1, 
1, 
3; 
16; 

STYLE; 

= true 
= false 
= true 

false 
= false 
= false 
= true 

false 
false 
false 
false 
false 

II mask out the cmdBar 
II use alternate border visuals 
II unused (reserved) 
II unused (reserved) 

for msgFrameZoomOK, msgFrameZoomed 

typedef struct FRAME ZOOM 
FRAME frame; II in: Frame to zoom. 
BOOLEAN up; II in: True=zoom up, False=zoom down 
WIN toWin; II out: Window to zoom to 
U32 spare; II unused (reserved) 

FRAME_ZOOM, *P_FRAME_ZOOM; 



406 PENPOINT API REFERENCE 

Part 4 / UI Toolkit 

Messages 

msgNew 
Creates a frame window. Passes back the resulting FRAME_METRICS in pArgs->frame. 

Takes P _FRAME_NEW, returns STATUS. Category: class message. 

typedef struct FRAME_NEW_ONLY { 
FRAME_STYLE style; 
WIN clientWin; 
WIN titleBar; 
WIN menuBar; 
WIN closeBox; 
WIN cmdBar; 
P CHAR pTitle; 
OBJECT 
WIN 

client; 
tabBar; 

WIN pageNum; 
U32 sparel; 
U32 spare2; 

FRAME_NEW_ONLY, *P_FRAME_NEW_ONLY, 
FRAME_METRICS, *P_FRAME_METRICS; 

#define frameNewFields \ 
shadowNewFields \ 
FRAME NEW ONLY frame; 

typedef struct FRAME_NEW { 
frameNewFields 

} FRAME_NEW, *P_FRAME_NEW; 

II in only for msgNew 

II page number 
II unused (reserved) 
II unused (reserved) 

clsFrame creates an instance of clsFrameBorder as the frame's border window to be the parent of all of 

the frame decorations (except the tabBar, which is a direct child of the frame). The border window is 

inserted as a child of the frame. 

If pArgs-> frame. style. clipBoard is true, the frame is made opaque and many of the border. style values 

are changed to produce a clipboard style look. 

For each of the decoration visibility style bits (e.g. style.titleBar), the following is done: 

If the style value is true, and the corresponding decoration window (e.g .. titleBar) is not objNull, the 

window provided is inserted aschild of the frame border window. 

If the style value is true and no window is provided (e.g. titleBar objNull), a default instance of the 

decoration is created (e.g. msgNew clsTitleBar) and inserted as a child of the frame border window. 

If the style value is false, the provided decoration window is remembereduse when the style value is set 

to true. 

If style.menuBar is true, the border style of the menuBar is altered to have a bottom edge with thickness 

bs ThicknessDouble and borderInk bsInkGray66. 

If style.titleBar is true, the border style of the title Bar is altered to have a bottom edge with thickness 

bsThicknessDouble (if style.menuBar is false) or bsThicknessSingle (if style.menuBar is true) and 

borderInk bsInkGray66. 

If style.closeBox is true, the border style of the closeBox is altered to match that of the tideBar. 

If style.cmdBar is true and style. clipBoard is false, the border style of the cmdBar is altered to have a top 

edge with thickness bsThicknessDouble and borderInk bslnkGray33. 

If style.maskTitleLine is true, style.closeBox, style.titleBar and style.pageNum are all treated as though 

they are false. 



Message 
Arguments 

Comments 

If style.maskMenuLine is true, style.menuBar is treated as though it is false. 

If style.maskCmdLine is true, style.cmdBar is treated as though it is false. 

FRAME.H 407 
Messages 

If style.maskAll is true, style.maskTideLine, style.maskMenuLine, and style.maskCmdLine are all is 

treated as though they are true. 

msgNewDefaults 
Initializes the FRAME_NEW structure to default values. 

Takes P _FRAME_NEW, returns STATUS. Category: class message. 

typedef struct FRAME_NEW { 
frameNewFields 

} FRAME_NEW, *P_FRAME_NEW; 

Zeroes out pArgs->frame and sets 

pArgs->win.flags.style &= NwsParentClip; 
pArgs->win.flags.style \= wsClipChildren \ wsClipSiblings; 
pArgs->embeddedWin.style.selection = ewSelect; 
pArgs->frame.style.titleBar = true; 
pArgs->frame.style.closeBox = true; 
pArgs->frame.style.zoomable = true; 

msgSave 
Causes an object to file itself in an object file. 

Takes P_OBJ_SAVE, returns STATUS. 

If the client of the frame is OSThisAPPO, this is remembered and reinstated in msgRestore. In any case, 

the client is not saved. 

Each of the frame decorations, including the clientWin, with WIN_METRICS.flags.style.wsSendFile on is 

filed, even if the corresponding visibility style bit (e.g. style. tide Bar) is false. 

msgRestore 
Creates and restores an object from an object file. 

Takes P _OBJ_RESTORE, returns STATUS. 

clsFrame restores the instance from the file. If the client of the frame was OSThisAppO when filed, the 

client is set to OSThisAppO, otherwise objNull. 

Each of the filed decoration windows and the client Win are restored. If the frame was zoomed when 

filed, the frame is unzoomed as in msgFrameZoom(false). 

For each of the following, if the corresponding child windows were not filed (i.e. wsSendFile was not 

on), and the visibility style is on, default instances will not be created and the visibility style will be set to 

false: menuBar, cmciBar, and tabBar. For example, if the frame was filed with style.menuBar true and 

the menuBar did not have wsSendFile on, the restored frame will have style.menuBar false, and the 

menuBar in FRAME_METRICS set to objNull. 



408 PENPOINT API REFERENCE 
Part 4 / UI Toolkit 

Comments 

MessCI!i.le 
Arguments 

msgFree 
Sent as the last of three msgs to destroy an object. 

Takes OBLKEY, returns STATUS. 

All children of the frame border window are destroyed. Decoration windows with visibility style bits off 

are also destroyed. 

ms~raJne(ie~etrics 

Passes back the metrics. 

Takes P _FRAME_METRICS, returns STATUS. 

tdefine msqFrameGetMetrics 

msgFraJneSe~etrics 

Sets the metrics. 

MakeMsq(clsFrame, 1) 

Takes P _FRAME_METRICS, returns STATUS. 

tdefine msqFrameSetMetrics MakeMsq(clsFrame, 2) 

clsFrame replaces existing decoration windows with those provided. For example, if pArgs->titleBar 

specifies a new titleBar, the existing titleBar is extracted from the window tree and the new titleBar 

inserted as a child of the frame border window. 

Note that the old decoration windows are not destroyed and are no longer referenced by the frame (the 

client is free to destroy them at this point). 

Frame style values are changed as in msgFrameSetStyle. 

msgFraJne(ietS~le 

Passes back the current style values. 

Takes P _FRAME_STYLE, returns STATUS. 

tdefine msqFrameGetStyle MakeMsq(clsFrame, 22) 

typedef struct FRAME_STYLE 
U16 titleBar 1, II show/don't show decoration 

menuBar 1, II " 
closeBox 1, II " 
cmdBar 1, II " 
tabBar 1, II " 
pageNum 1, II " 
zoomable 1, II true => zoom is allowed 
clipBoard 1, II true => look like a clip board 
maskTitleLine 1, II mask out the closeBox, titleBar, paqeNum 
maskMenuLine 1, II mask out the menuBar 
maskAll 1, II mask out title, menu and cmd lines 
maskCmdLine 1, II mask out the cmdBar 
useAltVisuals 1, II use alternate border visuals 
sparel 3; II unused (reserved) 

U16 spare2 16; II unused (reserved) 
FRAME_STYLE, *P_FRAME_STYLE; 



Message 
Arguments 

Comments 

msgF rameSetStyle 
Sets the style. 

Takes P_FRAME_STYLE, returns STATUS. 

fdefine msgFrameSetStyle MakeMsg(clsFrame, 23) 

typedef struct FRAME_STYLE 
U16 titleBar 1, II show/don't show decoration 

menuBar 1, II 
closeBox 1, II 
cmdBar 1, II " 
tabBar 1, II 
pageNum 1, II " 
zoomable 1, II true => zoom is allowed 
clipBoard 1, II true => look like a clip board 

FRAME.H 409 
Messages 

maskTitleLine 1, II mask out the closeBox, titleBar, pageNum 
maskMenuLine 1, II mask out the menuBar 
maskAll 1, II mask out title, menu and cmd lines 
maskCmdLine 1, II mask out the cmdBar 
useAltVisuals 1, II use alternate border visuals 
spare1 3; II unused (reserved) 

U16 spare2 16; II unused (reserved) 
FRAME_STYLE, *p FRAME_STYLE; 

The new decoration visibility style bits (e.g. style.titleBar) are treated as in msgNew. Setting a visibility 
bit to false results in extracting the corresponding decoration window (e.g. metrics.titleBar) from the 
frame border window. Note that the extracted decoration window is not destroyed; but remembered for 
later use when the visibility bit is set to true. 

If style.useAltVisuals is changed from false to true, the alternate frame border visuals are applied to the 
frame's border style. 

If style.useAltVisuals is changed from true to false, the normal frame border visuals are applied to the 
frame's border style. 

Note that changing style;clipBoard is not implemented. 

msgFrameGetClientWin 
Passes back metrics.clientWin. 

Takes P_WIN, returns STATUS. 

fdefine msgFrameGetClientWin 

msgFrameSetClientWin 
Sets metrics.clientWin. 

Takes WIN, returns STATUS. 

fdefine msgFrameSetClientWin 

MakeMsg(clsFrame, 24) 

MakeMsg(clsFrame, 25) 

The old clientWin, if any, is not destroyed and is no longer referenced by the frame. 

msgFrameGetMenuBar 
Passes back metrics.menuBar. 

Takes P _WIN, returns STATUS. 

fdefine msgFrameGetMenuBar MakeMsg(clsFrame, 26) 

~ 



410 PENPOINT API REFERENCE 
Part 4 I UI Toolkit 

Comments 

msgFrameSetMenuBar 
Sets metrics.menuBar; also sets style.menuBar to true if pArgs is not objNull, else false. 

Takes WIN, returns STATUS. 

idefine msqFrameSetMenuBar MakeMsq(clsFrame, 27) 

The menuBar is cha~ged as in msgFrameSetMetrics. 

msgFrameDestroyMenuBar 
Sets style.menuBar to false and destroys the existing menu bar, if any. 

Takes VOID, returns STATUS. 

idefine msqFrameDestroyMenuBar MakeMsq(clsFrame, 28) 

msgFrameSetTide 
Sets the string in the metrics.titleBar. 

Takes P _CHAR, returns STATUS. 

idefine msqFrameSetTitle MakeMsq(clsFrame, 3) 

This results in msgLabelSetString to metrics.titleBar. 

msgF rameGetClient 
Passes back metrics.client. 

Takes P _OBJECT, returns STATUS. 

idefine msqFrameGetClient 

msgFrameSetClient 
Sets metrics.client. 

Takes OBJECT, returns STATUS. 

idefine msqFrameSetClient 

msgF rameGetAltVisuals 

MakeMsq(clsFrame, 4) 

MakeMsq(clsFrame, 5) 

Passes back the alternate border visuals. 

Takes P _BORDER_STYLE, returns STATUS. 

idefine msqFrameGetAltVisuals 

msgFrameSetAltVisuals 
Sets the alternate border visuals. 

MakeMsq(clsFrame, 29) 

Takes P _BORDER_STYLE, returns STATUS. 

idefine msqFrameSetAltVisuals MakeMsq(clsFrame, 30) 

If style.useAltVisuals is true, the new alternate visuals are applied to the frame's border style. 



Comments 

Comments 

Comments 

Comments 

msgFrameGetNormalVisuals 
Passes back the normal border visuals. 

Takes P _BORDER_STYLE, returns STATUS. 

*define msgFrameGetNormalVisuals MakeMsg(clsFrame, 31) 

This is equivalent to msgBorderGetStyle if style.useAltVisuals is false. 

msgFrameSetNormalVisuals 
Sets the normal border visuals. 

Takes P _BORDER_STYLE, returns STATUS. 

*define msgFrameSetNormalVisuals MakeMsg(clsFrame, 32) 

FRAME.H 411 
Messages 

If style.useAltVisuals is false, the new normal visuals are applied to the frame's border style. 

msgFrameShowSelected 
Makes the frame look selected or not. 

Takes BOOLEAN, returns STATUS. 

*define msgFrameShowSelected 

msgFrameMoveEnable 
Enables or disables VI for moving. 

Takes BOOLEAN, returns STATUS. 

*define msgFrameMoveEnable 

MakeMsg(clsFrame, 17) 

MakeMsg(clsFrame, 19) 

clsFrame alters the border.style.drag of the metrics.titleBar to be bsDragHoldDown if pArgs is true, 
bsDragNone otherwise. 

msgFrameResizeEnable 
Enables or disables VI for resizing. 

Takes BOOLEAN, returns STATUS. 

*define msgFrameResizeEnable MakeMsg(clsFrame, 20) 

clsFrame alters the border.style.resize of self to be bsResizeCorner if pArgs is true, bsResizeNone 
otherwise. 

msgFrameIsZoomed 
Passes back true if the frame is currently zoomed. 

Takes P_BOOLEAN, returns STATUS. 

*define msgFrameIsZoomed MakeMsg(clsFrame, 21) 

msgFrameI>elete 
Asks the frame's client to delete the frame. 

Takes nothing, returns STATUS. 

tdefine msgFrameDelete MakeMsg(clsFrame, 7) 

clsFrame forwards this message to the client with self as the pArgs. 



412 PENPOINT API REFERENCE 
Part 4 / UI Toolkit 

Comments 

msgFrameClose 
Asks the frame's client to close the frame. 

Takes nothing, returns STATUS. 

idefine msgFrameClose MakeMsg(clsFrame, 8) 

clsFrame forwards this message to the client with self as the pArgs. 

msgFrameFloat 
Asks the frame's client to float the frame. 

Takes VOID, returns STATUS. 

idefine msgFrameFloat MakeMsg(clsFrame, 9) 

clsFrame forwards this message to the client with self as the pArgs. 

msgFrameZoom 
Zooms the frame up or down. 

Takes BOOLEAN, returns STATUS. 

ide fine msgFrameZoom MakeMsg(clsFrame, 6) 

If style.zoomable is false, nothing is done and stsOK is returned. 

Otherwise, msgFrameZoomOK is sent to the client with the following FRAME_ZOOM parameters: 

frame 
up 
toWin 

= self; 
= pArgs; 
= objNull; 

If the client returns stsRequestDenied or does not set the FRAME_ZOOM.toWin, the client's status is 
returned. 

If the frame is already zoomed as pArgs requests, nothing is done and stsO K is returned. 

If pArgs is true and style. clipBoard is false, the frame is zoomed up as follows: 

• The frame is made opaque by turning off wsTransparent in WIN_METRICS. flags. style 'and turning 
off input Transparent in WIN_METRICS .flags.in put. 

• The border edges, shadow, margin and resize handles on the frame are all turned off. 

• The current frame window bounds and parent are remembered for restoration in unzoom. 

• The frame is extracted from its current parent and inserted as a child of the FRAME_ZOOM.toWin 
with a window bounds computed to zoom the inner rect of the frame into the 

FRAME_ZOOM. to Win. The inner rect is computed using msgBorderGetOuterOffsets on the frame. 

If pArgs is false and style. clipBoard is false, the frame is zoomed . down as follows: 

• The frame is made transparent by turning on wsTransparent in WIN_METRICs.flags.style and 
turning on input Transparent in WIN_METRICS.flags.input. 

• The border edges, shadow, margin and resize handles on the frame are all restored to their values 
before the zoom. 

• The frame is extracted from its current parent and inserted in its original parent with its original 
window bounds. 

After the frame is zoomed/unzoomed it is layed out via msgWinLayout to self 



Message 
Arguments 

FRAME.H 413 
Messages 

clsFrarne then sends the following notifications of the zoom/unzoom: 

• self-send msgFrarneZoomed with the FRAME_ZOOM as pArgs. 

• msgFrameZoomed to its client with the FRAME_ZOOM as pArgs. 

• self-sends msgNotifyObservers with the following OBLNOTIFY_OBSFRVERS parameters: 

msg = msgFrameZoomed; 
pArgs = address of FRAME_ZOOM used to zoom/unzoom; 
lenSend = sizeof(FRAME_ZOOM); 

msgF rameSelect 
Selects the frame. 

Takes VOID, returns STATUS. 

idefine msgFrameSelect MakeMsg(clsFrame, 18) 

msgFrarneSelectOK(self) is sent to the client. 

msgFrameZoomOK 
Sent to the client when msgFrarneZoom is received. 

Takes P _FRAME_ZOOM, returns STATUS. Category: client notification. 

ide fine msgFrameZoomOK 

typedef struct FRAME ZOOM 
FRAME frame; 
BOOLEAN up; 
WIN toWin; 
U32 spare; 

FRAME_ZOOM, *P_FRAME_ZOOM; 

msgFrameSelectOK 

MakeMsg(clsFrame, 11) 

II in: Frame to zoom. 
II in: True=zoom up, False=zoom down 
II out: Window to zoom to 
II unused (reserved) 

Sent to the client when msgFrarneSelect is received. 

Takes FRAME, returns STATUS. Category: client notification. 

idefine msgFrameSelectOK MakeMsg(clsFrame, 16) 

The client should alter the frame to look selected. 

msgFrameZoomed 
Sent to client and observers after frame is zoomed. 

Takes P _FRAME_ZOOM, returns STATUS. Category: client & observer notification. 

idefine msgFrameZoomed 

typedef struct FRAME ZOOM 
FRAME frame; 
BOOLEAN up; 
WIN toWin; 
U32 spare; 

FRAME ZOOM, *p FRAME ZOOM; - -

II 
II 
II 
II 

MakeMsg(c!sFrame, 12) 

in: Frame to zoom. 
in: True=zoom up, False=zoom down 
out: Window to zoom to 
unused (reserved) 



414 PEN POINT API REFERENCE 
Part 4 / UI Toolkit 

msgFrameClosed 
Sent to client and observers after frame is closed. pArgs is the frame. 

Takes WIN, returns STATUS. Category: client & observer notification. 

fdefine msgFrameClosed 

Note: not implemented. 

msgFrameFloated 

MakeMsg(clsFrame, 13) 

Sent to client and observers after frame is floated. 

Takes YOID, returns STATUS. Category: client & observer notification. 

fdefine msgFrameFloated 

Note: not implemented. 

msgFrameTopped 

MakeMsg(clsFrame, 14) 

Sent to client anq observers after frame is brought to top. 

Takes YOID, returns STATUS. Category: client & observer notification. 

fdefine msgFrameTopped 

Note: not implemented. 

MakeMsg(clsFrame, 15) 

Messages from Other Classes 

msgGWinForwardedGesture: 
Called to process the gesture. 

Takes P_GWIN_GESTURE, returns STATUS. 

clsFrame maps certain gestures forwarded from the frame's titleBar into self-sent messages. Other 

gestures are forwarded to the frame's client. 

If the pArgs->uid is not metrics.titleBar or a direct child of metrics.titleBar, 
msgGWinForwardedGesture(pArgs) will be sent to the frame's client. clsFrame will return the client's 

return status from this message. 

The value of pArgs->msg is processed as follows: 

• If xgsFlickUp!Down and the system preference with tag tagPrDocZooming is prDocZoomingOn, 
msgF rameZoom( true! false) is self-sent. 

• If xgsCross, msgFrameDelete(pNull) is self-sent. 

• If xgsPlus, msgFrameSelect(pNull) is self-sent. 

• If xgs2Tap, msgFrameFloat(pNull) is self-sent. 

• If xgs3Tap, the frame's WIN_METRICs.flags.style.wsMaskWrapWidth/Height flags are cleared and 
msgWinLayout(WIN_METRICS.options=wsLayoutDefault) is self-sent. This results in a re-Iayout to 

the frame's desired size. 



Comments 

FRAME.H 415 

Messages from Other Classes 

• If xgsTrplFlickUp and the DEBUG version of tk.dll is installed, msgWinDumpTree is self-sent 
with pArgs of self or theRootWindow if the 'I' debug flag has value 1. Note that 
msgWinDumpTree requires the debug version of win.dll to be installed. This is usefull for 
debugging window layout problems. 

• All other gestures result in msgGWinForwardedGesture{pArgs) to the frame's client. 

msgTrackProvideMetrics 
Sent to a tracker.client before tracker is created. 

Takes P _TRACK_METRICS, returns STATUS. Category: third-party notification. 

If pArgs-> min WH and pArgs->maxWH allow the width to change, pArgs-> min WH.w is set to a small 
value to prevent the frame from being resized to zero. 

If pArgs-> min WH and pArgs->maxWH allow the height to change, pArgs->min WH.h is set to prevent 
the frame from being resized smaller than the sum of the metrics. title Bar and metrics.menuBar heights. 

The value of pArgs->style.draw is altered to present the proper visual given the frame's style.tabBar and 
style.cmdBar. 

msgTrackProvideMetrics{pArgs) is sent to the frame's client. 

msgWinSetFlags 
Sets the window flags. 

Takes P_WIN_METRICS, returns STATUS. 

clsFrame alters the metric.clientWin's window flags to match the wsShrinkWrap Width/Height flags of 
the frame. 

msgCstmLayoutGetChildSpec 
Passes back the current spec for the specified child. 

Takes P _CSTM_LAYOUT_CHILD_SPEC, returns STATUS. Category: self-sent. 

clsFrame responds by providing the custom layout constraints for metrics.tabBar, metrics.cmdBar, and 
the frame's border window. 

Note that the decoration windows and the metrics.clientWin are actually children of the frame's border 
window, which is an instance of clsFrameBorder. clsFrameBorder responds to 

msgCstLayoutGetChildSpec by providing the custom layout constraints for its children (e.g. titleBar at 
the top, menuBar below titleBar, etc.). 

msgWinSend 
Sends a message up a window ancestry chain. 

Takes WIN_SEND, returns STATUS. 

If pArgs->msg is msgBorderProvideDeltaWin and the frame is zoomed, clsFrame returns stsOK. This 
prevents a zoomed frame from being resized. 





GRABBOX.H 

This file contains the API definition for clsGrabBox. 

clsGrabBox inherits from clsObject. 

Provides popup grab handles; uses clsTrack internally. 

GrabBoxes are used primarily by clsBorder to display resize handles, although other uses are possible. 

*ifndef GRABBOX INCLUDED 
*define GRABBOX-INCLUDED 

*include <clsmgr.h> 

*include <sysgraf.h> 

Common #defines and typedefs 
typedef OBJECT 

Type styles 
*define gbTypeResize 
II 
II 
II 

Locations styles 

o II resize 
1 II unused (reserved) 

3 II unused (reserved) 

*ifndef CLSMGR_INCLUDED 

#endif 
#ifndef SYSGRAF_INCLUDED 

#endif 

*define gbLocULCorner 0 
*define gbLocURCorner 1 
*define gbLocLRCorner 2 
*define gbLocLLCorner 3 
*define gbLocLeftEdge 4 

II upper-left corner 
II upper-right corner 
II lower-right corner 
II lower-left corner 
II left edge 

*define gbLocRightEdge 5 II right edge 
*define gbLocBottomEdge 6 II bottom edge 
*define gbLocTopEdge 7 II top edge 
*define gbLocNone 8 II no edge 

typedef struct GRAB BOX STYLE 
U16 type 2, II type of grab box 

loc 4, II location of grab box 
autoDestroy 1, II destroy self on take down 
autoTakeDown 1, II take down if pen is outside grab box 
spare 8; II unused (reserved) 

GRAB_BOX_STYLE, *P_GRAB_BOX_STYLE; 

type 
loc 
autoDestroy 
autoTakeDown 

= gbTypeResize 
= gbLocULCorner 
= true 
= true 



418 PENPOINT API REFERENCE 
Part 4 I UI Toolkit 

Messoge 

Arguments 

Messoge 

Arguments 

typedef struct GRAB BOX INFO { 
WIN win; - - II window over which grab box will be drawn 
U16 thickness; II thickness of visible grab area, in twips 
U16 length; I I length of visible grab area, in twips 
RECT32 outerMargin; II thickness of invisible grab area, in twips 
BOOLEAN includeOuter; II true to include invisible area 
BOOLEAN penIsDown; II true if pen is down (for msgGrabBoxShow) 
XY32 downXY; II xy on pen down in win space (for msgGrabBoxShow) 
U16 visualInset; II amount to inset length for visual, in twips 
U16 cornerRadius; II radius for round corners (zero for square), in twips 
U32 spare1; II unused (reserved) 
U32 spare2; II unused (reserved) 

GRAB BOX_INFO, *P_GRAB_BOX_INFO; 

msgNew 
Creates a grab box object. 

Takes P _GRAB_BOX_NEW, returns STATUS. Category: class message. 

typedef struct GRAB_BOX_NEW_ONLY 
GRAB BOX STYLE style; II overall style 
WIN - - client; II window to grab 
XY32 xy; II unused 
WIN xyWin; II unused 
U8 margin; II unused 
U32 spare; II unused (reserved) 

GRAB BOX NEW ONLY, *p GRAB BOX NEW ONLY, 
GRAB=BOX=METRICS, *P_GRAB_BOX_METRICS; 

#define grabBoxNewFields \ 
objectNewFields \ 
GRAB_BOX_NEW_ONLY grabBox; 

typedef struct { 
grabBoxNewFields 

} GRAB_BOX_NEW, *P_GRAB_BOX_NEW; 

msgNewDefaults 
Initializes the GRAB_BOX_NEW structure to default values. 

Takes P _GRAB_BO)CNEW, returns STATUS. Category: class message. 

typedef struct { 
grabBoxNewFields 

} GRAB_BOX_NEW, *P_GRAB_BOX_NEW; 

Zeroes out pArgs->grabBox and sets 

pArgs->grabBox.style.autoDestroy = true; 
pArgs->grabBox.style.autoTakeDown = true; 

msgGrabBoxGetStyle 
Passes back current style values. 

Takes P _GRAB_BOX_STYLE, returns STATUS. 

#define msgGrabBoxGetStyle MakeMsg(clsGrabBox, 1) 

typedef struct GRAB BOX STYLE 
U16 type 2, II type of grab box 

loc 4, II location of grab box 
autoDestroy 1, II destroy self on take down 
autoTakeDown 1, II take down if pen is outside grab box 
spare 8; II unused (reserved) 

GRAB_BOX_STYLE, *p GRAB BOX_STYLE; 



Message 
Arguments 

Comments 

Comments 

Message 
Arguments 

GRABBOX.H 419 
Common #defines and typedefs 

msgGrabBoxSetStyle 
Sets style values. 

Takes P_GRAB_BOX_STYLE, returns STATUS. 

*define msgGrabBoxSetStyle MakeMsg(clsGrabBox, 2) 

typedef struct GRAB BOX STYLE 
U16 type 2, II type of grab box 

loc 4, II location of grab box 
autoDestroy 1, II destroy self on take down 
autoTakeDown 1, II take down if pen is outside grab box 
spare 8; II unused (reserved) 

GRAB_BOX_STYLE, *P_GRAB_BOX_STYLE; 

Note that changing style.loc or style.type while the grab box is being shown is not supported. 

msgGrabBoxGetMetrics 
Passes back current metrics. 

Takes P _GRAB_BOX_METRICS, returns STATUS. 

*define msgGrabBoxGetMetrics 

msgGrabBoxSetMetrics 
Sets metrics. 

MakeMsg(clsGrabBox, 3) 

Takes P _GRAB_BOX_METRICS, returns STATUS. 

*define msgGrabBoxSetMetrics MakeMsg(clsGrabBox, 4) 

Sets the style as in msgGrabBoxSetStyle. 

msgGrabBoxShow 
Puts Up or takes down the grab box. 

Takes P _GRAB_BOX_INFO, returns STATUS. 

*define msgGrabBoxShow MakeMsg(clsGrabBox, 5) 

typedef struct GRAB BOX INFO { 
WIN win; - - II window over which grab box will be drawn 
U16 thickness; II thickness of visible grab area, in twips 
U16 length; II length of visible grab area, in twips 
RECT32 outerMargin; II thickness of invisible grab area, in twips 
BOOLEAN includeOuter; II true to include invisible area 
BOOLEAN penIsDown; II true if pen is down (for msgGrabBoxShow) 
XY32 downXY; II xy on pen down in win space (for msgGrabBoxShow) 
U16 visualInset; II amount to inset length for visual, in twips 
U16 cornerRadius; II radius for round corners (zero for square), in twips 
U32 spare1; II unused (reserved) 
U32 spare2; II unused (reserved) 

GRAB BOX INFO, *P_GRAB_BOX_INFO; 

If pArgs is not pNull, clsGrabBox will grab input using InputSetGrabO and paint the grab box. If 
style.autoTakeDown is true, the grab box will be taken down when the pen leaves proximity or moves 

out of the grab box with the pen up. 

If pArgs is pNull, clsGrabBox will take down the grab box and self-send msgDestroy{pNull) if 
style.autoDestroy is true. 



420 PENPOINT API REFERENCE 
Part 4 I UI Toolkit 

The area on which the grab box was drawn will be damaged with msgWinDirtyRect when the grab box 
is taken down. 

The grab box is drawn in the rectangle computed by GrabBoxLocToRectO. 

". Public Functions 

GrabBoxIntersect 
Determines where pRect is in win. Returns a grab box location, e.g. gbLocLRCorner. 

Returns U16. 

Function Prototype U16 EXPORTED GrabBoxIntersect ( 

Comments 

Function Prototype 

Comments 

P_GRAB_BOX_INFO pInfo, II info about grab box locations 
P_RECT32 pRect II Rect to intersect 

) ; 

pRect->origin is commonly the coordinate of an event in plnfo->win's space, in device units. 

pInfo->thickness is the thickness (in twips) of the visible grab-sensitive area within pInfo->win. 

pInfo->outerMargin is the thickness (in twips) of the invisible grab-sensitive area within plnfo->win. 
pInfo->outerMargin.{origin.x, size.w} are margins for the left and right, respectively. 
pInfo->outerMargin.{origin.y, size.h} are margins for the bottom and top, respectively. 

pInfo->length is the length of each grab-sensitive area, in twips. 

If pInfo->indudeOuter is true, the outer margin area is included in the rect for each grab box. 

This is used by dsBorder to place a grab box over the resize handles. 

GrabBoxLocToRect 
Computes the rectangle of the grabBox at the given location. 

Returns void. 

void EXPORTED GrabBoxLocToRect( 
P_GRAB_BOX_INFO pInfo, 
U16 location, 
P_RECT32 pRect 

) ; 

II info about grab box locations 
II e.g. gbLocBottom 
II Rect to locate 

pInfo is as described in GrabBoxIntersectO. 

The corresponding rect for location is returned in pRect, in device units. 

GrabBoxPaint 
Paints the grab box at the specified location. 

Returns STATUS. 

function Prototype STATUS EXPORTED GrabBoxPaint ( 
P_GRAB_BOX_INFO pInfo, 

) ; 

U16 loc, 
SYSDC 
P RECT32 
BOOLEAN 
BOOLEAN 

dc, 
pRect, 
clearOuter, 
on 



Comments 

GRABBOX.H 421 
Messages from other classes 

pInfo is as described in GrabBoxIntersectO. 

If dc is not objNo1l, it will be used for the painting. 

If pRect is pN 011, the corresponding rect for location will be used; otherwise pRect will be used. 

If clearOuter is true, all of pRect will be cleared before painting. 

If on is true, the grab box will be painted in black, otherwise gray66. 

This is used by clsBorder to paint the resize handles. 

", Messages from other classes 

Comments 

Comments 

msglnputEvent 
Notification of an input event. 

Takes P_INPUT_EVENT, returns STATUS. 

clsGrabBox will respond to input events that trigger resizing. 

If pArgs->devCode is msgPenUp, msgPenOutProxUp, msgPenOutProxDown, or msgPenMoveUp 
and pArgs->xy is not in the rectangle of the grab box and style.autoT akeDown is true or msgPenDown 
has been received, the grab box is taken down as in msgGrabBoxShow(false). 

If pArgs->devCode is msgPenDown the following is done: 

msgTrackProvideMetrics is sent to metrics.client with the followin~METRICS parameters: 

msgNewDefao1ts is sent to clsTrack to initialize a TRACK_METRICS 
struct and then: 

style. track = tsTrackResize; 
style. anchor = computed from self's style.loc; 
win = parent of metrics.client; 
client = self; 
clientData = window to be resized; 
initRect = bounds of metrics.client; 
minWH = small rectangle; 
maxWH = limited to stay within parent of metrics.client 
tag = tagBorderResize; 

If style.loc is gbLocLeftEdge or gbLocRightEdge, maxWH is altered toto horizontal resize. 

If style.loc is gbLocBottomEdge or gbLocTopEdge, maxWH is altered toto vertical resize. 

An instance of dsTrack is created and started via msgTrackStart. 

msgTrackDone 
Sent by a tracker when it's done. 

Takes P _TRACK_METRICS, returns STATUS. Category: client notification. 

clsGrabBox responds by resizing metrics.client to pArgs->rect.size. 

If the width/height is changed, wsMaskWrap Width/Height will be turned on in 
WIN_METRICs.flags.style for metrics.client. 

The client window is resized by sending msgWinLayout with the following WIN_METRICS parameters: 

options = 0; 

bounds = pArgs->rect; 

If style.autoDestroy is true, msgDestroy(pNo1l) is self-posted. 





ICMOICE.M 

This file contains the API for clsIconChoice. 

clslconChoice inherits from clsChoice. 

IconChoices are exclusive choices with icon buttons and boxed-style previewing/on feedback. 

See the documentation for msgTkTableChildDefaults below. 

tifndef ICHOICE INCLUDED 
tdefine ICHOICE=INCLUDED 

tifndef CHOICE_INCLUDED 
tinclude <choice.h> 

tendif 
tifndef ICON INCLUDED 

tinclude <icon.h> 
tendif 

Common #defines and typedefs 

Messoge 
Arguments 

typedef OBJECT ICON_CHOICE; 
typedef struct ICON CHOICE STYLE { 

U16 spare : 16; II unused (reserved) 
} ICON_CHOICE_STYLE, *P_ICON_CHOICE_STYLE; 

msgNew 
Creates an iconChoice (and its nested icon windows). 

Takes P _ICON_CHOICE_NEW, returns STATUS. Category: class message. 

typedef struct ICON CHOICE NEW ONLY { 
ICON CHOICE STYLE style;- II overall style 
ICON-NEW - iconNew; II storage for default child new struct 
U32 - spare; II unused (reserved) 

I CON_CHOICE_NEW_ONLY, *P_ICON_CHOICE_NEW_ONLY; 
tdefine iconChoiceNewFields \ 

choiceNewFields \ 
I CON_CHO I CE_NEW_ONLY iconChoice; 

typedef struct ICON CHOICE NEW { 
iconChoiceNewFields -

} I CON_CHO I CE_NEW , *P_ICON_CHOICE_NEW; 

msgNewDefaults 
Initializes the ICON_CHOICE_NEW structure to default values. 

Takes P _ICON_CHOICE_NEW, returns STATUS. Category: class message. 

typedef struct ICON CHOICE NEW { 
iconChoiceNewFields -

} ICON_CHOICE_NEW, *P_ICON_CHOICE_NEW; 

Sets up pArgs->tkTable.pButtonNew to create instances of clslcon with boxed-style previewing/on 
feedback by default as follows: 

pButtonNew->button.feedback = bsFeedbackBox; 

Zeroes out pNew.iconChoice. 



424 PENPOINT API REFERENCE 
Part 4 I UI Toolkit 

Messages from Other Classes 

msgTkTableChildDefaults 
Sets the defaults in P _ARGS for a common child. 

Takes P_UNKNOWN, returns STATUS. 

Comments Here is how an icon Choice processes this message: 

if <pArgs->object.class inherits from clsButton> 
pArgs->button.style.feedback = bsFeedbackBox; 



ICON.H 

This file contains the API definition for clsIcon. 

clsIcon inherits from clsMenuButton. 

Icons support drawing a picture as well as a label string. Several picture types are supported, including 
bitmap. 

#ifndef ICON INCLUDED 
#define ICON INCLUDED 

#include <mbutton.h> 
#ifndef MBUTTON_INCLUDED 

#endif 

Common #defines and typedefs 
typedef OBJECT ICON; 

Picture Styles 
#define isPictureBitmap 
#define isPictureNone 
#define isPicturePixelmap 
II 

Aspect Ratio Styles 
#define isAspectWidthFromHeight 
#define isAspectHeightFromWidth 
#define isAspectAsls 
II 

o II picture is a bitmap 
1 II no picture 
2 II picture is a pixelmap 
3 II unused (reserved) 

o II compute width from height & sample size 
1 II compute height from width & sample size 
2 II use the width and height as-is 
3 II unused (reserved) 

Common Layout Units Picture Sizes 
#define iconSizeNormal 
#define iconSizeSmall 
typedef struct ICON_STYLE 

U16 transparent 2, 
picture 2, 
freeBitmap 1, 
open 1, 
sizeUnits 6, 
sampleBias 1, 
aspect 2, 
spare1 1; 

U16 spare2 16; 
ICON_STYLE, *P_ICON_STYLE; 

21 II standard size, both width and height 
10 II standard small size 

II make the background transparent 
II type of picture 
II true => msgDestroy to bitmap after provide 
II modify picture to look open 
II units for pictureSize, e.g. bSUnitsPoints 
II true => alter pictureSiie for quality 
II aspect ration rule (e.g. isAspectWidthFromHeight) 
II unused (reserved) 
II unused (reserved) 



426 PENPOINT API REFERENCE 
Part 4 / UI Toolkit 

". Messages 

Arguments 

Message 
Arguments 

msgNew 
Creates an icon window. 

Takes P _ICON_NEW, returns STATUS. Category: class message. 

typedef struct ICON_NEW_ONLY { 
ICON_STYLE style; 
SIZE16 pictureSize; 
U32 spare; 

ICON_NEW_ONLY, *P_ICON_NEW_ONLY; 
fdefine iconNewFields \ 

menuButtonNewFields \ 
ICON NEW ONLY icon; 

typedef struct ICON_NEW 
iconNewFields 

} ICON_NEW, *P_ICON_NEW; 

II overall style 
II picture size, in device units 
II unused (reserved) 

If pArgs-> icon. style. transparent is true, wsTransparent is turned on in pArgs->win.flags.style and 

bslnkExclusive will be or-ed into pArgs->border.style.backgroundlnk. 

msgNewDefaults 
Initializes the ICON_NEW structure to default values. 

Takes P _ICON_NEW, returns STATUS. Category: class message. 

typedef struct ICON_NEW { 
iconNewFields 

} ICON_NEW, *P_ICON_NEW; 

Zeroes out pArgs->icon and sets 

pArgs->gWin.style.gestureEnable = true; 

pArgs->border.style.backgroundlnk = bslnkWhite I bslnkExclusive; 
pArgs->border.style.borderlnk = bslnkWhite I bslnkExclusive; 

pArgs->border.style.previewAlter = bsAlterBorders; 
pArgs->border.style.selectedAlter = bsAlterBorders; 
pArgs->border.style.edge = bsEdgeBottom; 
pArgs->border.style.shadow = bsShadowNone; 

pArgs->control.style.showDirty = true; 

pArgs->label.style.xAlignment IsAlignCenter; 

pArgs->icon.style.freeBitmap = true; 
pArgs->icon. style. sampleBias = true; 
pArgs->icon.pictureSize.w = pArgs->icon.pictureSize.h = iconSizeNormal; 

Default ICON_STYLE: 

transparent 
picture 
freeBitmap 
open 
sizeUnits 
sampleBias 
aspect 

false 
isPictureBitmap 

= true 
= false 
= bsUnitsLayout 
= true 
= isAspectWidthFromHeight 



Message 
Arguments 

Mes$t1ge 
Arguments 

ICON.H 427 
Messages 

msglconGetStyle 
Passes back the current style values. 

Takes P _ICON_STYLE, returns STATUS. 

*define msgIconGetStyle MakeMsg(clsIcon, 1) 

typedef struct ICON_STYLE 
U16 transparent 2, 

picture 2, 
freeBitmap 1, 
open 1, 
sizeUnits 6, 
sampleBias 1, 
aspect 2, 
spare1 1; 

U16 spare2 16; 
ICON_STYLE, *P_ICON STYLE; 

msglconSetStyle 
Sets the style values. 

II make the background transparent 
II type of picture 
II true => msgDestroy to bitmap after provide 
II modify picture to look open 
II units for pictureSize, e.g. bsUnitsPoints 
II true => alter pictureSize for quality 
II aspect ration rule (e.g. isAspectWidthFromHeight) 
II unused (reserved) 
II unused (reserved) 

Takes P _ICON_STYLE, returns STATUS. 

*define msgIconSetStyle MakeMsg(clsIcon, 2) 

typedef struct ICON_STYLE 
U16 transparent 2, 

picture 2, 
freeBitmap 1, 
open 1, 
sizeUnits 6, 
sampleBias 1, 
aspect 2, 
spare1 1; 

U16 spare2 16; 
ICON_STYLE, *P_ICON_STYLE; 

II make the background transparent 
II type of picture 
II true => msgDestroy to bitmap after provide 
II modify picture to look open 
II units for pictureSize, e.g. bsUnitsPoints 
II true => alter pictureSize for quality 
II aspect ration rule (e.g. isAspectWidthFromHeight) 
II unused (reserved) 
II unused (reserved) 

If style.open changes, the rect of the picture is dirtied by self-sending msgWinDirtyRect. 

Note that changing style. transparent is not implemented. 

msglconGetPictureSize 
Passes back the picture size in style.sizeUnits. 

Takes P _SIZE16, returns STATUS. 

*define msgIconGetPictureSize MakeMsg(clsIcon, 3) 

msglconSetPictureSize 
Sets the picture size. 

Takes P_SIZE16, returns STATUS. 

*define msgIconSetPictureSize MakeMsg(clsIcon, 4) 

The new picture size should be in style.sizeUnits (e.g. bsUnitsLayout). clslcon will free the cached 

picture as in msglconFreeCache. 

~ 



428 PENPOINT API REFERENCE 
Part 4 I UI Toolkit 

msglcon GetActualPictureSize 
Computes and passes back the actual picture size in device units. 

Takes P _SIZE16, returns STATUS. 

#define msgIconGetActualPictureSize MakeMsg(clsIcon, 10) 

This is equivalent using msglconGetPictureSize and converting to device units if style.sampleBias is 
false or style. picture is not isPictureBitmap. 

Otherwise, clslcon will compute and pass back the actual picture size used based on the sample size of 

the bitmap, the specified picture size and style.sizeUnits, style. aspect, and the device resolution of the 
icon's window device. 

msglconFreeCache 
Frees the cached picture, if any. 

Takes pNull, returns STATUS. 

#define msgIconFreeCache MakeMsg(clsIcon, 8) 

If style. picture isPictureBitmap, is clsIcon will send msgIconProvideBitmap on the next 
msgWinRepaint. 

Note that clsIcon does not self-send msgWinDirtyRect here. You should send msgWinDirty rect after 
msgIconFreeCache if you want the icon to repaint before it is otherwise damaged. 

msglconGetRects 
Passes back the bounds for the picture in pArgs[O] and the label in pArgs[IJ. 

Takes P _RECT32, returns STATUS. 

#define msgIconGetRects MakeMsg(clsIcon, 6) 

Note that pArgs is an array of two RECT32 structs. Bounds are in device units, relative to the origin of 
the icon. 

msglconProvideBitmap 
Sent to control client when icon needs the picture bitmap. 

Takes P _ICON_PROVlDE_BITMAP, returns STATUS. Category: self-sent and client notification. 

#define msgIconProvideBitmap MakeMsg(clsIcon, 7) 

typedef struct ICON_PROVIDE_BITMAP { 
WIN icon; II in: icon asking for the bitmap 
TAG tag; II in: window tag of icon 
OBJECT device; II in: device on which bitmap will be rendered 
SIZE16 pictureSize; II in: size of picture, device units 
OBJECT bitmap; II out: bitmap to render 
U32 spare1; II unused (reserved) 
U32 spare2; II unused (reserved) 

ICON_PROVIDE_BITMAP, *P_ICON_PROVIDE_BITMAP; 

clsIcon will self-send this message when it needs the picture bitmap. Subclasses can catch this message 
and provide the appropriate bitmap. 

If clsIcon receives this message, the message will be forwarded on to the icon's control client. 



Arguments 

ArgumenTs 

Comments 

ICON.H 429 
Messages 

After the subclass or client provides the bitmap, clslcon will copy the bitmap to a cached data structure 
for use when painting. If style.freeBitmap is true, clslcon will send msgDestroy to the bitmap after 
creating the cache. 

msglconCopyPixels 
Causes the icon to copy pixels from pArgs->srcWin to a pixelmap. 

Takes P _ICON_COPY_PIXELS, returns STATUS. 

#define msglconCopyPixels MakeMsg(clslcon, 9) 

typedef struct ICON COpy PIXELS 
WIN srcWin; II in: source window 
XY32 srcXY; II in: origin of area to copy, srcWin space 
U32 spare1; II unused (reserved) 

ICON_COPY_PIXELS, *P_ICON_COPY_PIXELS; 

If style.picture is not isPicturePixelmap or pArgs->srcWin is objNull, dslcon will return stsBadParam. 

The area copied has size of pictureSize and origin pArgs->srcXY in pArgs->srcWin space. The pixelmap 

will be used during msgWinRepaint. 

msglconSampleBias 
Computes the sample-biased size for a given picture size. 

Takes P _ICON_SAMPLE_BIAS, returns STATUS. Category: class message. 

#define msglconSampleBias MakeMsg(clslcon, 11) 
II default tolerance used buy clslcon 
II amount a picture size can be adjusted up or down for sample bias, 
II in layout units 
#define iconSampleTolerance 4 

typedef struct ICON_SAMPLE_BIAS 
WIN win; 
U32 tolerance; 
SIZE32 sampleSize; 
SIZE32 size; 
U16 sizeUnits 

aspect 
spare1 

6, 
2, 
8; 

{ 

II in: device window 
II in: snap-to tolerance, in layout units 
II in: sample size, in device units 
II in/out: picture size, in device units 
II in: units for size 
II in: aspect ratio style 
II unused (reserved) 

U32 spare2; 
I CON_SAMP LE_B lAS , 

II unused (reserved) 
*P_ICON_SAMPLE_BIAS; 

dslcon will alter pArgs->size.w/h to be a multiple of pArgs->sampleSize.w/h. If the new 
pArgs->size.w/h is within pArgs->tolerance units from pArgs->sampleSize.w/h, the size is rounded up or 
down to the sample size. 

pArgs->sampleSize should be in device units. pArgs->size should be in the units described by 
pArgs->sizeUnits (e.g. bsUnitsLayout). pArgs->tolerance should be in layout units. pArgs->win is any 
window on the related device. 

If pArgs-> aspect is isAspectWidthFromHeight, the width will be computed from the final height as 

size.w = size.h * (sampleSize.w IsampleSize.h)j 

If pArgs-> aspect is isAspectHeightFromWidth, the height will be computed from the final width as 

size.h = size.w * (sampleSize.h I sampleSize.w)j 

This message can be sent to dslcon or any instance of dslcon. 



430 PENPOINT API REFERENCE 
Part 4 / UI Toolkit 

Here is the current "size bias" code. In this fragment sampleSize is the sample's width or height, size is 
the proposed picture with or height, tolerance is the "snap-to" tolerance. All values are in device units. 
The computed value is the sample-biased picture width or height. 

if (size > sampleSize) { 
S32 mult; 
S32 lowerValue, lowerDelta; 
S32 upperValue, upperDelta; 

mult size / sampleSize; 
lowerValue = mult * sampleSize; 
lowerDelta = size - lowerValue; 
upperValue = (mult + 1) * sampleSize; 
upperDelta = upperValue - size; 
if (lowerDelta < upperDelta) { 

else 

value = lowerValue; 
delta = lowerDelta; 

else { 
value = upperValue; 
delta = upperDelta; 

delta = sampleSize - size; 
value = sampleSize; 

if (delta <= tolerance) 
size = value; 

return size; 

Messages from other classes 

msgWinSetTag 
Sets the window tag. 

Takes P _WIN_METRICS, returns STATUS. 

If pArgs-> tag is the same as the current window tag, nothing is done and stsOK is returned. 

If style. picture is isPictureBitmap, clslcon will self-send msglconFreeCache followed by 
msgWinDirtyRect to force a redraw of the icon picture. 



ITABLE.H 

This file contains the API for clsIconChoice. 

clslconTable inherits from clsToggleTable. 

IconTables are non-exclusive toggle tables with icon buttons and boxed-style previewing/on feedback. 

See the documentation for msgTkTableChildDefaults below. 

#ifndef ITABLE_INCLUDED 
#define ITABLE_INCLUDED 

#ifndef TTABLE_INCLUDED 
#include <ttable.h> 

#endif 
#ifndef ICON INCLUDED 

#include <icon.h> 

Common #defines and typedefs 

Arguments 

MesSt:1ge 
Arguments 

typedef OBJECT ICON_TABLE; 
typedef struct ICON TABLE STYLE { 

U16 spare : 16; II-unused (reserved) 
} ICON_TABLE_STYLE, *P_ICON_TABLE_STYLE; 

msgNew 
Creates an iconTable (and its nested icon windows). 

Takes P _ICON_TABLE_NEW, returns STATUS. Category: class message. 

typedef struct ICON_TABLE_NEW_ONLY { 
ICON_TABLE_STYLE style; II overall style 
ICON NEW iconNew; II storage for default child new struct 
U32 spare; II unused (reserved) 

ICON_TABLE_NEW_ONLY, *P_ICON_TABLE_NEW_ONLY; 
#define iconTableNewFields \ 

toggleTableNewFields \ 
ICON_TABLE_NEW_ONLY iconTable; 

typedef struct ICON_TABLE_NEW { 
iconTableNewFields 

} ICON_TABLE_NEW, *P_ICON_TABLE_NEWi 

msgNewDefaults 
Initializes the ICON_TABLE_NEW structure to default values. 

Takes P_ICON_TABLE_NEW, returns STATUS. Category: class message. 

typedef struct ICON_TABLE_NEW { 
iconTableNewFields 

ICON_TABLE_NEW, *P_ICON_TABLE_NEW; 

------------------



432 PENPOINT API REFERENCE 
Part 4 I UI Toolkit 

Sets up pArgs->tkTable.pButtonNew to create instances of clslcon with boxed-style previewing/on 
feedback by default as follows: 

pButtonNew->button.style.feedback 
pButtonNew->button.style.contact 

Zeroes out pNew.iconTable. 

Messages from Other Classes 

msgTkTableChildDefaults 

= bsFeedbackBoXi 
= bsContactTogglei 

Sets the defaults in P _ARGS for a common child. 

Takes P_UNKNOWN, returns STATUS. 

Here is how an icon Table processes this message: 

if <pArgs->object.class inherits from clsButton> 
pArgs->button.style.feedback = bsFeedbackBoxi 



ITOGGLE.H 

This file contains the API definition for clslcon Toggle. 

clslconToggle inherits from clslcon. 

Icon toggles are toggle buttons with pictures for on and off states. These can be used to display an onloff 

mode switch. 

#ifndef ITOGGLE INCLUDED 
#define ITOGGLE=INCLUDED 

#include <icon.h> 
#ifndef ICON INCLUDED 

#endif 

Common #defines and typedefs 
typedef OBJECT ICON_TOGGLE; 
typedef struct ICON TOGGLE STYLE { 

U16 spare : 16; II-unused (reserved) 
} ICON_TOGGLE_STYLE, *P_ICON_TOGGLE_STYLE; 

Default off Ion picture tags These are the resids for bitmaps in the system resource file The default 
bitmaps represent "ink mode" for off (a picture of a pencil) and "gesture mode" for on (a picture of a 
check mark) 

#define taglconToggleOff 
#define taglconToggleOn 

MakeTag(clslconToggle, 1) 
MakeTag(clslconToggle, 2) 

Messages 

Comments 

msgNew 
Creates an icon toggle window. 

Takes P _I CON_TO GGLE_NEW, returns STATUS. Category: class message. 

typedef struct ICON TOGGLE NEW ONLY { 
ICON TOGGLE STYLE style;- II overall style 
TAG - - off Tag; II picture tag to use when off 
TAG onTag; II picture tag to use when on 
U32 spare1; II unused (reserved) 
U32 spare2; II unused (reserved) 

ICON_TOGGLE_NEW_ONLY, *P_ICON_TOGGLE_NEW_ONLYi 
#define iconToggleNewFields \ 

iconNewFields \ 
ICON_TOGGLE_NEW_ONLY iconTogglei 

typedef struct ICON TOGGLE NEW 
iconToggleNewFields -

} ICON_TOGGLE_NEW, *P_ICON_TOGGLE_NEWi 

The fields you commonly set are: 

pArgs->iconToggle.offfag picture tag to use when button is off 

pArgs->iconToggle.onTag picture tag to use when button is on 



434 PENPOINT API REFERENCE 
Part 4 I UI Toolkit 

MtH,st:tge 

Ari$umeftl's 

Messt:ti$e 
Ari$umeftl's 

Mes$t$i$e 

Avsumenrs 

msgNewDefaults 
Initializes the ICON_TOGGLE_NEW structure to default values. 

Takes P_ICON_TOGGLE_NEW, returns STATUS. Category: class message. 

typedef struct ICON_TOGGLE_NEW { 
iconToggleNewFields 

} ICON_TOGGLE_NEW, *P_ICON_TOGGLE_NEW; 

Zeroes out pArgs->iconToggle and sets: 

pArgs->gWin.style.gestureEnable = false; 

pArgs->button. style. feedback 
pArgs->button.style.contact 

pArgs->icon.pictureSize.w 
pArgs->icon.pictureSize.h 

pArgs->iconToggle.offTag 
pArgs->iconToggle.onTag 

8 
8 

= bsFeedbackNone; 
= bsContactToggle; 

= tagIconToggleOff; 
= tagIconToggleOn; 

Note that the default picture size is set to 8x8layout units, which is the width and height of the system 
font. 

The default off and on tags represent bitmaps stored in the system resource file. These are the bitmaps 
for "ink mode" (off) and "gesture mode" (on). 

msgloon1roggle<;etS~le 

Passes back the current style values. 

Takes P _ICON_TOGGLE_STYLE, returns STATUS. 

:/I:define msgIconToggleGetStyle MakeMsg(clsIconToggle, 1) 

typedef struct ICON_TOGGLE_STYLE { 
U16 spare : 16; II unused (reserved) 

} I CON_TOGGLE_STYLE, *P_ICON_TOGGLE_STYLE; 

msgloon1r oggleSetS~le 
Sets the style values. 

Takes P _ICON_TOGGLE_STYLE, returns STATUS. 

:/I:define msgIconToggleSetStyle MakeMsg(clsIconToggle, 2) 

typedef struct ICON TOGGLE STYLE { 
U16 spare : 16; II-unused (reserved) 

} I CON_TOGGLE_STYLE, *P_ICON_TOGGLE_STYLE; 

msgloon 1r oggle<;etOn 1rag 
Passes back the on Tag. 

Takes P_TAG, returns STATUS. 

:/I:define msgIconToggleGetOnTag MakeMsg(clsIconToggle, 3) 



Comments 

ITOGGLE.H 435 
Messages from Other Classes 

msglconToggleGetOfffag 
Passes back the o fIT ago 

Takes P_TAG, returns SfATUS. 

*define msglconToggleGetOffTag MakeMsg(clslconToggle, 4) 

msglconToggleSetOnTag 
Sets the on Tag. 

Takes TAG, returns STATUS. 

*definemsglconToggleSetOnTag MakeMsg(clslconToggle, 5) 

clsIconToggle will remember the onTag for use when the button is on. If the button is currently on, 
msglconFreeCache will be self-sent to free the current picture bitmap and use the new one. 

msglconT oggleSetOfffag 
Sets the ofIT ago 

Takes TAG, returns STATUS. 

*define msglconToggleSetOffTag MakeMsg(clslconToggle, 6) 

clsIconToggle will remember the offf ag for use when the button is off. If the button is currently off, 
msgIconFreeCache will be self-sent to free the current picture bitmap and use the new one. 

Messages from Other Classes 

Comments 

See Also 

Comments 

msgButtonShowFeedback 
Shows the feedback for an on/off button if pArgs is true/false. 

"Takes BOOLEAN, returns SfATUS. Category: self-sent. 

clsIconToggle will free the old bitmap via msgIconFreeCache and cause the new one to be displayed by 
damaging the picture rectangle. The current feedback state will be remembered for use in 
msgIconProvideBitmap, at which time the picture tag will be set to either the onTag (pArgs == true) or 
the offTag (pArgs == false). 

msgIconProvideBitmap 

msglconProvideBitmap 
Sent to control client when icon needs the picture bitmap. 

Takes P _ICON_PROVIDE_BITMAP, returns STATUS. Category: client notification. 

clsIconToggle will alter pArgs->tag to be onTag if the current feedback state is on, or the offTag 
otherwise. This results in the client of the icon receiving this message and providing the on or off 
bitmap. 





LABEL.H 

This file contains the API definition for clsLabel. 

clsLabel inherits from clsControl. 

Implements much of the appearance of many toolkit components inside the border: font, decoration, 
scale, orientation, etc. 

",. Debugging Flags 
The clsLabel debugging flag is '0/0'. Defined values are: 

flag4 (OxOO 10) msgSave/ msgRestore info 

flagS (Ox0020) boxed string/paint dc 

*ifndef LABEL_INCLUDED 
*define LABEL_INCLUDED 

*include <control.h> 

*include <sysgraf.h> 

*ifndef CONTROL_INCLUDED 

*endif 
*ifndef SYSGRAF_INCLUDED 

*endif 

Common #defines and typedefs 

Info style 

typedef OBJECT LABEL; 

*define lsInfoString 
*define lSInfoWindow 
*define lsInfoStringId 
II 

o II info is pSt ring 
1 II info is WIN 
2 II info is a resource file string id 
3 II unused (reserved) 

X and Y alignment styles 
o 
1 

II left-justified 
II centered 

*define lsAlignLeft 
*define lsAlignCenter 
*define lsAlignRight 
*define lsAlignBottom 
*define lsAlignTop 
*define lsAlignCustom 

2 
lsAlignLeft 
lsAlignRight 
3 

II right-justified 
II bottom-justified 
II top-justified 
II send msgLabelAlign to self 

Decoration style 
*define lsDecorationNone 0 
*define lsDecorationBlank 1 
*define lsDecorationNonExclusiveOn 2 
*define lsDecorationExclusiveOff 3 
*define lsDecorationExclusiveOn 4 
*define lsDecorationPullRight 5 
*define lsDecorationNonExclusiveOff 6 

II no decoration 
II blank space on left 
II left check and double bar 
II left blank and single bar 
II left check and single bar 
II pull-right arrow on right 
II left blank and double bar 



438 PENPOINT API REFERENCE 
Part 4 / UI Toolkit 

4f:define lsDecorationCheck 7 II left checkmark 
4f:define lsDecorationCircle 8 II left empty circle 
4f:define lsDecorationBox 9 II left empty box 
4f:define lsDecorationCheckedBox 10 II left checked box 
4f:define lSDecorationCheckedCircle 11 II left checked circle 
4f:define lsDecorationHollowLeft 12 II left hollow left delta 
4f:define lsDecorationHollowRight 13 II left hollow right delta 
4f:define lsDecorationSolidLeft 14 II left solid left delta 
4f:define lsDecorationSolidRight 15 II left solid right delta 
4f:define lsDecorationPopup 16 II left solid right delta w/space 
4f:define lsDecorationButtonOff 17 II left off button glyph 
4f:define lsDecorationButtonOn 18 II left on button glyph 
4f:define lsDecorationCustomLeft 19 II left custom decoration 
4f:define lsDecorationCustomRight 20 II right custom decoration 
II 21 II unused (reserved) 
II II unused (reserved) 
II 31 II unused (reserved) 

Font Type 
4f:define lsFontSystem 0 II use the system font 
4f:define lsFontCustom 1 II use the specified font 
4f:define lsFontUser 2 II use the system user font 
II 3 II unused (reserved) 

Common Scale Values, in layout units 
4f:define lsScaleTiny 2 II 2/8 x normal 
4f:define lsScaleSmall 4 II 4/8 x normal 
4f:define lsScaleMedium 6 II 6/8 x normal 
4f:define lsScaleNormal 8 II 8/8 x normal 
4f:define lsScaleLarge 10 II 10/8 x normal 
4f:define lsScaleJumbo 12 II 12/8 x normal 
4f:define lsScaleHuge 14 II 14/8 x normal 

Rotation styles 
4f:define lsRotateNone 0 II 0 degrees (horizontal, left to right) 
4f:define lsRotate90 1 II 90 degrees (vertical, bottom to top) 
4f:define lsRotate180 2 II 180 degrees (horizontal, right to left) 
4f:define lsRotate270 3 II 270 degrees (vertical, top to bottom) 

Underline styles 
4f:define lsUnderlineNone 0 II no underline 
4f:define lsUnderlineSingle 1 II single underline 
4f:define lsUnderlineDouble 2 II double underline 
II 3 II unused (reserved) 

Box styles 
4f:define lsBoxNone 0 II no boxes 
4f:define lsBoxSquare 1 II square box around each character 
4f:define lsBoxTicks 2 II tick mark between characters 
4f:define lsBoxInvisible 3 II don't draw the box lines 



LABEL.H 439 
Messages 

Number of rows/columns 
'define IsNumAsNeeded 0 II as many rowslcolumns as needed 
'define IsNumAbsolute 1 II fixed number: rowslcols 
II 2 II unused (reserved) 
II 3 II unused (reserved) 
typedef struct LABEL STYLE { 

U16 infoType 2, II type of pSt ring field 
xAlignment 2, II x alignment style 
yAlignment 2, II y alignment style 
rotation 2, II text rotation 
underline 2, II underline style 

II 
strikeout 1, II strikeout during msgDcDrawText 
decoration 5; II decoration style 

U16 numCols 2, II style for number of columns 
numRows 2, II style for number of rows 
box 2, II boxing style 
wordWrap 1, II word wrap to next row 
font Type 2, II system or custom font 
scaleUnits 6, II scale units style, e.g. bsUnitsLayout 
stringSelected 1; II whether content string shows sel'd visual 

U16 spare2 16; II unused (reserved) 
LABEL STYLE, *P_LABEL_STYLE; -

Default LABEL_STYLE: 

infoType IsInfoString 
xAlignment IsLeft 
yAlignment IsBottom 
decoration IsDecorationNone 
scaleUnits = bsUnitsLayout 
rotation IsRotateNone 
underline IsUnderlineNone 
strikeout false 
box IsBoxNone 
numCols IsNumAsNeeded 
numRows IsNumAsNeeded 
wordWrap false 
font Type IsFontSystem 
scaleUnits = bsUnitsLayout 
stringSelected = false 

Messages 

msgNew 
Creates a label window. 

Takes P _LABEL_NEW, returns STATUS. Category: class message. 

Arguments typedef struct LABEL_NEW_ONLY 
LABEL_STYLE style; II overall style 
P CHAR pString; II string to display or child window 
SYSDC.FONT SPEC font; II spec to open if style.fontType == IsFontCustom 
P CHAR fontName; II font name from which to derive font.id 
U8 scale; II scale in scaleUnits 
U8 rows; II number of rows 
U8 cols; II number of columns (or zero for infinite) 
U16 customGlyph;11 custom decoration glyph 
U32 spare1; II unused (reserved) 
U32 spare2; II unused (reserved) 

LABEL_NEW_ONLY, *P_LABEL_NEW_ONLY; 



440 PENPOINT API REFERENCE 
Part 4 / UI Toolkit 

fVh~£$©~e 

Ar~ument$ 

Messoge 
Ar~ljments 

#define labelNewFields \ 
controlNewFields \ 
LABEL NEW ONLY label; 

typedef struct LABEL_NEW { 
labelNewFields 

} LABEL_NEW, *P_LABEL_NEW; 

The fields you commonly set are: 

pArgs->label.style appropriate style values 

pArgs->label.pString string or child window uid 

In response to msgNew, the label initializes all of its state. This is the only time pArgs->fontName 
would be used. 

Since clsLabel copies the bytes pointed to by pArgs->pString (when style.infoType is lsInfoString), the 
client may free the string after msgNew if the string was allocated. 

If style.infoType is IsInfoStringld, clsLabel self-sends msgLabelBindStringId to bind the resid to a 
string. 

msgN ewDefaults 
Initializes the LABEL_NEW structure to default values. 

Takes P _LABEL_NEW, returns STATUS. Category: class message. 

typedef struct LABEL_NEW { 
labelNewFields 

} LABEL_NEW, *P_LABEL_NEW; 

Zeroes out pArgs->label and sets: 

pArgs->win.flags.style 1= wsShrinkWrapWidth 1 wsShrinkWrapHeight; 

pArgs->border.style.leftMargin = bsMarginSmall; 
pArgs->border.style.rightMargin = bsMarginSmall; 
pArgs->border.style.bottomMargin = bsMarginSmall; 
pArgs->border.style.topMargin = bsMarginSmall; 

pArgs->label.style.scaleUnits = bsUnitsLayout; 
pArgs->label.scale = lsScaleNormal; 

Also sets pArgs->label.font to the default system font. 

msgLabel GetStyle 
Passes back the current style values. 

Takes P _LABEL_STYLE, returns STATUS. 

#define msgLabelGetStyle MakeMsg(clsLabel, 1) 

typedef struct LABEL_STYLE 
U16 infoType 2, II type of pString field 

xAlignment 2, II x alignment style 
yAlignment 2, II y alignment style 
rotation 2, II text rotation 
underline 2, II underline style 
strikeout 1, II strikeout during msgDcDrawText 
decoration 5; II decoration style 

U16 numCols 2, II style for number of columns 
numRows 2, II style for number of rows 
box 2, II boxing style 



Message 
Arguments 

Comments 

LABEL.H 441 
Messages 

wordWrap 1, 
font Type 2, 
scaleUnits 6, 
stringSelected 1; 

U16 spare2 16; 
LABEL_STYLE, *P_LABEL_STYLE; 

msgLabelSetStyle 
Sets the style fields. 

II word wrap to next row 
II system or custom font 
II scale units style, e.g. bsUnitsLayout 
II whether content string shows sel'd visual 
II unused (reserved) 

Takes P _LABEL_STYLE, returns STATUS. 

#define msgLabelSetStyle MakeMsg(clsLabel, 2) 

typedef struct LABEL_STYLE 
U16 infoType 2, II type of pString field 

xAlignment 2, II x alignment style 
yAlignment 2, II y alignment style 
rotation 2, II text rotation 
underline 2, II underline style 
strikeout 1, II strikeout during msgDcDrawText 
decoration 5; II decoration style 

U16 nurnCols 2, II style for number of columns 
numRows 2, II style for number of rows 
box 2, II boxing style 
wordWrap 1, II word wrap to next row 
font Type 2, II system or custom font 
scaleUnits 6, II scale units style, e.g. bsUnitsLayout 
stringSelected 1; II whether content string shows sel'd visual 

U16 spare2 16; II unused (reserved) 
LABEL_STYLE, *P_LABEL_STYLE; 

If the decoration style changes, the label uses msgWinDirtyRect to dirty the appropriate portion of 
itself. 

If the new style.box is not IsBoxNone, then the label self-sends msgLabelProvideBoxSize to obtain the 

width and height the boxes should be. If either of these differ from the old values, then the label 
self-sends msgWinSetLayoutDirty( true). 

If the style.numCols or style.numRows change, or any of the other style values that might require 
relayout change, label self-sends msgWinSetLayoutDirty(true). 

It is the caller's responsibility to re-Iayout the label if the caller has changed any style that affects the 

layout of the label. 

msgLabelGetString 
Fills P _ARGS->pString with the current string. 

Takes P _CONTROL_STRING, returns STATUS. 

#define msgLabelGetString MakeMsg(clsLabel, 3) 

Will fill the passed buffer up to len bytes worth of the string. The copied string is not null-terminated if 
the passed len wasn't large enough. 

If the passed len is zero, clsLabel sets len to the number of bytes the buffer would have to be in order to 

hold the entire label's string (including the terminating null). 



442 PENPOINT API REFERENCE 
Part 4 / UI Toolkit 

msgLabelSetString 
Sets the label string. 

Takes P _CHAR, returns STATUS. 

#define msgLabelSetString MakeMsg(clsLabel, 4) 

Allocates storage and copies P _ARGS. Note that clsLabel allocates within the context of the current 

process. 

msgLabelGetUnicode 
Fills P _ARGS->pString with the current string. 

Takes P _CONTROL_STRING, returns STATUS. 

#define msgLabelGetUnicode MakeMsg(clsLabel, 21) 

Like msgLabelGetString, except that the client is requesting the string in unicode format (where a 

character is represented in 16 bits). 

Will fill the passed buffer up to len characters worth of the string. The copied string is not 

null-terminated if the passed len wasn't large enough. 

If the passed len is zero, clsLabel sets len to the number of characters the buffer would have to be in 

order to hold the entire label's string (including the terminating null). Note that the number of bytes 

would be twice this number. 

msgLabelSetUnicode 
Sets the label string. 

Takes P _U16 (p _CHAR after its 16-bit), returns STATUS. 

#define msgLabelSetUnicode MakeMsg(clsLabel, 22) 

Like msgLabelSetString, except that the client is specifying the string in unicode format (where a 

character is represented in 16 bits). 

Allocates storage and copies P _ARGS. Note that clsLabel allocates within the context of the current 

process. 

msgLabelGetStringld 
Passes back the string resource id; zero if none. 

Takes P _RESID, returns STATUS. 

#define msgLabelGetStringld MakeMsg(clsLabel, 25) 

clsLabel returns stsFailed if style.infoType is not IsInfoStringId. 

msgLabelSetStringId 
Sets the string resource id. 

Takes RESID, returns STATUS. 

#define msgLabelSetStringld MakeMsg(clsLabel, 26) 

clsLabel immediately binds the specified string id to a string by self-sending msgLabelBindStringld. 

The string id is remembered and saved during msgSave. 



Comments 

Comments 

Comments 

Comments 

Comments 

LABEL.H 443 
Messages 

msgLabelBindStringld 
Binds the string resource id to a string. 

Takes VOID, returns STATUS. 

tdefine msgLabelBindStringld MakeMsg(clsLabel, 27) 

clsLabel returns stsFailed if style.infoType is not IsInfoStringld. 

clsLabel binds the current string id to a string by loading the string from theProcessResList. 

msgLabelGetWin 
Passes back the child window. 

Takes P_WIN, returns STATUS. 

tdefine msgLabelGetWin MakeMsg(clsLabel, 5) 

clsLabel returns stsFailed if style.infoT ype is not lsInfo Win. 

msgLabelSetWin 
Sets the child window. 

Takes WIN, returns STATUS. 

tdefine msgLabelSetWin MakeMsg(clsLabel, 6) 

clsLabel returns stsFailed if style.infoType is not lsInfoWin. 

Since changing the window within the label sets the label's wsLayoutDirty bit, the caller should 

re-Iayout the label. 

msgLabelGetFontSpec 
Passes back the font spec. 

Takes P _SYSDC_FONT_SPEC, returns STATUS. 

tdefine msgLabelGetFontSpec MakeMsg(clsLabel, 8) 

Note that this font spec is not used unless style.fontType is lsFontCustom. 

msgLabelSetFontSpec 
Sets the font spec. 

Takes P _SYSDC_FONT_SPEC, returns STATUS. 

tdefine msgLabelSetFontSpec MakeMsg(clsLabel, 9) 

Note that this font spec is not used unless style.fontType is lsFontCustom. 

As with msgLabelSetStyle, it is the caller's responsibility to re-Iayout the label if the caller has changed 
any style that affects the layout of the label (such as certain fields in the font spec). Note that the label 
does not currently explicitly set its wsLayoutDirty bit in response to msgLabelSetFontSpec, but that 
this may change in the future. 



444 PENPOINT API REFERENCE 
Part 4 / UI Toolkit 

Comments 

Comments 

msgLabelGetScale 
Passes back the font scale. 

Takes P_U8, returns STATUS. 

#define msgLabelGetScale MakeMsg(clsLabel, 10) 

Note that the units of this scale are determined by style. scale Units. 

msgLabelSetScale 
Sets the font scale. 

Takes U8, returns STATUS. 

#define msgLabelSetScale MakeMsg(clsLabel, 11) 

Note that the units of this scale are determined by style.scaleUnits. 

As with msgLabelSetStyle, it is the caller's responsibility to re-Iayout the label if the caller has changed 

any style that affects the layout of the label (such as the font scale). Note that the label does not currently 

explicitly set its wsLayoutDirty bit in response to msgLabelSetScale, but that this may change in the 

future. 

msgLabelGetRows 
Passes back the number of rows the label will size itself to. 

Takes P_U8, returns STATUS. 

#define msgLabelGetRows MakeMsg(clsLabel, 12) 

Note that this is not used unless style.numRows is IsNumAbsolute. 

msgLabelSetRows 
Sets the number of rows the label will size itself to. 

Takes U8, returns STATUS. 

*define msgLabelSetRows MakeMsg(clsLabel, 13) 

Note that this is not used unless style.numRows is IsNumAbsolute. 

As with msgLabelSetStyle, it is the caller's responsibility to re-Iayout the label if the caller has changed 
any style that affects the layout of the label (such as the number of rows). Note that the label does not 

currently explicitly set its wsLayoutDirty bit in response to msgLabelSetRows, but that this may change 

in the future. 

msgLabelGetCols 
Passes back the number of columns the label will size itself to. 

Takes P_U8, returns STATUS. 

#define msgLabelGetCols MakeMsg(clsLabel, 14) 

Note that this is not used unless style.numCols is IsNumAbsolute. 



(omments 

LABEL.H 445 
Messages 

msgLabelSetCols 
Sets the number of columns the label will size itself to. 

Takes UB, returns STATUS. 

#define msgLabelSetCols MakeMsg(clsLabel, 15) 

Note that this is not used unless style.numCols is IsNumAbsolute. 

AB with msgLabelSetStyle, it is the caller's responsibility to re-Iayout the label if the caller has changed 
any style that affects the layout of the label (such as the number of columnss). Note that the label does 
not currently explicitly set its wsLayoutDirty bit in response to msgLabelSetCols, but that this may 
change in the future. 

msgLabelGetCustomGlyph 
Passes back the custom decoration glyph, zero if none. 

Takes P_UI6, returns STATUS. 

#define msgLabelGetCustomGlyph MakeMsg(clsLabel, 23) 

Note that this is not used unless style. decoration is IsDecorationCustomLeft or 
lsDecorationCustomRight. 

msgLabelSetCustomGlyph 
Sets the custom decoration glyph. 

Takes UI6, returns STATUS. 

#define msgLabelSetCustomGlyph MakeMsg(clsLabel, 24) 

Note that this is not used unless style. decoration is IsDecorationCustomLeft or 
IsDecorationCustomRight. 

msgLabelGetBoxMetrics 
Passes back the current box metrics. 

Takes P _LABEL_BOX_METRICS, returns STATUS. 

#define msgLabelGetBoxMetrics MakeMsg(clsLabel, 16) 

typedef struct LABEL BOX METRICS { 
RECT32 boxRect;- - II origin and size of boxed area 
SIZE32 singleBoxSize; II size of a single box 
U16 rows, cols; II current # of rows and columns 
U16 baseline; II positive baseline offset from bottom of box 
U32 spare1; II unused (rese~ved) 
U32 spare2; I I unuse.d (reserved) 
U32 spare3; II unused (reserved) 

LABEL_BOX_METRICS, *P_LABEL_BOX_METRICS; 

The box metrics describe the arrangement and size of the box cells imaged by the label. These metrics 
are valid only if style. box is not lsBoxNone. 

All origins and sizes are in device units. 



446 PENPOINT API REFERENCE 
Part 4 / UI Toolkit 

Arguments 

msgLabelResolveXY 
Resolves a point to a character in the string. 

Takes P _LABEL_RESOLVE, returns STATUS. 

fdefine msgLabelResolveXY MakeMsg(clsLabel, 17) 

typedef struct LABEL_RESOLVE { 
XY32 xy; II in: point to resolve 
S32 index; II out: index of char at point 
U32 spare1; II unused (reserved) 
U32 spare2; II unused (reserved) 

LABEL RESOLVE, *P_LABEL_RESOLVE; 

An index of -1 indicates point is not over any character. The xy should be relative to the label and 

expressed in device units. 

msgLabeWign 
Self-sent if style.xAlignment or style.yAlignment is lsAlignCustom. 

Takes P _LABEL_ALIGN, returns STATUS. Category: self-sent. 

fdefine msgLabelAlign MakeMsg(clsLabel, 7) 

typedef struct LABEL_ALIGN { 
BOOLEAN alignX; II in: true if x alignment 
SIZE16 outerSize; II in: size of label outer rect (in twips) 
SIZE16 innerSize; II in: size of label inner rect (in twips) 
SIZE16 contentsSize; II in: size of label contents (in twips) 
COORD16 offset; II out: computed x or y offset from origin 
U32 spare; II unused (reserved) 

LABEL_ALIGN, *P_LABEL_ALIGN; 

Allows subclasses to compute alignment. The subclass should fill in pArgs->offset. 

msgLabelProvideInsPt 
Self-sent message to obtain where to render insertion point. 

Takes P _SI6, returns STATUS. Category: self-sent. 

fdefine msgLabelProvideInsPt MakeMsg(clsLabel, 18) 

Receiver should return the zero-based index of the character at which the insertion point should be 

drawn. Non-boxed styles draw the insertion point before this character, boxed styles highlight the box 

around this character. 

If the returned index is -1, no insertion point is drawn. clsLabel responds by default with -1. 

msgLabel GetRects 
Computes the rectangle for each given character index. 

Takes P _LABEL_RECT, returns STATUS. 

fdefine msgLabelGetRects MakeMsg(clsLabel, 19) 
fdefine 19rInsPtRect flagO 

typedef struct { 
S16 index; 
RECT32 recti 
U16 flags; 
U16 spare; 

LABEL_RECT, *P_LABEL_RECT; 



Comments 

LABEL.H 447 
Messages from Other Classes 

pArgs points to an array ofLABEL_RECTs. The receiver computes the rectangle for the character at the 
index for each index until it encounters one whose value is -1. The rects are relative to the label, and are 

expressed in device units. 

The indices should be sorted in increasing order. 

msgLabelProvideBoxSize 
Self-sent message to obtain the char box size. 

Takes P _SIZE16, returns STATUS. Category: self-sent. 

#define msgLabelProvideBoxSize MakeMsg(clsLabel, 20) 

Receiver should fill in *pArgs with the size of a character box, in points. This message is self-sent when a 

boxed label is processing the following messages: msglnit, msgRestore, msgLabelSetString, and 

msgLabelSetStyle. 

c1sLabel responds by filling in *pArgs from the user preferences (using prCharBoxWidth and 
prCharBoxHeight from prefs.h). 

Messages from Other Classes 

msgWinLayoutSelf 
Tell a window to layout its children. 

Takes P _WIN_METRICS, returns 'STATUS. 

c1sLabel responds by recomputing its layout parameters and by using msgWinDelta on its child window 
(if style.infoType is lsInfoWindow). 

msgSave 
Causes an object to file itself in an object file. 

Takes P_OBLSAVE, returns STATUS. 

c1sLabel responds by filing away all its state, including its string (if style.infoType is lsInfoString) or 

child window (if style.infoType is lsInfoWindow). 

Note that the child window must have wsSendFile set to be filed. If wsSendFile is not set, then msgSave 

does not save it, and a subsequent msgRestore sets the label's pString field to objNul1. (wsSendFile is 
the default for c1sBorder and its descendents). 

msgRestore 
Creates and restores an object from an object file. 

Takes P _OBJ_RESTORE, returns STATUS. 

c1sLabel responds by restoring all of its state, including its string (if style.infoType is lsInfoString) or 
child window (if style.infoType is IsInfoWindow). 

If the child window was not filed during the msgSave, then after msgRestore the label's pString value is 

objNull. 



448 PENPOINT API REFERENCE 
Part 4 / UI Toolkit 

Comments 

(omments 

(omments 

Comments 

msgFree 
Sent as the last of three msgs to destroy an object. 

Takes OBJ_KEY, returns STATUS. 

clsLabel responds by freeing its string if style.infoType is IsInfoString and the string pointer is not null. 

clsLabel uses OSHeapBlockFree. 

msgWinRepaint 
Tells a window to repaint itself 

Takes nothing, returns STATUS. Category: descendant responsibility. 

clsLabel responds by painting its decoration and string as appropriate. 

msgWinGetBaseline 
Gets the desired x,y alignment of a window. 

Takes P _WIN_METRICS, returns STATUS. 

clsLabel responds by setting pArgs->bounds.origin. 

If the label is displaying a decoration, the x coordinate is set to the x offset of the rightmost decoration 
position (there's a small gap between this position and the start of the string/window). If the label has no 

decoration, then the x coordinate is set to the offset of the left side of the string/window. 

The y coordinate is set to a value derived from the label's innerRect origin and the baseline information 
from the label's font. This value is accurate in those cases where the label's bottom fits snugly around the 
string/window, but is incorrect in cases where this doesn't hold (e.g., a non-wsShrinkWrapHeight label 
that is taller than it needs to be). 

msgBorderGetlnnerRect baseline coordinates are derived from this 

msgEmbeddedWinGetMark 
Get an embedded window mark. 

Takes P_EMBEDDED_WIN_MARK, returns STATUS. 

clsLabel responds by copying into pArgs->label, then ensures that the buffer is terminated with a null 
character. 

If style.infoType is not IsInfoString, or the label's string is null or empty, then clsLabel does nothing. 

msgBorderPaintForeground 
catagory: subclass window responsibility Receiver must paint the "foreground, if any. 

Takes VOID, returns STATUS. 

clsLabel responds by using msgWinBeginPaint, painting its decoration and string as appropriate, and 
then sending msgWinEndPaint. 



msgControlSetDirty 
Clears the dirty bit. 

Takes BOOLEAN, returns STATUS. 

LABEL.H 449 
Messages from Other Classes 

clsLabel responds by calling ancestor, then checking the CONTROL_STYLE.showDirty value. If this is 

false, clsLabel just returns. Otherwise, if the old CONTROL_STYLE. dirty value is different from the new 

value, then clsLabel uses msgWinDirtyRect to dirty its decoration (if it has one). 

msgControlSetStyle sets the CONTROL_STYLE values 

msgControlSetMetrics sets the CONTROL_METRICS values 

msgWinDirtyRect dirties a portion of a window 

msgControlSetStyle 
Sets the style values. 

Takes P _CONTROL_STYLE, returns STATUS. 

clsLabel responds by calling ancestor, then checking the CONTROL_STYLE.showDirty value. If this is 

false, clsLabel just returns. Otherwise, if the old CONTROL_STYLE. dirty value is different from the new 

value, then clsLabel uses msgWinDirtyRect to dirty its decoration (if it has one). 

msgControlSetDirty sets the CONTROL_STYLE. dirty bit 

msgControlSetMetrics sets the CONTROL_METRICS values 

msgWinDirtyRect dirties a portion of a window 

msgControlSetMetrics 
Sets the metrics. 

Takes P _CONTROL_METRICS, returns STATUS. 

clsLabel responds by calling ancestor, then checking the CONTROL_STYLE.showDirty value. If this is 

false, clsLabel just returns. Otherwise, if the old CONTROL_STYLE. dirty value is different from the new 

value, then clsLabel uses msgWinDirtyRect to dirty its decoration (if it has one). 

msgControlSetStyle sets the CONTROL_STYLE values 

msgControlSetDirty sets the CONTROL_STYLE. dirty bit· 

msgWinDirtyRect dirties a portion of a window 

-~--.. -------





LISTBOX.H 

This file contains the API for clsListBox. 

clsListBox inherits from clsScrollWin. 

Implements a scrolling list of windows (of arbitrary length). 

The windows that the listBox manages may be of any class, and they may be of different classes within a 
listBox. The windows may have different heights as well. The listBox will constrain their widths as per 
various style settings. 

A listBox is useful when the number of windows that could be displayed is unknown, variable, or large 
(say 30 or more). The listBox will, by default, destroy those windows that have scrolled out of view, thus 
keeping the number of windows in existence to a reasonable quantity. 

By using a listBox, you trade performance for generality. If the number of windows is likely to be small 
and not particularly variable, you may choose to put a tableLayout window in as the clientWin of a 
scrollWin instead. The visual effect would be the same as for a list Box, but each of the tableLayout's 
child windows would, by default, be around for the lifetime of the parent (and as more windows are put 
on the screen, the overall performance of the· VI degrades). 

As with most VI Toolkit classes, you may use clsListBox as-is, or create your own subclass for special 
purposes. Since a common use of a listBox is to present a simple list of strings to the user, you may use 
clsStringListBox instead (see strlbox.h). That class presents a somewhat simpler API for this common 
usage. A subclass of clsStringListBox is clsFontListBox, which gets its strings from the list of currently 
installed fonts on the system. clsFontListBox proves useful in situations such as option sheets (see 
fontlbox.h). 

Debugging Flags 
The clsListBox debugging flag is 'K'. Defined values are: 

flag 12 (Ox 1000) general 

#ifndef LISTBOX INCLUDED 
#define LISTBOX_INCLUDED 

#ifndef SWIN_INCLUDED 
#include <swin.h> 

#endif 

Common #defines and typedefs 
typedef OBJECT LIST_BOX; 

ListBox Filing Styles 
#define lbFileMin 0 
#define lbFileEntryInfo 1 
#define lbFileAll 2 
typedef struct { 

U16 filing 2, 
spare 14; 

LIST_BOX_STYLE, *P_LIST_BOX_STYLE; 

II file minimum data necessary 
II lbFileMin + entry info except windows 
II lbFileEntryInfo + windows 



452 PENPOINT API REFERENCE 
Part 4 / UI Toolkit 

Default style: 

filing = lbFileAll 
typedef struct { 

LIST BOX STYLE style; 
OBJECT client; II client to send list box messages to. 
U16 nEntries; II total number of entries in list box. 
U16 nEntriesToView; II show this many entries at a time. 
U32 spare; 

LIST_BOX_METRICS, *P_LIST_BOX_METRICS; 
Enum16(LIST BOX DATA FREE MODE) { 

lbFreeDataNotVislble - flagO, 
lbFreeDataWhenDestroyed = flag1, 
lbFreeDataByMessage flag2, 
lbFreeDataDefault lbFreeDataNotVisible I lbFreeDataWhenDestroyed 

} ; 

Enum16(LIST BOX ENTRY STATE) 
lbSelected - -flagO, 
lbOpen flag1, 
lbBusy flag2, 
lbStateDefault 0 II Not selected, not open 

} ; 

typedef struct LIST BOX ENTRY { 
WIN listBox; II in/out: requestor 
U16 position; II in: entry position 
WIN win; II in/out: entry window to display 
U16 freeEntry; II in/out: LIST_BOX_DATA_FREE_MODE 
U16 state; II in/out: LIST BOX ENTRY STATE 
P UNKNOWN data; II in/out: client data -
P UNKNOWN arg; II message specific argument 
U32 spare; II reserved 

LIST_BOX_ENTRY, *P_LIST_BOX_ENTRY; 
typedef struct LIST BOX POSITION XY { 

XY32 place; - II in 
U16 position; II inlout 
U32 spare; II unused (reserved) 

LIST BOX POSITION XY, *P_LIST_BOX_POSITION_XY; 
typedef struct LIST BOX ENTRY ENUM { 

U16 - -max; - II in size of pEntry[] array. 
U16 count; II in # of entries to return in array. 

II If count> max then memory may be 
II allocated. 
II out = # of valid entries in array. 

U16 next; II in = 0 to start at beginning 
II OR previous out value to pick up 
II where we left off. 

P LIST BOX ENTRY pEntry; II in = Ptr to array of entries. 
II out If memory was allocated client 
II should free the memory. 

U16 flags; II in state flags to filter on. 
U32 spare; II unused (reserved) 

LIST_BOX_ENTRY_ENUM, *P_LIST_BOX_ENTRY_ENUM; 
#define stsListBoxEmpty MakeStatus(clsListBox, 1) 

msgNew 
Creates a list box (initially empty). 

Takes P_LIST_BOX_NEW, returns STATUS. Category: class message. 

typedef LIST BOX METRICS LIST BOX NEW ONLY, *P_LIST_BOX_NEW_ONLY; 
#define listBoxNewFields ,- - -

scrollWinNewFields , 
LIST_BOX_NEW_ONLY listBox; 



Message 
Arguments 

Message 
AW9umenfs 

Message 
,Arguments 

LlSTBOX.H 453 
Common #defines and typedefs 

typedef struct { 
listBoxNewFields 

} LIST_BOX_NEW, *P_LIST_BOX_NEW; 

clsListBox sets the following values before calling its ancestor: 

pArgs->scrollWin.style.getDelta = falsei 
pArgs->scrollWin.style.vertClient = swClientWini 
pArgs->scrollWin.style.horizClient = swClientScrollWini 
pArgs->scrollWin.style.getSize = true; 
pArgs->scrollWin. style. forward = swForwardGesturei 

msgNewDefaults 
Initializes the LIST_BOX_NEW structure to default values. 

Takes P _LIST_BOX_NEW, returns STATUS. Category: class message. 

typedef struct { 
listBoxNewFields 

} LIST_BOX_NEW, *P_LIST_BOX NEW; 

clsListBox sets the following values: 

pArgs->win.flags.style 1= wsShrinkWrapHeight; 
pArgs->win.flags.style &= NwsShrinkWrapWidth; 
pArgs->border.style.edge = bsEdgeAll; 
pArgs->scrollWin.style.expandChildWidth = true; 
pArgs->listBox.style.filing = lbFileAll; 
pArgs->listBox.client = objNull; 
pArgs->listBox.nEntries = 0; 
pArgs->listBox.nEntriesToView = 6; 
pArgs->listBox.spare = 0; 

msgListBoxGetMetrics 
Passes back the metrics for a listBox. 

*define msgListBoxGetMetrics 

typedef struct { 
LIST BOX STYLE style; 

MakeMsg(clsListBox, 1) 

OBJECT client; II client to send list box messages to. 
U16 nEntries; II total number of entries in list box. 
U16 nEntriesToView; II show this many entries at a time. 
U32 spare; 

LIST_BOX_METRICS, *P_LIST_BOX_METRICS; 

msgListBoxSetMetrics 
Sets the metrics for a listBox. 

Takes P _LIST_BOX_METRICS, returns STATUS. 

*define msgListBoxSetMetrics 

typedef struct { 
LIST BOX STYLE style; 

MakeMsg(clsListBox, 2) 

OBJECT client; II client to send list box messages to. 
U16 nEntries; II total number of entries in list box. 
U16 nEntriesToView; II show this many entries at a time. 
U32 spare; 

LIST_BOX_METRICS, *P_LIST_BOX_METRICS; 

-------------------



454 PENPOINT API REFERENCE 
Part 4 I UI Toolkit 

M@SS0S@ 
Arsul'YI@nts 

M®ssuS@ 
Arsum@nts 

You should send msgWinLayout to the listBox if the value of nEntriesTo View has changed. 

The listBox might ask for new entries after the SetMetrics call returns if the value of nEntries has 

changed. 

msgListBoxAppendEntry 
Appends an entry to the list box after the specified position. 

Takes P_LIST_BOX_ENTRY, returns STATUS. 

#define msgListBoxAppendEntry MakeMsg(clsListBox, 3) 

typedef struct LIST_BOX_ENTRY { 
WIN listBox; II in/out: requestor 
U16 position; II in: entry position 
WIN win; II in/out: entry window to display 
U16 freeEntry; II in/out: LIST BOX DATA FREE MODE - - - -
U16 state; II in/out: LIST BOX ENTRY STATE - - -
P UNKNOWN data; II in/out: client data 
P UNKNOWN arg; II message specific argument 
U32 spare; II reserved 

LIST_BOX_ENTRY, *P_LIST_BOX_ENTRY; 

If win is objNull, the client will receive msgListBoxProvideEntry when the entry needs to be displayed. 

This is computationally expensive when the listBox has a parent. In other words, all work necessary to 
fix up the listBox is performed immediately. If you want to batch several calls, consider extracting the 

listBox first. 

msgListBoxInsertEntry similar, but inserts before 

msgListBoxInsertEntry 
Insert an entry to the list box before the specified position. 

Takes P_LIST_BOX_ENTRY, returns STATUS. 

#define msgListBoxInsertEntry MakeMsg(clsListBox, 4) 

typedef struct LIST_BOX_ENTRY { 
WIN listBox; II in/out: requestor 
U16 position; II in: entry position 
WIN win; II in/out: entry window to display 
U16 freeEntry; II in/out: LIST BOX DATA FREE MODE - - - -
U16 state; II in/out: LIST BOX ENTRY STATE - - -
P UNKNOWN data; II in/out: client data 
P UNKNOWN arg; II message specific argument 
U32 spare; II reserved 

LIST_BOX_ENTRY, *P_LIST_BOX_ENTRY; 

If win is objNull, the client will receive msgListBoxProvideEntry when the entry needs to be displayed. 

This is computationally expensive when the listBox has a parent.' In other words, all work necessary to 
fix up the listBox is performed immediately. If you want to batch several calls, consider extracting the 

listBox first. 

msgListBoxAppendEntry similar, but appends after 



Return Value 

MessoSje 
ArgIJments 

MessoSje 
Arguments 

Commettts 

LlSTBOX.H 455 
Common #defines and typedefs 

msgListBoxRemoveEntry 
Removes an entry from the list box. 

Takes UI6, returns STATUS. 

tdefine msgListBoxRemoveEntry MakeMsg(clsListBox, 5) 

If the item was added with free Entry != 0, then the item is freed automatically by the list box. 

This is computationally expensive when the listBox has a parent. In other words, all work necessary to 

fix up the listBox is performed immediately. If you want to batch several calls, consider extracting the 
listBox first. 

stsBadParam the specified position is >= number of entries 

msgListBoxGetEntry 
Gets an entry in a listBox by position. 

Takes P _LIST_BOX_ENTRY, returns STATUS. 

tdefine msgListBoxGetEntry MakeMsg(clsListBox, 6) 

typedef struct LIST BOX ENTRY { 
WIN listBox; II in/out: requestor 
U16 position; II in: entry position 
WIN win; II in/out: entry window to display 
U16 freeEntry; II in/out: LIST BOX DATA FREE MODE - - - -
U16 state; II in/out: LIST BOX ENTRY STATE - - -
P UNKNOWN data; II in/out: client data 
P UNKNOWN arg; II message specific argument 
U32 spare; II reserved 

LIST_BOX_ENTRY, *P_LIST_BOX_ENTRY; 

Will pass back the last one if the passed position is maxU16. 

stsListBoxEmpty the list box has no entries 

stsNoMatch the list box has no entry at that position 

msgListBoxSetEntry 
Sets an entry's information. 

Takes P _LIST_BOX_ENTRY, returns STATUS. 

tdefine msgListBoxSetEntry 

typedef struct LIST_BOX ENTRY { 
WIN listBox; II in/out: 
U16 position; II in: 
WIN win; II in/out: 
U16 freeEntry; II in/out: 
U16 state; II in/out: 
P UNKNOWN data; II in/out: 

MakeMsg(clsListBox, 7) 

requestor 
entry position 
entry window to display 
LIST BOX DATA FREE MODE - - - -
LIST BOX ENTRY STATE - -
client data 

P UNKNOWN arg; II message specific argument 
U32 spare; II reserved 

LIST_BOX_ENTRY, *P_LIST_BOX_ENTRY; 

Typically this message is used to set an entry's data or flag values. 

This message prohibits the caller from changing whether the entry has a window (by specifying an 
objNull pArgs->win when the entry has a window or vice versa). Clients should use 



456 PENPOINT API REFERENCE 
Part 4 / UI Toolkit 

Menoge 
Arguments 

Messoge 
Arguments 

Append/Insert/Remove for this purpose. msgListBoxSetEntry does support replacing a window with a 
different one. 

Replacing an entry window is computationally expensive when the listBox has a parent. 

stsListBoxEmpty the list box has no entries 

stsBadParam attempt to add or remove an entry 

msgListBoxFindEntry 
Finds the position of the given entry window/data. 

Takes P_LlST_BOX_ENTRY, returns STATUS. 

tdefine msgListBoxFindEntry MakeMsg(clsListBox, 8) 

typedef struct LIST BOX ENTRY { 
WIN listBox; II in/out: requestor 
U16 position; II in: entry position 
WIN win; II in/out: entry window to display 
U16 freeEntry; II in/out: LIST BOX DATA FREE MODE - - - -
U16 state; II in/out: LIST BOX ENTRY STATE - - -
P UNKNOWN data; II in/out: client data 
P UNKNOWN arg; II message specific argument 
U32 spare; II reserved 

LIST_BOX_ENTRY, *P_LIST_BOX_ENTRY; 

If pArgs->win is non-null, clsListBox searches for an entry whose window matches pArgs->win. If 
pArgs->win is null, then clsListBox searches for an entry whose data fields matches pArgs->data. 

stsListBoxEmpty the list box has no entries 

stsNoMatch the list box had no matching entry 

msgListBoxEnum 
Enumerates the entries of a listBox according to the given flags. 

Takes P _LlST_BO)CENTRY_ENUM, returns STATUS. 

tdefine msgListBoxEnum MakeMsg(clsListBox, 9) 

typedef struct LIST BOX ENTRY ENUM 
U16 - -max; - II in size of pEntry[] array. 
U16 count; II in t of entries to return in array. 

II If count> max then memory may be 
II allocated. 
II out = t of valid entries in array. 

U16 next; II in = 0 to start at beginning 
II OR previous out value to pick up 
II where we left off. 

P LIST BOX ENTRY pEntry; II in = Ptr to array of entries. 
II out = If memory was allocated client 
II should free the memory. 

U16 flags; II in = state flags to filter on. 
U32 spare; II unused (reserved) 

LIST_BOX_ENTRY_ENUM, *P_LIST_BOX_ENTRY_ENUM; 



M0SSCl90 

Arguments 

Comments 

MessCige 
Arguments 

Message 
Arguments 

LlSTBOX.H 457 
Common #defines and typedefs 

msgListBoxEntryIs Visible 
Passes back the visibility of an entry in a listBox. 

Takes P_LIST_BOX_ENTRY, returns STATUS. 

#define msgListBoxEntryIsVisible MakeMsg(clsListBox, 10) 

typedef struct LIST_BOX_ENTRY { 
WIN listBox; II in/out: requestor 
U16 position; II in: entry position 
WIN win; II in/out: entry window to display 
U16 freeEntry; II in/out: LIST BOX DATA FREE MODE - - - -
U16 state; II in/out: LIST BOX ENTRY STATE - - -
P UNKNOWN data; II in/out: client data 
P UNKNOWN arg; II message specific argument 
U32 spare; II reserved 

LIST_BOX_ENTRY, *P_LIST_BOX_ENTRY; 

Sets the 'arg' field to zero if not visible, non-zero if visible. If the position is maxU16, then uses 
pArgs->win instead. 

msgListBoxXYToPosition 
Gets the position for a given listBox window coordinate. 

Takes P _LIST_BOX_POSITION_XY, returns STATUS. 

#define msgListBoxXYToPosition MakeMsg(clsListBox, 11) 

typedef struct LIST BOX_POSITION_XY 
XY32 place; II in 
U16 position; II inlout 
U32 spare; II unused (reserved) 

LIST BOX POSITION XY, *P_LIST_BOX_POSITION_XY; 

This message resolves positions only to currently visible entry windows. It does not attempt to 

interpolate arbitrary coordinates to positions. 

pArgs->place should be in the listBox's clientWin space. 

stsNoMatch the place did not intersect any currently visible entry windows 

msgListBoxMakeEntryVisible 
Makes the specified entry visible. 

Takes P _LIST _BOX_ENTRY, returns STATUS. 

#define msgListBoxMakeEntryVisible 

typedef struct LIST_BOX_ENTRY { 
WIN listBox; II in/out: 
U16 position; II in: 
WIN win; II in/out: 
U16 freeEntry; II in/out: 
U16 state; II in/out: 
P UNKNOWN data; II in/out: 

MakeMsg(clsListBox, 12) 

requestor 
entry position 
entry window to display 
LIST BOX DATA FREE MODE 
LIST BOX ENTRY STATE - -
client data 

P UNKNOWN arg; II message specific argument 
U32 spare; II reserved 

LIST_BOX_ENTRY, *P_LIST_BOX_ENTRY; 

If the specified position is maxU16, msgListBoxFindEntry is first used to find the given window. If the 
position is not visible, it will be scrolled so that its top is at the center of the view. Otherwise, the 
minimum amount is scrolled. No msgWinUpdate is required. 



458 PENPOINT API REFERENCE 
Part 4 / UI Toolkit 

Self-Sent/Client Messages 

MesslOge 
Arguments 

Message 
Arguments 

All of the messages in this section are first sent to the listBox itself. This is so that subclasses of 
clsListBox may intercept these messages and process them as desired. If these messages reach the­

clsListBox message handler, they will be forwarded on to the listBox client. 

msgListBoxProvideEntry 
Self-sent when a listBox needs a window for display. 

Takes P _LIST_BOX_ENTRY, returns STATUS. Category: self-sent/client responsibility. 

tdefine msgListBoxProvideEntry MakeMsg(clsListBox, 13) 

typedef struct LIST_BOX_ENTRY { 
WIN listBox; II in/out: requestor 
U16 position; II in: entry position 
WIN win; II in/out: entry window to display 
U16 freeEntry; II in/out: LIST BOX DATA FREE MODE - - - -
U16 state; II in/out: LIST BOX ENTRY STATE - - -
P UNKNOWN data; II in/out: client data 
P UNKNOWN arg; II message specific argument 
U32 spare; II reserved 

LIST_BOX_ENTRY, *P_LIST_BOX_ENTRY; 

The client should pass back a window UID in the win field. The client should also set the freeEntry, 

state, and data fields as desired. Note that the state and data fields have no meaning to clsListBox; 

they're uninterpreted fields for the client to use for any purpose. 

A listBox will send this message even when the position it's asking for is >= the number of entries 
specified for the listBox. In this case, the client is free to return a non-zero status value, indicating to the 

listBox that no entry should be created for that position. Providing another entry window in this case 

allows the user to create new entries by merely scrolling past the end of the list. 

If the message reaches the standard listBox message procedure, the listBox will forward the message to 

the client. This scheme allows subclasses of clsListBox to handle the message in a different way. 

msgListBoxDestroyEntry 
Sent to the client for an entry that has IbFreeDataByMessage enabled. 

Takes P _LIST_BO)CENTRY, returns STATUS. Category: self-sent/client responsibility. 

tdefine msgListBoxDestroyEntry MakeMsg(clsListBox, 14) 

typedef struct LIST_BOX_ENTRY { 
WIN listBox; II in/out: requestor 
U16 position; II in: entry position 
WIN win; II in/out: entry window to display 
U16 freeEntry; II in/out: LIST BOX_DATA_FREE_MODE 
U16 state; II in/out: LIST BOX_ENTRY_STATE 
P UNKNOWN data; II in/out: client data 
P UNKNOWN arg; II message specific argument 
U32 spare; II reserved 

LIST_BOX_ENTRY, *P_LIST_BOX_ENTRY; 

The client should destroy the entry win and free any storage pointed to by the entry's 'data' field. 



MeStdlge 
Arguments 

Comments 

LlSTBOX. H 459 
Messages from Other Classes 

msgListBoxEntryGesture 
Notifies the subclass / client that a gesture occurred over an entry. 

Takes P _LIST_BOX_ENTRY, returns SfATUS. Category: self-sent/client responsibility. 

#define msgListBoxEntryGesture MakeMsg(clsListBox, 15) 

typedef struct LIST_BOX_ENTRY { 
WIN listBox; II in/out: requestor 
U16 position; II in: entry position 
WIN win; II in/out: entry window to display 
U16 freeEntry; II in/out: LIST BOX DATA FREE MODE - - - -
U16 state; II in/out: LIST BOX ENTRY STATE - - -
P UNKNOWN data; II in/out: client data 
P UNKNOWN arg; II message specific argument 
U32 spare; II reserved 

LIST_BOX_ENTRY, *P_LIST_BOX_ENTRY; 

The' arg' field contains a P _GWIN_GESTURE pointer. 

If the position is maxU16, this means that the listbox currently has no entry windows. Any other value 
indicates the position of the entry window to which the gesture is directed. The listbox will use 
msgGWinTransformGesture to translate the coordinates in the GWIN_GESTURE to be relative to the 
entry window. 

The listbox returns (from its msgGWinGesture/msgGWinForwardedGesture handler) the status 
resulting from self-sending msgListBoxEntryGesture. This means that the client should return stsOK, 
stsRequestDenied, or stsRequestForward as appropriate. See gwin.h. 

Messages frolll Other Classes 

msgWinStartPage 
Advises window that it is on a printer, and printing is about to start. 

Takes pNull, returns SfATUS. Category: advisory message. 

clsListBox responds by ensuring that its dientWin is appropriately populated with entry windows. 

msgWinGetBaseline 
Gets the desired x,y alignment of a window. 

Takes P _WIN_METRICS, returns SfATUS. 

clsListBox will set pArgs->bounds.origin.x to o. If there is an entry window visible, 
pArgs->bounds.origin.y is set to: 

<top of scrollWin's inner window> - <row height> 

+ <y baseline of first visible entry window> 

If no entry window is visible, the y is set to o. 

~ 





MANAGER.M 

This file contains the API for dsManager. 

dsManager inherits from dsObject. 

Provides an abstract manager class and associated protocol. 

Managers are used to implement group behavior for collections of components. For example, each 
instance of dsChoice uses one to change the state of child buttons when the user is tapping on the 
choice's children. Also, the menu button holding onto a menu uid acts as a manager for that menu. 
Manager uids are held by instances of clsTkTable. 

fifndef MANAGER INCLUDED 
fdefine MANAGER INCLUDED 
fdefine managerNewFields \ 

objectNewFields 

A manager returns stsManagerContinue if it wishes msgWinSend propogation to continue. Any other 
return value causes propogation to stop and the return value to be passed back to the original 
msgWinSend sender. 

fdefine stsManagerContinue MakeMsg(clsManager, 1) 





MaunON.H 

This file contains the API definition for c1sMenuButton. 

c1sMenuButton inherits from c1sButton. 

Menu buttons support an optional pull-down or pull-right pop-up menu. 

#ifndef MBUTTON_INCLUDED 
#define MBUTTON INCLUDED 

#ifndef BUTTON INCLUDED 
#include <button.h> 

#endif 

Common #defines and typedefs 
typedef OBJECT MENU_BUTTON; 

Submenu Types 
#define mbMenuNone 
#define mbMenuPullDown 
#define mbMenuPullRight 
#define mbMenuPopup 
#define mbMenuSibling 
II 
II 
II 

Menu Actions 
#define mbAction1Tap 
#define mbAction2Tap 

o II no sub-menu defined 
1 II sub-menu is pull-down 
2 II SUb-menu is pull-right 
3 II sub-menu is popup 
4 II SUb-menu is a window sibling 
5 II unused (reserved) 

II unused (reserved) 
7 II unused (reserved) 

o 
1 

II menu up/down on xgs1Tap or msgPenUp 
II menu up/down on xgs2Tap 

typedef struct MENU_BUTTON_STYLE 
U16 subMenuType 3, II sub-menu type 

getWidth 1, II self-send msgMenuButtonProvideWidth 
getMenu 
enableMenu 
menuAction 
menuIsUp 
spare 

1, II send msgMenuButtonProvideMenu to client 
1, II send msgControlEnable to menu 
2, II action to bring up/down menu 
1, II read-only: true => menu is up 
7; II unused (reserved) 

MENU_BUTTON_STYLE, *p MENU BUTTON_STYLE; 

subMenuType 
getWidth 

= mbMenuNone 
= false 

getMenu = false 
enableMenu = false 

menuAction = mbAction1Tap 
menuIsUp = false 

typedef struct MENU BUTTON PROVIDE MENU 
MENU_BUTTON -menuButton; - II In: requestor 
WIN menu; II In/Out: uid of menu 
U32 spare; II reserved (unused) 

MENU_BUTTON_PROVIDE_MENU, *P_MENU_BUTTON_PROVIDE_MENU; 



464 PENPOINT API REFERENCE 
Part 4 lUI Toolkit 

Messages 

MeSSdJ90 

Argurtlents 

Comments 

msgNew 
Creates a menu button window. 

Takes P_MENU_BUTTON_NEW, returns STATUS. Category: class message. 

typedef struct MENU_BUTTON_NEW_ONLY { 
MENU_BUTTON STYLE style; II overall style 
WIN menu; II sub-menu or objNull 
U32 sparel; II unused (reserved) 
U32 spare2; II unused (reserved) 

MENU_BUTTON_NEW_ONLY, *P_MENU_BUTTON_NEW_ONLY; 
fdefine menuButtonNewFields \ 

buttonNewFields \ 
MENU_BUTTON_NEW_ONLY menuButton; 

typedef struct MENU_BUTTON_NEW 
menuButtonNewFields 

} MENU_BUTTON_NEW, *P_MENU_BUTTON_NEW; 

The fields you commonly set are: 

pArgs->menuButton.style.subMenuType kind of subMenu 

pArgs->menuButton.menu uid of menu window 

If pArgs->menuButton.style.subMenuType is mbMenuPullRight, sets pArgs->label.style.decoration to 
lsDecorationPullRight. 

If pArgs->menuButton.style.subMenuType is not mbMenuNone, sets pArgs->button.style.contact to 
bsContactToggle. 

If pArgs->menuButton.menu is not objNull, it self-sends msgWinSetPopup with WIN_METRICS 

parameters of child = menu; 

msgN ewDefaults 
Initializes the MENU_BUTTON_NEW structure to default values. 

Takes P_MENU_BUTTON_NEW, returns STATUS. Category: class message. 

typedef struct MENU_BUTTON_NEW { 
menuButtonNewFields 

} MENU_BUTTON_NEW, *P_MENU_BUTTON_NEW; 

Zeroes out pArgs->menuButton and sets: 

pArgs->win.flags.style 1= wsFileNoBounds; 

pArgs->border.style.edge = bsEdgeNone; 
pArgs->border.style.join = bsJoinSquare; 
pArgs->border.style.shadow = bsShadowNone; 

pArgs->gWin.style.gestureEnable = false; 

pArgs->control.style.showDirty = false; 

pArgs->label.style.xAlignment 
pArgs->label.style.yAlignment 

lsAlignLeft; 
lsAlignBottom; 



Message 

Argum1H1YS 

Message 

ArtJlJmeflYS 

MBUTTON.H 465 
Messages 

msgSave 
Causes an object to file itself in an object file. 

Takes P _OBLSAVE, returns STATUS. 

If the menu button has a menu, and the menu has wsSendFile on, msgSave be sent to the menu passing 
along pArgs. 

msgRestore 
Creates and restores an object from an object file. 

Takes P_OBLRESTORE, returns STATUS. 

dsMenuButton restores the instance from the file. If the menu buttona menu when filed, the menu is 
restored and the following is done:Sends msgTkTableSetManager, with pArgs of self to the menu. 
Self-sends msgWinSetPopup with WIN_METRICS parameters of child = menu; 

msgFree 
Sent as the last of three msgs to destroy an object. 

Takes OBLKEY, returns STATUS. 

If the menu button has a menu, msgDestroy is sent to the menu. 

msgMenuButtonGetStyle 
Passes back the current style values. 

Takes P _MENU_BUTTON_STYLE, returns STATUS. 

#define msgMenuButtonGetStyle MakeMsg(clsMenuButton, 1) 

typedef struct MENU_BUTTON_STYLE 
U16 subMenuType 3, II sub-menu type 

getWidth 1, II self-send msgMenuButtonProvideWidth 
getMenu 1, II send msgMenuButtonProvideMenu to client 
enableMenu 1, II send msgControlEnable to menu 
menuAction 2, II action to bring up/down menu 
menuIsUp 1, II read-only: true => menu is up 
spare 7; II unused (reserved) 

MENU_BUTTON_STYLE, *P_MENU_BUTTON_STYLE; 

msgMenuButtonSetStyle 
Sets the style va1~es. 

Takes P _MENU_BUTTON_STYLE, returns STATUS. 

#define msgMenuButtonSetStyle MakeMsg(clsMenuButton, 2) 

typedef struct MENU BUTTON STYLE - -
U16 subMenuType 3, II sub-menu type 

get Width 1, II self-send msgMenuButtonProvideWidth 
getMenu 1, II send msgMenuButtonProvideMenu to client 
enableMenu 1, II send msgControlEnable to menu 
menuAction 2, II action to bring up/down menu 
menuIsUp 1, II read-only: true => menu is up 
spare 7; II unused (reserved) 

MENU_BUTTON_STYLE, *P_MENU BUTTON_STYLE; 

Note that style.menuIsUp is read-only -- pArgs->menuIsUp will be ignored. 

--------------------



466 PENPOINT API REFERENCE 
Part 4 I UI Toolkit 

CommenTS 

Comments 

CommenTS 

If style.subMenuType changes the following is done: 

• if style. subMenu Type is mbMenuPuliRight, the label. style. decoration is set to to 
IsDecoratePuliRight, otherwise it is set to IsDecorateNone. 

• if the menu button has a menu, button.style.contact is set to bsContactToggIe, otherwise 
bsContactMomentary. 

• if the menu button has a menu, self-sends msgWinSetPopup with WIN_METRICS parameters of 
child ~ menu; 

msgMenuButtonGetMenu 
Passes back the menu, objN ull if none. 

Takes P_MENU, returns STATUS. 

fdefine msgMenuButtonGetMenu MakeMsg(clsMenuButton, 3) 

Note that this message does not result in msgMenuButtonProvideMenu to the menu button's client, 
even if style.getMenu is true. To retrieve the menu that will be shown, send 
msgMenuButtonProvideMenu to the menu button. 

msgMenuButtonProvideMenu 

msgMenuButtonSetMenu 
Sets the menu. 

Takes MENU, returns STATUS. 

fdefine msgMenuButtonSetMenu MakeMsg(clsMenuButton, 4) 

The submenu is only used if style. subMenu Type is not mbMenuNone. Note that the old menu, if any, 
is not freed. If the new menu is not objNulI, self-sends msgWinSetPopup with WIN_METRICS 

parameters of 

child = menu; 

msgMenuButtonProvideWidth 
Self-sent when style.getWidth is true. 

Takes P _S32, returns STATUS. Category: self-sent. 

fdefine msgMenuButtonProvideWidth MakeMsg(clsMenuButton, 7) 

Subclasses should respond with the desired width of the menu button. clsMenuButton responds with 
selfs current window width. 

msgMenuButtonlnsertMenu 
Self-sent when style.menuAction is detected. 

Takes WIN, returns STATUS. Category: self-sent. 

fdefine msgMenuButtonlnsertMenu MakeMsg(clsMenuButton, 10) 

Subclasses should respond by inserting pArgs into the window tree. If style.subMenuType is 
mbMenuSibling, clsMenuButton responds by inserting pArgs as a window sibling to self. Otherwise, 
msgMenuShow(true), is sent to pArgs. 



msgMenuButtonExtractMenu 
Self-sent when style.menuAction is detected. 

Takes WIN, returns STATUS. Category: self-sent. 

*define msgMenuButtonExtractMenu MakeMsg(clsMenuButton, 11) 

MBUTTON.H 467 

Messages 

Subclasses should respond by extracting pArgs from the window tree. clsMenuButton responds by 

sending msgMenuShow(false) to pArgs. If style. subMenu Type is mbMenuSibling, clsMenuButton 

responds by sending msgWinExtract to pArgs. Otherwise, msgMenuShow(false), is sent to pArgs. 

msgMenuBuHonShowMenu Arguments 

JVhsssZ'lge 
Argurnent's 

Enum16 (MENU_BUTTON_SHOW_MENU) { 
rnbShowToggle = 0, II toggle the state of the menu 
rnbShowExtract = 1, II take down the menu 
rnbShowlnsert = 2 II put up the menu 

}; 

msgMenuButtonShowMenu 
Puts up or takes down the menu. 

Takes MENU_BUTTON_SHOW_MENU, returns STATUS. 

*define msgMenuButtonShowMenu MakeMsg(clsMenuButton, 5) 

Enum16 (MENU_BUTTON_SHOW_MENU) 
rnbShowToggle = 0, II toggle the state of the menu 
rnbShowExtract = 1, II take down the menu 
rnbShowlnsert = 2 II put up the menu 

} ; 

If the menu is currently up, and pArgs is mbShow Toggle or mbShowExtract, does the following: 

• self-sends msgMenuButtonExtractMenu(menu). 

• if style.getMenu is true, sends msgMenuButtonMenuDone with the following 

MENU_BUTTON_PROVIDE_MENU parameters to the menu button's client: 

menuButton = self; 
menu = menu; 

If the menu is currently down, and pArgs is mbShowToggle or mbShowlnsert, does the following: 

• if style. subMenu Type is not mbMenuSibling and the menu has wsLayoutDirty set in its 

WIN_METRICS.f1ags.style, sends msgWinLayout with the following WIN_METRICS parameters to 

the menu: 

options = wsLayoutResize; 

• if style.getMenu is true, sends msgMenuButtonProvideMenu with the following 
MENU_BUTTON_PROVIDE_MENU parameters to the menu button's client (and then the resulting 

MENU_BUTTON_PROVIDE_MENU.menu will be used): 

menuButton = self; 
menu = menu; 

• if style.enableMenu is true, the process of the selection owner is compared against the process of 

OSThisAppO. The menu is sent msgControlEnable with the following CONTROL_ENABLE 

parameters: 



468 PENPOINT API REFERENCE 
Part 4 / UI Toolkit 

MeuCtge 
Arguments 

root = self; 
enable = true if processes match, false otherwise 

•. msgMenuButtonPlaceMenu is self-sent with the following WIN_METRICS parameters: 

bounds. size 
bounds.origin 

= current menu size; 
= origin of self, in theRootWindow space; 

• msgWinDelta is sent to the menu to position it at the resulting origin. 

• msgTkTableSetManager{self) is sent to the menu. 

• self-sends msgMenuButtonlnsertMenu{menu). 

Note that if style. subMenu Type is mbMenuSibling, msgWinLayout is not sent to self's parent. The 
caller must do this to insure the correct layout. 

msgMenuButtonPlaceMenu 
Self-sent whenever a menu button needs to position its associated menu. 

Takes P _WIN_METRICS, returns STATUS. Category: self-sent. 

*define msgMenuButtonPlaceMenu MakeMsg(clsMenuButton, 6) 

If this message reaches clsMenuButton, that class will do some default positioning. In the message 
arguments: 

bounds. origin In origin of menu *button* wrtltheRootWindow Out: origin of*menu* 
wrt/theRootWindow 

bounds. size In size of menu 

Since clsMenuButton uses msgMenuShow to display the menu, and that message always ensures that 
the menu lies within theRootWindow, there's no need in the method for msgMenuButtonPlaceMenu 
to check the bounds of the menu against theRootWindow. 

msgMenuButtonProvideMenu 
Sent to the client if style.getMenu is true. 

Takes P _MENU_BUTTON_PROVIDE_MENU, returns STATUS. Category: client responsibility. 

*define msgMenuButtonProvideMenu MakeMsg(clsMenuButton, 8) 

typedef struct MENU_BUTTON_PROVIDE_MENU { 
MENU BUTTON menuButton; II In: requestor 
WIN menu; I I In/Out: uid of menu 
U32 spare; II reserved (unused) 

MENU_BUT TON_PROVI DE_MENU , *P_MENU_BUTTON_PROVIDE_MENU; 

clsMenuButton will send this message to the client of the menu button just before showing the menu. 
The MENU_BUTTON_PROVIDE_MENU parameters will be set as follows: 

menuButton = uid of menu button needing the menu 

menu = uid oflast provided or set (via msgMenuButtonSetMenu) menu 

The client may modify the passed menu or ~upply a different menu uid. If the client makes changes to 
the menu that invalidate its layout or supplies a different uid, the client should layout the menu before 
returning. If the client changes the uid of the menu, clsMenuButton will self-send 
msgMenuButtonSetMenu{pArgs->menu) (i.e. the menu button will remember the provided menu for 
future use). The client will be sent msgMenuButtonMenuDone when the menu button is finished with 
the menu. 



Me5setge 
Ar~!Jment$ 

MBUTTON.H 469 
Messages from Other Classes 

Note that this message can also be sent to a menu button to retrieve the actual menu that would be 
shown by the menu button. If style.getMenu is true, c1sMenuButton will send 
msgMenuButtonProvideMenu to the menu button's client. In this case, the caller must send 
msgMenuButtonMenuDone to the menu button when finished with the menu. 

msgMenuButtonMenuDone 

msgMenuButtonMenuDone 
Sent to the client if style.getMenu is true. 

Takes P _MENU_BUTTON_PROVIDE_MENU, returns STATUS. Category: client responsibility. 

*define msgMenuButtonMenuDone MsgNoError(MakeMsg(clsMenuButton, 9)) 

typedef struct MENU_BUTTON_PROVIDE_MENU { 
MENU BUTTON menuButton; II In: requestor 
WIN menu; II In/Out: uid of menu 
U32 spare; II reserved (unused) 

MENU_BUTTON_PROVIDE_MENU, *P_MENU_BUTTON_PROVIDE_MENU; 

c1sMenuButton will send this message to the menu button's client when the menu button has taken 
down the menu and style.getMenu is true. Note that c1sMenuButton does remember the uid of the 
menu even after sending this message. If the client destroys the menu, 
msgMenuButtonSetMenu(objNull) should be sent to the menu button. 

If c1sMenuButton receives this message, and style.getMenu is true, this message will be forwarded to the 
menu button's client. 

Messages from Other Classes 

msgWinLayoutSelf 
Tell a window to layout its children. 

Takes P_WIN_METRICS, returns STATUS. 

If the menu button has a menu, and style.getWidth is true and pArgs->options has wsLayoutResize set 
and the menu button has wsShrinkWrap Width on, clsButton self-sends 
msgMenuButtonProvideWidth to compute pArgs->bounds.size.w. 

msgWinSend 
Sends a message up a window ancestry chain. 

Takes WIN_SEND, returns STATUS. 

c1sMenuButton acts as the manager for its menu, and looks for msgMenuDone to be sent via 
msgWinSend. 

If style.subMenuType is not mbMenuNone and pArgs~>msg is msgMenuDone, and the menu is 
currently up, and pArgs->data[O] is not self, c1sMenuButton will do the following: 

• take down the menu as in msgMenuButtonShowMenu. 

• self-send msgButtonSetNoNotify, false to turn off the menu button. 

• ObjectCallAncestorO to all the msgWinSend to continue up the window tree. 



470 PENPOINT API REFERENCE 
Part 4 I UI Toolkit 

• 

If pArgs->data[O] is self, nothing is done and stsOK is returned without calling ancestor. This allows, for 
example, prevents a menu button with a pull-right menu from taking down the menu containing the 
menu button. 

msgGWinGesture: 
Called to process the gesture. 

Takes P _GWIN_GESTURE, returns STATUS. 

If pArgs->msg is xgs2Tap and style.menuAction is mbActionZfap and style.subMenuType is not 
mbMenuNone, the menu will be inserted/removed as in msgMenuButtonShow. 

dsMenuButton will notify its manager after any gesture. 

dsMenuButton self-sends msgButtonNotifyManager with the following BUTTON_NOTIFY parameters: 

msg = msgMenuDone; 
data = self; 
button = self; 

This is followed by ObjectCallAncestorO, to allow the gesture to be processed normally. 

msgControlSetClient 
Sets the control metrics.client. 

Takes UID, returns STATUS. 

dsMenuButton will send msgTkTableSetClient{pArgs) to the menu. 



MCICON.H 

This file contains the API definition for clsMoveCopylcon. 

clsMoveCopylcon inherits from clslcon. 

Move-copy icons support the move/copy DI. Move-copy icon with drag style mcDragMove will appear 
with a single marquee. Move-copy icon with drag style mcDragCopy will appear with a double 
marquee. 

#ifndef MCICON INCLUDED 
#define MCICON INCLUDED 

#include <icon.h> 

COllllllon #defines and typedefs 

Drag Styles 
#define mcDragNone 0 II disabled 

#ifndef ICON INCLUDED 

#endif 

#define mcDragMove 1 II drag means move 
#define mcDragCopy 2 II drag means copy 
I I 3 I I unused (reserved) 
typedef struct MOVE_COPY_ICON STYLE { 

U16 move 2, II private 
copy 2, I I private 
drag 2, II drag behavior 
destroyOnSelChange 1, II destroy self on msgSelChangedOwners 
spare 9; II unused (reserved) 

MOVE_COPY_ICON_STYLE, *P_MOVE_COPY_ICON_STYLE; 

tag for clsTrack instances created by clsMoveCopylcon 

#define tagMoveCopylconTrack MakeTag(clsMoveCopylcon, 1) 

Messages 

msgNew 
Creates a move-copy icon window. 

Takes P_MOVE_COPY_ICON_NEW, returns SfATUS. Category: class message. 

typedef struct MOVE_COPY_ICON_NEW_ONLY 
MOVE_COP Y_I CON_STYLE style; II overall style 
U32 . spare; II unused (reserved) 

MOVE_COPY_ICON_NEW_ONLY, *p MOVE COPY_ICON_NEW_ONLYi 
#define moveCopylconNewFields 

iconNewFields 
MOVE_COPY_ICON_NEW_ONLY 

\ 
\ 
moveCopylcon; 



472 PENPOINT API REFERENCE 
Part 4 / UI Toolkit 

Comments 

Messt1$le 
Arguments 

Comments 

Messoge 
Arguments 

typedef struct MOVE_COPY_ICON_NEW 
moveCopylconNewFields 

} MOVE_COPY_ICON_NEW, *P_MOVE_COPY_ICON_NEW; 

If style. drag is not mcDragN one, sets the following: 

pArgs->win.flags.input 1= inputMoveDown 1 inputMoveDelta; 
pArgs->win.flags.input &= ~inputLRContinue; 

pArgs->gWin.style.gestureEnable = false; 

pArgs->border.style.edge 
pArgs->border.style.leftMargin 
pArgs->border. style. rightMargin 
pArgs->border.style.bottornMargin 
pArgs->border.style.topMargin 
pArgs->border.style.borderlnk 
pArgs->border. style. lineStyle 

= bsEdgeAll; 
= bsMarginSmall; 
= bsMarginSmall; 
= bsMarginSmall; 
= bsMarginSmall; 
= bslnkBlack; 

(pArgs->moveCopylcon.style.drag == mcDragMove) ? 
bsLineMarquee : bsLineDoubleMarquee; 

pArgs->border. style. selected = true; 

Note that if you set style.destroyOnSelChanged to true, you must add the move copy icon as an 

observer of theSelectionManager to have the move copy icon notified when the selection changes. 

msgNewDefaults 
Initializes the MOVE_COPY_ICON_NEW structure to default values. 

Takes P _MOVE_COPY_ICON_NEW, returns STATUS. Category: class message. 

typedef struct MOVE_COPY_ICON_NEW { 
moveCopylconNewFields 

} MOVE_COPY_ICON_NEW, *P_MOVE_COPY_ICON_NEW; 

Zeroes out pArgs->moveCopyIcon and sets 

pArgs->moveCopylcon.style.move = mcMoveCopyEnable; 
pArgs->moveCopylcon.style.copy = mcMoveCopyEnable; 

Default MOVE_COPY_ICON_STYLE: 

drag = mcDragNone 
destroyOnSelChange = false 

msgMoveCopylconGetStyle 
Passes back the current style values. 

Takes P _MOVE_COPY_ICON_STYLE, returns STATUS. 

*define msgMoveCopylconGetStyle MakeMsg(clsMoveCopylcon, 1) 

typedef struct MOVE_COPY_ICON_STYLE { 
U16 move 

copy 
drag 
destroyOnSelChange 

2, II private 
2, II private 
2, II drag behavior 
1, II destroy self on msgSelChangedOwners 

spare 9; II unused (reserved) 
MOVE_COPY_ICON_STYLE, *P_MOVE_COPY_ICON_STYLE; 



Messt:tge 
Arguments 

Comments 

Arguments 

Comments 

Comments 

MCICON.H 473 
Messages from other classes 

msgMoveCopylconSetStyle 
Sets the style values. 

Takes P _MOVE_COPY_ICON_STYLE, returns STATUS. 

#define msgMoveCopylconSetStyle MakeMsg(clsMoveCopylcon, 2) 

typedef struct MOVE_COPY_ICON_STYLE { 
U16 move 2, II private 

copy 2, I I private 
drag 2, II drag behavior 
destroyOnSelChange 1, II destroy self on msgSelChangedOwners 
spare 9; II unused (reserved) 

MOVE_COPY_ICON_STYLE, *P_MOVE_COPY_ICON_STYLE; 

Note that changing style. drag is not implemented. 

msgMoveCopylconDone 
Sent to the control.client when the icon completes move or copy mode. 

Takes P _MOVE_COPY_ICON_DONE, returns STATUS. Category: client notification. 

#define msgMoveCopylconDone MakeMsg(clsMoveCopylcon, 6) 

typedef struct MOVE COpy ICON DONE { 
WIN icon; - 17 icon sending msg 
BOOLEAN move; II true for Move, false for Copy 
WIN dest; II destination window to move/copy to 
XY32 destXY; II point to move/copy to in dest space 
XY32 penOffset; II offset of pen from icon origin (grab point) 
SIZE32 iconSize; II unused (reserved) 
U32 spare1; II unused (reserved) 
U32 spare2; II unused (reserved) 
U32 spare3; II unused (reserved) 

MOVE_COPY_ICON_DONE, *P_MOVE_COPY_ICON_DONE; 

If the client responds with stsRequestDenied, stsMessageIgnored, or a status < stsOK, the 
moveCopyIcon will be jumped to pArgs->rect.origin and the single or double marquee will be restarted. 
Otherwise, msgDestroy will be self-sent. 

msgMoveCopylconCancel 
Sent to the control.client when the icon cancels move or copy mode. 

Takes OBJECT, returns STATUS. Category: client notification. 

#define msgMoveCopylconCancel MakeMsg(clsMoveCopylcon, 5) 

clsMoveCopyIcon will send self as pArgs. This is sent when style.destroyOnSelChange is true, and 
msgSelChangedOwners is received. 

Messages from other classes 

msglnputEvent 
Notification of an input event. 

Takes P _INPUT_EVENT, returns STATUS. 

If style. drag is not mcDragN one, clsMoveCopyIcon responds as follows: 



474 PENPOINT API REFERENCE 
Part 4 / UI Toolkit 

If pArgs->devCode is msgPenMoveDown and the pen has moved beyonddefined threshold, or 
pArgs->devCode is msgPenExitDown, an instance ofwill be created to indicate the move/copy. 

If pArgs->devCode is msgPenUp, and msgPenDown has already been seen,is sent to the client. 

msg T rackProvideMetrics 
Sent to a track client before track is created. 

Takes P _TRACK_METRICS, returns STATUS. Category: third-party notification. 

If pArgs->tag is tagMoveCopyIconTrack, msgTrackProvideMetrics(pArgs) is sent to the 
moveCopylcon's client. 

msgTrackDone 
Sent by a tracker when it's done. 

Takes P _TRACK_METRICS, returns STATUS. Category: client notification. 

#define msgTrackDone MakeMsg(clsTrack, 6) 

clsMoveCopyIcon will hit-detect pArgs->curXY to locate the window over which the track was 

dropped. The client will be sent msgMoveCopylconDone with the following 
MOVE_ COPY_ICON_DONE parameters: 

icon = self; 
move = true for move, false for copy; 
dest = destination window; 
destXY = pArgs->curXY in dest window's space; 
penOffset = pArgs->curXY in pArgs->rect-relative space; 

msgSelChangedOwners 
Notify the observers when either of the selection owners have changed. 

Takes P _SEL_OWNERS, returns STATUS. 

If style.destroyOnSelChange is true, clsMoveCopyIcon will send msgMoveCopylconCancel(sel f) to its 
client followed by msgDestroy to self 



MENU.H 

This file contains the API definition for clsMenu. 

clsMenu inherits from clsTkTable. 

Menus are collections of menu buttons (each of the latter may have a submenu associated with it, which 
in turn is a collection of menu buttons ... ). 

tifndef MENU INCLUDED 
tdefine MENU_INCLUDED 

tifndef TKTABLE_INCLUDED 
tinclude <tktable.h> 

tendif 
tifndef MBUTTON INCLUDED 

tinclude <rnbutton.h> 
tendif 

Common #defines and typedefs 
typedef OBJECT MENU, *P_MENU; 

Menu Type Styles 
tdefine msTypeMenuBar 0 II horizontal menu bar 
tdefine msTypeMenu 1 
I I 2 

II pull-down or pull-right 
II unused (reserved) 

I I 3 II unused (reserved) 
typedef struct MENU_STYLE { 

U16 type : 2, II menu type 
spare : 14; II unused (reserved) 

MENU_STYLE, *P~NU_STYLE; 

Messages 

msgNew 
Creates a menu window, together with the child windows specified in pEntries. 

Takes P_MENU_NEW,returns STATUS. Category: class message. 

typedef struct MENU_NEW_ONLY { 
MENU_STYLE style; 
MENU_BUTTON_NEW menuButtonNew; 
U32 spare; 

MENU_NEW_ONLY, *P_MENU_NEW_ONLY; 
tdefine menuNewFields \ 

tkTableNewFields \ 
MENU NEW ONLY menu; 

typedef struct MENU_NEW { 
menuNewFields 

} MENU_NEW, *P_MENU_NEW; 

II overall style 
II storage for default child new struct 
II unused (reserved) 

If pArgs->menu. style. type is msTypeMenu, the following is done before ObjectCallAncestorO: 



476 PENPOINT API REFERENCE 
Part 4 / UI Toolkit 

Mcsstlge 
Al'9!Jments 

pArgs->win.flags.style 1= wsSaveUnder; 
pArgs->win.flags.style 1= wsClipSiblings; 
pArgs->win.flags.style &= -(U32)wsParentClip; 

pArgs->border. style. shadow 
pArgs->border.style.shadowGap 

pArgs->border. style. leftMargin 
pArgs->border.style.rightMargin 
pArgs->border.style.bottomMargin 
pArgs->border.style.topMargin 

= bsShadowThinBlack; 
= bsGapTransparent; 

= bsMarginMedium; 
= bsMarginMedium; 
= bsMarginMedium; 
= bsMarginMedium; 

pArgs->tableLayout.style.growChildWidth = true; 
pArgs->tableLayout.style.wrap = false; 

pArgs->tableLayout.numRows.constraint 
pArgs->tableLayout.numCols.constraint 
pArgs->tableLayout.numCols.value 
pArgs->tableLayout. colWidth. constraint 

msgNewDefaults 

= tlInfinite; 
= tlAbsolute; 
= 1; 
= tlChildrenMaxi 

Initializes the MENU_NEW structure to default values. 

Takes P _MENU_NEW, returns STATUS. Category: class message. 

typedef struct MENU_NEW { 
menuNewFields 

} MENU_NEW, *P_MENU_NEWi 

Zeroes out pArgs->menu and sets 

pArgs->win.flags.style 1= wsFileNoBoundsi 

pArgs->embeddedWin.style.selection = ewSelectPreservei 

pArgs->gWin.style.gestureEnable = false; 

pArgs->border.style.edge = bsEdgeAlli 
pArgs->border.style.leftMargin = bsMarginMediumi 
pArgs->border.style.rightMargin = bsMarginMediumi 
pArgs->border.style.bottomMargin = bsMarginSmall; 
pArgs->border.style.topMargin = bsMarginMediumi 

II layout for msTypeMenuBar 
pArgs->tableLayout.style.growChildWidth = falsei 
pArgs->tableLayout.style.growChildHeight = falsei 
pArgs->tableLayout.style.wrap = truei 

pArgs~>tableLayout.colWidth.gap = defaultColGapi 
pArgs->tableLayout.rowHeight.constraint = tlGroupMaxi 
pArgs->tableLayout.rowHeight.gap = defaultRowGapi 

pArgs->menu.style.type = msTypeMenuBari 

The menu is a table of clsMenuButton buttons, so pArgs->tkTable.pButtonNew is set to the address of 
pArgs->menu.menuButtonNew. This menuButtonNew is initialized using msgNewDefaults to 
clsMenuButton, then altered as in msgTkTableChildDefaults. See msgTkTableChildDefaults for more 
info. 

Default Menu style: 

type = msTypeMenuBar 



Message 
Arguments 

Message 
Arguments 

Comments 

Comments 

MENU.H 477 
Messages 

msgMenuGetStyle 
Passes back the current style values. 

Takes P _MENU_STYLE, returns SfATUS. 

#define msgMenuGetStyle MakeMsg(clsMenu, 4) 

typedef struct MENU_STYLE { 
U16 type : 2, II menu type 

spare : 14; II unused (reserved) 
MENU_STYLE, *P_MENU_STYLE; 

msgMenuSetStyle 
Sets the style values. 

Takes P_MENU_STYLE, returns SfATUS. 

#define msgMenuSetStyle MakeMsg(clsMenu, 5) 

typedef struct MENU_STYLE { 
U16 type : 2, II menu type 

spare : 14; II unused (reserved) 
MENU_STYLE, *P_MENU_STYLE; 

Note: setting style.type is not implemented. 

msgMenuShow 
Puts up or takes down the menu by inserting or extracting it as a child of theRootWindow. 

Takes BOOLEAN, returns SfATUS. 

#define msgMenuShow MakeMsg(clsMenu, 1) 

To show the menu, first delta the menu to the desired position, in root window space and use pArgs of 
true. To hide the menu, use pArgs of false. 

Before showing the menu, the menu's origin is altered as follows (in this order): 

• If the menu is wider or taller than theRootWindow, the menu will be placed in an instance of 
clsScrollWin to allow the user to scroll through the menu contents. 

• If the menu falls off the right edge of the root window, the menu is right-justified. 

• If the menu falls off the left edge of the root window, the menu is left-justified. 

• If the menu falls below the bottom edge of the root window, the menu is bottom-justified. 

• If the menu falls above the top edge of the root window, the menu is top-justified. 

The menu will insert itself as an input filter when shown, and remove itself when hidden. The menu 
will be extracted from the root window when hidden. 

msgMenuDone 
Sent via msgWinSend to the manager when the menu is "done". 

Takes WIN, returns STATUS. Category: manager notification. 

#define msgMenuDone MakeMsg(clsMenu, 2) 

The manager should use msgMenuShow to take down the menu. See msgWinSend for clsMenu's 
response to msgMenuDone via msgWinSend. 



478 PENPOINT API REFERENCE 
Part 4 / UI Toolkit 

msgMenuAdjustSections 
Adjusts the border edges and margins of children to correctly reflect a sectioned menu. 

Takes BOOLEAN, returns STATUS. 

idefine msgMenuAdjustSections MakeMsg(clsMenu, 3) 

This message is provided for compatibility and results in a self-send of msg TblLayoutAdjustSections. 
New clients should use msgTblLayoutAdjustSections directly. 

msg TblLayoutAdjustSections 

Messages from other classes 

msg TkTableChildDefaults 
Sets the defaults in pArgs for a common child. 

Takes P _UNKNOWN, returns STATUS. 

clsMenu sets up defaults for each child as follows: 

pArgs->win.flags.style 1= wsParentClip; 
pArgs->win.flags.style &= ""(U32) (wsClipSiblingslwsClipChildren); 

If the child is a descendant of clsBorder, then 

pArgs->border.style.backgroundlnk 1= bslnkExclusive; 

If the child is a descendant of clsButton, then 

pArgs->button.style.manager = bsManagerParent; 

msglnputEvent 
Notification of an input event. 

Takes P_INPUT_EVENT, returns STATUS. 

clsMenu receives input events as a result of the InputFilterAddO done during msgMenuShow. The 
events are handled as follows: 

• If pArgs->destination is self, stsInputSkip returned. 

• If pArgs->destination is a descendant of self (i.e. in the menu's window tree), the event is passed 
through to the destination by returning stsInputSkip. 

• If the pArgs->devCode is msgPenDown, clsMenu will ObjectCallAncestorO msgWinSend with 
the following WIN_SEND parameters: 

msg = msgMenuDone; 
data[O] = pArgs->destination; 
flags = wsSendDefault; 
lenSend = SizeOf(WIN_SEND); 

This is intended as a notification to the menu's manager that themenu is ready to be taken down. If 
pArgs->destination is a descendant of clsMenuButton, stsInputContinue is returned to allow the 
input event to continue; otherwise, the event is terminated by returning 
stsInput TerminateRemoveStroke. 

• All other input events result in a return status of stsInputContinue. 



Comments 

MENU.H 479 
Messages from other classes 

msgWinSend 
Sends a message up a window ancestry chain. 

Takes WIN_SEND, returns STATUS. 

clsMenu looks for manager notifications of msgMenuDone or msgButtonDone via msgWinSend. 

If pArgs->msg is msgMenuDone and pArgs->data[O] is a descendant of self, dsMenu will return stsOK. 
This prevents selfs manager from receiving the msgMenuDone and taking down the menu. This 
prevents, for example, a pull-right menu coming down from taking down its main menu. 

If pArgs->msg is msgButtonDone, pArgs->msg is replaced with msgMenuDone before calling 
ObjectCallAncestorO. This results, for example, in the menu coming down when a button in the menu 
is hit. 

All other values of pArgs->msg result in ObjectCallAncestorO. 

--------------------------





MFILTER.H 

This file contains the API for clsModalFilter. 

clsModalFilter inherits from clsObject. 

Modal filters implement window-relative input modality. 

Modal filters are useful for making a window tree behave in a modal fashion: the user must interact with 
the windows in the tree (and make it go away) before they can use other windows in the application (or 
system). 

Here is an example of how to set up a modal filter object: 

MODAL_FI LTER_NEW mfni 

II Create it. 
ObjCallWarn(msgNewDefaults, clsModalFilter, &mfn)i 
mfn.modalFilter.flags = <appropriate flags>i 
mfn.modalFilter.process = OSThisProcess()i 
mfn.modalFilter.subTreeRoot = <root of window tree to make modal>i 
ObjCallRet(msgNew, clsModalFilter, &mfn, S)i 

II Activate it. 
ObjCallRet(msgModalFilterActivate, mfn.object.uid, pNull, S)i 

II Tell input system about it. 
StsRet(InputFilterAdd( \ 

mfn.object.uid, inputAllRealEventsFlags, 0, <priority», S)i 

See input.h for a discussion of filter priorities and tips on choosing a priority. 

Debugging Flags 
The clsModalFilter debugging flag is 'K'. Defined values are: 

flag 10 (Ox0400) general 

#ifndef MFILTER INCLUDED 
#define MFILTER_INCLUDED 

#include <clsmgr.h> 

#include <ostypes.h> 

#include <win.h> 

Common #delines and typedels 
typedef OBJECT MODAL_FILTER, *P_MODAL_FILTERi 
II Flags 
#define mfSysternModal 
#define mfAutoDismiss 
#define mfDefaultFlags 

flagO 
flagl 
mfAutoDismiss 

#ifndef CLSMGR_INCLUDED 

#endif 
#ifndef OS TYPES_INCLUDED 

#endif 
#ifndef WIN_INCLUDED 

#endif 



482 PENPOINT API REFERENCE 
Part 4 / UI Toolkit 

Messoge 

Arguments 

typedef struct MODAL_FILTER_METRICS 
U16 flags; 
OS TASK ID process; 
WIN subTreeRoot; 
U32 spare; 

II app process for filter; ignored for mfSystemModal 
II window tree to which to give events 
II reserved 

MODAL_FILTER_METRICS, *P_MODAL_FILTER_METRICS; 

msgNew 
Creates a modal filter. 

Takes P _MODAL_FILTER_NEW, returns STATUS. Category: class message. 

typedef MODAL_FILTER_METRICS 
fdefine modalFilterNewFields 

objectNewFields 

MODAL_FILTER_NEW_ONLY, *P_MODAL_FILTER_NEW_ONLY; 
\ 
\ 

MODAL FILTER NEW ONLY modalFilter; - --
typedef struct MODAL_FILTER_NEW { 

modalFilterNewFields 
} MODAL_FILTER_NEW, *P_MODAL_FILTER_NEW; 

The fields you commonly set are: 

pArgs->modalFilter.flags appropriate flags 

pArgs->modalFilter.process process owning the window tree 

pArgs->modalFilter.subTreeRoot root of window tree for which to filter 

A filter is active after msgNew, and becomes deactivated only after it has dismissed its window. 

msgNewDefaults 
Initializes the MODAL_FILTER_NEW structure to default values. 

Takes P_MODAL_FILTER_NEW, returns STATUS. Category: class message. 

typedef struct MODAL_FILTER_NEW { 
modalFilterNewFields 

} MODAL_FILTER_NEW, *P_MODAL_FILTE~NEW; 

Zeroes out pArgs->modalFilter and sets: 

pArgs->modalFilter.flags = mfDefaultFlags; 

msgModalFilterGetFlags 
Passes back the receiver's flags. 

Takes P_U16, returns STATUS. 

fdefine msgModalFilterGetFlags 

msgModalFilterSetFlags 
Sets the receiver's flags. 

Takes P_U16, returns STATUS. 

fdefine msgModalFilterSetFlags 

MakeMsg(clsModalFilter, 1) 

MakeMsg(clsModalFilter, 2) 



Comments 

Comments 

MFILTER.H 413 
M ... ag •• from Oth.r Cia .... 

msgModalFilterActivate 
Activates the filter. 

Takes nothing, returns STATUS. 

tdefine msqModalFilterActivate MakeMsq(clsModalFilter, 3) 

A filter is active after msgNew, and becomes deactivated only after it has dismissed its window. 

msgModalFilterDeactivate 
Deactivates the filter. 

Takes nothing, returns STATUS. 

tdefine msqModalFilterDeactivate MakeMsq(clsModalFilter, 4) 

A filter is active after msgNew, and becomes deactivated only after it has dismissed its window. 

msgModalFilterDismiss Win 
Sent to the subTreeRoot if the win should be dismissed. 

Takes nothing, returns STATUS. Category: third-party notification. 

tdefine msgModalFilterDismissWin MakeMsg(clsModalFilter, 5) 

".. Messages from Other Classes 

msglnputEvent 
Notification of an input event. 

Takes P_INPUT_EVENT, returns STATUS. 

If the filter is inactive, or the input event's devCode is not of clsPen, or the evfGrabTracker flag is set in 
pArgs->flags, or there's a grabber object present (InputGetGrab), then the filter just returns 
stslnputContinue. 

Next, if the pArgs->destination is not a valid object, the filter returns stslnputTerminate. 

If, at this point, the mfSystemModal flag is clear and the process of the pArgs->destination doesn't 
match MODAL_FILTER_METRICS. process, the filter does the following: 

if mfAutoDismiss is on 
if the pArgs->devCode is msgPenDown 

self-send msgModalFilterDeactivate 
send msgModalFilterDismissWin to MODAL_FILTER_METRICS.subTreeRoot 

(and if that returns an error status, top and flash subTreeRoot) 
return stslnputTerminate. 

otherwise return stslnputContinue. 
otherwise return stslnputContinue. 

Now, if pArgs->destination is within subTreeRoot, return stsInputSkipTo4. (See input. h) 

Next, if the subTreeRoot is not a valid object, return stsFailed. 

Next, if mfAutoDismiss is on and pArgs->devCode is msgPenDown: 

self-send msqModalFilterDeactivate 
send msgModalFilterDismissWin to MODAL_FILTER_METRICS.subTreeRoot 

(and if that returns an error status, top and flash subTreeRoot) 
return stslnputTerminate. 



484 PENPOINT API REFERENCE 
Part 4 I UI Toolkit 

Finally, if pArgs->devCode is msgPenDown, the filter tops the sub TreeRoot, flashes it, and returns 

stslnputT erminate. 

stslnputContinue 

msgWinlnsert used by a filter to top the subTreeRoot 

msgBorderFlash used by a filter to flash the subTreeRoot 



NOTE.M 

This file contains the API for c1sNote. 

c1sNote inherits from c1sFrame. 

Provides the VI for system- and app-modal messages to the user. 

".. Debugging Flags 
The c1sNote debugging flag is 'K'. Defined values are: 

flag 15 (Ox8000) general 

*ifndef NOTE INCLUDED 
*define NOTE=INCLUDED 

*ifndef CLSMGR INCLUDED 
*include <clsmgr.h> 

*endif 
*ifndef WIN_INCLUDED 

*include <win.h> 
*endif 
*ifndef FRAME_INCLUDED 

*include <frame.h> 
*endif 
*ifndef TKTABLE_INCLUDED 

*include <tktable.h> 
*endif 

Common #defines and typedefs 
typedef WIN NOTE, *P_NOTE; 
II Tags of component windows within a note. 
*define tagNoteTitle MakeTag(clsNote, 1) 
#define tagNoteTkTable MakeTag(clsNote, 2) 
*define tagNoteCmdBar MakeTag(clsNote, 3) 
II Note flags 
*define nfSystemModal flagO 

. *define nfAutoDestroy flag1 
*define nfSystemTitle flag2 
*define nfAppTitle flag3 
#define nfUnformattedTitle flag9 
*define nfTimeout flag4 
*define nfNoWordWrap flagS 
*define nfResContent flag6 
#define nfNoBeep flag7 
*define nfExplicitCancel flag8 
*define nfDefaultSysFlags \ 

II use system title; ignore pTitle 
II use app title; ignore pTitle 
II use pTitle as is (not "Note from <pTitle>") 
II dismiss on timeout or input 
II don't word wrap content labels 
II pContentEntries is P NOTE RES ID 
II disable prefs-controlled beepIng 
II note will ignore cmdBar buttons 

(nfSystemModal I nfAutoDestroy 
*define nfDefaultAppFlags (nfAppTitle I nfNoBeep) 

I nfSystemTitle I nfNoBeep) 

*define nfDefaultFlags nfDefaultSysFlags 
typedef struct NOTE_METRICS { 

U16 flags; 
MESSAGE autoDismissMsg; 
OBJECT modalFilter; 
OS MILLISECONDS timeout; 
OBJECT client; 
U32 spare; 

NOTE_METRICS, *P_NOTE_METRICS; 

II looks and filter flags 
1/ returned iff win dismissed 
II filter or objNull for default 
II timeout or 0 for user pref 
II client for msgNoteDone 
II reserved 



486 PEN POINT API REFERENCE 
Part 4 I UI Toolkit 

msgNew 
Creates a note. 

Takes P_NOTE_NEW, returns STATUS. Category: class message. 

typedef struct { 
NOTE METRICS 
PCHAR 

metrics; 
pTitle; 

P UNKNOWN pContentEntries; 
P_TK_TABLE_ENTRY pCmdBarEntries; 
U32 spare; 

NOTE_NEW_ONLY, *P_NO!E_NEW_ONLY; 

II used to create the content 
II used to create the command bar 
II reserved 

If nfSystemModal is on, then the client is ignored. If nfSystemModal is off, then msgNoteShow returns 
immediately, and the client will be sent msgNoteDone when the note is dismissed. 

If pTitle will be used (nfSystemTitle and nfAppTitle are off), the title will appear as follows: 

"Note from <pTitle> ... " if nfUnformattedTitle is off 

"<pTitle>" if nfUnformattedTitle is on 

#define noteNewFields \ 
frameNewFields \ 
NOTE NEW ONLY note; 

typedef struct NOTE_NEW { 
noteNewFields 

} NOTE_NEW, *P_NOTE_NEW; 
typedef struct { 

RES 10 resId; II resId for a string table resource 
U32 index; II index within that table of a string 
U32 spare; II reserved (unused) 

NOTE_RES_IO, *P_NOTE_RES_IO; 

dsNote will use msgResReadData to read the string from either OSThisAppO's APP _METRICS.resList, 
or theSystemResFile if OSThisAppO returns objNull. 

Since dsN ote will make a label from the string and dsLabel will break word-wrapped labels at newlines 
C\n'), you may embed newlines in the string to force line breaks. 

The fields you commonly set are: 

pArgs->note.flags appropriate flags 

pArgs->note.autoDismissMsg arg for msgNoteCancel 

pArgs->note.timeout timeout if desired 

pArgs-> note. client client if app-modal 

dsNote will create all the appropriate interior windows, then self-send msgWinLayout to size and place 
all the windows. After that, if either the x or y of the note's origin is 0, dsNote will delta the new 
instance so that when it is inserted as a child of theRootWindow the note will appear in a reasonable 
location. 

To display and activate the note, use msgNoteShow. 



Messtlge 
ArguMents 

MessC1ge 
Arguments 

Mess@%}e 

ArguMents 

msgNewDefaults 
Initializes the NOTE_NEW structure to default values. 

Takes P _NOTE_NEW, returns SfATUS. Category: class message. 

typedef struct NOTE_NEW { 
noteNewFields 

} NOTE_NEW, *P_NOTE_NEW; 

Zeroes out pArgs->note and sets: 

pArgs->win.flags.style 
1= wsSaveUnder 1 wsShrinkWrapWidth 1 wsShrinkWrapHeight; 

pArgs->border.style.resize = false; 
pArgs->border.style.drag = bsDragNone; 
pArgs->customLayout.style.limitToRootWin = true; 
pArgs->frame.style.closeBox = false; 
pArgs->frame.style.zoomable = false; 
pArgs->note.metrics.flags = nfDefaultFlags; 

msgNote(;et~etrics 

Get the metrics of a note. 

Takes P _NOTE_METRICS, returns SfATUS. 

#define msgNoteGetMetrics MakeMsg(clsNote, 1) 

typedef struct NOTE_METRICS { 
U16 flags; 
MESSAGE autoDismissMsg; 
OBJECT modalFilter; 
OS MILLISECONDS timeout; 
OBJECT client; 
U32 spare; 

NOTE_METRICS, *P_NOTE_METRICS; 

msgNoteSe~etrics 

Set the metrics of a note. 

Takes P _NOTE_METRICS, returns SfATUS. 

II looks and filter flags 
II returned iff win dismissed 
II filter or objNull for default 
II timeout or 0 for user pref 
II client for msgNoteDone 
II reserved 

#define msgNoteSetMetrics MakeMsg(clsNote, 2) 

typedef struct NOTE_METRICS { 
U16 flags; 
MESSAGE autoDismissMsg; 
OBJECT modalFilter; 
OS MILLISECONDS timeout; 
OBJECT client; 
U32 spare; 

NOTE_METRICS, *P_NOTE_METRICS; 

II looks and filter flags 
II returned iff win dismissed 
II filter or objNull for default 
II timeout or 0 for user pref 
II client for msgNoteDone 
II reserved 

clsNote will destroy any previous filter object if the filter is changed. 

msgNoteShow 
Displays a note. 

Takes P _MESSAGE, returns STATUS. 

#define msgNoteShow MakeMsg(clsNote, 3) 

NOTE.H 487 



488 PENPOINT API REFERENCE 
Part 4 / UI Toolkit 

Comments If nfSystemModal is on, then the send of this message will block until the note is dismissed. At that 
time, msgNoteShow will set *pArgs to the message sent by the button that was hit (or autoDismissMsg 
if the win was dismissed by its modal filter). Be aware that the entire input system (and therefore the 
window system) will be blocked while msgNoteShow is waiting for completion. 

If nfSystemModal is off, then msgNoteShow returns immediately. It is the app's responsibility to 
implement whatever notion of" modality" is appropriate. Usually this means remembering that the app 
should be "modal" and waiting for msgNoteDone to be sent to the note's client (which should usually 
be the app object). Although the note will filter all the input to the app and discard that input not 
directed at the note, the app must still respond to messages from the app framework. When 
nfSystemModal is off, the *pArgs to msgNoteShow is not set. 

msgNoteDone 
This is the message sent to cl~ents when a note is dismissed. 

Takes MESSAGE, returns STATUS. 

#define rnsgNoteDone MakeMsg(clsNote, 4) 

msgNoteDone is only sent if nfSystemModal is off. 

The parameter message is the message sent by the button that was hit (or autoDismissMsg if the win 
was dismissed by its modal filter). 

msgNoteCancel 
Informs a note that it should take itself down. 

Takes P _MESSAGE, returns STATUS. 

#define rnsgNoteCancel MakeMsg(clsNote, 5) 

This will be posted to a note when: 

• it receives msgButtonNotify from its command bar, or 

• it receives msgModalFilterDismissWin from its filter. 

The method code will do all the final cleanup, including extracting the note window (and destroying it 
if nfAutoDestroy was on). The *pArgs message, will either be returned to the original code that called 
msgNoteShow (if nfSystemModal is on), or passed to msgNoteDone (if nfSystemModal is off). 

This message is only interesting to subclasses of clsNote.1t should not be used by normal clients. 

Messages from Other Classes 

msgFree 
Sent as the last of three msgs to destroy an object. 

Takes OBJ_KEY, returns STATUS. 

clsNote will use InputFilterRemoveO to take its filter out of the input system's list of filters if the filter is 
active. clsNote will then send msgDestroy to its filter if the note had created it (as opposed to the client 
passing in a filter). 



Comments 

Comments 

Comments 

Comments 

NOTE.H 489 
Messages from Other Classes 

msgRestore 
Creates and restores an object from an object file. 

Takes P _OBLRESTORE, returns STATUS. 

c1sNote will restore its flags, autoDismissMsg, and timeout. 

msgSave 
Causes an object to file itself in an object file. 

Takes P_OBLSAVE, returns STATUS. 

c1sNote will file its flags, autoDismissMsg, and timeout. It will not file its modalFilter or client. 

msgWinSend 
Sends a message up a window ancestry chain. 

Takes P_WIN_SEND, returns STATUS. 

The note may respond by posting itself msgNoteCancel (passing a pointer to its autoDismissMsg), 
depending on the pArgs->msg and the nfExplicitCancel flag. 

msgWinLayoutSelf 
Tells a window to layout its children (sent during layout). 

Takes P _WIN_METRICS, returns STATUS. 

If wsLayoutResize is on and nfNoWordW"rap is off and the note is shrinkwrapping in width, the note 
might further adjust the results of the default layout (obtained by just calling ancestor). The note's width 
will be forced wider if the height of the initial layout is taller than dictated by the' golden section' ratio 
ofh/w = 0.618. 

msgGWinGesture 
Self-sent to process the gesture. 

Takes P_GWIN_GESTURE, returns STATUS. 

c1sNote will just return the result of calling its ancestor if the note has buttons (i.e., NOTE_NEW_ONLY 

had a non-null pCmdBarEntries). 

Otherwise, the n.ote will post itself msgNoteCancel, passing a pointer to its autoDismissMsg. Although 
c1sNote should check the nfExplicitCancel flag, it does not yet do so for msgGWinGesture (although 
this may change in the future). 

msgNoteCancel tells a note to take itself down. 

msgModalFilterDismissWin 
Sent to the sub TreeRoot if the win should be dismissed. 

Takes nothing, returns STATUS. Category: third-party notification. 

The note will respond by posting itself msgNoteCancel, passing a pointer to its autoDismissMsg. 



490 PEN POINT API REFERENCE 
Part 4 I UI Toolkit 

Comments 

msgTimerNotify 
Notifies the client that the timer request has elapsed. 

Takes P _TIMER_NOTIFY, returns nothing. Category: advisory message. 

A note may receive this when a non-zero NOTE_METRICS. timeout was specified and the note was 

displayed via msgNoteShow. If this msgTimerNotify does indeed signify that the note should take itself 
down, the note will do so by posting itself msgNoteCanceI (passing a pointer to its autoDismissMsg). 



OPTION.H 

This file contains the API for clsOption. 

clsOption inherits from clsFrame. 

Provides the standard looks, behavior, and protocol of option sheets. 

An option sheet is a special kind of frame that you can use to display the properties of a selected object. 
If the selected object has several different sets of properties, then the option sheet will have several 
windows stacked in it like a deck of cards. Each of these windows is called an option card. For more 
information on option cards, please see clsOptionTable (in opttable.h). 

The user navigates between the option cards with a popup choice, which is available on the tide line of 
the option sheet. The popup choice contains a clsTabButton for each option card. The typical PenPoint 
developer does not need to know about how option sheets use clsTabButton, but feel free to take a look 
at it (in tbutton.h). 

Although clsOption provides a rich API, most PenPoint developers need to understand only the 
following: 

Messages sent by a client to an option sheet: 

msgOptionAddCard 

msgOptionAddLastCard 

Messages sent to a sheet's client by an option sheet: 

msgOptionClosed 

msgOptionProvideT opCard 

Messages sent to a card's client by an option sheet: 

msgOptionProvideCardWin 

msgOptionApplyCard 

msgOptionRefreshCard 

msgOptionApplicableCard 

Messages self-sent by a client to create an option sheet: 

msgOptionCreateSheet 

msgOptionAddCards 



492 PEN POINT API REFERENCE 
Part 4 / UI Toolkit 

Debugging Flags 
The clsOption debugging flag is '0/0'. Defined values are: 

flag8 (OxO 1 00) general 

#ifndef OPTION_INCLUDED 
#define OPTION_INCLUDED 

#include <frame.h> 

#include <tktable.h> 

Common #defines and typedefs 
#define tagOptionApplyButton 
#define tagOptionApplyAndCloseButton 
#define tagOptionCloseButton 
#define hlpOptionApplyButton 
#define hlpOptionApplyAndCloseButton 
#define hlpOptionCloseButton 
typedef OBJECT OPTION; 

Sheet Modality Style 

#ifndef FRAME_INCLUDED 

#endif 
#ifndef TKTABLE_INCLUDED 

#endif 

MakeTag(clsOption, 1) 
MakeTag(clsOption, 2) 
MakeTag(clsOption, 3) 
tagOptionApplyButton 
tagOptionApplyAndCloseButton 
tagOptionCloseButton 

The sheet modality style specifies whether the card is modal, and if so, whether system-modal or 
application-modal. 

#define osModalNone 0 
#define osModalApp 1 
#define osModalSystem 2 

Card Navigation Style 
The card navigation style specifies how the user can move between option cards. GO recommends that 

you use a popup choice. 

#define osNavPopup 
#define osNavTabBar 
II 

o 
1 
2 
3 

II popup choice in the title bar 
II tab buttons in the tab bar 
II unused (reserved) 

II II unused (reserved) 
typedef struct OPTION STYLE 

U16 senseSelection 1, II observe theSelectionManager 
modality 2, II whether modal, and what type 
cardNav 2, II card navigation style 
get Cards 1, II true => enable msgOptionAddCards protocol 
needCards 1, II true => current list of cards is invalid 
needTopCard 1, II true => current top card is invalid 
hideNav 1, II true => hide card navigation 
spare1 7; II unused (reserved) 

U16 spare2 16; II unused (reserved) 
OPTION_STYLE, *P_OPTION_STYLE; 

Default OPTION_STYLE: 

senseSelection = true 
modality = oSModalNone 
cardNav = osNavPopup 
get Cards = false 
needCards = true 
needTopCard = true 
hideNav = false 



typedef struct OPTION_CARD { 
OPTION option; II 
U32 tag; II 
WIN win; II 
P CHAR pName; II 
U16 nameLen; II 
OBJECT client; II 
U32 clientData[2]; II 
U32 spare1; II 
U32 spare2; II 

OPTION_CARD, *P_OPTION_CARD; 
typedef struct OPTION_TAG 

OPTION option; 
TAG tag; 

OPTION_TAG, *P_OPTION_TAG; 

out: option sheet sending the msg. 
in: tag for tab 
in: card window or objNull 
in: card name 

OPTION.H 493 
Messages 

in: max. len for pName (for msgOptionGetCardAndName) 
in: for msgOptionRefreshCard, etc. 
in: arbitrary client data 
unused (reserved) 
unused (reserved) 

Messages 

Comments 

Messoge 
Ar9IJments 

msgNew 
Creates an option sheet. 

Takes P _OPTION_NEW, returns STATUS. Category: class message. 

typedef struct OPTION_NEW_ONLY { 
OPTION_STYLE style; 
P_TK_TABLE_ENTRY pCmdBarEntries; 
U32 spare1; 
U32 spare2; 

OPTION_NEW_ONLY, *P_OPTION_NEW_ONLY; 

II overall style 
II optional override 
II unused (reserved) 
II unused (reserved) 

If pCmdBarEntries is not null, then it should be the address of a null-terminated array of entries. It is 
used to create a custom command bar rather than the usual Apply and Apply&Close buttons. The client 
of this custom command bar is set to the frame's client. 

#define optionNewFields \ 
frameNewFields \ 
OPTION NEW ONLY option; 

typedef struct OPTION NEW { 
optionNewFields -

} OPTION_NEW, *P_OPTION_NEW; 

If pArgs->option.style.cardNav is osNavPopup, clsOption will create an instance of clsTkTable with a 
label and a popupChoice in it as the frame's title bar. The label string will be set to the frame's title 
string. The popup choice will contain a choice for each card in the option sheet. 

msgNewDefaults 
Initializes the OPTION_NEW structure to default values. 

Takes P _OPTION_NEW, returns STATUS. Category: class message. 

typedef struct OPTION_NEW { 
optionNewFields 

} OPTION_NEW, *P_OPTION_NEW; 

Zeroes out pArgs->option and sets 

pArgs->win.flags.style 1= wsSendGeometry 1 wsSaveUnder; 

pArgs->embeddedWin.style.selection = ewSelectPreserve; 



494 PENPOINT API REFERENCE 
Part 4 / UI Toolkit 

Me.s$~ge 

Arguments 

pArgs->border.style.shadow = bsShadowThick-Gray;>border.style.resize = 
bsResizeBottom;>border.style.drag = bsDragDown;>border.style.backgroundlnk = 
bslnkGray33 ;>border.style.edge = bsEdgeAll;>border.style.leftMargin = 
bsMarginMedium;>border.style.rightMargin = bsMarginMedium;>border.style.bottomMargin = 
bsMarginMedium;>border.style.topMargin = bsMarginLarge; 

pArgs->frame.style.dipBoard = true;>frame.style.doseBox = fciIse;>frame.style.zoomable = 
false;>frame.style.cmdBar = true; 

pArgs->option.style.senseSelection = true;>option.style.needCards = true;>option.style.needT opCard = 
true; >option.style. cardN av = osN avPopup; 

msgSave 
Causes an object to file itself in an object file. 

Takes P_OBJ_SAVE, returns STATUS. 

The option sheet saves its style and the tag of the current top card. This tag is used as the default value 
for the top card when msgOptionProvideTopCard is next sent (e.g., after the option sheet is restored 
and inserted in the window tree). 

Saving an option sheet causes msgSave to be sent to each of the option card's tab buttons. If a card's 
client is OSThisAppO, its tab button records and saves this fact. Otherwise, the client is not saved. 

msgRestore 
Creates and restores an object from an object file. 

Takes P_OBJ_RESTORE, returns STATUS. 

The option sheet restores its instance data and sets the following: 

style.needTopCard = true;.needCards = true; 

If the restored frame has a command bar, msgTkTableSetClient is sent to it to force its client to be the 
option sheet. 

If style.getCards and style.senseSe1ection are true, the option sheet is set up to observe 
theSe1ectionManager. 

Restoring an option sheet causes msgRestore to be sent to each of the option card's tab buttons. If a 
card's client was OSThisAppO, its tab button sets the client to the new value for OSThisAppO. Other 
cards have their client set to objNull. 

msgOptionGetStyle 
Passes back the style of the option sheet. 

Takes P _OPTION_STYLE, returns STATUS. 

#define msgOptionGetStyle MakeMsg(clsOption, 1) 

typedef struct OPTION STYLE 
U16 senseSelection 1, II observe theSelectionManager 

modality 2, II whether modal, and what type 
cardNav 2, II card navigation style 
get Cards 1, II true => enable msgOptionAddCards protocol 
needCards 1, II true => current list of cards is invalid 
needTopCard 1, II true => current top card is invalid 
hideNav 1, II true => hide card navigation 
spare 1 7; II unused (reserved) 

U16 spare2 16; II unused (reserved) 
OPTION_STYLE, *P_OPTION_STYLE; 



Comments 

MessClge 

Arguments 

Comments 

Comments 

Comments 

MeS$H:sge 

Arguments 

Most clients do not need to deal with this message. 

msgOptionSetStyle 
Sets the style of the option sheet. 

Takes P _OPTION_STYLE, returns STATUS. 

MakeMsg(clsOption, 2) *define msgOptionSetStyle 

typedef struct OPTION STYLE 
U16 senseSelection 1, II observe theSelectionManager 

modality 2, II whether modal, and what type 
cardNav 2, II card navigation style 

OPTION.H 495 
Messages 

get Cards 1, II true => enable msgOptionAddCards protocol 
needCards 1, II true => current list of cards is invalid 
needTopCard 1, II true => current top card is invalid 
hideNav 1, II true => hide card navigation 
spare1 7; II unused (reserved) 

U16 spare2 16; II unused (reserved) 
OPTION_STYLE, *P_OPTION_STYLE; 

Note that changing style.cardNav is not supported. 

Most clients do not need to deal with this message. 

msgOptionGetNeedCards 
Passes back the value of style.needCards. 

Takes P_BOOLEAN, returns STATUS. 

*define msgOptionGetNeedCards MakeMsg(clsOption, 34) 

Most clients do not need to deal with this message. 

msgOptionSetNeedCards 
Sets style.needCards. 

Takes BOOLEAN, returns SfATUS. 

*define msgOptionSetNeedCards MakeMsg(clsOption, 35) 

If style.needCards and style.getCards are true, the option sheet self-sends msgOptionGetCards when 
the current cards are needed. 

Most clients do not need to deal with this message. 

msgOptionGetCard 
Passes back some information about a card in the option sheet. 

Takes P _OPTION_CARD, returns SfATUS. 

*define msgOptionGetCard MakeMsg(clsOption, 3) 

typedef struct OPTION_CARD { 
OPTION option; II out: option sheet sending the msg. 
U32 tag; II in: tag for tab 
WIN win; II in: card window or objNull 
PCHAR pName; II in: card name 
U16 nameLen; II in: max. len for pName (for msgOptionGetCardAndName) 
OBJECT client; II in: for msgOptionRefreshCard, etc. 
U32 clientData[2]; II in: arbitrary client data 
U32 spare1; II unused (reserved) 
U32 spare2; II unused (reserved) 

OPTION_CARD, *P_OPTION_CARD; 

~------~-~------



496 PEN POINT API REFERENCE 
Part 4 I UI Toolkit 

M@$$@9@ 

Argum@nts 

(tsmmenfrs 

Mes$@ge 

Arguments 

In parameters: 

tag tag of the card to get. 

Out parameters: 

win uid of the card. 

client client of the card. 

Will return stsBadParam if a card matching the passed tag was not found in the option sheet. 

Most clients do not need to deal with this message. 

msgOptionGetTopCard 
Passes back some information about the top card in the option sheet. 

Takes P _OPTION_CARD, returns STATUS. 

fdefine msgOptionGetTopCard MakeMsg(clsOption, 25) 

typedef struct OPTION_CARD { 

OPTION option; 
U32 tag; 
WIN win; 
PCHAR pName; 
U16 nameLen; 
OBJECT client; 
U32 clientData [2] ; 
U32 spare1; 
U32 spare2; 

II 
II 
II 
II 
II 
II 
II 
II 
II 

out: option sheet sending the msg. 
in: tag for tab 
in: card window or objNull 
in: card name 
in: max. len for pName (for msgOptionGetCardAndName) 
in: for msgOptionRefreshCard, etc. 
in: arbitrary client data 
unused (reserved) 
unused (reserved) 

OPTION_CARD, *P_OPTION_CARD; 

Out parameters: 

tag tag of the top card. 

win uid of the card. 

client client of the card. 

If there is no top card, the option sheet sets all of the out parameters to null. 

Most clients do not need to deal with this message. 

msgOptionGetCardAndName 
Passes back some information about a card in the option sheet. 

Takes P _OPTION_CARD, returns STATUS. 

fdefine msgOptionGetCardAndName MakeMsg(clsOption, 20) 

typedef struct OPTION_CARD { 
OPTION option; II out: option sheet sending the msg. 
U32 tag; II in: tag for tab 
WIN win; II in: card window or objNull 
P CHAR pName; II in: card name 
U16 nameLeni II in: max. len for pName (for msgOptionGetCardAndName) 
OBJECT client; II in: for msgOptionRefreshCard, etc. 
U32 clientData[2]; II in: arbitrary client data 
U32 spare1; II unused (reserved) 
U32 spare2; II unused (reserved) 

OPTION_CARD, *P_OPTION_CARD; 



Comments 

Arguments 

Comments 

In parameters: 

tag tag of the card to get. 

pName pointer to a buffer in which to put the card's name. 

nameLen size of pName buffer in bytes (if 0, pName is ignored). 

Out parameters: 

win uid of the card. 

client client of the card. 

OPTION.H 497 
Messages 

pName buffer is filled in with the first nameLen bytes of the name of the card (if ° was not passed for 
nameLen). 

Will return stsBadParam if a card matching the passed tag was not found in the option sheet. 

Most clients do not need to deal with this message. 

msgOptionEnumCards 
Enumerates the tags of the cards in the option sheet. 

Takes P _OPTION_ENUM, returns STATUS. 

#define msgOptionEnumCards MakeMsg(clsOption, 33) 

typedef struct OPTION ENUM 
U16 max, 1/ in = size of pTags[] array 

count; II in = # to return in array 
II if count> max then memory may be allocated 
II out = # of valid entries in array 

P TAG pTag; II in = ptr to array of card tags 
II out = if memory was allocated 
II client should free the memory using OSHeapBlockFree() 

U16 next; II in = 0 to start at beginning 
II OR previous out value to pick up 
II where we left off 
II out = where we left off 

U32 flags; II in = various flags (must be 0 for now) 
U32 spare; II unused (reserved) 

OPT ION_ENUM, *P_OPTION_ENUM; 

This message is sent to enumerate all of the cards that have been added to the option sheet. Typical 
usage is shown below. 

TAG cards[lO]; 
OPTION_ENUM oe; 
oe.max = 10; II we have space for 10 card tags 
oe.count = maxU16; II we want all the card tags 
oe.pTag cards; II our tag buffer 
oe.next = 0; II first call to msgOptionEnumCards 
oe.flags = 0; II unused for now 
ObjCallRet(msgOptionEnumCards, sheet, &oe, S)i 

II oe.pTag[O .. oe.count] is the array of card tags 
II 
II free any allocated memory when finished with the tags 
if (oe.pTag != cards) 

StsWarn(OSHeapBlockFree(oe.pTag)); 

Most clients do not need to deal with this message. 



498 PENPOINT API REFERENCE 
Part 4 I UI Toolkit 

Me$$@~e 

Arguments 

Comments 

Me$s@~e 

Arguments 

msgOptionSetCard 
Changes some of the information of a card in the option sheet. 

Takes P _OPTION_CARD, returns STATUS. 

tdefine msgOptionSetCard 

typedef struct OPTION_CARD { 

OPTION option; II 
U32 tag; II 
WIN win; II 
P CHAR pName; II 
U16 nameLen; II 
OBJECT client; II 
U32 clientData[2]; II 
U32 spare1; II 
U32 spare2; II 

OPTION_CARD, *P_OPTION_CARD; 

In parameters: 

tag tag of the card to set. 

client client for the card. 

win window for the card. 

MakeMsg(clsOption, 4) 

out: option sheet sending the msg. 
in: tag for tab 
in: card window or objNull 
in: card name 
in: max. len for pName (for msgOptionGetCardAndName) 
in: for msgOptionRefreshCard, etc. 
in: arbitrary client data 
unused (reserved) 
unused (reserved) 

pName pointer to a buffer holding a new name, or pNull to keep the old name. 

The option sheet changes the various parameters of the specified card. To avoid changing the name of 
the card, set pArgs->pName to pNull. 

Most clients do not need to deal with this message. 

msgOptionAddCard 
Adds a card to the option sheet. 

Takes P _OPTION_CARD, returns STATUS. 

tdefine msgOptionAddCard 

typedef struct OPTION_CARD { 

OPTION option; II 
U32 tag; II 
WIN win; II 
P CHAR pName; II 
U16 nameLen; II 
OBJECT client; II 
U32 clientData[2]; II 
U32 spare1; II 
U32 spare2; II 

OPTION_CARD, *P_OPTION_CARD; 

In parameters: 

tag tag of the card to set. 

MakeMsg(clsOption, 5) 

out: option sheet sending the msg. 
in: tag for tab 
in: card window or objNull 
in: card name 
in: max. len for pName (for msgOptionGetCardAndName) 
in: for msgOptionRefreshCard, etc. 
in: arbitrary client data 
unused (reserved) 
unused (reserved) 

pName pointer to a buffer holding the card's name. 

win window for the card. 

client client for the card. 

clientData any client data you want stored with the card. 



See Also 

Message 
Arguments 

Comments 

Messoge 
Arguments 

OPTION.H 499 
Messages 

If the card specified by pArgs->tag has already been added to the option sheet, the following is done: 

• if pArgs->win is objNull, the window for the card is unchanged. 

• otherwise, the current window for the card is destroyed and replacedby pArgs->win. 

• if pArgs->pName is not pNull, the new name is used. 

• the card client is replaced by pArgs->client. 

Note that the card's tag is also used as the helpld of the tab button representing the card (in the popup 
choice card navigation menu or the tab bar). The calle,r should insure that quick help exists for the card 
with the card's tag as the helpld. 

Most clients send this message to add a card to an option sheet (if there is more than one card). 

msgOptionAddLastCard 

msgOptionAddLastCard 
Adds the last card of a group to the option sheet. 

Takes P _OPTION_CARD, returns SfATUS. 

*define msgOptionAddLastCard MakeMsg(clsOption, 29) 

typedef struct OPTION_CARD { 
OPTION option; II out: option sheet sending the msg. 
U32 tag; II in: tag for tab 
WIN win; II in: card window or objNull 
P CHAR pName; II in: card name 
U16 nameLen; II in: max. len for pName (for msgOptionGetCardAndName) 
OBJECT client; II in: for msgOptionRefreshCard, etc. 
U32 clientData[2]; II in: arbitrary client data 
U32 spare1; II unused (reserved) 
U32 spare2; II unused (reserved) 

OPTION_CARD, *P_OPTION_CARD; 

This is the same as msgOptionAddCard, except that the menu button for this card has a line break after 

it. 

Most clients send this message to add the last card to an option sheet. 

msgOptionAddCard 

msgOptionAddFirstCard 
Adds the first card of a group to the option sheet. 

Takes P _OPTION_CARD, returns STATUS. 

*define msgOptionAddFirstCard MakeMsg(clsOption, 42) 

typedef struct OPTION_CARD { 
OPTION option; II out: option sheet sending the msg. 
U32 tag; II in: tag for tab 
WIN win; II in: card window or objNull 
P CHAR pName; II in: card name 
U16 nameLen; II in: max. len for pName (for msgOptionGetCardAndName) 
OBJECT client; II in: for msgOptionRefreshCard, etc. 
U32 clientData[2]; II in: arbitrary client data 
U32 spare1; II unused (reserved) 
U32 spare2; II unused (reserved) 

OPTION_CARD, *P_OPTION_CARD; 



500 PEN POINT API REFERENCE 
Part 4 I UI Toolkit 

Mess($tte 
Af9IJmellfS 

MesSQge 

ArttlJmellfS 

(QmmellfS 

This is the same as msgOptionAddCard, except that the menu button for this card has a line break 
before it. 

Most clients don't need to send this message. 

msgOptionAddCard 

msgOptionAddAndlnsertCard 
Adds a card to the option sheet and inserts it into the sheet. 

Takes P _OPTION_CARD, returns STATUS. 

fdefine msgOptionAddAndInsertCard MakeMsg(clsOption, 17) 

typedef struct OPTION_CARD { 
OPTION option; II out: option sheet sending the msg. 
U3.2 tag; I I in: tag for tab 
WIN win; II in: card window or objNull 
P CHAR pName; II in: card name 
U16 nameLen; II in: max. len for pName (for msgOptionGetCardAndName) 
OBJECT client; II in: for msgOptionRefreshCard, etc. 
U32 clientData[2]; II in: arbitrary client data 
U32 spare1; II unused (reserved) 
U32 spare2; II unused (reserved) 

OPTION_CARD, *P_OPTION_CARD; 

This message is handled exactly as in msgOptionAddCard, including the case in which pArgs->tag has 
already been added to the sheet. 

Normally, msgOptionAddCard does not actually insert the card's window into the option sheet's 
window tree. msgOptionAddAndlnsertCard does insert the window. 

Most clients do not need to deal with this message. 

msgOptionAddCard 

msgOptionRemoveCard 
Removes a card from an option sheet and destroys that card. 

Takes P _OPTION_CARD, returns STATUS. 

fdefine msgOptionRemoveCard MakeMsg(clsOption, 6) 

typedef struct OPTION_CARD { 
OPTION option; II out: option sheet sending the msg. 
U32 tag; II in: tag for tab 
WIN win; II in: card window or objNull 
P CHAR pName; II in: card name 
U16 nameLen; II in: max. len for pName (for msgOptionGetCardAndName) 
OBJECT client; II in: for msgOptionRefreshCard, etc. 
U32 clientData[2]; II in: arbitrary client data 
U32 spare1; II unused (reserved) 
U32 spare2; II unused (reserved) 

OPTION_CARD, *P_OPTION_CARD; 

The option sheet removes and destroys the specified card. It also removes the window for the card, but 
does not destroy the window. 

In parameters: 

tag tag of card to remove. 

Will return stsBadParam if a card matching the passed tag was not found in the option sheet. 



See Also 

Message 
Arguments 

Comments 

See Also 

Message 
Arguments 

Comments 

Most clients do not need to deal with this message. 

msgOptionExtractCard 

msgOptionExtractCard 
Extracts a card's window from an option sheet. 

Takes P_OPTION_CARD, returns STATUS. 

*define msgOptionExtractCard MakeMsg(clsOption, 19) 

typedef struct OPTION_CARD { 
OPTION option; II out: option sheet sending the msg. 
U32 tag; II in: tag for tab 
WIN win; II in: card window or objNull 
PCHAR pName; II in: card name 

OPTION .• H 501 
Messages 

U16 nameLen; II in: max. len for pName (for msgOptionGetCardAndName) 
OBJECT client; II in: for msgOptionRefreshCard, etc. 
U32 clientData[2]; II in: arbitrary client data 
U32 spare1; II unused (reserved) 
U32 spare2; II unused (reserved) 

OPTION_CARD, *P_OPTION_CARD; 

The option sheet extracts the card's window, but does not destroy it. Note that the tab button for the 
card remains, with its win set to objNull. 

In parameters: 

tag tag of card to extract. 

Out parameters: 

win win of extracted card. 

Will return stsBadParam if a card matching the passed tag was not found in the option sheet. 

Most clients do not need to deal with this message. 

msgOptionRemoveCard 

msgOptionShowCard 
Causes the specified card to be displayed as the current card. 

Takes P _OPTION_CARD, returns STATUS. 

*define msgOptionShowCard MakeMsg(clsOption, 14) 

typedef struct OPTION_CARD { 
OPTION option; II out: option sheet sending themsg. 
U32 tag; II in: tag for tab 
WIN win; II in: card window or objNull 
P CHAR pName; II in: card name 
U16 nameLen; II in: max. len for pName (for msgOptionGetCardAndName) 
OBJECT client; II in: for msgOptionRefreshCard, etc. 
U32 clientData[2]; II in: arbitrary client data 
U32 spare1; II unused (reserved) 
U32 spare2; II unused (reserved) 

OPTION_CARD, *P_OPTION_CARD; 

The option sheet sends msgOptionRefreshCard to the card. 

In parameters: 

tag tag of card to show. 



502 PENPOINT API REFERENCE 
Part 4 / UI Toolkit 

(omments ' 

Out parameters: 

win uid of card. 

client client of card. 

Will return stsBadParam if a card matching the passed tag was not found in the option sheet. 

Most clients do not need to deal with this message. 

msgOptionShowCardAndSheet 
Causes the specified card to be displayed as the current card. 

Takes TAG, returns STATUS. 

#define msgOptionShowCardAndSheet MakeMsg(clsOption, 44) 

The sheet is shown if it is not currently shown. 

The option sheet self-sends msgOptionShowCard(oPTION_CARD.tag = pArgs), followed by 

msgOptionShowSheet. 

Most clients do not need to deal with this message. 

'msgOptionShowCard 

msgOptionShowTopCard 
Shows the client-defined top card. 

Takes nothing, returns STATUS. 

#define msgOptionShowTopCard MakeMsg(clsOption, 30) 

The option sheet sends msgOptionProvideTopCard to its client with the following OPTION_CARD 
parameters: 

option = uid of the option sheet = tag of the current top card = win of the current top card = pNull 

= 0 = client of the current top card 

The option sheet then shows the new top card specified by OPTION_CARD. tag by self-sending 
msgOptionShowCard. 

Most clients do not need to deal with this message. 

msgOptionGetCards 
Gets the cards from the option sheet's client 

Takes nothing, returns STATUS. 

#define msgOptionGetCards MakeMsg(clsOption, 32) 

If style.getCards is false, this message is ignored. Otherwise, the option sheet sends 

msgOptionAddCards to its client with the following OPTION_TAG parameters: 

option = uid of the option sheet = tag of the option sheet 

Most clients do not need to deal with this message. 



Comments 

Comments 

OPTION.H 503 
Messages 

msgOptionApply 
Tell the option sheet to initiate the Apply protocol. 

Takes nothing, returns STATUS. 

#define msgOptionApply MakeMsg(clsOption, 8) 

This message is sent by the sheet's Apply button. The option sheet sends msgOptionApplyCard to the 
top card. 

Most clients do not need to deal with this message. 

msgOptionApplyAndClose 
Tell an option sheet to run the Apply protocol and then close itself. 

Takes nothing, returns STATUS. 

#define msgOptionApplyAndClose MakeMsg(clsOption, 9) 

This message is sent by the sheet's Apply&Close button. The option sheet: 

sends msgOptionApplyCard to the top card in the sheet, and 

sends msgOptionClosed to the sheet's client. 

Most clients do not need to deal with this message. 

msgOptionRefresh 
Tells an option sheet to refresh its card settings. 

Takes nothing, returns STATUS. 

tdefine msgOptionRefresh MakeMsg(clsOption, 21) 

This is sent to an option sheet by the default application code when it receives a forwarded "check" 
gesture. 

If the apply buttons in the command bar are grayed out (i.e., the top card is not applicable), nothing is 
done, and stsO K is returned. 

Otherwise, the option sheet sends msgOptionRefreshCard to its top card. It then marks the other cards 
as needing to be refreshed when shown. 

Most clients do not need to deal with this message. 

msgOptionApplicable 
Tells an option sheet to ask the top card if it is applicable. 

Takes P _BOOLEAN, returns STATUS. 

#define msgOptionApplicable MakeMsg(clsOption, 37) 

The option sheet sends msgOptionApplicableCard to its top card. It then marks the other cards as 
needing to be sent msgOptionApplicableCard when shown. 

If the top card is not applicable, the command bar buttons are grayed out. 

If pArgs is not pNull, true is passed back if the top card is applicable; otherwise false is passed back. 

Most clients do not need to deal with this message. 



504 PENPOINT API REFERENCE 
Part 4 / UI Toolkit 

Comments 

Comments 

msgOptionDirty 
Tells an option sheet to ask the top card to dirty its controls. 

Takes nothing, returns STATUS. 

#define rnsgOptionDirty MakeMsg(clsOption, 38) 

The option sheet sends msgOptionDirtyCard to its top card. It then marks the other cards as needing 
to be sent msgOptionDirtyCard when shown. 

Most clients do not need to deal with this message. 

msgOptionClean 
Tells an option sheet to ask the top card to clean its controls. 

Takes nothing, returns STATUS. 

#define msgOptionClean MakeMsg(clsOption, 39) 

The option sheet sends msgOptionCIeanCard to its top card. The other cards are NOT cleaned. 

Most clients do not need to deal with this message. 

msgOptionToggleDirty 
Tells an option sheet to toggle the dirty/clean state of the cards. 

Takes nothing, returns STATUS. 

tdefine rnsgOptionToggleDirty MakeMsg(clsOption, 40) 

The option sheet sends msgOptionProvideCardDirty to the top card's client to determine the 
dirty/clean state of the top card. If the client responds with stsNotUnderstood, the option sheet sends 
msgBorderGetDirty to the top card's window to determine the dirty/clean state. 

If the top card is clean, msgOptionDirty is then self-sent; otherwise msgOptionCIean is self-sent. 

Most clients do not need to deal with this message. 

msgOptionClose 
Tells an option sheet to close itself. 

Takes nothing, returns STATUS. 

tdefine rnsgOptionClose MakeMsg(clsOption, 10) 

When a sheet receives msgOptionCIose, it sends msgOptionCIosed to the sheet's client. 

A sheet self-sends msgOptionCIose when it receives msgFrameCIose. 

Most clients do not need to deal with this message. 

msgOptionGetCardMenu 
Passes back the card navigation menu. 

Takes P _MENU, returns STATUS. 

#define rnsgOptionGetCardMenu MakeMsg(clsOption, 26) 

A copy of the popup card navigation menu is passed back. The option sheet returns objN ull if 
style.cardNav is not osNavPopup. 



See Also 

Comments 

OPTION.H 505 
Messages Option Sheets send to each card's client 

Menu buttons in the navigation menu have option sheet as their client, msgOptionShowCardAndSheet 
as their message, and the appropriate card tag as their data. This causes the sheet being displayed and the 
appropriate card being turned to when the user taps on a menu button. 

The caller must send msgOptionCardMenuDone when finished with the menu. 

Most clients do not need to deal with this message. 

msgOptionShowCardAndSheet 

msgOptionCardMenuDone 
Indicates the caller is finished with the card menu. 

Takes MENU, returns STATUS. 

tdefine msgOptionCardMenuDone MakeMsg(clsOption, 27) 

This message should be sent to an option sheet when the card menu retrieved via 
msgOptionGetCardMenu is no longer needed. 

Most clients do not need to deal with this message. 

Messages Option Sheets send to each 
carel's client 

Message 
Arguments 

Comments 

MessClge 
Arguments 

msgOptionShowSheet 
Asks the client of the option sheet to show the option sheet. 

Takes P _OPTION_TAG, returns STATUS. Category: client responsibility. 

tdefine msgOptionShowSheet 

typedef struct OPTION_TAG 
OPTION option; 
TAG tag; 

OPTION_TAG, *P_OPTION_TAG; 

MakeMsg(clsOption, 28) 

This message is sent by the option sheet when the user taps on a menu button in the card menu and the 
option sheet is not inserted in the window tree. 

The client should respond by inserting the option sheet into the window tree. 

msgOptionProvideCardWin 
Asks the client of the card to provide the window for the card. 

Takes P _OPTION_CARD, returns STATUS. Category: client responsibility. 

tdefine msgOptionProvideCardWin MakeMsg(clsOption, 18) 

typedef struct OPTION_CARD { 
OPTION option; II out: option sheet sending the msg. 
U32 tag; II in: tag for tab 
WIN win; II in: card window or objNull 
P CHAR pName; II in: card name 
U16 nameLen; II in: max. len for pName (for msgOptionGetCardAndName) 
OBJECT client; II in: for msgOptionRefreshCard, etc. 
U32 clientData[2]; II in: arbitrary client data 
U32 sparel; II unused (reserved) 
U32 spare2; II unused (reserved) 

OPTION_CARD, *P_OPTION_CARD; 



506 PENPOINT API REFERENCE 
Part 4 I UI Toolkit 

Comments 

MessCige 
Ar~t!n;eftts 

MessCige 
AI'~t!n;eftt$ 

This message is sent by the option sheet when a card is about to be shown, and the window for the card 
is objNull. 

The card client should set pArgs->win to the desired card window. 

Most clients need to override and handle this message. 

msgOptionProvideTopCard 
Asks the client of the option sheet to provide the tag for the top card. 

Takes P _OPTION_CARD, returns STATUS. Category: client responsibility. 

#define msgOptionProvideTopCard MakeMsg(clsOption, 31) 

typedef struct OPTION_CARD { 
OPTION option; II out: option sheet sending the msg. 
U32 tag; II in: tag for tab 
WIN win; II in: card window or objNull 
P CHAR pName; II in: card name 
U16 nameLen; II in: max. len for pName (for msgOptionGetCardAndName) 
OBJECT client; II in: for msgOptionRefreshCard, etc. 
U32 clientData[2]; II in: arbitrary client data 
U32 spare1; II unused (reserved) 
U32 spare2; II unused (reserved) 

OPTION_CARD, *P_OPTION_CARD; 

This message is sent by the option sheet when the top card must be shown. This can be in response to 
msgOptionShowTopCard or when the option sheet is first inserted. 

The option sheet sends msgOptionProvideTopCard to its client with the following OPTION_CARD 

parameters: 

option = uid of the option sheet = tag of the current top card = win of the current top card = pNull 

= 0 = client of the current top card 

The option sheet's client should set pArgs->tag to the tag for the desired top card. 

Note that only pArgs->tag is used as an out parameter; other changes to pArgs are ignored. 

msgOptionShowTopCard 

msgOptionProvideCardDirty 
Asks the client of the card to provide the dirtiness of the card window. 

Takes P _OPTION_CARD, returns STATUS. Category: client responsibility. 

#define msgOptionProvideCardDirty MakeMsg(clsOption, 41) 

typedef struct OPTION CARD { 
OPTION option; - II out: option sheet sending the msg. 
U32 tag; II in: tag for tab 
WIN win; II in: card window or objNull 
P CHAR pName; II in: card name 
U16 nameLen; I I in: max. len for pName (for msgOptionGetCardAndName) 
OBJECT client; II in: for msgOptionRefreshCard, etc. 
U32 clientData[2]; II in: arbitrary client data 
U32 spare1; II unused (reserved) 
U32 spare2; II unused (reserved) 

OPTION_CARD, *P_OPTION_CARD; 

This message is sent by the option sheet in response to msgOptionToggleDirty. 

The card's client should return stsOK if the card is dirty, stsRequestDenied if clean. 

Most clients do not need to deal with this message. 



Message 
Arguments 

Comments 

Messoge 
Arguments 

Comments 

OPTION.H 507 
Messages Option Sheets send to each card's client 

msgOptionApplyCard 
This is sent to a card's client when the card should apply its settings. 

Takes P _OPTION_CARD, returns STATUS. Category: client responsibility. 

tdefine msgOptionApplyCard MakeMsg(clsOption, 12) 

typedef struct OPTION_CARD { 
OPTION option; II out: option sheet sending the msg. 
U32 tag; II in: tag for tab 
WIN win; II in: card window or objNull 
PCHAR pName; II in: card name 
U16 nameLen; II in: max. len for pName (for msgOptionGetCardAndName) 
OBJECT client; II in: for msgOptionRefreshCard, etc. 
U32 clientData[2]; II in: arbitrary client data 
U32 spare1; II unused (reserved) 
U32 spare2; II unused (reserved) 

OPTION_CARD, *P_OPTION_CARD; 

With this message, an option option sheet tells a card to apply its settings to the selection. This is sent 

whenever the user chooses Apply or Apply&Close on the option sheet. 

Most clients need to override and handle this message. 

Here is the typical sequence of steps a card client should take in response: 

Run through every control in the card and for each one 1) check to see if it's dirty, and if it is 2) validate 

it if necessary. If any control has an invalid value, return stsFailed from the handler for 

msgOptionApplyCard. (This step can be omitted if there's no way any control could have an invalid 
value.) 

Again make a pass through every control in the card. If a control is dirty, apply its value. 

Finally, clean all the controls in the card. This can usually be done by sending 

msgControlSetDirty(false) to the card window. Note that most "command sheets" should have their 
control's CONTROL_STYLE.showDirty set false, and so this final step should be omitted. 

msgOptionRefreshCard 
Tells a card's client to refresh its settings from the current selection. 

Takes P _OPTION_CARD, returns STATUS. Category: client responsibility. 

tdefine msgOptionRefreshCard MsgNoError(MakeMsg(clsOption, 11)) 

typedef struct OPTION_CARD { 
OPTION option; II out: option sheet sending the msg. 
U32 tag; II in: tag for tab 
WIN win; II in: card window or objNull 
P CHAR pName; II in: card name 
U16 nameLen; II in: max. len for pName (for msgOptionGetCardAndName) 
OBJECT client; II in: for msgOptionRefreshCard, etc. 
U32 clientData[2]; II in: arbitrary client data 
U32 spare1; II unused (reserved) 
U32 spare2; II unused (reserved) 

OPTION_CARD, *P_OPTION_CARD; 

This is sent to a card's client when the option sheet has received msgOptionRefresh. The client should 
refresh the card's settings from the current selection. 

Most clients need to override and handle this message. 

~ 

------------------



508 PENPOINT API REFERENCE 
Part 4 / UI Toolkit 

ME1$S(j~e 

ArSiuments 

MeS$lOgE1 

Ar~umettt$ 

msgOptionApplicableCard 
Finds out if a card is applicable to the current selection. 

Takes P _OPTION_CARD, returns STATUS. Category: client responsibility. 

#define msgOptionApplicableCard MakeMsg(clsOption, 22) 

typedef struct OPTION_CARD { 
OPTION option; II out: option sheet sending the msg. 
U32 tagi II in: tag for tab 
WIN wini II in: card window or objNull 
P CHAR pName; II in: card name 
U16 nameLeni II in: max. len for pName (for msgOptionGetCardAndName) 
OBJECT client; II in: for msgOptionRefreshCard, etc. 
U32 clientData[2]; II in: arbitrary client data 
U32 spare1; II unused (reserved) 
U32 spare2; II unused (reserved) 

OPTION_CARD, *P_OPTION_CARDi 

The card's client should respond by returning stsOK if the card can be applied to the current selection, 
stsFailed if not. 

Most clients need to override and handle this message. 

msgOptionDirtyCard 
Sent to a card's client when the card should dirty all its controls. 

Takes P _OPTION_CARD, returns STATUS. Category: client responsibility. 

#define msgOptionDirtyCard MakeMsg(clsOption, 23) 

typedef struct OPTION_CARD { 
OPTION option; II out: option sheet sending the msg. 
U32 tag; II in: tag for tab 
WIN wini II in: card window or objNull 
P CHAR pNamei II in: card name 
U16 nameLeni II in: max. len for pName (for msgOptionGetCardAndName) 
OBJECT client; II in: for msgOptionRefreshCard, etc. 
U32 clientData[2]; II in: arbitrary client data 
U32 spare1; II unused (reserved) 
U32 spare2; II unused (reserved) 

OPTION_CARD, *P_OPTION_CARDi 

This is sent when the user changes the selection while an option sheet is up. It is needed so that if the 
card is applied to the new selection, every property on the card is applied, not just those changed by the 
user since the last apply. 

The usual scenario is for the card window to inherit from clsBorder, whose instances respond to 

msgBorderSetDirty by forwarding that message on to their immediate children. Card clients may elect 
NOT to respond to msgOptionDirtyCard--if the option sheet code gets back stsNotUnderstood, then 
it will send msgBorderSetDirty(true) to the card window. 

Most clients do not need to deal with this message. 

msgOptionCleanCard 
Sent to a card's client when the card should clean all its controls. 

Takes P _OPTION_CARD, returns STATUS. Category: client responsibility. 

#define msgOptionCleanCard MakeMsg(clsOption, 36) 



Message 
Arguments 

Comments 

Message 
Arguments 

Comments 

Message 
Arguments 

OPTION.H 509 
Messages Option Sheets send to each card's client 

typedef struct OPTION_CARD { 
OPTION option; II out: option sheet sending the msg. 
U32 tag; II in: tag for tab 
WIN win; II in: card window or objNull 
PCHAR pName; II in: card name 
uI6 nameLen; II in: max. len for pName (for msgOptionGetCardAndName) 
OBJECT client; II in: for msgOptionRefreshCard, etc. 
U32 clientData[2); II in: arbitrary client data 
U32 spare1; II unused (reserved) 
U32 spare2; II unused (reserved) 

OPTION_CARD, *P_OPTION_CARD; 

This is sent after msgOptionApplyCard is sent. 

~OQ~51111'-The usual scenario is for the card window to inherit from clsBorder, whose instances respond to ..... 
msgBorderSetDirty by forwarding that message on to their immediate children. Card clients may elect 
to NOT respond to msgOptionCleanCard--if the option sheet code gets back stsNotUnderstood, then 
it will send msgBorderSetDirty(false) to the card window. 

Most clients do not need to deal with this message. 

msgOption UpdateCard 
Sent to a card's client every time the card is about to be shown. 

Takes P _OPTION_CARD, returns SfATUS. Category: client responsibility. 

fdefine msgOptionUpdateCard MsgNoError(MakeMsg(clsOption, 24» 

typedef struct OPTION_CARD { 
OPTION option; II out: option sheet sending the msg. 
U32 tag; II in: tag for tab 
WIN win; II in: card window or objNull 
PCHAR pName; II in: card name 
uI6 nameLen; II in: max. len for pName (for msgOptionGetCardAndName) 
OBJECT client; II in: for msgOptionRefreshCard, etc. 
U32 clientData[2); II in: arbitrary client data 
U32 spare1; II unused (reserved) 
U32 spare2; II unused (reserved) 

OPTION_CARD, *P_OPTION_CARD; 

Most clients do not need to respond to this message. It is intended for those circumstances where one 
card has dependencies on the state of another, and would need to look at that other card before being 
(re)displayed to the user. 

msgOptionRetireCard 

msgOptionRetireCard 
Sent to a card's client every time the current shown card is hidden. 

Takes P_OPTION_CARD, returns SfATUS. Category: client responsibility. 

tdefine msgOptionRetireCard MsgNoError (MakeMsg (clsOption, 43» 

typedef struct OPTION_CARD { 
OPTION option; II out: option sheet sending the msg. 
U32 tag; II in: tag for tab 
WIN win; II in: card window or objNull 
PCHAR pName; II in: card name 
uI6 nameLen; II in: max. len for pName (for msgOptionGetCardAndName) 
OBJECT client; II in: for msgOptionRefreshCard, etc. 
U32 clientData[2); II in: arbitrary client data 
U32 spare1; II unused (reserved) 
U32 spare2; II unused (reserved) 

OPTION_CARD, *P_OPTION_CARD; 



510 PENPOINT API REFERENCE 
Part 4 I UI Toolkit 

Most clients do not need to respond to this message. It is intended for those circumstances where one 
card builds a context (e.g., allocates resources) when shown, and needs to destroy the context when the 
card is no longer shown. This can happen when another card is turned to or when the option sheet is 
extracted or destroyed. 

msgOption U pdateCard 

Messages Op.ion Shee.s send '0 .heir 
frame's clien. 

msgOptionClosed 
This is sent to an option sheet's client when the sheet is closed. 

Takes OPTION, returns STATUS. Category: client responsibility. 

*define msgOptionClosed MakeMsg(clsOption, 13) 

The client should respond by using msgAppRemoveFloatingWin to take down the option sheet, then 
optionally destroying the sheet with msgDestroy. 

Messages shee. clien.s should self-send 

M®5StJSi0 

AVSlJments 

msgOptionCreateSheet 
A message sent by convention by clients. creating option sheets. 

Takes P _OPTION_TAG, returns STATUS. Category: descendant responsibility. 

*define msgOptionCreateSheet 

typedef struct OPTION_TAG { 
OPTION option; 
TAG tag; 

OPTION_TAG, *P_OPTION_TAG; 

MakeMsg(clsOption, 16) 

When you need to create an option sheet, you should self-send this this message, rather than directly 
creating a sheet. By following this convention, subclasses can modify the sheet or supply a different one 
(which would have to behave the same as the original). 

When self-sending this message, the client should fill in the 'tag' of the option sheet desired (if 
applicable) or some other identifying value (some clients may create different kinds of option sheets). 
The client should also zero out the' option' field of the OPTION_TAG struct. 

In msgOptionCreateSheet, a client creates an EMPTY option sheet and fills in the' option' field with 
the uid of the sheet. Subclasses handle this message by calling the ancestor's handler and then either 
modifying the sheet or supplying a new one (and destroying any non- null sheet already in the' option' 
field). 

msgOptionAddCards 
A message to be sent by convention by clients creating option sheets. 

Takes P _OPTION_TAG, returns STATUS. Category: descendant responsibility. 

*define msgOptionAddCards MakeMsg(clsOption, 15) 



MessC$ge 
Arguments 

Comments 

typedef struct OPTION_TAG { 
OPTION option; 
TAG tag; 

OPTION_TAG, *P_OPTION_TAG; 

OPTION.H 511 
Messages from other classes 

This message embodies the second step of creating an option sheet. Just like msgOptionCreateSheet, 
msgOptionAddCards is self-sent by a client to fill in a sheet with some cards, and to allow.subclasses of 
the client to modify cards or add different ones. 

if style.getCards is true, the option sheet sends this message to the frame's client as follows: 

- when the sheet is first inserted into the window tree 

- if style.cardNav is osNavPopup, when the card navigation menu is neededafter the selection has 
changed. 

Messages from other classes 

Comments 

msgContentsButtonGoto 
Default message sent when the user taps on a menu button. 

Takes TAG, returns STATUS. Category: client notification. 

This is also sent to the client when the managed button is hit. 

The option sheet responds by self-sending msgOptionShowCard with the following OPTION_CARD 

parameter: 

tag = pArgs; 

msgOptionBookProvideContents 
Receiver passes back a window representing its contents. 

Takes P _WIN, returns STATUS. 

The option sheet responds by creating an instance of c1sContentsTable with one c1sContentsButton 
child for each card in the option sheet. Cards which themselves respond to 
msgOptionBookProvideContents are represented by cbSection style contents buttons. 





OPllaBLE.H 

This file contains the API definition for clsOptionTable. 

clsOptionTable inherits from clsTkTable. 

Option tables implement no new behavior; they only change ancestor defaults to layout their child 
windows in the standard two-column table format used by option sheets. 

#ifndef OPT TABLE_INCLUDED 
#define OPTTABLE_INCLUDED 

#ifndef TKTABLE_INCLUDED 
#include <tktable.h> 

#endif 

Common #defines and typedefs 
typedef OBJECT OPTION_TABLE; 
typedef struct OPTION TABLE STYLE { 

U16 spare -16; -II unused (reserved) 
} OPTION_TABLE_STYLE, *P_OPTION_TABLE_STYLE; 

Messages 

Argunlents 

MessQge 
Arguments 

msgNew 
Creates an option table window. 

Takes P_OPTION_TABLE_NEW, returns STATUS. Category: class message. 

typedef struct OPTION_TABLE_NEW_ONLY 
U32 spare1; I I unused (reserved) 
U32 spare2; I I unused (reserved) 

OPTION_TABLE_NEW_ONLY, *P_OPTION_TABLE_NEW_ONLY; 
#define optionTableNewFields \ 

tkTableNewFields \ 
OPT ION_TABLE_NEW_ONLY optionTable; 

typedef struct OPTION_TABLE_NEW { 
optionTableNewFields 

} OPTION_TABLE_NEW, *P_OPTION_TABLE_NEW; 

msgNewDefaults 
Initializes the OPTION_TABLE_NEW structure to default values. 

Takes P _OPTION_TABLE_NEW, returns STATUS. Category: class message. 

typedef struct OPTION_TABLE_NEW { 
optionTableNewFields 

OPT ION_TABLE_NEW, *P_OPTION_TABLE_NEW; 



514 PENPOINT API REFERENCE 
Part 4 / UI Toolkit 

pArgs->win.flags.style &= ~(wsClipChildren 1 wsFilelnline); 
pArgs->border.style.leftMargin = bsMarginLarge; 
pArgs->border.style.rightMargin = bsMarginLarge; 
pArgs->border.style.bottomMargin = bsMarginLarge; 
pArgs->border.style.topMargin = bsMarginLarge; 
pArgs->gWin.style.grabDown = false; 
pArgs->tableLayout.style.childXAlignment = tlAlignBaseline; 
pArgs->tableLayout.style.childYAlignment = tlAlignBaseline; 
pArgs->tableLayout.style.growChildWidth = false; 
pArgs->tableLayout.style.growChildHeight = false; 
pArgs->tableLayout.numRows.constraint = tllrifinite; 
pArgs->tableLayout.numRows.value = 0; 
pArgs->tableLayout.numCols.constraint = tlAbsolute; 
pArgs->tableLayout.numCols.value = 2; 
pArgs->tableLayout.colWidth.constraint = tlGroupMax 1 tlBaselineBox; 
pArgs->tableLayout.rowHeight.constraint = tlGroupMax 1 tlBaselineBox; 
pArgs->tableLayout.rowHeight.gap = defaultRowGap; 
pArgs->tableLayout.colWidth.gap = defaultColGap; 

Sends msgNewDefaults to clsLabel to initialize pNew->tkTable.pButtonNew, then sets: 

pArgs->tkTable.pButtonNew->win.flags.style 1= wsParentClip; 
pArgs->tkTable.pButtonNew->win.flags.style &= ~(wsClipSiblings 1 wsClipChildren); 
pArgs->tkTable.pButtonNew->border.style.backgroundlnk = bslnkTransparent; 
pArgs->tkTable.pButtonNew->label.style.fontType = lsFontCustom; 
pArgs->tkTable.pButtonNew->label.font.attr.weight = sysDcWeightBold; 



PAGENUM.H 

This file contains the API definition for dsPageNum. 

dsPageNum inherits from clsLabel. 

Page numbers are the standard notebook frame decorations which display the current page number. 

*ifndef PAGENUM INCLUDED 
*define PAGENUM=INCLUDED 

*ifndef LABEL INCLUDED 
*include <label.h> 

*endif 

", COlli ilion #defines and typedefs 
typedef OBJECT PAGE_NUM; 
typedef struct PAGE NUM STYLE { 

U16 spare -: 16; II unused (reserved) 
} PAGE_NUM_STYLE, *P_PAGE_NUM_STYLE; 

Messages 

Messose 
Arsuments 

msgNew 
Creates a pagenum window. 

Takes P _PAGE_NUM_NEW, returns STATUS. Category: class message. 

typedef struct PAGE_NUM_NEW_ONLY { 
PAGE NUM STYLE style; 
U32 - - pageNumber; II initial page number 
U32 spare; II unused (reserved) 

PAGE_NUM_NEW_ONLY, *P_PAGE_NUM_NEW_ONLY; 
#define pageNumNewFields \ 

labelNewFields \ 
PAGE_NUM_NEW_ONLY pageNum; 

typedef struct PAGE NUM NEW { 
pageNumNewFieldS -

} PAGE_NUM_NEW, *P_PAGE_NUM_NEW; 

msgN ewDefaults 
Initializes the PAGE_NUM_NEW structure to default values. 

Takes P _PAGE_NUM_NEW, returns STATUS. Category: class message. 

typedef struct PAGE NUM NEW { 
pageNumNewFields -

} PAGE_NUM_NEW, *P_PAGE_NUM_NEW; 

Zeroes out pArqs->pageNum and sets 
pArgs->border.style.leftMargin = bsMarginMedium; 
pArgs->border.style.rightMargin = bsMarginMedium; 
pArgs->border.style.bottomMargin = bsMarginSmall; 
pArgs->border.style.topMargin = bsMarginMedium; 

-------..... _------_. 



516 PENPOINT API REFERENCE 
Part 4 I UI Toolkit 

Message 
Arguments 

Message 
Arguments 

pArqs->label.style.xAliqnment = lsAliqnRiqht; 
pArqs->label.style.yAliqnment = lsAliqnCenter; 

msgPageNumGetStyle 
Passes back the current style values. 

Takes P _PAGE_NUM_STYLE, returns SfATUS. 

fdefine msqPaqeNumGetStyle MakeMsq(clsPaqeNum, 1) 

typedef struct PAGE NUM STYLE { 
U16 spare -: 16; II unused (reserved) 

} PAGE_NOM_STYLE, *P_PAGE_NUM_STYLE; 

msgPageNumSetStyle 
Sets the style values. 

Takes P _PAGE_NUM_STYLE, returns SfATUS. 

fdefine msqPaqeNumSetStyle MakeMsq(clsPaqeNum, 2) 

typedef struct PAGE NUM STYLE { 
U16 spare -: 16; II unused (reserved) 

} PAGE_NOM_STYLE, *P_PAGE_NUM_STYLE; 

msgPageNumGet 
Passes back the current page number. 

Takes P _U32, returns STATUS. 

tdefine msqPaqeNumGet 

msgPageNumSet 
Sets the current page number. 

Takes U32, returns STATUS. 

fdefine msqpaqeNumSet 

msgPageNumIncr 

MakeMsq(clsPaqeNum, 3) 

MakeMsq(clsPaqeNum, 4) 

Increments the current page number. 

Takes S32, returns STATUS. 

fdefine msqPaqeNumlncr MakeMsq(clsPaqeNum, 5) 



POPUPCH.H 

This file contains the API for clsPopupChoice. 

clsPopupChoice inherits from clsMenuButton. 

Popup choices are buttons that pop up a menu of choices when tapped. 

A popup choice assumes that the first (bottom) child of its menu inherits from clsChoice.· When this 

choice changes value, the popup choice button will copy the string of the new' on' button in the choice 
as the popup choice's own string. Popup choices also respond to flick gestures by cycling their value 
among the set of possible values in the choice. 

",. Debugging Flags 
The clsPopupChoice debugging flag is 'K'. Defined values are: 

flag13 (Ox2000) general 

*ifndef POPUPCH_INCLUDED 
*define POPUPCH_INCLUDED 

*include <choice.h> 

*include <mbutton.h> 

COnlnlon #defines and typedefs 
typedef struct POPUP_CHOICE_STYLE { 

U16 spare; 
} POPUP_CHOICE_STYLE, *P_POPUP_CHOICE_STYLE; 
typedef OBJECT POPUP_CHOICE, *P_POPUP_CHOICE; 

msgNew 
Creates a popup choice button. 

*ifndef CHOICE_INCLUDED 

*endif 
*ifndef MBUTTON_INCLUDED 

*endif 

Takes P _POPUP _CHOICE_NEW, returns STATUS. Category: class message. 

typedef struct POPUP_CHOICE_NEW_ONLY { 
POPUP_CHOICE_STYLE style; 
U32 spare; II unused (reserved) 

POPUP_CHOICE_NEW_ONLY, *P_POPUP_CHOICE_NEW_ONLY; 
*define popupChoiceNewFields \ 

menuButtonNewFields \ 
POPUP_CHOICE_NEW_ONLY popupChoice; 

typedef struct POPUP_CHOICE_NEW { 
popupChoiceNewFields 

} POPUP_CHOICE_NEW, *P_POPUP_CHOICE_NEWi 

The popup choice will set its pString from the' on' button within the popup's choice, if any button there 
., , 
IS on. 



518 PENPOINT API REFERENCE 
Part 4 I UI Toolkit 

Message 
Arguments 

Message 
Arguments 

Messoge 
Argumetlh'i 

The fields you commonly set are: 

pArgs->menuButton.menu uid of a menu whose first child is a choice 

msgNewDefaults 
Initializes the POPUP_CHOICE_NEW structure to default values. 

Takes P _POPUP _CHOICE_NEW, returns STATUS. Category: class message. 

typedef struct POPUP_CHorCE_NEw { 
popupChoiceNewFields 

} POPuP_CHorCE_NEw, *P_POPuP_CHorCE_NEwi 

Zeroes out pArgs->popupChoice and sets: 

pArgs->gWin.style.gestureEnable = truei 
pArgs->control.style.showDirty = truei 
pArgs->label.style.decoration = lsDecorationPopUPi 
pArgs->button.style.feedback = bsFeedbackNonei 
pArgs->menuButton.style.subMenuType = mbMenuPopupi 
pArgs->menuButton.style.getWidth = truei 

msgPopupChoiceGetStyle 
Passes back the receiver's style. NOT IMPLEMENTED. 

Takes P _POPUP _CHOICE_STYLE, returns STATUS. 

tdefine msgPopupChoiceGetStyle 

typedef struct POPUP_CHOICE_STYLE 
U16 sparei 

MakeMsg{clsPopupChoiCe, lj 

} POPuP_CHorCE_STYLE, *P_POPUP_CHorCE_STYLEi 

msgPopupChoiceSetStyle 
Sets the receiver's style. NOT IMPLEMENTED. 

Takes P _POPUP _CHOICE_STYLE, returns STATUS. 

tdefine msgPopupChoiceSetStyle 

typedef struct POPUP_CHorCE_STYLE 
U16 sparei 

MakeMsg(clsPopupChoice, 2) 

} POPUP_CHorCE_STYLE, *P_POPUP_CHorCE_STYLEi 

msgPopupChoiceGetChoice 
Passes back the choice associated with this popup. 

Takes P _CHOICE, returns STATUS. 

tdefine msgPopupChoiceGetChoice MakeMsg(clsPopupChoice, 3) 

The popup choice will self-send msgMenuButtonGetMenu to get the menu. If the menu is null, the 
popup choice will set *pArgs null and return stsOK. Otherwise, *pArgs will be set to the first child of 
the menu. 



POPUPCH.H 519 

Messages from Other Classes 

~ Messages from Other Classes 

Comments 

(©mmenfs 

msgWinSend 
Sends a message up a window ancestry chain. 

Takes P _WIN_SEND, returns STATUS. 

If pArgs->msg is not msgMenuDone, clsPopupChoice just calls its ancestor. 

Otherwise, clsPopupChoice calls its ancestor (to allow clsMenuButton to take down the menu), then 

resets its visuals to reflect the new' on' button within the choice. 

For popup choices that display a string, this just means obtaining the string from the 'on' button (or, if 

the button has LABEL_STYLE.infoType of Is Info Window, from the first IsInfoString label found within 

using depth enumeration) and using msgLabelSetString on self. 

For popup choices that display an icon, the visuals are changed by getting the icon within self 
(msgLabelGetWin), sending it msgIconFreeCache, setting its window tag to the tag of the 'on' icon, 

and finally using msgWinDirtyRect(pNull) to get the icon to repaint. Note that because of this strategy, 

the icon within self cannot change size when its picture changes. The picture size is not copied from the 
'on' icon to the icon within self. 

msgGWinGesture 
Self-sent to process the gesture. 

Takes P _GWIN_GESTURE, returns STATUS. 

If the popup's CONTROL_STYLE. enable is false, the popup choice just returns stsOK. 

If the class of pArgs->msg is not clsXGesture, the popup choice returns stsMessageIgnored. 

If pArgs->msg is not one of xgsFlick* or xgsDblFlick*, then the popup choice returns the result of 

calling its ancestor. 

Otherwise, the popup choice obtains the' on' button within its choice, and searches through the choice's 

list of children for the next, previous, first, or last child based on what type of flick gesture was received. 
The popup choice sets its value to be this new button and returns stsOK. Buttons that are not enabled 

(msgControlGetEnable) are skipped over. 

stsMessageIgnored pArgs->msg is not of clsXGesture. 

msgControlGetValue 
Passes back the receiver's value (tag of button that is on). 

Takes P _TAG, returns STATUS. 

clsPopupChoice overrides clsButton's response (of passing back BUTTON_STYLE. on) by instead 

forwarding msgControlGetValue on to its choice. This means popup choices behave like choices with 

respect to msgControlGetValue. 

- ------------------"------" 



520 PENPOINT API REFERENCE 
Part 4 / UI Toolkit 

(omments 

Comments 

msgControlSetValue 
Sets the receiver's value. 

Takes TAG, returns STATUS. 

clsPopupChoice overrides clsButton's response (of setting BUTTON_STYlE. on) by instead forwarding 

msgControlSetValue on to its choice. Changing the choice's value then results in an update of the 

popup's label string. This means popup choices behave like choices with respect to msgControlSetValue. 

msgControlGetClient 
Passes back the receiver's client. 

Takes P_UID, returns STATUS. 

clsPopupChoice intercepts this message and forwards it on to the popup's choice. 

msgControlSetClient 
clsPopupChoice forwards this message on to the popup's choice. 

Takes UID, returns STATUS. 

msgControlBeginPreview 
clsPopupChoice responds by noting internally that its menu is now up, then calling ancestor. 

Takes P _INPUT_EVENT, returns STATUS. 

msgControlSetMetrics 
Sets the metrics. 

Takes P_CONTROL_METRICS, returns STATUS. 

If the popup choice's menu is up, it prohibits the CONTROL_STYlE.dirty bit from changing. 

msgControlSetStyle 
Sets the style values. 

Takes P_CONTROL_STYlE, returns STATUS. 

If the popup choice's menu is up, it prohibits the CONTROL_STYlE. dirty bit from changing. 

msgControlSetDirty 
Sets style. dirty. 

Takes BOOLEAN, returns STATUS. 

If the popup choice's menu is up, it prohibits the CONTROL_STYLE. dirty bit from changing. 

msgMenuButtonProvideWidth 
Self-sent when MENU_BUTTON_STYLE.getWidth is true. 

Takes P _S32, returns STATUS. Category: self-sent. 

clsPopupChoice responds by computing a width based on its menu. 



Comments 

POPUPCH.H 521 
Messages from Other Classes 

If the wsLayoutDirty bit of its menu is true, the popup choice will lay out its menu. clsPopupChoice 
then enumerates all the children of its choice and computes the maximum width of all the children that 
inherit from clsLabel and whose LABEL_STYLE.infoType is not IsInfoWindow (if an IsInfoWindow 
label child is encountered, clsPopupChoice will find the first string-type label within it and use the 
width of that). 

msgMenuButtonPlaceMenu 
Self-sent whenever a menu button needs to position its associated menu. 

Takes P _WIN_METRICS, returns SfATUS. Category: self-sent. 

clsPopupChoice first gets the 'on' button from its choice. If there is a button on, clsPopupChoice will 
position its menu so that the' on' button is adjacent to the popup. If there is no button on in the choice, 
clsPopupChoice just calls its ancestor. 





PROGRESS.H 

This file contains the API for clsProgressBar. 

clsProgressBar inherits from clsControl. 

Implements a read-only or read/write progress indicator. 

Debugging Flags 
The clsProgressBar debugging flag is 'K'. Defined values are: 

flag14 (Ox4000) general 

#ifndef PROGRESS INCLUDED 
#define PROGRESS INCLUDED 

#ifndef CONTROL_INCLUDED 

#include <control.h> 
#endif 
#ifndef SYSGRAF INCLUDED 

#include <sysgraf.h> 
#endif 

COllllllon #defines and typedefs 
II Labels style 
#define psLabelsNumeric 0 
#define psLabelsNone 1 
#define psLabelsCustom 2 

II Ticks style 
#define psTicksSmall 0 
#define psTicksFull 1 
#define psTicksNone 2 
II Direction style 
#define psDirectionHorizontal 0 
#define psDirectionvertical 1 
II Thickness style 
#define psThicknessRelFont 0 
#define psThicknessFixed 1 

II Edge Styles 
#define psEdgeNone 
#define psEdgeMinLat 
#define psEdgeMaxLat 
#define psEdgeMinLong 
#define psEdgeMaxLong 
#define psEdgeAll 

II horizontal indicator 
II vertical indicator 

II thickness varies with system font size 
II thickness is fixed 

o 
flagO 
flagl 
flag2 
flag3 
(psEdgeMinLat 
psEdgeMinLong 

psEdgeMaxLat I \ 
psEdgeMaxLong) 



524 PENPOINT API REFERENCE 
Part 4 I UI Toolkit 

"Lat" is latitude, and "Long" is longitude. For horizontal progress bars, latitude is the y dimension (or 

minor axis), and longitude is the x dimension (or major axis). For vertical bars, lat is x, and long is y. 

typedef struct PROGRESS STYLE 
U16 labels - 2, 

ticks 2, 
direction 2, 
units 6, 
thickness 2, 
labelRotation 2; 

U16 labelScaleUnits 6, 
edge 4, 

II labels style 
II style of ticks to paint 
II direction of major axis 
II units for everything except labels 
II thickness style for lines and ticks 
II use lsRotate* from label.h 
II scale units for labels from border.h 
II bar edges to display 
II (separate from clsBorder edges) 

labelFontType 2, II use lsFont* from label.h 
4; II unused (reserved) spare 

U16 spare2 
PROGRESS_STYLE, 

16; II unused (reserved) 
*P_PROGRESS_STYLE; 

Default PROGRESS_STYLE: 

labels = psLabelsNone 
ticks = psTicksNone 
direction = psDirectionHorizontal 
units = bsUnitsPoints 
thickness = psThicknessRelFont 
labelRotation = lsRotateNone 
labelFontType = lsFontSystem 
labelScaleUnits = bsUnitsLayout 
edge = psEdgeMinLat I psEdgeMinLong 

typedef struct PROGRESS_REGION 
U32 rgb; 
SYSDC_PATTERN pattern; 

PROGRESS_REGION, *P_PROGRESS_REGION; 
typedef struct PROGRESS_METRICS { 

PROGRESS STYLE style; II overall style 
S32 - numIntervals; 
S32 ticksPerLabel; II gives period of labels 
S32 minNumericLabel; II when psLabelsNumeric 
S32 maxNumericLabel; II when psLabelsNumeric 
U16 thicknessBase; II thickness (units or multiplier) 
U16 latitude; II dimension of minor axis (in units) 
U16 longitude; II dimension of major axis (in units) 
S32 maxValue; II values are in [O .. maxValue] 
S32 value; II current value 
SYSDC FONT SPEC font; II spec to open if style.labelFontType == lsFontCustom 
U8 - - labelScale; II scale for labels as in border.h 
U32 spare1; II unused (reserved) 
U32 spare2; II unused (reserved) 

PROGRESS_METRICS, *P_PROGRESS_METRICS; 

metrics.latitude and .longitude are used only when the progress bar is shrink-wrapped in those 

dimensions. When not shrink-wrapped, the progress bar expands to fill the available space. 

msgNew 
Creates a progress indicator. 

Takes P_PROGRESS_NEW, returns STATUS. Category: class message. 

typedef struct PROGRESS_NEW_ONLY { 
PROGRESS METRICS 
PCHAR 
U32 
U32 

PROGRESS_NEW_ONLY, 

metrics; 
fontName; II font name from which to derive font.id 
spare1; II unused (reserved) 
spare2; II unused (reserved) 

*P_PROGRESS_NEW_ONLY; 



Comments 

MessQge 
Arguments 

Comments 

PROGRESS.H 525 
Common #defines and typedefs 

tdefine progressNewFields \ 
controlNewFields \ 
PROGRESS_NEW_ONLY progress; 

typedef struct PROGRESS_NEW { 
progressNewFields 

} PROGRESS_NEW, *P_PROGRESS_NEW; 

The filled region looks are initialized with: 

rgb = SysDcGrayRGB(128) 

pattern = sysDcPatForeground 

The unfilled region looks are initialized with: 

rgb = sysDcRGBTransparent 

pattern = sysDcPatNil 

msgNewDefaults 
Initializes the PROGRESS_NEW structure to default values. 

Takes P_PROGRESS_NEW, returns STATUS. Category: class message. 

typedef struct PROGRESS_NEW { 
progressNewFields 

} PROGRESS_NEW, * P_P ROGRE S S_NEW; 

Zeroes out pArgs->progress and sets: 

pArgs->win.flags.style 1= wsShrinkWrapWidth 1 wsShrinkWrapHeight; 

pArgs->border.style.previewAlter = bsAlterNone; 
pArgs->border.style.selectedAlter = bsAlterNone; 

pArgs->control.style.showDirty = false; 

pArgs->progress.metrics.style.labels = psLabelsNone; 
pArgs->progress.metrics.style.ticks = psTicksNone; 
pArgs->progress.metrics.style.units = bsUnitsPoints; 
pArgs->progress.metrics.style.labelScaleUnits = bsUnitsLayout; 
pArgs->progress.metrics.style.edge = psEdgeAll; 
pArgs->progress.metrics.numlntervals = 10; 
pArgs->progress.metrics.ticksPerLabel = 2; 
pArgs->progress.metrics.minNumericLabel = 0; 
pArgs->progress.metrics.maxNumericLabel = 100; 
pArgs->progress.metrics.thicknessBase = 1; 
pArgs->progress.metrics.latitude = 18; 
pArgs->progress.metrics.longitude = 144; 
pArgs->progress.metrics.maxValue = 100; 
pArgs->progress.metrics.value = 0; 
pArgs->progress.metrics.labelScale = lsScaleMedium; 

Also sets pArgs->progress.metrics.font to the default system font. 

msgProgressGetStyle 
Passes back the current style. 

Takes P _PROGRESS_STYLE, returns STATUS. 

tdefine msgProgressGetStyle MakeMsg(clsProgressBar, 1) 



526 PENPOINT API REFERENCE 
Part 4 / UI Toolkit 

Messcge 
Ar9umenfs 

Mess©ge 
Arguments 

Comments 

Message 
Arguments 

typedef struct PROGRESS STYLE 
U16 labels 2, 

ticks 2, 
direction 2, 
units 6, 
thickness 2, 
labelRotation 2; 

U16 labelScaleUnits 6, 
edge 4, 

II labels style 
II style of ticks to paint 
II direction of major axis 
II units for everything except labels 
II thickness style for lines and ticks 
II use lsRotate* from label.h 
II scale units for labels from border.h 
II bar edges to display 
II (separate from clsBorder edges) 

labelFontType 2, II use lsFont* from label.h 
spare 4; II unused (reserved) 

U16 spare2 16; II unused (reserved) 
PROGRESS_STYLE, *p PROGRESS_STYLE; 

msgProgressSetStyle 
Sets the style. 

Takes P _PROGRESS_STYLE, returns STATUS. 

*define msgProgressSetStyle 

typedef struct PROGRESS STYLE 
U16 labels 2, 

ticks 2, 
direction 2, 
units 6, 
thickness 2, 
labelRotation 2; 

U16 labelScaleUnits 6; 
edge 4, 

MakeMsg(clsProgressBar, 2) 

II labels style 
II style of ticks to paint 
II direction of major axis 
II units for everything except labels 
II thickness style for lines and ticks 
II use lsRotate* from label.h 
II scale units for labels from border.h 
II bar edges to display 
II (separate from clsBorder edges) 

labelFontType 2, II use lsFont* from label.h 
spare 4; II unused (reserved) 

U16 spare2 16; II unused (reserved) 
PROGRESS_STYLE, *p PROGRESS_STYLE; 

The progress bar will set its layout bit dirty (as in msgWinSetLayoutDirty) as necessary. It will use 

msgWinDirtyRect in a similar fashion. It is the client's responsibility to send msgWinLayout to the 

progress bar whenever the style changes would affect the layout. 

msgProgressGetMetrics 
Passes back the current metrics. 

Takes P _PROGRESS_METRICS, returns SfATUS. 

*define msgProgressGetMetrics MakeMsg(clsProgressBar, 3) 

typedef struct PROGRESS METRICS { 
PROGRESS STYLE style; II overall style 
S32 - numIntervals; 
S32 ticksPerLabel; II gives period of labels 
S32 minNumericLabel; II when psLabelsNtimeric 
S32 maxNumericLabel; II when psLabelsNumeric 
U16 thicknessBase; II thickness (units or multiplier) 
U16 latitude; II dimension of minor axis (in units) 
U16 longitude; II dimension of major axis (in units) 
S32 maxValue; II values are in [O •. maxValue] 
S32 value; II current value 
SYSDC FONT SPEC font; II spec to open if style.labelFontType == lsFontCustom 
U8 - - labelScale; II scale for labels as in border.h 
U32 spare1; II unused (reserved) 
U32 spare2; II unused (reserved) 

PROGRESS_METRICS, *P_PROGRESS_METRICS; 



Message 
Argun1Ewl1's 

Message 
Arguments 

Message 
Arguments 

PROGRESS.H 527 
Common #defines and typedefs 

msgProgressSetMetrics 
Sets the metrics. 

Takes P _PROGRESS_METRICS, returns STATUS. 

fdefine msgProgressSetMetrics MakeMsg(clsProgressBar, 4) 

typedef struct PROGRESS_METRICS { 
PROGRESS STYLE style; II overall style 
S32 numIntervals; 
S32 ticksPerLabel; II gives period of labels 
S32 minNumericLabel; II when psLabelsNumeric 
S32 maxNumericLabel; II when pSLabelsNumeric 
U16 thicknessBase; II thickness (units or multiplier) 
U16 latitude; II dimension of minor axis (in units) 
U16 longitude; I I dimension of major axis (in units) 
S32 maxValue; II values are in [O .. maxValue] 
S32 value; II current value 
SYSDC_FONT_SPEC font; II spec to open if style.labelFontType == lsFontCustom 
U8 labelScale; II scale for labels as in border.h 
U32 spare1; II unused (reserved) 
U32 spare2; II unused (reserved) 

PROGRESS_METRICS, *P_PROGRESS_METRICS; 

The progress bar will set its layout bit dirty (as in msgWinSetLayoutDirty) as necessary. It will use 

msgWinDirtyRect in a similar fashion. It is the client's responsibility to send msgWinLayout to the 

progress bar whenever the changes would affect the layout. 

msgProgressGetFilled 
Passes back the current filled region looks. 

Takes P_PROGRESS_REGION, returns STATUS. 

fdefine msgProgressGetFilled MakeMsg(clsProgressBar, 5) 

typedef struct PROGRESS_REGION 
U32 rgb; 
SYSDC PATTERN pattern; 

PROGRESS_REGION, *P_PROGRESS_REGION; 

msgProgressSetFilled 
Sets the current filled region looks. 

Takes P _PROGRESS_REGION, returns STATUS. 

fdefine msgProgressSetFilled MakeMsg(clsProgressBar, 6) 

typedef struct PROGRESS_REGION 
U32 rgb; 
SYSDC PATTERN pattern; 

PROGRESS_REGION, *P_PROGRESS_REGION; 

The progress bar will self-send msgWinDirtyRect as necessary. 

msgProgressGetUnfilled 
Passes back the current unfilled region looks. 

Takes P _PROGRESS_REGION, returns STATUS. 

fdefine msgProgressGetUnfilled MakeMsg(clsProgressBar, 7) 



528 PENPOINT API REFERENCE 
Part 4 I UI Toolkit 

Message 
ArSlumenfs 

Mess(lge 
Arguments 

typedef struct PROGRESS_REGION 
U32 rgb; 
SYSDC PATTERN pattern; 

PROGRESS_REGION, *P_PROGRESS_REGION; 

msgProgressSetU nfilled 
Sets the current unfilled region looks. 

Takes P_PROGRESS_REGION, returns STATUS. 

fdefine msgProgressSetUnfilled MakeMsg(clsProgressBar, 8) 

typedefstruct PROGRESS_REGION 
U32 rgb; 
SYSDC PATTERN pattern; 

PROGRESS_REGION, *P_PROGRESS_REGION; 

The progress bar will self-send msgWinDirtyRect as necessary. 

msgProgressProvideLabel 
Sent to the client when style.labels == psLabelsCustom. 

Takes P _PROGRESS_PROVIDE_LABEL, returns STATUS. Category: client responsibility . 

. fdefine msgProgressProvideLabel MakeMsg(clsProgressBar, 9) 

typedef struct PROGRESS_PROVIDE_LABEL { 
CONTROL progressBar; II In: requestor 
U16 position; II In: position of label (0 at minimum) 
P CHAR pString; II Out: a 256 byte buffer for the string 
U32 spare; II unused (reserved) 

PROGRESS_PROVIDE_LABEL, *P_PROGRESS_PROVIDE_LABEL; 

The client should copy a string for the indicated position into the provided buffer. 

msgProgressGetVislnfo 
Passes back information about the current state of the visuals. 

fdefine msgProgressGetVisInfo MakeMsg(clsProgressBar, 10) 

typedef struct PROGRESS_VIS_INFO 
RECT32 filledRect, 

unfilledRect; 
U32 sparel; II unused (reserved) 
U32 spare2; II unused (reserved) 

PROGRESS_VIS_INFO, *P_PROGRESS_VIS_INFO; 

All measurements are in LWC (device units). 

Messages from Other Classes 

msgControlGetValue 
Passes back the receiver's value (metrics.value). 

Takes P _S32, returns STATUS. 



PROGRESS.H 529 
Messages from Other Classes 

msgControlSetValue 
Sets the receiver's value. 

Takes S32, returns STATUS. 

The progress bar will self-send msgWinDirtyRect as necessary. 

msgSave 
Causes an object to file itself in an object file. 

Takes P _OBLSA VE, returns STATUS. 

clsProgressBar responds by filing away all of its state. 

msgRestore 
Creates and restores an object from an object file. 

Takes P_OBLRESTORE, returns STATUS. 

clsLabel responds by restoring all of its state. 

msgWinLayoutSelf 
Tell a window to layout its children. 

Takes P _WIN_METRICS, returns STATUS. 

clsProgressBar responds by recomputing its layout parameters. 

If the receiver is shrink-wrapping in a dimension, it will use the latitude or longitude value as 
appropriate to determine the interior dimension of the progress bar (which does not include the inked 
edges of the bar). When not shrink-wrapping in a dimension, the corresponding latitude or longitude 
value is ignored. 

msgWinRepaint 
Tells a window to repaint itselE 

Takes nothing, returns STATUS. Category: descendant responsibility. 

clsProgressBar responds by painting the edges, bar, ticks, and labels. 

First, the progressBar self-sends msgControlGetValue to get its current value and then 
msgBorderGetForegroundRGB to get the color in which to paint the edges, ticks, and labels. It then 
paints the edges. 

Next, the progressBar will paint the unfilled portion of the bar if the unfilled pattern isn't sysDcPatNil. 
The pattern will be painted with the specified foreground RGB and a background RGB obtained by 

self-sending msgBorderGetBackgroundRGB. See msgProgressSetUnfilled. 

The progressBar will then paint the filled portion of the bar if the filled pattern isn't sysDcPatNil. The 
method is as described above. See msgProgressSetFilled. 

While drawing the tick marks, the progressBar will self-send msgBorderRGBToInk and use a 
foreground color that is opposite so that the ticks will show up against the filled/unfilled regions. 

Finally, the labels are painted using a foreground RGB obtained by self-sending 
msgBorderGetForegroundRGB. 

----.-.-~--------~~ 



530 PEN POINT API REFERENCE 
Part 4 / UI Toolkit 

msgWinGetBaseline 
Gets the desired x,y alignment of a window. 

Takes P _WIN_METRICS, returns STATUS. 

(omments clsProgressBar responds by setting pArgs->bounds.origin to the origin of the bar within self. 



SBAR.M 

This file contains the API definition for clsScrollbar. 

clsScrollbar inherits from clsControl. 

Scrollbars provide scrolling visuals and define a protocol for handling various kinds of scrolling actions. 

Debugging Flags 
The clsScrollbar debugging flag is 'K'. Defined values are: 

flag2 (Ox0004) protocol messages 

flag6 (Ox0040) painting 

flaglO (Ox0400) input 

flag14 (Ox4000) general debug info 

*ifndef SBAR_INCLUDED 
*define SBAR_INCLUDED 

*include <control.h> 
*ifndef CONTROL_INCLUDED 

*endif 

Common #defines and typedefs 

Direction 

*define hlpScrollbarVertical MakeTag(clsScrollbar, 1) 
*define hlpScrollbarHorizontal MakeTag(clsScrollbar, 2) 
*define hlpScrollbarGeneral hlpScrollbarVertical 
typedef OBJECT SCROLLBAR; 

*define sbDirectionVertical 0 
*define sbDirectionHorizontal 1 
typedef struct SCROLLBAR_STYLE ( 

U16 direction 1, 

If vertical scrollbar 
II horizontal scrollbar 

wide : 1, II no longer implemented 
spare : 14; II unused (reserved) 

SCROLLBAR_STYLE, *P_SCROLLBAR_STYLE; 

Default SCROLLBAR_STYLE: 

direction = sbDirectionVertical 
Enum16 (SCROLLBAR_ACTION) { 

II For vertical scrollbars: 
sbLineUp = 0, 
sbLineDown = 1, 
sbPageUp = 2, 
sbPageDown = 3, 
sbThumbUpDown = 4, 
sbLineToTop = 11, 
sbLineToBottom = 12, 
sbToTop = 15, 
sbToBottom = 16, 

--------------.~~~---



532 PEN POINT API REFERENCE 
Part 4 I UI Toolkit 

II For horizontal scrollbars: 
sbLineLeft 5, 
sbLineRight 6, 
sbPageLeft 7, 
sbPageRight 8, 
sbThumbLeftRight 9, 
sbColumnToLeft 13, 
sbColumnToRight 14, 
sbToLeft 17, 
sbToRight 18, 
II Terminating action: 
sbEndScroll = 10 

} ; 

typedef struct SCROLLBAR_SCROLL 
SCROLLBAR Sbi II in: originating scrollbar 
SCROLLBAR ACTION action; II in: current action 
S32 offset; II in/out: current or new offset 
S32 lineCoord; II in: coordinate of line in root win space 
U32 spare1; II unused (reserved) 
U32 spare2; II unused (reserved) 

SCROLLBAR_SCROLL, *P_SCROLLBAR_SCROLL; 
typedef struct SCROLLBAR PROVIDE { 

SCROLLBAR sb; - II in: originating scrollbar 
S32 viewLength; II out: client-provided view width or height 
S32 docLength; II out: client-provided document width or height 
S32 offset; II out: client-provided current offset 
U32 spare; II unused (reserved) 

SCROLLBAR_PROVIDE, *P_SCROLLBAR_PROVIDE; 

Messages 

(omments 

MessGge 

Arguments 

msgNew 
Creates a scrollbar window. 

Takes P _SCROLLBAR_NEW, returns STATUS. Category: class message. 

typedef struct SCROLLBAR_NEW_ONLY { 
SCROLLBAR STYLE style; 
U32 spare1; II unused (reserved) 
U32 spare2; II unused (reserved) 

SCROLLBAR_NEW_ONLY, *P_SCROLLBAR_NEW_ONLY; 
tdefine scrollbarNewFields \ 

controlNewFields \ 
SCROLLBAR_NEW_ONLY scrollbar; 

typedef struct SCROLLBAR_NEW { 
scrollbarNewFields 

} SCROLLBAR_NEW, *P_SCROLLBAR_NEWi 

The fields you commonly set are: 

pArgs->scrollbar.style.direction whether horizontal or vertical 

msgNewDefaults 
Initializes the SCROLLBAR_NEW structure to default values. 

Takes P _SCROLLBAR_NEW, returns STATUS. Category: class message. 

typedef struct SCROLLBAR_NEW { 
scrollbarNewFields 

SCROLLBAR_NEW, *P_SCROLLBAR_NEW; 



Comments 

Messdge 
Arguments 

Messdgw 
Argumrmts 

Comments 

Zeroes out pArgs->scrollbar and sets 

pArgs->win.flags.style 1= wsShrinkWrapWidth 1 wsShrinkWrapHeight; 
pArgs->win.flags.input = inputTip; 
pArgs->gWin.helpId = hlpScrollbarVertical; 
pArgs->control.style.previewGrab = true; 
pArgs->control.style.previewRepeat = true; 
pArgs->control.style.previewEnable = true; 
pArgs->scrollbar.style.direction = sbDirectionVertical; 

msgScrollbarGetStyle 
Passes back the current style values. 

Takes P _SCROLLBAR_STYLE, returns SfATUS. 

#define msgScrollbarGetStyle MakeMsg(clsScrollbar, 1) 

typedef struct SCROLLBAR_STYLE 
U16 direction 1, 

wide : 1, II no longer implemented 
spare : 14; II unused (reserved) 

SCROLLBAR_STYLE, *P_SCROLLBAR_STYLE; 

msgScrollbarSetStyle 
Sets the style values. 

Takes P _SCROLLBAR_STYLE, returns Sf ATUS. 

#define msgScrollbarSetStyle 

typedef struct SCROLLBAR_STYLE 
U16 direction 1, 

MakeMsg(clsScrollbar, 2) 

wide : 1, II no longer implemented 
spare : 14; II unused (reserved) 

SCROLLBAR_STYLE, *P_SCROLLBAR_STYLEi 

msgScrollbarUpdate 
Forces the scrollbar to repaint with the latest info. 

Takes nothing, returns Sf ATUS. 

#define msgScrollbarUpdate MakeMsg(clsScrollbar, 14) 

Causes msgScrollbarProvideVert/HorizInfo to be sent to client. 

SBAR.H 533 
M ... ag •• 

Self-Sent/Client Messages 

Mt;:$$dG1¢: 
Argument$ 

msgScrollbarVertScroll 
Client should perform vertical scroll. 

Takes P _SCROLLBAR_SCROLL, returns SfATUS. Category: client responsibility. 

#define msgScrollbarVertScroll MakeMsg(clsScrollbar, 5) 

typedef struct SCROLLBAR_SCROLL 
SCROLLBAR sb; II in: originating scrollbar 
SCROLLBAR ACTION action; II in: current action 
S32 offset; II in/out: current or new offset 
S32 lineCoordi II in: coordinate of line in root win space 
U32 spare1; II unused (reserved) 
U32 spare2i II unused (reserved) 

SCROLLBAR_SCROLL, *P_SCROLLBAR_SCROLLi 



534 PEN POINT API REFERENCE 
Part 4 / UI Toolkit 

Messoge 
Arguments 

Messoge 
ArgumeYlts 

Messuge 
AfgutnfN1ts 

The passed offset is an estimate computed by the scrollbar based on the information obtained from 
msgScrollbarProvideVertlnfo. 

If the client is unwilling to scroll to this offset, the client may scroll to a different offset. Be sure to set 

pArgs->offset to the new offset if it's different from the passed value. 

msgScrollbarHorizScroll 
Client should perform horizontal scroll. 

Takes P _SCROLLBAR_SCROLL, returns STATUS. Category: client responsibility. 

*define msgScrollbarHorizScroll MakeMsg(clsScrollbar, 6) 

typedef struct SCROLLBAR_SCROLL 
SCROLLBAR sb; II in: originating scrollbar 
SCROLLBAR ACTION action; II in: current action 
S32 offset; II in/out: current or new offset 
S32 lineCoord; II in: coordinate of line in root win space 
U32 spare1; II unused (reserved) 
U32 spare2; II unused (reserved) 

SCROLLBAR_SCROLL, *P_SCROLLBAR_SCROLL; 

The passed offset is an estimate computed by the scrollbar based on the information obtained from 

msgScrollbarProvideHorizlnfo. 

If the client is unwilling to scroll to this offset, the client may scroll to a different offset. Be sure to set 

pArgs->offset to the new offset if it's different from the passed value. 

msgScrollbar Provide Vertlnfo 
Client should provide the document and view info. 

Takes P _SCROLLBAR_PROVIDE, returns STATUS. Category: client responsibility. 

*define msgScrollbarProvideVertInfo MakeMsg(clsScrollbar, 9) 

typedef struct SCROLLBAR_PROVIDE { 
SCROLLBAR sb; II in: originating scrollbar 
S32 viewLength; II out: client-provided view width or height 
S32 docLength; II out: client-provided document width or height 
S32 offset; II out: client-provided current offset 
U32 spare; II unused (reserved) 

SCROLLBAR PROVIDE, *P_SCROLLBAR_PROVIDE; 

msgScrollbarProvideHorizlnfo 
Client should provide the document and view info. 

Takes P _SCROLLBAR_PROVIDE, returns STATUS. Category: client responsibility. 

*define msgScrollbarProvideHorizInfo MakeMsg(clsScrollbar, 10) 

typedef struct SCROLLBAR_PROVIDE { 
SCROLLBAR sb; II in: originating scrollbar 
S32 viewLength; II out: client-provided view width or height 
S32 docLength; II out: client-provided document width or height 
S32 offset; II out: client-provided current offset 
U32 spare; II unused (reserved) 

SCROLLBAR_PROVIDE, *P_SCROLLBAR_PROVIDE; 



SBAR.H 535 
Messages from Other Classes 

Messages from Other Classes 

Comrnents 

Comments 

msgSave 
Causes an object to file itself in an object file. 

Takes P _OBLSAVE, returns STATUS. 

clsScrollbar responds by filing away its instance data. 

msgRestore 
Creates and restores an object from an object file. 

Takes P_OBLRESTORE, returns STATUS. 

clsScrollbar responds by restoring its instance data. 

msgWinRepaint 
Tells a window to repaint itself. 

Takes nothing, returns STATUS. Category: descendant responsibility. 

clsScrollbar responds by painting itself appropriately. 

msgWinLayoutSelf 
Tell a window to layout its children. 

Takes P_WIN_METRICS, returns STATUS. 

clsScrollbar does nothing if pArgs->options does not have wsLayoutResize turned on. Otherwise, it will 
set pArgs->bounds.size only for the dimensions for which shrinkwrapping is set. It will set pArgs->size.w 
and h to a value derived from msgBorderlnsetToInnerRect and an internal constant (currently 13 
points). 

The visuals of the scrollbar are painted within the innerRect. 

msgBorderlnsetToInnerRect insets arbitrary rect to border recto 

msglnputEvent 
Notification of an input event. 

Takes P _INPUT_EVENT, returns STATUS. 

clsScrollbar responds to input events by maintaining the state necessary to behave in the appropriate 
fashion. The types of input state a scrollbar can be in are: 

null 

pen up over an arrow 

pen down over an arrow 

pen up over the thumb 

pen down over the thumb 

dragging the thumb 

pen up over the shaft 

gesturing over the shaft 



536 PENPOINT API REFERENCE 
Part 4 / UI Toolkit 

Comments 

In particular, the scroll bar allows the normal msgControl*Preview protocol to ensue only when the pen 
is interacting with the scroll arrows. 

msgGWinGesture 
Called to process the gesture. 

Takes P _GWIN_GESTURE, returns STATUS. 

clsScrollbar responds by returning stsMessageIgnored if the gesture has no meaning (e.g. xgsFlickUp on 
a horizontal scrollbar). 

Otherwise, the scrollbar will fill out a SCROLLBAR_SCROLL struct and send either 
msgScrollbarVertScroll or msgScrollbarHorizScroll to the CONTROL_METRICS. client. Actually, the 

client will receive the message twice--once for the appropriate action, and once for the sbEndScroll 
action (although the second message with sbEndScroll may be dropped in the future). 

msgGWinComplete 
Causes the gesture to be completed. 

Takes void, returns STATUS. 

clsScrollbar responds by clearing its internal state data left over from processing a gesture in the scrollbar 
shaft. 

msgControlBeginPreview 
Self-sent when msgPenDown is received. 

Takes P _INPUT_EVENT, returns STATUS. Category: self-sent. 

clsScrollbar responds by returning stsControlCancelPreview if the penDown occurred in the shaft. 

Otherwise, the scroll bar self-sends msgControlRepeatPreview so that at least one arrow scroll is done. 

Note that the scrollbar won't receive this message if the penDown occurred in the thumb, because in 
that case clsScrollbar's response to msgInputEvent returned stsInputTerminate (after creating and 
starting an instance of clsT rack). 

msgControlAcceptPreview 
Self-sent when msgPenUp is received. 

Takes P _INPUT_EVENT, returns STATUS. Category: self-sent. 

clsScrollbar responds by notifying its CONTROL_METRICS. client with msgScrollbar[Vert/Horiz]Scroll 
and an action of sbEndScroll. 

Although one might expect this message to be sent when the pen is lifted from a scroll arrow, under 
normal circumstances a scrollbar will never receive this message. This is because clsScrollbar sees the 
msgInputEvent(msgPenUp) and self-sends msgGWinAbort to cancel the gesture (because the user 
really wasn't gesturing over the repeating arrow). clsControl responds to msgGWinAbort by self-sending 
msgControlCancelPreview, which sends out the sbEndScroll. 



Comments 

Comments 

SBAR.H 537 
Messages from Other Classes 

msgControlCancelPreview 
Self-sent when style.previewGrab is false and msgPenExitDown is received. 

Takes P _INPUT_EVENT, returns STATUS. Category: self-sent. 

clsScrollbar responds by notifying its CONTROL_METRICS. client with msgScrollbar[Vert/Horiz]Scroll 

and an action of sbEndScroll. 

msgControlRepeatPreview 
Self-sent if style.repeatPreview is true. 

Takes P _INPUT_EVENT, returns STATUS. Category: self-sent. 

clsScrollbar responds by notifying its CONTROL_METRICs.client with msgScrollbar[Vert/Horiz]Scroll 

and an action of sbLine[Up/Down] (if the scrollbar is vertical) or sbLine[Left/Right] (ifhorizontal). 

If the client indicated that no scrolling took place (by not changing the SCROLLBA~SCROLL.offset 

field), then the scrollbar will return stsControlCancelRepeat. 

msgTrackDone 
Sent by a tracker when it's done. 

Takes P _TRACK_METRICS, returns STATUS. Category: client notification. 

A scrollBar will receive this message when the user has lifted the pen after dragging the thumb. 

If the scrollBar's style.direction is sbDirectionVertical, the scrollBar will notify its 

CONTROL_METRICS. client with msgScrollbarVertScroll and one of these actions: sbThumbUpDown, 

sb To Top, or sb ToBottom. 

If the scrollBar's style.direction is sbDirectionHorizontal, the scrollBar will notify its 

CONTROL_METRICS. client with msgScrollbarHorizScroll and one of these actions: sbThumbLeftRight, 

sbToLeft, or sbToRight. 





SELCHMGR.H 

This file contains the API for clsSelChoiceMgr. 

clsSelChoiceMgr inherits from clsManager. 

Provides a choice manager that defines a protocol for managing the selection. Although clients may 
subclass clsSelChoiceMgr and add to or modify its behavior, there should be little reason to do so. 
clsSelChoiceMgr itself implements all of the standard VI for selectable choices. 

Notes: 

The selection choice manager works in a similar manner to the regular choice manager except it causes 
selection feedback to be displayed on the controls it manages. It also tells a client when to acquire the 
selection by sending msgSelChoiceMgrAcquireSel to the client. This message is sent every time one of 
the controls it manages turns on. selchmgr also sends msgSelChoiceMgrNullSel when someone 
programmatically turns off the selected control or sends the selchmgr msgChoiceMgrSetOnButton with 
an argument of objNull. The client should set the selection to null when it recieves this message. 

Note that msgNewDefaults to clsChoice results in a prototypical new struct whose values describe a 
button of contact style bsContactLockOn. This is correct for choices that always have one button on, 
but this is typically not what you'd want for selectable choices--the user should be able to deselect a 
selected button by tapping on it (so the choice then has no buttons on). To acheive this effect, do the 
equivalent of the following: 

ObjCaIIWarn(msgNewDefaults, clsChoice, &choiceNew)i 
choiceNew.tkTable.pButtonNew->button.style.contact = bsContactToggle; 
choiceNew.tkTable.manager = <uid of a seIChoiceMgr>; 
ObjCaIIRet(msgNew, clsChoice, &choiceNew, S)i 

See the documentation for msg Tk TableChildDefaults in choice.h. 

When a client receives msgSelYield from the selection manager it should send 
msgSelChoiceMgrN ullCurrent to the selchmgr. This will cause it to turn off its currently chosen 
control and set its current choice to null. Here's how a client would typically respond to the relevant 
messages. 

msgSelChoiceMgrAcquireSel: 
<remember what kind of selection self will own 

by writing pArgs->id into self's instance data> 
ObjCaIIRet(msgSeISelect, self, pNull, S)i 
<don't call ancestor> 

msgSelChoiceMgrNullSel: 
II The following will result in self receiving msgSelYield. 
ObjCaIIRet(msgSeISetOwner, theSelectionManager, objNull, S)i 

<don't call ancestor> 
msgSelYield: 

II Ignore if self isn't the primary selection owner. 
if ((BOOLEAN) (U32) pArgs == false) 

return ObjectCaIIAncestorCtx(ctx); 
<get the choice by referencing the id value in self's instance data> 
<get the manager of the choice via msgTkTableGetManager> 
ObjCaIIRet(msgSeIChoiceMgrNuIICurrent, <manager>, pNull, S)i 
<clear the id field in self's instance data> 
<don't call ancestor> 

---- ----------_ ... _---



540 PEN POINT API REFERENCE 
Part 4 / U.I Toolkit 

msgSelOptionTagOK: 
<determine whether the kind of option sheet indicated by pArgs 

(a TAG value) could be applied to the selection, and return 
stsOK if so, stsFailed if not> 

<don't call ancestor> 
msgSelOptions: 

<bring up an option sheet for the selection> 
<don't call ancestor> 

See sel.h for additional selection messages and their documentation. 

fifndef SELCHMGR_INCLUDED 
fdefine SELCHMGR_INCLUDED 

fifndef CHMGR_INCLUDED 
finclude <chmgr.h> 

fendif 
fifndef XFER_INCLUDED 

finclude <xfer.h> 
fendif 
fifndef WIN_INCLUDED 

finclude <win.h> 
fendif 

Common #defines and typedefs 
typedef OBJECT SEL_CHOICE_MGR; 

msgNew 
Creates a selChoiceMgr object. 

Takes P _SEL_CHOICE_MGR_NEW, returns STATUS. Category: class message. 

typedef struct SEL_CHOICE_MGR_NEW_ONLY { 
OBJECT client; II Object to send acquire/null messages to 
U32 id; II Id tag sent with acquire/null messages 
U32 spare; 

SEL_CHOI CE_MGR_NEW_ONLY, *P_SEL_CHOICE_MGR_NEW_ONLY; 
fdefine selChoiceMgrNewFields \ 

choiceMgrNewFields \ 
SEL_CHOI CE_MGR_NEW_ONLY selChoiceMgr; 

typedef struct SEL_CHOICE_MGR_NEW { 
selChoiceMgrNewFields 

} SEL_CHOICE_MGR_NEW, *P_SEL_CHOICE_MGR_NEW; 
typedef struct SEL_CHOICE_MGR_INFO { 

SEL CHOICE MGR selChoiceMgr; II Sender 
U32- - id; II Client-specified id tag 
WIN button; I I Current on button 

SEL_CHOICE_MGR_INFO, *P_SEL_CHOICE_MGR_INFO; 

The fields you commonly set are: 

pArgs->selChoiceMgr.client An object to manage the selection protocol. (Typically the app uid.) 

pArgs->selChoiceMgr.id An id to distinguish among >1 selectable instances of clsChoice within the 
client's domain. 

msgNewDefaults 
Initializes the SEL_CHOICE_MGR_NEW structure to default values. 

Takes P_SEL_CHOICE_MGR_NEW, returns STATUS. Category: class message. 



Messoge 
Arguments 

Comments 

SELCHMGR.H 541 
clsChoiceMgr Messages to which selChoiceMgrs Respond 

typedef struct SEL_CHOICE_MGR_NEW { 
selChoiceMgrNewFields 

} SEL_CHOICE_MGR_NEW, *P_SEL_CHOICE_MGR_NEWi 

Zeroes out pArgs->selChoiceMgr. 

msgSelChoiceMgrGetClient 
Passes back the client uid held by the receiver. 

Takes P_OBJECT, returns STATUS. 

#define msgSelChoiceMgrGetClient MakeMsg(clsSelChoiceMgr, 1) 

msgSelChoiceMgrSetClient 
Sets the client uid held by the receiver. 

Takes OBJECT, returns STATUS. 

#define msgSelChoiceMgrSetClient 

msgSelChoiceMgrGedd 
Passes back the id held by the receiver. 

Takes P_U32, returns STATUS. 

#define msgSelChoiceMgrGetld 

msgSel ChoiceMgrSetld 
Sets the id held by the receiver. 

Takes U32, returns STATUS. 

#define msgSelChoiceMgrSetld 

MakeMsg(clsSelChoiceMgr, 2) 

MakeMsg(clsSelChoiceMgr, 3) 

MakeMsg(clsSelChoiceMgr, 4) 

msgSelChoiceMgrNullCurrent 
Tells the receiver to clear the visuals and state of the choice. 

Takes nothing, returns STATUS. 

tdefine msgSelChoiceMgrNullCurrent MakeMsg(clsSelChoiceMgr, 5) 

After receiving this message, the choice will have no current value. This message does not result in the 

sending of any side-effect messages such as msgSelYield. 

clsChoiceMgr Messages to which 
selChoiceMgrs Respond 

msgChoiceMgrGetOnButton 
Gets the current on button. Passes back objNull if no button is on. 

Takes P _UID, returns STATUS. 



542 PENPOINT API REFERENCE 
Part 4 / UI Toolkit 

msgChoiceMgrSetOnButton 
Sets the current on button. 

Takes UID, returns STATUS. 

Since the choiceMgr will use msgControlSetValue to turn the button on, that button's normal 
notification protocol will be invoked. 

All buttons are turned off if message argument is objNull. 

Clien. Messages 

MessCige 
Argurnel'lts 

MeuCige 
Argumenks 

msgSelChoiceMgrAcquireSel 
Sent to the client whenever a different button is selected. 

Takes P _SEL_CHOICE_MGR_INFO, returns STATUS. Category: client responsibility. 

#define msgSelChoiceMgrAcquireSel MakeMsg(clsSelChoiceMgr, 6) 

typedef struct SEL_CHOICE_MGR_INFO 
SEL_CHOICE_MGR selChoiceMgr; II Sender 
U32 idi I I Client-specified id tag 
WIN button; I I Current on button 

SEL_CHOICE_MGR_INFO, *P_SEL_CHOICE_MGR_INFO; 

The client would typically respond by doing the following: 

<remember what kind of selection self will ownby writing pArgs->id into sel f's instance data> 

ObjCallRet(msgSeISelect, self, pNull, s); 

<don't call ancestor> 

msgSelChoiceMgrNullSel 
Sent to the client whenever a different button is selected. 

Takes P _SEL_CHOICE_MGR_INFO, returns STATUS. Category: client responsibility. 

#define msgSelChoiceMgrNullSel MakeMsg(clsSelChoiceMgr, 7) 

typedef struct SEL_CHOICE_MGR_INFO 
SEL_CHOICE_MGR selChoiceMgr; II Sender 
U32 id; II Client-specified id tag 
WIN button; I I Current on button 

SEL_CHOICE_MGR_INFO, *P_SEL_CHOICE_MGR_INFOi 

The client' would typically respond by doing the following: 

ObjCalIRet(msgSeISetOwner, theSelectionManager, objNull, s); 

<don't call ancestor> 

As a consequence of this, the client would then receive msgSelYield. 



SHADOW.H 

This file contains the API definition for clsShadow. 

clsShadow inherits from clsCustomLayout. 

Implements a true shadow as a separate window underneath the shadowed window. 

#ifndef SHADOW_INCLUDED 
#define SHADOW_INCLUDED 

#ifndef _INCLUDED 
#include <clayout.h> 

#endif 

". Common #defines and typedefs 
typedef OBJECT SHADOW; 
typedef struct SHADOW_STYLE { 

U16 trueShadow : 1, II create a window for true-shadow effect 
spare : 15; II unused (reserved) 

} SHADOW_STYLE, *P_SHADOW_STYLE; 

". Messages 

Arguments 

Comments 

msgNew 
Creates in instance of clsShadow. 

Takes P _SHADOW _NEW, returns STATUS. Category: class message. 

typedef struct SHADOW_NEW_ONLY 
SHADOW_STYLE style; 
WIN borderWin; 
U32 spare; II unused (reserved) 

SHADOW_NEW_ONLY, *P_SHADOW_NEW_ONLY; 
#define shadowNewFields \ 

customLayoutNewFields \ 
SHADOW NEW ONLY shadow; 

typedef struct SHADOW_NEW 
shadowNewFields 

} SHADOW_NEW, *P_SHADOW_NEW; 

If pArgs->win.flags.style has wsTransparent on, clsShadow will do the following: 

• set border.style.getDeltaWin for pArgs->shadow.borderWin to true. This will forward any 
drag/ resize operations on the border window to the shadow window. 

• if pArgs->shadow.style.trueShadow is true the following is done: 

if pArgs->shadow.shadowWin is objNull, an instance of 

clsBorder is created as the true shadow window. 

selfs pArgs->border.style.shadow/resize are copied 
to shadowWin's border style. Also, border.style.getDelta Win 

for shadowWin is set to true. 



544 PENPOINT API REFERENCE 
Part 4 I UIToolkit 

MessQge 
Arguments 

Comments 

MessQge 
Arguments 

Comments 

shadow Win is inserted as a child of self, underneath the border Win, 

if any. 

If pArgs->borderWin is not objNull, the wsShrinkWrapWidth/Height window flags of the borderWin 

are changed to match self's and the border\Vm is inserted as a child of self, above the shadowWin. 

msgNewDefaults 
Initializes the SHADOW_NEW structure to default values. 

Takes P_SHADOW_NEW, returns STATUS. Category: class message. 

typedef struct SHADOW NEW { 
shadowNewFields -

} SHADOW_NEW, *P_SHADOW_NEW; 

Zeroes out pArgs->shadow and sets 
pArgs->win.flags.input 1= inputDisable 1 inputTransparent; 
pArgs->win.flags.style l=wsTransparent 1 wsGrowBottom 1 wsGrowRight; 
pArgs->gWin.style.gestureEnable = false; 
pArgs->border.style.edge = bsEdgeAll; 
pArgs->border.style.shadow = bsShadowThickGray; 
pArgs->border.style.shadowGap = bsGapWhite; 
pArgs->border.style.borderlnk = bslnkGray66; 
pArgs->border.style.resize = bsResizeCorner; 
pArgs->border.style.drag = bsDragHoldDown; 
pArgs->border.style.top = bsTopUp; 
pArgs->customLayout.style.limitToRootWin = true; 

l)efaultSHADOW_S1lfJLE: 

trueShadow = false 

msgShadowGetStyle 
Passes back the current style values. 

Takes P _SHADOW _S1lfJLE, returns STATUS. 

tdefine msgShadowGetStyle MakeMsg(clsShadow, 1) 

typedef struct SHADOW STYLE 
U16 trueShadow - : 1, II create a window for true-shadow effect 

spare : 15; II unused (reserved) 
SHADOW_STYLE, *P_SHADOW_STYLE; 

msgShadowSetStyle 
Sets the style values. 

Takes P_SHADOW_S1lfJLE, returns STATUS. 

tdefine msgShadowSetStyle MakeMsg(clsShadow, 2) 

typedef struct SHADOW STYLE 
U16 trueShadow - : 1, II create a window for true-shadow effect 

spare : 15; II unused (reserved) 
SHADOW_STYLE, *P_SHADOW_STYLE; 

Changes in self's border style are passed on to the borderWin and shadowWin. 

msgShadowGetBorderWm 
Passes back the border window. 



Takes P_WIN, returns STATUS. 

#define msgShadowGetBorderWin 

msgShadowSetBorderWin 
Sets the border window. 

Takes WIN, returns STATUS. 

#define msgShadowSetBorderWin 

SHADOW.H 545 
Messages from Other Classes 

MakeMsg(clsShadow, 3) 

MakeMsg(clsShadow, 4) 

The new borderWin is altered as in msgNew. 

msgShadowGetShadowWin 
Passes back the shadow window. 

Takes P_WIN, returns STATUS. 

#define msgShadowGetShadowWin MakeMsg(clsShadow, 5) 

Messages from Other Classes 

Comments 

Comments 

msgWinSetFlags 
Sets the window flags. 

Takes P _WIN_METRICS, returns STATUS. 

clsShadow will alter the borderWin's window flags to match the wsShrinkWrapWidth/Height flags of 

self. 

msgCstmLayoutGetChildSpec 
Passes back the current spec for the specified child. 

Takes P _CSTM_LAYOUT_CHILD_SPEC, returns STATUS. Category: self-sent. 

clsShadow responds by providing the custom layout constraints for borderWin and shadowWin. 

The shadow Win is placed and sized to provide a gap area on the lower-left and upper-right. 

The borderWin is placed above the bottom shadow of the shadow Win and sized width-wise to extend 
to the left of the right shadow of the shadowWin. 

msgWinRepaint 
Tells a window to repaint itself. 

Takes nothing, returns STATUS. Category: descendant responsibility. 

If self has wsTransparent on, clsShadow prevents any painting by not calling ancestor and painting 

nothing. 





STDMSG.H 

This file contains the API definition for the standard message package. 

The functions described in this file are contained in SYSUTIL.LIB. 

". Introduction 
The standard message package makes it easy to display error messages, modal dialog boxes, and progress 
notes. The package hides many of the details of finding resources and creating UI objects. The package 
uses clsNote to display messages. (See note.h.) 

Message are stored as strings in string array resources. A 32 bit value identifies the proper resource. For 

error messages the value is a STATUS; for dialog boxes and progress notes the value is a TAG constructed 
using the MakeDialogTag macro. 

Road Map 
To display a dialog box, use: 

• StdMsg 

To display an error message when you know about the error, use: 

• StdError 

To display an error message when you don't know about the error, use: 

• StdUnknownError 

To display a progress note, use: 

• StdProgressUp 

• StdProgressDown 

To display messages extracted from a specified resource file or path, use: 

• StdMsgRes 

• StdError Res 

To construct a customized message, use: 

• StdMsgCustom 

PenPoint-internal use only: 

• StdSystemError 



548 PENPOINT API REFERENCE 
Part 4 I UI Toolkit 

".. A Typical Scenario 
[This scenario illustrates some features of the package that haven't been described yet. See the sections 
"Button Definition" and 'Text Substitution and Formatting" for more information.] 

The first step in using the standard message package is to define a tag or status for each string: 

II tdefine stsFooErrorl MakeStatus(clsFoo, 0) 
II 'define stsFooError2 MakeStatus(clsFoo, 1) 
II tdefine tagFooDialogl MakeDialogTag(clsFoo, 0) 
II 'define tagFooDialog2 MakeDialogTag(clsFoo, 1) 

The next thing to do is to construct resources which contain the text strings. Standard message strings 
live in string array resources (see resfile.h). Application string arrays should reside in the application's 
app.res file. (PenPoint's string arrays reside in penpoint.res.) 

There is one string array for error strings and another separate array for dialog box and progress strings. 
A single string array resource holds all of the strings for a given class. 

Typically the string arrays are defined in a .rc file which is compiled with the PenPoint SDK's resource 
compiler. The position of each string in the string array resource must match its tag or status index 
(starting from 0). 

static P_STRING errorClsFoo[] 
"This is the first error message.", 
"[Retry] [Cancel] This is the second error message. count: AId"}; 

static P_STRING dialogClsFoo[] = { 
"This is the first dialog message.", 
"[Go] [Stop] This is the second dialog message. str: Als "}; 

static RC_INPUT errorTabClsFoo = { 
resForStdMsgError(clsFoo), errorClsFoo, 0, resStringArrayResAgent}; 

static RC_INPUT dialogTabClsFoo = { 
resForStdMsgDialog(clsFoo), dialogClsFoo, 0, resStrinqArrayResAgent}; 

P_RC_INPUT reslnput [] = { 
&errorTabClsFoo, 
&dialogTabClsFoo, 
pNull} ; 

II String array for std msg error strings 
II String array for other std msg strings 

Finally create a note by simply calling one of the appropriate function. This example uses StdMsgO, 
StdErrorO and StdU nknownErrorO. 

buttonHit = StdMsg(tagFooDialog2, "String"); 
s = ObjectCall( ... ); 
if (s < stsOK) { 

if (s == stsFooErrorl) 
StdError(stsFooErrorl); 

else { 
StdUnknownError(s); 

".. Button Definition 
Message strings may contain button definitions. A button definition is a substring enclosed in square 
brackets at the beginning of the message string. Any number of buttons may be defined but all buttons 
must appear at the front of the string. If no buttons are defined then a single "OK" button is created. 

StdMsgO, StdErrorO, StdMsgResO, StdErrorResO and StdSystemErrorO return the button number that 
the user hit to dismiss the note. Button numbers start with O. For example, a note constructed with the 
following string: 



STDMSG.H 549 

"[ButtonO] [Buttonl] [Button2] Here's your message!" 

returns the value 1 if the user hits Button 1. These functions might also return a negative error status if a 
problem occurred inside the function. 

See the section "A Typical Scenario" for an example. 

",. Text Substitution and Formatting 
Message strings may contain parameter substitutions, as defined in cmpstext.h. Text substitution also 
works i'nside the button substrings. 

See the section "A Typical Scenario" for an example. 

You can break your message up into paragraphs by putting 2 newlines at the paragraph breaks. For 

example: 

"Here's the first paragraph.\n\nHere's the second one." 

",. Progress Notes 
Clients can put up a progress note to inform the user that a lengthy operation has begun, and take down 

the progress note to indicate that the operation has been completed. 

Cancellation of the operation is not supported in PenPoint 1.0. Progress notes do not have buttons. 

Here's an example of progress indication usage: 

SP_TOKEN token; 
StdProgressUp(tagFooProgressl, &token, paraml, param2); 
... Lengthy operation ... 
StdProgressDown(&token); 

",. Searching for Resources 
Most of the functions in this package search for resources as follows: 

• If the process is an application process (OSThisAppO returns non-null), then the application's 
resource list is searched. Otherwise theSystemResFile is searched. 

• If the desired resource is not found in the above resource files or lists, then theServiceResList is 
searched. 

The exceptions to this rule are: 

• StdSystemErrorO, which only checks theSystemResFile. 

• StdMsgResO, which takes as one of its parameters the resource file or list to search. 

• StdErrorResO, which takes as one of its parameters the resource file or list to search. 

".. Note Titles and Reference Field 
Notes will be titled "Note from {App} ... " if the string was found in the app resource file, or "Note from 

PenPoint ... " if the string was found in the system resource file. 

You can use StdMsgCustomO if you want to have some other title. 

Error messages will also have an additional line at the bottom of the note of the form: 

Reference: xxx-xxx 

where xxx-xxx is the status code that generated the error. 



550 PENPOINT API REFERENCE 
Part 4 / UI Toolkit 

Customization of Standard Message Package Notes 
StdMsgCustomO allows clients to customize a standard message package note. It returns the note object, 

without displaying it. Developers can modify this object as they wish and then display it themselves. 

fifndef STDMSG_INCLUDED 
fdefine STDMSG_INCLUDED 
fifndef ·GO_INCLUDED 
finclude <go.h> 
fendif 
fifndef OSTYPES_INCLUDED 
finclude <ostypes.h> 
fendif 

Common #defines 

Constructing Standard Message Tags 
Use MakeStatusO (defined in go.h) to construct string tags for errors. 

Use MakeDialogTagO to construct string tags for dialog and progress strings. 

fdefine MakeDialogTag(wkn, index) MakeIndexedResId(wkn, 1, index) 

Constructing Standard Message Resource Ids 
Tn a _ rc file, use resForStdMsgDialog to construct the resource id for a class's dialog string arra-t. Use 

resForStdMsgError to construct the resource id for a class's error string array. 

See the section "A Typical Scenario" for an example. 

fdefine resForStdMsgDialog(wkn) MakeListResId(wkn, resGrpStdMsg, 1) 
fdefine resForStdMsgError(wkn) MakeListResld(wkn, resGrpStdMsg, 0) 

Public Functions 

StdlJnJuno1VnUError 
Displays an error message when the client doesn't recognize the error. 

Returns SfATUS. 

Ft.tl1dion Pmtofype STATUS CDECL StdUnknownError ( 
STATUS status); 

Comments Use this function to display an error message when the error status is one that you don't pay special 

attention to. 

StdUnknownError searches for an error message that matches the status parameter. If the specified status 

isn't found then a note with just the error code is displayed. 

StdUnknownError does not allow parameter substitution or multiple command buttons. Any parameter 

substitution specifications in the text are replaced with "???". A single "OK" command button is always 

displayed. 

See the section "A Typical Scenario" for an example. See the section "Searching for Resources" for a 

description of which resource files are searched. 



STDMSG.H 551 
Public Functions 

StdMsg 
Displays a dialog box from a resource file. 

Returns S32. 

Function Prototype S32 CDECL StdMsg ( 
const TAG tag, 
... ) ; 

Comments Use this function to display a dialog box. 

StdMsg searches for an dialog string that matches the tag parameter. A dialog box with the message and 
buttons defined in the message string is displayed. 

See the section "A Typical Scenario" for an example. See the section "Searching for Resources" for a 

description of which resource files are searched. 

Like printf, this function takes a variable number of parameters. There is no error checking on the 
number and type of the parameters. 

stsResResourceNotFound the specified tag is not found. 

< stsOK some other error occurred. 

>= stsOK number of button the user hit (0 based). 

StdError 
Displays an error message from a resource file. 

Returns S32. 

fl.H'Idlon Prototype S32 CDECL StdError ( 
const STATUS status, 
... ) ; 

Comments Use this function to display an error message. 

StdError searches for an error message string that matches the status parameter. A note with the message 

and buttons defined in the error message string is displayed. The note also contains an Error Code 
number line. 

See the section "A Typical Scenario" for an example. See the section "Searching for Resources" for a 

description of which resource files are searched. 

Like printf, this function takes a variable number of parameters. There is no error checking on the 

number and type of the parameters. 

stsResResourceN otFound the specified tag is not found. 

< stsO K some other error occurred. 

>= stsOK number of button the user hit (0 based). 

StdSystemError 
For PenPoint internal use only. Displays an error message for a standard PenPoint error. 

Returns S32. 

function Prototype S32 CDECL StdSystemError ( 
const STATUS status, 
... ) ; 



552 PENPOINT API REFERENCE 
Part 4 I UI Toolkit 

Comments 

Return Value 

StdSystemError searches theSystemResFile (penpoint.res) for an error message string that matches the 
status parameter. A note with the message and buttons defined in the string is displayed. 

Like printf, this function takes a variable number of parameters. There is no error checking on the 
number and type of the parameters. 

stsResResourceN otFound the specified tag is not found. 

< stsOK some other error occurred. 

>= stsOK number of button the user hit (0 based). 

StdProgressUp 
Displays a progress note from a resource file. 

Returns STATUS. 

Arguments typedef struct SP _TOKEN 
OBJECT uid; 
OS MILLISECONDS start Time; 
U32 spare[8]; 

SP_TOKEN, *P_SP_TOKEN; 

Fundion Prototype STATUS CDECL StdProgressUp ( 
const TAG tag, 

P_SP_TOKEN pToken, 
... ) ; 

Comments Use this function to inform the user that a lengthy operation has started. 

Return Value 

See Also 

StdProgressUp searches for an dialog message that matches the tag parameter. A dialog box with the 
message string is displayed. This dialog box stay ups until StdProgressDown is called. 

The pToken parameter, as filled in by StdProgressUp, must be passed to StdProgressDown. The client 
shouldn't touch it! 

Example: 

SP TOKEN token; 
StdProgressUp(tagFoo, &token, paraml, param2); 

StdProgressDown(&token); 

Progress notes do not contain a command bar. Any button definitions are ignored. 

Like printf, this function takes a variable number of parameters. There is no error checking on the 
number and type of the parameters. 

See the section "Progress Notes" for more information. See the section "Searching for Resources" for a 
description of which resource files are searched. 

stsResResourceN otFound The specified tag was not found 

StdProgressDown 

StdProgressDown 
Brings down a progress note that was put up with StdProgressUpO. 

Returns STATUS. 

Function Prototype STATUS CDECL StdProgressDown ( 
P_SP_TOKEN pToken); 

Comments The pToken parameter must be the same as that passed to StdProgressUpO. 



See Also 

See the section "Progress Notes" for more information. 

StdProgress Up 

StdMsgRes 
Just like StdMsgO except that the resource path is specified. 

Returns S32. 

STDMSG.H 553 
Public Functions 

Fundion Prototype S32 CDECL StdMsgRes ( 
OBJECT resFile, 

const TAG tag, 
... ) i 

Comments Use StdMsgRes when you need the functionality of StdMsg, but need to look up the string in a specified 
resource file or resource list. 

Return Volue 

See Also 

StdMsgRes searches the specified resource file or list for a dialog message string that matches the tag 
parameter. A dialog box with the message and buttons defined in the message string is displayed. 

Like printf, this function takes a variable number of parameters. There is no error checking on the 

number and type of the parameters. 

stsResResourceN otFound the specified tag is not found. 

< stsOK some other error occurred. 

>= stsOK number of button the user hit (0 based). 

StdMsg 

StdErrorRes 
Just like StdErrorO except that the resource path is specified. 

Returns S32. 

Fundion Prototype S32 CDECL StdErrorRes ( 
OBJECT resFile, 

const STATUS status, 
... ) ; 

Comments Use StdMsgError when you need the functionality of StdError, but need to look up the string in a 

specified resource file or resource list. 

Return Volue 

See Also 

StdErrorRes searches the specified resource file or list for an error message string that matches the status 
parameter. A note with the message and buttons defined in the error message string is displayed. 

Like printf, this function takes a variable number of parameters. There is no error checking on the 
number and type of the parameters. 

stsResResourceNotFound the specified tag is not found. 

< stsOK some other error occurred. 

>= stsOK number of button the user hit (0 based). 

StdError 

StdMsgCustom 
Creates a note object in the manner ofStdMsgO. 



554 PENPOINT API REFERENCE 
Part 4 / UI Toolkit 

Returns OBJECT. 

Function Prototype OBJECT CDECL StdMsgCustom ( 
OBJECT resFile, 

Comments 

Return Value 

const TAG tag, 
... ) ; 

Use StdMsgCustom when you want to create a note using the facilities of the standard message package 
but need to customize the note before displaying it. 

The client is responsible for displaying the note object. The note has auto Destroy on, so it self-destructs 
when dismissed. 

StdMsgCustom allows the specification of a resource file or list to search. If res File is objN ull then 
searching occurs as described in the section "Searching for Resources." The tag parameter can either be a 
dialog tag (created with MakeDialogTagO) or an error status (created with MakeStatusO). 

Here's an example: 

fdefine tagFooDialogl MakeDialogTag(clsFoO, 0) 

S32 buttonHit; 
OBJECT note; 

note = StdMsgCustom(objNull, tagFooDialogl, argl, arg2); 
if (note == objNull) { 

... II Handle error, probably resource not found. 
goto error; 

II Customize the note. 
ObjCallRet(msgNoteShow, note, &buttonHit, s); 

Like printf, this function takes a variable number of parameters. There is no error checking on the 
number and type of the parameters. 

objNuli No match, or some other error occurred. 



STRLBOX.H 

This file contains the API for clsStringListBox. 

clsStringListBox inherits from clsListBox. 

Implements a listbox that behaves as a choice or a group of toggles. 

As with clsListBox, the client supplies entry information on demand. With dsStringListBox, however, 
the client supplies strings, not windows. These strings are used to create instances of clsButton, and it is 
these buttons that are used as entry windows within the listBox. 

A stringListBox may behave in one of three manners: as a list of individual toggles (as in 
clsToggleTable), as choice that has zero or one of its buttons 'on' at a time, or as a choice that always has 
exactly one of its buttons' on' at once. When a stringListBox is behaving as a choice, its value is the 
'data' field of the entry that is currently chosen. 

#ifndef STRLBOX INCLUDED 
#define STRLBOX INCLUDED 

#ifndef LISTBOX INCLUDED 
#include <listbox.h> 

#endif 

Common #defines and typedefs 
II String ListBox behavior 
#define slbRoleToggles 
#define slbRoleChoice01 
#define slbRoleChoice1 

styles (roles) 
o II Act like a toggle table. 
1 II Act like a choice ( <=1 entries chosen) 
2 II Act like a choice (always 1 entry chosen) 

II String ListBox entry looks 
#define slbLookInvert 0 
#define slbLookDecorate 1 
typedef struct { 

U16 role 4, 
look 2, 
dirty 1, 
spare 9; 

} STRLB_STYLE, *P_STRLB_STYLE; 

Default STRLB_STYLE: 

role 
look 
dirty 

msgNew 

slbRoleToggles 
slbLookInvert 
false 

Creates a string listbox window. 

II Chosen entries have inverted appearance. 
II Chosen entries have decorated appearance. 

II Overall behavior. 
II Controls looks of entries. 
II Dirty status (ref. control.h) 
II reserved 

Takes P _STRLB_NEW, returns STATUS. Category: class message. 

typedef struct { 
STRLB STYLE 
U32 -

U32 
STRLB_NEW_ONLY, 

style; 
value; 

II overall style 
II initial value (if slbRoleChoice01 
II or slbRoleChoice1) 

spare; II reserved 
*P_STRLB_NEW_ONLY; 

The value is the 'data' field of the entry that is currently chosen. 



556 PENPOINT API REFERENCE 
Part 4 / UI Toolkit 

Message 
Arguments 

Message 
Arguments 

fdefine stringListBoxNewFields \ 
listBoxNewFields \ 
STRLB NEW ONLY stringListBox; 

typedef struct { 
stringListBoxNewFields 

} STRLB_NEW, *P_STRLB_NEW; 
fdefine stsStrListBoxNoValue 

The fields you commonly set are: 

pArgs->stringListBox.style.role overall behavior 

pArgs->stringListBox.style.look entry looks 

pArgs->stringListBox.value initial value 

msgNewDefaults 

MakeStatus(clsStringListBox, 1) 

Initializes the STRLB_NEW structure to default values. 

Takes P _STRLB_NEW, returns SfATUS. Category: class message. 

typedef struct { 
stringListBoxNewFields 

} STRLB_NEW, *P_STRLB_NEW; 

msgStrListBoxGetStyle 
Passes back the style of the receiver. 

Takes P _STRLB_STYLE, returns Sf ATUS. 

fdefine msgStrListBoxGetStyle MakeMsg(clsStringListBox, 1) 

typedef struct { 
U16 role 4, 

look 2, 
dirty 1, 
spare 9; 

STRLB_STYLE, *P_STRLB_STYLE; 

msgStrListBoxGetDirty 

II Overall behavior. 
II Controls looks of entries. 
II Dirty status (ref. control.h) 
II reserved 

Passes back true if the list box has been altered since dirty was set false. 

Takes P _BOOLEAN, returns STATUS. 

fdefine msgStrListBoxGetDirty 

msgStrListBoxSetDirty 
Sets the dirty bit of a string listbox. 

I 

Takes BOOLEAN, returns SfATUS. 

fdefine msgStrListBoxSetDirty 

MakeMsg(clsStringListBox, 2) 

MakeMsg(clsStringListBox, 3) 

The receiver will send msgControlSetDirty{pArgs) to every entry window. 



Comments 

Return Value 

Comments 

Return Value 

STRLBOX.H 557 
Client Messages 

msgStrListBoxGetValue 
Passes back the value of a string listbox. 

Takes P _U32, returns STATUS. 

#define msgStrListBoxGetValue MakeMsg(clsStringListBox, 4) 

The value is the data field of the entry that is currently chosen. This message may be used on instances 

whose role is either slbRoleChoiceOI or slbRoleChoicel. For instances whose role is slbRoleToggles, 
use msgListBoxEnum with enum.flags set to IbSelected. 

stsFailed the role is set to slbRoleT oggles. 

stsStrListBoxNoValue there's no entry selected. 

msgStrListBoxSetValue 
Sets the value of a string listbox whose role is one of slbRoleChoice* . 

Takes U32, returns STATUS. 

#define msgStrListBoxSetValue MakeMsg(clsStringListBox, 5) 

Will deselect any selected entry if the arg is maxU32 and the role is set to slbRoleChoicel. For instances 
whose role is slbRoleToggles, send as many msgListBoxSetEntry messages as required. 

stsFailed the role is set to slbRoleToggles. 

Client Messages 

Arguments 

Comments 

msgStrListBoxProvideString 
This message requests the client (or subclass) to provide a string. 

Takes P _STRLB_PROVIDE, returns STATUS. Category: self-sent/client responsibility. 

#define msgStrListBoxProvideString MakeMsg(clsStringListBox, 6) 

typedef struct { 
OBJECT strListBox; II In: requestor 
U16 position; II In: position of requested entry 
P CHAR pString; II Out: a 256 byte buffer for the string 
U32 data; II Out: data for the entry 
U32 spare; II reserved 

STRLB_PROVIDE, *P_STRLB_PROVIDE; 

This message is sent when clsStringListBox receives msgListBoxProvideEntry. 

The string listbox is constructing an entry to be put into the listbox, and it needs the string and some 

data for the entry. The client (or subclass) should copy the string bytes into the pString buffer, and set 
the data field as desired. 

msgStrListBoxProvideString is sent first to the string listbox itself. If the message reaches the standard 

clsStringListBox message handler, this message is forwarded on to the client of the listbox. 

A string listbox will send this message even when the position it's asking for is >= the number of entries 

specified for the listBox (same behavior as msgListBoxProvideEntry). In this case, the client is free to 

return a non-zero status value, indicating to the string listbox that no entry should be created for that 

position. Providing another string in this case allows A listBox will send this message even when the 
position it's asking for is >= the number of entries specified for the listBox. In this case, the client is free 

to return a non-zero status value, indicating to the listBox that no entry should be created for that 



558 PEN POINT API REFERENCE 
Part 4 / UI Toolkit 

position. Providing another entry window in this case allows the user to create new entries by merely 

scrolling past the end of the list. 

Subclasses of clsStringListBox may choose to respond to msgStrListBoxProvideString, or bypass this 

mechanism altogether and respond instead to msgListBoxProvideEntry. 

msgStrListBoxNotify 
This message is sent out whenever the value of a string listbox changes. 

Takes U32, returns STATUS. Category: self-sent/client responsibility. 

*define msgStrListBoxNotify MakeMsg(clsStringListBox, 7) 

The pArgs will be undefined when role is set to slbRoleToggles (use msgListBoxEnum with enum.flags 

set to IbSelected). 

clsStringListBox responds by forwarding the message to the client of the listbox. 

".. Messages from Other Classes 

Comments 

Comments 

Comments 

Return Value 

msgSave 
Causes an object to file itself in an object file. 

Takes P_OBJ_SAVE, returns STATUS. 

cisStringListBox responds by filing away its style and value. Note that clsListBox will have filed its data 
first according to the value of LIST _BOX_STYLE. filing. 

msgRestore 
Creates and restores an object from an object file. 

Takes P _OBJ_RESTORE, returns STATUS. 

clsStringListBox responds by restoring its style and value. 

msgWinSend 
Sends a message up a window ancestry chain. 

Takes P _WIN_SEND, returns STATUS. 

clsStringListBox responds when pArgs->msg is msgButtonBeginPreview, msgButtonCancelPreview, or 

msgButtonDone. If pArgs->msg is anything else, clsStringListBox just returns the result of calling its 

ancestor. 

For these three messages, clsStringListBox will make the set of entry windows act as a group (as does 
clsChoiceMgr) and return stsManagerContinue. 

stsManagerContinue returned for one of the above three messages. 

msgListBoxProvideEntry 
Self-sent when a listBox needs a window for display. 

Takes P _LIST_BOX-ENTRY, returns SfATUS. Category: self-sent/client responsibility. 



Comments 

Comments 

STRLBOX.H 559 
Messages from Other Classes 

c1sStringListBox responds by self-sending msgStrListBoxProvideString, using the resulting information 
to create an instance of c1sButton, and passing back the new button in pArgs->win. 

msgListBoxAppendEntry 
Appends an entry to the list box after the specified position. 

Takes P_LIST_BOX_ENTRY, returns STATUS. 

c1sStringListBox responds by keeping its state in synch--if the position that is currently on is greater 
than the new entry, it's incremented. 

msgListBoxInsertEntry 
Insert an entry to the list box before the specified position. 

Takes P_LIST_BOX_ENTRY, returns STATUS. 

c1sStringListBox responds by keeping its state in synch--if the position that is currently on is greater 
than the new entry, it's incremented. 

msgListBoxRemoveEntry 
Removes an entry from the list box. 

Takes U16, returns STATUS. 

c1sStringListBox responds by keeping its state in synch--if the position that is currently on is less than 
the new entry, it's decremented. 

If the entry being removed is the current' on' button, the receiver sets its current value to zero (if the role 
is slbRoleChoicel) or to maxU32 (if the role is slbRoleChoicel). msgStrListBoxNotify will be sent. 

msgListBoxSetEntry 
Sets an entry's information. 

Takes P_LIST_BOX_ENTRY, returns STATUS. 

c1sStringListBox responds by setting the tag and data for any new replacement entry window. 

---_ .... __ .... _-_ ...• _._-----





SWIN.M 

This file contains the API definition for clsScrollWin. 

clsScrollWin inherits from clsBorder. 

A scrollWin positions, sizes, and displays a client window (optionally part of a "deck" of other child 
windows) together with optional scrollbars, and can scroll the client window by repositioning it. 

".. Debugging Flags 
The clsScrollWin debugging flag is '%'. Defined values are: 

flag6 (Ox0040) layout 

*ifndef SWIN INCLUDED 
*define SWIN=INCLUDED 

*ifndef SBAR INCLUDED 
*include <sbar.h> 

*endif 

Common #defines and typedefs 
typedef OBJECT SCROLL_WIN; 

Client styles for scrollbar client 
*define swClientScrollWin 
*define swClientWin 
*define swClientOther 
II 

Alignment styles 
*define swAlignLeft 
*define swAlignCenter 
*define swAlignRight 
*define swAlignTop 
*define swAlignBottom 
*define swAlignSelf 

Forward styles 

o II scrollWin is the scrollbar client 
1 II clientWin is the scrollbar client 
2 II scrollWin will not set the client 
3 II unused (reserved) 

o 
1 
2 
swAlignLeft 
swAlignRight 
3 

II left-justified 
II centered 
II right-justified 
II top-justified 
II bottom-justified 
II clientWin will align itself 

*define swForwardNone 0 II don't forward anything 
II forward msgGWinGesture 
II forward msgGWinXList 

*define swForwardGesture 1 
*define swForwardXList 2 
typedef struct SCROLL WIN STYLE { 

U16 vertScrollbar- - 1, 
horizScrollbar 1, 
autoVertScrollbar 1, 
autoHorizScrollbar 1, 
maskScrollbars 1, 
expandChildWidth 1, 
expandChildHeight 1, 
contractChildWidth 1, 
contractChildHeight 1, 

II vertical scrollbar on/off 
II horizontal scrollbar on/off 
II vert scrollbar on/off based on clientWin 
II horiz scrollbar on/off based on clientWin 
II mask out vertScrollbar and horizScrollbar 
II expand the child's width to avail width 
II expand the child's height to avail height 
II contract the child's width to avail width 
II contract the child's height to avail height 

---~ ------.--.-.~-----



562 PENPOINT API REFERENCE 
Part 4 I UI Toolkit 

getDelta 1, II send msgScrollWinProvideDelta to client 
getSize 
wideVertScrollbar 
wideHorizScrollbar 

1, II send msgScrollWinProvideSize 
1, II make the vertical scrollbar wide 
1, II make the horizontal scrollbar wide 

forward 
maskAlI 

U16 xAlignment 
yAlignment 
vert Client 
horizClient 

xAlignRigorous 
yAlignRigorous 
private1 

2, II what to forward from margins to clientWin 
1; II mask out maskScrollbars 

2, II x Alignment if innerWin wider than clientWin 
2, II y Alignment if innerWin taller than clientWin 
2, II choice of vertical sb client 
2, II choice of horizontal sb client 

1, II use xAlignment continuously 
1, II use yAlignment continuously 
1, II private 

spare1 
U16 spare2 

SCROLL_WIN_STYLE, 

5; II unused (reserved) 
16; II unused (reserved) 

*P_SCROLL_WIN_STYLE; 

getDelta 
vertScrollbar 
horizScrollbar 
autoVertScrollbar 
autoHorizScrollbar 
expandChildWidth 
expandChildHeight 
vertClient 
horizClient 
xAlignment 
yAlignment 
getSize 
contractChildWidth 
contractChildHeight 
forward 
maskScrollbars 
xAlignRigorous 
yAlignRigorous 

false 
false 
false 

= true 
= true 

false 
false 
swClientScrollWin 
swClientScrollWin 
swAlignLeft 
swAlignTop 
false 
false 
false 
swForwardNone 
false 

= true 
= true 

The x- and yAlignment styles are used primarily when the innerWin is wider/taller than the clientWin. 
However, they are also used when a clientWin that is wider/taller than the inner Win is changing size. In 
this case, the innerWin alters the origin to compensate for the size change so that the appropriate edge 
of the clientWin is held fixed (either by doing the math itself or sending out msgScrollWinAlign if the 
alignment is set to swAlignSelf). An example: a top-aligned clientWin of height 100 in an innerWin of 
height 50 is growing by 20. The inner Win would subtract 20 from the clientWin's new origin.y. 

Clients can disable the adjustments that occur in the second case (clientWin is wider/taller than the 
innerWin) by setting the appropriate x- or yAlignRigorous flag to false. 

typedef struct SCROLL_WIN_METRICS 
SCROLL WIN STYLE 
OBJECT 
WIN 
U16 
U32 
U32 

SCROLL_WIN_METRICS, 

style; 
client; 
clientWin; 
colDelta, rowDelta; 
spare1; 
spare2; 

*P_SCROLL_WIN_METRICS; 

II style bits 
II for msgScrollWinProvideDelta 
II current window to scroll 
II metrics in device units 
II unused (reserved) 
II unused (reserved) 

typedef struct SCROLL WIN DELTA { 
SCROLL_WIN - scrollWin; II in: requesting scroll win 
SCROLLBAR ACTION action; II in: action to resolve 
S32 - offset; II in: current or new offset 
RECT32 viewRect; II in/out: viewable portion of clientWin 
S32 lineCoord; II in: line coordinate, if any 
U32 spare; II unused (reserved) 

SCROLL_WIN_DELTA, *P_SCROLL_WIN_DELTAi 



SWIN.H 563 
M ... ag •• 

". Me •• age. 

Arguments 

Con1ments 

Message 
Arguments 

MessC1ge 
Arguments 

msgNew 
Creates a scrollWin. 

Takes P _SCROLL_WIN_NEW, returns Sf ATUS. Category: class message. 

typedef SCROLL_WIN_METRICS 
tdefine scrollWinNewFields 

borderNewFields 
SCROLL_WIN_NEW_ONLY 

SCROLL WIN NEW ONLY, *P_SCROLL_WIN_NEW_ONLYi 
\ - - -
\ 
scrollWini 

typedef struct SCROLL_WIN_NEW { 
scrollWinNewFields 

} SCROLL_WIN_NEW, *P_SCROLL_WIN_NEWi 

The fields you commonly set are: 

pArgs->scrollWin.style appropriate style values 

pArgs->scrollWin.clientWin a window to scroll 

msgN ewDefaults 
Initializes the SCROLL_WIN_NEW structure to default values. 

Takes P_SCROLL_WIN_NEW, returns SfATUS. Category: class message. 

typedef struct SCROLL_WIN_NEW { 
scrollWinNewFields 

} SCROLL_WIN_NEW, *P_SCROLL_WIN_NEWi 

Zeroes out pArgs->scrollWin and sets: 

pArgs->win.flags.style 1= wsSendFile 1 wsClipChildren 1 wsClipSiblings; 
pArgs->win.flags.style &= NwsParentClip; 

pArgs->scrollWin.style.autoVertScrollbar = true; 
pArgs->scrollWin.style.autoHorizScrollbar = true; 
pArgs->scrollWin.style.xAlignRigorous 
pArgs->scrollWin.style.yAlignRigorous = true; 
pArgs->scrollWin.colDelta = 10; 
pArgs->scrollWin.rowDelta = 10; 

msgScrollWinGetStyle 
Passes back the current style values. 

Takes P _SCROLL_WIN_STYLE, returns SfATUS. 

tdefine msgScrollWinGetStyle 

typedef struct SCROLL_WIN_STYLE 
U16 vertScrollbar 1, 

horizScrollbar 1, 
autoVertScrollbar 1, 
autoHorizScrollbar 1, 
maskScrollbars 1, 
expandChildWidth 1, 
expandChildHeight 1, 
contractChildWidth 1, 
contractChildHeight 1, 
getDelta 1, 
getSize 1, 

MakeMsg(clsScrollWin, 13) 

II vertical scrollbar on/off 
II horizontal scrollbar on/off 
II vert scrollbar on/off based on clientWin 
II horiz scrollbar on/off based on clientWin 
II mask out vertScrollbar and horizScrollbar 
II expand the child's width to avail width 
II expand the child's height to avail height 
II contract the child's width to avail width 
II contract the child's height to avail height 
II send msgScrollWinProvideDelta to client 
II send msgScrollWinProvideSize 



564 PENPOINT API REFERENCE 
Part 4 I UIToolkit 

MeS5Qse 
Arsumenfs 

Comments 

wideVertScrollbar 
wideHorizScrollbar 
forward 
maskAII 

U16 xAlignment 
yAlignment 
vert Client 
horizClient 

2, 

1, II make the vertical scrollbar wide 
1, II make the horizontal scrollbar wide 
2, II what to forward from margins to clientWin 
1; II mask out maskScrollbars 

II x Alignment if innerWin wider than clientWin 
2, II y Alignment if innerWin taller than clientWin 
2, II choice of vertical sb client 
2, II choice of horizontal sb client 

xAlignRigorous 
yAlignRigorous 
private 1 

1, II use xAlignment continuously 
1, II use yAlignment continuously 
1, II private 

spare1 
U16 spare2 

SCROLL_WIN_STYLE, 

5; II unused (reserved) 
16; II unused (reserved) 

*P_SCROLL_WIN_STYLE; 

msgScrollWinSetStyle 
Sets the style values. 

Takes P _SCROLL_WIN_STYLE, returns STATUS. 

idefine msgScrollWinSetStyle MakeMsg(clsScroIIWin, 14) 

typedef struct SCROLL_WIN_STYLE 
U16 vertScrollbar 1, II vertical scrollbar on/off 

horizScrollbar 1, II horizontal scrollbar on/off 
autoVertScrollbar 1, II vert scrollbar on/off based on clientWin 
autoHorizScrollbar 1, II horiz scrollbar on/off based on clientWin 
maskScrollbars 1, II mask out vertScrollbar and horizScrollbar 
expandChildWidth 1, II expand the child's width to avail width 
expandChildHeight 1, II expand the child's height to avail height 
contractChildWidth 1, II contract the child's width to avail width 
contractChildHeight 1, II contract the child's height to avail height 
getDelta 1, II send msgScrollWinProvideDelta to client 
getSize 1, II send msgScrollWinProvideSize 
wideVertScrollbar 1, II make the vertical scrollbar wide 
wideHorizScrollbar 1, II make the horizontal scrollbar wide 
forward 2, II what to forward from margins to clientWin 
maskAII 1; II mask out maskScrollbars 

U16 xAlignment 2, II x Alignment if innerWin wider than clientWin 
yAlignment 2, II y Alignment if innerWin taller than clientWin 
vertClient 2, II choice of vertical sb client 
horizClient 2, II choice of horizontal sb client 

xAlignRigorous 1, II use xAlignment continuously 
yAlignRigorous 1, II use yAlignment continuously 
private1 1, II private 

spare1 5; II unused (reserved) 
U16 spare2 16; II unused (reserved) 

SCROLL_WIN_STYLE, *P_SCROLL_WIN_STYLEi 

The scroll Win self-sends msgWinSetLayoutDirty(true). It is the caller's responsibility to re-Iayout the 
scrollWin. 

msgScrollWinGetMetrics 
Passes back the metrics. 

Takes P_SCROLL_WIN_METRICS, returns STATUS. 

idefine msgScrollWinGetMetrics MakeMsg(clsScroIIWin, 1) 



Message 
Arguments 

Message 
Arguments 

SWIN.H S6S 
Mellages 

typedef struct SCROLL_WIN_METRICS { 
SCROLL_WIN_STYLE style; II style bits 
OBJECT client; II for msgScrollWinProvideDelta 
WIN clientWin; II current window to scroll 
U16 colDelta, rowDelta; II metrics in device units 
U32 spare1; I I unused (reserved) 
U32 spare2; I I unused (reserved) 

SCROLL_WIN_METRICS, *P_SCROLL_WIN_METRICSi 

msgScrollWinSetMetrics 
Sets the metrics. 

*define msgScrollWinSetMetrics 

typedef struct SCROLL_WIN_METRICS 

MakeMsg(clsScrollWin, 2) 

SCROLL_WIN_STYLE style; II style bits 
OBJECT client; II for msgScrollWinProvideDelta 
WIN clientWini II current window to scroll 
U16 colDelta, rowDelta; II metrics in device units 
U32 spare1; II unused (reserved) 
U32 spare2; II unused (reserved) 

SCROLL_WIN_METRICS, *P_SCROLL_WIN_METRICS; 

msgScrollWinGetClientWin 
Passes back the current clientWin. 

Takes P_WIN, returns STATUS. 

*define msgScrollWinGetClientWin MakeMsg(clsScrolIWin, 3) 

The current clientWin is the last window to be shown using msgScrollWinShowClientWin. 

msgScrollWinShowClientWin 
Sets the current clientWin; the specified window is be made visible. 

Takes WIN, returns STATUS. 

*define msgScrollWinShowClientWin MakeMsg(clsScrollWin, 4) 

If P _ARGS is not a child of the scrollWin's inner window, msgScrollWinAddClientWin is self-sent 

followed by msgWinLayout. 

msgScrollWinAddClientWin 
Adds another clientWin, inserting the specified window as a child of the scrollWin's inner window. 

Takes WIN, returns STATUS. 

*define msgScrollWinAddClientWin MakeMsg(clsScrollWin, 11) 

The specified window is set to be invisible (window flag wsVisible off). 

msgScrollWinRemoveClientWin 
Extracts the specified child window from the scrollWin. 

Takes WIN, returns STATUS. 

*define msgScrollWinRemoveClientWin MakeMsg(clsScrollWin, 12) 

-----.. -... --- .... ~-----. 



566 PENPOINT API REFERENCE 
Part 4 I UI Toolkit 

Mes$oge 

Ar~l.ltnefl!,$ 

msgScrollWinGetVertScrollbar 
Passes back the vertical scrollbar. 

Takes P_WIN, returns STATUS. 

tdefine msgScrollWinGetVertScrollbar· MakeMsg(clsScrollWin, 6) 

msgScrollWinGetHorizScrollbar 
Passes back the horizontal scrollbar. 

Takes P _WIN, returns STATUS. 

tdefine msgScrollWinGetHorizScrollbar MakeMsg(clsScrollWin, 7) 

msgScrollWinGednnerWin 
Passes back the inner window of the scrollWin. 

Takes P_WIN, returns STATUS. 

tdefine msgScrollWinGetInnerWin MakeMsg(clsScrollWin, 9) 

msgScrollWinProvideDelta 
Self-sent when style.getDelta is set to true so that descendant or client can normalize the scroll if 

desired. 

Takes P_SCROLL_WIN_DFLTA, returns STATUS. Category: descendant/client responsibility. 

tdefine msgScrollWinProvideDelta MakeMsg(clsScrollWin, 5) 

typedef struct SCROLL_WIN_DELTA { 
SCROLL_WIN scrollWini II in: requesting scroll win 
SCROLLBAR ACTION action; II in: action to resolve 
S32 offseti II in: current or new offset 
RECT32 viewRecti II in/out: viewable portion of clientWin 
S32 lineCoordi II in: line coordinate, if any 
U32 sparei II unused (reserved) 

SCROLL_WIN_DELTA, *P_SCROLL_WIN_DELTAi 

clsScrollWin responds by forwarding this message to the current clientWin. If you receive this message, 

you can send msgScrollWinGetDefaultDelta to pArgs->scrollWin to fill out pArgs with the default 

scrollWin response. 

msgScrollWinProvideSize 
Self-sent to determine bubble location and size. 

Takes P _SCROLL_WIN_SIZE, returns STATUS. Category: descendant/client responsibility. 

tdefine msgScrollWinProvideSize MakeMsg(clsScrollWin, 10) 

typedef struct SCROLL_WIN_SIZE { 
SCROLL_WIN scrollWin; II in: requesting scroll win 
SIZE32 viewSize; II out: desired view size (device units) 
SIZE32 docSizei II out: logical doc size (device units) 
U32 spare; II unused (reserved) 

SCROLL_WIN_SIZE, *P_SCROLL_WIN_SIZEi 

clsScrollWin responds by forwarding to the current clientWin (if style.getSize is true), or sending 
msgWinGetDesiredSize to the current client Win (if style.getSize is false). In the latter case if there is no 

current clientWin, clsScrollWin uses 0 for docSize. 



Message 
Arguments 

Comments 

SWIN.H 567 
Messages 

A client Win responding to msgScrollWinProvideSize should fill out pArgs->viewSize and 

pArgs->docSize. 

msgScrollWinCheckScrollbars 
Determines whether the on/off state of either scroll bar needs to change and passes back the result. 

Takes P_BOOLEAN, returns STATUS. 

#define msgScrollWinCheckScrollbars MakeMsg(clsScroIIWin, 15) 

Clients wishing to fix up the states should dirty the layout of the scrollWin and then send 

msgWinLayout. 

msgScrollWinAlign 
Sent to client when style.xAlignment or style.yAlignment is swAlignSelf. 

Takes P _SCROLL_ WIN_ALIGN, returns STATUS. Category: client responsibility. 

#define msgScrollWinAlign MakeMsg(clsScroIIWin, 16) 

typedef struct SCROLL_WIN_ALIGN { 
SCROLL_WIN scrollWini II in: requesting scroll win 
BOOLEAN alignXi II in: x dimension (false for y) 
RECT32 innerRecti II in/out: rect of innerWin, device units 
RECT32 clientRecti II in/out: rect of clientWin, device units 
U32 sparei II unused (reserved) 

SCROLL_WIN_ALIGN, *P_SCROLL_WIN_ALIGNi 

clsScrollWin sends this message to the scrollWin's client or clientWin if the client is objNull. This 

message is sent when the child window changes size or the scroll Win inner window changes size. See the 

comment after "Default SCROLL_WIN_STYLE" for a further description of alignment. 

msgScrollWinGetDefaultDelta 
Compute the default response to msgScrollWinProvideDelta. 

Takes P_SCROLL_WlN_DELTA, returns STATUS. 

#define msgScrollWinGetDefaultDelta MakeMsg(clsScroIIWin, 17) 

typedef struct SCROLL_WIN_DELTA { 
SCROLL_WIN scrollWini II in: requesting scroll win 
SCROLLBAR ACTION actioni II in: action to resolve 
S32 offseti II in: current or new offset 
RECT32 viewRecti II in/out: viewable portion of clientWin 
S32 lineCoordi II in: line coordinate, if any 
U32 spare; I I unused (reserved) 

SCROLL_WIN_DELTA, *P_SCROLL_WIN_DELTAi 

You can send this message to a scrollWin to compute the default scroll values for a given scrolling 

action. 

msgScrollWinProvideDelta 

msgScrollWinRefreshSize 
Informs the receiver that msgScrollWinProvideSize would now return different size. 

Takes P _SIZE32, returns STATUS. 

#define msgScrollWinRefreshSize MakeMsg(clsScrolIWin, 18) 



568 PENPOINT API REFERENCE 
Part 4 I UI Toolkit 

Comments A client would send this to a scrollWin when the scrollWin has style.getSize set true and the client 
would now return different size in response to msgScrollWinProvideSize. The client passes the current 
size, and the scrollWin sends msgScrollWinProvideSize to the client (or the clientWin if that's null), 
then adjust the positions as if the client Win had changed size. 

clsScrollWin just returns stsOK if style.getSize is false. 

". Messages frolll other classes 

Comments 

Comments 

comments 

Comments 

msgSave 
Causes an object to file itself in an object file. 

Takes P_OBJ_SAVE, returns STATUS. 

clsScrollWin responds by filing away all its state, including any child windows that have wsSendFile 
turned on (wsSendFile is the default for clsBorder and its descendents). 

msgRestore 
Creates and restores an object from an object file. 

Takes P _OBJ_RESTORE, returns STATUS. 

clsScrollWin responds by restoring all of its state, including the child windows that were filed with the 
last msgSave. 

msgWinLayoutSelf 
Tell a window to layout its children. 

Takes P_WIN_METRICS, returns SfATUS. 

The scrollWin first gets the dimensions of its current clientWin by using msgWinGetDesiredSize. If 
there is no current clientWin, the scrollWin uses a width and height of 0 in its computations. 

If the scrollWin did not shrinkwrap around the current clientWin, then the expandChild* and 
contractChild* styles come into play. If the clientWin's width is less than the width of the scrollWin's 
inner window (a direct child of the scrollWin that serves as a clipping window) and expandChildWidth 
is true, then the clientWin's width is expanded to fit. If the clientWin's width is greater than the inner 
window's and contractChildWidth is true, then the clientWin's width is reduced to fit. These rules hold 

for the height as well. 

Finally, if the clientWin's (possibly modified) width is still less than the inner window's, then the 
xAlignment style is used to place the clientWin within the inner window. This is also done in the 
vertical direction using yAlignment. 

The scrollWin adds or remove a vertical scrollBar as necessary if style. auto VertScrollbar is on, and the 
same is done for the horizontal direction (when both style.maskScrollbars and style.maskAll are off). 

msgWinSetFlags 
Sets the window flags. 

Takes P _WIN_METRICS, returns SfATUS. 

clsScrollWin responds by first propagating the shrinkwrap values to the inner window, then calling its 
ancestor. 



SWIN.H 569 
Messages from other classes 

msgWinSend 
Sends a message up a window ancestry chain. 

Takes WIN_SEND, returns STATUS. 

clsScrollWin responds by checking to see if pArgs->msg is msgScrollbarUpdate. If so, the scrollWin 
sends msgScrollbarUpdate to both of its scrollbars and then return stsOK. If not, then the scrollWin 
just calls its ancestor. 

msgGWinGesture 
Self-sent to process the gesture. 

Takes P _GWIN_GESTURE, returns STATUS. 

If there is a current clientWin and style.forward is swForwardGesture, then the pArgs are transformed 
to the clientWin, and the clientWin is sent msgGWinGesture. The scrollWin returns the resulting 
status to the caller. 

Otherwise, the scrollWin compares the pArgs->msg with the state of the corresponding scrollbar. If the 
message is not a scrolling gesture, then the scrollWin returns stsMessageIgnored. If it is a vertical 
scrolling gesture and the vertical scrollbar is not active, then the scrollWin returns stsOK. Finally, if the 
message is a vertical scrolling gesture and the vertical scrollbar is active, the scrollWin transforms the 
pArgs to the scroll bar's space and return the result of sending msgGWinGesture to the scrollbar (unless 
the msgGWinGesture originated with the scrollbar, i.e. pArgs->uid == the scrollbar -- in this case the 
scrollWin returns stsMessageIgnored). This processing is also done for horizontal scrolling gestures and 
the horizontal scrollbar. 

The above processing also is done whenever the scrollWin's inner window receives msgGWinGesture. 

stsOK a scrolling gesture would have had to be sent to an inactive scrollbar. 

stsMessageIgnored not a scrolling gesture, or message originated with the scrollbar to which 
msgGWinGesture would be sent. 

msgGWinForwardedGesture 
Message recieved when object is forwarded a gesture. 

Takes P_GWIN_GESTURE, returns STATUS. 

The scrollWin compares the pArgs->msg with the state of the corresponding scrollbar. If the message is 
not a scrolling gesture, then the scrollWin returns stsMessageIgnored. If it is a vertical scrolling gesture 
and the vertical scrollbar is not active, then the scrollWin returns stsOK. Finally, if the message is a 
vertical scrolling gesture and the vertical scrollbar is active, the scrollWin transforms the pArgs to the 
scrollbar's space and return the result of sending msgGWinGesture to the scrollbar (unless the 
msgGWinGesture originated with the scrollbar, i.e. pArgs->uid == the scrollbar -- in this case the 
scrollWin returns stsMessageIgnored). This processing is also done for horizontal scrolling gestures and 
the horizontal scrollbar. 

The above processing also is done whenever the scrollWin's inner window receives msgGWinGesture. 

stsOK a scrolling gesture would have had to be sent to an inactive scrollbar. 

stsMessageIgnored not a scrolling gesture, or message originated with the scrollbar to which 
msgGWinGesture would be sent. 



570 PEN POINT API REFERENCE 
Part 4 I UI Toolkit 

Comments 

msgGWinXList 
Call back to announce gesture translation completed. 

Takes P _XLlST, returns STATUS. 

If there is no current cIientWin, or style.forward is not swForwardXList, then the scrollWin just calls its 
ancestor. 

Otherwise, the scrollWin transforms the pArgs to the cIientWin and return the result of sending 
msgGWinXList to the cIientWin. 

The above processing also is done whenever the scrollWin's inner window receives msgGWinXList. 

msgScrollbarVertScroll 
Client should perform vertical scroll. 

Takes P _SCROLLBAR_SCROLL, returns STATUS. Category: client responsibility. 

Responding to this message is one of the key functions that scrollWins provide. Since the default 
scrollWin style.vertClient and .horizClient are both swClientScrollWin, it is usually the case that the 
scrollbars send their scrolling messages to the scrollWin. 

If there is no current cIientWin, or the pArgs->action is sbEndScroll, the scrollWin just returns stsOK. 

If style.getDelta is true, the scrollWin sends msgScrollWinProvideDelta to the client (if that is 
non-null) or the clientWin (if the client was null). Otherwise, the scrollWin uses metrics.rowDelta for 
the sbLine* actions, and the inner window's height - metrics.rowDelta for the sbPage* actions. 

Once the scrollWin has determined the amount to scroll, it sends msgWinDelta to the cIientWin. 

msgScrollbarHorizScroll 
Client should perform horizontal scroll. 

Takes P _SCROLLBAR_SCROLL, returns STATUS. Category: client responsibility. 

Responding to this message is one of the key functions that scrollWins provide. Since the default 
scrollWin style.vertClient and .horizClient are both swClientScrollWin, it is usually the case that the 
scroll bars send their scrolling messages to the scrollWin. 

If there is no current cIientWin, or the pArgs->action is sbEndScroll, the scrollWin just returns stsOK. 

If style.getDelta is true, the scrollWin sends msgScrollWinProvideDelta to the client (if that is 
non-null) or the cIientWin (if the client was null). Otherwise, the scrollWin uses metrics.colDelta for 
the sbLine* actions, and the inner window's width - metrics.colDelta for the sbPage* actions. 

Once the scrollWin has determined the amount to scroll, it sends msgWinDelta to the cIientWin. 

msgScrollbar Provide Vertlnfo 
Client should provide the document and view info. 

Takes P _SCROLLBAR_PROVIDE, returns STATUS. Category: client responsibility. 

cIsScrollWin responds by filling out the pArgs fields. It sets the viewLength to the height of the inner 
window. If there is a current cIientWin, then the scrollWin sets the docLength to the height of the 
cIientWin, and the offset to the difference between the top of the cIientWin and the top of the inner 
window. If there is no current cIientWin, the scrollWin sets both docLength and offset to O. 



Comments 

SWIN.H 571 
Messages from other classes 

msgScrollbarProvideHorizlnfo 
Client should provide the document and view info. 

Takes P _SCROLLBAR_PROVIDE, returns STATUS. Category: client responsibility. 

cIsScrollWin responds by filling out the pArgs fields. It sets the viewLength to the width of the inner 
window. If there is a current clientWin, then the scrollWin sets the docLength to the width of the 
cIientWin, and the offset to the negative of the clientWin's x. If there is no current clientWin, the 
scrollWin sets both docLength and offset to O. 

msgEmbeddedWinShowChild 
Display a given area of an embeddedWin to the user 

Takes P_EMBEDDED_WIN_SHOW_CHILD, returns STATUS. 

clsScrollWin responds by sending messages to the vertical andlor horizontal scrollbars to scroll the client 
window area into view. 





TABBAR.M 

This file contains the API definition for clsTabBar. 

clsTabBar inherits from clsTkTable. 

Implements a window that lays out its children in a single column or row. 

TabBars are most often seen at the side of Notebooks. clsTabBar will overlap its children in a regular 

fashion if they won't fit in the long dimension. clsTabBar also handles flick gestures forwarded to it by 

rearranging the children. 

Debugging Flags 
The clsTabBar debugging flag is 'K'. Defined values are: 

flag12 (OxlOOO) general debug info 

tifndef TABBAR_INCLUDED 
tdefine TABBAR_INCLUDED 

tifndef TKTABLE_INCLUDED 

tinclude <tktable.h> 
tendif 

Common #defines and typedefs 

Direction 
tdefine tbDirectionVertical 0 
tdefine tbDirectionHorizontal 1 
typedef struct TAB_BAR_STYLE { 

U16 direction 1, 
incrementalLayout : 1, 
spare : 14; 

TAB_BAR_STYLE, *P_TAB_BAR_STYLE; 

Default TabBar style: 

II vertical tab bar 
II horizontal tab bar 

II vertical or horizontal 
II careful about add and remove children 
II unused (reserved) 

direction = tbDirectionVertical 
incrementalLayout = true 

Messages 

msgNew 
Creates a tabBar window. 

Takes P_TAB_BAR_NEW, returns STATUS. Category: class message. 

-------------.----



574 PEN POINT API REFERENCE 
Part 4 I UI Toolkit 

M©S$t;<g© 

Arguments 

typedef struct TAB BAR NEW ONLY 
TAB BAR STYLE style; II overall style 
U32 spare; II unused (reserved) 

TAB_BAR_NEW_ONLY, *P_TAB_BAR_NEW_ONLY; 
#define tabBarNewFields \ 

tkTableNewFields \ 
TAB_BAR_NEW_ONLY tabBar; 

typedef struct TAB_BAR_NEW 
tabBarNewFields 

} TAB_BAR_NEW, *P_TAB_BAR_NEW;. 

The fields you commonly set are: 

pArgs->tabBar.style.direction whether horizontal or vertical 

nnsg~evvI>efaults 

Initializes the TAB_BAR_NEW structure to default values. 

Takes P _ TAB_BAR_NEW, returns STATUS. Category: class message. 

typedef struct TAB_BAR_NEW { 
tabBarNewFields 

} TAB_BAR_NEW, *P_TAB_BAR_NEW; 

Zeroes out pArgs->tabBar f:nd sets 

pArgs->win.flags.style 1= wsTransparent 1 wsClipChildren; 
pArgs->win.flags.input 1= inputDisable 1 inputTransparent; 

pArgs->gWin.style.gestureEnable = false; 

pArgs->border.style.backgroundlnk 1= bslnkExclusive; 
pArgs->border.style.leftMargin = bsMarginNone; 
pArgs->border.style.rightMargin = bsMarginNone; 
pArgs->border.style.bottornMargin = bsMarginNone; 
pArgs->border.style.topMargin = bsMarginNone; 

pArgs->tableLayout.style.tblXAlignment = tlAlignCenter; 
pArgs->tableLayout.style.tblYAlignment = tlAlignCenter; 
pArgs->tableLayout.style.growChildHeight = false; 
pArgs->tableLayout.style.reverseY = true; 

pArgs->tableLayout.numCols.constraint = tlAbsolute; 
pArgs->tableLayout.numCols.value = 1; 
pArgs->tableLayout.nurnRows.constraint = tllnfinite; 
pArgs->tableLayout.colWidth.constraint = tlChildrenMax; 
pArgs->tableLayout.colWidth.gap = 0; 
pArgs~>tableLayout.rowHeight.constraint = tlGroupMax; 
pArgs->tableLayout.rowHeight.gap = defaultRowGap; 

pArgs->tabBar.style.incrementalLayout = true; 

Also sets the default child structure in pArgs->tkTable.pButtonNew to be appropriate for labels and 

buttons that may be rotated 270 degrees and have curved overlapping "tabs". 

nnsg T abBarGetStyle 
Passes back the style values. 

Takes P_TAB_BAR_STYLE, returns STATUS. 

#define msgTabBarGetStyle MakeMsg(clsTabBar, 1) 



Message 
Arguments 

Messoge 

Arguments 

typedef struct TAB_BAR_STYLE { 
U16 direction 1, 

incrementalLayout : 1, 
spare : 14; 

TAB_BAR_STYLE, *P_TAB_BAR_STYLE; 

msgTabBarSetStyle 
Sets the style values. 

TABBAR.H 575 
Messages from Other Classes 

II vertical or horizontal 
II careful about add and remove children 
II unused (reserved) 

Takes P_TAB_BAR_STYLE, returns STATUS. 

#define msgTabBarSetStyle MakeMsg(clsTabBar, 2) 

typedef struct TAB_BAR_STYLE 
U16 direction 1, 

incrementalLayout : 1, 
spare : 14; 

TAB_BAR_STYLE, *P_TAB_BAR_STYLE; 

II vertical or horizontal 
II careful about add and remove children 
II unused (reserved) 

Messages from Other Classes 

msgSave 
Causes an object to file itself in an object file. 

Takes P_OBLSAVE, returns STATUS. 

clsTabBar responds by filing away its instance data. 

msgRestore 
Creates and restores an object from an object file. 

Takes P _OBLRESTORE, returns STATUS. 

clsTabBar responds by restoring its instance data. 

msgWinLayoutSelf 
Tells a window to layout its children. 

Takes P _WIN_METRICS, returns STATUS. 

When a tabBar receives msgWinLayoutSelf, it will ignore the current positions of its children and do a 
full relayout, crunching the children toward the bottom (right) of itself, if necessary. 

To insert or remove a child and cause the tabBar to incrementally fix up the tab positions (i.e., without 
doing a full relayout), use msgTkTableAdd* and msgTkTableRemove. When a tabBar receives these 
messages, it checks its incrementalLayout style bit. If this is on, the tab Bar will fix up the area around 
the inserted/removed child. If the style bit is off, the tabBar will not do relayout. 

If you want to add/remove more than a few tabs, turn incrementalLayout off, add/remove the children, 
then send msgWinLayout to the tabBar. 

msgTkTableAdd* adds a child and will immediately fix up the layout of the tabBar's children (if 
style.incrementalLayout is true). 

msgTkTableRemove removes a child and will immediately fix up the layout of the tabBar's children (if 
style.incrementalLayout is true). 



576 PEN POINT API REFERENCE 
Part 4 I UI Toolkit 

msgWinSend 
Sends a message up a window ancestry chain. 

Takes P _WIN_SEND, returns STATUS. 

When a tabBar receives this message, it is usually because the tabBar has an "expand" menu up, and the 
user has tapped on one of those menu buttons. 

If the pArgs->msg is not msgMenuDone, or the tabBar does not have a menu up, the tabBar will just 
return the result of calling its ancestor. 

Otherwise, the tabBar will take down the menu via msgMenuShow, post a msgDestroy to it, and then 
return stsOK. This is all the tabBar must do at this point, since the principle work of the menuButton 
was done when it sent its message to its client (in this case, the client is the tabBar). 

msgGWinForwardedGesture 
Message received when object is forwarded a gesture. 

Takes P_GWIN_GESTURE, returns STATUS. 

TabBars respond to flick gestures by potentially altering the layout of their child windows. This allows a 
user to rearrange the child buttons when there's not enough room to display all the children fully. 

The tabBar will first test pArgs->msg to see if it is not a flick gesture or it is but it would have no 
meaning. If either is true, the tabBar will return stsMessageIgnored. 

If all the children are fully displayed, the tabBar will return stsO K. 

If style.direction is tbDirectionVertical and pArgs->msg is xgsFlickLeft, or the direction is 
tbDirectionHorizontal and pArgs->msg is xgsFlickUp, the tabBar will create and put up a menu over 
itself that looks like an expanded tab Bar. The user then tap on one of the menu buttons; this will have 
the same effect as tapping on the corresponding tabBar cb-ild. After putting up the menu, the tabBar 
will return stsO K. 

If all of the above checks failed, the tabBar will process the flick gesture by moving its children as 
appropriate and then returning stsOK. 

msg TkTableChildDefaults 
Sets the defaults in P _ARGS for a common child. 

Takes P_UNKNOWN, returns STATUS. 

Here is how a tabBar processes this message if style. direction is tbDirection Vertical: 

pArgs->win.flags.style &= -wsParentClip; 
pArgs->win.flags.style 1= wsClipSiblings 1 wsClipChildren; 
if <pArgs->object.class inherits from clsBor~er> { 

pArgs->border.style.edge = bsEdgeTop 1 bsEdgeRight 1 bsEdgeBottom; 
pArgs->border.style.join = bsJoinRound; 
pArgs->border.style.backgroundInk = bsInkWhite; 
pArgs->border.style.topMargin = bsMarginMedium; 
pArgs->border.style.bottomMargin = bsMarginMedium; 
pArgs->border.style.shadow = bsShadowThinBlack; 

if <pArgs->object.class inherits from clsLabel> { 
pArgs->label.style.xAlignment = lsAlignCenter; 
pArgs->label.style.yAlignment = lsAlignCenter; 
pArgs->label.style.rotation = lsRotate270; 
pArgs->label.scale = lsScaleMedium; 



Comments 

Comments 

TABBAR.H 577 
Messages from Other Classes 

Here is how a tab Bar processes this message if style. direction is tbDirectionHorizontal: 

pArgs->win.flags.style &= -wsParentClip; 
pArgs->win.flags.style 1= wsClipSiblings 1 wsClipChildren; 
if <pArgs->object.class inherits from clsBorder> { 

pArgs->border.style.edge = bsEdgeLeft 1 bsEdgeRight 1 bsEdgeBottom; 
pArgs->border.style.join = bsJoinRound; 
pArgs->border.style.backgroundlnk = bslnkWhite; 
pArgs->border.style.leftMargin = bsMarginMedium; 
pArgs->border.style.rightMargin = bsMarginMedium; 
pArgs->border.style.topMargin = bsMarginSmall; 
pArgs->border.style.bottomMargin = bsMarginSmall; 
pArgs->border.style.shadow = bSShadowThinBlack; 
pArgs->border.style.shadowGap = bsGapNone; 

if <pArgs->object.class inherits from clsLabel> 
pArgs->label.style.xAlignment = lsAlignCenter; 
pArgs->label.style.yAlignment = lsAlignCenter; 
pArgs->label.style.rotation = lsRotateNone; 
pArgs->label.scale = lsScaleMedium; 

msgTkTableAddAsFirst 
Adds specified window as the first child in the table. 

Takes WIN, returns STATUS. 

clsTabBar responds by first calling its ancestor, then checking style.incrementalLayout. If this is false, 
the tab Bar will just return stsOK. 

Otherwise, the tabBar will do whatever layout is necessary to fix up the positions of its children. 

msgTkTableAddAsLast 
Adds specified window as the last child in the table. 

Takes WIN, returns STATUS. 

clsT abBar responds by first calling its ancestor, then checking style.incrementalLayout. If this is false, 
the tabBar will just return stsOK. 

Otherwise, the tabBar will do whatever layout is necessary to fix up the positions of its children. 

msgTkTableAddAsSibling 
Inserts specified window in front of or behind an existing child. 

Takes P_TK_TABLE_ADD_SIBLING, returns STATUS. 

clsTabBar responds by first calling its ancestor, then checking style.incrementalLayout. If this is false, 
the tabBar will just return stsOK 

Otherwise, the tabBar will do whatever layout is necessary to fix up the positions of its children. 



578 PENPOINT API REFERENCE 

Part 4 / UI Toolkit 

msgTkTableAddAt 
Inserts specified window table at specified index. 

Takes P _TK_TABLE_ADD_AT, returns STATUS. 

cIsTabBar responds by first calling its ancestor, then checking style.incrementalLayout. If this is false, 

the tabBar will just return stsOK. 

Otherwise, the tabBar will do whatever layout is necessary to fix up the positions of its children. 

msgTkTableRemove 
Extracts specified window. 

Takes WIN, returns STATUS. 

Currently, the tabBar just calls its ancestor and does not attempt to fix up the layout of its children. This 

may change in the future. 



TBAR.N 

This file contains the API definition for clsTideBar. 

clsTideBar inherits from clsButton. 

Title bars are the standard frame decorations which support dragging a frame, bringing a frame to the 
front, and flicking to zoom. 

*ifndef TBAR_INCLUDED 
*define TBAR_INCLUDED 

*ifndef BUTTON_INCLUDED 
*include <button.h> 

*endif 

Common #defines and typedefs 
typedef OBJECT TITLE_BAR; 
typedef struct TITLE BAR STYLE { 

U16 spare 7 16; II unused (reserved) 
} TITLE_BAR_STYLE, *P_TITLE_BAR_STYLE; 

Messages 

MesS(lge 
Arguments 

msgNew 
Creates a title bar window. 

Takes P _TITLE_BAR_NEW, returns STATUS. Category: class message. 

typedef struct TITLE_BAR_NEW_ONLY { 
TITLE_BAR_STYLE style; 
U32 spare1; II unused (reserved) 
U32 spare2; II unused (reserved) 

TITLE_BAR_NEW_ONLY, *P_TITLE_BAR_NEW_ONLY; 
*define titleBarNewFields \ 

buttonNewFields \ 
TITLE BAR NEW ONLY titleBar; 

typedef struct TITLE_BAR_NEW { 
titleBarNewFields 

} TITLE_BAR_NEW, *P_TITLE_BAR_NEW; 

msgNewDefaults 
Initializes the TITLE_BAR_NEW structure to default values. 

Takes P _TITLE_BAR_NEW, returns STATUS. Category: class message. 

typedef struct TITLE_BAR_NEW { 
titleBarNewFields 

TITLE_BAR_NEW, *P_TITLE_BAR_NEW; 



580 PENPOINT API REFERENCE 

Part 4 I UI Toolkit 

M®s£tl9® 
Argum®t1ts 

Me£S0~e 

Ar9umenfs 

Zeroes out pArgs->titleBar and sets 

pArgs->border.style.join = bsJoinSquarei 
pArgs->border. style. shadow = bsShadowNonei 
pArgs->border. style. leftMargin = bsMarginMediumi 
pArgs->border.style.rightMargin = bsMarginMediumi 
pArgs->border.style.bottomMargin = bsMarginSmall + bsMarginSmalli 
pArgs->border.style.topMargin = bsMarginMedium + bsMarginSmalli 
pArgs->border.style.drag = bsDragHoldDowni 
pArgs->border.style.top = bsTopUPi 
pArgs->border.style.getDeltaWin = truei 
pArgs->control.style.previewEnable = falsei 

pArgs->label.style.xAlignment = lsAlignCustomi 
pArgs->button.style.feedback = bsFeedbackNonei 

msg TitleBarGetStyle 
Passes back the current style values. 

Takes P _ TITLE_BAR_STYLE, returns STATUS. 

#define msgTitleBarGetStyle MakeMsg(clsTitleBar, 1) 

typedef struct TITLE_BAR_STYLE 
U16 spare : 16i II unused (reserved) 

} TITLE_BAR_STYLE, *P_TITLE_BAR_STYLEi 

msg TideBarSetStyle 
Sets the style values. 

Takes P _ TITLE_BAR_STYLE, returns STATUS. 

#define msgTitleBarSetStyle MakeMsg(clsTitleBax, 2) 

typedef struct TITLE_BAR_STYLE 
U16 spare : 16i II unused (reserved) 

TITLE_BAR_STYLE, *P_TITLE_B~STYLEi 



TBunON.H 

This file contains the API definition for clsTabButton. 

clsTabButton inherits from clsButton. 

Provides a class of button useful in the popup choice contained in the title of option sheets, because tab 
buttons hold some flags, a window uid, and an extra client. 

#ifndef TBUTTON_INCLUDED 
#define TBUTTON_INCLUDED 

#ifndef CLSMGR_INCLUDED 
#include <clsmgr.h> 

#endif 
#ifndef BUTTON_INCLUDED 

#include <button.h> 
#endif 

Common #defines and typedefs 
typedef struct TAB BUTTON METRICS { 

U16 flags;- - II arbitrary flags 
WIN win; II associated window uid 
OBJECT client; II associated client 
U32 clientData[2]; II arbitrary client data 
U32 spare; II reserved 

TAB_BUTTON_METRICS, *P_TAB_BUTTON_METRICS; 

msgNew 
Creates a tab button. 

Takes P_TAB_BUTTON_NEW, returns STATUS. Category: class message. 

typedef struct TAB_BUTTON_NEW_ONLY 
TAB_BUTTON_METRICS metrics; 
U32 spare; II reserved 

TAB_BUTTON_NEW_ONLY, *P_TAB_BUTTON_NEW_ONLY; 
#define tabButtonNewFields \ 

buttonNewFields \ 
TAB_BUTTON_NEW_ONLY tabButton; 

typedef struct TAB_BUTT ON_NEW { 
tabButtonNewFields 

} TAB_BUTTON_NEW, *P_TAB_BUTTON_NEW; 

The fields you commonly set are: 

pArgs->tabButton.metrics.win a window uid to hold 

pArgs->tabButton.metrics.client a client uid to hold 

----- .... _-----



582 PEN POINT API REFERENCE 
Part 4 I UI Toolkit 

M@sS09@ 
Ar~um@nt$ 

M@5S09@ 
Ar~um@nt$ 

M@SiH19@ 
Argum@nvs 

msgN ewDefaults 
Initializes the TAB_BUTTON_NEW structure to default values. 

Takes P _TAB_BUTTON_NEW, returns STATUS. Category: class message. 

typedef struct TAB_BUTTON_NEW { 
tabButtonNewFields 

} TAB_BUTTON_NEW, *P_TAB_BUTTON_NEW; 

Zeroes out pArgs->tabButton. 

msgTabButtonGetMetrics 
Passes back the metrics of a tab button. 

Takes P _ TAB_BUTTON_METRICS, returns STATUS. 

#define msgTabButtonGetMetrics MakeMsg(clsTabButton, 1) 

typedef struct TAB_BUTTON_METRICS { 
U16 flags; II arbitrary flags 
WIN win; II associated window uid 
OBJECT client; II associated client 
U32 clientData[2]; II arbitrary client data 
U32 spare; II reserved 

TAB_BUTTON_METRICS, *P_TAB_BUTTON_METRICS; 

msgTabButtonSetMetrics 
Sets the metrics of a tab button. 

Takes P _TAB_BUTTON_METRICS, returns STATUS. 

#define msgTabButtonSetMetrics MakeMsg(clsTabButton, 2) 

typedef struct TAB_BUTTON_METRICS { 
U16 flags; II arbitrary flags 
WIN win; II associated window uid 
OBJECT client; II associated client 
U32 clientData[2]; II arbitrary client data 
U32 spare; II reserved 

TAB_BUTTON_METRICS, *P_TAB_BUTTON_METRICS; 

msgTabB utton GetFlags 
Passes back the flags of a tab button. 

Takes P_UI6, returns STATUS. 

#define msgTabButtonGetFlags 

msgTabButtonSetFlags 
Sets the flags of a tab button. 

Takes U16, returns STATUS. 

#define msgTabButtonSetF!ags 

MakeMsg(c!sTabButton, 3) 

MakeMsg(c!sTabButton, 4) 



TBUTTON.H 583 

Messages from Other Classes 

Messages from Other Classes 

msgSave 
Causes an object to file itself in an object file. 

Takes P _OBLSAVE, returns STATUS. 

clsTabButton will save its instance data. 

If the TAB_BUTTON_METRICS.win is not null and the window's wsSendFile flag is on, the window will 

be filed with msgResPutObject (the window's wsFilelnline flag is cleared first). 

If the TAB_BUTTON_METRICS.client is OSThisAppO, this fact is saved so that clsTabButton's response 

to msgRestore will restore the client to OSThisAppO again. If the client is not OSThisAppO, 

msgRestore will set the client to null. 

msgRestore 
Creates and restores an object from an object file. 

Takes P_OBLRESTORE, returns STATUS. 

clsT abButton restores its instance data. 

If the TAB_BUTTON_METRICs.client had been OSThisAppO at msgSave time, msgRestore will set the 

client to OSThisAppO again. 





TKFIELD.H 

This file contains the API definitions for clsDateField, clsFixedField, clslntegerField, and clsTextField. 

clsDateField inherits from clsField. 

Provides a field that treats its label string as a date. 

clsFixedField inherits from clsField. 

Provides a field that treats its label string as a number in hundredths. 

clslntegerField inherits from clsField. 

Provides a field that treats its label string as an integer. 

clsTextField inherits from clsField. 

Provides a field that treats its label string as a string. 

These four classes are used mainly on option sheets. Because these subclasses provide a simple API and 

somewhat limited functionality, clients should consider subclassing clsField rather than these. 

#ifndef TKFIELD_INCLUDED 
#define TKFIELD_INCLUDED 

#ifndef CLSMGR_INCLUDED 
#include <clsmgr.h> 

#endif 
#ifndef FIELD_INCLUDED 

#include <field.h> 
#endif 

#include <time.h> 

clsDaleField 
This section describes the API for clsDateField. 

Debugging Flags 
The clsDateField debugging flag is 'K'. Defined values are: 

flagO (OxOOO 1) general 

Common #defines and typedefs 
#define stsDateFieldEmpty 
#define stsDateFieldInvalid 
II Date Flags 
#define dfsMonthName 
#define dfsFullName 
typedef struct ( 

U16 flags; 
U16 spare; 

flagO 
flag1 

MakeStatus(clsDateField, 1) 
MakeStatus(clsDateField, 2) 

DATE_FIELD_STYLE, *P_DATE_FIELD_STYLE; 



586 PEN POINT API REFERENCE 
Part 4 I UI Toolkit 

Arguments 

Mess@g® 
Argumettfs 

Mess@g® 
Argument's 

Message 
Arguments 

Default DATE_FIELD _STYLE: 

flags = 0 
typedef struct tm TIME_DESC, *P_TIME_DESC; 

msgNew 
Creates a date field. 

Takes P_DATE_FIELD_NEW, returns STATUS. Category: class message. 

typedef struct { 
DATE_FIELD_STYLE style; 
U32 spare; 

DATE_FIELD_NEW_ONLY, *P_DATE_FIELD_NEW_ONLY; 
#define dateFieldNewFields \ 

fieldNewFields \ 
DATE_FIELD_NEW_ONLY dateField; 

typedef struct DATE_FIELD_NEW { 
dateFieldNewFields 

} DATE_FIELD_NEW, *P_DATE_FIELD_NEW; 

The fields you commonly set are: 

pArgs->dateField.style.flags appropriate flags 

msgN ewDefaults 
Initializes the DATE_FIELD_NEW structure to default values. 

Takes P_DATE_FIELD_NEW, returns STATUS. Category: class message. 

typedef struct DATE_FIELD_NEW { 
dateFieldNewFields 

} DATE_FIELD_NEW, *P_DATE_FIELD_NEW; 

Zeroes out pArgs->dateField and sets: 

pArgs->border.style.edge = bsEdgeNone; 
pArgs->border.style.borderInk = bsInkGray66; 
pArgs->field.style.editType = fstOverWrite; 

msgDateFieldGetStyle 
Passes back the receiver's style. 

Takes P _DATE_FIELD_STYLE, returns STATUS. 

#define msgDateFieldGetStyle 

typedef struct { 
U16 flags; 
U16 spare; 

MakeMsg(clsDateField, 1) 

DATE_FIELD_STYLE, *P_DATE_FIELD_STYLEi 

msgDateFieldSetStyle 
Sets the receiver's style. 

Takes P_DATE_FIELD_STYLE, returns STATUS. 

#definemsgDateFieldSetStyle 

typedef struct { 
U16 flags; 
U16 spare; 

MakeMsg(clsDateField, 2) 

DATE_FIELD_STYLE, *P_DATE_FIELD_STYLEi 



msgDateFieldGetValue 
Passes back the receiver's value in the time descriptor. 

Takes P _TIME_DESC, returns STATUS. 

fdefine msgDateFieldGetValue MakeMsg(clsDateField, 3) 

stsDateFieldEmpty field has no content (*pArgs not set). 

stsDateFieldInvalid field's content unrecognized (*pArgs not set). 

msgDateFieldSetValue 
Sets the receiver's label string from the time descriptor. 

Takes P_TIME_DESC, returns STATUS. 

fdefine msgDateFieldSetValue MakeMsg(clsDateField, 4) 

msgControlGetValue 
Passes back the receiver's value in YYYYMMDD format. 

Takes P _U32, returns STATUS. 

stsDateFieldEmpty field has no content (*pArgs not set). 

stsDateFieldInvalid field's content unrecognized (*pArgs not set). 

msgControlSetValue 
Sets the receiver's label string from a U32 in YYYYMMDD format. 

Takes U32, returns STATUS. 

msgControlSetDirty 
Sets style.dirty. 

Takes BOOLEAN, returns STATUS. 

TKFIELD.H 587 
c1sFixedField 

The date field will alter the ink of its bottom edge (if it has one) to bsInkBlack if dirty, bsInkGray66 if 
not. 

In PenPoint 1.0, clsDateField does not respond to msgControlSetStyle or msgControlSetMetrics to 
watch for the CONTROL_STYLE. enable bit changing. 

clsFixedField 
This section describes the API for dsFixedField. 

Common #defines and typedefs 
fdefine stsFixedFieldEmpty 
fdefine stsFixedFieldInvalid 
typedef struct { 

U16 flags; 
U16 spare; 

MakeStatus(clsFixedField, 1) 
MakeStatus(clsFixedField, 2) 

FIXED_FIELD_STYLE, *P_FIXED_FIELD_STYLE; 



588 PEN POINT API REFERENCE 

Part 4 / UI Toolkit 

Meuage 
Arguments 

Comments 

Message 
Arguments 

MessQge 
Arguments 

msgNew 
Creates a fixed field. 

Takes P _FlXED_FIELD_NEW, returns STATUS. Category: class message. 

typedef struct { 
FIXED_FIELD_STYLE style; 
U32 spare; 

FIXED_FIELD_NEW_ONLY, *P_FIXED_FIELD NEW ONLY; 
#define fixedFieldNewFields \ 

fieldNewFields \ 
FIXED_FIELD_NEW_ONLY fixedField; 

typedef struct FIXED_FIELD_NEW { 
fixedFieldNewFields 

} FIXED_FIELD_NEW, *P_F IXED_F IELD_NEW; 

msgNewDefaults 
Initializes the FIXED_FIELD_NEW structure to default values. 

Takes P _FIXED_FIELD_NEW, returns STATUS. Category: class message. 

typedef struct FIXED_FIELD_NEW { 
fixedFieldNewFields 

} FIXED_FIELD_NEW, *P_FIXED_FIELD_NEW; 

Zeroes out pArgs->fixedField and sets: 

pArgs->border.style.edge = bsEdgeNone; 
pArgs->border.style.borderInk = bsInkGray66; 
pArgs->field.style.editType = fstOverWrite; 
pArgs->field.style.noSpace = true; 
pArgs->field.style.veto = true; 

msgFixedFieldGetStyle 
Passes back the receiver's style. 

Takes P _FIXED_FIELD_STYLE, returns STATUS. 

#define msgFixedFieldGetStyle MakeMsg(clsFixedField, 1) 

typedef struct { 
U16 flags; 
U16 spare; 

FIXED_FIELD_STYLE, *P_FIXED_FIELD_STYLE; 

msgFixedFieldSetStyle 
Sets the receiver's style. 

Takes P _FIXED_FIELD_STYLE, returns STATUS. 

#define msgFixedFieldSetStyle MakeMsg(clsFixedField, 2) 

typedef struct { 
U16 flags; 
U16 spare; 

FIXED_FIELD_STYLE, *P_FIXED_FIELD_STYLE; 



msgControlGetValue 
Get the receiver's value as an S32 in hundredths. 

Takes P_S32, returns STATUS. 

stsFixedFieldEmpty field has no content (*pArgs not set). 

stsFixedFieldlnvalid field's content unrecognized (*pArgs not set). 

msgControlSetValue 
Sets the receiver's label string from a S32 in hundredths. 

Takes S32, returns STATUS. 

msgControlSetDirty 
Sets style.dirty. 

Takes BOOLEAN, returns STATUS. 

TKFIELD.H 589 
clslntegerField 

The fixed field will alter the ink of its bottom edge (if it has one) to bslnkBlack if dirty, bslnkGray66 if 
not. 

In PenPoint 1.0, c1sFixedField does not respond to msgControlSetStyle or msgControlSetMetrics to 

watch for the CONTROL_STYLE. enable bit changing. 

, clslntegerField 
This section describes the API for c1sIntegerField. 

Common #defines and typedefs 
fdefine stslntegerFieldEmpty MakeStatus(clslntegerField, 1) 
fdefine stslntegerFieldlnvalid MakeStatus(clslntegerField, 2) 
typedef struct { 

U16 flags; 
U16 spare; 

INTEGER_FIELD_STYLE, *P_INTEGER_FIELD_STYLE; 

msgNew 
Creates an integer field. 

Takes P _INTEGER_FIELD_NEW, returns STATUS. Category: class message. 

typedef struct { 
INTEGER_FIELD_STYLE style; 
U32 spare; 

INTEGER_FIELD_NEW_ONLY, *P_INTEGER_FIELD_NEW_ONLY; 
fdefine integerFieldNewFields \ 

fieldNewFields \ 
INTEGER_FIELD_NEW_ONLY integerField; 

typedef struct INTEGER_FIELD_NEW { 
integerFieldNewFields 

INTEGER_FIELD_NEW, *P_INTEGER_FIELD_NEW; 



590 PEN POINT API REFERENCE 
Part 4 / UI Toolkit 

Mes$Qge 

ArSOfYients 

Comments 

MeuC!se 
Arguments 

Mess@ge 
Arguments 

msgNewDefaults, 
Initializes the INTEGER_FIELD_NEW structure to default values. 

Takes P _INTEGER_FIELD_NEW, returns STATUS. Category: class message. 

typedef struct INTEGER_FIELD_NEW { 
integerFieldNewFields 

} INTEGER_FIELD_NEW, *P_INTEGER_FIELD_NEWi 

Zeroes out pArgs->integerField and sets: 

pArgs->border.style.edge = bsEdgeNonei 
pArgs->border.style.borderInk = bsInkGray66i 
pArgs->field.style.editType = fstOverWritei 
pArgs->field.style.noSpace = true; 
pArgs->field.style.veto = true; 

msglntegerFieldGetStyle 
Passes back the receiver's style. 

Takes P _INTEGER_FIELD _STYLE, returns STATUS. 

#define rnsgIntegerFieldGetStyle MakeMsg(clsIntegerField, 1) 

typedef struct { 
U16 flags; 
U16 spare; 

INTEGER_FIELD_STYLE, *P_INTEGER_FIELD_STYLE; 

msglntegerFieldSetStyle 
Sets the receiver's style. 

Takes P_INTEGER_FIELD_STYLE, returns STATUS. 

#define rnsgIntegerFieldSetStyle MakeMsg(clsIntegerField, 2) 

typedef struct { 
U16 flags; 
U16 spare; 

INTEGER_FIELD_STYLE, *P_INTEGER_FIELD_STYLE; 

msgControlGetValue 
Passes back the receiver's value as an S32. 

Takes P _S32, returns STATUS. 

stsIntegerFieldEmpty field has no content (*pArgs not set). 

stsIntegerFieldInvalid field's content unrecognized (*pArgs not set). 

msgControlSetValue 
Sets the receiver's label string from a S32. 

Takes S32, returns STATUS. 



Comments 

msgControlSetDirty 
Sets style. dirty. 

Takes BOOLEAN, returns STATUS. 

TKFIELD.H 591 
clsTextField 

The integer field will alter the ink of its bottom edge (if it has one) to bslnkBlack if dirty, bslnkGray66 
if not. 

In PenPoint 1.0, clslntegerField does not respond to msgControlSetStyle or msgControlSetMetrics to 

watch for the CONTROL_STYLE. enable bit changing. 

clsTexlField 
This section describes the API for clsTextField. 

Common #defines and typedefs 

Message 
Arguments 

Comments 

typedef struct { 
U16 flags; 
U16 spare; 

TEXT_FIELD_STYLE, *P_TEXT_FIELD_STYLE; 

msgNew 
Creates a text field. 

Takes P _TEXT_FIELD_NEW, returns STATUS. Category: class message. 

typedef struct { 
TEXT_FIELD_STYLE style; 
U32 spare; 

TEXT_FIELD_NEW_ONLY, *P_TEXT_FIELD_NEW_ONLY; 
tdefine textFieldNewFields \ 

fieldNewFields \ 
TEXT_FIELD_NEW_ONLY textField; 

typedef struct TEXT_FIELD_NEW { 
textFieldNewFields 

} TEXT_FIELD_NEW, *P_TEXT_FIELD_NEW; 

msgNewDefaults 
Initializes the TEXT_FIELD_NEW structure to default values. 

Takes P _TEXT _FIELD _NEW, returns STATUS. Category: class message. 

typedef struct TEXT_FIELD_NEW { 
textFieldNewFields 

} TEXT_FIELD_NEW, *P_TEXT_FIELD_NEW; 

Zeroes out pArgs->textField and sets: 

pArgs->border.style.edge = bsEdgeBottom; 
pArgs->border.style.borderInk = bsInkGray66; 

msgTextFieldGetStyle 
Passes back the receiver's style. 

Takes P _TEXT _FIELD _STYLE, returns STATUS. 

tdefine msgTextFieldGetStyle MakeMsg(clsTextField, 1) 



592 PEN POINT API REFERENCE 
Part 4 / UI Toolkit 

Message 
Argumer,fs 

Mess@ge 
ArgumeWifs 

typedef struct 
U16 flags; 
U16 spare; 

TEXT_FIELD_STYLE, *P_TEXT_FIELD_STYLE; 

msgTextFieldSetStyle 
Sets the receiver's style. 

Takes P _TEXT _FIELD _STYlE, returns STATUS. 

#define msgTextFieldSetStyle 

typedef struct { 
U16 flags; 
U16 spare; 

MakeMsg(clsTextField, 2) 

TEXT_FIELD_STYLE, *P_TEXT_FIELD_STYLE; 

msgControlSetDirty 
Sets style.dirty. 

Takes BOOLEAN, returns STATUS. 

The text field will alter the ink of its bottom edge (if it has one) to bsInkBlack if dirty, bsInkGray66 if 
not. 

In PenPoint 1.0, clsTextField does not respond to msgControlSetStyle or msgControlSetMetrics to 
watch for the CONTROL_STYlE. enable bit changing. 



TKTABLE.H 

This file contains the API definition for clsTkTable. 

clsTkTable inherits from clsTableLayout. 

Toolkit tables support complex nested arrangements of buttons, labels, and even other toolkit tables. 

Debugging Flags 
The clsTkTable debugging flag is 'K'. Defined values are: 

flagl2 (OxIOOO) general debug info 

*ifndef TKTABLE_INCLUDED 
*define TKTABLE_INCLUDED 

tinclude <ostypes.h> 

*include <tlayout.h> 

*include <button.h> 

Common #defines and typedefs 
typedef OBJECT TK_TABLE; 
typedef struct TK_TABLE_STYLE { 

*ifndef OS TYPES_INCLUDED 

*endif 
*ifndef TLAYOUT_INCLUDED 

*endif 
*ifndef BUTTON_INCLUDED 

*endif 

U16 spare : 16; II unused (reserved) 
} TK_TABLE_STYLE, *P_TK_TABLE_STYLE; 

*define tkLabelEntry 
*define tkLabelStringId 
*define tkPNew 
*define tkLabelBold 
*define tkLabelWordWrap 
*define tkButtonPargsValue 
*define tkButtonPargsUID 
tdefine tkButtonOn 
*define tkButtonHalfHeight 
*define tkButtonManagerNone 
*define tkButtonToggle 
*define tkButtonBox 
tdefine tkMenuPullRight 
*define tkMenuPullDown 
*define tkContentsSection 
*define tkInputDisable 
*define tkBorderEdgeTop 
tdefine tkBorderEdgeBottom 
*define tkBorderMarginNone 
*define tkBorderLookInactive 

( (U32) flag2) 
((U32)flag14) 
((U32)flag4) 
((U32)flag3) 
( (U32) flag2S) 
( (U32) flagS) 
( (U32) flag6) 
((U32)flag7) 
( (U32) flag19) 
((U32)flag20) 
( (U32) flagS) 
( (U32) flag1) 
((U32) flag9) 
( (U32) flag10) 
( (U32) flag9) 
((U32) flag21) 
( (U32) flagll) 
((U32)flag12) 
((U32)flag22) 
((U32)flag13) 

II arg1 is a P_TK_TABLE_ENTRY 
II arg1 is a string resid 
II arg1 is a pNew 
II use a bold system font 
II word-wrap the label string 
II send value instead of Data 
II send UID instead of Data 
II turn on the button 
II use half-height button border 
II set button manager to bsManagerNone 
II make button a toggle 
II use bsFeedbackBox 
II arg2 is pEntries for pull-right 
II arg2 is pEntries for pull-down 
II arg2 is pEntries for section contents 
II disable input 
II turn on top border 
II turn on bottom border 
II turn off all margins 
II make entry inactive 



594 PEN POINT API REFERENCE 
Part 4 / UI Toolkit 

#define tkTableWideGap ((U32)flag15) II wide gap between coli & 2 
#define tkTableHorizontal ((U32)'flag17) II table is horizontal 
#define tkTableVertical ((U32)flag24) II table is vertical 
#define tkTableXAlignBaseline ((U32)flagO) II chiidXAlignment = tlAlignBaseline 
#define tkTableYAlignBaseline ((U32)flag27) II childYAlignment = tlAlignBaseline 
#define tkNoProto ((U32)flag18) II don't use prototypical pButtonNew 
#define tkNoClient ((U32)flag23) II don't copy client field 
#define tkPopupChoiceFont ((U32)flag26) II use current font names 
#define tkControlDynamicClient ((U32)flagO) II dynamicEnable csDynamicClient 
#define tkControlDynamicObject ((U32)flag27) II dynamicEnable csDynamicObject 
#define tkControlDynamicPargs ((U32)flag28) II dynamicEnable csDynamicPargs 
#define tkControlCallSel tkControlDynamicObject 
#define tkControlSelLocal tkControlDynamicPargs 
#define tkMenuButtonGetMenu ((U32)flag29) II send msgMenuButtonProvideMenu 
#define tkMenuButtonEnableMenu ((U32)flag30) II send msgControlEnable ~. 
II Available flags: flag16, flag31 
typedef struct TK TABLE ENTRY { 

P UNKNOWN arg1; 
U32 arg2; 
U32 arg3; 
U32 tag; 
U32 flags; 
CLASS childClass; 
U32 helpld; 
U32 spare; 

II argument for class, e.g. pString 
II argument for class, e.g. msg 
II argument for class, e.g. data 
II window tag 
II e.g. tkLabelBold I tkButtonPargs 
II class to create or objNull for default 
II help id for clsGWin 
II unused (reserved) 

TK TABLE_ENTRY, *p TK TABLE_ENTRY; 

Interpretation of argl, arg2, and arg3 for different classes: 

clsLabel pSt ring 
clsButton pString, 
clsMenuButton pString, 
clsMenuButt on pString, 
clsContentsButton pString, 
clsContentsButton pString, 
clsTkTable pEntries, 
clsChoice pEntries, 
clsToggleTable pEntries, 
clsPopupChoice pEntries, 
clsPopupChoice prune, 
clsField pString, 
clsListBox 
clsFontListBox 

Messages 

msgNew 

nEntries, 
role, 

Creates a tk table window. 

msg,data 
pEntries 
msg, data 
pEntries 
msg, data 

nUmRows/cols 
nUmRows/cols 
nUmRows/cols 
nUmRows/cols 
numRows/cols 
numCols, 

if (tkMenuPullRight I I tkMenuPullDown) 
if ! (tkMenuPullRight I I tkMenuPullDown)) 
if (tkContentsSection) 
if ! (tkContentsSection) 

maxLen 

if (!tkPopupChoiceFont) 
if (tkPopupChoiceFont) 

nEntriesToView 
nEntriesToView, look 

Takes P _TK_TABLE_NEW, returns STATUS. Category: class message. 

typedef struct TK_TABLE_NEW_ONLY 
TK TABLE STYLE style; II overall style 
OBJECT client; II client for each button 
P TK TABLE ENTRY pEntries; II in/out: description for each child 
U32 - spare4; I I unused (reserved) 
P BUTTON NEW pButtonNew; II default new struct 
U16 spare3; II unused (reserved) 
BUTTON NEW bUf; II default storage 
OBJECT manager; II manager to notify 
U32 spare1; II unused (reserved) 
U32 spare2; II unused (reserved) 

TK TABLE_NEW_ONLY, *P_TK_TABLE_NEW_ONLYi 



Comments 

MessQge 

Arguments 

TKTABLE.H 50S 
Common #define. and typedeh 

*define tkTableNewFields \ 
tableLayoutNewFields \ 
TK_TABLE_NEW_ONLY tkTablei 

typedef struct TK_TABLE_NEW { 
tkTableNewFields 

} TK_TABLE_NEW, *P_TK_TABLE_NEWi 

clsTkTable will create and insert a child window for each entry in pArgs->tkTable.pEntries. 

After msgNew returns, pArgs->tkTable.pEntries will be left pointing to the null-terminating entry. 

Note that pArgs->tkTable.pEntries is used during msgNew only, and the original value can be freed (if 
allocated) after msgN ew returns. 

For each entry, pArgs->pButtonNew will be used as the "prototypical" child new struct. The fields argl, 
arg2, arg3, tag, helpId and the semantics of each flag will be applied to the child new struct before 

creating the child. 

pArgs->client will be used to set the client for entries which inherit from clsTkTable, clsListBox, or 
clsControl, unless the tkNoClient flag is on for the entry. 

Before msgNew is sent to each child's class, msgTkTableInit will be sent to the child's class with the 

following TK_ TABLE_INIT parameters: 

pTkTableNew = pArgs; 
pChildNew = pointer to child's new struct; 
pEntry = pointer to child's TK_TABLE_ENTRY struct; 

This allows other classes to define mappings for TK_ TABLE_ENTRY to child new structs. 

msgNewDefaults 
Initializes the TK_TABLE_NEW structure to default values. 

Takes P_TK_TABLE_NEW, returns STATUS. Category: class message. 

typedef struct TK_TABLE_NEW { 
tkTableNewFields 

} TK_TABLE_NEW, *P_TK_TABLE_NEW; 

Zeroes out pArgs->tkTable and sets 

pArgs->tableLayout.style.growChildWidth = false; 
pArgs->tableLayout.style.growChildHeight = true; 

pArgs->tableLayout.numCols.constraint = tllnfinite; 
pArgs->tableLayout.numRows.constraint = tlAbsolute; 
pArgs->tableLayout.numRows.value = 1; 

pArgs->tableLayout.colWidth.constraint = tlGroupMax; 
pArgs->tableLayout.colWidth.gap = defaultColGapi 
pArgs->tableLayout.rowHeight.constraint = tlChildrenMaxi 
pArgs->tableLayout.rowHeight.gap = defaultRowGap; 

II default is a table of regular buttons 
pArgs->tkTable.pButtonNew = &pArgs->tkTable.bufi 

Sends msgNewDefaults(pArgs->tkTable.pButtonNew) to clsButton, then alters 
pArgs->tkTable.pButtonNewas described in msgTkTableChildDefaults. 



596 PENPOINT API REFERENCE 
Part 4 I UI Toolkit 

Messtlt;;e 
Ar§jIJrlH1r1ts 

Mes£©§jii:' 

Art;; tmt erlfS 

msgTkTableGetStyle 
Passes back the current style values. 

Takes P _TK_TABLE_STYLE, returns STATUS. 

#define msgTkTableGetStyle MakeMsg(clsTkTable, 1) 

typedef struct TK_TABLE_STYLE 
U16 spare : 16; II unused (reserved) 

} TK_TABLE_STYLE, *P_TK_TABLE_STYLEi 

msgTkTableSetStyle 
Sets the style values. 

Takes P _TK_TABLE_STYLE, returns STATUS. 

#define msgTkTableSetStyle MakeMsg(clsTkTable, 2) 

typedef struct TK_TABLE_STYLE 
U16 spare : 16; II unused (reserved) 

} TK_TABLE_STYLE, *P_TK_TABLE_STYLE; 

msgTkTableGetClient 
Passes back the client of the first child in the table. Note that the children may have been created with 

different clients. 

Takes P _UID, returns STATUS. 

#define msgTkTableGetClient MakeMsg(clsTkTable, 3) 

clsTkTable sends msgControIGetClient(pArgs) to the first (bottom-most) child to retrieve the client. 

msg TkTableSetClient 
Sets the client of each child -in the table to pArgs. 

Takes DID, returns STATUS. 

#define msgTkTableSetClient MakeMsg(clsTkTable, 4) 

clsTkTable sends msgControISetClient(pArgs) to each child. 

msgTkTableGetManager 
Passes back the manager. 

Takes P _UID, returns STATUS. 

#define msgTkTableGetManager 

msgTkTableSetManager 
Sets the manager. 

Takes DID, returns STATUS. 

#define msgTkTableSetManager 

MakeMsg(clsTkTable, 7) 

MakeMsg(clsTkTable, 8) 



Arguments 

Mes5C1ge 
Arguments 

TKTABLE.H 597 
Common #defines and typedefa 

nnsg1rk1rable(;e~etrics 

Passes back the metrics. 

Takes P _TK_TABLE_METRICS, returns SfATUS. 

*define msgTkTableGetMetrics MakeMsg(clsTkTable, 5) 

typedef struct TK_TABLE_METRICS { 
TK_TABLE_STYLE style; 
OBJECT manager; 
U32 spare1; 
U32 spare2; 

TK_TABLE_METRICS, *P_TK_TABLE_METRICS; 

nnsg 1rk1rableSetMetrics 
Sets the metrics. 

II overall style 
II manager to notify 
II unused (reserved) 
II unused (reserved) 

Takes P _TK_TABLE_METRICS, returns SfATUS. 

*define msgTkTableSetMetrics MakeMsg(clsTkTable, 6) 

typedef struct TK_TABLE_METRICS { 
TK_TABLE_STYLE style; 
OBJECT manager; 
U32 spare1; 
U32 spare2; 

TK_TABLE_METRICS, *P_TK_TABLE_METRICS; 

nnsg 1rk1rableChildDefaults 

II overall style 
II manager to notify 
II unused (reserved) 
II unused (reserved) 

Sets the defaults in pArgs for a common child. 

Takes P_UNKNOWN, returns STATUS. 

*define msgTkTableChildDefaults MakeMsg(clsTkTable, 14) 

pArgs should be an initialized (msgNewDefaults) P _NEW struct. 

Clients should use this on children manually inserted into the table. For example, send 
msgNewDefaults to class of child, then send msgTkTableChildDefaults to the table, then send 

msgNew to class of child, then add child to table with, e.g., msgTkTableAddAsLast. 

clsTkTable responds to msgTktTableChildDefaults as follows: 

• sets pArgs->win.device to self's device 

• turns on shared parent/child/sibling clipping: 

pArgs->win.flags.style 1= wSParentClip; 
pArgs->win.flags.style &= ~(wsClipSiblings 1 wsClipChildren); 

• if pArgs->object.class inherits from clsBorder, sets pArgs->border.style.backgroundlnk to 
bslnk Transparent 

• if pArgs->object.class inherits from clsButton, sets pArgs->button.style.manager to 
bsManagerParent 

nnsg 1rk1rableAddAsFirst 
Inserts pArgs as the first child in the table. 

Takes WIN, returns STATUS. 

*define msgTkTableAddAsFirst MakeMsg(clsTkTable, 9) 

---_ .. _---------



598 PENPOINT API REFERENCE 

Part 4 / UI Toolkit 

msgTkTableAddAsLast 
Inserts pArgs as the last child in the table. 

Takes WIN, returns STATUS. 

#define msgTkTableAddAsLast MakeMsg(clsTkTable, 10) 

msgTkTableAddAsSibling 
Inserts pArgs->newChild in front of or behind pArgs->sibling. 

Takes P _TK_TABLE_ADD_SIBLING, returns STATUS. 

#define msgTkTableAddAsSibling MakeMsg(clsTkTable, 11) 

typedef struct TK TABLE ADD SIBLING ( 
WIN newChild; -II new child to add 
WIN sibling; II existing child already in tkTable 
BOOLEAN before; II true: add before sibbling; false: after 
U32 spare; II unused (reserved) 

TK_TABLE_ADD_SIBLING, *P_TK_TABLE_ADD_SIBLING; 

msgTkTableAddAt 
Inserts pArgs->newChild table at zero-based index pArgs->index. 

Takes P _TK_TABLE_ADD_AT, returns STATUS. 

#define msgTkTableAddAt MakeMsg(clsTkTable, 12) 

typedef struct TK_TABLE_ADD_AT 
WIN newChild; II new child to add 
U16 index; II zero-based desired index of newChild 
U32 spare; II unused (reserved) 

TK_TABLE_ADD_AT, *P_TK_TABLE_ADD_AT; 

msgTkTableRemove 
Extracts pArgs from the table. 

Takes WIN, returns STATUS. 

#define msgTkTableRemove MakeMsg(clsTkTable, 13) 

msgTkTableInit 
Sent to TK_TABLE_ENTRy.class after default entry-to-pChildNew mappings. 

Takes P _TK_TABLE_INIT, returns STATUS. Category: third-party notification. 

#define msgTkTableInit MsgNoError(MakeMsg(clsTkTable, 15)) 

typedef struct TK_TABLE_INIT { 
P_TK_TABLE_NEW pTkTableNew; 
P UNKNOWN pChildNew; 
P TK TABLE ENTRY pEntry; 
U32 spare; 

TK_TABLE_INIT, *P_TK_TABLE_INIT; 

II in: tkTable traversing the entry 
II in: child new struct 
II in: this entry; out: last entry used 
II unused (reserved) 

The receiver should be sure to advance pArgs->pEntry to the last entry used. 



TKTABLE.H 599 

Messages from Other Classes 

ThT ableFillArrayWithFonts 
Fills in an array of entries with the names of the currently installed fonts. 

Returns STATUS. 

function Prototype STATUS EXPORTED TkTableFillArrayWithFonts 

Comments 

) ; 

OS HEAP ID 
U16 
P TK TABLE ENTRY - - -

heapId, II In: heap from which to allocate entries 
prune, II In: controls pruning (see fontmgr.h) 
* ppEntries II Out: pointer to array of entries 

This function allocates an array ofnCTABLEJ;NTRy's from the heap given and then fills it in with the i ....... ~2: ..... _~ 
names of the fonts that are currently installed on the machine. The function sets each field of every entry r-

to null except for argl, which is set to point ~t a string allocated from the given heap. It is the client's 

responsibility to free this array and its strings when done using it. clsTkTable provides the utility 

function TkTableFreeArrayO for freeing this allocated storage. 

This function also sets the tag field of each entry to be the FIM_SHORT _ID of the corresponding font. 

ThTableFreeArray 
Frees an array ofTK_TABLE_ENTRY's allocated by TkTableFillArrayWithFontsO. 

Returns STATUS. 

Fuodion Prototype STATUS EXPORTED TkTableFreeArray 
P_TK_TABLE_ENTRY pEntries II In: pointer to array of entries 

) ; 

This function enumerates an array ofTK_TABLE_ENTRY's, frees the string pointed to by the argl fields, 

and then frees the array itself. This function is meant to be used in concert with 

TkTableFillArrayWithFontsO. 

Messages frolll Other Classes 

msgFree 
Sent as the last of three msgs to destroy an object. 

Takes OBLKEY, returns STATUS. 

Note that clsTkTable does not destroy metrics.manager. 

msgSave 
Causes an object to file itself in an object file. 

Takes P _OBLSAVE, returns STATUS. 

Note that clsTkTable will not save metrics.manager. 

msgC()ntrolGetClient 
Passes back the control's client. 

Takes P_UID, returns STATUS. 

clsTkTable responds as in msgTkTableGetClient. 



600 PEN POINT API REFERENCE 
Part 4 / UI Toolkit 

msgControlSetClient 
Sets the control's client. 

Takes UID, returns STATUS. 

clsTkTable responds as in msgTkTableSetClient. 

msgControlGetDirty 
Passes back true if the control has been altered since dirty was set false. 

Takes P_BOOLEAN, returns STATUS. 

fdefine msgControlGetDirty MakeMsg(clsControl, 15) 

clsTkTable passes back true if any child is dirty. Each child is sent msgControlGetDirty. 

msgControlSetDirty 
Clears/sets the control's dirty bit. 

Takes BOOLEAN, returns STATUS. 

clsTkTable sets the dirty bit on each child by sending msgControlSetDirty to each child. 

msgWinSend 
Sends a message up a window ancestry chain. 

Takes WIN_SEND, returns STATUS. 

clsTkTable will pass msgWinSend on to the tkTable's manager. 

If metrics.manager is objNull, does nothing and calls ancestor. 

Sends msgWinSend(pArgs) to metrics.manager. If the manager returns stsManagerContinue, calls 
ancestor; otherwise returns manager's return status. 



TLAYOUT.H 

This file contains the API definition for cIsTableLayout. 

cIsTableLayout inherits from cis Border. 

Table layout windows position (and optionally size) their child windows in a grid whose parameters you 

specifY. 

Debugging Flags 
The clsTableLayout debugging flag is '0/0'. Defined values are: 

flag4 (OxOOlO) msgWinLayoutSelf info 

flag7 (Ox0080) layout timing 

#ifndef TLAYOUT_INCLUDED 
#define TLAYOUT INCLUDED 

#include <border.h> 

Common #defines and typedefs 

typedef OBJECT TBL_LAYOUT; 

X and Y Alignment Styles 
#define tlAlignLeft 
#define tlAlignCenter' 
#define tlAlignRight 
#define tlAlignBottom 
#define tlAlignTop 
#define tlAlignBaseline 

Placement Styles 
#define tlPlaceRowMajor 
#define tlPlaceColMajor 
#define tlPlaceStack 
#define tlPlaceOrientation 

Extra Space Styles 
#define tlExtraNone 
#define tlExtraFirst 
#define tlExtraAfterFirst 
#define tlExtraLast 
#define tlExtraBeforeLast 
#define tlExtraAll 
#define tlExtraBetweenAll 
II 
II 
II 

*********** 

o 
1 
2 
tlAlignLeft 
tlAlignRight 
3 

#ifndef BORDER_INCLUDED 

#endif 

II left-justified 
II centered 
II right-justified 
II bottom-justified 
II top-justified 
II vertical/horizontal baseline aligned 

o II across each row first 
1 II down each column first 
2 II stack on top of each other 
3 II landscape: RowMajor, portrait: ColMajor 

o II leave extra space alone 
1 II add extra space to 1st row/col 
2 II put extra space after 1st row/col 
3 II add extra space to last row/col 
4 II put extra space before last row/col 
5 II add extra space evenly to each row/col 
6 II divide extra space after each row/col 
7 II unused (reserved) 

II unused (reserved) 
15 II unused (reserved) 



602 PENPOINT API REFERENCE 
Part 4 / UI Toolkit 

typedef struct TBL_LAYOUT_STYLE 
U16 tblXAlignment 2, II table x alignment within window 

tblYAlignment 2, II table y alignment within window 
childXAlignment 2, II child x alignment within grid cell 
childYAlignment 2, II child y alignment within grid cell 
placement 2, II order for placing children in the table 
growChildWidth 1, II true to size child to col width 
growChildHeight 1, II true to size child to row height 
senseOrientation: 1, II adjust according to current orientation 
reverseX 1, II layout from right to left 
reverseY 1, II layout from bottom to top 
wrap 1; II wrap around rowlcolumn 

U16 widthExtra 4, II what to do with extra width 
heightExtra 4, II what to do with extra height 
spare1 8; II unused (reserved) 

} TBL_LAYOUT_STYLE, *P_TBL_LAYOUT_STYLE; 

Default TBL_LAYOUT_STYLE: 

tblXAlignment 
tblYAlignment 
childXAlignment 
childYAlignment 
growChildWidth 
growChildHeight 
placement 
reverseX 
reverseY 
widthExtra 
heightExtra 

tlLeft 
tlTop 
tlLeft 
tlBottom 

= true 
true 
tlPlaceRowMajor 
false 
false 

= tlExtraNone 
tlExtraNone 

constraints for Table Layout 

Enum16 (TBL_LAYOUT_CONSTRAINT) 

} ; 

II for numRows, numCols, colWidth, rowHeight 
tlAbsolute = 0, II fixed 
II for colWidth, rowHeight; can also or-in tlBaselineBox 
tlChildrenMax = 1, II max of all children 
tlGroupMax = 2, II max of all children on same rowlcolumn 
II for numRows, numCols, colWidth, rowHeight 
tlMaxFit = 3, II as many rows/cols as fit given current 

II for numRows, numCols 
tlInfinite = 4 

II rowHeight, colWidth, gaps, and parent size 
II or as wide a eollhigh a row as possible 
II given current numRows, numCols 

II unbounded number of rows/eols 

The following can be OR'ed into tlChildrenMax or tlGroupMax to use max. ascender and descender of 
each child Note: not implemented for tlChildrenMax 

#define tlBaselineBox flag7 

The following can be OR' ed into any colWidth/rowHeight constraint to use the provided baseline 
rather than the max. baseline 

Note: not implemented yet. 

#define tlAbsoluteBaseline flag6 

The following can be OR'ed into any colWidth/rowHeight constraint to use tlMaxFit if the 
width/height is constrained during layout (i.e. wsLayoutResize is off or wsShrinkWrapWidth/Height is 
off). 

#define tlMaxFitIfConstrained flag8 

macros to extract the parts of a constraint 



#define T1Constraint(c) ((c) & OxF) 
typedef struct TBL_LAYOUT_COUNT { 

TBL_LAYOUT_CONSTRAINT constraint; II see above 
S16 value; I I absolute value 
U32 spare; I I unused (reserved) 

TBL LAYOUT COUNT, *P_TBL_LAYOUT_COUNT; 
typedef struct TBL_LAYOUT_SIZE { 

TBL_LAYOUT_CONSTRAINT constraint; 
S16 value; 

II see above 
II absolute value 

TLAYOUT.H 603 

S16 gap; II space between rows/columns 
S16' baseline; 
U16 valueUnits 6, 

spare1 10; 
U32 spare; 

TBL LAYOUT SIZE, *p TBL_LAYOUT_SIZE; 
typedef struct TBL_LAYOUT_METRICS { 

TBL_LAYOUT_COUNT numRows, numCols; 
TBL_LAYOUT_SIZE rowHeight, colWidthi 
TBL_LAYOUT_STYLE style; 
U32 spare; 

TBL_LAYOUT_METRICS, *P_TBL_LAYOUT_METRICSi 

II absolute baseline (not implemented) 
II units for value/gap/baseline 
II (e.g. bsUnitsLayout) 
II unused (reserved) 
II unused (reserved) 

II unused (reserved) 

Status Values 

MeMii<1$j0 

Arguments 

These are possible return values from msgWinLayoutSelf 

#define stsTblLayoutLoop 
#define stsTblLayoutBadConstraint 

msgNew 
Creates a table layout window. 

MakeStatus(clsTableLayout, 1) 
MakeStatus(clsTableLayout, 2) 

Takes P_TBL_LAYOUT_NEW, returns STATUS. Category: class message. 

typedef TBL_LAYOUT_METRICS TBL_LAYOUT_NEW_ONLY, *P_TBL_LAYOUT_NEW_ONLY; 
#define tableLayoutNewFields \ 

borderNewFields \ 
TBL_LAYOUT_NEW_ONLY tableLayout; 

typedef struct { 
tableLayoutNewFields 

} TBL_LAYOUT_NEW, *P_TBL_LAYOUT_NEW; 

You first create a table layout window, then insert the children, then send msgWinLayout to layout the 
children. 

Note: if you are using tlAlignBaseline for the childX/YAlignment, you must use a colWidth/rowHeight 
constraint of tlGroupMax I tlBaselineBox. Baseline alignment is not implemented with other colWidth 
or rowHeight constraints. 

msgWinLayoutSelf 

msgNewDefaults 
Initializes the TBL_LAYOUT_NEW structure to default values. 

Takes P _TBL_LAYOUT_NEW, returns STATUS. Category: class message. 

typedef struct { 
tableLayoutNewFields 

TBL_LAYOUT_NEW, *P_TBL_LAYOUT_NEW; 



604 PENPOINT API REFERENCE 
Part 4 / UI Toolkit 

Messoge 
Argumefli's 

Messoge 
Argumeflts 

Zeroes out pArgs->tableLayout and sets 

pArgs->win.flags.style 1= 
wsShrinkWrapWidth 1 wsShrinkWrapHeight 1 wsFilelnline; 

pArgs->tableLayout.style.tblXAlignment = tlAlignLeft; 
pArgs->tableLayout.style.tblYAlignment = tlAlignTop; 
pArgs->tableLayout.style.childXAlignment = tlAlignLeft; 
pArgs->tableLayout.style.childYAlignment = tlAlignBottom; 
pArgs->tableLayout.style.growChildWidth = true; 
pArgs->tableLayout.style.growChildHeight = true; 

II Default is horizontal layout. 
pArgs->tableLayout.numRows.constraint = tlAbsolute; 
pArgs->tableLayout.numRows.value = 1; 

pArgs->tableLayout.numCols.constraint = tllnfinite; 
pArgs->tableLayout.numCols.value = 0; 

pArgs->tableLayout.rowHeight.constraint = tlChildrenMax; 
pArgs->tableLayout.rowHeight.value = 0; 
pArgs->tableLayout.rowHeight.gap = 0; 

pArgs->tableLayout.colWidth.constraint = tlGroupMax; 
pArgs->tableLayout.colWidth.value = 0; 
pArgs->tableLayout.colWidth.gap = 0; 

msg TblLayoutGetMetrics 
Passes back current metrics. 

Takes P_TBL_LAYOUT_METRICS, returns STATUS. 

*define msgTblLayoutGetMetrics MakeMsg(clsTableLayout, 1) 

typedef struct TBL_LAYOUT_METRICS { 
TBL_LAYOUT_COUNT numRows, numCols; 
TBL_LAYOUT_SIZE rowHeight, colWidth; 
TBL_LAYOUT_STYLE style; 
U32 spare; 

TBL_LAYOUT_METRICS, *P_TBL_LAYOUT_METRICS; 

msg TblLayoutSetMetrics 
Sets current metrics. 

Takes P _TBL_LAYOUT_METRICS, returns STATUS. 

II unused (reserved) 

*define msgTblLayoutSetMetrics MakeMsg(clsTableLayout, 2) 

typedef struct TBL_LAYOUT_METRICS { 
TBL_LAYOUT_COUNT numRows, numCols; 
TBL_LAYOUT_SIZE rowHeight, colWidth; 
TBL_LAYOUT_STYLE style; 
U32 spare; II unused (reserved) 

TBL_LAYOUT_METRICS, *P_TBL_LAYOUT_METRICS; 

clsT ableLayout self-sends msgWinLayoutDirty( true}. 

msg TblLayoutGetStyle 
Passes back current style values. 

Takes P_TBL_LAYOUT_STYLE, returns STATUS. 

*define msgTblLayoutGetStyle MakeMsg(clsTableLayout, 3) 



Message 
Arguments 

Messoge 
Arguments 

TLAYOUT.H 605 

typedef struct TBL LAYOUT STYLE 
U16 tblXAlignment 2, II table x alignment within window 

tblYAlignment 2, II table y alignment within window 
childXAlignment 2, II child x alignment within grid cell 
childYAlignment 2, II child y alignment within grid cell 
placement 2, II order for placing children in the table 
growChildWidth 1, II true to size child to col width 
growChildHeight 1, II true to size child to row height 
senseOrientation: 1, II adjust according to current orientation 
reverseX 1, II layout from right to left 
reverseY 1, II layout from bottom to top 
wrap 1; II wrap around rowlcolumn 

U16 widthExtra 4, II what to do with extra width 
heightExtra 4, II what to do with extra height 
spare1 8; II unused (reserved) 

} TBL_LAYOUT_STYLE, *p TBL LAYOUT_STYLE; 

msg TblLayoutSetStyle 
Sets style values. 

Takes P _TBL_LAYOUT_STYLE, returns STATUS. 

#define msgTblLayoutSetStyle MakeMsg(clsTableLayout, 4) 

typedef struct TBL LAYOUT STYLE - -
U16 tblXAlignment 2, II table x alignment within window 

tblYAlignment 2, II table y alignment within window 
chi IdXAI ignment 2, II child x alignment within grid cell 
chi IdYAI ignment 2, II child y alignment within grid cell 
placement 2, II order for placing children in the table 
growChildWidth 1, II true to size child to col width 
growChildHeight 1, II true to size child to row height 
senseOrientation: 1, II adjust according to current orientation 
reverseX 1, II layout from right to left 
reverseY 1, II layout from bottom to top 
wrap 1; // wrap around row/column 

U16 widthExtra 4, II what to do with extra width 
heightExtra 4, II what to do with extra height 
spare1 8; II unused (reserved) 

} TBL_LAYOUT_STYLE, *p TBL LAYOUT STYLE; -

clsTableLayout self-sends msgWinLayoutDirty( true). 

msgTblLayoutXYTolndex 
Determines a child zero-based index from an xy position. 

Takes P _ TBL_LAYOUT _INDEX, returns STATUS. 

#define msgTblLayoutXYToIndex MakeMsg(clsTableLayout, 5) 

typedef struct TBL_LAYOUT_INDEX { 
XY32 xy; II In: table-relative coords 
U16 index; II Out: zero-based position at which to insert a child 
U32 spare; II unused (reserved) 

TBL_LAYOUT_INDEX, *P_TBL_LAYOUT_INDEX; 

The index returned is such that if a child were inserted there and the table layed out, that child would be 

at the given xy. 



606 PENPOINT API REFERENCE 
Part 4 / UI Toolkit 

msg TblLayoutAdjustSections 
Adjusts the border edges and margins of children to correctly reflect a sectioned table. 

Takes BOOLEAN, returns STATUS. 

#define msgTblLayoutAdjustSections MakeMsg(clsTableLa~out, 6) 

If you have a table layout window in one column and many rows, and the children have top or bottom 
border edges on to demarcate groups, you should send msg TblLayoutAdjustSections to the table layout 
window after you add or remove children. clsTableLayout will turn off borders that are not needed. 

If the table needs to be relayed out, msgWinLayout will be self-sent if pArgs is true; otherwise 
msgWinSetLayoutDirty{true) will be self-sent. 

Note that the current implementation assumes the table is one column, infinite rows. 

msgTblLayoutComputeGrid 
Computes the table grid parameters given the current constraints. 

Takes P _TBL_LAYOUT_GRID, returns STATUS. 

#define msgTblLayoutComputeGrid MakeMsg(clsTableLayout, 7) 
#define tblLayoutAvgChildren 10 

typedef struct TBL_LAYOUT_GRID_VALUE { 
S32 value; II value in device units 
S32 maxBaseline; II max. baseline for the columnlrow 
S32 gap; II gap after rowlcol, in device units 
U32 sparei II unused (reserved) 

TBL_LAYOUT_GRID_VALUE, *P_TBL_LAYOUT_GRID_VALUE; 
typedef struct TBL_LAYOUT_GRID { 

U16 numCols; I I # of columns 
U16 numRowsi I I # of rows 
S32 colWidth; II column width if pColWidths is pNull 
S32 rowHeight; II row height if pRowHeights is pNull 
P TBL LAYOUT GRID VALUE pColWidths; II per-column widths, if not pNull 
P-TBL-LAYOUT-GRID-VALUE pRowHeights;11 per-row heights, if not pNull 
TEL LAYOUT METRICS metrics; II actual metrics 
SIZE32 - gap; II collrow gap, in device units 
U8 placement; II actual placement 
XY32 xy; II 1st grid cell in parent space 
II default storage for column widths, row heights 
TBL_LAYOUT_GRID_VALUE colWidthBuf[tblLayoutAvgChildren]; 
TBL_LAYOUT_GRID_VALUE rowHeightBuf[tblLayoutAvgChildren]; 
P UNKNOWN pData; II reserved for clsTableLayout 
U32 spare1; II unused (reserved) 
U32 spare2; II unused (reserved) 

TBL_LAYOUT_GRID, *P_TBL_LAYOUT_GRID; 

This message is self-sent by clsTableLayout in response to msgWinLayoutSelf. clsTableLayout responds 
by computing all of the grid information based on the current TBL_LAYOUT_METRICS and current 
children. 

You can send this message at any time to determine the grid parameters. 

When you send msgTblLayoutComputeGrid, you must set pArgs->pData to pNull. 

You should send msgTbILayoutFreeGrid{pArgs) when finished to free any storage allocated by 
msg TblLayoutComputeGrid. 

If you subclass clsTableLayout, you can respond to this message and compute custom grid parameters 
(e.g. different per-column absolute column widths). 



Me$S<lIge 
Ar9uments 

Mes$Clge 
Arguments 

TLAYOUT.H 607 

Note that pArgs->xy is not computed here. The location of the first grid cell can be computed by 
sending msg TblLayoutComputeGridXY. 

msg TblLayoutFreeGrid 

typical number of children in a table layout window 

msg TblLayoutComputeGridXY 
Computes the table grid start xy given the other grid parameters. 

Takes P_TBL_LAYOUT_GRID, returns STATUS. 

#define msgTblLayoutComputeGridXY MakeMsg(clsTableLayout, 8) 

typedef struct TBL_LAYOUT_GRID { 
U16 numColsi I I # of columns 
U16 numRowsi I I # of rows 
532 colWidthi II column width if pColWidths is pNull 
532 rowHeighti II row height if pRowHeights is pNull 
P_TBL_LAYOUT_GRID_VALUE pColWidthsi II per-column widths, if not pNull 
P_TBL_LAYOUT_GRID_VALUE pRowHeightsil1 per-row heights, if not pNull 
TBL_LAYOUT_METRIC5 metricsi II actual metrics 
5IZE32 gapi II collrow gap, in device units 
U8 placement; II actual placement 
XY32 XYi II 1st grid cell in parent space 
II default storage for column widths, row heights 
TBL_LAYOUT_GRID_VALUE colWidthBuf[tblLayoutAvgChildren]i 
TBL_LAYOUT_GRID_VALUE rowHeightBuf[tblLayoutAvgChildren]i 
P UNKNOWN pDatai II reserved for clsTableLayout 
U32 spare1i II unused (reserved) 
U32 spare2i II unused (reserved) 

TBL_LAYOUT_GRID, *P_TBL_LAYOUT_GRIDi 

This message is self-sent by clsTableLayout in response to msgWinLayoutSelf. clsTableLayout responds 
by computing the lower-left of the first grid cell given the specified grid information. 

You should first send msgTbILayoutComputeGrid(pArgs) to compute the grid parameters, then send 
msg TblLayoutComputeGridXY to determine the location of the first cell. 

If style.reverseX is true, the first grid cell is actually at pArgs->xy.x - pArgs->coIWidth. 

If style.reverseY is true, the first grid cell is actually at pArgs->xy.y - pArgs->rowHeight. 

If you subclass clsTableLayout, you can respond to this message and compute a custom grid starting 
location (e.g. something not based on style.tblXAlignment or style.tblYAlignment). 

msg TblLayoutComputeGrid 

msgTblLayoutFreeGrid 
Frees any storage allocated by msgTblLayoutComputeGrid. 

Takes P_TBL_LAYOUT_GRID, returns STATUS. 

*define msgTblLayoutFreeGrid MakeMsg(clsTableLayout, 9) 

typedef struct TBL_LAYOUT_GRID 
U16 numColsi II * of columns 
U16 numRows i I I * of rows 
532 colWidthi II column width if pColWidths is pNull 
532 rowHeighti II row height if pRowHeights is pNull 
P_TBL_LAYOUT_GRID_VALUE pColWidthsi II per-column widths, if not pNull 
P TBL LAYOUT GRID VALUE pRowHeightsil1 per-row heights, if not pNull 
TBL_LAYOUT_METRICS metricsi II actual metrics 



608 PENPOINT API REFERENCE 
Part 4 / UI Toolkit 

SIZE32 gap; II collrow gap, in device units 
U8 placement; II actual placement 
XY32 xy; II 1st grid cell in parent space 
II default storage for column widths, row heights 
TBL_LAYOUT_GRID_VALUE coIWidthBuf[tbILayoutAvgChildren]; 
TBL_LAYOUT_GRID_VALUE rowHeightBuf[tbILayoutAvgChildren]; 
P UNKNOWN pData; II reserved for clsTableLayout 
U32 spare1; II unused (reserved) 
U32 spare2; II unused (reserved) 

TBL_LAYOUT_GRID, *P_TBL_LAYOUT_GRID; 

This message is self-sent by clsTableLayout after self-sending msg TblLayoutComputeGrid. 

You should send msgTblLayoutFreeGrid when finished with the grid information computed using 
msg TblLayoutComputeGrid to free any storage allocated by msg TblLayoutComputeGrid. 

msg TblLayoutComputeGrid 

Messages from other classes 

msgRestore 
Creates and restores an object from an object file. 

Takes P _OBJ_RESTORE, returns STATUS. 

clsTableLayout will self-send msgWinSetLayoutDirty(true) if the system font or system font scale 
changed since the table was filed. pArgs->pEnv is cast to a P _ WIN_RESTORE_ENV and must be a valid 
window environment pointer. 

msgWinLayoutSelf 
Tell a window to layout its children (sent during layout). 

Takes P _WIN_METRICS, returns STATUS. 

clsTableLayout responds by laying out its children. The grid cells of the table are computed based on the 
TBL_LAYOUT _METRICS specified. Each child is placed in the corresponding grid cell. 

clsTableLayout will self-send msgTblLayoutComputeGrid to compute the grid in which the children 
will be placed. msg TblLayoutComputeGridXY will be self-sent to determine the origin of the grid in 
selfs window. 

The number of columns and rows are computed based on the numCols and numRows constraints. The 
width and height of each ~olumn and row are computed based on the colWidth and rowHeight 
constraints. 

The children are placed acording to style.placement. For example, if style. placement is 
tlPlaceRowMajor, the children are placed across the first row, then the next row, etc .. If style. placement 
is tlPlaceOrientation, then the placement will be based on the current orientation of selfs window 
device: 

Orientation Placement 
orientPortraitNormal tlPlaceColMajor 
orientPortraitReverse tlPlaceColMajor 
orientLandscapeNormal tlPlaceRowMajor 
orientLandscapeReverse tlPlaceRowMajor 



TLAYOUT.H 609 
Messages from other classes 

If style.senseOrientation is true and the orientation is Landscape, the layout metrics are "swapped" as 
follows: 

if style.placement is tlPlaceRowMajor, tlPlaceColMajor is usedif style. placement is tlPlaceColMajor, 
tlPlaceRowMajor is used 

metrics.numRows and metrics.numCols are swapped.rowHeight and metrics.colWidth are swapped 

So if you want a layout that is sensitive to the orientation, set the constraints to make sense for Portrait 
orientation and turn on style.senseOrientation. If the orientation is Landscape when the window is 
layed out, the metrics will be altered for you. 

Within each grid cell, each child is aligned acording to style.childXAlignment and style.yAlignment. 
For example, if style.childXAlignment and style.childYAlignment are both tlAlignCenter, the children 
are centered in each grid cell. 

If style.growChildWidth/Height is true, the width/height of each child is set to the width/height of the 
child's grid cell. 

The entire table is aligned within self acording to style.tblXAlignment and style.tbIYAlignment. For 
example, if style.tblXAlignment and style.tblYAlignment are both tlAlignCenter, the table is centered 
in sel f s window. 

The rows and columns of the table are normally filled out top to bottom, left to right. If style.reverseY is 
true, the rows are filled out bottom to top. If style.reverseX is true, the columns are filled out right to 

left. 

If pArgs->options has wsLayoutResize on and self has shrink wrap width/height on, the width and 
height of the resulting table will be passed back in pArgs->bounds.size. 

stsTblLayoutLoop The specified set of constraints results in a circular layout loop. For example, 
tlMaxFit for numCols and tlMaxFit for colWidth. 

stsTblLayoutBadConstraint A constraint specified is not a valid value. 

msgWinGetBaseline 
Gets the desired x,y alignment of a window. 

Takes P _WIN_METRICS, returns STATUS. 

If the table is one column, clsTableLayout will return the x-baseline of the first child in the table (i.e. 
send msgWinGetBaseline to the first child). Otherwise the x-baseline will be zero. 

If the table is one row, clsTableLayout will return the y-baseline of the first child in the table (i.e. send 
msgWinGetBaseline to the first child). Otherwise the y-baseline will be zero. 

msgControlEnable 
The control re-evaluates whether it is enabled. 

Takes P_CONTROL_ENABLE, returns STATUS. 

clsTableLayout recursively enumerates its children (i.e. wsEnumRecursive option to msgWinEnum) 
and forwards this message to each child that inherits from clsControi. This allows each control in the 

table to respond to alter its enabled state. 

This is used by, for example, clsMenuButton when menuButton.style.enableMenu is set to true. 

clsMenuButton 





TRACK.H 

This file contains the API definition for clsTrack. 

clsTrack inherits from clsObject. 

Provides transient drawing feedback for various pen dragging situations, such as resizing and dragging 
frames. 

Debugging Flags 
The clsTrack debugging flag is 'K'. Defined values are: 

flag15 (Ox8000) general debug info 

#ifndef TRACK INCLUDED 
#define TRACK_INCLUDED 

#ifndef WIN_INCLUDED 
#include <win.h> 

#endif 

Common #defines and typedefs *********** 

Track Styles 
#define tsTrackMove 0 
#define tsTrackResize 1 

Anchor Styles 
#define tsAnchorUL 0 II upper-left 
#define tsAnchorUR 1 II upper-right 
#define tsAnchorLR 2 II lower-right 
#define tsAnchorLL 3 II lower-left 

Draw Styles 
#define tsDrawRect 0 II simple rectangle 
#define tsDrawTabBarRect 1 II rectangle with vertical tab bar on right 
#define tsDrawCmdBarRect 2 II rectangle with command bar at bottom 
#define tsDrawTabCmdBarRect 3 II rectangle with both tab and command bars 
#define tsDrawBitmap 4 II not implemented 
#define tsDrawViaMessages 5 II forward msgTrackShow/Hide to client 
#define tsDrawDoubleRect 6 II double rect as in clsBorder double thickness 

Thickness Styles 
#define tsThicknessSingle 0 II single-thick lines 
#define tsThicknessDouble 1 II double-thick lines 



612 PEN POINT API REFERENCE 
Part 4 / UI Toolkit 

Line PaHern Styles 
*define tsPatForeground 
*define tsPatDashed 

0 
1 

II foreground ink 
II sysDcPatLD50 

II 
II 

2 
3 

II unused (reserved) 
II unused (reserved) 

typedef struct TRACK STYLE 
U16 track 

anchor 
draw 
update 
autoDestroy 
thickness 
pattern 

{ 

2, 
2, 
4, 
1, 
1, 
2, 
2, 

startThickness 2; 
U16 useThreshold 1, 

spare 15; 
TRACK_STYLE, *P_TRACK_STYLE; 

msgNew 
Creates a tracker. 

II track style (move or resize) 
II corner to anchor (tsTrackResize only) 
II visual to draw 
II send msgTrackUpdate to client 
II destroy self when done 
II thickness of drawn lines 
II line pattern of drawn lines 
II thickness of initial drawn lines 
II start tracking after msgPenMoveDown 
II reserved 

Takes P_TRACK_NEW, returns STATUS. Category: class message. 

typedef struct TRACK_NEW_ONLY 
TRACK STYLE style; 
WIN win; 
OBJECT client; 
P UNKNOWN image; 
P UNKNOWN clientData; 
OBJECT tracker; 
RECT32 initRect; 
RECT32 recti 
S32 tabBarW; 
S32 cmdBarH; 
XY32 origXY; 
XY32 curXY; 
TAG tag; 
II if tsTrackMove 
RECT32 keepRect; 
RECT32 constrainRect; 
II if tsTrackResize 
SIZE32 minWH; 
SIZE32 maxWH; 
U32 spare; 
U32 spare1; 

TRACK_METRICS, *P_TRACK_METRICS, 
TRACK_NEW_ONLY, *P_TRACK_NEW_ONLY; 

*define trackNewFields \ 
objectNewFields \ 
TRACK NEW ONLY track; 

typedef struct TRACK_NEW { 
trackNewFields 

} TRACK_NEW, *P_TRACK_NEW; 

II objNull means use theRootWindow 
II client to send msgTrackDone to 
II optional image instead of box (not implemented) 
II data for client to set 
II ignored in msgInit 
II in device units, relative to win 
II in device units, relative to win 
II tsDrawTabBarRect I tsDrawTabCmdBarRect 
II tsDrawCmdBarRect I tsDrawTabCmdBarRect 
II in device units, relative to win 
II in device units, relative to win 
II optional distinguishing tag 

II in device units, relative to win 
II in device units, relative to win 

II in device units 
II in device units 
II unused (reserved) 
II unused (reserved) 

Note that if you change the default value for pArgs->track.constrainRect you should also insure 
pArgs->track.keepRect is correct for your new constrainRect. 

Here is some sample code for creating an instance of clsTrack to resize a window. This is taken from 
clsGrabBox. plnst->client is the window to be resized. 

II distance to stay away from edge of parent after resize, in device units 
*define trBottomParentMargin 0 
*define trRightParentMargin 0 



TRACK.H 613 

II min. distance from bottom of child to top of parent, in device units 
#define trTopParentMargin 12 

II min. distance from right of child to left of parent, in device units 
#define trLeftParentMargin 12 

II absolute minimum resize width and height, in device units 
#define trMinResizeWidth 20 
#define trMinResizeHeight 20 

TRACK NEW tn; 

II start a resize tracker 
ObjCallRet(msgNewDefaults, clsTrack, &tn, s); 

ObjCallRet(msgWinGetMetrics, pInst->client, &wrn, s); 

tn.track.style.track = tsTrackResize; 
tn.track.win = wrn.parent; 
tn. track. client = self; 
tn.track.clientData = pInst->client; 
tn. track. tag = tagBorderResize; 
tn.track.initRect = wrn.bounds; 

II window being resized 

II don't allow the grabbox to go off the edge of client's parent 
ObjCallRet(msgWinGetMetrics, wrn.parent, &rm, s); 

tn.track.maxWH.w = rm.bounds.size.w - trRightParentMargin -
wrn.bounds.origin.x; 

tn.track.maxWH.h = RectTop(&wrn.bounds) - trBottornParentMargin; 

tn.track.minWH.w 
tn.track.minWH.h 

RectRight(&wrn.bounds) - (rm.bounds.size.w - trLeftParentMargin); 
RectTop(&wrn.bounds) - (rm.bounds.size.h - trTopParentMargin); 

tn.track.minWH.w = Max(tn.track.minWH.w, trMinResizeWidth); 
tn.track.minWH.h = Max(tn.track.minWH.h, trMinResizeHeight); 

switch (pInst->style.loc) 
case gbLocTopEdge: 
case gbLocULCorner: 

tn. track. style. anchor tsAnchorLR; 
break; 

case gbLocRightEdge: 
case gbLocURCorner: 

tn.track.style.anchor tsAnchorLL; 
break; 

case gbLocLeftEdge: 
case gbLocLLCorner: 

tn.track.style.anchor tsAnchorUR; 
break; 

case gbLocBottornEdge: 
default: 

tn.track.style.anchor tsAnchorUL; 
break; 

switch (pInst->style.loc) 
default: 

II unconstrained 
break; 

-----"-------



614 PENPOINT API REFERENCE 

Part 4 / UI Toolkit 

case gbLocLeftEdge: 
case gbLocRightEdge: 

II constrained to horizontal 
tn.track.rninWH.h wrn.bounds.size.h; 
tn.track.rnaxWH.h = wrn.bounds.size.h; 
break; 

case gbLocBottornEdge: 
case gbLocTopEdge: 

II constrained to vertical 
tn.track.rninWH.w = wrn.bounds.size.w; 
tn.track.rnaxWH.w = wrn.bounds.size.w; 
break; 

ObjCallRet(rnsgTrackProvideMetrics, plnst->client, &tn.track, S)i 

ObjCallRet(rnsgNew, clsTrack, &tn, S)i 

II start tracking at the initial down point 
wrn.bounds.origin = *pXY; 
ObjCallRet(msgWinTransforrnBounds, theRootWindow, &wrn, S)i 

ObjCallRet(rnsgTrackStart, tn.object.uid, &wrn.bounds.origin, S)i 

Here is some sample code for creating an instance of clsTrack to drag a window. This is taken from 

clsBorder. delta Win is the window to be dragged. 

II keep rect size for drag, in device units 
#define trDefaultMoveKeep 12 

TRACK NEW tni 

ObjCallRet(msgNewDefaults, clsTrack, &tn, S)i 

II constraint to parent's bounds 
ObjSendUpdateRet(rnsgWinGetMetrics, deltaWin, &clientMetrics, SizeOf(clientMetrics), S)i 

if (!clientMetrics.parent) 
return stsOKi 

ObjSendUpdateRet(rnsgWinGetMetrics, clientMetrics.parent, &wrn, SizeOf(wrn), S)i 

tn.track.style.startThickness = tsThicknessDouble; 
tn. track. win = clientMetrics.parent; 
tn.track.client = selfi 
tn.track.clientData = deltaWini 
tn.track.initRect = clientMetrics.boundsi 
tn.track.constrainRect.size = wrn.bounds.size; 
tn. track. tag = tagBorderDrag; 

II start tracking at the initial point 
wrn.parent = clientMetrics.parent; 
wrn.bounds.origin = *pXY; 
ObjCallRet(rnsgWinTransforrnBounds, self, &wrn, s); 

tn.track.keepRect.size.w = tn.track.keepRect.size.h trDefaultMoveKeep; 
tn.track.keepRect.origin = wrn.bounds.origin; 
tn.track.keepRect.origin.x trDefaultMoveKeep I 2; 
tn.track.keepRect.origin.y -= trDefaultMoveKeep I 2; 

ObjSendUpdateRet(rnsgTrackProvideMetrics, deltaWin, &tn.track, SizeOf(tn.track), s); 
ObjCallRet(rnsgNew, clsTrack, &tn, s); 

ObjCallRet(rnsgTrackStart, tn.object.uid, &wrn.bounds.origin, s); 



Messoge 
Arguments 

MeSSCl£!& 

Arguments 

msgNewDefaults 
Initializes the TRACK_NEW structure to default values. 

Takes P _TRACK_NEW, returns STATUS. Category: class message. 

typedef struct TRACK_NEW { 
trackNewFields 

} TRACK_NEW, *P_TRACK_NEW; 

Sets all of pArgs->track to 0, then ... 

pArgs->object.cap 1= objCapCall; 
pArgs->track.style.autoDestroy 
pArgs->track.constrainRect.size.w 
pArgs->track.constrainRect.size.h 
pArgs->track.keepRect.origin.x 
pArgs->track.keepRect.origin.y 
pArgs->track.keepRect.size.w 
pArgs->track.keepRect.size.h 
pArgs->track.maxWH.w 
pArgs->track.maxWH.h 

Default style: 

track = tsTrackMove 

= true; 
= maxS32 I 2; 
= maxS32 I 2; 
= maxS32 I 4; 
= maxS32 I 4; 
= 1; 
= 1; 
= maxS32 I 2; 
= maxS32 I 2; 

anchor = tsAnchorUL (ignored when tsTrackMove) 
draw = tsDrawRect 

= false 
= true 

update 
autoDestroy 
thickness 
pattern 
startThickness 
useThreshold 

= tsThicknessSingle 
= tsPatForeground 
= tsThicknessSingle 
= false 

msgTrackGetStyle 
Passes back current style values. 

Takes P_TRACK_STYLE, returns STATUS. 

*define msgTrackGetStyle MakeMsg(clsTrack, 1) 

typedef struct TRACK STYLE 
U16 track 2, 

anchor 2, 
draw 4, 
update 1, 
autoDestroy 1, 
thickness 2, 
pattern 2, 
startThickness 2; 

U16 useThreshold 1, 
spare 15; 

TRACK_STYLE, *P_TRACK_STYLE; 

msgTrackSetStyle 
Sets style values. 

Takes P_TRACK_STYLE, returns STATUS. 

II track style (move or resize) 
II corner to anchor (tsTrackResize only) 
II visual to draw 
II send msgTrackUpdate to client 
II destroy self when done 
II thickness of drawn lines 
II line pattern of drawn lines 
II thickness of initial drawn lines 
II start tracking after msgPenMoveDown 
II reserved 

*define msgTrackSetStyle MakeMsg(clsTrack, 2) 

TRACK.H 615 



616 PENPOINT API REFERENCE 
Part 4 I UI Toolkit 

Message 

Ar$jumettrs 

MeM©ge 

Ar11uments 

Mess©$je 
Arguments 

typedef struct TRACK STYLE 
U16 track 2, 

anchor 2, 
draw 4, 
update 1, 
autoDestroy 1, 
thickness 2, 
pattern 2, 
startThickness 2; 

U16 useThreshold 1, 
spare 15; 

TRACK_STYLE, *P_TRACK_STYLE; 

II track style (move or resize) 
II corner to anchor (tsTrackResize only) 
II visual to draw 
II send msgTrackUpdate to client 
II destroy self when done 
II thickness of drawn lines 
II line pattern of drawn lines 
II thickness of initial drawn lines 
II start tracking after msgPenMoveDown 
II reserved 

If the new style values result in a different visual, and msgTrackStart has been sent, you should first send 
msgTrackHide with pArgs of the old TRACK_METRICS, then msgTrackSetStyle, then msgTrackShow 
with the new TRACK_METRICS. 

msg T rackGetMetrics 
Passes back the current metrics. 

Takes P _TRACICMETRICS, returns STATUS. 

tdefine msgTrackGetMetrics 

typedef struct TRACK_NEW_ONLY 
TRACK_STYLE style; 
WIN 
OBJECT 
P UNKNOWN 
P UNKNOWN 
OBJECT 
RECT32 

win; 
client; 
image; 
clientData; 
tracker; 
initRect; 

RECT32 recti 
S32 tabBarW; 
S32 cmdBarH; 
XY32 origXY; 
XY32 curXY; 
TAG tag; 
II if tSTrackMove 
RECT32 keepRect; 

MakeMsg(clsTrack, 3) 

II objNull means use theRootWindow 
II client to send msgTrackDone to 
II optional image instead of box (not implemented) 
II data for client to set 
II ignored in msgInit 
II in device units, relative to win 
II in device units, relative to win 
II tsDrawTabBarRect I tsDrawTabCmdBarRect 
II tsDrawCmdBarRect I tsDrawTabCmdBarRect 
II in device units, relative to win 
II in device units, relative to win 
II optional distinguishing tag 

RECT32 constrainRect; 
II in device units, relative to win 
II in device units, relative to win 

II if tSTrackResize 
SIZE32 minWH; 
SIZE32 maxWH; 
U32 spare; 
U32 spare1; 

II in device units 
II in device units 
II unused (reserved) 
II unused (reserved) 

TRACK_METRICS, *P_TRACK_METRICS, 

msg T rackSetMetrics 
Sets the metrics. 

Takes P_TRACICMETRICS, returns STATUS. 

tdefine msgTrackSetMetrics MakeMsg(clsTrack, 4) 

typedef struct TRACK_NEW_ONLY 
TRACK_STYLE style; 
WIN win; II objNull means use theRootWindow 
OBJECT client; II client to send msgTrackDone to 
P UNKNOWN image; II optional image instead of box (not 
P UNKNOWN clientData; II data for client to set 
OBJECT tracker; II ignored in msgInit 
RECT32 initRect; II in device units, relative to win 

implemented) 



Comments 

Comments 

RECT32 
S32 
S32 

recti 
tabBarW; 
cmdBarH; 

XY32 origXY; 
XY32 curXY; 
TAG tag; 
II if tsTrackMove 
RECT32 keepRect; 
RECT32 constrainRect; 
II if tsTrackResize 
SIZE32 minWH; 
SIZE32 maxWH; 
U32 spare; 
U32 spare!; 

TRACK_METRICS, *P_TRACK_METRICS, 

TRACK.H 617 
Client Messages 

II in device units, relative to win 
II tsDrawTabBarRect I tsDrawTabCmdBarRect 
II tsDrawCmdBarRect I tsDrawTabCmdBarRect 
II in device units, relative to win 
II in device units, relative to win 
II optional distinguishing tag 

II in device units, relative to win 
II in device units, relative to win 

II in device units 
II in device units 
II unused (reserved) 
II unused (reserved) 

See msgTrackSetStyle for notes on changing metrics after msgTrackStart has been sent. 

msg TrackSetStyle 

msgTrackStart 
Starts the tracker. 

Takes P _XY32, returns STATUS. 

tdefine msgTrackStart MakeMsg(clsTrack, 5) 

The pArgs indicates the initial position of the pen (in device units, in the space of the metrics.win). If 
pArgs is pNull, then metrics.origXY is used as the initial pen position. 

clsT rack will do the following: 

• self-send msgT rackConstrain to constrain the initial point. 

• grab all input events using InputSetGrabO. 

• self-send msgTrackShow(&metrics) to paint the tracker. 

Client Messages 

Messt1ge 
Arguments 

msgTrackDone 
Sent by clsTrack to metrics.client when the track is done. 

Takes P _TRACK_METRICS, returns STATUS. Category: client notification. 

tdefine msgTrackDone MakeMsg(clsTrack, 6) 

typedef struct TRACK_NEW_ONLY 
TRACK STYLE style; 
WIN win; II objNull means use theRootWindow 
OBJECT client; II client to send msgTrackDone to 
P UNKNOWN image; II optional image instead of box (not implemented) 
P UNKNOWN clientData; II data for client to set 
OBJECT tracker; II ignored in msgInit 
RECT32 initRect; II in device units, relative to win 
RECT32 recti II in device units, relative to win 
S32 tabBarW; II tsDrawTabBarRect I tsDrawTabCmdBarRect 
S32 cmdBarH; II tsDrawCmdBarRect I tsDrawTabCmdBarRect 
XY32 origXY; II in device units, relative to win 
XY32 curXY; II in device units, relative to win 
TAG tag; II optional distinguishing tag 
II if tsTrackMove 
RECT32 keepRect; II in device units, relative to win 



618 PEN POINT API REFERENCE 
Part 4 / UI Toolkit 

M(:~ssoge 

Argunlents 

Messoge 
Arguments 

RECT32 constrainRect; 
II if tsTrackResize 
SIZE32 minWH; 
SIZE32 maxWH; 
U32 spare; 
U32 spare1; 

TRACK_METRICS, *P_TRACK_METRICS, 

msgTrackUpdate 

II in device units, relative to win 

II in device units 
II in device units 
II unused (reserved) 
II unused (reserved) 

Sent by dsTrack to metrics.client when the pen moves if style. update is true. 

Takes P _TRACK_METRICS, returns STATUS. Category:. client notification. 

#define msgTrackUpdate MakeMsg(clsTrack, 7) 

typedef struct TRACK_NEW_ONLY 
TRACK_STYLE style; 
WIN 
OBJECT 
P UNKNOWN 
P UNKNOWN 
OBJECT 
RECT32 
RECT32 
S32 
S32 

win; 
client; 
image; 
clientData; 
tracker; 
initRect; 
recti 
tabBarW; 
cmdBarH; 

XY32 origXY; 
XY32 curXY; 
TAG tag; 
II if tsTrackMove 
RECT32 keepRect; 
RECT32 constrainRect; 
II if tsTrackResize 
SIZE32 minWH; 
SIZE32 maxWH; 
U32 spare; 
U32 spare1; 

TRACK_METRICS, *P_TRACK_METRICS, 

msgTrackProvideMetrics 

II objNull means use theRootWindow 
II client to send msgTrackDone to 
1/ optional image instead of box (not implemented) 
II data for client to set 
II ignored in msglnit 
II in device units, relative to win 
II in device units, relative to win 
/1 tsDrawTabBarRect I tsDrawTabCmdBarRect 
II tsDrawCmdBarRect I tsDrawTabCmdBarRect 
II in device units, relative to win 
II in device units, relative to win 
II optional distinguishing tag 

II in device units, relative to win 
II in device units, relative to win 

II in device units 
II in device units 
/1 unused (reserved) 
II unused (reserved) 

Sent to a tracker client before tracker is created. 

Takes P _TRACK_METRICS, returns STATUS. Category: third-party notification. 

#define msgTrackProvideMetrics MsgNoError(MakeMsg(clsTrack, 9)) 

typedef struct TRACK_NEW_ONLY 
TRACK~STYLE style; 
WIN win; II objNull means use theRootWindow 
OBJECT client; II client to send msgTrackDone to 
P UNKNOWN image; II optional image instead of box (not implemented) 
P UNKNOWN clientData; II data for client to set 
OBJECT tracker; II ignored in msgInit 
RECT32 initRect; II in device units, relative to win 
RECT32 recti II in device units, relative to win 
S32 tabBarW; II tsDrawTabBarRect I tsDrawTabCmdBarRect 
S32 cmdBarH; II tsDrawCmdBarRect I tsDrawTabCmdBarRect 
XY32 origXY; II in device units, relative to win 
XY32 curXY; II in device units, relative to win 
TAG tag; II optional distinguishing tag 
II if tsTrackMove 
RECT32 keepRect; II in device units, relative to win 
RECT32 constrainRect; II in device units, relative to win 



TRACK.H 619 
Self-sent Messages 

II if tsTrackResize 
SIZE32 minWH; II in device units 
SIZE32 maxWH; II in device units 
U32 spare; II unused (reserved) 
U32 spare1; II unused (reserved) 

TRACK_METRICS, *p _TRACK_METRICS, 

Before it sends msgNew to clsTrack, code creating a tracker may choose to send out this message to 

another object, allowing it to modify the tracker metrics. See frame.h for a sample response to 
msg TrackProvideMetrics. 

Self-sent Messages 

M<>S$og<> 
Argume!'!ts 

msg T rackConstrain 
Constrains a point. 

Takes P _XY32 , returns STATUS. Category: self-sent. 

*define msgTrackConstrain MakeMsg(clsTrack, 8) 

If style. track is tsTrackMove, a new value for metrics.keepRect is computed based on the offset from 
metrics.origXY to pArgs. pArgs is altered to insure the new keepRect lies within metrics.constrainRect. 

If style. track is tsTrackResize, a new value for metrics.rect is computed based on the offset from 
metrics.origXY to pArgs. pArgs is altered to insure the new rect.size lies within metrics.maxWH and 
metrics.min WH. 

msgTrackShow 
Displays the tracker visuals at pArgs->rect. 

Takes P _TRACK_METRICS, returns STATUS. Category: self-sent. 

*define msgTrackShow MakeMsg(clsTrack, 10) 

typedef struct TRACK_NEW_ONLY 
TRACK STYLE style; 
WIN 
OBJECT 

win; 
client; 

P UNKNOWN image; 
P UNKNOWN clientData; 
OBJECT tracker; 
RECT32 initRect; 
RECT32 recti 
S32 tabBarW; 
S32 cmdBarH; 
XY32 origXY; 
XY32 curXY; 
TAG tag; 
II if tsTrackMove 
RECT32 keepRect; 
RECT32 constrainRect; 
II if tsTrackResize 
SIZE32 minWH; 
SIZE32 maxWH; 
U32 spare; 
U32 spare1; 

TRACK_METRICS, * P_TRACK_METRICS, 

II objNull means use theRootWindow 
II client to send msgTrackDone to 
II optional image instead of box (not implemented) 
II data for client to set 
II ignored in msgInit 
II in device units, relative to win 
II in device units, relative to win 
II tsDrawTabBarRect I tsDrawTabCmdBarRect 
II tsDrawCmdBarRect I tsDrawTabCmdBarRect 
II in device units, relative to win 
II in device units, relative to win 
II optional distinguishing tag 

II in device units, relative to win 
II in device units, relative to win 

II in device units 
II in device units 
II unused (reserved) 
II unused (reserved) 

clsTrack will self-send this message when the tracker needs to be displayed. 



620 PENPOINT API REFERENCE 

Part 4 I UI Toolkit 

Message 
Arguments 

msgTrackHide 
Removes the tracker visuals at pArgs->rect. 

Takes P _TRACK_METRICS, returns STATUS. Category: self-sent. 

#define msgTrackHide MakeMsg(clsTrack, 11) 

typedef struct TRACK_NEW_ONLY 
TRACK_STYLE style; 
WIN win; 
OBJECT client; 
P UNKNOWN image; 
P UNKNOWN clientData; 
OBJECT tracker; 
RECT32 initRect; 
RECT32 recti 
S32 tabBarW; 
S32 cmdBarH; 
XY32 origXY; 
XY32 curXY; 
TAG tag; 
II if tsTrackMove 
RECT32 keepRect; 
RECT32 constrainRect; 
II if tsTrackResize 
SIZE32 minWH; 
SIZE32 maxWH; 
U32 spare; 
U32 spare1; 

TRACK~METRICS, *P_TRACK_METRICS, 

II objNull means use theRootWindow 
II client to send msgTrackDone to 
II optional image instead of box (not implemented) 
II data for client to set 
II ignored in msgInit 
II in device units, relative to win 
II in device units, relative to win 
II tsDrawTabBarRect I tsDrawTabCmdBarRect 
II tsDrawCmdBarRect I tsDrawTabCmdBarRect 
II in device units, relative to win 
II in device units, relative to win 
II optional distinguishing tag 

II in device units, relative to win 
II in device units, relative to win 

II in device units 
II in device units 
II unused (reserved) 
II unused (reserved) 

dsT rack will self-send this message when the tracker needs to be erased. 

Messages from other classes 

msglnputEvent 
Notification of an input event. 

Takes P_INPUT_EVENT, returns STATUS. 

dsTrack will respond to input events by updating and/or terminating the tracker. 

If pArgs->devCode is not one of msgPenMoveDown, msgPenUp, or msgPenOutProxDown 
stslnputGrab Terminate is returned. 

The new point is constrained by self-sending msgTrackConstrain. The new value for metrics.rect and 

metrics.curXY is computed based on the constrained pArgs->xy. 

If pArgs->devCode is msgPenUp or msgPenOutProxDown, dsTrack does the following: 

• send msgTrackDone(&metrics) to metrics.client 

• self-send msgTrackHide to remove the old tracker visuals 

• if style.autoDestroy is true, self-send msgDestroy(pNull) 

If pArgs->devCode is msgPenMoveDown, and the constrained version of pArgs->xy is different from 
metrics.curXY, dsTrack does the following: 

• if style. update is true, send msgTrackUpdate(&metrics) to metrics.client 

• self-send msgTrackHide to remove the old tracker visuals 

• self-send msgTrackShow to paint the new tracker visuals 



nABLE.H 

This file contains the API definition for clsToggleTable. 

clsToggleTable inherits from clsTkTable. 

Toggle tables implement non-exclusive choices. 

#ifndef TTABLE_INCLUDED 
#define TTABLE_INCLUDED 

#include <tktable.h> 
#ifndef TKTABLE INCLUDED 

#endif 

Common #defines and typedefs 

MC';;$ogc 

J'V£jUn1cnts 

Comments 

typedef OBJECT TOGGLE_TABLE; 

msgNew 
Creates a toggle table window. 

Takes P _TOGGLE_TABLE_NEW, returns STATUS. Category: class message. 

typedef struct TOGGLE_TABLE_NEW_ONLY { 
U32 spare; II unused (reserved) 

} TOGGLE_TABLE_NEW_ONLY, *P_TOGGLE_TABLE_NEW_ONLY; 
#define toggleTableNewFields \ 

tkTableNewFields \ 
TOGGLE_TABLE_NEW_ONLY toggleTable; 

typedef struct TOGGLE_TABLE_NEW { 
toggleTableNewFields 

} TOGGLE_TABLE_NEW, *P_TOGGLE_TABLE_NEW; 

msgNewDefaults 
Initializes the TOGGLE_TABLE_NEW structure to default values. 

Takes P_TOGGLE_TABLE_NEW, returns STATUS. Category: class message. 

typedef struct TOGGLE_TABLE_NEW { 
toggleTableNewFields 

} TOGGLE_TABLE_NEW, *P_TOGGLE_TABLE_NEW; 

Sets the following values: 

pArgs->gWin.style.gestureEnable = false; 

pArgs->tableLayout.style.growChildHeight = false; 
pArgs->tableLayout.style.growChildWidth = true; 

pArgs->tableLayout.numCols.constraint = tlAbsolute; 
pArgs->tableLayout.numCols.value = 1; 

pArgs->tableLayout.numRows.constraint = tlInfinite; 



622 PENPOINT API REFERENCE 
Part 4 I UI Toolkit 

pArgs->tableLayout.colWidth.constraint = tlChildrenMax; 
pArgs->tableLayout.colWidth.gap = 0; 

pArgs->tableLayout.rowHeight.constraint = tlGroupMax; 
pArgs->tableLayout.rowHeight.gap = 0; 

Messages from Other Classes 

Comments 

msgTkTableChildDefaults 
Sets the defaults in P _ARGS for a common child. 

Takes P_UNKNOWN, returns STATUS. 

Here is how a choice processes this message: 

if <pArgs->object.class inherits from clsGWin> 
pArgs->gWin.style.gestureEnable = false; 

if <pArgs->object.class inherits from clsBorder> 
pArgs->border.style.edge = bsEdgeNone; 
pArgs->border.style.topMargin = 1; 
pArgs->border.style.bottomMargin = 1; 

if <pArgs->object.class inherits from clsLabel> 
pArgs->label.style.xAlignment = lsAlignLeft; 

if <pArgs->object.class inherits from clsButton> 
pArgs->button.style.notifyDetail = true; 
pArgs->button.style.contact = bsContactToggle; 
pArgs->button.style.feedback = bsFeedbackDecorate; 
pArgs->button.style.offDecoration = 

lsDecorationNonExclusiveOff; 
pArgs->button.style.onDecoration = 

lsDecorationNonExclusiveOn; 

msgControlGetDirty 
Passes back the dirty state of the control. 

Takes P _BOOLEAN, returns STATUS. 

clsToggleTable responds by setting *pArgs up as a 32 bit collection of the results of sending 
msgControlGetDirty to its first 32 children. The result of the first (bottom) child is placed in bit 0, the 
second in bit 1, and so on. 

The resulting *pArgs is undefined if the toggle table has more than 32 children. 

msgControlGetEnable 
Passes back whether the control is enabled. 

Takes P _BOOLEAN, returns STATUS. 

clsToggleTable responds by setting *pArgs up as a 32 bit collection of the results of sending 
msgControlGetEnable to its first 32 children. The result of the first (bottom) child is placed in bit 0, 
the second in bit 1, and so on. 

The resulting *pArgs is undefined if the toggle table has more than 32 children. 



TTABLE.H 623 
Messages from Other Classes 

msgControlGetValue 
Passes back the value of the control. 

Takes P_TAG, returns STATUS. 

clsToggleTable responds by setting *pArgs up as a 32 bit collection of the results of sending 
msgControlGetValue to its first 32 children. The result of the first (bottom) child is placed in bit 0, the 
second in bit 1, and so on. 

The resulting *pArgs is undefined if the toggle table has more than 32 children. 

msgControlSetDirty 
Sets dirty state of the control. 

Takes BOOLEAN, returns STATUS. 

clsToggleTable treats the pArgs as a 32 bit collection of values to send via msgControlSetDirty to its 
first 32 children. The value of bit 0 is sent to the first (bottom) child, bit 1 is sent to the second child, 

and so on. 

msgControlSetEnable 
Sets whether the control is enabled. 

Takes BOOLEAN, returns STATUS. 

clsToggleTable treats the pArgs as a 32 bit collection of values to send via msgControlSetEnable to its 
first 32 children. The value of bit 0 is sent to the first (bottom) child, bit 1 is sent to the second child, 

and so on. 

msgControlSetValue 
Sets the value of the control. 

Takes TAG, returns STATUS. 

clsToggleTable treats the pArgs as a 32 bit collection of values to send via msgControlSetValue to its 
first 32 children. The value of bit 0 is sent to the first (bottom) child, bit 1 is sent to the second. child, 

and so on. 





PartS / 
Input and Hanchrriting 

Translation 





ACETATE.M 

Interface file for the acetate. 

The functions described in this file are contained in INPUT.LIB. 

WARNING: Inking and the acetate layer are subject to major changes in future releases. 

#ifndef ACETATE_INCLUDED 
#define ACETATE_INCLUDED 
#ifndef GO_INCLUDED 
#include <go.h> 
#endif 
#ifndef GEO_INCLUDED 
#include <geo.h> 
#endif 

Ilprototypes 

AcetateT ransform 
Converts coordinate to/from screen device root window and pen units. 

Returns void. 

function Prototype void EXPORTED AcetateTransform ( 
P_XY32 pXY, II coordinates to transform 
U16 type II 0 for root-to-pen 

II 1 for pen-to-root 
) ; 

Warning: This works only when transforming to or from the screen device root window. Other 
transforms must use drawing contexts. 

AcetateCursorRequestVisible 
Used to request that the cursor turn on or off. 

Returns void. 

fmm::tizm Prototype void EXPORTED AcetateCursorRequestVisible ( 
BOOLEAN requestVisibleOn 
) ; 

AcetateCursorThaw 
Unfreezes the cursor for pen movements. 

Returns Sf ATUS. 

function Prototype STATUS EXPORTED AcetateCursorThaw ( 
void 
) ; 



628 PEN POINT API REFERENCE 
Part 5 / Input and Handwriting 

AcetateCursorFreezePosition 
Freezes the cursor at the given Root window coordinate until the cursor image is reset to pNull 
(standard cursor). 

Returns STATUS. 

?uru:tiC>!1 Pw@t@!ype STATUS EXPORTED AcetateCursorFreezePosition ( 
P_XY32 pLoc II location in the root window 
) ; 

AcetateCursorXY 
Sets the cursor position. 

Returns void. 

?undlC>!1 Pw@t@type void EXPORTED AcetateCursorXY ( 
COORD32 x, 
COORD32 Y 
) ; 

AcetateCursorlmage 
Sets the cursor image. 

Returns STATUS. 

?undl@n Pw@t@!ype STATUS EXPORTED AcetateCursorlmage ( 
P_UNKNOWN pNewCursor, 
BOOLEAN sticky 
) ; 

(OIYlments If pCursor == pNull, resets to the pen cursor and frees the substitute cursor memory. 

AcetateCursorUpdatelmage 
Updates the current cursor image. 

Returns STATUS. 

rlmdic>n Pvot@type STATUS EXPORTED AcetateCursorUpdatelmage ( 
P_UNKNOWN pNewCursor 
) ; 

(ommenf':ii This interface should only be used for cursor animations and not to change the actual cursor to a 
different style. 

AcetateClear 
Clears (makes transparent) the entire acetate plane. 

Returns void. 

?undiC>!1 Pv@t@!ype void EXPORTED AcetateClear ( 
void 
) ; 

AcetateClearDisable 
Used while grabbing to keep the acetate from being cleared. 

Returns void. 



Fundion Prototype void EXPORTED AcetateClearDisable ( 
void 
) ; 

ACETATE.H 629 

Call it during input event processing and return one of the grab status return Values. While the Clear 
Disable is active, calls to AcetateClear 

will have no effect. Calls to AcetateClearRect will still work however. 

llcetate<:learltect 
Clears (makes transparent) the indicated acetate recto pNull implies the entire plane. 

Returns void. 

fundion Prototype void EXPORTED AcetateClearRect ( 
P RECT32 pRect 
) ; 





ANIMSP.H 

This file contains the API definitions for clsAnimSPaper. 

clsAnimSPaper inherits from clsSPaper. 

Records pen strokes and plays them back at a reduced speed. Provides settable speed, interstroke delay, 
line attribute and scaling parameters. 

Introduction 
clsAnimSPaper "animates" the drawing of scribbles by painting a few points, then pausing for the 
specified number of milliseconds before continuing. The animated playback is performed in a separate 
task, so playbacks will not disturb other events on the screen. A semaphore is used internally to prevent 
multiple tasks from painting in the AnimSPaper window simultaneously. The painting task is created 
whenever playback starts, and terminated when it finishes. 

The animation behavior is triggered by msgWinRepaint--that is, whenever the AnimSPaper is asked to 
paint itself. This means that you'll get slow, "animated" painting regardless of the cause of the 
msgWinRepaint: layout, resize, scrolling, unclipping, and so forth. If you want slow painting only 
under certain circumstances (e.g., when the user taps a button), set the Delay and Interstroke parameters 
to 0, then do this: 

OS MILLISECONDS om; 

om = yourDelay; 
ObjectCall(msgAnimSPaperSetDelay, animSPaperInstance, &om); 
om = yourInterstroke; 
ObjectCall(msgAnimSPaperSetInterstroke, animSPaperInstance, &om); 

ObjectCall(msgWinDirtyRect, 
ObjectCall(msgWinUpdate, 

om = 0; 

animSPaperInstance, NULL); 
animSPaperInstance, NULL); 

ObjectCall(msgAnimSPaperSetDelay, animSPaperInstance, &om); 
ObjectCall(msgAnimSPaperSetInterstroke, animSPaperInstance, &om); 

clsAnimSPaper Parameters 

There are four gettable/settable parameters having to do with scribble redisplay. Delay specifies the 
number of milliseconds to wait between painting line segments. It varies in inversely with the animation 
speed. Interstroke delay is a separate delay to be used between scribble strokes. It simulates the writer 
lifting and moving the pen from the end of one stroke to the beginning of the next. Line sets the 
thickness and other attributes used in playing back the scribble. Generally you shouldn't need to set 
anything except thickness. Scale affects the size of the scribbles when they're played back. The scale 
parameters will stretch/compress the scribble along the x and y axes, also scaling the scribble's distance 
from the lower-left corner (0,0). This is especially useful for applications which wish to scale in 
proportion to the system font size. Note that since scribble scaling is in proportion to the original 
scribble, you may need to save what the system font size was when the scribble was recorded. 



632 PEN POINT API REFERENCE 
Part 5 / Input and Handwriting 

",. Other Facilities 
If pArgs->animSPaper.sendDone is true, an AnimSPaper will send msgAnimSPaperDone to its client 
when the animation is completed. 

For convenience two messages are provided to read and write scribbles to/from resource files. 

Note on Delay and Interstroke Parameters 
AnimSPaper uses OSTaskDelayO to create the Delay and Interstroke delay. The minimum increment of 
OSTaskDelay is a system tick (systick), whose length is device dependent. Use OSSystemInfoO to find 
the length of a systick (see OS.H for details). On an average PC or 386 system the systick is 55 
milliseconds, or about an eighteenth of a second. So micro-adjustments of Delay and Interstroke from, 
say, 60 milliseconds to 80 milliseconds will be ineffective. 

Debugging Flags 
dsAnimSPaper uses the Handwriting debug flag set 'Z'. dsAnimSPaper uses: 

80000 Show all internal debugging messages 

tifndef ANIMSP_INCLUDED 
tdefine ANIMSP_INCLUDED 

tifndef SPAPER_INCLUDED 
tinclude <spaper.h> II ancestor flags 

tendif 
tifndef SYSGRAF_INCLUDED 

tinclude <sysgraf.h> II line & scale def'ns 
tendif 
tifndef FS_INCLUDED 

tinclude <fs.h> II filing def'ns 
tendif 

J'V Common #defines and typedefs 
typedef struct ANIM SPAPER NEW ONLY { 

SYSDC_LINE -line; - - II line attributes for scribble playback 
OS_MILLISECONDS delay; II delay between stroke segments on playback 

II (inverse of playback speed) 
OS MILLISECONDS interstroke; II delay between strokes on playback 
OBJECT client; II recipient of msgAnimSPaperDone 
BOOLEAN sendDone; II if TRUE, animSPaper will send client 

II msgAnimSPaperDone when animation's done 
SCALE scale; II how much larger or smaller to scale the 

II scribble when it's played back. (1,1) 
II plays back at same scale as recorded. 

S32 spare1; I I unused (reserved) 
S32 spare2; II unused (reserved) 

ANIM_SPAPER_NEW_ONLY, *P_ANIM_SPAPER_NEW_ONLY; 
tdefine animSPaperNewFields \ 

sPaperNewFields \ 
ANIM_SPAPER_NEW_ONLY animSPaper; 

typedef struct ANIM_SPAPER_NEW { 
animSPaperNewFields 

ANIM_SPAPER_NEW, *P_ANIM_SPAPER_NEW; 



ANIMSP.H 633 
Messages 

Messages 

Mess(lge 

Arguments 

Comments 

Mess{Jge 

Arguments 

msgNew 
Creates an AnimSPaper window. 

Takes P_ANIM_SPAPER_NEW, returns STATUS. Category: class message. 

typedef struct ANIM_SPAPER_NEW { 
animSPaperNewFields 

} ANIM_SPAPER_NEW, *P_ANIM_SPAPER_NEW; 

The fields you commonly set are: 

pArgs->animSPaper.line.thickness: 
pArgs->animSPaper.delay: 
pArgs->animSPaper.interstroke: 
pArgs->animSPaper.client: 
pArgs->animSPaper.sendDone: 
pArgs->animSPaper.scale: 

msgNewDefaults 
Initialize pArgs. 

thickness of line on playback 
inverse of animation speed 
delay between strokes 
whom to notify when animation is done 
whether to notify client 
playback size relative to input size 

Takes P_ANIM_SPAPER_NEW, returns STATUS. Category: class message. 

typedef struct ANIM_SPAPER_NEW { 
animSPaperNewFields 

} ANIM_SPAPER_NEW, *P_ANIM_SPAPER_NEW; 

Sets: 

pArgs->animSPaper.line.cap 
pArgs->animSPaper.line.join 
pArgs->animSPaper.line.thickness 
pArgs->animSPaper.line.miterLimit 
pArgs->animSPaper.line.radius 
pArgs->animSPaper.delay 
pArgs->animSPaper.interstroke 
pArgs->animSPaper.client 
pArgs->animSPaper.sendDone 
pArgs->animSPaper.scale.x 
pArgs->animSPaper.scale.y 
pArgs->sPaper.flags 

pArgs->win.flags.input 

msgAnimSPaperReadScribble 

sysDcCapRound; 
sysDcJoinRound; 
6; 
10; 
0; 
40; 
160; 
objNull; 
TRUE; 

= FxlntToFx(l); 
= FxlntToFx(l); 

&= (-spScribbleEdit 
& -spRedisplay 
& -spVRuling 
& -spRuling 
& -spBackground); 

1= inputlnkThrough; 

Reads a scribble from a resource file, sets it into the AnimSPaper and displays it. 

Takes P _ANIM_SPAPER_SCRIBBLE, returns STATUS. Category: class message. 

#define msgAnimSPaperReadScribble MakeMsg(clsAnimSPaper, 1) 

typedef struct ANIM_SPAPER_SCRIBBLE 
FS_LOCATOR locator; II resource file locator 
RES_ID resld; II resource id for the scribble 

ANIM_SPAPER_SCRIBBLE, *P_ANIM_SPAPER_SCRIBBLE; 



634 PENPOINT API REFERENCE 

Message 
At'9Uments 

Part 5 / Input and Handwriting 

msgAnimSPaperWriteScribble 
Writes the AnimSPaper's current scribble to a resource file. 

Takes P _ANIM_SPAPER_SCRIBBLE, returns STATUS. Category: class message. 

#define msgAnimSPaperWriteScribble MakeMsg(clsAnimSPaper, 2) 

typedef struct ANIM_SPAPER_SCRIBBLE { 
FS_LOCATOR locator; II resource file locator 
RES_ID resId; II resource id for the scribble 

ANIM_SPAPER_SCRIBBLE, *P_ANIM_SPAPER_SCRIBBLE; 

msgAnimSPaperSetDelay 
Specifies delay for scribble playback 

Takes P _OS_MILLISECONDS, returns STATUS. Category: class message. 

#define msgAnimSPaperSetDelay MakeMsg(clsAnimSPaper, 4) 

msgAnimSPaperGetDelay 
Passes back delay for scribble playback 

Takes P _OS_MILLISECONDS, returns STATUS. Category: class message. 

#define msgAnimSPaperGetDelay MakeMsg(clsAnimSPaper, 5) 

msgAnimSPaperSetlnterstroke 
Specifies interstroke delay for scribble playback 

Takes P _OS_MILLISECONDS, returns STATUS. Category: class message. 

#define msgAnimSPaperSetInterstroke MakeMsg(clsAnimSPaper, 6) 

msgAnimSPaperGetlnterstroke 
Passes back interstroke delay for scribble playback 

Takes P _OS_MILLISECONDS, returns STATUS. Category: class message. 

#define msgAnimSPaperGetInterstroke MakeMsg(clsAnimSPaper, 7) 

msgAnimSPaperSetLine 
Specifies line attributes for scribble playback 

Takes P _SYSDC_LINE, returns STATUS. Category: class message. 

#define msgAnimSPaperSetLine MakeMsg(clsAnimSPaper, 8) 

msgAnimSPaperGetLine 
Passes back line attributes for scribble playback 

Takes P _SYSDC_LINE, returns STATUS. Category: class message. 

#define msgAnimSPaperGetLine MakeMsg(clsAnimSPaper, 9) 



msgAnimSPaperSetScale 
Specifies scaling for scribble playback. 

Takes P _SCALE, returns STATUS. Category: class message. 

#define msgAnimSPaperSetScale MakeMsg(clsAnimSPaper, 11) 

ANIMSP.H 635 
Notifications 

The scribble will be played back at a SCALE relative to the size at which it was recorded. X and Y scales 

may be set independently. The SCALE affects both the scribble and its distance from the lower-left 
corner (0,0). 

msgAnimSPaperGetScale 
Passes back scaling for scribble playback 

Takes P _SCALE, returns STATUS. Category: class message. 

#define msgAnimSPaperGetScale MakeMsg(clsAnimSPaper, 12) 

Notifications 

msgAnimSPaperDone 
Sent to client when animation is complete. 

Takes OBJECT, returns STATUS. Category: advisory message. 

#define msgAnimSPaperDone MakeMsg(clsAnimSPaper, 3) 

pArgs is the animSPaper's UID. This message is sent only if there is a client and 

pArgs->animSPaper.sendDone was true at msgNew time. 





GWIN.H 

This file contains the API definition for c1sGWin. 

c1sGWin inherits from c1sWin. 

Introduction 
c1sGWin provides a convenient default implementation of several important PenPoint features -- gesture 

and keyboard processing, quick help interaction and event forwarding. 

c1sGWin is an ancestor of many ofPenPoint's window-based classes, including all of the Toolkit classes. 

Many tasks involving the input system and the handwritip.g recognition system can be handled very 

simply using only a few c1sGWin messages. Some tasks require use of some of c1sGWin's more 
sophisticated messages. And there are some task for which c1sGWin is not appropriate. For instance, 
even a modest drawing application or "ink editor" will almost certainly have to interact more directly 

with the input system and handwriting recognition system. 

Several important task can be accomplished by using just few c1sGWin messages: 

• To process gestures, see msgGWinGesture. 

• To process keyboard input, see msgGWinKey. 

• To implement quick help, use gWin's helpld; see GWIN_NEW_ONLYand msgGWinSetHelpld. 

• To process gestures and keyboard events which occurred in child windows, see 

msgGWinForwardedGesture or msgGWinForwardedKey. 

• To control whether or not a window responds to gestures, see the gesture Enable field in 
GWIN_STYLE. 

More complex subclasses will need to understand more details, as described below. 

Debugging Flags 
GWin's debugging flag set is 'I' (Ox23). Defined flags are: 

0001 Display generally useful messages. 

0004 Display messages during quick help processing. 

0010 Display messages during timeout processing. 

Keyboard Processing 
Keyboard processing and forwarding occurs when a gWin receives msglnputEvent with a key event 
message in pArgs->devCode. The steps taken are: 

• gWin self sends msgGWinKeywith the event. 



638 PENPOINT API REFERENCE 
Part 5 I Input and Han'dwriting 

• If the response to msgGWinKey is stsRequestDenied, gWin self sends msgGWinBadKey. gWin's 
default response to msgGWinKey is to return stsRequestForward, which causes gWin to perform 
key event forwarding. . 

• If the response to msgGWinKey is stsRequestForward and style.keyboardForward is set, gWin self 
sends msgGWinForwardKey. In response to this message, the gWin packages up the data and uses 

msgWinSend to forward the key information. This results in parent windows potentially receiving 
msgGWinForwardedKey (see msgGWinForwardedKey description). gWin's default response to 

msgGWinForwardedKey is to return stsRequestForward, which causes the event forwarding to 

continue. 

• If the response to msgGWinForwardKey is stsRequestDenied or stsRequestForward, gWin self 
sends msgGWinBadKey. 

Gesture Processing 
A gWin self sends msgGWinGesture when one of the following occurs. (Each of these is described more 

detail below.) 

• Case 1: A gWin receives msgGWinXList (typically because a translation has completed). 

• Case 2: A gWin receives msglnputEvent with an event of press-hold or a tap-press-hold. 

• Case 3: A gWin receives msgQuickHelpHelpShow from theQuickHelpManager. 

If the response to msgGWinGesture is stsRequestDenied, the gesture is unrecognized and one of the 

following actions is taken: 

• In Case 1, a translated gesture, msgGWinBadGesture is self sent. 

• In Case 2, normal gesture processing continues. This is because a press-hold or a tap-press-hold 
gesture is sent in response to an input event while potentially in the process of collecting data for 
another gesture (see below). 

• In Case 3, the "no help available" help is displayed via msgQuickHelpShow. 

If the response to msgGWinGesture is stsRequestForward, msgGWinForwardGesture is self sent. If 

the response to msgGWinForwardGesture is stsRequestDenied or stsRequestForward, the same action 
is taken as if msgGWinGesture returned stsRequestDenied. 

Case 1: How a GWin Receives Translated Gestures. 

msgGWinGesture is self sent in response to msgGWinXList. msgGWinXList is self sent by gWin after 
an xGesture translator has completed its translation. This occurs as follows: 

When msgPenStroke is received from the input system, the gWin adds strokes to a gesture translator. 
This is done via a self send of msgGWinStroke, which adds the stroke via sending msgScrAddStroke to 

the gesture translator. 

gWin --> msgScrAddStroke --> xGesture Translator 

When an "out of proximity" event is received, gWin self sends msgGWinComplete. In response to the 

msgGWinComplete, gWin sends msgScrComplete to the gesture translator. 

gWin --> msgScrComplete --> xGesture Translator 

The translator then sends msgXlateCompleted back to the gWin, indicating translation is complete. 

GWin retrieves translated results by sending msgXlateData to the gesture translator. 



gWin <-- msgXlateCompleted <-- xGesture Translator --> msgXlateData 
Translator 

GWIN.H 639 

--> xGesture 

This returns an xlist containing the translated data (see xlist.h). GWin then self sends msgGWinXList 
to process the xlist. This extracts the appropriate information from the xlist (via XList2Gesture). gWin 
then performs the gesture processing and forwarding described below: 

• Self send msgGWinGesture. 

• If msgGWinGesture returns stsRequestDenied, gWin self sends msgGWinBadGesture. 

• If msgGWinGesture returns stsRequestForward and style.gestureForward is set, gWin self sends 
msgGWinForwardGesture. Similar to the forwarding of keyboard events, the gWin packages up 
the gesture information and uses msgWinSend to forward the gesture. This results in parent 
windows potentially receiving msgGWinForwardedGesture (see msgGWinForwardedGesture). 

• If msgGWinForwardGesture returns stsRequestForward and the gesture is the help gesture, gWin 
calls PenPoint's quick help with hlpQuickHelpNoHelp. This invokes quick help with the "No help 
available" text. 

• If msgGWinForwardGesture returns stsRequestDenied or stsRequestForward, gWin self sends 
msgGWinBadGesture 

Case 2: How a GWin Synthesizes Some Gestures. 

If, when processing input events, gWin sees a press-hold or a tap-press-hold input event, gesture 
processing and forwarding takes place. If the gesture is unrecognized, then normal input processing 
continues. This means that if an end-user press-holds on an area where press-hold has no meaning, the 
window in question receives msgGWinGesture with xgsPressHold. The window returns 
stsRequestForward (as will all the windows that see msgGWinForwardGesture). Normal processing 
continues, and when the user lifts the pen the translation of the single tap occurs and the gesture 
processing mentioned above takes place. If the gesture is recognized, the gesture translation is aborted 
and input data is thrown away until (and including) the next Pen Up event. A description: 

• gWin self sends msgGWinGesture with xgsPressHold or xgsTapHold. 

• If the response to msgGWinGesture is stsRequestDenied, processing of the input continues. 

• If the response to msgGWinGesture is stsOK, gesture processing is aborted. 

• If the response to msgGWinGesture is stsRequestForward and style.gestureForward is set, gWin 
self sends msgGWinForwardGesture. This results in parent windows potentially receiving 
msgGWinForwardedGesture (see msgGWinForwardedGesture). 

• If the response to msgGWinForwardGesture is stsRequestDenied or stsRequestForward, 
processing of the input continues. 

• If the response to msgGWinForwardGesture is stsOK, gesture processing is aborted. 

Case 3: How a GWin Responds to msgQuickHelpHelpShow. 

The final case in which msgGWinGesture is sent is in response to msgQuickHelpHelpShow. This is 
sent from theQuickHelpManager when in help mode and the user taps on the screen. GWin responds 
by sending msgGWinGesture with the help gesture, and performing similar forwarding above. When 
msgGWinGesture returns stsRequestDenied, or msgGWinForwardGesture returns stsRequestDenied 
or stsRequestForward, gWin sends msgQuickHelpShow to display the No Help Available message. 



640 PENPOINT API REFERENCE 
Part 5 / Input and Handwriting 

style.gesture Local and Coordinate Transformations 
When using large windows (width or height near or above 2A 16), you should style.gestureLocal to true. 
Doing so avoids some potential numeric overflow conditions that can make gesture recognition 
unreliable. 

Setting style.gestureLocal true changes the coordinate system used internally by gWin. It also changes 
the coordinate system used in some of gWin's more sophisticated self sent messages. If you don't use 
these more sophisticated messages, you can just set style.gestureLocal true and never worry about it 
again, regardless of the size of your window. If you do use these messages, then you should read the rest 
of this section to understand what's different. 

Here are the messages whose parameters are affected by style.gestureLocal: 

• msgGWinStroke 

• msgGWinXList 

• msgGWinTransformGesture 

• msgGWinTransformXList 

Normal gesture processing (style.gestureLocal is false) is done using the following coordinate 
transformations: 

• The stroke input event is delivered with pArgs->xy set to the local window coordinates and the pen 
data in root window pen coordinates. 

• On the first stroke to the window, gWin remembers an offset of (0,0). This step is obviously trivial 
in this case but is important when style.gestureLocal is true. 

• This value is first converted to root window coordinates and then the resulting value is converted to 
pen units. 

• This vector is subtracted from the origin of the pen stroke data. The pen stroke data is still in pen 
units but has been shifted so that its origin is relative to the local window origin. 

• This shifted stroke is self sent using msgGWinStroke. THIS IS IMPORTANT. Any object 
intercepting this message gets pen data that has been shifted to appear in the local window. This is 
slightly different than the pen stroke which comes from the input system. 

• In response to the first msgGWinStroke, gWin creates a translator and makes itself an observer of 
the translator. The stroke is then added to the translator. 

• Normal input collection of strokes continues. Eventually the gesture is completed and translation 
occurs. 

• In response to msgXlateComplete, gWin gets the XList data and converts it from pen units to 
window units. Remember that since the pen strokes were shifted by the origin of the window (in 
digitizer units), the window units give locations in the local window. gWin then self sends 
msgGWinXList. 

• In response to msgGWinXList, gWin converts the xlist information and self sends 
msgGWinGesture. 

If style.gestureLocal is true, the same sequence of events occurs, but with the following change in 
coordinate systems: 

• When the first stroke comes in to the gWin, the local window coordinates of the stroke are saved as 
the offset instead of 0,0. This value is converted to root window coordinates and then converted to 



GWIN.H 641 
Common #defines and typedefs 

pen units and used to offset the stroke. This means that the stroke is no longer in local window 
space, but rather are in root window coordinate space. 

• Subclasses which handle msgGWiriStroke are getting data which is root window relative. If they 
need it in local window space then they have to transform it first. 

• When the translation is complete, the offset that was remembered earlier is converted to root 
window coordinates and then to pen units. This offset is added to the points returned by the 
translator before converting back to screen units. The effect is that now the gesture is shifted back to 
its proper location in root window space. 

• When converting the XList data to the GWin gesture, the important points are converted from root 
window coordinates back to local window coordinates before self sending msgGWinGesture. 

*ifndef GWIN_INCLUDED 
*define GWIN_INCLUDED 
*ifndef GO_INCLUDED 
*include <go.h> 
*endif 
*ifndef CLSMGR INCLUDED 
*include <clsmgr.h> 
*endif 
*ifndef WIN_INCLUDED 
*include <win.h> 
*endif 
II Next up: 25 Recycled: 3 

Common #defines and typedefs 
typedef OBJECT GWIN; 

Default Window Flags 
These are the default input flags set by a gWin at msgNew time if gestureEnable is set. Changing these 
flags after new time is possible, but extreme care needs to be taken as these define the pen events that get 
generated to the window. 

*define gWinlnputFlags (inputStroke I inputOutProx I \ 
inputInk I inputTip linputTimeout I inputAutoTerm I \ 
inputEnter I inputHoldTimeout) 

Style Structure 
typedef struct GWIN STYLE 

U16 gestureEnable: 1, 
gestureForward: 1, 
gestureLocal: 1, 

keyboardForward: 1, 
privateData1: 2, 
grabDown: 1, 

grabActive: 1, 
firstEnter: 1, 
tossingEvents: 1, 
askOtherWin: 1, 
otherWinSaysYes: 1, 
reserved: 4; 

GWIN_STYLE, *P_GWIN_STYLE; 

II enables gesture translation 
II enables forwarding of gestures 
II enables localized strokes for large 
II gesture windows (>32K digitizer pts) 
II enables forwarding of key events 
II private 
II grab input on msgPenDown vs. 
II msgPenStroke 
II private 
II grab on msgPenEnter if no other grab 
II private 
II ask other gWin if it wants event 
II answer yes if asked if you want event 
II reserved for future use 



642 PENPOINT API REFERENCE 

Part 5 I Input and Handwriting 

Gesture Structure 

This data structure defines all information returned. by a gesture translator in the form of a simple data 
structure. It is used as a parameter to many of the gesture methods defined in gWin. 

typedef struct GWIN GESTURE { 

MESSAGE msg; II gesture Id 
RECT32 bounds; II bounding box in LWC 
XY32 hotPoint; II gesture hot point 
OBJECT uid; II object in which the gesture was generated 
U32 reserved; II reserved for future use 

GWIN_GESTURE, *P_GWIN_GESTURE; 

Messages 

Message 
Arguments 

msgNew 
Creates and initializes a new instance. 

Takes P_GWIN_NEW, returns STATUS. Category: class message. 

typedef struct GWIN_NEW_ONLY 
GWIN_STYLE style; 
U32 helpld; 
U32 reserved; 

II gWin style flags 
II quick help id 

GWIN_NEW_ONLY, *P_GWIN NEW ONLY; 
#define gWinNewFields \ 

winNewFields \ 
GWIN NEW ONLY gWin; 

typedef struct GWIN_NEW { 
gWinNewFields 

} GWIN_NEW, *P_GWIN_NEW; 

If gWin.style.gestureEnable is true, then gWin ORs in gWinlnputFlags into pArgs->win.flags.input 
before passing the message to its ancestors. These win.flags.input bits can be changed after the gWin is 
created, but extreme care should be taken! 

If setting a helpld, setting the pNew->gWin.helpld to the same as the pNew->win.tag helps minimize 
memory needed by the object. It is recommended that the helpld be the same as the window tag if 
possible. However, if the window tag changes when the help id is the same as the window tag, then the 
help tag will change too. 

msgN ewDefaults 
Initializes the GWIN_NEW structure to default values. 

Takes P_GWIN_NEW, returns STATUS. Category: class message. 

typedef struct GWIN_NEW { 
gWinNewFields 

} GWIN_NEW, *P_GWIN_NEW; 

Zeros out pNew->gWin and sets: 

pArgs->gWin.style.gestureEnable = TRUE; 
pArgs->gWin.style.gestureForward = TRUE; 
pArgs->gWin.style.keyboardFotward = TRUE; 
pArgs->gWin.style.grabDown = TRUE; 
win.input = gWinlnputFlags; 



Message 
Arguments 

Message 
Arguments 

Comments 

msgGWinGetStyle 
Returns the current style. 

Takes P _GWIN_STYLE, returns STATUS. 

#define msgGWinGetStyle 

typedef struct GWIN_STYLE 
U16 gestureEnable: 

gestureForward: 
gestureLocal: 

keyboardForward: 
privateDatal: 
grabDown: 

grabActive: 
firstEnter: 
tossingEvents: 
askOtherWin: 
otherWinSaysYes: 
reserved: 

} GWIN_STYLE, *P_GWIN_STYLE; 

msgGWinSetStyle 
Sets the style settings. 

1, 
1, 
1, 

1, 
2, 
1, 

1, 
1, 
1, 
1, 
1, 
4; 

Takes P _GWIN_STYLE, returns STATUS. 

#define msgGWinSetStyle 

typedef struct GWIN STYLE 
U16 gestureEnable: 1, 

gestureForward: 1, 
gestureLocal: 1, 

keyboardForward: 1, 
privateDatal: 2, 
grabDown: 1, 

grabActive: 1, 
firstEnter: 1, 
tossingEvents: 1, 
askOtherWin: 1, 
otherWinSaysYes: 1, 
reserved: 4; 

} GWIN_STYLE, *P_GWIN_STYLE; 

GWIN.H 643 
Menage. 

MakeMsg(clsGWin, 12) 

II enables gesture translation 
II enables forwarding of gestures 
II enables localized strokes for large 
II gesture windows (>32K digitizer pts) 
II enables forwarding of key events 
II private 
II grab input on msgPenDown vs. 
II msgPenStroke 
II private 
II grab on msgPenEnter if no other grab 
II private 
1/. ask other gWin if it wants event 
II answer yes if asked if you want event 
II reserved for future use 

MakeMsg(clsGWin, 13) 

II enables gesture translation 
II enables forwarding of gestures 
II enables localized strokes for large 
II gesture windows (>32K digitizer pts) 
II enables forwarding of key events 
II private 
II grab input on msgPenDown vs. 
II msgPenStroke 
II private 
II grab on msgPenEnter if no other grab 
II private 
II ask other gWin if it wants event 
II answer yes if asked if you want event 
II reserved for future use 

If gestureEnable is true, gWin ORs in the gWinInputFlags with the window flags. (See the comments 
near msgNew in this file.) Setting gestureEnable to false does NOT clear these flags. 

msgGWinSetHelpld 
Sets the gWin's helpId for quick help. 

Takes U32, returns STATUS. 

#define msgGWinSetHelpld MakeMsg(clsGWin, 16) 

Setting the helpId to be identical to the gWin's win.tag helps minimize the amount of instance data 
taken by a gWin. 

~ 



644 PENPOINT API REFERENCE 

M$$S©t]0 

Arg0ments 

Part 5 / Input and Handwriting 

msgGWinGetHelpld 
Returns the gWin's helpld. 

Takes P _U32, returns STATUS. 

fdefine msgGWinGetHelpId 

msgGWinGeifranslator 
Returns the gWin's translator object. 

Takes P _OBJECT, returns STATUS. 

fdefine msgGWinGetTranslator 

MakeMsg(clsGWin, 17) 

MakeMsg(clsGWin, 7) 

gWin's default response is to return the current translator object. 

By default, gWin has a null current translator unless strokes have been added since msgNew or since the 
last msgGWinAbort or msgGWinComplete. (In other words, gWin does not have a translator unless it 
is currently collecting or translating strokes.) 

msgGWinAbort 

msgGWinSetTranslator 
Sets the translator object and returns the previous one. 

Takes P_OBJECT, returns STATUS. 

fdefine msgGWinSetTranslator MakeMsg(clsGWin, 8) 

This message has no affect if the gWin has not received a stroke from the input system since the last 

msgGWinComplete or msgGWinAbort. 

Because of this limitation you probably should not use this message. 

gWin's default response is to set its translator object to pArgs AND to set *pArgs to the uid of the 
previous translator. 

msgGWinAbort 

msgGWinTransformGesture 
Transforms gesture information into local window coordinates. 

Takes P_GWIN_GESTURE, returns STATUS. 

fdefine msgGWinTransformGesture MakeMsg(clsGWin, 14) 

typedef struct GWIN GESTURE { 

MESSAGE msg; II gesture Id 
RECT32 bounds; II bounding box in LWC 
XY32 hotPoint; II gesture hot point 
OBJECT uid; II object in which the gesture was generated 
U32 reserved; II reserved for future use 

GWIN_GESTURE, *P_GWIN_GESTURE; 

This message is useful for clients who handle msgGWinForwardedGesture. 

Transforms the gesture bounds and hotPoint into the local window coordinate system. 

This is only necessary if the gesture occurred in a window other then self. 

gWin's default response modifies the bounds, hotPoint, and uid (set to self) fields. 



Comments 

OWIN.H 645 
O •• tur. Proc ... ing 

msgGWinTransformXList 
Transforms xlist information to local window coordinates. 

Takes P _XLIST, returns STATUS. 

*define msgGWinTransformXList MakeMsg(clsGWin, 15) 

This message is useful for clients who handle msgGWinXList. 

This message is only necessary if the xlist was generated relative to a window other then self. This 
message transforms the gesture bounds and hotPoint to local window coordinates system. 

~ Geslure Processing 

Comment:; 

See Also 

Comments 

See A!so 

msgGWinStroke 
Self sent to process a pen stroke received from the input system. 

Takes P_INPUT_EVENT, returns STATUS. 

*define msgGWinStroke MakeMsg(clsGWin, 5) 

If style.gestureEnable is false, gWin's default response is to return stsOK. 

If style.gestureEnable is true, gWin's default response is as follows. First, if the gWin has no translator, 

one is created by self sending msgGWinTranslator and gWin makes itself an observer of the translator. 
Next It then sends msgScrAddedStroke to the translator to tell the translator that the gWin has received 

a new stroke. 

Subclasses can handle this message and process individual strokes. If style.gestureLocal is false, stroke 
coordinates are self relative; if style.gestureLocal is true, stroke coordinates are root window relative. 

msgGWin Translator 

msgGWinTranslator 
Self sent to retrieve the translator used to gather and translate strokes. 

Takes P _OBJECT, returns STATUS. 

*define msgGWinTranslator MakeMsg(clsGWin, 4) 

gWin's default response is to create an in~tance of clsXGesture. 

gWin self sends msgGWinTranslator whenever it needs a translator to gather and translate strokes. For 
instance, when gWin receives msgGWinStroke, and the stroke is the first stroke in a new gesture, gWin 
self sends msgGWinTranslator. 

The translator will be destroyed during gWin's handling of msgGWinComplete or msgGWinAbort. 

msgGWinComplete 

msgGWinComplete 
Self sent to complete a gesture. 

Takes void, returns STATUS. 

*define msgGWinComplete MakeMsg(clsGWin, 6) 

gWin self sends msgGWinComplete when "out of proximity" or a timeout occurs. Clients can send 

msgGWinComplete to cause gesture completion and translation. 



646 PENPOINT API REFERENCE 
Part 5 / Input and Handwriting 

gWin's default response to is cause translation as described in the introductory material at the beginning 
of this file. gWin then destroys its translator. 

If the gWin has a grab (perhaps because it was collecting strokes when a client sends this message), the 
grab is NOT terminated in response to this message. But the gWin will remember that this message has 
been received and will terminate the grab in response to the next msglnputEvent it receives. 

msgGWinAbort 
Aborts a gesture. 

Takes void, returns STATUS. 

#define msgGWinAbort MakeMsg(clsGWin, 9) 

gWin's default response is very similar to its response to msgGWinComplete, except that the translation 
is aborted instead completed. As with msgGWinComplete, the gWin destroys its translator and ceases 
collecting strokes. 

A client can send msgGWinAbort to abort the gWin's processing of a gesture. 

The grab behavior is identical to that described with msgGWinComplete. 

Subclasses may field msgGWinAbort but must also allow their ancestor to see the message. 

msgGWinXList 
Self sent by gWin to process an xlist. 

Takes P _XLIST, returns SfATUS. 

#define msgGWinXList MakeMsg(clsGWin, 1) 

After a translation has been completed (in other words, after gWin has received msgXlateCompleted 
from its translator), gWin extracts the translation data (in the form of an xlist) from the translator, and 
then self sends msgGWinXList. 

gWin's default response is to extract the gesture information from the xlist (using the xlist utility routine 
XList2Gesture) and then self sends msgGWinGesture. 

msgGWinGesture 

Geslure Recognition and Forwarding 
Messages 

Mess©ge 
Arguments 

msgGWinGesture 
Self-sent to process a gesture. 

Takes P _ GWIN_ GESTURE, returns STATUS. 

#define msgGWinGesture MakeMsg(clsGWin, 2) 

typedef struct GWIN GESTURE { 

MESSAGE msg; II gesture Id 
RECT32 bounds; II bounding box in LWC 
XY32 hotPoint; II gesture hot point 
OBJECT uid; II object in which the gesture was 
U32 reserved; II reserved for future use 

GWIN_GESTURE, *P_GWIN_GESTURE; 

generated 



Comments 

Mes$~ge 

Arguments 

GWIN.H 647 
Gesture Recognition and Forwarding Messages 

The default response to msgGWinGesture is as follows: 

For the help gesture(s), return the result of self sending msgGWinHelp. By default, msgGWinHelp 
returns stsRequestForward if the helpld is zero, or stsOK if there is a valid helpld. 

For all other gestures, return stsRequestForward. 

Effectively, the default response of gWin to msgGWinGesture is to return stsOK if the gesture is a help 
gesture on a window and the window has a valid helpld. Otherwise the default behavior is to return 
stsRequestForward. 

GWin's default response to msgGWinForwardedGesture is the same as msgGWinGesture. This means 
that the help gesture(s) is forwarded up the window hierarchy until a gWin has a valid helpld, and then 
that gWin sends the appropriate message and quick help id to theQuickHelpManager. 

Hence a window can have a common helpld (and corresponding help text) for all (or some) child 
windows, and the quick help text displayed will be the same regardless of the child window the gesture 
actually occurred in. 

stsRequestForward The gesture was not processed and should be forwarded. 

stsRequestDenied The gesture was not processed and should not be forwarded. 

stsOK The gesture was processed and should not be forwarded. 

msgGWinXList 

msgGWinForwardGesture 
Causes a gesture to be forwarded to parent windows. 

Takes P_GWIN_GESTURE, returns STATUS. 

ide fine msgGWinForwardGesture MakeMsg(clsGWin, 20) 

typedef struct GWIN GESTURE { 

MESSAGE msg; II gesture Id 
RECT32 bounds; II bounding box in LWC 
XY32 hotPoint; II gesture hot point 
OBJECT uid; II object in which the gesture was 
U32 reserved; II reserved for future use 

GWIN_GESTURE, *P_GWIN_GESTURE; 

Subclasses should not handle this message. 

generated 

In response to this message, gWin initiates gesture forwarding. This results in each parent window 
within the same process receiving msgGWinForwardedGesture, from the immediate parent to the root. 

If any window along the path returns stsOK from msgGWinForwardedGesture, or the window has 
style.gestureForward off, stsOK is returned. 

gWin performs this forwarding via msgWinSend. The status returned to the sender of 
msgGWinForwardGesture is the status returned by this msgWinSend. See the comments for 
msgGWinForwardedGesture for return values and their interpretation. 

The msgWinSend of msgGWinForwardedGesture is only delivered to windows in same process. 

stsRequestForward The gesture was not processed by any of the ancestor windows. Further processing 
should occur if possible. 

stsRequestDenied The gesture was not processed by any of the ancestor windows, and was aborted at 
some level of the walk. No further processing should occur. 

stsOK The gesture was processed. No further processing should occur. 

msgGWinXList 



648 PENPOINT API REFERENCE 

Message 
Arguments 

Message 
Arguments 

Part 5 / Input and Handwriting 

msgGWinForwardedGesture 
Message received when a gesture is forwarded. 

Takes P _GWIN_GESTURE, returns STATUS. 

#define msgGWinForwardedGesture MakeMsg(clsGWin, 11) 

typedef struct GWIN_GESTURE { 
MESSAGE msg; II gesture Id 
RECT32 bounds; II bounding box in LWC 
XY32 hotPoint; II gesture hot point 
OBJECT uid; II object in which the gesture was generated 
U32 reserved; II reserved for future use 

GWIN_GESTURE, *P_GWIN_GESTURE; 

See the comments describing msgGWinGesture. 

msgGWinForwardedGesture is sent to a gWin when a gesture event has been forwarded from a child 
window. Subclasses wishing to process gestures forwarded from child windows should handle this 
message. 

Do not send this message; it should only be self sent by clsGWin. 

stsRequestForward The gesture was not processed and should be forwarded further. 

stsRequestDenied The gestJre was not processed and should not be forwarded any further. 

stsO K The gesture was processed and should not be forwarded any further. 

msgGWinHelp 

msgGWinBadGesture 
Displays feedback for unrecognized and unknown gestures. 

Takes P _GWIN_GESTURE, returns STATUS. 

#define msgGWinBadGesture MakeMsg(clsGWin, 10) 

typedef struct GWIN GESTURE { 
MESSAGE msg; II gesture Id 
RECT32 bounds; II bounding box in LWC 
XY32 hotPoint; II gesture hot point 
OBJECT uid; II object" in which the gesture was generated 
U32 reserved; II reserved for future use 

GWIN_GESTURE, *P_GWIN_GESTURE; 

gWin's response is to display the unrecognized gesture feedback (if pArgs->msg == xgsNull) or the 
unknown gesture feedback (for any other value of pArgs->msg). 

gWin's default response to msgGWinXList includes self-sending msgGWinBadGesture if the gesture is 

unrecognized by the recognition system (xgsNull) or if none of the recipients of msgGWinGesture and 
msgGWinForwardedGesture processed the gesture. 

msgGWinXList 

msgGWinHelp 
The gWin displays quick help for itself. 

Takes NULL, returns STATUS. 

#define msgGWinHelp MakeMsg(clsGWin, 22) 



Return Vulue 

GWIN.H 649 
Keyboard Processing and 

If the gWin's helpId is 0, gWin returns stsRequestForward. Otherwise, gWin sends 
msgQuickHelpShow to theQuickHelpManager with the gWin's help id. 

stsRequestForward The helpId of self is 0. 

stsOK Quick help was invoked for self. 

Keyboard Processing and 
Forwarding Messages 

Comments 

msgGWinKey 
Self sent to process a key input event. 

Takes P _INPUT_EVENT, returns STATUS. 

fdefine msgGWinKey MakeMsg(clsGWin, 21) 

As part of its default response to msgInputEvent, gWin self sends msgGWinKey if the input event is a 
key event. 

gWin's default response to msgGWinKey is to return stsRequestForward. 

stsRequestForward The key event was not processed and should be forwarded further. 

stsRequestDenied The key event was not processed and should not be forwarded any further. 

stsOK The key event was processed and should not be forwarded. 

msgGWinF0 rwardKey 
Initiates keyboard event forwarding. 

Takes P_INPUT_EVENT, returns STATUS. 

fdefine msgGWinForwardKey MakeMsg(clsGWin, 19) 

Subclasses should not handle this message. 

In response this message, gWin initiates keyboard event forwarding. This results in each parent window 
within the same process receiving msgGWinForwardedKey, from the immediate parent to the root. 

If any window along the path returns stsOK from msgGWinForwardedGesture, or the window has 
style.keyboardForward off, stsO K is returned. 

gWin performs this forwarding via msgWinSend. The status returned to the sender of 
msgGWinForwardKey is the status returned by this msgWinSend. See the comments for 
msgGWinForwardedKey for return values and their interpretation. 

The msgWinSend of msgGWinForwardedKey is only delivered to windows in same process. 

stsRequestForward The key event was not processed by any of the ancestor windows, and should be 
forwarded further if meaningful. 

stsRequestDenied The key event was not processed by any of the ancestor windows, and was aborted 
at some level of the walk. No further processing should occur. 

stsOK The key event was processed. No further processing should occur. 

msgWinSend 



610 PEN POINT API REFERENCE 

Comments 

MessQge 
Ar9uments 

Part 5 I Input and Handwriting 

msgGWinForwardedKey 
Message received when a keyboard event is forwarded to a gWin. 

Takes P_INPUT_EVENT, returns STATUS. 

*define msgGWinForwardedKey MakeMsg(clsGWin, 18) 

msgGWinForwardedKey is sent to a gWin when a keyboard event has been forwarded from a child 
window. Subclasses wishing to handle keyboard events forwarded from child windows should handle' 
this message. 

gWin's default response is to return stsRequestForward. 

Do not send this message; it should only be self sent by clsGWin. 

stsRequestForward The key event was not processed and should be forwarded further. 

stsRequestDenied The key event was not processed and should not be forwarded any further. 

stsOK The key event was processed and should not be forwarded any further. 

msgGWinBadKey 
Self sent to allow a subclass to handle bad keys. 

Takes P _INPUT_EVENT, returns STATUS. 

*define msgGWinBadKey MakeMsg(clsGWin, 23) 

gWin's default response is to return stsOK. 

gWin self sends msgGWinBadKey when (1) msgGWinKey returns stsRequestDenied, (2) 
msgGWinKey returns stsRequestForward and style.keyboardForward is not set, or (3) 
msgGWinForwardKey returns stsRequestDenied or stsRequestForward. 

msgGWinIsComplete 
Called to determine if a gesture was sent while processing input. 

Takes P _GWIN_GESTURE, returns STATUS. 

*define msgGWinIsComplete MakeMsg(clsGWin, 24) 

typedef struct GWIN GESTURE { 
MESSAGE msg; II gesture Id 
RECT32 bounds; II bounding box in LWC 
XY32 hotPoint; II gesture hot point 
OBJECT uid; II object in which the gesture was generated 
U32 reserved; II reserved for future use 

GWIN_GESTURE, *P_GWIN_GESTURE; 

This message is used to determine if the gesture may have been sent other than when processing 
msgGWinXList or msgQuickHelpHelpShow. Put simply, this message returns stsOK for any gesture 
other then those sent while processing input where gesture processing may continue. Examples are 
press-hold and tap-press hold. 

stsRequestDenied The gesture was sent while processing input The gesture was sent 
from msgGWinXList ormsgQuickHelpHelpShow. 



Message 
AwgtJrnents 

msgGWinGestureDone 
Sent to indicate the end of a gesture. 

Takes P_GWIN_GESTURE, returns STATUS. Category: self-sent. 

#define msgGWinGestureDone MakeMsg(c!sGWin, 25) 

typedef struct GWIN GESTURE { 
MESSAGE msg; II gesture Id 
RECT32 bounds; II bounding box in LWC 
XY32 hotPoint; II gesture hot point 

GWIN.H 651 
Messages from Other Classes 

OBJECT uid; II object in which the gesture was generated 
U32 reserved; II reserved for future use 

GWIN_GESTURE, *P_GWIN_GESTURE; 

As part of its default response to msgGWinXList, gWin self sends msgGWinGestureDone. 
(msgGWinXList is self sent after the forwarding protocol has completed but before 
msgQuickHelpShow or msgGWinBadGesture is sent.) 

It is intended for use by classes that modify their state in anticipation of receiving msgGWinGesture 
and fail to receive it. (For instance, a subclass could handle msgGWinGesture and not pass the message 
along to its ancestor). Such classes should watch for msgGWinAbort and msgGWinGestureDone. 
Either, but not both, could be sent for anyone gesture. 

Subclasses may field msgGWinGestureDone but must also allow their ancestor to see the message. 

Messages from Other Classes 

Comments 

Comments 

msgFree 
Defined in clsmgr.h. 

Takes OBLKEY, returns STATUS. 

In response to msgFree, gWin removes itself as an observer of its translator and then destroys the 
translator. In addition, gWin frees any memory it has allocated. 

msgSave 
Defined in clsmgr.h. 

Takes P_OBLSAVE, returns STATUS. 

In response to msgSave, gWin saves state information. gWin files its helpld if the helpld is different 
then the window tag. 

Note that the gWin's translator is not saved or restored since the translator only exists while the gWin is 
actively collecting strokes. 

msgRestore 
Defined in clsmgr.h. 

Takes P _OBLRESTORE, returns STATUS. 

In response to msgRestore, gWin restores state information, including the helpld. 

Note that the gWin's translator is not saved or restored since the translator only exists while the gWin is 
actively collecting strokes. 



652 PENPOINT API REFERENCE 
Part 5 I Input and Handwriting 

msgWinSend 
Defined in win.h. 

Takes P _WIN_SEND, returns STATUS. 

gWin handles msgWinSend if pArgs->msg is msgGWinForwardedGesture or 
msgGWinForwardedKey. For all other values of pArgs->msg, gWin simply passes the message to its 
ancestor. 

If pArgs->msg is msgGWinForwardedGesture, gWin self sends msgGWinForwardedGesture. If this 
returns stsRequestForward and the gWin's style.gestureForward is set, gWin passes the msgWinSend to 
its ancestor, allowing the forwarding to continue. Otherwise gWin returns the result of the self send of 
msgGWinForwardedGesture. 

If pArgs->msg is msgGWinForwardedKey, gWin self sends msgGWinForwardedKey. The response to 
this message is handled similarly to the gesture case, except that style.keyboardForward is checked rather 
than style.gestureForward. 

msgGWinForwardKey 

msglnputEvent 
Defined in input.h. 

Takes P_INPUT_EVENT, returns STATUS. 

This is the main processing message for gWin. 

For keyboard events, gWin self sends msgGwinKey, and performs the keyboard processing and 
forwarding as described earlier. 

For pen events, gWin returns stsInputTerminate if gestureEnable is not set. Otherwise, gWin initiates a 
grab by returning stsInputGrabTerminate on msgPenDown if style.grabDown is set. 

On msgPenStroke events gWin self sends msgGWinStroke and continues the grab by returning 
stsInputGrab Terminate. 

On msgPenOutProxUp, msgPenOutProxDown, or msgPenTimeout gWin self sends 
msgGWinComplete and releases the grab by returning stsInputTerminate. 

For other pen events, gWin returns stsInputTerminate or stsInputTerminate ifit "grabbing" (has 
returned stsInputGrabTerminate due to a msgPenDown or msgPenStroke), and not 
"released-the-grab" (returned stsInputTerminate due to a msgPenOutProxDown, msgPenOutProxUp, 
or msgPenTimeout). 

If gWin receives a msgPenTap, is not "grabbing", and has gestureEnable set, gWin synthesizes a tap 
gesture by self sending msgGWinXList. Thus, even though ifinputStroke events are turned offin the 
window, gWin can still recognize tap gestures. 

stsInputGrab Terminate 

msgGWinStroke 

Temporarily grabbing input events Not grabbing input events. 



msgQuickHelpHelpShow 
Defined in qhelp.h. 

Takes P _XY32 , returns STATUS. 

GWIN.H 653 
Messages from Other Classes 

The theQuickHelpManager sends msgQuickHelpHelpShow to a gWin to ask the gWin to display the 
gWin's quick help. (This is the message that theQuickHelpManager sends when the user taps while in 
quick help mode.) 

gWin's default response is to self send msgGWinGesture; the gesture sent along with this 
msgGWinGesture is a synthesized help gesture. 

If the response to the msgGWinGesture is stsRequestForward, gWin self sends 
msgGWinForwardGesture. If the response to the msgGWinForwardGesture is stsRequestForward, 
gWin self sends msgQuickHelpShow to theQuickHelpManager with a helpId of 
hlpQuickHelpNoHelp. (In response to this, theQuickHelpManager displays the" no help available" 
text to the user.) 

msgX1ateCompleted 
Defined in xlate.h. 

Takes nothing, returns STATUS. 

A gWin's gesture translator sends msgXlateCompleted to the gWin when a gesture translation is 
complete. (The gWin has previously started the translation by sending msgScrComplete to the gesture 
translator.) 

gWin's default response is to extract the xlist from the translator and self send msgGWinXList. 

msgGWinXList 





HWCUSTOM.H 

This file contains definitions for clsHWCustomFrame. 

clsHWCustomFrame inherits from clsFrame. 

This file contains the API definition for clsHWCustomFrame. Instances of clsHWCustomFrame are 
created by the Settings Notebook when the user taps the "Customize" button on the Installed 
Handwriting page. The Settings Notebook will pass in the handle of the prototype set to be customized. 
It is up to clsHWCustomFrame instances to carry out the customization and destroy themselves when 
finished. 

Debugging Flags 
clsHWCustomFrame uses the Handwriting debug flag set 'Z'. clsHWCustomFrame uses: 

40000 Show all internal debugging messages 

#ifndef HWCUSTOM_INCLUDED 
#define HWCUSTOM_INCLUDED 
#ifndef FRAME_INCLUDED 
#include <frame.h> 
#endif 
#ifndef FS_INCLUDED 
#include <fs.h> 
#endif 

Common #defines and typedefs 
typedef struct HWCUSTOM_NEW_ONLY { 

OBJECT protoSetHandle; II handle of prototype set to customize 
} HWCUSTOM_NEW_ONLY; 
#define hwCustomNewFields \ 

frameNewFields \ 
HWCUSTOM NEW ONLY hwcustom; 

typedef struct HWCUSTOM_NEW { 
hwCustomNewFields 

} HWCUSTOM_NEW, *P_HWCUSTOM_NEW; 

File System AHributes 
The values for the 32-bit attribute hwCustomAttrCustomizable are: 

0: This profile is fully customizable. 

1: This engine allows customization, but this profile is the original, generic profile for this engine; users 
must rename it before they customize it. This will to prevent users from inadvertently overwriting the 
original copy of the profile on the distribution media. If the attribute is 1, Handwriting Customization 
will pop up a dialog forcing the user to copy or rename the profile before customization. 

2: This profile is not customizable. 

Any other value: Same as 0; profile is fully customizable. 



656 PEN POINT API REFERENCE 
Part 5 / Input and Handwriting 

If the attribute is missing from the directory, Customization will assume the profile is fully customizable. 

Here is the magic incantation to stamp the attribute on a profi-le: 

STAMP /G "<profile>" /A 800278 <value> 

For instance, the GOWrite profile gets stamped like this: 

STAMP /G "GOWrite" /A 800278 1 

This will stamp a value of 1 on the GOWrite directory for Admin 316 (dsHWCustomFrame), Index 1. 

*define hwCustomAttrCustomizable FSMakeFix32Attr(clsHWCustomFrame, 1) 

Messages 

M©UC19© 
Arl$W11©nrs 

M©SSQl$© 

Af9urtl©l1fS 

msgNewDefaults 
Initializes the HWCUSTOM_NEW structure to default values. Default values are the same as for dsFrame, 
with a protoSetHandle ofO. 

Takes P _HWCUSTOM_NEW, returns STATUS. Category: class message. 

typedef struct HWCUSTOM NEW { 
hwCustomNewFields -

} HWCUSTOM_NEW, *P_HWCUSTOM_NEW; 

msgNew 
Creates a handwriting customization frame window, acting on the handwriting prototype set in 
pArgs->hwcustom.protoSetHandle. If protoSetHandle==O, acts on theCurrentlnstalledHWXProtos. 

Takes P_HWCUSTOM_NEW, returns STATUS. Category: class message. 

typedef struct HWCUSTOM NEW { 
hwCustomNewFields -

} HWCUSTOM_NEW, *P_HWCUSTOM_NEW; 

Quick Help Tags 
*define hlpHWCustomIcon 
*define hlpHWCustomNote 
*define hlpHWCustomAlert 
*define hlpHWCustomExitNote 
*define hlpHomeWinLCLabel 
*define hlpHomeWinUCLabel 
#define hlpHomeWinNumLabel 
*define hlpHomeWinSymLabel 
*define hlpHomeWinSCLabel 
*define hlpHomeWinExitLabel 
*define hlpHomeWinNextArrow 
#define hlpHomeWinStatTitle 
*define hlpHomeWinStatTSets 
*define hlpHomeWinStatRecRt 
*define hlpHomeWinStatLearn 
*define hlpHomeWinStatRecom 
*define hlpHomeWinInstrs 
#define hlpHomeWinBlankAreas 
*define hlp26WinTitle 
*define hlp26WinLearnBtn 
*define hlp26WinClearBtn 
*define hlp26WinNextBtn 
*define hlp26WinDoneBtn 
*define hlp26WinInstrs 
*define hlp26WinInputLabel 
*define hlp26WinInputBox 
*define hlp26WinBlankAreas 

MakeTag(clsHWCustomFrame, 0) 
MakeTag(clsHWCustomFrame, 1) 
MakeTag(clsHWCustomFrame, 2) 
MakeTag(clsHWCustomFrame,25) 
MakeTag(clsHWCustomFrame, 5) 
MakeTag(clsHWCustomFrame, 6) 
MakeTag(clsHWCustomFrame, 7) 
MakeTag(clsHWCustomFrame, 8) 
MakeTag(clsHWCustomFrame, 9) 
MakeTag(clsHWCustomFrame,10) 
MakeTag(clsHWCustomFrame, 4) 
MakeTag(clsHWCustomFrame,21) 
MakeTag(clsHWCustomFrame,22) 
MakeTag(clsHWCustomFrame,23) 
MakeTag(clsHWCustomFrame,24) 
MakeTag(clsHWCustomFrame,26) 
MakeTag(clsHWCustomFrame,ll) 
MakeTag(clsHWCustomFrame, 3) 
MakeTag(clsHWCustomFrame,12) 
MakeTag(clsHWCustomFrame,13) 
MakeTag(clsHWCustomFrame,14) 
MakeTag(clsHWCustomFrame,15) 
MakeTag(clsHWCustomFrame,16) 
MakeTag(clsHWCustomFrame,18) 
MakeTag(clsHWCustomFrame,19) 
MakeTag(clsHWCustomFrame,20) 
MakeTag(clsHWCustomFrame,17) 



HWLEnER.H 

This file contains definitions for dsHWLetterFrame. 

dsHWLetterFrame inherits from dsFrame. 

This file contains the API definition for dsHWLetterFrame. Instances of dsHWLetterFrame are 
created by the Settings Notebook when the user taps the "Practice" button on the Installed Handwriting 
page. The Settings Notebook will pass in the handle of the prototype set to practice. It is up to 
dsHWLetterFrame instances to carry out the practice session and destroy themselves when finished. 

Debugging Flags 
dsHWLetterFrame uses the Handwriting debug flag set 'Z'. c1sHWLetterFrame uses: 

10000 Show all internal debugging messages 

#ifndef HWLETTER_INCLUDED 
#define HWLETTER_INCLUDED 
#ifndef FRAME_INCLUDED 
#include <frame.h> 
#endif 

Common #defines and typedefs 
typedef struct HWLETTER_NEW_ONLY { 

OBJECT protoSetHandle; II handle of prototype set to practice 
} HWLETTER_NEW_ONLY; 
#define hwLetterNewFields \ 

frameNewFields \ 
HWLETTER NEW ONLY hwletter; 

typedef struct HWLETTER_NEW { 
hwLetterNewFields 

} HWLETTER_NEW, *P_HWLETTER_NEW; 

Messages 

MeS5c<ge 
Arguments 

msgNewDefaults 
Initializes the HWLETTER_NEW structure to default values. Default values are the same as for c1sFrame, 
with a protoSetHandle ofO. 

Takes P _HWLETTER_NEW, returns STATUS. Category: class message. 

typedef struct HWLETTER_NEW { 
hwLetterNewFields 

HWLETTER_NEW, *P_HWLETTER_NEW; 



658 PENPOINT API REFERENCE 

Messc£je 

Argumenfs 

Part 5 / Input and Handwriting 

msgNew 
Creates a handwriting practice frame window, using the handwriting prototype set in 
pArgs->hwletter.protoSetHandle. If protoSetHandle==O, uses the current InstalledHWXProtos. 

Takes P _HWLETTER_NEW, returns STATUS. Category: class message. 

typedef struct HWLETTER_NEW { 
hwLetterNewFields 

} HWLETTER_NEW, *P_HWLETTER_NEWi 

Quick Help Tags 
#define hlpLetterPractice 
#define hlpLWlnputSPaper 
#define hlpLWKeyboard 
#define hlpLWPrevScribble 
#define hlpLWXlateResult 
#define hlpLWAnimationWin 

MakeTag(clsHWLetterFrame, 1) 
MakeTag(clsHWLetterFrame, 2) 
MakeTag(clsHWLetterFrame, 3) 
MakeTag(clsHWLetterFrame, 4) 
MakeTag(clsHWLetterFrame, 5) 
MakeTag(clsHWLetterFrame, 6) 



INPUT.H 

This file contains the API definition for clsInput and PenPoint's input system. 

clsInput inherits from clsObject. 

clslnput provides the object-oriented interface to PenPoint's input system. 

The functions described in this file are contained in INPUTLIB. 

Introduction 
PenPoint's input system collects events generated by devices such as thePen and theKeyboard. It then 

distributes those events to other objects in the system. 

The input system is almost always single-threaded. Usually only one input event is being distributed 

through the system at any given time. The exception is when using msglnputModalStart and 

msglnputModalEnd. 

Road Map 
This file contains general information about PenPoint's input system and input events. Information 

specific to pen events is in pen.h. Information specific to key events is in key.h. 

Most PenPoint application programs do not need to use the PenPoint input system directly. PenPoint 
has several classes that manage input for clients. Check these classes to see if they meet your needs. 

Candidate classes include the following (and their subclasses). (This list is not exhaustive.) 

• clsGWin (gwin.h) 

• clsSPaper (spaper.h) 

• clsIP (insert.h) 

• clsNotePaper (notepapr.h) 

• all toolkit classes. 

Any client handling input directly (rather than using PenPoint classes which handle input) needs to 

understand the following: 

• How to set up window input flags so that desired input events are received. See the section "Input 

Flags." 

• How to handle msglnputEvent in general, and how to handle the device-specific values for 

msglnputEvent's pArgs->devCode. See pen.h and key.h. 

• How to return appropriate status values in response to msgInputEvent. See "Return Values From 

msgInputEvent. " 

Any client that needs to grab input needs to understand: 

• General grabbing information. See the section "Grabs and Grabbers." 

------------------



660 PENPOINT API REFERENCE 
Part 5 I Input and Handwriting 

• msgInputEvent return values that start a grab and keep a grab going. See "Return Values From 
msglnputEvent. " 

Any client that needs to be the input target (and therefore the recipient of keyboard events) needs to 
understand: 

• InputSetT argetO 

The other interfaces described in this file are typically used by sophisticated clients. 

Overview 

This diagram illustrates the flow of events into, through and out of the input system: 

+-----------+ 
1 Pen 1 
+-----+-----+ 

1 

+-----------+ 
1 Keyboard 1 
+-----+-----+ 

1 

+---------------+ 
1 Other Device 1 
+-------+-------+ 

+-----------------1-------------------+ 
1 

+-----+ 
1-----1 
1-----1 

Input 
Queue 

+-----+ Input 
Routing 

+-----------------------1-----------------------------+ 
1 

+----+----+ 
1 Filters 1 

+----+----+ 

+---------+ 
1 Grabber 1-
+----+----+ 

+----+ 
1----1 Grabber 

-1----1 Stack 
+----+ 

+---------------+-------------+ 
1 1 

+-------+-------+ 
1 Pre-specified 1 

1 Destination 1 

+---------------+ 

+----+-----+ 
XY 1 

1 

+----------+ 

+----+-----+ 
1 Target 1 

1 1 
+----------+ 

+-----------------------------------------------------+ 

Each of these major pieces is described below: 

• Devices such as the pen and keyboard generate low-level input events. (These "devices" are partially 
implemented in the MIL and partially implemented in PenPoint.) These low-level input events are 
converted into PenPoint input events and are sent to the Input Queue. 

• The input system pulls events off the queue one at a time and decides where to send or "route" the 
event. 

There the "event routing" process starts. 

• First the event is run through the list of Filters. Filters have the opportunity to examine each input 
event. Filters are ordered by their priority. Filters return a status which indicates how processing of 
the event should continue. 

• Next the event is sent to the current grab object, or grabber. (There might not be a current grabber, 
in which case this step is skipped.) The grabber returns a status which indicates how processing of 



Filters 

INPUT.H 661 

the event should continue and whether the grab should continue. The input system maintains a 
stack of grabbers to support nested modal behavior. 

The next step in an event's routing depends in part on the event. (Only one of these alternatives is used.) 

• If the event has a pre-specified destination, msglnputEvent is sent to that destination. If the event 
has a pre-specified destination, it is found in pArgs->listener for msglnputEvent. An event has a 
pre-specified destination only if the event has been programmatically inserted into the input system. 

• If the event has a "valid" XY coordinate (which typically means it was generated by thePen), the 
event is routed to window objects. The top-most window (farthest from theRootWindow) which 
encloses the XY coordinate gets the first opportunity to process the event. Each window may 
terminate processing of the event or allow the input system to send the event to its (the window's) 

parent window. 

• Otherwise the event is sent to the current input target, if the target is non-null. (This is how all 
keyboard events are routed.) 

Filters are used to implement some types of modal behavior. Typically this modal behavior is relatively 
long-lived. For instance, PenPoint's Quick Help mode is implemented using filters. 

It is extremely rare for PenPoint application programs to directly use or even be aware of filters. 

Object 

qhelp win 
vkey win 
qhelp nb 
vkey app 
spell (proof) 
insertion pad 
menu 
note 
option 

Priority 

16 
32 
32 
80 
96 
96 ( if modal ) 
112 
160 
160 

Grabs and Grabbers 
Grabbers are used to implement light-weight modal behavior. These modes are typically pen controlled 
in that they start and end with some pen event, such as msgPenDown and msgOutProxUp. For 
instance resize handles are implemented using grabbers. 

Many application programs never use grabbers directly but rather use PenPoint classes that use grabbers. 

As illustrated in the "Overview" section, the current grabber gets input messages after filters but before 
"normal" event distribution occurs. The grabber can "swallow" the event and stop any further 
distribution, or the grabber can allow distribution to continue. 

There are two ways to start a grab. 

• An object that is handling msgInputEvent can return a status value that tells the input system that it 
wants to be the grab object. See the section "Return Values from msglnputEvent." 

• Any object can call InputSetGrabO passing in the object to become the grabber. 

A grabber terminates a grab by returning from msgInputEvent a status value that does not have "Grab" 
turned on, or by setting the current grabber to objNuli. 



662 PENPOINT API REFERENCE 

Part 5 I Input and Handwriting 

In order to keep the grab "alive," the grabber must always return a status from msglnputEvent that 
implies "Grab." If the input system gets a status returned that does not have "Grab" implied, it 
terminates the grab. 

#ifndef INPUT INCLUDED 
#define INPUT INCLUDED 
#ifndef GO_INCLUDED 
#include <go.h> 
#endif 
#ifndef UID INCLUDED 
#include <uid.h> 
#endif 
#ifndef GEO INCLUDED 
#include <geo.h> 
#endif 
#ifndef CLSMGR INCLUDED 
#include <clsmgr.h> 
#endif 

Common #defines and typedefs 

Miscellaneous 

The following flags control event distribution to filters. 

iflSendMyWindowOnly tells the input system to not bother sending the message to the filter unless the 
event happened in the filter or in one of the filter's window children or window ancestors. It is strictly a 
performance enhancement. 

typedef U32 FILTER_FLAGS, *P_FILTER_FLAGS; 
#define iflWindow flagO II Private. Internal use only. 
#define iflSendMyWindowOnly flag! 

This is the number of bytes in the INPUT_EVENT's eventData field. The data stored in this field depends 
on the devCode field. Handlers of msgInputEvent never need to use this value; all handlers will cast 
pArgs->eventData to an appropriate type. 

#define inptEDataSize 32 II no of bytes INPUT_EVENT's eventData field 

Return Values From msglnputEvent 

Overview 

The status returned from msglnputEvent tells the input system how to continue processing the event. 
This section lists the STATUS values that recipients of msglnputEvent may return. Each of these statuses 
contains several "values." (Not all possible combinations of these are legal or supported.) 

• Whether distribution for the event should continue or be terminated. 

• Grab status. Whether to start or continue a grab for the recipient of msglnputEvent. 

• Ancestor interest. Whether or not the ancestor class was interested in the event. 

• Filter skip. For filters only, whether distribution of the event should skip certain filters. 

The following table describes the relationship between the legal status codes and the values they 
"contain." For clarity, the "no" entries are left blank and the "Filter skip" information is not shown. 



Details 

stsInputContinue 
stsInputTerminate 
stsInputGrabContinue 
stsInputGrabTerminate 
stsInputGrab 
stsInputIgnored 
stsInputGrabIgnored 

continue 
distri-
but ion 
======== 
yes 

yes 

yes 
yes 

Return Values From 

start 
or ignored 
continue by 
grab ancestor 
======== ======== 

yes 
yes 
yes 

yes 
yes yes 

These status values can be returned by any handler of msglnputEvent: 

stslnputContinue Distribution of this event should continue. 

stslnputTerminate Distribution of this event should terminate. 

INPUT.H 663 
msglnputEvent 

stslnputGrabContinue Distribution of this event should continue, and the grab should be continued 
(or started) for the recipient of msglnputEvent . 

. stslnputGrabTerminate Distribution of this event should terminate, and the grab should be continued 
(or started) for the recipient of msglnputEvent. 

stslnputGrab Same as stslnputGrab Terminate. 

stslnputlgnored An ancestor class may return stslnputlgnored to inform a subclass that the ancestor 
was not interested in the event. The input system treats stslnputlgnored just like stslnputContinue. 

stslnputGrabIgnored An ancestor class may return stslnputGrabIgnored to inform a subclass that the 
ancestor was not interested in the event, but that the grab should be continued (or started) for the 
object the received msglnputEvent. The input system treats stslnputGrablgnored just like 
stslnputGrabContinue. 

These statuses should only be returned by Filters: 

stslnputSkip Distribution of this event should continue but all remaining filters should be skipped. 

stslnputSkipTo2 Distribution of this event should continue but all remaining filters in Range 1 

(priority less than 64) should be skipped. 

stslnputSkipTo3 Distribution of this event should continue but all remaining filters in Ranges 1 and 2 
(priority less than 128) should be skipped. 

stslnputSkipTo4 Distribution of this event should continue but all remaining filters in Ranges 1, 2 
and 3 (priority less than 192) should be skipped. 

stslnputTerminateRemoveStroke Distribution of this event should terminate, and any other events 
corresponding to the current stroke should not be sent at all. 

stslnputGrabTerminateRemoveStroke Distribution of this event should terminate, the grab should be 
continued (or started) for the recipient of msglnputEvent, and any other events corresponding to 
the current stroke should not be sent at all. 

#define stsInputContinue 
#define stsInputSkip 
#define stsInputSkipTo2 
#define stsInputSkipTo3 
#define stsInputSkipTo4 
#define stsInputTerminate 

InputMakeSts(O) 
InputMakeSts(evSkip) 
InputMakeSts (evSkip I (1« 4» 
InputMakeSts (evSkip I (2« 4» 
InputMakeSts(evSkip I (3« 4» 
InputMakeSts(evTerminate) 



664 PENPOINT API REFERENCE 
Part 5 I Input and Handwriting 

fdefine stsInputGrabContinue InputMakeSts(evGrab) 
fdefine stsInputGrabTerminate InputMakeSts(evGrab I evTerminate) 
fdefine stsInputGrab InputMakeSts(evGrab I evTerminate) 
fdefine stsInputTerminateRemoveStroke InputMakeSts(evTerminate I evStroke) 
fdefine stsInputGrabTerminateRemoveStroke \ 

InputMakeSts(evGrab I evTerminate I evStroke) 
fdefine stsInputIgnored InputMakeSts(evIgnore) 
fdefine stsInputGrabIgnored InputMakeSts(evGrab I evIgnore) 

Other Statuses 
fdefine stsInputQueueFull MakeStatus(clsInput, evOther I 2) 

Input Flags 

Overview 
Each window has a set of input flags that are stored in the window's win.flags.input field. These flags can 
be manipulated while handling msgNew and msgNewDefaults. They can also be manipulated with 
several other window messages; see win.h for more information. 

InputSetGrabO and InputFilterAdd use these flags as one of their parameters. 

typedef U32 INPUT_FLAGS, *P_INPUT_FLAGSi 

"Interest" Flags 
PenPoint's input system can generate many messages. Most clients are only interested in a subset of the 
messages that can be generated. So clients can provide hints to the input system about the input events 
the client is interested in. This reduces the message traffic and increases performance. For instance, if a 
client is not interested in pen movement events when the pen is up above the writing surface (but within 
proximity), the client can clear the inputMoveUp flag 

Typically, a flag enables or disables several input events. For instance, setting the inputTip flag enables 
both msgPenD9wn and msgPenUp (see pen.h). 

You should treat these flags as a hint to the input system. You should not assume that a specific input 
event will not arrive because you have not enabled the corresponding bit in the input flags. 

This table contains examples of the messages that are enabled by setting various flags. This table is only 
representative -- it is not complete! 

input flag 

input Tip 
inputMoveUp 
input MoveD own 
inputEnter 
inputExit 
inputInProx 
inputOutProx 
inputStroke 
input Tap 
inputHoldTimeout 
inputChar 
inputMultiChar 
inputMakeBreak 

example of 
message(s) enabled 

msgPenUp, msgPenDown 
msgPenMoveUp 
msgPenMoveDown 
msgPenEnterUp, msgPenEnterDown 
msgPenExitUp, msgPenExitDown 
msgPenInProxUp 
msgPenOutProxUp 
msgPenStroke 
msgPenTap 
msgPenHoldTimeout 
msgKeyChar 
msgKeyMulti 
msgKeyUp, msgKeyDown 

message defined 
in 

pen.h 
pen.h 
pen.h 
pen.h 
pen.h 
pen.h 
pen.h 
pen.h 
pen.h 
pen.h 
key.h 
key.h 
key.h 



#define inputTip (U32) (flagO) 
#define inputMoveUp (U32) (flagl) 
#define inputMoveDown (U32) (flag7) 
#define inputEnter (U32) (flag2) 
#define inputExit (U32) (flag3) 
#define inputlnProx (U32) (flag4) 
#define inputOutProx (U32) (flagS) 
#define inputStroke (U32) (flag6) 
#define inputTap (U32) (flaglO) 
#define inputChar (U32) (flag13) 
#define inputMultiChar (U32) (flag14) 
#define inputMakeBreak (U32) (flaglS) 
#define inputHoldTimeout (U32) (flag8) 

#define input Timeout 
#define inputHWTimeout 
#define inputMoveDelta 

(U32) (flag9) 
(U32) (flagll) 
(U32) (flag18) 

#define inputDestOnly (U32) (flag19) 
#define inputLRContinue (U32) (flag20) 
#define inputDisable (U32) (flag2l) 
#define inputEnableAl1 (U32) (flag2S) 

Inking Flags 

INPUT.H 665 
Input Flags 

II enable TipUp & TipDown events 
II enable MoveUp events 
II enable MoveDown events 
II enable EnterUp & EnterDown 
II enable ExitUp & ExitDown 
II enable InProxUp events 
II enable OutProxUp events 
II enable Stroke events (See pen.h.) 
II enable tap events 
II enable character events 
II enable multi-char events 
II enable make/break events 
II enable HoldTimeout events (See 
II "Hold Timeout Events" in pen.h) 
II obsolete. 
II obsolete. 
II enable compression of multiple 
II delta events into a single delta 
II event. Good news: fewer messages 
II and better performance. Bad news: 
II less information to the client. 
II send event iff destination is self 
II enable dist. to parent windows 
II send no input event messages 
II enables all events to be sent to 
II grabbers 

WARNING: Inking and the acetate are subject to major changes in future releases. 

#define inputlnk (U32) (flag23) II enable inking in the acetate layer 
#define inputlnkThrough (U32) (flag24) II enable inking in window rather 

II than acetate layer 
#define inputlnkDisable (U32) (flag30) II disables both inputlnk and 

II inputlnkThrough 

Miscellaneous Flags 
inputNoBusy If cleared, then the input system automatically turns on PenPoint's busy clock if the 

recipient of a message does not return before a certain timeout. If set, this default busy clock 
behavior is disabled. 

inputResolution If set, msgPenMoveUp and msgPenMoveDown messages are sent each time the pen 
moves one digitizer unit. (In other words, the input system sends a move event for even the smallest 
detectable amount of movement. If cleared, move events are sent only when the pen has moved at 
least one display pixel's size. 

inputAutoTerm Should only be set by a grabber. Specifies that all events that the grabber is not 
interested in should be treated as if the grabber returned stsInputGrabTerminate. 

inputGrabTracker Should only be set by a grabber. Specifies that the grabber does not need the input 
system to perform its normal hit detection. This is strictly a performance enhancement. (The name 
of this value is an anachronism. Originally trackers were the only grabbers that didn't need hit 
detection. ) 

#define inputNoBusy (U32) (flag12) 
#define inputResolution (U32) (flag22) 
#define inputAutoTerm (U32) (flag26) 

#define inputGrabTracker (U32) (flag27) 
#define inputTransparent (U32) (flag31) 

II disable default busy clock 
II report pen resolution move events 
II automatically terminate all 
II events' distribution if grabber 
II doesn't have the event 
II flag enabled. 
II disables hit detect during grab 
II invisible to hit detect operations 
II See win.h. 

------------ -------



666 PENPOINT API REFERENCE 
Part 5 I Input and Handwriting 

#define inputSigVerify (U32) (flag16) II Sets pen sample rate to high and 
II MIL reporting threshold to O. 
II This does not guarantee getting 
II every pen move event, so users 
II should check timestamps to see 
II if any data has been lost. 

II Shorthand for all flags which correspond to real input events. 
#define inputAIIRealEventsFlags (U32)OxEFFF 

Event Distribution Flags 
Input distribution flags give some additional information to thebeing sent the input event. 

evfFilter object is getting this event because it is a filter; 

evfGrab object is getting this event because it is a grabber; 

evfListener object is getting because it was specified in the input event listener field; 

evff arget object is getting this event because it is the target; 

evfXYLeaffoRoot object is getting this event as part of the XY distribution; 

evflnSelf event occurred in this window; 

evflnChild event occurred in a child of this window; 

NOTE: evflnSelf and evflnChild will become obsolete in future releases. 

evfGrabTracker object had input grab tracker flag on. 

typedef U32 INPUT_DIST_FLAGS, P_I~PUT_DIST_FLAGS; 

II NOTE: evfInSelf and evfInChild will become obsolete in future releases. 
#define evfInParent ((U32)flag9) II Obsolete. 
#define evfInChild ((U32)flaglO) II event occurred in child window 
#define evfInSelf ((U32)flagll) 1/ event occurred in this window 
#define evfGrabTracker ((U32)flag12) II event occurred during grab 
#define evfFilter ((U32)flag26) II event in filter distribution 
#define evfGrab ((U32)flag27) II event in grab distribution 
#define evfXYLeafToRoot ((U32)flag29) II event in XY dist 
#define evfListener ((U32)flag30) II event in "pre-specified 

II destination" distribution 
#define evfTarget ((U32)flag31) II event in target distribution 

Messages 

msglnputEvent 
theinputManager uses this message to deliver input events. 

Takes P _INPUT_EVENT, returns STATUS. 

typedef struct INPUT EVENT { 
SIZEOF - length; 
INPUT_DIST_FLAGS flags; 
MESSAGE devCode; 
OS_MILLISECONDS timestamp; 
XY32 xy; 
OBJECT listener; 

OBJECT destination; 

II actual length of pArgs 
II distribution information 
II input event 
II time event was queued 
II location of event 
II pre-specified destination 
II Normally objNull. 

OBJECT originator; II originating device 
U8 eventData[inptEDataSize]; II event specific data 

INPUT_EVENT, *P_INPUT_EVENT; 
#define msgInputEvent MakeMsg(clsInput, 0) 



Comments 

INPUT.H 667 
Functions 

pArgs->devCode contains the" event" that is being delivered. These events are device-specific. See pen.h 
for a list of pen events and key.h for a list of key events. 

The pArgs for msglnputEvent is best thought of as a union type. pArgs can always be cast to a 
P _INPUT_EVENT, but the content of pArgs->eventData depends on the value of pArgs->devCode. For 
some values of pArgs->devCode, the pArgs are actually larger than an INPUT_EVENT structure, so use 
the pArgs->length field to determine the length of the input event. For example, the msgPenStroke and 
msgKeyMulti events both have data which extends past the end of the INPUT_EVENT structure. 

For events that have a valid XY, pArgs->destination is the top-most window with input enabled 
(FlagOff(inputDisable, ... )). 

The recipient of this message must return one of the status values described in the section "Return 
Values from msglnputEvent. " 

Notification Messages 

msglnputGrabPushed 
Notifies a grabbing object that it is being pushed onto the grabber stack and the pArgs is the new 
grabber. 

Takes OBJECT, returns STATUS. 

*define msglnputGrabPushed MsgNoError(MakeMsg(clslnput, Ox83)) 

msglnputGrabPopped 
Notifies a grabbing object that is being popped from the grabber stack and becoming the current 
grabber. 

Takes OBJECT, returns STATUS. 

*define msglnputGrabPopped MsgNoError (MakeMsg (clslnput, Ox84)) 

msglnputTargetDeactivated 
Notifies the input target that some other object is become the input target. 

Takes OBJECT, returns STATUS. 

*define msglnputTargetDeactivated MsgNoError (MakeMsg (clslnput, Ox8S)) 

msglnputTargetActivated 
Notifies an object that it is becoming the input target. 

Takes OBJECT, returns STATUS. 

*define msglnputTargetActivated MsgNoError (MakeMsg (clslnput, Ox86)) 

Functions 

InputFilterAdd 
Adds a filter to the filter list. 

Returns STATUS. 



668 PENPOINT API REFERENCE 
Part 5 / Input and Handwriting 

STATUS EXPORTED 
OBJECT 

) ; 

INPUT FLAGS 
FILTER FLAGS 
U8 

InputFilterAdd( 
newFilter, 
inputEventFlags, 
filterFlags, 
priority 

InputFilterRemove 
Removes a filter from the filter list. 

Returns STATUS. 

r~fldi()r; Prototype STATUS EXPORTEDO InputFilterRemove ( 
OBJECT listener II filter to remove 

) ; 

InputEventlnsert 
Adds an event to the input event queue. 

Returns STATUS. 

r~fldi()r; Prot()type STATUS EXPORTEDO InputEventInsert ( 
P_INPUT_EVENT pEvent, 
BOOLEAN stamp 

) ; 

Most clients do not use this message. 

If stamp is true, pEvent->timestamp is filled in with the current time and the event is added to the end 
of the queue. Otherwise, pEvent->timestamp is not modified and the event is placed at the head of the 
queue and the 

stslnputQueueFull the input system queue is full 

InputSetTarget 
Sets the input target object and flags. 

Returns STATUS. 

rtmdior; Pror()rype STATUS EXPORTED InputSetTarget ( 
OBJECT target, II new target object 
U32 flags II new target flags 

) ; 

Clients use this message to set the input target. The input target is the object that receives 
msglnputEvent for all events that do not have an XY position -- in particular, keyboard events. 

PenPoint's UI guidelines state that the selection owner and input target should usually be the same 
object. PenPoint does not enforce this association in any way. See the UI documentation and sel.h for 
more information. 

msglnput TargetActivated.h 

InputGetT arget 
Returns the current input target. 

Returns OBJECT. 

r~fldi()r; Prot()type OBJECT EXPORTED InputGetTarget (void); 

See A!s@ InputSetTarget 



INPUT.H 669 
Functions 

InputSetGrab 
Sets the current grabber and its flags. 

Returns STATUS. 

function Prototype STATUS EXPORTED InputSetGrab ( 

Comments 

OBJECT grabber, II new grabber 
U32 flags II new grab input flags 

) ; 

The previous grabber is pushed onto the grabber stack. 

If the flags parameter is 0, then inputAllRealEventsFlags is used. 

If both parameters are null, the current grabber is removed and the grabber on the top of the grabber 
stack (if the stack isn't empty) becomes the current grabber. 

InputGetGrab 
Passes back the current grabber and its flags. 

Returns void. 

Function Pr@t@type void EXPORTED InputGetGrab ( 

Comments 

MessQge 
Arguments 

P OBJECT pGrabber, II grabber 
P U32 pFlags II current grab flags 

) ; 

InputSetGrab 

msglnputModalStart 
Asks theInputManager to start recursive input. 

Takes P_INPUT_MODAL_DATA, returns STATUS. 

typedef struct INPUT_MODAL_DATA 
U32 reserved; 
U32 clientData[2]; 

INPUT_MODAL_DATA, *P_INPUT_MODAL_DATA; 
#define msgInputModalStart MakeMsg(clsInput, 1) 

This message is used to implement a system-wide mode. Typical application programs should not sent 
this message. 

You must send this message to the input system using ObjectSendUpdateO. The sending task is blocked 
until the recursive task returns. The recursive task can pass data to the first task via pArgs. 

msglnputModalEnd 

msglnputModalEnd 
Asks theInputManager to terminate recursive input. 

Takes P _INPUT_MODAL_DATA, returns STATUS. 

#define msgInputModalEnd MakeMsg(clsInput, 2) 

typedef struct INPUT_MODAL_DATA 
U32 reserved; 
U32 clientData[2]; 

INPUT_MODAL_DATA, *P_INPUT_MODAL_DATA; 



670 PENPOINT API REFERENCE 

Part 5 / Input and Handwriting 

This message terminates a system-wide mode. Typical application programs should not send this 
message. 

This message must be paired with msgInputModalStart. 

The sender of this message can pass information to the sender of msgInputModalStart by filling in 

pArgs. 

This message may be sent with ObjectCallO or ObjectSendO. 

msgInputModalStart 

msglnputActivityTimer 
Asks theInputManager to enable or disable the activity timer. 

Takes BOOLEAN, returns STATUS. 

#define msglnputActivityTimer MakeMsg(clslnput, 5) 

The input system maintains an "activity timer." Each time the input system has no events to process, 
the input system starts this timer. If no events are received before the timer expires, the input system 
puts PenPoint into Standby mode. This duration is typically several minutes long. 

Long running background tasks should first send msgInputActivityTimer with pArgs of false to tell 
theInputManager to not turn off the machine. When the background operation is complete, the task 
should send the message again, but this time with a pArgs of true. 

theInputManager keeps a nesting count which allows nested pairs of sends of this message. 



INSERT.H 

This file contains the API definition for clsIP (Insertion Pads). 

clsIP inherits from clsCustomLayout. 

Introduction 
IPs provide a convenient and standard mechanism for getting handwritten input from a user. "IP" is an 

abbreviation for "Insertion Pad." 

IPs support several different visual styles -- character boxes, ruled lines, or blank writing areas and 

different optional behaviors. IPs use a translator to recognize handwriting if necessary. 

Typical Uses and Settings 
This section describes the most common uses and settings for the various types of IPs. 

Character Box IPs: 

• Their new.ip.style.displayType is ipsCharBox. 

• Character Box IPs are typically used to edit or insert simple strings of text such as a person's name or 

a document name. 

Ruled Line IPs: 

• Their new.ip.style.displayType is ipsRuledLines. 

• Ruled Line IPs are typically used when the handwriting preference is Ruled. 

• When the preference is Ruled/Boxed, then the IP's style.ruledToBoxed and style.boxedToRuled 
fields are used to control the transmogrification between styles. It is the responsibility of the IP user 

to examine the preferences and determine if these fields should be set. 

Blank IPs: 

• Blank IPs are typically used to collect and display simple scribbles (perhaps a signature). 

• Their new.ip.style.displayType is ipsBlank. Their new.ip.style.buttonType is typically ipsNoButton, 

as they never do translation. 

• They do not display ruled lines in the sPaper created by default, nor do they allow scribble editing 

(see spaper.h). 

• They turn off borders when printing, allowing them to be robustly embedded inside a document. 

Quick Start 
A typical IP client does the following: 

• The client creates an IP in one of three styles described above. 

• The client then adds itself as an observer of the IP and handles msgIPDataAvailable. 



672 PEN POINT API REFERENCE 

Part 5 I Input and Handwriting 

• The msgIPDataAvailable handler uses msgIPGetXIateString to extract the string and then 
processes the string in some application specific manner. 

The client should also handle eithermsgIPCancelled or msgFreePending so that the client can free any 
allocated data when the IP is destroyed. 

IP Components 
An IP is constructed from several pieces. Most clients and subclasses don't need to know anything about 

these details, but advanced clients and subclasses might. 

The main writing area of an IP is either a field or an sPaper. An ipsCharBox IP contains a field (an 
instance of dsField); ipsRuledLines IP's contain sPaper, as do ipsBlanklipsSignature. IP's which have 

style.ruledToBoxed or style.boxedToRuled set switch between a field and an sPaper. The IP is an 

observer of the sPaper or field. The sPaper or field has an associated translator. 

If style.buttonType is ipsBottomButtons or ipsTopButtons, then the IP also contains a command bar 
with three buttons. The IP is the client of all of the buttons in the command bar. 

Technically clients and subclasses can modify these components directly, but this is not recommended. If 

these components are modified directly, extreme care must be taken -- current and future 

implementations of IP may make assumptions which can be violated by making some types of changes 
to the components. 

Client and Observers 
There are two different paths for objects to receive" notification" messages from an IP. 

If an IP's client is non-null, then the IP sends the following messages to the IP's client. If the client is 

null, then the IP sends the messages to the IP's observers. Self is the value of pArgs for all of these 

messages. 

• msgIPCancelled 

• msgIPClear 

• msgIPDataAvailable 

• msgIPCopied 

• msgIPTransmogrified 

IPs and Translators 

The sPaper or field component of an IP (whichever exists) has a translator which performs handwriting 

recognition. 

The creator of the IP may specify this translator in two ways: 

• A translator object may be passed to msgNew. Do this by setting new.ip.style.xlateType to 
ipXlateObject and new.ip.xlate.translator to the tran.slator object's uid. 

• An (optionally null) translation template may be passed to msgNew. Do this by setting 
new.ip.style.xlateType to ipXlateTemplate and new.ip.xlate.pTemplate to the address of the 
template. If the template is non-null, the IP compiles the template. Then the IP creates a translator 

(of dsXText; see xtext.h). This translator is created with the passed-in template if the template is 

non-null. 



INSERT.H 673 

An IP with style.charOnly sets the translator to recognize single characters. 

The translation information (the translator object and the digested template) are destroyed when the IP 
handles msgFree. 

See msgIPSetT ranslator for additional information. 

IP Destruction 
As a convenience, an IP will optionally self destruct after providing its data or if the IP is cancelled. To 
get this behavior, set the IP's style.freeAfter to true. 

The automatic destruction occurs during an IP's default response to the following messages: 

• msgIPGetXlateData 

• msgIPGetXlateString 

• msgIPCancelled 

Transmogrification 
One of PenPoint's standard handwriting styles is called Ruled and Boxed. 

When writing in this style, the following steps are taken: (1) the user writes into a ruled line (sPaper) IP 
and hits OK. (2) the handwriting is translated. (3) the ruled writing area is replaced by a combed field. 
(4) the user makes any corrections in the field and presses OK again. (5) the data is made available to the 
application and (6) either the IP is destroyed or the combed field is replaced with a ruled line sPaper 
ready for additional input. 

The term 'Transmogrification" describes the switching of writing area types and the moving of the data 
from the ruled lines to the field. 

This transmogrification can happen in response to several messages, including msgIPClear, 
msgIPGetXlateData and msgIPXlateCompleted. 

During transmogrification, the IP's style.displayType is changed. Also, the unnecessary components are 
destroyed and new ones created. The translator associated with the sPaper or field (whichever exists) is 
moved to the newly created sPaper or field (whichever didn't exist). 

The ruledfoBoxed and boxedfoRuled fields in an IP's style determine when transmogrification 

happens: 

ruledToBoxed 

• If style.ruledf oBoxed is true, then a ipsRuledLines IP transmogrifies into a ipsCharBox IP when 
translation occurs. 

• Clients typically set style.ruledToBoxed to true if the prInputPadStyle preference is 
RuledAndBoxed. 

boxedToRuled 

• If style.boxedfoRuled is true, then a ipsCharBox IPs transmogrifies into a ipsRuledLines IP when 
data is retrieved via msgIPGetXlateData or msgIPGetXlateString. 

• Clients typically set style.boxedToRuled to true only if (1) the prInputPadStyle preference is 
RuledAndBoxed and (2) the IP is to be used multiple times before it is freed. 



674 PENPOINT API REFERENCE 
Part 5 I Input and Handwriting 

IPs and Preferences 
This section describes the preferences that an IP considers and when it considers them. It also describes 
the preferences a client might consider when determining an IP's style. (See prefs.h for general 
information on preferences.) 

When handling msgNew, msgIPSetStyle, and when transmogrifying, an IP uses the user's preferred 
value for Character Box Height, Character Box Width and Line Height. The IP does NOT observe 
these preferences so changes in their value won't affect an existing IP unless its style changes or the IP is 

transmogrified. 

Clients may want to consider the following preferences when managing an IP and its translator. (A 
client may want to only check the preference when creating the IP. Alternatively, a client may want to 
observe theSystemPreferences and respond to changes.) Note that this is only one possibility -- many 
clients will (correctly) chose to ignore the preferences or map from the preferences to IP characteristics 
differently. 

prlnputPadStyle: . 

• If this is prlnputPadStyleRuledAndBoxed, the client would set an IP's style.displayType to 
ipsRuledLines and style.ruledf o Boxed to true and possibly style.boxedf oRuled to true. This causes 

an IP to transmogrify between ipsRuledLines and ipsCharBox display types. (See the section 
'Transmogrification" for details.) 

• If this is prlnputPadStyleRuled, the client would set an IP's style.displayType to ipsRuledLines and 
style.ruledToBoxed and style.boxedToRuled to false. 

• If this is prlnputPadStyleBoxed, the client would set an IP's style.diplayType to ipsCharBox and 
style.boxedToRuled and style~ruledToBoxed to false. 

prWritingStyle: 

• Clients may want to let this preference affect the translation information they send with msgNew or 
the translator set with msgIPSetTranslator. 

Single Character IPs 
clsIP has specific support for single character IPs. Setting style.charOnly to true enables this support. 
Usually if charOnly is true, then style.buttonType is ipsProxButton, style.takeGrab is true, and the 
client floats the IP rather than embedding it. 

Setting charOnly to true causes the IP to automatically set the number of rows and columns to 1. It also 
prepares the translator to expect only a single character. 

Debugging Flags 
IP's debugging flag set is 'h.' Defined flags are: 

0001 Show general information about IP operations. 

0002 Show information about IP translation operations. 

0004 Show information about IP layout and size operations. 

#ifndef INSERT INCLUDED 
#define INSERT_INCLUDED 
#ifndef GO INCLUDED 
#include <go.h> 
#endif 



INSERT.H 675 
Common #defines and typedefs 

#ifndef OSHEAP_INCLUDED 
#include <osheap.h> 
#endif 
#ifndef CLSMGR INCLUDED 
#include <clsmgr.h> 
#endif 
#ifndef WIN INCLUDED 
#include <win.h> 
#endif 
#ifndef CLAYOUT INCLUDED 
#include <clayout.h> 
#endif 
II Next Up: 25 Recycled: 1, 2, 11, 12, 13 

Common #defines and typedefs 
typedef OBJECT IP; 

Display Types 
Use one of these values in an IP's style.displayType. This field defines the type of the IP. 

See the section "Typical Uses and Settings" for more information. 

#define ipsRuledLines 
#define ipsCharBox 
#define ipsBlank 
#define ipsSignature 
#define ipsCharBoxButtons 

ipsEditBox Obsolete 

Translator types 

0 II 
1 II 
3 II 
3 II 
4 II 

standard ruled lines; contains sPaper 
character box editing; contains field 
signature pad; contains sPaper 
same as ipsBlank 
Obsolete 

Use one of these values in an IP's style.x1ateType. This field defines whether new.ip.xlate contains a 

template or a translator object. See the section "IPs and Translators" for more information. 

#define ipXlateObject 
#define ipXlateTemplate 

Space Collapse Rules 

o II pNew->xlate.translator is a translator 
1 II pNew->xlate.pTemplate is an &XTEMPLATE 

Use one of these values in an IP's style.spaceCollapse. For ipsCharBox IPs, this field defines how spaces 
are treated in text strings retrieved from an IP via msgIPGetXlateData or msgIPGetXlateString. 

ipsSpaceSpace causes multiple spaces at the end of a line to be replaced with a single space. 

ipsSpaceNewLine causes an entire line's worth of spaces to be replaced with a single newline character. 

ipsSpaceAsIs causes spaces to be returned literally. 

#define ipsSpaceAsIs 0 II WYSIWYG 
#define ipsSpaceSpace 1 II Multiple spaces at end of line become 1 space 
#define ipsSpaceNewLine 2 II Single line of spaces becomes a newline 

Button Types 
Use one of these values in an IP's style.buttonType. This field defines the type of buttons an IP contains. 

ipsNoButton is typically used with displayType of ipsBlank. ipsProxButton is valid only with 
ipsRuledLines. This value cause translation to occur on out of proximity events. ipsBottomButtons and 



676 PEN POINT API REFERENCE 

Part 5 / Input and Handwriting 

ipsTopButtons create a command bar at the top or bottom containing an OK, Cancel, and Clear 
Button. 

#define ipsNoButton 
#define ipsProxButton 
#define ipsBottornButtons 
#define ipsTopButtons 

o II No button 
3 II Proximity translation for ipsRuledLines 
6 II Command bar buttons on bottom 
7 II Command bar buttons on top 

Modality Behavior 

IP Style 

Use one of these values in an IP's style.modal. When style.takeGrab is true, style. modal defines the result 
of a pen tap outside of the IP. The term take Grab is somewhat mi~leading. The IP actually creates a 
modal filter to handle input. 

#define ipsNoMode 
#define ipsTranslateMode 
#define ipsCancelMode 

typedef struct IP_STYLE 
U16 displayType: 3, 

buttonType: 3, 
freeAfter: 1, 
clientReplace: 1, 
xlateType: 1, 

charOnly: 1, 
modal: 2, 

takeGrab: 1, 

reservedl: 1, 
takeFocus: 1, 
delayed: 1; 

U16 spaceCollapse: 3, 

embeddedLook: 1, 

reserved2: 1, 
ruledToBoxed: 1, 

boxedToRuled: 1, 

clientlsThisApp:l, 
reserved: 8; 

} IP_STYLE, *P_IP_STYLE; 

o 
1 
2 

II Nothing happens on pen tap outside 
II Translation happens on pen tap outside 
II Cancel happens if pen tap outside 

II display type 
II button type 
II See the section "IP Destruction." 
II Unused 
II See the section "IPs and Translators." 
II Describes what pNew->ip.xlate contains. 
II See the section "Single Character IPs." 
II If style.takeGrab is true, describes modal 
II IP's behavior. 
II Makes the IP modal. Modal behavior is 
II defined by style.modal. 
II ReservE;!d 
II IP becomes the input target when created. 
II For ipsCharBox IPs, turns on the field 
II component's delayed behavior. 
II Rule for collapsing spaces when 
II extracting information from ipsCharBox IP. 
II Set to true to look good when embedded; 
II false to look good when floating. Affects 
II an IP's handling of msgNew and msgIPSetStyle. 
II Reserved 
II See the "Transmogrification" and "IPs and 
II Preferences" sections. 
II See the "Transmogrification" and "IPs and 
II Preferences" sections. 
II Private 
II Reserved 

Component Tags 
The components of an IP have the following window tags. See the section "IP Components" for more 
information. 

#define tagIPSPaper MakeTag(clsIP, 1) II ipsRuledLines and ipsBlank 
II IP's sPaper 

#define tagIPField MakeTag(clsIP, 2) II ipsCharBox IP's field 
#define tagIPButton MakeTag(clsIP, 3) II "OK" button 
#define tagIPButtonClear MakeTag(clsIP, 4) II "Clear" button 
#define tagIPButtonCancel MakeTag(clsIP, 5) II "Cancel" button 
#define tagIPCommandBar MakeTag(clsIP, 6) II command bar 



INSERT.H 6'7'7 
Messages 

Quick Help Tags 
In most cases an IP component's window tag and quick help are identical. But tagIPSignatureSPaper is 
the quick help tag for ipsBlank IP's sPaper and tagIPSingleChar is the quick help tag of an IP with 
style.charOnly true. 

#define tagIPSignatureSPaper 
#define tagIPSingleChar 

Messages 
#ifndef NO_NEW 
#ifndef ipNewFields 

msgNew 
Creates a new IP. 

Takes IP_NEW, returns STATUS. 

II 

MakeTag(clsIP, 7) 
MakeTag(clsIP, 8) 

II Translation information. Notice that this is a union type. See the 
II section "IPs and Translators" for more information. 
II 
typedef union IP_XLATE { 

OBJECT translator; 
P UNKNOWN pTemplate; 

IP XLATE, *P_IP_XLATE; 
typedef struct IP NEW ONLY 

IP STYLE style; 
IP XLATE xlate; 

U16 
OBJECT 

PCHAR 
U8 

U16 
U16 
U32 
U16 

lineHeight; 
client; 

pString; 
rows,cols; 

lines; 
xIndex; 
reserved1; 
maxLen; 

U32 reserved; 

{ 

II xlateType 
II xlateType 

II IP style 

0, clsXlate object 
1, P XTEMPLATE 

II See the section "IPs and Translators." 
II Translation information for the IP. 
II Unused 
II Client for notification messages. 
II See the section "Client and Observers." 
II Initial string for ipsCharBox IP's field. 
II Number of rows and cols in IP. Can 
II be zero if shrinkWrap is on. 
II Unused 
II Unused 

II Max string length IP can return. 
II 0 means no limit. 

IP_NEW_ONLY, *P_IP_NEW_ONLY; 
#define ipNewFields \ 

customLayoutNewFields \ 
IP_NEW_ONLY ip; 

typedef struct IP_NEW 
ipNewFields 

} IP_NEW, *P_IP_NEW; 
#endif II ipNewFields 
#endif II NO_NEW 

In response to msgNew, clsIP creates the necessary components for the IP. This may include an instance 
of clsField, clsSPaper, or clsCommandBar. The various components are initialized according to the 

new.ip.style settings. 

The internal sPaper or field requires a translator. If xlateType is ipXlateObject, 
pNew->ip.xlate.translator is used as the translator object. If xlateType is ipXlateTemplate, then 



678 PENPOINT API REFERENCE 

Mes£Clgc 
Ar£jumcnts 

Part 5 I Input and Handwriting 

pNew->ip.xlate.pTemplate is compiled and allocated at msgNew, and freed when the component is 
destroyed. See the section "IPs and Translators" for more information. 

border. style. bottomMargin is always bsMarginMedium. 

Finally, based on embeddedLook, msgNew changes the border style of the IP and the border and 
margin styles of the internal components to make the IP look good when embedded (embeddedLook 
true) or when floating (embeddedLook false). 

Defaults changed if embeddedLook is false: 

border.style.borderInk = bsInkGray66; 
border.style.leftMargin = bsMarginMedium; 
border.style.rightMargin = bsMarginMedium; 
border.style.topMargin = bsMarginMedium; 
border.style.backgroundInk = bsInkGray33; 
border. style. shadow = bsShadowThickGray; 
win. flags. style 1= wsSaveUnder; 

Defaul ts changed if embeddedLook is true: 

border.style.borderInk = bsInkGray33; 
border.style.leftMargin = bsMarginNone; 
border.style.rightMargin = bsMarginNone; 
border.style.topMargin = bsMarginNone; 
border.style.backgroundInk = bsInkWhite; 
border. style. shadow = bsShadowThickWhite; 
win. flags. style &= ~wsSaveUnder; 

msgNewDefaults 
Initializes the IP _NEW structure to default values. 

Takes P _IP _NEW, returns STATUS. 

typedef struct IP_NEW 
ipNewFields 

} IP_NEW, *P_IP_NEW; 

When handling msgNew, certain border. style values are changed depending on the value of 
ip.embeddedLook. See msgNew for details. 

Zeros out pNew->ip and sets: 

ip.style.displayType = ipsRuledLines; 
ip.style.buttonType = ipsBottornButtons; 
ip.style.modal = ipsNoMode; 
ip.style.delayed = true; 
ip.maxLen = maxU16; 

border.style.edge = bsEdgeAII; 
border.style.resize = bsResizeCorner; 
border.style.drag = bsDragDowni 
border.style.top = bsTopDragi 

customLayout.style.limitToRootWin = truei 
win.flags.input 1= 

(input Tip 1 inputChar 1 inputMultiChar 
inputInProx 1 inputEnter 1 inputMoveUp 

win. flags. style 1= wsSendGeometrYi 
embeddedWih.style.moveable = falsei 
embeddedWin.style.copyable = falsei 

inputAutoTerm 1 \ 

inputMoveDelta)i 



Mess(;1ge 
Argul'nents 

Mess@ge 
Arguments 

msgIPGetStyle 
Passes back the style of the IP. 

Takes P _IP _STYLE, returns STATUS. 

#define msgIPGetStyle MakeMsg(clsIP, 5) 

typedef struct IP_STYLE 
U16 displayType: 3, 

button Type: 3, 
freeAfter: 1, 
clientReplace: 1, 
xlateType: 1, 

charOnly: 1, 
modal: 2, 

takeGrab: 1, 

reserved1: 1, 
takeFocus: 1, 
delayed: 1; 

U16 spaceCollapse: 3, 

embeddedLook: 1, 

II display type 
II button type 
II See the section "IP Destruction." 
II Unused 
II See the section "IPs and Translators." 
II Describes what pNew->ip.xlate contains. 
II See the section "Single Character IPs." 
II If style.takeGrab is true, describes modal 
II IP's behavior. 
II Makes the IP modal. Modal behavior is 
II defined by style.modal. 
II Reserved 
II IP becomes the input target when created. 
II For ipsCharBox IPs, turns on the field 
II component's delayed behavior. 
II Rule for collapsing spaces when 
II extracting information from ipsCharBox IP. 
II Set to true to look good when embedded; 
II false to look good when floating. Affects 

INSERT.H 679 

Messages 

reserved2: 1, 
ruledToBoxed: 1, 

II an IP's handling of msgNew and msgIPSetStyle. 
II Reserved 

boxedToRuled: 1, 

clientlsThisApp:1, 
reserved: 8; 

} IP_STYLE, *P_IP_STYLE; 

msgIPSetStyle 
Changes the style of the IP. 

II See the "Transmogrification" and "IPs and 
II Preferences" sections. 
II See the "Transmogrification" and "IPs and 
II Preferences" sections. 
II Private 
II Reserved 

Takes P_IP_STYLE, returns STATUS. 

#define msgIPSetStyle MakeMsg(clsIP, 6) 

typedef struct IP_STYLE 
U16 displayType: 3, 

buttonType: 3, 
freeAfter: 1, 
clientReplace: 1, 
xlateType: 1, 

charOnly: 1, 
modal: 2, 

takeGrab: 1, 

reserved1: 1, 
takeFocus: 1, 
delayed: 1; 

U16 spaceCollapse: 3, 

embeddedLook: 1, 

II display type 
II button type 
II See the section "IP Destruction." 
II Unused 
II See the section "IPs and Translators." 
II Describes what pNew->ip.xlate contains. 
II See the section "Single Character IPs." 
II If style.takeGrab is true, describes modal 
II IP's behavior. 
II Makes the IP modal. Modal behavior is 
II defined by style.modal. 
II Reserved 
II IP becomes the input target when created. 
II For ipsCharBox IPs, turns on the field 
II component's delayed behavior. 
II Rule for collapsing spaces when 
II extracting information from ipsCharBox IP. 
II Set to true to. look good when embedded; 



680 PEN POINT API REFERENCE 
Part 5 / Input and Handwriting 

reserved2: 1, 
ruledToBoxed: 1, 

boxedToRuled: 1, 

clientIsThisApp:1, 
reserved: 8; 

} IP_STYLE, *P_IP_STYLE; 

II false to look good when floating. Affects 
II an IP's handling of msgNew and msgIPSetStyle. 
II Reserved 
II See the "Transmogrification" and "IPs and 
II Preferences" sections. 
II See the "Transmogrification" and "IPs and 
II Preferences" sections. 
II Private 
II Reserved 

Clients use this message to change the style settings of an IP. Also, an IP self sends this message to 

perform transmogrification. 

In response to this message, an IP destroys obsolete components and creates new necessary ones. For 
example, changing from ipsCharBox to ipsRuledLines destroys the field component and creates an 

sPaper component. 

If an sPaper is being destroyed and a field being created, or vice versa, the IP extracts the translator 
information from the component about to be destroyed and moves it into the newly created one. 

This message dirties the layout the IP. 

This method does not change the IP's emheddedLook, xlateType, takeGrab, or takeFocus. 

msgIPGetT ranslator 
Passes back the translator for the IP. 

Takes P _OBJECT, returns STATUS. 

fdefine msgIPGetTranslator MakeMsg(clsIP, 7) 

Passes back the translator for the IP, regardless of how it was created. An ipsBlank or ipsRuledLines IP 

passes back the translator used by the sPaper component. An ipsCharBox IP passes back the translator 

used by the field component. 

See the section "IPs and Translators" for more information. 

msgIPSetT ranslator 
Sets the translator for the IP. 

Takes P_OBjECT, returns STATUS. 

fdefine msgIPSetTranslator MakeMsg(clsIP, 20) 

Use this message to set an IP's translator. 

In response to this message, a ipsCharBox IP sets its field's translator. Other IPs sets their sPaper's 

translator. All IPs change their style.xlateType to ipXlateObject. 

IMPORTANT: An IP does NOT free the current translation information in response to this message. 

The client must free this translation information. See the section "IPs and Translators" for more 

information. 

msgIPGetClient 
Passes back the IP's client object in *pArgs. 

Takes P _OBJECT, returns STATUS. 

fdefine msgIPGetClient MakeMsg(clsIP, 14) 



Comments 

See Aiso 

Comments 

See Aiso 

Comments 

See the section "Client and Observers" for more information. 

msgIPSetClient 

msgIPSetClient 
Makes pArgs the IP's client. 

Takes P _OBJECT, returns STATUS. 

tdefine msgIPSetClient MakeMsg(clsIP, 15) 

See the section "Client and Observers" for more information. 

msgIPGetClient 

msgIPSetString 
Sets a ipsCharBox IP's string. 

Takes P_CHAR, returns STATUS. 

tdefine msgIPSetString MakeMsg(clsIP, 10) 

Use this message to initialize or change the contents of a ipsCharBox IP. 

INSERT.H 68' 
Messages 

For ipsCharBox IPs, the default response to this message is to set the field component's string and to 

re-Iayout the IP. For other types of IPs, the default response is to return stsOK. 

See the section "IP Components" for more information. 

msgI~raJ1s1ate 

Translates scribbles in an IP. 

Takes nothing, returns STATUS. 

tdefine msgIPTranslate MakeMsg(clsIP, 3) 

When pressed, the "OK" button of an IP's command ba,r sends this message to the IP. Also, a client can 
send this message to cause an IP to translate any scribbles. An IP also self sends this message (1) in 
response to msgGWinForwardedKey and (2) when a modal IP terminates the mode (style.takeGrab is 
true, style. modal is ipsTranslateMode, and the pen taps outside of the IP). 

The IP's response to this message is as follows. 

• ipsRuledLines and ipsBlank IPs send msgSPaperComplete to the IP's sPaper component. (The 
sPaper in turn sends msgSPaperXlateCompleted back to the IP; see the comments on 
msgSPaperXlateCompleted for IP's response.) 

• ipsCharBox IPs with style. delayed false self send msgIPDataAvailable. 

• ipsCharBox IPs with style. delayed true and untranslated scribbles in the field first translate the 
scribbles and then self send msgIPCopied. 

• ipsCharBox IPs with style. delayed true and no untranslated scribbles in the field self send 
msgIPDataAvailable. 

pArgs must be O. 

msgSPaperXlateCompleted 



682 PEN POINT API REFERENCE 
Part 5 I Input and Handwriting 

msgIPCancelled 
Cancels an IP. Also sent to notify observer/client about the cancel. 

Takes OBJECT, returns STATUS. 

fdefine msgIPCancelled MakeMsg(clsIP, 18) 

When pressed, the "Cancel" button of an IP's command bar sends this message to the IP. A client can 
also send this message to cause an IP to cancel itself. Also, msgIPCancelled is sent to an IP's 
observers/ client to notify them about the cancelling. 

msgIPCancelled is also self sent if a modal IP has a style. modal value of ipsCancelMode and the modal 
IP is terminated (probably by a pen tap outside the IP). 

The IP's response to msgIPCancelled is a follows. First the IP clears the component (field or sPaper) of 
any data it contains. Next, if the IP's style.freeAfter is true, the IP extracts itself from the window 
hierarchy and posts msgDestroy to itself. Finally, it sends msgIPCancelled to observers/client to inform 
them of the cancellation. 

See the sections "IP Destruction" and "Client and Observers" for additional information. 

msgIPClear 

msgIPClear 
Clears an IP's contents. Also sent to notify observers/client about the clearing. 

Takes OBJECT, returns STATUS. 

fdefine msgIPClear MakeMsg(clsIP, 23) 

When pressed, the "Clear" button of an IP's command bar sends this message to the IP. A client can also 
send this message to cause an IP to clear its contents. Also, msgIPClear is sent to an IP's observers/client 
to notify them about the clearing. 

An IP's response to msgIPClear is as follows. If the IP has an sPaper component (ipsRuledLines or 
ipsBlank IP), then msgSPaperClear is sent to the sPaper. If the IP has a Held component, and 
style.ruledToBoxed is false, then msgFieldClear is sent to the field. If the IP has a field and 
style.ruledToBoxed is true, then the IP transmogrifies itself to have an sPaper. Finally, msgIPClear is 
sent to the IP's observers/client. 

See the sections "IP Components," "Client and Observers" and 'Transmogrification" for additional 
information. 

msgIPCancelled (spaper .h) (field.h) 

Observer/Client Messages 

msgIPCopied 
Notifies observer/client that newly translated data has been copied into a ipsCharBox IP's field. 

Takes OBJECT, returns STATUS. 

fdefine msgIPCopied MakeMsg(clsIP, 19) 

See the section "Client and Observers" for additional information. 



INSERT.H 683 
Data Retrieval Messages 

msgIPDataAvailable 
Notifies observers/client that the IP has translated data available. 

Takes OBJECT, returns SfATUS. 

#define msgIPDataAvailable MakeMsg(clsIP, 16) 

Observers/clients can respond to this message by sending msgIPGetXlateData or msgIPGetXlateString 
to get the translated data. 

See the section "Client and Observers" for additional information. 

msgIPTran,slate 

msgIPf ransmogrified 
Notifies observers/client that the IP has been transmogrified. 

Takes OBJECT, returns SfATUS. 

#define msgIPTransmogrified MakeMsg(clsIP, 24) 

See the sections 'Transmogrification" and "Client and Observers" for additional information. 

msgIPTranslate 

Data Retrieval Messages 

msgIPGetXlateData 
Passes back translated data in xlist form. 

Takes P _IP _XLATE_DATA, returns STATUS. 

#define msgIPGetXlateData MakeMsg(clsIP, 4) 

typedef struct IP_XLATE_DATA { 
OS_HEAP_ID heap; II In: heap for xlist allocation. 
P_UNKNOWN pXList; II Out: pointer to resulting xlist. 

IP_XLATE_DATA, *P_IP_XLATE_DATA; 

The default response to msgIPGetXlateData is as follows. 

An xlist is created in pArgs->heap (or osProcessHeapld if pArgs->heap is null.) Then the xlist is filled 
in as follows. 

• An ipsCharBox IP's xlist contains an xtBounds followed by an xtText element. The IP's field is 
cleared (using msgFie1dClear; see field.h). (The bounds is artificially constructed.) 

• An ipsRuledLines IP's xlist contains the xlist returned by sending msgSPaperGetXlateData (see 
spaper.h) to the sPaper component of the IP. 

• This message should not be sent to a ipsBlank IP because no translation is ever performed by this 
type ofIP. 

If the IP's style.freeAfter is true, then the IP self destructs; see the section "IP Destruction" for details. 

If self is a ipsCharBox IP and style. boxedToRuled is true, then the IP transmogrifies into a 
ipsRuledLines IP. See the 'Transmogrification" section. 

If self is a ipsCharBox IP, then the space collapse rules defined in style.spaceCollapse are applied to the 
xtText element in the xlist. 



684 PENPOINT API REFERENCE 
Part 5 / Input and Handwriting 

IMPORTANT: The sender of msgIPGetXlateData must free the returned xlist and elements in the 
xlist. (See xlist.h in general and XListFreeO in particular.) 

msgIPTransmogrified.h.h 

msgIPGetXlateString 
Passes back translated data in string form. 

Takes P _IP _STRING, returns STATUS. 

typedef struct IP_STRING { 
U16 len; II In-Out: length of buffer pointed to by pStr~ng 
P_CHAR pString; II In-Out: buffer pointer 

IP_STRING, *P_IP_STRING; 
#define msgIPGetXlateString MakeMsg(c!sIP, 17) 

In response to this message, an IP passes back its translated contents as a simple string form. 

Clients should use this message rather msgIPGetXlateData if a simple string is needed. Clients should 
use msgIPGetXlateData if the additional information contained in an xlist is needed. 

If pArgs->len is maxU16, the IP allocates the necessary string memory from the process heap. The 
sender of msgIPGetXlateString must free this memory. 

The returned pArgs->pString is "clipped" to pArgs->maxLen. The actual number of characters returned 
is returned in pArgs->len. 

Note: The handler of this message first self sends msgIPGetXlateData to get an xlist and then converts 
the data xlist to a string. See the comments regarding msgIPGetXlateData for information on the IP's 
self destruction and transmogrification. 

msgIPGetXlateData 

Messages from Other Classes 

msgFree 
Defined in clsmgr.h. 

Takes P _OBJ_KEY, returns STATUS. 

The IP sends msgFree to its components. It then frees any translation information passed into msgNew. 

See the section "IPs and Translators" for more information. 

msgSave 
Defined in clsmgr.h. 

Takes P _OBJ_SAVE, returns STATUS. 

The IP saves all necessary state and uses the window hierarchy filing mechanism to save any 
components. 

If the IP's client is OSThisAppO, this is remembered. See msgRestore for more information. 



Comments 

msgRestore 
Defined in clsmgr.h. 

Takes P_OBLRESTORE, returns STATUS. 

INSERT.H 685 
Messages from Other Classes 

dsIP restores self and uses the window hierarchy filing mechanism to restore any components. dsIP 
then re-establishes the necessary connections between self and each component. 

If the IP's client was OSThisAppO when saved, then the IP's client becomes OSThisAppO; otherwise 
the client becomes to objNull. 

win.h 

msgSetOwner 
Defined in clsmgr.h. 

Takes P _OBLOWNER, returns STATUS. 

An IP lets its superclasses respond to this message and then sends msgSetOwner to its components. 

See the section "IP Components" for more information. 

msgSPaperXlateCompleted 
Defined in spaper.h. 

Takes OBJECT, returns STATUS. 

Only sophisticated subclasses might want to handle this message. An IP with an sPaper component 
(ipsRuledLines and ipsBlank) receives this message from the sPaper when the sPaper has completed 
translation. . 

If style.ruledToBoxed is.false, this message simply self sends msgIPDataAvailable. Otherwise the IP tries 
to transmogrify itself, using the following steps: 

• The translated string is extracted from the sPaper component. 

• If the string is empty, the IP self sends msgIPDataAvailable and gives up the effort to transmogrifY. 

• The IP transmogrifies itself. 

In both cases, the sPaper component (if it still exists) is cleared. 

See the 'T ransmogrification" section. 

msgIPTranslate 

msgWinStartPage 
Defined in win.h. 

Takes nothing, returns STATUS. 

Only sophisticated subclasses might want to handle this message. This message informs an IP that it 
exists on a printer and that printing is about to commence. 

If the IP is not ipsBlank, an IP's default response is to return stsOK. Otherwise, the IP turns off all of its 
own margins and all of the borders and ruling lines for the sPaper component. This causes the IP to 
print only the scribbles, which is particularly appropriate when an IP has been used to capture and hold 
a signature. 



686 PENPOINT API REFERENCE 

Comments 

Part 5 / Input and Handwriting 

msgGWinForwardedKey 
Defined in gwin.h. 

Takes P_INPUT_EVENT, returns STATUS. 

Only sophisticated subclasses might want to handle this message. A child window may send this message 
when the child receives a keyboard input event that it doesn't want to handle. 

If the key's keyCode is uKeyReturn (see key.h), the IP self sends msgIPTranslate. Otherwise it returns 
stsRequestForward. 

Sent when a component (field) forwards a key. An IP containing a field component that forwards the 
Return key causes msgIPTranslate to be self sent, as if the "OK" button was pressed. 

msgIPTranslate.h.h 

msglnputTargetActivated 
Defined in input.h. 

Takes OBJECT, returns STATUS. 

Only sophisticated subclasses might want to handle this message. The input system sends this message 
to an object to inform an object that it is no the input target. 

In response to this message, an IP remembers the previous input target. If the IP is a ipsCharBox IP, it 
makes the IP's field the input target. 

The IP restores the previous input target as part of its response to msgWinExtracted. 

msg T rackProvideMetrics 
Defined in trackh. 

Takes P _TRACK_METRICS, returns STATUS. 

Only sophisticated subclasses might want to handle this message. 

clsIP is a descendant of clsBorder. Unless turned off by a subclass, an IP is resizeable by the user. When 
clsBorder creates a resize object and its associated tracker, it first self sends msgT rackProvideMetrics to 
allow itself to modify the parameters of the tracker. 

In response to this message, an IP does the following: 

• If the tracker is not a resizing tracker, the IP simply returns stsOK. 

• The IP remembers the original client of the tracker so that the IP can forward tracker-related 
messages onto that original client. It then makes itself be the client of the tracker. 

• If the IP has a command bar (style.buttonType is ipsBottomButtons or ipsTopButtons), then 
pArgs->style.draw is set to tsDrawCmdBarRect and pArgs->cmdBarH is set appropriately. 

• The tracker's minimum size constraints are adjusted so that the IP can get no smaller than the 
scribbles that are in the IP's field or sPaper. This prevents scribbles from being covered. 

• The IP the makes itself the client of the tracker so that the IP receives msgTrackUpdate and 
msgTrackDone. 

msg TrackUpdate 



msgTrackUpdate 
Defined in track.h. 

Takes P _TRACK_METRICS, returns STATUS. 

Only sophisticated subclasses might want to handle this message. 

INSERT.H 687 
Obsolete 

The default response to this message is to forward the message to the tracker's original client, as 
remembered in msgTrackProvideMetrics. 

msg TrackProvideMetrics 

msgTrackDone 
Defined in track.h. 

Takes P _TRACK_METRICS, returns STATUS. 

Only sophisticated subclasses might want to handle this message. 

ipsBlank IPs can be resized to any size. Otherwise the default response to this message is to force the 

new size of the IP to fit nicely around whole rows and columns (in ipsCharBox IPs) or lines (in 

ipsRuledLines IPs). Then the message is forwarded to the tracker's original client, as remembered in 
msg TrackProvideMetrics. 

msg TrackProvideMetrics 

Obsolete 
#define stsIPNotSupported 
#define stsIPBadMode 

MakeStatus(clsIP, 1) II Obsolete 
MakeStatus(clsIP, 2) II Obsolete 





KEY.H 

This file contains the API definition for the keyboard driver. 

clsKey inherits from clsObject. 

The functions described in this file are contained in INPUT.LIB. 

This file defines the data sent with keyboard event. Keyboard events are generated by both the real 

keyboard and the virtual keyboard. 

Keyboard Events 
When keyboard devices (physical or virtual) generate input events, the events are delivered via 

msgInputEvent. The following are the value of pArgs->devCode for msgInputEvent. 

msgKeyDown sent when a key is depressed. 

msgKeyUp sent when a key is released. 

msgKeyChar contains an individual character code and is sent when a key is depressed. 

msgKeyMulti contains multiple character codes that have accumulated since the last msgKeyMulti 

Input Flags 

event was sent. This allows processing of multiple keys without the overhead of a separate message 

for each key. For all of these values, pArgs->eventData should be cast to P _KEY_DATA. (A 

msgKeyMulti event contains the same information as several msgKeyChar events.) 

Keyboard events can be enabled or disabled using input flags. See input.h for more information. The 

relevant flags for keyboard events are: 

input flag 

inputChar 
inputMultiChar 
inputMakeBreak 

enables 

msgKeyChar 
msgKeyMulti 
msgKeyUp and msgKeyDown 

Clients should still verify that the devCode is the particular message they are interested in. 

Sample Code 
You can verify that your msgInputEvent handler is handling a keyboard message by checking as follows: 

if (ClsNum(pArgs->devCode) == ClsNum(clsKey)) { 

You should further verify that the devCode is the particular message that you are interested in 

processing. 

Once you've decided that you're looking at a key event, you can cast pArgs->eventData as follows: 

P KEY DATA pKeyData; 
pKeyData = (P_KEY_DATA) (pArgs->eventData); 



690 PENPOINT API REFERENCE 
Part 5 I Input and Handwriting 

This example shows how you might handle msglnputEvent with a devCode of msgKeyUp, 
msgKeyDown or msgKeyChar: 

for (i=O, i<pKeyData->repeatCount; i++) ( 
HandleSingleKey(pKeyData->keyCode, pKeyData->shiftState); 

This example shows how you might handle msglnputEvent with a devCode of msgKeyMulti: 

P_KEY~MULTI pMulti = pKeyData->multi; 
for (i=O, i<pKeyData->repeatCount; i++) { 

for (j=O; j<pMulti[i] .repeatCount; j++) 
HandleSingleKey (pMulti [i] .keyCode, pKeyMulti[i] .shiftState); 

#ifndef KEY INCLUDED 
#define KEY INCLUDED 
#ifndef GO INCLUDED 
#include <go.h> 
#endif 

#ifndef UID_INCLUDED 
#include <uid.h> 
#endif 

#ifndef OSHEAP INCLUDED 
#include <osheap.h> 
#endif 
#ifndef CLSMGR INCLUDED 
#include <clsmgr.h> 
#endif 

Keyboard Event Messages 
#define msgKeyUp 
#define msgKeyDown 
#define msgKeyChar 
#define msgKeyMulti 

MakeMsg(clsKey, 0) 
MakeMsg(clsKey, 1) 
MakeMsg(clsKey, 12) 
MakeMsg(clsKey, 13) 

Common #defines and typedefs 

Shift Flags 
These are used in the shiftState field of KEY_MULTI and KEY_DATA. They indicate which modifier keys 
were down when the event was generated. 

#define keyScrollLock 
#define keyNumLock 
#define keyCapsLock 
#define keyShift 
#define keyCtrl 
#define keyAlt 
#define keyLeftShift 
#define keyRightShift 
#define keyLeftCtrl 
#define keyRightCtrl 
#define keyLeftAlt 
#define keyRightAlt 
#define keyShiftLock 
#define keyCtrlLock 
#define keyAltLock 

flagO 
flag1 
flag2 
flag3 
flag4 
flagS 
flag6 
flag7 
flag8 
flag9 
flag10 
flag11 
flag12 
flag13 
flag14 



KEY.H 691 
Common #defines and typedefs 

".. Key Codes 
Special ASCII characters 

#define uKeyBackSpace Ox08 
#define uKeyTab Ox09 
#define uKeyLineFeed OxOa 
#define uKeyReturn OxOd 
#define uKeyEscape Ox1b 

Keys with no ASCII values; mapped into the user area of Unicode. 

#define uKeyF1 
#define uKeyF2 
#define uKeyF3 
#define uKeyF4 
#define uKeyF5 
#define uKeyF6 
#define uKeyF7 
#define uKeyF8 
#define uKeyF9 
#define uKeyF10 
#define uKeyF11 
#define uKeyF12 
#define uKeyInsert 
#define uKeyDelete 
#define uKeyHome 
#define uKeyEnd 
#define uKeyPageUp 
#define uKeyPageDown 
#define uKeyUp 
#define uKeyDown 
#define uKeyLeft 
#define uKeyRight 
#define uKeyCenter 
#define uKeyPrintScreen 
#define uKeyPause 
#define uKeySysRq 
#define uKeyBreak 
#define uKeyBackTab 

Oxf001 
Oxf002 
Oxf003 
Oxf004 
Oxf005 
Oxf006 
Oxf007 
Oxf008 
Oxf009 
OxfOOa 
OxfOOb 
OxfOOc 
Oxf020 
Oxf021 
Oxf022 
Oxf023 
Oxf024 
Oxf025 
Oxf026 
Oxf027 
Oxf028 
Oxf029 
Oxf02a 
Oxf02b 
Oxf02c 
Oxf02d 
Oxf02e 
Oxf02f 

msglnputEvent Argument Types 
KEY_MULTI holds the variable length data for msglnputEvent with a devCode of msgKeyMulti. 

typedef struct KEY MULTI 
U16 keyCode; 
U16 scanCode; 
U16 shiftState; 
U16 repeatCount; 
U8 reservedA[4]; 

KEY_MULTI, *P_KEY_MULTI; 

I I ASCII value 
II keyboard scan code 
II state of the shift, ctrl & alt keys 
II number of autorepeats to apply 
II reserved for future use 

KEY_DATA is the "true" type of msglnputEvent's pArgs->eventData for all keyboard event messages. 

If msglnputEvent's pArgs->devCode is msgKeyMulti, the keyCode, scanCode and shiftState fields of 
this struct are undefined. Each of these fields is defined in a KEY_MULTI struct. 

typedef 
U16 
U16 
U16 
U16 

struct KEY_DATA { 
keyCode; 
scanCode; 
shiftState; 
repeatCount; 

U8 reserved[24]; 
KEY MULTI multi[l]; 

KEY_DATA, *P_KEY_DATA; 

II ASCII key translation 
II keyboard scan code 
II state of the shift, ctrl & alt keys 
II if not msgKeyMulti, the no. of identical 
II keycodes received. If msgKeyMulti, the 
II number of KEY MULTI structs in multi~ 

II if msgKeyMulti, an array of KEY_MULTIs 





KEYBOARD.H 

Interface to the software keyboard class. Keyboards do NOT file. 

clsKeyboard inherits from clsKeyCap. 

Provides the standard keyboard look and interaction. 

clsKeyboard inherits from clsKeyCap and provides keyboard-like 

behavior. It directly supports the standard QWERTY keyboard and the PC 101 key keyboard layout 
and display. Other forms of keyboards can be generated by overriding the keycap layout table. 

The make/break interface is implemented through a call-back procedure. This routine is setup in the 
new parameters and is called with the standard keyboard messages: msgKeyMake, msgKeyBreak, 

msgKeyChar, and msgKeyMulti. 

The scan code mapping table is generally reusable for most keyboard layouts. 

WARNING: These API's are not currently in a suitable state for developers. 

#ifndef KEYBOARD_INCLUDED 
#define KEYBOARD_INCLUDED 
#ifndef GO_INCLUDED 
#include <go.h> 
#endif 
#ifndef OSHEAP_INCLUDED 
#include <osheap.h> 
#endif 
#ifndef UID_INCLUDED 
#include <uid.h> 
#endif 
#ifndef KEY_INCLUDED 
#include <key.h> 
#endif 
#ifndef KEYCAP_INCLUDED 
#include <keycap.h> 
#endif 
#ifndef KEYSTATE_INCLUDED 
#include <keystate.h> 
#endif 

Quick Help Ids 
This is the quick help Id for keyboard objects. 

#define tagKeyboard MakeTag(clsKeyboard, 1) 

Class Messages 

msgNewDefaults 
Initializes the default new arguments. 

Takes P_KEYBOARD_NEW, returns STATUS. 



694 PENPOINT API REFERENCE 

Messoge 
Argurm:tl1ts 

Part 5 I Input and Handwriting 

typedef struct KEYBOARD_NEW_ONLY { 
P_U16 pMap; II scan code to key map 
P_KEYSTATE_PROC pProc; II proc for processing events 
P_UNKNOWN pUserData; II user data for the proc 

KEYBOARD_NEW_ONLY, *P_KEYBOARD_NEW_ONLY; 
fdefine keyboardNewFields \ 

keyCapNewFields \ 
KEYBOARD NEW ONLY keyboard; 

typedef struct KEYBOARD_NEW { 
keyboardNewFields 

} KEYBOARD_NEW, *P_KEYBOARD_NEW; 

The default settings are: 

pArgs->keyboard.pMap = PC 101 keyboard mapping 

pArgs->keyboard.pProc = pNull; 

pArgs->keyboard.pUserData = NULL; 

msgNew 
Creates a new keyboard object. 

Takes P_KEYBOARD_NEW, returns STATUS. 

typedef struct KEYBOARD_NEW { 
keyboardNewFields 

} KEYBOARD_NEW, *P_KEYBOARD_NEW; 

msgKeyb0 ardReturn 
Handles completion of processing of a key event. 

Takes P_KEYBOARD_RET, returns STATUS. 

typedef struct KEYBOARD_RET 
MESSAGE msg; II message 
P_KEY_DATA pKey; II key information, see key.h 

KEYBOARD_RET, *P_KEYBOARD_RET; 
fdefine msgKeyboardReturn MakeMsg(clsKeyboard, 1) 

This message is only needed by the virtual keyboard application. 

Standard Keyboard Events 

msgKeyMake 
Self call & notification of make key. 

Takes P _KEY_DATA, returns STATUS. 

msgKeyBreak 
Self call & notification of break key. 

Takes P _KEY_DATA, returns STATUS. 



KEYBOARD.H 695 
Standard Keyboard Events 

msgKeyChar 
Self call & notification of character event. 

Takes P _KEY_DATA, returns STATUS. 

msgKeyMulti 
Self call & notification of multi-key event. 

Takes P _KEY_DATA, returns STATUS. 





KEYCAP.H 

Interface for the KeyCap class. 

clsKeyCap inherits from clsWin. 

Provides an array of keycaps for keyboard emulations. 

clsKeyCap inherits from clsWin which provides support for an array 

of keyboard "caps" which can deliver a scan code and make/break events. Subclasses are expected to 

added the glyph which is displayed on the cap when the key is painted. This is accomplished by 
intercepting the self-call msgKeyCapPaintCap. 

WARNING: These API's are not currently in a suitable state for developers. 

#ifndef KEYCAP INCLUDED 
#define KEYCAP INCLUDED 
#ifndef GO INCLUDED 
#include <go.h> 
#endif 
#ifndef OSHEAP INCLUDED 
#include <osheap.h> 
#endif 
#ifndef UID INCLUDED 
#include <uid.h> 
#endif 
#ifndef WIN INCLUDED 
#include <win.h> 
#endif 
#define maxCaps 150 

Cap Width Descriptors 

II max for the KEYCAP TABLE declaration 

A data table based mechanism is used to define the array of key caps. Each row is a fixed height 

(determined by dividing the window by the number of rows). Each cap can have one of five widths, 

small, medium, large, extra large and huge. A small cap is the basic unit of measure, all other cap sizes 
are multiples of this size. This size is determined by dividing the window width by the number of switch 

units. The cap sizes are: small = 1 unit, medium = 1.5 units, large = 2 units, extra large = 2.5 units, and 

huge = 7 units. 

#define kcEND (OxOOOO) 
#define kcS (OxlOOO) 
#define kcM (Ox2000) 
#define kcL (Ox3000) 
#define kcX (Ox4000) 
#define kcH (Ox5000) 
typedef struct KEYCAP TABLE { 

U16 rows; 
U16 switches; 
U16 capCodes[maxCaps]; 

II end of row marker 
II small cap 
II medium cap 
II large cap 
II extra large cap 
II huge cap 

II number of rows 
II number of column units 
II array of scan codes with 
II cap width descriptor (high nibble) 
II Each row must end with kcEnd and 
II the table must end with two 
II kcEnd tokens. 



698 PENPOINT API REFERENCE 
Part 5 I Input and Handwriting 

Class Messages 

MessG!ge 

Arguments 

msgNewDefaults 
Initializes the new arguments. 

Takes P _KEYCAP _NEW, returns STATUS. 

typedef struct KEYCAP NEW ONLY { 
P_KEYCAP_TABLE pTable; II pointer to the keycap table 

} KEYCAP_NEW_ONLY, *P_KEYCAP_NEW_ONLY; 
#define keyCapNewFields \ 

OBJECT_NEW_ONLY object; \ 
WIN NEW_ONLY win; \ 
KEYCAP_NEW_ONLY keyCap; 

typedef struct KEYCAP NEW { 
keyCapNewFields ~ 

} KEYCAP_NEW, *P_KEYCAP_NEW; 

The pTable field is initialized to pNull by default. 

msgNew 
Creates a new instance of the keycap object. 

Takes P _KEYCAP _NEW, returns STATUS. 

typedef struct KEYCAP_NEW { 
keyCapNewFields 

} KEYCAP_NEW, *P_KEYCAP_NEW; 

If the pTable pointer is NULL, the standard QWERTY layout is used by default. 

msgKeyCapPaintCap 
Hook to allow painting on top of keycap. 

Takes P _KEYCAP _INFO, returns STATUS. 

typedef struct KEYCAP_INFO 
U16 scanCode; 
RECT32 recti 
BOOLEAN hilite; 
OBJECT dc; 

} KEYCAP INFO, *p KEYCAP INFO; 
#define msgKeyCapPaintCap 

II scan code for the keycap 
II location of the keycap rect, LWC 
II TRUE for highlighted display 
II Drawing context 

MakeMsg(clsKeyCap, 1) 

This is the self-call hook which allows subclasses the ability to paint the glyph on ~he keycap. This call is 
made during the response to msgWinRepaint and is therefore already bracketed by 

msgWinBeginRepaint, msgWinEndRepaint. 

msgKeyCapScan 
Locates the keycap under a given x,y. 

Takes P _KEYCAP _SCAN, returns STATUS. 

typedef struct KEYCAP SCAN { 
XY32 xy; - II coordinates for search 
U16 scanCode; II Out: scan code of keycap 
RECT32 recti II Out: keycap rect in LWC 

} KEYCAP SCAN, *p KEYCAP_SCAN; 
#define msgKeyCapScan MakeMsg(clsKeyCap, 2) 

This function returns the keycap which is under the Local Window Coordinates (L WC) xy. 



Arguments 

Arguments 

Mess(!ge 
Arguments 

Mess(!ge 
Arguments 

KEYCAP.H 699 
Cap Width Descriptors 

msgKeyCapGetDc . 
Returns the DC used by the keycap. 

Takes P _KEYCAP _GET_DC, returns STATUS. 

typedef struct KEYCAP GET DC { 
OBJECT dc; - - II Out: keycap dc object 

} KEYCAP GET DC, *p KEYCAP GET DC; 
fdefine msgKeyCapGetDc - - MakeMsg(clsKeyCap, 3) 

msgKeyCapRedisplay 
Forces the display to be regenerated. 

Takes nothing, returns SfATUS. 

fdefine msgKeyCapRedisplay 

msgKeyCapHilite 

MakeMsg(clsKeyCap, 5) 

Hilites the key with the given scan code. 

Takes P _KEYCAP _HILITE, returns SfATUS. 

typedef struct KEYCAP HILITE { 
U16 scan; - II In: scan code to hilite 
BOOLEAN on; II In: true to display as hilite 

} KEYCAP HILITE, *p KEYCAP HILITE; 
fdefine msgKeyCapHilite - MakeMsg(clsKeyCap, 6) 

The key cap object tracks which keys (by scan code) are highlighted at any given time. 

msgKeyCapMake 
Subclass hook to indicate button press of keycap. 

Takes P _KEYCAP _INFO, returns STATUS. 

fdefine msgKeyCapMake 

typedef struct KEYCAP INFO 
U16 scanCode; -
RECT32 recti 
BOOLEAN hilite; 
OBJECT dc; 

KEYCAP_INFO, *P_KEYCAP_INFO; 

MakeMsg(clsKeyCap, Ox80) 

II scan code for the keycap 
II location of the keycap rect, LWC 
II TRUE for highlighted display 
II Drawing context, 

This message is a self-call when the pen touches down on a keycap. Note that only one make/break 
event pair is generated for each penDown, penUp combination. Sliding off a key onto another is NOT 

considered a press on the new key. 

msgKeyCapBreak 
Subclass hook to indicate button release of keycap. 

Takes P_KEYCAP_INFO, returns STATUS. 

fdefine msgKeyCapBreak 

typedef struct KEYCAP INFO 
U16 scanCodei -
RECT32 recti 
BOOLEAN hilite; 
OBJECT dc; 

KEYCAP_INFO, *P_KEYCAP_INFO; 

MakeMsg(clsKeyCap, Ox81) 

II scan code for the keycap 
II location of the keycap rect, LWC 
II TRUE for highlighted display 
II Drawing context 

This message is a self-call when the pen is lifted up from the previous make event. 





KEYSTATE.H 

Interface for the hardware independent keyboard code interpreter 

WARNING: These API calls are not currently in a state suitable for developer use. 

#ifndef KEYSTATE INCLUDED 
#define KEYSTATE_INCLUDED 
#ifndef GO_INCLUDED 
#include <go.h> 
#endif 
#ifndef OSHEAP INCLUDED 
#include <osheap.h> 
#endif 
#ifndef KEY_INCLUDED 
#include <key.h> 
#endif 
#define keyMultiMax 16 II max # multi-key buffered events 
typedef void (PASCAL *P_KEYSTATE_PROC) (P_UNKNOWN, MESSAGE, P_KEY_DATA); 

typedef struct KEYSTATE II keyboard decode state 
U16 state; II long-term state flags 
U16 lastScanned; II last scan code processed 
U16 lastSent; II last scan code sent 
U16 count; II count of repeated codes while on Hold 
S16 onHold; II number of character events to be processed 
S16 multi; II number of multi-char events 
P_U16 pMap; II pointer to the scan-to-char map 
S16 multiIndex; II index into the multi-key array 
P_KEY_MULTI pBuffer; II buffer for multi-key recording 
P_KEYSTATE_PROC pKeyEvent; II proc. pointer for reporting keystate changes 
P_UNKNOWN pUserData; II data for use by the user proc. 

KEYSTATE, *P_KEYSTATE; 

KeyStateSetup 
Initializes a state structure to quiesent values. 

Returns nothing. 

FUIfV::fkH1 Pr©f©fype void PASCAL KeyStateSetup ( 
P_KEYSTATE pState 

) ; 

KeyStateProcess 
Converts the scan code into the approriate action for shift keys and standard keys. 

Returns nothing. 

FuYn;fitm Pr©f©fype void PASCAL KeyStateProcess ( 
P_KEYSTATE pState, 
U16 scanCode 

) ; 

II pointer to the keyboard state structure 
II scan code to process 



702 PEN POINT API REFERENCE 
Part 5 / Input and Handwriting 

KeyStateConvert 
Converts a scan code to the appropriate character code, or sets up the appropriate shift state. 

Returns nothing. 

Fwm:tkm Pvz7tOtYPt'J! void PASCAL KeyStateConvert ( 
P_KEYSTATE pState, 
U16 scanCode, 
P_U16 pChar, 
P U16 pDisplay 

) ; 

KeyStateReturn 
Process completion of the key event. 

Returns nothing. 

f'lH1iChcH"% t>n:tN:iYtwS void PASCAL KeyStateReturn ( 
P_KEYSTATE pState, 
MESSAGE msg, 
P_KEY_DATA pKey 

) ; 

KeyStateFindScan 

II pointer to the keyboard state structure 
II scan code to convert 
II character code 
II display charactere code 

Returns the scan code for a shift state flag. 

Returns nothing. 

typedef struct KEYSTATE SCANS 
U16 count; II In: max count, Out: actual count 
U16 scanCodes[4]; II can be variable number of entries 

KEYS TATE_SCANS , *P_KEYSTATE_SCANS; 

P!ft?iiCli},pe void PASCAL KeyStateFindScan ( 
P KEYSTATE pState, 

) ; 

U16 state, 
P_KEYSTATE_SCANS pScanCode 

KeyStateDisplay 

II pointer to the keyboard state structure 
II state flag for search 
II Out: scan code 

Returns the set of display codes for the scan code. 

Returns nothing. 

typedef struct KEYS TATE CODES 
U16 count; II In: max count, Out: actual count 
struct { 

U16 shift; 
U16 charCode; 

data[4]; II can be variable number of entries 
KEYSTATE_CODES, *P_KEYSTATE_CODES; 

Flmdlort Prototype void PASCAL KeyStateDisplay ( 
P_KEYSTATE pState, 

) ; 

U16 scanCode, 
P_KEYSTATE_CODES pCodes 

II pointer to the keyboard state structure 
II scan code to be converted 
II Out: scan code 



PEN.H 

This file contains the API definition for the pen driver. 

c1sPen inherits from c1s0bject. 

The functions described in this file are contained in INPUT.LIB. 

This file contains information about pen-generated input events. See input.h for general information on 
PenPoint's input system and input events. You should probably read at least the "Road Map" section of 
input.h before trying to understand this file in detail. 

Pen Events 

When the pen generates input events, the events are delivered via msglnputEvent. The following values 
are the value of pArgs->devCode for msglnputEvent. 

msgPenUp sent when the pen tip is lifted from the screen. 

msgPenDown sent when the pen tip touches the screen. 

msgPenMoveUp sent as the pen moves while above the screen and in proximity. 

msgPenMoveDown sent as the pen moves while touching the screen. 

msgPenEnterUp sent when the pen enters a window while above the screen and in proximity. 

msgPenEnterDown sent when the pen enters into a window while touching the screen. 

msgPenExitUp sent when the pen exits a window while above the screen and in proximity. 

msgPenExitDown sent when the pen exits a window while touching the screen. 

msgPenlnProxUp sent when the pen comes into proximity. This message is also sent when certain 
timeouts occur; see the section "Proximity Timeout Events" for more information. 

msgPenOutProxUp sent when the pen leaves proximity. This message is also sent when certain 
timeouts occur; see the section "Proximity Timeout Events" for more information. 

msgPenStroke sent with the collected stroke data. See the "Stroke Events" section. 

msgPenTap sent when taps are recognized by the driver. See the 'Tap Events" section. The taps field of 
PEN_DATA contains the number of taps. 

msgPenHoldTimeout sent after pen down and hold timeout. See the "Hold Timeout Events" section. 
The taps field of PEN_DATA contains the number of taps that occurred before the Hold. 

[Terminology Note: the msgPenlnProxUp and msgPenOutProxUp events can be thought of as 
msgPenlnProx and msgPenOutProx since the pen tip is always up when these events are sent. The 
trailing "Up" is present for historical reasons only.] 



704 PENPOINT API REFERENCE 

Part 5 I Input and Handwriting 

Input Flags 

Pen events can be screened out using input flags. See input.h for more information. The relevant flags 
for pen are: 

input flag 

inputTip 

inputMoveUp 
inputMoveDown 
input Enter 

inputExit 

inputlnProx 
inputOutProx 
inputStroke 
input Tap 
inputHoldTimeout 

Enter Exit Window Events 

enables 

msgPenUp 
msgPenDown 
msgPenMoveUp 
msgPenMoveDown 
msgPenEnterUp 
msgPenEnterDown 
msgPenExitUp 
msgPenExitDown 
msgPenlnProxUp 
msgPenOutProxUp 
msgPenStroke 
msgPenTap 
msgPenHoldTimeout 

see section 

"Hold Timeout Events" 

msgPenEnterUp, msgPenEnterDown, msgPenExitUp and msgPenExitDown are generated when the 
pen transits a window boundary. The window that the pen was previously in will receive msgPenExitUp 
or msgPenExitDown (if its input flags request them). The window that the pen is now in will receive 
msgPenEnterUp or msgPenEnterDown (if its input flags request them). Note that if the pen leaves 
proximity, the window will receive a msgPenOutProxUp and not msgPenExitUp. Similarly, if the pen 
enters proximity, the window will receive msgPenlnProxUp and not msgPenEnterUp. 

The timestamp, strokeSeqNum and penXY field of the PEN_DATA structure will be valid. All other 
fields will be O. 

Hold Timeout Events 

msgPenHoldTimeout events are generated when the user puts the pen on the display and leaves it there 
for the "Hold" timeout duration. This message is also generated if the user taps 1 or more times before 
holding the pen down. 

For example, msgPenHoldTimeout is the event that triggers PenPoint's move and copy, and is also used 
by some applications to trigger wipe-through area selection. 

msgPenHoldTimeout events are sent if the window's input flags have the inputHoldTimeout flag set. 

The strokeSeqNum field of the PEN_DATA structure will be the sequence number of the most recent pen 
down. The penXY field of the PEN_DATA structure will be the pen device coordinates of the first pen 
down. 

will be valid. All other fields will be O. 

Proximity Timeout Events 
The input system also has a proximity-related timeout. These are used if the user lifts the pen off the 
display but leaves the pen in proximity. 

This timer is typically used to trigger translation because some users don't lift their pen tips out of 
proximity but still want translation to occur. 



PEN.H 705 

If this timer expires with the pen still in proximity, the input system sends msgPenOutProxUp, followed 
by msgPenlnProxUp. In other words, the input system generates events to make it look like the user 
temporarily lifted the pen out of proximity. 

[Note: the obsolete messages msgPenTimeout and msgPenHWTimeout are not sent.] 

Stroke Events 

Each time the pen goes down, moves, and comes up, the input system generates msglnputEvent with a 
pArgs->devCode of msgPenStroke. The pArgs also includes a compressed representation of the stroke. 

One way to think about a stroke event is as a "summary" or "reprise" of msgPenDown, zero or more 
msgPenMoveDowns, and a msgPenUp. 

Stroke events are delivered to the window in which the stroke started (if that window has the input flag 
inputStroke flag set), even if the stroke crosses that window's boundaries. 

Stroke events are generated in addition to the other, lower level, messages that occur as the stroke event 
is being accumulated. Typical clients either handle msgPenStroke or the lower-level messages 
(msgPenDown, msgPenMoveDown, msgPenUp), but NOT both. 

The input system assigns a sequence number to each stroke. Each pen event contains the stroke number 
that the event is a part of. This number is found in the "strokeSeqNum" field of PEN_DATA. 

See the "Sample Code" section for an example of how to extract stroke information from the pArgs of a 
stroke event. 

Tap Events 
A msgPenTap is generated if there is a msgPenDown followed by a msgPenUp and (1) any pen motion 
between the Down and Up is below some threshold and (2) the Down and Up happen within a certain 
time interval and (3) the Down and Up occur over the same window and (4) no other input event 
(excepting an optional Out of Proximity) event happens within a certain time threshold of the Up. 

msgPenTap is sent if the input flag inputTap is set. 

If the pen is "tapped" repeatedly, a single msgPenTap is sent and the taps field of PEN_DATA contains 
the number of pen taps. 

The strokeSeqNum field of the PEN_DATA structure will be the sequence number of the most recent pen 
down. The penXY field of the PEN_DATA structure will be the pen device coordinates of the first pen 
down. 

Typical Sequences of Events 

This sections illustrates some typical sequences of pen events. It does not include tap, timeout and stroke 
events. It also does not show forwarding up the window parent chain. 

This table contains the flow of events if the pen comes down, moves around, and comes back up, all 
within a single window. 

quantity 

1 
o or more 
1 
o or more 
1 
o or more 
1 

event 

msgPenlnProxUp 
msgPenMoveUp 
msgPenDown 
msgPenMoveDown 
msgPenUp 
msgPenMoveUp 
msgPenOutProxUp 



706 PENPOINT API REFERENCE 
Part 5 / Input and Handwriting 

This sequence is complicated if the pen crosses a window boundary while moving. When this happens, 
the input system generates Enter and Exit events to notify the windows being entered and exited. In the 

following example, assume that the window hierarchy isn't changing and that the pen crosses a window 
boundary between windows A and B while the pen is down. 

quantity events seen by A events seen by B 

1 
o or more 
1 
o or more 
1 
1 
1 
o or more 
1 

msgPenInProxUp 
msgPenMoveUp 
msgPenDown 
IttsgPenMoveDown 
msgPenExitDown 

msgPenEnterDown 
msgPenUp 
msgPenMoveUp 
msgPenOutProxUp 

If the pen goes down in window A and i:'1 response window A II pops up II a window B right where the 

pen is, and the user lifts the pen, the following sequence occurs: 

quantity events seen by A events seen by B 

1 
o or more 
1 
1 
1 
1 
o or more 
1 

Sample Code 

msgPenInProxUp 
msgPenMoveUp 
msgPenDown 
msgPenExitDown 

msgPenEnterDown 
msgPenUp 
msgPenMoveUp 
msgPenOutProxUp 

You can verify that your msglnputEvent handler is handling a pen message by checking as follows: 

if (ClsNum(pArgs->devCode) == ClsNum(clsPen)) { 

Once you've decided that you're looking at a pen event, you can cast pArgs->eventData as follows: 

P_PEN_DATA pPenData; 
pPenData = (P_PEN_DATA) (pArgs->eventData); 

If pArgs->devCode is msgPenStroke, you can get a pointer to the stroke data as follows: 

P PEN STROKE pStroke; 
pStroke = (P_PEN_STROKE) ((P_PEN_DATA) (pArgs->eventData))->data; 

#ifndef PEN INCLUDED 
#define PEN INCLUDED 
#ifndef GO INCLUDED 
#include <go.h> 
#endif 
#ifndef GEO INCLUDED 
#include <geo.h> 
#endif 
#ifndef INPUT_INCLUDED 
#include <input.h> 
#endif 



PEN.H 707 
msglnputEvent Argument Types 

Pen Event Messages 
#define rnsgPenUp 
#define rnsgPenDown 
#define rnsgPenMoveUp 
#define rnsgPenMoveDown 
#define rnsgPenEnterUp 
#define rnsgPenEnterDown 
#define rnsgPenExitUp 
#define rnsgPenExitDown 
#define rnsgPenlnProxUp 
#define rnsgPenOutProxUp 
#define rnsgPenStroke 
#define rnsgPenTap 
#define rnsgPenHoldTimeout 

MakeMsg(clsPen, eventTipUp) 
MakeMsg(clsPen, eventTipDown) 
MakeMsg(clsPen, eventMoveUp) 
MakeMsg(clsPen, eventMoveDown) 
MakeMsg(clsPen, eventEnterUp) 
MakeMsg(clsPen, eventEnterDown) 
MakeMsg(clsPen, eventExitUp) 
MakeMsg(clsPen, eventExitDown) 
MakeMsg(clsPen, event InProxUp) 
MakeMsg(clsPen, eventOutProxUp) 
MakeMsg(clsPen, eventStroke) 
MakeMsg(clsPen, eventTap) 
MakeMsg(clsPen, eventHoldTimeout) 

Common #defines and typedefs 
All pen events report coordinates in standard pen resolution, which units of 0.1 mm. 

#define penStdResolution 

Possible states of the pen tip. 

10000 II lines per meter 

typedef U16 PEN_TIP_STATE_FLAGS, *P_PEN_TIP_STATE_FLAGS; 
#define penOutOfProximity 0 
#define penlnProximity flagO 
#define penTipDown flagl 

Possible states of the pen tip. 

Enum16 (PEN_TIP_STATE_TYPE) 
penTipOutOfProxState = 0, 
penTiplnProxState 1, 
penTipDownState = 2 

}; 

typedef U16 PEN_SUPPORTS_FLAGS, *P_PEN_SUPPORTS_FLAGS; 
#define penSupportsProximity flagO 
#define penSupportsPressure flagl II For 
#define penSupportsZPosition flag2 II For 
#define penSupportsZAngle flag3 II For 
#define penSupportsXYAngle flag4 II For 
#define penSupportsPenld flagS II For 

future 
future 
future 
future 
future 

use. 
use. 
use. 
use. 
use. 

#define penSeparateFromScreen flag6 II digitizer is not 
II integrated with display. 

#define penDataIsStroke flag7 II For future use. 
#define penSupportslnk flag12 II For future use. 
#define penSupportsStrokes flag13 II For future use. 

msglnputEvent Argument Types 
PEN_DATA is the "true" type of msglnputEvent's pArgs->eventData for all pen event messages. 

timeStamp time the event occurred, as defined by the pen driver. This may differ from 

pArgs->timeStamp, which is time the event was enqueued by the input system. 

strokeSeqNum Number of the stroke that this event is in. See the section "Stroke Events" for more 

information. 

taps if pArgs->devCode is msgPenHoldTimeout this field contains the number of taps that occurred 

before the hold. If pArgs->devCode is msgPenTap, this field contains the tap count. 



708 PENPOINT API REFERENCE 

Part 5 / Input and Handwriting 

data Variable length data. Contents depends on the msglnputEvent's pArgs->devCode. For instance, if 
pArgs->devCode is msgPenStroke, then this field is the beginning of the event's stroke information. 

typedef struct PEN_DATA { 
U32 
P UNKNOWN 
U32 
XY16 
PEN SUPPORTS FLAGS 
S16 
S16 
U16 
S16 
S16 
U16 
U8 
U8 
U8 

PEN_DATA, *P_PEN_DATA; 

timestamp; 
reservedPointer; 
strokeSeqNum; 
penXY; 
penSupportsFlags; 
pressure; 
zPosition; 
penld; 
xyAngle; 
zAngle; 
reserved[l]; 
tipState; 
taps; 
data [1] ; 

II in 0.1 mm pen units 

II For future use. 
II For future use. 
II For future use. 
II For future use. 
II For future use. 

II one of PEN TIP STATE FLAGS - -

II start of variable length data 

PEN_STROKE holds the variable length data for msglnputEvent with a devCode of msgPenStroke. See 
the section "Stroke Events" for more information. It holds the stroke data. It consists of header 
information followed by the compressed XY data. 

The stroke data can be converted into other useful forms using the functions described in the section 
"Stroke Manipulation Functions." 

typedef struct PEN_STROKE { 
RECT16 bounds; 
U16 count; 

II bounds in pen coordinates 
II number of points 

U16 
struct 

{ 

id; II stroke id when added to scribble 

U16 len:15, 
selected: 1; 

II # bytes in the data field 
II used by scribble object 

info; 
U8 data [1]; II byte array of compressed points 

PEN_STROKE, *p PEN_STROKE; 

Other Types 
typedef struct CURRENT_STD_PEN~DATA 

S16 xPosition; 
S16 yPosition; 
PEN TIP STATE TYPE penTipState; 
U16 zPosition; 
U16 pressure; 
U16 penId; 
U16 xyAngle; 
U16 zAngle; 
XY32 positionAcetate; 

II in 0.1 mm pen units 
II in 0.1 mm pen units 

II For future use. 
II For future use. 
II For future use. 
II For future use. 
II For future use. 

CURRENT STD PEN_DATA, *P_CURRENT_STD_PEN_DATA; 
typedef struct PEN_METRICS { 

U32 minResolution; 
U32 maxResolution; 
U32 currentResolution; 
U32 maxXPosition; 
U32 maxYPosition; 
U32 xPosition; 
U32 yPosition; 
U32 deviceFlags; 
U32 reservedU32[2]; 
PEN_TIP_STATE_FLAGS penTipState; 
PEN_SUPPORTS FLAGS penSupportsFlags; 

II lines per meter 
II lines per meter 
II lines per meter 
II using pen resolution 
II using pen resolution 
II 
II 

using pen resolution 
using pen resolution 



PEN.H 709 
Stroke Manipulation Functions 

U16 lowSampleRate; 
U16 medSampleRate; 
U16 highSampleRate; 
U16 currentSampleRate; 
U16 reportingThreshold; II using pen resolution 
U16 deviceId; 
U16 reservedU16[4]i 

PEN_METRICS, *P_PEN_METRICS; 

Messages 

Mess(lge 
Ar~ument$ 

msgPenMetrics 
Sent to thePen. thePen passes back the current pen device metrics. 

Takes P _PEN_METRICS, returns STATUS. 

*define msgPenMetrics MakeMsg(clsPen, OxFE) 

typedef struct PEN METRICS 
U32 minResolution; 
U32 maxResolution; 
U32 currentResolution; 
U32 maxXPositioni 
U32 maxYPositioni 
U32 xPosition; 
U32 yPosition; 
U32 deviceFlagsi 
U32 reservedU32[2]; 
PEN TIP STATE FLAGS penTipStatei 
PEN-SUPPORTS FLAGS penSupportsFlags; 
U16- - lowSampleRate; 
U16 medSampleRatei 
U16 highSampleRate; 
U16 currentSampleRate; 
U16 reportingThreshold; 
U16 deviceId; 
U16 reservedU16[4]i 

PEN_METRICS, *P_PEN_METRICS; 

II lines per meter 
II lines per meter 
II lines per meter 
II using pen resolution 
II using pen resolution 
II using pen resolution 
II using pen resolution 

II using pen resolution 

Stroke Manipulation Functions 

PenExpander 
Decompresses a point from the compressed stroke structure. 

Returns S 16. 

Fund!on Prototype S16 PASCAL PenExpander(P_U8 pData, P_S16 pX, P_S16 pY); 

(@mments pX and p Y must point to the previous point value. (They must be set to the bounding box origin for the 
first point). The new point is passed back using the same pointers. 

The return value is the number of bytes to advance pData to get to the next point. 

PenStrokeRetrace 
Iterates the points in a compressed stroke structure. 

Returns S 16. 

typedef void (PASCAL * P_DRAW_PROC) (P_UNKNOWN, S16, 816); 

Fundion Pr@t@type S16 PASCAL PenStrokeRetrace ( 



710 PENPOINT API REFERENCE 
Part 5 / Input and Handwriting 

) ; 

P PEN STROKE 
P DRAW PROC 
S16 
S16 
P UNKNOWN 

pStroke, 
pProc, 
xOff, 
yOff, 
appData 

PenStrokeU npack16 

II ptr to the stroke structure 
II ptr to a function to process the points 
II x base offset 
II y base offset 
II application specific data 

Expands a compressed stroke to an array of XY16. 

Returns SfATUS. 

Foodicm Prototype STATUS PASCAL PenStrokeUnpack16 ( 

) ; 

P PEN STROKE 
P XY32 
P XY16 
BOOLEAN 

pStroke, 
pBase, 
pBuffer, 
toLWC 

PenStrokeUnpack32 

II compressed stroke 
II stroke window offset 
II point buffer 
II true to transform points to LWC 

Expands a com pressed stroke to an array of XY32. 

Returns Sf ATUS. 

Fondion Pf'Oh?type STATUS PASCAL PenStrokeUnpack32 ( 
P_PEN_STROKE pStroke, 
P_XY32 pBase, 
P_XY32 pBuffer, 
BOOLEAN toLWC 

) ; 

XY16ToPenStroke 

II compressed stroke 
II stroke window offset 
II point buffer 
II true to transform points to LWC 

Converts an array ofXY16 values to into a PEN_STROKE. 

Returns SfATUS. 

Function Pr©f©fy-pe STATUS EXPORTED XY16ToPenStroke ( 
XY16 pPointData[], II In: XY point data 
U16 numPoints, II In: number of points in pPointData 
OS HEAP ID heapId, II In: heap to allocate stroke from 
P PEN STROKE *ppNewPenStroke II Out: pointer to new pen stroke 
) ; 

The function allocates memory for the PEN_STROKE from heapld. If pPointData is null or numPoints 
is 0 then only the PEN_STROKE data structure is allocated. 

PenCurrentStandardData 
Fills in the most recent pen data in standard units. 

Returns nothing. 

Foodlon Prototype void PASCAL PenCurrentStandardData (P _CURRENT STD PEN DATA pPenStdData) ; 



SCRIBBLE.H 

This file contains the API definition for clsScribble. 

clsScribble inherits from clsObject. 

Instances of clsScribble (or scribbles for short) store pen strokes. Scribbles also interact with translators. 

Introduction 
An scribble is a collection of pen strokes. Clients can add strokes to (and remove strokes from) a 

scribble. Clients can use msgScrRender to render a scribble in a given drawing context. 

A client typically adds strokes to a scribble during the client's response to msgPenStroke type input 

events. 

clsScribble is a relatively low-level piece of PenPoint. Many clients can and should use clsGWin 
(gwin.h) or clsSPaper (spaper.h) rather than clsScribble. 

Coordinates and the Base 
A scribble's coordinates are in Pen Units. (See msgDcUnitsPen in sysgraf.h.) 

Each scribble has a "base." By default, a scribble's base is the origin of the first stroke added to the 

scribble (via msgScrAddStroke). Whenever a stroke is added to a scribble, the scribble's base is 

subtracted from the origin of the stroke before the stroke is made part of the scribble. In other words, all 

strokes are stored relative to the scribble's base. This allows repositioning the entire scribble by adjusting 
the base. For instance, the client might do this in response to a window resize operation to keep the 

scribble in the "same" position relative to the upper left corner of a window. 

This base is not transparent when extracting a stroke from a scribble. When using msgScrStrokePtr to 
get a pointer to a stroke in a scribble, it is necessary to add the scribble base back to the stroke origin in 

order to get the original stroke origin. 

Adding Strokes to Scribbles 
This example shows how strokes are added to a scribble by a window that is handling msglnputEvent 

when pArgs->devCode is msgPenStroke. Note that pArgs->base is set to the origin of the scribble. 

II msgPenStroke's stroke data arrives in root window-relative device 
II units. Convert the stroke data to be self-relative. Steps: 
II (1) Compute the origin of self relative to the root window, 
II (2) Convert that origin to pen units. 
wm.parent = theRootWindow; 
wm.child = NULL; 
wm.bounds.origin.x = 0; 
wm.bounds.origin.y = 0; 
wm.bounds.size.h = 0; 
wm.bounds.size.w = 0; 
ObjectCall(msgWinTransforrnBounds, self, &wm); 
ConvertOriginToPenCoordinates(&wm.bounds.origin); 



712 PENPOINT API REFERENCE 
Part 5 / Input and Handwriting 

II Now add the scribble to the stroke. Note that the scrAdd.base is 
II the base (i.e., origin) of the STROKE, not the scribble. 
scrAdd.base.x = pStroke->bounds.origin.x - wm.bounds.origin.x; 
scrAdd.base.y = pStroke->bounds.origin.y - wm.bounds.origin.y; 
ObjectCall(msgScrAddStroke, scribble, &scrAdd); 

This code gives a rough idea of how a scribble adds a stroke in response to msgScrAddStroke. This is 

provided so that you can see how the base is used. Basically, the base of the scribble is subtracted from 

pArgs->base and used as the origin of the stroke. 

II Make a local copy of the stroke. Then convert the stroke's origin 
II to be relative to the scribble's base. 
pNewStroke = <Copy of pArgs->pStroke>; 
pNewStroke->bounds.origin.x = pArgs->base.x - scribble.base.x; 
pNewStroke->bounds.origin.y = pArgs->base.y - scribble.base.y; 
<add stroke to internal data structures> 

Repositioning Scribbles 
To reposition a scribble, (1) compute the delta by which you want to move the scribble, (2) get the 

scribble's current base using msgScrGetBase, (3) add the delta to the current base, and (4) set the base 

using msgScrSetBase. Be sure to use msgScrSetBase since it will readjust the bounds of the scribble. 

Debugging Flags 
clsScribble uses the debugging flag set 'h'. Defined flags are: 

0100 General scribble debugging information 

0800 Scribble save and restore debugging information 

Limitations 
Strokes in a scribble must be within ((2/\ 15)-1) units of each other. 

Memory for deleted strokes is only recovered upon msgScrClear. No other messages recover deleted 

stroke memory. Deleted strokes are saved and restored. 

#ifndef SCRIBBLE INCLUDED 
#define SCRIBBLE INCLUDED 
#ifndef GO_INCLUDED 
#include <go.h> 
#endif 
#ifndef OSHEAP_INCLUDED 
#include <osheap.h> 
#endif 
#ifndef GEO_INCLUDED 
#include <geo.h> 
#endif 
#ifndef CLSMGR_INCLUDED 
#include <clsmgr.h> 
#endif 
#ifndef PEN INCLUDED 
#include <pen.h> 
#endif 
#ifndef DEBUG_INCLUDED 
#include <debug.h> 
#endif 
II Next Up: 18 Recycled: 2, 7, 8, 



SCRIBBLE.H 713 
Messages Defined by Other Classes 

Common #defines and typedefs 
typedef OBJECT SCRIBBLE; 

stsScrOutOfRange is returned from msgScrAddStroke if the coordinates for the base of the scribble are 
out of the allowable range for strokes. 

#define stsScrOutOfRange MakeStatus(clsScribble,l) 

Messages Defined by Other Classes 

msgNew 
Creates and initializes a new scribble. 

Takes P _SCR_NEW, returns STATUS. Category: class message. 

msgNewDefaults 
Sets the default values for the new arguments. 

Takes P _SCR_NEW, returns STATUS. 

typedef struct SCR_NEW_ONLY 
XY32 base; 
U32 reserved; 

SCR_NEW_ONLY; 

II initial base value, default (0,0) 
II reserved for future use 

#define scribbleNewFields \ 
OBJECT_NEW_ONLY object; \ 
SCR_NEW_ONLY scribble; 

typedef struct SCR_NEW 
scribbleNewFields 

} SCR_NEW, *P_SCR_NEW; 

Zeros out pNew->scribble. 

msgFree 
Defined in clsmgr.h 

Takes P_OBJ_KEY, returns STATUS. 

The scribble frees all of its strokes. 

msgSave 
Defined in clsmgr.h. 

Takes P _OBLSAVE, returns STATUS. 

Saves all strokes to pArgs->file. 

msgRestore 
Defined in clsmgr.h. 

Takes P_OBLRESTORE, returns STATUS. 

Restores all strokes from pArgs->file. 



714 PENPOINT API REFERENCE 
Part 5 I Input and Handwriting 

msgPicSegPaintObject 
Defined in picseg.h. 

Takes P _PIC_SEG_OBJECT, returns STATUS. 

In response to this message, a scribble paints itself. Any object which responds to msgPicSegPaintObject 

can be placed into a PicSeg (and instance of clsPicSeg). 

Messages 

msgScrSetBase 
Sets the scribble's base. 

Takes P_XY32, returns STATUS. 

fdefine msgScrSetBase MakeMsg(clsScribble,11) 

Recomputes the bounds of the scribble to reflect the new base. 

See the section "Coordinates and the Base" for more information. 

msgScrGetBase 
Passes back the base for the scribble. 

Takes P _XY32, returns STATUS. 

fdefine msgScrGetBase MakeMsg(clsScribble, 10) 

See the section "Coordinates and the Base" for more information. 

msgScrGetBounds 
Passes back the bounds of the scribble. 

Takes P _RECT32, returns STATUS. 

fdefine msgScrGetBounds MakeMsg(clsScribble,12) 

Passes back the bounding box that contains all the strokes in the scribble. The bounding box is in pen 

units. 

msgScrCount 
Passes back the number of strokes in the scribble. 

Takes P _lJI6, returns STATUS. 

fdefine msgScrCount 

msgScrAddStroke 
Adds a stroke to the scribble. 

MakeMsg(clsScribble,1) 

Takes P _SCR_ADD_STROKE, returns STATUS. 

fdefine msgScrAddStroke MakeMsg(clsScribble,3) 

typedef struct SCR_ADD_STROKE 
XY32 basei II In: origin of the stroke. 
P PEN STROKE pStrokei II In: pointer to stroke data 
U16 index; II Out: index of the newly added stroke 

SCR_ADD_STROKE, * P_SCR_ADD_STROKE; 



Comments 

Comments 

SCRIBBLE.H 715 
Messages 

In response to this message, the scribble makes a copy of the stroke data and adds the stroke to itself. 
Observers are notified with msgScrAddedStroke. Note the SCR_ADD_STROKE base is the base (i.e., 

origin) of the STROKE. 

If this is the first stroke to be added to the scribble, the scribble's base is set to pArgs->base. Otherwise 

the base of the stroke is shifted by the scribble base as follows: 

stroke.bounds.origin = pArgs->base - scribble.base; 

stsScrOutOfRange The computed base for the stroke was out of the allowable range. 

msgScrDeleteStroke 
Deletes the stroke from the scribble. 

Takes U16, returns STATUS. 

*define msgScrDeleteStroke MakeMsg(clsScribble,4) 

In response to this message, the scribble marks as deleted the stroke with the index value of pArgs. 

Observers receive msgScrRemovedStroke. 

Note: this does not actually free any memory, the scribble is just marked as deleted. 

msgScrRemovedStroke 

msgScrDeleteStrokel\rea 
Deletes all of the strokes in the scribble which intersect pArgs->rect. 

Takes P _SCR_DELETE_STROKE_AREA, returns STATUS. 

*define msgScrDeleteStrokeArea MakeMsg(clsScribble, 2) 

typedef struct SCR_DELETE_STROKE_AREA { 
RECT32 recti II Rectangle of area to delete strokes from. 

II In pen units. 
OBJECT window; II Window to dirty 
U32 spare; II Reserved. 

SCR DELETE_STROKE_AREA, *P_SCR_DELETE_STROKE_AREA; 

The scribble uses msgScrHit and msgScrDeleteStroke to do the deletions. Observers receive one 

msgScrRemovedStroke for each intersecting stroke. 

If pArgs->window is non-null, the scribble dirties the appropriate rectangle in the window. 

msgScrHit 

msgScrCat 
Adds (concatenates) the strokes from another scribble to self. 

Takes SCRIBBLE, returns STATUS. 

*define msgScrCat MakeMsg(clsScribble,6) 

The receiving scribble makes copies of all of the strokes' in the pArgs scribble and adds them to itself by 

self sending msgScrAddStroke. 

msgScrAddStroke 



716 PENPOINT API REFERENCE 
Part 5 I Input and Handwriting 

msgScrComplete 
Sent to a scribble to indicate completion. 

Takes void, returns STATUS. 

fdefine msgScrComplete MakeMsg(clsScribble, 5) 

Clients send this message to a scribble to tell the scribble that it is "complete." The client is responsible 

for determining when a scribble is complete. (For instance, the client might decide that a scribble is 
complete when the client receives an out-of-proximity pen event, or when a certain amount of time has 
elapsed since the last input event.) 

A scribble does nothing in response to this message except to send msgScrCompleted to all observers. 

A translator is a typical observer of a scribble. See xlate.h for information about how a translator 

responds to msgScrCompleted. 

msgScrCompleted 

msgScrStrokePtr 
Passes back the pointer to the stroke identified by pArgs->index. 

Takes P _SCR_STROKE_PTR, returns STATUS. 

fdefine msgScrStrokePtr 

typedef struct SCR_STROKE_PTR 
U16 index; 
P PEN STROKE pStrokei 

MakeMsg(clsScribble,9) 

II In: index to the stroke 
II Out: pointer to the index'th stroke, or 
II pNull if no such stroke exists. 

SCR_STROKE_PTR, *P_SCR_STROKE_PTRi 

Be Careful! pArgs->pStroke is a pointer to internal data, not a copy. 

Strokes retrieved from scribbles are relative to the scribble's base. The stroke's origin is NOT the same as 

was passed to msgScrAddStroke -- you need to add the scribble's base back. Note that this may still not 

be the same as the original stroke origin if the scribble base has been adjusted. 

msgScrClear 
Deletes all the strokes in the scribble. 

Takes void, returns STATUS. 

fdefine msgScrClear MakeMsg(clsScribble,15) 

In response to this message, the scribble sets its stroke count to zero. scribble's stroke count to o. It also 
frees all allocated memory. 

Important: Observers are not notified! 

msgScrRender 
Renders a scribble in a window through a DC. 

Takes P_SCR_RENDER, returns STATUS. 

fdefine msgScrRender MakeMsg(clsScribble,13) 



Arguments 

Comments 

SCRIBBLE.H 717 
Notifications Sent to Observers 

typedef struct SCR RENDER 
U16 start; II stroke start index (0 for first) 
U16 stop; II stroke stop index (maxU16 for last) 
XY32 base; II unused 
OBJECT dc; II dc for rendering the stroke 
RECT32 recti II dirty rect 

SCR_RENDER, * P_SCR_RENDER; 

Draws the strokes in the scribble using pArgs->dc. The start and stop indices describe the inclusive range 
of strokes to be rendered. Only strokes intersecting pArgs->rect are rendered. pArgs->rect must be in 

window device coordinates. pArgs->dc must be set up to draw in pen coordinates (using 
msgDcUnitsPen as described in sysgraf.h). 

msgScrHit 
Passes back the next stroke which intersects pArgs->rect. 

Takes P _SCR_HIT, returns STATUS. 

#define msgScrHit 

typedef struct SCR_HIT 
RECT32 recti 
U16 index; 

BOOLEAN hit; 

} SCR_HIT, *P_SCR_HIT; 

MakeMsg(clsScribble,14) 

II In: rect to test against, in pen coordinates. 
II In: For the first send, should be O. Do 
II not disturb between sends. Out: if 
II pArgs->hi is true, the index of the next 
II stroke that intersects pArgs->rect. 
II Out: true if another stroke intersect 
II pArgs->rect; false when no more strokes 
II intersect. 

This message is typically sent multiple times to find all strokes that intersect pArgs->rect. The hit-test is 

quite simple -- a stroke "intersects" if the stroke's bounding box intersects pArgs->rect. 

Clients should set pArgs->index to 0 before first sending this message and then not disturb that field 

between sends. 

If a hit is found, pArgs->hit is true and pArgs->index is the stroke index. Otherwise pArgs->hit is false. 

Example: 

P_SCR_HIT hit; 
hit.rect = <rect to check> 
hit. index = 0; 
hit.hit = TRUE; 
while (hit.hit) 

ObjectCall(msgScrHit, scribble, &hit); 
if (hit .hit) { 

II hit.index now equals the first stroke that intersected 

Notifications Sent to Observers 

msgScrCompleted 
Notifies observers that scribble input has been completed. 

Takes NULL, returns STATUS. 

#define msgScrCompleted MakeMsg(clsScribble, Ox80) 



718 PENPOINT API REFERENCE 
Part 5 I Input and Handwriting 

This notification is sent as part of a scribble's response to msgScrComplete. 

Typical use: Translators that are observing the scribble may perform their translation in response to this 

message. (See xlate.h for more information.) 

msgScrAddedStroke 
Notifies observers that a stroke has been added to the scribble. 

Takes P _SCR_ADDED_STROKE, returns STATUS. 

*define msgScrAddedStroke MakeMsg(clsScribble, Ox81) 

typedef struct SCR_ADDED_STROKE 
U16 indeXi II index of the added stroke 
P PEN STROKE pStrokei" II pointer to the stroke data structure 

SCR_ADDED_STROKE, *P_SCR_ADDED_STROKEi 

This notification sent as part of a scribble's response to msgScrAddStroke. 

msgScrRemovedStroke 
Notifies observers that a stroke has been removed from the scribble. 

Takes P _SCR_REMOVED_STROKE, returns STATUS. 

*define msgScrRemovedStroke MakeMsg(clsScribble, Ox82) 

typedef struct SCR_REMOVED_STROKE { 
U16 indeXi II index of the removed stroke 
U16 idi II stroke identifier 
RECT32 boundsi II bounds of the removed stroke (in pen units) 

SCR_REMOVED_STROKE, *P_SCR_REMOVED_STROKEi 

This notification is sent as part of a scribble's response to msgScrDeleteStroke. 



SPAPER.H 

This file contains the API definition for clsSPaper. 

clsSPaper inherits from clsView. 

An instance of clsSPaper (or sPaper, for short) provides stroke redisplay, very simple stroke editing, and 
translation. 

Road Map 
A typical sPaper client simply creates an sPaper with self as the listener. The client than handles the 

msgSPaperXlateCompleted notification and uses msgSPaperGetXlateData to extract the resulting data. 

Clients or subclasses who wish to get involved in the sPaper's management of strokes might use: 

• msgSPaperClear 

• msgSPaperAddStroke 

• msgSPaper DeleteStrokes 

Clients or subclasses who wish to be involved in controlling when translation is triggered might use: 

• msgSPaperComplete 

• msgSPaperAbort 

If a client only needs translation, the client may not need to use sPaper at all. The client may be able to 
use translators (xlate.h) and scribbles (scribble.h) directly. 

SPaper Components 
An sPaper manages a translator and a scribble. The sPaper observes the the translator and the translator 

observes the scribble. 

The sPaper has a listener which is specified when the sPaper is created. An sPaper makes the listener an 

observer of the sPaper. As a result, the listener receives sPaper notifications. 

Typical Scenario 
The usual scenario for an spaper follows. The spaper is created and inserted onto the screen. The spaper 
receives pen strokes which it passes on to its scribble which in turn passes them on to a translator. At 
some point, the spaper is "complete" either via an external notification or optionally when an out of 

proximity event is received. The spaper notifies the scribble and the scribble notifies the translator. 

When the translator is complete, it notifies the spaper which in turn notifies its listener. The listener 
then asks the spaper for the translated data and the spaper gets the data from the translator. 

Here's a typical flow of messages between the sPaper, its scribble, its translator and the sPaper's listener. 

(This scenario uses messages defined in input.h, pen.h, xlate.h and scribble. h) 



720 PENPOINT API REFERENCE 
Part 5 I Input ,nd Handwriting 

When the sPaper receives a msglnputEvent that contains a stroke (see pen.h) it self sends 
msgSPaperAddStroke, which sends msgScrAddStroke to the scribble. 

input system 
sPaper 

--> msglnputEvent 
--> msgScrAddStroke 

--> sPaper 
--> scribble 

The scribble then sends msgScrAddStroke to its observers. One of the scribble's observers is the sPaper's 
translator. 

scribble --> msgScrAddStroke --> translator 

Eventually sPaper receives msgSPaperComplete. (A client may send msgSPaperComplete to the 
sPaper. Alternatively, depending on the sPaper's flags, the sPaper may self send msgSPaperComplete. 
For example, see the description of the spProx flag elsewhere in this file.) In response to 
msgSPaperComplete, the sPaper sends msgScrComplete to the scribble. In turn, the scribble notifies its 
observers (including the translator) with msgScrCompleted. 

sPaper 
scribble 

--> msgScrComplete 
--> msgScrCompleted 

--> scribble 
--> translator 

The translator responds to msgScrCompleted by sending msgXlateCompleted to its observers, which 
include the sPaper. The sPaper responds to msgXlateCompleted by sending 
msgSPaperXlateCompleted to its observers, which include the listener. 

translator 
sPaper 

--> msgXlateCompleted --> sPaper 
--> msgSPaperXlateCompleted --> listener 

The listener typically sends msgSPaperGetXlateData to the sPaper to retrieve the translated data. In 
response to msgSPaperGetXlateData, the sPaper sends msgXlateData to the translator. 

listener 
sPaper 

Debugging Flags 

--> msgSPaperGet~lateData --> sPaper 
--> msgXlateData --> translator 

clsSPaper uses the debugging flag set 'h'. Defined flags are: 

0010 General sPaper debugging information 

0020 sPaper translation debugging information 

0080 sPaper save and restore debugging information 

Relationship to clsGWin 
Although sPaper is a descendent of clsGWin, it inherits little of clsGWin's behavior. All input and 
translation behavior is overridden. 

fifndef SPAPER INCLUDED 
fdefine SPAPER INCLUDED 
fifndef GO INCLUDED 
finclude <go.h> 
fendif 
fifndef UID_INCLUDED 
finclude <uid.h> 
fendif 
fifndef OSHEAP INCLUDED 
finclude <osheap.h> 
fendif 
fifndef WIN_INCLUDED 
finclude <win.h> 
fendif 



#ifndef VIEW_INCLUDED 
#include <view.h> 
#endif 
II Next Up: 24 Recycled: 1, 5, 9, 12 Used: 128 

SPAPER.H 721 
Common #defines· and typedefs 

Common #defines and typedefs 

Flags 

typedef OBJECT SPAPER; 

These flags are set in pNew->sPaper.flags field, and can be manipulated using msgSPaperSetFlags and 
msgSPaperGetFlags. 

• spCapture. If false, the sPaper destroys an existing scribble and creates a new one when the first 
stroke since the last translation is received. If true, the scribble is preserved between translations. See 

the "SPaper Components" section for more information. 

• spProx. If true, the sPaper self sends msgSPaperComplete when msgPenOutProxUp is received. In 
effect, setting this flag causes the sPaper to spontaneously translate when an "out of proximity" 

event occurs. 

• spFixedPos. If true, the sPaper keeps the top-left corner of its scribble fixed distance from the 
top-left corner of self during a resize operation. 

• spPenCoords. If true, xlists returned by the sPaper have pen coordinate rather than LWC 

coordinates. 

• spGrab. If true, the sPaper grabs input in response to msgPenDown and releases the grab in 

response to msgSPaperAbort or msgSPaperComplete. 

• spScribbleEdit. If true (the default), allows the user to delete scribbles via scratch out. sPaper 
implements a VERY rudimentary "scratch out" gesture. If spScribbleEdit is true and the user draws 

just the right "scratch out" gesture the strokes under the gesture are deleted. This does NOT use 

PenPoint's general gesture translation facilities. 

• spRedisplay. If true (the default), the sPaper redisplays its scribble's strokes whenever anything 
changes. 

• spSuppressMarks. If true, the following flags are treated as false: spRuling, sp VRuling, spGrid, 
spTick, and spBaseLine. 

• spRuling. If true (the default), horizontal ruling lines are drawn. 

• sp VRuling. If true, vertical ruling lines are drawn. 

• spGrid. If true, grid lines are drawn. 

• sp Tick. If true, tick marks are drawn. 

• spBaseLine. If true, and spRuling is also true, the horizontal ruling lines are drawn as a baseline. 

• spDataMoveable. If true, then the sPaper's scribble is moveable. 

• spDataCopyable. If true, then the sPaper's scribble is copyable. 

#define spCapture flagO 
#define spProx flag4 
#define spFixedPos flagS 
#define spPenCoords flag6 
#define spGrab flag8 
#define spScribbleEdit flag11 



722 PENPOINT API REFERENCE 

Part 5 / Input and Handwriting 

#define spRedisplay flag7 
#define spSuppressMarks flag12 
#define spRuling flagl 
#define spVRuling flag13 
#define spGrid flag9 
#define spBaseLine flag14 
#define spTick flagl0 
#define spDataMoveable flag2 
#define spDataCopyable flag3 

Messages 

i\i\es£t:1£je 

Argumertt£ 

msgNew 
Creates an sPaper object. 

Takes P _SP APER_NEW, returns STATUS. Category: class message. 

typedef struct SPAPER NEW ONLY 
U16 flags; 
U16 lineHeight; 
OBJECT translator; 
OBJECT listener; 

U16 rows; 
U16 cols; 
U16 charWidth; 
U32 reserved; 

SPAPER_NEW_ONLY; 

II Cell height (in points) 
II Translation object 
II This object is made an observer of the 
II sPaper. 
II Rows for shrink wrap layout 
II Cols for shrink wrap layout 
II Cell width (in points) 

#define sPaperNewFields \ 
viewNewFields \ 
SPAPER NEW ONLY sPaper; 

typedef struct SPAPER_NEW { 
sPaperNewFields 

} SPAPER_NEW, *P_SPAPER_NEW; 

msgN ewDefaults 
Initializes the NEW structure to default values. 

Takes P _SPAPER_NEW, returns STATUS. Category: class message. 

typedef struct SPAPER_NEW { 
sPaperNewFields 

SPAPER_NEW, *P_SPAPER_NEW; 
pArgs->win.flags.input 

pArgs->win. flags. style 

pArgs->view.dataObject 
pArgs->view.createDataObject 

pArgs->sPaper.flags 

pArgs->sPaper.translator 
pArgs->sPaper.rows 
pArgs->sPaper.cols 
pArgs->sPaper.reserved 
pArgs->sPaper.listener 

(inputOutProx input Tip 1 

input Stroke input Ink 1 

inputNoBusy input HWT imeout 
inputAutoTerm 1 inputTimeout 
inputHoldTimeout); 

1= wsSendGeometry; 

= NULL; 
TRUE; 

(spRuling 1 spRedisplay 
spScribbleEdit); 

= NULL; 
0; 

= 0; 
= 0; 
= NULL; 



pArgs->sPaper.lineHeight 25; II In case read fails. 
read.resId = tagPrLineHeight; 
read. heap = 0; 
read.pData = &pArgs->sPaper.lineHeight; 
read.length = SizeOf(U16); 
ObjCallRet(msgResReadData, theSystemPreferences, &read, s); 

II convert line height from hundredths of inches to points. 
pArgs->sPaper.lineHeight = (pArgs->sPaper.lineHeight * 72) I 100; 
pArgs->sPaper.charWidth = pArgs->sPaper.lineHeight; 

msgSPaperGetFlags 
Passes back the sPaper's flags. 

Takes P _UI6, returns STATUS. 

#define msgSPaperGetFlags 

msgSPaperSetFlags 
Sets the sPaper's flags. 

Takes P _UI6, returns STATUS. 

#define msgSPaperSetFlags 

MakeMsg(clsSPaper,19) 

MakeMsg(clsSPaper,20) 

SPAPER.H 723 
Messages 

In addition to setting the flags, the scribble self sends msgWinDirtyRect to force itself to redraw with 
the new flags. 

msgSPaperGetTranslator 
Passes back the sPaper's translator object (may be NULL). 

Takes P _OBJECT, returns STATUS. 

#define msgSPaperGetTranslator MakeMsg(clsSPaper,16) 

msgSPaperSetTranslator 
Replaces the sPaper's translator passes back the old translator. 

Takes P_OBjECT, returns STATUS. 

#define msgSPaperSetTranslator MakeMsg(clsSPaper,17) 

Important: the old translator is not destroyed. The client is responsible for eventually destroying it. 

In response to this message, the sPaper replaces it translator. (The old translator is passed back.) The 
sPaper adds itself as an observer of the new translator and adds the translator as the translator as an 
observer of the sPaper's scribble (if one exists). 

msgSPaperGetScribble 
Passes back the sPaper scribble object (may be NULL). 

Takes P _OBJECT, returns STATUS. 

#define msgSPaperGetScribble MakeMsg(clsSPaper,14) 

See the section "SPaper Components" for more information. 



724 PEN POINT API REFERENCE 

Mcs§ttge 
Ar90ment§ 

Part 5 / Input and Handwriting 

msgSPaperSetScribble 
Replaces the sPaper's scribble and passes back the old scribble. 

Takes P _OBJECT, returns STATUS. 

#define msgSPaperSetScribble MakeMsg(clsSPaper,15) 

Important: the old scribble is not destroyed. The client is responsible for eventually destroying it. 

In response to this message, the sPaper replaces its scribble. (The old scribble is passed back.) The 

sPaper makes its translator (if one exists) an observer of the new scribble. This causes all strokes in the 

new scribble to be sent to the existing translator. 

msgSPaperGetCellMetrics 
Passes back some of sPaper's metrics. 

Takes P _SPAPER_CELL_METRICS, returns STATUS. 

#define msgSPaperGetCellMetrics MakeMsg(clsSPaper,ll) 

typedef struct SPAPER_CELL_METRICS { 
RECT32 cellRect; 
SIZE32 cellSize; 

II centered writing area of the sPaper 
II size of an individual cell based on 
II lineHeight and charWidth 

U16 rows; II number of rows displayed 
U16 cols; II number of columns displayed 

SPAPER_CELL_METRICS, *P_SPAPER_CELL_METRICS; 

In response, sPaper passes back pArgs->cellRect, pArgs->cellSize, pArgs->rows and pArgs->cols. 

Note that pArgs->rows and pArgs->cols are not the values passed to msgNew. (The values passed to 

msgNeware used for shrink wrap layout.) 

msgSPaperGetSizes 

msgSPaperSetCellMetrics 
Sets the sPaper's cell metrics. Resizes and lays out window. 

Takes P _SP APER_CELL_METRICS, returns STATUS. 

#define msgSPaperSetCellMetrics MakeMsg(clsSPaper,13) 

typedef struct SPAPER_CELL_METRICS { 
RECT32 cellRect; II centered writing area of the sPaper 
SIZE32 cellSize; II size of an individual cell based on 

II lineHeight and 'charWidth 
U16 rows; II number of rows displayed 
U16 cols; II number of columns displayed 

SPAPER_CELL_METRICS, *P_SPAPER_CELL_METRICS; 

In response, sPaper uses the new values of pArgs->cellSize, pArgs->rows and pArgs->cols to compute its 

new window size. It then self sends msgWinLayout to resize and re-Iayout self. The new value of the 

sPaper's cellRect is passed back in pArgs->cellRect. 

msgSPaperGetSizes 
Passes back the sPa:per's line height and character width sizes, in points. 

Takes P _SIZE16, returns STATUS. 

#define msgSPaperGetSizes MakeMsg(clsSPaper,21) 



Comments 

See Also 

SPAPER.H 725 
Stroke Processing Messages 

The response to this message is similar to the response to msgSPaperGetCellMetrics except that fewer 
values are returned and the values are in points. 

msgSPaperGetCellMetrics 

msgSPaperSetSizes 
Sets the sPaper's line height and character width sizes, in points. 

Takes P _SIZE16, returns STATUS. 

fdefine msgSPaperSetSizes MakeMsg (clsSPaper, 22) 

In response, the sPaper sets its lineHeight and charWidth. It recomputes other sizes that depend on 
those values, and repaints itself if necessary. 

msgSPaperSetCellMetrics 

msgSPaperClear 
Destroys the sPaper's scribble. 

Takes NULL, returns STATUS. 

#define msgSPaperClear MakeMsg(clsSPaper,4) 

In response, the sPaper destroys its scribble, if it has one. 

Stroke Processing Messages 

msgSPaperAddStroke 
Adds a stroke to the sPaper's scribble. 

Takes P _INPUT_EVENT, returns STATUS. 

#define msgSPaperAddStroke MakeMsg(clsSPaper,2) 

In response to msgPenStroke, the sPaper self sends this message to add a stroke to its scribble. If the 
sPaper does not have a scribble, one is created. If the sPaper is not capturing input (spCapture flag is 
false), and this is the first stroke added since the last translation, then any existing scribble is destroyed 

and a new one is created. 

The sPaper self sends msgSPaperLocate before adding the stroke to the scribble to allow subclasses to 

process the stroke. 

msgSPaperLocate 
Allows subclasses to process the stroke before it is added to the scribble. 

Takes P _SPAPER_LOCATE, returns STATUS. 

fdefine msgSPaperLocate MakeMsg(clsSPaper,6) 

typedef struct SPAPER LOCATE 
XY32 start; II origin of stroke 
P UNKNOWN pStroke; II new stroke 

SPAPER_LOCATE, *P_SPAPER_LOCATE; 

An sPaper's default response to this message is to return stsO K. 

msgSPaperAddStroke 



726 PENPOINT API REFERENCE 
Part 5 / Input and Handwriting 

msgSPaperDeleteStrokes 
Deletes strokes in the sPaper's scribble that intersect *pArgs. 

Takes P _RECT32, returns STATUS. 

#define msgSPaperDeleteStrokes MakeMsg(clsSPaper,18) 

In response to this message, the sPaper sends msgScrDeleteStrokeArea to its scribble (after the rectangle 

is converted to the appropriate coordinate system). 

If the spRedisplay flag is true, then sPaper also dirties the specified rectangle in itself to cause repainting 

to occur. 

msgSPaperComplete 
Tells the sPaper that the current stroke is complete. 

Takes nothing, returns SfATUS. 

#define msgSPaperComplete MakeMsg(clsSPaper,3) 

See the 'Typical Scenario" section for a description of why and when this message is sent. 

sPaper responds as follows. If the sPaper has a scribble, it sends msgScrComplete to the scribble. If 

there is no scribble, the sPaper self sends msgSPaperXlateCompleted to "complete" the translation, 

even though the resulting translation will be empty. 

If this message is received while the sPaper is handling msgInputEvent, the status returned from 

msgInputEvent will cause any grab to be released. 

msgSPaperXlateCompleted 

msgSPaperAbort 
Tells the sPaper to abort the entry of the current stroke. 

Takes nothing, returns SfATUS. 

#define msgSPaperAbort MakeMsg(clsSPaper, 23) 

In response to this message, sPaper sends msgSPaperClear to self. 

If this message is received while the sPaper is handling msgInputEvent, the status returned from 

msgInputEvent will cause any grab to be released. 

Data Notification and Retrieval Messages 

msgSPaperXlateCompleted 
Notifies observers that data is available from the sPaper. 

Takes OBJECT, returns SfATUS. 

#define msgSPaperXlateCompleted MakeMsg(clsSPaper,128) 

This message has two roles. 

Role 1: This notification is sent to the sPaper's observers (including the listener) when the sPaper 

decides that translation is complete. Note that the resulting "translation" might be empty. 



SPAPER.H 727 

Data Notification and Retrieval Messages 

Role 2: sPaper self sends this message when msgSPaperComplete has been received and there is 

nothing to translate. In response to this message, sPaper sends the same message to its observers, as 

described in Role 1 above. 

msgSPaperGetXlateData 
Passes back translated data. 

Takes P_XlATE_DATA, returns SfATUS. 

#define msgSPaperGetXlateData MakeMsg(clsSPaper,7) 

The sPaper's observers typically send this message in response to the sPaper's msgSPaperCompleted 

notification. See the "Typical Scenario" section for more information. 

If there is no translator, or no scribbles to be translated, the sPaper passes back an empty xlist. 

Otherwise, the sPaper extracts the xlist from its translator. If the sPaper's spPenCoords flag is true, the 

sPaper converts the xlist's coordinates to pen coordinates; otherwise it converts the xlist's coordinates to 

local window coordinates. Finally, the sPaper passes back the xlist. 

The client must free the passed back xlist. 

msgSPaperGetXIateDataAndStrokes.h.h.h 

msgSPaperGetXlateDataAndStrokes 
Passes back translated data and its associated strokes. 

Takes P _SPAPER_XDATA, returns STATUS. 

typedef struct SPAPER XDATA 
OS HEAP ID heap; 

P UNKNOWN pXList; 
BOOLEAN toLWC; 

SPAPER_XDATA, *P_SPAPER_XDATA; 

II In: Heap to allocate space for stroke data 
II (Null means to use osProcessHeapId.) 
II Out: pointer to xlist 
II In: true to convert strokes to LWC 
II coordinates 

#define msgSPaperGetXlateDataAndStrokes MakeMsg(clsSPaper,8) 

The sPaper's observers typically send this message (or msgSPaperGetXIateData) in response to the 

sPaper's msgSPaperCompleted notification. See the "Typical Scenario" section for more information. 

This message is very similar in function to msgSPaperGetXIateData. In fact the first two fields of pArgs 

for this message are the same as the fields of pArgs for msgSPaperGetXIateData 

The only difference between the two messages is that msgSPaperGetXIateDataAndStrokes also passes 

back the stroke information used to produce the translation. The strokes are appended to the xlist as 

elements of type xtStroke16. 

If pArgs->toL WC is true, then the coordinate information in the strokes is converted to Local Window 

Coordinates (see win.h) before being passed back. 

The client must free the passed back xlist. 

msgSPaperGetXIateData 



728 PENPOINT API REFERENCE 
Part 5 / Input and Handwriting 

Messages Defined by Other Classes 

Comments 

Comments 

Comments 

Comments 

Comments 

See Also 

msgFree 
Defined in clsmgr.h 

Takes P _OBJ_KEY, returns SfATUS. 

If the sPaper contains a scribble, it first removes the translator (if it exists) as an observer of the scribble. 
It then sends msgDestroy to the scribble. 

If the sPaper contains a translator, it first remove self as an observer of the translator and then send 
msgDestroy to the translator. 

msgSave 
Defined in clsmgr.h. 

Takes P _OBJ_SAVE, returns STATUS. 

An sPaper responds by sending msgResPutObject to its scribble and translator. (If the scribble and/or 
translator is null, this effectively writes the "null object" id into the resource file.) 

msgRestore 
Defined in clsmgr.h. 

Takes P_OBJ_RESTORE, returns STATUS. 

An sPaper responds by sending msgResGetObject to pArgs->file to restore its scribble and translator 
that were saved while handling msgSave. 

If the restored translator is non-null, the sPaper makes itself an observer of the of the translator. If both 
the translator and scribble are non-null, the sPaper makes the translator an observer of the scribble. 

msgSetOwner 
Defined in clsmgr.h. 

Takes P _OBJ_OWNER, returns STATUS. 

In response, an sPaper sends this message to its translator and scribble ( if they are non-null). The 
sPaper then lets its ancestor (clsObject) set the sPaper's ownership. 

msgXlateCompleted 
Defined in xlate.h. 

Takes nothing, returns SfATUS. 

An sPaper receives this message because it is observing its translator. The translator uses this message to 
indicate that translation has been complete and that data is available. 

In response to this message the sPaper self sends msgSPaperXlateCompleted, which results in 
msgSPaperXlateCompleted being sent to all the sPaper's observers. 

msgSPaperXlateCompleted 



Comments 

SPAPER.H 729 
Messages Defined by Other Classes 

msgWinRepaint 
Defined in win.h. 

Takes nothing, returns SfATUS. 

An sPaper responds by (1) drawing any necessary grid lines in the window, and (2) if spRedisplay is 
true, sending msgScrRender to its scribble 

msgWinSized 
Defined in win.h. 

Takes P_WlN_METRICS, returns SfATUS. 

If the window being resized is self, and a change in height has occurred, and the spFixedPos flag is true, 
then the sPaper's scribble's base is adjusted by the change in height. This causes the scribble to remain at 
a fixed position relative to the upper left corner of the window. As a result of handling this message, 
msgSPaperGetCellMetrics and msgSPaperGetSizes will return different values. 

scribble.h 

msgWinLayoutSelf 
Defined in win.h. 

Takes P _WIN_METRICS, returns SfATUS. 

If wsLayoutResize is on in pArgs->options, the sPaper picks a width of 

(eols * eellWidth) + self's borderSize.w 

and a height of 

(rows * lineHeight) + self's borderSize.h 

msglnputEvent 
Defined in input.h. 

Takes P _INPUT_EVENT, returns STATUS. 

sPaper handles msgPenUp, msgPenDown, msgPenStroke and msgPenOutProxUp events. 

An sPaper grabs input by returning stslnputGrahTerminate in response to msgPenDown. 

If flags.spGrab is false, the sPaper relinquishes the grab by returning stslnputTerminate in response to 

msgPenUp. 

If flags.spGrab is true, the sPaper releases the grab by returning stslnputTerminate in response to 
msgPenOutProxUp. msgPenOutProxUp also cause a self send of msgSPaperComplete if flags.spProx is 

set. 

msgPenStroke causes a self send of msgSPaperAddStroke. 

All other msglnputEvent events return stslnputGrabIgnored or stslnputlgnored depending on the grab 

state the sPaper is in. 

stslnputT erminate 

msgSPaperComplete 



730 PENPOINT API REFERENCE 

Comments 

Comments 

Comments 

Part 5 / Input and Handwriting 

msgSelDelete 
Defined in sel.h. 

Takes U32, returns STATUS. 

In response to this message, the sPaper self sends msgSPaperClear. 

msgSelMoveSelection 
Defined in sel.h. 

Takes P _XY32, returns STATUS. 

In response to this message, the sPaper first checks to see if the selection owner can "speak" the 
xferScribbleObject data transfer type. If it cannot, then the sPaper lets its ancestor process the message. 

If it can, and the selection owner is not self, then the sPaper gets the scribble from the selection owner, 
positions it as specified in pArgs, self sends msgSPaperSetScribble, and finally sends msgSe1Delete to 
the selection owner. 

msgSelCopySelection 
Defined in sel.h. 

Takes P _XY32 , returns STATUS. 

An sPaper's response to this message is identical to its response to msgSelMoveSelection except that the 
sPaper does not send msgSelDelete to the selection owner. 

msgSelMoveSelection 

msgSelBeginMove 
Defined in sel.h. 

Takes P _XY32, returns STATUS. 

In response to this message, the sPaper first verifies that it has a scribble and that flags.spDataMoveable 
is true. If either of these fail, the sPaper lets its ancestor process the message. 

Otherwise the sPaper computes the bounding box of the scribble and self sends 
msgEmbeddedWinBeginMove. 

msgSelBeginCopy 
Defined in sel.h. 

Takes P _XY32 , returns STATUS. 

In response to this message, the sPaper first verifies that it has a scribble and that flags.spDataCopyable 
is true. If either of these fail, the sPaper lets its ancestor process the message. 

Otherwise the sPaper computes the bounding box of the scribble and self sends 
msgEmbeddedWinBeginCopy. 



msgXferGet 
Defined in xfer.h. 

Takes P_UNKNOWN, returns STATUS. 

SPAPER.H 731 
Messages Defined by Other Classes 

If pArgs->id is xferScribbleObject, the sPaper creates a copy of its scribble and returns the copy in 

pArgs->uid. 

msgXferList 
Defined in xfer.h. 

Takes OBJECT, returns STATUS. 

In response to this message, the sPaper adds the data transfer type xferScribbleObject to the list of data 
transfer types. 

msg T rackProvideMetrics 
Defined in track.h. 

Takes P_TRACK_METRICS, returns STATUS. 

If pArgs-> tag is tagMoveCopylconTrack, the sPaper snaps the pen to the center-left of the move/copy 
Icon. 





XGESTURE.H 

Interface file for clsXGesture 

clsXGesture inherits from clsXtract. 

#ifndef XGESTURE INCLUDED 
#define XGESTURE INCLUDED 
#ifndef GO INCLUDED 
#include <go.h> 
#endif 
#ifndef UID INCLUDED 
#include <uid.h> 
#endif 
#ifndef GEO INCLUDED 
#include <geo.h> 
#endif 

Common #defines and typedefs 

Gesture Definitions 

These tags define the codes returned for a recognized gesture. Wherever a "gesture id" is called for, one 
of these codes is expected. 

Certain of these gesture codes are OBSOLETE. That is, the shapes that they denote were experimental 
and are no longer recognized by the gesture recognizer. All such obsolete codes are indicated by the 
comment "not generated" at the end of the definition. 

#define xgsNull MakeTag(clsXGesture, Oxff) II 255 
II selection 
#define xgsLeftParens MakeTag(clsXGesture, , (') II 40 
#define xgsRightParens MakeTag(clsXGesture, , ) , ) II 41 
#define xgsPlus MakeTag(clsXGesture, '+' ) II 43 
#define xgs1Tap MakeTag(clsXGesture, '.' ) II 46 
#define xgs2Tap MakeTag(clsXGesture, Ox80) II 128 
#define xgs3Tap MakeTag(clsXGesture, Oxe1) II 129 
#define xgs4Tap MakeTag(clsXGesture, Ox82) II 130 

II Removed xgsNTapDrag 
#define xgsPlusTap MakeTag(clsXGesture, Ox87) II 135 not generated 
#define xgsCheckTap MakeTag(clsXGesture, Ox88) II 136 
#define xgsTapHold MakeTag(clsXGesture, Ox89) II 137 
#define xgsPressHold MakeTag(clsXGesture, Ox8a) II 138 
II deletion 
#define xgsCross MakeTag(clsXGesture, 'X' ) II 88 == xgsXGesture 
#define xgsPigtailHorz MakeTag(clsXGesture, Ox8b) II 139 not generated 
#define xgsScratchOut MakeTag(clsXGesture, Ox8c) II 140 
#define xgsPigtailVert MakeTag(clsXGesture, Ox8d) II 141 



734 PEN POINT API REFERENCE 
Part 5 / Input and Handwriting 

II insert/replace 
*define xgsCircle MakeTag(clsXGesture, '0') II 79 == xgsOGesture 
*define xgsCircleTap MakeTag(clsXGesture, Ox8e) II 142 
*define xgsUpCaret MakeTag(clsXGesture, Ox8f) II 143 
*define xgsRightCaret MakeTag(clsXGesture, Ox90) II 144 not generated 
*define xgsCircleDblTap MakeTag(clsXGesture, Ox91) II 145 not generated 
*define xgsCircleLine MakeTag(clsXGesture, Ox92) II 146 
*define xgsCircleFlickUp MakeTag(clsXGesture, Ox93) II 147 
*define xgsCircleFlickDown MakeTag(clsXGesture, Ox94) II 148 
*define xgsUpCaretDot MakeTag(clsXGesture, Ox95) II 149 
*define xgsUpCaretDblDot MakeTag(clsXGesture, Ox96) II 150 not generated 
*define xgsDblArrow MakeTag(clsXGesture, Ox97) II 151 not generated 
*define xgsDblCircle MakeTag(clsXGesture, Ox98) II 152 
II move/copy 
*define xgsUpArrow MakeTag(clsXGesture, Ox99) II 153 
*define xgsUp2Arrow MakeTag(clsXGesture, Ox9a) II 154 
*define xgsDownArrow MakeTag(clsXGesture, Ox9b) II 155 
*define xgsDown2Arrow MakeTag(clsXGesture, Ox9c) II 156 
*define xgsLeftArrow MakeTag(clsXGesture, Ox9d) II 157 
*define xgsLeft2Arrow. MakeTag(clsXGesture, Oxge) II 158 
*define xgsRightArrow MakeTag(clsXGesture, Ox9f) II 159 
*define xgsRight2Arrow MakeTag(clsXGesture, OxaO) II 160 
*define xgsDblUpCaret MakeTag(clsXGesture, Oxa1) II 161 
*def~ne xgsDblDownCaret MakeTag(clsXGesture, Oxa2) II 162 not generated 
*define xgsUpTriangle MakeTag(clsXGesture, Oxa3) II 163 not generated 
*define xgsDownTriangle MakeTag(clsXGesture, Oxa4) II 164 not generated 
*define xgsRightUp MakeTag(clsXGesture, Oxa5) II 165 
*define xgsRightUpFlick MakeTag(clsXGesture, Oxa6) II 166 
*define xgsRightDown MakeTag(clsXGesture, Oxa7) II 167 
II white space 
*define xgsCGesture MakeTag(clsXGesture, 'C' ) II 67 
*define xgsLLCorner MakeTag(clsXGesture, 'L' ) II 76 "DownRight", "LGesture" 
*define xgsLLCornerFlick MakeTag(clsXGesture, Oxa8) II 168 "DownRightFlick" 
*define xgsLRCorner MakeTag(clsXGesture, Oxa9) II 169 "DownLeft" 
*define xgsLRCornerFlick MakeTag(clsXGesture, Oxaa) II 170 "DownLeftFlick" 
*define xgsParagraph MakeTag(clsXGesture, Oxab) II 171 
*define xgsLeftCaret MakeTag(clsXGesture, Oxac) II 172 not generated 
*define xgsULCorner MakeTag(clsXGesture, Oxad) II 173 "UpRight" 
II scroll 
*define xgsFlickUp MakeTag(clsXGesture, Oxae) II 174 
*define xgsFlickDown MakeTag(clsXGesture, Oxaf) II 175 
*define xgsFlickLeft MakeTag(clsXGesture, OxbO) II 176 
*define xgsFlickRight MakeTag(clsXGesture, Oxb1) II 177 
*define xgsDblFlickUp MakeTag(clsXGesture, Oxb2) II 178 
*define xgsDblFlickDown MakeTag(clsXGesture, Oxb3) II 179 
*define xgsDblFlickLeft MakeTag(clsXGesture, Oxb4) II 180 
*define xgsDblFlickRight MakeTag(clsXGesture, Oxb5) II 181 
*define xgsFlickTapUp MakeTag(clsXGesture, Oxb6) II 182 not generated 
*define xgsFlickTapDown MakeTag(clsXGesture, Oxb7) II 183 not generated 
*define xgsFlickTapLeft MakeTag(clsXGesture, Oxb8) II 184 not generated 
*define xgsFlickTapRight MakeTag(clsXGesture, Oxb9) II 185 not generated 
*define xgsTrplFlickUp MakeTag(clsXGesture, Oxba) II 186 
*define xgsTrplFlickDown MakeTag(clsXGesture, Oxbb) II 187 
*define xgsTrplFlickLeft MakeTag(clsXGesture, Oxbc) II 188 
*define xgsTrplFlickRight MakeTag(clsXGesture, Oxbd) II 189 
*define xgsQuadFlickUp MakeTag(clsXGesture, Oxbe) II 190 
*define xgsQuadFlickDown MakeTag(clsXGesture, Oxbf) II 191 
*define xgsQuadFlickLeft MakeTag(clsXGesture, OxcO) II 192 
*define xgsQuadFlickRight MakeTag(clsXGesture, Oxc1) II 193 
II mise 
*define xgsLineCaretRight MakeTag(clsXGesture, Oxc2) II 194 not generated 
*define xgsLineCaretLeft MakeTag(clsXGesture, Oxc3) II 195 not generated 
*define xgsLineDblCaret MakeTag(clsXGesture, Oxc4) II 196 not generated 



XGESTURE.H 
Common #defines and typedefs 

II User-defineab!e 
#define xgsLeftDown MakeTag(c!sXGesture, Oxc5) II 197 
#define xgsLeftUp MakeTag(c!sXGesture, Oxc6) II 198 
#define xgsUpLeft MakeTag(c!sXGesture, Oxc7) II 199 
II Undo 
#define xgsVertCounterF!ick MakeTag(c!sXGesture, Oxc8) II 200 
#define xgsHorzCounterF!ick MakeTag(c!sXGesture, Oxc9) II 201 
#define xgsInfinity MakeTag(c!sXGesture, Oxca) II 202 not generated 
#define xgsCirc!eCrossOut MakeTag(c!sXGesture, Oxcb) II 203 
II Borders On 
#define xgsBordersOn MakeTag(c!sXGesture, Oxcc) II 204 
#define xgsAsterisk MakeTag(c!sXGesture, '*' ) II not generated 
II Capita! letters gestures 
#define xgsAGesture MakeTag(c!sXGesture, 'A') II 65 
#define xgsBGesture MakeTag(c!sXGesture, 'B' ) II 66 
II for xgsCGesture see above 67 
#define xgsDGesture MakeTag(c!sXGesture, 'D' ) II 68 
#define xgsEGesture MakeTag(c!sXGesture, 'E' ) II 69 
#define xgsFGesture MakeTag(c!sXGesture, 'F' ) II 70 
#define xgsGGesture MakeTag(c!sXGesture, 'G' ) II 71 
#define xgsHGesture MakeTag(c!sXGesture, 'H' ) II 72 
#define xgsIGesture MakeTag(c!sXGesture, 'I' ) II 73 
#define xgsJGesture MakeTag(c!sXGesture, 'J' ) II 74 
#define xgsKGesture MakeTag(c!sXGesture, 'K' ) II 75 
II for xgsLGesture see xgsLLCorner, above 76 
#define xgsMGesture MakeTag(c!sXGesture, 'M') II 77 
#define xgsNGesture MakeTag(c!sXGesture, 'N' ) II 78 
#define xgsOGesture MakeTag(c!sXGesture, '0' ) II 79 xgsCirc!e 
#define xgsPGesture MakeTag(c!sXGesture, 'P' ) II 80 
#define xgsQGesture MakeTag(c!sXGesture, 'Q' ) II 81 
#define xgsRGesture MakeTag(c!sXGesture, 'R' ) II 82 
#define xgsSGesture MakeTag(c!sXGesture, 'S' ) II 83 
#define xgsTGesture MakeTag(c!sXGesture, 'T' } II 84 
#define xgsUGesture MakeTag(c!sXGesture, 'U' } II 85 
#define xgsCheck MakeTag(c!sXGesture, 'V'} II 86 xgsVGesture 
#define xgsVGesture MakeTag(c!sXGesture, 'V'} II 86 xgsCheck 
#define xgsWGesture MakeTag(c!sXGesture, 'W'} II 87 
#define xgsXGesture MakeTag(c!sXGesture, ,x' } II 88 xgsCross 
#define xgsYGesture MakeTag(c!sXGesture, 'Y' ) II 89 
#define xgsZGesture MakeTag(c!sXGesture, 'z' ) II 90 
#define xgsQuestion MakeTag(c!sXGesture, '?' ) II 63 
II graphic gestures in geo.ptc - currently not implemented 
#define xgsRect MakeTag(c!sXGesture, OxfO) II 240 not generated 
#define xgsRoundRect MakeTag(c!sXGesture, Oxf1) II 241 not generated 
#define xgsSp!ine MakeTag(c!sXGesture, Oxf2) II 242 not generated 
#define xgsPo!y!ine MakeTag(c!sXGesture, Oxf3} II 243 not generated 
#define xgsOTapHo!d xgsPressHo!d 
#define xgs1TapHo!d xgsTapHo!d 
#define xgs2TapHo!d MakeTag(c!sXGesture, Oxf4) II 244 
#define xgs3TapHo!d MakeTag(c!sXGesture, OxfS) II 245 
#define xgs4TapHo!d MakeTag(c!sXGesture, Oxf6) II 246 

Output Data Structure 
Information returned in an xlist. 

typedef struct XLATE GDATA { 
U32 gTypei /1 gesture code (one of the 32-bit values defined above) 
XY32 hotPointi II target point in window coordinates 

XLATE_GDATA, *P_XLATE_GDATAi 

735 

It 



736 PEN POINT API REFERENCE 

Part 5 / Input and Handwriting 

Messages 

msgNewDefaults: 
Sets default values in XLATE_NEW structure for a gesture recognizer 

Takes P_XLATE_NEW, returns SfATUS. 

pArgs->xlate.metrics.charCount 1; 
pArgs->xlate.metrics.lineCount 1; 

and all other values to 0 

msgNew: 
Creates a new Gesture translation object. 

Takes P _XLATE_NEW, returns SfATUS. 

Note: sets the XIATE_NEW.mode to xlGesture, regardless of the value passed in via pArgs. 

Notification Messages 

msgXGestureComplete: 
Hook for subclasses to postprocess the results of gesture recognition. 

Takes NULL, returns STATUS. 

#define msgXGestureComplete 
#endif 

Not implemented. 

MakeTag(clsXGesture, 64) 



XLATE.H 

This file contains part of the API definition for clsXtract. For the remainder see xtract.h. 

clsXtract inherits from clsObject. 

Implements basic translation functions for converting pen input, in the form of strokes, to gestures or 
text characters. 

Translators are objects that use pattern recognition techniques to convert pen input to gestures or text 
characters. There are three stages to the translation process: initialization, control (stroke collection and 
recognition), and notification (data output). 

Since the translation object may preprocess input data as it is received, initialization messages should be 
sent before any strokes are added to the object. Initialization messages establish the rules for translation. 

Control messages are used by the client to communicate specific information regarding the state of the 
translation as it pertains to the input stroke stream. 

Notification messages are used by the translation object to notify the client as to the current state of the 
translation process. 

For historical reasons messages and data types relating to translation are defined in terms of two class names: 
clsXlate and clsXtract. Conceptually, clsXlate is an abstract class (a class with no default behavior, i.e. no 
methods) and clsXtract is a subclass of clsXlate which implements methods for a large number of 
messages. As implemented, however, there is no such class as clsXlate in PenPoint 1.0. When PenPoint 
boots, clsXlate is not installed in the class hierarchy, and clsXtract is installed as a subclass of clsObject. 

The clsXtract/clsXlate does not implement enough behavior to be used directly as a translator. Rather 
translation objects should be created as instances of one of the following subclasses: 

clsXGesture for gestures 

clsXText for letters with minimal language support 

clsXWord for letters as part of normal American English 

clsXTeach for letters when the application is to train therecognition engine. (It is not possible to train 

gestures) 

xtract.h, xgesture.h, xtext.h, xword.h, xteach.h 

#ifndef XLATE INCLUDED 
#define XLATE-INCLUDED 
#ifndef GO INCLUDED 
#include <go.h> 
#endif 
#ifndef GEO INCLUDED 
#include <geo.h> 
#endif 
#ifndef CLSMGR INCLUDED 
#include <clsmgr.h> 
#endif 
#ifndef XLIST INCLUDED 
#include <xlist.h> 
#endif 
#ifndef SPELL INCLUDED 
#include <speIl.h> 
#endif 



738 PENPOINT API REFERENCE 
Part 5 I Input and Handwriting 

COllllllon #defines and typedefs 

Internal Constants 

The following are used globally by the translation object. 

*define xltCharWordTerminator ('\0') II standard string terminator 
*define xltCharSpace (' ') II character code for space 
*define xltCharDotlessI (Ox80) II character code for dotless i (private) 
*define xltCharDotlessJ (Ox81) II character code for dotless j (private) 
*define xltCharUnknownDefault' (Ox1S) II default "meatball" for unrecognized char 
*define xltMaxWordLength (32) II buffer size for word translations 
typedef struct POINT { 

S16 x, Yi 
} POINT, * P_POINTi II internal representation of a digitizer point 

Status Values 

The translation object may return the following status values. 

*define stsXlateBufferOverflow 
*define stsXlateBadProtoFile 
*define stsXlateBadTransFile 
*define stsXlateBadTrigramFile 
*define stsXlateInputTruncated 

Creation Messages 
Characteristics of the insertion pad. 

typedef struct XLATE_METRICS { 

MakeStatus(clsXlate, 1) 
MakeStatus(clsXlate, 2) 
MakeStatus(clsXlate, 3) 
MakeStatus(clsXlate, 4) 
MakeNonErr(clsXlate, 1) 

U16 lineCounti II number of lines (0 = indeterminate) 
U16 charCounti II number of character columns (0 = indeterminate) 
SIZE32 charBoxi II size of character box (height and width) 
S32 baselineOffseti II baseline offset to bottom of char box (if charCount != 0) 
XY32 origini II origin of insertion pad in digitizer coordinates 

XLATE_METRICS, *P_XLATE_METRICSi 

When "case smarts" are turned on (i.e. xltSmartCaseDisable hwx flag is OFF), the translation object 
will ignore the case in which the user wrote the input and will instead figure out the correct 
capitalization based on the settings in XIATE_CASE_METRICS. XIATE_CASE_TYPE tells the type of 
capitalization rules which the translation string should be made to obey. "No rules" means make 
everything lower case. 

typedef enum XLATE_CASE_TYPE { 
xcmNone, II Don't capitalize anything, force it all to lower case 
xcmSentence,11 Capitalize first letter of each sentence, etc 
xcmField II Capitalize as per XLATE_CASE_METRICS.context.field 

XLATE_CASE_TYPE, * P_XLATE_CASE_TYPEi 

If the writer is a mixed case writer, then he/she is presumed to write both upper case and lower case 
shapes. An AlICapsWriter, on the other hand, will only write upper case shapes, never lower case shapes. 
This knowledge can help the shape recognizer by limiting the number of alternatives it has to choose 
from. This does not mean, however, that the translation will be all upper case, for it is the job of" case 
smarts" to convert the translation to the correct case. 

typedef enum XLATE CASE WRITER { 
xcmMixedCaseWriter,- II Writer writes both upper and lower case shapes 
xcmAIICapsWriter, II Writer writes in all upper case shapes 

XLATE_CASE_WRITER, * P_XLATE_CASE_WRITERi 



MeS5C1ge 
ArS!Jme!1ts 

Comments 

MeS5C1ge 
ArS!Jme!1ts 

XLATE.H 739 
Creation Messages 

typedef enum XLATE CASE FIELD { 
xcmOneInitialCapField, II capitalize 
xcmAIIInitialCapsField, II capitalize 
xcmAIICapsField, II captialize 

XLATE_CASE_FIELD, * P_XLATE_CASE_FIELD; 
typedef struct XLATE_CASE_METRICS { 

first letter in the field 
first letter in each 'word' 
all letters in the field 

XLATE_CASE_TYPE type; II type of rule to use 
XLATE CASE WRITER writer; II type of input to expect 
union { 

SPELL CASE CONTEXT sentence;11 specific rules if type is xcmSentence 
XLATE=CASE=FIELD field; II specific rules if type is xcmField 

context; 
XLATE_CASE_METRICS, * P_XLATE_CASE_METRICS; 

typedef struct XLATE_NEW_ONLY { 
U32 hwxFlags; 
U16 charConstraints; 
XLATE METRICS metrics; 
P UNKNOWN pTemplate; 
XLATE CASE METRICS xlateCaseMetrics;. 

XLATE_NEW_ONLY, *P_XLATE_NEW_ONLY; 
typedef struct XLATE_NEW { 

OBJECT_NEW_ONLY object; 
XLATE NEW ONLY xlate; 

XLATE_NEW, *P_XLATE_NEW; 

msgNewDefaults: 

II xlate rules (see msgXlateSetFlags) 
II constrained char set flags 
II insertion pad parameters 
II compiled XTemplate; pNull if none. 
II case post-processing controls. 

Initializes the XLATE_NEW structure to default values. 

Takes P _XLATE_NEW, returns STATUS. Category: class message. 

typedef struct XLATE_NEW { 
OBJECT_NEW_ONLY object; 
XLATE NEW ONLY xlate; 

XLATE_NEW, *P_XLATE_NEW; 

The default values are 0 for everything. 

This message should, of course, be sent to one of the subclasses of clsXtract, not to clsXlate, since 

clsXlate is a fiction, and not to clsXtract, since clsXtract does not implement the complete behavior 
needed to do translation. 

msgNew: 
Creates a new translation object. 

Takes P _XLATE_NEW, returns STATUS. Category: class message. 

typedef struct XLATE_NEW { 
OBJECT_NEW_ONLY object; 
XLATE NEW ONLY xlate; 

XLATE_NEW, *P_XLATE_NEWi 

This message should, of course, be sent to one of the subclasses of clsXtract, not to clsXlate, since 

clsXlate is a fiction, and not to clsXtract, since clsXtract does not implement the complete behavior 
needed to do translation. 



740 PENPOINT API REFERENCE 
Part 5 I Input and Handwriting 

msgFree: 
Destroys a translation object. 

Takes P _NULL, returns SfATUS. 

This message should be sent to the object you wish to destroy. 

Initialization Messages 

Messoge 
Argum0mts 

Messoge 
Ar9umetlfS 

The following messages control various settings and modes which govern the way translation is carried 
out. These messages must all be received by the translator BEFORE any strokes are received by it, since 
translators are allowed to begin translating "in the background", (i.e. before the input is complete). 

msgXlateModeSet: 
Sets the mode (i.e. character/code type) of a translation object. 

Takes XIATE_MODE, returns SfATUS. 

#define msgXlateModeSet MakeMsg(clsXlate, 5) 

typedef enum ( 
xlCharacter, II obsolete 
xlText, II use default text rules (ASCII) 
xlNumber, II obsolete 
xlGesture, II use default gesture rules 
xlGeometric II obsolete 

XLATE~ODE, *P_XLATE_MODE; 

The translation object can be configured to processes a variety of character/code types. The mode flag 
determines the type of character set and default behavior for the object. 

msgXlateModeGet: 
Gets the mode of a translation object. 

Takes P _XIATE_MODE, ·returns STATUS. 

#define msgXlateModeGet MakeMsg(clsXlate, 10) 

typedef enum ( 
xlCharacter, II obsolete 
xl Text , II use default text rules (ASCII) 
xlNumber, II obsolete 
xlGesture, II use default gesture rules 
xlGeometric II obsolete 

XLATE_MODE, *P_XLATE_MODE; 

The mode was set either at msgNew time or by msgXlateModeSet. 

msgXlateMetricsSet: 
Tells translator the dimensions and layout of the writing area. 

Takes P _XIATE_METRICS, returns SfATUS. 

tdefine msgXlateMetricsSet MakeMsg(clsXlate, 8) 

typedef struct XLATE METRICS 
U16 lineCount; - II number of lines (0 = indeterminate) 
U16 charCount; II number of character columns (0 = indeterminate) 
SIZE32 charBox; II size of character box (height and width) 
S32 baselineOffset; II baseline offset to bottom of char box (if charCount != 0) 
XY32 origin; II origin of insertion pad in digitizer coordinates 

XLATE_METRICS, *P_XLATE_METRICS; 



Comments 

Mess©lge 
Arguments 

Comments 

Arguments 

Comments 

XLATE.H 741 
Initialization Messages 

In order to assist the writer and the recognition system, an insertion pad can display guidelines, or 
"character boxes", that direct the writer in targeting. When character boxes are used, the 
XLATE_METRICS are used to communicate the physical box information to the translation object. The 
translator can use this information (when available) to decide how to group the strokes into characters. 

Most internal processes key off the charCount field. If charCount is 0, the translation object assumes 

that there are no boxes. In that case it will default to a heuristic algorithm that combines information 
from the shape matching and context processing to estimate the writing baseline and character spacing. 

(As an aside, the translation object does not use baseline information when charCount is 0. I.e. 
lineCount is ignored in that case.) 

If charCount > 0, the translation object uses lineCount and charCount to calculate the number of boxes 
in the insertion pad. A combination of the char Box height and width and the x and y coordinates of the 
origin are used to define the physical bounds of each box. The translation object then uses this to 
determine character segmentation. 

msgXl ateMetrics Get: 
Gets metrics of a translation object. 

Takes P_XLATE_METRICS, returns SfATUS. 

#define msgXlateMetricsGet MakeMsg(clsXlate, 16) 

typedef struct XLATE METRICS 
U16 lineCount; II number of lines (0 = indeterminate) 
U16 charCount; II number of character columns (0 = indeterminate) 
SIZE32 charBox; II size of character box (height and width) 
S32 baselineOffset; II baseline offset to bottom of char box (if charCount != 0) 
XY32 origin; II origin of insertion pad in digitizer coordinates 

XLATE_METRICS, *P_XLATE_METRICS; 

The metrics were set in response to either msgNew or msgXlateMetricsSet. 

msgXIateStringSet: 
Sets the current textual context for a translation object. 

Takes P_XLATE_STRING, returns SfATUS. 

#define msgXlateStringSet MakeMsg(clsXlate, 12) 

typedef struct XLATE_STRING { 
P_CHAR pCurrentText; II pointer to current text string 
U16 length; II string length 
816 startIndex; II index of first editable character 
S16 endIndex; II index of last editable character 

XLATE_STRING, *P_XLATE_STRING; 

The following structure is used to communicate currently displayed text in the insertion pad. It is only 
applicable when using boxed insertion pads. The existing textual information must be registered if the 
translation object is using any string-based knowledge source (such as the dictionary or a template) 
where positional information within the string is crucial for proper recognition. 

It is possible to allow only a portion of the displayed string to be in the insertion pad (and hence, 
editable). To allow for this, startlndex represents the first editable character's position in the string, and 

endlndex represents the last editable characters's position in the string. If the entire string is editable, set 

startlndex = ° and endlndex = string length. 



742 PENPOINT API REFERENCE 

Part 5 / Input and Handwriting 

msgXlateSetFlags: 
Sets the translation flags. 

Takes U32, returns STATUS. 

#define msgXlateSetFlags 
II Built-in Rules 
#define xltSegmentVeto 
#define xltCaseEnable 
#define xltAlphaNumericEnable 
#define xltPunctuationEnable 
#define xltVerticalEnable 
account 

flagO 
flag8 
flag9 
flag10 
flag14 

MakeMsg(clsXlate, 14) 

II allow one and only one char per box 
II prefer standard rules of capitalization 
II prefer standard grouping of letters and digits 
II prefer standard use of punctuation 
II take height and vertical position of chars into 

#define xltSpaceDisable 
#define xltConnectedEnable 
II Knowledge Source Controls 
#define xltSpellingEnable 
#define xltSpellingVeto 
#define xltSpellingPropose 
#define xTemplateEnable 
#define xTemplateVeto 
#define xTemplatePropose 

flag1S II ignore spaces (translate as one string) 
flag1 II currently not implemented 

II Post-processing Rules 
#define xltProofEnable 
#define xltAbbrEnable 
#define xltExpansionEnable 
#define xltSmartCaseDisable 

flag2 
flag3 II 

flag4 
flagS II 
flag6 II 
flag7 II 

flagll 
flag12 
flag13 

flag16 

II use dictionary, prefer dictionary words 
disallow non-dictionary words 
II propose from dictionary when stuck 

use xTemplate, prefer te~plate words 
disallow words not matching template 
propose from template when stuck 

II currently not implemented 
II currently not implemented 
II currently not implemented 
II DON'T correct the capitalization 

II Not currently implemented 
#define hwxGeoPolylines flag24 
#define hwxGeoSingleLines flag2S 
#define hwxGeoLinesAlways flag26 

II currently not implemented 
II currently not implemented 
II currently not implemented 

The translation flags (hw:x:Flags) govern which of the various scoring rules will be applied in choosing 

the best translation. They include built-in language rules, choice of assisting knowledge sources (speller, 
templates), and postprocessing rules, such as sentence-level case correction. 

Built-in Rules: The translation object can be directed to use various default language rules to assist 

recognition. When a flag is turned on, the translator will show a preference for translations which obey 

the rule associated with that flag. For example if xltCaseEnable is on, the translator will show a 
preference for words that are either all lower case, all upper case or all lower case except the first letter. 

Knowledge Source Controls: The translation object can be directed to use spelling and/or template 
information in order to assist recognition. Each of these knowledge sources, when it is turned on, has a 
choice of four modes of operation: 

Enable, Enable+Veto, Enable+Propose and Enable+Veto+Propose. 

The Enable flag must be ON in all four cases. This enables the use of the knowledge source and causes 

the translator to show a preference for words which conform to the source (i.e. are in the dictionary or 
match the template). If the Veto flag is also on, then the translator will ONLY consider translations 

which conform to the source and will reject all translations which do not. If the Propose flag is also on, 
it allows the translator to change some letters if it will result in a translation which conforms to the 

knowledge source even if the raw shape matcher did not suggest those letters. 

Post-processing Rules: The translation object can apply post-processing rules to assist error-checking 

and proofing (spell correction). The only processing that is currently implemented is the "smart case" 

capability. This capability calls for the translator to use linguistic rules to correct the capitalization of 

the translation. This correction is always applied unless it is disabled by turning the smartCaseDisable 
flag on. 



XLATE.H 743 
Initialization Messages 

msgXIateGetFlags: 
Gets the translation flags of an object. 

Takes P _U32, returns STATUS. 

tdefine msgXlateGetFlags MakeMsg(clsXlate, 17) 

The translation flags are also called the hwx:Flags. 

msgXIateFlagsClear: 
Clears the given set of translation flags. 

Takes U32, returns STATUS. 

tdefine msgXlateFlagsClear 

Performs the operation 

hwxFlags &=-pArgs; 

MakeMsg(clsXlate, 15) 

thus turning OFF all flags which are ON in pArgs and leaving unchanged those flags which are OFF in 

pArgs. 

msgXIateCharConstrainsSet: 
Sets the character constraints of a translation object. 

Takes P _UI6, returns STATUS. 

tdefine msgXlateCharConstraintsSet MakeMsg(clsXlate, 11) 
tdefine xltDisableUpperCase flagO II disallow A thru Z 
tdefine xltDisableLowerCase flag1 II disallow a thru z 
tdefine xltDisableNumerals flag2 II disallow 0 thru 9 
tdefine xltDisableCommonPunct flag3 I I disallow .,'!?;: %$t+-* () "=1 
tdefine xltDisableOtherPunct flag4 II disallow all other punctuation 

Character constraints impose limits on the shapes that the writer is allowed to write. Setting the flag 

when appropriate may improve translation accuracy or performance since the shape matcher will know 

that it does not need to consider certain shapes as possibilities. 

For example, a numeric-only translator can be constructed by setting all of the disable flags except for 

xltDisableNumerals. 

Note that character constraints do not restrict the case of the translation string if" case smarts" are on. 

For example, case smarts may force the translation to be all lower case letters even if the 

xltDisableLowerCase charConstraint flag is set. 

msgXIateCharConstrainsGet: 
Gets the character constraints of a translation object. 

Takes P_UI6, returns STATUS. 

tdefine msgXlateCharConstraintsGet MakeMsg(clsXlate, 18) 

The charConstraints were set in response to either msgNew or msgXlateCharConstraintsSet 



744 PENPOINT API REFERENCE 

Comments 

Comments 

Arguments 

Comments 

Mess«lge 
Arguments 

Comments 

Part 5 / Input and Handwriting 

msgXlateTemplateGet: 
Gets the template for a translation object. 

Takes PP _UNKNOWN, returns STATUS. 

tdefine msqXlateTemplateGet MakeMsq(clsXlate, 13) 

Will return in *pArgs a pointer to the compiled template currently in effect for the translator. 

msgXlateTemplateSet: 
Sets the template for a translation object. 

Takes P _UNKNOWN, returns STATUS. 

tdefine msqXlateTemplateSet MakeMsq(clsXlate, 9) 

The pArg should be a pointer to the "compiled" template created by calling the function 

XTemplateCompileO defined in xtemplt.h 

msgXlateCharMemorySet: 
Sets the current Character memory for character box mode. 

Takes P _CHARACTER_MEMORY, returns STATUS. 

tdefine msqXlateCharMemorySet MakeMsq(clsXlate, 22) 

typedef struct CHARACTER_MEMORY 
U16 position; II position in the strinq 
P_CHAR usedCharacters; II list of characters already used 

CHARACTER_MEMORY, *P_CHARACTER_MEMORY; 

In "boxed" mode (which typically is used when editing a short string), the translation object can accept 

a list of characters already attempted in this position. This is used to allow ambiguous character shapes 
to be translated differently on overwrite. 

For example, a writer attempting to enter a lower case "L" may want to avoid repeatedly entering a 

straight vertical stroke and receiving a numeral "1" as the translation. The character memory feature 

allows a client that keeps track of previously overwritten text to pass this information to the translation 
object. The translation object will then disallow any character in the "already tried" string. 

This feature is implemented only for single character entries. The Position field refers to the position of 

the character in the XLATE_STRING pCurrentText string. Setting character memory for more than one 
position for a single translation will result in the character memory being ignored in all positions. 

msgXlateCharMemoryGet: 
Gets the current Character memory for character box mode. 

Takes P _CHARACTER_MEMORY, returns STATUS. 

tdefine msqXlateCharMemoryGet MakeMsq(clsXlate, 27) 

typedef struct CHARACTER_MEMORY 
U16 position; II position in the string 
P_CHAR usedCharacters; II list of characters already used 

CHARACTER_MEMORY, *P_CHARACTER_MEMORY; 

This message is intended for use by subclasses. 



Message 
Arguments 

Message 
Arguments 

XLATE.H 745 
Initialization Messages 

msgXlateSetXlateCaseMetrics: 
Sets the "smart case" metrics. 

#define msgXlateSetXlateCaseMetrics MakeMsg(clsXlate, 26) 

typedef struct XLATE_CASE_METRICS 
XLATE_CASE_TYPE type; II type of rule to use 
XLATE CASE WRITER writer; II type of input to expect 
union { 

SPELL CASE CONTEXT sentence;11 specific rules if type is xcmSentence 
XLATE=CASE=FIELD field; II specific rules if type is xcmField 

context; 
XLATE_CASE_METRICS, * P_XLATE_CASE METRICS; 

The translation object can be directed to use Case (capitalization) heuristics above and beyond the basic 
xltCaseEnable heuristics set in the xlate flags. These rules are communicated via the 
XLATE_CASE_METRICS structure. They are applied in a post-processing pass by the translator, whereas 
the hwxFlags are applied during the initial search for a good translation. 

These rules set expectations for input (writer style) as well as output format. The writer (CASE_WRITER) 

field prepares the system for the type of input, allowing either mixed case or all upper case input. The 
type ( CASE_TYPE) field sets the style of heuristics. The context field sets the specific rules to implement. 

See spel1.h for definitions for SPELL_CASE_CONTEXT. 

msgXlateGetXlateCaseMetrics: 
Gets the "smart case" metrics. 

#define msgXlateGetXlateCaseMetrics MakeMsg(clsXlate, 25) 

typedef struct XLATE_CASE_METRICS 
XLATE CASE TYPE type; II type of rule to use 
XLATE CASE WRITER writer; II type of input to expect 
union ( 

SPELL_CASE_CONTEXT sentence;11 specific rules if type is xcmSentence 
XLATE_CASE_FIELD field; II specific rules if type is xcmField 

context; 
XLATE_CASE_METRICS, * P_XLATE_CASE METRICS; 

Returns the values that were set either at msgNew time or by msgXlateSetXlateCaseMetrics. 

msgXlateGetHistoryTemplate: 
Gets the current alternate Translation Template. 

Takes PP _UNKNOWN, returns STATUS. 

#define msgXlateGetHistoryTemplate MakeMsg(clsXlate, 23) 

There is no behavior of class xlate associated with the history template other than to respond to the Set 
and Get messages. It may used by the client to implement a "history" or cache mechanism, allowing the 
system to "remember" things previously translated. 



746 PENPOINT API REFERENCE 
Part 5 / Input and Handwriting 

msgXlateSetHistoryTemplate: 
Sets the current alternate Translation Template. 

Takes P_UNKNOWN, returns STATUS. 

idefine msgXlateSetHistoryTemplate MakeMsg(clsXlate, 24) 

". Control Messages 

msgXlateComplete: 
Initiates completion of translation after input is complete. 

Takes NULL, returns STATUS. 

*define msgXlateComplete MakeMsg(clsXlate, 3) 

Obsolete. See msgXtractComplete in xtract.h. 

Not to be confused with msgXIateCompleted (see below). 

Other control messages are defined in xtract.h. In general, the client does not need to play an active role 

in sending or receiving control messages. 

Notification Messages 

msgXlateData: 
Allows a client to read the results from a translation object. 

Takes P _XLATE_DATA, returns STATUS. 

*define msgXlateData MakeMsg(clsXlate, 2) 

typedef struct XLATE_DATA 
OS_HEAP_ID heap; II In: heap to allocate structures 
struct XLIST *pXList; II Out: pointer to return info 

XLATE_DATA, *P_XLATE_DATA; 
typedef struct XLATE_BDATA { 

RECT32 box; 
S32 baseline; 

XLATE_BDATA, *P_XLATE_BDATA; 
typedef struct WORD_ENTRY { 

S16 score; 
CHAR string[xltMaxWordLength]; 

WORD_ENTRY, *P_WORD_ENTRY; 
typedef struct WORD_LIST { 

RECT32 bound; 
U16 count; 
WORD ENTRY word[1]; 

WORD_LIST, *P_WORD_LIST; 

II 
II bounding information 
II baseline offset 

II structure for a word 
II confidence factor 

II word 

II structure for a list of words 
II bounding information 
II number of words in list 
II variable length array of words 

The client reads the translation results from the translation object via this message. 

The translation object fills in the clients xlist data with the output data. The specific xlist type is 
dependent upon the specific translation class. Please refer to xlist.h for the information on each 

translation class. 



XLATE.H 747 
Notification Messages 

The output data is only available upon completion of the translation process. Partial data cannot be read 
before the client has received the completion notification message (msgXIateCompleted) from the 
translation object (see below). 

The output data is a read-once function.,That is, you cannot send msgXIateData twice to the same 
translator. All translation object internal resources pertaining to the translated data are freed during the 

reading process. 

This message must be sent to an instance of one of the subclasses of clsXtract, such as clsXText or 
clsXGesture. The clsXtract itself does not implement any behavior for this message. 

msgXlateComplet~d: 
Notification to client that the translation has been completed. 

Takes OBJECT, returns STATUS. 

#define msgXlateCompleted MakeMsg(clsXlate, 128) 

This notification is sent by the translation object to its observers to inform them that translation is 
completed. Upon receiving this message the client should send msgXIateData (see above) back to the 
translator to read the output. 

The pArgs is the id of the translator. 





XLFILTER.H 

This file contains the API definition for some of the xlist filters. xlist filters provide a mechanism to alter 

the contents of an xlist. 

Xlists are a dynamic list of dynamic items. Their API is defined in the file xlist.h. This file simply defines 
a fIlter function to operate on the xlist. This function should have probably been included in the file 

xlist.h. 

xlist.h 

#ifndef XLFILTER INCLUDED 
#define XLFILTER INCLUDED 
#ifndef XLIST INCLUDED 
#include <xlist.h> 
#endif 

XList2fext 
Converts a translator xlist to lines of xtText & xtBounds. 

Returns STATUS. 

Function Prototype STATUS EXPORTED XList2Text ( 
P_XLIST pXList); 

(omments Converts xlist of the form: 

[xtBounds xtTextWord [xtTextWord]] xtTextListEnd 

into: 

[xtBounds xtText] 

where xtText is the space delimited xtTextWords. 

Sets the xlfXList2Text flag in the xlist to indicate that the filter has been executed on this list. A 

subsequent invocation ofXList2Text with this flag set will return stsOK without processing any data. 
Turning this flag off will cause another pass over the data. This will have no side affects. 

xlist.h 





XLIST.M 

This file contains the API definition for xlist. Xlists provide a set of dynamic list routines used by 

translators. 

The functions described in this file are contained in XLIST.LIB. 

An xlist isa set of routines for manipulating a list of items of data type P _XLIST_ELEMENT. These items 

are allocated from a heap passed into the xlist when it is created. Elements have some flag settings, a data 

type, and a pointer. The pointer points to data defined by the data type, whose allocation is dependent 

on the flag settings. 

Elements in the list are indexed from 0 to entries-I. A series of functions are provide to create and 

destroy lists, traverse lists, access and set list elements, insert new elements, and delete elements. 

In addition, functions are provided to "filter" data from the xlist. These filters either extract useful data 
from the xlist in the form of a data structure, or actually "mutates" the xlist into an xlist of a different 

format. These filters are defined in this file and in xlfilter.h. 

Xlists of various types are used throughout the system. Primarily, they are used to pass translation 

information between the hwx system and the client. See xlate.h for example uses in the hwx engine; and 
gwin.h, spaper.h, or insert.h for example uses inside the UI toolkit. 

Typical users create xlists (XListNew), add and delete items (XListInsert, XListDelete), access the value 

of items (via filters or XListGet), traverse (XListTraverse) and free them (XListFree). Other functions, 

while useful, are rarely used. 

Xlists have associated with them a heap with which use to allocate the memory needed to store the 
elements (p _XLIST_ELEMENT). They can also use this heap to allocate space for the data pointer field of 

an element, when the corresponding elements flag setting is xfHeapAlloc. In this situation, the element 
data pointer will be freed when the xlist is freed, or when XListFreeData is called. Allocating other 

memory off the xlist heap, although not recommended, is possible. It would be the clients responsibility 

to free this data. However, typically the user of an xlist will allocate space for the data pointer off of the 

heap using XListAlloc, insert an element into the xlist with the data, and allow the xlist to manage and 
free the memory. 

#ifndef XLIST_INCLUDED 
#define XLIST_INCLUDED 
#ifndef GO_INCLUDED 
#include <go.h> 
#endif 
#ifndef OSHEAP_INCLUDED 
#include <osheap.h> 
#endif 
#ifndef CLSMGR_INCLUDED 
#include <clsmgr.h> 
#endif 
#ifndef GEO_INCLUDED 
#include <geo.h> 
#endif 



752 PENPOINT API REFERENCE 
Part 5 / Input and Handwriting 

Common #defines and typedefs 

Xlist Data Structure 
A pointer to an xlist is a pointer to a private data structure. This pointer is passed to the xlist function to 

create, destroy, and manipulate xlists. 

typedef P_UNKNOWN P_XLIST; 

Xlist Flags 
These flags are stored in the xlist. They are useful to store xlist specific data. flagO through flag15 are 

reserved for GO internal use, while flag16 through flag31 is for client use. The only flag currently used 
indicates that XList2Text has been run on the xlist. This optimizes successive calls to this xlist filter, 

allowing it to return without running the filter. Running the filter a second time, because the flag is 
clear, is harmless. 

#define xflXList2Text flagO 

Element Types 
These are the data types for elements of an xlist. An element contains a type, a data pointer and flags. 
For each data type, the data pointer varies. 

Enum16 (XTYPE) 
xtNull, 
xtBounds, 
xtGesture, 
xtText, 
xtObject, 
xtBoundsX, 
xtCharAttrs, 
xtParaAttrs, 
xtTabs, 
xtCharPos, 
xtTextList, 
xtSpare1, 
xtSpare2, 
xtSpare3, 
xtSpare4, 
xtGeometric, 
xtTextListEnd, 
xtTextWord, 
xtStroke16, 
xtSpace, 
xtTeachData, 
xtUID, 
xtErnbedObject, 
xtExtended, 
xtLastEntry 

} ; 

Xlist Element 

II pData = null = 0 
II pData = P BDATA (clsXGesture, clsXText) 
II pData = P-GDATA (clsXGesture) 
II pData = P-STRING (clsXText, XList2Text) 
II pData = OBJECT 
II pData = PBDATA (screen relative) 
II pData = P-XLIST CHAR ATTRS (txtxlist.h) 
II pData = P-XLIST-PARA-ATTRS (txtxlist.h) 
II pData = P-XLIST-TABS-(txtxlist.h) 
II pData = TEXT INDEX 
II pData = P WORD LIST (hwx) 
II pData = - -
II pData = 
II pData = 
II pData = 
II pData = P XGEO DATA unused 
II pData = NULL (sPaper) 
II pData = P XTEXT WORD (xtext) (clsXtext, sPaper) 
II pData = P-SPAPER STROKE DATA (spaper) 
II pData = U32 unused -
II pData = P XTEACH DATA (xteach) 
II pData = UlD of the gesture object 
II pData = P TEXT EMBED OBJECT (txtdata.h) 
II pData = UlD,cllent data 
II last entry in the xtList 

This data structure defines an element in an xlist. An xlist element contains some flags, a data type, and 
a pointer to some data. The allocation and type of data depend on both the flags and the data type of 

the element. 

typedef struct XLIST ELEMENT { 
U16 flags; - II Element flags. Mostly allocation information. 
XTYPE type; II Type of data in pData 
P_UNKNOWN pData; II Pointer to data of element 

XLIST_ELEMENT, *P_XLIST_ELEMENT; 



XLlST.H 753 
Common #defines and typedefs 

"" Element Flags 
These flags are stored in the XLIST _ELEMENT flags, and indicate information about the elements. They 
can be changed dynamically simply by accessing the xlist element. Other flags not used are reserved for 

future use. 

"" Allocation flags 
These flags indicate how to treat memory for the element. They indicate how the element will be freed 

when the xlist is freed, and how to allocate space for the element when duplicated via XListDup (cannot 

duplicate xfObject). Setting more than one of these flags will have unpredictable results, as these are 

mutually exclusive flags. 

*define xfHeapAlloc 
*define xfObject 
*define xfXList 

flagO 
flagl 
flag14 

II Allocated from the xlist heap 
II Element is an object. Cannot duplicate 
II Element is a P_XLIST 

This flag indicates that the elements data is used elsewhere, and should not be freed when freeing the 

xlist. It will be the clients responsibility to free the data if he sets this flag. 

*define xfExtracted flag15 II Set if the data is used elsewhere 

Traversal function 
This callback function is used to as a function template called on elements of the xlist when traversing 

the xlist. See XListTraverse for more details. This function takes an xlist, an xlist element, and a user 

defined data pointer. 

Fum:fioo Pn:»h»type typedef STATUS FunctionPtr (P _ XPROC) 
P_XLIST pXlist, 
P_XLIST_ELEMENT pElement, 
P_UNKNOWN pUserData); 

Public Functions 

XListNew 
Creates a new xlist. 

Returns STATUS. 

Function Prototype STATUS PASCAL XListNew ( 
OS_HEAP_ID heap, II In: heap to allocate the xlist 
P_XLIST *ppXList); II Out: Pointer to the P_XLIST 

Comments Creates and allocates an xlist from the specified heap, using the heap to allocate space for the 

P _XLIST _ELEMENT entries in the list, and for XListAlloc. 

XListFree 
Frees an xlist and all its data. 

Returns STATUS. 

Function Prototype STATUS PASCAL XListFree ( 
P_XLIST pXList); II In: xlist to free 

Comments Traverses the xlist elements and frees the data (unless the element has xfExtracted set). For each element, 
frees the memory appropriately by traversing the xlist with function XListFreeData. 

See Also XListF reeData 



754 PENPOINT API REFERENCE 

Part 5 / Input and Handwriting 

XListGetFlags 
Passes back the XList flags for the xlist. 

Returns SfATUS. 

t .. mdi©n Pr©r©type STATUS PASCAL XListGetFlags ( 
P_XLIST pXList, II In: xlist to get the flags from 
P_U32 pFlags)i II Out: pointer to, the flags 

(t>mments flagO through flag15 are reserved for GO internal use. flag16 through flag31 are for client use. 

XListSetFlags 
Sets the XList Flags. 

Returns SfATUS. 

FLmdit:)!1 Pr©t©fype STATUS PASCAL XListSetFlags ( 
P_XLIST pXList, II In: xlist to set the flags from 
U32 flags)i II In: new flags to set 

(©mmenb Sets the flags associated with the xlist. flagO through flag15 are reserved for GO internal use. flag16 

through flag31 are for client use. 

XList1v.letrics 
Passes back the number of entries and heap Id. 

Returns Sf ATUS. 

typedef struct XLIST_METRICS 
OS_HEAP_ID heapi 
U16 entries; 

XLIST_METRICS, *P_XLIST_METRICSi 

tundi©n Pr©t©type STATUS PASCAL XListMetrics ( 
P_XLIST pXList, 
P_XLIST_METRICS pMetrics)i 

II In: xlist to get the metrics from 
II Out: metrics of the xlist 

Passes back the number of entries in the xlist, and the heap used to allocate xlist memory. Note that 
there is no corresponding 'set' metrics function, as dynamically changing the heap or count would have 
drastic side affects. 

XListlnsert 
Creates a new element at the index'th location. 

Returns SfATUS. 

tundl©ri Pr©t©fype STATUS PASCAL XListInsert ( 
P_XLIST pXList, II In: xlist to insert item into 
U16 index, II In: index of location to insert at 
P_XLIST_ELEMENT pElem); II In: element to insert 

(t>mments Allocates space for and creates a P _XLIST _ELEMENT in the xlist at the specified location. If index >= 

entries, the element is appended to the end of the list. The element data pointer allocation and storage 

depends on the type of the element. The following example shows a client inserting a 7 character string 
into an xlist. The element type is xtText and the insertion at the beginning of the xlist: 

XLIST_ELEMENT elemi 
elem.type = xtTexti 
elem.flags = xfHeapAlloCi 



XLIST.H 755 
Common #defines and typedefs 

XListAlloc(pXList, 7, &elem.pData); 
strcpy(elem.pData, "String"); 
XListInsert(pXList, 0, &elem); 

XListDelete 
Delete the element at the index'th location. 

Returns Sf ATUS. 

Function Prototype STATUS PASCAL XListDelete ( 
P XLIST pXList, II In: xlist to delete item from 
U16 index); II In: index of item to delete 

Comments Delete the element at the specified location. This calls XListFreeData to free any memory taken by the 

element data pointer. Frees memory associated with storing the P _XLIST_ELEMENT in the xlist. 

See Also XListF reeData 

XListTraverse 
Iterates across the list of elements. 

Returns SfATUS. 

Function Prototype STATUS PASCAL XListTraverse ( 
P XLIST pXList, II In: xlist to traverse 
P-XPROC pProc, II In: call back function to call for each element 
P=UNKNOWN pUserData); II In/Out: User defined data pointer 

Comments Iterates across the elements in the xlist. A callback function (pProc) is handed to this function, and is 

called for each element passing in the element and a client pointer as defined in P _XPROC. If any call to 

pProc returns anything but stsOK, the traversal is terminated and the status code returned. Nested 

traversals are allowed and supported. 

See Also XListIndex 

XListIndex 
Passes back the current traversal index. 

Returns SfATUS. 

Function Prototype STATUS PASCAL XListIndex ( 
P_XLIST pXList, II In: pointer to xlist 

II Out: current index 

Comments 

See Also 

P_U16 pIndex); 

Passes back the index for the current traversal. If no traversal is taking place, returns O. Note that if 

nested traversals are taking place, the index of the current traversal will be returned. Once the 

sub-traversal is completed, the parent traversals index is restored and returned appropriately via calls to 

XListIndex. 

XListT raverse 

XListSet 
Stores the copy of the index'th element. 

Returns Sf ATUS. 

Function Prototype STATUS PASCAL XListSet ( 
P_XLIST pXList, II In: xlist pointer 
U16 index, 
P_XLIST_ELEMENT pPtr); 

II In: index of element 
II In: new element to store at location 



756 PEN POINT API REFERENCE 
Part 5 I Input and Handwriting 

Stores the passed in element as the element in the specified location. If index is > number of entries, will 
store in the last item in the list. Care should be taken, as the old item stored in that location is not freed 

and is the clients responsibility. Useful only if changing an entire item in the xlist. Rarely used. 

XListGet 
Passes back a copy of the index'th element. 

Returns STATUS. 

F~,mdiort ProTotype STATUS PASCAL XListGet ( 
P_XLIST pXList, 
U16 index, 
P_XLIST_ELEMENT pPtr)i 

II In: xlist pointer 
II In: index of element 
II Out: Copy of element data. 

Passes back a copy of the index'th element. The element, data type, and data pointer will be copied. 

Hence the data pointer is a direct pointer to the data. 

XListGetPtr 
Passes back a pointer to the index'th element. 

Returns STATUS. 

Ft.mction Prototype STATUS PASCAL XListGetPtr ( 
P_XLIST pXList, 
U16 index, 
P XLIST ELEMENT *ppPtr)i 

(ommenf's Passes back a pointer to the index'th element in the xlist. Extreme care should be taken when accessing 

this pointer, as it is the pointer stored in the xlist. Useful only if the client wishes to change some 

information about an existing item in the xlist. Rarely used. Note that the data pointer field is the same 

returned by XListGet. 

See A!so XListGet 

XListAlloc 
Allocate some memory from the XList heap. 

Returns STATUS. 

Function Prototype STATUS PASCAL XListAlloc ( 
P_XLIST pXList, II In: xlist pointer 
SIZEOF size, II In: size of the requested allocation 
P_UNKNOWN pMem)i II Out: pointer to the allocated memory 

(ommenf's Allocates memory off of the xlist heap. Typically used to allocate space for the data pointer of an element 

that has xfHeapAlloc set. Space for such an element data pointer will be freed in XListFreeData, called 
when the xlist is freed via XListFree, or when the item is deleted via XListDelete. Other memory can be 

allocated using this function, although it is the clients responsibility to ensure that it is freed. 

See Aiso XListF reeData 

XListFreeData 
Releases the data with the given entry. 

Returns STATUS. 



XLlST.H 7'57' 
Xlilt Filters 

Fundion Prototype STATUS PASCAL XListFreeData ( 
P_XLIST pXList, II In: xlist pointer 
P XLIST ELEMENT pElem, II In: element to free 
P=UNKNOWN pUserData); II In: User defined data structure 

Comments Frees data associated with the passed in element. Returns stsOK if xfExtracted is set on the element. 

See Also 

Frees the memory appropriately if xfHeapAlloc is set. Sends msgFree to the object if xfObject is set. 
Calls XListFree if xfXList is set. Called from XListFree for each element in the xlist, and called from 
XListDelete when an item is deleted from the xlist. 

XListFree 

XListDup 
Duplicates the contents of one xlist into another. 

Returns STATUS. 

Fundion Prototype STATUS PASCAL XListDup ( 
P_XLIST pSrcXList, II In: source xlist 
P_XLIST pDestXList); II In/Out: destination xlist 

Comments Traverses the source xlist and calls XListDupElement for each item in the source xlist with the 
destination xlist. IfXListDupElement returns a non-stsOK return code for an element in the xlist, the 
xlist to the point of the return code is copied and the duplication terminated at that point. 

See Also XListDupElement 

Return Value stsBadParam the xlist duplication terminated before completion 

XListDupElement 
Duplicate the source element, append to the destination. 

Returns STATUS. 

Fundion Prototype STATUS PASCAL XListDupElement ( 
P_XLIST pXList, 
P_XLIST_ELEMENT pElem, 
P_XLIST pDestXList); 

Comments Duplicates the element and appends it to the end of the destination xlist. When the element is 
xfHeapAlloc, allocates space for the element from the destination xlist heap, and memcpy's the contents. 
When the element is xfXList, creates a new xlist using the passed in xlist's heap, and duplicates all 
elements in the xlist. Any other element data type (xfObject) is not copy-able' and will return 
stsBadParam. 

Return Volue stsBadParam The element type could not be duplicated. 

See Also XListDup 

". Xlisl FIII.rs 

XList2Gesture 
Extracts the gestural information from an xlist. 

Returns STATUS. 



758 PENPOINT API REFERENCE 
Part 5 I Input and Handwriting 

typedef struct X2GESTURE 
U32 msg; 
RECT32 bounds; 
XY32 hotPointi 

X2GESTURE, *P_X2GESTURE; 

II gesture type 
II gesture bounding box 
II gesture hot point 

fund-ion Prototype STATUS PASCAL XList2Gesture ( 
P_XLIST pXList, II In: xlist to run filter on 
P_X2GESTURE pData)i II O~t: converted data structure 

Comments Given an xlist containing xtBounds followed by xtGesture, (the xlist typically returned by the 
clsXGesture translator after completed translation), this function extracts the useful information and 
stores in a standard c data structure. This function is used internally in gWin to convert the gesture 
translator data structure into a more useful form. 

5ee A!so gwin.h.h.h 

XList2StringLength 
Passes back the length of the string that XList2String will need. 

Returns STATUS. 

fundkm Prototype STATUS PASCAL XList2StringLength ( 
P_XLIST pXList, 
P_U16 pLength); 

Comments Computes the necessary length of a string that XList2String will need to copy a string. Includes space for 
the terminating null character. 

XList2String 
Extracts the text information from an xlist. 

Returns STATUS. 

ArSluments typedef struct X2STRING 
U16 counti II In: buffer size 
P_CHAR pString; II In: pointer to the buffer 

X2STRING, *P_X2STRINGi 

Function Pr@f@type STATUS PASCAL XList2String ( 
P_XLIST pXList, II In: xlist to process 
P_X2STRING pData); II In: X2String data structure pointer 

Comments Converts an xtBounds/xtText xlist into a string. Clips the returned string at the passed in count. This 
string includes a null terminating character. The function takes an xlist of the form: 

[xtBounds [xtText]] 

and converts it into a string. As an example, suppose the xlist contains: 

xtBoundsl xtTextl xtText2 xtText3 xtBounds2 xtText4 xtText5. 

This is converted into: 

xtTextlxtText2xtText3\nxtText4xtText5 

More typically, this function called on an xlist that has had adjacent xtText entries merged by 
XList2Text. Typical usage is during processing of an xlist returned from msgXlateGetData. Here the 
client simply wants to know the string returned, so he will call XList2Text, XList2StringLength (unless 
he knows how big the string will be), and XList2String to get the string. 

XList2Text.h 



XLlST.H 759 

Debugging Functions 

". Debugging Functions 

XListDump 
Debugging interface for displaying an xlist in the debug log. 

Returns STATUS. 

Fundion Prototype STATUS EXPORTED XListDump ( 

Comments 

P_XLIST pXList); II In: array header 

When called on an xlist, traverses the elements and displays useful information about the xlist in the 
debug log. It displays this information by calling a display routine that is dependent on the type of the 
element. A display routine can be registered for an element type using XListDumpSetup. If no display 
routine has been provided for an element type, it will display the generic information for the element 
consisting of the type, the flags, and the element data pointer. 

XListDumpSetup 

XListDumpSetup 
Sets the xlist debug log display routine by type. 

Returns STATUS. 

Fundion Prototype STATUS EXPORTED XListDumpSetup ( 
XTYPE type, II In: xtype to bind this procedure to 
P_XPROC pProc, II In: function to be called when dumping 
U32 data); II In: type specific data passed to pProc in traversal 

Comments Called to register display routines for xlist element types with the xlist. This display routine will be called 
when the particular element type traversed when calling XListDump. 

$ee Abo XListDump 





XSHAPE.H 

This file contains the API for clsXShape, a skeletal class designed to be subclassed by particular shape 

recognition engines .. In particular, the GOWrite shape recognizer, clsCTShape, is a subclass of 
clsXShape. 

clsXShape inherits from clsOpenServiceObject. 

tifndef XSHAPE INCLUDED 
tdefine XSHAPE_INCLUDED 
tifndef GO INCLUDED 
tinclude <go.h> 
tendif 
tifndef CLSMGR INCLUDED 
tinclude <clsmgr.h> 
tendif 
tifndef OSHEAP INCLUDED 
tinclude <osheap.h> 
tendif 
tifndef OPENSERV INCLUDED 
tinclude <openserv.h> 
tendif 

Terminology change 
II NEW NAME (use these) OLD NAME (avoid using these, from uid.h) 
tdefine theShapeEngines theHWXEngines 
tdefine theInstalledShapeProfiles theInstalledHWXProtos 
tdefine clsShapeEngineService clsHWXEngineService 
tdefine clsShapeProfilelnstallMgr clsHWXProtoInstallMgr 
tdefine msgShapeSvcCurrentChanged msgHWXSvcCurrentChanged 
tdefine SHAPE SVC CURRENT CHANGED HWX SVC CURRENT CHANGED - - - - - -
tdefine P_SHAPE_SVC_CURRENT_CHANGED P_HWX_SVC_CURRENT_CHANGED 

Common #defines and typedefs 
tdefine xsMaxCharList 20 II largest allowable matchArraySize for msgXShapeRecognize 
#define xsMaxPath 4 II most strokes allowable to send to msgXShapeRecognize 
#define xsMinMatchScore minS16 II worst possible score for translation 
#define xsDigitizerResolution 254 II temporary hack. Eventually variable 

The basic types of shape profile ("resource") data stored in files. This refers to the "alphabet" which the 

resource is able to recognize, not the use to which the recognized value will be put. In particular a text 

resource may be used as part of the process of recognizing gestures, since some gestures are upper case 
letters. 

Enum16 (XS_RESOURCE_TYPE) { 
xsResText = 0, II alphabetic (ascii) 
xsResReserved = 1, II reserved for use by GO 
xsResGesture = 2 II gestures 

} ; 



762 PENPOINT API REFERENCE 
Part 5 / Input and Handwriting 

The types of data structure used to return information from msgXShapeRecognize. 

Enum16 (XS_MATCH_TYPE) { 
xsMatchAscii = 1, 
xSMatchGesture = 2, 
xsMatchInternal = 3, 
xsMatchInterna12 = 4, 

II uses XS_ASCII_MATCH data structure 
II uses XS_GESTURE_MATCH data structure 
II uses subclass-specific data structure 
II uses alternate subclass-specific data structure 

} ; 

Eight principal compass directions for straight lines. 

Enum16 (XS_DIRECTION) 
xsRight = 0, 
xsUpRight = 1, 
xsUp = 2, 
xsUpLeft = 3, 
xsLeft = 4, 
xsDownLeft = 5, 
xsDown = 6, 
xsDownRight = 7, 
II Special indicators 
xsAllDirections = 8, II used internally 
xsDirEndMark = 9 II marks end of array of directions 

} ; 

#define xsNumDirections (8) 
#define XSNextDirectionCCW(d) (((d) + 1) & 7) 
#define XSNextDirectionCW(d) (( (d) - 1) & 7) 
#define XSOppositeDirection(d) ((d) A 4) 
#define XSDeltaDirection (start, end) (( (end) - (start)) & 7) 
#define XSDeltaDirectionAdd(start, delta) (((start) + (delta)) & 7) 

The following structures capture basic information about strokes (a stroke being a sequence of points 
passed through by the pen). See msgXShapeStrokePreview for further details. 

typedef struct XS_OCTAGON { 
S16 limit[xsNumDirections]; II max projection in each direction 

} XS_OCTAGON, * P_XS_OCTAGON; 

Data structure for returning information about recognition of an ascii character from 

msgXShapeRecognize. 

typedef struct XS_ASCII_MATCH 
S16 score; II "penalty" for the match 
U8 character; II ascii code of proposed translation 
U8 segmentOffset;11 reserved for GO. msgXShapeRecognize should set to 0 

XS_ASCII_MATCH, *P_XS_ASCII_MATCH; 

Data structure for returning information about recognition of a gesture from msgXShapeRecognize. 

typedef struct XS_GESTURE_MATCH { 
S16 score; II "penalty" for the match 
U32 gestureId; II proposed translation (id codes defined in xgesture.h) 
POINT hotPoint; II coordinates of target point of the gesture 

XS_GESTURE_MATCH, *P_XS_GESTURE_MATCH; 

Data structure for returning information about recognition of a straight line or a dot. Used by the GO 
context level processing to aid in segmentation. These scores are calculated by the GO context engine; 
they should not be calculated or used by 3rd party shape engine developers. 

typedef struct XS_LD_MATCH { 
S16 dotScore; II Score for a dot. 
S16 lineScore02; II Score for horiz/vert line 
S16 lineScorel3; II Score for forw/backw slanted line 

XS_LD_MATCH, *P_XS_LD_MATCH; 



X5HAPE.H 763 
Initialization Messages 

The XS_STROKE record holds information pertinent to a single stroke. PenPoint computes all fields of 
this structure except pData and numData. The latter two are (optionally) computed by the shape 
matching engine. They are intended to hold whatever information the shape matcher wishes to extract 
from a single individual stroke. 

typedef struct XS_STROKE { 
struct XS_STROKE *pNextStrokeill pointer to next stroke 
struct XS_STROKE *pPrevStroke;11 pointer to previous stroke 
U16 strokeId; II a unique identifier of this stroke 
struct POINT *pPointi II arr of digitizer points (pendown to penup) 
U16 numPointsi II number of digitizer points (excl. end marker) 
XS_OCTAGON bound; II bounds of this stroke 
P_UNKNOWN pDatai II subclass-specific data extracted from stroke 
U16 numDatai II subclass-specific counter for pData 
XS ASCII MATCH 

asciiMatch[xsMaxCharList] ill cached results of single stroke recog. 
XS_LD_MATCH ldMatchi II scores for line and dot matches 

Initialization Messages 

msgNewDefaults: 
Initializes the, XSHAPE_NEW structure to default values. 

Takes P _XSHAPE_NEW, returns STATUS. Category: class message. 

Zeros out pArgs->xshape and sets 

pArgs->xshape.resType = xsResTexti 
pArgs->xshape.resolution = xsDigitizerResolution; 

msgNew: 
Creates a new shape matching object. 

Takes P _XSHAPE_NEW, returns STATUS. Category: class message. 

typedef struct XSHAPE_NEW_ONLY { 
P UNKNOWN pProfile; II ptr to data in subclass specific format 
U16 numProfile; II how many records (e.g. if pProfile pts to array) 
XS_RESOURCE_TYPE resType; II type of profile: xsResText, resGesture 
OBJECT profDirHandle; II handle to directory where profile resides 
S16 resolution; II digitizer granularity (dots per inch) 
S16 charConstraints; II flags to set restricted character sets 
S16 reserved16; II pad for now 
U32 reserved[9]; II may be used in future 

XSHAPE_NEW_ONLY, *P_XSHAPE_NEW_ONLY; 
typedef struct XSHAPE_NEW { 

openServiceObjectNewFields \ 
XSHAPE_NEW_ONLY xshape; 

XSHAPE_NEW, *P_XSHAPE_NEWi 

This message is sent to the xshape subclass by the service manager when someone has requested a new 
shape matching engine. The service manager has filled in all of the xshape fields. In responding to this 
message it is merely necessary to copy the fields of xshape_new data into the new object's private 
instance data. 



764 PENPOINT API REFERENCE 
Part 5 I Input and Handwriting 

msgFree: 
Destroys the object, releasing any memory associated with the translation. 

Takes pNull, returns STATUS. 

If any heaps were created in response to msgNew, this is the time to destroy them. NOTE: This is 
NOT the place to free memory occupied by the data pointed to by pProfile. That memory was allocated 
by your service class in response to msgXShapeSvcCurrentChanged and should only be free in response 
to the next occurrence of the same message. 

Control Messages 

msgXShapeStrokePreview: 
Computes and stores data relating to a single stroke 

Takes P _XSHAPE_STROKE_PREVIEW, returns STATUS. 

*define msgXShapeStrokePreview MakeMsg(clsXShape, 3) 

typedef struct XSHAPE_STROKE_PREVIEW { 
P_XS_STROKE pFirstStroke; II IN: pointer to stroke record 

} XSHAPE_STROKE_PREVIEW, *P_XSHAPE_STROKE_PREVIEW; 

This msg gives the class the opportunity to extract and store information that applies to an individual 
stroke, not to the combined set of strokes that form a character. (The latter extraction should occur 

entirely within the method for msgXShapeRecognize.) 

This message is sent by the input system as part of its background processing of strokes as they are 

entered by the user. Background processing allows the system to produce the final translation more 
quickly after the user taps the translate button. 

Furthermore, a single stroke may be submitted more than once to the shape engine for recognition, as 
the context engine tries out different combinations of strokes searching for the best segmentation. Thus 
the stroke will be "previewed" only once, but may appear in several different combinations of strokes 

submitted for recognition. 

The subclass is responsible for defining the format and managing the memory that contains the 
information extracted in the preview process. The pointer pData in the XS_STROKE record should be set 
to point to this data. The field numData of the XS_STROKE record is available to record the number of 

records pointed to by pData (if it's an array). 

Memory for *pData should be allocated from a local heap, whose heapld has been stored in the instance 
data for the object. The heap should be created in response to msgNew and destroyed in response to 

msgFree. 

The method for msgXShapeStrokePreview may assume that the following fields of the XS_STROKE 

record have already been calculated: 

strokeld 

bound 

pPoint 

numPoints 

All other fields should be ignored. 



X5HAPE.H 765 
Control Messages 

The strokeId uniquely identifies the stroke (as far as this object is concerned). 

The bound implicitly defines the bounding octagon for the stroke by recording for each of the 8 
directions the maximum of the projections of all points in the stroke in that direction. Given a point P 
and a direction d, the projection of P in direction d is defined to be the x-coordinate of P in a 
coordinate system which is rotated d*45 degrees counterclockwise from the base coordinate system. 
Computationally this works out to: 

x if d==O (xsRight) 
( x+y)/r if d==l (xsUpRight) 

Y if d==2 (xsUp) 
(-x+y) Ir if d==3 (xsUpLeft) 
-x if d==4 (xsLeft) 

(-x-y) Ir if d==5 (xsDownLeft) 
-y if d==6 (xsDown) 

( x-y)/r if d==7 (xsDownRight) 

where r is sqrt(2). Division by r is simulated in integer arithmetic as multiplication by 5 followed by 
(integer) division by 7. 

From the bound the method can calculate other quantities as needed using the following formulas: 

baseline = - bound.limit[xsDown]; 
II because -max{-y} = min{y} 
height = bound.limit[xsUp] + bound.limit[xsDown]; 
II because max{y} + max{-y} = max{y} - min{y} 
width = bound. limit [xsRight] + bound.limit[xsLeft]; 
II because max{x} + max{-x} = max{x} - min{x} 

pPoints points to an array of digitizer points, terminated with a record with coordinates (minS16, 
minS16). numPoints tells how many points are in the array, EXCLUDING the terminating record. (So 
numPoints can also be taken as the index of the terminating record.) The Oth record corresponds to 

penD own, the (numPoints-1)th record to penUp. 

msgXShapeRecognize: 
Provide possible translations for a set of strokes. 

Takes P _XSHAPE_RECOGNIZE, returns STATUS. 

#define msgXShapeRecognize MakeMsg(clsXShape, 5) 

typedef struct XSHAPE_RECOGNIZE 
P_XS_STROKE pFirstStroke;11 IN: linked list of (at most xsMaxPath) strokes 
XS_MATCH_TYPE matchType; II IN: type of record in output array (matchAscii 

II for XS_ASCII_MATCH, xsMatchGesture for XS_GESTURE_MATCH) 
U16 matchArraySize; II IN: number of records in output array (at 

II most xsMaxCharList) 
P_UNKNOWN pMatchResults;11 IN: ptr to output array 

XSHAPE_RECOGNIZE, *P_XSHAPE_RECOGNIZE; 

The set of strokes (given as a linked list) is a combination which the context level is testing to see if it 
represents a single character or gesture. The job of the shape engine is to return an array of the most 
likely translations (or "matches") together with a weight (or "score") for each of them. If the strokes do 
not match any of the forms which the shape engine is designed to recognize, it should return an empty 
array (i.e. the first record should be marked with score xsMinMatchScore). 

Scores are 0 or negative, with 0 representing the best possible match. Scores below 0 represent 
progressively worse matches. The range is open ended below, but generally the scores for the most 
unlikely but still remotely possible translations should fall in the -80 to -120 range, or very occasionally 
below -120. 



766 PENPOINT API REFERENCE 
Part 5 / Input and Handwriting 

Different recognition technologies may have radically different approaches for arriving at scores and 

correspondingly different models of what the scores mean. One technology may assign scores as a 

measure of the amount of deviation from an ideal form, a kind of Euclidean distance function. Another 
technology may arrive at scores through a process of statistical tests, so the score would represent the 

amount of statistical evidence there is against a particular translation. Yet another technology may 

compute probabilities. 

In order to deal uniformly with a variety of different shape recognition technologies, the context level 

processor requires that the scores reported by the shape engine be scaled or calibrated according to the 
following guidelines: 

1. "Reasonable" scores should fall roughly in the range 0 to -100. 

2. "SCORES SHOULD BE SCALED LOGARITHMICAllY," with every 10 point drop in score 

representing roughly a 500/0 reduction in confidence/probability/proximity etc. Thus for example a 
translation with a score of -50 is 1/8 as "good" (or 1/8 as "likely" or 8 times as "far" from being perfect) 

as a translation with a score of -20. 

3. The score for each translation should reflect the confidence in that translation only. It should NOT 

be influenced by the confidence in any other translation. In particular, a high score for one translation 

does not preclude a high score for another translation. For example '0' and '0' may both score high 
(even perfect). In this way, scores need not behave like probabilities: they do not represent slices from a 

fixed pie. 

4. Similarly, there is no requirement that the scores "add up" to a fixed total. For a particular sample, all 

of the scores may be poor, or the recognizer may even send back no translations. The context engine is 
depending on this fact in order to be able to use the shape engine to help it choose the correct character 

segmentation. 

5. Scores should not be "tainted" by knowledge of character frequency in English or any other linguistic 

considerations. It is the job of the context level processing to take linguistic information into account. 
The shape engine must consider all characters as a priori equally likely, otherwise the bias for common 

characters in text will be duplicated at both levels, resulting in unwanted effects. 

msgXShapeShapeCompatible: 
Checks the possibility of translating the strokes as the char 

Takes P _XSHAPE_COMPATIBLE, returns STATUS. 

=ltdefine msgXShapeShapeCompatible MakeMsg(clsXShape, 6) 

typedef struct XSHAPE COMPATIBLE 
P XS STROKE pFirstStroke;11 IN: linked list of strokes 
US character; II IN: desired translation for the strokes 
US strokeCount; II IN: how many strokes in the linked list 
BOOLEAN compatible; II OUT: is translation a priori possible 

XSHAPE_COMPATIBLE, *P_XSHAPE_COMPATIBLE; 

Sees if there is anything about the strokes that absolutely rules out the letter as a translation. For 

example, some shape matchers may rule out certain translations based on the number of strokes in 
the list. 

This message is sent by the context level only when it has been instructed to allow the dictionary 

(spelling) or a template to propose characters when the shape level is stuck. The context level makes this 

check just be sure that there is some remote possibility that the strokes do represent the proposed 
character before allowing the dictionary or template to propose it. 



X5HAPE.H 767 
Training Messages 

Training Messages 

msgXShapeShapeEvaluate: 
Checks how well the shape matcher translates the character. 

Takes P _XTEACH_DATA, returns STATUS. 

#define msgXShapeShapeEva!uate MakeMsg(c!sXShape, 7) 

Reports back how well the current engine translates the strokes, knowing what the correct translation is. 

Does NOT cause the engine to learn the new shape if it is translated poorly. 

msgXShapeShapeLearn: 
Forces shape matcher to learn new shape. 

Takes P _XTEACH_DATA, returns STATUS. 

#define msgXShapeShapeLearn MakeMsg(c!sXShape, 8) 

Usually invoked based on the results from msgXShapeShapeEvaluate. 





XTEACH.H 

Interface file for clsXTeach 

clsXTeach inherits from clsXtract. 

#ifndef XTEACH_INCLUDED 
#define XTEACH_INCLUDED 
#ifndef GO INCLUDED 
#include <go.h> 
#endif 
#ifndef UID INCLUDED 
#include <uid.h> 
#endif 
#ifndef GEO INCLUDED 
#include <geo.h> 
#endif 

Common #defines and typedefs 
typedef enum { 

II evaluation results 
xteachNoMatch, 
xteachSingular, 
xteachSuperior, 
xteachEquivalent, 

II no matches 
II matches only the correct character 
II matches the correct character best 

xteachSecondary, 

xteachlnferior, 

xteachNotProposed, 
xteachMisRecognized, 
xteachEvaluateFailed, 
II execute results 
xteachOK, 

II 
II 
II 
II 
II 
II 
II 
II 

xteachGeometricUpdated, 
xteachPrototypeAdded, 
xteachOutOfMem, 
xteachPrototypeRemoved, 
xteachPrototypeDowngraded, 
xteachAbort, 
xteachExecuteFailed 

matches the correct character and an 
incorrect character equally well 

matches an incorrect character best, 
but also matches the correct character 

same as secondary, except that the b.est 
match is marginal 

matches only incorrect characters marginally 
matches an incorrect character with a good score 

TEACH_STATUS, *P_TEACH_STATUS; 
#define xteachMaxConflict (64) 
#define xteachMaxCharConflict (8) 
typedef struct XTEACH DATA 

U32 id; 
TEACH_STATUS status; 
U16 conflictCount; 
CHAR conflicts [xteachMaxConflict]; 
U32 conflictld [8]; 
S16 conflictPenalty; 
P_UNKNOWN pFirstStroke; 
P_UNKNOWN pContext; 
XY32 target; 
CHAR hotPointPath; 
CHAR hotPointExtrema; 

XTEACH_DATA, * P_XTEACH_DATA; 

II characterlsymbol id 
II evaluation results 
II number of conflicting protos 

II conflicting characters 
II indices of conflicting prot os 
II penalty to assess 
II pointer to first stroke 
II pointer to HWX context 
II coordinate of hot point target 
II 

II 



770 PENPOINT API REFERENCE 
Part 5 I Input and Handwriting 

Messages 

msgNewDefaults: 
Sets default values for a new Teach translation object. 

Takes P_XLATE_NEW, returns STATUS .. 

msgNew: 
Creates a new Teach translation object. 

Takes P _XLATE_NEW, returns STATUS .. 

msgXlateData: 
Returns Teach results. 

Takes P _XLATE_DATA, returns STATUS .. 

typedef struct TEACH_DATA { 
TEACH_STATUS status; II required action 
CHAR charConflicts [xteachMaxCharConflict]; II conflicting characters 

TEACH_DATA, *P_TEACH_DATA; 

msgXT eachSetld: 
Establishes expected translation results. 

Takes P _CHAR, returns STATUS. 

tdefine msgXTeachSetId 

msgXT eachExecute: 
Executes teaching per TEACH_STATUS. 

Takes P_XLIST, returns STATUS. 

tdefine msgXTeachExecute 

msgXT eachEvaluationGet: 
Reads evaluation data. 

Takes P _XLATE_DATA, returns STATUS. 

tdefine msgXTeachEvaluationGet 

msgXT eachSet Target: 
Sets the target coordinates for the hot point. 

Takes P _XY32, returns STATUS. 

tdefine msgXTeachSetTarget 

MakeMsg(clsXTeach, OxOl) 

MakeMsg(clsXTeach, Ox02) 

MakeMsg(clsXTeach, Ox03) 

MakeMsg(clsXTeach, Ox05) 



XTEACH.H 771 
Notification Messages 

". Notification Messages 

Cornments 

msgXTeachCompleted: 
Signals completion of training. 

Takes P_XLIST, returns STATUS. 

#define msgXTeachCompleted MakeMsg(clsXTeach, Ox04) 

This message is sent to all observers of the translation object following successful completion of the 
method for msgXTeachExecute. 





XTEMPLT.H 

Translation Template Specifications for input fields 

#ifndefXTEMPLT_INCLUDED 
#define XTEMPLT_INCLUDED 

IDSOO 1 0 Compilation: print ASCII input and hex-address of result. 
IDS0020 Choices: print Hex address and ASCII list of choices plus count. 

#ifndef GO_INCLUDED 
#include <go.h> 
#endif 
#ifndef OS_INCLUDED 
#include <os.h> 
#endif 
#ifndef XLATE_INCLUDED 
#include <xlate.h> 
#endif 

,.. Definitions 
maxXTemplateXlateChoices is the number of different symbols thatbe in a CharList template. 

maxXtmPictureLength is the longest atemplate may be. 

#define maxXTemplateXlateChoices 128 II Alphabet Size 
#define maxXtmPictureLength 128 II Picture string length limit 

Common Typedefs 

Template Types 
Templates are used to constrain handwritten input in order totranslation accuracy. For example, if a field 

can onlydigits, constraining the input for that field to only digits that the letters '0', '1', and 'Z', are 
never seen for the'O', , 1', and '2'. There are several different ways toinput, each' of which 

corresponds to a different template 

Enum16 (XTEMPLATE_TYPE) 
xtmTypeNone, 
xtmTypeGesture, 
xtmTypeShape, 
xtmTypeCharList, 
xtmTypeWordList, 
xtmTypePicture, 
xtmTypeRegEx, 
xtmTypeTrie, 

} ; 

{ 

II no constraints 
II limited to known gestures 
II limited to known shapes (NOT IMPLEMENTED) 
II limited to a set of characters 
II limited to a set of words 
II described by a picture language 
II described by a regular expresssion (NOT IMPLEMENTED) 
II precompiled 



774 PEN POINT API REFERENCE 

Part 5 I Input and Handwriting 

Template Modes 

A template may be interpreted in a variety of special modes. In general, modes describe circumstances 
under which incomplete input will bethe same as complete input. 

Enuml6(XTEMPLATE_MODE) { 
xtmModeDefault 0, 
xtmModePrefixOK flagO, 

xtmModeLoopBackOK = flagl, 

xtmModeCoerced flag2, 

} i 

II No special modes 
II input matching a prefix of the template is 
II considered to match the template. 
II the template is considered to repeat over 
II and over 
II Input should be coerced to match the 
II template, even if it doesn't match exactly 
II Only meaningful for xtmTypeWordList templates. 

Template Header 

Every template is a single allocated block of memory containing nopointers. The template header 
contains information abouttemplate, including what's needed to file a template. 

typedef struct XTEMPLATE TRIE HEADER 
U16 xtmTrieLengthi 
U16 xtmTrieRevisioni 
XTEMPLATE TYPE xtmTrieTypei 
XTEMPLATE MODE xtmTrieModei 

XTEMPLATE_TRIE_HEADER, * P~XTEMPLATE_TRIE HEADER, 
* * PP_XTEMPLATE_TRIE_HEADERi 

Template Metrics Structure 

This structure is returned via the XTemplateGetMetrics subroutine,below. The major uses of this 
structure are to get ato the template header in order to get the template length socan be filed, and to 
get access to the original template string. 

typedef struct XTEMPLATE_METRICS { 
P_XTEMPLATE_TRIE_HEADER pXtmHeaderi II Template len, rev, etc. 
P CHAR pXtmStringi II Original string, NULL for word 

II list or gesture 
P UNKNOWN pXtmTrieBasei II Base of compressed TRIE structure 
Ul6 xtmTrieBaseLeni II Size of the compressed region 

XTEMPLATE_METRICS, * P_XTEMPLATE_METRICSi 

Functions 

xr emplateCompile 
Given a type and an ASCII template representation, build a template structure. 

Returns Sf ATUS. 

Argumenfs typedef struct XTM_ARGS 
XTEMPLATE_TYPE xtmTypei 
XTEMPLATE_MODE xtmModei 
P UNKNOWN pXtmDatai 

XTM_ARGS, *P_XTM_ARGSi 

Function Prototype STATUS EXPORTED XTemplateCompile ( 
P_XTM_ARGS pXtmArgs, 
OS_HEAP_ID heap, 
PP UNKNOWN ppXtmDigested 

) i 

II What kind of template? 
II What special modes? 
II ascii template 

II Xtemplate Arguments 
II heap to use 
II Out: compiled template 



The currently implemented types have the following meanings: 

xtmTypeNone pXtmData is unused. This is the same as having no template at all. 

xtmTypeGesture pXtmData points to an XTEMPLATE_GESTURE_LIST. 

xtmTypeCharList pXtmData contains a list of valid characters. 

XTEMPLT.H 775 

Functions 

xtmT ypeWordList pXtmData contains a list of all the different words that are legal in this field. This 
should be a PP _STRING pointing to a list of pointers to the words. Each word is a normal 
null-terminated string and the pointer list must be terminated with a Nil(p _STRING). 

xtmT ypePicture pXtmData contains a list of all the picture strings that are valid in this field. A picture 
string contains any of the following characters: 

9: input must be a digit (0-9) 
a: input must be alphabetic 
A: input must be upper-case alphabetic 
n: input must be alphanumeric 
N: input must be upper-case alphanumeric 
x: input may be anything 
[: introduces a list of characters, Unix-style. [abc] is a single character position which must 

contain 'a', 'b', or 'c'. [a-m] matches any letter'a' through 'm'. [a\-m] matches any of'a', '-', or 'm'. 
\: literal escape. Input must match next 
character. (Only needed to escape the above 
special characters). 

For example, a modern California licence plate 
looks like this: 

#AAA### 

To include older forms of California plates, we 
might use: 

#AAA### 

###AAA 

AAA### 

either \n or tab separated. N.B. Multiple 
picture strings will not be supported in the 
first release. 

A Social Security Number (with mandatory 
hyphens) would be coded like this: 

###-##-#### 

Pictures currently can't be used for variable 
length data. 

This special structure is used for xtmTypeGesture templates; 

typedef struct XTEMPLATE_GESTURE_LIST { 
U32 count; II number of gestures in the list 
P MESSAGE pGestures; II pointer to array of allowed gestures 

XTEMPLATE_GESTURE_LIST, * P_XTEMPLATE_GESTURE_LIST; 

Space is allocated as required. 



776 PENPOINT API REFERENCE 
Part 5 / Input and Handwriting 

Basic Xtemplate Arguments 

Xf emplateGetMetrics 
Given a pointer to a translation template, extract various salient facts about it and return them. 

Returns STATUS. 

Ft.mdil>o Prl>t@type STATUS EXPORTED XTemplateGetMetrics ( 
P UNKNOWN pXTemplate, II Template to extract the metrics of 
P=XTEMPLATE_METRICS pXtrnMetrics II Out: metrics of the template 

) i 

Can fail if the tern plate version is too far out of date. 

Xf emplateSetMode 
Change the mode in an already-created XTemplate. 

Returns STATUS. 

Fundion Prototype STATUS EXPORTED XTemplateSetMode ( 
P UNKNOWN pXTemplate, II Compressed Template 
XTEMPLATE_MODE xtrnMode II New mode 

) ; 

Changing xtmPreflXO K or xtmLoopBackOK may have no effect. 

XfemplateFree 
Free an existing Template. 

Returns STATUS. 

Fundion Prototype STATUS EXPORTED XTemplateFree ( 
P_UNKNOWN pXtrnDigested II compiled template ptr. 

) ; 

Checks for pNu11 and just returns stsOK 

Xfemplate WordListSort 
Given a pointer to a list of pointers to strings, sort the list of pointers so the strings appear in 
alphabaticalorder. 

Returns void. 

¥\JOd!@fl PV@t@type void EXPORTED XTemplateWordListSort ( 
PP_CHAR ppStringBase II compiled template 

) ; 

Last pointer in list must be Nil(p _STRING) 

Xf emplateCheckWord 
Check if a word is in a template. 

Returns BOOLEAN. 

FtH'Idil>tl PVCftCftype BOOLEAN EXPORTED XTemplateCheckWord ( 
P_UNKNOWN pXtrnData, II compiled template 
P CHAR pWord II Word to check 

) ; 



Xf emplateCheckGesture 
Check if a gesture is in a template. 

Returns BOOLEAN. 

function Pn:>f.otypB BOOLEAN EXPORTED XTemplateCheckGesture ( 
P_UNKNOWN pXtmData, II compiled template 
MESSAGE gesture II gesture to test 

) ; 

Xf emplateAddWord 
Add a word to a wordlist template. 

Returns SfATUS. 

ttmdion Pr.ofotype STATUS EXPORTED XTemplateAddWord ( 
PP_UNKNOWN ppXtmData, 
P CHAR pWord, 
OS HEAP ID heap 

) ; 

XfemplateI>eleteWord 
Delete a word from a wordlist template. 

Returns Sf ATUS. 

Fund!.o11 Pv.ot.otype STATUS EXPORTED XTemplateDeleteWord ( 

II In/Out: compiled template 
II Word to add 
II heap to use 

PP_UNKNOWN ppXtmData, II In/Out: compiled template 
P CHAR pWord, I I Word to add 
OS HEAP ID heap II heap to use 

) ; 

Xf empltlnit 
DLL Initialization routine. 

Returns SfATUS. 

STATUS EXPORTED XTempltInit(void); 

Included for compatibility; not to be called by developers. 

XTEMPLT.H 777 
Functions 





XTIXT.H 

Defines the API for clsXText 

clsXText inherits from clsXtract. 

#ifndef XTEXT INCLUDED 
#define XTEXT_INCLUDED 
#ifndef GO_INCLUDED 
#include <go.h> 
#endif 
#ifndef UID_INCLUDED 
#include <uid.h> 
#endif 
#ifndef XLATE INCLUDED 
#include <xlate.h> 
#endif 

Common #defines and typedefs 
typedef struct XTEXT_WORD { 

RECT32 bounds; 
CHAR str [1] ; 

} XTEXT_WORD, *P_XTEXT_WORD; 

Messages 

msgNewDefaults: 

II xtTextWord data 
II bounding box 
II text string, 0 terminated 

Fills in default values to XLATE_NEW structure. 

Takes P_XLATE_NEW, returns STATUS .. 

All fields are set to 0 except the following hwxFlags which are turned ON: 

alphaN umericEnable 

punctuationEnable 

verticalEnable 

case Enable 

In most cases 

smartCaseDisable 

is also on (i.e. there will be NO "smart case" postprocessing to correct the capitalization of letters). The 

exception is that if the writer is an all caps writer (as determined by the global preference setting) then 

the default setting is OFF (i.e. there WILL be smart case postprocessing). 



780 PENPOINT API REFERENCE 

Part 5 / Input and Handwriting 

msgNew: 
Creates a new Text translation object. 

Takes P _XLATE_NEW, returns STATUS .. 

msgXT extGetXList: 
Convert data to XList. 

Takes P _XLATE_DATA, returns STATUS. 

fdefine msgXTextGetXList MakeMsg(clsXText, OxOl) 

msgXT extWordList: 
subclass opportunity to alter word list/ disambig Called during the disambiguation extraction pass. 

Takes P _WORD_LIST, returns STATUS. 

fdefine msgXTextWordList MakeMsg(clsXText, Ox02) 

msgXTextComplete: 
Hook for subclasses to postprocess translation results from dsXText 

Takes P _XLIST, returns STATUS. 

fdefine msgXTextComplete MakeMsg(clsXText, Ox8l) 

dsXtext responds to msgXlateComplete by completing the translation and then self-sending this 
message (msgXTextComplete) to allow its subclasses to post-process the translation results. 

msgXTextNewLine: 
Indicates the start of a new line to subclasses. 

Takes P_UNKNOWN, returns STATUS. 

fdefine msgXTextNewLine MakeMsg(clsXText, Ox82) 

msgXT extModLine: 
Indicates a modification of a line to subclasses. 

Takes P _UNKNOWN, returns STATUS. 

fdefine msgXTextModLine MakeMsg(clsXText, Ox83) 



XTRACT.H 

This file contains part of the API definition for dsXtract. For the remainder see xlate.h. 

dsXtract inherits from dsObject. 

#ifndef XTRACT INCLUDED 
#define XTRACT INCLUDED 
#ifndef GO_INCLUDED 
#include <go.h> 
#endif 
#ifndef CLSMGR INCLUDED 
#include <clsmgr.h> 
#endif 

Messages 

msgSave: 
Saves an extraction object. 

Takes P _OBLSAVE, returns STATUS. 

Writes the instance data for this object out to a file. 

msgRestore: 
Restores an extraction object. 

Takes P _OBJ_RESTORE, returns STATUS. 

Reads back in from a file the instance data for an extraction object and recreates the object. 

Initialization Messages 

msgAdded: 
Attachment to a scribble object 

Takes OBJECT, returns STATUS. 

The extraction object receives this message when it has been made an observer of a scribble object. 
When it receives this message, the extractor queries the scribble for all strokes which have been added to 
the scribble up to this time. Henceforth the scribble object will send msgScrAddedStroke to the 

extraction object every time a new stroke is added to the scribble. Thus one way or another the extractor 

has access to all the strokes associated with the scribble. 

An extractor cannot be an observer of more than one scribble object at a time. 



782 PENPOINT API REFERENCE 
Part 5 I Input and Handwriting 

msgRemoved: 
Detachment from a scribble object 

Takes OBJECT, returns STATUS. 

The extraction object receives this message when it is no longer an observer of the scribble object. 

msgXtractGetScribble: 
Reads the id of the attached scribble object. 

Takes P _OBJECT, returns STATUS .. 

#define msgXtractGetScribble MakeMsg(clsXtract, 1) 

This message is used to obtain the id of the scribble object that this extraction object is attached to. It 
can be used by the client or by a subclass if it is interested in modifying and/or reading the scribble 

information directly. 

Control Messages 

msgScrAddedStroke: 
Add a stroke to the extraction object. 

Takes P _SCR_ADDED_STROKE, returns STATUS. 

This message is received by the extractor from the scribble object each time a new stroke is added to the 

scribble. 

msgScrRemovedStroke: 
Remove a stroke from the extraction object. 

Takes P _SCR_REMOVED_STROKE, returns STATUS. 

This message is received by the extractor from the scribble object each time an existing stroke is deleted 
from the scribble. 

msgXtractStrokesClear: 
Clears out all strokes previously sent to translation object by scribble 

Takes NULL, returns STATUS. 

#define msgXtractStrokesClear MakeMsg(clsXtract, 3) 

Effectively restarts the translator as if it had just been attached to a fresh scribble. 

As a side effect, the shape engine is released. A new shape engine will be attached as soon as new strokes 

get added by the scribble. 

All the settings of the translator remain unchanged (e.g. hwxFlags, xlateCaseMetrics, xlateMetrics, etc). 

This message was formerly called msgXtractContextClear. The new name more accurately reflects its 

functionality. 



XTRACT.H 783 
Control Messages 

msgScrCompleted: 
Notification that no more strokes will be added to scribble. 

Takes NULL, returns STATUS. 

This message is sent by the scribble object to the extraction object when the scribble has determined that 

no more strokes will be added. When it receives this message, the extractor will self-send the message 

msgXtractComplete (see below) to kick off the final stages of translation. 

msgXtractComplete: 
Hook for subclasses to complete the translation. 

Takes NULL, returns STATUS. 

#define msgXtractComplete MakeMsg(clsXtract, Ox8l) 

The extraction object self-sends this message when it receives the message msgScrCompleted. This 
message will be processed by the appropriate subclass of clsXtract which will complete the translation. 

Note that in certain instances (such as multiple line text pads), the translation object may have already 

translated a subset of the existing strokes as they were entered. This message tells the translation object 
to finish up (complete) the translation and not wait for any further strokes. 





XWORD.H 

This file contains the API definition for clsXWord. 

clsXWord inherits from clsXText. 

#ifndef XWORD_INCLUDED 
#define XWORD_INCLUDED 
#ifndef GO_INCLUDED 
#include <go.h> 
#endif 
#ifndef UID_INCLUDED 
#include <uid.h> 
#endif 

Common #defines and typedefs 
#define xWordSpellCorrection 
#define xWordSpellOnly 
#define xWordProofEnable 
#define xWordAbbrEnable 

'Messages 

msgN ewDefaults: 

flagO 
flagl 
flag2 
flag3 

Fills in default values for a new Word translation object. 

Takes P _XLATE_NEW, returns Sf ATUS .. 

The default values are the same as for clsXText, except for the following hwxFlag setting: 

xltSpellingEnable will be ON 

xltSmartCaseDisable will be OFF 

In: addition, 

pArgs->xlate.xlateCaseMetrics.type = xcmSentence; 
pArgs->xlate.xlateCaseMetrics.writer = xcmMixedCaseWriter; 

Capitalize first letter of each sentence, etc. 

msgNew: 
creates a new Word translation object. 

Takes P _XLATE_NEW, returns SfATUS .. 

msgXW ordComplete: 
Hook for subclasses to indicate completion .. 

Takes NULL, returns STATUS. 

#define msgXWordComplete 

Not implemented 

MakeMsg(clsXWord, Ox81) 





API 1 denotes PenPoint API Reference, Volume I 

AB_MGR_CHANGE_TYPE, AP12:349 

AB_MGR_ID, API2:345-348 

AB_MGR_ID_TYPE, AP12:345 

AB_MGR_LlST, AP12:347 

AB_MGR_NOTIFY, AP12:349 

Abs, API 1: 56 

AcetateClear, API 1 :628 

AcetateClearDisable, APl1 :628 

AcetateClearRect, APIl :629 

AcetateCursor F reezePosition, API 1 :628 

AcetateCursorImage, APIl :628 

AcetateCursorRequestVisible, API 1 :627 

AcetateCursor Thaw, API 1 :627 

AcetateCursor U pdatelmage, API 1 :628 

AcetateCursorXY, API 1 :628 

AcetateTransform, APIl :627 

AddListltem, AP12:78 

AddListlternX, AP12:77 

ADDR_BOOK_ATTR, API2:354, AP12:361 

ADDR_BOOK_ATTR_DESC, AP12:354 

ADDR_BOOK_ATTR-OPS, AP12:358 

ADDR_BOOK_CHANGE_TYPE, AP12:363 

ADDR_BOOK_COUNT, AP12:362 

ADDR_BOOK_ENTRY, API2:354-358 

ADDR_BOOK_ENTRY_CHANGE, AP12:363 

AD DR_BOO K_ENTRY_TYPE , AP12:354 

ADDR_BOOK_ENUM_GROUP _MEMBER, 

AP12:360 

ADDR_BOOK_IS_A_MEMBER_OF, AP12:361 

ADDR_BOOK_METRICS, AP12:361 

ADDR_BOOK_QUERY, AP12:359 

ADDR_BOOK_QUERY_ATTR, AP12:359 

ADDR_BOOK_SEARCH, AP12:359 

ADDR_BOOK_SEARCH_DIR, AP12:358 

ADDR_BOOK_SEARCH_ TYPE, AP12:358 

ADDR_BOOK_SERVICE, AP12:354 

ADDR_BOOK_SERVICE_QUAL, AP12:354 

ADDR_BOOK_SERVICES, AP12:360 

ADDR_BOOK_SVC_DESC, AP12:360 

ADDR_BOOK_ V ALUE_OPS, AP12:359 

ADDRESS, AP12:419 

ADDRESS_ACQUIRE, AP12:422 

AIM_NEW, AP12:514 

ALAP _HSLINK_NEW, AP12:393 

ALARM_NOTIFY, API2: 180 

AM_METRICS, APIl:130 

API2 denotes PenPoint API Reference, Volume 11 

AM_TERMINATE_VETOED, APIl:135 

ANIM_SPAPER_NEW, APl1:632-633 

ANIM_SPAPER_NEW_ONLY, APIl:632 

ANIM_SPAPER_SCRIBBLE, API 1 :633-634 

ANM_ATTR_AUX_NB, AP12:518 

ANM_ATTR_NO_LOAD, AP12:518 

ANM_ATTR_PERMANENT, AP12:523 

ANM_ATTR_STATIONERY_MENU, 

AP12:518 

ANM_AUX_NOTEBOOK, AP12:517 

ANM_CREATE_DOC, AP12:519 

ANM_ CREATE_SECT, API2: 519 

ANM_DELETE, AP12:521 

ANM_DELETE_ALL, API2: 521 

ANM_EXIST _BEHAVIOR, API2: 518 

ANM_GET _MENU, API2: 522 

ANM_GET_NOTEBOOK_PATH, AP12:521 

ANM_GET _NOTEBOOK_UUID, AP12:521 

ANM_MENU_ADD_REMOVE, AP12:523 

ANM_MENU_NAME_CHANGED, AP12:523 

ANM_MOVE_COPY_DOC, AP12:520 

ANM_NEW, AP12:519 

ANM_OPEN_NOTEBOOK, AP12:522 

ANM_POP _UP _MENU, AP12:522 

APP_ACTIVATE_CHILD, APIl:89 

APP _BORDER_METRICS, API 1 :97 

APP_CHANGED, APIl:108 

APP_CHILD_CHANGED, APIl:106 

APP_CREATED, APl1:106 

APP_DELETED, APl1:106 

APP _DIR_ATTRS, API 1: 112 

APP _DIR_FLAGS, APIl: 112 

APP_DIR_GET_BOOKMARK, APl1:116 

APP _DIR_GET _GLOBAL_SEQUENCE, 

APIl:1l6 

APP _DIR_ GET_SET _ATTRS, APIl: 113 

APP_DIR_GET_SET_FLAGS, APl1:113 

APP _DIR_NEXT, API 1: 117 

APP _DIR_SEQ_ TO _NAME, API 1: 117 

APP _DIR_SET _BOOKMARK, API 1: 116 

APP_DIR_UPDATE_CLASS, APIl:114 

APP _DIR_UPDATE_NUM_CHILDREN, 

APIl:1l5 

APP_DIR_UPDATE_SEQUENCE, APl1:115 

APP_DIR_UPDATE_UID, APIl:114-115 

APP _DIR_ UPDATE_ UUID, API 1: 114 

APP _EXECUTE, API 1: 104 

APP _FIND_FLOATING_ WIN, API 1 :90 

APP _FLAGS, API 1 : 81 

APP _FLOATED, API 1 : 106 

APP_GET_APP_WIN, APIl:94 

APP_GET_EMBEDDED_WIN, APIl:93 

APP_GET_OPTION_SHEET, APIl:95 

APP _LINK, API 1 :99-1 00 

APP_METRICS, APIl:82, APIl:87 

APP _MGR_ACTIVATE, API 1: 123 

APP_MGR_CREATE, APIl:122 

APP _MGR_DELETE, API 1: 124 

APP _MGR_FLAGS, API 1: 120 

APP_MGR_FS_MOVE_COPY, APIl:124 

APP_MGR_GET_RES_LlST, APIl:126 

APP_MGR_GET_ROOT, APIl:125 

APP_MGR_METRICS, APIl:120, APIl:122 

APP_MGR_MOVE_COPY, APIl:123-124 

APP_MGR_MOVE_COPY_STYLE, APIl:123 

APP_MGR_NEW, APIl:121 

APP _MGR_RENAME, API 1: 125 

APP_MOVED_COPIED, APl1:107 

APP _NEW, API 1 :83-84 

APP_NEW_ONLY, APIl:83 

APP_OPEN, APIl:86 

APP_OPEN_CHILD, APIl:92 

APP_OWNS_SELECTION, APIl:94 

APP_SHOW_OPTION_SHEET, APIl:96 

APP _WIN_METRICS, API 1: 145 

APP _WIN_NEW, API 1: 144 

APP _WIN_NEW _ONLY, API 1: 144 

APP _WIN_STYLE, API 1: 144, API 1: 146 

AppDebug, APIl:79 

AppMain, API 1: 109 

AppMonitorMain, API 1: 109 

ASSERT, APl1:48 

AtomGetName, API2: 11 

ATP _ADDRESS, AP12:365 

ATP _OPTIONS, AP12:365 

ATP _RESPPKTSIZE, AP12:367 

ATTRIB, AP12:371 

ATTRIBUTES_GET, AP12:422 

BAFileReadString, AP12:204 

BAFile WriteString, AP12:203 

BATTERY_METRICS, AP12:639 

binarySearch, AP12:647 



788 INDEX 

BITMAP_NEW, API 1 :226 

BITMAP_NEW_ONLY, APIl:226 

BITMAP _PIX_CHANGE, API 1 :227 

BITMAP_STYLE, APIl:225 

BLOCK, API2:419 

BOOKSHELF_METRICS, API.2: 183-184 

BOOKSHELF_NEW, API2: 183 

BOOKSHELF_NEW_ONLY, API2:183 

BOOLEAN, APIl:56 

BORDER_BACKGROUND, API 1 :340 

BORDER_NEW, APIl:33l 

BORDER_NEW_ONLY, APIl:33l 

BORDE~STYLE, APII :330, 
API 1:332-334, APll:337 

BORDER_UNITS, APIl:336 

Borderlnk, APII :328 

BorderUnits, APII :329 

BorderUnitsCustom, APIl:329 

BorderUnitsMult, APIl:329 

BROW JUSTIFY, API2: 191 

BROWSER_BOOKMARK, AP12: 196 

BROWSER_COLUMN, API2: 191 

BROWSE~COLUMN_STATE, API2: 192 

BROWSER_CREATE_DOC, API2:196 

BROWSER_DEF _COLUMN, API2: 191 

BROWSER_GESTURE, API2: 197 

BROWSER_GOTO, AP12: 194 

BROWSER_METRICS, API2: 191 

BROWSE~NEW, API2: 187 

BROWSER_NEW _ONLY, API2: 187 

BROWSER_PATH, API2: 195 

BROWSER_USER_COLUMN, API2:192-193 

BUFFER_RETURN, AP12:421 

BUTTON_NEW, API 1 :349 

BUTTON_NEW_ONLY, APIl:348 

BUTTON_NOTIFY, APIl:348, APIl:353 

BUTTON_STYLE, APIl:348, APIl:350 

BYTE_~Y,API2:199 

ByteArrayCreate, AP12:20 1 

ByteArrayDelete, API2:202 

ByteArrayDestroy, API2:20 1 

ByteArrayFindByte, API2:200 

ByteArrayFindIndex, API2:200 

By teArrayG ap Length , AP12: 199 

ByteArrayGetByte, API2:200 

ByteArrayGetMany, API2:20 1 

ByteArrayHeapMode, API2:202 

ByteArrayInsert, API2:202 

ByteArrayLength, AP12:202 

ByteArrayPrint, AP12:200 

ByteArrayRead, AP12:203 

ByteArrayReplace, AP12:20 1 

ByteArrayReserve, AP12:202 

ByteArrayWrite, AP12:203 

BYTEBUF _DATA, API2:205-206 

BYTEBUF _NEW, API2:205-206 

BYTEBUF _NEW_ONLY, API2:205 

CcittDecode3l, API 1 :230 

CcittEncode3l, APll:230 

CG_GET_OWNER, AP12:589 

CG_OWNER_NOTIFY, AP12:591 

CG_SET_OWNER, AP12:590 

CHARACTE~MEMORY, APIl:744 

CHOICE_MGR_NEW, APIl:357 

CHOICE_MGR_NEW _ONLY, APII :357 

CHOICE_NEW, APIl:359-360 

CHOICE_NEW_ONLY, APIl:359 

CHOICE_STYLE, APII :359-360 

CIM_ATTR_DEINSTALLABLE, API2:526 

CIM_FIND_CLASS, AP12:526 

CIM_FIND_PROGRAM, API2:527 

CIM_GET_CLASS, AP12:526 

CIM_LOAD, AP12:527 

CIM_TERMINATE, AP12:527 

CIM_TERMINATE_OK, API2:527 

CIM_TERMINATE_ VETOED, API2:526, 
AP12:528 

CWign, API 1 :366 

CLASS_INFO, APII :36 

CLASS_NEW, APll:6 

CLASS_NEW_ONLY, APIl:6 

CIChildEdge, APll:366 

CIConstraint, APll:366 

ClExtend, API 1 :366 

CLOSE_BOX_NEW, APll:371 

CLOSE_BOX_NEW_ONLY, APll:371 

CLOSE_BOX_STYLE, APll:371-372 

CIRelWinEdge, API 1 :366 

CLS_SYM_MSG, API 1 : 7 

CLS_SYM_OBJ, APIl:7 

CLS_SYM_STS, API 1: 7 

ClsClearStatistics, APll :37 

ClsDum pS tatistics, API 1: 37 

ClsMsgToString, APIl:33 

ClsNum, APIl:9 

ClsObjToString, APll:33 

ClsSetStatistics, APIl:37 

ClsStatistics, APll:3 7 

ClsString T oMsg, API 1 :34 

ClsStringToObj, APIl:34 

ClsStringToSts, APIl:34 

ClsStringToTag, APll:34 

ClsStsToString, APIl:32 

ClsSymbolsInit, API 1 :34 

ClsTagToString, APIl:33 

COMMAND_BAR_NEW, APIl:373 

COMMAND_BAR_NEW_ONLY, APIl:373 

COMMAND_BAR_STYLE, APIl:373-374 

CONNECTIONS_COMPARE, API2:372, 
AP12:376 

CONNECTIONS_CONNECT _STATE, 
AP12:370 

CONNECTIONS_ENUMERATE, 
API2:371-372 

CONNECTIONS_ITEM, AP12:370 

CONNECTIONS_MENU_ITEM, API2:370 

CONNECTIONS_NOTIFY, API2:376-377 

CONNECTIONS_PASSWORDS, API2:370 

CONNECTIONS_PERMISSIONS, AP12:370 

CONNECTIONS_REQUEST, API2:374-375 

CONNECTIONS_SERVICE_INFO, AP12:373 

CONNECTIONS_STATE, API2:370-371 

CONNECTIONS_TAG, AP12:372 

CONNECTIONS_TAG_ITEM, AP12:373 

CONNECTIONS_WARNINGS, AP12:370 

CONTROL_ENABLE, APIl:379 

CONTROL_NEW, APIl:376 

CONTROL_NEW_ONLY, APll:376 

CONTROL_PROVIDE_ENABLE, API 1 :381 

CONTROL_STRING, APIl:376 

CONTROL_STYLE, API 1 :375, API 1 :377 

Coord 16from32, API 1 :234 

Coord32Tol6, APIl:234 

CORKBOARD_WIN_NEW, APll:150 

CORKBOARD_WlN_NEW_ONLY, APIl:149 

COUNTER_ACTION, APIl:386 

COUNTER_NEW, API 1 :384 

COUNTER_NEW_ONLY, APIl:383 

COUNTER_NOTIFY, API 1 :386 

COUNTER_STYLE, APII :383-384 

CSTM_LAYOUT_CHILD_SPEC, APIl:366, 
API 1 :368-369 

CSTM_LAYOUT_CONSTRAINT, APIl:365 

CSTM_LAYOUT _DIMENSION, API 1 :366 

CSTM_LAYOUT_METRICS, APll:365, 
APll:367 

CSTM_LAYOUT _NEW, APII :367 

CSTM_LAYOUT _SPEC, API 1 :366 

CSTM_LAYOUT_STYLE, APIl:365, 
APll:368 

CstmLayoutSpeclnit, API 1 :368 

CURRENT_STD_PEN_DATJ\, APIl:708 



DATE_FIELD_NEW, APIl:586 

DATE_FIELD_NEW_ONLY, APIl:586 

DATE_FIELD_STYLE, APIl:585-586 

Dbg, API1:48 

DbgFlag, API 1 :48 

DbgFlagGet, APIl:50 

DbgFlagSet, API 1 :49 

Debugf, API1:49 

Debugger, API2: 148 

DECODE31, APIl :229 

DIALENV _AREA_CITY, API2:383 

DIALENV _BUILD_DIALSTR, API2:385 

DIALENV _COUNTRY, API2:383 

DIALENV _DIAL_STRING, API2:384 

DIALENV_ENVIRONMENT, API2:384 

DIALENV _FIELD _NEW, API2:388-389 

DIALENV _INTL_ACCESS, API2:384 

DIALENV _LONG_DIST, API2:384 

DIALENV _MACRO_CODE, API2:384 

DIALENV _MACRO_IDS, API2:386 

DIALENV _NEW, API2:385 

DIALENV_OPTCARD_NEW, API2:387-388 

DIALENV _OPTCARD_NEW _ONLY, 

API2:387 

DIALENV _OUTSIDE_LINE, API2:383 

DIALENV _SUFFIX, API2:384 

DIALENV _TELEPHONE_NUMBER, 

API2:384 

DIR_ID_CACHE, API2:86 

DirldGetParent, API2:95 

DPrintf, APIl:49 

DumpRect, APl1:239 

DV_GET_OPEN_VOLS, API2:211 

DV _NEW, API2:209 

DV _NEW_ONLY, API2:208 

DV _STYLE, API2:208, API2:21 0 

DYN_TABLE_FIND_BUTTON, API2:531 

DYN_TABLE_NEW, API2:530 

DYN_TABLE_NEW_ONLY, API2:530 

DYN_TABLE_STYLE, API2:529 

DYNARRAY, API2:642 

DYNARRAY_SEARCH, API2:645 

DynArrayBinSearch, API2:645 

DynArrayContract, API2:643 

DynArrayCount, API2:645 

DynArrayDelete, API2:644 

DynArrayElemSize, API2:645 

DynArrayExpand, API2:643 

DynArrayFree, API2:642 

DynArrayGet, API2:643 

DynArrayGetPtr, API2:644 

DynArraylnsert, API2:644 

DynArrayMax, API2:645 

DynArrayNew, API2:642 

DynArraySet, API2:643 

DynResld, API2:493 

EMBEDDED_ WIN_BEGIN_MOVE_COPY, 

APIl:161 

EMBEDDED_ WIN_GET_DEST, APIl: 164 

EMBEDDED_ WIN_INSERT_CHILD, 

APIl: 165 

EMBEDDED_WIN_METRICS, APIl:174 

EMBEDDED_ WIN_MOVE_COPY, 
API 1: 162-163 

EMBEDDED_ WIN_MOVE_COPY_OK, 

APIl:163 

EMBEDDED_WIN_NEW, APIl:174 

EMBEDDED_WIN_NEW_ONLY, APIl:174 

EMBEDDED _ WIN_PROVIDE_ICON, 

APIl:162 

EMBEDDED _WIN_SHOW _CHILD, 

APIl:166 

EMBEDDED _WIN_STYLE, API 1: 173 

EMBEDDEE_PRINT _INFO, APIl :205 

ENCODE31, API1:229 

ENUM_CALLBACK, API2:255 

ENUM_ITEMS, API2:256 

ENUM_RECT _ITEMS, API2:255 

Enum16, APIl:55 

Enum32, APIl:55 

Even, API1:56 

EXCL_ VOL_ACCESS, API2:98 

EXPORT_DOC, API2:216 

EXPORT_FORMAT, API2:216-217 

EXPORT_LIST, API2:216 

1.11 III 1_ 

FIELD_ACTIVATE_POPUP, APIl:395 

FIELD_CREATE_POPUP, APIl:396 

FIELD_NEW, APII :392 

FIELD_NEW_ONLY, APIl:392 

FIELD_NOTIFY, APIl:391, APIl:399 

FIELD_STYLE, APIl:391, APIl:393 

FIELD_XLATE, APII :392 

FIM_FIND_ID, API2:535 

FIM_GET_INSTALLED_ID_LIST, API2:536 

FIM_GET_NAME_FROM_ID, API2:535 

FIM_GET_SET_ID, API2:534-535 

FIM_LONG_ID, API2:534 

INDEX 789 

FIM_NEW, API2:534 

FIM_PRUNE_ CONTROL, API2: 536 

FindListItem, API2:78 

FindListIternX, API2:77 

FIXED_FIELD_NEW, APl1:588 

FIXED_FIELD_NEW _ONLY, API 1 :588 

FlXED_FIELD_STYLE, APIl:587-588 

FlagClr, APIl :56 

FlagOff, API 1 : 56 

FlagOn, APIl:56 

FlagSet, APII :56 

FLAP_NEW, API2:391 

FONTLB_NEW, API 1 :40 1-402 

FONTLB_NEW _ONLY, APII :40 1 

FONTLB_STYLE, APII :40 1-402 

FRAME_NEW, API 1 :406-407 

FRAME_NEW_ONLY, APl1:406 

FRAME_STYLE, APl1:405, APl1:408-409 

FRAME_ZOOM, APIl:405, APIl:413 

FS_CHANGE_INFO, API2:68 

FS_CONNECT_VOL, API2:97 

FS_DIR_NEW_MODE, API2:58 

FS_DISCONNECT_ VOL, API2:97 

FS_EXCL_ VOL_ACCESS, API2:98 

FS_EXIST, API2:57 

FS_FILE_NEW _MODE, API2:58 

FS_FLAT_LOCATOR, API2:56 

FS_GET_PATH, API2:63 

FS_GET_PATH_MODE, API2:58 

FS_GET_SET_ATTR, API2:63 

FS_GET _VOL_METRICS, API2:61 

FS_INSTALL_ VOL, API2:96 

FS_LOCATOR, API2:56, API2:69 

FS_MAKE_NATIVE, API2:67 

FS_MOVE_COPY, API2:64-65 

FS_MOVE_COPY_EXIST, API2:57 

FS_MOVE_COPY_MODE, API2:58 

FS_MOVE_COPY_NOTIFY, API2:66 

FS_NEW, API2:59-60 

FS_NEW_ONLY, API2:59 

FS_NODE_EXISTS, API2:62 

FS_NODE_FLAGS, API2:56 

FS_NODE_FLAGS_ATTR, API2:56 

FS_NOTIFY_OP, API2:66 

FS_NOTIFY_RTN_INFO, API2:66 

FS_NOTIFY_TIME, API2:65 

FS_READ_DIR, API2:69 

FS_READ_DIR_FULL, API2:70 

FS_REGISTER_ VOL_CLASS, API2:96 

FS_REMOVE_ VOL, API2:97 



790 INDEX 

FS_SEEK, API2:72 

FS_SEEK_MODE, API2:59 

FS_SET _HANDLE_MODE, API2:62 

FS_SET _SIZE, API2: 72 

FS_TRAVERSE, API2:70 

FS_TRAVERSE_MODE, API2:58 

FS_UPDATE_ VOLS_MODE, API2:98 

FS_ VOL_CHANGE_FLAGS, API2:69 

FS_ VOL_CHANGE_INFO, API2:69 

FS_ VOL_FLAGS, API2:57 

FS_ VOL_HEADER, API2:57 

FS_ VOL_LIST, API2:97 

FS_ VOL_LIST_ACCESS, API2:97 

FS_ VOL_SPECIFIC, API2:68 

FS_ VOL_TYPE, API2:56 

FSAttr, API2:54 

FSAttrCIs, API2:54 

FSAttrIsFix32, API2:54 

FSAttrIsFix64, API2:54 

FSAttrIsStr, API2:54 

FSAttrIsVar, API2:54 

FSMakeAttr, API2:54 

FSMakeFix32Attr, API2:54 

FSMakeFix64Attr, AP12:54 

FSMakeStrAttr, AP12:54 

FSMakeVarAttr, AP12:54 

FSNameValid, AP12:73 

FxAbs, API2: 127 

FxAdd, API2: 124 

FxAddSC, API2: 124 

FxArcTanFx, API2: 127 

FxArcTanInt, API2:127 

FxBinToStr, API2: 128 

FxChop, API2: 128 

FxChopSC, API2: 128 

FxCmp, API2: 123 

FxCos, API2: 126 

FxCosFx, API2:127 

FxDiv, API2: 125 

FxDivInts, API2:126 

FxDivIntsSC, API2: 126 

FxDivIntToInt, API2:126 

FxDivIntToIntSC, API2:126 

FxDivSC, API2:125 

FxF raction, API2: 128 

FxIntToFx, API2:128 

FxMakeFixed, API2:128 

FxMul, API2: 124 

FxMulInt, API2: 125 

FxMulIntSC, API2: 125 

FxMulIntToInt, API2:125 

FxMulIntToIntSC, API2: 125 

FxMuISC, API2:124 

FxNegate, API2: 124 

FxRoundT oInt, API2: 128 

FxRoundToIntSC, API2: 128 

FxSin, API2: 126 

FxSinFx, API2: 127 

FxStrToBin, API2: 129 

FxSub, API2:124 

FxSubSC, API2: 124 

FxTan, API2:127 

FxTanFx, API2:127 

GESTURE_MARGIN_NEW, API2:219 

GESTURE_MARGIN_NEW _ONLY, API2:219 

GESTURE_MARGIN_STYLE, API2:219-220 

GetAttr, API2:75 

GetList, API2:77 

GetListX, API2:76 

GetNodeName, API2:75 

GetSingleAttr, API2:75 

GO_DIR_CACHE, API2:105 

GO_DIR_ENTRY, API2:104 

GO _DIR_ENTRY_HEADER, API2: 104 

GO_DIR_ENTRY_TYPES, API2:104 

GO_DIR_FINDTYPE, API2: 103 

GO _DIR_ USER_ATTR, API2: 1 04 

GOTO_BUTTON_GET_LABEL, APIl: 177 

GOTO_BUTTON_NEW, APIl:175 

GOTO_BUTTON_NEW_ONLY, APIl:175 

GRAB_BOX_INFO, API 1 :418-419 

GRAB_BOX_NEW, APIl:418 

GRAB_BOX_NEW_ONLY, APIl:418 

GRAB_BOX_STYLE, API 1 :417-419 

GrabBoxIntersect, API 1 :420 

GrabBoxLoc ToRect, API 1 :420 

GrabBoxPaint, API 1 :420 

GWIN_GESTURE, APIl:642, APIl:644, 
APII :646-648, APII :650-651 

GWIN_NEW, API 1 :642 

GWIN_NEW_ONLY, APIl:642 

GWIN_STYLE, APIl:641, APIl:643 

HASH_ENTRY, API2:224 

HASH_INFO, API2:224 

HashAddEntry, API2:225 

HashDeleteEntry, AP12:225 

HashFindData, API2:225 

HashFindTableEntry, API2:225 

HashFree, API2:226 

HashInit, AP12:226 

HashInitDefaults, API2:226 

HighUl6, APIl:56 

HighU8, APII :56 

HIM_ATTR_ENGINE_AVAILABLE, API2:538 

HIM_AVAILABILITY_NOTIFY, API2:539 

HIM_GET_SET_ENGINE, API2:539 

HIM_NEW, API2:538 

HS_PACKET_CHAR_HANDLER, API2:396 

HS_PACKET_METRICS, API2:395 

HS_PACKET_NEW, API2:397 

HS_PACKET_SEND_PACKET, API2:396 

HS]ACKET_STATUS, API2:396 

HWCUSTOM_NEW, APIl:655-656 

HWCUSTOM_NEW_ONLY, APIl:655 

HWLETTEICNEW, APIl:657-658 

HWLETTER_NEW_ONLY, APIl:657 

HWX_SVC_CURRENT_CHANGED, 
API2:581 

HWX_SVC_NEW, API2:581 

HWX_SVC_NEW_ONLY, API2:581 

ICON_CHOICE_NEW, API 1 :423 

ICON_CHOICE_NEW _ONLY, APII :423 

ICON_CHOICE_STYLE, API 1 :423 

ICON_COPY_PIXELS, APII :429 

ICON_NEW, API 1 :426 

ICON_NEW _ONLY, API 1 :426 

ICON_PROVIDE_BITMAP, APIl:428 

ICON_SAMPLE_BIAS, API 1 :429 

ICON_STYLE, APIl:425, APIl:427 

ICON_ TABLE_NEW, API 1 :431 

ICON_TABLE_NEW_ONLY, APll:431 

ICON_ TABLE_STYLE, API 1 :43 i 

ICON_ TOGGLE_NEW, APII :433-434 

ICON_TOGGLE_NEW_ONLY, APll:433 

ICON_ TOGGLE_STYLE, API 1 :433-434 

ICON_ WIN_METRICS, API 1 : 181 

ICON_ WIN_NEW, API 1: 180 

ICON_WIN_NEW_ONLY, APIl:180 

ICON_WIN_STYLE, APIl:179, APIl:181 

IDataDeref, APll:9 

IDataPtr, APIl:9 

1M_ACTIVATE, API2:560 

IM_ADD_CARDS, AP12:560 

IM_ATTR_CURRENT, AP12:547 

IM_A TTR_DEPENDENT, API2: 548 

IM_ATTR_INUSE, API2: 548 



IM_ATTR_MODIFIED, API2:548 

IM_ATTR_SYSTEM, API2:548 

IM_CURRENT_NOTIFY, API2:558 

1M_DEACTIVATE, API2:559 

IM_DEINSTALL, API2:555 

IM_DEINSTALL_NOTIFY, API2:559 

IM_DUP, API2:555 

1M_EXISTS, API2:557 

1M_FIND, API2:555 

IM_GET_ITEM_ICON, API2:561 

IM_GET_SET_NAME, API2:553 

IM_GET_SIZE, API2:554 

IM_GET_STATE, API2:554 

IM_GET_VERSION, API2:553 

1M_INSTALL, API2:554 

1M_INSTALL_EXIST, API2: 5 54 

IM_INUSE_NOTIFY, API2:558 

1M_MODIFIED_NOTIFY, API2:558 

1M_NEW, API2:549 

IM_NEW_ONLY, API2:549 

1M_NOTIFY, API2:558-559 

IM_RENAME_ UNINST ALLED, API2: 561 

IM_SET_INUSE, API2:552 

IM_SET_MODIFIED, AP12:552 

1M_STYLE, API2:548, API2:550-551 

IM_UCDEINSTALL, AP12:557 

IM_UCDUP, AP12:557 

IM_UCINSTALL, AP12:557 

IMModuleLoad, API2:543 

IMPORT_DOC, API2:230 

IMPORT_QUERY, API2:230 

IMProgramInstall, API2:543 

INBX_DOC_EXIT_BEHAVIOR, API2:405 

INBX_DOC_ GET_SERVICE, AP12:40 1 

INBX_DOC_IN_INBOX, API2:40 1 

INBX_DOC_INPUT _DONE, API2:406-407 

INBX_DOC_STATUS_CHANGED, API2:408 

INBXSVC_DOCUMENT, API2:403-405 

INBXSVC_MOVE_COPY_DOC, API2:402 

INBXSVC_NEW, API2:400-40 1 

INBXSVC_NEW_ONLY, API2:400 

INBXSVC_QUERY_STATE, API2:406 

INCFILE_NEW, AP12:542 

INCFILE_NEW _ONLY, AP12:541 

INCFILE_STYLE, AP12:541 

INPUT_EVENT, APIl:666 

INPUT_MODAL_DATA, APIl:669 

InputEventlnsert, API 1 :668 

InputFilterAdd, APIl :667 

InputFilterRemove, API 1 :668 

InputGetGrab, API1:669 

InputGet Target, API 1 :668 

InputSetGrab, API 1 :669 

InputSetTarget, APIl:668 

InRange, APIl :56 

INSTALL_PROTOCOL, AP12:421 

InstallMILDevice, API2:584 

INTEGER_FIELD _NEW, API 1: 589-590 

INTEGER_FIELD_NEW_ONLY, APIl:589 

INTEGER_FIELD_STYLE, APIl:589-590 

InvalidUUID, API2:83 

IOBX_DOC_EXIT _BEHAVIOR, API2:416 

IOBX_DOC_GET_SERVlCE, AP12:411 

IOBX_DOC_IN_IOBOX, API2:412 

IOBX_DOC_OUTPUT _DONE, API2:416, 
API2:418 

IOBX_DOC_STATUS_CHANGED, API2:418 

IOBXSVC_ATTR_DOC_STATE, API2:410 

IOBXSVC_DOCUMENT, API2:413-415 

IOBXSVC_MOVE_COPY_DOC, 

API2:412-413 

IOBXSVC_NEW, API2:411 

IOBXSVC_NEW_ONLY, API2:411 

IOBXSVC_QUERY_STATE, AP12:417 

IOBXSVC_SECTION_METRICS, API2:411 

IP_NEW, APIl:677-678 

IP_NEW_ONLY, API1:677 

IP_STRING, APIl:684 

IP_STYLE, APIl:676, APIl:679 

IP _XIATE, APIl :677 

IP_XIATE_DATA, APIl:683 

lUI_METRICS, AP12:565 

lUI_SELECT _ITEM, API2:564 

lUCSHOW_CARD, API2:564 

KEY_DATA, APIl:691 . 

KEY_MULTI, APIl:691 

KEYBOARD_NEW, API 1 :694 

KEYBOARD_NEW_ONLY, APIl:694 

KEYBOARD_RET, APIl:694 

KEYCAP_GET_DC, APIl:699 

KEYCAP _HILITE, API 1 :699 

KEYCAP _INFO, API 1 :698-699 

KEYCAP_NEW, APIl:698 

KEYCAP_NEW_ONLY, APIl:698 

KEYCAP_SCAN, APIl:698 

KEYCAP_TABLE, APl1:697 

KeyIn, API2: 149 

KeyPressed, API2: 149 

KEYSTATE, APIl:701 

INDEX 791 

KEYSTATE_CODES, APIl:702 

KEYSTATE_SCANS, APIl:702 

KeyStateConvert, API 1: 702 

KeyStateDisplay, APIl :702 

KeyStateFindScan, APIl: 702 

KeyStateProcess, APIl:701 

KeyStateReturn, APIl :702 

KeyStateSetup, APIl: 701 

LABEL_ALIGN, APl1:446 

LABEL_BOX_METRICS, APIl :445 

LABEL_NEW, API 1 :440 

LABEL_NEW _ONLY, APIl :439 

LABEL_RECT, APIl:446 

LABELRESOLVE, API 1 :446 

LABEL_STYLE, API1:439-441 

LDirldGetParent, API2: 112 

LINK_ATTRIBUTES, AP12:420 

LINK_HEADER, AP12:420 

LINK_OPERATING_STATUS, AP12:420 

LINK_SERVICES, AP12:420 

LINK_STATUS, API2:420 

LINK_TRANSMIT, API2:421 

LIST_BOX_DATA_FREE_MODE, APIl:452 

LIST_BOX_ENTRY, APIl:452, 

APIl:454-459 

LIST_BOX_ENTRY_ENUM, API1:452, 

APIl:456 

LIST_BOX_ENTRY_STATE, APIl:452 

LIST _BOX_METRICS, APIl :452-453 

LIST_BOX_NEW, APIl:453 

LIST _BOX_POSITION_XY, APIl :452, 
APIl:457 

LIST _BOX_STYLE, APl1:4 51 

LIST_ENTRY, AP12:233, API2:235-237 

LIST_ENUM, AP12:237 

LIST _FILE_MODE, AP12:234 

LIST_FREE, AP12:235 

LIST_FREE_MODE, AP12:235 

LIST_NEW, AP12:234 

LIST_NEW_ONLY, AP12:234 

LIST_NOTIFY, AP12:233, API2:238-239 

LIST_NOTIFY_ADDITION, AP12:239 

LIST_NOTIFY_DELETION, AP12:239 

LIST _NOTIFY_EMPTY, API2:240 

LIST _NOTIFY_REPLACEMENT, AP12:240 

LIST_STYLE, AP12:234 

LOCATION_NAME, API2:387 

LowU16, APl1:56 

LowU8, APl1:56 



792 INDEX 

LVNativeName, AP12:112 

L VN Close, API2: 108 

LVNCreate, AP12:108 

LVNDelete, AP12:108 

L VNDirPosDeleteAdjust, API2: 1 09 

L VNFlush, API2: 112 

LVNGet, AP12:106 

L VNGetAndOpenByDirld, API2: 1 07 

L VNGetAndOpenParent, API2: 107 

LVNGetAttrlnfo, AP12:110 

LVNGetDirld, AP12:109 

LVNGetNumAttrs, AP12:110 

L VNGetSize, API2: 111 

L VNMove, AP12: 108 

LVNName, AP12:109 

LVNOpen, AP12:107 

L VNRead, API2: 111 

LVNReadDir, AP12:109 

L VNRelease, API2: 107 

LVNSetAttrInfo, API2:110 

L VNSetSize, API2: 112 

LVNWrite; AP12:111 

LVSetVolName, AP12:106 

L VSpecificMsg, API2: 106 

L VStatus, API2: 105 

L VU pdatelnfo, API2: 106 

MakeDialEnvQHelpResId, AP12:381 

MakeDialogTag, APl1:550 

MakeDynResId, AP12:493 

MakeDynUUID, AP12:84 

MakeGlobalWKN, APl1:57 

MakelndexedResId, AP12:493 

MakelnvalidUUID, AP12:83 

MakeListResId, AP12:493 

MakeMsg, APl1:9 

MakeNilUUID, AP12:83 

MakePrivateResAgent, AP12:493 

MakePrivateWKN, APl1:57 

MakeProcessGlobalWKN, API 1 : 57 

MakeStatus, APl1:59 

MakeTag, APIl:58 

MakeTagWithFlags, APl1:58 

MakeU16, APIl:56 

MakeU32, APIl:56 

MakeWarning, APIl:59 

MakeWKN, APIl:57 

MakeWknObjResId, AP12:493 

Make WknResId, AP12:493 

MakeWknUUID, AP12:83 

MARK_COMPARE_TOKENS, APIl: 193 

MARK_COMPONENT, APIl:186, 
API 1 : 191, API 1: 194 

MARK_GET_CHILD, APIl:196 

MARK_ GOTO, APIl: 192 

MARK_MESSAGE, API 1: 187-190, 
APIl:196-198 

MARICMSG_HEADER, API 1: 187 

MARK_NEW, API 1: 188 

MARK_NEW_ONLY, APIl:188 

MARK_POSITION_CHILD, APIl: 195 

MARK_POSITION_EDGE, API 1: 195 

MARK_POSITION_ GESTURE, API 1: 196 

MARK_POSITION_SELECTION, APIl:196 

MARK_POSITION_TOKEN, APIl: 195 

MARK_SEND, API 1: 190 

MARK_SHOW_TARGET, APIl:197 

MARK_TOKEN, API1:186, APIl:192-193, 

APIl: 198 

MarkHandler ForClass, API 1: 187 

MAT, APIl:234 

MatCreate, API 1 :236 

MatDump, APIl :239' 

Matldentity, APl1:236 

Matlnvert, API 1 :237 

MatMultiply, APl1:237 

MatRotate, APl1:237 

MatScale, API 1 :237 

MatTransformRECT32, API1:239 

Mat Translate, API 1 :237 

MatWHTransform16, APIl:238 

MatWHTransform32, APIl:238 

MatXYfransform16, API1:238 

MatXYf ransform32, API 1 :238 

Max, APIl:56 

MENU_BUTTON_NEW, API 1 :464 

MENU_BUTTON_NEW_ONLY, APIl:464 

MENU_BUTTON_PROVIDE_MENU, 
APIl :463, APIl :468-469 

MENU_BUTTON_SHOW_MENU, APl1:467 

MENU_BUTTON_STYLE, API 1 :463, 
APIl:465 

MENU_NEW, APIl:475-476 

MENU_NEW_ONLY, APIl:475 

MENU_STYLE, APIl:475, APIl:477 

MIL_SVC_ADD_ TO_CONFLICT _MANAGER, 

AP12:587 

MIL_SVC_ARE_YOU_CONNECTED, 

AP12:587 

MIL_SVC_DEVICE, API2:584, AP12:586 

MIL_SVC_NEW, AP12:585 

MIL_SVC_NEW _ONLY, AP12:584 

Min, APIl :56 

MODAL_FILTER_METRICS, API 1 :482 

MODAL_FILTER_NEW, APl1:482 

MODEM_ACTIVITY, AP12:424 

MODEM_ANSWER_MODE, AP12:429 

MODEM_AUTO_ANSWER, AP12:429 

MODEM_CHARACTERISTICS, AP12:434 

MODEM_CONNECTION, API2:427 

MODEM_CONNECTION_INFO, AP12:427 

MODEM_DCE_CONTROL, AP12:434 

MODEM_DIAL, AP12:429 

MODEM_DIAL_MODE, AP12:428 

MODEM_DUPLEX_MODE, AP12:431 

MODEM_HARDWARE_BUFFERS, AP12:434 

MODEM_HARDWARE_FEATURES, 
API2:433 

MODEM_HARDWARE_MANUFACTURER, 
AP12:433 

MODEM_HARDWARE_MODEL, AP12:433 

MODEM_LINK_CONTROL, AP12:427 

MODEM_METRICS, AP12:433 

MODEM_MNP _BREAK_TYPE, AP12:432 

MODEM_MNP_COMPRESSION, AP12:432 

MODEM_MNP _FLOW_CONTROL, 
AP12:432 

MODEM_MNP _MODE, AP12:432 

MODEM_NEW, AP12:434 

MODEM_RESPONSE, AP12:424 

MODEM_RESPONSE_BEHAVIOR, AP12:426 

MODEM_RESPONSE_INFO, AP12:425 

MODEM_RESPONSE_MODE, AP12:426 

MODEM_SEND_COMMAND, API2:427 

MODEM_SET _AUTO_ANSWER, API2:429 

MODEM_SIGNALLING_MODES, API2:430 

MODEM_SIGNALLING_ VOICEBAND, 
AP12:430 

MODEM_SIGNALLING_ WIDEBAND, 
AP12:430 

MODEM_SPEAKER_CONTROL, AP12:431 

MODEM_SPEAKER_ VOLUME, AP12:431 

MODEM_TIMEOUT, AP12:426 

MODEM_TONE_DETECTION, AP12:430 

MOVE_COPY_ICON_DONE, APIl:473 

MOVE_COPY_ICON_NEW, APIl:472 

MOVE_COPY_ICON_NEW_ONLY, APIl:471 

MOVE_COPY_ICON_STYLE, APIl:471-473 

MOVE_ITEMS, AP12:254 

MSG_HANDLER_FLAGS, API 1 :36 

MSG_INFO, API 1 :36 

MSG_NOT _UNDERSTOOD, APIl :25 

msgABMgrActivate, AP12:347 



msgABMgrChanged, API2:348 

msgABMgrClose, API2:347 

msgABMgr Deactivate, API2:348 

msgABMgrIsActive, API2:348 

msgABMgrList, API2:347 

msgABMgrOpen, API2:346 

msgABMgrRegister, API2:346 

msgABMgrUnregister, API2:346 

msgAdded, APIl:25 

msgAdded, APIl :781 

msgAddObserver, APIl:23 

msgAddObserverAt, API 1 :23 

msgAddrBookAdd, API2:357 

msgAddrBookAddAttr, API2:361 

msgAddr BookCoun t, API2:362 

msgAddrBookDelete, API2:358 

msgAddrBookEntryChanged, API2:362 

msgAddrBookEnumGroupMembers, 
API2:360 

msgAddrBookGet, API2:355 

msgAddr BookGetMetrics, API2:361 

msgAddrBookGetServiceDesc, API2:360 

msgAddr BookIsAMemberOf, API2:361 

msgAddr BookSearch, API2:3 5 8 

msgAddrBookSet, API2:356 

msgAIM GetMaskCIass, API2: 514 

msgAIMSetMaskCIass, API2: 514 

msgAMGetlnsta11Dir, APIl:131 

msgAM GetMetrics, API 1: 130 

msgAMLoadAuxNotebooks, API1: 133 

msgAMLoadFormatConverters, APIl: 133 

msgAMLoadHelp, API 1: 132 

msgAMLoadlnitD 11, API 1: 131 

msgAMLoadMisc, API 1: 131 

msgAMLoadOptionalDlls, APIl: 133 

msgAMLoadStationery, API 1: 131 

msgAMPopupOptions, API 1: 132 

msgAMRemoveHelp, APIl:132 

msgAMRemoveStationery, API 1: 132 

msgAMT erminate, API 1: 134 

msgAMTerminateOK, APIl:134 

msgAMT erminate Vetoed, API 1: 135 

msgAMU nloadFormatConverters, 
APIl: 133 

msgAMU nloadOptionalD 11s, API 1: 134 

msgAncestor, API 1: 18 

msgAncestorIsA, API 1: 18 

msgAnimSPaperDone, APIl :635 

msgAnimSPaperGetDelay, API 1 :634 

msgAnimSPaperGetlnterstroke, API 1 :634 

msgAnimSPaperGetLine, API 1 :634 

msgAnimSPaperGetScaIe, API 1 :635 

msgAnimSPaperReadScribbIe, APIl:633 

msgAnimSPaperSetDelay, API 1 :634 

msgAnimSPaperSetlnterstroke, API 1 :634 

msgAnimSPaperSetLine, API 1 :634 

msgAnimSPaperSetScaIe, API1:635 

msgAnimSPaperWriteScribbIe, API 1 :634 

msgANMAddT oStationeryMenu, 
API2:522 

msgANMCopylnDoc, API2:520 

msgANM Create Doc, API2: 519 

msgANMCreateSect, API2:519 

msgANMDelete, API2:521 

msgANMDeleteAlI, API2:521 

msgANMGetNotebookPath, API2:521 

msgANMGetNotebookUUID, API2:521 

msgANMGetStationeryMenu, API2:522 

msgANMMovelnDoc, API2:520 

msgANMOpenNotebook, API2:522 

msgANMPopUpStationeryMenu, 
API2:522 

msgANMRemoveFromStationeryMenu, 
API2:523 

msgANMStationeryMenuN ameChanged, 
API2:523 

msgAppAbout, API 1: 102 

msgAppActivate, API 1: 84 

msgAppActivateChild, API 1 :89 

msgAppActivateChildren, API 1 :89 

msgAppActivateCorkMargin Children, 
APIl:89 

msgAppAddCards, API 1 :96 

msgAppAddFloatingWin, API 1 :90 

msgAppAppIyEmbeddeeProps, API 1 :97 

msgAppChanged, API 1: 1 08 

msgAppChildChanged, API 1: 106 

msgAppCIose, APIl:87, APIl:130 

msgAppCloseChild, API 1 :92 

msgAppCIoseChildren, API 1 :92 

msgAppClosed, API 1: 105 

msgAppCloseTo, API1:94 

msgAppCopied, API 1: 107 

msgAppCopySel, API 1: 102 

msgAppCreateClientWin, API 1: 100 

msgAppCreated, API 1: 106 

msgAppCreateLink, API 1 :99 

msgAppCreateMenuBar, API 1: 100 

msgAppDelnstalled, API 1: 108 

msgAppDelete, APIl:89 

msgAppDeleted, API 1: 106 

msgAppDeleteLink, API 1: 100 

INDEX 793 

msgAppDeleteSel, API 1: 103 

msgAppDirGetAttrs, API 1: 113 

msgAppDirGetBookmark, API 1: 116 

msgAppDirGetClass, API1:114 

msgAppDirGetDirectN umChildren, 
APIl:117 

msgAppDirGetFlags, API1: 113 

msgAppDirGetGlobalSequence, API 1: 116 

msgAppDirGetN ext, API 1: 117 

msgAppDirGetNextlnit, APIl:116 

msgAppDirGetNumChildren, API1:115 

msgAppDirGetSequence, API 1: 115 

msgAppDirGet T otalN umChildren, 
APIl:118 

msgAppDirGetUID, API1:114 

msgAppDirGetUUID, APIl:114 

msgApp Dir Reset, API 1: 117 

msgAppDirSeqToName, APIl: 117 

msgAppDirSetAttrs, API 1: 113 

msgAppDirSetBookmark, API 1: 116 

msgAppDirSetClass, APIl: 114 

msgAppDirSetFlags, APIl: 113 

msgAppDirSetNumChildren, APIl:115 

msgAppDirSetSequence, API 1: 115 

msgAppDirSetUID, APIl:115 

msgAppDirSetUUID, APIl:114 

msgAppDispatch, APIl :88 

msgAppExecute, APIl:104, API2:458 

msgAppExecuteGesture, API 1: 104 

msgAppExport, API 1: 101 

msgAppFindFloatingWin, API1:90 

msgAppFloated, API 1 : 106 

msgAppGetApp Win, API 1 :93 

msgAppGetBorderMetrics, API 1 :97 

msgAppGetDocOptionSheetClient, 
APIl:96 

msgAppGetEmbeddedWin, API1:93 

msgAppGetEmbeddor, API 1 :93 

msgAppGetLink, API 1: 100 

msgAppGetMetrics, API 1: 87 

msgAppGetName, API1:88 

msgAppGetOptionSheet, API1:95 

msgAppGetRoot, API 1 :90 

msgAppHelp, API 1: 1 02 

msgAppHide, APIl :95 

msgApplmport, API 1: 101 

msgApplnit, APIl:85, APIl:129 

msgApplnstalled, API 1: 108 

msgApplnvokeManager, API 1: 1 04 

msgAppIsPageLevel, API 1 :99 

msgAppMgrActivate, API 1: 123 



794 INDEX 

msgAppMgrCopy, APIl:123 

msgAppMgrCreate, API 1: 122 

msgAppMgr Delete, API 1: 124 

msgAppMgrDumpSubtree, API 1: 126 

msgAppMgrFSCopy, APIl:124 

msgAppMgr F SMove, API 1: 124 

msgAppMgrGetMetrics, API 1: 122, 
API2:560 

msgAppMgrGetResList, API 1: 126 

msgAppMgrGetRoot, API 1: 125 

msgAppMgrMove, APIl:123 

msgAppMgrRename, APIl:125 

msgAppMgrRenumber, APIl:126 

msgAppMgr Revert, API 1: 126 

msgAppMgrSetIconBitmap, API 1: 125 

msgAppMgrSetSmallIconBitmap, 
APIl:125 

msgAppMgrShutdown, API 1: 125 

msgAppMoved, API 1: 1 07 

msgAppMoveSel, API 1: 102 

msgAppOpen, APIl:86, APIl:129 

msgAppOpenChild, APIl:92 

msgAppOpenChildren, API 1 :92 

msgAppOpened, API 1: 105 

msgAppOpenTo, APIl:94 

msgAppOwnsSelection, API 1 :94 

msgAppPrint, API 1: 101 

msgAppPrintSetup, APIl: 101 

msgAppProvideMain Win, API 1 :99 

msgAppRemoveFloatingWin, API 1 :90 

msgAppRename, APIl :88 

msgAppRestore, APIl:85, APIl:129 

msgAppRestoreFrom, APIl :85 

msgAppRevert, APIl :99 

msgAppSave, APIl :85 

msgAppSaveChild, API 1: 86 

msgAppSaveChildren, API 1: 86 

msgAppSaveTo, APIl:86 

msgAppSearch, API 1: 103 

msgAppSelChanged, APIl:I05 

msgAppSelectAll, API 1: 1 03 

msgAppSelectAll, API2:248 

msgAppSelOptions, API 1: 103 

msgAppSend, API 1: 101 

msgAppSetBorderStyle, API 1 :98 

msgAppSetChildAppParentWin, APII :87 

msgAppSetControls, API 1 :97 

msgAppSetCopyable, API 1 :91 

msgAppSetCorkMargin, APII :98 

msgAppSetDeletable, API 1 :91 

msgAppSetFloatingRect, API 1 :95 

msgAppSetHotMode, API 1 :91 

msgAppSetMain Win, API 1: 87 

msgAppSetMenuLine, API 1 :98 

msgAppSetMovable, API 1 :91 

msgAppSetName, APIl:88 

msgAppSetOpenRect, API 1 :95 

msgAppSetParent, API 1 :90 

msgAppSetPrintControls, API 1 :97 

msgAppSetReadOnly, API 1 :91 

msgAppSetSaveOn Terminate, API 1: 105 

msgAppSetScrollBars, API 1 :98 

msgAppSet TitleLine, API 1 :98 

msgAppShowOptionSheet, API 1 :96 

msgAppS pell, API 1: 104 

msgAppTerminate, APIl:91 

msgApp TerminateConditionChanged, 
APIl:105 

msgApp T erminateO K, APIl:9 3 

msgApp Undo, API 1: 102 

msgApp Win Close, API 1: 146 

msgAppWinCreateIcon, APIl:147 

msgApp WinDelete, API 1: 147 

msgApp WinDestroyIcon, API 1: 147 

msgApp WinEditN ame, APIl: 147 

msgApp WinGetMetrics, API 1: 145 

msgAppWinGetState, APIl:145 

msgApp WinGetStyle, APIl: 145 

msgAppWinOpen, APIl:146 

msgApp WinSetIconBitmap, API 1: 146 

msgApp WinSetLabel, API 1: 146 

msgApp WinSetSmallIconBitmap, 
APIl:146 

msgApp WinSetState, APIl: 145 

msgApp WinSetStyle, API 1: 146 

msgAppWinSetUUlD, API1: 147 

msgApp WinStyleChanged, API 1: 147 

msgA TPRespPktSize, API2:367 

msgBatteryCritical, API2:640 

msgBatteryGetMetrics, API2:639 

msgBatteryLow, API2:640 

msgBatterySetLevel, API2:640 

msgBitmapCacheImageDefaults, 
APIl:227 

msgBitmapChange, API 1 :228 

msgBitmapFill, API 1 :227 

msgBitmapGetMetrics, API 1 :226 

msgBitmaplnvert, API 1 :227 

msgBitmapLighten, API 1 :227 

msgBitmapMaskChange, APII :228 

msgBitmapPixChange, API 1 :227 

msgBitmapSetMetrics, API 1 :226 

msgBitmapSetSize, APIl:227 

msgBookshelfGetMetrics, API2: 183 

msgBookshelfSetMetrics, API2: 184 

msgBorderConvertUnits, APIl:336 

msgBorder Flash, API 1 :340 

msgBorderGetBackgroundRG B, 
APIl:336 

msgBorderGetBorderRect, API 1 :337 

msgBorderGetDirty, APIl:335, APIl:382 

msgBorderGetF oregroundRG B, 
APIl:336, APIl:353 

msgBorderGetInnerRect, APIl:338 

msgBorderGetLook, APIl:334 

msgBorderGetMarginRect, API 1 :338 

msgBorderGetOuterOffsets, API 1 :339 

msgBorderGetOuterSize, API 1 :338 

msgBorderGetOuterSizes, API 1 :339 

msgBorderGetPreview, APIl:335 

msgBorderGetSelected, API 1 :335 

msgBorderGetStyle, API 1 :332 

msgBorderInkToRGB, APIl:336 

msgBorderInset ToBorder Rect, APIl :338 

msgBorderInset T olnner Rect, APIl :338 

msgBorderInset ToMarginRect, APIl :338 

msgBorderPaint, APIl :339 

msgBorderPaintForeground, API 1 :340, 
APIl:448 

msgBorderPropagateVisuals, APIl :335 

msgBorder ProvideBackground, API 1 :340 

msgBorderProvideDeltaWin, APIl:339 

msgBorderRGBTolnk, APIl:336 

msgBorderSetDirty, APIl:335, APIl:382 

msgBorderSetLook, API 1 :334 

msgBorderSetPreview, API 1 :334 

msgBorderSetSelected, APIl :335 

msgBorderSetStyle, API 1 :332 

msgBorderSetStyleNoDirty, API 1 :333 

msgBorderSetVisuals, APIl :337 

msgBorderTop, APIl:340 

msgBorderXOR, APIl:339 

msgBrowserBookmark, API2: 196 

msgBrowserByDate, API2: 188 

msgBrowserByName, API2:188 

msgBrowserByPage, API2: 189 

msgBrowserBySize, API2: 188 

msgBrowserByType, API2:188 

msgBrowserCollapse, API2: 188 

msgBrowserConfirmDelete, API2: 189 

msgBrowserCreateDir, API2: 187 

msgBrowserCreateDoc, API2: 196 

msgBrowserDelete, API2: 189 



msgBrowserExpand, API2: 188 

msgBrowserExport, API2: 189 

msgBrowserGesture, API2: 197 

msgBrowserGetBaseFlatLocator, API2: 195 

msgBrowserGetBrowWin, API2: 197 

msgBrowserGetClient, API2: 195 

msgBrowserGetMetrics, API2: 190 

msgBrowserGoto, API2: 194 

msgBrowserGotoBringto, API2: 194 

msgBrowserReadState, API2: 190 

msgBrowserRefresh, API2: 189 

msgBrowserRename, API2: 189 

msgBrowserSelection, API2: 195 

msgBrowserSelectionDir, API2: 196 

msgBrowserSelectionN ame, API2: 196 

msgBrowserSelectionOff, API2: 196 

msgBrowserSelectionOn, API2: 196 

msgBrowserSelectionPath, API2: 195 

msgBrowserSelection UUID, API2: 195 

msgBrowserSetClient, API2: 195 

msgBrowserSetMetrics, API2: 191 

msgBrowserSetSaveFile, API2: 190 

msgBrowserSetSelection, API2: 194 

msgBrowserShowBookmark, API2: 194 

msgBrowserShowButton, API2: 193 

msgBrowserShowDate, API2:193 

msgBrowserShowHeader, API2: 194 

msgBrowserShowIcon, API2: 193 

msgBrowserShowSize, API2: 193 

msgBrowserShow Type, API2: 193 

msgBrowserUndo, API2: 194 

msgBrowserUserColumn GetState, 
API2:192 

msgBrowserU serColumn QueryState, 
API2:193 

msgBrowserUserColumnSetState, 
API2:192 

msgBrowserUserColumnStateChanged, 
API2:192 

msgBrowserWriteState, API2: 190 

msgBusyDisplay, API 1 :345 

msgBusyGetSize, API 1 :346 

msgBusylnhibit, API 1 :346 

msgBusySetDefaultXY, API 1 :346 

msgBusySetXY, API 1 :346 

msgButtonAcceptPreview, APIl :352 

msgButtonBeginPreview, APIl:352 

msgButtonButtonShowFeedback, 
APIl:351 

msgButtonCancelPreview, APIl:352 

msgButtonDone, APIl:352 

msgButtonGetData, APIl :351 

msgButtonGetMetrics, API 1 :350 

msgButtonGetMsg, APIl :351 

msgButtonGetStyle, API 1 :350 

msgButtonNotify, APIl:353 

msgButtonNotifyManager, APIl:353 

msgButtonRepeatPreview, APIl:3 5 2 

msgButtonSetData, APIl:351 

msgButtonSetMetrics, APIl :350 

msgButtonSetMsg, APIl:351 

msgButtonSetNoNotify, APIl:351 

msgButtonSetStyle, APIl:350 

msgButtonShowFeedback, APIl:435 

msgButtonUpdatePreview, APIl:352 

msgByteBufChanged, API2:206 

msgByteBufGetBuf, API2:206 

msgByteBufSetBuf, API2:206 

msgCan, API 1: 17 

msgCGGetOwner, API2:589 

msgCGlnformDisconnected, API2:590 

msgCGOwnerChanged, API2: 591 

msgCGPollConnected, API2:590 

msgCGSetOwner, API2:590 

msgChanged, API 1 :25 

msgChoiceGetStyle, API 1 :360 

msgChoiceMgrGetOnButton, API 1 :358, 
APIl:541 

msgChoiceMgrSetNoNotify, APIl:358 

msgChoiceMgrSetOnButton, API 1 :358, 
APIl:542 

msgChoiceSetNoNotify, APIl:361 

msgChoiceSetStyle, API 1 :360 

msgCIM~indClass, API2:526 

msgCIMFindProgram, API2:527 

msgCIM GetClass, API2: 526 

msgCIM GetClassList, API2: 526 

msgCIM Get T erminateStatus, API2: 528 

msgCIMLoad, API2:527 

msgCIMT erminate, API2:527 

msgCIMTerminateOK, API2:527 

msgCIMTerminateVetoed, API2:527 

msgClass, API 1: 18 

msgCloseBoxGetStyle, APIl:372 

msgCloseBoxSetStyle, APIl:372 

msgCommandBarGetStyle, APIl:374 

msgCommandBarSetStyle, API 1: 374 

msgConnectionsAddCards, API2:375 

msgConnectionsAddSheet, API2:37 5 

msgConnectionsAutoConnectChanged, 
API2:376 

INDEX 795 

msgConnectionsAutoConnectl tern, 
API2:374 

msgConnectionsCompareItems, API2:372 

msgConnectionsConnectedChanged, 
API2:376 

msgConnectionsConnectl tern, API2:3 74 

msgConnectionsEndConversation, 
API2:376 

msgConnectionsEnumerateItems, 
API2:371 

msgConnectionsEnumerateServers, 
API2:371 

msgConnectionsEnumerate Tags, 
API2:372 

msgConnectionsExpandCollapse, 
API2:373 

msgConnectionsForgetltem, API2:374 

msgConnectionsGetl temlnfo, API2:373 

msgConnectionsGetNetworkView, 
API2:372 

msgConnectionsGetServiceInfo, API2:373 

msgConnectionsGetState, API2:371 

msgConnectionsGetTopCard, API2:375 

msgConnectionsIsParent, API2:376 

msgConnectionsI tern Changed, API2:377 

msgConnectionsRememberChanged, 
API2:377 

msgConnectionsRemember I tern, 
API2:374 

msgConnectionsServiceChanged, 
API2:377 

msgConnectionsSetConnectionsApp, 
API2:373 

msgConnectionsSetSelection, API2:37 5 

msgConnectionsSetState, API2:370 

msgConnectionsStartConversation, 
API2:375 

msgConnectionsTagItem, API2:373 

msgConnections U nAutoConnectl tern, 
API2:375 

msgConnections U nconnectltem, 
API2:374 

msgConnectionsUpdate, API2:373 

msgContentsButtonGoto, APIl:511 

msgControlAcceptPreview, APIl:354, 
APIl:380, APIl:536 

msgControlBeginPreview, APIl:354, 
APIl:380, APIl:520, APIl:536 

msgControlCancelPreview, API 1 :354, 
APIl:380, APIl:537 

msgControlEnable, APIl :378, APIl :609 

msgControlGetClient, APIl:378, 
APIl:520, APIl:599 



796 INDEX 

msgControlGetDirty, API 1 :362, 
APIl:378, APIl:600, APIl:622 

msgControlGetEnable, APIl:362, 
APIl:378, API1:622 

msgControlGetMetrics, APIl:3 77 

msgControlGetStyle, APIl:377 

msgControlGetValue, APIl:355, 
APIl:362, APIl:379, APIl:519, 
APIl:528, APIl:587, 
APIl:589-590, APIl:623 

msgControlProvideEnable, API 1 :381 

msgControlRepeatPreview, API 1 :354, 
APIl:380, APIl:537 

msgControlSetClient, APII :378, 
APIl:470, APIl:520, APIl:600 

msgControlSetDirty, API 1 :362, 
APIl:378, APIl:400, APIl:449, 
APIl:520, API1:587, APIl:589, 
APIl:591-592, APIl:600, 
APIl:623 

msgCon trolSetEnable, API 1 :362, 
APII :378, APII :623 

msgControlSetMetrics, APIl:377, 
APIl:449, APIl:520 

msgControlSetStyle, APIl:377, APIl:449, 
APIl:520 

msgControlSetValue, APIl:354, 
APIl:362, APIl:379, APIl:520, 
APIl:529, APIl:587, 
APIl:589-590, APIl:623 

msgControlUpdatePreview, API 1 :354, 
APIl:380 

msgCopy, APIl:14 

msgCopyRestore, API 1: 14 

msgCounterGetClient, APIl:385 

msgCounterGetLabel, API 1 :386 

msgCounterGetStyle, API 1 :384 

msgCounterGetTotal, APII :385 

msgCounterGetValue, APIl:385 

msgCounterGoto, API 1 :386 

msgCounterlncr, APIl:385 

msgCounterNoti£Y, APIl:386 

msgCounterSetClient, APIl:385 

msgCounterSetStyle, API 1 :384 

msgCounterSetTotal, APIl:385 

msgCounterSetValue, APIl:385 

msgCreated, API 1: 11 

msgCstmLayoutGetChildSpec, APII :369, 
APIl:415, APIl:545 

msgCstmLayoutGetMetrics, API 1 :367 

msgCstmLayoutGetStyle, API 1 :367 

msgCstmLayoutRemoveChildSpec, 
APIl:369 

msgCstmLayoutSetChildSpec, API 1 :368 

msgCstmLayoutSetMetrics, API 1 :367 

msgCstmLayoutSetStyle, API 1 :368 

msgDateFieldGetStyle, APII :586 

msgDateFieldGetValue, APIl:587 

msgDateFieldSetStyle, API 1 :586 

msgDateFieldSetValue, API 1 :587 

msgDcAccumulateBounds, API 1 :273 

msgDcAlignPattern, API 1 :267 

msgDcCacheImage, API 1 :278 

msgDcClipClear, APIl:272 

msgDcClipN ull, API 1 :272 

msgDcClipRect, API 1 :272 

msgDcCopyImage, API 1 :279 

msgDcCopyPixels, API 1 :283 

msgDcDirtyAccumulation, API 1 :273 

msgDcDrawArcRays, APIl:274 

msgDcDrawBezier, APIl:274 

msgDcDrawChordRays, APIl:276 

msgDcDrawEllipse, APII :275 

msgDcDrawImage, APIl:276 

msgDcDrawImageMask, API 1 :278 

msgDcDrawPage Turn, API 1 :282 

msgDcDrawPixels, API 1 :283 

msgDcDrawPolygon, API 1 :275 

msgDcDrawPolyline, API 1 :274 

msgDcDrawRectangle, APIl:275 

msgDcDrawSectorRays, APIl:276 

msgDcDrawText, APIl:280 

msgDcDraw TextDebug, API 1 :281 

msgDcDraw TextRun, API 1 :281 

msgDcFillWindow, APIl:276 

msgDcGetBackgroundRGB, APIl:264 

msgDcGetBounds, API 1 :273 

msgDcGetCharMetrics, API 1 :281 

msgDcGetFillPat, API 1 :266 

msgDcGetFontMetrics, API 1 :282 

msgDcGetFontWidths, API 1 :282 

msgDcGetForegroundRGB, APIl:264 

msgDcGetLine, API 1 :262 

msgDcGetLinePat, API 1 :266 

msgDcGetMatrix, API 1 :271 

msgDcGetMatrixLUC, APIl:271 

msgDcGetMode, API 1 :261 

msgDcGetPixel, APIl:275 

msgDcGetWindow, API 1 :259 

msgDcHit Test, API 1 :272 

msgDcHoldLine, APIl:263 

msgDcldentity, API 1 :269 

msgDcldentityFont, API 1 :280 

msgDclnitialize, APIl:259 

msgDclnvertColors, API 1 :264 

msgDcLUCtoLWC_RECT32, APII :271 

msgDcLUCtoL WC_SIZE32, API 1 :270 

msgDcLUCtoLWC_XY32, APIl:270 

msgDcL WCtoLUC_RECT32, API 1 :270 

msgDcL WCtoLUC_SIZE32, API 1 :270 

msgDcL WCtoLUC_XY32, API 1 :270 

msgDcMatchRGB, APIl:264 

msgDcMeasure Text, API 1 :280 

msgDcMeasure TextRun, API 1 :281 

msgDcMixPattern, API 1 :266 

msgDcMixRGB, API 1 :265 

msgDcOpenFont, API 1 :280 

msgDcPlaneMask, API 1 :262 

msgDcPlaneN ormal, API 1 :261 

msgDcPlanePen, API 1 :261 

msgDcPop, API 1 :260 

msgDcPopFont, API 1 :260 

msgDcPreloadText, API 1 :281 

msgDcPush, API 1 :259 

msgDcPushFont, APII :260 

msgDcRotate, API 1 :269 

msgDcScale, API 1 :269 

msgDcScaleFont, API 1 :280 

msgDcScale World, API 1 :269 

msgDcScreenShot, APII :283 

msgDcSetBackgroundColor, API 1 :265 

msgDcSetBackgroundRG B, API 1 :264 

msgDcSetFillPat, API 1 :266 

msgDcSetForegroundColor, API 1 :265 

m~gDcSetForegroundRGB, API 1 :264 

msgDcSetLine, API 1 :262 

msgDcSetLinePat, API 1 :265 

msgDcSetLine Thickness, API 1 :262 

msgDcSetMatrixLUC, API 1 :271 

msgDcSetMode, API 1 :260 

msgDcSetPixel, API 1 :275 

msgDcSetPreMultiply, API 1 :261 

msgDcSetRop, API 1 :261 

msgDcSetWindow, APII :258 

msgDc Translate, API 1 :269 

msgDcUnitsDevice, APIl:268 

msgDcUnitsLayout, APIl:268 

msgDcUnitsMetric, APIl:267 

msgDcUnitsMil, APIl:267 

msgDcUnitsOut, APIl:268 

msgDcUnitsPen, APIl:267 

msgDcU nitsPoints, APII :267 

msgDcUnitsRules, APIl:268 

msgDcUnitsTwips, APIl:267 

msgDcUnitsWorld, APIl:268 

msgDestroy, API 1 : 11 



msgDestroy, API2:61, API2:314, 
API2:469, API2:550, API2:632 

msgDialEnvBuildDialString, API2:384 

msgDialEnvChanged, API2:382 

msgDialEnvGetCountry, API2:383 

msgDialEnvGetEnvironment, API2:383 

msgDialEnvGetMacrolds, API2:386 

msgDialEnvIsCountryNorthAmerican, 
API2:383 

msgDialEnvOptCardApply, API2:387 

msgDialEnvOptCardRefresh, API2:386 

msgDisable, API 1: 17 

msgDrwCtxGetWindow, API 1 :284, 
APIl:323 

msgDrwCtxSetWindow, APIl:284, 
APIl:323 

msgDump, API1:14 

msgDuplicateLock, API1:19 

msgDVCardPopupChanged, API2:211 

msgDVCloseVolume, API2:212 

msgDVConnectToVolume, API2:212 

msgDVGetBasePath, API2:21 0 

msgDVGetlconPanel, API2:21 0 

msgDVGetOpen Vols, API2:211 

msgDVGetStyle, API2:209 

msgDVOpen Volume, API2:211 

msgDVOptionMenuNeed, API2:211 

msgDVSetlconPanel, API2:211 

msgDVSetOption Volume, API2:211 

msgDVSetStyle, API2:210 

msgDynTableFindButton, API2:531 

msgDynTableGetTable, API2:530 

msgDynTableSetFillInField, API2:531 

msgDynTableSetTable, API2:531 

msgEmbeddedWinBeginCopy, API 1: 161 

msgEmbeddedWinBeginMove, API 1: 161 

msgEmbeddedWinCopy, API 1: 163 

msgEmbeddedWinDestroy, API 1: 167 

msgEmbeddedWinExtractChild, 
APIl: 165 

msgEmbeddedWinForwardedGetDest, 
APIl:164 

msgEmbeddedWinGetDest, API 1: 150, 
APIl:164 

msgEmbeddedWin GetMark, API 1 :448 

msgEmbeddedWinGetMetrics, API1:160 

msgEmbeddedWin GetPen Offset, 
APIl:163 

msgEmbeddedWinGetPrintlnfo, 
APIl:167 

msgEmbeddedWinGetStyle, API 1: 161 

msgEmbeddedWinlnsertChild, API 1: 165 

msgEmbeddedWinMove, API 1: 162 

msgEmbeddedWinMoveCopyOK, 
APIl: 163 

msgEmbeddedWinPosition Child, 
APIl: 165 

msgEmbeddedWinProvidelcon, API 1: 162 

msgEmbeddedWinSetStyle, API 1: 161 

msgEmbeddedWinSetUUID, API 1: 167 

msgEmbeddedWinShowChild, 
APIl:166, APIl:571 

msgEnable, API 1: 17 

msgEnumObservers, API 1 :24 

MsgEqual, APIl:9 

msgException, API 1: 15 

msgExport, API2:216, API2:249 

msgExportGetFormats, API2:216, 
API2:249 

msgExportName, API2:217 

msgFieldAcceptPopUp, API1:396 

msgFieldActivatePopUp, API1:395 

msgFieldCancelPopUp, APIl:396 

msgFieldClear, APIl:397 

msgFieldCreatePopUp, API1:396 

msgFieldCreateTranslator, APIl:398 

msgFieldFormat, APIl:399 

msgFieldGetCursorPosition, API 1 :395 

msgFieldGetDelayScribble, API 1 :397 

msgFieldGetMaxLen, API 1: 394 

msgFieldGetStyle, APIl:393 

msgFieldGetXlate, API1:394 

msgFieldKeyboardActivate, API 1 :397 

msgFieldModified, API 1 :397 

msgFieldNoti£Ylnvalid, API 1 :399 

msgFieldPostValidate, APIl :399 

msgFieldPreValidate, APIl:398 

msgFieldReadOnly, API 1 :397 

msgFieldSetCursorPosition, API1:395 

msgFieldSetDelayScribble, API 1 :397 

msgFieldSetMaxLen, API 1 :395 

msgFieldSetStyle, APIl :393 

msgFieldSetXlate, API 1 :394 

msgFieldTranslateDelayed, API 1 :396 

msgFieldValidate, API1:398 

msgFieldValidateEdit, API 1 :398 

msgFIMFindld, API2:535 

msgFIMGetld, API2:534 

msgFIM GetlnstalledldList, API2: 535 

msgFIMGetNameFromld, API2:535 

msgFIMSetld, API2:535 

msgFixedFieldGetStyle, APIl:588 

msgFixedFieldSetStyle, API 1 :588 

INDEX 797 

msgFontListBoxGetStyle, API 1 :402 

msgFrameClose, API 1 :412 

msgF rameClosed, API 1 :414 

msgFrameDelete, APIl:411 

msgFrameDestroyMenuBar, APIl:410 

msgF rameFloat, API 1 :412 

msgFrameFloated, API1:414 

msgF rameGetAltVisuals, API 1 :410 

msgF rameGetClient, API 1 :410 

msgFrameGetClientWin, API 1 :409 

msgFrameGetMenuBar, APIl:409 

msgF rameGetMetrics, API 1 :408 

msgFrameGetNormalVisuals, APIl :411 

msgFrameGetStyle, API1:408 

msgF ramelsZoomed, API 1 :411 

msgFrameMoveEnable, API1:411 

msgF rameResizeEnable, API 1 :411 

msgF rameSelect, API 1 :413 

msgF rameSelectO K, API 1 :413 

msgFrameSetAltVisuals, API1:410 

msgF rameSetClient, API 1 :410 

msgFrameSetClientWin, API1:409 

msgF rameSetMenuBar, API 1 :41 0 

msgF rameSetMetrics, API 1 :408 

msgF rameSetN ormalVisuals, API 1 :411 

msgF rameSetStyle, API 1 :409 

msgFrameSetTitle, APIl :41 0 

msgFrameShowSelected, API1:411 

msgFrameTopped, API1:414 

msgFrameZoom, APIl:412 

msgF rameZoomed, API 1 :413 

msgFrameZoomOK, APIl:413 

msgFree, API1:740, API1:764 

msgF reeing, API 1: 12 

msgFreeOK, API1:11, API1:84 

msgFreePending, APIl:12, APIl:221 

msgF reeSub Task, API 1: 16 

msgFSChanged, API2:68 

msgFSConnectVol, API2:97 

msgFSCopy, API2:65 

msgFSCopyNoti£Y, API2:66 

msgFSDelete, API2:67 

msgFSDisconnectVol, API2:97 

msgFSEjectMedia, API2:67 

msgFSExclVolAccess, API2:98 

msgFSFlush, API2:67 

msgFSForceDelete, API2:68 

msgFSGetAttr, API2:63 

msgFSGetHandleMode, API2:62 

msgFSGetlnstalledVolumes, API2: 59 



798 INDEX 

rnsgFSGetPath, API2:62 

rnsgFSGetSize, API2:72 

rnsgFSGetVolMetrics, API2:61 

rnsgFSlnstallVol, API2:96 

rnsgFSMakeNative, API2:67 

rnsgFSMernoryMap, API2:73 

rnsgFSMernoryMapF ree, API2: 73 

rnsgFSMernoryMapGetSize, API2:73 

rnsgFSMernoryMapSetSize, API2: 73 

rnsgFSMove, API2:64 

rnsgFSMoveNotify, API2:65 

rnsgFSNodeExists, API2:62 

rnsgFSNull, API2:61 

rnsgFSReadDir, API2:69 

rnsgFSReadDirFull, API2:70 

rnsgFSReadDirReset, API2:70 

rnsgFSRegisterVolClass, API2:96 

rnsgFSRernoveVol, API2:97 

rnsgFSSarne, API2:62 

rnsgFSSeek, API2:72 

rnsgFSSetAttr, API2:63 

rnsgFSSetHandleMode, API2:62 

rnsgFSSetSize, API2:72 

rnsgFSSetTarget, API2:69 

rnsgFSSetVolNarne, API2:61 

rnsgFSTraverse, API2:70 

rnsgFSUnRegisterVolClass, API2:98 

rnsgFSVolChanged, API2:69 

rnsgFSVolIsBusy, API2:98 

rnsgFSVolList, API2:97 

rnsgFSVolSpecific, API2:68 

rnsgGestureMarginGetS tyle, API2:219 

msgGestureMarginSetInkMode, API2:220 

msgGestureMarginSetStyle, API2:220 

rnsgGetObserver, API 1 :25 

rnsgGotoButtonDeleteLink, API 1: 176 

rnsgGotoButtonEditLabel, API 1: 176 

rnsgGotoButtonGetLabel, API 1: 177 

rnsgGotoButtonGetMark, APIl: 176 

rnsgGotoButton GotoLink, API 1 : 176 

rnsgGotoButtonLink ToSelection, 
APIl:176 

msgGotoButtonPressed, API 1: 177 

rnsgGotoButtonRePosition, API 1: 177 

rnsgGotoButtonResetLabel, API 1: 177 

rnsgGrabBoxGetMetrics, API 1 :419 

rnsgGrabBoxGetStyle, API 1 :418 

rnsgGrabBoxSetMetrics, API 1 :419 

rnsgGrabBoxSetStyle, APII :419 

rnsgGrabBoxShow, APIl:419 

rnsgGWinAbort, API 1 :382, API 1 :646 

rnsgGWinBadGesture, APIl :648 

rnsgGWinBadKey, APIl :650 " 

rnsgGWinComplete, APIl:536, APIl:645 

rnsgGWinForwardedGesture, API 1: 569, 
APIl :576, APIl :648 

rnsgGWinForwardedGesture, API 1 :414 

rnsgGWinForwardedKey, APIl:650, 
APIl:686 

rnsgGWinForwardGesture, APII :647 

rnsgGWinForwardKey, API 1 :649 

rnsgGWinGesture, APII :646 

rnsgGWinGestureDone, API 1 :382, 
APIl:651 

rnsgGWinGetHelpld, API 1 :644 

rnsgGWinGetStyle, API 1 :643 

rnsgGWinGetTranslator, APIl :644 

rnsgGWinHelp, API 1 :648 

rnsgGWinIsComplete, API 1 :650 

rnsgGWinKey, APIl :649 

rnsgGWinSetHelpld, APIl :643 

rnsgGWinSetStyle, APIl:643 

rnsgGWinSetTranslator, APIl:644 

rnsgGWinStroke, APIl:645 

rnsgGWinTransforrnGesture, API 1:644 

rnsgGWinTransformXList, APIl:645 

msgGWinTranslator, APIl:645 

msgGWinXList, APIl:570, APIl:646 

msgGWinXList, API2:37 

MsgHandler, APIl:8 

MsgHandlerArg Type, APIl:9 

MsgHandler Primi tive, API 1: 9 

MsgHandlerRingCHelper, API 1:9 

MsgHandlerWithTypes, APIl:9 

msgHeap, APIl: 16 

msgHlMAvailabilityChanged, API2:539 

rnsgHIMGetEngine, API2:538 

rnsgHIMSetEngine, API2:539 

rnsgHSPacketDisable, API2:397 

rnsgHSPacketEnable, API2:397 

rnsgHSPacketFreeCharHandler, API2:396 

rnsgHSPacketSendPacket, API2:396 

rnsgHSPacketSetCharHandler, API2:396 

rnsgHSPacketStatus, API2:395 

rnsgHWXSvcCurrent~hanged, API2:581 

rnsgIconCopyPixels, APIl:429 

rnsgIconF reeCache, API 1 :428 

rnsgIconGetActualPictureSize, API 1 :428 

rnsgIconGetPictureSize, API 1 :427 

rnsgIconGetRects, APIl :428 

rnsgIconGetStyle, API 1 :427 

msgIconProvideBitrnap, API 1: 170, 
APIl:428, APIl:435 

msgIconSarnpleBias, API 1 :429 

msgIconSetPictureSize, API 1 :427 

rnsgIconSetStyle, API 1 :427 

msgIcon ToggleGetOfff ag, API 1 :435 

msgIcon To"ggleGetOn Tag, API 1 :434 

msgIcon T oggleGetStyle, API 1 :434 

rnsgIconToggleSetOfffag, APIl:435 

msgIconToggleSetOnTag, APIl:435 

msgIcon ToggleSetStyle, API 1 :434 

rnsgIcon WinGetMetrics, API 1: 181 

rnsgIconWinGetStyle, APIl:181 

rnsglcon WinSetStyle, API 1: 181 

rnsglMActivate, API2:559 

rnsglMAddCards, API2:560 

rnsgIMCurrentChanged, API2:558 

rnsgIMDeactivate, API2:559 

rnsgIMDeinstall, API2:555, API2:621 

msgIMDeinstalled, APIl:403, API2:559 

msgIMDup, API2:555 

msgIMExists, API2:556 

msgIMFind, API2:555 

msgIMGetCurrent, API2:552 

msgIMGetDir, API2:556 

msgIMGetInstallerNarne, API2:551 

rnsgIM GetInstallerSingularN arne, 
API2:551 

rnsgIM GetInstallPath, API2: 5 56 

rnsgIMGetIternIcon, API2:561 

rnsgIMGetList, API2:553 

rnsgIMGetNarne, API2:553 

rnsgIMGetNotify, API2:560 

rnsgIM GetSerna, API2: 555 

rnsgIM GetSettingsMenu, API2: 561 

rnsgIMGetSize, API2:554 

rnsgIMGetState, API2:554 

rnsgIMGetStyle, API2:550 

rnsgIMGetVerifier, API2:556 

rnsgIMGetVersion, API2:553 

rnsgIMlnstall, API2:554 

rnsgIMlnstalled, APIl :403, API2:559 

rnsgIMln UseChanged, API2:55 8 

rnsgIMModifiedChanged, API2:558 

rnsgIMNarneChanged, API2:558 

rnsglmport, APIl:130, API2:230, API2:249 

rnsglmportQuery, APIl:130, API2:230, 
API2:249 

rnsgIMRernoveHandle, API2:560 

rnsgIMRenarneUninstalledItern, API2:561 

msgIMSetCurrent, API2:552 



msgIMSetlnUse, API2:552 

msgIMSetModified, API2:552 

msgIMSetName, API2:553 

msgIMSetNotify, API2:560 

msgIMSetStyle, API2:551 

msgIMSetVerifier, API2:556 

msgIMUIDeinstall, API2:557 

msgIMUIDup, API2:557 

msgIMUlInstall, API2:557 

msgIMVerify, API2:556 

msgINBXDocGetService, API2:40 1 

msgINBXDoclnInbox, API2:40 1 

msgINBXDoclnputCancel, API2:408 

msgINBXDoclnputDone, API2:407 

msgINBXDoclnputStart, API2:407 

msgINBXDoclnputStartOK, API2:407 

msgINBXDocStatusChanged, API2:408 

msgINBXSvcCopyInDoc, API2:402 

msgINBXSvcGetEnabled, API2:406 

msgINBXSvcGetTempDir, API2:402 

msgINBXSvclnputCancel, API2:405 

msgINBXSvclnputClean U p, API2:405 

msgINBXSvclnputStart, API2:405 

msgINBXSvcLockDocument, API2:403 

msgINBXSvcMovelnDoc, API2:402 

msgINBXSvcNextDocument, API2:403 

msgINBXSvcPollDocuments, API2:402 

msgINBXSvcQueryState, API2:406 

msgINBXSvcScheduleDocument, 
API2:404 

msgINBXSvcSetEnabled, API2:406 

msgINBXSvcStateChanged, API2:406 

msgINBXSvcSwitchlcon, API2:40 1 

msgINBXSvcU nlockDocument, API2:404 

msgIni t, API 1: 11 

msgInputActivityTimer, APIl:670 

msgInputEvent, APIl:341, APIl:381, 
APIl:421, APIl:473, APIl:478, 
APIl:483, APIl:535, APIl:620, 
APIl:652, APIl:666, APIl:729 

msgInputGrabPopped, API 1 :667 

msgInputGrabPushed, API 1 :667 

msgInputModalEnd, API 1 :669 

msgInputModalStart, API 1 :669 

msgInput T argetActivated, API 1 :667, 
APIl:686 

msgInput T argetDeactivated, API 1 :667 

msgIn teger Field GetS tyle, API 1: 590 

msgIntegerFieldSetStyle, API 1 :590 

msgIOBXDocGetService, API2:411 

msgI 0 BXDoclnI 0 Box, API2:412 

msgIOBXDoclOCancel, API2:418 

msgIOBXDoclODone, API2:418 

msgIOBXDoclOStart, API2:417 

msgIOBXDoclOStartOK, API2:417 

msgIOBXDocStatusChanged, API2:418 

msgIOBXSvcCopylnDoc, API2:412 

msgIOBXSvcGetEnabled, API2:417 

msgIOBXSvcGetTempDir, API2:413 

msgI 0 BXSvcI OCancel, API2:416 

msgIOBXSvcIOCleanUp, API2:416 

msgIOBXSvcIOStart, API2:415 

msgIOBXSvcLockDocument, API2:414 

msgIO BXSvcMovelnDoc, API2:412 

msgIOBXSvcNextDocument, API2:413 

msgI 0 BXSvcPollDocuments, API2:413 

msgIOBXSvcQueryState, API2:416 

msgIO BXSvcScheduleDocument, 
API2:415 

msgIO BXSvcSetEnabled, API2:417 

msgIOBXSvcStateChanged, API2:416 

msgIOBXSvcSwitchlcon, API2:411 

msgI 0 BXSvcU nlockDocument, 
API2:414 

msgIPCancelled, API 1 :400, API 1 :682 

msgIPClear, API 1 :682 

msgIPCopied, API 1 :682 

msgIPDataAvailable, API 1 :400, API 1 :683 

msgIPGetClient, API 1 :680 

msgIPGetStyle, API 1 :679 

msgIPGetTranslator, APIl:680 

msgIPGetXlateData, API 1 :683 

msgIPGetXlateString, API 1 :684 

msgIPSetClient, API 1 :681 

msgIPSetString, API 1 :681 

msgIPSetStyle, APIl:679 

msgIPSet Translator, API 1 :680 

msgIPT ranslate, API 1: 681 

msgIPTransmogrified, API 1 :683 

msgIsA, API 1 : 18 

msgIUIGetMetrics, API2:564 

msgIUI GetSelectionN arne, API2: 564 

msgIUIGetSelectionUID, API2:564 

msgIUISelectltem, API2: 564 

msgIUIShowCard, API2:564 

msgKeyboardReturn, APIl :694 

msgKeyBreak, APIl:694 

msgKeyCapBreak, API 1 :699 

msgKeyCapGetDc, API 1 :699. 

msgKeyCapHilite, APIl :699 

msgKeyCapMake, API 1 :699 

msgKeyCapPaintCap, API 1 :698 

msgKeyCapRedisplay, API 1 :699 

INDEX 799 

msgKeyCapScan, API 1 :698 

msgKeyChar, APIl :695 

msgKeyMake, API 1 :694 

msgKeyMulti, APIl :695 

msgLabeWign, API 1 :446 

msgLabelBindStringId, API 1 :443 

msgLabel GetBoxMetrics, API 1 :445 

msgLabelGetCols, API 1 :444 

msgLabelGetCustomGlyph, APIl:445 

msgLabelGetFontSpec, API 1 :443 

msgLabelGetRects, API 1 :446 

msgLabel GetRows, API 1 :444 

msgLabelGetScale, API 1 :444 

msgLabelGetString, API 1 :441 

msgLabelGetStringId, API 1 :442 

msgLabelGetStyle, API 1 :440 

msgLabelGetUnicode, APIl:442 

msgLabelGetWin, APIl :443 

msgLabelProvideBoxSize, API 1 :447 

msgLabelProvidelnsPt, API 1 :446 

msgLabelResolveXY, API 1 :446 

msgLabelSetCols, APIl :445 

msgLabelSetCustomGlyph, APIl:445 

msgLabelSetFontSpec, API 1 :443 

msgLabelSetRows, API 1 :444 

msgLabelSetScale, API 1 :444 

msgLabelSetString, API 1 :442 

msgLabelSetStringId, API 1 :442 

msgLabelSetStyle, API 1 :441 

msgLabelSet Unicode, API 1 :442 

msgLabelSet Win, API 1 :443 

msgLINKAddressAcquire, API2:422 

msgLINKAttributesGet, API2:421 

msgLINKBufferReturn, API2:421 

msgLINKInstallProtocol, API2:421 

msgLINKRemoveProtocol, API2:421 

msgLINKStatusGet, API2:422 

msgLINKTransmit, API2:421 

msgListAddI tern, API2:235 

msgListAddItemAt, API2:235 

msgListBoxAppendEntry, APIl:454, 
APIl:559 

msgListBoxDestroyEntry, API 1 :458 

msgListBoxEntryGesture, APIl:459 

msgListBoxEntryIs Visible, APIl :457 

msgListBoxEnum, APIl :456 

msgListBoxFindEntry, APIl:456 

msgListBoxGetEntry, APIl:455 

msgListBoxGetMetrics, API 1 :453 

msgListBoxInsertEntry, APIl:454, 
APIl:559 



800 INDEX 

msgListBoxMakeEntryVisible, APII :457 

msgListBoxProvideEntry, API 1 :458, 
APIl:558 

msgListBoxRemoveEntry, APIl:455, 
APIl:559 

msgListBoxSetEntry, APIl:455, APIl:559 

msgListBoxSetMetrics, APII :453 

msgListBoxXYT oPosition, API 1 :457 

msgListCall, API2:238 

msgListEnumItems, API2:237 

msgListFindItem, API2:237 

msgListFree, API2:235 

msgListGetHeap, API2:238 

msgListGetltem, API2:237 

msgListNoti£YAddition, API2:239 

msgListN oti£YDeletion, API2:239 

msgListNoti£YEmpty, API2:240 

msgListNoti£YReplacement, API2:240 

msgListN umI terns, API2:237 

msgListPost, API2:239 

msgListRemoveltem, API2:236 

msgListRemoveltemAt, API2:236 

msgListRemovel,tems, API2:237 

msgListReplaceltem, API2:236 

msgListSend, API2:239 

msgMarkCompareMarks, API 1: 191 

msgMarkCompare Tokens, API 1: 193 

msgMarkCopyMark, APIl:192 

msgMarkCreate Token, API 1: 192 

msgMarkDelete Token, API 1: 193 

msgMarkDeliver, API 1: 188 

msgMarkDeliverN ext, API 1: 190 

msgMarkDeliverPos, API 1: 189 

msgMarkEn terChild, API 1: 197 

msgMarkEnterLevel, APIl: 198 

msgMarkEnterParent, APIl: 198 

msgMarkGetChild, API 1: 196 

msgMarkGetComponent, API 1: 191 

msgMarkGetDataAncestor, API 1: 193 

msgMarkGetParent, API 1: 194 

msgMarkGetToken, APIl:198 

msgMarkGet UUIDs, API 1: 194 

msgMarkGotoMark, API 1: 192 

msgMarkN extChild, API 1: 196 

msgMarkPositionAtChild, API 1: 195 

msgMarkPositionAtEdge, API 1: 195 

msgMarkPositionAtGesture, API 1: 196 

msgMarkPositionAtSelection, API 1: 196 

msgMarkPositionAt Token, API 1: 195 

msgMarkSelect Target, API 1: 197 

msgMarkSend, API 1: 190 

msgMarkSetComponent, API 1: 191 

msgMarkShow Target, API 1: 197 

msgMark V alidateComponent, API 1: 194 

msgMenuAdjustSections, APIl :478 

msgMenuButtonExtractMenu, API 1 :467 

msgMenuButtonGetMenu, API 1 :466 

msgMenuButtonGetStyle, API 1 :465 

msgMenuButtonInsertMenu, API 1 :466 

msgMenuButtonMenuDone, API 1 :469 

msgMenuButtonPlaceMenu, API 1 :468, 
APIl:521 

msgMenuButtonProvideMenu, API 1 :468 

msgMenuButtonProvide Width, 
APIl :466, APIl :520 

msgMenuButtonSetMenu, API 1 :466 

msgMenuButtonSetStyle, API 1 :465 

msgMenuButtonShowMenu, API 1 :467 

msgMenuDone, APIl:477 

msgMenuGetStyle, APIl:477 

msgMenuSetStyle, APII :477 

msgMenuShow, APIl :477 

msgMILSvcAddT oConflictManager, 
API2:587 

msgMILSvcAre YouConnected, API2: 5 87 

msgMILSvcConnectionStateResolved, 
API2:588 

msgMILSvcGetDevice, API2: 5 86 

msgMILSvclnstalledMILDevice, 
API2:586 

msgMILSvcPowerOff, API2:587 

msgMILSvcPowerOn, API2:587 

msgMILSvcSetDevice, API2:586 

msgMILSvcStartConnectionProcessing, 
API2:588 

msgModalFilterActivate, API 1 :483 

msgModalFilterDeactivate, API 1 :483 

msgModalFilterDismissWin, APII :483, 
APIl:489 

msgModalFilterGetFlags, API 1 :482 

msgModalFilterSetFlags, API 1 :482 

msgModemActivity, API2:424 

msgModemAnswer, API2:429 

msgModemConnected, API2:425 

msgModemDial, API2:429 

msgModemDisconnected, API2:425 

msgModemErrorDetected, API2:425 

msgModemGetConnectionInfo, API2:427 

msgModemGetResponseBehavior, 
API2:426 

msgModemHangUp, API2:429 

msgModemOffHook, API2:428 

msgModemOnline, API2:428 

msgModemReset, API2:427 

msgModemResponse, API2:424 

msgModemRingDetected, API2:425 

msgModemSendCommand, API2:427 

msgModemSetAnswerMode, API2:429 

msgModemSetAutoAnswer, API2:429 

msgModemSetCommandState, API2:431 

msgModemSetDialType, API2:428 

msgModemSetDuplex, API2:431 

msgModemSetMNPBreakType, API2:432 

msgModemSetMNPCompression, 
API2:432 

msgModemSetMNPFlowControl, 
API2:432 

msgModemSetMNPMode, API2:431 

msgModemSetResponseBehavior, 
API2:426 

msgModemSetSignallingModes, API2:430 

msgModemSetSpeakerControl, API2:431 

msgModemSetS peaker Volume, API2:431 

msgModemSet T oneDetection, API2:430 

msgModem TransmissionError, API2:425 

msgMoveCopylconCancel, API 1: 170, 
APIl:473 

msgMoveCopylconDone, API 1: 170, 
APIl:473 

msgMoveCopylconGetStyle, API 1 :472 

msgMoveCopylconSetStyle, APIl:473 

msgMutate, API 1 :23 

msgNBPConfirm, API2:366 

msgNBPLookup, API2:366 

msgNBPRegister, API2:366 

msgNBPRemove, API2:366 

msgNewArgsSize, APIl:19 

msgNewDefaults, APIl:736, APIl:739, 
APIl:763, APIl:770, APIl:779, 
APIl:785 

msgN ewWithDefaults, API 1: 11 

MsgNoError, APIl:9 

msgNoteCancel, APIl :488 

msgNoteDone, APIl :488 

msgN oteGetMetrics, API 1 :487 

msgN otePaperAddMenus, API2:246 

msgN otePaperAddModeCtrl, API2:246 

msgNotePaperAlign, API2:246 

msgN otePaperCenter, API2:246 

msgNotePaperClear, API2:247 

msgN otePaperClearSel, API2:247 

msgNotePaperDeleteLine, API2:247 

msgN otePaper DeselectLine, API2:247 

msgNotePaperEdit, API2:245 

msgN otePaperGetDclnfo, API2:243 



msgN otePaperGetMetrics, API2:243 

msgN otePaperGetPenStyle, API2:244 

msgN otePaperGetSelType, API2:243 

msgNotePaperGetStyle, API2:245 

msgNotePaperInsertLine, API2:247 

msgNotePaperMerge, API2:246 

msgNotePaperScribble, API2:248 

msgNotePaperSelectLine, API2:247 

msgNotePaperSelectRect, API2:247 

msgN otePaperSetEditMode, API2:244 

msgNotePaperSetPaperAndPen, API2:244 

msgN otePaperSetPenStyle, API2:244 

msgNotePaperSetStyle, API2:244 

msgNotePaperSplit, API2:246 

msgNotePaperTidy, API2:245 

msgNotePaperTranslate, API2:245 

msgNotePaperUntranslate, API2:245 

msgN oteSetMetrics, API 1 :487 

msgNoteShow, APIl:487 

msgN otifyO bservers, API 1: 24 

msgNotUnderstood, APIl:25 

msgNPDataAddedltem, API2:259 

msgNPDataDeleteltem, API2:254 

msgNPDataEnumAllItems, API2:256 

msgNPDataEnumAllI terns Reverse, 
API2:256 

msgNPDataEnumBaselineltems, 
API2:255 

msgNPDataEn urn OverlappedI terns, 
API2:255 

msgNPDataEnumSelectedI terns, 
API2:256 

msgNPDataEnumSelectedI temsReverse, 
API2:256 

msgNPDataGetBaseline, API2:257 

msgNPDataGetBounds, API2:258 

msgNPDataGetCachedDCs, API2:258 

msgNPDataGetCurrentItem, API2:257 

msgNPDataGetFontSpec, API2:258 

msgNPDataGetLineSpacing, API2:258 

msgNPDataGetNextItem, API2:257 

msgNPDataGetSelBounds, API2:258 

msgNPDataHeightChanged, API2:259 

msgNPDataInsertItem, API2:254 

msgNPDataInsertI temF rom View, 
API2:254 

msgNPDataltemChanged, API2:259 

msgNPDataltemCount, API2:257 

msgNPDataltemEnumDone, API2:259 

msgNPDataMovel tern, API2:254 

msgNPDataMovel terns, API2:254 

msgNPDataSelectedCount, API2:257 

msgNPDataSendEnumSelectedI terns, 
API2:256 

msgNPDataSetBaseline, API2:2 5 7 

msgNPDataSetFontSpec, API2:258 

msgNPDataSetLineSpacing, API2:258 

msgNPI temAlign T oBaseline, API2:264 

msgNPItemCalcBaseline, API2:267 

msgNPltemCalcBounds, API2:267 

msgNPItemCanBeTranslated, API2:267 

msgNPItemCanBeUntranslated, 
API2:267 

msgNPltemDelete, API2:262 

msgNPltemDelta, API2:263 

msgNPItemGetMetrics, API2:263 

msgNPltemGetPenStyle, API2:262 

msgNPItemGetScribble, API2:266 

msgNPItemGetString, API2:266 

msgNPltemGetViewRect, API2:263 

msgNPltemGetWordSpacing, API2:267 

msgNPltemHitRect, API2:263 

msgNPItemHitRegion, API2:266 

msgNPltemHold, API2:264 

msgNPltemJoin, API2:265 

msgNPItemMove, API2:263 

msgNPltemPaint, API2:264 

msgNPItemPaintBackground, API2:262 

msgNPItemRelease, API2:264 

msgNPItemScratchOut, API2:265 

msgNPItemSelect, API2:262 

msgNPI ternS elected, API2:262 

msgNPI temSetBaseline, API2:263 

msgNPI temSetBounds, API2:264 

msgNPItemSetOrigin, API2:265 

msgNPltemSetPenStyle, API2:264 

msgNPltemSetString, API2:266 

msgNPltemSplit, API2:265 

msgNPltemSplitAs Words, API2:265 

msgNPltemSplitGesture, API2:265 

msgNPltemTie, API2:265 

msgNPItemToScribble, API2:266 

msgNPltem ToT ext, API2:266 

msgN ull, API 1: 10 

MsgNum, API1:9 

msgNumObservers, APIl:25 

msgObjectAncestorIsA, APIl:21 

msgObjectClass, APII :21 

msgObjecdsA, API 1 :20 

msgObjectNew, APIl:22 

msgObjectOwner, APIl:21 

msgObjectValid, APIl :21 

msgObjectVersion, API1:22 

INDEX 801 

msgOBXDocGetService, API2:441 

msgOBXDodnOutbox, API2:441 

msgOBXDocOutputCancel, API2:447 

msgOBXDocOutputDone, API2:447 

msgOBXDocOutputStart, API2:447 

msgOBXDocOutputStartOK, API2:447 

msgOBXDocStatusChanged, API2:448 

msgOBXSvcCopyInDoc, API2:442 

msgO BXSvcGetEnabled, API2:446 

msgOBXSvcGetTempDir, API2:442 

msgOBXSvcLockDocument, API2:443 

msgOBXSvcMoveInDoc, API2:441 

msgOBXSvcNextDocument, API2:443 

msgOBXSvcOutputCancel, API2:445 

msgOBXSvcOutputCleanUp, API2:445 

msgOBXSvcOutputStart, API2:445 

msgOBXSvcPollDocuments, API2:442 

msgOBXSvcQueryState, API2:446 

msgO BXSvcScheduleDocument, 
API2:444 

msgO BXSvcSetEnabled, API2:446 

msgOBXSvcStateChanged, API2:446 

msgOBXSvcSwitchIcon, API2:441 

msgO BXSvc U nlockDocumen t, API2:444 

msgOptionAddAndInsertCard, API 1 :500 

msgOptionAddCard, API 1 :498 

msgOptionAddCards, API1:510, API2:249 

msgOptionAddF irstCard, API 1 :499 

msgOptionAddLastCard, API 1 :499 

msgOptionApplicable, API1 :503 

msgOptionApplicableCard, API 1: 508 

msgOptionApply, API1:503 

msgOptionApplyAndClose, API1:503 

msgOptionApplyCard, API 1: 507 

msgOptionBookProvideContents, 
APIl:511 

msgOptionCardMenuDone, APIl:505 

msgOptionClean, APIl:504 

msgOptionCleanCard, APIl:508 

msgOptionClose, APIl:504 

msgOptionClosed, APIl:510 

msgOptionCreateSheet, API 1 :510 

msgOptionDirty, APIl:504 

msgOptionDirtyCard, APIl:508 

msgOptionEnumCards, API 1 :497 

msgOptionExtractCard, API 1: 50 1 

msgOptionGetCard, API 1 :495 

msgOptionGetCardAndName, API1:496 

msgOptionGetCardMenu, API1:504 

msgOptionGetCards, APIl:502 

msgOptionGetNeedCards, API1:495 



802 INDEX 

msgOptionGetStyle, APIl:494 

msgOptionGetTopCard, API 1 :496 

msgOptionProvideCardDirty, APII :506 

msgOptionProvideCardWin, APIl:505 

msgOptionProvide TopCard, API 1 :506 

msgOptionRefresh, API 1 :503 

msgOptionRefreshCard, API 1 :507 

msgOptionRemoveCard, API 1: 500 

msgOptionRetireCard, API 1 :509 

msgOptionSetCard, API 1 :498 

msgOptionSetNeedCards, APIl:495 

msgOptionSetStyle, APIl:495 

msgOptionShowCard, APIl:501 

msgOptionShowCardAndSheet, API 1: 502 

msgOptionShowSheet, APIl:505 

msgOptionShow T opCard, API 1: 502 

msgOption ToggleDirty, API 1 :504 

msgOptionUpdateCard, APIl:509 

msgOSOGetServicelnstance, API2:449 

msgOwner, API 1: 19 

msgPageNumGet, APIl:516 

msgPageNumGetStyle, APIl:516 

msgPageNumIncr, APIl:516 

msgPageN umSet, APIl: 516 

msgPageN umSetStyle, API 1 :516 

msgPBMachinePoweringDown, API2:653 

msgPBMachinePoweringUp, API2:653 

msgPDictAddWord, API2:650 

msgPDictDeleteN um, API2:651 

msgPDictDeleteWord, API2:651 

msgPDictEnumerate Words, API2:650 

msgPDictFindWord, API2:651 

msgPDictGetMetrics, API2:650 

msgPDictNumToWord, API2:651 

msgPDictUpdateTemplate, API2:652 

msgPDictWordToNum, API2:652 

msgPenMetrics, APIl:709 

msgPicSegAddGrafic, API1:247 

msgPicSegChangeOrder, API 1 :250 

msgPicSegCopy, API 1 :252 

msgPicSegDelete, API 1 :249 

msgPicSegDelta, API 1 :249 

msgPicSegDrawGrafic, API 1:247 

msgPicSegDrawGraficlndex, API 1 :247 

msgPicSegDrawGraficList, APIl:247 

msgPicSegDrawObject, API 1 :246 

msgPicSegDrawSpline, API 1 :246 

msgPicSegErase, API 1 :249 

msgPicSegGetCount, APIl:250 

msgPicSegGetCurrent, APII :250 

msgPicSegGetFlags, API 1 :248 

msgPicSegGetGrafic, API 1 :249 

msgPicSegGetMetrics, API 1 :248 

msgPicSegHit Test, API 1 :248 

msgPicSegMakelnvisible, API 1 :250 

msgPicSegMakeVisible, APII :250 

msgPicSegPaint, API 1 :246 

msgPicSegPaintObject, API 1 :247, 
APIl:288, APIl:714 

msgPicSegRemove, API 1 :249 

msgPicSegScale Units, API 1 :251 

msgPicSegSetCurrent, API 1 :249 

msgPicSegSetFlags, API 1 :248 

msgPicSegSetMetrics, API 1 :248 

msgPicSegSizeof, API 1 :250 

msgPicSeg Transform, API 1 :251 

msgPixDevGetMetrics, API 1 :322 

msgPMAllDevicesPoweredOn, API2:656 

msgPMDevicePoweringOff, API2:656 

msgPMDevicePoweringOn, API2:656 

msgPMDevicesPowerOn, API2:656 

msgPMGetPowerMetrics, API2:656 

msgPMSetPowerState, API2:655 

msgPopupChoiceGetChoice, APIl:518 

msgPopupChoiceGetStyle, APIl:518 

msgPopupChoiceSetStyle, API 1: 518 

msgPostObservers, API 1 :24 

msgPPortAutoLineFeedOff, API2:452 

msgPPortAutoLineFeedOn, API2:452 

msgPPortCancelPrint, API2:453 

msgPPortGetTimeDelays, API2:452 

msgPPortSetTimeDelays, API2:453 

msgPPortStatus, API2:452 

msgPrefsLayoutSystem, API2:482 

msgPrefsPreferenceChanged, API2:482 

msgPrefs W ritingDone, API2:483 

msgPrefs WritingMany, API2:483 

msgPr F rameExpand, API 1 :20 1 

msgPrF rameSend, APIl :200 

msgPr F rameSetup, APII :200 

msgPrintApp, API 1 :208 

msgPrintEmbeddeeAction, API 1 :209 

msgPrintExamineEmbeddee, API 1 :21 0 

msgPrintGetMetrics, API 1 :207 

msgPrin tGetPrin tableArea, API 1 :211 

msgPrintGetProtocols, API 1 :209 

msgPrintLayoutPage, API 1 :207 

msgPrintPaperArea, APII :208 

msgPrintSetMetrics, API 1 :208 

msgPrintSetPrintableArea, API 1 :21 0 

msgPrintStartPage, API 1 :206 

msgPrLayoutGetMetrics, APIl:214 

msgPrLayoutN extPage, API 1 :214 

msgPrLayoutSetMetrics, APIl:214 

msgPrMarginSetMetrics, API 1 :215 

msgPrnBeginPage, API 1: 154 

msgPrnEndDoc, API 1: 154 

msgPrnEnumModels, APIl:155 

msgPrnGetLptFontMetrics, APIl:156 

msgPrnGetMetrics, APIl: 153 

msgPrnGetModel, APIl: 155 

msgPrnGetPaperConfig, APIl: 153 

msgPrnLpt T extOut, API 1: 156 

msgPrnMoveTo, APIl:155 

msgPrnSetCopyCount, APIl: 154 

msgPrnSetPaperConfig, APIl: 153 

msgPrnSetRotation, API 1: 154 

msgPrnShowPage, API 1: 154 

msgPrnStartDoc, API 1: 154 

msgProgressGetFilled, APIl:527 

msgProgressGetMetrics, APIl:526 

msgProgressGetStyle, API 1 :525 

msgProgressGetU nfilled, API 1: 527 

msgProgressGetVisInfo, API 1 :528 

msgProgressProvideLabel, API 1: 528 

msgProgressSetFilled, APII :527 

msgProgressSetMetrics, API 1: 527 

msgProgressSetStyle, APIl:526 

msgProgressSet Unfilled, API 1: 528 

msgProp, APIl:20 

msgQuickHelpClosed, API2:285 

msgQuickHelpHelpDone, API2:285 

msgQuickHelpHelpShow, APIl:653 

msgQuickHelpHelpShow, API2:284 

msgQuickHelpInvokedNB, API2:285 

msgQuickHelpOpen, API2:285 

msgQuickHelpOpened, API2:285 

msgQuickHelpShow, API2:284 

msgRCAppCancelGotoDoc, APIl:218 

msgRCAppExecuteGotoDoc, API 1 :218 

msgRCAppGotoContents, API 1 :218 

msgRCAppGotoDoc, API 1 :218 

msgRCAppNextDoc, APIl:217 

msgRCAppPrevDoc, API 1 :217 

msgRemoved, API 1 :25 

msgRemoved, APIl:782 

msgRemoveObserver, APII :24 

msgResAgent, API2: 504 

msgResCompact, API2:502 

msgResDeleteResource, API2: 502 

msgResEnumResources, API2:503 



msgResFindResource, API2:496 

msgResFlush, API2: 502 

msgResGetInfo, API2:496 

msgResGetObject, API2:500 

msgResN extDynResld, API2: 504 

msgResPutObject, API2:500 

msgResReadData, API2:496 

msgResReadObject, API2:498 

msgResReadObjectWithFlags, API2:50 1 

msgRestore, API 1: 13 

msgRestoreInstance, API 1: 12 

msgRestoreMsg Table, API 1: 13 

msgResUpdateData, API2:498 

msgResWriteData, API2:497 

msgResWriteObject, API2:499 

msgRes W riteObjectWithFlags, API2:50 1 

msgResXxx, API2:505 

msgSave, API 1: 13 

msgScavenge, API 1: 16 

msgScavenged, API 1: 16 

msgScrAddedStroke, APIl: 718 

msgScrAddedStroke, API 1: 782 

msgScrAddStroke, APIl:714 

msgScrCat, API 1: 715 

msgScrClear, API 1: 716 

msgScrComplete, API 1: 716 

msgScrCompleted, APIl:717, APIl:783 

msgScrCount, APIl:714 

msgScr DeleteStroke, API 1: 715 

msgScr DeleteStrokeArea, API 1: 715 

msgScrGetBase, API 1: 714 

msgScrGetBounds, API 1: 714 

msgScrHit, APIl:717 

msgScrollbarGetStyle, APII :533 

msgScrollbarHorizScroll, APIl :534, 
APIl:570 

msgScrollbarProvideHorizlnfo, APIl:534, 
APIl:571 

msgScrollbarProvide VertInfo, API 1: 534, 
APIl:570 

msgScrollbarSetStyle, API 1: 533 

msgScrollbarUpdate, APIl:533 

msgScrollbarVertScroll, APIl :533, 
APIl:570 

msgScrollWinAddClient Win, APIl: 56 5 

msgScrollWinAlign, API 1: 567 

msgScrollWinCheckScrollbars, API 1: 567 

msgScrollWinGetClientWin, APIl:565 

msgScrollWinGetDefaultDelta, API 1 :567 

msgScrollWinGetHorizScrollbar, 
APIl:566 

msgScrollWinGetInnerWin, APIl:566 

msgScrollWin GetMetrics, API 1: 564 

msgScrollWinGetStyle, APIl :563 

msgScrollWinGetVertScrollbar, APIl:566 

msgScrollWinProvideDelta, API 1 :343, 
APIl:566 

msgScrollWinProvideSize, API 1: 566 

msgScrollWinRefreshSize, API 1: 567 

msgScrollWinRemoveClientWin, 
APIl:565 

msgScrollWinSetMetrics, API 1: 565 

msgScrollWinSetStyle, API 1 :564 

msgScrollWinShowClientWin, API 1 :565 

msgScrRemovedStroke, APIl:718, 
APIl:782 

msgScrRender, APIl:716 

msgScrSetBase, APIl:714 

msgScrStrokePtr, APIl:716 

msgSelBeginCopy, APIl: 170, APIl :730, 
API2:296 

msgSelBeginMove, APIl:169, APIl:730, 
API2:296 

msgSelChangedOwners, API 1:474, 
API2:293 

msgSelChoiceMgrAcquireSel, API 1: 542 

msgSelChoiceMgrGetClient, API 1 :541 

msgSelChoiceMgrGetId, API 1: 541 

msgSelChoiceMgrNullCurrent, APIl:541 

msgSelChoiceMgrN ullSel, API 1 :542 

msgSelChoiceMgrSetClient, API 1: 541 

msgSelChoiceMgrSetId, API 1 :541 

msgSelCopySelection, API 1: 168, 
APIl:730, API2:296 

msgSelDelete, APIl:169, APIl:730, 
API2:248, API2:297 

msgSelDemote, API2:295 

msgSelIsSelected, APIl: 169, API2:296 

msgSelMoveSelection, API 1: 168, 
APIl:730, API2:297 

msgSelOwner, API2:292 

msgSelOwners, API2:293 

msgSelPrimaryOwner, API2:293 

msgSelPromote, APIl: 169, API2:295 

msgSelPromotedOwner, API2:294 

msgSelRememberSelection, API 1: 168, 
API2:297 

msgSelSelect, API 1: 169, API 1 :342; 
API2:295 

msgSelSetOwner, API2:291 

msgSelSetOwnerPreserve, API2:291 

msgSelYield, API 1: 169, API 1 :342, 
API2:294 

msgSendServCreateAddr Win, API2:45 5 

msgSendServDecodeAddrData, API2:457 

INDEX 803 

msgSendServEncodeAddrData, API2:457 

msgSendServEncodeAddr Win, API2:456 

msgSendServFillAddrWin, API2:456 

msgSendServGetAddr Desc, API2:458 

msgSendServGetAddrSummary, API2:456 

msgSetLock, API 1: 18 

msgSetOwner, API 1: 19, API 1 :685, 
APIl:728 

msgSetProp, APIl :20 

msgShadowGetBorder Win, API 1: 544 

msgShadowGetShadowWin, API 1: 545 

msgShadowGetStyle, APIl:544 

msgShadowSetBorder Win, API 1: 545 

msgShadowSetStyle, API 1: 544 

msgSIMGetMetrics, API2:571 

msgSioBaudSet, API2:461 

msgSioBreakSend, API2:463 

msgSioBreakStatus, API2:463 

msgSioControlInStatus, API2:462 

msgSioControlOutSet, API2:462 

msgSioEventGet, API2:465 

msgSioEventHappened, API2:466 

msgSioEventSet, API2:465 

msgSioEventStatus, API2:465 

msgSioFlowControlCharSet, API2:463 

msgSioFlowControlSet, API2:464 

msgSioGetMetrics, API2:466 

msgSiolnit, API2:466 

msgSiolnputBufferFlush, API2:464 

msgSiolnputBufferStatus, API2:464 

msgSioLineControlSet, API2:462 

msgSioOutputBufferFlush, API2:464 

msgSioOutputBufferStatus, API2:464 

msgSioReceiveErrorsStatus, API2:463 

msgSioSetMetrics, API2:466 

msgSioSetReplaceCharProc, API2:467 

msgSMAccess, API2:614 

msgSMAccessDefaults, API2:614 

msgSMBind, API2:615 

msgSMClose, API2:618 

msgSMConnectedChanged, API2:622 

msgSMFindHandle, API2:620 

msgSMGetCharacteristics, API2:619 

msgSMGetClassMetrics, API2:621 

msgSMGetOwner, API2:616 

msgSMGetState, API2:621 

msgSMOpen, API2:617 

msgSM OpenDefaults, API2:617 

msgSMOwnerChanged, API2:622 

msgSMQuery, API2:619 

msgSMQueryLock, API2:618 



804 INDEX 

msgSM QueryU nlock, API2:619 

msgSMRelease, API2:615 

msgSMSave, API2:619 

msgSMSetOwner, API2:616 

msgSMSetOwnerN 0 Veto, API2:620 

msgSMUnbind, API2:615 

msgSPaperAbort, API 1: 726 

msgSPaperAddStroke, API 1: 72 5 

msgSPaperClear, APII :725 

msgSPaperComplete, API 1 : 726 

msgSPaperDeleteStrokes, APII :726 

msgSPaperGetCellMetrics, API 1: 724 

msgSPaperGetFlags, API 1: 723 

msgSPaperGetScribble, API 1: 723 

msgSPaperGetSizes, API 1: 724 

msgSPaperGet Translator, API 1: 723 

msgSPaperGetXlateData, API 1: 727 

msgSPaperGetXlateDataAndStrokes, 
APIl:727 

msgSPaperLocate, APIl:725 

msgSPaperSetCellMetrics, API 1: 724 

msgSPaperSetFlags, API 1: 723 

msgSPaperSetScribble, API 1: 724 

msgSPaperSetSizes, API 1: 725 

msgSPaperSet Translator, API 1 : 723 

msgSPaperXlateCompleted, API 1 :685, 
APIl:726 

msgS pMgrAcceptMisspelling, API2:304 

msgSpMgrCorrectMisspelling, API2:304 

msgSpMgrCreateContext, API2:303 

msgSpMgrFindMisspelling, API2:303 

msgSpMgrGesture, API2:304 

msgSRGetChars, API2:306 

msgSRInvokeSearch, API2:307 

msgSRNextChars, API2:305 

msgSRPositionChars, API2:307 

msgSRRememberMetrics, API2:308 

msgSRReplaceChars, API2:306 

msgStreamBlockSize, API2:82 

msgStreamFlush, API2:72, API2:81 

msgStreamRead, API2:71, API2:80 

msgStreamReadTimeOut, API2:80 

msgStreamSeek, API2:72, API2:81 

msgStreamWrite, API2:7!, API2:80 

msgStream Write TimeOut, API2:81 

msgS tr ListBoxGetD irty, API 1: 5 5 6 

msgStrListBoxGetStyle, API1:556 

msgStrListBoxGetValue, API 1 :403, 
APIl:557 

msgStrListBoxNotify, APIl:558 

msgS tr ListBoxProvideS tring, API 1 :403, 
APIl:557 

msgStrListBoxSetDirty, APIl:5 56 

msgStrListBoxSetValue, API 1 :403, 
APIl:557 

msgStrObjChanged, API2:31 0 

msgStrObjGetStr, API2:310 

msgStrObjSetStr, API2:31 0 

msgSvcAddToManager, API2:627 

msgSvcAutoDetectingHardware, 
API2:634 

msgSvcBindRequested, API2:604 

msgSvcChangeOwnerRequested, 
API2:625 

msgSvcCharactersticsRequested, 
API2:433, API2:606 

msgSvcClassGetInstallDir, API2:634 

msgSvcClassInitService, API2:598 

msgSvcClassLoadInstance, API2:626 

msgSvcClassPop U pOptionSheet, 
API2:634 

msgSvcClass Terminate, API2:630 

msgSvcClass T erminateO K, API2:630 

msgSvcClass Terminate Vetoed, API2:630 

msgSvcClientDestroyedEarly, API2:631 

msgSvcCloseRequested, API2:605 

msgSvcCloseTarget, API2:602 

msgSvcDeinstallRequested, API2:631 

msgSvcDeinstallVetoed, API2:631 

msgSvcGetBindList, API2:628 

msgSvcGetClassMetrics, API2:626 

msgSvcGetConnected, API2:603 

msgSvcGetDependentAppList, API2:629 

msgSvcGetDependentServiceList, 
API2:629 

msgSvcGetFunctions, API2:632 

msgSvcGetHandle, API2:60 1 

msgSvcGetManagerHandleList, API2:629 

msgSvcGetManagerList, API2:628 

msgSvcGetMetrics, API2:433, API2:626 

msgSvcGetModified, API2:60 1 

msgSvcGetM yOwner, API2:623 

msgSvcGetName, API2:633 

msgSvcGetOpenList, API2:628 

msgSvcGetOpenObjectList, API2:628 

msgSvcGetOwned, API2:623 

msgSvcGetStyle, API2:632 

msgSvcGetTarget, API2:603 

msgSvcNameChanged, API2:633 

msgSvcOpenDefaultsRequested, API2:605 

msgSvcOpenRequested, API2:605 

msgSvcOpen Target, API2:602 

msgSvcOwnerAcquired, API2:624 

msgSvcOwnerAcquireRequested, 
API2:624 

msgSvcOwnerReleased, API2:624 

msgSvcOwnerReleaseRequested, 
API2:623 

msgSvcPropagateMsg, API2:633 

msgSvcQueryLockRequested, API2:606 

msgSvcQueryU nlockRequested, API2:606 

msgSvcRemoveFromManager, API2:627 

msgSvcSaveRequested, API2:625 

msgSvcSetConnected, API2:585, API2:603 

msgSvcSetMetrics, API2:433, API2:627 

msgSvcSetModified, API2:60 1 

msgSvcSetStyle, API2:632 

msgSvcSetTarget, API2:603 

msgSvc TargetChanged, API2:634 

msgSvcUnbindRequested, API2:604 

msgSysBootStateChanged, API2:578 

msgSysCreateLiveRoot, API2:576 

msgSysGetBootState, API2:575 

msgSysGetCorrectiveServiceLevel, 
API2:578 

msgSysGetLiveRoot, API2:576 

msgSysGetRuntimeRoot, API2:575 

msgSysGetSecurityObject, API2:577 

msgSysGetVersion, API2:577 

msgSysIsHandleLive, API2: 576 

msgSysSetCorrectiveServiceLevel, 
API2:578 

msgSysSetSecurityObject, API2:577 

msgTabBarGetStyle, API1:574 

msgTabBarSetStyle, API1:575 

msgTabButtonGetFlags, APIl:582 

msg TabButtonGetMetrics, API 1 :582 

msg TabButtonSetFlags, APII :582 

msgTabButtonSetMetrics, API1:582 

msg Task Terminated, API 1: 16 

msgTBLAddRow, API2:314 

msg TBLBeginAccess, API2:317 

msg TBLColGetData, API2:315 

msg TBLColSetData, API2:315 

msg TBLCompact, API2:320 

msg TBLDeleteRow, API2:314 

msg TBLEndAccess, API2:318 

msgTBLFindColNum, API2:319 

msg TBLFindFirst, API2:318 

msgTBLFindNext, API2:319 

msg TBLGetColCount, API2:316 

msg TBLGetColDesc, API2:316 

msg TBLGetInfo, API2:316 



msgTBLGetRowCount, API2:317 

msgTBLGetRowLength, API2:317 

msgTBLGetState, API2:317 

msg TblLayoutAdjustSections, API 1 :606 

msg TblLayoutComputeGrid, API 1 :606 

msg TblLayoutComputeGridXY, 
. APIl:607 I 

msg TblLayoutF reeGrid, API 1 :607 

msg TblLayoutGetMetrics, API 1 :604 

msgTblLayoutGetStyle, APIl:604 

msg TblLayoutSetMetrics, API 1 :604 

msgTblLayoutSetStyle, API 1 :605 

msgTblLayoutXYToIndex, APIl:605 

msgTBLRowAdded, API2:320 

msgTBLRowChanged, API2:321 

msg TBLRowDeleted, API2:320 

msg TBLRowGetData, API2:315 

msg TBLRowN um ToRowPos, API2:320 

msgTBLRowSetData, API2:316 

msgTBLSemaClear, API2:318 

msgTBLSemaRequest, API2:318 

msgTextAffected, API2:29 

msg T extChangeAttrs, API2:23 

msg T extChangeCount, API2:20 

msg T extClearAttrs, API2:24 

msgTextCounterChanged, API2:29 

msg T extEmbedObject, API2:24 

msg TextEnumEmbeddedObjects, 
API2:28 

msgTextExtractObject, API2:25 

msgTextFieldGetStyle, APIl:591 

msgTextFieldSetStyle, APIl:592 

msgTextGet, API2:20 

msgTextGetAttrs, API2:25 

msgTextGetBuffer, API2:20 

msg TextGetMetrics, API2:21 

msgTextlnitAttrs, API2:25 

msg TextlPGetMetrics, API2:42 

msgTextlPSetMetrics, API2:43 

msgTextLength, API2:21 

msgTextModify, API2:21 

msgTextPrintAttrs, API2:26 

msg TextRead, API2:26 

msgTextReplaced, API2:29 

msgTextSetMetrics, API2:21 

msgTextSpan, API2:22 

msg TextSpan Type, API2:23 

msgTextViewAddIP, API2:37 

msgTextViewCheck, API2:38 

msgTextViewEmbed, API2:38 

msgTextViewGetEmbedMetrics, API2:38 

msgTextViewGetStyle, API2:39 

msgTextViewRepair, API2:38 

msg TextViewResolveXY, API2:38 

msgTextViewScroll, API2:39 

msg TextViewSetSelection, API2:40 

msg TextViewSetStyle, API2:40 

msgTextWrite, API2:27 

msg TiffGetMetrics, API 1 :288 

msgTiffGetRow, API1:292 

msgTiffGetSizeMils, APIl:290 

msg TiffGetSizeMM, API 1 :290 

msgTiffSave, API1:290 

msg TiffSetGroup3 Defaults, APIl :291 

msg TiffSetMetrics, API 1 :289 

. msgTimerAlarmNotify, API2: 180 

msg TimerAlarmRegister, API2: 179 

msg TimerAlarmStop, API2: 180 

msgTimerNotify, API1:342, API1:490 

msg Timer Notify, API2: 179 

msg TimerRegister, API2: 177 

msg TimerRegisterAsync, API2: 178 

msg TimerRegisterDirect, API2: 178 

msg TimerRegisterlnterval, API2: 178 

msg TimerStop, API2: 179 

msg Timer Transaction Valid, API2: 179 

msg TitleBarGetStyle, API 1 :580 

msg Ti tleBarSetStyle, API 1: 5 80 

msg Tk T ableAddAsF irst, API 1 :362, 
APIl:577, APIl:597 

msg Tk TableAddAsLast, API 1 :362, 
APIl:577, APIl:598 

msgTkTableAddAsSibling, API1:363, 
APIl:577, APIl:598 

msgTkTableAddAt, APIl:363, APIl:578, 
APIl:598 

msgTkTableChildDefaults, API1:363, 
API1:374, APIl:424, APIl:432, 
API1:478, API1:576, APIl:597, 
API1:622 

msgTkTableGetClient, APIl:596 

msgTkTableGetManager, APIl:596 

msgTkTableGetMetrics, API1:597 

msgTkTableGetStyle, APIl:596 

msgTkTablelnit, API1:598 

msgTkTableRemove, APIl:363, 
API1:578, APIl:598 

msgTkTableSetClient, APIl:596 

msgTkTableSetManager, API1:596 

msgTkTableSetMetrics, API1:597 

msg Tk TableSetStyle, API 1: 596 

msg TP Accept, API2:469 

msgTPBind, API2:470 

msg TPConnect, API2:470 

INDEX 805 

msgTPListen, API2:470 

msgTPRecv, API2:470 

msgTPRecvFrom, API2:470 

msgTPSend, API2:471 

msgTPSendRecvTo, API2:471 

msgTPSendTo, API2:471 

msg Trace, API 1 :22 

msgTrackConstrain, APIl:619 

msgTrackDone, APIl:342, APIl:421, 
APIl:474, APIl:537, APIl:617, 
API1:687 

msg T rackGetMetrics, API 1 :616 

msg T rackGetS tyle, API 1: 615 

msg T rackHide, API 1 :620 

msg TrackProvideMetrics, API 1: 170, 
APIl:415, APIl:474, APIl:618, 
APIl :686, APIl :731 

msg TrackSetMetrics, API 1 :616 

msgTrackSetStyle, APIl:615 

msgTrackShow, APIl:619 

msgTrackStart, API1:617 

msgTrackUpdate, API1:618, APIl:687 

msgUndoAbort, API2:328 

msgUndoAddltem, API2:328 

msgUndoBegin, API2:328 

msgUndoCurrent, API2:329 

msgUndoEnd, API2:329 

msgUndoFreeltemData, API2:330 

msgU ndoGetMetrics, API2:329 

msgUndoltem, API2:330 

msgUndoLimit, API2:330 

msgUndoRedo, API2:330 

msgU nlocks, API 1: 19 

msgVersion, API 1: 19 

msgViewGetDataObject, API1:221 

msgViewSetDataObject, API 1 :221 

msgVolCancelDuplication, API2: 102 

msgVolCancelFormat, API2: 101 

msg V olDuplicateMedia, API2: 101 

msgVolDuplicateReady, API2: 102 

msgVolDuplicate Volume, API2: 101 

msgVolEjectMedia, API2:99 

msgVolFormatMediaBegin, API2: 100 

msgVolFormatMediaCont, API2: 101 

msgVolFormatMediaInit, API2: 100 

msgVolFormatMediaSetup, API2: 100 

msgVolFormatVolumelnit, API2:99 

msg VolInvalidateCaches, API2:99 

msgVolMediaCapacities, API2: 100 

msgVolUpdateBootCode, API2:99 

msgVolUpdateVolumes, API2:98 

msgVSDuplicate Volume, API2: 117 



806 INDEX 

msgVSFormatCompleteNoti£Y, API2: 117 

msgVSFormatMedia, API2: 117 

msgVSFormatVolume, API2:116 

msgVSNameVolume, API2:117 

msgVSUpdateVolumes, API2: 117 

msgWinBeginPaint, APIl:284-285, 
APIl:310 

msg WinBeginRepaint, API 1 :284, 
APIl:310 

msgWinCleanRect, APIl:311 

msgWinCopyRect, APIl:285, APIl:311 

msgWinDelta, APIl:285, APIl:301 

msgWinDeltaOK, APIl:315 

msgWinDevBindPixelmap, APIl:286, 
APIl:322 

msgWinDevBindPrinter, APIl:321 

msgWinDevBindScreen, APIl:321 

msgWinDevGetRootWindow, API 1 :321 

msgWinDevPrintPage, API 1 :323 

msgWinDevSetOrientation, APIl :322 

msg WinDevSizePixelmap, API 1 :286, 
APIl:322 

msgWinDirtyRect, APIl:284, APIl:310 

msgWinDumpTree, APIl:318 

msg WinEndPaint, API 1 :310 

msgWinEndRepaint, API 1 :310 

msgWinEnum, APIl:312 

msgWinExtract, APIl :300 

msg WinExtracted, APIl :316 

msg WinExtractO K, API 1 :315 

msgWinFindAncestorTag, APIl:309 

msgWinFindTag, APIl:309 

msgWinFreeOK, APIl:316 

msg WinGetBaseline, API 1 :304, 
APIl:448, APIl:459, APIl:530, 
API1:609 

msgWinGetDesiredSize, APIl:304 

msgWinGetEnv, API1:318 

msgWinGetFlags, APIl :306 

msgWinGetMetrics, APIl:285, APIl:306 

msgWinGetPopup, API1:308 

msgWinGetTag, APIl:307 

msgWinHitDetect, APIl:285, API1:319 

msgWinInsert, APIl :299 

msg WinInserted, APIl :316 

msgWinInsertOK, APIl:314 

msgWinInsertSibling, API 1 :300 

msg WinIsDescendant, API 1 :308 

msg WinIs Visible, API 1 :307 

msgWinLayout, APIl:302 

msgWinLayoutSelf, APIl:303, APIl:370, 
APIl:447, APIl:469, APIl:489, 
APIl:529, APIl:535, APIl:568, 
APIl:575, APIl:608, APIl:729 

msgWinMoved, API1:316 

msgWinOrphaned, APIl:314 

msgWinRepaint, APIl:314, API1:343, 
APIl:448, APIl:529, APIl:535, 
APIl:545, APIl:729 

msgWinSend, API1:305 

msgWinSetFlags, APIl:306, APIl:415, 
APIl:545, APIl:568 

msgWinSetLayoutDirty, APIl:305 

msgWinSetLayoutD irtyRecursive, 
API1:305 

msgWinSetPaintable, APIl:310 

msgWinSetPopup, API 1 :309 

msgWinSetTag, APIl:307, APIl:430 

msgWinSetVisible, API1:309 

msgWinSized, APIl:317, APIl:729 

msgWinSort, API 1 :317 

msgWinStartPage, APIl:317, APIl:459, 
APIl:685 

msgWinTransformBounds, APIl:285, 
APIl:312 

msgWinUpdate, API1:311 

msgWin VisibilityChanged, APIl :316 

msgXferGet, APIl:731 

msgXferGet, API2:336 

msgXfer List, API 1: 168, API 1: 731 

msgXferList, API2:336 

msgXferStreamAuxData, API2:338 

msgXferStreamConnect, API2:338 

msgXferStreamFreed, API2:339 

msgXferStreamSetAuxData, API2:339 

msgXferStream Write, API2:339 

msgXGestureComplete, API1:736 

msgXIateCharConstrainsGet, API 1: 743 

msgXIateCharConstrainsSet, API 1 : 743 

msgXIateCharMemoryGet, API 1: 744 

msgXIateCharMemorySet, API1:7 44 

msgXIateComplete, API 1: 746 

msgXIateCompleted, APIl:653, APIl:728 

msgXIateCompleted, APIl:747 

msgXIateData, API1:746, API1:770 

msgXIateFlagsClear, APIl:743 

msgXIateGetFlags, API 1: 743 

msgXIateGetHistory Template, API 1: 745 

msgXIateGetXlateCaseMetrics, API 1: 745 

msgXIateMetricsGet, API 1 : 741 

msgXIateMetricsSet, API 1: 740 

msgXIateModeGet, API 1: 740 

msgXIateModeSet, API 1: 740 

msgXIateSetFlags, API 1: 742 

msgXIateSetHistory Template, API 1: 746 

msgXIateSetXlateCaseMetrics, API 1: 745 

msgXIateS tringSet, API 1: 741 

msgXIateTemplateGet, API1:744 

msgXIate T emplateSet, API 1: 744 

msgXShapeRecognize, APIl: 765 

msgXShapeShapeCompatible, API 1: 766 

msgXShapeShapeEvaluate, API 1 :767 

msgXShapeShapeLearn, API 1: 767 

msgXShapeStrokePreview, API 1: 764 

msgXTeachCompleted, APIl:771 

msgXTeachEvaluationGet, API1 :770 

msgXT eachExecute, API 1: 770 

msgXTeachSetld, APIl:770 

msgXTeachSet Target, APIl: 770 

msgXTextComplete, APIl: 780 

msgXTextGetXList, API 1: 780 

msgXTextModLine, APIl:780 

msgXTextNewLine, API1:780 

msgXTextWordList, APIl:780 

msgXtractComplete, API 1: 783 

msgXtractGetScribble, API1: 782 

msgXtractStrokesClear, API 1 :782 

msgXWordComplete, APIl:785 

msgZIPGetMyZone, API2:367 

msgZIPGetZoneList, API2:367 

NAME, API2:208 

NBP _CONFIRM, API2:366 

NBP _LOOKUP, API2:366 

NBP _REGISTER, API2:366 

NBP _REMOVE, API2:366 

NBP _TUPLE, API2:366 

Nil, APIl:53 

NilUUID, API2:83 

NOTE_METRICS, API1:485, APIl:487 

NOTE_NEW, API1:486-487 

NOTE_NEW _ONLY, API 1 :486 

NOTE_PAPE~DC_INFO, API2:243 

NOTE_PAPER_METRICS, API2:242-244 

NOTE_PAPER_NEW, API2:242 

NOTE_PAPER_NEW_ONLY, API2:242 

NOTE_P APER_SEL_ TYPE, API2:244 

NOTE_PAPER_STYLE, API2:242, API2:245 

NOTE_RES_ID, API 1 :486 

NP_DATA_ADDED_ITEM, API2:259 

NP _DATA_ADDED_NP _ITEM_VIEW, 
API2:254 



NP_DATA_DCS, API2:258 

NP_DATA_ITEM, API2:255 

NP _DATA_ITEM_CHANGED, API2:259 

NP_DATA_NEW, API2:253 

NP_DATA_NEW_ONLY, API2:253 

NP_DATA_XY, API2:254 

NP _ITEM_DC, API2:262, API2:264 

NP _ITEM_METRICS, API2:263 

NP _ITEM_NEW, API2:262 

NP_ITEM_NEW_ONLY, API2:261 

NP _PAPER_STYLE, API2:241 

NP _SCRIBBLE_ITEM_NEW, API2:269 

NP _SCRIBBLE_ITEM_NEW _ONLY, API2:269 

NP_TEXT_ITEM_NEW, API2:271 

NP_TEXT_ITEM_NEW_ONLY, API2:271 

NPPaperStyleFromTag, API2:250 

NPPenColor, API2:242 

NPPenStyle, API2:242 

NPPen Weight, API2:242 

OBLANCESTOR_IS_A, API 1 :21 

OBLCAPABILITY, APIl:5, APIl:17 

OBLCAPABILITY_SET, APIl:7, APIl:17 

OBLCLASS, APIl:21 

OBLCOPY, APIl:14 

OBLCOPY_RESTORE, APIl: 14 

OBLDISPATCH_INFO, APIl:35 

OB LENUM_ OBSERVERS, API 1 :24 

OBLEXCEPTION, APIl:15-16 

OBLFS_LOCATOR, APIl:14 

OBLIS_A, APIl:20 

OBLLOCK_SET, APIl:18 

OBLMUTATE, APIl:23 

OBLNOTIFY_OBSERVERS, APIl:7, APIl:24 

OBLOBSERVER_POS, APIl:7, APIl:23, 
APIl:25 

OBLOWNER, APIl:7, APIl:19, APIl:21 

OBJ]ROP, APIl:7, APIl:20 

OBLRESTORE, APIl:8, APIl:12-13 

OBLSAVE, APIl:8, APIl:13 

OBLSTATISTICS, APIl:37 

OBLSUBTASK_FREE, APIl:16 

ObjCallAncestorChk, API 1 :38 

ObjCallAncestorCtxJmp, APIl:38 

ObjCallAncestorCtxOK, APIl:38 

ObjCallAncestorCtxRet, API 1 :38 

ObjCallAncestorCtxWarn, APIl:44-45 

ObjCallAncestorFailed, APIl :38 

ObjCallAncestorJmp, APIl:38 

ObjCallAncestorOK, APIl:38 

ObjCallAncestorRet, APIl:38 

ObjCallAncestorWarn, APIl:44-45 

ObjCallChk, APIl :38 

ObjCallFailed, APIl:38 

ObjCallJmp, APIl:38 

ObjCallNoDebugWarn, APIl:44-45 

ObjCallOK, APIl:38 

ObjCallRet, APIl:38 

ObjCallWarn, APIl:44-45 

OBJECT_NEW_ONLY, APIl:6 

ObjectCall, APIl:26 

ObjectCallAncestor, APIl:26 

ObjectCallAncestorCtx, API 1 :26 

ObjectCallAncestorCtx Warning, APIl :40 

ObjectCallAncestorWarning, APIl:40 

ObjectCallNoDebug, APIl:37 

ObjectCallNoDebugWarning, APIl:40 

ObjectCallWarning, APIl:40 

ObjectlnfoString, API 1 :33 

ObjectlsDynamic, APIl:10 

ObjectlsGlobal, APIl: 10 

ObjectlsGlobalWKN, APIl: 10 

ObjectlsLocal, APIl: 10 

ObjectlsPrivate WKN, API 1: 10 

ObjectlsProcessGlobalWKN, APIl: 10 

Objectls WellKnown, API 1: 10 

ObjectlsWKN, APIl:I0 

ObjectMsgAlter, APIl:36 

ObjectMsgDispatch, APIl:3 5 

ObjectMsgDispatchInfo, APIl:35 

ObjectMsgExtract, API 1 :36 

ObjectMsgLoop, APIl:35 

ObjectOwner, APIl:32 

ObjectPeek, APIl :31 

ObjectPoke, API 1 :31 

ObjectPost, APII :28 

ObjectPostAsync, APIl:29 

ObjectPostAsync Task, APII :29 

ObjectPostAsyncTaskWarning, APIl:43 

ObjectPostAsyncWarning, APIl:42 

ObjectPostDirect, APII :30 

ObjectPostDirectTask, APIl:30 

ObjectPostDirect Task Warning, APII :43 

ObjectPostDirectWarning, APIl:42 

ObjectPostTask, APIl:29 

ObjectPostTaskWarning, APIl:43 

ObjectPostU32, APIl:29 

ObjectPostWarning, APIl:42 

ObjectRead, APIl:31 

ObjectSend, APIl:27 

ObjectSendT ask, APII :27 

ObjectSendTaskWarning, APIl:41 

INDEX 807 

ObjectSendU32, API 1 :27 

ObjectSendUpdate, APIl:27 

ObjectSendUpdateTask, APIl:28 

ObjectSendUpdateTaskWarning, APIl:42 

ObjectSendUpdateWarning, APIl:41 

ObjectSendWarning, API 1 :41 

ObjectValid, APIl:32 

ObjectWarning, APIl:43 

ObjectWrite, APIl:30 

ObjectWritePartial, APIl:31 

ObjPostAsyncJmp, APIl:39 

ObjPostAsyncOK, APIl:39 

ObjPostAsyncRet, APII :39 

ObjPostAsyncTaskWarn, APIl:44-45 

ObjPostAsyncWarn, APIl:44-45 

ObjPostDirectJ mp, API 1 :39 

ObjPostDirectOK, APII :39 

ObjPostDirectRet, API 1 :39 l 
ObjPostDirectTaskWarn, APIl:44-45 ~z><_ 
ObjPostDirectWarn, APIl:44-45 

ObjPostJmp, APIl:39 

ObjPostOK, APIl:39 

ObjPostRet, APIl:39 

ObjPostTaskWarn, APIl:44-45 

ObjPostU32Jmp, APIl:39 

ObjPostU320K, APIl:39 

ObjPostU32Ret, API 1 :39 

ObjPostU32Warn, APIl:44-45 

ObjPostWarn, APIl:44-45 

ObjSendJmp, APIl:38 

ObjSendOK, APIl:38 

ObjSendRet, API 1 :38 

ObjSendT askJ mp, API 1 :39 

ObjSendTaskOK, APIl:39 

ObjSendTaskRet, APIl:38 

ObjSendTaskWarn, APIl:44-45 

ObjSendU32Jmp, APIl:39 

ObjSendU320K, APIl:39 

ObjSendU32Ret, APIl :39 

ObjSendU32Warn, API 1 :44-45 

ObjSendUpdateJmp, APIl :38 

ObjSendUpdateOK, APIl:38 

ObjSendUpdateRet, APIl:38 

ObjSendUpdateTaskJmp, APIl:39 

ObjSendUpdateTaskOK, APIl:39 

ObjSendUpdate TaskRet, API 1 :39 

ObjSendUpdateTaskWarn, APIl:44-45 

ObjSendUpdateWarn, APIl:44-45 

ObjSendWarn, APIl:44-45 

OBX_DOC_EXIT _BEHAVIOR, API2:445 

OBX_DOC_GET_SERVICE, API2:441 



808 INDEX 

OBX_DOC_IN_OUTBOX, AP12:441 

OBX_DOC_OUTPUT_DONE, API2:445, 

AP12:447 

OBX_DOC_STATUS_CHANGED, AP12:448 

OBXSVC_DOCUMENT, API2:443-445 

OBXSVC_MOVE_COPY_DOC, AP12:442 

OBXSVC_NEW, AP12:440 

OBXSVC_NEW_ONLY, AP12:440 

OBXSVC_QUERY_STATE, AP12:446 

Odd, APIl:56 

OPTION_CARD, APIl:493, APIl:495-496, 
APIl :498-50 1, APIl :505-509 

OPTION_ENUM, APl1:497 

OPTION_NEW, APl1:493 

OPTION_NEW _ONLY, APIl :493 

OPTION_STYLE, API 1 :492, API 1 :494-495 

OPTION_ TABLE_NEW, APIl: 513 

OPTION_TABLE_NEW_ONLY, API1:513 

OPTION_TABLE_STYLE, API1:513 

OPTION_TAG, APIl:493, API1:505, 
ApIl:510-511 

ORDERED_SET, AP12:274 

OrderedSetContext, AP12:276 

OrderedSetCount, AP12:281 

OrderedSetCountlnternal, AP12:274 

OrderedSetCreate, AP12:275 

OrderedSetDefaultAccess, AP12:276 

OrderedSetDelete, AP12:280 

OrderedSetDestroy, AP12:277 

OrderedSetEachItem, AP12:280 

OrderedSetExtend, AP12:276 

OrderedSetFind, AP12:278 

OrderedSetFindMaxMin, AP12:278 

OrderedSetFindMinMax, AP12:278 

OrderedSetHeapMode, AP12:276 

OrderedSetlnsert, AP12:277 

OrderedSetltemIndex, AP12:277 

OrderedSetModifyContext, AP12:276 

OrderedSetNext, AP12:279 

OrderedSetNthltem, AP12:277 

OrderedSetPrint, AP12:275 

OrderedSetSizeofItem, AP12:275 

OrderedSetSizeofKey, AP12:275 

OS_ACCESS, API2: 136 

OS_ADDRESS_INFO, API2: 138 

OS_DATE_TIME, AP12:138 

OS_DISPLAY_MODE, AP12: 136 

OS_ENTRYPOINT _TYPE, API2: 139 

OS_ERROR_TYPE, API2:136 

OS_FAST_SEMA, API2: 139 

OS_HEAP _BLOCK_INFO, API2: 156 

OS_HEAP _INFO, API2: 156 

OS_HEAP _MODE, AP12: 156 

OS_HEAP _PRINT_FLAGS, API2: 163 

OS_HEAP _WALK_INFO, API2: 162 

OS_INTERRUPT _INFO, API2: 138 

OS_ITEM_INFO, AP12:274 

OS_ITMSG_INFO, AP12: 139 

OS_MEM_INFO, AP12:137 

OS_MEM_USE_INFO, API2: 137 

OS_PRIORITY_CLASS, AP12:173 

OS_PROG_INFO, AP12:138 

OS_PROGRAM_REGION_INFO, API2: 165 

OS_REGION_ TYPE, API2: 136 

OS_REGSCOPE_INFO, API2: 137 

OS_REGTYPE_INFO, AP12:137 

OS_RESOURCE_AVAlLABLE, API2: 168 

OS_RESOURCE_ZONE, API2: 168 

OS_RESOURCES_INFO, API2: 168 

OS_SET_GET, AP12:136 

OS_SET _TIME_MODE, API2: 136 

OS_SYSTEM_INFO, API2: 138 

OS_TASK_MODE, API2: 172 

OSAppObjectPoke, API2: 152 

OSDebugger, API2: 149 

OS Display, API2: 149 

OSDMAMemAlloc, API2: 169 

OSDMAMemFree, AP12:169 

OSEntrypointFind, API2: 151 

OSEnvSearch, API2: 151 

OSErrorBeep, API2: 152 

OSFastSemaClear, AP12:147 

OSFastSemaInit, API2: 146 

OSFastSemaRequest, API2: 146 

OSGetTime, API2: 147 

OSHeapAllowError, AP12:157 

OSHeapBlockAlloc, API2: 158 

OSHeapBlockFree, API2: 158 

OSHeapBlockResize, API2: 159 

OSHeapBlockSize, AP12: 159 

OSHeapClear, AP12:158 

OSHeapClose, API2: 161 

OSHeapCreate, API2: 157 

OSHeapDelete, API2: 157 

OSHeapEnumerate, AP12: 161 

OSHeapId, API2: 159 

OSHeapInfo, API2: 160 

OSHeapMark, AP12:162 

OSHeapOpen, API2: 160 

OSHeapPeek, AP12:160 

OSHeapPoke, API2: 160 

OSHeapPrint, AP12: 163 

OSHeap Walk, API2: 162 

OSIntEOI, API2: 166 

OSIntMask, AP12:165 

OSITMsgFilterMask, API2: 143 

OSITMsgF romId, API2: 143 

OSITMsgPeek, API2: 143 

OSITMsgQFlush, API2: 143 

OSITMsgReceive, API2: 142 

OSITMsgSend, API2: 142 

OSMemA vailable, API2: 154 

OSMemInfo, API2: 153 

OSMemLock, API2: 170 

OSMemMapAlloc, API2: 168 

OSMemMapFree, API2: 168 

OSMem Unlock, API2: 170 

OSMemUselnfo, AP12:153 

OSModuleLoad, API2: 151 

OSN ext TerminatedT askId, API2: 141 

OSO_NEW, AP12:449 

OSO_NEW _ONLY, AP12:449 

OSPowerDown, AP12:152 

OSPowerUpTime, AP12:148 

osPrintBufferRoutine, API2: 154 

OSProcessProgHandle, API2: 151 

OSProgramDeinstall, API2: 140 

OSProgramInfo, API2: 148 

OSProgramInstall, API2: 139 

OSProgramInstantiate, API2: 140 

OSProgramRegionInfo, API2: 166 

OSResourcesAvailable, API2: 168 

OSSemaClear, AP12:145 

OSSemaCreate, API2: 144 

OSSemaDelete, API2: 144 

OSSemaOpen, AP12: 144 

OSSemaRequest, API2: 144 

OSSemaReset, AP12:145 

OSSemaSet, API2: 145 

OSSemaWait, AP12:146 

OSSetlnterrupt, API2: 150 

OSSet Time, API2: 148 

OSSub TaskCreate, API2: 140 

OSSupervisorCall, API2: 167 

OSSysSemaClear, API2: 167 

OSSysSemaRequest, API2: 166 

OSSystemInfo, API2: 154 

OSTaskAddressInfo, AP12:167 

OSTaskApp, API2:152 

OSTaskDelay, API2: 142 

OST askInstallTerminate, AP12: 153 



OST askMemInfo, API2: 169 

OSTaskNameSet, AP12:152 

OST askPriori tyGet, API2: 141 

OSTaskPrioritySet, API2: 141 

OSTaskProcess, AP12:153 

OST askSharedHeapId, API2: 156 

OST ask Terminate, API2: 140 

OSThisApp, API2: 152 

OSThisProcess, API2: 173 

OSThis Task, API2: 141 

OSThisWinDev, AP12:153 

OSTimerAsyncSema, API2: 150 

OSTimerIntervalSema, AP.I2: 150 

OSTimerStop, API2: 150 

OSTimer Transaction Valid, API2: 150 

OSTone, AP12:152 

OSVirt T oPhys, AP12: 169 

OSWinDevPoke, API2: 153 

OutRange, APIl:56 

*P_BROADCAST_ADDR, AP12:420 

PAGE_NUM_NEW, APIl :515 

PAGE_NUM_NEW_ONLY, APIl:515 

PAGE_NUM_STYLE, API 1: 515-516 

PAPER_CONFIG, APIl:152-153 

PDICT_METRICS, API2:649-650 

PDICT_NEW, AP12:649 

PDICT_NEW_ONLY, AP12:649 

PDICT_NUM_ WORD, API2:650-652 

PEN_DATA, APIl:708 

PEN_METRICS, APIl:708-709 

PEN_STROKE, API 1 :708 

PEN_TIP _ST ATE_TYPE, API 1: 707 

PenCurrentStandardData, API 1: 710 

PenExpander, APll:709 

PenStrokeRetrace, APIl :709 

PenStrokeUnpackl6, APIl:710 

PenStrokeUnpack32, API 1':710 

PIC_SEG_ARC_RAYS, API 1 :244 

PIC_SEG_ELLIPSE, API 1 :243 

PIC_SEG_FONT _STYLE, API 1 :242 

PIC_SEG_GRAFIC, APIl:242, APIl:247, 
APll:249-250 

PIC_SEG_HIT_L1ST, APIl:248 

PIC_SEG_L1ST, API 1 :247 

PIC_SEG_NEW, APll:245 

PIC_SEG_NEW_ONLY, APIl:244 

PIC_SEG_OBJECT, APIl:244, APIl:246 

PIC_SEG_PAINT, APIl :242 

PIC_SEG_PAINT_OBJECT, APIl:247 

PIC_SEG_PLINE_ TYPE, API 1 :242 

PIC_SEG_POLYGON, API 1 :243 

PIC_SEG]OLYLINE, APll:243 

PIC_SEG_RECT, APll:243 

PIC_SEG_SPLlNE, API 1 :243, API 1 :246 

PIC_SEG_TEXT, APIl:243 

PIM_NEW, AP12:567 

PIX_DEV _METRICS, API 1 :322 

PIX_DEV_ORIENT, APIl:322 

POINT, APIl:738 

POPUP_CHOICE_NEW, APIl:517-518 

POPUP_CHOICE_NEW_ONLY, APIl:517 

POPUP_CHOICE_STYLE, APIl:517-518 

PPORT_METRICS, AP12:451 

PPORT _NEW, AP12:453 

PPORT_STATUS, AP12:452 

PPORT_TIME_DELAYS, API2:452-453 

PREF _CHANGED, AP12:482 

PREF _SYSTEM_FONT, AP12:477 

PREF _SYSTEM_FONT _INFO, AP12:483 

PREF _TIME_INFO, AP12:481 

PREF _TIME_MODE, AP12:481 

PREFS_NEW, AP12:482 

PREFS_NEW_ONLY, AP12:482 

PrefsDate T oString, AP12:484 

PrefsSysFontInfo, AP12:483 

Prefs TimeT oString, AP12:484 

PRFRAME_EXPAND, APll:201 

PRFRAME_NEW, API 1: 199-200 

PRFRAME_SEND, API 1 :200 

PRINT_AREA, API 1 :209 

PRINT_DATA, APIl:208 

PRINT_EMBEDDEE_ACTION, APll:206, 
APll:209-210 

PRINT_HFDATA, APIl:204 

PRINT_MARGINS, APIl:204 

PRINT_METRICS, APIl:205, APIl:207-208 

PRINT_PAGE, APll:206-207 

PRINT_PROTOCOLS, API 1 :209 

PRINT_SETUP, API 1 :204 

PRINTABLE_AREA, APll:210-211 

PRLAYOUT_METRICS, APIl:213-214 

PRLAYOUT_NEW, APIl:213 

PRLAYOUT_NEW_ONLY, APIl:213 

PRLAYOUT_PAGE, APll:214 

PRMARGIN_METRICS, API 1 :215 

PRMARGIN_NEW, APll:215 

PRMARGIN_NEW_ONLY, APIl:215 

PRN_ENUM_MODELS, APIl:155 

PRN_FS_HDR, APIl:152 

PRN_METRICS, APIl: 153 

PRN_MODEL, APIl:155 

INDEX 809 

PRN_NEW, APIl:152 

PRN_NEW_ONLY, APIl:152 

PRN_ TEXTOUT, APIl: 156 

PROGRESS_METRICS, API 1: 524, 
APIl:526-527 

PROGRESS_NEW, APIl :525 

PROGRESS_NEW_ONLY, APIl:524 

PROGRESS_PROVIDE_LABEL, API 1: 528 

PROGRESS_REGION, APIl:524, 
APIl:527-528 

PROGRESS_STYLE, APIl:524, APIl:526 

PROGRESS_ VIS_INFO, APIl :528 

PROTOCOL_ADDRESS, AP12:419 

PROTOCOL_INFO, AP12:419 

PutList, API2:78 

PutListX, AP12:76 

QUICK_DATA, AP12:284 

quicksort, API2: 175 

RATIONAL, APIl:289 

RC_INPUT, AP12:485 

RC_TAGGED_STRING, API2:486 

RCAPP _ GOTO _DOC, API 1 :218 

RECTI6, APll:234 

Rect16Empty, APIl :236 

Rect 16Intersect, API 1 :235 

Rect16To32, APIl:234 

RECT32, APll:233 

Rect32Empty, API 1 :236 I 

Rect32EnclosesRect32, API 1 :235 

Rect32Intersect, APIl:235 

Rect32sIntersect, APIl :235 

Rect32T 016, API 1 :234 

Rectlnit, API 1 :234 

RectRight, API 1 :234 

RectTop, APIl:234 

REMOVE_PROTOCOL, AP12:421 

RemoveListltem, AP12:78 

RemoveListlternX, AP12:77 

RES-fiGENT, API2:504 

RES_ENUM, AP12:503 

RES_ENUM_MODE, API2:494 

RES_FILE_NEW, API2:495 

RES_FILE_NEW_ONLY, API2:495 

RES_FIND, API2:496 

RES_INFO, API2:496 

RES_LIST_NEW, API2:504 

RES_L1ST_NEW_ONLY, API2:504 

RES_NEW _MODE, API2:494 

2lIt 

n 



810 INDEX 

RES_READ_DATA, API2:497 

RES_READ_OBLMODE, API2:494 

RES_READ_OBJECT, API2:498, API2:501 

RES_SAVE_RESTORE_FLAGS, API 1: 8 

RES_ WRITE_DATA, API2:497-498 

RES_ WRITE_OBLMODE, API2:494 

RES_ WRITE_OBJECT, API2:499, API2:501 

ResDynldCoum, API2:493 

resForStdMsgDialog, APII :550 

resForStdMsgError, APIl:550 

ResListGroup, API2:493 

ResListList, API2:493 

ResUtilLoadListString, API2:508 

Res U tilLoadObject, API2: 507 

Res U tilLoadS tring, API2: 5 07 

ResWknObjResld, API2:493 

ReverseBits, API 1 :292 

RX_DESC, API2:419 

SameUUIDs, API2:83 

SCALE, APIl:233 

SComposeText, API2:122 

SCR_ADD_STROKE, APIl:714 

SCR_ADDED_STROKE, API1:718 

SCR_DELETE_STROKE_AREA, API1:715 

SCR_HIT, API1:717 

SC~NEW, APIl:713 

SCR_NEW_ONLY, API1:713 

SCR_REMOVED_STROKE, APIl:718 

SCR_RENDER, API 1 : 717 

SC~STROKE_PTR, API1:716 

Screen OnlyStringPrim, API2: 148 

SCROLL_WIN_ALIGN, APIl:567 

SCROLL_WIN_DELTA,.APIl:562, 

APIl: 566-567 

SCROLL_ WIN_METRICS, API 1: 562, 

APIl:565 

SCROLL_ WIN_NEW, API 1: 563 

SCROLL_ WIN_SIZE, API 1 :566 

SCROLL_ WIN_STYLE, APII :561, 
APIl:563-564 

SCROLLBAR_ACTION, APIl:531 

SCROLLBA~NEW, APIl:532 

SCROLLBAR_NEW _ONLY, APII :532 

SCROLLBAR_PROVIDE, API1:532, 
APIl:534 

SCROLLBA~SCROLL, API 1 :532-534 

SCROLLBA~STYLE, APIl:531, API1:533 

SEL_CHOICE_MGR_INFO, APIl:540, 
API1:542 

SEL_CHOICE_MGR_NEW, APII :540-541 

SEL_CHOICE_MGR_NEW_ONLY, APIl:540 

SEL_OWNERS, API2:291, API2:293-294 

SEND_ENUM_ITEMS, API2:256 

SEND_SERV_ADDR_WIN, API2:455-456 

SEND_SERV _CONVERT _ADDR_DATA, 
API2:457 

SEND_TYPE, APIl:35 

SetAttr, API2: 76 

SetSingleAttr, API2:76 

SHADOW_NEW, API 1 :543-544 

SHADOW_NEW_ONLY, APIl:543 

SHADOW_STYLE, API 1 : 543-544 

SHORT _ TX_FRAME, API2:421 

SIM_GET_METRICS, API2:571 

SIM_NEW, API2:571 

SIO_BREAK_SEND, API2:463 

SIO_BREAK_STATUS, API2:463 

SIO_CONTROL_IN_STATUS, API2:462 

SIO_CONTROL_OUT_SET, API2:462 

SIO_DATA_BITS, API2:462 

SIO_EVENT _HAPPENED, API2:466 

SIO_EVENT_MASK, API2:461 

SIO_EVENT_SET, API2:465-466 

SIO_EVENT_STATUS, API2:465 

SIO_FLOW_CONTROL_CHAR_SET, 

API2:463 

SIO_FLOW _CONTROL_SET, API2:465 

SIO_FLOW _TYPE, API2:465 

SIO_INIT, API2:466 

SIO_INPUT_BUFFER_STATUS, API2:464 

SIO_LINE_CONTROL_SET, API2:462 

SIO_METRICS, API2:466-467 

SIO_NEW, API2:467 

SIO_OUTPUT_BUFFER_STATUS, API2:464 

SIO_PARITY, API2:462 

SIO_RECEIVE_ERRORS_STATUS, API2:463 

SIO_REPLACE_CHAR, API2:467 

SIO_STOP _BITS, API2:462 

SIZE16, APIl:233 

SIZE32, APII :233 

SizeOf, API 1 : 56 

SM_ACCESS, API2:614 

SM_BIND, API2:615-616 

SM_CONNECTED_NOTIFY, API2:622 

SM_FIND_HANDLE, API2:620 

SM_GET _CHARACTERISTICS, API2:619 

SM_ GET _CLASS_METRICS, API2:621 

SM_GET_OWNER, API2:616 

SM_GET_STATE, API2:621 

SM_NEW, API2:613 

SM_NEW_ONLY, API2:613 

SM_OPEN_CLOSE, API2:617-618 

SM_OWNER_NOTIFY, API2:622 

SM_QUERY_LOCK, API2:618-619 

SM_QUERY_UNLOCK, API2:619 

SM_RELEASE, API2:615 

SM_SAVE, API2:620 

SM_SET_OWNER, API2:616, API2:620 

SORT_BY, API2: 186 

SP _MG~ GESTURE, API2:303-304 

SP_TOKEN, APIl:552 

SPAPER_CELL_METRICS, APIl:724 

SPAPE~LOCATE, API1:725 

SPAPER_NEW, APII :722 

SPAPER_NEW _ONLY, APII :722 

SPAPER_XDATA, APIl:727 

SPELL_CASE, API2:299 

SPELL_CASE_CONTEXT, API2:299 

SPELL_DICT _LIST, API2 :299 

SPELL_LIST, API2:299 

SPELL_XLATE, API2:299 

SpellAddToAnyDict, API2:30 1 

SpellAddToDict, API2:30 1 

Spell Check, API2:300 

SpellCorrect, API2:300 

SpellCorrectWord, API2:30 1 

SpellDictSelect, API2:300 

SpellGetOptionsX, API2:300 

SpellLineSetCase, API2:302 

SpellSetOptionsX, API2:300 

SpellWordSetCase, API2:30 1 

SR_FLAGS, API2:305 

SR_GET_CHARS, API2:306 

SR_INVOKE_SEARCH, API2:308 

SR_METRICS, API2:305, API2:308 

SR_NEXT_CHARS, API2:305 

SR_POSITION_CHARS, API2:307 

SR_REPLACE_ CHARS, API2:306 

STAT_MENU_STyLE, API2:518 

STATUS_GET, API2:422 

StdError, APIl:551 

StdErrorRes, API 1 :553 

StdioStreamBind, API2:82 

StdioStream ToObject, API2:82 

StdioStream Unbind, API2:82 

StdMsg, APIl:551 

StdMsgCustom, APIl:553 

StdMsgRes, APIl:553 

StdProgressDown, APII :552 

StdProgressUp, APIl:552 

StdSystemError, APIl:551 



StdUnknownError, APIl:550 

STREAM_BLOCK_SIZE, API2:82 

STREAM_NEW, API2:79 

STREAM_READ _WRITE, API2: 80 

STREAM_READ_ WRITE_TIMEOUT, 

API2:80-81 

STREAM_SEEK, API2:81 

STREAM_SEEK_MODE, API2:81 

STRLB_NEW, APIl:556 

STRLB_NEW_ONLY, APIl:555 

STRLB_PROVIDE, APIl:557 

STRLB_STYLE, APIl:555-556 

STROBLNEW, API2:309 

STROBLNEW _ONLY, API2:309 

Sts, APIl :59 

StsChk, APIl:59 

StsFailed, APIl :59 

StsJmp, APIl:59 

StsOK, APIl:59 

StsPrint, APIl:59 

StsRet, APIl :59 

StsWarn, APIl:59 

SVC_ADD_TO_MANAGER, API2:627 

SVC_BIND, API2:604 

SVC_CHARACTERISTICS, API2:606 

SVC_CLASS_METRICS, API2:597 

SVC_DEINSTALL_ VETOED, API2:632 

SVC_GET_FUNCTIONS, API2:632 

SVC_GET_LIST, API2:628-629 

SVC_GET_NAME, API2:633 

SVC_GET_SET_CONNECTED, 

API2:603-604 

SVC_GET_SET_METRICS, API2:626-627 

SVC_GET_SET_MODIFIED, API2:601 

SVC_GET_TARGET, API2:603 

SVC_INIT _SERVICE, API2:598 

SVC_LOAD _INSTANCE, API2:626 

SVC_NEW, API2:600 

SVC_NEW_ONLY, API2:600 

SVC_ OPEN_CLOSE, API2:605-606 

SVC_OPEN_CLOSE_TARGET, API2:602 

SVC_OWNED_NOTIFY, API2:623-625 

SVC_REMOVE_FROM_MANAGER, API2:627 

SVC_SET_TARGET, API2:603 

SVC_STYLE, API2:599 

SVC_TARGET, API2:597 

SVC_ TARGET _CHANGE_NOTIFY, API2:634 

SVC_TERMINATE_ VETOED, API2:630 

SYS_BOOT_PROGRESS, API2:574 

SYS_BOOT_STATE, API2:575, API2:578 

SYS_BOOT_TYPE, API2:574 

SYS_ CREA TE_LIVE_ROOT, API2: 576 

SYS_GET_LIVE_ROOT, API2:576 

SYS_IS_HANDLE_LIVE, API2:576 

SYS_NEW, API2:575 

SYS_NEW_ONLY, API2:575 

SYS_SET_SECURITY_OBJECT, API2:577 

SYSDC_ARC_RAYS, APIl:274, APIl:276 

SYSDC_CACHE_IMAGE, APIl :278 

SYSDC_CAP, APIl:262 

SYSDC_CHAR_METRICS, APIl:255 

SYSDC_COPY_IMAGE, APIl :279 

SYSDC_EXTENTS16, APIl:255 

SYSDC_FONT _ATTR, APIl :254 

SYSDC_FONT_METRICS, APIl:254 

SYSDC_FONT _SPEC, API 1 :254 

SYSDC_FONT _STATE, API 1 :260 

SYSDC_FONT _WIDTHS, API 1 :254 

SYSDC_IMAGE_FLAGS, API 1 :277 

SYSDC_IMAGE_INFO, API 1 :277-278 

SYSDCJOIN, APIl:262 

SYSDC_LINE, API 1 :262 

SYSDC_MIX_PAT, APIl:266 

SYSDC_MIX_RGB, APIl:265 

SYSDC_MODE, API 1 :260 

SYSDC_NEW, APIl:258 

SYSDC_NEW_ONLY, APIl:258 

SYSDC_PAGE_ TURN, API 1 :282 

SYSDC_PIXEL, API 1 :275 

SYSDC_PIXELS, API 1 :283 

SYSDC_POLYGON, APIl:274-275 

SYSDC_RGB, API 1 :263 

SYSDC_ROP, API 1 :261 

SYSDC_SCREEN_SHOT, APIl :283 

SYSDC_STATE, APIl:259-260 

SYSDC_TEXT_OUTPUT, APIl:255 

SysDcFontld, APIl:279 

SysDcFontString, API 1 :280 

TA_ALIGN_BASE, API2: 12 

TA_CHAR_ATTRS, API2:12 

TA_CHAR_MASK, API2:12 

TA_MANY_TABS, API2:14 

TA_PARA_ALIGN, API2:14 

TA_PARA_ATTRS, API2: 14 

TA_PARA_MASK, API2:14 

TA_TAB_LEADER, API2: 13 

TA_TAB_STOP, API2:13 

TA_TAB_TYPE, API2: 13 

TA_ TABS, API2: 13 

TAB_BAR_NEW, APIl:574 

INDEX 8" 

TAB_BAR_NEW_ONLY, APIl:574 

TAB_BAR_STYLE, APIl:573, APIl:575 

TAB_BUTTON_METRICS, APIl:581-582 

TAB_BUTTON_NEW, APIl:581-582 

TAB_BUTTON_NEW_ONLY, APIl:581 

Tag, APIl:58 

TagAdmin, APIl:58 

T agAndFlags, APIl: 5 8 

TagFlags, APIl:58 

TagNum, APIl:58 

TagPaperStyle, API2:250 

TBL_BEGIN_ACCESS, API2:317 

TBL_BOOL_OP, API2:318 

TBL_COL_DESC, API2:312 

TBL_COL_GET_SET_DATA, API2:315 

TBL_COL_NUM_FIND, API2:320 

TBL_ CONVERT_ROW _NUM, API2:320 

TBL_CREATE, API2:313 

TBCEND_ACCESS, API2:318 

TBL_EXIST, API2:313 

TBL_FIND_ROW, API2:319 

TBL_FREE_BEHAVE, API2:313 

TBL_GET_COL_DESC, API2:317 

TBCGET_SET_ROW, API2:315-316 

TBL_GET_STATE, API2:317 

TBL_HEADER, API2:316 

TBL_LAYOUT_CONSTRAINT, APIl:602 

TBL_LAYOUT _COUNT, API 1 :603 

TBL_LAYOUT_GRID, APIl:606-607 

TBL_LAYOUT_GRID_VALUE, APIl:606 

TBL_LAYOUT _INDEX, API 1 :605 

TBL_LAYOUT_METRICS, APIl:603-604 

TBL_LAYOUT_NEW, APIl:603 

TBL_LAYOUT_SIZE, APIl:603 

TBL_LAYOUT_STYLE, APIl:602, APIl:605 

TBL_NEW, API2:313 

TBL_NEW_ONLY, API2:313 

TBL_SEARCH_SPEC, API2:318 

TBL_STATE, API2:317 

TBL_STRING, API2:312 

TBL_TYPES, API2:312 

TO_METRICS, API2:18, API2:21 

TO_NEW, API2:18-19 

TO_NEW _ONLY, API2: 18 

TEACH_DATA, APIl:770 

TEACH_STATUS, APIl:769 

TEIsBlank, API2:4 

TEIsLineBreak, API2:4 

TEIsSentenceEnd, API2:4 

TEIsSpecialPunct, API2:4 

TEIsWord, API2:5 



812 INDEX 

TEXT_AFFECTED, API2:19, API2:29 

TEXT_BUFFER, API2:18, API2:20-21 

TEXT_CHANGE_ATTRS, API2:19, API2:23, 
API2:26 

TEXT_COUNTER_CHANGED, API2:19, 
API2:29 

TEXT_DIRECTION, API2:18 

TEXT_EM BED_OBJECT, API2: 15, API2:25 

TEXT_ENUM_EMBEDDED, API2: 15, 
API2:28 

TEXT_FIELD_NEW, APIl:591 

TEXT_FIELD_NEW_ONLY, APIl:591 

TEXT_FIELD_STYLE, API 1: 591-592 

TEXT_GET_ATTRS, API2:19, API2:25 

TEXT_READ, API2:15, API2:26 

TEXT_REPLACED, API2:19, API2:30 

TEXT_SPAN, API2:18, API2:22-23 

TEXT_SPAN_AFFECTED, API2:18 

TEXT_WRITE, API2:15, API2:27 

TextCreateTextScrollWin, API2:41 

T extDeleteMany, API2: 16 

TextFindNextParaTab, API2: 16 

TextlnitCharAttrs, API2: 17 

TextlnitCharMask, API2: 17 

T extlnitParaAttrs, API2: 17 

TextlnitParaMask, API2: 17 

TextlnsertOne, API2: 16 

TEXTIP _METRICS, API2:42-43 

TEXTIP _NEW, API2:43 

TIFF_METRICS, APIl :289 

TIFF_NEW, APIl:288 

TIFF_NEW_ONLY, APIl:287 

TIFF_SAVE, APIl:291-292 

TIFF_SA VE_STYLE, API 1 :290 

TIFF_STYLE, API 1 :287 

TILE_LOCATOR, APIl:293 

TilePopVp, APIl:293 

TIME~ALARM_INFO, API2: 179 

TIMER_ALARM_MODE, API2: 179 

TIMER_INTERVAL_INFO, API2: 178 

TIMER_NOTIFY, API2: 179 

TIMER_REGISTE~INFO, API2: 177-178 

TITLE_BAR_NEW, API 1: 579 

TITLE_BAR_NEW_ONLY, APIl:579 

TITLE_BAR_STYLE, APIl:579-580 

TK_TABLE_ADD_AT, APIl:598 

TK_TABLE_ADD_SIBLING, APIl:598 

TK_TABLE_ENTRY, APIl:594 

TK_TABLE_INIT, APIl:598 

TK_TABLE_METRICS, APIl:597 

TK_TABLE_NEW, APIl:595 

TK_ TABLE_NEW _ONLY, API 1 :594 

TK_TABLE_STYLE, APIl:593, APIl:596 

TkTableFillArrayWithFonts, API1:599 

TkTableFreeArray, APIl:599 

TIConstraint, API 1 :603 

TOGGLE_TABLE_NEW, API1:621 

TOGGLE_TABLE_NEW_ONLY, APIl:621 

TP _ACCEPT, API2:469 

TP _BIND, API2:470 

TP _CONNECT, API2:470 

TP _LISTEN, API2:470 

TP _NEW, API2:469 

TP_NEW_ONLY, API2:469 

TP_RECV, API2:470 

TP _RECVFROM, API2:470 

TP_SEND, API2:471 

TP _SENDRECVTO, API2:471 

TP_SENDTO, API2:471 

TRACK_METRICS, APIl:612, 
API1:616-620 

TRACK_NEW, APIl:612, APIl:615 

TRACK_STYLE, API 1 :612, API 1 :615-616 

TV_CARD_INDEX, API2:7 

TV_CHAR_OPTION, API2:7 

TV _EMBED_METRICS, API2:34, 
API2:37-38 

TV_NEW, API2:41 

TV_NEW_ONLY, API2:40 

TV_PARA_OPTION, API2:8 

TV_RESOLVE, API2:35, API2:39 

TV_SCROLL, API2:36, API2:39 

TV_SELECT, API2:36, API2:40 

TV_STYLE, API2:33, API2:39-40 

TV_VIEW_OPTION, API2:8 

1VMakeCardTag, API2:8 

1VMakeCharOptTag, API2:8 

1VMakeParaOptTag, API2:8 

1VMakeTag, API2:8 

1VMake ViewOpt Tag, API2:8 

1VMakeXXXTag, API2:8 

TX_DESC, API2:419 

TX_FRAME, API2:420 

U_L, API2:131 

UNDO_ITEM, API2:327-328, API2:330 

UNDO_METRICS, API2:327, API2:329 

UNDO_NEW, API2:328 

UNDO_NEW_ONLY, API2:328 

USER_BYTES, API2:365 

USER_ COLUMN_TYPE, API2: 191 

Vswab, API2:133 

VVID, API2:83 

VIEW_NEW, API1:219-220 

VIEW_NEW_ONLY, APIl:219 

VNCreate, API2:90 

VNDelete, API2:91 

VNDirPosDeleteAdjust, API2:91 

VNDup, API2:90 

VNFlush, API2:95 

VNGet, API2:89 

VNGetAttrlnfo, API2:93-94 

VNGetByDirld, API2:89 

VNGetDirld, API2:91 

VNGetName, API2:93 

VNGetNumAttrs, API2:93 

VNGetSize, API2:92 

VNMakeNative, API2:94 

VNMove, API2:91 

VNNextChild, API2:89 

VNODE_ACCESS, API2:87 

VNODE_ATTR_FLAGS, API2:87 

VNODE_CMN_ATTRS, API2:87 

VNRead, API2:92 

VNRefCount, API2:95 

VNRelease, API2:90 

VNSetAttrlnfo, API2:94 

VNSetSize, API2:93 

VNWrite, API2:92 

VOL_CACHE, API2:86 

VOL_CMN_FLAGS, API2:87 

VOL_COMMON, API2:87 

VOL_DUPLICATE_MEDIA, API2: 1 02 

VOL_FORMAT_MEDIA, API2: 100-101 

VOL_FORMAT_MEDIA_INIT, API2:100 

VOL_FORMAT_VOLUME, API2:116 

VOL_INFO, API2:87 

VOL_MEDIA_CAPACITIES, API2:100 

VOL_RTNS, API2:95 

VOL_UP DATE_ VOLUMES, API2:99 

VOLGODIR_CMN_ATTRS, API2:104 

VOLGODI~INFO, API2: 105 

VOLGODIR_RTNS, API2: 113 

VOLGODIR_ VNODE, API2: 105 

VOLGODIR_ VNODE_COMMON, API2: 104 

VOLGODIR_ VNODE_FLAGS, API2: 104 

VolSetVolName, API2:88 

VolSpecificMsg, API2:88 

VolStatus, API2:88 

VolVpdateVolInfo, API2:88 



VS_STRING_IDS, API2: 116 

VSCompose Text, API2: 122 

WIN_COPY_FLAGS, APIl:311 

WIN_COPY_RECT, APIl:311 

WIN_DEV_NEW, APIl:321 

WIN_DEV_NEW_ONLY, APIl:321 

WIN_DEV _PIXELMAP, API 1 :322 

WIN_ENUM, APIl:312 

WIN_ENUM_FLAGS, APIl:312 

WIN_ENV, APIl:318 

WIN_FLAGS, APIl :297 

WIN_METRICS, API 1 :298-304, 
API 1 :306-309, API 1 :312, 
APIl:315, APIl:317, APIl:319 

WIN_NEW, API 1 :298-299 

WIN_OPTIONS, APIl:297 

WIN_RESTORE_ENV, APIl:318 

WIN_SAVE_ENV, APIl:318 

WIN_SEND, APIl :305 

WIN_SEND _FLAGS, API 1 :305 

WIN_SORT, APIl:318 

Win Each Child, APIl:313 

WinEndEachChild, API 1 :314 

WinShrinkWrap, APIl:297 

WinShrinkWrapHeight, APIl:297 

WinShrinkWrapWidth, APIl:297 

WKNAdmin, APIl:57 

WknltemResId, API2:493 

WknListResId, API2:493 

WknObjResId, API2:493 

WknResId, API2:493 

WKNScope, APIl:58 

WKNValue, APIl:57 

WKNVer, APIl:57 

WORD_ENTRY, APIl:746 

WORD_LIST, APIl:746 

X2GESTURE, APIl:758 

X2STRING, APIl :758 

XFER_ASCICMETRICS, API2:338 

XFER_BUF, API2:337 

XFER_CONNECT, API2:338 

XFER_FIXED_BUF, API2:337 

XFER_OBJECT, API2:337 

XferAddIds, API2:340 

XferListSearch, API2:340 

XferMatch, API2:339 

XferStreamAccept, API2:341 

XferStreamConnect, API2:341 

XLATE_BDATA, APIl:746 

XLATE_CASE_FIELD, APIl:739 

XLATE_CASE_METRICS, APIl:739, 
APIl:745 

XLATE_CASE_TYPE, APIl:738 

XLATE_CASE_ WRITER, APIl :738 

XLA TE_DAT A, API 1: 7 46 

XLATE_GDATA, APIl:735 

XLATE_METRICS, APIl:738, APIl:740-741 

XLATE_MODE, APIl:740 

XLATE_NEW, APIl:739 

XLATE_NEW_ONLY, APIl:739 

XLATE_STRING, APIl:741 

XLIST_CHAR_ATTRS, API2:46 

XLIST_ELEMENT, APIl:752 

XLIST_METRICS, APIl:754 

XLIST_PARA_ATTRS, API2:46 

XLIST_TABS, API2:47 

XList2Gesture, APIl:757 

XList2String, APIl :758 

XList2StringLength, APIl:758 

XList2Text, APIl:749 

XListAlloc, APIl:756 

XListDelete, APIl: 7 55 

XListDump, APIl:759 

XListDumpSetup, APIl:759 

XListDup, APIl:757 

XListDupElement, APIl :757 

XListFree, APIl:753 

XListFreeData, APIl:756 

XListGet, APIl:756 

XListGetFlags, APIl:754 

XListGetPtr, APIl:756 

XListlndex, API 1: 7 5 5 

XListlnsert, API 1: 7 54 

XListMetrics, API 1: 7 54 

XListNew, APIl:753 

XListSet, APIl:755 

XListSetFlags, APIl:754 

XListTraverse, APIl:755 

XS_ASCII_MATCH, APIl:762 

XS_DIRECTION, APIl :762 

XS_GESTURE_MATCH, APIl:762 

XS_LD_MATCH, APIl:762 

XS_MATCH_TYPE, APIl:762 

XS_OCTAGON, APIl:762 

XS_RESOURCE_TYPE, APIl:761 

XS_STROKE, APIl:763 

XSDeltaDirection, APIl:762 

INDEX 813 

XSDeltaDirectionAdd, APIl:762 

XSHAPE_COMPATIBLE, APIl:766 

XSHAPE_NEW, APIl :763 

XSHAPE_NEW_ONLY, APIl:763 

XSHAPE_RECOGNIZE, API 1: 765 

XSHAPE_STROKE_PREVIEW, APIl:764 

XSNextDirectionCCW, APIl:762 

XSNextDirectionCW, APIl:762 

XSOppositeDirection, APIl :762 

XTEACH_DATA, APIl:769 

XTEMPLA TE_ GESTURE_LIST, API 1: 775 

XTEMPLATE_METRICS, APIl:774 

XTEMPLATE_MODE, API 1 :774 

XTEMPLA TE_ TRIE_HEADER, API 1: 774 

XTEMPLA TE_ TYPE, API 1: 773 

XTemplateAddWord, APIl:777 

XT emplateCheckGesture, API 1: 777 

XTemplateCheckWord, APIl:776 

XT emplateCompile, API 1: 774 

XT emplateDelete Word, API 1: 777 

XTemplateFree, APIl:776 

XTemplateGetMetrics, API 1 : 776 

XT emplateSetMode, API 1: 776 

XT emplate W ordListSort, API 1: 77 6 

XTempltlnit, APIl:777 

XTEXT_WORD, APIl:779 

XTM_ARGS, API 1:774 

XTYPE, APIl:752 

XY16, APIl:233 

XYl6ToPenStroke, APIl:710 

XY32, APIl :233 

XY32inRect32, API 1 :236 

ZIP _GETZONES, API2:367 





Your comments on our software documentation are important to us. Is this manual 

useful to you? Does it meet your needs? If not, how can we make it better? Is there 
something we're doing right and you want to see more of? 

Make a copy of this form and let us know how you feel. You can also send us marked 
up pages. Along with your comments, please specify the name of the book and the page 

numbers of any specific comments. 

Please indicate your previous programming experience: 

D Minicomputer D MS-DOS 

D Macintosh 

D Mainframe 

D None D Other __________________ __ 

Please rate your answers to the following questions on a scale of 1 to 5: 

1 :2 3 4 5 
Poor Average Excellent 

How useful was this book? D D D D D 
Was information easy to find? D D D D D 
Was the organization clear? D D D D D 
Was the book technically accurate? D D D D D 
Were topics covered in enough detail? D D D D D 

Additional comments: 

Your name and address: 

Name _________________________________________________ _ 

Company 

Address ________________________________________________________ __ 

City ______________ State ____________ _ 

Mail this form to: 

Team Manager, Developer Documentation 
GO Corporation 
919 E. Hillsdale Blvd., Suite 400 
Foster City, CA 94404-2128 

Or fax it to: (415) 345-9833 

Zip ____________ _ 





Package Design Letter 

Document Edit Opllons Vi_ Insert Case 

Can roo desi~ a li~twt:i~t. recyclable, 8 02. 'i 
plastic bottle Ihat wcn't~kWlde[ moderate 
implct? I'll be travellingnextweek,rutycu 
can fax me suggested proposals at2131 
555-9833. 

SuggeslicJn 

Ctu 
I'----------J I 
~~---------------~ 

9 780201 608625 
ISBN 0-201-60862-6 

60862 


